xref: /linux/include/linux/mmzone.h (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /* Defines the order for the number of pages that have a migrate type. */
41 #ifndef CONFIG_PAGE_BLOCK_ORDER
42 #define PAGE_BLOCK_ORDER MAX_PAGE_ORDER
43 #else
44 #define PAGE_BLOCK_ORDER CONFIG_PAGE_BLOCK_ORDER
45 #endif /* CONFIG_PAGE_BLOCK_ORDER */
46 
47 /*
48  * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated
49  * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_ORDER,
50  * which defines the order for the number of pages that can have a migrate type
51  */
52 #if (PAGE_BLOCK_ORDER > MAX_PAGE_ORDER)
53 #error MAX_PAGE_ORDER must be >= PAGE_BLOCK_ORDER
54 #endif
55 
56 /*
57  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
58  * costly to service.  That is between allocation orders which should
59  * coalesce naturally under reasonable reclaim pressure and those which
60  * will not.
61  */
62 #define PAGE_ALLOC_COSTLY_ORDER 3
63 
64 enum migratetype {
65 	MIGRATE_UNMOVABLE,
66 	MIGRATE_MOVABLE,
67 	MIGRATE_RECLAIMABLE,
68 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
69 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
70 #ifdef CONFIG_CMA
71 	/*
72 	 * MIGRATE_CMA migration type is designed to mimic the way
73 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
74 	 * from MIGRATE_CMA pageblocks and page allocator never
75 	 * implicitly change migration type of MIGRATE_CMA pageblock.
76 	 *
77 	 * The way to use it is to change migratetype of a range of
78 	 * pageblocks to MIGRATE_CMA which can be done by
79 	 * __free_pageblock_cma() function.
80 	 */
81 	MIGRATE_CMA,
82 #endif
83 #ifdef CONFIG_MEMORY_ISOLATION
84 	MIGRATE_ISOLATE,	/* can't allocate from here */
85 #endif
86 	MIGRATE_TYPES
87 };
88 
89 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
90 extern const char * const migratetype_names[MIGRATE_TYPES];
91 
92 #ifdef CONFIG_CMA
93 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
94 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
95 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
96 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
97 #else
98 #  define is_migrate_cma(migratetype) false
99 #  define is_migrate_cma_page(_page) false
100 #  define is_migrate_cma_folio(folio, pfn) false
101 #endif
102 
is_migrate_movable(int mt)103 static inline bool is_migrate_movable(int mt)
104 {
105 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
106 }
107 
108 /*
109  * Check whether a migratetype can be merged with another migratetype.
110  *
111  * It is only mergeable when it can fall back to other migratetypes for
112  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
113  */
migratetype_is_mergeable(int mt)114 static inline bool migratetype_is_mergeable(int mt)
115 {
116 	return mt < MIGRATE_PCPTYPES;
117 }
118 
119 #define for_each_migratetype_order(order, type) \
120 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
121 		for (type = 0; type < MIGRATE_TYPES; type++)
122 
123 extern int page_group_by_mobility_disabled;
124 
125 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
126 
127 #define get_pageblock_migratetype(page)					\
128 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
129 
130 #define folio_migratetype(folio)				\
131 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
132 			MIGRATETYPE_MASK)
133 struct free_area {
134 	struct list_head	free_list[MIGRATE_TYPES];
135 	unsigned long		nr_free;
136 };
137 
138 struct pglist_data;
139 
140 #ifdef CONFIG_NUMA
141 enum numa_stat_item {
142 	NUMA_HIT,		/* allocated in intended node */
143 	NUMA_MISS,		/* allocated in non intended node */
144 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
145 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
146 	NUMA_LOCAL,		/* allocation from local node */
147 	NUMA_OTHER,		/* allocation from other node */
148 	NR_VM_NUMA_EVENT_ITEMS
149 };
150 #else
151 #define NR_VM_NUMA_EVENT_ITEMS 0
152 #endif
153 
154 enum zone_stat_item {
155 	/* First 128 byte cacheline (assuming 64 bit words) */
156 	NR_FREE_PAGES,
157 	NR_FREE_PAGES_BLOCKS,
158 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
159 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
160 	NR_ZONE_ACTIVE_ANON,
161 	NR_ZONE_INACTIVE_FILE,
162 	NR_ZONE_ACTIVE_FILE,
163 	NR_ZONE_UNEVICTABLE,
164 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
165 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
166 	/* Second 128 byte cacheline */
167 #if IS_ENABLED(CONFIG_ZSMALLOC)
168 	NR_ZSPAGES,		/* allocated in zsmalloc */
169 #endif
170 	NR_FREE_CMA_PAGES,
171 #ifdef CONFIG_UNACCEPTED_MEMORY
172 	NR_UNACCEPTED,
173 #endif
174 	NR_VM_ZONE_STAT_ITEMS };
175 
176 enum node_stat_item {
177 	NR_LRU_BASE,
178 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
179 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
180 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
181 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
182 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
183 	NR_SLAB_RECLAIMABLE_B,
184 	NR_SLAB_UNRECLAIMABLE_B,
185 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
186 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
187 	WORKINGSET_NODES,
188 	WORKINGSET_REFAULT_BASE,
189 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
190 	WORKINGSET_REFAULT_FILE,
191 	WORKINGSET_ACTIVATE_BASE,
192 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
193 	WORKINGSET_ACTIVATE_FILE,
194 	WORKINGSET_RESTORE_BASE,
195 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
196 	WORKINGSET_RESTORE_FILE,
197 	WORKINGSET_NODERECLAIM,
198 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
199 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
200 			   only modified from process context */
201 	NR_FILE_PAGES,
202 	NR_FILE_DIRTY,
203 	NR_WRITEBACK,
204 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
205 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
206 	NR_SHMEM_THPS,
207 	NR_SHMEM_PMDMAPPED,
208 	NR_FILE_THPS,
209 	NR_FILE_PMDMAPPED,
210 	NR_ANON_THPS,
211 	NR_VMSCAN_WRITE,
212 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
213 	NR_DIRTIED,		/* page dirtyings since bootup */
214 	NR_WRITTEN,		/* page writings since bootup */
215 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
216 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
217 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
218 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
219 	NR_KERNEL_STACK_KB,	/* measured in KiB */
220 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
221 	NR_KERNEL_SCS_KB,	/* measured in KiB */
222 #endif
223 	NR_PAGETABLE,		/* used for pagetables */
224 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
225 #ifdef CONFIG_IOMMU_SUPPORT
226 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
227 #endif
228 #ifdef CONFIG_SWAP
229 	NR_SWAPCACHE,
230 #endif
231 #ifdef CONFIG_NUMA_BALANCING
232 	PGPROMOTE_SUCCESS,	/* promote successfully */
233 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
234 #endif
235 	/* PGDEMOTE_*: pages demoted */
236 	PGDEMOTE_KSWAPD,
237 	PGDEMOTE_DIRECT,
238 	PGDEMOTE_KHUGEPAGED,
239 	PGDEMOTE_PROACTIVE,
240 #ifdef CONFIG_HUGETLB_PAGE
241 	NR_HUGETLB,
242 #endif
243 	NR_BALLOON_PAGES,
244 	NR_VM_NODE_STAT_ITEMS
245 };
246 
247 /*
248  * Returns true if the item should be printed in THPs (/proc/vmstat
249  * currently prints number of anon, file and shmem THPs. But the item
250  * is charged in pages).
251  */
vmstat_item_print_in_thp(enum node_stat_item item)252 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
253 {
254 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
255 		return false;
256 
257 	return item == NR_ANON_THPS ||
258 	       item == NR_FILE_THPS ||
259 	       item == NR_SHMEM_THPS ||
260 	       item == NR_SHMEM_PMDMAPPED ||
261 	       item == NR_FILE_PMDMAPPED;
262 }
263 
264 /*
265  * Returns true if the value is measured in bytes (most vmstat values are
266  * measured in pages). This defines the API part, the internal representation
267  * might be different.
268  */
vmstat_item_in_bytes(int idx)269 static __always_inline bool vmstat_item_in_bytes(int idx)
270 {
271 	/*
272 	 * Global and per-node slab counters track slab pages.
273 	 * It's expected that changes are multiples of PAGE_SIZE.
274 	 * Internally values are stored in pages.
275 	 *
276 	 * Per-memcg and per-lruvec counters track memory, consumed
277 	 * by individual slab objects. These counters are actually
278 	 * byte-precise.
