1 //===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "gwp_asan/guarded_pool_allocator.h"
10
11 #include "gwp_asan/crash_handler.h"
12 #include "gwp_asan/options.h"
13 #include "gwp_asan/utilities.h"
14
15 #include <assert.h>
16 #include <stddef.h>
17
18 using AllocationMetadata = gwp_asan::AllocationMetadata;
19 using Error = gwp_asan::Error;
20
21 namespace gwp_asan {
22 namespace {
23 // Forward declare the pointer to the singleton version of this class.
24 // Instantiated during initialisation, this allows the signal handler
25 // to find this class in order to deduce the root cause of failures. Must not be
26 // referenced by users outside this translation unit, in order to avoid
27 // init-order-fiasco.
28 GuardedPoolAllocator *SingletonPtr = nullptr;
29
roundUpTo(size_t Size,size_t Boundary)30 size_t roundUpTo(size_t Size, size_t Boundary) {
31 return (Size + Boundary - 1) & ~(Boundary - 1);
32 }
33
getPageAddr(uintptr_t Ptr,uintptr_t PageSize)34 uintptr_t getPageAddr(uintptr_t Ptr, uintptr_t PageSize) {
35 return Ptr & ~(PageSize - 1);
36 }
37
isPowerOfTwo(uintptr_t X)38 bool isPowerOfTwo(uintptr_t X) { return (X & (X - 1)) == 0; }
39 } // anonymous namespace
40
41 // Gets the singleton implementation of this class. Thread-compatible until
42 // init() is called, thread-safe afterwards.
getSingleton()43 GuardedPoolAllocator *GuardedPoolAllocator::getSingleton() {
44 return SingletonPtr;
45 }
46
init(const options::Options & Opts)47 void GuardedPoolAllocator::init(const options::Options &Opts) {
48 // Note: We return from the constructor here if GWP-ASan is not available.
49 // This will stop heap-allocation of class members, as well as mmap() of the
50 // guarded slots.
51 if (!Opts.Enabled || Opts.SampleRate == 0 ||
52 Opts.MaxSimultaneousAllocations == 0)
53 return;
54
55 check(Opts.SampleRate >= 0, "GWP-ASan Error: SampleRate is < 0.");
56 check(Opts.SampleRate < (1 << 30), "GWP-ASan Error: SampleRate is >= 2^30.");
57 check(Opts.MaxSimultaneousAllocations >= 0,
58 "GWP-ASan Error: MaxSimultaneousAllocations is < 0.");
59
60 check(SingletonPtr == nullptr,
61 "There's already a live GuardedPoolAllocator!");
62 SingletonPtr = this;
63 Backtrace = Opts.Backtrace;
64
65 State.VersionMagic = {{AllocatorVersionMagic::kAllocatorVersionMagic[0],
66 AllocatorVersionMagic::kAllocatorVersionMagic[1],
67 AllocatorVersionMagic::kAllocatorVersionMagic[2],
68 AllocatorVersionMagic::kAllocatorVersionMagic[3]},
69 AllocatorVersionMagic::kAllocatorVersion,
70 0};
71
72 State.MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;
73
74 const size_t PageSize = getPlatformPageSize();
75 // getPageAddr() and roundUpTo() assume the page size to be a power of 2.
76 assert((PageSize & (PageSize - 1)) == 0);
77 State.PageSize = PageSize;
78
79 // Number of pages required =
80 // + MaxSimultaneousAllocations * maximumAllocationSize (N pages per slot)
81 // + MaxSimultaneousAllocations (one guard on the left side of each slot)
82 // + 1 (an extra guard page at the end of the pool, on the right side)
83 // + 1 (an extra page that's used for reporting internally-detected crashes,
84 // like double free and invalid free, to the signal handler; see
85 // raiseInternallyDetectedError() for more info)
86 size_t PoolBytesRequired =
87 PageSize * (2 + State.MaxSimultaneousAllocations) +
88 State.MaxSimultaneousAllocations * State.maximumAllocationSize();
89 assert(PoolBytesRequired % PageSize == 0);
90 void *GuardedPoolMemory = reserveGuardedPool(PoolBytesRequired);
91
92 size_t BytesRequired =
93 roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata), PageSize);
94 Metadata = reinterpret_cast<AllocationMetadata *>(
95 map(BytesRequired, kGwpAsanMetadataName));
96
97 // Allocate memory and set up the free pages queue.
