xref: /freebsd/sys/compat/linuxkpi/common/src/linux_pci.c (revision e453e498cbb88570a3ff7b3679de65c88707da95)
1 /*-
2  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3  * All rights reserved.
4  * Copyright (c) 2020-2022 The FreeBSD Foundation
5  *
6  * Portions of this software were developed by Björn Zeeb
7  * under sponsorship from the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/sysctl.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filio.h>
42 #include <sys/pciio.h>
43 #include <sys/pctrie.h>
44 #include <sys/rman.h>
45 #include <sys/rwlock.h>
46 #include <sys/stdarg.h>
47 
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50 
51 #include <machine/bus.h>
52 #include <machine/resource.h>
53 
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58 
59 #include <linux/kernel.h>
60 #include <linux/kobject.h>
61 #include <linux/device.h>
62 #include <linux/slab.h>
63 #include <linux/module.h>
64 #include <linux/cdev.h>
65 #include <linux/file.h>
66 #include <linux/sysfs.h>
67 #include <linux/mm.h>
68 #include <linux/io.h>
69 #include <linux/vmalloc.h>
70 #include <linux/pci.h>
71 #include <linux/compat.h>
72 
73 #include <linux/backlight.h>
74 
75 #include "backlight_if.h"
76 #include "pcib_if.h"
77 
78 /* Undef the linux function macro defined in linux/pci.h */
79 #undef pci_get_class
80 
81 extern int linuxkpi_debug;
82 
83 SYSCTL_DECL(_compat_linuxkpi);
84 
85 static counter_u64_t lkpi_pci_nseg1_fail;
86 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
87     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
88 
89 static device_probe_t linux_pci_probe;
90 static device_attach_t linux_pci_attach;
91 static device_detach_t linux_pci_detach;
92 static device_suspend_t linux_pci_suspend;
93 static device_resume_t linux_pci_resume;
94 static device_shutdown_t linux_pci_shutdown;
95 static pci_iov_init_t linux_pci_iov_init;
96 static pci_iov_uninit_t linux_pci_iov_uninit;
97 static pci_iov_add_vf_t linux_pci_iov_add_vf;
98 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
99 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
100 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
101 static void lkpi_pcim_iomap_table_release(struct device *, void *);
102 
103 static device_method_t pci_methods[] = {
104 	DEVMETHOD(device_probe, linux_pci_probe),
105 	DEVMETHOD(device_attach, linux_pci_attach),
106 	DEVMETHOD(device_detach, linux_pci_detach),
107 	DEVMETHOD(device_suspend, linux_pci_suspend),
108 	DEVMETHOD(device_resume, linux_pci_resume),
109 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
110 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
111 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
112 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
113 
114 	/* backlight interface */
115 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
116 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
117 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
118 	DEVMETHOD_END
119 };
120 
121 const char *pci_power_names[] = {
122 	"UNKNOWN", "D0", "D1", "D2", "D3hot", "D3cold"
123 };
124 
125 /* We need some meta-struct to keep track of these for devres. */
126 struct pci_devres {
127 	bool		enable_io;
128 	/* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */
129 	uint8_t		region_mask;
130 	struct resource	*region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */
131 };
132 struct pcim_iomap_devres {
133 	void		*mmio_table[PCIR_MAX_BAR_0 + 1];
134 	struct resource	*res_table[PCIR_MAX_BAR_0 + 1];
135 };
136 
137 struct linux_dma_priv {
138 	uint64_t	dma_mask;
139 	bus_dma_tag_t	dmat;
140 	uint64_t	dma_coherent_mask;
141 	bus_dma_tag_t	dmat_coherent;
142 	struct mtx	lock;
143 	struct pctrie	ptree;
144 };
145 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
146 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
147 
148 static int
linux_pdev_dma_uninit(struct pci_dev * pdev)149 linux_pdev_dma_uninit(struct pci_dev *pdev)
150 {
151 	struct linux_dma_priv *priv;
152 
153 	priv = pdev->dev.dma_priv;
154 	if (priv->dmat)
155 		bus_dma_tag_destroy(priv->dmat);
156 	if (priv->dmat_coherent)
157 		bus_dma_tag_destroy(priv->dmat_coherent);
158 	mtx_destroy(&priv->lock);
159 	pdev->dev.dma_priv = NULL;
160 	free(priv, M_DEVBUF);
161 	return (0);
162 }
163 
164 static int
linux_pdev_dma_init(struct pci_dev * pdev)165 linux_pdev_dma_init(struct pci_dev *pdev)
166 {
167 	struct linux_dma_priv *priv;
168 	int error;
169 
170 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
171 
172 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
173 	pctrie_init(&priv->ptree);
174 
175 	pdev->dev.dma_priv = priv;
176 
177 	/* Create a default DMA tags. */
178 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
179 	if (error != 0)
180 		goto err;
181 	/* Coherent is lower 32bit only by default in Linux. */
182 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
183 	if (error != 0)
184 		goto err;
185 
186 	return (error);
187 
188 err:
189 	linux_pdev_dma_uninit(pdev);
190 	return (error);
191 }
192 
193 int
linux_dma_tag_init(struct device * dev,u64 dma_mask)194 linux_dma_tag_init(struct device *dev, u64 dma_mask)
195 {
196 	struct linux_dma_priv *priv;
197 	int error;
198 
199 	priv = dev->dma_priv;
200 
201 	if (priv->dmat) {
202 		if (priv->dma_mask == dma_mask)
203 			return (0);
204 
205 		bus_dma_tag_destroy(priv->dmat);
206 	}
207 
208 	priv->dma_mask = dma_mask;
209 
210 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
211 	    1, 0,			/* alignment, boundary */
212 	    dma_mask,			/* lowaddr */
213 	    BUS_SPACE_MAXADDR,		/* highaddr */
214 	    NULL, NULL,			/* filtfunc, filtfuncarg */
215 	    BUS_SPACE_MAXSIZE,		/* maxsize */
216 	    1,				/* nsegments */
217 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
218 	    0,				/* flags */
219 	    NULL, NULL,			/* lockfunc, lockfuncarg */
220 	    &priv->dmat);
221 	return (-error);
222 }
223 
224 int
linux_dma_tag_init_coherent(struct device * dev,u64 dma_mask)225 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
226 {
227 	struct linux_dma_priv *priv;
228 	int error;
229 
230 	priv = dev->dma_priv;
231 
232 	if (priv->dmat_coherent) {
233 		if (priv->dma_coherent_mask == dma_mask)
234 			return (0);
235 
236 		bus_dma_tag_destroy(priv->dmat_coherent);
237 	}
238 
239 	priv->dma_coherent_mask = dma_mask;
240 
241 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
242 	    1, 0,			/* alignment, boundary */
243 	    dma_mask,			/* lowaddr */
244 	    BUS_SPACE_MAXADDR,		/* highaddr */
245 	    NULL, NULL,			/* filtfunc, filtfuncarg */
246 	    BUS_SPACE_MAXSIZE,		/* maxsize */
247 	    1,				/* nsegments */
248 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
249 	    0,				/* flags */
250 	    NULL, NULL,			/* lockfunc, lockfuncarg */
251 	    &priv->dmat_coherent);
252 	return (-error);
253 }
254 
255 static struct pci_driver *
linux_pci_find(device_t dev,const struct pci_device_id ** idp)256 linux_pci_find(device_t dev, const struct pci_device_id **idp)
257 {
258 	const struct pci_device_id *id;
259 	struct pci_driver *pdrv;
260 	uint16_t vendor;
261 	uint16_t device;
262 	uint16_t subvendor;
263 	uint16_t subdevice;
264 
265 	vendor = pci_get_vendor(dev);
266 	device = pci_get_device(dev);
267 	subvendor = pci_get_subvendor(dev);
268 	subdevice = pci_get_subdevice(dev);
269 
270 	spin_lock(&pci_lock);
271 	list_for_each_entry(pdrv, &pci_drivers, node) {
272 		for (id = pdrv->id_table; id->vendor != 0; id++) {
273 			if (vendor == id->vendor &&
274 			    (PCI_ANY_ID == id->device || device == id->device) &&
275 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
276 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
277 				*idp = id;
278 				spin_unlock(&pci_lock);
279 				return (pdrv);
280 			}
281 		}
282 	}
283 	spin_unlock(&pci_lock);
284 	return (NULL);
285 }
286 
287 struct pci_dev *
lkpi_pci_get_device(uint16_t vendor,uint16_t device,struct pci_dev * odev)288 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
289 {
290 	struct pci_dev *pdev, *found;
291 
292 	KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
293 
294 	found = NULL;
295 	spin_lock(&pci_lock);
296 	list_for_each_entry(pdev, &pci_devices, links) {
297 		if (pdev->vendor == vendor && pdev->device == device) {
298 			found = pdev;
299 			break;
300 		}
301 	}
302 	pci_dev_get(found);
303 	spin_unlock(&pci_lock);
304 
305 	return (found);
306 }
307 
308 static void
lkpi_pci_dev_release(struct device * dev)309 lkpi_pci_dev_release(struct device *dev)
310 {
311 
312 	lkpi_devres_release_free_list(dev);
313 	spin_lock_destroy(&dev->devres_lock);
314 }
315 
316 static int
lkpifill_pci_dev(device_t dev,struct pci_dev * pdev)317 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
318 {
319 	int error;
320 
321 	error = kobject_init_and_add(&pdev->dev.kobj, &linux_dev_ktype,
322 	    &linux_root_device.kobj, device_get_nameunit(dev));
323 	if (error != 0) {
324 		printf("%s:%d: kobject_init_and_add returned %d\n",
325 		    __func__, __LINE__, error);
326 		return (error);
327 	}
328 
329 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
330 	pdev->vendor = pci_get_vendor(dev);
331 	pdev->device = pci_get_device(dev);
332 	pdev->subsystem_vendor = pci_get_subvendor(dev);
333 	pdev->subsystem_device = pci_get_subdevice(dev);
334 	pdev->class = pci_get_class(dev);
335 	pdev->revision = pci_get_revid(dev);
336 	pdev->path_name = kasprintf(GFP_KERNEL, "%04d:%02d:%02d.%d",
337 	    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
338 	    pci_get_function(dev));
339 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
340 	/*
341 	 * This should be the upstream bridge; pci_upstream_bridge()
342 	 * handles that case on demand as otherwise we'll shadow the
343 	 * entire PCI hierarchy.
