1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37
38 struct mempolicy;
39 struct anon_vma;
40 struct anon_vma_chain;
41 struct user_struct;
42 struct pt_regs;
43 struct folio_batch;
44
45 void arch_mm_preinit(void);
46 void mm_core_init(void);
47 void init_mm_internals(void);
48
49 extern atomic_long_t _totalram_pages;
totalram_pages(void)50 static inline unsigned long totalram_pages(void)
51 {
52 return (unsigned long)atomic_long_read(&_totalram_pages);
53 }
54
totalram_pages_inc(void)55 static inline void totalram_pages_inc(void)
56 {
57 atomic_long_inc(&_totalram_pages);
58 }
59
totalram_pages_dec(void)60 static inline void totalram_pages_dec(void)
61 {
62 atomic_long_dec(&_totalram_pages);
63 }
64
totalram_pages_add(long count)65 static inline void totalram_pages_add(long count)
66 {
67 atomic_long_add(count, &_totalram_pages);
68 }
69
70 extern void * high_memory;
71
72 #ifdef CONFIG_SYSCTL
73 extern int sysctl_legacy_va_layout;
74 #else
75 #define sysctl_legacy_va_layout 0
76 #endif
77
78 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
79 extern const int mmap_rnd_bits_min;
80 extern int mmap_rnd_bits_max __ro_after_init;
81 extern int mmap_rnd_bits __read_mostly;
82 #endif
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
84 extern const int mmap_rnd_compat_bits_min;
85 extern const int mmap_rnd_compat_bits_max;
86 extern int mmap_rnd_compat_bits __read_mostly;
87 #endif
88
89 #ifndef DIRECT_MAP_PHYSMEM_END
90 # ifdef MAX_PHYSMEM_BITS
91 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
92 # else
93 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
94 # endif
95 #endif
96
97 #include <asm/page.h>
98 #include <asm/processor.h>
99
100 #ifndef __pa_symbol
101 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
102 #endif
103
104 #ifndef page_to_virt
105 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
106 #endif
107
108 #ifndef lm_alias
109 #define lm_alias(x) __va(__pa_symbol(x))
110 #endif
111
112 /*
113 * To prevent common memory management code establishing
114 * a zero page mapping on a read fault.
115 * This macro should be defined within <asm/pgtable.h>.
116 * s390 does this to prevent multiplexing of hardware bits
117 * related to the physical page in case of virtualization.
118 */
119 #ifndef mm_forbids_zeropage
120 #define mm_forbids_zeropage(X) (0)
121 #endif
122
123 /*
124 * On some architectures it is expensive to call memset() for small sizes.
125 * If an architecture decides to implement their own version of
126 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
127 * define their own version of this macro in <asm/pgtable.h>
128 */
129 #if BITS_PER_LONG == 64
130 /* This function must be updated when the size of struct page grows above 96
131 * or reduces below 56. The idea that compiler optimizes out switch()
132 * statement, and only leaves move/store instructions. Also the compiler can
133 * combine write statements if they are both assignments and can be reordered,
134 * this can result in several of the writes here being dropped.
135 */
136 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)137 static inline void __mm_zero_struct_page(struct page *page)
138 {
139 unsigned long *_pp = (void *)page;
140
141 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
142 BUILD_BUG_ON(sizeof(struct page) & 7);
143 BUILD_BUG_ON(sizeof(struct page) < 56);
144 BUILD_BUG_ON(sizeof(struct page) > 96);
145
146 switch (sizeof(struct page)) {
147 case 96:
148 _pp[11] = 0;
149 fallthrough;
150 case 88:
151 _pp[10] = 0;
152 fallthrough;
153 case 80:
154 _pp[9] = 0;
155 fallthrough;
156 case 72:
157 _pp[8] = 0;
158 fallthrough;
159 case 64:
160 _pp[7] = 0;
161 fallthrough;
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171 }
172 #else
173 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174 #endif
175
176 /*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192 #define MAPCOUNT_ELF_CORE_MARGIN (5)
193 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195 extern int sysctl_max_map_count;
196
197 extern unsigned long sysctl_user_reserve_kbytes;
198 extern unsigned long sysctl_admin_reserve_kbytes;
199
200 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
201 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
202 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
203 #else
204 #define nth_page(page,n) ((page) + (n))
205 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
206 #endif
207
208 /* to align the pointer to the (next) page boundary */
209 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
210
211 /* to align the pointer to the (prev) page boundary */
212 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
213
214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216
lru_to_folio(struct list_head * head)217 static inline struct folio *lru_to_folio(struct list_head *head)
218 {
219 return list_entry((head)->prev, struct folio, lru);
220 }
221
222 void setup_initial_init_mm(void *start_code, void *end_code,
223 void *end_data, void *brk);
224
225 /*
226 * Linux kernel virtual memory manager primitives.
227 * The idea being to have a "virtual" mm in the same way
228 * we have a virtual fs - giving a cleaner interface to the
229 * mm details, and allowing different kinds of memory mappings
230 * (from shared memory to executable loading to arbitrary
231 * mmap() functions).
232 */
233
234 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
235 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
236 void vm_area_free(struct vm_area_struct *);
237
238 #ifndef CONFIG_MMU
239 extern struct rb_root nommu_region_tree;
240 extern struct rw_semaphore nommu_region_sem;
241
242 extern unsigned int kobjsize(const void *objp);
243 #endif
244
245 /*
246 * vm_flags in vm_area_struct, see mm_types.h.
247 * When changing, update also include/trace/events/mmflags.h
248 */
249 #define VM_NONE 0x00000000
250
251 #define VM_READ 0x00000001 /* currently active flags */
252 #define VM_WRITE 0x00000002
253 #define VM_EXEC 0x00000004
254 #define VM_SHARED 0x00000008
255
256 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
257 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
258 #define VM_MAYWRITE 0x00000020
259 #define VM_MAYEXEC 0x00000040
260 #define VM_MAYSHARE 0x00000080
261
262 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
263 #ifdef CONFIG_MMU
264 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
265 #else /* CONFIG_MMU */
266 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
267 #define VM_UFFD_MISSING 0
268 #endif /* CONFIG_MMU */
269 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
271
272 #define VM_LOCKED 0x00002000
273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
274
275 /* Used by sys_madvise() */
276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
278
279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285 #define VM_SYNC 0x00800000 /* Synchronous page faults */
286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
289
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
292 #else
293 # define VM_SOFTDIRTY 0
294 #endif
295
296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
300
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
310 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
311 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
312 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
313 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
314 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
315 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
321 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
322 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323 #if CONFIG_ARCH_PKEY_BITS > 3
324 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
325 #else
326 # define VM_PKEY_BIT3 0
327 #endif
328 #if CONFIG_ARCH_PKEY_BITS > 4
329 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330 #else
331 # define VM_PKEY_BIT4 0
332 #endif
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
334
335 #ifdef CONFIG_X86_USER_SHADOW_STACK
336 /*
337 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
338 * support core mm.
339 *
340 * These VMAs will get a single end guard page. This helps userspace protect
341 * itself from attacks. A single page is enough for current shadow stack archs
342 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
343 * for more details on the guard size.
344 */
345 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
346 #endif
347
348 #if defined(CONFIG_ARM64_GCS)
349 /*
350 * arm64's Guarded Control Stack implements similar functionality and
351 * has similar constraints to shadow stacks.
352 */
353 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
354 #endif
355
356 #ifndef VM_SHADOW_STACK
357 # define VM_SHADOW_STACK VM_NONE
358 #endif
359
360 #if defined(CONFIG_PPC64)
361 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
362 #elif defined(CONFIG_PARISC)
363 # define VM_GROWSUP VM_ARCH_1
364 #elif defined(CONFIG_SPARC64)
365 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
366 # define VM_ARCH_CLEAR VM_SPARC_ADI
367 #elif defined(CONFIG_ARM64)
368 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
369 # define VM_ARCH_CLEAR VM_ARM64_BTI
370 #elif !defined(CONFIG_MMU)
371 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
372 #endif
373
374 #if defined(CONFIG_ARM64_MTE)
375 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
376 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
377 #else
378 # define VM_MTE VM_NONE
379 # define VM_MTE_ALLOWED VM_NONE
380 #endif
381
382 #ifndef VM_GROWSUP
383 # define VM_GROWSUP VM_NONE
384 #endif
385
386 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
387 # define VM_UFFD_MINOR_BIT 41
388 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
389 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
390 # define VM_UFFD_MINOR VM_NONE
391 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392
393 /*
394 * This flag is used to connect VFIO to arch specific KVM code. It
395 * indicates that the memory under this VMA is safe for use with any
396 * non-cachable memory type inside KVM. Some VFIO devices, on some
397 * platforms, are thought to be unsafe and can cause machine crashes
398 * if KVM does not lock down the memory type.
399 */
400 #ifdef CONFIG_64BIT
401 #define VM_ALLOW_ANY_UNCACHED_BIT 39
402 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
403 #else
404 #define VM_ALLOW_ANY_UNCACHED VM_NONE
405 #endif
406
407 #ifdef CONFIG_64BIT
408 #define VM_DROPPABLE_BIT 40
409 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
410 #elif defined(CONFIG_PPC32)
411 #define VM_DROPPABLE VM_ARCH_1
412 #else
413 #define VM_DROPPABLE VM_NONE
414 #endif
415
416 #ifdef CONFIG_64BIT
417 /* VM is sealed, in vm_flags */
418 #define VM_SEALED _BITUL(63)
419 #endif
420
421 /* Bits set in the VMA until the stack is in its final location */
422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
423
424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
425
426 /* Common data flag combinations */
427 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
430 VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433
434 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
435 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
436 #endif
437
438 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
440 #endif
441
442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
443
444 #ifdef CONFIG_STACK_GROWSUP
445 #define VM_STACK VM_GROWSUP
446 #define VM_STACK_EARLY VM_GROWSDOWN
447 #else
448 #define VM_STACK VM_GROWSDOWN
449 #define VM_STACK_EARLY 0
450 #endif
451
452 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
453
454 /* VMA basic access permission flags */
455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
456
457
458 /*
459 * Special vmas that are non-mergable, non-mlock()able.
460 */
461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
462
463 /* This mask prevents VMA from being scanned with khugepaged */
464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
465
466 /* This mask defines which mm->def_flags a process can inherit its parent */
467 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
468
469 /* This mask represents all the VMA flag bits used by mlock */
470 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
471
472 /* Arch-specific flags to clear when updating VM flags on protection change */
473 #ifndef VM_ARCH_CLEAR
474 # define VM_ARCH_CLEAR VM_NONE
475 #endif
476 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
477
478 /*
479 * mapping from the currently active vm_flags protection bits (the
480 * low four bits) to a page protection mask..
481 */
482
483 /*
484 * The default fault flags that should be used by most of the
485 * arch-specific page fault handlers.
486 */
487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
488 FAULT_FLAG_KILLABLE | \
489 FAULT_FLAG_INTERRUPTIBLE)
490
491 /**
492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493 * @flags: Fault flags.
494 *
495 * This is mostly used for places where we want to try to avoid taking
496 * the mmap_lock for too long a time when waiting for another condition
497 * to change, in which case we can try to be polite to release the
498 * mmap_lock in the first round to avoid potential starvation of other
499 * processes that would also want the mmap_lock.
500 *
501 * Return: true if the page fault allows retry and this is the first
502 * attempt of the fault handling; false otherwise.
503 */
fault_flag_allow_retry_first(enum fault_flag flags)504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
505 {
506 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 (!(flags & FAULT_FLAG_TRIED));
508 }
509
510 #define FAULT_FLAG_TRACE \
511 { FAULT_FLAG_WRITE, "WRITE" }, \
512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
516 { FAULT_FLAG_TRIED, "TRIED" }, \
517 { FAULT_FLAG_USER, "USER" }, \
518 { FAULT_FLAG_REMOTE, "REMOTE" }, \
519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
522
523 /*
524 * vm_fault is filled by the pagefault handler and passed to the vma's
525 * ->fault function. The vma's ->fault is responsible for returning a bitmask
526 * of VM_FAULT_xxx flags that give details about how the fault was handled.
527 *
528 * MM layer fills up gfp_mask for page allocations but fault handler might
529 * alter it if its implementation requires a different allocation context.
530 *
531 * pgoff should be used in favour of virtual_address, if possible.
532 */
533 struct vm_fault {
534 const struct {
535 struct vm_area_struct *vma; /* Target VMA */
536 gfp_t gfp_mask; /* gfp mask to be used for allocations */
537 pgoff_t pgoff; /* Logical page offset based on vma */
538 unsigned long address; /* Faulting virtual address - masked */
539 unsigned long real_address; /* Faulting virtual address - unmasked */
540 };
541 enum fault_flag flags; /* FAULT_FLAG_xxx flags
542 * XXX: should really be 'const' */
543 pmd_t *pmd; /* Pointer to pmd entry matching
544 * the 'address' */
545 pud_t *pud; /* Pointer to pud entry matching
546 * the 'address'
547 */
548 union {
549 pte_t orig_pte; /* Value of PTE at the time of fault */
550 pmd_t orig_pmd; /* Value of PMD at the time of fault,
551 * used by PMD fault only.
552 */
553 };
554
555 struct page *cow_page; /* Page handler may use for COW fault */
556 struct page *page; /* ->fault handlers should return a
557 * page here, unless VM_FAULT_NOPAGE
558 * is set (which is also implied by
559 * VM_FAULT_ERROR).
560 */
561 /* These three entries are valid only while holding ptl lock */
562 pte_t *pte; /* Pointer to pte entry matching
563 * the 'address'. NULL if the page
564 * table hasn't been allocated.
565 */
566 spinlock_t *ptl; /* Page table lock.
567 * Protects pte page table if 'pte'
568 * is not NULL, otherwise pmd.
569 */
570 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
571 * vm_ops->map_pages() sets up a page
572 * table from atomic context.
573 * do_fault_around() pre-allocates
574 * page table to avoid allocation from
575 * atomic context.
576 */
577 };
578
579 /*
580 * These are the virtual MM functions - opening of an area, closing and
581 * unmapping it (needed to keep files on disk up-to-date etc), pointer
582 * to the functions called when a no-page or a wp-page exception occurs.
583 */
584 struct vm_operations_struct {
585 void (*open)(struct vm_area_struct * area);
586 /**
587 * @close: Called when the VMA is being removed from the MM.
588 * Context: User context. May sleep. Caller holds mmap_lock.
589 */
590 void (*close)(struct vm_area_struct * area);
591 /* Called any time before splitting to check if it's allowed */
592 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 int (*mremap)(struct vm_area_struct *area);
594 /*
595 * Called by mprotect() to make driver-specific permission
596 * checks before mprotect() is finalised. The VMA must not
597 * be modified. Returns 0 if mprotect() can proceed.
598 */
599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 unsigned long end, unsigned long newflags);
601 vm_fault_t (*fault)(struct vm_fault *vmf);
602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 pgoff_t start_pgoff, pgoff_t end_pgoff);
605 unsigned long (*pagesize)(struct vm_area_struct * area);
606
607 /* notification that a previously read-only page is about to become
608 * writable, if an error is returned it will cause a SIGBUS */
609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610
611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613
614 /* called by access_process_vm when get_user_pages() fails, typically
615 * for use by special VMAs. See also generic_access_phys() for a generic
616 * implementation useful for any iomem mapping.
