1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2003 Peter Wemm
11 * All rights reserved.
12 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13 * All rights reserved.
14 *
15 * This code is derived from software contributed to Berkeley by
16 * the Systems Programming Group of the University of Utah Computer
17 * Science Department and William Jolitz of UUNET Technologies Inc.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgement:
29 * This product includes software developed by the University of
30 * California, Berkeley and its contributors.
31 * 4. Neither the name of the University nor the names of its contributors
32 * may be used to endorse or promote products derived from this software
33 * without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 */
47 /*-
48 * Copyright (c) 2003 Networks Associates Technology, Inc.
49 * Copyright (c) 2014-2020 The FreeBSD Foundation
50 * All rights reserved.
51 *
52 * This software was developed for the FreeBSD Project by Jake Burkholder,
53 * Safeport Network Services, and Network Associates Laboratories, the
54 * Security Research Division of Network Associates, Inc. under
55 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56 * CHATS research program.
57 *
58 * Portions of this software were developed by
59 * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60 * the FreeBSD Foundation.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81 * SUCH DAMAGE.
82 */
83
84 #define AMD64_NPT_AWARE
85
86 #include <sys/cdefs.h>
87 /*
88 * Manages physical address maps.
89 *
90 * Since the information managed by this module is
91 * also stored by the logical address mapping module,
92 * this module may throw away valid virtual-to-physical
93 * mappings at almost any time. However, invalidations
94 * of virtual-to-physical mappings must be done as
95 * requested.
96 *
97 * In order to cope with hardware architectures which
98 * make virtual-to-physical map invalidates expensive,
99 * this module may delay invalidate or reduced protection
100 * operations until such time as they are actually
101 * necessary. This module is given full information as
102 * to which processors are currently using which maps,
103 * and to when physical maps must be made correct.
104 */
105
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170
171 #ifdef NUMA
172 #define PMAP_MEMDOM MAXMEMDOM
173 #else
174 #define PMAP_MEMDOM 1
175 #endif
176
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180
181 return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187
188 return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 pt_entry_t mask;
195
196 switch (pmap->pm_type) {
197 case PT_X86:
198 case PT_RVI:
199 mask = X86_PG_V;
200 break;
201 case PT_EPT:
202 if (pmap_emulate_ad_bits(pmap))
203 mask = EPT_PG_EMUL_V;
204 else
205 mask = EPT_PG_READ;
206 break;
207 default:
208 panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 }
210
211 return (mask);
212 }
213
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 pt_entry_t mask;
218
219 switch (pmap->pm_type) {
220 case PT_X86:
221 case PT_RVI:
222 mask = X86_PG_RW;
223 break;
224 case PT_EPT:
225 if (pmap_emulate_ad_bits(pmap))
226 mask = EPT_PG_EMUL_RW;
227 else
228 mask = EPT_PG_WRITE;
229 break;
230 default:
231 panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 }
233
234 return (mask);
235 }
236
237 static pt_entry_t pg_g;
238
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 pt_entry_t mask;
243
244 switch (pmap->pm_type) {
245 case PT_X86:
246 mask = pg_g;
247 break;
248 case PT_RVI:
249 case PT_EPT:
250 mask = 0;
251 break;
252 default:
253 panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 }
255
256 return (mask);
257 }
258
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 pt_entry_t mask;
263
264 switch (pmap->pm_type) {
265 case PT_X86:
266 case PT_RVI:
267 mask = X86_PG_A;
268 break;
269 case PT_EPT:
270 if (pmap_emulate_ad_bits(pmap))
271 mask = EPT_PG_READ;
272 else
273 mask = EPT_PG_A;
274 break;
275 default:
276 panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 }
278
279 return (mask);
280 }
281
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 pt_entry_t mask;
286
287 switch (pmap->pm_type) {
288 case PT_X86:
289 case PT_RVI:
290 mask = X86_PG_M;
291 break;
292 case PT_EPT:
293 if (pmap_emulate_ad_bits(pmap))
294 mask = EPT_PG_WRITE;
295 else
296 mask = EPT_PG_M;
297 break;
298 default:
299 panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 }
301
302 return (mask);
303 }
304
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308
309 return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315
316 if (!pmap_emulate_ad_bits(pmap))
317 return (true);
318
319 KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320
321 /*
322 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 * if the EPT_PG_WRITE bit is set.
325 */
326 if ((pte & EPT_PG_WRITE) != 0)
327 return (false);
328
329 /*
330 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 */
332 if ((pte & EPT_PG_EXECUTE) == 0 ||
333 ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 return (true);
335 else
336 return (false);
337 }
338
339 #ifdef PV_STATS
340 #define PV_STAT(x) do { x ; } while (0)
341 #else
342 #define PV_STAT(x) do { } while (0)
343 #endif
344
345 #ifdef NUMA
346 #define pa_index(pa) ({ \
347 KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end, \
348 ("address %lx beyond the last segment", (pa))); \
349 (pa) >> PDRSHIFT; \
350 })
351 #define pa_to_pmdp(pa) (&pv_table[pa_index(pa)])
352 #define pa_to_pvh(pa) (&(pa_to_pmdp(pa)->pv_page))
353 #define PHYS_TO_PV_LIST_LOCK(pa) ({ \
354 struct rwlock *_lock; \
355 if (__predict_false((pa) > pmap_last_pa)) \
356 _lock = &pv_dummy_large.pv_lock; \
357 else \
358 _lock = &(pa_to_pmdp(pa)->pv_lock); \
359 _lock; \
360 })
361 #else
362 #define pa_index(pa) ((pa) >> PDRSHIFT)
363 #define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
364
365 #define NPV_LIST_LOCKS MAXCPU
366
367 #define PHYS_TO_PV_LIST_LOCK(pa) \
368 (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
369 #endif
370
371 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
372 struct rwlock **_lockp = (lockp); \
373 struct rwlock *_new_lock; \
374 \
375 _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
376 if (_new_lock != *_lockp) { \
377 if (*_lockp != NULL) \
378 rw_wunlock(*_lockp); \
379 *_lockp = _new_lock; \
380 rw_wlock(*_lockp); \
381 } \
382 } while (0)
383
384 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
385 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
386
387 #define RELEASE_PV_LIST_LOCK(lockp) do { \
388 struct rwlock **_lockp = (lockp); \
389 \
390 if (*_lockp != NULL) { \
391 rw_wunlock(*_lockp); \
392 *_lockp = NULL; \
393 } \
394 } while (0)
395
396 #define VM_PAGE_TO_PV_LIST_LOCK(m) \
397 PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
398
399 /*
400 * Statically allocate kernel pmap memory. However, memory for
401 * pm_pcids is obtained after the dynamic allocator is operational.
402 * Initialize it with a non-canonical pointer to catch early accesses
403 * regardless of the active mapping.
404 */
405 struct pmap kernel_pmap_store = {
406 .pm_pcidp = (void *)0xdeadbeefdeadbeef,
407 };
408
409 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
410 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
411
412 int nkpt;
413 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
414 "Number of kernel page table pages allocated on bootup");
415
416 static int ndmpdp;
417 vm_paddr_t dmaplimit;
418 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
419 pt_entry_t pg_nx;
420
421 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
422 "VM/pmap parameters");
423
424 static int __read_frequently pg_ps_enabled = 1;
425 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
426 &pg_ps_enabled, 0, "Are large page mappings enabled?");
427
428 int __read_frequently la57 = 0;
429 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
430 &la57, 0,
431 "5-level paging for host is enabled");
432
433 /*
434 * The default value is needed in order to preserve compatibility with
435 * some userspace programs that put tags into sign-extended bits.
436 */
437 int prefer_uva_la48 = 1;
438 SYSCTL_INT(_vm_pmap, OID_AUTO, prefer_uva_la48, CTLFLAG_RDTUN,
439 &prefer_uva_la48, 0,
440 "Userspace maps are limited to LA48 unless otherwise configured");
441
442 static bool
pmap_is_la57(pmap_t pmap)443 pmap_is_la57(pmap_t pmap)
444 {
445 if (pmap->pm_type == PT_X86)
446 return (la57);
447 return (false); /* XXXKIB handle EPT */
448 }
449
450 #define PAT_INDEX_SIZE 8
451 static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
452
453 static u_int64_t KPTphys; /* phys addr of kernel level 1 */
454 static u_int64_t KPDphys; /* phys addr of kernel level 2 */
455 static u_int64_t KPDPphys; /* phys addr of kernel level 3 */
456 u_int64_t KPML4phys; /* phys addr of kernel level 4 */
457 u_int64_t KPML5phys; /* phys addr of kernel level 5,
458 if supported */
459
460 #ifdef KASAN
461 static uint64_t KASANPDPphys;
462 #endif
463 #ifdef KMSAN
464 static uint64_t KMSANSHADPDPphys;
465 static uint64_t KMSANORIGPDPphys;
466
467 /*
468 * To support systems with large amounts of memory, it is necessary to extend
469 * the maximum size of the direct map. This could eat into the space reserved
470 * for the shadow map.
471 */
472 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
473 #endif
474
475 static pml4_entry_t *kernel_pml4;
476 static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
477 static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
478 static int ndmpdpphys; /* number of DMPDPphys pages */
479
480 vm_paddr_t kernphys; /* phys addr of start of bootstrap data */
481 vm_paddr_t KERNend; /* and the end */
482
483 /*
484 * pmap_mapdev support pre initialization (i.e. console)
485 */
486 #define PMAP_PREINIT_MAPPING_COUNT 8
487 static struct pmap_preinit_mapping {
488 vm_paddr_t pa;
489 vm_offset_t va;
490 vm_size_t sz;
491 int mode;
492 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
493 static int pmap_initialized;
494
495 /*
496 * Data for the pv entry allocation mechanism.
