1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2013 EMC Corp.
5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Path-compressed radix trie implementation.
34 *
35 * The implementation takes into account the following rationale:
36 * - Size of the nodes should be as small as possible but still big enough
37 * to avoid a large maximum depth for the trie. This is a balance
38 * between the necessity to not wire too much physical memory for the nodes
39 * and the necessity to avoid too much cache pollution during the trie
40 * operations.
41 * - There is not a huge bias toward the number of lookup operations over
42 * the number of insert and remove operations. This basically implies
43 * that optimizations supposedly helping one operation but hurting the
44 * other might be carefully evaluated.
45 * - On average not many nodes are expected to be fully populated, hence
46 * level compression may just complicate things.
47 */
48
49 #include <sys/cdefs.h>
50 #include "opt_ddb.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/libkern.h>
56 #include <sys/pctrie.h>
57 #include <sys/proc.h> /* smr.h depends on struct thread. */
58 #include <sys/smr.h>
59 #include <sys/smr_types.h>
60
61 #ifdef DDB
62 #include <ddb/ddb.h>
63 #endif
64
65 #if PCTRIE_WIDTH == 3
66 typedef uint8_t pn_popmap_t;
67 #elif PCTRIE_WIDTH == 4
68 typedef uint16_t pn_popmap_t;
69 #elif PCTRIE_WIDTH == 5
70 typedef uint32_t pn_popmap_t;
71 #else
72 #error Unsupported width
73 #endif
74 _Static_assert(sizeof(pn_popmap_t) <= sizeof(int),
75 "pn_popmap_t too wide");
76
77 struct pctrie_node;
78 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
79
80 struct pctrie_node {
81 uint64_t pn_owner; /* Owner of record. */
82 pn_popmap_t pn_popmap; /* Valid children. */
83 uint8_t pn_clev; /* Level * WIDTH. */
84 smr_pctnode_t pn_parent; /* Parent node. */
85 smr_pctnode_t pn_child[PCTRIE_COUNT]; /* Child nodes. */
86 };
87
88 /*
89 * Map index to an array position for the children of node,
90 */
91 static __inline int
pctrie_slot(struct pctrie_node * node,uint64_t index)92 pctrie_slot(struct pctrie_node *node, uint64_t index)
93 {
94 return ((index >> node->pn_clev) & (PCTRIE_COUNT - 1));
95 }
96
97 /*
98 * Returns true if index does not belong to the specified node. Otherwise,
99 * sets slot value, and returns false.
100 */
101 static __inline bool
pctrie_keybarr(struct pctrie_node * node,uint64_t index,int * slot)102 pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot)
103 {
104 index = (index - node->pn_owner) >> node->pn_clev;
105 if (index >= PCTRIE_COUNT)
106 return (true);
107 *slot = index;
108 return (false);
109 }
110
111 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
112
113 /*
114 * Fetch a node pointer from a slot.
115 */
116 static __inline struct pctrie_node *
pctrie_node_load(smr_pctnode_t * p,smr_t smr,enum pctrie_access access)117 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
118 {
119 switch (access) {
120 case PCTRIE_UNSERIALIZED:
121 return (smr_unserialized_load(p, true));
122 case PCTRIE_LOCKED:
123 return (smr_serialized_load(p, true));
124 case PCTRIE_SMR:
125 return (smr_entered_load(p, smr));
126 }
127 __assert_unreachable();
128 }
129
130 static __inline void
pctrie_node_store(smr_pctnode_t * p,void * v,enum pctrie_access access)131 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
132 {
133 switch (access) {
134 case PCTRIE_UNSERIALIZED:
135 smr_unserialized_store(p, v, true);
136 break;
137 case PCTRIE_LOCKED:
138 smr_serialized_store(p, v, true);
139 break;
140 case PCTRIE_SMR:
141 panic("%s: Not supported in SMR section.", __func__);
142 break;
143 default:
144 __assert_unreachable();
145 break;
146 }
147 }
148
149 /*
150 * Get the root address, cast to proper type for load/store.
151 */
152 static __inline smr_pctnode_t *
pctrie_root(struct pctrie * ptree)153 pctrie_root(struct pctrie *ptree)
154 {
155 return ((smr_pctnode_t *)&ptree->pt_root);
156 }
157
158 /*
159 * Get the root node for a tree.
160 */
161 static __inline struct pctrie_node *
pctrie_root_load(struct pctrie * ptree,smr_t smr,enum pctrie_access access)162 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
163 {
164 return (pctrie_node_load(pctrie_root(ptree), smr, access));
165 }
166
167 /*
168 * Get the child of a node.
169 */
170 static __inline smr_pctnode_t *
pctrie_child(struct pctrie * ptree,struct pctrie_node * node,uint64_t index)171 pctrie_child(struct pctrie *ptree, struct pctrie_node *node, uint64_t index)
172 {
173 return (node == NULL ? pctrie_root(ptree) :
174 &node->pn_child[pctrie_slot(node, index)]);
175 }
176
177 /*
178 * Returns TRUE if the specified node is a leaf and FALSE otherwise.
179 */
180 static __inline bool
pctrie_isleaf(struct pctrie_node * node)181 pctrie_isleaf(struct pctrie_node *node)
182 {
183 return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
184 }
185
186 /*
187 * Returns val with leaf bit set.