617 */
618 int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 void *buf, int len, int write);
620
621 /* Called by the /proc/PID/maps code to ask the vma whether it
622 * has a special name. Returning non-NULL will also cause this
623 * vma to be dumped unconditionally. */
624 const char *(*name)(struct vm_area_struct *vma);
625
626 #ifdef CONFIG_NUMA
627 /*
628 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 * to hold the policy upon return. Caller should pass NULL @new to
630 * remove a policy and fall back to surrounding context--i.e. do not
631 * install a MPOL_DEFAULT policy, nor the task or system default
632 * mempolicy.
633 */
634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635
636 /*
637 * get_policy() op must add reference [mpol_get()] to any policy at
638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
639 * in mm/mempolicy.c will do this automatically.
640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 * must return NULL--i.e., do not "fallback" to task or system default
644 * policy.
645 */
646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 unsigned long addr, pgoff_t *ilx);
648 #endif
649 /*
650 * Called by vm_normal_page() for special PTEs to find the
651 * page for @addr. This is useful if the default behavior
652 * (using pte_page()) would not find the correct page.
653 */
654 struct page *(*find_special_page)(struct vm_area_struct *vma,
655 unsigned long addr);
656 };
657
658 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)659 static inline void vma_numab_state_init(struct vm_area_struct *vma)
660 {
661 vma->numab_state = NULL;
662 }
vma_numab_state_free(struct vm_area_struct * vma)663 static inline void vma_numab_state_free(struct vm_area_struct *vma)
664 {
665 kfree(vma->numab_state);
666 }
667 #else
vma_numab_state_init(struct vm_area_struct * vma)668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670 #endif /* CONFIG_NUMA_BALANCING */
671
672 /*
673 * These must be here rather than mmap_lock.h as dependent on vm_fault type,
674 * declared in this header.
675 */
676 #ifdef CONFIG_PER_VMA_LOCK
release_fault_lock(struct vm_fault * vmf)677 static inline void release_fault_lock(struct vm_fault *vmf)
678 {
679 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
680 vma_end_read(vmf->vma);
681 else
682 mmap_read_unlock(vmf->vma->vm_mm);
683 }
684
assert_fault_locked(struct vm_fault * vmf)685 static inline void assert_fault_locked(struct vm_fault *vmf)
686 {
687 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
688 vma_assert_locked(vmf->vma);
689 else
690 mmap_assert_locked(vmf->vma->vm_mm);
691 }
692 #else
release_fault_lock(struct vm_fault * vmf)693 static inline void release_fault_lock(struct vm_fault *vmf)
694 {
695 mmap_read_unlock(vmf->vma->vm_mm);
696 }
697
assert_fault_locked(struct vm_fault * vmf)698 static inline void assert_fault_locked(struct vm_fault *vmf)
699 {
700 mmap_assert_locked(vmf->vma->vm_mm);
701 }
702 #endif /* CONFIG_PER_VMA_LOCK */
703
704 extern const struct vm_operations_struct vma_dummy_vm_ops;
705
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)706 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
707 {
708 memset(vma, 0, sizeof(*vma));
709 vma->vm_mm = mm;
710 vma->vm_ops = &vma_dummy_vm_ops;
711 INIT_LIST_HEAD(&vma->anon_vma_chain);
712 vma_lock_init(vma, false);
713 }
714
715 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)716 static inline void vm_flags_init(struct vm_area_struct *vma,
717 vm_flags_t flags)
718 {
719 ACCESS_PRIVATE(vma, __vm_flags) = flags;
720 }
721
722 /*
723 * Use when VMA is part of the VMA tree and modifications need coordination
724 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
725 * it should be locked explicitly beforehand.
726 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)727 static inline void vm_flags_reset(struct vm_area_struct *vma,
728 vm_flags_t flags)
729 {
730 vma_assert_write_locked(vma);
731 vm_flags_init(vma, flags);
732 }
733
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)734 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
735 vm_flags_t flags)
736 {
737 vma_assert_write_locked(vma);
738 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
739 }
740
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)741 static inline void vm_flags_set(struct vm_area_struct *vma,
742 vm_flags_t flags)
743 {
744 vma_start_write(vma);
745 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
746 }
747
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)748 static inline void vm_flags_clear(struct vm_area_struct *vma,
749 vm_flags_t flags)
750 {
751 vma_start_write(vma);
752 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
753 }
754
755 /*
756 * Use only if VMA is not part of the VMA tree or has no other users and
757 * therefore needs no locking.
758 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)759 static inline void __vm_flags_mod(struct vm_area_struct *vma,
760 vm_flags_t set, vm_flags_t clear)
761 {
762 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
763 }
764
765 /*
766 * Use only when the order of set/clear operations is unimportant, otherwise
767 * use vm_flags_{set|clear} explicitly.
768 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)769 static inline void vm_flags_mod(struct vm_area_struct *vma,
770 vm_flags_t set, vm_flags_t clear)
771 {
772 vma_start_write(vma);
773 __vm_flags_mod(vma, set, clear);
774 }
775
vma_set_anonymous(struct vm_area_struct * vma)776 static inline void vma_set_anonymous(struct vm_area_struct *vma)
777 {
778 vma->vm_ops = NULL;
779 }
780
vma_is_anonymous(struct vm_area_struct * vma)781 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
782 {
783 return !vma->vm_ops;
784 }
785
786 /*
787 * Indicate if the VMA is a heap for the given task; for
788 * /proc/PID/maps that is the heap of the main task.
789 */
vma_is_initial_heap(const struct vm_area_struct * vma)790 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
791 {
792 return vma->vm_start < vma->vm_mm->brk &&
793 vma->vm_end > vma->vm_mm->start_brk;
794 }
795
796 /*
797 * Indicate if the VMA is a stack for the given task; for
798 * /proc/PID/maps that is the stack of the main task.
799 */
vma_is_initial_stack(const struct vm_area_struct * vma)800 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
801 {
802 /*
803 * We make no effort to guess what a given thread considers to be
804 * its "stack". It's not even well-defined for programs written
805 * languages like Go.
806 */
807 return vma->vm_start <= vma->vm_mm->start_stack &&
808 vma->vm_end >= vma->vm_mm->start_stack;
809 }
810
vma_is_temporary_stack(struct vm_area_struct * vma)811 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
812 {
813 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
814
815 if (!maybe_stack)
816 return false;
817
818 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
819 VM_STACK_INCOMPLETE_SETUP)
820 return true;
821
822 return false;
823 }
824
vma_is_foreign(struct vm_area_struct * vma)825 static inline bool vma_is_foreign(struct vm_area_struct *vma)
826 {
827 if (!current->mm)
828 return true;
829
830 if (current->mm != vma->vm_mm)
831 return true;
832
833 return false;
834 }
835
vma_is_accessible(struct vm_area_struct * vma)836 static inline bool vma_is_accessible(struct vm_area_struct *vma)
837 {
838 return vma->vm_flags & VM_ACCESS_FLAGS;
839 }
840
is_shared_maywrite(vm_flags_t vm_flags)841 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
842 {
843 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
844 (VM_SHARED | VM_MAYWRITE);
845 }
846
vma_is_shared_maywrite(struct vm_area_struct * vma)847 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
848 {
849 return is_shared_maywrite(vma->vm_flags);
850 }
851
852 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)853 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
854 {
855 return mas_find(&vmi->mas, max - 1);
856 }
857
vma_next(struct vma_iterator * vmi)858 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
859 {
860 /*
861 * Uses mas_find() to get the first VMA when the iterator starts.
862 * Calling mas_next() could skip the first entry.
863 */
864 return mas_find(&vmi->mas, ULONG_MAX);
865 }
866
867 static inline
vma_iter_next_range(struct vma_iterator * vmi)868 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
869 {
870 return mas_next_range(&vmi->mas, ULONG_MAX);
871 }
872
873
vma_prev(struct vma_iterator * vmi)874 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
875 {
876 return mas_prev(&vmi->mas, 0);
877 }
878
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)879 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
880 unsigned long start, unsigned long end, gfp_t gfp)
881 {
882 __mas_set_range(&vmi->mas, start, end - 1);
883 mas_store_gfp(&vmi->mas, NULL, gfp);
884 if (unlikely(mas_is_err(&vmi->mas)))
885 return -ENOMEM;
886
887 return 0;
888 }
889
890 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)891 static inline void vma_iter_free(struct vma_iterator *vmi)
892 {
893 mas_destroy(&vmi->mas);
894 }
895
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)896 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
897 struct vm_area_struct *vma)
898 {
899 vmi->mas.index = vma->vm_start;
900 vmi->mas.last = vma->vm_end - 1;
901 mas_store(&vmi->mas, vma);
902 if (unlikely(mas_is_err(&vmi->mas)))
903 return -ENOMEM;
904
905 vma_mark_attached(vma);
906 return 0;
907 }
908
vma_iter_invalidate(struct vma_iterator * vmi)909 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
910 {
911 mas_pause(&vmi->mas);
912 }
913
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)914 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
915 {
916 mas_set(&vmi->mas, addr);
917 }
918
919 #define for_each_vma(__vmi, __vma) \
920 while (((__vma) = vma_next(&(__vmi))) != NULL)
921
922 /* The MM code likes to work with exclusive end addresses */
923 #define for_each_vma_range(__vmi, __vma, __end) \
924 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
925
926 #ifdef CONFIG_SHMEM
927 /*
928 * The vma_is_shmem is not inline because it is used only by slow
929 * paths in userfault.
930 */
931 bool vma_is_shmem(struct vm_area_struct *vma);
932 bool vma_is_anon_shmem(struct vm_area_struct *vma);
933 #else
vma_is_shmem(struct vm_area_struct * vma)934 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)935 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
936 #endif
937
938 int vma_is_stack_for_current(struct vm_area_struct *vma);
939
940 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
941 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
942
943 struct mmu_gather;
944 struct inode;
945
946 extern void prep_compound_page(struct page *page, unsigned int order);
947
folio_large_order(const struct folio * folio)948 static inline unsigned int folio_large_order(const struct folio *folio)
949 {
950 return folio->_flags_1 & 0xff;
951 }
952
953 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)954 static inline long folio_large_nr_pages(const struct folio *folio)
955 {
956 return folio->_nr_pages;
957 }
958 #else
folio_large_nr_pages(const struct folio * folio)959 static inline long folio_large_nr_pages(const struct folio *folio)
960 {
961 return 1L << folio_large_order(folio);
962 }
963 #endif
964
965 /*
966 * compound_order() can be called without holding a reference, which means
967 * that niceties like page_folio() don't work. These callers should be
968 * prepared to handle wild return values. For example, PG_head may be
969 * set before the order is initialised, or this may be a tail page.
970 * See compaction.c for some good examples.
971 */
compound_order(struct page * page)972 static inline unsigned int compound_order(struct page *page)
973 {
974 struct folio *folio = (struct folio *)page;
975
976 if (!test_bit(PG_head, &folio->flags))
977 return 0;
978 return folio_large_order(folio);
979 }
980
981 /**
982 * folio_order - The allocation order of a folio.
983 * @folio: The folio.
984 *
985 * A folio is composed of 2^order pages. See get_order() for the definition
986 * of order.
987 *
988 * Return: The order of the folio.
989 */
folio_order(const struct folio * folio)990 static inline unsigned int folio_order(const struct folio *folio)
991 {
992 if (!folio_test_large(folio))
993 return 0;
994 return folio_large_order(folio);
995 }
996
997 /**
998 * folio_reset_order - Reset the folio order and derived _nr_pages
999 * @folio: The folio.
1000 *
1001 * Reset the order and derived _nr_pages to 0. Must only be used in the
1002 * process of splitting large folios.
1003 */
folio_reset_order(struct folio * folio)1004 static inline void folio_reset_order(struct folio *folio)
1005 {
1006 if (WARN_ON_ONCE(!folio_test_large(folio)))
1007 return;
1008 folio->_flags_1 &= ~0xffUL;
1009 #ifdef NR_PAGES_IN_LARGE_FOLIO
1010 folio->_nr_pages = 0;
1011 #endif
1012 }
1013
1014 #include <linux/huge_mm.h>
1015
1016 /*
1017 * Methods to modify the page usage count.
1018 *
1019 * What counts for a page usage:
1020 * - cache mapping (page->mapping)
1021 * - private data (page->private)
1022 * - page mapped in a task's page tables, each mapping
1023 * is counted separately
1024 *
1025 * Also, many kernel routines increase the page count before a critical
1026 * routine so they can be sure the page doesn't go away from under them.
1027 */
1028
1029 /*
1030 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1031 */
put_page_testzero(struct page * page)1032 static inline int put_page_testzero(struct page *page)
1033 {
1034 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1035 return page_ref_dec_and_test(page);
1036 }
1037
folio_put_testzero(struct folio * folio)1038 static inline int folio_put_testzero(struct folio *folio)
1039 {
1040 return put_page_testzero(&folio->page);
1041 }
1042
1043 /*
1044 * Try to grab a ref unless the page has a refcount of zero, return false if
1045 * that is the case.
1046 * This can be called when MMU is off so it must not access
1047 * any of the virtual mappings.
1048 */
get_page_unless_zero(struct page * page)1049 static inline bool get_page_unless_zero(struct page *page)
1050 {
1051 return page_ref_add_unless(page, 1, 0);
1052 }
1053
folio_get_nontail_page(struct page * page)1054 static inline struct folio *folio_get_nontail_page(struct page *page)
1055 {
1056 if (unlikely(!get_page_unless_zero(page)))
1057 return NULL;
1058 return (struct folio *)page;
1059 }
1060
1061 extern int page_is_ram(unsigned long pfn);
1062
1063 enum {
1064 REGION_INTERSECTS,
1065 REGION_DISJOINT,
1066 REGION_MIXED,
1067 };
1068
1069 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1070 unsigned long desc);
1071
1072 /* Support for virtually mapped pages */
1073 struct page *vmalloc_to_page(const void *addr);
1074 unsigned long vmalloc_to_pfn(const void *addr);
1075
1076 /*
1077 * Determine if an address is within the vmalloc range
1078 *
1079 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1080 * is no special casing required.
1081 */
1082 #ifdef CONFIG_MMU
1083 extern bool is_vmalloc_addr(const void *x);
1084 extern int is_vmalloc_or_module_addr(const void *x);
1085 #else
is_vmalloc_addr(const void * x)1086 static inline bool is_vmalloc_addr(const void *x)
1087 {
1088 return false;
1089 }
is_vmalloc_or_module_addr(const void * x)1090 static inline int is_vmalloc_or_module_addr(const void *x)
1091 {
1092 return 0;
1093 }
1094 #endif
1095
1096 /*
1097 * How many times the entire folio is mapped as a single unit (eg by a
1098 * PMD or PUD entry). This is probably not what you want, except for
1099 * debugging purposes or implementation of other core folio_*() primitives.
1100 */
folio_entire_mapcount(const struct folio * folio)1101 static inline int folio_entire_mapcount(const struct folio *folio)
1102 {
1103 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1104 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1105 return 0;
1106 return atomic_read(&folio->_entire_mapcount) + 1;
1107 }
1108
folio_large_mapcount(const struct folio * folio)1109 static inline int folio_large_mapcount(const struct folio *folio)
1110 {
1111 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1112 return atomic_read(&folio->_large_mapcount) + 1;
1113 }
1114
1115 /**
1116 * folio_mapcount() - Number of mappings of this folio.
1117 * @folio: The folio.
1118 *
1119 * The folio mapcount corresponds to the number of present user page table
1120 * entries that reference any part of a folio. Each such present user page
1121 * table entry must be paired with exactly on folio reference.