344 	 */
345 	pdev->bus->self = pdev;
346 	pdev->bus->number = pci_get_bus(dev);
347 	pdev->bus->domain = pci_get_domain(dev);
348 	pdev->dev.bsddev = dev;
349 	pdev->dev.parent = &linux_root_device;
350 	pdev->dev.release = lkpi_pci_dev_release;
351 	INIT_LIST_HEAD(&pdev->dev.irqents);
352 
353 	if (pci_msi_count(dev) > 0)
354 		pdev->msi_desc = malloc(pci_msi_count(dev) *
355 		    sizeof(*pdev->msi_desc), M_DEVBUF, M_WAITOK | M_ZERO);
356 
357 	spin_lock_init(&pdev->dev.devres_lock);
358 	INIT_LIST_HEAD(&pdev->dev.devres_head);
359 
360 	return (0);
361 }
362 
363 static void
lkpinew_pci_dev_release(struct device * dev)364 lkpinew_pci_dev_release(struct device *dev)
365 {
366 	struct pci_dev *pdev;
367 	int i;
368 
369 	pdev = to_pci_dev(dev);
370 	if (pdev->root != NULL)
371 		pci_dev_put(pdev->root);
372 	if (pdev->bus->self != pdev)
373 		pci_dev_put(pdev->bus->self);
374 	free(pdev->bus, M_DEVBUF);
375 	if (pdev->msi_desc != NULL) {
376 		for (i = pci_msi_count(pdev->dev.bsddev) - 1; i >= 0; i--)
377 			free(pdev->msi_desc[i], M_DEVBUF);
378 		free(pdev->msi_desc, M_DEVBUF);
379 	}
380 	kfree(pdev->path_name);
381 	free(pdev, M_DEVBUF);
382 }
383 
384 struct pci_dev *
lkpinew_pci_dev(device_t dev)385 lkpinew_pci_dev(device_t dev)
386 {
387 	struct pci_dev *pdev;
388 	int error;
389 
390 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
391 	error = lkpifill_pci_dev(dev, pdev);
392 	if (error != 0) {
393 		free(pdev, M_DEVBUF);
394 		return (NULL);
395 	}
396 	pdev->dev.release = lkpinew_pci_dev_release;
397 
398 	return (pdev);
399 }
400 
401 struct pci_dev *
lkpi_pci_get_class(unsigned int class,struct pci_dev * from)402 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
403 {
404 	device_t dev;
405 	device_t devfrom = NULL;
406 	struct pci_dev *pdev;
407 
408 	if (from != NULL)
409 		devfrom = from->dev.bsddev;
410 
411 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
412 	if (dev == NULL)
413 		return (NULL);
414 
415 	pdev = lkpinew_pci_dev(dev);
416 	return (pdev);
417 }
418 
419 struct pci_dev *
lkpi_pci_get_base_class(unsigned int baseclass,struct pci_dev * from)420 lkpi_pci_get_base_class(unsigned int baseclass, struct pci_dev *from)
421 {
422 	device_t dev;
423 	device_t devfrom = NULL;
424 	struct pci_dev *pdev;
425 
426 	if (from != NULL)
427 		devfrom = from->dev.bsddev;
428 
429 	dev = pci_find_base_class_from(baseclass, devfrom);
430 	if (dev == NULL)
431 		return (NULL);
432 
433 	pdev = lkpinew_pci_dev(dev);
434 	return (pdev);
435 }
436 
437 struct pci_dev *
lkpi_pci_get_domain_bus_and_slot(int domain,unsigned int bus,unsigned int devfn)438 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
439     unsigned int devfn)
440 {
441 	device_t dev;
442 	struct pci_dev *pdev;
443 
444 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
445 	if (dev == NULL)
446 		return (NULL);
447 
448 	pdev = lkpinew_pci_dev(dev);
449 	return (pdev);
450 }
451 
452 static int
linux_pci_probe(device_t dev)453 linux_pci_probe(device_t dev)
454 {
455 	const struct pci_device_id *id;
456 	struct pci_driver *pdrv;
457 
458 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
459 		return (ENXIO);
460 	if (device_get_driver(dev) != &pdrv->bsddriver)
461 		return (ENXIO);
462 	device_set_desc(dev, pdrv->name);
463 
464 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
465 	if (pdrv->bsd_probe_return == 0)
466 		return (BUS_PROBE_DEFAULT);
467 	else
468 		return (pdrv->bsd_probe_return);
469 }
470 
471 static int
linux_pci_attach(device_t dev)472 linux_pci_attach(device_t dev)
473 {
474 	const struct pci_device_id *id;
475 	struct pci_driver *pdrv;
476 	struct pci_dev *pdev;
477 
478 	pdrv = linux_pci_find(dev, &id);
479 	pdev = device_get_softc(dev);
480 
481 	MPASS(pdrv != NULL);
482 	MPASS(pdev != NULL);
483 
484 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
485 }
486 
487 static struct resource_list_entry *
linux_pci_reserve_bar(struct pci_dev * pdev,struct resource_list * rl,int type,int rid)488 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
489     int type, int rid)
490 {
491 	device_t dev;
492 	struct resource *res;
493 
494 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
495 	    ("trying to reserve non-BAR type %d", type));
496 
497 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
498 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
499 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
500 	    1, 1, 0);
501 	if (res == NULL)
502 		return (NULL);
503 	return (resource_list_find(rl, type, rid));
504 }
505 
506 static struct resource_list_entry *
linux_pci_get_rle(struct pci_dev * pdev,int type,int rid,bool reserve_bar)507 linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar)
508 {
509 	struct pci_devinfo *dinfo;
510 	struct resource_list *rl;
511 	struct resource_list_entry *rle;
512 
513 	dinfo = device_get_ivars(pdev->dev.bsddev);
514 	rl = &dinfo->resources;
515 	rle = resource_list_find(rl, type, rid);
516 	/* Reserve resources for this BAR if needed. */
517 	if (rle == NULL && reserve_bar)
518 		rle = linux_pci_reserve_bar(pdev, rl, type, rid);
519 	return (rle);
520 }
521 
522 int
linux_pci_attach_device(device_t dev,struct pci_driver * pdrv,const struct pci_device_id * id,struct pci_dev * pdev)523 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
524     const struct pci_device_id *id, struct pci_dev *pdev)
525 {
526 	struct resource_list_entry *rle;
527 	device_t parent;
528 	uintptr_t rid;
529 	int error;
530 	bool isdrm;
531 
532 	linux_set_current(curthread);
533 
534 	parent = device_get_parent(dev);
535 	isdrm = pdrv != NULL && pdrv->isdrm;
536 
537 	if (isdrm) {
538 		struct pci_devinfo *dinfo;
539 
540 		dinfo = device_get_ivars(parent);
541 		device_set_ivars(dev, dinfo);
542 	}
543 
544 	error = lkpifill_pci_dev(dev, pdev);
545 	if (error != 0)
546 		return (error);
547 
