1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2003-2008 Joseph Koshy
5 * Copyright (c) 2007 The FreeBSD Foundation
6 * Copyright (c) 2018 Matthew Macy
7 * All rights reserved.
8 *
9 * Portions of this software were developed by A. Joseph Koshy under
10 * sponsorship from the FreeBSD Foundation and Google, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/limits.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mount.h>
46 #include <sys/mutex.h>
47 #include <sys/pmc.h>
48 #include <sys/pmckern.h>
49 #include <sys/pmclog.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/queue.h>
53 #include <sys/resourcevar.h>
54 #include <sys/rwlock.h>
55 #include <sys/sched.h>
56 #include <sys/signalvar.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/syslog.h>
62 #include <sys/taskqueue.h>
63 #include <sys/vnode.h>
64
65 #include <sys/linker.h> /* needs to be after <sys/malloc.h> */
66
67 #include <machine/atomic.h>
68 #include <machine/md_var.h>
69
70 #include <vm/vm.h>
71 #include <vm/vm_extern.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_object.h>
75
76 #include "hwpmc_soft.h"
77
78 #define PMC_EPOCH_ENTER() \
79 struct epoch_tracker pmc_et; \
80 epoch_enter_preempt(global_epoch_preempt, &pmc_et)
81
82 #define PMC_EPOCH_EXIT() \
83 epoch_exit_preempt(global_epoch_preempt, &pmc_et)
84
85 /*
86 * Types
87 */
88
89 enum pmc_flags {
90 PMC_FLAG_NONE = 0x00, /* do nothing */
91 PMC_FLAG_REMOVE = 0x01, /* atomically remove entry from hash */
92 PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
93 PMC_FLAG_NOWAIT = 0x04, /* do not wait for mallocs */
94 };
95
96 /*
97 * The offset in sysent where the syscall is allocated.
98 */
99 static int pmc_syscall_num = NO_SYSCALL;
100
101 struct pmc_cpu **pmc_pcpu; /* per-cpu state */
102 pmc_value_t *pmc_pcpu_saved; /* saved PMC values: CSW handling */
103
104 #define PMC_PCPU_SAVED(C, R) pmc_pcpu_saved[(R) + md->pmd_npmc * (C)]
105
106 struct mtx_pool *pmc_mtxpool;
107 static int *pmc_pmcdisp; /* PMC row dispositions */
108
109 #define PMC_ROW_DISP_IS_FREE(R) (pmc_pmcdisp[(R)] == 0)
110 #define PMC_ROW_DISP_IS_THREAD(R) (pmc_pmcdisp[(R)] > 0)
111 #define PMC_ROW_DISP_IS_STANDALONE(R) (pmc_pmcdisp[(R)] < 0)
112
113 #define PMC_MARK_ROW_FREE(R) do { \
114 pmc_pmcdisp[(R)] = 0; \
115 } while (0)
116
117 #define PMC_MARK_ROW_STANDALONE(R) do { \
118 KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
119 __LINE__)); \
120 atomic_add_int(&pmc_pmcdisp[(R)], -1); \
121 KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()), \
122 ("[pmc,%d] row disposition error", __LINE__)); \
123 } while (0)
124
125 #define PMC_UNMARK_ROW_STANDALONE(R) do { \
126 atomic_add_int(&pmc_pmcdisp[(R)], 1); \
127 KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
128 __LINE__)); \
129 } while (0)
130
131 #define PMC_MARK_ROW_THREAD(R) do { \
132 KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
133 __LINE__)); \
134 atomic_add_int(&pmc_pmcdisp[(R)], 1); \
135 } while (0)
136
137 #define PMC_UNMARK_ROW_THREAD(R) do { \
138 atomic_add_int(&pmc_pmcdisp[(R)], -1); \
139 KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
140 __LINE__)); \
141 } while (0)
142
143 /* various event handlers */
144 static eventhandler_tag pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
145 pmc_kld_unload_tag;
146
147 /* Module statistics */
148 struct pmc_driverstats pmc_stats;
149
150 /* Machine/processor dependent operations */
151 static struct pmc_mdep *md;
152
153 /*
154 * Hash tables mapping owner processes and target threads to PMCs.
155 */
156 struct mtx pmc_processhash_mtx; /* spin mutex */
157 static u_long pmc_processhashmask;
158 static LIST_HEAD(pmc_processhash, pmc_process) *pmc_processhash;
159
160 /*
161 * Hash table of PMC owner descriptors. This table is protected by
162 * the shared PMC "sx" lock.
163 */
164 static u_long pmc_ownerhashmask;
165 static LIST_HEAD(pmc_ownerhash, pmc_owner) *pmc_ownerhash;
166
167 /*
168 * List of PMC owners with system-wide sampling PMCs.
169 */
170 static CK_LIST_HEAD(, pmc_owner) pmc_ss_owners;
171
172 /*
173 * List of free thread entries. This is protected by the spin
174 * mutex.
175 */
176 static struct mtx pmc_threadfreelist_mtx; /* spin mutex */
177 static LIST_HEAD(, pmc_thread) pmc_threadfreelist;
178 static int pmc_threadfreelist_entries = 0;
179 #define THREADENTRY_SIZE (sizeof(struct pmc_thread) + \
180 (md->pmd_npmc * sizeof(struct pmc_threadpmcstate)))
181
182 /*
183 * Task to free thread descriptors
184 */
185 static struct task free_task;
186
187 /*
188 * A map of row indices to classdep structures.
189 */
190 static struct pmc_classdep **pmc_rowindex_to_classdep;
191
192 /*
193 * Prototypes
194 */
195
196 #ifdef HWPMC_DEBUG
197 static int pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
198 static int pmc_debugflags_parse(char *newstr, char *fence);
199 #endif
200
201 static int load(struct module *module, int cmd, void *arg);
202 static int pmc_add_sample(ring_type_t ring, struct pmc *pm,
203 struct trapframe *tf);
204 static void pmc_add_thread_descriptors_from_proc(struct proc *p,
205 struct pmc_process *pp);
206 static int pmc_attach_process(struct proc *p, struct pmc *pm);
207 static struct pmc *pmc_allocate_pmc_descriptor(void);
208 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
209 static int pmc_attach_one_process(struct proc *p, struct pmc *pm);
210 static bool pmc_can_allocate_row(int ri, enum pmc_mode mode);
211 static bool pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
212 int cpu);
213 static int pmc_can_attach(struct pmc *pm, struct proc *p);
214 static void pmc_capture_user_callchain(int cpu, int soft,
215 struct trapframe *tf);
216 static void pmc_cleanup(void);
217 static int pmc_detach_process(struct proc *p, struct pmc *pm);
218 static int pmc_detach_one_process(struct proc *p, struct pmc *pm,
219 int flags);
220 static void pmc_destroy_owner_descriptor(struct pmc_owner *po);
221 static void pmc_destroy_pmc_descriptor(struct pmc *pm);
222 static void pmc_destroy_process_descriptor(struct pmc_process *pp);
223 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
224 static int pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
225 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
226 pmc_id_t pmc);
227 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
228 uint32_t mode);
229 static struct pmc_thread *pmc_find_thread_descriptor(struct pmc_process *pp,
230 struct thread *td, uint32_t mode);
231 static void pmc_force_context_switch(void);
232 static void pmc_link_target_process(struct pmc *pm,
233 struct pmc_process *pp);
234 static void pmc_log_all_process_mappings(struct pmc_owner *po);
235 static void pmc_log_kernel_mappings(struct pmc *pm);
236 static void pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
237 static void pmc_maybe_remove_owner(struct pmc_owner *po);
238 static void pmc_post_callchain_callback(void);
239 static void pmc_process_allproc(struct pmc *pm);
240 static void pmc_process_csw_in(struct thread *td);
241 static void pmc_process_csw_out(struct thread *td);
242 static void pmc_process_exec(struct thread *td,
243 struct pmckern_procexec *pk);
244 static void pmc_process_exit(void *arg, struct proc *p);
245 static void pmc_process_fork(void *arg, struct proc *p1,
246 struct proc *p2, int n);
247 static void pmc_process_proccreate(struct proc *p);
248 static void pmc_process_samples(int cpu, ring_type_t soft);
249 static void pmc_process_threadcreate(struct thread *td);
250 static void pmc_process_threadexit(struct thread *td);
251 static void pmc_process_thread_add(struct thread *td);
252 static void pmc_process_thread_delete(struct thread *td);
253 static void pmc_process_thread_userret(struct thread *td);
254 static void pmc_release_pmc_descriptor(struct pmc *pmc);
255 static void pmc_remove_owner(struct pmc_owner *po);
256 static void pmc_remove_process_descriptor(struct pmc_process *pp);
257 static int pmc_start(struct pmc *pm);
258 static int pmc_stop(struct pmc *pm);
259 static int pmc_syscall_handler(struct thread *td, void *syscall_args);
260 static struct pmc_thread *pmc_thread_descriptor_pool_alloc(void);
261 static void pmc_thread_descriptor_pool_drain(void);
262 static void pmc_thread_descriptor_pool_free(struct pmc_thread *pt);
263 static void pmc_unlink_target_process(struct pmc *pmc,
264 struct pmc_process *pp);
265
266 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
267 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
268 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
269 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
270
271 /*
272 * Kernel tunables and sysctl(8) interface.
273 */
274
275 SYSCTL_DECL(_kern_hwpmc);
276 SYSCTL_NODE(_kern_hwpmc, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
277 "HWPMC stats");
278
279 /* Stats. */
280 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_ignored, CTLFLAG_RW,
281 &pmc_stats.pm_intr_ignored,
282 "# of interrupts ignored");
283 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_processed, CTLFLAG_RW,
284 &pmc_stats.pm_intr_processed,
285 "# of interrupts processed");
286 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_bufferfull, CTLFLAG_RW,
287 &pmc_stats.pm_intr_bufferfull,
288 "# of interrupts where buffer was full");
289 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscalls, CTLFLAG_RW,
290 &pmc_stats.pm_syscalls,
291 "# of syscalls");
292 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscall_errors, CTLFLAG_RW,
293 &pmc_stats.pm_syscall_errors,
294 "# of syscall_errors");
295 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests, CTLFLAG_RW,
296 &pmc_stats.pm_buffer_requests,
297 "# of buffer requests");
298 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests_failed,
299 CTLFLAG_RW, &pmc_stats.pm_buffer_requests_failed,
300 "# of buffer requests which failed");
301 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, log_sweeps, CTLFLAG_RW,
302 &pmc_stats.pm_log_sweeps,
303 "# of times samples were processed");
304 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, merges, CTLFLAG_RW,
305 &pmc_stats.pm_merges,
306 "# of times kernel stack was found for user trace");
307 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, overwrites, CTLFLAG_RW,
308 &pmc_stats.pm_overwrites,
309 "# of times a sample was overwritten before being logged");
310
311 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
312 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
313 &pmc_callchaindepth, 0,
314 "depth of call chain records");
315
316 char pmc_cpuid[PMC_CPUID_LEN];
317 SYSCTL_STRING(_kern_hwpmc, OID_AUTO, cpuid, CTLFLAG_RD,
318 pmc_cpuid, 0,
319 "cpu version string");
320
321 #ifdef HWPMC_DEBUG
322 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
323 char pmc_debugstr[PMC_DEBUG_STRSIZE];
324 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
325 sizeof(pmc_debugstr));
326 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
327 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
328 0, 0, pmc_debugflags_sysctl_handler, "A",
329 "debug flags");
330 #endif
331
332 /*
333 * kern.hwpmc.hashsize -- determines the number of rows in the
334 * of the hash table used to look up threads
335 */
336 static int pmc_hashsize = PMC_HASH_SIZE;
337 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
338 &pmc_hashsize, 0,
339 "rows in hash tables");
340
341 /*
342 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
343 */
344 static int pmc_nsamples = PMC_NSAMPLES;
345 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
346 &pmc_nsamples, 0,
347 "number of PC samples per CPU");
348
349 static uint64_t pmc_sample_mask = PMC_NSAMPLES - 1;
350
351 /*
352 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
353 */
354 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
355 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
356 &pmc_mtxpool_size, 0,
357 "size of spin mutex pool");
358
359 /*
360 * kern.hwpmc.threadfreelist_entries -- number of free entries
361 */
362 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_entries, CTLFLAG_RD,
363 &pmc_threadfreelist_entries, 0,
364 "number of available thread entries");
365
366 /*
367 * kern.hwpmc.threadfreelist_max -- maximum number of free entries
368 */
369 static int pmc_threadfreelist_max = PMC_THREADLIST_MAX;
370 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_max, CTLFLAG_RW,
371 &pmc_threadfreelist_max, 0,
372 "maximum number of available thread entries before freeing some");
373
374 /*
375 * kern.hwpmc.mincount -- minimum sample count
376 */
377 static u_int pmc_mincount = 1000;
378 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mincount, CTLFLAG_RWTUN,
379 &pmc_mincount, 0,
380 "minimum count for sampling counters");
381
382 /*
383 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
384 * allocate system-wide PMCs.
385 *
386 * Allowing unprivileged processes to allocate system PMCs is convenient
387 * if system-wide measurements need to be taken concurrently with other
388 * per-process measurements. This feature is turned off by default.
389 */
390 static int pmc_unprivileged_syspmcs = 0;
391 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
392 &pmc_unprivileged_syspmcs, 0,
393 "allow unprivileged process to allocate system PMCs");
394
395 /*
396 * Hash function. Discard the lower 2 bits of the pointer since
397 * these are always zero for our uses. The hash multiplier is
398 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
399 */
400 #if LONG_BIT == 64
401 #define _PMC_HM 11400714819323198486u
402 #elif LONG_BIT == 32
403 #define _PMC_HM 2654435769u
404 #else
405 #error Must know the size of 'long' to compile
406 #endif
407
408 #define PMC_HASH_PTR(P,M) ((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
409
410 /*
411 * Syscall structures
412 */
413
414 /* The `sysent' for the new syscall */
415 static struct sysent pmc_sysent = {
416 .sy_narg = 2,
417 .sy_call = pmc_syscall_handler,
418 };
419
420 static struct syscall_module_data pmc_syscall_mod = {
421 .chainevh = load,
422 .chainarg = NULL,
423 .offset = &pmc_syscall_num,
424 .new_sysent = &pmc_sysent,
425 .old_sysent = { .sy_narg = 0, .sy_call = NULL },
426 .flags = SY_THR_STATIC_KLD,
427 };
428
429 static moduledata_t pmc_mod = {
430 .name = PMC_MODULE_NAME,
431 .evhand = syscall_module_handler,
432 .priv = &pmc_syscall_mod,
433 };
434
435 #ifdef EARLY_AP_STARTUP
436 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
437 #else
438 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
439 #endif
440 MODULE_VERSION(pmc, PMC_VERSION);
441
442 #ifdef HWPMC_DEBUG
443 enum pmc_dbgparse_state {
444 PMCDS_WS, /* in whitespace */
445 PMCDS_MAJOR, /* seen a major keyword */
446 PMCDS_MINOR
447 };
448
449 static int
pmc_debugflags_parse(char * newstr,char * fence)450 pmc_debugflags_parse(char *newstr, char *fence)
451 {
452 struct pmc_debugflags *tmpflags;
453 size_t kwlen;
454 char c, *p, *q;
455 int error, *newbits, tmp;
456 int found;
457
458 tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK | M_ZERO);
459
460 error = 0;
461 for (p = newstr; p < fence && (c = *p); p++) {
462 /* skip white space */
463 if (c == ' ' || c == '\t')
464 continue;
465
466 /* look for a keyword followed by "=" */
467 for (q = p; p < fence && (c = *p) && c != '='; p++)
468 ;
469 if (c != '=') {
470 error = EINVAL;
471 goto done;
472 }
473
474 kwlen = p - q;
475 newbits = NULL;
476
477 /* lookup flag group name */
478 #define DBG_SET_FLAG_MAJ(S,F) \
479 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \
480 newbits = &tmpflags->pdb_ ## F;
481
482 DBG_SET_FLAG_MAJ("cpu", CPU);
483 DBG_SET_FLAG_MAJ("csw", CSW);
484 DBG_SET_FLAG_MAJ("logging", LOG);
485 DBG_SET_FLAG_MAJ("module", MOD);
486 DBG_SET_FLAG_MAJ("md", MDP);
487 DBG_SET_FLAG_MAJ("owner", OWN);
488 DBG_SET_FLAG_MAJ("pmc", PMC);
489 DBG_SET_FLAG_MAJ("process", PRC);
490 DBG_SET_FLAG_MAJ("sampling", SAM);
491 #undef DBG_SET_FLAG_MAJ
492
493 if (newbits == NULL) {
494 error = EINVAL;
495 goto done;
496 }
497
498 p++; /* skip the '=' */
499
500 /* Now parse the individual flags */
501 tmp = 0;
502 newflag:
503 for (q = p; p < fence && (c = *p); p++)
504 if (c == ' ' || c == '\t' || c == ',')
505 break;
506
507 /* p == fence or c == ws or c == "," or c == 0 */
508
509 if ((kwlen = p - q) == 0) {
510 *newbits = tmp;
511 continue;
512 }
513
514 found = 0;
515 #define DBG_SET_FLAG_MIN(S,F) \
516 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \
517 tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
518
519 /* a '*' denotes all possible flags in the group */
520 if (kwlen == 1 && *q == '*')
521 tmp = found = ~0;
522 /* look for individual flag names */
523 DBG_SET_FLAG_MIN("allocaterow", ALR);
524 DBG_SET_FLAG_MIN("allocate", ALL);
525 DBG_SET_FLAG_MIN("attach", ATT);
526 DBG_SET_FLAG_MIN("bind", BND);
527 DBG_SET_FLAG_MIN("config", CFG);
528 DBG_SET_FLAG_MIN("exec", EXC);
529 DBG_SET_FLAG_MIN("exit", EXT);
530 DBG_SET_FLAG_MIN("find", FND);
531 DBG_SET_FLAG_MIN("flush", FLS);
532 DBG_SET_FLAG_MIN("fork", FRK);
533 DBG_SET_FLAG_MIN("getbuf", GTB);
534 DBG_SET_FLAG_MIN("hook", PMH);
535 DBG_SET_FLAG_MIN("init", INI);
536 DBG_SET_FLAG_MIN("intr", INT);
537 DBG_SET_FLAG_MIN("linktarget", TLK);
538 DBG_SET_FLAG_MIN("mayberemove", OMR);
539 DBG_SET_FLAG_MIN("ops", OPS);
540 DBG_SET_FLAG_MIN("read", REA);
541 DBG_SET_FLAG_MIN("register", REG);
542 DBG_SET_FLAG_MIN("release", REL);
543 DBG_SET_FLAG_MIN("remove", ORM);
544 DBG_SET_FLAG_MIN("sample", SAM);
545 DBG_SET_FLAG_MIN("scheduleio", SIO);
546 DBG_SET_FLAG_MIN("select", SEL);
547 DBG_SET_FLAG_MIN("signal", SIG);
548 DBG_SET_FLAG_MIN("swi", SWI);
549 DBG_SET_FLAG_MIN("swo", SWO);
550 DBG_SET_FLAG_MIN("start", STA);
551 DBG_SET_FLAG_MIN("stop", STO);
552 DBG_SET_FLAG_MIN("syscall", PMS);
553 DBG_SET_FLAG_MIN("unlinktarget", TUL);
554 DBG_SET_FLAG_MIN("write", WRI);
555 #undef DBG_SET_FLAG_MIN
556 if (found == 0) {
557 /* unrecognized flag name */
558 error = EINVAL;
559 goto done;
560 }
561
562 if (c == 0 || c == ' ' || c == '\t') { /* end of flag group */
563 *newbits = tmp;
564 continue;
565 }
566
567 p++;
568 goto newflag;
569 }
570
571 /* save the new flag set */
572 bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
573 done:
574 free(tmpflags, M_PMC);
575 return (error);
576 }
577
578 static int
pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)579 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
580 {
581 char *fence, *newstr;
582 int error;
583 u_int n;
584
585 n = sizeof(pmc_debugstr);
586 newstr = malloc(n, M_PMC, M_WAITOK | M_ZERO);
587 strlcpy(newstr, pmc_debugstr, n);
588
589 error = sysctl_handle_string(oidp, newstr, n, req);
590
591 /* if there is a new string, parse and copy it */
592 if (error == 0 && req->newptr != NULL) {
593 fence = newstr + (n < req->newlen ? n : req->newlen + 1);
594 error = pmc_debugflags_parse(newstr, fence);
595 if (error == 0)
596 strlcpy(pmc_debugstr, newstr, sizeof(pmc_debugstr));
597 }
598 free(newstr, M_PMC);
599
600 return (error);
601 }
602 #endif
603
604 /*
605 * Map a row index to a classdep structure and return the adjusted row
606 * index for the PMC class index.
607 */
608 static struct pmc_classdep *
pmc_ri_to_classdep(struct pmc_mdep * md __unused,int ri,int * adjri)609 pmc_ri_to_classdep(struct pmc_mdep *md __unused, int ri, int *adjri)
610 {
611 struct pmc_classdep *pcd;
612
613 KASSERT(ri >= 0 && ri < md->pmd_npmc,
614 ("[pmc,%d] illegal row-index %d", __LINE__, ri));
615
616 pcd = pmc_rowindex_to_classdep[ri];
617 KASSERT(pcd != NULL,
618 ("[pmc,%d] ri %d null pcd", __LINE__, ri));
619
620 *adjri = ri - pcd->pcd_ri;
621 KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
622 ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
623
624 return (pcd);
625 }
626
627 /*
628 * Concurrency Control
629 *
630 * The driver manages the following data structures:
631 *
632 * - target process descriptors, one per target process
633 * - owner process descriptors (and attached lists), one per owner process
634 * - lookup hash tables for owner and target processes
635 * - PMC descriptors (and attached lists)
636 * - per-cpu hardware state
637 * - the 'hook' variable through which the kernel calls into
638 * this module
639 * - the machine hardware state (managed by the MD layer)
640 *
641 * These data structures are accessed from:
642 *
643 * - thread context-switch code
644 * - interrupt handlers (possibly on multiple cpus)
645 * - kernel threads on multiple cpus running on behalf of user
646 * processes doing system calls
647 * - this driver's private kernel threads
648 *
649 * = Locks and Locking strategy =
650 *
651 * The driver uses four locking strategies for its operation:
652 *
653 * - The global SX lock "pmc_sx" is used to protect internal
654 * data structures.
655 *
656 * Calls into the module by syscall() start with this lock being
657 * held in exclusive mode. Depending on the requested operation,
658 * the lock may be downgraded to 'shared' mode to allow more
659 * concurrent readers into the module. Calls into the module from
660 * other parts of the kernel acquire the lock in shared mode.
661 *
662 * This SX lock is held in exclusive mode for any operations that
663 * modify the linkages between the driver's internal data structures.
664 *
665 * The 'pmc_hook' function pointer is also protected by this lock.
666 * It is only examined with the sx lock held in exclusive mode. The
667 * kernel module is allowed to be unloaded only with the sx lock held
668 * in exclusive mode. In normal syscall handling, after acquiring the
669 * pmc_sx lock we first check that 'pmc_hook' is non-null before
670 * proceeding. This prevents races between the thread unloading the module
671 * and other threads seeking to use the module.
672 *
673 * - Lookups of target process structures and owner process structures
674 * cannot use the global "pmc_sx" SX lock because these lookups need
675 * to happen during context switches and in other critical sections
676 * where sleeping is not allowed. We protect these lookup tables
677 * with their own private spin-mutexes, "pmc_processhash_mtx" and
678 * "pmc_ownerhash_mtx".
679 *
680 * - Interrupt handlers work in a lock free manner. At interrupt
681 * time, handlers look at the PMC pointer (phw->phw_pmc) configured
682 * when the PMC was started. If this pointer is NULL, the interrupt
683 * is ignored after updating driver statistics. We ensure that this
684 * pointer is set (using an atomic operation if necessary) before the
685 * PMC hardware is started. Conversely, this pointer is unset atomically
686 * only after the PMC hardware is stopped.
