xref: /freebsd/sys/amd64/amd64/pmap.c (revision 476d2d8f290f60cbbe6b546272a3485ef0316356)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * Copyright (c) 2014-2020 The FreeBSD Foundation
50  * All rights reserved.
51  *
52  * This software was developed for the FreeBSD Project by Jake Burkholder,
53  * Safeport Network Services, and Network Associates Laboratories, the
54  * Security Research Division of Network Associates, Inc. under
55  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56  * CHATS research program.
57  *
58  * Portions of this software were developed by
59  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60  * the FreeBSD Foundation.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions
64  * are met:
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in the
69  *    documentation and/or other materials provided with the distribution.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  */
83 
84 #define	AMD64_NPT_AWARE
85 
86 #include <sys/cdefs.h>
87 /*
88  *	Manages physical address maps.
89  *
90  *	Since the information managed by this module is
91  *	also stored by the logical address mapping module,
92  *	this module may throw away valid virtual-to-physical
93  *	mappings at almost any time.  However, invalidations
94  *	of virtual-to-physical mappings must be done as
95  *	requested.
96  *
97  *	In order to cope with hardware architectures which
98  *	make virtual-to-physical map invalidates expensive,
99  *	this module may delay invalidate or reduced protection
100  *	operations until such time as they are actually
101  *	necessary.  This module is given full information as
102  *	to which processors are currently using which maps,
103  *	and to when physical maps must be made correct.
104  */
105 
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139 
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154 
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170 
171 #ifdef NUMA
172 #define	PMAP_MEMDOM	MAXMEMDOM
173 #else
174 #define	PMAP_MEMDOM	1
175 #endif
176 
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180 
181 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183 
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187 
188 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190 
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 	pt_entry_t mask;
195 
196 	switch (pmap->pm_type) {
197 	case PT_X86:
198 	case PT_RVI:
199 		mask = X86_PG_V;
200 		break;
201 	case PT_EPT:
202 		if (pmap_emulate_ad_bits(pmap))
203 			mask = EPT_PG_EMUL_V;
204 		else
205 			mask = EPT_PG_READ;
206 		break;
207 	default:
208 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 	}
210 
211 	return (mask);
212 }
213 
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 	pt_entry_t mask;
218 
219 	switch (pmap->pm_type) {
220 	case PT_X86:
221 	case PT_RVI:
222 		mask = X86_PG_RW;
223 		break;
224 	case PT_EPT:
225 		if (pmap_emulate_ad_bits(pmap))
226 			mask = EPT_PG_EMUL_RW;
227 		else
228 			mask = EPT_PG_WRITE;
229 		break;
230 	default:
231 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 	}
233 
234 	return (mask);
235 }
236 
237 static pt_entry_t pg_g;
238 
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 	pt_entry_t mask;
243 
244 	switch (pmap->pm_type) {
245 	case PT_X86:
246 		mask = pg_g;
247 		break;
248 	case PT_RVI:
249 	case PT_EPT:
250 		mask = 0;
251 		break;
252 	default:
253 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 	}
255 
256 	return (mask);
257 }
258 
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 	pt_entry_t mask;
263 
264 	switch (pmap->pm_type) {
265 	case PT_X86:
266 	case PT_RVI:
267 		mask = X86_PG_A;
268 		break;
269 	case PT_EPT:
270 		if (pmap_emulate_ad_bits(pmap))
271 			mask = EPT_PG_READ;
272 		else
273 			mask = EPT_PG_A;
274 		break;
275 	default:
276 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 	}
278 
279 	return (mask);
280 }
281 
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 	pt_entry_t mask;
286 
287 	switch (pmap->pm_type) {
288 	case PT_X86:
289 	case PT_RVI:
290 		mask = X86_PG_M;
291 		break;
292 	case PT_EPT:
293 		if (pmap_emulate_ad_bits(pmap))
294 			mask = EPT_PG_WRITE;
295 		else
296 			mask = EPT_PG_M;
297 		break;
298 	default:
299 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 	}
301 
302 	return (mask);
303 }
304 
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308 
309 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311 
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315 
316 	if (!pmap_emulate_ad_bits(pmap))
317 		return (true);
318 
319 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320 
321 	/*
322 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 	 * if the EPT_PG_WRITE bit is set.
325 	 */
326 	if ((pte & EPT_PG_WRITE) != 0)
327 		return (false);
328 
329 	/*
330 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 	 */
332 	if ((pte & EPT_PG_EXECUTE) == 0 ||
333 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 		return (true);
335 	else
336 		return (false);
337 }
338 
339 #ifdef PV_STATS
340 #define PV_STAT(x)	do { x ; } while (0)
341 #else
342 #define PV_STAT(x)	do { } while (0)
343 #endif
344 
345 #ifdef NUMA
346 #define	pa_index(pa)	({					\
347 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
348 	    ("address %lx beyond the last segment", (pa)));	\
349 	(pa) >> PDRSHIFT;					\
350 })
351 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
352 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
353 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
354 	struct rwlock *_lock;					\
355 	if (__predict_false((pa) > pmap_last_pa))		\
356 		_lock = &pv_dummy_large.pv_lock;		\
357 	else							\
358 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
359 	_lock;							\
360 })
361 #else
362 #define	pa_index(pa)	((pa) >> PDRSHIFT)
363 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
364 
365 #define	NPV_LIST_LOCKS	MAXCPU
366 
367 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
368 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
369 #endif
370 
371 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
372 	struct rwlock **_lockp = (lockp);		\
373 	struct rwlock *_new_lock;			\
374 							\
375 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
376 	if (_new_lock != *_lockp) {			\
377 		if (*_lockp != NULL)			\
378 			rw_wunlock(*_lockp);		\
379 		*_lockp = _new_lock;			\
380 		rw_wlock(*_lockp);			\
381 	}						\
382 } while (0)
383 
384 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
385 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
386 
387 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
388 	struct rwlock **_lockp = (lockp);		\
389 							\
390 	if (*_lockp != NULL) {				\
391 		rw_wunlock(*_lockp);			\
392 		*_lockp = NULL;				\
393 	}						\
394 } while (0)
395 
396 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
397 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
398 
399 /*
400  * Statically allocate kernel pmap memory.  However, memory for
401  * pm_pcids is obtained after the dynamic allocator is operational.
402  * Initialize it with a non-canonical pointer to catch early accesses
403  * regardless of the active mapping.
404  */
405 struct pmap kernel_pmap_store = {
406 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
407 };
408 
409 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
410 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
411 
412 int nkpt;
413 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
414     "Number of kernel page table pages allocated on bootup");
415 
416 static int ndmpdp;
417 vm_paddr_t dmaplimit;
418 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
419 pt_entry_t pg_nx;
420 
421 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
422     "VM/pmap parameters");
423 
424 static int __read_frequently pg_ps_enabled = 1;
425 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
426     &pg_ps_enabled, 0, "Are large page mappings enabled?");
427 
428 int __read_frequently la57 = 0;
429 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
430     &la57, 0,
431     "5-level paging for host is enabled");
432 
433 /*
434  * The default value is needed in order to preserve compatibility with
435  * some userspace programs that put tags into sign-extended bits.
436  */
437 int prefer_uva_la48 = 1;
438 SYSCTL_INT(_vm_pmap, OID_AUTO, prefer_uva_la48, CTLFLAG_RDTUN,
439     &prefer_uva_la48, 0,
440     "Userspace maps are limited to LA48 unless otherwise configured");
441 
442 static bool
pmap_is_la57(pmap_t pmap)443 pmap_is_la57(pmap_t pmap)
444 {
445 	if (pmap->pm_type == PT_X86)
446 		return (la57);
447 	return (false);		/* XXXKIB handle EPT */
448 }
449 
450 #define	PAT_INDEX_SIZE	8
451 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
452 
453 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
454 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
455 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
456 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
457 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
458 					   if supported */
459 
460 #ifdef KASAN
461 static uint64_t		KASANPDPphys;
462 #endif
463 #ifdef KMSAN
464 static uint64_t		KMSANSHADPDPphys;
465 static uint64_t		KMSANORIGPDPphys;
466 
467 /*
468  * To support systems with large amounts of memory, it is necessary to extend
469  * the maximum size of the direct map.  This could eat into the space reserved
470  * for the shadow map.
471  */
472 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
473 #endif
474 
475 static pml4_entry_t	*kernel_pml4;
476 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
477 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
478 static int		ndmpdpphys;	/* number of DMPDPphys pages */
479 
480 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
481 vm_paddr_t		KERNend;	/* and the end */
482 
483 /*
484  * pmap_mapdev support pre initialization (i.e. console)
485  */
486 #define	PMAP_PREINIT_MAPPING_COUNT	8
487 static struct pmap_preinit_mapping {
488 	vm_paddr_t	pa;
489 	vm_offset_t	va;
490 	vm_size_t	sz;
491 	int		mode;
492 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
493 static int pmap_initialized;
494 
495 /*
496  * Data for the pv entry allocation mechanism.
497  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
498  */
499 #ifdef NUMA
500 static __inline int
pc_to_domain(struct pv_chunk * pc)501 pc_to_domain(struct pv_chunk *pc)
502 {
503 
504 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
505 }
506 #else
507 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)508 pc_to_domain(struct pv_chunk *pc __unused)
509 {
510 
511 	return (0);
512 }
513 #endif
514 
515 struct pv_chunks_list {
516 	struct mtx pvc_lock;
517 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
518 	int active_reclaims;
519 } __aligned(CACHE_LINE_SIZE);
520 
521 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
522 
523 #ifdef	NUMA
524 struct pmap_large_md_page {
525 	struct rwlock   pv_lock;
526 	struct md_page  pv_page;
527 	u_long pv_invl_gen;
528 };
529 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
530 #define pv_dummy pv_dummy_large.pv_page
531 __read_mostly static struct pmap_large_md_page *pv_table;
532 __read_mostly vm_paddr_t pmap_last_pa;
533 #else
534 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
535 static u_long pv_invl_gen[NPV_LIST_LOCKS];
536 static struct md_page *pv_table;
537 static struct md_page pv_dummy;
538 #endif
539 
540 /*
541  * All those kernel PT submaps that BSD is so fond of
542  */
543 pt_entry_t *CMAP1 = NULL;
544 caddr_t CADDR1 = 0;
545 static vm_offset_t qframe = 0;
546 static struct mtx qframe_mtx;
547 
548 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
549 
550 static vmem_t *large_vmem;
551 static u_int lm_ents;
552 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
553 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
554 
555 int pmap_pcid_enabled = 1;
556 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
557     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
558 int invpcid_works = 0;
559 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
560     "Is the invpcid instruction available ?");
561 int invlpgb_works;
562 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
563     "Is the invlpgb instruction available?");
564 int invlpgb_maxcnt;
565 int pmap_pcid_invlpg_workaround = 0;
566 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
567     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
568     &pmap_pcid_invlpg_workaround, 0,
569     "Enable small core PCID/INVLPG workaround");
570 int pmap_pcid_invlpg_workaround_uena = 1;
571 
572 int __read_frequently pti = 0;
573 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
574     &pti, 0,
575     "Page Table Isolation enabled");
576 static vm_object_t pti_obj;
577 static pml4_entry_t *pti_pml4;
578 static vm_pindex_t pti_pg_idx;
579 static bool pti_finalized;
580 
581 static int pmap_growkernel_panic = 0;
582 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
583     &pmap_growkernel_panic, 0,
584     "panic on failure to allocate kernel page table page");
585 
586 struct pmap_pkru_range {
587 	struct rs_el	pkru_rs_el;
588 	u_int		pkru_keyidx;
589 	int		pkru_flags;
590 };
591 
592 static uma_zone_t pmap_pkru_ranges_zone;
593 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
594     pt_entry_t *pte);
595 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
596 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
597 static void *pkru_dup_range(void *ctx, void *data);
598 static void pkru_free_range(void *ctx, void *node);
599 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
600 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
601 static void pmap_pkru_deassign_all(pmap_t pmap);
602 
603 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
604 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
605     &pcid_save_cnt, "Count of saved TLB context on switch");
606 
607 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
608     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
609 static struct mtx invl_gen_mtx;
610 /* Fake lock object to satisfy turnstiles interface. */
611 static struct lock_object invl_gen_ts = {
612 	.lo_name = "invlts",
613 };
614 static struct pmap_invl_gen pmap_invl_gen_head = {
615 	.gen = 1,
616 	.next = NULL,
617 };
618 static u_long pmap_invl_gen = 1;
619 static int pmap_invl_waiters;
620 static struct callout pmap_invl_callout;
621 static bool pmap_invl_callout_inited;
622 
623 #define	PMAP_ASSERT_NOT_IN_DI() \
624     KASSERT(pmap_not_in_di(), ("DI already started"))
625 
626 static bool
pmap_di_locked(void)627 pmap_di_locked(void)
628 {
629 	int tun;
630 
631 	if ((cpu_feature2 & CPUID2_CX16) == 0)
632 		return (true);
633 	tun = 0;
634 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
635 	return (tun != 0);
636 }
637 
638 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)639 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
640 {
641 	int locked;
642 
643 	locked = pmap_di_locked();
644 	return (sysctl_handle_int(oidp, &locked, 0, req));
645 }
646 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
647     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
648     "Locked delayed invalidation");
649 
650 static bool pmap_not_in_di_l(void);
651 static bool pmap_not_in_di_u(void);
652 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
653 {
654 
655 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
656 }
657 
658 static bool
pmap_not_in_di_l(void)659 pmap_not_in_di_l(void)
660 {
661 	struct pmap_invl_gen *invl_gen;
662 
663 	invl_gen = &curthread->td_md.md_invl_gen;
664 	return (invl_gen->gen == 0);
665 }
666 
667 static void
pmap_thread_init_invl_gen_l(struct thread * td)668 pmap_thread_init_invl_gen_l(struct thread *td)
669 {
670 	struct pmap_invl_gen *invl_gen;
671 
672 	invl_gen = &td->td_md.md_invl_gen;
673 	invl_gen->gen = 0;
674 }
675 
676 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)677 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
678 {
679 	struct turnstile *ts;
680 
681 	ts = turnstile_trywait(&invl_gen_ts);
682 	if (*m_gen > atomic_load_long(invl_gen))
683 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
684 	else
685 		turnstile_cancel(ts);
686 }
687 
688 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)689 pmap_delayed_invl_finish_unblock(u_long new_gen)
690 {
691 	struct turnstile *ts;
692 
693 	turnstile_chain_lock(&invl_gen_ts);
694 	ts = turnstile_lookup(&invl_gen_ts);
695 	if (new_gen != 0)
696 		pmap_invl_gen = new_gen;
697 	if (ts != NULL) {
698 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
699 		turnstile_unpend(ts);
700 	}
701 	turnstile_chain_unlock(&invl_gen_ts);
702 }
703 
704 /*
705  * Start a new Delayed Invalidation (DI) block of code, executed by
706  * the current thread.  Within a DI block, the current thread may
707  * destroy both the page table and PV list entries for a mapping and
708  * then release the corresponding PV list lock before ensuring that
709  * the mapping is flushed from the TLBs of any processors with the
710  * pmap active.
711  */
712 static void
pmap_delayed_invl_start_l(void)713 pmap_delayed_invl_start_l(void)
714 {
715 	struct pmap_invl_gen *invl_gen;
716 	u_long currgen;
717 
718 	invl_gen = &curthread->td_md.md_invl_gen;
719 	PMAP_ASSERT_NOT_IN_DI();
720 	mtx_lock(&invl_gen_mtx);
721 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
722 		currgen = pmap_invl_gen;
723 	else
724 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
725 	invl_gen->gen = currgen + 1;
726 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
727 	mtx_unlock(&invl_gen_mtx);
728 }
729 
730 /*
731  * Finish the DI block, previously started by the current thread.  All
732  * required TLB flushes for the pages marked by
733  * pmap_delayed_invl_page() must be finished before this function is
734  * called.
735  *
736  * This function works by bumping the global DI generation number to
737  * the generation number of the current thread's DI, unless there is a
738  * pending DI that started earlier.  In the latter case, bumping the
739  * global DI generation number would incorrectly signal that the
740  * earlier DI had finished.  Instead, this function bumps the earlier
741  * DI's generation number to match the generation number of the
742  * current thread's DI.
743  */
744 static void
pmap_delayed_invl_finish_l(void)745 pmap_delayed_invl_finish_l(void)
746 {
747 	struct pmap_invl_gen *invl_gen, *next;
748 
749 	invl_gen = &curthread->td_md.md_invl_gen;
750 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
751 	mtx_lock(&invl_gen_mtx);
752 	next = LIST_NEXT(invl_gen, link);
753 	if (next == NULL)
754 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
755 	else
756 		next->gen = invl_gen->gen;
757 	LIST_REMOVE(invl_gen, link);
758 	mtx_unlock(&invl_gen_mtx);
759 	invl_gen->gen = 0;
760 }
761 
762 static bool
pmap_not_in_di_u(void)763 pmap_not_in_di_u(void)
764 {
765 	struct pmap_invl_gen *invl_gen;
766 
767 	invl_gen = &curthread->td_md.md_invl_gen;
768 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
769 }
770 
771 static void
pmap_thread_init_invl_gen_u(struct thread * td)772 pmap_thread_init_invl_gen_u(struct thread *td)
773 {
774 	struct pmap_invl_gen *invl_gen;
775 
776 	invl_gen = &td->td_md.md_invl_gen;
777 	invl_gen->gen = 0;
778 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
779 }
780 
781 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)782 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
783 {
784 	uint64_t new_high, new_low, old_high, old_low;
785 	char res;
786 
787 	old_low = new_low = 0;
788 	old_high = new_high = (uintptr_t)0;
789 
790 	__asm volatile("lock;cmpxchg16b\t%1"
791 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
792 	    : "b"(new_low), "c" (new_high)
793 	    : "memory", "cc");
794 	if (res == 0) {
795 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
796 			return (false);
797 		out->gen = old_low;
798 		out->next = (void *)old_high;
799 	} else {
800 		out->gen = new_low;
801 		out->next = (void *)new_high;
802 	}
803 	return (true);
804 }
805 
806 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)807 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
808     struct pmap_invl_gen *new_val)
809 {
810 	uint64_t new_high, new_low, old_high, old_low;
811 	char res;
812 
813 	new_low = new_val->gen;
814 	new_high = (uintptr_t)new_val->next;
815 	old_low = old_val->gen;
816 	old_high = (uintptr_t)old_val->next;
817 
818 	__asm volatile("lock;cmpxchg16b\t%1"
819 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
820 	    : "b"(new_low), "c" (new_high)
821 	    : "memory", "cc");
822 	return (res);
823 }
824 
825 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
826 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
827     &pv_page_count, "Current number of allocated pv pages");
828 
829 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
830 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
831     &user_pt_page_count,
832     "Current number of allocated page table pages for userspace");
833 
834 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
835 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
836     &kernel_pt_page_count,
837     "Current number of allocated page table pages for the kernel");
838 
839 #ifdef PV_STATS
840 
841 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
842 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
843     CTLFLAG_RD, &invl_start_restart,
844     "Number of delayed TLB invalidation request restarts");
845 
846 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
847 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
848     &invl_finish_restart,
849     "Number of delayed TLB invalidation completion restarts");
850 
851 static int invl_max_qlen;
852 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
853     &invl_max_qlen, 0,
854     "Maximum delayed TLB invalidation request queue length");
855 #endif
856 
857 #define di_delay	locks_delay
858 
859 static void
pmap_delayed_invl_start_u(void)860 pmap_delayed_invl_start_u(void)
861 {
862 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
863 	struct thread *td;
864 	struct lock_delay_arg lda;
865 	uintptr_t prevl;
866 	u_char pri;
867 #ifdef PV_STATS
868 	int i, ii;
869 #endif
870 
871 	td = curthread;
872 	invl_gen = &td->td_md.md_invl_gen;
873 	PMAP_ASSERT_NOT_IN_DI();
874 	lock_delay_arg_init(&lda, &di_delay);
875 	invl_gen->saved_pri = 0;
876 	pri = td->td_base_pri;
877 	if (pri > PVM) {
878 		thread_lock(td);
879 		pri = td->td_base_pri;
880 		if (pri > PVM) {
881 			invl_gen->saved_pri = pri;
882 			sched_prio(td, PVM);
883 		}
884 		thread_unlock(td);
885 	}
886 again:
887 	PV_STAT(i = 0);
888 	for (p = &pmap_invl_gen_head;; p = prev.next) {
889 		PV_STAT(i++);
890 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
891 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
892 			PV_STAT(counter_u64_add(invl_start_restart, 1));
893 			lock_delay(&lda);
894 			goto again;
895 		}
896 		if (prevl == 0)
897 			break;
898 		prev.next = (void *)prevl;
899 	}
900 #ifdef PV_STATS
901 	if ((ii = invl_max_qlen) < i)
902 		atomic_cmpset_int(&invl_max_qlen, ii, i);
903 #endif
904 
905 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
906 		PV_STAT(counter_u64_add(invl_start_restart, 1));
907 		lock_delay(&lda);
908 		goto again;
909 	}
910 
911 	new_prev.gen = prev.gen;
912 	new_prev.next = invl_gen;
913 	invl_gen->gen = prev.gen + 1;
914 
915 	/* Formal fence between store to invl->gen and updating *p. */
916 	atomic_thread_fence_rel();
917 
918 	/*
919 	 * After inserting an invl_gen element with invalid bit set,
920 	 * this thread blocks any other thread trying to enter the
921 	 * delayed invalidation block.  Do not allow to remove us from
922 	 * the CPU, because it causes starvation for other threads.
923 	 */
924 	critical_enter();
925 
926 	/*
927 	 * ABA for *p is not possible there, since p->gen can only
928 	 * increase.  So if the *p thread finished its di, then
929 	 * started a new one and got inserted into the list at the
930 	 * same place, its gen will appear greater than the previously
931 	 * read gen.
932 	 */
933 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
934 		critical_exit();
935 		PV_STAT(counter_u64_add(invl_start_restart, 1));
936 		lock_delay(&lda);
937 		goto again;
938 	}
939 
940 	/*
941 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
942 	 * invl_gen->next, allowing other threads to iterate past us.
943 	 * pmap_di_store_invl() provides fence between the generation
944 	 * write and the update of next.
945 	 */
946 	invl_gen->next = NULL;
947 	critical_exit();
948 }
949 
950 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)951 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
952     struct pmap_invl_gen *p)
953 {
954 	struct pmap_invl_gen prev, new_prev;
955 	u_long mygen;
956 
957 	/*
958 	 * Load invl_gen->gen after setting invl_gen->next
959 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
960 	 * generations to propagate to our invl_gen->gen.  Lock prefix
961 	 * in atomic_set_ptr() worked as seq_cst fence.
962 	 */
963 	mygen = atomic_load_long(&invl_gen->gen);
964 
965 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
966 		return (false);
967 
968 	KASSERT(prev.gen < mygen,
969 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
970 	new_prev.gen = mygen;
971 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
972 	    ~PMAP_INVL_GEN_NEXT_INVALID);
973 
974 	/* Formal fence between load of prev and storing update to it. */
975 	atomic_thread_fence_rel();
976 
977 	return (pmap_di_store_invl(p, &prev, &new_prev));
978 }
979 
980 static void
pmap_delayed_invl_finish_u(void)981 pmap_delayed_invl_finish_u(void)
982 {
983 	struct pmap_invl_gen *invl_gen, *p;
984 	struct thread *td;
985 	struct lock_delay_arg lda;
986 	uintptr_t prevl;
987 
988 	td = curthread;
989 	invl_gen = &td->td_md.md_invl_gen;
990 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
991 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
992 	    ("missed invl_start: INVALID"));
993 	lock_delay_arg_init(&lda, &di_delay);
994 
995 again:
996 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
997 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
998 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
999 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
1000 			lock_delay(&lda);
1001 			goto again;
1002 		}
1003 		if ((void *)prevl == invl_gen)
1004 			break;
1005 	}
1006 
1007 	/*
1008 	 * It is legitimate to not find ourself on the list if a
1009 	 * thread before us finished its DI and started it again.
1010 	 */
1011 	if (__predict_false(p == NULL)) {
1012 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1013 		lock_delay(&lda);
1014 		goto again;
1015 	}
1016 
1017 	critical_enter();
1018 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1019 	    PMAP_INVL_GEN_NEXT_INVALID);
1020 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1021 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1022 		    PMAP_INVL_GEN_NEXT_INVALID);
1023 		critical_exit();
1024 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1025 		lock_delay(&lda);
1026 		goto again;
1027 	}
1028 	critical_exit();
1029 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1030 		pmap_delayed_invl_finish_unblock(0);
1031 	if (invl_gen->saved_pri != 0) {
1032 		thread_lock(td);
1033 		sched_prio(td, invl_gen->saved_pri);
1034 		thread_unlock(td);
1035 	}
1036 }
1037 
1038 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1039 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1040 {
1041 	struct pmap_invl_gen *p, *pn;
1042 	struct thread *td;
1043 	uintptr_t nextl;
1044 	bool first;
1045 
1046 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1047 	    first = false) {
1048 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1049 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1050 		td = first ? NULL : __containerof(p, struct thread,
1051 		    td_md.md_invl_gen);
1052 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1053 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1054 		    td != NULL ? td->td_tid : -1);
1055 	}
1056 }
1057 #endif
1058 
1059 #ifdef PV_STATS
1060 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1061 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1062     CTLFLAG_RD, &invl_wait,
1063     "Number of times DI invalidation blocked pmap_remove_all/write");
1064 
1065 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1066 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1067      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1068 
1069 #endif
1070 
1071 #ifdef NUMA
1072 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1073 pmap_delayed_invl_genp(vm_page_t m)
1074 {
1075 	vm_paddr_t pa;
1076 	u_long *gen;
1077 
1078 	pa = VM_PAGE_TO_PHYS(m);
1079 	if (__predict_false((pa) > pmap_last_pa))
1080 		gen = &pv_dummy_large.pv_invl_gen;
1081 	else
1082 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1083 
1084 	return (gen);
1085 }
1086 #else
1087 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1088 pmap_delayed_invl_genp(vm_page_t m)
1089 {
1090 
1091 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1092 }
1093 #endif
1094 
1095 static void
pmap_delayed_invl_callout_func(void * arg __unused)1096 pmap_delayed_invl_callout_func(void *arg __unused)
1097 {
1098 
1099 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1100 		return;
1101 	pmap_delayed_invl_finish_unblock(0);
1102 }
1103 
1104 static void
pmap_delayed_invl_callout_init(void * arg __unused)1105 pmap_delayed_invl_callout_init(void *arg __unused)
1106 {
1107 
1108 	if (pmap_di_locked())
1109 		return;
1110 	callout_init(&pmap_invl_callout, 1);
1111 	pmap_invl_callout_inited = true;
1112 }
1113 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1114     pmap_delayed_invl_callout_init, NULL);
1115 
1116 /*
1117  * Ensure that all currently executing DI blocks, that need to flush
1118  * TLB for the given page m, actually flushed the TLB at the time the
1119  * function returned.  If the page m has an empty PV list and we call
1120  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1121  * valid mapping for the page m in either its page table or TLB.
1122  *
1123  * This function works by blocking until the global DI generation
1124  * number catches up with the generation number associated with the
1125  * given page m and its PV list.  Since this function's callers
1126  * typically own an object lock and sometimes own a page lock, it
1127  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1128  * processor.
1129  */
1130 static void
pmap_delayed_invl_wait_l(vm_page_t m)1131 pmap_delayed_invl_wait_l(vm_page_t m)
1132 {
1133 	u_long *m_gen;
1134 #ifdef PV_STATS
1135 	bool accounted = false;
1136 #endif
1137 
1138 	m_gen = pmap_delayed_invl_genp(m);
1139 	while (*m_gen > pmap_invl_gen) {
1140 #ifdef PV_STATS
1141 		if (!accounted) {
1142 			counter_u64_add(invl_wait, 1);
1143 			accounted = true;
1144 		}
1145 #endif
1146 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1147 	}
1148 }
1149 
1150 static void
pmap_delayed_invl_wait_u(vm_page_t m)1151 pmap_delayed_invl_wait_u(vm_page_t m)
1152 {
1153 	u_long *m_gen;
1154 	struct lock_delay_arg lda;
1155 	bool fast;
1156 
1157 	fast = true;
1158 	m_gen = pmap_delayed_invl_genp(m);
1159 	lock_delay_arg_init(&lda, &di_delay);
1160 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1161 		if (fast || !pmap_invl_callout_inited) {
1162 			PV_STAT(counter_u64_add(invl_wait, 1));
1163 			lock_delay(&lda);
1164 			fast = false;
1165 		} else {
1166 			/*
1167 			 * The page's invalidation generation number
1168 			 * is still below the current thread's number.
1169 			 * Prepare to block so that we do not waste
1170 			 * CPU cycles or worse, suffer livelock.
1171 			 *
1172 			 * Since it is impossible to block without
1173 			 * racing with pmap_delayed_invl_finish_u(),
1174 			 * prepare for the race by incrementing
1175 			 * pmap_invl_waiters and arming a 1-tick
1176 			 * callout which will unblock us if we lose
1177 			 * the race.
1178 			 */
1179 			atomic_add_int(&pmap_invl_waiters, 1);
1180 
1181 			/*
1182 			 * Re-check the current thread's invalidation
1183 			 * generation after incrementing
1184 			 * pmap_invl_waiters, so that there is no race
1185 			 * with pmap_delayed_invl_finish_u() setting
1186 			 * the page generation and checking
1187 			 * pmap_invl_waiters.  The only race allowed
1188 			 * is for a missed unblock, which is handled
1189 			 * by the callout.
1190 			 */
1191 			if (*m_gen >
1192 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1193 				callout_reset(&pmap_invl_callout, 1,
1194 				    pmap_delayed_invl_callout_func, NULL);
1195 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1196 				pmap_delayed_invl_wait_block(m_gen,
1197 				    &pmap_invl_gen_head.gen);
1198 			}
1199 			atomic_add_int(&pmap_invl_waiters, -1);
1200 		}
1201 	}
1202 }
1203 
1204 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1205 {
1206 
1207 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1208 	    pmap_thread_init_invl_gen_u);
1209 }
1210 
1211 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1212 {
1213 
1214 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1215 	    pmap_delayed_invl_start_u);
1216 }
1217 
1218 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1219 {
1220 
1221 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1222 	    pmap_delayed_invl_finish_u);
1223 }
1224 
1225 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1226 {
1227 
1228 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1229 	    pmap_delayed_invl_wait_u);
1230 }
1231 
1232 /*
1233  * Mark the page m's PV list as participating in the current thread's
1234  * DI block.  Any threads concurrently using m's PV list to remove or
1235  * restrict all mappings to m will wait for the current thread's DI
1236  * block to complete before proceeding.
1237  *
1238  * The function works by setting the DI generation number for m's PV
1239  * list to at least the DI generation number of the current thread.
1240  * This forces a caller of pmap_delayed_invl_wait() to block until
1241  * current thread calls pmap_delayed_invl_finish().
1242  */
1243 static void
pmap_delayed_invl_page(vm_page_t m)1244 pmap_delayed_invl_page(vm_page_t m)
1245 {
1246 	u_long gen, *m_gen;
1247 
1248 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1249 	gen = curthread->td_md.md_invl_gen.gen;
1250 	if (gen == 0)
1251 		return;
1252 	m_gen = pmap_delayed_invl_genp(m);
1253 	if (*m_gen < gen)
1254 		*m_gen = gen;
1255 }
1256 
1257 /*
1258  * Crashdump maps.
1259  */
1260 static caddr_t crashdumpmap;
1261 
1262 /*
1263  * Internal flags for pmap_enter()'s helper functions.
1264  */
1265 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1266 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1267 
1268 /*
1269  * Internal flags for pmap_mapdev_internal() and
1270  * pmap_change_props_locked().
1271  */
1272 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1273 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1274 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1275 
1276 TAILQ_HEAD(pv_chunklist, pv_chunk);
1277 
1278 static void	free_pv_chunk(struct pv_chunk *pc);
1279 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1280 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1281 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1282 static int	popcnt_pc_map_pq(uint64_t *map);
1283 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1284 static void	reserve_pv_entries(pmap_t pmap, int needed,
1285 		    struct rwlock **lockp);
1286 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1287 		    struct rwlock **lockp);
1288 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1289 		    u_int flags, struct rwlock **lockp);
1290 #if VM_NRESERVLEVEL > 0
1291 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1292 		    struct rwlock **lockp);
1293 #endif
1294 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1295 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1296 		    vm_offset_t va);
1297 
1298 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1299 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1300     vm_prot_t prot, int mode, int flags);
1301 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1302 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1303     vm_offset_t va, struct rwlock **lockp);
1304 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1305     vm_offset_t va, vm_page_t m);
1306 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1307 		    vm_prot_t prot, struct rwlock **lockp);
1308 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1309 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1310 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1311     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1312 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1313 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1314     bool allpte_PG_A_set);
1315 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1316     vm_offset_t eva);
1317 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1318     vm_offset_t eva);
1319 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1320 		    pd_entry_t pde);
1321 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1322 static vm_page_t pmap_large_map_getptp_unlocked(void);
1323 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1324 #if VM_NRESERVLEVEL > 0
1325 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1326     vm_page_t mpte, struct rwlock **lockp);
1327 #endif
1328 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1329     vm_prot_t prot);
1330 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1331 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1332     bool exec);
1333 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1334 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1335 static void pmap_pti_wire_pte(void *pte);
1336 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1337     bool remove_pt, struct spglist *free, struct rwlock **lockp);
1338 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1339     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1340 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1341 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1342     struct spglist *free);
1343 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1344 		    pd_entry_t *pde, struct spglist *free,
1345 		    struct rwlock **lockp);
1346 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1347     vm_page_t m, struct rwlock **lockp);
1348 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1349     pd_entry_t newpde);
1350 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1351 
1352 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1353 		struct rwlock **lockp);
1354 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1355 		struct rwlock **lockp, vm_offset_t va);
1356 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1357 		struct rwlock **lockp, vm_offset_t va);
1358 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1359 		struct rwlock **lockp);
1360 
1361 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1362     struct spglist *free);
1363 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1364 
1365 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1366 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1367 
1368 /********************/
1369 /* Inline functions */
1370 /********************/
1371 
1372 /*
1373  * Return a non-clipped indexes for a given VA, which are page table
1374  * pages indexes at the corresponding level.
1375  */
1376 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1377 pmap_pde_pindex(vm_offset_t va)
1378 {
1379 	return (va >> PDRSHIFT);
1380 }
1381 
1382 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1383 pmap_pdpe_pindex(vm_offset_t va)
1384 {
1385 	return (NUPDE + (va >> PDPSHIFT));
1386 }
1387 
1388 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1389 pmap_pml4e_pindex(vm_offset_t va)
1390 {
1391 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1392 }
1393 
1394 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1395 pmap_pml5e_pindex(vm_offset_t va)
1396 {
1397 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1398 }
1399 
1400 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1401 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1402 {
1403 
1404 	MPASS(pmap_is_la57(pmap));
1405 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1406 }
1407 
1408 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1409 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1410 {
1411 
1412 	MPASS(pmap_is_la57(pmap));
1413 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1414 }
1415 
1416 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1417 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1418 {
1419 	pml4_entry_t *pml4e;
1420 
1421 	/* XXX MPASS(pmap_is_la57(pmap); */
1422 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1423 	return (&pml4e[pmap_pml4e_index(va)]);
1424 }
1425 
1426 /* Return a pointer to the PML4 slot that corresponds to a VA */
1427 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1428 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1429 {
1430 	pml5_entry_t *pml5e;
1431 	pml4_entry_t *pml4e;
1432 	pt_entry_t PG_V;
1433 
1434 	if (pmap_is_la57(pmap)) {
1435 		pml5e = pmap_pml5e(pmap, va);
1436 		PG_V = pmap_valid_bit(pmap);
1437 		if ((*pml5e & PG_V) == 0)
1438 			return (NULL);
1439 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1440 	} else {
1441 		pml4e = pmap->pm_pmltop;
1442 	}
1443 	return (&pml4e[pmap_pml4e_index(va)]);
1444 }
1445 
1446 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1447 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1448 {
1449 	MPASS(!pmap_is_la57(pmap));
1450 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1451 }
1452 
1453 /* Return a pointer to the PDP slot that corresponds to a VA */
1454 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1455 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1456 {
1457 	pdp_entry_t *pdpe;
1458 
1459 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1460 	return (&pdpe[pmap_pdpe_index(va)]);
1461 }
1462 
1463 /* Return a pointer to the PDP slot that corresponds to a VA */
1464 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1465 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1466 {
1467 	pml4_entry_t *pml4e;
1468 	pt_entry_t PG_V;
1469 
1470 	PG_V = pmap_valid_bit(pmap);
1471 	pml4e = pmap_pml4e(pmap, va);
1472 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1473 		return (NULL);
1474 	return (pmap_pml4e_to_pdpe(pml4e, va));
1475 }
1476 
1477 /* Return a pointer to the PD slot that corresponds to a VA */
1478 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1479 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1480 {
1481 	pd_entry_t *pde;
1482 
1483 	KASSERT((*pdpe & PG_PS) == 0,
1484 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1485 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1486 	return (&pde[pmap_pde_index(va)]);
1487 }
1488 
1489 /* Return a pointer to the PD slot that corresponds to a VA */
1490 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1491 pmap_pde(pmap_t pmap, vm_offset_t va)
1492 {
1493 	pdp_entry_t *pdpe;
1494 	pt_entry_t PG_V;
1495 
1496 	PG_V = pmap_valid_bit(pmap);
1497 	pdpe = pmap_pdpe(pmap, va);
1498 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1499 		return (NULL);
1500 	KASSERT((*pdpe & PG_PS) == 0,
1501 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1502 	return (pmap_pdpe_to_pde(pdpe, va));
1503 }
1504 
1505 /* Return a pointer to the PT slot that corresponds to a VA */
1506 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1507 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1508 {
1509 	pt_entry_t *pte;
1510 
1511 	KASSERT((*pde & PG_PS) == 0,
1512 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1513 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1514 	return (&pte[pmap_pte_index(va)]);
1515 }
1516 
1517 /* Return a pointer to the PT slot that corresponds to a VA */
1518 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1519 pmap_pte(pmap_t pmap, vm_offset_t va)
1520 {
1521 	pd_entry_t *pde;
1522 	pt_entry_t PG_V;
1523 
1524 	PG_V = pmap_valid_bit(pmap);
1525 	pde = pmap_pde(pmap, va);
1526 	if (pde == NULL || (*pde & PG_V) == 0)
1527 		return (NULL);
1528 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1529 		return ((pt_entry_t *)pde);
1530 	return (pmap_pde_to_pte(pde, va));
1531 }
1532 
1533 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1534 pmap_resident_count_adj(pmap_t pmap, int count)
1535 {
1536 
1537 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1538 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1539 	    ("pmap %p resident count underflow %ld %d", pmap,
1540 	    pmap->pm_stats.resident_count, count));
1541 	pmap->pm_stats.resident_count += count;
1542 }
1543 
1544 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1545 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1546 {
1547 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1548 	    ("pmap %p resident count underflow %ld %d", pmap,
1549 	    pmap->pm_stats.resident_count, count));
1550 	pmap->pm_stats.resident_count += count;
1551 }
1552 
1553 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1554 pmap_pt_page_count_adj(pmap_t pmap, int count)
1555 {
1556 	if (pmap == kernel_pmap)
1557 		counter_u64_add(kernel_pt_page_count, count);
1558 	else {
1559 		if (pmap != NULL)
1560 			pmap_resident_count_adj(pmap, count);
1561 		counter_u64_add(user_pt_page_count, count);
1562 	}
1563 }
1564 
1565 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1566     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1567 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1568 
1569 pt_entry_t *
vtopte(vm_offset_t va)1570 vtopte(vm_offset_t va)
1571 {
1572 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1573 
1574 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1575 }
1576 
1577 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1578     NPML4EPGSHIFT)) - 1) << 3;
1579 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1580 
1581 static __inline pd_entry_t *
vtopde(vm_offset_t va)1582 vtopde(vm_offset_t va)
1583 {
1584 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1585 
1586 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1587 }
1588 
1589 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1590 allocpages(vm_paddr_t *firstaddr, int n)
1591 {
1592 	u_int64_t ret;
1593 
1594 	ret = *firstaddr;
1595 	bzero((void *)ret, n * PAGE_SIZE);
1596 	*firstaddr += n * PAGE_SIZE;
1597 	return (ret);
1598 }
1599 
1600 CTASSERT(powerof2(NDMPML4E));
1601 
1602 /* number of kernel PDP slots */
1603 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1604 
1605 static void
nkpt_init(vm_paddr_t addr)1606 nkpt_init(vm_paddr_t addr)
1607 {
1608 	int pt_pages;
1609 
1610 #ifdef NKPT
1611 	pt_pages = NKPT;
1612 #else
1613 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1614 	pt_pages += NKPDPE(pt_pages);
1615 
1616 	/*
1617 	 * Add some slop beyond the bare minimum required for bootstrapping
1618 	 * the kernel.
1619 	 *
1620 	 * This is quite important when allocating KVA for kernel modules.
1621 	 * The modules are required to be linked in the negative 2GB of
1622 	 * the address space.  If we run out of KVA in this region then
1623 	 * pmap_growkernel() will need to allocate page table pages to map
1624 	 * the entire 512GB of KVA space which is an unnecessary tax on
1625 	 * physical memory.
1626 	 *
1627 	 * Secondly, device memory mapped as part of setting up the low-
1628 	 * level console(s) is taken from KVA, starting at virtual_avail.
1629 	 * This is because cninit() is called after pmap_bootstrap() but
1630 	 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1631 	 * is not uncommon.
1632 	 */
1633 	pt_pages += 32;		/* 64MB additional slop. */
1634 #endif
1635 	nkpt = pt_pages;
1636 }
1637 
1638 /*
1639  * Returns the proper write/execute permission for a physical page that is
1640  * part of the initial boot allocations.
1641  *
1642  * If the page has kernel text, it is marked as read-only. If the page has
1643  * kernel read-only data, it is marked as read-only/not-executable. If the
1644  * page has only read-write data, it is marked as read-write/not-executable.
1645  * If the page is below/above the kernel range, it is marked as read-write.
1646  *
1647  * This function operates on 2M pages, since we map the kernel space that
1648  * way.
1649  */
1650 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1651 bootaddr_rwx(vm_paddr_t pa)
1652 {
1653 	/*
1654 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1655 	 * need not be executable.  The .bss section is padded to a 2MB
1656 	 * boundary, so memory following the kernel need not be executable
1657 	 * either.  Preloaded kernel modules have their mapping permissions
1658 	 * fixed up by the linker.
1659 	 */
1660 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1661 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1662 		return (X86_PG_RW | pg_nx);
1663 
1664 	/*
1665 	 * The linker should ensure that the read-only and read-write
1666 	 * portions don't share the same 2M page, so this shouldn't
1667 	 * impact read-only data. However, in any case, any page with
1668 	 * read-write data needs to be read-write.
1669 	 */
1670 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1671 		return (X86_PG_RW | pg_nx);
1672 
1673 	/*
1674 	 * Mark any 2M page containing kernel text as read-only. Mark
1675 	 * other pages with read-only data as read-only and not executable.
1676 	 * (It is likely a small portion of the read-only data section will
1677 	 * be marked as read-only, but executable. This should be acceptable
1678 	 * since the read-only protection will keep the data from changing.)
1679 	 * Note that fixups to the .text section will still work until we
1680 	 * set CR0.WP.
1681 	 */
1682 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1683 		return (0);
1684 	return (pg_nx);
1685 }
1686 
1687 extern const char la57_trampoline[];
1688 
1689 static void
pmap_bootstrap_la57(vm_paddr_t * firstaddr)1690 pmap_bootstrap_la57(vm_paddr_t *firstaddr)
1691 {
1692 	void (*la57_tramp)(uint64_t pml5);
1693 	pml5_entry_t *pt;
1694 
1695 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
1696 		return;
1697 	la57 = 1;
1698 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
1699 	if (!la57)
1700 		return;
1701 
1702 	KPML5phys = allocpages(firstaddr, 1);
1703 	KPML4phys = rcr3() & 0xfffff000; /* pml4 from loader must be < 4G */
1704 
1705 	pt = (pml5_entry_t *)KPML5phys;
1706 	pt[0] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
1707 	pt[NPML4EPG - 1] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A |
1708 	    X86_PG_M;
1709 
1710 	la57_tramp = (void (*)(uint64_t))((uintptr_t)la57_trampoline -
1711 	    KERNSTART + amd64_loadaddr());
1712 	printf("Calling la57 trampoline at %p, KPML5phys %#lx ...",
1713 	    la57_tramp, KPML5phys);
1714 	la57_tramp(KPML5phys);
1715 	printf(" alive in la57 mode\n");
1716 }
1717 
1718 static void
create_pagetables(vm_paddr_t * firstaddr)1719 create_pagetables(vm_paddr_t *firstaddr)
1720 {
1721 	pd_entry_t *pd_p;
1722 	pdp_entry_t *pdp_p;
1723 	pml4_entry_t *p4_p;
1724 	pml5_entry_t *p5_p;
1725 	uint64_t DMPDkernphys;
1726 	vm_paddr_t pax;
1727 #ifdef KASAN
1728 	pt_entry_t *pt_p;
1729 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1730 	vm_offset_t kasankernbase;
1731 	int kasankpdpi, kasankpdi, nkasanpte;
1732 #endif
1733 	int i, j, ndm1g, nkpdpe, nkdmpde;
1734 
1735 	TSENTER();
1736 	/* Allocate page table pages for the direct map */
1737 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1738 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1739 		ndmpdp = 4;
1740 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1741 	if (ndmpdpphys > NDMPML4E) {
1742 		/*
1743 		 * Each NDMPML4E allows 512 GB, so limit to that,
1744 		 * and then readjust ndmpdp and ndmpdpphys.
1745 		 */
1746 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1747 		Maxmem = atop(NDMPML4E * NBPML4);
1748 		ndmpdpphys = NDMPML4E;
1749 		ndmpdp = NDMPML4E * NPDEPG;
1750 	}
1751 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1752 	ndm1g = 0;
1753 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1754 		/*
1755 		 * Calculate the number of 1G pages that will fully fit in
1756 		 * Maxmem.
1757 		 */
1758 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1759 
1760 		/*
1761 		 * Allocate 2M pages for the kernel. These will be used in
1762 		 * place of the one or more 1G pages from ndm1g that maps
1763 		 * kernel memory into DMAP.