279 	 */
280 	return (idx == NR_SLAB_RECLAIMABLE_B ||
281 		idx == NR_SLAB_UNRECLAIMABLE_B);
282 }
283 
284 /*
285  * We do arithmetic on the LRU lists in various places in the code,
286  * so it is important to keep the active lists LRU_ACTIVE higher in
287  * the array than the corresponding inactive lists, and to keep
288  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
289  *
290  * This has to be kept in sync with the statistics in zone_stat_item
291  * above and the descriptions in vmstat_text in mm/vmstat.c
292  */
293 #define LRU_BASE 0
294 #define LRU_ACTIVE 1
295 #define LRU_FILE 2
296 
297 enum lru_list {
298 	LRU_INACTIVE_ANON = LRU_BASE,
299 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
300 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
301 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
302 	LRU_UNEVICTABLE,
303 	NR_LRU_LISTS
304 };
305 
306 enum vmscan_throttle_state {
307 	VMSCAN_THROTTLE_WRITEBACK,
308 	VMSCAN_THROTTLE_ISOLATED,
309 	VMSCAN_THROTTLE_NOPROGRESS,
310 	VMSCAN_THROTTLE_CONGESTED,
311 	NR_VMSCAN_THROTTLE,
312 };
313 
314 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
315 
316 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
317 
is_file_lru(enum lru_list lru)318 static inline bool is_file_lru(enum lru_list lru)
319 {
320 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
321 }
322 
is_active_lru(enum lru_list lru)323 static inline bool is_active_lru(enum lru_list lru)
324 {
325 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
326 }
327 
328 #define WORKINGSET_ANON 0
329 #define WORKINGSET_FILE 1
330 #define ANON_AND_FILE 2
331 
332 enum lruvec_flags {
333 	/*
334 	 * An lruvec has many dirty pages backed by a congested BDI:
335 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
336 	 *    It can be cleared by cgroup reclaim or kswapd.
337 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
338 	 *    It can only be cleared by kswapd.
339 	 *
340 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
341 	 * reclaim, but not vice versa. This only applies to the root cgroup.
342 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
343 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
344 	 * by kswapd).
345 	 */
346 	LRUVEC_CGROUP_CONGESTED,
347 	LRUVEC_NODE_CONGESTED,
348 };
349 
350 #endif /* !__GENERATING_BOUNDS_H */
351 
352 /*
353  * Evictable folios are divided into multiple generations. The youngest and the
354  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
355  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
356  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
357  * corresponding generation. The gen counter in folio->flags stores gen+1 while
358  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
359  *
360  * After a folio is faulted in, the aging needs to check the accessed bit at
361  * least twice before handing this folio over to the eviction. The first check
362  * clears the accessed bit from the initial fault; the second check makes sure
363  * this folio hasn't been used since then. This process, AKA second chance,
364  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
365  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
366  * generations are considered active; the rest of generations, if they exist,
367  * are considered inactive. See lru_gen_is_active().
368  *
369  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
370  * that the sliding window needs not to worry about it. And it's set again when
371  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
372  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
373  *
374  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
375  * number of categories of the active/inactive LRU when keeping track of
376  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
377  * in folio->flags, masked by LRU_GEN_MASK.
378  */
379 #define MIN_NR_GENS		2U
380 #define MAX_NR_GENS		4U
381 
382 /*
383  * Each generation is divided into multiple tiers. A folio accessed N times
384  * through file descriptors is in tier order_base_2(N). A folio in the first
385  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
386  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
387  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
388  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
389  *
390  * In contrast to moving across generations which requires the LRU lock, moving
391  * across tiers only involves atomic operations on folio->flags and therefore
392  * has a negligible cost in the buffered access path. In the eviction path,
393  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
394  * infer whether folios accessed multiple times through file descriptors are
395  * statistically hot and thus worth protecting.
396  *
397  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
398  * number of categories of the active/inactive LRU when keeping track of
399  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
400  * folio->flags, masked by LRU_REFS_MASK.
401  */
402 #define MAX_NR_TIERS		4U
403 
404 #ifndef __GENERATING_BOUNDS_H
405 
406 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
407 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
408 
409 /*
410  * For folios accessed multiple times through file descriptors,
411  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
412  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
413  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
414  * promoted into the second oldest generation in the eviction path. And when
415  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
416  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
417  * only valid when PG_referenced is set.
418  *
419  * For folios accessed multiple times through page tables, folio_update_gen()
420  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
421  * PG_referenced after the accessed bit is cleared for the first time.
422  * Thereafter, those two paths set PG_workingset and promote folios to the
423  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
424  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
425  *
426  * For both cases above, after PG_workingset is set on a folio, it remains until
427  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
428  * can be set again if lru_gen_test_recent() returns true upon a refault.
429  */
430 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
431 
432 struct lruvec;
433 struct page_vma_mapped_walk;
434 
435 #ifdef CONFIG_LRU_GEN
436 
437 enum {
438 	LRU_GEN_ANON,
439 	LRU_GEN_FILE,
440 };
441 
442 enum {
443 	LRU_GEN_CORE,
444 	LRU_GEN_MM_WALK,
445 	LRU_GEN_NONLEAF_YOUNG,
446 	NR_LRU_GEN_CAPS
447 };
448 
449 #define MIN_LRU_BATCH		BITS_PER_LONG
450 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
451 
452 /* whether to keep historical stats from evicted generations */
453 #ifdef CONFIG_LRU_GEN_STATS
454 #define NR_HIST_GENS		MAX_NR_GENS
455 #else
456 #define NR_HIST_GENS		1U
457 #endif
458 
459 /*
460  * The youngest generation number is stored in max_seq for both anon and file
461  * types as they are aged on an equal footing. The oldest generation numbers are
462  * stored in min_seq[] separately for anon and file types so that they can be
463  * incremented independently. Ideally min_seq[] are kept in sync when both anon
464  * and file types are evictable. However, to adapt to situations like extreme
465  * swappiness, they are allowed to be out of sync by at most
466  * MAX_NR_GENS-MIN_NR_GENS-1.
467  *
468  * The number of pages in each generation is eventually consistent and therefore
469  * can be transiently negative when reset_batch_size() is pending.
470  */
471 struct lru_gen_folio {
472 	/* the aging increments the youngest generation number */
473 	unsigned long max_seq;
474 	/* the eviction increments the oldest generation numbers */
475 	unsigned long min_seq[ANON_AND_FILE];
476 	/* the birth time of each generation in jiffies */
477 	unsigned long timestamps[MAX_NR_GENS];
478 	/* the multi-gen LRU lists, lazily sorted on eviction */
479 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
480 	/* the multi-gen LRU sizes, eventually consistent */
481 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
482 	/* the exponential moving average of refaulted */
483 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
484 	/* the exponential moving average of evicted+protected */
485 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
486 	/* can only be modified under the LRU lock */
487 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
488 	/* can be modified without holding the LRU lock */
489 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
490 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
491 	/* whether the multi-gen LRU is enabled */
492 	bool enabled;
493 	/* the memcg generation this lru_gen_folio belongs to */
494 	u8 gen;
495 	/* the list segment this lru_gen_folio belongs to */
496 	u8 seg;
497 	/* per-node lru_gen_folio list for global reclaim */
498 	struct hlist_nulls_node list;
499 };
500 
501 enum {
502 	MM_LEAF_TOTAL,		/* total leaf entries */
503 	MM_LEAF_YOUNG,		/* young leaf entries */
504 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
505 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
506 	NR_MM_STATS
507 };
508 
509 /* double-buffering Bloom filters */
510 #define NR_BLOOM_FILTERS	2
511 
512 struct lru_gen_mm_state {
513 	/* synced with max_seq after each iteration */
514 	unsigned long seq;
515 	/* where the current iteration continues after */
516 	struct list_head *head;
517 	/* where the last iteration ended before */
518 	struct list_head *tail;
519 	/* Bloom filters flip after each iteration */
520 	unsigned long *filters[NR_BLOOM_FILTERS];
521 	/* the mm stats for debugging */
522 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
523 };
524 
525 struct lru_gen_mm_walk {
526 	/* the lruvec under reclaim */
527 	struct lruvec *lruvec;
528 	/* max_seq from lru_gen_folio: can be out of date */
529 	unsigned long seq;
530 	/* the next address within an mm to scan */
531 	unsigned long next_addr;
532 	/* to batch promoted pages */
533 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
534 	/* to batch the mm stats */
535 	int mm_stats[NR_MM_STATS];
536 	/* total batched items */
537 	int batched;
538 	int swappiness;
539 	bool force_scan;
540 };
541 
542 /*
543  * For each node, memcgs are divided into two generations: the old and the
544  * young. For each generation, memcgs are randomly sharded into multiple bins
545  * to improve scalability. For each bin, the hlist_nulls is virtually divided
546  * into three segments: the head, the tail and the default.
547  *
548  * An onlining memcg is added to the tail of a random bin in the old generation.
549  * The eviction starts at the head of a random bin in the old generation. The
550  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
551  * the old generation, is incremented when all its bins become empty.
552  *
553  * There are four operations:
554  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
555  *    current generation (old or young) and updates its "seg" to "head";
556  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
557  *    current generation (old or young) and updates its "seg" to "tail";
558  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
559  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
560  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
561  *    young generation, updates its "gen" to "young" and resets its "seg" to
562  *    "default".
563  *
564  * The events that trigger the above operations are:
565  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
566  * 2. The first attempt to reclaim a memcg below low, which triggers
567  *    MEMCG_LRU_TAIL;
568  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
569  *    threshold, which triggers MEMCG_LRU_TAIL;
570  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
571  *    threshold, which triggers MEMCG_LRU_YOUNG;
572  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
573  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
574  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
575  *
576  * Notes:
577  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
578  *    of their max_seq counters ensures the eventual fairness to all eligible
579  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
580  * 2. There are only two valid generations: old (seq) and young (seq+1).