548 	if (isdrm)
549 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
550 	else
551 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
552 	pdev->devfn = rid;
553 	pdev->pdrv = pdrv;
554 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
555 	if (rle != NULL)
556 		pdev->dev.irq = rle->start;
557 	else
558 		pdev->dev.irq = LINUX_IRQ_INVALID;
559 	pdev->irq = pdev->dev.irq;
560 	error = linux_pdev_dma_init(pdev);
561 	if (error)
562 		goto out_dma_init;
563 
564 	TAILQ_INIT(&pdev->mmio);
565 	spin_lock_init(&pdev->pcie_cap_lock);
566 
567 	spin_lock(&pci_lock);
568 	list_add(&pdev->links, &pci_devices);
569 	spin_unlock(&pci_lock);
570 
571 	if (pdrv != NULL) {
572 		error = pdrv->probe(pdev, id);
573 		if (error)
574 			goto out_probe;
575 	}
576 	return (0);
577 
578 out_probe:
579 	free(pdev->bus, M_DEVBUF);
580 	spin_lock_destroy(&pdev->pcie_cap_lock);
581 	linux_pdev_dma_uninit(pdev);
582 out_dma_init:
583 	spin_lock(&pci_lock);
584 	list_del(&pdev->links);
585 	spin_unlock(&pci_lock);
586 	put_device(&pdev->dev);
587 	return (-error);
588 }
589 
590 static int
linux_pci_detach(device_t dev)591 linux_pci_detach(device_t dev)
592 {
593 	struct pci_dev *pdev;
594 
595 	pdev = device_get_softc(dev);
596 
597 	MPASS(pdev != NULL);
598 
599 	device_set_desc(dev, NULL);
600 
601 	return (linux_pci_detach_device(pdev));
602 }
603 
604 int
linux_pci_detach_device(struct pci_dev * pdev)605 linux_pci_detach_device(struct pci_dev *pdev)
606 {
607 
608 	linux_set_current(curthread);
609 
610 	if (pdev->pdrv != NULL)
611 		pdev->pdrv->remove(pdev);
612 
613 	if (pdev->root != NULL)
614 		pci_dev_put(pdev->root);
615 	free(pdev->bus, M_DEVBUF);
616 	linux_pdev_dma_uninit(pdev);
617 
618 	spin_lock(&pci_lock);
619 	list_del(&pdev->links);
620 	spin_unlock(&pci_lock);
621 	spin_lock_destroy(&pdev->pcie_cap_lock);
622 	put_device(&pdev->dev);
623 
624 	return (0);
625 }
626 
627 static int
lkpi_pci_disable_dev(struct device * dev)628 lkpi_pci_disable_dev(struct device *dev)
629 {
630 
631 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
632 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
633 	return (0);
634 }
635 
636 static struct pci_devres *
lkpi_pci_devres_get_alloc(struct pci_dev * pdev)637 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
638 {
639 	struct pci_devres *dr;
640 
641 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
642 	if (dr == NULL) {
643 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
644 		    GFP_KERNEL | __GFP_ZERO);
645 		if (dr != NULL)
646 			lkpi_devres_add(&pdev->dev, dr);
647 	}
648 
649 	return (dr);
650 }
651 
652 static struct pci_devres *
lkpi_pci_devres_find(struct pci_dev * pdev)653 lkpi_pci_devres_find(struct pci_dev *pdev)
654 {
655 	if (!pdev->managed)
656 		return (NULL);
657 
658 	return (lkpi_pci_devres_get_alloc(pdev));
659 }
660 
661 void
lkpi_pci_devres_release(struct device * dev,void * p)662 lkpi_pci_devres_release(struct device *dev, void *p)
663 {
664 	struct pci_devres *dr;
665 	struct pci_dev *pdev;
666 	int bar;
667 
668 	pdev = to_pci_dev(dev);
669 	dr = p;
670 
671 	if (pdev->msix_enabled)
672 		lkpi_pci_disable_msix(pdev);
673         if (pdev->msi_enabled)
674 		lkpi_pci_disable_msi(pdev);
675 
676 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
677 		dr->enable_io = false;
678 
679 	if (dr->region_mask == 0)
680 		return;
681 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
682 
683 		if ((dr->region_mask & (1 << bar)) == 0)
684 			continue;
685 		pci_release_region(pdev, bar);
686 	}
687 }
688 
689 int
linuxkpi_pcim_enable_device(struct pci_dev * pdev)690 linuxkpi_pcim_enable_device(struct pci_dev *pdev)
691 {
692 	struct pci_devres *dr;
693 	int error;
694 
695 	/* Here we cannot run through the pdev->managed check. */
696 	dr = lkpi_pci_devres_get_alloc(pdev);
697 	if (dr == NULL)
698 		return (-ENOMEM);
699 
700 	/* If resources were enabled before do not do it again. */
701 	if (dr->enable_io)
702 		return (0);
703 
704 	error = pci_enable_device(pdev);
705 	if (error == 0)
706 		dr->enable_io = true;
707 
708 	/* This device is not managed. */
709 	pdev->managed = true;
710 
711 	return (error);
712 }
713 
714 static struct pcim_iomap_devres *
lkpi_pcim_iomap_devres_find(struct pci_dev * pdev)715 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
716 {
717 	struct pcim_iomap_devres *dr;
718 
719 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
720 	    NULL, NULL);
721 	if (dr == NULL) {
722 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
723 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
724 		if (dr != NULL)
725 			lkpi_devres_add(&pdev->dev, dr);
726 	}
727 
728 	if (dr == NULL)
729 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
730 
731 	return (dr);
732 }
733 
734 void __iomem **
linuxkpi_pcim_iomap_table(struct pci_dev * pdev)735 linuxkpi_pcim_iomap_table(struct pci_dev *pdev)
736 {
737 	struct pcim_iomap_devres *dr;
738 
739 	dr = lkpi_pcim_iomap_devres_find(pdev);
740 	if (dr == NULL)
741 		return (NULL);
742 
743 	/*
744 	 * If the driver has manually set a flag to be able to request the
745 	 * resource to use bus_read/write_<n>, return the shadow table.
746 	 */
747 	if (pdev->want_iomap_res)
748 		return ((void **)dr->res_table);
749 
750 	/* This is the Linux default. */
751 	return (dr->mmio_table);
752 }
753 
754 static struct resource *
_lkpi_pci_iomap(struct pci_dev * pdev,int bar,int mmio_size __unused)755 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
756 {
757 	struct pci_mmio_region *mmio, *p;
758 	int type;
759 
760 	type = pci_resource_type(pdev, bar);
761 	if (type < 0) {
762 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
763 		     __func__, bar, type);
764 		return (NULL);
765 	}
766 
767 	/*
768 	 * Check for duplicate mappings.
769 	 * This can happen if a driver calls pci_request_region() first.
