1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DMA Pool allocator 4 * 5 * Copyright 2001 David Brownell 6 * Copyright 2007 Intel Corporation 7 * Author: Matthew Wilcox <willy@linux.intel.com> 8 * 9 * This allocator returns small blocks of a given size which are DMA-able by 10 * the given device. It uses the dma_alloc_coherent page allocator to get 11 * new pages, then splits them up into blocks of the required size. 12 * Many older drivers still have their own code to do this. 13 * 14 * The current design of this allocator is fairly simple. The pool is 15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 16 * allocated pages. Each page in the page_list is split into blocks of at 17 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 18 * list of free blocks across all pages. Used blocks aren't tracked, but we 19 * keep a count of how many are currently allocated from each page. 20 */ 21 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dmapool.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/export.h> 28 #include <linux/mutex.h> 29 #include <linux/poison.h> 30 #include <linux/sched.h> 31 #include <linux/sched/mm.h> 32 #include <linux/slab.h> 33 #include <linux/stat.h> 34 #include <linux/spinlock.h> 35 #include <linux/string.h> 36 #include <linux/types.h> 37 #include <linux/wait.h> 38 39 #ifdef CONFIG_SLUB_DEBUG_ON 40 #define DMAPOOL_DEBUG 1 41 #endif 42 43 struct dma_block { 44 struct dma_block *next_block; 45 dma_addr_t dma; 46 }; 47 48 struct dma_pool { /* the pool */ 49 struct list_head page_list; 50 spinlock_t lock; 51 struct dma_block *next_block; 52 size_t nr_blocks; 53 size_t nr_active; 54 size_t nr_pages; 55 struct device *dev; 56 unsigned int size; 57 unsigned int allocation; 58 unsigned int boundary; 59 int node; 60 char name[32]; 61 struct list_head pools; 62 }; 63 64 struct dma_page { /* cacheable header for 'allocation' bytes */ 65 struct list_head page_list; 66 void *vaddr; 67 dma_addr_t dma; 68 }; 69 70 static DEFINE_MUTEX(pools_lock); 71 static DEFINE_MUTEX(pools_reg_lock); 72 73 static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf) 74 { 75 struct dma_pool *pool; 76 unsigned size; 77 78 size = sysfs_emit(buf, "poolinfo - 0.1\n"); 79 80 mutex_lock(&pools_lock); 81 list_for_each_entry(pool, &dev->dma_pools, pools) { 82 /* per-pool info, no real statistics yet */ 83 size += sysfs_emit_at(buf, size, "%-16s %4zu %4zu %4u %2zu\n", 84 pool->name, pool->nr_active, 85 pool->nr_blocks, pool->size, 86 pool->nr_pages); 87 } 88 mutex_unlock(&pools_lock); 89 90 return size; 91 } 92 93 static DEVICE_ATTR_RO(pools); 94 95 #ifdef DMAPOOL_DEBUG 96 static void pool_check_block(struct dma_pool *pool, struct dma_block *block, 97 gfp_t mem_flags) 98 { 99 u8 *data = (void *)block; 100 int i; 101 102 for (i = sizeof(struct dma_block); i < pool->size; i++) { 103 if (data[i] == POOL_POISON_FREED) 104 continue; 105 dev_err(pool->dev, "%s %s, %p (corrupted)\n", __func__, 106 pool->name, block); 107 108 /* 109 * Dump the first 4 bytes even if they are not 110 * POOL_POISON_FREED 111 */ 112 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, 113 data, pool->size, 1); 114 break; 115 } 116 117 if (!want_init_on_alloc(mem_flags)) 118 memset(block, POOL_POISON_ALLOCATED, pool->size); 119 } 120 121 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 122 { 123 struct dma_page *page; 124 125 list_for_each_entry(page, &pool->page_list, page_list) { 126 if (dma < page->dma) 127 continue; 128 if ((dma - page->dma) < pool->allocation) 129 return page; 130 } 131 return NULL; 132 } 133 134 static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 135 { 136 