1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * This file is part of the Chelsio T4 support code.
14 *
15 * Copyright (C) 2010-2013 Chelsio Communications. All rights reserved.
16 *
17 * This program is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
20 * release for licensing terms and conditions.
21 */
22
23 /*
24 * Copyright 2024 Oxide Computer Company
25 */
26
27 #include <sys/ddi.h>
28 #include <sys/sunddi.h>
29 #include <sys/sunndi.h>
30 #include <sys/modctl.h>
31 #include <sys/conf.h>
32 #include <sys/devops.h>
33 #include <sys/pci.h>
34 #include <sys/atomic.h>
35 #include <sys/types.h>
36 #include <sys/file.h>
37 #include <sys/errno.h>
38 #include <sys/open.h>
39 #include <sys/cred.h>
40 #include <sys/stat.h>
41 #include <sys/mkdev.h>
42 #include <sys/queue.h>
43 #include <sys/containerof.h>
44 #include <sys/sensors.h>
45 #include <sys/firmload.h>
46 #include <sys/mac_provider.h>
47 #include <sys/mac_ether.h>
48 #include <sys/vlan.h>
49
50 #include "version.h"
51 #include "common/common.h"
52 #include "common/t4_msg.h"
53 #include "common/t4_regs.h"
54 #include "common/t4_extra_regs.h"
55 #include "t4_l2t.h"
56
57 static int t4_cb_open(dev_t *devp, int flag, int otyp, cred_t *credp);
58 static int t4_cb_close(dev_t dev, int flag, int otyp, cred_t *credp);
59 static int t4_cb_ioctl(dev_t dev, int cmd, intptr_t d, int mode, cred_t *credp,
60 int *rp);
61 struct cb_ops t4_cb_ops = {
62 .cb_open = t4_cb_open,
63 .cb_close = t4_cb_close,
64 .cb_strategy = nodev,
65 .cb_print = nodev,
66 .cb_dump = nodev,
67 .cb_read = nodev,
68 .cb_write = nodev,
69 .cb_ioctl = t4_cb_ioctl,
70 .cb_devmap = nodev,
71 .cb_mmap = nodev,
72 .cb_segmap = nodev,
73 .cb_chpoll = nochpoll,
74 .cb_prop_op = ddi_prop_op,
75 .cb_flag = D_MP,
76 .cb_rev = CB_REV,
77 .cb_aread = nodev,
78 .cb_awrite = nodev
79 };
80
81 static int t4_bus_ctl(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t op,
82 void *arg, void *result);
83 static int t4_bus_config(dev_info_t *dip, uint_t flags, ddi_bus_config_op_t op,
84 void *arg, dev_info_t **cdipp);
85 static int t4_bus_unconfig(dev_info_t *dip, uint_t flags,
86 ddi_bus_config_op_t op, void *arg);
87 struct bus_ops t4_bus_ops = {
88 .busops_rev = BUSO_REV,
89 .bus_ctl = t4_bus_ctl,
90 .bus_prop_op = ddi_bus_prop_op,
91 .bus_config = t4_bus_config,
92 .bus_unconfig = t4_bus_unconfig,
93 };
94
95 static int t4_devo_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,
96 void **rp);
97 static int t4_devo_probe(dev_info_t *dip);
98 static int t4_devo_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
99 static int t4_devo_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
100 static int t4_devo_quiesce(dev_info_t *dip);
101 static struct dev_ops t4_dev_ops = {
102 .devo_rev = DEVO_REV,
103 .devo_getinfo = t4_devo_getinfo,
104 .devo_identify = nulldev,
105 .devo_probe = t4_devo_probe,
106 .devo_attach = t4_devo_attach,
107 .devo_detach = t4_devo_detach,
108 .devo_reset = nodev,
109 .devo_cb_ops = &t4_cb_ops,
110 .devo_bus_ops = &t4_bus_ops,
111 .devo_quiesce = &t4_devo_quiesce,
112 };
113
114 static struct modldrv t4nex_modldrv = {
115 .drv_modops = &mod_driverops,
116 .drv_linkinfo = "Chelsio T4-T6 nexus " DRV_VERSION,
117 .drv_dev_ops = &t4_dev_ops
118 };
119
120 static struct modlinkage t4nex_modlinkage = {
121 .ml_rev = MODREV_1,
122 .ml_linkage = {&t4nex_modldrv, NULL},
123 };
124
125 void *t4_list;
126
127 struct intrs_and_queues {
128 int intr_type; /* DDI_INTR_TYPE_* */
129 int nirq; /* Number of vectors */
130 int intr_fwd; /* Interrupts forwarded */
131 int ntxq10g; /* # of NIC txq's for each 10G port */
132 int nrxq10g; /* # of NIC rxq's for each 10G port */
133 int ntxq1g; /* # of NIC txq's for each 1G port */
134 int nrxq1g; /* # of NIC rxq's for each 1G port */
135 };
136
137 static unsigned int getpf(struct adapter *sc);
138 static int prep_firmware(struct adapter *sc);
139 static int upload_config_file(struct adapter *sc, uint32_t *mt, uint32_t *ma);
140 static int partition_resources(struct adapter *sc);
141 static int adap__pre_init_tweaks(struct adapter *sc);
142 static int get_params__pre_init(struct adapter *sc);
143 static int get_params__post_init(struct adapter *sc);
144 static int set_params__post_init(struct adapter *);
145 static void setup_memwin(struct adapter *sc);
146 static int validate_mt_off_len(struct adapter *, int, uint32_t, int,
147 uint32_t *);
148 void memwin_info(struct adapter *, int, uint32_t *, uint32_t *);
149 uint32_t position_memwin(struct adapter *, int, uint32_t);
150 static int prop_lookup_int_array(struct adapter *sc, char *name, int *data,
151 uint_t count);
152 static int prop_lookup_int_array(struct adapter *sc, char *name, int *data,
153 uint_t count);
154 static int init_driver_props(struct adapter *sc, struct driver_properties *p);
155 static int remove_extra_props(struct adapter *sc, int n10g, int n1g);
156 static int cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g,
157 struct intrs_and_queues *iaq);
158 static int add_child_node(struct adapter *sc, int idx);
159 static int remove_child_node(struct adapter *sc, int idx);
160 static kstat_t *setup_kstats(struct adapter *sc);
161 static kstat_t *setup_wc_kstats(struct adapter *);
162 static int update_wc_kstats(kstat_t *, int);
163 static kmutex_t t4_adapter_list_lock;
164 static SLIST_HEAD(, adapter) t4_adapter_list;
165
166 static int t4_temperature_read(void *, sensor_ioctl_scalar_t *);
167 static int t4_voltage_read(void *, sensor_ioctl_scalar_t *);
168 static const ksensor_ops_t t4_temp_ops = {
169 .kso_kind = ksensor_kind_temperature,
170 .kso_scalar = t4_temperature_read
171 };
172
173 static const ksensor_ops_t t4_volt_ops = {
174 .kso_kind = ksensor_kind_voltage,
175 .kso_scalar = t4_voltage_read
176 };
177
178 static int t4_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
179 static int t4_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
180 ddi_ufm_image_t *);
181 static int t4_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
182 ddi_ufm_slot_t *);
183 static ddi_ufm_ops_t t4_ufm_ops = {
184 .ddi_ufm_op_fill_image = t4_ufm_fill_image,
185 .ddi_ufm_op_fill_slot = t4_ufm_fill_slot,
186 .ddi_ufm_op_getcaps = t4_ufm_getcaps
187 };
188
189 int
_init(void)190 _init(void)
191 {
192 int rc;
193
194 rc = ddi_soft_state_init(&t4_list, sizeof (struct adapter), 0);
195 if (rc != 0)
196 return (rc);
197
198 rc = mod_install(&t4nex_modlinkage);
199 if (rc != 0)
200 ddi_soft_state_fini(&t4_list);
201
202 mutex_init(&t4_adapter_list_lock, NULL, MUTEX_DRIVER, NULL);
203 SLIST_INIT(&t4_adapter_list);
204 t4_debug_init();
205
206 return (0);
207 }
208
209 int
_fini(void)210 _fini(void)
211 {
212 int rc;
213
214 rc = mod_remove(&t4nex_modlinkage);
215 if (rc != 0)
216 return (rc);
217
218 ddi_soft_state_fini(&t4_list);
219 t4_debug_fini();
220
221 return (0);
222 }
223
224 int
_info(struct modinfo * mi)225 _info(struct modinfo *mi)
226 {
227 return (mod_info(&t4nex_modlinkage, mi));
228 }
229
230 /* ARGSUSED */
231 static int
t4_devo_getinfo(dev_info_t * dip,ddi_info_cmd_t cmd,void * arg,void ** rp)232 t4_devo_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **rp)
233 {
234 struct adapter *sc;
235 minor_t minor;
236
237 minor = getminor((dev_t)arg); /* same as instance# in our case */
238
239 if (cmd == DDI_INFO_DEVT2DEVINFO) {
240 sc = ddi_get_soft_state(t4_list, minor);
241 if (sc == NULL)
242 return (DDI_FAILURE);
243
244 ASSERT(sc->dev == (dev_t)arg);
245 *rp = (void *)sc->dip;
246 } else if (cmd == DDI_INFO_DEVT2INSTANCE)
247 *rp = (void *) (unsigned long) minor;
248 else
249 ASSERT(0);
250
251 return (DDI_SUCCESS);
252 }
253
254 static int
t4_devo_probe(dev_info_t * dip)255 t4_devo_probe(dev_info_t *dip)
256 {
257 int rc, id, *reg;
258 uint_t n, pf;
259
260 id = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
261 "device-id", 0xffff);
262 if (id == 0xffff)
263 return (DDI_PROBE_DONTCARE);
264
265 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
266 "reg", ®, &n);
267 if (rc != DDI_SUCCESS)
268 return (DDI_PROBE_DONTCARE);
269
270 pf = PCI_REG_FUNC_G(reg[0]);
271 ddi_prop_free(reg);
272
273 /* Prevent driver attachment on any PF except 0 on the FPGA */
274 if (id == 0xa000 && pf != 0)
275 return (DDI_PROBE_FAILURE);
276
277 return (DDI_PROBE_DONTCARE);
278 }
279
280 static int
t4_devo_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)281 t4_devo_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
282 {
283 struct adapter *sc = NULL;
284 struct sge *s;
285 int i, instance, rc = DDI_SUCCESS, rqidx, tqidx, q;
286 int irq = 0, nxg = 0, n1g = 0;
287 char name[16];
288 struct driver_properties *prp;
289 struct intrs_and_queues iaq;
290 ddi_device_acc_attr_t da = {
291 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
292 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
293 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
294 };
295 ddi_device_acc_attr_t da1 = {
296 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
297 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
298 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
299 };
300
301 if (cmd != DDI_ATTACH)
302 return (DDI_FAILURE);
303
304 /*
305 * Allocate space for soft state.
306 */
307 instance = ddi_get_instance(dip);
308 rc = ddi_soft_state_zalloc(t4_list, instance);
309 if (rc != DDI_SUCCESS) {
310 cxgb_printf(dip, CE_WARN,
311 "failed to allocate soft state: %d", rc);
312 return (DDI_FAILURE);
313 }
314
315 sc = ddi_get_soft_state(t4_list, instance);
316 sc->dip = dip;
317 sc->dev = makedevice(ddi_driver_major(dip), instance);
318 mutex_init(&sc->lock, NULL, MUTEX_DRIVER, NULL);
319 cv_init(&sc->cv, NULL, CV_DRIVER, NULL);
320 mutex_init(&sc->sfl_lock, NULL, MUTEX_DRIVER, NULL);
321 TAILQ_INIT(&sc->sfl);
322 mutex_init(&sc->mbox_lock, NULL, MUTEX_DRIVER, NULL);
323 STAILQ_INIT(&sc->mbox_list);
324
325 mutex_enter(&t4_adapter_list_lock);
326 SLIST_INSERT_HEAD(&t4_adapter_list, sc, link);
327 mutex_exit(&t4_adapter_list_lock);
328
329 sc->pf = getpf(sc);
330 if (sc->pf > 8) {
331 rc = EINVAL;
332 cxgb_printf(dip, CE_WARN,
333 "failed to determine PCI PF# of device");
334 goto done;
335 }
336 sc->mbox = sc->pf;
337
338 /* Initialize the driver properties */
339 prp = &sc->props;
340 (void) init_driver_props(sc, prp);
341
342 /*
343 * Enable access to the PCI config space.
344 */
345 rc = pci_config_setup(dip, &sc->pci_regh);
346 if (rc != DDI_SUCCESS) {
347 cxgb_printf(dip, CE_WARN,
348 "failed to enable PCI config space access: %d", rc);
349 goto done;
350 }
351
352 /* TODO: Set max read request to 4K */
353
354 /*
355 * Enable MMIO access.
356 */
357 rc = ddi_regs_map_setup(dip, 1, &sc->regp, 0, 0, &da, &sc->regh);
358 if (rc != DDI_SUCCESS) {
359 cxgb_printf(dip, CE_WARN,
360 "failed to map device registers: %d", rc);
361 goto done;
362 }
363
364 (void) memset(sc->chan_map, 0xff, sizeof (sc->chan_map));
365
366 for (i = 0; i < NCHAN; i++) {
367 (void) snprintf(name, sizeof (name), "%s-%d", "reclaim", i);
368 sc->tq[i] = ddi_taskq_create(sc->dip, name, 1,
369 TASKQ_DEFAULTPRI, 0);
370
371 if (sc->tq[i] == NULL) {
372 cxgb_printf(dip, CE_WARN, "failed to create taskqs");
373 rc = DDI_FAILURE;
374 goto done;
375 }
376 }
377
378 /*
379 * Prepare the adapter for operation.
380 */
381 rc = -t4_prep_adapter(sc, false);
382 if (rc != 0) {
383 cxgb_printf(dip, CE_WARN, "failed to prepare adapter: %d", rc);
384 goto done;
385 }
386
387 /*
388 * Enable BAR1 access.
389 */
390 sc->doorbells |= DOORBELL_KDB;
391 rc = ddi_regs_map_setup(dip, 2, &sc->reg1p, 0, 0, &da1, &sc->reg1h);
392 if (rc != DDI_SUCCESS) {
393 cxgb_printf(dip, CE_WARN,
394 "failed to map BAR1 device registers: %d", rc);
395 goto done;
396 } else {
397 if (is_t5(sc->params.chip)) {
398 sc->doorbells |= DOORBELL_UDB;
399 if (prp->wc) {
400 /*
401 * Enable write combining on BAR2. This is the
402 * userspace doorbell BAR and is split into 128B
403 * (UDBS_SEG_SIZE) doorbell regions, each
404 * associated with an egress queue. The first
405 * 64B has the doorbell and the second 64B can
406 * be used to submit a tx work request with an
407 * implicit doorbell.
