xref: /freebsd/sys/amd64/amd64/pmap.c (revision 89589b6d3fbac43eb7c6b3cdbdd6f077888b2142)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * Copyright (c) 2014-2020 The FreeBSD Foundation
50  * All rights reserved.
51  *
52  * This software was developed for the FreeBSD Project by Jake Burkholder,
53  * Safeport Network Services, and Network Associates Laboratories, the
54  * Security Research Division of Network Associates, Inc. under
55  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56  * CHATS research program.
57  *
58  * Portions of this software were developed by
59  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60  * the FreeBSD Foundation.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions
64  * are met:
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in the
69  *    documentation and/or other materials provided with the distribution.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  */
83 
84 #define	AMD64_NPT_AWARE
85 
86 #include <sys/cdefs.h>
87 /*
88  *	Manages physical address maps.
89  *
90  *	Since the information managed by this module is
91  *	also stored by the logical address mapping module,
92  *	this module may throw away valid virtual-to-physical
93  *	mappings at almost any time.  However, invalidations
94  *	of virtual-to-physical mappings must be done as
95  *	requested.
96  *
97  *	In order to cope with hardware architectures which
98  *	make virtual-to-physical map invalidates expensive,
99  *	this module may delay invalidate or reduced protection
100  *	operations until such time as they are actually
101  *	necessary.  This module is given full information as
102  *	to which processors are currently using which maps,
103  *	and to when physical maps must be made correct.
104  */
105 
106 #include "opt_ddb.h"
107 #include "opt_kstack_pages.h"
108 #include "opt_pmap.h"
109 #include "opt_vm.h"
110 
111 #include <sys/param.h>
112 #include <sys/asan.h>
113 #include <sys/bitstring.h>
114 #include <sys/bus.h>
115 #include <sys/systm.h>
116 #include <sys/counter.h>
117 #include <sys/kernel.h>
118 #include <sys/ktr.h>
119 #include <sys/lock.h>
120 #include <sys/malloc.h>
121 #include <sys/mman.h>
122 #include <sys/msan.h>
123 #include <sys/mutex.h>
124 #include <sys/proc.h>
125 #include <sys/rangeset.h>
126 #include <sys/rwlock.h>
127 #include <sys/sbuf.h>
128 #include <sys/smr.h>
129 #include <sys/sx.h>
130 #include <sys/turnstile.h>
131 #include <sys/vmem.h>
132 #include <sys/vmmeter.h>
133 #include <sys/sched.h>
134 #include <sys/sysctl.h>
135 #include <sys/smp.h>
136 #ifdef DDB
137 #include <sys/kdb.h>
138 #include <ddb/ddb.h>
139 #endif
140 
141 #include <vm/vm.h>
142 #include <vm/vm_param.h>
143 #include <vm/vm_kern.h>
144 #include <vm/vm_page.h>
145 #include <vm/vm_map.h>
146 #include <vm/vm_object.h>
147 #include <vm/vm_extern.h>
148 #include <vm/vm_pageout.h>
149 #include <vm/vm_pager.h>
150 #include <vm/vm_phys.h>
151 #include <vm/vm_radix.h>
152 #include <vm/vm_reserv.h>
153 #include <vm/vm_dumpset.h>
154 #include <vm/uma.h>
155 
156 #include <machine/asan.h>
157 #include <machine/intr_machdep.h>
158 #include <x86/apicvar.h>
159 #include <x86/ifunc.h>
160 #include <machine/cpu.h>
161 #include <machine/cputypes.h>
162 #include <machine/md_var.h>
163 #include <machine/msan.h>
164 #include <machine/pcb.h>
165 #include <machine/specialreg.h>
166 #include <machine/smp.h>
167 #include <machine/sysarch.h>
168 #include <machine/tss.h>
169 
170 #ifdef NUMA
171 #define	PMAP_MEMDOM	MAXMEMDOM
172 #else
173 #define	PMAP_MEMDOM	1
174 #endif
175 
176 static __inline bool
177 pmap_type_guest(pmap_t pmap)
178 {
179 
180 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
181 }
182 
183 static __inline bool
184 pmap_emulate_ad_bits(pmap_t pmap)
185 {
186 
187 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
188 }
189 
190 static __inline pt_entry_t
191 pmap_valid_bit(pmap_t pmap)
192 {
193 	pt_entry_t mask;
194 
195 	switch (pmap->pm_type) {
196 	case PT_X86:
197 	case PT_RVI:
198 		mask = X86_PG_V;
199 		break;
200 	case PT_EPT:
201 		if (pmap_emulate_ad_bits(pmap))
202 			mask = EPT_PG_EMUL_V;
203 		else
204 			mask = EPT_PG_READ;
205 		break;
206 	default:
207 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
208 	}
209 
210 	return (mask);
211 }
212 
213 static __inline pt_entry_t
214 pmap_rw_bit(pmap_t pmap)
215 {
216 	pt_entry_t mask;
217 
218 	switch (pmap->pm_type) {
219 	case PT_X86:
220 	case PT_RVI:
221 		mask = X86_PG_RW;
222 		break;
223 	case PT_EPT:
224 		if (pmap_emulate_ad_bits(pmap))
225 			mask = EPT_PG_EMUL_RW;
226 		else
227 			mask = EPT_PG_WRITE;
228 		break;
229 	default:
230 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
231 	}
232 
233 	return (mask);
234 }
235 
236 static pt_entry_t pg_g;
237 
238 static __inline pt_entry_t
239 pmap_global_bit(pmap_t pmap)
240 {
241 	pt_entry_t mask;
242 
243 	switch (pmap->pm_type) {
244 	case PT_X86:
245 		mask = pg_g;
246 		break;
247 	case PT_RVI:
248 	case PT_EPT:
249 		mask = 0;
250 		break;
251 	default:
252 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
253 	}
254 
255 	return (mask);
256 }
257 
258 static __inline pt_entry_t
259 pmap_accessed_bit(pmap_t pmap)
260 {
261 	pt_entry_t mask;
262 
263 	switch (pmap->pm_type) {
264 	case PT_X86:
265 	case PT_RVI:
266 		mask = X86_PG_A;
267 		break;
268 	case PT_EPT:
269 		if (pmap_emulate_ad_bits(pmap))
270 			mask = EPT_PG_READ;
271 		else
272 			mask = EPT_PG_A;
273 		break;
274 	default:
275 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
276 	}
277 
278 	return (mask);
279 }
280 
281 static __inline pt_entry_t
282 pmap_modified_bit(pmap_t pmap)
283 {
284 	pt_entry_t mask;
285 
286 	switch (pmap->pm_type) {
287 	case PT_X86:
288 	case PT_RVI:
289 		mask = X86_PG_M;
290 		break;
291 	case PT_EPT:
292 		if (pmap_emulate_ad_bits(pmap))
293 			mask = EPT_PG_WRITE;
294 		else
295 			mask = EPT_PG_M;
296 		break;
297 	default:
298 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
299 	}
300 
301 	return (mask);
302 }
303 
304 static __inline pt_entry_t
305 pmap_pku_mask_bit(pmap_t pmap)
306 {
307 
308 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
309 }
310 
311 static __inline bool
312 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
313 {
314 
315 	if (!pmap_emulate_ad_bits(pmap))
316 		return (true);
317 
318 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
319 
320 	/*
321 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
322 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
323 	 * if the EPT_PG_WRITE bit is set.
324 	 */
325 	if ((pte & EPT_PG_WRITE) != 0)
326 		return (false);
327 
328 	/*
329 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
330 	 */
331 	if ((pte & EPT_PG_EXECUTE) == 0 ||
332 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
333 		return (true);
334 	else
335 		return (false);
336 }
337 
338 #ifdef PV_STATS
339 #define PV_STAT(x)	do { x ; } while (0)
340 #else
341 #define PV_STAT(x)	do { } while (0)
342 #endif
343 
344 #ifdef NUMA
345 #define	pa_index(pa)	({					\
346 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
347 	    ("address %lx beyond the last segment", (pa)));	\
348 	(pa) >> PDRSHIFT;					\
349 })
350 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
351 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
352 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
353 	struct rwlock *_lock;					\
354 	if (__predict_false((pa) > pmap_last_pa))		\
355 		_lock = &pv_dummy_large.pv_lock;		\
356 	else							\
357 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
358 	_lock;							\
359 })
360 #else
361 #define	pa_index(pa)	((pa) >> PDRSHIFT)
362 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
363 
364 #define	NPV_LIST_LOCKS	MAXCPU
365 
366 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
367 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
368 #endif
369 
370 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
371 	struct rwlock **_lockp = (lockp);		\
372 	struct rwlock *_new_lock;			\
373 							\
374 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
375 	if (_new_lock != *_lockp) {			\
376 		if (*_lockp != NULL)			\
377 			rw_wunlock(*_lockp);		\
378 		*_lockp = _new_lock;			\
379 		rw_wlock(*_lockp);			\
380 	}						\
381 } while (0)
382 
383 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
384 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
385 
386 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
387 	struct rwlock **_lockp = (lockp);		\
388 							\
389 	if (*_lockp != NULL) {				\
390 		rw_wunlock(*_lockp);			\
391 		*_lockp = NULL;				\
392 	}						\
393 } while (0)
394 
395 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
396 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
397 
398 /*
399  * Statically allocate kernel pmap memory.  However, memory for
400  * pm_pcids is obtained after the dynamic allocator is operational.
401  * Initialize it with a non-canonical pointer to catch early accesses
402  * regardless of the active mapping.
403  */
404 struct pmap kernel_pmap_store = {
405 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
406 };
407 
408 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
409 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
410 
411 int nkpt;
412 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
413     "Number of kernel page table pages allocated on bootup");
414 
415 static int ndmpdp;
416 vm_paddr_t dmaplimit;
417 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS_LA48;
418 pt_entry_t pg_nx;
419 
420 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
421     "VM/pmap parameters");
422 
423 static int __read_frequently pg_ps_enabled = 1;
424 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
425     &pg_ps_enabled, 0, "Are large page mappings enabled?");
426 
427 int __read_frequently la57 = 0;
428 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
429     &la57, 0,
430     "5-level paging for host is enabled");
431 
432 /*
433  * The default value is needed in order to preserve compatibility with
434  * some userspace programs that put tags into sign-extended bits.
435  */
436 int prefer_uva_la48 = 1;
437 SYSCTL_INT(_vm_pmap, OID_AUTO, prefer_uva_la48, CTLFLAG_RDTUN,
438     &prefer_uva_la48, 0,
439     "Userspace maps are limited to LA48 unless otherwise configured");
440 
441 static bool
442 pmap_is_la57(pmap_t pmap)
443 {
444 	if (pmap->pm_type == PT_X86)
445 		return (la57);
446 	return (false);		/* XXXKIB handle EPT */
447 }
448 
449 #define	PAT_INDEX_SIZE	8
450 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
451 
452 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
453 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
454 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
455 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
456 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
457 					   if supported */
458 
459 #ifdef KASAN
460 static uint64_t		KASANPDPphys;
461 #endif
462 #ifdef KMSAN
463 static uint64_t		KMSANSHADPDPphys;
464 static uint64_t		KMSANORIGPDPphys;
465 
466 /*
467  * To support systems with large amounts of memory, it is necessary to extend
468  * the maximum size of the direct map.  This could eat into the space reserved
469  * for the shadow map.
470  */
471 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
472 #endif
473 
474 static pml4_entry_t	*kernel_pml4;
475 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
476 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
477 static u_int64_t	DMPML4phys;	/* ... level 4, for la57 */
478 static int		ndmpdpphys;	/* number of DMPDPphys pages */
479 
480 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
481 vm_paddr_t		KERNend;	/* and the end */
482 
483 struct kva_layout_s	kva_layout = {
484 	.kva_min =	KV4ADDR(PML4PML4I, 0, 0, 0),
485 	.kva_max =	KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
486 			    NPDEPG - 1, NPTEPG - 1),
487 	.dmap_low =	KV4ADDR(DMPML4I, 0, 0, 0),
488 	.dmap_high =	KV4ADDR(DMPML4I + NDMPML4E, 0, 0, 0),
489 	.lm_low =	KV4ADDR(LMSPML4I, 0, 0, 0),
490 	.lm_high =	KV4ADDR(LMEPML4I + 1, 0, 0, 0),
491 	.km_low =	KV4ADDR(KPML4BASE, 0, 0, 0),
492 	.km_high =	KV4ADDR(KPML4BASE + NKPML4E - 1, NPDPEPG - 1,
493 			    NPDEPG - 1, NPTEPG - 1),
494 	.rec_pt =	KV4ADDR(PML4PML4I, 0, 0, 0),
495 	.kasan_shadow_low = KV4ADDR(KASANPML4I, 0, 0, 0),
496 	.kasan_shadow_high = KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0),
497 	.kmsan_shadow_low = KV4ADDR(KMSANSHADPML4I, 0, 0, 0),
498 	.kmsan_shadow_high = KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E,
499 			    0, 0, 0),
500 	.kmsan_origin_low = KV4ADDR(KMSANORIGPML4I, 0, 0, 0),
501 	.kmsan_origin_high = KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E,
502 			    0, 0, 0),
503 };
504 
505 struct kva_layout_s	kva_layout_la57 = {
506 	.kva_min =	KV5ADDR(NPML5EPG / 2, 0, 0, 0, 0),	/* == rec_pt */
507 	.kva_max =	KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
508 			    NPDEPG - 1, NPTEPG - 1),
509 	.dmap_low =	KV5ADDR(DMPML5I, 0, 0, 0, 0),
510 	.dmap_high =	KV5ADDR(DMPML5I + NDMPML5E, 0, 0, 0, 0),
511 	.lm_low =	KV5ADDR(LMSPML5I, 0, 0, 0, 0),
512 	.lm_high =	KV5ADDR(LMEPML5I + 1, 0, 0, 0, 0),
513 	.km_low =	KV4ADDR(KPML4BASE, 0, 0, 0),
514 	.km_high =	KV4ADDR(KPML4BASE + NKPML4E - 1, NPDPEPG - 1,
515 			    NPDEPG - 1, NPTEPG - 1),
516 	.rec_pt =	KV5ADDR(PML5PML5I, 0, 0, 0, 0),
517 	.kasan_shadow_low = KV4ADDR(KASANPML4I, 0, 0, 0),
518 	.kasan_shadow_high = KV4ADDR(KASANPML4I + NKASANPML4E, 0, 0, 0),
519 	.kmsan_shadow_low = KV4ADDR(KMSANSHADPML4I, 0, 0, 0),
520 	.kmsan_shadow_high = KV4ADDR(KMSANSHADPML4I + NKMSANSHADPML4E,
521 			    0, 0, 0),
522 	.kmsan_origin_low = KV4ADDR(KMSANORIGPML4I, 0, 0, 0),
523 	.kmsan_origin_high = KV4ADDR(KMSANORIGPML4I + NKMSANORIGPML4E,
524 			    0, 0, 0),
525 };
526 
527 /*
528  * pmap_mapdev support pre initialization (i.e. console)
529  */
530 #define	PMAP_PREINIT_MAPPING_COUNT	8
531 static struct pmap_preinit_mapping {
532 	vm_paddr_t	pa;
533 	vm_offset_t	va;
534 	vm_size_t	sz;
535 	int		mode;
536 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
537 static int pmap_initialized;
538 
539 /*
540  * Data for the pv entry allocation mechanism.
541  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
542  */
543 #ifdef NUMA
544 static __inline int
545 pc_to_domain(struct pv_chunk *pc)
546 {
547 
548 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
549 }
550 #else
551 static __inline int
552 pc_to_domain(struct pv_chunk *pc __unused)
553 {
554 
555 	return (0);
556 }
557 #endif
558 
559 struct pv_chunks_list {
560 	struct mtx pvc_lock;
561 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
562 	int active_reclaims;
563 } __aligned(CACHE_LINE_SIZE);
564 
565 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
566 
567 #ifdef	NUMA
568 struct pmap_large_md_page {
569 	struct rwlock   pv_lock;
570 	struct md_page  pv_page;
571 	u_long pv_invl_gen;
572 };
573 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
574 #define pv_dummy pv_dummy_large.pv_page
575 __read_mostly static struct pmap_large_md_page *pv_table;
576 __read_mostly vm_paddr_t pmap_last_pa;
577 #else
578 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
579 static u_long pv_invl_gen[NPV_LIST_LOCKS];
580 static struct md_page *pv_table;
581 static struct md_page pv_dummy;
582 #endif
583 
584 /*
585  * All those kernel PT submaps that BSD is so fond of
586  */
587 pt_entry_t *CMAP1 = NULL;
588 caddr_t CADDR1 = 0;
589 static vm_offset_t qframe = 0;
590 static struct mtx qframe_mtx;
591 
592 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
593 
594 static vmem_t *large_vmem;
595 static u_int lm_ents;
596 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= kva_layout.lm_low && \
597 	(va) < kva_layout.lm_high)
598 
599 int pmap_pcid_enabled = 1;
600 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
601     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
602 int invpcid_works = 0;
603 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
604     "Is the invpcid instruction available ?");
605 int invlpgb_works;
606 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
607     "Is the invlpgb instruction available?");
608 int invlpgb_maxcnt;
609 int pmap_pcid_invlpg_workaround = 0;
610 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
611     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
612     &pmap_pcid_invlpg_workaround, 0,
613     "Enable small core PCID/INVLPG workaround");
614 int pmap_pcid_invlpg_workaround_uena = 1;
615 
616 int __read_frequently pti = 0;
617 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
618     &pti, 0,
619     "Page Table Isolation enabled");
620 static vm_object_t pti_obj;
621 static pml4_entry_t *pti_pml4;
622 static vm_pindex_t pti_pg_idx;
623 static bool pti_finalized;
624 
625 static int pmap_growkernel_panic = 0;
626 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
627     &pmap_growkernel_panic, 0,
628     "panic on failure to allocate kernel page table page");
629 
630 struct pmap_pkru_range {
631 	struct rs_el	pkru_rs_el;
632 	u_int		pkru_keyidx;
633 	int		pkru_flags;
634 };
635 
636 static uma_zone_t pmap_pkru_ranges_zone;
637 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
638     pt_entry_t *pte);
639 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
640 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
641 static void *pkru_dup_range(void *ctx, void *data);
642 static void pkru_free_range(void *ctx, void *node);
643 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
644 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
645 static void pmap_pkru_deassign_all(pmap_t pmap);
646 
647 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
648 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
649     &pcid_save_cnt, "Count of saved TLB context on switch");
650 
651 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
652     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
653 static struct mtx invl_gen_mtx;
654 /* Fake lock object to satisfy turnstiles interface. */
655 static struct lock_object invl_gen_ts = {
656 	.lo_name = "invlts",
657 };
658 static struct pmap_invl_gen pmap_invl_gen_head = {
659 	.gen = 1,
660 	.next = NULL,
661 };
662 static u_long pmap_invl_gen = 1;
663 static int pmap_invl_waiters;
664 static struct callout pmap_invl_callout;
665 static bool pmap_invl_callout_inited;
666 
667 #define	PMAP_ASSERT_NOT_IN_DI() \
668     KASSERT(pmap_not_in_di(), ("DI already started"))
669 
670 static bool
671 pmap_di_locked(void)
672 {
673 	int tun;
674 
675 	if ((cpu_feature2 & CPUID2_CX16) == 0)
676 		return (true);
677 	tun = 0;
678 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
679 	return (tun != 0);
680 }
681 
682 static int
683 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
684 {
685 	int locked;
686 
687 	locked = pmap_di_locked();
688 	return (sysctl_handle_int(oidp, &locked, 0, req));
689 }
690 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
691     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
692     "Locked delayed invalidation");
693 
694 static bool pmap_not_in_di_l(void);
695 static bool pmap_not_in_di_u(void);
696 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
697 {
698 
699 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
700 }
701 
702 static bool
703 pmap_not_in_di_l(void)
704 {
705 	struct pmap_invl_gen *invl_gen;
706 
707 	invl_gen = &curthread->td_md.md_invl_gen;
708 	return (invl_gen->gen == 0);
709 }
710 
711 static void
712 pmap_thread_init_invl_gen_l(struct thread *td)
713 {
714 	struct pmap_invl_gen *invl_gen;
715 
716 	invl_gen = &td->td_md.md_invl_gen;
717 	invl_gen->gen = 0;
718 }
719 
720 static void
721 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
722 {
723 	struct turnstile *ts;
724 
725 	ts = turnstile_trywait(&invl_gen_ts);
726 	if (*m_gen > atomic_load_long(invl_gen))
727 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
728 	else
729 		turnstile_cancel(ts);
730 }
731 
732 static void
733 pmap_delayed_invl_finish_unblock(u_long new_gen)
734 {
735 	struct turnstile *ts;
736 
737 	turnstile_chain_lock(&invl_gen_ts);
738 	ts = turnstile_lookup(&invl_gen_ts);
739 	if (new_gen != 0)
740 		pmap_invl_gen = new_gen;
741 	if (ts != NULL) {
742 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
743 		turnstile_unpend(ts);
744 	}
745 	turnstile_chain_unlock(&invl_gen_ts);
746 }
747 
748 /*
749  * Start a new Delayed Invalidation (DI) block of code, executed by
750  * the current thread.  Within a DI block, the current thread may
751  * destroy both the page table and PV list entries for a mapping and
752  * then release the corresponding PV list lock before ensuring that
753  * the mapping is flushed from the TLBs of any processors with the
754  * pmap active.
755  */
756 static void
757 pmap_delayed_invl_start_l(void)
758 {
759 	struct pmap_invl_gen *invl_gen;
760 	u_long currgen;
761 
762 	invl_gen = &curthread->td_md.md_invl_gen;
763 	PMAP_ASSERT_NOT_IN_DI();
764 	mtx_lock(&invl_gen_mtx);
765 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
766 		currgen = pmap_invl_gen;
767 	else
768 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
769 	invl_gen->gen = currgen + 1;
770 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
771 	mtx_unlock(&invl_gen_mtx);
772 }
773 
774 /*
775  * Finish the DI block, previously started by the current thread.  All
776  * required TLB flushes for the pages marked by
777  * pmap_delayed_invl_page() must be finished before this function is
778  * called.
779  *
780  * This function works by bumping the global DI generation number to
781  * the generation number of the current thread's DI, unless there is a
782  * pending DI that started earlier.  In the latter case, bumping the
783  * global DI generation number would incorrectly signal that the
784  * earlier DI had finished.  Instead, this function bumps the earlier
785  * DI's generation number to match the generation number of the
786  * current thread's DI.
787  */
788 static void
789 pmap_delayed_invl_finish_l(void)
790 {
791 	struct pmap_invl_gen *invl_gen, *next;
792 
793 	invl_gen = &curthread->td_md.md_invl_gen;
794 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
795 	mtx_lock(&invl_gen_mtx);
796 	next = LIST_NEXT(invl_gen, link);
797 	if (next == NULL)
798 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
799 	else
800 		next->gen = invl_gen->gen;
801 	LIST_REMOVE(invl_gen, link);
802 	mtx_unlock(&invl_gen_mtx);
803 	invl_gen->gen = 0;
804 }
805 
806 static bool
807 pmap_not_in_di_u(void)
808 {
809 	struct pmap_invl_gen *invl_gen;
810 
811 	invl_gen = &curthread->td_md.md_invl_gen;
812 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
813 }
814 
815 static void
816 pmap_thread_init_invl_gen_u(struct thread *td)
817 {
818 	struct pmap_invl_gen *invl_gen;
819 
820 	invl_gen = &td->td_md.md_invl_gen;
821 	invl_gen->gen = 0;
822 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
823 }
824 
825 static bool
826 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
827 {
828 	uint64_t new_high, new_low, old_high, old_low;
829 	char res;
830 
831 	old_low = new_low = 0;
832 	old_high = new_high = (uintptr_t)0;
833 
834 	__asm volatile("lock;cmpxchg16b\t%1"
835 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
836 	    : "b"(new_low), "c" (new_high)
837 	    : "memory", "cc");
838 	if (res == 0) {
839 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
840 			return (false);
841 		out->gen = old_low;
842 		out->next = (void *)old_high;
843 	} else {
844 		out->gen = new_low;
845 		out->next = (void *)new_high;
846 	}
847 	return (true);
848 }
849 
850 static bool
851 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
852     struct pmap_invl_gen *new_val)
853 {
854 	uint64_t new_high, new_low, old_high, old_low;
855 	char res;
856 
857 	new_low = new_val->gen;
858 	new_high = (uintptr_t)new_val->next;
859 	old_low = old_val->gen;
860 	old_high = (uintptr_t)old_val->next;
861 
862 	__asm volatile("lock;cmpxchg16b\t%1"
863 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
864 	    : "b"(new_low), "c" (new_high)
865 	    : "memory", "cc");
866 	return (res);
867 }
868 
869 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
870 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
871     &pv_page_count, "Current number of allocated pv pages");
872 
873 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
874 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
875     &user_pt_page_count,
876     "Current number of allocated page table pages for userspace");
877 
878 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
879 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
880     &kernel_pt_page_count,
881     "Current number of allocated page table pages for the kernel");
882 
883 #ifdef PV_STATS
884 
885 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
886 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
887     CTLFLAG_RD, &invl_start_restart,
888     "Number of delayed TLB invalidation request restarts");
889 
890 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
891 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
892     &invl_finish_restart,
893     "Number of delayed TLB invalidation completion restarts");
894 
895 static int invl_max_qlen;
896 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
897     &invl_max_qlen, 0,
898     "Maximum delayed TLB invalidation request queue length");
899 #endif
900 
901 #define di_delay	locks_delay
902 
903 static void
904 pmap_delayed_invl_start_u(void)
905 {
906 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
907 	struct thread *td;
908 	struct lock_delay_arg lda;
909 	uintptr_t prevl;
910 	u_char pri;
911 #ifdef PV_STATS
912 	int i, ii;
913 #endif
914 
915 	td = curthread;
916 	invl_gen = &td->td_md.md_invl_gen;
917 	PMAP_ASSERT_NOT_IN_DI();
918 	lock_delay_arg_init(&lda, &di_delay);
919 	invl_gen->saved_pri = 0;
920 	pri = td->td_base_pri;
921 	if (pri > PVM) {
922 		thread_lock(td);
923 		pri = td->td_base_pri;
924 		if (pri > PVM) {
925 			invl_gen->saved_pri = pri;
926 			sched_prio(td, PVM);
927 		}
928 		thread_unlock(td);
929 	}
930 again:
931 	PV_STAT(i = 0);
932 	for (p = &pmap_invl_gen_head;; p = prev.next) {
933 		PV_STAT(i++);
934 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
935 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
936 			PV_STAT(counter_u64_add(invl_start_restart, 1));
937 			lock_delay(&lda);
938 			goto again;
939 		}
940 		if (prevl == 0)
941 			break;
942 		prev.next = (void *)prevl;
943 	}
944 #ifdef PV_STATS
945 	if ((ii = invl_max_qlen) < i)
946 		atomic_cmpset_int(&invl_max_qlen, ii, i);
947 #endif
948 
949 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
950 		PV_STAT(counter_u64_add(invl_start_restart, 1));
951 		lock_delay(&lda);
952 		goto again;
953 	}
954 
955 	new_prev.gen = prev.gen;
956 	new_prev.next = invl_gen;
957 	invl_gen->gen = prev.gen + 1;
958 
959 	/* Formal fence between store to invl->gen and updating *p. */
960 	atomic_thread_fence_rel();
961 
962 	/*
963 	 * After inserting an invl_gen element with invalid bit set,
964 	 * this thread blocks any other thread trying to enter the
965 	 * delayed invalidation block.  Do not allow to remove us from
966 	 * the CPU, because it causes starvation for other threads.
967 	 */
968 	critical_enter();
969 
970 	/*
971 	 * ABA for *p is not possible there, since p->gen can only
972 	 * increase.  So if the *p thread finished its di, then
973 	 * started a new one and got inserted into the list at the
974 	 * same place, its gen will appear greater than the previously
975 	 * read gen.
976 	 */
977 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
978 		critical_exit();
979 		PV_STAT(counter_u64_add(invl_start_restart, 1));
980 		lock_delay(&lda);
981 		goto again;
982 	}
983 
984 	/*
985 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
986 	 * invl_gen->next, allowing other threads to iterate past us.
987 	 * pmap_di_store_invl() provides fence between the generation
988 	 * write and the update of next.
989 	 */
990 	invl_gen->next = NULL;
991 	critical_exit();
992 }
993 
994 static bool
995 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
996     struct pmap_invl_gen *p)
997 {
998 	struct pmap_invl_gen prev, new_prev;
999 	u_long mygen;
1000 
1001 	/*
1002 	 * Load invl_gen->gen after setting invl_gen->next
1003 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
1004 	 * generations to propagate to our invl_gen->gen.  Lock prefix
1005 	 * in atomic_set_ptr() worked as seq_cst fence.
1006 	 */
1007 	mygen = atomic_load_long(&invl_gen->gen);
1008 
1009 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
1010 		return (false);
1011 
1012 	KASSERT(prev.gen < mygen,
1013 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
1014 	new_prev.gen = mygen;
1015 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
1016 	    ~PMAP_INVL_GEN_NEXT_INVALID);
1017 
1018 	/* Formal fence between load of prev and storing update to it. */
1019 	atomic_thread_fence_rel();
1020 
1021 	return (pmap_di_store_invl(p, &prev, &new_prev));
1022 }
1023 
1024 static void
1025 pmap_delayed_invl_finish_u(void)
1026 {
1027 	struct pmap_invl_gen *invl_gen, *p;
1028 	struct thread *td;
1029 	struct lock_delay_arg lda;
1030 	uintptr_t prevl;
1031 
1032 	td = curthread;
1033 	invl_gen = &td->td_md.md_invl_gen;
1034 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
1035 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
1036 	    ("missed invl_start: INVALID"));
1037 	lock_delay_arg_init(&lda, &di_delay);
1038 
1039 again:
1040 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
1041 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
1042 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
1043 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
1044 			lock_delay(&lda);
1045 			goto again;
1046 		}
1047 		if ((void *)prevl == invl_gen)
1048 			break;
1049 	}
1050 
1051 	/*
1052 	 * It is legitimate to not find ourself on the list if a
1053 	 * thread before us finished its DI and started it again.
1054 	 */
1055 	if (__predict_false(p == NULL)) {
1056 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1057 		lock_delay(&lda);
1058 		goto again;
1059 	}
1060 
1061 	critical_enter();
1062 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1063 	    PMAP_INVL_GEN_NEXT_INVALID);
1064 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1065 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1066 		    PMAP_INVL_GEN_NEXT_INVALID);
1067 		critical_exit();
1068 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1069 		lock_delay(&lda);
1070 		goto again;
1071 	}
1072 	critical_exit();
1073 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1074 		pmap_delayed_invl_finish_unblock(0);
1075 	if (invl_gen->saved_pri != 0) {
1076 		thread_lock(td);
1077 		sched_prio(td, invl_gen->saved_pri);
1078 		thread_unlock(td);
1079 	}
1080 }
1081 
1082 #ifdef DDB
1083 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1084 {
1085 	struct pmap_invl_gen *p, *pn;
1086 	struct thread *td;
1087 	uintptr_t nextl;
1088 	bool first;
1089 
1090 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1091 	    first = false) {
1092 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1093 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1094 		td = first ? NULL : __containerof(p, struct thread,
1095 		    td_md.md_invl_gen);
1096 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1097 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1098 		    td != NULL ? td->td_tid : -1);
1099 	}
1100 }
1101 #endif
1102 
1103 #ifdef PV_STATS
1104 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1105 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1106     CTLFLAG_RD, &invl_wait,
1107     "Number of times DI invalidation blocked pmap_remove_all/write");
1108 
1109 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1110 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1111      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1112 
1113 #endif
1114 
1115 #ifdef NUMA
1116 static u_long *
1117 pmap_delayed_invl_genp(vm_page_t m)
1118 {
1119 	vm_paddr_t pa;
1120 	u_long *gen;
1121 
1122 	pa = VM_PAGE_TO_PHYS(m);
1123 	if (__predict_false((pa) > pmap_last_pa))
1124 		gen = &pv_dummy_large.pv_invl_gen;
1125 	else
1126 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1127 
1128 	return (gen);
1129 }
1130 #else
1131 static u_long *
1132 pmap_delayed_invl_genp(vm_page_t m)
1133 {
1134 
1135 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1136 }
1137 #endif
1138 
1139 static void
1140 pmap_delayed_invl_callout_func(void *arg __unused)
1141 {
1142 
1143 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1144 		return;
1145 	pmap_delayed_invl_finish_unblock(0);
1146 }
1147 
1148 static void
1149 pmap_delayed_invl_callout_init(void *arg __unused)
1150 {
1151 
1152 	if (pmap_di_locked())
1153 		return;
1154 	callout_init(&pmap_invl_callout, 1);
1155 	pmap_invl_callout_inited = true;
1156 }
1157 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1158     pmap_delayed_invl_callout_init, NULL);
1159 
1160 /*
1161  * Ensure that all currently executing DI blocks, that need to flush
1162  * TLB for the given page m, actually flushed the TLB at the time the
1163  * function returned.  If the page m has an empty PV list and we call
1164  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1165  * valid mapping for the page m in either its page table or TLB.
1166  *
1167  * This function works by blocking until the global DI generation
1168  * number catches up with the generation number associated with the
1169  * given page m and its PV list.  Since this function's callers
1170  * typically own an object lock and sometimes own a page lock, it
1171  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1172  * processor.
1173  */
1174 static void
1175 pmap_delayed_invl_wait_l(vm_page_t m)
1176 {
1177 	u_long *m_gen;
1178 #ifdef PV_STATS
1179 	bool accounted = false;
1180 #endif
1181 
1182 	m_gen = pmap_delayed_invl_genp(m);
1183 	while (*m_gen > pmap_invl_gen) {
1184 #ifdef PV_STATS
1185 		if (!accounted) {
1186 			counter_u64_add(invl_wait, 1);
1187 			accounted = true;
1188 		}
1189 #endif
1190 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1191 	}
1192 }
1193 
1194 static void
1195 pmap_delayed_invl_wait_u(vm_page_t m)
1196 {
1197 	u_long *m_gen;
1198 	struct lock_delay_arg lda;
1199 	bool fast;
1200 
1201 	fast = true;
1202 	m_gen = pmap_delayed_invl_genp(m);
1203 	lock_delay_arg_init(&lda, &di_delay);
1204 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1205 		if (fast || !pmap_invl_callout_inited) {
1206 			PV_STAT(counter_u64_add(invl_wait, 1));
1207 			lock_delay(&lda);
1208 			fast = false;
1209 		} else {
1210 			/*
1211 			 * The page's invalidation generation number
1212 			 * is still below the current thread's number.
1213 			 * Prepare to block so that we do not waste
1214 			 * CPU cycles or worse, suffer livelock.
1215 			 *
1216 			 * Since it is impossible to block without
1217 			 * racing with pmap_delayed_invl_finish_u(),
1218 			 * prepare for the race by incrementing
1219 			 * pmap_invl_waiters and arming a 1-tick
1220 			 * callout which will unblock us if we lose
1221 			 * the race.
1222 			 */
1223 			atomic_add_int(&pmap_invl_waiters, 1);
1224 
1225 			/*
1226 			 * Re-check the current thread's invalidation
1227 			 * generation after incrementing
1228 			 * pmap_invl_waiters, so that there is no race
1229 			 * with pmap_delayed_invl_finish_u() setting
1230 			 * the page generation and checking
1231 			 * pmap_invl_waiters.  The only race allowed
1232 			 * is for a missed unblock, which is handled
1233 			 * by the callout.
1234 			 */
1235 			if (*m_gen >
1236 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1237 				callout_reset(&pmap_invl_callout, 1,
1238 				    pmap_delayed_invl_callout_func, NULL);
1239 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1240 				pmap_delayed_invl_wait_block(m_gen,
1241 				    &pmap_invl_gen_head.gen);
1242 			}
1243 			atomic_add_int(&pmap_invl_waiters, -1);
1244 		}
1245 	}
1246 }
1247 
1248 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1249 {
1250 
1251 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1252 	    pmap_thread_init_invl_gen_u);
1253 }
1254 
1255 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1256 {
1257 
1258 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1259 	    pmap_delayed_invl_start_u);
1260 }
1261 
1262 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1263 {
1264 
1265 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1266 	    pmap_delayed_invl_finish_u);
1267 }
1268 
1269 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1270 {
1271 
1272 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1273 	    pmap_delayed_invl_wait_u);
1274 }
1275 
1276 /*
1277  * Mark the page m's PV list as participating in the current thread's
1278  * DI block.  Any threads concurrently using m's PV list to remove or
1279  * restrict all mappings to m will wait for the current thread's DI
1280  * block to complete before proceeding.
1281  *
1282  * The function works by setting the DI generation number for m's PV
1283  * list to at least the DI generation number of the current thread.
1284  * This forces a caller of pmap_delayed_invl_wait() to block until
1285  * current thread calls pmap_delayed_invl_finish().
1286  */
1287 static void
1288 pmap_delayed_invl_page(vm_page_t m)
1289 {
1290 	u_long gen, *m_gen;
1291 
1292 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1293 	gen = curthread->td_md.md_invl_gen.gen;
1294 	if (gen == 0)
1295 		return;
1296 	m_gen = pmap_delayed_invl_genp(m);
1297 	if (*m_gen < gen)
1298 		*m_gen = gen;
1299 }
1300 
1301 /*
1302  * Crashdump maps.
1303  */
1304 static caddr_t crashdumpmap;
1305 
1306 /*
1307  * Internal flags for pmap_enter()'s helper functions.
1308  */
1309 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1310 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1311 
1312 /*
1313  * Internal flags for pmap_mapdev_internal() and
1314  * pmap_change_props_locked().
1315  */
1316 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1317 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1318 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1319 
1320 TAILQ_HEAD(pv_chunklist, pv_chunk);
1321 
1322 static void	free_pv_chunk(struct pv_chunk *pc);
1323 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1324 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1325 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1326 static int	popcnt_pc_map_pq(uint64_t *map);
1327 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1328 static void	reserve_pv_entries(pmap_t pmap, int needed,
1329 		    struct rwlock **lockp);
1330 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1331 		    struct rwlock **lockp);
1332 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1333 		    u_int flags, struct rwlock **lockp);
1334 #if VM_NRESERVLEVEL > 0
1335 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1336 		    struct rwlock **lockp);
1337 #endif
1338 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1339 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1340 		    vm_offset_t va);
1341 
1342 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1343 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1344     vm_prot_t prot, int mode, int flags);
1345 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1346 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1347     vm_offset_t va, struct rwlock **lockp);
1348 static bool	pmap_demote_pde_mpte(pmap_t pmap, pd_entry_t *pde,
1349     vm_offset_t va, struct rwlock **lockp, vm_page_t mpte);
1350 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1351     vm_offset_t va, vm_page_t m);
1352 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1353 		    vm_prot_t prot, struct rwlock **lockp);
1354 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1355 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1356 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1357     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1358 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1359 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1360     bool allpte_PG_A_set);
1361 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1362     vm_offset_t eva);
1363 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1364     vm_offset_t eva);
1365 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1366 		    pd_entry_t pde);
1367 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1368 static vm_page_t pmap_large_map_getptp_unlocked(void);
1369 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1370 #if VM_NRESERVLEVEL > 0
1371 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1372     vm_page_t mpte, struct rwlock **lockp);
1373 #endif
1374 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1375     vm_prot_t prot);
1376 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1377 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1378     bool exec);
1379 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1380 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1381 static void pmap_pti_wire_pte(void *pte);
1382 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1383     bool demote_kpde, struct spglist *free, struct rwlock **lockp);
1384 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1385     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1386 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1387 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1388     struct spglist *free);
1389 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1390 		    pd_entry_t *pde, struct spglist *free,
1391 		    struct rwlock **lockp);
1392 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1393     vm_page_t m, struct rwlock **lockp);
1394 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1395     pd_entry_t newpde);
1396 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1397 
1398 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1399 		struct rwlock **lockp);
1400 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1401 		struct rwlock **lockp, vm_offset_t va);
1402 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1403 		struct rwlock **lockp, vm_offset_t va);
1404 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1405 		struct rwlock **lockp);
1406 
1407 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1408     struct spglist *free);
1409 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1410 
1411 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1412 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1413 
1414 /********************/
1415 /* Inline functions */
1416 /********************/
1417 
1418 /*
1419  * Return a non-clipped indexes for a given VA, which are page table
1420  * pages indexes at the corresponding level.
1421  */
1422 static __inline vm_pindex_t
1423 pmap_pde_pindex(vm_offset_t va)
1424 {
1425 	return (va >> PDRSHIFT);
1426 }
1427 
1428 static __inline vm_pindex_t
1429 pmap_pdpe_pindex(vm_offset_t va)
1430 {
1431 	return (NUPDE + (va >> PDPSHIFT));
1432 }
1433 
1434 static __inline vm_pindex_t
1435 pmap_pml4e_pindex(vm_offset_t va)
1436 {
1437 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1438 }
1439 
1440 static __inline vm_pindex_t
1441 pmap_pml5e_pindex(vm_offset_t va)
1442 {
1443 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1444 }
1445 
1446 static __inline pml4_entry_t *
1447 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1448 {
1449 
1450 	MPASS(pmap_is_la57(pmap));
1451 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1452 }
1453 
1454 static __inline pml4_entry_t *
1455 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1456 {
1457 
1458 	MPASS(pmap_is_la57(pmap));
1459 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1460 }
1461 
1462 static __inline pml4_entry_t *
1463 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1464 {
1465 	pml4_entry_t *pml4e;
1466 
1467 	/* XXX MPASS(pmap_is_la57(pmap); */
1468 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1469 	return (&pml4e[pmap_pml4e_index(va)]);
1470 }
1471 
1472 /* Return a pointer to the PML4 slot that corresponds to a VA */
1473 static __inline pml4_entry_t *
1474 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1475 {
1476 	pml5_entry_t *pml5e;
1477 	pml4_entry_t *pml4e;
1478 	pt_entry_t PG_V;
1479 
1480 	if (pmap_is_la57(pmap)) {
1481 		pml5e = pmap_pml5e(pmap, va);
1482 		PG_V = pmap_valid_bit(pmap);
1483 		if ((*pml5e & PG_V) == 0)
1484 			return (NULL);
1485 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1486 	} else {
1487 		pml4e = pmap->pm_pmltop;
1488 	}
1489 	return (&pml4e[pmap_pml4e_index(va)]);
1490 }
1491 
1492 static __inline pml4_entry_t *
1493 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1494 {
1495 	MPASS(!pmap_is_la57(pmap));
1496 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1497 }
1498 
1499 /* Return a pointer to the PDP slot that corresponds to a VA */
1500 static __inline pdp_entry_t *
1501 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1502 {
1503 	pdp_entry_t *pdpe;
1504 
1505 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1506 	return (&pdpe[pmap_pdpe_index(va)]);
1507 }
1508 
1509 /* Return a pointer to the PDP slot that corresponds to a VA */
1510 static __inline pdp_entry_t *
1511 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1512 {
1513 	pml4_entry_t *pml4e;
1514 	pt_entry_t PG_V;
1515 
1516 	PG_V = pmap_valid_bit(pmap);
1517 	pml4e = pmap_pml4e(pmap, va);
1518 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1519 		return (NULL);
1520 	return (pmap_pml4e_to_pdpe(pml4e, va));
1521 }
1522 
1523 /* Return a pointer to the PD slot that corresponds to a VA */
1524 static __inline pd_entry_t *
1525 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1526 {
1527 	pd_entry_t *pde;
1528 
1529 	KASSERT((*pdpe & PG_PS) == 0,
1530 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1531 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1532 	return (&pde[pmap_pde_index(va)]);
1533 }
1534 
1535 /* Return a pointer to the PD slot that corresponds to a VA */
1536 static __inline pd_entry_t *
1537 pmap_pde(pmap_t pmap, vm_offset_t va)
1538 {
1539 	pdp_entry_t *pdpe;
1540 	pt_entry_t PG_V;
1541 
1542 	PG_V = pmap_valid_bit(pmap);
1543 	pdpe = pmap_pdpe(pmap, va);
1544 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1545 		return (NULL);
1546 	KASSERT((*pdpe & PG_PS) == 0,
1547 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1548 	return (pmap_pdpe_to_pde(pdpe, va));
1549 }
1550 
1551 /* Return a pointer to the PT slot that corresponds to a VA */
1552 static __inline pt_entry_t *
1553 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1554 {
1555 	pt_entry_t *pte;
1556 
1557 	KASSERT((*pde & PG_PS) == 0,
1558 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1559 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1560 	return (&pte[pmap_pte_index(va)]);
1561 }
1562 
1563 /* Return a pointer to the PT slot that corresponds to a VA */
1564 static __inline pt_entry_t *
1565 pmap_pte(pmap_t pmap, vm_offset_t va)
1566 {
1567 	pd_entry_t *pde;
1568 	pt_entry_t PG_V;
1569 
1570 	PG_V = pmap_valid_bit(pmap);
1571 	pde = pmap_pde(pmap, va);
1572 	if (pde == NULL || (*pde & PG_V) == 0)
1573 		return (NULL);
1574 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1575 		return ((pt_entry_t *)pde);
1576 	return (pmap_pde_to_pte(pde, va));
1577 }
1578 
1579 static __inline void
1580 pmap_resident_count_adj(pmap_t pmap, int count)
1581 {
1582 
1583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1584 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1585 	    ("pmap %p resident count underflow %ld %d", pmap,
1586 	    pmap->pm_stats.resident_count, count));
1587 	pmap->pm_stats.resident_count += count;
1588 }
1589 
1590 static __inline void
1591 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1592 {
1593 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1594 	    ("pmap %p resident count underflow %ld %d", pmap,
1595 	    pmap->pm_stats.resident_count, count));
1596 	pmap->pm_stats.resident_count += count;
1597 }
1598 
1599 static __inline void
1600 pmap_pt_page_count_adj(pmap_t pmap, int count)
1601 {
1602 	if (pmap == kernel_pmap)
1603 		counter_u64_add(kernel_pt_page_count, count);
1604 	else {
1605 		if (pmap != NULL)
1606 			pmap_resident_count_adj(pmap, count);
1607 		counter_u64_add(user_pt_page_count, count);
1608 	}
1609 }
1610 
1611 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1612     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1613 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1614 
1615 pt_entry_t *
1616 vtopte(vm_offset_t va)
1617 {
1618 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1619 
1620 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1621 }
1622 
1623 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1624     NPML4EPGSHIFT)) - 1) << 3;
1625 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1626 
1627 static __inline pd_entry_t *
1628 vtopde(vm_offset_t va)
1629 {
1630 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1631 
1632 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1633 }
1634 
1635 static u_int64_t
1636 allocpages(vm_paddr_t *firstaddr, int n)
1637 {
1638 	u_int64_t ret;
1639 
1640 	ret = *firstaddr;
1641 	bzero((void *)ret, n * PAGE_SIZE);
1642 	*firstaddr += n * PAGE_SIZE;
1643 	return (ret);
1644 }
1645 
1646 CTASSERT(powerof2(NDMPML4E));
1647 
1648 /* number of kernel PDP slots */
1649 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1650 
1651 static void
1652 nkpt_init(vm_paddr_t addr)
1653 {
1654 	int pt_pages;
1655 
1656 #ifdef NKPT
1657 	pt_pages = NKPT;
1658 #else
1659 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1660 	pt_pages += NKPDPE(pt_pages);
1661 
1662 	/*
1663 	 * Add some slop beyond the bare minimum required for bootstrapping
1664 	 * the kernel.
1665 	 *
1666 	 * This is quite important when allocating KVA for kernel modules.
1667 	 * The modules are required to be linked in the negative 2GB of
1668 	 * the address space.  If we run out of KVA in this region then
1669 	 * pmap_growkernel() will need to allocate page table pages to map
1670 	 * the entire 512GB of KVA space which is an unnecessary tax on
1671 	 * physical memory.