1122 *
1123 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1124 * exactly once.
1125 *
1126 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1127 * references the entire folio counts exactly once, even when such special
1128 * page table entries are comprised of multiple ordinary page table entries.
1129 *
1130 * Will report 0 for pages which cannot be mapped into userspace, such as
1131 * slab, page tables and similar.
1132 *
1133 * Return: The number of times this folio is mapped.
1134 */
folio_mapcount(const struct folio * folio)1135 static inline int folio_mapcount(const struct folio *folio)
1136 {
1137 int mapcount;
1138
1139 if (likely(!folio_test_large(folio))) {
1140 mapcount = atomic_read(&folio->_mapcount) + 1;
1141 if (page_mapcount_is_type(mapcount))
1142 mapcount = 0;
1143 return mapcount;
1144 }
1145 return folio_large_mapcount(folio);
1146 }
1147
1148 /**
1149 * folio_mapped - Is this folio mapped into userspace?
1150 * @folio: The folio.
1151 *
1152 * Return: True if any page in this folio is referenced by user page tables.
1153 */
folio_mapped(const struct folio * folio)1154 static inline bool folio_mapped(const struct folio *folio)
1155 {
1156 return folio_mapcount(folio) >= 1;
1157 }
1158
1159 /*
1160 * Return true if this page is mapped into pagetables.
1161 * For compound page it returns true if any sub-page of compound page is mapped,
1162 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1163 */
page_mapped(const struct page * page)1164 static inline bool page_mapped(const struct page *page)
1165 {
1166 return folio_mapped(page_folio(page));
1167 }
1168
virt_to_head_page(const void * x)1169 static inline struct page *virt_to_head_page(const void *x)
1170 {
1171 struct page *page = virt_to_page(x);
1172
1173 return compound_head(page);
1174 }
1175
virt_to_folio(const void * x)1176 static inline struct folio *virt_to_folio(const void *x)
1177 {
1178 struct page *page = virt_to_page(x);
1179
1180 return page_folio(page);
1181 }
1182
1183 void __folio_put(struct folio *folio);
1184
1185 void split_page(struct page *page, unsigned int order);
1186 void folio_copy(struct folio *dst, struct folio *src);
1187 int folio_mc_copy(struct folio *dst, struct folio *src);
1188
1189 unsigned long nr_free_buffer_pages(void);
1190
1191 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1192 static inline unsigned long page_size(struct page *page)
1193 {
1194 return PAGE_SIZE << compound_order(page);
1195 }
1196
1197 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1198 static inline unsigned int page_shift(struct page *page)
1199 {
1200 return PAGE_SHIFT + compound_order(page);
1201 }
1202
1203 /**
1204 * thp_order - Order of a transparent huge page.
1205 * @page: Head page of a transparent huge page.
1206 */
thp_order(struct page * page)1207 static inline unsigned int thp_order(struct page *page)
1208 {
1209 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1210 return compound_order(page);
1211 }
1212
1213 /**
1214 * thp_size - Size of a transparent huge page.
1215 * @page: Head page of a transparent huge page.
1216 *
1217 * Return: Number of bytes in this page.
1218 */
thp_size(struct page * page)1219 static inline unsigned long thp_size(struct page *page)
1220 {
1221 return PAGE_SIZE << thp_order(page);
1222 }
1223
1224 #ifdef CONFIG_MMU
1225 /*
1226 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1227 * servicing faults for write access. In the normal case, do always want
1228 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1229 * that do not have writing enabled, when used by access_process_vm.
1230 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1231 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1232 {
1233 if (likely(vma->vm_flags & VM_WRITE))
1234 pte = pte_mkwrite(pte, vma);
1235 return pte;
1236 }
1237
1238 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1239 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1240 struct page *page, unsigned int nr, unsigned long addr);
1241
1242 vm_fault_t finish_fault(struct vm_fault *vmf);
1243 #endif
1244
1245 /*
1246 * Multiple processes may "see" the same page. E.g. for untouched
1247 * mappings of /dev/null, all processes see the same page full of
1248 * zeroes, and text pages of executables and shared libraries have
1249 * only one copy in memory, at most, normally.
1250 *
1251 * For the non-reserved pages, page_count(page) denotes a reference count.
1252 * page_count() == 0 means the page is free. page->lru is then used for
1253 * freelist management in the buddy allocator.
1254 * page_count() > 0 means the page has been allocated.
1255 *
1256 * Pages are allocated by the slab allocator in order to provide memory
1257 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1258 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1259 * unless a particular usage is carefully commented. (the responsibility of
1260 * freeing the kmalloc memory is the caller's, of course).
1261 *
1262 * A page may be used by anyone else who does a __get_free_page().
1263 * In this case, page_count still tracks the references, and should only
1264 * be used through the normal accessor functions. The top bits of page->flags
1265 * and page->virtual store page management information, but all other fields
1266 * are unused and could be used privately, carefully. The management of this
1267 * page is the responsibility of the one who allocated it, and those who have
1268 * subsequently been given references to it.
1269 *
1270 * The other pages (we may call them "pagecache pages") are completely
1271 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1272 * The following discussion applies only to them.
1273 *
1274 * A pagecache page contains an opaque `private' member, which belongs to the
1275 * page's address_space. Usually, this is the address of a circular list of
1276 * the page's disk buffers. PG_private must be set to tell the VM to call
1277 * into the filesystem to release these pages.
1278 *
1279 * A folio may belong to an inode's memory mapping. In this case,
1280 * folio->mapping points to the inode, and folio->index is the file
1281 * offset of the folio, in units of PAGE_SIZE.
1282 *
1283 * If pagecache pages are not associated with an inode, they are said to be
1284 * anonymous pages. These may become associated with the swapcache, and in that
1285 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1286 *
1287 * In either case (swapcache or inode backed), the pagecache itself holds one
1288 * reference to the page. Setting PG_private should also increment the
1289 * refcount. The each user mapping also has a reference to the page.
1290 *
1291 * The pagecache pages are stored in a per-mapping radix tree, which is
1292 * rooted at mapping->i_pages, and indexed by offset.
1293 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1294 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1295 *
1296 * All pagecache pages may be subject to I/O:
1297 * - inode pages may need to be read from disk,
1298 * - inode pages which have been modified and are MAP_SHARED may need
1299 * to be written back to the inode on disk,
1300 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1301 * modified may need to be swapped out to swap space and (later) to be read
1302 * back into memory.
1303 */
1304
1305 /* 127: arbitrary random number, small enough to assemble well */
1306 #define folio_ref_zero_or_close_to_overflow(folio) \
1307 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1308
1309 /**
1310 * folio_get - Increment the reference count on a folio.
1311 * @folio: The folio.
1312 *
1313 * Context: May be called in any context, as long as you know that
1314 * you have a refcount on the folio. If you do not already have one,
1315 * folio_try_get() may be the right interface for you to use.
1316 */
folio_get(struct folio * folio)1317 static inline void folio_get(struct folio *folio)
1318 {
1319 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1320 folio_ref_inc(folio);
1321 }
1322
get_page(struct page * page)1323 static inline void get_page(struct page *page)
1324 {
1325 struct folio *folio = page_folio(page);
1326 if (WARN_ON_ONCE(folio_test_slab(folio)))
1327 return;
1328 folio_get(folio);
1329 }
1330
try_get_page(struct page * page)1331 static inline __must_check bool try_get_page(struct page *page)
1332 {
1333 page = compound_head(page);
1334 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1335 return false;
1336 page_ref_inc(page);
1337 return true;
1338 }
1339
1340 /**
1341 * folio_put - Decrement the reference count on a folio.
1342 * @folio: The folio.
1343 *
1344 * If the folio's reference count reaches zero, the memory will be
1345 * released back to the page allocator and may be used by another
1346 * allocation immediately. Do not access the memory or the struct folio
1347 * after calling folio_put() unless you can be sure that it wasn't the
1348 * last reference.
1349 *
1350 * Context: May be called in process or interrupt context, but not in NMI
1351 * context. May be called while holding a spinlock.
1352 */
folio_put(struct folio * folio)1353 static inline void folio_put(struct folio *folio)
1354 {
1355 if (folio_put_testzero(folio))
1356 __folio_put(folio);
1357 }
1358
1359 /**
1360 * folio_put_refs - Reduce the reference count on a folio.
1361 * @folio: The folio.
1362 * @refs: The amount to subtract from the folio's reference count.
1363 *
1364 * If the folio's reference count reaches zero, the memory will be
1365 * released back to the page allocator and may be used by another
1366 * allocation immediately. Do not access the memory or the struct folio
1367 * after calling folio_put_refs() unless you can be sure that these weren't
1368 * the last references.
1369 *
1370 * Context: May be called in process or interrupt context, but not in NMI
1371 * context. May be called while holding a spinlock.
1372 */
folio_put_refs(struct folio * folio,int refs)1373 static inline void folio_put_refs(struct folio *folio, int refs)
1374 {
1375 if (folio_ref_sub_and_test(folio, refs))
1376 __folio_put(folio);
1377 }
1378
1379 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1380
1381 /*
1382 * union release_pages_arg - an array of pages or folios
1383 *
1384 * release_pages() releases a simple array of multiple pages, and
1385 * accepts various different forms of said page array: either
1386 * a regular old boring array of pages, an array of folios, or
1387 * an array of encoded page pointers.
1388 *
1389 * The transparent union syntax for this kind of "any of these
1390 * argument types" is all kinds of ugly, so look away.
1391 */
1392 typedef union {
1393 struct page **pages;
1394 struct folio **folios;
1395 struct encoded_page **encoded_pages;
1396 } release_pages_arg __attribute__ ((__transparent_union__));
1397
1398 void release_pages(release_pages_arg, int nr);
1399
1400 /**
1401 * folios_put - Decrement the reference count on an array of folios.
1402 * @folios: The folios.
1403 *
1404 * Like folio_put(), but for a batch of folios. This is more efficient
1405 * than writing the loop yourself as it will optimise the locks which need
1406 * to be taken if the folios are freed. The folios batch is returned
1407 * empty and ready to be reused for another batch; there is no need to
1408 * reinitialise it.
1409 *
1410 * Context: May be called in process or interrupt context, but not in NMI
1411 * context. May be called while holding a spinlock.
1412 */
folios_put(struct folio_batch * folios)1413 static inline void folios_put(struct folio_batch *folios)
1414 {
1415 folios_put_refs(folios, NULL);
1416 }
1417
put_page(struct page * page)1418 static inline void put_page(struct page *page)
1419 {
1420 struct folio *folio = page_folio(page);
1421
1422 if (folio_test_slab(folio))
1423 return;
1424
1425 folio_put(folio);
1426 }
1427
1428 /*
1429 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1430 * the page's refcount so that two separate items are tracked: the original page
1431 * reference count, and also a new count of how many pin_user_pages() calls were
1432 * made against the page. ("gup-pinned" is another term for the latter).
1433 *
1434 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1435 * distinct from normal pages. As such, the unpin_user_page() call (and its
1436 * variants) must be used in order to release gup-pinned pages.
1437 *
1438 * Choice of value:
1439 *
1440 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1441 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1442 * simpler, due to the fact that adding an even power of two to the page
1443 * refcount has the effect of using only the upper N bits, for the code that
1444 * counts up using the bias value. This means that the lower bits are left for
1445 * the exclusive use of the original code that increments and decrements by one
1446 * (or at least, by much smaller values than the bias value).
1447 *
1448 * Of course, once the lower bits overflow into the upper bits (and this is
1449 * OK, because subtraction recovers the original values), then visual inspection
1450 * no longer suffices to directly view the separate counts. However, for normal
1451 * applications that don't have huge page reference counts, this won't be an
1452 * issue.
1453 *
1454 * Locking: the lockless algorithm described in folio_try_get_rcu()
1455 * provides safe operation for get_user_pages(), folio_mkclean() and
1456 * other calls that race to set up page table entries.
1457 */
1458 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1459
1460 void unpin_user_page(struct page *page);
1461 void unpin_folio(struct folio *folio);
1462 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1463 bool make_dirty);
1464 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1465 bool make_dirty);
1466 void unpin_user_pages(struct page **pages, unsigned long npages);
1467 void unpin_user_folio(struct folio *folio, unsigned long npages);
1468 void unpin_folios(struct folio **folios, unsigned long nfolios);
1469
is_cow_mapping(vm_flags_t flags)1470 static inline bool is_cow_mapping(vm_flags_t flags)
1471 {
1472 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1473 }
1474
1475 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1476 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1477 {
1478 /*
1479 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1480 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1481 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1482 * underlying memory if ptrace is active, so this is only possible if
1483 * ptrace does not apply. Note that there is no mprotect() to upgrade
1484 * write permissions later.
1485 */
1486 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1487 }
1488 #endif
1489
1490 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1491 #define SECTION_IN_PAGE_FLAGS
1492 #endif
1493
1494 /*
1495 * The identification function is mainly used by the buddy allocator for
1496 * determining if two pages could be buddies. We are not really identifying
1497 * the zone since we could be using the section number id if we do not have
1498 * node id available in page flags.
1499 * We only guarantee that it will return the same value for two combinable
1500 * pages in a zone.