497 * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
498 */
499 #ifdef NUMA
500 static __inline int
pc_to_domain(struct pv_chunk * pc)501 pc_to_domain(struct pv_chunk *pc)
502 {
503
504 return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
505 }
506 #else
507 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)508 pc_to_domain(struct pv_chunk *pc __unused)
509 {
510
511 return (0);
512 }
513 #endif
514
515 struct pv_chunks_list {
516 struct mtx pvc_lock;
517 TAILQ_HEAD(pch, pv_chunk) pvc_list;
518 int active_reclaims;
519 } __aligned(CACHE_LINE_SIZE);
520
521 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
522
523 #ifdef NUMA
524 struct pmap_large_md_page {
525 struct rwlock pv_lock;
526 struct md_page pv_page;
527 u_long pv_invl_gen;
528 };
529 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
530 #define pv_dummy pv_dummy_large.pv_page
531 __read_mostly static struct pmap_large_md_page *pv_table;
532 __read_mostly vm_paddr_t pmap_last_pa;
533 #else
534 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
535 static u_long pv_invl_gen[NPV_LIST_LOCKS];
536 static struct md_page *pv_table;
537 static struct md_page pv_dummy;
538 #endif
539
540 /*
541 * All those kernel PT submaps that BSD is so fond of
542 */
543 pt_entry_t *CMAP1 = NULL;
544 caddr_t CADDR1 = 0;
545 static vm_offset_t qframe = 0;
546 static struct mtx qframe_mtx;
547
548 static int pmap_flags = PMAP_PDE_SUPERPAGE; /* flags for x86 pmaps */
549
550 static vmem_t *large_vmem;
551 static u_int lm_ents;
552 #define PMAP_ADDRESS_IN_LARGEMAP(va) ((va) >= LARGEMAP_MIN_ADDRESS && \
553 (va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
554
555 int pmap_pcid_enabled = 1;
556 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
557 &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
558 int invpcid_works = 0;
559 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
560 "Is the invpcid instruction available ?");
561 int invlpgb_works;
562 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
563 "Is the invlpgb instruction available?");
564 int invlpgb_maxcnt;
565 int pmap_pcid_invlpg_workaround = 0;
566 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
567 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
568 &pmap_pcid_invlpg_workaround, 0,
569 "Enable small core PCID/INVLPG workaround");
570 int pmap_pcid_invlpg_workaround_uena = 1;
571
572 int __read_frequently pti = 0;
573 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
574 &pti, 0,
575 "Page Table Isolation enabled");
576 static vm_object_t pti_obj;
577 static pml4_entry_t *pti_pml4;
578 static vm_pindex_t pti_pg_idx;
579 static bool pti_finalized;
580
581 static int pmap_growkernel_panic = 0;
582 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
583 &pmap_growkernel_panic, 0,
584 "panic on failure to allocate kernel page table page");
585
586 struct pmap_pkru_range {
587 struct rs_el pkru_rs_el;
588 u_int pkru_keyidx;
589 int pkru_flags;
590 };
591
592 static uma_zone_t pmap_pkru_ranges_zone;
593 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
594 pt_entry_t *pte);
595 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
596 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
597 static void *pkru_dup_range(void *ctx, void *data);
598 static void pkru_free_range(void *ctx, void *node);
599 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
600 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
601 static void pmap_pkru_deassign_all(pmap_t pmap);
602
603 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
604 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
605 &pcid_save_cnt, "Count of saved TLB context on switch");
606
607 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
608 LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
609 static struct mtx invl_gen_mtx;
610 /* Fake lock object to satisfy turnstiles interface. */
611 static struct lock_object invl_gen_ts = {
612 .lo_name = "invlts",
613 };
614 static struct pmap_invl_gen pmap_invl_gen_head = {
615 .gen = 1,
616 .next = NULL,
617 };
618 static u_long pmap_invl_gen = 1;
619 static int pmap_invl_waiters;
620 static struct callout pmap_invl_callout;
621 static bool pmap_invl_callout_inited;
622
623 #define PMAP_ASSERT_NOT_IN_DI() \
624 KASSERT(pmap_not_in_di(), ("DI already started"))
625
626 static bool
pmap_di_locked(void)627 pmap_di_locked(void)
628 {
629 int tun;
630
631 if ((cpu_feature2 & CPUID2_CX16) == 0)
632 return (true);
633 tun = 0;
634 TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
635 return (tun != 0);
636 }
637
638 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)639 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
640 {
641 int locked;
642
643 locked = pmap_di_locked();
644 return (sysctl_handle_int(oidp, &locked, 0, req));
645 }
646 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
647 CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
648 "Locked delayed invalidation");
649
650 static bool pmap_not_in_di_l(void);
651 static bool pmap_not_in_di_u(void);
652 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
653 {
654
655 return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
656 }
657
658 static bool
pmap_not_in_di_l(void)659 pmap_not_in_di_l(void)
660 {
661 struct pmap_invl_gen *invl_gen;
662
663 invl_gen = &curthread->td_md.md_invl_gen;
664 return (invl_gen->gen == 0);
665 }
666
667 static void
pmap_thread_init_invl_gen_l(struct thread * td)668 pmap_thread_init_invl_gen_l(struct thread *td)
669 {
670 struct pmap_invl_gen *invl_gen;
671
672 invl_gen = &td->td_md.md_invl_gen;
673 invl_gen->gen = 0;
674 }
675
676 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)677 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
678 {
679 struct turnstile *ts;
680
681 ts = turnstile_trywait(&invl_gen_ts);
682 if (*m_gen > atomic_load_long(invl_gen))
683 turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
684 else
685 turnstile_cancel(ts);
686 }
687
688 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)689 pmap_delayed_invl_finish_unblock(u_long new_gen)
690 {
691 struct turnstile *ts;
692
693 turnstile_chain_lock(&invl_gen_ts);
694 ts = turnstile_lookup(&invl_gen_ts);
695 if (new_gen != 0)
696 pmap_invl_gen = new_gen;
697 if (ts != NULL) {
698 turnstile_broadcast(ts, TS_SHARED_QUEUE);
699 turnstile_unpend(ts);
700 }
701 turnstile_chain_unlock(&invl_gen_ts);
702 }
703
704 /*
705 * Start a new Delayed Invalidation (DI) block of code, executed by
706 * the current thread. Within a DI block, the current thread may
707 * destroy both the page table and PV list entries for a mapping and
708 * then release the corresponding PV list lock before ensuring that
709 * the mapping is flushed from the TLBs of any processors with the
710 * pmap active.
711 */
712 static void
pmap_delayed_invl_start_l(void)713 pmap_delayed_invl_start_l(void)
714 {
715 struct pmap_invl_gen *invl_gen;
716 u_long currgen;
717
718 invl_gen = &curthread->td_md.md_invl_gen;
719 PMAP_ASSERT_NOT_IN_DI();
720 mtx_lock(&invl_gen_mtx);
721 if (LIST_EMPTY(&pmap_invl_gen_tracker))
722 currgen = pmap_invl_gen;
723 else
724 currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
725 invl_gen->gen = currgen + 1;
726 LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
727 mtx_unlock(&invl_gen_mtx);
728 }
729
730 /*
731 * Finish the DI block, previously started by the current thread. All
732 * required TLB flushes for the pages marked by
733 * pmap_delayed_invl_page() must be finished before this function is
734 * called.
735 *
736 * This function works by bumping the global DI generation number to
737 * the generation number of the current thread's DI, unless there is a
738 * pending DI that started earlier. In the latter case, bumping the
739 * global DI generation number would incorrectly signal that the
740 * earlier DI had finished. Instead, this function bumps the earlier
741 * DI's generation number to match the generation number of the
742 * current thread's DI.
743 */
744 static void
pmap_delayed_invl_finish_l(void)745 pmap_delayed_invl_finish_l(void)
746 {
747 struct pmap_invl_gen *invl_gen, *next;
748
749 invl_gen = &curthread->td_md.md_invl_gen;
750 KASSERT(invl_gen->gen != 0, ("missed invl_start"));
751 mtx_lock(&invl_gen_mtx);
752 next = LIST_NEXT(invl_gen, link);
753 if (next == NULL)
754 pmap_delayed_invl_finish_unblock(invl_gen->gen);
755 else
756 next->gen = invl_gen->gen;
757 LIST_REMOVE(invl_gen, link);
758 mtx_unlock(&invl_gen_mtx);
759 invl_gen->gen = 0;
760 }
761
762 static bool
pmap_not_in_di_u(void)763 pmap_not_in_di_u(void)
764 {
765 struct pmap_invl_gen *invl_gen;
766
767 invl_gen = &curthread->td_md.md_invl_gen;
768 return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
769 }
770
771 static void
pmap_thread_init_invl_gen_u(struct thread * td)772 pmap_thread_init_invl_gen_u(struct thread *td)
773 {
774 struct pmap_invl_gen *invl_gen;
775
776 invl_gen = &td->td_md.md_invl_gen;
777 invl_gen->gen = 0;
778 invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
779 }
780
781 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)782 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
783 {
784 uint64_t new_high, new_low, old_high, old_low;
785 char res;
786
787 old_low = new_low = 0;
788 old_high = new_high = (uintptr_t)0;
789
790 __asm volatile("lock;cmpxchg16b\t%1"
791 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
792 : "b"(new_low), "c" (new_high)
793 : "memory", "cc");
794 if (res == 0) {
795 if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
796 return (false);
797 out->gen = old_low;
798 out->next = (void *)old_high;
799 } else {
800 out->gen = new_low;
801 out->next = (void *)new_high;
802 }
803 return (true);
804 }
805
806 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)807 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
808 struct pmap_invl_gen *new_val)
809 {
810 uint64_t new_high, new_low, old_high, old_low;
811 char res;
812
813 new_low = new_val->gen;
814 new_high = (uintptr_t)new_val->next;
815 old_low = old_val->gen;
816 old_high = (uintptr_t)old_val->next;
817
818 __asm volatile("lock;cmpxchg16b\t%1"
819 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
820 : "b"(new_low), "c" (new_high)
821 : "memory", "cc");
822 return (res);
823 }
824
825 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
826 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
827 &pv_page_count, "Current number of allocated pv pages");
828
829 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
830 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
831 &user_pt_page_count,
832 "Current number of allocated page table pages for userspace");
833
834 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
835 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
836 &kernel_pt_page_count,
837 "Current number of allocated page table pages for the kernel");
838
839 #ifdef PV_STATS
840
841 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
842 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
843 CTLFLAG_RD, &invl_start_restart,
844 "Number of delayed TLB invalidation request restarts");
845
846 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
847 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
848 &invl_finish_restart,
849 "Number of delayed TLB invalidation completion restarts");
850
851 static int invl_max_qlen;
852 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
853 &invl_max_qlen, 0,
854 "Maximum delayed TLB invalidation request queue length");
855 #endif
856
857 #define di_delay locks_delay
858
859 static void
pmap_delayed_invl_start_u(void)860 pmap_delayed_invl_start_u(void)
861 {
862 struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
863 struct thread *td;
864 struct lock_delay_arg lda;
865 uintptr_t prevl;
866 u_char pri;
867 #ifdef PV_STATS
868 int i, ii;
869 #endif
870
871 td = curthread;
872 invl_gen = &td->td_md.md_invl_gen;
873 PMAP_ASSERT_NOT_IN_DI();
874 lock_delay_arg_init(&lda, &di_delay);
875 invl_gen->saved_pri = 0;
876 pri = td->td_base_pri;
877 if (pri > PVM) {
878 thread_lock(td);
879 pri = td->td_base_pri;
880 if (pri > PVM) {
881 invl_gen->saved_pri = pri;
882 sched_prio(td, PVM);
883 }
884 thread_unlock(td);
885 }
886 again:
887 PV_STAT(i = 0);
888 for (p = &pmap_invl_gen_head;; p = prev.next) {
889 PV_STAT(i++);
890 prevl = (uintptr_t)atomic_load_ptr(&p->next);
891 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
892 PV_STAT(counter_u64_add(invl_start_restart, 1));
893 lock_delay(&lda);
894 goto again;
895 }
896 if (prevl == 0)
897 break;
898 prev.next = (void *)prevl;
899 }
900 #ifdef PV_STATS
901 if ((ii = invl_max_qlen) < i)
902 atomic_cmpset_int(&invl_max_qlen, ii, i);
903 #endif
904
905 if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
906 PV_STAT(counter_u64_add(invl_start_restart, 1));
907 lock_delay(&lda);
908 goto again;
909 }
910
911 new_prev.gen = prev.gen;
912 new_prev.next = invl_gen;
913 invl_gen->gen = prev.gen + 1;
914
915 /* Formal fence between store to invl->gen and updating *p. */
916 atomic_thread_fence_rel();
917
918 /*
919 * After inserting an invl_gen element with invalid bit set,
920 * this thread blocks any other thread trying to enter the
921 * delayed invalidation block. Do not allow to remove us from
922 * the CPU, because it causes starvation for other threads.