581  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
582  *    locklessly, a stale value (seq-1) does not wraparound to young.
583  */
584 #define MEMCG_NR_GENS	3
585 #define MEMCG_NR_BINS	8
586 
587 struct lru_gen_memcg {
588 	/* the per-node memcg generation counter */
589 	unsigned long seq;
590 	/* each memcg has one lru_gen_folio per node */
591 	unsigned long nr_memcgs[MEMCG_NR_GENS];
592 	/* per-node lru_gen_folio list for global reclaim */
593 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
594 	/* protects the above */
595 	spinlock_t lock;
596 };
597 
598 void lru_gen_init_pgdat(struct pglist_data *pgdat);
599 void lru_gen_init_lruvec(struct lruvec *lruvec);
600 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
601 
602 void lru_gen_init_memcg(struct mem_cgroup *memcg);
603 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
604 void lru_gen_online_memcg(struct mem_cgroup *memcg);
605 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
606 void lru_gen_release_memcg(struct mem_cgroup *memcg);
607 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
608 
609 #else /* !CONFIG_LRU_GEN */
610 
lru_gen_init_pgdat(struct pglist_data * pgdat)611 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
612 {
613 }
614 
lru_gen_init_lruvec(struct lruvec * lruvec)615 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
616 {
617 }
618 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)619 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
620 {
621 	return false;
622 }
623 
lru_gen_init_memcg(struct mem_cgroup * memcg)624 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
625 {
626 }
627 
lru_gen_exit_memcg(struct mem_cgroup * memcg)628 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
629 {
630 }
631 
lru_gen_online_memcg(struct mem_cgroup * memcg)632 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
633 {
634 }
635 
lru_gen_offline_memcg(struct mem_cgroup * memcg)636 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
637 {
638 }
639 
lru_gen_release_memcg(struct mem_cgroup * memcg)640 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
641 {
642 }
643 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)644 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
645 {
646 }
647 
648 #endif /* CONFIG_LRU_GEN */
649 
650 struct lruvec {
651 	struct list_head		lists[NR_LRU_LISTS];
652 	/* per lruvec lru_lock for memcg */
653 	spinlock_t			lru_lock;
654 	/*
655 	 * These track the cost of reclaiming one LRU - file or anon -
656 	 * over the other. As the observed cost of reclaiming one LRU
657 	 * increases, the reclaim scan balance tips toward the other.
658 	 */
659 	unsigned long			anon_cost;
660 	unsigned long			file_cost;
661 	/* Non-resident age, driven by LRU movement */
662 	atomic_long_t			nonresident_age;
663 	/* Refaults at the time of last reclaim cycle */
664 	unsigned long			refaults[ANON_AND_FILE];
665 	/* Various lruvec state flags (enum lruvec_flags) */
666 	unsigned long			flags;
667 #ifdef CONFIG_LRU_GEN
668 	/* evictable pages divided into generations */
669 	struct lru_gen_folio		lrugen;
670 #ifdef CONFIG_LRU_GEN_WALKS_MMU
671 	/* to concurrently iterate lru_gen_mm_list */
672 	struct lru_gen_mm_state		mm_state;
673 #endif
674 #endif /* CONFIG_LRU_GEN */
675 #ifdef CONFIG_MEMCG
676 	struct pglist_data *pgdat;
677 #endif
678 	struct zswap_lruvec_state zswap_lruvec_state;
679 };
680 
681 /* Isolate for asynchronous migration */
682 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
683 /* Isolate unevictable pages */
684 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
685 
686 /* LRU Isolation modes. */
687 typedef unsigned __bitwise isolate_mode_t;
688 
689 enum zone_watermarks {
690 	WMARK_MIN,
691 	WMARK_LOW,
692 	WMARK_HIGH,
693 	WMARK_PROMO,
694 	NR_WMARK
695 };
696 
697 /*
698  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
699  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
700  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
701  */
702 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
703 #define NR_PCP_THP 2
704 #else
705 #define NR_PCP_THP 0
706 #endif
707 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
708 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
709 
710 /*
711  * Flags used in pcp->flags field.
712  *
713  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
714  * previous page freeing.  To avoid to drain PCP for an accident
715  * high-order page freeing.
716  *
717  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
718  * draining PCP for consecutive high-order pages freeing without
719  * allocation if data cache slice of CPU is large enough.  To reduce
720  * zone lock contention and keep cache-hot pages reusing.
721  */
722 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
723 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
724 
725 struct per_cpu_pages {
726 	spinlock_t lock;	/* Protects lists field */
727 	int count;		/* number of pages in the list */
728 	int high;		/* high watermark, emptying needed */
729 	int high_min;		/* min high watermark */
730 	int high_max;		/* max high watermark */
731 	int batch;		/* chunk size for buddy add/remove */
732 	u8 flags;		/* protected by pcp->lock */
733 	u8 alloc_factor;	/* batch scaling factor during allocate */
734 #ifdef CONFIG_NUMA
735 	u8 expire;		/* When 0, remote pagesets are drained */
736 #endif
737 	short free_count;	/* consecutive free count */
738 
739 	/* Lists of pages, one per migrate type stored on the pcp-lists */
740 	struct list_head lists[NR_PCP_LISTS];
741 } ____cacheline_aligned_in_smp;
742 
743 struct per_cpu_zonestat {
744 #ifdef CONFIG_SMP
745 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
746 	s8 stat_threshold;
747 #endif
748 #ifdef CONFIG_NUMA
749 	/*
750 	 * Low priority inaccurate counters that are only folded
751 	 * on demand. Use a large type to avoid the overhead of
752 	 * folding during refresh_cpu_vm_stats.
753 	 */
754 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
755 #endif
756 };
757 
758 struct per_cpu_nodestat {
759 	s8 stat_threshold;
760 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
761 };
762 
763 #endif /* !__GENERATING_BOUNDS.H */
764 
765 enum zone_type {
766 	/*
767 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
768 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
769 	 * On architectures where this area covers the whole 32 bit address
770 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
771 	 * DMA addressing constraints. This distinction is important as a 32bit
772 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
773 	 * platforms may need both zones as they support peripherals with
774 	 * different DMA addressing limitations.
775 	 */
776 #ifdef CONFIG_ZONE_DMA
777 	ZONE_DMA,
778 #endif
779 #ifdef CONFIG_ZONE_DMA32
780 	ZONE_DMA32,
781 #endif
782 	/*
783 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
784 	 * performed on pages in ZONE_NORMAL if the DMA devices support
785 	 * transfers to all addressable memory.
786 	 */
787 	ZONE_NORMAL,
788 #ifdef CONFIG_HIGHMEM
789 	/*
790 	 * A memory area that is only addressable by the kernel through
791 	 * mapping portions into its own address space. This is for example
792 	 * used by i386 to allow the kernel to address the memory beyond
793 	 * 900MB. The kernel will set up special mappings (page
794 	 * table entries on i386) for each page that the kernel needs to
795 	 * access.
796 	 */
797 	ZONE_HIGHMEM,
798 #endif
799 	/*
800 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
801 	 * movable pages with few exceptional cases described below. Main use
802 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
803 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
804 	 * to increase the number of THP/huge pages. Notable special cases are:
805 	 *
806 	 * 1. Pinned pages: (long-term) pinning of movable pages might
807 	 *    essentially turn such pages unmovable. Therefore, we do not allow
808 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
809 	 *    faulted, they come from the right zone right away. However, it is
810 	 *    still possible that address space already has pages in
811 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
812 	 *    touches that memory before pinning). In such case we migrate them
813 	 *    to a different zone. When migration fails - pinning fails.
814 	 * 2. memblock allocations: kernelcore/movablecore setups might create
815 	 *    situations where ZONE_MOVABLE contains unmovable allocations
816 	 *    after boot. Memory offlining and allocations fail early.
817 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
818 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
819 	 *    for example, if we have sections that are only partially
820 	 *    populated. Memory offlining and allocations fail early.
821 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
822 	 *    memory offlining, such pages cannot be allocated.
823 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
824 	 *    hotplugged memory blocks might only partially be managed by the
825 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
826 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
827 	 *    some cases (virtio-mem), such pages can be skipped during
828 	 *    memory offlining, however, cannot be moved/allocated. These
829 	 *    techniques might use alloc_contig_range() to hide previously
830 	 *    exposed pages from the buddy again (e.g., to implement some sort
831 	 *    of memory unplug in virtio-mem).
832 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
833 	 *    situations where ZERO_PAGE(0) which is allocated differently
834 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
835 	 *    cannot be migrated.
836 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
837 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
838 	 *    such zone. Such pages cannot be really moved around as they are
839 	 *    self-stored in the range, but they are treated as movable when
840 	 *    the range they describe is about to be offlined.
841 	 *
842 	 * In general, no unmovable allocations that degrade memory offlining
843 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
844 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
845 	 * if has_unmovable_pages() states that there are no unmovable pages,
846 	 * there can be false negatives).