770 	 */
771 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
772 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
773 			return (mmio->res);
774 		}
775 	}
776 
777 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
778 	mmio->rid = PCIR_BAR(bar);
779 	mmio->type = type;
780 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
781 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
782 	if (mmio->res == NULL) {
783 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
784 		    "bar %d type %d rid %d\n",
785 		    __func__, bar, type, PCIR_BAR(bar));
786 		free(mmio, M_DEVBUF);
787 		return (NULL);
788 	}
789 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
790 
791 	return (mmio->res);
792 }
793 
794 void *
linuxkpi_pci_iomap_range(struct pci_dev * pdev,int mmio_bar,unsigned long mmio_off,unsigned long mmio_size)795 linuxkpi_pci_iomap_range(struct pci_dev *pdev, int mmio_bar,
796     unsigned long mmio_off, unsigned long mmio_size)
797 {
798 	struct resource *res;
799 
800 	res = _lkpi_pci_iomap(pdev, mmio_bar, mmio_size);
801 	if (res == NULL)
802 		return (NULL);
803 	/* This is a FreeBSD extension so we can use bus_*(). */
804 	if (pdev->want_iomap_res)
805 		return (res);
806 	MPASS(mmio_off < rman_get_size(res));
807 	return ((void *)(rman_get_bushandle(res) + mmio_off));
808 }
809 
810 void *
linuxkpi_pci_iomap(struct pci_dev * pdev,int mmio_bar,int mmio_size)811 linuxkpi_pci_iomap(struct pci_dev *pdev, int mmio_bar, int mmio_size)
812 {
813 	return (linuxkpi_pci_iomap_range(pdev, mmio_bar, 0, mmio_size));
814 }
815 
816 void
linuxkpi_pci_iounmap(struct pci_dev * pdev,void * res)817 linuxkpi_pci_iounmap(struct pci_dev *pdev, void *res)
818 {
819 	struct pci_mmio_region *mmio, *p;
820 	bus_space_handle_t bh = (bus_space_handle_t)res;
821 
822 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
823 		if (pdev->want_iomap_res) {
824 			if (res != mmio->res)
825 				continue;
826 		} else {
827 			if (bh <  rman_get_bushandle(mmio->res) ||
828 			    bh >= rman_get_bushandle(mmio->res) +
829 				  rman_get_size(mmio->res))
830 				continue;
831 		}
832 		bus_release_resource(pdev->dev.bsddev,
833 		    mmio->type, mmio->rid, mmio->res);
834 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
835 		free(mmio, M_DEVBUF);
836 		return;
837 	}
838 }
839 
840 int
linuxkpi_pcim_iomap_regions(struct pci_dev * pdev,uint32_t mask,const char * name)841 linuxkpi_pcim_iomap_regions(struct pci_dev *pdev, uint32_t mask, const char *name)
842 {
843 	struct pcim_iomap_devres *dr;
844 	void *res;
845 	uint32_t mappings;
846 	int bar;
847 
848 	dr = lkpi_pcim_iomap_devres_find(pdev);
849 	if (dr == NULL)
850 		return (-ENOMEM);
851 
852 	/* Now iomap all the requested (by "mask") ones. */
853 	for (bar = mappings = 0; mappings != mask; bar++) {
854 		if ((mask & (1 << bar)) == 0)
855 			continue;
856 
857 		/* Request double is not allowed. */
858 		if (dr->mmio_table[bar] != NULL) {
859 			device_printf(pdev->dev.bsddev, "%s: bar %d %p\n",
860 			    __func__, bar, dr->mmio_table[bar]);
861 			goto err;
862 		}
863 
864 		res = _lkpi_pci_iomap(pdev, bar, 0);
865 		if (res == NULL)
866 			goto err;
867 		dr->mmio_table[bar] = (void *)rman_get_bushandle(res);
868 		dr->res_table[bar] = res;
869 
870 		mappings |= (1 << bar);
871 	}
872 
873 	return (0);
874 err:
875 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
876 		if ((mappings & (1 << bar)) != 0) {
877 			res = dr->mmio_table[bar];
878 			if (res == NULL)
879 				continue;
880 			pci_iounmap(pdev, res);
881 		}
882 	}
883 
884 	return (-EINVAL);
885 }
886 
887 static void
lkpi_pcim_iomap_table_release(struct device * dev,void * p)888 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
889 {
890 	struct pcim_iomap_devres *dr;
891 	struct pci_dev *pdev;
892 	int bar;
893 
894 	dr = p;
895 	pdev = to_pci_dev(dev);
896 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
897 
898 		if (dr->mmio_table[bar] == NULL)
899 			continue;
900 
901 		pci_iounmap(pdev, dr->mmio_table[bar]);
902 	}
903 }
904 
905 static int
linux_pci_suspend(device_t dev)906 linux_pci_suspend(device_t dev)
907 {
908 	const struct dev_pm_ops *pmops;
909 	struct pm_message pm = { };
910 	struct pci_dev *pdev;
911 	int error;
912 
913 	error = 0;
914 	linux_set_current(curthread);
915 	pdev = device_get_softc(dev);
916 	pmops = pdev->pdrv->driver.pm;
917 
918 	if (pdev->pdrv->suspend != NULL)
919 		error = -pdev->pdrv->suspend(pdev, pm);
920 	else if (pmops != NULL && pmops->suspend != NULL) {
921 		error = -pmops->suspend(&pdev->dev);
922 		if (error == 0 && pmops->suspend_late != NULL)
923 			error = -pmops->suspend_late(&pdev->dev);
924 		if (error == 0 && pmops->suspend_noirq != NULL)
925 			error = -pmops->suspend_noirq(&pdev->dev);
926 	}
927 	return (error);
928 }
929 
930 static int
linux_pci_resume(device_t dev)931 linux_pci_resume(device_t dev)
932 {
933 	const struct dev_pm_ops *pmops;
934 	struct pci_dev *pdev;
935 	int error;
936 
937 	error = 0;
938 	linux_set_current(curthread);
939 	pdev = device_get_softc(dev);
940 	pmops = pdev->pdrv->driver.pm;
941 
942 	if (pdev->pdrv->resume != NULL)
943 		error = -pdev->pdrv->resume(pdev);
944 	else if (pmops != NULL && pmops->resume != NULL) {
945 		if (pmops->resume_early != NULL)
946 			error = -pmops->resume_early(&pdev->dev);
947 		if (error == 0 && pmops->resume != NULL)
948 			error = -pmops->resume(&pdev->dev);
949 	}
950 	return (error);
951 }
952 
953 static int
linux_pci_shutdown(device_t dev)954 linux_pci_shutdown(device_t dev)
955 {
956 	struct pci_dev *pdev;
957 
958 	linux_set_current(curthread);
959 	pdev = device_get_softc(dev);
960 	if (pdev->pdrv->shutdown != NULL)
961 		pdev->pdrv->shutdown(pdev);
962 	return (0);
963 }
964 
965 static int
linux_pci_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * pf_config)966 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
967 {
968 	struct pci_dev *pdev;
969 	int error;
970 
971 	linux_set_current(curthread);
972 	pdev = device_get_softc(dev);
973 	if (pdev->pdrv->bsd_iov_init != NULL)
974 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
975 	else
976 		error = EINVAL;
977 	return (error);
978 }
979 
980 static void
linux_pci_iov_uninit(device_t dev)981 linux_pci_iov_uninit(device_t dev)
982 {
983 	struct pci_dev *pdev;
984 
985 	linux_set_current(curthread);
986 	pdev = device_get_softc(dev);
987 	if (pdev->pdrv->bsd_iov_uninit != NULL)
988 		pdev->pdrv->bsd_iov_uninit(dev);
989 }
990 
991 static int
linux_pci_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * vf_config)992 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
993 {
994 	struct pci_dev *pdev;
995 	int error;
996 
997 	linux_set_current(curthread);
998 	pdev = device_get_softc(dev);
999 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
1000 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
1001 	else
1002 		error = EINVAL;
1003 	return (error);
1004 }
1005 
1006 static int
_linux_pci_register_driver(struct pci_driver * pdrv,devclass_t dc)1007 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
1008 {
1009 	int error;
1010 
1011 	linux_set_current(curthread);
1012 	spin_lock(&pci_lock);
1013 	list_add(&pdrv->node, &pci_drivers);
1014 	spin_unlock(&pci_lock);
1015 	if (pdrv->bsddriver.name == NULL)
1016 		pdrv->bsddriver.name = pdrv->name;
1017 	pdrv->bsddriver.methods = pci_methods;
1018 	pdrv->bsddriver.size = sizeof(struct pci_dev);
1019 
1020 	bus_topo_lock();
1021 	error = devclass_add_driver(dc, &pdrv->bsddriver,
1022 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
1023 	bus_topo_unlock();
1024 	return (-error);
1025 }
1026 
1027 int
linux_pci_register_driver(struct pci_driver * pdrv)1028 linux_pci_register_driver(struct pci_driver *pdrv)
1029 {
1030 	devclass_t dc;
1031 
1032 	pdrv->isdrm = strcmp(pdrv->name, "drmn") == 0;
1033 	dc = pdrv->isdrm ? devclass_create("vgapci") : devclass_find("pci");
1034 	if (dc == NULL)
1035 		return (-ENXIO);
1036 	return (_linux_pci_register_driver(pdrv, dc));
1037 }
1038 
1039 static struct resource_list_entry *
lkpi_pci_get_bar(struct pci_dev * pdev,int bar,bool reserve)1040 lkpi_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve)
1041 {
1042 	int type;
1043 
1044 	type = pci_resource_type(pdev, bar);
1045 	if (type < 0)
1046 		return (NULL);
1047 	bar = PCIR_BAR(bar);
1048 	return (linux_pci_get_rle(pdev, type, bar, reserve));
1049 }
1050 
1051 struct device *
lkpi_pci_find_irq_dev(unsigned int irq)1052 lkpi_pci_find_irq_dev(unsigned int irq)
1053 {
1054 	struct pci_dev *pdev;
1055 	struct device *found;
1056 
1057 	found = NULL;
1058 	spin_lock(&pci_lock);
1059 	list_for_each_entry(pdev, &pci_devices, links) {
1060 		if (irq == pdev->dev.irq ||
1061 		    (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) {
1062 			found = &pdev->dev;
1063 			break;
1064 		}
1065 	}
1066 	spin_unlock(&pci_lock);
1067 	return (found);
1068 }
1069 
1070 unsigned long
pci_resource_start(struct pci_dev * pdev,int bar)1071 pci_resource_start(struct pci_dev *pdev, int bar)
1072 {
1073 	struct resource_list_entry *rle;
1074 	rman_res_t newstart;
1075 	device_t dev;
1076 	int error;
1077 
1078 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1079 		return (0);
1080 	dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ?