923 */
924 critical_enter();
925
926 /*
927 * ABA for *p is not possible there, since p->gen can only
928 * increase. So if the *p thread finished its di, then
929 * started a new one and got inserted into the list at the
930 * same place, its gen will appear greater than the previously
931 * read gen.
932 */
933 if (!pmap_di_store_invl(p, &prev, &new_prev)) {
934 critical_exit();
935 PV_STAT(counter_u64_add(invl_start_restart, 1));
936 lock_delay(&lda);
937 goto again;
938 }
939
940 /*
941 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
942 * invl_gen->next, allowing other threads to iterate past us.
943 * pmap_di_store_invl() provides fence between the generation
944 * write and the update of next.
945 */
946 invl_gen->next = NULL;
947 critical_exit();
948 }
949
950 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)951 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
952 struct pmap_invl_gen *p)
953 {
954 struct pmap_invl_gen prev, new_prev;
955 u_long mygen;
956
957 /*
958 * Load invl_gen->gen after setting invl_gen->next
959 * PMAP_INVL_GEN_NEXT_INVALID. This prevents larger
960 * generations to propagate to our invl_gen->gen. Lock prefix
961 * in atomic_set_ptr() worked as seq_cst fence.
962 */
963 mygen = atomic_load_long(&invl_gen->gen);
964
965 if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
966 return (false);
967
968 KASSERT(prev.gen < mygen,
969 ("invalid di gen sequence %lu %lu", prev.gen, mygen));
970 new_prev.gen = mygen;
971 new_prev.next = (void *)((uintptr_t)invl_gen->next &
972 ~PMAP_INVL_GEN_NEXT_INVALID);
973
974 /* Formal fence between load of prev and storing update to it. */
975 atomic_thread_fence_rel();
976
977 return (pmap_di_store_invl(p, &prev, &new_prev));
978 }
979
980 static void
pmap_delayed_invl_finish_u(void)981 pmap_delayed_invl_finish_u(void)
982 {
983 struct pmap_invl_gen *invl_gen, *p;
984 struct thread *td;
985 struct lock_delay_arg lda;
986 uintptr_t prevl;
987
988 td = curthread;
989 invl_gen = &td->td_md.md_invl_gen;
990 KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
991 KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
992 ("missed invl_start: INVALID"));
993 lock_delay_arg_init(&lda, &di_delay);
994
995 again:
996 for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
997 prevl = (uintptr_t)atomic_load_ptr(&p->next);
998 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
999 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1000 lock_delay(&lda);
1001 goto again;
1002 }
1003 if ((void *)prevl == invl_gen)
1004 break;
1005 }
1006
1007 /*
1008 * It is legitimate to not find ourself on the list if a
1009 * thread before us finished its DI and started it again.
1010 */
1011 if (__predict_false(p == NULL)) {
1012 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1013 lock_delay(&lda);
1014 goto again;
1015 }
1016
1017 critical_enter();
1018 atomic_set_ptr((uintptr_t *)&invl_gen->next,
1019 PMAP_INVL_GEN_NEXT_INVALID);
1020 if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1021 atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1022 PMAP_INVL_GEN_NEXT_INVALID);
1023 critical_exit();
1024 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1025 lock_delay(&lda);
1026 goto again;
1027 }
1028 critical_exit();
1029 if (atomic_load_int(&pmap_invl_waiters) > 0)
1030 pmap_delayed_invl_finish_unblock(0);
1031 if (invl_gen->saved_pri != 0) {
1032 thread_lock(td);
1033 sched_prio(td, invl_gen->saved_pri);
1034 thread_unlock(td);
1035 }
1036 }
1037
1038 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1039 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1040 {
1041 struct pmap_invl_gen *p, *pn;
1042 struct thread *td;
1043 uintptr_t nextl;
1044 bool first;
1045
1046 for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1047 first = false) {
1048 nextl = (uintptr_t)atomic_load_ptr(&p->next);
1049 pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1050 td = first ? NULL : __containerof(p, struct thread,
1051 td_md.md_invl_gen);
1052 db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1053 (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1054 td != NULL ? td->td_tid : -1);
1055 }
1056 }
1057 #endif
1058
1059 #ifdef PV_STATS
1060 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1061 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1062 CTLFLAG_RD, &invl_wait,
1063 "Number of times DI invalidation blocked pmap_remove_all/write");
1064
1065 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1066 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1067 &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1068
1069 #endif
1070
1071 #ifdef NUMA
1072 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1073 pmap_delayed_invl_genp(vm_page_t m)
1074 {
1075 vm_paddr_t pa;
1076 u_long *gen;
1077
1078 pa = VM_PAGE_TO_PHYS(m);
1079 if (__predict_false((pa) > pmap_last_pa))
1080 gen = &pv_dummy_large.pv_invl_gen;
1081 else
1082 gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1083
1084 return (gen);
1085 }
1086 #else
1087 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1088 pmap_delayed_invl_genp(vm_page_t m)
1089 {
1090
1091 return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1092 }
1093 #endif
1094
1095 static void
pmap_delayed_invl_callout_func(void * arg __unused)1096 pmap_delayed_invl_callout_func(void *arg __unused)
1097 {
1098
1099 if (atomic_load_int(&pmap_invl_waiters) == 0)
1100 return;
1101 pmap_delayed_invl_finish_unblock(0);
1102 }
1103
1104 static void
pmap_delayed_invl_callout_init(void * arg __unused)1105 pmap_delayed_invl_callout_init(void *arg __unused)
1106 {
1107
1108 if (pmap_di_locked())
1109 return;
1110 callout_init(&pmap_invl_callout, 1);
1111 pmap_invl_callout_inited = true;
1112 }
1113 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1114 pmap_delayed_invl_callout_init, NULL);
1115
1116 /*
1117 * Ensure that all currently executing DI blocks, that need to flush
1118 * TLB for the given page m, actually flushed the TLB at the time the
1119 * function returned. If the page m has an empty PV list and we call
1120 * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1121 * valid mapping for the page m in either its page table or TLB.
1122 *
1123 * This function works by blocking until the global DI generation
1124 * number catches up with the generation number associated with the
1125 * given page m and its PV list. Since this function's callers
1126 * typically own an object lock and sometimes own a page lock, it
1127 * cannot sleep. Instead, it blocks on a turnstile to relinquish the
1128 * processor.
1129 */
1130 static void
pmap_delayed_invl_wait_l(vm_page_t m)1131 pmap_delayed_invl_wait_l(vm_page_t m)
1132 {
1133 u_long *m_gen;
1134 #ifdef PV_STATS
1135 bool accounted = false;
1136 #endif
1137
1138 m_gen = pmap_delayed_invl_genp(m);
1139 while (*m_gen > pmap_invl_gen) {
1140 #ifdef PV_STATS
1141 if (!accounted) {
1142 counter_u64_add(invl_wait, 1);
1143 accounted = true;
1144 }
1145 #endif
1146 pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1147 }
1148 }
1149
1150 static void
pmap_delayed_invl_wait_u(vm_page_t m)1151 pmap_delayed_invl_wait_u(vm_page_t m)
1152 {
1153 u_long *m_gen;
1154 struct lock_delay_arg lda;
1155 bool fast;
1156
1157 fast = true;
1158 m_gen = pmap_delayed_invl_genp(m);
1159 lock_delay_arg_init(&lda, &di_delay);
1160 while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1161 if (fast || !pmap_invl_callout_inited) {
1162 PV_STAT(counter_u64_add(invl_wait, 1));
1163 lock_delay(&lda);
1164 fast = false;
1165 } else {
1166 /*
1167 * The page's invalidation generation number
1168 * is still below the current thread's number.
1169 * Prepare to block so that we do not waste
1170 * CPU cycles or worse, suffer livelock.
1171 *
1172 * Since it is impossible to block without
1173 * racing with pmap_delayed_invl_finish_u(),
1174 * prepare for the race by incrementing
1175 * pmap_invl_waiters and arming a 1-tick
1176 * callout which will unblock us if we lose
1177 * the race.
1178 */
1179 atomic_add_int(&pmap_invl_waiters, 1);
1180
1181 /*
1182 * Re-check the current thread's invalidation
1183 * generation after incrementing
1184 * pmap_invl_waiters, so that there is no race
1185 * with pmap_delayed_invl_finish_u() setting
1186 * the page generation and checking
1187 * pmap_invl_waiters. The only race allowed
1188 * is for a missed unblock, which is handled
1189 * by the callout.
