xref: /linux/fs/dax.c (revision d0efc9e4276cda07c2f76652d240b165c30b05b8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/sizes.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/iomap.h>
26 #include <linux/rmap.h>
27 #include <asm/pgalloc.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/fs_dax.h>
31 
32 /* We choose 4096 entries - same as per-zone page wait tables */
33 #define DAX_WAIT_TABLE_BITS 12
34 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
35 
36 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
37 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
38 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
39 
40 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
41 
init_dax_wait_table(void)42 static int __init init_dax_wait_table(void)
43 {
44 	int i;
45 
46 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
47 		init_waitqueue_head(wait_table + i);
48 	return 0;
49 }
50 fs_initcall(init_dax_wait_table);
51 
52 /*
53  * DAX pagecache entries use XArray value entries so they can't be mistaken
54  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
55  * and two more to tell us if the entry is a zero page or an empty entry that
56  * is just used for locking.  In total four special bits.
57  *
58  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
59  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
60  * block allocation.
61  */
62 #define DAX_SHIFT	(4)
63 #define DAX_LOCKED	(1UL << 0)
64 #define DAX_PMD		(1UL << 1)
65 #define DAX_ZERO_PAGE	(1UL << 2)
66 #define DAX_EMPTY	(1UL << 3)
67 
dax_to_pfn(void * entry)68 static unsigned long dax_to_pfn(void *entry)
69 {
70 	return xa_to_value(entry) >> DAX_SHIFT;
71 }
72 
dax_to_folio(void * entry)73 static struct folio *dax_to_folio(void *entry)
74 {
75 	return page_folio(pfn_to_page(dax_to_pfn(entry)));
76 }
77 
dax_make_entry(unsigned long pfn,unsigned long flags)78 static void *dax_make_entry(unsigned long pfn, unsigned long flags)
79 {
80 	return xa_mk_value(flags | (pfn << DAX_SHIFT));
81 }
82 
dax_is_locked(void * entry)83 static bool dax_is_locked(void *entry)
84 {
85 	return xa_to_value(entry) & DAX_LOCKED;
86 }
87 
dax_entry_order(void * entry)88 static unsigned int dax_entry_order(void *entry)
89 {
90 	if (xa_to_value(entry) & DAX_PMD)
91 		return PMD_ORDER;
92 	return 0;
93 }
94 
dax_is_pmd_entry(void * entry)95 static unsigned long dax_is_pmd_entry(void *entry)
96 {
97 	return xa_to_value(entry) & DAX_PMD;
98 }
99 
dax_is_pte_entry(void * entry)100 static bool dax_is_pte_entry(void *entry)
101 {
102 	return !(xa_to_value(entry) & DAX_PMD);
103 }
104 
dax_is_zero_entry(void * entry)105 static int dax_is_zero_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_ZERO_PAGE;
108 }
109 
dax_is_empty_entry(void * entry)110 static int dax_is_empty_entry(void *entry)
111 {
112 	return xa_to_value(entry) & DAX_EMPTY;
113 }
114 
115 /*
116  * true if the entry that was found is of a smaller order than the entry
117  * we were looking for
118  */
dax_is_conflict(void * entry)119 static bool dax_is_conflict(void *entry)
120 {
121 	return entry == XA_RETRY_ENTRY;
122 }
123 
124 /*
125  * DAX page cache entry locking
126  */
127 struct exceptional_entry_key {
128 	struct xarray *xa;
129 	pgoff_t entry_start;
130 };
131 
132 struct wait_exceptional_entry_queue {
133 	wait_queue_entry_t wait;
134 	struct exceptional_entry_key key;
135 };
136 
137 /**
138  * enum dax_wake_mode: waitqueue wakeup behaviour
139  * @WAKE_ALL: wake all waiters in the waitqueue
140  * @WAKE_NEXT: wake only the first waiter in the waitqueue
141  */
142 enum dax_wake_mode {
143 	WAKE_ALL,
144 	WAKE_NEXT,
145 };
146 
dax_entry_waitqueue(struct xa_state * xas,void * entry,struct exceptional_entry_key * key)147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 		void *entry, struct exceptional_entry_key *key)
149 {
150 	unsigned long hash;
151 	unsigned long index = xas->xa_index;
152 
153 	/*
154 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 	 * queue to the start of that PMD.  This ensures that all offsets in
156 	 * the range covered by the PMD map to the same bit lock.
157 	 */
158 	if (dax_is_pmd_entry(entry))
159 		index &= ~PG_PMD_COLOUR;
160 	key->xa = xas->xa;
161 	key->entry_start = index;
162 
163 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 	return wait_table + hash;
165 }
166 
wake_exceptional_entry_func(wait_queue_entry_t * wait,unsigned int mode,int sync,void * keyp)167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 		unsigned int mode, int sync, void *keyp)
169 {
170 	struct exceptional_entry_key *key = keyp;
171 	struct wait_exceptional_entry_queue *ewait =
172 		container_of(wait, struct wait_exceptional_entry_queue, wait);
173 
174 	if (key->xa != ewait->key.xa ||
175 	    key->entry_start != ewait->key.entry_start)
176 		return 0;
177 	return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179 
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
dax_wake_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)185 static void dax_wake_entry(struct xa_state *xas, void *entry,
186 			   enum dax_wake_mode mode)
187 {
188 	struct exceptional_entry_key key;
189 	wait_queue_head_t *wq;
190 
191 	wq = dax_entry_waitqueue(xas, entry, &key);
192 
193 	/*
194 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
195 	 * under the i_pages lock, ditto for entry handling in our callers.
196 	 * So at this point all tasks that could have seen our entry locked
197 	 * must be in the waitqueue and the following check will see them.
198 	 */
199 	if (waitqueue_active(wq))
200 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
201 }
202 
203 /*
204  * Look up entry in page cache, wait for it to become unlocked if it
205  * is a DAX entry and return it.  The caller must subsequently call
206  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
207  * if it did.  The entry returned may have a larger order than @order.
208  * If @order is larger than the order of the entry found in i_pages, this
209  * function returns a dax_is_conflict entry.
210  *
211  * Must be called with the i_pages lock held.
212  */
get_next_unlocked_entry(struct xa_state * xas,unsigned int order)213 static void *get_next_unlocked_entry(struct xa_state *xas, unsigned int order)
214 {
215 	void *entry;
216 	struct wait_exceptional_entry_queue ewait;
217 	wait_queue_head_t *wq;
218 
219 	init_wait(&ewait.wait);
220 	ewait.wait.func = wake_exceptional_entry_func;
221 
222 	for (;;) {
223 		entry = xas_find_conflict(xas);
224 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
225 			return entry;
226 		if (dax_entry_order(entry) < order)
227 			return XA_RETRY_ENTRY;
228 		if (!dax_is_locked(entry))
229 			return entry;
230 
231 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
232 		prepare_to_wait_exclusive(wq, &ewait.wait,
233 					  TASK_UNINTERRUPTIBLE);
234 		xas_unlock_irq(xas);
235 		xas_reset(xas);
236 		schedule();
237 		finish_wait(wq, &ewait.wait);
238 		xas_lock_irq(xas);
239 	}
240 }
241 
242 /*
243  * Wait for the given entry to become unlocked. Caller must hold the i_pages
244  * lock and call either put_unlocked_entry() if it did not lock the entry or
245  * dax_unlock_entry() if it did. Returns an unlocked entry if still present.
246  */
wait_entry_unlocked_exclusive(struct xa_state * xas,void * entry)247 static void *wait_entry_unlocked_exclusive(struct xa_state *xas, void *entry)
248 {
249 	struct wait_exceptional_entry_queue ewait;
250 	wait_queue_head_t *wq;
251 
252 	init_wait(&ewait.wait);
253 	ewait.wait.func = wake_exceptional_entry_func;
254 
255 	while (unlikely(dax_is_locked(entry))) {
256 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
257 		prepare_to_wait_exclusive(wq, &ewait.wait,
258 					TASK_UNINTERRUPTIBLE);
259 		xas_reset(xas);
260 		xas_unlock_irq(xas);
261 		schedule();
262 		finish_wait(wq, &ewait.wait);
263 		xas_lock_irq(xas);
264 		entry = xas_load(xas);
265 	}
266 
267 	if (xa_is_internal(entry))
268 		return NULL;
269 
270 	return entry;
271 }
272 
273 /*
274  * The only thing keeping the address space around is the i_pages lock
275  * (it's cycled in clear_inode() after removing the entries from i_pages)
276  * After we call xas_unlock_irq(), we cannot touch xas->xa.
277  */
wait_entry_unlocked(struct xa_state * xas,void * entry)278 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
279 {
280 	struct wait_exceptional_entry_queue ewait;
281 	wait_queue_head_t *wq;
282 
283 	init_wait(&ewait.wait);
284 	ewait.wait.func = wake_exceptional_entry_func;
285 
286 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
287 	/*
288 	 * Unlike get_next_unlocked_entry() there is no guarantee that this
289 	 * path ever successfully retrieves an unlocked entry before an
290 	 * inode dies. Perform a non-exclusive wait in case this path
291 	 * never successfully performs its own wake up.
292 	 */
293 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
294 	xas_unlock_irq(xas);
295 	schedule();
296 	finish_wait(wq, &ewait.wait);
297 }
298 
put_unlocked_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)299 static void put_unlocked_entry(struct xa_state *xas, void *entry,
300 			       enum dax_wake_mode mode)
301 {
302 	if (entry && !dax_is_conflict(entry))
303 		dax_wake_entry(xas, entry, mode);
304 }
305 
306 /*
307  * We used the xa_state to get the entry, but then we locked the entry and
308  * dropped the xa_lock, so we know the xa_state is stale and must be reset
309  * before use.
