1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2003 Peter Wemm
11 * All rights reserved.
12 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13 * All rights reserved.
14 *
15 * This code is derived from software contributed to Berkeley by
16 * the Systems Programming Group of the University of Utah Computer
17 * Science Department and William Jolitz of UUNET Technologies Inc.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgement:
29 * This product includes software developed by the University of
30 * California, Berkeley and its contributors.
31 * 4. Neither the name of the University nor the names of its contributors
32 * may be used to endorse or promote products derived from this software
33 * without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 */
47 /*-
48 * Copyright (c) 2003 Networks Associates Technology, Inc.
49 * Copyright (c) 2014-2020 The FreeBSD Foundation
50 * All rights reserved.
51 *
52 * This software was developed for the FreeBSD Project by Jake Burkholder,
53 * Safeport Network Services, and Network Associates Laboratories, the
54 * Security Research Division of Network Associates, Inc. under
55 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56 * CHATS research program.
57 *
58 * Portions of this software were developed by
59 * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60 * the FreeBSD Foundation.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81 * SUCH DAMAGE.
82 */
83
84 #define AMD64_NPT_AWARE
85
86 #include <sys/cdefs.h>
87 /*
88 * Manages physical address maps.
89 *
90 * Since the information managed by this module is
91 * also stored by the logical address mapping module,
92 * this module may throw away valid virtual-to-physical
93 * mappings at almost any time. However, invalidations
94 * of virtual-to-physical mappings must be done as
95 * requested.
96 *
97 * In order to cope with hardware architectures which
98 * make virtual-to-physical map invalidates expensive,
99 * this module may delay invalidate or reduced protection
100 * operations until such time as they are actually
101 * necessary. This module is given full information as
102 * to which processors are currently using which maps,
103 * and to when physical maps must be made correct.
104 */
105
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170
171 #ifdef NUMA
172 #define PMAP_MEMDOM MAXMEMDOM
173 #else
174 #define PMAP_MEMDOM 1
175 #endif
176
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180
181 return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187
188 return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 pt_entry_t mask;
195
196 switch (pmap->pm_type) {
197 case PT_X86:
198 case PT_RVI:
199 mask = X86_PG_V;
200 break;
201 case PT_EPT:
202 if (pmap_emulate_ad_bits(pmap))
203 mask = EPT_PG_EMUL_V;
204 else
205 mask = EPT_PG_READ;
206 break;
207 default:
208 panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 }
210
211 return (mask);
212 }
213
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 pt_entry_t mask;
218
219 switch (pmap->pm_type) {
220 case PT_X86:
221 case PT_RVI:
222 mask = X86_PG_RW;
223 break;
224 case PT_EPT:
225 if (pmap_emulate_ad_bits(pmap))
226 mask = EPT_PG_EMUL_RW;
227 else
228 mask = EPT_PG_WRITE;
229 break;
230 default:
231 panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 }
233
234 return (mask);
235 }
236
237 static pt_entry_t pg_g;
238
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 pt_entry_t mask;
243
244 switch (pmap->pm_type) {
245 case PT_X86:
246 mask = pg_g;
247 break;
248 case PT_RVI:
249 case PT_EPT:
250 mask = 0;
251 break;
252 default:
253 panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 }
255
256 return (mask);
257 }
258
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 pt_entry_t mask;
263
264 switch (pmap->pm_type) {
265 case PT_X86:
266 case PT_RVI:
267 mask = X86_PG_A;
268 break;
269 case PT_EPT:
270 if (pmap_emulate_ad_bits(pmap))
271 mask = EPT_PG_READ;
272 else
273 mask = EPT_PG_A;
274 break;
275 default:
276 panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 }
278
279 return (mask);
280 }
281
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 pt_entry_t mask;
286
287 switch (pmap->pm_type) {
288 case PT_X86:
289 case PT_RVI:
290 mask = X86_PG_M;
291 break;
292 case PT_EPT:
293 if (pmap_emulate_ad_bits(pmap))
294 mask = EPT_PG_WRITE;
295 else
296 mask = EPT_PG_M;
297 break;
298 default:
299 panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 }
301
302 return (mask);
303 }
304
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308
309 return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315
316 if (!pmap_emulate_ad_bits(pmap))
317 return (true);
318
319 KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320
321 /*
322 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 * if the EPT_PG_WRITE bit is set.
325 */
326 if ((pte & EPT_PG_WRITE) != 0)
327 return (false);
328
329 /*
330 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 */
332 if ((pte & EPT_PG_EXECUTE) == 0 ||
333 ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 return (true);
335 else
336 return (false);
337 }
338
339 #ifdef PV_STATS
340 #define PV_STAT(x) do { x ; } while (0)
341 #else
342 #define PV_STAT(x) do { } while (0)
343 #endif
344
345 #ifdef NUMA
346 #define pa_index(pa) ({ \
347 KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end, \
348 ("address %lx beyond the last segment", (pa))); \
349 (pa) >> PDRSHIFT; \
350 })
351 #define pa_to_pmdp(pa) (&pv_table[pa_index(pa)])
352 #define pa_to_pvh(pa) (&(pa_to_pmdp(pa)->pv_page))
353 #define PHYS_TO_PV_LIST_LOCK(pa) ({ \
354 struct rwlock *_lock; \
355 if (__predict_false((pa) > pmap_last_pa)) \
356 _lock = &pv_dummy_large.pv_lock; \
357 else \
358 _lock = &(pa_to_pmdp(pa)->pv_lock); \
359 _lock; \
360 })
361 #else
362 #define pa_index(pa) ((pa) >> PDRSHIFT)
363 #define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
364
365 #define NPV_LIST_LOCKS MAXCPU
366
367 #define PHYS_TO_PV_LIST_LOCK(pa) \
368 (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
369 #endif
370
371 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
372 struct rwlock **_lockp = (lockp); \
373 struct rwlock *_new_lock; \
374 \
375 _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
376 if (_new_lock != *_lockp) { \
377 if (*_lockp != NULL) \
378 rw_wunlock(*_lockp); \
379 *_lockp = _new_lock; \
380 rw_wlock(*_lockp); \
381 } \
382 } while (0)
383
384 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
385 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
386
387 #define RELEASE_PV_LIST_LOCK(lockp) do { \
388 struct rwlock **_lockp = (lockp); \
389 \
390 if (*_lockp != NULL) { \
391 rw_wunlock(*_lockp); \
392 *_lockp = NULL; \
393 } \
394 } while (0)
395
396 #define VM_PAGE_TO_PV_LIST_LOCK(m) \
397 PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
398
399 /*
400 * Statically allocate kernel pmap memory. However, memory for
401 * pm_pcids is obtained after the dynamic allocator is operational.
402 * Initialize it with a non-canonical pointer to catch early accesses
403 * regardless of the active mapping.
404 */
405 struct pmap kernel_pmap_store = {
406 .pm_pcidp = (void *)0xdeadbeefdeadbeef,
407 };
408
409 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
410 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
411
412 int nkpt;
413 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
414 "Number of kernel page table pages allocated on bootup");
415
416 static int ndmpdp;
417 vm_paddr_t dmaplimit;
418 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
419 pt_entry_t pg_nx;
420
421 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
422 "VM/pmap parameters");
423
424 static int __read_frequently pg_ps_enabled = 1;
425 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
426 &pg_ps_enabled, 0, "Are large page mappings enabled?");
427
428 int __read_frequently la57 = 0;
429 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
430 &la57, 0,
431 "5-level paging for host is enabled");
432
433 /*
434 * The default value is needed in order to preserve compatibility with
435 * some userspace programs that put tags into sign-extended bits.
436 */
437 int prefer_uva_la48 = 1;
438 SYSCTL_INT(_vm_pmap, OID_AUTO, prefer_uva_la48, CTLFLAG_RDTUN,
439 &prefer_uva_la48, 0,
440 "Userspace maps are limited to LA48 unless otherwise configured");
441
442 static bool
pmap_is_la57(pmap_t pmap)443 pmap_is_la57(pmap_t pmap)
444 {
445 if (pmap->pm_type == PT_X86)
446 return (la57);
447 return (false); /* XXXKIB handle EPT */
448 }
449
450 #define PAT_INDEX_SIZE 8
451 static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
452
453 static u_int64_t KPTphys; /* phys addr of kernel level 1 */
454 static u_int64_t KPDphys; /* phys addr of kernel level 2 */
455 static u_int64_t KPDPphys; /* phys addr of kernel level 3 */
456 u_int64_t KPML4phys; /* phys addr of kernel level 4 */
457 u_int64_t KPML5phys; /* phys addr of kernel level 5,
458 if supported */
459
460 #ifdef KASAN
461 static uint64_t KASANPDPphys;
462 #endif
463 #ifdef KMSAN
464 static uint64_t KMSANSHADPDPphys;
465 static uint64_t KMSANORIGPDPphys;
466
467 /*
468 * To support systems with large amounts of memory, it is necessary to extend
469 * the maximum size of the direct map. This could eat into the space reserved
470 * for the shadow map.
471 */
472 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
473 #endif
474
475 static pml4_entry_t *kernel_pml4;
476 static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
477 static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
478 static int ndmpdpphys; /* number of DMPDPphys pages */
479
480 vm_paddr_t kernphys; /* phys addr of start of bootstrap data */
481 vm_paddr_t KERNend; /* and the end */
482
483 /*
484 * pmap_mapdev support pre initialization (i.e. console)
485 */
486 #define PMAP_PREINIT_MAPPING_COUNT 8
487 static struct pmap_preinit_mapping {
488 vm_paddr_t pa;
489 vm_offset_t va;
490 vm_size_t sz;
491 int mode;
492 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
493 static int pmap_initialized;
494
495 /*
496 * Data for the pv entry allocation mechanism.
497 * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
498 */
499 #ifdef NUMA
500 static __inline int
pc_to_domain(struct pv_chunk * pc)501 pc_to_domain(struct pv_chunk *pc)
502 {
503
504 return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
505 }
506 #else
507 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)508 pc_to_domain(struct pv_chunk *pc __unused)
509 {
510
511 return (0);
512 }
513 #endif
514
515 struct pv_chunks_list {
516 struct mtx pvc_lock;
517 TAILQ_HEAD(pch, pv_chunk) pvc_list;
518 int active_reclaims;
519 } __aligned(CACHE_LINE_SIZE);
520
521 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
522
523 #ifdef NUMA
524 struct pmap_large_md_page {
525 struct rwlock pv_lock;
526 struct md_page pv_page;
527 u_long pv_invl_gen;
528 };
529 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
530 #define pv_dummy pv_dummy_large.pv_page
531 __read_mostly static struct pmap_large_md_page *pv_table;
532 __read_mostly vm_paddr_t pmap_last_pa;
533 #else
534 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
535 static u_long pv_invl_gen[NPV_LIST_LOCKS];
536 static struct md_page *pv_table;
537 static struct md_page pv_dummy;
538 #endif
539
540 /*
541 * All those kernel PT submaps that BSD is so fond of
542 */
543 pt_entry_t *CMAP1 = NULL;
544 caddr_t CADDR1 = 0;
545 static vm_offset_t qframe = 0;
546 static struct mtx qframe_mtx;
547
548 static int pmap_flags = PMAP_PDE_SUPERPAGE; /* flags for x86 pmaps */
549
550 static vmem_t *large_vmem;
551 static u_int lm_ents;
552 #define PMAP_ADDRESS_IN_LARGEMAP(va) ((va) >= LARGEMAP_MIN_ADDRESS && \
553 (va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
554
555 int pmap_pcid_enabled = 1;
556 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
557 &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
558 int invpcid_works = 0;
559 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
560 "Is the invpcid instruction available ?");
561 int invlpgb_works;
562 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
563 "Is the invlpgb instruction available?");
564 int invlpgb_maxcnt;
565 int pmap_pcid_invlpg_workaround = 0;
566 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
567 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
568 &pmap_pcid_invlpg_workaround, 0,
569 "Enable small core PCID/INVLPG workaround");
570 int pmap_pcid_invlpg_workaround_uena = 1;
571
572 int __read_frequently pti = 0;
573 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
574 &pti, 0,
575 "Page Table Isolation enabled");
576 static vm_object_t pti_obj;
577 static pml4_entry_t *pti_pml4;
578 static vm_pindex_t pti_pg_idx;
579 static bool pti_finalized;
580
581 static int pmap_growkernel_panic = 0;
582 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
583 &pmap_growkernel_panic, 0,
584 "panic on failure to allocate kernel page table page");
585
586 struct pmap_pkru_range {
587 struct rs_el pkru_rs_el;
588 u_int pkru_keyidx;
589 int pkru_flags;
590 };
591
592 static uma_zone_t pmap_pkru_ranges_zone;
593 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
594 pt_entry_t *pte);
595 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
596 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
597 static void *pkru_dup_range(void *ctx, void *data);
598 static void pkru_free_range(void *ctx, void *node);
599 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
600 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
601 static void pmap_pkru_deassign_all(pmap_t pmap);
602
603 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
604 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
605 &pcid_save_cnt, "Count of saved TLB context on switch");
606
607 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
608 LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
609 static struct mtx invl_gen_mtx;
610 /* Fake lock object to satisfy turnstiles interface. */
611 static struct lock_object invl_gen_ts = {
612 .lo_name = "invlts",
613 };
614 static struct pmap_invl_gen pmap_invl_gen_head = {
615 .gen = 1,
616 .next = NULL,
617 };
618 static u_long pmap_invl_gen = 1;
619 static int pmap_invl_waiters;
620 static struct callout pmap_invl_callout;
621 static bool pmap_invl_callout_inited;
622
623 #define PMAP_ASSERT_NOT_IN_DI() \
624 KASSERT(pmap_not_in_di(), ("DI already started"))
625
626 static bool
pmap_di_locked(void)627 pmap_di_locked(void)
628 {
629 int tun;
630
631 if ((cpu_feature2 & CPUID2_CX16) == 0)
632 return (true);
633 tun = 0;
634 TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
635 return (tun != 0);
636 }
637
638 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)639 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
640 {
641 int locked;
642
643 locked = pmap_di_locked();
644 return (sysctl_handle_int(oidp, &locked, 0, req));
645 }
646 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
647 CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
648 "Locked delayed invalidation");
649
650 static bool pmap_not_in_di_l(void);
651 static bool pmap_not_in_di_u(void);
652 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
653 {
654
655 return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
656 }
657
658 static bool
pmap_not_in_di_l(void)659 pmap_not_in_di_l(void)
660 {
661 struct pmap_invl_gen *invl_gen;
662
663 invl_gen = &curthread->td_md.md_invl_gen;
664 return (invl_gen->gen == 0);
665 }
666
667 static void
pmap_thread_init_invl_gen_l(struct thread * td)668 pmap_thread_init_invl_gen_l(struct thread *td)
669 {
670 struct pmap_invl_gen *invl_gen;
671
672 invl_gen = &td->td_md.md_invl_gen;
673 invl_gen->gen = 0;
674 }
675
676 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)677 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
678 {
679 struct turnstile *ts;
680
681 ts = turnstile_trywait(&invl_gen_ts);
682 if (*m_gen > atomic_load_long(invl_gen))
683 turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
684 else
685 turnstile_cancel(ts);
686 }
687
688 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)689 pmap_delayed_invl_finish_unblock(u_long new_gen)
690 {
691 struct turnstile *ts;
692
693 turnstile_chain_lock(&invl_gen_ts);
694 ts = turnstile_lookup(&invl_gen_ts);
695 if (new_gen != 0)
696 pmap_invl_gen = new_gen;
697 if (ts != NULL) {
698 turnstile_broadcast(ts, TS_SHARED_QUEUE);
699 turnstile_unpend(ts);
700 }
701 turnstile_chain_unlock(&invl_gen_ts);
702 }
703
704 /*
705 * Start a new Delayed Invalidation (DI) block of code, executed by
706 * the current thread. Within a DI block, the current thread may
707 * destroy both the page table and PV list entries for a mapping and
708 * then release the corresponding PV list lock before ensuring that
709 * the mapping is flushed from the TLBs of any processors with the
710 * pmap active.
711 */
712 static void
pmap_delayed_invl_start_l(void)713 pmap_delayed_invl_start_l(void)
714 {
715 struct pmap_invl_gen *invl_gen;
716 u_long currgen;
717
718 invl_gen = &curthread->td_md.md_invl_gen;
719 PMAP_ASSERT_NOT_IN_DI();
720 mtx_lock(&invl_gen_mtx);
721 if (LIST_EMPTY(&pmap_invl_gen_tracker))
722 currgen = pmap_invl_gen;
723 else
724 currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
725 invl_gen->gen = currgen + 1;
726 LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
727 mtx_unlock(&invl_gen_mtx);
728 }
729
730 /*
731 * Finish the DI block, previously started by the current thread. All
732 * required TLB flushes for the pages marked by
733 * pmap_delayed_invl_page() must be finished before this function is
734 * called.
735 *
736 * This function works by bumping the global DI generation number to
737 * the generation number of the current thread's DI, unless there is a
738 * pending DI that started earlier. In the latter case, bumping the
739 * global DI generation number would incorrectly signal that the
740 * earlier DI had finished. Instead, this function bumps the earlier
741 * DI's generation number to match the generation number of the
742 * current thread's DI.
743 */
744 static void
pmap_delayed_invl_finish_l(void)745 pmap_delayed_invl_finish_l(void)
746 {
747 struct pmap_invl_gen *invl_gen, *next;
748
749 invl_gen = &curthread->td_md.md_invl_gen;
750 KASSERT(invl_gen->gen != 0, ("missed invl_start"));
751 mtx_lock(&invl_gen_mtx);
752 next = LIST_NEXT(invl_gen, link);
753 if (next == NULL)
754 pmap_delayed_invl_finish_unblock(invl_gen->gen);
755 else
756 next->gen = invl_gen->gen;
757 LIST_REMOVE(invl_gen, link);
758 mtx_unlock(&invl_gen_mtx);
759 invl_gen->gen = 0;
760 }
761
762 static bool
pmap_not_in_di_u(void)763 pmap_not_in_di_u(void)
764 {
765 struct pmap_invl_gen *invl_gen;
766
767 invl_gen = &curthread->td_md.md_invl_gen;
768 return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
769 }
770
771 static void
pmap_thread_init_invl_gen_u(struct thread * td)772 pmap_thread_init_invl_gen_u(struct thread *td)
773 {
774 struct pmap_invl_gen *invl_gen;
775
776 invl_gen = &td->td_md.md_invl_gen;
777 invl_gen->gen = 0;
778 invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
779 }
780
781 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)782 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
783 {
784 uint64_t new_high, new_low, old_high, old_low;
785 char res;
786
787 old_low = new_low = 0;
788 old_high = new_high = (uintptr_t)0;
789
790 __asm volatile("lock;cmpxchg16b\t%1"
791 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
792 : "b"(new_low), "c" (new_high)
793 : "memory", "cc");
794 if (res == 0) {
795 if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
796 return (false);
797 out->gen = old_low;
798 out->next = (void *)old_high;
799 } else {
800 out->gen = new_low;
801 out->next = (void *)new_high;
802 }
803 return (true);
804 }
805
806 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)807 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
808 struct pmap_invl_gen *new_val)
809 {
810 uint64_t new_high, new_low, old_high, old_low;
811 char res;
812
813 new_low = new_val->gen;
814 new_high = (uintptr_t)new_val->next;
815 old_low = old_val->gen;
816 old_high = (uintptr_t)old_val->next;
817
818 __asm volatile("lock;cmpxchg16b\t%1"
819 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
820 : "b"(new_low), "c" (new_high)
821 : "memory", "cc");
822 return (res);
823 }
824
825 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
826 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
827 &pv_page_count, "Current number of allocated pv pages");
828
829 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
830 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
831 &user_pt_page_count,
832 "Current number of allocated page table pages for userspace");
833
834 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
835 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
836 &kernel_pt_page_count,
837 "Current number of allocated page table pages for the kernel");
838
839 #ifdef PV_STATS
840
841 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
842 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
843 CTLFLAG_RD, &invl_start_restart,
844 "Number of delayed TLB invalidation request restarts");
845
846 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
847 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
848 &invl_finish_restart,
849 "Number of delayed TLB invalidation completion restarts");
850
851 static int invl_max_qlen;
852 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
853 &invl_max_qlen, 0,
854 "Maximum delayed TLB invalidation request queue length");
855 #endif
856
857 #define di_delay locks_delay
858
859 static void
pmap_delayed_invl_start_u(void)860 pmap_delayed_invl_start_u(void)
861 {
862 struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
863 struct thread *td;
864 struct lock_delay_arg lda;
865 uintptr_t prevl;
866 u_char pri;
867 #ifdef PV_STATS
868 int i, ii;
869 #endif
870
871 td = curthread;
872 invl_gen = &td->td_md.md_invl_gen;
873 PMAP_ASSERT_NOT_IN_DI();
874 lock_delay_arg_init(&lda, &di_delay);
875 invl_gen->saved_pri = 0;
876 pri = td->td_base_pri;
877 if (pri > PVM) {
878 thread_lock(td);
879 pri = td->td_base_pri;
880 if (pri > PVM) {
881 invl_gen->saved_pri = pri;
882 sched_prio(td, PVM);
883 }
884 thread_unlock(td);
885 }
886 again:
887 PV_STAT(i = 0);
888 for (p = &pmap_invl_gen_head;; p = prev.next) {
889 PV_STAT(i++);
890 prevl = (uintptr_t)atomic_load_ptr(&p->next);
891 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
892 PV_STAT(counter_u64_add(invl_start_restart, 1));
893 lock_delay(&lda);
894 goto again;
895 }
896 if (prevl == 0)
897 break;
898 prev.next = (void *)prevl;
899 }
900 #ifdef PV_STATS
901 if ((ii = invl_max_qlen) < i)
902 atomic_cmpset_int(&invl_max_qlen, ii, i);
903 #endif
904
905 if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
906 PV_STAT(counter_u64_add(invl_start_restart, 1));
907 lock_delay(&lda);
908 goto again;
909 }
910
911 new_prev.gen = prev.gen;
912 new_prev.next = invl_gen;
913 invl_gen->gen = prev.gen + 1;
914
915 /* Formal fence between store to invl->gen and updating *p. */
916 atomic_thread_fence_rel();
917
918 /*
919 * After inserting an invl_gen element with invalid bit set,
920 * this thread blocks any other thread trying to enter the
921 * delayed invalidation block. Do not allow to remove us from
922 * the CPU, because it causes starvation for other threads.
923 */
924 critical_enter();
925
926 /*
927 * ABA for *p is not possible there, since p->gen can only
928 * increase. So if the *p thread finished its di, then
929 * started a new one and got inserted into the list at the
930 * same place, its gen will appear greater than the previously
931 * read gen.
932 */
933 if (!pmap_di_store_invl(p, &prev, &new_prev)) {
934 critical_exit();
935 PV_STAT(counter_u64_add(invl_start_restart, 1));
936 lock_delay(&lda);
937 goto again;
938 }
939
940 /*
941 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
942 * invl_gen->next, allowing other threads to iterate past us.
943 * pmap_di_store_invl() provides fence between the generation
944 * write and the update of next.
945 */
946 invl_gen->next = NULL;
947 critical_exit();
948 }
949
950 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)951 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
952 struct pmap_invl_gen *p)
953 {
954 struct pmap_invl_gen prev, new_prev;
955 u_long mygen;
956
957 /*
958 * Load invl_gen->gen after setting invl_gen->next
959 * PMAP_INVL_GEN_NEXT_INVALID. This prevents larger
960 * generations to propagate to our invl_gen->gen. Lock prefix
961 * in atomic_set_ptr() worked as seq_cst fence.
962 */
963 mygen = atomic_load_long(&invl_gen->gen);
964
965 if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
966 return (false);
967
968 KASSERT(prev.gen < mygen,
969 ("invalid di gen sequence %lu %lu", prev.gen, mygen));
970 new_prev.gen = mygen;
971 new_prev.next = (void *)((uintptr_t)invl_gen->next &
972 ~PMAP_INVL_GEN_NEXT_INVALID);
973
974 /* Formal fence between load of prev and storing update to it. */
975 atomic_thread_fence_rel();
976
977 return (pmap_di_store_invl(p, &prev, &new_prev));
978 }
979
980 static void
pmap_delayed_invl_finish_u(void)981 pmap_delayed_invl_finish_u(void)
982 {
983 struct pmap_invl_gen *invl_gen, *p;
984 struct thread *td;
985 struct lock_delay_arg lda;
986 uintptr_t prevl;
987
988 td = curthread;
989 invl_gen = &td->td_md.md_invl_gen;
990 KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
991 KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
992 ("missed invl_start: INVALID"));
993 lock_delay_arg_init(&lda, &di_delay);
994
995 again:
996 for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
997 prevl = (uintptr_t)atomic_load_ptr(&p->next);
998 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
999 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1000 lock_delay(&lda);
1001 goto again;
1002 }
1003 if ((void *)prevl == invl_gen)
1004 break;
1005 }
1006
1007 /*
1008 * It is legitimate to not find ourself on the list if a
1009 * thread before us finished its DI and started it again.
1010 */
1011 if (__predict_false(p == NULL)) {
1012 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1013 lock_delay(&lda);
1014 goto again;
1015 }
1016
1017 critical_enter();
1018 atomic_set_ptr((uintptr_t *)&invl_gen->next,
1019 PMAP_INVL_GEN_NEXT_INVALID);
1020 if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1021 atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1022 PMAP_INVL_GEN_NEXT_INVALID);
1023 critical_exit();
1024 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1025 lock_delay(&lda);
1026 goto again;
1027 }
1028 critical_exit();
1029 if (atomic_load_int(&pmap_invl_waiters) > 0)
1030 pmap_delayed_invl_finish_unblock(0);
1031 if (invl_gen->saved_pri != 0) {
1032 thread_lock(td);
1033 sched_prio(td, invl_gen->saved_pri);
1034 thread_unlock(td);
1035 }
1036 }
1037
1038 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1039 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1040 {
1041 struct pmap_invl_gen *p, *pn;
1042 struct thread *td;
1043 uintptr_t nextl;
1044 bool first;
1045
1046 for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1047 first = false) {
1048 nextl = (uintptr_t)atomic_load_ptr(&p->next);
1049 pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1050 td = first ? NULL : __containerof(p, struct thread,
1051 td_md.md_invl_gen);
1052 db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1053 (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1054 td != NULL ? td->td_tid : -1);
1055 }
1056 }
1057 #endif
1058
1059 #ifdef PV_STATS
1060 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1061 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1062 CTLFLAG_RD, &invl_wait,
1063 "Number of times DI invalidation blocked pmap_remove_all/write");
1064
1065 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1066 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1067 &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1068
1069 #endif
1070
1071 #ifdef NUMA
1072 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1073 pmap_delayed_invl_genp(vm_page_t m)
1074 {
1075 vm_paddr_t pa;
1076 u_long *gen;
1077
1078 pa = VM_PAGE_TO_PHYS(m);
1079 if (__predict_false((pa) > pmap_last_pa))
1080 gen = &pv_dummy_large.pv_invl_gen;
1081 else
1082 gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1083
1084 return (gen);
1085 }
1086 #else
1087 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1088 pmap_delayed_invl_genp(vm_page_t m)
1089 {
1090
1091 return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1092 }
1093 #endif
1094
1095 static void
pmap_delayed_invl_callout_func(void * arg __unused)1096 pmap_delayed_invl_callout_func(void *arg __unused)
1097 {
1098
1099 if (atomic_load_int(&pmap_invl_waiters) == 0)
1100 return;
1101 pmap_delayed_invl_finish_unblock(0);
1102 }
1103
1104 static void
pmap_delayed_invl_callout_init(void * arg __unused)1105 pmap_delayed_invl_callout_init(void *arg __unused)
1106 {
1107
1108 if (pmap_di_locked())
1109 return;
1110 callout_init(&pmap_invl_callout, 1);
1111 pmap_invl_callout_inited = true;
1112 }
1113 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1114 pmap_delayed_invl_callout_init, NULL);
1115
1116 /*
1117 * Ensure that all currently executing DI blocks, that need to flush
1118 * TLB for the given page m, actually flushed the TLB at the time the
1119 * function returned. If the page m has an empty PV list and we call
1120 * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1121 * valid mapping for the page m in either its page table or TLB.
1122 *
1123 * This function works by blocking until the global DI generation
1124 * number catches up with the generation number associated with the
1125 * given page m and its PV list. Since this function's callers
1126 * typically own an object lock and sometimes own a page lock, it
1127 * cannot sleep. Instead, it blocks on a turnstile to relinquish the
1128 * processor.
1129 */
1130 static void
pmap_delayed_invl_wait_l(vm_page_t m)1131 pmap_delayed_invl_wait_l(vm_page_t m)
1132 {
1133 u_long *m_gen;
1134 #ifdef PV_STATS
1135 bool accounted = false;
1136 #endif
1137
1138 m_gen = pmap_delayed_invl_genp(m);
1139 while (*m_gen > pmap_invl_gen) {
1140 #ifdef PV_STATS
1141 if (!accounted) {
1142 counter_u64_add(invl_wait, 1);
1143 accounted = true;
1144 }
1145 #endif
1146 pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1147 }
1148 }
1149
1150 static void
pmap_delayed_invl_wait_u(vm_page_t m)1151 pmap_delayed_invl_wait_u(vm_page_t m)
1152 {
1153 u_long *m_gen;
1154 struct lock_delay_arg lda;
1155 bool fast;
1156
1157 fast = true;
1158 m_gen = pmap_delayed_invl_genp(m);
1159 lock_delay_arg_init(&lda, &di_delay);
1160 while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1161 if (fast || !pmap_invl_callout_inited) {
1162 PV_STAT(counter_u64_add(invl_wait, 1));
1163 lock_delay(&lda);
1164 fast = false;
1165 } else {
1166 /*
1167 * The page's invalidation generation number
1168 * is still below the current thread's number.
1169 * Prepare to block so that we do not waste
1170 * CPU cycles or worse, suffer livelock.
1171 *
1172 * Since it is impossible to block without
1173 * racing with pmap_delayed_invl_finish_u(),
1174 * prepare for the race by incrementing
1175 * pmap_invl_waiters and arming a 1-tick
1176 * callout which will unblock us if we lose
1177 * the race.
1178 */
1179 atomic_add_int(&pmap_invl_waiters, 1);
1180
1181 /*
1182 * Re-check the current thread's invalidation
1183 * generation after incrementing
1184 * pmap_invl_waiters, so that there is no race
1185 * with pmap_delayed_invl_finish_u() setting
1186 * the page generation and checking
1187 * pmap_invl_waiters. The only race allowed
1188 * is for a missed unblock, which is handled
1189 * by the callout.
1190 */
1191 if (*m_gen >
1192 atomic_load_long(&pmap_invl_gen_head.gen)) {
1193 callout_reset(&pmap_invl_callout, 1,
1194 pmap_delayed_invl_callout_func, NULL);
1195 PV_STAT(counter_u64_add(invl_wait_slow, 1));
1196 pmap_delayed_invl_wait_block(m_gen,
1197 &pmap_invl_gen_head.gen);
1198 }
1199 atomic_add_int(&pmap_invl_waiters, -1);
1200 }
1201 }
1202 }
1203
1204 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1205 {
1206
1207 return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1208 pmap_thread_init_invl_gen_u);
1209 }
1210
1211 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1212 {
1213
1214 return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1215 pmap_delayed_invl_start_u);
1216 }
1217
1218 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1219 {
1220
1221 return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1222 pmap_delayed_invl_finish_u);
1223 }
1224
1225 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1226 {
1227
1228 return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1229 pmap_delayed_invl_wait_u);
1230 }
1231
1232 /*
1233 * Mark the page m's PV list as participating in the current thread's
1234 * DI block. Any threads concurrently using m's PV list to remove or
1235 * restrict all mappings to m will wait for the current thread's DI
1236 * block to complete before proceeding.
1237 *
1238 * The function works by setting the DI generation number for m's PV
1239 * list to at least the DI generation number of the current thread.
1240 * This forces a caller of pmap_delayed_invl_wait() to block until
1241 * current thread calls pmap_delayed_invl_finish().
1242 */
1243 static void
pmap_delayed_invl_page(vm_page_t m)1244 pmap_delayed_invl_page(vm_page_t m)
1245 {
1246 u_long gen, *m_gen;
1247
1248 rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1249 gen = curthread->td_md.md_invl_gen.gen;
1250 if (gen == 0)
1251 return;
1252 m_gen = pmap_delayed_invl_genp(m);
1253 if (*m_gen < gen)
1254 *m_gen = gen;
1255 }
1256
1257 /*
1258 * Crashdump maps.
1259 */
1260 static caddr_t crashdumpmap;
1261
1262 /*
1263 * Internal flags for pmap_enter()'s helper functions.
1264 */
1265 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
1266 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
1267
1268 /*
1269 * Internal flags for pmap_mapdev_internal() and
1270 * pmap_change_props_locked().
1271 */
1272 #define MAPDEV_FLUSHCACHE 0x00000001 /* Flush cache after mapping. */
1273 #define MAPDEV_SETATTR 0x00000002 /* Modify existing attrs. */
1274 #define MAPDEV_ASSERTVALID 0x00000004 /* Assert mapping validity. */
1275
1276 TAILQ_HEAD(pv_chunklist, pv_chunk);
1277
1278 static void free_pv_chunk(struct pv_chunk *pc);
1279 static void free_pv_chunk_batch(struct pv_chunklist *batch);
1280 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
1281 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1282 static int popcnt_pc_map_pq(uint64_t *map);
1283 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1284 static void reserve_pv_entries(pmap_t pmap, int needed,
1285 struct rwlock **lockp);
1286 static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1287 struct rwlock **lockp);
1288 static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1289 u_int flags, struct rwlock **lockp);
1290 #if VM_NRESERVLEVEL > 0
1291 static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1292 struct rwlock **lockp);
1293 #endif
1294 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1295 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1296 vm_offset_t va);
1297
1298 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1299 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1300 vm_prot_t prot, int mode, int flags);
1301 static bool pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1302 static bool pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1303 vm_offset_t va, struct rwlock **lockp);
1304 static bool pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1305 vm_offset_t va, vm_page_t m);
1306 static int pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1307 vm_prot_t prot, struct rwlock **lockp);
1308 static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1309 u_int flags, vm_page_t m, struct rwlock **lockp);
1310 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1311 vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1312 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1313 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1314 bool allpte_PG_A_set);
1315 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1316 vm_offset_t eva);
1317 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1318 vm_offset_t eva);
1319 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1320 pd_entry_t pde);
1321 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1322 static vm_page_t pmap_large_map_getptp_unlocked(void);
1323 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1324 #if VM_NRESERVLEVEL > 0
1325 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1326 vm_page_t mpte, struct rwlock **lockp);
1327 #endif
1328 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1329 vm_prot_t prot);
1330 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1331 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1332 bool exec);
1333 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1334 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1335 static void pmap_pti_wire_pte(void *pte);
1336 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1337 bool remove_pt, struct spglist *free, struct rwlock **lockp);
1338 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1339 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1340 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1341 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1342 struct spglist *free);
1343 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1344 pd_entry_t *pde, struct spglist *free,
1345 struct rwlock **lockp);
1346 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1347 vm_page_t m, struct rwlock **lockp);
1348 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1349 pd_entry_t newpde);
1350 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1351
1352 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1353 struct rwlock **lockp);
1354 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1355 struct rwlock **lockp, vm_offset_t va);
1356 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1357 struct rwlock **lockp, vm_offset_t va);
1358 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1359 struct rwlock **lockp);
1360
1361 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1362 struct spglist *free);
1363 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1364
1365 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1366 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1367
1368 /********************/
1369 /* Inline functions */
1370 /********************/
1371
1372 /*
1373 * Return a non-clipped indexes for a given VA, which are page table
1374 * pages indexes at the corresponding level.
1375 */
1376 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1377 pmap_pde_pindex(vm_offset_t va)
1378 {
1379 return (va >> PDRSHIFT);
1380 }
1381
1382 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1383 pmap_pdpe_pindex(vm_offset_t va)
1384 {
1385 return (NUPDE + (va >> PDPSHIFT));
1386 }
1387
1388 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1389 pmap_pml4e_pindex(vm_offset_t va)
1390 {
1391 return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1392 }
1393
1394 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1395 pmap_pml5e_pindex(vm_offset_t va)
1396 {
1397 return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1398 }
1399
1400 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1401 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1402 {
1403
1404 MPASS(pmap_is_la57(pmap));
1405 return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1406 }
1407
1408 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1409 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1410 {
1411
1412 MPASS(pmap_is_la57(pmap));
1413 return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1414 }
1415
1416 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1417 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1418 {
1419 pml4_entry_t *pml4e;
1420
1421 /* XXX MPASS(pmap_is_la57(pmap); */
1422 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1423 return (&pml4e[pmap_pml4e_index(va)]);
1424 }
1425
1426 /* Return a pointer to the PML4 slot that corresponds to a VA */
1427 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1428 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1429 {
1430 pml5_entry_t *pml5e;
1431 pml4_entry_t *pml4e;
1432 pt_entry_t PG_V;
1433
1434 if (pmap_is_la57(pmap)) {
1435 pml5e = pmap_pml5e(pmap, va);
1436 PG_V = pmap_valid_bit(pmap);
1437 if ((*pml5e & PG_V) == 0)
1438 return (NULL);
1439 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1440 } else {
1441 pml4e = pmap->pm_pmltop;
1442 }
1443 return (&pml4e[pmap_pml4e_index(va)]);
1444 }
1445
1446 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1447 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1448 {
1449 MPASS(!pmap_is_la57(pmap));
1450 return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1451 }
1452
1453 /* Return a pointer to the PDP slot that corresponds to a VA */
1454 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1455 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1456 {
1457 pdp_entry_t *pdpe;
1458
1459 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1460 return (&pdpe[pmap_pdpe_index(va)]);
1461 }
1462
1463 /* Return a pointer to the PDP slot that corresponds to a VA */
1464 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1465 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1466 {
1467 pml4_entry_t *pml4e;
1468 pt_entry_t PG_V;
1469
1470 PG_V = pmap_valid_bit(pmap);
1471 pml4e = pmap_pml4e(pmap, va);
1472 if (pml4e == NULL || (*pml4e & PG_V) == 0)
1473 return (NULL);
1474 return (pmap_pml4e_to_pdpe(pml4e, va));
1475 }
1476
1477 /* Return a pointer to the PD slot that corresponds to a VA */
1478 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1479 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1480 {
1481 pd_entry_t *pde;
1482
1483 KASSERT((*pdpe & PG_PS) == 0,
1484 ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1485 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1486 return (&pde[pmap_pde_index(va)]);
1487 }
1488
1489 /* Return a pointer to the PD slot that corresponds to a VA */
1490 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1491 pmap_pde(pmap_t pmap, vm_offset_t va)
1492 {
1493 pdp_entry_t *pdpe;
1494 pt_entry_t PG_V;
1495
1496 PG_V = pmap_valid_bit(pmap);
1497 pdpe = pmap_pdpe(pmap, va);
1498 if (pdpe == NULL || (*pdpe & PG_V) == 0)
1499 return (NULL);
1500 KASSERT((*pdpe & PG_PS) == 0,
1501 ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1502 return (pmap_pdpe_to_pde(pdpe, va));
1503 }
1504
1505 /* Return a pointer to the PT slot that corresponds to a VA */
1506 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1507 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1508 {
1509 pt_entry_t *pte;
1510
1511 KASSERT((*pde & PG_PS) == 0,
1512 ("%s: pde %#lx is a leaf", __func__, *pde));
1513 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1514 return (&pte[pmap_pte_index(va)]);
1515 }
1516
1517 /* Return a pointer to the PT slot that corresponds to a VA */
1518 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1519 pmap_pte(pmap_t pmap, vm_offset_t va)
1520 {
1521 pd_entry_t *pde;
1522 pt_entry_t PG_V;
1523
1524 PG_V = pmap_valid_bit(pmap);
1525 pde = pmap_pde(pmap, va);
1526 if (pde == NULL || (*pde & PG_V) == 0)
1527 return (NULL);
1528 if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
1529 return ((pt_entry_t *)pde);
1530 return (pmap_pde_to_pte(pde, va));
1531 }
1532
1533 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1534 pmap_resident_count_adj(pmap_t pmap, int count)
1535 {
1536
1537 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1538 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1539 ("pmap %p resident count underflow %ld %d", pmap,
1540 pmap->pm_stats.resident_count, count));
1541 pmap->pm_stats.resident_count += count;
1542 }
1543
1544 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1545 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1546 {
1547 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1548 ("pmap %p resident count underflow %ld %d", pmap,
1549 pmap->pm_stats.resident_count, count));
1550 pmap->pm_stats.resident_count += count;
1551 }
1552
1553 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1554 pmap_pt_page_count_adj(pmap_t pmap, int count)
1555 {
1556 if (pmap == kernel_pmap)
1557 counter_u64_add(kernel_pt_page_count, count);
1558 else {
1559 if (pmap != NULL)
1560 pmap_resident_count_adj(pmap, count);
1561 counter_u64_add(user_pt_page_count, count);
1562 }
1563 }
1564
1565 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1566 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1567 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1568
1569 pt_entry_t *
vtopte(vm_offset_t va)1570 vtopte(vm_offset_t va)
1571 {
1572 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1573
1574 return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1575 }
1576
1577 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1578 NPML4EPGSHIFT)) - 1) << 3;
1579 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1580
1581 static __inline pd_entry_t *
vtopde(vm_offset_t va)1582 vtopde(vm_offset_t va)
1583 {
1584 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1585
1586 return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1587 }
1588
1589 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1590 allocpages(vm_paddr_t *firstaddr, int n)
1591 {
1592 u_int64_t ret;
1593
1594 ret = *firstaddr;
1595 bzero((void *)ret, n * PAGE_SIZE);
1596 *firstaddr += n * PAGE_SIZE;
1597 return (ret);
1598 }
1599
1600 CTASSERT(powerof2(NDMPML4E));
1601
1602 /* number of kernel PDP slots */
1603 #define NKPDPE(ptpgs) howmany(ptpgs, NPDEPG)
1604
1605 static void
nkpt_init(vm_paddr_t addr)1606 nkpt_init(vm_paddr_t addr)
1607 {
1608 int pt_pages;
1609
1610 #ifdef NKPT
1611 pt_pages = NKPT;
1612 #else
1613 pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1614 pt_pages += NKPDPE(pt_pages);
1615
1616 /*
1617 * Add some slop beyond the bare minimum required for bootstrapping
1618 * the kernel.
1619 *
1620 * This is quite important when allocating KVA for kernel modules.
1621 * The modules are required to be linked in the negative 2GB of
1622 * the address space. If we run out of KVA in this region then
1623 * pmap_growkernel() will need to allocate page table pages to map
1624 * the entire 512GB of KVA space which is an unnecessary tax on
1625 * physical memory.
1626 *
1627 * Secondly, device memory mapped as part of setting up the low-
1628 * level console(s) is taken from KVA, starting at virtual_avail.
1629 * This is because cninit() is called after pmap_bootstrap() but
1630 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1631 * is not uncommon.
1632 */
1633 pt_pages += 32; /* 64MB additional slop. */
1634 #endif
1635 nkpt = pt_pages;
1636 }
1637
1638 /*
1639 * Returns the proper write/execute permission for a physical page that is
1640 * part of the initial boot allocations.
1641 *
1642 * If the page has kernel text, it is marked as read-only. If the page has
1643 * kernel read-only data, it is marked as read-only/not-executable. If the
1644 * page has only read-write data, it is marked as read-write/not-executable.
1645 * If the page is below/above the kernel range, it is marked as read-write.
1646 *
1647 * This function operates on 2M pages, since we map the kernel space that
1648 * way.
1649 */
1650 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1651 bootaddr_rwx(vm_paddr_t pa)
1652 {
1653 /*
1654 * The kernel is loaded at a 2MB-aligned address, and memory below that
1655 * need not be executable. The .bss section is padded to a 2MB
1656 * boundary, so memory following the kernel need not be executable
1657 * either. Preloaded kernel modules have their mapping permissions
1658 * fixed up by the linker.
1659 */
1660 if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1661 pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1662 return (X86_PG_RW | pg_nx);
1663
1664 /*
1665 * The linker should ensure that the read-only and read-write
1666 * portions don't share the same 2M page, so this shouldn't
1667 * impact read-only data. However, in any case, any page with
1668 * read-write data needs to be read-write.
1669 */
1670 if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1671 return (X86_PG_RW | pg_nx);
1672
1673 /*
1674 * Mark any 2M page containing kernel text as read-only. Mark
1675 * other pages with read-only data as read-only and not executable.
1676 * (It is likely a small portion of the read-only data section will
1677 * be marked as read-only, but executable. This should be acceptable
1678 * since the read-only protection will keep the data from changing.)
1679 * Note that fixups to the .text section will still work until we
1680 * set CR0.WP.
1681 */
1682 if (pa < round_2mpage(kernphys + etext - KERNSTART))
1683 return (0);
1684 return (pg_nx);
1685 }
1686
1687 extern const char la57_trampoline[];
1688
1689 static void
pmap_bootstrap_la57(vm_paddr_t * firstaddr)1690 pmap_bootstrap_la57(vm_paddr_t *firstaddr)
1691 {
1692 void (*la57_tramp)(uint64_t pml5);
1693 pml5_entry_t *pt;
1694
1695 if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
1696 return;
1697 la57 = 1;
1698 TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
1699 if (!la57)
1700 return;
1701
1702 KPML5phys = allocpages(firstaddr, 1);
1703 KPML4phys = rcr3() & 0xfffff000; /* pml4 from loader must be < 4G */
1704
1705 pt = (pml5_entry_t *)KPML5phys;
1706 pt[0] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
1707 pt[NPML4EPG - 1] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A |
1708 X86_PG_M;
1709
1710 la57_tramp = (void (*)(uint64_t))((uintptr_t)la57_trampoline -
1711 KERNSTART + amd64_loadaddr());
1712 printf("Calling la57 trampoline at %p, KPML5phys %#lx ...",
1713 la57_tramp, KPML5phys);
1714 la57_tramp(KPML5phys);
1715 printf(" alive in la57 mode\n");
1716 }
1717
1718 static void
create_pagetables(vm_paddr_t * firstaddr)1719 create_pagetables(vm_paddr_t *firstaddr)
1720 {
1721 pd_entry_t *pd_p;
1722 pdp_entry_t *pdp_p;
1723 pml4_entry_t *p4_p;
1724 pml5_entry_t *p5_p;
1725 uint64_t DMPDkernphys;
1726 vm_paddr_t pax;
1727 #ifdef KASAN
1728 pt_entry_t *pt_p;
1729 uint64_t KASANPDphys, KASANPTphys, KASANphys;
1730 vm_offset_t kasankernbase;
1731 int kasankpdpi, kasankpdi, nkasanpte;
1732 #endif
1733 int i, j, ndm1g, nkpdpe, nkdmpde;
1734
1735 TSENTER();
1736 /* Allocate page table pages for the direct map */
1737 ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1738 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
1739 ndmpdp = 4;
1740 ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1741 if (ndmpdpphys > NDMPML4E) {
1742 /*
1743 * Each NDMPML4E allows 512 GB, so limit to that,
1744 * and then readjust ndmpdp and ndmpdpphys.