1190 */
1191 if (*m_gen >
1192 atomic_load_long(&pmap_invl_gen_head.gen)) {
1193 callout_reset(&pmap_invl_callout, 1,
1194 pmap_delayed_invl_callout_func, NULL);
1195 PV_STAT(counter_u64_add(invl_wait_slow, 1));
1196 pmap_delayed_invl_wait_block(m_gen,
1197 &pmap_invl_gen_head.gen);
1198 }
1199 atomic_add_int(&pmap_invl_waiters, -1);
1200 }
1201 }
1202 }
1203
1204 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1205 {
1206
1207 return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1208 pmap_thread_init_invl_gen_u);
1209 }
1210
1211 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1212 {
1213
1214 return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1215 pmap_delayed_invl_start_u);
1216 }
1217
1218 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1219 {
1220
1221 return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1222 pmap_delayed_invl_finish_u);
1223 }
1224
1225 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1226 {
1227
1228 return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1229 pmap_delayed_invl_wait_u);
1230 }
1231
1232 /*
1233 * Mark the page m's PV list as participating in the current thread's
1234 * DI block. Any threads concurrently using m's PV list to remove or
1235 * restrict all mappings to m will wait for the current thread's DI
1236 * block to complete before proceeding.
1237 *
1238 * The function works by setting the DI generation number for m's PV
1239 * list to at least the DI generation number of the current thread.
1240 * This forces a caller of pmap_delayed_invl_wait() to block until
1241 * current thread calls pmap_delayed_invl_finish().
1242 */
1243 static void
pmap_delayed_invl_page(vm_page_t m)1244 pmap_delayed_invl_page(vm_page_t m)
1245 {
1246 u_long gen, *m_gen;
1247
1248 rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1249 gen = curthread->td_md.md_invl_gen.gen;
1250 if (gen == 0)
1251 return;
1252 m_gen = pmap_delayed_invl_genp(m);
1253 if (*m_gen < gen)
1254 *m_gen = gen;
1255 }
1256
1257 /*
1258 * Crashdump maps.
1259 */
1260 static caddr_t crashdumpmap;
1261
1262 /*
1263 * Internal flags for pmap_enter()'s helper functions.
1264 */
1265 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
1266 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
1267
1268 /*
1269 * Internal flags for pmap_mapdev_internal() and
1270 * pmap_change_props_locked().
1271 */
1272 #define MAPDEV_FLUSHCACHE 0x00000001 /* Flush cache after mapping. */
1273 #define MAPDEV_SETATTR 0x00000002 /* Modify existing attrs. */
1274 #define MAPDEV_ASSERTVALID 0x00000004 /* Assert mapping validity. */
1275
1276 TAILQ_HEAD(pv_chunklist, pv_chunk);
1277
1278 static void free_pv_chunk(struct pv_chunk *pc);
1279 static void free_pv_chunk_batch(struct pv_chunklist *batch);
1280 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
1281 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1282 static int popcnt_pc_map_pq(uint64_t *map);
1283 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1284 static void reserve_pv_entries(pmap_t pmap, int needed,
1285 struct rwlock **lockp);
1286 static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1287 struct rwlock **lockp);
1288 static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1289 u_int flags, struct rwlock **lockp);
1290 #if VM_NRESERVLEVEL > 0
1291 static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1292 struct rwlock **lockp);
1293 #endif
1294 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1295 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1296 vm_offset_t va);
1297
1298 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1299 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1300 vm_prot_t prot, int mode, int flags);
1301 static bool pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1302 static bool pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1303 vm_offset_t va, struct rwlock **lockp);
1304 static bool pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1305 vm_offset_t va);
1306 static int pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1307 vm_prot_t prot, struct rwlock **lockp);
1308 static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1309 u_int flags, vm_page_t m, struct rwlock **lockp);
1310 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1311 vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1312 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1313 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1314 bool allpte_PG_A_set);
1315 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1316 vm_offset_t eva);
1317 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1318 vm_offset_t eva);
1319 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1320 pd_entry_t pde);
1321 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1322 static vm_page_t pmap_large_map_getptp_unlocked(void);
1323 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1324 #if VM_NRESERVLEVEL > 0
1325 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1326 vm_page_t mpte, struct rwlock **lockp);
1327 #endif
1328 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1329 vm_prot_t prot);
1330 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1331 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1332 bool exec);
1333 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1334 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1335 static void pmap_pti_wire_pte(void *pte);
1336 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1337 struct spglist *free, struct rwlock **lockp);
1338 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1339 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1340 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1341 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1342 struct spglist *free);
1343 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1344 pd_entry_t *pde, struct spglist *free,
1345 struct rwlock **lockp);
1346 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1347 vm_page_t m, struct rwlock **lockp);
1348 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1349 pd_entry_t newpde);
1350 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1351
1352 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1353 struct rwlock **lockp);
1354 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1355 struct rwlock **lockp, vm_offset_t va);
1356 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1357 struct rwlock **lockp, vm_offset_t va);
1358 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1359 struct rwlock **lockp);
1360
1361 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1362 struct spglist *free);
1363 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1364
1365 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1366 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1367
1368 /********************/
1369 /* Inline functions */
1370 /********************/
1371
1372 /*
1373 * Return a non-clipped indexes for a given VA, which are page table
1374 * pages indexes at the corresponding level.
1375 */
1376 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1377 pmap_pde_pindex(vm_offset_t va)
1378 {
1379 return (va >> PDRSHIFT);
1380 }
1381
1382 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1383 pmap_pdpe_pindex(vm_offset_t va)
1384 {
1385 return (NUPDE + (va >> PDPSHIFT));
1386 }
1387
1388 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1389 pmap_pml4e_pindex(vm_offset_t va)
1390 {
1391 return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1392 }
1393
1394 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1395 pmap_pml5e_pindex(vm_offset_t va)
1396 {
1397 return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1398 }
1399
1400 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1401 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1402 {
1403
1404 MPASS(pmap_is_la57(pmap));
1405 return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1406 }
1407
1408 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1409 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1410 {
1411
1412 MPASS(pmap_is_la57(pmap));
1413 return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1414 }
1415
1416 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1417 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1418 {
1419 pml4_entry_t *pml4e;
1420
1421 /* XXX MPASS(pmap_is_la57(pmap); */
1422 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1423 return (&pml4e[pmap_pml4e_index(va)]);
1424 }
1425
1426 /* Return a pointer to the PML4 slot that corresponds to a VA */
1427 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1428 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1429 {
1430 pml5_entry_t *pml5e;
1431 pml4_entry_t *pml4e;
1432 pt_entry_t PG_V;
1433
1434 if (pmap_is_la57(pmap)) {
1435 pml5e = pmap_pml5e(pmap, va);
1436 PG_V = pmap_valid_bit(pmap);
1437 if ((*pml5e & PG_V) == 0)
1438 return (NULL);
1439 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1440 } else {
1441 pml4e = pmap->pm_pmltop;
1442 }
1443 return (&pml4e[pmap_pml4e_index(va)]);
1444 }
1445
1446 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1447 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1448 {
1449 MPASS(!pmap_is_la57(pmap));
1450 return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1451 }
1452
1453 /* Return a pointer to the PDP slot that corresponds to a VA */
1454 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1455 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1456 {
1457 pdp_entry_t *pdpe;
1458
1459 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1460 return (&pdpe[pmap_pdpe_index(va)]);
1461 }
1462
1463 /* Return a pointer to the PDP slot that corresponds to a VA */
1464 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1465 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1466 {
1467 pml4_entry_t *pml4e;
1468 pt_entry_t PG_V;
1469
1470 PG_V = pmap_valid_bit(pmap);
1471 pml4e = pmap_pml4e(pmap, va);
1472 if (pml4e == NULL || (*pml4e & PG_V) == 0)
1473 return (NULL);
1474 return (pmap_pml4e_to_pdpe(pml4e, va));
1475 }
1476
1477 /* Return a pointer to the PD slot that corresponds to a VA */
1478 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1479 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1480 {
1481 pd_entry_t *pde;
1482
1483 KASSERT((*pdpe & PG_PS) == 0,
1484 ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1485 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1486 return (&pde[pmap_pde_index(va)]);
1487 }
1488
1489 /* Return a pointer to the PD slot that corresponds to a VA */
1490 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1491 pmap_pde(pmap_t pmap, vm_offset_t va)
1492 {
1493 pdp_entry_t *pdpe;
1494 pt_entry_t PG_V;
1495
1496 PG_V = pmap_valid_bit(pmap);
1497 pdpe = pmap_pdpe(pmap, va);
1498 if (pdpe == NULL || (*pdpe & PG_V) == 0)
1499 return (NULL);
1500 KASSERT((*pdpe & PG_PS) == 0,
1501 ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1502 return (pmap_pdpe_to_pde(pdpe, va));
1503 }
1504
1505 /* Return a pointer to the PT slot that corresponds to a VA */
1506 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1507 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1508 {
1509 pt_entry_t *pte;
1510
1511 KASSERT((*pde & PG_PS) == 0,
1512 ("%s: pde %#lx is a leaf", __func__, *pde));
1513 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1514 return (&pte[pmap_pte_index(va)]);
1515 }
1516
1517 /* Return a pointer to the PT slot that corresponds to a VA */
1518 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1519 pmap_pte(pmap_t pmap, vm_offset_t va)
1520 {
1521 pd_entry_t *pde;
1522 pt_entry_t PG_V;
1523
1524 PG_V = pmap_valid_bit(pmap);
1525 pde = pmap_pde(pmap, va);
1526 if (pde == NULL || (*pde & PG_V) == 0)
1527 return (NULL);
1528 if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
1529 return ((pt_entry_t *)pde);
1530 return (pmap_pde_to_pte(pde, va));
1531 }
1532
1533 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1534 pmap_resident_count_adj(pmap_t pmap, int count)
1535 {
1536
1537 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1538 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1539 ("pmap %p resident count underflow %ld %d", pmap,
1540 pmap->pm_stats.resident_count, count));
1541 pmap->pm_stats.resident_count += count;
1542 }
1543
1544 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1545 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1546 {
1547 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1548 ("pmap %p resident count underflow %ld %d", pmap,
1549 pmap->pm_stats.resident_count, count));
1550 pmap->pm_stats.resident_count += count;
1551 }
1552
1553 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1554 pmap_pt_page_count_adj(pmap_t pmap, int count)
1555 {
1556 if (pmap == kernel_pmap)
1557 counter_u64_add(kernel_pt_page_count, count);
1558 else {
1559 if (pmap != NULL)
1560 pmap_resident_count_adj(pmap, count);
1561 counter_u64_add(user_pt_page_count, count);
1562 }
1563 }
1564
1565 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1566 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1567 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1568
1569 pt_entry_t *
vtopte(vm_offset_t va)1570 vtopte(vm_offset_t va)
1571 {
1572 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1573
1574 return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1575 }
1576
1577 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1578 NPML4EPGSHIFT)) - 1) << 3;
1579 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1580
1581 static __inline pd_entry_t *
vtopde(vm_offset_t va)1582 vtopde(vm_offset_t va)
1583 {
1584 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1585
1586 return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1587 }
1588
1589 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1590 allocpages(vm_paddr_t *firstaddr, int n)
1591 {
1592 u_int64_t ret;
1593
1594 ret = *firstaddr;
1595 bzero((void *)ret, n * PAGE_SIZE);
1596 *firstaddr += n * PAGE_SIZE;
1597 return (ret);
1598 }
1599
1600 CTASSERT(powerof2(NDMPML4E));
1601
1602 /* number of kernel PDP slots */
1603 #define NKPDPE(ptpgs) howmany(ptpgs, NPDEPG)
1604
1605 static void
nkpt_init(vm_paddr_t addr)1606 nkpt_init(vm_paddr_t addr)
1607 {
1608 int pt_pages;
1609
1610 #ifdef NKPT
1611 pt_pages = NKPT;
1612 #else
1613 pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1614 pt_pages += NKPDPE(pt_pages);
1615
1616 /*
1617 * Add some slop beyond the bare minimum required for bootstrapping
1618 * the kernel.