1672 	 *
1673 	 * Secondly, device memory mapped as part of setting up the low-
1674 	 * level console(s) is taken from KVA, starting at virtual_avail.
1675 	 * This is because cninit() is called after pmap_bootstrap() but
1676 	 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1677 	 * is not uncommon.
1678 	 */
1679 	pt_pages += 32;		/* 64MB additional slop. */
1680 #endif
1681 	nkpt = pt_pages;
1682 }
1683 
1684 /*
1685  * Returns the proper write/execute permission for a physical page that is
1686  * part of the initial boot allocations.
1687  *
1688  * If the page has kernel text, it is marked as read-only. If the page has
1689  * kernel read-only data, it is marked as read-only/not-executable. If the
1690  * page has only read-write data, it is marked as read-write/not-executable.
1691  * If the page is below/above the kernel range, it is marked as read-write.
1692  *
1693  * This function operates on 2M pages, since we map the kernel space that
1694  * way.
1695  */
1696 static inline pt_entry_t
1697 bootaddr_rwx(vm_paddr_t pa)
1698 {
1699 	/*
1700 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1701 	 * need not be executable.  The .bss section is padded to a 2MB
1702 	 * boundary, so memory following the kernel need not be executable
1703 	 * either.  Preloaded kernel modules have their mapping permissions
1704 	 * fixed up by the linker.
1705 	 */
1706 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1707 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1708 		return (X86_PG_RW | pg_nx);
1709 
1710 	/*
1711 	 * The linker should ensure that the read-only and read-write
1712 	 * portions don't share the same 2M page, so this shouldn't
1713 	 * impact read-only data. However, in any case, any page with
1714 	 * read-write data needs to be read-write.
1715 	 */
1716 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1717 		return (X86_PG_RW | pg_nx);
1718 
1719 	/*
1720 	 * Mark any 2M page containing kernel text as read-only. Mark
1721 	 * other pages with read-only data as read-only and not executable.
1722 	 * (It is likely a small portion of the read-only data section will
1723 	 * be marked as read-only, but executable. This should be acceptable
1724 	 * since the read-only protection will keep the data from changing.)
1725 	 * Note that fixups to the .text section will still work until we
1726 	 * set CR0.WP.
1727 	 */
1728 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1729 		return (0);
1730 	return (pg_nx);
1731 }
1732 
1733 extern const char la57_trampoline[];
1734 
1735 static void
1736 pmap_bootstrap_la57(vm_paddr_t *firstaddr)
1737 {
1738 	void (*la57_tramp)(uint64_t pml5);
1739 	pml5_entry_t *pt;
1740 	uint64_t cr4;
1741 
1742 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
1743 		return;
1744 	la57 = 1;
1745 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
1746 	if (!la57)
1747 		return;
1748 
1749 	KPML5phys = allocpages(firstaddr, 1);
1750 	KPML4phys = rcr3() & 0xfffff000; /* pml4 from loader must be < 4G */
1751 
1752 	pt = (pml5_entry_t *)KPML5phys;
1753 	pt[0] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
1754 	pt[NPML4EPG - 1] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A |
1755 	    X86_PG_M;
1756 
1757 	la57_tramp = (void (*)(uint64_t))((uintptr_t)la57_trampoline -
1758 	    KERNSTART + amd64_loadaddr());
1759 	printf("Calling la57 trampoline at %p, KPML5phys %#lx ...",
1760 	    la57_tramp, KPML5phys);
1761 	if (lass_enabled) {
1762 		cr4 = rcr4();
1763 		load_cr4(cr4 & ~CR4_LASS);
1764 	}
1765 	la57_tramp(KPML5phys);
1766 	printf(" alive in la57 mode\n");
1767 	if (lass_enabled) {
1768 		cr4 = rcr4();
1769 		load_cr4(cr4 | CR4_LASS);
1770 	}
1771 }
1772 
1773 static void
1774 create_pagetables(vm_paddr_t *firstaddr)
1775 {
1776 	pd_entry_t *pd_p;
1777 	pdp_entry_t *pdp_p;
1778 	pml4_entry_t *p4_p, *p4d_p;
1779 	pml5_entry_t *p5_p;
1780 	uint64_t DMPDkernphys;
1781 	vm_paddr_t pax;
1782 #ifdef KASAN
1783 	pt_entry_t *pt_p;
1784 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1785 	vm_offset_t kasankernbase;
1786 	int kasankpdpi, kasankpdi, nkasanpte;
1787 #endif
1788 	int i, j, ndm1g, nkpdpe, nkdmpde, ndmpml4phys;
1789 
1790 	TSENTER();
1791 	/* Allocate page table pages for the direct map */
1792 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1793 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1794 		ndmpdp = 4;
1795 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1796 	if (la57) {
1797 		ndmpml4phys = howmany(ndmpdpphys, NPML4EPG);
1798 		if (ndmpml4phys > NDMPML5E) {
1799 			printf("NDMPML5E limits system to %ld GB\n",
1800 			    (u_long)NDMPML5E * NBPML5 / 1024 / 1024 / 1024);
1801 			Maxmem = atop(NDMPML5E * NBPML5);
1802 			ndmpml4phys = NDMPML5E;
1803 			ndmpdpphys = ndmpml4phys * NPML4EPG;
1804 			ndmpdp = ndmpdpphys * NPDEPG;
1805 		}
1806 		DMPML4phys = allocpages(firstaddr, ndmpml4phys);
1807 	} else {
1808 		if (ndmpdpphys > NDMPML4E) {
1809 			/*
1810 			 * Each NDMPML4E allows 512 GB, so limit to
1811 			 * that, and then readjust ndmpdp and
1812 			 * ndmpdpphys.
1813 			 */
1814 			printf("NDMPML4E limits system to %d GB\n",
1815 			    NDMPML4E * 512);
1816 			Maxmem = atop(NDMPML4E * NBPML4);
1817 			ndmpdpphys = NDMPML4E;
1818 			ndmpdp = NDMPML4E * NPDEPG;
1819 		}
1820 	}
1821 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1822 	ndm1g = 0;
1823 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1824 		/*
1825 		 * Calculate the number of 1G pages that will fully fit in
1826 		 * Maxmem.
1827 		 */
1828 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1829 
1830 		/*
1831 		 * Allocate 2M pages for the kernel. These will be used in
1832 		 * place of the one or more 1G pages from ndm1g that maps
1833 		 * kernel memory into DMAP.
1834 		 */
1835 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1836 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1837 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1838 	}
1839 	if (ndm1g < ndmpdp)
1840 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1841 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1842 
1843 	/* Allocate pages. */
1844 	if (la57) {
1845 		KPML5phys = allocpages(firstaddr, 1);
1846 		p5_p = (pml5_entry_t *)KPML5phys;
1847 	}
1848 	KPML4phys = allocpages(firstaddr, 1);
1849 	p4_p = (pml4_entry_t *)KPML4phys;
1850 
1851 	KPDPphys = allocpages(firstaddr, NKPML4E);
1852 #ifdef KASAN
1853 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1854 	KASANPDphys = allocpages(firstaddr, 1);
1855 #endif
1856 #ifdef KMSAN
1857 	/*
1858 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1859 	 * no need to shadow memory above KERNBASE.
1860 	 */
1861 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1862 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1863 #endif
1864 
1865 	/*
1866 	 * Allocate the initial number of kernel page table pages required to
1867 	 * bootstrap.  We defer this until after all memory-size dependent
1868 	 * allocations are done (e.g. direct map), so that we don't have to
1869 	 * build in too much slop in our estimate.
1870 	 *
1871 	 * Note that when NKPML4E > 1, we have an empty page underneath
1872 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1873 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1874 	 */
1875 	nkpt_init(*firstaddr);
1876 	nkpdpe = NKPDPE(nkpt);
1877 
1878 	KPTphys = allocpages(firstaddr, nkpt);
1879 	KPDphys = allocpages(firstaddr, nkpdpe);
1880 
1881 #ifdef KASAN
1882 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1883 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1884 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1885 #endif
1886 
1887 	/*
1888 	 * Connect the zero-filled PT pages to their PD entries.  This
1889 	 * implicitly maps the PT pages at their correct locations within
1890 	 * the PTmap.
1891 	 */
1892 	pd_p = (pd_entry_t *)KPDphys;
1893 	for (i = 0; i < nkpt; i++)
1894 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1895 
1896 	/*
1897 	 * Map from start of the kernel in physical memory (staging
1898 	 * area) to the end of loader preallocated memory using 2MB
1899 	 * pages.  This replaces some of the PD entries created above.
1900 	 * For compatibility, identity map 2M at the start.
1901 	 */
1902 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1903 	    X86_PG_RW | pg_nx;
1904 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1905 		/* Preset PG_M and PG_A because demotion expects it. */
1906 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1907 		    X86_PG_A | bootaddr_rwx(pax);
1908 	}
1909 
1910 	/*
1911 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1912 	 * to record the physical blocks we've actually mapped into kernel
1913 	 * virtual address space.
1914 	 */
1915 	if (*firstaddr < round_2mpage(KERNend))
1916 		*firstaddr = round_2mpage(KERNend);
1917 
1918 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1919 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1920 	for (i = 0; i < nkpdpe; i++)
1921 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1922 
1923 #ifdef KASAN
1924 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1925 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1926 	kasankpdi = pmap_pde_index(kasankernbase);
1927 
1928 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1929 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1930 
1931 	pd_p = (pd_entry_t *)KASANPDphys;
1932 	for (i = 0; i < nkasanpte; i++)
1933 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1934 		    X86_PG_V | pg_nx;
1935 
1936 	pt_p = (pt_entry_t *)KASANPTphys;
1937 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1938 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1939 		    X86_PG_M | X86_PG_A | pg_nx;
1940 #endif
1941 
1942 	/*
1943 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1944 	 * the end of physical memory is not aligned to a 1GB page boundary,
1945 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1946 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1947 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1948 	 * that are partially used.
1949 	 */
1950 	pd_p = (pd_entry_t *)DMPDphys;
1951 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1952 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1953 		/* Preset PG_M and PG_A because demotion expects it. */
1954 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1955 		    X86_PG_M | X86_PG_A | pg_nx;
1956 	}
1957 	pdp_p = (pdp_entry_t *)DMPDPphys;
1958 	for (i = 0; i < ndm1g; i++) {
1959 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1960 		/* Preset PG_M and PG_A because demotion expects it. */
1961 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1962 		    X86_PG_M | X86_PG_A | pg_nx;
1963 	}
1964 	for (j = 0; i < ndmpdp; i++, j++) {
1965 		pdp_p[i] = DMPDphys + ptoa(j);
1966 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1967 	}
1968 
1969 	/*
1970 	 * Connect the Direct Map slots up to the PML4.
1971 	 * pml5 entries for DMAP are handled below in global pml5 loop.
1972 	 */
1973 	p4d_p = la57 ? (pml4_entry_t *)DMPML4phys : &p4_p[DMPML4I];
1974 	for (i = 0; i < ndmpdpphys; i++) {
1975 		p4d_p[i] = (DMPDPphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1976 		    pg_nx;
1977 	}
1978 
1979 	/*
1980 	 * Instead of using a 1G page for the memory containing the kernel,
1981 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1982 	 * pages, this will partially overwrite the PDPEs above.)
1983 	 */
1984 	if (ndm1g > 0) {
1985 		pd_p = (pd_entry_t *)DMPDkernphys;
1986 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1987 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1988 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1989 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1990 		}
1991 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1992 		for (i = 0; i < nkdmpde; i++) {
1993 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1994 			    X86_PG_RW | X86_PG_V | pg_nx;
1995 		}
1996 	}
1997 
1998 #ifdef KASAN
1999 	/* Connect the KASAN shadow map slots up to the PML4. */
2000 	for (i = 0; i < NKASANPML4E; i++) {
2001 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
2002 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
2003 	}
2004 #endif
2005 
2006 #ifdef KMSAN
2007 	/* Connect the KMSAN shadow map slots up to the PML4. */
2008 	for (i = 0; i < NKMSANSHADPML4E; i++) {
2009 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
2010 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
2011 	}
2012 
2013 	/* Connect the KMSAN origin map slots up to the PML4. */
2014 	for (i = 0; i < NKMSANORIGPML4E; i++) {
2015 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
2016 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
2017 	}
2018 #endif
2019 
2020 	/* Connect the KVA slots up to the PML4 */
2021 	for (i = 0; i < NKPML4E; i++) {
2022 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
2023 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
2024 	}
2025 
2026 	if (la57) {
2027 		/* XXXKIB bootstrap KPML5phys page is lost */
2028 		for (i = 0; i < NPML5EPG; i++) {
2029 			if (i == PML5PML5I) {
2030 				/*
2031 				 * Recursively map PML5 to itself in
2032 				 * order to get PTmap and PDmap.
2033 				 */
2034 				p5_p[i] = KPML5phys | X86_PG_RW | X86_PG_A |
2035 				    X86_PG_M | X86_PG_V | pg_nx;
2036 			} else if (i >= DMPML5I && i < DMPML5I + ndmpml4phys) {
2037 				/* Connect DMAP pml4 pages to PML5. */
2038 				p5_p[i] = (DMPML4phys + ptoa(i - DMPML5I)) |
2039 				    X86_PG_RW | X86_PG_V | pg_nx;
2040 			} else if (i == pmap_pml5e_index(UPT_MAX_ADDRESS)) {
2041 				p5_p[i] = KPML4phys | X86_PG_RW | X86_PG_A |
2042 				    X86_PG_M | X86_PG_V;
2043 			} else {
2044 				p5_p[i] = 0;
2045 			}
2046 		}
2047 	} else {
2048 		/* Recursively map PML4 to itself in order to get PTmap */
2049 		p4_p[PML4PML4I] = KPML4phys;
2050 		p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
2051 	}
2052 	TSEXIT();
2053 }
2054 
2055 /*
2056  *	Bootstrap the system enough to run with virtual memory.
2057  *
2058  *	On amd64 this is called after mapping has already been enabled
2059  *	and just syncs the pmap module with what has already been done.
2060  *	[We can't call it easily with mapping off since the kernel is not
2061  *	mapped with PA == VA, hence we would have to relocate every address
2062  *	from the linked base (virtual) address "KERNBASE" to the actual
2063  *	(physical) address starting relative to 0]
2064  */
2065 void
2066 pmap_bootstrap(vm_paddr_t *firstaddr)
2067 {
2068 	vm_offset_t va;
2069 	pt_entry_t *pte, *pcpu_pte;
2070 	struct region_descriptor r_gdt;
2071 	uint64_t cr4, pcpu0_phys;
2072 	u_long res;
2073 	int i;
2074 
2075 	TSENTER();
2076 	KERNend = *firstaddr;
2077 	res = atop(KERNend - (vm_paddr_t)kernphys);
2078 
2079 	if (!pti)
2080 		pg_g = X86_PG_G;
2081 
2082 	/*
2083 	 * Create an initial set of page tables to run the kernel in.
2084 	 */
2085 	pmap_bootstrap_la57(firstaddr);
2086 	create_pagetables(firstaddr);
2087 
2088 	pcpu0_phys = allocpages(firstaddr, 1);
2089 
2090 	/*
2091 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
2092 	 * preallocated kernel page table pages so that vm_page structures
2093 	 * representing these pages will be created.  The vm_page structures
2094 	 * are required for promotion of the corresponding kernel virtual
2095 	 * addresses to superpage mappings.
2096 	 */
2097 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
2098 
2099 	/*
2100 	 * Account for the virtual addresses mapped by create_pagetables().
2101 	 */
2102 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
2103 	    (vm_paddr_t)kernphys);
2104 	virtual_end = kva_layout.km_high;
2105 
2106 	/*
2107 	 * Enable PG_G global pages, then switch to the kernel page
2108 	 * table from the bootstrap page table.  After the switch, it
2109 	 * is possible to enable SMEP and SMAP since PG_U bits are
2110 	 * correct now.
2111 	 */
2112 	cr4 = rcr4();
2113 	cr4 |= CR4_PGE;
2114 	load_cr4(cr4);
2115 	load_cr3(la57 ? KPML5phys : KPML4phys);
2116 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
2117 		cr4 |= CR4_SMEP;
2118 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
2119 		cr4 |= CR4_SMAP;
2120 	load_cr4(cr4);
2121 
2122 	/*
2123 	 * Initialize the kernel pmap (which is statically allocated).
2124 	 * Count bootstrap data as being resident in case any of this data is
2125 	 * later unmapped (using pmap_remove()) and freed.
2126 	 *
2127 	 * DMAP_TO_PHYS()/PHYS_TO_DMAP() are functional only after
2128 	 * kva_layout is fixed.
2129 	 */
2130 	PMAP_LOCK_INIT(kernel_pmap);
2131 	if (la57) {
2132 		kva_layout = kva_layout_la57;
2133 		vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2134 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2135 		PTmap = (vm_offset_t)P5Tmap;
2136 		vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2137 		    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2138 		PDmap = (vm_offset_t)P5Dmap;
2139 		kernel_pmap->pm_pmltop = (void *)PHYS_TO_DMAP(KPML5phys);
2140 		kernel_pmap->pm_cr3 = KPML5phys;
2141 		pmap_pt_page_count_adj(kernel_pmap, 1);	/* top-level page */
2142 	} else {
2143 		kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
2144 		kernel_pmap->pm_pmltop = kernel_pml4;
2145 		kernel_pmap->pm_cr3 = KPML4phys;
2146 	}
2147 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
2148 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
2149 	kernel_pmap->pm_stats.resident_count = res;
2150 	vm_radix_init(&kernel_pmap->pm_root);
2151 	kernel_pmap->pm_flags = pmap_flags;
2152 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
2153 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
2154 		    pkru_free_range, kernel_pmap, M_NOWAIT);
2155 	}
2156 
2157 	/*
2158 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
2159 	 * enumerated, the mask will be set equal to all_cpus.
2160 	 */
2161 	CPU_FILL(&kernel_pmap->pm_active);
2162 
2163  	/*
2164 	 * Initialize the TLB invalidations generation number lock.
2165 	 */
2166 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2167 
2168 	/*
2169 	 * Reserve some special page table entries/VA space for temporary
2170 	 * mapping of pages.
2171 	 */
2172 #define	SYSMAP(c, p, v, n)	\
2173 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2174 
2175 	va = virtual_avail;
2176 	pte = vtopte(va);
2177 
2178 	/*
2179 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2180 	 * memory test.
2181 	 */
2182 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2183 	CADDR1 = crashdumpmap;
2184 
2185 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2186 	virtual_avail = va;
2187 
2188 	/*
2189 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2190 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2191 	 * number of CPUs and NUMA affinity.
2192 	 */
2193 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2194 	    X86_PG_M | X86_PG_A;
2195 	for (i = 1; i < MAXCPU; i++)
2196 		pcpu_pte[i] = 0;
2197 
2198 	/*
2199 	 * Re-initialize PCPU area for BSP after switching.
2200 	 * Make hardware use gdt and common_tss from the new PCPU.
2201 	 * Also clears the usage of temporary gdt during switch to
2202 	 * LA57 paging.
2203 	 */
2204 	STAILQ_INIT(&cpuhead);
2205 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2206 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2207 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2208 	amd64_bsp_ist_init(&__pcpu[0]);
2209 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2210 	    IOPERM_BITMAP_SIZE;
2211 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2212 	    sizeof(struct user_segment_descriptor));
2213 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2214 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2215 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2216 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2217 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2218 	lgdt(&r_gdt);
2219 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2220 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2221 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2222 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2223 
2224 	/*
2225 	 * Initialize the PAT MSR.
2226 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2227 	 * side-effect, invalidates stale PG_G TLB entries that might
2228 	 * have been created in our pre-boot environment.
2229 	 */
2230 	pmap_init_pat();
2231 
2232 	/* Initialize TLB Context Id. */
2233 	if (pmap_pcid_enabled) {
2234 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2235 		    offsetof(struct pcpu, pc_kpmap_store);
2236 
2237 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2238 		PCPU_SET(kpmap_store.pm_gen, 1);
2239 
2240 		/*
2241 		 * PMAP_PCID_KERN + 1 is used for initialization of
2242 		 * proc0 pmap.  The pmap' pcid state might be used by
2243 		 * EFIRT entry before first context switch, so it
2244 		 * needs to be valid.
2245 		 */
2246 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2247 		PCPU_SET(pcid_gen, 1);
2248 
2249 		/*
2250 		 * pcpu area for APs is zeroed during AP startup.
2251 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2252 		 * during pcpu setup.
2253 		 */
2254 		load_cr4(rcr4() | CR4_PCIDE);
2255 	}
2256 	TSEXIT();
2257 }
2258 
2259 /*
2260  * Setup the PAT MSR.
2261  */
2262 void
2263 pmap_init_pat(void)
2264 {
2265 	uint64_t pat_msr;
2266 	u_long cr0, cr4;
2267 	int i;
2268 
2269 	/* Bail if this CPU doesn't implement PAT. */
2270 	if ((cpu_feature & CPUID_PAT) == 0)
2271 		panic("no PAT??");
2272 
2273 	/* Set default PAT index table. */
2274 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2275 		pat_index[i] = -1;
2276 	pat_index[PAT_WRITE_BACK] = 0;
2277 	pat_index[PAT_WRITE_THROUGH] = 1;
2278 	pat_index[PAT_UNCACHEABLE] = 3;
2279 	pat_index[PAT_WRITE_COMBINING] = 6;
2280 	pat_index[PAT_WRITE_PROTECTED] = 5;
2281 	pat_index[PAT_UNCACHED] = 2;
2282 
2283 	/*
2284 	 * Initialize default PAT entries.
2285 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2286 	 * Program 5 and 6 as WP and WC.
2287 	 *
2288 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2289 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2290 	 * to its overload with PG_PS.
2291 	 */
2292 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2293 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2294 	    PAT_VALUE(2, PAT_UNCACHED) |
2295 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2296 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2297 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2298 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2299 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2300 
2301 	/* Disable PGE. */
2302 	cr4 = rcr4();
2303 	load_cr4(cr4 & ~CR4_PGE);
2304 
2305 	/* Disable caches (CD = 1, NW = 0). */
2306 	cr0 = rcr0();
2307 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2308 
2309 	/* Flushes caches and TLBs. */
2310 	wbinvd();
2311 	invltlb();
2312 
2313 	/* Update PAT and index table. */
2314 	wrmsr(MSR_PAT, pat_msr);
2315 
2316 	/* Flush caches and TLBs again. */
2317 	wbinvd();
2318 	invltlb();
2319 
2320 	/* Restore caches and PGE. */
2321 	load_cr0(cr0);
2322 	load_cr4(cr4);
2323 }
2324 
2325 vm_page_t
2326 pmap_page_alloc_below_4g(bool zeroed)
2327 {
2328 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2329 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2330 }
2331 
2332 /*
2333  *	Initialize a vm_page's machine-dependent fields.
2334  */
2335 void
2336 pmap_page_init(vm_page_t m)
2337 {
2338 
2339 	TAILQ_INIT(&m->md.pv_list);
2340 	m->md.pat_mode = PAT_WRITE_BACK;
2341 }
2342 
2343 static int pmap_allow_2m_x_ept;
2344 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2345     &pmap_allow_2m_x_ept, 0,
2346     "Allow executable superpage mappings in EPT");
2347 
2348 void
2349 pmap_allow_2m_x_ept_recalculate(void)
2350 {
2351 	/*
2352 	 * SKL002, SKL012S.  Since the EPT format is only used by
2353 	 * Intel CPUs, the vendor check is merely a formality.
2354 	 */
2355 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2356 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2357 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2358 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2359 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2360 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2361 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2362 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2363 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2364 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2365 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2366 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2367 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2368 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2369 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2370 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2371 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2372 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2373 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2374 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2375 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2376 		pmap_allow_2m_x_ept = 1;
2377 #ifndef BURN_BRIDGES
2378 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2379 #endif
2380 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2381 }
2382 
2383 static bool
2384 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2385 {
2386 
2387 	return (pmap->pm_type != PT_EPT || !executable ||
2388 	    !pmap_allow_2m_x_ept);
2389 }
2390 
2391 #ifdef NUMA
2392 static void
2393 pmap_init_pv_table(void)
2394 {
2395 	struct pmap_large_md_page *pvd;
2396 	vm_size_t s;
2397 	long start, end, highest, pv_npg;
2398 	int domain, i, j, pages;
2399 
2400 	/*
2401 	 * For correctness we depend on the size being evenly divisible into a
2402 	 * page. As a tradeoff between performance and total memory use, the
2403 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2404 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2405 	 * avoidable traffic due to adjacent cacheline prefetcher.
2406 	 *
2407 	 * Assert the size so that accidental changes fail to compile.
2408 	 */
2409 	CTASSERT((sizeof(*pvd) == 64));
2410 
2411 	/*
2412 	 * Calculate the size of the array.
2413 	 */
2414 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2415 	pv_npg = howmany(pmap_last_pa, NBPDR);
2416 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2417 	s = round_page(s);
2418 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2419 	if (pv_table == NULL)
2420 		panic("%s: kva_alloc failed\n", __func__);
2421 
2422 	/*
2423 	 * Iterate physical segments to allocate space for respective pages.
2424 	 */
2425 	highest = -1;
2426 	s = 0;
2427 	for (i = 0; i < vm_phys_nsegs; i++) {
2428 		end = vm_phys_segs[i].end / NBPDR;
2429 		domain = vm_phys_segs[i].domain;
2430 
2431 		if (highest >= end)
2432 			continue;
2433 
2434 		start = highest + 1;
2435 		pvd = &pv_table[start];
2436 
2437 		pages = end - start + 1;
2438 		s = round_page(pages * sizeof(*pvd));
2439 		highest = start + (s / sizeof(*pvd)) - 1;
2440 
2441 		for (j = 0; j < s; j += PAGE_SIZE) {
2442 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2443 			if (m == NULL)
2444 				panic("failed to allocate PV table page");
2445 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2446 		}
2447 
2448 		for (j = 0; j < s / sizeof(*pvd); j++) {
2449 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2450 			TAILQ_INIT(&pvd->pv_page.pv_list);
2451 			pvd->pv_page.pv_gen = 0;
2452 			pvd->pv_page.pat_mode = 0;
2453 			pvd->pv_invl_gen = 0;
2454 			pvd++;
2455 		}
2456 	}
2457 	pvd = &pv_dummy_large;
2458 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2459 	TAILQ_INIT(&pvd->pv_page.pv_list);
2460 	pvd->pv_page.pv_gen = 0;
2461 	pvd->pv_page.pat_mode = 0;
2462 	pvd->pv_invl_gen = 0;
2463 }
2464 #else
2465 static void
2466 pmap_init_pv_table(void)
2467 {
2468 	vm_size_t s;
2469 	long i, pv_npg;
2470 
2471 	/*
2472 	 * Initialize the pool of pv list locks.
2473 	 */
2474 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2475 		rw_init(&pv_list_locks[i], "pmap pv list");
2476 
2477 	/*
2478 	 * Calculate the size of the pv head table for superpages.
2479 	 */
2480 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2481 
2482 	/*
2483 	 * Allocate memory for the pv head table for superpages.
2484 	 */
2485 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2486 	s = round_page(s);
2487 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2488 	for (i = 0; i < pv_npg; i++)
2489 		TAILQ_INIT(&pv_table[i].pv_list);
2490 	TAILQ_INIT(&pv_dummy.pv_list);
2491 }
2492 #endif
2493 
2494 /*
2495  *	Initialize the pmap module.
2496  *
2497  *	Called by vm_mem_init(), to initialize any structures that the pmap
2498  *	system needs to map virtual memory.
2499  */
2500 void
2501 pmap_init(void)
2502 {
2503 	struct pmap_preinit_mapping *ppim;
2504 	vm_page_t m, mpte;
2505 	pml4_entry_t *pml4e;
2506 	unsigned long lm_max;
2507 	int error, i, ret, skz63;
2508 
2509 	/* L1TF, reserve page @0 unconditionally */
2510 	vm_page_blacklist_add(0, bootverbose);
2511 
2512 	/* Detect bare-metal Skylake Server and Skylake-X. */
2513 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2514 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2515 		/*
2516 		 * Skylake-X errata SKZ63. Processor May Hang When
2517 		 * Executing Code In an HLE Transaction Region between
2518 		 * 40000000H and 403FFFFFH.
2519 		 *
2520 		 * Mark the pages in the range as preallocated.  It
2521 		 * seems to be impossible to distinguish between
2522 		 * Skylake Server and Skylake X.
2523 		 */
2524 		skz63 = 1;
2525 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2526 		if (skz63 != 0) {
2527 			if (bootverbose)
2528 				printf("SKZ63: skipping 4M RAM starting "
2529 				    "at physical 1G\n");
2530 			for (i = 0; i < atop(0x400000); i++) {
2531 				ret = vm_page_blacklist_add(0x40000000 +
2532 				    ptoa(i), false);
2533 				if (!ret && bootverbose)
2534 					printf("page at %#x already used\n",
2535 					    0x40000000 + ptoa(i));
2536 			}
2537 		}
2538 	}
2539 
2540 	/* IFU */
2541 	pmap_allow_2m_x_ept_recalculate();
2542 
2543 	/*
2544 	 * Initialize the vm page array entries for the kernel pmap's
2545 	 * page table pages.
2546 	 */
2547 	PMAP_LOCK(kernel_pmap);
2548 	for (i = 0; i < nkpt; i++) {
2549 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2550 		KASSERT(mpte >= vm_page_array &&
2551 		    mpte < &vm_page_array[vm_page_array_size],
2552 		    ("pmap_init: page table page is out of range"));
2553 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2554 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2555 		mpte->ref_count = 1;
2556 
2557 		/*
2558 		 * Collect the page table pages that were replaced by a 2MB
2559 		 * page in create_pagetables().  They are zero filled.
2560 		 */
2561 		if ((i == 0 ||
2562 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2563 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2564 			panic("pmap_init: pmap_insert_pt_page failed");
2565 	}
2566 	PMAP_UNLOCK(kernel_pmap);
2567 	vm_wire_add(nkpt);
2568 
2569 	/*
2570 	 * If the kernel is running on a virtual machine, then it must assume
2571 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2572 	 * be prepared for the hypervisor changing the vendor and family that
2573 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2574 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2575 	 * include at least one feature that is only supported by older Intel
2576 	 * or newer AMD processors.
2577 	 */
2578 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2579 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2580 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2581 	    AMDID2_FMA4)) == 0)
2582 		workaround_erratum383 = 1;
2583 
2584 	/*
2585 	 * Are large page mappings enabled?
2586 	 */
2587 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2588 	if (pg_ps_enabled) {
2589 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2590 		    ("pmap_init: can't assign to pagesizes[1]"));
2591 		pagesizes[1] = NBPDR;
2592 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2593 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2594 			    ("pmap_init: can't assign to pagesizes[2]"));
2595 			pagesizes[2] = NBPDP;
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * Initialize pv chunk lists.
2601 	 */
2602 	for (i = 0; i < PMAP_MEMDOM; i++) {
2603 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2604 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2605 	}
2606 	pmap_init_pv_table();
2607 
2608 	pmap_initialized = 1;
2609 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2610 		ppim = pmap_preinit_mapping + i;
2611 		if (ppim->va == 0)
2612 			continue;
2613 		/* Make the direct map consistent */
2614 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2615 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2616 			    ppim->sz, ppim->mode);
2617 		}
2618 		if (!bootverbose)
2619 			continue;
2620 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2621 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2622 	}
2623 
2624 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2625 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2626 	    (vmem_addr_t *)&qframe);
2627 	if (error != 0)
2628 		panic("qframe allocation failed");
2629 
2630 	lm_ents = 8;
2631 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2632 	lm_max = (kva_layout.lm_high - kva_layout.lm_low) / NBPML4;
2633 	if (lm_ents > lm_max) {
2634 		printf(
2635 	    "pmap: shrinking large map from requested %d slots to %ld slots\n",
2636 		    lm_ents, lm_max);
2637 		lm_ents = lm_max;
2638 	}
2639 #ifdef KMSAN
2640 	if (!la57 && lm_ents > KMSANORIGPML4I - LMSPML4I) {
2641 		printf(
2642 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2643 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2644 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2645 	}
2646 #endif
2647 	if (bootverbose)
2648 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2649 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2650 	if (lm_ents != 0) {
2651 		large_vmem = vmem_create("large", kva_layout.lm_low,
2652 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2653 		if (large_vmem == NULL) {
2654 			printf("pmap: cannot create large map\n");
2655 			lm_ents = 0;
2656 		}
2657 		if (la57) {
2658 			for (i = 0; i < howmany((vm_offset_t)NBPML4 *
2659 			    lm_ents, NBPML5); i++) {
2660 				m = pmap_large_map_getptp_unlocked();
2661 				kernel_pmap->pm_pmltop[LMSPML5I + i] = X86_PG_V |
2662 				    X86_PG_RW | X86_PG_A | X86_PG_M |
2663 				    pg_nx | VM_PAGE_TO_PHYS(m);
2664 			}
2665 		}
2666 		for (i = 0; i < lm_ents; i++) {
2667 			m = pmap_large_map_getptp_unlocked();
2668 			pml4e = pmap_pml4e(kernel_pmap, kva_layout.lm_low +
2669 			    (u_long)i * NBPML4);
2670 			*pml4e = X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M |
2671 			    pg_nx | VM_PAGE_TO_PHYS(m);
2672 		}
2673 	}
2674 }
2675 
2676 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2677     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2678     "Maximum number of PML4 entries for use by large map (tunable).  "
2679     "Each entry corresponds to 512GB of address space.");
2680 
2681 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2682     "2MB page mapping counters");
2683 
2684 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2685 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2686     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2687 
2688 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2689 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2690     &pmap_pde_mappings, "2MB page mappings");
2691 
2692 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2693 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2694     &pmap_pde_p_failures, "2MB page promotion failures");
2695 
2696 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2697 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2698     &pmap_pde_promotions, "2MB page promotions");
2699 
2700 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2701     "1GB page mapping counters");
2702 
2703 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2704 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2705     &pmap_pdpe_demotions, "1GB page demotions");
2706 
2707 /***************************************************
2708  * Low level helper routines.....
2709  ***************************************************/
2710 
2711 static pt_entry_t
2712 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2713 {
2714 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2715 
2716 	switch (pmap->pm_type) {
2717 	case PT_X86:
2718 	case PT_RVI:
2719 		/* Verify that both PAT bits are not set at the same time */
2720 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2721 		    ("Invalid PAT bits in entry %#lx", entry));
2722 
2723 		/* Swap the PAT bits if one of them is set */
2724 		if ((entry & x86_pat_bits) != 0)
2725 			entry ^= x86_pat_bits;
2726 		break;
2727 	case PT_EPT:
2728 		/*
2729 		 * Nothing to do - the memory attributes are represented
2730 		 * the same way for regular pages and superpages.
2731 		 */
2732 		break;
2733 	default:
2734 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2735 	}
2736 
2737 	return (entry);
2738 }
2739 
2740 bool
2741 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2742 {
2743 
2744 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2745 	    pat_index[(int)mode] >= 0);
2746 }
2747 
2748 /*
2749  * Determine the appropriate bits to set in a PTE or PDE for a specified
2750  * caching mode.
2751  */
2752 int
2753 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2754 {
2755 	int cache_bits, pat_flag, pat_idx;
2756 
2757 	if (!pmap_is_valid_memattr(pmap, mode))
2758 		panic("Unknown caching mode %d\n", mode);
2759 
2760 	switch (pmap->pm_type) {
2761 	case PT_X86:
2762 	case PT_RVI:
2763 		/* The PAT bit is different for PTE's and PDE's. */
2764 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2765 
2766 		/* Map the caching mode to a PAT index. */
2767 		pat_idx = pat_index[mode];
2768 
2769 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2770 		cache_bits = 0;
2771 		if (pat_idx & 0x4)
2772 			cache_bits |= pat_flag;
2773 		if (pat_idx & 0x2)
2774 			cache_bits |= PG_NC_PCD;
2775 		if (pat_idx & 0x1)
2776 			cache_bits |= PG_NC_PWT;
2777 		break;
2778 
2779 	case PT_EPT:
2780 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2781 		break;
2782 
2783 	default:
2784 		panic("unsupported pmap type %d", pmap->pm_type);
2785 	}
2786 
2787 	return (cache_bits);
2788 }
2789 
2790 static int
2791 pmap_cache_mask(pmap_t pmap, bool is_pde)
2792 {
2793 	int mask;
2794 
2795 	switch (pmap->pm_type) {
2796 	case PT_X86:
2797 	case PT_RVI:
2798 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2799 		break;
2800 	case PT_EPT:
2801 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2802 		break;
2803 	default:
2804 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2805 	}
2806 
2807 	return (mask);
2808 }
2809 
2810 static int
2811 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2812 {
2813 	int pat_flag, pat_idx;
2814 
2815 	pat_idx = 0;
2816 	switch (pmap->pm_type) {
2817 	case PT_X86:
2818 	case PT_RVI:
2819 		/* The PAT bit is different for PTE's and PDE's. */
2820 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2821 
2822 		if ((pte & pat_flag) != 0)
2823 			pat_idx |= 0x4;
2824 		if ((pte & PG_NC_PCD) != 0)
2825 			pat_idx |= 0x2;
2826 		if ((pte & PG_NC_PWT) != 0)
2827 			pat_idx |= 0x1;
2828 		break;
2829 	case PT_EPT:
2830 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2831 			panic("EPT PTE %#lx has no PAT memory type", pte);
2832 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2833 		break;
2834 	}
2835 
2836 	/* See pmap_init_pat(). */
2837 	if (pat_idx == 4)
2838 		pat_idx = 0;
2839 	if (pat_idx == 7)
2840 		pat_idx = 3;
2841 
2842 	return (pat_idx);
2843 }
2844 
2845 bool
2846 pmap_ps_enabled(pmap_t pmap)
2847 {
2848 
2849 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2850 }
2851 
2852 static void
2853 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2854 {
2855 
2856 	switch (pmap->pm_type) {
2857 	case PT_X86:
2858 		break;
2859 	case PT_RVI:
2860 	case PT_EPT:
2861 		/*
2862 		 * XXX
2863 		 * This is a little bogus since the generation number is
2864 		 * supposed to be bumped up when a region of the address
2865 		 * space is invalidated in the page tables.
2866 		 *
2867 		 * In this case the old PDE entry is valid but yet we want
2868 		 * to make sure that any mappings using the old entry are
2869 		 * invalidated in the TLB.
2870 		 *
2871 		 * The reason this works as expected is because we rendezvous
2872 		 * "all" host cpus and force any vcpu context to exit as a
2873 		 * side-effect.
2874 		 */
2875 		atomic_add_long(&pmap->pm_eptgen, 1);
2876 		break;
2877 	default:
2878 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2879 	}
2880 	pde_store(pde, newpde);
2881 }
2882 
2883 /*
2884  * After changing the page size for the specified virtual address in the page
2885  * table, flush the corresponding entries from the processor's TLB.  Only the
2886  * calling processor's TLB is affected.
2887  *
2888  * The calling thread must be pinned to a processor.
2889  */
2890 static void
2891 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2892 {
2893 	pt_entry_t PG_G;
2894 
2895 	if (pmap_type_guest(pmap))
2896 		return;
2897 
2898 	KASSERT(pmap->pm_type == PT_X86,
2899 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2900 
2901 	PG_G = pmap_global_bit(pmap);
2902 
2903 	if ((newpde & PG_PS) == 0)
2904 		/* Demotion: flush a specific 2MB page mapping. */
2905 		pmap_invlpg(pmap, va);
2906 	else if ((newpde & PG_G) == 0)
2907 		/*
2908 		 * Promotion: flush every 4KB page mapping from the TLB
2909 		 * because there are too many to flush individually.
2910 		 */
2911 		invltlb();
2912 	else {
2913 		/*
2914 		 * Promotion: flush every 4KB page mapping from the TLB,
2915 		 * including any global (PG_G) mappings.
2916 		 *
2917 		 * This function is only used on older processors that
2918 		 * do not support the invpcid instruction.
2919 		 */
2920 		invltlb_glob();
2921 	}
2922 }
2923 
2924 /*
2925  * The amd64 pmap uses different approaches to TLB invalidation
2926  * depending on the kernel configuration, available hardware features,
2927  * and known hardware errata.  The kernel configuration option that
2928  * has the greatest operational impact on TLB invalidation is PTI,
2929  * which is enabled automatically on affected Intel CPUs.  The most
2930  * impactful hardware features are first PCID, and then INVPCID
2931  * instruction presence.  PCID usage is quite different for PTI
2932  * vs. non-PTI.
2933  *
2934  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2935  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2936  *   space is served by two page tables, user and kernel.  The user
2937  *   page table only maps user space and a kernel trampoline.  The
2938  *   kernel trampoline includes the entirety of the kernel text but
2939  *   only the kernel data that is needed to switch from user to kernel
2940  *   mode.  The kernel page table maps the user and kernel address
2941  *   spaces in their entirety.  It is identical to the per-process
2942  *   page table used in non-PTI mode.
2943  *
2944  *   User page tables are only used when the CPU is in user mode.
2945  *   Consequently, some TLB invalidations can be postponed until the
2946  *   switch from kernel to user mode.  In contrast, the user
2947  *   space part of the kernel page table is used for copyout(9), so
2948  *   TLB invalidations on this page table cannot be similarly postponed.
2949  *
2950  *   The existence of a user mode page table for the given pmap is
2951  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2952  *   which case pm_ucr3 contains the %cr3 register value for the user
2953  *   mode page table's root.
2954  *
2955  * * The pm_active bitmask indicates which CPUs currently have the
2956  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2957  *   cleared on switching off this CPU.  For the kernel page table,
2958  *   the pm_active field is immutable and contains all CPUs.  The
2959  *   kernel page table is always logically active on every processor,
2960  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2961  *
2962  *   When requesting invalidation of virtual addresses with
2963  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2964  *   all CPUs recorded as active in pm_active.  Updates to and reads
2965  *   from pm_active are not synchronized, and so they may race with
2966  *   each other.  Shootdown handlers are prepared to handle the race.
2967  *
2968  * * PCID is an optional feature of the long mode x86 MMU where TLB
2969  *   entries are tagged with the 'Process ID' of the address space
2970  *   they belong to.  This feature provides a limited namespace for
2971  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2972  *   total.
2973  *
2974  *   Allocation of a PCID to a pmap is done by an algorithm described
2975  *   in section 15.12, "Other TLB Consistency Algorithms", of
2976  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2977  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2978  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2979  *   the CPU is about to start caching TLB entries from a pmap,
2980  *   i.e., on the context switch that activates the pmap on the CPU.
2981  *
2982  *   The PCID allocator maintains a per-CPU, per-pmap generation
2983  *   count, pm_gen, which is incremented each time a new PCID is
2984  *   allocated.  On TLB invalidation, the generation counters for the
2985  *   pmap are zeroed, which signals the context switch code that the
2986  *   previously allocated PCID is no longer valid.  Effectively,
2987  *   zeroing any of these counters triggers a TLB shootdown for the
2988  *   given CPU/address space, due to the allocation of a new PCID.
2989  *
2990  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2991  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2992  *   be initiated by an ordinary memory access to reset the target
2993  *   CPU's generation count within the pmap.  The CPU initiating the
2994  *   TLB shootdown does not need to send an IPI to the target CPU.
2995  *
2996  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2997  *   for complete (kernel) page tables, and PCIDs for user mode page
2998  *   tables.  A user PCID value is obtained from the kernel PCID value
2999  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
3000  *
3001  *   User space page tables are activated on return to user mode, by
3002  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
3003  *   clearing bit 63 of the loaded ucr3, this effectively causes
3004  *   complete invalidation of the user mode TLB entries for the
3005  *   current pmap.  In which case, local invalidations of individual
3006  *   pages in the user page table are skipped.
3007  *
3008  * * Local invalidation, all modes.  If the requested invalidation is
3009  *   for a specific address or the total invalidation of a currently
3010  *   active pmap, then the TLB is flushed using INVLPG for a kernel
3011  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
3012  *   user space page table(s).
3013  *
3014  *   If the INVPCID instruction is available, it is used to flush user
3015  *   entries from the kernel page table.
3016  *
3017  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
3018  *   entries for the given page that either match the current PCID or
3019  *   are global. Since TLB entries for the same page under different
3020  *   PCIDs are unaffected, kernel pages which reside in all address
3021  *   spaces could be problematic.  We avoid the problem by creating
3022  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
3023  *   disabled.
3024  *
3025  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
3026  *   address space, all other 4095 PCIDs are used for user mode spaces
3027  *   as described above.  A context switch allocates a new PCID if
3028  *   the recorded PCID is zero or the recorded generation does not match
3029  *   the CPU's generation, effectively flushing the TLB for this address space.
3030  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
3031  *	local user page: INVLPG
3032  *	local kernel page: INVLPG
3033  *	local user total: INVPCID(CTX)
3034  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3035  *	remote user page, inactive pmap: zero pm_gen
3036  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
3037  *	(Both actions are required to handle the aforementioned pm_active races.)
3038  *	remote kernel page: IPI:INVLPG
3039  *	remote user total, inactive pmap: zero pm_gen
3040  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
3041  *          reload %cr3)
3042  *	(See note above about pm_active races.)
3043  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3044  *
3045  * PTI enabled, PCID present.
3046  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
3047  *          for upt
3048  *	local kernel page: INVLPG
3049  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
3050  *          on loading UCR3 into %cr3 for upt
3051  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3052  *	remote user page, inactive pmap: zero pm_gen
3053  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
3054  *          INVPCID(ADDR) for upt)
3055  *	remote kernel page: IPI:INVLPG
3056  *	remote user total, inactive pmap: zero pm_gen
3057  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
3058  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
3059  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3060  *
3061  *  No PCID.
3062  *	local user page: INVLPG
3063  *	local kernel page: INVLPG
3064  *	local user total: reload %cr3
3065  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3066  *	remote user page, inactive pmap: -
3067  *	remote user page, active pmap: IPI:INVLPG
3068  *	remote kernel page: IPI:INVLPG
3069  *	remote user total, inactive pmap: -
3070  *	remote user total, active pmap: IPI:(reload %cr3)
3071  *	remote kernel total: IPI:INVPCID(CTXGLOB) or invltlb_glob()
3072  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
3073  *  TLB invalidation, no specific action is required for user page table.
3074  *
3075  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
3076  * XXX TODO
3077  */
3078 
3079 /*
3080  * Interrupt the cpus that are executing in the guest context.
3081  * This will force the vcpu to exit and the cached EPT mappings
3082  * will be invalidated by the host before the next vmresume.
3083  */
3084 static __inline void
3085 pmap_invalidate_ept(pmap_t pmap)
3086 {
3087 	smr_seq_t goal;
3088 	int ipinum;
3089 
3090 	sched_pin();
3091 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3092 	    ("pmap_invalidate_ept: absurd pm_active"));
3093 
3094 	/*
3095 	 * The TLB mappings associated with a vcpu context are not
3096 	 * flushed each time a different vcpu is chosen to execute.
3097 	 *
3098 	 * This is in contrast with a process's vtop mappings that
3099 	 * are flushed from the TLB on each context switch.
3100 	 *
3101 	 * Therefore we need to do more than just a TLB shootdown on
3102 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3103 	 * track of the number of invalidations performed on this pmap.
3104 	 *
3105 	 * Each vcpu keeps a cache of this counter and compares it
3106 	 * just before a vmresume. If the counter is out-of-date an
3107 	 * invept will be done to flush stale mappings from the TLB.
3108 	 *
3109 	 * To ensure that all vCPU threads have observed the new counter
3110 	 * value before returning, we use SMR.  Ordering is important here:
3111 	 * the VMM enters an SMR read section before loading the counter
3112 	 * and after updating the pm_active bit set.  Thus, pm_active is
3113 	 * a superset of active readers, and any reader that has observed
3114 	 * the goal has observed the new counter value.