1745 */
1746 printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1747 Maxmem = atop(NDMPML4E * NBPML4);
1748 ndmpdpphys = NDMPML4E;
1749 ndmpdp = NDMPML4E * NPDEPG;
1750 }
1751 DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1752 ndm1g = 0;
1753 if ((amd_feature & AMDID_PAGE1GB) != 0) {
1754 /*
1755 * Calculate the number of 1G pages that will fully fit in
1756 * Maxmem.
1757 */
1758 ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1759
1760 /*
1761 * Allocate 2M pages for the kernel. These will be used in
1762 * place of the one or more 1G pages from ndm1g that maps
1763 * kernel memory into DMAP.
1764 */
1765 nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1766 kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1767 DMPDkernphys = allocpages(firstaddr, nkdmpde);
1768 }
1769 if (ndm1g < ndmpdp)
1770 DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1771 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1772
1773 /* Allocate pages. */
1774 KPML4phys = allocpages(firstaddr, 1);
1775 KPDPphys = allocpages(firstaddr, NKPML4E);
1776 #ifdef KASAN
1777 KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1778 KASANPDphys = allocpages(firstaddr, 1);
1779 #endif
1780 #ifdef KMSAN
1781 /*
1782 * The KMSAN shadow maps are initially left unpopulated, since there is
1783 * no need to shadow memory above KERNBASE.
1784 */
1785 KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1786 KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1787 #endif
1788
1789 /*
1790 * Allocate the initial number of kernel page table pages required to
1791 * bootstrap. We defer this until after all memory-size dependent
1792 * allocations are done (e.g. direct map), so that we don't have to
1793 * build in too much slop in our estimate.
1794 *
1795 * Note that when NKPML4E > 1, we have an empty page underneath
1796 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1797 * pages. (pmap_enter requires a PD page to exist for each KPML4E.)
1798 */
1799 nkpt_init(*firstaddr);
1800 nkpdpe = NKPDPE(nkpt);
1801
1802 KPTphys = allocpages(firstaddr, nkpt);
1803 KPDphys = allocpages(firstaddr, nkpdpe);
1804
1805 #ifdef KASAN
1806 nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1807 KASANPTphys = allocpages(firstaddr, nkasanpte);
1808 KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1809 #endif
1810
1811 /*
1812 * Connect the zero-filled PT pages to their PD entries. This
1813 * implicitly maps the PT pages at their correct locations within
1814 * the PTmap.
1815 */
1816 pd_p = (pd_entry_t *)KPDphys;
1817 for (i = 0; i < nkpt; i++)
1818 pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1819
1820 /*
1821 * Map from start of the kernel in physical memory (staging
1822 * area) to the end of loader preallocated memory using 2MB
1823 * pages. This replaces some of the PD entries created above.
1824 * For compatibility, identity map 2M at the start.
1825 */
1826 pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1827 X86_PG_RW | pg_nx;
1828 for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1829 /* Preset PG_M and PG_A because demotion expects it. */
1830 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1831 X86_PG_A | bootaddr_rwx(pax);
1832 }
1833
1834 /*
1835 * Because we map the physical blocks in 2M pages, adjust firstaddr
1836 * to record the physical blocks we've actually mapped into kernel
1837 * virtual address space.
1838 */
1839 if (*firstaddr < round_2mpage(KERNend))
1840 *firstaddr = round_2mpage(KERNend);
1841
1842 /* And connect up the PD to the PDP (leaving room for L4 pages) */
1843 pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1844 for (i = 0; i < nkpdpe; i++)
1845 pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1846
1847 #ifdef KASAN
1848 kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1849 kasankpdpi = pmap_pdpe_index(kasankernbase);
1850 kasankpdi = pmap_pde_index(kasankernbase);
1851
1852 pdp_p = (pdp_entry_t *)KASANPDPphys;
1853 pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1854
1855 pd_p = (pd_entry_t *)KASANPDphys;
1856 for (i = 0; i < nkasanpte; i++)
1857 pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1858 X86_PG_V | pg_nx;
1859
1860 pt_p = (pt_entry_t *)KASANPTphys;
1861 for (i = 0; i < nkasanpte * NPTEPG; i++)
1862 pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1863 X86_PG_M | X86_PG_A | pg_nx;
1864 #endif
1865
1866 /*
1867 * Now, set up the direct map region using 2MB and/or 1GB pages. If
1868 * the end of physical memory is not aligned to a 1GB page boundary,
1869 * then the residual physical memory is mapped with 2MB pages. Later,
1870 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1871 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1872 * that are partially used.
1873 */
1874 pd_p = (pd_entry_t *)DMPDphys;
1875 for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1876 pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1877 /* Preset PG_M and PG_A because demotion expects it. */
1878 pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1879 X86_PG_M | X86_PG_A | pg_nx;
1880 }
1881 pdp_p = (pdp_entry_t *)DMPDPphys;
1882 for (i = 0; i < ndm1g; i++) {
1883 pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1884 /* Preset PG_M and PG_A because demotion expects it. */
1885 pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1886 X86_PG_M | X86_PG_A | pg_nx;
1887 }
1888 for (j = 0; i < ndmpdp; i++, j++) {
1889 pdp_p[i] = DMPDphys + ptoa(j);
1890 pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1891 }
1892
1893 /*
1894 * Instead of using a 1G page for the memory containing the kernel,
1895 * use 2M pages with read-only and no-execute permissions. (If using 1G
1896 * pages, this will partially overwrite the PDPEs above.)
1897 */
1898 if (ndm1g > 0) {
1899 pd_p = (pd_entry_t *)DMPDkernphys;
1900 for (i = 0, pax = rounddown2(kernphys, NBPDP);
1901 i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1902 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1903 X86_PG_A | pg_nx | bootaddr_rwx(pax);
1904 }
1905 j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1906 for (i = 0; i < nkdmpde; i++) {
1907 pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1908 X86_PG_RW | X86_PG_V | pg_nx;
1909 }
1910 }
1911
1912 /* And recursively map PML4 to itself in order to get PTmap */
1913 p4_p = (pml4_entry_t *)KPML4phys;
1914 p4_p[PML4PML4I] = KPML4phys;
1915 p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1916
1917 #ifdef KASAN
1918 /* Connect the KASAN shadow map slots up to the PML4. */
1919 for (i = 0; i < NKASANPML4E; i++) {
1920 p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1921 p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1922 }
1923 #endif
1924
1925 #ifdef KMSAN
1926 /* Connect the KMSAN shadow map slots up to the PML4. */
1927 for (i = 0; i < NKMSANSHADPML4E; i++) {
1928 p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1929 p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1930 }
1931
1932 /* Connect the KMSAN origin map slots up to the PML4. */
1933 for (i = 0; i < NKMSANORIGPML4E; i++) {
1934 p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1935 p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1936 }
1937 #endif
1938
1939 /* Connect the Direct Map slots up to the PML4. */
1940 for (i = 0; i < ndmpdpphys; i++) {
1941 p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1942 p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1943 }
1944
1945 /* Connect the KVA slots up to the PML4 */
1946 for (i = 0; i < NKPML4E; i++) {
1947 p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1948 p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1949 }
1950
1951 kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1952
1953 if (la57) {
1954 /* XXXKIB bootstrap KPML5phys page is lost */
1955 KPML5phys = allocpages(firstaddr, 1);
1956 for (i = 0, p5_p = (pml5_entry_t *)KPML5phys; i < NPML5EPG;
1957 i++) {
1958 if (i == PML5PML5I) {
1959 /*
1960 * Recursively map PML5 to itself in
1961 * order to get PTmap and PDmap.
1962 */
1963 p5_p[i] = KPML5phys | X86_PG_RW | X86_PG_A |
1964 X86_PG_M | X86_PG_V | pg_nx;
1965 } else if (i == pmap_pml5e_index(UPT_MAX_ADDRESS)) {
1966 p5_p[i] = KPML4phys | X86_PG_RW | X86_PG_A |
1967 X86_PG_M | X86_PG_V;
1968 } else {
1969 p5_p[i] = 0;
1970 }
1971 }
1972 }
1973 TSEXIT();
1974 }
1975
1976 /*
1977 * Bootstrap the system enough to run with virtual memory.
1978 *
1979 * On amd64 this is called after mapping has already been enabled
1980 * and just syncs the pmap module with what has already been done.
1981 * [We can't call it easily with mapping off since the kernel is not
1982 * mapped with PA == VA, hence we would have to relocate every address
1983 * from the linked base (virtual) address "KERNBASE" to the actual
1984 * (physical) address starting relative to 0]
1985 */
1986 void
pmap_bootstrap(vm_paddr_t * firstaddr)1987 pmap_bootstrap(vm_paddr_t *firstaddr)
1988 {
1989 vm_offset_t va;
1990 pt_entry_t *pte, *pcpu_pte;
1991 struct region_descriptor r_gdt;
1992 uint64_t cr4, pcpu0_phys;
1993 u_long res;
1994 int i;
1995
1996 TSENTER();
1997 KERNend = *firstaddr;
1998 res = atop(KERNend - (vm_paddr_t)kernphys);
1999
2000 if (!pti)
2001 pg_g = X86_PG_G;
2002
2003 /*
2004 * Create an initial set of page tables to run the kernel in.
2005 */
2006 pmap_bootstrap_la57(firstaddr);
2007 create_pagetables(firstaddr);
2008
2009 pcpu0_phys = allocpages(firstaddr, 1);
2010
2011 /*
2012 * Add a physical memory segment (vm_phys_seg) corresponding to the
2013 * preallocated kernel page table pages so that vm_page structures
2014 * representing these pages will be created. The vm_page structures
2015 * are required for promotion of the corresponding kernel virtual
2016 * addresses to superpage mappings.
2017 */
2018 vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
2019
2020 /*
2021 * Account for the virtual addresses mapped by create_pagetables().
2022 */
2023 virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
2024 (vm_paddr_t)kernphys);
2025 virtual_end = VM_MAX_KERNEL_ADDRESS;
2026
2027 /*
2028 * Enable PG_G global pages, then switch to the kernel page
2029 * table from the bootstrap page table. After the switch, it
2030 * is possible to enable SMEP and SMAP since PG_U bits are
2031 * correct now.
2032 */
2033 cr4 = rcr4();
2034 cr4 |= CR4_PGE;
2035 load_cr4(cr4);
2036 load_cr3(la57 ? KPML5phys : KPML4phys);
2037 if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
2038 cr4 |= CR4_SMEP;
2039 if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
2040 cr4 |= CR4_SMAP;
2041 load_cr4(cr4);
2042
2043 /*
2044 * Initialize the kernel pmap (which is statically allocated).
2045 * Count bootstrap data as being resident in case any of this data is
2046 * later unmapped (using pmap_remove()) and freed.
2047 */
2048 PMAP_LOCK_INIT(kernel_pmap);
2049 if (la57) {
2050 vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2051 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2052 PTmap = (vm_offset_t)P5Tmap;
2053 vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2054 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2055 PDmap = (vm_offset_t)P5Dmap;
2056 kernel_pmap->pm_pmltop = (void *)PHYS_TO_DMAP(KPML5phys);
2057 kernel_pmap->pm_cr3 = KPML5phys;
2058 pmap_pt_page_count_adj(kernel_pmap, 1); /* top-level page */
2059 } else {
2060 kernel_pmap->pm_pmltop = kernel_pml4;
2061 kernel_pmap->pm_cr3 = KPML4phys;
2062 }
2063 kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
2064 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
2065 kernel_pmap->pm_stats.resident_count = res;
2066 vm_radix_init(&kernel_pmap->pm_root);
2067 kernel_pmap->pm_flags = pmap_flags;
2068 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
2069 rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
2070 pkru_free_range, kernel_pmap, M_NOWAIT);
2071 }
2072
2073 /*
2074 * The kernel pmap is always active on all CPUs. Once CPUs are
2075 * enumerated, the mask will be set equal to all_cpus.
2076 */
2077 CPU_FILL(&kernel_pmap->pm_active);
2078
2079 /*
2080 * Initialize the TLB invalidations generation number lock.
2081 */
2082 mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2083
2084 /*
2085 * Reserve some special page table entries/VA space for temporary
2086 * mapping of pages.
2087 */
2088 #define SYSMAP(c, p, v, n) \
2089 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2090
2091 va = virtual_avail;
2092 pte = vtopte(va);
2093
2094 /*
2095 * Crashdump maps. The first page is reused as CMAP1 for the
2096 * memory test.
2097 */
2098 SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2099 CADDR1 = crashdumpmap;
2100
2101 SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2102 virtual_avail = va;
2103
2104 /*
2105 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2106 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2107 * number of CPUs and NUMA affinity.
2108 */
2109 pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2110 X86_PG_M | X86_PG_A;
2111 for (i = 1; i < MAXCPU; i++)
2112 pcpu_pte[i] = 0;
2113
2114 /*
2115 * Re-initialize PCPU area for BSP after switching.
2116 * Make hardware use gdt and common_tss from the new PCPU.
2117 * Also clears the usage of temporary gdt during switch to
2118 * LA57 paging.
2119 */
2120 STAILQ_INIT(&cpuhead);
2121 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2122 pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2123 amd64_bsp_pcpu_init1(&__pcpu[0]);
2124 amd64_bsp_ist_init(&__pcpu[0]);
2125 __pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2126 IOPERM_BITMAP_SIZE;
2127 memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2128 sizeof(struct user_segment_descriptor));
2129 gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2130 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2131 (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2132 r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2133 r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2134 lgdt(&r_gdt);
2135 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2136 ltr(GSEL(GPROC0_SEL, SEL_KPL));
2137 __pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2138 __pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2139
2140 /*
2141 * Initialize the PAT MSR.
2142 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2143 * side-effect, invalidates stale PG_G TLB entries that might
2144 * have been created in our pre-boot environment.
2145 */
2146 pmap_init_pat();
2147
2148 /* Initialize TLB Context Id. */
2149 if (pmap_pcid_enabled) {
2150 kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2151 offsetof(struct pcpu, pc_kpmap_store);
2152
2153 PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2154 PCPU_SET(kpmap_store.pm_gen, 1);
2155
2156 /*
2157 * PMAP_PCID_KERN + 1 is used for initialization of
2158 * proc0 pmap. The pmap' pcid state might be used by
2159 * EFIRT entry before first context switch, so it
2160 * needs to be valid.
2161 */
2162 PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2163 PCPU_SET(pcid_gen, 1);
2164
2165 /*
2166 * pcpu area for APs is zeroed during AP startup.
2167 * pc_pcid_next and pc_pcid_gen are initialized by AP
2168 * during pcpu setup.
2169 */
2170 load_cr4(rcr4() | CR4_PCIDE);
2171 }
2172 TSEXIT();
2173 }
2174
2175 /*
2176 * Setup the PAT MSR.
2177 */
2178 void
pmap_init_pat(void)2179 pmap_init_pat(void)
2180 {
2181 uint64_t pat_msr;
2182 u_long cr0, cr4;
2183 int i;
2184
2185 /* Bail if this CPU doesn't implement PAT. */
2186 if ((cpu_feature & CPUID_PAT) == 0)
2187 panic("no PAT??");
2188
2189 /* Set default PAT index table. */
2190 for (i = 0; i < PAT_INDEX_SIZE; i++)
2191 pat_index[i] = -1;
2192 pat_index[PAT_WRITE_BACK] = 0;
2193 pat_index[PAT_WRITE_THROUGH] = 1;
2194 pat_index[PAT_UNCACHEABLE] = 3;
2195 pat_index[PAT_WRITE_COMBINING] = 6;
2196 pat_index[PAT_WRITE_PROTECTED] = 5;
2197 pat_index[PAT_UNCACHED] = 2;
2198
2199 /*
2200 * Initialize default PAT entries.
2201 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2202 * Program 5 and 6 as WP and WC.
2203 *
2204 * Leave 4 and 7 as WB and UC. Note that a recursive page table
2205 * mapping for a 2M page uses a PAT value with the bit 3 set due
2206 * to its overload with PG_PS.
2207 */
2208 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2209 PAT_VALUE(1, PAT_WRITE_THROUGH) |
2210 PAT_VALUE(2, PAT_UNCACHED) |
2211 PAT_VALUE(3, PAT_UNCACHEABLE) |
2212 PAT_VALUE(4, PAT_WRITE_BACK) |
2213 PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2214 PAT_VALUE(6, PAT_WRITE_COMBINING) |
2215 PAT_VALUE(7, PAT_UNCACHEABLE);
2216
2217 /* Disable PGE. */
2218 cr4 = rcr4();
2219 load_cr4(cr4 & ~CR4_PGE);
2220
2221 /* Disable caches (CD = 1, NW = 0). */
2222 cr0 = rcr0();
2223 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2224
2225 /* Flushes caches and TLBs. */
2226 wbinvd();
2227 invltlb();
2228
2229 /* Update PAT and index table. */
2230 wrmsr(MSR_PAT, pat_msr);
2231
2232 /* Flush caches and TLBs again. */
2233 wbinvd();
2234 invltlb();
2235
2236 /* Restore caches and PGE. */
2237 load_cr0(cr0);
2238 load_cr4(cr4);
2239 }
2240
2241 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2242 pmap_page_alloc_below_4g(bool zeroed)
2243 {
2244 return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2245 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2246 }
2247
2248 /*
2249 * Initialize a vm_page's machine-dependent fields.
2250 */
2251 void
pmap_page_init(vm_page_t m)2252 pmap_page_init(vm_page_t m)
2253 {
2254
2255 TAILQ_INIT(&m->md.pv_list);
2256 m->md.pat_mode = PAT_WRITE_BACK;
2257 }
2258
2259 static int pmap_allow_2m_x_ept;
2260 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2261 &pmap_allow_2m_x_ept, 0,
2262 "Allow executable superpage mappings in EPT");
2263
2264 void
pmap_allow_2m_x_ept_recalculate(void)2265 pmap_allow_2m_x_ept_recalculate(void)
2266 {
2267 /*
2268 * SKL002, SKL012S. Since the EPT format is only used by
2269 * Intel CPUs, the vendor check is merely a formality.
2270 */
2271 if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2272 (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2273 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2274 (CPUID_TO_MODEL(cpu_id) == 0x26 || /* Atoms */
2275 CPUID_TO_MODEL(cpu_id) == 0x27 ||
2276 CPUID_TO_MODEL(cpu_id) == 0x35 ||
2277 CPUID_TO_MODEL(cpu_id) == 0x36 ||
2278 CPUID_TO_MODEL(cpu_id) == 0x37 ||
2279 CPUID_TO_MODEL(cpu_id) == 0x86 ||
2280 CPUID_TO_MODEL(cpu_id) == 0x1c ||
2281 CPUID_TO_MODEL(cpu_id) == 0x4a ||
2282 CPUID_TO_MODEL(cpu_id) == 0x4c ||
2283 CPUID_TO_MODEL(cpu_id) == 0x4d ||
2284 CPUID_TO_MODEL(cpu_id) == 0x5a ||
2285 CPUID_TO_MODEL(cpu_id) == 0x5c ||
2286 CPUID_TO_MODEL(cpu_id) == 0x5d ||
2287 CPUID_TO_MODEL(cpu_id) == 0x5f ||
2288 CPUID_TO_MODEL(cpu_id) == 0x6e ||
2289 CPUID_TO_MODEL(cpu_id) == 0x7a ||
2290 CPUID_TO_MODEL(cpu_id) == 0x57 || /* Knights */
2291 CPUID_TO_MODEL(cpu_id) == 0x85))))
2292 pmap_allow_2m_x_ept = 1;
2293 #ifndef BURN_BRIDGES
2294 TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2295 #endif
2296 TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2297 }
2298
2299 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2300 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2301 {
2302
2303 return (pmap->pm_type != PT_EPT || !executable ||
2304 !pmap_allow_2m_x_ept);
2305 }
2306
2307 #ifdef NUMA
2308 static void
pmap_init_pv_table(void)2309 pmap_init_pv_table(void)
2310 {
2311 struct pmap_large_md_page *pvd;
2312 vm_size_t s;
2313 long start, end, highest, pv_npg;
2314 int domain, i, j, pages;
2315
2316 /*
2317 * For correctness we depend on the size being evenly divisible into a
2318 * page. As a tradeoff between performance and total memory use, the
2319 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2320 * avoids false-sharing, but not being 128 bytes potentially allows for
2321 * avoidable traffic due to adjacent cacheline prefetcher.
2322 *
2323 * Assert the size so that accidental changes fail to compile.
2324 */
2325 CTASSERT((sizeof(*pvd) == 64));
2326
2327 /*
2328 * Calculate the size of the array.
2329 */
2330 pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2331 pv_npg = howmany(pmap_last_pa, NBPDR);
2332 s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2333 s = round_page(s);
2334 pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2335 if (pv_table == NULL)
2336 panic("%s: kva_alloc failed\n", __func__);
2337
2338 /*
2339 * Iterate physical segments to allocate space for respective pages.
2340 */
2341 highest = -1;
2342 s = 0;
2343 for (i = 0; i < vm_phys_nsegs; i++) {
2344 end = vm_phys_segs[i].end / NBPDR;
2345 domain = vm_phys_segs[i].domain;
2346
2347 if (highest >= end)
2348 continue;
2349
2350 start = highest + 1;
2351 pvd = &pv_table[start];
2352
2353 pages = end - start + 1;
2354 s = round_page(pages * sizeof(*pvd));
2355 highest = start + (s / sizeof(*pvd)) - 1;
2356
2357 for (j = 0; j < s; j += PAGE_SIZE) {
2358 vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2359 if (m == NULL)
2360 panic("failed to allocate PV table page");
2361 pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2362 }
2363
2364 for (j = 0; j < s / sizeof(*pvd); j++) {
2365 rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2366 TAILQ_INIT(&pvd->pv_page.pv_list);
2367 pvd->pv_page.pv_gen = 0;
2368 pvd->pv_page.pat_mode = 0;
2369 pvd->pv_invl_gen = 0;
2370 pvd++;
2371 }
2372 }
2373 pvd = &pv_dummy_large;
2374 rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2375 TAILQ_INIT(&pvd->pv_page.pv_list);
2376 pvd->pv_page.pv_gen = 0;
2377 pvd->pv_page.pat_mode = 0;
2378 pvd->pv_invl_gen = 0;
2379 }
2380 #else
2381 static void
pmap_init_pv_table(void)2382 pmap_init_pv_table(void)
2383 {
2384 vm_size_t s;
2385 long i, pv_npg;
2386
2387 /*
2388 * Initialize the pool of pv list locks.
2389 */
2390 for (i = 0; i < NPV_LIST_LOCKS; i++)
2391 rw_init(&pv_list_locks[i], "pmap pv list");
2392
2393 /*
2394 * Calculate the size of the pv head table for superpages.
2395 */
2396 pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2397
2398 /*
2399 * Allocate memory for the pv head table for superpages.
2400 */
2401 s = (vm_size_t)pv_npg * sizeof(struct md_page);
2402 s = round_page(s);
2403 pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2404 for (i = 0; i < pv_npg; i++)
2405 TAILQ_INIT(&pv_table[i].pv_list);
2406 TAILQ_INIT(&pv_dummy.pv_list);
2407 }
2408 #endif
2409
2410 /*
2411 * Initialize the pmap module.
2412 *
2413 * Called by vm_mem_init(), to initialize any structures that the pmap
2414 * system needs to map virtual memory.
2415 */
2416 void
pmap_init(void)2417 pmap_init(void)
2418 {
2419 struct pmap_preinit_mapping *ppim;
2420 vm_page_t m, mpte;
2421 int error, i, ret, skz63;
2422
2423 /* L1TF, reserve page @0 unconditionally */
2424 vm_page_blacklist_add(0, bootverbose);
2425
2426 /* Detect bare-metal Skylake Server and Skylake-X. */
2427 if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2428 CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2429 /*
2430 * Skylake-X errata SKZ63. Processor May Hang When
2431 * Executing Code In an HLE Transaction Region between
2432 * 40000000H and 403FFFFFH.
2433 *
2434 * Mark the pages in the range as preallocated. It
2435 * seems to be impossible to distinguish between
2436 * Skylake Server and Skylake X.
2437 */
2438 skz63 = 1;
2439 TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2440 if (skz63 != 0) {
2441 if (bootverbose)
2442 printf("SKZ63: skipping 4M RAM starting "
2443 "at physical 1G\n");
2444 for (i = 0; i < atop(0x400000); i++) {
2445 ret = vm_page_blacklist_add(0x40000000 +
2446 ptoa(i), false);
2447 if (!ret && bootverbose)
2448 printf("page at %#x already used\n",
2449 0x40000000 + ptoa(i));
2450 }
2451 }
2452 }
2453
2454 /* IFU */
2455 pmap_allow_2m_x_ept_recalculate();
2456
2457 /*
2458 * Initialize the vm page array entries for the kernel pmap's
2459 * page table pages.
2460 */
2461 PMAP_LOCK(kernel_pmap);
2462 for (i = 0; i < nkpt; i++) {
2463 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2464 KASSERT(mpte >= vm_page_array &&
2465 mpte < &vm_page_array[vm_page_array_size],
2466 ("pmap_init: page table page is out of range"));
2467 mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2468 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2469 mpte->ref_count = 1;
2470
2471 /*
2472 * Collect the page table pages that were replaced by a 2MB
2473 * page in create_pagetables(). They are zero filled.
2474 */
2475 if ((i == 0 ||
2476 kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2477 pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2478 panic("pmap_init: pmap_insert_pt_page failed");
2479 }
2480 PMAP_UNLOCK(kernel_pmap);
2481 vm_wire_add(nkpt);
2482
2483 /*
2484 * If the kernel is running on a virtual machine, then it must assume
2485 * that MCA is enabled by the hypervisor. Moreover, the kernel must
2486 * be prepared for the hypervisor changing the vendor and family that
2487 * are reported by CPUID. Consequently, the workaround for AMD Family
2488 * 10h Erratum 383 is enabled if the processor's feature set does not
2489 * include at least one feature that is only supported by older Intel
2490 * or newer AMD processors.
2491 */
2492 if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2493 (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2494 CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2495 AMDID2_FMA4)) == 0)
2496 workaround_erratum383 = 1;
2497
2498 /*
2499 * Are large page mappings enabled?
2500 */
2501 TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2502 if (pg_ps_enabled) {
2503 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2504 ("pmap_init: can't assign to pagesizes[1]"));
2505 pagesizes[1] = NBPDR;
2506 if ((amd_feature & AMDID_PAGE1GB) != 0) {
2507 KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2508 ("pmap_init: can't assign to pagesizes[2]"));
2509 pagesizes[2] = NBPDP;
2510 }
2511 }
2512
2513 /*
2514 * Initialize pv chunk lists.
2515 */
2516 for (i = 0; i < PMAP_MEMDOM; i++) {
2517 mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2518 TAILQ_INIT(&pv_chunks[i].pvc_list);
2519 }
2520 pmap_init_pv_table();
2521
2522 pmap_initialized = 1;
2523 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2524 ppim = pmap_preinit_mapping + i;
2525 if (ppim->va == 0)
2526 continue;
2527 /* Make the direct map consistent */
2528 if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2529 (void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2530 ppim->sz, ppim->mode);
2531 }
2532 if (!bootverbose)
2533 continue;
2534 printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2535 ppim->pa, ppim->va, ppim->sz, ppim->mode);
2536 }
2537
2538 mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2539 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2540 (vmem_addr_t *)&qframe);
2541 if (error != 0)
2542 panic("qframe allocation failed");
2543
2544 lm_ents = 8;
2545 TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2546 if (lm_ents > LMEPML4I - LMSPML4I + 1)
2547 lm_ents = LMEPML4I - LMSPML4I + 1;
2548 #ifdef KMSAN
2549 if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2550 printf(
2551 "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2552 lm_ents, KMSANORIGPML4I - LMSPML4I);
2553 lm_ents = KMSANORIGPML4I - LMSPML4I;
2554 }
2555 #endif
2556 if (bootverbose)
2557 printf("pmap: large map %u PML4 slots (%lu GB)\n",
2558 lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2559 if (lm_ents != 0) {
2560 large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2561 (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2562 if (large_vmem == NULL) {
2563 printf("pmap: cannot create large map\n");
2564 lm_ents = 0;
2565 }
2566 for (i = 0; i < lm_ents; i++) {
2567 m = pmap_large_map_getptp_unlocked();
2568 /* XXXKIB la57 */
2569 kernel_pml4[LMSPML4I + i] = X86_PG_V |
2570 X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2571 VM_PAGE_TO_PHYS(m);
2572 }
2573 }
2574 }
2575
2576 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2577 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2578 "Maximum number of PML4 entries for use by large map (tunable). "
2579 "Each entry corresponds to 512GB of address space.");
2580
2581 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2582 "2MB page mapping counters");
2583
2584 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2585 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2586 CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2587
2588 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2589 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2590 &pmap_pde_mappings, "2MB page mappings");
2591
2592 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2593 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2594 &pmap_pde_p_failures, "2MB page promotion failures");
2595
2596 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2597 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2598 &pmap_pde_promotions, "2MB page promotions");
2599
2600 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2601 "1GB page mapping counters");
2602
2603 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2604 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2605 &pmap_pdpe_demotions, "1GB page demotions");
2606
2607 /***************************************************
2608 * Low level helper routines.....
2609 ***************************************************/
2610
2611 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2612 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2613 {
2614 int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2615
2616 switch (pmap->pm_type) {
2617 case PT_X86:
2618 case PT_RVI:
2619 /* Verify that both PAT bits are not set at the same time */
2620 KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2621 ("Invalid PAT bits in entry %#lx", entry));
2622
2623 /* Swap the PAT bits if one of them is set */
2624 if ((entry & x86_pat_bits) != 0)
2625 entry ^= x86_pat_bits;
2626 break;
2627 case PT_EPT:
2628 /*
2629 * Nothing to do - the memory attributes are represented
2630 * the same way for regular pages and superpages.
2631 */
2632 break;
2633 default:
2634 panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2635 }
2636
2637 return (entry);
2638 }
2639
2640 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2641 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2642 {
2643
2644 return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2645 pat_index[(int)mode] >= 0);
2646 }
2647
2648 /*
2649 * Determine the appropriate bits to set in a PTE or PDE for a specified
2650 * caching mode.
2651 */
2652 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2653 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2654 {
2655 int cache_bits, pat_flag, pat_idx;
2656
2657 if (!pmap_is_valid_memattr(pmap, mode))
2658 panic("Unknown caching mode %d\n", mode);
2659
2660 switch (pmap->pm_type) {
2661 case PT_X86:
2662 case PT_RVI:
2663 /* The PAT bit is different for PTE's and PDE's. */
2664 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2665
2666 /* Map the caching mode to a PAT index. */
2667 pat_idx = pat_index[mode];
2668
2669 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2670 cache_bits = 0;
2671 if (pat_idx & 0x4)
2672 cache_bits |= pat_flag;
2673 if (pat_idx & 0x2)
2674 cache_bits |= PG_NC_PCD;
2675 if (pat_idx & 0x1)
2676 cache_bits |= PG_NC_PWT;
2677 break;
2678
2679 case PT_EPT:
2680 cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2681 break;
2682
2683 default:
2684 panic("unsupported pmap type %d", pmap->pm_type);
2685 }
2686
2687 return (cache_bits);
2688 }
2689
2690 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2691 pmap_cache_mask(pmap_t pmap, bool is_pde)
2692 {
2693 int mask;
2694
2695 switch (pmap->pm_type) {
2696 case PT_X86:
2697 case PT_RVI:
2698 mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2699 break;
2700 case PT_EPT:
2701 mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2702 break;
2703 default:
2704 panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2705 }
2706
2707 return (mask);
2708 }
2709
2710 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2711 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2712 {
2713 int pat_flag, pat_idx;
2714
2715 pat_idx = 0;
2716 switch (pmap->pm_type) {
2717 case PT_X86:
2718 case PT_RVI:
2719 /* The PAT bit is different for PTE's and PDE's. */
2720 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2721
2722 if ((pte & pat_flag) != 0)
2723 pat_idx |= 0x4;
2724 if ((pte & PG_NC_PCD) != 0)
2725 pat_idx |= 0x2;
2726 if ((pte & PG_NC_PWT) != 0)
2727 pat_idx |= 0x1;
2728 break;
2729 case PT_EPT:
2730 if ((pte & EPT_PG_IGNORE_PAT) != 0)
2731 panic("EPT PTE %#lx has no PAT memory type", pte);
2732 pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2733 break;
2734 }
2735
2736 /* See pmap_init_pat(). */
2737 if (pat_idx == 4)
2738 pat_idx = 0;
2739 if (pat_idx == 7)
2740 pat_idx = 3;
2741
2742 return (pat_idx);
2743 }
2744
2745 bool
pmap_ps_enabled(pmap_t pmap)2746 pmap_ps_enabled(pmap_t pmap)
2747 {
2748
2749 return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2750 }
2751
2752 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2753 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2754 {
2755
2756 switch (pmap->pm_type) {
2757 case PT_X86:
2758 break;
2759 case PT_RVI:
2760 case PT_EPT:
2761 /*
2762 * XXX
2763 * This is a little bogus since the generation number is
2764 * supposed to be bumped up when a region of the address
2765 * space is invalidated in the page tables.
2766 *
2767 * In this case the old PDE entry is valid but yet we want
2768 * to make sure that any mappings using the old entry are
2769 * invalidated in the TLB.
2770 *
2771 * The reason this works as expected is because we rendezvous
2772 * "all" host cpus and force any vcpu context to exit as a
2773 * side-effect.
2774 */
2775 atomic_add_long(&pmap->pm_eptgen, 1);
2776 break;
2777 default:
2778 panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2779 }
2780 pde_store(pde, newpde);
2781 }
2782
2783 /*
2784 * After changing the page size for the specified virtual address in the page
2785 * table, flush the corresponding entries from the processor's TLB. Only the
2786 * calling processor's TLB is affected.
2787 *
2788 * The calling thread must be pinned to a processor.
2789 */
2790 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2791 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2792 {
2793 pt_entry_t PG_G;
2794
2795 if (pmap_type_guest(pmap))
2796 return;
2797
2798 KASSERT(pmap->pm_type == PT_X86,
2799 ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2800
2801 PG_G = pmap_global_bit(pmap);
2802
2803 if ((newpde & PG_PS) == 0)
2804 /* Demotion: flush a specific 2MB page mapping. */
2805 pmap_invlpg(pmap, va);
2806 else if ((newpde & PG_G) == 0)
2807 /*
2808 * Promotion: flush every 4KB page mapping from the TLB
2809 * because there are too many to flush individually.
2810 */
2811 invltlb();
2812 else {
2813 /*
2814 * Promotion: flush every 4KB page mapping from the TLB,
2815 * including any global (PG_G) mappings.
2816 */
2817 invltlb_glob();
2818 }
2819 }
2820
2821 /*
2822 * The amd64 pmap uses different approaches to TLB invalidation
2823 * depending on the kernel configuration, available hardware features,
2824 * and known hardware errata. The kernel configuration option that
2825 * has the greatest operational impact on TLB invalidation is PTI,
2826 * which is enabled automatically on affected Intel CPUs. The most
2827 * impactful hardware features are first PCID, and then INVPCID
2828 * instruction presence. PCID usage is quite different for PTI
2829 * vs. non-PTI.
2830 *
2831 * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2832 * the Meltdown bug in some Intel CPUs. Under PTI, each user address
2833 * space is served by two page tables, user and kernel. The user
2834 * page table only maps user space and a kernel trampoline. The
2835 * kernel trampoline includes the entirety of the kernel text but
2836 * only the kernel data that is needed to switch from user to kernel
2837 * mode. The kernel page table maps the user and kernel address
2838 * spaces in their entirety. It is identical to the per-process
2839 * page table used in non-PTI mode.
2840 *
2841 * User page tables are only used when the CPU is in user mode.
2842 * Consequently, some TLB invalidations can be postponed until the
2843 * switch from kernel to user mode. In contrast, the user
2844 * space part of the kernel page table is used for copyout(9), so
2845 * TLB invalidations on this page table cannot be similarly postponed.
2846 *
2847 * The existence of a user mode page table for the given pmap is
2848 * indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2849 * which case pm_ucr3 contains the %cr3 register value for the user
2850 * mode page table's root.
2851 *
2852 * * The pm_active bitmask indicates which CPUs currently have the
2853 * pmap active. A CPU's bit is set on context switch to the pmap, and
2854 * cleared on switching off this CPU. For the kernel page table,
2855 * the pm_active field is immutable and contains all CPUs. The
2856 * kernel page table is always logically active on every processor,
2857 * but not necessarily in use by the hardware, e.g., in PTI mode.
2858 *
2859 * When requesting invalidation of virtual addresses with
2860 * pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2861 * all CPUs recorded as active in pm_active. Updates to and reads
2862 * from pm_active are not synchronized, and so they may race with
2863 * each other. Shootdown handlers are prepared to handle the race.
2864 *
2865 * * PCID is an optional feature of the long mode x86 MMU where TLB
2866 * entries are tagged with the 'Process ID' of the address space
2867 * they belong to. This feature provides a limited namespace for
2868 * process identifiers, 12 bits, supporting 4095 simultaneous IDs
2869 * total.
2870 *
2871 * Allocation of a PCID to a pmap is done by an algorithm described
2872 * in section 15.12, "Other TLB Consistency Algorithms", of
2873 * Vahalia's book "Unix Internals". A PCID cannot be allocated for
2874 * the whole lifetime of a pmap in pmap_pinit() due to the limited
2875 * namespace. Instead, a per-CPU, per-pmap PCID is assigned when
2876 * the CPU is about to start caching TLB entries from a pmap,
2877 * i.e., on the context switch that activates the pmap on the CPU.
2878 *
2879 * The PCID allocator maintains a per-CPU, per-pmap generation
2880 * count, pm_gen, which is incremented each time a new PCID is
2881 * allocated. On TLB invalidation, the generation counters for the
2882 * pmap are zeroed, which signals the context switch code that the
2883 * previously allocated PCID is no longer valid. Effectively,
2884 * zeroing any of these counters triggers a TLB shootdown for the
2885 * given CPU/address space, due to the allocation of a new PCID.
2886 *
2887 * Zeroing can be performed remotely. Consequently, if a pmap is
2888 * inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2889 * be initiated by an ordinary memory access to reset the target
2890 * CPU's generation count within the pmap. The CPU initiating the
2891 * TLB shootdown does not need to send an IPI to the target CPU.
2892 *
2893 * * PTI + PCID. The available PCIDs are divided into two sets: PCIDs
2894 * for complete (kernel) page tables, and PCIDs for user mode page
2895 * tables. A user PCID value is obtained from the kernel PCID value
2896 * by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2897 *
2898 * User space page tables are activated on return to user mode, by
2899 * loading pm_ucr3 into %cr3. If the PCPU(ucr3_load_mask) requests
2900 * clearing bit 63 of the loaded ucr3, this effectively causes
2901 * complete invalidation of the user mode TLB entries for the
2902 * current pmap. In which case, local invalidations of individual
2903 * pages in the user page table are skipped.
2904 *
2905 * * Local invalidation, all modes. If the requested invalidation is
2906 * for a specific address or the total invalidation of a currently
2907 * active pmap, then the TLB is flushed using INVLPG for a kernel
2908 * page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2909 * user space page table(s).
2910 *
2911 * If the INVPCID instruction is available, it is used to flush user
2912 * entries from the kernel page table.
2913 *
2914 * When PCID is enabled, the INVLPG instruction invalidates all TLB
2915 * entries for the given page that either match the current PCID or
2916 * are global. Since TLB entries for the same page under different
2917 * PCIDs are unaffected, kernel pages which reside in all address
2918 * spaces could be problematic. We avoid the problem by creating
2919 * all kernel PTEs with the global flag (PG_G) set, when PTI is
2920 * disabled.
2921 *
2922 * * mode: PTI disabled, PCID present. The kernel reserves PCID 0 for its
2923 * address space, all other 4095 PCIDs are used for user mode spaces
2924 * as described above. A context switch allocates a new PCID if
2925 * the recorded PCID is zero or the recorded generation does not match
2926 * the CPU's generation, effectively flushing the TLB for this address space.
2927 * Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2928 * local user page: INVLPG
2929 * local kernel page: INVLPG
2930 * local user total: INVPCID(CTX)
2931 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2932 * remote user page, inactive pmap: zero pm_gen
2933 * remote user page, active pmap: zero pm_gen + IPI:INVLPG
2934 * (Both actions are required to handle the aforementioned pm_active races.)
2935 * remote kernel page: IPI:INVLPG
2936 * remote user total, inactive pmap: zero pm_gen
2937 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2938 * reload %cr3)
2939 * (See note above about pm_active races.)
2940 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2941 *
2942 * PTI enabled, PCID present.
2943 * local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2944 * for upt
2945 * local kernel page: INVLPG
2946 * local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2947 * on loading UCR3 into %cr3 for upt
2948 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2949 * remote user page, inactive pmap: zero pm_gen
2950 * remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2951 * INVPCID(ADDR) for upt)
2952 * remote kernel page: IPI:INVLPG
2953 * remote user total, inactive pmap: zero pm_gen
2954 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2955 * clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2956 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2957 *
2958 * No PCID.
2959 * local user page: INVLPG
2960 * local kernel page: INVLPG
2961 * local user total: reload %cr3
2962 * local kernel total: invltlb_glob()
2963 * remote user page, inactive pmap: -
2964 * remote user page, active pmap: IPI:INVLPG
2965 * remote kernel page: IPI:INVLPG
2966 * remote user total, inactive pmap: -
2967 * remote user total, active pmap: IPI:(reload %cr3)
2968 * remote kernel total: IPI:invltlb_glob()
2969 * Since on return to user mode, the reload of %cr3 with ucr3 causes
2970 * TLB invalidation, no specific action is required for user page table.
2971 *
2972 * EPT. EPT pmaps do not map KVA, all mappings are userspace.
2973 * XXX TODO
2974 */
2975
2976 #ifdef SMP
2977 /*
2978 * Interrupt the cpus that are executing in the guest context.
2979 * This will force the vcpu to exit and the cached EPT mappings
2980 * will be invalidated by the host before the next vmresume.
2981 */
2982 static __inline void
pmap_invalidate_ept(pmap_t pmap)2983 pmap_invalidate_ept(pmap_t pmap)
2984 {
2985 smr_seq_t goal;
2986 int ipinum;
2987
2988 sched_pin();
2989 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2990 ("pmap_invalidate_ept: absurd pm_active"));
2991
2992 /*
2993 * The TLB mappings associated with a vcpu context are not
2994 * flushed each time a different vcpu is chosen to execute.
2995 *
2996 * This is in contrast with a process's vtop mappings that
2997 * are flushed from the TLB on each context switch.
2998 *
2999 * Therefore we need to do more than just a TLB shootdown on
3000 * the active cpus in 'pmap->pm_active'. To do this we keep
3001 * track of the number of invalidations performed on this pmap.
3002 *
3003 * Each vcpu keeps a cache of this counter and compares it
3004 * just before a vmresume. If the counter is out-of-date an
3005 * invept will be done to flush stale mappings from the TLB.
3006 *
3007 * To ensure that all vCPU threads have observed the new counter
3008 * value before returning, we use SMR. Ordering is important here:
3009 * the VMM enters an SMR read section before loading the counter
3010 * and after updating the pm_active bit set. Thus, pm_active is
3011 * a superset of active readers, and any reader that has observed
3012 * the goal has observed the new counter value.
3013 */
3014 atomic_add_long(&pmap->pm_eptgen, 1);
3015
3016 goal = smr_advance(pmap->pm_eptsmr);
3017
3018 /*
3019 * Force the vcpu to exit and trap back into the hypervisor.
3020 */
3021 ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3022 ipi_selected(pmap->pm_active, ipinum);
3023 sched_unpin();
3024
3025 /*
3026 * Ensure that all active vCPUs will observe the new generation counter
3027 * value before executing any more guest instructions.
3028 */
3029 smr_wait(pmap->pm_eptsmr, goal);
3030 }
3031
3032 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3033 pmap_invalidate_preipi_pcid(pmap_t pmap)
3034 {
3035 struct pmap_pcid *pcidp;
3036 u_int cpuid, i;
3037
3038 sched_pin();
3039
3040 cpuid = PCPU_GET(cpuid);
3041 if (pmap != PCPU_GET(curpmap))
3042 cpuid = 0xffffffff; /* An impossible value */
3043
3044 CPU_FOREACH(i) {
3045 if (cpuid != i) {
3046 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3047 pcidp->pm_gen = 0;
3048 }
3049 }
3050
3051 /*
3052 * The fence is between stores to pm_gen and the read of the
3053 * pm_active mask. We need to ensure that it is impossible
3054 * for us to miss the bit update in pm_active and
3055 * simultaneously observe a non-zero pm_gen in
3056 * pmap_activate_sw(), otherwise TLB update is missed.
3057 * Without the fence, IA32 allows such an outcome. Note that
3058 * pm_active is updated by a locked operation, which provides
3059 * the reciprocal fence.
3060 */
3061 atomic_thread_fence_seq_cst();
3062 }
3063
3064 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3065 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3066 {
3067 sched_pin();
3068 }
3069
3070 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3071 {
3072 return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3073 pmap_invalidate_preipi_nopcid);
3074 }
3075
3076 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3077 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3078 const bool invpcid_works1)
3079 {
3080 struct invpcid_descr d;
3081 uint64_t kcr3, ucr3;
3082 uint32_t pcid;
3083
3084 /*
3085 * Because pm_pcid is recalculated on a context switch, we
3086 * must ensure there is no preemption, not just pinning.
3087 * Otherwise, we might use a stale value below.
3088 */
3089 CRITICAL_ASSERT(curthread);
3090
3091 /*
3092 * No need to do anything with user page tables invalidation
3093 * if there is no user page table, or invalidation is deferred
3094 * until the return to userspace. ucr3_load_mask is stable
3095 * because we have preemption disabled.