687 *
688 * We ensure that everything needed for the operation of an
689 * interrupt handler is available without it needing to acquire any
690 * locks. We also ensure that a PMC's software state is destroyed only
691 * after the PMC is taken off hardware (on all CPUs).
692 *
693 * - Context-switch handling with process-private PMCs needs more
694 * care.
695 *
696 * A given process may be the target of multiple PMCs. For example,
697 * PMCATTACH and PMCDETACH may be requested by a process on one CPU
698 * while the target process is running on another. A PMC could also
699 * be getting released because its owner is exiting. We tackle
700 * these situations in the following manner:
701 *
702 * - each target process structure 'pmc_process' has an array
703 * of 'struct pmc *' pointers, one for each hardware PMC.
704 *
705 * - At context switch IN time, each "target" PMC in RUNNING state
706 * gets started on hardware and a pointer to each PMC is copied into
707 * the per-cpu phw array. The 'runcount' for the PMC is
708 * incremented.
709 *
710 * - At context switch OUT time, all process-virtual PMCs are stopped
711 * on hardware. The saved value is added to the PMCs value field
712 * only if the PMC is in a non-deleted state (the PMCs state could
713 * have changed during the current time slice).
714 *
715 * Note that since in-between a switch IN on a processor and a switch
716 * OUT, the PMC could have been released on another CPU. Therefore
717 * context switch OUT always looks at the hardware state to turn
718 * OFF PMCs and will update a PMC's saved value only if reachable
719 * from the target process record.
720 *
721 * - OP PMCRELEASE could be called on a PMC at any time (the PMC could
722 * be attached to many processes at the time of the call and could
723 * be active on multiple CPUs).
724 *
725 * We prevent further scheduling of the PMC by marking it as in
726 * state 'DELETED'. If the runcount of the PMC is non-zero then
727 * this PMC is currently running on a CPU somewhere. The thread
728 * doing the PMCRELEASE operation waits by repeatedly doing a
729 * pause() till the runcount comes to zero.
730 *
731 * The contents of a PMC descriptor (struct pmc) are protected using
732 * a spin-mutex. In order to save space, we use a mutex pool.
733 *
734 * In terms of lock types used by witness(4), we use:
735 * - Type "pmc-sx", used by the global SX lock.
736 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
737 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
738 * - Type "pmc-leaf", used for all other spin mutexes.
739 */
740
741 /*
742 * Save the CPU binding of the current kthread.
743 */
744 void
pmc_save_cpu_binding(struct pmc_binding * pb)745 pmc_save_cpu_binding(struct pmc_binding *pb)
746 {
747 PMCDBG0(CPU,BND,2, "save-cpu");
748 thread_lock(curthread);
749 pb->pb_bound = sched_is_bound(curthread);
750 pb->pb_cpu = curthread->td_oncpu;
751 pb->pb_priority = curthread->td_priority;
752 thread_unlock(curthread);
753 PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
754 }
755
756 /*
757 * Restore the CPU binding of the current thread.
758 */
759 void
pmc_restore_cpu_binding(struct pmc_binding * pb)760 pmc_restore_cpu_binding(struct pmc_binding *pb)
761 {
762 PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
763 curthread->td_oncpu, pb->pb_cpu);
764 thread_lock(curthread);
765 sched_bind(curthread, pb->pb_cpu);
766 if (!pb->pb_bound)
767 sched_unbind(curthread);
768 sched_prio(curthread, pb->pb_priority);
769 thread_unlock(curthread);
770 PMCDBG0(CPU,BND,2, "restore-cpu done");
771 }
772
773 /*
774 * Move execution over to the specified CPU and bind it there.
775 */
776 void
pmc_select_cpu(int cpu)777 pmc_select_cpu(int cpu)
778 {
779 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
780 ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
781
782 /* Never move to an inactive CPU. */
783 KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
784 "CPU %d", __LINE__, cpu));
785
786 PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
787 thread_lock(curthread);
788 sched_prio(curthread, PRI_MIN);
789 sched_bind(curthread, cpu);
790 thread_unlock(curthread);
791
792 KASSERT(curthread->td_oncpu == cpu,
793 ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
794 cpu, curthread->td_oncpu));
795
796 PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
797 }
798
799 /*
800 * Force a context switch.
801 *
802 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
803 * guaranteed to force a context switch.
804 */
805 static void
pmc_force_context_switch(void)806 pmc_force_context_switch(void)
807 {
808
809 pause("pmcctx", 1);
810 }
811
812 uint64_t
pmc_rdtsc(void)813 pmc_rdtsc(void)
814 {
815 #if defined(__i386__) || defined(__amd64__)
816 if (__predict_true(amd_feature & AMDID_RDTSCP))
817 return (rdtscp());
818 else
819 return (rdtsc());
820 #else
821 return (get_cyclecount());
822 #endif
823 }
824
825 /*
826 * Get the file name for an executable. This is a simple wrapper
827 * around vn_fullpath(9).
828 */
829 static void
pmc_getfilename(struct vnode * v,char ** fullpath,char ** freepath)830 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
831 {
832
833 *fullpath = "unknown";
834 *freepath = NULL;
835 vn_fullpath(v, fullpath, freepath);
836 }
837
838 /*
839 * Remove a process owning PMCs.
840 */
841 void
pmc_remove_owner(struct pmc_owner * po)842 pmc_remove_owner(struct pmc_owner *po)
843 {
844 struct pmc *pm, *tmp;
845
846 sx_assert(&pmc_sx, SX_XLOCKED);
847
848 PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
849
850 /* Remove descriptor from the owner hash table */
851 LIST_REMOVE(po, po_next);
852
853 /* release all owned PMC descriptors */
854 LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
855 PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
856 KASSERT(pm->pm_owner == po,
857 ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
858
859 pmc_release_pmc_descriptor(pm); /* will unlink from the list */
860 pmc_destroy_pmc_descriptor(pm);
861 }
862
863 KASSERT(po->po_sscount == 0,
864 ("[pmc,%d] SS count not zero", __LINE__));
865 KASSERT(LIST_EMPTY(&po->po_pmcs),
866 ("[pmc,%d] PMC list not empty", __LINE__));
867
868 /* de-configure the log file if present */
869 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
870 pmclog_deconfigure_log(po);
871 }
872
873 /*
874 * Remove an owner process record if all conditions are met.
875 */
876 static void
pmc_maybe_remove_owner(struct pmc_owner * po)877 pmc_maybe_remove_owner(struct pmc_owner *po)
878 {
879
880 PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
881
882 /*
883 * Remove owner record if
884 * - this process does not own any PMCs
885 * - this process has not allocated a system-wide sampling buffer
886 */
887 if (LIST_EMPTY(&po->po_pmcs) &&
888 ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
889 pmc_remove_owner(po);
890 pmc_destroy_owner_descriptor(po);
891 }
892 }
893
894 /*
895 * Add an association between a target process and a PMC.
896 */
897 static void
pmc_link_target_process(struct pmc * pm,struct pmc_process * pp)898 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
899 {
900 struct pmc_target *pt;
901 struct pmc_thread *pt_td __diagused;
902 int ri;
903
904 sx_assert(&pmc_sx, SX_XLOCKED);
905 KASSERT(pm != NULL && pp != NULL,
906 ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
907 KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
908 ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
909 __LINE__, pm, pp->pp_proc->p_pid));
910 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
911 ("[pmc,%d] Illegal reference count %d for process record %p",
912 __LINE__, pp->pp_refcnt, (void *) pp));
913
914 ri = PMC_TO_ROWINDEX(pm);
915
916 PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
917 pm, ri, pp);
918
919 #ifdef HWPMC_DEBUG
920 LIST_FOREACH(pt, &pm->pm_targets, pt_next) {
921 if (pt->pt_process == pp)
922 KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
923 __LINE__, pp, pm));
924 }
925 #endif
926 pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK | M_ZERO);
927 pt->pt_process = pp;
928
929 LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
930
931 atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
932 (uintptr_t)pm);
933
934 if (pm->pm_owner->po_owner == pp->pp_proc)
935 pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
936
937 /*
938 * Initialize the per-process values at this row index.
939 */
940 pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
941 pm->pm_sc.pm_reloadcount : 0;
942 pp->pp_refcnt++;
943
944 #ifdef INVARIANTS
945 /* Confirm that the per-thread values at this row index are cleared. */
946 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
947 mtx_lock_spin(pp->pp_tdslock);
948 LIST_FOREACH(pt_td, &pp->pp_tds, pt_next) {
949 KASSERT(pt_td->pt_pmcs[ri].pt_pmcval == (pmc_value_t) 0,
950 ("[pmc,%d] pt_pmcval not cleared for pid=%d at "
951 "ri=%d", __LINE__, pp->pp_proc->p_pid, ri));
952 }
953 mtx_unlock_spin(pp->pp_tdslock);
954 }
955 #endif
956 }
957
958 /*
959 * Removes the association between a target process and a PMC.
960 */
961 static void
pmc_unlink_target_process(struct pmc * pm,struct pmc_process * pp)962 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
963 {
964 int ri;
965 struct proc *p;
966 struct pmc_target *ptgt;
967 struct pmc_thread *pt;
968
969 sx_assert(&pmc_sx, SX_XLOCKED);
970
971 KASSERT(pm != NULL && pp != NULL,
972 ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
973
974 KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
975 ("[pmc,%d] Illegal ref count %d on process record %p",
976 __LINE__, pp->pp_refcnt, (void *) pp));
977
978 ri = PMC_TO_ROWINDEX(pm);
979
980 PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
981 pm, ri, pp);
982
983 KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
984 ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
985 ri, pm, pp->pp_pmcs[ri].pp_pmc));
986
987 pp->pp_pmcs[ri].pp_pmc = NULL;
988 pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t)0;
989
990 /* Clear the per-thread values at this row index. */
991 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
992 mtx_lock_spin(pp->pp_tdslock);
993 LIST_FOREACH(pt, &pp->pp_tds, pt_next)
994 pt->pt_pmcs[ri].pt_pmcval = (pmc_value_t)0;
995 mtx_unlock_spin(pp->pp_tdslock);
996 }
997
998 /* Remove owner-specific flags */
999 if (pm->pm_owner->po_owner == pp->pp_proc) {
1000 pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
1001 pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
1002 }
1003
1004 pp->pp_refcnt--;
1005
1006 /* Remove the target process from the PMC structure */
1007 LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
1008 if (ptgt->pt_process == pp)
1009 break;
1010
1011 KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
1012 "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
1013
1014 LIST_REMOVE(ptgt, pt_next);
1015 free(ptgt, M_PMC);
1016
1017 /* if the PMC now lacks targets, send the owner a SIGIO */
1018 if (LIST_EMPTY(&pm->pm_targets)) {
1019 p = pm->pm_owner->po_owner;
1020 PROC_LOCK(p);
1021 kern_psignal(p, SIGIO);
1022 PROC_UNLOCK(p);
1023
1024 PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p, SIGIO);
1025 }
1026 }
1027
1028 /*
1029 * Check if PMC 'pm' may be attached to target process 't'.
1030 */
1031
1032 static int
pmc_can_attach(struct pmc * pm,struct proc * t)1033 pmc_can_attach(struct pmc *pm, struct proc *t)
1034 {
1035 struct proc *o; /* pmc owner */
1036 struct ucred *oc, *tc; /* owner, target credentials */
1037 int decline_attach, i;
1038
1039 /*
1040 * A PMC's owner can always attach that PMC to itself.
1041 */
1042
1043 if ((o = pm->pm_owner->po_owner) == t)
1044 return 0;
1045
1046 PROC_LOCK(o);
1047 oc = o->p_ucred;
1048 crhold(oc);
1049 PROC_UNLOCK(o);
1050
1051 PROC_LOCK(t);
1052 tc = t->p_ucred;
1053 crhold(tc);
1054 PROC_UNLOCK(t);
1055
1056 /*
1057 * The effective uid of the PMC owner should match at least one
1058 * of the {effective,real,saved} uids of the target process.
1059 */
1060
1061 decline_attach = oc->cr_uid != tc->cr_uid &&
1062 oc->cr_uid != tc->cr_svuid &&
1063 oc->cr_uid != tc->cr_ruid;
1064
1065 /*
1066 * Every one of the target's group ids, must be in the owner's
1067 * group list.
1068 */
1069 for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
1070 decline_attach = !groupmember(tc->cr_groups[i], oc);
1071
1072 /* check the read and saved gids too */
1073 if (decline_attach == 0)
1074 decline_attach = !groupmember(tc->cr_rgid, oc) ||
1075 !groupmember(tc->cr_svgid, oc);
1076
1077 crfree(tc);
1078 crfree(oc);
1079
1080 return !decline_attach;
1081 }
1082
1083 /*
1084 * Attach a process to a PMC.
1085 */
1086 static int
pmc_attach_one_process(struct proc * p,struct pmc * pm)1087 pmc_attach_one_process(struct proc *p, struct pmc *pm)
1088 {
1089 int ri, error;
1090 char *fullpath, *freepath;
1091 struct pmc_process *pp;
1092
1093 sx_assert(&pmc_sx, SX_XLOCKED);
1094
1095 PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
1096 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1097
1098 /*
1099 * Locate the process descriptor corresponding to process 'p',
1100 * allocating space as needed.
1101 *
1102 * Verify that rowindex 'pm_rowindex' is free in the process
1103 * descriptor.
1104 *
1105 * If not, allocate space for a descriptor and link the
1106 * process descriptor and PMC.
1107 */
1108 ri = PMC_TO_ROWINDEX(pm);
1109
1110 /* mark process as using HWPMCs */
1111 PROC_LOCK(p);
1112 p->p_flag |= P_HWPMC;
1113 PROC_UNLOCK(p);
1114
1115 if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL) {
1116 error = ENOMEM;
1117 goto fail;
1118 }
1119
1120 if (pp->pp_pmcs[ri].pp_pmc == pm) {/* already present at slot [ri] */
1121 error = EEXIST;
1122 goto fail;
1123 }
1124
1125 if (pp->pp_pmcs[ri].pp_pmc != NULL) {
1126 error = EBUSY;
1127 goto fail;
1128 }
1129
1130 pmc_link_target_process(pm, pp);
1131
1132 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1133 (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1134 pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1135
1136 pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1137
1138 /* issue an attach event to a configured log file */
1139 if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1140 if (p->p_flag & P_KPROC) {
1141 fullpath = kernelname;
1142 freepath = NULL;
1143 } else {
1144 pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1145 pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1146 }
1147 free(freepath, M_TEMP);
1148 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1149 pmc_log_process_mappings(pm->pm_owner, p);
1150 }
1151
1152 return (0);
1153 fail:
1154 PROC_LOCK(p);
1155 p->p_flag &= ~P_HWPMC;
1156 PROC_UNLOCK(p);
1157 return (error);
1158 }
1159
1160 /*
1161 * Attach a process and optionally its children
1162 */
1163 static int
pmc_attach_process(struct proc * p,struct pmc * pm)1164 pmc_attach_process(struct proc *p, struct pmc *pm)
1165 {
1166 int error;
1167 struct proc *top;
1168
1169 sx_assert(&pmc_sx, SX_XLOCKED);
1170
1171 PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1172 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1173
1174 /*
1175 * If this PMC successfully allowed a GETMSR operation
1176 * in the past, disallow further ATTACHes.
1177 */
1178 if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1179 return (EPERM);
1180
1181 if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1182 return (pmc_attach_one_process(p, pm));
1183
1184 /*
1185 * Traverse all child processes, attaching them to
1186 * this PMC.
1187 */
1188 sx_slock(&proctree_lock);
1189
1190 top = p;
1191 for (;;) {
1192 if ((error = pmc_attach_one_process(p, pm)) != 0)
1193 break;
1194 if (!LIST_EMPTY(&p->p_children))
1195 p = LIST_FIRST(&p->p_children);
1196 else for (;;) {
1197 if (p == top)
1198 goto done;
1199 if (LIST_NEXT(p, p_sibling)) {
1200 p = LIST_NEXT(p, p_sibling);
1201 break;
1202 }
1203 p = p->p_pptr;
1204 }
1205 }
1206
1207 if (error != 0)
1208 (void)pmc_detach_process(top, pm);
1209
1210 done:
1211 sx_sunlock(&proctree_lock);
1212 return (error);
1213 }
1214
1215 /*
1216 * Detach a process from a PMC. If there are no other PMCs tracking
1217 * this process, remove the process structure from its hash table. If
1218 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1219 */
1220 static int
pmc_detach_one_process(struct proc * p,struct pmc * pm,int flags)1221 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1222 {
1223 int ri;
1224 struct pmc_process *pp;
1225
1226 sx_assert(&pmc_sx, SX_XLOCKED);
1227
1228 KASSERT(pm != NULL,
1229 ("[pmc,%d] null pm pointer", __LINE__));
1230
1231 ri = PMC_TO_ROWINDEX(pm);
1232
1233 PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1234 pm, ri, p, p->p_pid, p->p_comm, flags);
1235
1236 if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1237 return (ESRCH);
1238
1239 if (pp->pp_pmcs[ri].pp_pmc != pm)
1240 return (EINVAL);
1241
1242 pmc_unlink_target_process(pm, pp);
1243
1244 /* Issue a detach entry if a log file is configured */
1245 if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1246 pmclog_process_pmcdetach(pm, p->p_pid);
1247
1248 /*
1249 * If there are no PMCs targeting this process, we remove its
1250 * descriptor from the target hash table and unset the P_HWPMC
1251 * flag in the struct proc.
1252 */
1253 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1254 ("[pmc,%d] Illegal refcnt %d for process struct %p",
1255 __LINE__, pp->pp_refcnt, pp));
1256
1257 if (pp->pp_refcnt != 0) /* still a target of some PMC */
1258 return (0);
1259
1260 pmc_remove_process_descriptor(pp);
1261
1262 if (flags & PMC_FLAG_REMOVE)
1263 pmc_destroy_process_descriptor(pp);
1264
1265 PROC_LOCK(p);
1266 p->p_flag &= ~P_HWPMC;
1267 PROC_UNLOCK(p);
1268
1269 return (0);
1270 }
1271
1272 /*
1273 * Detach a process and optionally its descendants from a PMC.
1274 */
1275 static int
pmc_detach_process(struct proc * p,struct pmc * pm)1276 pmc_detach_process(struct proc *p, struct pmc *pm)
1277 {
1278 struct proc *top;
1279
1280 sx_assert(&pmc_sx, SX_XLOCKED);
1281
1282 PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1283 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1284
1285 if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1286 return (pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE));
1287
1288 /*
1289 * Traverse all children, detaching them from this PMC. We
1290 * ignore errors since we could be detaching a PMC from a
1291 * partially attached proc tree.
1292 */
1293 sx_slock(&proctree_lock);
1294
1295 top = p;
1296 for (;;) {
1297 (void)pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1298
1299 if (!LIST_EMPTY(&p->p_children)) {
1300 p = LIST_FIRST(&p->p_children);
1301 } else {
1302 for (;;) {
1303 if (p == top)
1304 goto done;
1305 if (LIST_NEXT(p, p_sibling)) {
1306 p = LIST_NEXT(p, p_sibling);
1307 break;
1308 }
1309 p = p->p_pptr;
1310 }
1311 }
1312 }
1313 done:
1314 sx_sunlock(&proctree_lock);
1315 if (LIST_EMPTY(&pm->pm_targets))
1316 pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1317
1318 return (0);
1319 }
1320
1321 /*
1322 * Handle events after an exec() for a process:
1323 * - Inform log owners of the new exec() event
1324 * - Release any PMCs owned by the process before the exec()
1325 * - Detach PMCs from the target if required
1326 */
1327 static void
pmc_process_exec(struct thread * td,struct pmckern_procexec * pk)1328 pmc_process_exec(struct thread *td, struct pmckern_procexec *pk)
1329 {
1330 struct pmc *pm;
1331 struct pmc_owner *po;
1332 struct pmc_process *pp;
1333 struct proc *p;
1334 char *fullpath, *freepath;
1335 u_int ri;
1336 bool is_using_hwpmcs;
1337
1338 sx_assert(&pmc_sx, SX_XLOCKED);
1339
1340 p = td->td_proc;
1341 pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1342
1343 PMC_EPOCH_ENTER();
1344 /* Inform owners of SS mode PMCs of the exec event. */
1345 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
1346 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
1347 pmclog_process_procexec(po, PMC_ID_INVALID, p->p_pid,
1348 pk->pm_baseaddr, pk->pm_dynaddr, fullpath);
1349 }
1350 }
1351 PMC_EPOCH_EXIT();
1352
1353 PROC_LOCK(p);
1354 is_using_hwpmcs = (p->p_flag & P_HWPMC) != 0;
1355 PROC_UNLOCK(p);
1356
1357 if (!is_using_hwpmcs) {
1358 if (freepath != NULL)
1359 free(freepath, M_TEMP);
1360 return;
1361 }
1362
1363 /*
1364 * PMCs are not inherited across an exec(): remove any PMCs that this
1365 * process is the owner of.
1366 */
1367 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1368 pmc_remove_owner(po);
1369 pmc_destroy_owner_descriptor(po);
1370 }
1371
1372 /*
1373 * If the process being exec'ed is not the target of any PMC, we are
1374 * done.
1375 */
1376 if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1377 if (freepath != NULL)
1378 free(freepath, M_TEMP);
1379 return;
1380 }
1381
1382 /*
1383 * Log the exec event to all monitoring owners. Skip owners who have
1384 * already received the event because they had system sampling PMCs
1385 * active.
1386 */
1387 for (ri = 0; ri < md->pmd_npmc; ri++) {
1388 if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1389 continue;
1390
1391 po = pm->pm_owner;
1392 if (po->po_sscount == 0 &&
1393 (po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
1394 pmclog_process_procexec(po, pm->pm_id, p->p_pid,
1395 pk->pm_baseaddr, pk->pm_dynaddr, fullpath);
1396 }
1397 }
1398
1399 if (freepath != NULL)
1400 free(freepath, M_TEMP);
1401
1402 PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1403 p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1404
1405 if (pk->pm_credentialschanged == 0) /* no change */
1406 return;
1407
1408 /*
1409 * If the newly exec()'ed process has a different credential
1410 * than before, allow it to be the target of a PMC only if
1411 * the PMC's owner has sufficient privilege.
1412 */
1413 for (ri = 0; ri < md->pmd_npmc; ri++) {
1414 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1415 if (pmc_can_attach(pm, td->td_proc) != 0) {
1416 pmc_detach_one_process(td->td_proc, pm,
1417 PMC_FLAG_NONE);
1418 }
1419 }
1420 }
1421
1422 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= md->pmd_npmc,
1423 ("[pmc,%d] Illegal ref count %u on pp %p", __LINE__,
1424 pp->pp_refcnt, pp));
1425
1426 /*
1427 * If this process is no longer the target of any
1428 * PMCs, we can remove the process entry and free
1429 * up space.
1430 */
1431 if (pp->pp_refcnt == 0) {
1432 pmc_remove_process_descriptor(pp);
1433 pmc_destroy_process_descriptor(pp);
1434 }
1435 }
1436
1437 /*
1438 * Thread context switch IN.
1439 */
1440 static void
pmc_process_csw_in(struct thread * td)1441 pmc_process_csw_in(struct thread *td)
1442 {
1443 struct pmc *pm;
1444 struct pmc_classdep *pcd;
1445 struct pmc_cpu *pc;
1446 struct pmc_hw *phw __diagused;
1447 struct pmc_process *pp;
1448 struct pmc_thread *pt;
1449 struct proc *p;
1450 pmc_value_t newvalue;
1451 int cpu;
1452 u_int adjri, ri;
1453
1454 p = td->td_proc;
1455 pt = NULL;
1456 if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1457 return;
1458
1459 KASSERT(pp->pp_proc == td->td_proc,
1460 ("[pmc,%d] not my thread state", __LINE__));
1461
1462 critical_enter(); /* no preemption from this point */
1463
1464 cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1465
1466 PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1467 p->p_pid, p->p_comm, pp);
1468
1469 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1470 ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1471
1472 pc = pmc_pcpu[cpu];
1473 for (ri = 0; ri < md->pmd_npmc; ri++) {
1474 if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1475 continue;
1476
1477 KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1478 ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1479 __LINE__, PMC_TO_MODE(pm)));
1480 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1481 ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1482 __LINE__, PMC_TO_ROWINDEX(pm), ri));
1483
1484 /*
1485 * Only PMCs that are marked as 'RUNNING' need
1486 * be placed on hardware.