1619 *
1620 * This is quite important when allocating KVA for kernel modules.
1621 * The modules are required to be linked in the negative 2GB of
1622 * the address space. If we run out of KVA in this region then
1623 * pmap_growkernel() will need to allocate page table pages to map
1624 * the entire 512GB of KVA space which is an unnecessary tax on
1625 * physical memory.
1626 *
1627 * Secondly, device memory mapped as part of setting up the low-
1628 * level console(s) is taken from KVA, starting at virtual_avail.
1629 * This is because cninit() is called after pmap_bootstrap() but
1630 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1631 * is not uncommon.
1632 */
1633 pt_pages += 32; /* 64MB additional slop. */
1634 #endif
1635 nkpt = pt_pages;
1636 }
1637
1638 /*
1639 * Returns the proper write/execute permission for a physical page that is
1640 * part of the initial boot allocations.
1641 *
1642 * If the page has kernel text, it is marked as read-only. If the page has
1643 * kernel read-only data, it is marked as read-only/not-executable. If the
1644 * page has only read-write data, it is marked as read-write/not-executable.
1645 * If the page is below/above the kernel range, it is marked as read-write.
1646 *
1647 * This function operates on 2M pages, since we map the kernel space that
1648 * way.
1649 */
1650 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1651 bootaddr_rwx(vm_paddr_t pa)
1652 {
1653 /*
1654 * The kernel is loaded at a 2MB-aligned address, and memory below that
1655 * need not be executable. The .bss section is padded to a 2MB
1656 * boundary, so memory following the kernel need not be executable
1657 * either. Preloaded kernel modules have their mapping permissions
1658 * fixed up by the linker.
1659 */
1660 if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1661 pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1662 return (X86_PG_RW | pg_nx);
1663
1664 /*
1665 * The linker should ensure that the read-only and read-write
1666 * portions don't share the same 2M page, so this shouldn't
1667 * impact read-only data. However, in any case, any page with
1668 * read-write data needs to be read-write.
1669 */
1670 if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1671 return (X86_PG_RW | pg_nx);
1672
1673 /*
1674 * Mark any 2M page containing kernel text as read-only. Mark
1675 * other pages with read-only data as read-only and not executable.
1676 * (It is likely a small portion of the read-only data section will
1677 * be marked as read-only, but executable. This should be acceptable
1678 * since the read-only protection will keep the data from changing.)
1679 * Note that fixups to the .text section will still work until we
1680 * set CR0.WP.
1681 */
1682 if (pa < round_2mpage(kernphys + etext - KERNSTART))
1683 return (0);
1684 return (pg_nx);
1685 }
1686
1687 extern const char la57_trampoline[];
1688
1689 static void
pmap_bootstrap_la57(vm_paddr_t * firstaddr)1690 pmap_bootstrap_la57(vm_paddr_t *firstaddr)
1691 {
1692 void (*la57_tramp)(uint64_t pml5);
1693 pml5_entry_t *pt;
1694
1695 if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
1696 return;
1697 la57 = 1;
1698 TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
1699 if (!la57)
1700 return;
1701
1702 KPML5phys = allocpages(firstaddr, 1);
1703 KPML4phys = rcr3() & 0xfffff000; /* pml4 from loader must be < 4G */
1704
1705 pt = (pml5_entry_t *)KPML5phys;
1706 pt[0] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
1707 pt[NPML4EPG - 1] = KPML4phys | X86_PG_V | X86_PG_RW | X86_PG_A |
1708 X86_PG_M;
1709
1710 la57_tramp = (void (*)(uint64_t))((uintptr_t)la57_trampoline -
1711 KERNSTART + amd64_loadaddr());
1712 printf("Calling la57 trampoline at %p, KPML5phys %#lx ...",
1713 la57_tramp, KPML5phys);
1714 la57_tramp(KPML5phys);
1715 printf(" alive in la57 mode\n");
1716 }
1717
1718 static void
create_pagetables(vm_paddr_t * firstaddr)1719 create_pagetables(vm_paddr_t *firstaddr)
1720 {
1721 pd_entry_t *pd_p;
1722 pdp_entry_t *pdp_p;
1723 pml4_entry_t *p4_p;
1724 pml5_entry_t *p5_p;
1725 uint64_t DMPDkernphys;
1726 vm_paddr_t pax;
1727 #ifdef KASAN
1728 pt_entry_t *pt_p;
1729 uint64_t KASANPDphys, KASANPTphys, KASANphys;
1730 vm_offset_t kasankernbase;
1731 int kasankpdpi, kasankpdi, nkasanpte;
1732 #endif
1733 int i, j, ndm1g, nkpdpe, nkdmpde;
1734
1735 TSENTER();
1736 /* Allocate page table pages for the direct map */
1737 ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1738 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
1739 ndmpdp = 4;
1740 ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1741 if (ndmpdpphys > NDMPML4E) {
1742 /*
1743 * Each NDMPML4E allows 512 GB, so limit to that,
1744 * and then readjust ndmpdp and ndmpdpphys.
1745 */
1746 printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1747 Maxmem = atop(NDMPML4E * NBPML4);
1748 ndmpdpphys = NDMPML4E;
1749 ndmpdp = NDMPML4E * NPDEPG;
1750 }
1751 DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1752 ndm1g = 0;
1753 if ((amd_feature & AMDID_PAGE1GB) != 0) {
1754 /*
1755 * Calculate the number of 1G pages that will fully fit in
1756 * Maxmem.
1757 */
1758 ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1759
1760 /*
1761 * Allocate 2M pages for the kernel. These will be used in
1762 * place of the one or more 1G pages from ndm1g that maps
1763 * kernel memory into DMAP.
1764 */
1765 nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1766 kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1767 DMPDkernphys = allocpages(firstaddr, nkdmpde);
1768 }
1769 if (ndm1g < ndmpdp)
1770 DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1771 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1772
1773 /* Allocate pages. */
1774 KPML4phys = allocpages(firstaddr, 1);
1775 KPDPphys = allocpages(firstaddr, NKPML4E);
1776 #ifdef KASAN
1777 KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1778 KASANPDphys = allocpages(firstaddr, 1);
1779 #endif
1780 #ifdef KMSAN
1781 /*
1782 * The KMSAN shadow maps are initially left unpopulated, since there is
1783 * no need to shadow memory above KERNBASE.
1784 */
1785 KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1786 KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1787 #endif
1788
1789 /*
1790 * Allocate the initial number of kernel page table pages required to
1791 * bootstrap. We defer this until after all memory-size dependent
1792 * allocations are done (e.g. direct map), so that we don't have to
1793 * build in too much slop in our estimate.
1794 *
1795 * Note that when NKPML4E > 1, we have an empty page underneath
1796 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1797 * pages. (pmap_enter requires a PD page to exist for each KPML4E.)
1798 */
1799 nkpt_init(*firstaddr);
1800 nkpdpe = NKPDPE(nkpt);
1801
1802 KPTphys = allocpages(firstaddr, nkpt);
1803 KPDphys = allocpages(firstaddr, nkpdpe);
1804
1805 #ifdef KASAN
1806 nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1807 KASANPTphys = allocpages(firstaddr, nkasanpte);
1808 KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1809 #endif
1810
1811 /*
1812 * Connect the zero-filled PT pages to their PD entries. This
1813 * implicitly maps the PT pages at their correct locations within
1814 * the PTmap.
1815 */
1816 pd_p = (pd_entry_t *)KPDphys;
1817 for (i = 0; i < nkpt; i++)
1818 pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1819
1820 /*
1821 * Map from start of the kernel in physical memory (staging
1822 * area) to the end of loader preallocated memory using 2MB
1823 * pages. This replaces some of the PD entries created above.
1824 * For compatibility, identity map 2M at the start.
1825 */
1826 pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1827 X86_PG_RW | pg_nx;
1828 for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1829 /* Preset PG_M and PG_A because demotion expects it. */
1830 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1831 X86_PG_A | bootaddr_rwx(pax);
1832 }
1833
1834 /*
1835 * Because we map the physical blocks in 2M pages, adjust firstaddr
1836 * to record the physical blocks we've actually mapped into kernel
1837 * virtual address space.
1838 */
1839 if (*firstaddr < round_2mpage(KERNend))
1840 *firstaddr = round_2mpage(KERNend);
1841
1842 /* And connect up the PD to the PDP (leaving room for L4 pages) */
1843 pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1844 for (i = 0; i < nkpdpe; i++)
1845 pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1846
1847 #ifdef KASAN
1848 kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1849 kasankpdpi = pmap_pdpe_index(kasankernbase);
1850 kasankpdi = pmap_pde_index(kasankernbase);
1851
1852 pdp_p = (pdp_entry_t *)KASANPDPphys;
1853 pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1854
1855 pd_p = (pd_entry_t *)KASANPDphys;
1856 for (i = 0; i < nkasanpte; i++)
1857 pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1858 X86_PG_V | pg_nx;
1859
1860 pt_p = (pt_entry_t *)KASANPTphys;
1861 for (i = 0; i < nkasanpte * NPTEPG; i++)
1862 pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1863 X86_PG_M | X86_PG_A | pg_nx;
1864 #endif
1865
1866 /*
1867 * Now, set up the direct map region using 2MB and/or 1GB pages. If
1868 * the end of physical memory is not aligned to a 1GB page boundary,
1869 * then the residual physical memory is mapped with 2MB pages. Later,
1870 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1871 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1872 * that are partially used.