1081 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
1082 	error = bus_translate_resource(dev, rle->type, rle->start, &newstart);
1083 	if (error != 0) {
1084 		device_printf(pdev->dev.bsddev,
1085 		    "translate of %#jx failed: %d\n",
1086 		    (uintmax_t)rle->start, error);
1087 		return (0);
1088 	}
1089 	return (newstart);
1090 }
1091 
1092 unsigned long
pci_resource_len(struct pci_dev * pdev,int bar)1093 pci_resource_len(struct pci_dev *pdev, int bar)
1094 {
1095 	struct resource_list_entry *rle;
1096 
1097 	if ((rle = lkpi_pci_get_bar(pdev, bar, true)) == NULL)
1098 		return (0);
1099 	return (rle->count);
1100 }
1101 
1102 int
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)1103 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1104 {
1105 	struct resource *res;
1106 	struct pci_devres *dr;
1107 	struct pci_mmio_region *mmio;
1108 	int rid;
1109 	int type;
1110 
1111 	type = pci_resource_type(pdev, bar);
1112 	if (type < 0)
1113 		return (-ENODEV);
1114 	rid = PCIR_BAR(bar);
1115 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
1116 	    RF_ACTIVE|RF_SHAREABLE);
1117 	if (res == NULL) {
1118 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
1119 		    "bar %d type %d rid %d\n",
1120 		    __func__, bar, type, PCIR_BAR(bar));
1121 		return (-ENODEV);
1122 	}
1123 
1124 	/*
1125 	 * It seems there is an implicit devres tracking on these if the device
1126 	 * is managed; otherwise the resources are not automatiaclly freed on
1127 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
1128 	 * drivers.
1129 	 */
1130 	dr = lkpi_pci_devres_find(pdev);
1131 	if (dr != NULL) {
1132 		dr->region_mask |= (1 << bar);
1133 		dr->region_table[bar] = res;
1134 	}
1135 
1136 	/* Even if the device is not managed we need to track it for iomap. */
1137 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
1138 	mmio->rid = PCIR_BAR(bar);
1139 	mmio->type = type;
1140 	mmio->res = res;
1141 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
1142 
1143 	return (0);
1144 }
1145 
1146 int
linuxkpi_pci_request_regions(struct pci_dev * pdev,const char * res_name)1147 linuxkpi_pci_request_regions(struct pci_dev *pdev, const char *res_name)
1148 {
1149 	int error;
1150 	int i;
1151 
1152 	for (i = 0; i <= PCIR_MAX_BAR_0; i++) {
1153 		error = pci_request_region(pdev, i, res_name);
1154 		if (error && error != -ENODEV) {
1155 			pci_release_regions(pdev);
1156 			return (error);
1157 		}
1158 	}
1159 	return (0);
1160 }
1161 
1162 void
linuxkpi_pci_release_region(struct pci_dev * pdev,int bar)1163 linuxkpi_pci_release_region(struct pci_dev *pdev, int bar)
1164 {
1165 	struct resource_list_entry *rle;
1166 	struct pci_devres *dr;
1167 	struct pci_mmio_region *mmio, *p;
1168 
1169 	if ((rle = lkpi_pci_get_bar(pdev, bar, false)) == NULL)
1170 		return;
1171 
1172 	/*
1173 	 * As we implicitly track the requests we also need to clear them on
1174 	 * release.  Do clear before resource release.
1175 	 */
1176 	dr = lkpi_pci_devres_find(pdev);
1177 	if (dr != NULL) {
1178 		KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d"
1179 		    " region_table res %p != rel->res %p\n", __func__, pdev,
1180 		    bar, dr->region_table[bar], rle->res));
1181 		dr->region_table[bar] = NULL;
1182 		dr->region_mask &= ~(1 << bar);
1183 	}
1184 
1185 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
1186 		if (rle->res != (void *)rman_get_bushandle(mmio->res))
1187 			continue;
1188 		TAILQ_REMOVE(&pdev->mmio, mmio, next);
1189 		free(mmio, M_DEVBUF);
1190 	}
1191 
1192 	bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res);
1193 }
1194 
1195 void
linuxkpi_pci_release_regions(struct pci_dev * pdev)1196 linuxkpi_pci_release_regions(struct pci_dev *pdev)
1197 {
1198 	int i;
1199 
1200 	for (i = 0; i <= PCIR_MAX_BAR_0; i++)
1201 		pci_release_region(pdev, i);
1202 }
1203 
1204 int
linux_pci_register_drm_driver(struct pci_driver * pdrv)1205 linux_pci_register_drm_driver(struct pci_driver *pdrv)
1206 {
1207 	devclass_t dc;
1208 
1209 	dc = devclass_create("vgapci");
1210 	if (dc == NULL)
1211 		return (-ENXIO);
1212 	pdrv->isdrm = true;
1213 	pdrv->name = "drmn";
1214 	return (_linux_pci_register_driver(pdrv, dc));
1215 }
1216 
1217 void
linux_pci_unregister_driver(struct pci_driver * pdrv)1218 linux_pci_unregister_driver(struct pci_driver *pdrv)
1219 {
1220 	devclass_t bus;
1221 
1222 	bus = devclass_find(pdrv->isdrm ? "vgapci" : "pci");
1223 
1224 	spin_lock(&pci_lock);
1225 	list_del(&pdrv->node);
1226 	spin_unlock(&pci_lock);
1227 	bus_topo_lock();
1228 	if (bus != NULL)
1229 		devclass_delete_driver(bus, &pdrv->bsddriver);
1230 	bus_topo_unlock();
1231 }
1232 
1233 void
linux_pci_unregister_drm_driver(struct pci_driver * pdrv)1234 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
1235 {
1236 	devclass_t bus;
1237 
1238 	bus = devclass_find("vgapci");
1239 
1240 	spin_lock(&pci_lock);
1241 	list_del(&pdrv->node);
1242 	spin_unlock(&pci_lock);
1243 	bus_topo_lock();
1244 	if (bus != NULL)
1245 		devclass_delete_driver(bus, &pdrv->bsddriver);
1246 	bus_topo_unlock();
1247 }
1248 
1249 int
linuxkpi_pci_enable_msix(struct pci_dev * pdev,struct msix_entry * entries,int nreq)1250 linuxkpi_pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries,
1251     int nreq)
1252 {
1253 	struct resource_list_entry *rle;
1254 	int error;
1255 	int avail;
1256 	int i;
1257 
1258 	avail = pci_msix_count(pdev->dev.bsddev);
1259 	if (avail < nreq) {
1260 		if (avail == 0)
1261 			return -EINVAL;
1262 		return avail;
1263 	}
1264 	avail = nreq;
1265 	if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0)
1266 		return error;
1267 	/*
1268 	* Handle case where "pci_alloc_msix()" may allocate less
1269 	* interrupts than available and return with no error:
1270 	*/
1271 	if (avail < nreq) {
1272 		pci_release_msi(pdev->dev.bsddev);
1273 		return avail;
1274 	}