1487 */
1488 if (pm->pm_state != PMC_STATE_RUNNING)
1489 continue;
1490
1491 KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
1492 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
1493 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
1494
1495 /* increment PMC runcount */
1496 counter_u64_add(pm->pm_runcount, 1);
1497
1498 /* configure the HWPMC we are going to use. */
1499 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1500 (void)pcd->pcd_config_pmc(cpu, adjri, pm);
1501
1502 phw = pc->pc_hwpmcs[ri];
1503
1504 KASSERT(phw != NULL,
1505 ("[pmc,%d] null hw pointer", __LINE__));
1506
1507 KASSERT(phw->phw_pmc == pm,
1508 ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1509 phw->phw_pmc, pm));
1510
1511 /*
1512 * Write out saved value and start the PMC.
1513 *
1514 * Sampling PMCs use a per-thread value, while
1515 * counting mode PMCs use a per-pmc value that is
1516 * inherited across descendants.
1517 */
1518 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1519 if (pt == NULL)
1520 pt = pmc_find_thread_descriptor(pp, td,
1521 PMC_FLAG_NONE);
1522
1523 KASSERT(pt != NULL,
1524 ("[pmc,%d] No thread found for td=%p", __LINE__,
1525 td));
1526
1527 mtx_pool_lock_spin(pmc_mtxpool, pm);
1528
1529 /*
1530 * If we have a thread descriptor, use the per-thread
1531 * counter in the descriptor. If not, we will use
1532 * a per-process counter.
1533 *
1534 * TODO: Remove the per-process "safety net" once
1535 * we have thoroughly tested that we don't hit the
1536 * above assert.
1537 */
1538 if (pt != NULL) {
1539 if (pt->pt_pmcs[ri].pt_pmcval > 0)
1540 newvalue = pt->pt_pmcs[ri].pt_pmcval;
1541 else
1542 newvalue = pm->pm_sc.pm_reloadcount;
1543 } else {
1544 /*
1545 * Use the saved value calculated after the most
1546 * recent time a thread using the shared counter
1547 * switched out. Reset the saved count in case
1548 * another thread from this process switches in
1549 * before any threads switch out.
1550 */
1551 newvalue = pp->pp_pmcs[ri].pp_pmcval;
1552 pp->pp_pmcs[ri].pp_pmcval =
1553 pm->pm_sc.pm_reloadcount;
1554 }
1555 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1556 KASSERT(newvalue > 0 && newvalue <=
1557 pm->pm_sc.pm_reloadcount,
1558 ("[pmc,%d] pmcval outside of expected range cpu=%d "
1559 "ri=%d pmcval=%jx pm_reloadcount=%jx", __LINE__,
1560 cpu, ri, newvalue, pm->pm_sc.pm_reloadcount));
1561 } else {
1562 KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1563 ("[pmc,%d] illegal mode=%d", __LINE__,
1564 PMC_TO_MODE(pm)));
1565 mtx_pool_lock_spin(pmc_mtxpool, pm);
1566 newvalue = PMC_PCPU_SAVED(cpu, ri) =
1567 pm->pm_gv.pm_savedvalue;
1568 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1569 }
1570
1571 PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1572
1573 (void)pcd->pcd_write_pmc(cpu, adjri, pm, newvalue);
1574
1575 /* If a sampling mode PMC, reset stalled state. */
1576 if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1577 pm->pm_pcpu_state[cpu].pps_stalled = 0;
1578
1579 /* Indicate that we desire this to run. */
1580 pm->pm_pcpu_state[cpu].pps_cpustate = 1;
1581
1582 /* Start the PMC. */
1583 (void)pcd->pcd_start_pmc(cpu, adjri, pm);
1584 }
1585
1586 /*
1587 * Perform any other architecture/cpu dependent thread
1588 * switch-in actions.
1589 */
1590 (void)(*md->pmd_switch_in)(pc, pp);
1591
1592 critical_exit();
1593 }
1594
1595 /*
1596 * Thread context switch OUT.
1597 */
1598 static void
pmc_process_csw_out(struct thread * td)1599 pmc_process_csw_out(struct thread *td)
1600 {
1601 struct pmc *pm;
1602 struct pmc_classdep *pcd;
1603 struct pmc_cpu *pc;
1604 struct pmc_process *pp;
1605 struct pmc_thread *pt = NULL;
1606 struct proc *p;
1607 pmc_value_t newvalue;
1608 int64_t tmp;
1609 enum pmc_mode mode;
1610 int cpu;
1611 u_int adjri, ri;
1612
1613 /*
1614 * Locate our process descriptor; this may be NULL if
1615 * this process is exiting and we have already removed
1616 * the process from the target process table.
1617 *
1618 * Note that due to kernel preemption, multiple
1619 * context switches may happen while the process is
1620 * exiting.
1621 *
1622 * Note also that if the target process cannot be
1623 * found we still need to deconfigure any PMCs that
1624 * are currently running on hardware.
1625 */
1626 p = td->td_proc;
1627 pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1628
1629 critical_enter();
1630
1631 cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1632
1633 PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1634 p->p_pid, p->p_comm, pp);
1635
1636 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1637 ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1638
1639 pc = pmc_pcpu[cpu];
1640
1641 /*
1642 * When a PMC gets unlinked from a target PMC, it will
1643 * be removed from the target's pp_pmc[] array.
1644 *
1645 * However, on a MP system, the target could have been
1646 * executing on another CPU at the time of the unlink.
1647 * So, at context switch OUT time, we need to look at
1648 * the hardware to determine if a PMC is scheduled on
1649 * it.
1650 */
1651 for (ri = 0; ri < md->pmd_npmc; ri++) {
1652 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1653 pm = NULL;
1654 (void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
1655
1656 if (pm == NULL) /* nothing at this row index */
1657 continue;
1658
1659 mode = PMC_TO_MODE(pm);
1660 if (!PMC_IS_VIRTUAL_MODE(mode))
1661 continue; /* not a process virtual PMC */
1662
1663 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1664 ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1665 __LINE__, PMC_TO_ROWINDEX(pm), ri));
1666
1667 /*
1668 * Change desired state, and then stop if not stalled.
1669 * This two-step dance should avoid race conditions where
1670 * an interrupt re-enables the PMC after this code has
1671 * already checked the pm_stalled flag.
1672 */
1673 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
1674 if (pm->pm_pcpu_state[cpu].pps_stalled == 0)
1675 (void)pcd->pcd_stop_pmc(cpu, adjri, pm);
1676
1677 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
1678 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
1679 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
1680
1681 /* reduce this PMC's runcount */
1682 counter_u64_add(pm->pm_runcount, -1);
1683
1684 /*
1685 * If this PMC is associated with this process,
1686 * save the reading.
1687 */
1688 if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
1689 pp->pp_pmcs[ri].pp_pmc != NULL) {
1690 KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1691 ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1692 pm, ri, pp->pp_pmcs[ri].pp_pmc));
1693 KASSERT(pp->pp_refcnt > 0,
1694 ("[pmc,%d] pp refcnt = %d", __LINE__,
1695 pp->pp_refcnt));
1696
1697 (void)pcd->pcd_read_pmc(cpu, adjri, pm, &newvalue);
1698
1699 if (mode == PMC_MODE_TS) {
1700 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d val=%jd (samp)",
1701 cpu, ri, newvalue);
1702
1703 if (pt == NULL)
1704 pt = pmc_find_thread_descriptor(pp, td,
1705 PMC_FLAG_NONE);
1706
1707 KASSERT(pt != NULL,
1708 ("[pmc,%d] No thread found for td=%p",
1709 __LINE__, td));
1710
1711 mtx_pool_lock_spin(pmc_mtxpool, pm);
1712
1713 /*
1714 * If we have a thread descriptor, save the
1715 * per-thread counter in the descriptor. If not,
1716 * we will update the per-process counter.
1717 *
1718 * TODO: Remove the per-process "safety net"
1719 * once we have thoroughly tested that we
1720 * don't hit the above assert.
1721 */
1722 if (pt != NULL) {
1723 pt->pt_pmcs[ri].pt_pmcval = newvalue;
1724 } else {
1725 /*
1726 * For sampling process-virtual PMCs,
1727 * newvalue is the number of events to
1728 * be seen until the next sampling
1729 * interrupt. We can just add the events
1730 * left from this invocation to the
1731 * counter, then adjust in case we
1732 * overflow our range.
1733 *
1734 * (Recall that we reload the counter
1735 * every time we use it.)
1736 */
1737 pp->pp_pmcs[ri].pp_pmcval += newvalue;
1738 if (pp->pp_pmcs[ri].pp_pmcval >
1739 pm->pm_sc.pm_reloadcount) {
1740 pp->pp_pmcs[ri].pp_pmcval -=
1741 pm->pm_sc.pm_reloadcount;
1742 }
1743 }
1744 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1745 } else {
1746 tmp = newvalue - PMC_PCPU_SAVED(cpu, ri);
1747
1748 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1749 cpu, ri, tmp);
1750
1751 /*
1752 * For counting process-virtual PMCs,
1753 * we expect the count to be
1754 * increasing monotonically, modulo a 64
1755 * bit wraparound.
1756 */
1757 KASSERT(tmp >= 0,
1758 ("[pmc,%d] negative increment cpu=%d "
1759 "ri=%d newvalue=%jx saved=%jx "
1760 "incr=%jx", __LINE__, cpu, ri,
1761 newvalue, PMC_PCPU_SAVED(cpu, ri), tmp));
1762
1763 mtx_pool_lock_spin(pmc_mtxpool, pm);
1764 pm->pm_gv.pm_savedvalue += tmp;
1765 pp->pp_pmcs[ri].pp_pmcval += tmp;
1766 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1767
1768 if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1769 pmclog_process_proccsw(pm, pp, tmp, td);
1770 }
1771 }
1772
1773 /* Mark hardware as free. */
1774 (void)pcd->pcd_config_pmc(cpu, adjri, NULL);
1775 }
1776
1777 /*
1778 * Perform any other architecture/cpu dependent thread
1779 * switch out functions.
1780 */
1781 (void)(*md->pmd_switch_out)(pc, pp);
1782
1783 critical_exit();
1784 }
1785
1786 /*
1787 * A new thread for a process.
1788 */
1789 static void
pmc_process_thread_add(struct thread * td)1790 pmc_process_thread_add(struct thread *td)
1791 {
1792 struct pmc_process *pmc;
1793
1794 pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1795 if (pmc != NULL)
1796 pmc_find_thread_descriptor(pmc, td, PMC_FLAG_ALLOCATE);
1797 }
1798
1799 /*
1800 * A thread delete for a process.
1801 */
1802 static void
pmc_process_thread_delete(struct thread * td)1803 pmc_process_thread_delete(struct thread *td)
1804 {
1805 struct pmc_process *pmc;
1806
1807 pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1808 if (pmc != NULL)
1809 pmc_thread_descriptor_pool_free(pmc_find_thread_descriptor(pmc,
1810 td, PMC_FLAG_REMOVE));
1811 }
1812
1813 /*
1814 * A userret() call for a thread.
1815 */
1816 static void
pmc_process_thread_userret(struct thread * td)1817 pmc_process_thread_userret(struct thread *td)
1818 {
1819 sched_pin();
1820 pmc_capture_user_callchain(curcpu, PMC_UR, td->td_frame);
1821 sched_unpin();
1822 }
1823
1824 /*
1825 * A mapping change for a process.
1826 */
1827 static void
pmc_process_mmap(struct thread * td,struct pmckern_map_in * pkm)1828 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1829 {
1830 const struct pmc *pm;
1831 const struct pmc_process *pp;
1832 struct pmc_owner *po;
1833 char *fullpath, *freepath;
1834 pid_t pid;
1835 int ri;
1836
1837 MPASS(!in_epoch(global_epoch_preempt));
1838
1839 freepath = fullpath = NULL;
1840 pmc_getfilename((struct vnode *)pkm->pm_file, &fullpath, &freepath);
1841
1842 pid = td->td_proc->p_pid;
1843
1844 PMC_EPOCH_ENTER();
1845 /* Inform owners of all system-wide sampling PMCs. */
1846 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
1847 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1848 pmclog_process_map_in(po, pid, pkm->pm_address,
1849 fullpath);
1850 }
1851
1852 if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1853 goto done;
1854
1855 /*
1856 * Inform sampling PMC owners tracking this process.
1857 */
1858 for (ri = 0; ri < md->pmd_npmc; ri++) {
1859 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1860 PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
1861 pmclog_process_map_in(pm->pm_owner,
1862 pid, pkm->pm_address, fullpath);
1863 }
1864 }
1865
1866 done:
1867 if (freepath != NULL)
1868 free(freepath, M_TEMP);
1869 PMC_EPOCH_EXIT();
1870 }
1871
1872 /*
1873 * Log an munmap request.
1874 */
1875 static void
pmc_process_munmap(struct thread * td,struct pmckern_map_out * pkm)1876 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1877 {
1878 const struct pmc *pm;
1879 const struct pmc_process *pp;
1880 struct pmc_owner *po;
1881 pid_t pid;
1882 int ri;
1883
1884 pid = td->td_proc->p_pid;
1885
1886 PMC_EPOCH_ENTER();
1887 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
1888 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1889 pmclog_process_map_out(po, pid, pkm->pm_address,
1890 pkm->pm_address + pkm->pm_size);
1891 }
1892 PMC_EPOCH_EXIT();
1893
1894 if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1895 return;
1896
1897 for (ri = 0; ri < md->pmd_npmc; ri++) {
1898 pm = pp->pp_pmcs[ri].pp_pmc;
1899 if (pm != NULL && PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
1900 pmclog_process_map_out(pm->pm_owner, pid,
1901 pkm->pm_address, pkm->pm_address + pkm->pm_size);
1902 }
1903 }
1904 }
1905
1906 /*
1907 * Log mapping information about the kernel.
1908 */
1909 static void
pmc_log_kernel_mappings(struct pmc * pm)1910 pmc_log_kernel_mappings(struct pmc *pm)
1911 {
1912 struct pmc_owner *po;
1913 struct pmckern_map_in *km, *kmbase;
1914
1915 MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
1916 KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1917 ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1918 __LINE__, (void *) pm));
1919
1920 po = pm->pm_owner;
1921 if ((po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE) != 0)
1922 return;
1923
1924 if (PMC_TO_MODE(pm) == PMC_MODE_SS)
1925 pmc_process_allproc(pm);
1926
1927 /*
1928 * Log the current set of kernel modules.
1929 */
1930 kmbase = linker_hwpmc_list_objects();
1931 for (km = kmbase; km->pm_file != NULL; km++) {
1932 PMCDBG2(LOG,REG,1,"%s %p", (char *)km->pm_file,
1933 (void *)km->pm_address);
1934 pmclog_process_map_in(po, (pid_t)-1, km->pm_address,
1935 km->pm_file);
1936 }
1937 free(kmbase, M_LINKER);
1938
1939 po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1940 }
1941
1942 /*
1943 * Log the mappings for a single process.
1944 */
1945 static void
pmc_log_process_mappings(struct pmc_owner * po,struct proc * p)1946 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1947 {
1948 vm_map_t map;
1949 vm_map_entry_t entry;
1950 vm_object_t obj, lobj, tobj;
1951 vm_offset_t last_end;
1952 vm_offset_t start_addr;
1953 struct vnode *vp, *last_vp;
1954 struct vmspace *vm;
1955 char *fullpath, *freepath;
1956 u_int last_timestamp;
1957
1958 last_vp = NULL;
1959 last_end = (vm_offset_t)0;
1960 fullpath = freepath = NULL;
1961
1962 if ((vm = vmspace_acquire_ref(p)) == NULL)
1963 return;
1964
1965 map = &vm->vm_map;
1966 vm_map_lock_read(map);
1967 VM_MAP_ENTRY_FOREACH(entry, map) {
1968 if (entry == NULL) {
1969 PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1970 "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1971 break;
1972 }
1973
1974 /*
1975 * We only care about executable map entries.
1976 */
1977 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
1978 (entry->protection & VM_PROT_EXECUTE) == 0 ||
1979 entry->object.vm_object == NULL) {
1980 continue;
1981 }
1982
1983 obj = entry->object.vm_object;
1984 VM_OBJECT_RLOCK(obj);
1985
1986 /*
1987 * Walk the backing_object list to find the base (non-shadowed)
1988 * vm_object.
1989 */
1990 for (lobj = tobj = obj; tobj != NULL;
1991 tobj = tobj->backing_object) {
1992 if (tobj != obj)
1993 VM_OBJECT_RLOCK(tobj);
1994 if (lobj != obj)
1995 VM_OBJECT_RUNLOCK(lobj);
1996 lobj = tobj;
1997 }
1998
1999 /*
2000 * At this point lobj is the base vm_object and it is locked.
2001 */
2002 if (lobj == NULL) {
2003 PMCDBG3(LOG,OPS,2,
2004 "hwpmc: lobj unexpectedly NULL! pid=%d "
2005 "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
2006 VM_OBJECT_RUNLOCK(obj);
2007 continue;
2008 }
2009
2010 vp = vm_object_vnode(lobj);
2011 if (vp == NULL) {
2012 if (lobj != obj)
2013 VM_OBJECT_RUNLOCK(lobj);
2014 VM_OBJECT_RUNLOCK(obj);
2015 continue;
2016 }
2017
2018 /*
2019 * Skip contiguous regions that point to the same vnode, so we
2020 * don't emit redundant MAP-IN directives.
2021 */
2022 if (entry->start == last_end && vp == last_vp) {
2023 last_end = entry->end;
2024 if (lobj != obj)
2025 VM_OBJECT_RUNLOCK(lobj);
2026 VM_OBJECT_RUNLOCK(obj);
2027 continue;
2028 }
2029
2030 /*
2031 * We don't want to keep the proc's vm_map or this vm_object
2032 * locked while we walk the pathname, since vn_fullpath() can
2033 * sleep. However, if we drop the lock, it's possible for
2034 * concurrent activity to modify the vm_map list. To protect
2035 * against this, we save the vm_map timestamp before we release
2036 * the lock, and check it after we reacquire the lock below.
2037 */
2038 start_addr = entry->start;
2039 last_end = entry->end;
2040 last_timestamp = map->timestamp;
2041 vm_map_unlock_read(map);
2042
2043 vref(vp);
2044 if (lobj != obj)
2045 VM_OBJECT_RUNLOCK(lobj);
2046 VM_OBJECT_RUNLOCK(obj);
2047
2048 freepath = NULL;
2049 pmc_getfilename(vp, &fullpath, &freepath);
2050 last_vp = vp;
2051
2052 vrele(vp);
2053
2054 vp = NULL;
2055 pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
2056 if (freepath != NULL)
2057 free(freepath, M_TEMP);
2058
2059 vm_map_lock_read(map);
2060
2061 /*
2062 * If our saved timestamp doesn't match, this means
2063 * that the vm_map was modified out from under us and
2064 * we can't trust our current "entry" pointer. Do a
2065 * new lookup for this entry. If there is no entry
2066 * for this address range, vm_map_lookup_entry() will
2067 * return the previous one, so we always want to go to
2068 * the next entry on the next loop iteration.
2069 *
2070 * There is an edge condition here that can occur if
2071 * there is no entry at or before this address. In
2072 * this situation, vm_map_lookup_entry returns
2073 * &map->header, which would cause our loop to abort
2074 * without processing the rest of the map. However,
2075 * in practice this will never happen for process
2076 * vm_map. This is because the executable's text
2077 * segment is the first mapping in the proc's address
2078 * space, and this mapping is never removed until the
2079 * process exits, so there will always be a non-header
2080 * entry at or before the requested address for
2081 * vm_map_lookup_entry to return.
2082 */
2083 if (map->timestamp != last_timestamp)
2084 vm_map_lookup_entry(map, last_end - 1, &entry);
2085 }
2086
2087 vm_map_unlock_read(map);
2088 vmspace_free(vm);
2089 return;
2090 }
2091
2092 /*
2093 * Log mappings for all processes in the system.
2094 */
2095 static void
pmc_log_all_process_mappings(struct pmc_owner * po)2096 pmc_log_all_process_mappings(struct pmc_owner *po)
2097 {
2098 struct proc *p, *top;
2099
2100 sx_assert(&pmc_sx, SX_XLOCKED);
2101
2102 if ((p = pfind(1)) == NULL)
2103 panic("[pmc,%d] Cannot find init", __LINE__);
2104
2105 PROC_UNLOCK(p);
2106
2107 sx_slock(&proctree_lock);
2108
2109 top = p;
2110 for (;;) {
2111 pmc_log_process_mappings(po, p);
2112 if (!LIST_EMPTY(&p->p_children))
2113 p = LIST_FIRST(&p->p_children);
2114 else for (;;) {
2115 if (p == top)
2116 goto done;
2117 if (LIST_NEXT(p, p_sibling)) {
2118 p = LIST_NEXT(p, p_sibling);
2119 break;
2120 }
2121 p = p->p_pptr;
2122 }
2123 }
2124 done:
2125 sx_sunlock(&proctree_lock);
2126 }
2127
2128 #ifdef HWPMC_DEBUG
2129 const char *pmc_hooknames[] = {
2130 /* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
2131 "",
2132 "EXEC",
2133 "CSW-IN",
2134 "CSW-OUT",
2135 "SAMPLE",
2136 "UNUSED1",
2137 "UNUSED2",
2138 "MMAP",
2139 "MUNMAP",
2140 "CALLCHAIN-NMI",
2141 "CALLCHAIN-SOFT",
2142 "SOFTSAMPLING",
2143 "THR-CREATE",
2144 "THR-EXIT",
2145 "THR-USERRET",
2146 "THR-CREATE-LOG",
2147 "THR-EXIT-LOG",
2148 "PROC-CREATE-LOG"
2149 };
2150 #endif
2151
2152 /*
2153 * The 'hook' invoked from the kernel proper
2154 */
2155 static int
pmc_hook_handler(struct thread * td,int function,void * arg)2156 pmc_hook_handler(struct thread *td, int function, void *arg)
2157 {
2158 int cpu;
2159
2160 PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
2161 pmc_hooknames[function], arg);
2162
2163 switch (function) {
2164 case PMC_FN_PROCESS_EXEC:
2165 pmc_process_exec(td, (struct pmckern_procexec *)arg);
2166 break;
2167
2168 case PMC_FN_CSW_IN:
2169 pmc_process_csw_in(td);
2170 break;
2171
2172 case PMC_FN_CSW_OUT:
2173 pmc_process_csw_out(td);
2174 break;
2175
2176 /*
2177 * Process accumulated PC samples.
2178 *
2179 * This function is expected to be called by hardclock() for
2180 * each CPU that has accumulated PC samples.
2181 *
2182 * This function is to be executed on the CPU whose samples
2183 * are being processed.
2184 */
2185 case PMC_FN_DO_SAMPLES:
2186 /*
2187 * Clear the cpu specific bit in the CPU mask before
2188 * do the rest of the processing. If the NMI handler
2189 * gets invoked after the "atomic_clear_int()" call
2190 * below but before "pmc_process_samples()" gets
2191 * around to processing the interrupt, then we will
2192 * come back here at the next hardclock() tick (and
2193 * may find nothing to do if "pmc_process_samples()"
2194 * had already processed the interrupt). We don't
2195 * lose the interrupt sample.
2196 */
2197 DPCPU_SET(pmc_sampled, 0);
2198 cpu = PCPU_GET(cpuid);
2199 pmc_process_samples(cpu, PMC_HR);
2200 pmc_process_samples(cpu, PMC_SR);
2201 pmc_process_samples(cpu, PMC_UR);
2202 break;
2203
2204 case PMC_FN_MMAP:
2205 pmc_process_mmap(td, (struct pmckern_map_in *)arg);
2206 break;
2207
2208 case PMC_FN_MUNMAP:
2209 MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
2210 pmc_process_munmap(td, (struct pmckern_map_out *)arg);
2211 break;
2212
2213 case PMC_FN_PROC_CREATE_LOG:
2214 pmc_process_proccreate((struct proc *)arg);
2215 break;
2216
2217 case PMC_FN_USER_CALLCHAIN:
2218 /*
2219 * Record a call chain.