310  */
dax_unlock_entry(struct xa_state * xas,void * entry)311 static void dax_unlock_entry(struct xa_state *xas, void *entry)
312 {
313 	void *old;
314 
315 	BUG_ON(dax_is_locked(entry));
316 	xas_reset(xas);
317 	xas_lock_irq(xas);
318 	old = xas_store(xas, entry);
319 	xas_unlock_irq(xas);
320 	BUG_ON(!dax_is_locked(old));
321 	dax_wake_entry(xas, entry, WAKE_NEXT);
322 }
323 
324 /*
325  * Return: The entry stored at this location before it was locked.
326  */
dax_lock_entry(struct xa_state * xas,void * entry)327 static void *dax_lock_entry(struct xa_state *xas, void *entry)
328 {
329 	unsigned long v = xa_to_value(entry);
330 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
331 }
332 
dax_entry_size(void * entry)333 static unsigned long dax_entry_size(void *entry)
334 {
335 	if (dax_is_zero_entry(entry))
336 		return 0;
337 	else if (dax_is_empty_entry(entry))
338 		return 0;
339 	else if (dax_is_pmd_entry(entry))
340 		return PMD_SIZE;
341 	else
342 		return PAGE_SIZE;
343 }
344 
345 /*
346  * A DAX folio is considered shared if it has no mapping set and ->share (which
347  * shares the ->index field) is non-zero. Note this may return false even if the
348  * page is shared between multiple files but has not yet actually been mapped
349  * into multiple address spaces.
350  */
dax_folio_is_shared(struct folio * folio)351 static inline bool dax_folio_is_shared(struct folio *folio)
352 {
353 	return !folio->mapping && folio->share;
354 }
355 
356 /*
357  * When it is called by dax_insert_entry(), the shared flag will indicate
358  * whether this entry is shared by multiple files. If the page has not
359  * previously been associated with any mappings the ->mapping and ->index
360  * fields will be set. If it has already been associated with a mapping
361  * the mapping will be cleared and the share count set. It's then up to
362  * reverse map users like memory_failure() to call back into the filesystem to
363  * recover ->mapping and ->index information. For example by implementing
364  * dax_holder_operations.
365  */
dax_folio_make_shared(struct folio * folio)366 static void dax_folio_make_shared(struct folio *folio)
367 {
368 	/*
369 	 * folio is not currently shared so mark it as shared by clearing
370 	 * folio->mapping.
371 	 */
372 	folio->mapping = NULL;
373 
374 	/*
375 	 * folio has previously been mapped into one address space so set the
376 	 * share count.
377 	 */
378 	folio->share = 1;
379 }
380 
dax_folio_put(struct folio * folio)381 static inline unsigned long dax_folio_put(struct folio *folio)
382 {
383 	unsigned long ref;
384 	int order, i;
385 
386 	if (!dax_folio_is_shared(folio))
387 		ref = 0;
388 	else
389 		ref = --folio->share;
390 
391 	if (ref)
392 		return ref;
393 
394 	folio->mapping = NULL;
395 	order = folio_order(folio);
396 	if (!order)
397 		return 0;
398 	folio_reset_order(folio);
399 
400 	for (i = 0; i < (1UL << order); i++) {
401 		struct dev_pagemap *pgmap = page_pgmap(&folio->page);
402 		struct page *page = folio_page(folio, i);
403 		struct folio *new_folio = (struct folio *)page;
404 
405 		ClearPageHead(page);
406 		clear_compound_head(page);
407 
408 		new_folio->mapping = NULL;
409 		/*
410 		 * Reset pgmap which was over-written by
411 		 * prep_compound_page().
412 		 */
413 		new_folio->pgmap = pgmap;
414 		new_folio->share = 0;
415 		WARN_ON_ONCE(folio_ref_count(new_folio));
416 	}
417 
418 	return ref;
419 }
420 
dax_folio_init(void * entry)421 static void dax_folio_init(void *entry)
422 {
423 	struct folio *folio = dax_to_folio(entry);
424 	int order = dax_entry_order(entry);
425 
426 	/*
427 	 * Folio should have been split back to order-0 pages in
428 	 * dax_folio_put() when they were removed from their
429 	 * final mapping.
430 	 */
431 	WARN_ON_ONCE(folio_order(folio));
432 
433 	if (order > 0) {
434 		prep_compound_page(&folio->page, order);
435 		if (order > 1)
436 			INIT_LIST_HEAD(&folio->_deferred_list);
437 		WARN_ON_ONCE(folio_ref_count(folio));
438 	}
439 }
440 
dax_associate_entry(void * entry,struct address_space * mapping,struct vm_area_struct * vma,unsigned long address,bool shared)441 static void dax_associate_entry(void *entry, struct address_space *mapping,
442 				struct vm_area_struct *vma,
443 				unsigned long address, bool shared)
444 {
445 	unsigned long size = dax_entry_size(entry), index;
446 	struct folio *folio = dax_to_folio(entry);
447 
448 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
449 		return;
450 
451 	index = linear_page_index(vma, address & ~(size - 1));
452 	if (shared && (folio->mapping || dax_folio_is_shared(folio))) {
453 		if (folio->mapping)
454 			dax_folio_make_shared(folio);
455 
456 		WARN_ON_ONCE(!folio->share);
457 		WARN_ON_ONCE(dax_entry_order(entry) != folio_order(folio));
458 		folio->share++;
459 	} else {
460 		WARN_ON_ONCE(folio->mapping);
461 		dax_folio_init(entry);
462 		folio = dax_to_folio(entry);
463 		folio->mapping = mapping;
464 		folio->index = index;
465 	}
466 }
467 
dax_disassociate_entry(void * entry,struct address_space * mapping,bool trunc)468 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
469 				bool trunc)
470 {
471 	struct folio *folio = dax_to_folio(entry);
472 
473 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
474 		return;
475 
476 	dax_folio_put(folio);
477 }
478 
dax_busy_page(void * entry)479 static struct page *dax_busy_page(void *entry)
480 {
481 	struct folio *folio = dax_to_folio(entry);
482 
483 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))
484 		return NULL;
485 
486 	if (folio_ref_count(folio) - folio_mapcount(folio))
487 		return &folio->page;
488 	else
489 		return NULL;
490 }
491 
492 /**
493  * dax_lock_folio - Lock the DAX entry corresponding to a folio
494  * @folio: The folio whose entry we want to lock
495  *
496  * Context: Process context.
497  * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could
498  * not be locked.
499  */
dax_lock_folio(struct folio * folio)500 dax_entry_t dax_lock_folio(struct folio *folio)
501 {
502 	XA_STATE(xas, NULL, 0);
503 	void *entry;
504 
505 	/* Ensure folio->mapping isn't freed while we look at it */
506 	rcu_read_lock();
507 	for (;;) {
508 		struct address_space *mapping = READ_ONCE(folio->mapping);
509 
510 		entry = NULL;
511 		if (!mapping || !dax_mapping(mapping))
512 			break;
513 
514 		/*
515 		 * In the device-dax case there's no need to lock, a
516 		 * struct dev_pagemap pin is sufficient to keep the
517 		 * inode alive, and we assume we have dev_pagemap pin
518 		 * otherwise we would not have a valid pfn_to_page()
519 		 * translation.
520 		 */
521 		entry = (void *)~0UL;
522 		if (S_ISCHR(mapping->host->i_mode))
523 			break;
524 
525 		xas.xa = &mapping->i_pages;
526 		xas_lock_irq(&xas);
527 		if (mapping != folio->mapping) {
528 			xas_unlock_irq(&xas);
529 			continue;
530 		}
531 		xas_set(&xas, folio->index);
532 		entry = xas_load(&xas);
533 		if (dax_is_locked(entry)) {
534 			rcu_read_unlock();
535 			wait_entry_unlocked(&xas, entry);
536 			rcu_read_lock();
537 			continue;
538 		}
539 		dax_lock_entry(&xas, entry);
540 		xas_unlock_irq(&xas);
541 		break;
542 	}
543 	rcu_read_unlock();
544 	return (dax_entry_t)entry;
545 }
546 
dax_unlock_folio(struct folio * folio,dax_entry_t cookie)547 void dax_unlock_folio(struct folio *folio, dax_entry_t cookie)
548 {
549 	struct address_space *mapping = folio->mapping;
550 	XA_STATE(xas, &mapping->i_pages, folio->index);
551 
552 	if (S_ISCHR(mapping->host->i_mode))
553 		return;
554 
555 	dax_unlock_entry(&xas, (void *)cookie);
556 }
557 
558 /*
559  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
560  * @mapping: the file's mapping whose entry we want to lock
561  * @index: the offset within this file
562  * @page: output the dax page corresponding to this dax entry
563  *
564  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
565  * could not be locked.
566  */
dax_lock_mapping_entry(struct address_space * mapping,pgoff_t index,struct page ** page)567 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
568 		struct page **page)
569 {
570 	XA_STATE(xas, NULL, 0);
571 	void *entry;
572 
573 	rcu_read_lock();
574 	for (;;) {
575 		entry = NULL;
576 		if (!dax_mapping(mapping))
577 			break;
578 
579 		xas.xa = &mapping->i_pages;
580 		xas_lock_irq(&xas);
581 		xas_set(&xas, index);
582 		entry = xas_load(&xas);
583 		if (dax_is_locked(entry)) {
584 			rcu_read_unlock();
585 			wait_entry_unlocked(&xas, entry);
586 			rcu_read_lock();
587 			continue;
588 		}
589 		if (!entry ||
590 		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
591 			/*
592 			 * Because we are looking for entry from file's mapping
593 			 * and index, so the entry may not be inserted for now,
594 			 * or even a zero/empty entry.  We don't think this is
595 			 * an error case.  So, return a special value and do
596 			 * not output @page.