1501 */
page_zone_id(struct page * page)1502 static inline int page_zone_id(struct page *page)
1503 {
1504 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1505 }
1506
1507 #ifdef NODE_NOT_IN_PAGE_FLAGS
1508 int page_to_nid(const struct page *page);
1509 #else
page_to_nid(const struct page * page)1510 static inline int page_to_nid(const struct page *page)
1511 {
1512 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1513 }
1514 #endif
1515
folio_nid(const struct folio * folio)1516 static inline int folio_nid(const struct folio *folio)
1517 {
1518 return page_to_nid(&folio->page);
1519 }
1520
1521 #ifdef CONFIG_NUMA_BALANCING
1522 /* page access time bits needs to hold at least 4 seconds */
1523 #define PAGE_ACCESS_TIME_MIN_BITS 12
1524 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1525 #define PAGE_ACCESS_TIME_BUCKETS \
1526 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1527 #else
1528 #define PAGE_ACCESS_TIME_BUCKETS 0
1529 #endif
1530
1531 #define PAGE_ACCESS_TIME_MASK \
1532 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1533
cpu_pid_to_cpupid(int cpu,int pid)1534 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1535 {
1536 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1537 }
1538
cpupid_to_pid(int cpupid)1539 static inline int cpupid_to_pid(int cpupid)
1540 {
1541 return cpupid & LAST__PID_MASK;
1542 }
1543
cpupid_to_cpu(int cpupid)1544 static inline int cpupid_to_cpu(int cpupid)
1545 {
1546 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1547 }
1548
cpupid_to_nid(int cpupid)1549 static inline int cpupid_to_nid(int cpupid)
1550 {
1551 return cpu_to_node(cpupid_to_cpu(cpupid));
1552 }
1553
cpupid_pid_unset(int cpupid)1554 static inline bool cpupid_pid_unset(int cpupid)
1555 {
1556 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1557 }
1558
cpupid_cpu_unset(int cpupid)1559 static inline bool cpupid_cpu_unset(int cpupid)
1560 {
1561 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1562 }
1563
__cpupid_match_pid(pid_t task_pid,int cpupid)1564 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1565 {
1566 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1567 }
1568
1569 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1570 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1571 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1572 {
1573 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1574 }
1575
folio_last_cpupid(struct folio * folio)1576 static inline int folio_last_cpupid(struct folio *folio)
1577 {
1578 return folio->_last_cpupid;
1579 }
page_cpupid_reset_last(struct page * page)1580 static inline void page_cpupid_reset_last(struct page *page)
1581 {
1582 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1583 }
1584 #else
folio_last_cpupid(struct folio * folio)1585 static inline int folio_last_cpupid(struct folio *folio)
1586 {
1587 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1588 }
1589
1590 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1591
page_cpupid_reset_last(struct page * page)1592 static inline void page_cpupid_reset_last(struct page *page)
1593 {
1594 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1595 }
1596 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1597
folio_xchg_access_time(struct folio * folio,int time)1598 static inline int folio_xchg_access_time(struct folio *folio, int time)
1599 {
1600 int last_time;
1601
1602 last_time = folio_xchg_last_cpupid(folio,
1603 time >> PAGE_ACCESS_TIME_BUCKETS);
1604 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1605 }
1606
vma_set_access_pid_bit(struct vm_area_struct * vma)1607 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1608 {
1609 unsigned int pid_bit;
1610
1611 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1612 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1613 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1614 }
1615 }
1616
1617 bool folio_use_access_time(struct folio *folio);
1618 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1619 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1620 {
1621 return folio_nid(folio); /* XXX */
1622 }
1623
folio_xchg_access_time(struct folio * folio,int time)1624 static inline int folio_xchg_access_time(struct folio *folio, int time)
1625 {
1626 return 0;
1627 }
1628
folio_last_cpupid(struct folio * folio)1629 static inline int folio_last_cpupid(struct folio *folio)
1630 {
1631 return folio_nid(folio); /* XXX */
1632 }
1633
cpupid_to_nid(int cpupid)1634 static inline int cpupid_to_nid(int cpupid)
1635 {
1636 return -1;
1637 }
1638
cpupid_to_pid(int cpupid)1639 static inline int cpupid_to_pid(int cpupid)
1640 {
1641 return -1;
1642 }
1643
cpupid_to_cpu(int cpupid)1644 static inline int cpupid_to_cpu(int cpupid)
1645 {
1646 return -1;
1647 }
1648
cpu_pid_to_cpupid(int nid,int pid)1649 static inline int cpu_pid_to_cpupid(int nid, int pid)
1650 {
1651 return -1;
1652 }
1653
cpupid_pid_unset(int cpupid)1654 static inline bool cpupid_pid_unset(int cpupid)
1655 {
1656 return true;
1657 }
1658
page_cpupid_reset_last(struct page * page)1659 static inline void page_cpupid_reset_last(struct page *page)
1660 {
1661 }
1662
cpupid_match_pid(struct task_struct * task,int cpupid)1663 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1664 {
1665 return false;
1666 }
1667
vma_set_access_pid_bit(struct vm_area_struct * vma)1668 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1669 {
1670 }
folio_use_access_time(struct folio * folio)1671 static inline bool folio_use_access_time(struct folio *folio)
1672 {
1673 return false;
1674 }
1675 #endif /* CONFIG_NUMA_BALANCING */
1676
1677 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1678
1679 /*
1680 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1681 * setting tags for all pages to native kernel tag value 0xff, as the default
1682 * value 0x00 maps to 0xff.
1683 */
1684
page_kasan_tag(const struct page * page)1685 static inline u8 page_kasan_tag(const struct page *page)
1686 {
1687 u8 tag = KASAN_TAG_KERNEL;
1688
1689 if (kasan_enabled()) {
1690 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1691 tag ^= 0xff;
1692 }
1693
1694 return tag;
1695 }
1696
page_kasan_tag_set(struct page * page,u8 tag)1697 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1698 {
1699 unsigned long old_flags, flags;
1700
1701 if (!kasan_enabled())
1702 return;
1703
1704 tag ^= 0xff;
1705 old_flags = READ_ONCE(page->flags);
1706 do {
1707 flags = old_flags;
1708 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1709 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1710 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1711 }
1712
page_kasan_tag_reset(struct page * page)1713 static inline void page_kasan_tag_reset(struct page *page)
1714 {
1715 if (kasan_enabled())
1716 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1717 }
1718
1719 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1720
page_kasan_tag(const struct page * page)1721 static inline u8 page_kasan_tag(const struct page *page)
1722 {
1723 return 0xff;
1724 }
1725
page_kasan_tag_set(struct page * page,u8 tag)1726 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1727 static inline void page_kasan_tag_reset(struct page *page) { }
1728
1729 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1730
page_zone(const struct page * page)1731 static inline struct zone *page_zone(const struct page *page)
1732 {
1733 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1734 }
1735
page_pgdat(const struct page * page)1736 static inline pg_data_t *page_pgdat(const struct page *page)
1737 {
1738 return NODE_DATA(page_to_nid(page));
1739 }
1740
folio_zone(const struct folio * folio)1741 static inline struct zone *folio_zone(const struct folio *folio)
1742 {
1743 return page_zone(&folio->page);
1744 }
1745
folio_pgdat(const struct folio * folio)1746 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1747 {
1748 return page_pgdat(&folio->page);
1749 }
1750
1751 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1752 static inline void set_page_section(struct page *page, unsigned long section)
1753 {
1754 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1755 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1756 }
1757
page_to_section(const struct page * page)1758 static inline unsigned long page_to_section(const struct page *page)
1759 {
1760 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1761 }
1762 #endif
1763
1764 /**
1765 * folio_pfn - Return the Page Frame Number of a folio.
1766 * @folio: The folio.
1767 *
1768 * A folio may contain multiple pages. The pages have consecutive
1769 * Page Frame Numbers.
1770 *
1771 * Return: The Page Frame Number of the first page in the folio.
1772 */
folio_pfn(const struct folio * folio)1773 static inline unsigned long folio_pfn(const struct folio *folio)
1774 {
1775 return page_to_pfn(&folio->page);
1776 }
1777
pfn_folio(unsigned long pfn)1778 static inline struct folio *pfn_folio(unsigned long pfn)
1779 {
1780 return page_folio(pfn_to_page(pfn));
1781 }
1782
1783 #ifdef CONFIG_MMU
mk_pte(struct page * page,pgprot_t pgprot)1784 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1785 {
1786 return pfn_pte(page_to_pfn(page), pgprot);
1787 }
1788
1789 /**
1790 * folio_mk_pte - Create a PTE for this folio
1791 * @folio: The folio to create a PTE for
1792 * @pgprot: The page protection bits to use
1793 *
1794 * Create a page table entry for the first page of this folio.
1795 * This is suitable for passing to set_ptes().
1796 *
1797 * Return: A page table entry suitable for mapping this folio.
1798 */
folio_mk_pte(struct folio * folio,pgprot_t pgprot)1799 static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
1800 {
1801 return pfn_pte(folio_pfn(folio), pgprot);
1802 }
1803
1804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1805 /**
1806 * folio_mk_pmd - Create a PMD for this folio
1807 * @folio: The folio to create a PMD for
1808 * @pgprot: The page protection bits to use
1809 *
1810 * Create a page table entry for the first page of this folio.
1811 * This is suitable for passing to set_pmd_at().
1812 *
1813 * Return: A page table entry suitable for mapping this folio.
1814 */
folio_mk_pmd(struct folio * folio,pgprot_t pgprot)1815 static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
1816 {
1817 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1818 }
1819 #endif
1820 #endif /* CONFIG_MMU */
1821
folio_has_pincount(const struct folio * folio)1822 static inline bool folio_has_pincount(const struct folio *folio)
1823 {
1824 if (IS_ENABLED(CONFIG_64BIT))
1825 return folio_test_large(folio);
1826 return folio_order(folio) > 1;
1827 }
1828
1829 /**
1830 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1831 * @folio: The folio.
1832 *
1833 * This function checks if a folio has been pinned via a call to
1834 * a function in the pin_user_pages() family.
1835 *
1836 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1837 * because it means "definitely not pinned for DMA", but true means "probably
1838 * pinned for DMA, but possibly a false positive due to having at least
1839 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1840 *
1841 * False positives are OK, because: a) it's unlikely for a folio to
1842 * get that many refcounts, and b) all the callers of this routine are
1843 * expected to be able to deal gracefully with a false positive.
1844 *
1845 * For most large folios, the result will be exactly correct. That's because
1846 * we have more tracking data available: the _pincount field is used
1847 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1848 *
1849 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1850 *
1851 * Return: True, if it is likely that the folio has been "dma-pinned".
1852 * False, if the folio is definitely not dma-pinned.
1853 */
folio_maybe_dma_pinned(struct folio * folio)1854 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1855 {
1856 if (folio_has_pincount(folio))
1857 return atomic_read(&folio->_pincount) > 0;
1858
1859 /*
1860 * folio_ref_count() is signed. If that refcount overflows, then
1861 * folio_ref_count() returns a negative value, and callers will avoid
1862 * further incrementing the refcount.
1863 *
1864 * Here, for that overflow case, use the sign bit to count a little
1865 * bit higher via unsigned math, and thus still get an accurate result.
1866 */
1867 return ((unsigned int)folio_ref_count(folio)) >=
1868 GUP_PIN_COUNTING_BIAS;
1869 }
1870
1871 /*
1872 * This should most likely only be called during fork() to see whether we
1873 * should break the cow immediately for an anon page on the src mm.
1874 *
1875 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1876 */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1877 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1878 struct folio *folio)
1879 {
1880 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1881
1882 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1883 return false;
1884
1885 return folio_maybe_dma_pinned(folio);
1886 }
1887
1888 /**
1889 * is_zero_page - Query if a page is a zero page
1890 * @page: The page to query
1891 *
1892 * This returns true if @page is one of the permanent zero pages.
1893 */
is_zero_page(const struct page * page)1894 static inline bool is_zero_page(const struct page *page)
1895 {
1896 return is_zero_pfn(page_to_pfn(page));
1897 }
1898
1899 /**
1900 * is_zero_folio - Query if a folio is a zero page
1901 * @folio: The folio to query
1902 *
1903 * This returns true if @folio is one of the permanent zero pages.
1904 */
is_zero_folio(const struct folio * folio)1905 static inline bool is_zero_folio(const struct folio *folio)
1906 {
1907 return is_zero_page(&folio->page);
1908 }
1909
1910 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1911 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)1912 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1913 {
1914 #ifdef CONFIG_CMA
1915 int mt = folio_migratetype(folio);
1916
1917 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1918 return false;
1919 #endif
1920 /* The zero page can be "pinned" but gets special handling. */
1921 if (is_zero_folio(folio))
1922 return true;
1923
1924 /* Coherent device memory must always allow eviction. */
1925 if (folio_is_device_coherent(folio))
1926 return false;
1927
1928 /*
1929 * Filesystems can only tolerate transient delays to truncate and
1930 * hole-punch operations
1931 */
1932 if (folio_is_fsdax(folio))
1933 return false;
1934
1935 /* Otherwise, non-movable zone folios can be pinned. */
1936 return !folio_is_zone_movable(folio);
1937
1938 }
1939 #else
folio_is_longterm_pinnable(struct folio * folio)1940 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1941 {
1942 return true;
1943 }
1944 #endif
1945
set_page_zone(struct page * page,enum zone_type zone)1946 static inline void set_page_zone(struct page *page, enum zone_type zone)
1947 {
1948 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1949 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1950 }
1951
set_page_node(struct page * page,unsigned long node)1952 static inline void set_page_node(struct page *page, unsigned long node)
1953 {
1954 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1955 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1956 }
1957
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1958 static inline void set_page_links(struct page *page, enum zone_type zone,
1959 unsigned long node, unsigned long pfn)
1960 {
1961 set_page_zone(page, zone);
1962 set_page_node(page, node);
1963 #ifdef SECTION_IN_PAGE_FLAGS
1964 set_page_section(page, pfn_to_section_nr(pfn));
1965 #endif
1966 }
1967
1968 /**
1969 * folio_nr_pages - The number of pages in the folio.
1970 * @folio: The folio.
1971 *
1972 * Return: A positive power of two.
1973 */
folio_nr_pages(const struct folio * folio)1974 static inline long folio_nr_pages(const struct folio *folio)
1975 {
1976 if (!folio_test_large(folio))
1977 return 1;
1978 return folio_large_nr_pages(folio);
1979 }
1980
1981 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
1982 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1983 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
1984 #else
1985 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
1986 #endif
1987
1988 /*
1989 * compound_nr() returns the number of pages in this potentially compound
1990 * page. compound_nr() can be called on a tail page, and is defined to
1991 * return 1 in that case.
1992 */
compound_nr(struct page * page)1993 static inline long compound_nr(struct page *page)
1994 {
1995 struct folio *folio = (struct folio *)page;
1996
1997 if (!test_bit(PG_head, &folio->flags))
1998 return 1;
1999 return folio_large_nr_pages(folio);
2000 }
2001
2002 /**
2003 * folio_next - Move to the next physical folio.
2004 * @folio: The folio we're currently operating on.
2005 *
2006 * If you have physically contiguous memory which may span more than
2007 * one folio (eg a &struct bio_vec), use this function to move from one
2008 * folio to the next. Do not use it if the memory is only virtually
2009 * contiguous as the folios are almost certainly not adjacent to each
2010 * other. This is the folio equivalent to writing ``page++``.
2011 *
2012 * Context: We assume that the folios are refcounted and/or locked at a
2013 * higher level and do not adjust the reference counts.
2014 * Return: The next struct folio.
2015 */
folio_next(struct folio * folio)2016 static inline struct folio *folio_next(struct folio *folio)
2017 {
2018 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2019 }
2020
2021 /**
2022 * folio_shift - The size of the memory described by this folio.
2023 * @folio: The folio.
2024 *
2025 * A folio represents a number of bytes which is a power-of-two in size.
2026 * This function tells you which power-of-two the folio is. See also
2027 * folio_size() and folio_order().
2028 *
2029 * Context: The caller should have a reference on the folio to prevent
2030 * it from being split. It is not necessary for the folio to be locked.
2031 * Return: The base-2 logarithm of the size of this folio.
2032 */
folio_shift(const struct folio * folio)2033 static inline unsigned int folio_shift(const struct folio *folio)
2034 {
2035 return PAGE_SHIFT + folio_order(folio);
2036 }
2037
2038 /**
2039 * folio_size - The number of bytes in a folio.
2040 * @folio: The folio.
2041 *
2042 * Context: The caller should have a reference on the folio to prevent
2043 * it from being split. It is not necessary for the folio to be locked.
2044 * Return: The number of bytes in this folio.
2045 */
folio_size(const struct folio * folio)2046 static inline size_t folio_size(const struct folio *folio)
2047 {
2048 return PAGE_SIZE << folio_order(folio);
2049 }
2050
2051 /**
2052 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2053 * tables of more than one MM
2054 * @folio: The folio.
2055 *
2056 * This function checks if the folio maybe currently mapped into more than one
2057 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2058 * MM ("mapped exclusively").
2059 *
2060 * For KSM folios, this function also returns "mapped shared" when a folio is
2061 * mapped multiple times into the same MM, because the individual page mappings
2062 * are independent.
2063 *
2064 * For small anonymous folios and anonymous hugetlb folios, the return
2065 * value will be exactly correct: non-KSM folios can only be mapped at most once
2066 * into an MM, and they cannot be partially mapped. KSM folios are
2067 * considered shared even if mapped multiple times into the same MM.
2068 *
2069 * For other folios, the result can be fuzzy:
2070 * #. For partially-mappable large folios (THP), the return value can wrongly
2071 * indicate "mapped shared" (false positive) if a folio was mapped by
2072 * more than two MMs at one point in time.
