xref: /freebsd/sys/amd64/amd64/pmap.c (revision 660331da7a75e897ae9710c9933962d82f0a194c)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * Copyright (c) 2014-2020 The FreeBSD Foundation
50  * All rights reserved.
51  *
52  * This software was developed for the FreeBSD Project by Jake Burkholder,
53  * Safeport Network Services, and Network Associates Laboratories, the
54  * Security Research Division of Network Associates, Inc. under
55  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56  * CHATS research program.
57  *
58  * Portions of this software were developed by
59  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60  * the FreeBSD Foundation.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions
64  * are met:
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in the
69  *    documentation and/or other materials provided with the distribution.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  */
83 
84 #define	AMD64_NPT_AWARE
85 
86 #include <sys/cdefs.h>
87 /*
88  *	Manages physical address maps.
89  *
90  *	Since the information managed by this module is
91  *	also stored by the logical address mapping module,
92  *	this module may throw away valid virtual-to-physical
93  *	mappings at almost any time.  However, invalidations
94  *	of virtual-to-physical mappings must be done as
95  *	requested.
96  *
97  *	In order to cope with hardware architectures which
98  *	make virtual-to-physical map invalidates expensive,
99  *	this module may delay invalidate or reduced protection
100  *	operations until such time as they are actually
101  *	necessary.  This module is given full information as
102  *	to which processors are currently using which maps,
103  *	and to when physical maps must be made correct.
104  */
105 
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139 
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154 
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170 
171 #ifdef NUMA
172 #define	PMAP_MEMDOM	MAXMEMDOM
173 #else
174 #define	PMAP_MEMDOM	1
175 #endif
176 
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180 
181 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183 
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187 
188 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190 
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 	pt_entry_t mask;
195 
196 	switch (pmap->pm_type) {
197 	case PT_X86:
198 	case PT_RVI:
199 		mask = X86_PG_V;
200 		break;
201 	case PT_EPT:
202 		if (pmap_emulate_ad_bits(pmap))
203 			mask = EPT_PG_EMUL_V;
204 		else
205 			mask = EPT_PG_READ;
206 		break;
207 	default:
208 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 	}
210 
211 	return (mask);
212 }
213 
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 	pt_entry_t mask;
218 
219 	switch (pmap->pm_type) {
220 	case PT_X86:
221 	case PT_RVI:
222 		mask = X86_PG_RW;
223 		break;
224 	case PT_EPT:
225 		if (pmap_emulate_ad_bits(pmap))
226 			mask = EPT_PG_EMUL_RW;
227 		else
228 			mask = EPT_PG_WRITE;
229 		break;
230 	default:
231 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 	}
233 
234 	return (mask);
235 }
236 
237 static pt_entry_t pg_g;
238 
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 	pt_entry_t mask;
243 
244 	switch (pmap->pm_type) {
245 	case PT_X86:
246 		mask = pg_g;
247 		break;
248 	case PT_RVI:
249 	case PT_EPT:
250 		mask = 0;
251 		break;
252 	default:
253 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 	}
255 
256 	return (mask);
257 }
258 
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 	pt_entry_t mask;
263 
264 	switch (pmap->pm_type) {
265 	case PT_X86:
266 	case PT_RVI:
267 		mask = X86_PG_A;
268 		break;
269 	case PT_EPT:
270 		if (pmap_emulate_ad_bits(pmap))
271 			mask = EPT_PG_READ;
272 		else
273 			mask = EPT_PG_A;
274 		break;
275 	default:
276 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 	}
278 
279 	return (mask);
280 }
281 
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 	pt_entry_t mask;
286 
287 	switch (pmap->pm_type) {
288 	case PT_X86:
289 	case PT_RVI:
290 		mask = X86_PG_M;
291 		break;
292 	case PT_EPT:
293 		if (pmap_emulate_ad_bits(pmap))
294 			mask = EPT_PG_WRITE;
295 		else
296 			mask = EPT_PG_M;
297 		break;
298 	default:
299 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 	}
301 
302 	return (mask);
303 }
304 
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308 
309 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311 
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315 
316 	if (!pmap_emulate_ad_bits(pmap))
317 		return (true);
318 
319 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320 
321 	/*
322 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 	 * if the EPT_PG_WRITE bit is set.
325 	 */
326 	if ((pte & EPT_PG_WRITE) != 0)
327 		return (false);
328 
329 	/*
330 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 	 */
332 	if ((pte & EPT_PG_EXECUTE) == 0 ||
333 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 		return (true);
335 	else
336 		return (false);
337 }
338 
339 #ifdef PV_STATS
340 #define PV_STAT(x)	do { x ; } while (0)
341 #else
342 #define PV_STAT(x)	do { } while (0)
343 #endif
344 
345 #undef pa_index
346 #ifdef NUMA
347 #define	pa_index(pa)	({					\
348 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
349 	    ("address %lx beyond the last segment", (pa)));	\
350 	(pa) >> PDRSHIFT;					\
351 })
352 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
353 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
354 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
355 	struct rwlock *_lock;					\
356 	if (__predict_false((pa) > pmap_last_pa))		\
357 		_lock = &pv_dummy_large.pv_lock;		\
358 	else							\
359 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
360 	_lock;							\
361 })
362 #else
363 #define	pa_index(pa)	((pa) >> PDRSHIFT)
364 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
365 
366 #define	NPV_LIST_LOCKS	MAXCPU
367 
368 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
369 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
370 #endif
371 
372 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
373 	struct rwlock **_lockp = (lockp);		\
374 	struct rwlock *_new_lock;			\
375 							\
376 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
377 	if (_new_lock != *_lockp) {			\
378 		if (*_lockp != NULL)			\
379 			rw_wunlock(*_lockp);		\
380 		*_lockp = _new_lock;			\
381 		rw_wlock(*_lockp);			\
382 	}						\
383 } while (0)
384 
385 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
386 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
387 
388 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
389 	struct rwlock **_lockp = (lockp);		\
390 							\
391 	if (*_lockp != NULL) {				\
392 		rw_wunlock(*_lockp);			\
393 		*_lockp = NULL;				\
394 	}						\
395 } while (0)
396 
397 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
398 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
399 
400 /*
401  * Statically allocate kernel pmap memory.  However, memory for
402  * pm_pcids is obtained after the dynamic allocator is operational.
403  * Initialize it with a non-canonical pointer to catch early accesses
404  * regardless of the active mapping.
405  */
406 struct pmap kernel_pmap_store = {
407 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
408 };
409 
410 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
411 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
412 
413 int nkpt;
414 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
415     "Number of kernel page table pages allocated on bootup");
416 
417 static int ndmpdp;
418 vm_paddr_t dmaplimit;
419 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
420 pt_entry_t pg_nx;
421 
422 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
423     "VM/pmap parameters");
424 
425 static int __read_frequently pg_ps_enabled = 1;
426 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
427     &pg_ps_enabled, 0, "Are large page mappings enabled?");
428 
429 int __read_frequently la57 = 0;
430 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
431     &la57, 0,
432     "5-level paging for host is enabled");
433 
434 static bool
pmap_is_la57(pmap_t pmap)435 pmap_is_la57(pmap_t pmap)
436 {
437 	if (pmap->pm_type == PT_X86)
438 		return (la57);
439 	return (false);		/* XXXKIB handle EPT */
440 }
441 
442 #define	PAT_INDEX_SIZE	8
443 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
444 
445 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
446 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
447 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
448 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
449 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
450 					   if supported */
451 
452 #ifdef KASAN
453 static uint64_t		KASANPDPphys;
454 #endif
455 #ifdef KMSAN
456 static uint64_t		KMSANSHADPDPphys;
457 static uint64_t		KMSANORIGPDPphys;
458 
459 /*
460  * To support systems with large amounts of memory, it is necessary to extend
461  * the maximum size of the direct map.  This could eat into the space reserved
462  * for the shadow map.
463  */
464 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
465 #endif
466 
467 static pml4_entry_t	*kernel_pml4;
468 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
469 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
470 static int		ndmpdpphys;	/* number of DMPDPphys pages */
471 
472 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
473 vm_paddr_t		KERNend;	/* and the end */
474 
475 /*
476  * pmap_mapdev support pre initialization (i.e. console)
477  */
478 #define	PMAP_PREINIT_MAPPING_COUNT	8
479 static struct pmap_preinit_mapping {
480 	vm_paddr_t	pa;
481 	vm_offset_t	va;
482 	vm_size_t	sz;
483 	int		mode;
484 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
485 static int pmap_initialized;
486 
487 /*
488  * Data for the pv entry allocation mechanism.
489  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
490  */
491 #ifdef NUMA
492 static __inline int
pc_to_domain(struct pv_chunk * pc)493 pc_to_domain(struct pv_chunk *pc)
494 {
495 
496 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
497 }
498 #else
499 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)500 pc_to_domain(struct pv_chunk *pc __unused)
501 {
502 
503 	return (0);
504 }
505 #endif
506 
507 struct pv_chunks_list {
508 	struct mtx pvc_lock;
509 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
510 	int active_reclaims;
511 } __aligned(CACHE_LINE_SIZE);
512 
513 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
514 
515 #ifdef	NUMA
516 struct pmap_large_md_page {
517 	struct rwlock   pv_lock;
518 	struct md_page  pv_page;
519 	u_long pv_invl_gen;
520 };
521 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
522 #define pv_dummy pv_dummy_large.pv_page
523 __read_mostly static struct pmap_large_md_page *pv_table;
524 __read_mostly vm_paddr_t pmap_last_pa;
525 #else
526 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
527 static u_long pv_invl_gen[NPV_LIST_LOCKS];
528 static struct md_page *pv_table;
529 static struct md_page pv_dummy;
530 #endif
531 
532 /*
533  * All those kernel PT submaps that BSD is so fond of
534  */
535 pt_entry_t *CMAP1 = NULL;
536 caddr_t CADDR1 = 0;
537 static vm_offset_t qframe = 0;
538 static struct mtx qframe_mtx;
539 
540 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
541 
542 static vmem_t *large_vmem;
543 static u_int lm_ents;
544 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
545 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
546 
547 int pmap_pcid_enabled = 1;
548 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
549     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
550 int invpcid_works = 0;
551 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
552     "Is the invpcid instruction available ?");
553 int invlpgb_works;
554 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
555     "Is the invlpgb instruction available?");
556 int invlpgb_maxcnt;
557 int pmap_pcid_invlpg_workaround = 0;
558 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
559     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
560     &pmap_pcid_invlpg_workaround, 0,
561     "Enable small core PCID/INVLPG workaround");
562 int pmap_pcid_invlpg_workaround_uena = 1;
563 
564 int __read_frequently pti = 0;
565 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
566     &pti, 0,
567     "Page Table Isolation enabled");
568 static vm_object_t pti_obj;
569 static pml4_entry_t *pti_pml4;
570 static vm_pindex_t pti_pg_idx;
571 static bool pti_finalized;
572 
573 struct pmap_pkru_range {
574 	struct rs_el	pkru_rs_el;
575 	u_int		pkru_keyidx;
576 	int		pkru_flags;
577 };
578 
579 static uma_zone_t pmap_pkru_ranges_zone;
580 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
581     pt_entry_t *pte);
582 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
583 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
584 static void *pkru_dup_range(void *ctx, void *data);
585 static void pkru_free_range(void *ctx, void *node);
586 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
587 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
588 static void pmap_pkru_deassign_all(pmap_t pmap);
589 
590 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
591 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
592     &pcid_save_cnt, "Count of saved TLB context on switch");
593 
594 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
595     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
596 static struct mtx invl_gen_mtx;
597 /* Fake lock object to satisfy turnstiles interface. */
598 static struct lock_object invl_gen_ts = {
599 	.lo_name = "invlts",
600 };
601 static struct pmap_invl_gen pmap_invl_gen_head = {
602 	.gen = 1,
603 	.next = NULL,
604 };
605 static u_long pmap_invl_gen = 1;
606 static int pmap_invl_waiters;
607 static struct callout pmap_invl_callout;
608 static bool pmap_invl_callout_inited;
609 
610 #define	PMAP_ASSERT_NOT_IN_DI() \
611     KASSERT(pmap_not_in_di(), ("DI already started"))
612 
613 static bool
pmap_di_locked(void)614 pmap_di_locked(void)
615 {
616 	int tun;
617 
618 	if ((cpu_feature2 & CPUID2_CX16) == 0)
619 		return (true);
620 	tun = 0;
621 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
622 	return (tun != 0);
623 }
624 
625 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)626 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
627 {
628 	int locked;
629 
630 	locked = pmap_di_locked();
631 	return (sysctl_handle_int(oidp, &locked, 0, req));
632 }
633 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
634     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
635     "Locked delayed invalidation");
636 
637 static bool pmap_not_in_di_l(void);
638 static bool pmap_not_in_di_u(void);
639 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
640 {
641 
642 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
643 }
644 
645 static bool
pmap_not_in_di_l(void)646 pmap_not_in_di_l(void)
647 {
648 	struct pmap_invl_gen *invl_gen;
649 
650 	invl_gen = &curthread->td_md.md_invl_gen;
651 	return (invl_gen->gen == 0);
652 }
653 
654 static void
pmap_thread_init_invl_gen_l(struct thread * td)655 pmap_thread_init_invl_gen_l(struct thread *td)
656 {
657 	struct pmap_invl_gen *invl_gen;
658 
659 	invl_gen = &td->td_md.md_invl_gen;
660 	invl_gen->gen = 0;
661 }
662 
663 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)664 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
665 {
666 	struct turnstile *ts;
667 
668 	ts = turnstile_trywait(&invl_gen_ts);
669 	if (*m_gen > atomic_load_long(invl_gen))
670 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
671 	else
672 		turnstile_cancel(ts);
673 }
674 
675 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)676 pmap_delayed_invl_finish_unblock(u_long new_gen)
677 {
678 	struct turnstile *ts;
679 
680 	turnstile_chain_lock(&invl_gen_ts);
681 	ts = turnstile_lookup(&invl_gen_ts);
682 	if (new_gen != 0)
683 		pmap_invl_gen = new_gen;
684 	if (ts != NULL) {
685 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
686 		turnstile_unpend(ts);
687 	}
688 	turnstile_chain_unlock(&invl_gen_ts);
689 }
690 
691 /*
692  * Start a new Delayed Invalidation (DI) block of code, executed by
693  * the current thread.  Within a DI block, the current thread may
694  * destroy both the page table and PV list entries for a mapping and
695  * then release the corresponding PV list lock before ensuring that
696  * the mapping is flushed from the TLBs of any processors with the
697  * pmap active.
698  */
699 static void
pmap_delayed_invl_start_l(void)700 pmap_delayed_invl_start_l(void)
701 {
702 	struct pmap_invl_gen *invl_gen;
703 	u_long currgen;
704 
705 	invl_gen = &curthread->td_md.md_invl_gen;
706 	PMAP_ASSERT_NOT_IN_DI();
707 	mtx_lock(&invl_gen_mtx);
708 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
709 		currgen = pmap_invl_gen;
710 	else
711 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
712 	invl_gen->gen = currgen + 1;
713 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
714 	mtx_unlock(&invl_gen_mtx);
715 }
716 
717 /*
718  * Finish the DI block, previously started by the current thread.  All
719  * required TLB flushes for the pages marked by
720  * pmap_delayed_invl_page() must be finished before this function is
721  * called.
722  *
723  * This function works by bumping the global DI generation number to
724  * the generation number of the current thread's DI, unless there is a
725  * pending DI that started earlier.  In the latter case, bumping the
726  * global DI generation number would incorrectly signal that the
727  * earlier DI had finished.  Instead, this function bumps the earlier
728  * DI's generation number to match the generation number of the
729  * current thread's DI.
730  */
731 static void
pmap_delayed_invl_finish_l(void)732 pmap_delayed_invl_finish_l(void)
733 {
734 	struct pmap_invl_gen *invl_gen, *next;
735 
736 	invl_gen = &curthread->td_md.md_invl_gen;
737 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
738 	mtx_lock(&invl_gen_mtx);
739 	next = LIST_NEXT(invl_gen, link);
740 	if (next == NULL)
741 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
742 	else
743 		next->gen = invl_gen->gen;
744 	LIST_REMOVE(invl_gen, link);
745 	mtx_unlock(&invl_gen_mtx);
746 	invl_gen->gen = 0;
747 }
748 
749 static bool
pmap_not_in_di_u(void)750 pmap_not_in_di_u(void)
751 {
752 	struct pmap_invl_gen *invl_gen;
753 
754 	invl_gen = &curthread->td_md.md_invl_gen;
755 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
756 }
757 
758 static void
pmap_thread_init_invl_gen_u(struct thread * td)759 pmap_thread_init_invl_gen_u(struct thread *td)
760 {
761 	struct pmap_invl_gen *invl_gen;
762 
763 	invl_gen = &td->td_md.md_invl_gen;
764 	invl_gen->gen = 0;
765 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
766 }
767 
768 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)769 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
770 {
771 	uint64_t new_high, new_low, old_high, old_low;
772 	char res;
773 
774 	old_low = new_low = 0;
775 	old_high = new_high = (uintptr_t)0;
776 
777 	__asm volatile("lock;cmpxchg16b\t%1"
778 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
779 	    : "b"(new_low), "c" (new_high)
780 	    : "memory", "cc");
781 	if (res == 0) {
782 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
783 			return (false);
784 		out->gen = old_low;
785 		out->next = (void *)old_high;
786 	} else {
787 		out->gen = new_low;
788 		out->next = (void *)new_high;
789 	}
790 	return (true);
791 }
792 
793 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)794 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
795     struct pmap_invl_gen *new_val)
796 {
797 	uint64_t new_high, new_low, old_high, old_low;
798 	char res;
799 
800 	new_low = new_val->gen;
801 	new_high = (uintptr_t)new_val->next;
802 	old_low = old_val->gen;
803 	old_high = (uintptr_t)old_val->next;
804 
805 	__asm volatile("lock;cmpxchg16b\t%1"
806 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
807 	    : "b"(new_low), "c" (new_high)
808 	    : "memory", "cc");
809 	return (res);
810 }
811 
812 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
813 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
814     &pv_page_count, "Current number of allocated pv pages");
815 
816 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
817 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
818     &user_pt_page_count,
819     "Current number of allocated page table pages for userspace");
820 
821 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
822 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
823     &kernel_pt_page_count,
824     "Current number of allocated page table pages for the kernel");
825 
826 #ifdef PV_STATS
827 
828 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
829 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
830     CTLFLAG_RD, &invl_start_restart,
831     "Number of delayed TLB invalidation request restarts");
832 
833 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
834 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
835     &invl_finish_restart,
836     "Number of delayed TLB invalidation completion restarts");
837 
838 static int invl_max_qlen;
839 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
840     &invl_max_qlen, 0,
841     "Maximum delayed TLB invalidation request queue length");
842 #endif
843 
844 #define di_delay	locks_delay
845 
846 static void
pmap_delayed_invl_start_u(void)847 pmap_delayed_invl_start_u(void)
848 {
849 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
850 	struct thread *td;
851 	struct lock_delay_arg lda;
852 	uintptr_t prevl;
853 	u_char pri;
854 #ifdef PV_STATS
855 	int i, ii;
856 #endif
857 
858 	td = curthread;
859 	invl_gen = &td->td_md.md_invl_gen;
860 	PMAP_ASSERT_NOT_IN_DI();
861 	lock_delay_arg_init(&lda, &di_delay);
862 	invl_gen->saved_pri = 0;
863 	pri = td->td_base_pri;
864 	if (pri > PVM) {
865 		thread_lock(td);
866 		pri = td->td_base_pri;
867 		if (pri > PVM) {
868 			invl_gen->saved_pri = pri;
869 			sched_prio(td, PVM);
870 		}
871 		thread_unlock(td);
872 	}
873 again:
874 	PV_STAT(i = 0);
875 	for (p = &pmap_invl_gen_head;; p = prev.next) {
876 		PV_STAT(i++);
877 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
878 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
879 			PV_STAT(counter_u64_add(invl_start_restart, 1));
880 			lock_delay(&lda);
881 			goto again;
882 		}
883 		if (prevl == 0)
884 			break;
885 		prev.next = (void *)prevl;
886 	}
887 #ifdef PV_STATS
888 	if ((ii = invl_max_qlen) < i)
889 		atomic_cmpset_int(&invl_max_qlen, ii, i);
890 #endif
891 
892 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
893 		PV_STAT(counter_u64_add(invl_start_restart, 1));
894 		lock_delay(&lda);
895 		goto again;
896 	}
897 
898 	new_prev.gen = prev.gen;
899 	new_prev.next = invl_gen;
900 	invl_gen->gen = prev.gen + 1;
901 
902 	/* Formal fence between store to invl->gen and updating *p. */
903 	atomic_thread_fence_rel();
904 
905 	/*
906 	 * After inserting an invl_gen element with invalid bit set,
907 	 * this thread blocks any other thread trying to enter the
908 	 * delayed invalidation block.  Do not allow to remove us from
909 	 * the CPU, because it causes starvation for other threads.
910 	 */
911 	critical_enter();
912 
913 	/*
914 	 * ABA for *p is not possible there, since p->gen can only
915 	 * increase.  So if the *p thread finished its di, then
916 	 * started a new one and got inserted into the list at the
917 	 * same place, its gen will appear greater than the previously
918 	 * read gen.
919 	 */
920 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
921 		critical_exit();
922 		PV_STAT(counter_u64_add(invl_start_restart, 1));
923 		lock_delay(&lda);
924 		goto again;
925 	}
926 
927 	/*
928 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
929 	 * invl_gen->next, allowing other threads to iterate past us.
930 	 * pmap_di_store_invl() provides fence between the generation
931 	 * write and the update of next.
932 	 */
933 	invl_gen->next = NULL;
934 	critical_exit();
935 }
936 
937 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)938 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
939     struct pmap_invl_gen *p)
940 {
941 	struct pmap_invl_gen prev, new_prev;
942 	u_long mygen;
943 
944 	/*
945 	 * Load invl_gen->gen after setting invl_gen->next
946 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
947 	 * generations to propagate to our invl_gen->gen.  Lock prefix
948 	 * in atomic_set_ptr() worked as seq_cst fence.
949 	 */
950 	mygen = atomic_load_long(&invl_gen->gen);
951 
952 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
953 		return (false);
954 
955 	KASSERT(prev.gen < mygen,
956 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
957 	new_prev.gen = mygen;
958 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
959 	    ~PMAP_INVL_GEN_NEXT_INVALID);
960 
961 	/* Formal fence between load of prev and storing update to it. */
962 	atomic_thread_fence_rel();
963 
964 	return (pmap_di_store_invl(p, &prev, &new_prev));
965 }
966 
967 static void
pmap_delayed_invl_finish_u(void)968 pmap_delayed_invl_finish_u(void)
969 {
970 	struct pmap_invl_gen *invl_gen, *p;
971 	struct thread *td;
972 	struct lock_delay_arg lda;
973 	uintptr_t prevl;
974 
975 	td = curthread;
976 	invl_gen = &td->td_md.md_invl_gen;
977 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
978 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
979 	    ("missed invl_start: INVALID"));
980 	lock_delay_arg_init(&lda, &di_delay);
981 
982 again:
983 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
984 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
985 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
986 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
987 			lock_delay(&lda);
988 			goto again;
989 		}
990 		if ((void *)prevl == invl_gen)
991 			break;
992 	}
993 
994 	/*
995 	 * It is legitimate to not find ourself on the list if a
996 	 * thread before us finished its DI and started it again.
997 	 */
998 	if (__predict_false(p == NULL)) {
999 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1000 		lock_delay(&lda);
1001 		goto again;
1002 	}
1003 
1004 	critical_enter();
1005 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1006 	    PMAP_INVL_GEN_NEXT_INVALID);
1007 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1008 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1009 		    PMAP_INVL_GEN_NEXT_INVALID);
1010 		critical_exit();
1011 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1012 		lock_delay(&lda);
1013 		goto again;
1014 	}
1015 	critical_exit();
1016 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1017 		pmap_delayed_invl_finish_unblock(0);
1018 	if (invl_gen->saved_pri != 0) {
1019 		thread_lock(td);
1020 		sched_prio(td, invl_gen->saved_pri);
1021 		thread_unlock(td);
1022 	}
1023 }
1024 
1025 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1026 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1027 {
1028 	struct pmap_invl_gen *p, *pn;
1029 	struct thread *td;
1030 	uintptr_t nextl;
1031 	bool first;
1032 
1033 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1034 	    first = false) {
1035 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1036 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1037 		td = first ? NULL : __containerof(p, struct thread,
1038 		    td_md.md_invl_gen);
1039 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1040 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1041 		    td != NULL ? td->td_tid : -1);
1042 	}
1043 }
1044 #endif
1045 
1046 #ifdef PV_STATS
1047 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1048 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1049     CTLFLAG_RD, &invl_wait,
1050     "Number of times DI invalidation blocked pmap_remove_all/write");
1051 
1052 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1053 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1054      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1055 
1056 #endif
1057 
1058 #ifdef NUMA
1059 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1060 pmap_delayed_invl_genp(vm_page_t m)
1061 {
1062 	vm_paddr_t pa;
1063 	u_long *gen;
1064 
1065 	pa = VM_PAGE_TO_PHYS(m);
1066 	if (__predict_false((pa) > pmap_last_pa))
1067 		gen = &pv_dummy_large.pv_invl_gen;
1068 	else
1069 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1070 
1071 	return (gen);
1072 }
1073 #else
1074 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1075 pmap_delayed_invl_genp(vm_page_t m)
1076 {
1077 
1078 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1079 }
1080 #endif
1081 
1082 static void
pmap_delayed_invl_callout_func(void * arg __unused)1083 pmap_delayed_invl_callout_func(void *arg __unused)
1084 {
1085 
1086 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1087 		return;
1088 	pmap_delayed_invl_finish_unblock(0);
1089 }
1090 
1091 static void
pmap_delayed_invl_callout_init(void * arg __unused)1092 pmap_delayed_invl_callout_init(void *arg __unused)
1093 {
1094 
1095 	if (pmap_di_locked())
1096 		return;
1097 	callout_init(&pmap_invl_callout, 1);
1098 	pmap_invl_callout_inited = true;
1099 }
1100 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1101     pmap_delayed_invl_callout_init, NULL);
1102 
1103 /*
1104  * Ensure that all currently executing DI blocks, that need to flush
1105  * TLB for the given page m, actually flushed the TLB at the time the
1106  * function returned.  If the page m has an empty PV list and we call
1107  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1108  * valid mapping for the page m in either its page table or TLB.
1109  *
1110  * This function works by blocking until the global DI generation
1111  * number catches up with the generation number associated with the
1112  * given page m and its PV list.  Since this function's callers
1113  * typically own an object lock and sometimes own a page lock, it
1114  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1115  * processor.
1116  */
1117 static void
pmap_delayed_invl_wait_l(vm_page_t m)1118 pmap_delayed_invl_wait_l(vm_page_t m)
1119 {
1120 	u_long *m_gen;
1121 #ifdef PV_STATS
1122 	bool accounted = false;
1123 #endif
1124 
1125 	m_gen = pmap_delayed_invl_genp(m);
1126 	while (*m_gen > pmap_invl_gen) {
1127 #ifdef PV_STATS
1128 		if (!accounted) {
1129 			counter_u64_add(invl_wait, 1);
1130 			accounted = true;
1131 		}
1132 #endif
1133 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1134 	}
1135 }
1136 
1137 static void
pmap_delayed_invl_wait_u(vm_page_t m)1138 pmap_delayed_invl_wait_u(vm_page_t m)
1139 {
1140 	u_long *m_gen;
1141 	struct lock_delay_arg lda;
1142 	bool fast;
1143 
1144 	fast = true;
1145 	m_gen = pmap_delayed_invl_genp(m);
1146 	lock_delay_arg_init(&lda, &di_delay);
1147 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1148 		if (fast || !pmap_invl_callout_inited) {
1149 			PV_STAT(counter_u64_add(invl_wait, 1));
1150 			lock_delay(&lda);
1151 			fast = false;
1152 		} else {
1153 			/*
1154 			 * The page's invalidation generation number
1155 			 * is still below the current thread's number.
1156 			 * Prepare to block so that we do not waste
1157 			 * CPU cycles or worse, suffer livelock.
1158 			 *
1159 			 * Since it is impossible to block without
1160 			 * racing with pmap_delayed_invl_finish_u(),
1161 			 * prepare for the race by incrementing
1162 			 * pmap_invl_waiters and arming a 1-tick
1163 			 * callout which will unblock us if we lose
1164 			 * the race.
1165 			 */
1166 			atomic_add_int(&pmap_invl_waiters, 1);
1167 
1168 			/*
1169 			 * Re-check the current thread's invalidation
1170 			 * generation after incrementing
1171 			 * pmap_invl_waiters, so that there is no race
1172 			 * with pmap_delayed_invl_finish_u() setting
1173 			 * the page generation and checking
1174 			 * pmap_invl_waiters.  The only race allowed
1175 			 * is for a missed unblock, which is handled
1176 			 * by the callout.
1177 			 */
1178 			if (*m_gen >
1179 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1180 				callout_reset(&pmap_invl_callout, 1,
1181 				    pmap_delayed_invl_callout_func, NULL);
1182 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1183 				pmap_delayed_invl_wait_block(m_gen,
1184 				    &pmap_invl_gen_head.gen);
1185 			}
1186 			atomic_add_int(&pmap_invl_waiters, -1);
1187 		}
1188 	}
1189 }
1190 
1191 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1192 {
1193 
1194 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1195 	    pmap_thread_init_invl_gen_u);
1196 }
1197 
1198 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1199 {
1200 
1201 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1202 	    pmap_delayed_invl_start_u);
1203 }
1204 
1205 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1206 {
1207 
1208 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1209 	    pmap_delayed_invl_finish_u);
1210 }
1211 
1212 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1213 {
1214 
1215 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1216 	    pmap_delayed_invl_wait_u);
1217 }
1218 
1219 /*
1220  * Mark the page m's PV list as participating in the current thread's
1221  * DI block.  Any threads concurrently using m's PV list to remove or
1222  * restrict all mappings to m will wait for the current thread's DI
1223  * block to complete before proceeding.
1224  *
1225  * The function works by setting the DI generation number for m's PV
1226  * list to at least the DI generation number of the current thread.
1227  * This forces a caller of pmap_delayed_invl_wait() to block until
1228  * current thread calls pmap_delayed_invl_finish().
1229  */
1230 static void
pmap_delayed_invl_page(vm_page_t m)1231 pmap_delayed_invl_page(vm_page_t m)
1232 {
1233 	u_long gen, *m_gen;
1234 
1235 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1236 	gen = curthread->td_md.md_invl_gen.gen;
1237 	if (gen == 0)
1238 		return;
1239 	m_gen = pmap_delayed_invl_genp(m);
1240 	if (*m_gen < gen)
1241 		*m_gen = gen;
1242 }
1243 
1244 /*
1245  * Crashdump maps.
1246  */
1247 static caddr_t crashdumpmap;
1248 
1249 /*
1250  * Internal flags for pmap_enter()'s helper functions.
1251  */
1252 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1253 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1254 
1255 /*
1256  * Internal flags for pmap_mapdev_internal() and
1257  * pmap_change_props_locked().
1258  */
1259 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1260 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1261 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1262 
1263 TAILQ_HEAD(pv_chunklist, pv_chunk);
1264 
1265 static void	free_pv_chunk(struct pv_chunk *pc);
1266 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1267 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1268 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1269 static int	popcnt_pc_map_pq(uint64_t *map);
1270 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1271 static void	reserve_pv_entries(pmap_t pmap, int needed,
1272 		    struct rwlock **lockp);
1273 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1274 		    struct rwlock **lockp);
1275 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1276 		    u_int flags, struct rwlock **lockp);
1277 #if VM_NRESERVLEVEL > 0
1278 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1279 		    struct rwlock **lockp);
1280 #endif
1281 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1282 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1283 		    vm_offset_t va);
1284 
1285 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1286 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1287     vm_prot_t prot, int mode, int flags);
1288 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1289 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1290     vm_offset_t va, struct rwlock **lockp);
1291 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1292     vm_offset_t va);
1293 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1294 		    vm_prot_t prot, struct rwlock **lockp);
1295 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1296 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1297 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1298     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1299 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1300 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1301     bool allpte_PG_A_set);
1302 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1303     vm_offset_t eva);
1304 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1305     vm_offset_t eva);
1306 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1307 		    pd_entry_t pde);
1308 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1309 static vm_page_t pmap_large_map_getptp_unlocked(void);
1310 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1311 #if VM_NRESERVLEVEL > 0
1312 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1313     vm_page_t mpte, struct rwlock **lockp);
1314 #endif
1315 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1316     vm_prot_t prot);
1317 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1318 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1319     bool exec);
1320 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1321 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1322 static void pmap_pti_wire_pte(void *pte);
1323 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1324     struct spglist *free, struct rwlock **lockp);
1325 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1326     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1327 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1328 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1329     struct spglist *free);
1330 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1331 		    pd_entry_t *pde, struct spglist *free,
1332 		    struct rwlock **lockp);
1333 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1334     vm_page_t m, struct rwlock **lockp);
1335 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1336     pd_entry_t newpde);
1337 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1338 
1339 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1340 		struct rwlock **lockp);
1341 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1342 		struct rwlock **lockp, vm_offset_t va);
1343 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1344 		struct rwlock **lockp, vm_offset_t va);
1345 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1346 		struct rwlock **lockp);
1347 
1348 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1349     struct spglist *free);
1350 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1351 
1352 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1353 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1354 
1355 /********************/
1356 /* Inline functions */
1357 /********************/
1358 
1359 /*
1360  * Return a non-clipped indexes for a given VA, which are page table
1361  * pages indexes at the corresponding level.
1362  */
1363 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1364 pmap_pde_pindex(vm_offset_t va)
1365 {
1366 	return (va >> PDRSHIFT);
1367 }
1368 
1369 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1370 pmap_pdpe_pindex(vm_offset_t va)
1371 {
1372 	return (NUPDE + (va >> PDPSHIFT));
1373 }
1374 
1375 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1376 pmap_pml4e_pindex(vm_offset_t va)
1377 {
1378 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1379 }
1380 
1381 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1382 pmap_pml5e_pindex(vm_offset_t va)
1383 {
1384 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1385 }
1386 
1387 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1388 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1389 {
1390 
1391 	MPASS(pmap_is_la57(pmap));
1392 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1393 }
1394 
1395 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1396 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1397 {
1398 
1399 	MPASS(pmap_is_la57(pmap));
1400 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1401 }
1402 
1403 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1404 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1405 {
1406 	pml4_entry_t *pml4e;
1407 
1408 	/* XXX MPASS(pmap_is_la57(pmap); */
1409 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1410 	return (&pml4e[pmap_pml4e_index(va)]);
1411 }
1412 
1413 /* Return a pointer to the PML4 slot that corresponds to a VA */
1414 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1415 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1416 {
1417 	pml5_entry_t *pml5e;
1418 	pml4_entry_t *pml4e;
1419 	pt_entry_t PG_V;
1420 
1421 	if (pmap_is_la57(pmap)) {
1422 		pml5e = pmap_pml5e(pmap, va);
1423 		PG_V = pmap_valid_bit(pmap);
1424 		if ((*pml5e & PG_V) == 0)
1425 			return (NULL);
1426 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1427 	} else {
1428 		pml4e = pmap->pm_pmltop;
1429 	}
1430 	return (&pml4e[pmap_pml4e_index(va)]);
1431 }
1432 
1433 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1434 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1435 {
1436 	MPASS(!pmap_is_la57(pmap));
1437 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1438 }
1439 
1440 /* Return a pointer to the PDP slot that corresponds to a VA */
1441 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1442 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1443 {
1444 	pdp_entry_t *pdpe;
1445 
1446 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1447 	return (&pdpe[pmap_pdpe_index(va)]);
1448 }
1449 
1450 /* Return a pointer to the PDP slot that corresponds to a VA */
1451 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1452 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1453 {
1454 	pml4_entry_t *pml4e;
1455 	pt_entry_t PG_V;
1456 
1457 	PG_V = pmap_valid_bit(pmap);
1458 	pml4e = pmap_pml4e(pmap, va);
1459 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1460 		return (NULL);
1461 	return (pmap_pml4e_to_pdpe(pml4e, va));
1462 }
1463 
1464 /* Return a pointer to the PD slot that corresponds to a VA */
1465 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1466 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1467 {
1468 	pd_entry_t *pde;
1469 
1470 	KASSERT((*pdpe & PG_PS) == 0,
1471 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1472 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1473 	return (&pde[pmap_pde_index(va)]);
1474 }
1475 
1476 /* Return a pointer to the PD slot that corresponds to a VA */
1477 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1478 pmap_pde(pmap_t pmap, vm_offset_t va)
1479 {
1480 	pdp_entry_t *pdpe;
1481 	pt_entry_t PG_V;
1482 
1483 	PG_V = pmap_valid_bit(pmap);
1484 	pdpe = pmap_pdpe(pmap, va);
1485 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1486 		return (NULL);
1487 	KASSERT((*pdpe & PG_PS) == 0,
1488 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1489 	return (pmap_pdpe_to_pde(pdpe, va));
1490 }
1491 
1492 /* Return a pointer to the PT slot that corresponds to a VA */
1493 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1494 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1495 {
1496 	pt_entry_t *pte;
1497 
1498 	KASSERT((*pde & PG_PS) == 0,
1499 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1500 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1501 	return (&pte[pmap_pte_index(va)]);
1502 }
1503 
1504 /* Return a pointer to the PT slot that corresponds to a VA */
1505 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1506 pmap_pte(pmap_t pmap, vm_offset_t va)
1507 {
1508 	pd_entry_t *pde;
1509 	pt_entry_t PG_V;
1510 
1511 	PG_V = pmap_valid_bit(pmap);
1512 	pde = pmap_pde(pmap, va);
1513 	if (pde == NULL || (*pde & PG_V) == 0)
1514 		return (NULL);
1515 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1516 		return ((pt_entry_t *)pde);
1517 	return (pmap_pde_to_pte(pde, va));
1518 }
1519 
1520 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1521 pmap_resident_count_adj(pmap_t pmap, int count)
1522 {
1523 
1524 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1525 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1526 	    ("pmap %p resident count underflow %ld %d", pmap,
1527 	    pmap->pm_stats.resident_count, count));
1528 	pmap->pm_stats.resident_count += count;
1529 }
1530 
1531 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1532 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1533 {
1534 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1535 	    ("pmap %p resident count underflow %ld %d", pmap,
1536 	    pmap->pm_stats.resident_count, count));
1537 	pmap->pm_stats.resident_count += count;
1538 }
1539 
1540 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1541 pmap_pt_page_count_adj(pmap_t pmap, int count)
1542 {
1543 	if (pmap == kernel_pmap)
1544 		counter_u64_add(kernel_pt_page_count, count);
1545 	else {
1546 		if (pmap != NULL)
1547 			pmap_resident_count_adj(pmap, count);
1548 		counter_u64_add(user_pt_page_count, count);
1549 	}
1550 }
1551 
1552 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1553     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1554 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1555 
1556 pt_entry_t *
vtopte(vm_offset_t va)1557 vtopte(vm_offset_t va)
1558 {
1559 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1560 
1561 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1562 }
1563 
1564 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1565     NPML4EPGSHIFT)) - 1) << 3;
1566 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1567 
1568 static __inline pd_entry_t *
vtopde(vm_offset_t va)1569 vtopde(vm_offset_t va)
1570 {
1571 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1572 
1573 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1574 }
1575 
1576 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1577 allocpages(vm_paddr_t *firstaddr, int n)
1578 {
1579 	u_int64_t ret;
1580 
1581 	ret = *firstaddr;
1582 	bzero((void *)ret, n * PAGE_SIZE);
1583 	*firstaddr += n * PAGE_SIZE;
1584 	return (ret);
1585 }
1586 
1587 CTASSERT(powerof2(NDMPML4E));
1588 
1589 /* number of kernel PDP slots */
1590 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1591 
1592 static void
nkpt_init(vm_paddr_t addr)1593 nkpt_init(vm_paddr_t addr)
1594 {
1595 	int pt_pages;
1596 
1597 #ifdef NKPT
1598 	pt_pages = NKPT;
1599 #else
1600 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1601 	pt_pages += NKPDPE(pt_pages);
1602 
1603 	/*
1604 	 * Add some slop beyond the bare minimum required for bootstrapping
1605 	 * the kernel.
1606 	 *
1607 	 * This is quite important when allocating KVA for kernel modules.
1608 	 * The modules are required to be linked in the negative 2GB of
1609 	 * the address space.  If we run out of KVA in this region then
1610 	 * pmap_growkernel() will need to allocate page table pages to map
1611 	 * the entire 512GB of KVA space which is an unnecessary tax on
1612 	 * physical memory.
1613 	 *
1614 	 * Secondly, device memory mapped as part of setting up the low-
1615 	 * level console(s) is taken from KVA, starting at virtual_avail.
1616 	 * This is because cninit() is called after pmap_bootstrap() but
1617 	 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1618 	 * is not uncommon.
1619 	 */
1620 	pt_pages += 32;		/* 64MB additional slop. */
1621 #endif
1622 	nkpt = pt_pages;
1623 }
1624 
1625 /*
1626  * Returns the proper write/execute permission for a physical page that is
1627  * part of the initial boot allocations.
1628  *
1629  * If the page has kernel text, it is marked as read-only. If the page has
1630  * kernel read-only data, it is marked as read-only/not-executable. If the
1631  * page has only read-write data, it is marked as read-write/not-executable.
1632  * If the page is below/above the kernel range, it is marked as read-write.
1633  *
1634  * This function operates on 2M pages, since we map the kernel space that
1635  * way.
1636  */
1637 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1638 bootaddr_rwx(vm_paddr_t pa)
1639 {
1640 	/*
1641 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1642 	 * need not be executable.  The .bss section is padded to a 2MB
1643 	 * boundary, so memory following the kernel need not be executable
1644 	 * either.  Preloaded kernel modules have their mapping permissions
1645 	 * fixed up by the linker.
1646 	 */
1647 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1648 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1649 		return (X86_PG_RW | pg_nx);
1650 
1651 	/*
1652 	 * The linker should ensure that the read-only and read-write
1653 	 * portions don't share the same 2M page, so this shouldn't
1654 	 * impact read-only data. However, in any case, any page with
1655 	 * read-write data needs to be read-write.
1656 	 */
1657 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1658 		return (X86_PG_RW | pg_nx);
1659 
1660 	/*
1661 	 * Mark any 2M page containing kernel text as read-only. Mark
1662 	 * other pages with read-only data as read-only and not executable.
1663 	 * (It is likely a small portion of the read-only data section will
1664 	 * be marked as read-only, but executable. This should be acceptable
1665 	 * since the read-only protection will keep the data from changing.)
1666 	 * Note that fixups to the .text section will still work until we
1667 	 * set CR0.WP.
1668 	 */
1669 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1670 		return (0);
1671 	return (pg_nx);
1672 }
1673 
1674 static void
create_pagetables(vm_paddr_t * firstaddr)1675 create_pagetables(vm_paddr_t *firstaddr)
1676 {
1677 	pd_entry_t *pd_p;
1678 	pdp_entry_t *pdp_p;
1679 	pml4_entry_t *p4_p;
1680 	uint64_t DMPDkernphys;
1681 	vm_paddr_t pax;
1682 #ifdef KASAN
1683 	pt_entry_t *pt_p;
1684 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1685 	vm_offset_t kasankernbase;
1686 	int kasankpdpi, kasankpdi, nkasanpte;
1687 #endif
1688 	int i, j, ndm1g, nkpdpe, nkdmpde;
1689 
1690 	TSENTER();
1691 	/* Allocate page table pages for the direct map */
1692 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1693 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1694 		ndmpdp = 4;
1695 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1696 	if (ndmpdpphys > NDMPML4E) {
1697 		/*
1698 		 * Each NDMPML4E allows 512 GB, so limit to that,
1699 		 * and then readjust ndmpdp and ndmpdpphys.
1700 		 */
1701 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1702 		Maxmem = atop(NDMPML4E * NBPML4);
1703 		ndmpdpphys = NDMPML4E;
1704 		ndmpdp = NDMPML4E * NPDEPG;
1705 	}
1706 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1707 	ndm1g = 0;
1708 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1709 		/*
1710 		 * Calculate the number of 1G pages that will fully fit in
1711 		 * Maxmem.
1712 		 */
1713 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1714 
1715 		/*
1716 		 * Allocate 2M pages for the kernel. These will be used in
1717 		 * place of the one or more 1G pages from ndm1g that maps
1718 		 * kernel memory into DMAP.
1719 		 */
1720 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1721 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1722 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1723 	}
1724 	if (ndm1g < ndmpdp)
1725 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1726 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1727 
1728 	/* Allocate pages. */
1729 	KPML4phys = allocpages(firstaddr, 1);
1730 	KPDPphys = allocpages(firstaddr, NKPML4E);
1731 #ifdef KASAN
1732 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1733 	KASANPDphys = allocpages(firstaddr, 1);
1734 #endif
1735 #ifdef KMSAN
1736 	/*
1737 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1738 	 * no need to shadow memory above KERNBASE.
1739 	 */
1740 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1741 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1742 #endif
1743 
1744 	/*
1745 	 * Allocate the initial number of kernel page table pages required to
1746 	 * bootstrap.  We defer this until after all memory-size dependent
1747 	 * allocations are done (e.g. direct map), so that we don't have to
1748 	 * build in too much slop in our estimate.
1749 	 *
1750 	 * Note that when NKPML4E > 1, we have an empty page underneath
1751 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1752 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1753 	 */
1754 	nkpt_init(*firstaddr);
1755 	nkpdpe = NKPDPE(nkpt);
1756 
1757 	KPTphys = allocpages(firstaddr, nkpt);
1758 	KPDphys = allocpages(firstaddr, nkpdpe);
1759 
1760 #ifdef KASAN
1761 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1762 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1763 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1764 #endif
1765 
1766 	/*
1767 	 * Connect the zero-filled PT pages to their PD entries.  This
1768 	 * implicitly maps the PT pages at their correct locations within
1769 	 * the PTmap.
1770 	 */
1771 	pd_p = (pd_entry_t *)KPDphys;
1772 	for (i = 0; i < nkpt; i++)
1773 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1774 
1775 	/*
1776 	 * Map from start of the kernel in physical memory (staging
1777 	 * area) to the end of loader preallocated memory using 2MB
1778 	 * pages.  This replaces some of the PD entries created above.