struct dma_block *block = pool->next_block; 137 struct dma_page *page; 138 139 page = pool_find_page(pool, dma); 140 if (!page) { 141 dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n", 142 __func__, pool->name, vaddr, &dma); 143 return true; 144 } 145 146 while (block) { 147 if (block != vaddr) { 148 block = block->next_block; 149 continue; 150 } 151 dev_err(pool->dev, "%s %s, dma %pad already free\n", 152 __func__, pool->name, &dma); 153 return true; 154 } 155 156 memset(vaddr, POOL_POISON_FREED, pool->size); 157 return false; 158 } 159 160 static void pool_init_page(struct dma_pool *pool, struct dma_page *page) 161 { 162 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 163 } 164 #else 165 static void pool_check_block(struct dma_pool *pool, struct dma_block *block, 166 gfp_t mem_flags) 167 { 168 } 169 170 static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 171 { 172 if (want_init_on_free()) 173 memset(vaddr, 0, pool->size); 174 return false; 175 } 176 177 static void pool_init_page(struct dma_pool *pool, struct dma_page *page) 178 { 179 } 180 #endif 181 182 static struct dma_block *pool_block_pop(struct dma_pool *pool) 183 { 184 struct dma_block *block = pool->next_block; 185 186 if (block) { 187 pool->next_block = block->next_block; 188 pool->nr_active++; 189 } 190 return block; 191 } 192 193 static void pool_block_push(struct dma_pool *pool, struct dma_block *block, 194 dma_addr_t dma) 195 { 196 block->dma = dma; 197 block->next_block = pool->next_block; 198 pool->next_block = block; 199 } 200 201 202 /** 203 * dma_pool_create_node - Creates a pool of consistent memory blocks, for dma. 204 * @name: name of pool, for diagnostics 205 * @dev: device that will be doing the DMA 206 * @size: size of the blocks in this pool. 207 * @align: alignment requirement for blocks; must be a power of two 208 * @boundary: returned blocks won't cross this power of two boundary 209 * @node: optional NUMA node to allocate structs 'dma_pool' and 'dma_page' on 210 * Context: not in_interrupt() 211 * 212 * Given one of these pools, dma_pool_alloc() 213 * may be used to allocate memory. Such memory will all have "consistent" 214 * DMA mappings, accessible by the device and its driver without using 215 * cache flushing primitives. The actual size of blocks allocated may be 216 * larger than requested because of alignment. 217 * 218 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 219 * cross that size boundary. This is useful for devices which have 220 * addressing restrictions on individual DMA transfers, such as not crossing 221 * boundaries of 4KBytes. 222 * 223 * Return: a dma allocation pool with the requested characteristics, or 224 * %NULL if one can't be created. 225 */ 226 struct dma_pool *dma_pool_create_node(const char *name, struct device *dev, 227 size_t size, size_t align, size_t boundary, int node) 228 { 229 struct dma_pool *retval; 230 size_t allocation; 231 bool empty; 232 233 if (!dev) 234 return NULL; 235 236 if (align == 0) 237 align = 1; 238 else if (align & (align - 1)) 239 return NULL; 240 241 if (size == 0 || size > INT_MAX) 242 return NULL; 243 if (size < sizeof(struct dma_block)) 244 size = sizeof(struct dma_block); 245 246 size = ALIGN(size, align); 247 allocation = max_t(size_t, size, PAGE_SIZE); 248 249 if (!boundary) 250 boundary = allocation; 251 else if ((boundary < size) || (boundary & (boundary - 1))) 252 return NULL; 253 254 boundary = min(boundary, allocation); 255 256 retval = kzalloc_node(sizeof(*retval), GFP_KERNEL, node); 257 if (!retval) 258 return retval; 259 260 strscpy(retval->name, name, sizeof(retval->name)); 261 262 retval->dev = dev; 263 264 INIT_LIST_HEAD(&retval->page_list); 265 spin_lock_init(&retval->lock); 266 retval->size = size; 267 retval->boundary = boundary; 268 retval->allocation = allocation; 269 retval->node = node; 270 INIT_LIST_HEAD(&retval->pools); 271 272 /* 273 * pools_lock ensures that the ->dma_pools list does not get corrupted. 