408 */
409 sc->doorbells &= ~DOORBELL_UDB;
410 sc->doorbells |= (DOORBELL_WCWR |
411 DOORBELL_UDBWC);
412 t4_write_reg(sc, A_SGE_STAT_CFG,
413 V_STATSOURCE_T5(7) | V_STATMODE(0));
414 }
415 }
416 }
417
418 /*
419 * Do this really early. Note that minor number = instance.
420 */
421 (void) snprintf(name, sizeof (name), "%s,%d", T4_NEXUS_NAME, instance);
422 rc = ddi_create_minor_node(dip, name, S_IFCHR, instance,
423 DDI_NT_NEXUS, 0);
424 if (rc != DDI_SUCCESS) {
425 cxgb_printf(dip, CE_WARN,
426 "failed to create device node: %d", rc);
427 rc = DDI_SUCCESS; /* carry on */
428 }
429
430 /* Do this early. Memory window is required for loading config file. */
431 setup_memwin(sc);
432
433 /* Prepare the firmware for operation */
434 rc = prep_firmware(sc);
435 if (rc != 0)
436 goto done; /* error message displayed already */
437
438 rc = adap__pre_init_tweaks(sc);
439 if (rc != 0)
440 goto done;
441
442 rc = get_params__pre_init(sc);
443 if (rc != 0)
444 goto done; /* error message displayed already */
445
446 t4_sge_init(sc);
447
448 if (sc->flags & MASTER_PF) {
449 /* get basic stuff going */
450 rc = -t4_fw_initialize(sc, sc->mbox);
451 if (rc != 0) {
452 cxgb_printf(sc->dip, CE_WARN,
453 "early init failed: %d.\n", rc);
454 goto done;
455 }
456 }
457
458 rc = get_params__post_init(sc);
459 if (rc != 0)
460 goto done; /* error message displayed already */
461
462 rc = set_params__post_init(sc);
463 if (rc != 0)
464 goto done; /* error message displayed already */
465
466 /*
467 * TODO: This is the place to call t4_set_filter_mode()
468 */
469
470 /* tweak some settings */
471 t4_write_reg(sc, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | V_RXTSHIFTMAXR1(4) |
472 V_RXTSHIFTMAXR2(15) | V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
473 V_KEEPALIVEMAXR1(4) | V_KEEPALIVEMAXR2(9));
474 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
475
476 /*
477 * Work-around for bug 2619
478 * Set DisableVlan field in TP_RSS_CONFIG_VRT register so that the
479 * VLAN tag extraction is disabled.
480 */
481 t4_set_reg_field(sc, A_TP_RSS_CONFIG_VRT, F_DISABLEVLAN, F_DISABLEVLAN);
482
483 /* Store filter mode */
484 t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &sc->filter_mode, 1,
485 A_TP_VLAN_PRI_MAP);
486
487 /*
488 * First pass over all the ports - allocate VIs and initialize some
489 * basic parameters like mac address, port type, etc. We also figure
490 * out whether a port is 10G or 1G and use that information when
491 * calculating how many interrupts to attempt to allocate.
492 */
493 for_each_port(sc, i) {
494 struct port_info *pi;
495
496 pi = kmem_zalloc(sizeof (*pi), KM_SLEEP);
497 sc->port[i] = pi;
498
499 /* These must be set before t4_port_init */
500 pi->adapter = sc;
501 /* LINTED: E_ASSIGN_NARROW_CONV */
502 pi->port_id = i;
503 }
504
505 /* Allocate the vi and initialize parameters like mac addr */
506 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0);
507 if (rc) {
508 cxgb_printf(dip, CE_WARN, "unable to initialize port: %d", rc);
509 goto done;
510 }
511
512 for_each_port(sc, i) {
513 struct port_info *pi = sc->port[i];
514
515 mutex_init(&pi->lock, NULL, MUTEX_DRIVER, NULL);
516 pi->mtu = ETHERMTU;
517
518 if (is_10XG_port(pi)) {
519 nxg++;
520 pi->tmr_idx = prp->tmr_idx_10g;
521 pi->pktc_idx = prp->pktc_idx_10g;
522 } else {
523 n1g++;
524 pi->tmr_idx = prp->tmr_idx_1g;
525 pi->pktc_idx = prp->pktc_idx_1g;
526 }
527
528 pi->xact_addr_filt = -1;
529 t4_mc_init(pi);
530
531 setbit(&sc->registered_device_map, i);
532 }
533
534 (void) remove_extra_props(sc, nxg, n1g);
535
536 if (sc->registered_device_map == 0) {
537 cxgb_printf(dip, CE_WARN, "no usable ports");
538 rc = DDI_FAILURE;
539 goto done;
540 }
541
542 rc = cfg_itype_and_nqueues(sc, nxg, n1g, &iaq);
543 if (rc != 0)
544 goto done; /* error message displayed already */
545
546 sc->intr_type = iaq.intr_type;
547 sc->intr_count = iaq.nirq;
548
549 if (sc->props.multi_rings && (sc->intr_type != DDI_INTR_TYPE_MSIX)) {
550 sc->props.multi_rings = 0;
551 cxgb_printf(dip, CE_WARN,
552 "Multiple rings disabled as interrupt type is not MSI-X");
553 }
554
555 if (sc->props.multi_rings && iaq.intr_fwd) {
556 sc->props.multi_rings = 0;
557 cxgb_printf(dip, CE_WARN,
558 "Multiple rings disabled as interrupts are forwarded");
559 }
560
561 if (!sc->props.multi_rings) {
562 iaq.ntxq10g = 1;
563 iaq.ntxq1g = 1;
564 }
565 s = &sc->sge;
566 s->nrxq = nxg * iaq.nrxq10g + n1g * iaq.nrxq1g;
567 s->ntxq = nxg * iaq.ntxq10g + n1g * iaq.ntxq1g;
568 s->neq = s->ntxq + s->nrxq; /* the fl in an rxq is an eq */
569 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
570 if (iaq.intr_fwd != 0)
571 sc->flags |= INTR_FWD;
572 s->rxq = kmem_zalloc(s->nrxq * sizeof (struct sge_rxq), KM_SLEEP);
573 s->txq = kmem_zalloc(s->ntxq * sizeof (struct sge_txq), KM_SLEEP);
574 s->iqmap =
575 kmem_zalloc(s->iqmap_sz * sizeof (struct sge_iq *), KM_SLEEP);
576 s->eqmap =
577 kmem_zalloc(s->eqmap_sz * sizeof (struct sge_eq *), KM_SLEEP);
578
579 sc->intr_handle =
580 kmem_zalloc(sc->intr_count * sizeof (ddi_intr_handle_t), KM_SLEEP);
581
582 /*
583 * Second pass over the ports. This time we know the number of rx and
584 * tx queues that each port should get.
585 */
586 rqidx = tqidx = 0;
587 for_each_port(sc, i) {
588 struct port_info *pi = sc->port[i];
589
590 if (pi == NULL)
591 continue;
592
593 t4_mc_cb_init(pi);
594 /* LINTED: E_ASSIGN_NARROW_CONV */
595 pi->first_rxq = rqidx;
596 /* LINTED: E_ASSIGN_NARROW_CONV */
597 pi->nrxq = (is_10XG_port(pi)) ? iaq.nrxq10g
598 : iaq.nrxq1g;
599 /* LINTED: E_ASSIGN_NARROW_CONV */
600 pi->first_txq = tqidx;
601 /* LINTED: E_ASSIGN_NARROW_CONV */
602 pi->ntxq = (is_10XG_port(pi)) ? iaq.ntxq10g
603 : iaq.ntxq1g;
604
605 rqidx += pi->nrxq;
606 tqidx += pi->ntxq;
607
608 /*
609 * Enable hw checksumming and LSO for all ports by default.
610 * They can be disabled using ndd (hw_csum and hw_lso).
611 */
612 pi->features |= (CXGBE_HW_CSUM | CXGBE_HW_LSO);
613 }
614
615 /*
616 * Setup Interrupts.
617 */
618
619 i = 0;
620 rc = ddi_intr_alloc(dip, sc->intr_handle, sc->intr_type, 0,
621 sc->intr_count, &i, DDI_INTR_ALLOC_STRICT);
622 if (rc != DDI_SUCCESS) {
623 cxgb_printf(dip, CE_WARN,
624 "failed to allocate %d interrupt(s) of type %d: %d, %d",
625 sc->intr_count, sc->intr_type, rc, i);
626 goto done;
627 }
628 ASSERT(sc->intr_count == i); /* allocation was STRICT */
629 (void) ddi_intr_get_cap(sc->intr_handle[0], &sc->intr_cap);
630 (void) ddi_intr_get_pri(sc->intr_handle[0], &sc->intr_pri);
631 if (sc->intr_count == 1) {
632 ASSERT(sc->flags & INTR_FWD);
633 (void) ddi_intr_add_handler(sc->intr_handle[0], t4_intr_all, sc,
634 &s->fwq);
635 } else {
636 /* Multiple interrupts. The first one is always error intr */
637 (void) ddi_intr_add_handler(sc->intr_handle[0], t4_intr_err, sc,
638 NULL);
639 irq++;
640
641 /* The second one is always the firmware event queue */
642 (void) ddi_intr_add_handler(sc->intr_handle[1], t4_intr, sc,
643 &s->fwq);
644 irq++;
645 /*
646 * Note that if INTR_FWD is set then either the NIC rx
647 * queues or (exclusive or) the TOE rx queueus will be taking
648 * direct interrupts.
649 *
650 * There is no need to check for is_offload(sc) as nofldrxq
651 * will be 0 if offload is disabled.
652 */
653 for_each_port(sc, i) {
654 struct port_info *pi = sc->port[i];
655 struct sge_rxq *rxq;
656 rxq = &s->rxq[pi->first_rxq];
657 for (q = 0; q < pi->nrxq; q++, rxq++) {
658 (void) ddi_intr_add_handler(
659 sc->intr_handle[irq], t4_intr, sc,
660 &rxq->iq);
661 irq++;
662 }
663 }
664
665 }
666 sc->flags |= INTR_ALLOCATED;
667
668 if ((rc = ksensor_create_scalar_pcidev(dip, SENSOR_KIND_TEMPERATURE,
669 &t4_temp_ops, sc, "temp", &sc->temp_sensor)) != 0) {
670 cxgb_printf(dip, CE_WARN, "failed to create temperature "
671 "sensor: %d", rc);
672 rc = DDI_FAILURE;
673 goto done;
674 }
675
676 if ((rc = ksensor_create_scalar_pcidev(dip, SENSOR_KIND_VOLTAGE,
677 &t4_volt_ops, sc, "vdd", &sc->volt_sensor)) != 0) {
678 cxgb_printf(dip, CE_WARN, "failed to create voltage "
679 "sensor: %d", rc);
680 rc = DDI_FAILURE;
681 goto done;
682 }
683
684
685 if ((rc = ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &t4_ufm_ops,
686 &sc->ufm_hdl, sc)) != 0) {
687 cxgb_printf(dip, CE_WARN, "failed to enable UFM ops: %d", rc);
688 rc = DDI_FAILURE;
689 goto done;
690 }
691 ddi_ufm_update(sc->ufm_hdl);
692 ddi_report_dev(dip);
693
694 /*
695 * Hardware/Firmware/etc. Version/Revision IDs.