1779 	 * For compatibility, identity map 2M at the start.
1780 	 */
1781 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1782 	    X86_PG_RW | pg_nx;
1783 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1784 		/* Preset PG_M and PG_A because demotion expects it. */
1785 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1786 		    X86_PG_A | bootaddr_rwx(pax);
1787 	}
1788 
1789 	/*
1790 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1791 	 * to record the physical blocks we've actually mapped into kernel
1792 	 * virtual address space.
1793 	 */
1794 	if (*firstaddr < round_2mpage(KERNend))
1795 		*firstaddr = round_2mpage(KERNend);
1796 
1797 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1798 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1799 	for (i = 0; i < nkpdpe; i++)
1800 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1801 
1802 #ifdef KASAN
1803 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1804 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1805 	kasankpdi = pmap_pde_index(kasankernbase);
1806 
1807 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1808 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1809 
1810 	pd_p = (pd_entry_t *)KASANPDphys;
1811 	for (i = 0; i < nkasanpte; i++)
1812 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1813 		    X86_PG_V | pg_nx;
1814 
1815 	pt_p = (pt_entry_t *)KASANPTphys;
1816 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1817 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1818 		    X86_PG_M | X86_PG_A | pg_nx;
1819 #endif
1820 
1821 	/*
1822 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1823 	 * the end of physical memory is not aligned to a 1GB page boundary,
1824 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1825 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1826 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1827 	 * that are partially used.
1828 	 */
1829 	pd_p = (pd_entry_t *)DMPDphys;
1830 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1831 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1832 		/* Preset PG_M and PG_A because demotion expects it. */
1833 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1834 		    X86_PG_M | X86_PG_A | pg_nx;
1835 	}
1836 	pdp_p = (pdp_entry_t *)DMPDPphys;
1837 	for (i = 0; i < ndm1g; i++) {
1838 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1839 		/* Preset PG_M and PG_A because demotion expects it. */
1840 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1841 		    X86_PG_M | X86_PG_A | pg_nx;
1842 	}
1843 	for (j = 0; i < ndmpdp; i++, j++) {
1844 		pdp_p[i] = DMPDphys + ptoa(j);
1845 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1846 	}
1847 
1848 	/*
1849 	 * Instead of using a 1G page for the memory containing the kernel,
1850 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1851 	 * pages, this will partially overwrite the PDPEs above.)
1852 	 */
1853 	if (ndm1g > 0) {
1854 		pd_p = (pd_entry_t *)DMPDkernphys;
1855 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1856 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1857 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1858 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1859 		}
1860 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1861 		for (i = 0; i < nkdmpde; i++) {
1862 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1863 			    X86_PG_RW | X86_PG_V | pg_nx;
1864 		}
1865 	}
1866 
1867 	/* And recursively map PML4 to itself in order to get PTmap */
1868 	p4_p = (pml4_entry_t *)KPML4phys;
1869 	p4_p[PML4PML4I] = KPML4phys;
1870 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1871 
1872 #ifdef KASAN
1873 	/* Connect the KASAN shadow map slots up to the PML4. */
1874 	for (i = 0; i < NKASANPML4E; i++) {
1875 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1876 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1877 	}
1878 #endif
1879 
1880 #ifdef KMSAN
1881 	/* Connect the KMSAN shadow map slots up to the PML4. */
1882 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1883 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1884 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1885 	}
1886 
1887 	/* Connect the KMSAN origin map slots up to the PML4. */
1888 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1889 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1890 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1891 	}
1892 #endif
1893 
1894 	/* Connect the Direct Map slots up to the PML4. */
1895 	for (i = 0; i < ndmpdpphys; i++) {
1896 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1897 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1898 	}
1899 
1900 	/* Connect the KVA slots up to the PML4 */
1901 	for (i = 0; i < NKPML4E; i++) {
1902 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1903 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1904 	}
1905 
1906 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1907 	TSEXIT();
1908 }
1909 
1910 /*
1911  *	Bootstrap the system enough to run with virtual memory.
1912  *
1913  *	On amd64 this is called after mapping has already been enabled
1914  *	and just syncs the pmap module with what has already been done.
1915  *	[We can't call it easily with mapping off since the kernel is not
1916  *	mapped with PA == VA, hence we would have to relocate every address
1917  *	from the linked base (virtual) address "KERNBASE" to the actual
1918  *	(physical) address starting relative to 0]
1919  */
1920 void
pmap_bootstrap(vm_paddr_t * firstaddr)1921 pmap_bootstrap(vm_paddr_t *firstaddr)
1922 {
1923 	vm_offset_t va;
1924 	pt_entry_t *pte, *pcpu_pte;
1925 	struct region_descriptor r_gdt;
1926 	uint64_t cr4, pcpu0_phys;
1927 	u_long res;
1928 	int i;
1929 
1930 	TSENTER();
1931 	KERNend = *firstaddr;
1932 	res = atop(KERNend - (vm_paddr_t)kernphys);
1933 
1934 	if (!pti)
1935 		pg_g = X86_PG_G;
1936 
1937 	/*
1938 	 * Create an initial set of page tables to run the kernel in.
1939 	 */
1940 	create_pagetables(firstaddr);
1941 
1942 	pcpu0_phys = allocpages(firstaddr, 1);
1943 
1944 	/*
1945 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1946 	 * preallocated kernel page table pages so that vm_page structures
1947 	 * representing these pages will be created.  The vm_page structures
1948 	 * are required for promotion of the corresponding kernel virtual
1949 	 * addresses to superpage mappings.
1950 	 */
1951 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1952 
1953 	/*
1954 	 * Account for the virtual addresses mapped by create_pagetables().
1955 	 */
1956 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1957 	    (vm_paddr_t)kernphys);
1958 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1959 
1960 	/*
1961 	 * Enable PG_G global pages, then switch to the kernel page
1962 	 * table from the bootstrap page table.  After the switch, it
1963 	 * is possible to enable SMEP and SMAP since PG_U bits are
1964 	 * correct now.
1965 	 */
1966 	cr4 = rcr4();
1967 	cr4 |= CR4_PGE;
1968 	load_cr4(cr4);
1969 	load_cr3(KPML4phys);
1970 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1971 		cr4 |= CR4_SMEP;
1972 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1973 		cr4 |= CR4_SMAP;
1974 	load_cr4(cr4);
1975 
1976 	/*
1977 	 * Initialize the kernel pmap (which is statically allocated).
1978 	 * Count bootstrap data as being resident in case any of this data is
1979 	 * later unmapped (using pmap_remove()) and freed.
1980 	 */
1981 	PMAP_LOCK_INIT(kernel_pmap);
1982 	kernel_pmap->pm_pmltop = kernel_pml4;
1983 	kernel_pmap->pm_cr3 = KPML4phys;
1984 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1985 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1986 	kernel_pmap->pm_stats.resident_count = res;
1987 	vm_radix_init(&kernel_pmap->pm_root);
1988 	kernel_pmap->pm_flags = pmap_flags;
1989 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
1990 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
1991 		    pkru_free_range, kernel_pmap, M_NOWAIT);
1992 	}
1993 
1994 	/*
1995 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
1996 	 * enumerated, the mask will be set equal to all_cpus.
1997 	 */
1998 	CPU_FILL(&kernel_pmap->pm_active);
1999 
2000  	/*
2001 	 * Initialize the TLB invalidations generation number lock.
2002 	 */
2003 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2004 
2005 	/*
2006 	 * Reserve some special page table entries/VA space for temporary
2007 	 * mapping of pages.
2008 	 */
2009 #define	SYSMAP(c, p, v, n)	\
2010 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2011 
2012 	va = virtual_avail;
2013 	pte = vtopte(va);
2014 
2015 	/*
2016 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2017 	 * memory test.
2018 	 */
2019 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2020 	CADDR1 = crashdumpmap;
2021 
2022 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2023 	virtual_avail = va;
2024 
2025 	/*
2026 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2027 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2028 	 * number of CPUs and NUMA affinity.
2029 	 */
2030 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2031 	    X86_PG_M | X86_PG_A;
2032 	for (i = 1; i < MAXCPU; i++)
2033 		pcpu_pte[i] = 0;
2034 
2035 	/*
2036 	 * Re-initialize PCPU area for BSP after switching.
2037 	 * Make hardware use gdt and common_tss from the new PCPU.
2038 	 */
2039 	STAILQ_INIT(&cpuhead);
2040 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2041 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2042 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2043 	amd64_bsp_ist_init(&__pcpu[0]);
2044 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2045 	    IOPERM_BITMAP_SIZE;
2046 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2047 	    sizeof(struct user_segment_descriptor));
2048 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2049 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2050 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2051 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2052 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2053 	lgdt(&r_gdt);
2054 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2055 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2056 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2057 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2058 
2059 	/*
2060 	 * Initialize the PAT MSR.
2061 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2062 	 * side-effect, invalidates stale PG_G TLB entries that might
2063 	 * have been created in our pre-boot environment.
2064 	 */
2065 	pmap_init_pat();
2066 
2067 	/* Initialize TLB Context Id. */
2068 	if (pmap_pcid_enabled) {
2069 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2070 		    offsetof(struct pcpu, pc_kpmap_store);
2071 
2072 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2073 		PCPU_SET(kpmap_store.pm_gen, 1);
2074 
2075 		/*
2076 		 * PMAP_PCID_KERN + 1 is used for initialization of
2077 		 * proc0 pmap.  The pmap' pcid state might be used by
2078 		 * EFIRT entry before first context switch, so it
2079 		 * needs to be valid.
2080 		 */
2081 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2082 		PCPU_SET(pcid_gen, 1);
2083 
2084 		/*
2085 		 * pcpu area for APs is zeroed during AP startup.
2086 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2087 		 * during pcpu setup.
2088 		 */
2089 		load_cr4(rcr4() | CR4_PCIDE);
2090 	}
2091 	TSEXIT();
2092 }
2093 
2094 /*
2095  * Setup the PAT MSR.
2096  */
2097 void
pmap_init_pat(void)2098 pmap_init_pat(void)
2099 {
2100 	uint64_t pat_msr;
2101 	u_long cr0, cr4;
2102 	int i;
2103 
2104 	/* Bail if this CPU doesn't implement PAT. */
2105 	if ((cpu_feature & CPUID_PAT) == 0)
2106 		panic("no PAT??");
2107 
2108 	/* Set default PAT index table. */
2109 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2110 		pat_index[i] = -1;
2111 	pat_index[PAT_WRITE_BACK] = 0;
2112 	pat_index[PAT_WRITE_THROUGH] = 1;
2113 	pat_index[PAT_UNCACHEABLE] = 3;
2114 	pat_index[PAT_WRITE_COMBINING] = 6;
2115 	pat_index[PAT_WRITE_PROTECTED] = 5;
2116 	pat_index[PAT_UNCACHED] = 2;
2117 
2118 	/*
2119 	 * Initialize default PAT entries.
2120 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2121 	 * Program 5 and 6 as WP and WC.
2122 	 *
2123 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2124 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2125 	 * to its overload with PG_PS.
2126 	 */
2127 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2128 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2129 	    PAT_VALUE(2, PAT_UNCACHED) |
2130 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2131 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2132 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2133 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2134 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2135 
2136 	/* Disable PGE. */
2137 	cr4 = rcr4();
2138 	load_cr4(cr4 & ~CR4_PGE);
2139 
2140 	/* Disable caches (CD = 1, NW = 0). */
2141 	cr0 = rcr0();
2142 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2143 
2144 	/* Flushes caches and TLBs. */
2145 	wbinvd();
2146 	invltlb();
2147 
2148 	/* Update PAT and index table. */
2149 	wrmsr(MSR_PAT, pat_msr);
2150 
2151 	/* Flush caches and TLBs again. */
2152 	wbinvd();
2153 	invltlb();
2154 
2155 	/* Restore caches and PGE. */
2156 	load_cr0(cr0);
2157 	load_cr4(cr4);
2158 }
2159 
2160 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2161 pmap_page_alloc_below_4g(bool zeroed)
2162 {
2163 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2164 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2165 }
2166 
2167 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2168     la57_trampoline_gdt[], la57_trampoline_end[];
2169 
2170 static void
pmap_bootstrap_la57(void * arg __unused)2171 pmap_bootstrap_la57(void *arg __unused)
2172 {
2173 	char *v_code;
2174 	pml5_entry_t *v_pml5;
2175 	pml4_entry_t *v_pml4;
2176 	pdp_entry_t *v_pdp;
2177 	pd_entry_t *v_pd;
2178 	pt_entry_t *v_pt;
2179 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2180 	void (*la57_tramp)(uint64_t pml5);
2181 	struct region_descriptor r_gdt;
2182 
2183 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2184 		return;
2185 	la57 = 1;
2186 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2187 	if (!la57)
2188 		return;
2189 
2190 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2191 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2192 
2193 	m_code = pmap_page_alloc_below_4g(true);
2194 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2195 	m_pml5 = pmap_page_alloc_below_4g(true);
2196 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2197 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2198 	m_pml4 = pmap_page_alloc_below_4g(true);
2199 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2200 	m_pdp = pmap_page_alloc_below_4g(true);
2201 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2202 	m_pd = pmap_page_alloc_below_4g(true);
2203 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2204 	m_pt = pmap_page_alloc_below_4g(true);
2205 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2206 
2207 	/*
2208 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2209 	 * address being below 4G.  Since kernel KVA is in upper half,
2210 	 * the pml4e should be zero and free for temporary use.
2211 	 */
2212 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2213 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2214 	    X86_PG_M;
2215 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2216 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2217 	    X86_PG_M;
2218 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2219 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2220 	    X86_PG_M;
2221 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2222 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2223 	    X86_PG_M;
2224 
2225 	/*
2226 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2227 	 * entering all existing kernel mappings into level 5 table.
2228 	 */
2229 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2230 	    X86_PG_RW | X86_PG_A | X86_PG_M;
2231 
2232 	/*
2233 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2234 	 */
2235 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2236 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2237 	    X86_PG_M;
2238 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2239 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2240 	    X86_PG_M;
2241 
2242 	/*
2243 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2244 	 */
2245 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2246 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2247 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2248 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2249 	pmap_invalidate_all(kernel_pmap);
2250 	if (bootverbose) {
2251 		printf("entering LA57 trampoline at %#lx\n",
2252 		    (vm_offset_t)la57_tramp);
2253 	}
2254 	la57_tramp(KPML5phys);
2255 
2256 	/*
2257 	 * gdt was necessary reset, switch back to our gdt.
2258 	 */
2259 	lgdt(&r_gdt);
2260 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2261 	load_ds(_udatasel);
2262 	load_es(_udatasel);
2263 	load_fs(_ufssel);
2264 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2265 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2266 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2267 	lidt(&r_idt);
2268 
2269 	if (bootverbose)
2270 		printf("LA57 trampoline returned, CR4 %#lx\n", rcr4());
2271 
2272 	/*
2273 	 * Now unmap the trampoline, and free the pages.
2274 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2275 	 */
2276 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2277 	invlpg((vm_offset_t)v_code);
2278 	vm_page_free(m_code);
2279 	vm_page_free(m_pdp);
2280 	vm_page_free(m_pd);
2281 	vm_page_free(m_pt);
2282 
2283 	/*
2284 	 * Recursively map PML5 to itself in order to get PTmap and
2285 	 * PDmap.
2286 	 */
2287 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2288 
2289 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2290 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2291 	PTmap = (vm_offset_t)P5Tmap;
2292 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2293 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2294 	PDmap = (vm_offset_t)P5Dmap;
2295 
2296 	kernel_pmap->pm_cr3 = KPML5phys;
2297 	kernel_pmap->pm_pmltop = v_pml5;
2298 	pmap_pt_page_count_adj(kernel_pmap, 1);
2299 }
2300 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2301 
2302 /*
2303  *	Initialize a vm_page's machine-dependent fields.
2304  */
2305 void
pmap_page_init(vm_page_t m)2306 pmap_page_init(vm_page_t m)
2307 {
2308 
2309 	TAILQ_INIT(&m->md.pv_list);
2310 	m->md.pat_mode = PAT_WRITE_BACK;
2311 }
2312 
2313 static int pmap_allow_2m_x_ept;
2314 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2315     &pmap_allow_2m_x_ept, 0,
2316     "Allow executable superpage mappings in EPT");
2317 
2318 void
pmap_allow_2m_x_ept_recalculate(void)2319 pmap_allow_2m_x_ept_recalculate(void)
2320 {
2321 	/*
2322 	 * SKL002, SKL012S.  Since the EPT format is only used by
2323 	 * Intel CPUs, the vendor check is merely a formality.
2324 	 */
2325 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2326 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2327 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2328 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2329 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2330 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2331 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2332 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2333 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2334 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2335 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2336 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2337 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2338 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2339 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2340 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2341 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2342 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2343 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2344 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2345 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2346 		pmap_allow_2m_x_ept = 1;
2347 #ifndef BURN_BRIDGES
2348 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2349 #endif
2350 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2351 }
2352 
2353 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2354 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2355 {
2356 
2357 	return (pmap->pm_type != PT_EPT || !executable ||
2358 	    !pmap_allow_2m_x_ept);
2359 }
2360 
2361 #ifdef NUMA
2362 static void
pmap_init_pv_table(void)2363 pmap_init_pv_table(void)
2364 {
2365 	struct pmap_large_md_page *pvd;
2366 	vm_size_t s;
2367 	long start, end, highest, pv_npg;
2368 	int domain, i, j, pages;
2369 
2370 	/*
2371 	 * For correctness we depend on the size being evenly divisible into a
2372 	 * page. As a tradeoff between performance and total memory use, the
2373 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2374 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2375 	 * avoidable traffic due to adjacent cacheline prefetcher.
2376 	 *
2377 	 * Assert the size so that accidental changes fail to compile.
2378 	 */
2379 	CTASSERT((sizeof(*pvd) == 64));
2380 
2381 	/*
2382 	 * Calculate the size of the array.
2383 	 */
2384 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2385 	pv_npg = howmany(pmap_last_pa, NBPDR);
2386 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2387 	s = round_page(s);
2388 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2389 	if (pv_table == NULL)
2390 		panic("%s: kva_alloc failed\n", __func__);
2391 
2392 	/*
2393 	 * Iterate physical segments to allocate space for respective pages.
2394 	 */
2395 	highest = -1;
2396 	s = 0;
2397 	for (i = 0; i < vm_phys_nsegs; i++) {
2398 		end = vm_phys_segs[i].end / NBPDR;
2399 		domain = vm_phys_segs[i].domain;
2400 
2401 		if (highest >= end)
2402 			continue;
2403 
2404 		start = highest + 1;
2405 		pvd = &pv_table[start];
2406 
2407 		pages = end - start + 1;
2408 		s = round_page(pages * sizeof(*pvd));
2409 		highest = start + (s / sizeof(*pvd)) - 1;
2410 
2411 		for (j = 0; j < s; j += PAGE_SIZE) {
2412 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2413 			if (m == NULL)
2414 				panic("failed to allocate PV table page");
2415 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2416 		}
2417 
2418 		for (j = 0; j < s / sizeof(*pvd); j++) {
2419 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2420 			TAILQ_INIT(&pvd->pv_page.pv_list);
2421 			pvd->pv_page.pv_gen = 0;
2422 			pvd->pv_page.pat_mode = 0;
2423 			pvd->pv_invl_gen = 0;
2424 			pvd++;
2425 		}
2426 	}
2427 	pvd = &pv_dummy_large;
2428 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2429 	TAILQ_INIT(&pvd->pv_page.pv_list);
2430 	pvd->pv_page.pv_gen = 0;
2431 	pvd->pv_page.pat_mode = 0;
2432 	pvd->pv_invl_gen = 0;
2433 }
2434 #else
2435 static void
pmap_init_pv_table(void)2436 pmap_init_pv_table(void)
2437 {
2438 	vm_size_t s;
2439 	long i, pv_npg;
2440 
2441 	/*
2442 	 * Initialize the pool of pv list locks.
2443 	 */
2444 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2445 		rw_init(&pv_list_locks[i], "pmap pv list");
2446 
2447 	/*
2448 	 * Calculate the size of the pv head table for superpages.
2449 	 */
2450 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2451 
2452 	/*
2453 	 * Allocate memory for the pv head table for superpages.
2454 	 */
2455 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2456 	s = round_page(s);
2457 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2458 	for (i = 0; i < pv_npg; i++)
2459 		TAILQ_INIT(&pv_table[i].pv_list);
2460 	TAILQ_INIT(&pv_dummy.pv_list);
2461 }
2462 #endif
2463 
2464 /*
2465  *	Initialize the pmap module.
2466  *
2467  *	Called by vm_mem_init(), to initialize any structures that the pmap
2468  *	system needs to map virtual memory.
2469  */
2470 void
pmap_init(void)2471 pmap_init(void)
2472 {
2473 	struct pmap_preinit_mapping *ppim;
2474 	vm_page_t m, mpte;
2475 	int error, i, ret, skz63;
2476 
2477 	/* L1TF, reserve page @0 unconditionally */
2478 	vm_page_blacklist_add(0, bootverbose);
2479 
2480 	/* Detect bare-metal Skylake Server and Skylake-X. */
2481 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2482 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2483 		/*
2484 		 * Skylake-X errata SKZ63. Processor May Hang When
2485 		 * Executing Code In an HLE Transaction Region between
2486 		 * 40000000H and 403FFFFFH.
2487 		 *
2488 		 * Mark the pages in the range as preallocated.  It
2489 		 * seems to be impossible to distinguish between
2490 		 * Skylake Server and Skylake X.
2491 		 */
2492 		skz63 = 1;
2493 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2494 		if (skz63 != 0) {
2495 			if (bootverbose)
2496 				printf("SKZ63: skipping 4M RAM starting "
2497 				    "at physical 1G\n");
2498 			for (i = 0; i < atop(0x400000); i++) {
2499 				ret = vm_page_blacklist_add(0x40000000 +
2500 				    ptoa(i), false);
2501 				if (!ret && bootverbose)
2502 					printf("page at %#x already used\n",
2503 					    0x40000000 + ptoa(i));
2504 			}
2505 		}
2506 	}
2507 
2508 	/* IFU */
2509 	pmap_allow_2m_x_ept_recalculate();
2510 
2511 	/*
2512 	 * Initialize the vm page array entries for the kernel pmap's
2513 	 * page table pages.
2514 	 */
2515 	PMAP_LOCK(kernel_pmap);
2516 	for (i = 0; i < nkpt; i++) {
2517 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2518 		KASSERT(mpte >= vm_page_array &&
2519 		    mpte < &vm_page_array[vm_page_array_size],
2520 		    ("pmap_init: page table page is out of range"));
2521 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2522 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2523 		mpte->ref_count = 1;
2524 
2525 		/*
2526 		 * Collect the page table pages that were replaced by a 2MB
2527 		 * page in create_pagetables().  They are zero filled.
2528 		 */
2529 		if ((i == 0 ||
2530 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2531 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2532 			panic("pmap_init: pmap_insert_pt_page failed");
2533 	}
2534 	PMAP_UNLOCK(kernel_pmap);
2535 	vm_wire_add(nkpt);
2536 
2537 	/*
2538 	 * If the kernel is running on a virtual machine, then it must assume
2539 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2540 	 * be prepared for the hypervisor changing the vendor and family that
2541 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2542 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2543 	 * include at least one feature that is only supported by older Intel
2544 	 * or newer AMD processors.
2545 	 */
2546 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2547 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2548 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2549 	    AMDID2_FMA4)) == 0)
2550 		workaround_erratum383 = 1;
2551 
2552 	/*
2553 	 * Are large page mappings enabled?
2554 	 */
2555 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2556 	if (pg_ps_enabled) {
2557 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2558 		    ("pmap_init: can't assign to pagesizes[1]"));
2559 		pagesizes[1] = NBPDR;
2560 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2561 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2562 			    ("pmap_init: can't assign to pagesizes[2]"));
2563 			pagesizes[2] = NBPDP;
2564 		}
2565 	}
2566 
2567 	/*
2568 	 * Initialize pv chunk lists.
2569 	 */
2570 	for (i = 0; i < PMAP_MEMDOM; i++) {
2571 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2572 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2573 	}
2574 	pmap_init_pv_table();
2575 
2576 	pmap_initialized = 1;
2577 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2578 		ppim = pmap_preinit_mapping + i;
2579 		if (ppim->va == 0)
2580 			continue;
2581 		/* Make the direct map consistent */
2582 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2583 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2584 			    ppim->sz, ppim->mode);
2585 		}
2586 		if (!bootverbose)
2587 			continue;
2588 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2589 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2590 	}
2591 
2592 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2593 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2594 	    (vmem_addr_t *)&qframe);
2595 	if (error != 0)
2596 		panic("qframe allocation failed");
2597 
2598 	lm_ents = 8;
2599 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2600 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2601 		lm_ents = LMEPML4I - LMSPML4I + 1;
2602 #ifdef KMSAN
2603 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2604 		printf(
2605 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2606 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2607 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2608 	}
2609 #endif
2610 	if (bootverbose)
2611 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2612 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2613 	if (lm_ents != 0) {
2614 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2615 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2616 		if (large_vmem == NULL) {
2617 			printf("pmap: cannot create large map\n");
2618 			lm_ents = 0;
2619 		}
2620 		for (i = 0; i < lm_ents; i++) {
2621 			m = pmap_large_map_getptp_unlocked();
2622 			/* XXXKIB la57 */
2623 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2624 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2625 			    VM_PAGE_TO_PHYS(m);
2626 		}
2627 	}
2628 }
2629 
2630 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2631     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2632     "Maximum number of PML4 entries for use by large map (tunable).  "
2633     "Each entry corresponds to 512GB of address space.");
2634 
2635 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2636     "2MB page mapping counters");
2637 
2638 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2639 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2640     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2641 
2642 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2643 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2644     &pmap_pde_mappings, "2MB page mappings");
2645 
2646 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2647 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2648     &pmap_pde_p_failures, "2MB page promotion failures");
2649 
2650 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2651 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2652     &pmap_pde_promotions, "2MB page promotions");
2653 
2654 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2655     "1GB page mapping counters");
2656 
2657 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2658 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2659     &pmap_pdpe_demotions, "1GB page demotions");
2660 
2661 /***************************************************
2662  * Low level helper routines.....
2663  ***************************************************/
2664 
2665 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2666 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2667 {
2668 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2669 
2670 	switch (pmap->pm_type) {
2671 	case PT_X86:
2672 	case PT_RVI:
2673 		/* Verify that both PAT bits are not set at the same time */
2674 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2675 		    ("Invalid PAT bits in entry %#lx", entry));
2676 
2677 		/* Swap the PAT bits if one of them is set */
2678 		if ((entry & x86_pat_bits) != 0)
2679 			entry ^= x86_pat_bits;
2680 		break;
2681 	case PT_EPT:
2682 		/*
2683 		 * Nothing to do - the memory attributes are represented
2684 		 * the same way for regular pages and superpages.
2685 		 */
2686 		break;
2687 	default:
2688 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2689 	}
2690 
2691 	return (entry);
2692 }
2693 
2694 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2695 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2696 {
2697 
2698 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2699 	    pat_index[(int)mode] >= 0);
2700 }
2701 
2702 /*
2703  * Determine the appropriate bits to set in a PTE or PDE for a specified
2704  * caching mode.
2705  */
2706 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2707 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2708 {
2709 	int cache_bits, pat_flag, pat_idx;
2710 
2711 	if (!pmap_is_valid_memattr(pmap, mode))
2712 		panic("Unknown caching mode %d\n", mode);
2713 
2714 	switch (pmap->pm_type) {
2715 	case PT_X86:
2716 	case PT_RVI:
2717 		/* The PAT bit is different for PTE's and PDE's. */
2718 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2719 
2720 		/* Map the caching mode to a PAT index. */
2721 		pat_idx = pat_index[mode];
2722 
2723 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2724 		cache_bits = 0;
2725 		if (pat_idx & 0x4)
2726 			cache_bits |= pat_flag;
2727 		if (pat_idx & 0x2)
2728 			cache_bits |= PG_NC_PCD;
2729 		if (pat_idx & 0x1)
2730 			cache_bits |= PG_NC_PWT;
2731 		break;
2732 
2733 	case PT_EPT:
2734 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2735 		break;
2736 
2737 	default:
2738 		panic("unsupported pmap type %d", pmap->pm_type);
2739 	}
2740 
2741 	return (cache_bits);
2742 }
2743 
2744 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2745 pmap_cache_mask(pmap_t pmap, bool is_pde)
2746 {
2747 	int mask;
2748 
2749 	switch (pmap->pm_type) {
2750 	case PT_X86:
2751 	case PT_RVI:
2752 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2753 		break;
2754 	case PT_EPT:
2755 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2756 		break;
2757 	default:
2758 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2759 	}
2760 
2761 	return (mask);
2762 }
2763 
2764 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2765 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2766 {
2767 	int pat_flag, pat_idx;
2768 
2769 	pat_idx = 0;
2770 	switch (pmap->pm_type) {
2771 	case PT_X86:
2772 	case PT_RVI:
2773 		/* The PAT bit is different for PTE's and PDE's. */
2774 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2775 
2776 		if ((pte & pat_flag) != 0)
2777 			pat_idx |= 0x4;
2778 		if ((pte & PG_NC_PCD) != 0)
2779 			pat_idx |= 0x2;
2780 		if ((pte & PG_NC_PWT) != 0)
2781 			pat_idx |= 0x1;
2782 		break;
2783 	case PT_EPT:
2784 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2785 			panic("EPT PTE %#lx has no PAT memory type", pte);
2786 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2787 		break;
2788 	}
2789 
2790 	/* See pmap_init_pat(). */
2791 	if (pat_idx == 4)
2792 		pat_idx = 0;
2793 	if (pat_idx == 7)
2794 		pat_idx = 3;
2795 
2796 	return (pat_idx);
2797 }
2798 
2799 bool
pmap_ps_enabled(pmap_t pmap)2800 pmap_ps_enabled(pmap_t pmap)
2801 {
2802 
2803 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2804 }
2805 
2806 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2807 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2808 {
2809 
2810 	switch (pmap->pm_type) {
2811 	case PT_X86:
2812 		break;
2813 	case PT_RVI:
2814 	case PT_EPT:
2815 		/*
2816 		 * XXX
2817 		 * This is a little bogus since the generation number is
2818 		 * supposed to be bumped up when a region of the address
2819 		 * space is invalidated in the page tables.
2820 		 *
2821 		 * In this case the old PDE entry is valid but yet we want
2822 		 * to make sure that any mappings using the old entry are
2823 		 * invalidated in the TLB.
2824 		 *
2825 		 * The reason this works as expected is because we rendezvous
2826 		 * "all" host cpus and force any vcpu context to exit as a
2827 		 * side-effect.
2828 		 */
2829 		atomic_add_long(&pmap->pm_eptgen, 1);
2830 		break;
2831 	default:
2832 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2833 	}
2834 	pde_store(pde, newpde);
2835 }
2836 
2837 /*
2838  * After changing the page size for the specified virtual address in the page
2839  * table, flush the corresponding entries from the processor's TLB.  Only the
2840  * calling processor's TLB is affected.
2841  *
2842  * The calling thread must be pinned to a processor.
2843  */
2844 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2845 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2846 {
2847 	pt_entry_t PG_G;
2848 
2849 	if (pmap_type_guest(pmap))
2850 		return;
2851 
2852 	KASSERT(pmap->pm_type == PT_X86,
2853 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2854 
2855 	PG_G = pmap_global_bit(pmap);
2856 
2857 	if ((newpde & PG_PS) == 0)
2858 		/* Demotion: flush a specific 2MB page mapping. */
2859 		pmap_invlpg(pmap, va);
2860 	else if ((newpde & PG_G) == 0)
2861 		/*
2862 		 * Promotion: flush every 4KB page mapping from the TLB
2863 		 * because there are too many to flush individually.
2864 		 */
2865 		invltlb();
2866 	else {
2867 		/*
2868 		 * Promotion: flush every 4KB page mapping from the TLB,
2869 		 * including any global (PG_G) mappings.
2870 		 */
2871 		invltlb_glob();
2872 	}
2873 }
2874 
2875 /*
2876  * The amd64 pmap uses different approaches to TLB invalidation
2877  * depending on the kernel configuration, available hardware features,
2878  * and known hardware errata.  The kernel configuration option that
2879  * has the greatest operational impact on TLB invalidation is PTI,
2880  * which is enabled automatically on affected Intel CPUs.  The most
2881  * impactful hardware features are first PCID, and then INVPCID
2882  * instruction presence.  PCID usage is quite different for PTI
2883  * vs. non-PTI.
2884  *
2885  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2886  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2887  *   space is served by two page tables, user and kernel.  The user
2888  *   page table only maps user space and a kernel trampoline.  The
2889  *   kernel trampoline includes the entirety of the kernel text but
2890  *   only the kernel data that is needed to switch from user to kernel
2891  *   mode.  The kernel page table maps the user and kernel address
2892  *   spaces in their entirety.  It is identical to the per-process
2893  *   page table used in non-PTI mode.
2894  *
2895  *   User page tables are only used when the CPU is in user mode.
2896  *   Consequently, some TLB invalidations can be postponed until the
2897  *   switch from kernel to user mode.  In contrast, the user
2898  *   space part of the kernel page table is used for copyout(9), so
2899  *   TLB invalidations on this page table cannot be similarly postponed.
2900  *
2901  *   The existence of a user mode page table for the given pmap is
2902  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2903  *   which case pm_ucr3 contains the %cr3 register value for the user
2904  *   mode page table's root.
2905  *
2906  * * The pm_active bitmask indicates which CPUs currently have the
2907  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2908  *   cleared on switching off this CPU.  For the kernel page table,
2909  *   the pm_active field is immutable and contains all CPUs.  The
2910  *   kernel page table is always logically active on every processor,
2911  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2912  *
2913  *   When requesting invalidation of virtual addresses with
2914  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2915  *   all CPUs recorded as active in pm_active.  Updates to and reads
2916  *   from pm_active are not synchronized, and so they may race with
2917  *   each other.  Shootdown handlers are prepared to handle the race.
2918  *
2919  * * PCID is an optional feature of the long mode x86 MMU where TLB
2920  *   entries are tagged with the 'Process ID' of the address space
2921  *   they belong to.  This feature provides a limited namespace for
2922  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2923  *   total.
2924  *
2925  *   Allocation of a PCID to a pmap is done by an algorithm described
2926  *   in section 15.12, "Other TLB Consistency Algorithms", of
2927  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2928  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2929  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2930  *   the CPU is about to start caching TLB entries from a pmap,
2931  *   i.e., on the context switch that activates the pmap on the CPU.
2932  *
2933  *   The PCID allocator maintains a per-CPU, per-pmap generation
2934  *   count, pm_gen, which is incremented each time a new PCID is
2935  *   allocated.  On TLB invalidation, the generation counters for the
2936  *   pmap are zeroed, which signals the context switch code that the
2937  *   previously allocated PCID is no longer valid.  Effectively,
2938  *   zeroing any of these counters triggers a TLB shootdown for the
2939  *   given CPU/address space, due to the allocation of a new PCID.
2940  *
2941  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2942  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2943  *   be initiated by an ordinary memory access to reset the target
2944  *   CPU's generation count within the pmap.  The CPU initiating the
2945  *   TLB shootdown does not need to send an IPI to the target CPU.
2946  *
2947  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2948  *   for complete (kernel) page tables, and PCIDs for user mode page
2949  *   tables.  A user PCID value is obtained from the kernel PCID value
2950  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2951  *
2952  *   User space page tables are activated on return to user mode, by
2953  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2954  *   clearing bit 63 of the loaded ucr3, this effectively causes
2955  *   complete invalidation of the user mode TLB entries for the
2956  *   current pmap.  In which case, local invalidations of individual
2957  *   pages in the user page table are skipped.
2958  *
2959  * * Local invalidation, all modes.  If the requested invalidation is
2960  *   for a specific address or the total invalidation of a currently
2961  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2962  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2963  *   user space page table(s).
2964  *
2965  *   If the INVPCID instruction is available, it is used to flush user
2966  *   entries from the kernel page table.
2967  *
2968  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2969  *   entries for the given page that either match the current PCID or
2970  *   are global. Since TLB entries for the same page under different
2971  *   PCIDs are unaffected, kernel pages which reside in all address
2972  *   spaces could be problematic.  We avoid the problem by creating
2973  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2974  *   disabled.
2975  *
2976  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2977  *   address space, all other 4095 PCIDs are used for user mode spaces
2978  *   as described above.  A context switch allocates a new PCID if
2979  *   the recorded PCID is zero or the recorded generation does not match
2980  *   the CPU's generation, effectively flushing the TLB for this address space.
2981  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2982  *	local user page: INVLPG
2983  *	local kernel page: INVLPG
2984  *	local user total: INVPCID(CTX)
2985  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2986  *	remote user page, inactive pmap: zero pm_gen
2987  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2988  *	(Both actions are required to handle the aforementioned pm_active races.)
2989  *	remote kernel page: IPI:INVLPG
2990  *	remote user total, inactive pmap: zero pm_gen
2991  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2992  *          reload %cr3)
2993  *	(See note above about pm_active races.)
2994  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2995  *
2996  * PTI enabled, PCID present.
2997  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2998  *          for upt
2999  *	local kernel page: INVLPG
3000  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
3001  *          on loading UCR3 into %cr3 for upt
3002  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3003  *	remote user page, inactive pmap: zero pm_gen
3004  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
3005  *          INVPCID(ADDR) for upt)
3006  *	remote kernel page: IPI:INVLPG
3007  *	remote user total, inactive pmap: zero pm_gen
3008  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
3009  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
3010  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3011  *
3012  *  No PCID.
3013  *	local user page: INVLPG
3014  *	local kernel page: INVLPG
3015  *	local user total: reload %cr3
3016  *	local kernel total: invltlb_glob()
3017  *	remote user page, inactive pmap: -
3018  *	remote user page, active pmap: IPI:INVLPG
3019  *	remote kernel page: IPI:INVLPG
3020  *	remote user total, inactive pmap: -
3021  *	remote user total, active pmap: IPI:(reload %cr3)
3022  *	remote kernel total: IPI:invltlb_glob()
3023  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
3024  *  TLB invalidation, no specific action is required for user page table.
3025  *
3026  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
3027  * XXX TODO
3028  */
3029 
3030 #ifdef SMP
3031 /*
3032  * Interrupt the cpus that are executing in the guest context.
3033  * This will force the vcpu to exit and the cached EPT mappings
3034  * will be invalidated by the host before the next vmresume.
3035  */
3036 static __inline void
pmap_invalidate_ept(pmap_t pmap)3037 pmap_invalidate_ept(pmap_t pmap)
3038 {
3039 	smr_seq_t goal;
3040 	int ipinum;
3041 
3042 	sched_pin();
3043 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3044 	    ("pmap_invalidate_ept: absurd pm_active"));
3045 
3046 	/*
3047 	 * The TLB mappings associated with a vcpu context are not
3048 	 * flushed each time a different vcpu is chosen to execute.
3049 	 *
3050 	 * This is in contrast with a process's vtop mappings that
3051 	 * are flushed from the TLB on each context switch.
3052 	 *
3053 	 * Therefore we need to do more than just a TLB shootdown on
3054 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3055 	 * track of the number of invalidations performed on this pmap.
3056 	 *
3057 	 * Each vcpu keeps a cache of this counter and compares it
3058 	 * just before a vmresume. If the counter is out-of-date an
3059 	 * invept will be done to flush stale mappings from the TLB.
3060 	 *
3061 	 * To ensure that all vCPU threads have observed the new counter
3062 	 * value before returning, we use SMR.  Ordering is important here:
3063 	 * the VMM enters an SMR read section before loading the counter
3064 	 * and after updating the pm_active bit set.  Thus, pm_active is
3065 	 * a superset of active readers, and any reader that has observed
3066 	 * the goal has observed the new counter value.
3067 	 */
3068 	atomic_add_long(&pmap->pm_eptgen, 1);
3069 
3070 	goal = smr_advance(pmap->pm_eptsmr);
3071 
3072 	/*
3073 	 * Force the vcpu to exit and trap back into the hypervisor.
3074 	 */
3075 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3076 	ipi_selected(pmap->pm_active, ipinum);
3077 	sched_unpin();
3078 
3079 	/*
3080 	 * Ensure that all active vCPUs will observe the new generation counter
3081 	 * value before executing any more guest instructions.
3082 	 */
3083 	smr_wait(pmap->pm_eptsmr, goal);
3084 }
3085 
3086 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3087 pmap_invalidate_preipi_pcid(pmap_t pmap)
3088 {
3089 	struct pmap_pcid *pcidp;
3090 	u_int cpuid, i;
3091 
3092 	sched_pin();
3093 
3094 	cpuid = PCPU_GET(cpuid);
3095 	if (pmap != PCPU_GET(curpmap))
3096 		cpuid = 0xffffffff;	/* An impossible value */
3097 
3098 	CPU_FOREACH(i) {
3099 		if (cpuid != i) {
3100 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3101 			pcidp->pm_gen = 0;
3102 		}
3103 	}
3104 
3105 	/*
3106 	 * The fence is between stores to pm_gen and the read of the
3107 	 * pm_active mask.  We need to ensure that it is impossible
3108 	 * for us to miss the bit update in pm_active and
3109 	 * simultaneously observe a non-zero pm_gen in
3110 	 * pmap_activate_sw(), otherwise TLB update is missed.
3111 	 * Without the fence, IA32 allows such an outcome.  Note that
3112 	 * pm_active is updated by a locked operation, which provides
3113 	 * the reciprocal fence.
3114 	 */
3115 	atomic_thread_fence_seq_cst();
3116 }
3117 
3118 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3119 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3120 {
3121 	sched_pin();
3122 }
3123 
3124 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3125 {
3126 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3127 	    pmap_invalidate_preipi_nopcid);
3128 }
3129 
3130 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3131 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3132     const bool invpcid_works1)
3133 {
3134 	struct invpcid_descr d;
3135 	uint64_t kcr3, ucr3;
3136 	uint32_t pcid;
3137 
3138 	/*
3139 	 * Because pm_pcid is recalculated on a context switch, we
3140 	 * must ensure there is no preemption, not just pinning.
3141 	 * Otherwise, we might use a stale value below.
3142 	 */
3143 	CRITICAL_ASSERT(curthread);
3144 
3145 	/*
3146 	 * No need to do anything with user page tables invalidation
3147 	 * if there is no user page table, or invalidation is deferred
3148 	 * until the return to userspace.  ucr3_load_mask is stable
3149 	 * because we have preemption disabled.
3150 	 */
3151 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3152 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3153 		return;
3154 
3155 	pcid = pmap_get_pcid(pmap);
3156 	if (invpcid_works1) {
3157 		d.pcid = pcid | PMAP_PCID_USER_PT;
3158 		d.pad = 0;
3159 		d.addr = va;
3160 		invpcid(&d, INVPCID_ADDR);
3161 	} else {
3162 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3163 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3164 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3165 	}
3166 }
3167 
3168 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3169 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3170 {
3171 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3172 }
3173 
3174 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3175 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3176 {
3177 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3178 }
3179 
3180 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3181 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3182 {
3183 }
3184 
3185 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3186 {
3187 	if (pmap_pcid_enabled)
3188 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3189 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3190 	return (pmap_invalidate_page_nopcid_cb);
3191 }
3192 
3193 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3194 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3195     vm_offset_t addr2 __unused)
3196 {
3197 	if (pmap == kernel_pmap) {
3198 		pmap_invlpg(kernel_pmap, va);
3199 	} else if (pmap == PCPU_GET(curpmap)) {
3200 		invlpg(va);
3201 		pmap_invalidate_page_cb(pmap, va);
3202 	}
3203 }
3204 
3205 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3206 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3207 {
3208 	if (pmap_type_guest(pmap)) {
3209 		pmap_invalidate_ept(pmap);
3210 		return;
3211 	}
3212 
3213 	KASSERT(pmap->pm_type == PT_X86,
3214 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3215 
3216 	pmap_invalidate_preipi(pmap);
3217 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3218 }
3219 
3220 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3221 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3222 
3223 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3224 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3225     const bool invpcid_works1)
3226 {
3227 	struct invpcid_descr d;
3228 	uint64_t kcr3, ucr3;
3229 	uint32_t pcid;
3230 
3231 	CRITICAL_ASSERT(curthread);
3232 
3233 	if (pmap != PCPU_GET(curpmap) ||
3234 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3235 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3236 		return;
3237 
3238 	pcid = pmap_get_pcid(pmap);
3239 	if (invpcid_works1) {
3240 		d.pcid = pcid | PMAP_PCID_USER_PT;
3241 		d.pad = 0;
3242 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3243 			invpcid(&d, INVPCID_ADDR);
3244 	} else {
3245 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3246 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3247 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3248 	}
3249 }
3250 
3251 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3252 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3253     vm_offset_t eva)
3254 {
3255 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3256 }
3257 
3258 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3259 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3260     vm_offset_t eva)
3261 {
3262 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3263 }
3264 
3265 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3266 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3267     vm_offset_t eva __unused)
3268 {
3269 }
3270 
3271 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3272     vm_offset_t))
3273 {
3274 	if (pmap_pcid_enabled)
3275 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3276 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3277 	return (pmap_invalidate_range_nopcid_cb);
3278 }
3279 
3280 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3281 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3282 {
3283 	vm_offset_t addr;
3284 
3285 	if (pmap == kernel_pmap) {
3286 		if (PCPU_GET(pcid_invlpg_workaround)) {
3287 			struct invpcid_descr d = { 0 };
3288 
3289 			invpcid(&d, INVPCID_CTXGLOB);
3290 		} else {
3291 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3292 				invlpg(addr);
3293 		}
3294 	} else if (pmap == PCPU_GET(curpmap)) {
3295 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3296 			invlpg(addr);
3297 		pmap_invalidate_range_cb(pmap, sva, eva);
3298 	}
3299 }
3300 
3301 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3302 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3303 {
3304 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3305 		pmap_invalidate_all(pmap);
3306 		return;
3307 	}
3308 
3309 	if (pmap_type_guest(pmap)) {
3310 		pmap_invalidate_ept(pmap);
3311 		return;
3312 	}
3313 
3314 	KASSERT(pmap->pm_type == PT_X86,
3315 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3316 
3317 	pmap_invalidate_preipi(pmap);
3318 	smp_masked_invlpg_range(sva, eva, pmap,
3319 	    pmap_invalidate_range_curcpu_cb);
3320 }
3321 
3322 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3323 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3324 {
3325 	struct invpcid_descr d;
3326 	uint64_t kcr3;
3327 	uint32_t pcid;
3328 
3329 	if (pmap == kernel_pmap) {
3330 		if (invpcid_works1) {
3331 			bzero(&d, sizeof(d));
3332 			invpcid(&d, INVPCID_CTXGLOB);
3333 		} else {
3334 			invltlb_glob();
3335 		}
3336 	} else if (pmap == PCPU_GET(curpmap)) {
3337 		CRITICAL_ASSERT(curthread);
3338 
3339 		pcid = pmap_get_pcid(pmap);
3340 		if (invpcid_works1) {
3341 			d.pcid = pcid;
3342 			d.pad = 0;
3343 			d.addr = 0;
3344 			invpcid(&d, INVPCID_CTX);
3345 		} else {
3346 			kcr3 = pmap->pm_cr3 | pcid;
3347 			load_cr3(kcr3);
3348 		}
3349 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3350 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3351 	}
3352 }
3353 
3354 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3355 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3356 {
3357 	pmap_invalidate_all_pcid_cb(pmap, true);
3358 }
3359 
3360 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3361 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3362 {
3363 	pmap_invalidate_all_pcid_cb(pmap, false);
3364 }
3365 
3366 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3367 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3368 {
3369 	if (pmap == kernel_pmap)
3370 		invltlb_glob();
3371 	else if (pmap == PCPU_GET(curpmap))
3372 		invltlb();
3373 }
3374 
3375 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3376 {
3377 	if (pmap_pcid_enabled)
3378 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3379 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3380 	return (pmap_invalidate_all_nopcid_cb);
3381 }
3382 
3383 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3384 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3385     vm_offset_t addr2 __unused)
3386 {
3387 	pmap_invalidate_all_cb(pmap);
3388 }
3389 
3390 void
pmap_invalidate_all(pmap_t pmap)3391 pmap_invalidate_all(pmap_t pmap)
3392 {
3393 	if (pmap_type_guest(pmap)) {
3394 		pmap_invalidate_ept(pmap);
3395 		return;
3396 	}
3397 
3398 	KASSERT(pmap->pm_type == PT_X86,
3399 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3400 
3401 	pmap_invalidate_preipi(pmap);
3402 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3403 }
3404 
3405 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3406 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3407     vm_offset_t addr2 __unused)
3408 {
3409 	wbinvd();
3410 }
3411 
3412 void
pmap_invalidate_cache(void)3413 pmap_invalidate_cache(void)
3414 {
3415 	sched_pin();
3416 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3417 }
3418 
3419 struct pde_action {
3420 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3421 	pmap_t pmap;
3422 	vm_offset_t va;
3423 	pd_entry_t *pde;
3424 	pd_entry_t newpde;
3425 	u_int store;		/* processor that updates the PDE */
3426 };
3427 
3428 static void
pmap_update_pde_action(void * arg)3429 pmap_update_pde_action(void *arg)
3430 {
3431 	struct pde_action *act = arg;
3432 
3433 	if (act->store == PCPU_GET(cpuid))
3434 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3435 }
3436 
3437 static void
pmap_update_pde_teardown(void * arg)3438 pmap_update_pde_teardown(void *arg)
3439 {
3440 	struct pde_action *act = arg;
3441 
3442 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3443 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3444 }
3445 
3446 /*
3447  * Change the page size for the specified virtual address in a way that
3448  * prevents any possibility of the TLB ever having two entries that map the
3449  * same virtual address using different page sizes.  This is the recommended
3450  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3451  * machine check exception for a TLB state that is improperly diagnosed as a
3452  * hardware error.