3096 */
3097 if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3098 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3099 return;
3100
3101 pcid = pmap_get_pcid(pmap);
3102 if (invpcid_works1) {
3103 d.pcid = pcid | PMAP_PCID_USER_PT;
3104 d.pad = 0;
3105 d.addr = va;
3106 invpcid(&d, INVPCID_ADDR);
3107 } else {
3108 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3109 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3110 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3111 }
3112 }
3113
3114 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3115 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3116 {
3117 pmap_invalidate_page_pcid_cb(pmap, va, true);
3118 }
3119
3120 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3121 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3122 {
3123 pmap_invalidate_page_pcid_cb(pmap, va, false);
3124 }
3125
3126 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3127 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3128 {
3129 }
3130
3131 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3132 {
3133 if (pmap_pcid_enabled)
3134 return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3135 pmap_invalidate_page_pcid_noinvpcid_cb);
3136 return (pmap_invalidate_page_nopcid_cb);
3137 }
3138
3139 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3140 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3141 vm_offset_t addr2 __unused)
3142 {
3143 if (pmap == kernel_pmap) {
3144 pmap_invlpg(kernel_pmap, va);
3145 } else if (pmap == PCPU_GET(curpmap)) {
3146 invlpg(va);
3147 pmap_invalidate_page_cb(pmap, va);
3148 }
3149 }
3150
3151 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3152 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3153 {
3154 if (pmap_type_guest(pmap)) {
3155 pmap_invalidate_ept(pmap);
3156 return;
3157 }
3158
3159 KASSERT(pmap->pm_type == PT_X86,
3160 ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3161
3162 pmap_invalidate_preipi(pmap);
3163 smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3164 }
3165
3166 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3167 #define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
3168
3169 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3170 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3171 const bool invpcid_works1)
3172 {
3173 struct invpcid_descr d;
3174 uint64_t kcr3, ucr3;
3175 uint32_t pcid;
3176
3177 CRITICAL_ASSERT(curthread);
3178
3179 if (pmap != PCPU_GET(curpmap) ||
3180 pmap->pm_ucr3 == PMAP_NO_CR3 ||
3181 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3182 return;
3183
3184 pcid = pmap_get_pcid(pmap);
3185 if (invpcid_works1) {
3186 d.pcid = pcid | PMAP_PCID_USER_PT;
3187 d.pad = 0;
3188 for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3189 invpcid(&d, INVPCID_ADDR);
3190 } else {
3191 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3192 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3193 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3194 }
3195 }
3196
3197 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3198 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3199 vm_offset_t eva)
3200 {
3201 pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3202 }
3203
3204 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3205 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3206 vm_offset_t eva)
3207 {
3208 pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3209 }
3210
3211 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3212 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3213 vm_offset_t eva __unused)
3214 {
3215 }
3216
3217 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3218 vm_offset_t))
3219 {
3220 if (pmap_pcid_enabled)
3221 return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3222 pmap_invalidate_range_pcid_noinvpcid_cb);
3223 return (pmap_invalidate_range_nopcid_cb);
3224 }
3225
3226 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3227 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3228 {
3229 vm_offset_t addr;
3230
3231 if (pmap == kernel_pmap) {
3232 if (PCPU_GET(pcid_invlpg_workaround)) {
3233 struct invpcid_descr d = { 0 };
3234
3235 invpcid(&d, INVPCID_CTXGLOB);
3236 } else {
3237 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3238 invlpg(addr);
3239 }
3240 } else if (pmap == PCPU_GET(curpmap)) {
3241 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3242 invlpg(addr);
3243 pmap_invalidate_range_cb(pmap, sva, eva);
3244 }
3245 }
3246
3247 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3248 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3249 {
3250 if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3251 pmap_invalidate_all(pmap);
3252 return;
3253 }
3254
3255 if (pmap_type_guest(pmap)) {
3256 pmap_invalidate_ept(pmap);
3257 return;
3258 }
3259
3260 KASSERT(pmap->pm_type == PT_X86,
3261 ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3262
3263 pmap_invalidate_preipi(pmap);
3264 smp_masked_invlpg_range(sva, eva, pmap,
3265 pmap_invalidate_range_curcpu_cb);
3266 }
3267
3268 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3269 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3270 {
3271 struct invpcid_descr d;
3272 uint64_t kcr3;
3273 uint32_t pcid;
3274
3275 if (pmap == kernel_pmap) {
3276 if (invpcid_works1) {
3277 bzero(&d, sizeof(d));
3278 invpcid(&d, INVPCID_CTXGLOB);
3279 } else {
3280 invltlb_glob();
3281 }
3282 } else if (pmap == PCPU_GET(curpmap)) {
3283 CRITICAL_ASSERT(curthread);
3284
3285 pcid = pmap_get_pcid(pmap);
3286 if (invpcid_works1) {
3287 d.pcid = pcid;
3288 d.pad = 0;
3289 d.addr = 0;
3290 invpcid(&d, INVPCID_CTX);
3291 } else {
3292 kcr3 = pmap->pm_cr3 | pcid;
3293 load_cr3(kcr3);
3294 }
3295 if (pmap->pm_ucr3 != PMAP_NO_CR3)
3296 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3297 }
3298 }
3299
3300 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3301 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3302 {
3303 pmap_invalidate_all_pcid_cb(pmap, true);
3304 }
3305
3306 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3307 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3308 {
3309 pmap_invalidate_all_pcid_cb(pmap, false);
3310 }
3311
3312 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3313 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3314 {
3315 if (pmap == kernel_pmap)
3316 invltlb_glob();
3317 else if (pmap == PCPU_GET(curpmap))
3318 invltlb();
3319 }
3320
3321 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3322 {
3323 if (pmap_pcid_enabled)
3324 return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3325 pmap_invalidate_all_pcid_noinvpcid_cb);
3326 return (pmap_invalidate_all_nopcid_cb);
3327 }
3328
3329 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3330 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3331 vm_offset_t addr2 __unused)
3332 {
3333 pmap_invalidate_all_cb(pmap);
3334 }
3335
3336 void
pmap_invalidate_all(pmap_t pmap)3337 pmap_invalidate_all(pmap_t pmap)
3338 {
3339 if (pmap_type_guest(pmap)) {
3340 pmap_invalidate_ept(pmap);
3341 return;
3342 }
3343
3344 KASSERT(pmap->pm_type == PT_X86,
3345 ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3346
3347 pmap_invalidate_preipi(pmap);
3348 smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3349 }
3350
3351 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3352 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3353 vm_offset_t addr2 __unused)
3354 {
3355 wbinvd();
3356 }
3357
3358 void
pmap_invalidate_cache(void)3359 pmap_invalidate_cache(void)
3360 {
3361 sched_pin();
3362 smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3363 }
3364
3365 struct pde_action {
3366 cpuset_t invalidate; /* processors that invalidate their TLB */
3367 pmap_t pmap;
3368 vm_offset_t va;
3369 pd_entry_t *pde;
3370 pd_entry_t newpde;
3371 u_int store; /* processor that updates the PDE */
3372 };
3373
3374 static void
pmap_update_pde_action(void * arg)3375 pmap_update_pde_action(void *arg)
3376 {
3377 struct pde_action *act = arg;
3378
3379 if (act->store == PCPU_GET(cpuid))
3380 pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3381 }
3382
3383 static void
pmap_update_pde_teardown(void * arg)3384 pmap_update_pde_teardown(void *arg)
3385 {
3386 struct pde_action *act = arg;
3387
3388 if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3389 pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3390 }
3391
3392 /*
3393 * Change the page size for the specified virtual address in a way that
3394 * prevents any possibility of the TLB ever having two entries that map the
3395 * same virtual address using different page sizes. This is the recommended
3396 * workaround for Erratum 383 on AMD Family 10h processors. It prevents a
3397 * machine check exception for a TLB state that is improperly diagnosed as a
3398 * hardware error.
3399 */
3400 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3401 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3402 {
3403 struct pde_action act;
3404 cpuset_t active, other_cpus;
3405 u_int cpuid;
3406
3407 sched_pin();
3408 cpuid = PCPU_GET(cpuid);
3409 other_cpus = all_cpus;
3410 CPU_CLR(cpuid, &other_cpus);
3411 if (pmap == kernel_pmap || pmap_type_guest(pmap))
3412 active = all_cpus;
3413 else {
3414 active = pmap->pm_active;
3415 }
3416 if (CPU_OVERLAP(&active, &other_cpus)) {
3417 act.store = cpuid;
3418 act.invalidate = active;
3419 act.va = va;
3420 act.pmap = pmap;
3421 act.pde = pde;
3422 act.newpde = newpde;
3423 CPU_SET(cpuid, &active);
3424 smp_rendezvous_cpus(active,
3425 smp_no_rendezvous_barrier, pmap_update_pde_action,
3426 pmap_update_pde_teardown, &act);
3427 } else {
3428 pmap_update_pde_store(pmap, pde, newpde);
3429 if (CPU_ISSET(cpuid, &active))
3430 pmap_update_pde_invalidate(pmap, va, newpde);
3431 }
3432 sched_unpin();
3433 }
3434 #else /* !SMP */
3435 /*
3436 * Normal, non-SMP, invalidation functions.
3437 */
3438 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3439 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3440 {
3441 struct invpcid_descr d;
3442 struct pmap_pcid *pcidp;
3443 uint64_t kcr3, ucr3;
3444 uint32_t pcid;
3445
3446 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3447 pmap->pm_eptgen++;
3448 return;
3449 }
3450 KASSERT(pmap->pm_type == PT_X86,
3451 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3452
3453 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3454 invlpg(va);
3455 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3456 pmap->pm_ucr3 != PMAP_NO_CR3) {
3457 critical_enter();
3458 pcid = pmap_get_pcid(pmap);
3459 if (invpcid_works) {
3460 d.pcid = pcid | PMAP_PCID_USER_PT;
3461 d.pad = 0;
3462 d.addr = va;
3463 invpcid(&d, INVPCID_ADDR);
3464 } else {
3465 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3466 ucr3 = pmap->pm_ucr3 | pcid |
3467 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3468 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3469 }
3470 critical_exit();
3471 }
3472 } else if (pmap_pcid_enabled) {
3473 pcidp = zpcpu_get(pmap->pm_pcidp);
3474 pcidp->pm_gen = 0;
3475 }
3476 }
3477
3478 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3479 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3480 {
3481 struct invpcid_descr d;
3482 struct pmap_pcid *pcidp;
3483 vm_offset_t addr;
3484 uint64_t kcr3, ucr3;
3485 uint32_t pcid;
3486
3487 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3488 pmap->pm_eptgen++;
3489 return;
3490 }
3491 KASSERT(pmap->pm_type == PT_X86,
3492 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3493
3494 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3495 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3496 invlpg(addr);
3497 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3498 pmap->pm_ucr3 != PMAP_NO_CR3) {
3499 critical_enter();
3500 pcid = pmap_get_pcid(pmap);
3501 if (invpcid_works) {
3502 d.pcid = pcid | PMAP_PCID_USER_PT;
3503 d.pad = 0;
3504 d.addr = sva;
3505 for (; d.addr < eva; d.addr += PAGE_SIZE)
3506 invpcid(&d, INVPCID_ADDR);
3507 } else {
3508 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3509 ucr3 = pmap->pm_ucr3 | pcid |
3510 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3511 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3512 }
3513 critical_exit();
3514 }
3515 } else if (pmap_pcid_enabled) {
3516 pcidp = zpcpu_get(pmap->pm_pcidp);
3517 pcidp->pm_gen = 0;
3518 }
3519 }
3520
3521 void
pmap_invalidate_all(pmap_t pmap)3522 pmap_invalidate_all(pmap_t pmap)
3523 {
3524 struct invpcid_descr d;
3525 struct pmap_pcid *pcidp;
3526 uint64_t kcr3, ucr3;
3527 uint32_t pcid;
3528
3529 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3530 pmap->pm_eptgen++;
3531 return;
3532 }
3533 KASSERT(pmap->pm_type == PT_X86,
3534 ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3535
3536 if (pmap == kernel_pmap) {
3537 if (pmap_pcid_enabled && invpcid_works) {
3538 bzero(&d, sizeof(d));
3539 invpcid(&d, INVPCID_CTXGLOB);
3540 } else {
3541 invltlb_glob();
3542 }
3543 } else if (pmap == PCPU_GET(curpmap)) {
3544 if (pmap_pcid_enabled) {
3545 critical_enter();
3546 pcid = pmap_get_pcid(pmap);
3547 if (invpcid_works) {
3548 d.pcid = pcid;
3549 d.pad = 0;
3550 d.addr = 0;
3551 invpcid(&d, INVPCID_CTX);
3552 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3553 d.pcid |= PMAP_PCID_USER_PT;
3554 invpcid(&d, INVPCID_CTX);
3555 }
3556 } else {
3557 kcr3 = pmap->pm_cr3 | pcid;
3558 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3559 ucr3 = pmap->pm_ucr3 | pcid |
3560 PMAP_PCID_USER_PT;
3561 pmap_pti_pcid_invalidate(ucr3, kcr3);
3562 } else
3563 load_cr3(kcr3);
3564 }
3565 critical_exit();
3566 } else {
3567 invltlb();
3568 }
3569 } else if (pmap_pcid_enabled) {
3570 pcidp = zpcpu_get(pmap->pm_pcidp);
3571 pcidp->pm_gen = 0;
3572 }
3573 }
3574
3575 void
pmap_invalidate_cache(void)3576 pmap_invalidate_cache(void)
3577 {
3578
3579 wbinvd();
3580 }
3581
3582 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3583 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3584 {
3585 struct pmap_pcid *pcidp;
3586
3587 pmap_update_pde_store(pmap, pde, newpde);
3588 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3589 pmap_update_pde_invalidate(pmap, va, newpde);
3590 else {
3591 pcidp = zpcpu_get(pmap->pm_pcidp);
3592 pcidp->pm_gen = 0;
3593 }
3594 }
3595 #endif /* !SMP */
3596
3597 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3598 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3599 {
3600
3601 /*
3602 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3603 * by a promotion that did not invalidate the 512 4KB page mappings
3604 * that might exist in the TLB. Consequently, at this point, the TLB
3605 * may hold both 4KB and 2MB page mappings for the address range [va,
3606 * va + NBPDR). Therefore, the entire range must be invalidated here.
3607 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3608 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3609 * single INVLPG suffices to invalidate the 2MB page mapping from the
3610 * TLB.
3611 */
3612 if ((pde & PG_PROMOTED) != 0)
3613 pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3614 else
3615 pmap_invalidate_page(pmap, va);
3616 }
3617
3618 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3619 (vm_offset_t sva, vm_offset_t eva))
3620 {
3621
3622 if ((cpu_feature & CPUID_SS) != 0)
3623 return (pmap_invalidate_cache_range_selfsnoop);
3624 if ((cpu_feature & CPUID_CLFSH) != 0)
3625 return (pmap_force_invalidate_cache_range);
3626 return (pmap_invalidate_cache_range_all);
3627 }
3628
3629 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
3630
3631 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3632 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3633 {
3634
3635 KASSERT((sva & PAGE_MASK) == 0,
3636 ("pmap_invalidate_cache_range: sva not page-aligned"));
3637 KASSERT((eva & PAGE_MASK) == 0,
3638 ("pmap_invalidate_cache_range: eva not page-aligned"));
3639 }
3640
3641 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3642 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3643 {
3644
3645 pmap_invalidate_cache_range_check_align(sva, eva);
3646 }
3647
3648 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3649 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3650 {
3651
3652 sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3653
3654 /*
3655 * XXX: Some CPUs fault, hang, or trash the local APIC
3656 * registers if we use CLFLUSH on the local APIC range. The
3657 * local APIC is always uncached, so we don't need to flush
3658 * for that range anyway.
3659 */
3660 if (pmap_kextract(sva) == lapic_paddr)
3661 return;
3662
3663 if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3664 /*
3665 * Do per-cache line flush. Use a locked
3666 * instruction to insure that previous stores are
3667 * included in the write-back. The processor
3668 * propagates flush to other processors in the cache
3669 * coherence domain.
3670 */
3671 atomic_thread_fence_seq_cst();
3672 for (; sva < eva; sva += cpu_clflush_line_size)
3673 clflushopt(sva);
3674 atomic_thread_fence_seq_cst();
3675 } else {
3676 /*
3677 * Writes are ordered by CLFLUSH on Intel CPUs.
3678 */
3679 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3680 mfence();
3681 for (; sva < eva; sva += cpu_clflush_line_size)
3682 clflush(sva);
3683 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3684 mfence();
3685 }
3686 }
3687
3688 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3689 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3690 {
3691
3692 pmap_invalidate_cache_range_check_align(sva, eva);
3693 pmap_invalidate_cache();
3694 }
3695
3696 /*
3697 * Remove the specified set of pages from the data and instruction caches.
3698 *
3699 * In contrast to pmap_invalidate_cache_range(), this function does not
3700 * rely on the CPU's self-snoop feature, because it is intended for use
3701 * when moving pages into a different cache domain.
3702 */
3703 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3704 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3705 {
3706 vm_offset_t daddr, eva;
3707 int i;
3708 bool useclflushopt;
3709
3710 useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3711 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3712 ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3713 pmap_invalidate_cache();
3714 else {
3715 if (useclflushopt)
3716 atomic_thread_fence_seq_cst();
3717 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3718 mfence();
3719 for (i = 0; i < count; i++) {
3720 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3721 eva = daddr + PAGE_SIZE;
3722 for (; daddr < eva; daddr += cpu_clflush_line_size) {
3723 if (useclflushopt)
3724 clflushopt(daddr);
3725 else
3726 clflush(daddr);
3727 }
3728 }
3729 if (useclflushopt)
3730 atomic_thread_fence_seq_cst();
3731 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3732 mfence();
3733 }
3734 }
3735
3736 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3737 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3738 {
3739
3740 pmap_invalidate_cache_range_check_align(sva, eva);
3741
3742 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3743 pmap_force_invalidate_cache_range(sva, eva);
3744 return;
3745 }
3746
3747 /* See comment in pmap_force_invalidate_cache_range(). */
3748 if (pmap_kextract(sva) == lapic_paddr)
3749 return;
3750
3751 atomic_thread_fence_seq_cst();
3752 for (; sva < eva; sva += cpu_clflush_line_size)
3753 clwb(sva);
3754 atomic_thread_fence_seq_cst();
3755 }
3756
3757 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3758 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3759 {
3760 pt_entry_t *pte;
3761 vm_offset_t vaddr;
3762 int error __diagused;
3763 int pte_bits;
3764
3765 KASSERT((spa & PAGE_MASK) == 0,
3766 ("pmap_flush_cache_phys_range: spa not page-aligned"));
3767 KASSERT((epa & PAGE_MASK) == 0,
3768 ("pmap_flush_cache_phys_range: epa not page-aligned"));
3769
3770 if (spa < dmaplimit) {
3771 pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3772 dmaplimit, epa)));
3773 if (dmaplimit >= epa)
3774 return;
3775 spa = dmaplimit;
3776 }
3777
3778 pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3779 X86_PG_V;
3780 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3781 &vaddr);
3782 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3783 pte = vtopte(vaddr);
3784 for (; spa < epa; spa += PAGE_SIZE) {
3785 sched_pin();
3786 pte_store(pte, spa | pte_bits);
3787 pmap_invlpg(kernel_pmap, vaddr);
3788 /* XXXKIB atomic inside flush_cache_range are excessive */
3789 pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3790 sched_unpin();
3791 }
3792 vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3793 }
3794
3795 /*
3796 * Routine: pmap_extract
3797 * Function:
3798 * Extract the physical page address associated
3799 * with the given map/virtual_address pair.
3800 */
3801 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3802 pmap_extract(pmap_t pmap, vm_offset_t va)
3803 {
3804 pdp_entry_t *pdpe;
3805 pd_entry_t *pde;
3806 pt_entry_t *pte, PG_V;
3807 vm_paddr_t pa;
3808
3809 pa = 0;
3810 PG_V = pmap_valid_bit(pmap);
3811 PMAP_LOCK(pmap);
3812 pdpe = pmap_pdpe(pmap, va);
3813 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3814 if ((*pdpe & PG_PS) != 0)
3815 pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3816 else {
3817 pde = pmap_pdpe_to_pde(pdpe, va);
3818 if ((*pde & PG_V) != 0) {
3819 if ((*pde & PG_PS) != 0) {
3820 pa = (*pde & PG_PS_FRAME) |
3821 (va & PDRMASK);
3822 } else {
3823 pte = pmap_pde_to_pte(pde, va);
3824 pa = (*pte & PG_FRAME) |
3825 (va & PAGE_MASK);
3826 }
3827 }
3828 }
3829 }
3830 PMAP_UNLOCK(pmap);
3831 return (pa);
3832 }
3833
3834 /*
3835 * Routine: pmap_extract_and_hold
3836 * Function:
3837 * Atomically extract and hold the physical page
3838 * with the given pmap and virtual address pair
3839 * if that mapping permits the given protection.
3840 */
3841 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3842 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3843 {
3844 pdp_entry_t pdpe, *pdpep;
3845 pd_entry_t pde, *pdep;
3846 pt_entry_t pte, PG_RW, PG_V;
3847 vm_page_t m;
3848
3849 m = NULL;
3850 PG_RW = pmap_rw_bit(pmap);
3851 PG_V = pmap_valid_bit(pmap);
3852 PMAP_LOCK(pmap);
3853
3854 pdpep = pmap_pdpe(pmap, va);
3855 if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3856 goto out;
3857 if ((pdpe & PG_PS) != 0) {
3858 if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3859 goto out;
3860 m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3861 goto check_page;
3862 }
3863
3864 pdep = pmap_pdpe_to_pde(pdpep, va);
3865 if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3866 goto out;
3867 if ((pde & PG_PS) != 0) {
3868 if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3869 goto out;
3870 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3871 goto check_page;
3872 }
3873
3874 pte = *pmap_pde_to_pte(pdep, va);
3875 if ((pte & PG_V) == 0 ||
3876 ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3877 goto out;
3878 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3879
3880 check_page:
3881 if (m != NULL && !vm_page_wire_mapped(m))
3882 m = NULL;
3883 out:
3884 PMAP_UNLOCK(pmap);
3885 return (m);
3886 }
3887
3888 /*
3889 * Routine: pmap_kextract
3890 * Function:
3891 * Extract the physical page address associated with the given kernel
3892 * virtual address.
3893 */
3894 vm_paddr_t
pmap_kextract(vm_offset_t va)3895 pmap_kextract(vm_offset_t va)
3896 {
3897 pd_entry_t pde;
3898 vm_paddr_t pa;
3899
3900 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3901 pa = DMAP_TO_PHYS(va);
3902 } else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3903 pa = pmap_large_map_kextract(va);
3904 } else {
3905 pde = *vtopde(va);
3906 if (pde & PG_PS) {
3907 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3908 } else {
3909 /*
3910 * Beware of a concurrent promotion that changes the
3911 * PDE at this point! For example, vtopte() must not
3912 * be used to access the PTE because it would use the
3913 * new PDE. It is, however, safe to use the old PDE
3914 * because the page table page is preserved by the
3915 * promotion.
3916 */
3917 pa = *pmap_pde_to_pte(&pde, va);
3918 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3919 }
3920 }
3921 return (pa);
3922 }
3923
3924 /***************************************************
3925 * Low level mapping routines.....
3926 ***************************************************/
3927
3928 /*
3929 * Add a wired page to the kva.
3930 * Note: not SMP coherent.
3931 */
3932 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3933 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3934 {
3935 pt_entry_t *pte;
3936
3937 pte = vtopte(va);
3938 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3939 X86_PG_RW | X86_PG_V);
3940 }
3941
3942 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3943 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3944 {
3945 pt_entry_t *pte;
3946 int cache_bits;
3947
3948 pte = vtopte(va);
3949 cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3950 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3951 X86_PG_RW | X86_PG_V | cache_bits);
3952 }
3953
3954 /*
3955 * Remove a page from the kernel pagetables.
3956 * Note: not SMP coherent.
3957 */
3958 void
pmap_kremove(vm_offset_t va)3959 pmap_kremove(vm_offset_t va)
3960 {
3961 pt_entry_t *pte;
3962
3963 pte = vtopte(va);
3964 pte_clear(pte);
3965 }
3966
3967 /*
3968 * Used to map a range of physical addresses into kernel
3969 * virtual address space.
3970 *
3971 * The value passed in '*virt' is a suggested virtual address for
3972 * the mapping. Architectures which can support a direct-mapped
3973 * physical to virtual region can return the appropriate address
3974 * within that region, leaving '*virt' unchanged. Other
3975 * architectures should map the pages starting at '*virt' and
3976 * update '*virt' with the first usable address after the mapped
3977 * region.
3978 */
3979 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)3980 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3981 {
3982 return PHYS_TO_DMAP(start);
3983 }
3984
3985 /*
3986 * Add a list of wired pages to the kva
3987 * this routine is only used for temporary
3988 * kernel mappings that do not need to have
3989 * page modification or references recorded.
3990 * Note that old mappings are simply written
3991 * over. The page *must* be wired.
3992 * Note: SMP coherent. Uses a ranged shootdown IPI.
3993 */
3994 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)3995 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3996 {
3997 pt_entry_t *endpte, oldpte, pa, *pte;
3998 vm_page_t m;
3999 int cache_bits;
4000
4001 oldpte = 0;
4002 pte = vtopte(sva);
4003 endpte = pte + count;
4004 while (pte < endpte) {
4005 m = *ma++;
4006 cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4007 pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4008 if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4009 oldpte |= *pte;
4010 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4011 X86_PG_M | X86_PG_RW | X86_PG_V);
4012 }
4013 pte++;
4014 }
4015 if (__predict_false((oldpte & X86_PG_V) != 0))
4016 pmap_invalidate_range(kernel_pmap, sva, sva + count *
4017 PAGE_SIZE);
4018 }
4019
4020 /*
4021 * This routine tears out page mappings from the
4022 * kernel -- it is meant only for temporary mappings.
4023 * Note: SMP coherent. Uses a ranged shootdown IPI.
4024 */
4025 void
pmap_qremove(vm_offset_t sva,int count)4026 pmap_qremove(vm_offset_t sva, int count)
4027 {
4028 vm_offset_t va;
4029
4030 va = sva;
4031 while (count-- > 0) {
4032 /*
4033 * pmap_enter() calls within the kernel virtual
4034 * address space happen on virtual addresses from
4035 * subarenas that import superpage-sized and -aligned
4036 * address ranges. So, the virtual address that we
4037 * allocate to use with pmap_qenter() can't be close
4038 * enough to one of those pmap_enter() calls for it to
4039 * be caught up in a promotion.
4040 */
4041 KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4042 KASSERT((*vtopde(va) & X86_PG_PS) == 0,
4043 ("pmap_qremove on promoted va %#lx", va));
4044
4045 pmap_kremove(va);
4046 va += PAGE_SIZE;
4047 }
4048 pmap_invalidate_range(kernel_pmap, sva, va);
4049 }
4050
4051 /***************************************************
4052 * Page table page management routines.....
4053 ***************************************************/
4054 /*
4055 * Schedule the specified unused page table page to be freed. Specifically,
4056 * add the page to the specified list of pages that will be released to the
4057 * physical memory manager after the TLB has been updated.
4058 */
4059 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4060 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4061 {
4062
4063 if (set_PG_ZERO)
4064 m->flags |= PG_ZERO;
4065 else
4066 m->flags &= ~PG_ZERO;
4067 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4068 }
4069
4070 /*
4071 * Inserts the specified page table page into the specified pmap's collection
4072 * of idle page table pages. Each of a pmap's page table pages is responsible
4073 * for mapping a distinct range of virtual addresses. The pmap's collection is
4074 * ordered by this virtual address range.
4075 *
4076 * If "promoted" is false, then the page table page "mpte" must be zero filled;
4077 * "mpte"'s valid field will be set to 0.
4078 *
4079 * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4080 * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4081 * valid field will be set to 1.
4082 *
4083 * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4084 * valid mappings with identical attributes including PG_A; "mpte"'s valid
4085 * field will be set to VM_PAGE_BITS_ALL.
4086 */
4087 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4088 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4089 bool allpte_PG_A_set)
4090 {
4091
4092 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4093 KASSERT(promoted || !allpte_PG_A_set,
4094 ("a zero-filled PTP can't have PG_A set in every PTE"));
4095 mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4096 return (vm_radix_insert(&pmap->pm_root, mpte));
4097 }
4098
4099 /*
4100 * Removes the page table page mapping the specified virtual address from the
4101 * specified pmap's collection of idle page table pages, and returns it.
4102 * Otherwise, returns NULL if there is no page table page corresponding to the
4103 * specified virtual address.
4104 */
4105 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4106 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4107 {
4108
4109 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4110 return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4111 }
4112
4113 /*
4114 * Decrements a page table page's reference count, which is used to record the
4115 * number of valid page table entries within the page. If the reference count
4116 * drops to zero, then the page table page is unmapped. Returns true if the
4117 * page table page was unmapped and false otherwise.
4118 */
4119 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4120 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4121 {
4122
4123 --m->ref_count;
4124 if (m->ref_count == 0) {
4125 _pmap_unwire_ptp(pmap, va, m, free);
4126 return (true);
4127 } else
4128 return (false);
4129 }
4130
4131 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4132 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4133 {
4134 pml5_entry_t *pml5;
4135 pml4_entry_t *pml4;
4136 pdp_entry_t *pdp;
4137 pd_entry_t *pd;
4138 vm_page_t pdpg, pdppg, pml4pg;
4139
4140 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4141
4142 /*
4143 * unmap the page table page
4144 */
4145 if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4146 /* PML4 page */
4147 MPASS(pmap_is_la57(pmap));
4148 pml5 = pmap_pml5e(pmap, va);
4149 *pml5 = 0;
4150 if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4151 pml5 = pmap_pml5e_u(pmap, va);
4152 *pml5 = 0;
4153 }
4154 } else if (m->pindex >= NUPDE + NUPDPE) {
4155 /* PDP page */
4156 pml4 = pmap_pml4e(pmap, va);
4157 *pml4 = 0;
4158 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4159 va <= VM_MAXUSER_ADDRESS) {
4160 pml4 = pmap_pml4e_u(pmap, va);
4161 *pml4 = 0;
4162 }
4163 } else if (m->pindex >= NUPDE) {
4164 /* PD page */
4165 pdp = pmap_pdpe(pmap, va);
4166 *pdp = 0;
4167 } else {
4168 /* PTE page */
4169 pd = pmap_pde(pmap, va);
4170 *pd = 0;
4171 }
4172 if (m->pindex < NUPDE) {
4173 /* We just released a PT, unhold the matching PD */
4174 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4175 pmap_unwire_ptp(pmap, va, pdpg, free);
4176 } else if (m->pindex < NUPDE + NUPDPE) {
4177 /* We just released a PD, unhold the matching PDP */
4178 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4179 pmap_unwire_ptp(pmap, va, pdppg, free);
4180 } else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4181 /* We just released a PDP, unhold the matching PML4 */
4182 pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4183 pmap_unwire_ptp(pmap, va, pml4pg, free);
4184 }
4185
4186 pmap_pt_page_count_adj(pmap, -1);
4187
4188 /*
4189 * Put page on a list so that it is released after
4190 * *ALL* TLB shootdown is done
4191 */
4192 pmap_add_delayed_free_list(m, free, true);
4193 }
4194
4195 /*
4196 * After removing a page table entry, this routine is used to
4197 * conditionally free the page, and manage the reference count.
4198 */
4199 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4200 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4201 struct spglist *free)
4202 {
4203 vm_page_t mpte;
4204
4205 if (va >= VM_MAXUSER_ADDRESS)
4206 return (0);
4207 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4208 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4209 return (pmap_unwire_ptp(pmap, va, mpte, free));
4210 }
4211
4212 /*
4213 * Release a page table page reference after a failed attempt to create a
4214 * mapping.
4215 */
4216 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4217 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4218 {
4219 struct spglist free;
4220
4221 SLIST_INIT(&free);
4222 if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4223 /*
4224 * Although "va" was never mapped, paging-structure caches
4225 * could nonetheless have entries that refer to the freed
4226 * page table pages. Invalidate those entries.
4227 */
4228 pmap_invalidate_page(pmap, va);
4229 vm_page_free_pages_toq(&free, true);
4230 }
4231 }
4232
4233 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4234 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4235 {
4236 struct pmap_pcid *pcidp;
4237 int i;
4238
4239 CPU_FOREACH(i) {
4240 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4241 pcidp->pm_pcid = pcid;
4242 pcidp->pm_gen = gen;
4243 }
4244 }
4245
4246 void
pmap_pinit0(pmap_t pmap)4247 pmap_pinit0(pmap_t pmap)
4248 {
4249 struct proc *p;
4250 struct thread *td;
4251
4252 PMAP_LOCK_INIT(pmap);
4253 pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4254 pmap->pm_pmltopu = NULL;
4255 pmap->pm_cr3 = kernel_pmap->pm_cr3;
4256 /* hack to keep pmap_pti_pcid_invalidate() alive */
4257 pmap->pm_ucr3 = PMAP_NO_CR3;
4258 vm_radix_init(&pmap->pm_root);
4259 CPU_ZERO(&pmap->pm_active);
4260 TAILQ_INIT(&pmap->pm_pvchunk);
4261 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4262 pmap->pm_flags = pmap_flags;
4263 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4264 pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4265 pmap_activate_boot(pmap);
4266 td = curthread;
4267 if (pti) {
4268 p = td->td_proc;
4269 PROC_LOCK(p);
4270 p->p_md.md_flags |= P_MD_KPTI;
4271 PROC_UNLOCK(p);
4272 }
4273 pmap_thread_init_invl_gen(td);
4274
4275 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4276 pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4277 sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4278 UMA_ALIGN_PTR, 0);
4279 }
4280 }
4281
4282 void
pmap_pinit_pml4(vm_page_t pml4pg)4283 pmap_pinit_pml4(vm_page_t pml4pg)
4284 {
4285 pml4_entry_t *pm_pml4;
4286 int i;
4287
4288 pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4289
4290 /* Wire in kernel global address entries. */
4291 for (i = 0; i < NKPML4E; i++) {
4292 pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4293 X86_PG_V;
4294 }
4295 #ifdef KASAN
4296 for (i = 0; i < NKASANPML4E; i++) {
4297 pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4298 X86_PG_V | pg_nx;
4299 }
4300 #endif
4301 #ifdef KMSAN
4302 for (i = 0; i < NKMSANSHADPML4E; i++) {
4303 pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4304 X86_PG_RW | X86_PG_V | pg_nx;
4305 }
4306 for (i = 0; i < NKMSANORIGPML4E; i++) {
4307 pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4308 X86_PG_RW | X86_PG_V | pg_nx;
4309 }
4310 #endif
4311 for (i = 0; i < ndmpdpphys; i++) {
4312 pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4313 X86_PG_V;
4314 }
4315
4316 /* install self-referential address mapping entry(s) */
4317 pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4318 X86_PG_A | X86_PG_M;
4319
4320 /* install large map entries if configured */
4321 for (i = 0; i < lm_ents; i++)
4322 pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4323 }
4324
4325 void
pmap_pinit_pml5(vm_page_t pml5pg)4326 pmap_pinit_pml5(vm_page_t pml5pg)
4327 {
4328 pml5_entry_t *pm_pml5;
4329
4330 pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4331
4332 /*
4333 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4334 * entering all existing kernel mappings into level 5 table.
4335 */
4336 pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4337 X86_PG_RW | X86_PG_A | X86_PG_M;
4338
4339 /*
4340 * Install self-referential address mapping entry.
4341 */
4342 pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4343 X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A;
4344 }
4345
4346 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4347 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4348 {
4349 pml4_entry_t *pm_pml4u;
4350 int i;
4351
4352 pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4353 for (i = 0; i < NPML4EPG; i++)
4354 pm_pml4u[i] = pti_pml4[i];
4355 }
4356
4357 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4358 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4359 {
4360 pml5_entry_t *pm_pml5u;
4361
4362 pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4363 pagezero(pm_pml5u);
4364
4365 /*
4366 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4367 * table, entering all kernel mappings needed for usermode
4368 * into level 5 table.
4369 */
4370 pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4371 pmap_kextract((vm_offset_t)pti_pml4) |
4372 X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4373 }
4374
4375 /* Allocate a page table page and do related bookkeeping */
4376 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4377 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4378 {
4379 vm_page_t m;
4380
4381 m = vm_page_alloc_noobj(flags);
4382 if (__predict_false(m == NULL))
4383 return (NULL);
4384 m->pindex = pindex;
4385 pmap_pt_page_count_adj(pmap, 1);
4386 return (m);
4387 }
4388
4389 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4390 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4391 {
4392 /*
4393 * This function assumes the page will need to be unwired,
4394 * even though the counterpart allocation in pmap_alloc_pt_page()
4395 * doesn't enforce VM_ALLOC_WIRED. However, all current uses
4396 * of pmap_free_pt_page() require unwiring. The case in which
4397 * a PT page doesn't require unwiring because its ref_count has
4398 * naturally reached 0 is handled through _pmap_unwire_ptp().
4399 */
4400 vm_page_unwire_noq(m);
4401 if (zerofilled)
4402 vm_page_free_zero(m);
4403 else
4404 vm_page_free(m);
4405
4406 pmap_pt_page_count_adj(pmap, -1);
4407 }
4408
4409 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4410
4411 /*
4412 * Initialize a preallocated and zeroed pmap structure,
4413 * such as one in a vmspace structure.
4414 */
4415 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4416 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4417 {
4418 vm_page_t pmltop_pg, pmltop_pgu;
4419 vm_paddr_t pmltop_phys;
4420
4421 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4422
4423 /*
4424 * Allocate the page directory page. Pass NULL instead of a
4425 * pointer to the pmap here to avoid calling
4426 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4427 * since that requires pmap lock. Instead do the accounting
4428 * manually.
4429 *
4430 * Note that final call to pmap_remove() optimization that
4431 * checks for zero resident_count is basically disabled by
4432 * accounting for top-level page. But the optimization was
4433 * not effective since we started using non-managed mapping of
4434 * the shared page.
4435 */
4436 pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4437 VM_ALLOC_WAITOK);
4438 pmap_pt_page_count_pinit(pmap, 1);
4439
4440 pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4441 pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4442
4443 if (pmap_pcid_enabled) {
4444 if (pmap->pm_pcidp == NULL)
4445 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4446 M_WAITOK);
4447 pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4448 }
4449 pmap->pm_cr3 = PMAP_NO_CR3; /* initialize to an invalid value */
4450 pmap->pm_ucr3 = PMAP_NO_CR3;
4451 pmap->pm_pmltopu = NULL;
4452
4453 pmap->pm_type = pm_type;
4454
4455 /*
4456 * Do not install the host kernel mappings in the nested page
4457 * tables. These mappings are meaningless in the guest physical
4458 * address space.
4459 * Install minimal kernel mappings in PTI case.
4460 */
4461 switch (pm_type) {
4462 case PT_X86:
4463 pmap->pm_cr3 = pmltop_phys;
4464 if (pmap_is_la57(pmap))
4465 pmap_pinit_pml5(pmltop_pg);
4466 else
4467 pmap_pinit_pml4(pmltop_pg);
4468 if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4469 /*
4470 * As with pmltop_pg, pass NULL instead of a
4471 * pointer to the pmap to ensure that the PTI
4472 * page counted explicitly.
4473 */
4474 pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4475 VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4476 pmap_pt_page_count_pinit(pmap, 1);
4477 pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4478 VM_PAGE_TO_PHYS(pmltop_pgu));
4479 if (pmap_is_la57(pmap))
4480 pmap_pinit_pml5_pti(pmltop_pgu);
4481 else
4482 pmap_pinit_pml4_pti(pmltop_pgu);
4483 pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4484 }
4485 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4486 rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4487 pkru_free_range, pmap, M_NOWAIT);
4488 }
4489 break;
4490 case PT_EPT:
4491 case PT_RVI:
4492 pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4493 break;
4494 }
4495
4496 vm_radix_init(&pmap->pm_root);
4497 CPU_ZERO(&pmap->pm_active);
4498 TAILQ_INIT(&pmap->pm_pvchunk);
4499 pmap->pm_flags = flags;
4500 pmap->pm_eptgen = 0;
4501
4502 return (1);
4503 }
4504
4505 int
pmap_pinit(pmap_t pmap)4506 pmap_pinit(pmap_t pmap)
4507 {
4508
4509 return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4510 }
4511
4512 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4513 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4514 {
4515 vm_page_t mpg;
4516 struct spglist free;
4517
4518 mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4519 if (mpg->ref_count != 0)
4520 return;
4521 SLIST_INIT(&free);
4522 _pmap_unwire_ptp(pmap, va, mpg, &free);
4523 pmap_invalidate_page(pmap, va);
4524 vm_page_free_pages_toq(&free, true);
4525 }
4526
4527 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4528 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4529 bool addref)
4530 {
4531 vm_pindex_t pml5index;
4532 pml5_entry_t *pml5;
4533 pml4_entry_t *pml4;
4534 vm_page_t pml4pg;
4535 pt_entry_t PG_V;
4536 bool allocated;
4537
4538 if (!pmap_is_la57(pmap))
4539 return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4540
4541 PG_V = pmap_valid_bit(pmap);
4542 pml5index = pmap_pml5e_index(va);
4543 pml5 = &pmap->pm_pmltop[pml5index];
4544 if ((*pml5 & PG_V) == 0) {
4545 if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4546 va) == NULL)
4547 return (NULL);
4548 allocated = true;
4549 } else {
4550 allocated = false;
4551 }
4552 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4553 pml4 = &pml4[pmap_pml4e_index(va)];
4554 if ((*pml4 & PG_V) == 0) {
4555 pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4556 if (allocated && !addref)
4557 pml4pg->ref_count--;
4558 else if (!allocated && addref)
4559 pml4pg->ref_count++;
4560 }
4561 return (pml4);
4562 }
4563
4564 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4565 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4566 bool addref)
4567 {
4568 vm_page_t pdppg;
4569 pml4_entry_t *pml4;
4570 pdp_entry_t *pdp;
4571 pt_entry_t PG_V;
4572 bool allocated;
4573
4574 PG_V = pmap_valid_bit(pmap);
4575
4576 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4577 if (pml4 == NULL)
4578 return (NULL);
4579
4580 if ((*pml4 & PG_V) == 0) {
4581 /* Have to allocate a new pdp, recurse */
4582 if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4583 va) == NULL) {
4584 if (pmap_is_la57(pmap))
4585 pmap_allocpte_free_unref(pmap, va,
4586 pmap_pml5e(pmap, va));
4587 return (NULL);
4588 }
4589 allocated = true;
4590 } else {
4591 allocated = false;
4592 }
4593 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4594 pdp = &pdp[pmap_pdpe_index(va)];
4595 if ((*pdp & PG_V) == 0) {
4596 pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4597 if (allocated && !addref)
4598 pdppg->ref_count--;
4599 else if (!allocated && addref)
4600 pdppg->ref_count++;
4601 }
4602 return (pdp);
4603 }
4604
4605 /*
4606 * The ptepindexes, i.e. page indices, of the page table pages encountered
4607 * while translating virtual address va are defined as follows:
4608 * - for the page table page (last level),
4609 * ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4610 * in other words, it is just the index of the PDE that maps the page
4611 * table page.
4612 * - for the page directory page,
4613 * ptepindex = NUPDE (number of userland PD entries) +
4614 * (pmap_pde_index(va) >> NPDEPGSHIFT)
4615 * i.e. index of PDPE is put after the last index of PDE,
4616 * - for the page directory pointer page,
4617 * ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4618 * NPML4EPGSHIFT),
4619 * i.e. index of pml4e is put after the last index of PDPE,
4620 * - for the PML4 page (if LA57 mode is enabled),
4621 * ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4622 * (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4623 * i.e. index of pml5e is put after the last index of PML4E.
4624 *
4625 * Define an order on the paging entries, where all entries of the
4626 * same height are put together, then heights are put from deepest to
4627 * root. Then ptexpindex is the sequential number of the
4628 * corresponding paging entry in this order.
4629 *
4630 * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4631 * LA57 paging structures even in LA48 paging mode. Moreover, the
4632 * ptepindexes are calculated as if the paging structures were 5-level
4633 * regardless of the actual mode of operation.
4634 *
4635 * The root page at PML4/PML5 does not participate in this indexing scheme,
4636 * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4637 */
4638 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4639 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4640 vm_offset_t va)
4641 {
4642 vm_pindex_t pml5index, pml4index;
4643 pml5_entry_t *pml5, *pml5u;
4644 pml4_entry_t *pml4, *pml4u;
4645 pdp_entry_t *pdp;
4646 pd_entry_t *pd;
4647 vm_page_t m, pdpg;
4648 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4649
4650 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4651
4652 PG_A = pmap_accessed_bit(pmap);
4653 PG_M = pmap_modified_bit(pmap);
4654 PG_V = pmap_valid_bit(pmap);
4655 PG_RW = pmap_rw_bit(pmap);
4656
4657 /*
4658 * Allocate a page table page.
4659 */
4660 m = pmap_alloc_pt_page(pmap, ptepindex,
4661 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4662 if (m == NULL)
4663 return (NULL);
4664
4665 /*
4666 * Map the pagetable page into the process address space, if
4667 * it isn't already there.
4668 */
4669 if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4670 MPASS(pmap_is_la57(pmap));
4671
4672 pml5index = pmap_pml5e_index(va);
4673 pml5 = &pmap->pm_pmltop[pml5index];
4674 KASSERT((*pml5 & PG_V) == 0,
4675 ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4676 *pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4677
4678 if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4679 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4680 *pml5 |= pg_nx;
4681
4682 pml5u = &pmap->pm_pmltopu[pml5index];
4683 *pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4684 PG_A | PG_M;
4685 }
4686 } else if (ptepindex >= NUPDE + NUPDPE) {
4687 pml4index = pmap_pml4e_index(va);
4688 /* Wire up a new PDPE page */
4689 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4690 if (pml4 == NULL) {
4691 pmap_free_pt_page(pmap, m, true);
4692 return (NULL);
4693 }
4694 KASSERT((*pml4 & PG_V) == 0,
4695 ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4696 *pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4697
4698 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4699 pml4index < NUPML4E) {
4700 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4701
4702 /*
4703 * PTI: Make all user-space mappings in the
4704 * kernel-mode page table no-execute so that
4705 * we detect any programming errors that leave
4706 * the kernel-mode page table active on return
4707 * to user space.
4708 */
4709 *pml4 |= pg_nx;
4710
4711 pml4u = &pmap->pm_pmltopu[pml4index];
4712 *pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4713 PG_A | PG_M;
4714 }
4715 } else if (ptepindex >= NUPDE) {
4716 /* Wire up a new PDE page */
4717 pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4718 if (pdp == NULL) {
4719 pmap_free_pt_page(pmap, m, true);
4720 return (NULL);
4721 }
4722 KASSERT((*pdp & PG_V) == 0,
4723 ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4724 *pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4725 } else {
4726 /* Wire up a new PTE page */
4727 pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4728 if (pdp == NULL) {
4729 pmap_free_pt_page(pmap, m, true);
4730 return (NULL);
4731 }
4732 if ((*pdp & PG_V) == 0) {
4733 /* Have to allocate a new pd, recurse */
4734 if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4735 lockp, va) == NULL) {
4736 pmap_allocpte_free_unref(pmap, va,
4737 pmap_pml4e(pmap, va));
4738 pmap_free_pt_page(pmap, m, true);
4739 return (NULL);
4740 }
4741 } else {
4742 /* Add reference to the pd page */
4743 pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4744 pdpg->ref_count++;
4745 }
4746 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4747
4748 /* Now we know where the page directory page is */
4749 pd = &pd[pmap_pde_index(va)];
4750 KASSERT((*pd & PG_V) == 0,
4751 ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4752 *pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4753 }
4754
4755 return (m);
4756 }
4757
4758 /*
4759 * This routine is called if the desired page table page does not exist.
4760 *
4761 * If page table page allocation fails, this routine may sleep before
4762 * returning NULL. It sleeps only if a lock pointer was given. Sleep
4763 * occurs right before returning to the caller. This way, we never
4764 * drop pmap lock to sleep while a page table page has ref_count == 0,
4765 * which prevents the page from being freed under us.