696 */
697 t4_dump_version_info(sc);
698
699 cxgb_printf(dip, CE_NOTE, "(%d rxq, %d txq total) %d %s.",
700 rqidx, tqidx, sc->intr_count,
701 sc->intr_type == DDI_INTR_TYPE_MSIX ? "MSI-X interrupts" :
702 sc->intr_type == DDI_INTR_TYPE_MSI ? "MSI interrupts" :
703 "fixed interrupt");
704
705 sc->ksp = setup_kstats(sc);
706 sc->ksp_stat = setup_wc_kstats(sc);
707 sc->params.drv_memwin = MEMWIN_NIC;
708
709 done:
710 if (rc != DDI_SUCCESS) {
711 (void) t4_devo_detach(dip, DDI_DETACH);
712
713 /* rc may have errno style errors or DDI errors */
714 rc = DDI_FAILURE;
715 }
716
717 return (rc);
718 }
719
720 static int
t4_devo_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)721 t4_devo_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
722 {
723 int instance, i;
724 struct adapter *sc;
725 struct port_info *pi;
726 struct sge *s;
727
728 if (cmd != DDI_DETACH)
729 return (DDI_FAILURE);
730
731 instance = ddi_get_instance(dip);
732 sc = ddi_get_soft_state(t4_list, instance);
733 if (sc == NULL)
734 return (DDI_SUCCESS);
735
736 if (sc->flags & FULL_INIT_DONE) {
737 t4_intr_disable(sc);
738 for_each_port(sc, i) {
739 pi = sc->port[i];
740 if (pi && pi->flags & PORT_INIT_DONE)
741 (void) port_full_uninit(pi);
742 }
743 (void) adapter_full_uninit(sc);
744 }
745
746 /* Safe to call no matter what */
747 if (sc->ufm_hdl != NULL) {
748 ddi_ufm_fini(sc->ufm_hdl);
749 sc->ufm_hdl = NULL;
750 }
751 (void) ksensor_remove(dip, KSENSOR_ALL_IDS);
752 ddi_prop_remove_all(dip);
753 ddi_remove_minor_node(dip, NULL);
754
755 for (i = 0; i < NCHAN; i++) {
756 if (sc->tq[i]) {
757 ddi_taskq_wait(sc->tq[i]);
758 ddi_taskq_destroy(sc->tq[i]);
759 }
760 }
761
762 if (sc->ksp != NULL)
763 kstat_delete(sc->ksp);
764 if (sc->ksp_stat != NULL)
765 kstat_delete(sc->ksp_stat);
766
767 s = &sc->sge;
768 if (s->rxq != NULL)
769 kmem_free(s->rxq, s->nrxq * sizeof (struct sge_rxq));
770 if (s->txq != NULL)
771 kmem_free(s->txq, s->ntxq * sizeof (struct sge_txq));
772 if (s->iqmap != NULL)
773 kmem_free(s->iqmap, s->iqmap_sz * sizeof (struct sge_iq *));
774 if (s->eqmap != NULL)
775 kmem_free(s->eqmap, s->eqmap_sz * sizeof (struct sge_eq *));
776
777 if (s->rxbuf_cache != NULL)
778 kmem_cache_destroy(s->rxbuf_cache);
779
780 if (sc->flags & INTR_ALLOCATED) {
781 for (i = 0; i < sc->intr_count; i++) {
782 (void) ddi_intr_remove_handler(sc->intr_handle[i]);
783 (void) ddi_intr_free(sc->intr_handle[i]);
784 }
785 sc->flags &= ~INTR_ALLOCATED;
786 }
787
788 if (sc->intr_handle != NULL) {
789 kmem_free(sc->intr_handle,
790 sc->intr_count * sizeof (*sc->intr_handle));
791 }
792
793 for_each_port(sc, i) {
794 pi = sc->port[i];
795 if (pi != NULL) {
796 mutex_destroy(&pi->lock);
797 kmem_free(pi, sizeof (*pi));
798 clrbit(&sc->registered_device_map, i);
799 }
800 }
801
802 if (sc->flags & FW_OK)
803 (void) t4_fw_bye(sc, sc->mbox);
804
805 if (sc->reg1h != NULL)
806 ddi_regs_map_free(&sc->reg1h);
807
808 if (sc->regh != NULL)
809 ddi_regs_map_free(&sc->regh);
810
811 if (sc->pci_regh != NULL)
812 pci_config_teardown(&sc->pci_regh);
813
814 mutex_enter(&t4_adapter_list_lock);
815 SLIST_REMOVE(&t4_adapter_list, sc, adapter, link);
816 mutex_exit(&t4_adapter_list_lock);
817
818 mutex_destroy(&sc->mbox_lock);
819 mutex_destroy(&sc->lock);
820 cv_destroy(&sc->cv);
821 mutex_destroy(&sc->sfl_lock);
822
823 #ifdef DEBUG
824 bzero(sc, sizeof (*sc));
825 #endif
826 ddi_soft_state_free(t4_list, instance);
827
828 return (DDI_SUCCESS);
829 }
830
831 static int
t4_devo_quiesce(dev_info_t * dip)832 t4_devo_quiesce(dev_info_t *dip)
833 {
834 int instance;
835 struct adapter *sc;
836
837 instance = ddi_get_instance(dip);
838 sc = ddi_get_soft_state(t4_list, instance);
839 if (sc == NULL)
840 return (DDI_SUCCESS);
841
842 t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
843 t4_intr_disable(sc);
844 t4_write_reg(sc, A_PL_RST, F_PIORSTMODE | F_PIORST);
845
846 return (DDI_SUCCESS);
847 }
848
849 static int
t4_bus_ctl(dev_info_t * dip,dev_info_t * rdip,ddi_ctl_enum_t op,void * arg,void * result)850 t4_bus_ctl(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t op, void *arg,
851 void *result)
852 {
853 char s[4];
854 struct port_info *pi;
855 dev_info_t *child = (dev_info_t *)arg;
856
857 switch (op) {
858 case DDI_CTLOPS_REPORTDEV:
859 pi = ddi_get_parent_data(rdip);
860 pi->instance = ddi_get_instance(dip);
861 pi->child_inst = ddi_get_instance(rdip);
862 return (DDI_SUCCESS);
863
864 case DDI_CTLOPS_INITCHILD:
865 pi = ddi_get_parent_data(child);
866 if (pi == NULL)
867 return (DDI_NOT_WELL_FORMED);
868 (void) snprintf(s, sizeof (s), "%d", pi->port_id);
869 ddi_set_name_addr(child, s);
870 return (DDI_SUCCESS);
871
872 case DDI_CTLOPS_UNINITCHILD:
873 ddi_set_name_addr(child, NULL);
874 return (DDI_SUCCESS);
875
876 case DDI_CTLOPS_ATTACH:
877 case DDI_CTLOPS_DETACH:
878 return (DDI_SUCCESS);
879
880 default:
881 return (ddi_ctlops(dip, rdip, op, arg, result));
882 }
883 }
884
885 static int
t4_bus_config(dev_info_t * dip,uint_t flags,ddi_bus_config_op_t op,void * arg,dev_info_t ** cdipp)886 t4_bus_config(dev_info_t *dip, uint_t flags, ddi_bus_config_op_t op, void *arg,
887 dev_info_t **cdipp)
888 {
889 int instance, i;
890 struct adapter *sc;
891
892 instance = ddi_get_instance(dip);
893 sc = ddi_get_soft_state(t4_list, instance);
894
895 if (op == BUS_CONFIG_ONE) {
896 char *c;
897
898 /*
899 * arg is something like "cxgb@0" where 0 is the port_id hanging
900 * off this nexus.
901 */
902
903 c = arg;
904 while (*(c + 1))
905 c++;
906
907 /* There should be exactly 1 digit after '@' */
908 if (*(c - 1) != '@')
909 return (NDI_FAILURE);
910
911 i = *c - '0';
912
913 if (add_child_node(sc, i) != 0)
914 return (NDI_FAILURE);
915
916 flags |= NDI_ONLINE_ATTACH;
917
918 } else if (op == BUS_CONFIG_ALL || op == BUS_CONFIG_DRIVER) {
919 /* Allocate and bind all child device nodes */
920 for_each_port(sc, i)
921 (void) add_child_node(sc, i);
922 flags |= NDI_ONLINE_ATTACH;
923 }
924
925 return (ndi_busop_bus_config(dip, flags, op, arg, cdipp, 0));
926 }
927
928 static int
t4_bus_unconfig(dev_info_t * dip,uint_t flags,ddi_bus_config_op_t op,void * arg)929 t4_bus_unconfig(dev_info_t *dip, uint_t flags, ddi_bus_config_op_t op,
930 void *arg)
931 {
932 int instance, i, rc;
933 struct adapter *sc;
934
935 instance = ddi_get_instance(dip);
936 sc = ddi_get_soft_state(t4_list, instance);
937
938 if (op == BUS_CONFIG_ONE || op == BUS_UNCONFIG_ALL ||
939 op == BUS_UNCONFIG_DRIVER)
940 flags |= NDI_UNCONFIG;
941
942 rc = ndi_busop_bus_unconfig(dip, flags, op, arg);
943 if (rc != 0)
944 return (rc);
945
946 if (op == BUS_UNCONFIG_ONE) {
947 char *c;
948
949 c = arg;
950 while (*(c + 1))
951 c++;
952
953 if (*(c - 1) != '@')
954 return (NDI_SUCCESS);
955
956 i = *c - '0';
957
958 rc = remove_child_node(sc, i);
959
960 } else if (op == BUS_UNCONFIG_ALL || op == BUS_UNCONFIG_DRIVER) {
961
962 for_each_port(sc, i)
963 (void) remove_child_node(sc, i);
964 }
965
966 return (rc);
967 }
968
969 /* ARGSUSED */
970 static int
t4_cb_open(dev_t * devp,int flag,int otyp,cred_t * credp)971 t4_cb_open(dev_t *devp, int flag, int otyp, cred_t *credp)
972 {
973 struct adapter *sc;
974
975 if (otyp != OTYP_CHR)
976 return (EINVAL);
977
978 sc = ddi_get_soft_state(t4_list, getminor(*devp));
979 if (sc == NULL)
980 return (ENXIO);
981
982 return (atomic_cas_uint(&sc->open, 0, EBUSY));
983 }
984
985 /* ARGSUSED */
986 static int
t4_cb_close(dev_t dev,int flag,int otyp,cred_t * credp)987 t4_cb_close(dev_t dev, int flag, int otyp, cred_t *credp)
988 {
989 struct adapter *sc;
990
991 sc = ddi_get_soft_state(t4_list, getminor(dev));
992 if (sc == NULL)
993 return (EINVAL);
994
995 (void) atomic_swap_uint(&sc->open, 0);
996 return (0);
997 }
998
999 /* ARGSUSED */
1000 static int
t4_cb_ioctl(dev_t dev,int cmd,intptr_t d,int mode,cred_t * credp,int * rp)1001 t4_cb_ioctl(dev_t dev, int cmd, intptr_t d, int mode, cred_t *credp, int *rp)
1002 {
1003 int instance;
1004 struct adapter *sc;
1005 void *data = (void *)d;
1006
1007 if (crgetuid(credp) != 0)
1008 return (EPERM);
1009
1010 instance = getminor(dev);
1011 sc = ddi_get_soft_state(t4_list, instance);
1012 if (sc == NULL)
1013 return (EINVAL);
1014
1015 return (t4_ioctl(sc, cmd, data, mode));
1016 }
1017
1018 static unsigned int
getpf(struct adapter * sc)1019 getpf(struct adapter *sc)
1020 {
1021 int rc, *data;
1022 uint_t n, pf;
1023
1024 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, sc->dip,
1025 DDI_PROP_DONTPASS, "reg", &data, &n);
1026 if (rc != DDI_SUCCESS) {
1027 cxgb_printf(sc->dip, CE_WARN,
1028 "failed to lookup \"reg\" property: %d", rc);
1029 return (0xff);
1030 }
1031
1032 pf = PCI_REG_FUNC_G(data[0]);
1033 ddi_prop_free(data);
1034
1035 return (pf);
1036 }
1037
1038 /*
1039 * Install a compatible firmware (if required), establish contact with it,
1040 * become the master, and reset the device.
1041 */
1042 static int
prep_firmware(struct adapter * sc)1043 prep_firmware(struct adapter *sc)
1044 {
1045 int rc;
1046 size_t fw_size;
1047 int reset = 1;
1048 enum dev_state state;
1049 unsigned char *fw_data;
1050 struct fw_hdr *card_fw, *hdr;
1051 const char *fw_file = NULL;
1052 firmware_handle_t fw_hdl;
1053 struct fw_info fi, *fw_info = &fi;
1054
1055 struct driver_properties *p = &sc->props;
1056
1057 /* Contact firmware, request master */
1058 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MUST, &state);
1059 if (rc < 0) {
1060 rc = -rc;
1061 cxgb_printf(sc->dip, CE_WARN,
1062 "failed to connect to the firmware: %d.", rc);
1063 return (rc);
1064 }
1065
1066 if (rc == sc->mbox)
1067 sc->flags |= MASTER_PF;
1068
1069 /* We may need FW version info for later reporting */
1070 t4_get_version_info(sc);
1071
1072 switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
1073 case CHELSIO_T4:
1074 fw_file = "t4fw.bin";
1075 break;
1076 case CHELSIO_T5:
1077 fw_file = "t5fw.bin";
1078 break;
1079 case CHELSIO_T6:
1080 fw_file = "t6fw.bin";
1081 break;
1082 default:
1083 cxgb_printf(sc->dip, CE_WARN, "Adapter type not supported\n");
1084 return (EINVAL);
1085 }
1086
1087 if (firmware_open(T4_PORT_NAME, fw_file, &fw_hdl) != 0) {
1088 cxgb_printf(sc->dip, CE_WARN, "Could not open %s\n", fw_file);
1089 return (EINVAL);
1090 }
1091
1092 fw_size = firmware_get_size(fw_hdl);
1093
1094 if (fw_size < sizeof (struct fw_hdr)) {
1095 cxgb_printf(sc->dip, CE_WARN, "%s is too small (%ld bytes)\n",
1096 fw_file, fw_size);
1097 firmware_close(fw_hdl);
1098 return (EINVAL);
1099 }
1100
1101 if (fw_size > FLASH_FW_MAX_SIZE) {
1102 cxgb_printf(sc->dip, CE_WARN,
1103 "%s is too large (%ld bytes, max allowed is %ld)\n",
1104 fw_file, fw_size, FLASH_FW_MAX_SIZE);
1105 firmware_close(fw_hdl);
1106 return (EFBIG);
1107 }
1108
1109 fw_data = kmem_zalloc(fw_size, KM_SLEEP);
1110 if (firmware_read(fw_hdl, 0, fw_data, fw_size) != 0) {
1111 cxgb_printf(sc->dip, CE_WARN, "Failed to read from %s\n",
1112 fw_file);
1113 firmware_close(fw_hdl);
1114 kmem_free(fw_data, fw_size);
1115 return (EINVAL);
1116 }
1117 firmware_close(fw_hdl);
1118
1119 bzero(fw_info, sizeof (*fw_info));
1120 fw_info->chip = CHELSIO_CHIP_VERSION(sc->params.chip);
1121
1122 hdr = (struct fw_hdr *)fw_data;
1123 fw_info->fw_hdr.fw_ver = hdr->fw_ver;
1124 fw_info->fw_hdr.chip = hdr->chip;
1125 fw_info->fw_hdr.intfver_nic = hdr->intfver_nic;
1126 fw_info->fw_hdr.intfver_vnic = hdr->intfver_vnic;
1127 fw_info->fw_hdr.intfver_ofld = hdr->intfver_ofld;
1128 fw_info->fw_hdr.intfver_ri = hdr->intfver_ri;
1129 fw_info->fw_hdr.intfver_iscsipdu = hdr->intfver_iscsipdu;
1130 fw_info->fw_hdr.intfver_iscsi = hdr->intfver_iscsi;
1131 fw_info->fw_hdr.intfver_fcoepdu = hdr->intfver_fcoepdu;
1132 fw_info->fw_hdr.intfver_fcoe = hdr->intfver_fcoe;
1133
1134 /* allocate memory to read the header of the firmware on the card */
1135 card_fw = kmem_zalloc(sizeof (*card_fw), KM_SLEEP);
1136
1137 rc = -t4_prep_fw(sc, fw_info, fw_data, fw_size, card_fw,
1138 p->t4_fw_install, state, &reset);
1139
1140 kmem_free(card_fw, sizeof (*card_fw));
1141 kmem_free(fw_data, fw_size);
1142
1143 if (rc != 0) {
1144 cxgb_printf(sc->dip, CE_WARN,
1145 "failed to install firmware: %d", rc);
1146 return (rc);
1147 } else {
1148 /* refresh */
1149 (void) t4_check_fw_version(sc);
1150 }
1151
1152 /* Reset device */
1153 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
1154 if (rc != 0) {
1155 cxgb_printf(sc->dip, CE_WARN,
1156 "firmware reset failed: %d.", rc);
1157 if (rc != ETIMEDOUT && rc != EIO)
1158 (void) t4_fw_bye(sc, sc->mbox);
1159 return (rc);
1160 }
1161
1162 /* Partition adapter resources as specified in the config file. */
1163 if (sc->flags & MASTER_PF) {
1164 /* Handle default vs special T4 config file */
1165
1166 rc = partition_resources(sc);
1167 if (rc != 0)
1168 goto err; /* error message displayed already */
1169 }
1170
1171 sc->flags |= FW_OK;
1172 return (0);
1173 err:
1174 return (rc);
1175
1176 }
1177
1178 static const struct memwin t4_memwin[] = {
1179 { MEMWIN0_BASE, MEMWIN0_APERTURE },
1180 { MEMWIN1_BASE, MEMWIN1_APERTURE },
1181 { MEMWIN2_BASE, MEMWIN2_APERTURE }
1182 };
1183
1184 static const struct memwin t5_memwin[] = {
1185 { MEMWIN0_BASE, MEMWIN0_APERTURE },
1186 { MEMWIN1_BASE, MEMWIN1_APERTURE },
1187 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
1188 };
1189
1190 #define FW_PARAM_DEV(param) \
1191 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
1192 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
1193 #define FW_PARAM_PFVF(param) \
1194 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
1195 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
1196
1197 /*
1198 * Verify that the memory range specified by the memtype/offset/len pair is
1199 * valid and lies entirely within the memtype specified. The global address of
1200 * the start of the range is returned in addr.