2220 */
2221 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2222 __LINE__));
2223
2224 pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2225 (struct trapframe *)arg);
2226
2227 KASSERT(td->td_pinned == 1,
2228 ("[pmc,%d] invalid td_pinned value", __LINE__));
2229 sched_unpin(); /* Can migrate safely now. */
2230
2231 td->td_pflags &= ~TDP_CALLCHAIN;
2232 break;
2233
2234 case PMC_FN_USER_CALLCHAIN_SOFT:
2235 /*
2236 * Record a call chain.
2237 */
2238 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2239 __LINE__));
2240
2241 cpu = PCPU_GET(cpuid);
2242 pmc_capture_user_callchain(cpu, PMC_SR,
2243 (struct trapframe *) arg);
2244
2245 KASSERT(td->td_pinned == 1,
2246 ("[pmc,%d] invalid td_pinned value", __LINE__));
2247
2248 sched_unpin(); /* Can migrate safely now. */
2249
2250 td->td_pflags &= ~TDP_CALLCHAIN;
2251 break;
2252
2253 case PMC_FN_SOFT_SAMPLING:
2254 /*
2255 * Call soft PMC sampling intr.
2256 */
2257 pmc_soft_intr((struct pmckern_soft *)arg);
2258 break;
2259
2260 case PMC_FN_THR_CREATE:
2261 pmc_process_thread_add(td);
2262 pmc_process_threadcreate(td);
2263 break;
2264
2265 case PMC_FN_THR_CREATE_LOG:
2266 pmc_process_threadcreate(td);
2267 break;
2268
2269 case PMC_FN_THR_EXIT:
2270 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2271 __LINE__));
2272 pmc_process_thread_delete(td);
2273 pmc_process_threadexit(td);
2274 break;
2275 case PMC_FN_THR_EXIT_LOG:
2276 pmc_process_threadexit(td);
2277 break;
2278 case PMC_FN_THR_USERRET:
2279 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2280 __LINE__));
2281 pmc_process_thread_userret(td);
2282 break;
2283 default:
2284 #ifdef HWPMC_DEBUG
2285 KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2286 #endif
2287 break;
2288 }
2289
2290 return (0);
2291 }
2292
2293 /*
2294 * Allocate a 'struct pmc_owner' descriptor in the owner hash table.
2295 */
2296 static struct pmc_owner *
pmc_allocate_owner_descriptor(struct proc * p)2297 pmc_allocate_owner_descriptor(struct proc *p)
2298 {
2299 struct pmc_owner *po;
2300 struct pmc_ownerhash *poh;
2301 uint32_t hindex;
2302
2303 hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2304 poh = &pmc_ownerhash[hindex];
2305
2306 /* Allocate space for N pointers and one descriptor struct. */
2307 po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK | M_ZERO);
2308 po->po_owner = p;
2309 LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2310
2311 TAILQ_INIT(&po->po_logbuffers);
2312 mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2313
2314 PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2315 p, p->p_pid, p->p_comm, po);
2316
2317 return (po);
2318 }
2319
2320 static void
pmc_destroy_owner_descriptor(struct pmc_owner * po)2321 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2322 {
2323
2324 PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2325 po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2326
2327 mtx_destroy(&po->po_mtx);
2328 free(po, M_PMC);
2329 }
2330
2331 /*
2332 * Allocate a thread descriptor from the free pool.
2333 *
2334 * NOTE: This *can* return NULL.
2335 */
2336 static struct pmc_thread *
pmc_thread_descriptor_pool_alloc(void)2337 pmc_thread_descriptor_pool_alloc(void)
2338 {
2339 struct pmc_thread *pt;
2340
2341 mtx_lock_spin(&pmc_threadfreelist_mtx);
2342 if ((pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2343 LIST_REMOVE(pt, pt_next);
2344 pmc_threadfreelist_entries--;
2345 }
2346 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2347
2348 return (pt);
2349 }
2350
2351 /*
2352 * Add a thread descriptor to the free pool. We use this instead of free()
2353 * to maintain a cache of free entries. Additionally, we can safely call
2354 * this function when we cannot call free(), such as in a critical section.
2355 */
2356 static void
pmc_thread_descriptor_pool_free(struct pmc_thread * pt)2357 pmc_thread_descriptor_pool_free(struct pmc_thread *pt)
2358 {
2359
2360 if (pt == NULL)
2361 return;
2362
2363 memset(pt, 0, THREADENTRY_SIZE);
2364 mtx_lock_spin(&pmc_threadfreelist_mtx);
2365 LIST_INSERT_HEAD(&pmc_threadfreelist, pt, pt_next);
2366 pmc_threadfreelist_entries++;
2367 if (pmc_threadfreelist_entries > pmc_threadfreelist_max)
2368 taskqueue_enqueue(taskqueue_fast, &free_task);
2369 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2370 }
2371
2372 /*
2373 * An asynchronous task to manage the free list.
2374 */
2375 static void
pmc_thread_descriptor_pool_free_task(void * arg __unused,int pending __unused)2376 pmc_thread_descriptor_pool_free_task(void *arg __unused, int pending __unused)
2377 {
2378 struct pmc_thread *pt;
2379 LIST_HEAD(, pmc_thread) tmplist;
2380 int delta;
2381
2382 LIST_INIT(&tmplist);
2383
2384 /* Determine what changes, if any, we need to make. */
2385 mtx_lock_spin(&pmc_threadfreelist_mtx);
2386 delta = pmc_threadfreelist_entries - pmc_threadfreelist_max;
2387 while (delta > 0 && (pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2388 delta--;
2389 pmc_threadfreelist_entries--;
2390 LIST_REMOVE(pt, pt_next);
2391 LIST_INSERT_HEAD(&tmplist, pt, pt_next);
2392 }
2393 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2394
2395 /* If there are entries to free, free them. */
2396 while (!LIST_EMPTY(&tmplist)) {
2397 pt = LIST_FIRST(&tmplist);
2398 LIST_REMOVE(pt, pt_next);
2399 free(pt, M_PMC);
2400 }
2401 }
2402
2403 /*
2404 * Drain the thread free pool, freeing all allocations.
2405 */
2406 static void
pmc_thread_descriptor_pool_drain(void)2407 pmc_thread_descriptor_pool_drain(void)
2408 {
2409 struct pmc_thread *pt, *next;
2410
2411 LIST_FOREACH_SAFE(pt, &pmc_threadfreelist, pt_next, next) {
2412 LIST_REMOVE(pt, pt_next);
2413 free(pt, M_PMC);
2414 }
2415 }
2416
2417 /*
2418 * find the descriptor corresponding to thread 'td', adding or removing it
2419 * as specified by 'mode'.
2420 *
2421 * Note that this supports additional mode flags in addition to those
2422 * supported by pmc_find_process_descriptor():
2423 * PMC_FLAG_NOWAIT: Causes the function to not wait for mallocs.
2424 * This makes it safe to call while holding certain other locks.
2425 */
2426 static struct pmc_thread *
pmc_find_thread_descriptor(struct pmc_process * pp,struct thread * td,uint32_t mode)2427 pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td,
2428 uint32_t mode)
2429 {
2430 struct pmc_thread *pt = NULL, *ptnew = NULL;
2431 int wait_flag;
2432
2433 KASSERT(td != NULL, ("[pmc,%d] called to add NULL td", __LINE__));
2434
2435 /*
2436 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case prior to
2437 * acquiring the lock.
2438 */
2439 if ((mode & PMC_FLAG_ALLOCATE) != 0) {
2440 if ((ptnew = pmc_thread_descriptor_pool_alloc()) == NULL) {
2441 wait_flag = M_WAITOK;
2442 if ((mode & PMC_FLAG_NOWAIT) != 0 ||
2443 in_epoch(global_epoch_preempt))
2444 wait_flag = M_NOWAIT;
2445
2446 ptnew = malloc(THREADENTRY_SIZE, M_PMC,
2447 wait_flag | M_ZERO);
2448 }
2449 }
2450
2451 mtx_lock_spin(pp->pp_tdslock);
2452 LIST_FOREACH(pt, &pp->pp_tds, pt_next) {
2453 if (pt->pt_td == td)
2454 break;
2455 }
2456
2457 if ((mode & PMC_FLAG_REMOVE) != 0 && pt != NULL)
2458 LIST_REMOVE(pt, pt_next);
2459
2460 if ((mode & PMC_FLAG_ALLOCATE) != 0 && pt == NULL && ptnew != NULL) {
2461 pt = ptnew;
2462 ptnew = NULL;
2463 pt->pt_td = td;
2464 LIST_INSERT_HEAD(&pp->pp_tds, pt, pt_next);
2465 }
2466
2467 mtx_unlock_spin(pp->pp_tdslock);
2468
2469 if (ptnew != NULL) {
2470 free(ptnew, M_PMC);
2471 }
2472
2473 return (pt);
2474 }
2475
2476 /*
2477 * Try to add thread descriptors for each thread in a process.
2478 */
2479 static void
pmc_add_thread_descriptors_from_proc(struct proc * p,struct pmc_process * pp)2480 pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp)
2481 {
2482 struct pmc_thread **tdlist;
2483 struct thread *curtd;
2484 int i, tdcnt, tdlistsz;
2485
2486 KASSERT(!PROC_LOCKED(p), ("[pmc,%d] proc unexpectedly locked",
2487 __LINE__));
2488 tdcnt = 32;
2489 restart:
2490 tdlistsz = roundup2(tdcnt, 32);
2491
2492 tdcnt = 0;
2493 tdlist = malloc(sizeof(struct pmc_thread *) * tdlistsz, M_TEMP,
2494 M_WAITOK);
2495
2496 PROC_LOCK(p);
2497 FOREACH_THREAD_IN_PROC(p, curtd)
2498 tdcnt++;
2499 if (tdcnt >= tdlistsz) {
2500 PROC_UNLOCK(p);
2501 free(tdlist, M_TEMP);
2502 goto restart;
2503 }
2504
2505 /*
2506 * Try to add each thread to the list without sleeping. If unable,
2507 * add to a queue to retry after dropping the process lock.
2508 */
2509 tdcnt = 0;
2510 FOREACH_THREAD_IN_PROC(p, curtd) {
2511 tdlist[tdcnt] = pmc_find_thread_descriptor(pp, curtd,
2512 PMC_FLAG_ALLOCATE | PMC_FLAG_NOWAIT);
2513 if (tdlist[tdcnt] == NULL) {
2514 PROC_UNLOCK(p);
2515 for (i = 0; i <= tdcnt; i++)
2516 pmc_thread_descriptor_pool_free(tdlist[i]);
2517 free(tdlist, M_TEMP);
2518 goto restart;
2519 }
2520 tdcnt++;
2521 }
2522 PROC_UNLOCK(p);
2523 free(tdlist, M_TEMP);
2524 }
2525
2526 /*
2527 * Find the descriptor corresponding to process 'p', adding or removing it
2528 * as specified by 'mode'.
2529 */
2530 static struct pmc_process *
pmc_find_process_descriptor(struct proc * p,uint32_t mode)2531 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2532 {
2533 struct pmc_process *pp, *ppnew;
2534 struct pmc_processhash *pph;
2535 uint32_t hindex;
2536
2537 hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2538 pph = &pmc_processhash[hindex];
2539
2540 ppnew = NULL;
2541
2542 /*
2543 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case since we
2544 * cannot call malloc(9) once we hold a spin lock.
2545 */
2546 if ((mode & PMC_FLAG_ALLOCATE) != 0)
2547 ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2548 sizeof(struct pmc_targetstate), M_PMC, M_WAITOK | M_ZERO);
2549
2550 mtx_lock_spin(&pmc_processhash_mtx);
2551 LIST_FOREACH(pp, pph, pp_next) {
2552 if (pp->pp_proc == p)
2553 break;
2554 }
2555
2556 if ((mode & PMC_FLAG_REMOVE) != 0 && pp != NULL)
2557 LIST_REMOVE(pp, pp_next);
2558
2559 if ((mode & PMC_FLAG_ALLOCATE) != 0 && pp == NULL && ppnew != NULL) {
2560 ppnew->pp_proc = p;
2561 LIST_INIT(&ppnew->pp_tds);
2562 ppnew->pp_tdslock = mtx_pool_find(pmc_mtxpool, ppnew);
2563 LIST_INSERT_HEAD(pph, ppnew, pp_next);
2564 mtx_unlock_spin(&pmc_processhash_mtx);
2565 pp = ppnew;
2566 ppnew = NULL;
2567
2568 /* Add thread descriptors for this process' current threads. */
2569 pmc_add_thread_descriptors_from_proc(p, pp);
2570 } else
2571 mtx_unlock_spin(&pmc_processhash_mtx);
2572
2573 if (ppnew != NULL)
2574 free(ppnew, M_PMC);
2575 return (pp);
2576 }
2577
2578 /*
2579 * Remove a process descriptor from the process hash table.
2580 */
2581 static void
pmc_remove_process_descriptor(struct pmc_process * pp)2582 pmc_remove_process_descriptor(struct pmc_process *pp)
2583 {
2584 KASSERT(pp->pp_refcnt == 0,
2585 ("[pmc,%d] Removing process descriptor %p with count %d",
2586 __LINE__, pp, pp->pp_refcnt));
2587
2588 mtx_lock_spin(&pmc_processhash_mtx);
2589 LIST_REMOVE(pp, pp_next);
2590 mtx_unlock_spin(&pmc_processhash_mtx);
2591 }
2592
2593 /*
2594 * Destroy a process descriptor.
2595 */
2596 static void
pmc_destroy_process_descriptor(struct pmc_process * pp)2597 pmc_destroy_process_descriptor(struct pmc_process *pp)
2598 {
2599 struct pmc_thread *pmc_td;
2600
2601 while ((pmc_td = LIST_FIRST(&pp->pp_tds)) != NULL) {
2602 LIST_REMOVE(pmc_td, pt_next);
2603 pmc_thread_descriptor_pool_free(pmc_td);
2604 }
2605 free(pp, M_PMC);
2606 }
2607
2608 /*
2609 * Find an owner descriptor corresponding to proc 'p'.
2610 */
2611 static struct pmc_owner *
pmc_find_owner_descriptor(struct proc * p)2612 pmc_find_owner_descriptor(struct proc *p)
2613 {
2614 struct pmc_owner *po;
2615 struct pmc_ownerhash *poh;
2616 uint32_t hindex;
2617
2618 hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2619 poh = &pmc_ownerhash[hindex];
2620
2621 po = NULL;
2622 LIST_FOREACH(po, poh, po_next) {
2623 if (po->po_owner == p)
2624 break;
2625 }
2626
2627 PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2628 "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2629
2630 return (po);
2631 }
2632
2633 /*
2634 * Allocate a pmc descriptor and initialize its fields.
2635 */
2636 static struct pmc *
pmc_allocate_pmc_descriptor(void)2637 pmc_allocate_pmc_descriptor(void)
2638 {
2639 struct pmc *pmc;
2640
2641 pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK | M_ZERO);
2642 pmc->pm_runcount = counter_u64_alloc(M_WAITOK);
2643 pmc->pm_pcpu_state = malloc(sizeof(struct pmc_pcpu_state) * mp_ncpus,
2644 M_PMC, M_WAITOK | M_ZERO);
2645 PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2646
2647 return (pmc);
2648 }
2649
2650 /*
2651 * Destroy a pmc descriptor.
2652 */
2653 static void
pmc_destroy_pmc_descriptor(struct pmc * pm)2654 pmc_destroy_pmc_descriptor(struct pmc *pm)
2655 {
2656
2657 KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2658 pm->pm_state == PMC_STATE_FREE,
2659 ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2660 KASSERT(LIST_EMPTY(&pm->pm_targets),
2661 ("[pmc,%d] destroying pmc with targets", __LINE__));
2662 KASSERT(pm->pm_owner == NULL,
2663 ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2664 KASSERT(counter_u64_fetch(pm->pm_runcount) == 0,
2665 ("[pmc,%d] pmc has non-zero run count %ju", __LINE__,
2666 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
2667
2668 counter_u64_free(pm->pm_runcount);
2669 free(pm->pm_pcpu_state, M_PMC);
2670 free(pm, M_PMC);
2671 }
2672
2673 static void
pmc_wait_for_pmc_idle(struct pmc * pm)2674 pmc_wait_for_pmc_idle(struct pmc *pm)
2675 {
2676 #ifdef INVARIANTS
2677 volatile int maxloop;
2678
2679 maxloop = 100 * pmc_cpu_max();
2680 #endif
2681 /*
2682 * Loop (with a forced context switch) till the PMC's runcount
2683 * comes down to zero.
2684 */
2685 pmclog_flush(pm->pm_owner, 1);
2686 while (counter_u64_fetch(pm->pm_runcount) > 0) {
2687 pmclog_flush(pm->pm_owner, 1);
2688 #ifdef INVARIANTS
2689 maxloop--;
2690 KASSERT(maxloop > 0,
2691 ("[pmc,%d] (ri%d, rc%ju) waiting too long for "
2692 "pmc to be free", __LINE__, PMC_TO_ROWINDEX(pm),
2693 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
2694 #endif
2695 pmc_force_context_switch();
2696 }
2697 }
2698
2699 /*
2700 * This function does the following things:
2701 *
2702 * - detaches the PMC from hardware
2703 * - unlinks all target threads that were attached to it
2704 * - removes the PMC from its owner's list
2705 * - destroys the PMC private mutex
2706 *
2707 * Once this function completes, the given pmc pointer can be freed by
2708 * calling pmc_destroy_pmc_descriptor().
2709 */
2710 static void
pmc_release_pmc_descriptor(struct pmc * pm)2711 pmc_release_pmc_descriptor(struct pmc *pm)
2712 {
2713 struct pmc_binding pb;
2714 struct pmc_classdep *pcd;
2715 struct pmc_hw *phw __diagused;
2716 struct pmc_owner *po;
2717 struct pmc_process *pp;
2718 struct pmc_target *ptgt, *tmp;
2719 enum pmc_mode mode;
2720 u_int adjri, ri, cpu;
2721
2722 sx_assert(&pmc_sx, SX_XLOCKED);
2723 KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2724
2725 ri = PMC_TO_ROWINDEX(pm);
2726 pcd = pmc_ri_to_classdep(md, ri, &adjri);
2727 mode = PMC_TO_MODE(pm);
2728
2729 PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2730 mode);
2731
2732 /*
2733 * First, we take the PMC off hardware.
2734 */
2735 cpu = 0;
2736 if (PMC_IS_SYSTEM_MODE(mode)) {
2737 /*
2738 * A system mode PMC runs on a specific CPU. Switch
2739 * to this CPU and turn hardware off.
2740 */
2741 pmc_save_cpu_binding(&pb);
2742 cpu = PMC_TO_CPU(pm);
2743 pmc_select_cpu(cpu);
2744
2745 /* switch off non-stalled CPUs */
2746 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
2747 if (pm->pm_state == PMC_STATE_RUNNING &&
2748 pm->pm_pcpu_state[cpu].pps_stalled == 0) {
2749
2750 phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2751
2752 KASSERT(phw->phw_pmc == pm,
2753 ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2754 __LINE__, ri, phw->phw_pmc, pm));
2755 PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2756
2757 critical_enter();
2758 (void)pcd->pcd_stop_pmc(cpu, adjri, pm);
2759 critical_exit();
2760 }
2761
2762 PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2763
2764 critical_enter();
2765 (void)pcd->pcd_config_pmc(cpu, adjri, NULL);
2766 critical_exit();
2767
2768 /* adjust the global and process count of SS mode PMCs */
2769 if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2770 po = pm->pm_owner;
2771 po->po_sscount--;
2772 if (po->po_sscount == 0) {
2773 atomic_subtract_rel_int(&pmc_ss_count, 1);
2774 CK_LIST_REMOVE(po, po_ssnext);
2775 epoch_wait_preempt(global_epoch_preempt);
2776 }
2777 }
2778 pm->pm_state = PMC_STATE_DELETED;
2779
2780 pmc_restore_cpu_binding(&pb);
2781
2782 /*
2783 * We could have references to this PMC structure in the
2784 * per-cpu sample queues. Wait for the queue to drain.
2785 */
2786 pmc_wait_for_pmc_idle(pm);
2787
2788 } else if (PMC_IS_VIRTUAL_MODE(mode)) {
2789 /*
2790 * A virtual PMC could be running on multiple CPUs at a given
2791 * instant.
2792 *
2793 * By marking its state as DELETED, we ensure that this PMC is
2794 * never further scheduled on hardware.
2795 *
2796 * Then we wait till all CPUs are done with this PMC.
2797 */
2798 pm->pm_state = PMC_STATE_DELETED;
2799
2800 /* Wait for the PMCs runcount to come to zero. */
2801 pmc_wait_for_pmc_idle(pm);
2802
2803 /*
2804 * At this point the PMC is off all CPUs and cannot be freshly
2805 * scheduled onto a CPU. It is now safe to unlink all targets
2806 * from this PMC. If a process-record's refcount falls to zero,
2807 * we remove it from the hash table. The module-wide SX lock
2808 * protects us from races.
2809 */
2810 LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2811 pp = ptgt->pt_process;
2812 pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2813
2814 PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2815
2816 /*
2817 * If the target process record shows that no PMCs are
2818 * attached to it, reclaim its space.
2819 */
2820 if (pp->pp_refcnt == 0) {
2821 pmc_remove_process_descriptor(pp);
2822 pmc_destroy_process_descriptor(pp);
2823 }
2824 }
2825
2826 cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2827 }
2828
2829 /*
2830 * Release any MD resources.
2831 */
2832 (void)pcd->pcd_release_pmc(cpu, adjri, pm);
2833
2834 /*
2835 * Update row disposition.
2836 */
2837 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2838 PMC_UNMARK_ROW_STANDALONE(ri);
2839 else
2840 PMC_UNMARK_ROW_THREAD(ri);
2841
2842 /* Unlink from the owner's list. */
2843 if (pm->pm_owner != NULL) {
2844 LIST_REMOVE(pm, pm_next);
2845 pm->pm_owner = NULL;
2846 }
2847 }
2848
2849 /*
2850 * Register an owner and a pmc.
2851 */
2852 static int
pmc_register_owner(struct proc * p,struct pmc * pmc)2853 pmc_register_owner(struct proc *p, struct pmc *pmc)
2854 {
2855 struct pmc_owner *po;
2856
2857 sx_assert(&pmc_sx, SX_XLOCKED);
2858
2859 if ((po = pmc_find_owner_descriptor(p)) == NULL) {
2860 if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2861 return (ENOMEM);
2862 }
2863
2864 KASSERT(pmc->pm_owner == NULL,
2865 ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2866 pmc->pm_owner = po;
2867
2868 LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2869
2870 PROC_LOCK(p);
2871 p->p_flag |= P_HWPMC;
2872 PROC_UNLOCK(p);
2873
2874 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
2875 pmclog_process_pmcallocate(pmc);
2876
2877 PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2878 po, pmc);
2879
2880 return (0);
2881 }
2882
2883 /*
2884 * Return the current row disposition:
2885 * == 0 => FREE
2886 * > 0 => PROCESS MODE
2887 * < 0 => SYSTEM MODE
2888 */
2889 int
pmc_getrowdisp(int ri)2890 pmc_getrowdisp(int ri)
2891 {
2892 return (pmc_pmcdisp[ri]);
2893 }
2894
2895 /*
2896 * Check if a PMC at row index 'ri' can be allocated to the current
2897 * process.
2898 *
2899 * Allocation can fail if:
2900 * - the current process is already being profiled by a PMC at index 'ri',
2901 * attached to it via OP_PMCATTACH.
2902 * - the current process has already allocated a PMC at index 'ri'
2903 * via OP_ALLOCATE.
2904 */
2905 static bool
pmc_can_allocate_rowindex(struct proc * p,unsigned int ri,int cpu)2906 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2907 {
2908 struct pmc *pm;
2909 struct pmc_owner *po;
2910 struct pmc_process *pp;
2911 enum pmc_mode mode;
2912
2913 PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2914 "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2915
2916 /*
2917 * We shouldn't have already allocated a process-mode PMC at
2918 * row index 'ri'.