597 			 */
598 			entry = (void *)~0UL;
599 		} else {
600 			*page = pfn_to_page(dax_to_pfn(entry));
601 			dax_lock_entry(&xas, entry);
602 		}
603 		xas_unlock_irq(&xas);
604 		break;
605 	}
606 	rcu_read_unlock();
607 	return (dax_entry_t)entry;
608 }
609 
dax_unlock_mapping_entry(struct address_space * mapping,pgoff_t index,dax_entry_t cookie)610 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
611 		dax_entry_t cookie)
612 {
613 	XA_STATE(xas, &mapping->i_pages, index);
614 
615 	if (cookie == ~0UL)
616 		return;
617 
618 	dax_unlock_entry(&xas, (void *)cookie);
619 }
620 
621 /*
622  * Find page cache entry at given index. If it is a DAX entry, return it
623  * with the entry locked. If the page cache doesn't contain an entry at
624  * that index, add a locked empty entry.
625  *
626  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
627  * either return that locked entry or will return VM_FAULT_FALLBACK.
628  * This will happen if there are any PTE entries within the PMD range
629  * that we are requesting.
630  *
631  * We always favor PTE entries over PMD entries. There isn't a flow where we
632  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
633  * insertion will fail if it finds any PTE entries already in the tree, and a
634  * PTE insertion will cause an existing PMD entry to be unmapped and
635  * downgraded to PTE entries.  This happens for both PMD zero pages as
636  * well as PMD empty entries.
637  *
638  * The exception to this downgrade path is for PMD entries that have
639  * real storage backing them.  We will leave these real PMD entries in
640  * the tree, and PTE writes will simply dirty the entire PMD entry.
641  *
642  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
643  * persistent memory the benefit is doubtful. We can add that later if we can
644  * show it helps.
645  *
646  * On error, this function does not return an ERR_PTR.  Instead it returns
647  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
648  * overlap with xarray value entries.
649  */
grab_mapping_entry(struct xa_state * xas,struct address_space * mapping,unsigned int order)650 static void *grab_mapping_entry(struct xa_state *xas,
651 		struct address_space *mapping, unsigned int order)
652 {
653 	unsigned long index = xas->xa_index;
654 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
655 	void *entry;
656 
657 retry:
658 	pmd_downgrade = false;
659 	xas_lock_irq(xas);
660 	entry = get_next_unlocked_entry(xas, order);
661 
662 	if (entry) {
663 		if (dax_is_conflict(entry))
664 			goto fallback;
665 		if (!xa_is_value(entry)) {
666 			xas_set_err(xas, -EIO);
667 			goto out_unlock;
668 		}
669 
670 		if (order == 0) {
671 			if (dax_is_pmd_entry(entry) &&
672 			    (dax_is_zero_entry(entry) ||
673 			     dax_is_empty_entry(entry))) {
674 				pmd_downgrade = true;
675 			}
676 		}
677 	}
678 
679 	if (pmd_downgrade) {
680 		/*
681 		 * Make sure 'entry' remains valid while we drop
682 		 * the i_pages lock.
683 		 */
684 		dax_lock_entry(xas, entry);
685 
686 		/*
687 		 * Besides huge zero pages the only other thing that gets
688 		 * downgraded are empty entries which don't need to be
689 		 * unmapped.
690 		 */
691 		if (dax_is_zero_entry(entry)) {
692 			xas_unlock_irq(xas);
693 			unmap_mapping_pages(mapping,
694 					xas->xa_index & ~PG_PMD_COLOUR,
695 					PG_PMD_NR, false);
696 			xas_reset(xas);
697 			xas_lock_irq(xas);
698 		}
699 
700 		dax_disassociate_entry(entry, mapping, false);
701 		xas_store(xas, NULL);	/* undo the PMD join */
702 		dax_wake_entry(xas, entry, WAKE_ALL);
703 		mapping->nrpages -= PG_PMD_NR;
704 		entry = NULL;
705 		xas_set(xas, index);
706 	}
707 
708 	if (entry) {
709 		dax_lock_entry(xas, entry);
710 	} else {
711 		unsigned long flags = DAX_EMPTY;
712 
713 		if (order > 0)
714 			flags |= DAX_PMD;
715 		entry = dax_make_entry(0, flags);
716 		dax_lock_entry(xas, entry);
717 		if (xas_error(xas))
718 			goto out_unlock;
719 		mapping->nrpages += 1UL << order;
720 	}
721 
722 out_unlock:
723 	xas_unlock_irq(xas);
724 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
725 		goto retry;
726 	if (xas->xa_node == XA_ERROR(-ENOMEM))
727 		return xa_mk_internal(VM_FAULT_OOM);
728 	if (xas_error(xas))
729 		return xa_mk_internal(VM_FAULT_SIGBUS);
730 	return entry;
731 fallback:
732 	xas_unlock_irq(xas);
733 	return xa_mk_internal(VM_FAULT_FALLBACK);
734 }
735 
736 /**
737  * dax_layout_busy_page_range - find first pinned page in @mapping
738  * @mapping: address space to scan for a page with ref count > 1
739  * @start: Starting offset. Page containing 'start' is included.
740  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
741  *       pages from 'start' till the end of file are included.
742  *
743  * DAX requires ZONE_DEVICE mapped pages. These pages are never
744  * 'onlined' to the page allocator so they are considered idle when
745  * page->count == 1. A filesystem uses this interface to determine if
746  * any page in the mapping is busy, i.e. for DMA, or other
747  * get_user_pages() usages.
748  *
749  * It is expected that the filesystem is holding locks to block the
750  * establishment of new mappings in this address_space. I.e. it expects
751  * to be able to run unmap_mapping_range() and subsequently not race
752  * mapping_mapped() becoming true.
753  */
dax_layout_busy_page_range(struct address_space * mapping,loff_t start,loff_t end)754 struct page *dax_layout_busy_page_range(struct address_space *mapping,
755 					loff_t start, loff_t end)
756 {
757 	void *entry;
758 	unsigned int scanned = 0;
759 	struct page *page = NULL;
760 	pgoff_t start_idx = start >> PAGE_SHIFT;
761 	pgoff_t end_idx;
762 	XA_STATE(xas, &mapping->i_pages, start_idx);
763 
764 	if (!dax_mapping(mapping))
765 		return NULL;
766 
767 	/* If end == LLONG_MAX, all pages from start to till end of file */
768 	if (end == LLONG_MAX)
769 		end_idx = ULONG_MAX;
770 	else
771 		end_idx = end >> PAGE_SHIFT;
772 	/*
773 	 * If we race get_user_pages_fast() here either we'll see the
774 	 * elevated page count in the iteration and wait, or
775 	 * get_user_pages_fast() will see that the page it took a reference
776 	 * against is no longer mapped in the page tables and bail to the
777 	 * get_user_pages() slow path.  The slow path is protected by
778 	 * pte_lock() and pmd_lock(). New references are not taken without
779 	 * holding those locks, and unmap_mapping_pages() will not zero the
780 	 * pte or pmd without holding the respective lock, so we are
781 	 * guaranteed to either see new references or prevent new
782 	 * references from being established.
783 	 */
784 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
785 
786 	xas_lock_irq(&xas);
787 	xas_for_each(&xas, entry, end_idx) {
788 		if (WARN_ON_ONCE(!xa_is_value(entry)))
789 			continue;
790 		entry = wait_entry_unlocked_exclusive(&xas, entry);
791 		if (entry)
792 			page = dax_busy_page(entry);
793 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
794 		if (page)
795 			break;
796 		if (++scanned % XA_CHECK_SCHED)
797 			continue;
798 
799 		xas_pause(&xas);
800 		xas_unlock_irq(&xas);
801 		cond_resched();
802 		xas_lock_irq(&xas);
803 	}
804 	xas_unlock_irq(&xas);
805 	return page;
806 }
807 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
808 
dax_layout_busy_page(struct address_space * mapping)809 struct page *dax_layout_busy_page(struct address_space *mapping)
810 {
811 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
812 }
813 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
814 
__dax_invalidate_entry(struct address_space * mapping,pgoff_t index,bool trunc)815 static int __dax_invalidate_entry(struct address_space *mapping,
816 				  pgoff_t index, bool trunc)
817 {
818 	XA_STATE(xas, &mapping->i_pages, index);
819 	int ret = 0;
820 	void *entry;
821 
822 	xas_lock_irq(&xas);
823 	entry = get_next_unlocked_entry(&xas, 0);
824 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
825 		goto out;
826 	if (!trunc &&
827 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
828 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
829 		goto out;
830 	dax_disassociate_entry(entry, mapping, trunc);
831 	xas_store(&xas, NULL);
832 	mapping->nrpages -= 1UL << dax_entry_order(entry);
833 	ret = 1;
834 out:
835 	put_unlocked_entry(&xas, entry, WAKE_ALL);
836 	xas_unlock_irq(&xas);
837 	return ret;
838 }
839 
__dax_clear_dirty_range(struct address_space * mapping,pgoff_t start,pgoff_t end)840 static int __dax_clear_dirty_range(struct address_space *mapping,
841 		pgoff_t start, pgoff_t end)
842 {
843 	XA_STATE(xas, &mapping->i_pages, start);
844 	unsigned int scanned = 0;
845 	void *entry;
846 
847 	xas_lock_irq(&xas);
848 	xas_for_each(&xas, entry, end) {
849 		entry = wait_entry_unlocked_exclusive(&xas, entry);
850 		if (!entry)
851 			continue;
852 		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
853 		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
854 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
855 
856 		if (++scanned % XA_CHECK_SCHED)
857 			continue;
858 
859 		xas_pause(&xas);
860 		xas_unlock_irq(&xas);
861 		cond_resched();
862 		xas_lock_irq(&xas);
863 	}
864 	xas_unlock_irq(&xas);
865 
866 	return 0;
867 }
868 
869 /*
870  * Delete DAX entry at @index from @mapping.  Wait for it
871  * to be unlocked before deleting it.