188 */
189 static __inline void *
pctrie_toleaf(uint64_t * val)190 pctrie_toleaf(uint64_t *val)
191 {
192 return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
193 }
194
195 /*
196 * Returns the associated val extracted from node.
197 */
198 static __inline uint64_t *
pctrie_toval(struct pctrie_node * node)199 pctrie_toval(struct pctrie_node *node)
200 {
201 return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
202 }
203
204 /*
205 * Returns the associated pointer extracted from node and field offset.
206 */
207 static __inline void *
pctrie_toptr(struct pctrie_node * node,int keyoff)208 pctrie_toptr(struct pctrie_node *node, int keyoff)
209 {
210 return ((void *)(((uintptr_t)node & ~PCTRIE_FLAGS) - keyoff));
211 }
212
213 /*
214 * Make 'parent' a parent of 'child'.
215 */
216 static __inline void
pctrie_setparent(struct pctrie_node * child,struct pctrie_node * parent)217 pctrie_setparent(struct pctrie_node *child, struct pctrie_node *parent)
218 {
219 pctrie_node_store(&child->pn_parent, parent, PCTRIE_UNSERIALIZED);
220 }
221
222 /*
223 * Return the parent of 'node'.
224 */
225 static __inline struct pctrie_node *
pctrie_parent(struct pctrie_node * node)226 pctrie_parent(struct pctrie_node *node)
227 {
228 return (pctrie_node_load(&node->pn_parent, NULL, PCTRIE_UNSERIALIZED));
229 }
230
231 /*
232 * Make 'child' a child of 'node'.
233 */
234 static __inline void
pctrie_addnode(struct pctrie_node * node,uint64_t index,struct pctrie_node * child,enum pctrie_access access)235 pctrie_addnode(struct pctrie_node *node, uint64_t index,
236 struct pctrie_node *child, enum pctrie_access access)
237 {
238 int slot;
239
240 slot = pctrie_slot(node, index);
241 pctrie_node_store(&node->pn_child[slot], child, access);
242 node->pn_popmap ^= 1 << slot;
243 KASSERT((node->pn_popmap & (1 << slot)) != 0,
244 ("%s: bad popmap slot %d in node %p", __func__, slot, node));
245 }
246
247 /*
248 * pctrie node zone initializer.
249 */
250 int
pctrie_zone_init(void * mem,int size __unused,int flags __unused)251 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
252 {
253 struct pctrie_node *node;
254
255 node = mem;
256 node->pn_popmap = 0;
257 for (int i = 0; i < nitems(node->pn_child); i++)
258 pctrie_node_store(&node->pn_child[i], PCTRIE_NULL,
259 PCTRIE_UNSERIALIZED);
260 return (0);
261 }
262
263 size_t
pctrie_node_size(void)264 pctrie_node_size(void)
265 {
266
267 return (sizeof(struct pctrie_node));
268 }
269
270 /*
271 * Return the value associated with the node, if the node is a leaf that matches
272 * the index; otherwise NULL.
273 */
274 static __always_inline uint64_t *
pctrie_match_value(struct pctrie_node * node,uint64_t index)275 pctrie_match_value(struct pctrie_node *node, uint64_t index)
276 {
277 uint64_t *m;
278
279 if (!pctrie_isleaf(node) || (m = pctrie_toval(node)) == NULL ||
280 *m != index)
281 m = NULL;
282 return (m);
283 }
284
285 /*
286 * Returns the last node examined in the search for the index, and sets the
287 * parent of that node.
288 */
289 static __always_inline struct pctrie_node *
_pctrie_lookup_node(struct pctrie * ptree,struct pctrie_node * node,uint64_t index,struct pctrie_node ** parent_out,smr_t smr,enum pctrie_access access)290 _pctrie_lookup_node(struct pctrie *ptree, struct pctrie_node *node,
291 uint64_t index, struct pctrie_node **parent_out,
292 smr_t smr, enum pctrie_access access)
293 {
294 struct pctrie_node *parent;
295 int slot;
296
297 parent = node;
298 if (parent == NULL)
299 node = pctrie_root_load(ptree, smr, access);
300
301 /*
302 * Climb the search path to find the lowest node from which to start the
303 * search for a value matching 'index'.
304 */
305 while (parent != NULL) {
306 KASSERT(access == PCTRIE_SMR || !powerof2(parent->pn_popmap),
307 ("%s: freed node in iter path", __func__));
308 node = parent;
309 if (!pctrie_keybarr(node, index, &slot))
310 break;
311 parent = pctrie_parent(node);
312 }
313
314 /* Seek a node that matches index. */
315 while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot)) {
316 parent = node;
317 KASSERT(access == PCTRIE_SMR || !powerof2(parent->pn_popmap),
318 ("%s: freed node in iter path", __func__));
319 node = pctrie_node_load(&node->pn_child[slot], smr, access);
320 }
321 *parent_out = parent;
322 return (node);
323 }
324
325 /*
326 * Returns the value stored at the index, assuming access is externally
327 * synchronized by a lock.
328 *
329 * If the index is not present, NULL is returned.
330 */
331 uint64_t *
pctrie_lookup(struct pctrie * ptree,uint64_t index)332 pctrie_lookup(struct pctrie *ptree, uint64_t index)
333 {
334 struct pctrie_node *node, *parent;
335
336 node = _pctrie_lookup_node(ptree, NULL, index, &parent, NULL,
337 PCTRIE_LOCKED);
338 return (pctrie_match_value(node, index));
339 }
340
341 /*
342 * Returns the value stored at the index without requiring an external lock.