98 BytesRequired = roundUpTo(
99 State.MaxSimultaneousAllocations * sizeof(*FreeSlots), PageSize);
100 FreeSlots =
101 reinterpret_cast<size_t *>(map(BytesRequired, kGwpAsanFreeSlotsName));
102
103 // Multiply the sample rate by 2 to give a good, fast approximation for (1 /
104 // SampleRate) chance of sampling.
105 if (Opts.SampleRate != 1)
106 AdjustedSampleRatePlusOne = static_cast<uint32_t>(Opts.SampleRate) * 2 + 1;
107 else
108 AdjustedSampleRatePlusOne = 2;
109
110 initPRNG();
111 getThreadLocals()->NextSampleCounter =
112 ((getRandomUnsigned32() % (AdjustedSampleRatePlusOne - 1)) + 1) &
113 ThreadLocalPackedVariables::NextSampleCounterMask;
114
115 State.GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
116 State.GuardedPagePoolEnd =
117 reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;
118
119 if (Opts.InstallForkHandlers)
120 installAtFork();
121 }
122
disable()123 void GuardedPoolAllocator::disable() {
124 PoolMutex.lock();
125 BacktraceMutex.lock();
126 }
127
enable()128 void GuardedPoolAllocator::enable() {
129 PoolMutex.unlock();
130 BacktraceMutex.unlock();
131 }
132
iterate(void * Base,size_t Size,iterate_callback Cb,void * Arg)133 void GuardedPoolAllocator::iterate(void *Base, size_t Size, iterate_callback Cb,
134 void *Arg) {
135 uintptr_t Start = reinterpret_cast<uintptr_t>(Base);
136 for (size_t i = 0; i < State.MaxSimultaneousAllocations; ++i) {
137 const AllocationMetadata &Meta = Metadata[i];
138 if (Meta.Addr && !Meta.IsDeallocated && Meta.Addr >= Start &&
139 Meta.Addr < Start + Size)
140 Cb(Meta.Addr, Meta.RequestedSize, Arg);
141 }
142 }
143
uninitTestOnly()144 void GuardedPoolAllocator::uninitTestOnly() {
145 if (State.GuardedPagePool) {
146 unreserveGuardedPool();
147 State.GuardedPagePool = 0;
148 State.GuardedPagePoolEnd = 0;
149 }
150 if (Metadata) {
151 unmap(Metadata,
152 roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata),
153 State.PageSize));
154 Metadata = nullptr;
155 }
156 if (FreeSlots) {
157 unmap(FreeSlots,
158 roundUpTo(State.MaxSimultaneousAllocations * sizeof(*FreeSlots),
159 State.PageSize));
160 FreeSlots = nullptr;
161 }
162 *getThreadLocals() = ThreadLocalPackedVariables();
163 SingletonPtr = nullptr;
164 }
165
166 // Note, minimum backing allocation size in GWP-ASan is always one page, and
167 // each slot could potentially be multiple pages (but always in
168 // page-increments). Thus, for anything that requires less than page size
169 // alignment, we don't need to allocate extra padding to ensure the alignment
170 // can be met.
getRequiredBackingSize(size_t Size,size_t Alignment,size_t PageSize)171 size_t GuardedPoolAllocator::getRequiredBackingSize(size_t Size,
172 size_t Alignment,
173 size_t PageSize) {
174 assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
175 assert(Alignment != 0 && "Alignment should be non-zero");
176 assert(Size != 0 && "Size should be non-zero");
177
178 if (Alignment <= PageSize)
179 return Size;
180
181 return Size + Alignment - PageSize;
182 }
183
alignUp(uintptr_t Ptr,size_t Alignment)184 uintptr_t GuardedPoolAllocator::alignUp(uintptr_t Ptr, size_t Alignment) {
185 assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
186 assert(Alignment != 0 && "Alignment should be non-zero");
187 if ((Ptr & (Alignment - 1)) == 0)
188 return Ptr;
189
190 Ptr += Alignment - (Ptr & (Alignment - 1));
191 return Ptr;
192 }
193
alignDown(uintptr_t Ptr,size_t Alignment)194 uintptr_t GuardedPoolAllocator::alignDown(uintptr_t Ptr, size_t Alignment) {
195 assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
196 assert(Alignment != 0 && "Alignment should be non-zero");
197 if ((Ptr & (Alignment - 1)) == 0)
198 return Ptr;
199
200 Ptr -= Ptr & (Alignment - 1);
201 return Ptr;
202 }
203
allocate(size_t Size,size_t Alignment)204 void *GuardedPoolAllocator::allocate(size_t Size, size_t Alignment) {
205 // GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
206 // back to the supporting allocator.