3115 	 */
3116 	atomic_add_long(&pmap->pm_eptgen, 1);
3117 
3118 	goal = smr_advance(pmap->pm_eptsmr);
3119 
3120 	/*
3121 	 * Force the vcpu to exit and trap back into the hypervisor.
3122 	 */
3123 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3124 	ipi_selected(pmap->pm_active, ipinum);
3125 	sched_unpin();
3126 
3127 	/*
3128 	 * Ensure that all active vCPUs will observe the new generation counter
3129 	 * value before executing any more guest instructions.
3130 	 */
3131 	smr_wait(pmap->pm_eptsmr, goal);
3132 }
3133 
3134 static inline void
3135 pmap_invalidate_preipi_pcid(pmap_t pmap)
3136 {
3137 	struct pmap_pcid *pcidp;
3138 	u_int cpuid, i;
3139 
3140 	sched_pin();
3141 
3142 	cpuid = PCPU_GET(cpuid);
3143 	if (pmap != PCPU_GET(curpmap))
3144 		cpuid = 0xffffffff;	/* An impossible value */
3145 
3146 	CPU_FOREACH(i) {
3147 		if (cpuid != i) {
3148 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3149 			pcidp->pm_gen = 0;
3150 		}
3151 	}
3152 
3153 	/*
3154 	 * The fence is between stores to pm_gen and the read of the
3155 	 * pm_active mask.  We need to ensure that it is impossible
3156 	 * for us to miss the bit update in pm_active and
3157 	 * simultaneously observe a non-zero pm_gen in
3158 	 * pmap_activate_sw(), otherwise TLB update is missed.
3159 	 * Without the fence, IA32 allows such an outcome.  Note that
3160 	 * pm_active is updated by a locked operation, which provides
3161 	 * the reciprocal fence.
3162 	 */
3163 	atomic_thread_fence_seq_cst();
3164 }
3165 
3166 static void
3167 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3168 {
3169 	sched_pin();
3170 }
3171 
3172 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3173 {
3174 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3175 	    pmap_invalidate_preipi_nopcid);
3176 }
3177 
3178 static inline void
3179 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3180     const bool invpcid_works1)
3181 {
3182 	struct invpcid_descr d;
3183 	uint64_t kcr3, ucr3;
3184 	uint32_t pcid;
3185 
3186 	/*
3187 	 * Because pm_pcid is recalculated on a context switch, we
3188 	 * must ensure there is no preemption, not just pinning.
3189 	 * Otherwise, we might use a stale value below.
3190 	 */
3191 	CRITICAL_ASSERT(curthread);
3192 
3193 	/*
3194 	 * No need to do anything with user page tables invalidation
3195 	 * if there is no user page table, or invalidation is deferred
3196 	 * until the return to userspace.  ucr3_load_mask is stable
3197 	 * because we have preemption disabled.
3198 	 */
3199 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3200 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3201 		return;
3202 
3203 	pcid = pmap_get_pcid(pmap);
3204 	if (invpcid_works1) {
3205 		d.pcid = pcid | PMAP_PCID_USER_PT;
3206 		d.pad = 0;
3207 		d.addr = va;
3208 		invpcid(&d, INVPCID_ADDR);
3209 	} else {
3210 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3211 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3212 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3213 	}
3214 }
3215 
3216 static void
3217 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3218 {
3219 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3220 }
3221 
3222 static void
3223 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3224 {
3225 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3226 }
3227 
3228 static void
3229 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3230 {
3231 }
3232 
3233 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3234 {
3235 	if (pmap_pcid_enabled)
3236 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3237 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3238 	return (pmap_invalidate_page_nopcid_cb);
3239 }
3240 
3241 static void
3242 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3243     vm_offset_t addr2 __unused)
3244 {
3245 	if (pmap == kernel_pmap) {
3246 		pmap_invlpg(kernel_pmap, va);
3247 	} else if (pmap == PCPU_GET(curpmap)) {
3248 		invlpg(va);
3249 		pmap_invalidate_page_cb(pmap, va);
3250 	}
3251 }
3252 
3253 void
3254 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3255 {
3256 	if (pmap_type_guest(pmap)) {
3257 		pmap_invalidate_ept(pmap);
3258 		return;
3259 	}
3260 
3261 	KASSERT(pmap->pm_type == PT_X86,
3262 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3263 
3264 	pmap_invalidate_preipi(pmap);
3265 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3266 }
3267 
3268 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3269 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3270 
3271 static void
3272 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3273     const bool invpcid_works1)
3274 {
3275 	struct invpcid_descr d;
3276 	uint64_t kcr3, ucr3;
3277 	uint32_t pcid;
3278 
3279 	CRITICAL_ASSERT(curthread);
3280 
3281 	if (pmap != PCPU_GET(curpmap) ||
3282 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3283 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3284 		return;
3285 
3286 	pcid = pmap_get_pcid(pmap);
3287 	if (invpcid_works1) {
3288 		d.pcid = pcid | PMAP_PCID_USER_PT;
3289 		d.pad = 0;
3290 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3291 			invpcid(&d, INVPCID_ADDR);
3292 	} else {
3293 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3294 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3295 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3296 	}
3297 }
3298 
3299 static void
3300 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3301     vm_offset_t eva)
3302 {
3303 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3304 }
3305 
3306 static void
3307 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3308     vm_offset_t eva)
3309 {
3310 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3311 }
3312 
3313 static void
3314 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3315     vm_offset_t eva __unused)
3316 {
3317 }
3318 
3319 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3320     vm_offset_t))
3321 {
3322 	if (pmap_pcid_enabled)
3323 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3324 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3325 	return (pmap_invalidate_range_nopcid_cb);
3326 }
3327 
3328 static void
3329 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3330 {
3331 	vm_offset_t addr;
3332 
3333 	if (pmap == kernel_pmap) {
3334 		if (PCPU_GET(pcid_invlpg_workaround)) {
3335 			struct invpcid_descr d = { 0 };
3336 
3337 			invpcid(&d, INVPCID_CTXGLOB);
3338 		} else {
3339 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3340 				invlpg(addr);
3341 		}
3342 	} else if (pmap == PCPU_GET(curpmap)) {
3343 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3344 			invlpg(addr);
3345 		pmap_invalidate_range_cb(pmap, sva, eva);
3346 	}
3347 }
3348 
3349 void
3350 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3351 {
3352 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3353 		pmap_invalidate_all(pmap);
3354 		return;
3355 	}
3356 
3357 	if (pmap_type_guest(pmap)) {
3358 		pmap_invalidate_ept(pmap);
3359 		return;
3360 	}
3361 
3362 	KASSERT(pmap->pm_type == PT_X86,
3363 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3364 
3365 	pmap_invalidate_preipi(pmap);
3366 	smp_masked_invlpg_range(sva, eva, pmap,
3367 	    pmap_invalidate_range_curcpu_cb);
3368 }
3369 
3370 static inline void
3371 pmap_invalidate_all_cb_template(pmap_t pmap, bool pmap_pcid_enabled1,
3372     bool invpcid_works1)
3373 {
3374 	struct invpcid_descr d;
3375 	uint64_t kcr3;
3376 	uint32_t pcid;
3377 
3378 	if (pmap == kernel_pmap) {
3379 		if (invpcid_works1) {
3380 			bzero(&d, sizeof(d));
3381 			invpcid(&d, INVPCID_CTXGLOB);
3382 		} else {
3383 			invltlb_glob();
3384 		}
3385 	} else if (pmap == PCPU_GET(curpmap)) {
3386 		if (pmap_pcid_enabled1) {
3387 			CRITICAL_ASSERT(curthread);
3388 
3389 			pcid = pmap_get_pcid(pmap);
3390 			if (invpcid_works1) {
3391 				d.pcid = pcid;
3392 				d.pad = 0;
3393 				d.addr = 0;
3394 				invpcid(&d, INVPCID_CTX);
3395 			} else {
3396 				kcr3 = pmap->pm_cr3 | pcid;
3397 				load_cr3(kcr3);
3398 			}
3399 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
3400 				PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3401 		} else {
3402 			invltlb();
3403 		}
3404 	}
3405 }
3406 
3407 static void
3408 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3409     vm_offset_t addr2 __unused)
3410 {
3411 	pmap_invalidate_all_cb_template(pmap, true, true);
3412 }
3413 
3414 static void
3415 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3416     vm_offset_t addr2 __unused)
3417 {
3418 	pmap_invalidate_all_cb_template(pmap, true, false);
3419 }
3420 
3421 static void
3422 pmap_invalidate_all_nopcid_invpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3423     vm_offset_t addr2 __unused)
3424 {
3425 	pmap_invalidate_all_cb_template(pmap, false, true);
3426 }
3427 
3428 static void
3429 pmap_invalidate_all_nopcid_noinvpcid_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3430     vm_offset_t addr2 __unused)
3431 {
3432 	pmap_invalidate_all_cb_template(pmap, false, false);
3433 }
3434 
3435 DEFINE_IFUNC(static, void, pmap_invalidate_all_curcpu_cb, (pmap_t, vm_offset_t,
3436     vm_offset_t))
3437 {
3438 	if (pmap_pcid_enabled)
3439 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3440 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3441 	return (invpcid_works ? pmap_invalidate_all_nopcid_invpcid_cb :
3442 	    pmap_invalidate_all_nopcid_noinvpcid_cb);
3443 }
3444 
3445 void
3446 pmap_invalidate_all(pmap_t pmap)
3447 {
3448 	if (pmap_type_guest(pmap)) {
3449 		pmap_invalidate_ept(pmap);
3450 		return;
3451 	}
3452 
3453 	KASSERT(pmap->pm_type == PT_X86,
3454 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3455 
3456 	pmap_invalidate_preipi(pmap);
3457 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3458 }
3459 
3460 static void
3461 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3462     vm_offset_t addr2 __unused)
3463 {
3464 	wbinvd();
3465 }
3466 
3467 void
3468 pmap_invalidate_cache(void)
3469 {
3470 	sched_pin();
3471 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3472 }
3473 
3474 struct pde_action {
3475 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3476 	pmap_t pmap;
3477 	vm_offset_t va;
3478 	pd_entry_t *pde;
3479 	pd_entry_t newpde;
3480 	u_int store;		/* processor that updates the PDE */
3481 };
3482 
3483 static void
3484 pmap_update_pde_action(void *arg)
3485 {
3486 	struct pde_action *act = arg;
3487 
3488 	if (act->store == PCPU_GET(cpuid))
3489 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3490 }
3491 
3492 static void
3493 pmap_update_pde_teardown(void *arg)
3494 {
3495 	struct pde_action *act = arg;
3496 
3497 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3498 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3499 }
3500 
3501 /*
3502  * Change the page size for the specified virtual address in a way that
3503  * prevents any possibility of the TLB ever having two entries that map the
3504  * same virtual address using different page sizes.  This is the recommended
3505  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3506  * machine check exception for a TLB state that is improperly diagnosed as a
3507  * hardware error.
3508  */
3509 static void
3510 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3511 {
3512 	struct pde_action act;
3513 	cpuset_t active, other_cpus;
3514 	u_int cpuid;
3515 
3516 	sched_pin();
3517 	cpuid = PCPU_GET(cpuid);
3518 	other_cpus = all_cpus;
3519 	CPU_CLR(cpuid, &other_cpus);
3520 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3521 		active = all_cpus;
3522 	else {
3523 		active = pmap->pm_active;
3524 	}
3525 	if (CPU_OVERLAP(&active, &other_cpus)) {
3526 		act.store = cpuid;
3527 		act.invalidate = active;
3528 		act.va = va;
3529 		act.pmap = pmap;
3530 		act.pde = pde;
3531 		act.newpde = newpde;
3532 		CPU_SET(cpuid, &active);
3533 		smp_rendezvous_cpus(active,
3534 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3535 		    pmap_update_pde_teardown, &act);
3536 	} else {
3537 		pmap_update_pde_store(pmap, pde, newpde);
3538 		if (CPU_ISSET(cpuid, &active))
3539 			pmap_update_pde_invalidate(pmap, va, newpde);
3540 	}
3541 	sched_unpin();
3542 }
3543 
3544 static void
3545 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3546 {
3547 
3548 	/*
3549 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3550 	 * by a promotion that did not invalidate the 512 4KB page mappings
3551 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3552 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3553 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3554 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3555 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3556 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3557 	 * TLB.
3558 	 */
3559 	if ((pde & PG_PROMOTED) != 0)
3560 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3561 	else
3562 		pmap_invalidate_page(pmap, va);
3563 }
3564 
3565 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3566     (vm_offset_t sva, vm_offset_t eva))
3567 {
3568 
3569 	if ((cpu_feature & CPUID_SS) != 0)
3570 		return (pmap_invalidate_cache_range_selfsnoop);
3571 	if ((cpu_feature & CPUID_CLFSH) != 0)
3572 		return (pmap_force_invalidate_cache_range);
3573 	return (pmap_invalidate_cache_range_all);
3574 }
3575 
3576 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3577 
3578 static void
3579 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3580 {
3581 
3582 	KASSERT((sva & PAGE_MASK) == 0,
3583 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3584 	KASSERT((eva & PAGE_MASK) == 0,
3585 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3586 }
3587 
3588 static void
3589 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3590 {
3591 
3592 	pmap_invalidate_cache_range_check_align(sva, eva);
3593 }
3594 
3595 void
3596 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3597 {
3598 
3599 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3600 
3601 	/*
3602 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3603 	 * registers if we use CLFLUSH on the local APIC range.  The
3604 	 * local APIC is always uncached, so we don't need to flush
3605 	 * for that range anyway.
3606 	 */
3607 	if (pmap_kextract(sva) == lapic_paddr)
3608 		return;
3609 
3610 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3611 		/*
3612 		 * Do per-cache line flush.  Use a locked
3613 		 * instruction to insure that previous stores are
3614 		 * included in the write-back.  The processor
3615 		 * propagates flush to other processors in the cache
3616 		 * coherence domain.
3617 		 */
3618 		atomic_thread_fence_seq_cst();
3619 		for (; sva < eva; sva += cpu_clflush_line_size)
3620 			clflushopt(sva);
3621 		atomic_thread_fence_seq_cst();
3622 	} else {
3623 		/*
3624 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3625 		 */
3626 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3627 			mfence();
3628 		for (; sva < eva; sva += cpu_clflush_line_size)
3629 			clflush(sva);
3630 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3631 			mfence();
3632 	}
3633 }
3634 
3635 static void
3636 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3637 {
3638 
3639 	pmap_invalidate_cache_range_check_align(sva, eva);
3640 	pmap_invalidate_cache();
3641 }
3642 
3643 /*
3644  * Remove the specified set of pages from the data and instruction caches.
3645  *
3646  * In contrast to pmap_invalidate_cache_range(), this function does not
3647  * rely on the CPU's self-snoop feature, because it is intended for use
3648  * when moving pages into a different cache domain.
3649  */
3650 void
3651 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3652 {
3653 	vm_offset_t daddr, eva;
3654 	int i;
3655 	bool useclflushopt;
3656 
3657 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3658 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3659 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3660 		pmap_invalidate_cache();
3661 	else {
3662 		if (useclflushopt)
3663 			atomic_thread_fence_seq_cst();
3664 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3665 			mfence();
3666 		for (i = 0; i < count; i++) {
3667 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3668 			eva = daddr + PAGE_SIZE;
3669 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3670 				if (useclflushopt)
3671 					clflushopt(daddr);
3672 				else
3673 					clflush(daddr);
3674 			}
3675 		}
3676 		if (useclflushopt)
3677 			atomic_thread_fence_seq_cst();
3678 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3679 			mfence();
3680 	}
3681 }
3682 
3683 void
3684 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3685 {
3686 
3687 	pmap_invalidate_cache_range_check_align(sva, eva);
3688 
3689 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3690 		pmap_force_invalidate_cache_range(sva, eva);
3691 		return;
3692 	}
3693 
3694 	/* See comment in pmap_force_invalidate_cache_range(). */
3695 	if (pmap_kextract(sva) == lapic_paddr)
3696 		return;
3697 
3698 	atomic_thread_fence_seq_cst();
3699 	for (; sva < eva; sva += cpu_clflush_line_size)
3700 		clwb(sva);
3701 	atomic_thread_fence_seq_cst();
3702 }
3703 
3704 void
3705 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3706 {
3707 	pt_entry_t *pte;
3708 	vm_offset_t vaddr;
3709 	int error __diagused;
3710 	int pte_bits;
3711 
3712 	KASSERT((spa & PAGE_MASK) == 0,
3713 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3714 	KASSERT((epa & PAGE_MASK) == 0,
3715 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3716 
3717 	if (spa < dmaplimit) {
3718 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3719 		    dmaplimit, epa)));
3720 		if (dmaplimit >= epa)
3721 			return;
3722 		spa = dmaplimit;
3723 	}
3724 
3725 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3726 	    X86_PG_V;
3727 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3728 	    &vaddr);
3729 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3730 	pte = vtopte(vaddr);
3731 	for (; spa < epa; spa += PAGE_SIZE) {
3732 		sched_pin();
3733 		pte_store(pte, spa | pte_bits);
3734 		pmap_invlpg(kernel_pmap, vaddr);
3735 		/* XXXKIB atomic inside flush_cache_range are excessive */
3736 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3737 		sched_unpin();
3738 	}
3739 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3740 }
3741 
3742 /*
3743  *	Routine:	pmap_extract
3744  *	Function:
3745  *		Extract the physical page address associated
3746  *		with the given map/virtual_address pair.
3747  */
3748 vm_paddr_t
3749 pmap_extract(pmap_t pmap, vm_offset_t va)
3750 {
3751 	pdp_entry_t *pdpe;
3752 	pd_entry_t *pde;
3753 	pt_entry_t *pte, PG_V;
3754 	vm_paddr_t pa;
3755 
3756 	pa = 0;
3757 	PG_V = pmap_valid_bit(pmap);
3758 	PMAP_LOCK(pmap);
3759 	pdpe = pmap_pdpe(pmap, va);
3760 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3761 		if ((*pdpe & PG_PS) != 0)
3762 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3763 		else {
3764 			pde = pmap_pdpe_to_pde(pdpe, va);
3765 			if ((*pde & PG_V) != 0) {
3766 				if ((*pde & PG_PS) != 0) {
3767 					pa = (*pde & PG_PS_FRAME) |
3768 					    (va & PDRMASK);
3769 				} else {
3770 					pte = pmap_pde_to_pte(pde, va);
3771 					pa = (*pte & PG_FRAME) |
3772 					    (va & PAGE_MASK);
3773 				}
3774 			}
3775 		}
3776 	}
3777 	PMAP_UNLOCK(pmap);
3778 	return (pa);
3779 }
3780 
3781 /*
3782  *	Routine:	pmap_extract_and_hold
3783  *	Function:
3784  *		Atomically extract and hold the physical page
3785  *		with the given pmap and virtual address pair
3786  *		if that mapping permits the given protection.
3787  */
3788 vm_page_t
3789 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3790 {
3791 	pdp_entry_t pdpe, *pdpep;
3792 	pd_entry_t pde, *pdep;
3793 	pt_entry_t pte, PG_RW, PG_V;
3794 	vm_page_t m;
3795 
3796 	m = NULL;
3797 	PG_RW = pmap_rw_bit(pmap);
3798 	PG_V = pmap_valid_bit(pmap);
3799 	PMAP_LOCK(pmap);
3800 
3801 	pdpep = pmap_pdpe(pmap, va);
3802 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3803 		goto out;
3804 	if ((pdpe & PG_PS) != 0) {
3805 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3806 			goto out;
3807 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3808 		goto check_page;
3809 	}
3810 
3811 	pdep = pmap_pdpe_to_pde(pdpep, va);
3812 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3813 		goto out;
3814 	if ((pde & PG_PS) != 0) {
3815 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3816 			goto out;
3817 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3818 		goto check_page;
3819 	}
3820 
3821 	pte = *pmap_pde_to_pte(pdep, va);
3822 	if ((pte & PG_V) == 0 ||
3823 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3824 		goto out;
3825 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3826 
3827 check_page:
3828 	if (m != NULL && !vm_page_wire_mapped(m))
3829 		m = NULL;
3830 out:
3831 	PMAP_UNLOCK(pmap);
3832 	return (m);
3833 }
3834 
3835 /*
3836  *	Routine:	pmap_kextract
3837  *	Function:
3838  *		Extract the physical page address associated with the given kernel
3839  *		virtual address.
3840  */
3841 vm_paddr_t
3842 pmap_kextract(vm_offset_t va)
3843 {
3844 	pd_entry_t pde;
3845 	vm_paddr_t pa;
3846 
3847 	if (va >= kva_layout.dmap_low && va < kva_layout.dmap_high) {
3848 		pa = DMAP_TO_PHYS(va);
3849 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3850 		pa = pmap_large_map_kextract(va);
3851 	} else {
3852 		pde = *vtopde(va);
3853 		if (pde & PG_PS) {
3854 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3855 		} else {
3856 			/*
3857 			 * Beware of a concurrent promotion that changes the
3858 			 * PDE at this point!  For example, vtopte() must not
3859 			 * be used to access the PTE because it would use the
3860 			 * new PDE.  It is, however, safe to use the old PDE
3861 			 * because the page table page is preserved by the
3862 			 * promotion.
3863 			 */
3864 			pa = *pmap_pde_to_pte(&pde, va);
3865 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3866 		}
3867 	}
3868 	return (pa);
3869 }
3870 
3871 /***************************************************
3872  * Low level mapping routines.....
3873  ***************************************************/
3874 
3875 /*
3876  * Add a wired page to the kva.
3877  * Note: not SMP coherent.
3878  */
3879 void
3880 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3881 {
3882 	pt_entry_t *pte;
3883 
3884 	pte = vtopte(va);
3885 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3886 	    X86_PG_RW | X86_PG_V);
3887 }
3888 
3889 static __inline void
3890 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3891 {
3892 	pt_entry_t *pte;
3893 	int cache_bits;
3894 
3895 	pte = vtopte(va);
3896 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3897 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3898 	    X86_PG_RW | X86_PG_V | cache_bits);
3899 }
3900 
3901 /*
3902  * Remove a page from the kernel pagetables.
3903  * Note: not SMP coherent.
3904  */
3905 void
3906 pmap_kremove(vm_offset_t va)
3907 {
3908 	pt_entry_t *pte;
3909 
3910 	pte = vtopte(va);
3911 	pte_clear(pte);
3912 }
3913 
3914 /*
3915  *	Used to map a range of physical addresses into kernel
3916  *	virtual address space.
3917  *
3918  *	The value passed in '*virt' is a suggested virtual address for
3919  *	the mapping. Architectures which can support a direct-mapped
3920  *	physical to virtual region can return the appropriate address
3921  *	within that region, leaving '*virt' unchanged. Other
3922  *	architectures should map the pages starting at '*virt' and
3923  *	update '*virt' with the first usable address after the mapped
3924  *	region.
3925  */
3926 vm_offset_t
3927 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3928 {
3929 	return PHYS_TO_DMAP(start);
3930 }
3931 
3932 /*
3933  * Add a list of wired pages to the kva
3934  * this routine is only used for temporary
3935  * kernel mappings that do not need to have
3936  * page modification or references recorded.
3937  * Note that old mappings are simply written
3938  * over.  The page *must* be wired.
3939  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3940  */
3941 void
3942 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3943 {
3944 	pt_entry_t *endpte, oldpte, pa, *pte;
3945 	vm_page_t m;
3946 	int cache_bits;
3947 
3948 	oldpte = 0;
3949 	pte = vtopte(sva);
3950 	endpte = pte + count;
3951 	while (pte < endpte) {
3952 		m = *ma++;
3953 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
3954 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
3955 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
3956 			oldpte |= *pte;
3957 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
3958 			    X86_PG_M | X86_PG_RW | X86_PG_V);
3959 		}
3960 		pte++;
3961 	}
3962 	if (__predict_false((oldpte & X86_PG_V) != 0))
3963 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
3964 		    PAGE_SIZE);
3965 }
3966 
3967 /*
3968  * This routine tears out page mappings from the
3969  * kernel -- it is meant only for temporary mappings.
3970  * Note: SMP coherent.  Uses a ranged shootdown IPI.
3971  */
3972 void
3973 pmap_qremove(vm_offset_t sva, int count)
3974 {
3975 	vm_offset_t va;
3976 
3977 	va = sva;
3978 	while (count-- > 0) {
3979 		/*
3980 		 * pmap_enter() calls within the kernel virtual
3981 		 * address space happen on virtual addresses from
3982 		 * subarenas that import superpage-sized and -aligned
3983 		 * address ranges.  So, the virtual address that we
3984 		 * allocate to use with pmap_qenter() can't be close
3985 		 * enough to one of those pmap_enter() calls for it to
3986 		 * be caught up in a promotion.
3987 		 */
3988 		KASSERT(va >= kva_layout.km_low, ("usermode va %lx", va));
3989 		KASSERT((*vtopde(va) & X86_PG_PS) == 0,
3990 		    ("pmap_qremove on promoted va %#lx", va));
3991 
3992 		pmap_kremove(va);
3993 		va += PAGE_SIZE;
3994 	}
3995 	pmap_invalidate_range(kernel_pmap, sva, va);
3996 }
3997 
3998 /***************************************************
3999  * Page table page management routines.....
4000  ***************************************************/
4001 /*
4002  * Schedule the specified unused page table page to be freed.  Specifically,
4003  * add the page to the specified list of pages that will be released to the
4004  * physical memory manager after the TLB has been updated.
4005  */
4006 static __inline void
4007 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4008 {
4009 
4010 	if (set_PG_ZERO)
4011 		m->flags |= PG_ZERO;
4012 	else
4013 		m->flags &= ~PG_ZERO;
4014 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4015 }
4016 
4017 /*
4018  * Inserts the specified page table page into the specified pmap's collection
4019  * of idle page table pages.  Each of a pmap's page table pages is responsible
4020  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4021  * ordered by this virtual address range.
4022  *
4023  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4024  * "mpte"'s valid field will be set to 0.
4025  *
4026  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4027  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4028  * valid field will be set to 1.
4029  *
4030  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4031  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4032  * field will be set to VM_PAGE_BITS_ALL.
4033  */
4034 static __inline int
4035 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4036     bool allpte_PG_A_set)
4037 {
4038 
4039 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4040 	KASSERT(promoted || !allpte_PG_A_set,
4041 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4042 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4043 	return (vm_radix_insert(&pmap->pm_root, mpte));
4044 }
4045 
4046 /*
4047  * Removes the page table page mapping the specified virtual address from the
4048  * specified pmap's collection of idle page table pages, and returns it.
4049  * Otherwise, returns NULL if there is no page table page corresponding to the
4050  * specified virtual address.
4051  */
4052 static __inline vm_page_t
4053 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4054 {
4055 
4056 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4057 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4058 }
4059 
4060 /*
4061  * Decrements a page table page's reference count, which is used to record the
4062  * number of valid page table entries within the page.  If the reference count
4063  * drops to zero, then the page table page is unmapped.  Returns true if the
4064  * page table page was unmapped and false otherwise.
4065  */
4066 static inline bool
4067 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4068 {
4069 
4070 	--m->ref_count;
4071 	if (m->ref_count == 0) {
4072 		_pmap_unwire_ptp(pmap, va, m, free);
4073 		return (true);
4074 	} else
4075 		return (false);
4076 }
4077 
4078 static void
4079 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4080 {
4081 	pml5_entry_t *pml5;
4082 	pml4_entry_t *pml4;
4083 	pdp_entry_t *pdp;
4084 	pd_entry_t *pd;
4085 	vm_page_t pdpg, pdppg, pml4pg;
4086 
4087 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4088 
4089 	/*
4090 	 * unmap the page table page
4091 	 */
4092 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4093 		/* PML4 page */
4094 		MPASS(pmap_is_la57(pmap));
4095 		pml5 = pmap_pml5e(pmap, va);
4096 		*pml5 = 0;
4097 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4098 			pml5 = pmap_pml5e_u(pmap, va);
4099 			*pml5 = 0;
4100 		}
4101 	} else if (m->pindex >= NUPDE + NUPDPE) {
4102 		/* PDP page */
4103 		pml4 = pmap_pml4e(pmap, va);
4104 		*pml4 = 0;
4105 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4106 		    va <= VM_MAXUSER_ADDRESS) {
4107 			pml4 = pmap_pml4e_u(pmap, va);
4108 			*pml4 = 0;
4109 		}
4110 	} else if (m->pindex >= NUPDE) {
4111 		/* PD page */
4112 		pdp = pmap_pdpe(pmap, va);
4113 		*pdp = 0;
4114 	} else {
4115 		/* PTE page */
4116 		pd = pmap_pde(pmap, va);
4117 		*pd = 0;
4118 	}
4119 	if (m->pindex < NUPDE) {
4120 		/* We just released a PT, unhold the matching PD */
4121 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4122 		pmap_unwire_ptp(pmap, va, pdpg, free);
4123 	} else if (m->pindex < NUPDE + NUPDPE) {
4124 		/* We just released a PD, unhold the matching PDP */
4125 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4126 		pmap_unwire_ptp(pmap, va, pdppg, free);
4127 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4128 		/* We just released a PDP, unhold the matching PML4 */
4129 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4130 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4131 	}
4132 
4133 	pmap_pt_page_count_adj(pmap, -1);
4134 
4135 	/*
4136 	 * Put page on a list so that it is released after
4137 	 * *ALL* TLB shootdown is done
4138 	 */
4139 	pmap_add_delayed_free_list(m, free, true);
4140 }
4141 
4142 /*
4143  * After removing a page table entry, this routine is used to
4144  * conditionally free the page, and manage the reference count.
4145  */
4146 static int
4147 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4148     struct spglist *free)
4149 {
4150 	vm_page_t mpte;
4151 
4152 	if (va >= VM_MAXUSER_ADDRESS)
4153 		return (0);
4154 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4155 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4156 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4157 }
4158 
4159 /*
4160  * Release a page table page reference after a failed attempt to create a
4161  * mapping.
4162  */
4163 static void
4164 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4165 {
4166 	struct spglist free;
4167 
4168 	SLIST_INIT(&free);
4169 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4170 		/*
4171 		 * Although "va" was never mapped, paging-structure caches
4172 		 * could nonetheless have entries that refer to the freed
4173 		 * page table pages.  Invalidate those entries.
4174 		 */
4175 		pmap_invalidate_page(pmap, va);
4176 		vm_page_free_pages_toq(&free, true);
4177 	}
4178 }
4179 
4180 static void
4181 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4182 {
4183 	struct pmap_pcid *pcidp;
4184 	int i;
4185 
4186 	CPU_FOREACH(i) {
4187 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4188 		pcidp->pm_pcid = pcid;
4189 		pcidp->pm_gen = gen;
4190 	}
4191 }
4192 
4193 void
4194 pmap_pinit0(pmap_t pmap)
4195 {
4196 	struct proc *p;
4197 	struct thread *td;
4198 
4199 	PMAP_LOCK_INIT(pmap);
4200 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4201 	pmap->pm_pmltopu = NULL;
4202 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4203 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4204 	pmap->pm_ucr3 = PMAP_NO_CR3;
4205 	vm_radix_init(&pmap->pm_root);
4206 	CPU_ZERO(&pmap->pm_active);
4207 	TAILQ_INIT(&pmap->pm_pvchunk);
4208 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4209 	pmap->pm_flags = pmap_flags;
4210 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4211 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4212 	pmap_activate_boot(pmap);
4213 	td = curthread;
4214 	if (pti) {
4215 		p = td->td_proc;
4216 		PROC_LOCK(p);
4217 		p->p_md.md_flags |= P_MD_KPTI;
4218 		PROC_UNLOCK(p);
4219 	}
4220 	pmap_thread_init_invl_gen(td);
4221 
4222 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4223 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4224 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4225 		    UMA_ALIGN_PTR, 0);
4226 	}
4227 }
4228 
4229 void
4230 pmap_pinit_pml4(vm_page_t pml4pg)
4231 {
4232 	pml4_entry_t *pm_pml4;
4233 	int i;
4234 
4235 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4236 
4237 	/* Wire in kernel global address entries. */
4238 	for (i = 0; i < NKPML4E; i++) {
4239 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4240 		    X86_PG_V;
4241 	}
4242 #ifdef KASAN
4243 	for (i = 0; i < NKASANPML4E; i++) {
4244 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4245 		    X86_PG_V | pg_nx;
4246 	}
4247 #endif
4248 #ifdef KMSAN
4249 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4250 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4251 		    X86_PG_RW | X86_PG_V | pg_nx;
4252 	}
4253 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4254 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4255 		    X86_PG_RW | X86_PG_V | pg_nx;
4256 	}
4257 #endif
4258 	for (i = 0; i < ndmpdpphys; i++) {
4259 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4260 		    X86_PG_V;
4261 	}
4262 
4263 	/* install self-referential address mapping entry(s) */
4264 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4265 	    X86_PG_A | X86_PG_M;
4266 
4267 	/* install large map entries if configured */
4268 	for (i = 0; i < lm_ents; i++)
4269 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4270 }
4271 
4272 void
4273 pmap_pinit_pml5(vm_page_t pml5pg)
4274 {
4275 	pml5_entry_t *pm_pml5;
4276 	int i;
4277 
4278 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4279 	for (i = 0; i < NPML5EPG / 2; i++)
4280 		pm_pml5[i] = 0;
4281 	for (; i < NPML5EPG; i++)
4282 		pm_pml5[i] = kernel_pmap->pm_pmltop[i];
4283 }
4284 
4285 static void
4286 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4287 {
4288 	pml4_entry_t *pm_pml4u;
4289 	int i;
4290 
4291 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4292 	for (i = 0; i < NPML4EPG; i++)
4293 		pm_pml4u[i] = pti_pml4[i];
4294 }
4295 
4296 static void
4297 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4298 {
4299 	pml5_entry_t *pm_pml5u;
4300 
4301 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4302 	pagezero(pm_pml5u);
4303 
4304 	/*
4305 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4306 	 * table, entering all kernel mappings needed for usermode
4307 	 * into level 5 table.
4308 	 */
4309 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4310 	    pmap_kextract((vm_offset_t)pti_pml4) |
4311 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4312 }
4313 
4314 /* Allocate a page table page and do related bookkeeping */
4315 static vm_page_t
4316 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4317 {
4318 	vm_page_t m;
4319 
4320 	m = vm_page_alloc_noobj(flags);
4321 	if (__predict_false(m == NULL))
4322 		return (NULL);
4323 	m->pindex = pindex;
4324 	pmap_pt_page_count_adj(pmap, 1);
4325 	return (m);
4326 }
4327 
4328 static void
4329 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4330 {
4331 	/*
4332 	 * This function assumes the page will need to be unwired,
4333 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4334 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4335 	 * of pmap_free_pt_page() require unwiring.  The case in which
4336 	 * a PT page doesn't require unwiring because its ref_count has
4337 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4338 	 */
4339 	vm_page_unwire_noq(m);
4340 	if (zerofilled)
4341 		vm_page_free_zero(m);
4342 	else
4343 		vm_page_free(m);
4344 
4345 	pmap_pt_page_count_adj(pmap, -1);
4346 }
4347 
4348 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4349 
4350 /*
4351  * Initialize a preallocated and zeroed pmap structure,
4352  * such as one in a vmspace structure.
4353  */
4354 int
4355 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4356 {
4357 	vm_page_t pmltop_pg, pmltop_pgu;
4358 	vm_paddr_t pmltop_phys;
4359 
4360 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4361 
4362 	/*
4363 	 * Allocate the page directory page.  Pass NULL instead of a
4364 	 * pointer to the pmap here to avoid calling
4365 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4366 	 * since that requires pmap lock.  Instead do the accounting
4367 	 * manually.
4368 	 *
4369 	 * Note that final call to pmap_remove() optimization that
4370 	 * checks for zero resident_count is basically disabled by
4371 	 * accounting for top-level page.  But the optimization was
4372 	 * not effective since we started using non-managed mapping of
4373 	 * the shared page.
4374 	 */
4375 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4376 	    VM_ALLOC_WAITOK);
4377 	pmap_pt_page_count_pinit(pmap, 1);
4378 
4379 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4380 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4381 
4382 	if (pmap_pcid_enabled) {
4383 		if (pmap->pm_pcidp == NULL)
4384 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4385 			    M_WAITOK);
4386 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4387 	}
4388 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4389 	pmap->pm_ucr3 = PMAP_NO_CR3;
4390 	pmap->pm_pmltopu = NULL;
4391 
4392 	pmap->pm_type = pm_type;
4393 
4394 	/*
4395 	 * Do not install the host kernel mappings in the nested page
4396 	 * tables. These mappings are meaningless in the guest physical
4397 	 * address space.
4398 	 * Install minimal kernel mappings in PTI case.
4399 	 */
4400 	switch (pm_type) {
4401 	case PT_X86:
4402 		pmap->pm_cr3 = pmltop_phys;
4403 		if (pmap_is_la57(pmap))
4404 			pmap_pinit_pml5(pmltop_pg);
4405 		else
4406 			pmap_pinit_pml4(pmltop_pg);
4407 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4408 			/*
4409 			 * As with pmltop_pg, pass NULL instead of a
4410 			 * pointer to the pmap to ensure that the PTI
4411 			 * page counted explicitly.
4412 			 */
4413 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4414 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4415 			pmap_pt_page_count_pinit(pmap, 1);
4416 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4417 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4418 			if (pmap_is_la57(pmap))
4419 				pmap_pinit_pml5_pti(pmltop_pgu);
4420 			else
4421 				pmap_pinit_pml4_pti(pmltop_pgu);
4422 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4423 		}
4424 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4425 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4426 			    pkru_free_range, pmap, M_NOWAIT);
4427 		}
4428 		break;
4429 	case PT_EPT:
4430 	case PT_RVI:
4431 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4432 		break;
4433 	}
4434 
4435 	vm_radix_init(&pmap->pm_root);
4436 	CPU_ZERO(&pmap->pm_active);
4437 	TAILQ_INIT(&pmap->pm_pvchunk);
4438 	pmap->pm_flags = flags;
4439 	pmap->pm_eptgen = 0;
4440 
4441 	return (1);
4442 }
4443 
4444 int
4445 pmap_pinit(pmap_t pmap)
4446 {
4447 
4448 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4449 }
4450 
4451 static void
4452 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4453 {
4454 	vm_page_t mpg;
4455 	struct spglist free;
4456 
4457 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4458 	if (mpg->ref_count != 0)
4459 		return;
4460 	SLIST_INIT(&free);
4461 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4462 	pmap_invalidate_page(pmap, va);
4463 	vm_page_free_pages_toq(&free, true);
4464 }
4465 
4466 static pml4_entry_t *
4467 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4468     bool addref)
4469 {
4470 	vm_pindex_t pml5index;
4471 	pml5_entry_t *pml5;
4472 	pml4_entry_t *pml4;
4473 	vm_page_t pml4pg;
4474 	pt_entry_t PG_V;
4475 	bool allocated;
4476 
4477 	if (!pmap_is_la57(pmap))
4478 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4479 
4480 	PG_V = pmap_valid_bit(pmap);
4481 	pml5index = pmap_pml5e_index(va);
4482 	pml5 = &pmap->pm_pmltop[pml5index];
4483 	if ((*pml5 & PG_V) == 0) {
4484 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4485 		    va) == NULL)
4486 			return (NULL);
4487 		allocated = true;
4488 	} else {
4489 		allocated = false;
4490 	}
4491 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4492 	pml4 = &pml4[pmap_pml4e_index(va)];
4493 	if ((*pml4 & PG_V) == 0) {
4494 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4495 		if (allocated && !addref)
4496 			pml4pg->ref_count--;
4497 		else if (!allocated && addref)
4498 			pml4pg->ref_count++;
4499 	}
4500 	return (pml4);
4501 }
4502 
4503 static pdp_entry_t *
4504 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4505     bool addref)
4506 {
4507 	vm_page_t pdppg;
4508 	pml4_entry_t *pml4;
4509 	pdp_entry_t *pdp;
4510 	pt_entry_t PG_V;
4511 	bool allocated;
4512 
4513 	PG_V = pmap_valid_bit(pmap);
4514 
4515 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4516 	if (pml4 == NULL)
4517 		return (NULL);
4518 
4519 	if ((*pml4 & PG_V) == 0) {
4520 		/* Have to allocate a new pdp, recurse */
4521 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4522 		    va) == NULL) {
4523 			if (pmap_is_la57(pmap))
4524 				pmap_allocpte_free_unref(pmap, va,
4525 				    pmap_pml5e(pmap, va));
4526 			return (NULL);
4527 		}
4528 		allocated = true;
4529 	} else {
4530 		allocated = false;
4531 	}
4532 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4533 	pdp = &pdp[pmap_pdpe_index(va)];
4534 	if ((*pdp & PG_V) == 0) {
4535 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4536 		if (allocated && !addref)
4537 			pdppg->ref_count--;
4538 		else if (!allocated && addref)
4539 			pdppg->ref_count++;
4540 	}
4541 	return (pdp);
4542 }
4543 
4544 /*
4545  * The ptepindexes, i.e. page indices, of the page table pages encountered
4546  * while translating virtual address va are defined as follows:
4547  * - for the page table page (last level),
4548  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4549  *   in other words, it is just the index of the PDE that maps the page
4550  *   table page.
4551  * - for the page directory page,
4552  *      ptepindex = NUPDE (number of userland PD entries) +
4553  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4554  *   i.e. index of PDPE is put after the last index of PDE,
4555  * - for the page directory pointer page,
4556  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4557  *          NPML4EPGSHIFT),
4558  *   i.e. index of pml4e is put after the last index of PDPE,
4559  * - for the PML4 page (if LA57 mode is enabled),
4560  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4561  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4562  *   i.e. index of pml5e is put after the last index of PML4E.
4563  *
4564  * Define an order on the paging entries, where all entries of the
4565  * same height are put together, then heights are put from deepest to
4566  * root.  Then ptexpindex is the sequential number of the
4567  * corresponding paging entry in this order.
4568  *
4569  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4570  * LA57 paging structures even in LA48 paging mode. Moreover, the
4571  * ptepindexes are calculated as if the paging structures were 5-level
4572  * regardless of the actual mode of operation.
4573  *
4574  * The root page at PML4/PML5 does not participate in this indexing scheme,
4575  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4576  */
4577 static vm_page_t
4578 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4579     vm_offset_t va)
4580 {
4581 	vm_pindex_t pml5index, pml4index;
4582 	pml5_entry_t *pml5, *pml5u;
4583 	pml4_entry_t *pml4, *pml4u;
4584 	pdp_entry_t *pdp;
4585 	pd_entry_t *pd;
4586 	vm_page_t m, pdpg;
4587 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4588 
4589 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4590 
4591 	PG_A = pmap_accessed_bit(pmap);
4592 	PG_M = pmap_modified_bit(pmap);
4593 	PG_V = pmap_valid_bit(pmap);
4594 	PG_RW = pmap_rw_bit(pmap);
4595 
4596 	/*
4597 	 * Allocate a page table page.
4598 	 */
4599 	m = pmap_alloc_pt_page(pmap, ptepindex,
4600 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4601 	if (m == NULL)
4602 		return (NULL);
4603 
4604 	/*
4605 	 * Map the pagetable page into the process address space, if
4606 	 * it isn't already there.
4607 	 */
4608 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4609 		MPASS(pmap_is_la57(pmap));
4610 
4611 		pml5index = pmap_pml5e_index(va);
4612 		pml5 = &pmap->pm_pmltop[pml5index];
4613 		KASSERT((*pml5 & PG_V) == 0,
4614 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4615 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4616 
4617 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4618 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4619 			*pml5 |= pg_nx;
4620 
4621 			pml5u = &pmap->pm_pmltopu[pml5index];
4622 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4623 			    PG_A | PG_M;
4624 		}
4625 	} else if (ptepindex >= NUPDE + NUPDPE) {
4626 		pml4index = pmap_pml4e_index(va);
4627 		/* Wire up a new PDPE page */
4628 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4629 		if (pml4 == NULL) {
4630 			pmap_free_pt_page(pmap, m, true);
4631 			return (NULL);
4632 		}
4633 		KASSERT((*pml4 & PG_V) == 0,
4634 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4635 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4636 
4637 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4638 		    pml4index < NUPML4E) {
4639 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4640 
4641 			/*
4642 			 * PTI: Make all user-space mappings in the
4643 			 * kernel-mode page table no-execute so that
4644 			 * we detect any programming errors that leave
4645 			 * the kernel-mode page table active on return
4646 			 * to user space.
4647 			 */
4648 			*pml4 |= pg_nx;
4649 
4650 			pml4u = &pmap->pm_pmltopu[pml4index];
4651 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4652 			    PG_A | PG_M;
4653 		}
4654 	} else if (ptepindex >= NUPDE) {
4655 		/* Wire up a new PDE page */
4656 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4657 		if (pdp == NULL) {
4658 			pmap_free_pt_page(pmap, m, true);
4659 			return (NULL);
4660 		}
4661 		KASSERT((*pdp & PG_V) == 0,
4662 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4663 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4664 	} else {
4665 		/* Wire up a new PTE page */
4666 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4667 		if (pdp == NULL) {
4668 			pmap_free_pt_page(pmap, m, true);
4669 			return (NULL);
4670 		}
4671 		if ((*pdp & PG_V) == 0) {
4672 			/* Have to allocate a new pd, recurse */
4673 			if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4674 			    lockp, va) == NULL) {
4675 				pmap_allocpte_free_unref(pmap, va,
4676 				    pmap_pml4e(pmap, va));
4677 				pmap_free_pt_page(pmap, m, true);
4678 				return (NULL);
4679 			}
4680 		} else {
4681 			/* Add reference to the pd page */
4682 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4683 			pdpg->ref_count++;
4684 		}
4685 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4686 
4687 		/* Now we know where the page directory page is */
4688 		pd = &pd[pmap_pde_index(va)];
4689 		KASSERT((*pd & PG_V) == 0,
4690 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4691 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4692 	}
4693 
4694 	return (m);
4695 }
4696 
4697 /*
4698  * This routine is called if the desired page table page does not exist.
4699  *
4700  * If page table page allocation fails, this routine may sleep before
4701  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4702  * occurs right before returning to the caller. This way, we never
4703  * drop pmap lock to sleep while a page table page has ref_count == 0,
4704  * which prevents the page from being freed under us.
4705  */
4706 static vm_page_t
4707 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4708     vm_offset_t va)
4709 {
4710 	vm_page_t m;
4711 
4712 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4713 	if (m == NULL && lockp != NULL) {
4714 		RELEASE_PV_LIST_LOCK(lockp);
4715 		PMAP_UNLOCK(pmap);
4716 		PMAP_ASSERT_NOT_IN_DI();
4717 		vm_wait(NULL);
4718 		PMAP_LOCK(pmap);
4719 	}
4720 	return (m);
4721 }
4722 
4723 static pd_entry_t *
4724 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4725     struct rwlock **lockp)
4726 {
4727 	pdp_entry_t *pdpe, PG_V;
4728 	pd_entry_t *pde;
4729 	vm_page_t pdpg;
4730 	vm_pindex_t pdpindex;
4731 
4732 	PG_V = pmap_valid_bit(pmap);
4733 
4734 retry:
4735 	pdpe = pmap_pdpe(pmap, va);
4736 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4737 		pde = pmap_pdpe_to_pde(pdpe, va);
4738 		if (va < VM_MAXUSER_ADDRESS) {
4739 			/* Add a reference to the pd page. */
4740 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4741 			pdpg->ref_count++;
4742 		} else
4743 			pdpg = NULL;
4744 	} else if (va < VM_MAXUSER_ADDRESS) {
4745 		/* Allocate a pd page. */
4746 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4747 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4748 		if (pdpg == NULL) {
4749 			if (lockp != NULL)
4750 				goto retry;
4751 			else
4752 				return (NULL);
4753 		}
4754 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4755 		pde = &pde[pmap_pde_index(va)];
4756 	} else
4757 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4758 		    va);
4759 	*pdpgp = pdpg;
4760 	return (pde);
4761 }
4762 
4763 static vm_page_t
4764 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4765 {
4766 	vm_pindex_t ptepindex;
4767 	pd_entry_t *pd, PG_V;
4768 	vm_page_t m;
4769 
4770 	PG_V = pmap_valid_bit(pmap);
4771 
4772 	/*
4773 	 * Calculate pagetable page index
4774 	 */
4775 	ptepindex = pmap_pde_pindex(va);
4776 retry:
4777 	/*
4778 	 * Get the page directory entry
4779 	 */
4780 	pd = pmap_pde(pmap, va);
4781 
4782 	/*
4783 	 * This supports switching from a 2MB page to a
4784 	 * normal 4K page.