4766 */
4767 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4768 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4769 vm_offset_t va)
4770 {
4771 vm_page_t m;
4772
4773 m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4774 if (m == NULL && lockp != NULL) {
4775 RELEASE_PV_LIST_LOCK(lockp);
4776 PMAP_UNLOCK(pmap);
4777 PMAP_ASSERT_NOT_IN_DI();
4778 vm_wait(NULL);
4779 PMAP_LOCK(pmap);
4780 }
4781 return (m);
4782 }
4783
4784 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4785 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4786 struct rwlock **lockp)
4787 {
4788 pdp_entry_t *pdpe, PG_V;
4789 pd_entry_t *pde;
4790 vm_page_t pdpg;
4791 vm_pindex_t pdpindex;
4792
4793 PG_V = pmap_valid_bit(pmap);
4794
4795 retry:
4796 pdpe = pmap_pdpe(pmap, va);
4797 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4798 pde = pmap_pdpe_to_pde(pdpe, va);
4799 if (va < VM_MAXUSER_ADDRESS) {
4800 /* Add a reference to the pd page. */
4801 pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4802 pdpg->ref_count++;
4803 } else
4804 pdpg = NULL;
4805 } else if (va < VM_MAXUSER_ADDRESS) {
4806 /* Allocate a pd page. */
4807 pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4808 pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4809 if (pdpg == NULL) {
4810 if (lockp != NULL)
4811 goto retry;
4812 else
4813 return (NULL);
4814 }
4815 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4816 pde = &pde[pmap_pde_index(va)];
4817 } else
4818 panic("pmap_alloc_pde: missing page table page for va %#lx",
4819 va);
4820 *pdpgp = pdpg;
4821 return (pde);
4822 }
4823
4824 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4825 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4826 {
4827 vm_pindex_t ptepindex;
4828 pd_entry_t *pd, PG_V;
4829 vm_page_t m;
4830
4831 PG_V = pmap_valid_bit(pmap);
4832
4833 /*
4834 * Calculate pagetable page index
4835 */
4836 ptepindex = pmap_pde_pindex(va);
4837 retry:
4838 /*
4839 * Get the page directory entry
4840 */
4841 pd = pmap_pde(pmap, va);
4842
4843 /*
4844 * This supports switching from a 2MB page to a
4845 * normal 4K page.
4846 */
4847 if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4848 if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4849 /*
4850 * Invalidation of the 2MB page mapping may have caused
4851 * the deallocation of the underlying PD page.
4852 */
4853 pd = NULL;
4854 }
4855 }
4856
4857 /*
4858 * If the page table page is mapped, we just increment the
4859 * hold count, and activate it.
4860 */
4861 if (pd != NULL && (*pd & PG_V) != 0) {
4862 m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4863 m->ref_count++;
4864 } else {
4865 /*
4866 * Here if the pte page isn't mapped, or if it has been
4867 * deallocated.
4868 */
4869 m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4870 if (m == NULL && lockp != NULL)
4871 goto retry;
4872 }
4873 return (m);
4874 }
4875
4876 /***************************************************
4877 * Pmap allocation/deallocation routines.
4878 ***************************************************/
4879
4880 /*
4881 * Release any resources held by the given physical map.
4882 * Called when a pmap initialized by pmap_pinit is being released.
4883 * Should only be called if the map contains no valid mappings.
4884 */
4885 void
pmap_release(pmap_t pmap)4886 pmap_release(pmap_t pmap)
4887 {
4888 vm_page_t m;
4889 int i;
4890
4891 KASSERT(vm_radix_is_empty(&pmap->pm_root),
4892 ("pmap_release: pmap %p has reserved page table page(s)",
4893 pmap));
4894 KASSERT(CPU_EMPTY(&pmap->pm_active),
4895 ("releasing active pmap %p", pmap));
4896
4897 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4898
4899 if (pmap_is_la57(pmap)) {
4900 pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4901 pmap->pm_pmltop[PML5PML5I] = 0;
4902 } else {
4903 for (i = 0; i < NKPML4E; i++) /* KVA */
4904 pmap->pm_pmltop[KPML4BASE + i] = 0;
4905 #ifdef KASAN
4906 for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4907 pmap->pm_pmltop[KASANPML4I + i] = 0;
4908 #endif
4909 #ifdef KMSAN
4910 for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4911 pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4912 for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4913 pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4914 #endif
4915 for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4916 pmap->pm_pmltop[DMPML4I + i] = 0;
4917 pmap->pm_pmltop[PML4PML4I] = 0; /* Recursive Mapping */
4918 for (i = 0; i < lm_ents; i++) /* Large Map */
4919 pmap->pm_pmltop[LMSPML4I + i] = 0;
4920 }
4921
4922 pmap_free_pt_page(NULL, m, true);
4923 pmap_pt_page_count_pinit(pmap, -1);
4924
4925 if (pmap->pm_pmltopu != NULL) {
4926 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4927 pm_pmltopu));
4928 pmap_free_pt_page(NULL, m, false);
4929 pmap_pt_page_count_pinit(pmap, -1);
4930 }
4931 if (pmap->pm_type == PT_X86 &&
4932 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4933 rangeset_fini(&pmap->pm_pkru);
4934
4935 KASSERT(pmap->pm_stats.resident_count == 0,
4936 ("pmap_release: pmap %p resident count %ld != 0",
4937 pmap, pmap->pm_stats.resident_count));
4938 }
4939
4940 static int
kvm_size(SYSCTL_HANDLER_ARGS)4941 kvm_size(SYSCTL_HANDLER_ARGS)
4942 {
4943 unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4944
4945 return sysctl_handle_long(oidp, &ksize, 0, req);
4946 }
4947 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4948 0, 0, kvm_size, "LU",
4949 "Size of KVM");
4950
4951 static int
kvm_free(SYSCTL_HANDLER_ARGS)4952 kvm_free(SYSCTL_HANDLER_ARGS)
4953 {
4954 unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4955
4956 return sysctl_handle_long(oidp, &kfree, 0, req);
4957 }
4958 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4959 0, 0, kvm_free, "LU",
4960 "Amount of KVM free");
4961
4962 #ifdef KMSAN
4963 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4964 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4965 {
4966 pdp_entry_t *pdpe;
4967 pd_entry_t *pde;
4968 pt_entry_t *pte;
4969 vm_paddr_t dummypa, dummypd, dummypt;
4970 int i, npde, npdpg;
4971
4972 npdpg = howmany(size, NBPDP);
4973 npde = size / NBPDR;
4974
4975 dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4976 pagezero((void *)PHYS_TO_DMAP(dummypa));
4977
4978 dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4979 pagezero((void *)PHYS_TO_DMAP(dummypt));
4980 dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4981 for (i = 0; i < npdpg; i++)
4982 pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4983
4984 pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4985 for (i = 0; i < NPTEPG; i++)
4986 pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4987 X86_PG_A | X86_PG_M | pg_nx);
4988
4989 pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4990 for (i = 0; i < npde; i++)
4991 pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4992
4993 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4994 for (i = 0; i < npdpg; i++)
4995 pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4996 X86_PG_RW | pg_nx);
4997 }
4998
4999 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5000 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5001 {
5002 vm_size_t size;
5003
5004 KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5005
5006 /*
5007 * The end of the page array's KVA region is 2MB aligned, see
5008 * kmem_init().
5009 */
5010 size = round_2mpage(end) - start;
5011 pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5012 pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5013 }
5014 #endif
5015
5016 /*
5017 * Allocate physical memory for the vm_page array and map it into KVA,
5018 * attempting to back the vm_pages with domain-local memory.
5019 */
5020 void
pmap_page_array_startup(long pages)5021 pmap_page_array_startup(long pages)
5022 {
5023 pdp_entry_t *pdpe;
5024 pd_entry_t *pde, newpdir;
5025 vm_offset_t va, start, end;
5026 vm_paddr_t pa;
5027 long pfn;
5028 int domain, i;
5029
5030 vm_page_array_size = pages;
5031
5032 start = VM_MIN_KERNEL_ADDRESS;
5033 end = start + pages * sizeof(struct vm_page);
5034 for (va = start; va < end; va += NBPDR) {
5035 pfn = first_page + (va - start) / sizeof(struct vm_page);
5036 domain = vm_phys_domain(ptoa(pfn));
5037 pdpe = pmap_pdpe(kernel_pmap, va);
5038 if ((*pdpe & X86_PG_V) == 0) {
5039 pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5040 dump_add_page(pa);
5041 pagezero((void *)PHYS_TO_DMAP(pa));
5042 *pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5043 X86_PG_A | X86_PG_M);
5044 }
5045 pde = pmap_pdpe_to_pde(pdpe, va);
5046 if ((*pde & X86_PG_V) != 0)
5047 panic("Unexpected pde");
5048 pa = vm_phys_early_alloc(domain, NBPDR);
5049 for (i = 0; i < NPDEPG; i++)
5050 dump_add_page(pa + i * PAGE_SIZE);
5051 newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5052 X86_PG_M | PG_PS | pg_g | pg_nx);
5053 pde_store(pde, newpdir);
5054 }
5055 vm_page_array = (vm_page_t)start;
5056
5057 #ifdef KMSAN
5058 pmap_kmsan_page_array_startup(start, end);
5059 #endif
5060 }
5061
5062 /*
5063 * grow the number of kernel page table entries, if needed
5064 */
5065 static int
pmap_growkernel_nopanic(vm_offset_t addr)5066 pmap_growkernel_nopanic(vm_offset_t addr)
5067 {
5068 vm_paddr_t paddr;
5069 vm_page_t nkpg;
5070 pd_entry_t *pde, newpdir;
5071 pdp_entry_t *pdpe;
5072 vm_offset_t end;
5073 int rv;
5074
5075 TSENTER();
5076 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5077 rv = KERN_SUCCESS;
5078
5079 /*
5080 * The kernel map covers two distinct regions of KVA: that used
5081 * for dynamic kernel memory allocations, and the uppermost 2GB
5082 * of the virtual address space. The latter is used to map the
5083 * kernel and loadable kernel modules. This scheme enables the
5084 * use of a special code generation model for kernel code which
5085 * takes advantage of compact addressing modes in machine code.
5086 *
5087 * Both regions grow upwards; to avoid wasting memory, the gap
5088 * in between is unmapped. If "addr" is above "KERNBASE", the
5089 * kernel's region is grown, otherwise the kmem region is grown.
5090 *
5091 * The correctness of this action is based on the following
5092 * argument: vm_map_insert() allocates contiguous ranges of the
5093 * kernel virtual address space. It calls this function if a range
5094 * ends after "kernel_vm_end". If the kernel is mapped between
5095 * "kernel_vm_end" and "addr", then the range cannot begin at
5096 * "kernel_vm_end". In fact, its beginning address cannot be less
5097 * than the kernel. Thus, there is no immediate need to allocate
5098 * any new kernel page table pages between "kernel_vm_end" and
5099 * "KERNBASE".
5100 */
5101 if (KERNBASE < addr) {
5102 end = KERNBASE + nkpt * NBPDR;
5103 if (end == 0) {
5104 TSEXIT();
5105 return (rv);
5106 }
5107 } else {
5108 end = kernel_vm_end;
5109 }
5110
5111 addr = roundup2(addr, NBPDR);
5112 if (addr - 1 >= vm_map_max(kernel_map))
5113 addr = vm_map_max(kernel_map);
5114 if (addr <= end) {
5115 /*
5116 * The grown region is already mapped, so there is
5117 * nothing to do.
5118 */
5119 TSEXIT();
5120 return (rv);
5121 }
5122
5123 kasan_shadow_map(end, addr - end);
5124 kmsan_shadow_map(end, addr - end);
5125 while (end < addr) {
5126 pdpe = pmap_pdpe(kernel_pmap, end);
5127 if ((*pdpe & X86_PG_V) == 0) {
5128 nkpg = pmap_alloc_pt_page(kernel_pmap,
5129 pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5130 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5131 if (nkpg == NULL) {
5132 rv = KERN_RESOURCE_SHORTAGE;
5133 break;
5134 }
5135 paddr = VM_PAGE_TO_PHYS(nkpg);
5136 *pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5137 X86_PG_A | X86_PG_M);
5138 continue; /* try again */
5139 }
5140 pde = pmap_pdpe_to_pde(pdpe, end);
5141 if ((*pde & X86_PG_V) != 0) {
5142 end = (end + NBPDR) & ~PDRMASK;
5143 if (end - 1 >= vm_map_max(kernel_map)) {
5144 end = vm_map_max(kernel_map);
5145 break;
5146 }
5147 continue;
5148 }
5149
5150 nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5151 VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5152 VM_ALLOC_ZERO);
5153 if (nkpg == NULL) {
5154 rv = KERN_RESOURCE_SHORTAGE;
5155 break;
5156 }
5157
5158 paddr = VM_PAGE_TO_PHYS(nkpg);
5159 newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5160 pde_store(pde, newpdir);
5161
5162 end = (end + NBPDR) & ~PDRMASK;
5163 if (end - 1 >= vm_map_max(kernel_map)) {
5164 end = vm_map_max(kernel_map);
5165 break;
5166 }
5167 }
5168
5169 if (end <= KERNBASE)
5170 kernel_vm_end = end;
5171 else
5172 nkpt = howmany(end - KERNBASE, NBPDR);
5173 TSEXIT();
5174 return (rv);
5175 }
5176
5177 int
pmap_growkernel(vm_offset_t addr)5178 pmap_growkernel(vm_offset_t addr)
5179 {
5180 int rv;
5181
5182 rv = pmap_growkernel_nopanic(addr);
5183 if (rv != KERN_SUCCESS && pmap_growkernel_panic)
5184 panic("pmap_growkernel: no memory to grow kernel");
5185 return (rv);
5186 }
5187
5188 /***************************************************
5189 * page management routines.
5190 ***************************************************/
5191
5192 static const uint64_t pc_freemask[_NPCM] = {
5193 [0 ... _NPCM - 2] = PC_FREEN,
5194 [_NPCM - 1] = PC_FREEL
5195 };
5196
5197 #ifdef PV_STATS
5198
5199 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5200 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5201 &pc_chunk_count, "Current number of pv entry cnunks");
5202
5203 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5204 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5205 &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5206
5207 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5208 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5209 &pc_chunk_frees, "Total number of pv entry chunks freed");
5210
5211 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5212 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5213 &pc_chunk_tryfail,
5214 "Number of failed attempts to get a pv entry chunk page");
5215
5216 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5217 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5218 &pv_entry_frees, "Total number of pv entries freed");
5219
5220 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5221 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5222 &pv_entry_allocs, "Total number of pv entries allocated");
5223
5224 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5225 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5226 &pv_entry_count, "Current number of pv entries");
5227
5228 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5229 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5230 &pv_entry_spare, "Current number of spare pv entries");
5231 #endif
5232
5233 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5234 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5235 {
5236
5237 if (pmap == NULL)
5238 return;
5239 pmap_invalidate_all(pmap);
5240 if (pmap != locked_pmap)
5241 PMAP_UNLOCK(pmap);
5242 if (start_di)
5243 pmap_delayed_invl_finish();
5244 }
5245
5246 /*
5247 * We are in a serious low memory condition. Resort to
5248 * drastic measures to free some pages so we can allocate
5249 * another pv entry chunk.
5250 *
5251 * Returns NULL if PV entries were reclaimed from the specified pmap.
5252 *
5253 * We do not, however, unmap 2mpages because subsequent accesses will
5254 * allocate per-page pv entries until repromotion occurs, thereby
5255 * exacerbating the shortage of free pv entries.
5256 */
5257 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5258 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5259 {
5260 struct pv_chunks_list *pvc;
5261 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5262 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5263 struct md_page *pvh;
5264 pd_entry_t *pde;
5265 pmap_t next_pmap, pmap;
5266 pt_entry_t *pte, tpte;
5267 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5268 pv_entry_t pv;
5269 vm_offset_t va;
5270 vm_page_t m, m_pc;
5271 struct spglist free;
5272 uint64_t inuse;
5273 int bit, field, freed;
5274 bool start_di, restart;
5275
5276 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5277 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5278 pmap = NULL;
5279 m_pc = NULL;
5280 PG_G = PG_A = PG_M = PG_RW = 0;
5281 SLIST_INIT(&free);
5282 bzero(&pc_marker_b, sizeof(pc_marker_b));
5283 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5284 pc_marker = (struct pv_chunk *)&pc_marker_b;
5285 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5286
5287 /*
5288 * A delayed invalidation block should already be active if
5289 * pmap_advise() or pmap_remove() called this function by way
5290 * of pmap_demote_pde_locked().
5291 */
5292 start_di = pmap_not_in_di();
5293
5294 pvc = &pv_chunks[domain];
5295 mtx_lock(&pvc->pvc_lock);
5296 pvc->active_reclaims++;
5297 TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5298 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5299 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5300 SLIST_EMPTY(&free)) {
5301 next_pmap = pc->pc_pmap;
5302 if (next_pmap == NULL) {
5303 /*
5304 * The next chunk is a marker. However, it is
5305 * not our marker, so active_reclaims must be
5306 * > 1. Consequently, the next_chunk code
5307 * will not rotate the pv_chunks list.
5308 */
5309 goto next_chunk;
5310 }
5311 mtx_unlock(&pvc->pvc_lock);
5312
5313 /*
5314 * A pv_chunk can only be removed from the pc_lru list
5315 * when both pc_chunks_mutex is owned and the
5316 * corresponding pmap is locked.
5317 */
5318 if (pmap != next_pmap) {
5319 restart = false;
5320 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5321 start_di);
5322 pmap = next_pmap;
5323 /* Avoid deadlock and lock recursion. */
5324 if (pmap > locked_pmap) {
5325 RELEASE_PV_LIST_LOCK(lockp);
5326 PMAP_LOCK(pmap);
5327 if (start_di)
5328 pmap_delayed_invl_start();
5329 mtx_lock(&pvc->pvc_lock);
5330 restart = true;
5331 } else if (pmap != locked_pmap) {
5332 if (PMAP_TRYLOCK(pmap)) {
5333 if (start_di)
5334 pmap_delayed_invl_start();
5335 mtx_lock(&pvc->pvc_lock);
5336 restart = true;
5337 } else {
5338 pmap = NULL; /* pmap is not locked */
5339 mtx_lock(&pvc->pvc_lock);
5340 pc = TAILQ_NEXT(pc_marker, pc_lru);
5341 if (pc == NULL ||
5342 pc->pc_pmap != next_pmap)
5343 continue;
5344 goto next_chunk;
5345 }
5346 } else if (start_di)
5347 pmap_delayed_invl_start();
5348 PG_G = pmap_global_bit(pmap);
5349 PG_A = pmap_accessed_bit(pmap);
5350 PG_M = pmap_modified_bit(pmap);
5351 PG_RW = pmap_rw_bit(pmap);
5352 if (restart)
5353 continue;
5354 }
5355
5356 /*
5357 * Destroy every non-wired, 4 KB page mapping in the chunk.
5358 */
5359 freed = 0;
5360 for (field = 0; field < _NPCM; field++) {
5361 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5362 inuse != 0; inuse &= ~(1UL << bit)) {
5363 bit = bsfq(inuse);
5364 pv = &pc->pc_pventry[field * 64 + bit];
5365 va = pv->pv_va;
5366 pde = pmap_pde(pmap, va);
5367 if ((*pde & PG_PS) != 0)
5368 continue;
5369 pte = pmap_pde_to_pte(pde, va);
5370 if ((*pte & PG_W) != 0)
5371 continue;
5372 tpte = pte_load_clear(pte);
5373 if ((tpte & PG_G) != 0)
5374 pmap_invalidate_page(pmap, va);
5375 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5376 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5377 vm_page_dirty(m);
5378 if ((tpte & PG_A) != 0)
5379 vm_page_aflag_set(m, PGA_REFERENCED);
5380 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5381 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5382 m->md.pv_gen++;
5383 if (TAILQ_EMPTY(&m->md.pv_list) &&
5384 (m->flags & PG_FICTITIOUS) == 0) {
5385 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5386 if (TAILQ_EMPTY(&pvh->pv_list)) {
5387 vm_page_aflag_clear(m,
5388 PGA_WRITEABLE);
5389 }
5390 }
5391 pmap_delayed_invl_page(m);
5392 pc->pc_map[field] |= 1UL << bit;
5393 pmap_unuse_pt(pmap, va, *pde, &free);
5394 freed++;
5395 }
5396 }
5397 if (freed == 0) {
5398 mtx_lock(&pvc->pvc_lock);
5399 goto next_chunk;
5400 }
5401 /* Every freed mapping is for a 4 KB page. */
5402 pmap_resident_count_adj(pmap, -freed);
5403 PV_STAT(counter_u64_add(pv_entry_frees, freed));
5404 PV_STAT(counter_u64_add(pv_entry_spare, freed));
5405 PV_STAT(counter_u64_add(pv_entry_count, -freed));
5406 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5407 if (pc_is_free(pc)) {
5408 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5409 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5410 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5411 /* Entire chunk is free; return it. */
5412 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5413 dump_drop_page(m_pc->phys_addr);
5414 mtx_lock(&pvc->pvc_lock);
5415 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5416 break;
5417 }
5418 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5419 mtx_lock(&pvc->pvc_lock);
5420 /* One freed pv entry in locked_pmap is sufficient. */
5421 if (pmap == locked_pmap)
5422 break;
5423 next_chunk:
5424 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5425 TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5426 if (pvc->active_reclaims == 1 && pmap != NULL) {
5427 /*
5428 * Rotate the pv chunks list so that we do not
5429 * scan the same pv chunks that could not be
5430 * freed (because they contained a wired
5431 * and/or superpage mapping) on every
5432 * invocation of reclaim_pv_chunk().
5433 */
5434 while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5435 MPASS(pc->pc_pmap != NULL);
5436 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5437 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5438 }
5439 }
5440 }
5441 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5442 TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5443 pvc->active_reclaims--;
5444 mtx_unlock(&pvc->pvc_lock);
5445 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5446 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5447 m_pc = SLIST_FIRST(&free);
5448 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5449 /* Recycle a freed page table page. */
5450 m_pc->ref_count = 1;
5451 }
5452 vm_page_free_pages_toq(&free, true);
5453 return (m_pc);
5454 }
5455
5456 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5457 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5458 {
5459 vm_page_t m;
5460 int i, domain;
5461
5462 domain = PCPU_GET(domain);
5463 for (i = 0; i < vm_ndomains; i++) {
5464 m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5465 if (m != NULL)
5466 break;
5467 domain = (domain + 1) % vm_ndomains;
5468 }
5469
5470 return (m);
5471 }
5472
5473 /*
5474 * free the pv_entry back to the free list
5475 */
5476 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5477 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5478 {
5479 struct pv_chunk *pc;
5480 int idx, field, bit;
5481
5482 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5483 PV_STAT(counter_u64_add(pv_entry_frees, 1));
5484 PV_STAT(counter_u64_add(pv_entry_spare, 1));
5485 PV_STAT(counter_u64_add(pv_entry_count, -1));
5486 pc = pv_to_chunk(pv);
5487 idx = pv - &pc->pc_pventry[0];
5488 field = idx / 64;
5489 bit = idx % 64;
5490 pc->pc_map[field] |= 1ul << bit;
5491 if (!pc_is_free(pc)) {
5492 /* 98% of the time, pc is already at the head of the list. */
5493 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5494 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5495 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5496 }
5497 return;
5498 }
5499 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5500 free_pv_chunk(pc);
5501 }
5502
5503 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5504 free_pv_chunk_dequeued(struct pv_chunk *pc)
5505 {
5506 vm_page_t m;
5507
5508 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5509 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5510 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5511 counter_u64_add(pv_page_count, -1);
5512 /* entire chunk is free, return it */
5513 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5514 dump_drop_page(m->phys_addr);
5515 vm_page_unwire_noq(m);
5516 vm_page_free(m);
5517 }
5518
5519 static void
free_pv_chunk(struct pv_chunk * pc)5520 free_pv_chunk(struct pv_chunk *pc)
5521 {
5522 struct pv_chunks_list *pvc;
5523
5524 pvc = &pv_chunks[pc_to_domain(pc)];
5525 mtx_lock(&pvc->pvc_lock);
5526 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5527 mtx_unlock(&pvc->pvc_lock);
5528 free_pv_chunk_dequeued(pc);
5529 }
5530
5531 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5532 free_pv_chunk_batch(struct pv_chunklist *batch)
5533 {
5534 struct pv_chunks_list *pvc;
5535 struct pv_chunk *pc, *npc;
5536 int i;
5537
5538 for (i = 0; i < vm_ndomains; i++) {
5539 if (TAILQ_EMPTY(&batch[i]))
5540 continue;
5541 pvc = &pv_chunks[i];
5542 mtx_lock(&pvc->pvc_lock);
5543 TAILQ_FOREACH(pc, &batch[i], pc_list) {
5544 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5545 }
5546 mtx_unlock(&pvc->pvc_lock);
5547 }
5548
5549 for (i = 0; i < vm_ndomains; i++) {
5550 TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5551 free_pv_chunk_dequeued(pc);
5552 }
5553 }
5554 }
5555
5556 /*
5557 * Returns a new PV entry, allocating a new PV chunk from the system when
5558 * needed. If this PV chunk allocation fails and a PV list lock pointer was
5559 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
5560 * returned.
5561 *
5562 * The given PV list lock may be released.
5563 */
5564 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5565 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5566 {
5567 struct pv_chunks_list *pvc;
5568 int bit, field;
5569 pv_entry_t pv;
5570 struct pv_chunk *pc;
5571 vm_page_t m;
5572
5573 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5574 PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5575 retry:
5576 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5577 if (pc != NULL) {
5578 for (field = 0; field < _NPCM; field++) {
5579 if (pc->pc_map[field]) {
5580 bit = bsfq(pc->pc_map[field]);
5581 break;
5582 }
5583 }
5584 if (field < _NPCM) {
5585 pv = &pc->pc_pventry[field * 64 + bit];
5586 pc->pc_map[field] &= ~(1ul << bit);
5587 /* If this was the last item, move it to tail */
5588 if (pc_is_full(pc)) {
5589 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5590 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5591 pc_list);
5592 }
5593 PV_STAT(counter_u64_add(pv_entry_count, 1));
5594 PV_STAT(counter_u64_add(pv_entry_spare, -1));
5595 return (pv);
5596 }
5597 }
5598 /* No free items, allocate another chunk */
5599 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5600 if (m == NULL) {
5601 if (lockp == NULL) {
5602 PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5603 return (NULL);
5604 }
5605 m = reclaim_pv_chunk(pmap, lockp);
5606 if (m == NULL)
5607 goto retry;
5608 } else
5609 counter_u64_add(pv_page_count, 1);
5610 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5611 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5612 dump_add_page(m->phys_addr);
5613 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5614 pc->pc_pmap = pmap;
5615 pc->pc_map[0] = PC_FREEN & ~1ul; /* preallocated bit 0 */
5616 pc->pc_map[1] = PC_FREEN;
5617 pc->pc_map[2] = PC_FREEL;
5618 pvc = &pv_chunks[vm_page_domain(m)];
5619 mtx_lock(&pvc->pvc_lock);
5620 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5621 mtx_unlock(&pvc->pvc_lock);
5622 pv = &pc->pc_pventry[0];
5623 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5624 PV_STAT(counter_u64_add(pv_entry_count, 1));
5625 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5626 return (pv);
5627 }
5628
5629 /*
5630 * Returns the number of one bits within the given PV chunk map.
5631 *
5632 * The erratas for Intel processors state that "POPCNT Instruction May
5633 * Take Longer to Execute Than Expected". It is believed that the
5634 * issue is the spurious dependency on the destination register.
5635 * Provide a hint to the register rename logic that the destination
5636 * value is overwritten, by clearing it, as suggested in the
5637 * optimization manual. It should be cheap for unaffected processors
5638 * as well.
5639 *
5640 * Reference numbers for erratas are
5641 * 4th Gen Core: HSD146
5642 * 5th Gen Core: BDM85
5643 * 6th Gen Core: SKL029
5644 */
5645 static int
popcnt_pc_map_pq(uint64_t * map)5646 popcnt_pc_map_pq(uint64_t *map)
5647 {
5648 u_long result, tmp;
5649
5650 __asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5651 "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5652 "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5653 : "=&r" (result), "=&r" (tmp)
5654 : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5655 return (result);
5656 }
5657
5658 /*
5659 * Ensure that the number of spare PV entries in the specified pmap meets or
5660 * exceeds the given count, "needed".
5661 *
5662 * The given PV list lock may be released.
5663 */
5664 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5665 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5666 {
5667 struct pv_chunks_list *pvc;
5668 struct pch new_tail[PMAP_MEMDOM];
5669 struct pv_chunk *pc;
5670 vm_page_t m;
5671 int avail, free, i;
5672 bool reclaimed;
5673
5674 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5675 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5676
5677 /*
5678 * Newly allocated PV chunks must be stored in a private list until
5679 * the required number of PV chunks have been allocated. Otherwise,
5680 * reclaim_pv_chunk() could recycle one of these chunks. In
5681 * contrast, these chunks must be added to the pmap upon allocation.
5682 */
5683 for (i = 0; i < PMAP_MEMDOM; i++)
5684 TAILQ_INIT(&new_tail[i]);
5685 retry:
5686 avail = 0;
5687 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5688 #ifndef __POPCNT__
5689 if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5690 bit_count((bitstr_t *)pc->pc_map, 0,
5691 sizeof(pc->pc_map) * NBBY, &free);
5692 else
5693 #endif
5694 free = popcnt_pc_map_pq(pc->pc_map);
5695 if (free == 0)
5696 break;
5697 avail += free;
5698 if (avail >= needed)
5699 break;
5700 }
5701 for (reclaimed = false; avail < needed; avail += _NPCPV) {
5702 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5703 if (m == NULL) {
5704 m = reclaim_pv_chunk(pmap, lockp);
5705 if (m == NULL)
5706 goto retry;
5707 reclaimed = true;
5708 } else
5709 counter_u64_add(pv_page_count, 1);
5710 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5711 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5712 dump_add_page(m->phys_addr);
5713 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5714 pc->pc_pmap = pmap;
5715 pc->pc_map[0] = PC_FREEN;
5716 pc->pc_map[1] = PC_FREEN;
5717 pc->pc_map[2] = PC_FREEL;
5718 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5719 TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5720 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5721
5722 /*
5723 * The reclaim might have freed a chunk from the current pmap.
5724 * If that chunk contained available entries, we need to
5725 * re-count the number of available entries.
5726 */
5727 if (reclaimed)
5728 goto retry;
5729 }
5730 for (i = 0; i < vm_ndomains; i++) {
5731 if (TAILQ_EMPTY(&new_tail[i]))
5732 continue;
5733 pvc = &pv_chunks[i];
5734 mtx_lock(&pvc->pvc_lock);
5735 TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5736 mtx_unlock(&pvc->pvc_lock);
5737 }
5738 }
5739
5740 /*
5741 * First find and then remove the pv entry for the specified pmap and virtual
5742 * address from the specified pv list. Returns the pv entry if found and NULL
5743 * otherwise. This operation can be performed on pv lists for either 4KB or
5744 * 2MB page mappings.
5745 */
5746 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5747 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5748 {
5749 pv_entry_t pv;
5750
5751 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5752 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5753 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5754 pvh->pv_gen++;
5755 break;
5756 }
5757 }
5758 return (pv);
5759 }
5760
5761 /*
5762 * After demotion from a 2MB page mapping to 512 4KB page mappings,
5763 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5764 * entries for each of the 4KB page mappings.
5765 */
5766 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5767 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5768 struct rwlock **lockp)
5769 {
5770 struct md_page *pvh;
5771 struct pv_chunk *pc;
5772 pv_entry_t pv;
5773 vm_offset_t va_last;
5774 vm_page_t m;
5775 int bit, field;
5776
5777 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5778 KASSERT((pa & PDRMASK) == 0,
5779 ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5780 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5781
5782 /*
5783 * Transfer the 2mpage's pv entry for this mapping to the first
5784 * page's pv list. Once this transfer begins, the pv list lock
5785 * must not be released until the last pv entry is reinstantiated.
5786 */
5787 pvh = pa_to_pvh(pa);
5788 va = trunc_2mpage(va);
5789 pv = pmap_pvh_remove(pvh, pmap, va);
5790 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5791 m = PHYS_TO_VM_PAGE(pa);
5792 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5793 m->md.pv_gen++;
5794 /* Instantiate the remaining NPTEPG - 1 pv entries. */
5795 PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5796 va_last = va + NBPDR - PAGE_SIZE;
5797 for (;;) {
5798 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5799 KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5800 for (field = 0; field < _NPCM; field++) {
5801 while (pc->pc_map[field]) {
5802 bit = bsfq(pc->pc_map[field]);
5803 pc->pc_map[field] &= ~(1ul << bit);
5804 pv = &pc->pc_pventry[field * 64 + bit];
5805 va += PAGE_SIZE;
5806 pv->pv_va = va;
5807 m++;
5808 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5809 ("pmap_pv_demote_pde: page %p is not managed", m));
5810 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5811 m->md.pv_gen++;
5812 if (va == va_last)
5813 goto out;
5814 }
5815 }
5816 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5817 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5818 }
5819 out:
5820 if (pc_is_full(pc)) {
5821 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5822 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5823 }
5824 PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5825 PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5826 }
5827
5828 #if VM_NRESERVLEVEL > 0
5829 /*
5830 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5831 * replace the many pv entries for the 4KB page mappings by a single pv entry
5832 * for the 2MB page mapping.
5833 */
5834 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5835 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5836 struct rwlock **lockp)
5837 {
5838 struct md_page *pvh;
5839 pv_entry_t pv;
5840 vm_offset_t va_last;
5841 vm_page_t m;
5842
5843 KASSERT((pa & PDRMASK) == 0,
5844 ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5845 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5846
5847 /*
5848 * Transfer the first page's pv entry for this mapping to the 2mpage's
5849 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
5850 * a transfer avoids the possibility that get_pv_entry() calls
5851 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5852 * mappings that is being promoted.
5853 */
5854 m = PHYS_TO_VM_PAGE(pa);
5855 va = trunc_2mpage(va);
5856 pv = pmap_pvh_remove(&m->md, pmap, va);
5857 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5858 pvh = pa_to_pvh(pa);
5859 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5860 pvh->pv_gen++;
5861 /* Free the remaining NPTEPG - 1 pv entries. */
5862 va_last = va + NBPDR - PAGE_SIZE;
5863 do {
5864 m++;
5865 va += PAGE_SIZE;
5866 pmap_pvh_free(&m->md, pmap, va);
5867 } while (va < va_last);
5868 }
5869 #endif /* VM_NRESERVLEVEL > 0 */
5870
5871 /*
5872 * First find and then destroy the pv entry for the specified pmap and virtual
5873 * address. This operation can be performed on pv lists for either 4KB or 2MB
5874 * page mappings.
5875 */
5876 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5877 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5878 {
5879 pv_entry_t pv;
5880
5881 pv = pmap_pvh_remove(pvh, pmap, va);
5882 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5883 free_pv_entry(pmap, pv);
5884 }
5885
5886 /*
5887 * Conditionally create the PV entry for a 4KB page mapping if the required
5888 * memory can be allocated without resorting to reclamation.
5889 */
5890 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5891 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5892 struct rwlock **lockp)
5893 {
5894 pv_entry_t pv;
5895
5896 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5897 /* Pass NULL instead of the lock pointer to disable reclamation. */
5898 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5899 pv->pv_va = va;
5900 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5901 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5902 m->md.pv_gen++;
5903 return (true);
5904 } else
5905 return (false);
5906 }
5907
5908 /*
5909 * Create the PV entry for a 2MB page mapping. Always returns true unless the
5910 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
5911 * false if the PV entry cannot be allocated without resorting to reclamation.
5912 */
5913 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5914 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5915 struct rwlock **lockp)
5916 {
5917 struct md_page *pvh;
5918 pv_entry_t pv;
5919 vm_paddr_t pa;
5920
5921 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5922 /* Pass NULL instead of the lock pointer to disable reclamation. */
5923 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5924 NULL : lockp)) == NULL)
5925 return (false);
5926 pv->pv_va = va;
5927 pa = pde & PG_PS_FRAME;
5928 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5929 pvh = pa_to_pvh(pa);
5930 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5931 pvh->pv_gen++;
5932 return (true);
5933 }
5934
5935 /*
5936 * Fills a page table page with mappings to consecutive physical pages.
5937 */
5938 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5939 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5940 {
5941 pt_entry_t *pte;
5942
5943 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5944 *pte = newpte;
5945 newpte += PAGE_SIZE;
5946 }
5947 }
5948
5949 /*
5950 * Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
5951 * mapping is invalidated.
5952 */
5953 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5954 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5955 {
5956 struct rwlock *lock;
5957 bool rv;
5958
5959 lock = NULL;
5960 rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5961 if (lock != NULL)
5962 rw_wunlock(lock);
5963 return (rv);
5964 }
5965
5966 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5967 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5968 {
5969 #ifdef INVARIANTS
5970 #ifdef DIAGNOSTIC
5971 pt_entry_t *xpte, *ypte;
5972
5973 for (xpte = firstpte; xpte < firstpte + NPTEPG;
5974 xpte++, newpte += PAGE_SIZE) {
5975 if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5976 printf("pmap_demote_pde: xpte %zd and newpte map "
5977 "different pages: found %#lx, expected %#lx\n",
5978 xpte - firstpte, *xpte, newpte);
5979 printf("page table dump\n");
5980 for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5981 printf("%zd %#lx\n", ypte - firstpte, *ypte);
5982 panic("firstpte");
5983 }
5984 }
5985 #else
5986 KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5987 ("pmap_demote_pde: firstpte and newpte map different physical"
5988 " addresses"));
5989 #endif
5990 #endif
5991 }
5992
5993 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)5994 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5995 pd_entry_t oldpde, struct rwlock **lockp)
5996 {
5997 struct spglist free;
5998 vm_offset_t sva;
5999
6000 SLIST_INIT(&free);
6001 sva = trunc_2mpage(va);
6002 pmap_remove_pde(pmap, pde, sva, true, &free, lockp);
6003 if ((oldpde & pmap_global_bit(pmap)) == 0)
6004 pmap_invalidate_pde_page(pmap, sva, oldpde);
6005 vm_page_free_pages_toq(&free, true);
6006 CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6007 va, pmap);
6008 }
6009
6010 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6011 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6012 struct rwlock **lockp)
6013 {
6014 pd_entry_t newpde, oldpde;
6015 pt_entry_t *firstpte, newpte;
6016 pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6017 vm_paddr_t mptepa;
6018 vm_page_t mpte;
6019 int PG_PTE_CACHE;
6020 bool in_kernel;
6021
6022 PG_A = pmap_accessed_bit(pmap);
6023 PG_G = pmap_global_bit(pmap);
6024 PG_M = pmap_modified_bit(pmap);
6025 PG_RW = pmap_rw_bit(pmap);
6026 PG_V = pmap_valid_bit(pmap);
6027 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6028 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6029
6030 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6031 in_kernel = va >= VM_MAXUSER_ADDRESS;
6032 oldpde = *pde;
6033 KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6034 ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6035
6036 /*
6037 * Invalidate the 2MB page mapping and return "failure" if the
6038 * mapping was never accessed.
6039 */
6040 if ((oldpde & PG_A) == 0) {
6041 KASSERT((oldpde & PG_W) == 0,
6042 ("pmap_demote_pde: a wired mapping is missing PG_A"));
6043 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6044 return (false);
6045 }
6046
6047 mpte = pmap_remove_pt_page(pmap, va);
6048 if (mpte == NULL) {
6049 KASSERT((oldpde & PG_W) == 0,
6050 ("pmap_demote_pde: page table page for a wired mapping"
6051 " is missing"));
6052
6053 /*
6054 * If the page table page is missing and the mapping
6055 * is for a kernel address, the mapping must belong to
6056 * the direct map. Page table pages are preallocated
6057 * for every other part of the kernel address space,
6058 * so the direct map region is the only part of the
6059 * kernel address space that must be handled here.
6060 */
6061 KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6062 va < DMAP_MAX_ADDRESS),
6063 ("pmap_demote_pde: No saved mpte for va %#lx", va));
6064
6065 /*
6066 * If the 2MB page mapping belongs to the direct map
6067 * region of the kernel's address space, then the page
6068 * allocation request specifies the highest possible
6069 * priority (VM_ALLOC_INTERRUPT). Otherwise, the
6070 * priority is normal.
6071 */
6072 mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6073 (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6074
6075 /*
6076 * If the allocation of the new page table page fails,
6077 * invalidate the 2MB page mapping and return "failure".
6078 */
6079 if (mpte == NULL) {
6080 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6081 return (false);
6082 }
6083
6084 if (!in_kernel)
6085 mpte->ref_count = NPTEPG;
6086 }
6087 mptepa = VM_PAGE_TO_PHYS(mpte);
6088 firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6089 newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6090 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6091 ("pmap_demote_pde: oldpde is missing PG_M"));
6092 newpte = oldpde & ~PG_PS;
6093 newpte = pmap_swap_pat(pmap, newpte);
6094
6095 /*
6096 * If the PTP is not leftover from an earlier promotion or it does not
6097 * have PG_A set in every PTE, then fill it. The new PTEs will all
6098 * have PG_A set.
6099 */
6100 if (!vm_page_all_valid(mpte))
6101 pmap_fill_ptp(firstpte, newpte);
6102
6103 pmap_demote_pde_check(firstpte, newpte);
6104
6105 /*
6106 * If the mapping has changed attributes, update the PTEs.
6107 */
6108 if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6109 pmap_fill_ptp(firstpte, newpte);
6110
6111 /*
6112 * The spare PV entries must be reserved prior to demoting the
6113 * mapping, that is, prior to changing the PDE. Otherwise, the state
6114 * of the PDE and the PV lists will be inconsistent, which can result
6115 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6116 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6117 * PV entry for the 2MB page mapping that is being demoted.
6118 */
6119 if ((oldpde & PG_MANAGED) != 0)
6120 reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6121
6122 /*
6123 * Demote the mapping. This pmap is locked. The old PDE has
6124 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
6125 * set. Thus, there is no danger of a race with another
6126 * processor changing the setting of PG_A and/or PG_M between
6127 * the read above and the store below.
6128 */
6129 if (workaround_erratum383)
6130 pmap_update_pde(pmap, va, pde, newpde);
6131 else
6132 pde_store(pde, newpde);
6133
6134 /*
6135 * Invalidate a stale recursive mapping of the page table page.
6136 */
6137 if (in_kernel)
6138 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6139
6140 /*
6141 * Demote the PV entry.
6142 */
6143 if ((oldpde & PG_MANAGED) != 0)
6144 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6145
6146 counter_u64_add(pmap_pde_demotions, 1);
6147 CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6148 va, pmap);
6149 return (true);
6150 }
6151
6152 /*
6153 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6154 */
6155 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,bool remove_pt)6156 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6157 bool remove_pt)
6158 {
6159 pd_entry_t newpde;
6160 vm_paddr_t mptepa;
6161 vm_page_t mpte;
6162
6163 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6164 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6165 if (remove_pt)
6166 mpte = pmap_remove_pt_page(pmap, va);
6167 else
6168 mpte = vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(va));
6169 if (mpte == NULL)
6170 panic("pmap_remove_kernel_pde: Missing pt page.");
6171
6172 mptepa = VM_PAGE_TO_PHYS(mpte);
6173 newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6174
6175 /*
6176 * If this page table page was unmapped by a promotion, then it
6177 * contains valid mappings. Zero it to invalidate those mappings.
6178 */
6179 if (vm_page_any_valid(mpte))
6180 pagezero((void *)PHYS_TO_DMAP(mptepa));
6181
6182 /*
6183 * Demote the mapping.
6184 */
6185 if (workaround_erratum383)
6186 pmap_update_pde(pmap, va, pde, newpde);
6187 else
6188 pde_store(pde, newpde);
6189
6190 /*
6191 * Invalidate a stale recursive mapping of the page table page.
6192 */
6193 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6194 }
6195
6196 /*
6197 * pmap_remove_pde: do the things to unmap a superpage in a process
6198 */
6199 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,bool remove_pt,struct spglist * free,struct rwlock ** lockp)6200 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva, bool remove_pt,
6201 struct spglist *free, struct rwlock **lockp)
6202 {
6203 struct md_page *pvh;
6204 pd_entry_t oldpde;
6205 vm_offset_t eva, va;
6206 vm_page_t m, mpte;
6207 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6208
6209 PG_G = pmap_global_bit(pmap);
6210 PG_A = pmap_accessed_bit(pmap);
6211 PG_M = pmap_modified_bit(pmap);
6212 PG_RW = pmap_rw_bit(pmap);
6213
6214 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6215 KASSERT((sva & PDRMASK) == 0,
6216 ("pmap_remove_pde: sva is not 2mpage aligned"));
6217 oldpde = pte_load_clear(pdq);
6218 if (oldpde & PG_W)
6219 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6220 if ((oldpde & PG_G) != 0)
6221 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6222 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6223 if (oldpde & PG_MANAGED) {
6224 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6225 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6226 pmap_pvh_free(pvh, pmap, sva);
6227 eva = sva + NBPDR;
6228 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6229 va < eva; va += PAGE_SIZE, m++) {
6230 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6231 vm_page_dirty(m);
6232 if (oldpde & PG_A)
6233 vm_page_aflag_set(m, PGA_REFERENCED);
6234 if (TAILQ_EMPTY(&m->md.pv_list) &&
6235 TAILQ_EMPTY(&pvh->pv_list))
6236 vm_page_aflag_clear(m, PGA_WRITEABLE);
6237 pmap_delayed_invl_page(m);
6238 }
6239 }
6240 if (pmap == kernel_pmap) {
6241 pmap_remove_kernel_pde(pmap, pdq, sva, remove_pt);
6242 } else {
6243 mpte = pmap_remove_pt_page(pmap, sva);
6244 if (mpte != NULL) {
6245 KASSERT(vm_page_any_valid(mpte),
6246 ("pmap_remove_pde: pte page not promoted"));
6247 pmap_pt_page_count_adj(pmap, -1);
6248 KASSERT(mpte->ref_count == NPTEPG,
6249 ("pmap_remove_pde: pte page ref count error"));
6250 mpte->ref_count = 0;
6251 pmap_add_delayed_free_list(mpte, free, false);
6252 }
6253 }
6254 return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6255 }
6256
6257 /*
6258 * pmap_remove_pte: do the things to unmap a page in a process
6259 */
6260 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6261 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6262 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6263 {
6264 struct md_page *pvh;
6265 pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6266 vm_page_t m;
6267
6268 PG_A = pmap_accessed_bit(pmap);
6269 PG_M = pmap_modified_bit(pmap);
6270 PG_RW = pmap_rw_bit(pmap);
6271
6272 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6273 oldpte = pte_load_clear(ptq);
6274 if (oldpte & PG_W)
6275 pmap->pm_stats.wired_count -= 1;
6276 pmap_resident_count_adj(pmap, -1);
6277 if (oldpte & PG_MANAGED) {
6278 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6279 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6280 vm_page_dirty(m);
6281 if (oldpte & PG_A)
6282 vm_page_aflag_set(m, PGA_REFERENCED);
6283 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6284 pmap_pvh_free(&m->md, pmap, va);
6285 if (TAILQ_EMPTY(&m->md.pv_list) &&
6286 (m->flags & PG_FICTITIOUS) == 0) {
6287 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6288 if (TAILQ_EMPTY(&pvh->pv_list))
6289 vm_page_aflag_clear(m, PGA_WRITEABLE);
6290 }
6291 pmap_delayed_invl_page(m);
6292 }
6293 return (pmap_unuse_pt(pmap, va, ptepde, free));
6294 }
6295
6296 /*
6297 * Remove a single page from a process address space
6298 */
6299 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6300 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6301 struct spglist *free)
6302 {
6303 struct rwlock *lock;
6304 pt_entry_t *pte, PG_V;
6305
6306 PG_V = pmap_valid_bit(pmap);
6307 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6308 if ((*pde & PG_V) == 0)
6309 return;
6310 pte = pmap_pde_to_pte(pde, va);
6311 if ((*pte & PG_V) == 0)
6312 return;
6313 lock = NULL;
6314 pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6315 if (lock != NULL)
6316 rw_wunlock(lock);
6317 pmap_invalidate_page(pmap, va);
6318 }
6319
6320 /*
6321 * Removes the specified range of addresses from the page table page.