207 if (State.GuardedPagePoolEnd == 0) {
208 getThreadLocals()->NextSampleCounter =
209 (AdjustedSampleRatePlusOne - 1) &
210 ThreadLocalPackedVariables::NextSampleCounterMask;
211 return nullptr;
212 }
213
214 if (Size == 0)
215 Size = 1;
216 if (Alignment == 0)
217 Alignment = alignof(max_align_t);
218
219 if (!isPowerOfTwo(Alignment) || Alignment > State.maximumAllocationSize() ||
220 Size > State.maximumAllocationSize())
221 return nullptr;
222
223 size_t BackingSize = getRequiredBackingSize(Size, Alignment, State.PageSize);
224 if (BackingSize > State.maximumAllocationSize())
225 return nullptr;
226
227 // Protect against recursivity.
228 if (getThreadLocals()->RecursiveGuard)
229 return nullptr;
230 ScopedRecursiveGuard SRG;
231
232 size_t Index;
233 {
234 ScopedLock L(PoolMutex);
235 Index = reserveSlot();
236 }
237
238 if (Index == kInvalidSlotID)
239 return nullptr;
240
241 uintptr_t SlotStart = State.slotToAddr(Index);
242 AllocationMetadata *Meta = addrToMetadata(SlotStart);
243 uintptr_t SlotEnd = State.slotToAddr(Index) + State.maximumAllocationSize();
244 uintptr_t UserPtr;
245 // Randomly choose whether to left-align or right-align the allocation, and
246 // then apply the necessary adjustments to get an aligned pointer.
247 if (getRandomUnsigned32() % 2 == 0)
248 UserPtr = alignUp(SlotStart, Alignment);
249 else
250 UserPtr = alignDown(SlotEnd - Size, Alignment);
251
252 assert(UserPtr >= SlotStart);
253 assert(UserPtr + Size <= SlotEnd);
254
255 // If a slot is multiple pages in size, and the allocation takes up a single
256 // page, we can improve overflow detection by leaving the unused pages as
257 // unmapped.
258 const size_t PageSize = State.PageSize;
259 allocateInGuardedPool(
260 reinterpret_cast<void *>(getPageAddr(UserPtr, PageSize)),
261 roundUpTo(Size, PageSize));
262
263 Meta->RecordAllocation(UserPtr, Size);
264 {
265 ScopedLock UL(BacktraceMutex);
266 Meta->AllocationTrace.RecordBacktrace(Backtrace);
267 }
268
269 return reinterpret_cast<void *>(UserPtr);
270 }
271
raiseInternallyDetectedError(uintptr_t Address,Error E)272 void GuardedPoolAllocator::raiseInternallyDetectedError(uintptr_t Address,
273 Error E) {
274 // Disable the allocator before setting the internal failure state. In
275 // non-recoverable mode, the allocator will be permanently disabled, and so
276 // things will be accessed without locks.