2919 *
2920 * We shouldn't have allocated a system-wide PMC on the same
2921 * CPU and same RI.
2922 */
2923 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
2924 LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2925 if (PMC_TO_ROWINDEX(pm) == ri) {
2926 mode = PMC_TO_MODE(pm);
2927 if (PMC_IS_VIRTUAL_MODE(mode))
2928 return (false);
2929 if (PMC_IS_SYSTEM_MODE(mode) &&
2930 PMC_TO_CPU(pm) == cpu)
2931 return (false);
2932 }
2933 }
2934 }
2935
2936 /*
2937 * We also shouldn't be the target of any PMC at this index
2938 * since otherwise a PMC_ATTACH to ourselves will fail.
2939 */
2940 if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2941 if (pp->pp_pmcs[ri].pp_pmc != NULL)
2942 return (false);
2943
2944 PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2945 p, p->p_pid, p->p_comm, ri);
2946 return (true);
2947 }
2948
2949 /*
2950 * Check if a given PMC at row index 'ri' can be currently used in
2951 * mode 'mode'.
2952 */
2953 static bool
pmc_can_allocate_row(int ri,enum pmc_mode mode)2954 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2955 {
2956 enum pmc_disp disp;
2957
2958 sx_assert(&pmc_sx, SX_XLOCKED);
2959
2960 PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2961
2962 if (PMC_IS_SYSTEM_MODE(mode))
2963 disp = PMC_DISP_STANDALONE;
2964 else
2965 disp = PMC_DISP_THREAD;
2966
2967 /*
2968 * check disposition for PMC row 'ri':
2969 *
2970 * Expected disposition Row-disposition Result
2971 *
2972 * STANDALONE STANDALONE or FREE proceed
2973 * STANDALONE THREAD fail
2974 * THREAD THREAD or FREE proceed
2975 * THREAD STANDALONE fail
2976 */
2977 if (!PMC_ROW_DISP_IS_FREE(ri) &&
2978 !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2979 !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2980 return (false);
2981
2982 /*
2983 * All OK
2984 */
2985 PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2986 return (true);
2987 }
2988
2989 /*
2990 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2991 */
2992 static struct pmc *
pmc_find_pmc_descriptor_in_process(struct pmc_owner * po,pmc_id_t pmcid)2993 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2994 {
2995 struct pmc *pm;
2996
2997 KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2998 ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2999 PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
3000
3001 LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
3002 if (pm->pm_id == pmcid)
3003 return (pm);
3004 }
3005
3006 return (NULL);
3007 }
3008
3009 static int
pmc_find_pmc(pmc_id_t pmcid,struct pmc ** pmc)3010 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
3011 {
3012 struct pmc *pm, *opm;
3013 struct pmc_owner *po;
3014 struct pmc_process *pp;
3015
3016 PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
3017 if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
3018 return (EINVAL);
3019
3020 if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
3021 /*
3022 * In case of PMC_F_DESCENDANTS child processes we will not find
3023 * the current process in the owners hash list. Find the owner
3024 * process first and from there lookup the po.
3025 */
3026 pp = pmc_find_process_descriptor(curthread->td_proc,
3027 PMC_FLAG_NONE);
3028 if (pp == NULL)
3029 return (ESRCH);
3030 opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
3031 if (opm == NULL)
3032 return (ESRCH);
3033 if ((opm->pm_flags &
3034 (PMC_F_ATTACHED_TO_OWNER | PMC_F_DESCENDANTS)) !=
3035 (PMC_F_ATTACHED_TO_OWNER | PMC_F_DESCENDANTS))
3036 return (ESRCH);
3037
3038 po = opm->pm_owner;
3039 }
3040
3041 if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
3042 return (EINVAL);
3043
3044 PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
3045
3046 *pmc = pm;
3047 return (0);
3048 }
3049
3050 /*
3051 * Start a PMC.
3052 */
3053 static int
pmc_start(struct pmc * pm)3054 pmc_start(struct pmc *pm)
3055 {
3056 struct pmc_binding pb;
3057 struct pmc_classdep *pcd;
3058 struct pmc_owner *po;
3059 pmc_value_t v;
3060 enum pmc_mode mode;
3061 int adjri, error, cpu, ri;
3062
3063 KASSERT(pm != NULL,
3064 ("[pmc,%d] null pm", __LINE__));
3065
3066 mode = PMC_TO_MODE(pm);
3067 ri = PMC_TO_ROWINDEX(pm);
3068 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3069
3070 error = 0;
3071 po = pm->pm_owner;
3072
3073 PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
3074
3075 po = pm->pm_owner;
3076
3077 /*
3078 * Disallow PMCSTART if a logfile is required but has not been
3079 * configured yet.
3080 */
3081 if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) != 0 &&
3082 (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
3083 return (EDOOFUS); /* programming error */
3084
3085 /*
3086 * If this is a sampling mode PMC, log mapping information for
3087 * the kernel modules that are currently loaded.
3088 */
3089 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3090 pmc_log_kernel_mappings(pm);
3091
3092 if (PMC_IS_VIRTUAL_MODE(mode)) {
3093 /*
3094 * If a PMCATTACH has never been done on this PMC,
3095 * attach it to its owner process.
3096 */
3097 if (LIST_EMPTY(&pm->pm_targets)) {
3098 error = (pm->pm_flags & PMC_F_ATTACH_DONE) != 0 ?
3099 ESRCH : pmc_attach_process(po->po_owner, pm);
3100 }
3101
3102 /*
3103 * If the PMC is attached to its owner, then force a context
3104 * switch to ensure that the MD state gets set correctly.
3105 */
3106 if (error == 0) {
3107 pm->pm_state = PMC_STATE_RUNNING;
3108 if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) != 0)
3109 pmc_force_context_switch();
3110 }
3111
3112 return (error);
3113 }
3114
3115 /*
3116 * A system-wide PMC.
3117 *
3118 * Add the owner to the global list if this is a system-wide
3119 * sampling PMC.
3120 */
3121 if (mode == PMC_MODE_SS) {
3122 /*
3123 * Log mapping information for all existing processes in the
3124 * system. Subsequent mappings are logged as they happen;
3125 * see pmc_process_mmap().
3126 */
3127 if (po->po_logprocmaps == 0) {
3128 pmc_log_all_process_mappings(po);
3129 po->po_logprocmaps = 1;
3130 }
3131 po->po_sscount++;
3132 if (po->po_sscount == 1) {
3133 atomic_add_rel_int(&pmc_ss_count, 1);
3134 CK_LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
3135 PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
3136 }
3137 }
3138
3139 /*
3140 * Move to the CPU associated with this
3141 * PMC, and start the hardware.
3142 */
3143 pmc_save_cpu_binding(&pb);
3144 cpu = PMC_TO_CPU(pm);
3145 if (!pmc_cpu_is_active(cpu))
3146 return (ENXIO);
3147 pmc_select_cpu(cpu);
3148
3149 /*
3150 * global PMCs are configured at allocation time
3151 * so write out the initial value and start the PMC.
3152 */
3153 pm->pm_state = PMC_STATE_RUNNING;
3154
3155 critical_enter();
3156 v = PMC_IS_SAMPLING_MODE(mode) ? pm->pm_sc.pm_reloadcount :
3157 pm->pm_sc.pm_initial;
3158 if ((error = pcd->pcd_write_pmc(cpu, adjri, pm, v)) == 0) {
3159 /* If a sampling mode PMC, reset stalled state. */
3160 if (PMC_IS_SAMPLING_MODE(mode))
3161 pm->pm_pcpu_state[cpu].pps_stalled = 0;
3162
3163 /* Indicate that we desire this to run. Start it. */
3164 pm->pm_pcpu_state[cpu].pps_cpustate = 1;
3165 error = pcd->pcd_start_pmc(cpu, adjri, pm);
3166 }
3167 critical_exit();
3168
3169 pmc_restore_cpu_binding(&pb);
3170 return (error);
3171 }
3172
3173 /*
3174 * Stop a PMC.
3175 */
3176 static int
pmc_stop(struct pmc * pm)3177 pmc_stop(struct pmc *pm)
3178 {
3179 struct pmc_binding pb;
3180 struct pmc_classdep *pcd;
3181 struct pmc_owner *po;
3182 int adjri, cpu, error, ri;
3183
3184 KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
3185
3186 PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm, PMC_TO_MODE(pm),
3187 PMC_TO_ROWINDEX(pm));
3188
3189 pm->pm_state = PMC_STATE_STOPPED;
3190
3191 /*
3192 * If the PMC is a virtual mode one, changing the state to non-RUNNING
3193 * is enough to ensure that the PMC never gets scheduled.
3194 *
3195 * If this PMC is current running on a CPU, then it will handled
3196 * correctly at the time its target process is context switched out.
3197 */
3198 if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
3199 return (0);
3200
3201 /*
3202 * A system-mode PMC. Move to the CPU associated with this PMC, and
3203 * stop the hardware. We update the 'initial count' so that a
3204 * subsequent PMCSTART will resume counting from the current hardware
3205 * count.
3206 */
3207 pmc_save_cpu_binding(&pb);
3208
3209 cpu = PMC_TO_CPU(pm);
3210 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
3211 ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
3212 if (!pmc_cpu_is_active(cpu))
3213 return (ENXIO);
3214
3215 pmc_select_cpu(cpu);
3216
3217 ri = PMC_TO_ROWINDEX(pm);
3218 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3219
3220 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
3221 critical_enter();
3222 if ((error = pcd->pcd_stop_pmc(cpu, adjri, pm)) == 0) {
3223 error = pcd->pcd_read_pmc(cpu, adjri, pm,
3224 &pm->pm_sc.pm_initial);
3225 }
3226 critical_exit();
3227
3228 pmc_restore_cpu_binding(&pb);
3229
3230 /* Remove this owner from the global list of SS PMC owners. */
3231 po = pm->pm_owner;
3232 if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
3233 po->po_sscount--;
3234 if (po->po_sscount == 0) {
3235 atomic_subtract_rel_int(&pmc_ss_count, 1);
3236 CK_LIST_REMOVE(po, po_ssnext);
3237 epoch_wait_preempt(global_epoch_preempt);
3238 PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
3239 }
3240 }
3241
3242 return (error);
3243 }
3244
3245 static struct pmc_classdep *
pmc_class_to_classdep(enum pmc_class class)3246 pmc_class_to_classdep(enum pmc_class class)
3247 {
3248 int n;
3249
3250 for (n = 0; n < md->pmd_nclass; n++) {
3251 if (md->pmd_classdep[n].pcd_class == class)
3252 return (&md->pmd_classdep[n]);
3253 }
3254 return (NULL);
3255 }
3256
3257 #if defined(HWPMC_DEBUG) && defined(KTR)
3258 static const char *pmc_op_to_name[] = {
3259 #undef __PMC_OP
3260 #define __PMC_OP(N, D) #N ,
3261 __PMC_OPS()
3262 NULL
3263 };
3264 #endif
3265
3266 /*
3267 * The syscall interface
3268 */
3269
3270 #define PMC_GET_SX_XLOCK(...) do { \
3271 sx_xlock(&pmc_sx); \
3272 if (pmc_hook == NULL) { \
3273 sx_xunlock(&pmc_sx); \
3274 return __VA_ARGS__; \
3275 } \
3276 } while (0)
3277
3278 #define PMC_DOWNGRADE_SX() do { \
3279 sx_downgrade(&pmc_sx); \
3280 is_sx_downgraded = true; \
3281 } while (0)
3282
3283 /*
3284 * Main body of PMC_OP_PMCALLOCATE.
3285 */
3286 static int
pmc_do_op_pmcallocate(struct thread * td,struct pmc_op_pmcallocate * pa)3287 pmc_do_op_pmcallocate(struct thread *td, struct pmc_op_pmcallocate *pa)
3288 {
3289 struct proc *p;
3290 struct pmc *pmc;
3291 struct pmc_binding pb;
3292 struct pmc_classdep *pcd;
3293 struct pmc_hw *phw;
3294 enum pmc_mode mode;
3295 enum pmc_class class;
3296 uint32_t caps, flags;
3297 u_int cpu;
3298 int adjri, n;
3299 int error;
3300
3301 class = pa->pm_class;
3302 caps = pa->pm_caps;
3303 flags = pa->pm_flags;
3304 mode = pa->pm_mode;
3305 cpu = pa->pm_cpu;
3306
3307 p = td->td_proc;
3308
3309 /* Requested mode must exist. */
3310 if ((mode != PMC_MODE_SS && mode != PMC_MODE_SC &&
3311 mode != PMC_MODE_TS && mode != PMC_MODE_TC))
3312 return (EINVAL);
3313
3314 /* Requested CPU must be valid. */
3315 if (cpu != PMC_CPU_ANY && cpu >= pmc_cpu_max())
3316 return (EINVAL);
3317
3318 /*
3319 * Virtual PMCs should only ask for a default CPU.
3320 * System mode PMCs need to specify a non-default CPU.
3321 */
3322 if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != PMC_CPU_ANY) ||
3323 (PMC_IS_SYSTEM_MODE(mode) && cpu == PMC_CPU_ANY))
3324 return (EINVAL);
3325
3326 /*
3327 * Check that an inactive CPU is not being asked for.
3328 */
3329 if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu))
3330 return (ENXIO);
3331
3332 /*
3333 * Refuse an allocation for a system-wide PMC if this process has been
3334 * jailed, or if this process lacks super-user credentials and the
3335 * sysctl tunable 'security.bsd.unprivileged_syspmcs' is zero.
3336 */
3337 if (PMC_IS_SYSTEM_MODE(mode)) {
3338 if (jailed(td->td_ucred))
3339 return (EPERM);
3340 if (!pmc_unprivileged_syspmcs) {
3341 error = priv_check(td, PRIV_PMC_SYSTEM);
3342 if (error != 0)
3343 return (error);
3344 }
3345 }
3346
3347 /*
3348 * Look for valid values for 'pm_flags'.
3349 */
3350 if ((flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3351 PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN |
3352 PMC_F_EV_PMU)) != 0)
3353 return (EINVAL);
3354
3355 /* PMC_F_USERCALLCHAIN is only valid with PMC_F_CALLCHAIN. */
3356 if ((flags & (PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN)) ==
3357 PMC_F_USERCALLCHAIN)
3358 return (EINVAL);
3359
3360 /* PMC_F_USERCALLCHAIN is only valid for sampling mode. */
3361 if ((flags & PMC_F_USERCALLCHAIN) != 0 && mode != PMC_MODE_TS &&
3362 mode != PMC_MODE_SS)
3363 return (EINVAL);
3364
3365 /* Process logging options are not allowed for system PMCs. */
3366 if (PMC_IS_SYSTEM_MODE(mode) &&
3367 (flags & (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT)) != 0)
3368 return (EINVAL);
3369
3370 /*
3371 * All sampling mode PMCs need to be able to interrupt the CPU.
3372 */
3373 if (PMC_IS_SAMPLING_MODE(mode))
3374 caps |= PMC_CAP_INTERRUPT;
3375
3376 /* A valid class specifier should have been passed in. */
3377 pcd = pmc_class_to_classdep(class);
3378 if (pcd == NULL)
3379 return (EINVAL);
3380
3381 /* The requested PMC capabilities should be feasible. */
3382 if ((pcd->pcd_caps & caps) != caps)
3383 return (EOPNOTSUPP);
3384
3385 PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d", pa->pm_ev,
3386 caps, mode, cpu);
3387
3388 pmc = pmc_allocate_pmc_descriptor();
3389 pmc->pm_id = PMC_ID_MAKE_ID(cpu, pa->pm_mode, class, PMC_ID_INVALID);
3390 pmc->pm_event = pa->pm_ev;
3391 pmc->pm_state = PMC_STATE_FREE;
3392 pmc->pm_caps = caps;
3393 pmc->pm_flags = flags;
3394
3395 /* XXX set lower bound on sampling for process counters */
3396 if (PMC_IS_SAMPLING_MODE(mode)) {
3397 /*
3398 * Don't permit requested sample rate to be less than
3399 * pmc_mincount.
3400 */
3401 if (pa->pm_count < MAX(1, pmc_mincount))
3402 log(LOG_WARNING, "pmcallocate: passed sample "
3403 "rate %ju - setting to %u\n",
3404 (uintmax_t)pa->pm_count,
3405 MAX(1, pmc_mincount));
3406 pmc->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
3407 pa->pm_count);
3408 } else
3409 pmc->pm_sc.pm_initial = pa->pm_count;
3410
3411 /* switch thread to CPU 'cpu' */
3412 pmc_save_cpu_binding(&pb);
3413
3414 #define PMC_IS_SHAREABLE_PMC(cpu, n) \
3415 (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state & \
3416 PMC_PHW_FLAG_IS_SHAREABLE)
3417 #define PMC_IS_UNALLOCATED(cpu, n) \
3418 (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3419
3420 if (PMC_IS_SYSTEM_MODE(mode)) {
3421 pmc_select_cpu(cpu);
3422 for (n = pcd->pcd_ri; n < md->pmd_npmc; n++) {
3423 pcd = pmc_ri_to_classdep(md, n, &adjri);
3424
3425 if (!pmc_can_allocate_row(n, mode) ||
3426 !pmc_can_allocate_rowindex(p, n, cpu))
3427 continue;
3428 if (!PMC_IS_UNALLOCATED(cpu, n) &&
3429 !PMC_IS_SHAREABLE_PMC(cpu, n))
3430 continue;
3431
3432 if (pcd->pcd_allocate_pmc(cpu, adjri, pmc, pa) == 0) {
3433 /* Success. */
3434 break;
3435 }
3436 }
3437 } else {
3438 /* Process virtual mode */
3439 for (n = pcd->pcd_ri; n < md->pmd_npmc; n++) {
3440 pcd = pmc_ri_to_classdep(md, n, &adjri);
3441
3442 if (!pmc_can_allocate_row(n, mode) ||
3443 !pmc_can_allocate_rowindex(p, n, PMC_CPU_ANY))
3444 continue;
3445
3446 if (pcd->pcd_allocate_pmc(td->td_oncpu, adjri, pmc,
3447 pa) == 0) {
3448 /* Success. */
3449 break;
3450 }
3451 }
3452 }
3453
3454 #undef PMC_IS_UNALLOCATED
3455 #undef PMC_IS_SHAREABLE_PMC
3456
3457 pmc_restore_cpu_binding(&pb);
3458
3459 if (n == md->pmd_npmc) {
3460 pmc_destroy_pmc_descriptor(pmc);
3461 return (EINVAL);
3462 }
3463
3464 /* Fill in the correct value in the ID field. */
3465 pmc->pm_id = PMC_ID_MAKE_ID(cpu, mode, class, n);
3466
3467 PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3468 pmc->pm_event, class, mode, n, pmc->pm_id);
3469
3470 /* Process mode PMCs with logging enabled need log files. */
3471 if ((pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW)) != 0)
3472 pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3473
3474 /* All system mode sampling PMCs require a log file. */
3475 if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3476 pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3477
3478 /*
3479 * Configure global pmc's immediately.
3480 */
3481 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3482 pmc_save_cpu_binding(&pb);
3483 pmc_select_cpu(cpu);
3484
3485 phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3486 pcd = pmc_ri_to_classdep(md, n, &adjri);
3487
3488 if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3489 (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3490 (void)pcd->pcd_release_pmc(cpu, adjri, pmc);
3491 pmc_destroy_pmc_descriptor(pmc);
3492 pmc_restore_cpu_binding(&pb);
3493 return (EPERM);
3494 }
3495
3496 pmc_restore_cpu_binding(&pb);
3497 }
3498
3499 pmc->pm_state = PMC_STATE_ALLOCATED;
3500 pmc->pm_class = class;
3501
3502 /*
3503 * Mark row disposition.
3504 */
3505 if (PMC_IS_SYSTEM_MODE(mode))
3506 PMC_MARK_ROW_STANDALONE(n);
3507 else
3508 PMC_MARK_ROW_THREAD(n);
3509
3510 /*
3511 * Register this PMC with the current thread as its owner.
3512 */
3513 error = pmc_register_owner(p, pmc);
3514 if (error != 0) {
3515 pmc_release_pmc_descriptor(pmc);
3516 pmc_destroy_pmc_descriptor(pmc);
3517 return (error);
3518 }
3519
3520 /*
3521 * Return the allocated index.
3522 */
3523 pa->pm_pmcid = pmc->pm_id;
3524 return (0);
3525 }
3526
3527 /*
3528 * Main body of PMC_OP_PMCATTACH.
3529 */
3530 static int
pmc_do_op_pmcattach(struct thread * td,struct pmc_op_pmcattach a)3531 pmc_do_op_pmcattach(struct thread *td, struct pmc_op_pmcattach a)
3532 {
3533 struct pmc *pm;
3534 struct proc *p;
3535 int error;
3536
3537 sx_assert(&pmc_sx, SX_XLOCKED);
3538
3539 if (a.pm_pid < 0) {
3540 return (EINVAL);
3541 } else if (a.pm_pid == 0) {
3542 a.pm_pid = td->td_proc->p_pid;
3543 }
3544
3545 error = pmc_find_pmc(a.pm_pmc, &pm);
3546 if (error != 0)
3547 return (error);
3548
3549 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
3550 return (EINVAL);
3551
3552 /* PMCs may be (re)attached only when allocated or stopped */
3553 if (pm->pm_state == PMC_STATE_RUNNING) {
3554 return (EBUSY);
3555 } else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3556 pm->pm_state != PMC_STATE_STOPPED) {
3557 return (EINVAL);
3558 }
3559
3560 /* lookup pid */
3561 if ((p = pfind(a.pm_pid)) == NULL)
3562 return (ESRCH);
3563
3564 /*
3565 * Ignore processes that are working on exiting.
3566 */
3567 if ((p->p_flag & P_WEXIT) != 0) {
3568 PROC_UNLOCK(p); /* pfind() returns a locked process */
3569 return (ESRCH);
3570 }
3571
3572 /*
3573 * We are allowed to attach a PMC to a process if we can debug it.
3574 */
3575 error = p_candebug(curthread, p);
3576
3577 PROC_UNLOCK(p);
3578
3579 if (error == 0)
3580 error = pmc_attach_process(p, pm);
3581
3582 return (error);
3583 }
3584
3585 /*
3586 * Main body of PMC_OP_PMCDETACH.
3587 */
3588 static int
pmc_do_op_pmcdetach(struct thread * td,struct pmc_op_pmcattach a)3589 pmc_do_op_pmcdetach(struct thread *td, struct pmc_op_pmcattach a)
3590 {
3591 struct pmc *pm;
3592 struct proc *p;
3593 int error;
3594
3595 if (a.pm_pid < 0) {
3596 return (EINVAL);
3597 } else if (a.pm_pid == 0)
3598 a.pm_pid = td->td_proc->p_pid;
3599
3600 error = pmc_find_pmc(a.pm_pmc, &pm);
3601 if (error != 0)
3602 return (error);
3603
3604 if ((p = pfind(a.pm_pid)) == NULL)
3605 return (ESRCH);
3606
3607 /*
3608 * Treat processes that are in the process of exiting as if they were
3609 * not present.
3610 */
3611 if ((p->p_flag & P_WEXIT) != 0) {
3612 PROC_UNLOCK(p);
3613 return (ESRCH);
3614 }
3615
3616 PROC_UNLOCK(p); /* pfind() returns a locked process */
3617
3618 if (error == 0)
3619 error = pmc_detach_process(p, pm);
3620
3621 return (error);
3622 }
3623
3624 /*
3625 * Main body of PMC_OP_PMCRELEASE.
3626 */
3627 static int
pmc_do_op_pmcrelease(pmc_id_t pmcid)3628 pmc_do_op_pmcrelease(pmc_id_t pmcid)
3629 {
3630 struct pmc_owner *po;
3631 struct pmc *pm;
3632 int error;
3633
3634 /*
3635 * Find PMC pointer for the named PMC.
3636 *
3637 * Use pmc_release_pmc_descriptor() to switch off the
3638 * PMC, remove all its target threads, and remove the
3639 * PMC from its owner's list.