1764 		 */
1765 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1766 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1767 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1768 	}
1769 	if (ndm1g < ndmpdp)
1770 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1771 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1772 
1773 	/* Allocate pages. */
1774 	KPML4phys = allocpages(firstaddr, 1);
1775 	KPDPphys = allocpages(firstaddr, NKPML4E);
1776 #ifdef KASAN
1777 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1778 	KASANPDphys = allocpages(firstaddr, 1);
1779 #endif
1780 #ifdef KMSAN
1781 	/*
1782 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1783 	 * no need to shadow memory above KERNBASE.
1784 	 */
1785 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1786 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1787 #endif
1788 
1789 	/*
1790 	 * Allocate the initial number of kernel page table pages required to
1791 	 * bootstrap.  We defer this until after all memory-size dependent
1792 	 * allocations are done (e.g. direct map), so that we don't have to
1793 	 * build in too much slop in our estimate.
1794 	 *
1795 	 * Note that when NKPML4E > 1, we have an empty page underneath
1796 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1797 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1798 	 */
1799 	nkpt_init(*firstaddr);
1800 	nkpdpe = NKPDPE(nkpt);
1801 
1802 	KPTphys = allocpages(firstaddr, nkpt);
1803 	KPDphys = allocpages(firstaddr, nkpdpe);
1804 
1805 #ifdef KASAN
1806 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1807 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1808 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1809 #endif
1810 
1811 	/*
1812 	 * Connect the zero-filled PT pages to their PD entries.  This
1813 	 * implicitly maps the PT pages at their correct locations within
1814 	 * the PTmap.
1815 	 */
1816 	pd_p = (pd_entry_t *)KPDphys;
1817 	for (i = 0; i < nkpt; i++)
1818 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1819 
1820 	/*
1821 	 * Map from start of the kernel in physical memory (staging
1822 	 * area) to the end of loader preallocated memory using 2MB
1823 	 * pages.  This replaces some of the PD entries created above.
1824 	 * For compatibility, identity map 2M at the start.
1825 	 */
1826 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1827 	    X86_PG_RW | pg_nx;
1828 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1829 		/* Preset PG_M and PG_A because demotion expects it. */
1830 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1831 		    X86_PG_A | bootaddr_rwx(pax);
1832 	}
1833 
1834 	/*
1835 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1836 	 * to record the physical blocks we've actually mapped into kernel
1837 	 * virtual address space.
1838 	 */
1839 	if (*firstaddr < round_2mpage(KERNend))
1840 		*firstaddr = round_2mpage(KERNend);
1841 
1842 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1843 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1844 	for (i = 0; i < nkpdpe; i++)
1845 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1846 
1847 #ifdef KASAN
1848 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1849 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1850 	kasankpdi = pmap_pde_index(kasankernbase);
1851 
1852 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1853 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1854 
1855 	pd_p = (pd_entry_t *)KASANPDphys;
1856 	for (i = 0; i < nkasanpte; i++)
1857 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1858 		    X86_PG_V | pg_nx;
1859 
1860 	pt_p = (pt_entry_t *)KASANPTphys;
1861 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1862 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1863 		    X86_PG_M | X86_PG_A | pg_nx;
1864 #endif
1865 
1866 	/*
1867 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1868 	 * the end of physical memory is not aligned to a 1GB page boundary,
1869 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1870 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1871 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1872 	 * that are partially used.
1873 	 */
1874 	pd_p = (pd_entry_t *)DMPDphys;
1875 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1876 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1877 		/* Preset PG_M and PG_A because demotion expects it. */
1878 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1879 		    X86_PG_M | X86_PG_A | pg_nx;
1880 	}
1881 	pdp_p = (pdp_entry_t *)DMPDPphys;
1882 	for (i = 0; i < ndm1g; i++) {
1883 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1884 		/* Preset PG_M and PG_A because demotion expects it. */
1885 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1886 		    X86_PG_M | X86_PG_A | pg_nx;
1887 	}
1888 	for (j = 0; i < ndmpdp; i++, j++) {
1889 		pdp_p[i] = DMPDphys + ptoa(j);
1890 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1891 	}
1892 
1893 	/*
1894 	 * Instead of using a 1G page for the memory containing the kernel,
1895 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1896 	 * pages, this will partially overwrite the PDPEs above.)
1897 	 */
1898 	if (ndm1g > 0) {
1899 		pd_p = (pd_entry_t *)DMPDkernphys;
1900 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1901 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1902 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1903 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1904 		}
1905 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1906 		for (i = 0; i < nkdmpde; i++) {
1907 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1908 			    X86_PG_RW | X86_PG_V | pg_nx;
1909 		}
1910 	}
1911 
1912 	/* And recursively map PML4 to itself in order to get PTmap */
1913 	p4_p = (pml4_entry_t *)KPML4phys;
1914 	p4_p[PML4PML4I] = KPML4phys;
1915 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1916 
1917 #ifdef KASAN
1918 	/* Connect the KASAN shadow map slots up to the PML4. */
1919 	for (i = 0; i < NKASANPML4E; i++) {
1920 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1921 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1922 	}
1923 #endif
1924 
1925 #ifdef KMSAN
1926 	/* Connect the KMSAN shadow map slots up to the PML4. */
1927 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1928 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1929 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1930 	}
1931 
1932 	/* Connect the KMSAN origin map slots up to the PML4. */
1933 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1934 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1935 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1936 	}
1937 #endif
1938 
1939 	/* Connect the Direct Map slots up to the PML4. */
1940 	for (i = 0; i < ndmpdpphys; i++) {
1941 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1942 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1943 	}
1944 
1945 	/* Connect the KVA slots up to the PML4 */
1946 	for (i = 0; i < NKPML4E; i++) {
1947 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1948 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1949 	}
1950 
1951 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1952 
1953 	if (la57) {
1954 		/* XXXKIB bootstrap KPML5phys page is lost */
1955 		KPML5phys = allocpages(firstaddr, 1);
1956 		for (i = 0, p5_p = (pml5_entry_t *)KPML5phys; i < NPML5EPG;
1957 		    i++) {
1958 			if (i == PML5PML5I) {
1959 				/*
1960 				 * Recursively map PML5 to itself in
1961 				 * order to get PTmap and PDmap.
1962 				 */
1963 				p5_p[i] = KPML5phys | X86_PG_RW | X86_PG_A |
1964 				    X86_PG_M | X86_PG_V | pg_nx;
1965 			} else if (i == pmap_pml5e_index(UPT_MAX_ADDRESS)) {
1966 				p5_p[i] = KPML4phys | X86_PG_RW | X86_PG_A |
1967 				    X86_PG_M | X86_PG_V;
1968 			} else {
1969 				p5_p[i] = 0;
1970 			}
1971 		}
1972 	}
1973 	TSEXIT();
1974 }
1975 
1976 /*
1977  *	Bootstrap the system enough to run with virtual memory.
1978  *
1979  *	On amd64 this is called after mapping has already been enabled
1980  *	and just syncs the pmap module with what has already been done.
1981  *	[We can't call it easily with mapping off since the kernel is not
1982  *	mapped with PA == VA, hence we would have to relocate every address
1983  *	from the linked base (virtual) address "KERNBASE" to the actual
1984  *	(physical) address starting relative to 0]
1985  */
1986 void
pmap_bootstrap(vm_paddr_t * firstaddr)1987 pmap_bootstrap(vm_paddr_t *firstaddr)
1988 {
1989 	vm_offset_t va;
1990 	pt_entry_t *pte, *pcpu_pte;
1991 	struct region_descriptor r_gdt;
1992 	uint64_t cr4, pcpu0_phys;
1993 	u_long res;
1994 	int i;
1995 
1996 	TSENTER();
1997 	KERNend = *firstaddr;
1998 	res = atop(KERNend - (vm_paddr_t)kernphys);
1999 
2000 	if (!pti)
2001 		pg_g = X86_PG_G;
2002 
2003 	/*
2004 	 * Create an initial set of page tables to run the kernel in.
2005 	 */
2006 	pmap_bootstrap_la57(firstaddr);
2007 	create_pagetables(firstaddr);
2008 
2009 	pcpu0_phys = allocpages(firstaddr, 1);
2010 
2011 	/*
2012 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
2013 	 * preallocated kernel page table pages so that vm_page structures
2014 	 * representing these pages will be created.  The vm_page structures
2015 	 * are required for promotion of the corresponding kernel virtual
2016 	 * addresses to superpage mappings.
2017 	 */
2018 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
2019 
2020 	/*
2021 	 * Account for the virtual addresses mapped by create_pagetables().
2022 	 */
2023 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
2024 	    (vm_paddr_t)kernphys);
2025 	virtual_end = VM_MAX_KERNEL_ADDRESS;
2026 
2027 	/*
2028 	 * Enable PG_G global pages, then switch to the kernel page
2029 	 * table from the bootstrap page table.  After the switch, it
2030 	 * is possible to enable SMEP and SMAP since PG_U bits are
2031 	 * correct now.
2032 	 */
2033 	cr4 = rcr4();
2034 	cr4 |= CR4_PGE;
2035 	load_cr4(cr4);
2036 	load_cr3(la57 ? KPML5phys : KPML4phys);
2037 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
2038 		cr4 |= CR4_SMEP;
2039 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
2040 		cr4 |= CR4_SMAP;
2041 	load_cr4(cr4);
2042 
2043 	/*
2044 	 * Initialize the kernel pmap (which is statically allocated).
2045 	 * Count bootstrap data as being resident in case any of this data is
2046 	 * later unmapped (using pmap_remove()) and freed.
2047 	 */
2048 	PMAP_LOCK_INIT(kernel_pmap);
2049 	if (la57) {
2050 		vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2051 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2052 		PTmap = (vm_offset_t)P5Tmap;
2053 		vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2054 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2055 		PDmap = (vm_offset_t)P5Dmap;
2056 		kernel_pmap->pm_pmltop = (void *)PHYS_TO_DMAP(KPML5phys);
2057 		kernel_pmap->pm_cr3 = KPML5phys;
2058 		pmap_pt_page_count_adj(kernel_pmap, 1);	/* top-level page */
2059 	} else {
2060 		kernel_pmap->pm_pmltop = kernel_pml4;
2061 		kernel_pmap->pm_cr3 = KPML4phys;
2062 	}
2063 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
2064 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
2065 	kernel_pmap->pm_stats.resident_count = res;
2066 	vm_radix_init(&kernel_pmap->pm_root);
2067 	kernel_pmap->pm_flags = pmap_flags;
2068 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
2069 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
2070 		    pkru_free_range, kernel_pmap, M_NOWAIT);
2071 	}
2072 
2073 	/*
2074 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
2075 	 * enumerated, the mask will be set equal to all_cpus.
2076 	 */
2077 	CPU_FILL(&kernel_pmap->pm_active);
2078 
2079  	/*
2080 	 * Initialize the TLB invalidations generation number lock.
2081 	 */
2082 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2083 
2084 	/*
2085 	 * Reserve some special page table entries/VA space for temporary
2086 	 * mapping of pages.
2087 	 */
2088 #define	SYSMAP(c, p, v, n)	\
2089 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2090 
2091 	va = virtual_avail;
2092 	pte = vtopte(va);
2093 
2094 	/*
2095 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2096 	 * memory test.
2097 	 */
2098 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2099 	CADDR1 = crashdumpmap;
2100 
2101 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2102 	virtual_avail = va;
2103 
2104 	/*
2105 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2106 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2107 	 * number of CPUs and NUMA affinity.
2108 	 */
2109 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2110 	    X86_PG_M | X86_PG_A;
2111 	for (i = 1; i < MAXCPU; i++)
2112 		pcpu_pte[i] = 0;
2113 
2114 	/*
2115 	 * Re-initialize PCPU area for BSP after switching.
2116 	 * Make hardware use gdt and common_tss from the new PCPU.
2117 	 * Also clears the usage of temporary gdt during switch to
2118 	 * LA57 paging.
2119 	 */
2120 	STAILQ_INIT(&cpuhead);
2121 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2122 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2123 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2124 	amd64_bsp_ist_init(&__pcpu[0]);
2125 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2126 	    IOPERM_BITMAP_SIZE;
2127 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2128 	    sizeof(struct user_segment_descriptor));
2129 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2130 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2131 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2132 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2133 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2134 	lgdt(&r_gdt);
2135 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2136 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2137 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2138 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2139 
2140 	/*
2141 	 * Initialize the PAT MSR.
2142 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2143 	 * side-effect, invalidates stale PG_G TLB entries that might
2144 	 * have been created in our pre-boot environment.
2145 	 */
2146 	pmap_init_pat();
2147 
2148 	/* Initialize TLB Context Id. */
2149 	if (pmap_pcid_enabled) {
2150 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2151 		    offsetof(struct pcpu, pc_kpmap_store);
2152 
2153 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2154 		PCPU_SET(kpmap_store.pm_gen, 1);
2155 
2156 		/*
2157 		 * PMAP_PCID_KERN + 1 is used for initialization of
2158 		 * proc0 pmap.  The pmap' pcid state might be used by
2159 		 * EFIRT entry before first context switch, so it
2160 		 * needs to be valid.
2161 		 */
2162 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2163 		PCPU_SET(pcid_gen, 1);
2164 
2165 		/*
2166 		 * pcpu area for APs is zeroed during AP startup.
2167 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2168 		 * during pcpu setup.
2169 		 */
2170 		load_cr4(rcr4() | CR4_PCIDE);
2171 	}
2172 	TSEXIT();
2173 }
2174 
2175 /*
2176  * Setup the PAT MSR.
2177  */
2178 void
pmap_init_pat(void)2179 pmap_init_pat(void)
2180 {
2181 	uint64_t pat_msr;
2182 	u_long cr0, cr4;
2183 	int i;
2184 
2185 	/* Bail if this CPU doesn't implement PAT. */
2186 	if ((cpu_feature & CPUID_PAT) == 0)
2187 		panic("no PAT??");
2188 
2189 	/* Set default PAT index table. */
2190 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2191 		pat_index[i] = -1;
2192 	pat_index[PAT_WRITE_BACK] = 0;
2193 	pat_index[PAT_WRITE_THROUGH] = 1;
2194 	pat_index[PAT_UNCACHEABLE] = 3;
2195 	pat_index[PAT_WRITE_COMBINING] = 6;
2196 	pat_index[PAT_WRITE_PROTECTED] = 5;
2197 	pat_index[PAT_UNCACHED] = 2;
2198 
2199 	/*
2200 	 * Initialize default PAT entries.
2201 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2202 	 * Program 5 and 6 as WP and WC.
2203 	 *
2204 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2205 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2206 	 * to its overload with PG_PS.
2207 	 */
2208 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2209 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2210 	    PAT_VALUE(2, PAT_UNCACHED) |
2211 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2212 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2213 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2214 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2215 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2216 
2217 	/* Disable PGE. */
2218 	cr4 = rcr4();
2219 	load_cr4(cr4 & ~CR4_PGE);
2220 
2221 	/* Disable caches (CD = 1, NW = 0). */
2222 	cr0 = rcr0();
2223 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2224 
2225 	/* Flushes caches and TLBs. */
2226 	wbinvd();
2227 	invltlb();
2228 
2229 	/* Update PAT and index table. */
2230 	wrmsr(MSR_PAT, pat_msr);
2231 
2232 	/* Flush caches and TLBs again. */
2233 	wbinvd();
2234 	invltlb();
2235 
2236 	/* Restore caches and PGE. */
2237 	load_cr0(cr0);
2238 	load_cr4(cr4);
2239 }
2240 
2241 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2242 pmap_page_alloc_below_4g(bool zeroed)
2243 {
2244 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2245 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2246 }
2247 
2248 /*
2249  *	Initialize a vm_page's machine-dependent fields.
2250  */
2251 void
pmap_page_init(vm_page_t m)2252 pmap_page_init(vm_page_t m)
2253 {
2254 
2255 	TAILQ_INIT(&m->md.pv_list);
2256 	m->md.pat_mode = PAT_WRITE_BACK;
2257 }
2258 
2259 static int pmap_allow_2m_x_ept;
2260 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2261     &pmap_allow_2m_x_ept, 0,
2262     "Allow executable superpage mappings in EPT");
2263 
2264 void
pmap_allow_2m_x_ept_recalculate(void)2265 pmap_allow_2m_x_ept_recalculate(void)
2266 {
2267 	/*
2268 	 * SKL002, SKL012S.  Since the EPT format is only used by
2269 	 * Intel CPUs, the vendor check is merely a formality.
2270 	 */
2271 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2272 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2273 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2274 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2275 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2276 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2277 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2278 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2279 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2280 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2281 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2282 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2283 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2284 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2285 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2286 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2287 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2288 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2289 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2290 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2291 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2292 		pmap_allow_2m_x_ept = 1;
2293 #ifndef BURN_BRIDGES
2294 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2295 #endif
2296 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2297 }
2298 
2299 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2300 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2301 {
2302 
2303 	return (pmap->pm_type != PT_EPT || !executable ||
2304 	    !pmap_allow_2m_x_ept);
2305 }
2306 
2307 #ifdef NUMA
2308 static void
pmap_init_pv_table(void)2309 pmap_init_pv_table(void)
2310 {
2311 	struct pmap_large_md_page *pvd;
2312 	vm_size_t s;
2313 	long start, end, highest, pv_npg;
2314 	int domain, i, j, pages;
2315 
2316 	/*
2317 	 * For correctness we depend on the size being evenly divisible into a
2318 	 * page. As a tradeoff between performance and total memory use, the
2319 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2320 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2321 	 * avoidable traffic due to adjacent cacheline prefetcher.
2322 	 *
2323 	 * Assert the size so that accidental changes fail to compile.
2324 	 */
2325 	CTASSERT((sizeof(*pvd) == 64));
2326 
2327 	/*
2328 	 * Calculate the size of the array.
2329 	 */
2330 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2331 	pv_npg = howmany(pmap_last_pa, NBPDR);
2332 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2333 	s = round_page(s);
2334 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2335 	if (pv_table == NULL)
2336 		panic("%s: kva_alloc failed\n", __func__);
2337 
2338 	/*
2339 	 * Iterate physical segments to allocate space for respective pages.
2340 	 */
2341 	highest = -1;
2342 	s = 0;
2343 	for (i = 0; i < vm_phys_nsegs; i++) {
2344 		end = vm_phys_segs[i].end / NBPDR;
2345 		domain = vm_phys_segs[i].domain;
2346 
2347 		if (highest >= end)
2348 			continue;
2349 
2350 		start = highest + 1;
2351 		pvd = &pv_table[start];
2352 
2353 		pages = end - start + 1;
2354 		s = round_page(pages * sizeof(*pvd));
2355 		highest = start + (s / sizeof(*pvd)) - 1;
2356 
2357 		for (j = 0; j < s; j += PAGE_SIZE) {
2358 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2359 			if (m == NULL)
2360 				panic("failed to allocate PV table page");
2361 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2362 		}
2363 
2364 		for (j = 0; j < s / sizeof(*pvd); j++) {
2365 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2366 			TAILQ_INIT(&pvd->pv_page.pv_list);
2367 			pvd->pv_page.pv_gen = 0;
2368 			pvd->pv_page.pat_mode = 0;
2369 			pvd->pv_invl_gen = 0;
2370 			pvd++;
2371 		}
2372 	}
2373 	pvd = &pv_dummy_large;
2374 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2375 	TAILQ_INIT(&pvd->pv_page.pv_list);
2376 	pvd->pv_page.pv_gen = 0;
2377 	pvd->pv_page.pat_mode = 0;
2378 	pvd->pv_invl_gen = 0;
2379 }
2380 #else
2381 static void
pmap_init_pv_table(void)2382 pmap_init_pv_table(void)
2383 {
2384 	vm_size_t s;
2385 	long i, pv_npg;
2386 
2387 	/*
2388 	 * Initialize the pool of pv list locks.
2389 	 */
2390 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2391 		rw_init(&pv_list_locks[i], "pmap pv list");
2392 
2393 	/*
2394 	 * Calculate the size of the pv head table for superpages.
2395 	 */
2396 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2397 
2398 	/*
2399 	 * Allocate memory for the pv head table for superpages.
2400 	 */
2401 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2402 	s = round_page(s);
2403 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2404 	for (i = 0; i < pv_npg; i++)
2405 		TAILQ_INIT(&pv_table[i].pv_list);
2406 	TAILQ_INIT(&pv_dummy.pv_list);
2407 }
2408 #endif
2409 
2410 /*
2411  *	Initialize the pmap module.
2412  *
2413  *	Called by vm_mem_init(), to initialize any structures that the pmap
2414  *	system needs to map virtual memory.
2415  */
2416 void
pmap_init(void)2417 pmap_init(void)
2418 {
2419 	struct pmap_preinit_mapping *ppim;
2420 	vm_page_t m, mpte;
2421 	int error, i, ret, skz63;
2422 
2423 	/* L1TF, reserve page @0 unconditionally */
2424 	vm_page_blacklist_add(0, bootverbose);
2425 
2426 	/* Detect bare-metal Skylake Server and Skylake-X. */
2427 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2428 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2429 		/*
2430 		 * Skylake-X errata SKZ63. Processor May Hang When
2431 		 * Executing Code In an HLE Transaction Region between
2432 		 * 40000000H and 403FFFFFH.
2433 		 *
2434 		 * Mark the pages in the range as preallocated.  It
2435 		 * seems to be impossible to distinguish between
2436 		 * Skylake Server and Skylake X.
2437 		 */
2438 		skz63 = 1;
2439 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2440 		if (skz63 != 0) {
2441 			if (bootverbose)
2442 				printf("SKZ63: skipping 4M RAM starting "
2443 				    "at physical 1G\n");
2444 			for (i = 0; i < atop(0x400000); i++) {
2445 				ret = vm_page_blacklist_add(0x40000000 +
2446 				    ptoa(i), false);
2447 				if (!ret && bootverbose)
2448 					printf("page at %#x already used\n",
2449 					    0x40000000 + ptoa(i));
2450 			}
2451 		}
2452 	}
2453 
2454 	/* IFU */
2455 	pmap_allow_2m_x_ept_recalculate();
2456 
2457 	/*
2458 	 * Initialize the vm page array entries for the kernel pmap's
2459 	 * page table pages.
2460 	 */
2461 	PMAP_LOCK(kernel_pmap);
2462 	for (i = 0; i < nkpt; i++) {
2463 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2464 		KASSERT(mpte >= vm_page_array &&
2465 		    mpte < &vm_page_array[vm_page_array_size],
2466 		    ("pmap_init: page table page is out of range"));
2467 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2468 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2469 		mpte->ref_count = 1;
2470 
2471 		/*
2472 		 * Collect the page table pages that were replaced by a 2MB
2473 		 * page in create_pagetables().  They are zero filled.
2474 		 */
2475 		if ((i == 0 ||
2476 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2477 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2478 			panic("pmap_init: pmap_insert_pt_page failed");
2479 	}
2480 	PMAP_UNLOCK(kernel_pmap);
2481 	vm_wire_add(nkpt);
2482 
2483 	/*
2484 	 * If the kernel is running on a virtual machine, then it must assume
2485 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2486 	 * be prepared for the hypervisor changing the vendor and family that
2487 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2488 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2489 	 * include at least one feature that is only supported by older Intel
2490 	 * or newer AMD processors.
2491 	 */
2492 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2493 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2494 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2495 	    AMDID2_FMA4)) == 0)
2496 		workaround_erratum383 = 1;
2497 
2498 	/*
2499 	 * Are large page mappings enabled?
2500 	 */
2501 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2502 	if (pg_ps_enabled) {
2503 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2504 		    ("pmap_init: can't assign to pagesizes[1]"));
2505 		pagesizes[1] = NBPDR;
2506 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2507 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2508 			    ("pmap_init: can't assign to pagesizes[2]"));
2509 			pagesizes[2] = NBPDP;
2510 		}
2511 	}
2512 
2513 	/*
2514 	 * Initialize pv chunk lists.
2515 	 */
2516 	for (i = 0; i < PMAP_MEMDOM; i++) {
2517 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2518 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2519 	}
2520 	pmap_init_pv_table();
2521 
2522 	pmap_initialized = 1;
2523 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2524 		ppim = pmap_preinit_mapping + i;
2525 		if (ppim->va == 0)
2526 			continue;
2527 		/* Make the direct map consistent */
2528 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2529 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2530 			    ppim->sz, ppim->mode);
2531 		}
2532 		if (!bootverbose)
2533 			continue;
2534 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2535 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2536 	}
2537 
2538 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2539 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2540 	    (vmem_addr_t *)&qframe);
2541 	if (error != 0)
2542 		panic("qframe allocation failed");
2543 
2544 	lm_ents = 8;
2545 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2546 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2547 		lm_ents = LMEPML4I - LMSPML4I + 1;
2548 #ifdef KMSAN
2549 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2550 		printf(
2551 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2552 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2553 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2554 	}
2555 #endif
2556 	if (bootverbose)
2557 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2558 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2559 	if (lm_ents != 0) {
2560 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2561 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2562 		if (large_vmem == NULL) {
2563 			printf("pmap: cannot create large map\n");
2564 			lm_ents = 0;
2565 		}
2566 		for (i = 0; i < lm_ents; i++) {
2567 			m = pmap_large_map_getptp_unlocked();
2568 			/* XXXKIB la57 */
2569 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2570 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2571 			    VM_PAGE_TO_PHYS(m);
2572 		}
2573 	}
2574 }
2575 
2576 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2577     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2578     "Maximum number of PML4 entries for use by large map (tunable).  "
2579     "Each entry corresponds to 512GB of address space.");
2580 
2581 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2582     "2MB page mapping counters");
2583 
2584 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2585 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2586     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2587 
2588 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2589 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2590     &pmap_pde_mappings, "2MB page mappings");
2591 
2592 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2593 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2594     &pmap_pde_p_failures, "2MB page promotion failures");
2595 
2596 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2597 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2598     &pmap_pde_promotions, "2MB page promotions");
2599 
2600 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2601     "1GB page mapping counters");
2602 
2603 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2604 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2605     &pmap_pdpe_demotions, "1GB page demotions");
2606 
2607 /***************************************************
2608  * Low level helper routines.....
2609  ***************************************************/
2610 
2611 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2612 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2613 {
2614 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2615 
2616 	switch (pmap->pm_type) {
2617 	case PT_X86:
2618 	case PT_RVI:
2619 		/* Verify that both PAT bits are not set at the same time */
2620 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2621 		    ("Invalid PAT bits in entry %#lx", entry));
2622 
2623 		/* Swap the PAT bits if one of them is set */
2624 		if ((entry & x86_pat_bits) != 0)
2625 			entry ^= x86_pat_bits;
2626 		break;
2627 	case PT_EPT:
2628 		/*
2629 		 * Nothing to do - the memory attributes are represented
2630 		 * the same way for regular pages and superpages.
2631 		 */
2632 		break;
2633 	default:
2634 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2635 	}
2636 
2637 	return (entry);
2638 }
2639 
2640 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2641 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2642 {
2643 
2644 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2645 	    pat_index[(int)mode] >= 0);
2646 }
2647 
2648 /*
2649  * Determine the appropriate bits to set in a PTE or PDE for a specified
2650  * caching mode.
2651  */
2652 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2653 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2654 {
2655 	int cache_bits, pat_flag, pat_idx;
2656 
2657 	if (!pmap_is_valid_memattr(pmap, mode))
2658 		panic("Unknown caching mode %d\n", mode);
2659 
2660 	switch (pmap->pm_type) {
2661 	case PT_X86:
2662 	case PT_RVI:
2663 		/* The PAT bit is different for PTE's and PDE's. */
2664 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2665 
2666 		/* Map the caching mode to a PAT index. */
2667 		pat_idx = pat_index[mode];
2668 
2669 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2670 		cache_bits = 0;
2671 		if (pat_idx & 0x4)
2672 			cache_bits |= pat_flag;
2673 		if (pat_idx & 0x2)
2674 			cache_bits |= PG_NC_PCD;
2675 		if (pat_idx & 0x1)
2676 			cache_bits |= PG_NC_PWT;
2677 		break;
2678 
2679 	case PT_EPT:
2680 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2681 		break;
2682 
2683 	default:
2684 		panic("unsupported pmap type %d", pmap->pm_type);
2685 	}
2686 
2687 	return (cache_bits);
2688 }
2689 
2690 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2691 pmap_cache_mask(pmap_t pmap, bool is_pde)
2692 {
2693 	int mask;
2694 
2695 	switch (pmap->pm_type) {
2696 	case PT_X86:
2697 	case PT_RVI:
2698 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2699 		break;
2700 	case PT_EPT:
2701 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2702 		break;
2703 	default:
2704 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2705 	}
2706 
2707 	return (mask);
2708 }
2709 
2710 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2711 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2712 {
2713 	int pat_flag, pat_idx;
2714 
2715 	pat_idx = 0;
2716 	switch (pmap->pm_type) {
2717 	case PT_X86:
2718 	case PT_RVI:
2719 		/* The PAT bit is different for PTE's and PDE's. */
2720 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2721 
2722 		if ((pte & pat_flag) != 0)
2723 			pat_idx |= 0x4;
2724 		if ((pte & PG_NC_PCD) != 0)
2725 			pat_idx |= 0x2;
2726 		if ((pte & PG_NC_PWT) != 0)
2727 			pat_idx |= 0x1;
2728 		break;
2729 	case PT_EPT:
2730 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2731 			panic("EPT PTE %#lx has no PAT memory type", pte);
2732 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2733 		break;
2734 	}
2735 
2736 	/* See pmap_init_pat(). */
2737 	if (pat_idx == 4)
2738 		pat_idx = 0;
2739 	if (pat_idx == 7)
2740 		pat_idx = 3;
2741 
2742 	return (pat_idx);
2743 }
2744 
2745 bool
pmap_ps_enabled(pmap_t pmap)2746 pmap_ps_enabled(pmap_t pmap)
2747 {
2748 
2749 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2750 }
2751 
2752 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2753 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2754 {
2755 
2756 	switch (pmap->pm_type) {
2757 	case PT_X86:
2758 		break;
2759 	case PT_RVI:
2760 	case PT_EPT:
2761 		/*
2762 		 * XXX
2763 		 * This is a little bogus since the generation number is
2764 		 * supposed to be bumped up when a region of the address
2765 		 * space is invalidated in the page tables.
2766 		 *
2767 		 * In this case the old PDE entry is valid but yet we want
2768 		 * to make sure that any mappings using the old entry are
2769 		 * invalidated in the TLB.
2770 		 *
2771 		 * The reason this works as expected is because we rendezvous
2772 		 * "all" host cpus and force any vcpu context to exit as a
2773 		 * side-effect.
2774 		 */
2775 		atomic_add_long(&pmap->pm_eptgen, 1);
2776 		break;
2777 	default:
2778 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2779 	}
2780 	pde_store(pde, newpde);
2781 }
2782 
2783 /*
2784  * After changing the page size for the specified virtual address in the page
2785  * table, flush the corresponding entries from the processor's TLB.  Only the
2786  * calling processor's TLB is affected.
2787  *
2788  * The calling thread must be pinned to a processor.
2789  */
2790 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2791 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2792 {
2793 	pt_entry_t PG_G;
2794 
2795 	if (pmap_type_guest(pmap))
2796 		return;
2797 
2798 	KASSERT(pmap->pm_type == PT_X86,
2799 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2800 
2801 	PG_G = pmap_global_bit(pmap);
2802 
2803 	if ((newpde & PG_PS) == 0)
2804 		/* Demotion: flush a specific 2MB page mapping. */
2805 		pmap_invlpg(pmap, va);
2806 	else if ((newpde & PG_G) == 0)
2807 		/*
2808 		 * Promotion: flush every 4KB page mapping from the TLB
2809 		 * because there are too many to flush individually.
2810 		 */
2811 		invltlb();
2812 	else {
2813 		/*
2814 		 * Promotion: flush every 4KB page mapping from the TLB,
2815 		 * including any global (PG_G) mappings.
2816 		 */
2817 		invltlb_glob();
2818 	}
2819 }
2820 
2821 /*
2822  * The amd64 pmap uses different approaches to TLB invalidation
2823  * depending on the kernel configuration, available hardware features,
2824  * and known hardware errata.  The kernel configuration option that
2825  * has the greatest operational impact on TLB invalidation is PTI,
2826  * which is enabled automatically on affected Intel CPUs.  The most
2827  * impactful hardware features are first PCID, and then INVPCID
2828  * instruction presence.  PCID usage is quite different for PTI
2829  * vs. non-PTI.
2830  *
2831  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2832  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2833  *   space is served by two page tables, user and kernel.  The user
2834  *   page table only maps user space and a kernel trampoline.  The
2835  *   kernel trampoline includes the entirety of the kernel text but
2836  *   only the kernel data that is needed to switch from user to kernel
2837  *   mode.  The kernel page table maps the user and kernel address
2838  *   spaces in their entirety.  It is identical to the per-process
2839  *   page table used in non-PTI mode.
2840  *
2841  *   User page tables are only used when the CPU is in user mode.
2842  *   Consequently, some TLB invalidations can be postponed until the
2843  *   switch from kernel to user mode.  In contrast, the user
2844  *   space part of the kernel page table is used for copyout(9), so
2845  *   TLB invalidations on this page table cannot be similarly postponed.
2846  *
2847  *   The existence of a user mode page table for the given pmap is
2848  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2849  *   which case pm_ucr3 contains the %cr3 register value for the user
2850  *   mode page table's root.
2851  *
2852  * * The pm_active bitmask indicates which CPUs currently have the
2853  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2854  *   cleared on switching off this CPU.  For the kernel page table,
2855  *   the pm_active field is immutable and contains all CPUs.  The
2856  *   kernel page table is always logically active on every processor,
2857  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2858  *
2859  *   When requesting invalidation of virtual addresses with
2860  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2861  *   all CPUs recorded as active in pm_active.  Updates to and reads
2862  *   from pm_active are not synchronized, and so they may race with
2863  *   each other.  Shootdown handlers are prepared to handle the race.
2864  *
2865  * * PCID is an optional feature of the long mode x86 MMU where TLB
2866  *   entries are tagged with the 'Process ID' of the address space
2867  *   they belong to.  This feature provides a limited namespace for
2868  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2869  *   total.
2870  *
2871  *   Allocation of a PCID to a pmap is done by an algorithm described
2872  *   in section 15.12, "Other TLB Consistency Algorithms", of
2873  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2874  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2875  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2876  *   the CPU is about to start caching TLB entries from a pmap,
2877  *   i.e., on the context switch that activates the pmap on the CPU.
2878  *
2879  *   The PCID allocator maintains a per-CPU, per-pmap generation
2880  *   count, pm_gen, which is incremented each time a new PCID is
2881  *   allocated.  On TLB invalidation, the generation counters for the
2882  *   pmap are zeroed, which signals the context switch code that the
2883  *   previously allocated PCID is no longer valid.  Effectively,
2884  *   zeroing any of these counters triggers a TLB shootdown for the
2885  *   given CPU/address space, due to the allocation of a new PCID.
2886  *
2887  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2888  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2889  *   be initiated by an ordinary memory access to reset the target
2890  *   CPU's generation count within the pmap.  The CPU initiating the
2891  *   TLB shootdown does not need to send an IPI to the target CPU.
2892  *
2893  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2894  *   for complete (kernel) page tables, and PCIDs for user mode page
2895  *   tables.  A user PCID value is obtained from the kernel PCID value
2896  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2897  *
2898  *   User space page tables are activated on return to user mode, by
2899  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2900  *   clearing bit 63 of the loaded ucr3, this effectively causes
2901  *   complete invalidation of the user mode TLB entries for the
2902  *   current pmap.  In which case, local invalidations of individual
2903  *   pages in the user page table are skipped.
2904  *
2905  * * Local invalidation, all modes.  If the requested invalidation is
2906  *   for a specific address or the total invalidation of a currently
2907  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2908  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2909  *   user space page table(s).
2910  *
2911  *   If the INVPCID instruction is available, it is used to flush user
2912  *   entries from the kernel page table.
2913  *
2914  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2915  *   entries for the given page that either match the current PCID or
2916  *   are global. Since TLB entries for the same page under different
2917  *   PCIDs are unaffected, kernel pages which reside in all address
2918  *   spaces could be problematic.  We avoid the problem by creating
2919  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2920  *   disabled.
2921  *
2922  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2923  *   address space, all other 4095 PCIDs are used for user mode spaces
2924  *   as described above.  A context switch allocates a new PCID if
2925  *   the recorded PCID is zero or the recorded generation does not match
2926  *   the CPU's generation, effectively flushing the TLB for this address space.
2927  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2928  *	local user page: INVLPG
2929  *	local kernel page: INVLPG
2930  *	local user total: INVPCID(CTX)
2931  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2932  *	remote user page, inactive pmap: zero pm_gen
2933  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2934  *	(Both actions are required to handle the aforementioned pm_active races.)
2935  *	remote kernel page: IPI:INVLPG
2936  *	remote user total, inactive pmap: zero pm_gen
2937  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2938  *          reload %cr3)
2939  *	(See note above about pm_active races.)
2940  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2941  *
2942  * PTI enabled, PCID present.
2943  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2944  *          for upt
2945  *	local kernel page: INVLPG
2946  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2947  *          on loading UCR3 into %cr3 for upt
2948  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2949  *	remote user page, inactive pmap: zero pm_gen
2950  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2951  *          INVPCID(ADDR) for upt)
2952  *	remote kernel page: IPI:INVLPG
2953  *	remote user total, inactive pmap: zero pm_gen
2954  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2955  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2956  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2957  *
2958  *  No PCID.
2959  *	local user page: INVLPG
2960  *	local kernel page: INVLPG
2961  *	local user total: reload %cr3
2962  *	local kernel total: invltlb_glob()
2963  *	remote user page, inactive pmap: -
2964  *	remote user page, active pmap: IPI:INVLPG
2965  *	remote kernel page: IPI:INVLPG
2966  *	remote user total, inactive pmap: -
2967  *	remote user total, active pmap: IPI:(reload %cr3)
2968  *	remote kernel total: IPI:invltlb_glob()
2969  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
2970  *  TLB invalidation, no specific action is required for user page table.
2971  *
2972  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
2973  * XXX TODO
2974  */
2975 
2976 #ifdef SMP
2977 /*
2978  * Interrupt the cpus that are executing in the guest context.
2979  * This will force the vcpu to exit and the cached EPT mappings
2980  * will be invalidated by the host before the next vmresume.
2981  */
2982 static __inline void
pmap_invalidate_ept(pmap_t pmap)2983 pmap_invalidate_ept(pmap_t pmap)
2984 {
2985 	smr_seq_t goal;
2986 	int ipinum;
2987 
2988 	sched_pin();
2989 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2990 	    ("pmap_invalidate_ept: absurd pm_active"));
2991 
2992 	/*
2993 	 * The TLB mappings associated with a vcpu context are not
2994 	 * flushed each time a different vcpu is chosen to execute.
2995 	 *
2996 	 * This is in contrast with a process's vtop mappings that
2997 	 * are flushed from the TLB on each context switch.
2998 	 *
2999 	 * Therefore we need to do more than just a TLB shootdown on
3000 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3001 	 * track of the number of invalidations performed on this pmap.
3002 	 *
3003 	 * Each vcpu keeps a cache of this counter and compares it
3004 	 * just before a vmresume. If the counter is out-of-date an
3005 	 * invept will be done to flush stale mappings from the TLB.
3006 	 *
3007 	 * To ensure that all vCPU threads have observed the new counter
3008 	 * value before returning, we use SMR.  Ordering is important here:
3009 	 * the VMM enters an SMR read section before loading the counter
3010 	 * and after updating the pm_active bit set.  Thus, pm_active is
3011 	 * a superset of active readers, and any reader that has observed
3012 	 * the goal has observed the new counter value.
3013 	 */
3014 	atomic_add_long(&pmap->pm_eptgen, 1);
3015 
3016 	goal = smr_advance(pmap->pm_eptsmr);
3017 
3018 	/*
3019 	 * Force the vcpu to exit and trap back into the hypervisor.
3020 	 */
3021 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3022 	ipi_selected(pmap->pm_active, ipinum);
3023 	sched_unpin();
3024 
3025 	/*
3026 	 * Ensure that all active vCPUs will observe the new generation counter
3027 	 * value before executing any more guest instructions.
3028 	 */
3029 	smr_wait(pmap->pm_eptsmr, goal);
3030 }
3031 
3032 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3033 pmap_invalidate_preipi_pcid(pmap_t pmap)
3034 {
3035 	struct pmap_pcid *pcidp;
3036 	u_int cpuid, i;
3037 
3038 	sched_pin();
3039 
3040 	cpuid = PCPU_GET(cpuid);
3041 	if (pmap != PCPU_GET(curpmap))
3042 		cpuid = 0xffffffff;	/* An impossible value */
3043 
3044 	CPU_FOREACH(i) {
3045 		if (cpuid != i) {
3046 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3047 			pcidp->pm_gen = 0;
3048 		}
3049 	}
3050 
3051 	/*
3052 	 * The fence is between stores to pm_gen and the read of the
3053 	 * pm_active mask.  We need to ensure that it is impossible
3054 	 * for us to miss the bit update in pm_active and
3055 	 * simultaneously observe a non-zero pm_gen in
3056 	 * pmap_activate_sw(), otherwise TLB update is missed.
3057 	 * Without the fence, IA32 allows such an outcome.  Note that
3058 	 * pm_active is updated by a locked operation, which provides
3059 	 * the reciprocal fence.
3060 	 */
3061 	atomic_thread_fence_seq_cst();
3062 }
3063 
3064 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3065 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3066 {
3067 	sched_pin();
3068 }
3069 
3070 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3071 {
3072 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3073 	    pmap_invalidate_preipi_nopcid);
3074 }
3075 
3076 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3077 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3078     const bool invpcid_works1)
3079 {
3080 	struct invpcid_descr d;
3081 	uint64_t kcr3, ucr3;
3082 	uint32_t pcid;
3083 
3084 	/*
3085 	 * Because pm_pcid is recalculated on a context switch, we
3086 	 * must ensure there is no preemption, not just pinning.
3087 	 * Otherwise, we might use a stale value below.
3088 	 */
3089 	CRITICAL_ASSERT(curthread);
3090 
3091 	/*
3092 	 * No need to do anything with user page tables invalidation
3093 	 * if there is no user page table, or invalidation is deferred
3094 	 * until the return to userspace.  ucr3_load_mask is stable
3095 	 * because we have preemption disabled.
3096 	 */
3097 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3098 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3099 		return;
3100 
3101 	pcid = pmap_get_pcid(pmap);
3102 	if (invpcid_works1) {
3103 		d.pcid = pcid | PMAP_PCID_USER_PT;
3104 		d.pad = 0;
3105 		d.addr = va;
3106 		invpcid(&d, INVPCID_ADDR);
3107 	} else {
3108 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3109 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3110 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3111 	}
3112 }
3113 
3114 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3115 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3116 {
3117 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3118 }
3119 
3120 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3121 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3122 {
3123 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3124 }
3125 
3126 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3127 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3128 {
3129 }
3130 
3131 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3132 {
3133 	if (pmap_pcid_enabled)
3134 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3135 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3136 	return (pmap_invalidate_page_nopcid_cb);
3137 }
3138 
3139 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3140 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3141     vm_offset_t addr2 __unused)
3142 {
3143 	if (pmap == kernel_pmap) {
3144 		pmap_invlpg(kernel_pmap, va);
3145 	} else if (pmap == PCPU_GET(curpmap)) {
3146 		invlpg(va);
3147 		pmap_invalidate_page_cb(pmap, va);
3148 	}
3149 }
3150 
3151 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3152 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3153 {
3154 	if (pmap_type_guest(pmap)) {
3155 		pmap_invalidate_ept(pmap);
3156 		return;
3157 	}
3158 
3159 	KASSERT(pmap->pm_type == PT_X86,
3160 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3161 
3162 	pmap_invalidate_preipi(pmap);
3163 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3164 }
3165 
3166 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3167 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3168 
3169 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3170 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3171     const bool invpcid_works1)
3172 {
3173 	struct invpcid_descr d;
3174 	uint64_t kcr3, ucr3;
3175 	uint32_t pcid;
3176 
3177 	CRITICAL_ASSERT(curthread);
3178 
3179 	if (pmap != PCPU_GET(curpmap) ||
3180 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3181 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3182 		return;
3183 
3184 	pcid = pmap_get_pcid(pmap);
3185 	if (invpcid_works1) {
3186 		d.pcid = pcid | PMAP_PCID_USER_PT;
3187 		d.pad = 0;
3188 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3189 			invpcid(&d, INVPCID_ADDR);
3190 	} else {
3191 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3192 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3193 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3194 	}
3195 }
3196 
3197 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3198 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3199     vm_offset_t eva)
3200 {
3201 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3202 }
3203 
3204 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3205 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3206     vm_offset_t eva)
3207 {
3208 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3209 }
3210 
3211 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3212 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3213     vm_offset_t eva __unused)
3214 {
3215 }
3216 
3217 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3218     vm_offset_t))
3219 {
3220 	if (pmap_pcid_enabled)
3221 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3222 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3223 	return (pmap_invalidate_range_nopcid_cb);
3224 }
3225 
3226 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3227 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3228 {
3229 	vm_offset_t addr;
3230 
3231 	if (pmap == kernel_pmap) {
3232 		if (PCPU_GET(pcid_invlpg_workaround)) {
3233 			struct invpcid_descr d = { 0 };
3234 
3235 			invpcid(&d, INVPCID_CTXGLOB);
3236 		} else {
3237 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3238 				invlpg(addr);
3239 		}
3240 	} else if (pmap == PCPU_GET(curpmap)) {
3241 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3242 			invlpg(addr);
3243 		pmap_invalidate_range_cb(pmap, sva, eva);
3244 	}
3245 }
3246 
3247 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3248 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3249 {
3250 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3251 		pmap_invalidate_all(pmap);
3252 		return;
3253 	}
3254 
3255 	if (pmap_type_guest(pmap)) {
3256 		pmap_invalidate_ept(pmap);
3257 		return;
3258 	}
3259 
3260 	KASSERT(pmap->pm_type == PT_X86,
3261 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3262 
3263 	pmap_invalidate_preipi(pmap);
3264 	smp_masked_invlpg_range(sva, eva, pmap,
3265 	    pmap_invalidate_range_curcpu_cb);
3266 }
3267 
3268 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3269 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3270 {
3271 	struct invpcid_descr d;
3272 	uint64_t kcr3;
3273 	uint32_t pcid;
3274 
3275 	if (pmap == kernel_pmap) {
3276 		if (invpcid_works1) {
3277 			bzero(&d, sizeof(d));
3278 			invpcid(&d, INVPCID_CTXGLOB);
3279 		} else {
3280 			invltlb_glob();
3281 		}
3282 	} else if (pmap == PCPU_GET(curpmap)) {
3283 		CRITICAL_ASSERT(curthread);
3284 
3285 		pcid = pmap_get_pcid(pmap);
3286 		if (invpcid_works1) {
3287 			d.pcid = pcid;
3288 			d.pad = 0;
3289 			d.addr = 0;
3290 			invpcid(&d, INVPCID_CTX);
3291 		} else {
3292 			kcr3 = pmap->pm_cr3 | pcid;
3293 			load_cr3(kcr3);
3294 		}
3295 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3296 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3297 	}
3298 }
3299 
3300 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3301 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3302 {
3303 	pmap_invalidate_all_pcid_cb(pmap, true);
3304 }
3305 
3306 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3307 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3308 {
3309 	pmap_invalidate_all_pcid_cb(pmap, false);
3310 }
3311 
3312 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3313 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3314 {
3315 	if (pmap == kernel_pmap)
3316 		invltlb_glob();
3317 	else if (pmap == PCPU_GET(curpmap))
3318 		invltlb();
3319 }
3320 
3321 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3322 {
3323 	if (pmap_pcid_enabled)
3324 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3325 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3326 	return (pmap_invalidate_all_nopcid_cb);
3327 }
3328 
3329 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3330 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3331     vm_offset_t addr2 __unused)
3332 {
3333 	pmap_invalidate_all_cb(pmap);
3334 }
3335 
3336 void
pmap_invalidate_all(pmap_t pmap)3337 pmap_invalidate_all(pmap_t pmap)
3338 {
3339 	if (pmap_type_guest(pmap)) {
3340 		pmap_invalidate_ept(pmap);
3341 		return;
3342 	}
3343 
3344 	KASSERT(pmap->pm_type == PT_X86,
3345 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3346 
3347 	pmap_invalidate_preipi(pmap);
3348 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3349 }
3350 
3351 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3352 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3353     vm_offset_t addr2 __unused)
3354 {
3355 	wbinvd();
3356 }
3357 
3358 void
pmap_invalidate_cache(void)3359 pmap_invalidate_cache(void)
3360 {
3361 	sched_pin();
3362 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3363 }
3364 
3365 struct pde_action {
3366 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3367 	pmap_t pmap;
3368 	vm_offset_t va;
3369 	pd_entry_t *pde;
3370 	pd_entry_t newpde;
3371 	u_int store;		/* processor that updates the PDE */
3372 };
3373 
3374 static void
pmap_update_pde_action(void * arg)3375 pmap_update_pde_action(void *arg)
3376 {
3377 	struct pde_action *act = arg;
3378 
3379 	if (act->store == PCPU_GET(cpuid))
3380 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3381 }
3382 
3383 static void
pmap_update_pde_teardown(void * arg)3384 pmap_update_pde_teardown(void *arg)
3385 {
3386 	struct pde_action *act = arg;
3387 
3388 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3389 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3390 }
3391 
3392 /*
3393  * Change the page size for the specified virtual address in a way that
3394  * prevents any possibility of the TLB ever having two entries that map the
3395  * same virtual address using different page sizes.  This is the recommended
3396  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3397  * machine check exception for a TLB state that is improperly diagnosed as a
3398  * hardware error.