3453  */
3454 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3455 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3456 {
3457 	struct pde_action act;
3458 	cpuset_t active, other_cpus;
3459 	u_int cpuid;
3460 
3461 	sched_pin();
3462 	cpuid = PCPU_GET(cpuid);
3463 	other_cpus = all_cpus;
3464 	CPU_CLR(cpuid, &other_cpus);
3465 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3466 		active = all_cpus;
3467 	else {
3468 		active = pmap->pm_active;
3469 	}
3470 	if (CPU_OVERLAP(&active, &other_cpus)) {
3471 		act.store = cpuid;
3472 		act.invalidate = active;
3473 		act.va = va;
3474 		act.pmap = pmap;
3475 		act.pde = pde;
3476 		act.newpde = newpde;
3477 		CPU_SET(cpuid, &active);
3478 		smp_rendezvous_cpus(active,
3479 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3480 		    pmap_update_pde_teardown, &act);
3481 	} else {
3482 		pmap_update_pde_store(pmap, pde, newpde);
3483 		if (CPU_ISSET(cpuid, &active))
3484 			pmap_update_pde_invalidate(pmap, va, newpde);
3485 	}
3486 	sched_unpin();
3487 }
3488 #else /* !SMP */
3489 /*
3490  * Normal, non-SMP, invalidation functions.
3491  */
3492 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3493 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3494 {
3495 	struct invpcid_descr d;
3496 	struct pmap_pcid *pcidp;
3497 	uint64_t kcr3, ucr3;
3498 	uint32_t pcid;
3499 
3500 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3501 		pmap->pm_eptgen++;
3502 		return;
3503 	}
3504 	KASSERT(pmap->pm_type == PT_X86,
3505 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3506 
3507 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3508 		invlpg(va);
3509 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3510 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3511 			critical_enter();
3512 			pcid = pmap_get_pcid(pmap);
3513 			if (invpcid_works) {
3514 				d.pcid = pcid | PMAP_PCID_USER_PT;
3515 				d.pad = 0;
3516 				d.addr = va;
3517 				invpcid(&d, INVPCID_ADDR);
3518 			} else {
3519 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3520 				ucr3 = pmap->pm_ucr3 | pcid |
3521 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3522 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3523 			}
3524 			critical_exit();
3525 		}
3526 	} else if (pmap_pcid_enabled) {
3527 		pcidp = zpcpu_get(pmap->pm_pcidp);
3528 		pcidp->pm_gen = 0;
3529 	}
3530 }
3531 
3532 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3533 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3534 {
3535 	struct invpcid_descr d;
3536 	struct pmap_pcid *pcidp;
3537 	vm_offset_t addr;
3538 	uint64_t kcr3, ucr3;
3539 	uint32_t pcid;
3540 
3541 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3542 		pmap->pm_eptgen++;
3543 		return;
3544 	}
3545 	KASSERT(pmap->pm_type == PT_X86,
3546 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3547 
3548 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3549 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3550 			invlpg(addr);
3551 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3552 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3553 			critical_enter();
3554 			pcid = pmap_get_pcid(pmap);
3555 			if (invpcid_works) {
3556 				d.pcid = pcid | PMAP_PCID_USER_PT;
3557 				d.pad = 0;
3558 				d.addr = sva;
3559 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3560 					invpcid(&d, INVPCID_ADDR);
3561 			} else {
3562 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3563 				ucr3 = pmap->pm_ucr3 | pcid |
3564 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3565 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3566 			}
3567 			critical_exit();
3568 		}
3569 	} else if (pmap_pcid_enabled) {
3570 		pcidp = zpcpu_get(pmap->pm_pcidp);
3571 		pcidp->pm_gen = 0;
3572 	}
3573 }
3574 
3575 void
pmap_invalidate_all(pmap_t pmap)3576 pmap_invalidate_all(pmap_t pmap)
3577 {
3578 	struct invpcid_descr d;
3579 	struct pmap_pcid *pcidp;
3580 	uint64_t kcr3, ucr3;
3581 	uint32_t pcid;
3582 
3583 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3584 		pmap->pm_eptgen++;
3585 		return;
3586 	}
3587 	KASSERT(pmap->pm_type == PT_X86,
3588 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3589 
3590 	if (pmap == kernel_pmap) {
3591 		if (pmap_pcid_enabled && invpcid_works) {
3592 			bzero(&d, sizeof(d));
3593 			invpcid(&d, INVPCID_CTXGLOB);
3594 		} else {
3595 			invltlb_glob();
3596 		}
3597 	} else if (pmap == PCPU_GET(curpmap)) {
3598 		if (pmap_pcid_enabled) {
3599 			critical_enter();
3600 			pcid = pmap_get_pcid(pmap);
3601 			if (invpcid_works) {
3602 				d.pcid = pcid;
3603 				d.pad = 0;
3604 				d.addr = 0;
3605 				invpcid(&d, INVPCID_CTX);
3606 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3607 					d.pcid |= PMAP_PCID_USER_PT;
3608 					invpcid(&d, INVPCID_CTX);
3609 				}
3610 			} else {
3611 				kcr3 = pmap->pm_cr3 | pcid;
3612 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3613 					ucr3 = pmap->pm_ucr3 | pcid |
3614 					    PMAP_PCID_USER_PT;
3615 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3616 				} else
3617 					load_cr3(kcr3);
3618 			}
3619 			critical_exit();
3620 		} else {
3621 			invltlb();
3622 		}
3623 	} else if (pmap_pcid_enabled) {
3624 		pcidp = zpcpu_get(pmap->pm_pcidp);
3625 		pcidp->pm_gen = 0;
3626 	}
3627 }
3628 
3629 void
pmap_invalidate_cache(void)3630 pmap_invalidate_cache(void)
3631 {
3632 
3633 	wbinvd();
3634 }
3635 
3636 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3637 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3638 {
3639 	struct pmap_pcid *pcidp;
3640 
3641 	pmap_update_pde_store(pmap, pde, newpde);
3642 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3643 		pmap_update_pde_invalidate(pmap, va, newpde);
3644 	else {
3645 		pcidp = zpcpu_get(pmap->pm_pcidp);
3646 		pcidp->pm_gen = 0;
3647 	}
3648 }
3649 #endif /* !SMP */
3650 
3651 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3652 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3653 {
3654 
3655 	/*
3656 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3657 	 * by a promotion that did not invalidate the 512 4KB page mappings
3658 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3659 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3660 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3661 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3662 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3663 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3664 	 * TLB.
3665 	 */
3666 	if ((pde & PG_PROMOTED) != 0)
3667 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3668 	else
3669 		pmap_invalidate_page(pmap, va);
3670 }
3671 
3672 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3673     (vm_offset_t sva, vm_offset_t eva))
3674 {
3675 
3676 	if ((cpu_feature & CPUID_SS) != 0)
3677 		return (pmap_invalidate_cache_range_selfsnoop);
3678 	if ((cpu_feature & CPUID_CLFSH) != 0)
3679 		return (pmap_force_invalidate_cache_range);
3680 	return (pmap_invalidate_cache_range_all);
3681 }
3682 
3683 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3684 
3685 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3686 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3687 {
3688 
3689 	KASSERT((sva & PAGE_MASK) == 0,
3690 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3691 	KASSERT((eva & PAGE_MASK) == 0,
3692 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3693 }
3694 
3695 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3696 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3697 {
3698 
3699 	pmap_invalidate_cache_range_check_align(sva, eva);
3700 }
3701 
3702 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3703 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3704 {
3705 
3706 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3707 
3708 	/*
3709 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3710 	 * registers if we use CLFLUSH on the local APIC range.  The
3711 	 * local APIC is always uncached, so we don't need to flush
3712 	 * for that range anyway.
3713 	 */
3714 	if (pmap_kextract(sva) == lapic_paddr)
3715 		return;
3716 
3717 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3718 		/*
3719 		 * Do per-cache line flush.  Use a locked
3720 		 * instruction to insure that previous stores are
3721 		 * included in the write-back.  The processor
3722 		 * propagates flush to other processors in the cache
3723 		 * coherence domain.
3724 		 */
3725 		atomic_thread_fence_seq_cst();
3726 		for (; sva < eva; sva += cpu_clflush_line_size)
3727 			clflushopt(sva);
3728 		atomic_thread_fence_seq_cst();
3729 	} else {
3730 		/*
3731 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3732 		 */
3733 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3734 			mfence();
3735 		for (; sva < eva; sva += cpu_clflush_line_size)
3736 			clflush(sva);
3737 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3738 			mfence();
3739 	}
3740 }
3741 
3742 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3743 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3744 {
3745 
3746 	pmap_invalidate_cache_range_check_align(sva, eva);
3747 	pmap_invalidate_cache();
3748 }
3749 
3750 /*
3751  * Remove the specified set of pages from the data and instruction caches.
3752  *
3753  * In contrast to pmap_invalidate_cache_range(), this function does not
3754  * rely on the CPU's self-snoop feature, because it is intended for use
3755  * when moving pages into a different cache domain.
3756  */
3757 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3758 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3759 {
3760 	vm_offset_t daddr, eva;
3761 	int i;
3762 	bool useclflushopt;
3763 
3764 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3765 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3766 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3767 		pmap_invalidate_cache();
3768 	else {
3769 		if (useclflushopt)
3770 			atomic_thread_fence_seq_cst();
3771 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3772 			mfence();
3773 		for (i = 0; i < count; i++) {
3774 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3775 			eva = daddr + PAGE_SIZE;
3776 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3777 				if (useclflushopt)
3778 					clflushopt(daddr);
3779 				else
3780 					clflush(daddr);
3781 			}
3782 		}
3783 		if (useclflushopt)
3784 			atomic_thread_fence_seq_cst();
3785 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3786 			mfence();
3787 	}
3788 }
3789 
3790 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3791 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3792 {
3793 
3794 	pmap_invalidate_cache_range_check_align(sva, eva);
3795 
3796 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3797 		pmap_force_invalidate_cache_range(sva, eva);
3798 		return;
3799 	}
3800 
3801 	/* See comment in pmap_force_invalidate_cache_range(). */
3802 	if (pmap_kextract(sva) == lapic_paddr)
3803 		return;
3804 
3805 	atomic_thread_fence_seq_cst();
3806 	for (; sva < eva; sva += cpu_clflush_line_size)
3807 		clwb(sva);
3808 	atomic_thread_fence_seq_cst();
3809 }
3810 
3811 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3812 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3813 {
3814 	pt_entry_t *pte;
3815 	vm_offset_t vaddr;
3816 	int error __diagused;
3817 	int pte_bits;
3818 
3819 	KASSERT((spa & PAGE_MASK) == 0,
3820 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3821 	KASSERT((epa & PAGE_MASK) == 0,
3822 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3823 
3824 	if (spa < dmaplimit) {
3825 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3826 		    dmaplimit, epa)));
3827 		if (dmaplimit >= epa)
3828 			return;
3829 		spa = dmaplimit;
3830 	}
3831 
3832 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3833 	    X86_PG_V;
3834 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3835 	    &vaddr);
3836 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3837 	pte = vtopte(vaddr);
3838 	for (; spa < epa; spa += PAGE_SIZE) {
3839 		sched_pin();
3840 		pte_store(pte, spa | pte_bits);
3841 		pmap_invlpg(kernel_pmap, vaddr);
3842 		/* XXXKIB atomic inside flush_cache_range are excessive */
3843 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3844 		sched_unpin();
3845 	}
3846 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3847 }
3848 
3849 /*
3850  *	Routine:	pmap_extract
3851  *	Function:
3852  *		Extract the physical page address associated
3853  *		with the given map/virtual_address pair.
3854  */
3855 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3856 pmap_extract(pmap_t pmap, vm_offset_t va)
3857 {
3858 	pdp_entry_t *pdpe;
3859 	pd_entry_t *pde;
3860 	pt_entry_t *pte, PG_V;
3861 	vm_paddr_t pa;
3862 
3863 	pa = 0;
3864 	PG_V = pmap_valid_bit(pmap);
3865 	PMAP_LOCK(pmap);
3866 	pdpe = pmap_pdpe(pmap, va);
3867 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3868 		if ((*pdpe & PG_PS) != 0)
3869 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3870 		else {
3871 			pde = pmap_pdpe_to_pde(pdpe, va);
3872 			if ((*pde & PG_V) != 0) {
3873 				if ((*pde & PG_PS) != 0) {
3874 					pa = (*pde & PG_PS_FRAME) |
3875 					    (va & PDRMASK);
3876 				} else {
3877 					pte = pmap_pde_to_pte(pde, va);
3878 					pa = (*pte & PG_FRAME) |
3879 					    (va & PAGE_MASK);
3880 				}
3881 			}
3882 		}
3883 	}
3884 	PMAP_UNLOCK(pmap);
3885 	return (pa);
3886 }
3887 
3888 /*
3889  *	Routine:	pmap_extract_and_hold
3890  *	Function:
3891  *		Atomically extract and hold the physical page
3892  *		with the given pmap and virtual address pair
3893  *		if that mapping permits the given protection.
3894  */
3895 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3896 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3897 {
3898 	pdp_entry_t pdpe, *pdpep;
3899 	pd_entry_t pde, *pdep;
3900 	pt_entry_t pte, PG_RW, PG_V;
3901 	vm_page_t m;
3902 
3903 	m = NULL;
3904 	PG_RW = pmap_rw_bit(pmap);
3905 	PG_V = pmap_valid_bit(pmap);
3906 	PMAP_LOCK(pmap);
3907 
3908 	pdpep = pmap_pdpe(pmap, va);
3909 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3910 		goto out;
3911 	if ((pdpe & PG_PS) != 0) {
3912 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3913 			goto out;
3914 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3915 		goto check_page;
3916 	}
3917 
3918 	pdep = pmap_pdpe_to_pde(pdpep, va);
3919 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3920 		goto out;
3921 	if ((pde & PG_PS) != 0) {
3922 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3923 			goto out;
3924 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3925 		goto check_page;
3926 	}
3927 
3928 	pte = *pmap_pde_to_pte(pdep, va);
3929 	if ((pte & PG_V) == 0 ||
3930 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3931 		goto out;
3932 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3933 
3934 check_page:
3935 	if (m != NULL && !vm_page_wire_mapped(m))
3936 		m = NULL;
3937 out:
3938 	PMAP_UNLOCK(pmap);
3939 	return (m);
3940 }
3941 
3942 /*
3943  *	Routine:	pmap_kextract
3944  *	Function:
3945  *		Extract the physical page address associated with the given kernel
3946  *		virtual address.
3947  */
3948 vm_paddr_t
pmap_kextract(vm_offset_t va)3949 pmap_kextract(vm_offset_t va)
3950 {
3951 	pd_entry_t pde;
3952 	vm_paddr_t pa;
3953 
3954 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3955 		pa = DMAP_TO_PHYS(va);
3956 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3957 		pa = pmap_large_map_kextract(va);
3958 	} else {
3959 		pde = *vtopde(va);
3960 		if (pde & PG_PS) {
3961 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3962 		} else {
3963 			/*
3964 			 * Beware of a concurrent promotion that changes the
3965 			 * PDE at this point!  For example, vtopte() must not
3966 			 * be used to access the PTE because it would use the
3967 			 * new PDE.  It is, however, safe to use the old PDE
3968 			 * because the page table page is preserved by the
3969 			 * promotion.
3970 			 */
3971 			pa = *pmap_pde_to_pte(&pde, va);
3972 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3973 		}
3974 	}
3975 	return (pa);
3976 }
3977 
3978 /***************************************************
3979  * Low level mapping routines.....
3980  ***************************************************/
3981 
3982 /*
3983  * Add a wired page to the kva.
3984  * Note: not SMP coherent.
3985  */
3986 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3987 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3988 {
3989 	pt_entry_t *pte;
3990 
3991 	pte = vtopte(va);
3992 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3993 	    X86_PG_RW | X86_PG_V);
3994 }
3995 
3996 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3997 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3998 {
3999 	pt_entry_t *pte;
4000 	int cache_bits;
4001 
4002 	pte = vtopte(va);
4003 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
4004 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
4005 	    X86_PG_RW | X86_PG_V | cache_bits);
4006 }
4007 
4008 /*
4009  * Remove a page from the kernel pagetables.
4010  * Note: not SMP coherent.
4011  */
4012 void
pmap_kremove(vm_offset_t va)4013 pmap_kremove(vm_offset_t va)
4014 {
4015 	pt_entry_t *pte;
4016 
4017 	pte = vtopte(va);
4018 	pte_clear(pte);
4019 }
4020 
4021 /*
4022  *	Used to map a range of physical addresses into kernel
4023  *	virtual address space.
4024  *
4025  *	The value passed in '*virt' is a suggested virtual address for
4026  *	the mapping. Architectures which can support a direct-mapped
4027  *	physical to virtual region can return the appropriate address
4028  *	within that region, leaving '*virt' unchanged. Other
4029  *	architectures should map the pages starting at '*virt' and
4030  *	update '*virt' with the first usable address after the mapped
4031  *	region.
4032  */
4033 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)4034 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
4035 {
4036 	return PHYS_TO_DMAP(start);
4037 }
4038 
4039 /*
4040  * Add a list of wired pages to the kva
4041  * this routine is only used for temporary
4042  * kernel mappings that do not need to have
4043  * page modification or references recorded.
4044  * Note that old mappings are simply written
4045  * over.  The page *must* be wired.
4046  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4047  */
4048 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)4049 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4050 {
4051 	pt_entry_t *endpte, oldpte, pa, *pte;
4052 	vm_page_t m;
4053 	int cache_bits;
4054 
4055 	oldpte = 0;
4056 	pte = vtopte(sva);
4057 	endpte = pte + count;
4058 	while (pte < endpte) {
4059 		m = *ma++;
4060 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4061 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4062 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4063 			oldpte |= *pte;
4064 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4065 			    X86_PG_M | X86_PG_RW | X86_PG_V);
4066 		}
4067 		pte++;
4068 	}
4069 	if (__predict_false((oldpte & X86_PG_V) != 0))
4070 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4071 		    PAGE_SIZE);
4072 }
4073 
4074 /*
4075  * This routine tears out page mappings from the
4076  * kernel -- it is meant only for temporary mappings.
4077  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4078  */
4079 void
pmap_qremove(vm_offset_t sva,int count)4080 pmap_qremove(vm_offset_t sva, int count)
4081 {
4082 	vm_offset_t va;
4083 
4084 	va = sva;
4085 	while (count-- > 0) {
4086 		/*
4087 		 * pmap_enter() calls within the kernel virtual
4088 		 * address space happen on virtual addresses from
4089 		 * subarenas that import superpage-sized and -aligned
4090 		 * address ranges.  So, the virtual address that we
4091 		 * allocate to use with pmap_qenter() can't be close
4092 		 * enough to one of those pmap_enter() calls for it to
4093 		 * be caught up in a promotion.
4094 		 */
4095 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4096 		KASSERT((*vtopde(va) & X86_PG_PS) == 0,
4097 		    ("pmap_qremove on promoted va %#lx", va));
4098 
4099 		pmap_kremove(va);
4100 		va += PAGE_SIZE;
4101 	}
4102 	pmap_invalidate_range(kernel_pmap, sva, va);
4103 }
4104 
4105 /***************************************************
4106  * Page table page management routines.....
4107  ***************************************************/
4108 /*
4109  * Schedule the specified unused page table page to be freed.  Specifically,
4110  * add the page to the specified list of pages that will be released to the
4111  * physical memory manager after the TLB has been updated.
4112  */
4113 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4114 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4115 {
4116 
4117 	if (set_PG_ZERO)
4118 		m->flags |= PG_ZERO;
4119 	else
4120 		m->flags &= ~PG_ZERO;
4121 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4122 }
4123 
4124 /*
4125  * Inserts the specified page table page into the specified pmap's collection
4126  * of idle page table pages.  Each of a pmap's page table pages is responsible
4127  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4128  * ordered by this virtual address range.
4129  *
4130  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4131  * "mpte"'s valid field will be set to 0.
4132  *
4133  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4134  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4135  * valid field will be set to 1.
4136  *
4137  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4138  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4139  * field will be set to VM_PAGE_BITS_ALL.
4140  */
4141 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4142 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4143     bool allpte_PG_A_set)
4144 {
4145 
4146 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4147 	KASSERT(promoted || !allpte_PG_A_set,
4148 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4149 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4150 	return (vm_radix_insert(&pmap->pm_root, mpte));
4151 }
4152 
4153 /*
4154  * Removes the page table page mapping the specified virtual address from the
4155  * specified pmap's collection of idle page table pages, and returns it.
4156  * Otherwise, returns NULL if there is no page table page corresponding to the
4157  * specified virtual address.
4158  */
4159 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4160 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4161 {
4162 
4163 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4164 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4165 }
4166 
4167 /*
4168  * Decrements a page table page's reference count, which is used to record the
4169  * number of valid page table entries within the page.  If the reference count
4170  * drops to zero, then the page table page is unmapped.  Returns true if the
4171  * page table page was unmapped and false otherwise.
4172  */
4173 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4174 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4175 {
4176 
4177 	--m->ref_count;
4178 	if (m->ref_count == 0) {
4179 		_pmap_unwire_ptp(pmap, va, m, free);
4180 		return (true);
4181 	} else
4182 		return (false);
4183 }
4184 
4185 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4186 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4187 {
4188 	pml5_entry_t *pml5;
4189 	pml4_entry_t *pml4;
4190 	pdp_entry_t *pdp;
4191 	pd_entry_t *pd;
4192 	vm_page_t pdpg, pdppg, pml4pg;
4193 
4194 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4195 
4196 	/*
4197 	 * unmap the page table page
4198 	 */
4199 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4200 		/* PML4 page */
4201 		MPASS(pmap_is_la57(pmap));
4202 		pml5 = pmap_pml5e(pmap, va);
4203 		*pml5 = 0;
4204 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4205 			pml5 = pmap_pml5e_u(pmap, va);
4206 			*pml5 = 0;
4207 		}
4208 	} else if (m->pindex >= NUPDE + NUPDPE) {
4209 		/* PDP page */
4210 		pml4 = pmap_pml4e(pmap, va);
4211 		*pml4 = 0;
4212 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4213 		    va <= VM_MAXUSER_ADDRESS) {
4214 			pml4 = pmap_pml4e_u(pmap, va);
4215 			*pml4 = 0;
4216 		}
4217 	} else if (m->pindex >= NUPDE) {
4218 		/* PD page */
4219 		pdp = pmap_pdpe(pmap, va);
4220 		*pdp = 0;
4221 	} else {
4222 		/* PTE page */
4223 		pd = pmap_pde(pmap, va);
4224 		*pd = 0;
4225 	}
4226 	if (m->pindex < NUPDE) {
4227 		/* We just released a PT, unhold the matching PD */
4228 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4229 		pmap_unwire_ptp(pmap, va, pdpg, free);
4230 	} else if (m->pindex < NUPDE + NUPDPE) {
4231 		/* We just released a PD, unhold the matching PDP */
4232 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4233 		pmap_unwire_ptp(pmap, va, pdppg, free);
4234 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4235 		/* We just released a PDP, unhold the matching PML4 */
4236 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4237 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4238 	}
4239 
4240 	pmap_pt_page_count_adj(pmap, -1);
4241 
4242 	/*
4243 	 * Put page on a list so that it is released after
4244 	 * *ALL* TLB shootdown is done
4245 	 */
4246 	pmap_add_delayed_free_list(m, free, true);
4247 }
4248 
4249 /*
4250  * After removing a page table entry, this routine is used to
4251  * conditionally free the page, and manage the reference count.
4252  */
4253 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4254 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4255     struct spglist *free)
4256 {
4257 	vm_page_t mpte;
4258 
4259 	if (va >= VM_MAXUSER_ADDRESS)
4260 		return (0);
4261 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4262 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4263 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4264 }
4265 
4266 /*
4267  * Release a page table page reference after a failed attempt to create a
4268  * mapping.
4269  */
4270 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4271 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4272 {
4273 	struct spglist free;
4274 
4275 	SLIST_INIT(&free);
4276 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4277 		/*
4278 		 * Although "va" was never mapped, paging-structure caches
4279 		 * could nonetheless have entries that refer to the freed
4280 		 * page table pages.  Invalidate those entries.
4281 		 */
4282 		pmap_invalidate_page(pmap, va);
4283 		vm_page_free_pages_toq(&free, true);
4284 	}
4285 }
4286 
4287 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4288 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4289 {
4290 	struct pmap_pcid *pcidp;
4291 	int i;
4292 
4293 	CPU_FOREACH(i) {
4294 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4295 		pcidp->pm_pcid = pcid;
4296 		pcidp->pm_gen = gen;
4297 	}
4298 }
4299 
4300 void
pmap_pinit0(pmap_t pmap)4301 pmap_pinit0(pmap_t pmap)
4302 {
4303 	struct proc *p;
4304 	struct thread *td;
4305 
4306 	PMAP_LOCK_INIT(pmap);
4307 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4308 	pmap->pm_pmltopu = NULL;
4309 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4310 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4311 	pmap->pm_ucr3 = PMAP_NO_CR3;
4312 	vm_radix_init(&pmap->pm_root);
4313 	CPU_ZERO(&pmap->pm_active);
4314 	TAILQ_INIT(&pmap->pm_pvchunk);
4315 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4316 	pmap->pm_flags = pmap_flags;
4317 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4318 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4319 	pmap_activate_boot(pmap);
4320 	td = curthread;
4321 	if (pti) {
4322 		p = td->td_proc;
4323 		PROC_LOCK(p);
4324 		p->p_md.md_flags |= P_MD_KPTI;
4325 		PROC_UNLOCK(p);
4326 	}
4327 	pmap_thread_init_invl_gen(td);
4328 
4329 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4330 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4331 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4332 		    UMA_ALIGN_PTR, 0);
4333 	}
4334 }
4335 
4336 void
pmap_pinit_pml4(vm_page_t pml4pg)4337 pmap_pinit_pml4(vm_page_t pml4pg)
4338 {
4339 	pml4_entry_t *pm_pml4;
4340 	int i;
4341 
4342 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4343 
4344 	/* Wire in kernel global address entries. */
4345 	for (i = 0; i < NKPML4E; i++) {
4346 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4347 		    X86_PG_V;
4348 	}
4349 #ifdef KASAN
4350 	for (i = 0; i < NKASANPML4E; i++) {
4351 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4352 		    X86_PG_V | pg_nx;
4353 	}
4354 #endif
4355 #ifdef KMSAN
4356 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4357 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4358 		    X86_PG_RW | X86_PG_V | pg_nx;
4359 	}
4360 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4361 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4362 		    X86_PG_RW | X86_PG_V | pg_nx;
4363 	}
4364 #endif
4365 	for (i = 0; i < ndmpdpphys; i++) {
4366 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4367 		    X86_PG_V;
4368 	}
4369 
4370 	/* install self-referential address mapping entry(s) */
4371 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4372 	    X86_PG_A | X86_PG_M;
4373 
4374 	/* install large map entries if configured */
4375 	for (i = 0; i < lm_ents; i++)
4376 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4377 }
4378 
4379 void
pmap_pinit_pml5(vm_page_t pml5pg)4380 pmap_pinit_pml5(vm_page_t pml5pg)
4381 {
4382 	pml5_entry_t *pm_pml5;
4383 
4384 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4385 
4386 	/*
4387 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4388 	 * entering all existing kernel mappings into level 5 table.
4389 	 */
4390 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4391 	    X86_PG_RW | X86_PG_A | X86_PG_M;
4392 
4393 	/*
4394 	 * Install self-referential address mapping entry.
4395 	 */
4396 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4397 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A;
4398 }
4399 
4400 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4401 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4402 {
4403 	pml4_entry_t *pm_pml4u;
4404 	int i;
4405 
4406 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4407 	for (i = 0; i < NPML4EPG; i++)
4408 		pm_pml4u[i] = pti_pml4[i];
4409 }
4410 
4411 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4412 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4413 {
4414 	pml5_entry_t *pm_pml5u;
4415 
4416 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4417 	pagezero(pm_pml5u);
4418 
4419 	/*
4420 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4421 	 * table, entering all kernel mappings needed for usermode
4422 	 * into level 5 table.
4423 	 */
4424 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4425 	    pmap_kextract((vm_offset_t)pti_pml4) |
4426 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4427 }
4428 
4429 /* Allocate a page table page and do related bookkeeping */
4430 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4431 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4432 {
4433 	vm_page_t m;
4434 
4435 	m = vm_page_alloc_noobj(flags);
4436 	if (__predict_false(m == NULL))
4437 		return (NULL);
4438 	m->pindex = pindex;
4439 	pmap_pt_page_count_adj(pmap, 1);
4440 	return (m);
4441 }
4442 
4443 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4444 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4445 {
4446 	/*
4447 	 * This function assumes the page will need to be unwired,
4448 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4449 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4450 	 * of pmap_free_pt_page() require unwiring.  The case in which
4451 	 * a PT page doesn't require unwiring because its ref_count has
4452 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4453 	 */
4454 	vm_page_unwire_noq(m);
4455 	if (zerofilled)
4456 		vm_page_free_zero(m);
4457 	else
4458 		vm_page_free(m);
4459 
4460 	pmap_pt_page_count_adj(pmap, -1);
4461 }
4462 
4463 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4464 
4465 /*
4466  * Initialize a preallocated and zeroed pmap structure,
4467  * such as one in a vmspace structure.
4468  */
4469 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4470 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4471 {
4472 	vm_page_t pmltop_pg, pmltop_pgu;
4473 	vm_paddr_t pmltop_phys;
4474 
4475 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4476 
4477 	/*
4478 	 * Allocate the page directory page.  Pass NULL instead of a
4479 	 * pointer to the pmap here to avoid calling
4480 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4481 	 * since that requires pmap lock.  Instead do the accounting
4482 	 * manually.
4483 	 *
4484 	 * Note that final call to pmap_remove() optimization that
4485 	 * checks for zero resident_count is basically disabled by
4486 	 * accounting for top-level page.  But the optimization was
4487 	 * not effective since we started using non-managed mapping of
4488 	 * the shared page.
4489 	 */
4490 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4491 	    VM_ALLOC_WAITOK);
4492 	pmap_pt_page_count_pinit(pmap, 1);
4493 
4494 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4495 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4496 
4497 	if (pmap_pcid_enabled) {
4498 		if (pmap->pm_pcidp == NULL)
4499 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4500 			    M_WAITOK);
4501 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4502 	}
4503 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4504 	pmap->pm_ucr3 = PMAP_NO_CR3;
4505 	pmap->pm_pmltopu = NULL;
4506 
4507 	pmap->pm_type = pm_type;
4508 
4509 	/*
4510 	 * Do not install the host kernel mappings in the nested page
4511 	 * tables. These mappings are meaningless in the guest physical
4512 	 * address space.
4513 	 * Install minimal kernel mappings in PTI case.
4514 	 */
4515 	switch (pm_type) {
4516 	case PT_X86:
4517 		pmap->pm_cr3 = pmltop_phys;
4518 		if (pmap_is_la57(pmap))
4519 			pmap_pinit_pml5(pmltop_pg);
4520 		else
4521 			pmap_pinit_pml4(pmltop_pg);
4522 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4523 			/*
4524 			 * As with pmltop_pg, pass NULL instead of a
4525 			 * pointer to the pmap to ensure that the PTI
4526 			 * page counted explicitly.
4527 			 */
4528 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4529 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4530 			pmap_pt_page_count_pinit(pmap, 1);
4531 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4532 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4533 			if (pmap_is_la57(pmap))
4534 				pmap_pinit_pml5_pti(pmltop_pgu);
4535 			else
4536 				pmap_pinit_pml4_pti(pmltop_pgu);
4537 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4538 		}
4539 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4540 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4541 			    pkru_free_range, pmap, M_NOWAIT);
4542 		}
4543 		break;
4544 	case PT_EPT:
4545 	case PT_RVI:
4546 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4547 		break;
4548 	}
4549 
4550 	vm_radix_init(&pmap->pm_root);
4551 	CPU_ZERO(&pmap->pm_active);
4552 	TAILQ_INIT(&pmap->pm_pvchunk);
4553 	pmap->pm_flags = flags;
4554 	pmap->pm_eptgen = 0;
4555 
4556 	return (1);
4557 }
4558 
4559 int
pmap_pinit(pmap_t pmap)4560 pmap_pinit(pmap_t pmap)
4561 {
4562 
4563 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4564 }
4565 
4566 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4567 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4568 {
4569 	vm_page_t mpg;
4570 	struct spglist free;
4571 
4572 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4573 	if (mpg->ref_count != 0)
4574 		return;
4575 	SLIST_INIT(&free);
4576 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4577 	pmap_invalidate_page(pmap, va);
4578 	vm_page_free_pages_toq(&free, true);
4579 }
4580 
4581 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4582 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4583     bool addref)
4584 {
4585 	vm_pindex_t pml5index;
4586 	pml5_entry_t *pml5;
4587 	pml4_entry_t *pml4;
4588 	vm_page_t pml4pg;
4589 	pt_entry_t PG_V;
4590 	bool allocated;
4591 
4592 	if (!pmap_is_la57(pmap))
4593 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4594 
4595 	PG_V = pmap_valid_bit(pmap);
4596 	pml5index = pmap_pml5e_index(va);
4597 	pml5 = &pmap->pm_pmltop[pml5index];
4598 	if ((*pml5 & PG_V) == 0) {
4599 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4600 		    va) == NULL)
4601 			return (NULL);
4602 		allocated = true;
4603 	} else {
4604 		allocated = false;
4605 	}
4606 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4607 	pml4 = &pml4[pmap_pml4e_index(va)];
4608 	if ((*pml4 & PG_V) == 0) {
4609 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4610 		if (allocated && !addref)
4611 			pml4pg->ref_count--;
4612 		else if (!allocated && addref)
4613 			pml4pg->ref_count++;
4614 	}
4615 	return (pml4);
4616 }
4617 
4618 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4619 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4620     bool addref)
4621 {
4622 	vm_page_t pdppg;
4623 	pml4_entry_t *pml4;
4624 	pdp_entry_t *pdp;
4625 	pt_entry_t PG_V;
4626 	bool allocated;
4627 
4628 	PG_V = pmap_valid_bit(pmap);
4629 
4630 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4631 	if (pml4 == NULL)
4632 		return (NULL);
4633 
4634 	if ((*pml4 & PG_V) == 0) {
4635 		/* Have to allocate a new pdp, recurse */
4636 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4637 		    va) == NULL) {
4638 			if (pmap_is_la57(pmap))
4639 				pmap_allocpte_free_unref(pmap, va,
4640 				    pmap_pml5e(pmap, va));
4641 			return (NULL);
4642 		}
4643 		allocated = true;
4644 	} else {
4645 		allocated = false;
4646 	}
4647 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4648 	pdp = &pdp[pmap_pdpe_index(va)];
4649 	if ((*pdp & PG_V) == 0) {
4650 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4651 		if (allocated && !addref)
4652 			pdppg->ref_count--;
4653 		else if (!allocated && addref)
4654 			pdppg->ref_count++;
4655 	}
4656 	return (pdp);
4657 }
4658 
4659 /*
4660  * The ptepindexes, i.e. page indices, of the page table pages encountered
4661  * while translating virtual address va are defined as follows:
4662  * - for the page table page (last level),
4663  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4664  *   in other words, it is just the index of the PDE that maps the page
4665  *   table page.
4666  * - for the page directory page,
4667  *      ptepindex = NUPDE (number of userland PD entries) +
4668  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4669  *   i.e. index of PDPE is put after the last index of PDE,
4670  * - for the page directory pointer page,
4671  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4672  *          NPML4EPGSHIFT),
4673  *   i.e. index of pml4e is put after the last index of PDPE,
4674  * - for the PML4 page (if LA57 mode is enabled),
4675  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4676  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4677  *   i.e. index of pml5e is put after the last index of PML4E.
4678  *
4679  * Define an order on the paging entries, where all entries of the
4680  * same height are put together, then heights are put from deepest to
4681  * root.  Then ptexpindex is the sequential number of the
4682  * corresponding paging entry in this order.
4683  *
4684  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4685  * LA57 paging structures even in LA48 paging mode. Moreover, the
4686  * ptepindexes are calculated as if the paging structures were 5-level
4687  * regardless of the actual mode of operation.
4688  *
4689  * The root page at PML4/PML5 does not participate in this indexing scheme,
4690  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4691  */
4692 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4693 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4694     vm_offset_t va)
4695 {
4696 	vm_pindex_t pml5index, pml4index;
4697 	pml5_entry_t *pml5, *pml5u;
4698 	pml4_entry_t *pml4, *pml4u;
4699 	pdp_entry_t *pdp;
4700 	pd_entry_t *pd;
4701 	vm_page_t m, pdpg;
4702 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4703 
4704 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4705 
4706 	PG_A = pmap_accessed_bit(pmap);
4707 	PG_M = pmap_modified_bit(pmap);
4708 	PG_V = pmap_valid_bit(pmap);
4709 	PG_RW = pmap_rw_bit(pmap);
4710 
4711 	/*
4712 	 * Allocate a page table page.
4713 	 */
4714 	m = pmap_alloc_pt_page(pmap, ptepindex,
4715 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4716 	if (m == NULL)
4717 		return (NULL);
4718 
4719 	/*
4720 	 * Map the pagetable page into the process address space, if
4721 	 * it isn't already there.
4722 	 */
4723 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4724 		MPASS(pmap_is_la57(pmap));
4725 
4726 		pml5index = pmap_pml5e_index(va);
4727 		pml5 = &pmap->pm_pmltop[pml5index];
4728 		KASSERT((*pml5 & PG_V) == 0,
4729 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4730 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4731 
4732 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4733 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4734 			*pml5 |= pg_nx;
4735 
4736 			pml5u = &pmap->pm_pmltopu[pml5index];
4737 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4738 			    PG_A | PG_M;
4739 		}
4740 	} else if (ptepindex >= NUPDE + NUPDPE) {
4741 		pml4index = pmap_pml4e_index(va);
4742 		/* Wire up a new PDPE page */
4743 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4744 		if (pml4 == NULL) {
4745 			pmap_free_pt_page(pmap, m, true);
4746 			return (NULL);
4747 		}
4748 		KASSERT((*pml4 & PG_V) == 0,
4749 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4750 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4751 
4752 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4753 		    pml4index < NUPML4E) {
4754 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4755 
4756 			/*
4757 			 * PTI: Make all user-space mappings in the
4758 			 * kernel-mode page table no-execute so that
4759 			 * we detect any programming errors that leave
4760 			 * the kernel-mode page table active on return
4761 			 * to user space.
4762 			 */
4763 			*pml4 |= pg_nx;
4764 
4765 			pml4u = &pmap->pm_pmltopu[pml4index];
4766 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4767 			    PG_A | PG_M;
4768 		}
4769 	} else if (ptepindex >= NUPDE) {
4770 		/* Wire up a new PDE page */
4771 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4772 		if (pdp == NULL) {
4773 			pmap_free_pt_page(pmap, m, true);
4774 			return (NULL);
4775 		}
4776 		KASSERT((*pdp & PG_V) == 0,
4777 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4778 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4779 	} else {
4780 		/* Wire up a new PTE page */
4781 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4782 		if (pdp == NULL) {
4783 			pmap_free_pt_page(pmap, m, true);
4784 			return (NULL);
4785 		}
4786 		if ((*pdp & PG_V) == 0) {
4787 			/* Have to allocate a new pd, recurse */
4788 			if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4789 			    lockp, va) == NULL) {
4790 				pmap_allocpte_free_unref(pmap, va,
4791 				    pmap_pml4e(pmap, va));
4792 				pmap_free_pt_page(pmap, m, true);
4793 				return (NULL);
4794 			}
4795 		} else {
4796 			/* Add reference to the pd page */
4797 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4798 			pdpg->ref_count++;
4799 		}
4800 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4801 
4802 		/* Now we know where the page directory page is */
4803 		pd = &pd[pmap_pde_index(va)];
4804 		KASSERT((*pd & PG_V) == 0,
4805 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4806 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4807 	}
4808 
4809 	return (m);
4810 }
4811 
4812 /*
4813  * This routine is called if the desired page table page does not exist.
4814  *
4815  * If page table page allocation fails, this routine may sleep before
4816  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4817  * occurs right before returning to the caller. This way, we never
4818  * drop pmap lock to sleep while a page table page has ref_count == 0,
4819  * which prevents the page from being freed under us.
4820  */
4821 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4822 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4823     vm_offset_t va)
4824 {
4825 	vm_page_t m;
4826 
4827 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4828 	if (m == NULL && lockp != NULL) {
4829 		RELEASE_PV_LIST_LOCK(lockp);
4830 		PMAP_UNLOCK(pmap);
4831 		PMAP_ASSERT_NOT_IN_DI();
4832 		vm_wait(NULL);
4833 		PMAP_LOCK(pmap);
4834 	}
4835 	return (m);
4836 }
4837 
4838 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4839 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4840     struct rwlock **lockp)
4841 {
4842 	pdp_entry_t *pdpe, PG_V;
4843 	pd_entry_t *pde;
4844 	vm_page_t pdpg;
4845 	vm_pindex_t pdpindex;
4846 
4847 	PG_V = pmap_valid_bit(pmap);
4848 
4849 retry:
4850 	pdpe = pmap_pdpe(pmap, va);
4851 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4852 		pde = pmap_pdpe_to_pde(pdpe, va);
4853 		if (va < VM_MAXUSER_ADDRESS) {
4854 			/* Add a reference to the pd page. */
4855 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4856 			pdpg->ref_count++;
4857 		} else
4858 			pdpg = NULL;
4859 	} else if (va < VM_MAXUSER_ADDRESS) {
4860 		/* Allocate a pd page. */
4861 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4862 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4863 		if (pdpg == NULL) {
4864 			if (lockp != NULL)
4865 				goto retry;
4866 			else
4867 				return (NULL);
4868 		}
4869 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4870 		pde = &pde[pmap_pde_index(va)];
4871 	} else
4872 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4873 		    va);
4874 	*pdpgp = pdpg;
4875 	return (pde);
4876 }
4877 
4878 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4879 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4880 {
4881 	vm_pindex_t ptepindex;
4882 	pd_entry_t *pd, PG_V;
4883 	vm_page_t m;
4884 
4885 	PG_V = pmap_valid_bit(pmap);
4886 
4887 	/*
4888 	 * Calculate pagetable page index
4889 	 */
4890 	ptepindex = pmap_pde_pindex(va);
4891 retry:
4892 	/*
4893 	 * Get the page directory entry
4894 	 */
4895 	pd = pmap_pde(pmap, va);
4896 
4897 	/*
4898 	 * This supports switching from a 2MB page to a
4899 	 * normal 4K page.
4900 	 */
4901 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4902 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4903 			/*
4904 			 * Invalidation of the 2MB page mapping may have caused
4905 			 * the deallocation of the underlying PD page.