1873 */
1874 pd_p = (pd_entry_t *)DMPDphys;
1875 for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1876 pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1877 /* Preset PG_M and PG_A because demotion expects it. */
1878 pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1879 X86_PG_M | X86_PG_A | pg_nx;
1880 }
1881 pdp_p = (pdp_entry_t *)DMPDPphys;
1882 for (i = 0; i < ndm1g; i++) {
1883 pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1884 /* Preset PG_M and PG_A because demotion expects it. */
1885 pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1886 X86_PG_M | X86_PG_A | pg_nx;
1887 }
1888 for (j = 0; i < ndmpdp; i++, j++) {
1889 pdp_p[i] = DMPDphys + ptoa(j);
1890 pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1891 }
1892
1893 /*
1894 * Instead of using a 1G page for the memory containing the kernel,
1895 * use 2M pages with read-only and no-execute permissions. (If using 1G
1896 * pages, this will partially overwrite the PDPEs above.)
1897 */
1898 if (ndm1g > 0) {
1899 pd_p = (pd_entry_t *)DMPDkernphys;
1900 for (i = 0, pax = rounddown2(kernphys, NBPDP);
1901 i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1902 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1903 X86_PG_A | pg_nx | bootaddr_rwx(pax);
1904 }
1905 j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1906 for (i = 0; i < nkdmpde; i++) {
1907 pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1908 X86_PG_RW | X86_PG_V | pg_nx;
1909 }
1910 }
1911
1912 /* And recursively map PML4 to itself in order to get PTmap */
1913 p4_p = (pml4_entry_t *)KPML4phys;
1914 p4_p[PML4PML4I] = KPML4phys;
1915 p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1916
1917 #ifdef KASAN
1918 /* Connect the KASAN shadow map slots up to the PML4. */
1919 for (i = 0; i < NKASANPML4E; i++) {
1920 p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1921 p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1922 }
1923 #endif
1924
1925 #ifdef KMSAN
1926 /* Connect the KMSAN shadow map slots up to the PML4. */
1927 for (i = 0; i < NKMSANSHADPML4E; i++) {
1928 p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1929 p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1930 }
1931
1932 /* Connect the KMSAN origin map slots up to the PML4. */
1933 for (i = 0; i < NKMSANORIGPML4E; i++) {
1934 p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1935 p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1936 }
1937 #endif
1938
1939 /* Connect the Direct Map slots up to the PML4. */
1940 for (i = 0; i < ndmpdpphys; i++) {
1941 p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1942 p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1943 }
1944
1945 /* Connect the KVA slots up to the PML4 */
1946 for (i = 0; i < NKPML4E; i++) {
1947 p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1948 p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1949 }
1950
1951 kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1952
1953 if (la57) {
1954 /* XXXKIB bootstrap KPML5phys page is lost */
1955 KPML5phys = allocpages(firstaddr, 1);
1956 for (i = 0, p5_p = (pml5_entry_t *)KPML5phys; i < NPML5EPG;
1957 i++) {
1958 if (i == PML5PML5I) {
1959 /*
1960 * Recursively map PML5 to itself in
1961 * order to get PTmap and PDmap.
1962 */
1963 p5_p[i] = KPML5phys | X86_PG_RW | X86_PG_A |
1964 X86_PG_M | X86_PG_V | pg_nx;
1965 } else if (i == pmap_pml5e_index(UPT_MAX_ADDRESS)) {
1966 p5_p[i] = KPML4phys | X86_PG_RW | X86_PG_A |
1967 X86_PG_M | X86_PG_V;
1968 } else {
1969 p5_p[i] = 0;
1970 }
1971 }
1972 }
1973 TSEXIT();
1974 }
1975
1976 /*
1977 * Bootstrap the system enough to run with virtual memory.
1978 *
1979 * On amd64 this is called after mapping has already been enabled
1980 * and just syncs the pmap module with what has already been done.
1981 * [We can't call it easily with mapping off since the kernel is not
1982 * mapped with PA == VA, hence we would have to relocate every address
1983 * from the linked base (virtual) address "KERNBASE" to the actual
1984 * (physical) address starting relative to 0]
1985 */
1986 void
pmap_bootstrap(vm_paddr_t * firstaddr)1987 pmap_bootstrap(vm_paddr_t *firstaddr)
1988 {
1989 vm_offset_t va;
1990 pt_entry_t *pte, *pcpu_pte;
1991 struct region_descriptor r_gdt;
1992 uint64_t cr4, pcpu0_phys;
1993 u_long res;
1994 int i;
1995
1996 TSENTER();
1997 KERNend = *firstaddr;
1998 res = atop(KERNend - (vm_paddr_t)kernphys);
1999
2000 if (!pti)
2001 pg_g = X86_PG_G;
2002
2003 /*
2004 * Create an initial set of page tables to run the kernel in.
2005 */
2006 pmap_bootstrap_la57(firstaddr);
2007 create_pagetables(firstaddr);
2008
2009 pcpu0_phys = allocpages(firstaddr, 1);
2010
2011 /*
2012 * Add a physical memory segment (vm_phys_seg) corresponding to the
2013 * preallocated kernel page table pages so that vm_page structures
2014 * representing these pages will be created. The vm_page structures
2015 * are required for promotion of the corresponding kernel virtual
2016 * addresses to superpage mappings.
2017 */
2018 vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
2019
2020 /*
2021 * Account for the virtual addresses mapped by create_pagetables().
2022 */
2023 virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
2024 (vm_paddr_t)kernphys);
2025 virtual_end = VM_MAX_KERNEL_ADDRESS;
2026
2027 /*
2028 * Enable PG_G global pages, then switch to the kernel page
2029 * table from the bootstrap page table. After the switch, it
2030 * is possible to enable SMEP and SMAP since PG_U bits are
2031 * correct now.
2032 */
2033 cr4 = rcr4();
2034 cr4 |= CR4_PGE;
2035 load_cr4(cr4);
2036 load_cr3(la57 ? KPML5phys : KPML4phys);
2037 if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
2038 cr4 |= CR4_SMEP;
2039 if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
2040 cr4 |= CR4_SMAP;
2041 load_cr4(cr4);
2042
2043 /*
2044 * Initialize the kernel pmap (which is statically allocated).
2045 * Count bootstrap data as being resident in case any of this data is
2046 * later unmapped (using pmap_remove()) and freed.
2047 */
2048 PMAP_LOCK_INIT(kernel_pmap);
2049 if (la57) {
2050 vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2051 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2052 PTmap = (vm_offset_t)P5Tmap;
2053 vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2054 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2055 PDmap = (vm_offset_t)P5Dmap;
2056 kernel_pmap->pm_pmltop = (void *)PHYS_TO_DMAP(KPML5phys);
2057 kernel_pmap->pm_cr3 = KPML5phys;
2058 pmap_pt_page_count_adj(kernel_pmap, 1); /* top-level page */
2059 } else {
2060 kernel_pmap->pm_pmltop = kernel_pml4;
2061 kernel_pmap->pm_cr3 = KPML4phys;
2062 }
2063 kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
2064 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
2065 kernel_pmap->pm_stats.resident_count = res;
2066 vm_radix_init(&kernel_pmap->pm_root);
2067 kernel_pmap->pm_flags = pmap_flags;
2068 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
2069 rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
2070 pkru_free_range, kernel_pmap, M_NOWAIT);
2071 }
2072
2073 /*
2074 * The kernel pmap is always active on all CPUs. Once CPUs are
2075 * enumerated, the mask will be set equal to all_cpus.
2076 */
2077 CPU_FILL(&kernel_pmap->pm_active);
2078
2079 /*
2080 * Initialize the TLB invalidations generation number lock.
2081 */
2082 mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2083
2084 /*
2085 * Reserve some special page table entries/VA space for temporary
2086 * mapping of pages.
2087 */
2088 #define SYSMAP(c, p, v, n) \
2089 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2090
2091 va = virtual_avail;
2092 pte = vtopte(va);
2093
2094 /*
2095 * Crashdump maps. The first page is reused as CMAP1 for the
2096 * memory test.
2097 */
2098 SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2099 CADDR1 = crashdumpmap;
2100
2101 SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2102 virtual_avail = va;
2103
2104 /*
2105 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2106 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2107 * number of CPUs and NUMA affinity.
2108 */
2109 pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2110 X86_PG_M | X86_PG_A;
2111 for (i = 1; i < MAXCPU; i++)
2112 pcpu_pte[i] = 0;
2113
2114 /*
2115 * Re-initialize PCPU area for BSP after switching.
2116 * Make hardware use gdt and common_tss from the new PCPU.
2117 * Also clears the usage of temporary gdt during switch to
2118 * LA57 paging.
2119 */
2120 STAILQ_INIT(&cpuhead);
2121 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2122 pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2123 amd64_bsp_pcpu_init1(&__pcpu[0]);
2124 amd64_bsp_ist_init(&__pcpu[0]);
2125 __pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2126 IOPERM_BITMAP_SIZE;
2127 memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2128 sizeof(struct user_segment_descriptor));
2129 gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2130 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2131 (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2132 r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2133 r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2134 lgdt(&r_gdt);
2135 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2136 ltr(GSEL(GPROC0_SEL, SEL_KPL));
2137 __pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2138 __pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2139
2140 /*
2141 * Initialize the PAT MSR.
2142 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2143 * side-effect, invalidates stale PG_G TLB entries that might
2144 * have been created in our pre-boot environment.
2145 */
2146 pmap_init_pat();
2147
2148 /* Initialize TLB Context Id. */
2149 if (pmap_pcid_enabled) {
2150 kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2151 offsetof(struct pcpu, pc_kpmap_store);
2152
2153 PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2154 PCPU_SET(kpmap_store.pm_gen, 1);
2155
2156 /*
2157 * PMAP_PCID_KERN + 1 is used for initialization of
2158 * proc0 pmap. The pmap' pcid state might be used by
2159 * EFIRT entry before first context switch, so it
2160 * needs to be valid.
2161 */
2162 PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2163 PCPU_SET(pcid_gen, 1);
2164
2165 /*
2166 * pcpu area for APs is zeroed during AP startup.
2167 * pc_pcid_next and pc_pcid_gen are initialized by AP
2168 * during pcpu setup.
2169 */
2170 load_cr4(rcr4() | CR4_PCIDE);
2171 }
2172 TSEXIT();
2173 }
2174
2175 /*
2176 * Setup the PAT MSR.