847 	 */
848 	ZONE_MOVABLE,
849 #ifdef CONFIG_ZONE_DEVICE
850 	ZONE_DEVICE,
851 #endif
852 	__MAX_NR_ZONES
853 
854 };
855 
856 #ifndef __GENERATING_BOUNDS_H
857 
858 #define ASYNC_AND_SYNC 2
859 
860 struct zone {
861 	/* Read-mostly fields */
862 
863 	/* zone watermarks, access with *_wmark_pages(zone) macros */
864 	unsigned long _watermark[NR_WMARK];
865 	unsigned long watermark_boost;
866 
867 	unsigned long nr_reserved_highatomic;
868 	unsigned long nr_free_highatomic;
869 
870 	/*
871 	 * We don't know if the memory that we're going to allocate will be
872 	 * freeable or/and it will be released eventually, so to avoid totally
873 	 * wasting several GB of ram we must reserve some of the lower zone
874 	 * memory (otherwise we risk to run OOM on the lower zones despite
875 	 * there being tons of freeable ram on the higher zones).  This array is
876 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
877 	 * changes.
878 	 */
879 	long lowmem_reserve[MAX_NR_ZONES];
880 
881 #ifdef CONFIG_NUMA
882 	int node;
883 #endif
884 	struct pglist_data	*zone_pgdat;
885 	struct per_cpu_pages	__percpu *per_cpu_pageset;
886 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
887 	/*
888 	 * the high and batch values are copied to individual pagesets for
889 	 * faster access
890 	 */
891 	int pageset_high_min;
892 	int pageset_high_max;
893 	int pageset_batch;
894 
895 #ifndef CONFIG_SPARSEMEM
896 	/*
897 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
898 	 * In SPARSEMEM, this map is stored in struct mem_section
899 	 */
900 	unsigned long		*pageblock_flags;
901 #endif /* CONFIG_SPARSEMEM */
902 
903 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
904 	unsigned long		zone_start_pfn;
905 
906 	/*
907 	 * spanned_pages is the total pages spanned by the zone, including
908 	 * holes, which is calculated as:
909 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
910 	 *
911 	 * present_pages is physical pages existing within the zone, which
912 	 * is calculated as:
913 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
914 	 *
915 	 * present_early_pages is present pages existing within the zone
916 	 * located on memory available since early boot, excluding hotplugged
917 	 * memory.
918 	 *
919 	 * managed_pages is present pages managed by the buddy system, which
920 	 * is calculated as (reserved_pages includes pages allocated by the
921 	 * bootmem allocator):
922 	 *	managed_pages = present_pages - reserved_pages;
923 	 *
924 	 * cma pages is present pages that are assigned for CMA use
925 	 * (MIGRATE_CMA).
926 	 *
927 	 * So present_pages may be used by memory hotplug or memory power
928 	 * management logic to figure out unmanaged pages by checking
929 	 * (present_pages - managed_pages). And managed_pages should be used
930 	 * by page allocator and vm scanner to calculate all kinds of watermarks
931 	 * and thresholds.
932 	 *
933 	 * Locking rules:
934 	 *
935 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
936 	 * It is a seqlock because it has to be read outside of zone->lock,
937 	 * and it is done in the main allocator path.  But, it is written
938 	 * quite infrequently.
939 	 *
940 	 * The span_seq lock is declared along with zone->lock because it is
941 	 * frequently read in proximity to zone->lock.  It's good to
942 	 * give them a chance of being in the same cacheline.
943 	 *
944 	 * Write access to present_pages at runtime should be protected by
945 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
946 	 * present_pages should use get_online_mems() to get a stable value.
947 	 */
948 	atomic_long_t		managed_pages;
949 	unsigned long		spanned_pages;
950 	unsigned long		present_pages;
951 #if defined(CONFIG_MEMORY_HOTPLUG)
952 	unsigned long		present_early_pages;
953 #endif
954 #ifdef CONFIG_CMA
955 	unsigned long		cma_pages;
956 #endif
957 
958 	const char		*name;
959 
960 #ifdef CONFIG_MEMORY_ISOLATION
961 	/*
962 	 * Number of isolated pageblock. It is used to solve incorrect
963 	 * freepage counting problem due to racy retrieving migratetype
964 	 * of pageblock. Protected by zone->lock.
965 	 */
966 	unsigned long		nr_isolate_pageblock;
967 #endif
968 
969 #ifdef CONFIG_MEMORY_HOTPLUG
970 	/* see spanned/present_pages for more description */
971 	seqlock_t		span_seqlock;
972 #endif
973 
974 	int initialized;
975 
976 	/* Write-intensive fields used from the page allocator */
977 	CACHELINE_PADDING(_pad1_);
978 
979 	/* free areas of different sizes */
980 	struct free_area	free_area[NR_PAGE_ORDERS];
981 
982 #ifdef CONFIG_UNACCEPTED_MEMORY
983 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
984 	struct list_head	unaccepted_pages;
985 
986 	/* To be called once the last page in the zone is accepted */
987 	struct work_struct	unaccepted_cleanup;
988 #endif
989 
990 	/* zone flags, see below */
991 	unsigned long		flags;
992 
993 	/* Primarily protects free_area */
994 	spinlock_t		lock;
995 
996 	/* Pages to be freed when next trylock succeeds */
997 	struct llist_head	trylock_free_pages;
998 
999 	/* Write-intensive fields used by compaction and vmstats. */
1000 	CACHELINE_PADDING(_pad2_);
1001 
1002 	/*
1003 	 * When free pages are below this point, additional steps are taken
1004 	 * when reading the number of free pages to avoid per-cpu counter
1005 	 * drift allowing watermarks to be breached
1006 	 */
1007 	unsigned long percpu_drift_mark;
1008 
1009 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1010 	/* pfn where compaction free scanner should start */
1011 	unsigned long		compact_cached_free_pfn;
1012 	/* pfn where compaction migration scanner should start */
1013 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
1014 	unsigned long		compact_init_migrate_pfn;
1015 	unsigned long		compact_init_free_pfn;
1016 #endif
1017 
1018 #ifdef CONFIG_COMPACTION
1019 	/*
1020 	 * On compaction failure, 1<<compact_defer_shift compactions
1021 	 * are skipped before trying again. The number attempted since
1022 	 * last failure is tracked with compact_considered.
1023 	 * compact_order_failed is the minimum compaction failed order.
1024 	 */
1025 	unsigned int		compact_considered;
1026 	unsigned int		compact_defer_shift;
1027 	int			compact_order_failed;
1028 #endif
1029 
1030 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1031 	/* Set to true when the PG_migrate_skip bits should be cleared */
1032 	bool			compact_blockskip_flush;
1033 #endif
1034 
1035 	bool			contiguous;
1036 
1037 	CACHELINE_PADDING(_pad3_);
1038 	/* Zone statistics */
1039 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1040 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1041 } ____cacheline_internodealigned_in_smp;
1042 
1043 enum pgdat_flags {
1044 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1045 					 * many dirty file pages at the tail
1046 					 * of the LRU.
1047 					 */
1048 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1049 					 * many pages under writeback
1050 					 */
1051 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1052 };
1053 
1054 enum zone_flags {
1055 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1056 					 * Cleared when kswapd is woken.
1057 					 */
1058 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1059 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1060 };
1061 
wmark_pages(const struct zone * z,enum zone_watermarks w)1062 static inline unsigned long wmark_pages(const struct zone *z,
1063 					enum zone_watermarks w)
1064 {
1065 	return z->_watermark[w] + z->watermark_boost;
1066 }
1067 
min_wmark_pages(const struct zone * z)1068 static inline unsigned long min_wmark_pages(const struct zone *z)
1069 {
1070 	return wmark_pages(z, WMARK_MIN);
1071 }
1072 
low_wmark_pages(const struct zone * z)1073 static inline unsigned long low_wmark_pages(const struct zone *z)
1074 {
1075 	return wmark_pages(z, WMARK_LOW);
1076 }
1077 
high_wmark_pages(const struct zone * z)1078 static inline unsigned long high_wmark_pages(const struct zone *z)
1079 {
1080 	return wmark_pages(z, WMARK_HIGH);
1081 }
1082 
promo_wmark_pages(const struct zone * z)1083 static inline unsigned long promo_wmark_pages(const struct zone *z)
1084 {
1085 	return wmark_pages(z, WMARK_PROMO);
1086 }
1087 
zone_managed_pages(struct zone * zone)1088 static inline unsigned long zone_managed_pages(struct zone *zone)
1089 {
1090 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1091 }
1092 
zone_cma_pages(struct zone * zone)1093 static inline unsigned long zone_cma_pages(struct zone *zone)
1094 {
1095 #ifdef CONFIG_CMA
1096 	return zone->cma_pages;
1097 #else
1098 	return 0;
1099 #endif
1100 }
1101 
zone_end_pfn(const struct zone * zone)1102 static inline unsigned long zone_end_pfn(const struct zone *zone)
1103 {
1104 	return zone->zone_start_pfn + zone->spanned_pages;
1105 }
1106 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1107 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1108 {
1109 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1110 }
1111 
zone_is_initialized(struct zone * zone)1112 static inline bool zone_is_initialized(struct zone *zone)
1113 {
1114 	return zone->initialized;
1115 }
1116 
zone_is_empty(struct zone * zone)1117 static inline bool zone_is_empty(struct zone *zone)
1118 {
1119 	return zone->spanned_pages == 0;
1120 }
1121 
1122 #ifndef BUILD_VDSO32_64
1123 /*
1124  * The zone field is never updated after free_area_init_core()
1125  * sets it, so none of the operations on it need to be atomic.