4906 			 */
4907 			pd = NULL;
4908 		}
4909 	}
4910 
4911 	/*
4912 	 * If the page table page is mapped, we just increment the
4913 	 * hold count, and activate it.
4914 	 */
4915 	if (pd != NULL && (*pd & PG_V) != 0) {
4916 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4917 		m->ref_count++;
4918 	} else {
4919 		/*
4920 		 * Here if the pte page isn't mapped, or if it has been
4921 		 * deallocated.
4922 		 */
4923 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4924 		if (m == NULL && lockp != NULL)
4925 			goto retry;
4926 	}
4927 	return (m);
4928 }
4929 
4930 /***************************************************
4931  * Pmap allocation/deallocation routines.
4932  ***************************************************/
4933 
4934 /*
4935  * Release any resources held by the given physical map.
4936  * Called when a pmap initialized by pmap_pinit is being released.
4937  * Should only be called if the map contains no valid mappings.
4938  */
4939 void
pmap_release(pmap_t pmap)4940 pmap_release(pmap_t pmap)
4941 {
4942 	vm_page_t m;
4943 	int i;
4944 
4945 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4946 	    ("pmap_release: pmap %p has reserved page table page(s)",
4947 	    pmap));
4948 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4949 	    ("releasing active pmap %p", pmap));
4950 
4951 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4952 
4953 	if (pmap_is_la57(pmap)) {
4954 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4955 		pmap->pm_pmltop[PML5PML5I] = 0;
4956 	} else {
4957 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4958 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4959 #ifdef KASAN
4960 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4961 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4962 #endif
4963 #ifdef KMSAN
4964 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4965 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4966 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4967 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4968 #endif
4969 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4970 			pmap->pm_pmltop[DMPML4I + i] = 0;
4971 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4972 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4973 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4974 	}
4975 
4976 	pmap_free_pt_page(NULL, m, true);
4977 	pmap_pt_page_count_pinit(pmap, -1);
4978 
4979 	if (pmap->pm_pmltopu != NULL) {
4980 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4981 		    pm_pmltopu));
4982 		pmap_free_pt_page(NULL, m, false);
4983 		pmap_pt_page_count_pinit(pmap, -1);
4984 	}
4985 	if (pmap->pm_type == PT_X86 &&
4986 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4987 		rangeset_fini(&pmap->pm_pkru);
4988 
4989 	KASSERT(pmap->pm_stats.resident_count == 0,
4990 	    ("pmap_release: pmap %p resident count %ld != 0",
4991 	    pmap, pmap->pm_stats.resident_count));
4992 }
4993 
4994 static int
kvm_size(SYSCTL_HANDLER_ARGS)4995 kvm_size(SYSCTL_HANDLER_ARGS)
4996 {
4997 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4998 
4999 	return sysctl_handle_long(oidp, &ksize, 0, req);
5000 }
5001 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
5002     0, 0, kvm_size, "LU",
5003     "Size of KVM");
5004 
5005 static int
kvm_free(SYSCTL_HANDLER_ARGS)5006 kvm_free(SYSCTL_HANDLER_ARGS)
5007 {
5008 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
5009 
5010 	return sysctl_handle_long(oidp, &kfree, 0, req);
5011 }
5012 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
5013     0, 0, kvm_free, "LU",
5014     "Amount of KVM free");
5015 
5016 #ifdef KMSAN
5017 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)5018 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
5019 {
5020 	pdp_entry_t *pdpe;
5021 	pd_entry_t *pde;
5022 	pt_entry_t *pte;
5023 	vm_paddr_t dummypa, dummypd, dummypt;
5024 	int i, npde, npdpg;
5025 
5026 	npdpg = howmany(size, NBPDP);
5027 	npde = size / NBPDR;
5028 
5029 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
5030 	pagezero((void *)PHYS_TO_DMAP(dummypa));
5031 
5032 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
5033 	pagezero((void *)PHYS_TO_DMAP(dummypt));
5034 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
5035 	for (i = 0; i < npdpg; i++)
5036 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
5037 
5038 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
5039 	for (i = 0; i < NPTEPG; i++)
5040 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
5041 		    X86_PG_A | X86_PG_M | pg_nx);
5042 
5043 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
5044 	for (i = 0; i < npde; i++)
5045 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
5046 
5047 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
5048 	for (i = 0; i < npdpg; i++)
5049 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
5050 		    X86_PG_RW | pg_nx);
5051 }
5052 
5053 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5054 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5055 {
5056 	vm_size_t size;
5057 
5058 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5059 
5060 	/*
5061 	 * The end of the page array's KVA region is 2MB aligned, see
5062 	 * kmem_init().
5063 	 */
5064 	size = round_2mpage(end) - start;
5065 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5066 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5067 }
5068 #endif
5069 
5070 /*
5071  * Allocate physical memory for the vm_page array and map it into KVA,
5072  * attempting to back the vm_pages with domain-local memory.
5073  */
5074 void
pmap_page_array_startup(long pages)5075 pmap_page_array_startup(long pages)
5076 {
5077 	pdp_entry_t *pdpe;
5078 	pd_entry_t *pde, newpdir;
5079 	vm_offset_t va, start, end;
5080 	vm_paddr_t pa;
5081 	long pfn;
5082 	int domain, i;
5083 
5084 	vm_page_array_size = pages;
5085 
5086 	start = VM_MIN_KERNEL_ADDRESS;
5087 	end = start + pages * sizeof(struct vm_page);
5088 	for (va = start; va < end; va += NBPDR) {
5089 		pfn = first_page + (va - start) / sizeof(struct vm_page);
5090 		domain = vm_phys_domain(ptoa(pfn));
5091 		pdpe = pmap_pdpe(kernel_pmap, va);
5092 		if ((*pdpe & X86_PG_V) == 0) {
5093 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5094 			dump_add_page(pa);
5095 			pagezero((void *)PHYS_TO_DMAP(pa));
5096 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5097 			    X86_PG_A | X86_PG_M);
5098 		}
5099 		pde = pmap_pdpe_to_pde(pdpe, va);
5100 		if ((*pde & X86_PG_V) != 0)
5101 			panic("Unexpected pde");
5102 		pa = vm_phys_early_alloc(domain, NBPDR);
5103 		for (i = 0; i < NPDEPG; i++)
5104 			dump_add_page(pa + i * PAGE_SIZE);
5105 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5106 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5107 		pde_store(pde, newpdir);
5108 	}
5109 	vm_page_array = (vm_page_t)start;
5110 
5111 #ifdef KMSAN
5112 	pmap_kmsan_page_array_startup(start, end);
5113 #endif
5114 }
5115 
5116 /*
5117  * grow the number of kernel page table entries, if needed
5118  */
5119 void
pmap_growkernel(vm_offset_t addr)5120 pmap_growkernel(vm_offset_t addr)
5121 {
5122 	vm_paddr_t paddr;
5123 	vm_page_t nkpg;
5124 	pd_entry_t *pde, newpdir;
5125 	pdp_entry_t *pdpe;
5126 	vm_offset_t end;
5127 
5128 	TSENTER();
5129 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5130 
5131 	/*
5132 	 * The kernel map covers two distinct regions of KVA: that used
5133 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5134 	 * of the virtual address space.  The latter is used to map the
5135 	 * kernel and loadable kernel modules.  This scheme enables the
5136 	 * use of a special code generation model for kernel code which
5137 	 * takes advantage of compact addressing modes in machine code.
5138 	 *
5139 	 * Both regions grow upwards; to avoid wasting memory, the gap
5140 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5141 	 * kernel's region is grown, otherwise the kmem region is grown.
5142 	 *
5143 	 * The correctness of this action is based on the following
5144 	 * argument: vm_map_insert() allocates contiguous ranges of the
5145 	 * kernel virtual address space.  It calls this function if a range
5146 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5147 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5148 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5149 	 * than the kernel.  Thus, there is no immediate need to allocate
5150 	 * any new kernel page table pages between "kernel_vm_end" and
5151 	 * "KERNBASE".
5152 	 */
5153 	if (KERNBASE < addr) {
5154 		end = KERNBASE + nkpt * NBPDR;
5155 		if (end == 0) {
5156 			TSEXIT();
5157 			return;
5158 		}
5159 	} else {
5160 		end = kernel_vm_end;
5161 	}
5162 
5163 	addr = roundup2(addr, NBPDR);
5164 	if (addr - 1 >= vm_map_max(kernel_map))
5165 		addr = vm_map_max(kernel_map);
5166 	if (addr <= end) {
5167 		/*
5168 		 * The grown region is already mapped, so there is
5169 		 * nothing to do.
5170 		 */
5171 		TSEXIT();
5172 		return;
5173 	}
5174 
5175 	kasan_shadow_map(end, addr - end);
5176 	kmsan_shadow_map(end, addr - end);
5177 	while (end < addr) {
5178 		pdpe = pmap_pdpe(kernel_pmap, end);
5179 		if ((*pdpe & X86_PG_V) == 0) {
5180 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5181 			    pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5182 			        VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5183 			if (nkpg == NULL)
5184 				panic("pmap_growkernel: no memory to grow kernel");
5185 			paddr = VM_PAGE_TO_PHYS(nkpg);
5186 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5187 			    X86_PG_A | X86_PG_M);
5188 			continue; /* try again */
5189 		}
5190 		pde = pmap_pdpe_to_pde(pdpe, end);
5191 		if ((*pde & X86_PG_V) != 0) {
5192 			end = (end + NBPDR) & ~PDRMASK;
5193 			if (end - 1 >= vm_map_max(kernel_map)) {
5194 				end = vm_map_max(kernel_map);
5195 				break;
5196 			}
5197 			continue;
5198 		}
5199 
5200 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5201 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5202 			VM_ALLOC_ZERO);
5203 		if (nkpg == NULL)
5204 			panic("pmap_growkernel: no memory to grow kernel");
5205 		paddr = VM_PAGE_TO_PHYS(nkpg);
5206 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5207 		pde_store(pde, newpdir);
5208 
5209 		end = (end + NBPDR) & ~PDRMASK;
5210 		if (end - 1 >= vm_map_max(kernel_map)) {
5211 			end = vm_map_max(kernel_map);
5212 			break;
5213 		}
5214 	}
5215 
5216 	if (end <= KERNBASE)
5217 		kernel_vm_end = end;
5218 	else
5219 		nkpt = howmany(end - KERNBASE, NBPDR);
5220 	TSEXIT();
5221 }
5222 
5223 /***************************************************
5224  * page management routines.
5225  ***************************************************/
5226 
5227 static const uint64_t pc_freemask[_NPCM] = {
5228 	[0 ... _NPCM - 2] = PC_FREEN,
5229 	[_NPCM - 1] = PC_FREEL
5230 };
5231 
5232 #ifdef PV_STATS
5233 
5234 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5235 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5236     &pc_chunk_count, "Current number of pv entry cnunks");
5237 
5238 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5239 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5240     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5241 
5242 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5243 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5244     &pc_chunk_frees, "Total number of pv entry chunks freed");
5245 
5246 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5247 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5248     &pc_chunk_tryfail,
5249     "Number of failed attempts to get a pv entry chunk page");
5250 
5251 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5252 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5253     &pv_entry_frees, "Total number of pv entries freed");
5254 
5255 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5256 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5257     &pv_entry_allocs, "Total number of pv entries allocated");
5258 
5259 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5260 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5261     &pv_entry_count, "Current number of pv entries");
5262 
5263 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5264 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5265     &pv_entry_spare, "Current number of spare pv entries");
5266 #endif
5267 
5268 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5269 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5270 {
5271 
5272 	if (pmap == NULL)
5273 		return;
5274 	pmap_invalidate_all(pmap);
5275 	if (pmap != locked_pmap)
5276 		PMAP_UNLOCK(pmap);
5277 	if (start_di)
5278 		pmap_delayed_invl_finish();
5279 }
5280 
5281 /*
5282  * We are in a serious low memory condition.  Resort to
5283  * drastic measures to free some pages so we can allocate
5284  * another pv entry chunk.
5285  *
5286  * Returns NULL if PV entries were reclaimed from the specified pmap.
5287  *
5288  * We do not, however, unmap 2mpages because subsequent accesses will
5289  * allocate per-page pv entries until repromotion occurs, thereby
5290  * exacerbating the shortage of free pv entries.
5291  */
5292 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5293 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5294 {
5295 	struct pv_chunks_list *pvc;
5296 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5297 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5298 	struct md_page *pvh;
5299 	pd_entry_t *pde;
5300 	pmap_t next_pmap, pmap;
5301 	pt_entry_t *pte, tpte;
5302 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5303 	pv_entry_t pv;
5304 	vm_offset_t va;
5305 	vm_page_t m, m_pc;
5306 	struct spglist free;
5307 	uint64_t inuse;
5308 	int bit, field, freed;
5309 	bool start_di, restart;
5310 
5311 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5312 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5313 	pmap = NULL;
5314 	m_pc = NULL;
5315 	PG_G = PG_A = PG_M = PG_RW = 0;
5316 	SLIST_INIT(&free);
5317 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5318 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5319 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5320 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5321 
5322 	/*
5323 	 * A delayed invalidation block should already be active if
5324 	 * pmap_advise() or pmap_remove() called this function by way
5325 	 * of pmap_demote_pde_locked().
5326 	 */
5327 	start_di = pmap_not_in_di();
5328 
5329 	pvc = &pv_chunks[domain];
5330 	mtx_lock(&pvc->pvc_lock);
5331 	pvc->active_reclaims++;
5332 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5333 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5334 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5335 	    SLIST_EMPTY(&free)) {
5336 		next_pmap = pc->pc_pmap;
5337 		if (next_pmap == NULL) {
5338 			/*
5339 			 * The next chunk is a marker.  However, it is
5340 			 * not our marker, so active_reclaims must be
5341 			 * > 1.  Consequently, the next_chunk code
5342 			 * will not rotate the pv_chunks list.
5343 			 */
5344 			goto next_chunk;
5345 		}
5346 		mtx_unlock(&pvc->pvc_lock);
5347 
5348 		/*
5349 		 * A pv_chunk can only be removed from the pc_lru list
5350 		 * when both pc_chunks_mutex is owned and the
5351 		 * corresponding pmap is locked.
5352 		 */
5353 		if (pmap != next_pmap) {
5354 			restart = false;
5355 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5356 			    start_di);
5357 			pmap = next_pmap;
5358 			/* Avoid deadlock and lock recursion. */
5359 			if (pmap > locked_pmap) {
5360 				RELEASE_PV_LIST_LOCK(lockp);
5361 				PMAP_LOCK(pmap);
5362 				if (start_di)
5363 					pmap_delayed_invl_start();
5364 				mtx_lock(&pvc->pvc_lock);
5365 				restart = true;
5366 			} else if (pmap != locked_pmap) {
5367 				if (PMAP_TRYLOCK(pmap)) {
5368 					if (start_di)
5369 						pmap_delayed_invl_start();
5370 					mtx_lock(&pvc->pvc_lock);
5371 					restart = true;
5372 				} else {
5373 					pmap = NULL; /* pmap is not locked */
5374 					mtx_lock(&pvc->pvc_lock);
5375 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5376 					if (pc == NULL ||
5377 					    pc->pc_pmap != next_pmap)
5378 						continue;
5379 					goto next_chunk;
5380 				}
5381 			} else if (start_di)
5382 				pmap_delayed_invl_start();
5383 			PG_G = pmap_global_bit(pmap);
5384 			PG_A = pmap_accessed_bit(pmap);
5385 			PG_M = pmap_modified_bit(pmap);
5386 			PG_RW = pmap_rw_bit(pmap);
5387 			if (restart)
5388 				continue;
5389 		}
5390 
5391 		/*
5392 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5393 		 */
5394 		freed = 0;
5395 		for (field = 0; field < _NPCM; field++) {
5396 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5397 			    inuse != 0; inuse &= ~(1UL << bit)) {
5398 				bit = bsfq(inuse);
5399 				pv = &pc->pc_pventry[field * 64 + bit];
5400 				va = pv->pv_va;
5401 				pde = pmap_pde(pmap, va);
5402 				if ((*pde & PG_PS) != 0)
5403 					continue;
5404 				pte = pmap_pde_to_pte(pde, va);
5405 				if ((*pte & PG_W) != 0)
5406 					continue;
5407 				tpte = pte_load_clear(pte);
5408 				if ((tpte & PG_G) != 0)
5409 					pmap_invalidate_page(pmap, va);
5410 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5411 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5412 					vm_page_dirty(m);
5413 				if ((tpte & PG_A) != 0)
5414 					vm_page_aflag_set(m, PGA_REFERENCED);
5415 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5416 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5417 				m->md.pv_gen++;
5418 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5419 				    (m->flags & PG_FICTITIOUS) == 0) {
5420 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5421 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5422 						vm_page_aflag_clear(m,
5423 						    PGA_WRITEABLE);
5424 					}
5425 				}
5426 				pmap_delayed_invl_page(m);
5427 				pc->pc_map[field] |= 1UL << bit;
5428 				pmap_unuse_pt(pmap, va, *pde, &free);
5429 				freed++;
5430 			}
5431 		}
5432 		if (freed == 0) {
5433 			mtx_lock(&pvc->pvc_lock);
5434 			goto next_chunk;
5435 		}
5436 		/* Every freed mapping is for a 4 KB page. */
5437 		pmap_resident_count_adj(pmap, -freed);
5438 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5439 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5440 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5441 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5442 		if (pc_is_free(pc)) {
5443 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5444 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5445 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5446 			/* Entire chunk is free; return it. */
5447 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5448 			dump_drop_page(m_pc->phys_addr);
5449 			mtx_lock(&pvc->pvc_lock);
5450 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5451 			break;
5452 		}
5453 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5454 		mtx_lock(&pvc->pvc_lock);
5455 		/* One freed pv entry in locked_pmap is sufficient. */
5456 		if (pmap == locked_pmap)
5457 			break;
5458 next_chunk:
5459 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5460 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5461 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5462 			/*
5463 			 * Rotate the pv chunks list so that we do not
5464 			 * scan the same pv chunks that could not be
5465 			 * freed (because they contained a wired
5466 			 * and/or superpage mapping) on every
5467 			 * invocation of reclaim_pv_chunk().
5468 			 */
5469 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5470 				MPASS(pc->pc_pmap != NULL);
5471 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5472 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5473 			}
5474 		}
5475 	}
5476 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5477 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5478 	pvc->active_reclaims--;
5479 	mtx_unlock(&pvc->pvc_lock);
5480 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5481 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5482 		m_pc = SLIST_FIRST(&free);
5483 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5484 		/* Recycle a freed page table page. */
5485 		m_pc->ref_count = 1;
5486 	}
5487 	vm_page_free_pages_toq(&free, true);
5488 	return (m_pc);
5489 }
5490 
5491 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5492 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5493 {
5494 	vm_page_t m;
5495 	int i, domain;
5496 
5497 	domain = PCPU_GET(domain);
5498 	for (i = 0; i < vm_ndomains; i++) {
5499 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5500 		if (m != NULL)
5501 			break;
5502 		domain = (domain + 1) % vm_ndomains;
5503 	}
5504 
5505 	return (m);
5506 }
5507 
5508 /*
5509  * free the pv_entry back to the free list
5510  */
5511 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5512 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5513 {
5514 	struct pv_chunk *pc;
5515 	int idx, field, bit;
5516 
5517 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5518 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5519 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5520 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5521 	pc = pv_to_chunk(pv);
5522 	idx = pv - &pc->pc_pventry[0];
5523 	field = idx / 64;
5524 	bit = idx % 64;
5525 	pc->pc_map[field] |= 1ul << bit;
5526 	if (!pc_is_free(pc)) {
5527 		/* 98% of the time, pc is already at the head of the list. */
5528 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5529 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5530 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5531 		}
5532 		return;
5533 	}
5534 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5535 	free_pv_chunk(pc);
5536 }
5537 
5538 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5539 free_pv_chunk_dequeued(struct pv_chunk *pc)
5540 {
5541 	vm_page_t m;
5542 
5543 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5544 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5545 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5546 	counter_u64_add(pv_page_count, -1);
5547 	/* entire chunk is free, return it */
5548 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5549 	dump_drop_page(m->phys_addr);
5550 	vm_page_unwire_noq(m);
5551 	vm_page_free(m);
5552 }
5553 
5554 static void
free_pv_chunk(struct pv_chunk * pc)5555 free_pv_chunk(struct pv_chunk *pc)
5556 {
5557 	struct pv_chunks_list *pvc;
5558 
5559 	pvc = &pv_chunks[pc_to_domain(pc)];
5560 	mtx_lock(&pvc->pvc_lock);
5561 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5562 	mtx_unlock(&pvc->pvc_lock);
5563 	free_pv_chunk_dequeued(pc);
5564 }
5565 
5566 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5567 free_pv_chunk_batch(struct pv_chunklist *batch)
5568 {
5569 	struct pv_chunks_list *pvc;
5570 	struct pv_chunk *pc, *npc;
5571 	int i;
5572 
5573 	for (i = 0; i < vm_ndomains; i++) {
5574 		if (TAILQ_EMPTY(&batch[i]))
5575 			continue;
5576 		pvc = &pv_chunks[i];
5577 		mtx_lock(&pvc->pvc_lock);
5578 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5579 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5580 		}
5581 		mtx_unlock(&pvc->pvc_lock);
5582 	}
5583 
5584 	for (i = 0; i < vm_ndomains; i++) {
5585 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5586 			free_pv_chunk_dequeued(pc);
5587 		}
5588 	}
5589 }
5590 
5591 /*
5592  * Returns a new PV entry, allocating a new PV chunk from the system when
5593  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5594  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5595  * returned.
5596  *
5597  * The given PV list lock may be released.
5598  */
5599 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5600 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5601 {
5602 	struct pv_chunks_list *pvc;
5603 	int bit, field;
5604 	pv_entry_t pv;
5605 	struct pv_chunk *pc;
5606 	vm_page_t m;
5607 
5608 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5609 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5610 retry:
5611 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5612 	if (pc != NULL) {
5613 		for (field = 0; field < _NPCM; field++) {
5614 			if (pc->pc_map[field]) {
5615 				bit = bsfq(pc->pc_map[field]);
5616 				break;
5617 			}
5618 		}
5619 		if (field < _NPCM) {
5620 			pv = &pc->pc_pventry[field * 64 + bit];
5621 			pc->pc_map[field] &= ~(1ul << bit);
5622 			/* If this was the last item, move it to tail */
5623 			if (pc_is_full(pc)) {
5624 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5625 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5626 				    pc_list);
5627 			}
5628 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5629 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5630 			return (pv);
5631 		}
5632 	}
5633 	/* No free items, allocate another chunk */
5634 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5635 	if (m == NULL) {
5636 		if (lockp == NULL) {
5637 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5638 			return (NULL);
5639 		}
5640 		m = reclaim_pv_chunk(pmap, lockp);
5641 		if (m == NULL)
5642 			goto retry;
5643 	} else
5644 		counter_u64_add(pv_page_count, 1);
5645 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5646 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5647 	dump_add_page(m->phys_addr);
5648 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5649 	pc->pc_pmap = pmap;
5650 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5651 	pc->pc_map[1] = PC_FREEN;
5652 	pc->pc_map[2] = PC_FREEL;
5653 	pvc = &pv_chunks[vm_page_domain(m)];
5654 	mtx_lock(&pvc->pvc_lock);
5655 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5656 	mtx_unlock(&pvc->pvc_lock);
5657 	pv = &pc->pc_pventry[0];
5658 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5659 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5660 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5661 	return (pv);
5662 }
5663 
5664 /*
5665  * Returns the number of one bits within the given PV chunk map.
5666  *
5667  * The erratas for Intel processors state that "POPCNT Instruction May
5668  * Take Longer to Execute Than Expected".  It is believed that the
5669  * issue is the spurious dependency on the destination register.
5670  * Provide a hint to the register rename logic that the destination
5671  * value is overwritten, by clearing it, as suggested in the
5672  * optimization manual.  It should be cheap for unaffected processors
5673  * as well.
5674  *
5675  * Reference numbers for erratas are
5676  * 4th Gen Core: HSD146
5677  * 5th Gen Core: BDM85
5678  * 6th Gen Core: SKL029
5679  */
5680 static int
popcnt_pc_map_pq(uint64_t * map)5681 popcnt_pc_map_pq(uint64_t *map)
5682 {
5683 	u_long result, tmp;
5684 
5685 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5686 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5687 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5688 	    : "=&r" (result), "=&r" (tmp)
5689 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5690 	return (result);
5691 }
5692 
5693 /*
5694  * Ensure that the number of spare PV entries in the specified pmap meets or
5695  * exceeds the given count, "needed".
5696  *
5697  * The given PV list lock may be released.
5698  */
5699 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5700 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5701 {
5702 	struct pv_chunks_list *pvc;
5703 	struct pch new_tail[PMAP_MEMDOM];
5704 	struct pv_chunk *pc;
5705 	vm_page_t m;
5706 	int avail, free, i;
5707 	bool reclaimed;
5708 
5709 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5710 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5711 
5712 	/*
5713 	 * Newly allocated PV chunks must be stored in a private list until
5714 	 * the required number of PV chunks have been allocated.  Otherwise,
5715 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5716 	 * contrast, these chunks must be added to the pmap upon allocation.
5717 	 */
5718 	for (i = 0; i < PMAP_MEMDOM; i++)
5719 		TAILQ_INIT(&new_tail[i]);
5720 retry:
5721 	avail = 0;
5722 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5723 #ifndef __POPCNT__
5724 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5725 			bit_count((bitstr_t *)pc->pc_map, 0,
5726 			    sizeof(pc->pc_map) * NBBY, &free);
5727 		else
5728 #endif
5729 		free = popcnt_pc_map_pq(pc->pc_map);
5730 		if (free == 0)
5731 			break;
5732 		avail += free;
5733 		if (avail >= needed)
5734 			break;
5735 	}
5736 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5737 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5738 		if (m == NULL) {
5739 			m = reclaim_pv_chunk(pmap, lockp);
5740 			if (m == NULL)
5741 				goto retry;
5742 			reclaimed = true;
5743 		} else
5744 			counter_u64_add(pv_page_count, 1);
5745 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5746 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5747 		dump_add_page(m->phys_addr);
5748 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5749 		pc->pc_pmap = pmap;
5750 		pc->pc_map[0] = PC_FREEN;
5751 		pc->pc_map[1] = PC_FREEN;
5752 		pc->pc_map[2] = PC_FREEL;
5753 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5754 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5755 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5756 
5757 		/*
5758 		 * The reclaim might have freed a chunk from the current pmap.
5759 		 * If that chunk contained available entries, we need to
5760 		 * re-count the number of available entries.
5761 		 */
5762 		if (reclaimed)
5763 			goto retry;
5764 	}
5765 	for (i = 0; i < vm_ndomains; i++) {
5766 		if (TAILQ_EMPTY(&new_tail[i]))
5767 			continue;
5768 		pvc = &pv_chunks[i];
5769 		mtx_lock(&pvc->pvc_lock);
5770 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5771 		mtx_unlock(&pvc->pvc_lock);
5772 	}
5773 }
5774 
5775 /*
5776  * First find and then remove the pv entry for the specified pmap and virtual
5777  * address from the specified pv list.  Returns the pv entry if found and NULL
5778  * otherwise.  This operation can be performed on pv lists for either 4KB or
5779  * 2MB page mappings.
5780  */
5781 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5782 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5783 {
5784 	pv_entry_t pv;
5785 
5786 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5787 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5788 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5789 			pvh->pv_gen++;
5790 			break;
5791 		}
5792 	}
5793 	return (pv);
5794 }
5795 
5796 /*
5797  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5798  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5799  * entries for each of the 4KB page mappings.
5800  */
5801 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5802 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5803     struct rwlock **lockp)
5804 {
5805 	struct md_page *pvh;
5806 	struct pv_chunk *pc;
5807 	pv_entry_t pv;
5808 	vm_offset_t va_last;
5809 	vm_page_t m;
5810 	int bit, field;
5811 
5812 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5813 	KASSERT((pa & PDRMASK) == 0,
5814 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5815 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5816 
5817 	/*
5818 	 * Transfer the 2mpage's pv entry for this mapping to the first
5819 	 * page's pv list.  Once this transfer begins, the pv list lock
5820 	 * must not be released until the last pv entry is reinstantiated.
5821 	 */
5822 	pvh = pa_to_pvh(pa);
5823 	va = trunc_2mpage(va);
5824 	pv = pmap_pvh_remove(pvh, pmap, va);
5825 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5826 	m = PHYS_TO_VM_PAGE(pa);
5827 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5828 	m->md.pv_gen++;
5829 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5830 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5831 	va_last = va + NBPDR - PAGE_SIZE;
5832 	for (;;) {
5833 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5834 		KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5835 		for (field = 0; field < _NPCM; field++) {
5836 			while (pc->pc_map[field]) {
5837 				bit = bsfq(pc->pc_map[field]);
5838 				pc->pc_map[field] &= ~(1ul << bit);
5839 				pv = &pc->pc_pventry[field * 64 + bit];
5840 				va += PAGE_SIZE;
5841 				pv->pv_va = va;
5842 				m++;
5843 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5844 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5845 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5846 				m->md.pv_gen++;
5847 				if (va == va_last)
5848 					goto out;
5849 			}
5850 		}
5851 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5852 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5853 	}
5854 out:
5855 	if (pc_is_full(pc)) {
5856 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5857 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5858 	}
5859 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5860 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5861 }
5862 
5863 #if VM_NRESERVLEVEL > 0
5864 /*
5865  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5866  * replace the many pv entries for the 4KB page mappings by a single pv entry
5867  * for the 2MB page mapping.
5868  */
5869 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5870 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5871     struct rwlock **lockp)
5872 {
5873 	struct md_page *pvh;
5874 	pv_entry_t pv;
5875 	vm_offset_t va_last;
5876 	vm_page_t m;
5877 
5878 	KASSERT((pa & PDRMASK) == 0,
5879 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5880 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5881 
5882 	/*
5883 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5884 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5885 	 * a transfer avoids the possibility that get_pv_entry() calls
5886 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5887 	 * mappings that is being promoted.
5888 	 */
5889 	m = PHYS_TO_VM_PAGE(pa);
5890 	va = trunc_2mpage(va);
5891 	pv = pmap_pvh_remove(&m->md, pmap, va);
5892 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5893 	pvh = pa_to_pvh(pa);
5894 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5895 	pvh->pv_gen++;
5896 	/* Free the remaining NPTEPG - 1 pv entries. */
5897 	va_last = va + NBPDR - PAGE_SIZE;
5898 	do {
5899 		m++;
5900 		va += PAGE_SIZE;
5901 		pmap_pvh_free(&m->md, pmap, va);
5902 	} while (va < va_last);
5903 }
5904 #endif /* VM_NRESERVLEVEL > 0 */
5905 
5906 /*
5907  * First find and then destroy the pv entry for the specified pmap and virtual
5908  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5909  * page mappings.
5910  */
5911 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5912 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5913 {
5914 	pv_entry_t pv;
5915 
5916 	pv = pmap_pvh_remove(pvh, pmap, va);
5917 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5918 	free_pv_entry(pmap, pv);
5919 }
5920 
5921 /*
5922  * Conditionally create the PV entry for a 4KB page mapping if the required
5923  * memory can be allocated without resorting to reclamation.
5924  */
5925 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5926 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5927     struct rwlock **lockp)
5928 {
5929 	pv_entry_t pv;
5930 
5931 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5932 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5933 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5934 		pv->pv_va = va;
5935 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5936 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5937 		m->md.pv_gen++;
5938 		return (true);
5939 	} else
5940 		return (false);
5941 }
5942 
5943 /*
5944  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5945  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5946  * false if the PV entry cannot be allocated without resorting to reclamation.
5947  */
5948 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5949 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5950     struct rwlock **lockp)
5951 {
5952 	struct md_page *pvh;
5953 	pv_entry_t pv;
5954 	vm_paddr_t pa;
5955 
5956 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5957 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5958 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5959 	    NULL : lockp)) == NULL)
5960 		return (false);
5961 	pv->pv_va = va;
5962 	pa = pde & PG_PS_FRAME;
5963 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5964 	pvh = pa_to_pvh(pa);
5965 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5966 	pvh->pv_gen++;
5967 	return (true);
5968 }
5969 
5970 /*
5971  * Fills a page table page with mappings to consecutive physical pages.
5972  */
5973 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5974 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5975 {
5976 	pt_entry_t *pte;
5977 
5978 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5979 		*pte = newpte;
5980 		newpte += PAGE_SIZE;
5981 	}
5982 }
5983 
5984 /*
5985  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5986  * mapping is invalidated.
5987  */
5988 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5989 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5990 {
5991 	struct rwlock *lock;
5992 	bool rv;
5993 
5994 	lock = NULL;
5995 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5996 	if (lock != NULL)
5997 		rw_wunlock(lock);
5998 	return (rv);
5999 }
6000 
6001 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)6002 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
6003 {
6004 #ifdef INVARIANTS
6005 #ifdef DIAGNOSTIC
6006 	pt_entry_t *xpte, *ypte;
6007 
6008 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
6009 	    xpte++, newpte += PAGE_SIZE) {
6010 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
6011 			printf("pmap_demote_pde: xpte %zd and newpte map "
6012 			    "different pages: found %#lx, expected %#lx\n",
6013 			    xpte - firstpte, *xpte, newpte);
6014 			printf("page table dump\n");
6015 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
6016 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
6017 			panic("firstpte");
6018 		}
6019 	}
6020 #else
6021 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
6022 	    ("pmap_demote_pde: firstpte and newpte map different physical"
6023 	    " addresses"));
6024 #endif
6025 #endif
6026 }
6027 
6028 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)6029 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6030     pd_entry_t oldpde, struct rwlock **lockp)
6031 {
6032 	struct spglist free;
6033 	vm_offset_t sva;
6034 
6035 	SLIST_INIT(&free);
6036 	sva = trunc_2mpage(va);
6037 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
6038 	if ((oldpde & pmap_global_bit(pmap)) == 0)
6039 		pmap_invalidate_pde_page(pmap, sva, oldpde);
6040 	vm_page_free_pages_toq(&free, true);
6041 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6042 	    va, pmap);
6043 }
6044 
6045 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6046 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6047     struct rwlock **lockp)
6048 {
6049 	pd_entry_t newpde, oldpde;
6050 	pt_entry_t *firstpte, newpte;
6051 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6052 	vm_paddr_t mptepa;
6053 	vm_page_t mpte;
6054 	int PG_PTE_CACHE;
6055 	bool in_kernel;
6056 
6057 	PG_A = pmap_accessed_bit(pmap);
6058 	PG_G = pmap_global_bit(pmap);
6059 	PG_M = pmap_modified_bit(pmap);
6060 	PG_RW = pmap_rw_bit(pmap);
6061 	PG_V = pmap_valid_bit(pmap);
6062 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6063 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6064 
6065 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6066 	in_kernel = va >= VM_MAXUSER_ADDRESS;
6067 	oldpde = *pde;
6068 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6069 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6070 
6071 	/*
6072 	 * Invalidate the 2MB page mapping and return "failure" if the
6073 	 * mapping was never accessed.
6074 	 */
6075 	if ((oldpde & PG_A) == 0) {
6076 		KASSERT((oldpde & PG_W) == 0,
6077 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
6078 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6079 		return (false);
6080 	}
6081 
6082 	mpte = pmap_remove_pt_page(pmap, va);
6083 	if (mpte == NULL) {
6084 		KASSERT((oldpde & PG_W) == 0,
6085 		    ("pmap_demote_pde: page table page for a wired mapping"
6086 		    " is missing"));
6087 
6088 		/*
6089 		 * If the page table page is missing and the mapping
6090 		 * is for a kernel address, the mapping must belong to
6091 		 * the direct map.  Page table pages are preallocated
6092 		 * for every other part of the kernel address space,
6093 		 * so the direct map region is the only part of the
6094 		 * kernel address space that must be handled here.
6095 		 */
6096 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6097 		    va < DMAP_MAX_ADDRESS),
6098 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6099 
6100 		/*
6101 		 * If the 2MB page mapping belongs to the direct map
6102 		 * region of the kernel's address space, then the page
6103 		 * allocation request specifies the highest possible
6104 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6105 		 * priority is normal.
6106 		 */
6107 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6108 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6109 
6110 		/*
6111 		 * If the allocation of the new page table page fails,
6112 		 * invalidate the 2MB page mapping and return "failure".
6113 		 */
6114 		if (mpte == NULL) {
6115 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6116 			return (false);
6117 		}
6118 
6119 		if (!in_kernel)
6120 			mpte->ref_count = NPTEPG;
6121 	}
6122 	mptepa = VM_PAGE_TO_PHYS(mpte);
6123 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6124 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6125 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6126 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6127 	newpte = oldpde & ~PG_PS;
6128 	newpte = pmap_swap_pat(pmap, newpte);
6129 
6130 	/*
6131 	 * If the PTP is not leftover from an earlier promotion or it does not
6132 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6133 	 * have PG_A set.
6134 	 */
6135 	if (!vm_page_all_valid(mpte))
6136 		pmap_fill_ptp(firstpte, newpte);
6137 
6138 	pmap_demote_pde_check(firstpte, newpte);
6139 
6140 	/*
6141 	 * If the mapping has changed attributes, update the PTEs.
6142 	 */
6143 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6144 		pmap_fill_ptp(firstpte, newpte);
6145 
6146 	/*
6147 	 * The spare PV entries must be reserved prior to demoting the
6148 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6149 	 * of the PDE and the PV lists will be inconsistent, which can result
6150 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6151 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6152 	 * PV entry for the 2MB page mapping that is being demoted.
6153 	 */
6154 	if ((oldpde & PG_MANAGED) != 0)
6155 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6156 
6157 	/*
6158 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6159 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6160 	 * set.  Thus, there is no danger of a race with another
6161 	 * processor changing the setting of PG_A and/or PG_M between
6162 	 * the read above and the store below.
6163 	 */
6164 	if (workaround_erratum383)
6165 		pmap_update_pde(pmap, va, pde, newpde);
6166 	else
6167 		pde_store(pde, newpde);
6168 
6169 	/*
6170 	 * Invalidate a stale recursive mapping of the page table page.
6171 	 */
6172 	if (in_kernel)
6173 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6174 
6175 	/*
6176 	 * Demote the PV entry.
6177 	 */
6178 	if ((oldpde & PG_MANAGED) != 0)
6179 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6180 
6181 	counter_u64_add(pmap_pde_demotions, 1);
6182 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6183 	    va, pmap);
6184 	return (true);
6185 }
6186 
6187 /*
6188  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6189  */
6190 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6191 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6192 {
6193 	pd_entry_t newpde;
6194 	vm_paddr_t mptepa;
6195 	vm_page_t mpte;
6196 
6197 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6198 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6199 	mpte = pmap_remove_pt_page(pmap, va);
6200 	if (mpte == NULL)
6201 		panic("pmap_remove_kernel_pde: Missing pt page.");
6202 
6203 	mptepa = VM_PAGE_TO_PHYS(mpte);
6204 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6205 
6206 	/*
6207 	 * If this page table page was unmapped by a promotion, then it
6208 	 * contains valid mappings.  Zero it to invalidate those mappings.
6209 	 */
6210 	if (vm_page_any_valid(mpte))
6211 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6212 
6213 	/*
6214 	 * Demote the mapping.
6215 	 */
6216 	if (workaround_erratum383)
6217 		pmap_update_pde(pmap, va, pde, newpde);
6218 	else
6219 		pde_store(pde, newpde);
6220 
6221 	/*
6222 	 * Invalidate a stale recursive mapping of the page table page.
6223 	 */
6224 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6225 }
6226 
6227 /*
6228  * pmap_remove_pde: do the things to unmap a superpage in a process
6229  */
6230 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)6231 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6232     struct spglist *free, struct rwlock **lockp)
6233 {
6234 	struct md_page *pvh;
6235 	pd_entry_t oldpde;
6236 	vm_offset_t eva, va;
6237 	vm_page_t m, mpte;
6238 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6239 
6240 	PG_G = pmap_global_bit(pmap);
6241 	PG_A = pmap_accessed_bit(pmap);
6242 	PG_M = pmap_modified_bit(pmap);
6243 	PG_RW = pmap_rw_bit(pmap);
6244 
6245 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6246 	KASSERT((sva & PDRMASK) == 0,
6247 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6248 	oldpde = pte_load_clear(pdq);
6249 	if (oldpde & PG_W)
6250 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6251 	if ((oldpde & PG_G) != 0)
6252 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6253 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6254 	if (oldpde & PG_MANAGED) {
6255 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6256 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6257 		pmap_pvh_free(pvh, pmap, sva);
6258 		eva = sva + NBPDR;
6259 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6260 		    va < eva; va += PAGE_SIZE, m++) {
6261 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6262 				vm_page_dirty(m);
6263 			if (oldpde & PG_A)
6264 				vm_page_aflag_set(m, PGA_REFERENCED);
6265 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6266 			    TAILQ_EMPTY(&pvh->pv_list))
6267 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6268 			pmap_delayed_invl_page(m);
6269 		}
6270 	}
6271 	if (pmap == kernel_pmap) {
6272 		pmap_remove_kernel_pde(pmap, pdq, sva);
6273 	} else {
6274 		mpte = pmap_remove_pt_page(pmap, sva);
6275 		if (mpte != NULL) {
6276 			KASSERT(vm_page_any_valid(mpte),
6277 			    ("pmap_remove_pde: pte page not promoted"));
6278 			pmap_pt_page_count_adj(pmap, -1);
6279 			KASSERT(mpte->ref_count == NPTEPG,
6280 			    ("pmap_remove_pde: pte page ref count error"));
6281 			mpte->ref_count = 0;
6282 			pmap_add_delayed_free_list(mpte, free, false);
6283 		}
6284 	}
6285 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6286 }
6287 
6288 /*
6289  * pmap_remove_pte: do the things to unmap a page in a process
6290  */
6291 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6292 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6293     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6294 {
6295 	struct md_page *pvh;
6296 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6297 	vm_page_t m;
6298 
6299 	PG_A = pmap_accessed_bit(pmap);
6300 	PG_M = pmap_modified_bit(pmap);
6301 	PG_RW = pmap_rw_bit(pmap);
6302 
6303 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6304 	oldpte = pte_load_clear(ptq);
6305 	if (oldpte & PG_W)
6306 		pmap->pm_stats.wired_count -= 1;
6307 	pmap_resident_count_adj(pmap, -1);
6308 	if (oldpte & PG_MANAGED) {
6309 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6310 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6311 			vm_page_dirty(m);
6312 		if (oldpte & PG_A)
6313 			vm_page_aflag_set(m, PGA_REFERENCED);
6314 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6315 		pmap_pvh_free(&m->md, pmap, va);
6316 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6317 		    (m->flags & PG_FICTITIOUS) == 0) {
6318 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6319 			if (TAILQ_EMPTY(&pvh->pv_list))
6320 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6321 		}
6322 		pmap_delayed_invl_page(m);
6323 	}
6324 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6325 }
6326 
6327 /*
6328  * Remove a single page from a process address space
6329  */
6330 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6331 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6332     struct spglist *free)
6333 {
6334 	struct rwlock *lock;
6335 	pt_entry_t *pte, PG_V;
6336 
6337 	PG_V = pmap_valid_bit(pmap);
6338 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6339 	if ((*pde & PG_V) == 0)
6340 		return;
6341 	pte = pmap_pde_to_pte(pde, va);
6342 	if ((*pte & PG_V) == 0)
6343 		return;
6344 	lock = NULL;
6345 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6346 	if (lock != NULL)
6347 		rw_wunlock(lock);
6348 	pmap_invalidate_page(pmap, va);
6349 }
6350 
6351 /*
6352  * Removes the specified range of addresses from the page table page.
6353  */
6354 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6355 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6356     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6357 {
6358 	pt_entry_t PG_G, *pte;
6359 	vm_offset_t va;
6360 	bool anyvalid;
6361 
6362 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6363 	PG_G = pmap_global_bit(pmap);
6364 	anyvalid = false;
6365 	va = eva;
6366 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6367 	    sva += PAGE_SIZE) {
6368 		if (*pte == 0) {
6369 			if (va != eva) {
6370 				pmap_invalidate_range(pmap, va, sva);
6371 				va = eva;
6372 			}
6373 			continue;
6374 		}
6375 		if ((*pte & PG_G) == 0)
6376 			anyvalid = true;
6377 		else if (va == eva)
6378 			va = sva;
6379 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6380 			sva += PAGE_SIZE;
6381 			break;
6382 		}
6383 	}
6384 	if (va != eva)
6385 		pmap_invalidate_range(pmap, va, sva);
6386 	return (anyvalid);
6387 }
6388 
6389 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6390 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6391 {
6392 	struct rwlock *lock;
6393 	vm_page_t mt;
6394 	vm_offset_t va_next;
6395 	pml5_entry_t *pml5e;
6396 	pml4_entry_t *pml4e;
6397 	pdp_entry_t *pdpe;
6398 	pd_entry_t ptpaddr, *pde;
6399 	pt_entry_t PG_G, PG_V;
6400 	struct spglist free;
6401 	int anyvalid;
6402 
6403 	PG_G = pmap_global_bit(pmap);
6404 	PG_V = pmap_valid_bit(pmap);
6405 
6406 	/*
6407 	 * If there are no resident pages besides the top level page
6408 	 * table page(s), there is nothing to do.  Kernel pmap always
6409 	 * accounts whole preloaded area as resident, which makes its
6410 	 * resident count > 2.
6411 	 * Perform an unsynchronized read.  This is, however, safe.
6412 	 */
6413 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6414 	    1 : 0))
6415 		return;
6416 
6417 	anyvalid = 0;
6418 	SLIST_INIT(&free);
6419 
6420 	pmap_delayed_invl_start();
6421 	PMAP_LOCK(pmap);
6422 	if (map_delete)
6423 		pmap_pkru_on_remove(pmap, sva, eva);
6424 
6425 	/*
6426 	 * special handling of removing one page.  a very
6427 	 * common operation and easy to short circuit some
6428 	 * code.