2177 */
2178 void
pmap_init_pat(void)2179 pmap_init_pat(void)
2180 {
2181 uint64_t pat_msr;
2182 u_long cr0, cr4;
2183 int i;
2184
2185 /* Bail if this CPU doesn't implement PAT. */
2186 if ((cpu_feature & CPUID_PAT) == 0)
2187 panic("no PAT??");
2188
2189 /* Set default PAT index table. */
2190 for (i = 0; i < PAT_INDEX_SIZE; i++)
2191 pat_index[i] = -1;
2192 pat_index[PAT_WRITE_BACK] = 0;
2193 pat_index[PAT_WRITE_THROUGH] = 1;
2194 pat_index[PAT_UNCACHEABLE] = 3;
2195 pat_index[PAT_WRITE_COMBINING] = 6;
2196 pat_index[PAT_WRITE_PROTECTED] = 5;
2197 pat_index[PAT_UNCACHED] = 2;
2198
2199 /*
2200 * Initialize default PAT entries.
2201 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2202 * Program 5 and 6 as WP and WC.
2203 *
2204 * Leave 4 and 7 as WB and UC. Note that a recursive page table
2205 * mapping for a 2M page uses a PAT value with the bit 3 set due
2206 * to its overload with PG_PS.
2207 */
2208 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2209 PAT_VALUE(1, PAT_WRITE_THROUGH) |
2210 PAT_VALUE(2, PAT_UNCACHED) |
2211 PAT_VALUE(3, PAT_UNCACHEABLE) |
2212 PAT_VALUE(4, PAT_WRITE_BACK) |
2213 PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2214 PAT_VALUE(6, PAT_WRITE_COMBINING) |
2215 PAT_VALUE(7, PAT_UNCACHEABLE);
2216
2217 /* Disable PGE. */
2218 cr4 = rcr4();
2219 load_cr4(cr4 & ~CR4_PGE);
2220
2221 /* Disable caches (CD = 1, NW = 0). */
2222 cr0 = rcr0();
2223 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2224
2225 /* Flushes caches and TLBs. */
2226 wbinvd();
2227 invltlb();
2228
2229 /* Update PAT and index table. */
2230 wrmsr(MSR_PAT, pat_msr);
2231
2232 /* Flush caches and TLBs again. */
2233 wbinvd();
2234 invltlb();
2235
2236 /* Restore caches and PGE. */
2237 load_cr0(cr0);
2238 load_cr4(cr4);
2239 }
2240
2241 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2242 pmap_page_alloc_below_4g(bool zeroed)
2243 {
2244 return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2245 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2246 }
2247
2248 /*
2249 * Initialize a vm_page's machine-dependent fields.
2250 */
2251 void
pmap_page_init(vm_page_t m)2252 pmap_page_init(vm_page_t m)
2253 {
2254
2255 TAILQ_INIT(&m->md.pv_list);
2256 m->md.pat_mode = PAT_WRITE_BACK;
2257 }
2258
2259 static int pmap_allow_2m_x_ept;
2260 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2261 &pmap_allow_2m_x_ept, 0,
2262 "Allow executable superpage mappings in EPT");
2263
2264 void
pmap_allow_2m_x_ept_recalculate(void)2265 pmap_allow_2m_x_ept_recalculate(void)
2266 {
2267 /*
2268 * SKL002, SKL012S. Since the EPT format is only used by
2269 * Intel CPUs, the vendor check is merely a formality.
2270 */
2271 if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2272 (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2273 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2274 (CPUID_TO_MODEL(cpu_id) == 0x26 || /* Atoms */
2275 CPUID_TO_MODEL(cpu_id) == 0x27 ||
2276 CPUID_TO_MODEL(cpu_id) == 0x35 ||
2277 CPUID_TO_MODEL(cpu_id) == 0x36 ||
2278 CPUID_TO_MODEL(cpu_id) == 0x37 ||
2279 CPUID_TO_MODEL(cpu_id) == 0x86 ||
2280 CPUID_TO_MODEL(cpu_id) == 0x1c ||
2281 CPUID_TO_MODEL(cpu_id) == 0x4a ||
2282 CPUID_TO_MODEL(cpu_id) == 0x4c ||
2283 CPUID_TO_MODEL(cpu_id) == 0x4d ||
2284 CPUID_TO_MODEL(cpu_id) == 0x5a ||
2285 CPUID_TO_MODEL(cpu_id) == 0x5c ||
2286 CPUID_TO_MODEL(cpu_id) == 0x5d ||
2287 CPUID_TO_MODEL(cpu_id) == 0x5f ||
2288 CPUID_TO_MODEL(cpu_id) == 0x6e ||
2289 CPUID_TO_MODEL(cpu_id) == 0x7a ||
2290 CPUID_TO_MODEL(cpu_id) == 0x57 || /* Knights */
2291 CPUID_TO_MODEL(cpu_id) == 0x85))))
2292 pmap_allow_2m_x_ept = 1;
2293 #ifndef BURN_BRIDGES
2294 TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2295 #endif
2296 TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2297 }
2298
2299 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2300 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2301 {
2302
2303 return (pmap->pm_type != PT_EPT || !executable ||
2304 !pmap_allow_2m_x_ept);
2305 }
2306
2307 #ifdef NUMA
2308 static void
pmap_init_pv_table(void)2309 pmap_init_pv_table(void)
2310 {
2311 struct pmap_large_md_page *pvd;
2312 vm_size_t s;
2313 long start, end, highest, pv_npg;
2314 int domain, i, j, pages;
2315
2316 /*
2317 * For correctness we depend on the size being evenly divisible into a
2318 * page. As a tradeoff between performance and total memory use, the
2319 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2320 * avoids false-sharing, but not being 128 bytes potentially allows for
2321 * avoidable traffic due to adjacent cacheline prefetcher.
2322 *
2323 * Assert the size so that accidental changes fail to compile.
2324 */
2325 CTASSERT((sizeof(*pvd) == 64));
2326
2327 /*
2328 * Calculate the size of the array.
2329 */
2330 pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2331 pv_npg = howmany(pmap_last_pa, NBPDR);
2332 s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2333 s = round_page(s);
2334 pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2335 if (pv_table == NULL)
2336 panic("%s: kva_alloc failed\n", __func__);
2337
2338 /*
2339 * Iterate physical segments to allocate space for respective pages.
2340 */
2341 highest = -1;
2342 s = 0;
2343 for (i = 0; i < vm_phys_nsegs; i++) {
2344 end = vm_phys_segs[i].end / NBPDR;
2345 domain = vm_phys_segs[i].domain;
2346
2347 if (highest >= end)
2348 continue;
2349
2350 start = highest + 1;
2351 pvd = &pv_table[start];
2352
2353 pages = end - start + 1;
2354 s = round_page(pages * sizeof(*pvd));
2355 highest = start + (s / sizeof(*pvd)) - 1;
2356
2357 for (j = 0; j < s; j += PAGE_SIZE) {
2358 vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2359 if (m == NULL)
2360 panic("failed to allocate PV table page");
2361 pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2362 }
2363
2364 for (j = 0; j < s / sizeof(*pvd); j++) {
2365 rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2366 TAILQ_INIT(&pvd->pv_page.pv_list);
2367 pvd->pv_page.pv_gen = 0;
2368 pvd->pv_page.pat_mode = 0;
2369 pvd->pv_invl_gen = 0;
2370 pvd++;
2371 }
2372 }
2373 pvd = &pv_dummy_large;
2374 rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2375 TAILQ_INIT(&pvd->pv_page.pv_list);
2376 pvd->pv_page.pv_gen = 0;
2377 pvd->pv_page.pat_mode = 0;
2378 pvd->pv_invl_gen = 0;
2379 }
2380 #else
2381 static void
pmap_init_pv_table(void)2382 pmap_init_pv_table(void)
2383 {
2384 vm_size_t s;
2385 long i, pv_npg;
2386
2387 /*
2388 * Initialize the pool of pv list locks.
2389 */
2390 for (i = 0; i < NPV_LIST_LOCKS; i++)
2391 rw_init(&pv_list_locks[i], "pmap pv list");
2392
2393 /*
2394 * Calculate the size of the pv head table for superpages.
2395 */
2396 pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2397
2398 /*
2399 * Allocate memory for the pv head table for superpages.
2400 */
2401 s = (vm_size_t)pv_npg * sizeof(struct md_page);
2402 s = round_page(s);
2403 pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2404 for (i = 0; i < pv_npg; i++)
2405 TAILQ_INIT(&pv_table[i].pv_list);
2406 TAILQ_INIT(&pv_dummy.pv_list);
2407 }
2408 #endif
2409
2410 /*
2411 * Initialize the pmap module.
2412 *
2413 * Called by vm_mem_init(), to initialize any structures that the pmap
2414 * system needs to map virtual memory.
2415 */
2416 void
pmap_init(void)2417 pmap_init(void)
2418 {
2419 struct pmap_preinit_mapping *ppim;
2420 vm_page_t m, mpte;
2421 int error, i, ret, skz63;
2422
2423 /* L1TF, reserve page @0 unconditionally */
2424 vm_page_blacklist_add(0, bootverbose);
2425
2426 /* Detect bare-metal Skylake Server and Skylake-X. */
2427 if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2428 CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2429 /*
2430 * Skylake-X errata SKZ63. Processor May Hang When
2431 * Executing Code In an HLE Transaction Region between
2432 * 40000000H and 403FFFFFH.
2433 *
2434 * Mark the pages in the range as preallocated. It
2435 * seems to be impossible to distinguish between
2436 * Skylake Server and Skylake X.
2437 */
2438 skz63 = 1;
2439 TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2440 if (skz63 != 0) {
2441 if (bootverbose)
2442 printf("SKZ63: skipping 4M RAM starting "
2443 "at physical 1G\n");
2444 for (i = 0; i < atop(0x400000); i++) {
2445 ret = vm_page_blacklist_add(0x40000000 +
2446 ptoa(i), false);
2447 if (!ret && bootverbose)
2448 printf("page at %#x already used\n",
2449 0x40000000 + ptoa(i));
2450 }
2451 }
2452 }
2453
2454 /* IFU */
2455 pmap_allow_2m_x_ept_recalculate();
2456
2457 /*
2458 * Initialize the vm page array entries for the kernel pmap's
2459 * page table pages.