274 * pools_reg_lock ensures that there is not a race between 275 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create() 276 * when the first invocation of dma_pool_create() failed on 277 * device_create_file() and the second assumes that it has been done (I 278 * know it is a short window). 279 */ 280 mutex_lock(&pools_reg_lock); 281 mutex_lock(&pools_lock); 282 empty = list_empty(&dev->dma_pools); 283 list_add(&retval->pools, &dev->dma_pools); 284 mutex_unlock(&pools_lock); 285 if (empty) { 286 int err; 287 288 err = device_create_file(dev, &dev_attr_pools); 289 if (err) { 290 mutex_lock(&pools_lock); 291 list_del(&retval->pools); 292 mutex_unlock(&pools_lock); 293 mutex_unlock(&pools_reg_lock); 294 kfree(retval); 295 return NULL; 296 } 297 } 298 mutex_unlock(&pools_reg_lock); 299 return retval; 300 } 301 EXPORT_SYMBOL(dma_pool_create_node); 302 303 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 304 { 305 unsigned int next_boundary = pool->boundary, offset = 0; 306 struct dma_block *block, *first = NULL, *last = NULL; 307 308 pool_init_page(pool, page); 309 while (offset + pool->size <= pool->allocation) { 310 if (offset + pool->size > next_boundary) { 311 offset = next_boundary; 312 next_boundary += pool->boundary; 313 continue; 314 } 315 316 block = page->vaddr + offset; 317 block->dma = page->dma + offset; 318 block->next_block = NULL; 319 320 if (last) 321 last->next_block = block; 322 else 323 first = block; 324 last = block; 325 326 offset += pool->size; 327 pool->nr_blocks++; 328 } 329 330 last->next_block = pool->next_block; 331 pool->next_block = first; 332 333 list_add(&page->page_list, &pool->page_list); 334 pool->nr_pages++; 335 } 336 337 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 338 { 339 struct dma_page *page; 340 341 page = kmalloc_node(sizeof(*page), mem_flags, pool->node); 342 if (!page) 343 return NULL; 344 345 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 346 &page->dma, mem_flags); 347 if (!page->vaddr) { 348 kfree(page); 349 return NULL; 350 } 351 352 return page; 353 } 354 355 /** 356 * dma_pool_destroy - destroys a pool of dma memory blocks. 357 * @pool: dma pool that will be destroyed 358 * Context: !in_interrupt() 359 * 360 * Caller guarantees that no more memory from the pool is in use, 361 * and that nothing will try to use the pool after this call. 362 */ 363 void dma_pool_destroy(struct dma_pool *pool) 364 { 365 struct dma_page *page, *tmp; 366 bool empty, busy = false; 367 368 if (unlikely(!pool)) 369 return; 370 371 mutex_lock(&pools_reg_lock); 372 mutex_lock(&pools_lock); 373 list_del(&pool->pools); 374 empty = list_empty(&pool->dev->dma_pools); 375 mutex_unlock(&pools_lock); 376 if (empty) 377 device_remove_file(pool->dev, &dev_attr_pools); 378 mutex_unlock(&pools_reg_lock); 379 380 if (pool->nr_active) { 381 dev_err(pool->dev, "%s %s busy\n", __func__, pool->name); 382 busy = true; 383 } 384 385 list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) { 386 if (!busy) 387 dma_free_coherent(pool->dev, pool->allocation, 388 page->vaddr, page->dma); 389 list_del(&page->page_list); 390 kfree(page); 391 } 392 393 kfree(pool); 394 } 395 EXPORT_SYMBOL(dma_pool_destroy); 396 397 /** 398 * dma_pool_alloc - get a block of consistent memory 399 * @pool: dma pool that will produce the block 400 * @mem_flags: GFP_* bitmask 401 * @handle: pointer to dma address of block 402 * 403 * Return: the kernel virtual address of a currently unused block, 404 * and reports its dma address through the handle. 