3640 *
3641 * Remove the owner record if this is the last PMC
3642 * owned.
3643 *
3644 * Free up space.
3645 */
3646 error = pmc_find_pmc(pmcid, &pm);
3647 if (error != 0)
3648 return (error);
3649
3650 po = pm->pm_owner;
3651 pmc_release_pmc_descriptor(pm);
3652 pmc_maybe_remove_owner(po);
3653 pmc_destroy_pmc_descriptor(pm);
3654
3655 return (error);
3656 }
3657
3658 /*
3659 * Main body of PMC_OP_PMCRW.
3660 */
3661 static int
pmc_do_op_pmcrw(const struct pmc_op_pmcrw * prw,pmc_value_t * valp)3662 pmc_do_op_pmcrw(const struct pmc_op_pmcrw *prw, pmc_value_t *valp)
3663 {
3664 struct pmc_binding pb;
3665 struct pmc_classdep *pcd;
3666 struct pmc *pm;
3667 u_int cpu, ri, adjri;
3668 int error;
3669
3670 PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw->pm_pmcid, prw->pm_flags);
3671
3672 /* Must have at least one flag set. */
3673 if ((prw->pm_flags & (PMC_F_OLDVALUE | PMC_F_NEWVALUE)) == 0)
3674 return (EINVAL);
3675
3676 /* Locate PMC descriptor. */
3677 error = pmc_find_pmc(prw->pm_pmcid, &pm);
3678 if (error != 0)
3679 return (error);
3680
3681 /* Can't read a PMC that hasn't been started. */
3682 if (pm->pm_state != PMC_STATE_ALLOCATED &&
3683 pm->pm_state != PMC_STATE_STOPPED &&
3684 pm->pm_state != PMC_STATE_RUNNING)
3685 return (EINVAL);
3686
3687 /* Writing a new value is allowed only for 'STOPPED' PMCs. */
3688 if (pm->pm_state == PMC_STATE_RUNNING &&
3689 (prw->pm_flags & PMC_F_NEWVALUE) != 0)
3690 return (EBUSY);
3691
3692 if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3693 /*
3694 * If this PMC is attached to its owner (i.e., the process
3695 * requesting this operation) and is running, then attempt to
3696 * get an upto-date reading from hardware for a READ. Writes
3697 * are only allowed when the PMC is stopped, so only update the
3698 * saved value field.
3699 *
3700 * If the PMC is not running, or is not attached to its owner,
3701 * read/write to the savedvalue field.
3702 */
3703
3704 ri = PMC_TO_ROWINDEX(pm);
3705 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3706
3707 mtx_pool_lock_spin(pmc_mtxpool, pm);
3708 cpu = curthread->td_oncpu;
3709
3710 if ((prw->pm_flags & PMC_F_OLDVALUE) != 0) {
3711 if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3712 (pm->pm_state == PMC_STATE_RUNNING)) {
3713 error = (*pcd->pcd_read_pmc)(cpu, adjri, pm,
3714 valp);
3715 } else {
3716 *valp = pm->pm_gv.pm_savedvalue;
3717 }
3718 }
3719
3720 if ((prw->pm_flags & PMC_F_NEWVALUE) != 0)
3721 pm->pm_gv.pm_savedvalue = prw->pm_value;
3722
3723 mtx_pool_unlock_spin(pmc_mtxpool, pm);
3724 } else { /* System mode PMCs */
3725 cpu = PMC_TO_CPU(pm);
3726 ri = PMC_TO_ROWINDEX(pm);
3727 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3728
3729 if (!pmc_cpu_is_active(cpu))
3730 return (ENXIO);
3731
3732 /* Move this thread to CPU 'cpu'. */
3733 pmc_save_cpu_binding(&pb);
3734 pmc_select_cpu(cpu);
3735 critical_enter();
3736
3737 /* Save old value. */
3738 if ((prw->pm_flags & PMC_F_OLDVALUE) != 0)
3739 error = (*pcd->pcd_read_pmc)(cpu, adjri, pm, valp);
3740
3741 /* Write out new value. */
3742 if (error == 0 && (prw->pm_flags & PMC_F_NEWVALUE) != 0)
3743 error = (*pcd->pcd_write_pmc)(cpu, adjri, pm,
3744 prw->pm_value);
3745
3746 critical_exit();
3747 pmc_restore_cpu_binding(&pb);
3748 if (error != 0)
3749 return (error);
3750 }
3751
3752 #ifdef HWPMC_DEBUG
3753 if ((prw->pm_flags & PMC_F_NEWVALUE) != 0)
3754 PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3755 ri, prw->pm_value, *valp);
3756 else
3757 PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, *valp);
3758 #endif
3759 return (error);
3760 }
3761
3762 static int
pmc_syscall_handler(struct thread * td,void * syscall_args)3763 pmc_syscall_handler(struct thread *td, void *syscall_args)
3764 {
3765 struct pmc_syscall_args *c;
3766 void *pmclog_proc_handle;
3767 void *arg;
3768 int error, op;
3769 bool is_sx_downgraded;
3770
3771 c = (struct pmc_syscall_args *)syscall_args;
3772 op = c->pmop_code;
3773 arg = c->pmop_data;
3774
3775 /* PMC isn't set up yet */
3776 if (pmc_hook == NULL)
3777 return (EINVAL);
3778
3779 if (op == PMC_OP_CONFIGURELOG) {
3780 /*
3781 * We cannot create the logging process inside
3782 * pmclog_configure_log() because there is a LOR
3783 * between pmc_sx and process structure locks.
3784 * Instead, pre-create the process and ignite the loop
3785 * if everything is fine, otherwise direct the process
3786 * to exit.
3787 */
3788 error = pmclog_proc_create(td, &pmclog_proc_handle);
3789 if (error != 0)
3790 goto done_syscall;
3791 }
3792
3793 PMC_GET_SX_XLOCK(ENOSYS);
3794 is_sx_downgraded = false;
3795 PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
3796 pmc_op_to_name[op], arg);
3797
3798 error = 0;
3799 counter_u64_add(pmc_stats.pm_syscalls, 1);
3800
3801 switch (op) {
3802
3803
3804 /*
3805 * Configure a log file.
3806 *
3807 * XXX This OP will be reworked.
3808 */
3809
3810 case PMC_OP_CONFIGURELOG:
3811 {
3812 struct proc *p;
3813 struct pmc *pm;
3814 struct pmc_owner *po;
3815 struct pmc_op_configurelog cl;
3816
3817 if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
3818 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3819 break;
3820 }
3821
3822 /* No flags currently implemented */
3823 if (cl.pm_flags != 0) {
3824 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3825 error = EINVAL;
3826 break;
3827 }
3828
3829 /* mark this process as owning a log file */
3830 p = td->td_proc;
3831 if ((po = pmc_find_owner_descriptor(p)) == NULL)
3832 if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
3833 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3834 error = ENOMEM;
3835 break;
3836 }
3837
3838 /*
3839 * If a valid fd was passed in, try to configure that,
3840 * otherwise if 'fd' was less than zero and there was
3841 * a log file configured, flush its buffers and
3842 * de-configure it.
3843 */
3844 if (cl.pm_logfd >= 0) {
3845 error = pmclog_configure_log(md, po, cl.pm_logfd);
3846 pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
3847 po : NULL);
3848 } else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
3849 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3850 error = pmclog_close(po);
3851 if (error == 0) {
3852 LIST_FOREACH(pm, &po->po_pmcs, pm_next)
3853 if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
3854 pm->pm_state == PMC_STATE_RUNNING)
3855 pmc_stop(pm);
3856 error = pmclog_deconfigure_log(po);
3857 }
3858 } else {
3859 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3860 error = EINVAL;
3861 }
3862 }
3863 break;
3864
3865 /*
3866 * Flush a log file.
3867 */
3868
3869 case PMC_OP_FLUSHLOG:
3870 {
3871 struct pmc_owner *po;
3872
3873 sx_assert(&pmc_sx, SX_XLOCKED);
3874
3875 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3876 error = EINVAL;
3877 break;
3878 }
3879
3880 error = pmclog_flush(po, 0);
3881 }
3882 break;
3883
3884 /*
3885 * Close a log file.
3886 */
3887
3888 case PMC_OP_CLOSELOG:
3889 {
3890 struct pmc_owner *po;
3891
3892 sx_assert(&pmc_sx, SX_XLOCKED);
3893
3894 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3895 error = EINVAL;
3896 break;
3897 }
3898
3899 error = pmclog_close(po);
3900 }
3901 break;
3902
3903 /*
3904 * Retrieve hardware configuration.
3905 */
3906
3907 case PMC_OP_GETCPUINFO: /* CPU information */
3908 {
3909 struct pmc_op_getcpuinfo gci;
3910 struct pmc_classinfo *pci;
3911 struct pmc_classdep *pcd;
3912 int cl;
3913
3914 memset(&gci, 0, sizeof(gci));
3915 gci.pm_cputype = md->pmd_cputype;
3916 gci.pm_ncpu = pmc_cpu_max();
3917 gci.pm_npmc = md->pmd_npmc;
3918 gci.pm_nclass = md->pmd_nclass;
3919 pci = gci.pm_classes;
3920 pcd = md->pmd_classdep;
3921 for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
3922 pci->pm_caps = pcd->pcd_caps;
3923 pci->pm_class = pcd->pcd_class;
3924 pci->pm_width = pcd->pcd_width;
3925 pci->pm_num = pcd->pcd_num;
3926 }
3927 error = copyout(&gci, arg, sizeof(gci));
3928 }
3929 break;
3930
3931 /*
3932 * Retrieve soft events list.
3933 */
3934 case PMC_OP_GETDYNEVENTINFO:
3935 {
3936 enum pmc_class cl;
3937 enum pmc_event ev;
3938 struct pmc_op_getdyneventinfo *gei;
3939 struct pmc_dyn_event_descr dev;
3940 struct pmc_soft *ps;
3941 uint32_t nevent;
3942
3943 sx_assert(&pmc_sx, SX_LOCKED);
3944
3945 gei = (struct pmc_op_getdyneventinfo *) arg;
3946
3947 if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3948 break;
3949
3950 /* Only SOFT class is dynamic. */
3951 if (cl != PMC_CLASS_SOFT) {
3952 error = EINVAL;
3953 break;
3954 }
3955
3956 nevent = 0;
3957 for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3958 ps = pmc_soft_ev_acquire(ev);
3959 if (ps == NULL)
3960 continue;
3961 bcopy(&ps->ps_ev, &dev, sizeof(dev));
3962 pmc_soft_ev_release(ps);
3963
3964 error = copyout(&dev,
3965 &gei->pm_events[nevent],
3966 sizeof(struct pmc_dyn_event_descr));
3967 if (error != 0)
3968 break;
3969 nevent++;
3970 }
3971 if (error != 0)
3972 break;
3973
3974 error = copyout(&nevent, &gei->pm_nevent,
3975 sizeof(nevent));
3976 }
3977 break;
3978
3979 /*
3980 * Get module statistics
3981 */
3982
3983 case PMC_OP_GETDRIVERSTATS:
3984 {
3985 struct pmc_op_getdriverstats gms;
3986 #define CFETCH(a, b, field) a.field = counter_u64_fetch(b.field)
3987 CFETCH(gms, pmc_stats, pm_intr_ignored);
3988 CFETCH(gms, pmc_stats, pm_intr_processed);
3989 CFETCH(gms, pmc_stats, pm_intr_bufferfull);
3990 CFETCH(gms, pmc_stats, pm_syscalls);
3991 CFETCH(gms, pmc_stats, pm_syscall_errors);
3992 CFETCH(gms, pmc_stats, pm_buffer_requests);
3993 CFETCH(gms, pmc_stats, pm_buffer_requests_failed);
3994 CFETCH(gms, pmc_stats, pm_log_sweeps);
3995 #undef CFETCH
3996 error = copyout(&gms, arg, sizeof(gms));
3997 }
3998 break;
3999
4000
4001 /*
4002 * Retrieve module version number
4003 */
4004
4005 case PMC_OP_GETMODULEVERSION:
4006 {
4007 uint32_t cv, modv;
4008
4009 /* retrieve the client's idea of the ABI version */
4010 if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
4011 break;
4012 /* don't service clients newer than our driver */
4013 modv = PMC_VERSION;
4014 if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
4015 error = EPROGMISMATCH;
4016 break;
4017 }
4018 error = copyout(&modv, arg, sizeof(int));
4019 }
4020 break;
4021
4022
4023 /*
4024 * Retrieve the state of all the PMCs on a given
4025 * CPU.
4026 */
4027
4028 case PMC_OP_GETPMCINFO:
4029 {
4030 int ari;
4031 struct pmc *pm;
4032 size_t pmcinfo_size;
4033 uint32_t cpu, n, npmc;
4034 struct pmc_owner *po;
4035 struct pmc_binding pb;
4036 struct pmc_classdep *pcd;
4037 struct pmc_info *p, *pmcinfo;
4038 struct pmc_op_getpmcinfo *gpi;
4039
4040 PMC_DOWNGRADE_SX();
4041
4042 gpi = (struct pmc_op_getpmcinfo *) arg;
4043
4044 if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
4045 break;
4046
4047 if (cpu >= pmc_cpu_max()) {
4048 error = EINVAL;
4049 break;
4050 }
4051
4052 if (!pmc_cpu_is_active(cpu)) {
4053 error = ENXIO;
4054 break;
4055 }
4056
4057 /* switch to CPU 'cpu' */
4058 pmc_save_cpu_binding(&pb);
4059 pmc_select_cpu(cpu);
4060
4061 npmc = md->pmd_npmc;
4062
4063 pmcinfo_size = npmc * sizeof(struct pmc_info);
4064 pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK | M_ZERO);
4065
4066 p = pmcinfo;
4067
4068 for (n = 0; n < md->pmd_npmc; n++, p++) {
4069
4070 pcd = pmc_ri_to_classdep(md, n, &ari);
4071
4072 KASSERT(pcd != NULL,
4073 ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4074
4075 if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
4076 break;
4077
4078 if (PMC_ROW_DISP_IS_STANDALONE(n))
4079 p->pm_rowdisp = PMC_DISP_STANDALONE;
4080 else if (PMC_ROW_DISP_IS_THREAD(n))
4081 p->pm_rowdisp = PMC_DISP_THREAD;
4082 else
4083 p->pm_rowdisp = PMC_DISP_FREE;
4084
4085 p->pm_ownerpid = -1;
4086
4087 if (pm == NULL) /* no PMC associated */
4088 continue;
4089
4090 po = pm->pm_owner;
4091
4092 KASSERT(po->po_owner != NULL,
4093 ("[pmc,%d] pmc_owner had a null proc pointer",
4094 __LINE__));
4095
4096 p->pm_ownerpid = po->po_owner->p_pid;
4097 p->pm_mode = PMC_TO_MODE(pm);
4098 p->pm_event = pm->pm_event;
4099 p->pm_flags = pm->pm_flags;
4100
4101 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
4102 p->pm_reloadcount =
4103 pm->pm_sc.pm_reloadcount;
4104 }
4105
4106 pmc_restore_cpu_binding(&pb);
4107
4108 /* now copy out the PMC info collected */
4109 if (error == 0)
4110 error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
4111
4112 free(pmcinfo, M_PMC);
4113 }
4114 break;
4115
4116
4117 /*
4118 * Set the administrative state of a PMC. I.e. whether
4119 * the PMC is to be used or not.
4120 */
4121
4122 case PMC_OP_PMCADMIN:
4123 {
4124 int cpu, ri;
4125 enum pmc_state request;
4126 struct pmc_cpu *pc;
4127 struct pmc_hw *phw;
4128 struct pmc_op_pmcadmin pma;
4129 struct pmc_binding pb;
4130
4131 sx_assert(&pmc_sx, SX_XLOCKED);
4132
4133 KASSERT(td == curthread,
4134 ("[pmc,%d] td != curthread", __LINE__));
4135
4136 error = priv_check(td, PRIV_PMC_MANAGE);
4137 if (error)
4138 break;
4139
4140 if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
4141 break;
4142
4143 cpu = pma.pm_cpu;
4144
4145 if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
4146 error = EINVAL;
4147 break;
4148 }
4149
4150 if (!pmc_cpu_is_active(cpu)) {
4151 error = ENXIO;
4152 break;
4153 }
4154
4155 request = pma.pm_state;
4156
4157 if (request != PMC_STATE_DISABLED &&
4158 request != PMC_STATE_FREE) {
4159 error = EINVAL;
4160 break;
4161 }
4162
4163 ri = pma.pm_pmc; /* pmc id == row index */
4164 if (ri < 0 || ri >= (int) md->pmd_npmc) {
4165 error = EINVAL;
4166 break;
4167 }
4168
4169 /*
4170 * We can't disable a PMC with a row-index allocated
4171 * for process virtual PMCs.
4172 */
4173
4174 if (PMC_ROW_DISP_IS_THREAD(ri) &&
4175 request == PMC_STATE_DISABLED) {
4176 error = EBUSY;
4177 break;
4178 }
4179
4180 /*
4181 * otherwise, this PMC on this CPU is either free or
4182 * in system-wide mode.
4183 */
4184
4185 pmc_save_cpu_binding(&pb);
4186 pmc_select_cpu(cpu);
4187
4188 pc = pmc_pcpu[cpu];
4189 phw = pc->pc_hwpmcs[ri];
4190
4191 /*
4192 * XXX do we need some kind of 'forced' disable?
4193 */
4194
4195 if (phw->phw_pmc == NULL) {
4196 if (request == PMC_STATE_DISABLED &&
4197 (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
4198 phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
4199 PMC_MARK_ROW_STANDALONE(ri);
4200 } else if (request == PMC_STATE_FREE &&
4201 (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
4202 phw->phw_state |= PMC_PHW_FLAG_IS_ENABLED;
4203 PMC_UNMARK_ROW_STANDALONE(ri);
4204 }
4205 /* other cases are a no-op */
4206 } else
4207 error = EBUSY;
4208
4209 pmc_restore_cpu_binding(&pb);
4210 }
4211 break;
4212
4213
4214 /*
4215 * Allocate a PMC.
4216 */
4217 case PMC_OP_PMCALLOCATE:
4218 {
4219 struct pmc_op_pmcallocate pa;
4220
4221 error = copyin(arg, &pa, sizeof(pa));
4222 if (error != 0)
4223 break;
4224
4225 error = pmc_do_op_pmcallocate(td, &pa);
4226 if (error != 0)
4227 break;
4228
4229 error = copyout(&pa, arg, sizeof(pa));
4230 }
4231 break;
4232
4233 /*
4234 * Attach a PMC to a process.
4235 */
4236 case PMC_OP_PMCATTACH:
4237 {
4238 struct pmc_op_pmcattach a;
4239
4240 error = copyin(arg, &a, sizeof(a));
4241 if (error != 0)
4242 break;
4243
4244 error = pmc_do_op_pmcattach(td, a);
4245 }
4246 break;
4247
4248 /*
4249 * Detach an attached PMC from a process.
4250 */
4251 case PMC_OP_PMCDETACH:
4252 {
4253 struct pmc_op_pmcattach a;
4254
4255 error = copyin(arg, &a, sizeof(a));
4256 if (error != 0)
4257 break;
4258
4259 error = pmc_do_op_pmcdetach(td, a);
4260 }
4261 break;
4262
4263
4264 /*
4265 * Retrieve the MSR number associated with the counter
4266 * 'pmc_id'. This allows processes to directly use RDPMC
4267 * instructions to read their PMCs, without the overhead of a
4268 * system call.
4269 */
4270
4271 case PMC_OP_PMCGETMSR:
4272 {
4273 int adjri, ri;
4274 struct pmc *pm;
4275 struct pmc_target *pt;
4276 struct pmc_op_getmsr gm;
4277 struct pmc_classdep *pcd;
4278
4279 PMC_DOWNGRADE_SX();
4280
4281 if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
4282 break;
4283
4284 if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
4285 break;
4286
4287 /*
4288 * The allocated PMC has to be a process virtual PMC,
4289 * i.e., of type MODE_T[CS]. Global PMCs can only be
4290 * read using the PMCREAD operation since they may be
4291 * allocated on a different CPU than the one we could
4292 * be running on at the time of the RDPMC instruction.
4293 *
4294 * The GETMSR operation is not allowed for PMCs that
4295 * are inherited across processes.
4296 */
4297
4298 if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
4299 (pm->pm_flags & PMC_F_DESCENDANTS)) {
4300 error = EINVAL;
4301 break;
4302 }
4303
4304 /*
4305 * It only makes sense to use a RDPMC (or its
4306 * equivalent instruction on non-x86 architectures) on
4307 * a process that has allocated and attached a PMC to
4308 * itself. Conversely the PMC is only allowed to have
4309 * one process attached to it -- its owner.
4310 */
4311
4312 if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
4313 LIST_NEXT(pt, pt_next) != NULL ||
4314 pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
4315 error = EINVAL;
4316 break;
4317 }
4318
4319 ri = PMC_TO_ROWINDEX(pm);
4320 pcd = pmc_ri_to_classdep(md, ri, &adjri);
4321
4322 /* PMC class has no 'GETMSR' support */
4323 if (pcd->pcd_get_msr == NULL) {
4324 error = ENOSYS;
4325 break;
4326 }
4327
4328 if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
4329 break;
4330
4331 if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
4332 break;
4333
4334 /*
4335 * Mark our process as using MSRs. Update machine
4336 * state using a forced context switch.
4337 */
4338
4339 pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
4340 pmc_force_context_switch();
4341
4342 }
4343 break;
4344
4345 /*
4346 * Release an allocated PMC.
4347 */
4348 case PMC_OP_PMCRELEASE:
4349 {
4350 struct pmc_op_simple sp;
4351
4352 error = copyin(arg, &sp, sizeof(sp));
4353 if (error != 0)
4354 break;
4355
4356 error = pmc_do_op_pmcrelease(sp.pm_pmcid);
4357 }
4358 break;
4359
4360 /*
4361 * Read and/or write a PMC.
4362 */
4363 case PMC_OP_PMCRW:
4364 {
4365 struct pmc_op_pmcrw prw;
4366 struct pmc_op_pmcrw *pprw;
4367 pmc_value_t oldvalue;
4368
4369 PMC_DOWNGRADE_SX();
4370
4371 error = copyin(arg, &prw, sizeof(prw));
4372 if (error != 0)
4373 break;
4374
4375 error = pmc_do_op_pmcrw(&prw, &oldvalue);
4376 if (error != 0)
4377 break;
4378
4379 /* Return old value if requested. */
4380 if ((prw.pm_flags & PMC_F_OLDVALUE) != 0) {
4381 pprw = arg;
4382 error = copyout(&oldvalue, &pprw->pm_value,
4383 sizeof(prw.pm_value));
4384 }
4385 }
4386 break;
4387
4388
4389 /*
4390 * Set the sampling rate for a sampling mode PMC and the
4391 * initial count for a counting mode PMC.
4392 */
4393
4394 case PMC_OP_PMCSETCOUNT:
4395 {
4396 struct pmc *pm;
4397 struct pmc_op_pmcsetcount sc;
4398
4399 PMC_DOWNGRADE_SX();
4400
4401 if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
4402 break;
4403
4404 if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
4405 break;
4406
4407 if (pm->pm_state == PMC_STATE_RUNNING) {
4408 error = EBUSY;
4409 break;
4410 }
4411
4412 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
4413 /*
4414 * Don't permit requested sample rate to be
4415 * less than pmc_mincount.
4416 */
4417 if (sc.pm_count < MAX(1, pmc_mincount))
4418 log(LOG_WARNING, "pmcsetcount: passed sample "
4419 "rate %ju - setting to %u\n",
4420 (uintmax_t)sc.pm_count,
4421 MAX(1, pmc_mincount));
4422 pm->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
4423 sc.pm_count);
4424 } else
4425 pm->pm_sc.pm_initial = sc.pm_count;
4426 }
4427 break;
4428
4429
4430 /*
4431 * Start a PMC.