872  */
dax_delete_mapping_entry(struct address_space * mapping,pgoff_t index)873 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
874 {
875 	int ret = __dax_invalidate_entry(mapping, index, true);
876 
877 	/*
878 	 * This gets called from truncate / punch_hole path. As such, the caller
879 	 * must hold locks protecting against concurrent modifications of the
880 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
881 	 * caller has seen a DAX entry for this index, we better find it
882 	 * at that index as well...
883 	 */
884 	WARN_ON_ONCE(!ret);
885 	return ret;
886 }
887 
dax_delete_mapping_range(struct address_space * mapping,loff_t start,loff_t end)888 void dax_delete_mapping_range(struct address_space *mapping,
889 				loff_t start, loff_t end)
890 {
891 	void *entry;
892 	pgoff_t start_idx = start >> PAGE_SHIFT;
893 	pgoff_t end_idx;
894 	XA_STATE(xas, &mapping->i_pages, start_idx);
895 
896 	/* If end == LLONG_MAX, all pages from start to till end of file */
897 	if (end == LLONG_MAX)
898 		end_idx = ULONG_MAX;
899 	else
900 		end_idx = end >> PAGE_SHIFT;
901 
902 	xas_lock_irq(&xas);
903 	xas_for_each(&xas, entry, end_idx) {
904 		if (!xa_is_value(entry))
905 			continue;
906 		entry = wait_entry_unlocked_exclusive(&xas, entry);
907 		if (!entry)
908 			continue;
909 		dax_disassociate_entry(entry, mapping, true);
910 		xas_store(&xas, NULL);
911 		mapping->nrpages -= 1UL << dax_entry_order(entry);
912 		put_unlocked_entry(&xas, entry, WAKE_ALL);
913 	}
914 	xas_unlock_irq(&xas);
915 }
916 EXPORT_SYMBOL_GPL(dax_delete_mapping_range);
917 
wait_page_idle(struct page * page,void (cb)(struct inode *),struct inode * inode)918 static int wait_page_idle(struct page *page,
919 			void (cb)(struct inode *),
920 			struct inode *inode)
921 {
922 	return ___wait_var_event(page, dax_page_is_idle(page),
923 				TASK_INTERRUPTIBLE, 0, 0, cb(inode));
924 }
925 
wait_page_idle_uninterruptible(struct page * page,struct inode * inode)926 static void wait_page_idle_uninterruptible(struct page *page,
927 					struct inode *inode)
928 {
929 	___wait_var_event(page, dax_page_is_idle(page),
930 			TASK_UNINTERRUPTIBLE, 0, 0, schedule());
931 }
932 
933 /*
934  * Unmaps the inode and waits for any DMA to complete prior to deleting the
935  * DAX mapping entries for the range.
936  *
937  * For NOWAIT behavior, pass @cb as NULL to early-exit on first found
938  * busy page
939  */
dax_break_layout(struct inode * inode,loff_t start,loff_t end,void (cb)(struct inode *))940 int dax_break_layout(struct inode *inode, loff_t start, loff_t end,
941 		void (cb)(struct inode *))
942 {
943 	struct page *page;
944 	int error = 0;
945 
946 	if (!dax_mapping(inode->i_mapping))
947 		return 0;
948 
949 	do {
950 		page = dax_layout_busy_page_range(inode->i_mapping, start, end);
951 		if (!page)
952 			break;
953 		if (!cb) {
954 			error = -ERESTARTSYS;
955 			break;
956 		}
957 
958 		error = wait_page_idle(page, cb, inode);
959 	} while (error == 0);
960 
961 	if (!page)
962 		dax_delete_mapping_range(inode->i_mapping, start, end);
963 
964 	return error;
965 }
966 EXPORT_SYMBOL_GPL(dax_break_layout);
967 
dax_break_layout_final(struct inode * inode)968 void dax_break_layout_final(struct inode *inode)
969 {
970 	struct page *page;
971 
972 	if (!dax_mapping(inode->i_mapping))
973 		return;
974 
975 	do {
976 		page = dax_layout_busy_page_range(inode->i_mapping, 0,
977 						LLONG_MAX);
978 		if (!page)
979 			break;
980 
981 		wait_page_idle_uninterruptible(page, inode);
982 	} while (true);
983 
984 	if (!page)
985 		dax_delete_mapping_range(inode->i_mapping, 0, LLONG_MAX);
986 }
987 EXPORT_SYMBOL_GPL(dax_break_layout_final);
988 
989 /*
990  * Invalidate DAX entry if it is clean.
991  */
dax_invalidate_mapping_entry_sync(struct address_space * mapping,pgoff_t index)992 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
993 				      pgoff_t index)
994 {
995 	return __dax_invalidate_entry(mapping, index, false);
996 }
997 
dax_iomap_pgoff(const struct iomap * iomap,loff_t pos)998 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
999 {
1000 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
1001 }
1002 
copy_cow_page_dax(struct vm_fault * vmf,const struct iomap_iter * iter)1003 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
1004 {
1005 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
1006 	void *vto, *kaddr;
1007 	long rc;
1008 	int id;
1009 
1010 	id = dax_read_lock();
1011 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
1012 				&kaddr, NULL);
1013 	if (rc < 0) {
1014 		dax_read_unlock(id);
1015 		return rc;
1016 	}
1017 	vto = kmap_atomic(vmf->cow_page);
1018 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
1019 	kunmap_atomic(vto);
1020 	dax_read_unlock(id);
1021 	return 0;
1022 }
1023 
1024 /*
1025  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1026  * flushed on write-faults (non-cow), but not read-faults.
1027  */
dax_fault_is_synchronous(const struct iomap_iter * iter,struct vm_area_struct * vma)1028 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
1029 		struct vm_area_struct *vma)
1030 {
1031 	return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
1032 		(iter->iomap.flags & IOMAP_F_DIRTY);
1033 }
1034 
1035 /*
1036  * By this point grab_mapping_entry() has ensured that we have a locked entry
1037  * of the appropriate size so we don't have to worry about downgrading PMDs to
1038  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
1039  * already in the tree, we will skip the insertion and just dirty the PMD as
1040  * appropriate.
1041  */
dax_insert_entry(struct xa_state * xas,struct vm_fault * vmf,const struct iomap_iter * iter,void * entry,unsigned long pfn,unsigned long flags)1042 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
1043 		const struct iomap_iter *iter, void *entry, unsigned long pfn,
1044 		unsigned long flags)
1045 {
1046 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1047 	void *new_entry = dax_make_entry(pfn, flags);
1048 	bool write = iter->flags & IOMAP_WRITE;
1049 	bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
1050 	bool shared = iter->iomap.flags & IOMAP_F_SHARED;
1051 
1052 	if (dirty)
1053 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1054 
1055 	if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
1056 		unsigned long index = xas->xa_index;
1057 		/* we are replacing a zero page with block mapping */
1058 		if (dax_is_pmd_entry(entry))
1059 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
1060 					PG_PMD_NR, false);
1061 		else /* pte entry */
1062 			unmap_mapping_pages(mapping, index, 1, false);
1063 	}
1064 
1065 	xas_reset(xas);
1066 	xas_lock_irq(xas);
1067 	if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
1068 		void *old;
1069 
1070 		dax_disassociate_entry(entry, mapping, false);
1071 		dax_associate_entry(new_entry, mapping, vmf->vma,
1072 					vmf->address, shared);
1073 
1074 		/*
1075 		 * Only swap our new entry into the page cache if the current
1076 		 * entry is a zero page or an empty entry.  If a normal PTE or
1077 		 * PMD entry is already in the cache, we leave it alone.  This
1078 		 * means that if we are trying to insert a PTE and the
1079 		 * existing entry is a PMD, we will just leave the PMD in the
1080 		 * tree and dirty it if necessary.
1081 		 */
1082 		old = dax_lock_entry(xas, new_entry);
1083 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
1084 					DAX_LOCKED));
1085 		entry = new_entry;
1086 	} else {
1087 		xas_load(xas);	/* Walk the xa_state */
1088 	}
1089 
1090 	if (dirty)
1091 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
1092 
1093 	if (write && shared)
1094 		xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
1095 
1096 	xas_unlock_irq(xas);
1097 	return entry;
1098 }
1099 
dax_writeback_one(struct xa_state * xas,struct dax_device * dax_dev,struct address_space * mapping,void * entry)1100 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
1101 		struct address_space *mapping, void *entry)
1102 {
1103 	unsigned long pfn, index, count, end;
1104 	long ret = 0;
1105 	struct vm_area_struct *vma;
1106 
1107 	/*
1108 	 * A page got tagged dirty in DAX mapping? Something is seriously
1109 	 * wrong.
1110 	 */
1111 	if (WARN_ON(!xa_is_value(entry)))
1112 		return -EIO;
1113 
1114 	if (unlikely(dax_is_locked(entry))) {
1115 		void *old_entry = entry;
1116 
1117 		entry = get_next_unlocked_entry(xas, 0);
1118 
1119 		/* Entry got punched out / reallocated? */
1120 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
1121 			goto put_unlocked;
1122 		/*
1123 		 * Entry got reallocated elsewhere? No need to writeback.
1124 		 * We have to compare pfns as we must not bail out due to
1125 		 * difference in lockbit or entry type.
1126 		 */
1127 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
1128 			goto put_unlocked;
1129 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
1130 					dax_is_zero_entry(entry))) {
1131 			ret = -EIO;
1132 			goto put_unlocked;
1133 		}
1134 
1135 		/* Another fsync thread may have already done this entry */
1136 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
1137 			goto put_unlocked;
1138 	}
1139 
1140 	/* Lock the entry to serialize with page faults */
1141 	dax_lock_entry(xas, entry);
1142 
1143 	/*
1144 	 * We can clear the tag now but we have to be careful so that concurrent
1145 	 * dax_writeback_one() calls for the same index cannot finish before we
1146 	 * actually flush the caches. This is achieved as the calls will look
1147 	 * at the entry only under the i_pages lock and once they do that
1148 	 * they will see the entry locked and wait for it to unlock.