6322 */
6323 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6324 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6325 pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6326 {
6327 pt_entry_t PG_G, *pte;
6328 vm_offset_t va;
6329 bool anyvalid;
6330
6331 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6332 PG_G = pmap_global_bit(pmap);
6333 anyvalid = false;
6334 va = eva;
6335 for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6336 sva += PAGE_SIZE) {
6337 if (*pte == 0) {
6338 if (va != eva) {
6339 pmap_invalidate_range(pmap, va, sva);
6340 va = eva;
6341 }
6342 continue;
6343 }
6344 if ((*pte & PG_G) == 0)
6345 anyvalid = true;
6346 else if (va == eva)
6347 va = sva;
6348 if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6349 sva += PAGE_SIZE;
6350 break;
6351 }
6352 }
6353 if (va != eva)
6354 pmap_invalidate_range(pmap, va, sva);
6355 return (anyvalid);
6356 }
6357
6358 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6359 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6360 {
6361 struct rwlock *lock;
6362 vm_page_t mt;
6363 vm_offset_t va_next;
6364 pml5_entry_t *pml5e;
6365 pml4_entry_t *pml4e;
6366 pdp_entry_t *pdpe;
6367 pd_entry_t ptpaddr, *pde;
6368 pt_entry_t PG_G, PG_V;
6369 struct spglist free;
6370 int anyvalid;
6371
6372 PG_G = pmap_global_bit(pmap);
6373 PG_V = pmap_valid_bit(pmap);
6374
6375 /*
6376 * If there are no resident pages besides the top level page
6377 * table page(s), there is nothing to do. Kernel pmap always
6378 * accounts whole preloaded area as resident, which makes its
6379 * resident count > 2.
6380 * Perform an unsynchronized read. This is, however, safe.
6381 */
6382 if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6383 1 : 0))
6384 return;
6385
6386 anyvalid = 0;
6387 SLIST_INIT(&free);
6388
6389 pmap_delayed_invl_start();
6390 PMAP_LOCK(pmap);
6391 if (map_delete)
6392 pmap_pkru_on_remove(pmap, sva, eva);
6393
6394 /*
6395 * special handling of removing one page. a very
6396 * common operation and easy to short circuit some
6397 * code.
6398 */
6399 if (sva + PAGE_SIZE == eva) {
6400 pde = pmap_pde(pmap, sva);
6401 if (pde && (*pde & PG_PS) == 0) {
6402 pmap_remove_page(pmap, sva, pde, &free);
6403 goto out;
6404 }
6405 }
6406
6407 lock = NULL;
6408 for (; sva < eva; sva = va_next) {
6409 if (pmap->pm_stats.resident_count == 0)
6410 break;
6411
6412 if (pmap_is_la57(pmap)) {
6413 pml5e = pmap_pml5e(pmap, sva);
6414 if ((*pml5e & PG_V) == 0) {
6415 va_next = (sva + NBPML5) & ~PML5MASK;
6416 if (va_next < sva)
6417 va_next = eva;
6418 continue;
6419 }
6420 pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6421 } else {
6422 pml4e = pmap_pml4e(pmap, sva);
6423 }
6424 if ((*pml4e & PG_V) == 0) {
6425 va_next = (sva + NBPML4) & ~PML4MASK;
6426 if (va_next < sva)
6427 va_next = eva;
6428 continue;
6429 }
6430
6431 va_next = (sva + NBPDP) & ~PDPMASK;
6432 if (va_next < sva)
6433 va_next = eva;
6434 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6435 if ((*pdpe & PG_V) == 0)
6436 continue;
6437 if ((*pdpe & PG_PS) != 0) {
6438 KASSERT(va_next <= eva,
6439 ("partial update of non-transparent 1G mapping "
6440 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6441 *pdpe, sva, eva, va_next));
6442 MPASS(pmap != kernel_pmap); /* XXXKIB */
6443 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6444 anyvalid = 1;
6445 *pdpe = 0;
6446 pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6447 mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6448 pmap_unwire_ptp(pmap, sva, mt, &free);
6449 continue;
6450 }
6451
6452 /*
6453 * Calculate index for next page table.
6454 */
6455 va_next = (sva + NBPDR) & ~PDRMASK;
6456 if (va_next < sva)
6457 va_next = eva;
6458
6459 pde = pmap_pdpe_to_pde(pdpe, sva);
6460 ptpaddr = *pde;
6461
6462 /*
6463 * Weed out invalid mappings.
6464 */
6465 if (ptpaddr == 0)
6466 continue;
6467
6468 /*
6469 * Check for large page.
6470 */
6471 if ((ptpaddr & PG_PS) != 0) {
6472 /*
6473 * Are we removing the entire large page? If not,
6474 * demote the mapping and fall through.
6475 */
6476 if (sva + NBPDR == va_next && eva >= va_next) {
6477 /*
6478 * The TLB entry for a PG_G mapping is
6479 * invalidated by pmap_remove_pde().
6480 */
6481 if ((ptpaddr & PG_G) == 0)
6482 anyvalid = 1;
6483 pmap_remove_pde(pmap, pde, sva, true, &free,
6484 &lock);
6485 continue;
6486 } else if (!pmap_demote_pde_locked(pmap, pde, sva,
6487 &lock)) {
6488 /* The large page mapping was destroyed. */
6489 continue;
6490 } else
6491 ptpaddr = *pde;
6492 }
6493
6494 /*
6495 * Limit our scan to either the end of the va represented
6496 * by the current page table page, or to the end of the
6497 * range being removed.
6498 */
6499 if (va_next > eva)
6500 va_next = eva;
6501
6502 if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6503 anyvalid = 1;
6504 }
6505 if (lock != NULL)
6506 rw_wunlock(lock);
6507 out:
6508 if (anyvalid)
6509 pmap_invalidate_all(pmap);
6510 PMAP_UNLOCK(pmap);
6511 pmap_delayed_invl_finish();
6512 vm_page_free_pages_toq(&free, true);
6513 }
6514
6515 /*
6516 * Remove the given range of addresses from the specified map.
6517 *
6518 * It is assumed that the start and end are properly
6519 * rounded to the page size.
6520 */
6521 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6522 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6523 {
6524 pmap_remove1(pmap, sva, eva, false);
6525 }
6526
6527 /*
6528 * Remove the given range of addresses as part of a logical unmap
6529 * operation. This has the effect of calling pmap_remove(), but
6530 * also clears any metadata that should persist for the lifetime
6531 * of a logical mapping.
6532 */
6533 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6534 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6535 {
6536 pmap_remove1(pmap, sva, eva, true);
6537 }
6538
6539 /*
6540 * Routine: pmap_remove_all
6541 * Function:
6542 * Removes this physical page from
6543 * all physical maps in which it resides.
6544 * Reflects back modify bits to the pager.
6545 *
6546 * Notes:
6547 * Original versions of this routine were very
6548 * inefficient because they iteratively called
6549 * pmap_remove (slow...)
6550 */
6551
6552 void
pmap_remove_all(vm_page_t m)6553 pmap_remove_all(vm_page_t m)
6554 {
6555 struct md_page *pvh;
6556 pv_entry_t pv;
6557 pmap_t pmap;
6558 struct rwlock *lock;
6559 pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6560 pd_entry_t *pde;
6561 vm_offset_t va;
6562 struct spglist free;
6563 int pvh_gen, md_gen;
6564
6565 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6566 ("pmap_remove_all: page %p is not managed", m));
6567 SLIST_INIT(&free);
6568 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6569 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6570 pa_to_pvh(VM_PAGE_TO_PHYS(m));
6571 rw_wlock(lock);
6572 retry:
6573 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6574 pmap = PV_PMAP(pv);
6575 if (!PMAP_TRYLOCK(pmap)) {
6576 pvh_gen = pvh->pv_gen;
6577 rw_wunlock(lock);
6578 PMAP_LOCK(pmap);
6579 rw_wlock(lock);
6580 if (pvh_gen != pvh->pv_gen) {
6581 PMAP_UNLOCK(pmap);
6582 goto retry;
6583 }
6584 }
6585 va = pv->pv_va;
6586 pde = pmap_pde(pmap, va);
6587 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6588 PMAP_UNLOCK(pmap);
6589 }
6590 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6591 pmap = PV_PMAP(pv);
6592 if (!PMAP_TRYLOCK(pmap)) {
6593 pvh_gen = pvh->pv_gen;
6594 md_gen = m->md.pv_gen;
6595 rw_wunlock(lock);
6596 PMAP_LOCK(pmap);
6597 rw_wlock(lock);
6598 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6599 PMAP_UNLOCK(pmap);
6600 goto retry;
6601 }
6602 }
6603 PG_A = pmap_accessed_bit(pmap);
6604 PG_M = pmap_modified_bit(pmap);
6605 PG_RW = pmap_rw_bit(pmap);
6606 pmap_resident_count_adj(pmap, -1);
6607 pde = pmap_pde(pmap, pv->pv_va);
6608 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6609 " a 2mpage in page %p's pv list", m));
6610 pte = pmap_pde_to_pte(pde, pv->pv_va);
6611 tpte = pte_load_clear(pte);
6612 if (tpte & PG_W)
6613 pmap->pm_stats.wired_count--;
6614 if (tpte & PG_A)
6615 vm_page_aflag_set(m, PGA_REFERENCED);
6616
6617 /*
6618 * Update the vm_page_t clean and reference bits.
6619 */
6620 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6621 vm_page_dirty(m);
6622 pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6623 pmap_invalidate_page(pmap, pv->pv_va);
6624 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6625 m->md.pv_gen++;
6626 free_pv_entry(pmap, pv);
6627 PMAP_UNLOCK(pmap);
6628 }
6629 vm_page_aflag_clear(m, PGA_WRITEABLE);
6630 rw_wunlock(lock);
6631 pmap_delayed_invl_wait(m);
6632 vm_page_free_pages_toq(&free, true);
6633 }
6634
6635 /*
6636 * pmap_protect_pde: do the things to protect a 2mpage in a process
6637 */
6638 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6639 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6640 {
6641 pd_entry_t newpde, oldpde;
6642 vm_page_t m, mt;
6643 bool anychanged;
6644 pt_entry_t PG_G, PG_M, PG_RW;
6645
6646 PG_G = pmap_global_bit(pmap);
6647 PG_M = pmap_modified_bit(pmap);
6648 PG_RW = pmap_rw_bit(pmap);
6649
6650 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6651 KASSERT((sva & PDRMASK) == 0,
6652 ("pmap_protect_pde: sva is not 2mpage aligned"));
6653 anychanged = false;
6654 retry:
6655 oldpde = newpde = *pde;
6656 if ((prot & VM_PROT_WRITE) == 0) {
6657 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6658 (PG_MANAGED | PG_M | PG_RW)) {
6659 m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6660 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6661 vm_page_dirty(mt);
6662 }
6663 newpde &= ~(PG_RW | PG_M);
6664 }
6665 if ((prot & VM_PROT_EXECUTE) == 0)
6666 newpde |= pg_nx;
6667 if (newpde != oldpde) {
6668 /*
6669 * As an optimization to future operations on this PDE, clear
6670 * PG_PROMOTED. The impending invalidation will remove any
6671 * lingering 4KB page mappings from the TLB.
6672 */
6673 if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6674 goto retry;
6675 if ((oldpde & PG_G) != 0)
6676 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6677 else
6678 anychanged = true;
6679 }
6680 return (anychanged);
6681 }
6682
6683 /*
6684 * Set the physical protection on the
6685 * specified range of this map as requested.
6686 */
6687 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6688 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6689 {
6690 vm_page_t m;
6691 vm_offset_t va_next;
6692 pml4_entry_t *pml4e;
6693 pdp_entry_t *pdpe;
6694 pd_entry_t ptpaddr, *pde;
6695 pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6696 pt_entry_t obits, pbits;
6697 bool anychanged;
6698
6699 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6700 if (prot == VM_PROT_NONE) {
6701 pmap_remove(pmap, sva, eva);
6702 return;
6703 }
6704
6705 if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6706 (VM_PROT_WRITE|VM_PROT_EXECUTE))
6707 return;
6708
6709 PG_G = pmap_global_bit(pmap);
6710 PG_M = pmap_modified_bit(pmap);
6711 PG_V = pmap_valid_bit(pmap);
6712 PG_RW = pmap_rw_bit(pmap);
6713 anychanged = false;
6714
6715 /*
6716 * Although this function delays and batches the invalidation
6717 * of stale TLB entries, it does not need to call
6718 * pmap_delayed_invl_start() and
6719 * pmap_delayed_invl_finish(), because it does not
6720 * ordinarily destroy mappings. Stale TLB entries from
6721 * protection-only changes need only be invalidated before the
6722 * pmap lock is released, because protection-only changes do
6723 * not destroy PV entries. Even operations that iterate over
6724 * a physical page's PV list of mappings, like
6725 * pmap_remove_write(), acquire the pmap lock for each
6726 * mapping. Consequently, for protection-only changes, the
6727 * pmap lock suffices to synchronize both page table and TLB
6728 * updates.
6729 *
6730 * This function only destroys a mapping if pmap_demote_pde()
6731 * fails. In that case, stale TLB entries are immediately
6732 * invalidated.
6733 */
6734
6735 PMAP_LOCK(pmap);
6736 for (; sva < eva; sva = va_next) {
6737 pml4e = pmap_pml4e(pmap, sva);
6738 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6739 va_next = (sva + NBPML4) & ~PML4MASK;
6740 if (va_next < sva)
6741 va_next = eva;
6742 continue;
6743 }
6744
6745 va_next = (sva + NBPDP) & ~PDPMASK;
6746 if (va_next < sva)
6747 va_next = eva;
6748 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6749 if ((*pdpe & PG_V) == 0)
6750 continue;
6751 if ((*pdpe & PG_PS) != 0) {
6752 KASSERT(va_next <= eva,
6753 ("partial update of non-transparent 1G mapping "
6754 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6755 *pdpe, sva, eva, va_next));
6756 retry_pdpe:
6757 obits = pbits = *pdpe;
6758 MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6759 MPASS(pmap != kernel_pmap); /* XXXKIB */
6760 if ((prot & VM_PROT_WRITE) == 0)
6761 pbits &= ~(PG_RW | PG_M);
6762 if ((prot & VM_PROT_EXECUTE) == 0)
6763 pbits |= pg_nx;
6764
6765 if (pbits != obits) {
6766 if (!atomic_cmpset_long(pdpe, obits, pbits))
6767 /* PG_PS cannot be cleared under us, */
6768 goto retry_pdpe;
6769 anychanged = true;
6770 }
6771 continue;
6772 }
6773
6774 va_next = (sva + NBPDR) & ~PDRMASK;
6775 if (va_next < sva)
6776 va_next = eva;
6777
6778 pde = pmap_pdpe_to_pde(pdpe, sva);
6779 ptpaddr = *pde;
6780
6781 /*
6782 * Weed out invalid mappings.
6783 */
6784 if (ptpaddr == 0)
6785 continue;
6786
6787 /*
6788 * Check for large page.
6789 */
6790 if ((ptpaddr & PG_PS) != 0) {
6791 /*
6792 * Are we protecting the entire large page?
6793 */
6794 if (sva + NBPDR == va_next && eva >= va_next) {
6795 /*
6796 * The TLB entry for a PG_G mapping is
6797 * invalidated by pmap_protect_pde().
6798 */
6799 if (pmap_protect_pde(pmap, pde, sva, prot))
6800 anychanged = true;
6801 continue;
6802 }
6803
6804 /*
6805 * Does the large page mapping need to change? If so,
6806 * demote it and fall through.
6807 */
6808 pbits = ptpaddr;
6809 if ((prot & VM_PROT_WRITE) == 0)
6810 pbits &= ~(PG_RW | PG_M);
6811 if ((prot & VM_PROT_EXECUTE) == 0)
6812 pbits |= pg_nx;
6813 if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6814 sva)) {
6815 /*
6816 * Either the large page mapping doesn't need
6817 * to change, or it was destroyed during
6818 * demotion.
6819 */
6820 continue;
6821 }
6822 }
6823
6824 if (va_next > eva)
6825 va_next = eva;
6826
6827 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6828 sva += PAGE_SIZE) {
6829 retry:
6830 obits = pbits = *pte;
6831 if ((pbits & PG_V) == 0)
6832 continue;
6833
6834 if ((prot & VM_PROT_WRITE) == 0) {
6835 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6836 (PG_MANAGED | PG_M | PG_RW)) {
6837 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6838 vm_page_dirty(m);
6839 }
6840 pbits &= ~(PG_RW | PG_M);
6841 }
6842 if ((prot & VM_PROT_EXECUTE) == 0)
6843 pbits |= pg_nx;
6844
6845 if (pbits != obits) {
6846 if (!atomic_cmpset_long(pte, obits, pbits))
6847 goto retry;
6848 if (obits & PG_G)
6849 pmap_invalidate_page(pmap, sva);
6850 else
6851 anychanged = true;
6852 }
6853 }
6854 }
6855 if (anychanged)
6856 pmap_invalidate_all(pmap);
6857 PMAP_UNLOCK(pmap);
6858 }
6859
6860 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6861 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6862 {
6863
6864 if (pmap->pm_type != PT_EPT)
6865 return (false);
6866 return ((pde & EPT_PG_EXECUTE) != 0);
6867 }
6868
6869 #if VM_NRESERVLEVEL > 0
6870 /*
6871 * Tries to promote the 512, contiguous 4KB page mappings that are within a
6872 * single page table page (PTP) to a single 2MB page mapping. For promotion
6873 * to occur, two conditions must be met: (1) the 4KB page mappings must map
6874 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6875 * identical characteristics.
6876 */
6877 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6878 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6879 struct rwlock **lockp)
6880 {
6881 pd_entry_t newpde;
6882 pt_entry_t *firstpte, oldpte, pa, *pte;
6883 pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6884 int PG_PTE_CACHE;
6885
6886 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6887 if (!pmap_ps_enabled(pmap))
6888 return (false);
6889
6890 PG_A = pmap_accessed_bit(pmap);
6891 PG_G = pmap_global_bit(pmap);
6892 PG_M = pmap_modified_bit(pmap);
6893 PG_V = pmap_valid_bit(pmap);
6894 PG_RW = pmap_rw_bit(pmap);
6895 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6896 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6897
6898 /*
6899 * Examine the first PTE in the specified PTP. Abort if this PTE is
6900 * ineligible for promotion due to hardware errata, invalid, or does
6901 * not map the first 4KB physical page within a 2MB page.
6902 */
6903 firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6904 newpde = *firstpte;
6905 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6906 return (false);
6907 if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6908 counter_u64_add(pmap_pde_p_failures, 1);
6909 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6910 " in pmap %p", va, pmap);
6911 return (false);
6912 }
6913
6914 /*
6915 * Both here and in the below "for" loop, to allow for repromotion
6916 * after MADV_FREE, conditionally write protect a clean PTE before
6917 * possibly aborting the promotion due to other PTE attributes. Why?
6918 * Suppose that MADV_FREE is applied to a part of a superpage, the
6919 * address range [S, E). pmap_advise() will demote the superpage
6920 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6921 * clear PG_M and PG_A in the PTEs for the rest of [S, E). Later,
6922 * imagine that the memory in [S, E) is recycled, but the last 4KB
6923 * page in [S, E) is not the last to be rewritten, or simply accessed.
6924 * In other words, there is still a 4KB page in [S, E), call it P,
6925 * that is writeable but PG_M and PG_A are clear in P's PTE. Unless
6926 * we write protect P before aborting the promotion, if and when P is
6927 * finally rewritten, there won't be a page fault to trigger
6928 * repromotion.
6929 */
6930 setpde:
6931 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6932 /*
6933 * When PG_M is already clear, PG_RW can be cleared without
6934 * a TLB invalidation.
6935 */
6936 if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6937 goto setpde;
6938 newpde &= ~PG_RW;
6939 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6940 " in pmap %p", va & ~PDRMASK, pmap);
6941 }
6942
6943 /*
6944 * Examine each of the other PTEs in the specified PTP. Abort if this
6945 * PTE maps an unexpected 4KB physical page or does not have identical
6946 * characteristics to the first PTE.
6947 */
6948 allpte_PG_A = newpde & PG_A;
6949 pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6950 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6951 oldpte = *pte;
6952 if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6953 counter_u64_add(pmap_pde_p_failures, 1);
6954 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6955 " in pmap %p", va, pmap);
6956 return (false);
6957 }
6958 setpte:
6959 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6960 /*
6961 * When PG_M is already clear, PG_RW can be cleared
6962 * without a TLB invalidation.
6963 */
6964 if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6965 goto setpte;
6966 oldpte &= ~PG_RW;
6967 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6968 " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6969 (va & ~PDRMASK), pmap);
6970 }
6971 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6972 counter_u64_add(pmap_pde_p_failures, 1);
6973 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6974 " in pmap %p", va, pmap);
6975 return (false);
6976 }
6977 allpte_PG_A &= oldpte;
6978 pa -= PAGE_SIZE;
6979 }
6980
6981 /*
6982 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6983 * so that promotions triggered by speculative mappings, such as
6984 * pmap_enter_quick(), don't automatically mark the underlying pages
6985 * as referenced.
6986 */
6987 newpde &= ~PG_A | allpte_PG_A;
6988
6989 /*
6990 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6991 * MMUs supporting EPT.
6992 */
6993 KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6994 ("unsupported EPT PTE"));
6995
6996 /*
6997 * Save the PTP in its current state until the PDE mapping the
6998 * superpage is demoted by pmap_demote_pde() or destroyed by
6999 * pmap_remove_pde(). If PG_A is not set in every PTE, then request
7000 * that the PTP be refilled on demotion.
7001 */
7002 if (mpte == NULL)
7003 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7004 KASSERT(mpte >= vm_page_array &&
7005 mpte < &vm_page_array[vm_page_array_size],
7006 ("pmap_promote_pde: page table page is out of range"));
7007 KASSERT(mpte->pindex == pmap_pde_pindex(va),
7008 ("pmap_promote_pde: page table page's pindex is wrong "
7009 "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7010 mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7011 if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7012 counter_u64_add(pmap_pde_p_failures, 1);
7013 CTR2(KTR_PMAP,
7014 "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7015 pmap);
7016 return (false);
7017 }
7018
7019 /*
7020 * Promote the pv entries.
7021 */
7022 if ((newpde & PG_MANAGED) != 0)
7023 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7024
7025 /*
7026 * Propagate the PAT index to its proper position.
7027 */
7028 newpde = pmap_swap_pat(pmap, newpde);
7029
7030 /*
7031 * Map the superpage.
7032 */
7033 if (workaround_erratum383)
7034 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7035 else
7036 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7037
7038 counter_u64_add(pmap_pde_promotions, 1);
7039 CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7040 " in pmap %p", va, pmap);
7041 return (true);
7042 }
7043 #endif /* VM_NRESERVLEVEL > 0 */
7044
7045 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7046 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7047 int psind)
7048 {
7049 vm_page_t mp;
7050 pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7051
7052 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7053 KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7054 ("psind %d unexpected", psind));
7055 KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7056 ("unaligned phys address %#lx newpte %#lx psind %d",
7057 newpte & PG_FRAME, newpte, psind));
7058 KASSERT((va & (pagesizes[psind] - 1)) == 0,
7059 ("unaligned va %#lx psind %d", va, psind));
7060 KASSERT(va < VM_MAXUSER_ADDRESS,
7061 ("kernel mode non-transparent superpage")); /* XXXKIB */
7062 KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7063 ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7064
7065 PG_V = pmap_valid_bit(pmap);
7066
7067 restart:
7068 pten = newpte;
7069 if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7070 return (KERN_PROTECTION_FAILURE);
7071
7072 if (psind == 2) { /* 1G */
7073 pml4e = pmap_pml4e(pmap, va);
7074 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7075 mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7076 NULL, va);
7077 if (mp == NULL)
7078 goto allocf;
7079 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7080 pdpe = &pdpe[pmap_pdpe_index(va)];
7081 origpte = *pdpe;
7082 MPASS(origpte == 0);
7083 } else {
7084 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7085 KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7086 origpte = *pdpe;
7087 if ((origpte & PG_V) == 0) {
7088 mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7089 mp->ref_count++;
7090 }
7091 }
7092 *pdpe = pten;
7093 } else /* (psind == 1) */ { /* 2M */
7094 pde = pmap_pde(pmap, va);
7095 if (pde == NULL) {
7096 mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7097 NULL, va);
7098 if (mp == NULL)
7099 goto allocf;
7100 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7101 pde = &pde[pmap_pde_index(va)];
7102 origpte = *pde;
7103 MPASS(origpte == 0);
7104 } else {
7105 origpte = *pde;
7106 if ((origpte & PG_V) == 0) {
7107 pdpe = pmap_pdpe(pmap, va);
7108 MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7109 mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7110 mp->ref_count++;
7111 }
7112 }
7113 *pde = pten;
7114 }
7115 KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7116 (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7117 ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7118 va, psind == 2 ? "1G" : "2M", origpte, pten));
7119 if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7120 pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7121 else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7122 pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7123 if ((origpte & PG_V) == 0)
7124 pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7125
7126 return (KERN_SUCCESS);
7127
7128 allocf:
7129 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7130 return (KERN_RESOURCE_SHORTAGE);
7131 PMAP_UNLOCK(pmap);
7132 vm_wait(NULL);
7133 PMAP_LOCK(pmap);
7134 goto restart;
7135 }
7136
7137 /*
7138 * Insert the given physical page (p) at
7139 * the specified virtual address (v) in the
7140 * target physical map with the protection requested.
7141 *
7142 * If specified, the page will be wired down, meaning
7143 * that the related pte can not be reclaimed.
7144 *
7145 * NB: This is the only routine which MAY NOT lazy-evaluate
7146 * or lose information. That is, this routine must actually
7147 * insert this page into the given map NOW.
7148 *
7149 * When destroying both a page table and PV entry, this function
7150 * performs the TLB invalidation before releasing the PV list
7151 * lock, so we do not need pmap_delayed_invl_page() calls here.
7152 */
7153 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7154 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7155 u_int flags, int8_t psind)
7156 {
7157 struct rwlock *lock;
7158 pd_entry_t *pde;
7159 pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7160 pt_entry_t newpte, origpte;
7161 pv_entry_t pv;
7162 vm_paddr_t opa, pa;
7163 vm_page_t mpte, om;
7164 int rv;
7165 bool nosleep;
7166
7167 PG_A = pmap_accessed_bit(pmap);
7168 PG_G = pmap_global_bit(pmap);
7169 PG_M = pmap_modified_bit(pmap);
7170 PG_V = pmap_valid_bit(pmap);
7171 PG_RW = pmap_rw_bit(pmap);
7172
7173 va = trunc_page(va);
7174 KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7175 KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7176 ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7177 va));
7178 KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7179 ("pmap_enter: managed mapping within the clean submap"));
7180 if ((m->oflags & VPO_UNMANAGED) == 0)
7181 VM_PAGE_OBJECT_BUSY_ASSERT(m);
7182 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7183 ("pmap_enter: flags %u has reserved bits set", flags));
7184 pa = VM_PAGE_TO_PHYS(m);
7185 newpte = (pt_entry_t)(pa | PG_A | PG_V);
7186 if ((flags & VM_PROT_WRITE) != 0)
7187 newpte |= PG_M;
7188 if ((prot & VM_PROT_WRITE) != 0)
7189 newpte |= PG_RW;
7190 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7191 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7192 if ((prot & VM_PROT_EXECUTE) == 0)
7193 newpte |= pg_nx;
7194 if ((flags & PMAP_ENTER_WIRED) != 0)
7195 newpte |= PG_W;
7196 if (va < VM_MAXUSER_ADDRESS)
7197 newpte |= PG_U;
7198 if (pmap == kernel_pmap)
7199 newpte |= PG_G;
7200 newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7201
7202 /*
7203 * Set modified bit gratuitously for writeable mappings if
7204 * the page is unmanaged. We do not want to take a fault
7205 * to do the dirty bit accounting for these mappings.
7206 */
7207 if ((m->oflags & VPO_UNMANAGED) != 0) {
7208 if ((newpte & PG_RW) != 0)
7209 newpte |= PG_M;
7210 } else
7211 newpte |= PG_MANAGED;
7212
7213 lock = NULL;
7214 PMAP_LOCK(pmap);
7215 if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7216 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7217 ("managed largepage va %#lx flags %#x", va, flags));
7218 rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7219 psind);
7220 goto out;
7221 }
7222 if (psind == 1) {
7223 /* Assert the required virtual and physical alignment. */
7224 KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7225 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7226 rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7227 goto out;
7228 }
7229 mpte = NULL;
7230
7231 /*
7232 * In the case that a page table page is not
7233 * resident, we are creating it here.
7234 */
7235 retry:
7236 pde = pmap_pde(pmap, va);
7237 if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7238 pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7239 pte = pmap_pde_to_pte(pde, va);
7240 if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7241 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7242 mpte->ref_count++;
7243 }
7244 } else if (va < VM_MAXUSER_ADDRESS) {
7245 /*
7246 * Here if the pte page isn't mapped, or if it has been
7247 * deallocated.
7248 */
7249 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7250 mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7251 nosleep ? NULL : &lock, va);
7252 if (mpte == NULL && nosleep) {
7253 rv = KERN_RESOURCE_SHORTAGE;
7254 goto out;
7255 }
7256 goto retry;
7257 } else
7258 panic("pmap_enter: invalid page directory va=%#lx", va);
7259
7260 origpte = *pte;
7261 pv = NULL;
7262 if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7263 newpte |= pmap_pkru_get(pmap, va);
7264
7265 /*
7266 * Is the specified virtual address already mapped?
7267 */
7268 if ((origpte & PG_V) != 0) {
7269 /*
7270 * Wiring change, just update stats. We don't worry about
7271 * wiring PT pages as they remain resident as long as there
7272 * are valid mappings in them. Hence, if a user page is wired,
7273 * the PT page will be also.
7274 */
7275 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7276 pmap->pm_stats.wired_count++;
7277 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7278 pmap->pm_stats.wired_count--;
7279
7280 /*
7281 * Remove the extra PT page reference.
7282 */
7283 if (mpte != NULL) {
7284 mpte->ref_count--;
7285 KASSERT(mpte->ref_count > 0,
7286 ("pmap_enter: missing reference to page table page,"
7287 " va: 0x%lx", va));
7288 }
7289
7290 /*
7291 * Has the physical page changed?
7292 */
7293 opa = origpte & PG_FRAME;
7294 if (opa == pa) {
7295 /*
7296 * No, might be a protection or wiring change.
7297 */
7298 if ((origpte & PG_MANAGED) != 0 &&
7299 (newpte & PG_RW) != 0)
7300 vm_page_aflag_set(m, PGA_WRITEABLE);
7301 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7302 goto unchanged;
7303 goto validate;
7304 }
7305
7306 /*
7307 * The physical page has changed. Temporarily invalidate
7308 * the mapping. This ensures that all threads sharing the
7309 * pmap keep a consistent view of the mapping, which is
7310 * necessary for the correct handling of COW faults. It
7311 * also permits reuse of the old mapping's PV entry,
7312 * avoiding an allocation.
7313 *
7314 * For consistency, handle unmanaged mappings the same way.
7315 */
7316 origpte = pte_load_clear(pte);
7317 KASSERT((origpte & PG_FRAME) == opa,
7318 ("pmap_enter: unexpected pa update for %#lx", va));
7319 if ((origpte & PG_MANAGED) != 0) {
7320 om = PHYS_TO_VM_PAGE(opa);
7321
7322 /*
7323 * The pmap lock is sufficient to synchronize with
7324 * concurrent calls to pmap_page_test_mappings() and
7325 * pmap_ts_referenced().
7326 */
7327 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7328 vm_page_dirty(om);
7329 if ((origpte & PG_A) != 0) {
7330 pmap_invalidate_page(pmap, va);
7331 vm_page_aflag_set(om, PGA_REFERENCED);
7332 }
7333 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7334 pv = pmap_pvh_remove(&om->md, pmap, va);
7335 KASSERT(pv != NULL,
7336 ("pmap_enter: no PV entry for %#lx", va));
7337 if ((newpte & PG_MANAGED) == 0)
7338 free_pv_entry(pmap, pv);
7339 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7340 TAILQ_EMPTY(&om->md.pv_list) &&
7341 ((om->flags & PG_FICTITIOUS) != 0 ||
7342 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7343 vm_page_aflag_clear(om, PGA_WRITEABLE);
7344 } else {
7345 /*
7346 * Since this mapping is unmanaged, assume that PG_A
7347 * is set.
7348 */
7349 pmap_invalidate_page(pmap, va);
7350 }
7351 origpte = 0;
7352 } else {
7353 /*
7354 * Increment the counters.
7355 */
7356 if ((newpte & PG_W) != 0)
7357 pmap->pm_stats.wired_count++;
7358 pmap_resident_count_adj(pmap, 1);
7359 }
7360
7361 /*
7362 * Enter on the PV list if part of our managed memory.
7363 */
7364 if ((newpte & PG_MANAGED) != 0) {
7365 if (pv == NULL) {
7366 pv = get_pv_entry(pmap, &lock);
7367 pv->pv_va = va;
7368 }
7369 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7370 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7371 m->md.pv_gen++;
7372 if ((newpte & PG_RW) != 0)
7373 vm_page_aflag_set(m, PGA_WRITEABLE);
7374 }
7375
7376 /*
7377 * Update the PTE.
7378 */
7379 if ((origpte & PG_V) != 0) {
7380 validate:
7381 origpte = pte_load_store(pte, newpte);
7382 KASSERT((origpte & PG_FRAME) == pa,
7383 ("pmap_enter: unexpected pa update for %#lx", va));
7384 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7385 (PG_M | PG_RW)) {
7386 if ((origpte & PG_MANAGED) != 0)
7387 vm_page_dirty(m);
7388
7389 /*
7390 * Although the PTE may still have PG_RW set, TLB
7391 * invalidation may nonetheless be required because
7392 * the PTE no longer has PG_M set.
7393 */
7394 } else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7395 /*
7396 * This PTE change does not require TLB invalidation.
7397 */
7398 goto unchanged;
7399 }
7400 if ((origpte & PG_A) != 0)
7401 pmap_invalidate_page(pmap, va);
7402 } else
7403 pte_store(pte, newpte);
7404
7405 unchanged:
7406
7407 #if VM_NRESERVLEVEL > 0
7408 /*
7409 * If both the page table page and the reservation are fully
7410 * populated, then attempt promotion.
7411 */
7412 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7413 (m->flags & PG_FICTITIOUS) == 0 &&
7414 vm_reserv_level_iffullpop(m) == 0)
7415 (void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7416 #endif
7417
7418 rv = KERN_SUCCESS;
7419 out:
7420 if (lock != NULL)
7421 rw_wunlock(lock);
7422 PMAP_UNLOCK(pmap);
7423 return (rv);
7424 }
7425
7426 /*
7427 * Tries to create a read- and/or execute-only 2MB page mapping. Returns
7428 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
7429 * value. See pmap_enter_pde() for the possible error values when "no sleep",
7430 * "no replace", and "no reclaim" are specified.
7431 */
7432 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7433 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7434 struct rwlock **lockp)
7435 {
7436 pd_entry_t newpde;
7437 pt_entry_t PG_V;
7438
7439 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7440 PG_V = pmap_valid_bit(pmap);
7441 newpde = VM_PAGE_TO_PHYS(m) |
7442 pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7443 if ((m->oflags & VPO_UNMANAGED) == 0)
7444 newpde |= PG_MANAGED;
7445 if ((prot & VM_PROT_EXECUTE) == 0)
7446 newpde |= pg_nx;
7447 if (va < VM_MAXUSER_ADDRESS)
7448 newpde |= PG_U;
7449 return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7450 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7451 }
7452
7453 /*
7454 * Returns true if every page table entry in the specified page table page is
7455 * zero.
7456 */
7457 static bool
pmap_every_pte_zero(vm_paddr_t pa)7458 pmap_every_pte_zero(vm_paddr_t pa)
7459 {
7460 pt_entry_t *pt_end, *pte;
7461
7462 KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7463 pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7464 for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7465 if (*pte != 0)
7466 return (false);
7467 }
7468 return (true);
7469 }
7470
7471 /*
7472 * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
7473 * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7474 * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise. Returns
7475 * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7476 * page mapping already exists within the 2MB virtual address range starting
7477 * at the specified virtual address or (2) the requested 2MB page mapping is
7478 * not supported due to hardware errata. Returns KERN_NO_SPACE if
7479 * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7480 * the specified virtual address. Returns KERN_PROTECTION_FAILURE if the PKRU
7481 * settings are not the same across the 2MB virtual address range starting at
7482 * the specified virtual address. Returns KERN_RESOURCE_SHORTAGE if either
7483 * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7484 * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7485 * failed.
7486 *
7487 * The parameter "m" is only used when creating a managed, writeable mapping.
7488 */
7489 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7490 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7491 vm_page_t m, struct rwlock **lockp)
7492 {
7493 struct spglist free;
7494 pd_entry_t oldpde, *pde;
7495 pt_entry_t PG_G, PG_RW, PG_V;
7496 vm_page_t mt, pdpg;
7497 vm_page_t uwptpg;
7498
7499 PG_G = pmap_global_bit(pmap);
7500 PG_RW = pmap_rw_bit(pmap);
7501 KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7502 ("pmap_enter_pde: newpde is missing PG_M"));
7503 PG_V = pmap_valid_bit(pmap);
7504 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7505
7506 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7507 newpde))) {
7508 CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7509 " in pmap %p", va, pmap);
7510 return (KERN_FAILURE);
7511 }
7512 if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7513 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7514 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7515 " in pmap %p", va, pmap);
7516 return (KERN_RESOURCE_SHORTAGE);
7517 }
7518
7519 /*
7520 * If pkru is not same for the whole pde range, return failure
7521 * and let vm_fault() cope. Check after pde allocation, since
7522 * it could sleep.
7523 */
7524 if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7525 pmap_abort_ptp(pmap, va, pdpg);
7526 return (KERN_PROTECTION_FAILURE);
7527 }
7528
7529 /*
7530 * If there are existing mappings, either abort or remove them.
7531 */
7532 oldpde = *pde;
7533 if ((oldpde & PG_V) != 0) {
7534 KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7535 ("pmap_enter_pde: pdpg's reference count is too low"));
7536 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7537 if ((oldpde & PG_PS) != 0) {
7538 if (pdpg != NULL)
7539 pdpg->ref_count--;
7540 CTR2(KTR_PMAP,
7541 "pmap_enter_pde: no space for va %#lx"
7542 " in pmap %p", va, pmap);
7543 return (KERN_NO_SPACE);
7544 } else if (va < VM_MAXUSER_ADDRESS ||
7545 !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7546 if (pdpg != NULL)
7547 pdpg->ref_count--;
7548 CTR2(KTR_PMAP,
7549 "pmap_enter_pde: failure for va %#lx"
7550 " in pmap %p", va, pmap);
7551 return (KERN_FAILURE);
7552 }
7553 }
7554 /* Break the existing mapping(s). */
7555 SLIST_INIT(&free);
7556 if ((oldpde & PG_PS) != 0) {
7557 /*
7558 * The reference to the PD page that was acquired by
7559 * pmap_alloc_pde() ensures that it won't be freed.
7560 * However, if the PDE resulted from a promotion, and
7561 * the mapping is not from kernel_pmap, then
7562 * a reserved PT page could be freed.
7563 */
7564 (void)pmap_remove_pde(pmap, pde, va,
7565 pmap != kernel_pmap, &free, lockp);
7566 if ((oldpde & PG_G) == 0)
7567 pmap_invalidate_pde_page(pmap, va, oldpde);
7568 } else {
7569 if (va >= VM_MAXUSER_ADDRESS) {
7570 /*
7571 * Try to save the ptp in the trie
7572 * before any changes to mappings are
7573 * made. Abort on failure.
7574 */
7575 mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7576 if (pmap_insert_pt_page(pmap, mt, false, false)) {
7577 if (pdpg != NULL)
7578 pdpg->ref_count--;
7579 CTR1(KTR_PMAP,
7580 "pmap_enter_pde: cannot ins kern ptp va %#lx",
7581 va);
7582 return (KERN_RESOURCE_SHORTAGE);
7583 }
7584 /*
7585 * Both pmap_remove_pde() and
7586 * pmap_remove_ptes() will zero-fill
7587 * the kernel page table page.
7588 */
7589 }
7590 pmap_delayed_invl_start();
7591 if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7592 lockp))
7593 pmap_invalidate_all(pmap);
7594 pmap_delayed_invl_finish();
7595 }
7596 if (va < VM_MAXUSER_ADDRESS) {
7597 vm_page_free_pages_toq(&free, true);
7598 KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7599 pde));
7600 } else {
7601 KASSERT(SLIST_EMPTY(&free),
7602 ("pmap_enter_pde: freed kernel page table page"));
7603 }
7604 }
7605
7606 /*
7607 * Allocate leaf ptpage for wired userspace pages.
7608 */
7609 uwptpg = NULL;
7610 if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7611 uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7612 VM_ALLOC_WIRED);
7613 if (uwptpg == NULL) {
7614 pmap_abort_ptp(pmap, va, pdpg);
7615 return (KERN_RESOURCE_SHORTAGE);
7616 }
7617 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7618 pmap_free_pt_page(pmap, uwptpg, false);
7619 pmap_abort_ptp(pmap, va, pdpg);
7620 return (KERN_RESOURCE_SHORTAGE);
7621 }
7622
7623 uwptpg->ref_count = NPTEPG;
7624 }
7625 if ((newpde & PG_MANAGED) != 0) {
7626 /*
7627 * Abort this mapping if its PV entry could not be created.
7628 */
7629 if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7630 if (pdpg != NULL)
7631 pmap_abort_ptp(pmap, va, pdpg);
7632 if (uwptpg != NULL) {
7633 mt = pmap_remove_pt_page(pmap, va);
7634 KASSERT(mt == uwptpg,
7635 ("removed pt page %p, expected %p", mt,
7636 uwptpg));
7637 uwptpg->ref_count = 1;
7638 pmap_free_pt_page(pmap, uwptpg, false);
7639 }
7640 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7641 " in pmap %p", va, pmap);
7642 return (KERN_RESOURCE_SHORTAGE);
7643 }
7644 if ((newpde & PG_RW) != 0) {
7645 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7646 vm_page_aflag_set(mt, PGA_WRITEABLE);
7647 }
7648 }
7649
7650 /*
7651 * Increment counters.
7652 */
7653 if ((newpde & PG_W) != 0)
7654 pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7655 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7656
7657 /*
7658 * Map the superpage. (This is not a promoted mapping; there will not
7659 * be any lingering 4KB page mappings in the TLB.)
7660 */
7661 pde_store(pde, newpde);
7662
7663 counter_u64_add(pmap_pde_mappings, 1);
7664 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7665 va, pmap);
7666 return (KERN_SUCCESS);
7667 }
7668
7669 /*
7670 * Maps a sequence of resident pages belonging to the same object.
7671 * The sequence begins with the given page m_start. This page is
7672 * mapped at the given virtual address start. Each subsequent page is
7673 * mapped at a virtual address that is offset from start by the same
7674 * amount as the page is offset from m_start within the object. The
7675 * last page in the sequence is the page with the largest offset from
7676 * m_start that can be mapped at a virtual address less than the given
7677 * virtual address end. Not every virtual page between start and end
7678 * is mapped; only those for which a resident page exists with the
7679 * corresponding offset from m_start are mapped.
7680 */
7681 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7682 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7683 vm_page_t m_start, vm_prot_t prot)
7684 {
7685 struct pctrie_iter pages;
7686 struct rwlock *lock;
7687 vm_offset_t va;
7688 vm_page_t m, mpte;
7689 int rv;
7690
7691 VM_OBJECT_ASSERT_LOCKED(m_start->object);
7692
7693 mpte = NULL;
7694 vm_page_iter_limit_init(&pages, m_start->object,
7695 m_start->pindex + atop(end - start));
7696 m = vm_radix_iter_lookup(&pages, m_start->pindex);
7697 lock = NULL;
7698 PMAP_LOCK(pmap);
7699 while (m != NULL) {
7700 va = start + ptoa(m->pindex - m_start->pindex);
7701 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7702 m->psind == 1 && pmap_ps_enabled(pmap) &&
7703 ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7704 KERN_SUCCESS || rv == KERN_NO_SPACE))
7705 m = vm_radix_iter_jump(&pages, NBPDR / PAGE_SIZE);
7706 else {
7707 mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7708 mpte, &lock);
7709 m = vm_radix_iter_step(&pages);
7710 }
7711 }
7712 if (lock != NULL)
7713 rw_wunlock(lock);
7714 PMAP_UNLOCK(pmap);
7715 }
7716
7717 /*
7718 * this code makes some *MAJOR* assumptions:
7719 * 1. Current pmap & pmap exists.
7720 * 2. Not wired.
7721 * 3. Read access.
7722 * 4. No page table pages.
7723 * but is *MUCH* faster than pmap_enter...
7724 */
7725
7726 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7727 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7728 {
7729 struct rwlock *lock;
7730
7731 lock = NULL;
7732 PMAP_LOCK(pmap);
7733 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7734 if (lock != NULL)
7735 rw_wunlock(lock);
7736 PMAP_UNLOCK(pmap);
7737 }
7738
7739 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7740 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7741 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7742 {
7743 pd_entry_t *pde;
7744 pt_entry_t newpte, *pte, PG_V;
7745
7746 KASSERT(!VA_IS_CLEANMAP(va) ||
7747 (m->oflags & VPO_UNMANAGED) != 0,
7748 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7749 PG_V = pmap_valid_bit(pmap);
7750 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7751 pde = NULL;
7752
7753 /*
7754 * In the case that a page table page is not
7755 * resident, we are creating it here.
7756 */
7757 if (va < VM_MAXUSER_ADDRESS) {
7758 pdp_entry_t *pdpe;
7759 vm_pindex_t ptepindex;
7760
7761 /*
7762 * Calculate pagetable page index
7763 */
7764 ptepindex = pmap_pde_pindex(va);
7765 if (mpte && (mpte->pindex == ptepindex)) {
7766 mpte->ref_count++;
7767 } else {
7768 /*
7769 * If the page table page is mapped, we just increment
7770 * the hold count, and activate it. Otherwise, we
7771 * attempt to allocate a page table page, passing NULL
7772 * instead of the PV list lock pointer because we don't
7773 * intend to sleep. If this attempt fails, we don't
7774 * retry. Instead, we give up.