4785 	 */
4786 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4787 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4788 			/*
4789 			 * Invalidation of the 2MB page mapping may have caused
4790 			 * the deallocation of the underlying PD page.
4791 			 */
4792 			pd = NULL;
4793 		}
4794 	}
4795 
4796 	/*
4797 	 * If the page table page is mapped, we just increment the
4798 	 * hold count, and activate it.
4799 	 */
4800 	if (pd != NULL && (*pd & PG_V) != 0) {
4801 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4802 		m->ref_count++;
4803 	} else {
4804 		/*
4805 		 * Here if the pte page isn't mapped, or if it has been
4806 		 * deallocated.
4807 		 */
4808 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4809 		if (m == NULL && lockp != NULL)
4810 			goto retry;
4811 	}
4812 	return (m);
4813 }
4814 
4815 /***************************************************
4816  * Pmap allocation/deallocation routines.
4817  ***************************************************/
4818 
4819 /*
4820  * Release any resources held by the given physical map.
4821  * Called when a pmap initialized by pmap_pinit is being released.
4822  * Should only be called if the map contains no valid mappings.
4823  */
4824 void
4825 pmap_release(pmap_t pmap)
4826 {
4827 	vm_page_t m;
4828 	int i;
4829 
4830 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4831 	    ("pmap_release: pmap %p has reserved page table page(s)",
4832 	    pmap));
4833 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4834 	    ("releasing active pmap %p", pmap));
4835 
4836 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4837 
4838 	if (pmap_is_la57(pmap)) {
4839 		for (i = NPML5EPG / 2; i < NPML5EPG; i++)
4840 			pmap->pm_pmltop[i] = 0;
4841 	} else {
4842 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4843 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4844 #ifdef KASAN
4845 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4846 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4847 #endif
4848 #ifdef KMSAN
4849 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4850 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4851 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4852 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4853 #endif
4854 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4855 			pmap->pm_pmltop[DMPML4I + i] = 0;
4856 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4857 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4858 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4859 	}
4860 
4861 	pmap_free_pt_page(NULL, m, true);
4862 	pmap_pt_page_count_pinit(pmap, -1);
4863 
4864 	if (pmap->pm_pmltopu != NULL) {
4865 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4866 		    pm_pmltopu));
4867 		pmap_free_pt_page(NULL, m, false);
4868 		pmap_pt_page_count_pinit(pmap, -1);
4869 	}
4870 	if (pmap->pm_type == PT_X86 &&
4871 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4872 		rangeset_fini(&pmap->pm_pkru);
4873 
4874 	KASSERT(pmap->pm_stats.resident_count == 0,
4875 	    ("pmap_release: pmap %p resident count %ld != 0",
4876 	    pmap, pmap->pm_stats.resident_count));
4877 }
4878 
4879 static int
4880 kvm_size(SYSCTL_HANDLER_ARGS)
4881 {
4882 	unsigned long ksize = kva_layout.km_high - kva_layout.km_low;
4883 
4884 	return sysctl_handle_long(oidp, &ksize, 0, req);
4885 }
4886 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4887     0, 0, kvm_size, "LU",
4888     "Size of KVM");
4889 
4890 static int
4891 kvm_free(SYSCTL_HANDLER_ARGS)
4892 {
4893 	unsigned long kfree = kva_layout.km_high - kernel_vm_end;
4894 
4895 	return sysctl_handle_long(oidp, &kfree, 0, req);
4896 }
4897 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4898     0, 0, kvm_free, "LU",
4899     "Amount of KVM free");
4900 
4901 #ifdef KMSAN
4902 static void
4903 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4904 {
4905 	pdp_entry_t *pdpe;
4906 	pd_entry_t *pde;
4907 	pt_entry_t *pte;
4908 	vm_paddr_t dummypa, dummypd, dummypt;
4909 	int i, npde, npdpg;
4910 
4911 	npdpg = howmany(size, NBPDP);
4912 	npde = size / NBPDR;
4913 
4914 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4915 	pagezero((void *)PHYS_TO_DMAP(dummypa));
4916 
4917 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4918 	pagezero((void *)PHYS_TO_DMAP(dummypt));
4919 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4920 	for (i = 0; i < npdpg; i++)
4921 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4922 
4923 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4924 	for (i = 0; i < NPTEPG; i++)
4925 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4926 		    X86_PG_A | X86_PG_M | pg_nx);
4927 
4928 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4929 	for (i = 0; i < npde; i++)
4930 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4931 
4932 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4933 	for (i = 0; i < npdpg; i++)
4934 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4935 		    X86_PG_RW | pg_nx);
4936 }
4937 
4938 static void
4939 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
4940 {
4941 	vm_size_t size;
4942 
4943 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
4944 
4945 	/*
4946 	 * The end of the page array's KVA region is 2MB aligned, see
4947 	 * kmem_init().
4948 	 */
4949 	size = round_2mpage(end) - start;
4950 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
4951 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
4952 }
4953 #endif
4954 
4955 /*
4956  * Allocate physical memory for the vm_page array and map it into KVA,
4957  * attempting to back the vm_pages with domain-local memory.
4958  */
4959 void
4960 pmap_page_array_startup(long pages)
4961 {
4962 	pdp_entry_t *pdpe;
4963 	pd_entry_t *pde, newpdir;
4964 	vm_offset_t va, start, end;
4965 	vm_paddr_t pa;
4966 	long pfn;
4967 	int domain, i;
4968 
4969 	vm_page_array_size = pages;
4970 
4971 	start = kva_layout.km_low;
4972 	end = start + pages * sizeof(struct vm_page);
4973 	for (va = start; va < end; va += NBPDR) {
4974 		pfn = first_page + (va - start) / sizeof(struct vm_page);
4975 		domain = vm_phys_domain(ptoa(pfn));
4976 		pdpe = pmap_pdpe(kernel_pmap, va);
4977 		if ((*pdpe & X86_PG_V) == 0) {
4978 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
4979 			dump_add_page(pa);
4980 			pagezero((void *)PHYS_TO_DMAP(pa));
4981 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
4982 			    X86_PG_A | X86_PG_M);
4983 		}
4984 		pde = pmap_pdpe_to_pde(pdpe, va);
4985 		if ((*pde & X86_PG_V) != 0)
4986 			panic("Unexpected pde");
4987 		pa = vm_phys_early_alloc(domain, NBPDR);
4988 		for (i = 0; i < NPDEPG; i++)
4989 			dump_add_page(pa + i * PAGE_SIZE);
4990 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
4991 		    X86_PG_M | PG_PS | pg_g | pg_nx);
4992 		pde_store(pde, newpdir);
4993 	}
4994 	vm_page_array = (vm_page_t)start;
4995 
4996 #ifdef KMSAN
4997 	pmap_kmsan_page_array_startup(start, end);
4998 #endif
4999 }
5000 
5001 /*
5002  * grow the number of kernel page table entries, if needed
5003  */
5004 static int
5005 pmap_growkernel_nopanic(vm_offset_t addr)
5006 {
5007 	vm_paddr_t paddr;
5008 	vm_page_t nkpg;
5009 	pd_entry_t *pde, newpdir;
5010 	pdp_entry_t *pdpe;
5011 	vm_offset_t end;
5012 	int rv;
5013 
5014 	TSENTER();
5015 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5016 	rv = KERN_SUCCESS;
5017 
5018 	/*
5019 	 * The kernel map covers two distinct regions of KVA: that used
5020 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5021 	 * of the virtual address space.  The latter is used to map the
5022 	 * kernel and loadable kernel modules.  This scheme enables the
5023 	 * use of a special code generation model for kernel code which
5024 	 * takes advantage of compact addressing modes in machine code.
5025 	 *
5026 	 * Both regions grow upwards; to avoid wasting memory, the gap
5027 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5028 	 * kernel's region is grown, otherwise the kmem region is grown.
5029 	 *
5030 	 * The correctness of this action is based on the following
5031 	 * argument: vm_map_insert() allocates contiguous ranges of the
5032 	 * kernel virtual address space.  It calls this function if a range
5033 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5034 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5035 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5036 	 * than the kernel.  Thus, there is no immediate need to allocate
5037 	 * any new kernel page table pages between "kernel_vm_end" and
5038 	 * "KERNBASE".
5039 	 */
5040 	if (KERNBASE < addr) {
5041 		end = KERNBASE + nkpt * NBPDR;
5042 		if (end == 0) {
5043 			TSEXIT();
5044 			return (rv);
5045 		}
5046 	} else {
5047 		end = kernel_vm_end;
5048 	}
5049 
5050 	addr = roundup2(addr, NBPDR);
5051 	if (addr - 1 >= vm_map_max(kernel_map))
5052 		addr = vm_map_max(kernel_map);
5053 	if (addr <= end) {
5054 		/*
5055 		 * The grown region is already mapped, so there is
5056 		 * nothing to do.
5057 		 */
5058 		TSEXIT();
5059 		return (rv);
5060 	}
5061 
5062 	kasan_shadow_map(end, addr - end);
5063 	kmsan_shadow_map(end, addr - end);
5064 	while (end < addr) {
5065 		pdpe = pmap_pdpe(kernel_pmap, end);
5066 		if ((*pdpe & X86_PG_V) == 0) {
5067 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5068 			    pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5069 			        VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5070 			if (nkpg == NULL) {
5071 				rv = KERN_RESOURCE_SHORTAGE;
5072 				break;
5073 			}
5074 			paddr = VM_PAGE_TO_PHYS(nkpg);
5075 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5076 			    X86_PG_A | X86_PG_M);
5077 			continue; /* try again */
5078 		}
5079 		pde = pmap_pdpe_to_pde(pdpe, end);
5080 		if ((*pde & X86_PG_V) != 0) {
5081 			end = (end + NBPDR) & ~PDRMASK;
5082 			if (end - 1 >= vm_map_max(kernel_map)) {
5083 				end = vm_map_max(kernel_map);
5084 				break;
5085 			}
5086 			continue;
5087 		}
5088 
5089 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5090 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5091 			VM_ALLOC_ZERO);
5092 		if (nkpg == NULL) {
5093 			rv = KERN_RESOURCE_SHORTAGE;
5094 			break;
5095 		}
5096 
5097 		paddr = VM_PAGE_TO_PHYS(nkpg);
5098 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5099 		pde_store(pde, newpdir);
5100 
5101 		end = (end + NBPDR) & ~PDRMASK;
5102 		if (end - 1 >= vm_map_max(kernel_map)) {
5103 			end = vm_map_max(kernel_map);
5104 			break;
5105 		}
5106 	}
5107 
5108 	if (end <= KERNBASE)
5109 		kernel_vm_end = end;
5110 	else
5111 		nkpt = howmany(end - KERNBASE, NBPDR);
5112 	TSEXIT();
5113 	return (rv);
5114 }
5115 
5116 int
5117 pmap_growkernel(vm_offset_t addr)
5118 {
5119 	int rv;
5120 
5121 	rv = pmap_growkernel_nopanic(addr);
5122 	if (rv != KERN_SUCCESS && pmap_growkernel_panic)
5123 		panic("pmap_growkernel: no memory to grow kernel");
5124 	return (rv);
5125 }
5126 
5127 /***************************************************
5128  * page management routines.
5129  ***************************************************/
5130 
5131 static const uint64_t pc_freemask[_NPCM] = {
5132 	[0 ... _NPCM - 2] = PC_FREEN,
5133 	[_NPCM - 1] = PC_FREEL
5134 };
5135 
5136 #ifdef PV_STATS
5137 
5138 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5139 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5140     &pc_chunk_count, "Current number of pv entry cnunks");
5141 
5142 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5143 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5144     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5145 
5146 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5147 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5148     &pc_chunk_frees, "Total number of pv entry chunks freed");
5149 
5150 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5151 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5152     &pc_chunk_tryfail,
5153     "Number of failed attempts to get a pv entry chunk page");
5154 
5155 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5156 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5157     &pv_entry_frees, "Total number of pv entries freed");
5158 
5159 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5160 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5161     &pv_entry_allocs, "Total number of pv entries allocated");
5162 
5163 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5164 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5165     &pv_entry_count, "Current number of pv entries");
5166 
5167 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5168 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5169     &pv_entry_spare, "Current number of spare pv entries");
5170 #endif
5171 
5172 static void
5173 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5174 {
5175 
5176 	if (pmap == NULL)
5177 		return;
5178 	pmap_invalidate_all(pmap);
5179 	if (pmap != locked_pmap)
5180 		PMAP_UNLOCK(pmap);
5181 	if (start_di)
5182 		pmap_delayed_invl_finish();
5183 }
5184 
5185 /*
5186  * We are in a serious low memory condition.  Resort to
5187  * drastic measures to free some pages so we can allocate
5188  * another pv entry chunk.
5189  *
5190  * Returns NULL if PV entries were reclaimed from the specified pmap.
5191  *
5192  * We do not, however, unmap 2mpages because subsequent accesses will
5193  * allocate per-page pv entries until repromotion occurs, thereby
5194  * exacerbating the shortage of free pv entries.
5195  */
5196 static vm_page_t
5197 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5198 {
5199 	struct pv_chunks_list *pvc;
5200 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5201 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5202 	struct md_page *pvh;
5203 	pd_entry_t *pde;
5204 	pmap_t next_pmap, pmap;
5205 	pt_entry_t *pte, tpte;
5206 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5207 	pv_entry_t pv;
5208 	vm_offset_t va;
5209 	vm_page_t m, m_pc;
5210 	struct spglist free;
5211 	uint64_t inuse;
5212 	int bit, field, freed;
5213 	bool start_di, restart;
5214 
5215 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5216 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5217 	pmap = NULL;
5218 	m_pc = NULL;
5219 	PG_G = PG_A = PG_M = PG_RW = 0;
5220 	SLIST_INIT(&free);
5221 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5222 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5223 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5224 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5225 
5226 	/*
5227 	 * A delayed invalidation block should already be active if
5228 	 * pmap_advise() or pmap_remove() called this function by way
5229 	 * of pmap_demote_pde_locked().
5230 	 */
5231 	start_di = pmap_not_in_di();
5232 
5233 	pvc = &pv_chunks[domain];
5234 	mtx_lock(&pvc->pvc_lock);
5235 	pvc->active_reclaims++;
5236 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5237 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5238 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5239 	    SLIST_EMPTY(&free)) {
5240 		next_pmap = pc->pc_pmap;
5241 		if (next_pmap == NULL) {
5242 			/*
5243 			 * The next chunk is a marker.  However, it is
5244 			 * not our marker, so active_reclaims must be
5245 			 * > 1.  Consequently, the next_chunk code
5246 			 * will not rotate the pv_chunks list.
5247 			 */
5248 			goto next_chunk;
5249 		}
5250 		mtx_unlock(&pvc->pvc_lock);
5251 
5252 		/*
5253 		 * A pv_chunk can only be removed from the pc_lru list
5254 		 * when both pc_chunks_mutex is owned and the
5255 		 * corresponding pmap is locked.
5256 		 */
5257 		if (pmap != next_pmap) {
5258 			restart = false;
5259 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5260 			    start_di);
5261 			pmap = next_pmap;
5262 			/* Avoid deadlock and lock recursion. */
5263 			if (pmap > locked_pmap) {
5264 				RELEASE_PV_LIST_LOCK(lockp);
5265 				PMAP_LOCK(pmap);
5266 				if (start_di)
5267 					pmap_delayed_invl_start();
5268 				mtx_lock(&pvc->pvc_lock);
5269 				restart = true;
5270 			} else if (pmap != locked_pmap) {
5271 				if (PMAP_TRYLOCK(pmap)) {
5272 					if (start_di)
5273 						pmap_delayed_invl_start();
5274 					mtx_lock(&pvc->pvc_lock);
5275 					restart = true;
5276 				} else {
5277 					pmap = NULL; /* pmap is not locked */
5278 					mtx_lock(&pvc->pvc_lock);
5279 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5280 					if (pc == NULL ||
5281 					    pc->pc_pmap != next_pmap)
5282 						continue;
5283 					goto next_chunk;
5284 				}
5285 			} else if (start_di)
5286 				pmap_delayed_invl_start();
5287 			PG_G = pmap_global_bit(pmap);
5288 			PG_A = pmap_accessed_bit(pmap);
5289 			PG_M = pmap_modified_bit(pmap);
5290 			PG_RW = pmap_rw_bit(pmap);
5291 			if (restart)
5292 				continue;
5293 		}
5294 
5295 		/*
5296 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5297 		 */
5298 		freed = 0;
5299 		for (field = 0; field < _NPCM; field++) {
5300 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5301 			    inuse != 0; inuse &= ~(1UL << bit)) {
5302 				bit = bsfq(inuse);
5303 				pv = &pc->pc_pventry[field * 64 + bit];
5304 				va = pv->pv_va;
5305 				pde = pmap_pde(pmap, va);
5306 				if ((*pde & PG_PS) != 0)
5307 					continue;
5308 				pte = pmap_pde_to_pte(pde, va);
5309 				if ((*pte & PG_W) != 0)
5310 					continue;
5311 				tpte = pte_load_clear(pte);
5312 				if ((tpte & PG_G) != 0)
5313 					pmap_invalidate_page(pmap, va);
5314 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5315 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5316 					vm_page_dirty(m);
5317 				if ((tpte & PG_A) != 0)
5318 					vm_page_aflag_set(m, PGA_REFERENCED);
5319 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5320 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5321 				m->md.pv_gen++;
5322 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5323 				    (m->flags & PG_FICTITIOUS) == 0) {
5324 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5325 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5326 						vm_page_aflag_clear(m,
5327 						    PGA_WRITEABLE);
5328 					}
5329 				}
5330 				pmap_delayed_invl_page(m);
5331 				pc->pc_map[field] |= 1UL << bit;
5332 				pmap_unuse_pt(pmap, va, *pde, &free);
5333 				freed++;
5334 			}
5335 		}
5336 		if (freed == 0) {
5337 			mtx_lock(&pvc->pvc_lock);
5338 			goto next_chunk;
5339 		}
5340 		/* Every freed mapping is for a 4 KB page. */
5341 		pmap_resident_count_adj(pmap, -freed);
5342 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5343 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5344 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5345 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5346 		if (pc_is_free(pc)) {
5347 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5348 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5349 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5350 			/* Entire chunk is free; return it. */
5351 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5352 			dump_drop_page(m_pc->phys_addr);
5353 			mtx_lock(&pvc->pvc_lock);
5354 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5355 			break;
5356 		}
5357 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5358 		mtx_lock(&pvc->pvc_lock);
5359 		/* One freed pv entry in locked_pmap is sufficient. */
5360 		if (pmap == locked_pmap)
5361 			break;
5362 next_chunk:
5363 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5364 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5365 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5366 			/*
5367 			 * Rotate the pv chunks list so that we do not
5368 			 * scan the same pv chunks that could not be
5369 			 * freed (because they contained a wired
5370 			 * and/or superpage mapping) on every
5371 			 * invocation of reclaim_pv_chunk().
5372 			 */
5373 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5374 				MPASS(pc->pc_pmap != NULL);
5375 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5376 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5377 			}
5378 		}
5379 	}
5380 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5381 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5382 	pvc->active_reclaims--;
5383 	mtx_unlock(&pvc->pvc_lock);
5384 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5385 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5386 		m_pc = SLIST_FIRST(&free);
5387 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5388 		/* Recycle a freed page table page. */
5389 		m_pc->ref_count = 1;
5390 	}
5391 	vm_page_free_pages_toq(&free, true);
5392 	return (m_pc);
5393 }
5394 
5395 static vm_page_t
5396 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5397 {
5398 	vm_page_t m;
5399 	int i, domain;
5400 
5401 	domain = PCPU_GET(domain);
5402 	for (i = 0; i < vm_ndomains; i++) {
5403 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5404 		if (m != NULL)
5405 			break;
5406 		domain = (domain + 1) % vm_ndomains;
5407 	}
5408 
5409 	return (m);
5410 }
5411 
5412 /*
5413  * free the pv_entry back to the free list
5414  */
5415 static void
5416 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5417 {
5418 	struct pv_chunk *pc;
5419 	int idx, field, bit;
5420 
5421 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5422 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5423 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5424 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5425 	pc = pv_to_chunk(pv);
5426 	idx = pv - &pc->pc_pventry[0];
5427 	field = idx / 64;
5428 	bit = idx % 64;
5429 	pc->pc_map[field] |= 1ul << bit;
5430 	if (!pc_is_free(pc)) {
5431 		/* 98% of the time, pc is already at the head of the list. */
5432 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5433 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5434 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5435 		}
5436 		return;
5437 	}
5438 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5439 	free_pv_chunk(pc);
5440 }
5441 
5442 static void
5443 free_pv_chunk_dequeued(struct pv_chunk *pc)
5444 {
5445 	vm_page_t m;
5446 
5447 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5448 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5449 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5450 	counter_u64_add(pv_page_count, -1);
5451 	/* entire chunk is free, return it */
5452 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5453 	dump_drop_page(m->phys_addr);
5454 	vm_page_unwire_noq(m);
5455 	vm_page_free(m);
5456 }
5457 
5458 static void
5459 free_pv_chunk(struct pv_chunk *pc)
5460 {
5461 	struct pv_chunks_list *pvc;
5462 
5463 	pvc = &pv_chunks[pc_to_domain(pc)];
5464 	mtx_lock(&pvc->pvc_lock);
5465 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5466 	mtx_unlock(&pvc->pvc_lock);
5467 	free_pv_chunk_dequeued(pc);
5468 }
5469 
5470 static void
5471 free_pv_chunk_batch(struct pv_chunklist *batch)
5472 {
5473 	struct pv_chunks_list *pvc;
5474 	struct pv_chunk *pc, *npc;
5475 	int i;
5476 
5477 	for (i = 0; i < vm_ndomains; i++) {
5478 		if (TAILQ_EMPTY(&batch[i]))
5479 			continue;
5480 		pvc = &pv_chunks[i];
5481 		mtx_lock(&pvc->pvc_lock);
5482 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5483 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5484 		}
5485 		mtx_unlock(&pvc->pvc_lock);
5486 	}
5487 
5488 	for (i = 0; i < vm_ndomains; i++) {
5489 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5490 			free_pv_chunk_dequeued(pc);
5491 		}
5492 	}
5493 }
5494 
5495 /*
5496  * Returns a new PV entry, allocating a new PV chunk from the system when
5497  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5498  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5499  * returned.
5500  *
5501  * The given PV list lock may be released.
5502  */
5503 static pv_entry_t
5504 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5505 {
5506 	struct pv_chunks_list *pvc;
5507 	int bit, field;
5508 	pv_entry_t pv;
5509 	struct pv_chunk *pc;
5510 	vm_page_t m;
5511 
5512 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5513 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5514 retry:
5515 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5516 	if (pc != NULL) {
5517 		for (field = 0; field < _NPCM; field++) {
5518 			if (pc->pc_map[field]) {
5519 				bit = bsfq(pc->pc_map[field]);
5520 				break;
5521 			}
5522 		}
5523 		if (field < _NPCM) {
5524 			pv = &pc->pc_pventry[field * 64 + bit];
5525 			pc->pc_map[field] &= ~(1ul << bit);
5526 			/* If this was the last item, move it to tail */
5527 			if (pc_is_full(pc)) {
5528 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5529 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5530 				    pc_list);
5531 			}
5532 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5533 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5534 			return (pv);
5535 		}
5536 	}
5537 	/* No free items, allocate another chunk */
5538 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5539 	if (m == NULL) {
5540 		if (lockp == NULL) {
5541 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5542 			return (NULL);
5543 		}
5544 		m = reclaim_pv_chunk(pmap, lockp);
5545 		if (m == NULL)
5546 			goto retry;
5547 	} else
5548 		counter_u64_add(pv_page_count, 1);
5549 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5550 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5551 	dump_add_page(m->phys_addr);
5552 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5553 	pc->pc_pmap = pmap;
5554 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5555 	pc->pc_map[1] = PC_FREEN;
5556 	pc->pc_map[2] = PC_FREEL;
5557 	pvc = &pv_chunks[vm_page_domain(m)];
5558 	mtx_lock(&pvc->pvc_lock);
5559 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5560 	mtx_unlock(&pvc->pvc_lock);
5561 	pv = &pc->pc_pventry[0];
5562 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5563 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5564 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5565 	return (pv);
5566 }
5567 
5568 /*
5569  * Returns the number of one bits within the given PV chunk map.
5570  *
5571  * The erratas for Intel processors state that "POPCNT Instruction May
5572  * Take Longer to Execute Than Expected".  It is believed that the
5573  * issue is the spurious dependency on the destination register.
5574  * Provide a hint to the register rename logic that the destination
5575  * value is overwritten, by clearing it, as suggested in the
5576  * optimization manual.  It should be cheap for unaffected processors
5577  * as well.
5578  *
5579  * Reference numbers for erratas are
5580  * 4th Gen Core: HSD146
5581  * 5th Gen Core: BDM85
5582  * 6th Gen Core: SKL029
5583  */
5584 static int
5585 popcnt_pc_map_pq(uint64_t *map)
5586 {
5587 	u_long result, tmp;
5588 
5589 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5590 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5591 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5592 	    : "=&r" (result), "=&r" (tmp)
5593 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5594 	return (result);
5595 }
5596 
5597 /*
5598  * Ensure that the number of spare PV entries in the specified pmap meets or
5599  * exceeds the given count, "needed".
5600  *
5601  * The given PV list lock may be released.
5602  */
5603 static void
5604 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5605 {
5606 	struct pv_chunks_list *pvc;
5607 	struct pch new_tail[PMAP_MEMDOM];
5608 	struct pv_chunk *pc;
5609 	vm_page_t m;
5610 	int avail, free, i;
5611 	bool reclaimed;
5612 
5613 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5614 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5615 
5616 	/*
5617 	 * Newly allocated PV chunks must be stored in a private list until
5618 	 * the required number of PV chunks have been allocated.  Otherwise,
5619 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5620 	 * contrast, these chunks must be added to the pmap upon allocation.
5621 	 */
5622 	for (i = 0; i < PMAP_MEMDOM; i++)
5623 		TAILQ_INIT(&new_tail[i]);
5624 retry:
5625 	avail = 0;
5626 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5627 #ifndef __POPCNT__
5628 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5629 			bit_count((bitstr_t *)pc->pc_map, 0,
5630 			    sizeof(pc->pc_map) * NBBY, &free);
5631 		else
5632 #endif
5633 		free = popcnt_pc_map_pq(pc->pc_map);
5634 		if (free == 0)
5635 			break;
5636 		avail += free;
5637 		if (avail >= needed)
5638 			break;
5639 	}
5640 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5641 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5642 		if (m == NULL) {
5643 			m = reclaim_pv_chunk(pmap, lockp);
5644 			if (m == NULL)
5645 				goto retry;
5646 			reclaimed = true;
5647 		} else
5648 			counter_u64_add(pv_page_count, 1);
5649 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5650 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5651 		dump_add_page(m->phys_addr);
5652 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5653 		pc->pc_pmap = pmap;
5654 		pc->pc_map[0] = PC_FREEN;
5655 		pc->pc_map[1] = PC_FREEN;
5656 		pc->pc_map[2] = PC_FREEL;
5657 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5658 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5659 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5660 
5661 		/*
5662 		 * The reclaim might have freed a chunk from the current pmap.
5663 		 * If that chunk contained available entries, we need to
5664 		 * re-count the number of available entries.
5665 		 */
5666 		if (reclaimed)
5667 			goto retry;
5668 	}
5669 	for (i = 0; i < vm_ndomains; i++) {
5670 		if (TAILQ_EMPTY(&new_tail[i]))
5671 			continue;
5672 		pvc = &pv_chunks[i];
5673 		mtx_lock(&pvc->pvc_lock);
5674 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5675 		mtx_unlock(&pvc->pvc_lock);
5676 	}
5677 }
5678 
5679 /*
5680  * First find and then remove the pv entry for the specified pmap and virtual
5681  * address from the specified pv list.  Returns the pv entry if found and NULL
5682  * otherwise.  This operation can be performed on pv lists for either 4KB or
5683  * 2MB page mappings.
5684  */
5685 static __inline pv_entry_t
5686 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5687 {
5688 	pv_entry_t pv;
5689 
5690 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5691 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5692 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5693 			pvh->pv_gen++;
5694 			break;
5695 		}
5696 	}
5697 	return (pv);
5698 }
5699 
5700 /*
5701  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5702  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5703  * entries for each of the 4KB page mappings.
5704  */
5705 static void
5706 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5707     struct rwlock **lockp)
5708 {
5709 	struct md_page *pvh;
5710 	struct pv_chunk *pc;
5711 	pv_entry_t pv;
5712 	vm_offset_t va_last;
5713 	vm_page_t m;
5714 	int bit, field;
5715 
5716 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5717 	KASSERT((pa & PDRMASK) == 0,
5718 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5719 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5720 
5721 	/*
5722 	 * Transfer the 2mpage's pv entry for this mapping to the first
5723 	 * page's pv list.  Once this transfer begins, the pv list lock
5724 	 * must not be released until the last pv entry is reinstantiated.
5725 	 */
5726 	pvh = pa_to_pvh(pa);
5727 	va = trunc_2mpage(va);
5728 	pv = pmap_pvh_remove(pvh, pmap, va);
5729 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5730 	m = PHYS_TO_VM_PAGE(pa);
5731 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5732 	m->md.pv_gen++;
5733 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5734 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5735 	va_last = va + NBPDR - PAGE_SIZE;
5736 	for (;;) {
5737 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5738 		KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5739 		for (field = 0; field < _NPCM; field++) {
5740 			while (pc->pc_map[field]) {
5741 				bit = bsfq(pc->pc_map[field]);
5742 				pc->pc_map[field] &= ~(1ul << bit);
5743 				pv = &pc->pc_pventry[field * 64 + bit];
5744 				va += PAGE_SIZE;
5745 				pv->pv_va = va;
5746 				m++;
5747 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5748 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5749 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5750 				m->md.pv_gen++;
5751 				if (va == va_last)
5752 					goto out;
5753 			}
5754 		}
5755 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5756 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5757 	}
5758 out:
5759 	if (pc_is_full(pc)) {
5760 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5761 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5762 	}
5763 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5764 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5765 }
5766 
5767 #if VM_NRESERVLEVEL > 0
5768 /*
5769  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5770  * replace the many pv entries for the 4KB page mappings by a single pv entry
5771  * for the 2MB page mapping.
5772  */
5773 static void
5774 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5775     struct rwlock **lockp)
5776 {
5777 	struct md_page *pvh;
5778 	pv_entry_t pv;
5779 	vm_offset_t va_last;
5780 	vm_page_t m;
5781 
5782 	KASSERT((pa & PDRMASK) == 0,
5783 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5784 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5785 
5786 	/*
5787 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5788 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5789 	 * a transfer avoids the possibility that get_pv_entry() calls
5790 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5791 	 * mappings that is being promoted.
5792 	 */
5793 	m = PHYS_TO_VM_PAGE(pa);
5794 	va = trunc_2mpage(va);
5795 	pv = pmap_pvh_remove(&m->md, pmap, va);
5796 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5797 	pvh = pa_to_pvh(pa);
5798 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5799 	pvh->pv_gen++;
5800 	/* Free the remaining NPTEPG - 1 pv entries. */
5801 	va_last = va + NBPDR - PAGE_SIZE;
5802 	do {
5803 		m++;
5804 		va += PAGE_SIZE;
5805 		pmap_pvh_free(&m->md, pmap, va);
5806 	} while (va < va_last);
5807 }
5808 #endif /* VM_NRESERVLEVEL > 0 */
5809 
5810 /*
5811  * First find and then destroy the pv entry for the specified pmap and virtual
5812  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5813  * page mappings.
5814  */
5815 static void
5816 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5817 {
5818 	pv_entry_t pv;
5819 
5820 	pv = pmap_pvh_remove(pvh, pmap, va);
5821 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5822 	free_pv_entry(pmap, pv);
5823 }
5824 
5825 /*
5826  * Conditionally create the PV entry for a 4KB page mapping if the required
5827  * memory can be allocated without resorting to reclamation.
5828  */
5829 static bool
5830 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5831     struct rwlock **lockp)
5832 {
5833 	pv_entry_t pv;
5834 
5835 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5836 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5837 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5838 		pv->pv_va = va;
5839 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5840 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5841 		m->md.pv_gen++;
5842 		return (true);
5843 	} else
5844 		return (false);
5845 }
5846 
5847 /*
5848  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5849  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5850  * false if the PV entry cannot be allocated without resorting to reclamation.
5851  */
5852 static bool
5853 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5854     struct rwlock **lockp)
5855 {
5856 	struct md_page *pvh;
5857 	pv_entry_t pv;
5858 	vm_paddr_t pa;
5859 
5860 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5861 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5862 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5863 	    NULL : lockp)) == NULL)
5864 		return (false);
5865 	pv->pv_va = va;
5866 	pa = pde & PG_PS_FRAME;
5867 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5868 	pvh = pa_to_pvh(pa);
5869 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5870 	pvh->pv_gen++;
5871 	return (true);
5872 }
5873 
5874 /*
5875  * Fills a page table page with mappings to consecutive physical pages.
5876  */
5877 static void
5878 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5879 {
5880 	pt_entry_t *pte;
5881 
5882 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5883 		*pte = newpte;
5884 		newpte += PAGE_SIZE;
5885 	}
5886 }
5887 
5888 /*
5889  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5890  * mapping is invalidated.
5891  */
5892 static bool
5893 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5894 {
5895 	struct rwlock *lock;
5896 	bool rv;
5897 
5898 	lock = NULL;
5899 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5900 	if (lock != NULL)
5901 		rw_wunlock(lock);
5902 	return (rv);
5903 }
5904 
5905 static void
5906 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5907 {
5908 #ifdef INVARIANTS
5909 #ifdef DIAGNOSTIC
5910 	pt_entry_t *xpte, *ypte;
5911 
5912 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5913 	    xpte++, newpte += PAGE_SIZE) {
5914 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5915 			printf("pmap_demote_pde: xpte %zd and newpte map "
5916 			    "different pages: found %#lx, expected %#lx\n",
5917 			    xpte - firstpte, *xpte, newpte);
5918 			printf("page table dump\n");
5919 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5920 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5921 			panic("firstpte");
5922 		}
5923 	}
5924 #else
5925 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5926 	    ("pmap_demote_pde: firstpte and newpte map different physical"
5927 	    " addresses"));
5928 #endif
5929 #endif
5930 }
5931 
5932 static void
5933 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5934     pd_entry_t oldpde, struct rwlock **lockp)
5935 {
5936 	struct spglist free;
5937 	vm_offset_t sva;
5938 
5939 	SLIST_INIT(&free);
5940 	sva = trunc_2mpage(va);
5941 	pmap_remove_pde(pmap, pde, sva, true, &free, lockp);
5942 	if ((oldpde & pmap_global_bit(pmap)) == 0)
5943 		pmap_invalidate_pde_page(pmap, sva, oldpde);
5944 	vm_page_free_pages_toq(&free, true);
5945 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
5946 	    va, pmap);
5947 }
5948 
5949 static bool
5950 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5951     struct rwlock **lockp)
5952 {
5953 	return (pmap_demote_pde_mpte(pmap, pde, va, lockp, NULL));
5954 }
5955 
5956 static bool
5957 pmap_demote_pde_mpte(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
5958     struct rwlock **lockp, vm_page_t mpte)
5959 {
5960 	pd_entry_t newpde, oldpde;
5961 	pt_entry_t *firstpte, newpte;
5962 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
5963 	vm_paddr_t mptepa;
5964 	int PG_PTE_CACHE;
5965 	bool in_kernel;
5966 
5967 	PG_A = pmap_accessed_bit(pmap);
5968 	PG_G = pmap_global_bit(pmap);
5969 	PG_M = pmap_modified_bit(pmap);
5970 	PG_RW = pmap_rw_bit(pmap);
5971 	PG_V = pmap_valid_bit(pmap);
5972 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
5973 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
5974 
5975 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5976 	oldpde = *pde;
5977 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
5978 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
5979 	KASSERT((oldpde & PG_MANAGED) == 0 || lockp != NULL,
5980 	    ("pmap_demote_pde: lockp for a managed mapping is NULL"));
5981 	in_kernel = va >= VM_MAXUSER_ADDRESS;
5982 	if (mpte == NULL) {
5983 		/*
5984 		 * Invalidate the 2MB page mapping and return "failure" if the
5985 		 * mapping was never accessed and not wired.
5986 		 */
5987 		if ((oldpde & PG_A) == 0) {
5988 			if ((oldpde & PG_W) == 0) {
5989 				pmap_demote_pde_abort(pmap, va, pde, oldpde,
5990 				    lockp);
5991 				return (false);
5992 			}
5993 			mpte = pmap_remove_pt_page(pmap, va);
5994 			/* Fill the PTP with PTEs that have PG_A cleared. */
5995 			mpte->valid = 0;
5996 		} else if ((mpte = pmap_remove_pt_page(pmap, va)) == NULL) {
5997 			KASSERT((oldpde & PG_W) == 0,
5998     ("pmap_demote_pde: page table page for a wired mapping is missing"));
5999 
6000 			/*
6001 			 * If the page table page is missing and the mapping
6002 			 * is for a kernel address, the mapping must belong to
6003 			 * the direct map.  Page table pages are preallocated
6004 			 * for every other part of the kernel address space,
6005 			 * so the direct map region is the only part of the
6006 			 * kernel address space that must be handled here.
6007 			 */
6008 			KASSERT(!in_kernel || (va >= kva_layout.dmap_low &&
6009 			    va < kva_layout.dmap_high),
6010 			    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6011 
6012 			/*
6013 			 * If the 2MB page mapping belongs to the direct map
6014 			 * region of the kernel's address space, then the page
6015 			 * allocation request specifies the highest possible
6016 			 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6017 			 * priority is normal.
6018 			 */
6019 			mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6020 			    (in_kernel ? VM_ALLOC_INTERRUPT : 0) |
6021 			    VM_ALLOC_WIRED);
6022 
6023 			/*
6024 			 * If the allocation of the new page table page fails,
6025 			 * invalidate the 2MB page mapping and return "failure".
6026 			 */
6027 			if (mpte == NULL) {
6028 				pmap_demote_pde_abort(pmap, va, pde, oldpde,
6029 				    lockp);
6030 				return (false);
6031 			}
6032 
6033 			if (!in_kernel)
6034 				mpte->ref_count = NPTEPG;
6035 		}
6036 	}
6037 	mptepa = VM_PAGE_TO_PHYS(mpte);
6038 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6039 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6040 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6041 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6042 	newpte = oldpde & ~PG_PS;
6043 	newpte = pmap_swap_pat(pmap, newpte);
6044 
6045 	/*
6046 	 * If the PTP is not leftover from an earlier promotion or it does not
6047 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6048 	 * have PG_A set, unless this is a wired mapping with PG_A clear.
6049 	 */
6050 	if (!vm_page_all_valid(mpte))
6051 		pmap_fill_ptp(firstpte, newpte);
6052 
6053 	pmap_demote_pde_check(firstpte, newpte);
6054 
6055 	/*
6056 	 * If the mapping has changed attributes, update the PTEs.
6057 	 */
6058 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6059 		pmap_fill_ptp(firstpte, newpte);
6060 
6061 	/*
6062 	 * The spare PV entries must be reserved prior to demoting the
6063 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6064 	 * of the PDE and the PV lists will be inconsistent, which can result
6065 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6066 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6067 	 * PV entry for the 2MB page mapping that is being demoted.
6068 	 */
6069 	if ((oldpde & PG_MANAGED) != 0)
6070 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6071 
6072 	/*
6073 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6074 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6075 	 * set.  Thus, there is no danger of a race with another
6076 	 * processor changing the setting of PG_A and/or PG_M between
6077 	 * the read above and the store below.
6078 	 */
6079 	if (workaround_erratum383)
6080 		pmap_update_pde(pmap, va, pde, newpde);
6081 	else
6082 		pde_store(pde, newpde);
6083 
6084 	/*
6085 	 * Invalidate a stale recursive mapping of the page table page.
6086 	 */
6087 	if (in_kernel)
6088 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6089 
6090 	/*
6091 	 * Demote the PV entry.
6092 	 */
6093 	if ((oldpde & PG_MANAGED) != 0)
6094 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6095 
6096 	counter_u64_add(pmap_pde_demotions, 1);
6097 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6098 	    va, pmap);
6099 	return (true);
6100 }
6101 
6102 /*
6103  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6104  */
6105 static void
6106 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6107 {
6108 	pd_entry_t newpde;
6109 	vm_paddr_t mptepa;
6110 	vm_page_t mpte;
6111 
6112 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6113 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6114 	mpte = pmap_remove_pt_page(pmap, va);
6115 	KASSERT(mpte != NULL, ("pmap_remove_kernel_pde: missing pt page"));
6116 
6117 	mptepa = VM_PAGE_TO_PHYS(mpte);
6118 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6119 
6120 	/*
6121 	 * If this page table page was unmapped by a promotion, then it
6122 	 * contains valid mappings.  Zero it to invalidate those mappings.
6123 	 */
6124 	if (vm_page_any_valid(mpte))
6125 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6126 
6127 	/*
6128 	 * Demote the mapping.
6129 	 */
6130 	if (workaround_erratum383)
6131 		pmap_update_pde(pmap, va, pde, newpde);
6132 	else
6133 		pde_store(pde, newpde);
6134 
6135 	/*
6136 	 * Invalidate a stale recursive mapping of the page table page.
6137 	 */
6138 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6139 }
6140 
6141 /*
6142  * pmap_remove_pde: do the things to unmap a superpage in a process
6143  */
6144 static int
6145 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva, bool demote_kpde,
6146     struct spglist *free, struct rwlock **lockp)
6147 {
6148 	struct md_page *pvh;
6149 	pd_entry_t oldpde;
6150 	vm_offset_t eva, va;
6151 	vm_page_t m, mpte;
6152 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6153 
6154 	PG_G = pmap_global_bit(pmap);
6155 	PG_A = pmap_accessed_bit(pmap);
6156 	PG_M = pmap_modified_bit(pmap);
6157 	PG_RW = pmap_rw_bit(pmap);
6158 
6159 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6160 	KASSERT((sva & PDRMASK) == 0,
6161 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6162 	oldpde = pte_load_clear(pdq);
6163 	if (oldpde & PG_W)
6164 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6165 	if ((oldpde & PG_G) != 0)
6166 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6167 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6168 	if (oldpde & PG_MANAGED) {
6169 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6170 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6171 		pmap_pvh_free(pvh, pmap, sva);
6172 		eva = sva + NBPDR;
6173 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6174 		    va < eva; va += PAGE_SIZE, m++) {
6175 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6176 				vm_page_dirty(m);
6177 			if (oldpde & PG_A)
6178 				vm_page_aflag_set(m, PGA_REFERENCED);
6179 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6180 			    TAILQ_EMPTY(&pvh->pv_list))
6181 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6182 			pmap_delayed_invl_page(m);
6183 		}
6184 	}
6185 	if (pmap != kernel_pmap) {
6186 		mpte = pmap_remove_pt_page(pmap, sva);
6187 		if (mpte != NULL) {
6188 			KASSERT(vm_page_any_valid(mpte),
6189 			    ("pmap_remove_pde: pte page not promoted"));
6190 			pmap_pt_page_count_adj(pmap, -1);
6191 			KASSERT(mpte->ref_count == NPTEPG,
6192 			    ("pmap_remove_pde: pte page ref count error"));
6193 			mpte->ref_count = 0;
6194 			pmap_add_delayed_free_list(mpte, free, false);
6195 		}
6196 	} else if (demote_kpde) {
6197 		pmap_remove_kernel_pde(pmap, pdq, sva);
6198 	} else {
6199 		mpte = vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(sva));
6200 		if (vm_page_any_valid(mpte)) {
6201 			mpte->valid = 0;
6202 			pmap_zero_page(mpte);
6203 		}
6204 	}
6205 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6206 }
6207 
6208 /*
6209  * pmap_remove_pte: do the things to unmap a page in a process
6210  */
6211 static int
6212 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6213     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6214 {
6215 	struct md_page *pvh;
6216 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6217 	vm_page_t m;
6218 
6219 	PG_A = pmap_accessed_bit(pmap);
6220 	PG_M = pmap_modified_bit(pmap);
6221 	PG_RW = pmap_rw_bit(pmap);
6222 
6223 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6224 	oldpte = pte_load_clear(ptq);
6225 	if (oldpte & PG_W)
6226 		pmap->pm_stats.wired_count -= 1;
6227 	pmap_resident_count_adj(pmap, -1);
6228 	if (oldpte & PG_MANAGED) {
6229 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6230 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6231 			vm_page_dirty(m);
6232 		if (oldpte & PG_A)
6233 			vm_page_aflag_set(m, PGA_REFERENCED);
6234 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6235 		pmap_pvh_free(&m->md, pmap, va);
6236 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6237 		    (m->flags & PG_FICTITIOUS) == 0) {
6238 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6239 			if (TAILQ_EMPTY(&pvh->pv_list))
6240 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6241 		}
6242 		pmap_delayed_invl_page(m);
6243 	}
6244 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6245 }
6246 
6247 /*
6248  * Remove a single page from a process address space
6249  */
6250 static void
6251 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6252     struct spglist *free)
6253 {
6254 	struct rwlock *lock;
6255 	pt_entry_t *pte, PG_V;
6256 
6257 	PG_V = pmap_valid_bit(pmap);
6258 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6259 	if ((*pde & PG_V) == 0)
6260 		return;
6261 	pte = pmap_pde_to_pte(pde, va);
6262 	if ((*pte & PG_V) == 0)
6263 		return;
6264 	lock = NULL;
6265 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6266 	if (lock != NULL)
6267 		rw_wunlock(lock);
6268 	pmap_invalidate_page(pmap, va);
6269 }
6270 
6271 /*
6272  * Removes the specified range of addresses from the page table page.
6273  */
6274 static bool
6275 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6276     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6277 {
6278 	pt_entry_t PG_G, *pte;
6279 	vm_offset_t va;
6280 	bool anyvalid;
6281 
6282 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6283 	PG_G = pmap_global_bit(pmap);
6284 	anyvalid = false;
6285 	va = eva;
6286 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6287 	    sva += PAGE_SIZE) {
6288 		if (*pte == 0) {
6289 			if (va != eva) {
6290 				pmap_invalidate_range(pmap, va, sva);
6291 				va = eva;
6292 			}
6293 			continue;
6294 		}
6295 		if ((*pte & PG_G) == 0)
6296 			anyvalid = true;
6297 		else if (va == eva)
6298 			va = sva;
6299 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6300 			sva += PAGE_SIZE;
6301 			break;
6302 		}
6303 	}
6304 	if (va != eva)
6305 		pmap_invalidate_range(pmap, va, sva);
6306 	return (anyvalid);
6307 }
6308 
6309 static void
6310 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6311 {
6312 	struct rwlock *lock;
6313 	vm_page_t mt;
6314 	vm_offset_t va_next;
6315 	pml5_entry_t *pml5e;
6316 	pml4_entry_t *pml4e;
6317 	pdp_entry_t *pdpe;
6318 	pd_entry_t ptpaddr, *pde;
6319 	pt_entry_t PG_G, PG_V;
6320 	struct spglist free;
6321 	int anyvalid;
6322 
6323 	PG_G = pmap_global_bit(pmap);
6324 	PG_V = pmap_valid_bit(pmap);
6325 
6326 	/*
6327 	 * If there are no resident pages besides the top level page
6328 	 * table page(s), there is nothing to do.  Kernel pmap always
6329 	 * accounts whole preloaded area as resident, which makes its
6330 	 * resident count > 2.