3399  */
3400 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3401 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3402 {
3403 	struct pde_action act;
3404 	cpuset_t active, other_cpus;
3405 	u_int cpuid;
3406 
3407 	sched_pin();
3408 	cpuid = PCPU_GET(cpuid);
3409 	other_cpus = all_cpus;
3410 	CPU_CLR(cpuid, &other_cpus);
3411 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3412 		active = all_cpus;
3413 	else {
3414 		active = pmap->pm_active;
3415 	}
3416 	if (CPU_OVERLAP(&active, &other_cpus)) {
3417 		act.store = cpuid;
3418 		act.invalidate = active;
3419 		act.va = va;
3420 		act.pmap = pmap;
3421 		act.pde = pde;
3422 		act.newpde = newpde;
3423 		CPU_SET(cpuid, &active);
3424 		smp_rendezvous_cpus(active,
3425 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3426 		    pmap_update_pde_teardown, &act);
3427 	} else {
3428 		pmap_update_pde_store(pmap, pde, newpde);
3429 		if (CPU_ISSET(cpuid, &active))
3430 			pmap_update_pde_invalidate(pmap, va, newpde);
3431 	}
3432 	sched_unpin();
3433 }
3434 #else /* !SMP */
3435 /*
3436  * Normal, non-SMP, invalidation functions.
3437  */
3438 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3439 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3440 {
3441 	struct invpcid_descr d;
3442 	struct pmap_pcid *pcidp;
3443 	uint64_t kcr3, ucr3;
3444 	uint32_t pcid;
3445 
3446 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3447 		pmap->pm_eptgen++;
3448 		return;
3449 	}
3450 	KASSERT(pmap->pm_type == PT_X86,
3451 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3452 
3453 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3454 		invlpg(va);
3455 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3456 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3457 			critical_enter();
3458 			pcid = pmap_get_pcid(pmap);
3459 			if (invpcid_works) {
3460 				d.pcid = pcid | PMAP_PCID_USER_PT;
3461 				d.pad = 0;
3462 				d.addr = va;
3463 				invpcid(&d, INVPCID_ADDR);
3464 			} else {
3465 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3466 				ucr3 = pmap->pm_ucr3 | pcid |
3467 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3468 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3469 			}
3470 			critical_exit();
3471 		}
3472 	} else if (pmap_pcid_enabled) {
3473 		pcidp = zpcpu_get(pmap->pm_pcidp);
3474 		pcidp->pm_gen = 0;
3475 	}
3476 }
3477 
3478 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3479 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3480 {
3481 	struct invpcid_descr d;
3482 	struct pmap_pcid *pcidp;
3483 	vm_offset_t addr;
3484 	uint64_t kcr3, ucr3;
3485 	uint32_t pcid;
3486 
3487 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3488 		pmap->pm_eptgen++;
3489 		return;
3490 	}
3491 	KASSERT(pmap->pm_type == PT_X86,
3492 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3493 
3494 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3495 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3496 			invlpg(addr);
3497 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3498 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3499 			critical_enter();
3500 			pcid = pmap_get_pcid(pmap);
3501 			if (invpcid_works) {
3502 				d.pcid = pcid | PMAP_PCID_USER_PT;
3503 				d.pad = 0;
3504 				d.addr = sva;
3505 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3506 					invpcid(&d, INVPCID_ADDR);
3507 			} else {
3508 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3509 				ucr3 = pmap->pm_ucr3 | pcid |
3510 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3511 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3512 			}
3513 			critical_exit();
3514 		}
3515 	} else if (pmap_pcid_enabled) {
3516 		pcidp = zpcpu_get(pmap->pm_pcidp);
3517 		pcidp->pm_gen = 0;
3518 	}
3519 }
3520 
3521 void
pmap_invalidate_all(pmap_t pmap)3522 pmap_invalidate_all(pmap_t pmap)
3523 {
3524 	struct invpcid_descr d;
3525 	struct pmap_pcid *pcidp;
3526 	uint64_t kcr3, ucr3;
3527 	uint32_t pcid;
3528 
3529 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3530 		pmap->pm_eptgen++;
3531 		return;
3532 	}
3533 	KASSERT(pmap->pm_type == PT_X86,
3534 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3535 
3536 	if (pmap == kernel_pmap) {
3537 		if (pmap_pcid_enabled && invpcid_works) {
3538 			bzero(&d, sizeof(d));
3539 			invpcid(&d, INVPCID_CTXGLOB);
3540 		} else {
3541 			invltlb_glob();
3542 		}
3543 	} else if (pmap == PCPU_GET(curpmap)) {
3544 		if (pmap_pcid_enabled) {
3545 			critical_enter();
3546 			pcid = pmap_get_pcid(pmap);
3547 			if (invpcid_works) {
3548 				d.pcid = pcid;
3549 				d.pad = 0;
3550 				d.addr = 0;
3551 				invpcid(&d, INVPCID_CTX);
3552 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3553 					d.pcid |= PMAP_PCID_USER_PT;
3554 					invpcid(&d, INVPCID_CTX);
3555 				}
3556 			} else {
3557 				kcr3 = pmap->pm_cr3 | pcid;
3558 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3559 					ucr3 = pmap->pm_ucr3 | pcid |
3560 					    PMAP_PCID_USER_PT;
3561 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3562 				} else
3563 					load_cr3(kcr3);
3564 			}
3565 			critical_exit();
3566 		} else {
3567 			invltlb();
3568 		}
3569 	} else if (pmap_pcid_enabled) {
3570 		pcidp = zpcpu_get(pmap->pm_pcidp);
3571 		pcidp->pm_gen = 0;
3572 	}
3573 }
3574 
3575 void
pmap_invalidate_cache(void)3576 pmap_invalidate_cache(void)
3577 {
3578 
3579 	wbinvd();
3580 }
3581 
3582 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3583 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3584 {
3585 	struct pmap_pcid *pcidp;
3586 
3587 	pmap_update_pde_store(pmap, pde, newpde);
3588 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3589 		pmap_update_pde_invalidate(pmap, va, newpde);
3590 	else {
3591 		pcidp = zpcpu_get(pmap->pm_pcidp);
3592 		pcidp->pm_gen = 0;
3593 	}
3594 }
3595 #endif /* !SMP */
3596 
3597 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3598 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3599 {
3600 
3601 	/*
3602 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3603 	 * by a promotion that did not invalidate the 512 4KB page mappings
3604 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3605 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3606 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3607 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3608 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3609 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3610 	 * TLB.
3611 	 */
3612 	if ((pde & PG_PROMOTED) != 0)
3613 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3614 	else
3615 		pmap_invalidate_page(pmap, va);
3616 }
3617 
3618 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3619     (vm_offset_t sva, vm_offset_t eva))
3620 {
3621 
3622 	if ((cpu_feature & CPUID_SS) != 0)
3623 		return (pmap_invalidate_cache_range_selfsnoop);
3624 	if ((cpu_feature & CPUID_CLFSH) != 0)
3625 		return (pmap_force_invalidate_cache_range);
3626 	return (pmap_invalidate_cache_range_all);
3627 }
3628 
3629 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3630 
3631 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3632 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3633 {
3634 
3635 	KASSERT((sva & PAGE_MASK) == 0,
3636 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3637 	KASSERT((eva & PAGE_MASK) == 0,
3638 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3639 }
3640 
3641 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3642 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3643 {
3644 
3645 	pmap_invalidate_cache_range_check_align(sva, eva);
3646 }
3647 
3648 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3649 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3650 {
3651 
3652 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3653 
3654 	/*
3655 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3656 	 * registers if we use CLFLUSH on the local APIC range.  The
3657 	 * local APIC is always uncached, so we don't need to flush
3658 	 * for that range anyway.
3659 	 */
3660 	if (pmap_kextract(sva) == lapic_paddr)
3661 		return;
3662 
3663 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3664 		/*
3665 		 * Do per-cache line flush.  Use a locked
3666 		 * instruction to insure that previous stores are
3667 		 * included in the write-back.  The processor
3668 		 * propagates flush to other processors in the cache
3669 		 * coherence domain.
3670 		 */
3671 		atomic_thread_fence_seq_cst();
3672 		for (; sva < eva; sva += cpu_clflush_line_size)
3673 			clflushopt(sva);
3674 		atomic_thread_fence_seq_cst();
3675 	} else {
3676 		/*
3677 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3678 		 */
3679 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3680 			mfence();
3681 		for (; sva < eva; sva += cpu_clflush_line_size)
3682 			clflush(sva);
3683 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3684 			mfence();
3685 	}
3686 }
3687 
3688 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3689 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3690 {
3691 
3692 	pmap_invalidate_cache_range_check_align(sva, eva);
3693 	pmap_invalidate_cache();
3694 }
3695 
3696 /*
3697  * Remove the specified set of pages from the data and instruction caches.
3698  *
3699  * In contrast to pmap_invalidate_cache_range(), this function does not
3700  * rely on the CPU's self-snoop feature, because it is intended for use
3701  * when moving pages into a different cache domain.
3702  */
3703 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3704 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3705 {
3706 	vm_offset_t daddr, eva;
3707 	int i;
3708 	bool useclflushopt;
3709 
3710 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3711 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3712 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3713 		pmap_invalidate_cache();
3714 	else {
3715 		if (useclflushopt)
3716 			atomic_thread_fence_seq_cst();
3717 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3718 			mfence();
3719 		for (i = 0; i < count; i++) {
3720 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3721 			eva = daddr + PAGE_SIZE;
3722 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3723 				if (useclflushopt)
3724 					clflushopt(daddr);
3725 				else
3726 					clflush(daddr);
3727 			}
3728 		}
3729 		if (useclflushopt)
3730 			atomic_thread_fence_seq_cst();
3731 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3732 			mfence();
3733 	}
3734 }
3735 
3736 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3737 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3738 {
3739 
3740 	pmap_invalidate_cache_range_check_align(sva, eva);
3741 
3742 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3743 		pmap_force_invalidate_cache_range(sva, eva);
3744 		return;
3745 	}
3746 
3747 	/* See comment in pmap_force_invalidate_cache_range(). */
3748 	if (pmap_kextract(sva) == lapic_paddr)
3749 		return;
3750 
3751 	atomic_thread_fence_seq_cst();
3752 	for (; sva < eva; sva += cpu_clflush_line_size)
3753 		clwb(sva);
3754 	atomic_thread_fence_seq_cst();
3755 }
3756 
3757 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3758 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3759 {
3760 	pt_entry_t *pte;
3761 	vm_offset_t vaddr;
3762 	int error __diagused;
3763 	int pte_bits;
3764 
3765 	KASSERT((spa & PAGE_MASK) == 0,
3766 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3767 	KASSERT((epa & PAGE_MASK) == 0,
3768 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3769 
3770 	if (spa < dmaplimit) {
3771 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3772 		    dmaplimit, epa)));
3773 		if (dmaplimit >= epa)
3774 			return;
3775 		spa = dmaplimit;
3776 	}
3777 
3778 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3779 	    X86_PG_V;
3780 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3781 	    &vaddr);
3782 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3783 	pte = vtopte(vaddr);
3784 	for (; spa < epa; spa += PAGE_SIZE) {
3785 		sched_pin();
3786 		pte_store(pte, spa | pte_bits);
3787 		pmap_invlpg(kernel_pmap, vaddr);
3788 		/* XXXKIB atomic inside flush_cache_range are excessive */
3789 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3790 		sched_unpin();
3791 	}
3792 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3793 }
3794 
3795 /*
3796  *	Routine:	pmap_extract
3797  *	Function:
3798  *		Extract the physical page address associated
3799  *		with the given map/virtual_address pair.
3800  */
3801 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3802 pmap_extract(pmap_t pmap, vm_offset_t va)
3803 {
3804 	pdp_entry_t *pdpe;
3805 	pd_entry_t *pde;
3806 	pt_entry_t *pte, PG_V;
3807 	vm_paddr_t pa;
3808 
3809 	pa = 0;
3810 	PG_V = pmap_valid_bit(pmap);
3811 	PMAP_LOCK(pmap);
3812 	pdpe = pmap_pdpe(pmap, va);
3813 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3814 		if ((*pdpe & PG_PS) != 0)
3815 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3816 		else {
3817 			pde = pmap_pdpe_to_pde(pdpe, va);
3818 			if ((*pde & PG_V) != 0) {
3819 				if ((*pde & PG_PS) != 0) {
3820 					pa = (*pde & PG_PS_FRAME) |
3821 					    (va & PDRMASK);
3822 				} else {
3823 					pte = pmap_pde_to_pte(pde, va);
3824 					pa = (*pte & PG_FRAME) |
3825 					    (va & PAGE_MASK);
3826 				}
3827 			}
3828 		}
3829 	}
3830 	PMAP_UNLOCK(pmap);
3831 	return (pa);
3832 }
3833 
3834 /*
3835  *	Routine:	pmap_extract_and_hold
3836  *	Function:
3837  *		Atomically extract and hold the physical page
3838  *		with the given pmap and virtual address pair
3839  *		if that mapping permits the given protection.
3840  */
3841 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3842 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3843 {
3844 	pdp_entry_t pdpe, *pdpep;
3845 	pd_entry_t pde, *pdep;
3846 	pt_entry_t pte, PG_RW, PG_V;
3847 	vm_page_t m;
3848 
3849 	m = NULL;
3850 	PG_RW = pmap_rw_bit(pmap);
3851 	PG_V = pmap_valid_bit(pmap);
3852 	PMAP_LOCK(pmap);
3853 
3854 	pdpep = pmap_pdpe(pmap, va);
3855 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3856 		goto out;
3857 	if ((pdpe & PG_PS) != 0) {
3858 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3859 			goto out;
3860 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3861 		goto check_page;
3862 	}
3863 
3864 	pdep = pmap_pdpe_to_pde(pdpep, va);
3865 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3866 		goto out;
3867 	if ((pde & PG_PS) != 0) {
3868 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3869 			goto out;
3870 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3871 		goto check_page;
3872 	}
3873 
3874 	pte = *pmap_pde_to_pte(pdep, va);
3875 	if ((pte & PG_V) == 0 ||
3876 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3877 		goto out;
3878 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3879 
3880 check_page:
3881 	if (m != NULL && !vm_page_wire_mapped(m))
3882 		m = NULL;
3883 out:
3884 	PMAP_UNLOCK(pmap);
3885 	return (m);
3886 }
3887 
3888 /*
3889  *	Routine:	pmap_kextract
3890  *	Function:
3891  *		Extract the physical page address associated with the given kernel
3892  *		virtual address.
3893  */
3894 vm_paddr_t
pmap_kextract(vm_offset_t va)3895 pmap_kextract(vm_offset_t va)
3896 {
3897 	pd_entry_t pde;
3898 	vm_paddr_t pa;
3899 
3900 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3901 		pa = DMAP_TO_PHYS(va);
3902 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3903 		pa = pmap_large_map_kextract(va);
3904 	} else {
3905 		pde = *vtopde(va);
3906 		if (pde & PG_PS) {
3907 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3908 		} else {
3909 			/*
3910 			 * Beware of a concurrent promotion that changes the
3911 			 * PDE at this point!  For example, vtopte() must not
3912 			 * be used to access the PTE because it would use the
3913 			 * new PDE.  It is, however, safe to use the old PDE
3914 			 * because the page table page is preserved by the
3915 			 * promotion.
3916 			 */
3917 			pa = *pmap_pde_to_pte(&pde, va);
3918 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3919 		}
3920 	}
3921 	return (pa);
3922 }
3923 
3924 /***************************************************
3925  * Low level mapping routines.....
3926  ***************************************************/
3927 
3928 /*
3929  * Add a wired page to the kva.
3930  * Note: not SMP coherent.
3931  */
3932 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3933 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3934 {
3935 	pt_entry_t *pte;
3936 
3937 	pte = vtopte(va);
3938 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3939 	    X86_PG_RW | X86_PG_V);
3940 }
3941 
3942 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3943 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3944 {
3945 	pt_entry_t *pte;
3946 	int cache_bits;
3947 
3948 	pte = vtopte(va);
3949 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3950 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3951 	    X86_PG_RW | X86_PG_V | cache_bits);
3952 }
3953 
3954 /*
3955  * Remove a page from the kernel pagetables.
3956  * Note: not SMP coherent.
3957  */
3958 void
pmap_kremove(vm_offset_t va)3959 pmap_kremove(vm_offset_t va)
3960 {
3961 	pt_entry_t *pte;
3962 
3963 	pte = vtopte(va);
3964 	pte_clear(pte);
3965 }
3966 
3967 /*
3968  *	Used to map a range of physical addresses into kernel
3969  *	virtual address space.
3970  *
3971  *	The value passed in '*virt' is a suggested virtual address for
3972  *	the mapping. Architectures which can support a direct-mapped
3973  *	physical to virtual region can return the appropriate address
3974  *	within that region, leaving '*virt' unchanged. Other
3975  *	architectures should map the pages starting at '*virt' and
3976  *	update '*virt' with the first usable address after the mapped
3977  *	region.
3978  */
3979 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)3980 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3981 {
3982 	return PHYS_TO_DMAP(start);
3983 }
3984 
3985 /*
3986  * Add a list of wired pages to the kva
3987  * this routine is only used for temporary
3988  * kernel mappings that do not need to have
3989  * page modification or references recorded.
3990  * Note that old mappings are simply written
3991  * over.  The page *must* be wired.
3992  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3993  */
3994 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)3995 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3996 {
3997 	pt_entry_t *endpte, oldpte, pa, *pte;
3998 	vm_page_t m;
3999 	int cache_bits;
4000 
4001 	oldpte = 0;
4002 	pte = vtopte(sva);
4003 	endpte = pte + count;
4004 	while (pte < endpte) {
4005 		m = *ma++;
4006 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4007 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4008 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4009 			oldpte |= *pte;
4010 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4011 			    X86_PG_M | X86_PG_RW | X86_PG_V);
4012 		}
4013 		pte++;
4014 	}
4015 	if (__predict_false((oldpte & X86_PG_V) != 0))
4016 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4017 		    PAGE_SIZE);
4018 }
4019 
4020 /*
4021  * This routine tears out page mappings from the
4022  * kernel -- it is meant only for temporary mappings.
4023  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4024  */
4025 void
pmap_qremove(vm_offset_t sva,int count)4026 pmap_qremove(vm_offset_t sva, int count)
4027 {
4028 	vm_offset_t va;
4029 
4030 	va = sva;
4031 	while (count-- > 0) {
4032 		/*
4033 		 * pmap_enter() calls within the kernel virtual
4034 		 * address space happen on virtual addresses from
4035 		 * subarenas that import superpage-sized and -aligned
4036 		 * address ranges.  So, the virtual address that we
4037 		 * allocate to use with pmap_qenter() can't be close
4038 		 * enough to one of those pmap_enter() calls for it to
4039 		 * be caught up in a promotion.
4040 		 */
4041 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4042 		KASSERT((*vtopde(va) & X86_PG_PS) == 0,
4043 		    ("pmap_qremove on promoted va %#lx", va));
4044 
4045 		pmap_kremove(va);
4046 		va += PAGE_SIZE;
4047 	}
4048 	pmap_invalidate_range(kernel_pmap, sva, va);
4049 }
4050 
4051 /***************************************************
4052  * Page table page management routines.....
4053  ***************************************************/
4054 /*
4055  * Schedule the specified unused page table page to be freed.  Specifically,
4056  * add the page to the specified list of pages that will be released to the
4057  * physical memory manager after the TLB has been updated.
4058  */
4059 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4060 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4061 {
4062 
4063 	if (set_PG_ZERO)
4064 		m->flags |= PG_ZERO;
4065 	else
4066 		m->flags &= ~PG_ZERO;
4067 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4068 }
4069 
4070 /*
4071  * Inserts the specified page table page into the specified pmap's collection
4072  * of idle page table pages.  Each of a pmap's page table pages is responsible
4073  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4074  * ordered by this virtual address range.
4075  *
4076  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4077  * "mpte"'s valid field will be set to 0.
4078  *
4079  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4080  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4081  * valid field will be set to 1.
4082  *
4083  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4084  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4085  * field will be set to VM_PAGE_BITS_ALL.
4086  */
4087 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4088 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4089     bool allpte_PG_A_set)
4090 {
4091 
4092 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4093 	KASSERT(promoted || !allpte_PG_A_set,
4094 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4095 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4096 	return (vm_radix_insert(&pmap->pm_root, mpte));
4097 }
4098 
4099 /*
4100  * Removes the page table page mapping the specified virtual address from the
4101  * specified pmap's collection of idle page table pages, and returns it.
4102  * Otherwise, returns NULL if there is no page table page corresponding to the
4103  * specified virtual address.
4104  */
4105 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4106 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4107 {
4108 
4109 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4110 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4111 }
4112 
4113 /*
4114  * Decrements a page table page's reference count, which is used to record the
4115  * number of valid page table entries within the page.  If the reference count
4116  * drops to zero, then the page table page is unmapped.  Returns true if the
4117  * page table page was unmapped and false otherwise.
4118  */
4119 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4120 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4121 {
4122 
4123 	--m->ref_count;
4124 	if (m->ref_count == 0) {
4125 		_pmap_unwire_ptp(pmap, va, m, free);
4126 		return (true);
4127 	} else
4128 		return (false);
4129 }
4130 
4131 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4132 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4133 {
4134 	pml5_entry_t *pml5;
4135 	pml4_entry_t *pml4;
4136 	pdp_entry_t *pdp;
4137 	pd_entry_t *pd;
4138 	vm_page_t pdpg, pdppg, pml4pg;
4139 
4140 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4141 
4142 	/*
4143 	 * unmap the page table page
4144 	 */
4145 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4146 		/* PML4 page */
4147 		MPASS(pmap_is_la57(pmap));
4148 		pml5 = pmap_pml5e(pmap, va);
4149 		*pml5 = 0;
4150 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4151 			pml5 = pmap_pml5e_u(pmap, va);
4152 			*pml5 = 0;
4153 		}
4154 	} else if (m->pindex >= NUPDE + NUPDPE) {
4155 		/* PDP page */
4156 		pml4 = pmap_pml4e(pmap, va);
4157 		*pml4 = 0;
4158 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4159 		    va <= VM_MAXUSER_ADDRESS) {
4160 			pml4 = pmap_pml4e_u(pmap, va);
4161 			*pml4 = 0;
4162 		}
4163 	} else if (m->pindex >= NUPDE) {
4164 		/* PD page */
4165 		pdp = pmap_pdpe(pmap, va);
4166 		*pdp = 0;
4167 	} else {
4168 		/* PTE page */
4169 		pd = pmap_pde(pmap, va);
4170 		*pd = 0;
4171 	}
4172 	if (m->pindex < NUPDE) {
4173 		/* We just released a PT, unhold the matching PD */
4174 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4175 		pmap_unwire_ptp(pmap, va, pdpg, free);
4176 	} else if (m->pindex < NUPDE + NUPDPE) {
4177 		/* We just released a PD, unhold the matching PDP */
4178 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4179 		pmap_unwire_ptp(pmap, va, pdppg, free);
4180 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4181 		/* We just released a PDP, unhold the matching PML4 */
4182 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4183 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4184 	}
4185 
4186 	pmap_pt_page_count_adj(pmap, -1);
4187 
4188 	/*
4189 	 * Put page on a list so that it is released after
4190 	 * *ALL* TLB shootdown is done
4191 	 */
4192 	pmap_add_delayed_free_list(m, free, true);
4193 }
4194 
4195 /*
4196  * After removing a page table entry, this routine is used to
4197  * conditionally free the page, and manage the reference count.
4198  */
4199 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4200 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4201     struct spglist *free)
4202 {
4203 	vm_page_t mpte;
4204 
4205 	if (va >= VM_MAXUSER_ADDRESS)
4206 		return (0);
4207 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4208 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4209 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4210 }
4211 
4212 /*
4213  * Release a page table page reference after a failed attempt to create a
4214  * mapping.
4215  */
4216 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4217 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4218 {
4219 	struct spglist free;
4220 
4221 	SLIST_INIT(&free);
4222 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4223 		/*
4224 		 * Although "va" was never mapped, paging-structure caches
4225 		 * could nonetheless have entries that refer to the freed
4226 		 * page table pages.  Invalidate those entries.
4227 		 */
4228 		pmap_invalidate_page(pmap, va);
4229 		vm_page_free_pages_toq(&free, true);
4230 	}
4231 }
4232 
4233 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4234 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4235 {
4236 	struct pmap_pcid *pcidp;
4237 	int i;
4238 
4239 	CPU_FOREACH(i) {
4240 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4241 		pcidp->pm_pcid = pcid;
4242 		pcidp->pm_gen = gen;
4243 	}
4244 }
4245 
4246 void
pmap_pinit0(pmap_t pmap)4247 pmap_pinit0(pmap_t pmap)
4248 {
4249 	struct proc *p;
4250 	struct thread *td;
4251 
4252 	PMAP_LOCK_INIT(pmap);
4253 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4254 	pmap->pm_pmltopu = NULL;
4255 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4256 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4257 	pmap->pm_ucr3 = PMAP_NO_CR3;
4258 	vm_radix_init(&pmap->pm_root);
4259 	CPU_ZERO(&pmap->pm_active);
4260 	TAILQ_INIT(&pmap->pm_pvchunk);
4261 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4262 	pmap->pm_flags = pmap_flags;
4263 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4264 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4265 	pmap_activate_boot(pmap);
4266 	td = curthread;
4267 	if (pti) {
4268 		p = td->td_proc;
4269 		PROC_LOCK(p);
4270 		p->p_md.md_flags |= P_MD_KPTI;
4271 		PROC_UNLOCK(p);
4272 	}
4273 	pmap_thread_init_invl_gen(td);
4274 
4275 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4276 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4277 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4278 		    UMA_ALIGN_PTR, 0);
4279 	}
4280 }
4281 
4282 void
pmap_pinit_pml4(vm_page_t pml4pg)4283 pmap_pinit_pml4(vm_page_t pml4pg)
4284 {
4285 	pml4_entry_t *pm_pml4;
4286 	int i;
4287 
4288 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4289 
4290 	/* Wire in kernel global address entries. */
4291 	for (i = 0; i < NKPML4E; i++) {
4292 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4293 		    X86_PG_V;
4294 	}
4295 #ifdef KASAN
4296 	for (i = 0; i < NKASANPML4E; i++) {
4297 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4298 		    X86_PG_V | pg_nx;
4299 	}
4300 #endif
4301 #ifdef KMSAN
4302 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4303 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4304 		    X86_PG_RW | X86_PG_V | pg_nx;
4305 	}
4306 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4307 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4308 		    X86_PG_RW | X86_PG_V | pg_nx;
4309 	}
4310 #endif
4311 	for (i = 0; i < ndmpdpphys; i++) {
4312 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4313 		    X86_PG_V;
4314 	}
4315 
4316 	/* install self-referential address mapping entry(s) */
4317 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4318 	    X86_PG_A | X86_PG_M;
4319 
4320 	/* install large map entries if configured */
4321 	for (i = 0; i < lm_ents; i++)
4322 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4323 }
4324 
4325 void
pmap_pinit_pml5(vm_page_t pml5pg)4326 pmap_pinit_pml5(vm_page_t pml5pg)
4327 {
4328 	pml5_entry_t *pm_pml5;
4329 
4330 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4331 
4332 	/*
4333 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4334 	 * entering all existing kernel mappings into level 5 table.
4335 	 */
4336 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4337 	    X86_PG_RW | X86_PG_A | X86_PG_M;
4338 
4339 	/*
4340 	 * Install self-referential address mapping entry.
4341 	 */
4342 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4343 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A;
4344 }
4345 
4346 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4347 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4348 {
4349 	pml4_entry_t *pm_pml4u;
4350 	int i;
4351 
4352 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4353 	for (i = 0; i < NPML4EPG; i++)
4354 		pm_pml4u[i] = pti_pml4[i];
4355 }
4356 
4357 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4358 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4359 {
4360 	pml5_entry_t *pm_pml5u;
4361 
4362 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4363 	pagezero(pm_pml5u);
4364 
4365 	/*
4366 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4367 	 * table, entering all kernel mappings needed for usermode
4368 	 * into level 5 table.
4369 	 */
4370 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4371 	    pmap_kextract((vm_offset_t)pti_pml4) |
4372 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4373 }
4374 
4375 /* Allocate a page table page and do related bookkeeping */
4376 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4377 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4378 {
4379 	vm_page_t m;
4380 
4381 	m = vm_page_alloc_noobj(flags);
4382 	if (__predict_false(m == NULL))
4383 		return (NULL);
4384 	m->pindex = pindex;
4385 	pmap_pt_page_count_adj(pmap, 1);
4386 	return (m);
4387 }
4388 
4389 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4390 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4391 {
4392 	/*
4393 	 * This function assumes the page will need to be unwired,
4394 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4395 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4396 	 * of pmap_free_pt_page() require unwiring.  The case in which
4397 	 * a PT page doesn't require unwiring because its ref_count has
4398 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4399 	 */
4400 	vm_page_unwire_noq(m);
4401 	if (zerofilled)
4402 		vm_page_free_zero(m);
4403 	else
4404 		vm_page_free(m);
4405 
4406 	pmap_pt_page_count_adj(pmap, -1);
4407 }
4408 
4409 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4410 
4411 /*
4412  * Initialize a preallocated and zeroed pmap structure,
4413  * such as one in a vmspace structure.
4414  */
4415 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4416 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4417 {
4418 	vm_page_t pmltop_pg, pmltop_pgu;
4419 	vm_paddr_t pmltop_phys;
4420 
4421 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4422 
4423 	/*
4424 	 * Allocate the page directory page.  Pass NULL instead of a
4425 	 * pointer to the pmap here to avoid calling
4426 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4427 	 * since that requires pmap lock.  Instead do the accounting
4428 	 * manually.
4429 	 *
4430 	 * Note that final call to pmap_remove() optimization that
4431 	 * checks for zero resident_count is basically disabled by
4432 	 * accounting for top-level page.  But the optimization was
4433 	 * not effective since we started using non-managed mapping of
4434 	 * the shared page.
4435 	 */
4436 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4437 	    VM_ALLOC_WAITOK);
4438 	pmap_pt_page_count_pinit(pmap, 1);
4439 
4440 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4441 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4442 
4443 	if (pmap_pcid_enabled) {
4444 		if (pmap->pm_pcidp == NULL)
4445 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4446 			    M_WAITOK);
4447 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4448 	}
4449 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4450 	pmap->pm_ucr3 = PMAP_NO_CR3;
4451 	pmap->pm_pmltopu = NULL;
4452 
4453 	pmap->pm_type = pm_type;
4454 
4455 	/*
4456 	 * Do not install the host kernel mappings in the nested page
4457 	 * tables. These mappings are meaningless in the guest physical
4458 	 * address space.
4459 	 * Install minimal kernel mappings in PTI case.
4460 	 */
4461 	switch (pm_type) {
4462 	case PT_X86:
4463 		pmap->pm_cr3 = pmltop_phys;
4464 		if (pmap_is_la57(pmap))
4465 			pmap_pinit_pml5(pmltop_pg);
4466 		else
4467 			pmap_pinit_pml4(pmltop_pg);
4468 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4469 			/*
4470 			 * As with pmltop_pg, pass NULL instead of a
4471 			 * pointer to the pmap to ensure that the PTI
4472 			 * page counted explicitly.
4473 			 */
4474 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4475 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4476 			pmap_pt_page_count_pinit(pmap, 1);
4477 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4478 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4479 			if (pmap_is_la57(pmap))
4480 				pmap_pinit_pml5_pti(pmltop_pgu);
4481 			else
4482 				pmap_pinit_pml4_pti(pmltop_pgu);
4483 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4484 		}
4485 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4486 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4487 			    pkru_free_range, pmap, M_NOWAIT);
4488 		}
4489 		break;
4490 	case PT_EPT:
4491 	case PT_RVI:
4492 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4493 		break;
4494 	}
4495 
4496 	vm_radix_init(&pmap->pm_root);
4497 	CPU_ZERO(&pmap->pm_active);
4498 	TAILQ_INIT(&pmap->pm_pvchunk);
4499 	pmap->pm_flags = flags;
4500 	pmap->pm_eptgen = 0;
4501 
4502 	return (1);
4503 }
4504 
4505 int
pmap_pinit(pmap_t pmap)4506 pmap_pinit(pmap_t pmap)
4507 {
4508 
4509 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4510 }
4511 
4512 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4513 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4514 {
4515 	vm_page_t mpg;
4516 	struct spglist free;
4517 
4518 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4519 	if (mpg->ref_count != 0)
4520 		return;
4521 	SLIST_INIT(&free);
4522 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4523 	pmap_invalidate_page(pmap, va);
4524 	vm_page_free_pages_toq(&free, true);
4525 }
4526 
4527 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4528 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4529     bool addref)
4530 {
4531 	vm_pindex_t pml5index;
4532 	pml5_entry_t *pml5;
4533 	pml4_entry_t *pml4;
4534 	vm_page_t pml4pg;
4535 	pt_entry_t PG_V;
4536 	bool allocated;
4537 
4538 	if (!pmap_is_la57(pmap))
4539 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4540 
4541 	PG_V = pmap_valid_bit(pmap);
4542 	pml5index = pmap_pml5e_index(va);
4543 	pml5 = &pmap->pm_pmltop[pml5index];
4544 	if ((*pml5 & PG_V) == 0) {
4545 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4546 		    va) == NULL)
4547 			return (NULL);
4548 		allocated = true;
4549 	} else {
4550 		allocated = false;
4551 	}
4552 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4553 	pml4 = &pml4[pmap_pml4e_index(va)];
4554 	if ((*pml4 & PG_V) == 0) {
4555 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4556 		if (allocated && !addref)
4557 			pml4pg->ref_count--;
4558 		else if (!allocated && addref)
4559 			pml4pg->ref_count++;
4560 	}
4561 	return (pml4);
4562 }
4563 
4564 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4565 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4566     bool addref)
4567 {
4568 	vm_page_t pdppg;
4569 	pml4_entry_t *pml4;
4570 	pdp_entry_t *pdp;
4571 	pt_entry_t PG_V;
4572 	bool allocated;
4573 
4574 	PG_V = pmap_valid_bit(pmap);
4575 
4576 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4577 	if (pml4 == NULL)
4578 		return (NULL);
4579 
4580 	if ((*pml4 & PG_V) == 0) {
4581 		/* Have to allocate a new pdp, recurse */
4582 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4583 		    va) == NULL) {
4584 			if (pmap_is_la57(pmap))
4585 				pmap_allocpte_free_unref(pmap, va,
4586 				    pmap_pml5e(pmap, va));
4587 			return (NULL);
4588 		}
4589 		allocated = true;
4590 	} else {
4591 		allocated = false;
4592 	}
4593 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4594 	pdp = &pdp[pmap_pdpe_index(va)];
4595 	if ((*pdp & PG_V) == 0) {
4596 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4597 		if (allocated && !addref)
4598 			pdppg->ref_count--;
4599 		else if (!allocated && addref)
4600 			pdppg->ref_count++;
4601 	}
4602 	return (pdp);
4603 }
4604 
4605 /*
4606  * The ptepindexes, i.e. page indices, of the page table pages encountered
4607  * while translating virtual address va are defined as follows:
4608  * - for the page table page (last level),
4609  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4610  *   in other words, it is just the index of the PDE that maps the page
4611  *   table page.
4612  * - for the page directory page,
4613  *      ptepindex = NUPDE (number of userland PD entries) +
4614  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4615  *   i.e. index of PDPE is put after the last index of PDE,
4616  * - for the page directory pointer page,
4617  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4618  *          NPML4EPGSHIFT),
4619  *   i.e. index of pml4e is put after the last index of PDPE,
4620  * - for the PML4 page (if LA57 mode is enabled),
4621  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4622  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4623  *   i.e. index of pml5e is put after the last index of PML4E.
4624  *
4625  * Define an order on the paging entries, where all entries of the
4626  * same height are put together, then heights are put from deepest to
4627  * root.  Then ptexpindex is the sequential number of the
4628  * corresponding paging entry in this order.
4629  *
4630  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4631  * LA57 paging structures even in LA48 paging mode. Moreover, the
4632  * ptepindexes are calculated as if the paging structures were 5-level
4633  * regardless of the actual mode of operation.
4634  *
4635  * The root page at PML4/PML5 does not participate in this indexing scheme,
4636  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4637  */
4638 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4639 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4640     vm_offset_t va)
4641 {
4642 	vm_pindex_t pml5index, pml4index;
4643 	pml5_entry_t *pml5, *pml5u;
4644 	pml4_entry_t *pml4, *pml4u;
4645 	pdp_entry_t *pdp;
4646 	pd_entry_t *pd;
4647 	vm_page_t m, pdpg;
4648 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4649 
4650 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4651 
4652 	PG_A = pmap_accessed_bit(pmap);
4653 	PG_M = pmap_modified_bit(pmap);
4654 	PG_V = pmap_valid_bit(pmap);
4655 	PG_RW = pmap_rw_bit(pmap);
4656 
4657 	/*
4658 	 * Allocate a page table page.
4659 	 */
4660 	m = pmap_alloc_pt_page(pmap, ptepindex,
4661 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4662 	if (m == NULL)
4663 		return (NULL);
4664 
4665 	/*
4666 	 * Map the pagetable page into the process address space, if
4667 	 * it isn't already there.
4668 	 */
4669 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4670 		MPASS(pmap_is_la57(pmap));
4671 
4672 		pml5index = pmap_pml5e_index(va);
4673 		pml5 = &pmap->pm_pmltop[pml5index];
4674 		KASSERT((*pml5 & PG_V) == 0,
4675 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4676 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4677 
4678 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4679 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4680 			*pml5 |= pg_nx;
4681 
4682 			pml5u = &pmap->pm_pmltopu[pml5index];
4683 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4684 			    PG_A | PG_M;
4685 		}
4686 	} else if (ptepindex >= NUPDE + NUPDPE) {
4687 		pml4index = pmap_pml4e_index(va);
4688 		/* Wire up a new PDPE page */
4689 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4690 		if (pml4 == NULL) {
4691 			pmap_free_pt_page(pmap, m, true);
4692 			return (NULL);
4693 		}
4694 		KASSERT((*pml4 & PG_V) == 0,
4695 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4696 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4697 
4698 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4699 		    pml4index < NUPML4E) {
4700 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4701 
4702 			/*
4703 			 * PTI: Make all user-space mappings in the
4704 			 * kernel-mode page table no-execute so that
4705 			 * we detect any programming errors that leave
4706 			 * the kernel-mode page table active on return
4707 			 * to user space.
4708 			 */
4709 			*pml4 |= pg_nx;
4710 
4711 			pml4u = &pmap->pm_pmltopu[pml4index];
4712 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4713 			    PG_A | PG_M;
4714 		}
4715 	} else if (ptepindex >= NUPDE) {
4716 		/* Wire up a new PDE page */
4717 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4718 		if (pdp == NULL) {
4719 			pmap_free_pt_page(pmap, m, true);
4720 			return (NULL);
4721 		}
4722 		KASSERT((*pdp & PG_V) == 0,
4723 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4724 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4725 	} else {
4726 		/* Wire up a new PTE page */
4727 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4728 		if (pdp == NULL) {
4729 			pmap_free_pt_page(pmap, m, true);
4730 			return (NULL);
4731 		}
4732 		if ((*pdp & PG_V) == 0) {
4733 			/* Have to allocate a new pd, recurse */
4734 			if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4735 			    lockp, va) == NULL) {
4736 				pmap_allocpte_free_unref(pmap, va,
4737 				    pmap_pml4e(pmap, va));
4738 				pmap_free_pt_page(pmap, m, true);
4739 				return (NULL);
4740 			}
4741 		} else {
4742 			/* Add reference to the pd page */
4743 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4744 			pdpg->ref_count++;
4745 		}
4746 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4747 
4748 		/* Now we know where the page directory page is */
4749 		pd = &pd[pmap_pde_index(va)];
4750 		KASSERT((*pd & PG_V) == 0,
4751 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4752 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4753 	}
4754 
4755 	return (m);
4756 }
4757 
4758 /*
4759  * This routine is called if the desired page table page does not exist.
4760  *
4761  * If page table page allocation fails, this routine may sleep before
4762  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4763  * occurs right before returning to the caller. This way, we never
4764  * drop pmap lock to sleep while a page table page has ref_count == 0,
4765  * which prevents the page from being freed under us.
4766  */
4767 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4768 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4769     vm_offset_t va)
4770 {
4771 	vm_page_t m;
4772 
4773 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4774 	if (m == NULL && lockp != NULL) {
4775 		RELEASE_PV_LIST_LOCK(lockp);
4776 		PMAP_UNLOCK(pmap);
4777 		PMAP_ASSERT_NOT_IN_DI();
4778 		vm_wait(NULL);
4779 		PMAP_LOCK(pmap);
4780 	}
4781 	return (m);
4782 }
4783 
4784 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4785 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4786     struct rwlock **lockp)
4787 {
4788 	pdp_entry_t *pdpe, PG_V;
4789 	pd_entry_t *pde;
4790 	vm_page_t pdpg;
4791 	vm_pindex_t pdpindex;
4792 
4793 	PG_V = pmap_valid_bit(pmap);
4794 
4795 retry:
4796 	pdpe = pmap_pdpe(pmap, va);
4797 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4798 		pde = pmap_pdpe_to_pde(pdpe, va);
4799 		if (va < VM_MAXUSER_ADDRESS) {
4800 			/* Add a reference to the pd page. */
4801 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4802 			pdpg->ref_count++;
4803 		} else
4804 			pdpg = NULL;
4805 	} else if (va < VM_MAXUSER_ADDRESS) {
4806 		/* Allocate a pd page. */
4807 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4808 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4809 		if (pdpg == NULL) {
4810 			if (lockp != NULL)
4811 				goto retry;
4812 			else
4813 				return (NULL);
4814 		}
4815 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4816 		pde = &pde[pmap_pde_index(va)];
4817 	} else
4818 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4819 		    va);
4820 	*pdpgp = pdpg;
4821 	return (pde);
4822 }
4823 
4824 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4825 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4826 {
4827 	vm_pindex_t ptepindex;
4828 	pd_entry_t *pd, PG_V;
4829 	vm_page_t m;
4830 
4831 	PG_V = pmap_valid_bit(pmap);
4832 
4833 	/*
4834 	 * Calculate pagetable page index
4835 	 */
4836 	ptepindex = pmap_pde_pindex(va);
4837 retry:
4838 	/*
4839 	 * Get the page directory entry
4840 	 */
4841 	pd = pmap_pde(pmap, va);
4842 
4843 	/*
4844 	 * This supports switching from a 2MB page to a
4845 	 * normal 4K page.
4846 	 */
4847 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4848 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4849 			/*
4850 			 * Invalidation of the 2MB page mapping may have caused
4851 			 * the deallocation of the underlying PD page.
4852 			 */
4853 			pd = NULL;
4854 		}
4855 	}
4856 
4857 	/*
4858 	 * If the page table page is mapped, we just increment the
4859 	 * hold count, and activate it.
4860 	 */
4861 	if (pd != NULL && (*pd & PG_V) != 0) {
4862 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4863 		m->ref_count++;
4864 	} else {
4865 		/*
4866 		 * Here if the pte page isn't mapped, or if it has been
4867 		 * deallocated.
4868 		 */
4869 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4870 		if (m == NULL && lockp != NULL)
4871 			goto retry;
4872 	}
4873 	return (m);
4874 }
4875 
4876 /***************************************************
4877  * Pmap allocation/deallocation routines.
4878  ***************************************************/
4879 
4880 /*
4881  * Release any resources held by the given physical map.
4882  * Called when a pmap initialized by pmap_pinit is being released.
4883  * Should only be called if the map contains no valid mappings.