2073 * #. For pagecache folios (including hugetlb), the return value can wrongly
2074 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2075 * cover the same file range.
2076 *
2077 * Further, this function only considers current page table mappings that
2078 * are tracked using the folio mapcount(s).
2079 *
2080 * This function does not consider:
2081 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2082 * pagecache, temporary unmapping for migration).
2083 * #. If the folio is mapped differently (VM_PFNMAP).
2084 * #. If hugetlb page table sharing applies. Callers might want to check
2085 * hugetlb_pmd_shared().
2086 *
2087 * Return: Whether the folio is estimated to be mapped into more than one MM.
2088 */
folio_maybe_mapped_shared(struct folio * folio)2089 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2090 {
2091 int mapcount = folio_mapcount(folio);
2092
2093 /* Only partially-mappable folios require more care. */
2094 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2095 return mapcount > 1;
2096
2097 /*
2098 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2099 * simply assume "mapped shared", nobody should really care
2100 * about this for arbitrary kernel allocations.
2101 */
2102 if (!IS_ENABLED(CONFIG_MM_ID))
2103 return true;
2104
2105 /*
2106 * A single mapping implies "mapped exclusively", even if the
2107 * folio flag says something different: it's easier to handle this
2108 * case here instead of on the RMAP hot path.
2109 */
2110 if (mapcount <= 1)
2111 return false;
2112 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2113 }
2114
2115 /**
2116 * folio_expected_ref_count - calculate the expected folio refcount
2117 * @folio: the folio
2118 *
2119 * Calculate the expected folio refcount, taking references from the pagecache,
2120 * swapcache, PG_private and page table mappings into account. Useful in
2121 * combination with folio_ref_count() to detect unexpected references (e.g.,
2122 * GUP or other temporary references).
2123 *
2124 * Does currently not consider references from the LRU cache. If the folio
2125 * was isolated from the LRU (which is the case during migration or split),
2126 * the LRU cache does not apply.
2127 *
2128 * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2129 * locked will return a stable result.
2130 *
2131 * Calling this function on a mapped folio will not result in a stable result,
2132 * because nothing stops additional page table mappings from coming (e.g.,
2133 * fork()) or going (e.g., munmap()).
2134 *
2135 * Calling this function without the folio lock will also not result in a
2136 * stable result: for example, the folio might get dropped from the swapcache
2137 * concurrently.
2138 *
2139 * However, even when called without the folio lock or on a mapped folio,
2140 * this function can be used to detect unexpected references early (for example,
2141 * if it makes sense to even lock the folio and unmap it).
2142 *
2143 * The caller must add any reference (e.g., from folio_try_get()) it might be
2144 * holding itself to the result.
2145 *
2146 * Returns the expected folio refcount.
2147 */
folio_expected_ref_count(const struct folio * folio)2148 static inline int folio_expected_ref_count(const struct folio *folio)
2149 {
2150 const int order = folio_order(folio);
2151 int ref_count = 0;
2152
2153 if (WARN_ON_ONCE(folio_test_slab(folio)))
2154 return 0;
2155
2156 if (folio_test_anon(folio)) {
2157 /* One reference per page from the swapcache. */
2158 ref_count += folio_test_swapcache(folio) << order;
2159 } else if (!((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS)) {
2160 /* One reference per page from the pagecache. */
2161 ref_count += !!folio->mapping << order;
2162 /* One reference from PG_private. */
2163 ref_count += folio_test_private(folio);
2164 }
2165
2166 /* One reference per page table mapping. */
2167 return ref_count + folio_mapcount(folio);
2168 }
2169
2170 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2171 static inline int arch_make_folio_accessible(struct folio *folio)
2172 {
2173 return 0;
2174 }
2175 #endif
2176
2177 /*
2178 * Some inline functions in vmstat.h depend on page_zone()
2179 */
2180 #include <linux/vmstat.h>
2181
2182 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2183 #define HASHED_PAGE_VIRTUAL
2184 #endif
2185
2186 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2187 static inline void *page_address(const struct page *page)
2188 {
2189 return page->virtual;
2190 }
set_page_address(struct page * page,void * address)2191 static inline void set_page_address(struct page *page, void *address)
2192 {
2193 page->virtual = address;
2194 }
2195 #define page_address_init() do { } while(0)
2196 #endif
2197
2198 #if defined(HASHED_PAGE_VIRTUAL)
2199 void *page_address(const struct page *page);
2200 void set_page_address(struct page *page, void *virtual);
2201 void page_address_init(void);
2202 #endif
2203
lowmem_page_address(const struct page * page)2204 static __always_inline void *lowmem_page_address(const struct page *page)
2205 {
2206 return page_to_virt(page);
2207 }
2208
2209 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2210 #define page_address(page) lowmem_page_address(page)
2211 #define set_page_address(page, address) do { } while(0)
2212 #define page_address_init() do { } while(0)
2213 #endif
2214
folio_address(const struct folio * folio)2215 static inline void *folio_address(const struct folio *folio)
2216 {
2217 return page_address(&folio->page);
2218 }
2219
2220 /*
2221 * Return true only if the page has been allocated with
2222 * ALLOC_NO_WATERMARKS and the low watermark was not
2223 * met implying that the system is under some pressure.
2224 */
page_is_pfmemalloc(const struct page * page)2225 static inline bool page_is_pfmemalloc(const struct page *page)
2226 {
2227 /*
2228 * lru.next has bit 1 set if the page is allocated from the
2229 * pfmemalloc reserves. Callers may simply overwrite it if
2230 * they do not need to preserve that information.
2231 */
2232 return (uintptr_t)page->lru.next & BIT(1);
2233 }
2234
2235 /*
2236 * Return true only if the folio has been allocated with
2237 * ALLOC_NO_WATERMARKS and the low watermark was not
2238 * met implying that the system is under some pressure.
2239 */
folio_is_pfmemalloc(const struct folio * folio)2240 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2241 {
2242 /*
2243 * lru.next has bit 1 set if the page is allocated from the
2244 * pfmemalloc reserves. Callers may simply overwrite it if
2245 * they do not need to preserve that information.
2246 */
2247 return (uintptr_t)folio->lru.next & BIT(1);
2248 }
2249
2250 /*
2251 * Only to be called by the page allocator on a freshly allocated
2252 * page.
2253 */
set_page_pfmemalloc(struct page * page)2254 static inline void set_page_pfmemalloc(struct page *page)
2255 {
2256 page->lru.next = (void *)BIT(1);
2257 }
2258
clear_page_pfmemalloc(struct page * page)2259 static inline void clear_page_pfmemalloc(struct page *page)
2260 {
2261 page->lru.next = NULL;
2262 }
2263
2264 /*
2265 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2266 */
2267 extern void pagefault_out_of_memory(void);
2268
2269 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2270 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2271
2272 /*
2273 * Parameter block passed down to zap_pte_range in exceptional cases.
2274 */
2275 struct zap_details {
2276 struct folio *single_folio; /* Locked folio to be unmapped */
2277 bool even_cows; /* Zap COWed private pages too? */
2278 bool reclaim_pt; /* Need reclaim page tables? */
2279 zap_flags_t zap_flags; /* Extra flags for zapping */
2280 };
2281
2282 /*
2283 * Whether to drop the pte markers, for example, the uffd-wp information for
2284 * file-backed memory. This should only be specified when we will completely
2285 * drop the page in the mm, either by truncation or unmapping of the vma. By
2286 * default, the flag is not set.
2287 */
2288 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2289 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2290 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2291
2292 #ifdef CONFIG_SCHED_MM_CID
2293 void sched_mm_cid_before_execve(struct task_struct *t);
2294 void sched_mm_cid_after_execve(struct task_struct *t);
2295 void sched_mm_cid_fork(struct task_struct *t);
2296 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2297 static inline int task_mm_cid(struct task_struct *t)
2298 {
2299 return t->mm_cid;
2300 }
2301 #else
sched_mm_cid_before_execve(struct task_struct * t)2302 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2303 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2304 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2305 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2306 static inline int task_mm_cid(struct task_struct *t)
2307 {
2308 /*
2309 * Use the processor id as a fall-back when the mm cid feature is
2310 * disabled. This provides functional per-cpu data structure accesses
2311 * in user-space, althrough it won't provide the memory usage benefits.
2312 */
2313 return raw_smp_processor_id();
2314 }
2315 #endif
2316
2317 #ifdef CONFIG_MMU
2318 extern bool can_do_mlock(void);
2319 #else
can_do_mlock(void)2320 static inline bool can_do_mlock(void) { return false; }
2321 #endif
2322 extern int user_shm_lock(size_t, struct ucounts *);
2323 extern void user_shm_unlock(size_t, struct ucounts *);
2324
2325 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2326 pte_t pte);
2327 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2328 pte_t pte);
2329 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2330 unsigned long addr, pmd_t pmd);
2331 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2332 pmd_t pmd);
2333
2334 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2335 unsigned long size);
2336 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2337 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2338 static inline void zap_vma_pages(struct vm_area_struct *vma)
2339 {
2340 zap_page_range_single(vma, vma->vm_start,
2341 vma->vm_end - vma->vm_start, NULL);
2342 }
2343 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2344 struct vm_area_struct *start_vma, unsigned long start,
2345 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2346
2347 struct mmu_notifier_range;
2348
2349 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2350 unsigned long end, unsigned long floor, unsigned long ceiling);
2351 int
2352 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2353 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2354 void *buf, int len, int write);
2355
2356 struct follow_pfnmap_args {
2357 /**
2358 * Inputs:
2359 * @vma: Pointer to @vm_area_struct struct
2360 * @address: the virtual address to walk
2361 */
2362 struct vm_area_struct *vma;
2363 unsigned long address;
2364 /**
2365 * Internals:
2366 *
2367 * The caller shouldn't touch any of these.
2368 */
2369 spinlock_t *lock;
2370 pte_t *ptep;
2371 /**
2372 * Outputs:
2373 *
2374 * @pfn: the PFN of the address
2375 * @addr_mask: address mask covering pfn
2376 * @pgprot: the pgprot_t of the mapping
2377 * @writable: whether the mapping is writable
2378 * @special: whether the mapping is a special mapping (real PFN maps)
2379 */
2380 unsigned long pfn;
2381 unsigned long addr_mask;
2382 pgprot_t pgprot;
2383 bool writable;
2384 bool special;
2385 };
2386 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2387 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2388
2389 extern void truncate_pagecache(struct inode *inode, loff_t new);
2390 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2391 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2392 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2393 int generic_error_remove_folio(struct address_space *mapping,
2394 struct folio *folio);
2395
2396 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2397 unsigned long address, struct pt_regs *regs);
2398
2399 #ifdef CONFIG_MMU
2400 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2401 unsigned long address, unsigned int flags,
2402 struct pt_regs *regs);
2403 extern int fixup_user_fault(struct mm_struct *mm,
2404 unsigned long address, unsigned int fault_flags,
2405 bool *unlocked);
2406 void unmap_mapping_pages(struct address_space *mapping,
2407 pgoff_t start, pgoff_t nr, bool even_cows);
2408 void unmap_mapping_range(struct address_space *mapping,
2409 loff_t const holebegin, loff_t const holelen, int even_cows);
2410 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2411 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2412 unsigned long address, unsigned int flags,
2413 struct pt_regs *regs)
2414 {
2415 /* should never happen if there's no MMU */
2416 BUG();
2417 return VM_FAULT_SIGBUS;
2418 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2419 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2420 unsigned int fault_flags, bool *unlocked)
2421 {
2422 /* should never happen if there's no MMU */
2423 BUG();
2424 return -EFAULT;
2425 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2426 static inline void unmap_mapping_pages(struct address_space *mapping,
2427 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2428 static inline void unmap_mapping_range(struct address_space *mapping,
2429 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2430 #endif
2431
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2432 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2433 loff_t const holebegin, loff_t const holelen)
2434 {
2435 unmap_mapping_range(mapping, holebegin, holelen, 0);
2436 }
2437
2438 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2439 unsigned long addr);
2440
2441 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2442 void *buf, int len, unsigned int gup_flags);
2443 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2444 void *buf, int len, unsigned int gup_flags);
2445
2446 #ifdef CONFIG_BPF_SYSCALL
2447 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2448 void *buf, int len, unsigned int gup_flags);
2449 #endif
2450
2451 long get_user_pages_remote(struct mm_struct *mm,
2452 unsigned long start, unsigned long nr_pages,
2453 unsigned int gup_flags, struct page **pages,
2454 int *locked);
2455 long pin_user_pages_remote(struct mm_struct *mm,
2456 unsigned long start, unsigned long nr_pages,
2457 unsigned int gup_flags, struct page **pages,
2458 int *locked);
2459
2460 /*
2461 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2462 */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2463 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2464 unsigned long addr,
2465 int gup_flags,
2466 struct vm_area_struct **vmap)
2467 {
2468 struct page *page;
2469 struct vm_area_struct *vma;
2470 int got;
2471
2472 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2473 return ERR_PTR(-EINVAL);
2474
2475 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2476
2477 if (got < 0)
2478 return ERR_PTR(got);
2479
2480 vma = vma_lookup(mm, addr);
2481 if (WARN_ON_ONCE(!vma)) {
2482 put_page(page);
2483 return ERR_PTR(-EINVAL);
2484 }
2485
2486 *vmap = vma;
2487 return page;
2488 }
2489
2490 long get_user_pages(unsigned long start, unsigned long nr_pages,
2491 unsigned int gup_flags, struct page **pages);
2492 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2493 unsigned int gup_flags, struct page **pages);
2494 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2495 struct page **pages, unsigned int gup_flags);
2496 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2497 struct page **pages, unsigned int gup_flags);
2498 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2499 struct folio **folios, unsigned int max_folios,
2500 pgoff_t *offset);
2501 int folio_add_pins(struct folio *folio, unsigned int pins);
2502
2503 int get_user_pages_fast(unsigned long start, int nr_pages,
2504 unsigned int gup_flags, struct page **pages);
2505 int pin_user_pages_fast(unsigned long start, int nr_pages,
2506 unsigned int gup_flags, struct page **pages);
2507 void folio_add_pin(struct folio *folio);
2508
2509 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2510 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2511 struct task_struct *task, bool bypass_rlim);
2512
2513 struct kvec;
2514 struct page *get_dump_page(unsigned long addr, int *locked);
2515
2516 bool folio_mark_dirty(struct folio *folio);
2517 bool folio_mark_dirty_lock(struct folio *folio);
2518 bool set_page_dirty(struct page *page);
2519 int set_page_dirty_lock(struct page *page);
2520
2521 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2522
2523 /*
2524 * Flags used by change_protection(). For now we make it a bitmap so
2525 * that we can pass in multiple flags just like parameters. However
2526 * for now all the callers are only use one of the flags at the same
2527 * time.
2528 */
2529 /*
2530 * Whether we should manually check if we can map individual PTEs writable,
2531 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2532 * PTEs automatically in a writable mapping.
2533 */
2534 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2535 /* Whether this protection change is for NUMA hints */
2536 #define MM_CP_PROT_NUMA (1UL << 1)
2537 /* Whether this change is for write protecting */
2538 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2539 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2540 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2541 MM_CP_UFFD_WP_RESOLVE)
2542
2543 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2544 pte_t pte);
2545 extern long change_protection(struct mmu_gather *tlb,
2546 struct vm_area_struct *vma, unsigned long start,
2547 unsigned long end, unsigned long cp_flags);
2548 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2549 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2550 unsigned long start, unsigned long end, unsigned long newflags);
2551
2552 /*
2553 * doesn't attempt to fault and will return short.