6331 	 * Perform an unsynchronized read.  This is, however, safe.
6332 	 */
6333 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6334 	    1 : 0))
6335 		return;
6336 
6337 	anyvalid = 0;
6338 	SLIST_INIT(&free);
6339 
6340 	pmap_delayed_invl_start();
6341 	PMAP_LOCK(pmap);
6342 	if (map_delete)
6343 		pmap_pkru_on_remove(pmap, sva, eva);
6344 
6345 	/*
6346 	 * special handling of removing one page.  a very
6347 	 * common operation and easy to short circuit some
6348 	 * code.
6349 	 */
6350 	if (sva + PAGE_SIZE == eva) {
6351 		pde = pmap_pde(pmap, sva);
6352 		if (pde && (*pde & PG_PS) == 0) {
6353 			pmap_remove_page(pmap, sva, pde, &free);
6354 			goto out;
6355 		}
6356 	}
6357 
6358 	lock = NULL;
6359 	for (; sva < eva; sva = va_next) {
6360 		if (pmap->pm_stats.resident_count == 0)
6361 			break;
6362 
6363 		if (pmap_is_la57(pmap)) {
6364 			pml5e = pmap_pml5e(pmap, sva);
6365 			if ((*pml5e & PG_V) == 0) {
6366 				va_next = (sva + NBPML5) & ~PML5MASK;
6367 				if (va_next < sva)
6368 					va_next = eva;
6369 				continue;
6370 			}
6371 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6372 		} else {
6373 			pml4e = pmap_pml4e(pmap, sva);
6374 		}
6375 		if ((*pml4e & PG_V) == 0) {
6376 			va_next = (sva + NBPML4) & ~PML4MASK;
6377 			if (va_next < sva)
6378 				va_next = eva;
6379 			continue;
6380 		}
6381 
6382 		va_next = (sva + NBPDP) & ~PDPMASK;
6383 		if (va_next < sva)
6384 			va_next = eva;
6385 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6386 		if ((*pdpe & PG_V) == 0)
6387 			continue;
6388 		if ((*pdpe & PG_PS) != 0) {
6389 			KASSERT(va_next <= eva,
6390 			    ("partial update of non-transparent 1G mapping "
6391 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6392 			    *pdpe, sva, eva, va_next));
6393 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6394 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6395 			anyvalid = 1;
6396 			*pdpe = 0;
6397 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6398 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6399 			pmap_unwire_ptp(pmap, sva, mt, &free);
6400 			continue;
6401 		}
6402 
6403 		/*
6404 		 * Calculate index for next page table.
6405 		 */
6406 		va_next = (sva + NBPDR) & ~PDRMASK;
6407 		if (va_next < sva)
6408 			va_next = eva;
6409 
6410 		pde = pmap_pdpe_to_pde(pdpe, sva);
6411 		ptpaddr = *pde;
6412 
6413 		/*
6414 		 * Weed out invalid mappings.
6415 		 */
6416 		if (ptpaddr == 0)
6417 			continue;
6418 
6419 		/*
6420 		 * Check for large page.
6421 		 */
6422 		if ((ptpaddr & PG_PS) != 0) {
6423 			/*
6424 			 * Are we removing the entire large page?  If not,
6425 			 * demote the mapping and fall through.
6426 			 */
6427 			if (sva + NBPDR == va_next && eva >= va_next) {
6428 				/*
6429 				 * The TLB entry for a PG_G mapping is
6430 				 * invalidated by pmap_remove_pde().
6431 				 */
6432 				if ((ptpaddr & PG_G) == 0)
6433 					anyvalid = 1;
6434 				pmap_remove_pde(pmap, pde, sva, true, &free,
6435 				    &lock);
6436 				continue;
6437 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6438 			    &lock)) {
6439 				/* The large page mapping was destroyed. */
6440 				continue;
6441 			} else
6442 				ptpaddr = *pde;
6443 		}
6444 
6445 		/*
6446 		 * Limit our scan to either the end of the va represented
6447 		 * by the current page table page, or to the end of the
6448 		 * range being removed.
6449 		 */
6450 		if (va_next > eva)
6451 			va_next = eva;
6452 
6453 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6454 			anyvalid = 1;
6455 	}
6456 	if (lock != NULL)
6457 		rw_wunlock(lock);
6458 out:
6459 	if (anyvalid)
6460 		pmap_invalidate_all(pmap);
6461 	PMAP_UNLOCK(pmap);
6462 	pmap_delayed_invl_finish();
6463 	vm_page_free_pages_toq(&free, true);
6464 }
6465 
6466 /*
6467  *	Remove the given range of addresses from the specified map.
6468  *
6469  *	It is assumed that the start and end are properly
6470  *	rounded to the page size.
6471  */
6472 void
6473 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6474 {
6475 	pmap_remove1(pmap, sva, eva, false);
6476 }
6477 
6478 /*
6479  *	Remove the given range of addresses as part of a logical unmap
6480  *	operation. This has the effect of calling pmap_remove(), but
6481  *	also clears any metadata that should persist for the lifetime
6482  *	of a logical mapping.
6483  */
6484 void
6485 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6486 {
6487 	pmap_remove1(pmap, sva, eva, true);
6488 }
6489 
6490 /*
6491  *	Routine:	pmap_remove_all
6492  *	Function:
6493  *		Removes this physical page from
6494  *		all physical maps in which it resides.
6495  *		Reflects back modify bits to the pager.
6496  *
6497  *	Notes:
6498  *		Original versions of this routine were very
6499  *		inefficient because they iteratively called
6500  *		pmap_remove (slow...)
6501  */
6502 
6503 void
6504 pmap_remove_all(vm_page_t m)
6505 {
6506 	struct md_page *pvh;
6507 	pv_entry_t pv;
6508 	pmap_t pmap;
6509 	struct rwlock *lock;
6510 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6511 	pd_entry_t *pde;
6512 	vm_offset_t va;
6513 	struct spglist free;
6514 	int pvh_gen, md_gen;
6515 
6516 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6517 	    ("pmap_remove_all: page %p is not managed", m));
6518 	SLIST_INIT(&free);
6519 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6520 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6521 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6522 	rw_wlock(lock);
6523 retry:
6524 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6525 		pmap = PV_PMAP(pv);
6526 		if (!PMAP_TRYLOCK(pmap)) {
6527 			pvh_gen = pvh->pv_gen;
6528 			rw_wunlock(lock);
6529 			PMAP_LOCK(pmap);
6530 			rw_wlock(lock);
6531 			if (pvh_gen != pvh->pv_gen) {
6532 				PMAP_UNLOCK(pmap);
6533 				goto retry;
6534 			}
6535 		}
6536 		va = pv->pv_va;
6537 		pde = pmap_pde(pmap, va);
6538 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6539 		PMAP_UNLOCK(pmap);
6540 	}
6541 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6542 		pmap = PV_PMAP(pv);
6543 		if (!PMAP_TRYLOCK(pmap)) {
6544 			pvh_gen = pvh->pv_gen;
6545 			md_gen = m->md.pv_gen;
6546 			rw_wunlock(lock);
6547 			PMAP_LOCK(pmap);
6548 			rw_wlock(lock);
6549 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6550 				PMAP_UNLOCK(pmap);
6551 				goto retry;
6552 			}
6553 		}
6554 		PG_A = pmap_accessed_bit(pmap);
6555 		PG_M = pmap_modified_bit(pmap);
6556 		PG_RW = pmap_rw_bit(pmap);
6557 		pmap_resident_count_adj(pmap, -1);
6558 		pde = pmap_pde(pmap, pv->pv_va);
6559 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6560 		    " a 2mpage in page %p's pv list", m));
6561 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6562 		tpte = pte_load_clear(pte);
6563 		if (tpte & PG_W)
6564 			pmap->pm_stats.wired_count--;
6565 		if (tpte & PG_A)
6566 			vm_page_aflag_set(m, PGA_REFERENCED);
6567 
6568 		/*
6569 		 * Update the vm_page_t clean and reference bits.
6570 		 */
6571 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6572 			vm_page_dirty(m);
6573 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6574 		pmap_invalidate_page(pmap, pv->pv_va);
6575 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6576 		m->md.pv_gen++;
6577 		free_pv_entry(pmap, pv);
6578 		PMAP_UNLOCK(pmap);
6579 	}
6580 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6581 	rw_wunlock(lock);
6582 	pmap_delayed_invl_wait(m);
6583 	vm_page_free_pages_toq(&free, true);
6584 }
6585 
6586 /*
6587  * pmap_protect_pde: do the things to protect a 2mpage in a process
6588  */
6589 static bool
6590 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6591 {
6592 	pd_entry_t newpde, oldpde;
6593 	vm_page_t m, mt;
6594 	bool anychanged;
6595 	pt_entry_t PG_G, PG_M, PG_RW;
6596 
6597 	PG_G = pmap_global_bit(pmap);
6598 	PG_M = pmap_modified_bit(pmap);
6599 	PG_RW = pmap_rw_bit(pmap);
6600 
6601 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6602 	KASSERT((sva & PDRMASK) == 0,
6603 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6604 	anychanged = false;
6605 retry:
6606 	oldpde = newpde = *pde;
6607 	if ((prot & VM_PROT_WRITE) == 0) {
6608 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6609 		    (PG_MANAGED | PG_M | PG_RW)) {
6610 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6611 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6612 				vm_page_dirty(mt);
6613 		}
6614 		newpde &= ~(PG_RW | PG_M);
6615 	}
6616 	if ((prot & VM_PROT_EXECUTE) == 0)
6617 		newpde |= pg_nx;
6618 	if (newpde != oldpde) {
6619 		/*
6620 		 * As an optimization to future operations on this PDE, clear
6621 		 * PG_PROMOTED.  The impending invalidation will remove any
6622 		 * lingering 4KB page mappings from the TLB.
6623 		 */
6624 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6625 			goto retry;
6626 		if ((oldpde & PG_G) != 0)
6627 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6628 		else
6629 			anychanged = true;
6630 	}
6631 	return (anychanged);
6632 }
6633 
6634 /*
6635  *	Set the physical protection on the
6636  *	specified range of this map as requested.
6637  */
6638 void
6639 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6640 {
6641 	vm_page_t m;
6642 	vm_offset_t va_next;
6643 	pml4_entry_t *pml4e;
6644 	pdp_entry_t *pdpe;
6645 	pd_entry_t ptpaddr, *pde;
6646 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6647 	pt_entry_t obits, pbits;
6648 	bool anychanged;
6649 
6650 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6651 	if (prot == VM_PROT_NONE) {
6652 		pmap_remove(pmap, sva, eva);
6653 		return;
6654 	}
6655 
6656 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6657 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6658 		return;
6659 
6660 	PG_G = pmap_global_bit(pmap);
6661 	PG_M = pmap_modified_bit(pmap);
6662 	PG_V = pmap_valid_bit(pmap);
6663 	PG_RW = pmap_rw_bit(pmap);
6664 	anychanged = false;
6665 
6666 	/*
6667 	 * Although this function delays and batches the invalidation
6668 	 * of stale TLB entries, it does not need to call
6669 	 * pmap_delayed_invl_start() and
6670 	 * pmap_delayed_invl_finish(), because it does not
6671 	 * ordinarily destroy mappings.  Stale TLB entries from
6672 	 * protection-only changes need only be invalidated before the
6673 	 * pmap lock is released, because protection-only changes do
6674 	 * not destroy PV entries.  Even operations that iterate over
6675 	 * a physical page's PV list of mappings, like
6676 	 * pmap_remove_write(), acquire the pmap lock for each
6677 	 * mapping.  Consequently, for protection-only changes, the
6678 	 * pmap lock suffices to synchronize both page table and TLB
6679 	 * updates.
6680 	 *
6681 	 * This function only destroys a mapping if pmap_demote_pde()
6682 	 * fails.  In that case, stale TLB entries are immediately
6683 	 * invalidated.
6684 	 */
6685 
6686 	PMAP_LOCK(pmap);
6687 	for (; sva < eva; sva = va_next) {
6688 		pml4e = pmap_pml4e(pmap, sva);
6689 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6690 			va_next = (sva + NBPML4) & ~PML4MASK;
6691 			if (va_next < sva)
6692 				va_next = eva;
6693 			continue;
6694 		}
6695 
6696 		va_next = (sva + NBPDP) & ~PDPMASK;
6697 		if (va_next < sva)
6698 			va_next = eva;
6699 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6700 		if ((*pdpe & PG_V) == 0)
6701 			continue;
6702 		if ((*pdpe & PG_PS) != 0) {
6703 			KASSERT(va_next <= eva,
6704 			    ("partial update of non-transparent 1G mapping "
6705 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6706 			    *pdpe, sva, eva, va_next));
6707 retry_pdpe:
6708 			obits = pbits = *pdpe;
6709 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6710 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6711 			if ((prot & VM_PROT_WRITE) == 0)
6712 				pbits &= ~(PG_RW | PG_M);
6713 			if ((prot & VM_PROT_EXECUTE) == 0)
6714 				pbits |= pg_nx;
6715 
6716 			if (pbits != obits) {
6717 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6718 					/* PG_PS cannot be cleared under us, */
6719 					goto retry_pdpe;
6720 				anychanged = true;
6721 			}
6722 			continue;
6723 		}
6724 
6725 		va_next = (sva + NBPDR) & ~PDRMASK;
6726 		if (va_next < sva)
6727 			va_next = eva;
6728 
6729 		pde = pmap_pdpe_to_pde(pdpe, sva);
6730 		ptpaddr = *pde;
6731 
6732 		/*
6733 		 * Weed out invalid mappings.
6734 		 */
6735 		if (ptpaddr == 0)
6736 			continue;
6737 
6738 		/*
6739 		 * Check for large page.
6740 		 */
6741 		if ((ptpaddr & PG_PS) != 0) {
6742 			/*
6743 			 * Are we protecting the entire large page?
6744 			 */
6745 			if (sva + NBPDR == va_next && eva >= va_next) {
6746 				/*
6747 				 * The TLB entry for a PG_G mapping is
6748 				 * invalidated by pmap_protect_pde().
6749 				 */
6750 				if (pmap_protect_pde(pmap, pde, sva, prot))
6751 					anychanged = true;
6752 				continue;
6753 			}
6754 
6755 			/*
6756 			 * Does the large page mapping need to change?  If so,
6757 			 * demote it and fall through.
6758 			 */
6759 			pbits = ptpaddr;
6760 			if ((prot & VM_PROT_WRITE) == 0)
6761 				pbits &= ~(PG_RW | PG_M);
6762 			if ((prot & VM_PROT_EXECUTE) == 0)
6763 				pbits |= pg_nx;
6764 			if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6765 			    sva)) {
6766 				/*
6767 				 * Either the large page mapping doesn't need
6768 				 * to change, or it was destroyed during
6769 				 * demotion.
6770 				 */
6771 				continue;
6772 			}
6773 		}
6774 
6775 		if (va_next > eva)
6776 			va_next = eva;
6777 
6778 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6779 		    sva += PAGE_SIZE) {
6780 retry:
6781 			obits = pbits = *pte;
6782 			if ((pbits & PG_V) == 0)
6783 				continue;
6784 
6785 			if ((prot & VM_PROT_WRITE) == 0) {
6786 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6787 				    (PG_MANAGED | PG_M | PG_RW)) {
6788 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6789 					vm_page_dirty(m);
6790 				}
6791 				pbits &= ~(PG_RW | PG_M);
6792 			}
6793 			if ((prot & VM_PROT_EXECUTE) == 0)
6794 				pbits |= pg_nx;
6795 
6796 			if (pbits != obits) {
6797 				if (!atomic_cmpset_long(pte, obits, pbits))
6798 					goto retry;
6799 				if (obits & PG_G)
6800 					pmap_invalidate_page(pmap, sva);
6801 				else
6802 					anychanged = true;
6803 			}
6804 		}
6805 	}
6806 	if (anychanged)
6807 		pmap_invalidate_all(pmap);
6808 	PMAP_UNLOCK(pmap);
6809 }
6810 
6811 static bool
6812 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6813 {
6814 
6815 	if (pmap->pm_type != PT_EPT)
6816 		return (false);
6817 	return ((pde & EPT_PG_EXECUTE) != 0);
6818 }
6819 
6820 #if VM_NRESERVLEVEL > 0
6821 /*
6822  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6823  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6824  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6825  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6826  * identical characteristics.
6827  */
6828 static bool
6829 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6830     struct rwlock **lockp)
6831 {
6832 	pd_entry_t newpde;
6833 	pt_entry_t *firstpte, oldpte, pa, *pte;
6834 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6835 	int PG_PTE_CACHE;
6836 
6837 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6838 	if (!pmap_ps_enabled(pmap))
6839 		return (false);
6840 
6841 	PG_A = pmap_accessed_bit(pmap);
6842 	PG_G = pmap_global_bit(pmap);
6843 	PG_M = pmap_modified_bit(pmap);
6844 	PG_V = pmap_valid_bit(pmap);
6845 	PG_RW = pmap_rw_bit(pmap);
6846 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6847 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6848 
6849 	/*
6850 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6851 	 * ineligible for promotion due to hardware errata, invalid, or does
6852 	 * not map the first 4KB physical page within a 2MB page.
6853 	 */
6854 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6855 	newpde = *firstpte;
6856 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6857 		return (false);
6858 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6859 		counter_u64_add(pmap_pde_p_failures, 1);
6860 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6861 		    " in pmap %p", va, pmap);
6862 		return (false);
6863 	}
6864 
6865 	/*
6866 	 * Both here and in the below "for" loop, to allow for repromotion
6867 	 * after MADV_FREE, conditionally write protect a clean PTE before
6868 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6869 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6870 	 * address range [S, E).  pmap_advise() will demote the superpage
6871 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6872 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6873 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6874 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6875 	 * In other words, there is still a 4KB page in [S, E), call it P,
6876 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6877 	 * we write protect P before aborting the promotion, if and when P is
6878 	 * finally rewritten, there won't be a page fault to trigger
6879 	 * repromotion.
6880 	 */
6881 setpde:
6882 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6883 		/*
6884 		 * When PG_M is already clear, PG_RW can be cleared without
6885 		 * a TLB invalidation.
6886 		 */
6887 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6888 			goto setpde;
6889 		newpde &= ~PG_RW;
6890 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6891 		    " in pmap %p", va & ~PDRMASK, pmap);
6892 	}
6893 
6894 	/*
6895 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6896 	 * PTE maps an unexpected 4KB physical page or does not have identical
6897 	 * characteristics to the first PTE.
6898 	 */
6899 	allpte_PG_A = newpde & PG_A;
6900 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6901 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6902 		oldpte = *pte;
6903 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6904 			counter_u64_add(pmap_pde_p_failures, 1);
6905 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6906 			    " in pmap %p", va, pmap);
6907 			return (false);
6908 		}
6909 setpte:
6910 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6911 			/*
6912 			 * When PG_M is already clear, PG_RW can be cleared
6913 			 * without a TLB invalidation.
6914 			 */
6915 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6916 				goto setpte;
6917 			oldpte &= ~PG_RW;
6918 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6919 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6920 			    (va & ~PDRMASK), pmap);
6921 		}
6922 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6923 			counter_u64_add(pmap_pde_p_failures, 1);
6924 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6925 			    " in pmap %p", va, pmap);
6926 			return (false);
6927 		}
6928 		allpte_PG_A &= oldpte;
6929 		pa -= PAGE_SIZE;
6930 	}
6931 
6932 	/*
6933 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6934 	 * so that promotions triggered by speculative mappings, such as
6935 	 * pmap_enter_quick(), don't automatically mark the underlying pages
6936 	 * as referenced.
6937 	 */
6938 	newpde &= ~PG_A | allpte_PG_A;
6939 
6940 	/*
6941 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6942 	 * MMUs supporting EPT.
6943 	 */
6944 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6945 	    ("unsupported EPT PTE"));
6946 
6947 	/*
6948 	 * Save the PTP in its current state until the PDE mapping the
6949 	 * superpage is demoted by pmap_demote_pde() or destroyed by
6950 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
6951 	 * that the PTP be refilled on demotion.
6952 	 */
6953 	if (mpte == NULL)
6954 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6955 	KASSERT(mpte >= vm_page_array &&
6956 	    mpte < &vm_page_array[vm_page_array_size],
6957 	    ("pmap_promote_pde: page table page is out of range"));
6958 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
6959 	    ("pmap_promote_pde: page table page's pindex is wrong "
6960 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
6961 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
6962 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
6963 		counter_u64_add(pmap_pde_p_failures, 1);
6964 		CTR2(KTR_PMAP,
6965 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
6966 		    pmap);
6967 		return (false);
6968 	}
6969 
6970 	/*
6971 	 * Promote the pv entries.
6972 	 */
6973 	if ((newpde & PG_MANAGED) != 0)
6974 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
6975 
6976 	/*
6977 	 * Propagate the PAT index to its proper position.
6978 	 */
6979 	newpde = pmap_swap_pat(pmap, newpde);
6980 
6981 	/*
6982 	 * Map the superpage.
6983 	 */
6984 	if (workaround_erratum383)
6985 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
6986 	else
6987 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
6988 
6989 	counter_u64_add(pmap_pde_promotions, 1);
6990 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
6991 	    " in pmap %p", va, pmap);
6992 	return (true);
6993 }
6994 #endif /* VM_NRESERVLEVEL > 0 */
6995 
6996 static int
6997 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
6998     int psind)
6999 {
7000 	vm_page_t mp;
7001 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7002 
7003 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7004 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7005 	    ("psind %d unexpected", psind));
7006 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7007 	    ("unaligned phys address %#lx newpte %#lx psind %d",
7008 	    newpte & PG_FRAME, newpte, psind));
7009 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7010 	    ("unaligned va %#lx psind %d", va, psind));
7011 	KASSERT(va < VM_MAXUSER_ADDRESS,
7012 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7013 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7014 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7015 
7016 	PG_V = pmap_valid_bit(pmap);
7017 
7018 restart:
7019 	pten = newpte;
7020 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7021 		return (KERN_PROTECTION_FAILURE);
7022 
7023 	if (psind == 2) {	/* 1G */
7024 		pml4e = pmap_pml4e(pmap, va);
7025 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7026 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7027 			    NULL, va);
7028 			if (mp == NULL)
7029 				goto allocf;
7030 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7031 			pdpe = &pdpe[pmap_pdpe_index(va)];
7032 			origpte = *pdpe;
7033 			MPASS(origpte == 0);
7034 		} else {
7035 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7036 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7037 			origpte = *pdpe;
7038 			if ((origpte & PG_V) == 0) {
7039 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7040 				mp->ref_count++;
7041 			}
7042 		}
7043 		*pdpe = pten;
7044 	} else /* (psind == 1) */ {	/* 2M */
7045 		pde = pmap_pde(pmap, va);
7046 		if (pde == NULL) {
7047 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7048 			    NULL, va);
7049 			if (mp == NULL)
7050 				goto allocf;
7051 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7052 			pde = &pde[pmap_pde_index(va)];
7053 			origpte = *pde;
7054 			MPASS(origpte == 0);
7055 		} else {
7056 			origpte = *pde;
7057 			if ((origpte & PG_V) == 0) {
7058 				pdpe = pmap_pdpe(pmap, va);
7059 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7060 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7061 				mp->ref_count++;
7062 			}
7063 		}
7064 		*pde = pten;
7065 	}
7066 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7067 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7068 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7069 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7070 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7071 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7072 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7073 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7074 	if ((origpte & PG_V) == 0)
7075 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7076 
7077 	return (KERN_SUCCESS);
7078 
7079 allocf:
7080 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7081 		return (KERN_RESOURCE_SHORTAGE);
7082 	PMAP_UNLOCK(pmap);
7083 	vm_wait(NULL);
7084 	PMAP_LOCK(pmap);
7085 	goto restart;
7086 }
7087 
7088 /*
7089  *	Insert the given physical page (p) at
7090  *	the specified virtual address (v) in the
7091  *	target physical map with the protection requested.
7092  *
7093  *	If specified, the page will be wired down, meaning
7094  *	that the related pte can not be reclaimed.
7095  *
7096  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7097  *	or lose information.  That is, this routine must actually
7098  *	insert this page into the given map NOW.
7099  *
7100  *	When destroying both a page table and PV entry, this function
7101  *	performs the TLB invalidation before releasing the PV list
7102  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7103  */
7104 int
7105 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7106     u_int flags, int8_t psind)
7107 {
7108 	struct rwlock *lock;
7109 	pd_entry_t *pde;
7110 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7111 	pt_entry_t newpte, origpte;
7112 	pv_entry_t pv;
7113 	vm_paddr_t opa, pa;
7114 	vm_page_t mpte, om;
7115 	int rv;
7116 	bool nosleep;
7117 
7118 	PG_A = pmap_accessed_bit(pmap);
7119 	PG_G = pmap_global_bit(pmap);
7120 	PG_M = pmap_modified_bit(pmap);
7121 	PG_V = pmap_valid_bit(pmap);
7122 	PG_RW = pmap_rw_bit(pmap);
7123 
7124 	va = trunc_page(va);
7125 	KASSERT(va <= kva_layout.km_high, ("pmap_enter: toobig"));
7126 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7127 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7128 	    va));
7129 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7130 	    ("pmap_enter: managed mapping within the clean submap"));
7131 	if ((m->oflags & VPO_UNMANAGED) == 0)
7132 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7133 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7134 	    ("pmap_enter: flags %u has reserved bits set", flags));
7135 	pa = VM_PAGE_TO_PHYS(m);
7136 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7137 	if ((flags & VM_PROT_WRITE) != 0)
7138 		newpte |= PG_M;
7139 	if ((prot & VM_PROT_WRITE) != 0)
7140 		newpte |= PG_RW;
7141 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7142 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7143 	if ((prot & VM_PROT_EXECUTE) == 0)
7144 		newpte |= pg_nx;
7145 	if ((flags & PMAP_ENTER_WIRED) != 0)
7146 		newpte |= PG_W;
7147 	if (va < VM_MAXUSER_ADDRESS)
7148 		newpte |= PG_U;
7149 	if (pmap == kernel_pmap)
7150 		newpte |= PG_G;
7151 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7152 
7153 	/*
7154 	 * Set modified bit gratuitously for writeable mappings if
7155 	 * the page is unmanaged. We do not want to take a fault
7156 	 * to do the dirty bit accounting for these mappings.
7157 	 */
7158 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7159 		if ((newpte & PG_RW) != 0)
7160 			newpte |= PG_M;
7161 	} else
7162 		newpte |= PG_MANAGED;
7163 
7164 	lock = NULL;
7165 	PMAP_LOCK(pmap);
7166 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7167 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7168 		    ("managed largepage va %#lx flags %#x", va, flags));
7169 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7170 		    psind);
7171 		goto out;
7172 	}
7173 	if (psind == 1) {
7174 		/* Assert the required virtual and physical alignment. */
7175 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7176 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7177 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7178 		goto out;
7179 	}
7180 	mpte = NULL;
7181 
7182 	/*
7183 	 * In the case that a page table page is not
7184 	 * resident, we are creating it here.
7185 	 */
7186 retry:
7187 	pde = pmap_pde(pmap, va);
7188 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7189 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7190 		pte = pmap_pde_to_pte(pde, va);
7191 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7192 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7193 			mpte->ref_count++;
7194 		}
7195 	} else if (va < VM_MAXUSER_ADDRESS) {
7196 		/*
7197 		 * Here if the pte page isn't mapped, or if it has been
7198 		 * deallocated.
7199 		 */
7200 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7201 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7202 		    nosleep ? NULL : &lock, va);
7203 		if (mpte == NULL && nosleep) {
7204 			rv = KERN_RESOURCE_SHORTAGE;
7205 			goto out;
7206 		}
7207 		goto retry;
7208 	} else
7209 		panic("pmap_enter: invalid page directory va=%#lx", va);
7210 
7211 	origpte = *pte;
7212 	pv = NULL;
7213 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7214 		newpte |= pmap_pkru_get(pmap, va);
7215 
7216 	/*
7217 	 * Is the specified virtual address already mapped?
7218 	 */
7219 	if ((origpte & PG_V) != 0) {
7220 		/*
7221 		 * Wiring change, just update stats. We don't worry about
7222 		 * wiring PT pages as they remain resident as long as there
7223 		 * are valid mappings in them. Hence, if a user page is wired,
7224 		 * the PT page will be also.
7225 		 */
7226 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7227 			pmap->pm_stats.wired_count++;
7228 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7229 			pmap->pm_stats.wired_count--;
7230 
7231 		/*
7232 		 * Remove the extra PT page reference.
7233 		 */
7234 		if (mpte != NULL) {
7235 			mpte->ref_count--;
7236 			KASSERT(mpte->ref_count > 0,
7237 			    ("pmap_enter: missing reference to page table page,"
7238 			     " va: 0x%lx", va));
7239 		}
7240 
7241 		/*
7242 		 * Has the physical page changed?
7243 		 */
7244 		opa = origpte & PG_FRAME;
7245 		if (opa == pa) {
7246 			/*
7247 			 * No, might be a protection or wiring change.
7248 			 */
7249 			if ((origpte & PG_MANAGED) != 0 &&
7250 			    (newpte & PG_RW) != 0)
7251 				vm_page_aflag_set(m, PGA_WRITEABLE);
7252 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7253 				goto unchanged;
7254 			goto validate;
7255 		}
7256 
7257 		/*
7258 		 * The physical page has changed.  Temporarily invalidate
7259 		 * the mapping.  This ensures that all threads sharing the
7260 		 * pmap keep a consistent view of the mapping, which is
7261 		 * necessary for the correct handling of COW faults.  It
7262 		 * also permits reuse of the old mapping's PV entry,
7263 		 * avoiding an allocation.
7264 		 *
7265 		 * For consistency, handle unmanaged mappings the same way.
7266 		 */
7267 		origpte = pte_load_clear(pte);
7268 		KASSERT((origpte & PG_FRAME) == opa,
7269 		    ("pmap_enter: unexpected pa update for %#lx", va));
7270 		if ((origpte & PG_MANAGED) != 0) {
7271 			om = PHYS_TO_VM_PAGE(opa);
7272 
7273 			/*
7274 			 * The pmap lock is sufficient to synchronize with
7275 			 * concurrent calls to pmap_page_test_mappings() and
7276 			 * pmap_ts_referenced().
7277 			 */
7278 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7279 				vm_page_dirty(om);
7280 			if ((origpte & PG_A) != 0) {
7281 				pmap_invalidate_page(pmap, va);
7282 				vm_page_aflag_set(om, PGA_REFERENCED);
7283 			}
7284 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7285 			pv = pmap_pvh_remove(&om->md, pmap, va);
7286 			KASSERT(pv != NULL,
7287 			    ("pmap_enter: no PV entry for %#lx", va));
7288 			if ((newpte & PG_MANAGED) == 0)
7289 				free_pv_entry(pmap, pv);
7290 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7291 			    TAILQ_EMPTY(&om->md.pv_list) &&
7292 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7293 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7294 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7295 		} else {
7296 			/*
7297 			 * Since this mapping is unmanaged, assume that PG_A
7298 			 * is set.
7299 			 */
7300 			pmap_invalidate_page(pmap, va);
7301 		}
7302 		origpte = 0;
7303 	} else {
7304 		/*
7305 		 * Increment the counters.
7306 		 */
7307 		if ((newpte & PG_W) != 0)
7308 			pmap->pm_stats.wired_count++;
7309 		pmap_resident_count_adj(pmap, 1);
7310 	}
7311 
7312 	/*
7313 	 * Enter on the PV list if part of our managed memory.
7314 	 */
7315 	if ((newpte & PG_MANAGED) != 0) {
7316 		if (pv == NULL) {
7317 			pv = get_pv_entry(pmap, &lock);
7318 			pv->pv_va = va;
7319 		}
7320 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7321 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7322 		m->md.pv_gen++;
7323 		if ((newpte & PG_RW) != 0)
7324 			vm_page_aflag_set(m, PGA_WRITEABLE);
7325 	}
7326 
7327 	/*
7328 	 * Update the PTE.
7329 	 */
7330 	if ((origpte & PG_V) != 0) {
7331 validate:
7332 		origpte = pte_load_store(pte, newpte);
7333 		KASSERT((origpte & PG_FRAME) == pa,
7334 		    ("pmap_enter: unexpected pa update for %#lx", va));
7335 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7336 		    (PG_M | PG_RW)) {
7337 			if ((origpte & PG_MANAGED) != 0)
7338 				vm_page_dirty(m);
7339 
7340 			/*
7341 			 * Although the PTE may still have PG_RW set, TLB
7342 			 * invalidation may nonetheless be required because
7343 			 * the PTE no longer has PG_M set.
7344 			 */
7345 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7346 			/*
7347 			 * This PTE change does not require TLB invalidation.
7348 			 */
7349 			goto unchanged;
7350 		}
7351 		if ((origpte & PG_A) != 0)
7352 			pmap_invalidate_page(pmap, va);
7353 	} else
7354 		pte_store(pte, newpte);
7355 
7356 unchanged:
7357 
7358 #if VM_NRESERVLEVEL > 0
7359 	/*
7360 	 * If both the page table page and the reservation are fully
7361 	 * populated, then attempt promotion.
7362 	 */
7363 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7364 	    (m->flags & PG_FICTITIOUS) == 0 &&
7365 	    vm_reserv_level_iffullpop(m) == 0)
7366 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7367 #endif
7368 
7369 	rv = KERN_SUCCESS;
7370 out:
7371 	if (lock != NULL)
7372 		rw_wunlock(lock);
7373 	PMAP_UNLOCK(pmap);
7374 	return (rv);
7375 }
7376 
7377 /*
7378  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7379  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7380  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7381  * "no replace", and "no reclaim" are specified.
7382  */
7383 static int
7384 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7385     struct rwlock **lockp)
7386 {
7387 	pd_entry_t newpde;
7388 	pt_entry_t PG_V;
7389 
7390 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7391 	PG_V = pmap_valid_bit(pmap);
7392 	newpde = VM_PAGE_TO_PHYS(m) |
7393 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7394 	if ((m->oflags & VPO_UNMANAGED) == 0)
7395 		newpde |= PG_MANAGED;
7396 	if ((prot & VM_PROT_EXECUTE) == 0)
7397 		newpde |= pg_nx;
7398 	if (va < VM_MAXUSER_ADDRESS)
7399 		newpde |= PG_U;
7400 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7401 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7402 }
7403 
7404 /*
7405  * Returns true if every page table entry in the specified page table page is
7406  * zero.
7407  */
7408 static bool
7409 pmap_every_pte_zero(vm_paddr_t pa)
7410 {
7411 	pt_entry_t *pt_end, *pte;
7412 
7413 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7414 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7415 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7416 		if (*pte != 0)
7417 			return (false);
7418 	}
7419 	return (true);
7420 }
7421 
7422 /*
7423  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7424  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7425  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7426  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7427  * page mapping already exists within the 2MB virtual address range starting
7428  * at the specified virtual address or (2) the requested 2MB page mapping is
7429  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7430  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7431  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7432  * settings are not the same across the 2MB virtual address range starting at
7433  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7434  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7435  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7436  * failed.
7437  *
7438  * The parameter "m" is only used when creating a managed, writeable mapping.
7439  */
7440 static int
7441 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7442     vm_page_t m, struct rwlock **lockp)
7443 {
7444 	struct spglist free;
7445 	pd_entry_t oldpde, *pde;
7446 	pt_entry_t PG_G, PG_RW, PG_V;
7447 	vm_page_t mt, pdpg;
7448 	vm_page_t uwptpg;
7449 
7450 	PG_G = pmap_global_bit(pmap);
7451 	PG_RW = pmap_rw_bit(pmap);
7452 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7453 	    ("pmap_enter_pde: newpde is missing PG_M"));
7454 	KASSERT((flags & (PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM)) !=
7455 	    PMAP_ENTER_NORECLAIM,
7456 	    ("pmap_enter_pde: flags is missing PMAP_ENTER_NOREPLACE"));
7457 	PG_V = pmap_valid_bit(pmap);
7458 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7459 
7460 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7461 	    newpde))) {
7462 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7463 		    " in pmap %p", va, pmap);
7464 		return (KERN_FAILURE);
7465 	}
7466 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7467 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7468 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7469 		    " in pmap %p", va, pmap);
7470 		return (KERN_RESOURCE_SHORTAGE);
7471 	}
7472 
7473 	/*
7474 	 * If pkru is not same for the whole pde range, return failure
7475 	 * and let vm_fault() cope.  Check after pde allocation, since
7476 	 * it could sleep.
7477 	 */
7478 	if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7479 		pmap_abort_ptp(pmap, va, pdpg);
7480 		return (KERN_PROTECTION_FAILURE);
7481 	}
7482 
7483 	/*
7484 	 * If there are existing mappings, either abort or remove them.
7485 	 */
7486 	oldpde = *pde;
7487 	if ((oldpde & PG_V) != 0) {
7488 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7489 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7490 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7491 			if ((oldpde & PG_PS) != 0) {
7492 				if (pdpg != NULL)
7493 					pdpg->ref_count--;
7494 				CTR2(KTR_PMAP,
7495 				    "pmap_enter_pde: no space for va %#lx"
7496 				    " in pmap %p", va, pmap);
7497 				return (KERN_NO_SPACE);
7498 			} else if (va < VM_MAXUSER_ADDRESS ||
7499 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7500 				if (pdpg != NULL)
7501 					pdpg->ref_count--;
7502 				CTR2(KTR_PMAP,
7503 				    "pmap_enter_pde: failure for va %#lx"
7504 				    " in pmap %p", va, pmap);
7505 				return (KERN_FAILURE);
7506 			}
7507 		}
7508 		/* Break the existing mapping(s). */
7509 		SLIST_INIT(&free);
7510 		if ((oldpde & PG_PS) != 0) {
7511 			/*
7512 			 * The reference to the PD page that was acquired by
7513 			 * pmap_alloc_pde() ensures that it won't be freed.
7514 			 * However, if the PDE resulted from a promotion, and
7515 			 * the mapping is not from kernel_pmap, then
7516 			 * a reserved PT page could be freed.
7517 			 */
7518 			(void)pmap_remove_pde(pmap, pde, va, false, &free,
7519 			    lockp);
7520 			if ((oldpde & PG_G) == 0)
7521 				pmap_invalidate_pde_page(pmap, va, oldpde);
7522 		} else {
7523 			if (va >= VM_MAXUSER_ADDRESS) {
7524 				/*
7525 				 * Try to save the ptp in the trie
7526 				 * before any changes to mappings are
7527 				 * made.  Abort on failure.
7528 				 */
7529 				mt = PHYS_TO_VM_PAGE(oldpde & PG_FRAME);
7530 				if (pmap_insert_pt_page(pmap, mt, false,
7531 				    false)) {
7532 					CTR1(KTR_PMAP,
7533 			    "pmap_enter_pde: cannot ins kern ptp va %#lx",
7534 					    va);
7535 					return (KERN_RESOURCE_SHORTAGE);
7536 				}
7537 				/*
7538 				 * Both pmap_remove_pde() and
7539 				 * pmap_remove_ptes() will zero-fill
7540 				 * the kernel page table page.
7541 				 */
7542 			}
7543 			pmap_delayed_invl_start();
7544 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7545 			    lockp))
7546 		               pmap_invalidate_all(pmap);
7547 			pmap_delayed_invl_finish();
7548 		}
7549 		if (va < VM_MAXUSER_ADDRESS) {
7550 			vm_page_free_pages_toq(&free, true);
7551 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7552 			    pde));
7553 		} else {
7554 			KASSERT(SLIST_EMPTY(&free),
7555 			    ("pmap_enter_pde: freed kernel page table page"));
7556 		}
7557 	}
7558 
7559 	/*
7560 	 * Allocate leaf ptpage for wired userspace pages.
7561 	 */
7562 	uwptpg = NULL;
7563 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7564 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7565 		    VM_ALLOC_WIRED);
7566 		if (uwptpg == NULL) {
7567 			pmap_abort_ptp(pmap, va, pdpg);
7568 			return (KERN_RESOURCE_SHORTAGE);
7569 		}
7570 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7571 			pmap_free_pt_page(pmap, uwptpg, false);
7572 			pmap_abort_ptp(pmap, va, pdpg);
7573 			return (KERN_RESOURCE_SHORTAGE);
7574 		}
7575 
7576 		uwptpg->ref_count = NPTEPG;
7577 	}
7578 	if ((newpde & PG_MANAGED) != 0) {
7579 		/*
7580 		 * Abort this mapping if its PV entry could not be created.
7581 		 */
7582 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7583 			if (pdpg != NULL)
7584 				pmap_abort_ptp(pmap, va, pdpg);
7585 			else {
7586 				KASSERT(va >= VM_MAXUSER_ADDRESS &&
7587 				    (*pde & (PG_PS | PG_V)) == PG_V,
7588 				    ("pmap_enter_pde: invalid kernel PDE"));
7589 				mt = pmap_remove_pt_page(pmap, va);
7590 				KASSERT(mt != NULL,
7591 				    ("pmap_enter_pde: missing kernel PTP"));
7592 			}
7593 			if (uwptpg != NULL) {
7594 				mt = pmap_remove_pt_page(pmap, va);
7595 				KASSERT(mt == uwptpg,
7596 				    ("removed pt page %p, expected %p", mt,
7597 				    uwptpg));
7598 				uwptpg->ref_count = 1;
7599 				pmap_free_pt_page(pmap, uwptpg, false);
7600 			}
7601 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7602 			    " in pmap %p", va, pmap);
7603 			return (KERN_RESOURCE_SHORTAGE);
7604 		}
7605 		if ((newpde & PG_RW) != 0) {
7606 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7607 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7608 		}
7609 	}
7610 
7611 	/*
7612 	 * Increment counters.
7613 	 */
7614 	if ((newpde & PG_W) != 0)
7615 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7616 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7617 
7618 	/*
7619 	 * Map the superpage.  (This is not a promoted mapping; there will not
7620 	 * be any lingering 4KB page mappings in the TLB.)
7621 	 */
7622 	pde_store(pde, newpde);
7623 
7624 	counter_u64_add(pmap_pde_mappings, 1);
7625 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7626 	    va, pmap);
7627 	return (KERN_SUCCESS);
7628 }
7629 
7630 /*
7631  * Maps a sequence of resident pages belonging to the same object.
7632  * The sequence begins with the given page m_start.  This page is
7633  * mapped at the given virtual address start.  Each subsequent page is
7634  * mapped at a virtual address that is offset from start by the same
7635  * amount as the page is offset from m_start within the object.  The
7636  * last page in the sequence is the page with the largest offset from
7637  * m_start that can be mapped at a virtual address less than the given
7638  * virtual address end.  Not every virtual page between start and end
7639  * is mapped; only those for which a resident page exists with the
7640  * corresponding offset from m_start are mapped.
7641  */
7642 void
7643 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7644     vm_page_t m_start, vm_prot_t prot)
7645 {
7646 	struct pctrie_iter pages;
7647 	struct rwlock *lock;
7648 	vm_offset_t va;
7649 	vm_page_t m, mpte;
7650 	int rv;
7651 
7652 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7653 
7654 	mpte = NULL;
7655 	vm_page_iter_limit_init(&pages, m_start->object,
7656 	    m_start->pindex + atop(end - start));
7657 	m = vm_radix_iter_lookup(&pages, m_start->pindex);
7658 	lock = NULL;
7659 	PMAP_LOCK(pmap);
7660 	while (m != NULL) {
7661 		va = start + ptoa(m->pindex - m_start->pindex);
7662 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7663 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7664 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7665 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7666 			m = vm_radix_iter_jump(&pages, NBPDR / PAGE_SIZE);
7667 		else {
7668 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7669 			    mpte, &lock);
7670 			m = vm_radix_iter_step(&pages);
7671 		}
7672 	}
7673 	if (lock != NULL)
7674 		rw_wunlock(lock);
7675 	PMAP_UNLOCK(pmap);
7676 }
7677 
7678 /*
7679  * this code makes some *MAJOR* assumptions:
7680  * 1. Current pmap & pmap exists.
7681  * 2. Not wired.
7682  * 3. Read access.
7683  * 4. No page table pages.
7684  * but is *MUCH* faster than pmap_enter...
7685  */
7686 
7687 void
7688 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7689 {
7690 	struct rwlock *lock;
7691 
7692 	lock = NULL;
7693 	PMAP_LOCK(pmap);
7694 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7695 	if (lock != NULL)
7696 		rw_wunlock(lock);
7697 	PMAP_UNLOCK(pmap);
7698 }
7699 
7700 static vm_page_t
7701 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7702     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7703 {
7704 	pd_entry_t *pde;
7705 	pt_entry_t newpte, *pte, PG_V;
7706 
7707 	KASSERT(!VA_IS_CLEANMAP(va) ||
7708 	    (m->oflags & VPO_UNMANAGED) != 0,
7709 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7710 	PG_V = pmap_valid_bit(pmap);
7711 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7712 	pde = NULL;
7713 
7714 	/*
7715 	 * In the case that a page table page is not
7716 	 * resident, we are creating it here.
7717 	 */
7718 	if (va < VM_MAXUSER_ADDRESS) {
7719 		pdp_entry_t *pdpe;
7720 		vm_pindex_t ptepindex;
7721 
7722 		/*
7723 		 * Calculate pagetable page index
7724 		 */
7725 		ptepindex = pmap_pde_pindex(va);
7726 		if (mpte && (mpte->pindex == ptepindex)) {
7727 			mpte->ref_count++;
7728 		} else {
7729 			/*
7730 			 * If the page table page is mapped, we just increment
7731 			 * the hold count, and activate it.  Otherwise, we
7732 			 * attempt to allocate a page table page, passing NULL
7733 			 * instead of the PV list lock pointer because we don't
7734 			 * intend to sleep.  If this attempt fails, we don't
7735 			 * retry.  Instead, we give up.
7736 			 */
7737 			pdpe = pmap_pdpe(pmap, va);
7738 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7739 				if ((*pdpe & PG_PS) != 0)
7740 					return (NULL);
7741 				pde = pmap_pdpe_to_pde(pdpe, va);
7742 				if ((*pde & PG_V) != 0) {
7743 					if ((*pde & PG_PS) != 0)
7744 						return (NULL);
7745 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7746 					mpte->ref_count++;
7747 				} else {
7748 					mpte = pmap_allocpte_alloc(pmap,
7749 					    ptepindex, NULL, va);
7750 					if (mpte == NULL)
7751 						return (NULL);
7752 				}
7753 			} else {
7754 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7755 				    NULL, va);
7756 				if (mpte == NULL)
7757 					return (NULL);
7758 			}
7759 		}
7760 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7761 		pte = &pte[pmap_pte_index(va)];
7762 	} else {
7763 		mpte = NULL;
7764 		pte = vtopte(va);
7765 	}
7766 	if (*pte) {
7767 		if (mpte != NULL)
7768 			mpte->ref_count--;
7769 		return (NULL);
7770 	}
7771 
7772 	/*
7773 	 * Enter on the PV list if part of our managed memory.
7774 	 */
7775 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7776 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7777 		if (mpte != NULL)
7778 			pmap_abort_ptp(pmap, va, mpte);
7779 		return (NULL);
7780 	}
7781 
7782 	/*
7783 	 * Increment counters
7784 	 */
7785 	pmap_resident_count_adj(pmap, 1);
7786 
7787 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7788 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
7789 	if ((m->oflags & VPO_UNMANAGED) == 0)
7790 		newpte |= PG_MANAGED;
7791 	if ((prot & VM_PROT_EXECUTE) == 0)
7792 		newpte |= pg_nx;
7793 	if (va < VM_MAXUSER_ADDRESS)
7794 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7795 	pte_store(pte, newpte);
7796 
7797 #if VM_NRESERVLEVEL > 0
7798 	/*
7799 	 * If both the PTP and the reservation are fully populated, then
7800 	 * attempt promotion.