1149 	 */
1150 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
1151 	xas_unlock_irq(xas);
1152 
1153 	/*
1154 	 * If dax_writeback_mapping_range() was given a wbc->range_start
1155 	 * in the middle of a PMD, the 'index' we use needs to be
1156 	 * aligned to the start of the PMD.
1157 	 * This allows us to flush for PMD_SIZE and not have to worry about
1158 	 * partial PMD writebacks.
1159 	 */
1160 	pfn = dax_to_pfn(entry);
1161 	count = 1UL << dax_entry_order(entry);
1162 	index = xas->xa_index & ~(count - 1);
1163 	end = index + count - 1;
1164 
1165 	/* Walk all mappings of a given index of a file and writeprotect them */
1166 	i_mmap_lock_read(mapping);
1167 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1168 		pfn_mkclean_range(pfn, count, index, vma);
1169 		cond_resched();
1170 	}
1171 	i_mmap_unlock_read(mapping);
1172 
1173 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1174 	/*
1175 	 * After we have flushed the cache, we can clear the dirty tag. There
1176 	 * cannot be new dirty data in the pfn after the flush has completed as
1177 	 * the pfn mappings are writeprotected and fault waits for mapping
1178 	 * entry lock.
1179 	 */
1180 	xas_reset(xas);
1181 	xas_lock_irq(xas);
1182 	xas_store(xas, entry);
1183 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1184 	dax_wake_entry(xas, entry, WAKE_NEXT);
1185 
1186 	trace_dax_writeback_one(mapping->host, index, count);
1187 	return ret;
1188 
1189  put_unlocked:
1190 	put_unlocked_entry(xas, entry, WAKE_NEXT);
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Flush the mapping to the persistent domain within the byte range of [start,
1196  * end]. This is required by data integrity operations to ensure file data is
1197  * on persistent storage prior to completion of the operation.
1198  */
dax_writeback_mapping_range(struct address_space * mapping,struct dax_device * dax_dev,struct writeback_control * wbc)1199 int dax_writeback_mapping_range(struct address_space *mapping,
1200 		struct dax_device *dax_dev, struct writeback_control *wbc)
1201 {
1202 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1203 	struct inode *inode = mapping->host;
1204 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1205 	void *entry;
1206 	int ret = 0;
1207 	unsigned int scanned = 0;
1208 
1209 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1210 		return -EIO;
1211 
1212 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1213 		return 0;
1214 
1215 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
1216 
1217 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1218 
1219 	xas_lock_irq(&xas);
1220 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1221 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1222 		if (ret < 0) {
1223 			mapping_set_error(mapping, ret);
1224 			break;
1225 		}
1226 		if (++scanned % XA_CHECK_SCHED)
1227 			continue;
1228 
1229 		xas_pause(&xas);
1230 		xas_unlock_irq(&xas);
1231 		cond_resched();
1232 		xas_lock_irq(&xas);
1233 	}
1234 	xas_unlock_irq(&xas);
1235 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1236 	return ret;
1237 }
1238 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1239 
dax_iomap_direct_access(const struct iomap * iomap,loff_t pos,size_t size,void ** kaddr,unsigned long * pfnp)1240 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1241 		size_t size, void **kaddr, unsigned long *pfnp)
1242 {
1243 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1244 	int id, rc = 0;
1245 	long length;
1246 
1247 	id = dax_read_lock();
1248 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1249 				   DAX_ACCESS, kaddr, pfnp);
1250 	if (length < 0) {
1251 		rc = length;
1252 		goto out;
1253 	}
1254 	if (!pfnp)
1255 		goto out_check_addr;
1256 	rc = -EINVAL;
1257 	if (PFN_PHYS(length) < size)
1258 		goto out;
1259 	if (*pfnp & (PHYS_PFN(size)-1))
1260 		goto out;
1261 
1262 	rc = 0;
1263 
1264 out_check_addr:
1265 	if (!kaddr)
1266 		goto out;
1267 	if (!*kaddr)
1268 		rc = -EFAULT;
1269 out:
1270 	dax_read_unlock(id);
1271 	return rc;
1272 }
1273 
1274 /**
1275  * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1276  * by copying the data before and after the range to be written.
1277  * @pos:	address to do copy from.
1278  * @length:	size of copy operation.
1279  * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1280  * @srcmap:	iomap srcmap
1281  * @daddr:	destination address to copy to.
1282  *
1283  * This can be called from two places. Either during DAX write fault (page
1284  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1285  * write operation, dax_iomap_iter() might call this to do the copy of either
1286  * start or end unaligned address. In the latter case the rest of the copy of
1287  * aligned ranges is taken care by dax_iomap_iter() itself.
1288  * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1289  * area to make sure no old data remains.
1290  */
dax_iomap_copy_around(loff_t pos,uint64_t length,size_t align_size,const struct iomap * srcmap,void * daddr)1291 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1292 		const struct iomap *srcmap, void *daddr)
1293 {
1294 	loff_t head_off = pos & (align_size - 1);
1295 	size_t size = ALIGN(head_off + length, align_size);
1296 	loff_t end = pos + length;
1297 	loff_t pg_end = round_up(end, align_size);
1298 	/* copy_all is usually in page fault case */
1299 	bool copy_all = head_off == 0 && end == pg_end;
1300 	/* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1301 	bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1302 			 srcmap->type == IOMAP_UNWRITTEN;
1303 	void *saddr = NULL;
1304 	int ret = 0;
1305 
1306 	if (!zero_edge) {
1307 		ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1308 		if (ret)
1309 			return dax_mem2blk_err(ret);
1310 	}
1311 
1312 	if (copy_all) {
1313 		if (zero_edge)
1314 			memset(daddr, 0, size);
1315 		else
1316 			ret = copy_mc_to_kernel(daddr, saddr, length);
1317 		goto out;
1318 	}
1319 
1320 	/* Copy the head part of the range */
1321 	if (head_off) {
1322 		if (zero_edge)
1323 			memset(daddr, 0, head_off);
1324 		else {
1325 			ret = copy_mc_to_kernel(daddr, saddr, head_off);
1326 			if (ret)
1327 				return -EIO;
1328 		}
1329 	}
1330 
1331 	/* Copy the tail part of the range */
1332 	if (end < pg_end) {
1333 		loff_t tail_off = head_off + length;
1334 		loff_t tail_len = pg_end - end;
1335 
1336 		if (zero_edge)
1337 			memset(daddr + tail_off, 0, tail_len);
1338 		else {
1339 			ret = copy_mc_to_kernel(daddr + tail_off,
1340 						saddr + tail_off, tail_len);
1341 			if (ret)
1342 				return -EIO;
1343 		}
1344 	}
1345 out:
1346 	if (zero_edge)
1347 		dax_flush(srcmap->dax_dev, daddr, size);
1348 	return ret ? -EIO : 0;
1349 }
1350 
1351 /*
1352  * The user has performed a load from a hole in the file.  Allocating a new
1353  * page in the file would cause excessive storage usage for workloads with
1354  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1355  * If this page is ever written to we will re-fault and change the mapping to
1356  * point to real DAX storage instead.
1357  */
dax_load_hole(struct xa_state * xas,struct vm_fault * vmf,const struct iomap_iter * iter,void ** entry)1358 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1359 		const struct iomap_iter *iter, void **entry)
1360 {
1361 	struct inode *inode = iter->inode;
1362 	unsigned long vaddr = vmf->address;
1363 	unsigned long pfn = my_zero_pfn(vaddr);
1364 	vm_fault_t ret;
1365 
1366 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1367 
1368 	ret = vmf_insert_page_mkwrite(vmf, pfn_to_page(pfn), false);
1369 	trace_dax_load_hole(inode, vmf, ret);
1370 	return ret;
1371 }
1372 
1373 #ifdef CONFIG_FS_DAX_PMD
dax_pmd_load_hole(struct xa_state * xas,struct vm_fault * vmf,const struct iomap_iter * iter,void ** entry)1374 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1375 		const struct iomap_iter *iter, void **entry)
1376 {
1377 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1378 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1379 	struct vm_area_struct *vma = vmf->vma;
1380 	struct inode *inode = mapping->host;
1381 	pgtable_t pgtable = NULL;
1382 	struct folio *zero_folio;
1383 	spinlock_t *ptl;
1384 	pmd_t pmd_entry;
1385 	unsigned long pfn;
1386 
1387 	zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm);
1388 
1389 	if (unlikely(!zero_folio))
1390 		goto fallback;
1391 
1392 	pfn = page_to_pfn(&zero_folio->page);
1393 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1394 				  DAX_PMD | DAX_ZERO_PAGE);
1395 
1396 	if (arch_needs_pgtable_deposit()) {
1397 		pgtable = pte_alloc_one(vma->vm_mm);
1398 		if (!pgtable)
1399 			return VM_FAULT_OOM;
1400 	}
1401 
1402 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1403 	if (!pmd_none(*(vmf->pmd))) {
1404 		spin_unlock(ptl);
1405 		goto fallback;
1406 	}
1407 
1408 	if (pgtable) {
1409 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1410 		mm_inc_nr_ptes(vma->vm_mm);
1411 	}
1412 	pmd_entry = folio_mk_pmd(zero_folio, vmf->vma->vm_page_prot);
1413 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1414 	spin_unlock(ptl);
1415 	trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry);
1416 	return VM_FAULT_NOPAGE;
1417 
1418 fallback:
1419 	if (pgtable)
1420 		pte_free(vma->vm_mm, pgtable);
1421 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry);
1422 	return VM_FAULT_FALLBACK;
1423 }
1424 #else
dax_pmd_load_hole(struct xa_state * xas,struct vm_fault * vmf,const struct iomap_iter * iter,void ** entry)1425 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1426 		const struct iomap_iter *iter, void **entry)
1427 {
1428 	return VM_FAULT_FALLBACK;
1429 }
1430 #endif /* CONFIG_FS_DAX_PMD */
1431 
dax_unshare_iter(struct iomap_iter * iter)1432 static int dax_unshare_iter(struct iomap_iter *iter)
1433 {
1434 	struct iomap *iomap = &iter->iomap;
1435 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1436 	loff_t copy_pos = iter->pos;
1437 	u64 copy_len = iomap_length(iter);
1438 	u32 mod;
1439 	int id = 0;
1440 	s64 ret;
1441 	void *daddr = NULL, *saddr = NULL;
1442 
1443 	if (!iomap_want_unshare_iter(iter))
1444 		return iomap_iter_advance_full(iter);
1445 
1446 	/*
1447 	 * Extend the file range to be aligned to fsblock/pagesize, because
1448 	 * we need to copy entire blocks, not just the byte range specified.