6429 	 */
6430 	if (sva + PAGE_SIZE == eva) {
6431 		pde = pmap_pde(pmap, sva);
6432 		if (pde && (*pde & PG_PS) == 0) {
6433 			pmap_remove_page(pmap, sva, pde, &free);
6434 			goto out;
6435 		}
6436 	}
6437 
6438 	lock = NULL;
6439 	for (; sva < eva; sva = va_next) {
6440 		if (pmap->pm_stats.resident_count == 0)
6441 			break;
6442 
6443 		if (pmap_is_la57(pmap)) {
6444 			pml5e = pmap_pml5e(pmap, sva);
6445 			if ((*pml5e & PG_V) == 0) {
6446 				va_next = (sva + NBPML5) & ~PML5MASK;
6447 				if (va_next < sva)
6448 					va_next = eva;
6449 				continue;
6450 			}
6451 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6452 		} else {
6453 			pml4e = pmap_pml4e(pmap, sva);
6454 		}
6455 		if ((*pml4e & PG_V) == 0) {
6456 			va_next = (sva + NBPML4) & ~PML4MASK;
6457 			if (va_next < sva)
6458 				va_next = eva;
6459 			continue;
6460 		}
6461 
6462 		va_next = (sva + NBPDP) & ~PDPMASK;
6463 		if (va_next < sva)
6464 			va_next = eva;
6465 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6466 		if ((*pdpe & PG_V) == 0)
6467 			continue;
6468 		if ((*pdpe & PG_PS) != 0) {
6469 			KASSERT(va_next <= eva,
6470 			    ("partial update of non-transparent 1G mapping "
6471 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6472 			    *pdpe, sva, eva, va_next));
6473 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6474 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6475 			anyvalid = 1;
6476 			*pdpe = 0;
6477 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6478 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6479 			pmap_unwire_ptp(pmap, sva, mt, &free);
6480 			continue;
6481 		}
6482 
6483 		/*
6484 		 * Calculate index for next page table.
6485 		 */
6486 		va_next = (sva + NBPDR) & ~PDRMASK;
6487 		if (va_next < sva)
6488 			va_next = eva;
6489 
6490 		pde = pmap_pdpe_to_pde(pdpe, sva);
6491 		ptpaddr = *pde;
6492 
6493 		/*
6494 		 * Weed out invalid mappings.
6495 		 */
6496 		if (ptpaddr == 0)
6497 			continue;
6498 
6499 		/*
6500 		 * Check for large page.
6501 		 */
6502 		if ((ptpaddr & PG_PS) != 0) {
6503 			/*
6504 			 * Are we removing the entire large page?  If not,
6505 			 * demote the mapping and fall through.
6506 			 */
6507 			if (sva + NBPDR == va_next && eva >= va_next) {
6508 				/*
6509 				 * The TLB entry for a PG_G mapping is
6510 				 * invalidated by pmap_remove_pde().
6511 				 */
6512 				if ((ptpaddr & PG_G) == 0)
6513 					anyvalid = 1;
6514 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6515 				continue;
6516 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6517 			    &lock)) {
6518 				/* The large page mapping was destroyed. */
6519 				continue;
6520 			} else
6521 				ptpaddr = *pde;
6522 		}
6523 
6524 		/*
6525 		 * Limit our scan to either the end of the va represented
6526 		 * by the current page table page, or to the end of the
6527 		 * range being removed.
6528 		 */
6529 		if (va_next > eva)
6530 			va_next = eva;
6531 
6532 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6533 			anyvalid = 1;
6534 	}
6535 	if (lock != NULL)
6536 		rw_wunlock(lock);
6537 out:
6538 	if (anyvalid)
6539 		pmap_invalidate_all(pmap);
6540 	PMAP_UNLOCK(pmap);
6541 	pmap_delayed_invl_finish();
6542 	vm_page_free_pages_toq(&free, true);
6543 }
6544 
6545 /*
6546  *	Remove the given range of addresses from the specified map.
6547  *
6548  *	It is assumed that the start and end are properly
6549  *	rounded to the page size.
6550  */
6551 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6552 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6553 {
6554 	pmap_remove1(pmap, sva, eva, false);
6555 }
6556 
6557 /*
6558  *	Remove the given range of addresses as part of a logical unmap
6559  *	operation. This has the effect of calling pmap_remove(), but
6560  *	also clears any metadata that should persist for the lifetime
6561  *	of a logical mapping.
6562  */
6563 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6564 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6565 {
6566 	pmap_remove1(pmap, sva, eva, true);
6567 }
6568 
6569 /*
6570  *	Routine:	pmap_remove_all
6571  *	Function:
6572  *		Removes this physical page from
6573  *		all physical maps in which it resides.
6574  *		Reflects back modify bits to the pager.
6575  *
6576  *	Notes:
6577  *		Original versions of this routine were very
6578  *		inefficient because they iteratively called
6579  *		pmap_remove (slow...)
6580  */
6581 
6582 void
pmap_remove_all(vm_page_t m)6583 pmap_remove_all(vm_page_t m)
6584 {
6585 	struct md_page *pvh;
6586 	pv_entry_t pv;
6587 	pmap_t pmap;
6588 	struct rwlock *lock;
6589 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6590 	pd_entry_t *pde;
6591 	vm_offset_t va;
6592 	struct spglist free;
6593 	int pvh_gen, md_gen;
6594 
6595 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6596 	    ("pmap_remove_all: page %p is not managed", m));
6597 	SLIST_INIT(&free);
6598 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6599 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6600 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6601 	rw_wlock(lock);
6602 retry:
6603 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6604 		pmap = PV_PMAP(pv);
6605 		if (!PMAP_TRYLOCK(pmap)) {
6606 			pvh_gen = pvh->pv_gen;
6607 			rw_wunlock(lock);
6608 			PMAP_LOCK(pmap);
6609 			rw_wlock(lock);
6610 			if (pvh_gen != pvh->pv_gen) {
6611 				PMAP_UNLOCK(pmap);
6612 				goto retry;
6613 			}
6614 		}
6615 		va = pv->pv_va;
6616 		pde = pmap_pde(pmap, va);
6617 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6618 		PMAP_UNLOCK(pmap);
6619 	}
6620 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6621 		pmap = PV_PMAP(pv);
6622 		if (!PMAP_TRYLOCK(pmap)) {
6623 			pvh_gen = pvh->pv_gen;
6624 			md_gen = m->md.pv_gen;
6625 			rw_wunlock(lock);
6626 			PMAP_LOCK(pmap);
6627 			rw_wlock(lock);
6628 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6629 				PMAP_UNLOCK(pmap);
6630 				goto retry;
6631 			}
6632 		}
6633 		PG_A = pmap_accessed_bit(pmap);
6634 		PG_M = pmap_modified_bit(pmap);
6635 		PG_RW = pmap_rw_bit(pmap);
6636 		pmap_resident_count_adj(pmap, -1);
6637 		pde = pmap_pde(pmap, pv->pv_va);
6638 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6639 		    " a 2mpage in page %p's pv list", m));
6640 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6641 		tpte = pte_load_clear(pte);
6642 		if (tpte & PG_W)
6643 			pmap->pm_stats.wired_count--;
6644 		if (tpte & PG_A)
6645 			vm_page_aflag_set(m, PGA_REFERENCED);
6646 
6647 		/*
6648 		 * Update the vm_page_t clean and reference bits.
6649 		 */
6650 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6651 			vm_page_dirty(m);
6652 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6653 		pmap_invalidate_page(pmap, pv->pv_va);
6654 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6655 		m->md.pv_gen++;
6656 		free_pv_entry(pmap, pv);
6657 		PMAP_UNLOCK(pmap);
6658 	}
6659 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6660 	rw_wunlock(lock);
6661 	pmap_delayed_invl_wait(m);
6662 	vm_page_free_pages_toq(&free, true);
6663 }
6664 
6665 /*
6666  * pmap_protect_pde: do the things to protect a 2mpage in a process
6667  */
6668 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6669 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6670 {
6671 	pd_entry_t newpde, oldpde;
6672 	vm_page_t m, mt;
6673 	bool anychanged;
6674 	pt_entry_t PG_G, PG_M, PG_RW;
6675 
6676 	PG_G = pmap_global_bit(pmap);
6677 	PG_M = pmap_modified_bit(pmap);
6678 	PG_RW = pmap_rw_bit(pmap);
6679 
6680 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6681 	KASSERT((sva & PDRMASK) == 0,
6682 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6683 	anychanged = false;
6684 retry:
6685 	oldpde = newpde = *pde;
6686 	if ((prot & VM_PROT_WRITE) == 0) {
6687 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6688 		    (PG_MANAGED | PG_M | PG_RW)) {
6689 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6690 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6691 				vm_page_dirty(mt);
6692 		}
6693 		newpde &= ~(PG_RW | PG_M);
6694 	}
6695 	if ((prot & VM_PROT_EXECUTE) == 0)
6696 		newpde |= pg_nx;
6697 	if (newpde != oldpde) {
6698 		/*
6699 		 * As an optimization to future operations on this PDE, clear
6700 		 * PG_PROMOTED.  The impending invalidation will remove any
6701 		 * lingering 4KB page mappings from the TLB.
6702 		 */
6703 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6704 			goto retry;
6705 		if ((oldpde & PG_G) != 0)
6706 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6707 		else
6708 			anychanged = true;
6709 	}
6710 	return (anychanged);
6711 }
6712 
6713 /*
6714  *	Set the physical protection on the
6715  *	specified range of this map as requested.
6716  */
6717 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6718 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6719 {
6720 	vm_page_t m;
6721 	vm_offset_t va_next;
6722 	pml4_entry_t *pml4e;
6723 	pdp_entry_t *pdpe;
6724 	pd_entry_t ptpaddr, *pde;
6725 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6726 	pt_entry_t obits, pbits;
6727 	bool anychanged;
6728 
6729 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6730 	if (prot == VM_PROT_NONE) {
6731 		pmap_remove(pmap, sva, eva);
6732 		return;
6733 	}
6734 
6735 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6736 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6737 		return;
6738 
6739 	PG_G = pmap_global_bit(pmap);
6740 	PG_M = pmap_modified_bit(pmap);
6741 	PG_V = pmap_valid_bit(pmap);
6742 	PG_RW = pmap_rw_bit(pmap);
6743 	anychanged = false;
6744 
6745 	/*
6746 	 * Although this function delays and batches the invalidation
6747 	 * of stale TLB entries, it does not need to call
6748 	 * pmap_delayed_invl_start() and
6749 	 * pmap_delayed_invl_finish(), because it does not
6750 	 * ordinarily destroy mappings.  Stale TLB entries from
6751 	 * protection-only changes need only be invalidated before the
6752 	 * pmap lock is released, because protection-only changes do
6753 	 * not destroy PV entries.  Even operations that iterate over
6754 	 * a physical page's PV list of mappings, like
6755 	 * pmap_remove_write(), acquire the pmap lock for each
6756 	 * mapping.  Consequently, for protection-only changes, the
6757 	 * pmap lock suffices to synchronize both page table and TLB
6758 	 * updates.
6759 	 *
6760 	 * This function only destroys a mapping if pmap_demote_pde()
6761 	 * fails.  In that case, stale TLB entries are immediately
6762 	 * invalidated.
6763 	 */
6764 
6765 	PMAP_LOCK(pmap);
6766 	for (; sva < eva; sva = va_next) {
6767 		pml4e = pmap_pml4e(pmap, sva);
6768 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6769 			va_next = (sva + NBPML4) & ~PML4MASK;
6770 			if (va_next < sva)
6771 				va_next = eva;
6772 			continue;
6773 		}
6774 
6775 		va_next = (sva + NBPDP) & ~PDPMASK;
6776 		if (va_next < sva)
6777 			va_next = eva;
6778 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6779 		if ((*pdpe & PG_V) == 0)
6780 			continue;
6781 		if ((*pdpe & PG_PS) != 0) {
6782 			KASSERT(va_next <= eva,
6783 			    ("partial update of non-transparent 1G mapping "
6784 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6785 			    *pdpe, sva, eva, va_next));
6786 retry_pdpe:
6787 			obits = pbits = *pdpe;
6788 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6789 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6790 			if ((prot & VM_PROT_WRITE) == 0)
6791 				pbits &= ~(PG_RW | PG_M);
6792 			if ((prot & VM_PROT_EXECUTE) == 0)
6793 				pbits |= pg_nx;
6794 
6795 			if (pbits != obits) {
6796 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6797 					/* PG_PS cannot be cleared under us, */
6798 					goto retry_pdpe;
6799 				anychanged = true;
6800 			}
6801 			continue;
6802 		}
6803 
6804 		va_next = (sva + NBPDR) & ~PDRMASK;
6805 		if (va_next < sva)
6806 			va_next = eva;
6807 
6808 		pde = pmap_pdpe_to_pde(pdpe, sva);
6809 		ptpaddr = *pde;
6810 
6811 		/*
6812 		 * Weed out invalid mappings.
6813 		 */
6814 		if (ptpaddr == 0)
6815 			continue;
6816 
6817 		/*
6818 		 * Check for large page.
6819 		 */
6820 		if ((ptpaddr & PG_PS) != 0) {
6821 			/*
6822 			 * Are we protecting the entire large page?
6823 			 */
6824 			if (sva + NBPDR == va_next && eva >= va_next) {
6825 				/*
6826 				 * The TLB entry for a PG_G mapping is
6827 				 * invalidated by pmap_protect_pde().
6828 				 */
6829 				if (pmap_protect_pde(pmap, pde, sva, prot))
6830 					anychanged = true;
6831 				continue;
6832 			}
6833 
6834 			/*
6835 			 * Does the large page mapping need to change?  If so,
6836 			 * demote it and fall through.
6837 			 */
6838 			pbits = ptpaddr;
6839 			if ((prot & VM_PROT_WRITE) == 0)
6840 				pbits &= ~(PG_RW | PG_M);
6841 			if ((prot & VM_PROT_EXECUTE) == 0)
6842 				pbits |= pg_nx;
6843 			if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6844 			    sva)) {
6845 				/*
6846 				 * Either the large page mapping doesn't need
6847 				 * to change, or it was destroyed during
6848 				 * demotion.
6849 				 */
6850 				continue;
6851 			}
6852 		}
6853 
6854 		if (va_next > eva)
6855 			va_next = eva;
6856 
6857 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6858 		    sva += PAGE_SIZE) {
6859 retry:
6860 			obits = pbits = *pte;
6861 			if ((pbits & PG_V) == 0)
6862 				continue;
6863 
6864 			if ((prot & VM_PROT_WRITE) == 0) {
6865 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6866 				    (PG_MANAGED | PG_M | PG_RW)) {
6867 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6868 					vm_page_dirty(m);
6869 				}
6870 				pbits &= ~(PG_RW | PG_M);
6871 			}
6872 			if ((prot & VM_PROT_EXECUTE) == 0)
6873 				pbits |= pg_nx;
6874 
6875 			if (pbits != obits) {
6876 				if (!atomic_cmpset_long(pte, obits, pbits))
6877 					goto retry;
6878 				if (obits & PG_G)
6879 					pmap_invalidate_page(pmap, sva);
6880 				else
6881 					anychanged = true;
6882 			}
6883 		}
6884 	}
6885 	if (anychanged)
6886 		pmap_invalidate_all(pmap);
6887 	PMAP_UNLOCK(pmap);
6888 }
6889 
6890 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6891 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6892 {
6893 
6894 	if (pmap->pm_type != PT_EPT)
6895 		return (false);
6896 	return ((pde & EPT_PG_EXECUTE) != 0);
6897 }
6898 
6899 #if VM_NRESERVLEVEL > 0
6900 /*
6901  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6902  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6903  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6904  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6905  * identical characteristics.
6906  */
6907 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6908 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6909     struct rwlock **lockp)
6910 {
6911 	pd_entry_t newpde;
6912 	pt_entry_t *firstpte, oldpte, pa, *pte;
6913 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6914 	int PG_PTE_CACHE;
6915 
6916 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6917 	if (!pmap_ps_enabled(pmap))
6918 		return (false);
6919 
6920 	PG_A = pmap_accessed_bit(pmap);
6921 	PG_G = pmap_global_bit(pmap);
6922 	PG_M = pmap_modified_bit(pmap);
6923 	PG_V = pmap_valid_bit(pmap);
6924 	PG_RW = pmap_rw_bit(pmap);
6925 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6926 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6927 
6928 	/*
6929 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6930 	 * ineligible for promotion due to hardware errata, invalid, or does
6931 	 * not map the first 4KB physical page within a 2MB page.
6932 	 */
6933 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6934 	newpde = *firstpte;
6935 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6936 		return (false);
6937 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6938 		counter_u64_add(pmap_pde_p_failures, 1);
6939 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6940 		    " in pmap %p", va, pmap);
6941 		return (false);
6942 	}
6943 
6944 	/*
6945 	 * Both here and in the below "for" loop, to allow for repromotion
6946 	 * after MADV_FREE, conditionally write protect a clean PTE before
6947 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6948 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6949 	 * address range [S, E).  pmap_advise() will demote the superpage
6950 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6951 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6952 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6953 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6954 	 * In other words, there is still a 4KB page in [S, E), call it P,
6955 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6956 	 * we write protect P before aborting the promotion, if and when P is
6957 	 * finally rewritten, there won't be a page fault to trigger
6958 	 * repromotion.
6959 	 */
6960 setpde:
6961 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6962 		/*
6963 		 * When PG_M is already clear, PG_RW can be cleared without
6964 		 * a TLB invalidation.
6965 		 */
6966 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6967 			goto setpde;
6968 		newpde &= ~PG_RW;
6969 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6970 		    " in pmap %p", va & ~PDRMASK, pmap);
6971 	}
6972 
6973 	/*
6974 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6975 	 * PTE maps an unexpected 4KB physical page or does not have identical
6976 	 * characteristics to the first PTE.
6977 	 */
6978 	allpte_PG_A = newpde & PG_A;
6979 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6980 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6981 		oldpte = *pte;
6982 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6983 			counter_u64_add(pmap_pde_p_failures, 1);
6984 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6985 			    " in pmap %p", va, pmap);
6986 			return (false);
6987 		}
6988 setpte:
6989 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6990 			/*
6991 			 * When PG_M is already clear, PG_RW can be cleared
6992 			 * without a TLB invalidation.
6993 			 */
6994 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6995 				goto setpte;
6996 			oldpte &= ~PG_RW;
6997 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6998 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6999 			    (va & ~PDRMASK), pmap);
7000 		}
7001 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
7002 			counter_u64_add(pmap_pde_p_failures, 1);
7003 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
7004 			    " in pmap %p", va, pmap);
7005 			return (false);
7006 		}
7007 		allpte_PG_A &= oldpte;
7008 		pa -= PAGE_SIZE;
7009 	}
7010 
7011 	/*
7012 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
7013 	 * so that promotions triggered by speculative mappings, such as
7014 	 * pmap_enter_quick(), don't automatically mark the underlying pages
7015 	 * as referenced.
7016 	 */
7017 	newpde &= ~PG_A | allpte_PG_A;
7018 
7019 	/*
7020 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
7021 	 * MMUs supporting EPT.
7022 	 */
7023 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
7024 	    ("unsupported EPT PTE"));
7025 
7026 	/*
7027 	 * Save the PTP in its current state until the PDE mapping the
7028 	 * superpage is demoted by pmap_demote_pde() or destroyed by
7029 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
7030 	 * that the PTP be refilled on demotion.
7031 	 */
7032 	if (mpte == NULL)
7033 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7034 	KASSERT(mpte >= vm_page_array &&
7035 	    mpte < &vm_page_array[vm_page_array_size],
7036 	    ("pmap_promote_pde: page table page is out of range"));
7037 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
7038 	    ("pmap_promote_pde: page table page's pindex is wrong "
7039 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7040 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7041 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7042 		counter_u64_add(pmap_pde_p_failures, 1);
7043 		CTR2(KTR_PMAP,
7044 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7045 		    pmap);
7046 		return (false);
7047 	}
7048 
7049 	/*
7050 	 * Promote the pv entries.
7051 	 */
7052 	if ((newpde & PG_MANAGED) != 0)
7053 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7054 
7055 	/*
7056 	 * Propagate the PAT index to its proper position.
7057 	 */
7058 	newpde = pmap_swap_pat(pmap, newpde);
7059 
7060 	/*
7061 	 * Map the superpage.
7062 	 */
7063 	if (workaround_erratum383)
7064 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7065 	else
7066 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7067 
7068 	counter_u64_add(pmap_pde_promotions, 1);
7069 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7070 	    " in pmap %p", va, pmap);
7071 	return (true);
7072 }
7073 #endif /* VM_NRESERVLEVEL > 0 */
7074 
7075 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7076 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7077     int psind)
7078 {
7079 	vm_page_t mp;
7080 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7081 
7082 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7083 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7084 	    ("psind %d unexpected", psind));
7085 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7086 	    ("unaligned phys address %#lx newpte %#lx psind %d",
7087 	    newpte & PG_FRAME, newpte, psind));
7088 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7089 	    ("unaligned va %#lx psind %d", va, psind));
7090 	KASSERT(va < VM_MAXUSER_ADDRESS,
7091 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7092 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7093 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7094 
7095 	PG_V = pmap_valid_bit(pmap);
7096 
7097 restart:
7098 	pten = newpte;
7099 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7100 		return (KERN_PROTECTION_FAILURE);
7101 
7102 	if (psind == 2) {	/* 1G */
7103 		pml4e = pmap_pml4e(pmap, va);
7104 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7105 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7106 			    NULL, va);
7107 			if (mp == NULL)
7108 				goto allocf;
7109 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7110 			pdpe = &pdpe[pmap_pdpe_index(va)];
7111 			origpte = *pdpe;
7112 			MPASS(origpte == 0);
7113 		} else {
7114 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7115 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7116 			origpte = *pdpe;
7117 			if ((origpte & PG_V) == 0) {
7118 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7119 				mp->ref_count++;
7120 			}
7121 		}
7122 		*pdpe = pten;
7123 	} else /* (psind == 1) */ {	/* 2M */
7124 		pde = pmap_pde(pmap, va);
7125 		if (pde == NULL) {
7126 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7127 			    NULL, va);
7128 			if (mp == NULL)
7129 				goto allocf;
7130 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7131 			pde = &pde[pmap_pde_index(va)];
7132 			origpte = *pde;
7133 			MPASS(origpte == 0);
7134 		} else {
7135 			origpte = *pde;
7136 			if ((origpte & PG_V) == 0) {
7137 				pdpe = pmap_pdpe(pmap, va);
7138 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7139 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7140 				mp->ref_count++;
7141 			}
7142 		}
7143 		*pde = pten;
7144 	}
7145 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7146 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7147 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7148 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7149 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7150 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7151 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7152 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7153 	if ((origpte & PG_V) == 0)
7154 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7155 
7156 	return (KERN_SUCCESS);
7157 
7158 allocf:
7159 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7160 		return (KERN_RESOURCE_SHORTAGE);
7161 	PMAP_UNLOCK(pmap);
7162 	vm_wait(NULL);
7163 	PMAP_LOCK(pmap);
7164 	goto restart;
7165 }
7166 
7167 /*
7168  *	Insert the given physical page (p) at
7169  *	the specified virtual address (v) in the
7170  *	target physical map with the protection requested.
7171  *
7172  *	If specified, the page will be wired down, meaning
7173  *	that the related pte can not be reclaimed.
7174  *
7175  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7176  *	or lose information.  That is, this routine must actually
7177  *	insert this page into the given map NOW.
7178  *
7179  *	When destroying both a page table and PV entry, this function
7180  *	performs the TLB invalidation before releasing the PV list
7181  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7182  */
7183 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7184 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7185     u_int flags, int8_t psind)
7186 {
7187 	struct rwlock *lock;
7188 	pd_entry_t *pde;
7189 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7190 	pt_entry_t newpte, origpte;
7191 	pv_entry_t pv;
7192 	vm_paddr_t opa, pa;
7193 	vm_page_t mpte, om;
7194 	int rv;
7195 	bool nosleep;
7196 
7197 	PG_A = pmap_accessed_bit(pmap);
7198 	PG_G = pmap_global_bit(pmap);
7199 	PG_M = pmap_modified_bit(pmap);
7200 	PG_V = pmap_valid_bit(pmap);
7201 	PG_RW = pmap_rw_bit(pmap);
7202 
7203 	va = trunc_page(va);
7204 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7205 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7206 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7207 	    va));
7208 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7209 	    ("pmap_enter: managed mapping within the clean submap"));
7210 	if ((m->oflags & VPO_UNMANAGED) == 0)
7211 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7212 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7213 	    ("pmap_enter: flags %u has reserved bits set", flags));
7214 	pa = VM_PAGE_TO_PHYS(m);
7215 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7216 	if ((flags & VM_PROT_WRITE) != 0)
7217 		newpte |= PG_M;
7218 	if ((prot & VM_PROT_WRITE) != 0)
7219 		newpte |= PG_RW;
7220 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7221 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7222 	if ((prot & VM_PROT_EXECUTE) == 0)
7223 		newpte |= pg_nx;
7224 	if ((flags & PMAP_ENTER_WIRED) != 0)
7225 		newpte |= PG_W;
7226 	if (va < VM_MAXUSER_ADDRESS)
7227 		newpte |= PG_U;
7228 	if (pmap == kernel_pmap)
7229 		newpte |= PG_G;
7230 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7231 
7232 	/*
7233 	 * Set modified bit gratuitously for writeable mappings if
7234 	 * the page is unmanaged. We do not want to take a fault
7235 	 * to do the dirty bit accounting for these mappings.
7236 	 */
7237 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7238 		if ((newpte & PG_RW) != 0)
7239 			newpte |= PG_M;
7240 	} else
7241 		newpte |= PG_MANAGED;
7242 
7243 	lock = NULL;
7244 	PMAP_LOCK(pmap);
7245 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7246 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7247 		    ("managed largepage va %#lx flags %#x", va, flags));
7248 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7249 		    psind);
7250 		goto out;
7251 	}
7252 	if (psind == 1) {
7253 		/* Assert the required virtual and physical alignment. */
7254 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7255 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7256 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7257 		goto out;
7258 	}
7259 	mpte = NULL;
7260 
7261 	/*
7262 	 * In the case that a page table page is not
7263 	 * resident, we are creating it here.
7264 	 */
7265 retry:
7266 	pde = pmap_pde(pmap, va);
7267 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7268 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7269 		pte = pmap_pde_to_pte(pde, va);
7270 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7271 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7272 			mpte->ref_count++;
7273 		}
7274 	} else if (va < VM_MAXUSER_ADDRESS) {
7275 		/*
7276 		 * Here if the pte page isn't mapped, or if it has been
7277 		 * deallocated.
7278 		 */
7279 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7280 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7281 		    nosleep ? NULL : &lock, va);
7282 		if (mpte == NULL && nosleep) {
7283 			rv = KERN_RESOURCE_SHORTAGE;
7284 			goto out;
7285 		}
7286 		goto retry;
7287 	} else
7288 		panic("pmap_enter: invalid page directory va=%#lx", va);
7289 
7290 	origpte = *pte;
7291 	pv = NULL;
7292 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7293 		newpte |= pmap_pkru_get(pmap, va);
7294 
7295 	/*
7296 	 * Is the specified virtual address already mapped?
7297 	 */
7298 	if ((origpte & PG_V) != 0) {
7299 		/*
7300 		 * Wiring change, just update stats. We don't worry about
7301 		 * wiring PT pages as they remain resident as long as there
7302 		 * are valid mappings in them. Hence, if a user page is wired,
7303 		 * the PT page will be also.
7304 		 */
7305 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7306 			pmap->pm_stats.wired_count++;
7307 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7308 			pmap->pm_stats.wired_count--;
7309 
7310 		/*
7311 		 * Remove the extra PT page reference.
7312 		 */
7313 		if (mpte != NULL) {
7314 			mpte->ref_count--;
7315 			KASSERT(mpte->ref_count > 0,
7316 			    ("pmap_enter: missing reference to page table page,"
7317 			     " va: 0x%lx", va));
7318 		}
7319 
7320 		/*
7321 		 * Has the physical page changed?
7322 		 */
7323 		opa = origpte & PG_FRAME;
7324 		if (opa == pa) {
7325 			/*
7326 			 * No, might be a protection or wiring change.
7327 			 */
7328 			if ((origpte & PG_MANAGED) != 0 &&
7329 			    (newpte & PG_RW) != 0)
7330 				vm_page_aflag_set(m, PGA_WRITEABLE);
7331 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7332 				goto unchanged;
7333 			goto validate;
7334 		}
7335 
7336 		/*
7337 		 * The physical page has changed.  Temporarily invalidate
7338 		 * the mapping.  This ensures that all threads sharing the
7339 		 * pmap keep a consistent view of the mapping, which is
7340 		 * necessary for the correct handling of COW faults.  It
7341 		 * also permits reuse of the old mapping's PV entry,
7342 		 * avoiding an allocation.
7343 		 *
7344 		 * For consistency, handle unmanaged mappings the same way.
7345 		 */
7346 		origpte = pte_load_clear(pte);
7347 		KASSERT((origpte & PG_FRAME) == opa,
7348 		    ("pmap_enter: unexpected pa update for %#lx", va));
7349 		if ((origpte & PG_MANAGED) != 0) {
7350 			om = PHYS_TO_VM_PAGE(opa);
7351 
7352 			/*
7353 			 * The pmap lock is sufficient to synchronize with
7354 			 * concurrent calls to pmap_page_test_mappings() and
7355 			 * pmap_ts_referenced().
7356 			 */
7357 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7358 				vm_page_dirty(om);
7359 			if ((origpte & PG_A) != 0) {
7360 				pmap_invalidate_page(pmap, va);
7361 				vm_page_aflag_set(om, PGA_REFERENCED);
7362 			}
7363 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7364 			pv = pmap_pvh_remove(&om->md, pmap, va);
7365 			KASSERT(pv != NULL,
7366 			    ("pmap_enter: no PV entry for %#lx", va));
7367 			if ((newpte & PG_MANAGED) == 0)
7368 				free_pv_entry(pmap, pv);
7369 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7370 			    TAILQ_EMPTY(&om->md.pv_list) &&
7371 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7372 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7373 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7374 		} else {
7375 			/*
7376 			 * Since this mapping is unmanaged, assume that PG_A
7377 			 * is set.
7378 			 */
7379 			pmap_invalidate_page(pmap, va);
7380 		}
7381 		origpte = 0;
7382 	} else {
7383 		/*
7384 		 * Increment the counters.
7385 		 */
7386 		if ((newpte & PG_W) != 0)
7387 			pmap->pm_stats.wired_count++;
7388 		pmap_resident_count_adj(pmap, 1);
7389 	}
7390 
7391 	/*
7392 	 * Enter on the PV list if part of our managed memory.
7393 	 */
7394 	if ((newpte & PG_MANAGED) != 0) {
7395 		if (pv == NULL) {
7396 			pv = get_pv_entry(pmap, &lock);
7397 			pv->pv_va = va;
7398 		}
7399 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7400 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7401 		m->md.pv_gen++;
7402 		if ((newpte & PG_RW) != 0)
7403 			vm_page_aflag_set(m, PGA_WRITEABLE);
7404 	}
7405 
7406 	/*
7407 	 * Update the PTE.
7408 	 */
7409 	if ((origpte & PG_V) != 0) {
7410 validate:
7411 		origpte = pte_load_store(pte, newpte);
7412 		KASSERT((origpte & PG_FRAME) == pa,
7413 		    ("pmap_enter: unexpected pa update for %#lx", va));
7414 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7415 		    (PG_M | PG_RW)) {
7416 			if ((origpte & PG_MANAGED) != 0)
7417 				vm_page_dirty(m);
7418 
7419 			/*
7420 			 * Although the PTE may still have PG_RW set, TLB
7421 			 * invalidation may nonetheless be required because
7422 			 * the PTE no longer has PG_M set.
7423 			 */
7424 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7425 			/*
7426 			 * This PTE change does not require TLB invalidation.
7427 			 */
7428 			goto unchanged;
7429 		}
7430 		if ((origpte & PG_A) != 0)
7431 			pmap_invalidate_page(pmap, va);
7432 	} else
7433 		pte_store(pte, newpte);
7434 
7435 unchanged:
7436 
7437 #if VM_NRESERVLEVEL > 0
7438 	/*
7439 	 * If both the page table page and the reservation are fully
7440 	 * populated, then attempt promotion.
7441 	 */
7442 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7443 	    (m->flags & PG_FICTITIOUS) == 0 &&
7444 	    vm_reserv_level_iffullpop(m) == 0)
7445 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7446 #endif
7447 
7448 	rv = KERN_SUCCESS;
7449 out:
7450 	if (lock != NULL)
7451 		rw_wunlock(lock);
7452 	PMAP_UNLOCK(pmap);
7453 	return (rv);
7454 }
7455 
7456 /*
7457  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7458  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7459  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7460  * "no replace", and "no reclaim" are specified.
7461  */
7462 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7463 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7464     struct rwlock **lockp)
7465 {
7466 	pd_entry_t newpde;
7467 	pt_entry_t PG_V;
7468 
7469 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7470 	PG_V = pmap_valid_bit(pmap);
7471 	newpde = VM_PAGE_TO_PHYS(m) |
7472 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7473 	if ((m->oflags & VPO_UNMANAGED) == 0)
7474 		newpde |= PG_MANAGED;
7475 	if ((prot & VM_PROT_EXECUTE) == 0)
7476 		newpde |= pg_nx;
7477 	if (va < VM_MAXUSER_ADDRESS)
7478 		newpde |= PG_U;
7479 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7480 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7481 }
7482 
7483 /*
7484  * Returns true if every page table entry in the specified page table page is
7485  * zero.
7486  */
7487 static bool
pmap_every_pte_zero(vm_paddr_t pa)7488 pmap_every_pte_zero(vm_paddr_t pa)
7489 {
7490 	pt_entry_t *pt_end, *pte;
7491 
7492 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7493 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7494 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7495 		if (*pte != 0)
7496 			return (false);
7497 	}
7498 	return (true);
7499 }
7500 
7501 /*
7502  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7503  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7504  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7505  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7506  * page mapping already exists within the 2MB virtual address range starting
7507  * at the specified virtual address or (2) the requested 2MB page mapping is
7508  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7509  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7510  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7511  * settings are not the same across the 2MB virtual address range starting at
7512  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7513  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7514  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7515  * failed.
7516  *
7517  * The parameter "m" is only used when creating a managed, writeable mapping.
7518  */
7519 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7520 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7521     vm_page_t m, struct rwlock **lockp)
7522 {
7523 	struct spglist free;
7524 	pd_entry_t oldpde, *pde;
7525 	pt_entry_t PG_G, PG_RW, PG_V;
7526 	vm_page_t mt, pdpg;
7527 	vm_page_t uwptpg;
7528 
7529 	PG_G = pmap_global_bit(pmap);
7530 	PG_RW = pmap_rw_bit(pmap);
7531 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7532 	    ("pmap_enter_pde: newpde is missing PG_M"));
7533 	PG_V = pmap_valid_bit(pmap);
7534 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7535 
7536 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7537 	    newpde))) {
7538 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7539 		    " in pmap %p", va, pmap);
7540 		return (KERN_FAILURE);
7541 	}
7542 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7543 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7544 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7545 		    " in pmap %p", va, pmap);
7546 		return (KERN_RESOURCE_SHORTAGE);
7547 	}
7548 
7549 	/*
7550 	 * If pkru is not same for the whole pde range, return failure
7551 	 * and let vm_fault() cope.  Check after pde allocation, since
7552 	 * it could sleep.
7553 	 */
7554 	if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7555 		pmap_abort_ptp(pmap, va, pdpg);
7556 		return (KERN_PROTECTION_FAILURE);
7557 	}
7558 
7559 	/*
7560 	 * If there are existing mappings, either abort or remove them.
7561 	 */
7562 	oldpde = *pde;
7563 	if ((oldpde & PG_V) != 0) {
7564 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7565 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7566 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7567 			if ((oldpde & PG_PS) != 0) {
7568 				if (pdpg != NULL)
7569 					pdpg->ref_count--;
7570 				CTR2(KTR_PMAP,
7571 				    "pmap_enter_pde: no space for va %#lx"
7572 				    " in pmap %p", va, pmap);
7573 				return (KERN_NO_SPACE);
7574 			} else if (va < VM_MAXUSER_ADDRESS ||
7575 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7576 				if (pdpg != NULL)
7577 					pdpg->ref_count--;
7578 				CTR2(KTR_PMAP,
7579 				    "pmap_enter_pde: failure for va %#lx"
7580 				    " in pmap %p", va, pmap);
7581 				return (KERN_FAILURE);
7582 			}
7583 		}
7584 		/* Break the existing mapping(s). */
7585 		SLIST_INIT(&free);
7586 		if ((oldpde & PG_PS) != 0) {
7587 			/*
7588 			 * The reference to the PD page that was acquired by
7589 			 * pmap_alloc_pde() ensures that it won't be freed.
7590 			 * However, if the PDE resulted from a promotion, then
7591 			 * a reserved PT page could be freed.
7592 			 */
7593 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7594 			if ((oldpde & PG_G) == 0)
7595 				pmap_invalidate_pde_page(pmap, va, oldpde);
7596 		} else {
7597 			pmap_delayed_invl_start();
7598 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7599 			    lockp))
7600 		               pmap_invalidate_all(pmap);
7601 			pmap_delayed_invl_finish();
7602 		}
7603 		if (va < VM_MAXUSER_ADDRESS) {
7604 			vm_page_free_pages_toq(&free, true);
7605 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7606 			    pde));
7607 		} else {
7608 			KASSERT(SLIST_EMPTY(&free),
7609 			    ("pmap_enter_pde: freed kernel page table page"));
7610 
7611 			/*
7612 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7613 			 * leave the kernel page table page zero filled.
7614 			 */
7615 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7616 			if (pmap_insert_pt_page(pmap, mt, false, false))
7617 				panic("pmap_enter_pde: trie insert failed");
7618 		}
7619 	}
7620 
7621 	/*
7622 	 * Allocate leaf ptpage for wired userspace pages.
7623 	 */
7624 	uwptpg = NULL;
7625 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7626 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7627 		    VM_ALLOC_WIRED);
7628 		if (uwptpg == NULL) {
7629 			pmap_abort_ptp(pmap, va, pdpg);
7630 			return (KERN_RESOURCE_SHORTAGE);
7631 		}
7632 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7633 			pmap_free_pt_page(pmap, uwptpg, false);
7634 			pmap_abort_ptp(pmap, va, pdpg);
7635 			return (KERN_RESOURCE_SHORTAGE);
7636 		}
7637 
7638 		uwptpg->ref_count = NPTEPG;
7639 	}
7640 	if ((newpde & PG_MANAGED) != 0) {
7641 		/*
7642 		 * Abort this mapping if its PV entry could not be created.
7643 		 */
7644 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7645 			if (pdpg != NULL)
7646 				pmap_abort_ptp(pmap, va, pdpg);
7647 			if (uwptpg != NULL) {
7648 				mt = pmap_remove_pt_page(pmap, va);
7649 				KASSERT(mt == uwptpg,
7650 				    ("removed pt page %p, expected %p", mt,
7651 				    uwptpg));
7652 				uwptpg->ref_count = 1;
7653 				pmap_free_pt_page(pmap, uwptpg, false);
7654 			}
7655 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7656 			    " in pmap %p", va, pmap);
7657 			return (KERN_RESOURCE_SHORTAGE);
7658 		}
7659 		if ((newpde & PG_RW) != 0) {
7660 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7661 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7662 		}
7663 	}
7664 
7665 	/*
7666 	 * Increment counters.
7667 	 */
7668 	if ((newpde & PG_W) != 0)
7669 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7670 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7671 
7672 	/*
7673 	 * Map the superpage.  (This is not a promoted mapping; there will not
7674 	 * be any lingering 4KB page mappings in the TLB.)
7675 	 */
7676 	pde_store(pde, newpde);
7677 
7678 	counter_u64_add(pmap_pde_mappings, 1);
7679 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7680 	    va, pmap);
7681 	return (KERN_SUCCESS);
7682 }
7683 
7684 /*
7685  * Maps a sequence of resident pages belonging to the same object.
7686  * The sequence begins with the given page m_start.  This page is
7687  * mapped at the given virtual address start.  Each subsequent page is
7688  * mapped at a virtual address that is offset from start by the same
7689  * amount as the page is offset from m_start within the object.  The
7690  * last page in the sequence is the page with the largest offset from
7691  * m_start that can be mapped at a virtual address less than the given
7692  * virtual address end.  Not every virtual page between start and end
7693  * is mapped; only those for which a resident page exists with the
7694  * corresponding offset from m_start are mapped.
7695  */
7696 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7697 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7698     vm_page_t m_start, vm_prot_t prot)
7699 {
7700 	struct rwlock *lock;
7701 	vm_offset_t va;
7702 	vm_page_t m, mpte;
7703 	vm_pindex_t diff, psize;
7704 	int rv;
7705 
7706 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7707 
7708 	psize = atop(end - start);
7709 	mpte = NULL;
7710 	m = m_start;
7711 	lock = NULL;
7712 	PMAP_LOCK(pmap);
7713 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7714 		va = start + ptoa(diff);
7715 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7716 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7717 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7718 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7719 			m = &m[NBPDR / PAGE_SIZE - 1];
7720 		else
7721 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7722 			    mpte, &lock);
7723 		m = TAILQ_NEXT(m, listq);
7724 	}
7725 	if (lock != NULL)
7726 		rw_wunlock(lock);
7727 	PMAP_UNLOCK(pmap);
7728 }
7729 
7730 /*
7731  * this code makes some *MAJOR* assumptions:
7732  * 1. Current pmap & pmap exists.
7733  * 2. Not wired.
7734  * 3. Read access.
7735  * 4. No page table pages.
7736  * but is *MUCH* faster than pmap_enter...
7737  */
7738 
7739 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7740 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7741 {
7742 	struct rwlock *lock;
7743 
7744 	lock = NULL;
7745 	PMAP_LOCK(pmap);
7746 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7747 	if (lock != NULL)
7748 		rw_wunlock(lock);
7749 	PMAP_UNLOCK(pmap);
7750 }
7751 
7752 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7753 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7754     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7755 {
7756 	pd_entry_t *pde;
7757 	pt_entry_t newpte, *pte, PG_V;
7758 
7759 	KASSERT(!VA_IS_CLEANMAP(va) ||
7760 	    (m->oflags & VPO_UNMANAGED) != 0,
7761 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7762 	PG_V = pmap_valid_bit(pmap);
7763 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7764 	pde = NULL;
7765 
7766 	/*
7767 	 * In the case that a page table page is not
7768 	 * resident, we are creating it here.
7769 	 */
7770 	if (va < VM_MAXUSER_ADDRESS) {
7771 		pdp_entry_t *pdpe;
7772 		vm_pindex_t ptepindex;
7773 
7774 		/*
7775 		 * Calculate pagetable page index
7776 		 */
7777 		ptepindex = pmap_pde_pindex(va);
7778 		if (mpte && (mpte->pindex == ptepindex)) {
7779 			mpte->ref_count++;
7780 		} else {
7781 			/*
7782 			 * If the page table page is mapped, we just increment
7783 			 * the hold count, and activate it.  Otherwise, we
7784 			 * attempt to allocate a page table page, passing NULL
7785 			 * instead of the PV list lock pointer because we don't
7786 			 * intend to sleep.  If this attempt fails, we don't
7787 			 * retry.  Instead, we give up.
7788 			 */
7789 			pdpe = pmap_pdpe(pmap, va);
7790 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7791 				if ((*pdpe & PG_PS) != 0)
7792 					return (NULL);
7793 				pde = pmap_pdpe_to_pde(pdpe, va);
7794 				if ((*pde & PG_V) != 0) {
7795 					if ((*pde & PG_PS) != 0)
7796 						return (NULL);
7797 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7798 					mpte->ref_count++;
7799 				} else {
7800 					mpte = pmap_allocpte_alloc(pmap,
7801 					    ptepindex, NULL, va);
7802 					if (mpte == NULL)
7803 						return (NULL);
7804 				}
7805 			} else {
7806 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7807 				    NULL, va);
7808 				if (mpte == NULL)
7809 					return (NULL);
7810 			}
7811 		}
7812 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7813 		pte = &pte[pmap_pte_index(va)];
7814 	} else {
7815 		mpte = NULL;
7816 		pte = vtopte(va);
7817 	}
7818 	if (*pte) {
7819 		if (mpte != NULL)
7820 			mpte->ref_count--;
7821 		return (NULL);
7822 	}
7823 
7824 	/*
7825 	 * Enter on the PV list if part of our managed memory.
7826 	 */
7827 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7828 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7829 		if (mpte != NULL)
7830 			pmap_abort_ptp(pmap, va, mpte);
7831 		return (NULL);
7832 	}
7833 
7834 	/*
7835 	 * Increment counters
7836 	 */
7837 	pmap_resident_count_adj(pmap, 1);
7838 
7839 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7840 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
7841 	if ((m->oflags & VPO_UNMANAGED) == 0)
7842 		newpte |= PG_MANAGED;
7843 	if ((prot & VM_PROT_EXECUTE) == 0)
7844 		newpte |= pg_nx;
7845 	if (va < VM_MAXUSER_ADDRESS)
7846 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7847 	pte_store(pte, newpte);
7848 
7849 #if VM_NRESERVLEVEL > 0
7850 	/*
7851 	 * If both the PTP and the reservation are fully populated, then
7852 	 * attempt promotion.
7853 	 */
7854 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7855 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
7856 	    (m->flags & PG_FICTITIOUS) == 0 &&
7857 	    vm_reserv_level_iffullpop(m) == 0) {
7858 		if (pde == NULL)
7859 			pde = pmap_pde(pmap, va);
7860 
7861 		/*
7862 		 * If promotion succeeds, then the next call to this function
7863 		 * should not be given the unmapped PTP as a hint.
7864 		 */
7865 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7866 			mpte = NULL;
7867 	}
7868 #endif
7869 
7870 	return (mpte);
7871 }
7872 
7873 /*
7874  * Make a temporary mapping for a physical address.  This is only intended
7875  * to be used for panic dumps.
7876  */
7877 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7878 pmap_kenter_temporary(vm_paddr_t pa, int i)
7879 {
7880 	vm_offset_t va;
7881 
7882 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7883 	pmap_kenter(va, pa);
7884 	pmap_invlpg(kernel_pmap, va);
7885 	return ((void *)crashdumpmap);
7886 }
7887 
7888 /*
7889  * This code maps large physical mmap regions into the
7890  * processor address space.  Note that some shortcuts
7891  * are taken, but the code works.