1201 */
1202 int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,int len,uint32_t * addr)1203 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len,
1204 uint32_t *addr)
1205 {
1206 uint32_t em, addr_len, maddr, mlen;
1207
1208 /* Memory can only be accessed in naturally aligned 4 byte units */
1209 if (off & 3 || len & 3 || len == 0)
1210 return (EINVAL);
1211
1212 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
1213 switch (mtype) {
1214 case MEM_EDC0:
1215 if (!(em & F_EDRAM0_ENABLE))
1216 return (EINVAL);
1217 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
1218 maddr = G_EDRAM0_BASE(addr_len) << 20;
1219 mlen = G_EDRAM0_SIZE(addr_len) << 20;
1220 break;
1221 case MEM_EDC1:
1222 if (!(em & F_EDRAM1_ENABLE))
1223 return (EINVAL);
1224 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
1225 maddr = G_EDRAM1_BASE(addr_len) << 20;
1226 mlen = G_EDRAM1_SIZE(addr_len) << 20;
1227 break;
1228 case MEM_MC:
1229 if (!(em & F_EXT_MEM_ENABLE))
1230 return (EINVAL);
1231 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
1232 maddr = G_EXT_MEM_BASE(addr_len) << 20;
1233 mlen = G_EXT_MEM_SIZE(addr_len) << 20;
1234 break;
1235 case MEM_MC1:
1236 if (is_t4(sc->params.chip) || !(em & F_EXT_MEM1_ENABLE))
1237 return (EINVAL);
1238 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
1239 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
1240 mlen = G_EXT_MEM1_SIZE(addr_len) << 20;
1241 break;
1242 default:
1243 return (EINVAL);
1244 }
1245
1246 if (mlen > 0 && off < mlen && off + len <= mlen) {
1247 *addr = maddr + off; /* global address */
1248 return (0);
1249 }
1250
1251 return (EFAULT);
1252 }
1253
1254 void
memwin_info(struct adapter * sc,int win,uint32_t * base,uint32_t * aperture)1255 memwin_info(struct adapter *sc, int win, uint32_t *base, uint32_t *aperture)
1256 {
1257 const struct memwin *mw;
1258
1259 if (is_t4(sc->params.chip)) {
1260 mw = &t4_memwin[win];
1261 } else {
1262 mw = &t5_memwin[win];
1263 }
1264
1265 if (base != NULL)
1266 *base = mw->base;
1267 if (aperture != NULL)
1268 *aperture = mw->aperture;
1269 }
1270
1271 /*
1272 * Upload configuration file to card's memory.
1273 */
1274 static int
upload_config_file(struct adapter * sc,uint32_t * mt,uint32_t * ma)1275 upload_config_file(struct adapter *sc, uint32_t *mt, uint32_t *ma)
1276 {
1277 int rc = 0;
1278 size_t cflen, cfbaselen;
1279 uint_t i, n;
1280 uint32_t param, val, addr, mtype, maddr;
1281 uint32_t off, mw_base, mw_aperture;
1282 uint32_t *cfdata, *cfbase;
1283 firmware_handle_t fw_hdl;
1284 const char *cfg_file = NULL;
1285
1286 /* Figure out where the firmware wants us to upload it. */
1287 param = FW_PARAM_DEV(CF);
1288 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
1289 if (rc != 0) {
1290 /* Firmwares without config file support will fail this way */
1291 cxgb_printf(sc->dip, CE_WARN,
1292 "failed to query config file location: %d.\n", rc);
1293 return (rc);
1294 }
1295 *mt = mtype = G_FW_PARAMS_PARAM_Y(val);
1296 *ma = maddr = G_FW_PARAMS_PARAM_Z(val) << 16;
1297
1298 switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
1299 case CHELSIO_T4:
1300 cfg_file = "t4fw_cfg.txt";
1301 break;
1302 case CHELSIO_T5:
1303 cfg_file = "t5fw_cfg.txt";
1304 break;
1305 case CHELSIO_T6:
1306 cfg_file = "t6fw_cfg.txt";
1307 break;
1308 default:
1309 cxgb_printf(sc->dip, CE_WARN, "Invalid Adapter detected\n");
1310 return (EINVAL);
1311 }
1312
1313 if (firmware_open(T4_PORT_NAME, cfg_file, &fw_hdl) != 0) {
1314 cxgb_printf(sc->dip, CE_WARN, "Could not open %s\n", cfg_file);
1315 return (EINVAL);
1316 }
1317
1318 cflen = firmware_get_size(fw_hdl);
1319 /*
1320 * Truncate the length to a multiple of uint32_ts. The configuration
1321 * text files have trailing comments (and hopefully always will) so
1322 * nothing important is lost.
1323 */
1324 cflen &= ~3;
1325
1326 if (cflen > FLASH_CFG_MAX_SIZE) {
1327 cxgb_printf(sc->dip, CE_WARN,
1328 "config file too long (%d, max allowed is %d). ",
1329 cflen, FLASH_CFG_MAX_SIZE);
1330 firmware_close(fw_hdl);
1331 return (EFBIG);
1332 }
1333
1334 rc = validate_mt_off_len(sc, mtype, maddr, cflen, &addr);
1335 if (rc != 0) {
1336 cxgb_printf(sc->dip, CE_WARN,
1337 "%s: addr (%d/0x%x) or len %d is not valid: %d. "
1338 "Will try to use the config on the card, if any.\n",
1339 __func__, mtype, maddr, cflen, rc);
1340 firmware_close(fw_hdl);
1341 return (EFAULT);
1342 }
1343
1344 cfbaselen = cflen;
1345 cfbase = cfdata = kmem_zalloc(cflen, KM_SLEEP);
1346 if (firmware_read(fw_hdl, 0, cfdata, cflen) != 0) {
1347 cxgb_printf(sc->dip, CE_WARN, "Failed to read from %s\n",
1348 cfg_file);
1349 firmware_close(fw_hdl);
1350 kmem_free(cfbase, cfbaselen);
1351 return (EINVAL);
1352 }
1353 firmware_close(fw_hdl);
1354
1355 memwin_info(sc, 2, &mw_base, &mw_aperture);
1356 while (cflen) {
1357 off = position_memwin(sc, 2, addr);
1358 n = min(cflen, mw_aperture - off);
1359 for (i = 0; i < n; i += 4)
1360 t4_write_reg(sc, mw_base + off + i, *cfdata++);
1361 cflen -= n;
1362 addr += n;
1363 }
1364
1365 kmem_free(cfbase, cfbaselen);
1366
1367 return (rc);
1368 }
1369
1370 /*
1371 * Partition chip resources for use between various PFs, VFs, etc. This is done
1372 * by uploading the firmware configuration file to the adapter and instructing
1373 * the firmware to process it.
1374 */
1375 static int
partition_resources(struct adapter * sc)1376 partition_resources(struct adapter *sc)
1377 {
1378 int rc;
1379 struct fw_caps_config_cmd caps;
1380 uint32_t mtype, maddr, finicsum, cfcsum;
1381
1382 rc = upload_config_file(sc, &mtype, &maddr);
1383 if (rc != 0) {
1384 mtype = FW_MEMTYPE_CF_FLASH;
1385 maddr = t4_flash_cfg_addr(sc);
1386 }
1387
1388 bzero(&caps, sizeof (caps));
1389 caps.op_to_write = BE_32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1390 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1391 caps.cfvalid_to_len16 = BE_32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1392 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1393 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | FW_LEN16(caps));
1394 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof (caps), &caps);
1395 if (rc != 0) {
1396 cxgb_printf(sc->dip, CE_WARN,
1397 "failed to pre-process config file: %d.\n", rc);
1398 return (rc);
1399 }
1400
1401 finicsum = ntohl(caps.finicsum);
1402 cfcsum = ntohl(caps.cfcsum);
1403 if (finicsum != cfcsum) {
1404 cxgb_printf(sc->dip, CE_WARN,
1405 "WARNING: config file checksum mismatch: %08x %08x\n",
1406 finicsum, cfcsum);
1407 }
1408 sc->cfcsum = cfcsum;
1409
1410 /* TODO: Need to configure this correctly */
1411 caps.toecaps = htons(FW_CAPS_CONFIG_TOE);
1412 caps.iscsicaps = 0;
1413 caps.rdmacaps = 0;
1414 caps.fcoecaps = 0;
1415 /* TODO: Disable VNIC cap for now */
1416 caps.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
1417
1418 caps.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1419 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1420 caps.cfvalid_to_len16 = htonl(FW_LEN16(caps));
1421 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof (caps), NULL);
1422 if (rc != 0) {
1423 cxgb_printf(sc->dip, CE_WARN,
1424 "failed to process config file: %d.\n", rc);
1425 return (rc);
1426 }
1427
1428 return (0);
1429 }
1430
1431 /*
1432 * Tweak configuration based on module parameters, etc. Most of these have
1433 * defaults assigned to them by Firmware Configuration Files (if we're using
1434 * them) but need to be explicitly set if we're using hard-coded
1435 * initialization. But even in the case of using Firmware Configuration
1436 * Files, we'd like to expose the ability to change these via module
1437 * parameters so these are essentially common tweaks/settings for
1438 * Configuration Files and hard-coded initialization ...
1439 */
1440 static int
adap__pre_init_tweaks(struct adapter * sc)1441 adap__pre_init_tweaks(struct adapter *sc)
1442 {
1443 int rx_dma_offset = 2; /* Offset of RX packets into DMA buffers */
1444
1445 /*
1446 * Fix up various Host-Dependent Parameters like Page Size, Cache
1447 * Line Size, etc. The firmware default is for a 4KB Page Size and
1448 * 64B Cache Line Size ...
1449 */
1450 (void) t4_fixup_host_params_compat(sc, PAGE_SIZE, _CACHE_LINE_SIZE,
1451 T5_LAST_REV);
1452
1453 t4_set_reg_field(sc, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1454 V_PKTSHIFT(rx_dma_offset));
1455
1456 return (0);
1457 }
1458 /*
1459 * Retrieve parameters that are needed (or nice to have) prior to calling
1460 * t4_sge_init and t4_fw_initialize.
1461 */
1462 static int
get_params__pre_init(struct adapter * sc)1463 get_params__pre_init(struct adapter *sc)
1464 {
1465 int rc;
1466 uint32_t param[2], val[2];
1467 struct fw_devlog_cmd cmd;
1468 struct devlog_params *dlog = &sc->params.devlog;
1469
1470 /*
1471 * Grab the raw VPD parameters.
1472 */
1473 rc = -t4_get_raw_vpd_params(sc, &sc->params.vpd);
1474 if (rc != 0) {
1475 cxgb_printf(sc->dip, CE_WARN,
1476 "failed to query VPD parameters (pre_init): %d.\n", rc);
1477 return (rc);
1478 }
1479
1480 param[0] = FW_PARAM_DEV(PORTVEC);
1481 param[1] = FW_PARAM_DEV(CCLK);
1482 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
1483 if (rc != 0) {
1484 cxgb_printf(sc->dip, CE_WARN,
1485 "failed to query parameters (pre_init): %d.\n", rc);
1486 return (rc);
1487 }
1488
1489 sc->params.portvec = val[0];
1490 sc->params.nports = 0;
1491 while (val[0]) {
1492 sc->params.nports++;
1493 val[0] &= val[0] - 1;
1494 }
1495
1496 sc->params.vpd.cclk = val[1];
1497
1498 /* Read device log parameters. */
1499 bzero(&cmd, sizeof (cmd));
1500 cmd.op_to_write = htonl(V_FW_CMD_OP(FW_DEVLOG_CMD) |
1501 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1502 cmd.retval_len16 = htonl(FW_LEN16(cmd));
1503 rc = -t4_wr_mbox(sc, sc->mbox, &cmd, sizeof (cmd), &cmd);
1504 if (rc != 0) {
1505 cxgb_printf(sc->dip, CE_WARN,
1506 "failed to get devlog parameters: %d.\n", rc);
1507 bzero(dlog, sizeof (*dlog));
1508 rc = 0; /* devlog isn't critical for device operation */
1509 } else {
1510 val[0] = ntohl(cmd.memtype_devlog_memaddr16_devlog);
1511 dlog->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(val[0]);
1512 dlog->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(val[0]) << 4;
1513 dlog->size = ntohl(cmd.memsize_devlog);
1514 }
1515
1516 return (rc);
1517 }
1518
1519 /*
1520 * Retrieve various parameters that are of interest to the driver. The device
1521 * has been initialized by the firmware at this point.