343 *
344 * If the index is not present, NULL is returned.
345 */
346 uint64_t *
pctrie_lookup_unlocked(struct pctrie * ptree,uint64_t index,smr_t smr)347 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
348 {
349 struct pctrie_node *node, *parent;
350 uint64_t *res;
351
352 smr_enter(smr);
353 node = _pctrie_lookup_node(ptree, NULL, index, &parent, smr,
354 PCTRIE_SMR);
355 res = pctrie_match_value(node, index);
356 smr_exit(smr);
357 return (res);
358 }
359
360 /*
361 * Returns the value stored at a given index value, possibly NULL, assuming
362 * access is externally synchronized by a lock.
363 */
364 uint64_t *
pctrie_iter_lookup(struct pctrie_iter * it,uint64_t index)365 pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index)
366 {
367 struct pctrie_node *node;
368
369 node = _pctrie_lookup_node(it->ptree, it->node, index, &it->node,
370 NULL, PCTRIE_LOCKED);
371 it->index = index;
372 return (pctrie_match_value(node, index));
373 }
374
375 /*
376 * Look for where to insert the key-value pair into the trie. Complete the
377 * insertion if it replaces a null leaf. Return the insertion location if the
378 * insertion needs to be completed by the caller; otherwise return NULL.
379 *
380 * If the key is already present in the trie, populate *found_out as if by
381 * pctrie_lookup().
382 */
383 static __always_inline void *
_pctrie_insert_lookup(struct pctrie * ptree,struct pctrie_node * parent,uint64_t * val,struct pctrie_node ** parent_out,uint64_t ** found_out)384 _pctrie_insert_lookup(struct pctrie *ptree, struct pctrie_node *parent,
385 uint64_t *val, struct pctrie_node **parent_out, uint64_t **found_out)
386 {
387 struct pctrie_node *node;
388
389 node = _pctrie_lookup_node(ptree, parent, *val, parent_out, NULL,
390 PCTRIE_LOCKED);
391 *found_out = NULL;
392 if (node == PCTRIE_NULL) {
393 if (*parent_out == NULL)
394 pctrie_node_store(pctrie_root(ptree),
395 pctrie_toleaf(val), PCTRIE_LOCKED);
396 else
397 pctrie_addnode(*parent_out, *val,
398 pctrie_toleaf(val), PCTRIE_LOCKED);
399 return (NULL);
400 }
401 if (__predict_false(pctrie_match_value(node, *val) != NULL)) {
402 *found_out = pctrie_toval(node);
403 return (NULL);
404 }
405
406 /*
407 * 'node' must be replaced in the tree with a new branch node, with
408 * children 'node' and 'val'. Return the place that points to 'node'
409 * now, and will point to to the new branching node later.
410 */
411 return (pctrie_child(ptree, *parent_out, *val));
412 }
413
414 /*
415 * Wrap _pctrie_insert_lookup to implement a strict insertion. Panic
416 * if the key already exists, and do not look for neighboring entries.
417 */
418 void *
pctrie_insert_lookup_strict(struct pctrie * ptree,uint64_t * val,struct pctrie_node ** parent_out)419 pctrie_insert_lookup_strict(struct pctrie *ptree, uint64_t *val,
420 struct pctrie_node **parent_out)
421 {
422 void *parentp;
423 uint64_t *found;
424
425 parentp = _pctrie_insert_lookup(ptree, NULL, val, parent_out, &found);
426 if (__predict_false(found != NULL))
427 panic("%s: key %jx is already present", __func__,
428 (uintmax_t)*val);
429 return (parentp);
430 }
431
432 /*
433 * Wrap _pctrie_insert_lookup to implement find-or-insert. Do not look
434 * for neighboring entries.
435 */
436 void *
pctrie_insert_lookup(struct pctrie * ptree,uint64_t * val,struct pctrie_node ** parent_out,uint64_t ** found_out)437 pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val,
438 struct pctrie_node **parent_out, uint64_t **found_out)
439 {
440 return (_pctrie_insert_lookup(ptree, NULL, val, parent_out, found_out));
441 }
442
443 /*
444 * Insert the val in the trie, starting search with iterator. Return a pointer
445 * to indicate where a new node must be allocated to complete insertion.
446 * Assumes access is externally synchronized by a lock.
447 */
448 void *
pctrie_iter_insert_lookup(struct pctrie_iter * it,uint64_t * val)449 pctrie_iter_insert_lookup(struct pctrie_iter *it, uint64_t *val)
450 {
451 void *res;
452 uint64_t *found;
453
454 it->index = *val;
455 res = _pctrie_insert_lookup(it->ptree, it->node, val, &it->node,
456 &found);
457 if (__predict_false(found != NULL))
458 panic("%s: key %jx is already present", __func__,
459 (uintmax_t)it->index);
460 return (res);
461 }
462
463 /*
464 * Inserts newly allocated node 'child' into trie at location 'parentp', with
465 * parent 'parent' and two children, 'val' and whatever non-NULL node or leaf
466 * was at 'parentp' to begin with.