1126  */
1127 
1128 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1129 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1130 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1131 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1132 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1133 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1134 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1135 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1136 
1137 /*
1138  * Define the bit shifts to access each section.  For non-existent
1139  * sections we define the shift as 0; that plus a 0 mask ensures
1140  * the compiler will optimise away reference to them.
1141  */
1142 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1143 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1144 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1145 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1146 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1147 
1148 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1149 #ifdef NODE_NOT_IN_PAGE_FLAGS
1150 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1151 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1152 						SECTIONS_PGOFF : ZONES_PGOFF)
1153 #else
1154 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1155 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1156 						NODES_PGOFF : ZONES_PGOFF)
1157 #endif
1158 
1159 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1160 
1161 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1162 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1163 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1164 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1165 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1166 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1167 
page_zonenum(const struct page * page)1168 static inline enum zone_type page_zonenum(const struct page *page)
1169 {
1170 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1171 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1172 }
1173 
folio_zonenum(const struct folio * folio)1174 static inline enum zone_type folio_zonenum(const struct folio *folio)
1175 {
1176 	return page_zonenum(&folio->page);
1177 }
1178 
1179 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1180 static inline bool is_zone_device_page(const struct page *page)
1181 {
1182 	return page_zonenum(page) == ZONE_DEVICE;
1183 }
1184 
page_pgmap(const struct page * page)1185 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1186 {
1187 	VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page);
1188 	return page_folio(page)->pgmap;
1189 }
1190 
1191 /*
1192  * Consecutive zone device pages should not be merged into the same sgl
1193  * or bvec segment with other types of pages or if they belong to different
1194  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1195  * without scanning the entire segment. This helper returns true either if
1196  * both pages are not zone device pages or both pages are zone device pages
1197  * with the same pgmap.
1198  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1199 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1200 						     const struct page *b)
1201 {
1202 	if (is_zone_device_page(a) != is_zone_device_page(b))
1203 		return false;
1204 	if (!is_zone_device_page(a))
1205 		return true;
1206 	return page_pgmap(a) == page_pgmap(b);
1207 }
1208 
1209 extern void memmap_init_zone_device(struct zone *, unsigned long,
1210 				    unsigned long, struct dev_pagemap *);
1211 #else
is_zone_device_page(const struct page * page)1212 static inline bool is_zone_device_page(const struct page *page)
1213 {
1214 	return false;
1215 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1216 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1217 						     const struct page *b)
1218 {
1219 	return true;
1220 }
page_pgmap(const struct page * page)1221 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1222 {
1223 	return NULL;
1224 }
1225 #endif
1226 
folio_is_zone_device(const struct folio * folio)1227 static inline bool folio_is_zone_device(const struct folio *folio)
1228 {
1229 	return is_zone_device_page(&folio->page);
1230 }
1231 
is_zone_movable_page(const struct page * page)1232 static inline bool is_zone_movable_page(const struct page *page)
1233 {
1234 	return page_zonenum(page) == ZONE_MOVABLE;
1235 }
1236 
folio_is_zone_movable(const struct folio * folio)1237 static inline bool folio_is_zone_movable(const struct folio *folio)
1238 {
1239 	return folio_zonenum(folio) == ZONE_MOVABLE;
1240 }
1241 #endif
1242 
1243 /*
1244  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1245  * intersection with the given zone
1246  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1247 static inline bool zone_intersects(struct zone *zone,
1248 		unsigned long start_pfn, unsigned long nr_pages)
1249 {
1250 	if (zone_is_empty(zone))
1251 		return false;
1252 	if (start_pfn >= zone_end_pfn(zone) ||
1253 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1254 		return false;
1255 
1256 	return true;
1257 }
1258 
1259 /*
1260  * The "priority" of VM scanning is how much of the queues we will scan in one
1261  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1262  * queues ("queue_length >> 12") during an aging round.
1263  */
1264 #define DEF_PRIORITY 12
1265 
1266 /* Maximum number of zones on a zonelist */
1267 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1268 
1269 enum {
1270 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1271 #ifdef CONFIG_NUMA
1272 	/*
1273 	 * The NUMA zonelists are doubled because we need zonelists that
1274 	 * restrict the allocations to a single node for __GFP_THISNODE.
1275 	 */
1276 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1277 #endif
1278 	MAX_ZONELISTS
1279 };
1280 
1281 /*
1282  * This struct contains information about a zone in a zonelist. It is stored
1283  * here to avoid dereferences into large structures and lookups of tables
1284  */
1285 struct zoneref {
1286 	struct zone *zone;	/* Pointer to actual zone */
1287 	int zone_idx;		/* zone_idx(zoneref->zone) */
1288 };
1289 
1290 /*
1291  * One allocation request operates on a zonelist. A zonelist
1292  * is a list of zones, the first one is the 'goal' of the
1293  * allocation, the other zones are fallback zones, in decreasing
1294  * priority.
1295  *
1296  * To speed the reading of the zonelist, the zonerefs contain the zone index
1297  * of the entry being read. Helper functions to access information given
1298  * a struct zoneref are
1299  *
1300  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1301  * zonelist_zone_idx()	- Return the index of the zone for an entry
1302  * zonelist_node_idx()	- Return the index of the node for an entry
1303  */
1304 struct zonelist {
1305 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1306 };
1307 
1308 /*
1309  * The array of struct pages for flatmem.
1310  * It must be declared for SPARSEMEM as well because there are configurations
1311  * that rely on that.
1312  */
1313 extern struct page *mem_map;
1314 
1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1316 struct deferred_split {
1317 	spinlock_t split_queue_lock;
1318 	struct list_head split_queue;
1319 	unsigned long split_queue_len;
1320 };
1321 #endif
1322 
1323 #ifdef CONFIG_MEMORY_FAILURE
1324 /*
1325  * Per NUMA node memory failure handling statistics.
1326  */
1327 struct memory_failure_stats {
1328 	/*
1329 	 * Number of raw pages poisoned.
1330 	 * Cases not accounted: memory outside kernel control, offline page,
1331 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1332 	 * error events, and unpoison actions from hwpoison_unpoison.
1333 	 */
1334 	unsigned long total;
1335 	/*
1336 	 * Recovery results of poisoned raw pages handled by memory_failure,
1337 	 * in sync with mf_result.
1338 	 * total = ignored + failed + delayed + recovered.
1339 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1340 	 */
1341 	unsigned long ignored;
1342 	unsigned long failed;
1343 	unsigned long delayed;
1344 	unsigned long recovered;
1345 };
1346 #endif
1347 
1348 /*
1349  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1350  * it's memory layout. On UMA machines there is a single pglist_data which
1351  * describes the whole memory.
1352  *
1353  * Memory statistics and page replacement data structures are maintained on a
1354  * per-zone basis.
1355  */
1356 typedef struct pglist_data {
1357 	/*
1358 	 * node_zones contains just the zones for THIS node. Not all of the
1359 	 * zones may be populated, but it is the full list. It is referenced by
1360 	 * this node's node_zonelists as well as other node's node_zonelists.
1361 	 */
1362 	struct zone node_zones[MAX_NR_ZONES];
1363 
1364 	/*
1365 	 * node_zonelists contains references to all zones in all nodes.
1366 	 * Generally the first zones will be references to this node's
1367 	 * node_zones.
1368 	 */
1369 	struct zonelist node_zonelists[MAX_ZONELISTS];
1370 
1371 	int nr_zones; /* number of populated zones in this node */
1372 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1373 	struct page *node_mem_map;
1374 #ifdef CONFIG_PAGE_EXTENSION
1375 	struct page_ext *node_page_ext;
1376 #endif
1377 #endif
1378 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1379 	/*
1380 	 * Must be held any time you expect node_start_pfn,
1381 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1382 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1383 	 * init.
1384 	 *
1385 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1386 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1387 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1388 	 *
1389 	 * Nests above zone->lock and zone->span_seqlock
1390 	 */
1391 	spinlock_t node_size_lock;
1392 #endif
1393 	unsigned long node_start_pfn;
1394 	unsigned long node_present_pages; /* total number of physical pages */
1395 	unsigned long node_spanned_pages; /* total size of physical page
1396 					     range, including holes */
1397 	int node_id;
1398 	wait_queue_head_t kswapd_wait;
1399 	wait_queue_head_t pfmemalloc_wait;
1400 
1401 	/* workqueues for throttling reclaim for different reasons. */
1402 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1403 
1404 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1405 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1406 					 * when throttling started. */
1407 #ifdef CONFIG_MEMORY_HOTPLUG
1408 	struct mutex kswapd_lock;
1409 #endif
1410 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1411 	int kswapd_order;
1412 	enum zone_type kswapd_highest_zoneidx;
1413 
1414 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1415 
1416 #ifdef CONFIG_COMPACTION
1417 	int kcompactd_max_order;
1418 	enum zone_type kcompactd_highest_zoneidx;
1419 	wait_queue_head_t kcompactd_wait;
1420 	struct task_struct *kcompactd;
1421 	bool proactive_compact_trigger;
1422 #endif
1423 	/*
1424 	 * This is a per-node reserve of pages that are not available
1425 	 * to userspace allocations.