1522 */
1523 static int
get_params__post_init(struct adapter * sc)1524 get_params__post_init(struct adapter *sc)
1525 {
1526 int rc;
1527 uint32_t param[7], val[7];
1528 struct fw_caps_config_cmd caps;
1529
1530 param[0] = FW_PARAM_PFVF(IQFLINT_START);
1531 param[1] = FW_PARAM_PFVF(EQ_START);
1532 param[2] = FW_PARAM_PFVF(FILTER_START);
1533 param[3] = FW_PARAM_PFVF(FILTER_END);
1534 param[4] = FW_PARAM_PFVF(L2T_START);
1535 param[5] = FW_PARAM_PFVF(L2T_END);
1536 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
1537 if (rc != 0) {
1538 cxgb_printf(sc->dip, CE_WARN,
1539 "failed to query parameters (post_init): %d.\n", rc);
1540 return (rc);
1541 }
1542
1543 /* LINTED: E_ASSIGN_NARROW_CONV */
1544 sc->sge.iq_start = val[0];
1545 sc->sge.eq_start = val[1];
1546 sc->tids.ftid_base = val[2];
1547 sc->tids.nftids = val[3] - val[2] + 1;
1548 sc->vres.l2t.start = val[4];
1549 sc->vres.l2t.size = val[5] - val[4] + 1;
1550
1551 param[0] = FW_PARAM_PFVF(IQFLINT_END);
1552 param[1] = FW_PARAM_PFVF(EQ_END);
1553 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
1554 if (rc != 0) {
1555 cxgb_printf(sc->dip, CE_WARN, "failed to query eq/iq map "
1556 "size parameters (post_init): %d.\n", rc);
1557 return (rc);
1558 }
1559
1560 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
1561 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
1562
1563 /* get capabilites */
1564 bzero(&caps, sizeof (caps));
1565 caps.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1566 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1567 caps.cfvalid_to_len16 = htonl(FW_LEN16(caps));
1568 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof (caps), &caps);
1569 if (rc != 0) {
1570 cxgb_printf(sc->dip, CE_WARN,
1571 "failed to get card capabilities: %d.\n", rc);
1572 return (rc);
1573 }
1574
1575 if (caps.toecaps != 0) {
1576 /* query offload-related parameters */
1577 param[0] = FW_PARAM_DEV(NTID);
1578 param[1] = FW_PARAM_PFVF(SERVER_START);
1579 param[2] = FW_PARAM_PFVF(SERVER_END);
1580 param[3] = FW_PARAM_PFVF(TDDP_START);
1581 param[4] = FW_PARAM_PFVF(TDDP_END);
1582 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
1583 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
1584 if (rc != 0) {
1585 cxgb_printf(sc->dip, CE_WARN,
1586 "failed to query TOE parameters: %d.\n", rc);
1587 return (rc);
1588 }
1589 sc->tids.ntids = val[0];
1590 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
1591 sc->tids.stid_base = val[1];
1592 sc->tids.nstids = val[2] - val[1] + 1;
1593 sc->vres.ddp.start = val[3];
1594 sc->vres.ddp.size = val[4] - val[3] + 1;
1595 sc->params.ofldq_wr_cred = val[5];
1596 sc->params.offload = 1;
1597 }
1598
1599 rc = -t4_get_pfres(sc);
1600 if (rc != 0) {
1601 cxgb_printf(sc->dip, CE_WARN,
1602 "failed to query PF resource params: %d.\n", rc);
1603 return (rc);
1604 }
1605
1606 /* These are finalized by FW initialization, load their values now */
1607 val[0] = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
1608 sc->params.tp.tre = G_TIMERRESOLUTION(val[0]);
1609 sc->params.tp.dack_re = G_DELAYEDACKRESOLUTION(val[0]);
1610 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
1611
1612 return (rc);
1613 }
1614
1615 static int
set_params__post_init(struct adapter * sc)1616 set_params__post_init(struct adapter *sc)
1617 {
1618 uint32_t param, val;
1619
1620 /* ask for encapsulated CPLs */
1621 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1622 val = 1;
1623 (void) t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
1624
1625 return (0);
1626 }
1627
1628 /* TODO: verify */
1629 static void
setup_memwin(struct adapter * sc)1630 setup_memwin(struct adapter *sc)
1631 {
1632 pci_regspec_t *data;
1633 int rc;
1634 uint_t n;
1635 uintptr_t bar0;
1636 uintptr_t mem_win0_base, mem_win1_base, mem_win2_base;
1637 uintptr_t mem_win2_aperture;
1638
1639 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, sc->dip,
1640 DDI_PROP_DONTPASS, "assigned-addresses", (int **)&data, &n);
1641 if (rc != DDI_SUCCESS) {
1642 cxgb_printf(sc->dip, CE_WARN,
1643 "failed to lookup \"assigned-addresses\" property: %d", rc);
1644 return;
1645 }
1646 n /= sizeof (*data);
1647
1648 bar0 = ((uint64_t)data[0].pci_phys_mid << 32) | data[0].pci_phys_low;
1649 ddi_prop_free(data);
1650
1651 if (is_t4(sc->params.chip)) {
1652 mem_win0_base = bar0 + MEMWIN0_BASE;
1653 mem_win1_base = bar0 + MEMWIN1_BASE;
1654 mem_win2_base = bar0 + MEMWIN2_BASE;
1655 mem_win2_aperture = MEMWIN2_APERTURE;
1656 } else {
1657 /* For T5, only relative offset inside the PCIe BAR is passed */
1658 mem_win0_base = MEMWIN0_BASE;
1659 mem_win1_base = MEMWIN1_BASE;
1660 mem_win2_base = MEMWIN2_BASE_T5;
1661 mem_win2_aperture = MEMWIN2_APERTURE_T5;
1662 }
1663
1664 t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 0),
1665 mem_win0_base | V_BIR(0) |
1666 V_WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
1667
1668 t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 1),
1669 mem_win1_base | V_BIR(0) |
1670 V_WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
1671
1672 t4_write_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2),
1673 mem_win2_base | V_BIR(0) |
1674 V_WINDOW(ilog2(mem_win2_aperture) - 10));
1675
1676 /* flush */
1677 (void) t4_read_reg(sc,
1678 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
1679 }
1680
1681 /*
1682 * Positions the memory window such that it can be used to access the specified
1683 * address in the chip's address space. The return value is the offset of addr
1684 * from the start of the window.
1685 */
1686 uint32_t
position_memwin(struct adapter * sc,int n,uint32_t addr)1687 position_memwin(struct adapter *sc, int n, uint32_t addr)
1688 {
1689 uint32_t start, pf;
1690 uint32_t reg;
1691
1692 if (addr & 3) {
1693 cxgb_printf(sc->dip, CE_WARN,
1694 "addr (0x%x) is not at a 4B boundary.\n", addr);
1695 return (EFAULT);
1696 }
1697
1698 if (is_t4(sc->params.chip)) {
1699 pf = 0;
1700 start = addr & ~0xf; /* start must be 16B aligned */
1701 } else {
1702 pf = V_PFNUM(sc->pf);
1703 start = addr & ~0x7f; /* start must be 128B aligned */
1704 }
1705 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, n);
1706
1707 t4_write_reg(sc, reg, start | pf);
1708 (void) t4_read_reg(sc, reg);
1709
1710 return (addr - start);
1711 }
1712
1713
1714 /*
1715 * Reads the named property and fills up the "data" array (which has at least
1716 * "count" elements). We first try and lookup the property for our dev_t and
1717 * then retry with DDI_DEV_T_ANY if it's not found.
1718 *
1719 * Returns non-zero if the property was found and "data" has been updated.
1720 */
1721 static int
prop_lookup_int_array(struct adapter * sc,char * name,int * data,uint_t count)1722 prop_lookup_int_array(struct adapter *sc, char *name, int *data, uint_t count)
1723 {
1724 dev_info_t *dip = sc->dip;
1725 dev_t dev = sc->dev;
1726 int rc, *d;
1727 uint_t i, n;
1728
1729 rc = ddi_prop_lookup_int_array(dev, dip, DDI_PROP_DONTPASS,
1730 name, &d, &n);
1731 if (rc == DDI_PROP_SUCCESS)
1732 goto found;
1733
1734 if (rc != DDI_PROP_NOT_FOUND) {
1735 cxgb_printf(dip, CE_WARN,
1736 "failed to lookup property %s for minor %d: %d.",
1737 name, getminor(dev), rc);
1738 return (0);
1739 }
1740
1741 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1742 name, &d, &n);
1743 if (rc == DDI_PROP_SUCCESS)
1744 goto found;
1745
1746 if (rc != DDI_PROP_NOT_FOUND) {
1747 cxgb_printf(dip, CE_WARN,
1748 "failed to lookup property %s: %d.", name, rc);
1749 return (0);
1750 }
1751
1752 return (0);
1753
1754 found:
1755 if (n > count) {
1756 cxgb_printf(dip, CE_NOTE,
1757 "property %s has too many elements (%d), ignoring extras",
1758 name, n);
1759 }
1760
1761 for (i = 0; i < n && i < count; i++)
1762 data[i] = d[i];
1763 ddi_prop_free(d);
1764
1765 return (1);
1766 }
1767
1768 static int
prop_lookup_int(struct adapter * sc,char * name,int defval)1769 prop_lookup_int(struct adapter *sc, char *name, int defval)
1770 {
1771 int rc;
1772
1773 rc = ddi_prop_get_int(sc->dev, sc->dip, DDI_PROP_DONTPASS, name, -1);
1774 if (rc != -1)
1775 return (rc);
1776
1777 return (ddi_prop_get_int(DDI_DEV_T_ANY, sc->dip, DDI_PROP_DONTPASS,
1778 name, defval));
1779 }
1780
1781 static int
init_driver_props(struct adapter * sc,struct driver_properties * p)1782 init_driver_props(struct adapter *sc, struct driver_properties *p)
1783 {
1784 dev_t dev = sc->dev;
1785 dev_info_t *dip = sc->dip;
1786 int i, *data;
1787 uint_t tmr[SGE_NTIMERS] = {5, 10, 20, 50, 100, 200};
1788 uint_t cnt[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
1789
1790 /*
1791 * Holdoff timer
1792 */
1793 data = &p->timer_val[0];
1794 for (i = 0; i < SGE_NTIMERS; i++)
1795 data[i] = tmr[i];
1796 (void) prop_lookup_int_array(sc, "holdoff-timer-values", data,
1797 SGE_NTIMERS);
1798 for (i = 0; i < SGE_NTIMERS; i++) {
1799 int limit = 200U;
1800 if (data[i] > limit) {
1801 cxgb_printf(dip, CE_WARN,
1802 "holdoff timer %d is too high (%d), lowered to %d.",
1803 i, data[i], limit);
1804 data[i] = limit;
1805 }
1806 }
1807 (void) ddi_prop_update_int_array(dev, dip, "holdoff-timer-values",
1808 data, SGE_NTIMERS);
1809
1810 /*
1811 * Holdoff packet counter
1812 */
1813 data = &p->counter_val[0];
1814 for (i = 0; i < SGE_NCOUNTERS; i++)
1815 data[i] = cnt[i];
1816 (void) prop_lookup_int_array(sc, "holdoff-pkt-counter-values", data,
1817 SGE_NCOUNTERS);
1818 for (i = 0; i < SGE_NCOUNTERS; i++) {
1819 int limit = M_THRESHOLD_0;
1820 if (data[i] > limit) {
1821 cxgb_printf(dip, CE_WARN,
1822 "holdoff pkt-counter %d is too high (%d), "
1823 "lowered to %d.", i, data[i], limit);
1824 data[i] = limit;
1825 }
1826 }
1827 (void) ddi_prop_update_int_array(dev, dip, "holdoff-pkt-counter-values",
1828 data, SGE_NCOUNTERS);
1829
1830 /*
1831 * Maximum # of tx and rx queues to use for each
1832 * 100G, 40G, 25G, 10G and 1G port.
1833 */
1834 p->max_ntxq_10g = prop_lookup_int(sc, "max-ntxq-10G-port", 8);
1835 (void) ddi_prop_update_int(dev, dip, "max-ntxq-10G-port",
1836 p->max_ntxq_10g);
1837
1838 p->max_nrxq_10g = prop_lookup_int(sc, "max-nrxq-10G-port", 8);
1839 (void) ddi_prop_update_int(dev, dip, "max-nrxq-10G-port",
1840 p->max_nrxq_10g);
1841
1842 p->max_ntxq_1g = prop_lookup_int(sc, "max-ntxq-1G-port", 2);
1843 (void) ddi_prop_update_int(dev, dip, "max-ntxq-1G-port",
1844 p->max_ntxq_1g);
1845
1846 p->max_nrxq_1g = prop_lookup_int(sc, "max-nrxq-1G-port", 2);
1847 (void) ddi_prop_update_int(dev, dip, "max-nrxq-1G-port",
1848 p->max_nrxq_1g);
1849
1850 /*
1851 * Holdoff parameters for 10G and 1G ports.
1852 */
1853 p->tmr_idx_10g = prop_lookup_int(sc, "holdoff-timer-idx-10G", 0);
1854 (void) ddi_prop_update_int(dev, dip, "holdoff-timer-idx-10G",
1855 p->tmr_idx_10g);
1856
1857 p->pktc_idx_10g = prop_lookup_int(sc, "holdoff-pktc-idx-10G", 2);
1858 (void) ddi_prop_update_int(dev, dip, "holdoff-pktc-idx-10G",
1859 p->pktc_idx_10g);
1860
1861 p->tmr_idx_1g = prop_lookup_int(sc, "holdoff-timer-idx-1G", 0);
1862 (void) ddi_prop_update_int(dev, dip, "holdoff-timer-idx-1G",
1863 p->tmr_idx_1g);
1864
1865 p->pktc_idx_1g = prop_lookup_int(sc, "holdoff-pktc-idx-1G", 2);
1866 (void) ddi_prop_update_int(dev, dip, "holdoff-pktc-idx-1G",
1867 p->pktc_idx_1g);
1868
1869 /*
1870 * Size (number of entries) of each tx and rx queue.
1871 */
1872 i = prop_lookup_int(sc, "qsize-txq", TX_EQ_QSIZE);
1873 p->qsize_txq = max(i, 128);
1874 if (p->qsize_txq != i) {
1875 cxgb_printf(dip, CE_WARN,
1876 "using %d instead of %d as the tx queue size",
1877 p->qsize_txq, i);
1878 }
1879 (void) ddi_prop_update_int(dev, dip, "qsize-txq", p->qsize_txq);
1880
1881 i = prop_lookup_int(sc, "qsize-rxq", RX_IQ_QSIZE);
1882 p->qsize_rxq = max(i, 128);
1883 while (p->qsize_rxq & 7)
1884 p->qsize_rxq--;
1885 if (p->qsize_rxq != i) {
1886 cxgb_printf(dip, CE_WARN,
1887 "using %d instead of %d as the rx queue size",
1888 p->qsize_rxq, i);
1889 }
1890 (void) ddi_prop_update_int(dev, dip, "qsize-rxq", p->qsize_rxq);
1891
1892 /*
1893 * Interrupt types allowed.