467 */
468 void
pctrie_insert_node(uint64_t * val,struct pctrie_node * parent,void * parentp,struct pctrie_node * child)469 pctrie_insert_node(uint64_t *val, struct pctrie_node *parent, void *parentp,
470 struct pctrie_node *child)
471 {
472 struct pctrie_node *node;
473 uint64_t index, newind;
474
475 /*
476 * Clear the last child pointer of the newly allocated child. We want
477 * to clear it after the final section has exited so lookup can not
478 * return false negatives. It is done here because it will be
479 * cache-cold in the dtor callback.
480 */
481 if (child->pn_popmap != 0) {
482 pctrie_node_store(&child->pn_child[ffs(child->pn_popmap) - 1],
483 PCTRIE_NULL, PCTRIE_UNSERIALIZED);
484 child->pn_popmap = 0;
485 }
486
487 /*
488 * Recover the values of the two children of the new child node. If
489 * 'node' is not a leaf, this stores into 'newind' the 'owner' field,
490 * which must be first in the node.
491 */
492 index = *val;
493 node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED);
494 pctrie_setparent(child, parent);
495 if (!pctrie_isleaf(node))
496 pctrie_setparent(node, child);
497 newind = *pctrie_toval(node);
498
499 /*
500 * From the highest-order bit where the indexes differ,
501 * compute the highest level in the trie where they differ. Then,
502 * compute the least index of this subtrie.
503 */
504 _Static_assert(sizeof(long long) >= sizeof(uint64_t),
505 "uint64 too wide");
506 _Static_assert(sizeof(uint64_t) * NBBY <=
507 (1 << (sizeof(child->pn_clev) * NBBY)), "pn_clev too narrow");
508 child->pn_clev = rounddown(ilog2(index ^ newind), PCTRIE_WIDTH);
509 child->pn_owner = PCTRIE_COUNT;
510 child->pn_owner = index & -(child->pn_owner << child->pn_clev);
511
512
513 /* These writes are not yet visible due to ordering. */
514 pctrie_addnode(child, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED);
515 pctrie_addnode(child, newind, node, PCTRIE_UNSERIALIZED);
516 /* Synchronize to make the above visible. */
517 pctrie_node_store(parentp, child, PCTRIE_LOCKED);
518 }
519
520 /*
521 * Returns the value stored at a fixed offset from the current index value,
522 * possibly NULL.
523 */
524 uint64_t *
pctrie_iter_stride(struct pctrie_iter * it,int stride)525 pctrie_iter_stride(struct pctrie_iter *it, int stride)
526 {
527 uint64_t index = it->index + stride;
528
529 /* Detect stride overflow. */
530 if ((stride > 0) != (index > it->index))
531 return (NULL);
532 /* Detect crossing limit */
533 if ((index < it->limit) != (it->index < it->limit))
534 return (NULL);
535
536 return (pctrie_iter_lookup(it, index));
537 }
538
539 /*
540 * Returns the value stored at one more than the current index value, possibly
541 * NULL, assuming access is externally synchronized by a lock.
542 */
543 uint64_t *
pctrie_iter_next(struct pctrie_iter * it)544 pctrie_iter_next(struct pctrie_iter *it)
545 {
546 return (pctrie_iter_stride(it, 1));
547 }
548
549 /*
550 * Returns the value stored at one less than the current index value, possibly
551 * NULL, assuming access is externally synchronized by a lock.
552 */
553 uint64_t *
pctrie_iter_prev(struct pctrie_iter * it)554 pctrie_iter_prev(struct pctrie_iter *it)
555 {
556 return (pctrie_iter_stride(it, -1));
557 }
558
559 /*
560 * Returns the number of contiguous, non-NULL entries read into the value[]
561 * array, starting at index.
562 */
563 static __always_inline int
_pctrie_lookup_range(struct pctrie * ptree,struct pctrie_node * node,uint64_t index,uint64_t * value[],int count,struct pctrie_node ** parent_out,smr_t smr,enum pctrie_access access)564 _pctrie_lookup_range(struct pctrie *ptree, struct pctrie_node *node,
565 uint64_t index, uint64_t *value[], int count,
566 struct pctrie_node **parent_out, smr_t smr, enum pctrie_access access)
567 {
568 struct pctrie_node *parent;
569 uint64_t *val;
570 int base, end, i;
571
572 parent = node;
573 for (i = 0; i < count;) {
574 node = _pctrie_lookup_node(ptree, parent, index + i, &parent,
575 smr, access);
576 if ((val = pctrie_match_value(node, index + i)) == NULL)
577 break;
578 value[i++] = val;
579 base = (index + i) % PCTRIE_COUNT;
580 if (base == 0 || parent == NULL || parent->pn_clev != 0)
581 continue;
582
583 /*
584 * For PCTRIE_SMR, compute an upper bound on the number of
585 * children of this parent left to examine. For PCTRIE_LOCKED,
586 * compute the number of non-NULL children from base up to the
587 * first NULL child, if any, using the fact that pn_popmap has
588 * bits set for only the non-NULL children.
589 *
590 * The pn_popmap field is accessed only when a lock is held.
591 * To use it for PCTRIE_SMR here would require that we know that
592 * race conditions cannot occur if the tree is modified while
593 * accessed here. Guarantees about the visibility of changes to
594 * child pointers, enforced by memory barriers on the writing of
595 * pointers, are not present for the pn_popmap field, so that
596 * the popmap bit for a child page may, for an instant,
597 * misrepresent the nullness of the child page because an
598 * operation modifying the pctrie is in progress.