4884  */
4885 void
pmap_release(pmap_t pmap)4886 pmap_release(pmap_t pmap)
4887 {
4888 	vm_page_t m;
4889 	int i;
4890 
4891 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4892 	    ("pmap_release: pmap %p has reserved page table page(s)",
4893 	    pmap));
4894 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4895 	    ("releasing active pmap %p", pmap));
4896 
4897 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4898 
4899 	if (pmap_is_la57(pmap)) {
4900 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4901 		pmap->pm_pmltop[PML5PML5I] = 0;
4902 	} else {
4903 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4904 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4905 #ifdef KASAN
4906 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4907 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4908 #endif
4909 #ifdef KMSAN
4910 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4911 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4912 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4913 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4914 #endif
4915 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4916 			pmap->pm_pmltop[DMPML4I + i] = 0;
4917 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4918 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4919 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4920 	}
4921 
4922 	pmap_free_pt_page(NULL, m, true);
4923 	pmap_pt_page_count_pinit(pmap, -1);
4924 
4925 	if (pmap->pm_pmltopu != NULL) {
4926 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4927 		    pm_pmltopu));
4928 		pmap_free_pt_page(NULL, m, false);
4929 		pmap_pt_page_count_pinit(pmap, -1);
4930 	}
4931 	if (pmap->pm_type == PT_X86 &&
4932 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4933 		rangeset_fini(&pmap->pm_pkru);
4934 
4935 	KASSERT(pmap->pm_stats.resident_count == 0,
4936 	    ("pmap_release: pmap %p resident count %ld != 0",
4937 	    pmap, pmap->pm_stats.resident_count));
4938 }
4939 
4940 static int
kvm_size(SYSCTL_HANDLER_ARGS)4941 kvm_size(SYSCTL_HANDLER_ARGS)
4942 {
4943 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4944 
4945 	return sysctl_handle_long(oidp, &ksize, 0, req);
4946 }
4947 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4948     0, 0, kvm_size, "LU",
4949     "Size of KVM");
4950 
4951 static int
kvm_free(SYSCTL_HANDLER_ARGS)4952 kvm_free(SYSCTL_HANDLER_ARGS)
4953 {
4954 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4955 
4956 	return sysctl_handle_long(oidp, &kfree, 0, req);
4957 }
4958 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4959     0, 0, kvm_free, "LU",
4960     "Amount of KVM free");
4961 
4962 #ifdef KMSAN
4963 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4964 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4965 {
4966 	pdp_entry_t *pdpe;
4967 	pd_entry_t *pde;
4968 	pt_entry_t *pte;
4969 	vm_paddr_t dummypa, dummypd, dummypt;
4970 	int i, npde, npdpg;
4971 
4972 	npdpg = howmany(size, NBPDP);
4973 	npde = size / NBPDR;
4974 
4975 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4976 	pagezero((void *)PHYS_TO_DMAP(dummypa));
4977 
4978 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4979 	pagezero((void *)PHYS_TO_DMAP(dummypt));
4980 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4981 	for (i = 0; i < npdpg; i++)
4982 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4983 
4984 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4985 	for (i = 0; i < NPTEPG; i++)
4986 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4987 		    X86_PG_A | X86_PG_M | pg_nx);
4988 
4989 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4990 	for (i = 0; i < npde; i++)
4991 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4992 
4993 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4994 	for (i = 0; i < npdpg; i++)
4995 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4996 		    X86_PG_RW | pg_nx);
4997 }
4998 
4999 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5000 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5001 {
5002 	vm_size_t size;
5003 
5004 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5005 
5006 	/*
5007 	 * The end of the page array's KVA region is 2MB aligned, see
5008 	 * kmem_init().
5009 	 */
5010 	size = round_2mpage(end) - start;
5011 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5012 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5013 }
5014 #endif
5015 
5016 /*
5017  * Allocate physical memory for the vm_page array and map it into KVA,
5018  * attempting to back the vm_pages with domain-local memory.
5019  */
5020 void
pmap_page_array_startup(long pages)5021 pmap_page_array_startup(long pages)
5022 {
5023 	pdp_entry_t *pdpe;
5024 	pd_entry_t *pde, newpdir;
5025 	vm_offset_t va, start, end;
5026 	vm_paddr_t pa;
5027 	long pfn;
5028 	int domain, i;
5029 
5030 	vm_page_array_size = pages;
5031 
5032 	start = VM_MIN_KERNEL_ADDRESS;
5033 	end = start + pages * sizeof(struct vm_page);
5034 	for (va = start; va < end; va += NBPDR) {
5035 		pfn = first_page + (va - start) / sizeof(struct vm_page);
5036 		domain = vm_phys_domain(ptoa(pfn));
5037 		pdpe = pmap_pdpe(kernel_pmap, va);
5038 		if ((*pdpe & X86_PG_V) == 0) {
5039 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5040 			dump_add_page(pa);
5041 			pagezero((void *)PHYS_TO_DMAP(pa));
5042 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5043 			    X86_PG_A | X86_PG_M);
5044 		}
5045 		pde = pmap_pdpe_to_pde(pdpe, va);
5046 		if ((*pde & X86_PG_V) != 0)
5047 			panic("Unexpected pde");
5048 		pa = vm_phys_early_alloc(domain, NBPDR);
5049 		for (i = 0; i < NPDEPG; i++)
5050 			dump_add_page(pa + i * PAGE_SIZE);
5051 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5052 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5053 		pde_store(pde, newpdir);
5054 	}
5055 	vm_page_array = (vm_page_t)start;
5056 
5057 #ifdef KMSAN
5058 	pmap_kmsan_page_array_startup(start, end);
5059 #endif
5060 }
5061 
5062 /*
5063  * grow the number of kernel page table entries, if needed
5064  */
5065 static int
pmap_growkernel_nopanic(vm_offset_t addr)5066 pmap_growkernel_nopanic(vm_offset_t addr)
5067 {
5068 	vm_paddr_t paddr;
5069 	vm_page_t nkpg;
5070 	pd_entry_t *pde, newpdir;
5071 	pdp_entry_t *pdpe;
5072 	vm_offset_t end;
5073 	int rv;
5074 
5075 	TSENTER();
5076 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5077 	rv = KERN_SUCCESS;
5078 
5079 	/*
5080 	 * The kernel map covers two distinct regions of KVA: that used
5081 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5082 	 * of the virtual address space.  The latter is used to map the
5083 	 * kernel and loadable kernel modules.  This scheme enables the
5084 	 * use of a special code generation model for kernel code which
5085 	 * takes advantage of compact addressing modes in machine code.
5086 	 *
5087 	 * Both regions grow upwards; to avoid wasting memory, the gap
5088 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5089 	 * kernel's region is grown, otherwise the kmem region is grown.
5090 	 *
5091 	 * The correctness of this action is based on the following
5092 	 * argument: vm_map_insert() allocates contiguous ranges of the
5093 	 * kernel virtual address space.  It calls this function if a range
5094 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5095 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5096 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5097 	 * than the kernel.  Thus, there is no immediate need to allocate
5098 	 * any new kernel page table pages between "kernel_vm_end" and
5099 	 * "KERNBASE".
5100 	 */
5101 	if (KERNBASE < addr) {
5102 		end = KERNBASE + nkpt * NBPDR;
5103 		if (end == 0) {
5104 			TSEXIT();
5105 			return (rv);
5106 		}
5107 	} else {
5108 		end = kernel_vm_end;
5109 	}
5110 
5111 	addr = roundup2(addr, NBPDR);
5112 	if (addr - 1 >= vm_map_max(kernel_map))
5113 		addr = vm_map_max(kernel_map);
5114 	if (addr <= end) {
5115 		/*
5116 		 * The grown region is already mapped, so there is
5117 		 * nothing to do.
5118 		 */
5119 		TSEXIT();
5120 		return (rv);
5121 	}
5122 
5123 	kasan_shadow_map(end, addr - end);
5124 	kmsan_shadow_map(end, addr - end);
5125 	while (end < addr) {
5126 		pdpe = pmap_pdpe(kernel_pmap, end);
5127 		if ((*pdpe & X86_PG_V) == 0) {
5128 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5129 			    pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5130 			        VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5131 			if (nkpg == NULL) {
5132 				rv = KERN_RESOURCE_SHORTAGE;
5133 				break;
5134 			}
5135 			paddr = VM_PAGE_TO_PHYS(nkpg);
5136 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5137 			    X86_PG_A | X86_PG_M);
5138 			continue; /* try again */
5139 		}
5140 		pde = pmap_pdpe_to_pde(pdpe, end);
5141 		if ((*pde & X86_PG_V) != 0) {
5142 			end = (end + NBPDR) & ~PDRMASK;
5143 			if (end - 1 >= vm_map_max(kernel_map)) {
5144 				end = vm_map_max(kernel_map);
5145 				break;
5146 			}
5147 			continue;
5148 		}
5149 
5150 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5151 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5152 			VM_ALLOC_ZERO);
5153 		if (nkpg == NULL) {
5154 			rv = KERN_RESOURCE_SHORTAGE;
5155 			break;
5156 		}
5157 
5158 		paddr = VM_PAGE_TO_PHYS(nkpg);
5159 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5160 		pde_store(pde, newpdir);
5161 
5162 		end = (end + NBPDR) & ~PDRMASK;
5163 		if (end - 1 >= vm_map_max(kernel_map)) {
5164 			end = vm_map_max(kernel_map);
5165 			break;
5166 		}
5167 	}
5168 
5169 	if (end <= KERNBASE)
5170 		kernel_vm_end = end;
5171 	else
5172 		nkpt = howmany(end - KERNBASE, NBPDR);
5173 	TSEXIT();
5174 	return (rv);
5175 }
5176 
5177 int
pmap_growkernel(vm_offset_t addr)5178 pmap_growkernel(vm_offset_t addr)
5179 {
5180 	int rv;
5181 
5182 	rv = pmap_growkernel_nopanic(addr);
5183 	if (rv != KERN_SUCCESS && pmap_growkernel_panic)
5184 		panic("pmap_growkernel: no memory to grow kernel");
5185 	return (rv);
5186 }
5187 
5188 /***************************************************
5189  * page management routines.
5190  ***************************************************/
5191 
5192 static const uint64_t pc_freemask[_NPCM] = {
5193 	[0 ... _NPCM - 2] = PC_FREEN,
5194 	[_NPCM - 1] = PC_FREEL
5195 };
5196 
5197 #ifdef PV_STATS
5198 
5199 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5200 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5201     &pc_chunk_count, "Current number of pv entry cnunks");
5202 
5203 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5204 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5205     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5206 
5207 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5208 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5209     &pc_chunk_frees, "Total number of pv entry chunks freed");
5210 
5211 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5212 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5213     &pc_chunk_tryfail,
5214     "Number of failed attempts to get a pv entry chunk page");
5215 
5216 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5217 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5218     &pv_entry_frees, "Total number of pv entries freed");
5219 
5220 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5221 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5222     &pv_entry_allocs, "Total number of pv entries allocated");
5223 
5224 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5225 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5226     &pv_entry_count, "Current number of pv entries");
5227 
5228 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5229 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5230     &pv_entry_spare, "Current number of spare pv entries");
5231 #endif
5232 
5233 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5234 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5235 {
5236 
5237 	if (pmap == NULL)
5238 		return;
5239 	pmap_invalidate_all(pmap);
5240 	if (pmap != locked_pmap)
5241 		PMAP_UNLOCK(pmap);
5242 	if (start_di)
5243 		pmap_delayed_invl_finish();
5244 }
5245 
5246 /*
5247  * We are in a serious low memory condition.  Resort to
5248  * drastic measures to free some pages so we can allocate
5249  * another pv entry chunk.
5250  *
5251  * Returns NULL if PV entries were reclaimed from the specified pmap.
5252  *
5253  * We do not, however, unmap 2mpages because subsequent accesses will
5254  * allocate per-page pv entries until repromotion occurs, thereby
5255  * exacerbating the shortage of free pv entries.
5256  */
5257 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5258 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5259 {
5260 	struct pv_chunks_list *pvc;
5261 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5262 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5263 	struct md_page *pvh;
5264 	pd_entry_t *pde;
5265 	pmap_t next_pmap, pmap;
5266 	pt_entry_t *pte, tpte;
5267 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5268 	pv_entry_t pv;
5269 	vm_offset_t va;
5270 	vm_page_t m, m_pc;
5271 	struct spglist free;
5272 	uint64_t inuse;
5273 	int bit, field, freed;
5274 	bool start_di, restart;
5275 
5276 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5277 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5278 	pmap = NULL;
5279 	m_pc = NULL;
5280 	PG_G = PG_A = PG_M = PG_RW = 0;
5281 	SLIST_INIT(&free);
5282 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5283 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5284 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5285 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5286 
5287 	/*
5288 	 * A delayed invalidation block should already be active if
5289 	 * pmap_advise() or pmap_remove() called this function by way
5290 	 * of pmap_demote_pde_locked().
5291 	 */
5292 	start_di = pmap_not_in_di();
5293 
5294 	pvc = &pv_chunks[domain];
5295 	mtx_lock(&pvc->pvc_lock);
5296 	pvc->active_reclaims++;
5297 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5298 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5299 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5300 	    SLIST_EMPTY(&free)) {
5301 		next_pmap = pc->pc_pmap;
5302 		if (next_pmap == NULL) {
5303 			/*
5304 			 * The next chunk is a marker.  However, it is
5305 			 * not our marker, so active_reclaims must be
5306 			 * > 1.  Consequently, the next_chunk code
5307 			 * will not rotate the pv_chunks list.
5308 			 */
5309 			goto next_chunk;
5310 		}
5311 		mtx_unlock(&pvc->pvc_lock);
5312 
5313 		/*
5314 		 * A pv_chunk can only be removed from the pc_lru list
5315 		 * when both pc_chunks_mutex is owned and the
5316 		 * corresponding pmap is locked.
5317 		 */
5318 		if (pmap != next_pmap) {
5319 			restart = false;
5320 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5321 			    start_di);
5322 			pmap = next_pmap;
5323 			/* Avoid deadlock and lock recursion. */
5324 			if (pmap > locked_pmap) {
5325 				RELEASE_PV_LIST_LOCK(lockp);
5326 				PMAP_LOCK(pmap);
5327 				if (start_di)
5328 					pmap_delayed_invl_start();
5329 				mtx_lock(&pvc->pvc_lock);
5330 				restart = true;
5331 			} else if (pmap != locked_pmap) {
5332 				if (PMAP_TRYLOCK(pmap)) {
5333 					if (start_di)
5334 						pmap_delayed_invl_start();
5335 					mtx_lock(&pvc->pvc_lock);
5336 					restart = true;
5337 				} else {
5338 					pmap = NULL; /* pmap is not locked */
5339 					mtx_lock(&pvc->pvc_lock);
5340 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5341 					if (pc == NULL ||
5342 					    pc->pc_pmap != next_pmap)
5343 						continue;
5344 					goto next_chunk;
5345 				}
5346 			} else if (start_di)
5347 				pmap_delayed_invl_start();
5348 			PG_G = pmap_global_bit(pmap);
5349 			PG_A = pmap_accessed_bit(pmap);
5350 			PG_M = pmap_modified_bit(pmap);
5351 			PG_RW = pmap_rw_bit(pmap);
5352 			if (restart)
5353 				continue;
5354 		}
5355 
5356 		/*
5357 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5358 		 */
5359 		freed = 0;
5360 		for (field = 0; field < _NPCM; field++) {
5361 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5362 			    inuse != 0; inuse &= ~(1UL << bit)) {
5363 				bit = bsfq(inuse);
5364 				pv = &pc->pc_pventry[field * 64 + bit];
5365 				va = pv->pv_va;
5366 				pde = pmap_pde(pmap, va);
5367 				if ((*pde & PG_PS) != 0)
5368 					continue;
5369 				pte = pmap_pde_to_pte(pde, va);
5370 				if ((*pte & PG_W) != 0)
5371 					continue;
5372 				tpte = pte_load_clear(pte);
5373 				if ((tpte & PG_G) != 0)
5374 					pmap_invalidate_page(pmap, va);
5375 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5376 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5377 					vm_page_dirty(m);
5378 				if ((tpte & PG_A) != 0)
5379 					vm_page_aflag_set(m, PGA_REFERENCED);
5380 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5381 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5382 				m->md.pv_gen++;
5383 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5384 				    (m->flags & PG_FICTITIOUS) == 0) {
5385 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5386 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5387 						vm_page_aflag_clear(m,
5388 						    PGA_WRITEABLE);
5389 					}
5390 				}
5391 				pmap_delayed_invl_page(m);
5392 				pc->pc_map[field] |= 1UL << bit;
5393 				pmap_unuse_pt(pmap, va, *pde, &free);
5394 				freed++;
5395 			}
5396 		}
5397 		if (freed == 0) {
5398 			mtx_lock(&pvc->pvc_lock);
5399 			goto next_chunk;
5400 		}
5401 		/* Every freed mapping is for a 4 KB page. */
5402 		pmap_resident_count_adj(pmap, -freed);
5403 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5404 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5405 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5406 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5407 		if (pc_is_free(pc)) {
5408 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5409 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5410 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5411 			/* Entire chunk is free; return it. */
5412 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5413 			dump_drop_page(m_pc->phys_addr);
5414 			mtx_lock(&pvc->pvc_lock);
5415 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5416 			break;
5417 		}
5418 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5419 		mtx_lock(&pvc->pvc_lock);
5420 		/* One freed pv entry in locked_pmap is sufficient. */
5421 		if (pmap == locked_pmap)
5422 			break;
5423 next_chunk:
5424 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5425 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5426 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5427 			/*
5428 			 * Rotate the pv chunks list so that we do not
5429 			 * scan the same pv chunks that could not be
5430 			 * freed (because they contained a wired
5431 			 * and/or superpage mapping) on every
5432 			 * invocation of reclaim_pv_chunk().
5433 			 */
5434 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5435 				MPASS(pc->pc_pmap != NULL);
5436 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5437 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5438 			}
5439 		}
5440 	}
5441 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5442 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5443 	pvc->active_reclaims--;
5444 	mtx_unlock(&pvc->pvc_lock);
5445 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5446 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5447 		m_pc = SLIST_FIRST(&free);
5448 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5449 		/* Recycle a freed page table page. */
5450 		m_pc->ref_count = 1;
5451 	}
5452 	vm_page_free_pages_toq(&free, true);
5453 	return (m_pc);
5454 }
5455 
5456 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5457 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5458 {
5459 	vm_page_t m;
5460 	int i, domain;
5461 
5462 	domain = PCPU_GET(domain);
5463 	for (i = 0; i < vm_ndomains; i++) {
5464 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5465 		if (m != NULL)
5466 			break;
5467 		domain = (domain + 1) % vm_ndomains;
5468 	}
5469 
5470 	return (m);
5471 }
5472 
5473 /*
5474  * free the pv_entry back to the free list
5475  */
5476 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5477 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5478 {
5479 	struct pv_chunk *pc;
5480 	int idx, field, bit;
5481 
5482 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5483 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5484 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5485 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5486 	pc = pv_to_chunk(pv);
5487 	idx = pv - &pc->pc_pventry[0];
5488 	field = idx / 64;
5489 	bit = idx % 64;
5490 	pc->pc_map[field] |= 1ul << bit;
5491 	if (!pc_is_free(pc)) {
5492 		/* 98% of the time, pc is already at the head of the list. */
5493 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5494 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5495 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5496 		}
5497 		return;
5498 	}
5499 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5500 	free_pv_chunk(pc);
5501 }
5502 
5503 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5504 free_pv_chunk_dequeued(struct pv_chunk *pc)
5505 {
5506 	vm_page_t m;
5507 
5508 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5509 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5510 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5511 	counter_u64_add(pv_page_count, -1);
5512 	/* entire chunk is free, return it */
5513 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5514 	dump_drop_page(m->phys_addr);
5515 	vm_page_unwire_noq(m);
5516 	vm_page_free(m);
5517 }
5518 
5519 static void
free_pv_chunk(struct pv_chunk * pc)5520 free_pv_chunk(struct pv_chunk *pc)
5521 {
5522 	struct pv_chunks_list *pvc;
5523 
5524 	pvc = &pv_chunks[pc_to_domain(pc)];
5525 	mtx_lock(&pvc->pvc_lock);
5526 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5527 	mtx_unlock(&pvc->pvc_lock);
5528 	free_pv_chunk_dequeued(pc);
5529 }
5530 
5531 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5532 free_pv_chunk_batch(struct pv_chunklist *batch)
5533 {
5534 	struct pv_chunks_list *pvc;
5535 	struct pv_chunk *pc, *npc;
5536 	int i;
5537 
5538 	for (i = 0; i < vm_ndomains; i++) {
5539 		if (TAILQ_EMPTY(&batch[i]))
5540 			continue;
5541 		pvc = &pv_chunks[i];
5542 		mtx_lock(&pvc->pvc_lock);
5543 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5544 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5545 		}
5546 		mtx_unlock(&pvc->pvc_lock);
5547 	}
5548 
5549 	for (i = 0; i < vm_ndomains; i++) {
5550 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5551 			free_pv_chunk_dequeued(pc);
5552 		}
5553 	}
5554 }
5555 
5556 /*
5557  * Returns a new PV entry, allocating a new PV chunk from the system when
5558  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5559  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5560  * returned.
5561  *
5562  * The given PV list lock may be released.
5563  */
5564 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5565 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5566 {
5567 	struct pv_chunks_list *pvc;
5568 	int bit, field;
5569 	pv_entry_t pv;
5570 	struct pv_chunk *pc;
5571 	vm_page_t m;
5572 
5573 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5574 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5575 retry:
5576 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5577 	if (pc != NULL) {
5578 		for (field = 0; field < _NPCM; field++) {
5579 			if (pc->pc_map[field]) {
5580 				bit = bsfq(pc->pc_map[field]);
5581 				break;
5582 			}
5583 		}
5584 		if (field < _NPCM) {
5585 			pv = &pc->pc_pventry[field * 64 + bit];
5586 			pc->pc_map[field] &= ~(1ul << bit);
5587 			/* If this was the last item, move it to tail */
5588 			if (pc_is_full(pc)) {
5589 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5590 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5591 				    pc_list);
5592 			}
5593 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5594 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5595 			return (pv);
5596 		}
5597 	}
5598 	/* No free items, allocate another chunk */
5599 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5600 	if (m == NULL) {
5601 		if (lockp == NULL) {
5602 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5603 			return (NULL);
5604 		}
5605 		m = reclaim_pv_chunk(pmap, lockp);
5606 		if (m == NULL)
5607 			goto retry;
5608 	} else
5609 		counter_u64_add(pv_page_count, 1);
5610 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5611 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5612 	dump_add_page(m->phys_addr);
5613 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5614 	pc->pc_pmap = pmap;
5615 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5616 	pc->pc_map[1] = PC_FREEN;
5617 	pc->pc_map[2] = PC_FREEL;
5618 	pvc = &pv_chunks[vm_page_domain(m)];
5619 	mtx_lock(&pvc->pvc_lock);
5620 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5621 	mtx_unlock(&pvc->pvc_lock);
5622 	pv = &pc->pc_pventry[0];
5623 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5624 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5625 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5626 	return (pv);
5627 }
5628 
5629 /*
5630  * Returns the number of one bits within the given PV chunk map.
5631  *
5632  * The erratas for Intel processors state that "POPCNT Instruction May
5633  * Take Longer to Execute Than Expected".  It is believed that the
5634  * issue is the spurious dependency on the destination register.
5635  * Provide a hint to the register rename logic that the destination
5636  * value is overwritten, by clearing it, as suggested in the
5637  * optimization manual.  It should be cheap for unaffected processors
5638  * as well.
5639  *
5640  * Reference numbers for erratas are
5641  * 4th Gen Core: HSD146
5642  * 5th Gen Core: BDM85
5643  * 6th Gen Core: SKL029
5644  */
5645 static int
popcnt_pc_map_pq(uint64_t * map)5646 popcnt_pc_map_pq(uint64_t *map)
5647 {
5648 	u_long result, tmp;
5649 
5650 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5651 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5652 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5653 	    : "=&r" (result), "=&r" (tmp)
5654 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5655 	return (result);
5656 }
5657 
5658 /*
5659  * Ensure that the number of spare PV entries in the specified pmap meets or
5660  * exceeds the given count, "needed".
5661  *
5662  * The given PV list lock may be released.
5663  */
5664 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5665 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5666 {
5667 	struct pv_chunks_list *pvc;
5668 	struct pch new_tail[PMAP_MEMDOM];
5669 	struct pv_chunk *pc;
5670 	vm_page_t m;
5671 	int avail, free, i;
5672 	bool reclaimed;
5673 
5674 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5675 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5676 
5677 	/*
5678 	 * Newly allocated PV chunks must be stored in a private list until
5679 	 * the required number of PV chunks have been allocated.  Otherwise,
5680 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5681 	 * contrast, these chunks must be added to the pmap upon allocation.
5682 	 */
5683 	for (i = 0; i < PMAP_MEMDOM; i++)
5684 		TAILQ_INIT(&new_tail[i]);
5685 retry:
5686 	avail = 0;
5687 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5688 #ifndef __POPCNT__
5689 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5690 			bit_count((bitstr_t *)pc->pc_map, 0,
5691 			    sizeof(pc->pc_map) * NBBY, &free);
5692 		else
5693 #endif
5694 		free = popcnt_pc_map_pq(pc->pc_map);
5695 		if (free == 0)
5696 			break;
5697 		avail += free;
5698 		if (avail >= needed)
5699 			break;
5700 	}
5701 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5702 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5703 		if (m == NULL) {
5704 			m = reclaim_pv_chunk(pmap, lockp);
5705 			if (m == NULL)
5706 				goto retry;
5707 			reclaimed = true;
5708 		} else
5709 			counter_u64_add(pv_page_count, 1);
5710 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5711 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5712 		dump_add_page(m->phys_addr);
5713 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5714 		pc->pc_pmap = pmap;
5715 		pc->pc_map[0] = PC_FREEN;
5716 		pc->pc_map[1] = PC_FREEN;
5717 		pc->pc_map[2] = PC_FREEL;
5718 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5719 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5720 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5721 
5722 		/*
5723 		 * The reclaim might have freed a chunk from the current pmap.
5724 		 * If that chunk contained available entries, we need to
5725 		 * re-count the number of available entries.
5726 		 */
5727 		if (reclaimed)
5728 			goto retry;
5729 	}
5730 	for (i = 0; i < vm_ndomains; i++) {
5731 		if (TAILQ_EMPTY(&new_tail[i]))
5732 			continue;
5733 		pvc = &pv_chunks[i];
5734 		mtx_lock(&pvc->pvc_lock);
5735 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5736 		mtx_unlock(&pvc->pvc_lock);
5737 	}
5738 }
5739 
5740 /*
5741  * First find and then remove the pv entry for the specified pmap and virtual
5742  * address from the specified pv list.  Returns the pv entry if found and NULL
5743  * otherwise.  This operation can be performed on pv lists for either 4KB or
5744  * 2MB page mappings.
5745  */
5746 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5747 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5748 {
5749 	pv_entry_t pv;
5750 
5751 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5752 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5753 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5754 			pvh->pv_gen++;
5755 			break;
5756 		}
5757 	}
5758 	return (pv);
5759 }
5760 
5761 /*
5762  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5763  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5764  * entries for each of the 4KB page mappings.
5765  */
5766 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5767 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5768     struct rwlock **lockp)
5769 {
5770 	struct md_page *pvh;
5771 	struct pv_chunk *pc;
5772 	pv_entry_t pv;
5773 	vm_offset_t va_last;
5774 	vm_page_t m;
5775 	int bit, field;
5776 
5777 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5778 	KASSERT((pa & PDRMASK) == 0,
5779 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5780 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5781 
5782 	/*
5783 	 * Transfer the 2mpage's pv entry for this mapping to the first
5784 	 * page's pv list.  Once this transfer begins, the pv list lock
5785 	 * must not be released until the last pv entry is reinstantiated.
5786 	 */
5787 	pvh = pa_to_pvh(pa);
5788 	va = trunc_2mpage(va);
5789 	pv = pmap_pvh_remove(pvh, pmap, va);
5790 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5791 	m = PHYS_TO_VM_PAGE(pa);
5792 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5793 	m->md.pv_gen++;
5794 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5795 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5796 	va_last = va + NBPDR - PAGE_SIZE;
5797 	for (;;) {
5798 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5799 		KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5800 		for (field = 0; field < _NPCM; field++) {
5801 			while (pc->pc_map[field]) {
5802 				bit = bsfq(pc->pc_map[field]);
5803 				pc->pc_map[field] &= ~(1ul << bit);
5804 				pv = &pc->pc_pventry[field * 64 + bit];
5805 				va += PAGE_SIZE;
5806 				pv->pv_va = va;
5807 				m++;
5808 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5809 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5810 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5811 				m->md.pv_gen++;
5812 				if (va == va_last)
5813 					goto out;
5814 			}
5815 		}
5816 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5817 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5818 	}
5819 out:
5820 	if (pc_is_full(pc)) {
5821 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5822 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5823 	}
5824 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5825 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5826 }
5827 
5828 #if VM_NRESERVLEVEL > 0
5829 /*
5830  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5831  * replace the many pv entries for the 4KB page mappings by a single pv entry
5832  * for the 2MB page mapping.
5833  */
5834 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5835 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5836     struct rwlock **lockp)
5837 {
5838 	struct md_page *pvh;
5839 	pv_entry_t pv;
5840 	vm_offset_t va_last;
5841 	vm_page_t m;
5842 
5843 	KASSERT((pa & PDRMASK) == 0,
5844 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5845 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5846 
5847 	/*
5848 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5849 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5850 	 * a transfer avoids the possibility that get_pv_entry() calls
5851 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5852 	 * mappings that is being promoted.
5853 	 */
5854 	m = PHYS_TO_VM_PAGE(pa);
5855 	va = trunc_2mpage(va);
5856 	pv = pmap_pvh_remove(&m->md, pmap, va);
5857 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5858 	pvh = pa_to_pvh(pa);
5859 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5860 	pvh->pv_gen++;
5861 	/* Free the remaining NPTEPG - 1 pv entries. */
5862 	va_last = va + NBPDR - PAGE_SIZE;
5863 	do {
5864 		m++;
5865 		va += PAGE_SIZE;
5866 		pmap_pvh_free(&m->md, pmap, va);
5867 	} while (va < va_last);
5868 }
5869 #endif /* VM_NRESERVLEVEL > 0 */
5870 
5871 /*
5872  * First find and then destroy the pv entry for the specified pmap and virtual
5873  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5874  * page mappings.
5875  */
5876 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5877 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5878 {
5879 	pv_entry_t pv;
5880 
5881 	pv = pmap_pvh_remove(pvh, pmap, va);
5882 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5883 	free_pv_entry(pmap, pv);
5884 }
5885 
5886 /*
5887  * Conditionally create the PV entry for a 4KB page mapping if the required
5888  * memory can be allocated without resorting to reclamation.
5889  */
5890 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5891 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5892     struct rwlock **lockp)
5893 {
5894 	pv_entry_t pv;
5895 
5896 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5897 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5898 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5899 		pv->pv_va = va;
5900 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5901 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5902 		m->md.pv_gen++;
5903 		return (true);
5904 	} else
5905 		return (false);
5906 }
5907 
5908 /*
5909  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5910  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5911  * false if the PV entry cannot be allocated without resorting to reclamation.
5912  */
5913 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5914 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5915     struct rwlock **lockp)
5916 {
5917 	struct md_page *pvh;
5918 	pv_entry_t pv;
5919 	vm_paddr_t pa;
5920 
5921 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5922 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5923 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5924 	    NULL : lockp)) == NULL)
5925 		return (false);
5926 	pv->pv_va = va;
5927 	pa = pde & PG_PS_FRAME;
5928 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5929 	pvh = pa_to_pvh(pa);
5930 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5931 	pvh->pv_gen++;
5932 	return (true);
5933 }
5934 
5935 /*
5936  * Fills a page table page with mappings to consecutive physical pages.
5937  */
5938 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5939 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5940 {
5941 	pt_entry_t *pte;
5942 
5943 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5944 		*pte = newpte;
5945 		newpte += PAGE_SIZE;
5946 	}
5947 }
5948 
5949 /*
5950  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5951  * mapping is invalidated.
5952  */
5953 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5954 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5955 {
5956 	struct rwlock *lock;
5957 	bool rv;
5958 
5959 	lock = NULL;
5960 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5961 	if (lock != NULL)
5962 		rw_wunlock(lock);
5963 	return (rv);
5964 }
5965 
5966 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5967 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5968 {
5969 #ifdef INVARIANTS
5970 #ifdef DIAGNOSTIC
5971 	pt_entry_t *xpte, *ypte;
5972 
5973 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5974 	    xpte++, newpte += PAGE_SIZE) {
5975 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5976 			printf("pmap_demote_pde: xpte %zd and newpte map "
5977 			    "different pages: found %#lx, expected %#lx\n",
5978 			    xpte - firstpte, *xpte, newpte);
5979 			printf("page table dump\n");
5980 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5981 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5982 			panic("firstpte");
5983 		}
5984 	}
5985 #else
5986 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5987 	    ("pmap_demote_pde: firstpte and newpte map different physical"
5988 	    " addresses"));
5989 #endif
5990 #endif
5991 }
5992 
5993 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)5994 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5995     pd_entry_t oldpde, struct rwlock **lockp)
5996 {
5997 	struct spglist free;
5998 	vm_offset_t sva;
5999 
6000 	SLIST_INIT(&free);
6001 	sva = trunc_2mpage(va);
6002 	pmap_remove_pde(pmap, pde, sva, true, &free, lockp);
6003 	if ((oldpde & pmap_global_bit(pmap)) == 0)
6004 		pmap_invalidate_pde_page(pmap, sva, oldpde);
6005 	vm_page_free_pages_toq(&free, true);
6006 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6007 	    va, pmap);
6008 }
6009 
6010 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6011 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6012     struct rwlock **lockp)
6013 {
6014 	pd_entry_t newpde, oldpde;
6015 	pt_entry_t *firstpte, newpte;
6016 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6017 	vm_paddr_t mptepa;
6018 	vm_page_t mpte;
6019 	int PG_PTE_CACHE;
6020 	bool in_kernel;
6021 
6022 	PG_A = pmap_accessed_bit(pmap);
6023 	PG_G = pmap_global_bit(pmap);
6024 	PG_M = pmap_modified_bit(pmap);
6025 	PG_RW = pmap_rw_bit(pmap);
6026 	PG_V = pmap_valid_bit(pmap);
6027 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6028 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6029 
6030 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6031 	in_kernel = va >= VM_MAXUSER_ADDRESS;
6032 	oldpde = *pde;
6033 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6034 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6035 
6036 	/*
6037 	 * Invalidate the 2MB page mapping and return "failure" if the
6038 	 * mapping was never accessed.
6039 	 */
6040 	if ((oldpde & PG_A) == 0) {
6041 		KASSERT((oldpde & PG_W) == 0,
6042 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
6043 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6044 		return (false);
6045 	}
6046 
6047 	mpte = pmap_remove_pt_page(pmap, va);
6048 	if (mpte == NULL) {
6049 		KASSERT((oldpde & PG_W) == 0,
6050 		    ("pmap_demote_pde: page table page for a wired mapping"
6051 		    " is missing"));
6052 
6053 		/*
6054 		 * If the page table page is missing and the mapping
6055 		 * is for a kernel address, the mapping must belong to
6056 		 * the direct map.  Page table pages are preallocated
6057 		 * for every other part of the kernel address space,
6058 		 * so the direct map region is the only part of the
6059 		 * kernel address space that must be handled here.
6060 		 */
6061 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6062 		    va < DMAP_MAX_ADDRESS),
6063 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6064 
6065 		/*
6066 		 * If the 2MB page mapping belongs to the direct map
6067 		 * region of the kernel's address space, then the page
6068 		 * allocation request specifies the highest possible
6069 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6070 		 * priority is normal.
6071 		 */
6072 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6073 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6074 
6075 		/*
6076 		 * If the allocation of the new page table page fails,
6077 		 * invalidate the 2MB page mapping and return "failure".
6078 		 */
6079 		if (mpte == NULL) {
6080 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6081 			return (false);
6082 		}
6083 
6084 		if (!in_kernel)
6085 			mpte->ref_count = NPTEPG;
6086 	}
6087 	mptepa = VM_PAGE_TO_PHYS(mpte);
6088 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6089 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6090 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6091 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6092 	newpte = oldpde & ~PG_PS;
6093 	newpte = pmap_swap_pat(pmap, newpte);
6094 
6095 	/*
6096 	 * If the PTP is not leftover from an earlier promotion or it does not
6097 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6098 	 * have PG_A set.
6099 	 */
6100 	if (!vm_page_all_valid(mpte))
6101 		pmap_fill_ptp(firstpte, newpte);
6102 
6103 	pmap_demote_pde_check(firstpte, newpte);
6104 
6105 	/*
6106 	 * If the mapping has changed attributes, update the PTEs.
6107 	 */
6108 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6109 		pmap_fill_ptp(firstpte, newpte);
6110 
6111 	/*
6112 	 * The spare PV entries must be reserved prior to demoting the
6113 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6114 	 * of the PDE and the PV lists will be inconsistent, which can result
6115 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6116 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6117 	 * PV entry for the 2MB page mapping that is being demoted.
6118 	 */
6119 	if ((oldpde & PG_MANAGED) != 0)
6120 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6121 
6122 	/*
6123 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6124 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6125 	 * set.  Thus, there is no danger of a race with another
6126 	 * processor changing the setting of PG_A and/or PG_M between
6127 	 * the read above and the store below.
6128 	 */
6129 	if (workaround_erratum383)
6130 		pmap_update_pde(pmap, va, pde, newpde);
6131 	else
6132 		pde_store(pde, newpde);
6133 
6134 	/*
6135 	 * Invalidate a stale recursive mapping of the page table page.
6136 	 */
6137 	if (in_kernel)
6138 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6139 
6140 	/*
6141 	 * Demote the PV entry.
6142 	 */
6143 	if ((oldpde & PG_MANAGED) != 0)
6144 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6145 
6146 	counter_u64_add(pmap_pde_demotions, 1);
6147 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6148 	    va, pmap);
6149 	return (true);
6150 }
6151 
6152 /*
6153  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6154  */
6155 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,bool remove_pt)6156 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6157     bool remove_pt)
6158 {
6159 	pd_entry_t newpde;
6160 	vm_paddr_t mptepa;
6161 	vm_page_t mpte;
6162 
6163 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6164 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6165 	if (remove_pt)
6166 		mpte = pmap_remove_pt_page(pmap, va);
6167 	else
6168 		mpte = vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(va));
6169 	if (mpte == NULL)
6170 		panic("pmap_remove_kernel_pde: Missing pt page.");
6171 
6172 	mptepa = VM_PAGE_TO_PHYS(mpte);
6173 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6174 
6175 	/*
6176 	 * If this page table page was unmapped by a promotion, then it
6177 	 * contains valid mappings.  Zero it to invalidate those mappings.
6178 	 */
6179 	if (vm_page_any_valid(mpte))
6180 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6181 
6182 	/*
6183 	 * Demote the mapping.
6184 	 */
6185 	if (workaround_erratum383)
6186 		pmap_update_pde(pmap, va, pde, newpde);
6187 	else
6188 		pde_store(pde, newpde);
6189 
6190 	/*
6191 	 * Invalidate a stale recursive mapping of the page table page.
6192 	 */
6193 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6194 }
6195 
6196 /*
6197  * pmap_remove_pde: do the things to unmap a superpage in a process
6198  */
6199 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,bool remove_pt,struct spglist * free,struct rwlock ** lockp)6200 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva, bool remove_pt,
6201     struct spglist *free, struct rwlock **lockp)
6202 {
6203 	struct md_page *pvh;
6204 	pd_entry_t oldpde;
6205 	vm_offset_t eva, va;
6206 	vm_page_t m, mpte;
6207 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6208 
6209 	PG_G = pmap_global_bit(pmap);
6210 	PG_A = pmap_accessed_bit(pmap);
6211 	PG_M = pmap_modified_bit(pmap);
6212 	PG_RW = pmap_rw_bit(pmap);
6213 
6214 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6215 	KASSERT((sva & PDRMASK) == 0,
6216 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6217 	oldpde = pte_load_clear(pdq);
6218 	if (oldpde & PG_W)
6219 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6220 	if ((oldpde & PG_G) != 0)
6221 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6222 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6223 	if (oldpde & PG_MANAGED) {
6224 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6225 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6226 		pmap_pvh_free(pvh, pmap, sva);
6227 		eva = sva + NBPDR;
6228 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6229 		    va < eva; va += PAGE_SIZE, m++) {
6230 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6231 				vm_page_dirty(m);
6232 			if (oldpde & PG_A)
6233 				vm_page_aflag_set(m, PGA_REFERENCED);
6234 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6235 			    TAILQ_EMPTY(&pvh->pv_list))
6236 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6237 			pmap_delayed_invl_page(m);
6238 		}
6239 	}
6240 	if (pmap == kernel_pmap) {
6241 		pmap_remove_kernel_pde(pmap, pdq, sva, remove_pt);
6242 	} else {
6243 		mpte = pmap_remove_pt_page(pmap, sva);
6244 		if (mpte != NULL) {
6245 			KASSERT(vm_page_any_valid(mpte),
6246 			    ("pmap_remove_pde: pte page not promoted"));
6247 			pmap_pt_page_count_adj(pmap, -1);
6248 			KASSERT(mpte->ref_count == NPTEPG,
6249 			    ("pmap_remove_pde: pte page ref count error"));
6250 			mpte->ref_count = 0;
6251 			pmap_add_delayed_free_list(mpte, free, false);
6252 		}
6253 	}
6254 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6255 }
6256 
6257 /*
6258  * pmap_remove_pte: do the things to unmap a page in a process
6259  */
6260 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6261 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6262     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6263 {
6264 	struct md_page *pvh;
6265 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6266 	vm_page_t m;
6267 
6268 	PG_A = pmap_accessed_bit(pmap);
6269 	PG_M = pmap_modified_bit(pmap);
6270 	PG_RW = pmap_rw_bit(pmap);
6271 
6272 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6273 	oldpte = pte_load_clear(ptq);
6274 	if (oldpte & PG_W)
6275 		pmap->pm_stats.wired_count -= 1;
6276 	pmap_resident_count_adj(pmap, -1);
6277 	if (oldpte & PG_MANAGED) {
6278 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6279 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6280 			vm_page_dirty(m);
6281 		if (oldpte & PG_A)
6282 			vm_page_aflag_set(m, PGA_REFERENCED);
6283 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6284 		pmap_pvh_free(&m->md, pmap, va);
6285 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6286 		    (m->flags & PG_FICTITIOUS) == 0) {
6287 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6288 			if (TAILQ_EMPTY(&pvh->pv_list))
6289 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6290 		}
6291 		pmap_delayed_invl_page(m);
6292 	}
6293 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6294 }
6295 
6296 /*
6297  * Remove a single page from a process address space
6298  */
6299 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6300 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6301     struct spglist *free)
6302 {
6303 	struct rwlock *lock;
6304 	pt_entry_t *pte, PG_V;
6305 
6306 	PG_V = pmap_valid_bit(pmap);
6307 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6308 	if ((*pde & PG_V) == 0)
6309 		return;
6310 	pte = pmap_pde_to_pte(pde, va);
6311 	if ((*pte & PG_V) == 0)
6312 		return;
6313 	lock = NULL;
6314 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6315 	if (lock != NULL)
6316 		rw_wunlock(lock);
6317 	pmap_invalidate_page(pmap, va);
6318 }
6319 
6320 /*
6321  * Removes the specified range of addresses from the page table page.
6322  */
6323 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6324 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6325     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6326 {
6327 	pt_entry_t PG_G, *pte;
6328 	vm_offset_t va;
6329 	bool anyvalid;
6330 
6331 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6332 	PG_G = pmap_global_bit(pmap);
6333 	anyvalid = false;
6334 	va = eva;
6335 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6336 	    sva += PAGE_SIZE) {
6337 		if (*pte == 0) {
6338 			if (va != eva) {
6339 				pmap_invalidate_range(pmap, va, sva);
6340 				va = eva;
6341 			}
6342 			continue;
6343 		}
6344 		if ((*pte & PG_G) == 0)
6345 			anyvalid = true;
6346 		else if (va == eva)
6347 			va = sva;
6348 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6349 			sva += PAGE_SIZE;
6350 			break;
6351 		}
6352 	}
6353 	if (va != eva)
6354 		pmap_invalidate_range(pmap, va, sva);
6355 	return (anyvalid);
6356 }
6357 
6358 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6359 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6360 {
6361 	struct rwlock *lock;
6362 	vm_page_t mt;
6363 	vm_offset_t va_next;
6364 	pml5_entry_t *pml5e;
6365 	pml4_entry_t *pml4e;
6366 	pdp_entry_t *pdpe;
6367 	pd_entry_t ptpaddr, *pde;
6368 	pt_entry_t PG_G, PG_V;
6369 	struct spglist free;
6370 	int anyvalid;
6371 
6372 	PG_G = pmap_global_bit(pmap);
6373 	PG_V = pmap_valid_bit(pmap);
6374 
6375 	/*
6376 	 * If there are no resident pages besides the top level page
6377 	 * table page(s), there is nothing to do.  Kernel pmap always
6378 	 * accounts whole preloaded area as resident, which makes its
6379 	 * resident count > 2.
6380 	 * Perform an unsynchronized read.  This is, however, safe.
6381 	 */
6382 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6383 	    1 : 0))
6384 		return;
6385 
6386 	anyvalid = 0;
6387 	SLIST_INIT(&free);
6388 
6389 	pmap_delayed_invl_start();
6390 	PMAP_LOCK(pmap);
6391 	if (map_delete)
6392 		pmap_pkru_on_remove(pmap, sva, eva);
6393 
6394 	/*
6395 	 * special handling of removing one page.  a very
6396 	 * common operation and easy to short circuit some
6397 	 * code.
6398 	 */
6399 	if (sva + PAGE_SIZE == eva) {
6400 		pde = pmap_pde(pmap, sva);
6401 		if (pde && (*pde & PG_PS) == 0) {
6402 			pmap_remove_page(pmap, sva, pde, &free);
6403 			goto out;
6404 		}
6405 	}
6406 
6407 	lock = NULL;
6408 	for (; sva < eva; sva = va_next) {
6409 		if (pmap->pm_stats.resident_count == 0)
6410 			break;
6411 
6412 		if (pmap_is_la57(pmap)) {
6413 			pml5e = pmap_pml5e(pmap, sva);
6414 			if ((*pml5e & PG_V) == 0) {
6415 				va_next = (sva + NBPML5) & ~PML5MASK;
6416 				if (va_next < sva)
6417 					va_next = eva;
6418 				continue;
6419 			}
6420 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6421 		} else {
6422 			pml4e = pmap_pml4e(pmap, sva);
6423 		}
6424 		if ((*pml4e & PG_V) == 0) {
6425 			va_next = (sva + NBPML4) & ~PML4MASK;
6426 			if (va_next < sva)
6427 				va_next = eva;
6428 			continue;
6429 		}
6430 
6431 		va_next = (sva + NBPDP) & ~PDPMASK;
6432 		if (va_next < sva)
6433 			va_next = eva;
6434 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6435 		if ((*pdpe & PG_V) == 0)
6436 			continue;
6437 		if ((*pdpe & PG_PS) != 0) {
6438 			KASSERT(va_next <= eva,
6439 			    ("partial update of non-transparent 1G mapping "
6440 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6441 			    *pdpe, sva, eva, va_next));
6442 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6443 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6444 			anyvalid = 1;
6445 			*pdpe = 0;
6446 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6447 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6448 			pmap_unwire_ptp(pmap, sva, mt, &free);
6449 			continue;
6450 		}
6451 
6452 		/*
6453 		 * Calculate index for next page table.