405 * If such a memory block can't be allocated, %NULL is returned. 406 */ 407 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 408 dma_addr_t *handle) 409 { 410 struct dma_block *block; 411 struct dma_page *page; 412 unsigned long flags; 413 414 might_alloc(mem_flags); 415 416 spin_lock_irqsave(&pool->lock, flags); 417 block = pool_block_pop(pool); 418 if (!block) { 419 /* 420 * pool_alloc_page() might sleep, so temporarily drop 421 * &pool->lock 422 */ 423 spin_unlock_irqrestore(&pool->lock, flags); 424 425 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO)); 426 if (!page) 427 return NULL; 428 429 spin_lock_irqsave(&pool->lock, flags); 430 pool_initialise_page(pool, page); 431 block = pool_block_pop(pool); 432 } 433 spin_unlock_irqrestore(&pool->lock, flags); 434 435 *handle = block->dma; 436 pool_check_block(pool, block, mem_flags); 437 if (want_init_on_alloc(mem_flags)) 438 memset(block, 0, pool->size); 439 440 return block; 441 } 442 EXPORT_SYMBOL(dma_pool_alloc); 443 444 /** 445 * dma_pool_free - put block back into dma pool 446 * @pool: the dma pool holding the block 447 * @vaddr: virtual address of block 448 * @dma: dma address of block 449 * 450 * Caller promises neither device nor driver will again touch this block 451 * unless it is first re-allocated. 452 */ 453 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 454 { 455 struct dma_block *block = vaddr; 456 unsigned long flags; 457 458 spin_lock_irqsave(&pool->lock, flags); 459 if (!pool_block_err(pool, vaddr, dma)) { 460 pool_block_push(pool, block, dma); 461 pool->nr_active--; 462 } 463 spin_unlock_irqrestore(&pool->lock, flags); 464 } 465 EXPORT_SYMBOL(dma_pool_free); 466 467 /* 468 * Managed DMA pool 469 */ 470 static void dmam_pool_release(struct device *dev, void *res) 471 { 472 struct dma_pool *pool = *(struct dma_pool **)res; 473 474 dma_pool_destroy(pool); 475 } 476 477 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 478 { 479 return *(struct dma_pool **)res == match_data; 480 } 481 482 /** 483 * dmam_pool_create - Managed dma_pool_create() 484 * @name: name of pool, for diagnostics 485 * @dev: device that will be doing the DMA 486 * @size: size of the blocks in this pool. 487 * @align: alignment requirement for blocks; must be a power of two 488 * @allocation: returned blocks won't cross this boundary (or zero) 489 * 490 * Managed dma_pool_create(). DMA pool created with this function is 491 * automatically destroyed on driver detach. 492 * 493 * Return: a managed dma allocation pool with the requested 494 * characteristics, or %NULL if one can't be created. 495 */ 496 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 497 size_t size, size_t align, size_t allocation) 498 { 499 struct dma_pool **ptr, *pool; 500 501 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 502 if (!ptr) 503 return NULL; 504 505 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 506 if (pool) 507 devres_add(dev, ptr); 508 else 509 devres_free(ptr); 510 511 return pool; 512 } 513 EXPORT_SYMBOL(dmam_pool_create); 514 515 /** 516 * dmam_pool_destroy - Managed dma_pool_destroy() 517 * @pool: dma pool that will be destroyed 518 * 519 * Managed dma_pool_destroy(). 520 */ 521 void dmam_pool_destroy(struct dma_pool *pool) 522 { 523 struct device *dev = pool->dev; 524 525 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); 526 } 527 EXPORT_SYMBOL(dmam_pool_destroy); 528