1449 	 * Invalidate the mapping because we're about to CoW.
1450 	 */
1451 	mod = offset_in_page(copy_pos);
1452 	if (mod) {
1453 		copy_len += mod;
1454 		copy_pos -= mod;
1455 	}
1456 
1457 	mod = offset_in_page(copy_pos + copy_len);
1458 	if (mod)
1459 		copy_len += PAGE_SIZE - mod;
1460 
1461 	invalidate_inode_pages2_range(iter->inode->i_mapping,
1462 				      copy_pos >> PAGE_SHIFT,
1463 				      (copy_pos + copy_len - 1) >> PAGE_SHIFT);
1464 
1465 	id = dax_read_lock();
1466 	ret = dax_iomap_direct_access(iomap, copy_pos, copy_len, &daddr, NULL);
1467 	if (ret < 0)
1468 		goto out_unlock;
1469 
1470 	ret = dax_iomap_direct_access(srcmap, copy_pos, copy_len, &saddr, NULL);
1471 	if (ret < 0)
1472 		goto out_unlock;
1473 
1474 	if (copy_mc_to_kernel(daddr, saddr, copy_len) != 0)
1475 		ret = -EIO;
1476 
1477 out_unlock:
1478 	dax_read_unlock(id);
1479 	if (ret < 0)
1480 		return dax_mem2blk_err(ret);
1481 	return iomap_iter_advance_full(iter);
1482 }
1483 
dax_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)1484 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1485 		const struct iomap_ops *ops)
1486 {
1487 	struct iomap_iter iter = {
1488 		.inode		= inode,
1489 		.pos		= pos,
1490 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1491 	};
1492 	loff_t size = i_size_read(inode);
1493 	int ret;
1494 
1495 	if (pos < 0 || pos >= size)
1496 		return 0;
1497 
1498 	iter.len = min(len, size - pos);
1499 	while ((ret = iomap_iter(&iter, ops)) > 0)
1500 		iter.status = dax_unshare_iter(&iter);
1501 	return ret;
1502 }
1503 EXPORT_SYMBOL_GPL(dax_file_unshare);
1504 
dax_memzero(struct iomap_iter * iter,loff_t pos,size_t size)1505 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1506 {
1507 	const struct iomap *iomap = &iter->iomap;
1508 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1509 	unsigned offset = offset_in_page(pos);
1510 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1511 	void *kaddr;
1512 	long ret;
1513 
1514 	ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1515 				NULL);
1516 	if (ret < 0)
1517 		return dax_mem2blk_err(ret);
1518 
1519 	memset(kaddr + offset, 0, size);
1520 	if (iomap->flags & IOMAP_F_SHARED)
1521 		ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1522 					    kaddr);
1523 	else
1524 		dax_flush(iomap->dax_dev, kaddr + offset, size);
1525 	return ret;
1526 }
1527 
dax_zero_iter(struct iomap_iter * iter,bool * did_zero)1528 static int dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1529 {
1530 	const struct iomap *iomap = &iter->iomap;
1531 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1532 	u64 length = iomap_length(iter);
1533 	int ret;
1534 
1535 	/* already zeroed?  we're done. */
1536 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1537 		return iomap_iter_advance(iter, &length);
1538 
1539 	/*
1540 	 * invalidate the pages whose sharing state is to be changed
1541 	 * because of CoW.
1542 	 */
1543 	if (iomap->flags & IOMAP_F_SHARED)
1544 		invalidate_inode_pages2_range(iter->inode->i_mapping,
1545 				iter->pos >> PAGE_SHIFT,
1546 				(iter->pos + length - 1) >> PAGE_SHIFT);
1547 
1548 	do {
1549 		loff_t pos = iter->pos;
1550 		unsigned offset = offset_in_page(pos);
1551 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1552 		int id;
1553 
1554 		length = min_t(u64, PAGE_SIZE - offset, length);
1555 
1556 		id = dax_read_lock();
1557 		if (IS_ALIGNED(pos, PAGE_SIZE) && length == PAGE_SIZE)
1558 			ret = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1559 		else
1560 			ret = dax_memzero(iter, pos, length);
1561 		dax_read_unlock(id);
1562 
1563 		if (ret < 0)
1564 			return ret;
1565 
1566 		ret = iomap_iter_advance(iter, &length);
1567 		if (ret)
1568 			return ret;
1569 	} while (length > 0);
1570 
1571 	if (did_zero)
1572 		*did_zero = true;
1573 	return ret;
1574 }
1575 
dax_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)1576 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1577 		const struct iomap_ops *ops)
1578 {
1579 	struct iomap_iter iter = {
1580 		.inode		= inode,
1581 		.pos		= pos,
1582 		.len		= len,
1583 		.flags		= IOMAP_DAX | IOMAP_ZERO,
1584 	};
1585 	int ret;
1586 
1587 	while ((ret = iomap_iter(&iter, ops)) > 0)
1588 		iter.status = dax_zero_iter(&iter, did_zero);
1589 	return ret;
1590 }
1591 EXPORT_SYMBOL_GPL(dax_zero_range);
1592 
dax_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)1593 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1594 		const struct iomap_ops *ops)
1595 {
1596 	unsigned int blocksize = i_blocksize(inode);
1597 	unsigned int off = pos & (blocksize - 1);
1598 
1599 	/* Block boundary? Nothing to do */
1600 	if (!off)
1601 		return 0;
1602 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1603 }
1604 EXPORT_SYMBOL_GPL(dax_truncate_page);
1605 
dax_iomap_iter(struct iomap_iter * iomi,struct iov_iter * iter)1606 static int dax_iomap_iter(struct iomap_iter *iomi, struct iov_iter *iter)
1607 {
1608 	const struct iomap *iomap = &iomi->iomap;
1609 	const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1610 	loff_t length = iomap_length(iomi);
1611 	loff_t pos = iomi->pos;
1612 	struct dax_device *dax_dev = iomap->dax_dev;
1613 	loff_t end = pos + length, done = 0;
1614 	bool write = iov_iter_rw(iter) == WRITE;
1615 	bool cow = write && iomap->flags & IOMAP_F_SHARED;
1616 	ssize_t ret = 0;
1617 	size_t xfer;
1618 	int id;
1619 
1620 	if (!write) {
1621 		end = min(end, i_size_read(iomi->inode));
1622 		if (pos >= end)
1623 			return 0;
1624 
1625 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) {
1626 			done = iov_iter_zero(min(length, end - pos), iter);
1627 			return iomap_iter_advance(iomi, &done);
1628 		}
1629 	}
1630 
1631 	/*
1632 	 * In DAX mode, enforce either pure overwrites of written extents, or
1633 	 * writes to unwritten extents as part of a copy-on-write operation.
1634 	 */
1635 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1636 			!(iomap->flags & IOMAP_F_SHARED)))
1637 		return -EIO;
1638 
1639 	/*
1640 	 * Write can allocate block for an area which has a hole page mapped
1641 	 * into page tables. We have to tear down these mappings so that data
1642 	 * written by write(2) is visible in mmap.
1643 	 */
1644 	if (iomap->flags & IOMAP_F_NEW || cow) {
1645 		/*
1646 		 * Filesystem allows CoW on non-shared extents. The src extents
1647 		 * may have been mmapped with dirty mark before. To be able to
1648 		 * invalidate its dax entries, we need to clear the dirty mark
1649 		 * in advance.
1650 		 */
1651 		if (cow)
1652 			__dax_clear_dirty_range(iomi->inode->i_mapping,
1653 						pos >> PAGE_SHIFT,
1654 						(end - 1) >> PAGE_SHIFT);
1655 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1656 					      pos >> PAGE_SHIFT,
1657 					      (end - 1) >> PAGE_SHIFT);
1658 	}
1659 
1660 	id = dax_read_lock();
1661 	while ((pos = iomi->pos) < end) {
1662 		unsigned offset = pos & (PAGE_SIZE - 1);
1663 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1664 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1665 		ssize_t map_len;
1666 		bool recovery = false;
1667 		void *kaddr;
1668 
1669 		if (fatal_signal_pending(current)) {
1670 			ret = -EINTR;
1671 			break;
1672 		}
1673 
1674 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1675 				DAX_ACCESS, &kaddr, NULL);
1676 		if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
1677 			map_len = dax_direct_access(dax_dev, pgoff,
1678 					PHYS_PFN(size), DAX_RECOVERY_WRITE,
1679 					&kaddr, NULL);
1680 			if (map_len > 0)
1681 				recovery = true;
1682 		}
1683 		if (map_len < 0) {
1684 			ret = dax_mem2blk_err(map_len);
1685 			break;
1686 		}
1687 
1688 		if (cow) {
1689 			ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1690 						    srcmap, kaddr);
1691 			if (ret)
1692 				break;
1693 		}
1694 
1695 		map_len = PFN_PHYS(map_len);
1696 		kaddr += offset;
1697 		map_len -= offset;
1698 		if (map_len > end - pos)
1699 			map_len = end - pos;
1700 
1701 		if (recovery)
1702 			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1703 					map_len, iter);
1704 		else if (write)
1705 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1706 					map_len, iter);
1707 		else
1708 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1709 					map_len, iter);
1710 
1711 		length = xfer;
1712 		ret = iomap_iter_advance(iomi, &length);
1713 		if (!ret && xfer == 0)
1714 			ret = -EFAULT;
1715 		if (xfer < map_len)
1716 			break;
1717 	}
1718 	dax_read_unlock(id);
1719 
1720 	return ret;
1721 }
1722 
1723 /**
1724  * dax_iomap_rw - Perform I/O to a DAX file
1725  * @iocb:	The control block for this I/O
1726  * @iter:	The addresses to do I/O from or to
1727  * @ops:	iomap ops passed from the file system
1728  *
1729  * This function performs read and write operations to directly mapped
1730  * persistent memory.  The callers needs to take care of read/write exclusion
1731  * and evicting any page cache pages in the region under I/O.