7775 */
7776 pdpe = pmap_pdpe(pmap, va);
7777 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7778 if ((*pdpe & PG_PS) != 0)
7779 return (NULL);
7780 pde = pmap_pdpe_to_pde(pdpe, va);
7781 if ((*pde & PG_V) != 0) {
7782 if ((*pde & PG_PS) != 0)
7783 return (NULL);
7784 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7785 mpte->ref_count++;
7786 } else {
7787 mpte = pmap_allocpte_alloc(pmap,
7788 ptepindex, NULL, va);
7789 if (mpte == NULL)
7790 return (NULL);
7791 }
7792 } else {
7793 mpte = pmap_allocpte_alloc(pmap, ptepindex,
7794 NULL, va);
7795 if (mpte == NULL)
7796 return (NULL);
7797 }
7798 }
7799 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7800 pte = &pte[pmap_pte_index(va)];
7801 } else {
7802 mpte = NULL;
7803 pte = vtopte(va);
7804 }
7805 if (*pte) {
7806 if (mpte != NULL)
7807 mpte->ref_count--;
7808 return (NULL);
7809 }
7810
7811 /*
7812 * Enter on the PV list if part of our managed memory.
7813 */
7814 if ((m->oflags & VPO_UNMANAGED) == 0 &&
7815 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7816 if (mpte != NULL)
7817 pmap_abort_ptp(pmap, va, mpte);
7818 return (NULL);
7819 }
7820
7821 /*
7822 * Increment counters
7823 */
7824 pmap_resident_count_adj(pmap, 1);
7825
7826 newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7827 pmap_cache_bits(pmap, m->md.pat_mode, false);
7828 if ((m->oflags & VPO_UNMANAGED) == 0)
7829 newpte |= PG_MANAGED;
7830 if ((prot & VM_PROT_EXECUTE) == 0)
7831 newpte |= pg_nx;
7832 if (va < VM_MAXUSER_ADDRESS)
7833 newpte |= PG_U | pmap_pkru_get(pmap, va);
7834 pte_store(pte, newpte);
7835
7836 #if VM_NRESERVLEVEL > 0
7837 /*
7838 * If both the PTP and the reservation are fully populated, then
7839 * attempt promotion.
7840 */
7841 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7842 (mpte == NULL || mpte->ref_count == NPTEPG) &&
7843 (m->flags & PG_FICTITIOUS) == 0 &&
7844 vm_reserv_level_iffullpop(m) == 0) {
7845 if (pde == NULL)
7846 pde = pmap_pde(pmap, va);
7847
7848 /*
7849 * If promotion succeeds, then the next call to this function
7850 * should not be given the unmapped PTP as a hint.
7851 */
7852 if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7853 mpte = NULL;
7854 }
7855 #endif
7856
7857 return (mpte);
7858 }
7859
7860 /*
7861 * Make a temporary mapping for a physical address. This is only intended
7862 * to be used for panic dumps.
7863 */
7864 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7865 pmap_kenter_temporary(vm_paddr_t pa, int i)
7866 {
7867 vm_offset_t va;
7868
7869 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7870 pmap_kenter(va, pa);
7871 pmap_invlpg(kernel_pmap, va);
7872 return ((void *)crashdumpmap);
7873 }
7874
7875 /*
7876 * This code maps large physical mmap regions into the
7877 * processor address space. Note that some shortcuts
7878 * are taken, but the code works.
7879 */
7880 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7881 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7882 vm_pindex_t pindex, vm_size_t size)
7883 {
7884 struct pctrie_iter pages;
7885 pd_entry_t *pde;
7886 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7887 vm_paddr_t pa, ptepa;
7888 vm_page_t p, pdpg;
7889 int pat_mode;
7890
7891 PG_A = pmap_accessed_bit(pmap);
7892 PG_M = pmap_modified_bit(pmap);
7893 PG_V = pmap_valid_bit(pmap);
7894 PG_RW = pmap_rw_bit(pmap);
7895
7896 VM_OBJECT_ASSERT_WLOCKED(object);
7897 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7898 ("pmap_object_init_pt: non-device object"));
7899 if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7900 if (!pmap_ps_enabled(pmap))
7901 return;
7902 if (!vm_object_populate(object, pindex, pindex + atop(size)))
7903 return;
7904 vm_page_iter_init(&pages, object);
7905 p = vm_radix_iter_lookup(&pages, pindex);
7906 KASSERT(vm_page_all_valid(p),
7907 ("pmap_object_init_pt: invalid page %p", p));
7908 pat_mode = p->md.pat_mode;
7909
7910 /*
7911 * Abort the mapping if the first page is not physically
7912 * aligned to a 2MB page boundary.
7913 */
7914 ptepa = VM_PAGE_TO_PHYS(p);
7915 if (ptepa & (NBPDR - 1))
7916 return;
7917
7918 /*
7919 * Skip the first page. Abort the mapping if the rest of
7920 * the pages are not physically contiguous or have differing
7921 * memory attributes.
7922 */
7923 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7924 pa += PAGE_SIZE) {
7925 p = vm_radix_iter_next(&pages);
7926 KASSERT(vm_page_all_valid(p),
7927 ("pmap_object_init_pt: invalid page %p", p));
7928 if (pa != VM_PAGE_TO_PHYS(p) ||
7929 pat_mode != p->md.pat_mode)
7930 return;
7931 }
7932
7933 /*
7934 * Map using 2MB pages. Since "ptepa" is 2M aligned and
7935 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7936 * will not affect the termination of this loop.
7937 */
7938 PMAP_LOCK(pmap);
7939 for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7940 pa < ptepa + size; pa += NBPDR) {
7941 pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7942 if (pde == NULL) {
7943 /*
7944 * The creation of mappings below is only an
7945 * optimization. If a page directory page
7946 * cannot be allocated without blocking,
7947 * continue on to the next mapping rather than
7948 * blocking.
7949 */
7950 addr += NBPDR;
7951 continue;
7952 }
7953 if ((*pde & PG_V) == 0) {
7954 pde_store(pde, pa | PG_PS | PG_M | PG_A |
7955 PG_U | PG_RW | PG_V);
7956 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7957 counter_u64_add(pmap_pde_mappings, 1);
7958 } else {
7959 /* Continue on if the PDE is already valid. */
7960 pdpg->ref_count--;
7961 KASSERT(pdpg->ref_count > 0,
7962 ("pmap_object_init_pt: missing reference "
7963 "to page directory page, va: 0x%lx", addr));
7964 }
7965 addr += NBPDR;
7966 }
7967 PMAP_UNLOCK(pmap);
7968 }
7969 }
7970
7971 /*
7972 * Clear the wired attribute from the mappings for the specified range of
7973 * addresses in the given pmap. Every valid mapping within that range
7974 * must have the wired attribute set. In contrast, invalid mappings
7975 * cannot have the wired attribute set, so they are ignored.
7976 *
7977 * The wired attribute of the page table entry is not a hardware
7978 * feature, so there is no need to invalidate any TLB entries.
7979 * Since pmap_demote_pde() for the wired entry must never fail,
7980 * pmap_delayed_invl_start()/finish() calls around the
7981 * function are not needed.
7982 */
7983 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7984 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7985 {
7986 vm_offset_t va_next;
7987 pml4_entry_t *pml4e;
7988 pdp_entry_t *pdpe;
7989 pd_entry_t *pde;
7990 pt_entry_t *pte, PG_V, PG_G __diagused;
7991
7992 PG_V = pmap_valid_bit(pmap);
7993 PG_G = pmap_global_bit(pmap);
7994 PMAP_LOCK(pmap);
7995 for (; sva < eva; sva = va_next) {
7996 pml4e = pmap_pml4e(pmap, sva);
7997 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7998 va_next = (sva + NBPML4) & ~PML4MASK;
7999 if (va_next < sva)
8000 va_next = eva;
8001 continue;
8002 }
8003
8004 va_next = (sva + NBPDP) & ~PDPMASK;
8005 if (va_next < sva)
8006 va_next = eva;
8007 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8008 if ((*pdpe & PG_V) == 0)
8009 continue;
8010 if ((*pdpe & PG_PS) != 0) {
8011 KASSERT(va_next <= eva,
8012 ("partial update of non-transparent 1G mapping "
8013 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8014 *pdpe, sva, eva, va_next));
8015 MPASS(pmap != kernel_pmap); /* XXXKIB */
8016 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
8017 atomic_clear_long(pdpe, PG_W);
8018 pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
8019 continue;
8020 }
8021
8022 va_next = (sva + NBPDR) & ~PDRMASK;
8023 if (va_next < sva)
8024 va_next = eva;
8025 pde = pmap_pdpe_to_pde(pdpe, sva);
8026 if ((*pde & PG_V) == 0)
8027 continue;
8028 if ((*pde & PG_PS) != 0) {
8029 if ((*pde & PG_W) == 0)
8030 panic("pmap_unwire: pde %#jx is missing PG_W",
8031 (uintmax_t)*pde);
8032
8033 /*
8034 * Are we unwiring the entire large page? If not,
8035 * demote the mapping and fall through.
8036 */
8037 if (sva + NBPDR == va_next && eva >= va_next) {
8038 atomic_clear_long(pde, PG_W);
8039 pmap->pm_stats.wired_count -= NBPDR /
8040 PAGE_SIZE;
8041 continue;
8042 } else if (!pmap_demote_pde(pmap, pde, sva))
8043 panic("pmap_unwire: demotion failed");
8044 }
8045 if (va_next > eva)
8046 va_next = eva;
8047 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8048 sva += PAGE_SIZE) {
8049 if ((*pte & PG_V) == 0)
8050 continue;
8051 if ((*pte & PG_W) == 0)
8052 panic("pmap_unwire: pte %#jx is missing PG_W",
8053 (uintmax_t)*pte);
8054
8055 /*
8056 * PG_W must be cleared atomically. Although the pmap
8057 * lock synchronizes access to PG_W, another processor
8058 * could be setting PG_M and/or PG_A concurrently.
8059 */
8060 atomic_clear_long(pte, PG_W);
8061 pmap->pm_stats.wired_count--;
8062 }
8063 }
8064 PMAP_UNLOCK(pmap);
8065 }
8066
8067 /*
8068 * Copy the range specified by src_addr/len
8069 * from the source map to the range dst_addr/len
8070 * in the destination map.
8071 *
8072 * This routine is only advisory and need not do anything.
8073 */
8074 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8075 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8076 vm_offset_t src_addr)
8077 {
8078 struct rwlock *lock;
8079 pml4_entry_t *pml4e;
8080 pdp_entry_t *pdpe;
8081 pd_entry_t *pde, srcptepaddr;
8082 pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8083 vm_offset_t addr, end_addr, va_next;
8084 vm_page_t dst_pdpg, dstmpte, srcmpte;
8085
8086 if (dst_addr != src_addr)
8087 return;
8088
8089 if (dst_pmap->pm_type != src_pmap->pm_type)
8090 return;
8091
8092 /*
8093 * EPT page table entries that require emulation of A/D bits are
8094 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8095 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8096 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8097 * implementations flag an EPT misconfiguration for exec-only
8098 * mappings we skip this function entirely for emulated pmaps.
8099 */
8100 if (pmap_emulate_ad_bits(dst_pmap))
8101 return;
8102
8103 end_addr = src_addr + len;
8104 lock = NULL;
8105 if (dst_pmap < src_pmap) {
8106 PMAP_LOCK(dst_pmap);
8107 PMAP_LOCK(src_pmap);
8108 } else {
8109 PMAP_LOCK(src_pmap);
8110 PMAP_LOCK(dst_pmap);
8111 }
8112
8113 PG_A = pmap_accessed_bit(dst_pmap);
8114 PG_M = pmap_modified_bit(dst_pmap);
8115 PG_V = pmap_valid_bit(dst_pmap);
8116
8117 for (addr = src_addr; addr < end_addr; addr = va_next) {
8118 KASSERT(addr < UPT_MIN_ADDRESS,
8119 ("pmap_copy: invalid to pmap_copy page tables"));
8120
8121 pml4e = pmap_pml4e(src_pmap, addr);
8122 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8123 va_next = (addr + NBPML4) & ~PML4MASK;
8124 if (va_next < addr)
8125 va_next = end_addr;
8126 continue;
8127 }
8128
8129 va_next = (addr + NBPDP) & ~PDPMASK;
8130 if (va_next < addr)
8131 va_next = end_addr;
8132 pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8133 if ((*pdpe & PG_V) == 0)
8134 continue;
8135 if ((*pdpe & PG_PS) != 0) {
8136 KASSERT(va_next <= end_addr,
8137 ("partial update of non-transparent 1G mapping "
8138 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8139 *pdpe, addr, end_addr, va_next));
8140 MPASS((addr & PDPMASK) == 0);
8141 MPASS((*pdpe & PG_MANAGED) == 0);
8142 srcptepaddr = *pdpe;
8143 pdpe = pmap_pdpe(dst_pmap, addr);
8144 if (pdpe == NULL) {
8145 if (pmap_allocpte_alloc(dst_pmap,
8146 pmap_pml4e_pindex(addr), NULL, addr) ==
8147 NULL)
8148 break;
8149 pdpe = pmap_pdpe(dst_pmap, addr);
8150 } else {
8151 pml4e = pmap_pml4e(dst_pmap, addr);
8152 dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8153 dst_pdpg->ref_count++;
8154 }
8155 KASSERT(*pdpe == 0,
8156 ("1G mapping present in dst pmap "
8157 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8158 *pdpe, addr, end_addr, va_next));
8159 *pdpe = srcptepaddr & ~PG_W;
8160 pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8161 continue;
8162 }
8163
8164 va_next = (addr + NBPDR) & ~PDRMASK;
8165 if (va_next < addr)
8166 va_next = end_addr;
8167
8168 pde = pmap_pdpe_to_pde(pdpe, addr);
8169 srcptepaddr = *pde;
8170 if (srcptepaddr == 0)
8171 continue;
8172
8173 if (srcptepaddr & PG_PS) {
8174 /*
8175 * We can only virtual copy whole superpages.
8176 */
8177 if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8178 continue;
8179 pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8180 if (pde == NULL)
8181 break;
8182 if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8183 pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8184 PMAP_ENTER_NORECLAIM, &lock))) {
8185 /*
8186 * We leave the dirty bit unchanged because
8187 * managed read/write superpage mappings are
8188 * required to be dirty. However, managed
8189 * superpage mappings are not required to
8190 * have their accessed bit set, so we clear
8191 * it because we don't know if this mapping
8192 * will be used.
8193 */
8194 srcptepaddr &= ~PG_W;
8195 if ((srcptepaddr & PG_MANAGED) != 0)
8196 srcptepaddr &= ~PG_A;
8197 *pde = srcptepaddr;
8198 pmap_resident_count_adj(dst_pmap, NBPDR /
8199 PAGE_SIZE);
8200 counter_u64_add(pmap_pde_mappings, 1);
8201 } else
8202 pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8203 continue;
8204 }
8205
8206 srcptepaddr &= PG_FRAME;
8207 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8208 KASSERT(srcmpte->ref_count > 0,
8209 ("pmap_copy: source page table page is unused"));
8210
8211 if (va_next > end_addr)
8212 va_next = end_addr;
8213
8214 src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8215 src_pte = &src_pte[pmap_pte_index(addr)];
8216 dstmpte = NULL;
8217 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8218 ptetemp = *src_pte;
8219
8220 /*
8221 * We only virtual copy managed pages.
8222 */
8223 if ((ptetemp & PG_MANAGED) == 0)
8224 continue;
8225
8226 if (dstmpte != NULL) {
8227 KASSERT(dstmpte->pindex ==
8228 pmap_pde_pindex(addr),
8229 ("dstmpte pindex/addr mismatch"));
8230 dstmpte->ref_count++;
8231 } else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8232 NULL)) == NULL)
8233 goto out;
8234 dst_pte = (pt_entry_t *)
8235 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8236 dst_pte = &dst_pte[pmap_pte_index(addr)];
8237 if (*dst_pte == 0 &&
8238 pmap_try_insert_pv_entry(dst_pmap, addr,
8239 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8240 /*
8241 * Clear the wired, modified, and accessed
8242 * (referenced) bits during the copy.
8243 */
8244 *dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8245 pmap_resident_count_adj(dst_pmap, 1);
8246 } else {
8247 pmap_abort_ptp(dst_pmap, addr, dstmpte);
8248 goto out;
8249 }
8250 /* Have we copied all of the valid mappings? */
8251 if (dstmpte->ref_count >= srcmpte->ref_count)
8252 break;
8253 }
8254 }
8255 out:
8256 if (lock != NULL)
8257 rw_wunlock(lock);
8258 PMAP_UNLOCK(src_pmap);
8259 PMAP_UNLOCK(dst_pmap);
8260 }
8261
8262 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8263 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8264 {
8265 int error;
8266
8267 if (dst_pmap->pm_type != src_pmap->pm_type ||
8268 dst_pmap->pm_type != PT_X86 ||
8269 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8270 return (0);
8271 for (;;) {
8272 if (dst_pmap < src_pmap) {
8273 PMAP_LOCK(dst_pmap);
8274 PMAP_LOCK(src_pmap);
8275 } else {
8276 PMAP_LOCK(src_pmap);
8277 PMAP_LOCK(dst_pmap);
8278 }
8279 error = pmap_pkru_copy(dst_pmap, src_pmap);
8280 /* Clean up partial copy on failure due to no memory. */
8281 if (error == ENOMEM)
8282 pmap_pkru_deassign_all(dst_pmap);
8283 PMAP_UNLOCK(src_pmap);
8284 PMAP_UNLOCK(dst_pmap);
8285 if (error != ENOMEM)
8286 break;
8287 vm_wait(NULL);
8288 }
8289 return (error);
8290 }
8291
8292 /*
8293 * Zero the specified hardware page.
8294 */
8295 void
pmap_zero_page(vm_page_t m)8296 pmap_zero_page(vm_page_t m)
8297 {
8298 vm_offset_t va;
8299
8300 #ifdef TSLOG_PAGEZERO
8301 TSENTER();
8302 #endif
8303 va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8304 pagezero((void *)va);
8305 #ifdef TSLOG_PAGEZERO
8306 TSEXIT();
8307 #endif
8308 }
8309
8310 /*
8311 * Zero an area within a single hardware page. off and size must not
8312 * cover an area beyond a single hardware page.
8313 */
8314 void
pmap_zero_page_area(vm_page_t m,int off,int size)8315 pmap_zero_page_area(vm_page_t m, int off, int size)
8316 {
8317 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8318
8319 if (off == 0 && size == PAGE_SIZE)
8320 pagezero((void *)va);
8321 else
8322 bzero((char *)va + off, size);
8323 }
8324
8325 /*
8326 * Copy 1 specified hardware page to another.
8327 */
8328 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8329 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8330 {
8331 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8332 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8333
8334 pagecopy((void *)src, (void *)dst);
8335 }
8336
8337 int unmapped_buf_allowed = 1;
8338
8339 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8340 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8341 vm_offset_t b_offset, int xfersize)
8342 {
8343 void *a_cp, *b_cp;
8344 vm_page_t pages[2];
8345 vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8346 int cnt;
8347 bool mapped;
8348
8349 while (xfersize > 0) {
8350 a_pg_offset = a_offset & PAGE_MASK;
8351 pages[0] = ma[a_offset >> PAGE_SHIFT];
8352 b_pg_offset = b_offset & PAGE_MASK;
8353 pages[1] = mb[b_offset >> PAGE_SHIFT];
8354 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8355 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8356 mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8357 a_cp = (char *)vaddr[0] + a_pg_offset;
8358 b_cp = (char *)vaddr[1] + b_pg_offset;
8359 bcopy(a_cp, b_cp, cnt);
8360 if (__predict_false(mapped))
8361 pmap_unmap_io_transient(pages, vaddr, 2, false);
8362 a_offset += cnt;
8363 b_offset += cnt;
8364 xfersize -= cnt;
8365 }
8366 }
8367
8368 /*
8369 * Returns true if the pmap's pv is one of the first
8370 * 16 pvs linked to from this page. This count may
8371 * be changed upwards or downwards in the future; it
8372 * is only necessary that true be returned for a small
8373 * subset of pmaps for proper page aging.
8374 */
8375 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8376 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8377 {
8378 struct md_page *pvh;
8379 struct rwlock *lock;
8380 pv_entry_t pv;
8381 int loops = 0;
8382 bool rv;
8383
8384 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8385 ("pmap_page_exists_quick: page %p is not managed", m));
8386 rv = false;
8387 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8388 rw_rlock(lock);
8389 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8390 if (PV_PMAP(pv) == pmap) {
8391 rv = true;
8392 break;
8393 }
8394 loops++;
8395 if (loops >= 16)
8396 break;
8397 }
8398 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8399 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8400 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8401 if (PV_PMAP(pv) == pmap) {
8402 rv = true;
8403 break;
8404 }
8405 loops++;
8406 if (loops >= 16)
8407 break;
8408 }
8409 }
8410 rw_runlock(lock);
8411 return (rv);
8412 }
8413
8414 /*
8415 * pmap_page_wired_mappings:
8416 *
8417 * Return the number of managed mappings to the given physical page
8418 * that are wired.
8419 */
8420 int
pmap_page_wired_mappings(vm_page_t m)8421 pmap_page_wired_mappings(vm_page_t m)
8422 {
8423 struct rwlock *lock;
8424 struct md_page *pvh;
8425 pmap_t pmap;
8426 pt_entry_t *pte;
8427 pv_entry_t pv;
8428 int count, md_gen, pvh_gen;
8429
8430 if ((m->oflags & VPO_UNMANAGED) != 0)
8431 return (0);
8432 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8433 rw_rlock(lock);
8434 restart:
8435 count = 0;
8436 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8437 pmap = PV_PMAP(pv);
8438 if (!PMAP_TRYLOCK(pmap)) {
8439 md_gen = m->md.pv_gen;
8440 rw_runlock(lock);
8441 PMAP_LOCK(pmap);
8442 rw_rlock(lock);
8443 if (md_gen != m->md.pv_gen) {
8444 PMAP_UNLOCK(pmap);
8445 goto restart;
8446 }
8447 }
8448 pte = pmap_pte(pmap, pv->pv_va);
8449 if ((*pte & PG_W) != 0)
8450 count++;
8451 PMAP_UNLOCK(pmap);
8452 }
8453 if ((m->flags & PG_FICTITIOUS) == 0) {
8454 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8455 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8456 pmap = PV_PMAP(pv);
8457 if (!PMAP_TRYLOCK(pmap)) {
8458 md_gen = m->md.pv_gen;
8459 pvh_gen = pvh->pv_gen;
8460 rw_runlock(lock);
8461 PMAP_LOCK(pmap);
8462 rw_rlock(lock);
8463 if (md_gen != m->md.pv_gen ||
8464 pvh_gen != pvh->pv_gen) {
8465 PMAP_UNLOCK(pmap);
8466 goto restart;
8467 }
8468 }
8469 pte = pmap_pde(pmap, pv->pv_va);
8470 if ((*pte & PG_W) != 0)
8471 count++;
8472 PMAP_UNLOCK(pmap);
8473 }
8474 }
8475 rw_runlock(lock);
8476 return (count);
8477 }
8478
8479 /*
8480 * Returns true if the given page is mapped individually or as part of
8481 * a 2mpage. Otherwise, returns false.
8482 */
8483 bool
pmap_page_is_mapped(vm_page_t m)8484 pmap_page_is_mapped(vm_page_t m)
8485 {
8486 struct rwlock *lock;
8487 bool rv;
8488
8489 if ((m->oflags & VPO_UNMANAGED) != 0)
8490 return (false);
8491 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8492 rw_rlock(lock);
8493 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8494 ((m->flags & PG_FICTITIOUS) == 0 &&
8495 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8496 rw_runlock(lock);
8497 return (rv);
8498 }
8499
8500 /*
8501 * Destroy all managed, non-wired mappings in the given user-space
8502 * pmap. This pmap cannot be active on any processor besides the
8503 * caller.
8504 *
8505 * This function cannot be applied to the kernel pmap. Moreover, it
8506 * is not intended for general use. It is only to be used during
8507 * process termination. Consequently, it can be implemented in ways
8508 * that make it faster than pmap_remove(). First, it can more quickly
8509 * destroy mappings by iterating over the pmap's collection of PV
8510 * entries, rather than searching the page table. Second, it doesn't
8511 * have to test and clear the page table entries atomically, because
8512 * no processor is currently accessing the user address space. In
8513 * particular, a page table entry's dirty bit won't change state once
8514 * this function starts.
8515 *
8516 * Although this function destroys all of the pmap's managed,
8517 * non-wired mappings, it can delay and batch the invalidation of TLB
8518 * entries without calling pmap_delayed_invl_start() and
8519 * pmap_delayed_invl_finish(). Because the pmap is not active on
8520 * any other processor, none of these TLB entries will ever be used
8521 * before their eventual invalidation. Consequently, there is no need
8522 * for either pmap_remove_all() or pmap_remove_write() to wait for
8523 * that eventual TLB invalidation.
8524 */
8525 void
pmap_remove_pages(pmap_t pmap)8526 pmap_remove_pages(pmap_t pmap)
8527 {
8528 pd_entry_t ptepde;
8529 pt_entry_t *pte, tpte;
8530 pt_entry_t PG_M, PG_RW, PG_V;
8531 struct spglist free;
8532 struct pv_chunklist free_chunks[PMAP_MEMDOM];
8533 vm_page_t m, mpte, mt;
8534 pv_entry_t pv;
8535 struct md_page *pvh;
8536 struct pv_chunk *pc, *npc;
8537 struct rwlock *lock;
8538 int64_t bit;
8539 uint64_t inuse, bitmask;
8540 int allfree, field, i, idx;
8541 #ifdef PV_STATS
8542 int freed;
8543 #endif
8544 bool superpage;
8545 vm_paddr_t pa;
8546
8547 /*
8548 * Assert that the given pmap is only active on the current
8549 * CPU. Unfortunately, we cannot block another CPU from
8550 * activating the pmap while this function is executing.
8551 */
8552 KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8553 #ifdef INVARIANTS
8554 {
8555 cpuset_t other_cpus;
8556
8557 other_cpus = all_cpus;
8558 critical_enter();
8559 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8560 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8561 critical_exit();
8562 KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8563 }
8564 #endif
8565
8566 lock = NULL;
8567 PG_M = pmap_modified_bit(pmap);
8568 PG_V = pmap_valid_bit(pmap);
8569 PG_RW = pmap_rw_bit(pmap);
8570
8571 for (i = 0; i < PMAP_MEMDOM; i++)
8572 TAILQ_INIT(&free_chunks[i]);
8573 SLIST_INIT(&free);
8574 PMAP_LOCK(pmap);
8575 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8576 allfree = 1;
8577 #ifdef PV_STATS
8578 freed = 0;
8579 #endif
8580 for (field = 0; field < _NPCM; field++) {
8581 inuse = ~pc->pc_map[field] & pc_freemask[field];
8582 while (inuse != 0) {
8583 bit = bsfq(inuse);
8584 bitmask = 1UL << bit;
8585 idx = field * 64 + bit;
8586 pv = &pc->pc_pventry[idx];
8587 inuse &= ~bitmask;
8588
8589 pte = pmap_pdpe(pmap, pv->pv_va);
8590 ptepde = *pte;
8591 pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8592 tpte = *pte;
8593 if ((tpte & (PG_PS | PG_V)) == PG_V) {
8594 superpage = false;
8595 ptepde = tpte;
8596 pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8597 PG_FRAME);
8598 pte = &pte[pmap_pte_index(pv->pv_va)];
8599 tpte = *pte;
8600 } else {
8601 /*
8602 * Keep track whether 'tpte' is a
8603 * superpage explicitly instead of
8604 * relying on PG_PS being set.
8605 *
8606 * This is because PG_PS is numerically
8607 * identical to PG_PTE_PAT and thus a
8608 * regular page could be mistaken for
8609 * a superpage.
8610 */
8611 superpage = true;
8612 }
8613
8614 if ((tpte & PG_V) == 0) {
8615 panic("bad pte va %lx pte %lx",
8616 pv->pv_va, tpte);
8617 }
8618
8619 /*
8620 * We cannot remove wired pages from a process' mapping at this time
8621 */
8622 if (tpte & PG_W) {
8623 allfree = 0;
8624 continue;
8625 }
8626
8627 /* Mark free */
8628 pc->pc_map[field] |= bitmask;
8629
8630 /*
8631 * Because this pmap is not active on other
8632 * processors, the dirty bit cannot have
8633 * changed state since we last loaded pte.
8634 */
8635 pte_clear(pte);
8636
8637 if (superpage)
8638 pa = tpte & PG_PS_FRAME;
8639 else
8640 pa = tpte & PG_FRAME;
8641
8642 m = PHYS_TO_VM_PAGE(pa);
8643 KASSERT(m->phys_addr == pa,
8644 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8645 m, (uintmax_t)m->phys_addr,
8646 (uintmax_t)tpte));
8647
8648 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8649 m < &vm_page_array[vm_page_array_size],
8650 ("pmap_remove_pages: bad tpte %#jx",
8651 (uintmax_t)tpte));
8652
8653 /*
8654 * Update the vm_page_t clean/reference bits.
8655 */
8656 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8657 if (superpage) {
8658 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8659 vm_page_dirty(mt);
8660 } else
8661 vm_page_dirty(m);
8662 }
8663
8664 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8665
8666 if (superpage) {
8667 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8668 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8669 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8670 pvh->pv_gen++;
8671 if (TAILQ_EMPTY(&pvh->pv_list)) {
8672 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8673 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8674 TAILQ_EMPTY(&mt->md.pv_list))
8675 vm_page_aflag_clear(mt, PGA_WRITEABLE);
8676 }
8677 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8678 if (mpte != NULL) {
8679 KASSERT(vm_page_any_valid(mpte),
8680 ("pmap_remove_pages: pte page not promoted"));
8681 pmap_pt_page_count_adj(pmap, -1);
8682 KASSERT(mpte->ref_count == NPTEPG,
8683 ("pmap_remove_pages: pte page reference count error"));
8684 mpte->ref_count = 0;
8685 pmap_add_delayed_free_list(mpte, &free, false);
8686 }
8687 } else {
8688 pmap_resident_count_adj(pmap, -1);
8689 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8690 m->md.pv_gen++;
8691 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8692 TAILQ_EMPTY(&m->md.pv_list) &&
8693 (m->flags & PG_FICTITIOUS) == 0) {
8694 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8695 if (TAILQ_EMPTY(&pvh->pv_list))
8696 vm_page_aflag_clear(m, PGA_WRITEABLE);
8697 }
8698 }
8699 pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8700 #ifdef PV_STATS
8701 freed++;
8702 #endif
8703 }
8704 }
8705 PV_STAT(counter_u64_add(pv_entry_frees, freed));
8706 PV_STAT(counter_u64_add(pv_entry_spare, freed));
8707 PV_STAT(counter_u64_add(pv_entry_count, -freed));
8708 if (allfree) {
8709 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8710 TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8711 }
8712 }
8713 if (lock != NULL)
8714 rw_wunlock(lock);
8715 pmap_invalidate_all(pmap);
8716 pmap_pkru_deassign_all(pmap);
8717 free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8718 PMAP_UNLOCK(pmap);
8719 vm_page_free_pages_toq(&free, true);
8720 }
8721
8722 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8723 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8724 {
8725 struct rwlock *lock;
8726 pv_entry_t pv;
8727 struct md_page *pvh;
8728 pt_entry_t *pte, mask;
8729 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8730 pmap_t pmap;
8731 int md_gen, pvh_gen;
8732 bool rv;
8733
8734 rv = false;
8735 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8736 rw_rlock(lock);
8737 restart:
8738 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8739 pmap = PV_PMAP(pv);
8740 if (!PMAP_TRYLOCK(pmap)) {
8741 md_gen = m->md.pv_gen;
8742 rw_runlock(lock);
8743 PMAP_LOCK(pmap);
8744 rw_rlock(lock);
8745 if (md_gen != m->md.pv_gen) {
8746 PMAP_UNLOCK(pmap);
8747 goto restart;
8748 }
8749 }
8750 pte = pmap_pte(pmap, pv->pv_va);
8751 mask = 0;
8752 if (modified) {
8753 PG_M = pmap_modified_bit(pmap);
8754 PG_RW = pmap_rw_bit(pmap);
8755 mask |= PG_RW | PG_M;
8756 }
8757 if (accessed) {
8758 PG_A = pmap_accessed_bit(pmap);
8759 PG_V = pmap_valid_bit(pmap);
8760 mask |= PG_V | PG_A;
8761 }
8762 rv = (*pte & mask) == mask;
8763 PMAP_UNLOCK(pmap);
8764 if (rv)
8765 goto out;
8766 }
8767 if ((m->flags & PG_FICTITIOUS) == 0) {
8768 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8769 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8770 pmap = PV_PMAP(pv);
8771 if (!PMAP_TRYLOCK(pmap)) {
8772 md_gen = m->md.pv_gen;
8773 pvh_gen = pvh->pv_gen;
8774 rw_runlock(lock);
8775 PMAP_LOCK(pmap);
8776 rw_rlock(lock);
8777 if (md_gen != m->md.pv_gen ||
8778 pvh_gen != pvh->pv_gen) {
8779 PMAP_UNLOCK(pmap);
8780 goto restart;
8781 }
8782 }
8783 pte = pmap_pde(pmap, pv->pv_va);
8784 mask = 0;
8785 if (modified) {
8786 PG_M = pmap_modified_bit(pmap);
8787 PG_RW = pmap_rw_bit(pmap);
8788 mask |= PG_RW | PG_M;
8789 }
8790 if (accessed) {
8791 PG_A = pmap_accessed_bit(pmap);
8792 PG_V = pmap_valid_bit(pmap);
8793 mask |= PG_V | PG_A;
8794 }
8795 rv = (*pte & mask) == mask;
8796 PMAP_UNLOCK(pmap);
8797 if (rv)
8798 goto out;
8799 }
8800 }
8801 out:
8802 rw_runlock(lock);
8803 return (rv);
8804 }
8805
8806 /*
8807 * pmap_is_modified:
8808 *
8809 * Return whether or not the specified physical page was modified
8810 * in any physical maps.
8811 */
8812 bool
pmap_is_modified(vm_page_t m)8813 pmap_is_modified(vm_page_t m)
8814 {
8815
8816 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8817 ("pmap_is_modified: page %p is not managed", m));
8818
8819 /*
8820 * If the page is not busied then this check is racy.
8821 */
8822 if (!pmap_page_is_write_mapped(m))
8823 return (false);
8824 return (pmap_page_test_mappings(m, false, true));
8825 }
8826
8827 /*
8828 * pmap_is_prefaultable:
8829 *
8830 * Return whether or not the specified virtual address is eligible
8831 * for prefault.
8832 */
8833 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8834 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8835 {
8836 pd_entry_t *pde;
8837 pt_entry_t *pte, PG_V;
8838 bool rv;
8839
8840 PG_V = pmap_valid_bit(pmap);
8841
8842 /*
8843 * Return true if and only if the PTE for the specified virtual
8844 * address is allocated but invalid.
8845 */
8846 rv = false;
8847 PMAP_LOCK(pmap);
8848 pde = pmap_pde(pmap, addr);
8849 if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8850 pte = pmap_pde_to_pte(pde, addr);
8851 rv = (*pte & PG_V) == 0;
8852 }
8853 PMAP_UNLOCK(pmap);
8854 return (rv);
8855 }
8856
8857 /*
8858 * pmap_is_referenced:
8859 *
8860 * Return whether or not the specified physical page was referenced
8861 * in any physical maps.
8862 */
8863 bool
pmap_is_referenced(vm_page_t m)8864 pmap_is_referenced(vm_page_t m)
8865 {
8866
8867 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8868 ("pmap_is_referenced: page %p is not managed", m));
8869 return (pmap_page_test_mappings(m, true, false));
8870 }
8871
8872 /*
8873 * Clear the write and modified bits in each of the given page's mappings.
8874 */
8875 void
pmap_remove_write(vm_page_t m)8876 pmap_remove_write(vm_page_t m)
8877 {
8878 struct md_page *pvh;
8879 pmap_t pmap;
8880 struct rwlock *lock;
8881 pv_entry_t next_pv, pv;
8882 pd_entry_t *pde;
8883 pt_entry_t oldpte, *pte, PG_M, PG_RW;
8884 vm_offset_t va;
8885 int pvh_gen, md_gen;
8886
8887 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8888 ("pmap_remove_write: page %p is not managed", m));
8889
8890 vm_page_assert_busied(m);
8891 if (!pmap_page_is_write_mapped(m))
8892 return;
8893
8894 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8895 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8896 pa_to_pvh(VM_PAGE_TO_PHYS(m));
8897 rw_wlock(lock);
8898 retry:
8899 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8900 pmap = PV_PMAP(pv);
8901 if (!PMAP_TRYLOCK(pmap)) {
8902 pvh_gen = pvh->pv_gen;
8903 rw_wunlock(lock);
8904 PMAP_LOCK(pmap);
8905 rw_wlock(lock);
8906 if (pvh_gen != pvh->pv_gen) {
8907 PMAP_UNLOCK(pmap);
8908 goto retry;
8909 }
8910 }
8911 PG_RW = pmap_rw_bit(pmap);
8912 va = pv->pv_va;
8913 pde = pmap_pde(pmap, va);
8914 if ((*pde & PG_RW) != 0)
8915 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8916 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8917 ("inconsistent pv lock %p %p for page %p",
8918 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8919 PMAP_UNLOCK(pmap);
8920 }
8921 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8922 pmap = PV_PMAP(pv);
8923 if (!PMAP_TRYLOCK(pmap)) {
8924 pvh_gen = pvh->pv_gen;
8925 md_gen = m->md.pv_gen;
8926 rw_wunlock(lock);
8927 PMAP_LOCK(pmap);
8928 rw_wlock(lock);
8929 if (pvh_gen != pvh->pv_gen ||
8930 md_gen != m->md.pv_gen) {
8931 PMAP_UNLOCK(pmap);
8932 goto retry;
8933 }
8934 }
8935 PG_M = pmap_modified_bit(pmap);
8936 PG_RW = pmap_rw_bit(pmap);
8937 pde = pmap_pde(pmap, pv->pv_va);
8938 KASSERT((*pde & PG_PS) == 0,
8939 ("pmap_remove_write: found a 2mpage in page %p's pv list",
8940 m));
8941 pte = pmap_pde_to_pte(pde, pv->pv_va);
8942 oldpte = *pte;
8943 if (oldpte & PG_RW) {
8944 while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8945 ~(PG_RW | PG_M)))
8946 cpu_spinwait();
8947 if ((oldpte & PG_M) != 0)
8948 vm_page_dirty(m);
8949 pmap_invalidate_page(pmap, pv->pv_va);
8950 }
8951 PMAP_UNLOCK(pmap);
8952 }
8953 rw_wunlock(lock);
8954 vm_page_aflag_clear(m, PGA_WRITEABLE);
8955 pmap_delayed_invl_wait(m);
8956 }
8957
8958 /*
8959 * pmap_ts_referenced:
8960 *
8961 * Return a count of reference bits for a page, clearing those bits.
8962 * It is not necessary for every reference bit to be cleared, but it
8963 * is necessary that 0 only be returned when there are truly no
8964 * reference bits set.
8965 *
8966 * As an optimization, update the page's dirty field if a modified bit is
8967 * found while counting reference bits. This opportunistic update can be
8968 * performed at low cost and can eliminate the need for some future calls
8969 * to pmap_is_modified(). However, since this function stops after
8970 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8971 * dirty pages. Those dirty pages will only be detected by a future call
8972 * to pmap_is_modified().
8973 *
8974 * A DI block is not needed within this function, because
8975 * invalidations are performed before the PV list lock is
8976 * released.
8977 */
8978 int
pmap_ts_referenced(vm_page_t m)8979 pmap_ts_referenced(vm_page_t m)
8980 {
8981 struct md_page *pvh;
8982 pv_entry_t pv, pvf;
8983 pmap_t pmap;
8984 struct rwlock *lock;
8985 pd_entry_t oldpde, *pde;
8986 pt_entry_t *pte, PG_A, PG_M, PG_RW;
8987 vm_offset_t va;
8988 vm_paddr_t pa;
8989 int cleared, md_gen, not_cleared, pvh_gen;
8990 struct spglist free;
8991 bool demoted;
8992
8993 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8994 ("pmap_ts_referenced: page %p is not managed", m));
8995 SLIST_INIT(&free);
8996 cleared = 0;
8997 pa = VM_PAGE_TO_PHYS(m);
8998 lock = PHYS_TO_PV_LIST_LOCK(pa);
8999 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
9000 rw_wlock(lock);
9001 retry:
9002 not_cleared = 0;
9003 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
9004 goto small_mappings;
9005 pv = pvf;
9006 do {
9007 if (pvf == NULL)
9008 pvf = pv;
9009 pmap = PV_PMAP(pv);
9010 if (!PMAP_TRYLOCK(pmap)) {
9011 pvh_gen = pvh->pv_gen;
9012 rw_wunlock(lock);
9013 PMAP_LOCK(pmap);
9014 rw_wlock(lock);
9015 if (pvh_gen != pvh->pv_gen) {
9016 PMAP_UNLOCK(pmap);
9017 goto retry;
9018 }
9019 }
9020 PG_A = pmap_accessed_bit(pmap);
9021 PG_M = pmap_modified_bit(pmap);
9022 PG_RW = pmap_rw_bit(pmap);
9023 va = pv->pv_va;
9024 pde = pmap_pde(pmap, pv->pv_va);
9025 oldpde = *pde;
9026 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9027 /*
9028 * Although "oldpde" is mapping a 2MB page, because
9029 * this function is called at a 4KB page granularity,
9030 * we only update the 4KB page under test.
9031 */
9032 vm_page_dirty(m);
9033 }
9034 if ((oldpde & PG_A) != 0) {
9035 /*
9036 * Since this reference bit is shared by 512 4KB
9037 * pages, it should not be cleared every time it is
9038 * tested. Apply a simple "hash" function on the
9039 * physical page number, the virtual superpage number,
9040 * and the pmap address to select one 4KB page out of
9041 * the 512 on which testing the reference bit will
9042 * result in clearing that reference bit. This
9043 * function is designed to avoid the selection of the
9044 * same 4KB page for every 2MB page mapping.
9045 *
9046 * On demotion, a mapping that hasn't been referenced
9047 * is simply destroyed. To avoid the possibility of a
9048 * subsequent page fault on a demoted wired mapping,
9049 * always leave its reference bit set. Moreover,
9050 * since the superpage is wired, the current state of
9051 * its reference bit won't affect page replacement.
9052 */
9053 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9054 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9055 (oldpde & PG_W) == 0) {
9056 if (safe_to_clear_referenced(pmap, oldpde)) {
9057 atomic_clear_long(pde, PG_A);
9058 pmap_invalidate_page(pmap, pv->pv_va);
9059 demoted = false;
9060 } else if (pmap_demote_pde_locked(pmap, pde,
9061 pv->pv_va, &lock)) {
9062 /*
9063 * Remove the mapping to a single page
9064 * so that a subsequent access may
9065 * repromote. Since the underlying
9066 * page table page is fully populated,
9067 * this removal never frees a page
9068 * table page.
9069 */
9070 demoted = true;
9071 va += VM_PAGE_TO_PHYS(m) - (oldpde &
9072 PG_PS_FRAME);
9073 pte = pmap_pde_to_pte(pde, va);
9074 pmap_remove_pte(pmap, pte, va, *pde,
9075 NULL, &lock);
9076 pmap_invalidate_page(pmap, va);
9077 } else
9078 demoted = true;
9079
9080 if (demoted) {
9081 /*
9082 * The superpage mapping was removed
9083 * entirely and therefore 'pv' is no
9084 * longer valid.
9085 */
9086 if (pvf == pv)
9087 pvf = NULL;
9088 pv = NULL;
9089 }
9090 cleared++;
9091 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9092 ("inconsistent pv lock %p %p for page %p",
9093 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9094 } else
9095 not_cleared++;
9096 }
9097 PMAP_UNLOCK(pmap);
9098 /* Rotate the PV list if it has more than one entry. */
9099 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9100 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9101 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9102 pvh->pv_gen++;
9103 }
9104 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9105 goto out;
9106 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9107 small_mappings:
9108 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9109 goto out;
9110 pv = pvf;
9111 do {
9112 if (pvf == NULL)
9113 pvf = pv;
9114 pmap = PV_PMAP(pv);
9115 if (!PMAP_TRYLOCK(pmap)) {
9116 pvh_gen = pvh->pv_gen;
9117 md_gen = m->md.pv_gen;
9118 rw_wunlock(lock);
9119 PMAP_LOCK(pmap);
9120 rw_wlock(lock);
9121 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9122 PMAP_UNLOCK(pmap);
9123 goto retry;
9124 }
9125 }
9126 PG_A = pmap_accessed_bit(pmap);
9127 PG_M = pmap_modified_bit(pmap);
9128 PG_RW = pmap_rw_bit(pmap);
9129 pde = pmap_pde(pmap, pv->pv_va);
9130 KASSERT((*pde & PG_PS) == 0,
9131 ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9132 m));
9133 pte = pmap_pde_to_pte(pde, pv->pv_va);
9134 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9135 vm_page_dirty(m);
9136 if ((*pte & PG_A) != 0) {
9137 if (safe_to_clear_referenced(pmap, *pte)) {
9138 atomic_clear_long(pte, PG_A);
9139 pmap_invalidate_page(pmap, pv->pv_va);
9140 cleared++;
9141 } else if ((*pte & PG_W) == 0) {
9142 /*
9143 * Wired pages cannot be paged out so
9144 * doing accessed bit emulation for
9145 * them is wasted effort. We do the
9146 * hard work for unwired pages only.
9147 */
9148 pmap_remove_pte(pmap, pte, pv->pv_va,
9149 *pde, &free, &lock);
9150 pmap_invalidate_page(pmap, pv->pv_va);
9151 cleared++;
9152 if (pvf == pv)
9153 pvf = NULL;
9154 pv = NULL;
9155 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9156 ("inconsistent pv lock %p %p for page %p",
9157 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9158 } else
9159 not_cleared++;
9160 }
9161 PMAP_UNLOCK(pmap);
9162 /* Rotate the PV list if it has more than one entry. */
9163 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9164 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9165 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9166 m->md.pv_gen++;
9167 }
9168 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9169 not_cleared < PMAP_TS_REFERENCED_MAX);
9170 out:
9171 rw_wunlock(lock);
9172 vm_page_free_pages_toq(&free, true);
9173 return (cleared + not_cleared);
9174 }
9175
9176 /*
9177 * Apply the given advice to the specified range of addresses within the
9178 * given pmap. Depending on the advice, clear the referenced and/or
9179 * modified flags in each mapping and set the mapped page's dirty field.
9180 */
9181 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9182 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9183 {
9184 struct rwlock *lock;
9185 pml4_entry_t *pml4e;
9186 pdp_entry_t *pdpe;
9187 pd_entry_t oldpde, *pde;
9188 pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9189 vm_offset_t va, va_next;
9190 vm_page_t m;
9191 bool anychanged;
9192
9193 if (advice != MADV_DONTNEED && advice != MADV_FREE)
9194 return;
9195
9196 /*
9197 * A/D bit emulation requires an alternate code path when clearing
9198 * the modified and accessed bits below. Since this function is
9199 * advisory in nature we skip it entirely for pmaps that require
9200 * A/D bit emulation.