1894 * Bits 0, 1, 2 = INTx, MSI, MSI-X respectively. See sys/ddi_intr.h
1895 */
1896 p->intr_types = prop_lookup_int(sc, "interrupt-types",
1897 DDI_INTR_TYPE_MSIX | DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_FIXED);
1898 (void) ddi_prop_update_int(dev, dip, "interrupt-types", p->intr_types);
1899
1900 /*
1901 * Write combining
1902 * 0 to disable, 1 to enable
1903 */
1904 p->wc = prop_lookup_int(sc, "write-combine", 1);
1905 cxgb_printf(dip, CE_WARN, "write-combine: using of %d", p->wc);
1906 if (p->wc != 0 && p->wc != 1) {
1907 cxgb_printf(dip, CE_WARN,
1908 "write-combine: using 1 instead of %d", p->wc);
1909 p->wc = 1;
1910 }
1911 (void) ddi_prop_update_int(dev, dip, "write-combine", p->wc);
1912
1913 p->t4_fw_install = prop_lookup_int(sc, "t4_fw_install", 1);
1914 if (p->t4_fw_install != 0 && p->t4_fw_install != 2)
1915 p->t4_fw_install = 1;
1916 (void) ddi_prop_update_int(dev, dip, "t4_fw_install", p->t4_fw_install);
1917
1918 /* Multiple Rings */
1919 p->multi_rings = prop_lookup_int(sc, "multi-rings", 1);
1920 if (p->multi_rings != 0 && p->multi_rings != 1) {
1921 cxgb_printf(dip, CE_NOTE,
1922 "multi-rings: using value 1 instead of %d", p->multi_rings);
1923 p->multi_rings = 1;
1924 }
1925
1926 (void) ddi_prop_update_int(dev, dip, "multi-rings", p->multi_rings);
1927
1928 return (0);
1929 }
1930
1931 static int
remove_extra_props(struct adapter * sc,int n10g,int n1g)1932 remove_extra_props(struct adapter *sc, int n10g, int n1g)
1933 {
1934 if (n10g == 0) {
1935 (void) ddi_prop_remove(sc->dev, sc->dip, "max-ntxq-10G-port");
1936 (void) ddi_prop_remove(sc->dev, sc->dip, "max-nrxq-10G-port");
1937 (void) ddi_prop_remove(sc->dev, sc->dip,
1938 "holdoff-timer-idx-10G");
1939 (void) ddi_prop_remove(sc->dev, sc->dip,
1940 "holdoff-pktc-idx-10G");
1941 }
1942
1943 if (n1g == 0) {
1944 (void) ddi_prop_remove(sc->dev, sc->dip, "max-ntxq-1G-port");
1945 (void) ddi_prop_remove(sc->dev, sc->dip, "max-nrxq-1G-port");
1946 (void) ddi_prop_remove(sc->dev, sc->dip,
1947 "holdoff-timer-idx-1G");
1948 (void) ddi_prop_remove(sc->dev, sc->dip, "holdoff-pktc-idx-1G");
1949 }
1950
1951 return (0);
1952 }
1953
1954 static int
cfg_itype_and_nqueues(struct adapter * sc,int n10g,int n1g,struct intrs_and_queues * iaq)1955 cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g,
1956 struct intrs_and_queues *iaq)
1957 {
1958 struct driver_properties *p = &sc->props;
1959 int rc, itype, itypes, navail, nc, n;
1960 int pfres_rxq, pfres_txq, pfresq;
1961
1962 bzero(iaq, sizeof (*iaq));
1963 nc = ncpus; /* our snapshot of the number of CPUs */
1964 iaq->ntxq10g = min(nc, p->max_ntxq_10g);
1965 iaq->ntxq1g = min(nc, p->max_ntxq_1g);
1966 iaq->nrxq10g = min(nc, p->max_nrxq_10g);
1967 iaq->nrxq1g = min(nc, p->max_nrxq_1g);
1968
1969 pfres_rxq = iaq->nrxq10g * n10g + iaq->nrxq1g * n1g;
1970 pfres_txq = iaq->ntxq10g * n10g + iaq->ntxq1g * n1g;
1971
1972 /*
1973 * If current configuration of max number of Rxqs and Txqs exceed
1974 * the max available for all the ports under this PF, then shrink
1975 * the queues to max available. Reduce them in a way that each
1976 * port under this PF has equally distributed number of queues.
1977 * Must guarantee at least 1 queue for each port for both NIC
1978 * and Offload queues.
1979 *
1980 * neq - fixed max number of Egress queues on Tx path and Free List
1981 * queues that hold Rx payload data on Rx path. Half are reserved
1982 * for Egress queues and the other half for Free List queues.
1983 * Hence, the division by 2.
1984 *
1985 * niqflint - max number of Ingress queues with interrupts on Rx
1986 * path to receive completions that indicate Rx payload has been
1987 * posted in its associated Free List queue. Also handles Tx
1988 * completions for packets successfully transmitted on Tx path.
1989 *
1990 * nethctrl - max number of Egress queues only for Tx path. This
1991 * number is usually half of neq. However, if it became less than
1992 * neq due to lack of resources based on firmware configuration,
1993 * then take the lower value.
1994 */
1995 const uint_t max_rxq =
1996 MIN(sc->params.pfres.neq / 2, sc->params.pfres.niqflint);
1997 while (pfres_rxq > max_rxq) {
1998 pfresq = pfres_rxq;
1999
2000 if (iaq->nrxq10g > 1) {
2001 iaq->nrxq10g--;
2002 pfres_rxq -= n10g;
2003 }
2004
2005 if (iaq->nrxq1g > 1) {
2006 iaq->nrxq1g--;
2007 pfres_rxq -= n1g;
2008 }
2009
2010 /* Break if nothing changed */
2011 if (pfresq == pfres_rxq)
2012 break;
2013 }
2014
2015 const uint_t max_txq =
2016 MIN(sc->params.pfres.neq / 2, sc->params.pfres.nethctrl);
2017 while (pfres_txq > max_txq) {
2018 pfresq = pfres_txq;
2019
2020 if (iaq->ntxq10g > 1) {
2021 iaq->ntxq10g--;
2022 pfres_txq -= n10g;
2023 }
2024
2025 if (iaq->ntxq1g > 1) {
2026 iaq->ntxq1g--;
2027 pfres_txq -= n1g;
2028 }
2029
2030 /* Break if nothing changed */
2031 if (pfresq == pfres_txq)
2032 break;
2033 }
2034
2035 rc = ddi_intr_get_supported_types(sc->dip, &itypes);
2036 if (rc != DDI_SUCCESS) {
2037 cxgb_printf(sc->dip, CE_WARN,
2038 "failed to determine supported interrupt types: %d", rc);
2039 return (rc);
2040 }
2041
2042 for (itype = DDI_INTR_TYPE_MSIX; itype; itype >>= 1) {
2043 ASSERT(itype == DDI_INTR_TYPE_MSIX ||
2044 itype == DDI_INTR_TYPE_MSI ||
2045 itype == DDI_INTR_TYPE_FIXED);
2046
2047 if ((itype & itypes & p->intr_types) == 0)
2048 continue; /* not supported or not allowed */
2049
2050 navail = 0;
2051 rc = ddi_intr_get_navail(sc->dip, itype, &navail);
2052 if (rc != DDI_SUCCESS || navail == 0) {
2053 cxgb_printf(sc->dip, CE_WARN,
2054 "failed to get # of interrupts for type %d: %d",
2055 itype, rc);
2056 continue; /* carry on */
2057 }
2058
2059 iaq->intr_type = itype;
2060 if (navail == 0)
2061 continue;
2062
2063 /*
2064 * Best option: an interrupt vector for errors, one for the
2065 * firmware event queue, and one each for each rxq (NIC as well
2066 * as offload).
2067 */
2068 iaq->nirq = T4_EXTRA_INTR;
2069 iaq->nirq += n10g * iaq->nrxq10g;
2070 iaq->nirq += n1g * iaq->nrxq1g;
2071
2072 if (iaq->nirq <= navail &&
2073 (itype != DDI_INTR_TYPE_MSI || ISP2(iaq->nirq))) {
2074 iaq->intr_fwd = 0;
2075 goto allocate;
2076 }
2077
2078 /*
2079 * Second best option: an interrupt vector for errors, one for
2080 * the firmware event queue, and one each for either NIC or
2081 * offload rxq's.
2082 */
2083 iaq->nirq = T4_EXTRA_INTR;
2084 iaq->nirq += n10g * iaq->nrxq10g;
2085 iaq->nirq += n1g * iaq->nrxq1g;
2086 if (iaq->nirq <= navail &&
2087 (itype != DDI_INTR_TYPE_MSI || ISP2(iaq->nirq))) {
2088 iaq->intr_fwd = 1;
2089 goto allocate;
2090 }
2091
2092 /*
2093 * Next best option: an interrupt vector for errors, one for the
2094 * firmware event queue, and at least one per port. At this
2095 * point we know we'll have to downsize nrxq or nofldrxq to fit
2096 * what's available to us.
2097 */
2098 iaq->nirq = T4_EXTRA_INTR;
2099 iaq->nirq += n10g + n1g;
2100 if (iaq->nirq <= navail) {
2101 int leftover = navail - iaq->nirq;
2102
2103 if (n10g > 0) {
2104 int target = iaq->nrxq10g;
2105
2106 n = 1;
2107 while (n < target && leftover >= n10g) {
2108 leftover -= n10g;
2109 iaq->nirq += n10g;
2110 n++;
2111 }
2112 iaq->nrxq10g = min(n, iaq->nrxq10g);
2113 }
2114
2115 if (n1g > 0) {
2116 int target = iaq->nrxq1g;
2117
2118 n = 1;
2119 while (n < target && leftover >= n1g) {
2120 leftover -= n1g;
2121 iaq->nirq += n1g;
2122 n++;
2123 }
2124 iaq->nrxq1g = min(n, iaq->nrxq1g);
2125 }
2126
2127 /*
2128 * We have arrived at a minimum value required to enable
2129 * per queue irq(either NIC or offload). Thus for non-
2130 * offload case, we will get a vector per queue, while
2131 * offload case, we will get a vector per offload/NIC q.
2132 * Hence enable Interrupt forwarding only for offload
2133 * case.
2134 */
2135 if (itype != DDI_INTR_TYPE_MSI) {
2136 goto allocate;
2137 }
2138 }
2139
2140 /*
2141 * Least desirable option: one interrupt vector for everything.