4432 */
4433
4434 case PMC_OP_PMCSTART:
4435 {
4436 pmc_id_t pmcid;
4437 struct pmc *pm;
4438 struct pmc_op_simple sp;
4439
4440 sx_assert(&pmc_sx, SX_XLOCKED);
4441
4442 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4443 break;
4444
4445 pmcid = sp.pm_pmcid;
4446
4447 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4448 break;
4449
4450 KASSERT(pmcid == pm->pm_id,
4451 ("[pmc,%d] pmcid %x != id %x", __LINE__,
4452 pm->pm_id, pmcid));
4453
4454 if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
4455 break;
4456 else if (pm->pm_state != PMC_STATE_STOPPED &&
4457 pm->pm_state != PMC_STATE_ALLOCATED) {
4458 error = EINVAL;
4459 break;
4460 }
4461
4462 error = pmc_start(pm);
4463 }
4464 break;
4465
4466
4467 /*
4468 * Stop a PMC.
4469 */
4470
4471 case PMC_OP_PMCSTOP:
4472 {
4473 pmc_id_t pmcid;
4474 struct pmc *pm;
4475 struct pmc_op_simple sp;
4476
4477 PMC_DOWNGRADE_SX();
4478
4479 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4480 break;
4481
4482 pmcid = sp.pm_pmcid;
4483
4484 /*
4485 * Mark the PMC as inactive and invoke the MD stop
4486 * routines if needed.
4487 */
4488
4489 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4490 break;
4491
4492 KASSERT(pmcid == pm->pm_id,
4493 ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
4494 pm->pm_id, pmcid));
4495
4496 if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
4497 break;
4498 else if (pm->pm_state != PMC_STATE_RUNNING) {
4499 error = EINVAL;
4500 break;
4501 }
4502
4503 error = pmc_stop(pm);
4504 }
4505 break;
4506
4507
4508 /*
4509 * Write a user supplied value to the log file.
4510 */
4511
4512 case PMC_OP_WRITELOG:
4513 {
4514 struct pmc_op_writelog wl;
4515 struct pmc_owner *po;
4516
4517 PMC_DOWNGRADE_SX();
4518
4519 if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4520 break;
4521
4522 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4523 error = EINVAL;
4524 break;
4525 }
4526
4527 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4528 error = EINVAL;
4529 break;
4530 }
4531
4532 error = pmclog_process_userlog(po, &wl);
4533 }
4534 break;
4535
4536
4537 default:
4538 error = EINVAL;
4539 break;
4540 }
4541
4542 if (is_sx_downgraded)
4543 sx_sunlock(&pmc_sx);
4544 else
4545 sx_xunlock(&pmc_sx);
4546 done_syscall:
4547 if (error)
4548 counter_u64_add(pmc_stats.pm_syscall_errors, 1);
4549
4550 return (error);
4551 }
4552
4553 /*
4554 * Helper functions
4555 */
4556
4557 /*
4558 * Mark the thread as needing callchain capture and post an AST. The
4559 * actual callchain capture will be done in a context where it is safe
4560 * to take page faults.
4561 */
4562 static void
pmc_post_callchain_callback(void)4563 pmc_post_callchain_callback(void)
4564 {
4565 struct thread *td;
4566
4567 td = curthread;
4568
4569 /*
4570 * If there is multiple PMCs for the same interrupt ignore new post
4571 */
4572 if ((td->td_pflags & TDP_CALLCHAIN) != 0)
4573 return;
4574
4575 /*
4576 * Mark this thread as needing callchain capture.
4577 * `td->td_pflags' will be safe to touch because this thread
4578 * was in user space when it was interrupted.
4579 */
4580 td->td_pflags |= TDP_CALLCHAIN;
4581
4582 /*
4583 * Don't let this thread migrate between CPUs until callchain
4584 * capture completes.
4585 */
4586 sched_pin();
4587
4588 return;
4589 }
4590
4591 /*
4592 * Find a free slot in the per-cpu array of samples and capture the
4593 * current callchain there. If a sample was successfully added, a bit
4594 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4595 * needs to be invoked from the clock handler.
4596 *
4597 * This function is meant to be called from an NMI handler. It cannot
4598 * use any of the locking primitives supplied by the OS.
4599 */
4600 static int
pmc_add_sample(ring_type_t ring,struct pmc * pm,struct trapframe * tf)4601 pmc_add_sample(ring_type_t ring, struct pmc *pm, struct trapframe *tf)
4602 {
4603 struct pmc_sample *ps;
4604 struct pmc_samplebuffer *psb;
4605 struct thread *td;
4606 int error, cpu, callchaindepth;
4607 bool inuserspace;
4608
4609 error = 0;
4610
4611 /*
4612 * Allocate space for a sample buffer.
4613 */
4614 cpu = curcpu;
4615 psb = pmc_pcpu[cpu]->pc_sb[ring];
4616 inuserspace = TRAPF_USERMODE(tf);
4617 ps = PMC_PROD_SAMPLE(psb);
4618 if (psb->ps_considx != psb->ps_prodidx &&
4619 ps->ps_nsamples) { /* in use, reader hasn't caught up */
4620 pm->pm_pcpu_state[cpu].pps_stalled = 1;
4621 counter_u64_add(pmc_stats.pm_intr_bufferfull, 1);
4622 PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4623 cpu, pm, tf, inuserspace,
4624 (int)(psb->ps_prodidx & pmc_sample_mask),
4625 (int)(psb->ps_considx & pmc_sample_mask));
4626 callchaindepth = 1;
4627 error = ENOMEM;
4628 goto done;
4629 }
4630
4631 /* Fill in entry. */
4632 PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm, tf,
4633 inuserspace, (int)(psb->ps_prodidx & pmc_sample_mask),
4634 (int)(psb->ps_considx & pmc_sample_mask));
4635
4636 td = curthread;
4637 ps->ps_pmc = pm;
4638 ps->ps_td = td;
4639 ps->ps_pid = td->td_proc->p_pid;
4640 ps->ps_tid = td->td_tid;
4641 ps->ps_tsc = pmc_rdtsc();
4642 ps->ps_ticks = ticks;
4643 ps->ps_cpu = cpu;
4644 ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4645
4646 callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4647 pmc_callchaindepth : 1;
4648
4649 MPASS(ps->ps_pc != NULL);
4650 if (callchaindepth == 1) {
4651 ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4652 } else {
4653 /*
4654 * Kernel stack traversals can be done immediately, while we
4655 * defer to an AST for user space traversals.
4656 */
4657 if (!inuserspace) {
4658 callchaindepth = pmc_save_kernel_callchain(ps->ps_pc,
4659 callchaindepth, tf);
4660 } else {
4661 pmc_post_callchain_callback();
4662 callchaindepth = PMC_USER_CALLCHAIN_PENDING;
4663 }
4664 }
4665
4666 ps->ps_nsamples = callchaindepth; /* mark entry as in-use */
4667 if (ring == PMC_UR) {
4668 ps->ps_nsamples_actual = callchaindepth;
4669 ps->ps_nsamples = PMC_USER_CALLCHAIN_PENDING;
4670 }
4671
4672 KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
4673 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
4674 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
4675
4676 counter_u64_add(pm->pm_runcount, 1); /* hold onto PMC */
4677 /* increment write pointer */
4678 psb->ps_prodidx++;
4679 done:
4680 /* mark CPU as needing processing */
4681 if (callchaindepth != PMC_USER_CALLCHAIN_PENDING)
4682 DPCPU_SET(pmc_sampled, 1);
4683
4684 return (error);
4685 }
4686
4687 /*
4688 * Interrupt processing.
4689 *
4690 * This function may be called from an NMI handler. It cannot use any of the
4691 * locking primitives supplied by the OS.
4692 */
4693 int
pmc_process_interrupt(int ring,struct pmc * pm,struct trapframe * tf)4694 pmc_process_interrupt(int ring, struct pmc *pm, struct trapframe *tf)
4695 {
4696 struct thread *td;
4697
4698 td = curthread;
4699 if ((pm->pm_flags & PMC_F_USERCALLCHAIN) &&
4700 (td->td_proc->p_flag & P_KPROC) == 0 && !TRAPF_USERMODE(tf)) {
4701 atomic_add_int(&td->td_pmcpend, 1);
4702 return (pmc_add_sample(PMC_UR, pm, tf));
4703 }
4704 return (pmc_add_sample(ring, pm, tf));
4705 }
4706
4707 /*
4708 * Capture a user call chain. This function will be called from ast()
4709 * before control returns to userland and before the process gets
4710 * rescheduled.
4711 */
4712 static void
pmc_capture_user_callchain(int cpu,int ring,struct trapframe * tf)4713 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4714 {
4715 struct pmc *pm;
4716 struct pmc_sample *ps;
4717 struct pmc_samplebuffer *psb;
4718 struct thread *td;
4719 uint64_t considx, prodidx;
4720 int nsamples, nrecords, pass, iter;
4721 int start_ticks __diagused;
4722
4723 psb = pmc_pcpu[cpu]->pc_sb[ring];
4724 td = curthread;
4725 nrecords = INT_MAX;
4726 pass = 0;
4727 start_ticks = ticks;
4728
4729 KASSERT(td->td_pflags & TDP_CALLCHAIN,
4730 ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4731 __LINE__));
4732 restart:
4733 if (ring == PMC_UR)
4734 nrecords = atomic_readandclear_32(&td->td_pmcpend);
4735
4736 for (iter = 0, considx = psb->ps_considx, prodidx = psb->ps_prodidx;
4737 considx < prodidx && iter < pmc_nsamples; considx++, iter++) {
4738 ps = PMC_CONS_SAMPLE_OFF(psb, considx);
4739
4740 /*
4741 * Iterate through all deferred callchain requests. Walk from
4742 * the current read pointer to the current write pointer.
4743 */
4744 #ifdef INVARIANTS
4745 if (ps->ps_nsamples == PMC_SAMPLE_FREE) {
4746 continue;
4747 }
4748 #endif
4749 if (ps->ps_td != td ||
4750 ps->ps_nsamples != PMC_USER_CALLCHAIN_PENDING ||
4751 ps->ps_pmc->pm_state != PMC_STATE_RUNNING)
4752 continue;
4753
4754 KASSERT(ps->ps_cpu == cpu,
4755 ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4756 ps->ps_cpu, PCPU_GET(cpuid)));
4757
4758 pm = ps->ps_pmc;
4759 KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4760 ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4761 "want it", __LINE__));
4762 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4763 ("[pmc,%d] runcount %ju", __LINE__,
4764 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
4765
4766 if (ring == PMC_UR) {
4767 nsamples = ps->ps_nsamples_actual;
4768 counter_u64_add(pmc_stats.pm_merges, 1);
4769 } else
4770 nsamples = 0;
4771
4772 /*
4773 * Retrieve the callchain and mark the sample buffer
4774 * as 'processable' by the timer tick sweep code.
4775 */
4776 if (__predict_true(nsamples < pmc_callchaindepth - 1))
4777 nsamples += pmc_save_user_callchain(ps->ps_pc + nsamples,
4778 pmc_callchaindepth - nsamples - 1, tf);
4779
4780 /*
4781 * We have to prevent hardclock from potentially overwriting
4782 * this sample between when we read the value and when we set
4783 * it.
4784 */
4785 spinlock_enter();
4786
4787 /*
4788 * Verify that the sample hasn't been dropped in the meantime.
4789 */
4790 if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
4791 ps->ps_nsamples = nsamples;
4792 /*
4793 * If we couldn't get a sample, simply drop the
4794 * reference.
4795 */
4796 if (nsamples == 0)
4797 counter_u64_add(pm->pm_runcount, -1);
4798 }
4799 spinlock_exit();
4800 if (nrecords-- == 1)
4801 break;
4802 }
4803 if (__predict_false(ring == PMC_UR && td->td_pmcpend)) {
4804 if (pass == 0) {
4805 pass = 1;
4806 goto restart;
4807 }
4808 /* only collect samples for this part once */
4809 td->td_pmcpend = 0;
4810 }
4811
4812 #ifdef INVARIANTS
4813 if ((ticks - start_ticks) > hz)
4814 log(LOG_ERR, "%s took %d ticks\n", __func__, (ticks - start_ticks));
4815 #endif
4816 /* mark CPU as needing processing */
4817 DPCPU_SET(pmc_sampled, 1);
4818 }
4819
4820 /*
4821 * Process saved PC samples.
4822 */
4823 static void
pmc_process_samples(int cpu,ring_type_t ring)4824 pmc_process_samples(int cpu, ring_type_t ring)
4825 {
4826 struct pmc *pm;
4827 struct thread *td;
4828 struct pmc_owner *po;
4829 struct pmc_sample *ps;
4830 struct pmc_classdep *pcd;
4831 struct pmc_samplebuffer *psb;
4832 uint64_t delta __diagused;
4833 int adjri, n;
4834
4835 KASSERT(PCPU_GET(cpuid) == cpu,
4836 ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4837 PCPU_GET(cpuid), cpu));
4838
4839 psb = pmc_pcpu[cpu]->pc_sb[ring];
4840 delta = psb->ps_prodidx - psb->ps_considx;
4841 MPASS(delta <= pmc_nsamples);
4842 MPASS(psb->ps_considx <= psb->ps_prodidx);
4843 for (n = 0; psb->ps_considx < psb->ps_prodidx; psb->ps_considx++, n++) {
4844 ps = PMC_CONS_SAMPLE(psb);
4845
4846 if (__predict_false(ps->ps_nsamples == PMC_SAMPLE_FREE))
4847 continue;
4848
4849 /* skip non-running samples */
4850 pm = ps->ps_pmc;
4851 if (pm->pm_state != PMC_STATE_RUNNING)
4852 goto entrydone;
4853
4854 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4855 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
4856 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
4857 KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4858 ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4859 pm, PMC_TO_MODE(pm)));
4860
4861 po = pm->pm_owner;
4862
4863 /* If there is a pending AST wait for completion */
4864 if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
4865 /*
4866 * If we've been waiting more than 1 tick to
4867 * collect a callchain for this record then
4868 * drop it and move on.
4869 */
4870 if (ticks - ps->ps_ticks > 1) {
4871 /*
4872 * Track how often we hit this as it will
4873 * preferentially lose user samples
4874 * for long running system calls.
4875 */
4876 counter_u64_add(pmc_stats.pm_overwrites, 1);
4877 goto entrydone;
4878 }
4879 /* Need a rescan at a later time. */
4880 DPCPU_SET(pmc_sampled, 1);
4881 break;
4882 }
4883
4884 PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4885 pm, ps->ps_nsamples, ps->ps_flags,
4886 (int)(psb->ps_prodidx & pmc_sample_mask),
4887 (int)(psb->ps_considx & pmc_sample_mask));
4888
4889 /*
4890 * If this is a process-mode PMC that is attached to
4891 * its owner, and if the PC is in user mode, update
4892 * profiling statistics like timer-based profiling
4893 * would have done.
4894 *
4895 * Otherwise, this is either a sampling-mode PMC that
4896 * is attached to a different process than its owner,
4897 * or a system-wide sampling PMC. Dispatch a log
4898 * entry to the PMC's owner process.
4899 */
4900 if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4901 if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4902 td = FIRST_THREAD_IN_PROC(po->po_owner);
4903 addupc_intr(td, ps->ps_pc[0], 1);
4904 }
4905 } else
4906 pmclog_process_callchain(pm, ps);
4907
4908 entrydone:
4909 ps->ps_nsamples = 0; /* mark entry as free */
4910 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4911 ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
4912 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
4913
4914 counter_u64_add(pm->pm_runcount, -1);
4915 }
4916
4917 counter_u64_add(pmc_stats.pm_log_sweeps, 1);
4918
4919 /* Do not re-enable stalled PMCs if we failed to process any samples */
4920 if (n == 0)
4921 return;
4922
4923 /*
4924 * Restart any stalled sampling PMCs on this CPU.
4925 *
4926 * If the NMI handler sets the pm_stalled field of a PMC after
4927 * the check below, we'll end up processing the stalled PMC at
4928 * the next hardclock tick.
4929 */
4930 for (n = 0; n < md->pmd_npmc; n++) {
4931 pcd = pmc_ri_to_classdep(md, n, &adjri);
4932 KASSERT(pcd != NULL,
4933 ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4934 (void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
4935
4936 if (pm == NULL || /* !cfg'ed */
4937 pm->pm_state != PMC_STATE_RUNNING || /* !active */
4938 !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4939 !pm->pm_pcpu_state[cpu].pps_cpustate || /* !desired */
4940 !pm->pm_pcpu_state[cpu].pps_stalled) /* !stalled */
4941 continue;
4942
4943 pm->pm_pcpu_state[cpu].pps_stalled = 0;
4944 (void)(*pcd->pcd_start_pmc)(cpu, adjri, pm);
4945 }
4946 }
4947
4948 /*
4949 * Event handlers.
4950 */
4951
4952 /*
4953 * Handle a process exit.
4954 *
4955 * Remove this process from all hash tables. If this process
4956 * owned any PMCs, turn off those PMCs and deallocate them,
4957 * removing any associations with target processes.
4958 *
4959 * This function will be called by the last 'thread' of a
4960 * process.
4961 *
4962 * XXX This eventhandler gets called early in the exit process.
4963 * Consider using a 'hook' invocation from thread_exit() or equivalent
4964 * spot. Another negative is that kse_exit doesn't seem to call
4965 * exit1() [??].
4966 */
4967 static void
pmc_process_exit(void * arg __unused,struct proc * p)4968 pmc_process_exit(void *arg __unused, struct proc *p)
4969 {
4970 struct pmc *pm;
4971 struct pmc_owner *po;
4972 struct pmc_process *pp;
4973 struct pmc_classdep *pcd;
4974 pmc_value_t newvalue, tmp;
4975 int ri, adjri, cpu;
4976 bool is_using_hwpmcs;
4977
4978 PROC_LOCK(p);
4979 is_using_hwpmcs = (p->p_flag & P_HWPMC) != 0;
4980 PROC_UNLOCK(p);
4981
4982 /*
4983 * Log a sysexit event to all SS PMC owners.
4984 */
4985 PMC_EPOCH_ENTER();
4986 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
4987 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
4988 pmclog_process_sysexit(po, p->p_pid);
4989 }
4990 PMC_EPOCH_EXIT();
4991
4992 PMC_GET_SX_XLOCK();
4993 PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4994 p->p_comm);
4995
4996 if (!is_using_hwpmcs)
4997 goto out;
4998
4999 /*
5000 * Since this code is invoked by the last thread in an exiting process,
5001 * we would have context switched IN at some prior point. However, with
5002 * PREEMPTION, kernel mode context switches may happen any time, so we
5003 * want to disable a context switch OUT till we get any PMCs targeting
5004 * this process off the hardware.
5005 *
5006 * We also need to atomically remove this process' entry from our
5007 * target process hash table, using PMC_FLAG_REMOVE.
5008 */
5009 PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
5010 p->p_comm);
5011
5012 critical_enter(); /* no preemption */
5013
5014 cpu = curthread->td_oncpu;
5015
5016 pp = pmc_find_process_descriptor(p, PMC_FLAG_REMOVE);
5017 if (pp == NULL) {
5018 critical_exit();
5019 goto out;
5020 }
5021
5022 PMCDBG2(PRC,EXT,2, "process-exit proc=%p pmc-process=%p", p, pp);
5023
5024 /*
5025 * The exiting process could be the target of some PMCs which will be
5026 * running on currently executing CPU.
5027 *
5028 * We need to turn these PMCs off like we would do at context switch
5029 * OUT time.
5030 */
5031 for (ri = 0; ri < md->pmd_npmc; ri++) {
5032 /*
5033 * Pick up the pmc pointer from hardware state similar to the
5034 * CSW_OUT code.
5035 */
5036 pm = NULL;
5037 pcd = pmc_ri_to_classdep(md, ri, &adjri);
5038
5039 (void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
5040
5041 PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
5042
5043 if (pm == NULL || !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
5044 continue;
5045
5046 PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p state=%d", ri,
5047 pp->pp_pmcs[ri].pp_pmc, pm, pm->pm_state);
5048
5049 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
5050 ("[pmc,%d] ri mismatch pmc(%d) ri(%d)", __LINE__,
5051 PMC_TO_ROWINDEX(pm), ri));
5052 KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
5053 ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__, pm, ri,
5054 pp->pp_pmcs[ri].pp_pmc));
5055 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
5056 ("[pmc,%d] bad runcount ri %d rc %ju", __LINE__, ri,
5057 (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
5058
5059 /*
5060 * Change desired state, and then stop if not stalled. This
5061 * two-step dance should avoid race conditions where an
5062 * interrupt re-enables the PMC after this code has already
5063 * checked the pm_stalled flag.
5064 */
5065 if (pm->pm_pcpu_state[cpu].pps_cpustate) {
5066 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
5067 if (!pm->pm_pcpu_state[cpu].pps_stalled) {
5068 (void)pcd->pcd_stop_pmc(cpu, adjri, pm);
5069
5070 if (PMC_TO_MODE(pm) == PMC_MODE_TC) {
5071 pcd->pcd_read_pmc(cpu, adjri, pm,
5072 &newvalue);
5073 tmp = newvalue - PMC_PCPU_SAVED(cpu, ri);
5074
5075 mtx_pool_lock_spin(pmc_mtxpool, pm);
5076 pm->pm_gv.pm_savedvalue += tmp;
5077 pp->pp_pmcs[ri].pp_pmcval += tmp;
5078 mtx_pool_unlock_spin(pmc_mtxpool, pm);
5079 }
5080 }
5081 }
5082
5083 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
5084 ("[pmc,%d] runcount is %d", __LINE__, ri));
5085
5086 counter_u64_add(pm->pm_runcount, -1);
5087 (void)pcd->pcd_config_pmc(cpu, adjri, NULL);
5088 }
5089
5090 /*
5091 * Inform the MD layer of this pseudo "context switch out".
5092 */
5093 (void)md->pmd_switch_out(pmc_pcpu[cpu], pp);
5094
5095 critical_exit(); /* ok to be pre-empted now */
5096
5097 /*
5098 * Unlink this process from the PMCs that are targeting it. This will
5099 * send a signal to all PMC owner's whose PMCs are orphaned.
5100 *
5101 * Log PMC value at exit time if requested.
5102 */
5103 for (ri = 0; ri < md->pmd_npmc; ri++) {
5104 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
5105 if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) != 0 &&
5106 PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm))) {
5107 pmclog_process_procexit(pm, pp);
5108 }
5109 pmc_unlink_target_process(pm, pp);
5110 }
5111 }
5112 free(pp, M_PMC);
5113
5114 out:
5115 /*
5116 * If the process owned PMCs, free them up and free up memory.
5117 */
5118 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
5119 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
5120 pmclog_close(po);
5121 pmc_remove_owner(po);
5122 pmc_destroy_owner_descriptor(po);
5123 }
5124
5125 sx_xunlock(&pmc_sx);
5126 }
5127
5128 /*
5129 * Handle a process fork.
5130 *
5131 * If the parent process 'p1' is under HWPMC monitoring, then copy
5132 * over any attached PMCs that have 'do_descendants' semantics.
5133 */
5134 static void
pmc_process_fork(void * arg __unused,struct proc * p1,struct proc * newproc,int flags __unused)5135 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
5136 int flags __unused)
5137 {
5138 struct pmc *pm;
5139 struct pmc_owner *po;
5140 struct pmc_process *ppnew, *ppold;
5141 unsigned int ri;
5142 bool is_using_hwpmcs, do_descendants;
5143
5144 PROC_LOCK(p1);
5145 is_using_hwpmcs = (p1->p_flag & P_HWPMC) != 0;
5146 PROC_UNLOCK(p1);
5147
5148 /*
5149 * If there are system-wide sampling PMCs active, we need to
5150 * log all fork events to their owner's logs.
5151 */
5152 PMC_EPOCH_ENTER();
5153 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5154 if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
5155 pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
5156 pmclog_process_proccreate(po, newproc, 1);
5157 }
5158 }
5159 PMC_EPOCH_EXIT();
5160
5161 if (!is_using_hwpmcs)
5162 return;
5163
5164 PMC_GET_SX_XLOCK();
5165 PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
5166 p1->p_pid, p1->p_comm, newproc);
5167
5168 /*
5169 * If the parent process (curthread->td_proc) is a
5170 * target of any PMCs, look for PMCs that are to be
5171 * inherited, and link these into the new process
5172 * descriptor.