2554 */
2555 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2556 unsigned int gup_flags, struct page **pages);
2557
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2558 static inline bool get_user_page_fast_only(unsigned long addr,
2559 unsigned int gup_flags, struct page **pagep)
2560 {
2561 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2562 }
2563 /*
2564 * per-process(per-mm_struct) statistics.
2565 */
get_mm_counter(struct mm_struct * mm,int member)2566 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2567 {
2568 return percpu_counter_read_positive(&mm->rss_stat[member]);
2569 }
2570
2571 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2572
add_mm_counter(struct mm_struct * mm,int member,long value)2573 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2574 {
2575 percpu_counter_add(&mm->rss_stat[member], value);
2576
2577 mm_trace_rss_stat(mm, member);
2578 }
2579
inc_mm_counter(struct mm_struct * mm,int member)2580 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2581 {
2582 percpu_counter_inc(&mm->rss_stat[member]);
2583
2584 mm_trace_rss_stat(mm, member);
2585 }
2586
dec_mm_counter(struct mm_struct * mm,int member)2587 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2588 {
2589 percpu_counter_dec(&mm->rss_stat[member]);
2590
2591 mm_trace_rss_stat(mm, member);
2592 }
2593
2594 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2595 static inline int mm_counter_file(struct folio *folio)
2596 {
2597 if (folio_test_swapbacked(folio))
2598 return MM_SHMEMPAGES;
2599 return MM_FILEPAGES;
2600 }
2601
mm_counter(struct folio * folio)2602 static inline int mm_counter(struct folio *folio)
2603 {
2604 if (folio_test_anon(folio))
2605 return MM_ANONPAGES;
2606 return mm_counter_file(folio);
2607 }
2608
get_mm_rss(struct mm_struct * mm)2609 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2610 {
2611 return get_mm_counter(mm, MM_FILEPAGES) +
2612 get_mm_counter(mm, MM_ANONPAGES) +
2613 get_mm_counter(mm, MM_SHMEMPAGES);
2614 }
2615
get_mm_hiwater_rss(struct mm_struct * mm)2616 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2617 {
2618 return max(mm->hiwater_rss, get_mm_rss(mm));
2619 }
2620
get_mm_hiwater_vm(struct mm_struct * mm)2621 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2622 {
2623 return max(mm->hiwater_vm, mm->total_vm);
2624 }
2625
update_hiwater_rss(struct mm_struct * mm)2626 static inline void update_hiwater_rss(struct mm_struct *mm)
2627 {
2628 unsigned long _rss = get_mm_rss(mm);
2629
2630 if (data_race(mm->hiwater_rss) < _rss)
2631 (mm)->hiwater_rss = _rss;
2632 }
2633
update_hiwater_vm(struct mm_struct * mm)2634 static inline void update_hiwater_vm(struct mm_struct *mm)
2635 {
2636 if (mm->hiwater_vm < mm->total_vm)
2637 mm->hiwater_vm = mm->total_vm;
2638 }
2639
reset_mm_hiwater_rss(struct mm_struct * mm)2640 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2641 {
2642 mm->hiwater_rss = get_mm_rss(mm);
2643 }
2644
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2645 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2646 struct mm_struct *mm)
2647 {
2648 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2649
2650 if (*maxrss < hiwater_rss)
2651 *maxrss = hiwater_rss;
2652 }
2653
2654 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2655 static inline int pte_special(pte_t pte)
2656 {
2657 return 0;
2658 }
2659
pte_mkspecial(pte_t pte)2660 static inline pte_t pte_mkspecial(pte_t pte)
2661 {
2662 return pte;
2663 }
2664 #endif
2665
2666 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2667 static inline bool pmd_special(pmd_t pmd)
2668 {
2669 return false;
2670 }
2671
pmd_mkspecial(pmd_t pmd)2672 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2673 {
2674 return pmd;
2675 }
2676 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2677
2678 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2679 static inline bool pud_special(pud_t pud)
2680 {
2681 return false;
2682 }
2683
pud_mkspecial(pud_t pud)2684 static inline pud_t pud_mkspecial(pud_t pud)
2685 {
2686 return pud;
2687 }
2688 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2689
2690 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2691 static inline int pte_devmap(pte_t pte)
2692 {
2693 return 0;
2694 }
2695 #endif
2696
2697 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2698 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2699 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2700 spinlock_t **ptl)
2701 {
2702 pte_t *ptep;
2703 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2704 return ptep;
2705 }
2706
2707 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2708 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2709 unsigned long address)
2710 {
2711 return 0;
2712 }
2713 #else
2714 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2715 #endif
2716
2717 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2718 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2719 unsigned long address)
2720 {
2721 return 0;
2722 }
mm_inc_nr_puds(struct mm_struct * mm)2723 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2724 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2725
2726 #else
2727 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2728
mm_inc_nr_puds(struct mm_struct * mm)2729 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2730 {
2731 if (mm_pud_folded(mm))
2732 return;
2733 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2734 }
2735
mm_dec_nr_puds(struct mm_struct * mm)2736 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2737 {
2738 if (mm_pud_folded(mm))
2739 return;
2740 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2741 }
2742 #endif
2743
2744 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2745 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2746 unsigned long address)
2747 {
2748 return 0;
2749 }
2750
mm_inc_nr_pmds(struct mm_struct * mm)2751 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2752 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2753
2754 #else
2755 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2756
mm_inc_nr_pmds(struct mm_struct * mm)2757 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2758 {
2759 if (mm_pmd_folded(mm))
2760 return;
2761 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2762 }
2763
mm_dec_nr_pmds(struct mm_struct * mm)2764 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2765 {
2766 if (mm_pmd_folded(mm))
2767 return;
2768 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2769 }
2770 #endif
2771
2772 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2773 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2774 {
2775 atomic_long_set(&mm->pgtables_bytes, 0);
2776 }
2777
mm_pgtables_bytes(const struct mm_struct * mm)2778 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2779 {
2780 return atomic_long_read(&mm->pgtables_bytes);
2781 }
2782
mm_inc_nr_ptes(struct mm_struct * mm)2783 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2784 {
2785 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2786 }
2787
mm_dec_nr_ptes(struct mm_struct * mm)2788 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2789 {
2790 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2791 }
2792 #else
2793
mm_pgtables_bytes_init(struct mm_struct * mm)2794 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2795 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2796 {
2797 return 0;
2798 }
2799
mm_inc_nr_ptes(struct mm_struct * mm)2800 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2801 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2802 #endif
2803
2804 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2805 int __pte_alloc_kernel(pmd_t *pmd);
2806
2807 #if defined(CONFIG_MMU)
2808
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2809 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2810 unsigned long address)
2811 {
2812 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2813 NULL : p4d_offset(pgd, address);
2814 }
2815
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2816 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2817 unsigned long address)
2818 {
2819 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2820 NULL : pud_offset(p4d, address);
2821 }
2822
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2823 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2824 {
2825 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2826 NULL: pmd_offset(pud, address);
2827 }
2828 #endif /* CONFIG_MMU */
2829
virt_to_ptdesc(const void * x)2830 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2831 {
2832 return page_ptdesc(virt_to_page(x));
2833 }
2834
ptdesc_to_virt(const struct ptdesc * pt)2835 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2836 {
2837 return page_to_virt(ptdesc_page(pt));
2838 }
2839
ptdesc_address(const struct ptdesc * pt)2840 static inline void *ptdesc_address(const struct ptdesc *pt)
2841 {
2842 return folio_address(ptdesc_folio(pt));
2843 }
2844
pagetable_is_reserved(struct ptdesc * pt)2845 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2846 {
2847 return folio_test_reserved(ptdesc_folio(pt));
2848 }
2849
2850 /**
2851 * pagetable_alloc - Allocate pagetables
2852 * @gfp: GFP flags
2853 * @order: desired pagetable order
2854 *
2855 * pagetable_alloc allocates memory for page tables as well as a page table
2856 * descriptor to describe that memory.
2857 *
2858 * Return: The ptdesc describing the allocated page tables.
2859 */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2860 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2861 {
2862 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2863
2864 return page_ptdesc(page);
2865 }
2866 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2867
2868 /**
2869 * pagetable_free - Free pagetables
2870 * @pt: The page table descriptor
2871 *
2872 * pagetable_free frees the memory of all page tables described by a page
2873 * table descriptor and the memory for the descriptor itself.
2874 */
pagetable_free(struct ptdesc * pt)2875 static inline void pagetable_free(struct ptdesc *pt)
2876 {
2877 struct page *page = ptdesc_page(pt);
2878
2879 __free_pages(page, compound_order(page));
2880 }
2881
2882 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2883 #if ALLOC_SPLIT_PTLOCKS
2884 void __init ptlock_cache_init(void);
2885 bool ptlock_alloc(struct ptdesc *ptdesc);
2886 void ptlock_free(struct ptdesc *ptdesc);
2887
ptlock_ptr(struct ptdesc * ptdesc)2888 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2889 {
2890 return ptdesc->ptl;
2891 }
2892 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2893 static inline void ptlock_cache_init(void)
2894 {
2895 }
2896
ptlock_alloc(struct ptdesc * ptdesc)2897 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2898 {
2899 return true;
2900 }
2901
ptlock_free(struct ptdesc * ptdesc)2902 static inline void ptlock_free(struct ptdesc *ptdesc)
2903 {
2904 }
2905
ptlock_ptr(struct ptdesc * ptdesc)2906 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2907 {
2908 return &ptdesc->ptl;
2909 }
2910 #endif /* ALLOC_SPLIT_PTLOCKS */
2911
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2912 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2913 {
2914 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2915 }
2916
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2917 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2918 {
2919 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2920 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2921 return ptlock_ptr(virt_to_ptdesc(pte));
2922 }
2923
ptlock_init(struct ptdesc * ptdesc)2924 static inline bool ptlock_init(struct ptdesc *ptdesc)
2925 {
2926 /*
2927 * prep_new_page() initialize page->private (and therefore page->ptl)
2928 * with 0. Make sure nobody took it in use in between.
2929 *
2930 * It can happen if arch try to use slab for page table allocation:
2931 * slab code uses page->slab_cache, which share storage with page->ptl.
2932 */
2933 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2934 if (!ptlock_alloc(ptdesc))
2935 return false;
2936 spin_lock_init(ptlock_ptr(ptdesc));
2937 return true;
2938 }
2939
2940 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2941 /*
2942 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2943 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2944 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2945 {
2946 return &mm->page_table_lock;
2947 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2948 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2949 {
2950 return &mm->page_table_lock;
2951 }
ptlock_cache_init(void)2952 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2953 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2954 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2955 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2956
__pagetable_ctor(struct ptdesc * ptdesc)2957 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2958 {
2959 struct folio *folio = ptdesc_folio(ptdesc);
2960
2961 __folio_set_pgtable(folio);
2962 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2963 }
2964
pagetable_dtor(struct ptdesc * ptdesc)2965 static inline void pagetable_dtor(struct ptdesc *ptdesc)
2966 {
2967 struct folio *folio = ptdesc_folio(ptdesc);
2968
2969 ptlock_free(ptdesc);
2970 __folio_clear_pgtable(folio);
2971 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2972 }
2973
pagetable_dtor_free(struct ptdesc * ptdesc)2974 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2975 {
2976 pagetable_dtor(ptdesc);
2977 pagetable_free(ptdesc);
2978 }
2979
pagetable_pte_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)2980 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
2981 struct ptdesc *ptdesc)
2982 {
2983 if (mm != &init_mm && !ptlock_init(ptdesc))
2984 return false;
2985 __pagetable_ctor(ptdesc);
2986 return true;
2987 }
2988
2989 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)2990 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
2991 pmd_t *pmdvalp)
2992 {
2993 pte_t *pte;
2994
2995 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
2996 return pte;
2997 }
pte_offset_map(pmd_t * pmd,unsigned long addr)2998 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2999 {
3000 return __pte_offset_map(pmd, addr, NULL);
3001 }
3002
3003 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3004 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3005 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3006 unsigned long addr, spinlock_t **ptlp)
3007 {
3008 pte_t *pte;
3009
3010 __cond_lock(RCU, __cond_lock(*ptlp,
3011 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3012 return pte;
3013 }
3014
3015 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3016 unsigned long addr, spinlock_t **ptlp);
3017 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3018 unsigned long addr, pmd_t *pmdvalp,
3019 spinlock_t **ptlp);
3020
3021 #define pte_unmap_unlock(pte, ptl) do { \
3022 spin_unlock(ptl); \
3023 pte_unmap(pte); \
3024 } while (0)
3025
3026 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3027
3028 #define pte_alloc_map(mm, pmd, address) \
3029 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3030
3031 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3032 (pte_alloc(mm, pmd) ? \
3033 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3034
3035 #define pte_alloc_kernel(pmd, address) \
3036 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3037 NULL: pte_offset_kernel(pmd, address))
3038
3039 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3040
pmd_pgtable_page(pmd_t * pmd)3041 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3042 {
3043 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3044 return virt_to_page((void *)((unsigned long) pmd & mask));
3045 }
3046
pmd_ptdesc(pmd_t * pmd)3047 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3048 {
3049 return page_ptdesc(pmd_pgtable_page(pmd));
3050 }
3051
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3052 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3053 {
3054 return ptlock_ptr(pmd_ptdesc(pmd));
3055 }
3056
pmd_ptlock_init(struct ptdesc * ptdesc)3057 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3058 {
3059 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3060 ptdesc->pmd_huge_pte = NULL;
3061 #endif
3062 return ptlock_init(ptdesc);
3063 }
3064
3065 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3066
3067 #else
3068
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3069 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3070 {
3071 return &mm->page_table_lock;
3072 }
3073
pmd_ptlock_init(struct ptdesc * ptdesc)3074 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3075
3076 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3077
3078 #endif
3079
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3080 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3081 {
3082 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3083 spin_lock(ptl);
3084 return ptl;
3085 }
3086
pagetable_pmd_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3087 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3088 struct ptdesc *ptdesc)
3089 {
3090 if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3091 return false;
3092 ptdesc_pmd_pts_init(ptdesc);
3093 __pagetable_ctor(ptdesc);
3094 return true;
3095 }
3096
3097 /*
3098 * No scalability reason to split PUD locks yet, but follow the same pattern
3099 * as the PMD locks to make it easier if we decide to. The VM should not be
3100 * considered ready to switch to split PUD locks yet; there may be places
3101 * which need to be converted from page_table_lock.
3102 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3103 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3104 {
3105 return &mm->page_table_lock;
3106 }
3107
pud_lock(struct mm_struct * mm,pud_t * pud)3108 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3109 {
3110 spinlock_t *ptl = pud_lockptr(mm, pud);
3111
3112 spin_lock(ptl);
3113 return ptl;
3114 }
3115
pagetable_pud_ctor(struct ptdesc * ptdesc)3116 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3117 {
3118 __pagetable_ctor(ptdesc);
3119 }
3120
pagetable_p4d_ctor(struct ptdesc * ptdesc)3121 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3122 {
3123 __pagetable_ctor(ptdesc);
3124 }
3125
pagetable_pgd_ctor(struct ptdesc * ptdesc)3126 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3127 {
3128 __pagetable_ctor(ptdesc);
3129 }
3130
3131 extern void __init pagecache_init(void);
3132 extern void free_initmem(void);
3133
3134 /*
3135 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3136 * into the buddy system. The freed pages will be poisoned with pattern
3137 * "poison" if it's within range [0, UCHAR_MAX].