2142 */
2143 iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1;
2144 iaq->intr_fwd = 1;
2145
2146 allocate:
2147 return (0);
2148 }
2149
2150 cxgb_printf(sc->dip, CE_WARN,
2151 "failed to find a usable interrupt type. supported=%d, allowed=%d",
2152 itypes, p->intr_types);
2153 return (DDI_FAILURE);
2154 }
2155
2156 static int
add_child_node(struct adapter * sc,int idx)2157 add_child_node(struct adapter *sc, int idx)
2158 {
2159 int rc;
2160 struct port_info *pi;
2161
2162 if (idx < 0 || idx >= sc->params.nports)
2163 return (EINVAL);
2164
2165 pi = sc->port[idx];
2166 if (pi == NULL)
2167 return (ENODEV); /* t4_port_init failed earlier */
2168
2169 PORT_LOCK(pi);
2170 if (pi->dip != NULL) {
2171 rc = 0; /* EEXIST really, but then bus_config fails */
2172 goto done;
2173 }
2174
2175 rc = ndi_devi_alloc(sc->dip, T4_PORT_NAME, DEVI_SID_NODEID, &pi->dip);
2176 if (rc != DDI_SUCCESS || pi->dip == NULL) {
2177 rc = ENOMEM;
2178 goto done;
2179 }
2180
2181 (void) ddi_set_parent_data(pi->dip, pi);
2182 (void) ndi_devi_bind_driver(pi->dip, 0);
2183 rc = 0;
2184 done:
2185 PORT_UNLOCK(pi);
2186 return (rc);
2187 }
2188
2189 static int
remove_child_node(struct adapter * sc,int idx)2190 remove_child_node(struct adapter *sc, int idx)
2191 {
2192 int rc;
2193 struct port_info *pi;
2194
2195 if (idx < 0 || idx >= sc->params.nports)
2196 return (EINVAL);
2197
2198 pi = sc->port[idx];
2199 if (pi == NULL)
2200 return (ENODEV);
2201
2202 PORT_LOCK(pi);
2203 if (pi->dip == NULL) {
2204 rc = ENODEV;
2205 goto done;
2206 }
2207
2208 rc = ndi_devi_free(pi->dip);
2209 if (rc == 0)
2210 pi->dip = NULL;
2211 done:
2212 PORT_UNLOCK(pi);
2213 return (rc);
2214 }
2215
2216 static char *
print_port_speed(const struct port_info * pi)2217 print_port_speed(const struct port_info *pi)
2218 {
2219 if (!pi)
2220 return ("-");
2221
2222 if (is_100G_port(pi))
2223 return ("100G");
2224 else if (is_50G_port(pi))
2225 return ("50G");
2226 else if (is_40G_port(pi))
2227 return ("40G");
2228 else if (is_25G_port(pi))
2229 return ("25G");
2230 else if (is_10G_port(pi))
2231 return ("10G");
2232 else
2233 return ("1G");
2234 }
2235
2236 #define KS_UINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG)
2237 #define KS_CINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR)
2238 #define KS_U64INIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_UINT64)
2239 #define KS_U_SET(x, y) kstatp->x.value.ul = (y)
2240 #define KS_C_SET(x, ...) \
2241 (void) snprintf(kstatp->x.value.c, 16, __VA_ARGS__)
2242
2243 /*
2244 * t4nex:X:config
2245 */
2246 struct t4_kstats {
2247 kstat_named_t chip_ver;
2248 kstat_named_t fw_vers;
2249 kstat_named_t tp_vers;
2250 kstat_named_t driver_version;
2251 kstat_named_t serial_number;
2252 kstat_named_t ec_level;
2253 kstat_named_t id;
2254 kstat_named_t bus_type;
2255 kstat_named_t bus_width;
2256 kstat_named_t bus_speed;
2257 kstat_named_t core_clock;
2258 kstat_named_t port_cnt;
2259 kstat_named_t port_type;
2260 kstat_named_t pci_vendor_id;
2261 kstat_named_t pci_device_id;
2262 };
2263 static kstat_t *
setup_kstats(struct adapter * sc)2264 setup_kstats(struct adapter *sc)
2265 {
2266 kstat_t *ksp;
2267 struct t4_kstats *kstatp;
2268 int ndata;
2269 struct pci_params *p = &sc->params.pci;
2270 struct vpd_params *v = &sc->params.vpd;
2271 uint16_t pci_vendor, pci_device;
2272
2273 ndata = sizeof (struct t4_kstats) / sizeof (kstat_named_t);
2274
2275 ksp = kstat_create(T4_NEXUS_NAME, ddi_get_instance(sc->dip), "config",
2276 "nexus", KSTAT_TYPE_NAMED, ndata, 0);
2277 if (ksp == NULL) {
2278 cxgb_printf(sc->dip, CE_WARN, "failed to initialize kstats.");
2279 return (NULL);
2280 }
2281
2282 kstatp = (struct t4_kstats *)ksp->ks_data;
2283
2284 KS_UINIT(chip_ver);
2285 KS_CINIT(fw_vers);
2286 KS_CINIT(tp_vers);
2287 KS_CINIT(driver_version);
2288 KS_CINIT(serial_number);
2289 KS_CINIT(ec_level);
2290 KS_CINIT(id);
2291 KS_CINIT(bus_type);
2292 KS_CINIT(bus_width);
2293 KS_CINIT(bus_speed);
2294 KS_UINIT(core_clock);
2295 KS_UINIT(port_cnt);
2296 KS_CINIT(port_type);
2297 KS_CINIT(pci_vendor_id);
2298 KS_CINIT(pci_device_id);
2299
2300 KS_U_SET(chip_ver, sc->params.chip);
2301 KS_C_SET(fw_vers, "%d.%d.%d.%d",
2302 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
2303 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
2304 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
2305 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
2306 KS_C_SET(tp_vers, "%d.%d.%d.%d",
2307 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
2308 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
2309 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
2310 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
2311 KS_C_SET(driver_version, DRV_VERSION);
2312 KS_C_SET(serial_number, "%s", v->sn);
2313 KS_C_SET(ec_level, "%s", v->ec);
2314 KS_C_SET(id, "%s", v->id);
2315 KS_C_SET(bus_type, "pci-express");
2316 KS_C_SET(bus_width, "x%d lanes", p->width);
2317 KS_C_SET(bus_speed, "%d", p->speed);
2318 KS_U_SET(core_clock, v->cclk);
2319 KS_U_SET(port_cnt, sc->params.nports);
2320
2321 t4_os_pci_read_cfg2(sc, PCI_CONF_VENID, &pci_vendor);
2322 KS_C_SET(pci_vendor_id, "0x%x", pci_vendor);
2323
2324 t4_os_pci_read_cfg2(sc, PCI_CONF_DEVID, &pci_device);
2325 KS_C_SET(pci_device_id, "0x%x", pci_device);
2326
2327 KS_C_SET(port_type, "%s/%s/%s/%s",
2328 print_port_speed(sc->port[0]),
2329 print_port_speed(sc->port[1]),
2330 print_port_speed(sc->port[2]),
2331 print_port_speed(sc->port[3]));
2332
2333 /* Do NOT set ksp->ks_update. These kstats do not change. */
2334
2335 /* Install the kstat */
2336 ksp->ks_private = (void *)sc;
2337 kstat_install(ksp);
2338
2339 return (ksp);
2340 }
2341
2342 /*
2343 * t4nex:X:stat
2344 */
2345 struct t4_wc_kstats {
2346 kstat_named_t write_coal_success;
2347 kstat_named_t write_coal_failure;
2348 };
2349 static kstat_t *
setup_wc_kstats(struct adapter * sc)2350 setup_wc_kstats(struct adapter *sc)
2351 {
2352 kstat_t *ksp;
2353 struct t4_wc_kstats *kstatp;
2354
2355 const uint_t ndata =
2356 sizeof (struct t4_wc_kstats) / sizeof (kstat_named_t);
2357 ksp = kstat_create(T4_NEXUS_NAME, ddi_get_instance(sc->dip), "stats",
2358 "nexus", KSTAT_TYPE_NAMED, ndata, 0);
2359 if (ksp == NULL) {
2360 cxgb_printf(sc->dip, CE_WARN, "failed to initialize kstats.");
2361 return (NULL);
2362 }
2363
2364 kstatp = (struct t4_wc_kstats *)ksp->ks_data;
2365
2366 KS_UINIT(write_coal_success);
2367 KS_UINIT(write_coal_failure);
2368
2369 ksp->ks_update = update_wc_kstats;
2370 /* Install the kstat */
2371 ksp->ks_private = (void *)sc;
2372 kstat_install(ksp);
2373
2374 return (ksp);
2375 }
2376
2377 static int
update_wc_kstats(kstat_t * ksp,int rw)2378 update_wc_kstats(kstat_t *ksp, int rw)
2379 {
2380 struct t4_wc_kstats *kstatp = (struct t4_wc_kstats *)ksp->ks_data;
2381 struct adapter *sc = ksp->ks_private;
2382 uint32_t wc_total, wc_success, wc_failure;
2383
2384 if (rw == KSTAT_WRITE)
2385 return (0);
2386
2387 if (is_t5(sc->params.chip)) {
2388 wc_total = t4_read_reg(sc, A_SGE_STAT_TOTAL);
2389 wc_failure = t4_read_reg(sc, A_SGE_STAT_MATCH);
2390 wc_success = wc_total - wc_failure;
2391 } else {
2392 wc_success = 0;
2393 wc_failure = 0;
2394 }
2395
2396 KS_U_SET(write_coal_success, wc_success);
2397 KS_U_SET(write_coal_failure, wc_failure);
2398
2399 return (0);
2400 }
2401
2402 /*
2403 * cxgbe:X:fec
2404 *
2405 * This provides visibility into the errors that have been found by the
2406 * different FEC subsystems. While it's tempting to combine the two different
2407 * FEC types logically, the data that the errors tell us are pretty different
2408 * between the two. Firecode is strictly per-lane, but RS has parts that are
2409 * related to symbol distribution to lanes and also to the overall channel.
2410 */
2411 struct cxgbe_port_fec_kstats {
2412 kstat_named_t rs_corr;
2413 kstat_named_t rs_uncorr;
2414 kstat_named_t rs_sym0_corr;
2415 kstat_named_t rs_sym1_corr;
2416 kstat_named_t rs_sym2_corr;
2417 kstat_named_t rs_sym3_corr;
2418 kstat_named_t fc_lane0_corr;
2419 kstat_named_t fc_lane0_uncorr;
2420 kstat_named_t fc_lane1_corr;
2421 kstat_named_t fc_lane1_uncorr;
2422 kstat_named_t fc_lane2_corr;
2423 kstat_named_t fc_lane2_uncorr;
2424 kstat_named_t fc_lane3_corr;
2425 kstat_named_t fc_lane3_uncorr;
2426 };
2427
2428 static uint32_t
read_fec_pair(struct port_info * pi,uint32_t lo_reg,uint32_t high_reg)2429 read_fec_pair(struct port_info *pi, uint32_t lo_reg, uint32_t high_reg)
2430 {
2431 struct adapter *sc = pi->adapter;
2432 uint8_t port = pi->tx_chan;
2433 uint32_t low, high, ret;
2434
2435 low = t4_read_reg32(sc, T5_PORT_REG(port, lo_reg));
2436 high = t4_read_reg32(sc, T5_PORT_REG(port, high_reg));
2437 ret = low & 0xffff;
2438 ret |= (high & 0xffff) << 16;
2439 return (ret);
2440 }
2441
2442 static int
update_port_fec_kstats(kstat_t * ksp,int rw)2443 update_port_fec_kstats(kstat_t *ksp, int rw)
2444 {
2445 struct cxgbe_port_fec_kstats *fec = ksp->ks_data;
2446 struct port_info *pi = ksp->ks_private;
2447
2448 if (rw == KSTAT_WRITE) {
2449 return (EACCES);
2450 }
2451
2452 /*
2453 * First go ahead and gather RS related stats.
2454 */
2455 fec->rs_corr.value.ui64 += read_fec_pair(pi, T6_RS_FEC_CCW_LO,
2456 T6_RS_FEC_CCW_HI);
2457 fec->rs_uncorr.value.ui64 += read_fec_pair(pi, T6_RS_FEC_NCCW_LO,
2458 T6_RS_FEC_NCCW_HI);
2459 fec->rs_sym0_corr.value.ui64 += read_fec_pair(pi, T6_RS_FEC_SYMERR0_LO,
2460 T6_RS_FEC_SYMERR0_HI);
2461 fec->rs_sym1_corr.value.ui64 += read_fec_pair(pi, T6_RS_FEC_SYMERR1_LO,
2462 T6_RS_FEC_SYMERR1_HI);
2463 fec->rs_sym2_corr.value.ui64 += read_fec_pair(pi, T6_RS_FEC_SYMERR2_LO,
2464 T6_RS_FEC_SYMERR2_HI);
2465 fec->rs_sym3_corr.value.ui64 += read_fec_pair(pi, T6_RS_FEC_SYMERR3_LO,
2466 T6_RS_FEC_SYMERR3_HI);
2467
2468 /*
2469 * Now go through and try to grab Firecode/BASE-R stats.
2470 */
2471 fec->fc_lane0_corr.value.ui64 += read_fec_pair(pi, T6_FC_FEC_L0_CERR_LO,
2472 T6_FC_FEC_L0_CERR_HI);
2473 fec->fc_lane0_uncorr.value.ui64 += read_fec_pair(pi,
2474 T6_FC_FEC_L0_NCERR_LO, T6_FC_FEC_L0_NCERR_HI);
2475 fec->fc_lane1_corr.value.ui64 += read_fec_pair(pi, T6_FC_FEC_L1_CERR_LO,
2476 T6_FC_FEC_L1_CERR_HI);
2477 fec->fc_lane1_uncorr.value.ui64 += read_fec_pair(pi,
2478 T6_FC_FEC_L1_NCERR_LO, T6_FC_FEC_L1_NCERR_HI);
2479 fec->fc_lane2_corr.value.ui64 += read_fec_pair(pi, T6_FC_FEC_L2_CERR_LO,
2480 T6_FC_FEC_L2_CERR_HI);
2481 fec->fc_lane2_uncorr.value.ui64 += read_fec_pair(pi,
2482 T6_FC_FEC_L2_NCERR_LO, T6_FC_FEC_L2_NCERR_HI);
2483 fec->fc_lane3_corr.value.ui64 += read_fec_pair(pi, T6_FC_FEC_L3_CERR_LO,
2484 T6_FC_FEC_L3_CERR_HI);
2485 fec->fc_lane3_uncorr.value.ui64 += read_fec_pair(pi,
2486 T6_FC_FEC_L3_NCERR_LO, T6_FC_FEC_L3_NCERR_HI);
2487
2488 return (0);
2489 }
2490
2491 static kstat_t *
setup_port_fec_kstats(struct port_info * pi)2492 setup_port_fec_kstats(struct port_info *pi)
2493 {
2494 kstat_t *ksp;
2495 struct cxgbe_port_fec_kstats *kstatp;
2496
2497 if (!is_t6(pi->adapter->params.chip)) {
2498 return (NULL);
2499 }
2500
2501 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "fec",
2502 "net", KSTAT_TYPE_NAMED, sizeof (struct cxgbe_port_fec_kstats) /
2503 sizeof (kstat_named_t), 0);
2504 if (ksp == NULL) {
2505 cxgb_printf(pi->dip, CE_WARN, "failed to initialize fec "
2506 "kstats.");
2507 return (NULL);
2508 }
2509
2510 kstatp = ksp->ks_data;
2511 KS_U64INIT(rs_corr);
2512 KS_U64INIT(rs_uncorr);
2513 KS_U64INIT(rs_sym0_corr);
2514 KS_U64INIT(rs_sym1_corr);
2515 KS_U64INIT(rs_sym2_corr);
2516 KS_U64INIT(rs_sym3_corr);
2517 KS_U64INIT(fc_lane0_corr);
2518 KS_U64INIT(fc_lane0_uncorr);
2519 KS_U64INIT(fc_lane1_corr);
2520 KS_U64INIT(fc_lane1_uncorr);
2521 KS_U64INIT(fc_lane2_corr);
2522 KS_U64INIT(fc_lane2_uncorr);
2523 KS_U64INIT(fc_lane3_corr);
2524 KS_U64INIT(fc_lane3_uncorr);
2525
2526 ksp->ks_update = update_port_fec_kstats;
2527 ksp->ks_private = pi;
2528 kstat_install(ksp);
2529
2530 return (ksp);
2531 }
2532
2533 int
adapter_full_init(struct adapter * sc)2534 adapter_full_init(struct adapter *sc)
2535 {
2536 int i, rc = 0;
2537
2538 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
2539
2540 rc = t4_setup_adapter_queues(sc);
2541 if (rc != 0)
2542 goto done;
2543
2544 if (sc->intr_cap & DDI_INTR_FLAG_BLOCK)
2545 (void) ddi_intr_block_enable(sc->intr_handle, sc->intr_count);
2546 else {
2547 for (i = 0; i < sc->intr_count; i++)
2548 (void) ddi_intr_enable(sc->intr_handle[i]);
2549 }
2550 t4_intr_enable(sc);
2551 sc->flags |= FULL_INIT_DONE;
2552
2553 done:
2554 if (rc != 0)
2555 (void) adapter_full_uninit(sc);
2556
2557 return (rc);
2558 }
2559
2560 int
adapter_full_uninit(struct adapter * sc)2561 adapter_full_uninit(struct adapter *sc)
2562 {
2563 int i, rc = 0;
2564
2565 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
2566
2567 if (sc->intr_cap & DDI_INTR_FLAG_BLOCK)
2568 (void) ddi_intr_block_disable(sc->intr_handle, sc->intr_count);
2569 else {
2570 for (i = 0; i < sc->intr_count; i++)
2571 (void) ddi_intr_disable(sc->intr_handle[i]);
2572 }
2573
2574 rc = t4_teardown_adapter_queues(sc);
2575 if (rc != 0)
2576 return (rc);
2577
2578 sc->flags &= ~FULL_INIT_DONE;
2579
2580 return (0);
2581 }
2582
2583 int
port_full_init(struct port_info * pi)2584 port_full_init(struct port_info *pi)
2585 {
2586 struct adapter *sc = pi->adapter;
2587 uint16_t *rss;
2588 struct sge_rxq *rxq;
2589 int rc, i;
2590
2591 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
2592 ASSERT((pi->flags & PORT_INIT_DONE) == 0);
2593
2594 /*
2595 * Allocate tx/rx/fl queues for this port.
2596 */
2597 rc = t4_setup_port_queues(pi);
2598 if (rc != 0)
2599 goto done; /* error message displayed already */
2600
2601 /*
2602 * Setup RSS for this port.