7892  */
7893 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7894 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7895     vm_pindex_t pindex, vm_size_t size)
7896 {
7897 	pd_entry_t *pde;
7898 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7899 	vm_paddr_t pa, ptepa;
7900 	vm_page_t p, pdpg;
7901 	int pat_mode;
7902 
7903 	PG_A = pmap_accessed_bit(pmap);
7904 	PG_M = pmap_modified_bit(pmap);
7905 	PG_V = pmap_valid_bit(pmap);
7906 	PG_RW = pmap_rw_bit(pmap);
7907 
7908 	VM_OBJECT_ASSERT_WLOCKED(object);
7909 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7910 	    ("pmap_object_init_pt: non-device object"));
7911 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7912 		if (!pmap_ps_enabled(pmap))
7913 			return;
7914 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7915 			return;
7916 		p = vm_page_lookup(object, pindex);
7917 		KASSERT(vm_page_all_valid(p),
7918 		    ("pmap_object_init_pt: invalid page %p", p));
7919 		pat_mode = p->md.pat_mode;
7920 
7921 		/*
7922 		 * Abort the mapping if the first page is not physically
7923 		 * aligned to a 2MB page boundary.
7924 		 */
7925 		ptepa = VM_PAGE_TO_PHYS(p);
7926 		if (ptepa & (NBPDR - 1))
7927 			return;
7928 
7929 		/*
7930 		 * Skip the first page.  Abort the mapping if the rest of
7931 		 * the pages are not physically contiguous or have differing
7932 		 * memory attributes.
7933 		 */
7934 		p = TAILQ_NEXT(p, listq);
7935 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7936 		    pa += PAGE_SIZE) {
7937 			KASSERT(vm_page_all_valid(p),
7938 			    ("pmap_object_init_pt: invalid page %p", p));
7939 			if (pa != VM_PAGE_TO_PHYS(p) ||
7940 			    pat_mode != p->md.pat_mode)
7941 				return;
7942 			p = TAILQ_NEXT(p, listq);
7943 		}
7944 
7945 		/*
7946 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7947 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7948 		 * will not affect the termination of this loop.
7949 		 */
7950 		PMAP_LOCK(pmap);
7951 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7952 		    pa < ptepa + size; pa += NBPDR) {
7953 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7954 			if (pde == NULL) {
7955 				/*
7956 				 * The creation of mappings below is only an
7957 				 * optimization.  If a page directory page
7958 				 * cannot be allocated without blocking,
7959 				 * continue on to the next mapping rather than
7960 				 * blocking.
7961 				 */
7962 				addr += NBPDR;
7963 				continue;
7964 			}
7965 			if ((*pde & PG_V) == 0) {
7966 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7967 				    PG_U | PG_RW | PG_V);
7968 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7969 				counter_u64_add(pmap_pde_mappings, 1);
7970 			} else {
7971 				/* Continue on if the PDE is already valid. */
7972 				pdpg->ref_count--;
7973 				KASSERT(pdpg->ref_count > 0,
7974 				    ("pmap_object_init_pt: missing reference "
7975 				    "to page directory page, va: 0x%lx", addr));
7976 			}
7977 			addr += NBPDR;
7978 		}
7979 		PMAP_UNLOCK(pmap);
7980 	}
7981 }
7982 
7983 /*
7984  *	Clear the wired attribute from the mappings for the specified range of
7985  *	addresses in the given pmap.  Every valid mapping within that range
7986  *	must have the wired attribute set.  In contrast, invalid mappings
7987  *	cannot have the wired attribute set, so they are ignored.
7988  *
7989  *	The wired attribute of the page table entry is not a hardware
7990  *	feature, so there is no need to invalidate any TLB entries.
7991  *	Since pmap_demote_pde() for the wired entry must never fail,
7992  *	pmap_delayed_invl_start()/finish() calls around the
7993  *	function are not needed.
7994  */
7995 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7996 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7997 {
7998 	vm_offset_t va_next;
7999 	pml4_entry_t *pml4e;
8000 	pdp_entry_t *pdpe;
8001 	pd_entry_t *pde;
8002 	pt_entry_t *pte, PG_V, PG_G __diagused;
8003 
8004 	PG_V = pmap_valid_bit(pmap);
8005 	PG_G = pmap_global_bit(pmap);
8006 	PMAP_LOCK(pmap);
8007 	for (; sva < eva; sva = va_next) {
8008 		pml4e = pmap_pml4e(pmap, sva);
8009 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8010 			va_next = (sva + NBPML4) & ~PML4MASK;
8011 			if (va_next < sva)
8012 				va_next = eva;
8013 			continue;
8014 		}
8015 
8016 		va_next = (sva + NBPDP) & ~PDPMASK;
8017 		if (va_next < sva)
8018 			va_next = eva;
8019 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8020 		if ((*pdpe & PG_V) == 0)
8021 			continue;
8022 		if ((*pdpe & PG_PS) != 0) {
8023 			KASSERT(va_next <= eva,
8024 			    ("partial update of non-transparent 1G mapping "
8025 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8026 			    *pdpe, sva, eva, va_next));
8027 			MPASS(pmap != kernel_pmap); /* XXXKIB */
8028 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
8029 			atomic_clear_long(pdpe, PG_W);
8030 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
8031 			continue;
8032 		}
8033 
8034 		va_next = (sva + NBPDR) & ~PDRMASK;
8035 		if (va_next < sva)
8036 			va_next = eva;
8037 		pde = pmap_pdpe_to_pde(pdpe, sva);
8038 		if ((*pde & PG_V) == 0)
8039 			continue;
8040 		if ((*pde & PG_PS) != 0) {
8041 			if ((*pde & PG_W) == 0)
8042 				panic("pmap_unwire: pde %#jx is missing PG_W",
8043 				    (uintmax_t)*pde);
8044 
8045 			/*
8046 			 * Are we unwiring the entire large page?  If not,
8047 			 * demote the mapping and fall through.
8048 			 */
8049 			if (sva + NBPDR == va_next && eva >= va_next) {
8050 				atomic_clear_long(pde, PG_W);
8051 				pmap->pm_stats.wired_count -= NBPDR /
8052 				    PAGE_SIZE;
8053 				continue;
8054 			} else if (!pmap_demote_pde(pmap, pde, sva))
8055 				panic("pmap_unwire: demotion failed");
8056 		}
8057 		if (va_next > eva)
8058 			va_next = eva;
8059 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8060 		    sva += PAGE_SIZE) {
8061 			if ((*pte & PG_V) == 0)
8062 				continue;
8063 			if ((*pte & PG_W) == 0)
8064 				panic("pmap_unwire: pte %#jx is missing PG_W",
8065 				    (uintmax_t)*pte);
8066 
8067 			/*
8068 			 * PG_W must be cleared atomically.  Although the pmap
8069 			 * lock synchronizes access to PG_W, another processor
8070 			 * could be setting PG_M and/or PG_A concurrently.
8071 			 */
8072 			atomic_clear_long(pte, PG_W);
8073 			pmap->pm_stats.wired_count--;
8074 		}
8075 	}
8076 	PMAP_UNLOCK(pmap);
8077 }
8078 
8079 /*
8080  *	Copy the range specified by src_addr/len
8081  *	from the source map to the range dst_addr/len
8082  *	in the destination map.
8083  *
8084  *	This routine is only advisory and need not do anything.
8085  */
8086 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8087 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8088     vm_offset_t src_addr)
8089 {
8090 	struct rwlock *lock;
8091 	pml4_entry_t *pml4e;
8092 	pdp_entry_t *pdpe;
8093 	pd_entry_t *pde, srcptepaddr;
8094 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8095 	vm_offset_t addr, end_addr, va_next;
8096 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8097 
8098 	if (dst_addr != src_addr)
8099 		return;
8100 
8101 	if (dst_pmap->pm_type != src_pmap->pm_type)
8102 		return;
8103 
8104 	/*
8105 	 * EPT page table entries that require emulation of A/D bits are
8106 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8107 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8108 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8109 	 * implementations flag an EPT misconfiguration for exec-only
8110 	 * mappings we skip this function entirely for emulated pmaps.
8111 	 */
8112 	if (pmap_emulate_ad_bits(dst_pmap))
8113 		return;
8114 
8115 	end_addr = src_addr + len;
8116 	lock = NULL;
8117 	if (dst_pmap < src_pmap) {
8118 		PMAP_LOCK(dst_pmap);
8119 		PMAP_LOCK(src_pmap);
8120 	} else {
8121 		PMAP_LOCK(src_pmap);
8122 		PMAP_LOCK(dst_pmap);
8123 	}
8124 
8125 	PG_A = pmap_accessed_bit(dst_pmap);
8126 	PG_M = pmap_modified_bit(dst_pmap);
8127 	PG_V = pmap_valid_bit(dst_pmap);
8128 
8129 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8130 		KASSERT(addr < UPT_MIN_ADDRESS,
8131 		    ("pmap_copy: invalid to pmap_copy page tables"));
8132 
8133 		pml4e = pmap_pml4e(src_pmap, addr);
8134 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8135 			va_next = (addr + NBPML4) & ~PML4MASK;
8136 			if (va_next < addr)
8137 				va_next = end_addr;
8138 			continue;
8139 		}
8140 
8141 		va_next = (addr + NBPDP) & ~PDPMASK;
8142 		if (va_next < addr)
8143 			va_next = end_addr;
8144 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8145 		if ((*pdpe & PG_V) == 0)
8146 			continue;
8147 		if ((*pdpe & PG_PS) != 0) {
8148 			KASSERT(va_next <= end_addr,
8149 			    ("partial update of non-transparent 1G mapping "
8150 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8151 			    *pdpe, addr, end_addr, va_next));
8152 			MPASS((addr & PDPMASK) == 0);
8153 			MPASS((*pdpe & PG_MANAGED) == 0);
8154 			srcptepaddr = *pdpe;
8155 			pdpe = pmap_pdpe(dst_pmap, addr);
8156 			if (pdpe == NULL) {
8157 				if (pmap_allocpte_alloc(dst_pmap,
8158 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8159 				    NULL)
8160 					break;
8161 				pdpe = pmap_pdpe(dst_pmap, addr);
8162 			} else {
8163 				pml4e = pmap_pml4e(dst_pmap, addr);
8164 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8165 				dst_pdpg->ref_count++;
8166 			}
8167 			KASSERT(*pdpe == 0,
8168 			    ("1G mapping present in dst pmap "
8169 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8170 			    *pdpe, addr, end_addr, va_next));
8171 			*pdpe = srcptepaddr & ~PG_W;
8172 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8173 			continue;
8174 		}
8175 
8176 		va_next = (addr + NBPDR) & ~PDRMASK;
8177 		if (va_next < addr)
8178 			va_next = end_addr;
8179 
8180 		pde = pmap_pdpe_to_pde(pdpe, addr);
8181 		srcptepaddr = *pde;
8182 		if (srcptepaddr == 0)
8183 			continue;
8184 
8185 		if (srcptepaddr & PG_PS) {
8186 			/*
8187 			 * We can only virtual copy whole superpages.
8188 			 */
8189 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8190 				continue;
8191 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8192 			if (pde == NULL)
8193 				break;
8194 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8195 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8196 			    PMAP_ENTER_NORECLAIM, &lock))) {
8197 				/*
8198 				 * We leave the dirty bit unchanged because
8199 				 * managed read/write superpage mappings are
8200 				 * required to be dirty.  However, managed
8201 				 * superpage mappings are not required to
8202 				 * have their accessed bit set, so we clear
8203 				 * it because we don't know if this mapping
8204 				 * will be used.
8205 				 */
8206 				srcptepaddr &= ~PG_W;
8207 				if ((srcptepaddr & PG_MANAGED) != 0)
8208 					srcptepaddr &= ~PG_A;
8209 				*pde = srcptepaddr;
8210 				pmap_resident_count_adj(dst_pmap, NBPDR /
8211 				    PAGE_SIZE);
8212 				counter_u64_add(pmap_pde_mappings, 1);
8213 			} else
8214 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8215 			continue;
8216 		}
8217 
8218 		srcptepaddr &= PG_FRAME;
8219 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8220 		KASSERT(srcmpte->ref_count > 0,
8221 		    ("pmap_copy: source page table page is unused"));
8222 
8223 		if (va_next > end_addr)
8224 			va_next = end_addr;
8225 
8226 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8227 		src_pte = &src_pte[pmap_pte_index(addr)];
8228 		dstmpte = NULL;
8229 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8230 			ptetemp = *src_pte;
8231 
8232 			/*
8233 			 * We only virtual copy managed pages.
8234 			 */
8235 			if ((ptetemp & PG_MANAGED) == 0)
8236 				continue;
8237 
8238 			if (dstmpte != NULL) {
8239 				KASSERT(dstmpte->pindex ==
8240 				    pmap_pde_pindex(addr),
8241 				    ("dstmpte pindex/addr mismatch"));
8242 				dstmpte->ref_count++;
8243 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8244 			    NULL)) == NULL)
8245 				goto out;
8246 			dst_pte = (pt_entry_t *)
8247 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8248 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8249 			if (*dst_pte == 0 &&
8250 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8251 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8252 				/*
8253 				 * Clear the wired, modified, and accessed
8254 				 * (referenced) bits during the copy.
8255 				 */
8256 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8257 				pmap_resident_count_adj(dst_pmap, 1);
8258 			} else {
8259 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8260 				goto out;
8261 			}
8262 			/* Have we copied all of the valid mappings? */
8263 			if (dstmpte->ref_count >= srcmpte->ref_count)
8264 				break;
8265 		}
8266 	}
8267 out:
8268 	if (lock != NULL)
8269 		rw_wunlock(lock);
8270 	PMAP_UNLOCK(src_pmap);
8271 	PMAP_UNLOCK(dst_pmap);
8272 }
8273 
8274 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8275 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8276 {
8277 	int error;
8278 
8279 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8280 	    dst_pmap->pm_type != PT_X86 ||
8281 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8282 		return (0);
8283 	for (;;) {
8284 		if (dst_pmap < src_pmap) {
8285 			PMAP_LOCK(dst_pmap);
8286 			PMAP_LOCK(src_pmap);
8287 		} else {
8288 			PMAP_LOCK(src_pmap);
8289 			PMAP_LOCK(dst_pmap);
8290 		}
8291 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8292 		/* Clean up partial copy on failure due to no memory. */
8293 		if (error == ENOMEM)
8294 			pmap_pkru_deassign_all(dst_pmap);
8295 		PMAP_UNLOCK(src_pmap);
8296 		PMAP_UNLOCK(dst_pmap);
8297 		if (error != ENOMEM)
8298 			break;
8299 		vm_wait(NULL);
8300 	}
8301 	return (error);
8302 }
8303 
8304 /*
8305  * Zero the specified hardware page.
8306  */
8307 void
pmap_zero_page(vm_page_t m)8308 pmap_zero_page(vm_page_t m)
8309 {
8310 	vm_offset_t va;
8311 
8312 #ifdef TSLOG_PAGEZERO
8313 	TSENTER();
8314 #endif
8315 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8316 	pagezero((void *)va);
8317 #ifdef TSLOG_PAGEZERO
8318 	TSEXIT();
8319 #endif
8320 }
8321 
8322 /*
8323  * Zero an area within a single hardware page.  off and size must not
8324  * cover an area beyond a single hardware page.
8325  */
8326 void
pmap_zero_page_area(vm_page_t m,int off,int size)8327 pmap_zero_page_area(vm_page_t m, int off, int size)
8328 {
8329 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8330 
8331 	if (off == 0 && size == PAGE_SIZE)
8332 		pagezero((void *)va);
8333 	else
8334 		bzero((char *)va + off, size);
8335 }
8336 
8337 /*
8338  * Copy 1 specified hardware page to another.
8339  */
8340 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8341 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8342 {
8343 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8344 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8345 
8346 	pagecopy((void *)src, (void *)dst);
8347 }
8348 
8349 int unmapped_buf_allowed = 1;
8350 
8351 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8352 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8353     vm_offset_t b_offset, int xfersize)
8354 {
8355 	void *a_cp, *b_cp;
8356 	vm_page_t pages[2];
8357 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8358 	int cnt;
8359 	bool mapped;
8360 
8361 	while (xfersize > 0) {
8362 		a_pg_offset = a_offset & PAGE_MASK;
8363 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8364 		b_pg_offset = b_offset & PAGE_MASK;
8365 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8366 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8367 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8368 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8369 		a_cp = (char *)vaddr[0] + a_pg_offset;
8370 		b_cp = (char *)vaddr[1] + b_pg_offset;
8371 		bcopy(a_cp, b_cp, cnt);
8372 		if (__predict_false(mapped))
8373 			pmap_unmap_io_transient(pages, vaddr, 2, false);
8374 		a_offset += cnt;
8375 		b_offset += cnt;
8376 		xfersize -= cnt;
8377 	}
8378 }
8379 
8380 /*
8381  * Returns true if the pmap's pv is one of the first
8382  * 16 pvs linked to from this page.  This count may
8383  * be changed upwards or downwards in the future; it
8384  * is only necessary that true be returned for a small
8385  * subset of pmaps for proper page aging.
8386  */
8387 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8388 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8389 {
8390 	struct md_page *pvh;
8391 	struct rwlock *lock;
8392 	pv_entry_t pv;
8393 	int loops = 0;
8394 	bool rv;
8395 
8396 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8397 	    ("pmap_page_exists_quick: page %p is not managed", m));
8398 	rv = false;
8399 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8400 	rw_rlock(lock);
8401 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8402 		if (PV_PMAP(pv) == pmap) {
8403 			rv = true;
8404 			break;
8405 		}
8406 		loops++;
8407 		if (loops >= 16)
8408 			break;
8409 	}
8410 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8411 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8412 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8413 			if (PV_PMAP(pv) == pmap) {
8414 				rv = true;
8415 				break;
8416 			}
8417 			loops++;
8418 			if (loops >= 16)
8419 				break;
8420 		}
8421 	}
8422 	rw_runlock(lock);
8423 	return (rv);
8424 }
8425 
8426 /*
8427  *	pmap_page_wired_mappings:
8428  *
8429  *	Return the number of managed mappings to the given physical page
8430  *	that are wired.
8431  */
8432 int
pmap_page_wired_mappings(vm_page_t m)8433 pmap_page_wired_mappings(vm_page_t m)
8434 {
8435 	struct rwlock *lock;
8436 	struct md_page *pvh;
8437 	pmap_t pmap;
8438 	pt_entry_t *pte;
8439 	pv_entry_t pv;
8440 	int count, md_gen, pvh_gen;
8441 
8442 	if ((m->oflags & VPO_UNMANAGED) != 0)
8443 		return (0);
8444 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8445 	rw_rlock(lock);
8446 restart:
8447 	count = 0;
8448 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8449 		pmap = PV_PMAP(pv);
8450 		if (!PMAP_TRYLOCK(pmap)) {
8451 			md_gen = m->md.pv_gen;
8452 			rw_runlock(lock);
8453 			PMAP_LOCK(pmap);
8454 			rw_rlock(lock);
8455 			if (md_gen != m->md.pv_gen) {
8456 				PMAP_UNLOCK(pmap);
8457 				goto restart;
8458 			}
8459 		}
8460 		pte = pmap_pte(pmap, pv->pv_va);
8461 		if ((*pte & PG_W) != 0)
8462 			count++;
8463 		PMAP_UNLOCK(pmap);
8464 	}
8465 	if ((m->flags & PG_FICTITIOUS) == 0) {
8466 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8467 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8468 			pmap = PV_PMAP(pv);
8469 			if (!PMAP_TRYLOCK(pmap)) {
8470 				md_gen = m->md.pv_gen;
8471 				pvh_gen = pvh->pv_gen;
8472 				rw_runlock(lock);
8473 				PMAP_LOCK(pmap);
8474 				rw_rlock(lock);
8475 				if (md_gen != m->md.pv_gen ||
8476 				    pvh_gen != pvh->pv_gen) {
8477 					PMAP_UNLOCK(pmap);
8478 					goto restart;
8479 				}
8480 			}
8481 			pte = pmap_pde(pmap, pv->pv_va);
8482 			if ((*pte & PG_W) != 0)
8483 				count++;
8484 			PMAP_UNLOCK(pmap);
8485 		}
8486 	}
8487 	rw_runlock(lock);
8488 	return (count);
8489 }
8490 
8491 /*
8492  * Returns true if the given page is mapped individually or as part of
8493  * a 2mpage.  Otherwise, returns false.
8494  */
8495 bool
pmap_page_is_mapped(vm_page_t m)8496 pmap_page_is_mapped(vm_page_t m)
8497 {
8498 	struct rwlock *lock;
8499 	bool rv;
8500 
8501 	if ((m->oflags & VPO_UNMANAGED) != 0)
8502 		return (false);
8503 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8504 	rw_rlock(lock);
8505 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8506 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8507 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8508 	rw_runlock(lock);
8509 	return (rv);
8510 }
8511 
8512 /*
8513  * Destroy all managed, non-wired mappings in the given user-space
8514  * pmap.  This pmap cannot be active on any processor besides the
8515  * caller.
8516  *
8517  * This function cannot be applied to the kernel pmap.  Moreover, it
8518  * is not intended for general use.  It is only to be used during
8519  * process termination.  Consequently, it can be implemented in ways
8520  * that make it faster than pmap_remove().  First, it can more quickly
8521  * destroy mappings by iterating over the pmap's collection of PV
8522  * entries, rather than searching the page table.  Second, it doesn't
8523  * have to test and clear the page table entries atomically, because
8524  * no processor is currently accessing the user address space.  In
8525  * particular, a page table entry's dirty bit won't change state once
8526  * this function starts.
8527  *
8528  * Although this function destroys all of the pmap's managed,
8529  * non-wired mappings, it can delay and batch the invalidation of TLB
8530  * entries without calling pmap_delayed_invl_start() and
8531  * pmap_delayed_invl_finish().  Because the pmap is not active on
8532  * any other processor, none of these TLB entries will ever be used
8533  * before their eventual invalidation.  Consequently, there is no need
8534  * for either pmap_remove_all() or pmap_remove_write() to wait for
8535  * that eventual TLB invalidation.
8536  */
8537 void
pmap_remove_pages(pmap_t pmap)8538 pmap_remove_pages(pmap_t pmap)
8539 {
8540 	pd_entry_t ptepde;
8541 	pt_entry_t *pte, tpte;
8542 	pt_entry_t PG_M, PG_RW, PG_V;
8543 	struct spglist free;
8544 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8545 	vm_page_t m, mpte, mt;
8546 	pv_entry_t pv;
8547 	struct md_page *pvh;
8548 	struct pv_chunk *pc, *npc;
8549 	struct rwlock *lock;
8550 	int64_t bit;
8551 	uint64_t inuse, bitmask;
8552 	int allfree, field, i, idx;
8553 #ifdef PV_STATS
8554 	int freed;
8555 #endif
8556 	bool superpage;
8557 	vm_paddr_t pa;
8558 
8559 	/*
8560 	 * Assert that the given pmap is only active on the current
8561 	 * CPU.  Unfortunately, we cannot block another CPU from
8562 	 * activating the pmap while this function is executing.
8563 	 */
8564 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8565 #ifdef INVARIANTS
8566 	{
8567 		cpuset_t other_cpus;
8568 
8569 		other_cpus = all_cpus;
8570 		critical_enter();
8571 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8572 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8573 		critical_exit();
8574 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8575 	}
8576 #endif
8577 
8578 	lock = NULL;
8579 	PG_M = pmap_modified_bit(pmap);
8580 	PG_V = pmap_valid_bit(pmap);
8581 	PG_RW = pmap_rw_bit(pmap);
8582 
8583 	for (i = 0; i < PMAP_MEMDOM; i++)
8584 		TAILQ_INIT(&free_chunks[i]);
8585 	SLIST_INIT(&free);
8586 	PMAP_LOCK(pmap);
8587 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8588 		allfree = 1;
8589 #ifdef PV_STATS
8590 		freed = 0;
8591 #endif
8592 		for (field = 0; field < _NPCM; field++) {
8593 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8594 			while (inuse != 0) {
8595 				bit = bsfq(inuse);
8596 				bitmask = 1UL << bit;
8597 				idx = field * 64 + bit;
8598 				pv = &pc->pc_pventry[idx];
8599 				inuse &= ~bitmask;
8600 
8601 				pte = pmap_pdpe(pmap, pv->pv_va);
8602 				ptepde = *pte;
8603 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8604 				tpte = *pte;
8605 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8606 					superpage = false;
8607 					ptepde = tpte;
8608 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8609 					    PG_FRAME);
8610 					pte = &pte[pmap_pte_index(pv->pv_va)];
8611 					tpte = *pte;
8612 				} else {
8613 					/*
8614 					 * Keep track whether 'tpte' is a
8615 					 * superpage explicitly instead of
8616 					 * relying on PG_PS being set.
8617 					 *
8618 					 * This is because PG_PS is numerically
8619 					 * identical to PG_PTE_PAT and thus a
8620 					 * regular page could be mistaken for
8621 					 * a superpage.
8622 					 */
8623 					superpage = true;
8624 				}
8625 
8626 				if ((tpte & PG_V) == 0) {
8627 					panic("bad pte va %lx pte %lx",
8628 					    pv->pv_va, tpte);
8629 				}
8630 
8631 /*
8632  * We cannot remove wired pages from a process' mapping at this time
8633  */
8634 				if (tpte & PG_W) {
8635 					allfree = 0;
8636 					continue;
8637 				}
8638 
8639 				/* Mark free */
8640 				pc->pc_map[field] |= bitmask;
8641 
8642 				/*
8643 				 * Because this pmap is not active on other
8644 				 * processors, the dirty bit cannot have
8645 				 * changed state since we last loaded pte.
8646 				 */
8647 				pte_clear(pte);
8648 
8649 				if (superpage)
8650 					pa = tpte & PG_PS_FRAME;
8651 				else
8652 					pa = tpte & PG_FRAME;
8653 
8654 				m = PHYS_TO_VM_PAGE(pa);
8655 				KASSERT(m->phys_addr == pa,
8656 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8657 				    m, (uintmax_t)m->phys_addr,
8658 				    (uintmax_t)tpte));
8659 
8660 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8661 				    m < &vm_page_array[vm_page_array_size],
8662 				    ("pmap_remove_pages: bad tpte %#jx",
8663 				    (uintmax_t)tpte));
8664 
8665 				/*
8666 				 * Update the vm_page_t clean/reference bits.
8667 				 */
8668 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8669 					if (superpage) {
8670 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8671 							vm_page_dirty(mt);
8672 					} else
8673 						vm_page_dirty(m);
8674 				}
8675 
8676 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8677 
8678 				if (superpage) {
8679 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8680 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8681 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8682 					pvh->pv_gen++;
8683 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8684 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8685 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8686 							    TAILQ_EMPTY(&mt->md.pv_list))
8687 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8688 					}
8689 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8690 					if (mpte != NULL) {
8691 						KASSERT(vm_page_any_valid(mpte),
8692 						    ("pmap_remove_pages: pte page not promoted"));
8693 						pmap_pt_page_count_adj(pmap, -1);
8694 						KASSERT(mpte->ref_count == NPTEPG,
8695 						    ("pmap_remove_pages: pte page reference count error"));
8696 						mpte->ref_count = 0;
8697 						pmap_add_delayed_free_list(mpte, &free, false);
8698 					}
8699 				} else {
8700 					pmap_resident_count_adj(pmap, -1);
8701 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8702 					m->md.pv_gen++;
8703 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8704 					    TAILQ_EMPTY(&m->md.pv_list) &&
8705 					    (m->flags & PG_FICTITIOUS) == 0) {
8706 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8707 						if (TAILQ_EMPTY(&pvh->pv_list))
8708 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8709 					}
8710 				}
8711 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8712 #ifdef PV_STATS
8713 				freed++;
8714 #endif
8715 			}
8716 		}
8717 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8718 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8719 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8720 		if (allfree) {
8721 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8722 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8723 		}
8724 	}
8725 	if (lock != NULL)
8726 		rw_wunlock(lock);
8727 	pmap_invalidate_all(pmap);
8728 	pmap_pkru_deassign_all(pmap);
8729 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8730 	PMAP_UNLOCK(pmap);
8731 	vm_page_free_pages_toq(&free, true);
8732 }
8733 
8734 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8735 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8736 {
8737 	struct rwlock *lock;
8738 	pv_entry_t pv;
8739 	struct md_page *pvh;
8740 	pt_entry_t *pte, mask;
8741 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8742 	pmap_t pmap;
8743 	int md_gen, pvh_gen;
8744 	bool rv;
8745 
8746 	rv = false;
8747 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8748 	rw_rlock(lock);
8749 restart:
8750 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8751 		pmap = PV_PMAP(pv);
8752 		if (!PMAP_TRYLOCK(pmap)) {
8753 			md_gen = m->md.pv_gen;
8754 			rw_runlock(lock);
8755 			PMAP_LOCK(pmap);
8756 			rw_rlock(lock);
8757 			if (md_gen != m->md.pv_gen) {
8758 				PMAP_UNLOCK(pmap);
8759 				goto restart;
8760 			}
8761 		}
8762 		pte = pmap_pte(pmap, pv->pv_va);
8763 		mask = 0;
8764 		if (modified) {
8765 			PG_M = pmap_modified_bit(pmap);
8766 			PG_RW = pmap_rw_bit(pmap);
8767 			mask |= PG_RW | PG_M;
8768 		}
8769 		if (accessed) {
8770 			PG_A = pmap_accessed_bit(pmap);
8771 			PG_V = pmap_valid_bit(pmap);
8772 			mask |= PG_V | PG_A;
8773 		}
8774 		rv = (*pte & mask) == mask;
8775 		PMAP_UNLOCK(pmap);
8776 		if (rv)
8777 			goto out;
8778 	}
8779 	if ((m->flags & PG_FICTITIOUS) == 0) {
8780 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8781 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8782 			pmap = PV_PMAP(pv);
8783 			if (!PMAP_TRYLOCK(pmap)) {
8784 				md_gen = m->md.pv_gen;
8785 				pvh_gen = pvh->pv_gen;
8786 				rw_runlock(lock);
8787 				PMAP_LOCK(pmap);
8788 				rw_rlock(lock);
8789 				if (md_gen != m->md.pv_gen ||
8790 				    pvh_gen != pvh->pv_gen) {
8791 					PMAP_UNLOCK(pmap);
8792 					goto restart;
8793 				}
8794 			}
8795 			pte = pmap_pde(pmap, pv->pv_va);
8796 			mask = 0;
8797 			if (modified) {
8798 				PG_M = pmap_modified_bit(pmap);
8799 				PG_RW = pmap_rw_bit(pmap);
8800 				mask |= PG_RW | PG_M;
8801 			}
8802 			if (accessed) {
8803 				PG_A = pmap_accessed_bit(pmap);
8804 				PG_V = pmap_valid_bit(pmap);
8805 				mask |= PG_V | PG_A;
8806 			}
8807 			rv = (*pte & mask) == mask;
8808 			PMAP_UNLOCK(pmap);
8809 			if (rv)
8810 				goto out;
8811 		}
8812 	}
8813 out:
8814 	rw_runlock(lock);
8815 	return (rv);
8816 }
8817 
8818 /*
8819  *	pmap_is_modified:
8820  *
8821  *	Return whether or not the specified physical page was modified
8822  *	in any physical maps.
8823  */
8824 bool
pmap_is_modified(vm_page_t m)8825 pmap_is_modified(vm_page_t m)
8826 {
8827 
8828 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8829 	    ("pmap_is_modified: page %p is not managed", m));
8830 
8831 	/*
8832 	 * If the page is not busied then this check is racy.
8833 	 */
8834 	if (!pmap_page_is_write_mapped(m))
8835 		return (false);
8836 	return (pmap_page_test_mappings(m, false, true));
8837 }
8838 
8839 /*
8840  *	pmap_is_prefaultable:
8841  *
8842  *	Return whether or not the specified virtual address is eligible
8843  *	for prefault.
8844  */
8845 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8846 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8847 {
8848 	pd_entry_t *pde;
8849 	pt_entry_t *pte, PG_V;
8850 	bool rv;
8851 
8852 	PG_V = pmap_valid_bit(pmap);
8853 
8854 	/*
8855 	 * Return true if and only if the PTE for the specified virtual
8856 	 * address is allocated but invalid.
8857 	 */
8858 	rv = false;
8859 	PMAP_LOCK(pmap);
8860 	pde = pmap_pde(pmap, addr);
8861 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8862 		pte = pmap_pde_to_pte(pde, addr);
8863 		rv = (*pte & PG_V) == 0;
8864 	}
8865 	PMAP_UNLOCK(pmap);
8866 	return (rv);
8867 }
8868 
8869 /*
8870  *	pmap_is_referenced:
8871  *
8872  *	Return whether or not the specified physical page was referenced
8873  *	in any physical maps.
8874  */
8875 bool
pmap_is_referenced(vm_page_t m)8876 pmap_is_referenced(vm_page_t m)
8877 {
8878 
8879 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8880 	    ("pmap_is_referenced: page %p is not managed", m));
8881 	return (pmap_page_test_mappings(m, true, false));
8882 }
8883 
8884 /*
8885  * Clear the write and modified bits in each of the given page's mappings.
8886  */
8887 void
pmap_remove_write(vm_page_t m)8888 pmap_remove_write(vm_page_t m)
8889 {
8890 	struct md_page *pvh;
8891 	pmap_t pmap;
8892 	struct rwlock *lock;
8893 	pv_entry_t next_pv, pv;
8894 	pd_entry_t *pde;
8895 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8896 	vm_offset_t va;
8897 	int pvh_gen, md_gen;
8898 
8899 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8900 	    ("pmap_remove_write: page %p is not managed", m));
8901 
8902 	vm_page_assert_busied(m);
8903 	if (!pmap_page_is_write_mapped(m))
8904 		return;
8905 
8906 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8907 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8908 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8909 	rw_wlock(lock);
8910 retry:
8911 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8912 		pmap = PV_PMAP(pv);
8913 		if (!PMAP_TRYLOCK(pmap)) {
8914 			pvh_gen = pvh->pv_gen;
8915 			rw_wunlock(lock);
8916 			PMAP_LOCK(pmap);
8917 			rw_wlock(lock);
8918 			if (pvh_gen != pvh->pv_gen) {
8919 				PMAP_UNLOCK(pmap);
8920 				goto retry;
8921 			}
8922 		}
8923 		PG_RW = pmap_rw_bit(pmap);
8924 		va = pv->pv_va;
8925 		pde = pmap_pde(pmap, va);
8926 		if ((*pde & PG_RW) != 0)
8927 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8928 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8929 		    ("inconsistent pv lock %p %p for page %p",
8930 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8931 		PMAP_UNLOCK(pmap);
8932 	}
8933 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8934 		pmap = PV_PMAP(pv);
8935 		if (!PMAP_TRYLOCK(pmap)) {
8936 			pvh_gen = pvh->pv_gen;
8937 			md_gen = m->md.pv_gen;
8938 			rw_wunlock(lock);
8939 			PMAP_LOCK(pmap);
8940 			rw_wlock(lock);
8941 			if (pvh_gen != pvh->pv_gen ||
8942 			    md_gen != m->md.pv_gen) {
8943 				PMAP_UNLOCK(pmap);
8944 				goto retry;
8945 			}
8946 		}
8947 		PG_M = pmap_modified_bit(pmap);
8948 		PG_RW = pmap_rw_bit(pmap);
8949 		pde = pmap_pde(pmap, pv->pv_va);
8950 		KASSERT((*pde & PG_PS) == 0,
8951 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8952 		    m));
8953 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8954 		oldpte = *pte;
8955 		if (oldpte & PG_RW) {
8956 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8957 			    ~(PG_RW | PG_M)))
8958 				cpu_spinwait();
8959 			if ((oldpte & PG_M) != 0)
8960 				vm_page_dirty(m);
8961 			pmap_invalidate_page(pmap, pv->pv_va);
8962 		}
8963 		PMAP_UNLOCK(pmap);
8964 	}
8965 	rw_wunlock(lock);
8966 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8967 	pmap_delayed_invl_wait(m);
8968 }
8969 
8970 /*
8971  *	pmap_ts_referenced:
8972  *
8973  *	Return a count of reference bits for a page, clearing those bits.
8974  *	It is not necessary for every reference bit to be cleared, but it
8975  *	is necessary that 0 only be returned when there are truly no
8976  *	reference bits set.
8977  *
8978  *	As an optimization, update the page's dirty field if a modified bit is
8979  *	found while counting reference bits.  This opportunistic update can be
8980  *	performed at low cost and can eliminate the need for some future calls
8981  *	to pmap_is_modified().  However, since this function stops after
8982  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8983  *	dirty pages.  Those dirty pages will only be detected by a future call
8984  *	to pmap_is_modified().
8985  *
8986  *	A DI block is not needed within this function, because
8987  *	invalidations are performed before the PV list lock is
8988  *	released.
8989  */
8990 int
pmap_ts_referenced(vm_page_t m)8991 pmap_ts_referenced(vm_page_t m)
8992 {
8993 	struct md_page *pvh;
8994 	pv_entry_t pv, pvf;
8995 	pmap_t pmap;
8996 	struct rwlock *lock;
8997 	pd_entry_t oldpde, *pde;
8998 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8999 	vm_offset_t va;
9000 	vm_paddr_t pa;
9001 	int cleared, md_gen, not_cleared, pvh_gen;
9002 	struct spglist free;
9003 	bool demoted;
9004 
9005 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9006 	    ("pmap_ts_referenced: page %p is not managed", m));
9007 	SLIST_INIT(&free);
9008 	cleared = 0;
9009 	pa = VM_PAGE_TO_PHYS(m);
9010 	lock = PHYS_TO_PV_LIST_LOCK(pa);
9011 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
9012 	rw_wlock(lock);
9013 retry:
9014 	not_cleared = 0;
9015 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
9016 		goto small_mappings;
9017 	pv = pvf;
9018 	do {
9019 		if (pvf == NULL)
9020 			pvf = pv;
9021 		pmap = PV_PMAP(pv);
9022 		if (!PMAP_TRYLOCK(pmap)) {
9023 			pvh_gen = pvh->pv_gen;
9024 			rw_wunlock(lock);
9025 			PMAP_LOCK(pmap);
9026 			rw_wlock(lock);
9027 			if (pvh_gen != pvh->pv_gen) {
9028 				PMAP_UNLOCK(pmap);
9029 				goto retry;
9030 			}
9031 		}
9032 		PG_A = pmap_accessed_bit(pmap);
9033 		PG_M = pmap_modified_bit(pmap);
9034 		PG_RW = pmap_rw_bit(pmap);
9035 		va = pv->pv_va;
9036 		pde = pmap_pde(pmap, pv->pv_va);
9037 		oldpde = *pde;
9038 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9039 			/*
9040 			 * Although "oldpde" is mapping a 2MB page, because
9041 			 * this function is called at a 4KB page granularity,
9042 			 * we only update the 4KB page under test.
9043 			 */
9044 			vm_page_dirty(m);
9045 		}
9046 		if ((oldpde & PG_A) != 0) {
9047 			/*
9048 			 * Since this reference bit is shared by 512 4KB
9049 			 * pages, it should not be cleared every time it is
9050 			 * tested.  Apply a simple "hash" function on the
9051 			 * physical page number, the virtual superpage number,
9052 			 * and the pmap address to select one 4KB page out of
9053 			 * the 512 on which testing the reference bit will
9054 			 * result in clearing that reference bit.  This
9055 			 * function is designed to avoid the selection of the
9056 			 * same 4KB page for every 2MB page mapping.
9057 			 *
9058 			 * On demotion, a mapping that hasn't been referenced
9059 			 * is simply destroyed.  To avoid the possibility of a
9060 			 * subsequent page fault on a demoted wired mapping,
9061 			 * always leave its reference bit set.  Moreover,
9062 			 * since the superpage is wired, the current state of
9063 			 * its reference bit won't affect page replacement.
9064 			 */
9065 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9066 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9067 			    (oldpde & PG_W) == 0) {
9068 				if (safe_to_clear_referenced(pmap, oldpde)) {
9069 					atomic_clear_long(pde, PG_A);
9070 					pmap_invalidate_page(pmap, pv->pv_va);
9071 					demoted = false;
9072 				} else if (pmap_demote_pde_locked(pmap, pde,
9073 				    pv->pv_va, &lock)) {
9074 					/*
9075 					 * Remove the mapping to a single page
9076 					 * so that a subsequent access may
9077 					 * repromote.  Since the underlying
9078 					 * page table page is fully populated,
9079 					 * this removal never frees a page
9080 					 * table page.
9081 					 */
9082 					demoted = true;
9083 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9084 					    PG_PS_FRAME);
9085 					pte = pmap_pde_to_pte(pde, va);
9086 					pmap_remove_pte(pmap, pte, va, *pde,
9087 					    NULL, &lock);
9088 					pmap_invalidate_page(pmap, va);
9089 				} else
9090 					demoted = true;
9091 
9092 				if (demoted) {
9093 					/*
9094 					 * The superpage mapping was removed
9095 					 * entirely and therefore 'pv' is no
9096 					 * longer valid.
9097 					 */
9098 					if (pvf == pv)
9099 						pvf = NULL;
9100 					pv = NULL;
9101 				}
9102 				cleared++;
9103 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9104 				    ("inconsistent pv lock %p %p for page %p",
9105 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9106 			} else
9107 				not_cleared++;
9108 		}
9109 		PMAP_UNLOCK(pmap);
9110 		/* Rotate the PV list if it has more than one entry. */
9111 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9112 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9113 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9114 			pvh->pv_gen++;
9115 		}
9116 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9117 			goto out;
9118 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9119 small_mappings:
9120 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9121 		goto out;
9122 	pv = pvf;
9123 	do {
9124 		if (pvf == NULL)
9125 			pvf = pv;
9126 		pmap = PV_PMAP(pv);
9127 		if (!PMAP_TRYLOCK(pmap)) {
9128 			pvh_gen = pvh->pv_gen;
9129 			md_gen = m->md.pv_gen;
9130 			rw_wunlock(lock);
9131 			PMAP_LOCK(pmap);
9132 			rw_wlock(lock);
9133 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9134 				PMAP_UNLOCK(pmap);
9135 				goto retry;
9136 			}
9137 		}
9138 		PG_A = pmap_accessed_bit(pmap);
9139 		PG_M = pmap_modified_bit(pmap);
9140 		PG_RW = pmap_rw_bit(pmap);
9141 		pde = pmap_pde(pmap, pv->pv_va);
9142 		KASSERT((*pde & PG_PS) == 0,
9143 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9144 		    m));
9145 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9146 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9147 			vm_page_dirty(m);
9148 		if ((*pte & PG_A) != 0) {
9149 			if (safe_to_clear_referenced(pmap, *pte)) {
9150 				atomic_clear_long(pte, PG_A);
9151 				pmap_invalidate_page(pmap, pv->pv_va);
9152 				cleared++;
9153 			} else if ((*pte & PG_W) == 0) {
9154 				/*
9155 				 * Wired pages cannot be paged out so
9156 				 * doing accessed bit emulation for
9157 				 * them is wasted effort. We do the
9158 				 * hard work for unwired pages only.
9159 				 */
9160 				pmap_remove_pte(pmap, pte, pv->pv_va,
9161 				    *pde, &free, &lock);
9162 				pmap_invalidate_page(pmap, pv->pv_va);
9163 				cleared++;
9164 				if (pvf == pv)
9165 					pvf = NULL;
9166 				pv = NULL;
9167 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9168 				    ("inconsistent pv lock %p %p for page %p",
9169 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9170 			} else
9171 				not_cleared++;
9172 		}
9173 		PMAP_UNLOCK(pmap);
9174 		/* Rotate the PV list if it has more than one entry. */
9175 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9176 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9177 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9178 			m->md.pv_gen++;
9179 		}
9180 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9181 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9182 out:
9183 	rw_wunlock(lock);
9184 	vm_page_free_pages_toq(&free, true);
9185 	return (cleared + not_cleared);
9186 }
9187 
9188 /*
9189  *	Apply the given advice to the specified range of addresses within the
9190  *	given pmap.  Depending on the advice, clear the referenced and/or
9191  *	modified flags in each mapping and set the mapped page's dirty field.
9192  */
9193 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9194 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9195 {
9196 	struct rwlock *lock;
9197 	pml4_entry_t *pml4e;
9198 	pdp_entry_t *pdpe;
9199 	pd_entry_t oldpde, *pde;
9200 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9201 	vm_offset_t va, va_next;
9202 	vm_page_t m;
9203 	bool anychanged;
9204 
9205 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9206 		return;
9207 
9208 	/*
9209 	 * A/D bit emulation requires an alternate code path when clearing
9210 	 * the modified and accessed bits below. Since this function is
9211 	 * advisory in nature we skip it entirely for pmaps that require
9212 	 * A/D bit emulation.
9213 	 */
9214 	if (pmap_emulate_ad_bits(pmap))
9215 		return;
9216 
9217 	PG_A = pmap_accessed_bit(pmap);
9218 	PG_G = pmap_global_bit(pmap);
9219 	PG_M = pmap_modified_bit(pmap);
9220 	PG_V = pmap_valid_bit(pmap);
9221 	PG_RW = pmap_rw_bit(pmap);
9222 	anychanged = false;
9223 	pmap_delayed_invl_start();
9224 	PMAP_LOCK(pmap);
9225 	for (; sva < eva; sva = va_next) {
9226 		pml4e = pmap_pml4e(pmap, sva);
9227 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9228 			va_next = (sva + NBPML4) & ~PML4MASK;
9229 			if (va_next < sva)
9230 				va_next = eva;
9231 			continue;
9232 		}
9233 
9234 		va_next = (sva + NBPDP) & ~PDPMASK;
9235 		if (va_next < sva)
9236 			va_next = eva;
9237 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9238 		if ((*pdpe & PG_V) == 0)
9239 			continue;
9240 		if ((*pdpe & PG_PS) != 0)
9241 			continue;
9242 
9243 		va_next = (sva + NBPDR) & ~PDRMASK;
9244 		if (va_next < sva)
9245 			va_next = eva;
9246 		pde = pmap_pdpe_to_pde(pdpe, sva);
9247 		oldpde = *pde;
9248 		if ((oldpde & PG_V) == 0)
9249 			continue;
9250 		else if ((oldpde & PG_PS) != 0) {
9251 			if ((oldpde & PG_MANAGED) == 0)
9252 				continue;
9253 			lock = NULL;
9254 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9255 				if (lock != NULL)
9256 					rw_wunlock(lock);
9257 
9258 				/*
9259 				 * The large page mapping was destroyed.