277 disable();
278
279 // Races between internally- and externally-raised faults can happen. Right
280 // now, in this thread we've locked the allocator in order to raise an
281 // internally-detected fault, and another thread could SIGSEGV to raise an
282 // externally-detected fault. What will happen is that the other thread will
283 // wait in the signal handler, as we hold the allocator's locks from the
284 // disable() above. We'll trigger the signal handler by touching the
285 // internal-signal-raising address below, and the signal handler from our
286 // thread will get to run first as we will continue to hold the allocator
287 // locks until the enable() at the end of this function. Be careful though, if
288 // this thread receives another SIGSEGV after the disable() above, but before
289 // touching the internal-signal-raising address below, then this thread will
290 // get an "externally-raised" SIGSEGV while *also* holding the allocator
291 // locks, which means this thread's signal handler will deadlock. This could
292 // be resolved with a re-entrant lock, but asking platforms to implement this
293 // seems unnecessary given the only way to get a SIGSEGV in this critical
294 // section is either a memory safety bug in the couple lines of code below (be
295 // careful!), or someone outside uses `kill(this_thread, SIGSEGV)`, which
296 // really shouldn't happen.
297
298 State.FailureType = E;
299 State.FailureAddress = Address;
300
301 // Raise a SEGV by touching a specific address that identifies to the crash
302 // handler that this is an internally-raised fault. Changing this address?
303 // Don't forget to update __gwp_asan_get_internal_crash_address.
304 volatile char *p =
305 reinterpret_cast<char *>(State.internallyDetectedErrorFaultAddress());
306 *p = 0;
307
308 // This should never be reached in non-recoverable mode. Ensure that the
309 // signal handler called handleRecoverablePostCrashReport(), which was
310 // responsible for re-setting these fields.
311 assert(State.FailureType == Error::UNKNOWN);
312 assert(State.FailureAddress == 0u);
313
314 // In recoverable mode, the signal handler (after dumping the crash) marked
315 // the page containing the InternalFaultSegvAddress as read/writeable, to
316 // allow the second touch to succeed after returning from the signal handler.
317 // Now, we need to mark the page as non-read/write-able again, so future
318 // internal faults can be raised.
319 deallocateInGuardedPool(
320 reinterpret_cast<void *>(getPageAddr(
321 State.internallyDetectedErrorFaultAddress(), State.PageSize)),
322 State.PageSize);
323
324 // And now we're done with patching ourselves back up, enable the allocator.
325 enable();
326 }
327
deallocate(void * Ptr)328 void GuardedPoolAllocator::deallocate(void *Ptr) {
329 assert(pointerIsMine(Ptr) && "Pointer is not mine!");
330 uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
331 size_t Slot = State.getNearestSlot(UPtr);
332 uintptr_t SlotStart = State.slotToAddr(Slot);
333 AllocationMetadata *Meta = addrToMetadata(UPtr);
334
335 // If this allocation is responsible for crash, never recycle it. Turn the
336 // deallocate() call into a no-op.
337 if (Meta->HasCrashed)
338 return;
339
340 if (Meta->Addr != UPtr) {
341 raiseInternallyDetectedError(UPtr, Error::INVALID_FREE);
342 return;
343 }
344 if (Meta->IsDeallocated) {
345 raiseInternallyDetectedError(UPtr, Error::DOUBLE_FREE);
346 return;
347 }
348
349 // Intentionally scope the mutex here, so that other threads can access the
350 // pool during the expensive markInaccessible() call.
351 {
352 ScopedLock L(PoolMutex);
353
354 // Ensure that the deallocation is recorded before marking the page as
355 // inaccessible. Otherwise, a racy use-after-free will have inconsistent
356 // metadata.
357 Meta->RecordDeallocation();
358
359 // Ensure that the unwinder is not called if the recursive flag is set,
360 // otherwise non-reentrant unwinders may deadlock.
361 if (!getThreadLocals()->RecursiveGuard) {
362 ScopedRecursiveGuard SRG;
363 ScopedLock UL(BacktraceMutex);
364 Meta->DeallocationTrace.RecordBacktrace(Backtrace);
365 }
366 }
367
368 deallocateInGuardedPool(reinterpret_cast<void *>(SlotStart),
369 State.maximumAllocationSize());
370
371 // And finally, lock again to release the slot back into the pool.
372 ScopedLock L(PoolMutex);
373 freeSlot(Slot);
374 }
375
376 // Thread-compatible, protected by PoolMutex.