2603 */
2604 rss = kmem_zalloc(pi->nrxq * sizeof (*rss), KM_SLEEP);
2605 for_each_rxq(pi, i, rxq) {
2606 rss[i] = rxq->iq.abs_id;
2607 }
2608 rc = -t4_config_rss_range(sc, sc->mbox, pi->viid, 0,
2609 pi->rss_size, rss, pi->nrxq);
2610 kmem_free(rss, pi->nrxq * sizeof (*rss));
2611 if (rc != 0) {
2612 cxgb_printf(pi->dip, CE_WARN, "rss_config failed: %d", rc);
2613 goto done;
2614 }
2615
2616 /*
2617 * Initialize our per-port FEC kstats.
2618 */
2619 pi->ksp_fec = setup_port_fec_kstats(pi);
2620
2621 pi->flags |= PORT_INIT_DONE;
2622 done:
2623 if (rc != 0)
2624 (void) port_full_uninit(pi);
2625
2626 return (rc);
2627 }
2628
2629 /*
2630 * Idempotent.
2631 */
2632 int
port_full_uninit(struct port_info * pi)2633 port_full_uninit(struct port_info *pi)
2634 {
2635
2636 ASSERT(pi->flags & PORT_INIT_DONE);
2637
2638 if (pi->ksp_fec != NULL) {
2639 kstat_delete(pi->ksp_fec);
2640 pi->ksp_fec = NULL;
2641 }
2642 (void) t4_teardown_port_queues(pi);
2643 pi->flags &= ~PORT_INIT_DONE;
2644
2645 return (0);
2646 }
2647
2648 void
enable_port_queues(struct port_info * pi)2649 enable_port_queues(struct port_info *pi)
2650 {
2651 struct adapter *sc = pi->adapter;
2652 int i;
2653 struct sge_iq *iq;
2654 struct sge_rxq *rxq;
2655
2656 ASSERT(pi->flags & PORT_INIT_DONE);
2657
2658 /*
2659 * TODO: whatever was queued up after we set iq->state to IQS_DISABLED
2660 * back in disable_port_queues will be processed now, after an unbounded
2661 * delay. This can't be good.
2662 */
2663
2664 for_each_rxq(pi, i, rxq) {
2665 iq = &rxq->iq;
2666 if (atomic_cas_uint(&iq->state, IQS_DISABLED, IQS_IDLE) !=
2667 IQS_DISABLED)
2668 panic("%s: iq %p wasn't disabled", __func__,
2669 (void *) iq);
2670 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
2671 V_SEINTARM(iq->intr_params) | V_INGRESSQID(iq->cntxt_id));
2672 }
2673 }
2674
2675 void
disable_port_queues(struct port_info * pi)2676 disable_port_queues(struct port_info *pi)
2677 {
2678 int i;
2679 struct adapter *sc = pi->adapter;
2680 struct sge_rxq *rxq;
2681
2682 ASSERT(pi->flags & PORT_INIT_DONE);
2683
2684 /*
2685 * TODO: need proper implementation for all tx queues (ctrl, eth, ofld).
2686 */
2687
2688 for_each_rxq(pi, i, rxq) {
2689 while (atomic_cas_uint(&rxq->iq.state, IQS_IDLE,
2690 IQS_DISABLED) != IQS_IDLE)
2691 msleep(1);
2692 }
2693
2694 mutex_enter(&sc->sfl_lock);
2695 for_each_rxq(pi, i, rxq)
2696 rxq->fl.flags |= FL_DOOMED;
2697 mutex_exit(&sc->sfl_lock);
2698 /* TODO: need to wait for all fl's to be removed from sc->sfl */
2699 }
2700
2701 void
t4_fatal_err(struct adapter * sc)2702 t4_fatal_err(struct adapter *sc)
2703 {
2704 t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
2705 t4_intr_disable(sc);
2706 cxgb_printf(sc->dip, CE_WARN,
2707 "encountered fatal error, adapter stopped.");
2708 }
2709
2710 int
t4_os_find_pci_capability(struct adapter * sc,int cap)2711 t4_os_find_pci_capability(struct adapter *sc, int cap)
2712 {
2713 uint16_t stat;
2714 uint8_t cap_ptr, cap_id;
2715
2716 t4_os_pci_read_cfg2(sc, PCI_CONF_STAT, &stat);
2717 if ((stat & PCI_STAT_CAP) == 0)
2718 return (0); /* does not implement capabilities */
2719
2720 t4_os_pci_read_cfg1(sc, PCI_CONF_CAP_PTR, &cap_ptr);
2721 while (cap_ptr) {
2722 t4_os_pci_read_cfg1(sc, cap_ptr + PCI_CAP_ID, &cap_id);
2723 if (cap_id == cap)
2724 return (cap_ptr); /* found */
2725 t4_os_pci_read_cfg1(sc, cap_ptr + PCI_CAP_NEXT_PTR, &cap_ptr);
2726 }
2727
2728 return (0); /* not found */
2729 }
2730
2731 void
t4_os_portmod_changed(struct adapter * sc,int idx)2732 t4_os_portmod_changed(struct adapter *sc, int idx)
2733 {
2734 static const char *mod_str[] = {
2735 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
2736 };
2737 struct port_info *pi = sc->port[idx];
2738
2739 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
2740 cxgb_printf(pi->dip, CE_NOTE, "transceiver unplugged.");
2741 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
2742 cxgb_printf(pi->dip, CE_NOTE,
2743 "unknown transceiver inserted.\n");
2744 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
2745 cxgb_printf(pi->dip, CE_NOTE,
2746 "unsupported transceiver inserted.\n");
2747 else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str))
2748 cxgb_printf(pi->dip, CE_NOTE, "%s transceiver inserted.\n",
2749 mod_str[pi->mod_type]);
2750 else
2751 cxgb_printf(pi->dip, CE_NOTE, "transceiver (type %d) inserted.",
2752 pi->mod_type);
2753
2754 if ((isset(&sc->open_device_map, pi->port_id) != 0) &&
2755 pi->link_cfg.new_module)
2756 pi->link_cfg.redo_l1cfg = true;
2757 }
2758
2759 static int
t4_sensor_read(struct adapter * sc,uint32_t diag,uint32_t * valp)2760 t4_sensor_read(struct adapter *sc, uint32_t diag, uint32_t *valp)
2761 {
2762 int rc;
2763 struct port_info *pi = sc->port[0];
2764 uint32_t param, val;
2765
2766 rc = begin_synchronized_op(pi, 1, 1);
2767 if (rc != 0) {
2768 return (rc);
2769 }
2770 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2771 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
2772 V_FW_PARAMS_PARAM_Y(diag);
2773 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
2774 end_synchronized_op(pi, 1);
2775
2776 if (rc != 0) {
2777 return (rc);
2778 }
2779
2780 if (val == 0) {
2781 return (EIO);
2782 }
2783
2784 *valp = val;
2785 return (0);
2786 }
2787
2788 static int
t4_temperature_read(void * arg,sensor_ioctl_scalar_t * scalar)2789 t4_temperature_read(void *arg, sensor_ioctl_scalar_t *scalar)
2790 {
2791 int ret;
2792 struct adapter *sc = arg;
2793 uint32_t val;
2794
2795 ret = t4_sensor_read(sc, FW_PARAM_DEV_DIAG_TMP, &val);
2796 if (ret != 0) {
2797 return (ret);
2798 }
2799
2800 /*
2801 * The device measures temperature in units of 1 degree Celsius. We
2802 * don't know its precision.
2803 */
2804 scalar->sis_unit = SENSOR_UNIT_CELSIUS;
2805 scalar->sis_gran = 1;
2806 scalar->sis_prec = 0;
2807 scalar->sis_value = val;
2808
2809 return (0);
2810 }
2811
2812 static int
t4_voltage_read(void * arg,sensor_ioctl_scalar_t * scalar)2813 t4_voltage_read(void *arg, sensor_ioctl_scalar_t *scalar)
2814 {
2815 int ret;
2816 struct adapter *sc = arg;
2817 uint32_t val;
2818
2819 ret = t4_sensor_read(sc, FW_PARAM_DEV_DIAG_VDD, &val);
2820 if (ret != 0) {
2821 return (ret);
2822 }
2823
2824 scalar->sis_unit = SENSOR_UNIT_VOLTS;
2825 scalar->sis_gran = 1000;
2826 scalar->sis_prec = 0;
2827 scalar->sis_value = val;
2828
2829 return (0);
2830 }
2831
2832 /*
2833 * While the hardware supports the ability to read and write the flash image,
2834 * this is not currently wired up.
2835 */
2836 static int
t4_ufm_getcaps(ddi_ufm_handle_t * ufmh,void * arg,ddi_ufm_cap_t * caps)2837 t4_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
2838 {
2839 *caps = DDI_UFM_CAP_REPORT;
2840 return (0);
2841 }
2842
2843 static int
t4_ufm_fill_image(ddi_ufm_handle_t * ufmh,void * arg,uint_t imgno,ddi_ufm_image_t * imgp)2844 t4_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
2845 ddi_ufm_image_t *imgp)
2846 {
2847 if (imgno != 0) {
2848 return (EINVAL);
2849 }
2850
2851 ddi_ufm_image_set_desc(imgp, "Firmware");
2852 ddi_ufm_image_set_nslots(imgp, 1);
2853
2854 return (0);
2855 }
2856
2857 static int
t4_ufm_fill_slot_version(nvlist_t * nvl,const char * key,uint32_t vers)2858 t4_ufm_fill_slot_version(nvlist_t *nvl, const char *key, uint32_t vers)
2859 {
2860 char buf[128];
2861
2862 if (vers == 0) {
2863 return (0);
2864 }
2865
2866 if (snprintf(buf, sizeof (buf), "%u.%u.%u.%u",
2867 G_FW_HDR_FW_VER_MAJOR(vers), G_FW_HDR_FW_VER_MINOR(vers),
2868 G_FW_HDR_FW_VER_MICRO(vers), G_FW_HDR_FW_VER_BUILD(vers)) >=
2869 sizeof (buf)) {
2870 return (EOVERFLOW);
2871 }
2872
2873 return (nvlist_add_string(nvl, key, buf));
2874 }
2875
2876 static int
t4_ufm_fill_slot(ddi_ufm_handle_t * ufmh,void * arg,uint_t imgno,uint_t slotno,ddi_ufm_slot_t * slotp)2877 t4_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, uint_t slotno,
2878 ddi_ufm_slot_t *slotp)
2879 {
2880 int ret;
2881 struct adapter *sc = arg;
2882 nvlist_t *misc = NULL;
2883 char buf[128];
2884
2885 if (imgno != 0 || slotno != 0) {
2886 return (EINVAL);
2887 }
2888
2889 if (snprintf(buf, sizeof (buf), "%u.%u.%u.%u",
2890 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
2891 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
2892 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
2893 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)) >= sizeof (buf)) {
2894 return (EOVERFLOW);
2895 }
2896
2897 ddi_ufm_slot_set_version(slotp, buf);
2898
2899 (void) nvlist_alloc(&misc, NV_UNIQUE_NAME, KM_SLEEP);
2900 if ((ret = t4_ufm_fill_slot_version(misc, "TP Microcode",
2901 sc->params.tp_vers)) != 0) {
2902 goto err;
2903 }
2904
2905 if ((ret = t4_ufm_fill_slot_version(misc, "Bootstrap",
2906 sc->params.bs_vers)) != 0) {
2907 goto err;
2908 }
2909
2910 if ((ret = t4_ufm_fill_slot_version(misc, "Expansion ROM",
2911 sc->params.er_vers)) != 0) {
2912 goto err;
2913 }
2914
2915 if ((ret = nvlist_add_uint32(misc, "Serial Configuration",
2916 sc->params.scfg_vers)) != 0) {
2917 goto err;
2918 }
2919
2920 if ((ret = nvlist_add_uint32(misc, "VPD Version",
2921 sc->params.vpd_vers)) != 0) {
2922 goto err;
2923 }
2924
2925 ddi_ufm_slot_set_misc(slotp, misc);
2926 ddi_ufm_slot_set_attrs(slotp, DDI_UFM_ATTR_ACTIVE |
2927 DDI_UFM_ATTR_WRITEABLE | DDI_UFM_ATTR_READABLE);
2928 return (0);
2929
2930 err:
2931 nvlist_free(misc);
2932 return (ret);
2933
2934 }
2935
2936
2937 int
t4_cxgbe_attach(struct port_info * pi,dev_info_t * dip)2938 t4_cxgbe_attach(struct port_info *pi, dev_info_t *dip)
2939 {
2940 ASSERT(pi != NULL);
2941
2942 mac_register_t *mac = mac_alloc(MAC_VERSION);
2943 if (mac == NULL) {
2944 return (DDI_FAILURE);
2945 }
2946
2947 mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2948 mac->m_driver = pi;
2949 mac->m_dip = dip;
2950 mac->m_src_addr = pi->hw_addr;
2951 mac->m_callbacks = pi->mc;
2952 mac->m_max_sdu = pi->mtu;
2953 mac->m_priv_props = pi->props;
2954 mac->m_margin = VLAN_TAGSZ;
2955
2956 if (!mac->m_callbacks->mc_unicst) {
2957 /* Multiple rings enabled */
2958 mac->m_v12n = MAC_VIRT_LEVEL1;
2959 }
2960
2961 mac_handle_t mh = NULL;
2962 const int rc = mac_register(mac, &mh);
2963 mac_free(mac);
2964 if (rc != 0) {
2965 return (DDI_FAILURE);
2966 }
2967
2968 pi->mh = mh;
2969
2970 /*
2971 * Link state from this point onwards to the time interface is plumbed,
2972 * should be set to LINK_STATE_UNKNOWN. The mac should be updated about
2973 * the link state as either LINK_STATE_UP or LINK_STATE_DOWN based on
2974 * the actual link state detection after interface plumb.
2975 */
2976 mac_link_update(mh, LINK_STATE_UNKNOWN);
2977
2978 return (DDI_SUCCESS);
2979 }
2980
2981 int
t4_cxgbe_detach(struct port_info * pi)2982 t4_cxgbe_detach(struct port_info *pi)
2983 {
2984 ASSERT(pi != NULL);
2985 ASSERT(pi->mh != NULL);
2986
2987 if (mac_unregister(pi->mh) == 0) {
2988 pi->mh = NULL;
2989 return (DDI_SUCCESS);
2990 }
2991
2992 return (DDI_FAILURE);
2993 }
2994