9260 				 */
9261 				continue;
9262 			}
9263 
9264 			/*
9265 			 * Unless the page mappings are wired, remove the
9266 			 * mapping to a single page so that a subsequent
9267 			 * access may repromote.  Choosing the last page
9268 			 * within the address range [sva, min(va_next, eva))
9269 			 * generally results in more repromotions.  Since the
9270 			 * underlying page table page is fully populated, this
9271 			 * removal never frees a page table page.
9272 			 */
9273 			if ((oldpde & PG_W) == 0) {
9274 				va = eva;
9275 				if (va > va_next)
9276 					va = va_next;
9277 				va -= PAGE_SIZE;
9278 				KASSERT(va >= sva,
9279 				    ("pmap_advise: no address gap"));
9280 				pte = pmap_pde_to_pte(pde, va);
9281 				KASSERT((*pte & PG_V) != 0,
9282 				    ("pmap_advise: invalid PTE"));
9283 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9284 				    &lock);
9285 				anychanged = true;
9286 			}
9287 			if (lock != NULL)
9288 				rw_wunlock(lock);
9289 		}
9290 		if (va_next > eva)
9291 			va_next = eva;
9292 		va = va_next;
9293 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9294 		    sva += PAGE_SIZE) {
9295 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9296 				goto maybe_invlrng;
9297 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9298 				if (advice == MADV_DONTNEED) {
9299 					/*
9300 					 * Future calls to pmap_is_modified()
9301 					 * can be avoided by making the page
9302 					 * dirty now.
9303 					 */
9304 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9305 					vm_page_dirty(m);
9306 				}
9307 				atomic_clear_long(pte, PG_M | PG_A);
9308 			} else if ((*pte & PG_A) != 0)
9309 				atomic_clear_long(pte, PG_A);
9310 			else
9311 				goto maybe_invlrng;
9312 
9313 			if ((*pte & PG_G) != 0) {
9314 				if (va == va_next)
9315 					va = sva;
9316 			} else
9317 				anychanged = true;
9318 			continue;
9319 maybe_invlrng:
9320 			if (va != va_next) {
9321 				pmap_invalidate_range(pmap, va, sva);
9322 				va = va_next;
9323 			}
9324 		}
9325 		if (va != va_next)
9326 			pmap_invalidate_range(pmap, va, sva);
9327 	}
9328 	if (anychanged)
9329 		pmap_invalidate_all(pmap);
9330 	PMAP_UNLOCK(pmap);
9331 	pmap_delayed_invl_finish();
9332 }
9333 
9334 /*
9335  *	Clear the modify bits on the specified physical page.
9336  */
9337 void
pmap_clear_modify(vm_page_t m)9338 pmap_clear_modify(vm_page_t m)
9339 {
9340 	struct md_page *pvh;
9341 	pmap_t pmap;
9342 	pv_entry_t next_pv, pv;
9343 	pd_entry_t oldpde, *pde;
9344 	pt_entry_t *pte, PG_M, PG_RW;
9345 	struct rwlock *lock;
9346 	vm_offset_t va;
9347 	int md_gen, pvh_gen;
9348 
9349 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9350 	    ("pmap_clear_modify: page %p is not managed", m));
9351 	vm_page_assert_busied(m);
9352 
9353 	if (!pmap_page_is_write_mapped(m))
9354 		return;
9355 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9356 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9357 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9358 	rw_wlock(lock);
9359 restart:
9360 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9361 		pmap = PV_PMAP(pv);
9362 		if (!PMAP_TRYLOCK(pmap)) {
9363 			pvh_gen = pvh->pv_gen;
9364 			rw_wunlock(lock);
9365 			PMAP_LOCK(pmap);
9366 			rw_wlock(lock);
9367 			if (pvh_gen != pvh->pv_gen) {
9368 				PMAP_UNLOCK(pmap);
9369 				goto restart;
9370 			}
9371 		}
9372 		PG_M = pmap_modified_bit(pmap);
9373 		PG_RW = pmap_rw_bit(pmap);
9374 		va = pv->pv_va;
9375 		pde = pmap_pde(pmap, va);
9376 		oldpde = *pde;
9377 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9378 		if ((oldpde & PG_RW) != 0 &&
9379 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9380 		    (oldpde & PG_W) == 0) {
9381 			/*
9382 			 * Write protect the mapping to a single page so that
9383 			 * a subsequent write access may repromote.
9384 			 */
9385 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9386 			pte = pmap_pde_to_pte(pde, va);
9387 			atomic_clear_long(pte, PG_M | PG_RW);
9388 			vm_page_dirty(m);
9389 			pmap_invalidate_page(pmap, va);
9390 		}
9391 		PMAP_UNLOCK(pmap);
9392 	}
9393 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9394 		pmap = PV_PMAP(pv);
9395 		if (!PMAP_TRYLOCK(pmap)) {
9396 			md_gen = m->md.pv_gen;
9397 			pvh_gen = pvh->pv_gen;
9398 			rw_wunlock(lock);
9399 			PMAP_LOCK(pmap);
9400 			rw_wlock(lock);
9401 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9402 				PMAP_UNLOCK(pmap);
9403 				goto restart;
9404 			}
9405 		}
9406 		PG_M = pmap_modified_bit(pmap);
9407 		PG_RW = pmap_rw_bit(pmap);
9408 		pde = pmap_pde(pmap, pv->pv_va);
9409 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9410 		    " a 2mpage in page %p's pv list", m));
9411 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9412 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9413 			atomic_clear_long(pte, PG_M);
9414 			pmap_invalidate_page(pmap, pv->pv_va);
9415 		}
9416 		PMAP_UNLOCK(pmap);
9417 	}
9418 	rw_wunlock(lock);
9419 }
9420 
9421 /*
9422  * Miscellaneous support routines follow
9423  */
9424 
9425 /* Adjust the properties for a leaf page table entry. */
9426 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9427 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9428 {
9429 	u_long opte, npte;
9430 
9431 	opte = *(u_long *)pte;
9432 	do {
9433 		npte = opte & ~mask;
9434 		npte |= bits;
9435 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9436 	    npte));
9437 }
9438 
9439 /*
9440  * Map a set of physical memory pages into the kernel virtual
9441  * address space. Return a pointer to where it is mapped. This
9442  * routine is intended to be used for mapping device memory,
9443  * NOT real memory.
9444  */
9445 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9446 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9447 {
9448 	struct pmap_preinit_mapping *ppim;
9449 	vm_offset_t va, offset;
9450 	vm_size_t tmpsize;
9451 	int i;
9452 
9453 	offset = pa & PAGE_MASK;
9454 	size = round_page(offset + size);
9455 	pa = trunc_page(pa);
9456 
9457 	if (!pmap_initialized) {
9458 		va = 0;
9459 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9460 			ppim = pmap_preinit_mapping + i;
9461 			if (ppim->va == 0) {
9462 				ppim->pa = pa;
9463 				ppim->sz = size;
9464 				ppim->mode = mode;
9465 				ppim->va = virtual_avail;
9466 				virtual_avail += size;
9467 				va = ppim->va;
9468 				break;
9469 			}
9470 		}
9471 		if (va == 0)
9472 			panic("%s: too many preinit mappings", __func__);
9473 	} else {
9474 		/*
9475 		 * If we have a preinit mapping, reuse it.
9476 		 */
9477 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9478 			ppim = pmap_preinit_mapping + i;
9479 			if (ppim->pa == pa && ppim->sz == size &&
9480 			    (ppim->mode == mode ||
9481 			    (flags & MAPDEV_SETATTR) == 0))
9482 				return ((void *)(ppim->va + offset));
9483 		}
9484 		/*
9485 		 * If the specified range of physical addresses fits within
9486 		 * the direct map window, use the direct map.
9487 		 */
9488 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9489 			va = PHYS_TO_DMAP(pa);
9490 			if ((flags & MAPDEV_SETATTR) != 0) {
9491 				PMAP_LOCK(kernel_pmap);
9492 				i = pmap_change_props_locked(va, size,
9493 				    PROT_NONE, mode, flags);
9494 				PMAP_UNLOCK(kernel_pmap);
9495 			} else
9496 				i = 0;
9497 			if (!i)
9498 				return ((void *)(va + offset));
9499 		}
9500 		va = kva_alloc(size);
9501 		if (va == 0)
9502 			panic("%s: Couldn't allocate KVA", __func__);
9503 	}
9504 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9505 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9506 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9507 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9508 		pmap_invalidate_cache_range(va, va + tmpsize);
9509 	return ((void *)(va + offset));
9510 }
9511 
9512 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9513 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9514 {
9515 
9516 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9517 	    MAPDEV_SETATTR));
9518 }
9519 
9520 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9521 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9522 {
9523 
9524 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9525 }
9526 
9527 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9528 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9529 {
9530 
9531 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9532 	    MAPDEV_SETATTR));
9533 }
9534 
9535 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9536 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9537 {
9538 
9539 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9540 	    MAPDEV_FLUSHCACHE));
9541 }
9542 
9543 void
pmap_unmapdev(void * p,vm_size_t size)9544 pmap_unmapdev(void *p, vm_size_t size)
9545 {
9546 	struct pmap_preinit_mapping *ppim;
9547 	vm_offset_t offset, va;
9548 	int i;
9549 
9550 	va = (vm_offset_t)p;
9551 
9552 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9553 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9554 		return;
9555 	offset = va & PAGE_MASK;
9556 	size = round_page(offset + size);
9557 	va = trunc_page(va);
9558 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9559 		ppim = pmap_preinit_mapping + i;
9560 		if (ppim->va == va && ppim->sz == size) {
9561 			if (pmap_initialized)
9562 				return;
9563 			ppim->pa = 0;
9564 			ppim->va = 0;
9565 			ppim->sz = 0;
9566 			ppim->mode = 0;
9567 			if (va + size == virtual_avail)
9568 				virtual_avail = va;
9569 			return;
9570 		}
9571 	}
9572 	if (pmap_initialized) {
9573 		pmap_qremove(va, atop(size));
9574 		kva_free(va, size);
9575 	}
9576 }
9577 
9578 /*
9579  * Tries to demote a 1GB page mapping.
9580  */
9581 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9582 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9583 {
9584 	pdp_entry_t newpdpe, oldpdpe;
9585 	pd_entry_t *firstpde, newpde, *pde;
9586 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9587 	vm_paddr_t pdpgpa;
9588 	vm_page_t pdpg;
9589 
9590 	PG_A = pmap_accessed_bit(pmap);
9591 	PG_M = pmap_modified_bit(pmap);
9592 	PG_V = pmap_valid_bit(pmap);
9593 	PG_RW = pmap_rw_bit(pmap);
9594 
9595 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9596 	oldpdpe = *pdpe;
9597 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9598 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9599 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9600 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9601 	if (pdpg  == NULL) {
9602 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9603 		    " in pmap %p", va, pmap);
9604 		return (false);
9605 	}
9606 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9607 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9608 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9609 	KASSERT((oldpdpe & PG_A) != 0,
9610 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9611 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9612 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9613 	newpde = oldpdpe;
9614 
9615 	/*
9616 	 * Initialize the page directory page.
9617 	 */
9618 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9619 		*pde = newpde;
9620 		newpde += NBPDR;
9621 	}
9622 
9623 	/*
9624 	 * Demote the mapping.
9625 	 */
9626 	*pdpe = newpdpe;
9627 
9628 	/*
9629 	 * Invalidate a stale recursive mapping of the page directory page.
9630 	 */
9631 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9632 
9633 	counter_u64_add(pmap_pdpe_demotions, 1);
9634 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9635 	    " in pmap %p", va, pmap);
9636 	return (true);
9637 }
9638 
9639 /*
9640  * Sets the memory attribute for the specified page.
9641  */
9642 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9643 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9644 {
9645 
9646 	m->md.pat_mode = ma;
9647 
9648 	/*
9649 	 * If "m" is a normal page, update its direct mapping.  This update
9650 	 * can be relied upon to perform any cache operations that are
9651 	 * required for data coherence.
9652 	 */
9653 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9654 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9655 	    m->md.pat_mode))
9656 		panic("memory attribute change on the direct map failed");
9657 }
9658 
9659 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9660 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9661 {
9662 	int error;
9663 
9664 	m->md.pat_mode = ma;
9665 
9666 	if ((m->flags & PG_FICTITIOUS) != 0)
9667 		return;
9668 	PMAP_LOCK(kernel_pmap);
9669 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9670 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9671 	PMAP_UNLOCK(kernel_pmap);
9672 	if (error != 0)
9673 		panic("memory attribute change on the direct map failed");
9674 }
9675 
9676 /*
9677  * Changes the specified virtual address range's memory type to that given by
9678  * the parameter "mode".  The specified virtual address range must be
9679  * completely contained within either the direct map or the kernel map.  If
9680  * the virtual address range is contained within the kernel map, then the
9681  * memory type for each of the corresponding ranges of the direct map is also
9682  * changed.  (The corresponding ranges of the direct map are those ranges that
9683  * map the same physical pages as the specified virtual address range.)  These
9684  * changes to the direct map are necessary because Intel describes the
9685  * behavior of their processors as "undefined" if two or more mappings to the
9686  * same physical page have different memory types.
9687  *
9688  * Returns zero if the change completed successfully, and either EINVAL or
9689  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9690  * of the virtual address range was not mapped, and ENOMEM is returned if
9691  * there was insufficient memory available to complete the change.  In the
9692  * latter case, the memory type may have been changed on some part of the
9693  * virtual address range or the direct map.
9694  */
9695 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9696 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9697 {
9698 	int error;
9699 
9700 	PMAP_LOCK(kernel_pmap);
9701 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9702 	    MAPDEV_FLUSHCACHE);
9703 	PMAP_UNLOCK(kernel_pmap);
9704 	return (error);
9705 }
9706 
9707 /*
9708  * Changes the specified virtual address range's protections to those
9709  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9710  * in the direct map are updated as well.  Protections on aliasing mappings may
9711  * be a subset of the requested protections; for example, mappings in the direct
9712  * map are never executable.
9713  */
9714 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9715 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9716 {
9717 	int error;
9718 
9719 	/* Only supported within the kernel map. */
9720 	if (va < VM_MIN_KERNEL_ADDRESS)
9721 		return (EINVAL);
9722 
9723 	PMAP_LOCK(kernel_pmap);
9724 	error = pmap_change_props_locked(va, size, prot, -1,
9725 	    MAPDEV_ASSERTVALID);
9726 	PMAP_UNLOCK(kernel_pmap);
9727 	return (error);
9728 }
9729 
9730 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9731 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9732     int mode, int flags)
9733 {
9734 	vm_offset_t base, offset, tmpva;
9735 	vm_paddr_t pa_start, pa_end, pa_end1;
9736 	pdp_entry_t *pdpe;
9737 	pd_entry_t *pde, pde_bits, pde_mask;
9738 	pt_entry_t *pte, pte_bits, pte_mask;
9739 	int error;
9740 	bool changed;
9741 
9742 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9743 	base = trunc_page(va);
9744 	offset = va & PAGE_MASK;
9745 	size = round_page(offset + size);
9746 
9747 	/*
9748 	 * Only supported on kernel virtual addresses, including the direct
9749 	 * map but excluding the recursive map.
9750 	 */
9751 	if (base < DMAP_MIN_ADDRESS)
9752 		return (EINVAL);
9753 
9754 	/*
9755 	 * Construct our flag sets and masks.  "bits" is the subset of
9756 	 * "mask" that will be set in each modified PTE.
9757 	 *
9758 	 * Mappings in the direct map are never allowed to be executable.
9759 	 */
9760 	pde_bits = pte_bits = 0;
9761 	pde_mask = pte_mask = 0;
9762 	if (mode != -1) {
9763 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9764 		pde_mask |= X86_PG_PDE_CACHE;
9765 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9766 		pte_mask |= X86_PG_PTE_CACHE;
9767 	}
9768 	if (prot != VM_PROT_NONE) {
9769 		if ((prot & VM_PROT_WRITE) != 0) {
9770 			pde_bits |= X86_PG_RW;
9771 			pte_bits |= X86_PG_RW;
9772 		}
9773 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9774 		    va < VM_MIN_KERNEL_ADDRESS) {
9775 			pde_bits |= pg_nx;
9776 			pte_bits |= pg_nx;
9777 		}
9778 		pde_mask |= X86_PG_RW | pg_nx;
9779 		pte_mask |= X86_PG_RW | pg_nx;
9780 	}
9781 
9782 	/*
9783 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9784 	 * into 4KB pages if required.
9785 	 */
9786 	for (tmpva = base; tmpva < base + size; ) {
9787 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9788 		if (pdpe == NULL || *pdpe == 0) {
9789 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9790 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9791 			return (EINVAL);
9792 		}
9793 		if (*pdpe & PG_PS) {
9794 			/*
9795 			 * If the current 1GB page already has the required
9796 			 * properties, then we need not demote this page.  Just
9797 			 * increment tmpva to the next 1GB page frame.
9798 			 */
9799 			if ((*pdpe & pde_mask) == pde_bits) {
9800 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9801 				continue;
9802 			}
9803 
9804 			/*
9805 			 * If the current offset aligns with a 1GB page frame
9806 			 * and there is at least 1GB left within the range, then
9807 			 * we need not break down this page into 2MB pages.
9808 			 */
9809 			if ((tmpva & PDPMASK) == 0 &&
9810 			    tmpva + PDPMASK < base + size) {
9811 				tmpva += NBPDP;
9812 				continue;
9813 			}
9814 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9815 				return (ENOMEM);
9816 		}
9817 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9818 		if (*pde == 0) {
9819 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9820 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9821 			return (EINVAL);
9822 		}
9823 		if (*pde & PG_PS) {
9824 			/*
9825 			 * If the current 2MB page already has the required
9826 			 * properties, then we need not demote this page.  Just
9827 			 * increment tmpva to the next 2MB page frame.
9828 			 */
9829 			if ((*pde & pde_mask) == pde_bits) {
9830 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9831 				continue;
9832 			}
9833 
9834 			/*
9835 			 * If the current offset aligns with a 2MB page frame
9836 			 * and there is at least 2MB left within the range, then
9837 			 * we need not break down this page into 4KB pages.
9838 			 */
9839 			if ((tmpva & PDRMASK) == 0 &&
9840 			    tmpva + PDRMASK < base + size) {
9841 				tmpva += NBPDR;
9842 				continue;
9843 			}
9844 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9845 				return (ENOMEM);
9846 		}
9847 		pte = pmap_pde_to_pte(pde, tmpva);
9848 		if (*pte == 0) {
9849 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9850 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9851 			return (EINVAL);
9852 		}
9853 		tmpva += PAGE_SIZE;
9854 	}
9855 	error = 0;
9856 
9857 	/*
9858 	 * Ok, all the pages exist, so run through them updating their
9859 	 * properties if required.
9860 	 */
9861 	changed = false;
9862 	pa_start = pa_end = 0;
9863 	for (tmpva = base; tmpva < base + size; ) {
9864 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9865 		if (*pdpe & PG_PS) {
9866 			if ((*pdpe & pde_mask) != pde_bits) {
9867 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9868 				changed = true;
9869 			}
9870 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9871 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9872 				if (pa_start == pa_end) {
9873 					/* Start physical address run. */
9874 					pa_start = *pdpe & PG_PS_FRAME;
9875 					pa_end = pa_start + NBPDP;
9876 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9877 					pa_end += NBPDP;
9878 				else {
9879 					/* Run ended, update direct map. */
9880 					error = pmap_change_props_locked(
9881 					    PHYS_TO_DMAP(pa_start),
9882 					    pa_end - pa_start, prot, mode,
9883 					    flags);
9884 					if (error != 0)
9885 						break;
9886 					/* Start physical address run. */
9887 					pa_start = *pdpe & PG_PS_FRAME;
9888 					pa_end = pa_start + NBPDP;
9889 				}
9890 			}
9891 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9892 			continue;
9893 		}
9894 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9895 		if (*pde & PG_PS) {
9896 			if ((*pde & pde_mask) != pde_bits) {
9897 				pmap_pte_props(pde, pde_bits, pde_mask);
9898 				changed = true;
9899 			}
9900 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9901 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9902 				if (pa_start == pa_end) {
9903 					/* Start physical address run. */
9904 					pa_start = *pde & PG_PS_FRAME;
9905 					pa_end = pa_start + NBPDR;
9906 				} else if (pa_end == (*pde & PG_PS_FRAME))
9907 					pa_end += NBPDR;
9908 				else {
9909 					/* Run ended, update direct map. */
9910 					error = pmap_change_props_locked(
9911 					    PHYS_TO_DMAP(pa_start),
9912 					    pa_end - pa_start, prot, mode,
9913 					    flags);
9914 					if (error != 0)
9915 						break;
9916 					/* Start physical address run. */
9917 					pa_start = *pde & PG_PS_FRAME;
9918 					pa_end = pa_start + NBPDR;
9919 				}
9920 			}
9921 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9922 		} else {
9923 			pte = pmap_pde_to_pte(pde, tmpva);
9924 			if ((*pte & pte_mask) != pte_bits) {
9925 				pmap_pte_props(pte, pte_bits, pte_mask);
9926 				changed = true;
9927 			}
9928 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9929 			    (*pte & PG_FRAME) < dmaplimit) {
9930 				if (pa_start == pa_end) {
9931 					/* Start physical address run. */
9932 					pa_start = *pte & PG_FRAME;
9933 					pa_end = pa_start + PAGE_SIZE;
9934 				} else if (pa_end == (*pte & PG_FRAME))
9935 					pa_end += PAGE_SIZE;
9936 				else {
9937 					/* Run ended, update direct map. */
9938 					error = pmap_change_props_locked(
9939 					    PHYS_TO_DMAP(pa_start),
9940 					    pa_end - pa_start, prot, mode,
9941 					    flags);
9942 					if (error != 0)
9943 						break;
9944 					/* Start physical address run. */
9945 					pa_start = *pte & PG_FRAME;
9946 					pa_end = pa_start + PAGE_SIZE;
9947 				}
9948 			}
9949 			tmpva += PAGE_SIZE;
9950 		}
9951 	}
9952 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9953 		pa_end1 = MIN(pa_end, dmaplimit);
9954 		if (pa_start != pa_end1)
9955 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9956 			    pa_end1 - pa_start, prot, mode, flags);
9957 	}
9958 
9959 	/*
9960 	 * Flush CPU caches if required to make sure any data isn't cached that
9961 	 * shouldn't be, etc.
9962 	 */
9963 	if (changed) {
9964 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9965 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9966 			pmap_invalidate_cache_range(base, tmpva);
9967 	}
9968 	return (error);
9969 }
9970 
9971 /*
9972  * Demotes any mapping within the direct map region that covers more than the
9973  * specified range of physical addresses.  This range's size must be a power
9974  * of two and its starting address must be a multiple of its size.  Since the
9975  * demotion does not change any attributes of the mapping, a TLB invalidation
9976  * is not mandatory.  The caller may, however, request a TLB invalidation.
9977  */
9978 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9979 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9980 {
9981 	pdp_entry_t *pdpe;
9982 	pd_entry_t *pde;
9983 	vm_offset_t va;
9984 	bool changed;
9985 
9986 	if (len == 0)
9987 		return;
9988 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9989 	KASSERT((base & (len - 1)) == 0,
9990 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9991 	if (len < NBPDP && base < dmaplimit) {
9992 		va = PHYS_TO_DMAP(base);
9993 		changed = false;
9994 		PMAP_LOCK(kernel_pmap);
9995 		pdpe = pmap_pdpe(kernel_pmap, va);
9996 		if ((*pdpe & X86_PG_V) == 0)
9997 			panic("pmap_demote_DMAP: invalid PDPE");
9998 		if ((*pdpe & PG_PS) != 0) {
9999 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
10000 				panic("pmap_demote_DMAP: PDPE failed");
10001 			changed = true;
10002 		}
10003 		if (len < NBPDR) {
10004 			pde = pmap_pdpe_to_pde(pdpe, va);
10005 			if ((*pde & X86_PG_V) == 0)
10006 				panic("pmap_demote_DMAP: invalid PDE");
10007 			if ((*pde & PG_PS) != 0) {
10008 				if (!pmap_demote_pde(kernel_pmap, pde, va))
10009 					panic("pmap_demote_DMAP: PDE failed");
10010 				changed = true;
10011 			}
10012 		}
10013 		if (changed && invalidate)
10014 			pmap_invalidate_page(kernel_pmap, va);
10015 		PMAP_UNLOCK(kernel_pmap);
10016 	}
10017 }
10018 
10019 /*
10020  * Perform the pmap work for mincore(2).  If the page is not both referenced and
10021  * modified by this pmap, returns its physical address so that the caller can
10022  * find other mappings.
10023  */
10024 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10025 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10026 {
10027 	pdp_entry_t *pdpe;
10028 	pd_entry_t *pdep;
10029 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10030 	vm_paddr_t pa;
10031 	int val;
10032 
10033 	PG_A = pmap_accessed_bit(pmap);
10034 	PG_M = pmap_modified_bit(pmap);
10035 	PG_V = pmap_valid_bit(pmap);
10036 	PG_RW = pmap_rw_bit(pmap);
10037 
10038 	PMAP_LOCK(pmap);
10039 	pte = 0;
10040 	pa = 0;
10041 	val = 0;
10042 	pdpe = pmap_pdpe(pmap, addr);
10043 	if (pdpe == NULL)
10044 		goto out;
10045 	if ((*pdpe & PG_V) != 0) {
10046 		if ((*pdpe & PG_PS) != 0) {
10047 			pte = *pdpe;
10048 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10049 			    PG_FRAME;
10050 			val = MINCORE_PSIND(2);
10051 		} else {
10052 			pdep = pmap_pde(pmap, addr);
10053 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10054 				if ((*pdep & PG_PS) != 0) {
10055 					pte = *pdep;
10056 			/* Compute the physical address of the 4KB page. */
10057 					pa = ((pte & PG_PS_FRAME) | (addr &
10058 					    PDRMASK)) & PG_FRAME;
10059 					val = MINCORE_PSIND(1);
10060 				} else {
10061 					pte = *pmap_pde_to_pte(pdep, addr);
10062 					pa = pte & PG_FRAME;
10063 					val = 0;
10064 				}
10065 			}
10066 		}
10067 	}
10068 	if ((pte & PG_V) != 0) {
10069 		val |= MINCORE_INCORE;
10070 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10071 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10072 		if ((pte & PG_A) != 0)
10073 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10074 	}
10075 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10076 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10077 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10078 		*pap = pa;
10079 	}
10080 out:
10081 	PMAP_UNLOCK(pmap);
10082 	return (val);
10083 }
10084 
10085 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10086 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10087 {
10088 	uint32_t gen, new_gen, pcid_next;
10089 
10090 	CRITICAL_ASSERT(curthread);
10091 	gen = PCPU_GET(pcid_gen);
10092 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10093 		return (pti ? 0 : CR3_PCID_SAVE);
10094 	if (pcidp->pm_gen == gen)
10095 		return (CR3_PCID_SAVE);
10096 	pcid_next = PCPU_GET(pcid_next);
10097 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10098 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10099 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10100 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10101 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10102 		new_gen = gen + 1;
10103 		if (new_gen == 0)
10104 			new_gen = 1;
10105 		PCPU_SET(pcid_gen, new_gen);
10106 		pcid_next = PMAP_PCID_KERN + 1;
10107 	} else {
10108 		new_gen = gen;
10109 	}
10110 	pcidp->pm_pcid = pcid_next;
10111 	pcidp->pm_gen = new_gen;
10112 	PCPU_SET(pcid_next, pcid_next + 1);
10113 	return (0);
10114 }
10115 
10116 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10117 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10118 {
10119 	uint64_t cached;
10120 
10121 	cached = pmap_pcid_alloc(pmap, pcidp);
10122 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10123 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10124 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10125 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10126 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10127 	return (cached);
10128 }
10129 
10130 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10131 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10132 {
10133 
10134 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10135 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10136 }
10137 
10138 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10139 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10140 {
10141 	pmap_t old_pmap;
10142 	struct pmap_pcid *pcidp, *old_pcidp;
10143 	uint64_t cached, cr3, kcr3, ucr3;
10144 
10145 	KASSERT((read_rflags() & PSL_I) == 0,
10146 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10147 
10148 	/* See the comment in pmap_invalidate_page_pcid(). */
10149 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10150 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10151 		old_pmap = PCPU_GET(curpmap);
10152 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10153 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10154 		old_pcidp->pm_gen = 0;
10155 	}
10156 
10157 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10158 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10159 	cr3 = rcr3();
10160 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10161 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10162 	PCPU_SET(curpmap, pmap);
10163 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10164 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10165 
10166 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10167 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10168 
10169 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10170 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10171 	if (cached)
10172 		counter_u64_add(pcid_save_cnt, 1);
10173 
10174 	pmap_activate_sw_pti_post(td, pmap);
10175 }
10176 
10177 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10178 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10179     u_int cpuid)
10180 {
10181 	struct pmap_pcid *pcidp;
10182 	uint64_t cached, cr3;
10183 
10184 	KASSERT((read_rflags() & PSL_I) == 0,
10185 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10186 
10187 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10188 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10189 	cr3 = rcr3();
10190 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10191 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10192 	PCPU_SET(curpmap, pmap);
10193 	if (cached)
10194 		counter_u64_add(pcid_save_cnt, 1);
10195 }
10196 
10197 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10198 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10199     u_int cpuid __unused)
10200 {
10201 
10202 	load_cr3(pmap->pm_cr3);
10203 	PCPU_SET(curpmap, pmap);
10204 }
10205 
10206 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10207 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10208     u_int cpuid __unused)
10209 {
10210 
10211 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10212 	PCPU_SET(kcr3, pmap->pm_cr3);
10213 	PCPU_SET(ucr3, pmap->pm_ucr3);
10214 	pmap_activate_sw_pti_post(td, pmap);
10215 }
10216 
10217 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10218     u_int))
10219 {
10220 
10221 	if (pmap_pcid_enabled && pti)
10222 		return (pmap_activate_sw_pcid_pti);
10223 	else if (pmap_pcid_enabled && !pti)
10224 		return (pmap_activate_sw_pcid_nopti);
10225 	else if (!pmap_pcid_enabled && pti)
10226 		return (pmap_activate_sw_nopcid_pti);
10227 	else /* if (!pmap_pcid_enabled && !pti) */
10228 		return (pmap_activate_sw_nopcid_nopti);
10229 }
10230 
10231 void
pmap_activate_sw(struct thread * td)10232 pmap_activate_sw(struct thread *td)
10233 {
10234 	pmap_t oldpmap, pmap;
10235 	u_int cpuid;
10236 
10237 	oldpmap = PCPU_GET(curpmap);
10238 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10239 	if (oldpmap == pmap) {
10240 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10241 			mfence();
10242 		return;
10243 	}
10244 	cpuid = PCPU_GET(cpuid);
10245 #ifdef SMP
10246 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10247 #else
10248 	CPU_SET(cpuid, &pmap->pm_active);
10249 #endif
10250 	pmap_activate_sw_mode(td, pmap, cpuid);
10251 #ifdef SMP
10252 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10253 #else
10254 	CPU_CLR(cpuid, &oldpmap->pm_active);
10255 #endif
10256 }
10257 
10258 void
pmap_activate(struct thread * td)10259 pmap_activate(struct thread *td)
10260 {
10261 	/*
10262 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10263 	 * invalidate_all IPI, which checks for curpmap ==
10264 	 * smp_tlb_pmap.  The below sequence of operations has a
10265 	 * window where %CR3 is loaded with the new pmap's PML4
10266 	 * address, but the curpmap value has not yet been updated.
10267 	 * This causes the invltlb IPI handler, which is called
10268 	 * between the updates, to execute as a NOP, which leaves
10269 	 * stale TLB entries.
10270 	 *
10271 	 * Note that the most common use of pmap_activate_sw(), from
10272 	 * a context switch, is immune to this race, because
10273 	 * interrupts are disabled (while the thread lock is owned),
10274 	 * so the IPI is delayed until after curpmap is updated.  Protect
10275 	 * other callers in a similar way, by disabling interrupts
10276 	 * around the %cr3 register reload and curpmap assignment.
10277 	 */
10278 	spinlock_enter();
10279 	pmap_activate_sw(td);
10280 	spinlock_exit();
10281 }
10282 
10283 void
pmap_activate_boot(pmap_t pmap)10284 pmap_activate_boot(pmap_t pmap)
10285 {
10286 	uint64_t kcr3;
10287 	u_int cpuid;
10288 
10289 	/*
10290 	 * kernel_pmap must be never deactivated, and we ensure that
10291 	 * by never activating it at all.
10292 	 */
10293 	MPASS(pmap != kernel_pmap);
10294 
10295 	cpuid = PCPU_GET(cpuid);
10296 #ifdef SMP
10297 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10298 #else
10299 	CPU_SET(cpuid, &pmap->pm_active);
10300 #endif
10301 	PCPU_SET(curpmap, pmap);
10302 	if (pti) {
10303 		kcr3 = pmap->pm_cr3;
10304 		if (pmap_pcid_enabled)
10305 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10306 	} else {
10307 		kcr3 = PMAP_NO_CR3;
10308 	}
10309 	PCPU_SET(kcr3, kcr3);
10310 	PCPU_SET(ucr3, PMAP_NO_CR3);
10311 }
10312 
10313 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10314 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10315 {
10316 	*res = pmap->pm_active;
10317 }
10318 
10319 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10320 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10321 {
10322 }
10323 
10324 /*
10325  *	Increase the starting virtual address of the given mapping if a
10326  *	different alignment might result in more superpage mappings.
10327  */
10328 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10329 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10330     vm_offset_t *addr, vm_size_t size)
10331 {
10332 	vm_offset_t superpage_offset;
10333 
10334 	if (size < NBPDR)
10335 		return;
10336 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10337 		offset += ptoa(object->pg_color);
10338 	superpage_offset = offset & PDRMASK;
10339 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10340 	    (*addr & PDRMASK) == superpage_offset)
10341 		return;
10342 	if ((*addr & PDRMASK) < superpage_offset)
10343 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10344 	else
10345 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10346 }
10347 
10348 #ifdef INVARIANTS
10349 static unsigned long num_dirty_emulations;
10350 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10351 	     &num_dirty_emulations, 0, NULL);
10352 
10353 static unsigned long num_accessed_emulations;
10354 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10355 	     &num_accessed_emulations, 0, NULL);
10356 
10357 static unsigned long num_superpage_accessed_emulations;
10358 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10359 	     &num_superpage_accessed_emulations, 0, NULL);
10360 
10361 static unsigned long ad_emulation_superpage_promotions;
10362 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10363 	     &ad_emulation_superpage_promotions, 0, NULL);
10364 #endif	/* INVARIANTS */
10365 
10366 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10367 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10368 {
10369 	int rv;
10370 	struct rwlock *lock;
10371 #if VM_NRESERVLEVEL > 0
10372 	vm_page_t m, mpte;
10373 #endif
10374 	pd_entry_t *pde;
10375 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10376 
10377 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10378 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10379 
10380 	if (!pmap_emulate_ad_bits(pmap))
10381 		return (-1);
10382 
10383 	PG_A = pmap_accessed_bit(pmap);
10384 	PG_M = pmap_modified_bit(pmap);
10385 	PG_V = pmap_valid_bit(pmap);
10386 	PG_RW = pmap_rw_bit(pmap);
10387 
10388 	rv = -1;
10389 	lock = NULL;
10390 	PMAP_LOCK(pmap);
10391 
10392 	pde = pmap_pde(pmap, va);
10393 	if (pde == NULL || (*pde & PG_V) == 0)
10394 		goto done;
10395 
10396 	if ((*pde & PG_PS) != 0) {
10397 		if (ftype == VM_PROT_READ) {
10398 #ifdef INVARIANTS
10399 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10400 #endif
10401 			*pde |= PG_A;
10402 			rv = 0;
10403 		}
10404 		goto done;
10405 	}
10406 
10407 	pte = pmap_pde_to_pte(pde, va);
10408 	if ((*pte & PG_V) == 0)
10409 		goto done;
10410 
10411 	if (ftype == VM_PROT_WRITE) {
10412 		if ((*pte & PG_RW) == 0)
10413 			goto done;
10414 		/*
10415 		 * Set the modified and accessed bits simultaneously.
10416 		 *
10417 		 * Intel EPT PTEs that do software emulation of A/D bits map
10418 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10419 		 * An EPT misconfiguration is triggered if the PTE is writable
10420 		 * but not readable (WR=10). This is avoided by setting PG_A
10421 		 * and PG_M simultaneously.
10422 		 */
10423 		*pte |= PG_M | PG_A;
10424 	} else {
10425 		*pte |= PG_A;
10426 	}
10427 
10428 #if VM_NRESERVLEVEL > 0
10429 	/* try to promote the mapping */
10430 	if (va < VM_MAXUSER_ADDRESS)
10431 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10432 	else
10433 		mpte = NULL;
10434 
10435 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10436 
10437 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10438 	    (m->flags & PG_FICTITIOUS) == 0 &&
10439 	    vm_reserv_level_iffullpop(m) == 0 &&
10440 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10441 #ifdef INVARIANTS
10442 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10443 #endif
10444 	}
10445 #endif
10446 
10447 #ifdef INVARIANTS
10448 	if (ftype == VM_PROT_WRITE)
10449 		atomic_add_long(&num_dirty_emulations, 1);
10450 	else
10451 		atomic_add_long(&num_accessed_emulations, 1);
10452 #endif
10453 	rv = 0;		/* success */
10454 done:
10455 	if (lock != NULL)
10456 		rw_wunlock(lock);
10457 	PMAP_UNLOCK(pmap);
10458 	return (rv);
10459 }
10460 
10461 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10462 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10463 {
10464 	pml4_entry_t *pml4;
10465 	pdp_entry_t *pdp;
10466 	pd_entry_t *pde;
10467 	pt_entry_t *pte, PG_V;
10468 	int idx;
10469 
10470 	idx = 0;
10471 	PG_V = pmap_valid_bit(pmap);
10472 	PMAP_LOCK(pmap);
10473 
10474 	pml4 = pmap_pml4e(pmap, va);
10475 	if (pml4 == NULL)
10476 		goto done;
10477 	ptr[idx++] = *pml4;
10478 	if ((*pml4 & PG_V) == 0)
10479 		goto done;
10480 
10481 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10482 	ptr[idx++] = *pdp;
10483 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10484 		goto done;
10485 
10486 	pde = pmap_pdpe_to_pde(pdp, va);
10487 	ptr[idx++] = *pde;
10488 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10489 		goto done;
10490 
10491 	pte = pmap_pde_to_pte(pde, va);
10492 	ptr[idx++] = *pte;
10493 
10494 done:
10495 	PMAP_UNLOCK(pmap);
10496 	*num = idx;
10497 }
10498 
10499 /**
10500  * Get the kernel virtual address of a set of physical pages. If there are
10501  * physical addresses not covered by the DMAP perform a transient mapping
10502  * that will be removed when calling pmap_unmap_io_transient.
10503  *
10504  * \param page        The pages the caller wishes to obtain the virtual
10505  *                    address on the kernel memory map.
10506  * \param vaddr       On return contains the kernel virtual memory address
10507  *                    of the pages passed in the page parameter.
10508  * \param count       Number of pages passed in.
10509  * \param can_fault   true if the thread using the mapped pages can take
10510  *                    page faults, false otherwise.
10511  *
10512  * \returns true if the caller must call pmap_unmap_io_transient when
10513  *          finished or false otherwise.
10514  *
10515  */
10516 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10517 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10518     bool can_fault)
10519 {
10520 	vm_paddr_t paddr;
10521 	bool needs_mapping;
10522 	int error __unused, i;
10523 
10524 	/*
10525 	 * Allocate any KVA space that we need, this is done in a separate
10526 	 * loop to prevent calling vmem_alloc while pinned.
10527 	 */
10528 	needs_mapping = false;
10529 	for (i = 0; i < count; i++) {
10530 		paddr = VM_PAGE_TO_PHYS(page[i]);
10531 		if (__predict_false(paddr >= dmaplimit)) {
10532 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10533 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10534 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10535 			needs_mapping = true;
10536 		} else {
10537 			vaddr[i] = PHYS_TO_DMAP(paddr);
10538 		}
10539 	}
10540 
10541 	/* Exit early if everything is covered by the DMAP */
10542 	if (!needs_mapping)
10543 		return (false);
10544 
10545 	/*
10546 	 * NB:  The sequence of updating a page table followed by accesses
10547 	 * to the corresponding pages used in the !DMAP case is subject to
10548 	 * the situation described in the "AMD64 Architecture Programmer's
10549 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10550 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10551 	 * after modifying the PTE bits is crucial.
10552 	 */
10553 	if (!can_fault)
10554 		sched_pin();
10555 	for (i = 0; i < count; i++) {
10556 		paddr = VM_PAGE_TO_PHYS(page[i]);
10557 		if (paddr >= dmaplimit) {
10558 			if (can_fault) {
10559 				/*
10560 				 * Slow path, since we can get page faults
10561 				 * while mappings are active don't pin the
10562 				 * thread to the CPU and instead add a global
10563 				 * mapping visible to all CPUs.
10564 				 */
10565 				pmap_qenter(vaddr[i], &page[i], 1);
10566 			} else {
10567 				pmap_kenter_attr(vaddr[i], paddr,
10568 				    page[i]->md.pat_mode);
10569 				pmap_invlpg(kernel_pmap, vaddr[i]);
10570 			}
10571 		}
10572 	}
10573 
10574 	return (needs_mapping);
10575 }
10576 
10577 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10578 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10579     bool can_fault)
10580 {
10581 	vm_paddr_t paddr;
10582 	int i;
10583 
10584 	if (!can_fault)
10585 		sched_unpin();
10586 	for (i = 0; i < count; i++) {
10587 		paddr = VM_PAGE_TO_PHYS(page[i]);
10588 		if (paddr >= dmaplimit) {
10589 			if (can_fault)
10590 				pmap_qremove(vaddr[i], 1);
10591 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10592 		}
10593 	}
10594 }
10595 
10596 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10597 pmap_quick_enter_page(vm_page_t m)
10598 {
10599 	vm_paddr_t paddr;
10600 
10601 	paddr = VM_PAGE_TO_PHYS(m);
10602 	if (paddr < dmaplimit)
10603 		return (PHYS_TO_DMAP(paddr));
10604 	mtx_lock_spin(&qframe_mtx);
10605 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10606 
10607 	/*
10608 	 * Since qframe is exclusively mapped by us, and we do not set
10609 	 * PG_G, we can use INVLPG here.
10610 	 */
10611 	invlpg(qframe);
10612 
10613 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10614 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10615 	return (qframe);
10616 }
10617 
10618 void
pmap_quick_remove_page(vm_offset_t addr)10619 pmap_quick_remove_page(vm_offset_t addr)
10620 {
10621 
10622 	if (addr != qframe)
10623 		return;
10624 	pte_store(vtopte(qframe), 0);
10625 	mtx_unlock_spin(&qframe_mtx);
10626 }
10627 
10628 /*
10629  * Pdp pages from the large map are managed differently from either
10630  * kernel or user page table pages.  They are permanently allocated at
10631  * initialization time, and their reference count is permanently set to
10632  * zero.  The pml4 entries pointing to those pages are copied into
10633  * each allocated pmap.
10634  *
10635  * In contrast, pd and pt pages are managed like user page table
10636  * pages.  They are dynamically allocated, and their reference count
10637  * represents the number of valid entries within the page.
10638  */
10639 static vm_page_t
pmap_large_map_getptp_unlocked(void)10640 pmap_large_map_getptp_unlocked(void)
10641 {
10642 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10643 }
10644 
10645 static vm_page_t
pmap_large_map_getptp(void)10646 pmap_large_map_getptp(void)
10647 {
10648 	vm_page_t m;
10649 
10650 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10651 	m = pmap_large_map_getptp_unlocked();
10652 	if (m == NULL) {
10653 		PMAP_UNLOCK(kernel_pmap);
10654 		vm_wait(NULL);
10655 		PMAP_LOCK(kernel_pmap);
10656 		/* Callers retry. */
10657 	}
10658 	return (m);
10659 }
10660 
10661 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10662 pmap_large_map_pdpe(vm_offset_t va)
10663 {
10664 	vm_pindex_t pml4_idx;
10665 	vm_paddr_t mphys;
10666 
10667 	pml4_idx = pmap_pml4e_index(va);
10668 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10669 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10670 	    "%#jx lm_ents %d",
10671 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10672 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10673 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10674 	    "LMSPML4I %#jx lm_ents %d",
10675 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10676 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10677 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10678 }
10679 
10680 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10681 pmap_large_map_pde(vm_offset_t va)
10682 {
10683 	pdp_entry_t *pdpe;
10684 	vm_page_t m;
10685 	vm_paddr_t mphys;
10686 
10687 retry:
10688 	pdpe = pmap_large_map_pdpe(va);
10689 	if (*pdpe == 0) {
10690 		m = pmap_large_map_getptp();
10691 		if (m == NULL)
10692 			goto retry;
10693 		mphys = VM_PAGE_TO_PHYS(m);
10694 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10695 	} else {
10696 		MPASS((*pdpe & X86_PG_PS) == 0);
10697 		mphys = *pdpe & PG_FRAME;
10698 	}
10699 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10700 }
10701 
10702 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10703 pmap_large_map_pte(vm_offset_t va)
10704 {
10705 	pd_entry_t *pde;
10706 	vm_page_t m;
10707 	vm_paddr_t mphys;
10708 
10709 retry:
10710 	pde = pmap_large_map_pde(va);
10711 	if (*pde == 0) {
10712 		m = pmap_large_map_getptp();
10713 		if (m == NULL)
10714 			goto retry;
10715 		mphys = VM_PAGE_TO_PHYS(m);
10716 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10717 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10718 	} else {
10719 		MPASS((*pde & X86_PG_PS) == 0);
10720 		mphys = *pde & PG_FRAME;
10721 	}
10722 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10723 }
10724 
10725 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10726 pmap_large_map_kextract(vm_offset_t va)
10727 {
10728 	pdp_entry_t *pdpe, pdp;
10729 	pd_entry_t *pde, pd;
10730 	pt_entry_t *pte, pt;
10731 
10732 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10733 	    ("not largemap range %#lx", (u_long)va));
10734 	pdpe = pmap_large_map_pdpe(va);
10735 	pdp = *pdpe;
10736 	KASSERT((pdp & X86_PG_V) != 0,
10737 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10738 	    (u_long)pdpe, pdp));
10739 	if ((pdp & X86_PG_PS) != 0) {
10740 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10741 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10742 		    (u_long)pdpe, pdp));
10743 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10744 	}
10745 	pde = pmap_pdpe_to_pde(pdpe, va);
10746 	pd = *pde;
10747 	KASSERT((pd & X86_PG_V) != 0,
10748 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10749 	if ((pd & X86_PG_PS) != 0)
10750 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10751 	pte = pmap_pde_to_pte(pde, va);
10752 	pt = *pte;
10753 	KASSERT((pt & X86_PG_V) != 0,
10754 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10755 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10756 }
10757 
10758 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10759 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10760     vmem_addr_t *vmem_res)
10761 {
10762 
10763 	/*
10764 	 * Large mappings are all but static.  Consequently, there
10765 	 * is no point in waiting for an earlier allocation to be
10766 	 * freed.