6454 		 */
6455 		va_next = (sva + NBPDR) & ~PDRMASK;
6456 		if (va_next < sva)
6457 			va_next = eva;
6458 
6459 		pde = pmap_pdpe_to_pde(pdpe, sva);
6460 		ptpaddr = *pde;
6461 
6462 		/*
6463 		 * Weed out invalid mappings.
6464 		 */
6465 		if (ptpaddr == 0)
6466 			continue;
6467 
6468 		/*
6469 		 * Check for large page.
6470 		 */
6471 		if ((ptpaddr & PG_PS) != 0) {
6472 			/*
6473 			 * Are we removing the entire large page?  If not,
6474 			 * demote the mapping and fall through.
6475 			 */
6476 			if (sva + NBPDR == va_next && eva >= va_next) {
6477 				/*
6478 				 * The TLB entry for a PG_G mapping is
6479 				 * invalidated by pmap_remove_pde().
6480 				 */
6481 				if ((ptpaddr & PG_G) == 0)
6482 					anyvalid = 1;
6483 				pmap_remove_pde(pmap, pde, sva, true, &free,
6484 				    &lock);
6485 				continue;
6486 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6487 			    &lock)) {
6488 				/* The large page mapping was destroyed. */
6489 				continue;
6490 			} else
6491 				ptpaddr = *pde;
6492 		}
6493 
6494 		/*
6495 		 * Limit our scan to either the end of the va represented
6496 		 * by the current page table page, or to the end of the
6497 		 * range being removed.
6498 		 */
6499 		if (va_next > eva)
6500 			va_next = eva;
6501 
6502 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6503 			anyvalid = 1;
6504 	}
6505 	if (lock != NULL)
6506 		rw_wunlock(lock);
6507 out:
6508 	if (anyvalid)
6509 		pmap_invalidate_all(pmap);
6510 	PMAP_UNLOCK(pmap);
6511 	pmap_delayed_invl_finish();
6512 	vm_page_free_pages_toq(&free, true);
6513 }
6514 
6515 /*
6516  *	Remove the given range of addresses from the specified map.
6517  *
6518  *	It is assumed that the start and end are properly
6519  *	rounded to the page size.
6520  */
6521 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6522 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6523 {
6524 	pmap_remove1(pmap, sva, eva, false);
6525 }
6526 
6527 /*
6528  *	Remove the given range of addresses as part of a logical unmap
6529  *	operation. This has the effect of calling pmap_remove(), but
6530  *	also clears any metadata that should persist for the lifetime
6531  *	of a logical mapping.
6532  */
6533 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6534 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6535 {
6536 	pmap_remove1(pmap, sva, eva, true);
6537 }
6538 
6539 /*
6540  *	Routine:	pmap_remove_all
6541  *	Function:
6542  *		Removes this physical page from
6543  *		all physical maps in which it resides.
6544  *		Reflects back modify bits to the pager.
6545  *
6546  *	Notes:
6547  *		Original versions of this routine were very
6548  *		inefficient because they iteratively called
6549  *		pmap_remove (slow...)
6550  */
6551 
6552 void
pmap_remove_all(vm_page_t m)6553 pmap_remove_all(vm_page_t m)
6554 {
6555 	struct md_page *pvh;
6556 	pv_entry_t pv;
6557 	pmap_t pmap;
6558 	struct rwlock *lock;
6559 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6560 	pd_entry_t *pde;
6561 	vm_offset_t va;
6562 	struct spglist free;
6563 	int pvh_gen, md_gen;
6564 
6565 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6566 	    ("pmap_remove_all: page %p is not managed", m));
6567 	SLIST_INIT(&free);
6568 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6569 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6570 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6571 	rw_wlock(lock);
6572 retry:
6573 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6574 		pmap = PV_PMAP(pv);
6575 		if (!PMAP_TRYLOCK(pmap)) {
6576 			pvh_gen = pvh->pv_gen;
6577 			rw_wunlock(lock);
6578 			PMAP_LOCK(pmap);
6579 			rw_wlock(lock);
6580 			if (pvh_gen != pvh->pv_gen) {
6581 				PMAP_UNLOCK(pmap);
6582 				goto retry;
6583 			}
6584 		}
6585 		va = pv->pv_va;
6586 		pde = pmap_pde(pmap, va);
6587 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6588 		PMAP_UNLOCK(pmap);
6589 	}
6590 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6591 		pmap = PV_PMAP(pv);
6592 		if (!PMAP_TRYLOCK(pmap)) {
6593 			pvh_gen = pvh->pv_gen;
6594 			md_gen = m->md.pv_gen;
6595 			rw_wunlock(lock);
6596 			PMAP_LOCK(pmap);
6597 			rw_wlock(lock);
6598 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6599 				PMAP_UNLOCK(pmap);
6600 				goto retry;
6601 			}
6602 		}
6603 		PG_A = pmap_accessed_bit(pmap);
6604 		PG_M = pmap_modified_bit(pmap);
6605 		PG_RW = pmap_rw_bit(pmap);
6606 		pmap_resident_count_adj(pmap, -1);
6607 		pde = pmap_pde(pmap, pv->pv_va);
6608 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6609 		    " a 2mpage in page %p's pv list", m));
6610 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6611 		tpte = pte_load_clear(pte);
6612 		if (tpte & PG_W)
6613 			pmap->pm_stats.wired_count--;
6614 		if (tpte & PG_A)
6615 			vm_page_aflag_set(m, PGA_REFERENCED);
6616 
6617 		/*
6618 		 * Update the vm_page_t clean and reference bits.
6619 		 */
6620 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6621 			vm_page_dirty(m);
6622 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6623 		pmap_invalidate_page(pmap, pv->pv_va);
6624 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6625 		m->md.pv_gen++;
6626 		free_pv_entry(pmap, pv);
6627 		PMAP_UNLOCK(pmap);
6628 	}
6629 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6630 	rw_wunlock(lock);
6631 	pmap_delayed_invl_wait(m);
6632 	vm_page_free_pages_toq(&free, true);
6633 }
6634 
6635 /*
6636  * pmap_protect_pde: do the things to protect a 2mpage in a process
6637  */
6638 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6639 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6640 {
6641 	pd_entry_t newpde, oldpde;
6642 	vm_page_t m, mt;
6643 	bool anychanged;
6644 	pt_entry_t PG_G, PG_M, PG_RW;
6645 
6646 	PG_G = pmap_global_bit(pmap);
6647 	PG_M = pmap_modified_bit(pmap);
6648 	PG_RW = pmap_rw_bit(pmap);
6649 
6650 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6651 	KASSERT((sva & PDRMASK) == 0,
6652 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6653 	anychanged = false;
6654 retry:
6655 	oldpde = newpde = *pde;
6656 	if ((prot & VM_PROT_WRITE) == 0) {
6657 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6658 		    (PG_MANAGED | PG_M | PG_RW)) {
6659 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6660 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6661 				vm_page_dirty(mt);
6662 		}
6663 		newpde &= ~(PG_RW | PG_M);
6664 	}
6665 	if ((prot & VM_PROT_EXECUTE) == 0)
6666 		newpde |= pg_nx;
6667 	if (newpde != oldpde) {
6668 		/*
6669 		 * As an optimization to future operations on this PDE, clear
6670 		 * PG_PROMOTED.  The impending invalidation will remove any
6671 		 * lingering 4KB page mappings from the TLB.
6672 		 */
6673 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6674 			goto retry;
6675 		if ((oldpde & PG_G) != 0)
6676 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6677 		else
6678 			anychanged = true;
6679 	}
6680 	return (anychanged);
6681 }
6682 
6683 /*
6684  *	Set the physical protection on the
6685  *	specified range of this map as requested.
6686  */
6687 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6688 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6689 {
6690 	vm_page_t m;
6691 	vm_offset_t va_next;
6692 	pml4_entry_t *pml4e;
6693 	pdp_entry_t *pdpe;
6694 	pd_entry_t ptpaddr, *pde;
6695 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6696 	pt_entry_t obits, pbits;
6697 	bool anychanged;
6698 
6699 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6700 	if (prot == VM_PROT_NONE) {
6701 		pmap_remove(pmap, sva, eva);
6702 		return;
6703 	}
6704 
6705 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6706 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6707 		return;
6708 
6709 	PG_G = pmap_global_bit(pmap);
6710 	PG_M = pmap_modified_bit(pmap);
6711 	PG_V = pmap_valid_bit(pmap);
6712 	PG_RW = pmap_rw_bit(pmap);
6713 	anychanged = false;
6714 
6715 	/*
6716 	 * Although this function delays and batches the invalidation
6717 	 * of stale TLB entries, it does not need to call
6718 	 * pmap_delayed_invl_start() and
6719 	 * pmap_delayed_invl_finish(), because it does not
6720 	 * ordinarily destroy mappings.  Stale TLB entries from
6721 	 * protection-only changes need only be invalidated before the
6722 	 * pmap lock is released, because protection-only changes do
6723 	 * not destroy PV entries.  Even operations that iterate over
6724 	 * a physical page's PV list of mappings, like
6725 	 * pmap_remove_write(), acquire the pmap lock for each
6726 	 * mapping.  Consequently, for protection-only changes, the
6727 	 * pmap lock suffices to synchronize both page table and TLB
6728 	 * updates.
6729 	 *
6730 	 * This function only destroys a mapping if pmap_demote_pde()
6731 	 * fails.  In that case, stale TLB entries are immediately
6732 	 * invalidated.
6733 	 */
6734 
6735 	PMAP_LOCK(pmap);
6736 	for (; sva < eva; sva = va_next) {
6737 		pml4e = pmap_pml4e(pmap, sva);
6738 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6739 			va_next = (sva + NBPML4) & ~PML4MASK;
6740 			if (va_next < sva)
6741 				va_next = eva;
6742 			continue;
6743 		}
6744 
6745 		va_next = (sva + NBPDP) & ~PDPMASK;
6746 		if (va_next < sva)
6747 			va_next = eva;
6748 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6749 		if ((*pdpe & PG_V) == 0)
6750 			continue;
6751 		if ((*pdpe & PG_PS) != 0) {
6752 			KASSERT(va_next <= eva,
6753 			    ("partial update of non-transparent 1G mapping "
6754 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6755 			    *pdpe, sva, eva, va_next));
6756 retry_pdpe:
6757 			obits = pbits = *pdpe;
6758 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6759 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6760 			if ((prot & VM_PROT_WRITE) == 0)
6761 				pbits &= ~(PG_RW | PG_M);
6762 			if ((prot & VM_PROT_EXECUTE) == 0)
6763 				pbits |= pg_nx;
6764 
6765 			if (pbits != obits) {
6766 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6767 					/* PG_PS cannot be cleared under us, */
6768 					goto retry_pdpe;
6769 				anychanged = true;
6770 			}
6771 			continue;
6772 		}
6773 
6774 		va_next = (sva + NBPDR) & ~PDRMASK;
6775 		if (va_next < sva)
6776 			va_next = eva;
6777 
6778 		pde = pmap_pdpe_to_pde(pdpe, sva);
6779 		ptpaddr = *pde;
6780 
6781 		/*
6782 		 * Weed out invalid mappings.
6783 		 */
6784 		if (ptpaddr == 0)
6785 			continue;
6786 
6787 		/*
6788 		 * Check for large page.
6789 		 */
6790 		if ((ptpaddr & PG_PS) != 0) {
6791 			/*
6792 			 * Are we protecting the entire large page?
6793 			 */
6794 			if (sva + NBPDR == va_next && eva >= va_next) {
6795 				/*
6796 				 * The TLB entry for a PG_G mapping is
6797 				 * invalidated by pmap_protect_pde().
6798 				 */
6799 				if (pmap_protect_pde(pmap, pde, sva, prot))
6800 					anychanged = true;
6801 				continue;
6802 			}
6803 
6804 			/*
6805 			 * Does the large page mapping need to change?  If so,
6806 			 * demote it and fall through.
6807 			 */
6808 			pbits = ptpaddr;
6809 			if ((prot & VM_PROT_WRITE) == 0)
6810 				pbits &= ~(PG_RW | PG_M);
6811 			if ((prot & VM_PROT_EXECUTE) == 0)
6812 				pbits |= pg_nx;
6813 			if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6814 			    sva)) {
6815 				/*
6816 				 * Either the large page mapping doesn't need
6817 				 * to change, or it was destroyed during
6818 				 * demotion.
6819 				 */
6820 				continue;
6821 			}
6822 		}
6823 
6824 		if (va_next > eva)
6825 			va_next = eva;
6826 
6827 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6828 		    sva += PAGE_SIZE) {
6829 retry:
6830 			obits = pbits = *pte;
6831 			if ((pbits & PG_V) == 0)
6832 				continue;
6833 
6834 			if ((prot & VM_PROT_WRITE) == 0) {
6835 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6836 				    (PG_MANAGED | PG_M | PG_RW)) {
6837 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6838 					vm_page_dirty(m);
6839 				}
6840 				pbits &= ~(PG_RW | PG_M);
6841 			}
6842 			if ((prot & VM_PROT_EXECUTE) == 0)
6843 				pbits |= pg_nx;
6844 
6845 			if (pbits != obits) {
6846 				if (!atomic_cmpset_long(pte, obits, pbits))
6847 					goto retry;
6848 				if (obits & PG_G)
6849 					pmap_invalidate_page(pmap, sva);
6850 				else
6851 					anychanged = true;
6852 			}
6853 		}
6854 	}
6855 	if (anychanged)
6856 		pmap_invalidate_all(pmap);
6857 	PMAP_UNLOCK(pmap);
6858 }
6859 
6860 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6861 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6862 {
6863 
6864 	if (pmap->pm_type != PT_EPT)
6865 		return (false);
6866 	return ((pde & EPT_PG_EXECUTE) != 0);
6867 }
6868 
6869 #if VM_NRESERVLEVEL > 0
6870 /*
6871  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6872  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6873  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6874  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6875  * identical characteristics.
6876  */
6877 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6878 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6879     struct rwlock **lockp)
6880 {
6881 	pd_entry_t newpde;
6882 	pt_entry_t *firstpte, oldpte, pa, *pte;
6883 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6884 	int PG_PTE_CACHE;
6885 
6886 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6887 	if (!pmap_ps_enabled(pmap))
6888 		return (false);
6889 
6890 	PG_A = pmap_accessed_bit(pmap);
6891 	PG_G = pmap_global_bit(pmap);
6892 	PG_M = pmap_modified_bit(pmap);
6893 	PG_V = pmap_valid_bit(pmap);
6894 	PG_RW = pmap_rw_bit(pmap);
6895 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6896 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6897 
6898 	/*
6899 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6900 	 * ineligible for promotion due to hardware errata, invalid, or does
6901 	 * not map the first 4KB physical page within a 2MB page.
6902 	 */
6903 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6904 	newpde = *firstpte;
6905 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6906 		return (false);
6907 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6908 		counter_u64_add(pmap_pde_p_failures, 1);
6909 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6910 		    " in pmap %p", va, pmap);
6911 		return (false);
6912 	}
6913 
6914 	/*
6915 	 * Both here and in the below "for" loop, to allow for repromotion
6916 	 * after MADV_FREE, conditionally write protect a clean PTE before
6917 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6918 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6919 	 * address range [S, E).  pmap_advise() will demote the superpage
6920 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6921 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6922 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6923 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6924 	 * In other words, there is still a 4KB page in [S, E), call it P,
6925 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6926 	 * we write protect P before aborting the promotion, if and when P is
6927 	 * finally rewritten, there won't be a page fault to trigger
6928 	 * repromotion.
6929 	 */
6930 setpde:
6931 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6932 		/*
6933 		 * When PG_M is already clear, PG_RW can be cleared without
6934 		 * a TLB invalidation.
6935 		 */
6936 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6937 			goto setpde;
6938 		newpde &= ~PG_RW;
6939 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6940 		    " in pmap %p", va & ~PDRMASK, pmap);
6941 	}
6942 
6943 	/*
6944 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6945 	 * PTE maps an unexpected 4KB physical page or does not have identical
6946 	 * characteristics to the first PTE.
6947 	 */
6948 	allpte_PG_A = newpde & PG_A;
6949 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6950 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6951 		oldpte = *pte;
6952 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6953 			counter_u64_add(pmap_pde_p_failures, 1);
6954 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6955 			    " in pmap %p", va, pmap);
6956 			return (false);
6957 		}
6958 setpte:
6959 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6960 			/*
6961 			 * When PG_M is already clear, PG_RW can be cleared
6962 			 * without a TLB invalidation.
6963 			 */
6964 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6965 				goto setpte;
6966 			oldpte &= ~PG_RW;
6967 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6968 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6969 			    (va & ~PDRMASK), pmap);
6970 		}
6971 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6972 			counter_u64_add(pmap_pde_p_failures, 1);
6973 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6974 			    " in pmap %p", va, pmap);
6975 			return (false);
6976 		}
6977 		allpte_PG_A &= oldpte;
6978 		pa -= PAGE_SIZE;
6979 	}
6980 
6981 	/*
6982 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6983 	 * so that promotions triggered by speculative mappings, such as
6984 	 * pmap_enter_quick(), don't automatically mark the underlying pages
6985 	 * as referenced.
6986 	 */
6987 	newpde &= ~PG_A | allpte_PG_A;
6988 
6989 	/*
6990 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6991 	 * MMUs supporting EPT.
6992 	 */
6993 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6994 	    ("unsupported EPT PTE"));
6995 
6996 	/*
6997 	 * Save the PTP in its current state until the PDE mapping the
6998 	 * superpage is demoted by pmap_demote_pde() or destroyed by
6999 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
7000 	 * that the PTP be refilled on demotion.
7001 	 */
7002 	if (mpte == NULL)
7003 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7004 	KASSERT(mpte >= vm_page_array &&
7005 	    mpte < &vm_page_array[vm_page_array_size],
7006 	    ("pmap_promote_pde: page table page is out of range"));
7007 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
7008 	    ("pmap_promote_pde: page table page's pindex is wrong "
7009 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7010 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7011 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7012 		counter_u64_add(pmap_pde_p_failures, 1);
7013 		CTR2(KTR_PMAP,
7014 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7015 		    pmap);
7016 		return (false);
7017 	}
7018 
7019 	/*
7020 	 * Promote the pv entries.
7021 	 */
7022 	if ((newpde & PG_MANAGED) != 0)
7023 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7024 
7025 	/*
7026 	 * Propagate the PAT index to its proper position.
7027 	 */
7028 	newpde = pmap_swap_pat(pmap, newpde);
7029 
7030 	/*
7031 	 * Map the superpage.
7032 	 */
7033 	if (workaround_erratum383)
7034 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7035 	else
7036 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7037 
7038 	counter_u64_add(pmap_pde_promotions, 1);
7039 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7040 	    " in pmap %p", va, pmap);
7041 	return (true);
7042 }
7043 #endif /* VM_NRESERVLEVEL > 0 */
7044 
7045 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7046 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7047     int psind)
7048 {
7049 	vm_page_t mp;
7050 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7051 
7052 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7053 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7054 	    ("psind %d unexpected", psind));
7055 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7056 	    ("unaligned phys address %#lx newpte %#lx psind %d",
7057 	    newpte & PG_FRAME, newpte, psind));
7058 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7059 	    ("unaligned va %#lx psind %d", va, psind));
7060 	KASSERT(va < VM_MAXUSER_ADDRESS,
7061 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7062 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7063 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7064 
7065 	PG_V = pmap_valid_bit(pmap);
7066 
7067 restart:
7068 	pten = newpte;
7069 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7070 		return (KERN_PROTECTION_FAILURE);
7071 
7072 	if (psind == 2) {	/* 1G */
7073 		pml4e = pmap_pml4e(pmap, va);
7074 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7075 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7076 			    NULL, va);
7077 			if (mp == NULL)
7078 				goto allocf;
7079 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7080 			pdpe = &pdpe[pmap_pdpe_index(va)];
7081 			origpte = *pdpe;
7082 			MPASS(origpte == 0);
7083 		} else {
7084 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7085 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7086 			origpte = *pdpe;
7087 			if ((origpte & PG_V) == 0) {
7088 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7089 				mp->ref_count++;
7090 			}
7091 		}
7092 		*pdpe = pten;
7093 	} else /* (psind == 1) */ {	/* 2M */
7094 		pde = pmap_pde(pmap, va);
7095 		if (pde == NULL) {
7096 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7097 			    NULL, va);
7098 			if (mp == NULL)
7099 				goto allocf;
7100 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7101 			pde = &pde[pmap_pde_index(va)];
7102 			origpte = *pde;
7103 			MPASS(origpte == 0);
7104 		} else {
7105 			origpte = *pde;
7106 			if ((origpte & PG_V) == 0) {
7107 				pdpe = pmap_pdpe(pmap, va);
7108 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7109 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7110 				mp->ref_count++;
7111 			}
7112 		}
7113 		*pde = pten;
7114 	}
7115 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7116 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7117 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7118 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7119 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7120 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7121 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7122 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7123 	if ((origpte & PG_V) == 0)
7124 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7125 
7126 	return (KERN_SUCCESS);
7127 
7128 allocf:
7129 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7130 		return (KERN_RESOURCE_SHORTAGE);
7131 	PMAP_UNLOCK(pmap);
7132 	vm_wait(NULL);
7133 	PMAP_LOCK(pmap);
7134 	goto restart;
7135 }
7136 
7137 /*
7138  *	Insert the given physical page (p) at
7139  *	the specified virtual address (v) in the
7140  *	target physical map with the protection requested.
7141  *
7142  *	If specified, the page will be wired down, meaning
7143  *	that the related pte can not be reclaimed.
7144  *
7145  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7146  *	or lose information.  That is, this routine must actually
7147  *	insert this page into the given map NOW.
7148  *
7149  *	When destroying both a page table and PV entry, this function
7150  *	performs the TLB invalidation before releasing the PV list
7151  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7152  */
7153 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7154 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7155     u_int flags, int8_t psind)
7156 {
7157 	struct rwlock *lock;
7158 	pd_entry_t *pde;
7159 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7160 	pt_entry_t newpte, origpte;
7161 	pv_entry_t pv;
7162 	vm_paddr_t opa, pa;
7163 	vm_page_t mpte, om;
7164 	int rv;
7165 	bool nosleep;
7166 
7167 	PG_A = pmap_accessed_bit(pmap);
7168 	PG_G = pmap_global_bit(pmap);
7169 	PG_M = pmap_modified_bit(pmap);
7170 	PG_V = pmap_valid_bit(pmap);
7171 	PG_RW = pmap_rw_bit(pmap);
7172 
7173 	va = trunc_page(va);
7174 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7175 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7176 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7177 	    va));
7178 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7179 	    ("pmap_enter: managed mapping within the clean submap"));
7180 	if ((m->oflags & VPO_UNMANAGED) == 0)
7181 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7182 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7183 	    ("pmap_enter: flags %u has reserved bits set", flags));
7184 	pa = VM_PAGE_TO_PHYS(m);
7185 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7186 	if ((flags & VM_PROT_WRITE) != 0)
7187 		newpte |= PG_M;
7188 	if ((prot & VM_PROT_WRITE) != 0)
7189 		newpte |= PG_RW;
7190 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7191 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7192 	if ((prot & VM_PROT_EXECUTE) == 0)
7193 		newpte |= pg_nx;
7194 	if ((flags & PMAP_ENTER_WIRED) != 0)
7195 		newpte |= PG_W;
7196 	if (va < VM_MAXUSER_ADDRESS)
7197 		newpte |= PG_U;
7198 	if (pmap == kernel_pmap)
7199 		newpte |= PG_G;
7200 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7201 
7202 	/*
7203 	 * Set modified bit gratuitously for writeable mappings if
7204 	 * the page is unmanaged. We do not want to take a fault
7205 	 * to do the dirty bit accounting for these mappings.
7206 	 */
7207 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7208 		if ((newpte & PG_RW) != 0)
7209 			newpte |= PG_M;
7210 	} else
7211 		newpte |= PG_MANAGED;
7212 
7213 	lock = NULL;
7214 	PMAP_LOCK(pmap);
7215 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7216 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7217 		    ("managed largepage va %#lx flags %#x", va, flags));
7218 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7219 		    psind);
7220 		goto out;
7221 	}
7222 	if (psind == 1) {
7223 		/* Assert the required virtual and physical alignment. */
7224 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7225 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7226 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7227 		goto out;
7228 	}
7229 	mpte = NULL;
7230 
7231 	/*
7232 	 * In the case that a page table page is not
7233 	 * resident, we are creating it here.
7234 	 */
7235 retry:
7236 	pde = pmap_pde(pmap, va);
7237 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7238 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7239 		pte = pmap_pde_to_pte(pde, va);
7240 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7241 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7242 			mpte->ref_count++;
7243 		}
7244 	} else if (va < VM_MAXUSER_ADDRESS) {
7245 		/*
7246 		 * Here if the pte page isn't mapped, or if it has been
7247 		 * deallocated.
7248 		 */
7249 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7250 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7251 		    nosleep ? NULL : &lock, va);
7252 		if (mpte == NULL && nosleep) {
7253 			rv = KERN_RESOURCE_SHORTAGE;
7254 			goto out;
7255 		}
7256 		goto retry;
7257 	} else
7258 		panic("pmap_enter: invalid page directory va=%#lx", va);
7259 
7260 	origpte = *pte;
7261 	pv = NULL;
7262 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7263 		newpte |= pmap_pkru_get(pmap, va);
7264 
7265 	/*
7266 	 * Is the specified virtual address already mapped?
7267 	 */
7268 	if ((origpte & PG_V) != 0) {
7269 		/*
7270 		 * Wiring change, just update stats. We don't worry about
7271 		 * wiring PT pages as they remain resident as long as there
7272 		 * are valid mappings in them. Hence, if a user page is wired,
7273 		 * the PT page will be also.
7274 		 */
7275 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7276 			pmap->pm_stats.wired_count++;
7277 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7278 			pmap->pm_stats.wired_count--;
7279 
7280 		/*
7281 		 * Remove the extra PT page reference.
7282 		 */
7283 		if (mpte != NULL) {
7284 			mpte->ref_count--;
7285 			KASSERT(mpte->ref_count > 0,
7286 			    ("pmap_enter: missing reference to page table page,"
7287 			     " va: 0x%lx", va));
7288 		}
7289 
7290 		/*
7291 		 * Has the physical page changed?
7292 		 */
7293 		opa = origpte & PG_FRAME;
7294 		if (opa == pa) {
7295 			/*
7296 			 * No, might be a protection or wiring change.
7297 			 */
7298 			if ((origpte & PG_MANAGED) != 0 &&
7299 			    (newpte & PG_RW) != 0)
7300 				vm_page_aflag_set(m, PGA_WRITEABLE);
7301 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7302 				goto unchanged;
7303 			goto validate;
7304 		}
7305 
7306 		/*
7307 		 * The physical page has changed.  Temporarily invalidate
7308 		 * the mapping.  This ensures that all threads sharing the
7309 		 * pmap keep a consistent view of the mapping, which is
7310 		 * necessary for the correct handling of COW faults.  It
7311 		 * also permits reuse of the old mapping's PV entry,
7312 		 * avoiding an allocation.
7313 		 *
7314 		 * For consistency, handle unmanaged mappings the same way.
7315 		 */
7316 		origpte = pte_load_clear(pte);
7317 		KASSERT((origpte & PG_FRAME) == opa,
7318 		    ("pmap_enter: unexpected pa update for %#lx", va));
7319 		if ((origpte & PG_MANAGED) != 0) {
7320 			om = PHYS_TO_VM_PAGE(opa);
7321 
7322 			/*
7323 			 * The pmap lock is sufficient to synchronize with
7324 			 * concurrent calls to pmap_page_test_mappings() and
7325 			 * pmap_ts_referenced().
7326 			 */
7327 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7328 				vm_page_dirty(om);
7329 			if ((origpte & PG_A) != 0) {
7330 				pmap_invalidate_page(pmap, va);
7331 				vm_page_aflag_set(om, PGA_REFERENCED);
7332 			}
7333 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7334 			pv = pmap_pvh_remove(&om->md, pmap, va);
7335 			KASSERT(pv != NULL,
7336 			    ("pmap_enter: no PV entry for %#lx", va));
7337 			if ((newpte & PG_MANAGED) == 0)
7338 				free_pv_entry(pmap, pv);
7339 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7340 			    TAILQ_EMPTY(&om->md.pv_list) &&
7341 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7342 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7343 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7344 		} else {
7345 			/*
7346 			 * Since this mapping is unmanaged, assume that PG_A
7347 			 * is set.
7348 			 */
7349 			pmap_invalidate_page(pmap, va);
7350 		}
7351 		origpte = 0;
7352 	} else {
7353 		/*
7354 		 * Increment the counters.
7355 		 */
7356 		if ((newpte & PG_W) != 0)
7357 			pmap->pm_stats.wired_count++;
7358 		pmap_resident_count_adj(pmap, 1);
7359 	}
7360 
7361 	/*
7362 	 * Enter on the PV list if part of our managed memory.
7363 	 */
7364 	if ((newpte & PG_MANAGED) != 0) {
7365 		if (pv == NULL) {
7366 			pv = get_pv_entry(pmap, &lock);
7367 			pv->pv_va = va;
7368 		}
7369 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7370 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7371 		m->md.pv_gen++;
7372 		if ((newpte & PG_RW) != 0)
7373 			vm_page_aflag_set(m, PGA_WRITEABLE);
7374 	}
7375 
7376 	/*
7377 	 * Update the PTE.
7378 	 */
7379 	if ((origpte & PG_V) != 0) {
7380 validate:
7381 		origpte = pte_load_store(pte, newpte);
7382 		KASSERT((origpte & PG_FRAME) == pa,
7383 		    ("pmap_enter: unexpected pa update for %#lx", va));
7384 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7385 		    (PG_M | PG_RW)) {
7386 			if ((origpte & PG_MANAGED) != 0)
7387 				vm_page_dirty(m);
7388 
7389 			/*
7390 			 * Although the PTE may still have PG_RW set, TLB
7391 			 * invalidation may nonetheless be required because
7392 			 * the PTE no longer has PG_M set.
7393 			 */
7394 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7395 			/*
7396 			 * This PTE change does not require TLB invalidation.
7397 			 */
7398 			goto unchanged;
7399 		}
7400 		if ((origpte & PG_A) != 0)
7401 			pmap_invalidate_page(pmap, va);
7402 	} else
7403 		pte_store(pte, newpte);
7404 
7405 unchanged:
7406 
7407 #if VM_NRESERVLEVEL > 0
7408 	/*
7409 	 * If both the page table page and the reservation are fully
7410 	 * populated, then attempt promotion.
7411 	 */
7412 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7413 	    (m->flags & PG_FICTITIOUS) == 0 &&
7414 	    vm_reserv_level_iffullpop(m) == 0)
7415 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7416 #endif
7417 
7418 	rv = KERN_SUCCESS;
7419 out:
7420 	if (lock != NULL)
7421 		rw_wunlock(lock);
7422 	PMAP_UNLOCK(pmap);
7423 	return (rv);
7424 }
7425 
7426 /*
7427  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7428  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7429  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7430  * "no replace", and "no reclaim" are specified.
7431  */
7432 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7433 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7434     struct rwlock **lockp)
7435 {
7436 	pd_entry_t newpde;
7437 	pt_entry_t PG_V;
7438 
7439 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7440 	PG_V = pmap_valid_bit(pmap);
7441 	newpde = VM_PAGE_TO_PHYS(m) |
7442 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7443 	if ((m->oflags & VPO_UNMANAGED) == 0)
7444 		newpde |= PG_MANAGED;
7445 	if ((prot & VM_PROT_EXECUTE) == 0)
7446 		newpde |= pg_nx;
7447 	if (va < VM_MAXUSER_ADDRESS)
7448 		newpde |= PG_U;
7449 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7450 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7451 }
7452 
7453 /*
7454  * Returns true if every page table entry in the specified page table page is
7455  * zero.
7456  */
7457 static bool
pmap_every_pte_zero(vm_paddr_t pa)7458 pmap_every_pte_zero(vm_paddr_t pa)
7459 {
7460 	pt_entry_t *pt_end, *pte;
7461 
7462 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7463 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7464 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7465 		if (*pte != 0)
7466 			return (false);
7467 	}
7468 	return (true);
7469 }
7470 
7471 /*
7472  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7473  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7474  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7475  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7476  * page mapping already exists within the 2MB virtual address range starting
7477  * at the specified virtual address or (2) the requested 2MB page mapping is
7478  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7479  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7480  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7481  * settings are not the same across the 2MB virtual address range starting at
7482  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7483  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7484  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7485  * failed.
7486  *
7487  * The parameter "m" is only used when creating a managed, writeable mapping.
7488  */
7489 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7490 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7491     vm_page_t m, struct rwlock **lockp)
7492 {
7493 	struct spglist free;
7494 	pd_entry_t oldpde, *pde;
7495 	pt_entry_t PG_G, PG_RW, PG_V;
7496 	vm_page_t mt, pdpg;
7497 	vm_page_t uwptpg;
7498 
7499 	PG_G = pmap_global_bit(pmap);
7500 	PG_RW = pmap_rw_bit(pmap);
7501 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7502 	    ("pmap_enter_pde: newpde is missing PG_M"));
7503 	PG_V = pmap_valid_bit(pmap);
7504 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7505 
7506 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7507 	    newpde))) {
7508 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7509 		    " in pmap %p", va, pmap);
7510 		return (KERN_FAILURE);
7511 	}
7512 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7513 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7514 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7515 		    " in pmap %p", va, pmap);
7516 		return (KERN_RESOURCE_SHORTAGE);
7517 	}
7518 
7519 	/*
7520 	 * If pkru is not same for the whole pde range, return failure
7521 	 * and let vm_fault() cope.  Check after pde allocation, since
7522 	 * it could sleep.
7523 	 */
7524 	if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7525 		pmap_abort_ptp(pmap, va, pdpg);
7526 		return (KERN_PROTECTION_FAILURE);
7527 	}
7528 
7529 	/*
7530 	 * If there are existing mappings, either abort or remove them.
7531 	 */
7532 	oldpde = *pde;
7533 	if ((oldpde & PG_V) != 0) {
7534 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7535 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7536 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7537 			if ((oldpde & PG_PS) != 0) {
7538 				if (pdpg != NULL)
7539 					pdpg->ref_count--;
7540 				CTR2(KTR_PMAP,
7541 				    "pmap_enter_pde: no space for va %#lx"
7542 				    " in pmap %p", va, pmap);
7543 				return (KERN_NO_SPACE);
7544 			} else if (va < VM_MAXUSER_ADDRESS ||
7545 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7546 				if (pdpg != NULL)
7547 					pdpg->ref_count--;
7548 				CTR2(KTR_PMAP,
7549 				    "pmap_enter_pde: failure for va %#lx"
7550 				    " in pmap %p", va, pmap);
7551 				return (KERN_FAILURE);
7552 			}
7553 		}
7554 		/* Break the existing mapping(s). */
7555 		SLIST_INIT(&free);
7556 		if ((oldpde & PG_PS) != 0) {
7557 			/*
7558 			 * The reference to the PD page that was acquired by
7559 			 * pmap_alloc_pde() ensures that it won't be freed.
7560 			 * However, if the PDE resulted from a promotion, and
7561 			 * the mapping is not from kernel_pmap, then
7562 			 * a reserved PT page could be freed.
7563 			 */
7564 			(void)pmap_remove_pde(pmap, pde, va,
7565 			    pmap != kernel_pmap, &free, lockp);
7566 			if ((oldpde & PG_G) == 0)
7567 				pmap_invalidate_pde_page(pmap, va, oldpde);
7568 		} else {
7569 			if (va >= VM_MAXUSER_ADDRESS) {
7570 				/*
7571 				 * Try to save the ptp in the trie
7572 				 * before any changes to mappings are
7573 				 * made.  Abort on failure.
7574 				 */
7575 				mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7576 				if (pmap_insert_pt_page(pmap, mt, false, false)) {
7577 					if (pdpg != NULL)
7578 						pdpg->ref_count--;
7579 					CTR1(KTR_PMAP,
7580 			    "pmap_enter_pde: cannot ins kern ptp va %#lx",
7581 					    va);
7582 					return (KERN_RESOURCE_SHORTAGE);
7583 				}
7584 				/*
7585 				 * Both pmap_remove_pde() and
7586 				 * pmap_remove_ptes() will zero-fill
7587 				 * the kernel page table page.
7588 				 */
7589 			}
7590 			pmap_delayed_invl_start();
7591 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7592 			    lockp))
7593 		               pmap_invalidate_all(pmap);
7594 			pmap_delayed_invl_finish();
7595 		}
7596 		if (va < VM_MAXUSER_ADDRESS) {
7597 			vm_page_free_pages_toq(&free, true);
7598 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7599 			    pde));
7600 		} else {
7601 			KASSERT(SLIST_EMPTY(&free),
7602 			    ("pmap_enter_pde: freed kernel page table page"));
7603 		}
7604 	}
7605 
7606 	/*
7607 	 * Allocate leaf ptpage for wired userspace pages.
7608 	 */
7609 	uwptpg = NULL;
7610 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7611 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7612 		    VM_ALLOC_WIRED);
7613 		if (uwptpg == NULL) {
7614 			pmap_abort_ptp(pmap, va, pdpg);
7615 			return (KERN_RESOURCE_SHORTAGE);
7616 		}
7617 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7618 			pmap_free_pt_page(pmap, uwptpg, false);
7619 			pmap_abort_ptp(pmap, va, pdpg);
7620 			return (KERN_RESOURCE_SHORTAGE);
7621 		}
7622 
7623 		uwptpg->ref_count = NPTEPG;
7624 	}
7625 	if ((newpde & PG_MANAGED) != 0) {
7626 		/*
7627 		 * Abort this mapping if its PV entry could not be created.
7628 		 */
7629 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7630 			if (pdpg != NULL)
7631 				pmap_abort_ptp(pmap, va, pdpg);
7632 			if (uwptpg != NULL) {
7633 				mt = pmap_remove_pt_page(pmap, va);
7634 				KASSERT(mt == uwptpg,
7635 				    ("removed pt page %p, expected %p", mt,
7636 				    uwptpg));
7637 				uwptpg->ref_count = 1;
7638 				pmap_free_pt_page(pmap, uwptpg, false);
7639 			}
7640 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7641 			    " in pmap %p", va, pmap);
7642 			return (KERN_RESOURCE_SHORTAGE);
7643 		}
7644 		if ((newpde & PG_RW) != 0) {
7645 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7646 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7647 		}
7648 	}
7649 
7650 	/*
7651 	 * Increment counters.
7652 	 */
7653 	if ((newpde & PG_W) != 0)
7654 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7655 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7656 
7657 	/*
7658 	 * Map the superpage.  (This is not a promoted mapping; there will not
7659 	 * be any lingering 4KB page mappings in the TLB.)
7660 	 */
7661 	pde_store(pde, newpde);
7662 
7663 	counter_u64_add(pmap_pde_mappings, 1);
7664 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7665 	    va, pmap);
7666 	return (KERN_SUCCESS);
7667 }
7668 
7669 /*
7670  * Maps a sequence of resident pages belonging to the same object.
7671  * The sequence begins with the given page m_start.  This page is
7672  * mapped at the given virtual address start.  Each subsequent page is
7673  * mapped at a virtual address that is offset from start by the same
7674  * amount as the page is offset from m_start within the object.  The
7675  * last page in the sequence is the page with the largest offset from
7676  * m_start that can be mapped at a virtual address less than the given
7677  * virtual address end.  Not every virtual page between start and end
7678  * is mapped; only those for which a resident page exists with the
7679  * corresponding offset from m_start are mapped.
7680  */
7681 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7682 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7683     vm_page_t m_start, vm_prot_t prot)
7684 {
7685 	struct pctrie_iter pages;
7686 	struct rwlock *lock;
7687 	vm_offset_t va;
7688 	vm_page_t m, mpte;
7689 	int rv;
7690 
7691 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7692 
7693 	mpte = NULL;
7694 	vm_page_iter_limit_init(&pages, m_start->object,
7695 	    m_start->pindex + atop(end - start));
7696 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
7697 	lock = NULL;
7698 	PMAP_LOCK(pmap);
7699 	while (m != NULL) {
7700 		va = start + ptoa(m->pindex - m_start->pindex);
7701 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7702 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7703 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7704 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7705 			m = vm_radix_iter_jump(&pages, NBPDR / PAGE_SIZE);
7706 		else {
7707 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7708 			    mpte, &lock);
7709 			m = vm_radix_iter_step(&pages);
7710 		}
7711 	}
7712 	if (lock != NULL)
7713 		rw_wunlock(lock);
7714 	PMAP_UNLOCK(pmap);
7715 }
7716 
7717 /*
7718  * this code makes some *MAJOR* assumptions:
7719  * 1. Current pmap & pmap exists.
7720  * 2. Not wired.
7721  * 3. Read access.
7722  * 4. No page table pages.
7723  * but is *MUCH* faster than pmap_enter...
7724  */
7725 
7726 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7727 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7728 {
7729 	struct rwlock *lock;
7730 
7731 	lock = NULL;
7732 	PMAP_LOCK(pmap);
7733 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7734 	if (lock != NULL)
7735 		rw_wunlock(lock);
7736 	PMAP_UNLOCK(pmap);
7737 }
7738 
7739 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7740 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7741     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7742 {
7743 	pd_entry_t *pde;
7744 	pt_entry_t newpte, *pte, PG_V;
7745 
7746 	KASSERT(!VA_IS_CLEANMAP(va) ||
7747 	    (m->oflags & VPO_UNMANAGED) != 0,
7748 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7749 	PG_V = pmap_valid_bit(pmap);
7750 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7751 	pde = NULL;
7752 
7753 	/*
7754 	 * In the case that a page table page is not
7755 	 * resident, we are creating it here.
7756 	 */
7757 	if (va < VM_MAXUSER_ADDRESS) {
7758 		pdp_entry_t *pdpe;
7759 		vm_pindex_t ptepindex;
7760 
7761 		/*
7762 		 * Calculate pagetable page index
7763 		 */
7764 		ptepindex = pmap_pde_pindex(va);
7765 		if (mpte && (mpte->pindex == ptepindex)) {
7766 			mpte->ref_count++;
7767 		} else {
7768 			/*
7769 			 * If the page table page is mapped, we just increment
7770 			 * the hold count, and activate it.  Otherwise, we
7771 			 * attempt to allocate a page table page, passing NULL
7772 			 * instead of the PV list lock pointer because we don't
7773 			 * intend to sleep.  If this attempt fails, we don't
7774 			 * retry.  Instead, we give up.
7775 			 */
7776 			pdpe = pmap_pdpe(pmap, va);
7777 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7778 				if ((*pdpe & PG_PS) != 0)
7779 					return (NULL);
7780 				pde = pmap_pdpe_to_pde(pdpe, va);
7781 				if ((*pde & PG_V) != 0) {
7782 					if ((*pde & PG_PS) != 0)
7783 						return (NULL);
7784 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7785 					mpte->ref_count++;
7786 				} else {
7787 					mpte = pmap_allocpte_alloc(pmap,
7788 					    ptepindex, NULL, va);
7789 					if (mpte == NULL)
7790 						return (NULL);
7791 				}
7792 			} else {
7793 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7794 				    NULL, va);
7795 				if (mpte == NULL)
7796 					return (NULL);
7797 			}
7798 		}
7799 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7800 		pte = &pte[pmap_pte_index(va)];
7801 	} else {
7802 		mpte = NULL;
7803 		pte = vtopte(va);
7804 	}
7805 	if (*pte) {
7806 		if (mpte != NULL)
7807 			mpte->ref_count--;
7808 		return (NULL);
7809 	}
7810 
7811 	/*
7812 	 * Enter on the PV list if part of our managed memory.
7813 	 */
7814 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7815 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7816 		if (mpte != NULL)
7817 			pmap_abort_ptp(pmap, va, mpte);
7818 		return (NULL);
7819 	}
7820 
7821 	/*
7822 	 * Increment counters
7823 	 */
7824 	pmap_resident_count_adj(pmap, 1);
7825 
7826 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7827 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
7828 	if ((m->oflags & VPO_UNMANAGED) == 0)
7829 		newpte |= PG_MANAGED;
7830 	if ((prot & VM_PROT_EXECUTE) == 0)
7831 		newpte |= pg_nx;
7832 	if (va < VM_MAXUSER_ADDRESS)
7833 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7834 	pte_store(pte, newpte);
7835 
7836 #if VM_NRESERVLEVEL > 0
7837 	/*
7838 	 * If both the PTP and the reservation are fully populated, then
7839 	 * attempt promotion.
7840 	 */
7841 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7842 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
7843 	    (m->flags & PG_FICTITIOUS) == 0 &&
7844 	    vm_reserv_level_iffullpop(m) == 0) {
7845 		if (pde == NULL)
7846 			pde = pmap_pde(pmap, va);
7847 
7848 		/*
7849 		 * If promotion succeeds, then the next call to this function
7850 		 * should not be given the unmapped PTP as a hint.
7851 		 */
7852 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7853 			mpte = NULL;
7854 	}
7855 #endif
7856 
7857 	return (mpte);
7858 }
7859 
7860 /*
7861  * Make a temporary mapping for a physical address.  This is only intended
7862  * to be used for panic dumps.
7863  */
7864 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7865 pmap_kenter_temporary(vm_paddr_t pa, int i)
7866 {
7867 	vm_offset_t va;
7868 
7869 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7870 	pmap_kenter(va, pa);
7871 	pmap_invlpg(kernel_pmap, va);
7872 	return ((void *)crashdumpmap);
7873 }
7874 
7875 /*
7876  * This code maps large physical mmap regions into the
7877  * processor address space.  Note that some shortcuts
7878  * are taken, but the code works.