599 */
600 end = (access == PCTRIE_SMR) ? PCTRIE_COUNT - base :
601 ffs((parent->pn_popmap >> base) + 1) - 1;
602 end = MIN(count, i + end);
603 while (i < end) {
604 node = pctrie_node_load(&parent->pn_child[base++],
605 smr, access);
606 val = pctrie_toval(node);
607 if (access == PCTRIE_SMR && val == NULL)
608 break;
609 value[i++] = val;
610 KASSERT(val != NULL,
611 ("%s: null child written to range", __func__));
612 }
613 if (access == PCTRIE_SMR) {
614 if (i < end)
615 break;
616 } else {
617 if (base < PCTRIE_COUNT)
618 break;
619 }
620 }
621 if (parent_out != NULL)
622 *parent_out = parent;
623 return (i);
624 }
625
626 /*
627 * Returns the number of contiguous, non-NULL entries read into the value[]
628 * array, starting at index, assuming access is externally synchronized by a
629 * lock.
630 */
631 int
pctrie_lookup_range(struct pctrie * ptree,uint64_t index,uint64_t * value[],int count)632 pctrie_lookup_range(struct pctrie *ptree, uint64_t index,
633 uint64_t *value[], int count)
634 {
635 return (_pctrie_lookup_range(ptree, NULL, index, value, count, NULL,
636 NULL, PCTRIE_LOCKED));
637 }
638
639 /*
640 * Returns the number of contiguous, non-NULL entries read into the value[]
641 * array, starting at index, without requiring an external lock. These entries
642 * *may* never have been in the pctrie all at one time, but for a series of
643 * times t0, t1, t2, ..., with ti <= t(i+1), value[i] was in the trie at time
644 * ti.
645 */
646 int
pctrie_lookup_range_unlocked(struct pctrie * ptree,uint64_t index,uint64_t * value[],int count,smr_t smr)647 pctrie_lookup_range_unlocked(struct pctrie *ptree, uint64_t index,
648 uint64_t *value[], int count, smr_t smr)
649 {
650 int res;
651
652 smr_enter(smr);
653 res = _pctrie_lookup_range(ptree, NULL, index, value, count, NULL,
654 smr, PCTRIE_SMR);
655 smr_exit(smr);
656 return (res);
657 }
658
659 /*
660 * Returns the number of contiguous, non-NULL entries read into the value[]
661 * array, starting at index, assuming access is externally synchronized by a
662 * lock. Uses an iterator.
663 */
664 int
pctrie_iter_lookup_range(struct pctrie_iter * it,uint64_t index,uint64_t * value[],int count)665 pctrie_iter_lookup_range(struct pctrie_iter *it, uint64_t index,
666 uint64_t *value[], int count)
667 {
668 return (_pctrie_lookup_range(it->ptree, it->node, index, value, count,
669 &it->node, NULL, PCTRIE_LOCKED));
670 }
671
672 /*
673 * Find first leaf >= index, and fill iter with the path to the parent of that
674 * leaf. Return NULL if there is no such leaf less than limit.
675 */
676 static __inline uint64_t *
_pctrie_lookup_ge(struct pctrie * ptree,struct pctrie_node * node,uint64_t index,struct pctrie_node ** parent_out,uint64_t limit)677 _pctrie_lookup_ge(struct pctrie *ptree, struct pctrie_node *node,
678 uint64_t index, struct pctrie_node **parent_out, uint64_t limit)
679 {
680 struct pctrie_node *parent;
681 uint64_t *m;
682 int slot;
683
684 /* Seek a node that matches index. */
685 node = _pctrie_lookup_node(ptree, node, index, &parent,
686 NULL, PCTRIE_LOCKED);
687
688 /*
689 * If no such node was found, and instead this path leads only to nodes
690 * < index, back up to find a subtrie with the least value > index.
691 */
692 if (node == PCTRIE_NULL || *pctrie_toval(node) < index) {
693 /* Climb the path to find a node with a descendant > index. */
694 node = NULL;
695 while (parent != NULL) {
696 slot = pctrie_slot(parent, index) + 1;
697 if ((parent->pn_popmap >> slot) != 0)
698 break;
699 node = parent;
700 parent = pctrie_parent(node);
701 }
702 if (parent == NULL) {
703 if (parent_out != NULL)
704 *parent_out = node;
705 return (NULL);
706 }
707
708 /* Step to the least child with a descendant > index. */
709 slot += ffs(parent->pn_popmap >> slot) - 1;
710 node = pctrie_node_load(&parent->pn_child[slot], NULL,
711 PCTRIE_LOCKED);
712 }
713 /* Descend to the least leaf of the subtrie. */
714 while (!pctrie_isleaf(node)) {
715 if (limit != 0 && node->pn_owner >= limit)
716 return (NULL);
717 slot = ffs(node->pn_popmap) - 1;
718 parent = node;
719 node = pctrie_node_load(&node->pn_child[slot], NULL,
720 PCTRIE_LOCKED);
721 }
722 if (parent_out != NULL)
723 *parent_out = parent;
724 m = pctrie_toval(node);
725 if (limit != 0 && *m >= limit)
726 return (NULL);
727 return (m);
728 }
729
730 uint64_t *
pctrie_lookup_ge(struct pctrie * ptree,uint64_t index)731 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
732 {
733 return (_pctrie_lookup_ge(ptree, NULL, index, NULL, 0));
734 }
735
736 /*
737 * Find first leaf >= index, and fill iter with the path to the parent of that
738 * leaf. Return NULL if there is no such leaf less than limit.