9201 */
9202 if (pmap_emulate_ad_bits(pmap))
9203 return;
9204
9205 PG_A = pmap_accessed_bit(pmap);
9206 PG_G = pmap_global_bit(pmap);
9207 PG_M = pmap_modified_bit(pmap);
9208 PG_V = pmap_valid_bit(pmap);
9209 PG_RW = pmap_rw_bit(pmap);
9210 anychanged = false;
9211 pmap_delayed_invl_start();
9212 PMAP_LOCK(pmap);
9213 for (; sva < eva; sva = va_next) {
9214 pml4e = pmap_pml4e(pmap, sva);
9215 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9216 va_next = (sva + NBPML4) & ~PML4MASK;
9217 if (va_next < sva)
9218 va_next = eva;
9219 continue;
9220 }
9221
9222 va_next = (sva + NBPDP) & ~PDPMASK;
9223 if (va_next < sva)
9224 va_next = eva;
9225 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9226 if ((*pdpe & PG_V) == 0)
9227 continue;
9228 if ((*pdpe & PG_PS) != 0)
9229 continue;
9230
9231 va_next = (sva + NBPDR) & ~PDRMASK;
9232 if (va_next < sva)
9233 va_next = eva;
9234 pde = pmap_pdpe_to_pde(pdpe, sva);
9235 oldpde = *pde;
9236 if ((oldpde & PG_V) == 0)
9237 continue;
9238 else if ((oldpde & PG_PS) != 0) {
9239 if ((oldpde & PG_MANAGED) == 0)
9240 continue;
9241 lock = NULL;
9242 if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9243 if (lock != NULL)
9244 rw_wunlock(lock);
9245
9246 /*
9247 * The large page mapping was destroyed.
9248 */
9249 continue;
9250 }
9251
9252 /*
9253 * Unless the page mappings are wired, remove the
9254 * mapping to a single page so that a subsequent
9255 * access may repromote. Choosing the last page
9256 * within the address range [sva, min(va_next, eva))
9257 * generally results in more repromotions. Since the
9258 * underlying page table page is fully populated, this
9259 * removal never frees a page table page.
9260 */
9261 if ((oldpde & PG_W) == 0) {
9262 va = eva;
9263 if (va > va_next)
9264 va = va_next;
9265 va -= PAGE_SIZE;
9266 KASSERT(va >= sva,
9267 ("pmap_advise: no address gap"));
9268 pte = pmap_pde_to_pte(pde, va);
9269 KASSERT((*pte & PG_V) != 0,
9270 ("pmap_advise: invalid PTE"));
9271 pmap_remove_pte(pmap, pte, va, *pde, NULL,
9272 &lock);
9273 anychanged = true;
9274 }
9275 if (lock != NULL)
9276 rw_wunlock(lock);
9277 }
9278 if (va_next > eva)
9279 va_next = eva;
9280 va = va_next;
9281 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9282 sva += PAGE_SIZE) {
9283 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9284 goto maybe_invlrng;
9285 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9286 if (advice == MADV_DONTNEED) {
9287 /*
9288 * Future calls to pmap_is_modified()
9289 * can be avoided by making the page
9290 * dirty now.
9291 */
9292 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9293 vm_page_dirty(m);
9294 }
9295 atomic_clear_long(pte, PG_M | PG_A);
9296 } else if ((*pte & PG_A) != 0)
9297 atomic_clear_long(pte, PG_A);
9298 else
9299 goto maybe_invlrng;
9300
9301 if ((*pte & PG_G) != 0) {
9302 if (va == va_next)
9303 va = sva;
9304 } else
9305 anychanged = true;
9306 continue;
9307 maybe_invlrng:
9308 if (va != va_next) {
9309 pmap_invalidate_range(pmap, va, sva);
9310 va = va_next;
9311 }
9312 }
9313 if (va != va_next)
9314 pmap_invalidate_range(pmap, va, sva);
9315 }
9316 if (anychanged)
9317 pmap_invalidate_all(pmap);
9318 PMAP_UNLOCK(pmap);
9319 pmap_delayed_invl_finish();
9320 }
9321
9322 /*
9323 * Clear the modify bits on the specified physical page.
9324 */
9325 void
pmap_clear_modify(vm_page_t m)9326 pmap_clear_modify(vm_page_t m)
9327 {
9328 struct md_page *pvh;
9329 pmap_t pmap;
9330 pv_entry_t next_pv, pv;
9331 pd_entry_t oldpde, *pde;
9332 pt_entry_t *pte, PG_M, PG_RW;
9333 struct rwlock *lock;
9334 vm_offset_t va;
9335 int md_gen, pvh_gen;
9336
9337 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9338 ("pmap_clear_modify: page %p is not managed", m));
9339 vm_page_assert_busied(m);
9340
9341 if (!pmap_page_is_write_mapped(m))
9342 return;
9343 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9344 pa_to_pvh(VM_PAGE_TO_PHYS(m));
9345 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9346 rw_wlock(lock);
9347 restart:
9348 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9349 pmap = PV_PMAP(pv);
9350 if (!PMAP_TRYLOCK(pmap)) {
9351 pvh_gen = pvh->pv_gen;
9352 rw_wunlock(lock);
9353 PMAP_LOCK(pmap);
9354 rw_wlock(lock);
9355 if (pvh_gen != pvh->pv_gen) {
9356 PMAP_UNLOCK(pmap);
9357 goto restart;
9358 }
9359 }
9360 PG_M = pmap_modified_bit(pmap);
9361 PG_RW = pmap_rw_bit(pmap);
9362 va = pv->pv_va;
9363 pde = pmap_pde(pmap, va);
9364 oldpde = *pde;
9365 /* If oldpde has PG_RW set, then it also has PG_M set. */
9366 if ((oldpde & PG_RW) != 0 &&
9367 pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9368 (oldpde & PG_W) == 0) {
9369 /*
9370 * Write protect the mapping to a single page so that
9371 * a subsequent write access may repromote.
9372 */
9373 va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9374 pte = pmap_pde_to_pte(pde, va);
9375 atomic_clear_long(pte, PG_M | PG_RW);
9376 vm_page_dirty(m);
9377 pmap_invalidate_page(pmap, va);
9378 }
9379 PMAP_UNLOCK(pmap);
9380 }
9381 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9382 pmap = PV_PMAP(pv);
9383 if (!PMAP_TRYLOCK(pmap)) {
9384 md_gen = m->md.pv_gen;
9385 pvh_gen = pvh->pv_gen;
9386 rw_wunlock(lock);
9387 PMAP_LOCK(pmap);
9388 rw_wlock(lock);
9389 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9390 PMAP_UNLOCK(pmap);
9391 goto restart;
9392 }
9393 }
9394 PG_M = pmap_modified_bit(pmap);
9395 PG_RW = pmap_rw_bit(pmap);
9396 pde = pmap_pde(pmap, pv->pv_va);
9397 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9398 " a 2mpage in page %p's pv list", m));
9399 pte = pmap_pde_to_pte(pde, pv->pv_va);
9400 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9401 atomic_clear_long(pte, PG_M);
9402 pmap_invalidate_page(pmap, pv->pv_va);
9403 }
9404 PMAP_UNLOCK(pmap);
9405 }
9406 rw_wunlock(lock);
9407 }
9408
9409 /*
9410 * Miscellaneous support routines follow
9411 */
9412
9413 /* Adjust the properties for a leaf page table entry. */
9414 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9415 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9416 {
9417 u_long opte, npte;
9418
9419 opte = *(u_long *)pte;
9420 do {
9421 npte = opte & ~mask;
9422 npte |= bits;
9423 } while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9424 npte));
9425 }
9426
9427 /*
9428 * Map a set of physical memory pages into the kernel virtual
9429 * address space. Return a pointer to where it is mapped. This
9430 * routine is intended to be used for mapping device memory,
9431 * NOT real memory.
9432 */
9433 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9434 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9435 {
9436 struct pmap_preinit_mapping *ppim;
9437 vm_offset_t va, offset;
9438 vm_size_t tmpsize;
9439 int i;
9440
9441 offset = pa & PAGE_MASK;
9442 size = round_page(offset + size);
9443 pa = trunc_page(pa);
9444
9445 if (!pmap_initialized) {
9446 va = 0;
9447 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9448 ppim = pmap_preinit_mapping + i;
9449 if (ppim->va == 0) {
9450 ppim->pa = pa;
9451 ppim->sz = size;
9452 ppim->mode = mode;
9453 ppim->va = virtual_avail;
9454 virtual_avail += size;
9455 va = ppim->va;
9456 break;
9457 }
9458 }
9459 if (va == 0)
9460 panic("%s: too many preinit mappings", __func__);
9461 } else {
9462 /*
9463 * If we have a preinit mapping, reuse it.
9464 */
9465 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9466 ppim = pmap_preinit_mapping + i;
9467 if (ppim->pa == pa && ppim->sz == size &&
9468 (ppim->mode == mode ||
9469 (flags & MAPDEV_SETATTR) == 0))
9470 return ((void *)(ppim->va + offset));
9471 }
9472 /*
9473 * If the specified range of physical addresses fits within
9474 * the direct map window, use the direct map.
9475 */
9476 if (pa < dmaplimit && pa + size <= dmaplimit) {
9477 va = PHYS_TO_DMAP(pa);
9478 if ((flags & MAPDEV_SETATTR) != 0) {
9479 PMAP_LOCK(kernel_pmap);
9480 i = pmap_change_props_locked(va, size,
9481 PROT_NONE, mode, flags);
9482 PMAP_UNLOCK(kernel_pmap);
9483 } else
9484 i = 0;
9485 if (!i)
9486 return ((void *)(va + offset));
9487 }
9488 va = kva_alloc(size);
9489 if (va == 0)
9490 panic("%s: Couldn't allocate KVA", __func__);
9491 }
9492 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9493 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9494 pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9495 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9496 pmap_invalidate_cache_range(va, va + tmpsize);
9497 return ((void *)(va + offset));
9498 }
9499
9500 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9501 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9502 {
9503
9504 return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9505 MAPDEV_SETATTR));
9506 }
9507
9508 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9509 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9510 {
9511
9512 return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9513 }
9514
9515 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9516 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9517 {
9518
9519 return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9520 MAPDEV_SETATTR));
9521 }
9522
9523 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9524 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9525 {
9526
9527 return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9528 MAPDEV_FLUSHCACHE));
9529 }
9530
9531 void
pmap_unmapdev(void * p,vm_size_t size)9532 pmap_unmapdev(void *p, vm_size_t size)
9533 {
9534 struct pmap_preinit_mapping *ppim;
9535 vm_offset_t offset, va;
9536 int i;
9537
9538 va = (vm_offset_t)p;
9539
9540 /* If we gave a direct map region in pmap_mapdev, do nothing */
9541 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9542 return;
9543 offset = va & PAGE_MASK;
9544 size = round_page(offset + size);
9545 va = trunc_page(va);
9546 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9547 ppim = pmap_preinit_mapping + i;
9548 if (ppim->va == va && ppim->sz == size) {
9549 if (pmap_initialized)
9550 return;
9551 ppim->pa = 0;
9552 ppim->va = 0;
9553 ppim->sz = 0;
9554 ppim->mode = 0;
9555 if (va + size == virtual_avail)
9556 virtual_avail = va;
9557 return;
9558 }
9559 }
9560 if (pmap_initialized) {
9561 pmap_qremove(va, atop(size));
9562 kva_free(va, size);
9563 }
9564 }
9565
9566 /*
9567 * Tries to demote a 1GB page mapping.
9568 */
9569 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va,vm_page_t m)9570 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va, vm_page_t m)
9571 {
9572 pdp_entry_t newpdpe, oldpdpe;
9573 pd_entry_t *firstpde, newpde, *pde;
9574 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9575 vm_paddr_t pdpgpa;
9576 vm_page_t pdpg;
9577
9578 PG_A = pmap_accessed_bit(pmap);
9579 PG_M = pmap_modified_bit(pmap);
9580 PG_V = pmap_valid_bit(pmap);
9581 PG_RW = pmap_rw_bit(pmap);
9582
9583 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9584 oldpdpe = *pdpe;
9585 KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9586 ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9587 if (m == NULL) {
9588 pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9589 VM_ALLOC_WIRED);
9590 if (pdpg == NULL) {
9591 CTR2(KTR_PMAP,
9592 "pmap_demote_pdpe: failure for va %#lx in pmap %p",
9593 va, pmap);
9594 return (false);
9595 }
9596 } else {
9597 pdpg = m;
9598 pdpg->pindex = va >> PDPSHIFT;
9599 pmap_pt_page_count_adj(pmap, 1);
9600 }
9601 pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9602 firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9603 newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9604 KASSERT((oldpdpe & PG_A) != 0,
9605 ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9606 KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9607 ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9608 newpde = oldpdpe;
9609
9610 /*
9611 * Initialize the page directory page.
9612 */
9613 for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9614 *pde = newpde;
9615 newpde += NBPDR;
9616 }
9617
9618 /*
9619 * Demote the mapping.
9620 */
9621 *pdpe = newpdpe;
9622
9623 /*
9624 * Invalidate a stale recursive mapping of the page directory page.
9625 */
9626 pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9627
9628 counter_u64_add(pmap_pdpe_demotions, 1);
9629 CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9630 " in pmap %p", va, pmap);
9631 return (true);
9632 }
9633
9634 /*
9635 * Sets the memory attribute for the specified page.
9636 */
9637 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9638 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9639 {
9640
9641 m->md.pat_mode = ma;
9642
9643 /*
9644 * If "m" is a normal page, update its direct mapping. This update
9645 * can be relied upon to perform any cache operations that are
9646 * required for data coherence.
9647 */
9648 if ((m->flags & PG_FICTITIOUS) == 0 &&
9649 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9650 m->md.pat_mode))
9651 panic("memory attribute change on the direct map failed");
9652 }
9653
9654 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9655 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9656 {
9657 int error;
9658
9659 m->md.pat_mode = ma;
9660
9661 if ((m->flags & PG_FICTITIOUS) != 0)
9662 return;
9663 PMAP_LOCK(kernel_pmap);
9664 error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9665 PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9666 PMAP_UNLOCK(kernel_pmap);
9667 if (error != 0)
9668 panic("memory attribute change on the direct map failed");
9669 }
9670
9671 /*
9672 * Changes the specified virtual address range's memory type to that given by
9673 * the parameter "mode". The specified virtual address range must be
9674 * completely contained within either the direct map or the kernel map. If
9675 * the virtual address range is contained within the kernel map, then the
9676 * memory type for each of the corresponding ranges of the direct map is also
9677 * changed. (The corresponding ranges of the direct map are those ranges that
9678 * map the same physical pages as the specified virtual address range.) These
9679 * changes to the direct map are necessary because Intel describes the
9680 * behavior of their processors as "undefined" if two or more mappings to the
9681 * same physical page have different memory types.
9682 *
9683 * Returns zero if the change completed successfully, and either EINVAL or
9684 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
9685 * of the virtual address range was not mapped, and ENOMEM is returned if
9686 * there was insufficient memory available to complete the change. In the
9687 * latter case, the memory type may have been changed on some part of the
9688 * virtual address range or the direct map.
9689 */
9690 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9691 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9692 {
9693 int error;
9694
9695 PMAP_LOCK(kernel_pmap);
9696 error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9697 MAPDEV_FLUSHCACHE);
9698 PMAP_UNLOCK(kernel_pmap);
9699 return (error);
9700 }
9701
9702 /*
9703 * Changes the specified virtual address range's protections to those
9704 * specified by "prot". Like pmap_change_attr(), protections for aliases
9705 * in the direct map are updated as well. Protections on aliasing mappings may
9706 * be a subset of the requested protections; for example, mappings in the direct
9707 * map are never executable.
9708 */
9709 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9710 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9711 {
9712 int error;
9713
9714 /* Only supported within the kernel map. */
9715 if (va < VM_MIN_KERNEL_ADDRESS)
9716 return (EINVAL);
9717
9718 PMAP_LOCK(kernel_pmap);
9719 error = pmap_change_props_locked(va, size, prot, -1,
9720 MAPDEV_ASSERTVALID);
9721 PMAP_UNLOCK(kernel_pmap);
9722 return (error);
9723 }
9724
9725 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9726 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9727 int mode, int flags)
9728 {
9729 vm_offset_t base, offset, tmpva;
9730 vm_paddr_t pa_start, pa_end, pa_end1;
9731 pdp_entry_t *pdpe;
9732 pd_entry_t *pde, pde_bits, pde_mask;
9733 pt_entry_t *pte, pte_bits, pte_mask;
9734 int error;
9735 bool changed;
9736
9737 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9738 base = trunc_page(va);
9739 offset = va & PAGE_MASK;
9740 size = round_page(offset + size);
9741
9742 /*
9743 * Only supported on kernel virtual addresses, including the direct
9744 * map but excluding the recursive map.
9745 */
9746 if (base < DMAP_MIN_ADDRESS)
9747 return (EINVAL);
9748
9749 /*
9750 * Construct our flag sets and masks. "bits" is the subset of
9751 * "mask" that will be set in each modified PTE.
9752 *
9753 * Mappings in the direct map are never allowed to be executable.
9754 */
9755 pde_bits = pte_bits = 0;
9756 pde_mask = pte_mask = 0;
9757 if (mode != -1) {
9758 pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9759 pde_mask |= X86_PG_PDE_CACHE;
9760 pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9761 pte_mask |= X86_PG_PTE_CACHE;
9762 }
9763 if (prot != VM_PROT_NONE) {
9764 if ((prot & VM_PROT_WRITE) != 0) {
9765 pde_bits |= X86_PG_RW;
9766 pte_bits |= X86_PG_RW;
9767 }
9768 if ((prot & VM_PROT_EXECUTE) == 0 ||
9769 va < VM_MIN_KERNEL_ADDRESS) {
9770 pde_bits |= pg_nx;
9771 pte_bits |= pg_nx;
9772 }
9773 pde_mask |= X86_PG_RW | pg_nx;
9774 pte_mask |= X86_PG_RW | pg_nx;
9775 }
9776
9777 /*
9778 * Pages that aren't mapped aren't supported. Also break down 2MB pages
9779 * into 4KB pages if required.
9780 */
9781 for (tmpva = base; tmpva < base + size; ) {
9782 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9783 if (pdpe == NULL || *pdpe == 0) {
9784 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9785 ("%s: addr %#lx is not mapped", __func__, tmpva));
9786 return (EINVAL);
9787 }
9788 if (*pdpe & PG_PS) {
9789 /*
9790 * If the current 1GB page already has the required
9791 * properties, then we need not demote this page. Just
9792 * increment tmpva to the next 1GB page frame.
9793 */
9794 if ((*pdpe & pde_mask) == pde_bits) {
9795 tmpva = trunc_1gpage(tmpva) + NBPDP;
9796 continue;
9797 }
9798
9799 /*
9800 * If the current offset aligns with a 1GB page frame
9801 * and there is at least 1GB left within the range, then
9802 * we need not break down this page into 2MB pages.
9803 */
9804 if ((tmpva & PDPMASK) == 0 &&
9805 tmpva + PDPMASK < base + size) {
9806 tmpva += NBPDP;
9807 continue;
9808 }
9809 if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva, NULL))
9810 return (ENOMEM);
9811 }
9812 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9813 if (*pde == 0) {
9814 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9815 ("%s: addr %#lx is not mapped", __func__, tmpva));
9816 return (EINVAL);
9817 }
9818 if (*pde & PG_PS) {
9819 /*
9820 * If the current 2MB page already has the required
9821 * properties, then we need not demote this page. Just
9822 * increment tmpva to the next 2MB page frame.
9823 */
9824 if ((*pde & pde_mask) == pde_bits) {
9825 tmpva = trunc_2mpage(tmpva) + NBPDR;
9826 continue;
9827 }
9828
9829 /*
9830 * If the current offset aligns with a 2MB page frame
9831 * and there is at least 2MB left within the range, then
9832 * we need not break down this page into 4KB pages.
9833 */
9834 if ((tmpva & PDRMASK) == 0 &&
9835 tmpva + PDRMASK < base + size) {
9836 tmpva += NBPDR;
9837 continue;
9838 }
9839 if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9840 return (ENOMEM);
9841 }
9842 pte = pmap_pde_to_pte(pde, tmpva);
9843 if (*pte == 0) {
9844 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9845 ("%s: addr %#lx is not mapped", __func__, tmpva));
9846 return (EINVAL);
9847 }
9848 tmpva += PAGE_SIZE;
9849 }
9850 error = 0;
9851
9852 /*
9853 * Ok, all the pages exist, so run through them updating their
9854 * properties if required.
9855 */
9856 changed = false;
9857 pa_start = pa_end = 0;
9858 for (tmpva = base; tmpva < base + size; ) {
9859 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9860 if (*pdpe & PG_PS) {
9861 if ((*pdpe & pde_mask) != pde_bits) {
9862 pmap_pte_props(pdpe, pde_bits, pde_mask);
9863 changed = true;
9864 }
9865 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9866 (*pdpe & PG_PS_FRAME) < dmaplimit) {
9867 if (pa_start == pa_end) {
9868 /* Start physical address run. */
9869 pa_start = *pdpe & PG_PS_FRAME;
9870 pa_end = pa_start + NBPDP;
9871 } else if (pa_end == (*pdpe & PG_PS_FRAME))
9872 pa_end += NBPDP;
9873 else {
9874 /* Run ended, update direct map. */
9875 error = pmap_change_props_locked(
9876 PHYS_TO_DMAP(pa_start),
9877 pa_end - pa_start, prot, mode,
9878 flags);
9879 if (error != 0)
9880 break;
9881 /* Start physical address run. */
9882 pa_start = *pdpe & PG_PS_FRAME;
9883 pa_end = pa_start + NBPDP;
9884 }
9885 }
9886 tmpva = trunc_1gpage(tmpva) + NBPDP;
9887 continue;
9888 }
9889 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9890 if (*pde & PG_PS) {
9891 if ((*pde & pde_mask) != pde_bits) {
9892 pmap_pte_props(pde, pde_bits, pde_mask);
9893 changed = true;
9894 }
9895 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9896 (*pde & PG_PS_FRAME) < dmaplimit) {
9897 if (pa_start == pa_end) {
9898 /* Start physical address run. */
9899 pa_start = *pde & PG_PS_FRAME;
9900 pa_end = pa_start + NBPDR;
9901 } else if (pa_end == (*pde & PG_PS_FRAME))
9902 pa_end += NBPDR;
9903 else {
9904 /* Run ended, update direct map. */
9905 error = pmap_change_props_locked(
9906 PHYS_TO_DMAP(pa_start),
9907 pa_end - pa_start, prot, mode,
9908 flags);
9909 if (error != 0)
9910 break;
9911 /* Start physical address run. */
9912 pa_start = *pde & PG_PS_FRAME;
9913 pa_end = pa_start + NBPDR;
9914 }
9915 }
9916 tmpva = trunc_2mpage(tmpva) + NBPDR;
9917 } else {
9918 pte = pmap_pde_to_pte(pde, tmpva);
9919 if ((*pte & pte_mask) != pte_bits) {
9920 pmap_pte_props(pte, pte_bits, pte_mask);
9921 changed = true;
9922 }
9923 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9924 (*pte & PG_FRAME) < dmaplimit) {
9925 if (pa_start == pa_end) {
9926 /* Start physical address run. */
9927 pa_start = *pte & PG_FRAME;
9928 pa_end = pa_start + PAGE_SIZE;
9929 } else if (pa_end == (*pte & PG_FRAME))
9930 pa_end += PAGE_SIZE;
9931 else {
9932 /* Run ended, update direct map. */
9933 error = pmap_change_props_locked(
9934 PHYS_TO_DMAP(pa_start),
9935 pa_end - pa_start, prot, mode,
9936 flags);
9937 if (error != 0)
9938 break;
9939 /* Start physical address run. */
9940 pa_start = *pte & PG_FRAME;
9941 pa_end = pa_start + PAGE_SIZE;
9942 }
9943 }
9944 tmpva += PAGE_SIZE;
9945 }
9946 }
9947 if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9948 pa_end1 = MIN(pa_end, dmaplimit);
9949 if (pa_start != pa_end1)
9950 error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9951 pa_end1 - pa_start, prot, mode, flags);
9952 }
9953
9954 /*
9955 * Flush CPU caches if required to make sure any data isn't cached that
9956 * shouldn't be, etc.
9957 */
9958 if (changed) {
9959 pmap_invalidate_range(kernel_pmap, base, tmpva);
9960 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9961 pmap_invalidate_cache_range(base, tmpva);
9962 }
9963 return (error);
9964 }
9965
9966 /*
9967 * Demotes any mapping within the direct map region that covers more
9968 * than the specified range of physical addresses. This range's size
9969 * must be a power of two and its starting address must be a multiple
9970 * of its size, which means that any pdp from the mapping is fully
9971 * covered by the range if len > NBPDP. Since the demotion does not
9972 * change any attributes of the mapping, a TLB invalidation is not
9973 * mandatory. The caller may, however, request a TLB invalidation.
9974 */
9975 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9976 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9977 {
9978 pdp_entry_t *pdpe;
9979 pd_entry_t *pde;
9980 vm_page_t m;
9981 vm_offset_t va;
9982 bool changed;
9983
9984 if (len == 0)
9985 return;
9986 KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9987 KASSERT((base & (len - 1)) == 0,
9988 ("pmap_demote_DMAP: base is not a multiple of len"));
9989 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "pmap_demote_DMAP");
9990
9991 if (len < NBPDP && base < dmaplimit) {
9992 va = PHYS_TO_DMAP(base);
9993 changed = false;
9994
9995 /*
9996 * Assume that it is fine to sleep there.
9997 * The only existing caller of pmap_demote_DMAP() is the
9998 * x86_mr_split_dmap() function.
9999 */
10000 m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
10001
10002 PMAP_LOCK(kernel_pmap);
10003 pdpe = pmap_pdpe(kernel_pmap, va);
10004 if ((*pdpe & X86_PG_V) == 0)
10005 panic("pmap_demote_DMAP: invalid PDPE");
10006 if ((*pdpe & PG_PS) != 0) {
10007 if (!pmap_demote_pdpe(kernel_pmap, pdpe, va, m))
10008 panic("pmap_demote_DMAP: PDPE failed");
10009 changed = true;
10010 m = NULL;
10011 }
10012 if (len < NBPDR) {
10013 pde = pmap_pdpe_to_pde(pdpe, va);
10014 if ((*pde & X86_PG_V) == 0)
10015 panic("pmap_demote_DMAP: invalid PDE");
10016 if ((*pde & PG_PS) != 0) {
10017 if (!pmap_demote_pde(kernel_pmap, pde, va))
10018 panic("pmap_demote_DMAP: PDE failed");
10019 changed = true;
10020 }
10021 }
10022 if (changed && invalidate)
10023 pmap_invalidate_page(kernel_pmap, va);
10024 PMAP_UNLOCK(kernel_pmap);
10025 if (m != NULL) {
10026 vm_page_unwire_noq(m);
10027 vm_page_free(m);
10028 }
10029 }
10030 }
10031
10032 /*
10033 * Perform the pmap work for mincore(2). If the page is not both referenced and
10034 * modified by this pmap, returns its physical address so that the caller can
10035 * find other mappings.
10036 */
10037 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10038 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10039 {
10040 pdp_entry_t *pdpe;
10041 pd_entry_t *pdep;
10042 pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10043 vm_paddr_t pa;
10044 int val;
10045
10046 PG_A = pmap_accessed_bit(pmap);
10047 PG_M = pmap_modified_bit(pmap);
10048 PG_V = pmap_valid_bit(pmap);
10049 PG_RW = pmap_rw_bit(pmap);
10050
10051 PMAP_LOCK(pmap);
10052 pte = 0;
10053 pa = 0;
10054 val = 0;
10055 pdpe = pmap_pdpe(pmap, addr);
10056 if (pdpe == NULL)
10057 goto out;
10058 if ((*pdpe & PG_V) != 0) {
10059 if ((*pdpe & PG_PS) != 0) {
10060 pte = *pdpe;
10061 pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10062 PG_FRAME;
10063 val = MINCORE_PSIND(2);
10064 } else {
10065 pdep = pmap_pde(pmap, addr);
10066 if (pdep != NULL && (*pdep & PG_V) != 0) {
10067 if ((*pdep & PG_PS) != 0) {
10068 pte = *pdep;
10069 /* Compute the physical address of the 4KB page. */
10070 pa = ((pte & PG_PS_FRAME) | (addr &
10071 PDRMASK)) & PG_FRAME;
10072 val = MINCORE_PSIND(1);
10073 } else {
10074 pte = *pmap_pde_to_pte(pdep, addr);
10075 pa = pte & PG_FRAME;
10076 val = 0;
10077 }
10078 }
10079 }
10080 }
10081 if ((pte & PG_V) != 0) {
10082 val |= MINCORE_INCORE;
10083 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10084 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10085 if ((pte & PG_A) != 0)
10086 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10087 }
10088 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10089 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10090 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10091 *pap = pa;
10092 }
10093 out:
10094 PMAP_UNLOCK(pmap);
10095 return (val);
10096 }
10097
10098 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10099 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10100 {
10101 uint32_t gen, new_gen, pcid_next;
10102
10103 CRITICAL_ASSERT(curthread);
10104 gen = PCPU_GET(pcid_gen);
10105 if (pcidp->pm_pcid == PMAP_PCID_KERN)
10106 return (pti ? 0 : CR3_PCID_SAVE);
10107 if (pcidp->pm_gen == gen)
10108 return (CR3_PCID_SAVE);
10109 pcid_next = PCPU_GET(pcid_next);
10110 KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10111 (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10112 ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10113 if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10114 (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10115 new_gen = gen + 1;
10116 if (new_gen == 0)
10117 new_gen = 1;
10118 PCPU_SET(pcid_gen, new_gen);
10119 pcid_next = PMAP_PCID_KERN + 1;
10120 } else {
10121 new_gen = gen;
10122 }
10123 pcidp->pm_pcid = pcid_next;
10124 pcidp->pm_gen = new_gen;
10125 PCPU_SET(pcid_next, pcid_next + 1);
10126 return (0);
10127 }
10128
10129 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10130 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10131 {
10132 uint64_t cached;
10133
10134 cached = pmap_pcid_alloc(pmap, pcidp);
10135 KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10136 ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10137 KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10138 ("non-kernel pmap pmap %p cpu %d pcid %#x",
10139 pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10140 return (cached);
10141 }
10142
10143 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10144 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10145 {
10146
10147 PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10148 PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10149 }
10150
10151 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10152 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10153 {
10154 pmap_t old_pmap;
10155 struct pmap_pcid *pcidp, *old_pcidp;
10156 uint64_t cached, cr3, kcr3, ucr3;
10157
10158 KASSERT((read_rflags() & PSL_I) == 0,
10159 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10160
10161 /* See the comment in pmap_invalidate_page_pcid(). */
10162 if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10163 PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10164 old_pmap = PCPU_GET(curpmap);
10165 MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10166 old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10167 old_pcidp->pm_gen = 0;
10168 }
10169
10170 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10171 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10172 cr3 = rcr3();
10173 if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10174 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10175 PCPU_SET(curpmap, pmap);
10176 kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10177 ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10178
10179 if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10180 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10181
10182 PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10183 PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10184 if (cached)
10185 counter_u64_add(pcid_save_cnt, 1);
10186
10187 pmap_activate_sw_pti_post(td, pmap);
10188 }
10189
10190 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10191 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10192 u_int cpuid)
10193 {
10194 struct pmap_pcid *pcidp;
10195 uint64_t cached, cr3;
10196
10197 KASSERT((read_rflags() & PSL_I) == 0,
10198 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10199
10200 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10201 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10202 cr3 = rcr3();
10203 if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10204 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10205 PCPU_SET(curpmap, pmap);
10206 if (cached)
10207 counter_u64_add(pcid_save_cnt, 1);
10208 }
10209
10210 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10211 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10212 u_int cpuid __unused)
10213 {
10214
10215 load_cr3(pmap->pm_cr3);
10216 PCPU_SET(curpmap, pmap);
10217 }
10218
10219 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10220 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10221 u_int cpuid __unused)
10222 {
10223
10224 pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10225 PCPU_SET(kcr3, pmap->pm_cr3);
10226 PCPU_SET(ucr3, pmap->pm_ucr3);
10227 pmap_activate_sw_pti_post(td, pmap);
10228 }
10229
10230 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10231 u_int))
10232 {
10233
10234 if (pmap_pcid_enabled && pti)
10235 return (pmap_activate_sw_pcid_pti);
10236 else if (pmap_pcid_enabled && !pti)
10237 return (pmap_activate_sw_pcid_nopti);
10238 else if (!pmap_pcid_enabled && pti)
10239 return (pmap_activate_sw_nopcid_pti);
10240 else /* if (!pmap_pcid_enabled && !pti) */
10241 return (pmap_activate_sw_nopcid_nopti);
10242 }
10243
10244 void
pmap_activate_sw(struct thread * td)10245 pmap_activate_sw(struct thread *td)
10246 {
10247 pmap_t oldpmap, pmap;
10248 u_int cpuid;
10249
10250 oldpmap = PCPU_GET(curpmap);
10251 pmap = vmspace_pmap(td->td_proc->p_vmspace);
10252 if (oldpmap == pmap) {
10253 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10254 mfence();
10255 return;
10256 }
10257 cpuid = PCPU_GET(cpuid);
10258 #ifdef SMP
10259 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10260 #else
10261 CPU_SET(cpuid, &pmap->pm_active);
10262 #endif
10263 pmap_activate_sw_mode(td, pmap, cpuid);
10264 #ifdef SMP
10265 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10266 #else
10267 CPU_CLR(cpuid, &oldpmap->pm_active);
10268 #endif
10269 }
10270
10271 void
pmap_activate(struct thread * td)10272 pmap_activate(struct thread *td)
10273 {
10274 /*
10275 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10276 * invalidate_all IPI, which checks for curpmap ==
10277 * smp_tlb_pmap. The below sequence of operations has a
10278 * window where %CR3 is loaded with the new pmap's PML4
10279 * address, but the curpmap value has not yet been updated.
10280 * This causes the invltlb IPI handler, which is called
10281 * between the updates, to execute as a NOP, which leaves
10282 * stale TLB entries.
10283 *
10284 * Note that the most common use of pmap_activate_sw(), from
10285 * a context switch, is immune to this race, because
10286 * interrupts are disabled (while the thread lock is owned),
10287 * so the IPI is delayed until after curpmap is updated. Protect
10288 * other callers in a similar way, by disabling interrupts
10289 * around the %cr3 register reload and curpmap assignment.
10290 */
10291 spinlock_enter();
10292 pmap_activate_sw(td);
10293 spinlock_exit();
10294 }
10295
10296 void
pmap_activate_boot(pmap_t pmap)10297 pmap_activate_boot(pmap_t pmap)
10298 {
10299 uint64_t kcr3;
10300 u_int cpuid;
10301
10302 /*
10303 * kernel_pmap must be never deactivated, and we ensure that
10304 * by never activating it at all.
10305 */
10306 MPASS(pmap != kernel_pmap);
10307
10308 cpuid = PCPU_GET(cpuid);
10309 #ifdef SMP
10310 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10311 #else
10312 CPU_SET(cpuid, &pmap->pm_active);
10313 #endif
10314 PCPU_SET(curpmap, pmap);
10315 if (pti) {
10316 kcr3 = pmap->pm_cr3;
10317 if (pmap_pcid_enabled)
10318 kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10319 } else {
10320 kcr3 = PMAP_NO_CR3;
10321 }
10322 PCPU_SET(kcr3, kcr3);
10323 PCPU_SET(ucr3, PMAP_NO_CR3);
10324 }
10325
10326 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10327 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10328 {
10329 *res = pmap->pm_active;
10330 }
10331
10332 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10333 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10334 {
10335 }
10336
10337 /*
10338 * Increase the starting virtual address of the given mapping if a
10339 * different alignment might result in more superpage mappings.
10340 */
10341 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10342 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10343 vm_offset_t *addr, vm_size_t size)
10344 {
10345 vm_offset_t superpage_offset;
10346
10347 if (size < NBPDR)
10348 return;
10349 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10350 offset += ptoa(object->pg_color);
10351 superpage_offset = offset & PDRMASK;
10352 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10353 (*addr & PDRMASK) == superpage_offset)
10354 return;
10355 if ((*addr & PDRMASK) < superpage_offset)
10356 *addr = (*addr & ~PDRMASK) + superpage_offset;
10357 else
10358 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10359 }
10360
10361 #ifdef INVARIANTS
10362 static unsigned long num_dirty_emulations;
10363 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10364 &num_dirty_emulations, 0, NULL);
10365
10366 static unsigned long num_accessed_emulations;
10367 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10368 &num_accessed_emulations, 0, NULL);
10369
10370 static unsigned long num_superpage_accessed_emulations;
10371 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10372 &num_superpage_accessed_emulations, 0, NULL);
10373
10374 static unsigned long ad_emulation_superpage_promotions;
10375 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10376 &ad_emulation_superpage_promotions, 0, NULL);
10377 #endif /* INVARIANTS */
10378
10379 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10380 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10381 {
10382 int rv;
10383 struct rwlock *lock;
10384 #if VM_NRESERVLEVEL > 0
10385 vm_page_t m, mpte;
10386 #endif
10387 pd_entry_t *pde;
10388 pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10389
10390 KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10391 ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10392
10393 if (!pmap_emulate_ad_bits(pmap))
10394 return (-1);
10395
10396 PG_A = pmap_accessed_bit(pmap);
10397 PG_M = pmap_modified_bit(pmap);
10398 PG_V = pmap_valid_bit(pmap);
10399 PG_RW = pmap_rw_bit(pmap);
10400
10401 rv = -1;
10402 lock = NULL;
10403 PMAP_LOCK(pmap);
10404
10405 pde = pmap_pde(pmap, va);
10406 if (pde == NULL || (*pde & PG_V) == 0)
10407 goto done;
10408
10409 if ((*pde & PG_PS) != 0) {
10410 if (ftype == VM_PROT_READ) {
10411 #ifdef INVARIANTS
10412 atomic_add_long(&num_superpage_accessed_emulations, 1);
10413 #endif
10414 *pde |= PG_A;
10415 rv = 0;
10416 }
10417 goto done;
10418 }
10419
10420 pte = pmap_pde_to_pte(pde, va);
10421 if ((*pte & PG_V) == 0)
10422 goto done;
10423
10424 if (ftype == VM_PROT_WRITE) {
10425 if ((*pte & PG_RW) == 0)
10426 goto done;
10427 /*
10428 * Set the modified and accessed bits simultaneously.
10429 *
10430 * Intel EPT PTEs that do software emulation of A/D bits map
10431 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10432 * An EPT misconfiguration is triggered if the PTE is writable
10433 * but not readable (WR=10). This is avoided by setting PG_A
10434 * and PG_M simultaneously.
10435 */
10436 *pte |= PG_M | PG_A;
10437 } else {
10438 *pte |= PG_A;
10439 }
10440
10441 #if VM_NRESERVLEVEL > 0
10442 /* try to promote the mapping */
10443 if (va < VM_MAXUSER_ADDRESS)
10444 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10445 else
10446 mpte = NULL;
10447
10448 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10449
10450 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10451 (m->flags & PG_FICTITIOUS) == 0 &&
10452 vm_reserv_level_iffullpop(m) == 0 &&
10453 pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10454 #ifdef INVARIANTS
10455 atomic_add_long(&ad_emulation_superpage_promotions, 1);
10456 #endif
10457 }
10458 #endif
10459
10460 #ifdef INVARIANTS
10461 if (ftype == VM_PROT_WRITE)
10462 atomic_add_long(&num_dirty_emulations, 1);
10463 else
10464 atomic_add_long(&num_accessed_emulations, 1);
10465 #endif
10466 rv = 0; /* success */
10467 done:
10468 if (lock != NULL)
10469 rw_wunlock(lock);
10470 PMAP_UNLOCK(pmap);
10471 return (rv);
10472 }
10473
10474 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10475 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10476 {
10477 pml4_entry_t *pml4;
10478 pdp_entry_t *pdp;
10479 pd_entry_t *pde;
10480 pt_entry_t *pte, PG_V;
10481 int idx;
10482
10483 idx = 0;
10484 PG_V = pmap_valid_bit(pmap);
10485 PMAP_LOCK(pmap);
10486
10487 pml4 = pmap_pml4e(pmap, va);
10488 if (pml4 == NULL)
10489 goto done;
10490 ptr[idx++] = *pml4;
10491 if ((*pml4 & PG_V) == 0)
10492 goto done;
10493
10494 pdp = pmap_pml4e_to_pdpe(pml4, va);
10495 ptr[idx++] = *pdp;
10496 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10497 goto done;
10498
10499 pde = pmap_pdpe_to_pde(pdp, va);
10500 ptr[idx++] = *pde;
10501 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10502 goto done;
10503
10504 pte = pmap_pde_to_pte(pde, va);
10505 ptr[idx++] = *pte;
10506
10507 done:
10508 PMAP_UNLOCK(pmap);
10509 *num = idx;
10510 }
10511
10512 /**
10513 * Get the kernel virtual address of a set of physical pages. If there are
10514 * physical addresses not covered by the DMAP perform a transient mapping
10515 * that will be removed when calling pmap_unmap_io_transient.
10516 *
10517 * \param page The pages the caller wishes to obtain the virtual
10518 * address on the kernel memory map.
10519 * \param vaddr On return contains the kernel virtual memory address
10520 * of the pages passed in the page parameter.
10521 * \param count Number of pages passed in.
10522 * \param can_fault true if the thread using the mapped pages can take
10523 * page faults, false otherwise.
10524 *
10525 * \returns true if the caller must call pmap_unmap_io_transient when
10526 * finished or false otherwise.
10527 *
10528 */
10529 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10530 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10531 bool can_fault)
10532 {
10533 vm_paddr_t paddr;
10534 bool needs_mapping;
10535 int error __unused, i;
10536
10537 /*
10538 * Allocate any KVA space that we need, this is done in a separate
10539 * loop to prevent calling vmem_alloc while pinned.
10540 */
10541 needs_mapping = false;
10542 for (i = 0; i < count; i++) {
10543 paddr = VM_PAGE_TO_PHYS(page[i]);
10544 if (__predict_false(paddr >= dmaplimit)) {
10545 error = vmem_alloc(kernel_arena, PAGE_SIZE,
10546 M_BESTFIT | M_WAITOK, &vaddr[i]);
10547 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10548 needs_mapping = true;
10549 } else {
10550 vaddr[i] = PHYS_TO_DMAP(paddr);
10551 }
10552 }
10553
10554 /* Exit early if everything is covered by the DMAP */
10555 if (!needs_mapping)
10556 return (false);
10557
10558 /*
10559 * NB: The sequence of updating a page table followed by accesses
10560 * to the corresponding pages used in the !DMAP case is subject to
10561 * the situation described in the "AMD64 Architecture Programmer's
10562 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10563 * Coherency Considerations". Therefore, issuing the INVLPG right
10564 * after modifying the PTE bits is crucial.
10565 */
10566 if (!can_fault)
10567 sched_pin();
10568 for (i = 0; i < count; i++) {
10569 paddr = VM_PAGE_TO_PHYS(page[i]);
10570 if (paddr >= dmaplimit) {
10571 if (can_fault) {
10572 /*
10573 * Slow path, since we can get page faults
10574 * while mappings are active don't pin the
10575 * thread to the CPU and instead add a global
10576 * mapping visible to all CPUs.
10577 */
10578 pmap_qenter(vaddr[i], &page[i], 1);
10579 } else {
10580 pmap_kenter_attr(vaddr[i], paddr,
10581 page[i]->md.pat_mode);
10582 pmap_invlpg(kernel_pmap, vaddr[i]);
10583 }
10584 }
10585 }
10586
10587 return (needs_mapping);
10588 }
10589
10590 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10591 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10592 bool can_fault)
10593 {
10594 vm_paddr_t paddr;
10595 int i;
10596
10597 if (!can_fault)
10598 sched_unpin();
10599 for (i = 0; i < count; i++) {
10600 paddr = VM_PAGE_TO_PHYS(page[i]);
10601 if (paddr >= dmaplimit) {
10602 if (can_fault)
10603 pmap_qremove(vaddr[i], 1);
10604 vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10605 }
10606 }
10607 }
10608
10609 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10610 pmap_quick_enter_page(vm_page_t m)
10611 {
10612 vm_paddr_t paddr;
10613
10614 paddr = VM_PAGE_TO_PHYS(m);
10615 if (paddr < dmaplimit)
10616 return (PHYS_TO_DMAP(paddr));
10617 mtx_lock_spin(&qframe_mtx);
10618 KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10619
10620 /*
10621 * Since qframe is exclusively mapped by us, and we do not set
10622 * PG_G, we can use INVLPG here.
10623 */
10624 invlpg(qframe);
10625
10626 pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10627 X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10628 return (qframe);
10629 }
10630
10631 void
pmap_quick_remove_page(vm_offset_t addr)10632 pmap_quick_remove_page(vm_offset_t addr)
10633 {
10634
10635 if (addr != qframe)
10636 return;
10637 pte_store(vtopte(qframe), 0);
10638 mtx_unlock_spin(&qframe_mtx);
10639 }
10640
10641 /*
10642 * Pdp pages from the large map are managed differently from either
10643 * kernel or user page table pages. They are permanently allocated at
10644 * initialization time, and their reference count is permanently set to
10645 * zero. The pml4 entries pointing to those pages are copied into
10646 * each allocated pmap.
10647 *
10648 * In contrast, pd and pt pages are managed like user page table
10649 * pages. They are dynamically allocated, and their reference count
10650 * represents the number of valid entries within the page.
10651 */
10652 static vm_page_t
pmap_large_map_getptp_unlocked(void)10653 pmap_large_map_getptp_unlocked(void)
10654 {
10655 return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10656 }
10657
10658 static vm_page_t
pmap_large_map_getptp(void)10659 pmap_large_map_getptp(void)
10660 {
10661 vm_page_t m;
10662
10663 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10664 m = pmap_large_map_getptp_unlocked();
10665 if (m == NULL) {
10666 PMAP_UNLOCK(kernel_pmap);
10667 vm_wait(NULL);
10668 PMAP_LOCK(kernel_pmap);
10669 /* Callers retry. */
10670 }
10671 return (m);
10672 }
10673
10674 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10675 pmap_large_map_pdpe(vm_offset_t va)
10676 {
10677 vm_pindex_t pml4_idx;
10678 vm_paddr_t mphys;
10679
10680 pml4_idx = pmap_pml4e_index(va);
10681 KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10682 ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10683 "%#jx lm_ents %d",
10684 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10685 KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10686 ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10687 "LMSPML4I %#jx lm_ents %d",
10688 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10689 mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10690 return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10691 }
10692
10693 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10694 pmap_large_map_pde(vm_offset_t va)
10695 {
10696 pdp_entry_t *pdpe;
10697 vm_page_t m;
10698 vm_paddr_t mphys;
10699
10700 retry:
10701 pdpe = pmap_large_map_pdpe(va);
10702 if (*pdpe == 0) {
10703 m = pmap_large_map_getptp();
10704 if (m == NULL)
10705 goto retry;
10706 mphys = VM_PAGE_TO_PHYS(m);
10707 *pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10708 } else {
10709 MPASS((*pdpe & X86_PG_PS) == 0);
10710 mphys = *pdpe & PG_FRAME;
10711 }
10712 return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10713 }
10714
10715 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10716 pmap_large_map_pte(vm_offset_t va)
10717 {
10718 pd_entry_t *pde;
10719 vm_page_t m;
10720 vm_paddr_t mphys;
10721
10722 retry:
10723 pde = pmap_large_map_pde(va);
10724 if (*pde == 0) {
10725 m = pmap_large_map_getptp();
10726 if (m == NULL)
10727 goto retry;
10728 mphys = VM_PAGE_TO_PHYS(m);
10729 *pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10730 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10731 } else {
10732 MPASS((*pde & X86_PG_PS) == 0);
10733 mphys = *pde & PG_FRAME;
10734 }
10735 return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10736 }
10737
10738 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10739 pmap_large_map_kextract(vm_offset_t va)
10740 {
10741 pdp_entry_t *pdpe, pdp;
10742 pd_entry_t *pde, pd;
10743 pt_entry_t *pte, pt;
10744
10745 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10746 ("not largemap range %#lx", (u_long)va));
10747 pdpe = pmap_large_map_pdpe(va);
10748 pdp = *pdpe;
10749 KASSERT((pdp & X86_PG_V) != 0,
10750 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10751 (u_long)pdpe, pdp));
10752 if ((pdp & X86_PG_PS) != 0) {
10753 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10754 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10755 (u_long)pdpe, pdp));
10756 return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10757 }
10758 pde = pmap_pdpe_to_pde(pdpe, va);
10759 pd = *pde;
10760 KASSERT((pd & X86_PG_V) != 0,
10761 ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10762 if ((pd & X86_PG_PS) != 0)
10763 return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10764 pte = pmap_pde_to_pte(pde, va);
10765 pt = *pte;
10766 KASSERT((pt & X86_PG_V) != 0,
10767 ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10768 return ((pt & PG_FRAME) | (va & PAGE_MASK));
10769 }
10770
10771 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10772 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10773 vmem_addr_t *vmem_res)
10774 {
10775
10776 /*
10777 * Large mappings are all but static. Consequently, there
10778 * is no point in waiting for an earlier allocation to be
10779 * freed.