1275 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1276 	pdev->dev.irq_start = rle->start;
1277 	pdev->dev.irq_end = rle->start + avail;
1278 	for (i = 0; i < nreq; i++)
1279 		entries[i].vector = pdev->dev.irq_start + i;
1280 	pdev->msix_enabled = true;
1281 	return (0);
1282 }
1283 
1284 int
_lkpi_pci_enable_msi_range(struct pci_dev * pdev,int minvec,int maxvec)1285 _lkpi_pci_enable_msi_range(struct pci_dev *pdev, int minvec, int maxvec)
1286 {
1287 	struct resource_list_entry *rle;
1288 	int error;
1289 	int nvec;
1290 
1291 	if (maxvec < minvec)
1292 		return (-EINVAL);
1293 
1294 	nvec = pci_msi_count(pdev->dev.bsddev);
1295 	if (nvec < 1 || nvec < minvec)
1296 		return (-ENOSPC);
1297 
1298 	nvec = min(nvec, maxvec);
1299 	if ((error = -pci_alloc_msi(pdev->dev.bsddev, &nvec)) != 0)
1300 		return error;
1301 
1302 	/* Native PCI might only ever ask for 32 vectors. */
1303 	if (nvec < minvec) {
1304 		pci_release_msi(pdev->dev.bsddev);
1305 		return (-ENOSPC);
1306 	}
1307 
1308 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false);
1309 	pdev->dev.irq_start = rle->start;
1310 	pdev->dev.irq_end = rle->start + nvec;
1311 	pdev->irq = rle->start;
1312 	pdev->msi_enabled = true;
1313 	return (0);
1314 }
1315 
1316 int
pci_alloc_irq_vectors(struct pci_dev * pdev,int minv,int maxv,unsigned int flags)1317 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
1318     unsigned int flags)
1319 {
1320 	int error;
1321 
1322 	if (flags & PCI_IRQ_MSIX) {
1323 		struct msix_entry *entries;
1324 		int i;
1325 
1326 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
1327 		if (entries == NULL) {
1328 			error = -ENOMEM;
1329 			goto out;
1330 		}
1331 		for (i = 0; i < maxv; ++i)
1332 			entries[i].entry = i;
1333 		error = pci_enable_msix(pdev, entries, maxv);
1334 out:
1335 		kfree(entries);
1336 		if (error == 0 && pdev->msix_enabled)
1337 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1338 	}
1339 	if (flags & PCI_IRQ_MSI) {
1340 		if (pci_msi_count(pdev->dev.bsddev) < minv)
1341 			return (-ENOSPC);
1342 		error = _lkpi_pci_enable_msi_range(pdev, minv, maxv);
1343 		if (error == 0 && pdev->msi_enabled)
1344 			return (pdev->dev.irq_end - pdev->dev.irq_start);
1345 	}
1346 	if (flags & PCI_IRQ_INTX) {
1347 		if (pdev->irq)
1348 			return (1);
1349 	}
1350 
1351 	return (-EINVAL);
1352 }
1353 
1354 struct msi_desc *
lkpi_pci_msi_desc_alloc(int irq)1355 lkpi_pci_msi_desc_alloc(int irq)
1356 {
1357 	struct device *dev;
1358 	struct pci_dev *pdev;
1359 	struct msi_desc *desc;
1360 	struct pci_devinfo *dinfo;
1361 	struct pcicfg_msi *msi;
1362 	int vec;
1363 
1364 	dev = lkpi_pci_find_irq_dev(irq);
1365 	if (dev == NULL)
1366 		return (NULL);
1367 
1368 	pdev = to_pci_dev(dev);
1369 
1370 	if (pdev->msi_desc == NULL)
1371 		return (NULL);
1372 
1373 	if (irq < pdev->dev.irq_start || irq >= pdev->dev.irq_end)
1374 		return (NULL);
1375 
1376 	vec = pdev->dev.irq_start - irq;
1377 
1378 	if (pdev->msi_desc[vec] != NULL)
1379 		return (pdev->msi_desc[vec]);
1380 
1381 	dinfo = device_get_ivars(dev->bsddev);
1382 	msi = &dinfo->cfg.msi;
1383 
1384 	desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO);
1385 
1386 	desc->pci.msi_attrib.is_64 =
1387 	   (msi->msi_ctrl & PCIM_MSICTRL_64BIT) ? true : false;
1388 	desc->msg.data = msi->msi_data;
1389 
1390 	pdev->msi_desc[vec] = desc;
1391 
1392 	return (desc);
1393 }
1394 
1395 bool
pci_device_is_present(struct pci_dev * pdev)1396 pci_device_is_present(struct pci_dev *pdev)
1397 {
1398 	device_t dev;
1399 
1400 	dev = pdev->dev.bsddev;
1401 
1402 	return (bus_child_present(dev));
1403 }
1404 
1405 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
1406 
1407 struct linux_dma_obj {
1408 	void		*vaddr;
1409 	uint64_t	dma_addr;
1410 	bus_dmamap_t	dmamap;
1411 	bus_dma_tag_t	dmat;
1412 };
1413 
1414 static uma_zone_t linux_dma_trie_zone;
1415 static uma_zone_t linux_dma_obj_zone;
1416 
1417 static void
linux_dma_init(void * arg)1418 linux_dma_init(void *arg)
1419 {
1420 
1421 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
1422 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
1423 	    UMA_ALIGN_PTR, 0);
1424 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
1425 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
1426 	    UMA_ALIGN_PTR, 0);
1427 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
1428 }
1429 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
1430 
1431 static void
linux_dma_uninit(void * arg)1432 linux_dma_uninit(void *arg)
1433 {
1434 
1435 	counter_u64_free(lkpi_pci_nseg1_fail);
1436 	uma_zdestroy(linux_dma_obj_zone);
1437 	uma_zdestroy(linux_dma_trie_zone);
1438 }
1439 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
1440 
1441 static void *
linux_dma_trie_alloc(struct pctrie * ptree)1442 linux_dma_trie_alloc(struct pctrie *ptree)
1443 {
1444 
1445 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
1446 }
1447 
1448 static void
linux_dma_trie_free(struct pctrie * ptree,void * node)1449 linux_dma_trie_free(struct pctrie *ptree, void *node)
1450 {
1451 
1452 	uma_zfree(linux_dma_trie_zone, node);
1453 }
1454 
1455 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
1456     linux_dma_trie_free);
1457 
1458 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1459 static dma_addr_t
linux_dma_map_phys_common(struct device * dev,vm_paddr_t phys,size_t len,bus_dma_tag_t dmat)1460 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
1461     bus_dma_tag_t dmat)
1462 {
1463 	struct linux_dma_priv *priv;
1464 	struct linux_dma_obj *obj;
1465 	int error, nseg;
1466 	bus_dma_segment_t seg;
1467 
1468 	priv = dev->dma_priv;
1469 
1470 	/*
1471 	 * If the resultant mapping will be entirely 1:1 with the
1472 	 * physical address, short-circuit the remainder of the
1473 	 * bus_dma API.  This avoids tracking collisions in the pctrie
1474 	 * with the additional benefit of reducing overhead.