739 */
740 uint64_t *
pctrie_iter_lookup_ge(struct pctrie_iter * it,uint64_t index)741 pctrie_iter_lookup_ge(struct pctrie_iter *it, uint64_t index)
742 {
743 uint64_t *m;
744
745 m = _pctrie_lookup_ge(it->ptree, it->node, index, &it->node, it->limit);
746 if (m != NULL)
747 it->index = *m;
748 return (m);
749 }
750
751 /*
752 * Find the first leaf with value at least 'jump' greater than the previous
753 * leaf. Return NULL if that value is >= limit.
754 */
755 uint64_t *
pctrie_iter_jump_ge(struct pctrie_iter * it,int64_t jump)756 pctrie_iter_jump_ge(struct pctrie_iter *it, int64_t jump)
757 {
758 uint64_t index = it->index + jump;
759
760 /* Detect jump overflow. */
761 if ((jump > 0) != (index > it->index))
762 return (NULL);
763 if (it->limit != 0 && index >= it->limit)
764 return (NULL);
765 return (pctrie_iter_lookup_ge(it, index));
766 }
767
768 /*
769 * Find first leaf <= index, and fill iter with the path to the parent of that
770 * leaf. Return NULL if there is no such leaf greater than limit.
771 */
772 static __inline uint64_t *
_pctrie_lookup_le(struct pctrie * ptree,struct pctrie_node * node,uint64_t index,struct pctrie_node ** parent_out,uint64_t limit)773 _pctrie_lookup_le(struct pctrie *ptree, struct pctrie_node *node,
774 uint64_t index, struct pctrie_node **parent_out, uint64_t limit)
775 {
776 struct pctrie_node *parent;
777 uint64_t *m;
778 int slot;
779
780 /* Seek a node that matches index. */
781 node = _pctrie_lookup_node(ptree, node, index, &parent, NULL,
782 PCTRIE_LOCKED);
783
784 /*
785 * If no such node was found, and instead this path leads only to nodes
786 * > index, back up to find a subtrie with the greatest value < index.
787 */
788 if (node == PCTRIE_NULL || *pctrie_toval(node) > index) {
789 /* Climb the path to find a node with a descendant < index. */
790 node = NULL;
791 while (parent != NULL) {
792 slot = pctrie_slot(parent, index);
793 if ((parent->pn_popmap & ((1 << slot) - 1)) != 0)
794 break;
795 node = parent;
796 parent = pctrie_parent(node);
797 }
798 if (parent == NULL) {
799 if (parent_out != NULL)
800 *parent_out = node;
801 return (NULL);
802 }
803
804 /* Step to the greatest child with a descendant < index. */
805 slot = ilog2(parent->pn_popmap & ((1 << slot) - 1));
806 node = pctrie_node_load(&parent->pn_child[slot], NULL,
807 PCTRIE_LOCKED);
808 }
809 /* Descend to the greatest leaf of the subtrie. */
810 while (!pctrie_isleaf(node)) {
811 if (limit != 0 && limit >= node->pn_owner +
812 ((uint64_t)PCTRIE_COUNT << node->pn_clev) - 1)
813 return (NULL);
814 slot = ilog2(node->pn_popmap);
815 parent = node;
816 node = pctrie_node_load(&node->pn_child[slot], NULL,
817 PCTRIE_LOCKED);
818 }
819 if (parent_out != NULL)
820 *parent_out = parent;
821 m = pctrie_toval(node);
822 if (limit != 0 && *m <= limit)
823 return (NULL);
824 return (m);
825 }
826
827 uint64_t *
pctrie_lookup_le(struct pctrie * ptree,uint64_t index)828 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
829 {
830 return (_pctrie_lookup_le(ptree, NULL, index, NULL, 0));
831 }
832
833 uint64_t *
pctrie_subtree_lookup_lt(struct pctrie * ptree,struct pctrie_node * node,uint64_t index)834 pctrie_subtree_lookup_lt(struct pctrie *ptree, struct pctrie_node *node,
835 uint64_t index)
836 {
837 if (index == 0)
838 return (NULL);
839 return (_pctrie_lookup_le(ptree, node, index - 1, NULL, 0));
840 }
841
842 /*
843 * Find first leaf <= index, and fill iter with the path to the parent of that
844 * leaf. Return NULL if there is no such leaf greater than limit.
845 */
846 uint64_t *
pctrie_iter_lookup_le(struct pctrie_iter * it,uint64_t index)847 pctrie_iter_lookup_le(struct pctrie_iter *it, uint64_t index)
848 {
849 uint64_t *m;
850
851 m = _pctrie_lookup_le(it->ptree, it->node, index, &it->node, it->limit);
852 if (m != NULL)
853 it->index = *m;
854 return (m);
855 }
856
857 /*
858 * Find the first leaf with value at most 'jump' less than the previous
859 * leaf. Return NULL if that value is <= limit.