1426 	 */
1427 	unsigned long		totalreserve_pages;
1428 
1429 #ifdef CONFIG_NUMA
1430 	/*
1431 	 * node reclaim becomes active if more unmapped pages exist.
1432 	 */
1433 	unsigned long		min_unmapped_pages;
1434 	unsigned long		min_slab_pages;
1435 #endif /* CONFIG_NUMA */
1436 
1437 	/* Write-intensive fields used by page reclaim */
1438 	CACHELINE_PADDING(_pad1_);
1439 
1440 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1441 	/*
1442 	 * If memory initialisation on large machines is deferred then this
1443 	 * is the first PFN that needs to be initialised.
1444 	 */
1445 	unsigned long first_deferred_pfn;
1446 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1447 
1448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1449 	struct deferred_split deferred_split_queue;
1450 #endif
1451 
1452 #ifdef CONFIG_NUMA_BALANCING
1453 	/* start time in ms of current promote rate limit period */
1454 	unsigned int nbp_rl_start;
1455 	/* number of promote candidate pages at start time of current rate limit period */
1456 	unsigned long nbp_rl_nr_cand;
1457 	/* promote threshold in ms */
1458 	unsigned int nbp_threshold;
1459 	/* start time in ms of current promote threshold adjustment period */
1460 	unsigned int nbp_th_start;
1461 	/*
1462 	 * number of promote candidate pages at start time of current promote
1463 	 * threshold adjustment period
1464 	 */
1465 	unsigned long nbp_th_nr_cand;
1466 #endif
1467 	/* Fields commonly accessed by the page reclaim scanner */
1468 
1469 	/*
1470 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1471 	 *
1472 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1473 	 */
1474 	struct lruvec		__lruvec;
1475 
1476 	unsigned long		flags;
1477 
1478 #ifdef CONFIG_LRU_GEN
1479 	/* kswap mm walk data */
1480 	struct lru_gen_mm_walk mm_walk;
1481 	/* lru_gen_folio list */
1482 	struct lru_gen_memcg memcg_lru;
1483 #endif
1484 
1485 	CACHELINE_PADDING(_pad2_);
1486 
1487 	/* Per-node vmstats */
1488 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1489 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1490 #ifdef CONFIG_NUMA
1491 	struct memory_tier __rcu *memtier;
1492 #endif
1493 #ifdef CONFIG_MEMORY_FAILURE
1494 	struct memory_failure_stats mf_stats;
1495 #endif
1496 } pg_data_t;
1497 
1498 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1499 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1500 
1501 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1502 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1503 
pgdat_end_pfn(pg_data_t * pgdat)1504 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1505 {
1506 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1507 }
1508 
1509 #include <linux/memory_hotplug.h>
1510 
1511 void build_all_zonelists(pg_data_t *pgdat);
1512 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1513 		   enum zone_type highest_zoneidx);
1514 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1515 			 int highest_zoneidx, unsigned int alloc_flags,
1516 			 long free_pages);
1517 bool zone_watermark_ok(struct zone *z, unsigned int order,
1518 		unsigned long mark, int highest_zoneidx,
1519 		unsigned int alloc_flags);
1520 /*
1521  * Memory initialization context, use to differentiate memory added by
1522  * the platform statically or via memory hotplug interface.
1523  */
1524 enum meminit_context {
1525 	MEMINIT_EARLY,
1526 	MEMINIT_HOTPLUG,
1527 };
1528 
1529 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1530 				     unsigned long size);
1531 
1532 extern void lruvec_init(struct lruvec *lruvec);
1533 
lruvec_pgdat(struct lruvec * lruvec)1534 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1535 {
1536 #ifdef CONFIG_MEMCG
1537 	return lruvec->pgdat;
1538 #else
1539 	return container_of(lruvec, struct pglist_data, __lruvec);
1540 #endif
1541 }
1542 
1543 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1544 int local_memory_node(int node_id);
1545 #else
local_memory_node(int node_id)1546 static inline int local_memory_node(int node_id) { return node_id; };
1547 #endif
1548 
1549 /*
1550  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1551  */
1552 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1553 
1554 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1555 static inline bool zone_is_zone_device(struct zone *zone)
1556 {
1557 	return zone_idx(zone) == ZONE_DEVICE;
1558 }
1559 #else
zone_is_zone_device(struct zone * zone)1560 static inline bool zone_is_zone_device(struct zone *zone)
1561 {
1562 	return false;
1563 }
1564 #endif
1565 
1566 /*
1567  * Returns true if a zone has pages managed by the buddy allocator.
1568  * All the reclaim decisions have to use this function rather than
1569  * populated_zone(). If the whole zone is reserved then we can easily
1570  * end up with populated_zone() && !managed_zone().
1571  */
managed_zone(struct zone * zone)1572 static inline bool managed_zone(struct zone *zone)
1573 {
1574 	return zone_managed_pages(zone);
1575 }
1576 
1577 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1578 static inline bool populated_zone(struct zone *zone)
1579 {
1580 	return zone->present_pages;
1581 }
1582 
1583 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1584 static inline int zone_to_nid(struct zone *zone)
1585 {
1586 	return zone->node;
1587 }
1588 
zone_set_nid(struct zone * zone,int nid)1589 static inline void zone_set_nid(struct zone *zone, int nid)
1590 {
1591 	zone->node = nid;
1592 }
1593 #else
zone_to_nid(struct zone * zone)1594 static inline int zone_to_nid(struct zone *zone)
1595 {
1596 	return 0;
1597 }
1598 
zone_set_nid(struct zone * zone,int nid)1599 static inline void zone_set_nid(struct zone *zone, int nid) {}
1600 #endif
1601 
1602 extern int movable_zone;
1603 
is_highmem_idx(enum zone_type idx)1604 static inline int is_highmem_idx(enum zone_type idx)
1605 {
1606 #ifdef CONFIG_HIGHMEM
1607 	return (idx == ZONE_HIGHMEM ||
1608 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1609 #else
1610 	return 0;
1611 #endif
1612 }
1613 
1614 /**
1615  * is_highmem - helper function to quickly check if a struct zone is a
1616  *              highmem zone or not.  This is an attempt to keep references
1617  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1618  * @zone: pointer to struct zone variable
1619  * Return: 1 for a highmem zone, 0 otherwise
1620  */
is_highmem(struct zone * zone)1621 static inline int is_highmem(struct zone *zone)
1622 {
1623 	return is_highmem_idx(zone_idx(zone));
1624 }
1625 
1626 #ifdef CONFIG_ZONE_DMA
1627 bool has_managed_dma(void);
1628 #else
has_managed_dma(void)1629 static inline bool has_managed_dma(void)
1630 {
1631 	return false;
1632 }
1633 #endif
1634 
1635 
1636 #ifndef CONFIG_NUMA
1637 
1638 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1639 static inline struct pglist_data *NODE_DATA(int nid)
1640 {
1641 	return &contig_page_data;
1642 }
1643 
1644 #else /* CONFIG_NUMA */
1645 
1646 #include <asm/mmzone.h>
1647 
1648 #endif /* !CONFIG_NUMA */
1649 
1650 extern struct pglist_data *first_online_pgdat(void);
1651 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1652 extern struct zone *next_zone(struct zone *zone);
1653 
1654 /**
1655  * for_each_online_pgdat - helper macro to iterate over all online nodes
1656  * @pgdat: pointer to a pg_data_t variable
1657  */
1658 #define for_each_online_pgdat(pgdat)			\
1659 	for (pgdat = first_online_pgdat();		\
1660 	     pgdat;					\
1661 	     pgdat = next_online_pgdat(pgdat))
1662 /**
1663  * for_each_zone - helper macro to iterate over all memory zones
1664  * @zone: pointer to struct zone variable
1665  *
1666  * The user only needs to declare the zone variable, for_each_zone
1667  * fills it in.
1668  */
1669 #define for_each_zone(zone)			        \
1670 	for (zone = (first_online_pgdat())->node_zones; \
1671 	     zone;					\
1672 	     zone = next_zone(zone))
1673 
1674 #define for_each_populated_zone(zone)		        \
1675 	for (zone = (first_online_pgdat())->node_zones; \
1676 	     zone;					\
1677 	     zone = next_zone(zone))			\
1678 		if (!populated_zone(zone))		\
1679 			; /* do nothing */		\
1680 		else
1681 
zonelist_zone(struct zoneref * zoneref)1682 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1683 {
1684 	return zoneref->zone;
1685 }
1686 
zonelist_zone_idx(struct zoneref * zoneref)1687 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1688 {
1689 	return zoneref->zone_idx;
1690 }
1691 
zonelist_node_idx(struct zoneref * zoneref)1692 static inline int zonelist_node_idx(struct zoneref *zoneref)
1693 {
1694 	return zone_to_nid(zoneref->zone);
1695 }
1696 
1697 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1698 					enum zone_type highest_zoneidx,
1699 					nodemask_t *nodes);
1700 
1701 /**
1702  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1703  * @z: The cursor used as a starting point for the search
1704  * @highest_zoneidx: The zone index of the highest zone to return
1705  * @nodes: An optional nodemask to filter the zonelist with
1706  *
1707  * This function returns the next zone at or below a given zone index that is
1708  * within the allowed nodemask using a cursor as the starting point for the
1709  * search. The zoneref returned is a cursor that represents the current zone
1710  * being examined. It should be advanced by one before calling
1711  * next_zones_zonelist again.