1732  */
1733 ssize_t
dax_iomap_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)1734 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1735 		const struct iomap_ops *ops)
1736 {
1737 	struct iomap_iter iomi = {
1738 		.inode		= iocb->ki_filp->f_mapping->host,
1739 		.pos		= iocb->ki_pos,
1740 		.len		= iov_iter_count(iter),
1741 		.flags		= IOMAP_DAX,
1742 	};
1743 	loff_t done = 0;
1744 	int ret;
1745 
1746 	if (WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC))
1747 		return -EIO;
1748 
1749 	if (!iomi.len)
1750 		return 0;
1751 
1752 	if (iov_iter_rw(iter) == WRITE) {
1753 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1754 		iomi.flags |= IOMAP_WRITE;
1755 	} else {
1756 		lockdep_assert_held(&iomi.inode->i_rwsem);
1757 	}
1758 
1759 	if (iocb->ki_flags & IOCB_NOWAIT)
1760 		iomi.flags |= IOMAP_NOWAIT;
1761 
1762 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1763 		iomi.status = dax_iomap_iter(&iomi, iter);
1764 
1765 	done = iomi.pos - iocb->ki_pos;
1766 	iocb->ki_pos = iomi.pos;
1767 	return done ? done : ret;
1768 }
1769 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1770 
dax_fault_return(int error)1771 static vm_fault_t dax_fault_return(int error)
1772 {
1773 	if (error == 0)
1774 		return VM_FAULT_NOPAGE;
1775 	return vmf_error(error);
1776 }
1777 
1778 /*
1779  * When handling a synchronous page fault and the inode need a fsync, we can
1780  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1781  * insertion for now and return the pfn so that caller can insert it after the
1782  * fsync is done.
1783  */
dax_fault_synchronous_pfnp(unsigned long * pfnp,unsigned long pfn)1784 static vm_fault_t dax_fault_synchronous_pfnp(unsigned long *pfnp,
1785 					unsigned long pfn)
1786 {
1787 	if (WARN_ON_ONCE(!pfnp))
1788 		return VM_FAULT_SIGBUS;
1789 	*pfnp = pfn;
1790 	return VM_FAULT_NEEDDSYNC;
1791 }
1792 
dax_fault_cow_page(struct vm_fault * vmf,const struct iomap_iter * iter)1793 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1794 		const struct iomap_iter *iter)
1795 {
1796 	vm_fault_t ret;
1797 	int error = 0;
1798 
1799 	switch (iter->iomap.type) {
1800 	case IOMAP_HOLE:
1801 	case IOMAP_UNWRITTEN:
1802 		clear_user_highpage(vmf->cow_page, vmf->address);
1803 		break;
1804 	case IOMAP_MAPPED:
1805 		error = copy_cow_page_dax(vmf, iter);
1806 		break;
1807 	default:
1808 		WARN_ON_ONCE(1);
1809 		error = -EIO;
1810 		break;
1811 	}
1812 
1813 	if (error)
1814 		return dax_fault_return(error);
1815 
1816 	__SetPageUptodate(vmf->cow_page);
1817 	ret = finish_fault(vmf);
1818 	if (!ret)
1819 		return VM_FAULT_DONE_COW;
1820 	return ret;
1821 }
1822 
1823 /**
1824  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1825  * @vmf:	vm fault instance
1826  * @iter:	iomap iter
1827  * @pfnp:	pfn to be returned
1828  * @xas:	the dax mapping tree of a file
1829  * @entry:	an unlocked dax entry to be inserted
1830  * @pmd:	distinguish whether it is a pmd fault
1831  */
dax_fault_iter(struct vm_fault * vmf,const struct iomap_iter * iter,unsigned long * pfnp,struct xa_state * xas,void ** entry,bool pmd)1832 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1833 		const struct iomap_iter *iter, unsigned long *pfnp,
1834 		struct xa_state *xas, void **entry, bool pmd)
1835 {
1836 	const struct iomap *iomap = &iter->iomap;
1837 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1838 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1839 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1840 	bool write = iter->flags & IOMAP_WRITE;
1841 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1842 	struct folio *folio;
1843 	int ret, err = 0;
1844 	unsigned long pfn;
1845 	void *kaddr;
1846 
1847 	if (!pmd && vmf->cow_page)
1848 		return dax_fault_cow_page(vmf, iter);
1849 
1850 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1851 	if (!write &&
1852 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1853 		if (!pmd)
1854 			return dax_load_hole(xas, vmf, iter, entry);
1855 		return dax_pmd_load_hole(xas, vmf, iter, entry);
1856 	}
1857 
1858 	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1859 		WARN_ON_ONCE(1);
1860 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1861 	}
1862 
1863 	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1864 	if (err)
1865 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1866 
1867 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1868 
1869 	if (write && iomap->flags & IOMAP_F_SHARED) {
1870 		err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1871 		if (err)
1872 			return dax_fault_return(err);
1873 	}
1874 
1875 	folio = dax_to_folio(*entry);
1876 	if (dax_fault_is_synchronous(iter, vmf->vma))
1877 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1878 
1879 	folio_ref_inc(folio);
1880 	if (pmd)
1881 		ret = vmf_insert_folio_pmd(vmf, pfn_folio(pfn), write);
1882 	else
1883 		ret = vmf_insert_page_mkwrite(vmf, pfn_to_page(pfn), write);
1884 	folio_put(folio);
1885 
1886 	return ret;
1887 }
1888 
dax_iomap_pte_fault(struct vm_fault * vmf,unsigned long * pfnp,int * iomap_errp,const struct iomap_ops * ops)1889 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, unsigned long *pfnp,
1890 			       int *iomap_errp, const struct iomap_ops *ops)
1891 {
1892 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1893 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1894 	struct iomap_iter iter = {
1895 		.inode		= mapping->host,
1896 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1897 		.len		= PAGE_SIZE,
1898 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1899 	};
1900 	vm_fault_t ret = 0;
1901 	void *entry;
1902 	int error;
1903 
1904 	trace_dax_pte_fault(iter.inode, vmf, ret);
1905 	/*
1906 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1907 	 * to hold locks serializing us with truncate / punch hole so this is
1908 	 * a reliable test.
1909 	 */
1910 	if (iter.pos >= i_size_read(iter.inode)) {
1911 		ret = VM_FAULT_SIGBUS;
1912 		goto out;
1913 	}
1914 
1915 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1916 		iter.flags |= IOMAP_WRITE;
1917 
1918 	entry = grab_mapping_entry(&xas, mapping, 0);
1919 	if (xa_is_internal(entry)) {
1920 		ret = xa_to_internal(entry);
1921 		goto out;
1922 	}
1923 
1924 	/*
1925 	 * It is possible, particularly with mixed reads & writes to private
1926 	 * mappings, that we have raced with a PMD fault that overlaps with
1927 	 * the PTE we need to set up.  If so just return and the fault will be
1928 	 * retried.
1929 	 */
1930 	if (pmd_trans_huge(*vmf->pmd)) {
1931 		ret = VM_FAULT_NOPAGE;
1932 		goto unlock_entry;
1933 	}
1934 
1935 	while ((error = iomap_iter(&iter, ops)) > 0) {
1936 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1937 			iter.status = -EIO;	/* fs corruption? */
1938 			continue;
1939 		}
1940 
1941 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1942 		if (ret != VM_FAULT_SIGBUS &&
1943 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1944 			count_vm_event(PGMAJFAULT);
1945 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1946 			ret |= VM_FAULT_MAJOR;
1947 		}
1948 
1949 		if (!(ret & VM_FAULT_ERROR)) {
1950 			u64 length = PAGE_SIZE;
1951 			iter.status = iomap_iter_advance(&iter, &length);
1952 		}
1953 	}
1954 
1955 	if (iomap_errp)
1956 		*iomap_errp = error;
1957 	if (!ret && error)
1958 		ret = dax_fault_return(error);
1959 
1960 unlock_entry:
1961 	dax_unlock_entry(&xas, entry);
1962 out:
1963 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1964 	return ret;
1965 }
1966 
1967 #ifdef CONFIG_FS_DAX_PMD
dax_fault_check_fallback(struct vm_fault * vmf,struct xa_state * xas,pgoff_t max_pgoff)1968 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1969 		pgoff_t max_pgoff)
1970 {
1971 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1972 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1973 
1974 	/*
1975 	 * Make sure that the faulting address's PMD offset (color) matches
1976 	 * the PMD offset from the start of the file.  This is necessary so
1977 	 * that a PMD range in the page table overlaps exactly with a PMD
1978 	 * range in the page cache.