860 */
861 uint64_t *
pctrie_iter_jump_le(struct pctrie_iter * it,int64_t jump)862 pctrie_iter_jump_le(struct pctrie_iter *it, int64_t jump)
863 {
864 uint64_t index = it->index - jump;
865
866 /* Detect jump overflow. */
867 if ((jump > 0) != (index < it->index))
868 return (NULL);
869 if (it->limit != 0 && index <= it->limit)
870 return (NULL);
871 return (pctrie_iter_lookup_le(it, index));
872 }
873
874 /*
875 * Remove the non-NULL child identified by 'index' from the set of children of
876 * 'node'. If doing so causes 'node' to have only one child, purge it from the
877 * pctrie and save it in *freenode for later disposal.
878 */
879 static bool
pctrie_remove(struct pctrie * ptree,struct pctrie_node * node,uint64_t index)880 pctrie_remove(struct pctrie *ptree, struct pctrie_node *node, uint64_t index)
881 {
882 smr_pctnode_t *parentp;
883 struct pctrie_node *child;
884 int slot;
885
886 parentp = pctrie_child(ptree, node, index);
887 if (node == NULL) {
888 pctrie_node_store(parentp, PCTRIE_NULL, PCTRIE_LOCKED);
889 return (false);
890 }
891 slot = pctrie_slot(node, index);
892 KASSERT((node->pn_popmap & (1 << slot)) != 0,
893 ("%s: bad popmap slot %d in node %p",
894 __func__, slot, node));
895 node->pn_popmap ^= 1 << slot;
896 if (!powerof2(node->pn_popmap)) {
897 pctrie_node_store(parentp, PCTRIE_NULL, PCTRIE_LOCKED);
898 return (false);
899 }
900 pctrie_node_store(parentp, PCTRIE_NULL, PCTRIE_UNSERIALIZED);
901 KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
902 slot = ffs(node->pn_popmap) - 1;
903 child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED);
904 KASSERT(child != PCTRIE_NULL,
905 ("%s: bad popmap slot %d in node %p", __func__, slot, node));
906 node = pctrie_parent(node);
907 if (!pctrie_isleaf(child))
908 pctrie_setparent(child, node);
909 parentp = pctrie_child(ptree, node, index);
910 pctrie_node_store(parentp, child, PCTRIE_LOCKED);
911 return (true);
912 }
913
914 /*
915 * Remove the specified index from the tree, and return the value stored at
916 * that index. If the index is not present, return NULL.
917 */
918 uint64_t *
pctrie_remove_lookup(struct pctrie * ptree,uint64_t index,struct pctrie_node ** freenode)919 pctrie_remove_lookup(struct pctrie *ptree, uint64_t index,
920 struct pctrie_node **freenode)
921 {
922 struct pctrie_node *node, *parent;
923 uint64_t *m;
924
925 node = _pctrie_lookup_node(ptree, NULL, index, &parent, NULL,
926 PCTRIE_LOCKED);
927 m = pctrie_match_value(node, index);
928 if (m != NULL && pctrie_remove(ptree, parent, index))
929 *freenode = parent;
930 else
931 *freenode = NULL;
932 return (m);
933 }
934
935 /*
936 * Remove from the trie the leaf last chosen by the iterator, and
937 * adjust the path if it's last member is to be freed.
938 */
939 void
pctrie_iter_remove(struct pctrie_iter * it,struct pctrie_node ** freenode)940 pctrie_iter_remove(struct pctrie_iter *it, struct pctrie_node **freenode)
941 {
942 KASSERT(NULL != pctrie_match_value(pctrie_node_load(pctrie_child(
943 it->ptree, it->node, it->index), NULL, PCTRIE_LOCKED), it->index),
944 ("%s: removing value %jx not at iter", __func__,
945 (uintmax_t)it->index));
946 if (pctrie_remove(it->ptree, it->node, it->index)) {
947 *freenode = it->node;
948 it->node = pctrie_parent(it->node);
949 } else
950 *freenode = NULL;
951 }
952
953 /*
954 * Return the current leaf, assuming access is externally synchronized by a
955 * lock.
956 */
957 uint64_t *
pctrie_iter_value(struct pctrie_iter * it)958 pctrie_iter_value(struct pctrie_iter *it)
959 {
960 struct pctrie_node *node;
961
962 node = pctrie_node_load(pctrie_child(it->ptree, it->node, it->index),
963 NULL, PCTRIE_LOCKED);
964 return (pctrie_toval(node));
965 }
966
967 /*
968 * Walk the subtrie rooted at *pnode in order, invoking callback on leaves,
969 * until an interior node is stripped of all children, and returned for
970 * deallocation, with *pnode left pointing to the parent of that node.
971 */
972 static __always_inline struct pctrie_node *
pctrie_reclaim_prune(struct pctrie_node ** pnode,struct pctrie_node * parent,pctrie_cb_t callback,int keyoff,void * arg)973 pctrie_reclaim_prune(struct pctrie_node **pnode, struct pctrie_node *parent,
974 pctrie_cb_t callback, int keyoff, void *arg)
975 {
976 struct pctrie_node *child, *node;
977 int slot;
978
979 node = *pnode;
980 while (node->pn_popmap != 0) {
981 slot = ffs(node->pn_popmap) - 1;
982 node->pn_popmap ^= 1 << slot;
983 child = pctrie_node_load(&node->pn_child[slot], NULL,
984 PCTRIE_UNSERIALIZED);
985 pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL,
986 PCTRIE_UNSERIALIZED);
987 if (pctrie_isleaf(child)) {
988 if (callback != NULL)
989 callback(pctrie_toptr(child, keyoff), arg);
990 continue;
991 }
992 /* Climb one level down the trie. */
993 parent = node;
994 node = child;
995 }
996 *pnode = parent;
997 return (node);
998 }
999
1000 /*
1001 * Recover the node parent from its first child and continue pruning.