1712  *
1713  * Return: the next zone at or below highest_zoneidx within the allowed
1714  * nodemask using a cursor within a zonelist as a starting point
1715  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1716 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1717 					enum zone_type highest_zoneidx,
1718 					nodemask_t *nodes)
1719 {
1720 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1721 		return z;
1722 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1723 }
1724 
1725 /**
1726  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1727  * @zonelist: The zonelist to search for a suitable zone
1728  * @highest_zoneidx: The zone index of the highest zone to return
1729  * @nodes: An optional nodemask to filter the zonelist with
1730  *
1731  * This function returns the first zone at or below a given zone index that is
1732  * within the allowed nodemask. The zoneref returned is a cursor that can be
1733  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1734  * one before calling.
1735  *
1736  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1737  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1738  * update due to cpuset modification.
1739  *
1740  * Return: Zoneref pointer for the first suitable zone found
1741  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1742 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1743 					enum zone_type highest_zoneidx,
1744 					nodemask_t *nodes)
1745 {
1746 	return next_zones_zonelist(zonelist->_zonerefs,
1747 							highest_zoneidx, nodes);
1748 }
1749 
1750 /**
1751  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1752  * @zone: The current zone in the iterator
1753  * @z: The current pointer within zonelist->_zonerefs being iterated
1754  * @zlist: The zonelist being iterated
1755  * @highidx: The zone index of the highest zone to return
1756  * @nodemask: Nodemask allowed by the allocator
1757  *
1758  * This iterator iterates though all zones at or below a given zone index and
1759  * within a given nodemask
1760  */
1761 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1762 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1763 		zone;							\
1764 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1765 			zone = zonelist_zone(z))
1766 
1767 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1768 	for (zone = zonelist_zone(z);	\
1769 		zone;							\
1770 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1771 			zone = zonelist_zone(z))
1772 
1773 
1774 /**
1775  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1776  * @zone: The current zone in the iterator
1777  * @z: The current pointer within zonelist->zones being iterated
1778  * @zlist: The zonelist being iterated
1779  * @highidx: The zone index of the highest zone to return
1780  *
1781  * This iterator iterates though all zones at or below a given zone index.
1782  */
1783 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1784 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1785 
1786 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1787 static inline bool movable_only_nodes(nodemask_t *nodes)
1788 {
1789 	struct zonelist *zonelist;
1790 	struct zoneref *z;
1791 	int nid;
1792 
1793 	if (nodes_empty(*nodes))
1794 		return false;
1795 
1796 	/*
1797 	 * We can chose arbitrary node from the nodemask to get a
1798 	 * zonelist as they are interlinked. We just need to find
1799 	 * at least one zone that can satisfy kernel allocations.
1800 	 */
1801 	nid = first_node(*nodes);
1802 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1803 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1804 	return (!zonelist_zone(z)) ? true : false;
1805 }
1806 
1807 
1808 #ifdef CONFIG_SPARSEMEM
1809 #include <asm/sparsemem.h>
1810 #endif
1811 
1812 #ifdef CONFIG_FLATMEM
1813 #define pfn_to_nid(pfn)		(0)
1814 #endif
1815 
1816 #ifdef CONFIG_SPARSEMEM
1817 
1818 /*
1819  * PA_SECTION_SHIFT		physical address to/from section number
1820  * PFN_SECTION_SHIFT		pfn to/from section number
1821  */
1822 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1823 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1824 
1825 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1826 
1827 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1828 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1829 
1830 #define SECTION_BLOCKFLAGS_BITS \
1831 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1832 
1833 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1834 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1835 #endif
1836 
pfn_to_section_nr(unsigned long pfn)1837 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1838 {
1839 	return pfn >> PFN_SECTION_SHIFT;
1840 }
section_nr_to_pfn(unsigned long sec)1841 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1842 {
1843 	return sec << PFN_SECTION_SHIFT;
1844 }
1845 
1846 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1847 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1848 
1849 #define SUBSECTION_SHIFT 21
1850 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1851 
1852 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1853 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1854 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1855 
1856 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1857 #error Subsection size exceeds section size
1858 #else
1859 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1860 #endif
1861 
1862 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1863 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1864 
1865 struct mem_section_usage {
1866 	struct rcu_head rcu;
1867 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1868 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1869 #endif
1870 	/* See declaration of similar field in struct zone */
1871 	unsigned long pageblock_flags[0];
1872 };
1873 
1874 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1875 
1876 struct page;
1877 struct page_ext;
1878 struct mem_section {
1879 	/*
1880 	 * This is, logically, a pointer to an array of struct
1881 	 * pages.  However, it is stored with some other magic.
1882 	 * (see sparse.c::sparse_init_one_section())
1883 	 *
1884 	 * Additionally during early boot we encode node id of
1885 	 * the location of the section here to guide allocation.
1886 	 * (see sparse.c::memory_present())
1887 	 *
1888 	 * Making it a UL at least makes someone do a cast
1889 	 * before using it wrong.
1890 	 */
1891 	unsigned long section_mem_map;
1892 
1893 	struct mem_section_usage *usage;
1894 #ifdef CONFIG_PAGE_EXTENSION
1895 	/*
1896 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1897 	 * section. (see page_ext.h about this.)
1898 	 */
1899 	struct page_ext *page_ext;
1900 	unsigned long pad;
1901 #endif
1902 	/*
1903 	 * WARNING: mem_section must be a power-of-2 in size for the
1904 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1905 	 */
1906 };
1907 
1908 #ifdef CONFIG_SPARSEMEM_EXTREME
1909 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1910 #else
1911 #define SECTIONS_PER_ROOT	1
1912 #endif
1913 
1914 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1915 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1916 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1917 
1918 #ifdef CONFIG_SPARSEMEM_EXTREME
1919 extern struct mem_section **mem_section;
1920 #else
1921 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1922 #endif
1923 
section_to_usemap(struct mem_section * ms)1924 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1925 {
1926 	return ms->usage->pageblock_flags;
1927 }
1928 
__nr_to_section(unsigned long nr)1929 static inline struct mem_section *__nr_to_section(unsigned long nr)
1930 {
1931 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1932 
1933 	if (unlikely(root >= NR_SECTION_ROOTS))
1934 		return NULL;
1935 
1936 #ifdef CONFIG_SPARSEMEM_EXTREME
1937 	if (!mem_section || !mem_section[root])
1938 		return NULL;
1939 #endif
1940 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1941 }
1942 extern size_t mem_section_usage_size(void);
1943 
1944 /*
1945  * We use the lower bits of the mem_map pointer to store
1946  * a little bit of information.  The pointer is calculated
1947  * as mem_map - section_nr_to_pfn(pnum).  The result is
1948  * aligned to the minimum alignment of the two values:
1949  *   1. All mem_map arrays are page-aligned.
1950  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1951  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1952  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1953  *      worst combination is powerpc with 256k pages,
1954  *      which results in PFN_SECTION_SHIFT equal 6.
1955  * To sum it up, at least 6 bits are available on all architectures.
1956  * However, we can exceed 6 bits on some other architectures except
1957  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1958  * with the worst case of 64K pages on arm64) if we make sure the
1959  * exceeded bit is not applicable to powerpc.