3138 * Return pages freed into the buddy system.
3139 */
3140 extern unsigned long free_reserved_area(void *start, void *end,
3141 int poison, const char *s);
3142
3143 extern void adjust_managed_page_count(struct page *page, long count);
3144
3145 extern void reserve_bootmem_region(phys_addr_t start,
3146 phys_addr_t end, int nid);
3147
3148 /* Free the reserved page into the buddy system, so it gets managed. */
3149 void free_reserved_page(struct page *page);
3150
mark_page_reserved(struct page * page)3151 static inline void mark_page_reserved(struct page *page)
3152 {
3153 SetPageReserved(page);
3154 adjust_managed_page_count(page, -1);
3155 }
3156
free_reserved_ptdesc(struct ptdesc * pt)3157 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3158 {
3159 free_reserved_page(ptdesc_page(pt));
3160 }
3161
3162 /*
3163 * Default method to free all the __init memory into the buddy system.
3164 * The freed pages will be poisoned with pattern "poison" if it's within
3165 * range [0, UCHAR_MAX].
3166 * Return pages freed into the buddy system.
3167 */
free_initmem_default(int poison)3168 static inline unsigned long free_initmem_default(int poison)
3169 {
3170 extern char __init_begin[], __init_end[];
3171
3172 return free_reserved_area(&__init_begin, &__init_end,
3173 poison, "unused kernel image (initmem)");
3174 }
3175
get_num_physpages(void)3176 static inline unsigned long get_num_physpages(void)
3177 {
3178 int nid;
3179 unsigned long phys_pages = 0;
3180
3181 for_each_online_node(nid)
3182 phys_pages += node_present_pages(nid);
3183
3184 return phys_pages;
3185 }
3186
3187 /*
3188 * Using memblock node mappings, an architecture may initialise its
3189 * zones, allocate the backing mem_map and account for memory holes in an
3190 * architecture independent manner.
3191 *
3192 * An architecture is expected to register range of page frames backed by
3193 * physical memory with memblock_add[_node]() before calling
3194 * free_area_init() passing in the PFN each zone ends at. At a basic
3195 * usage, an architecture is expected to do something like
3196 *
3197 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3198 * max_highmem_pfn};
3199 * for_each_valid_physical_page_range()
3200 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3201 * free_area_init(max_zone_pfns);
3202 */
3203 void free_area_init(unsigned long *max_zone_pfn);
3204 unsigned long node_map_pfn_alignment(void);
3205 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3206 unsigned long end_pfn);
3207 extern void get_pfn_range_for_nid(unsigned int nid,
3208 unsigned long *start_pfn, unsigned long *end_pfn);
3209
3210 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3211 static inline int early_pfn_to_nid(unsigned long pfn)
3212 {
3213 return 0;
3214 }
3215 #else
3216 /* please see mm/page_alloc.c */
3217 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3218 #endif
3219
3220 extern void mem_init(void);
3221 extern void __init mmap_init(void);
3222
3223 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3224 static inline void show_mem(void)
3225 {
3226 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3227 }
3228 extern long si_mem_available(void);
3229 extern void si_meminfo(struct sysinfo * val);
3230 extern void si_meminfo_node(struct sysinfo *val, int nid);
3231
3232 extern __printf(3, 4)
3233 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3234
3235 extern void setup_per_cpu_pageset(void);
3236
3237 /* nommu.c */
3238 extern atomic_long_t mmap_pages_allocated;
3239 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3240
3241 /* interval_tree.c */
3242 void vma_interval_tree_insert(struct vm_area_struct *node,
3243 struct rb_root_cached *root);
3244 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3245 struct vm_area_struct *prev,
3246 struct rb_root_cached *root);
3247 void vma_interval_tree_remove(struct vm_area_struct *node,
3248 struct rb_root_cached *root);
3249 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3250 unsigned long start, unsigned long last);
3251 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3252 unsigned long start, unsigned long last);
3253
3254 #define vma_interval_tree_foreach(vma, root, start, last) \
3255 for (vma = vma_interval_tree_iter_first(root, start, last); \
3256 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3257
3258 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3259 struct rb_root_cached *root);
3260 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3261 struct rb_root_cached *root);
3262 struct anon_vma_chain *
3263 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3264 unsigned long start, unsigned long last);
3265 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3266 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3267 #ifdef CONFIG_DEBUG_VM_RB
3268 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3269 #endif
3270
3271 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3272 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3273 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3274
3275 /* mmap.c */
3276 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3277 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3278 extern void exit_mmap(struct mm_struct *);
3279 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3280 unsigned long addr, bool write);
3281
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3282 static inline int check_data_rlimit(unsigned long rlim,
3283 unsigned long new,
3284 unsigned long start,
3285 unsigned long end_data,
3286 unsigned long start_data)
3287 {
3288 if (rlim < RLIM_INFINITY) {
3289 if (((new - start) + (end_data - start_data)) > rlim)
3290 return -ENOSPC;
3291 }
3292
3293 return 0;
3294 }
3295
3296 extern int mm_take_all_locks(struct mm_struct *mm);
3297 extern void mm_drop_all_locks(struct mm_struct *mm);
3298
3299 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3300 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3301 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3302 extern struct file *get_task_exe_file(struct task_struct *task);
3303
3304 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3305 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3306
3307 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3308 const struct vm_special_mapping *sm);
3309 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3310 unsigned long addr, unsigned long len,
3311 unsigned long flags,
3312 const struct vm_special_mapping *spec);
3313
3314 unsigned long randomize_stack_top(unsigned long stack_top);
3315 unsigned long randomize_page(unsigned long start, unsigned long range);
3316
3317 unsigned long
3318 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3319 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3320
3321 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3322 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3323 unsigned long pgoff, unsigned long flags)
3324 {
3325 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3326 }
3327
3328 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3329 unsigned long len, unsigned long prot, unsigned long flags,
3330 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3331 struct list_head *uf);
3332 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3333 unsigned long start, size_t len, struct list_head *uf,
3334 bool unlock);
3335 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3336 struct mm_struct *mm, unsigned long start,
3337 unsigned long end, struct list_head *uf, bool unlock);
3338 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3339 struct list_head *uf);
3340 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3341
3342 #ifdef CONFIG_MMU
3343 extern int __mm_populate(unsigned long addr, unsigned long len,
3344 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3345 static inline void mm_populate(unsigned long addr, unsigned long len)
3346 {
3347 /* Ignore errors */
3348 (void) __mm_populate(addr, len, 1);
3349 }
3350 #else
mm_populate(unsigned long addr,unsigned long len)3351 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3352 #endif
3353
3354 /* This takes the mm semaphore itself */
3355 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3356 extern int vm_munmap(unsigned long, size_t);
3357 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3358 unsigned long, unsigned long,
3359 unsigned long, unsigned long);
3360
3361 struct vm_unmapped_area_info {
3362 #define VM_UNMAPPED_AREA_TOPDOWN 1
3363 unsigned long flags;
3364 unsigned long length;
3365 unsigned long low_limit;
3366 unsigned long high_limit;
3367 unsigned long align_mask;
3368 unsigned long align_offset;
3369 unsigned long start_gap;
3370 };
3371
3372 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3373
3374 /* truncate.c */
3375 extern void truncate_inode_pages(struct address_space *, loff_t);
3376 extern void truncate_inode_pages_range(struct address_space *,
3377 loff_t lstart, loff_t lend);
3378 extern void truncate_inode_pages_final(struct address_space *);
3379
3380 /* generic vm_area_ops exported for stackable file systems */
3381 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3382 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3383 pgoff_t start_pgoff, pgoff_t end_pgoff);
3384 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3385
3386 extern unsigned long stack_guard_gap;
3387 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3388 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3389 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3390
3391 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3392 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3393 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3394 struct vm_area_struct **pprev);
3395
3396 /*
3397 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3398 * NULL if none. Assume start_addr < end_addr.
3399 */
3400 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3401 unsigned long start_addr, unsigned long end_addr);
3402
3403 /**
3404 * vma_lookup() - Find a VMA at a specific address
3405 * @mm: The process address space.
3406 * @addr: The user address.
3407 *
3408 * Return: The vm_area_struct at the given address, %NULL otherwise.
3409 */
3410 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3411 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3412 {
3413 return mtree_load(&mm->mm_mt, addr);
3414 }
3415
stack_guard_start_gap(struct vm_area_struct * vma)3416 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3417 {
3418 if (vma->vm_flags & VM_GROWSDOWN)
3419 return stack_guard_gap;
3420
3421 /* See reasoning around the VM_SHADOW_STACK definition */
3422 if (vma->vm_flags & VM_SHADOW_STACK)
3423 return PAGE_SIZE;
3424
3425 return 0;
3426 }
3427
vm_start_gap(struct vm_area_struct * vma)3428 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3429 {
3430 unsigned long gap = stack_guard_start_gap(vma);
3431 unsigned long vm_start = vma->vm_start;
3432
3433 vm_start -= gap;
3434 if (vm_start > vma->vm_start)
3435 vm_start = 0;
3436 return vm_start;
3437 }
3438
vm_end_gap(struct vm_area_struct * vma)3439 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3440 {
3441 unsigned long vm_end = vma->vm_end;
3442
3443 if (vma->vm_flags & VM_GROWSUP) {
3444 vm_end += stack_guard_gap;
3445 if (vm_end < vma->vm_end)
3446 vm_end = -PAGE_SIZE;
3447 }
3448 return vm_end;
3449 }
3450
vma_pages(struct vm_area_struct * vma)3451 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3452 {
3453 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3454 }
3455
3456 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3457 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3458 unsigned long vm_start, unsigned long vm_end)
3459 {
3460 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3461
3462 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3463 vma = NULL;
3464
3465 return vma;
3466 }
3467
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3468 static inline bool range_in_vma(struct vm_area_struct *vma,
3469 unsigned long start, unsigned long end)
3470 {
3471 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3472 }
3473
3474 #ifdef CONFIG_MMU
3475 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3476 void vma_set_page_prot(struct vm_area_struct *vma);
3477 #else
vm_get_page_prot(unsigned long vm_flags)3478 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3479 {
3480 return __pgprot(0);
3481 }
vma_set_page_prot(struct vm_area_struct * vma)3482 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3483 {
3484 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3485 }
3486 #endif
3487
3488 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3489
3490 #ifdef CONFIG_NUMA_BALANCING
3491 unsigned long change_prot_numa(struct vm_area_struct *vma,
3492 unsigned long start, unsigned long end);
3493 #endif
3494
3495 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3496 unsigned long addr);
3497 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3498 unsigned long pfn, unsigned long size, pgprot_t);
3499 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3500 unsigned long pfn, unsigned long size, pgprot_t prot);
3501 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3502 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3503 struct page **pages, unsigned long *num);
3504 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3505 unsigned long num);
3506 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3507 unsigned long num);
3508 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3509 bool write);
3510 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3511 unsigned long pfn);
3512 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3513 unsigned long pfn, pgprot_t pgprot);
3514 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3515 pfn_t pfn);
3516 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3517 unsigned long addr, pfn_t pfn);
3518 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3519
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3520 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3521 unsigned long addr, struct page *page)
3522 {
3523 int err = vm_insert_page(vma, addr, page);
3524
3525 if (err == -ENOMEM)
3526 return VM_FAULT_OOM;
3527 if (err < 0 && err != -EBUSY)
3528 return VM_FAULT_SIGBUS;
3529
3530 return VM_FAULT_NOPAGE;
3531 }
3532
3533 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3534 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3535 unsigned long addr, unsigned long pfn,
3536 unsigned long size, pgprot_t prot)
3537 {
3538 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3539 }
3540 #endif
3541
vmf_error(int err)3542 static inline vm_fault_t vmf_error(int err)
3543 {
3544 if (err == -ENOMEM)
3545 return VM_FAULT_OOM;
3546 else if (err == -EHWPOISON)
3547 return VM_FAULT_HWPOISON;
3548 return VM_FAULT_SIGBUS;
3549 }
3550
3551 /*
3552 * Convert errno to return value for ->page_mkwrite() calls.
3553 *
3554 * This should eventually be merged with vmf_error() above, but will need a
3555 * careful audit of all vmf_error() callers.
3556 */
vmf_fs_error(int err)3557 static inline vm_fault_t vmf_fs_error(int err)
3558 {
3559 if (err == 0)
3560 return VM_FAULT_LOCKED;
3561 if (err == -EFAULT || err == -EAGAIN)
3562 return VM_FAULT_NOPAGE;
3563 if (err == -ENOMEM)
3564 return VM_FAULT_OOM;
3565 /* -ENOSPC, -EDQUOT, -EIO ... */
3566 return VM_FAULT_SIGBUS;
3567 }
3568
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3569 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3570 {
3571 if (vm_fault & VM_FAULT_OOM)
3572 return -ENOMEM;
3573 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3574 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3575 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3576 return -EFAULT;
3577 return 0;
3578 }
3579
3580 /*
3581 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3582 * a (NUMA hinting) fault is required.
3583 */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3584 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3585 unsigned int flags)
3586 {
3587 /*
3588 * If callers don't want to honor NUMA hinting faults, no need to
3589 * determine if we would actually have to trigger a NUMA hinting fault.
3590 */
3591 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3592 return true;
3593
3594 /*
3595 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3596 *
3597 * Requiring a fault here even for inaccessible VMAs would mean that
3598 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3599 * refuses to process NUMA hinting faults in inaccessible VMAs.
3600 */
3601 return !vma_is_accessible(vma);
3602 }
3603
3604 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3605 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3606 unsigned long size, pte_fn_t fn, void *data);
3607 extern int apply_to_existing_page_range(struct mm_struct *mm,
3608 unsigned long address, unsigned long size,
3609 pte_fn_t fn, void *data);
3610
3611 #ifdef CONFIG_PAGE_POISONING
3612 extern void __kernel_poison_pages(struct page *page, int numpages);
3613 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3614 extern bool _page_poisoning_enabled_early;
3615 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3616 static inline bool page_poisoning_enabled(void)
3617 {
3618 return _page_poisoning_enabled_early;
3619 }
3620 /*
3621 * For use in fast paths after init_mem_debugging() has run, or when a
3622 * false negative result is not harmful when called too early.
3623 */
page_poisoning_enabled_static(void)3624 static inline bool page_poisoning_enabled_static(void)
3625 {
3626 return static_branch_unlikely(&_page_poisoning_enabled);
3627 }
kernel_poison_pages(struct page * page,int numpages)3628 static inline void kernel_poison_pages(struct page *page, int numpages)
3629 {
3630 if (page_poisoning_enabled_static())
3631 __kernel_poison_pages(page, numpages);
3632 }
kernel_unpoison_pages(struct page * page,int numpages)3633 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3634 {
3635 if (page_poisoning_enabled_static())
3636 __kernel_unpoison_pages(page, numpages);
3637 }
3638 #else
page_poisoning_enabled(void)3639 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3640 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3641 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3642 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3643 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3644 #endif
3645
3646 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3647 static inline bool want_init_on_alloc(gfp_t flags)
3648 {
3649 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3650 &init_on_alloc))
3651 return true;
3652 return flags & __GFP_ZERO;
3653 }
3654
3655 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3656 static inline bool want_init_on_free(void)
3657 {
3658 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3659 &init_on_free);
3660 }
3661
3662 extern bool _debug_pagealloc_enabled_early;
3663 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3664
debug_pagealloc_enabled(void)3665 static inline bool debug_pagealloc_enabled(void)
3666 {
3667 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3668 _debug_pagealloc_enabled_early;
3669 }
3670
3671 /*
3672 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3673 * or when a false negative result is not harmful when called too early.