377 static bool PreviousRecursiveGuard;
378
preCrashReport(void * Ptr)379 void GuardedPoolAllocator::preCrashReport(void *Ptr) {
380 assert(pointerIsMine(Ptr) && "Pointer is not mine!");
381 uintptr_t InternalCrashAddr = __gwp_asan_get_internal_crash_address(
382 &State, reinterpret_cast<uintptr_t>(Ptr));
383 if (!InternalCrashAddr)
384 disable();
385
386 // If something in the signal handler calls malloc() while dumping the
387 // GWP-ASan report (e.g. backtrace_symbols()), make sure that GWP-ASan doesn't
388 // service that allocation. `PreviousRecursiveGuard` is protected by the
389 // allocator locks taken in disable(), either explicitly above for
390 // externally-raised errors, or implicitly in raiseInternallyDetectedError()
391 // for internally-detected errors.
392 PreviousRecursiveGuard = getThreadLocals()->RecursiveGuard;
393 getThreadLocals()->RecursiveGuard = true;
394 }
395
postCrashReportRecoverableOnly(void * SignalPtr)396 void GuardedPoolAllocator::postCrashReportRecoverableOnly(void *SignalPtr) {
397 uintptr_t SignalUPtr = reinterpret_cast<uintptr_t>(SignalPtr);
398 uintptr_t InternalCrashAddr =
399 __gwp_asan_get_internal_crash_address(&State, SignalUPtr);
400 uintptr_t ErrorUptr = InternalCrashAddr ?: SignalUPtr;
401
402 AllocationMetadata *Metadata = addrToMetadata(ErrorUptr);
403 Metadata->HasCrashed = true;
404
405 allocateInGuardedPool(
406 reinterpret_cast<void *>(getPageAddr(SignalUPtr, State.PageSize)),
407 State.PageSize);
408
409 // Clear the internal state in order to not confuse the crash handler if a
410 // use-after-free or buffer-overflow comes from a different allocation in the
411 // future.
412 if (InternalCrashAddr) {
413 State.FailureType = Error::UNKNOWN;
414 State.FailureAddress = 0;
415 }
416
417 size_t Slot = State.getNearestSlot(ErrorUptr);
418 // If the slot is available, remove it permanently.
419 for (size_t i = 0; i < FreeSlotsLength; ++i) {
420 if (FreeSlots[i] == Slot) {
421 FreeSlots[i] = FreeSlots[FreeSlotsLength - 1];
422 FreeSlotsLength -= 1;
423 break;
424 }
425 }
426
427 getThreadLocals()->RecursiveGuard = PreviousRecursiveGuard;
428 if (!InternalCrashAddr)
429 enable();
430 }
431
getSize(const void * Ptr)432 size_t GuardedPoolAllocator::getSize(const void *Ptr) {
433 assert(pointerIsMine(Ptr));
434 ScopedLock L(PoolMutex);
435 AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
436 assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
437 return Meta->RequestedSize;
438 }
439
addrToMetadata(uintptr_t Ptr) const440 AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
441 return &Metadata[State.getNearestSlot(Ptr)];
442 }
443
reserveSlot()444 size_t GuardedPoolAllocator::reserveSlot() {
445 // Avoid potential reuse of a slot before we have made at least a single
446 // allocation in each slot. Helps with our use-after-free detection.
447 if (NumSampledAllocations < State.MaxSimultaneousAllocations)
448 return NumSampledAllocations++;
449
450 if (FreeSlotsLength == 0)
451 return kInvalidSlotID;
452
453 size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
454 size_t SlotIndex = FreeSlots[ReservedIndex];
455 FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
456 return SlotIndex;
457 }
458
freeSlot(size_t SlotIndex)459 void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
460 assert(FreeSlotsLength < State.MaxSimultaneousAllocations);
461 FreeSlots[FreeSlotsLength++] = SlotIndex;
462 }
463
getRandomUnsigned32()464 uint32_t GuardedPoolAllocator::getRandomUnsigned32() {
465 uint32_t RandomState = getThreadLocals()->RandomState;
466 RandomState ^= RandomState << 13;
467 RandomState ^= RandomState >> 17;
468 RandomState ^= RandomState << 5;
469 getThreadLocals()->RandomState = RandomState;
470 return RandomState;
471 }
472 } // namespace gwp_asan
473