1475 	 */
1476 	if (bus_dma_id_mapped(dmat, phys, len))
1477 		return (phys);
1478 
1479 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1480 	if (obj == NULL) {
1481 		return (0);
1482 	}
1483 	obj->dmat = dmat;
1484 
1485 	DMA_PRIV_LOCK(priv);
1486 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1487 		DMA_PRIV_UNLOCK(priv);
1488 		uma_zfree(linux_dma_obj_zone, obj);
1489 		return (0);
1490 	}
1491 
1492 	nseg = -1;
1493 	error = _bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1494 	    BUS_DMA_NOWAIT, &seg, &nseg);
1495 	if (error != 0) {
1496 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1497 		DMA_PRIV_UNLOCK(priv);
1498 		uma_zfree(linux_dma_obj_zone, obj);
1499 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
1500 		if (linuxkpi_debug) {
1501 			device_printf(dev->bsddev, "%s: _bus_dmamap_load_phys "
1502 			    "error %d, phys %#018jx len %zu\n", __func__,
1503 			    error, (uintmax_t)phys, len);
1504 			dump_stack();
1505 		}
1506 		return (0);
1507 	}
1508 
1509 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1510 	obj->dma_addr = seg.ds_addr;
1511 
1512 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1513 	if (error != 0) {
1514 		bus_dmamap_unload(obj->dmat, obj->dmamap);
1515 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
1516 		DMA_PRIV_UNLOCK(priv);
1517 		uma_zfree(linux_dma_obj_zone, obj);
1518 		return (0);
1519 	}
1520 	DMA_PRIV_UNLOCK(priv);
1521 	return (obj->dma_addr);
1522 }
1523 #else
1524 static dma_addr_t
linux_dma_map_phys_common(struct device * dev __unused,vm_paddr_t phys,size_t len __unused,bus_dma_tag_t dmat __unused)1525 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1526     size_t len __unused, bus_dma_tag_t dmat __unused)
1527 {
1528 	return (phys);
1529 }
1530 #endif
1531 
1532 dma_addr_t
lkpi_dma_map_phys(struct device * dev,vm_paddr_t phys,size_t len,enum dma_data_direction direction,unsigned long attrs)1533 lkpi_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len,
1534     enum dma_data_direction direction, unsigned long attrs)
1535 {
1536 	struct linux_dma_priv *priv;
1537 	dma_addr_t dma;
1538 
1539 	priv = dev->dma_priv;
1540 	dma = linux_dma_map_phys_common(dev, phys, len, priv->dmat);
1541 	if (dma_mapping_error(dev, dma))
1542 		return (dma);
1543 
1544 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1545 		dma_sync_single_for_device(dev, dma, len, direction);
1546 
1547 	return (dma);
1548 }
1549 
1550 /* For backward compat only so we can MFC this. Remove before 15. */
1551 dma_addr_t
linux_dma_map_phys(struct device * dev,vm_paddr_t phys,size_t len)1552 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1553 {
1554 	return (lkpi_dma_map_phys(dev, phys, len, DMA_NONE, 0));
1555 }
1556 
1557 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1558 void
lkpi_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len,enum dma_data_direction direction,unsigned long attrs)1559 lkpi_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len,
1560     enum dma_data_direction direction, unsigned long attrs)
1561 {
1562 	struct linux_dma_priv *priv;
1563 	struct linux_dma_obj *obj;
1564 
1565 	priv = dev->dma_priv;
1566 
1567 	if (pctrie_is_empty(&priv->ptree))
1568 		return;
1569 
1570 	DMA_PRIV_LOCK(priv);
1571 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1572 	if (obj == NULL) {
1573 		DMA_PRIV_UNLOCK(priv);
1574 		return;
1575 	}
1576 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1577 
1578 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1579 		dma_sync_single_for_cpu(dev, dma_addr, len, direction);
1580 
1581 	bus_dmamap_unload(obj->dmat, obj->dmamap);
1582 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
1583 	DMA_PRIV_UNLOCK(priv);
1584 
1585 	uma_zfree(linux_dma_obj_zone, obj);
1586 }
1587 #else
1588 void
lkpi_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len,enum dma_data_direction direction,unsigned long attrs)1589 lkpi_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len,
1590     enum dma_data_direction direction, unsigned long attrs)
1591 {
1592 }
1593 #endif
1594 
1595 /* For backward compat only so we can MFC this. Remove before 15. */
1596 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1597 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1598 {
1599 	lkpi_dma_unmap(dev, dma_addr, len, DMA_NONE, 0);
1600 }
1601 
1602 void *
linux_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1603 linux_dma_alloc_coherent(struct device *dev, size_t size,
1604     dma_addr_t *dma_handle, gfp_t flag)
1605 {
1606 	struct linux_dma_priv *priv;
1607 	vm_paddr_t high;
1608 	size_t align;
1609 	void *mem;
1610 
1611 	if (dev == NULL || dev->dma_priv == NULL) {
1612 		*dma_handle = 0;
1613 		return (NULL);
1614 	}
1615 	priv = dev->dma_priv;
1616 	if (priv->dma_coherent_mask)
1617 		high = priv->dma_coherent_mask;
1618 	else
1619 		/* Coherent is lower 32bit only by default in Linux. */
1620 		high = BUS_SPACE_MAXADDR_32BIT;
1621 	align = PAGE_SIZE << get_order(size);
1622 	/* Always zero the allocation. */
1623 	flag |= M_ZERO;
1624 	mem = kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1625 	    align, 0, VM_MEMATTR_DEFAULT);
1626 	if (mem != NULL) {
1627 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1628 		    priv->dmat_coherent);
1629 		if (*dma_handle == 0) {
1630 			kmem_free(mem, size);
1631 			mem = NULL;
1632 		}
1633 	} else {
1634 		*dma_handle = 0;
1635 	}
1636 	return (mem);
1637 }
1638 
1639 struct lkpi_devres_dmam_coherent {
1640 	size_t size;
1641 	dma_addr_t *handle;
1642 	void *mem;
1643 };
1644 
1645 static void
lkpi_dmam_free_coherent(struct device * dev,void * p)1646 lkpi_dmam_free_coherent(struct device *dev, void *p)
1647 {
1648 	struct lkpi_devres_dmam_coherent *dr;
1649 
1650 	dr = p;
1651 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
1652 }
1653 
1654 void *
linuxkpi_dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1655 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1656     gfp_t flag)
1657 {
1658 	struct lkpi_devres_dmam_coherent *dr;
1659 
1660 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
1661 	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
1662 
1663 	if (dr == NULL)
1664 		return (NULL);
1665 
1666 	dr->size = size;
1667 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
1668 	dr->handle = dma_handle;
1669 	if (dr->mem == NULL) {
1670 		lkpi_devres_free(dr);
1671 		return (NULL);
1672 	}
1673 
1674 	lkpi_devres_add(dev, dr);
1675 	return (dr->mem);
1676 }
1677 
1678 void
linuxkpi_dma_sync(struct device * dev,dma_addr_t dma_addr,size_t size,bus_dmasync_op_t op)1679 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1680     bus_dmasync_op_t op)
1681 {
1682 	struct linux_dma_priv *priv;
1683 	struct linux_dma_obj *obj;
1684 
1685 	priv = dev->dma_priv;
1686 
1687 	if (pctrie_is_empty(&priv->ptree))
1688 		return;
1689 
1690 	DMA_PRIV_LOCK(priv);
1691 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1692 	if (obj == NULL) {
1693 		DMA_PRIV_UNLOCK(priv);
1694 		return;
1695 	}
1696 
1697 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1698 	DMA_PRIV_UNLOCK(priv);
1699 }
1700 
1701 int
linux_dma_map_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction direction,unsigned long attrs)1702 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1703     enum dma_data_direction direction, unsigned long attrs)
1704 {
1705 	struct linux_dma_priv *priv;
1706 	struct scatterlist *sg;
1707 	int i, nseg;
1708 	bus_dma_segment_t seg;
1709 
1710 	priv = dev->dma_priv;
1711 
1712 	DMA_PRIV_LOCK(priv);
1713 
1714 	/* create common DMA map in the first S/G entry */
1715 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1716 		DMA_PRIV_UNLOCK(priv);
1717 		return (0);
1718 	}
1719 
1720 	/* load all S/G list entries */
1721 	for_each_sg(sgl, sg, nents, i) {
1722 		nseg = -1;
1723 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1724 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1725 		    &seg, &nseg) != 0) {
1726 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
1727 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1728 			DMA_PRIV_UNLOCK(priv);
1729 			return (0);
1730 		}
1731 		KASSERT(nseg == 0,
1732 		    ("More than one segment (nseg=%d)", nseg + 1));
1733 
1734 		sg_dma_address(sg) = seg.ds_addr;
1735 	}
1736 
1737 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0)
1738 		goto skip_sync;
1739 
1740 	switch (direction) {
1741 	case DMA_BIDIRECTIONAL:
1742 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1743 		break;
1744 	case DMA_TO_DEVICE:
1745 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1746 		break;
1747 	case DMA_FROM_DEVICE:
1748 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1749 		break;
1750 	default:
1751 		break;
1752 	}
1753 skip_sync:
1754 
1755 	DMA_PRIV_UNLOCK(priv);
1756 
1757 	return (nents);
1758 }
1759 
1760 void