7801 	 */
7802 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7803 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
7804 	    (m->flags & PG_FICTITIOUS) == 0 &&
7805 	    vm_reserv_level_iffullpop(m) == 0) {
7806 		if (pde == NULL)
7807 			pde = pmap_pde(pmap, va);
7808 
7809 		/*
7810 		 * If promotion succeeds, then the next call to this function
7811 		 * should not be given the unmapped PTP as a hint.
7812 		 */
7813 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7814 			mpte = NULL;
7815 	}
7816 #endif
7817 
7818 	return (mpte);
7819 }
7820 
7821 /*
7822  * Make a temporary mapping for a physical address.  This is only intended
7823  * to be used for panic dumps.
7824  */
7825 void *
7826 pmap_kenter_temporary(vm_paddr_t pa, int i)
7827 {
7828 	vm_offset_t va;
7829 
7830 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7831 	pmap_kenter(va, pa);
7832 	pmap_invlpg(kernel_pmap, va);
7833 	return ((void *)crashdumpmap);
7834 }
7835 
7836 /*
7837  * This code maps large physical mmap regions into the
7838  * processor address space.  Note that some shortcuts
7839  * are taken, but the code works.
7840  */
7841 void
7842 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7843     vm_pindex_t pindex, vm_size_t size)
7844 {
7845 	struct pctrie_iter pages;
7846 	pd_entry_t *pde;
7847 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7848 	vm_paddr_t pa, ptepa;
7849 	vm_page_t p, pdpg;
7850 	int pat_mode;
7851 
7852 	PG_A = pmap_accessed_bit(pmap);
7853 	PG_M = pmap_modified_bit(pmap);
7854 	PG_V = pmap_valid_bit(pmap);
7855 	PG_RW = pmap_rw_bit(pmap);
7856 
7857 	VM_OBJECT_ASSERT_WLOCKED(object);
7858 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7859 	    ("pmap_object_init_pt: non-device object"));
7860 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7861 		if (!pmap_ps_enabled(pmap))
7862 			return;
7863 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7864 			return;
7865 		vm_page_iter_init(&pages, object);
7866 		p = vm_radix_iter_lookup(&pages, pindex);
7867 		KASSERT(vm_page_all_valid(p),
7868 		    ("pmap_object_init_pt: invalid page %p", p));
7869 		pat_mode = p->md.pat_mode;
7870 
7871 		/*
7872 		 * Abort the mapping if the first page is not physically
7873 		 * aligned to a 2MB page boundary.
7874 		 */
7875 		ptepa = VM_PAGE_TO_PHYS(p);
7876 		if (ptepa & (NBPDR - 1))
7877 			return;
7878 
7879 		/*
7880 		 * Skip the first page.  Abort the mapping if the rest of
7881 		 * the pages are not physically contiguous or have differing
7882 		 * memory attributes.
7883 		 */
7884 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7885 		    pa += PAGE_SIZE) {
7886 			p = vm_radix_iter_next(&pages);
7887 			KASSERT(vm_page_all_valid(p),
7888 			    ("pmap_object_init_pt: invalid page %p", p));
7889 			if (pa != VM_PAGE_TO_PHYS(p) ||
7890 			    pat_mode != p->md.pat_mode)
7891 				return;
7892 		}
7893 
7894 		/*
7895 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7896 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7897 		 * will not affect the termination of this loop.
7898 		 */
7899 		PMAP_LOCK(pmap);
7900 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7901 		    pa < ptepa + size; pa += NBPDR) {
7902 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7903 			if (pde == NULL) {
7904 				/*
7905 				 * The creation of mappings below is only an
7906 				 * optimization.  If a page directory page
7907 				 * cannot be allocated without blocking,
7908 				 * continue on to the next mapping rather than
7909 				 * blocking.
7910 				 */
7911 				addr += NBPDR;
7912 				continue;
7913 			}
7914 			if ((*pde & PG_V) == 0) {
7915 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7916 				    PG_U | PG_RW | PG_V);
7917 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7918 				counter_u64_add(pmap_pde_mappings, 1);
7919 			} else {
7920 				/* Continue on if the PDE is already valid. */
7921 				pdpg->ref_count--;
7922 				KASSERT(pdpg->ref_count > 0,
7923 				    ("pmap_object_init_pt: missing reference "
7924 				    "to page directory page, va: 0x%lx", addr));
7925 			}
7926 			addr += NBPDR;
7927 		}
7928 		PMAP_UNLOCK(pmap);
7929 	}
7930 }
7931 
7932 /*
7933  *	Clear the wired attribute from the mappings for the specified range of
7934  *	addresses in the given pmap.  Every valid mapping within that range
7935  *	must have the wired attribute set.  In contrast, invalid mappings
7936  *	cannot have the wired attribute set, so they are ignored.
7937  *
7938  *	The wired attribute of the page table entry is not a hardware
7939  *	feature, so there is no need to invalidate any TLB entries.
7940  *	Since pmap_demote_pde() for the wired entry must never fail,
7941  *	pmap_delayed_invl_start()/finish() calls around the
7942  *	function are not needed.
7943  */
7944 void
7945 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7946 {
7947 	vm_offset_t va_next;
7948 	pml4_entry_t *pml4e;
7949 	pdp_entry_t *pdpe;
7950 	pd_entry_t *pde;
7951 	pt_entry_t *pte, PG_V, PG_G __diagused;
7952 
7953 	PG_V = pmap_valid_bit(pmap);
7954 	PG_G = pmap_global_bit(pmap);
7955 	PMAP_LOCK(pmap);
7956 	for (; sva < eva; sva = va_next) {
7957 		pml4e = pmap_pml4e(pmap, sva);
7958 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7959 			va_next = (sva + NBPML4) & ~PML4MASK;
7960 			if (va_next < sva)
7961 				va_next = eva;
7962 			continue;
7963 		}
7964 
7965 		va_next = (sva + NBPDP) & ~PDPMASK;
7966 		if (va_next < sva)
7967 			va_next = eva;
7968 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7969 		if ((*pdpe & PG_V) == 0)
7970 			continue;
7971 		if ((*pdpe & PG_PS) != 0) {
7972 			KASSERT(va_next <= eva,
7973 			    ("partial update of non-transparent 1G mapping "
7974 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7975 			    *pdpe, sva, eva, va_next));
7976 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7977 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7978 			atomic_clear_long(pdpe, PG_W);
7979 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7980 			continue;
7981 		}
7982 
7983 		va_next = (sva + NBPDR) & ~PDRMASK;
7984 		if (va_next < sva)
7985 			va_next = eva;
7986 		pde = pmap_pdpe_to_pde(pdpe, sva);
7987 		if ((*pde & PG_V) == 0)
7988 			continue;
7989 		if ((*pde & PG_PS) != 0) {
7990 			if ((*pde & PG_W) == 0)
7991 				panic("pmap_unwire: pde %#jx is missing PG_W",
7992 				    (uintmax_t)*pde);
7993 
7994 			/*
7995 			 * Are we unwiring the entire large page?  If not,
7996 			 * demote the mapping and fall through.
7997 			 */
7998 			if (sva + NBPDR == va_next && eva >= va_next) {
7999 				atomic_clear_long(pde, PG_W);
8000 				pmap->pm_stats.wired_count -= NBPDR /
8001 				    PAGE_SIZE;
8002 				continue;
8003 			} else if (!pmap_demote_pde(pmap, pde, sva))
8004 				panic("pmap_unwire: demotion failed");
8005 		}
8006 		if (va_next > eva)
8007 			va_next = eva;
8008 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8009 		    sva += PAGE_SIZE) {
8010 			if ((*pte & PG_V) == 0)
8011 				continue;
8012 			if ((*pte & PG_W) == 0)
8013 				panic("pmap_unwire: pte %#jx is missing PG_W",
8014 				    (uintmax_t)*pte);
8015 
8016 			/*
8017 			 * PG_W must be cleared atomically.  Although the pmap
8018 			 * lock synchronizes access to PG_W, another processor
8019 			 * could be setting PG_M and/or PG_A concurrently.
8020 			 */
8021 			atomic_clear_long(pte, PG_W);
8022 			pmap->pm_stats.wired_count--;
8023 		}
8024 	}
8025 	PMAP_UNLOCK(pmap);
8026 }
8027 
8028 /*
8029  *	Copy the range specified by src_addr/len
8030  *	from the source map to the range dst_addr/len
8031  *	in the destination map.
8032  *
8033  *	This routine is only advisory and need not do anything.
8034  */
8035 void
8036 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8037     vm_offset_t src_addr)
8038 {
8039 	struct rwlock *lock;
8040 	pml4_entry_t *pml4e;
8041 	pdp_entry_t *pdpe;
8042 	pd_entry_t *pde, srcptepaddr;
8043 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8044 	vm_offset_t addr, end_addr, va_next;
8045 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8046 
8047 	if (dst_addr != src_addr)
8048 		return;
8049 
8050 	if (dst_pmap->pm_type != src_pmap->pm_type)
8051 		return;
8052 
8053 	/*
8054 	 * EPT page table entries that require emulation of A/D bits are
8055 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8056 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8057 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8058 	 * implementations flag an EPT misconfiguration for exec-only
8059 	 * mappings we skip this function entirely for emulated pmaps.
8060 	 */
8061 	if (pmap_emulate_ad_bits(dst_pmap))
8062 		return;
8063 
8064 	end_addr = src_addr + len;
8065 	lock = NULL;
8066 	if (dst_pmap < src_pmap) {
8067 		PMAP_LOCK(dst_pmap);
8068 		PMAP_LOCK(src_pmap);
8069 	} else {
8070 		PMAP_LOCK(src_pmap);
8071 		PMAP_LOCK(dst_pmap);
8072 	}
8073 
8074 	PG_A = pmap_accessed_bit(dst_pmap);
8075 	PG_M = pmap_modified_bit(dst_pmap);
8076 	PG_V = pmap_valid_bit(dst_pmap);
8077 
8078 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8079 		KASSERT(addr < UPT_MIN_ADDRESS,
8080 		    ("pmap_copy: invalid to pmap_copy page tables"));
8081 
8082 		pml4e = pmap_pml4e(src_pmap, addr);
8083 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8084 			va_next = (addr + NBPML4) & ~PML4MASK;
8085 			if (va_next < addr)
8086 				va_next = end_addr;
8087 			continue;
8088 		}
8089 
8090 		va_next = (addr + NBPDP) & ~PDPMASK;
8091 		if (va_next < addr)
8092 			va_next = end_addr;
8093 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8094 		if ((*pdpe & PG_V) == 0)
8095 			continue;
8096 		if ((*pdpe & PG_PS) != 0) {
8097 			KASSERT(va_next <= end_addr,
8098 			    ("partial update of non-transparent 1G mapping "
8099 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8100 			    *pdpe, addr, end_addr, va_next));
8101 			MPASS((addr & PDPMASK) == 0);
8102 			MPASS((*pdpe & PG_MANAGED) == 0);
8103 			srcptepaddr = *pdpe;
8104 			pdpe = pmap_pdpe(dst_pmap, addr);
8105 			if (pdpe == NULL) {
8106 				if (pmap_allocpte_alloc(dst_pmap,
8107 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8108 				    NULL)
8109 					break;
8110 				pdpe = pmap_pdpe(dst_pmap, addr);
8111 			} else {
8112 				pml4e = pmap_pml4e(dst_pmap, addr);
8113 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8114 				dst_pdpg->ref_count++;
8115 			}
8116 			KASSERT(*pdpe == 0,
8117 			    ("1G mapping present in dst pmap "
8118 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8119 			    *pdpe, addr, end_addr, va_next));
8120 			*pdpe = srcptepaddr & ~PG_W;
8121 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8122 			continue;
8123 		}
8124 
8125 		va_next = (addr + NBPDR) & ~PDRMASK;
8126 		if (va_next < addr)
8127 			va_next = end_addr;
8128 
8129 		pde = pmap_pdpe_to_pde(pdpe, addr);
8130 		srcptepaddr = *pde;
8131 		if (srcptepaddr == 0)
8132 			continue;
8133 
8134 		if (srcptepaddr & PG_PS) {
8135 			/*
8136 			 * We can only virtual copy whole superpages.
8137 			 */
8138 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8139 				continue;
8140 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8141 			if (pde == NULL)
8142 				break;
8143 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8144 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8145 			    PMAP_ENTER_NORECLAIM, &lock))) {
8146 				/*
8147 				 * We leave the dirty bit unchanged because
8148 				 * managed read/write superpage mappings are
8149 				 * required to be dirty.  However, managed
8150 				 * superpage mappings are not required to
8151 				 * have their accessed bit set, so we clear
8152 				 * it because we don't know if this mapping
8153 				 * will be used.
8154 				 */
8155 				srcptepaddr &= ~PG_W;
8156 				if ((srcptepaddr & PG_MANAGED) != 0)
8157 					srcptepaddr &= ~PG_A;
8158 				*pde = srcptepaddr;
8159 				pmap_resident_count_adj(dst_pmap, NBPDR /
8160 				    PAGE_SIZE);
8161 				counter_u64_add(pmap_pde_mappings, 1);
8162 			} else
8163 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8164 			continue;
8165 		}
8166 
8167 		srcptepaddr &= PG_FRAME;
8168 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8169 		KASSERT(srcmpte->ref_count > 0,
8170 		    ("pmap_copy: source page table page is unused"));
8171 
8172 		if (va_next > end_addr)
8173 			va_next = end_addr;
8174 
8175 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8176 		src_pte = &src_pte[pmap_pte_index(addr)];
8177 		dstmpte = NULL;
8178 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8179 			ptetemp = *src_pte;
8180 
8181 			/*
8182 			 * We only virtual copy managed pages.
8183 			 */
8184 			if ((ptetemp & PG_MANAGED) == 0)
8185 				continue;
8186 
8187 			if (dstmpte != NULL) {
8188 				KASSERT(dstmpte->pindex ==
8189 				    pmap_pde_pindex(addr),
8190 				    ("dstmpte pindex/addr mismatch"));
8191 				dstmpte->ref_count++;
8192 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8193 			    NULL)) == NULL)
8194 				goto out;
8195 			dst_pte = (pt_entry_t *)
8196 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8197 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8198 			if (*dst_pte == 0 &&
8199 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8200 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8201 				/*
8202 				 * Clear the wired, modified, and accessed
8203 				 * (referenced) bits during the copy.
8204 				 */
8205 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8206 				pmap_resident_count_adj(dst_pmap, 1);
8207 			} else {
8208 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8209 				goto out;
8210 			}
8211 			/* Have we copied all of the valid mappings? */
8212 			if (dstmpte->ref_count >= srcmpte->ref_count)
8213 				break;
8214 		}
8215 	}
8216 out:
8217 	if (lock != NULL)
8218 		rw_wunlock(lock);
8219 	PMAP_UNLOCK(src_pmap);
8220 	PMAP_UNLOCK(dst_pmap);
8221 }
8222 
8223 int
8224 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8225 {
8226 	int error;
8227 
8228 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8229 	    dst_pmap->pm_type != PT_X86 ||
8230 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8231 		return (0);
8232 	for (;;) {
8233 		if (dst_pmap < src_pmap) {
8234 			PMAP_LOCK(dst_pmap);
8235 			PMAP_LOCK(src_pmap);
8236 		} else {
8237 			PMAP_LOCK(src_pmap);
8238 			PMAP_LOCK(dst_pmap);
8239 		}
8240 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8241 		/* Clean up partial copy on failure due to no memory. */
8242 		if (error == ENOMEM)
8243 			pmap_pkru_deassign_all(dst_pmap);
8244 		PMAP_UNLOCK(src_pmap);
8245 		PMAP_UNLOCK(dst_pmap);
8246 		if (error != ENOMEM)
8247 			break;
8248 		vm_wait(NULL);
8249 	}
8250 	return (error);
8251 }
8252 
8253 /*
8254  * Zero the specified hardware page.
8255  */
8256 void
8257 pmap_zero_page(vm_page_t m)
8258 {
8259 	vm_offset_t va;
8260 
8261 #ifdef TSLOG_PAGEZERO
8262 	TSENTER();
8263 #endif
8264 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8265 	pagezero((void *)va);
8266 #ifdef TSLOG_PAGEZERO
8267 	TSEXIT();
8268 #endif
8269 }
8270 
8271 /*
8272  * Zero an area within a single hardware page.  off and size must not
8273  * cover an area beyond a single hardware page.
8274  */
8275 void
8276 pmap_zero_page_area(vm_page_t m, int off, int size)
8277 {
8278 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8279 
8280 	if (off == 0 && size == PAGE_SIZE)
8281 		pagezero((void *)va);
8282 	else
8283 		bzero((char *)va + off, size);
8284 }
8285 
8286 /*
8287  * Copy 1 specified hardware page to another.
8288  */
8289 void
8290 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8291 {
8292 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8293 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8294 
8295 	pagecopy((void *)src, (void *)dst);
8296 }
8297 
8298 int unmapped_buf_allowed = 1;
8299 
8300 void
8301 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8302     vm_offset_t b_offset, int xfersize)
8303 {
8304 	void *a_cp, *b_cp;
8305 	vm_page_t pages[2];
8306 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8307 	int cnt;
8308 	bool mapped;
8309 
8310 	while (xfersize > 0) {
8311 		a_pg_offset = a_offset & PAGE_MASK;
8312 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8313 		b_pg_offset = b_offset & PAGE_MASK;
8314 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8315 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8316 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8317 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8318 		a_cp = (char *)vaddr[0] + a_pg_offset;
8319 		b_cp = (char *)vaddr[1] + b_pg_offset;
8320 		bcopy(a_cp, b_cp, cnt);
8321 		if (__predict_false(mapped))
8322 			pmap_unmap_io_transient(pages, vaddr, 2, false);
8323 		a_offset += cnt;
8324 		b_offset += cnt;
8325 		xfersize -= cnt;
8326 	}
8327 }
8328 
8329 /*
8330  * Returns true if the pmap's pv is one of the first
8331  * 16 pvs linked to from this page.  This count may
8332  * be changed upwards or downwards in the future; it
8333  * is only necessary that true be returned for a small
8334  * subset of pmaps for proper page aging.
8335  */
8336 bool
8337 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8338 {
8339 	struct md_page *pvh;
8340 	struct rwlock *lock;
8341 	pv_entry_t pv;
8342 	int loops = 0;
8343 	bool rv;
8344 
8345 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8346 	    ("pmap_page_exists_quick: page %p is not managed", m));
8347 	rv = false;
8348 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8349 	rw_rlock(lock);
8350 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8351 		if (PV_PMAP(pv) == pmap) {
8352 			rv = true;
8353 			break;
8354 		}
8355 		loops++;
8356 		if (loops >= 16)
8357 			break;
8358 	}
8359 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8360 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8361 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8362 			if (PV_PMAP(pv) == pmap) {
8363 				rv = true;
8364 				break;
8365 			}
8366 			loops++;
8367 			if (loops >= 16)
8368 				break;
8369 		}
8370 	}
8371 	rw_runlock(lock);
8372 	return (rv);
8373 }
8374 
8375 /*
8376  *	pmap_page_wired_mappings:
8377  *
8378  *	Return the number of managed mappings to the given physical page
8379  *	that are wired.
8380  */
8381 int
8382 pmap_page_wired_mappings(vm_page_t m)
8383 {
8384 	struct rwlock *lock;
8385 	struct md_page *pvh;
8386 	pmap_t pmap;
8387 	pt_entry_t *pte;
8388 	pv_entry_t pv;
8389 	int count, md_gen, pvh_gen;
8390 
8391 	if ((m->oflags & VPO_UNMANAGED) != 0)
8392 		return (0);
8393 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8394 	rw_rlock(lock);
8395 restart:
8396 	count = 0;
8397 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8398 		pmap = PV_PMAP(pv);
8399 		if (!PMAP_TRYLOCK(pmap)) {
8400 			md_gen = m->md.pv_gen;
8401 			rw_runlock(lock);
8402 			PMAP_LOCK(pmap);
8403 			rw_rlock(lock);
8404 			if (md_gen != m->md.pv_gen) {
8405 				PMAP_UNLOCK(pmap);
8406 				goto restart;
8407 			}
8408 		}
8409 		pte = pmap_pte(pmap, pv->pv_va);
8410 		if ((*pte & PG_W) != 0)
8411 			count++;
8412 		PMAP_UNLOCK(pmap);
8413 	}
8414 	if ((m->flags & PG_FICTITIOUS) == 0) {
8415 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8416 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8417 			pmap = PV_PMAP(pv);
8418 			if (!PMAP_TRYLOCK(pmap)) {
8419 				md_gen = m->md.pv_gen;
8420 				pvh_gen = pvh->pv_gen;
8421 				rw_runlock(lock);
8422 				PMAP_LOCK(pmap);
8423 				rw_rlock(lock);
8424 				if (md_gen != m->md.pv_gen ||
8425 				    pvh_gen != pvh->pv_gen) {
8426 					PMAP_UNLOCK(pmap);
8427 					goto restart;
8428 				}
8429 			}
8430 			pte = pmap_pde(pmap, pv->pv_va);
8431 			if ((*pte & PG_W) != 0)
8432 				count++;
8433 			PMAP_UNLOCK(pmap);
8434 		}
8435 	}
8436 	rw_runlock(lock);
8437 	return (count);
8438 }
8439 
8440 /*
8441  * Returns true if the given page is mapped individually or as part of
8442  * a 2mpage.  Otherwise, returns false.
8443  */
8444 bool
8445 pmap_page_is_mapped(vm_page_t m)
8446 {
8447 	struct rwlock *lock;
8448 	bool rv;
8449 
8450 	if ((m->oflags & VPO_UNMANAGED) != 0)
8451 		return (false);
8452 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8453 	rw_rlock(lock);
8454 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8455 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8456 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8457 	rw_runlock(lock);
8458 	return (rv);
8459 }
8460 
8461 /*
8462  * Destroy all managed, non-wired mappings in the given user-space
8463  * pmap.  This pmap cannot be active on any processor besides the
8464  * caller.
8465  *
8466  * This function cannot be applied to the kernel pmap.  Moreover, it
8467  * is not intended for general use.  It is only to be used during
8468  * process termination.  Consequently, it can be implemented in ways
8469  * that make it faster than pmap_remove().  First, it can more quickly
8470  * destroy mappings by iterating over the pmap's collection of PV
8471  * entries, rather than searching the page table.  Second, it doesn't
8472  * have to test and clear the page table entries atomically, because
8473  * no processor is currently accessing the user address space.  In
8474  * particular, a page table entry's dirty bit won't change state once
8475  * this function starts.
8476  *
8477  * Although this function destroys all of the pmap's managed,
8478  * non-wired mappings, it can delay and batch the invalidation of TLB
8479  * entries without calling pmap_delayed_invl_start() and
8480  * pmap_delayed_invl_finish().  Because the pmap is not active on
8481  * any other processor, none of these TLB entries will ever be used
8482  * before their eventual invalidation.  Consequently, there is no need
8483  * for either pmap_remove_all() or pmap_remove_write() to wait for
8484  * that eventual TLB invalidation.
8485  */
8486 void
8487 pmap_remove_pages(pmap_t pmap)
8488 {
8489 	pd_entry_t ptepde;
8490 	pt_entry_t *pte, tpte;
8491 	pt_entry_t PG_M, PG_RW, PG_V;
8492 	struct spglist free;
8493 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8494 	vm_page_t m, mpte, mt;
8495 	pv_entry_t pv;
8496 	struct md_page *pvh;
8497 	struct pv_chunk *pc, *npc;
8498 	struct rwlock *lock;
8499 	int64_t bit;
8500 	uint64_t inuse, bitmask;
8501 	int allfree, field, i, idx;
8502 #ifdef PV_STATS
8503 	int freed;
8504 #endif
8505 	bool superpage;
8506 	vm_paddr_t pa;
8507 
8508 	/*
8509 	 * Assert that the given pmap is only active on the current
8510 	 * CPU.  Unfortunately, we cannot block another CPU from
8511 	 * activating the pmap while this function is executing.
8512 	 */
8513 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8514 #ifdef INVARIANTS
8515 	{
8516 		cpuset_t other_cpus;
8517 
8518 		other_cpus = all_cpus;
8519 		critical_enter();
8520 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8521 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8522 		critical_exit();
8523 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8524 	}
8525 #endif
8526 
8527 	lock = NULL;
8528 	PG_M = pmap_modified_bit(pmap);
8529 	PG_V = pmap_valid_bit(pmap);
8530 	PG_RW = pmap_rw_bit(pmap);
8531 
8532 	for (i = 0; i < PMAP_MEMDOM; i++)
8533 		TAILQ_INIT(&free_chunks[i]);
8534 	SLIST_INIT(&free);
8535 	PMAP_LOCK(pmap);
8536 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8537 		allfree = 1;
8538 #ifdef PV_STATS
8539 		freed = 0;
8540 #endif
8541 		for (field = 0; field < _NPCM; field++) {
8542 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8543 			while (inuse != 0) {
8544 				bit = bsfq(inuse);
8545 				bitmask = 1UL << bit;
8546 				idx = field * 64 + bit;
8547 				pv = &pc->pc_pventry[idx];
8548 				inuse &= ~bitmask;
8549 
8550 				pte = pmap_pdpe(pmap, pv->pv_va);
8551 				ptepde = *pte;
8552 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8553 				tpte = *pte;
8554 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8555 					superpage = false;
8556 					ptepde = tpte;
8557 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8558 					    PG_FRAME);
8559 					pte = &pte[pmap_pte_index(pv->pv_va)];
8560 					tpte = *pte;
8561 				} else {
8562 					/*
8563 					 * Keep track whether 'tpte' is a
8564 					 * superpage explicitly instead of
8565 					 * relying on PG_PS being set.
8566 					 *
8567 					 * This is because PG_PS is numerically
8568 					 * identical to PG_PTE_PAT and thus a
8569 					 * regular page could be mistaken for
8570 					 * a superpage.
8571 					 */
8572 					superpage = true;
8573 				}
8574 
8575 				if ((tpte & PG_V) == 0) {
8576 					panic("bad pte va %lx pte %lx",
8577 					    pv->pv_va, tpte);
8578 				}
8579 
8580 /*
8581  * We cannot remove wired pages from a process' mapping at this time
8582  */
8583 				if (tpte & PG_W) {
8584 					allfree = 0;
8585 					continue;
8586 				}
8587 
8588 				/* Mark free */
8589 				pc->pc_map[field] |= bitmask;
8590 
8591 				/*
8592 				 * Because this pmap is not active on other
8593 				 * processors, the dirty bit cannot have
8594 				 * changed state since we last loaded pte.
8595 				 */
8596 				pte_clear(pte);
8597 
8598 				if (superpage)
8599 					pa = tpte & PG_PS_FRAME;
8600 				else
8601 					pa = tpte & PG_FRAME;
8602 
8603 				m = PHYS_TO_VM_PAGE(pa);
8604 				KASSERT(m->phys_addr == pa,
8605 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8606 				    m, (uintmax_t)m->phys_addr,
8607 				    (uintmax_t)tpte));
8608 
8609 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8610 				    m < &vm_page_array[vm_page_array_size],
8611 				    ("pmap_remove_pages: bad tpte %#jx",
8612 				    (uintmax_t)tpte));
8613 
8614 				/*
8615 				 * Update the vm_page_t clean/reference bits.
8616 				 */
8617 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8618 					if (superpage) {
8619 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8620 							vm_page_dirty(mt);
8621 					} else
8622 						vm_page_dirty(m);
8623 				}
8624 
8625 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8626 
8627 				if (superpage) {
8628 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8629 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8630 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8631 					pvh->pv_gen++;
8632 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8633 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8634 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8635 							    TAILQ_EMPTY(&mt->md.pv_list))
8636 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8637 					}
8638 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8639 					if (mpte != NULL) {
8640 						KASSERT(vm_page_any_valid(mpte),
8641 						    ("pmap_remove_pages: pte page not promoted"));
8642 						pmap_pt_page_count_adj(pmap, -1);
8643 						KASSERT(mpte->ref_count == NPTEPG,
8644 						    ("pmap_remove_pages: pte page reference count error"));
8645 						mpte->ref_count = 0;
8646 						pmap_add_delayed_free_list(mpte, &free, false);
8647 					}
8648 				} else {
8649 					pmap_resident_count_adj(pmap, -1);
8650 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8651 					m->md.pv_gen++;
8652 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8653 					    TAILQ_EMPTY(&m->md.pv_list) &&
8654 					    (m->flags & PG_FICTITIOUS) == 0) {
8655 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8656 						if (TAILQ_EMPTY(&pvh->pv_list))
8657 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8658 					}
8659 				}
8660 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8661 #ifdef PV_STATS
8662 				freed++;
8663 #endif
8664 			}
8665 		}
8666 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8667 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8668 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8669 		if (allfree) {
8670 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8671 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8672 		}
8673 	}
8674 	if (lock != NULL)
8675 		rw_wunlock(lock);
8676 	pmap_invalidate_all(pmap);
8677 	pmap_pkru_deassign_all(pmap);
8678 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8679 	PMAP_UNLOCK(pmap);
8680 	vm_page_free_pages_toq(&free, true);
8681 }
8682 
8683 static bool
8684 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8685 {
8686 	struct rwlock *lock;
8687 	pv_entry_t pv;
8688 	struct md_page *pvh;
8689 	pt_entry_t *pte, mask;
8690 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8691 	pmap_t pmap;
8692 	int md_gen, pvh_gen;
8693 	bool rv;
8694 
8695 	rv = false;
8696 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8697 	rw_rlock(lock);
8698 restart:
8699 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8700 		pmap = PV_PMAP(pv);
8701 		if (!PMAP_TRYLOCK(pmap)) {
8702 			md_gen = m->md.pv_gen;
8703 			rw_runlock(lock);
8704 			PMAP_LOCK(pmap);
8705 			rw_rlock(lock);
8706 			if (md_gen != m->md.pv_gen) {
8707 				PMAP_UNLOCK(pmap);
8708 				goto restart;
8709 			}
8710 		}
8711 		pte = pmap_pte(pmap, pv->pv_va);
8712 		mask = 0;
8713 		if (modified) {
8714 			PG_M = pmap_modified_bit(pmap);
8715 			PG_RW = pmap_rw_bit(pmap);
8716 			mask |= PG_RW | PG_M;
8717 		}
8718 		if (accessed) {
8719 			PG_A = pmap_accessed_bit(pmap);
8720 			PG_V = pmap_valid_bit(pmap);
8721 			mask |= PG_V | PG_A;
8722 		}
8723 		rv = (*pte & mask) == mask;
8724 		PMAP_UNLOCK(pmap);
8725 		if (rv)
8726 			goto out;
8727 	}
8728 	if ((m->flags & PG_FICTITIOUS) == 0) {
8729 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8730 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8731 			pmap = PV_PMAP(pv);
8732 			if (!PMAP_TRYLOCK(pmap)) {
8733 				md_gen = m->md.pv_gen;
8734 				pvh_gen = pvh->pv_gen;
8735 				rw_runlock(lock);
8736 				PMAP_LOCK(pmap);
8737 				rw_rlock(lock);
8738 				if (md_gen != m->md.pv_gen ||
8739 				    pvh_gen != pvh->pv_gen) {
8740 					PMAP_UNLOCK(pmap);
8741 					goto restart;
8742 				}
8743 			}
8744 			pte = pmap_pde(pmap, pv->pv_va);
8745 			mask = 0;
8746 			if (modified) {
8747 				PG_M = pmap_modified_bit(pmap);
8748 				PG_RW = pmap_rw_bit(pmap);
8749 				mask |= PG_RW | PG_M;
8750 			}
8751 			if (accessed) {
8752 				PG_A = pmap_accessed_bit(pmap);
8753 				PG_V = pmap_valid_bit(pmap);
8754 				mask |= PG_V | PG_A;
8755 			}
8756 			rv = (*pte & mask) == mask;
8757 			PMAP_UNLOCK(pmap);
8758 			if (rv)
8759 				goto out;
8760 		}
8761 	}
8762 out:
8763 	rw_runlock(lock);
8764 	return (rv);
8765 }
8766 
8767 /*
8768  *	pmap_is_modified:
8769  *
8770  *	Return whether or not the specified physical page was modified
8771  *	in any physical maps.
8772  */
8773 bool
8774 pmap_is_modified(vm_page_t m)
8775 {
8776 
8777 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8778 	    ("pmap_is_modified: page %p is not managed", m));
8779 
8780 	/*
8781 	 * If the page is not busied then this check is racy.
8782 	 */
8783 	if (!pmap_page_is_write_mapped(m))
8784 		return (false);
8785 	return (pmap_page_test_mappings(m, false, true));
8786 }
8787 
8788 /*
8789  *	pmap_is_prefaultable:
8790  *
8791  *	Return whether or not the specified virtual address is eligible
8792  *	for prefault.
8793  */
8794 bool
8795 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8796 {
8797 	pd_entry_t *pde;
8798 	pt_entry_t *pte, PG_V;
8799 	bool rv;
8800 
8801 	PG_V = pmap_valid_bit(pmap);
8802 
8803 	/*
8804 	 * Return true if and only if the PTE for the specified virtual
8805 	 * address is allocated but invalid.
8806 	 */
8807 	rv = false;
8808 	PMAP_LOCK(pmap);
8809 	pde = pmap_pde(pmap, addr);
8810 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8811 		pte = pmap_pde_to_pte(pde, addr);
8812 		rv = (*pte & PG_V) == 0;
8813 	}
8814 	PMAP_UNLOCK(pmap);
8815 	return (rv);
8816 }
8817 
8818 /*
8819  *	pmap_is_referenced:
8820  *
8821  *	Return whether or not the specified physical page was referenced
8822  *	in any physical maps.
8823  */
8824 bool
8825 pmap_is_referenced(vm_page_t m)
8826 {
8827 
8828 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8829 	    ("pmap_is_referenced: page %p is not managed", m));
8830 	return (pmap_page_test_mappings(m, true, false));
8831 }
8832 
8833 /*
8834  * Clear the write and modified bits in each of the given page's mappings.
8835  */
8836 void
8837 pmap_remove_write(vm_page_t m)
8838 {
8839 	struct md_page *pvh;
8840 	pmap_t pmap;
8841 	struct rwlock *lock;
8842 	pv_entry_t next_pv, pv;
8843 	pd_entry_t *pde;
8844 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8845 	vm_offset_t va;
8846 	int pvh_gen, md_gen;
8847 
8848 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8849 	    ("pmap_remove_write: page %p is not managed", m));
8850 
8851 	vm_page_assert_busied(m);
8852 	if (!pmap_page_is_write_mapped(m))
8853 		return;
8854 
8855 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8856 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8857 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8858 	rw_wlock(lock);
8859 retry:
8860 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8861 		pmap = PV_PMAP(pv);
8862 		if (!PMAP_TRYLOCK(pmap)) {
8863 			pvh_gen = pvh->pv_gen;
8864 			rw_wunlock(lock);
8865 			PMAP_LOCK(pmap);
8866 			rw_wlock(lock);
8867 			if (pvh_gen != pvh->pv_gen) {
8868 				PMAP_UNLOCK(pmap);
8869 				goto retry;
8870 			}
8871 		}
8872 		PG_RW = pmap_rw_bit(pmap);
8873 		va = pv->pv_va;
8874 		pde = pmap_pde(pmap, va);
8875 		if ((*pde & PG_RW) != 0)
8876 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8877 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8878 		    ("inconsistent pv lock %p %p for page %p",
8879 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8880 		PMAP_UNLOCK(pmap);
8881 	}
8882 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8883 		pmap = PV_PMAP(pv);
8884 		if (!PMAP_TRYLOCK(pmap)) {
8885 			pvh_gen = pvh->pv_gen;
8886 			md_gen = m->md.pv_gen;
8887 			rw_wunlock(lock);
8888 			PMAP_LOCK(pmap);
8889 			rw_wlock(lock);
8890 			if (pvh_gen != pvh->pv_gen ||
8891 			    md_gen != m->md.pv_gen) {
8892 				PMAP_UNLOCK(pmap);
8893 				goto retry;
8894 			}
8895 		}
8896 		PG_M = pmap_modified_bit(pmap);
8897 		PG_RW = pmap_rw_bit(pmap);
8898 		pde = pmap_pde(pmap, pv->pv_va);
8899 		KASSERT((*pde & PG_PS) == 0,
8900 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8901 		    m));
8902 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8903 		oldpte = *pte;
8904 		if (oldpte & PG_RW) {
8905 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8906 			    ~(PG_RW | PG_M)))
8907 				cpu_spinwait();
8908 			if ((oldpte & PG_M) != 0)
8909 				vm_page_dirty(m);
8910 			pmap_invalidate_page(pmap, pv->pv_va);
8911 		}
8912 		PMAP_UNLOCK(pmap);
8913 	}
8914 	rw_wunlock(lock);
8915 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8916 	pmap_delayed_invl_wait(m);
8917 }
8918 
8919 /*
8920  *	pmap_ts_referenced:
8921  *
8922  *	Return a count of reference bits for a page, clearing those bits.
8923  *	It is not necessary for every reference bit to be cleared, but it
8924  *	is necessary that 0 only be returned when there are truly no
8925  *	reference bits set.
8926  *
8927  *	As an optimization, update the page's dirty field if a modified bit is
8928  *	found while counting reference bits.  This opportunistic update can be
8929  *	performed at low cost and can eliminate the need for some future calls
8930  *	to pmap_is_modified().  However, since this function stops after
8931  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8932  *	dirty pages.  Those dirty pages will only be detected by a future call
8933  *	to pmap_is_modified().
8934  *
8935  *	A DI block is not needed within this function, because
8936  *	invalidations are performed before the PV list lock is
8937  *	released.
8938  */
8939 int
8940 pmap_ts_referenced(vm_page_t m)
8941 {
8942 	struct md_page *pvh;
8943 	pv_entry_t pv, pvf;
8944 	pmap_t pmap;
8945 	struct rwlock *lock;
8946 	pd_entry_t oldpde, *pde;
8947 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8948 	vm_offset_t va;
8949 	vm_paddr_t pa;
8950 	int cleared, md_gen, not_cleared, pvh_gen;
8951 	struct spglist free;
8952 	bool demoted;
8953 
8954 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8955 	    ("pmap_ts_referenced: page %p is not managed", m));
8956 	SLIST_INIT(&free);
8957 	cleared = 0;
8958 	pa = VM_PAGE_TO_PHYS(m);
8959 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8960 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8961 	rw_wlock(lock);
8962 retry:
8963 	not_cleared = 0;
8964 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8965 		goto small_mappings;
8966 	pv = pvf;
8967 	do {
8968 		if (pvf == NULL)
8969 			pvf = pv;
8970 		pmap = PV_PMAP(pv);
8971 		if (!PMAP_TRYLOCK(pmap)) {
8972 			pvh_gen = pvh->pv_gen;
8973 			rw_wunlock(lock);
8974 			PMAP_LOCK(pmap);
8975 			rw_wlock(lock);
8976 			if (pvh_gen != pvh->pv_gen) {
8977 				PMAP_UNLOCK(pmap);
8978 				goto retry;
8979 			}
8980 		}
8981 		PG_A = pmap_accessed_bit(pmap);
8982 		PG_M = pmap_modified_bit(pmap);
8983 		PG_RW = pmap_rw_bit(pmap);
8984 		va = pv->pv_va;
8985 		pde = pmap_pde(pmap, pv->pv_va);
8986 		oldpde = *pde;
8987 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8988 			/*
8989 			 * Although "oldpde" is mapping a 2MB page, because
8990 			 * this function is called at a 4KB page granularity,
8991 			 * we only update the 4KB page under test.
8992 			 */
8993 			vm_page_dirty(m);
8994 		}
8995 		if ((oldpde & PG_A) != 0) {
8996 			/*
8997 			 * Since this reference bit is shared by 512 4KB
8998 			 * pages, it should not be cleared every time it is
8999 			 * tested.  Apply a simple "hash" function on the
9000 			 * physical page number, the virtual superpage number,
9001 			 * and the pmap address to select one 4KB page out of
9002 			 * the 512 on which testing the reference bit will
9003 			 * result in clearing that reference bit.  This
9004 			 * function is designed to avoid the selection of the
9005 			 * same 4KB page for every 2MB page mapping.
9006 			 *
9007 			 * On demotion, a mapping that hasn't been referenced
9008 			 * is simply destroyed.  To avoid the possibility of a
9009 			 * subsequent page fault on a demoted wired mapping,
9010 			 * always leave its reference bit set.  Moreover,
9011 			 * since the superpage is wired, the current state of
9012 			 * its reference bit won't affect page replacement.
9013 			 */
9014 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9015 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9016 			    (oldpde & PG_W) == 0) {
9017 				if (safe_to_clear_referenced(pmap, oldpde)) {
9018 					atomic_clear_long(pde, PG_A);
9019 					pmap_invalidate_page(pmap, pv->pv_va);
9020 					demoted = false;
9021 				} else if (pmap_demote_pde_locked(pmap, pde,
9022 				    pv->pv_va, &lock)) {
9023 					/*
9024 					 * Remove the mapping to a single page
9025 					 * so that a subsequent access may
9026 					 * repromote.  Since the underlying
9027 					 * page table page is fully populated,
9028 					 * this removal never frees a page
9029 					 * table page.
9030 					 */
9031 					demoted = true;
9032 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9033 					    PG_PS_FRAME);
9034 					pte = pmap_pde_to_pte(pde, va);
9035 					pmap_remove_pte(pmap, pte, va, *pde,
9036 					    NULL, &lock);
9037 					pmap_invalidate_page(pmap, va);
9038 				} else
9039 					demoted = true;
9040 
9041 				if (demoted) {
9042 					/*
9043 					 * The superpage mapping was removed
9044 					 * entirely and therefore 'pv' is no
9045 					 * longer valid.
9046 					 */
9047 					if (pvf == pv)
9048 						pvf = NULL;
9049 					pv = NULL;
9050 				}
9051 				cleared++;
9052 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9053 				    ("inconsistent pv lock %p %p for page %p",
9054 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9055 			} else
9056 				not_cleared++;
9057 		}
9058 		PMAP_UNLOCK(pmap);
9059 		/* Rotate the PV list if it has more than one entry. */
9060 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9061 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9062 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9063 			pvh->pv_gen++;
9064 		}
9065 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9066 			goto out;
9067 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9068 small_mappings:
9069 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9070 		goto out;
9071 	pv = pvf;
9072 	do {
9073 		if (pvf == NULL)
9074 			pvf = pv;
9075 		pmap = PV_PMAP(pv);
9076 		if (!PMAP_TRYLOCK(pmap)) {
9077 			pvh_gen = pvh->pv_gen;
9078 			md_gen = m->md.pv_gen;
9079 			rw_wunlock(lock);
9080 			PMAP_LOCK(pmap);
9081 			rw_wlock(lock);
9082 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9083 				PMAP_UNLOCK(pmap);
9084 				goto retry;
9085 			}
9086 		}
9087 		PG_A = pmap_accessed_bit(pmap);
9088 		PG_M = pmap_modified_bit(pmap);
9089 		PG_RW = pmap_rw_bit(pmap);
9090 		pde = pmap_pde(pmap, pv->pv_va);
9091 		KASSERT((*pde & PG_PS) == 0,
9092 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9093 		    m));
9094 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9095 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9096 			vm_page_dirty(m);
9097 		if ((*pte & PG_A) != 0) {
9098 			if (safe_to_clear_referenced(pmap, *pte)) {
9099 				atomic_clear_long(pte, PG_A);
9100 				pmap_invalidate_page(pmap, pv->pv_va);
9101 				cleared++;
9102 			} else if ((*pte & PG_W) == 0) {
9103 				/*
9104 				 * Wired pages cannot be paged out so
9105 				 * doing accessed bit emulation for
9106 				 * them is wasted effort. We do the
9107 				 * hard work for unwired pages only.
9108 				 */
9109 				pmap_remove_pte(pmap, pte, pv->pv_va,
9110 				    *pde, &free, &lock);
9111 				pmap_invalidate_page(pmap, pv->pv_va);
9112 				cleared++;
9113 				if (pvf == pv)
9114 					pvf = NULL;
9115 				pv = NULL;
9116 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9117 				    ("inconsistent pv lock %p %p for page %p",
9118 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9119 			} else
9120 				not_cleared++;
9121 		}
9122 		PMAP_UNLOCK(pmap);
9123 		/* Rotate the PV list if it has more than one entry. */
9124 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9125 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9126 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9127 			m->md.pv_gen++;
9128 		}
9129 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9130 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9131 out:
9132 	rw_wunlock(lock);
9133 	vm_page_free_pages_toq(&free, true);
9134 	return (cleared + not_cleared);
9135 }
9136 
9137 /*
9138  *	Apply the given advice to the specified range of addresses within the
9139  *	given pmap.  Depending on the advice, clear the referenced and/or
9140  *	modified flags in each mapping and set the mapped page's dirty field.
9141  */
9142 void
9143 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9144 {
9145 	struct rwlock *lock;
9146 	pml4_entry_t *pml4e;
9147 	pdp_entry_t *pdpe;
9148 	pd_entry_t oldpde, *pde;
9149 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9150 	vm_offset_t va, va_next;
9151 	vm_page_t m;
9152 	bool anychanged;
9153 
9154 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9155 		return;
9156 
9157 	/*
9158 	 * A/D bit emulation requires an alternate code path when clearing
9159 	 * the modified and accessed bits below. Since this function is
9160 	 * advisory in nature we skip it entirely for pmaps that require
9161 	 * A/D bit emulation.
9162 	 */
9163 	if (pmap_emulate_ad_bits(pmap))
9164 		return;
9165 
9166 	PG_A = pmap_accessed_bit(pmap);
9167 	PG_G = pmap_global_bit(pmap);
9168 	PG_M = pmap_modified_bit(pmap);
9169 	PG_V = pmap_valid_bit(pmap);
9170 	PG_RW = pmap_rw_bit(pmap);
9171 	anychanged = false;
9172 	pmap_delayed_invl_start();
9173 	PMAP_LOCK(pmap);
9174 	for (; sva < eva; sva = va_next) {
9175 		pml4e = pmap_pml4e(pmap, sva);
9176 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9177 			va_next = (sva + NBPML4) & ~PML4MASK;
9178 			if (va_next < sva)
9179 				va_next = eva;
9180 			continue;
9181 		}
9182 
9183 		va_next = (sva + NBPDP) & ~PDPMASK;
9184 		if (va_next < sva)
9185 			va_next = eva;
9186 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9187 		if ((*pdpe & PG_V) == 0)
9188 			continue;
9189 		if ((*pdpe & PG_PS) != 0)
9190 			continue;
9191 
9192 		va_next = (sva + NBPDR) & ~PDRMASK;
9193 		if (va_next < sva)
9194 			va_next = eva;
9195 		pde = pmap_pdpe_to_pde(pdpe, sva);
9196 		oldpde = *pde;
9197 		if ((oldpde & PG_V) == 0)
9198 			continue;
9199 		else if ((oldpde & PG_PS) != 0) {
9200 			if ((oldpde & PG_MANAGED) == 0)
9201 				continue;
9202 			lock = NULL;
9203 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9204 				if (lock != NULL)
9205 					rw_wunlock(lock);
9206 
9207 				/*
9208 				 * The large page mapping was destroyed.
9209 				 */
9210 				continue;
9211 			}
9212 
9213 			/*
9214 			 * Unless the page mappings are wired, remove the
9215 			 * mapping to a single page so that a subsequent
9216 			 * access may repromote.  Choosing the last page
9217 			 * within the address range [sva, min(va_next, eva))
9218 			 * generally results in more repromotions.  Since the
9219 			 * underlying page table page is fully populated, this
9220 			 * removal never frees a page table page.