3674 */
debug_pagealloc_enabled_static(void)3675 static inline bool debug_pagealloc_enabled_static(void)
3676 {
3677 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3678 return false;
3679
3680 return static_branch_unlikely(&_debug_pagealloc_enabled);
3681 }
3682
3683 /*
3684 * To support DEBUG_PAGEALLOC architecture must ensure that
3685 * __kernel_map_pages() never fails
3686 */
3687 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3688 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3689 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3690 {
3691 if (debug_pagealloc_enabled_static())
3692 __kernel_map_pages(page, numpages, 1);
3693 }
3694
debug_pagealloc_unmap_pages(struct page * page,int numpages)3695 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3696 {
3697 if (debug_pagealloc_enabled_static())
3698 __kernel_map_pages(page, numpages, 0);
3699 }
3700
3701 extern unsigned int _debug_guardpage_minorder;
3702 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3703
debug_guardpage_minorder(void)3704 static inline unsigned int debug_guardpage_minorder(void)
3705 {
3706 return _debug_guardpage_minorder;
3707 }
3708
debug_guardpage_enabled(void)3709 static inline bool debug_guardpage_enabled(void)
3710 {
3711 return static_branch_unlikely(&_debug_guardpage_enabled);
3712 }
3713
page_is_guard(struct page * page)3714 static inline bool page_is_guard(struct page *page)
3715 {
3716 if (!debug_guardpage_enabled())
3717 return false;
3718
3719 return PageGuard(page);
3720 }
3721
3722 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3723 static inline bool set_page_guard(struct zone *zone, struct page *page,
3724 unsigned int order)
3725 {
3726 if (!debug_guardpage_enabled())
3727 return false;
3728 return __set_page_guard(zone, page, order);
3729 }
3730
3731 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3732 static inline void clear_page_guard(struct zone *zone, struct page *page,
3733 unsigned int order)
3734 {
3735 if (!debug_guardpage_enabled())
3736 return;
3737 __clear_page_guard(zone, page, order);
3738 }
3739
3740 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3741 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3742 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3743 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3744 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3745 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3746 static inline bool set_page_guard(struct zone *zone, struct page *page,
3747 unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3748 static inline void clear_page_guard(struct zone *zone, struct page *page,
3749 unsigned int order) {}
3750 #endif /* CONFIG_DEBUG_PAGEALLOC */
3751
3752 #ifdef __HAVE_ARCH_GATE_AREA
3753 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3754 extern int in_gate_area_no_mm(unsigned long addr);
3755 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3756 #else
get_gate_vma(struct mm_struct * mm)3757 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3758 {
3759 return NULL;
3760 }
in_gate_area_no_mm(unsigned long addr)3761 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3762 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3763 {
3764 return 0;
3765 }
3766 #endif /* __HAVE_ARCH_GATE_AREA */
3767
3768 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3769
3770 void drop_slab(void);
3771
3772 #ifndef CONFIG_MMU
3773 #define randomize_va_space 0
3774 #else
3775 extern int randomize_va_space;
3776 #endif
3777
3778 const char * arch_vma_name(struct vm_area_struct *vma);
3779 #ifdef CONFIG_MMU
3780 void print_vma_addr(char *prefix, unsigned long rip);
3781 #else
print_vma_addr(char * prefix,unsigned long rip)3782 static inline void print_vma_addr(char *prefix, unsigned long rip)
3783 {
3784 }
3785 #endif
3786
3787 void *sparse_buffer_alloc(unsigned long size);
3788 unsigned long section_map_size(void);
3789 struct page * __populate_section_memmap(unsigned long pfn,
3790 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3791 struct dev_pagemap *pgmap);
3792 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3793 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3794 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3795 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3796 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3797 struct vmem_altmap *altmap, unsigned long ptpfn,
3798 unsigned long flags);
3799 void *vmemmap_alloc_block(unsigned long size, int node);
3800 struct vmem_altmap;
3801 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3802 struct vmem_altmap *altmap);
3803 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3804 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3805 unsigned long addr, unsigned long next);
3806 int vmemmap_check_pmd(pmd_t *pmd, int node,
3807 unsigned long addr, unsigned long next);
3808 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3809 int node, struct vmem_altmap *altmap);
3810 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3811 int node, struct vmem_altmap *altmap);
3812 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3813 struct vmem_altmap *altmap);
3814 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3815 unsigned long headsize);
3816 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3817 unsigned long headsize);
3818 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3819 unsigned long headsize);
3820 void vmemmap_populate_print_last(void);
3821 #ifdef CONFIG_MEMORY_HOTPLUG
3822 void vmemmap_free(unsigned long start, unsigned long end,
3823 struct vmem_altmap *altmap);
3824 #endif
3825
3826 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3827 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3828 {
3829 /* number of pfns from base where pfn_to_page() is valid */
3830 if (altmap)
3831 return altmap->reserve + altmap->free;
3832 return 0;
3833 }
3834
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3835 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3836 unsigned long nr_pfns)
3837 {
3838 altmap->alloc -= nr_pfns;
3839 }
3840 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3841 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3842 {
3843 return 0;
3844 }
3845
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3846 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3847 unsigned long nr_pfns)
3848 {
3849 }
3850 #endif
3851
3852 #define VMEMMAP_RESERVE_NR 2
3853 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3854 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3855 struct dev_pagemap *pgmap)
3856 {
3857 unsigned long nr_pages;
3858 unsigned long nr_vmemmap_pages;
3859
3860 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3861 return false;
3862
3863 nr_pages = pgmap_vmemmap_nr(pgmap);
3864 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3865 /*
3866 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3867 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3868 */
3869 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3870 }
3871 /*
3872 * If we don't have an architecture override, use the generic rule
3873 */
3874 #ifndef vmemmap_can_optimize
3875 #define vmemmap_can_optimize __vmemmap_can_optimize
3876 #endif
3877
3878 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3879 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3880 struct dev_pagemap *pgmap)
3881 {
3882 return false;
3883 }
3884 #endif
3885
3886 enum mf_flags {
3887 MF_COUNT_INCREASED = 1 << 0,
3888 MF_ACTION_REQUIRED = 1 << 1,
3889 MF_MUST_KILL = 1 << 2,
3890 MF_SOFT_OFFLINE = 1 << 3,
3891 MF_UNPOISON = 1 << 4,
3892 MF_SW_SIMULATED = 1 << 5,
3893 MF_NO_RETRY = 1 << 6,
3894 MF_MEM_PRE_REMOVE = 1 << 7,
3895 };
3896 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3897 unsigned long count, int mf_flags);
3898 extern int memory_failure(unsigned long pfn, int flags);
3899 extern void memory_failure_queue_kick(int cpu);
3900 extern int unpoison_memory(unsigned long pfn);
3901 extern atomic_long_t num_poisoned_pages __read_mostly;
3902 extern int soft_offline_page(unsigned long pfn, int flags);
3903 #ifdef CONFIG_MEMORY_FAILURE
3904 /*
3905 * Sysfs entries for memory failure handling statistics.
3906 */
3907 extern const struct attribute_group memory_failure_attr_group;
3908 extern void memory_failure_queue(unsigned long pfn, int flags);
3909 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3910 bool *migratable_cleared);
3911 void num_poisoned_pages_inc(unsigned long pfn);
3912 void num_poisoned_pages_sub(unsigned long pfn, long i);
3913 #else
memory_failure_queue(unsigned long pfn,int flags)3914 static inline void memory_failure_queue(unsigned long pfn, int flags)
3915 {
3916 }
3917
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3918 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3919 bool *migratable_cleared)
3920 {
3921 return 0;
3922 }
3923
num_poisoned_pages_inc(unsigned long pfn)3924 static inline void num_poisoned_pages_inc(unsigned long pfn)
3925 {
3926 }
3927
num_poisoned_pages_sub(unsigned long pfn,long i)3928 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3929 {
3930 }
3931 #endif
3932
3933 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3934 extern void memblk_nr_poison_inc(unsigned long pfn);
3935 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3936 #else
memblk_nr_poison_inc(unsigned long pfn)3937 static inline void memblk_nr_poison_inc(unsigned long pfn)
3938 {
3939 }
3940
memblk_nr_poison_sub(unsigned long pfn,long i)3941 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3942 {
3943 }
3944 #endif
3945
3946 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3947 static inline int arch_memory_failure(unsigned long pfn, int flags)
3948 {
3949 return -ENXIO;
3950 }
3951 #endif
3952
3953 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3954 static inline bool arch_is_platform_page(u64 paddr)
3955 {
3956 return false;
3957 }
3958 #endif
3959
3960 /*
3961 * Error handlers for various types of pages.
3962 */
3963 enum mf_result {
3964 MF_IGNORED, /* Error: cannot be handled */
3965 MF_FAILED, /* Error: handling failed */
3966 MF_DELAYED, /* Will be handled later */
3967 MF_RECOVERED, /* Successfully recovered */
3968 };
3969
3970 enum mf_action_page_type {
3971 MF_MSG_KERNEL,
3972 MF_MSG_KERNEL_HIGH_ORDER,
3973 MF_MSG_DIFFERENT_COMPOUND,
3974 MF_MSG_HUGE,
3975 MF_MSG_FREE_HUGE,
3976 MF_MSG_GET_HWPOISON,
3977 MF_MSG_UNMAP_FAILED,
3978 MF_MSG_DIRTY_SWAPCACHE,
3979 MF_MSG_CLEAN_SWAPCACHE,
3980 MF_MSG_DIRTY_MLOCKED_LRU,
3981 MF_MSG_CLEAN_MLOCKED_LRU,
3982 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3983 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3984 MF_MSG_DIRTY_LRU,
3985 MF_MSG_CLEAN_LRU,
3986 MF_MSG_TRUNCATED_LRU,
3987 MF_MSG_BUDDY,
3988 MF_MSG_DAX,
3989 MF_MSG_UNSPLIT_THP,
3990 MF_MSG_ALREADY_POISONED,
3991 MF_MSG_UNKNOWN,
3992 };
3993
3994 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3995 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
3996 int copy_user_large_folio(struct folio *dst, struct folio *src,
3997 unsigned long addr_hint,
3998 struct vm_area_struct *vma);
3999 long copy_folio_from_user(struct folio *dst_folio,
4000 const void __user *usr_src,
4001 bool allow_pagefault);
4002
4003 /**
4004 * vma_is_special_huge - Are transhuge page-table entries considered special?
4005 * @vma: Pointer to the struct vm_area_struct to consider
4006 *
4007 * Whether transhuge page-table entries are considered "special" following
4008 * the definition in vm_normal_page().
4009 *
4010 * Return: true if transhuge page-table entries should be considered special,
4011 * false otherwise.
4012 */
vma_is_special_huge(const struct vm_area_struct * vma)4013 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4014 {
4015 return vma_is_dax(vma) || (vma->vm_file &&
4016 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4017 }
4018
4019 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4020
4021 #if MAX_NUMNODES > 1
4022 void __init setup_nr_node_ids(void);
4023 #else
setup_nr_node_ids(void)4024 static inline void setup_nr_node_ids(void) {}
4025 #endif
4026
4027 extern int memcmp_pages(struct page *page1, struct page *page2);
4028
pages_identical(struct page * page1,struct page * page2)4029 static inline int pages_identical(struct page *page1, struct page *page2)
4030 {
4031 return !memcmp_pages(page1, page2);
4032 }
4033
4034 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4035 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4036 pgoff_t first_index, pgoff_t nr,
4037 pgoff_t bitmap_pgoff,
4038 unsigned long *bitmap,
4039 pgoff_t *start,
4040 pgoff_t *end);
4041
4042 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4043 pgoff_t first_index, pgoff_t nr);
4044 #endif
4045
4046 #ifdef CONFIG_ANON_VMA_NAME
4047 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4048 unsigned long len_in,
4049 struct anon_vma_name *anon_name);
4050 #else
4051 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4052 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4053 unsigned long len_in, struct anon_vma_name *anon_name) {
4054 return 0;
4055 }
4056 #endif
4057
4058 #ifdef CONFIG_UNACCEPTED_MEMORY
4059
4060 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4061 void accept_memory(phys_addr_t start, unsigned long size);
4062
4063 #else
4064
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4065 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4066 unsigned long size)
4067 {
4068 return false;
4069 }
4070
accept_memory(phys_addr_t start,unsigned long size)4071 static inline void accept_memory(phys_addr_t start, unsigned long size)
4072 {
4073 }
4074
4075 #endif
4076
pfn_is_unaccepted_memory(unsigned long pfn)4077 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4078 {
4079 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4080 }
4081
4082 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4083 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4084
4085 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4086 int reserve_mem_release_by_name(const char *name);
4087
4088 #ifdef CONFIG_64BIT
4089 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4090 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4091 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4092 {
4093 /* noop on 32 bit */
4094 return 0;
4095 }
4096 #endif
4097
4098 /*
4099 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4100 * be zeroed or not.
4101 */
user_alloc_needs_zeroing(void)4102 static inline bool user_alloc_needs_zeroing(void)
4103 {
4104 /*
4105 * for user folios, arch with cache aliasing requires cache flush and
4106 * arc changes folio->flags to make icache coherent with dcache, so
4107 * always return false to make caller use
4108 * clear_user_page()/clear_user_highpage().
4109 */
4110 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4111 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4112 &init_on_alloc);
4113 }
4114
4115 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4116 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4117 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4118
4119
4120 /*
4121 * mseal of userspace process's system mappings.
4122 */
4123 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4124 #define VM_SEALED_SYSMAP VM_SEALED
4125 #else
4126 #define VM_SEALED_SYSMAP VM_NONE
4127 #endif
4128
4129 /*
4130 * DMA mapping IDs for page_pool
4131 *
4132 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4133 * stashes it in the upper bits of page->pp_magic. We always want to be able to
4134 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4135 * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4136 * (since it overlaps with page->lru.next), so we must ensure that we cannot
4137 * mistake a valid kernel pointer with any of the values we write into this
4138 * field.
4139 *
4140 * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4141 * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4142 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4143 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4144 * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4145 * we won't mistake a valid kernel pointer for a value we set, regardless of the
4146 * VMSPLIT setting.
4147 *
4148 * Altogether, this means that the number of bits available is constrained by
4149 * the size of an unsigned long (at the upper end, subtracting two bits per the
4150 * above), and the definition of PP_SIGNATURE (with or without
4151 * POISON_POINTER_DELTA).
4152 */
4153 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4154 #if POISON_POINTER_DELTA > 0
4155 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4156 * index to not overlap with that if set
4157 */
4158 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4159 #else
4160 /* Always leave out the topmost two; see above. */
4161 #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4162 #endif
4163
4164 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4165 PP_DMA_INDEX_SHIFT)
4166
4167 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4168 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4169 * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4170 * bits used for the DMA index. page_is_pfmemalloc() is checked in
4171 * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4172 */
4173 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4174
4175 #ifdef CONFIG_PAGE_POOL
page_pool_page_is_pp(struct page * page)4176 static inline bool page_pool_page_is_pp(struct page *page)
4177 {
4178 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4179 }
4180 #else
page_pool_page_is_pp(struct page * page)4181 static inline bool page_pool_page_is_pp(struct page *page)
4182 {
4183 return false;
4184 }
4185 #endif
4186
4187 #endif /* _LINUX_MM_H */
4188