linux_dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents __unused,enum dma_data_direction direction,unsigned long attrs)1761 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1762     int nents __unused, enum dma_data_direction direction,
1763     unsigned long attrs)
1764 {
1765 	struct linux_dma_priv *priv;
1766 
1767 	priv = dev->dma_priv;
1768 
1769 	DMA_PRIV_LOCK(priv);
1770 
1771 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) != 0)
1772 		goto skip_sync;
1773 
1774 	switch (direction) {
1775 	case DMA_BIDIRECTIONAL:
1776 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1777 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1778 		break;
1779 	case DMA_TO_DEVICE:
1780 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1781 		break;
1782 	case DMA_FROM_DEVICE:
1783 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1784 		break;
1785 	default:
1786 		break;
1787 	}
1788 skip_sync:
1789 
1790 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
1791 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1792 	DMA_PRIV_UNLOCK(priv);
1793 }
1794 
1795 struct dma_pool {
1796 	struct device  *pool_device;
1797 	uma_zone_t	pool_zone;
1798 	struct mtx	pool_lock;
1799 	bus_dma_tag_t	pool_dmat;
1800 	size_t		pool_entry_size;
1801 	struct pctrie	pool_ptree;
1802 };
1803 
1804 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1805 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1806 
1807 static inline int
dma_pool_obj_ctor(void * mem,int size,void * arg,int flags)1808 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1809 {
1810 	struct linux_dma_obj *obj = mem;
1811 	struct dma_pool *pool = arg;
1812 	int error, nseg;
1813 	bus_dma_segment_t seg;
1814 
1815 	nseg = -1;
1816 	DMA_POOL_LOCK(pool);
1817 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1818 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1819 	    &seg, &nseg);
1820 	DMA_POOL_UNLOCK(pool);
1821 	if (error != 0) {
1822 		return (error);
1823 	}
1824 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1825 	obj->dma_addr = seg.ds_addr;
1826 
1827 	return (0);
1828 }
1829 
1830 static void
dma_pool_obj_dtor(void * mem,int size,void * arg)1831 dma_pool_obj_dtor(void *mem, int size, void *arg)
1832 {
1833 	struct linux_dma_obj *obj = mem;
1834 	struct dma_pool *pool = arg;
1835 
1836 	DMA_POOL_LOCK(pool);
1837 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1838 	DMA_POOL_UNLOCK(pool);
1839 }
1840 
1841 static int
dma_pool_obj_import(void * arg,void ** store,int count,int domain __unused,int flags)1842 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1843     int flags)
1844 {
1845 	struct dma_pool *pool = arg;
1846 	struct linux_dma_obj *obj;
1847 	int error, i;
1848 
1849 	for (i = 0; i < count; i++) {
1850 		obj = uma_zalloc(linux_dma_obj_zone, flags);
1851 		if (obj == NULL)
1852 			break;
1853 
1854 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1855 		    BUS_DMA_NOWAIT, &obj->dmamap);
1856 		if (error!= 0) {
1857 			uma_zfree(linux_dma_obj_zone, obj);
1858 			break;
1859 		}
1860 
1861 		store[i] = obj;
1862 	}
1863 
1864 	return (i);
1865 }
1866 
1867 static void
dma_pool_obj_release(void * arg,void ** store,int count)1868 dma_pool_obj_release(void *arg, void **store, int count)
1869 {
1870 	struct dma_pool *pool = arg;
1871 	struct linux_dma_obj *obj;
1872 	int i;
1873 
1874 	for (i = 0; i < count; i++) {
1875 		obj = store[i];
1876 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1877 		uma_zfree(linux_dma_obj_zone, obj);
1878 	}
1879 }
1880 
1881 struct dma_pool *
linux_dma_pool_create(char * name,struct device * dev,size_t size,size_t align,size_t boundary)1882 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1883     size_t align, size_t boundary)
1884 {
1885 	struct linux_dma_priv *priv;
1886 	struct dma_pool *pool;
1887 
1888 	priv = dev->dma_priv;
1889 
1890 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1891 	pool->pool_device = dev;
1892 	pool->pool_entry_size = size;
1893 
1894 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1895 	    align, boundary,		/* alignment, boundary */
1896 	    priv->dma_mask,		/* lowaddr */
1897 	    BUS_SPACE_MAXADDR,		/* highaddr */
1898 	    NULL, NULL,			/* filtfunc, filtfuncarg */
1899 	    size,			/* maxsize */
1900 	    1,				/* nsegments */
1901 	    size,			/* maxsegsz */
1902 	    0,				/* flags */
1903 	    NULL, NULL,			/* lockfunc, lockfuncarg */
1904 	    &pool->pool_dmat)) {
1905 		kfree(pool);
1906 		return (NULL);
1907 	}
1908 
1909 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1910 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1911 	    dma_pool_obj_release, pool, 0);
1912 
1913 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1914 	pctrie_init(&pool->pool_ptree);
1915 
1916 	return (pool);
1917 }
1918 
1919 void
linux_dma_pool_destroy(struct dma_pool * pool)1920 linux_dma_pool_destroy(struct dma_pool *pool)
1921 {
1922 
1923 	uma_zdestroy(pool->pool_zone);
1924 	bus_dma_tag_destroy(pool->pool_dmat);
1925 	mtx_destroy(&pool->pool_lock);
1926 	kfree(pool);
1927 }
1928 
1929 void
lkpi_dmam_pool_destroy(struct device * dev,void * p)1930 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1931 {
1932 	struct dma_pool *pool;
1933 
1934 	pool = *(struct dma_pool **)p;
1935 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1936 	linux_dma_pool_destroy(pool);
1937 }
1938 
1939 void *
linux_dma_pool_alloc(struct dma_pool * pool,gfp_t mem_flags,dma_addr_t * handle)1940 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1941     dma_addr_t *handle)
1942 {
1943 	struct linux_dma_obj *obj;
1944 
1945 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1946 	if (obj == NULL)
1947 		return (NULL);
1948 
1949 	DMA_POOL_LOCK(pool);
1950 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1951 		DMA_POOL_UNLOCK(pool);
1952 		uma_zfree_arg(pool->pool_zone, obj, pool);
1953 		return (NULL);
1954 	}
1955 	DMA_POOL_UNLOCK(pool);
1956 
1957 	*handle = obj->dma_addr;
1958 	return (obj->vaddr);
1959 }
1960 
1961 void
linux_dma_pool_free(struct dma_pool * pool,void * vaddr,dma_addr_t dma_addr)1962 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1963 {
1964 	struct linux_dma_obj *obj;
1965 
1966 	DMA_POOL_LOCK(pool);
1967 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1968 	if (obj == NULL) {
1969 		DMA_POOL_UNLOCK(pool);
1970 		return;
1971 	}
1972 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1973 	DMA_POOL_UNLOCK(pool);
1974 
1975 	uma_zfree_arg(pool->pool_zone, obj, pool);
1976 }
1977 
1978 static int
linux_backlight_get_status(device_t dev,struct backlight_props * props)1979 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1980 {
1981 	struct pci_dev *pdev;
1982 
1983 	linux_set_current(curthread);
1984 	pdev = device_get_softc(dev);
1985 
1986 	props->brightness = pdev->dev.bd->props.brightness;
1987 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1988 	props->nlevels = 0;
1989 
1990 	return (0);
1991 }
1992 
1993 static int
linux_backlight_get_info(device_t dev,struct backlight_info * info)1994 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1995 {
1996 	struct pci_dev *pdev;
1997 
1998 	linux_set_current(curthread);
1999 	pdev = device_get_softc(dev);
2000 
2001 	info->type = BACKLIGHT_TYPE_PANEL;
2002 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
2003 	return (0);
2004 }
2005 
2006 static int
linux_backlight_update_status(device_t dev,struct backlight_props * props)2007 linux_backlight_update_status(device_t dev, struct backlight_props *props)
2008 {
2009 	struct pci_dev *pdev;
2010 
2011 	linux_set_current(curthread);
2012 	pdev = device_get_softc(dev);
2013 
2014 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
2015 		props->brightness / 100;
2016 	pdev->dev.bd->props.power = props->brightness == 0 ?
2017 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
2018 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
2019 }
2020 
2021 struct backlight_device *
linux_backlight_device_register(const char * name,struct device * dev,void * data,const struct backlight_ops * ops,struct backlight_properties * props)2022 linux_backlight_device_register(const char *name, struct device *dev,
2023     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
2024 {
2025 
2026 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
2027 	dev->bd->ops = ops;
2028 	dev->bd->props.type = props->type;
2029 	dev->bd->props.max_brightness = props->max_brightness;
2030 	dev->bd->props.brightness = props->brightness;
2031 	dev->bd->props.power = props->power;
2032 	dev->bd->data = data;
2033 	dev->bd->dev = dev;
2034 	dev->bd->name = strdup(name, M_DEVBUF);
2035 
2036 	dev->backlight_dev = backlight_register(name, dev->bsddev);
2037 
2038 	return (dev->bd);
2039 }
2040 
2041 void
linux_backlight_device_unregister(struct backlight_device * bd)2042 linux_backlight_device_unregister(struct backlight_device *bd)
2043 {
2044 
2045 	backlight_destroy(bd->dev->backlight_dev);
2046 	free(bd->name, M_DEVBUF);
2047 	free(bd, M_DEVBUF);
2048 }
2049