9221 			 */
9222 			if ((oldpde & PG_W) == 0) {
9223 				va = eva;
9224 				if (va > va_next)
9225 					va = va_next;
9226 				va -= PAGE_SIZE;
9227 				KASSERT(va >= sva,
9228 				    ("pmap_advise: no address gap"));
9229 				pte = pmap_pde_to_pte(pde, va);
9230 				KASSERT((*pte & PG_V) != 0,
9231 				    ("pmap_advise: invalid PTE"));
9232 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9233 				    &lock);
9234 				anychanged = true;
9235 			}
9236 			if (lock != NULL)
9237 				rw_wunlock(lock);
9238 		}
9239 		if (va_next > eva)
9240 			va_next = eva;
9241 		va = va_next;
9242 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9243 		    sva += PAGE_SIZE) {
9244 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9245 				goto maybe_invlrng;
9246 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9247 				if (advice == MADV_DONTNEED) {
9248 					/*
9249 					 * Future calls to pmap_is_modified()
9250 					 * can be avoided by making the page
9251 					 * dirty now.
9252 					 */
9253 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9254 					vm_page_dirty(m);
9255 				}
9256 				atomic_clear_long(pte, PG_M | PG_A);
9257 			} else if ((*pte & PG_A) != 0)
9258 				atomic_clear_long(pte, PG_A);
9259 			else
9260 				goto maybe_invlrng;
9261 
9262 			if ((*pte & PG_G) != 0) {
9263 				if (va == va_next)
9264 					va = sva;
9265 			} else
9266 				anychanged = true;
9267 			continue;
9268 maybe_invlrng:
9269 			if (va != va_next) {
9270 				pmap_invalidate_range(pmap, va, sva);
9271 				va = va_next;
9272 			}
9273 		}
9274 		if (va != va_next)
9275 			pmap_invalidate_range(pmap, va, sva);
9276 	}
9277 	if (anychanged)
9278 		pmap_invalidate_all(pmap);
9279 	PMAP_UNLOCK(pmap);
9280 	pmap_delayed_invl_finish();
9281 }
9282 
9283 /*
9284  *	Clear the modify bits on the specified physical page.
9285  */
9286 void
9287 pmap_clear_modify(vm_page_t m)
9288 {
9289 	struct md_page *pvh;
9290 	pmap_t pmap;
9291 	pv_entry_t next_pv, pv;
9292 	pd_entry_t oldpde, *pde;
9293 	pt_entry_t *pte, PG_M, PG_RW;
9294 	struct rwlock *lock;
9295 	vm_offset_t va;
9296 	int md_gen, pvh_gen;
9297 
9298 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9299 	    ("pmap_clear_modify: page %p is not managed", m));
9300 	vm_page_assert_busied(m);
9301 
9302 	if (!pmap_page_is_write_mapped(m))
9303 		return;
9304 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9305 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9306 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9307 	rw_wlock(lock);
9308 restart:
9309 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9310 		pmap = PV_PMAP(pv);
9311 		if (!PMAP_TRYLOCK(pmap)) {
9312 			pvh_gen = pvh->pv_gen;
9313 			rw_wunlock(lock);
9314 			PMAP_LOCK(pmap);
9315 			rw_wlock(lock);
9316 			if (pvh_gen != pvh->pv_gen) {
9317 				PMAP_UNLOCK(pmap);
9318 				goto restart;
9319 			}
9320 		}
9321 		PG_M = pmap_modified_bit(pmap);
9322 		PG_RW = pmap_rw_bit(pmap);
9323 		va = pv->pv_va;
9324 		pde = pmap_pde(pmap, va);
9325 		oldpde = *pde;
9326 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9327 		if ((oldpde & PG_RW) != 0 &&
9328 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9329 		    (oldpde & PG_W) == 0) {
9330 			/*
9331 			 * Write protect the mapping to a single page so that
9332 			 * a subsequent write access may repromote.
9333 			 */
9334 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9335 			pte = pmap_pde_to_pte(pde, va);
9336 			atomic_clear_long(pte, PG_M | PG_RW);
9337 			vm_page_dirty(m);
9338 			pmap_invalidate_page(pmap, va);
9339 		}
9340 		PMAP_UNLOCK(pmap);
9341 	}
9342 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9343 		pmap = PV_PMAP(pv);
9344 		if (!PMAP_TRYLOCK(pmap)) {
9345 			md_gen = m->md.pv_gen;
9346 			pvh_gen = pvh->pv_gen;
9347 			rw_wunlock(lock);
9348 			PMAP_LOCK(pmap);
9349 			rw_wlock(lock);
9350 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9351 				PMAP_UNLOCK(pmap);
9352 				goto restart;
9353 			}
9354 		}
9355 		PG_M = pmap_modified_bit(pmap);
9356 		PG_RW = pmap_rw_bit(pmap);
9357 		pde = pmap_pde(pmap, pv->pv_va);
9358 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9359 		    " a 2mpage in page %p's pv list", m));
9360 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9361 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9362 			atomic_clear_long(pte, PG_M);
9363 			pmap_invalidate_page(pmap, pv->pv_va);
9364 		}
9365 		PMAP_UNLOCK(pmap);
9366 	}
9367 	rw_wunlock(lock);
9368 }
9369 
9370 /*
9371  * Miscellaneous support routines follow
9372  */
9373 
9374 /* Adjust the properties for a leaf page table entry. */
9375 static __inline void
9376 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9377 {
9378 	u_long opte, npte;
9379 
9380 	opte = *(u_long *)pte;
9381 	do {
9382 		npte = opte & ~mask;
9383 		npte |= bits;
9384 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9385 	    npte));
9386 }
9387 
9388 /*
9389  * Map a set of physical memory pages into the kernel virtual
9390  * address space. Return a pointer to where it is mapped. This
9391  * routine is intended to be used for mapping device memory,
9392  * NOT real memory.
9393  */
9394 static void *
9395 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9396 {
9397 	struct pmap_preinit_mapping *ppim;
9398 	vm_offset_t va, offset;
9399 	vm_size_t tmpsize;
9400 	int i;
9401 
9402 	offset = pa & PAGE_MASK;
9403 	size = round_page(offset + size);
9404 	pa = trunc_page(pa);
9405 
9406 	if (!pmap_initialized) {
9407 		va = 0;
9408 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9409 			ppim = pmap_preinit_mapping + i;
9410 			if (ppim->va == 0) {
9411 				ppim->pa = pa;
9412 				ppim->sz = size;
9413 				ppim->mode = mode;
9414 				ppim->va = virtual_avail;
9415 				virtual_avail += size;
9416 				va = ppim->va;
9417 				break;
9418 			}
9419 		}
9420 		if (va == 0)
9421 			panic("%s: too many preinit mappings", __func__);
9422 	} else {
9423 		/*
9424 		 * If we have a preinit mapping, reuse it.
9425 		 */
9426 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9427 			ppim = pmap_preinit_mapping + i;
9428 			if (ppim->pa == pa && ppim->sz == size &&
9429 			    (ppim->mode == mode ||
9430 			    (flags & MAPDEV_SETATTR) == 0))
9431 				return ((void *)(ppim->va + offset));
9432 		}
9433 		/*
9434 		 * If the specified range of physical addresses fits within
9435 		 * the direct map window, use the direct map.
9436 		 */
9437 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9438 			va = PHYS_TO_DMAP(pa);
9439 			if ((flags & MAPDEV_SETATTR) != 0) {
9440 				PMAP_LOCK(kernel_pmap);
9441 				i = pmap_change_props_locked(va, size,
9442 				    PROT_NONE, mode, flags);
9443 				PMAP_UNLOCK(kernel_pmap);
9444 			} else
9445 				i = 0;
9446 			if (!i)
9447 				return ((void *)(va + offset));
9448 		}
9449 		va = kva_alloc(size);
9450 		if (va == 0)
9451 			panic("%s: Couldn't allocate KVA", __func__);
9452 	}
9453 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9454 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9455 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9456 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9457 		pmap_invalidate_cache_range(va, va + tmpsize);
9458 	return ((void *)(va + offset));
9459 }
9460 
9461 void *
9462 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9463 {
9464 
9465 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9466 	    MAPDEV_SETATTR));
9467 }
9468 
9469 void *
9470 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9471 {
9472 
9473 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9474 }
9475 
9476 void *
9477 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9478 {
9479 
9480 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9481 	    MAPDEV_SETATTR));
9482 }
9483 
9484 void *
9485 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9486 {
9487 
9488 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9489 	    MAPDEV_FLUSHCACHE));
9490 }
9491 
9492 void
9493 pmap_unmapdev(void *p, vm_size_t size)
9494 {
9495 	struct pmap_preinit_mapping *ppim;
9496 	vm_offset_t offset, va;
9497 	int i;
9498 
9499 	va = (vm_offset_t)p;
9500 
9501 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9502 	if (va >= kva_layout.dmap_low && va < kva_layout.dmap_high)
9503 		return;
9504 	offset = va & PAGE_MASK;
9505 	size = round_page(offset + size);
9506 	va = trunc_page(va);
9507 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9508 		ppim = pmap_preinit_mapping + i;
9509 		if (ppim->va == va && ppim->sz == size) {
9510 			if (pmap_initialized)
9511 				return;
9512 			ppim->pa = 0;
9513 			ppim->va = 0;
9514 			ppim->sz = 0;
9515 			ppim->mode = 0;
9516 			if (va + size == virtual_avail)
9517 				virtual_avail = va;
9518 			return;
9519 		}
9520 	}
9521 	if (pmap_initialized) {
9522 		pmap_qremove(va, atop(size));
9523 		kva_free(va, size);
9524 	}
9525 }
9526 
9527 /*
9528  * Tries to demote a 1GB page mapping.
9529  */
9530 static bool
9531 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va, vm_page_t m)
9532 {
9533 	pdp_entry_t newpdpe, oldpdpe;
9534 	pd_entry_t *firstpde, newpde, *pde;
9535 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9536 	vm_paddr_t pdpgpa;
9537 	vm_page_t pdpg;
9538 
9539 	PG_A = pmap_accessed_bit(pmap);
9540 	PG_M = pmap_modified_bit(pmap);
9541 	PG_V = pmap_valid_bit(pmap);
9542 	PG_RW = pmap_rw_bit(pmap);
9543 
9544 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9545 	oldpdpe = *pdpe;
9546 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9547 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9548 	if (m == NULL) {
9549 		pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9550 		    VM_ALLOC_WIRED);
9551 		if (pdpg  == NULL) {
9552 			CTR2(KTR_PMAP,
9553 			    "pmap_demote_pdpe: failure for va %#lx in pmap %p",
9554 			    va, pmap);
9555 			return (false);
9556 		}
9557 	} else {
9558 		pdpg = m;
9559 		pdpg->pindex = va >> PDPSHIFT;
9560 		pmap_pt_page_count_adj(pmap, 1);
9561 	}
9562 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9563 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9564 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9565 	KASSERT((oldpdpe & PG_A) != 0,
9566 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9567 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9568 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9569 	newpde = oldpdpe;
9570 
9571 	/*
9572 	 * Initialize the page directory page.
9573 	 */
9574 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9575 		*pde = newpde;
9576 		newpde += NBPDR;
9577 	}
9578 
9579 	/*
9580 	 * Demote the mapping.
9581 	 */
9582 	*pdpe = newpdpe;
9583 
9584 	/*
9585 	 * Invalidate a stale recursive mapping of the page directory page.
9586 	 */
9587 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9588 
9589 	counter_u64_add(pmap_pdpe_demotions, 1);
9590 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9591 	    " in pmap %p", va, pmap);
9592 	return (true);
9593 }
9594 
9595 /*
9596  * Sets the memory attribute for the specified page.
9597  */
9598 void
9599 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9600 {
9601 	if (m->md.pat_mode == ma)
9602 		return;
9603 
9604 	m->md.pat_mode = ma;
9605 
9606 	/*
9607 	 * If "m" is a normal page, update its direct mapping.  This update
9608 	 * can be relied upon to perform any cache operations that are
9609 	 * required for data coherence.
9610 	 */
9611 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9612 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9613 	    m->md.pat_mode))
9614 		panic("memory attribute change on the direct map failed");
9615 }
9616 
9617 void
9618 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9619 {
9620 	int error;
9621 
9622 	if (m->md.pat_mode == ma)
9623 		return;
9624 
9625 	m->md.pat_mode = ma;
9626 
9627 	if ((m->flags & PG_FICTITIOUS) != 0)
9628 		return;
9629 	PMAP_LOCK(kernel_pmap);
9630 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9631 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9632 	PMAP_UNLOCK(kernel_pmap);
9633 	if (error != 0)
9634 		panic("memory attribute change on the direct map failed");
9635 }
9636 
9637 /*
9638  * Changes the specified virtual address range's memory type to that given by
9639  * the parameter "mode".  The specified virtual address range must be
9640  * completely contained within either the direct map or the kernel map.  If
9641  * the virtual address range is contained within the kernel map, then the
9642  * memory type for each of the corresponding ranges of the direct map is also
9643  * changed.  (The corresponding ranges of the direct map are those ranges that
9644  * map the same physical pages as the specified virtual address range.)  These
9645  * changes to the direct map are necessary because Intel describes the
9646  * behavior of their processors as "undefined" if two or more mappings to the
9647  * same physical page have different memory types.
9648  *
9649  * Returns zero if the change completed successfully, and either EINVAL or
9650  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9651  * of the virtual address range was not mapped, and ENOMEM is returned if
9652  * there was insufficient memory available to complete the change.  In the
9653  * latter case, the memory type may have been changed on some part of the
9654  * virtual address range or the direct map.
9655  */
9656 int
9657 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9658 {
9659 	int error;
9660 
9661 	PMAP_LOCK(kernel_pmap);
9662 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9663 	    MAPDEV_FLUSHCACHE);
9664 	PMAP_UNLOCK(kernel_pmap);
9665 	return (error);
9666 }
9667 
9668 /*
9669  * Changes the specified virtual address range's protections to those
9670  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9671  * in the direct map are updated as well.  Protections on aliasing mappings may
9672  * be a subset of the requested protections; for example, mappings in the direct
9673  * map are never executable.
9674  */
9675 int
9676 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9677 {
9678 	int error;
9679 
9680 	/* Only supported within the kernel map. */
9681 	if (va < kva_layout.km_low)
9682 		return (EINVAL);
9683 
9684 	PMAP_LOCK(kernel_pmap);
9685 	error = pmap_change_props_locked(va, size, prot, -1,
9686 	    MAPDEV_ASSERTVALID);
9687 	PMAP_UNLOCK(kernel_pmap);
9688 	return (error);
9689 }
9690 
9691 static int
9692 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9693     int mode, int flags)
9694 {
9695 	vm_offset_t base, offset, tmpva;
9696 	vm_paddr_t pa_start, pa_end, pa_end1;
9697 	pdp_entry_t *pdpe;
9698 	pd_entry_t *pde, pde_bits, pde_mask;
9699 	pt_entry_t *pte, pte_bits, pte_mask;
9700 	int error;
9701 	bool changed;
9702 
9703 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9704 	base = trunc_page(va);
9705 	offset = va & PAGE_MASK;
9706 	size = round_page(offset + size);
9707 
9708 	/*
9709 	 * Only supported on kernel virtual addresses, including the direct
9710 	 * map but excluding the recursive map.
9711 	 */
9712 	if (base < kva_layout.dmap_low)
9713 		return (EINVAL);
9714 
9715 	/*
9716 	 * Construct our flag sets and masks.  "bits" is the subset of
9717 	 * "mask" that will be set in each modified PTE.
9718 	 *
9719 	 * Mappings in the direct map are never allowed to be executable.
9720 	 */
9721 	pde_bits = pte_bits = 0;
9722 	pde_mask = pte_mask = 0;
9723 	if (mode != -1) {
9724 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9725 		pde_mask |= X86_PG_PDE_CACHE;
9726 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9727 		pte_mask |= X86_PG_PTE_CACHE;
9728 	}
9729 	if (prot != VM_PROT_NONE) {
9730 		if ((prot & VM_PROT_WRITE) != 0) {
9731 			pde_bits |= X86_PG_RW;
9732 			pte_bits |= X86_PG_RW;
9733 		}
9734 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9735 		    va < kva_layout.km_low) {
9736 			pde_bits |= pg_nx;
9737 			pte_bits |= pg_nx;
9738 		}
9739 		pde_mask |= X86_PG_RW | pg_nx;
9740 		pte_mask |= X86_PG_RW | pg_nx;
9741 	}
9742 
9743 	/*
9744 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9745 	 * into 4KB pages if required.
9746 	 */
9747 	for (tmpva = base; tmpva < base + size; ) {
9748 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9749 		if (pdpe == NULL || *pdpe == 0) {
9750 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9751 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9752 			return (EINVAL);
9753 		}
9754 		if (*pdpe & PG_PS) {
9755 			/*
9756 			 * If the current 1GB page already has the required
9757 			 * properties, then we need not demote this page.  Just
9758 			 * increment tmpva to the next 1GB page frame.
9759 			 */
9760 			if ((*pdpe & pde_mask) == pde_bits) {
9761 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9762 				continue;
9763 			}
9764 
9765 			/*
9766 			 * If the current offset aligns with a 1GB page frame
9767 			 * and there is at least 1GB left within the range, then
9768 			 * we need not break down this page into 2MB pages.
9769 			 */
9770 			if ((tmpva & PDPMASK) == 0 &&
9771 			    tmpva + PDPMASK < base + size) {
9772 				tmpva += NBPDP;
9773 				continue;
9774 			}
9775 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva, NULL))
9776 				return (ENOMEM);
9777 		}
9778 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9779 		if (*pde == 0) {
9780 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9781 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9782 			return (EINVAL);
9783 		}
9784 		if (*pde & PG_PS) {
9785 			/*
9786 			 * If the current 2MB page already has the required
9787 			 * properties, then we need not demote this page.  Just
9788 			 * increment tmpva to the next 2MB page frame.
9789 			 */
9790 			if ((*pde & pde_mask) == pde_bits) {
9791 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9792 				continue;
9793 			}
9794 
9795 			/*
9796 			 * If the current offset aligns with a 2MB page frame
9797 			 * and there is at least 2MB left within the range, then
9798 			 * we need not break down this page into 4KB pages.
9799 			 */
9800 			if ((tmpva & PDRMASK) == 0 &&
9801 			    tmpva + PDRMASK < base + size) {
9802 				tmpva += NBPDR;
9803 				continue;
9804 			}
9805 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9806 				return (ENOMEM);
9807 		}
9808 		pte = pmap_pde_to_pte(pde, tmpva);
9809 		if (*pte == 0) {
9810 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9811 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9812 			return (EINVAL);
9813 		}
9814 		tmpva += PAGE_SIZE;
9815 	}
9816 	error = 0;
9817 
9818 	/*
9819 	 * Ok, all the pages exist, so run through them updating their
9820 	 * properties if required.
9821 	 */
9822 	changed = false;
9823 	pa_start = pa_end = 0;
9824 	for (tmpva = base; tmpva < base + size; ) {
9825 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9826 		if (*pdpe & PG_PS) {
9827 			if ((*pdpe & pde_mask) != pde_bits) {
9828 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9829 				changed = true;
9830 			}
9831 			if (tmpva >= kva_layout.km_low &&
9832 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9833 				if (pa_start == pa_end) {
9834 					/* Start physical address run. */
9835 					pa_start = *pdpe & PG_PS_FRAME;
9836 					pa_end = pa_start + NBPDP;
9837 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9838 					pa_end += NBPDP;
9839 				else {
9840 					/* Run ended, update direct map. */
9841 					error = pmap_change_props_locked(
9842 					    PHYS_TO_DMAP(pa_start),
9843 					    pa_end - pa_start, prot, mode,
9844 					    flags);
9845 					if (error != 0)
9846 						break;
9847 					/* Start physical address run. */
9848 					pa_start = *pdpe & PG_PS_FRAME;
9849 					pa_end = pa_start + NBPDP;
9850 				}
9851 			}
9852 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9853 			continue;
9854 		}
9855 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9856 		if (*pde & PG_PS) {
9857 			if ((*pde & pde_mask) != pde_bits) {
9858 				pmap_pte_props(pde, pde_bits, pde_mask);
9859 				changed = true;
9860 			}
9861 			if (tmpva >= kva_layout.km_low &&
9862 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9863 				if (pa_start == pa_end) {
9864 					/* Start physical address run. */
9865 					pa_start = *pde & PG_PS_FRAME;
9866 					pa_end = pa_start + NBPDR;
9867 				} else if (pa_end == (*pde & PG_PS_FRAME))
9868 					pa_end += NBPDR;
9869 				else {
9870 					/* Run ended, update direct map. */
9871 					error = pmap_change_props_locked(
9872 					    PHYS_TO_DMAP(pa_start),
9873 					    pa_end - pa_start, prot, mode,
9874 					    flags);
9875 					if (error != 0)
9876 						break;
9877 					/* Start physical address run. */
9878 					pa_start = *pde & PG_PS_FRAME;
9879 					pa_end = pa_start + NBPDR;
9880 				}
9881 			}
9882 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9883 		} else {
9884 			pte = pmap_pde_to_pte(pde, tmpva);
9885 			if ((*pte & pte_mask) != pte_bits) {
9886 				pmap_pte_props(pte, pte_bits, pte_mask);
9887 				changed = true;
9888 			}
9889 			if (tmpva >= kva_layout.km_low &&
9890 			    (*pte & PG_FRAME) < dmaplimit) {
9891 				if (pa_start == pa_end) {
9892 					/* Start physical address run. */
9893 					pa_start = *pte & PG_FRAME;
9894 					pa_end = pa_start + PAGE_SIZE;
9895 				} else if (pa_end == (*pte & PG_FRAME))
9896 					pa_end += PAGE_SIZE;
9897 				else {
9898 					/* Run ended, update direct map. */
9899 					error = pmap_change_props_locked(
9900 					    PHYS_TO_DMAP(pa_start),
9901 					    pa_end - pa_start, prot, mode,
9902 					    flags);
9903 					if (error != 0)
9904 						break;
9905 					/* Start physical address run. */
9906 					pa_start = *pte & PG_FRAME;
9907 					pa_end = pa_start + PAGE_SIZE;
9908 				}
9909 			}
9910 			tmpva += PAGE_SIZE;
9911 		}
9912 	}
9913 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9914 		pa_end1 = MIN(pa_end, dmaplimit);
9915 		if (pa_start != pa_end1)
9916 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9917 			    pa_end1 - pa_start, prot, mode, flags);
9918 	}
9919 
9920 	/*
9921 	 * Flush CPU caches if required to make sure any data isn't cached that
9922 	 * shouldn't be, etc.
9923 	 */
9924 	if (changed) {
9925 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9926 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9927 			pmap_invalidate_cache_range(base, tmpva);
9928 	}
9929 	return (error);
9930 }
9931 
9932 /*
9933  * Demotes any mapping within the direct map region that covers more
9934  * than the specified range of physical addresses.  This range's size
9935  * must be a power of two and its starting address must be a multiple
9936  * of its size, which means that any pdp from the mapping is fully
9937  * covered by the range if len > NBPDP.  Since the demotion does not
9938  * change any attributes of the mapping, a TLB invalidation is not
9939  * mandatory.  The caller may, however, request a TLB invalidation.
9940  */
9941 void
9942 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9943 {
9944 	pdp_entry_t *pdpe;
9945 	pd_entry_t *pde;
9946 	vm_offset_t va;
9947 	vm_page_t m, mpte;
9948 	bool changed, rv __diagused;
9949 
9950 	if (len == 0)
9951 		return;
9952 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9953 	KASSERT((base & (len - 1)) == 0,
9954 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9955 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "pmap_demote_DMAP");
9956 
9957 	if (len < NBPDP && base < dmaplimit) {
9958 		va = PHYS_TO_DMAP(base);
9959 		changed = false;
9960 
9961 		/*
9962 		 * Assume that it is fine to sleep there.
9963 		 * The only existing caller of pmap_demote_DMAP() is the
9964 		 * x86_mr_split_dmap() function.
9965 		 */
9966 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
9967 		if (len < NBPDR) {
9968 			mpte = vm_page_alloc_noobj(VM_ALLOC_WIRED |
9969 			    VM_ALLOC_WAITOK);
9970 		} else
9971 			mpte = NULL;
9972 
9973 		PMAP_LOCK(kernel_pmap);
9974 		pdpe = pmap_pdpe(kernel_pmap, va);
9975 		if ((*pdpe & X86_PG_V) == 0)
9976 			panic("pmap_demote_DMAP: invalid PDPE");
9977 		if ((*pdpe & PG_PS) != 0) {
9978 			rv = pmap_demote_pdpe(kernel_pmap, pdpe, va, m);
9979 			KASSERT(rv, ("pmap_demote_DMAP: PDPE failed"));
9980 			changed = true;
9981 			m = NULL;
9982 		}
9983 		if (len < NBPDR) {
9984 			pde = pmap_pdpe_to_pde(pdpe, va);
9985 			if ((*pde & X86_PG_V) == 0)
9986 				panic("pmap_demote_DMAP: invalid PDE");
9987 			if ((*pde & PG_PS) != 0) {
9988 				mpte->pindex = pmap_pde_pindex(va);
9989 				pmap_pt_page_count_adj(kernel_pmap, 1);
9990 				rv = pmap_demote_pde_mpte(kernel_pmap, pde, va,
9991 				    NULL, mpte);
9992 				KASSERT(rv, ("pmap_demote_DMAP: PDE failed"));
9993 				changed = true;
9994 				mpte = NULL;
9995 			}
9996 		}
9997 		if (changed && invalidate)
9998 			pmap_invalidate_page(kernel_pmap, va);
9999 		PMAP_UNLOCK(kernel_pmap);
10000 		if (m != NULL) {
10001 			vm_page_unwire_noq(m);
10002 			vm_page_free(m);
10003 		}
10004 		if (mpte != NULL) {
10005 			vm_page_unwire_noq(mpte);
10006 			vm_page_free(mpte);
10007 		}
10008 	}
10009 }
10010 
10011 /*
10012  * Perform the pmap work for mincore(2).  If the page is not both referenced and
10013  * modified by this pmap, returns its physical address so that the caller can
10014  * find other mappings.
10015  */
10016 int
10017 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10018 {
10019 	pdp_entry_t *pdpe;
10020 	pd_entry_t *pdep;
10021 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10022 	vm_paddr_t pa;
10023 	int val;
10024 
10025 	PG_A = pmap_accessed_bit(pmap);
10026 	PG_M = pmap_modified_bit(pmap);
10027 	PG_V = pmap_valid_bit(pmap);
10028 	PG_RW = pmap_rw_bit(pmap);
10029 
10030 	PMAP_LOCK(pmap);
10031 	pte = 0;
10032 	pa = 0;
10033 	val = 0;
10034 	pdpe = pmap_pdpe(pmap, addr);
10035 	if (pdpe == NULL)
10036 		goto out;
10037 	if ((*pdpe & PG_V) != 0) {
10038 		if ((*pdpe & PG_PS) != 0) {
10039 			pte = *pdpe;
10040 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10041 			    PG_FRAME;
10042 			val = MINCORE_PSIND(2);
10043 		} else {
10044 			pdep = pmap_pde(pmap, addr);
10045 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10046 				if ((*pdep & PG_PS) != 0) {
10047 					pte = *pdep;
10048 			/* Compute the physical address of the 4KB page. */
10049 					pa = ((pte & PG_PS_FRAME) | (addr &
10050 					    PDRMASK)) & PG_FRAME;
10051 					val = MINCORE_PSIND(1);
10052 				} else {
10053 					pte = *pmap_pde_to_pte(pdep, addr);
10054 					pa = pte & PG_FRAME;
10055 					val = 0;
10056 				}
10057 			}
10058 		}
10059 	}
10060 	if ((pte & PG_V) != 0) {
10061 		val |= MINCORE_INCORE;
10062 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10063 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10064 		if ((pte & PG_A) != 0)
10065 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10066 	}
10067 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10068 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10069 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10070 		*pap = pa;
10071 	}
10072 out:
10073 	PMAP_UNLOCK(pmap);
10074 	return (val);
10075 }
10076 
10077 static uint64_t
10078 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10079 {
10080 	uint32_t gen, new_gen, pcid_next;
10081 
10082 	CRITICAL_ASSERT(curthread);
10083 	gen = PCPU_GET(pcid_gen);
10084 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10085 		return (pti ? 0 : CR3_PCID_SAVE);
10086 	if (pcidp->pm_gen == gen)
10087 		return (CR3_PCID_SAVE);
10088 	pcid_next = PCPU_GET(pcid_next);
10089 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10090 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10091 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10092 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10093 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10094 		new_gen = gen + 1;
10095 		if (new_gen == 0)
10096 			new_gen = 1;
10097 		PCPU_SET(pcid_gen, new_gen);
10098 		pcid_next = PMAP_PCID_KERN + 1;
10099 	} else {
10100 		new_gen = gen;
10101 	}
10102 	pcidp->pm_pcid = pcid_next;
10103 	pcidp->pm_gen = new_gen;
10104 	PCPU_SET(pcid_next, pcid_next + 1);
10105 	return (0);
10106 }
10107 
10108 static uint64_t
10109 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10110 {
10111 	uint64_t cached;
10112 
10113 	cached = pmap_pcid_alloc(pmap, pcidp);
10114 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10115 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10116 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10117 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10118 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10119 	return (cached);
10120 }
10121 
10122 static void
10123 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10124 {
10125 
10126 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10127 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10128 }
10129 
10130 static void
10131 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10132 {
10133 	pmap_t old_pmap;
10134 	struct pmap_pcid *pcidp, *old_pcidp;
10135 	uint64_t cached, cr3, kcr3, ucr3;
10136 
10137 	KASSERT((read_rflags() & PSL_I) == 0,
10138 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10139 
10140 	/* See the comment in pmap_invalidate_page_pcid(). */
10141 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10142 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10143 		old_pmap = PCPU_GET(curpmap);
10144 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10145 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10146 		old_pcidp->pm_gen = 0;
10147 	}
10148 
10149 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10150 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10151 	cr3 = rcr3();
10152 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10153 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10154 	PCPU_SET(curpmap, pmap);
10155 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10156 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10157 
10158 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10159 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10160 
10161 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10162 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10163 	if (cached)
10164 		counter_u64_add(pcid_save_cnt, 1);
10165 
10166 	pmap_activate_sw_pti_post(td, pmap);
10167 }
10168 
10169 static void
10170 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10171     u_int cpuid)
10172 {
10173 	struct pmap_pcid *pcidp;
10174 	uint64_t cached, cr3;
10175 
10176 	KASSERT((read_rflags() & PSL_I) == 0,
10177 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10178 
10179 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10180 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10181 	cr3 = rcr3();
10182 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10183 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10184 	PCPU_SET(curpmap, pmap);
10185 	if (cached)
10186 		counter_u64_add(pcid_save_cnt, 1);
10187 }
10188 
10189 static void
10190 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10191     u_int cpuid __unused)
10192 {
10193 
10194 	load_cr3(pmap->pm_cr3);
10195 	PCPU_SET(curpmap, pmap);
10196 }
10197 
10198 static void
10199 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10200     u_int cpuid __unused)
10201 {
10202 
10203 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10204 	PCPU_SET(kcr3, pmap->pm_cr3);
10205 	PCPU_SET(ucr3, pmap->pm_ucr3);
10206 	pmap_activate_sw_pti_post(td, pmap);
10207 }
10208 
10209 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10210     u_int))
10211 {
10212 
10213 	if (pmap_pcid_enabled && pti)
10214 		return (pmap_activate_sw_pcid_pti);
10215 	else if (pmap_pcid_enabled && !pti)
10216 		return (pmap_activate_sw_pcid_nopti);
10217 	else if (!pmap_pcid_enabled && pti)
10218 		return (pmap_activate_sw_nopcid_pti);
10219 	else /* if (!pmap_pcid_enabled && !pti) */
10220 		return (pmap_activate_sw_nopcid_nopti);
10221 }
10222 
10223 void
10224 pmap_activate_sw(struct thread *td)
10225 {
10226 	pmap_t oldpmap, pmap;
10227 	u_int cpuid;
10228 
10229 	oldpmap = PCPU_GET(curpmap);
10230 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10231 	if (oldpmap == pmap) {
10232 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10233 			mfence();
10234 		return;
10235 	}
10236 	cpuid = PCPU_GET(cpuid);
10237 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10238 	pmap_activate_sw_mode(td, pmap, cpuid);
10239 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10240 }
10241 
10242 void
10243 pmap_activate(struct thread *td)
10244 {
10245 	/*
10246 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10247 	 * invalidate_all IPI, which checks for curpmap ==
10248 	 * smp_tlb_pmap.  The below sequence of operations has a
10249 	 * window where %CR3 is loaded with the new pmap's PML4
10250 	 * address, but the curpmap value has not yet been updated.
10251 	 * This causes the invltlb IPI handler, which is called
10252 	 * between the updates, to execute as a NOP, which leaves
10253 	 * stale TLB entries.
10254 	 *
10255 	 * Note that the most common use of pmap_activate_sw(), from
10256 	 * a context switch, is immune to this race, because
10257 	 * interrupts are disabled (while the thread lock is owned),
10258 	 * so the IPI is delayed until after curpmap is updated.  Protect
10259 	 * other callers in a similar way, by disabling interrupts
10260 	 * around the %cr3 register reload and curpmap assignment.
10261 	 */
10262 	spinlock_enter();
10263 	pmap_activate_sw(td);
10264 	spinlock_exit();
10265 }
10266 
10267 void
10268 pmap_activate_boot(pmap_t pmap)
10269 {
10270 	uint64_t kcr3;
10271 	u_int cpuid;
10272 
10273 	/*
10274 	 * kernel_pmap must be never deactivated, and we ensure that
10275 	 * by never activating it at all.
10276 	 */
10277 	MPASS(pmap != kernel_pmap);
10278 
10279 	cpuid = PCPU_GET(cpuid);
10280 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10281 	PCPU_SET(curpmap, pmap);
10282 	if (pti) {
10283 		kcr3 = pmap->pm_cr3;
10284 		if (pmap_pcid_enabled)
10285 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10286 	} else {
10287 		kcr3 = PMAP_NO_CR3;
10288 	}
10289 	PCPU_SET(kcr3, kcr3);
10290 	PCPU_SET(ucr3, PMAP_NO_CR3);
10291 }
10292 
10293 void
10294 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10295 {
10296 	*res = pmap->pm_active;
10297 }
10298 
10299 void
10300 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10301 {
10302 }
10303 
10304 /*
10305  *	Increase the starting virtual address of the given mapping if a
10306  *	different alignment might result in more superpage mappings.
10307  */
10308 void
10309 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10310     vm_offset_t *addr, vm_size_t size)
10311 {
10312 	vm_offset_t superpage_offset;
10313 
10314 	if (size < NBPDR)
10315 		return;
10316 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10317 		offset += ptoa(object->pg_color);
10318 	superpage_offset = offset & PDRMASK;
10319 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10320 	    (*addr & PDRMASK) == superpage_offset)
10321 		return;
10322 	if ((*addr & PDRMASK) < superpage_offset)
10323 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10324 	else
10325 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10326 }
10327 
10328 #ifdef INVARIANTS
10329 static unsigned long num_dirty_emulations;
10330 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10331 	     &num_dirty_emulations, 0, NULL);
10332 
10333 static unsigned long num_accessed_emulations;
10334 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10335 	     &num_accessed_emulations, 0, NULL);
10336 
10337 static unsigned long num_superpage_accessed_emulations;
10338 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10339 	     &num_superpage_accessed_emulations, 0, NULL);
10340 
10341 static unsigned long ad_emulation_superpage_promotions;
10342 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10343 	     &ad_emulation_superpage_promotions, 0, NULL);
10344 #endif	/* INVARIANTS */
10345 
10346 int
10347 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10348 {
10349 	int rv;
10350 	struct rwlock *lock;
10351 #if VM_NRESERVLEVEL > 0
10352 	vm_page_t m, mpte;
10353 #endif
10354 	pd_entry_t *pde;
10355 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10356 
10357 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10358 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10359 
10360 	if (!pmap_emulate_ad_bits(pmap))
10361 		return (-1);
10362 
10363 	PG_A = pmap_accessed_bit(pmap);
10364 	PG_M = pmap_modified_bit(pmap);
10365 	PG_V = pmap_valid_bit(pmap);
10366 	PG_RW = pmap_rw_bit(pmap);
10367 
10368 	rv = -1;
10369 	lock = NULL;
10370 	PMAP_LOCK(pmap);
10371 
10372 	pde = pmap_pde(pmap, va);
10373 	if (pde == NULL || (*pde & PG_V) == 0)
10374 		goto done;
10375 
10376 	if ((*pde & PG_PS) != 0) {
10377 		if (ftype == VM_PROT_READ) {
10378 #ifdef INVARIANTS
10379 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10380 #endif
10381 			*pde |= PG_A;
10382 			rv = 0;
10383 		}
10384 		goto done;
10385 	}
10386 
10387 	pte = pmap_pde_to_pte(pde, va);
10388 	if ((*pte & PG_V) == 0)
10389 		goto done;
10390 
10391 	if (ftype == VM_PROT_WRITE) {
10392 		if ((*pte & PG_RW) == 0)
10393 			goto done;
10394 		/*
10395 		 * Set the modified and accessed bits simultaneously.
10396 		 *
10397 		 * Intel EPT PTEs that do software emulation of A/D bits map
10398 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10399 		 * An EPT misconfiguration is triggered if the PTE is writable
10400 		 * but not readable (WR=10). This is avoided by setting PG_A
10401 		 * and PG_M simultaneously.
10402 		 */
10403 		*pte |= PG_M | PG_A;
10404 	} else {
10405 		*pte |= PG_A;
10406 	}
10407 
10408 #if VM_NRESERVLEVEL > 0
10409 	/* try to promote the mapping */
10410 	if (va < VM_MAXUSER_ADDRESS)
10411 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10412 	else
10413 		mpte = NULL;
10414 
10415 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10416 
10417 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10418 	    (m->flags & PG_FICTITIOUS) == 0 &&
10419 	    vm_reserv_level_iffullpop(m) == 0 &&
10420 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10421 #ifdef INVARIANTS
10422 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10423 #endif
10424 	}
10425 #endif
10426 
10427 #ifdef INVARIANTS
10428 	if (ftype == VM_PROT_WRITE)
10429 		atomic_add_long(&num_dirty_emulations, 1);
10430 	else
10431 		atomic_add_long(&num_accessed_emulations, 1);
10432 #endif
10433 	rv = 0;		/* success */
10434 done:
10435 	if (lock != NULL)
10436 		rw_wunlock(lock);
10437 	PMAP_UNLOCK(pmap);
10438 	return (rv);
10439 }
10440 
10441 void
10442 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10443 {
10444 	pml4_entry_t *pml4;
10445 	pdp_entry_t *pdp;
10446 	pd_entry_t *pde;
10447 	pt_entry_t *pte, PG_V;
10448 	int idx;
10449 
10450 	idx = 0;
10451 	PG_V = pmap_valid_bit(pmap);
10452 	PMAP_LOCK(pmap);
10453 
10454 	pml4 = pmap_pml4e(pmap, va);
10455 	if (pml4 == NULL)
10456 		goto done;
10457 	ptr[idx++] = *pml4;
10458 	if ((*pml4 & PG_V) == 0)
10459 		goto done;
10460 
10461 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10462 	ptr[idx++] = *pdp;
10463 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10464 		goto done;
10465 
10466 	pde = pmap_pdpe_to_pde(pdp, va);
10467 	ptr[idx++] = *pde;
10468 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10469 		goto done;
10470 
10471 	pte = pmap_pde_to_pte(pde, va);
10472 	ptr[idx++] = *pte;
10473 
10474 done:
10475 	PMAP_UNLOCK(pmap);
10476 	*num = idx;
10477 }
10478 
10479 /**
10480  * Get the kernel virtual address of a set of physical pages. If there are
10481  * physical addresses not covered by the DMAP perform a transient mapping
10482  * that will be removed when calling pmap_unmap_io_transient.
10483  *
10484  * \param page        The pages the caller wishes to obtain the virtual
10485  *                    address on the kernel memory map.
10486  * \param vaddr       On return contains the kernel virtual memory address
10487  *                    of the pages passed in the page parameter.
10488  * \param count       Number of pages passed in.
10489  * \param can_fault   true if the thread using the mapped pages can take
10490  *                    page faults, false otherwise.
10491  *
10492  * \returns true if the caller must call pmap_unmap_io_transient when
10493  *          finished or false otherwise.
10494  *
10495  */
10496 bool
10497 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10498     bool can_fault)
10499 {
10500 	vm_paddr_t paddr;
10501 	bool needs_mapping;
10502 	int error __unused, i;
10503 
10504 	/*
10505 	 * Allocate any KVA space that we need, this is done in a separate
10506 	 * loop to prevent calling vmem_alloc while pinned.
10507 	 */
10508 	needs_mapping = false;
10509 	for (i = 0; i < count; i++) {
10510 		paddr = VM_PAGE_TO_PHYS(page[i]);
10511 		if (__predict_false(paddr >= dmaplimit)) {
10512 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10513 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10514 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10515 			needs_mapping = true;
10516 		} else {
10517 			vaddr[i] = PHYS_TO_DMAP(paddr);
10518 		}
10519 	}
10520 
10521 	/* Exit early if everything is covered by the DMAP */
10522 	if (!needs_mapping)
10523 		return (false);
10524 
10525 	/*
10526 	 * NB:  The sequence of updating a page table followed by accesses
10527 	 * to the corresponding pages used in the !DMAP case is subject to
10528 	 * the situation described in the "AMD64 Architecture Programmer's
10529 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10530 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10531 	 * after modifying the PTE bits is crucial.
10532 	 */
10533 	if (!can_fault)
10534 		sched_pin();
10535 	for (i = 0; i < count; i++) {
10536 		paddr = VM_PAGE_TO_PHYS(page[i]);
10537 		if (paddr >= dmaplimit) {
10538 			if (can_fault) {
10539 				/*
10540 				 * Slow path, since we can get page faults
10541 				 * while mappings are active don't pin the
10542 				 * thread to the CPU and instead add a global
10543 				 * mapping visible to all CPUs.
10544 				 */
10545 				pmap_qenter(vaddr[i], &page[i], 1);
10546 			} else {
10547 				pmap_kenter_attr(vaddr[i], paddr,
10548 				    page[i]->md.pat_mode);
10549 				pmap_invlpg(kernel_pmap, vaddr[i]);
10550 			}
10551 		}
10552 	}
10553 
10554 	return (needs_mapping);
10555 }
10556 
10557 void
10558 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10559     bool can_fault)
10560 {
10561 	vm_paddr_t paddr;
10562 	int i;
10563 
10564 	if (!can_fault)
10565 		sched_unpin();
10566 	for (i = 0; i < count; i++) {
10567 		paddr = VM_PAGE_TO_PHYS(page[i]);
10568 		if (paddr >= dmaplimit) {
10569 			if (can_fault)
10570 				pmap_qremove(vaddr[i], 1);
10571 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10572 		}
10573 	}
10574 }
10575 
10576 vm_offset_t
10577 pmap_quick_enter_page(vm_page_t m)
10578 {
10579 	vm_paddr_t paddr;
10580 
10581 	paddr = VM_PAGE_TO_PHYS(m);
10582 	if (paddr < dmaplimit)
10583 		return (PHYS_TO_DMAP(paddr));
10584 	mtx_lock_spin(&qframe_mtx);
10585 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10586 
10587 	/*
10588 	 * Since qframe is exclusively mapped by us, and we do not set
10589 	 * PG_G, we can use INVLPG here.
10590 	 */
10591 	invlpg(qframe);
10592 
10593 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10594 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10595 	return (qframe);
10596 }
10597 
10598 void
10599 pmap_quick_remove_page(vm_offset_t addr)
10600 {
10601 
10602 	if (addr != qframe)
10603 		return;
10604 	pte_store(vtopte(qframe), 0);
10605 	mtx_unlock_spin(&qframe_mtx);
10606 }
10607 
10608 /*
10609  * Pdp pages from the large map are managed differently from either
10610  * kernel or user page table pages.  They are permanently allocated at
10611  * initialization time, and their reference count is permanently set to
10612  * zero.  The pml4 entries pointing to those pages are copied into
10613  * each allocated pmap.
10614  *
10615  * In contrast, pd and pt pages are managed like user page table
10616  * pages.  They are dynamically allocated, and their reference count
10617  * represents the number of valid entries within the page.
10618  */
10619 static vm_page_t
10620 pmap_large_map_getptp_unlocked(void)
10621 {
10622 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10623 }
10624 
10625 static vm_page_t
10626 pmap_large_map_getptp(void)
10627 {
10628 	vm_page_t m;
10629 
10630 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10631 	m = pmap_large_map_getptp_unlocked();
10632 	if (m == NULL) {
10633 		PMAP_UNLOCK(kernel_pmap);
10634 		vm_wait(NULL);
10635 		PMAP_LOCK(kernel_pmap);
10636 		/* Callers retry. */
10637 	}
10638 	return (m);
10639 }
10640 
10641 static pdp_entry_t *
10642 pmap_large_map_pdpe(vm_offset_t va)
10643 {
10644 	pml4_entry_t *pml4;
10645 	vm_pindex_t pml4_idx;
10646 	vm_paddr_t mphys;
10647 
10648 	KASSERT(va >= kva_layout.lm_low && va < kva_layout.lm_low +
10649 	    (vm_offset_t)NBPML4 * lm_ents, ("va %#lx not in large map", va));
10650 	if (la57) {
10651 		pml4 = pmap_pml4e(kernel_pmap, va);
10652 		mphys = *pml4 & PG_FRAME;
10653 	} else {
10654 		pml4_idx = pmap_pml4e_index(va);
10655 
10656 		KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10657 		    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx "
10658 		    "LMSPML4I %#jx lm_ents %d",
10659 		    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10660 		KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10661 		    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10662 		    "LMSPML4I %#jx lm_ents %d",
10663 		    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10664 		mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10665 	}
10666 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10667 }
10668 
10669 static pd_entry_t *
10670 pmap_large_map_pde(vm_offset_t va)
10671 {
10672 	pdp_entry_t *pdpe;
10673 	vm_page_t m;
10674 	vm_paddr_t mphys;
10675 
10676 retry:
10677 	pdpe = pmap_large_map_pdpe(va);
10678 	if (*pdpe == 0) {
10679 		m = pmap_large_map_getptp();
10680 		if (m == NULL)
10681 			goto retry;
10682 		mphys = VM_PAGE_TO_PHYS(m);
10683 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10684 	} else {
10685 		MPASS((*pdpe & X86_PG_PS) == 0);
10686 		mphys = *pdpe & PG_FRAME;
10687 	}
10688 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10689 }
10690 
10691 static pt_entry_t *
10692 pmap_large_map_pte(vm_offset_t va)
10693 {
10694 	pd_entry_t *pde;
10695 	vm_page_t m;
10696 	vm_paddr_t mphys;
10697 
10698 retry:
10699 	pde = pmap_large_map_pde(va);
10700 	if (*pde == 0) {
10701 		m = pmap_large_map_getptp();
10702 		if (m == NULL)
10703 			goto retry;
10704 		mphys = VM_PAGE_TO_PHYS(m);
10705 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10706 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10707 	} else {
10708 		MPASS((*pde & X86_PG_PS) == 0);
10709 		mphys = *pde & PG_FRAME;
10710 	}
10711 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10712 }
10713 
10714 static vm_paddr_t
10715 pmap_large_map_kextract(vm_offset_t va)
10716 {
10717 	pdp_entry_t *pdpe, pdp;
10718 	pd_entry_t *pde, pd;
10719 	pt_entry_t *pte, pt;
10720 
10721 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10722 	    ("not largemap range %#lx", (u_long)va));
10723 	pdpe = pmap_large_map_pdpe(va);
10724 	pdp = *pdpe;
10725 	KASSERT((pdp & X86_PG_V) != 0,
10726 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10727 	    (u_long)pdpe, pdp));
10728 	if ((pdp & X86_PG_PS) != 0) {
10729 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10730 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10731 		    (u_long)pdpe, pdp));
10732 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10733 	}
10734 	pde = pmap_pdpe_to_pde(pdpe, va);
10735 	pd = *pde;
10736 	KASSERT((pd & X86_PG_V) != 0,
10737 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10738 	if ((pd & X86_PG_PS) != 0)
10739 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10740 	pte = pmap_pde_to_pte(pde, va);
10741 	pt = *pte;
10742 	KASSERT((pt & X86_PG_V) != 0,
10743 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10744 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10745 }
10746 
10747 static int
10748 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10749     vmem_addr_t *vmem_res)
10750 {
10751 
10752 	/*
10753 	 * Large mappings are all but static.  Consequently, there
10754 	 * is no point in waiting for an earlier allocation to be
10755 	 * freed.