7879  */
7880 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7881 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7882     vm_pindex_t pindex, vm_size_t size)
7883 {
7884 	struct pctrie_iter pages;
7885 	pd_entry_t *pde;
7886 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7887 	vm_paddr_t pa, ptepa;
7888 	vm_page_t p, pdpg;
7889 	int pat_mode;
7890 
7891 	PG_A = pmap_accessed_bit(pmap);
7892 	PG_M = pmap_modified_bit(pmap);
7893 	PG_V = pmap_valid_bit(pmap);
7894 	PG_RW = pmap_rw_bit(pmap);
7895 
7896 	VM_OBJECT_ASSERT_WLOCKED(object);
7897 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7898 	    ("pmap_object_init_pt: non-device object"));
7899 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7900 		if (!pmap_ps_enabled(pmap))
7901 			return;
7902 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7903 			return;
7904 		vm_page_iter_init(&pages, object);
7905 		p = vm_radix_iter_lookup(&pages, pindex);
7906 		KASSERT(vm_page_all_valid(p),
7907 		    ("pmap_object_init_pt: invalid page %p", p));
7908 		pat_mode = p->md.pat_mode;
7909 
7910 		/*
7911 		 * Abort the mapping if the first page is not physically
7912 		 * aligned to a 2MB page boundary.
7913 		 */
7914 		ptepa = VM_PAGE_TO_PHYS(p);
7915 		if (ptepa & (NBPDR - 1))
7916 			return;
7917 
7918 		/*
7919 		 * Skip the first page.  Abort the mapping if the rest of
7920 		 * the pages are not physically contiguous or have differing
7921 		 * memory attributes.
7922 		 */
7923 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7924 		    pa += PAGE_SIZE) {
7925 			p = vm_radix_iter_next(&pages);
7926 			KASSERT(vm_page_all_valid(p),
7927 			    ("pmap_object_init_pt: invalid page %p", p));
7928 			if (pa != VM_PAGE_TO_PHYS(p) ||
7929 			    pat_mode != p->md.pat_mode)
7930 				return;
7931 		}
7932 
7933 		/*
7934 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7935 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7936 		 * will not affect the termination of this loop.
7937 		 */
7938 		PMAP_LOCK(pmap);
7939 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7940 		    pa < ptepa + size; pa += NBPDR) {
7941 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7942 			if (pde == NULL) {
7943 				/*
7944 				 * The creation of mappings below is only an
7945 				 * optimization.  If a page directory page
7946 				 * cannot be allocated without blocking,
7947 				 * continue on to the next mapping rather than
7948 				 * blocking.
7949 				 */
7950 				addr += NBPDR;
7951 				continue;
7952 			}
7953 			if ((*pde & PG_V) == 0) {
7954 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7955 				    PG_U | PG_RW | PG_V);
7956 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7957 				counter_u64_add(pmap_pde_mappings, 1);
7958 			} else {
7959 				/* Continue on if the PDE is already valid. */
7960 				pdpg->ref_count--;
7961 				KASSERT(pdpg->ref_count > 0,
7962 				    ("pmap_object_init_pt: missing reference "
7963 				    "to page directory page, va: 0x%lx", addr));
7964 			}
7965 			addr += NBPDR;
7966 		}
7967 		PMAP_UNLOCK(pmap);
7968 	}
7969 }
7970 
7971 /*
7972  *	Clear the wired attribute from the mappings for the specified range of
7973  *	addresses in the given pmap.  Every valid mapping within that range
7974  *	must have the wired attribute set.  In contrast, invalid mappings
7975  *	cannot have the wired attribute set, so they are ignored.
7976  *
7977  *	The wired attribute of the page table entry is not a hardware
7978  *	feature, so there is no need to invalidate any TLB entries.
7979  *	Since pmap_demote_pde() for the wired entry must never fail,
7980  *	pmap_delayed_invl_start()/finish() calls around the
7981  *	function are not needed.
7982  */
7983 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7984 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7985 {
7986 	vm_offset_t va_next;
7987 	pml4_entry_t *pml4e;
7988 	pdp_entry_t *pdpe;
7989 	pd_entry_t *pde;
7990 	pt_entry_t *pte, PG_V, PG_G __diagused;
7991 
7992 	PG_V = pmap_valid_bit(pmap);
7993 	PG_G = pmap_global_bit(pmap);
7994 	PMAP_LOCK(pmap);
7995 	for (; sva < eva; sva = va_next) {
7996 		pml4e = pmap_pml4e(pmap, sva);
7997 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7998 			va_next = (sva + NBPML4) & ~PML4MASK;
7999 			if (va_next < sva)
8000 				va_next = eva;
8001 			continue;
8002 		}
8003 
8004 		va_next = (sva + NBPDP) & ~PDPMASK;
8005 		if (va_next < sva)
8006 			va_next = eva;
8007 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8008 		if ((*pdpe & PG_V) == 0)
8009 			continue;
8010 		if ((*pdpe & PG_PS) != 0) {
8011 			KASSERT(va_next <= eva,
8012 			    ("partial update of non-transparent 1G mapping "
8013 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8014 			    *pdpe, sva, eva, va_next));
8015 			MPASS(pmap != kernel_pmap); /* XXXKIB */
8016 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
8017 			atomic_clear_long(pdpe, PG_W);
8018 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
8019 			continue;
8020 		}
8021 
8022 		va_next = (sva + NBPDR) & ~PDRMASK;
8023 		if (va_next < sva)
8024 			va_next = eva;
8025 		pde = pmap_pdpe_to_pde(pdpe, sva);
8026 		if ((*pde & PG_V) == 0)
8027 			continue;
8028 		if ((*pde & PG_PS) != 0) {
8029 			if ((*pde & PG_W) == 0)
8030 				panic("pmap_unwire: pde %#jx is missing PG_W",
8031 				    (uintmax_t)*pde);
8032 
8033 			/*
8034 			 * Are we unwiring the entire large page?  If not,
8035 			 * demote the mapping and fall through.
8036 			 */
8037 			if (sva + NBPDR == va_next && eva >= va_next) {
8038 				atomic_clear_long(pde, PG_W);
8039 				pmap->pm_stats.wired_count -= NBPDR /
8040 				    PAGE_SIZE;
8041 				continue;
8042 			} else if (!pmap_demote_pde(pmap, pde, sva))
8043 				panic("pmap_unwire: demotion failed");
8044 		}
8045 		if (va_next > eva)
8046 			va_next = eva;
8047 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8048 		    sva += PAGE_SIZE) {
8049 			if ((*pte & PG_V) == 0)
8050 				continue;
8051 			if ((*pte & PG_W) == 0)
8052 				panic("pmap_unwire: pte %#jx is missing PG_W",
8053 				    (uintmax_t)*pte);
8054 
8055 			/*
8056 			 * PG_W must be cleared atomically.  Although the pmap
8057 			 * lock synchronizes access to PG_W, another processor
8058 			 * could be setting PG_M and/or PG_A concurrently.
8059 			 */
8060 			atomic_clear_long(pte, PG_W);
8061 			pmap->pm_stats.wired_count--;
8062 		}
8063 	}
8064 	PMAP_UNLOCK(pmap);
8065 }
8066 
8067 /*
8068  *	Copy the range specified by src_addr/len
8069  *	from the source map to the range dst_addr/len
8070  *	in the destination map.
8071  *
8072  *	This routine is only advisory and need not do anything.
8073  */
8074 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8075 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8076     vm_offset_t src_addr)
8077 {
8078 	struct rwlock *lock;
8079 	pml4_entry_t *pml4e;
8080 	pdp_entry_t *pdpe;
8081 	pd_entry_t *pde, srcptepaddr;
8082 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8083 	vm_offset_t addr, end_addr, va_next;
8084 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8085 
8086 	if (dst_addr != src_addr)
8087 		return;
8088 
8089 	if (dst_pmap->pm_type != src_pmap->pm_type)
8090 		return;
8091 
8092 	/*
8093 	 * EPT page table entries that require emulation of A/D bits are
8094 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8095 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8096 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8097 	 * implementations flag an EPT misconfiguration for exec-only
8098 	 * mappings we skip this function entirely for emulated pmaps.
8099 	 */
8100 	if (pmap_emulate_ad_bits(dst_pmap))
8101 		return;
8102 
8103 	end_addr = src_addr + len;
8104 	lock = NULL;
8105 	if (dst_pmap < src_pmap) {
8106 		PMAP_LOCK(dst_pmap);
8107 		PMAP_LOCK(src_pmap);
8108 	} else {
8109 		PMAP_LOCK(src_pmap);
8110 		PMAP_LOCK(dst_pmap);
8111 	}
8112 
8113 	PG_A = pmap_accessed_bit(dst_pmap);
8114 	PG_M = pmap_modified_bit(dst_pmap);
8115 	PG_V = pmap_valid_bit(dst_pmap);
8116 
8117 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8118 		KASSERT(addr < UPT_MIN_ADDRESS,
8119 		    ("pmap_copy: invalid to pmap_copy page tables"));
8120 
8121 		pml4e = pmap_pml4e(src_pmap, addr);
8122 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8123 			va_next = (addr + NBPML4) & ~PML4MASK;
8124 			if (va_next < addr)
8125 				va_next = end_addr;
8126 			continue;
8127 		}
8128 
8129 		va_next = (addr + NBPDP) & ~PDPMASK;
8130 		if (va_next < addr)
8131 			va_next = end_addr;
8132 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8133 		if ((*pdpe & PG_V) == 0)
8134 			continue;
8135 		if ((*pdpe & PG_PS) != 0) {
8136 			KASSERT(va_next <= end_addr,
8137 			    ("partial update of non-transparent 1G mapping "
8138 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8139 			    *pdpe, addr, end_addr, va_next));
8140 			MPASS((addr & PDPMASK) == 0);
8141 			MPASS((*pdpe & PG_MANAGED) == 0);
8142 			srcptepaddr = *pdpe;
8143 			pdpe = pmap_pdpe(dst_pmap, addr);
8144 			if (pdpe == NULL) {
8145 				if (pmap_allocpte_alloc(dst_pmap,
8146 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8147 				    NULL)
8148 					break;
8149 				pdpe = pmap_pdpe(dst_pmap, addr);
8150 			} else {
8151 				pml4e = pmap_pml4e(dst_pmap, addr);
8152 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8153 				dst_pdpg->ref_count++;
8154 			}
8155 			KASSERT(*pdpe == 0,
8156 			    ("1G mapping present in dst pmap "
8157 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8158 			    *pdpe, addr, end_addr, va_next));
8159 			*pdpe = srcptepaddr & ~PG_W;
8160 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8161 			continue;
8162 		}
8163 
8164 		va_next = (addr + NBPDR) & ~PDRMASK;
8165 		if (va_next < addr)
8166 			va_next = end_addr;
8167 
8168 		pde = pmap_pdpe_to_pde(pdpe, addr);
8169 		srcptepaddr = *pde;
8170 		if (srcptepaddr == 0)
8171 			continue;
8172 
8173 		if (srcptepaddr & PG_PS) {
8174 			/*
8175 			 * We can only virtual copy whole superpages.
8176 			 */
8177 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8178 				continue;
8179 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8180 			if (pde == NULL)
8181 				break;
8182 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8183 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8184 			    PMAP_ENTER_NORECLAIM, &lock))) {
8185 				/*
8186 				 * We leave the dirty bit unchanged because
8187 				 * managed read/write superpage mappings are
8188 				 * required to be dirty.  However, managed
8189 				 * superpage mappings are not required to
8190 				 * have their accessed bit set, so we clear
8191 				 * it because we don't know if this mapping
8192 				 * will be used.
8193 				 */
8194 				srcptepaddr &= ~PG_W;
8195 				if ((srcptepaddr & PG_MANAGED) != 0)
8196 					srcptepaddr &= ~PG_A;
8197 				*pde = srcptepaddr;
8198 				pmap_resident_count_adj(dst_pmap, NBPDR /
8199 				    PAGE_SIZE);
8200 				counter_u64_add(pmap_pde_mappings, 1);
8201 			} else
8202 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8203 			continue;
8204 		}
8205 
8206 		srcptepaddr &= PG_FRAME;
8207 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8208 		KASSERT(srcmpte->ref_count > 0,
8209 		    ("pmap_copy: source page table page is unused"));
8210 
8211 		if (va_next > end_addr)
8212 			va_next = end_addr;
8213 
8214 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8215 		src_pte = &src_pte[pmap_pte_index(addr)];
8216 		dstmpte = NULL;
8217 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8218 			ptetemp = *src_pte;
8219 
8220 			/*
8221 			 * We only virtual copy managed pages.
8222 			 */
8223 			if ((ptetemp & PG_MANAGED) == 0)
8224 				continue;
8225 
8226 			if (dstmpte != NULL) {
8227 				KASSERT(dstmpte->pindex ==
8228 				    pmap_pde_pindex(addr),
8229 				    ("dstmpte pindex/addr mismatch"));
8230 				dstmpte->ref_count++;
8231 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8232 			    NULL)) == NULL)
8233 				goto out;
8234 			dst_pte = (pt_entry_t *)
8235 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8236 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8237 			if (*dst_pte == 0 &&
8238 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8239 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8240 				/*
8241 				 * Clear the wired, modified, and accessed
8242 				 * (referenced) bits during the copy.
8243 				 */
8244 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8245 				pmap_resident_count_adj(dst_pmap, 1);
8246 			} else {
8247 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8248 				goto out;
8249 			}
8250 			/* Have we copied all of the valid mappings? */
8251 			if (dstmpte->ref_count >= srcmpte->ref_count)
8252 				break;
8253 		}
8254 	}
8255 out:
8256 	if (lock != NULL)
8257 		rw_wunlock(lock);
8258 	PMAP_UNLOCK(src_pmap);
8259 	PMAP_UNLOCK(dst_pmap);
8260 }
8261 
8262 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8263 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8264 {
8265 	int error;
8266 
8267 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8268 	    dst_pmap->pm_type != PT_X86 ||
8269 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8270 		return (0);
8271 	for (;;) {
8272 		if (dst_pmap < src_pmap) {
8273 			PMAP_LOCK(dst_pmap);
8274 			PMAP_LOCK(src_pmap);
8275 		} else {
8276 			PMAP_LOCK(src_pmap);
8277 			PMAP_LOCK(dst_pmap);
8278 		}
8279 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8280 		/* Clean up partial copy on failure due to no memory. */
8281 		if (error == ENOMEM)
8282 			pmap_pkru_deassign_all(dst_pmap);
8283 		PMAP_UNLOCK(src_pmap);
8284 		PMAP_UNLOCK(dst_pmap);
8285 		if (error != ENOMEM)
8286 			break;
8287 		vm_wait(NULL);
8288 	}
8289 	return (error);
8290 }
8291 
8292 /*
8293  * Zero the specified hardware page.
8294  */
8295 void
pmap_zero_page(vm_page_t m)8296 pmap_zero_page(vm_page_t m)
8297 {
8298 	vm_offset_t va;
8299 
8300 #ifdef TSLOG_PAGEZERO
8301 	TSENTER();
8302 #endif
8303 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8304 	pagezero((void *)va);
8305 #ifdef TSLOG_PAGEZERO
8306 	TSEXIT();
8307 #endif
8308 }
8309 
8310 /*
8311  * Zero an area within a single hardware page.  off and size must not
8312  * cover an area beyond a single hardware page.
8313  */
8314 void
pmap_zero_page_area(vm_page_t m,int off,int size)8315 pmap_zero_page_area(vm_page_t m, int off, int size)
8316 {
8317 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8318 
8319 	if (off == 0 && size == PAGE_SIZE)
8320 		pagezero((void *)va);
8321 	else
8322 		bzero((char *)va + off, size);
8323 }
8324 
8325 /*
8326  * Copy 1 specified hardware page to another.
8327  */
8328 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8329 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8330 {
8331 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8332 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8333 
8334 	pagecopy((void *)src, (void *)dst);
8335 }
8336 
8337 int unmapped_buf_allowed = 1;
8338 
8339 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8340 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8341     vm_offset_t b_offset, int xfersize)
8342 {
8343 	void *a_cp, *b_cp;
8344 	vm_page_t pages[2];
8345 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8346 	int cnt;
8347 	bool mapped;
8348 
8349 	while (xfersize > 0) {
8350 		a_pg_offset = a_offset & PAGE_MASK;
8351 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8352 		b_pg_offset = b_offset & PAGE_MASK;
8353 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8354 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8355 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8356 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8357 		a_cp = (char *)vaddr[0] + a_pg_offset;
8358 		b_cp = (char *)vaddr[1] + b_pg_offset;
8359 		bcopy(a_cp, b_cp, cnt);
8360 		if (__predict_false(mapped))
8361 			pmap_unmap_io_transient(pages, vaddr, 2, false);
8362 		a_offset += cnt;
8363 		b_offset += cnt;
8364 		xfersize -= cnt;
8365 	}
8366 }
8367 
8368 /*
8369  * Returns true if the pmap's pv is one of the first
8370  * 16 pvs linked to from this page.  This count may
8371  * be changed upwards or downwards in the future; it
8372  * is only necessary that true be returned for a small
8373  * subset of pmaps for proper page aging.
8374  */
8375 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8376 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8377 {
8378 	struct md_page *pvh;
8379 	struct rwlock *lock;
8380 	pv_entry_t pv;
8381 	int loops = 0;
8382 	bool rv;
8383 
8384 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8385 	    ("pmap_page_exists_quick: page %p is not managed", m));
8386 	rv = false;
8387 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8388 	rw_rlock(lock);
8389 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8390 		if (PV_PMAP(pv) == pmap) {
8391 			rv = true;
8392 			break;
8393 		}
8394 		loops++;
8395 		if (loops >= 16)
8396 			break;
8397 	}
8398 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8399 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8400 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8401 			if (PV_PMAP(pv) == pmap) {
8402 				rv = true;
8403 				break;
8404 			}
8405 			loops++;
8406 			if (loops >= 16)
8407 				break;
8408 		}
8409 	}
8410 	rw_runlock(lock);
8411 	return (rv);
8412 }
8413 
8414 /*
8415  *	pmap_page_wired_mappings:
8416  *
8417  *	Return the number of managed mappings to the given physical page
8418  *	that are wired.
8419  */
8420 int
pmap_page_wired_mappings(vm_page_t m)8421 pmap_page_wired_mappings(vm_page_t m)
8422 {
8423 	struct rwlock *lock;
8424 	struct md_page *pvh;
8425 	pmap_t pmap;
8426 	pt_entry_t *pte;
8427 	pv_entry_t pv;
8428 	int count, md_gen, pvh_gen;
8429 
8430 	if ((m->oflags & VPO_UNMANAGED) != 0)
8431 		return (0);
8432 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8433 	rw_rlock(lock);
8434 restart:
8435 	count = 0;
8436 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8437 		pmap = PV_PMAP(pv);
8438 		if (!PMAP_TRYLOCK(pmap)) {
8439 			md_gen = m->md.pv_gen;
8440 			rw_runlock(lock);
8441 			PMAP_LOCK(pmap);
8442 			rw_rlock(lock);
8443 			if (md_gen != m->md.pv_gen) {
8444 				PMAP_UNLOCK(pmap);
8445 				goto restart;
8446 			}
8447 		}
8448 		pte = pmap_pte(pmap, pv->pv_va);
8449 		if ((*pte & PG_W) != 0)
8450 			count++;
8451 		PMAP_UNLOCK(pmap);
8452 	}
8453 	if ((m->flags & PG_FICTITIOUS) == 0) {
8454 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8455 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8456 			pmap = PV_PMAP(pv);
8457 			if (!PMAP_TRYLOCK(pmap)) {
8458 				md_gen = m->md.pv_gen;
8459 				pvh_gen = pvh->pv_gen;
8460 				rw_runlock(lock);
8461 				PMAP_LOCK(pmap);
8462 				rw_rlock(lock);
8463 				if (md_gen != m->md.pv_gen ||
8464 				    pvh_gen != pvh->pv_gen) {
8465 					PMAP_UNLOCK(pmap);
8466 					goto restart;
8467 				}
8468 			}
8469 			pte = pmap_pde(pmap, pv->pv_va);
8470 			if ((*pte & PG_W) != 0)
8471 				count++;
8472 			PMAP_UNLOCK(pmap);
8473 		}
8474 	}
8475 	rw_runlock(lock);
8476 	return (count);
8477 }
8478 
8479 /*
8480  * Returns true if the given page is mapped individually or as part of
8481  * a 2mpage.  Otherwise, returns false.
8482  */
8483 bool
pmap_page_is_mapped(vm_page_t m)8484 pmap_page_is_mapped(vm_page_t m)
8485 {
8486 	struct rwlock *lock;
8487 	bool rv;
8488 
8489 	if ((m->oflags & VPO_UNMANAGED) != 0)
8490 		return (false);
8491 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8492 	rw_rlock(lock);
8493 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8494 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8495 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8496 	rw_runlock(lock);
8497 	return (rv);
8498 }
8499 
8500 /*
8501  * Destroy all managed, non-wired mappings in the given user-space
8502  * pmap.  This pmap cannot be active on any processor besides the
8503  * caller.
8504  *
8505  * This function cannot be applied to the kernel pmap.  Moreover, it
8506  * is not intended for general use.  It is only to be used during
8507  * process termination.  Consequently, it can be implemented in ways
8508  * that make it faster than pmap_remove().  First, it can more quickly
8509  * destroy mappings by iterating over the pmap's collection of PV
8510  * entries, rather than searching the page table.  Second, it doesn't
8511  * have to test and clear the page table entries atomically, because
8512  * no processor is currently accessing the user address space.  In
8513  * particular, a page table entry's dirty bit won't change state once
8514  * this function starts.
8515  *
8516  * Although this function destroys all of the pmap's managed,
8517  * non-wired mappings, it can delay and batch the invalidation of TLB
8518  * entries without calling pmap_delayed_invl_start() and
8519  * pmap_delayed_invl_finish().  Because the pmap is not active on
8520  * any other processor, none of these TLB entries will ever be used
8521  * before their eventual invalidation.  Consequently, there is no need
8522  * for either pmap_remove_all() or pmap_remove_write() to wait for
8523  * that eventual TLB invalidation.
8524  */
8525 void
pmap_remove_pages(pmap_t pmap)8526 pmap_remove_pages(pmap_t pmap)
8527 {
8528 	pd_entry_t ptepde;
8529 	pt_entry_t *pte, tpte;
8530 	pt_entry_t PG_M, PG_RW, PG_V;
8531 	struct spglist free;
8532 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8533 	vm_page_t m, mpte, mt;
8534 	pv_entry_t pv;
8535 	struct md_page *pvh;
8536 	struct pv_chunk *pc, *npc;
8537 	struct rwlock *lock;
8538 	int64_t bit;
8539 	uint64_t inuse, bitmask;
8540 	int allfree, field, i, idx;
8541 #ifdef PV_STATS
8542 	int freed;
8543 #endif
8544 	bool superpage;
8545 	vm_paddr_t pa;
8546 
8547 	/*
8548 	 * Assert that the given pmap is only active on the current
8549 	 * CPU.  Unfortunately, we cannot block another CPU from
8550 	 * activating the pmap while this function is executing.
8551 	 */
8552 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8553 #ifdef INVARIANTS
8554 	{
8555 		cpuset_t other_cpus;
8556 
8557 		other_cpus = all_cpus;
8558 		critical_enter();
8559 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8560 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8561 		critical_exit();
8562 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8563 	}
8564 #endif
8565 
8566 	lock = NULL;
8567 	PG_M = pmap_modified_bit(pmap);
8568 	PG_V = pmap_valid_bit(pmap);
8569 	PG_RW = pmap_rw_bit(pmap);
8570 
8571 	for (i = 0; i < PMAP_MEMDOM; i++)
8572 		TAILQ_INIT(&free_chunks[i]);
8573 	SLIST_INIT(&free);
8574 	PMAP_LOCK(pmap);
8575 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8576 		allfree = 1;
8577 #ifdef PV_STATS
8578 		freed = 0;
8579 #endif
8580 		for (field = 0; field < _NPCM; field++) {
8581 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8582 			while (inuse != 0) {
8583 				bit = bsfq(inuse);
8584 				bitmask = 1UL << bit;
8585 				idx = field * 64 + bit;
8586 				pv = &pc->pc_pventry[idx];
8587 				inuse &= ~bitmask;
8588 
8589 				pte = pmap_pdpe(pmap, pv->pv_va);
8590 				ptepde = *pte;
8591 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8592 				tpte = *pte;
8593 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8594 					superpage = false;
8595 					ptepde = tpte;
8596 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8597 					    PG_FRAME);
8598 					pte = &pte[pmap_pte_index(pv->pv_va)];
8599 					tpte = *pte;
8600 				} else {
8601 					/*
8602 					 * Keep track whether 'tpte' is a
8603 					 * superpage explicitly instead of
8604 					 * relying on PG_PS being set.
8605 					 *
8606 					 * This is because PG_PS is numerically
8607 					 * identical to PG_PTE_PAT and thus a
8608 					 * regular page could be mistaken for
8609 					 * a superpage.
8610 					 */
8611 					superpage = true;
8612 				}
8613 
8614 				if ((tpte & PG_V) == 0) {
8615 					panic("bad pte va %lx pte %lx",
8616 					    pv->pv_va, tpte);
8617 				}
8618 
8619 /*
8620  * We cannot remove wired pages from a process' mapping at this time
8621  */
8622 				if (tpte & PG_W) {
8623 					allfree = 0;
8624 					continue;
8625 				}
8626 
8627 				/* Mark free */
8628 				pc->pc_map[field] |= bitmask;
8629 
8630 				/*
8631 				 * Because this pmap is not active on other
8632 				 * processors, the dirty bit cannot have
8633 				 * changed state since we last loaded pte.
8634 				 */
8635 				pte_clear(pte);
8636 
8637 				if (superpage)
8638 					pa = tpte & PG_PS_FRAME;
8639 				else
8640 					pa = tpte & PG_FRAME;
8641 
8642 				m = PHYS_TO_VM_PAGE(pa);
8643 				KASSERT(m->phys_addr == pa,
8644 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8645 				    m, (uintmax_t)m->phys_addr,
8646 				    (uintmax_t)tpte));
8647 
8648 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8649 				    m < &vm_page_array[vm_page_array_size],
8650 				    ("pmap_remove_pages: bad tpte %#jx",
8651 				    (uintmax_t)tpte));
8652 
8653 				/*
8654 				 * Update the vm_page_t clean/reference bits.
8655 				 */
8656 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8657 					if (superpage) {
8658 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8659 							vm_page_dirty(mt);
8660 					} else
8661 						vm_page_dirty(m);
8662 				}
8663 
8664 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8665 
8666 				if (superpage) {
8667 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8668 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8669 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8670 					pvh->pv_gen++;
8671 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8672 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8673 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8674 							    TAILQ_EMPTY(&mt->md.pv_list))
8675 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8676 					}
8677 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8678 					if (mpte != NULL) {
8679 						KASSERT(vm_page_any_valid(mpte),
8680 						    ("pmap_remove_pages: pte page not promoted"));
8681 						pmap_pt_page_count_adj(pmap, -1);
8682 						KASSERT(mpte->ref_count == NPTEPG,
8683 						    ("pmap_remove_pages: pte page reference count error"));
8684 						mpte->ref_count = 0;
8685 						pmap_add_delayed_free_list(mpte, &free, false);
8686 					}
8687 				} else {
8688 					pmap_resident_count_adj(pmap, -1);
8689 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8690 					m->md.pv_gen++;
8691 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8692 					    TAILQ_EMPTY(&m->md.pv_list) &&
8693 					    (m->flags & PG_FICTITIOUS) == 0) {
8694 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8695 						if (TAILQ_EMPTY(&pvh->pv_list))
8696 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8697 					}
8698 				}
8699 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8700 #ifdef PV_STATS
8701 				freed++;
8702 #endif
8703 			}
8704 		}
8705 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8706 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8707 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8708 		if (allfree) {
8709 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8710 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8711 		}
8712 	}
8713 	if (lock != NULL)
8714 		rw_wunlock(lock);
8715 	pmap_invalidate_all(pmap);
8716 	pmap_pkru_deassign_all(pmap);
8717 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8718 	PMAP_UNLOCK(pmap);
8719 	vm_page_free_pages_toq(&free, true);
8720 }
8721 
8722 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8723 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8724 {
8725 	struct rwlock *lock;
8726 	pv_entry_t pv;
8727 	struct md_page *pvh;
8728 	pt_entry_t *pte, mask;
8729 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8730 	pmap_t pmap;
8731 	int md_gen, pvh_gen;
8732 	bool rv;
8733 
8734 	rv = false;
8735 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8736 	rw_rlock(lock);
8737 restart:
8738 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8739 		pmap = PV_PMAP(pv);
8740 		if (!PMAP_TRYLOCK(pmap)) {
8741 			md_gen = m->md.pv_gen;
8742 			rw_runlock(lock);
8743 			PMAP_LOCK(pmap);
8744 			rw_rlock(lock);
8745 			if (md_gen != m->md.pv_gen) {
8746 				PMAP_UNLOCK(pmap);
8747 				goto restart;
8748 			}
8749 		}
8750 		pte = pmap_pte(pmap, pv->pv_va);
8751 		mask = 0;
8752 		if (modified) {
8753 			PG_M = pmap_modified_bit(pmap);
8754 			PG_RW = pmap_rw_bit(pmap);
8755 			mask |= PG_RW | PG_M;
8756 		}
8757 		if (accessed) {
8758 			PG_A = pmap_accessed_bit(pmap);
8759 			PG_V = pmap_valid_bit(pmap);
8760 			mask |= PG_V | PG_A;
8761 		}
8762 		rv = (*pte & mask) == mask;
8763 		PMAP_UNLOCK(pmap);
8764 		if (rv)
8765 			goto out;
8766 	}
8767 	if ((m->flags & PG_FICTITIOUS) == 0) {
8768 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8769 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8770 			pmap = PV_PMAP(pv);
8771 			if (!PMAP_TRYLOCK(pmap)) {
8772 				md_gen = m->md.pv_gen;
8773 				pvh_gen = pvh->pv_gen;
8774 				rw_runlock(lock);
8775 				PMAP_LOCK(pmap);
8776 				rw_rlock(lock);
8777 				if (md_gen != m->md.pv_gen ||
8778 				    pvh_gen != pvh->pv_gen) {
8779 					PMAP_UNLOCK(pmap);
8780 					goto restart;
8781 				}
8782 			}
8783 			pte = pmap_pde(pmap, pv->pv_va);
8784 			mask = 0;
8785 			if (modified) {
8786 				PG_M = pmap_modified_bit(pmap);
8787 				PG_RW = pmap_rw_bit(pmap);
8788 				mask |= PG_RW | PG_M;
8789 			}
8790 			if (accessed) {
8791 				PG_A = pmap_accessed_bit(pmap);
8792 				PG_V = pmap_valid_bit(pmap);
8793 				mask |= PG_V | PG_A;
8794 			}
8795 			rv = (*pte & mask) == mask;
8796 			PMAP_UNLOCK(pmap);
8797 			if (rv)
8798 				goto out;
8799 		}
8800 	}
8801 out:
8802 	rw_runlock(lock);
8803 	return (rv);
8804 }
8805 
8806 /*
8807  *	pmap_is_modified:
8808  *
8809  *	Return whether or not the specified physical page was modified
8810  *	in any physical maps.
8811  */
8812 bool
pmap_is_modified(vm_page_t m)8813 pmap_is_modified(vm_page_t m)
8814 {
8815 
8816 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8817 	    ("pmap_is_modified: page %p is not managed", m));
8818 
8819 	/*
8820 	 * If the page is not busied then this check is racy.
8821 	 */
8822 	if (!pmap_page_is_write_mapped(m))
8823 		return (false);
8824 	return (pmap_page_test_mappings(m, false, true));
8825 }
8826 
8827 /*
8828  *	pmap_is_prefaultable:
8829  *
8830  *	Return whether or not the specified virtual address is eligible
8831  *	for prefault.
8832  */
8833 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8834 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8835 {
8836 	pd_entry_t *pde;
8837 	pt_entry_t *pte, PG_V;
8838 	bool rv;
8839 
8840 	PG_V = pmap_valid_bit(pmap);
8841 
8842 	/*
8843 	 * Return true if and only if the PTE for the specified virtual
8844 	 * address is allocated but invalid.
8845 	 */
8846 	rv = false;
8847 	PMAP_LOCK(pmap);
8848 	pde = pmap_pde(pmap, addr);
8849 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8850 		pte = pmap_pde_to_pte(pde, addr);
8851 		rv = (*pte & PG_V) == 0;
8852 	}
8853 	PMAP_UNLOCK(pmap);
8854 	return (rv);
8855 }
8856 
8857 /*
8858  *	pmap_is_referenced:
8859  *
8860  *	Return whether or not the specified physical page was referenced
8861  *	in any physical maps.
8862  */
8863 bool
pmap_is_referenced(vm_page_t m)8864 pmap_is_referenced(vm_page_t m)
8865 {
8866 
8867 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8868 	    ("pmap_is_referenced: page %p is not managed", m));
8869 	return (pmap_page_test_mappings(m, true, false));
8870 }
8871 
8872 /*
8873  * Clear the write and modified bits in each of the given page's mappings.
8874  */
8875 void
pmap_remove_write(vm_page_t m)8876 pmap_remove_write(vm_page_t m)
8877 {
8878 	struct md_page *pvh;
8879 	pmap_t pmap;
8880 	struct rwlock *lock;
8881 	pv_entry_t next_pv, pv;
8882 	pd_entry_t *pde;
8883 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8884 	vm_offset_t va;
8885 	int pvh_gen, md_gen;
8886 
8887 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8888 	    ("pmap_remove_write: page %p is not managed", m));
8889 
8890 	vm_page_assert_busied(m);
8891 	if (!pmap_page_is_write_mapped(m))
8892 		return;
8893 
8894 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8895 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8896 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8897 	rw_wlock(lock);
8898 retry:
8899 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8900 		pmap = PV_PMAP(pv);
8901 		if (!PMAP_TRYLOCK(pmap)) {
8902 			pvh_gen = pvh->pv_gen;
8903 			rw_wunlock(lock);
8904 			PMAP_LOCK(pmap);
8905 			rw_wlock(lock);
8906 			if (pvh_gen != pvh->pv_gen) {
8907 				PMAP_UNLOCK(pmap);
8908 				goto retry;
8909 			}
8910 		}
8911 		PG_RW = pmap_rw_bit(pmap);
8912 		va = pv->pv_va;
8913 		pde = pmap_pde(pmap, va);
8914 		if ((*pde & PG_RW) != 0)
8915 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8916 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8917 		    ("inconsistent pv lock %p %p for page %p",
8918 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8919 		PMAP_UNLOCK(pmap);
8920 	}
8921 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8922 		pmap = PV_PMAP(pv);
8923 		if (!PMAP_TRYLOCK(pmap)) {
8924 			pvh_gen = pvh->pv_gen;
8925 			md_gen = m->md.pv_gen;
8926 			rw_wunlock(lock);
8927 			PMAP_LOCK(pmap);
8928 			rw_wlock(lock);
8929 			if (pvh_gen != pvh->pv_gen ||
8930 			    md_gen != m->md.pv_gen) {
8931 				PMAP_UNLOCK(pmap);
8932 				goto retry;
8933 			}
8934 		}
8935 		PG_M = pmap_modified_bit(pmap);
8936 		PG_RW = pmap_rw_bit(pmap);
8937 		pde = pmap_pde(pmap, pv->pv_va);
8938 		KASSERT((*pde & PG_PS) == 0,
8939 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8940 		    m));
8941 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8942 		oldpte = *pte;
8943 		if (oldpte & PG_RW) {
8944 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8945 			    ~(PG_RW | PG_M)))
8946 				cpu_spinwait();
8947 			if ((oldpte & PG_M) != 0)
8948 				vm_page_dirty(m);
8949 			pmap_invalidate_page(pmap, pv->pv_va);
8950 		}
8951 		PMAP_UNLOCK(pmap);
8952 	}
8953 	rw_wunlock(lock);
8954 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8955 	pmap_delayed_invl_wait(m);
8956 }
8957 
8958 /*
8959  *	pmap_ts_referenced:
8960  *
8961  *	Return a count of reference bits for a page, clearing those bits.
8962  *	It is not necessary for every reference bit to be cleared, but it
8963  *	is necessary that 0 only be returned when there are truly no
8964  *	reference bits set.
8965  *
8966  *	As an optimization, update the page's dirty field if a modified bit is
8967  *	found while counting reference bits.  This opportunistic update can be
8968  *	performed at low cost and can eliminate the need for some future calls
8969  *	to pmap_is_modified().  However, since this function stops after
8970  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8971  *	dirty pages.  Those dirty pages will only be detected by a future call
8972  *	to pmap_is_modified().
8973  *
8974  *	A DI block is not needed within this function, because
8975  *	invalidations are performed before the PV list lock is
8976  *	released.
8977  */
8978 int
pmap_ts_referenced(vm_page_t m)8979 pmap_ts_referenced(vm_page_t m)
8980 {
8981 	struct md_page *pvh;
8982 	pv_entry_t pv, pvf;
8983 	pmap_t pmap;
8984 	struct rwlock *lock;
8985 	pd_entry_t oldpde, *pde;
8986 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8987 	vm_offset_t va;
8988 	vm_paddr_t pa;
8989 	int cleared, md_gen, not_cleared, pvh_gen;
8990 	struct spglist free;
8991 	bool demoted;
8992 
8993 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8994 	    ("pmap_ts_referenced: page %p is not managed", m));
8995 	SLIST_INIT(&free);
8996 	cleared = 0;
8997 	pa = VM_PAGE_TO_PHYS(m);
8998 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8999 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
9000 	rw_wlock(lock);
9001 retry:
9002 	not_cleared = 0;
9003 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
9004 		goto small_mappings;
9005 	pv = pvf;
9006 	do {
9007 		if (pvf == NULL)
9008 			pvf = pv;
9009 		pmap = PV_PMAP(pv);
9010 		if (!PMAP_TRYLOCK(pmap)) {
9011 			pvh_gen = pvh->pv_gen;
9012 			rw_wunlock(lock);
9013 			PMAP_LOCK(pmap);
9014 			rw_wlock(lock);
9015 			if (pvh_gen != pvh->pv_gen) {
9016 				PMAP_UNLOCK(pmap);
9017 				goto retry;
9018 			}
9019 		}
9020 		PG_A = pmap_accessed_bit(pmap);
9021 		PG_M = pmap_modified_bit(pmap);
9022 		PG_RW = pmap_rw_bit(pmap);
9023 		va = pv->pv_va;
9024 		pde = pmap_pde(pmap, pv->pv_va);
9025 		oldpde = *pde;
9026 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9027 			/*
9028 			 * Although "oldpde" is mapping a 2MB page, because
9029 			 * this function is called at a 4KB page granularity,
9030 			 * we only update the 4KB page under test.
9031 			 */
9032 			vm_page_dirty(m);
9033 		}
9034 		if ((oldpde & PG_A) != 0) {
9035 			/*
9036 			 * Since this reference bit is shared by 512 4KB
9037 			 * pages, it should not be cleared every time it is
9038 			 * tested.  Apply a simple "hash" function on the
9039 			 * physical page number, the virtual superpage number,
9040 			 * and the pmap address to select one 4KB page out of
9041 			 * the 512 on which testing the reference bit will
9042 			 * result in clearing that reference bit.  This
9043 			 * function is designed to avoid the selection of the
9044 			 * same 4KB page for every 2MB page mapping.
9045 			 *
9046 			 * On demotion, a mapping that hasn't been referenced
9047 			 * is simply destroyed.  To avoid the possibility of a
9048 			 * subsequent page fault on a demoted wired mapping,
9049 			 * always leave its reference bit set.  Moreover,
9050 			 * since the superpage is wired, the current state of
9051 			 * its reference bit won't affect page replacement.
9052 			 */
9053 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9054 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9055 			    (oldpde & PG_W) == 0) {
9056 				if (safe_to_clear_referenced(pmap, oldpde)) {
9057 					atomic_clear_long(pde, PG_A);
9058 					pmap_invalidate_page(pmap, pv->pv_va);
9059 					demoted = false;
9060 				} else if (pmap_demote_pde_locked(pmap, pde,
9061 				    pv->pv_va, &lock)) {
9062 					/*
9063 					 * Remove the mapping to a single page
9064 					 * so that a subsequent access may
9065 					 * repromote.  Since the underlying
9066 					 * page table page is fully populated,
9067 					 * this removal never frees a page
9068 					 * table page.
9069 					 */
9070 					demoted = true;
9071 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9072 					    PG_PS_FRAME);
9073 					pte = pmap_pde_to_pte(pde, va);
9074 					pmap_remove_pte(pmap, pte, va, *pde,
9075 					    NULL, &lock);
9076 					pmap_invalidate_page(pmap, va);
9077 				} else
9078 					demoted = true;
9079 
9080 				if (demoted) {
9081 					/*
9082 					 * The superpage mapping was removed
9083 					 * entirely and therefore 'pv' is no
9084 					 * longer valid.
9085 					 */
9086 					if (pvf == pv)
9087 						pvf = NULL;
9088 					pv = NULL;
9089 				}
9090 				cleared++;
9091 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9092 				    ("inconsistent pv lock %p %p for page %p",
9093 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9094 			} else
9095 				not_cleared++;
9096 		}
9097 		PMAP_UNLOCK(pmap);
9098 		/* Rotate the PV list if it has more than one entry. */
9099 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9100 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9101 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9102 			pvh->pv_gen++;
9103 		}
9104 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9105 			goto out;
9106 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9107 small_mappings:
9108 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9109 		goto out;
9110 	pv = pvf;
9111 	do {
9112 		if (pvf == NULL)
9113 			pvf = pv;
9114 		pmap = PV_PMAP(pv);
9115 		if (!PMAP_TRYLOCK(pmap)) {
9116 			pvh_gen = pvh->pv_gen;
9117 			md_gen = m->md.pv_gen;
9118 			rw_wunlock(lock);
9119 			PMAP_LOCK(pmap);
9120 			rw_wlock(lock);
9121 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9122 				PMAP_UNLOCK(pmap);
9123 				goto retry;
9124 			}
9125 		}
9126 		PG_A = pmap_accessed_bit(pmap);
9127 		PG_M = pmap_modified_bit(pmap);
9128 		PG_RW = pmap_rw_bit(pmap);
9129 		pde = pmap_pde(pmap, pv->pv_va);
9130 		KASSERT((*pde & PG_PS) == 0,
9131 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9132 		    m));
9133 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9134 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9135 			vm_page_dirty(m);
9136 		if ((*pte & PG_A) != 0) {
9137 			if (safe_to_clear_referenced(pmap, *pte)) {
9138 				atomic_clear_long(pte, PG_A);
9139 				pmap_invalidate_page(pmap, pv->pv_va);
9140 				cleared++;
9141 			} else if ((*pte & PG_W) == 0) {
9142 				/*
9143 				 * Wired pages cannot be paged out so
9144 				 * doing accessed bit emulation for
9145 				 * them is wasted effort. We do the
9146 				 * hard work for unwired pages only.
9147 				 */
9148 				pmap_remove_pte(pmap, pte, pv->pv_va,
9149 				    *pde, &free, &lock);
9150 				pmap_invalidate_page(pmap, pv->pv_va);
9151 				cleared++;
9152 				if (pvf == pv)
9153 					pvf = NULL;
9154 				pv = NULL;
9155 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9156 				    ("inconsistent pv lock %p %p for page %p",
9157 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9158 			} else
9159 				not_cleared++;
9160 		}
9161 		PMAP_UNLOCK(pmap);
9162 		/* Rotate the PV list if it has more than one entry. */
9163 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9164 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9165 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9166 			m->md.pv_gen++;
9167 		}
9168 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9169 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9170 out:
9171 	rw_wunlock(lock);
9172 	vm_page_free_pages_toq(&free, true);
9173 	return (cleared + not_cleared);
9174 }
9175 
9176 /*
9177  *	Apply the given advice to the specified range of addresses within the
9178  *	given pmap.  Depending on the advice, clear the referenced and/or
9179  *	modified flags in each mapping and set the mapped page's dirty field.
9180  */
9181 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9182 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9183 {
9184 	struct rwlock *lock;
9185 	pml4_entry_t *pml4e;
9186 	pdp_entry_t *pdpe;
9187 	pd_entry_t oldpde, *pde;
9188 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9189 	vm_offset_t va, va_next;
9190 	vm_page_t m;
9191 	bool anychanged;
9192 
9193 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9194 		return;
9195 
9196 	/*
9197 	 * A/D bit emulation requires an alternate code path when clearing
9198 	 * the modified and accessed bits below. Since this function is
9199 	 * advisory in nature we skip it entirely for pmaps that require
9200 	 * A/D bit emulation.
9201 	 */
9202 	if (pmap_emulate_ad_bits(pmap))
9203 		return;
9204 
9205 	PG_A = pmap_accessed_bit(pmap);
9206 	PG_G = pmap_global_bit(pmap);
9207 	PG_M = pmap_modified_bit(pmap);
9208 	PG_V = pmap_valid_bit(pmap);
9209 	PG_RW = pmap_rw_bit(pmap);
9210 	anychanged = false;
9211 	pmap_delayed_invl_start();
9212 	PMAP_LOCK(pmap);
9213 	for (; sva < eva; sva = va_next) {
9214 		pml4e = pmap_pml4e(pmap, sva);
9215 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9216 			va_next = (sva + NBPML4) & ~PML4MASK;
9217 			if (va_next < sva)
9218 				va_next = eva;
9219 			continue;
9220 		}
9221 
9222 		va_next = (sva + NBPDP) & ~PDPMASK;
9223 		if (va_next < sva)
9224 			va_next = eva;
9225 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9226 		if ((*pdpe & PG_V) == 0)
9227 			continue;
9228 		if ((*pdpe & PG_PS) != 0)
9229 			continue;
9230 
9231 		va_next = (sva + NBPDR) & ~PDRMASK;
9232 		if (va_next < sva)
9233 			va_next = eva;
9234 		pde = pmap_pdpe_to_pde(pdpe, sva);
9235 		oldpde = *pde;
9236 		if ((oldpde & PG_V) == 0)
9237 			continue;
9238 		else if ((oldpde & PG_PS) != 0) {
9239 			if ((oldpde & PG_MANAGED) == 0)
9240 				continue;
9241 			lock = NULL;
9242 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9243 				if (lock != NULL)
9244 					rw_wunlock(lock);
9245 
9246 				/*
9247 				 * The large page mapping was destroyed.
9248 				 */
9249 				continue;
9250 			}
9251 
9252 			/*
9253 			 * Unless the page mappings are wired, remove the
9254 			 * mapping to a single page so that a subsequent
9255 			 * access may repromote.  Choosing the last page
9256 			 * within the address range [sva, min(va_next, eva))
9257 			 * generally results in more repromotions.  Since the
9258 			 * underlying page table page is fully populated, this
9259 			 * removal never frees a page table page.