10767 	 */
10768 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10769 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10770 }
10771 
10772 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10773 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10774     vm_memattr_t mattr)
10775 {
10776 	pdp_entry_t *pdpe;
10777 	pd_entry_t *pde;
10778 	pt_entry_t *pte;
10779 	vm_offset_t va, inc;
10780 	vmem_addr_t vmem_res;
10781 	vm_paddr_t pa;
10782 	int error;
10783 
10784 	if (len == 0 || spa + len < spa)
10785 		return (EINVAL);
10786 
10787 	/* See if DMAP can serve. */
10788 	if (spa + len <= dmaplimit) {
10789 		va = PHYS_TO_DMAP(spa);
10790 		*addr = (void *)va;
10791 		return (pmap_change_attr(va, len, mattr));
10792 	}
10793 
10794 	/*
10795 	 * No, allocate KVA.  Fit the address with best possible
10796 	 * alignment for superpages.  Fall back to worse align if
10797 	 * failed.
10798 	 */
10799 	error = ENOMEM;
10800 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10801 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10802 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10803 		    &vmem_res);
10804 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10805 	    NBPDR) + NBPDR)
10806 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10807 		    &vmem_res);
10808 	if (error != 0)
10809 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10810 	if (error != 0)
10811 		return (error);
10812 
10813 	/*
10814 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10815 	 * in the pagetable to minimize flushing.  No need to
10816 	 * invalidate TLB, since we only update invalid entries.
10817 	 */
10818 	PMAP_LOCK(kernel_pmap);
10819 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10820 	    len -= inc) {
10821 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10822 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10823 			pdpe = pmap_large_map_pdpe(va);
10824 			MPASS(*pdpe == 0);
10825 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10826 			    X86_PG_V | X86_PG_A | pg_nx |
10827 			    pmap_cache_bits(kernel_pmap, mattr, true);
10828 			inc = NBPDP;
10829 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10830 		    (va & PDRMASK) == 0) {
10831 			pde = pmap_large_map_pde(va);
10832 			MPASS(*pde == 0);
10833 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10834 			    X86_PG_V | X86_PG_A | pg_nx |
10835 			    pmap_cache_bits(kernel_pmap, mattr, true);
10836 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10837 			    ref_count++;
10838 			inc = NBPDR;
10839 		} else {
10840 			pte = pmap_large_map_pte(va);
10841 			MPASS(*pte == 0);
10842 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10843 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10844 			    mattr, false);
10845 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10846 			    ref_count++;
10847 			inc = PAGE_SIZE;
10848 		}
10849 	}
10850 	PMAP_UNLOCK(kernel_pmap);
10851 	MPASS(len == 0);
10852 
10853 	*addr = (void *)vmem_res;
10854 	return (0);
10855 }
10856 
10857 void
pmap_large_unmap(void * svaa,vm_size_t len)10858 pmap_large_unmap(void *svaa, vm_size_t len)
10859 {
10860 	vm_offset_t sva, va;
10861 	vm_size_t inc;
10862 	pdp_entry_t *pdpe, pdp;
10863 	pd_entry_t *pde, pd;
10864 	pt_entry_t *pte;
10865 	vm_page_t m;
10866 	struct spglist spgf;
10867 
10868 	sva = (vm_offset_t)svaa;
10869 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10870 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10871 		return;
10872 
10873 	SLIST_INIT(&spgf);
10874 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10875 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10876 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10877 	PMAP_LOCK(kernel_pmap);
10878 	for (va = sva; va < sva + len; va += inc) {
10879 		pdpe = pmap_large_map_pdpe(va);
10880 		pdp = *pdpe;
10881 		KASSERT((pdp & X86_PG_V) != 0,
10882 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10883 		    (u_long)pdpe, pdp));
10884 		if ((pdp & X86_PG_PS) != 0) {
10885 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10886 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10887 			    (u_long)pdpe, pdp));
10888 			KASSERT((va & PDPMASK) == 0,
10889 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10890 			    (u_long)pdpe, pdp));
10891 			KASSERT(va + NBPDP <= sva + len,
10892 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10893 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10894 			    (u_long)pdpe, pdp, len));
10895 			*pdpe = 0;
10896 			inc = NBPDP;
10897 			continue;
10898 		}
10899 		pde = pmap_pdpe_to_pde(pdpe, va);
10900 		pd = *pde;
10901 		KASSERT((pd & X86_PG_V) != 0,
10902 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10903 		    (u_long)pde, pd));
10904 		if ((pd & X86_PG_PS) != 0) {
10905 			KASSERT((va & PDRMASK) == 0,
10906 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10907 			    (u_long)pde, pd));
10908 			KASSERT(va + NBPDR <= sva + len,
10909 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10910 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10911 			    pd, len));
10912 			pde_store(pde, 0);
10913 			inc = NBPDR;
10914 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10915 			m->ref_count--;
10916 			if (m->ref_count == 0) {
10917 				*pdpe = 0;
10918 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10919 			}
10920 			continue;
10921 		}
10922 		pte = pmap_pde_to_pte(pde, va);
10923 		KASSERT((*pte & X86_PG_V) != 0,
10924 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10925 		    (u_long)pte, *pte));
10926 		pte_clear(pte);
10927 		inc = PAGE_SIZE;
10928 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10929 		m->ref_count--;
10930 		if (m->ref_count == 0) {
10931 			*pde = 0;
10932 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10933 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10934 			m->ref_count--;
10935 			if (m->ref_count == 0) {
10936 				*pdpe = 0;
10937 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10938 			}
10939 		}
10940 	}
10941 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10942 	PMAP_UNLOCK(kernel_pmap);
10943 	vm_page_free_pages_toq(&spgf, false);
10944 	vmem_free(large_vmem, sva, len);
10945 }
10946 
10947 static void
pmap_large_map_wb_fence_mfence(void)10948 pmap_large_map_wb_fence_mfence(void)
10949 {
10950 
10951 	mfence();
10952 }
10953 
10954 static void
pmap_large_map_wb_fence_atomic(void)10955 pmap_large_map_wb_fence_atomic(void)
10956 {
10957 
10958 	atomic_thread_fence_seq_cst();
10959 }
10960 
10961 static void
pmap_large_map_wb_fence_nop(void)10962 pmap_large_map_wb_fence_nop(void)
10963 {
10964 }
10965 
10966 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10967 {
10968 
10969 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10970 		return (pmap_large_map_wb_fence_mfence);
10971 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10972 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10973 		return (pmap_large_map_wb_fence_atomic);
10974 	else
10975 		/* clflush is strongly enough ordered */
10976 		return (pmap_large_map_wb_fence_nop);
10977 }
10978 
10979 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10980 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10981 {
10982 
10983 	for (; len > 0; len -= cpu_clflush_line_size,
10984 	    va += cpu_clflush_line_size)
10985 		clwb(va);
10986 }
10987 
10988 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10989 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10990 {
10991 
10992 	for (; len > 0; len -= cpu_clflush_line_size,
10993 	    va += cpu_clflush_line_size)
10994 		clflushopt(va);
10995 }
10996 
10997 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10998 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10999 {
11000 
11001 	for (; len > 0; len -= cpu_clflush_line_size,
11002 	    va += cpu_clflush_line_size)
11003 		clflush(va);
11004 }
11005 
11006 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)11007 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
11008 {
11009 }
11010 
11011 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
11012 {
11013 
11014 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
11015 		return (pmap_large_map_flush_range_clwb);
11016 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
11017 		return (pmap_large_map_flush_range_clflushopt);
11018 	else if ((cpu_feature & CPUID_CLFSH) != 0)
11019 		return (pmap_large_map_flush_range_clflush);
11020 	else
11021 		return (pmap_large_map_flush_range_nop);
11022 }
11023 
11024 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11025 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11026 {
11027 	volatile u_long *pe;
11028 	u_long p;
11029 	vm_offset_t va;
11030 	vm_size_t inc;
11031 	bool seen_other;
11032 
11033 	for (va = sva; va < eva; va += inc) {
11034 		inc = 0;
11035 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
11036 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
11037 			p = *pe;
11038 			if ((p & X86_PG_PS) != 0)
11039 				inc = NBPDP;
11040 		}
11041 		if (inc == 0) {
11042 			pe = (volatile u_long *)pmap_large_map_pde(va);
11043 			p = *pe;
11044 			if ((p & X86_PG_PS) != 0)
11045 				inc = NBPDR;
11046 		}
11047 		if (inc == 0) {
11048 			pe = (volatile u_long *)pmap_large_map_pte(va);
11049 			p = *pe;
11050 			inc = PAGE_SIZE;
11051 		}
11052 		seen_other = false;
11053 		for (;;) {
11054 			if ((p & X86_PG_AVAIL1) != 0) {
11055 				/*
11056 				 * Spin-wait for the end of a parallel
11057 				 * write-back.
11058 				 */
11059 				cpu_spinwait();
11060 				p = *pe;
11061 
11062 				/*
11063 				 * If we saw other write-back
11064 				 * occurring, we cannot rely on PG_M to
11065 				 * indicate state of the cache.  The
11066 				 * PG_M bit is cleared before the
11067 				 * flush to avoid ignoring new writes,
11068 				 * and writes which are relevant for
11069 				 * us might happen after.
11070 				 */
11071 				seen_other = true;
11072 				continue;
11073 			}
11074 
11075 			if ((p & X86_PG_M) != 0 || seen_other) {
11076 				if (!atomic_fcmpset_long(pe, &p,
11077 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11078 					/*
11079 					 * If we saw PG_M without
11080 					 * PG_AVAIL1, and then on the
11081 					 * next attempt we do not
11082 					 * observe either PG_M or
11083 					 * PG_AVAIL1, the other
11084 					 * write-back started after us
11085 					 * and finished before us.  We
11086 					 * can rely on it doing our
11087 					 * work.
11088 					 */
11089 					continue;
11090 				pmap_large_map_flush_range(va, inc);
11091 				atomic_clear_long(pe, X86_PG_AVAIL1);
11092 			}
11093 			break;
11094 		}
11095 		maybe_yield();
11096 	}
11097 }
11098 
11099 /*
11100  * Write-back cache lines for the given address range.
11101  *
11102  * Must be called only on the range or sub-range returned from
11103  * pmap_large_map().  Must not be called on the coalesced ranges.
11104  *
11105  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11106  * instructions support.
11107  */
11108 void
pmap_large_map_wb(void * svap,vm_size_t len)11109 pmap_large_map_wb(void *svap, vm_size_t len)
11110 {
11111 	vm_offset_t eva, sva;
11112 
11113 	sva = (vm_offset_t)svap;
11114 	eva = sva + len;
11115 	pmap_large_map_wb_fence();
11116 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11117 		pmap_large_map_flush_range(sva, len);
11118 	} else {
11119 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11120 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11121 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11122 		pmap_large_map_wb_large(sva, eva);
11123 	}
11124 	pmap_large_map_wb_fence();
11125 }
11126 
11127 static vm_page_t
pmap_pti_alloc_page(void)11128 pmap_pti_alloc_page(void)
11129 {
11130 	vm_page_t m;
11131 
11132 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11133 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11134 	return (m);
11135 }
11136 
11137 static bool
pmap_pti_free_page(vm_page_t m)11138 pmap_pti_free_page(vm_page_t m)
11139 {
11140 	if (!vm_page_unwire_noq(m))
11141 		return (false);
11142 	vm_page_xbusy_claim(m);
11143 	vm_page_free_zero(m);
11144 	return (true);
11145 }
11146 
11147 static void
pmap_pti_init(void)11148 pmap_pti_init(void)
11149 {
11150 	vm_page_t pml4_pg;
11151 	pdp_entry_t *pdpe;
11152 	vm_offset_t va;
11153 	int i;
11154 
11155 	if (!pti)
11156 		return;
11157 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11158 	VM_OBJECT_WLOCK(pti_obj);
11159 	pml4_pg = pmap_pti_alloc_page();
11160 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11161 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11162 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11163 		pdpe = pmap_pti_pdpe(va);
11164 		pmap_pti_wire_pte(pdpe);
11165 	}
11166 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11167 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11168 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11169 	    sizeof(struct gate_descriptor) * NIDT, false);
11170 	CPU_FOREACH(i) {
11171 		/* Doublefault stack IST 1 */
11172 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11173 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11174 		/* NMI stack IST 2 */
11175 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11176 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11177 		/* MC# stack IST 3 */
11178 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11179 		    sizeof(struct nmi_pcpu);
11180 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11181 		/* DB# stack IST 4 */
11182 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11183 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11184 	}
11185 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11186 	    true);
11187 	pti_finalized = true;
11188 	VM_OBJECT_WUNLOCK(pti_obj);
11189 }
11190 
11191 static void
pmap_cpu_init(void * arg __unused)11192 pmap_cpu_init(void *arg __unused)
11193 {
11194 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11195 	pmap_pti_init();
11196 }
11197 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11198 
11199 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11200 pmap_pti_pdpe(vm_offset_t va)
11201 {
11202 	pml4_entry_t *pml4e;
11203 	pdp_entry_t *pdpe;
11204 	vm_page_t m;
11205 	vm_pindex_t pml4_idx;
11206 	vm_paddr_t mphys;
11207 
11208 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11209 
11210 	pml4_idx = pmap_pml4e_index(va);
11211 	pml4e = &pti_pml4[pml4_idx];
11212 	m = NULL;
11213 	if (*pml4e == 0) {
11214 		if (pti_finalized)
11215 			panic("pml4 alloc after finalization\n");
11216 		m = pmap_pti_alloc_page();
11217 		if (*pml4e != 0) {
11218 			pmap_pti_free_page(m);
11219 			mphys = *pml4e & ~PAGE_MASK;
11220 		} else {
11221 			mphys = VM_PAGE_TO_PHYS(m);
11222 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11223 		}
11224 	} else {
11225 		mphys = *pml4e & ~PAGE_MASK;
11226 	}
11227 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11228 	return (pdpe);
11229 }
11230 
11231 static void
pmap_pti_wire_pte(void * pte)11232 pmap_pti_wire_pte(void *pte)
11233 {
11234 	vm_page_t m;
11235 
11236 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11237 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11238 	m->ref_count++;
11239 }
11240 
11241 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11242 pmap_pti_unwire_pde(void *pde, bool only_ref)
11243 {
11244 	vm_page_t m;
11245 
11246 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11247 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11248 	MPASS(only_ref || m->ref_count > 1);
11249 	pmap_pti_free_page(m);
11250 }
11251 
11252 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11253 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11254 {
11255 	vm_page_t m;
11256 	pd_entry_t *pde;
11257 
11258 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11259 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11260 	if (pmap_pti_free_page(m)) {
11261 		pde = pmap_pti_pde(va);
11262 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11263 		*pde = 0;
11264 		pmap_pti_unwire_pde(pde, false);
11265 	}
11266 }
11267 
11268 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11269 pmap_pti_pde(vm_offset_t va)
11270 {
11271 	pdp_entry_t *pdpe;
11272 	pd_entry_t *pde;
11273 	vm_page_t m;
11274 	vm_pindex_t pd_idx;
11275 	vm_paddr_t mphys;
11276 
11277 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11278 
11279 	pdpe = pmap_pti_pdpe(va);
11280 	if (*pdpe == 0) {
11281 		m = pmap_pti_alloc_page();
11282 		if (*pdpe != 0) {
11283 			pmap_pti_free_page(m);
11284 			MPASS((*pdpe & X86_PG_PS) == 0);
11285 			mphys = *pdpe & ~PAGE_MASK;
11286 		} else {
11287 			mphys =  VM_PAGE_TO_PHYS(m);
11288 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11289 		}
11290 	} else {
11291 		MPASS((*pdpe & X86_PG_PS) == 0);
11292 		mphys = *pdpe & ~PAGE_MASK;
11293 	}
11294 
11295 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11296 	pd_idx = pmap_pde_index(va);
11297 	pde += pd_idx;
11298 	return (pde);
11299 }
11300 
11301 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11302 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11303 {
11304 	pd_entry_t *pde;
11305 	pt_entry_t *pte;
11306 	vm_page_t m;
11307 	vm_paddr_t mphys;
11308 
11309 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11310 
11311 	pde = pmap_pti_pde(va);
11312 	if (unwire_pde != NULL) {
11313 		*unwire_pde = true;
11314 		pmap_pti_wire_pte(pde);
11315 	}
11316 	if (*pde == 0) {
11317 		m = pmap_pti_alloc_page();
11318 		if (*pde != 0) {
11319 			pmap_pti_free_page(m);
11320 			MPASS((*pde & X86_PG_PS) == 0);
11321 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11322 		} else {
11323 			mphys = VM_PAGE_TO_PHYS(m);
11324 			*pde = mphys | X86_PG_RW | X86_PG_V;
11325 			if (unwire_pde != NULL)
11326 				*unwire_pde = false;
11327 		}
11328 	} else {
11329 		MPASS((*pde & X86_PG_PS) == 0);
11330 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11331 	}
11332 
11333 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11334 	pte += pmap_pte_index(va);
11335 
11336 	return (pte);
11337 }
11338 
11339 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11340 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11341 {
11342 	vm_paddr_t pa;
11343 	pd_entry_t *pde;
11344 	pt_entry_t *pte, ptev;
11345 	bool unwire_pde;
11346 
11347 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11348 
11349 	sva = trunc_page(sva);
11350 	MPASS(sva > VM_MAXUSER_ADDRESS);
11351 	eva = round_page(eva);
11352 	MPASS(sva < eva);
11353 	for (; sva < eva; sva += PAGE_SIZE) {
11354 		pte = pmap_pti_pte(sva, &unwire_pde);
11355 		pa = pmap_kextract(sva);
11356 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11357 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11358 		    VM_MEMATTR_DEFAULT, false);
11359 		if (*pte == 0) {
11360 			pte_store(pte, ptev);
11361 			pmap_pti_wire_pte(pte);
11362 		} else {
11363 			KASSERT(!pti_finalized,
11364 			    ("pti overlap after fin %#lx %#lx %#lx",
11365 			    sva, *pte, ptev));
11366 			KASSERT(*pte == ptev,
11367 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11368 			    sva, *pte, ptev));
11369 		}
11370 		if (unwire_pde) {
11371 			pde = pmap_pti_pde(sva);
11372 			pmap_pti_unwire_pde(pde, true);
11373 		}
11374 	}
11375 }
11376 
11377 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11378 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11379 {
11380 
11381 	if (!pti)
11382 		return;
11383 	VM_OBJECT_WLOCK(pti_obj);
11384 	pmap_pti_add_kva_locked(sva, eva, exec);
11385 	VM_OBJECT_WUNLOCK(pti_obj);
11386 }
11387 
11388 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11389 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11390 {
11391 	pt_entry_t *pte;
11392 	vm_offset_t va;
11393 
11394 	if (!pti)
11395 		return;
11396 	sva = rounddown2(sva, PAGE_SIZE);
11397 	MPASS(sva > VM_MAXUSER_ADDRESS);
11398 	eva = roundup2(eva, PAGE_SIZE);
11399 	MPASS(sva < eva);
11400 	VM_OBJECT_WLOCK(pti_obj);
11401 	for (va = sva; va < eva; va += PAGE_SIZE) {
11402 		pte = pmap_pti_pte(va, NULL);
11403 		KASSERT((*pte & X86_PG_V) != 0,
11404 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11405 		    (u_long)pte, *pte));
11406 		pte_clear(pte);
11407 		pmap_pti_unwire_pte(pte, va);
11408 	}
11409 	pmap_invalidate_range(kernel_pmap, sva, eva);
11410 	VM_OBJECT_WUNLOCK(pti_obj);
11411 }
11412 
11413 static void *
pkru_dup_range(void * ctx __unused,void * data)11414 pkru_dup_range(void *ctx __unused, void *data)
11415 {
11416 	struct pmap_pkru_range *node, *new_node;
11417 
11418 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11419 	if (new_node == NULL)
11420 		return (NULL);
11421 	node = data;
11422 	memcpy(new_node, node, sizeof(*node));
11423 	return (new_node);
11424 }
11425 
11426 static void
pkru_free_range(void * ctx __unused,void * node)11427 pkru_free_range(void *ctx __unused, void *node)
11428 {
11429 
11430 	uma_zfree(pmap_pkru_ranges_zone, node);
11431 }
11432 
11433 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11434 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11435     int flags)
11436 {
11437 	struct pmap_pkru_range *ppr;
11438 	int error;
11439 
11440 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11441 	MPASS(pmap->pm_type == PT_X86);
11442 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11443 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11444 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11445 		return (EBUSY);
11446 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11447 	if (ppr == NULL)
11448 		return (ENOMEM);
11449 	ppr->pkru_keyidx = keyidx;
11450 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11451 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11452 	if (error != 0)
11453 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11454 	return (error);
11455 }
11456 
11457 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11458 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11459 {
11460 
11461 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11462 	MPASS(pmap->pm_type == PT_X86);
11463 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11464 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11465 }
11466 
11467 static void
pmap_pkru_deassign_all(pmap_t pmap)11468 pmap_pkru_deassign_all(pmap_t pmap)
11469 {
11470 
11471 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11472 	if (pmap->pm_type == PT_X86 &&
11473 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11474 		rangeset_remove_all(&pmap->pm_pkru);
11475 }
11476 
11477 /*
11478  * Returns true if the PKU setting is the same across the specified address
11479  * range, and false otherwise.  When returning true, updates the referenced PTE
11480  * to reflect the PKU setting.
11481  */
11482 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11483 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11484 {
11485 	struct pmap_pkru_range *ppr;
11486 	vm_offset_t va;
11487 	u_int keyidx;
11488 
11489 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11490 	KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11491 	    ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11492 	if (pmap->pm_type != PT_X86 ||
11493 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11494 	    sva >= VM_MAXUSER_ADDRESS)
11495 		return (true);
11496 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11497 	ppr = rangeset_containing(&pmap->pm_pkru, sva);
11498 	if (ppr == NULL)
11499 		return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11500 	keyidx = ppr->pkru_keyidx;
11501 	while ((va = ppr->pkru_rs_el.re_end) < eva) {
11502 		if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11503 		    keyidx != ppr->pkru_keyidx)
11504 			return (false);
11505 	}
11506 	*pte |= X86_PG_PKU(keyidx);
11507 	return (true);
11508 }
11509 
11510 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11511 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11512 {
11513 	struct pmap_pkru_range *ppr;
11514 
11515 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11516 	if (pmap->pm_type != PT_X86 ||
11517 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11518 	    va >= VM_MAXUSER_ADDRESS)
11519 		return (0);
11520 	ppr = rangeset_containing(&pmap->pm_pkru, va);
11521 	if (ppr != NULL)
11522 		return (X86_PG_PKU(ppr->pkru_keyidx));
11523 	return (0);
11524 }
11525 
11526 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11527 pred_pkru_on_remove(void *ctx __unused, void *r)
11528 {
11529 	struct pmap_pkru_range *ppr;
11530 
11531 	ppr = r;
11532 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11533 }
11534 
11535 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11536 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11537 {
11538 
11539 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11540 	if (pmap->pm_type == PT_X86 &&
11541 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11542 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11543 		    pred_pkru_on_remove);
11544 	}
11545 }
11546 
11547 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11548 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11549 {
11550 
11551 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11552 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11553 	MPASS(dst_pmap->pm_type == PT_X86);
11554 	MPASS(src_pmap->pm_type == PT_X86);
11555 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11556 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11557 		return (0);
11558 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11559 }
11560 
11561 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11562 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11563     u_int keyidx)
11564 {
11565 	pml4_entry_t *pml4e;
11566 	pdp_entry_t *pdpe;
11567 	pd_entry_t newpde, ptpaddr, *pde;
11568 	pt_entry_t newpte, *ptep, pte;
11569 	vm_offset_t va, va_next;
11570 	bool changed;
11571 
11572 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11573 	MPASS(pmap->pm_type == PT_X86);
11574 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11575 
11576 	for (changed = false, va = sva; va < eva; va = va_next) {
11577 		pml4e = pmap_pml4e(pmap, va);
11578 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11579 			va_next = (va + NBPML4) & ~PML4MASK;
11580 			if (va_next < va)
11581 				va_next = eva;
11582 			continue;
11583 		}
11584 
11585 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11586 		if ((*pdpe & X86_PG_V) == 0) {
11587 			va_next = (va + NBPDP) & ~PDPMASK;
11588 			if (va_next < va)
11589 				va_next = eva;
11590 			continue;
11591 		}
11592 
11593 		va_next = (va + NBPDR) & ~PDRMASK;
11594 		if (va_next < va)
11595 			va_next = eva;
11596 
11597 		pde = pmap_pdpe_to_pde(pdpe, va);
11598 		ptpaddr = *pde;
11599 		if (ptpaddr == 0)
11600 			continue;
11601 
11602 		MPASS((ptpaddr & X86_PG_V) != 0);
11603 		if ((ptpaddr & PG_PS) != 0) {
11604 			if (va + NBPDR == va_next && eva >= va_next) {
11605 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11606 				    X86_PG_PKU(keyidx);
11607 				if (newpde != ptpaddr) {
11608 					*pde = newpde;
11609 					changed = true;
11610 				}
11611 				continue;
11612 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11613 				continue;
11614 			}
11615 		}
11616 
11617 		if (va_next > eva)
11618 			va_next = eva;
11619 
11620 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11621 		    ptep++, va += PAGE_SIZE) {
11622 			pte = *ptep;
11623 			if ((pte & X86_PG_V) == 0)
11624 				continue;
11625 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11626 			if (newpte != pte) {
11627 				*ptep = newpte;
11628 				changed = true;
11629 			}
11630 		}
11631 	}
11632 	if (changed)
11633 		pmap_invalidate_range(pmap, sva, eva);
11634 }
11635 
11636 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11637 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11638     u_int keyidx, int flags)
11639 {
11640 
11641 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11642 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11643 		return (EINVAL);
11644 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11645 		return (EFAULT);
11646 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11647 		return (ENOTSUP);
11648 	return (0);
11649 }
11650 
11651 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11652 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11653     int flags)
11654 {
11655 	int error;
11656 
11657 	sva = trunc_page(sva);
11658 	eva = round_page(eva);
11659 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11660 	if (error != 0)
11661 		return (error);
11662 	for (;;) {
11663 		PMAP_LOCK(pmap);
11664 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11665 		if (error == 0)
11666 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11667 		PMAP_UNLOCK(pmap);
11668 		if (error != ENOMEM)
11669 			break;
11670 		vm_wait(NULL);
11671 	}
11672 	return (error);
11673 }
11674 
11675 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11676 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11677 {
11678 	int error;
11679 
11680 	sva = trunc_page(sva);
11681 	eva = round_page(eva);
11682 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11683 	if (error != 0)
11684 		return (error);
11685 	for (;;) {
11686 		PMAP_LOCK(pmap);
11687 		error = pmap_pkru_deassign(pmap, sva, eva);
11688 		if (error == 0)
11689 			pmap_pkru_update_range(pmap, sva, eva, 0);
11690 		PMAP_UNLOCK(pmap);
11691 		if (error != ENOMEM)
11692 			break;
11693 		vm_wait(NULL);
11694 	}
11695 	return (error);
11696 }
11697 
11698 #if defined(KASAN) || defined(KMSAN)
11699 
11700 /*
11701  * Reserve enough memory to:
11702  * 1) allocate PDP pages for the shadow map(s),
11703  * 2) shadow the boot stack of KSTACK_PAGES pages,
11704  * 3) assuming that the kernel stack does not cross a 1GB boundary,
11705  * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11706  * pages per shadow map.
11707  */
11708 #ifdef KASAN
11709 #define	SAN_EARLY_PAGES	\
11710 	(NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11711 #else
11712 #define	SAN_EARLY_PAGES	\
11713 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11714 #endif
11715 
11716 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11717 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11718 {
11719 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11720 	static size_t offset = 0;
11721 	uint64_t pa;
11722 
11723 	if (offset == sizeof(data)) {
11724 		panic("%s: ran out of memory for the bootstrap shadow map",
11725 		    __func__);
11726 	}
11727 
11728 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11729 	offset += PAGE_SIZE;
11730 	return (pa);
11731 }
11732 
11733 /*
11734  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11735  * is currently only used to shadow the temporary boot stack set up by locore.
11736  */
11737 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11738 pmap_san_enter_early(vm_offset_t va)
11739 {
11740 	static bool first = true;
11741 	pml4_entry_t *pml4e;
11742 	pdp_entry_t *pdpe;
11743 	pd_entry_t *pde;
11744 	pt_entry_t *pte;
11745 	uint64_t cr3, pa, base;
11746 	int i;
11747 
11748 	base = amd64_loadaddr();
11749 	cr3 = rcr3();
11750 
11751 	if (first) {
11752 		/*
11753 		 * If this the first call, we need to allocate new PML4Es for
11754 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11755 		 * was initialized by the boot loader, so we can't simply test
11756 		 * whether the shadow map's PML4Es are zero.
11757 		 */
11758 		first = false;
11759 #ifdef KASAN
11760 		for (i = 0; i < NKASANPML4E; i++) {
11761 			pa = pmap_san_enter_early_alloc_4k(base);
11762 
11763 			pml4e = (pml4_entry_t *)cr3 +
11764 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11765 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11766 		}
11767 #else
11768 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11769 			pa = pmap_san_enter_early_alloc_4k(base);
11770 
11771 			pml4e = (pml4_entry_t *)cr3 +
11772 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11773 			    i * NBPML4);
11774 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11775 		}
11776 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11777 			pa = pmap_san_enter_early_alloc_4k(base);
11778 
11779 			pml4e = (pml4_entry_t *)cr3 +
11780 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11781 			    i * NBPML4);
11782 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11783 		}
11784 #endif
11785 	}
11786 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11787 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11788 	if (*pdpe == 0) {
11789 		pa = pmap_san_enter_early_alloc_4k(base);
11790 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11791 	}
11792 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11793 	if (*pde == 0) {
11794 		pa = pmap_san_enter_early_alloc_4k(base);
11795 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11796 	}
11797 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11798 	if (*pte != 0)
11799 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11800 	pa = pmap_san_enter_early_alloc_4k(base);
11801 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11802 }
11803 
11804 static vm_page_t
pmap_san_enter_alloc_4k(void)11805 pmap_san_enter_alloc_4k(void)
11806 {
11807 	vm_page_t m;
11808 
11809 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11810 	    VM_ALLOC_ZERO);
11811 	if (m == NULL)
11812 		panic("%s: no memory to grow shadow map", __func__);
11813 	return (m);
11814 }
11815 
11816 static vm_page_t
pmap_san_enter_alloc_2m(void)11817 pmap_san_enter_alloc_2m(void)
11818 {
11819 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11820 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11821 }
11822 
11823 /*
11824  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11825  * pages when possible.
11826  */
11827 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11828 pmap_san_enter(vm_offset_t va)
11829 {
11830 	pdp_entry_t *pdpe;
11831 	pd_entry_t *pde;
11832 	pt_entry_t *pte;
11833 	vm_page_t m;
11834 
11835 	if (kernphys == 0) {
11836 		/*
11837 		 * We're creating a temporary shadow map for the boot stack.
11838 		 */
11839 		pmap_san_enter_early(va);
11840 		return;
11841 	}
11842 
11843 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11844 
11845 	pdpe = pmap_pdpe(kernel_pmap, va);
11846 	if ((*pdpe & X86_PG_V) == 0) {
11847 		m = pmap_san_enter_alloc_4k();
11848 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11849 		    X86_PG_V | pg_nx);
11850 	}
11851 	pde = pmap_pdpe_to_pde(pdpe, va);
11852 	if ((*pde & X86_PG_V) == 0) {
11853 		m = pmap_san_enter_alloc_2m();
11854 		if (m != NULL) {
11855 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11856 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11857 		} else {
11858 			m = pmap_san_enter_alloc_4k();
11859 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11860 			    X86_PG_V | pg_nx);
11861 		}
11862 	}
11863 	if ((*pde & X86_PG_PS) != 0)
11864 		return;
11865 	pte = pmap_pde_to_pte(pde, va);
11866 	if ((*pte & X86_PG_V) != 0)
11867 		return;
11868 	m = pmap_san_enter_alloc_4k();
11869 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11870 	    X86_PG_M | X86_PG_A | pg_nx);
11871 }
11872 #endif
11873 
11874 /*
11875  * Track a range of the kernel's virtual address space that is contiguous
11876  * in various mapping attributes.
11877  */
11878 struct pmap_kernel_map_range {
11879 	vm_offset_t sva;
11880 	pt_entry_t attrs;
11881 	int ptes;
11882 	int pdes;
11883 	int pdpes;
11884 };
11885 
11886 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11887 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11888     vm_offset_t eva)
11889 {
11890 	const char *mode;
11891 	int i, pat_idx;
11892 
11893 	if (eva <= range->sva)
11894 		return;
11895 
11896 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11897 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11898 		if (pat_index[i] == pat_idx)
11899 			break;
11900 
11901 	switch (i) {
11902 	case PAT_WRITE_BACK:
11903 		mode = "WB";
11904 		break;
11905 	case PAT_WRITE_THROUGH:
11906 		mode = "WT";
11907 		break;
11908 	case PAT_UNCACHEABLE:
11909 		mode = "UC";
11910 		break;
11911 	case PAT_UNCACHED:
11912 		mode = "U-";
11913 		break;
11914 	case PAT_WRITE_PROTECTED:
11915 		mode = "WP";
11916 		break;
11917 	case PAT_WRITE_COMBINING:
11918 		mode = "WC";
11919 		break;
11920 	default:
11921 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11922 		    __func__, pat_idx, range->sva, eva);
11923 		mode = "??";
11924 		break;
11925 	}
11926 
11927 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11928 	    range->sva, eva,
11929 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11930 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11931 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11932 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11933 	    mode, range->pdpes, range->pdes, range->ptes);
11934 
11935 	/* Reset to sentinel value. */
11936 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11937 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11938 	    NPDEPG - 1, NPTEPG - 1);
11939 }
11940 
11941 /*
11942  * Determine whether the attributes specified by a page table entry match those
11943  * being tracked by the current range.  This is not quite as simple as a direct
11944  * flag comparison since some PAT modes have multiple representations.
11945  */
11946 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11947 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11948 {
11949 	pt_entry_t diff, mask;
11950 
11951 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11952 	diff = (range->attrs ^ attrs) & mask;
11953 	if (diff == 0)
11954 		return (true);
11955 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11956 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11957 	    pmap_pat_index(kernel_pmap, attrs, true))
11958 		return (true);
11959 	return (false);
11960 }
11961 
11962 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11963 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11964     pt_entry_t attrs)
11965 {
11966 
11967 	memset(range, 0, sizeof(*range));
11968 	range->sva = va;
11969 	range->attrs = attrs;
11970 }
11971 
11972 /*
11973  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11974  * those of the current run, dump the address range and its attributes, and
11975  * begin a new run.
11976  */
11977 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11978 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11979     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11980     pt_entry_t pte)
11981 {
11982 	pt_entry_t attrs;
11983 
11984 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11985 
11986 	attrs |= pdpe & pg_nx;
11987 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11988 	if ((pdpe & PG_PS) != 0) {
11989 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11990 	} else if (pde != 0) {
11991 		attrs |= pde & pg_nx;
11992 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11993 	}
11994 	if ((pde & PG_PS) != 0) {
11995 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11996 	} else if (pte != 0) {
11997 		attrs |= pte & pg_nx;
11998 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11999 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
12000 
12001 		/* Canonicalize by always using the PDE PAT bit. */
12002 		if ((attrs & X86_PG_PTE_PAT) != 0)
12003 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
12004 	}
12005 
12006 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
12007 		sysctl_kmaps_dump(sb, range, va);
12008 		sysctl_kmaps_reinit(range, va, attrs);
12009 	}
12010 }
12011 
12012 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)12013 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
12014 {
12015 	struct pmap_kernel_map_range range;
12016 	struct sbuf sbuf, *sb;
12017 	pml4_entry_t pml4e;
12018 	pdp_entry_t *pdp, pdpe;
12019 	pd_entry_t *pd, pde;
12020 	pt_entry_t *pt, pte;
12021 	vm_offset_t sva;
12022 	vm_paddr_t pa;
12023 	int error, i, j, k, l;
12024 
12025 	error = sysctl_wire_old_buffer(req, 0);
12026 	if (error != 0)
12027 		return (error);
12028 	sb = &sbuf;
12029 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12030 
12031 	/* Sentinel value. */
12032 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12033 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12034 	    NPDEPG - 1, NPTEPG - 1);
12035 
12036 	/*
12037 	 * Iterate over the kernel page tables without holding the kernel pmap
12038 	 * lock.  Outside of the large map, kernel page table pages are never
12039 	 * freed, so at worst we will observe inconsistencies in the output.
12040 	 * Within the large map, ensure that PDP and PD page addresses are
12041 	 * valid before descending.
12042 	 */
12043 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12044 		switch (i) {
12045 		case PML4PML4I:
12046 			sbuf_printf(sb, "\nRecursive map:\n");
12047 			break;
12048 		case DMPML4I:
12049 			sbuf_printf(sb, "\nDirect map:\n");
12050 			break;
12051 #ifdef KASAN
12052 		case KASANPML4I:
12053 			sbuf_printf(sb, "\nKASAN shadow map:\n");
12054 			break;
12055 #endif
12056 #ifdef KMSAN
12057 		case KMSANSHADPML4I:
12058 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12059 			break;
12060 		case KMSANORIGPML4I:
12061 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12062 			break;
12063 #endif
12064 		case KPML4BASE:
12065 			sbuf_printf(sb, "\nKernel map:\n");
12066 			break;
12067 		case LMSPML4I:
12068 			sbuf_printf(sb, "\nLarge map:\n");
12069 			break;
12070 		}
12071 
12072 		/* Convert to canonical form. */
12073 		if (sva == 1ul << 47)
12074 			sva |= -1ul << 48;
12075 
12076 restart:
12077 		pml4e = kernel_pml4[i];
12078 		if ((pml4e & X86_PG_V) == 0) {
12079 			sva = rounddown2(sva, NBPML4);
12080 			sysctl_kmaps_dump(sb, &range, sva);
12081 			sva += NBPML4;
12082 			continue;
12083 		}
12084 		pa = pml4e & PG_FRAME;
12085 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12086 
12087 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12088 			pdpe = pdp[j];
12089 			if ((pdpe & X86_PG_V) == 0) {
12090 				sva = rounddown2(sva, NBPDP);
12091 				sysctl_kmaps_dump(sb, &range, sva);
12092 				sva += NBPDP;
12093 				continue;
12094 			}
12095 			pa = pdpe & PG_FRAME;
12096 			if ((pdpe & PG_PS) != 0) {
12097 				sva = rounddown2(sva, NBPDP);
12098 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12099 				    0, 0);
12100 				range.pdpes++;
12101 				sva += NBPDP;
12102 				continue;
12103 			}
12104 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12105 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12106 				/*
12107 				 * Page table pages for the large map may be
12108 				 * freed.  Validate the next-level address
12109 				 * before descending.
12110 				 */
12111 				goto restart;
12112 			}
12113 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12114 
12115 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12116 				pde = pd[k];
12117 				if ((pde & X86_PG_V) == 0) {
12118 					sva = rounddown2(sva, NBPDR);
12119 					sysctl_kmaps_dump(sb, &range, sva);
12120 					sva += NBPDR;
12121 					continue;
12122 				}
12123 				pa = pde & PG_FRAME;
12124 				if ((pde & PG_PS) != 0) {
12125 					sva = rounddown2(sva, NBPDR);
12126 					sysctl_kmaps_check(sb, &range, sva,
12127 					    pml4e, pdpe, pde, 0);
12128 					range.pdes++;
12129 					sva += NBPDR;
12130 					continue;
12131 				}
12132 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12133 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12134 					/*
12135 					 * Page table pages for the large map
12136 					 * may be freed.  Validate the
12137 					 * next-level address before descending.
12138 					 */
12139 					goto restart;
12140 				}
12141 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12142 
12143 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12144 				    sva += PAGE_SIZE) {
12145 					pte = pt[l];
12146 					if ((pte & X86_PG_V) == 0) {
12147 						sysctl_kmaps_dump(sb, &range,
12148 						    sva);
12149 						continue;
12150 					}
12151 					sysctl_kmaps_check(sb, &range, sva,
12152 					    pml4e, pdpe, pde, pte);
12153 					range.ptes++;
12154 				}
12155 			}
12156 		}
12157 	}
12158 
12159 	error = sbuf_finish(sb);
12160 	sbuf_delete(sb);
12161 	return (error);
12162 }
12163 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12164     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12165     NULL, 0, sysctl_kmaps, "A",
12166     "Dump kernel address layout");
12167 
12168 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12169 DB_SHOW_COMMAND(pte, pmap_print_pte)
12170 {
12171 	pmap_t pmap;
12172 	pml5_entry_t *pml5;
12173 	pml4_entry_t *pml4;
12174 	pdp_entry_t *pdp;
12175 	pd_entry_t *pde;
12176 	pt_entry_t *pte, PG_V;
12177 	vm_offset_t va;
12178 
12179 	if (!have_addr) {
12180 		db_printf("show pte addr\n");
12181 		return;
12182 	}
12183 	va = (vm_offset_t)addr;
12184 
12185 	if (kdb_thread != NULL)
12186 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12187 	else
12188 		pmap = PCPU_GET(curpmap);
12189 
12190 	PG_V = pmap_valid_bit(pmap);
12191 	db_printf("VA 0x%016lx", va);
12192 
12193 	if (pmap_is_la57(pmap)) {
12194 		pml5 = pmap_pml5e(pmap, va);
12195 		db_printf(" pml5e 0x%016lx", *pml5);
12196 		if ((*pml5 & PG_V) == 0) {
12197 			db_printf("\n");
12198 			return;
12199 		}
12200 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12201 	} else {
12202 		pml4 = pmap_pml4e(pmap, va);
12203 	}
12204 	db_printf(" pml4e 0x%016lx", *pml4);
12205 	if ((*pml4 & PG_V) == 0) {
12206 		db_printf("\n");
12207 		return;
12208 	}
12209 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12210 	db_printf(" pdpe 0x%016lx", *pdp);
12211 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12212 		db_printf("\n");
12213 		return;
12214 	}
12215 	pde = pmap_pdpe_to_pde(pdp, va);
12216 	db_printf(" pde 0x%016lx", *pde);
12217 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12218 		db_printf("\n");
12219 		return;
12220 	}
12221 	pte = pmap_pde_to_pte(pde, va);
12222 	db_printf(" pte 0x%016lx\n", *pte);
12223 }
12224 
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12225 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12226 {
12227 	vm_paddr_t a;
12228 
12229 	if (have_addr) {
12230 		a = (vm_paddr_t)addr;
12231 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12232 	} else {
12233 		db_printf("show phys2dmap addr\n");
12234 	}
12235 }
12236 
12237 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12238 ptpages_show_page(int level, int idx, vm_page_t pg)
12239 {
12240 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12241 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12242 }
12243 
12244 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12245 ptpages_show_complain(int level, int idx, uint64_t pte)
12246 {
12247 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12248 }
12249 
12250 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12251 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12252 {
12253 	vm_page_t pg3, pg2, pg1;
12254 	pml4_entry_t *pml4;
12255 	pdp_entry_t *pdp;
12256 	pd_entry_t *pd;
12257 	int i4, i3, i2;
12258 
12259 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12260 	for (i4 = 0; i4 < num_entries; i4++) {
12261 		if ((pml4[i4] & PG_V) == 0)
12262 			continue;
12263 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12264 		if (pg3 == NULL) {
12265 			ptpages_show_complain(3, i4, pml4[i4]);
12266 			continue;
12267 		}
12268 		ptpages_show_page(3, i4, pg3);
12269 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12270 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12271 			if ((pdp[i3] & PG_V) == 0)
12272 				continue;
12273 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12274 			if (pg3 == NULL) {
12275 				ptpages_show_complain(2, i3, pdp[i3]);
12276 				continue;
12277 			}
12278 			ptpages_show_page(2, i3, pg2);
12279 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12280 			for (i2 = 0; i2 < NPDEPG; i2++) {
12281 				if ((pd[i2] & PG_V) == 0)
12282 					continue;
12283 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12284 				if (pg1 == NULL) {
12285 					ptpages_show_complain(1, i2, pd[i2]);
12286 					continue;
12287 				}
12288 				ptpages_show_page(1, i2, pg1);
12289 			}
12290 		}
12291 	}
12292 }
12293 
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12294 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12295 {
12296 	pmap_t pmap;
12297 	vm_page_t pg;
12298 	pml5_entry_t *pml5;
12299 	uint64_t PG_V;
12300 	int i5;
12301 
12302 	if (have_addr)
12303 		pmap = (pmap_t)addr;
12304 	else
12305 		pmap = PCPU_GET(curpmap);
12306 
12307 	PG_V = pmap_valid_bit(pmap);
12308 
12309 	if (pmap_is_la57(pmap)) {
12310 		pml5 = pmap->pm_pmltop;
12311 		for (i5 = 0; i5 < NUPML5E; i5++) {
12312 			if ((pml5[i5] & PG_V) == 0)
12313 				continue;
12314 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12315 			if (pg == NULL) {
12316 				ptpages_show_complain(4, i5, pml5[i5]);
12317 				continue;
12318 			}
12319 			ptpages_show_page(4, i5, pg);
12320 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12321 		}
12322 	} else {
12323 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12324 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12325 	}
12326 }
12327 #endif
12328