10756 	 */
10757 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10758 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10759 }
10760 
10761 int
10762 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10763     vm_memattr_t mattr)
10764 {
10765 	pdp_entry_t *pdpe;
10766 	pd_entry_t *pde;
10767 	pt_entry_t *pte;
10768 	vm_offset_t va, inc;
10769 	vmem_addr_t vmem_res;
10770 	vm_paddr_t pa;
10771 	int error;
10772 
10773 	if (len == 0 || spa + len < spa)
10774 		return (EINVAL);
10775 
10776 	/* See if DMAP can serve. */
10777 	if (spa + len <= dmaplimit) {
10778 		va = PHYS_TO_DMAP(spa);
10779 		*addr = (void *)va;
10780 		return (pmap_change_attr(va, len, mattr));
10781 	}
10782 
10783 	/*
10784 	 * No, allocate KVA.  Fit the address with best possible
10785 	 * alignment for superpages.  Fall back to worse align if
10786 	 * failed.
10787 	 */
10788 	error = ENOMEM;
10789 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10790 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10791 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10792 		    &vmem_res);
10793 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10794 	    NBPDR) + NBPDR)
10795 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10796 		    &vmem_res);
10797 	if (error != 0)
10798 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10799 	if (error != 0)
10800 		return (error);
10801 
10802 	/*
10803 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10804 	 * in the pagetable to minimize flushing.  No need to
10805 	 * invalidate TLB, since we only update invalid entries.
10806 	 */
10807 	PMAP_LOCK(kernel_pmap);
10808 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10809 	    len -= inc) {
10810 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10811 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10812 			pdpe = pmap_large_map_pdpe(va);
10813 			MPASS(*pdpe == 0);
10814 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10815 			    X86_PG_V | X86_PG_A | pg_nx |
10816 			    pmap_cache_bits(kernel_pmap, mattr, true);
10817 			inc = NBPDP;
10818 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10819 		    (va & PDRMASK) == 0) {
10820 			pde = pmap_large_map_pde(va);
10821 			MPASS(*pde == 0);
10822 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10823 			    X86_PG_V | X86_PG_A | pg_nx |
10824 			    pmap_cache_bits(kernel_pmap, mattr, true);
10825 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10826 			    ref_count++;
10827 			inc = NBPDR;
10828 		} else {
10829 			pte = pmap_large_map_pte(va);
10830 			MPASS(*pte == 0);
10831 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10832 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10833 			    mattr, false);
10834 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10835 			    ref_count++;
10836 			inc = PAGE_SIZE;
10837 		}
10838 	}
10839 	PMAP_UNLOCK(kernel_pmap);
10840 	MPASS(len == 0);
10841 
10842 	*addr = (void *)vmem_res;
10843 	return (0);
10844 }
10845 
10846 void
10847 pmap_large_unmap(void *svaa, vm_size_t len)
10848 {
10849 	vm_offset_t sva, va;
10850 	vm_size_t inc;
10851 	pdp_entry_t *pdpe, pdp;
10852 	pd_entry_t *pde, pd;
10853 	pt_entry_t *pte;
10854 	vm_page_t m;
10855 	struct spglist spgf;
10856 
10857 	sva = (vm_offset_t)svaa;
10858 	if (len == 0 || sva + len < sva || (sva >= kva_layout.dmap_low &&
10859 	    sva + len < kva_layout.dmap_high))
10860 		return;
10861 
10862 	SLIST_INIT(&spgf);
10863 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10864 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10865 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10866 	PMAP_LOCK(kernel_pmap);
10867 	for (va = sva; va < sva + len; va += inc) {
10868 		pdpe = pmap_large_map_pdpe(va);
10869 		pdp = *pdpe;
10870 		KASSERT((pdp & X86_PG_V) != 0,
10871 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10872 		    (u_long)pdpe, pdp));
10873 		if ((pdp & X86_PG_PS) != 0) {
10874 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10875 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10876 			    (u_long)pdpe, pdp));
10877 			KASSERT((va & PDPMASK) == 0,
10878 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10879 			    (u_long)pdpe, pdp));
10880 			KASSERT(va + NBPDP <= sva + len,
10881 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10882 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10883 			    (u_long)pdpe, pdp, len));
10884 			*pdpe = 0;
10885 			inc = NBPDP;
10886 			continue;
10887 		}
10888 		pde = pmap_pdpe_to_pde(pdpe, va);
10889 		pd = *pde;
10890 		KASSERT((pd & X86_PG_V) != 0,
10891 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10892 		    (u_long)pde, pd));
10893 		if ((pd & X86_PG_PS) != 0) {
10894 			KASSERT((va & PDRMASK) == 0,
10895 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10896 			    (u_long)pde, pd));
10897 			KASSERT(va + NBPDR <= sva + len,
10898 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10899 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10900 			    pd, len));
10901 			pde_store(pde, 0);
10902 			inc = NBPDR;
10903 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10904 			m->ref_count--;
10905 			if (m->ref_count == 0) {
10906 				*pdpe = 0;
10907 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10908 			}
10909 			continue;
10910 		}
10911 		pte = pmap_pde_to_pte(pde, va);
10912 		KASSERT((*pte & X86_PG_V) != 0,
10913 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10914 		    (u_long)pte, *pte));
10915 		pte_clear(pte);
10916 		inc = PAGE_SIZE;
10917 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10918 		m->ref_count--;
10919 		if (m->ref_count == 0) {
10920 			*pde = 0;
10921 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10922 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10923 			m->ref_count--;
10924 			if (m->ref_count == 0) {
10925 				*pdpe = 0;
10926 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10927 			}
10928 		}
10929 	}
10930 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10931 	PMAP_UNLOCK(kernel_pmap);
10932 	vm_page_free_pages_toq(&spgf, false);
10933 	vmem_free(large_vmem, sva, len);
10934 }
10935 
10936 static void
10937 pmap_large_map_wb_fence_mfence(void)
10938 {
10939 
10940 	mfence();
10941 }
10942 
10943 static void
10944 pmap_large_map_wb_fence_atomic(void)
10945 {
10946 
10947 	atomic_thread_fence_seq_cst();
10948 }
10949 
10950 static void
10951 pmap_large_map_wb_fence_nop(void)
10952 {
10953 }
10954 
10955 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10956 {
10957 
10958 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10959 		return (pmap_large_map_wb_fence_mfence);
10960 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10961 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10962 		return (pmap_large_map_wb_fence_atomic);
10963 	else
10964 		/* clflush is strongly enough ordered */
10965 		return (pmap_large_map_wb_fence_nop);
10966 }
10967 
10968 static void
10969 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10970 {
10971 
10972 	for (; len > 0; len -= cpu_clflush_line_size,
10973 	    va += cpu_clflush_line_size)
10974 		clwb(va);
10975 }
10976 
10977 static void
10978 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10979 {
10980 
10981 	for (; len > 0; len -= cpu_clflush_line_size,
10982 	    va += cpu_clflush_line_size)
10983 		clflushopt(va);
10984 }
10985 
10986 static void
10987 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10988 {
10989 
10990 	for (; len > 0; len -= cpu_clflush_line_size,
10991 	    va += cpu_clflush_line_size)
10992 		clflush(va);
10993 }
10994 
10995 static void
10996 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10997 {
10998 }
10999 
11000 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
11001 {
11002 
11003 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
11004 		return (pmap_large_map_flush_range_clwb);
11005 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
11006 		return (pmap_large_map_flush_range_clflushopt);
11007 	else if ((cpu_feature & CPUID_CLFSH) != 0)
11008 		return (pmap_large_map_flush_range_clflush);
11009 	else
11010 		return (pmap_large_map_flush_range_nop);
11011 }
11012 
11013 static void
11014 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11015 {
11016 	volatile u_long *pe;
11017 	u_long p;
11018 	vm_offset_t va;
11019 	vm_size_t inc;
11020 	bool seen_other;
11021 
11022 	for (va = sva; va < eva; va += inc) {
11023 		inc = 0;
11024 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
11025 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
11026 			p = *pe;
11027 			if ((p & X86_PG_PS) != 0)
11028 				inc = NBPDP;
11029 		}
11030 		if (inc == 0) {
11031 			pe = (volatile u_long *)pmap_large_map_pde(va);
11032 			p = *pe;
11033 			if ((p & X86_PG_PS) != 0)
11034 				inc = NBPDR;
11035 		}
11036 		if (inc == 0) {
11037 			pe = (volatile u_long *)pmap_large_map_pte(va);
11038 			p = *pe;
11039 			inc = PAGE_SIZE;
11040 		}
11041 		seen_other = false;
11042 		for (;;) {
11043 			if ((p & X86_PG_AVAIL1) != 0) {
11044 				/*
11045 				 * Spin-wait for the end of a parallel
11046 				 * write-back.
11047 				 */
11048 				cpu_spinwait();
11049 				p = *pe;
11050 
11051 				/*
11052 				 * If we saw other write-back
11053 				 * occurring, we cannot rely on PG_M to
11054 				 * indicate state of the cache.  The
11055 				 * PG_M bit is cleared before the
11056 				 * flush to avoid ignoring new writes,
11057 				 * and writes which are relevant for
11058 				 * us might happen after.
11059 				 */
11060 				seen_other = true;
11061 				continue;
11062 			}
11063 
11064 			if ((p & X86_PG_M) != 0 || seen_other) {
11065 				if (!atomic_fcmpset_long(pe, &p,
11066 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11067 					/*
11068 					 * If we saw PG_M without
11069 					 * PG_AVAIL1, and then on the
11070 					 * next attempt we do not
11071 					 * observe either PG_M or
11072 					 * PG_AVAIL1, the other
11073 					 * write-back started after us
11074 					 * and finished before us.  We
11075 					 * can rely on it doing our
11076 					 * work.
11077 					 */
11078 					continue;
11079 				pmap_large_map_flush_range(va, inc);
11080 				atomic_clear_long(pe, X86_PG_AVAIL1);
11081 			}
11082 			break;
11083 		}
11084 		maybe_yield();
11085 	}
11086 }
11087 
11088 /*
11089  * Write-back cache lines for the given address range.
11090  *
11091  * Must be called only on the range or sub-range returned from
11092  * pmap_large_map().  Must not be called on the coalesced ranges.
11093  *
11094  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11095  * instructions support.
11096  */
11097 void
11098 pmap_large_map_wb(void *svap, vm_size_t len)
11099 {
11100 	vm_offset_t eva, sva;
11101 
11102 	sva = (vm_offset_t)svap;
11103 	eva = sva + len;
11104 	pmap_large_map_wb_fence();
11105 	if (sva >= kva_layout.dmap_low && eva < kva_layout.dmap_high) {
11106 		pmap_large_map_flush_range(sva, len);
11107 	} else {
11108 		KASSERT(sva >= kva_layout.lm_low && eva < kva_layout.lm_high,
11109 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11110 		pmap_large_map_wb_large(sva, eva);
11111 	}
11112 	pmap_large_map_wb_fence();
11113 }
11114 
11115 static vm_page_t
11116 pmap_pti_alloc_page(void)
11117 {
11118 	vm_page_t m;
11119 
11120 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11121 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11122 	return (m);
11123 }
11124 
11125 static bool
11126 pmap_pti_free_page(vm_page_t m)
11127 {
11128 	if (!vm_page_unwire_noq(m))
11129 		return (false);
11130 	vm_page_xbusy_claim(m);
11131 	vm_page_free_zero(m);
11132 	return (true);
11133 }
11134 
11135 static void
11136 pmap_pti_init(void)
11137 {
11138 	vm_page_t pml4_pg;
11139 	pdp_entry_t *pdpe;
11140 	vm_offset_t va;
11141 	int i;
11142 
11143 	if (!pti)
11144 		return;
11145 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11146 	VM_OBJECT_WLOCK(pti_obj);
11147 	pml4_pg = pmap_pti_alloc_page();
11148 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11149 	for (va = kva_layout.km_low; va <= kva_layout.km_high &&
11150 	    va >= kva_layout.km_low && va > NBPML4; va += NBPML4) {
11151 		pdpe = pmap_pti_pdpe(va);
11152 		pmap_pti_wire_pte(pdpe);
11153 	}
11154 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11155 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11156 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11157 	    sizeof(struct gate_descriptor) * NIDT, false);
11158 	CPU_FOREACH(i) {
11159 		/* Doublefault stack IST 1 */
11160 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11161 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11162 		/* NMI stack IST 2 */
11163 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11164 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11165 		/* MC# stack IST 3 */
11166 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11167 		    sizeof(struct nmi_pcpu);
11168 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11169 		/* DB# stack IST 4 */
11170 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11171 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11172 	}
11173 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11174 	    true);
11175 	pti_finalized = true;
11176 	VM_OBJECT_WUNLOCK(pti_obj);
11177 }
11178 
11179 static void
11180 pmap_cpu_init(void *arg __unused)
11181 {
11182 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11183 	pmap_pti_init();
11184 }
11185 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11186 
11187 static pdp_entry_t *
11188 pmap_pti_pdpe(vm_offset_t va)
11189 {
11190 	pml4_entry_t *pml4e;
11191 	pdp_entry_t *pdpe;
11192 	vm_page_t m;
11193 	vm_pindex_t pml4_idx;
11194 	vm_paddr_t mphys;
11195 
11196 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11197 
11198 	pml4_idx = pmap_pml4e_index(va);
11199 	pml4e = &pti_pml4[pml4_idx];
11200 	m = NULL;
11201 	if (*pml4e == 0) {
11202 		if (pti_finalized)
11203 			panic("pml4 alloc after finalization\n");
11204 		m = pmap_pti_alloc_page();
11205 		if (*pml4e != 0) {
11206 			pmap_pti_free_page(m);
11207 			mphys = *pml4e & ~PAGE_MASK;
11208 		} else {
11209 			mphys = VM_PAGE_TO_PHYS(m);
11210 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11211 		}
11212 	} else {
11213 		mphys = *pml4e & ~PAGE_MASK;
11214 	}
11215 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11216 	return (pdpe);
11217 }
11218 
11219 static void
11220 pmap_pti_wire_pte(void *pte)
11221 {
11222 	vm_page_t m;
11223 
11224 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11225 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11226 	m->ref_count++;
11227 }
11228 
11229 static void
11230 pmap_pti_unwire_pde(void *pde, bool only_ref)
11231 {
11232 	vm_page_t m;
11233 
11234 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11235 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11236 	MPASS(only_ref || m->ref_count > 1);
11237 	pmap_pti_free_page(m);
11238 }
11239 
11240 static void
11241 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11242 {
11243 	vm_page_t m;
11244 	pd_entry_t *pde;
11245 
11246 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11247 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11248 	if (pmap_pti_free_page(m)) {
11249 		pde = pmap_pti_pde(va);
11250 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11251 		*pde = 0;
11252 		pmap_pti_unwire_pde(pde, false);
11253 	}
11254 }
11255 
11256 static pd_entry_t *
11257 pmap_pti_pde(vm_offset_t va)
11258 {
11259 	pdp_entry_t *pdpe;
11260 	pd_entry_t *pde;
11261 	vm_page_t m;
11262 	vm_pindex_t pd_idx;
11263 	vm_paddr_t mphys;
11264 
11265 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11266 
11267 	pdpe = pmap_pti_pdpe(va);
11268 	if (*pdpe == 0) {
11269 		m = pmap_pti_alloc_page();
11270 		if (*pdpe != 0) {
11271 			pmap_pti_free_page(m);
11272 			MPASS((*pdpe & X86_PG_PS) == 0);
11273 			mphys = *pdpe & ~PAGE_MASK;
11274 		} else {
11275 			mphys =  VM_PAGE_TO_PHYS(m);
11276 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11277 		}
11278 	} else {
11279 		MPASS((*pdpe & X86_PG_PS) == 0);
11280 		mphys = *pdpe & ~PAGE_MASK;
11281 	}
11282 
11283 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11284 	pd_idx = pmap_pde_index(va);
11285 	pde += pd_idx;
11286 	return (pde);
11287 }
11288 
11289 static pt_entry_t *
11290 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11291 {
11292 	pd_entry_t *pde;
11293 	pt_entry_t *pte;
11294 	vm_page_t m;
11295 	vm_paddr_t mphys;
11296 
11297 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11298 
11299 	pde = pmap_pti_pde(va);
11300 	if (unwire_pde != NULL) {
11301 		*unwire_pde = true;
11302 		pmap_pti_wire_pte(pde);
11303 	}
11304 	if (*pde == 0) {
11305 		m = pmap_pti_alloc_page();
11306 		if (*pde != 0) {
11307 			pmap_pti_free_page(m);
11308 			MPASS((*pde & X86_PG_PS) == 0);
11309 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11310 		} else {
11311 			mphys = VM_PAGE_TO_PHYS(m);
11312 			*pde = mphys | X86_PG_RW | X86_PG_V;
11313 			if (unwire_pde != NULL)
11314 				*unwire_pde = false;
11315 		}
11316 	} else {
11317 		MPASS((*pde & X86_PG_PS) == 0);
11318 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11319 	}
11320 
11321 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11322 	pte += pmap_pte_index(va);
11323 
11324 	return (pte);
11325 }
11326 
11327 static void
11328 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11329 {
11330 	vm_paddr_t pa;
11331 	pd_entry_t *pde;
11332 	pt_entry_t *pte, ptev;
11333 	bool unwire_pde;
11334 
11335 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11336 
11337 	sva = trunc_page(sva);
11338 	MPASS(sva > VM_MAXUSER_ADDRESS);
11339 	eva = round_page(eva);
11340 	MPASS(sva < eva);
11341 	for (; sva < eva; sva += PAGE_SIZE) {
11342 		pte = pmap_pti_pte(sva, &unwire_pde);
11343 		pa = pmap_kextract(sva);
11344 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11345 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11346 		    VM_MEMATTR_DEFAULT, false);
11347 		if (*pte == 0) {
11348 			pte_store(pte, ptev);
11349 			pmap_pti_wire_pte(pte);
11350 		} else {
11351 			KASSERT(!pti_finalized,
11352 			    ("pti overlap after fin %#lx %#lx %#lx",
11353 			    sva, *pte, ptev));
11354 			KASSERT(*pte == ptev,
11355 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11356 			    sva, *pte, ptev));
11357 		}
11358 		if (unwire_pde) {
11359 			pde = pmap_pti_pde(sva);
11360 			pmap_pti_unwire_pde(pde, true);
11361 		}
11362 	}
11363 }
11364 
11365 void
11366 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11367 {
11368 
11369 	if (!pti)
11370 		return;
11371 	VM_OBJECT_WLOCK(pti_obj);
11372 	pmap_pti_add_kva_locked(sva, eva, exec);
11373 	VM_OBJECT_WUNLOCK(pti_obj);
11374 }
11375 
11376 void
11377 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11378 {
11379 	pt_entry_t *pte;
11380 	vm_offset_t va;
11381 
11382 	if (!pti)
11383 		return;
11384 	sva = rounddown2(sva, PAGE_SIZE);
11385 	MPASS(sva > VM_MAXUSER_ADDRESS);
11386 	eva = roundup2(eva, PAGE_SIZE);
11387 	MPASS(sva < eva);
11388 	VM_OBJECT_WLOCK(pti_obj);
11389 	for (va = sva; va < eva; va += PAGE_SIZE) {
11390 		pte = pmap_pti_pte(va, NULL);
11391 		KASSERT((*pte & X86_PG_V) != 0,
11392 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11393 		    (u_long)pte, *pte));
11394 		pte_clear(pte);
11395 		pmap_pti_unwire_pte(pte, va);
11396 	}
11397 	pmap_invalidate_range(kernel_pmap, sva, eva);
11398 	VM_OBJECT_WUNLOCK(pti_obj);
11399 }
11400 
11401 static void *
11402 pkru_dup_range(void *ctx __unused, void *data)
11403 {
11404 	struct pmap_pkru_range *node, *new_node;
11405 
11406 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11407 	if (new_node == NULL)
11408 		return (NULL);
11409 	node = data;
11410 	memcpy(new_node, node, sizeof(*node));
11411 	return (new_node);
11412 }
11413 
11414 static void
11415 pkru_free_range(void *ctx __unused, void *node)
11416 {
11417 
11418 	uma_zfree(pmap_pkru_ranges_zone, node);
11419 }
11420 
11421 static int
11422 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11423     int flags)
11424 {
11425 	struct pmap_pkru_range *ppr;
11426 	int error;
11427 
11428 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11429 	MPASS(pmap->pm_type == PT_X86);
11430 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11431 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11432 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11433 		return (EBUSY);
11434 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11435 	if (ppr == NULL)
11436 		return (ENOMEM);
11437 	ppr->pkru_keyidx = keyidx;
11438 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11439 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11440 	if (error != 0)
11441 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11442 	return (error);
11443 }
11444 
11445 static int
11446 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11447 {
11448 
11449 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11450 	MPASS(pmap->pm_type == PT_X86);
11451 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11452 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11453 }
11454 
11455 static void
11456 pmap_pkru_deassign_all(pmap_t pmap)
11457 {
11458 
11459 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11460 	if (pmap->pm_type == PT_X86 &&
11461 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11462 		rangeset_remove_all(&pmap->pm_pkru);
11463 }
11464 
11465 /*
11466  * Returns true if the PKU setting is the same across the specified address
11467  * range, and false otherwise.  When returning true, updates the referenced PTE
11468  * to reflect the PKU setting.
11469  */
11470 static bool
11471 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11472 {
11473 	struct pmap_pkru_range *ppr;
11474 	vm_offset_t va;
11475 	u_int keyidx;
11476 
11477 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11478 	KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11479 	    ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11480 	if (pmap->pm_type != PT_X86 ||
11481 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11482 	    sva >= VM_MAXUSER_ADDRESS)
11483 		return (true);
11484 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11485 	ppr = rangeset_containing(&pmap->pm_pkru, sva);
11486 	if (ppr == NULL)
11487 		return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11488 	keyidx = ppr->pkru_keyidx;
11489 	while ((va = ppr->pkru_rs_el.re_end) < eva) {
11490 		if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11491 		    keyidx != ppr->pkru_keyidx)
11492 			return (false);
11493 	}
11494 	*pte |= X86_PG_PKU(keyidx);
11495 	return (true);
11496 }
11497 
11498 static pt_entry_t
11499 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11500 {
11501 	struct pmap_pkru_range *ppr;
11502 
11503 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11504 	if (pmap->pm_type != PT_X86 ||
11505 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11506 	    va >= VM_MAXUSER_ADDRESS)
11507 		return (0);
11508 	ppr = rangeset_containing(&pmap->pm_pkru, va);
11509 	if (ppr != NULL)
11510 		return (X86_PG_PKU(ppr->pkru_keyidx));
11511 	return (0);
11512 }
11513 
11514 static bool
11515 pred_pkru_on_remove(void *ctx __unused, void *r)
11516 {
11517 	struct pmap_pkru_range *ppr;
11518 
11519 	ppr = r;
11520 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11521 }
11522 
11523 static void
11524 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11525 {
11526 
11527 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11528 	if (pmap->pm_type == PT_X86 &&
11529 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11530 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11531 		    pred_pkru_on_remove);
11532 	}
11533 }
11534 
11535 static int
11536 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11537 {
11538 
11539 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11540 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11541 	MPASS(dst_pmap->pm_type == PT_X86);
11542 	MPASS(src_pmap->pm_type == PT_X86);
11543 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11544 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11545 		return (0);
11546 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11547 }
11548 
11549 static void
11550 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11551     u_int keyidx)
11552 {
11553 	pml4_entry_t *pml4e;
11554 	pdp_entry_t *pdpe;
11555 	pd_entry_t newpde, ptpaddr, *pde;
11556 	pt_entry_t newpte, *ptep, pte;
11557 	vm_offset_t va, va_next;
11558 	bool changed;
11559 
11560 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11561 	MPASS(pmap->pm_type == PT_X86);
11562 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11563 
11564 	for (changed = false, va = sva; va < eva; va = va_next) {
11565 		pml4e = pmap_pml4e(pmap, va);
11566 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11567 			va_next = (va + NBPML4) & ~PML4MASK;
11568 			if (va_next < va)
11569 				va_next = eva;
11570 			continue;
11571 		}
11572 
11573 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11574 		if ((*pdpe & X86_PG_V) == 0) {
11575 			va_next = (va + NBPDP) & ~PDPMASK;
11576 			if (va_next < va)
11577 				va_next = eva;
11578 			continue;
11579 		}
11580 
11581 		va_next = (va + NBPDR) & ~PDRMASK;
11582 		if (va_next < va)
11583 			va_next = eva;
11584 
11585 		pde = pmap_pdpe_to_pde(pdpe, va);
11586 		ptpaddr = *pde;
11587 		if (ptpaddr == 0)
11588 			continue;
11589 
11590 		MPASS((ptpaddr & X86_PG_V) != 0);
11591 		if ((ptpaddr & PG_PS) != 0) {
11592 			if (va + NBPDR == va_next && eva >= va_next) {
11593 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11594 				    X86_PG_PKU(keyidx);
11595 				if (newpde != ptpaddr) {
11596 					*pde = newpde;
11597 					changed = true;
11598 				}
11599 				continue;
11600 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11601 				continue;
11602 			}
11603 		}
11604 
11605 		if (va_next > eva)
11606 			va_next = eva;
11607 
11608 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11609 		    ptep++, va += PAGE_SIZE) {
11610 			pte = *ptep;
11611 			if ((pte & X86_PG_V) == 0)
11612 				continue;
11613 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11614 			if (newpte != pte) {
11615 				*ptep = newpte;
11616 				changed = true;
11617 			}
11618 		}
11619 	}
11620 	if (changed)
11621 		pmap_invalidate_range(pmap, sva, eva);
11622 }
11623 
11624 static int
11625 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11626     u_int keyidx, int flags)
11627 {
11628 
11629 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11630 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11631 		return (EINVAL);
11632 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11633 		return (EFAULT);
11634 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11635 		return (ENOTSUP);
11636 	return (0);
11637 }
11638 
11639 int
11640 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11641     int flags)
11642 {
11643 	int error;
11644 
11645 	sva = trunc_page(sva);
11646 	eva = round_page(eva);
11647 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11648 	if (error != 0)
11649 		return (error);
11650 	for (;;) {
11651 		PMAP_LOCK(pmap);
11652 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11653 		if (error == 0)
11654 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11655 		PMAP_UNLOCK(pmap);
11656 		if (error != ENOMEM)
11657 			break;
11658 		vm_wait(NULL);
11659 	}
11660 	return (error);
11661 }
11662 
11663 int
11664 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11665 {
11666 	int error;
11667 
11668 	sva = trunc_page(sva);
11669 	eva = round_page(eva);
11670 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11671 	if (error != 0)
11672 		return (error);
11673 	for (;;) {
11674 		PMAP_LOCK(pmap);
11675 		error = pmap_pkru_deassign(pmap, sva, eva);
11676 		if (error == 0)
11677 			pmap_pkru_update_range(pmap, sva, eva, 0);
11678 		PMAP_UNLOCK(pmap);
11679 		if (error != ENOMEM)
11680 			break;
11681 		vm_wait(NULL);
11682 	}
11683 	return (error);
11684 }
11685 
11686 #if defined(KASAN) || defined(KMSAN)
11687 
11688 /*
11689  * Reserve enough memory to:
11690  * 1) allocate PDP pages for the shadow map(s),
11691  * 2) shadow the boot stack of KSTACK_PAGES pages,
11692  * 3) assuming that the kernel stack does not cross a 1GB boundary,
11693  * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11694  * pages per shadow map.
11695  */
11696 #ifdef KASAN
11697 #define	SAN_EARLY_PAGES	\
11698 	(NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11699 #else
11700 #define	SAN_EARLY_PAGES	\
11701 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11702 #endif
11703 
11704 static uint64_t __nosanitizeaddress __nosanitizememory
11705 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11706 {
11707 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11708 	static size_t offset = 0;
11709 	uint64_t pa;
11710 
11711 	if (offset == sizeof(data)) {
11712 		panic("%s: ran out of memory for the bootstrap shadow map",
11713 		    __func__);
11714 	}
11715 
11716 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11717 	offset += PAGE_SIZE;
11718 	return (pa);
11719 }
11720 
11721 /*
11722  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11723  * is currently only used to shadow the temporary boot stack set up by locore.
11724  */
11725 static void __nosanitizeaddress __nosanitizememory
11726 pmap_san_enter_early(vm_offset_t va)
11727 {
11728 	static bool first = true;
11729 	pml4_entry_t *pml4e;
11730 	pdp_entry_t *pdpe;
11731 	pd_entry_t *pde;
11732 	pt_entry_t *pte;
11733 	uint64_t cr3, pa, base;
11734 	int i;
11735 
11736 	base = amd64_loadaddr();
11737 	cr3 = rcr3();
11738 
11739 	if (first) {
11740 		/*
11741 		 * If this the first call, we need to allocate new PML4Es for
11742 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11743 		 * was initialized by the boot loader, so we can't simply test
11744 		 * whether the shadow map's PML4Es are zero.
11745 		 */
11746 		first = false;
11747 #ifdef KASAN
11748 		for (i = 0; i < NKASANPML4E; i++) {
11749 			pa = pmap_san_enter_early_alloc_4k(base);
11750 
11751 			pml4e = (pml4_entry_t *)cr3 +
11752 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11753 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11754 		}
11755 #else
11756 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11757 			pa = pmap_san_enter_early_alloc_4k(base);
11758 
11759 			pml4e = (pml4_entry_t *)cr3 +
11760 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11761 			    i * NBPML4);
11762 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11763 		}
11764 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11765 			pa = pmap_san_enter_early_alloc_4k(base);
11766 
11767 			pml4e = (pml4_entry_t *)cr3 +
11768 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11769 			    i * NBPML4);
11770 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11771 		}
11772 #endif
11773 	}
11774 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11775 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11776 	if (*pdpe == 0) {
11777 		pa = pmap_san_enter_early_alloc_4k(base);
11778 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11779 	}
11780 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11781 	if (*pde == 0) {
11782 		pa = pmap_san_enter_early_alloc_4k(base);
11783 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11784 	}
11785 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11786 	if (*pte != 0)
11787 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11788 	pa = pmap_san_enter_early_alloc_4k(base);
11789 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11790 }
11791 
11792 static vm_page_t
11793 pmap_san_enter_alloc_4k(void)
11794 {
11795 	vm_page_t m;
11796 
11797 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11798 	    VM_ALLOC_ZERO);
11799 	if (m == NULL)
11800 		panic("%s: no memory to grow shadow map", __func__);
11801 	return (m);
11802 }
11803 
11804 static vm_page_t
11805 pmap_san_enter_alloc_2m(void)
11806 {
11807 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11808 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11809 }
11810 
11811 /*
11812  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11813  * pages when possible.
11814  */
11815 void __nosanitizeaddress __nosanitizememory
11816 pmap_san_enter(vm_offset_t va)
11817 {
11818 	pdp_entry_t *pdpe;
11819 	pd_entry_t *pde;
11820 	pt_entry_t *pte;
11821 	vm_page_t m;
11822 
11823 	if (kernphys == 0) {
11824 		/*
11825 		 * We're creating a temporary shadow map for the boot stack.
11826 		 */
11827 		pmap_san_enter_early(va);
11828 		return;
11829 	}
11830 
11831 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11832 
11833 	pdpe = pmap_pdpe(kernel_pmap, va);
11834 	if ((*pdpe & X86_PG_V) == 0) {
11835 		m = pmap_san_enter_alloc_4k();
11836 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11837 		    X86_PG_V | pg_nx);
11838 	}
11839 	pde = pmap_pdpe_to_pde(pdpe, va);
11840 	if ((*pde & X86_PG_V) == 0) {
11841 		m = pmap_san_enter_alloc_2m();
11842 		if (m != NULL) {
11843 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11844 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11845 		} else {
11846 			m = pmap_san_enter_alloc_4k();
11847 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11848 			    X86_PG_V | pg_nx);
11849 		}
11850 	}
11851 	if ((*pde & X86_PG_PS) != 0)
11852 		return;
11853 	pte = pmap_pde_to_pte(pde, va);
11854 	if ((*pte & X86_PG_V) != 0)
11855 		return;
11856 	m = pmap_san_enter_alloc_4k();
11857 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11858 	    X86_PG_M | X86_PG_A | pg_nx);
11859 }
11860 #endif
11861 
11862 /*
11863  * Track a range of the kernel's virtual address space that is contiguous
11864  * in various mapping attributes.
11865  */
11866 struct pmap_kernel_map_range {
11867 	vm_offset_t sva;
11868 	pt_entry_t attrs;
11869 	int ptes;
11870 	int pdes;
11871 	int pdpes;
11872 };
11873 
11874 static void
11875 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11876     vm_offset_t eva)
11877 {
11878 	const char *mode;
11879 	int i, pat_idx;
11880 
11881 	if (eva <= range->sva)
11882 		return;
11883 
11884 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11885 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11886 		if (pat_index[i] == pat_idx)
11887 			break;
11888 
11889 	switch (i) {
11890 	case PAT_WRITE_BACK:
11891 		mode = "WB";
11892 		break;
11893 	case PAT_WRITE_THROUGH:
11894 		mode = "WT";
11895 		break;
11896 	case PAT_UNCACHEABLE:
11897 		mode = "UC";
11898 		break;
11899 	case PAT_UNCACHED:
11900 		mode = "U-";
11901 		break;
11902 	case PAT_WRITE_PROTECTED:
11903 		mode = "WP";
11904 		break;
11905 	case PAT_WRITE_COMBINING:
11906 		mode = "WC";
11907 		break;
11908 	default:
11909 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11910 		    __func__, pat_idx, range->sva, eva);
11911 		mode = "??";
11912 		break;
11913 	}
11914 
11915 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11916 	    range->sva, eva,
11917 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11918 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11919 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11920 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11921 	    mode, range->pdpes, range->pdes, range->ptes);
11922 
11923 	/* Reset to sentinel value. */
11924 	range->sva = kva_layout.kva_max;
11925 }
11926 
11927 /*
11928  * Determine whether the attributes specified by a page table entry match those
11929  * being tracked by the current range.  This is not quite as simple as a direct
11930  * flag comparison since some PAT modes have multiple representations.
11931  */
11932 static bool
11933 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11934 {
11935 	pt_entry_t diff, mask;
11936 
11937 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11938 	diff = (range->attrs ^ attrs) & mask;
11939 	if (diff == 0)
11940 		return (true);
11941 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11942 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11943 	    pmap_pat_index(kernel_pmap, attrs, true))
11944 		return (true);
11945 	return (false);
11946 }
11947 
11948 static void
11949 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11950     pt_entry_t attrs)
11951 {
11952 
11953 	memset(range, 0, sizeof(*range));
11954 	range->sva = va;
11955 	range->attrs = attrs;
11956 }
11957 
11958 /*
11959  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11960  * those of the current run, dump the address range and its attributes, and
11961  * begin a new run.
11962  */
11963 static void
11964 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11965     vm_offset_t va, pml5_entry_t pml5e, pml4_entry_t pml4e, pdp_entry_t pdpe,
11966     pd_entry_t pde, pt_entry_t pte)
11967 {
11968 	pt_entry_t attrs;
11969 
11970 	if (la57) {
11971 		attrs = pml5e & (X86_PG_RW | X86_PG_U | pg_nx);
11972 		attrs |= pml4e & pg_nx;
11973 		attrs &= pg_nx | (pml4e & (X86_PG_RW | X86_PG_U));
11974 	} else {
11975 		attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11976 	}
11977 
11978 	attrs |= pdpe & pg_nx;
11979 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11980 	if ((pdpe & PG_PS) != 0) {
11981 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11982 	} else if (pde != 0) {
11983 		attrs |= pde & pg_nx;
11984 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11985 	}
11986 	if ((pde & PG_PS) != 0) {
11987 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11988 	} else if (pte != 0) {
11989 		attrs |= pte & pg_nx;
11990 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11991 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11992 
11993 		/* Canonicalize by always using the PDE PAT bit. */
11994 		if ((attrs & X86_PG_PTE_PAT) != 0)
11995 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11996 	}
11997 
11998 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11999 		sysctl_kmaps_dump(sb, range, va);
12000 		sysctl_kmaps_reinit(range, va, attrs);
12001 	}
12002 }
12003 
12004 static int
12005 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
12006 {
12007 	struct pmap_kernel_map_range range;
12008 	struct sbuf sbuf, *sb;
12009 	pml5_entry_t pml5e;
12010 	pml4_entry_t pml4e;
12011 	pdp_entry_t *pdp, pdpe;
12012 	pd_entry_t *pd, pde;
12013 	pt_entry_t *pt, pte;
12014 	vm_offset_t sva;
12015 	vm_paddr_t pa;
12016 	int error, j, k, l;
12017 	bool first;
12018 
12019 	error = sysctl_wire_old_buffer(req, 0);
12020 	if (error != 0)
12021 		return (error);
12022 	sb = &sbuf;
12023 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12024 
12025 	/* Sentinel value. */
12026 	range.sva = kva_layout.kva_max;
12027 	pml5e = 0;	/* no UB for la48 */
12028 
12029 	/*
12030 	 * Iterate over the kernel page tables without holding the kernel pmap
12031 	 * lock.  Outside of the large map, kernel page table pages are never
12032 	 * freed, so at worst we will observe inconsistencies in the output.
12033 	 * Within the large map, ensure that PDP and PD page addresses are
12034 	 * valid before descending.
12035 	 */
12036 	for (first = true, sva = 0; sva != 0 || first; first = false) {
12037 		if (sva == kva_layout.rec_pt)
12038 			sbuf_printf(sb, "\nRecursive map:\n");
12039 		else if (sva == kva_layout.dmap_low)
12040 			sbuf_printf(sb, "\nDirect map:\n");
12041 #ifdef KASAN
12042 		else if (sva == kva_layout.kasan_shadow_low)
12043 			sbuf_printf(sb, "\nKASAN shadow map:\n");
12044 #endif
12045 #ifdef KMSAN
12046 		else if (sva == kva_layout.kmsan_shadow_low)
12047 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12048 		else if (sva == kva_layout.kmsan_origin_low)
12049 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12050 #endif
12051 		else if (sva == kva_layout.km_low)
12052 			sbuf_printf(sb, "\nKernel map:\n");
12053 		else if (sva == kva_layout.lm_low)
12054 			sbuf_printf(sb, "\nLarge map:\n");
12055 
12056 		/* Convert to canonical form. */
12057 		if (la57) {
12058 			if (sva == 1ul << 56) {
12059 				sva |= -1ul << 57;
12060 				continue;
12061 			}
12062 		} else {
12063 			if (sva == 1ul << 47) {
12064 				sva |= -1ul << 48;
12065 				continue;
12066 			}
12067 		}
12068 
12069 restart:
12070 		if (la57) {
12071 			pml5e = *pmap_pml5e(kernel_pmap, sva);
12072 			if ((pml5e & X86_PG_V) == 0) {
12073 				sva = rounddown2(sva, NBPML5);
12074 				sysctl_kmaps_dump(sb, &range, sva);
12075 				sva += NBPML5;
12076 				continue;
12077 			}
12078 		}
12079 		pml4e = *pmap_pml4e(kernel_pmap, sva);
12080 		if ((pml4e & X86_PG_V) == 0) {
12081 			sva = rounddown2(sva, NBPML4);
12082 			sysctl_kmaps_dump(sb, &range, sva);
12083 			sva += NBPML4;
12084 			continue;
12085 		}
12086 		pa = pml4e & PG_FRAME;
12087 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12088 
12089 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12090 			pdpe = pdp[j];
12091 			if ((pdpe & X86_PG_V) == 0) {
12092 				sva = rounddown2(sva, NBPDP);
12093 				sysctl_kmaps_dump(sb, &range, sva);
12094 				sva += NBPDP;
12095 				continue;
12096 			}
12097 			pa = pdpe & PG_FRAME;
12098 			if ((pdpe & PG_PS) != 0) {
12099 				sva = rounddown2(sva, NBPDP);
12100 				sysctl_kmaps_check(sb, &range, sva, pml5e,
12101 				    pml4e, pdpe, 0, 0);
12102 				range.pdpes++;
12103 				sva += NBPDP;
12104 				continue;
12105 			}
12106 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12107 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12108 				/*
12109 				 * Page table pages for the large map may be
12110 				 * freed.  Validate the next-level address
12111 				 * before descending.
12112 				 */
12113 				sva += NBPDP;
12114 				goto restart;
12115 			}
12116 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12117 
12118 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12119 				pde = pd[k];
12120 				if ((pde & X86_PG_V) == 0) {
12121 					sva = rounddown2(sva, NBPDR);
12122 					sysctl_kmaps_dump(sb, &range, sva);
12123 					sva += NBPDR;
12124 					continue;
12125 				}
12126 				pa = pde & PG_FRAME;
12127 				if ((pde & PG_PS) != 0) {
12128 					sva = rounddown2(sva, NBPDR);
12129 					sysctl_kmaps_check(sb, &range, sva,
12130 					    pml5e, pml4e, pdpe, pde, 0);
12131 					range.pdes++;
12132 					sva += NBPDR;
12133 					continue;
12134 				}
12135 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12136 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12137 					/*
12138 					 * Page table pages for the large map
12139 					 * may be freed.  Validate the
12140 					 * next-level address before descending.
12141 					 */
12142 					sva += NBPDR;
12143 					goto restart;
12144 				}
12145 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12146 
12147 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12148 				    sva += PAGE_SIZE) {
12149 					pte = pt[l];
12150 					if ((pte & X86_PG_V) == 0) {
12151 						sysctl_kmaps_dump(sb, &range,
12152 						    sva);
12153 						continue;
12154 					}
12155 					sysctl_kmaps_check(sb, &range, sva,
12156 					    pml5e, pml4e, pdpe, pde, pte);
12157 					range.ptes++;
12158 				}
12159 			}
12160 		}
12161 	}
12162 
12163 	error = sbuf_finish(sb);
12164 	sbuf_delete(sb);
12165 	return (error);
12166 }
12167 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12168     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12169     NULL, 0, sysctl_kmaps, "A",
12170     "Dump kernel address layout");
12171 
12172 #ifdef DDB
12173 DB_SHOW_COMMAND(pte, pmap_print_pte)
12174 {
12175 	pmap_t pmap;
12176 	pml5_entry_t *pml5;
12177 	pml4_entry_t *pml4;
12178 	pdp_entry_t *pdp;
12179 	pd_entry_t *pde;
12180 	pt_entry_t *pte, PG_V;
12181 	vm_offset_t va;
12182 
12183 	if (!have_addr) {
12184 		db_printf("show pte addr\n");
12185 		return;
12186 	}
12187 	va = (vm_offset_t)addr;
12188 
12189 	if (kdb_thread != NULL)
12190 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12191 	else
12192 		pmap = PCPU_GET(curpmap);
12193 
12194 	PG_V = pmap_valid_bit(pmap);
12195 	db_printf("VA 0x%016lx", va);
12196 
12197 	if (pmap_is_la57(pmap)) {
12198 		pml5 = pmap_pml5e(pmap, va);
12199 		db_printf(" pml5e@0x%016lx 0x%016lx", (uint64_t)pml5, *pml5);
12200 		if ((*pml5 & PG_V) == 0) {
12201 			db_printf("\n");
12202 			return;
12203 		}
12204 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12205 	} else {
12206 		pml4 = pmap_pml4e(pmap, va);
12207 	}
12208 	db_printf(" pml4e@0x%016lx 0x%016lx", (uint64_t)pml4, *pml4);
12209 	if ((*pml4 & PG_V) == 0) {
12210 		db_printf("\n");
12211 		return;
12212 	}
12213 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12214 	db_printf(" pdpe@0x%016lx 0x%016lx", (uint64_t)pdp, *pdp);
12215 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12216 		db_printf("\n");
12217 		return;
12218 	}
12219 	pde = pmap_pdpe_to_pde(pdp, va);
12220 	db_printf(" pde@0x%016lx 0x%016lx", (uint64_t)pde, *pde);
12221 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12222 		db_printf("\n");
12223 		return;
12224 	}
12225 	pte = pmap_pde_to_pte(pde, va);
12226 	db_printf(" pte@0x%016lx 0x%016lx\n", (uint64_t)pte, *pte);
12227 }
12228 
12229 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12230 {
12231 	vm_paddr_t a;
12232 
12233 	if (have_addr) {
12234 		a = (vm_paddr_t)addr;
12235 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12236 	} else {
12237 		db_printf("show phys2dmap addr\n");
12238 	}
12239 }
12240 
12241 static void
12242 ptpages_show_page(int level, int idx, vm_page_t pg)
12243 {
12244 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12245 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12246 }
12247 
12248 static void
12249 ptpages_show_complain(int level, int idx, uint64_t pte)
12250 {
12251 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12252 }
12253 
12254 static void
12255 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12256 {
12257 	vm_page_t pg3, pg2, pg1;
12258 	pml4_entry_t *pml4;
12259 	pdp_entry_t *pdp;
12260 	pd_entry_t *pd;
12261 	int i4, i3, i2;
12262 
12263 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12264 	for (i4 = 0; i4 < num_entries; i4++) {
12265 		if ((pml4[i4] & PG_V) == 0)
12266 			continue;
12267 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12268 		if (pg3 == NULL) {
12269 			ptpages_show_complain(3, i4, pml4[i4]);
12270 			continue;
12271 		}
12272 		ptpages_show_page(3, i4, pg3);
12273 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12274 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12275 			if ((pdp[i3] & PG_V) == 0)
12276 				continue;
12277 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12278 			if (pg3 == NULL) {
12279 				ptpages_show_complain(2, i3, pdp[i3]);
12280 				continue;
12281 			}
12282 			ptpages_show_page(2, i3, pg2);
12283 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12284 			for (i2 = 0; i2 < NPDEPG; i2++) {
12285 				if ((pd[i2] & PG_V) == 0)
12286 					continue;
12287 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12288 				if (pg1 == NULL) {
12289 					ptpages_show_complain(1, i2, pd[i2]);
12290 					continue;
12291 				}
12292 				ptpages_show_page(1, i2, pg1);
12293 			}
12294 		}
12295 	}
12296 }
12297 
12298 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12299 {
12300 	pmap_t pmap;
12301 	vm_page_t pg;
12302 	pml5_entry_t *pml5;
12303 	uint64_t PG_V;
12304 	int i5;
12305 
12306 	if (have_addr)
12307 		pmap = (pmap_t)addr;
12308 	else
12309 		pmap = PCPU_GET(curpmap);
12310 
12311 	PG_V = pmap_valid_bit(pmap);
12312 
12313 	if (pmap_is_la57(pmap)) {
12314 		pml5 = pmap->pm_pmltop;
12315 		for (i5 = 0; i5 < NUPML5E; i5++) {
12316 			if ((pml5[i5] & PG_V) == 0)
12317 				continue;
12318 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12319 			if (pg == NULL) {
12320 				ptpages_show_complain(4, i5, pml5[i5]);
12321 				continue;
12322 			}
12323 			ptpages_show_page(4, i5, pg);
12324 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12325 		}
12326 	} else {
12327 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12328 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12329 	}
12330 }
12331 #endif
12332