9260 			 */
9261 			if ((oldpde & PG_W) == 0) {
9262 				va = eva;
9263 				if (va > va_next)
9264 					va = va_next;
9265 				va -= PAGE_SIZE;
9266 				KASSERT(va >= sva,
9267 				    ("pmap_advise: no address gap"));
9268 				pte = pmap_pde_to_pte(pde, va);
9269 				KASSERT((*pte & PG_V) != 0,
9270 				    ("pmap_advise: invalid PTE"));
9271 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9272 				    &lock);
9273 				anychanged = true;
9274 			}
9275 			if (lock != NULL)
9276 				rw_wunlock(lock);
9277 		}
9278 		if (va_next > eva)
9279 			va_next = eva;
9280 		va = va_next;
9281 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9282 		    sva += PAGE_SIZE) {
9283 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9284 				goto maybe_invlrng;
9285 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9286 				if (advice == MADV_DONTNEED) {
9287 					/*
9288 					 * Future calls to pmap_is_modified()
9289 					 * can be avoided by making the page
9290 					 * dirty now.
9291 					 */
9292 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9293 					vm_page_dirty(m);
9294 				}
9295 				atomic_clear_long(pte, PG_M | PG_A);
9296 			} else if ((*pte & PG_A) != 0)
9297 				atomic_clear_long(pte, PG_A);
9298 			else
9299 				goto maybe_invlrng;
9300 
9301 			if ((*pte & PG_G) != 0) {
9302 				if (va == va_next)
9303 					va = sva;
9304 			} else
9305 				anychanged = true;
9306 			continue;
9307 maybe_invlrng:
9308 			if (va != va_next) {
9309 				pmap_invalidate_range(pmap, va, sva);
9310 				va = va_next;
9311 			}
9312 		}
9313 		if (va != va_next)
9314 			pmap_invalidate_range(pmap, va, sva);
9315 	}
9316 	if (anychanged)
9317 		pmap_invalidate_all(pmap);
9318 	PMAP_UNLOCK(pmap);
9319 	pmap_delayed_invl_finish();
9320 }
9321 
9322 /*
9323  *	Clear the modify bits on the specified physical page.
9324  */
9325 void
pmap_clear_modify(vm_page_t m)9326 pmap_clear_modify(vm_page_t m)
9327 {
9328 	struct md_page *pvh;
9329 	pmap_t pmap;
9330 	pv_entry_t next_pv, pv;
9331 	pd_entry_t oldpde, *pde;
9332 	pt_entry_t *pte, PG_M, PG_RW;
9333 	struct rwlock *lock;
9334 	vm_offset_t va;
9335 	int md_gen, pvh_gen;
9336 
9337 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9338 	    ("pmap_clear_modify: page %p is not managed", m));
9339 	vm_page_assert_busied(m);
9340 
9341 	if (!pmap_page_is_write_mapped(m))
9342 		return;
9343 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9344 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9345 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9346 	rw_wlock(lock);
9347 restart:
9348 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9349 		pmap = PV_PMAP(pv);
9350 		if (!PMAP_TRYLOCK(pmap)) {
9351 			pvh_gen = pvh->pv_gen;
9352 			rw_wunlock(lock);
9353 			PMAP_LOCK(pmap);
9354 			rw_wlock(lock);
9355 			if (pvh_gen != pvh->pv_gen) {
9356 				PMAP_UNLOCK(pmap);
9357 				goto restart;
9358 			}
9359 		}
9360 		PG_M = pmap_modified_bit(pmap);
9361 		PG_RW = pmap_rw_bit(pmap);
9362 		va = pv->pv_va;
9363 		pde = pmap_pde(pmap, va);
9364 		oldpde = *pde;
9365 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9366 		if ((oldpde & PG_RW) != 0 &&
9367 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9368 		    (oldpde & PG_W) == 0) {
9369 			/*
9370 			 * Write protect the mapping to a single page so that
9371 			 * a subsequent write access may repromote.
9372 			 */
9373 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9374 			pte = pmap_pde_to_pte(pde, va);
9375 			atomic_clear_long(pte, PG_M | PG_RW);
9376 			vm_page_dirty(m);
9377 			pmap_invalidate_page(pmap, va);
9378 		}
9379 		PMAP_UNLOCK(pmap);
9380 	}
9381 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9382 		pmap = PV_PMAP(pv);
9383 		if (!PMAP_TRYLOCK(pmap)) {
9384 			md_gen = m->md.pv_gen;
9385 			pvh_gen = pvh->pv_gen;
9386 			rw_wunlock(lock);
9387 			PMAP_LOCK(pmap);
9388 			rw_wlock(lock);
9389 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9390 				PMAP_UNLOCK(pmap);
9391 				goto restart;
9392 			}
9393 		}
9394 		PG_M = pmap_modified_bit(pmap);
9395 		PG_RW = pmap_rw_bit(pmap);
9396 		pde = pmap_pde(pmap, pv->pv_va);
9397 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9398 		    " a 2mpage in page %p's pv list", m));
9399 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9400 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9401 			atomic_clear_long(pte, PG_M);
9402 			pmap_invalidate_page(pmap, pv->pv_va);
9403 		}
9404 		PMAP_UNLOCK(pmap);
9405 	}
9406 	rw_wunlock(lock);
9407 }
9408 
9409 /*
9410  * Miscellaneous support routines follow
9411  */
9412 
9413 /* Adjust the properties for a leaf page table entry. */
9414 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9415 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9416 {
9417 	u_long opte, npte;
9418 
9419 	opte = *(u_long *)pte;
9420 	do {
9421 		npte = opte & ~mask;
9422 		npte |= bits;
9423 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9424 	    npte));
9425 }
9426 
9427 /*
9428  * Map a set of physical memory pages into the kernel virtual
9429  * address space. Return a pointer to where it is mapped. This
9430  * routine is intended to be used for mapping device memory,
9431  * NOT real memory.
9432  */
9433 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9434 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9435 {
9436 	struct pmap_preinit_mapping *ppim;
9437 	vm_offset_t va, offset;
9438 	vm_size_t tmpsize;
9439 	int i;
9440 
9441 	offset = pa & PAGE_MASK;
9442 	size = round_page(offset + size);
9443 	pa = trunc_page(pa);
9444 
9445 	if (!pmap_initialized) {
9446 		va = 0;
9447 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9448 			ppim = pmap_preinit_mapping + i;
9449 			if (ppim->va == 0) {
9450 				ppim->pa = pa;
9451 				ppim->sz = size;
9452 				ppim->mode = mode;
9453 				ppim->va = virtual_avail;
9454 				virtual_avail += size;
9455 				va = ppim->va;
9456 				break;
9457 			}
9458 		}
9459 		if (va == 0)
9460 			panic("%s: too many preinit mappings", __func__);
9461 	} else {
9462 		/*
9463 		 * If we have a preinit mapping, reuse it.
9464 		 */
9465 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9466 			ppim = pmap_preinit_mapping + i;
9467 			if (ppim->pa == pa && ppim->sz == size &&
9468 			    (ppim->mode == mode ||
9469 			    (flags & MAPDEV_SETATTR) == 0))
9470 				return ((void *)(ppim->va + offset));
9471 		}
9472 		/*
9473 		 * If the specified range of physical addresses fits within
9474 		 * the direct map window, use the direct map.
9475 		 */
9476 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9477 			va = PHYS_TO_DMAP(pa);
9478 			if ((flags & MAPDEV_SETATTR) != 0) {
9479 				PMAP_LOCK(kernel_pmap);
9480 				i = pmap_change_props_locked(va, size,
9481 				    PROT_NONE, mode, flags);
9482 				PMAP_UNLOCK(kernel_pmap);
9483 			} else
9484 				i = 0;
9485 			if (!i)
9486 				return ((void *)(va + offset));
9487 		}
9488 		va = kva_alloc(size);
9489 		if (va == 0)
9490 			panic("%s: Couldn't allocate KVA", __func__);
9491 	}
9492 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9493 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9494 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9495 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9496 		pmap_invalidate_cache_range(va, va + tmpsize);
9497 	return ((void *)(va + offset));
9498 }
9499 
9500 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9501 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9502 {
9503 
9504 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9505 	    MAPDEV_SETATTR));
9506 }
9507 
9508 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9509 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9510 {
9511 
9512 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9513 }
9514 
9515 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9516 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9517 {
9518 
9519 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9520 	    MAPDEV_SETATTR));
9521 }
9522 
9523 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9524 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9525 {
9526 
9527 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9528 	    MAPDEV_FLUSHCACHE));
9529 }
9530 
9531 void
pmap_unmapdev(void * p,vm_size_t size)9532 pmap_unmapdev(void *p, vm_size_t size)
9533 {
9534 	struct pmap_preinit_mapping *ppim;
9535 	vm_offset_t offset, va;
9536 	int i;
9537 
9538 	va = (vm_offset_t)p;
9539 
9540 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9541 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9542 		return;
9543 	offset = va & PAGE_MASK;
9544 	size = round_page(offset + size);
9545 	va = trunc_page(va);
9546 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9547 		ppim = pmap_preinit_mapping + i;
9548 		if (ppim->va == va && ppim->sz == size) {
9549 			if (pmap_initialized)
9550 				return;
9551 			ppim->pa = 0;
9552 			ppim->va = 0;
9553 			ppim->sz = 0;
9554 			ppim->mode = 0;
9555 			if (va + size == virtual_avail)
9556 				virtual_avail = va;
9557 			return;
9558 		}
9559 	}
9560 	if (pmap_initialized) {
9561 		pmap_qremove(va, atop(size));
9562 		kva_free(va, size);
9563 	}
9564 }
9565 
9566 /*
9567  * Tries to demote a 1GB page mapping.
9568  */
9569 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va,vm_page_t m)9570 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va, vm_page_t m)
9571 {
9572 	pdp_entry_t newpdpe, oldpdpe;
9573 	pd_entry_t *firstpde, newpde, *pde;
9574 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9575 	vm_paddr_t pdpgpa;
9576 	vm_page_t pdpg;
9577 
9578 	PG_A = pmap_accessed_bit(pmap);
9579 	PG_M = pmap_modified_bit(pmap);
9580 	PG_V = pmap_valid_bit(pmap);
9581 	PG_RW = pmap_rw_bit(pmap);
9582 
9583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9584 	oldpdpe = *pdpe;
9585 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9586 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9587 	if (m == NULL) {
9588 		pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9589 		    VM_ALLOC_WIRED);
9590 		if (pdpg  == NULL) {
9591 			CTR2(KTR_PMAP,
9592 			    "pmap_demote_pdpe: failure for va %#lx in pmap %p",
9593 			    va, pmap);
9594 			return (false);
9595 		}
9596 	} else {
9597 		pdpg = m;
9598 		pdpg->pindex = va >> PDPSHIFT;
9599 		pmap_pt_page_count_adj(pmap, 1);
9600 	}
9601 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9602 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9603 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9604 	KASSERT((oldpdpe & PG_A) != 0,
9605 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9606 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9607 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9608 	newpde = oldpdpe;
9609 
9610 	/*
9611 	 * Initialize the page directory page.
9612 	 */
9613 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9614 		*pde = newpde;
9615 		newpde += NBPDR;
9616 	}
9617 
9618 	/*
9619 	 * Demote the mapping.
9620 	 */
9621 	*pdpe = newpdpe;
9622 
9623 	/*
9624 	 * Invalidate a stale recursive mapping of the page directory page.
9625 	 */
9626 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9627 
9628 	counter_u64_add(pmap_pdpe_demotions, 1);
9629 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9630 	    " in pmap %p", va, pmap);
9631 	return (true);
9632 }
9633 
9634 /*
9635  * Sets the memory attribute for the specified page.
9636  */
9637 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9638 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9639 {
9640 
9641 	m->md.pat_mode = ma;
9642 
9643 	/*
9644 	 * If "m" is a normal page, update its direct mapping.  This update
9645 	 * can be relied upon to perform any cache operations that are
9646 	 * required for data coherence.
9647 	 */
9648 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9649 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9650 	    m->md.pat_mode))
9651 		panic("memory attribute change on the direct map failed");
9652 }
9653 
9654 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9655 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9656 {
9657 	int error;
9658 
9659 	m->md.pat_mode = ma;
9660 
9661 	if ((m->flags & PG_FICTITIOUS) != 0)
9662 		return;
9663 	PMAP_LOCK(kernel_pmap);
9664 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9665 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9666 	PMAP_UNLOCK(kernel_pmap);
9667 	if (error != 0)
9668 		panic("memory attribute change on the direct map failed");
9669 }
9670 
9671 /*
9672  * Changes the specified virtual address range's memory type to that given by
9673  * the parameter "mode".  The specified virtual address range must be
9674  * completely contained within either the direct map or the kernel map.  If
9675  * the virtual address range is contained within the kernel map, then the
9676  * memory type for each of the corresponding ranges of the direct map is also
9677  * changed.  (The corresponding ranges of the direct map are those ranges that
9678  * map the same physical pages as the specified virtual address range.)  These
9679  * changes to the direct map are necessary because Intel describes the
9680  * behavior of their processors as "undefined" if two or more mappings to the
9681  * same physical page have different memory types.
9682  *
9683  * Returns zero if the change completed successfully, and either EINVAL or
9684  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9685  * of the virtual address range was not mapped, and ENOMEM is returned if
9686  * there was insufficient memory available to complete the change.  In the
9687  * latter case, the memory type may have been changed on some part of the
9688  * virtual address range or the direct map.
9689  */
9690 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9691 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9692 {
9693 	int error;
9694 
9695 	PMAP_LOCK(kernel_pmap);
9696 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9697 	    MAPDEV_FLUSHCACHE);
9698 	PMAP_UNLOCK(kernel_pmap);
9699 	return (error);
9700 }
9701 
9702 /*
9703  * Changes the specified virtual address range's protections to those
9704  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9705  * in the direct map are updated as well.  Protections on aliasing mappings may
9706  * be a subset of the requested protections; for example, mappings in the direct
9707  * map are never executable.
9708  */
9709 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9710 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9711 {
9712 	int error;
9713 
9714 	/* Only supported within the kernel map. */
9715 	if (va < VM_MIN_KERNEL_ADDRESS)
9716 		return (EINVAL);
9717 
9718 	PMAP_LOCK(kernel_pmap);
9719 	error = pmap_change_props_locked(va, size, prot, -1,
9720 	    MAPDEV_ASSERTVALID);
9721 	PMAP_UNLOCK(kernel_pmap);
9722 	return (error);
9723 }
9724 
9725 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9726 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9727     int mode, int flags)
9728 {
9729 	vm_offset_t base, offset, tmpva;
9730 	vm_paddr_t pa_start, pa_end, pa_end1;
9731 	pdp_entry_t *pdpe;
9732 	pd_entry_t *pde, pde_bits, pde_mask;
9733 	pt_entry_t *pte, pte_bits, pte_mask;
9734 	int error;
9735 	bool changed;
9736 
9737 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9738 	base = trunc_page(va);
9739 	offset = va & PAGE_MASK;
9740 	size = round_page(offset + size);
9741 
9742 	/*
9743 	 * Only supported on kernel virtual addresses, including the direct
9744 	 * map but excluding the recursive map.
9745 	 */
9746 	if (base < DMAP_MIN_ADDRESS)
9747 		return (EINVAL);
9748 
9749 	/*
9750 	 * Construct our flag sets and masks.  "bits" is the subset of
9751 	 * "mask" that will be set in each modified PTE.
9752 	 *
9753 	 * Mappings in the direct map are never allowed to be executable.
9754 	 */
9755 	pde_bits = pte_bits = 0;
9756 	pde_mask = pte_mask = 0;
9757 	if (mode != -1) {
9758 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9759 		pde_mask |= X86_PG_PDE_CACHE;
9760 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9761 		pte_mask |= X86_PG_PTE_CACHE;
9762 	}
9763 	if (prot != VM_PROT_NONE) {
9764 		if ((prot & VM_PROT_WRITE) != 0) {
9765 			pde_bits |= X86_PG_RW;
9766 			pte_bits |= X86_PG_RW;
9767 		}
9768 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9769 		    va < VM_MIN_KERNEL_ADDRESS) {
9770 			pde_bits |= pg_nx;
9771 			pte_bits |= pg_nx;
9772 		}
9773 		pde_mask |= X86_PG_RW | pg_nx;
9774 		pte_mask |= X86_PG_RW | pg_nx;
9775 	}
9776 
9777 	/*
9778 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9779 	 * into 4KB pages if required.
9780 	 */
9781 	for (tmpva = base; tmpva < base + size; ) {
9782 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9783 		if (pdpe == NULL || *pdpe == 0) {
9784 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9785 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9786 			return (EINVAL);
9787 		}
9788 		if (*pdpe & PG_PS) {
9789 			/*
9790 			 * If the current 1GB page already has the required
9791 			 * properties, then we need not demote this page.  Just
9792 			 * increment tmpva to the next 1GB page frame.
9793 			 */
9794 			if ((*pdpe & pde_mask) == pde_bits) {
9795 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9796 				continue;
9797 			}
9798 
9799 			/*
9800 			 * If the current offset aligns with a 1GB page frame
9801 			 * and there is at least 1GB left within the range, then
9802 			 * we need not break down this page into 2MB pages.
9803 			 */
9804 			if ((tmpva & PDPMASK) == 0 &&
9805 			    tmpva + PDPMASK < base + size) {
9806 				tmpva += NBPDP;
9807 				continue;
9808 			}
9809 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva, NULL))
9810 				return (ENOMEM);
9811 		}
9812 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9813 		if (*pde == 0) {
9814 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9815 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9816 			return (EINVAL);
9817 		}
9818 		if (*pde & PG_PS) {
9819 			/*
9820 			 * If the current 2MB page already has the required
9821 			 * properties, then we need not demote this page.  Just
9822 			 * increment tmpva to the next 2MB page frame.
9823 			 */
9824 			if ((*pde & pde_mask) == pde_bits) {
9825 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9826 				continue;
9827 			}
9828 
9829 			/*
9830 			 * If the current offset aligns with a 2MB page frame
9831 			 * and there is at least 2MB left within the range, then
9832 			 * we need not break down this page into 4KB pages.
9833 			 */
9834 			if ((tmpva & PDRMASK) == 0 &&
9835 			    tmpva + PDRMASK < base + size) {
9836 				tmpva += NBPDR;
9837 				continue;
9838 			}
9839 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9840 				return (ENOMEM);
9841 		}
9842 		pte = pmap_pde_to_pte(pde, tmpva);
9843 		if (*pte == 0) {
9844 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9845 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9846 			return (EINVAL);
9847 		}
9848 		tmpva += PAGE_SIZE;
9849 	}
9850 	error = 0;
9851 
9852 	/*
9853 	 * Ok, all the pages exist, so run through them updating their
9854 	 * properties if required.
9855 	 */
9856 	changed = false;
9857 	pa_start = pa_end = 0;
9858 	for (tmpva = base; tmpva < base + size; ) {
9859 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9860 		if (*pdpe & PG_PS) {
9861 			if ((*pdpe & pde_mask) != pde_bits) {
9862 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9863 				changed = true;
9864 			}
9865 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9866 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9867 				if (pa_start == pa_end) {
9868 					/* Start physical address run. */
9869 					pa_start = *pdpe & PG_PS_FRAME;
9870 					pa_end = pa_start + NBPDP;
9871 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9872 					pa_end += NBPDP;
9873 				else {
9874 					/* Run ended, update direct map. */
9875 					error = pmap_change_props_locked(
9876 					    PHYS_TO_DMAP(pa_start),
9877 					    pa_end - pa_start, prot, mode,
9878 					    flags);
9879 					if (error != 0)
9880 						break;
9881 					/* Start physical address run. */
9882 					pa_start = *pdpe & PG_PS_FRAME;
9883 					pa_end = pa_start + NBPDP;
9884 				}
9885 			}
9886 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9887 			continue;
9888 		}
9889 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9890 		if (*pde & PG_PS) {
9891 			if ((*pde & pde_mask) != pde_bits) {
9892 				pmap_pte_props(pde, pde_bits, pde_mask);
9893 				changed = true;
9894 			}
9895 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9896 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9897 				if (pa_start == pa_end) {
9898 					/* Start physical address run. */
9899 					pa_start = *pde & PG_PS_FRAME;
9900 					pa_end = pa_start + NBPDR;
9901 				} else if (pa_end == (*pde & PG_PS_FRAME))
9902 					pa_end += NBPDR;
9903 				else {
9904 					/* Run ended, update direct map. */
9905 					error = pmap_change_props_locked(
9906 					    PHYS_TO_DMAP(pa_start),
9907 					    pa_end - pa_start, prot, mode,
9908 					    flags);
9909 					if (error != 0)
9910 						break;
9911 					/* Start physical address run. */
9912 					pa_start = *pde & PG_PS_FRAME;
9913 					pa_end = pa_start + NBPDR;
9914 				}
9915 			}
9916 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9917 		} else {
9918 			pte = pmap_pde_to_pte(pde, tmpva);
9919 			if ((*pte & pte_mask) != pte_bits) {
9920 				pmap_pte_props(pte, pte_bits, pte_mask);
9921 				changed = true;
9922 			}
9923 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9924 			    (*pte & PG_FRAME) < dmaplimit) {
9925 				if (pa_start == pa_end) {
9926 					/* Start physical address run. */
9927 					pa_start = *pte & PG_FRAME;
9928 					pa_end = pa_start + PAGE_SIZE;
9929 				} else if (pa_end == (*pte & PG_FRAME))
9930 					pa_end += PAGE_SIZE;
9931 				else {
9932 					/* Run ended, update direct map. */
9933 					error = pmap_change_props_locked(
9934 					    PHYS_TO_DMAP(pa_start),
9935 					    pa_end - pa_start, prot, mode,
9936 					    flags);
9937 					if (error != 0)
9938 						break;
9939 					/* Start physical address run. */
9940 					pa_start = *pte & PG_FRAME;
9941 					pa_end = pa_start + PAGE_SIZE;
9942 				}
9943 			}
9944 			tmpva += PAGE_SIZE;
9945 		}
9946 	}
9947 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9948 		pa_end1 = MIN(pa_end, dmaplimit);
9949 		if (pa_start != pa_end1)
9950 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9951 			    pa_end1 - pa_start, prot, mode, flags);
9952 	}
9953 
9954 	/*
9955 	 * Flush CPU caches if required to make sure any data isn't cached that
9956 	 * shouldn't be, etc.
9957 	 */
9958 	if (changed) {
9959 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9960 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9961 			pmap_invalidate_cache_range(base, tmpva);
9962 	}
9963 	return (error);
9964 }
9965 
9966 /*
9967  * Demotes any mapping within the direct map region that covers more
9968  * than the specified range of physical addresses.  This range's size
9969  * must be a power of two and its starting address must be a multiple
9970  * of its size, which means that any pdp from the mapping is fully
9971  * covered by the range if len > NBPDP.  Since the demotion does not
9972  * change any attributes of the mapping, a TLB invalidation is not
9973  * mandatory.  The caller may, however, request a TLB invalidation.
9974  */
9975 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9976 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9977 {
9978 	pdp_entry_t *pdpe;
9979 	pd_entry_t *pde;
9980 	vm_page_t m;
9981 	vm_offset_t va;
9982 	bool changed;
9983 
9984 	if (len == 0)
9985 		return;
9986 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9987 	KASSERT((base & (len - 1)) == 0,
9988 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9989 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "pmap_demote_DMAP");
9990 
9991 	if (len < NBPDP && base < dmaplimit) {
9992 		va = PHYS_TO_DMAP(base);
9993 		changed = false;
9994 
9995 		/*
9996 		 * Assume that it is fine to sleep there.
9997 		 * The only existing caller of pmap_demote_DMAP() is the
9998 		 * x86_mr_split_dmap() function.
9999 		 */
10000 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
10001 
10002 		PMAP_LOCK(kernel_pmap);
10003 		pdpe = pmap_pdpe(kernel_pmap, va);
10004 		if ((*pdpe & X86_PG_V) == 0)
10005 			panic("pmap_demote_DMAP: invalid PDPE");
10006 		if ((*pdpe & PG_PS) != 0) {
10007 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va, m))
10008 				panic("pmap_demote_DMAP: PDPE failed");
10009 			changed = true;
10010 			m = NULL;
10011 		}
10012 		if (len < NBPDR) {
10013 			pde = pmap_pdpe_to_pde(pdpe, va);
10014 			if ((*pde & X86_PG_V) == 0)
10015 				panic("pmap_demote_DMAP: invalid PDE");
10016 			if ((*pde & PG_PS) != 0) {
10017 				if (!pmap_demote_pde(kernel_pmap, pde, va))
10018 					panic("pmap_demote_DMAP: PDE failed");
10019 				changed = true;
10020 			}
10021 		}
10022 		if (changed && invalidate)
10023 			pmap_invalidate_page(kernel_pmap, va);
10024 		PMAP_UNLOCK(kernel_pmap);
10025 		if (m != NULL) {
10026 			vm_page_unwire_noq(m);
10027 			vm_page_free(m);
10028 		}
10029 	}
10030 }
10031 
10032 /*
10033  * Perform the pmap work for mincore(2).  If the page is not both referenced and
10034  * modified by this pmap, returns its physical address so that the caller can
10035  * find other mappings.
10036  */
10037 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10038 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10039 {
10040 	pdp_entry_t *pdpe;
10041 	pd_entry_t *pdep;
10042 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10043 	vm_paddr_t pa;
10044 	int val;
10045 
10046 	PG_A = pmap_accessed_bit(pmap);
10047 	PG_M = pmap_modified_bit(pmap);
10048 	PG_V = pmap_valid_bit(pmap);
10049 	PG_RW = pmap_rw_bit(pmap);
10050 
10051 	PMAP_LOCK(pmap);
10052 	pte = 0;
10053 	pa = 0;
10054 	val = 0;
10055 	pdpe = pmap_pdpe(pmap, addr);
10056 	if (pdpe == NULL)
10057 		goto out;
10058 	if ((*pdpe & PG_V) != 0) {
10059 		if ((*pdpe & PG_PS) != 0) {
10060 			pte = *pdpe;
10061 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10062 			    PG_FRAME;
10063 			val = MINCORE_PSIND(2);
10064 		} else {
10065 			pdep = pmap_pde(pmap, addr);
10066 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10067 				if ((*pdep & PG_PS) != 0) {
10068 					pte = *pdep;
10069 			/* Compute the physical address of the 4KB page. */
10070 					pa = ((pte & PG_PS_FRAME) | (addr &
10071 					    PDRMASK)) & PG_FRAME;
10072 					val = MINCORE_PSIND(1);
10073 				} else {
10074 					pte = *pmap_pde_to_pte(pdep, addr);
10075 					pa = pte & PG_FRAME;
10076 					val = 0;
10077 				}
10078 			}
10079 		}
10080 	}
10081 	if ((pte & PG_V) != 0) {
10082 		val |= MINCORE_INCORE;
10083 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10084 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10085 		if ((pte & PG_A) != 0)
10086 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10087 	}
10088 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10089 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10090 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10091 		*pap = pa;
10092 	}
10093 out:
10094 	PMAP_UNLOCK(pmap);
10095 	return (val);
10096 }
10097 
10098 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10099 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10100 {
10101 	uint32_t gen, new_gen, pcid_next;
10102 
10103 	CRITICAL_ASSERT(curthread);
10104 	gen = PCPU_GET(pcid_gen);
10105 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10106 		return (pti ? 0 : CR3_PCID_SAVE);
10107 	if (pcidp->pm_gen == gen)
10108 		return (CR3_PCID_SAVE);
10109 	pcid_next = PCPU_GET(pcid_next);
10110 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10111 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10112 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10113 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10114 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10115 		new_gen = gen + 1;
10116 		if (new_gen == 0)
10117 			new_gen = 1;
10118 		PCPU_SET(pcid_gen, new_gen);
10119 		pcid_next = PMAP_PCID_KERN + 1;
10120 	} else {
10121 		new_gen = gen;
10122 	}
10123 	pcidp->pm_pcid = pcid_next;
10124 	pcidp->pm_gen = new_gen;
10125 	PCPU_SET(pcid_next, pcid_next + 1);
10126 	return (0);
10127 }
10128 
10129 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10130 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10131 {
10132 	uint64_t cached;
10133 
10134 	cached = pmap_pcid_alloc(pmap, pcidp);
10135 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10136 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10137 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10138 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10139 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10140 	return (cached);
10141 }
10142 
10143 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10144 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10145 {
10146 
10147 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10148 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10149 }
10150 
10151 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10152 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10153 {
10154 	pmap_t old_pmap;
10155 	struct pmap_pcid *pcidp, *old_pcidp;
10156 	uint64_t cached, cr3, kcr3, ucr3;
10157 
10158 	KASSERT((read_rflags() & PSL_I) == 0,
10159 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10160 
10161 	/* See the comment in pmap_invalidate_page_pcid(). */
10162 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10163 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10164 		old_pmap = PCPU_GET(curpmap);
10165 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10166 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10167 		old_pcidp->pm_gen = 0;
10168 	}
10169 
10170 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10171 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10172 	cr3 = rcr3();
10173 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10174 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10175 	PCPU_SET(curpmap, pmap);
10176 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10177 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10178 
10179 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10180 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10181 
10182 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10183 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10184 	if (cached)
10185 		counter_u64_add(pcid_save_cnt, 1);
10186 
10187 	pmap_activate_sw_pti_post(td, pmap);
10188 }
10189 
10190 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10191 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10192     u_int cpuid)
10193 {
10194 	struct pmap_pcid *pcidp;
10195 	uint64_t cached, cr3;
10196 
10197 	KASSERT((read_rflags() & PSL_I) == 0,
10198 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10199 
10200 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10201 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10202 	cr3 = rcr3();
10203 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10204 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10205 	PCPU_SET(curpmap, pmap);
10206 	if (cached)
10207 		counter_u64_add(pcid_save_cnt, 1);
10208 }
10209 
10210 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10211 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10212     u_int cpuid __unused)
10213 {
10214 
10215 	load_cr3(pmap->pm_cr3);
10216 	PCPU_SET(curpmap, pmap);
10217 }
10218 
10219 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10220 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10221     u_int cpuid __unused)
10222 {
10223 
10224 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10225 	PCPU_SET(kcr3, pmap->pm_cr3);
10226 	PCPU_SET(ucr3, pmap->pm_ucr3);
10227 	pmap_activate_sw_pti_post(td, pmap);
10228 }
10229 
10230 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10231     u_int))
10232 {
10233 
10234 	if (pmap_pcid_enabled && pti)
10235 		return (pmap_activate_sw_pcid_pti);
10236 	else if (pmap_pcid_enabled && !pti)
10237 		return (pmap_activate_sw_pcid_nopti);
10238 	else if (!pmap_pcid_enabled && pti)
10239 		return (pmap_activate_sw_nopcid_pti);
10240 	else /* if (!pmap_pcid_enabled && !pti) */
10241 		return (pmap_activate_sw_nopcid_nopti);
10242 }
10243 
10244 void
pmap_activate_sw(struct thread * td)10245 pmap_activate_sw(struct thread *td)
10246 {
10247 	pmap_t oldpmap, pmap;
10248 	u_int cpuid;
10249 
10250 	oldpmap = PCPU_GET(curpmap);
10251 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10252 	if (oldpmap == pmap) {
10253 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10254 			mfence();
10255 		return;
10256 	}
10257 	cpuid = PCPU_GET(cpuid);
10258 #ifdef SMP
10259 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10260 #else
10261 	CPU_SET(cpuid, &pmap->pm_active);
10262 #endif
10263 	pmap_activate_sw_mode(td, pmap, cpuid);
10264 #ifdef SMP
10265 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10266 #else
10267 	CPU_CLR(cpuid, &oldpmap->pm_active);
10268 #endif
10269 }
10270 
10271 void
pmap_activate(struct thread * td)10272 pmap_activate(struct thread *td)
10273 {
10274 	/*
10275 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10276 	 * invalidate_all IPI, which checks for curpmap ==
10277 	 * smp_tlb_pmap.  The below sequence of operations has a
10278 	 * window where %CR3 is loaded with the new pmap's PML4
10279 	 * address, but the curpmap value has not yet been updated.
10280 	 * This causes the invltlb IPI handler, which is called
10281 	 * between the updates, to execute as a NOP, which leaves
10282 	 * stale TLB entries.
10283 	 *
10284 	 * Note that the most common use of pmap_activate_sw(), from
10285 	 * a context switch, is immune to this race, because
10286 	 * interrupts are disabled (while the thread lock is owned),
10287 	 * so the IPI is delayed until after curpmap is updated.  Protect
10288 	 * other callers in a similar way, by disabling interrupts
10289 	 * around the %cr3 register reload and curpmap assignment.
10290 	 */
10291 	spinlock_enter();
10292 	pmap_activate_sw(td);
10293 	spinlock_exit();
10294 }
10295 
10296 void
pmap_activate_boot(pmap_t pmap)10297 pmap_activate_boot(pmap_t pmap)
10298 {
10299 	uint64_t kcr3;
10300 	u_int cpuid;
10301 
10302 	/*
10303 	 * kernel_pmap must be never deactivated, and we ensure that
10304 	 * by never activating it at all.
10305 	 */
10306 	MPASS(pmap != kernel_pmap);
10307 
10308 	cpuid = PCPU_GET(cpuid);
10309 #ifdef SMP
10310 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10311 #else
10312 	CPU_SET(cpuid, &pmap->pm_active);
10313 #endif
10314 	PCPU_SET(curpmap, pmap);
10315 	if (pti) {
10316 		kcr3 = pmap->pm_cr3;
10317 		if (pmap_pcid_enabled)
10318 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10319 	} else {
10320 		kcr3 = PMAP_NO_CR3;
10321 	}
10322 	PCPU_SET(kcr3, kcr3);
10323 	PCPU_SET(ucr3, PMAP_NO_CR3);
10324 }
10325 
10326 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10327 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10328 {
10329 	*res = pmap->pm_active;
10330 }
10331 
10332 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10333 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10334 {
10335 }
10336 
10337 /*
10338  *	Increase the starting virtual address of the given mapping if a
10339  *	different alignment might result in more superpage mappings.
10340  */
10341 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10342 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10343     vm_offset_t *addr, vm_size_t size)
10344 {
10345 	vm_offset_t superpage_offset;
10346 
10347 	if (size < NBPDR)
10348 		return;
10349 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10350 		offset += ptoa(object->pg_color);
10351 	superpage_offset = offset & PDRMASK;
10352 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10353 	    (*addr & PDRMASK) == superpage_offset)
10354 		return;
10355 	if ((*addr & PDRMASK) < superpage_offset)
10356 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10357 	else
10358 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10359 }
10360 
10361 #ifdef INVARIANTS
10362 static unsigned long num_dirty_emulations;
10363 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10364 	     &num_dirty_emulations, 0, NULL);
10365 
10366 static unsigned long num_accessed_emulations;
10367 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10368 	     &num_accessed_emulations, 0, NULL);
10369 
10370 static unsigned long num_superpage_accessed_emulations;
10371 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10372 	     &num_superpage_accessed_emulations, 0, NULL);
10373 
10374 static unsigned long ad_emulation_superpage_promotions;
10375 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10376 	     &ad_emulation_superpage_promotions, 0, NULL);
10377 #endif	/* INVARIANTS */
10378 
10379 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10380 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10381 {
10382 	int rv;
10383 	struct rwlock *lock;
10384 #if VM_NRESERVLEVEL > 0
10385 	vm_page_t m, mpte;
10386 #endif
10387 	pd_entry_t *pde;
10388 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10389 
10390 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10391 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10392 
10393 	if (!pmap_emulate_ad_bits(pmap))
10394 		return (-1);
10395 
10396 	PG_A = pmap_accessed_bit(pmap);
10397 	PG_M = pmap_modified_bit(pmap);
10398 	PG_V = pmap_valid_bit(pmap);
10399 	PG_RW = pmap_rw_bit(pmap);
10400 
10401 	rv = -1;
10402 	lock = NULL;
10403 	PMAP_LOCK(pmap);
10404 
10405 	pde = pmap_pde(pmap, va);
10406 	if (pde == NULL || (*pde & PG_V) == 0)
10407 		goto done;
10408 
10409 	if ((*pde & PG_PS) != 0) {
10410 		if (ftype == VM_PROT_READ) {
10411 #ifdef INVARIANTS
10412 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10413 #endif
10414 			*pde |= PG_A;
10415 			rv = 0;
10416 		}
10417 		goto done;
10418 	}
10419 
10420 	pte = pmap_pde_to_pte(pde, va);
10421 	if ((*pte & PG_V) == 0)
10422 		goto done;
10423 
10424 	if (ftype == VM_PROT_WRITE) {
10425 		if ((*pte & PG_RW) == 0)
10426 			goto done;
10427 		/*
10428 		 * Set the modified and accessed bits simultaneously.
10429 		 *
10430 		 * Intel EPT PTEs that do software emulation of A/D bits map
10431 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10432 		 * An EPT misconfiguration is triggered if the PTE is writable
10433 		 * but not readable (WR=10). This is avoided by setting PG_A
10434 		 * and PG_M simultaneously.
10435 		 */
10436 		*pte |= PG_M | PG_A;
10437 	} else {
10438 		*pte |= PG_A;
10439 	}
10440 
10441 #if VM_NRESERVLEVEL > 0
10442 	/* try to promote the mapping */
10443 	if (va < VM_MAXUSER_ADDRESS)
10444 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10445 	else
10446 		mpte = NULL;
10447 
10448 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10449 
10450 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10451 	    (m->flags & PG_FICTITIOUS) == 0 &&
10452 	    vm_reserv_level_iffullpop(m) == 0 &&
10453 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10454 #ifdef INVARIANTS
10455 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10456 #endif
10457 	}
10458 #endif
10459 
10460 #ifdef INVARIANTS
10461 	if (ftype == VM_PROT_WRITE)
10462 		atomic_add_long(&num_dirty_emulations, 1);
10463 	else
10464 		atomic_add_long(&num_accessed_emulations, 1);
10465 #endif
10466 	rv = 0;		/* success */
10467 done:
10468 	if (lock != NULL)
10469 		rw_wunlock(lock);
10470 	PMAP_UNLOCK(pmap);
10471 	return (rv);
10472 }
10473 
10474 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10475 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10476 {
10477 	pml4_entry_t *pml4;
10478 	pdp_entry_t *pdp;
10479 	pd_entry_t *pde;
10480 	pt_entry_t *pte, PG_V;
10481 	int idx;
10482 
10483 	idx = 0;
10484 	PG_V = pmap_valid_bit(pmap);
10485 	PMAP_LOCK(pmap);
10486 
10487 	pml4 = pmap_pml4e(pmap, va);
10488 	if (pml4 == NULL)
10489 		goto done;
10490 	ptr[idx++] = *pml4;
10491 	if ((*pml4 & PG_V) == 0)
10492 		goto done;
10493 
10494 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10495 	ptr[idx++] = *pdp;
10496 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10497 		goto done;
10498 
10499 	pde = pmap_pdpe_to_pde(pdp, va);
10500 	ptr[idx++] = *pde;
10501 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10502 		goto done;
10503 
10504 	pte = pmap_pde_to_pte(pde, va);
10505 	ptr[idx++] = *pte;
10506 
10507 done:
10508 	PMAP_UNLOCK(pmap);
10509 	*num = idx;
10510 }
10511 
10512 /**
10513  * Get the kernel virtual address of a set of physical pages. If there are
10514  * physical addresses not covered by the DMAP perform a transient mapping
10515  * that will be removed when calling pmap_unmap_io_transient.
10516  *
10517  * \param page        The pages the caller wishes to obtain the virtual
10518  *                    address on the kernel memory map.
10519  * \param vaddr       On return contains the kernel virtual memory address
10520  *                    of the pages passed in the page parameter.
10521  * \param count       Number of pages passed in.
10522  * \param can_fault   true if the thread using the mapped pages can take
10523  *                    page faults, false otherwise.
10524  *
10525  * \returns true if the caller must call pmap_unmap_io_transient when
10526  *          finished or false otherwise.
10527  *
10528  */
10529 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10530 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10531     bool can_fault)
10532 {
10533 	vm_paddr_t paddr;
10534 	bool needs_mapping;
10535 	int error __unused, i;
10536 
10537 	/*
10538 	 * Allocate any KVA space that we need, this is done in a separate
10539 	 * loop to prevent calling vmem_alloc while pinned.
10540 	 */
10541 	needs_mapping = false;
10542 	for (i = 0; i < count; i++) {
10543 		paddr = VM_PAGE_TO_PHYS(page[i]);
10544 		if (__predict_false(paddr >= dmaplimit)) {
10545 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10546 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10547 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10548 			needs_mapping = true;
10549 		} else {
10550 			vaddr[i] = PHYS_TO_DMAP(paddr);
10551 		}
10552 	}
10553 
10554 	/* Exit early if everything is covered by the DMAP */
10555 	if (!needs_mapping)
10556 		return (false);
10557 
10558 	/*
10559 	 * NB:  The sequence of updating a page table followed by accesses
10560 	 * to the corresponding pages used in the !DMAP case is subject to
10561 	 * the situation described in the "AMD64 Architecture Programmer's
10562 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10563 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10564 	 * after modifying the PTE bits is crucial.
10565 	 */
10566 	if (!can_fault)
10567 		sched_pin();
10568 	for (i = 0; i < count; i++) {
10569 		paddr = VM_PAGE_TO_PHYS(page[i]);
10570 		if (paddr >= dmaplimit) {
10571 			if (can_fault) {
10572 				/*
10573 				 * Slow path, since we can get page faults
10574 				 * while mappings are active don't pin the
10575 				 * thread to the CPU and instead add a global
10576 				 * mapping visible to all CPUs.
10577 				 */
10578 				pmap_qenter(vaddr[i], &page[i], 1);
10579 			} else {
10580 				pmap_kenter_attr(vaddr[i], paddr,
10581 				    page[i]->md.pat_mode);
10582 				pmap_invlpg(kernel_pmap, vaddr[i]);
10583 			}
10584 		}
10585 	}
10586 
10587 	return (needs_mapping);
10588 }
10589 
10590 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10591 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10592     bool can_fault)
10593 {
10594 	vm_paddr_t paddr;
10595 	int i;
10596 
10597 	if (!can_fault)
10598 		sched_unpin();
10599 	for (i = 0; i < count; i++) {
10600 		paddr = VM_PAGE_TO_PHYS(page[i]);
10601 		if (paddr >= dmaplimit) {
10602 			if (can_fault)
10603 				pmap_qremove(vaddr[i], 1);
10604 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10605 		}
10606 	}
10607 }
10608 
10609 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10610 pmap_quick_enter_page(vm_page_t m)
10611 {
10612 	vm_paddr_t paddr;
10613 
10614 	paddr = VM_PAGE_TO_PHYS(m);
10615 	if (paddr < dmaplimit)
10616 		return (PHYS_TO_DMAP(paddr));
10617 	mtx_lock_spin(&qframe_mtx);
10618 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10619 
10620 	/*
10621 	 * Since qframe is exclusively mapped by us, and we do not set
10622 	 * PG_G, we can use INVLPG here.
10623 	 */
10624 	invlpg(qframe);
10625 
10626 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10627 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10628 	return (qframe);
10629 }
10630 
10631 void
pmap_quick_remove_page(vm_offset_t addr)10632 pmap_quick_remove_page(vm_offset_t addr)
10633 {
10634 
10635 	if (addr != qframe)
10636 		return;
10637 	pte_store(vtopte(qframe), 0);
10638 	mtx_unlock_spin(&qframe_mtx);
10639 }
10640 
10641 /*
10642  * Pdp pages from the large map are managed differently from either
10643  * kernel or user page table pages.  They are permanently allocated at
10644  * initialization time, and their reference count is permanently set to
10645  * zero.  The pml4 entries pointing to those pages are copied into
10646  * each allocated pmap.
10647  *
10648  * In contrast, pd and pt pages are managed like user page table
10649  * pages.  They are dynamically allocated, and their reference count
10650  * represents the number of valid entries within the page.
10651  */
10652 static vm_page_t
pmap_large_map_getptp_unlocked(void)10653 pmap_large_map_getptp_unlocked(void)
10654 {
10655 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10656 }
10657 
10658 static vm_page_t
pmap_large_map_getptp(void)10659 pmap_large_map_getptp(void)
10660 {
10661 	vm_page_t m;
10662 
10663 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10664 	m = pmap_large_map_getptp_unlocked();
10665 	if (m == NULL) {
10666 		PMAP_UNLOCK(kernel_pmap);
10667 		vm_wait(NULL);
10668 		PMAP_LOCK(kernel_pmap);
10669 		/* Callers retry. */
10670 	}
10671 	return (m);
10672 }
10673 
10674 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10675 pmap_large_map_pdpe(vm_offset_t va)
10676 {
10677 	vm_pindex_t pml4_idx;
10678 	vm_paddr_t mphys;
10679 
10680 	pml4_idx = pmap_pml4e_index(va);
10681 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10682 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10683 	    "%#jx lm_ents %d",
10684 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10685 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10686 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10687 	    "LMSPML4I %#jx lm_ents %d",
10688 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10689 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10690 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10691 }
10692 
10693 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10694 pmap_large_map_pde(vm_offset_t va)
10695 {
10696 	pdp_entry_t *pdpe;
10697 	vm_page_t m;
10698 	vm_paddr_t mphys;
10699 
10700 retry:
10701 	pdpe = pmap_large_map_pdpe(va);
10702 	if (*pdpe == 0) {
10703 		m = pmap_large_map_getptp();
10704 		if (m == NULL)
10705 			goto retry;
10706 		mphys = VM_PAGE_TO_PHYS(m);
10707 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10708 	} else {
10709 		MPASS((*pdpe & X86_PG_PS) == 0);
10710 		mphys = *pdpe & PG_FRAME;
10711 	}
10712 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10713 }
10714 
10715 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10716 pmap_large_map_pte(vm_offset_t va)
10717 {
10718 	pd_entry_t *pde;
10719 	vm_page_t m;
10720 	vm_paddr_t mphys;
10721 
10722 retry:
10723 	pde = pmap_large_map_pde(va);
10724 	if (*pde == 0) {
10725 		m = pmap_large_map_getptp();
10726 		if (m == NULL)
10727 			goto retry;
10728 		mphys = VM_PAGE_TO_PHYS(m);
10729 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10730 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10731 	} else {
10732 		MPASS((*pde & X86_PG_PS) == 0);
10733 		mphys = *pde & PG_FRAME;
10734 	}
10735 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10736 }
10737 
10738 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10739 pmap_large_map_kextract(vm_offset_t va)
10740 {
10741 	pdp_entry_t *pdpe, pdp;
10742 	pd_entry_t *pde, pd;
10743 	pt_entry_t *pte, pt;
10744 
10745 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10746 	    ("not largemap range %#lx", (u_long)va));
10747 	pdpe = pmap_large_map_pdpe(va);
10748 	pdp = *pdpe;
10749 	KASSERT((pdp & X86_PG_V) != 0,
10750 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10751 	    (u_long)pdpe, pdp));
10752 	if ((pdp & X86_PG_PS) != 0) {
10753 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10754 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10755 		    (u_long)pdpe, pdp));
10756 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10757 	}
10758 	pde = pmap_pdpe_to_pde(pdpe, va);
10759 	pd = *pde;
10760 	KASSERT((pd & X86_PG_V) != 0,
10761 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10762 	if ((pd & X86_PG_PS) != 0)
10763 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10764 	pte = pmap_pde_to_pte(pde, va);
10765 	pt = *pte;
10766 	KASSERT((pt & X86_PG_V) != 0,
10767 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10768 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10769 }
10770 
10771 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10772 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10773     vmem_addr_t *vmem_res)
10774 {
10775 
10776 	/*
10777 	 * Large mappings are all but static.  Consequently, there
10778 	 * is no point in waiting for an earlier allocation to be
10779 	 * freed.