10780 */
10781 return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10782 VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10783 }
10784
10785 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10786 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10787 vm_memattr_t mattr)
10788 {
10789 pdp_entry_t *pdpe;
10790 pd_entry_t *pde;
10791 pt_entry_t *pte;
10792 vm_offset_t va, inc;
10793 vmem_addr_t vmem_res;
10794 vm_paddr_t pa;
10795 int error;
10796
10797 if (len == 0 || spa + len < spa)
10798 return (EINVAL);
10799
10800 /* See if DMAP can serve. */
10801 if (spa + len <= dmaplimit) {
10802 va = PHYS_TO_DMAP(spa);
10803 *addr = (void *)va;
10804 return (pmap_change_attr(va, len, mattr));
10805 }
10806
10807 /*
10808 * No, allocate KVA. Fit the address with best possible
10809 * alignment for superpages. Fall back to worse align if
10810 * failed.
10811 */
10812 error = ENOMEM;
10813 if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10814 NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10815 error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10816 &vmem_res);
10817 if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10818 NBPDR) + NBPDR)
10819 error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10820 &vmem_res);
10821 if (error != 0)
10822 error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10823 if (error != 0)
10824 return (error);
10825
10826 /*
10827 * Fill pagetable. PG_M is not pre-set, we scan modified bits
10828 * in the pagetable to minimize flushing. No need to
10829 * invalidate TLB, since we only update invalid entries.
10830 */
10831 PMAP_LOCK(kernel_pmap);
10832 for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10833 len -= inc) {
10834 if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10835 (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10836 pdpe = pmap_large_map_pdpe(va);
10837 MPASS(*pdpe == 0);
10838 *pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10839 X86_PG_V | X86_PG_A | pg_nx |
10840 pmap_cache_bits(kernel_pmap, mattr, true);
10841 inc = NBPDP;
10842 } else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10843 (va & PDRMASK) == 0) {
10844 pde = pmap_large_map_pde(va);
10845 MPASS(*pde == 0);
10846 *pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10847 X86_PG_V | X86_PG_A | pg_nx |
10848 pmap_cache_bits(kernel_pmap, mattr, true);
10849 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10850 ref_count++;
10851 inc = NBPDR;
10852 } else {
10853 pte = pmap_large_map_pte(va);
10854 MPASS(*pte == 0);
10855 *pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10856 X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10857 mattr, false);
10858 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10859 ref_count++;
10860 inc = PAGE_SIZE;
10861 }
10862 }
10863 PMAP_UNLOCK(kernel_pmap);
10864 MPASS(len == 0);
10865
10866 *addr = (void *)vmem_res;
10867 return (0);
10868 }
10869
10870 void
pmap_large_unmap(void * svaa,vm_size_t len)10871 pmap_large_unmap(void *svaa, vm_size_t len)
10872 {
10873 vm_offset_t sva, va;
10874 vm_size_t inc;
10875 pdp_entry_t *pdpe, pdp;
10876 pd_entry_t *pde, pd;
10877 pt_entry_t *pte;
10878 vm_page_t m;
10879 struct spglist spgf;
10880
10881 sva = (vm_offset_t)svaa;
10882 if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10883 sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10884 return;
10885
10886 SLIST_INIT(&spgf);
10887 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10888 PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10889 ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10890 PMAP_LOCK(kernel_pmap);
10891 for (va = sva; va < sva + len; va += inc) {
10892 pdpe = pmap_large_map_pdpe(va);
10893 pdp = *pdpe;
10894 KASSERT((pdp & X86_PG_V) != 0,
10895 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10896 (u_long)pdpe, pdp));
10897 if ((pdp & X86_PG_PS) != 0) {
10898 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10899 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10900 (u_long)pdpe, pdp));
10901 KASSERT((va & PDPMASK) == 0,
10902 ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10903 (u_long)pdpe, pdp));
10904 KASSERT(va + NBPDP <= sva + len,
10905 ("unmap covers partial 1GB page, sva %#lx va %#lx "
10906 "pdpe %#lx pdp %#lx len %#lx", sva, va,
10907 (u_long)pdpe, pdp, len));
10908 *pdpe = 0;
10909 inc = NBPDP;
10910 continue;
10911 }
10912 pde = pmap_pdpe_to_pde(pdpe, va);
10913 pd = *pde;
10914 KASSERT((pd & X86_PG_V) != 0,
10915 ("invalid pd va %#lx pde %#lx pd %#lx", va,
10916 (u_long)pde, pd));
10917 if ((pd & X86_PG_PS) != 0) {
10918 KASSERT((va & PDRMASK) == 0,
10919 ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10920 (u_long)pde, pd));
10921 KASSERT(va + NBPDR <= sva + len,
10922 ("unmap covers partial 2MB page, sva %#lx va %#lx "
10923 "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10924 pd, len));
10925 pde_store(pde, 0);
10926 inc = NBPDR;
10927 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10928 m->ref_count--;
10929 if (m->ref_count == 0) {
10930 *pdpe = 0;
10931 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10932 }
10933 continue;
10934 }
10935 pte = pmap_pde_to_pte(pde, va);
10936 KASSERT((*pte & X86_PG_V) != 0,
10937 ("invalid pte va %#lx pte %#lx pt %#lx", va,
10938 (u_long)pte, *pte));
10939 pte_clear(pte);
10940 inc = PAGE_SIZE;
10941 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10942 m->ref_count--;
10943 if (m->ref_count == 0) {
10944 *pde = 0;
10945 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10946 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10947 m->ref_count--;
10948 if (m->ref_count == 0) {
10949 *pdpe = 0;
10950 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10951 }
10952 }
10953 }
10954 pmap_invalidate_range(kernel_pmap, sva, sva + len);
10955 PMAP_UNLOCK(kernel_pmap);
10956 vm_page_free_pages_toq(&spgf, false);
10957 vmem_free(large_vmem, sva, len);
10958 }
10959
10960 static void
pmap_large_map_wb_fence_mfence(void)10961 pmap_large_map_wb_fence_mfence(void)
10962 {
10963
10964 mfence();
10965 }
10966
10967 static void
pmap_large_map_wb_fence_atomic(void)10968 pmap_large_map_wb_fence_atomic(void)
10969 {
10970
10971 atomic_thread_fence_seq_cst();
10972 }
10973
10974 static void
pmap_large_map_wb_fence_nop(void)10975 pmap_large_map_wb_fence_nop(void)
10976 {
10977 }
10978
10979 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10980 {
10981
10982 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10983 return (pmap_large_map_wb_fence_mfence);
10984 else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10985 CPUID_STDEXT_CLFLUSHOPT)) == 0)
10986 return (pmap_large_map_wb_fence_atomic);
10987 else
10988 /* clflush is strongly enough ordered */
10989 return (pmap_large_map_wb_fence_nop);
10990 }
10991
10992 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10993 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10994 {
10995
10996 for (; len > 0; len -= cpu_clflush_line_size,
10997 va += cpu_clflush_line_size)
10998 clwb(va);
10999 }
11000
11001 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)11002 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
11003 {
11004
11005 for (; len > 0; len -= cpu_clflush_line_size,
11006 va += cpu_clflush_line_size)
11007 clflushopt(va);
11008 }
11009
11010 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)11011 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
11012 {
11013
11014 for (; len > 0; len -= cpu_clflush_line_size,
11015 va += cpu_clflush_line_size)
11016 clflush(va);
11017 }
11018
11019 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)11020 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
11021 {
11022 }
11023
11024 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
11025 {
11026
11027 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
11028 return (pmap_large_map_flush_range_clwb);
11029 else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
11030 return (pmap_large_map_flush_range_clflushopt);
11031 else if ((cpu_feature & CPUID_CLFSH) != 0)
11032 return (pmap_large_map_flush_range_clflush);
11033 else
11034 return (pmap_large_map_flush_range_nop);
11035 }
11036
11037 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11038 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11039 {
11040 volatile u_long *pe;
11041 u_long p;
11042 vm_offset_t va;
11043 vm_size_t inc;
11044 bool seen_other;
11045
11046 for (va = sva; va < eva; va += inc) {
11047 inc = 0;
11048 if ((amd_feature & AMDID_PAGE1GB) != 0) {
11049 pe = (volatile u_long *)pmap_large_map_pdpe(va);
11050 p = *pe;
11051 if ((p & X86_PG_PS) != 0)
11052 inc = NBPDP;
11053 }
11054 if (inc == 0) {
11055 pe = (volatile u_long *)pmap_large_map_pde(va);
11056 p = *pe;
11057 if ((p & X86_PG_PS) != 0)
11058 inc = NBPDR;
11059 }
11060 if (inc == 0) {
11061 pe = (volatile u_long *)pmap_large_map_pte(va);
11062 p = *pe;
11063 inc = PAGE_SIZE;
11064 }
11065 seen_other = false;
11066 for (;;) {
11067 if ((p & X86_PG_AVAIL1) != 0) {
11068 /*
11069 * Spin-wait for the end of a parallel
11070 * write-back.
11071 */
11072 cpu_spinwait();
11073 p = *pe;
11074
11075 /*
11076 * If we saw other write-back
11077 * occurring, we cannot rely on PG_M to
11078 * indicate state of the cache. The
11079 * PG_M bit is cleared before the
11080 * flush to avoid ignoring new writes,
11081 * and writes which are relevant for
11082 * us might happen after.
11083 */
11084 seen_other = true;
11085 continue;
11086 }
11087
11088 if ((p & X86_PG_M) != 0 || seen_other) {
11089 if (!atomic_fcmpset_long(pe, &p,
11090 (p & ~X86_PG_M) | X86_PG_AVAIL1))
11091 /*
11092 * If we saw PG_M without
11093 * PG_AVAIL1, and then on the
11094 * next attempt we do not
11095 * observe either PG_M or
11096 * PG_AVAIL1, the other
11097 * write-back started after us
11098 * and finished before us. We
11099 * can rely on it doing our
11100 * work.
11101 */
11102 continue;
11103 pmap_large_map_flush_range(va, inc);
11104 atomic_clear_long(pe, X86_PG_AVAIL1);
11105 }
11106 break;
11107 }
11108 maybe_yield();
11109 }
11110 }
11111
11112 /*
11113 * Write-back cache lines for the given address range.
11114 *
11115 * Must be called only on the range or sub-range returned from
11116 * pmap_large_map(). Must not be called on the coalesced ranges.
11117 *
11118 * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11119 * instructions support.
11120 */
11121 void
pmap_large_map_wb(void * svap,vm_size_t len)11122 pmap_large_map_wb(void *svap, vm_size_t len)
11123 {
11124 vm_offset_t eva, sva;
11125
11126 sva = (vm_offset_t)svap;
11127 eva = sva + len;
11128 pmap_large_map_wb_fence();
11129 if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11130 pmap_large_map_flush_range(sva, len);
11131 } else {
11132 KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11133 eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11134 ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11135 pmap_large_map_wb_large(sva, eva);
11136 }
11137 pmap_large_map_wb_fence();
11138 }
11139
11140 static vm_page_t
pmap_pti_alloc_page(void)11141 pmap_pti_alloc_page(void)
11142 {
11143 vm_page_t m;
11144
11145 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11146 m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11147 return (m);
11148 }
11149
11150 static bool
pmap_pti_free_page(vm_page_t m)11151 pmap_pti_free_page(vm_page_t m)
11152 {
11153 if (!vm_page_unwire_noq(m))
11154 return (false);
11155 vm_page_xbusy_claim(m);
11156 vm_page_free_zero(m);
11157 return (true);
11158 }
11159
11160 static void
pmap_pti_init(void)11161 pmap_pti_init(void)
11162 {
11163 vm_page_t pml4_pg;
11164 pdp_entry_t *pdpe;
11165 vm_offset_t va;
11166 int i;
11167
11168 if (!pti)
11169 return;
11170 pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11171 VM_OBJECT_WLOCK(pti_obj);
11172 pml4_pg = pmap_pti_alloc_page();
11173 pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11174 for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11175 va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11176 pdpe = pmap_pti_pdpe(va);
11177 pmap_pti_wire_pte(pdpe);
11178 }
11179 pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11180 (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11181 pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11182 sizeof(struct gate_descriptor) * NIDT, false);
11183 CPU_FOREACH(i) {
11184 /* Doublefault stack IST 1 */
11185 va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11186 pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11187 /* NMI stack IST 2 */
11188 va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11189 pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11190 /* MC# stack IST 3 */
11191 va = __pcpu[i].pc_common_tss.tss_ist3 +
11192 sizeof(struct nmi_pcpu);
11193 pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11194 /* DB# stack IST 4 */
11195 va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11196 pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11197 }
11198 pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11199 true);
11200 pti_finalized = true;
11201 VM_OBJECT_WUNLOCK(pti_obj);
11202 }
11203
11204 static void
pmap_cpu_init(void * arg __unused)11205 pmap_cpu_init(void *arg __unused)
11206 {
11207 CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11208 pmap_pti_init();
11209 }
11210 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11211
11212 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11213 pmap_pti_pdpe(vm_offset_t va)
11214 {
11215 pml4_entry_t *pml4e;
11216 pdp_entry_t *pdpe;
11217 vm_page_t m;
11218 vm_pindex_t pml4_idx;
11219 vm_paddr_t mphys;
11220
11221 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11222
11223 pml4_idx = pmap_pml4e_index(va);
11224 pml4e = &pti_pml4[pml4_idx];
11225 m = NULL;
11226 if (*pml4e == 0) {
11227 if (pti_finalized)
11228 panic("pml4 alloc after finalization\n");
11229 m = pmap_pti_alloc_page();
11230 if (*pml4e != 0) {
11231 pmap_pti_free_page(m);
11232 mphys = *pml4e & ~PAGE_MASK;
11233 } else {
11234 mphys = VM_PAGE_TO_PHYS(m);
11235 *pml4e = mphys | X86_PG_RW | X86_PG_V;
11236 }
11237 } else {
11238 mphys = *pml4e & ~PAGE_MASK;
11239 }
11240 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11241 return (pdpe);
11242 }
11243
11244 static void
pmap_pti_wire_pte(void * pte)11245 pmap_pti_wire_pte(void *pte)
11246 {
11247 vm_page_t m;
11248
11249 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11250 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11251 m->ref_count++;
11252 }
11253
11254 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11255 pmap_pti_unwire_pde(void *pde, bool only_ref)
11256 {
11257 vm_page_t m;
11258
11259 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11260 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11261 MPASS(only_ref || m->ref_count > 1);
11262 pmap_pti_free_page(m);
11263 }
11264
11265 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11266 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11267 {
11268 vm_page_t m;
11269 pd_entry_t *pde;
11270
11271 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11272 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11273 if (pmap_pti_free_page(m)) {
11274 pde = pmap_pti_pde(va);
11275 MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11276 *pde = 0;
11277 pmap_pti_unwire_pde(pde, false);
11278 }
11279 }
11280
11281 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11282 pmap_pti_pde(vm_offset_t va)
11283 {
11284 pdp_entry_t *pdpe;
11285 pd_entry_t *pde;
11286 vm_page_t m;
11287 vm_pindex_t pd_idx;
11288 vm_paddr_t mphys;
11289
11290 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11291
11292 pdpe = pmap_pti_pdpe(va);
11293 if (*pdpe == 0) {
11294 m = pmap_pti_alloc_page();
11295 if (*pdpe != 0) {
11296 pmap_pti_free_page(m);
11297 MPASS((*pdpe & X86_PG_PS) == 0);
11298 mphys = *pdpe & ~PAGE_MASK;
11299 } else {
11300 mphys = VM_PAGE_TO_PHYS(m);
11301 *pdpe = mphys | X86_PG_RW | X86_PG_V;
11302 }
11303 } else {
11304 MPASS((*pdpe & X86_PG_PS) == 0);
11305 mphys = *pdpe & ~PAGE_MASK;
11306 }
11307
11308 pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11309 pd_idx = pmap_pde_index(va);
11310 pde += pd_idx;
11311 return (pde);
11312 }
11313
11314 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11315 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11316 {
11317 pd_entry_t *pde;
11318 pt_entry_t *pte;
11319 vm_page_t m;
11320 vm_paddr_t mphys;
11321
11322 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11323
11324 pde = pmap_pti_pde(va);
11325 if (unwire_pde != NULL) {
11326 *unwire_pde = true;
11327 pmap_pti_wire_pte(pde);
11328 }
11329 if (*pde == 0) {
11330 m = pmap_pti_alloc_page();
11331 if (*pde != 0) {
11332 pmap_pti_free_page(m);
11333 MPASS((*pde & X86_PG_PS) == 0);
11334 mphys = *pde & ~(PAGE_MASK | pg_nx);
11335 } else {
11336 mphys = VM_PAGE_TO_PHYS(m);
11337 *pde = mphys | X86_PG_RW | X86_PG_V;
11338 if (unwire_pde != NULL)
11339 *unwire_pde = false;
11340 }
11341 } else {
11342 MPASS((*pde & X86_PG_PS) == 0);
11343 mphys = *pde & ~(PAGE_MASK | pg_nx);
11344 }
11345
11346 pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11347 pte += pmap_pte_index(va);
11348
11349 return (pte);
11350 }
11351
11352 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11353 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11354 {
11355 vm_paddr_t pa;
11356 pd_entry_t *pde;
11357 pt_entry_t *pte, ptev;
11358 bool unwire_pde;
11359
11360 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11361
11362 sva = trunc_page(sva);
11363 MPASS(sva > VM_MAXUSER_ADDRESS);
11364 eva = round_page(eva);
11365 MPASS(sva < eva);
11366 for (; sva < eva; sva += PAGE_SIZE) {
11367 pte = pmap_pti_pte(sva, &unwire_pde);
11368 pa = pmap_kextract(sva);
11369 ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11370 (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11371 VM_MEMATTR_DEFAULT, false);
11372 if (*pte == 0) {
11373 pte_store(pte, ptev);
11374 pmap_pti_wire_pte(pte);
11375 } else {
11376 KASSERT(!pti_finalized,
11377 ("pti overlap after fin %#lx %#lx %#lx",
11378 sva, *pte, ptev));
11379 KASSERT(*pte == ptev,
11380 ("pti non-identical pte after fin %#lx %#lx %#lx",
11381 sva, *pte, ptev));
11382 }
11383 if (unwire_pde) {
11384 pde = pmap_pti_pde(sva);
11385 pmap_pti_unwire_pde(pde, true);
11386 }
11387 }
11388 }
11389
11390 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11391 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11392 {
11393
11394 if (!pti)
11395 return;
11396 VM_OBJECT_WLOCK(pti_obj);
11397 pmap_pti_add_kva_locked(sva, eva, exec);
11398 VM_OBJECT_WUNLOCK(pti_obj);
11399 }
11400
11401 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11402 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11403 {
11404 pt_entry_t *pte;
11405 vm_offset_t va;
11406
11407 if (!pti)
11408 return;
11409 sva = rounddown2(sva, PAGE_SIZE);
11410 MPASS(sva > VM_MAXUSER_ADDRESS);
11411 eva = roundup2(eva, PAGE_SIZE);
11412 MPASS(sva < eva);
11413 VM_OBJECT_WLOCK(pti_obj);
11414 for (va = sva; va < eva; va += PAGE_SIZE) {
11415 pte = pmap_pti_pte(va, NULL);
11416 KASSERT((*pte & X86_PG_V) != 0,
11417 ("invalid pte va %#lx pte %#lx pt %#lx", va,
11418 (u_long)pte, *pte));
11419 pte_clear(pte);
11420 pmap_pti_unwire_pte(pte, va);
11421 }
11422 pmap_invalidate_range(kernel_pmap, sva, eva);
11423 VM_OBJECT_WUNLOCK(pti_obj);
11424 }
11425
11426 static void *
pkru_dup_range(void * ctx __unused,void * data)11427 pkru_dup_range(void *ctx __unused, void *data)
11428 {
11429 struct pmap_pkru_range *node, *new_node;
11430
11431 new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11432 if (new_node == NULL)
11433 return (NULL);
11434 node = data;
11435 memcpy(new_node, node, sizeof(*node));
11436 return (new_node);
11437 }
11438
11439 static void
pkru_free_range(void * ctx __unused,void * node)11440 pkru_free_range(void *ctx __unused, void *node)
11441 {
11442
11443 uma_zfree(pmap_pkru_ranges_zone, node);
11444 }
11445
11446 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11447 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11448 int flags)
11449 {
11450 struct pmap_pkru_range *ppr;
11451 int error;
11452
11453 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11454 MPASS(pmap->pm_type == PT_X86);
11455 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11456 if ((flags & AMD64_PKRU_EXCL) != 0 &&
11457 !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11458 return (EBUSY);
11459 ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11460 if (ppr == NULL)
11461 return (ENOMEM);
11462 ppr->pkru_keyidx = keyidx;
11463 ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11464 error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11465 if (error != 0)
11466 uma_zfree(pmap_pkru_ranges_zone, ppr);
11467 return (error);
11468 }
11469
11470 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11471 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11472 {
11473
11474 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11475 MPASS(pmap->pm_type == PT_X86);
11476 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11477 return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11478 }
11479
11480 static void
pmap_pkru_deassign_all(pmap_t pmap)11481 pmap_pkru_deassign_all(pmap_t pmap)
11482 {
11483
11484 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11485 if (pmap->pm_type == PT_X86 &&
11486 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11487 rangeset_remove_all(&pmap->pm_pkru);
11488 }
11489
11490 /*
11491 * Returns true if the PKU setting is the same across the specified address
11492 * range, and false otherwise. When returning true, updates the referenced PTE
11493 * to reflect the PKU setting.
11494 */
11495 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11496 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11497 {
11498 struct pmap_pkru_range *ppr;
11499 vm_offset_t va;
11500 u_int keyidx;
11501
11502 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11503 KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11504 ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11505 if (pmap->pm_type != PT_X86 ||
11506 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11507 sva >= VM_MAXUSER_ADDRESS)
11508 return (true);
11509 MPASS(eva <= VM_MAXUSER_ADDRESS);
11510 ppr = rangeset_containing(&pmap->pm_pkru, sva);
11511 if (ppr == NULL)
11512 return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11513 keyidx = ppr->pkru_keyidx;
11514 while ((va = ppr->pkru_rs_el.re_end) < eva) {
11515 if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11516 keyidx != ppr->pkru_keyidx)
11517 return (false);
11518 }
11519 *pte |= X86_PG_PKU(keyidx);
11520 return (true);
11521 }
11522
11523 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11524 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11525 {
11526 struct pmap_pkru_range *ppr;
11527
11528 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11529 if (pmap->pm_type != PT_X86 ||
11530 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11531 va >= VM_MAXUSER_ADDRESS)
11532 return (0);
11533 ppr = rangeset_containing(&pmap->pm_pkru, va);
11534 if (ppr != NULL)
11535 return (X86_PG_PKU(ppr->pkru_keyidx));
11536 return (0);
11537 }
11538
11539 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11540 pred_pkru_on_remove(void *ctx __unused, void *r)
11541 {
11542 struct pmap_pkru_range *ppr;
11543
11544 ppr = r;
11545 return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11546 }
11547
11548 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11549 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11550 {
11551
11552 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11553 if (pmap->pm_type == PT_X86 &&
11554 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11555 rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11556 pred_pkru_on_remove);
11557 }
11558 }
11559
11560 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11561 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11562 {
11563
11564 PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11565 PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11566 MPASS(dst_pmap->pm_type == PT_X86);
11567 MPASS(src_pmap->pm_type == PT_X86);
11568 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11569 if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11570 return (0);
11571 return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11572 }
11573
11574 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11575 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11576 u_int keyidx)
11577 {
11578 pml4_entry_t *pml4e;
11579 pdp_entry_t *pdpe;
11580 pd_entry_t newpde, ptpaddr, *pde;
11581 pt_entry_t newpte, *ptep, pte;
11582 vm_offset_t va, va_next;
11583 bool changed;
11584
11585 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11586 MPASS(pmap->pm_type == PT_X86);
11587 MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11588
11589 for (changed = false, va = sva; va < eva; va = va_next) {
11590 pml4e = pmap_pml4e(pmap, va);
11591 if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11592 va_next = (va + NBPML4) & ~PML4MASK;
11593 if (va_next < va)
11594 va_next = eva;
11595 continue;
11596 }
11597
11598 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11599 if ((*pdpe & X86_PG_V) == 0) {
11600 va_next = (va + NBPDP) & ~PDPMASK;
11601 if (va_next < va)
11602 va_next = eva;
11603 continue;
11604 }
11605
11606 va_next = (va + NBPDR) & ~PDRMASK;
11607 if (va_next < va)
11608 va_next = eva;
11609
11610 pde = pmap_pdpe_to_pde(pdpe, va);
11611 ptpaddr = *pde;
11612 if (ptpaddr == 0)
11613 continue;
11614
11615 MPASS((ptpaddr & X86_PG_V) != 0);
11616 if ((ptpaddr & PG_PS) != 0) {
11617 if (va + NBPDR == va_next && eva >= va_next) {
11618 newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11619 X86_PG_PKU(keyidx);
11620 if (newpde != ptpaddr) {
11621 *pde = newpde;
11622 changed = true;
11623 }
11624 continue;
11625 } else if (!pmap_demote_pde(pmap, pde, va)) {
11626 continue;
11627 }
11628 }
11629
11630 if (va_next > eva)
11631 va_next = eva;
11632
11633 for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11634 ptep++, va += PAGE_SIZE) {
11635 pte = *ptep;
11636 if ((pte & X86_PG_V) == 0)
11637 continue;
11638 newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11639 if (newpte != pte) {
11640 *ptep = newpte;
11641 changed = true;
11642 }
11643 }
11644 }
11645 if (changed)
11646 pmap_invalidate_range(pmap, sva, eva);
11647 }
11648
11649 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11650 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11651 u_int keyidx, int flags)
11652 {
11653
11654 if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11655 (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11656 return (EINVAL);
11657 if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11658 return (EFAULT);
11659 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11660 return (ENOTSUP);
11661 return (0);
11662 }
11663
11664 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11665 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11666 int flags)
11667 {
11668 int error;
11669
11670 sva = trunc_page(sva);
11671 eva = round_page(eva);
11672 error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11673 if (error != 0)
11674 return (error);
11675 for (;;) {
11676 PMAP_LOCK(pmap);
11677 error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11678 if (error == 0)
11679 pmap_pkru_update_range(pmap, sva, eva, keyidx);
11680 PMAP_UNLOCK(pmap);
11681 if (error != ENOMEM)
11682 break;
11683 vm_wait(NULL);
11684 }
11685 return (error);
11686 }
11687
11688 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11689 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11690 {
11691 int error;
11692
11693 sva = trunc_page(sva);
11694 eva = round_page(eva);
11695 error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11696 if (error != 0)
11697 return (error);
11698 for (;;) {
11699 PMAP_LOCK(pmap);
11700 error = pmap_pkru_deassign(pmap, sva, eva);
11701 if (error == 0)
11702 pmap_pkru_update_range(pmap, sva, eva, 0);
11703 PMAP_UNLOCK(pmap);
11704 if (error != ENOMEM)
11705 break;
11706 vm_wait(NULL);
11707 }
11708 return (error);
11709 }
11710
11711 #if defined(KASAN) || defined(KMSAN)
11712
11713 /*
11714 * Reserve enough memory to:
11715 * 1) allocate PDP pages for the shadow map(s),
11716 * 2) shadow the boot stack of KSTACK_PAGES pages,
11717 * 3) assuming that the kernel stack does not cross a 1GB boundary,
11718 * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11719 * pages per shadow map.
11720 */
11721 #ifdef KASAN
11722 #define SAN_EARLY_PAGES \
11723 (NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11724 #else
11725 #define SAN_EARLY_PAGES \
11726 (NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11727 #endif
11728
11729 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11730 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11731 {
11732 static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11733 static size_t offset = 0;
11734 uint64_t pa;
11735
11736 if (offset == sizeof(data)) {
11737 panic("%s: ran out of memory for the bootstrap shadow map",
11738 __func__);
11739 }
11740
11741 pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11742 offset += PAGE_SIZE;
11743 return (pa);
11744 }
11745
11746 /*
11747 * Map a shadow page, before the kernel has bootstrapped its page tables. This
11748 * is currently only used to shadow the temporary boot stack set up by locore.
11749 */
11750 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11751 pmap_san_enter_early(vm_offset_t va)
11752 {
11753 static bool first = true;
11754 pml4_entry_t *pml4e;
11755 pdp_entry_t *pdpe;
11756 pd_entry_t *pde;
11757 pt_entry_t *pte;
11758 uint64_t cr3, pa, base;
11759 int i;
11760
11761 base = amd64_loadaddr();
11762 cr3 = rcr3();
11763
11764 if (first) {
11765 /*
11766 * If this the first call, we need to allocate new PML4Es for
11767 * the bootstrap shadow map(s). We don't know how the PML4 page
11768 * was initialized by the boot loader, so we can't simply test
11769 * whether the shadow map's PML4Es are zero.
11770 */
11771 first = false;
11772 #ifdef KASAN
11773 for (i = 0; i < NKASANPML4E; i++) {
11774 pa = pmap_san_enter_early_alloc_4k(base);
11775
11776 pml4e = (pml4_entry_t *)cr3 +
11777 pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11778 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11779 }
11780 #else
11781 for (i = 0; i < NKMSANORIGPML4E; i++) {
11782 pa = pmap_san_enter_early_alloc_4k(base);
11783
11784 pml4e = (pml4_entry_t *)cr3 +
11785 pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11786 i * NBPML4);
11787 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11788 }
11789 for (i = 0; i < NKMSANSHADPML4E; i++) {
11790 pa = pmap_san_enter_early_alloc_4k(base);
11791
11792 pml4e = (pml4_entry_t *)cr3 +
11793 pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11794 i * NBPML4);
11795 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11796 }
11797 #endif
11798 }
11799 pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11800 pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11801 if (*pdpe == 0) {
11802 pa = pmap_san_enter_early_alloc_4k(base);
11803 *pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11804 }
11805 pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11806 if (*pde == 0) {
11807 pa = pmap_san_enter_early_alloc_4k(base);
11808 *pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11809 }
11810 pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11811 if (*pte != 0)
11812 panic("%s: PTE for %#lx is already initialized", __func__, va);
11813 pa = pmap_san_enter_early_alloc_4k(base);
11814 *pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11815 }
11816
11817 static vm_page_t
pmap_san_enter_alloc_4k(void)11818 pmap_san_enter_alloc_4k(void)
11819 {
11820 vm_page_t m;
11821
11822 m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11823 VM_ALLOC_ZERO);
11824 if (m == NULL)
11825 panic("%s: no memory to grow shadow map", __func__);
11826 return (m);
11827 }
11828
11829 static vm_page_t
pmap_san_enter_alloc_2m(void)11830 pmap_san_enter_alloc_2m(void)
11831 {
11832 return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11833 NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11834 }
11835
11836 /*
11837 * Grow a shadow map by at least one 4KB page at the specified address. Use 2MB
11838 * pages when possible.
11839 */
11840 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11841 pmap_san_enter(vm_offset_t va)
11842 {
11843 pdp_entry_t *pdpe;
11844 pd_entry_t *pde;
11845 pt_entry_t *pte;
11846 vm_page_t m;
11847
11848 if (kernphys == 0) {
11849 /*
11850 * We're creating a temporary shadow map for the boot stack.
11851 */
11852 pmap_san_enter_early(va);
11853 return;
11854 }
11855
11856 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11857
11858 pdpe = pmap_pdpe(kernel_pmap, va);
11859 if ((*pdpe & X86_PG_V) == 0) {
11860 m = pmap_san_enter_alloc_4k();
11861 *pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11862 X86_PG_V | pg_nx);
11863 }
11864 pde = pmap_pdpe_to_pde(pdpe, va);
11865 if ((*pde & X86_PG_V) == 0) {
11866 m = pmap_san_enter_alloc_2m();
11867 if (m != NULL) {
11868 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11869 X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11870 } else {
11871 m = pmap_san_enter_alloc_4k();
11872 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11873 X86_PG_V | pg_nx);
11874 }
11875 }
11876 if ((*pde & X86_PG_PS) != 0)
11877 return;
11878 pte = pmap_pde_to_pte(pde, va);
11879 if ((*pte & X86_PG_V) != 0)
11880 return;
11881 m = pmap_san_enter_alloc_4k();
11882 *pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11883 X86_PG_M | X86_PG_A | pg_nx);
11884 }
11885 #endif
11886
11887 /*
11888 * Track a range of the kernel's virtual address space that is contiguous
11889 * in various mapping attributes.
11890 */
11891 struct pmap_kernel_map_range {
11892 vm_offset_t sva;
11893 pt_entry_t attrs;
11894 int ptes;
11895 int pdes;
11896 int pdpes;
11897 };
11898
11899 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11900 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11901 vm_offset_t eva)
11902 {
11903 const char *mode;
11904 int i, pat_idx;
11905
11906 if (eva <= range->sva)
11907 return;
11908
11909 pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11910 for (i = 0; i < PAT_INDEX_SIZE; i++)
11911 if (pat_index[i] == pat_idx)
11912 break;
11913
11914 switch (i) {
11915 case PAT_WRITE_BACK:
11916 mode = "WB";
11917 break;
11918 case PAT_WRITE_THROUGH:
11919 mode = "WT";
11920 break;
11921 case PAT_UNCACHEABLE:
11922 mode = "UC";
11923 break;
11924 case PAT_UNCACHED:
11925 mode = "U-";
11926 break;
11927 case PAT_WRITE_PROTECTED:
11928 mode = "WP";
11929 break;
11930 case PAT_WRITE_COMBINING:
11931 mode = "WC";
11932 break;
11933 default:
11934 printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11935 __func__, pat_idx, range->sva, eva);
11936 mode = "??";
11937 break;
11938 }
11939
11940 sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11941 range->sva, eva,
11942 (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11943 (range->attrs & pg_nx) != 0 ? '-' : 'x',
11944 (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11945 (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11946 mode, range->pdpes, range->pdes, range->ptes);
11947
11948 /* Reset to sentinel value. */
11949 range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11950 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11951 NPDEPG - 1, NPTEPG - 1);
11952 }
11953
11954 /*
11955 * Determine whether the attributes specified by a page table entry match those
11956 * being tracked by the current range. This is not quite as simple as a direct
11957 * flag comparison since some PAT modes have multiple representations.
11958 */
11959 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11960 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11961 {
11962 pt_entry_t diff, mask;
11963
11964 mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11965 diff = (range->attrs ^ attrs) & mask;
11966 if (diff == 0)
11967 return (true);
11968 if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11969 pmap_pat_index(kernel_pmap, range->attrs, true) ==
11970 pmap_pat_index(kernel_pmap, attrs, true))
11971 return (true);
11972 return (false);
11973 }
11974
11975 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11976 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11977 pt_entry_t attrs)
11978 {
11979
11980 memset(range, 0, sizeof(*range));
11981 range->sva = va;
11982 range->attrs = attrs;
11983 }
11984
11985 /*
11986 * Given a leaf PTE, derive the mapping's attributes. If they do not match
11987 * those of the current run, dump the address range and its attributes, and
11988 * begin a new run.
11989 */
11990 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11991 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11992 vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11993 pt_entry_t pte)
11994 {
11995 pt_entry_t attrs;
11996
11997 attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11998
11999 attrs |= pdpe & pg_nx;
12000 attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
12001 if ((pdpe & PG_PS) != 0) {
12002 attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
12003 } else if (pde != 0) {
12004 attrs |= pde & pg_nx;
12005 attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
12006 }
12007 if ((pde & PG_PS) != 0) {
12008 attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
12009 } else if (pte != 0) {
12010 attrs |= pte & pg_nx;
12011 attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
12012 attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
12013
12014 /* Canonicalize by always using the PDE PAT bit. */
12015 if ((attrs & X86_PG_PTE_PAT) != 0)
12016 attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
12017 }
12018
12019 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
12020 sysctl_kmaps_dump(sb, range, va);
12021 sysctl_kmaps_reinit(range, va, attrs);
12022 }
12023 }
12024
12025 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)12026 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
12027 {
12028 struct pmap_kernel_map_range range;
12029 struct sbuf sbuf, *sb;
12030 pml4_entry_t pml4e;
12031 pdp_entry_t *pdp, pdpe;
12032 pd_entry_t *pd, pde;
12033 pt_entry_t *pt, pte;
12034 vm_offset_t sva;
12035 vm_paddr_t pa;
12036 int error, i, j, k, l;
12037
12038 error = sysctl_wire_old_buffer(req, 0);
12039 if (error != 0)
12040 return (error);
12041 sb = &sbuf;
12042 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12043
12044 /* Sentinel value. */
12045 range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12046 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12047 NPDEPG - 1, NPTEPG - 1);
12048
12049 /*
12050 * Iterate over the kernel page tables without holding the kernel pmap
12051 * lock. Outside of the large map, kernel page table pages are never
12052 * freed, so at worst we will observe inconsistencies in the output.
12053 * Within the large map, ensure that PDP and PD page addresses are
12054 * valid before descending.
12055 */
12056 for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12057 switch (i) {
12058 case PML4PML4I:
12059 sbuf_printf(sb, "\nRecursive map:\n");
12060 break;
12061 case DMPML4I:
12062 sbuf_printf(sb, "\nDirect map:\n");
12063 break;
12064 #ifdef KASAN
12065 case KASANPML4I:
12066 sbuf_printf(sb, "\nKASAN shadow map:\n");
12067 break;
12068 #endif
12069 #ifdef KMSAN
12070 case KMSANSHADPML4I:
12071 sbuf_printf(sb, "\nKMSAN shadow map:\n");
12072 break;
12073 case KMSANORIGPML4I:
12074 sbuf_printf(sb, "\nKMSAN origin map:\n");
12075 break;
12076 #endif
12077 case KPML4BASE:
12078 sbuf_printf(sb, "\nKernel map:\n");
12079 break;
12080 case LMSPML4I:
12081 sbuf_printf(sb, "\nLarge map:\n");
12082 break;
12083 }
12084
12085 /* Convert to canonical form. */
12086 if (sva == 1ul << 47)
12087 sva |= -1ul << 48;
12088
12089 restart:
12090 pml4e = kernel_pml4[i];
12091 if ((pml4e & X86_PG_V) == 0) {
12092 sva = rounddown2(sva, NBPML4);
12093 sysctl_kmaps_dump(sb, &range, sva);
12094 sva += NBPML4;
12095 continue;
12096 }
12097 pa = pml4e & PG_FRAME;
12098 pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12099
12100 for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12101 pdpe = pdp[j];
12102 if ((pdpe & X86_PG_V) == 0) {
12103 sva = rounddown2(sva, NBPDP);
12104 sysctl_kmaps_dump(sb, &range, sva);
12105 sva += NBPDP;
12106 continue;
12107 }
12108 pa = pdpe & PG_FRAME;
12109 if ((pdpe & PG_PS) != 0) {
12110 sva = rounddown2(sva, NBPDP);
12111 sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12112 0, 0);
12113 range.pdpes++;
12114 sva += NBPDP;
12115 continue;
12116 }
12117 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12118 vm_phys_paddr_to_vm_page(pa) == NULL) {
12119 /*
12120 * Page table pages for the large map may be
12121 * freed. Validate the next-level address
12122 * before descending.
12123 */
12124 goto restart;
12125 }
12126 pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12127
12128 for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12129 pde = pd[k];
12130 if ((pde & X86_PG_V) == 0) {
12131 sva = rounddown2(sva, NBPDR);
12132 sysctl_kmaps_dump(sb, &range, sva);
12133 sva += NBPDR;
12134 continue;
12135 }
12136 pa = pde & PG_FRAME;
12137 if ((pde & PG_PS) != 0) {
12138 sva = rounddown2(sva, NBPDR);
12139 sysctl_kmaps_check(sb, &range, sva,
12140 pml4e, pdpe, pde, 0);
12141 range.pdes++;
12142 sva += NBPDR;
12143 continue;
12144 }
12145 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12146 vm_phys_paddr_to_vm_page(pa) == NULL) {
12147 /*
12148 * Page table pages for the large map
12149 * may be freed. Validate the
12150 * next-level address before descending.
12151 */
12152 goto restart;
12153 }
12154 pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12155
12156 for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12157 sva += PAGE_SIZE) {
12158 pte = pt[l];
12159 if ((pte & X86_PG_V) == 0) {
12160 sysctl_kmaps_dump(sb, &range,
12161 sva);
12162 continue;
12163 }
12164 sysctl_kmaps_check(sb, &range, sva,
12165 pml4e, pdpe, pde, pte);
12166 range.ptes++;
12167 }
12168 }
12169 }
12170 }
12171
12172 error = sbuf_finish(sb);
12173 sbuf_delete(sb);
12174 return (error);
12175 }
12176 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12177 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12178 NULL, 0, sysctl_kmaps, "A",
12179 "Dump kernel address layout");
12180
12181 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12182 DB_SHOW_COMMAND(pte, pmap_print_pte)
12183 {
12184 pmap_t pmap;
12185 pml5_entry_t *pml5;
12186 pml4_entry_t *pml4;
12187 pdp_entry_t *pdp;
12188 pd_entry_t *pde;
12189 pt_entry_t *pte, PG_V;
12190 vm_offset_t va;
12191
12192 if (!have_addr) {
12193 db_printf("show pte addr\n");
12194 return;
12195 }
12196 va = (vm_offset_t)addr;
12197
12198 if (kdb_thread != NULL)
12199 pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12200 else
12201 pmap = PCPU_GET(curpmap);
12202
12203 PG_V = pmap_valid_bit(pmap);
12204 db_printf("VA 0x%016lx", va);
12205
12206 if (pmap_is_la57(pmap)) {
12207 pml5 = pmap_pml5e(pmap, va);
12208 db_printf(" pml5e@0x%016lx 0x%016lx", (uint64_t)pml5, *pml5);
12209 if ((*pml5 & PG_V) == 0) {
12210 db_printf("\n");
12211 return;
12212 }
12213 pml4 = pmap_pml5e_to_pml4e(pml5, va);
12214 } else {
12215 pml4 = pmap_pml4e(pmap, va);
12216 }
12217 db_printf(" pml4e@0x%016lx 0x%016lx", (uint64_t)pml4, *pml4);
12218 if ((*pml4 & PG_V) == 0) {
12219 db_printf("\n");
12220 return;
12221 }
12222 pdp = pmap_pml4e_to_pdpe(pml4, va);
12223 db_printf(" pdpe@0x%016lx 0x%016lx", (uint64_t)pdp, *pdp);
12224 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12225 db_printf("\n");
12226 return;
12227 }
12228 pde = pmap_pdpe_to_pde(pdp, va);
12229 db_printf(" pde@0x%016lx 0x%016lx", (uint64_t)pde, *pde);
12230 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12231 db_printf("\n");
12232 return;
12233 }
12234 pte = pmap_pde_to_pte(pde, va);
12235 db_printf(" pte@0x%016lx 0x%016lx\n", (uint64_t)pte, *pte);
12236 }
12237
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12238 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12239 {
12240 vm_paddr_t a;
12241
12242 if (have_addr) {
12243 a = (vm_paddr_t)addr;
12244 db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12245 } else {
12246 db_printf("show phys2dmap addr\n");
12247 }
12248 }
12249
12250 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12251 ptpages_show_page(int level, int idx, vm_page_t pg)
12252 {
12253 db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12254 level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12255 }
12256
12257 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12258 ptpages_show_complain(int level, int idx, uint64_t pte)
12259 {
12260 db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12261 }
12262
12263 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12264 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12265 {
12266 vm_page_t pg3, pg2, pg1;
12267 pml4_entry_t *pml4;
12268 pdp_entry_t *pdp;
12269 pd_entry_t *pd;
12270 int i4, i3, i2;
12271
12272 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12273 for (i4 = 0; i4 < num_entries; i4++) {
12274 if ((pml4[i4] & PG_V) == 0)
12275 continue;
12276 pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12277 if (pg3 == NULL) {
12278 ptpages_show_complain(3, i4, pml4[i4]);
12279 continue;
12280 }
12281 ptpages_show_page(3, i4, pg3);
12282 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12283 for (i3 = 0; i3 < NPDPEPG; i3++) {
12284 if ((pdp[i3] & PG_V) == 0)
12285 continue;
12286 pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12287 if (pg3 == NULL) {
12288 ptpages_show_complain(2, i3, pdp[i3]);
12289 continue;
12290 }
12291 ptpages_show_page(2, i3, pg2);
12292 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12293 for (i2 = 0; i2 < NPDEPG; i2++) {
12294 if ((pd[i2] & PG_V) == 0)
12295 continue;
12296 pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12297 if (pg1 == NULL) {
12298 ptpages_show_complain(1, i2, pd[i2]);
12299 continue;
12300 }
12301 ptpages_show_page(1, i2, pg1);
12302 }
12303 }
12304 }
12305 }
12306
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12307 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12308 {
12309 pmap_t pmap;
12310 vm_page_t pg;
12311 pml5_entry_t *pml5;
12312 uint64_t PG_V;
12313 int i5;
12314
12315 if (have_addr)
12316 pmap = (pmap_t)addr;
12317 else
12318 pmap = PCPU_GET(curpmap);
12319
12320 PG_V = pmap_valid_bit(pmap);
12321
12322 if (pmap_is_la57(pmap)) {
12323 pml5 = pmap->pm_pmltop;
12324 for (i5 = 0; i5 < NUPML5E; i5++) {
12325 if ((pml5[i5] & PG_V) == 0)
12326 continue;
12327 pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12328 if (pg == NULL) {
12329 ptpages_show_complain(4, i5, pml5[i5]);
12330 continue;
12331 }
12332 ptpages_show_page(4, i5, pg);
12333 ptpages_show_pml4(pg, NPML4EPG, PG_V);
12334 }
12335 } else {
12336 ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12337 (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12338 }
12339 }
12340 #endif
12341