5173 */
5174 ppold = pmc_find_process_descriptor(curthread->td_proc, PMC_FLAG_NONE);
5175 if (ppold == NULL)
5176 goto done; /* nothing to do */
5177
5178 do_descendants = false;
5179 for (ri = 0; ri < md->pmd_npmc; ri++) {
5180 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
5181 (pm->pm_flags & PMC_F_DESCENDANTS) != 0) {
5182 do_descendants = true;
5183 break;
5184 }
5185 }
5186 if (!do_descendants) /* nothing to do */
5187 goto done;
5188
5189 /*
5190 * Now mark the new process as being tracked by this driver.
5191 */
5192 PROC_LOCK(newproc);
5193 newproc->p_flag |= P_HWPMC;
5194 PROC_UNLOCK(newproc);
5195
5196 /* Allocate a descriptor for the new process. */
5197 ppnew = pmc_find_process_descriptor(newproc, PMC_FLAG_ALLOCATE);
5198 if (ppnew == NULL)
5199 goto done;
5200
5201 /*
5202 * Run through all PMCs that were targeting the old process
5203 * and which specified F_DESCENDANTS and attach them to the
5204 * new process.
5205 *
5206 * Log the fork event to all owners of PMCs attached to this
5207 * process, if not already logged.
5208 */
5209 for (ri = 0; ri < md->pmd_npmc; ri++) {
5210 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
5211 (pm->pm_flags & PMC_F_DESCENDANTS) != 0) {
5212 pmc_link_target_process(pm, ppnew);
5213 po = pm->pm_owner;
5214 if (po->po_sscount == 0 &&
5215 (po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
5216 pmclog_process_procfork(po, p1->p_pid,
5217 newproc->p_pid);
5218 }
5219 }
5220 }
5221
5222 done:
5223 sx_xunlock(&pmc_sx);
5224 }
5225
5226 static void
pmc_process_threadcreate(struct thread * td)5227 pmc_process_threadcreate(struct thread *td)
5228 {
5229 struct pmc_owner *po;
5230
5231 PMC_EPOCH_ENTER();
5232 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5233 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
5234 pmclog_process_threadcreate(po, td, 1);
5235 }
5236 PMC_EPOCH_EXIT();
5237 }
5238
5239 static void
pmc_process_threadexit(struct thread * td)5240 pmc_process_threadexit(struct thread *td)
5241 {
5242 struct pmc_owner *po;
5243
5244 PMC_EPOCH_ENTER();
5245 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5246 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
5247 pmclog_process_threadexit(po, td);
5248 }
5249 PMC_EPOCH_EXIT();
5250 }
5251
5252 static void
pmc_process_proccreate(struct proc * p)5253 pmc_process_proccreate(struct proc *p)
5254 {
5255 struct pmc_owner *po;
5256
5257 PMC_EPOCH_ENTER();
5258 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5259 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
5260 pmclog_process_proccreate(po, p, 1 /* sync */);
5261 }
5262 PMC_EPOCH_EXIT();
5263 }
5264
5265 static void
pmc_process_allproc(struct pmc * pm)5266 pmc_process_allproc(struct pmc *pm)
5267 {
5268 struct pmc_owner *po;
5269 struct thread *td;
5270 struct proc *p;
5271
5272 po = pm->pm_owner;
5273 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
5274 return;
5275
5276 sx_slock(&allproc_lock);
5277 FOREACH_PROC_IN_SYSTEM(p) {
5278 pmclog_process_proccreate(po, p, 0 /* sync */);
5279 PROC_LOCK(p);
5280 FOREACH_THREAD_IN_PROC(p, td)
5281 pmclog_process_threadcreate(po, td, 0 /* sync */);
5282 PROC_UNLOCK(p);
5283 }
5284 sx_sunlock(&allproc_lock);
5285 pmclog_flush(po, 0);
5286 }
5287
5288 static void
pmc_kld_load(void * arg __unused,linker_file_t lf)5289 pmc_kld_load(void *arg __unused, linker_file_t lf)
5290 {
5291 struct pmc_owner *po;
5292
5293 /*
5294 * Notify owners of system sampling PMCs about KLD operations.
5295 */
5296 PMC_EPOCH_ENTER();
5297 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5298 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5299 pmclog_process_map_in(po, (pid_t) -1,
5300 (uintfptr_t) lf->address, lf->pathname);
5301 }
5302 PMC_EPOCH_EXIT();
5303
5304 /*
5305 * TODO: Notify owners of (all) process-sampling PMCs too.
5306 */
5307 }
5308
5309 static void
pmc_kld_unload(void * arg __unused,const char * filename __unused,caddr_t address,size_t size)5310 pmc_kld_unload(void *arg __unused, const char *filename __unused,
5311 caddr_t address, size_t size)
5312 {
5313 struct pmc_owner *po;
5314
5315 PMC_EPOCH_ENTER();
5316 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
5317 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
5318 pmclog_process_map_out(po, (pid_t)-1,
5319 (uintfptr_t)address, (uintfptr_t)address + size);
5320 }
5321 }
5322 PMC_EPOCH_EXIT();
5323
5324 /*
5325 * TODO: Notify owners of process-sampling PMCs.
5326 */
5327 }
5328
5329 /*
5330 * initialization
5331 */
5332 static const char *
pmc_name_of_pmcclass(enum pmc_class class)5333 pmc_name_of_pmcclass(enum pmc_class class)
5334 {
5335
5336 switch (class) {
5337 #undef __PMC_CLASS
5338 #define __PMC_CLASS(S,V,D) \
5339 case PMC_CLASS_##S: \
5340 return #S;
5341 __PMC_CLASSES();
5342 default:
5343 return ("<unknown>");
5344 }
5345 }
5346
5347 /*
5348 * Base class initializer: allocate structure and set default classes.
5349 */
5350 struct pmc_mdep *
pmc_mdep_alloc(int nclasses)5351 pmc_mdep_alloc(int nclasses)
5352 {
5353 struct pmc_mdep *md;
5354 int n;
5355
5356 /* SOFT + md classes */
5357 n = 1 + nclasses;
5358 md = malloc(sizeof(struct pmc_mdep) + n * sizeof(struct pmc_classdep),
5359 M_PMC, M_WAITOK | M_ZERO);
5360 md->pmd_nclass = n;
5361
5362 /* Default methods */
5363 md->pmd_switch_in = generic_switch_in;
5364 md->pmd_switch_out = generic_switch_out;
5365
5366 /* Add base class. */
5367 pmc_soft_initialize(md);
5368 return (md);
5369 }
5370
5371 void
pmc_mdep_free(struct pmc_mdep * md)5372 pmc_mdep_free(struct pmc_mdep *md)
5373 {
5374 pmc_soft_finalize(md);
5375 free(md, M_PMC);
5376 }
5377
5378 static int
generic_switch_in(struct pmc_cpu * pc __unused,struct pmc_process * pp __unused)5379 generic_switch_in(struct pmc_cpu *pc __unused, struct pmc_process *pp __unused)
5380 {
5381
5382 return (0);
5383 }
5384
5385 static int
generic_switch_out(struct pmc_cpu * pc __unused,struct pmc_process * pp __unused)5386 generic_switch_out(struct pmc_cpu *pc __unused, struct pmc_process *pp __unused)
5387 {
5388
5389 return (0);
5390 }
5391
5392 static struct pmc_mdep *
pmc_generic_cpu_initialize(void)5393 pmc_generic_cpu_initialize(void)
5394 {
5395 struct pmc_mdep *md;
5396
5397 md = pmc_mdep_alloc(0);
5398
5399 md->pmd_cputype = PMC_CPU_GENERIC;
5400
5401 return (md);
5402 }
5403
5404 static void
pmc_generic_cpu_finalize(struct pmc_mdep * md __unused)5405 pmc_generic_cpu_finalize(struct pmc_mdep *md __unused)
5406 {
5407
5408 }
5409
5410 static int
pmc_initialize(void)5411 pmc_initialize(void)
5412 {
5413 struct pcpu *pc;
5414 struct pmc_binding pb;
5415 struct pmc_classdep *pcd;
5416 struct pmc_sample *ps;
5417 struct pmc_samplebuffer *sb;
5418 int c, cpu, error, n, ri;
5419 u_int maxcpu, domain;
5420
5421 md = NULL;
5422 error = 0;
5423
5424 pmc_stats.pm_intr_ignored = counter_u64_alloc(M_WAITOK);
5425 pmc_stats.pm_intr_processed = counter_u64_alloc(M_WAITOK);
5426 pmc_stats.pm_intr_bufferfull = counter_u64_alloc(M_WAITOK);
5427 pmc_stats.pm_syscalls = counter_u64_alloc(M_WAITOK);
5428 pmc_stats.pm_syscall_errors = counter_u64_alloc(M_WAITOK);
5429 pmc_stats.pm_buffer_requests = counter_u64_alloc(M_WAITOK);
5430 pmc_stats.pm_buffer_requests_failed = counter_u64_alloc(M_WAITOK);
5431 pmc_stats.pm_log_sweeps = counter_u64_alloc(M_WAITOK);
5432 pmc_stats.pm_merges = counter_u64_alloc(M_WAITOK);
5433 pmc_stats.pm_overwrites = counter_u64_alloc(M_WAITOK);
5434
5435 #ifdef HWPMC_DEBUG
5436 /* parse debug flags first */
5437 if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
5438 pmc_debugstr, sizeof(pmc_debugstr))) {
5439 pmc_debugflags_parse(pmc_debugstr, pmc_debugstr +
5440 strlen(pmc_debugstr));
5441 }
5442 #endif
5443
5444 PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
5445
5446 /* check kernel version */
5447 if (pmc_kernel_version != PMC_VERSION) {
5448 if (pmc_kernel_version == 0)
5449 printf("hwpmc: this kernel has not been compiled with "
5450 "'options HWPMC_HOOKS'.\n");
5451 else
5452 printf("hwpmc: kernel version (0x%x) does not match "
5453 "module version (0x%x).\n", pmc_kernel_version,
5454 PMC_VERSION);
5455 return (EPROGMISMATCH);
5456 }
5457
5458 /*
5459 * check sysctl parameters
5460 */
5461 if (pmc_hashsize <= 0) {
5462 printf("hwpmc: tunable \"hashsize\"=%d must be "
5463 "greater than zero.\n", pmc_hashsize);
5464 pmc_hashsize = PMC_HASH_SIZE;
5465 }
5466
5467 if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
5468 printf("hwpmc: tunable \"nsamples\"=%d out of "
5469 "range.\n", pmc_nsamples);
5470 pmc_nsamples = PMC_NSAMPLES;
5471 }
5472 pmc_sample_mask = pmc_nsamples - 1;
5473
5474 if (pmc_callchaindepth <= 0 ||
5475 pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
5476 printf("hwpmc: tunable \"callchaindepth\"=%d out of "
5477 "range - using %d.\n", pmc_callchaindepth,
5478 PMC_CALLCHAIN_DEPTH_MAX);
5479 pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
5480 }
5481
5482 md = pmc_md_initialize();
5483 if (md == NULL) {
5484 /* Default to generic CPU. */
5485 md = pmc_generic_cpu_initialize();
5486 if (md == NULL)
5487 return (ENOSYS);
5488 }
5489
5490 /*
5491 * Refresh classes base ri. Optional classes may come in different
5492 * order.
5493 */
5494 for (ri = c = 0; c < md->pmd_nclass; c++) {
5495 pcd = &md->pmd_classdep[c];
5496 pcd->pcd_ri = ri;
5497 ri += pcd->pcd_num;
5498 }
5499
5500 KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
5501 ("[pmc,%d] no classes or pmcs", __LINE__));
5502
5503 /* Compute the map from row-indices to classdep pointers. */
5504 pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
5505 md->pmd_npmc, M_PMC, M_WAITOK | M_ZERO);
5506
5507 for (n = 0; n < md->pmd_npmc; n++)
5508 pmc_rowindex_to_classdep[n] = NULL;
5509
5510 for (ri = c = 0; c < md->pmd_nclass; c++) {
5511 pcd = &md->pmd_classdep[c];
5512 for (n = 0; n < pcd->pcd_num; n++, ri++)
5513 pmc_rowindex_to_classdep[ri] = pcd;
5514 }
5515
5516 KASSERT(ri == md->pmd_npmc,
5517 ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
5518 ri, md->pmd_npmc));
5519
5520 maxcpu = pmc_cpu_max();
5521
5522 /* allocate space for the per-cpu array */
5523 pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
5524 M_WAITOK | M_ZERO);
5525
5526 /* per-cpu 'saved values' for managing process-mode PMCs */
5527 pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
5528 M_PMC, M_WAITOK);
5529
5530 /* Perform CPU-dependent initialization. */
5531 pmc_save_cpu_binding(&pb);
5532 error = 0;
5533 for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
5534 if (!pmc_cpu_is_active(cpu))
5535 continue;
5536 pmc_select_cpu(cpu);
5537 pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
5538 md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
5539 M_WAITOK | M_ZERO);
5540 for (n = 0; error == 0 && n < md->pmd_nclass; n++)
5541 if (md->pmd_classdep[n].pcd_num > 0)
5542 error = md->pmd_classdep[n].pcd_pcpu_init(md,
5543 cpu);
5544 }
5545 pmc_restore_cpu_binding(&pb);
5546
5547 if (error != 0)
5548 return (error);
5549
5550 /* allocate space for the sample array */
5551 for (cpu = 0; cpu < maxcpu; cpu++) {
5552 if (!pmc_cpu_is_active(cpu))
5553 continue;
5554 pc = pcpu_find(cpu);
5555 domain = pc->pc_domain;
5556 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5557 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5558 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5559
5560 KASSERT(pmc_pcpu[cpu] != NULL,
5561 ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
5562
5563 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5564 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5565 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5566
5567 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5568 ps->ps_pc = sb->ps_callchains +
5569 (n * pmc_callchaindepth);
5570
5571 pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
5572
5573 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5574 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5575 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5576
5577 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5578 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5579 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5580 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5581 ps->ps_pc = sb->ps_callchains +
5582 (n * pmc_callchaindepth);
5583
5584 pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
5585
5586 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5587 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5588 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5589 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5590 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5591 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5592 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5593 ps->ps_pc = sb->ps_callchains + n * pmc_callchaindepth;
5594
5595 pmc_pcpu[cpu]->pc_sb[PMC_UR] = sb;
5596 }
5597
5598 /* allocate space for the row disposition array */
5599 pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
5600 M_PMC, M_WAITOK | M_ZERO);
5601
5602 /* mark all PMCs as available */
5603 for (n = 0; n < md->pmd_npmc; n++)
5604 PMC_MARK_ROW_FREE(n);
5605
5606 /* allocate thread hash tables */
5607 pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
5608 &pmc_ownerhashmask);
5609
5610 pmc_processhash = hashinit(pmc_hashsize, M_PMC,
5611 &pmc_processhashmask);
5612 mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
5613 MTX_SPIN);
5614
5615 CK_LIST_INIT(&pmc_ss_owners);
5616 pmc_ss_count = 0;
5617
5618 /* allocate a pool of spin mutexes */
5619 pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
5620 MTX_SPIN);
5621
5622 PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
5623 "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
5624 pmc_processhash, pmc_processhashmask);
5625
5626 /* Initialize a spin mutex for the thread free list. */
5627 mtx_init(&pmc_threadfreelist_mtx, "pmc-threadfreelist", "pmc-leaf",
5628 MTX_SPIN);
5629
5630 /* Initialize the task to prune the thread free list. */
5631 TASK_INIT(&free_task, 0, pmc_thread_descriptor_pool_free_task, NULL);
5632
5633 /* register process {exit,fork,exec} handlers */
5634 pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
5635 pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
5636 pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
5637 pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
5638
5639 /* register kld event handlers */
5640 pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
5641 NULL, EVENTHANDLER_PRI_ANY);
5642 pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
5643 NULL, EVENTHANDLER_PRI_ANY);
5644
5645 /* initialize logging */
5646 pmclog_initialize();
5647
5648 /* set hook functions */
5649 pmc_intr = md->pmd_intr;
5650 wmb();
5651 pmc_hook = pmc_hook_handler;
5652
5653 if (error == 0) {
5654 printf(PMC_MODULE_NAME ":");
5655 for (n = 0; n < md->pmd_nclass; n++) {
5656 if (md->pmd_classdep[n].pcd_num == 0)
5657 continue;
5658 pcd = &md->pmd_classdep[n];
5659 printf(" %s/%d/%d/0x%b",
5660 pmc_name_of_pmcclass(pcd->pcd_class),
5661 pcd->pcd_num,
5662 pcd->pcd_width,
5663 pcd->pcd_caps,
5664 "\20"
5665 "\1INT\2USR\3SYS\4EDG\5THR"
5666 "\6REA\7WRI\10INV\11QUA\12PRC"
5667 "\13TAG\14CSC");
5668 }
5669 printf("\n");
5670 }
5671
5672 return (error);
5673 }
5674
5675 /* prepare to be unloaded */
5676 static void
pmc_cleanup(void)5677 pmc_cleanup(void)
5678 {
5679 struct pmc_binding pb;
5680 struct pmc_owner *po, *tmp;
5681 struct pmc_ownerhash *ph;
5682 struct pmc_processhash *prh __pmcdbg_used;
5683 u_int maxcpu;
5684 int cpu, c;
5685
5686 PMCDBG0(MOD,INI,0, "cleanup");
5687
5688 /* switch off sampling */
5689 CPU_FOREACH(cpu)
5690 DPCPU_ID_SET(cpu, pmc_sampled, 0);
5691 pmc_intr = NULL;
5692
5693 sx_xlock(&pmc_sx);
5694 if (pmc_hook == NULL) { /* being unloaded already */
5695 sx_xunlock(&pmc_sx);
5696 return;
5697 }
5698
5699 pmc_hook = NULL; /* prevent new threads from entering module */
5700
5701 /* deregister event handlers */
5702 EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5703 EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5704 EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5705 EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5706
5707 /* send SIGBUS to all owner threads, free up allocations */
5708 if (pmc_ownerhash != NULL) {
5709 for (ph = pmc_ownerhash;
5710 ph <= &pmc_ownerhash[pmc_ownerhashmask];
5711 ph++) {
5712 LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5713 pmc_remove_owner(po);
5714
5715 PMCDBG3(MOD,INI,2,
5716 "cleanup signal proc=%p (%d, %s)",
5717 po->po_owner, po->po_owner->p_pid,
5718 po->po_owner->p_comm);
5719
5720 PROC_LOCK(po->po_owner);
5721 kern_psignal(po->po_owner, SIGBUS);
5722 PROC_UNLOCK(po->po_owner);
5723
5724 pmc_destroy_owner_descriptor(po);
5725 }
5726 }
5727 }
5728
5729 /* reclaim allocated data structures */
5730 taskqueue_drain(taskqueue_fast, &free_task);
5731 mtx_destroy(&pmc_threadfreelist_mtx);
5732 pmc_thread_descriptor_pool_drain();
5733
5734 if (pmc_mtxpool != NULL)
5735 mtx_pool_destroy(&pmc_mtxpool);
5736
5737 mtx_destroy(&pmc_processhash_mtx);
5738 if (pmc_processhash != NULL) {
5739 #ifdef HWPMC_DEBUG
5740 struct pmc_process *pp;
5741
5742 PMCDBG0(MOD,INI,3, "destroy process hash");
5743 for (prh = pmc_processhash;
5744 prh <= &pmc_processhash[pmc_processhashmask];
5745 prh++)
5746 LIST_FOREACH(pp, prh, pp_next)
5747 PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5748 #endif
5749
5750 hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5751 pmc_processhash = NULL;
5752 }
5753
5754 if (pmc_ownerhash != NULL) {
5755 PMCDBG0(MOD,INI,3, "destroy owner hash");
5756 hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5757 pmc_ownerhash = NULL;
5758 }
5759
5760 KASSERT(CK_LIST_EMPTY(&pmc_ss_owners),
5761 ("[pmc,%d] Global SS owner list not empty", __LINE__));
5762 KASSERT(pmc_ss_count == 0,
5763 ("[pmc,%d] Global SS count not empty", __LINE__));
5764
5765 /* do processor and pmc-class dependent cleanup */
5766 maxcpu = pmc_cpu_max();
5767
5768 PMCDBG0(MOD,INI,3, "md cleanup");
5769 if (md) {
5770 pmc_save_cpu_binding(&pb);
5771 for (cpu = 0; cpu < maxcpu; cpu++) {
5772 PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5773 cpu, pmc_pcpu[cpu]);
5774 if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5775 continue;
5776
5777 pmc_select_cpu(cpu);
5778 for (c = 0; c < md->pmd_nclass; c++) {
5779 if (md->pmd_classdep[c].pcd_num > 0) {
5780 md->pmd_classdep[c].pcd_pcpu_fini(md,
5781 cpu);
5782 }
5783 }
5784 }
5785
5786 if (md->pmd_cputype == PMC_CPU_GENERIC)
5787 pmc_generic_cpu_finalize(md);
5788 else
5789 pmc_md_finalize(md);
5790
5791 pmc_mdep_free(md);
5792 md = NULL;
5793 pmc_restore_cpu_binding(&pb);
5794 }
5795
5796 /* Free per-cpu descriptors. */
5797 for (cpu = 0; cpu < maxcpu; cpu++) {
5798 if (!pmc_cpu_is_active(cpu))
5799 continue;
5800 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5801 ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5802 cpu));
5803 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5804 ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5805 cpu));
5806 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_UR] != NULL,
5807 ("[pmc,%d] Null userret cpu sample buffer cpu=%d", __LINE__,
5808 cpu));
5809 free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5810 free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5811 free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5812 free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5813 free(pmc_pcpu[cpu]->pc_sb[PMC_UR]->ps_callchains, M_PMC);
5814 free(pmc_pcpu[cpu]->pc_sb[PMC_UR], M_PMC);
5815 free(pmc_pcpu[cpu], M_PMC);
5816 }
5817
5818 free(pmc_pcpu, M_PMC);
5819 pmc_pcpu = NULL;
5820
5821 free(pmc_pcpu_saved, M_PMC);
5822 pmc_pcpu_saved = NULL;
5823
5824 if (pmc_pmcdisp != NULL) {
5825 free(pmc_pmcdisp, M_PMC);
5826 pmc_pmcdisp = NULL;
5827 }
5828
5829 if (pmc_rowindex_to_classdep != NULL) {
5830 free(pmc_rowindex_to_classdep, M_PMC);
5831 pmc_rowindex_to_classdep = NULL;
5832 }
5833
5834 pmclog_shutdown();
5835 counter_u64_free(pmc_stats.pm_intr_ignored);
5836 counter_u64_free(pmc_stats.pm_intr_processed);
5837 counter_u64_free(pmc_stats.pm_intr_bufferfull);
5838 counter_u64_free(pmc_stats.pm_syscalls);
5839 counter_u64_free(pmc_stats.pm_syscall_errors);
5840 counter_u64_free(pmc_stats.pm_buffer_requests);
5841 counter_u64_free(pmc_stats.pm_buffer_requests_failed);
5842 counter_u64_free(pmc_stats.pm_log_sweeps);
5843 counter_u64_free(pmc_stats.pm_merges);
5844 counter_u64_free(pmc_stats.pm_overwrites);
5845 sx_xunlock(&pmc_sx); /* we are done */
5846 }
5847
5848 /*
5849 * The function called at load/unload.
5850 */
5851 static int
load(struct module * module __unused,int cmd,void * arg __unused)5852 load(struct module *module __unused, int cmd, void *arg __unused)
5853 {
5854 int error;
5855
5856 error = 0;
5857
5858 switch (cmd) {
5859 case MOD_LOAD:
5860 /* initialize the subsystem */
5861 error = pmc_initialize();
5862 if (error != 0)
5863 break;
5864 PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d", pmc_syscall_num,
5865 pmc_cpu_max());
5866 break;
5867 case MOD_UNLOAD:
5868 case MOD_SHUTDOWN:
5869 pmc_cleanup();
5870 PMCDBG0(MOD,INI,1, "unloaded");
5871 break;
5872 default:
5873 error = EINVAL;
5874 break;
5875 }
5876
5877 return (error);
5878 }
5879