1002 */
1003 static __always_inline struct pctrie_node *
pctrie_reclaim_resume_compound(struct pctrie_node ** pnode,pctrie_cb_t callback,int keyoff,void * arg)1004 pctrie_reclaim_resume_compound(struct pctrie_node **pnode,
1005 pctrie_cb_t callback, int keyoff, void *arg)
1006 {
1007 if (*pnode == NULL)
1008 return (NULL);
1009 /* Climb one level up the trie. */
1010 return (pctrie_reclaim_prune(pnode, pctrie_parent(*pnode), callback,
1011 keyoff, arg));
1012 }
1013
1014 /*
1015 * Find the trie root, and start pruning with a NULL parent.
1016 */
1017 static __always_inline struct pctrie_node *
pctrie_reclaim_begin_compound(struct pctrie_node ** pnode,struct pctrie * ptree,pctrie_cb_t callback,int keyoff,void * arg)1018 pctrie_reclaim_begin_compound(struct pctrie_node **pnode,
1019 struct pctrie *ptree,
1020 pctrie_cb_t callback, int keyoff, void *arg)
1021 {
1022 struct pctrie_node *node;
1023
1024 node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED);
1025 pctrie_node_store(pctrie_root(ptree), PCTRIE_NULL, PCTRIE_UNSERIALIZED);
1026 if (pctrie_isleaf(node)) {
1027 if (callback != NULL && node != PCTRIE_NULL)
1028 callback(pctrie_toptr(node, keyoff), arg);
1029 return (NULL);
1030 }
1031 *pnode = node;
1032 return (pctrie_reclaim_prune(pnode, NULL, callback, keyoff, arg));
1033 }
1034
1035 struct pctrie_node *
pctrie_reclaim_resume(struct pctrie_node ** pnode)1036 pctrie_reclaim_resume(struct pctrie_node **pnode)
1037 {
1038 return (pctrie_reclaim_resume_compound(pnode, NULL, 0, NULL));
1039 }
1040
1041 struct pctrie_node *
pctrie_reclaim_begin(struct pctrie_node ** pnode,struct pctrie * ptree)1042 pctrie_reclaim_begin(struct pctrie_node **pnode, struct pctrie *ptree)
1043 {
1044 return (pctrie_reclaim_begin_compound(pnode, ptree, NULL, 0, NULL));
1045 }
1046
1047 struct pctrie_node *
pctrie_reclaim_resume_cb(struct pctrie_node ** pnode,pctrie_cb_t callback,int keyoff,void * arg)1048 pctrie_reclaim_resume_cb(struct pctrie_node **pnode,
1049 pctrie_cb_t callback, int keyoff, void *arg)
1050 {
1051 return (pctrie_reclaim_resume_compound(pnode, callback, keyoff, arg));
1052 }
1053
1054 struct pctrie_node *
pctrie_reclaim_begin_cb(struct pctrie_node ** pnode,struct pctrie * ptree,pctrie_cb_t callback,int keyoff,void * arg)1055 pctrie_reclaim_begin_cb(struct pctrie_node **pnode, struct pctrie *ptree,
1056 pctrie_cb_t callback, int keyoff, void *arg)
1057 {
1058 return (pctrie_reclaim_begin_compound(pnode, ptree,
1059 callback, keyoff, arg));
1060 }
1061
1062 /*
1063 * Replace an existing value in the trie with another one.
1064 * Panics if there is not an old value in the trie at the new value's index.
1065 */
1066 uint64_t *
pctrie_replace(struct pctrie * ptree,uint64_t * newval)1067 pctrie_replace(struct pctrie *ptree, uint64_t *newval)
1068 {
1069 struct pctrie_node *node, *parent;
1070 uint64_t *m;
1071
1072 node = _pctrie_lookup_node(ptree, NULL, *newval, &parent, NULL,
1073 PCTRIE_LOCKED);
1074 m = pctrie_match_value(node, *newval);
1075 if (m == NULL)
1076 panic("%s: original replacing value not found", __func__);
1077 pctrie_node_store(pctrie_child(ptree, parent, *newval),
1078 pctrie_toleaf(newval), PCTRIE_LOCKED);
1079 return (m);
1080 }
1081
1082 #ifdef DDB
1083 /*
1084 * Show details about the given node.
1085 */
DB_SHOW_COMMAND(pctrienode,db_show_pctrienode)1086 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
1087 {
1088 struct pctrie_node *node, *tmp;
1089 int slot;
1090 pn_popmap_t popmap;
1091
1092 if (!have_addr)
1093 return;
1094 node = (struct pctrie_node *)addr;
1095 db_printf("node %p, owner %jx, children popmap %04x, level %u:\n",
1096 (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap,
1097 node->pn_clev / PCTRIE_WIDTH);
1098 for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) {
1099 slot = ffs(popmap) - 1;
1100 tmp = pctrie_node_load(&node->pn_child[slot], NULL,
1101 PCTRIE_UNSERIALIZED);
1102 db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
1103 slot, (void *)tmp,
1104 pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
1105 node->pn_clev / PCTRIE_WIDTH);
1106 }
1107 }
1108 #endif /* DDB */
1109