10780 	 */
10781 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10782 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10783 }
10784 
10785 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10786 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10787     vm_memattr_t mattr)
10788 {
10789 	pdp_entry_t *pdpe;
10790 	pd_entry_t *pde;
10791 	pt_entry_t *pte;
10792 	vm_offset_t va, inc;
10793 	vmem_addr_t vmem_res;
10794 	vm_paddr_t pa;
10795 	int error;
10796 
10797 	if (len == 0 || spa + len < spa)
10798 		return (EINVAL);
10799 
10800 	/* See if DMAP can serve. */
10801 	if (spa + len <= dmaplimit) {
10802 		va = PHYS_TO_DMAP(spa);
10803 		*addr = (void *)va;
10804 		return (pmap_change_attr(va, len, mattr));
10805 	}
10806 
10807 	/*
10808 	 * No, allocate KVA.  Fit the address with best possible
10809 	 * alignment for superpages.  Fall back to worse align if
10810 	 * failed.
10811 	 */
10812 	error = ENOMEM;
10813 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10814 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10815 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10816 		    &vmem_res);
10817 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10818 	    NBPDR) + NBPDR)
10819 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10820 		    &vmem_res);
10821 	if (error != 0)
10822 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10823 	if (error != 0)
10824 		return (error);
10825 
10826 	/*
10827 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10828 	 * in the pagetable to minimize flushing.  No need to
10829 	 * invalidate TLB, since we only update invalid entries.
10830 	 */
10831 	PMAP_LOCK(kernel_pmap);
10832 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10833 	    len -= inc) {
10834 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10835 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10836 			pdpe = pmap_large_map_pdpe(va);
10837 			MPASS(*pdpe == 0);
10838 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10839 			    X86_PG_V | X86_PG_A | pg_nx |
10840 			    pmap_cache_bits(kernel_pmap, mattr, true);
10841 			inc = NBPDP;
10842 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10843 		    (va & PDRMASK) == 0) {
10844 			pde = pmap_large_map_pde(va);
10845 			MPASS(*pde == 0);
10846 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10847 			    X86_PG_V | X86_PG_A | pg_nx |
10848 			    pmap_cache_bits(kernel_pmap, mattr, true);
10849 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10850 			    ref_count++;
10851 			inc = NBPDR;
10852 		} else {
10853 			pte = pmap_large_map_pte(va);
10854 			MPASS(*pte == 0);
10855 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10856 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10857 			    mattr, false);
10858 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10859 			    ref_count++;
10860 			inc = PAGE_SIZE;
10861 		}
10862 	}
10863 	PMAP_UNLOCK(kernel_pmap);
10864 	MPASS(len == 0);
10865 
10866 	*addr = (void *)vmem_res;
10867 	return (0);
10868 }
10869 
10870 void
pmap_large_unmap(void * svaa,vm_size_t len)10871 pmap_large_unmap(void *svaa, vm_size_t len)
10872 {
10873 	vm_offset_t sva, va;
10874 	vm_size_t inc;
10875 	pdp_entry_t *pdpe, pdp;
10876 	pd_entry_t *pde, pd;
10877 	pt_entry_t *pte;
10878 	vm_page_t m;
10879 	struct spglist spgf;
10880 
10881 	sva = (vm_offset_t)svaa;
10882 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10883 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10884 		return;
10885 
10886 	SLIST_INIT(&spgf);
10887 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10888 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10889 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10890 	PMAP_LOCK(kernel_pmap);
10891 	for (va = sva; va < sva + len; va += inc) {
10892 		pdpe = pmap_large_map_pdpe(va);
10893 		pdp = *pdpe;
10894 		KASSERT((pdp & X86_PG_V) != 0,
10895 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10896 		    (u_long)pdpe, pdp));
10897 		if ((pdp & X86_PG_PS) != 0) {
10898 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10899 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10900 			    (u_long)pdpe, pdp));
10901 			KASSERT((va & PDPMASK) == 0,
10902 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10903 			    (u_long)pdpe, pdp));
10904 			KASSERT(va + NBPDP <= sva + len,
10905 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10906 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10907 			    (u_long)pdpe, pdp, len));
10908 			*pdpe = 0;
10909 			inc = NBPDP;
10910 			continue;
10911 		}
10912 		pde = pmap_pdpe_to_pde(pdpe, va);
10913 		pd = *pde;
10914 		KASSERT((pd & X86_PG_V) != 0,
10915 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10916 		    (u_long)pde, pd));
10917 		if ((pd & X86_PG_PS) != 0) {
10918 			KASSERT((va & PDRMASK) == 0,
10919 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10920 			    (u_long)pde, pd));
10921 			KASSERT(va + NBPDR <= sva + len,
10922 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10923 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10924 			    pd, len));
10925 			pde_store(pde, 0);
10926 			inc = NBPDR;
10927 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10928 			m->ref_count--;
10929 			if (m->ref_count == 0) {
10930 				*pdpe = 0;
10931 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10932 			}
10933 			continue;
10934 		}
10935 		pte = pmap_pde_to_pte(pde, va);
10936 		KASSERT((*pte & X86_PG_V) != 0,
10937 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10938 		    (u_long)pte, *pte));
10939 		pte_clear(pte);
10940 		inc = PAGE_SIZE;
10941 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10942 		m->ref_count--;
10943 		if (m->ref_count == 0) {
10944 			*pde = 0;
10945 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10946 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10947 			m->ref_count--;
10948 			if (m->ref_count == 0) {
10949 				*pdpe = 0;
10950 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10951 			}
10952 		}
10953 	}
10954 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10955 	PMAP_UNLOCK(kernel_pmap);
10956 	vm_page_free_pages_toq(&spgf, false);
10957 	vmem_free(large_vmem, sva, len);
10958 }
10959 
10960 static void
pmap_large_map_wb_fence_mfence(void)10961 pmap_large_map_wb_fence_mfence(void)
10962 {
10963 
10964 	mfence();
10965 }
10966 
10967 static void
pmap_large_map_wb_fence_atomic(void)10968 pmap_large_map_wb_fence_atomic(void)
10969 {
10970 
10971 	atomic_thread_fence_seq_cst();
10972 }
10973 
10974 static void
pmap_large_map_wb_fence_nop(void)10975 pmap_large_map_wb_fence_nop(void)
10976 {
10977 }
10978 
10979 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10980 {
10981 
10982 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10983 		return (pmap_large_map_wb_fence_mfence);
10984 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10985 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10986 		return (pmap_large_map_wb_fence_atomic);
10987 	else
10988 		/* clflush is strongly enough ordered */
10989 		return (pmap_large_map_wb_fence_nop);
10990 }
10991 
10992 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10993 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10994 {
10995 
10996 	for (; len > 0; len -= cpu_clflush_line_size,
10997 	    va += cpu_clflush_line_size)
10998 		clwb(va);
10999 }
11000 
11001 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)11002 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
11003 {
11004 
11005 	for (; len > 0; len -= cpu_clflush_line_size,
11006 	    va += cpu_clflush_line_size)
11007 		clflushopt(va);
11008 }
11009 
11010 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)11011 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
11012 {
11013 
11014 	for (; len > 0; len -= cpu_clflush_line_size,
11015 	    va += cpu_clflush_line_size)
11016 		clflush(va);
11017 }
11018 
11019 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)11020 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
11021 {
11022 }
11023 
11024 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
11025 {
11026 
11027 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
11028 		return (pmap_large_map_flush_range_clwb);
11029 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
11030 		return (pmap_large_map_flush_range_clflushopt);
11031 	else if ((cpu_feature & CPUID_CLFSH) != 0)
11032 		return (pmap_large_map_flush_range_clflush);
11033 	else
11034 		return (pmap_large_map_flush_range_nop);
11035 }
11036 
11037 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11038 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11039 {
11040 	volatile u_long *pe;
11041 	u_long p;
11042 	vm_offset_t va;
11043 	vm_size_t inc;
11044 	bool seen_other;
11045 
11046 	for (va = sva; va < eva; va += inc) {
11047 		inc = 0;
11048 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
11049 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
11050 			p = *pe;
11051 			if ((p & X86_PG_PS) != 0)
11052 				inc = NBPDP;
11053 		}
11054 		if (inc == 0) {
11055 			pe = (volatile u_long *)pmap_large_map_pde(va);
11056 			p = *pe;
11057 			if ((p & X86_PG_PS) != 0)
11058 				inc = NBPDR;
11059 		}
11060 		if (inc == 0) {
11061 			pe = (volatile u_long *)pmap_large_map_pte(va);
11062 			p = *pe;
11063 			inc = PAGE_SIZE;
11064 		}
11065 		seen_other = false;
11066 		for (;;) {
11067 			if ((p & X86_PG_AVAIL1) != 0) {
11068 				/*
11069 				 * Spin-wait for the end of a parallel
11070 				 * write-back.
11071 				 */
11072 				cpu_spinwait();
11073 				p = *pe;
11074 
11075 				/*
11076 				 * If we saw other write-back
11077 				 * occurring, we cannot rely on PG_M to
11078 				 * indicate state of the cache.  The
11079 				 * PG_M bit is cleared before the
11080 				 * flush to avoid ignoring new writes,
11081 				 * and writes which are relevant for
11082 				 * us might happen after.
11083 				 */
11084 				seen_other = true;
11085 				continue;
11086 			}
11087 
11088 			if ((p & X86_PG_M) != 0 || seen_other) {
11089 				if (!atomic_fcmpset_long(pe, &p,
11090 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11091 					/*
11092 					 * If we saw PG_M without
11093 					 * PG_AVAIL1, and then on the
11094 					 * next attempt we do not
11095 					 * observe either PG_M or
11096 					 * PG_AVAIL1, the other
11097 					 * write-back started after us
11098 					 * and finished before us.  We
11099 					 * can rely on it doing our
11100 					 * work.
11101 					 */
11102 					continue;
11103 				pmap_large_map_flush_range(va, inc);
11104 				atomic_clear_long(pe, X86_PG_AVAIL1);
11105 			}
11106 			break;
11107 		}
11108 		maybe_yield();
11109 	}
11110 }
11111 
11112 /*
11113  * Write-back cache lines for the given address range.
11114  *
11115  * Must be called only on the range or sub-range returned from
11116  * pmap_large_map().  Must not be called on the coalesced ranges.
11117  *
11118  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11119  * instructions support.
11120  */
11121 void
pmap_large_map_wb(void * svap,vm_size_t len)11122 pmap_large_map_wb(void *svap, vm_size_t len)
11123 {
11124 	vm_offset_t eva, sva;
11125 
11126 	sva = (vm_offset_t)svap;
11127 	eva = sva + len;
11128 	pmap_large_map_wb_fence();
11129 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11130 		pmap_large_map_flush_range(sva, len);
11131 	} else {
11132 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11133 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11134 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11135 		pmap_large_map_wb_large(sva, eva);
11136 	}
11137 	pmap_large_map_wb_fence();
11138 }
11139 
11140 static vm_page_t
pmap_pti_alloc_page(void)11141 pmap_pti_alloc_page(void)
11142 {
11143 	vm_page_t m;
11144 
11145 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11146 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11147 	return (m);
11148 }
11149 
11150 static bool
pmap_pti_free_page(vm_page_t m)11151 pmap_pti_free_page(vm_page_t m)
11152 {
11153 	if (!vm_page_unwire_noq(m))
11154 		return (false);
11155 	vm_page_xbusy_claim(m);
11156 	vm_page_free_zero(m);
11157 	return (true);
11158 }
11159 
11160 static void
pmap_pti_init(void)11161 pmap_pti_init(void)
11162 {
11163 	vm_page_t pml4_pg;
11164 	pdp_entry_t *pdpe;
11165 	vm_offset_t va;
11166 	int i;
11167 
11168 	if (!pti)
11169 		return;
11170 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11171 	VM_OBJECT_WLOCK(pti_obj);
11172 	pml4_pg = pmap_pti_alloc_page();
11173 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11174 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11175 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11176 		pdpe = pmap_pti_pdpe(va);
11177 		pmap_pti_wire_pte(pdpe);
11178 	}
11179 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11180 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11181 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11182 	    sizeof(struct gate_descriptor) * NIDT, false);
11183 	CPU_FOREACH(i) {
11184 		/* Doublefault stack IST 1 */
11185 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11186 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11187 		/* NMI stack IST 2 */
11188 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11189 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11190 		/* MC# stack IST 3 */
11191 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11192 		    sizeof(struct nmi_pcpu);
11193 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11194 		/* DB# stack IST 4 */
11195 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11196 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11197 	}
11198 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11199 	    true);
11200 	pti_finalized = true;
11201 	VM_OBJECT_WUNLOCK(pti_obj);
11202 }
11203 
11204 static void
pmap_cpu_init(void * arg __unused)11205 pmap_cpu_init(void *arg __unused)
11206 {
11207 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11208 	pmap_pti_init();
11209 }
11210 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11211 
11212 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11213 pmap_pti_pdpe(vm_offset_t va)
11214 {
11215 	pml4_entry_t *pml4e;
11216 	pdp_entry_t *pdpe;
11217 	vm_page_t m;
11218 	vm_pindex_t pml4_idx;
11219 	vm_paddr_t mphys;
11220 
11221 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11222 
11223 	pml4_idx = pmap_pml4e_index(va);
11224 	pml4e = &pti_pml4[pml4_idx];
11225 	m = NULL;
11226 	if (*pml4e == 0) {
11227 		if (pti_finalized)
11228 			panic("pml4 alloc after finalization\n");
11229 		m = pmap_pti_alloc_page();
11230 		if (*pml4e != 0) {
11231 			pmap_pti_free_page(m);
11232 			mphys = *pml4e & ~PAGE_MASK;
11233 		} else {
11234 			mphys = VM_PAGE_TO_PHYS(m);
11235 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11236 		}
11237 	} else {
11238 		mphys = *pml4e & ~PAGE_MASK;
11239 	}
11240 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11241 	return (pdpe);
11242 }
11243 
11244 static void
pmap_pti_wire_pte(void * pte)11245 pmap_pti_wire_pte(void *pte)
11246 {
11247 	vm_page_t m;
11248 
11249 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11250 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11251 	m->ref_count++;
11252 }
11253 
11254 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11255 pmap_pti_unwire_pde(void *pde, bool only_ref)
11256 {
11257 	vm_page_t m;
11258 
11259 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11260 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11261 	MPASS(only_ref || m->ref_count > 1);
11262 	pmap_pti_free_page(m);
11263 }
11264 
11265 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11266 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11267 {
11268 	vm_page_t m;
11269 	pd_entry_t *pde;
11270 
11271 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11272 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11273 	if (pmap_pti_free_page(m)) {
11274 		pde = pmap_pti_pde(va);
11275 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11276 		*pde = 0;
11277 		pmap_pti_unwire_pde(pde, false);
11278 	}
11279 }
11280 
11281 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11282 pmap_pti_pde(vm_offset_t va)
11283 {
11284 	pdp_entry_t *pdpe;
11285 	pd_entry_t *pde;
11286 	vm_page_t m;
11287 	vm_pindex_t pd_idx;
11288 	vm_paddr_t mphys;
11289 
11290 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11291 
11292 	pdpe = pmap_pti_pdpe(va);
11293 	if (*pdpe == 0) {
11294 		m = pmap_pti_alloc_page();
11295 		if (*pdpe != 0) {
11296 			pmap_pti_free_page(m);
11297 			MPASS((*pdpe & X86_PG_PS) == 0);
11298 			mphys = *pdpe & ~PAGE_MASK;
11299 		} else {
11300 			mphys =  VM_PAGE_TO_PHYS(m);
11301 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11302 		}
11303 	} else {
11304 		MPASS((*pdpe & X86_PG_PS) == 0);
11305 		mphys = *pdpe & ~PAGE_MASK;
11306 	}
11307 
11308 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11309 	pd_idx = pmap_pde_index(va);
11310 	pde += pd_idx;
11311 	return (pde);
11312 }
11313 
11314 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11315 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11316 {
11317 	pd_entry_t *pde;
11318 	pt_entry_t *pte;
11319 	vm_page_t m;
11320 	vm_paddr_t mphys;
11321 
11322 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11323 
11324 	pde = pmap_pti_pde(va);
11325 	if (unwire_pde != NULL) {
11326 		*unwire_pde = true;
11327 		pmap_pti_wire_pte(pde);
11328 	}
11329 	if (*pde == 0) {
11330 		m = pmap_pti_alloc_page();
11331 		if (*pde != 0) {
11332 			pmap_pti_free_page(m);
11333 			MPASS((*pde & X86_PG_PS) == 0);
11334 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11335 		} else {
11336 			mphys = VM_PAGE_TO_PHYS(m);
11337 			*pde = mphys | X86_PG_RW | X86_PG_V;
11338 			if (unwire_pde != NULL)
11339 				*unwire_pde = false;
11340 		}
11341 	} else {
11342 		MPASS((*pde & X86_PG_PS) == 0);
11343 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11344 	}
11345 
11346 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11347 	pte += pmap_pte_index(va);
11348 
11349 	return (pte);
11350 }
11351 
11352 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11353 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11354 {
11355 	vm_paddr_t pa;
11356 	pd_entry_t *pde;
11357 	pt_entry_t *pte, ptev;
11358 	bool unwire_pde;
11359 
11360 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11361 
11362 	sva = trunc_page(sva);
11363 	MPASS(sva > VM_MAXUSER_ADDRESS);
11364 	eva = round_page(eva);
11365 	MPASS(sva < eva);
11366 	for (; sva < eva; sva += PAGE_SIZE) {
11367 		pte = pmap_pti_pte(sva, &unwire_pde);
11368 		pa = pmap_kextract(sva);
11369 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11370 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11371 		    VM_MEMATTR_DEFAULT, false);
11372 		if (*pte == 0) {
11373 			pte_store(pte, ptev);
11374 			pmap_pti_wire_pte(pte);
11375 		} else {
11376 			KASSERT(!pti_finalized,
11377 			    ("pti overlap after fin %#lx %#lx %#lx",
11378 			    sva, *pte, ptev));
11379 			KASSERT(*pte == ptev,
11380 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11381 			    sva, *pte, ptev));
11382 		}
11383 		if (unwire_pde) {
11384 			pde = pmap_pti_pde(sva);
11385 			pmap_pti_unwire_pde(pde, true);
11386 		}
11387 	}
11388 }
11389 
11390 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11391 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11392 {
11393 
11394 	if (!pti)
11395 		return;
11396 	VM_OBJECT_WLOCK(pti_obj);
11397 	pmap_pti_add_kva_locked(sva, eva, exec);
11398 	VM_OBJECT_WUNLOCK(pti_obj);
11399 }
11400 
11401 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11402 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11403 {
11404 	pt_entry_t *pte;
11405 	vm_offset_t va;
11406 
11407 	if (!pti)
11408 		return;
11409 	sva = rounddown2(sva, PAGE_SIZE);
11410 	MPASS(sva > VM_MAXUSER_ADDRESS);
11411 	eva = roundup2(eva, PAGE_SIZE);
11412 	MPASS(sva < eva);
11413 	VM_OBJECT_WLOCK(pti_obj);
11414 	for (va = sva; va < eva; va += PAGE_SIZE) {
11415 		pte = pmap_pti_pte(va, NULL);
11416 		KASSERT((*pte & X86_PG_V) != 0,
11417 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11418 		    (u_long)pte, *pte));
11419 		pte_clear(pte);
11420 		pmap_pti_unwire_pte(pte, va);
11421 	}
11422 	pmap_invalidate_range(kernel_pmap, sva, eva);
11423 	VM_OBJECT_WUNLOCK(pti_obj);
11424 }
11425 
11426 static void *
pkru_dup_range(void * ctx __unused,void * data)11427 pkru_dup_range(void *ctx __unused, void *data)
11428 {
11429 	struct pmap_pkru_range *node, *new_node;
11430 
11431 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11432 	if (new_node == NULL)
11433 		return (NULL);
11434 	node = data;
11435 	memcpy(new_node, node, sizeof(*node));
11436 	return (new_node);
11437 }
11438 
11439 static void
pkru_free_range(void * ctx __unused,void * node)11440 pkru_free_range(void *ctx __unused, void *node)
11441 {
11442 
11443 	uma_zfree(pmap_pkru_ranges_zone, node);
11444 }
11445 
11446 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11447 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11448     int flags)
11449 {
11450 	struct pmap_pkru_range *ppr;
11451 	int error;
11452 
11453 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11454 	MPASS(pmap->pm_type == PT_X86);
11455 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11456 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11457 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11458 		return (EBUSY);
11459 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11460 	if (ppr == NULL)
11461 		return (ENOMEM);
11462 	ppr->pkru_keyidx = keyidx;
11463 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11464 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11465 	if (error != 0)
11466 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11467 	return (error);
11468 }
11469 
11470 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11471 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11472 {
11473 
11474 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11475 	MPASS(pmap->pm_type == PT_X86);
11476 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11477 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11478 }
11479 
11480 static void
pmap_pkru_deassign_all(pmap_t pmap)11481 pmap_pkru_deassign_all(pmap_t pmap)
11482 {
11483 
11484 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11485 	if (pmap->pm_type == PT_X86 &&
11486 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11487 		rangeset_remove_all(&pmap->pm_pkru);
11488 }
11489 
11490 /*
11491  * Returns true if the PKU setting is the same across the specified address
11492  * range, and false otherwise.  When returning true, updates the referenced PTE
11493  * to reflect the PKU setting.
11494  */
11495 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11496 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11497 {
11498 	struct pmap_pkru_range *ppr;
11499 	vm_offset_t va;
11500 	u_int keyidx;
11501 
11502 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11503 	KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11504 	    ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11505 	if (pmap->pm_type != PT_X86 ||
11506 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11507 	    sva >= VM_MAXUSER_ADDRESS)
11508 		return (true);
11509 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11510 	ppr = rangeset_containing(&pmap->pm_pkru, sva);
11511 	if (ppr == NULL)
11512 		return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11513 	keyidx = ppr->pkru_keyidx;
11514 	while ((va = ppr->pkru_rs_el.re_end) < eva) {
11515 		if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11516 		    keyidx != ppr->pkru_keyidx)
11517 			return (false);
11518 	}
11519 	*pte |= X86_PG_PKU(keyidx);
11520 	return (true);
11521 }
11522 
11523 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11524 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11525 {
11526 	struct pmap_pkru_range *ppr;
11527 
11528 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11529 	if (pmap->pm_type != PT_X86 ||
11530 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11531 	    va >= VM_MAXUSER_ADDRESS)
11532 		return (0);
11533 	ppr = rangeset_containing(&pmap->pm_pkru, va);
11534 	if (ppr != NULL)
11535 		return (X86_PG_PKU(ppr->pkru_keyidx));
11536 	return (0);
11537 }
11538 
11539 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11540 pred_pkru_on_remove(void *ctx __unused, void *r)
11541 {
11542 	struct pmap_pkru_range *ppr;
11543 
11544 	ppr = r;
11545 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11546 }
11547 
11548 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11549 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11550 {
11551 
11552 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11553 	if (pmap->pm_type == PT_X86 &&
11554 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11555 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11556 		    pred_pkru_on_remove);
11557 	}
11558 }
11559 
11560 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11561 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11562 {
11563 
11564 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11565 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11566 	MPASS(dst_pmap->pm_type == PT_X86);
11567 	MPASS(src_pmap->pm_type == PT_X86);
11568 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11569 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11570 		return (0);
11571 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11572 }
11573 
11574 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11575 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11576     u_int keyidx)
11577 {
11578 	pml4_entry_t *pml4e;
11579 	pdp_entry_t *pdpe;
11580 	pd_entry_t newpde, ptpaddr, *pde;
11581 	pt_entry_t newpte, *ptep, pte;
11582 	vm_offset_t va, va_next;
11583 	bool changed;
11584 
11585 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11586 	MPASS(pmap->pm_type == PT_X86);
11587 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11588 
11589 	for (changed = false, va = sva; va < eva; va = va_next) {
11590 		pml4e = pmap_pml4e(pmap, va);
11591 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11592 			va_next = (va + NBPML4) & ~PML4MASK;
11593 			if (va_next < va)
11594 				va_next = eva;
11595 			continue;
11596 		}
11597 
11598 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11599 		if ((*pdpe & X86_PG_V) == 0) {
11600 			va_next = (va + NBPDP) & ~PDPMASK;
11601 			if (va_next < va)
11602 				va_next = eva;
11603 			continue;
11604 		}
11605 
11606 		va_next = (va + NBPDR) & ~PDRMASK;
11607 		if (va_next < va)
11608 			va_next = eva;
11609 
11610 		pde = pmap_pdpe_to_pde(pdpe, va);
11611 		ptpaddr = *pde;
11612 		if (ptpaddr == 0)
11613 			continue;
11614 
11615 		MPASS((ptpaddr & X86_PG_V) != 0);
11616 		if ((ptpaddr & PG_PS) != 0) {
11617 			if (va + NBPDR == va_next && eva >= va_next) {
11618 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11619 				    X86_PG_PKU(keyidx);
11620 				if (newpde != ptpaddr) {
11621 					*pde = newpde;
11622 					changed = true;
11623 				}
11624 				continue;
11625 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11626 				continue;
11627 			}
11628 		}
11629 
11630 		if (va_next > eva)
11631 			va_next = eva;
11632 
11633 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11634 		    ptep++, va += PAGE_SIZE) {
11635 			pte = *ptep;
11636 			if ((pte & X86_PG_V) == 0)
11637 				continue;
11638 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11639 			if (newpte != pte) {
11640 				*ptep = newpte;
11641 				changed = true;
11642 			}
11643 		}
11644 	}
11645 	if (changed)
11646 		pmap_invalidate_range(pmap, sva, eva);
11647 }
11648 
11649 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11650 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11651     u_int keyidx, int flags)
11652 {
11653 
11654 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11655 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11656 		return (EINVAL);
11657 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11658 		return (EFAULT);
11659 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11660 		return (ENOTSUP);
11661 	return (0);
11662 }
11663 
11664 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11665 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11666     int flags)
11667 {
11668 	int error;
11669 
11670 	sva = trunc_page(sva);
11671 	eva = round_page(eva);
11672 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11673 	if (error != 0)
11674 		return (error);
11675 	for (;;) {
11676 		PMAP_LOCK(pmap);
11677 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11678 		if (error == 0)
11679 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11680 		PMAP_UNLOCK(pmap);
11681 		if (error != ENOMEM)
11682 			break;
11683 		vm_wait(NULL);
11684 	}
11685 	return (error);
11686 }
11687 
11688 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11689 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11690 {
11691 	int error;
11692 
11693 	sva = trunc_page(sva);
11694 	eva = round_page(eva);
11695 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11696 	if (error != 0)
11697 		return (error);
11698 	for (;;) {
11699 		PMAP_LOCK(pmap);
11700 		error = pmap_pkru_deassign(pmap, sva, eva);
11701 		if (error == 0)
11702 			pmap_pkru_update_range(pmap, sva, eva, 0);
11703 		PMAP_UNLOCK(pmap);
11704 		if (error != ENOMEM)
11705 			break;
11706 		vm_wait(NULL);
11707 	}
11708 	return (error);
11709 }
11710 
11711 #if defined(KASAN) || defined(KMSAN)
11712 
11713 /*
11714  * Reserve enough memory to:
11715  * 1) allocate PDP pages for the shadow map(s),
11716  * 2) shadow the boot stack of KSTACK_PAGES pages,
11717  * 3) assuming that the kernel stack does not cross a 1GB boundary,
11718  * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11719  * pages per shadow map.
11720  */
11721 #ifdef KASAN
11722 #define	SAN_EARLY_PAGES	\
11723 	(NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11724 #else
11725 #define	SAN_EARLY_PAGES	\
11726 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11727 #endif
11728 
11729 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11730 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11731 {
11732 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11733 	static size_t offset = 0;
11734 	uint64_t pa;
11735 
11736 	if (offset == sizeof(data)) {
11737 		panic("%s: ran out of memory for the bootstrap shadow map",
11738 		    __func__);
11739 	}
11740 
11741 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11742 	offset += PAGE_SIZE;
11743 	return (pa);
11744 }
11745 
11746 /*
11747  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11748  * is currently only used to shadow the temporary boot stack set up by locore.
11749  */
11750 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11751 pmap_san_enter_early(vm_offset_t va)
11752 {
11753 	static bool first = true;
11754 	pml4_entry_t *pml4e;
11755 	pdp_entry_t *pdpe;
11756 	pd_entry_t *pde;
11757 	pt_entry_t *pte;
11758 	uint64_t cr3, pa, base;
11759 	int i;
11760 
11761 	base = amd64_loadaddr();
11762 	cr3 = rcr3();
11763 
11764 	if (first) {
11765 		/*
11766 		 * If this the first call, we need to allocate new PML4Es for
11767 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11768 		 * was initialized by the boot loader, so we can't simply test
11769 		 * whether the shadow map's PML4Es are zero.
11770 		 */
11771 		first = false;
11772 #ifdef KASAN
11773 		for (i = 0; i < NKASANPML4E; i++) {
11774 			pa = pmap_san_enter_early_alloc_4k(base);
11775 
11776 			pml4e = (pml4_entry_t *)cr3 +
11777 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11778 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11779 		}
11780 #else
11781 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11782 			pa = pmap_san_enter_early_alloc_4k(base);
11783 
11784 			pml4e = (pml4_entry_t *)cr3 +
11785 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11786 			    i * NBPML4);
11787 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11788 		}
11789 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11790 			pa = pmap_san_enter_early_alloc_4k(base);
11791 
11792 			pml4e = (pml4_entry_t *)cr3 +
11793 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11794 			    i * NBPML4);
11795 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11796 		}
11797 #endif
11798 	}
11799 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11800 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11801 	if (*pdpe == 0) {
11802 		pa = pmap_san_enter_early_alloc_4k(base);
11803 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11804 	}
11805 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11806 	if (*pde == 0) {
11807 		pa = pmap_san_enter_early_alloc_4k(base);
11808 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11809 	}
11810 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11811 	if (*pte != 0)
11812 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11813 	pa = pmap_san_enter_early_alloc_4k(base);
11814 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11815 }
11816 
11817 static vm_page_t
pmap_san_enter_alloc_4k(void)11818 pmap_san_enter_alloc_4k(void)
11819 {
11820 	vm_page_t m;
11821 
11822 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11823 	    VM_ALLOC_ZERO);
11824 	if (m == NULL)
11825 		panic("%s: no memory to grow shadow map", __func__);
11826 	return (m);
11827 }
11828 
11829 static vm_page_t
pmap_san_enter_alloc_2m(void)11830 pmap_san_enter_alloc_2m(void)
11831 {
11832 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11833 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11834 }
11835 
11836 /*
11837  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11838  * pages when possible.
11839  */
11840 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11841 pmap_san_enter(vm_offset_t va)
11842 {
11843 	pdp_entry_t *pdpe;
11844 	pd_entry_t *pde;
11845 	pt_entry_t *pte;
11846 	vm_page_t m;
11847 
11848 	if (kernphys == 0) {
11849 		/*
11850 		 * We're creating a temporary shadow map for the boot stack.
11851 		 */
11852 		pmap_san_enter_early(va);
11853 		return;
11854 	}
11855 
11856 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11857 
11858 	pdpe = pmap_pdpe(kernel_pmap, va);
11859 	if ((*pdpe & X86_PG_V) == 0) {
11860 		m = pmap_san_enter_alloc_4k();
11861 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11862 		    X86_PG_V | pg_nx);
11863 	}
11864 	pde = pmap_pdpe_to_pde(pdpe, va);
11865 	if ((*pde & X86_PG_V) == 0) {
11866 		m = pmap_san_enter_alloc_2m();
11867 		if (m != NULL) {
11868 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11869 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11870 		} else {
11871 			m = pmap_san_enter_alloc_4k();
11872 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11873 			    X86_PG_V | pg_nx);
11874 		}
11875 	}
11876 	if ((*pde & X86_PG_PS) != 0)
11877 		return;
11878 	pte = pmap_pde_to_pte(pde, va);
11879 	if ((*pte & X86_PG_V) != 0)
11880 		return;
11881 	m = pmap_san_enter_alloc_4k();
11882 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11883 	    X86_PG_M | X86_PG_A | pg_nx);
11884 }
11885 #endif
11886 
11887 /*
11888  * Track a range of the kernel's virtual address space that is contiguous
11889  * in various mapping attributes.
11890  */
11891 struct pmap_kernel_map_range {
11892 	vm_offset_t sva;
11893 	pt_entry_t attrs;
11894 	int ptes;
11895 	int pdes;
11896 	int pdpes;
11897 };
11898 
11899 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11900 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11901     vm_offset_t eva)
11902 {
11903 	const char *mode;
11904 	int i, pat_idx;
11905 
11906 	if (eva <= range->sva)
11907 		return;
11908 
11909 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11910 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11911 		if (pat_index[i] == pat_idx)
11912 			break;
11913 
11914 	switch (i) {
11915 	case PAT_WRITE_BACK:
11916 		mode = "WB";
11917 		break;
11918 	case PAT_WRITE_THROUGH:
11919 		mode = "WT";
11920 		break;
11921 	case PAT_UNCACHEABLE:
11922 		mode = "UC";
11923 		break;
11924 	case PAT_UNCACHED:
11925 		mode = "U-";
11926 		break;
11927 	case PAT_WRITE_PROTECTED:
11928 		mode = "WP";
11929 		break;
11930 	case PAT_WRITE_COMBINING:
11931 		mode = "WC";
11932 		break;
11933 	default:
11934 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11935 		    __func__, pat_idx, range->sva, eva);
11936 		mode = "??";
11937 		break;
11938 	}
11939 
11940 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11941 	    range->sva, eva,
11942 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11943 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11944 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11945 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11946 	    mode, range->pdpes, range->pdes, range->ptes);
11947 
11948 	/* Reset to sentinel value. */
11949 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11950 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11951 	    NPDEPG - 1, NPTEPG - 1);
11952 }
11953 
11954 /*
11955  * Determine whether the attributes specified by a page table entry match those
11956  * being tracked by the current range.  This is not quite as simple as a direct
11957  * flag comparison since some PAT modes have multiple representations.
11958  */
11959 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11960 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11961 {
11962 	pt_entry_t diff, mask;
11963 
11964 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11965 	diff = (range->attrs ^ attrs) & mask;
11966 	if (diff == 0)
11967 		return (true);
11968 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11969 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11970 	    pmap_pat_index(kernel_pmap, attrs, true))
11971 		return (true);
11972 	return (false);
11973 }
11974 
11975 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11976 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11977     pt_entry_t attrs)
11978 {
11979 
11980 	memset(range, 0, sizeof(*range));
11981 	range->sva = va;
11982 	range->attrs = attrs;
11983 }
11984 
11985 /*
11986  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11987  * those of the current run, dump the address range and its attributes, and
11988  * begin a new run.
11989  */
11990 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11991 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11992     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11993     pt_entry_t pte)
11994 {
11995 	pt_entry_t attrs;
11996 
11997 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11998 
11999 	attrs |= pdpe & pg_nx;
12000 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
12001 	if ((pdpe & PG_PS) != 0) {
12002 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
12003 	} else if (pde != 0) {
12004 		attrs |= pde & pg_nx;
12005 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
12006 	}
12007 	if ((pde & PG_PS) != 0) {
12008 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
12009 	} else if (pte != 0) {
12010 		attrs |= pte & pg_nx;
12011 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
12012 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
12013 
12014 		/* Canonicalize by always using the PDE PAT bit. */
12015 		if ((attrs & X86_PG_PTE_PAT) != 0)
12016 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
12017 	}
12018 
12019 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
12020 		sysctl_kmaps_dump(sb, range, va);
12021 		sysctl_kmaps_reinit(range, va, attrs);
12022 	}
12023 }
12024 
12025 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)12026 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
12027 {
12028 	struct pmap_kernel_map_range range;
12029 	struct sbuf sbuf, *sb;
12030 	pml4_entry_t pml4e;
12031 	pdp_entry_t *pdp, pdpe;
12032 	pd_entry_t *pd, pde;
12033 	pt_entry_t *pt, pte;
12034 	vm_offset_t sva;
12035 	vm_paddr_t pa;
12036 	int error, i, j, k, l;
12037 
12038 	error = sysctl_wire_old_buffer(req, 0);
12039 	if (error != 0)
12040 		return (error);
12041 	sb = &sbuf;
12042 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12043 
12044 	/* Sentinel value. */
12045 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12046 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12047 	    NPDEPG - 1, NPTEPG - 1);
12048 
12049 	/*
12050 	 * Iterate over the kernel page tables without holding the kernel pmap
12051 	 * lock.  Outside of the large map, kernel page table pages are never
12052 	 * freed, so at worst we will observe inconsistencies in the output.
12053 	 * Within the large map, ensure that PDP and PD page addresses are
12054 	 * valid before descending.
12055 	 */
12056 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12057 		switch (i) {
12058 		case PML4PML4I:
12059 			sbuf_printf(sb, "\nRecursive map:\n");
12060 			break;
12061 		case DMPML4I:
12062 			sbuf_printf(sb, "\nDirect map:\n");
12063 			break;
12064 #ifdef KASAN
12065 		case KASANPML4I:
12066 			sbuf_printf(sb, "\nKASAN shadow map:\n");
12067 			break;
12068 #endif
12069 #ifdef KMSAN
12070 		case KMSANSHADPML4I:
12071 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12072 			break;
12073 		case KMSANORIGPML4I:
12074 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12075 			break;
12076 #endif
12077 		case KPML4BASE:
12078 			sbuf_printf(sb, "\nKernel map:\n");
12079 			break;
12080 		case LMSPML4I:
12081 			sbuf_printf(sb, "\nLarge map:\n");
12082 			break;
12083 		}
12084 
12085 		/* Convert to canonical form. */
12086 		if (sva == 1ul << 47)
12087 			sva |= -1ul << 48;
12088 
12089 restart:
12090 		pml4e = kernel_pml4[i];
12091 		if ((pml4e & X86_PG_V) == 0) {
12092 			sva = rounddown2(sva, NBPML4);
12093 			sysctl_kmaps_dump(sb, &range, sva);
12094 			sva += NBPML4;
12095 			continue;
12096 		}
12097 		pa = pml4e & PG_FRAME;
12098 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12099 
12100 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12101 			pdpe = pdp[j];
12102 			if ((pdpe & X86_PG_V) == 0) {
12103 				sva = rounddown2(sva, NBPDP);
12104 				sysctl_kmaps_dump(sb, &range, sva);
12105 				sva += NBPDP;
12106 				continue;
12107 			}
12108 			pa = pdpe & PG_FRAME;
12109 			if ((pdpe & PG_PS) != 0) {
12110 				sva = rounddown2(sva, NBPDP);
12111 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12112 				    0, 0);
12113 				range.pdpes++;
12114 				sva += NBPDP;
12115 				continue;
12116 			}
12117 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12118 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12119 				/*
12120 				 * Page table pages for the large map may be
12121 				 * freed.  Validate the next-level address
12122 				 * before descending.
12123 				 */
12124 				goto restart;
12125 			}
12126 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12127 
12128 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12129 				pde = pd[k];
12130 				if ((pde & X86_PG_V) == 0) {
12131 					sva = rounddown2(sva, NBPDR);
12132 					sysctl_kmaps_dump(sb, &range, sva);
12133 					sva += NBPDR;
12134 					continue;
12135 				}
12136 				pa = pde & PG_FRAME;
12137 				if ((pde & PG_PS) != 0) {
12138 					sva = rounddown2(sva, NBPDR);
12139 					sysctl_kmaps_check(sb, &range, sva,
12140 					    pml4e, pdpe, pde, 0);
12141 					range.pdes++;
12142 					sva += NBPDR;
12143 					continue;
12144 				}
12145 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12146 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12147 					/*
12148 					 * Page table pages for the large map
12149 					 * may be freed.  Validate the
12150 					 * next-level address before descending.
12151 					 */
12152 					goto restart;
12153 				}
12154 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12155 
12156 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12157 				    sva += PAGE_SIZE) {
12158 					pte = pt[l];
12159 					if ((pte & X86_PG_V) == 0) {
12160 						sysctl_kmaps_dump(sb, &range,
12161 						    sva);
12162 						continue;
12163 					}
12164 					sysctl_kmaps_check(sb, &range, sva,
12165 					    pml4e, pdpe, pde, pte);
12166 					range.ptes++;
12167 				}
12168 			}
12169 		}
12170 	}
12171 
12172 	error = sbuf_finish(sb);
12173 	sbuf_delete(sb);
12174 	return (error);
12175 }
12176 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12177     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12178     NULL, 0, sysctl_kmaps, "A",
12179     "Dump kernel address layout");
12180 
12181 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12182 DB_SHOW_COMMAND(pte, pmap_print_pte)
12183 {
12184 	pmap_t pmap;
12185 	pml5_entry_t *pml5;
12186 	pml4_entry_t *pml4;
12187 	pdp_entry_t *pdp;
12188 	pd_entry_t *pde;
12189 	pt_entry_t *pte, PG_V;
12190 	vm_offset_t va;
12191 
12192 	if (!have_addr) {
12193 		db_printf("show pte addr\n");
12194 		return;
12195 	}
12196 	va = (vm_offset_t)addr;
12197 
12198 	if (kdb_thread != NULL)
12199 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12200 	else
12201 		pmap = PCPU_GET(curpmap);
12202 
12203 	PG_V = pmap_valid_bit(pmap);
12204 	db_printf("VA 0x%016lx", va);
12205 
12206 	if (pmap_is_la57(pmap)) {
12207 		pml5 = pmap_pml5e(pmap, va);
12208 		db_printf(" pml5e@0x%016lx 0x%016lx", (uint64_t)pml5, *pml5);
12209 		if ((*pml5 & PG_V) == 0) {
12210 			db_printf("\n");
12211 			return;
12212 		}
12213 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12214 	} else {
12215 		pml4 = pmap_pml4e(pmap, va);
12216 	}
12217 	db_printf(" pml4e@0x%016lx 0x%016lx", (uint64_t)pml4, *pml4);
12218 	if ((*pml4 & PG_V) == 0) {
12219 		db_printf("\n");
12220 		return;
12221 	}
12222 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12223 	db_printf(" pdpe@0x%016lx 0x%016lx", (uint64_t)pdp, *pdp);
12224 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12225 		db_printf("\n");
12226 		return;
12227 	}
12228 	pde = pmap_pdpe_to_pde(pdp, va);
12229 	db_printf(" pde@0x%016lx 0x%016lx", (uint64_t)pde, *pde);
12230 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12231 		db_printf("\n");
12232 		return;
12233 	}
12234 	pte = pmap_pde_to_pte(pde, va);
12235 	db_printf(" pte@0x%016lx 0x%016lx\n", (uint64_t)pte, *pte);
12236 }
12237 
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12238 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12239 {
12240 	vm_paddr_t a;
12241 
12242 	if (have_addr) {
12243 		a = (vm_paddr_t)addr;
12244 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12245 	} else {
12246 		db_printf("show phys2dmap addr\n");
12247 	}
12248 }
12249 
12250 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12251 ptpages_show_page(int level, int idx, vm_page_t pg)
12252 {
12253 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12254 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12255 }
12256 
12257 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12258 ptpages_show_complain(int level, int idx, uint64_t pte)
12259 {
12260 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12261 }
12262 
12263 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12264 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12265 {
12266 	vm_page_t pg3, pg2, pg1;
12267 	pml4_entry_t *pml4;
12268 	pdp_entry_t *pdp;
12269 	pd_entry_t *pd;
12270 	int i4, i3, i2;
12271 
12272 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12273 	for (i4 = 0; i4 < num_entries; i4++) {
12274 		if ((pml4[i4] & PG_V) == 0)
12275 			continue;
12276 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12277 		if (pg3 == NULL) {
12278 			ptpages_show_complain(3, i4, pml4[i4]);
12279 			continue;
12280 		}
12281 		ptpages_show_page(3, i4, pg3);
12282 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12283 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12284 			if ((pdp[i3] & PG_V) == 0)
12285 				continue;
12286 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12287 			if (pg3 == NULL) {
12288 				ptpages_show_complain(2, i3, pdp[i3]);
12289 				continue;
12290 			}
12291 			ptpages_show_page(2, i3, pg2);
12292 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12293 			for (i2 = 0; i2 < NPDEPG; i2++) {
12294 				if ((pd[i2] & PG_V) == 0)
12295 					continue;
12296 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12297 				if (pg1 == NULL) {
12298 					ptpages_show_complain(1, i2, pd[i2]);
12299 					continue;
12300 				}
12301 				ptpages_show_page(1, i2, pg1);
12302 			}
12303 		}
12304 	}
12305 }
12306 
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12307 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12308 {
12309 	pmap_t pmap;
12310 	vm_page_t pg;
12311 	pml5_entry_t *pml5;
12312 	uint64_t PG_V;
12313 	int i5;
12314 
12315 	if (have_addr)
12316 		pmap = (pmap_t)addr;
12317 	else
12318 		pmap = PCPU_GET(curpmap);
12319 
12320 	PG_V = pmap_valid_bit(pmap);
12321 
12322 	if (pmap_is_la57(pmap)) {
12323 		pml5 = pmap->pm_pmltop;
12324 		for (i5 = 0; i5 < NUPML5E; i5++) {
12325 			if ((pml5[i5] & PG_V) == 0)
12326 				continue;
12327 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12328 			if (pg == NULL) {
12329 				ptpages_show_complain(4, i5, pml5[i5]);
12330 				continue;
12331 			}
12332 			ptpages_show_page(4, i5, pg);
12333 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12334 		}
12335 	} else {
12336 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12337 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12338 	}
12339 }
12340 #endif
12341