1960  */
1961 enum {
1962 	SECTION_MARKED_PRESENT_BIT,
1963 	SECTION_HAS_MEM_MAP_BIT,
1964 	SECTION_IS_ONLINE_BIT,
1965 	SECTION_IS_EARLY_BIT,
1966 #ifdef CONFIG_ZONE_DEVICE
1967 	SECTION_TAINT_ZONE_DEVICE_BIT,
1968 #endif
1969 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1970 	SECTION_IS_VMEMMAP_PREINIT_BIT,
1971 #endif
1972 	SECTION_MAP_LAST_BIT,
1973 };
1974 
1975 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1976 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1977 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1978 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1979 #ifdef CONFIG_ZONE_DEVICE
1980 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1981 #endif
1982 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1983 #define SECTION_IS_VMEMMAP_PREINIT	BIT(SECTION_IS_VMEMMAP_PREINIT_BIT)
1984 #endif
1985 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1986 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1987 
__section_mem_map_addr(struct mem_section * section)1988 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1989 {
1990 	unsigned long map = section->section_mem_map;
1991 	map &= SECTION_MAP_MASK;
1992 	return (struct page *)map;
1993 }
1994 
present_section(struct mem_section * section)1995 static inline int present_section(struct mem_section *section)
1996 {
1997 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1998 }
1999 
present_section_nr(unsigned long nr)2000 static inline int present_section_nr(unsigned long nr)
2001 {
2002 	return present_section(__nr_to_section(nr));
2003 }
2004 
valid_section(struct mem_section * section)2005 static inline int valid_section(struct mem_section *section)
2006 {
2007 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
2008 }
2009 
early_section(struct mem_section * section)2010 static inline int early_section(struct mem_section *section)
2011 {
2012 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
2013 }
2014 
valid_section_nr(unsigned long nr)2015 static inline int valid_section_nr(unsigned long nr)
2016 {
2017 	return valid_section(__nr_to_section(nr));
2018 }
2019 
online_section(struct mem_section * section)2020 static inline int online_section(struct mem_section *section)
2021 {
2022 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2023 }
2024 
2025 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)2026 static inline int online_device_section(struct mem_section *section)
2027 {
2028 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2029 
2030 	return section && ((section->section_mem_map & flags) == flags);
2031 }
2032 #else
online_device_section(struct mem_section * section)2033 static inline int online_device_section(struct mem_section *section)
2034 {
2035 	return 0;
2036 }
2037 #endif
2038 
2039 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
preinited_vmemmap_section(struct mem_section * section)2040 static inline int preinited_vmemmap_section(struct mem_section *section)
2041 {
2042 	return (section &&
2043 		(section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT));
2044 }
2045 
2046 void sparse_vmemmap_init_nid_early(int nid);
2047 void sparse_vmemmap_init_nid_late(int nid);
2048 
2049 #else
preinited_vmemmap_section(struct mem_section * section)2050 static inline int preinited_vmemmap_section(struct mem_section *section)
2051 {
2052 	return 0;
2053 }
sparse_vmemmap_init_nid_early(int nid)2054 static inline void sparse_vmemmap_init_nid_early(int nid)
2055 {
2056 }
2057 
sparse_vmemmap_init_nid_late(int nid)2058 static inline void sparse_vmemmap_init_nid_late(int nid)
2059 {
2060 }
2061 #endif
2062 
online_section_nr(unsigned long nr)2063 static inline int online_section_nr(unsigned long nr)
2064 {
2065 	return online_section(__nr_to_section(nr));
2066 }
2067 
2068 #ifdef CONFIG_MEMORY_HOTPLUG
2069 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2070 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2071 #endif
2072 
__pfn_to_section(unsigned long pfn)2073 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2074 {
2075 	return __nr_to_section(pfn_to_section_nr(pfn));
2076 }
2077 
2078 extern unsigned long __highest_present_section_nr;
2079 
subsection_map_index(unsigned long pfn)2080 static inline int subsection_map_index(unsigned long pfn)
2081 {
2082 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2083 }
2084 
2085 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2086 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2087 {
2088 	int idx = subsection_map_index(pfn);
2089 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2090 
2091 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2092 }
2093 
pfn_section_first_valid(struct mem_section * ms,unsigned long * pfn)2094 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2095 {
2096 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2097 	int idx = subsection_map_index(*pfn);
2098 	unsigned long bit;
2099 
2100 	if (!usage)
2101 		return false;
2102 
2103 	if (test_bit(idx, usage->subsection_map))
2104 		return true;
2105 
2106 	/* Find the next subsection that exists */
2107 	bit = find_next_bit(usage->subsection_map, SUBSECTIONS_PER_SECTION, idx);
2108 	if (bit == SUBSECTIONS_PER_SECTION)
2109 		return false;
2110 
2111 	*pfn = (*pfn & PAGE_SECTION_MASK) + (bit * PAGES_PER_SUBSECTION);
2112 	return true;
2113 }
2114 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2115 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2116 {
2117 	return 1;
2118 }
2119 
pfn_section_first_valid(struct mem_section * ms,unsigned long * pfn)2120 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2121 {
2122 	return true;
2123 }
2124 #endif
2125 
2126 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum,
2127 			       unsigned long flags);
2128 
2129 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2130 /**
2131  * pfn_valid - check if there is a valid memory map entry for a PFN
2132  * @pfn: the page frame number to check
2133  *
2134  * Check if there is a valid memory map entry aka struct page for the @pfn.
2135  * Note, that availability of the memory map entry does not imply that
2136  * there is actual usable memory at that @pfn. The struct page may
2137  * represent a hole or an unusable page frame.
2138  *
2139  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2140  */
pfn_valid(unsigned long pfn)2141 static inline int pfn_valid(unsigned long pfn)
2142 {
2143 	struct mem_section *ms;
2144 	int ret;
2145 
2146 	/*
2147 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2148 	 * pfn. Else it might lead to false positives when
2149 	 * some of the upper bits are set, but the lower bits
2150 	 * match a valid pfn.
2151 	 */
2152 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2153 		return 0;
2154 
2155 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2156 		return 0;
2157 	ms = __pfn_to_section(pfn);
2158 	rcu_read_lock_sched();
2159 	if (!valid_section(ms)) {
2160 		rcu_read_unlock_sched();
2161 		return 0;
2162 	}
2163 	/*
2164 	 * Traditionally early sections always returned pfn_valid() for
2165 	 * the entire section-sized span.
2166 	 */
2167 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2168 	rcu_read_unlock_sched();
2169 
2170 	return ret;
2171 }
2172 
2173 /* Returns end_pfn or higher if no valid PFN remaining in range */
first_valid_pfn(unsigned long pfn,unsigned long end_pfn)2174 static inline unsigned long first_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2175 {
2176 	unsigned long nr = pfn_to_section_nr(pfn);
2177 
2178 	rcu_read_lock_sched();
2179 
2180 	while (nr <= __highest_present_section_nr && pfn < end_pfn) {
2181 		struct mem_section *ms = __pfn_to_section(pfn);
2182 
2183 		if (valid_section(ms) &&
2184 		    (early_section(ms) || pfn_section_first_valid(ms, &pfn))) {
2185 			rcu_read_unlock_sched();
2186 			return pfn;
2187 		}
2188 
2189 		/* Nothing left in this section? Skip to next section */
2190 		nr++;
2191 		pfn = section_nr_to_pfn(nr);
2192 	}
2193 
2194 	rcu_read_unlock_sched();
2195 	return end_pfn;
2196 }
2197 
next_valid_pfn(unsigned long pfn,unsigned long end_pfn)2198 static inline unsigned long next_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2199 {
2200 	pfn++;
2201 
2202 	if (pfn >= end_pfn)
2203 		return end_pfn;
2204 
2205 	/*
2206 	 * Either every PFN within the section (or subsection for VMEMMAP) is
2207 	 * valid, or none of them are. So there's no point repeating the check
2208 	 * for every PFN; only call first_valid_pfn() again when crossing a
2209 	 * (sub)section boundary (i.e. !(pfn & ~PAGE_{SUB,}SECTION_MASK)).
2210 	 */
2211 	if (pfn & ~(IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP) ?
2212 		   PAGE_SUBSECTION_MASK : PAGE_SECTION_MASK))
2213 		return pfn;
2214 
2215 	return first_valid_pfn(pfn, end_pfn);
2216 }
2217 
2218 
2219 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\
2220 	for ((_pfn) = first_valid_pfn((_start_pfn), (_end_pfn));	\
2221 	     (_pfn) < (_end_pfn);					\
2222 	     (_pfn) = next_valid_pfn((_pfn), (_end_pfn)))
2223 
2224 #endif
2225 
pfn_in_present_section(unsigned long pfn)2226 static inline int pfn_in_present_section(unsigned long pfn)
2227 {
2228 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2229 		return 0;
2230 	return present_section(__pfn_to_section(pfn));
2231 }
2232 
next_present_section_nr(unsigned long section_nr)2233 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2234 {
2235 	while (++section_nr <= __highest_present_section_nr) {
2236 		if (present_section_nr(section_nr))
2237 			return section_nr;
2238 	}
2239 
2240 	return -1;
2241 }
2242 
2243 #define for_each_present_section_nr(start, section_nr)		\
2244 	for (section_nr = next_present_section_nr(start - 1);	\
2245 	     section_nr != -1;					\
2246 	     section_nr = next_present_section_nr(section_nr))
2247 
2248 /*
2249  * These are _only_ used during initialisation, therefore they
2250  * can use __initdata ...  They could have names to indicate
2251  * this restriction.
2252  */
2253 #ifdef CONFIG_NUMA
2254 #define pfn_to_nid(pfn)							\
2255 ({									\
2256 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2257 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2258 })
2259 #else
2260 #define pfn_to_nid(pfn)		(0)
2261 #endif
2262 
2263 void sparse_init(void);
2264 #else
2265 #define sparse_init()	do {} while (0)
2266 #define sparse_index_init(_sec, _nid)  do {} while (0)
2267 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0)
2268 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0)
2269 #define pfn_in_present_section pfn_valid
2270 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2271 #endif /* CONFIG_SPARSEMEM */
2272 
2273 /*
2274  * Fallback case for when the architecture provides its own pfn_valid() but
2275  * not a corresponding for_each_valid_pfn().
2276  */
2277 #ifndef for_each_valid_pfn
2278 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\
2279 	for ((_pfn) = (_start_pfn); (_pfn) < (_end_pfn); (_pfn)++)	\
2280 		if (pfn_valid(_pfn))
2281 #endif
2282 
2283 #endif /* !__GENERATING_BOUNDS.H */
2284 #endif /* !__ASSEMBLY__ */
2285 #endif /* _LINUX_MMZONE_H */
2286