1979 	 */
1980 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1981 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1982 		return true;
1983 
1984 	/* Fall back to PTEs if we're going to COW */
1985 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1986 		return true;
1987 
1988 	/* If the PMD would extend outside the VMA */
1989 	if (pmd_addr < vmf->vma->vm_start)
1990 		return true;
1991 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1992 		return true;
1993 
1994 	/* If the PMD would extend beyond the file size */
1995 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1996 		return true;
1997 
1998 	return false;
1999 }
2000 
dax_iomap_pmd_fault(struct vm_fault * vmf,unsigned long * pfnp,const struct iomap_ops * ops)2001 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, unsigned long *pfnp,
2002 			       const struct iomap_ops *ops)
2003 {
2004 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2005 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
2006 	struct iomap_iter iter = {
2007 		.inode		= mapping->host,
2008 		.len		= PMD_SIZE,
2009 		.flags		= IOMAP_DAX | IOMAP_FAULT,
2010 	};
2011 	vm_fault_t ret = VM_FAULT_FALLBACK;
2012 	pgoff_t max_pgoff;
2013 	void *entry;
2014 
2015 	if (vmf->flags & FAULT_FLAG_WRITE)
2016 		iter.flags |= IOMAP_WRITE;
2017 
2018 	/*
2019 	 * Check whether offset isn't beyond end of file now. Caller is
2020 	 * supposed to hold locks serializing us with truncate / punch hole so
2021 	 * this is a reliable test.
2022 	 */
2023 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
2024 
2025 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
2026 
2027 	if (xas.xa_index >= max_pgoff) {
2028 		ret = VM_FAULT_SIGBUS;
2029 		goto out;
2030 	}
2031 
2032 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
2033 		goto fallback;
2034 
2035 	/*
2036 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
2037 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
2038 	 * entry is already in the array, for instance), it will return
2039 	 * VM_FAULT_FALLBACK.
2040 	 */
2041 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
2042 	if (xa_is_internal(entry)) {
2043 		ret = xa_to_internal(entry);
2044 		goto fallback;
2045 	}
2046 
2047 	/*
2048 	 * It is possible, particularly with mixed reads & writes to private
2049 	 * mappings, that we have raced with a PTE fault that overlaps with
2050 	 * the PMD we need to set up.  If so just return and the fault will be
2051 	 * retried.
2052 	 */
2053 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd)) {
2054 		ret = 0;
2055 		goto unlock_entry;
2056 	}
2057 
2058 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
2059 	while (iomap_iter(&iter, ops) > 0) {
2060 		if (iomap_length(&iter) < PMD_SIZE)
2061 			continue; /* actually breaks out of the loop */
2062 
2063 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
2064 		if (ret != VM_FAULT_FALLBACK) {
2065 			u64 length = PMD_SIZE;
2066 			iter.status = iomap_iter_advance(&iter, &length);
2067 		}
2068 	}
2069 
2070 unlock_entry:
2071 	dax_unlock_entry(&xas, entry);
2072 fallback:
2073 	if (ret == VM_FAULT_FALLBACK) {
2074 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
2075 		count_vm_event(THP_FAULT_FALLBACK);
2076 	}
2077 out:
2078 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
2079 	return ret;
2080 }
2081 #else
dax_iomap_pmd_fault(struct vm_fault * vmf,unsigned long * pfnp,const struct iomap_ops * ops)2082 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, unsigned long *pfnp,
2083 			       const struct iomap_ops *ops)
2084 {
2085 	return VM_FAULT_FALLBACK;
2086 }
2087 #endif /* CONFIG_FS_DAX_PMD */
2088 
2089 /**
2090  * dax_iomap_fault - handle a page fault on a DAX file
2091  * @vmf: The description of the fault
2092  * @order: Order of the page to fault in
2093  * @pfnp: PFN to insert for synchronous faults if fsync is required
2094  * @iomap_errp: Storage for detailed error code in case of error
2095  * @ops: Iomap ops passed from the file system
2096  *
2097  * When a page fault occurs, filesystems may call this helper in
2098  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
2099  * has done all the necessary locking for page fault to proceed
2100  * successfully.
2101  */
dax_iomap_fault(struct vm_fault * vmf,unsigned int order,unsigned long * pfnp,int * iomap_errp,const struct iomap_ops * ops)2102 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order,
2103 			unsigned long *pfnp, int *iomap_errp,
2104 			const struct iomap_ops *ops)
2105 {
2106 	if (order == 0)
2107 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
2108 	else if (order == PMD_ORDER)
2109 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
2110 	else
2111 		return VM_FAULT_FALLBACK;
2112 }
2113 EXPORT_SYMBOL_GPL(dax_iomap_fault);
2114 
2115 /*
2116  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
2117  * @vmf: The description of the fault
2118  * @pfn: PFN to insert
2119  * @order: Order of entry to insert.
2120  *
2121  * This function inserts a writeable PTE or PMD entry into the page tables
2122  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
2123  */
dax_insert_pfn_mkwrite(struct vm_fault * vmf,unsigned long pfn,unsigned int order)2124 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
2125 					unsigned long pfn, unsigned int order)
2126 {
2127 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2128 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
2129 	struct folio *folio;
2130 	void *entry;
2131 	vm_fault_t ret;
2132 
2133 	xas_lock_irq(&xas);
2134 	entry = get_next_unlocked_entry(&xas, order);
2135 	/* Did we race with someone splitting entry or so? */
2136 	if (!entry || dax_is_conflict(entry) ||
2137 	    (order == 0 && !dax_is_pte_entry(entry))) {
2138 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
2139 		xas_unlock_irq(&xas);
2140 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
2141 						      VM_FAULT_NOPAGE);
2142 		return VM_FAULT_NOPAGE;
2143 	}
2144 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
2145 	dax_lock_entry(&xas, entry);
2146 	xas_unlock_irq(&xas);
2147 	folio = pfn_folio(pfn);
2148 	folio_ref_inc(folio);
2149 	if (order == 0)
2150 		ret = vmf_insert_page_mkwrite(vmf, &folio->page, true);
2151 #ifdef CONFIG_FS_DAX_PMD
2152 	else if (order == PMD_ORDER)
2153 		ret = vmf_insert_folio_pmd(vmf, folio, FAULT_FLAG_WRITE);
2154 #endif
2155 	else
2156 		ret = VM_FAULT_FALLBACK;
2157 	folio_put(folio);
2158 	dax_unlock_entry(&xas, entry);
2159 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
2160 	return ret;
2161 }
2162 
2163 /**
2164  * dax_finish_sync_fault - finish synchronous page fault
2165  * @vmf: The description of the fault
2166  * @order: Order of entry to be inserted
2167  * @pfn: PFN to insert
2168  *
2169  * This function ensures that the file range touched by the page fault is
2170  * stored persistently on the media and handles inserting of appropriate page
2171  * table entry.
2172  */
dax_finish_sync_fault(struct vm_fault * vmf,unsigned int order,unsigned long pfn)2173 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order,
2174 		unsigned long pfn)
2175 {
2176 	int err;
2177 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
2178 	size_t len = PAGE_SIZE << order;
2179 
2180 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
2181 	if (err)
2182 		return VM_FAULT_SIGBUS;
2183 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
2184 }
2185 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
2186 
dax_range_compare_iter(struct iomap_iter * it_src,struct iomap_iter * it_dest,u64 len,bool * same)2187 static int dax_range_compare_iter(struct iomap_iter *it_src,
2188 		struct iomap_iter *it_dest, u64 len, bool *same)
2189 {
2190 	const struct iomap *smap = &it_src->iomap;
2191 	const struct iomap *dmap = &it_dest->iomap;
2192 	loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2193 	u64 dest_len;
2194 	void *saddr, *daddr;
2195 	int id, ret;
2196 
2197 	len = min(len, min(smap->length, dmap->length));
2198 
2199 	if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2200 		*same = true;
2201 		goto advance;
2202 	}
2203 
2204 	if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2205 		*same = false;
2206 		return 0;
2207 	}
2208 
2209 	id = dax_read_lock();
2210 	ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2211 				      &saddr, NULL);
2212 	if (ret < 0)
2213 		goto out_unlock;
2214 
2215 	ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2216 				      &daddr, NULL);
2217 	if (ret < 0)
2218 		goto out_unlock;
2219 
2220 	*same = !memcmp(saddr, daddr, len);
2221 	if (!*same)
2222 		len = 0;
2223 	dax_read_unlock(id);
2224 
2225 advance:
2226 	dest_len = len;
2227 	ret = iomap_iter_advance(it_src, &len);
2228 	if (!ret)
2229 		ret = iomap_iter_advance(it_dest, &dest_len);
2230 	return ret;
2231 
2232 out_unlock:
2233 	dax_read_unlock(id);
2234 	return -EIO;
2235 }
2236 
dax_dedupe_file_range_compare(struct inode * src,loff_t srcoff,struct inode * dst,loff_t dstoff,loff_t len,bool * same,const struct iomap_ops * ops)2237 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2238 		struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2239 		const struct iomap_ops *ops)
2240 {
2241 	struct iomap_iter src_iter = {
2242 		.inode		= src,
2243 		.pos		= srcoff,
2244 		.len		= len,
2245 		.flags		= IOMAP_DAX,
2246 	};
2247 	struct iomap_iter dst_iter = {
2248 		.inode		= dst,
2249 		.pos		= dstoff,
2250 		.len		= len,
2251 		.flags		= IOMAP_DAX,
2252 	};
2253 	int ret, status;
2254 
2255 	while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2256 	       (ret = iomap_iter(&dst_iter, ops)) > 0) {
2257 		status = dax_range_compare_iter(&src_iter, &dst_iter,
2258 				min(src_iter.len, dst_iter.len), same);
2259 		if (status < 0)
2260 			return ret;
2261 		src_iter.status = dst_iter.status = status;
2262 	}
2263 	return ret;
2264 }
2265 
dax_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags,const struct iomap_ops * ops)2266 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2267 			      struct file *file_out, loff_t pos_out,
2268 			      loff_t *len, unsigned int remap_flags,
2269 			      const struct iomap_ops *ops)
2270 {
2271 	return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2272 					       pos_out, len, remap_flags, ops);
2273 }
2274 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);
2275