2460 */
2461 PMAP_LOCK(kernel_pmap);
2462 for (i = 0; i < nkpt; i++) {
2463 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2464 KASSERT(mpte >= vm_page_array &&
2465 mpte < &vm_page_array[vm_page_array_size],
2466 ("pmap_init: page table page is out of range"));
2467 mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2468 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2469 mpte->ref_count = 1;
2470
2471 /*
2472 * Collect the page table pages that were replaced by a 2MB
2473 * page in create_pagetables(). They are zero filled.
2474 */
2475 if ((i == 0 ||
2476 kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2477 pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2478 panic("pmap_init: pmap_insert_pt_page failed");
2479 }
2480 PMAP_UNLOCK(kernel_pmap);
2481 vm_wire_add(nkpt);
2482
2483 /*
2484 * If the kernel is running on a virtual machine, then it must assume
2485 * that MCA is enabled by the hypervisor. Moreover, the kernel must
2486 * be prepared for the hypervisor changing the vendor and family that
2487 * are reported by CPUID. Consequently, the workaround for AMD Family
2488 * 10h Erratum 383 is enabled if the processor's feature set does not
2489 * include at least one feature that is only supported by older Intel
2490 * or newer AMD processors.
2491 */
2492 if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2493 (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2494 CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2495 AMDID2_FMA4)) == 0)
2496 workaround_erratum383 = 1;
2497
2498 /*
2499 * Are large page mappings enabled?
2500 */
2501 TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2502 if (pg_ps_enabled) {
2503 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2504 ("pmap_init: can't assign to pagesizes[1]"));
2505 pagesizes[1] = NBPDR;
2506 if ((amd_feature & AMDID_PAGE1GB) != 0) {
2507 KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2508 ("pmap_init: can't assign to pagesizes[2]"));
2509 pagesizes[2] = NBPDP;
2510 }
2511 }
2512
2513 /*
2514 * Initialize pv chunk lists.
2515 */
2516 for (i = 0; i < PMAP_MEMDOM; i++) {
2517 mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2518 TAILQ_INIT(&pv_chunks[i].pvc_list);
2519 }
2520 pmap_init_pv_table();
2521
2522 pmap_initialized = 1;
2523 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2524 ppim = pmap_preinit_mapping + i;
2525 if (ppim->va == 0)
2526 continue;
2527 /* Make the direct map consistent */
2528 if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2529 (void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2530 ppim->sz, ppim->mode);
2531 }
2532 if (!bootverbose)
2533 continue;
2534 printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2535 ppim->pa, ppim->va, ppim->sz, ppim->mode);
2536 }
2537
2538 mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2539 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2540 (vmem_addr_t *)&qframe);
2541 if (error != 0)
2542 panic("qframe allocation failed");
2543
2544 lm_ents = 8;
2545 TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2546 if (lm_ents > LMEPML4I - LMSPML4I + 1)
2547 lm_ents = LMEPML4I - LMSPML4I + 1;
2548 #ifdef KMSAN
2549 if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2550 printf(
2551 "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2552 lm_ents, KMSANORIGPML4I - LMSPML4I);
2553 lm_ents = KMSANORIGPML4I - LMSPML4I;
2554 }
2555 #endif
2556 if (bootverbose)
2557 printf("pmap: large map %u PML4 slots (%lu GB)\n",
2558 lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2559 if (lm_ents != 0) {
2560 large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2561 (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2562 if (large_vmem == NULL) {
2563 printf("pmap: cannot create large map\n");
2564 lm_ents = 0;
2565 }
2566 for (i = 0; i < lm_ents; i++) {
2567 m = pmap_large_map_getptp_unlocked();
2568 /* XXXKIB la57 */
2569 kernel_pml4[LMSPML4I + i] = X86_PG_V |
2570 X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2571 VM_PAGE_TO_PHYS(m);
2572 }
2573 }
2574 }
2575
2576 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2577 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2578 "Maximum number of PML4 entries for use by large map (tunable). "
2579 "Each entry corresponds to 512GB of address space.");
2580
2581 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2582 "2MB page mapping counters");
2583
2584 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2585 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2586 CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2587
2588 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2589 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2590 &pmap_pde_mappings, "2MB page mappings");
2591
2592 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2593 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2594 &pmap_pde_p_failures, "2MB page promotion failures");
2595
2596 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2597 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2598 &pmap_pde_promotions, "2MB page promotions");
2599
2600 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2601 "1GB page mapping counters");
2602
2603 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2604 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2605 &pmap_pdpe_demotions, "1GB page demotions");
2606
2607 /***************************************************
2608 * Low level helper routines.....
2609 ***************************************************/
2610
2611 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2612 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2613 {
2614 int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2615
2616 switch (pmap->pm_type) {
2617 case PT_X86:
2618 case PT_RVI:
2619 /* Verify that both PAT bits are not set at the same time */
2620 KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2621 ("Invalid PAT bits in entry %#lx", entry));
2622
2623 /* Swap the PAT bits if one of them is set */
2624 if ((entry & x86_pat_bits) != 0)
2625 entry ^= x86_pat_bits;
2626 break;
2627 case PT_EPT:
2628 /*
2629 * Nothing to do - the memory attributes are represented
2630 * the same way for regular pages and superpages.
2631 */
2632 break;
2633 default:
2634 panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2635 }
2636
2637 return (entry);
2638 }
2639
2640 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2641 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2642 {
2643
2644 return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2645 pat_index[(int)mode] >= 0);
2646 }
2647
2648 /*
2649 * Determine the appropriate bits to set in a PTE or PDE for a specified
2650 * caching mode.
2651 */
2652 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2653 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2654 {
2655 int cache_bits, pat_flag, pat_idx;
2656
2657 if (!pmap_is_valid_memattr(pmap, mode))
2658 panic("Unknown caching mode %d\n", mode);
2659
2660 switch (pmap->pm_type) {
2661 case PT_X86:
2662 case PT_RVI:
2663 /* The PAT bit is different for PTE's and PDE's. */
2664 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2665
2666 /* Map the caching mode to a PAT index. */
2667 pat_idx = pat_index[mode];
2668
2669 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2670 cache_bits = 0;
2671 if (pat_idx & 0x4)
2672 cache_bits |= pat_flag;
2673 if (pat_idx & 0x2)
2674 cache_bits |= PG_NC_PCD;
2675 if (pat_idx & 0x1)
2676 cache_bits |= PG_NC_PWT;
2677 break;
2678
2679 case PT_EPT:
2680 cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2681 break;
2682
2683 default:
2684 panic("unsupported pmap type %d", pmap->pm_type);
2685 }
2686
2687 return (cache_bits);
2688 }
2689
2690 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2691 pmap_cache_mask(pmap_t pmap, bool is_pde)
2692 {
2693 int mask;
2694
2695 switch (pmap->pm_type) {
2696 case PT_X86:
2697 case PT_RVI:
2698 mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2699 break;
2700 case PT_EPT:
2701 mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2702 break;
2703 default:
2704 panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2705 }
2706
2707 return (mask);
2708 }
2709
2710 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2711 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2712 {
2713 int pat_flag, pat_idx;
2714
2715 pat_idx = 0;
2716 switch (pmap->pm_type) {
2717 case PT_X86:
2718 case PT_RVI:
2719 /* The PAT bit is different for PTE's and PDE's. */
2720 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2721
2722 if ((pte & pat_flag) != 0)
2723 pat_idx |= 0x4;
2724 if ((pte & PG_NC_PCD) != 0)
2725 pat_idx |= 0x2;
2726 if ((pte & PG_NC_PWT) != 0)
2727 pat_idx |= 0x1;
2728 break;
2729 case PT_EPT:
2730 if ((pte & EPT_PG_IGNORE_PAT) != 0)
2731 panic("EPT PTE %#lx has no PAT memory type", pte);
2732 pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2733 break;
2734 }
2735
2736 /* See pmap_init_pat(). */
2737 if (pat_idx == 4)
2738 pat_idx = 0;
2739 if (pat_idx == 7)
2740 pat_idx = 3;
2741
2742 return (pat_idx);
2743 }
2744
2745 bool
pmap_ps_enabled(pmap_t pmap)2746 pmap_ps_enabled(pmap_t pmap)
2747 {
2748
2749 return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2750 }
2751
2752 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2753 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2754 {
2755
2756 switch (pmap->pm_type) {
2757 case PT_X86:
2758 break;
2759 case PT_RVI:
2760 case PT_EPT:
2761 /*
2762 * XXX
2763 * This is a little bogus since the generation number is
2764 * supposed to be bumped up when a region of the address
2765 * space is invalidated in the page tables.
2766 *
2767 * In this case the old PDE entry is valid but yet we want
2768 * to make sure that any mappings using the old entry are
2769 * invalidated in the TLB.
2770 *
2771 * The reason this works as expected is because we rendezvous
2772 * "all" host cpus and force any vcpu context to exit as a
2773 * side-effect.
2774 */
2775 atomic_add_long(&pmap->pm_eptgen, 1);
2776 break;
2777 default:
2778 panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2779 }
2780 pde_store(pde, newpde);
2781 }
2782
2783 /*
2784 * After changing the page size for the specified virtual address in the page
2785 * table, flush the corresponding entries from the processor's TLB. Only the
2786 * calling processor's TLB is affected.
2787 *
2788 * The calling thread must be pinned to a processor.
2789 */
2790 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2791 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2792 {
2793 pt_entry_t PG_G;
2794
2795 if (pmap_type_guest(pmap))
2796 return;
2797
2798 KASSERT(pmap->pm_type == PT_X86,
2799 ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2800
2801 PG_G = pmap_global_bit(pmap);
2802
2803 if ((newpde & PG_PS) == 0)
2804 /* Demotion: flush a specific 2MB page mapping. */
2805 pmap_invlpg(pmap, va);
2806 else if ((newpde & PG_G) == 0)
2807 /*
2808 * Promotion: flush every 4KB page mapping from the TLB
2809 * because there are too many to flush individually.
2810 */
2811 invltlb();
2812 else {
2813 /*
2814 * Promotion: flush every 4KB page mapping from the TLB,
2815 * including any global (PG_G) mappings.
2816 */
2817 invltlb_glob();
2818 }
2819 }
2820
2821 /*
2822 * The amd64 pmap uses different approaches to TLB invalidation
2823 * depending on the kernel configuration, available hardware features,
2824 * and known hardware errata. The kernel configuration option that
2825 * has the greatest operational impact on TLB invalidation is PTI,
2826 * which is enabled automatically on affected Intel CPUs. The most
2827 * impactful hardware features are first PCID, and then INVPCID
2828 * instruction presence. PCID usage is quite different for PTI
2829 * vs. non-PTI.
2830 *
2831 * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2832 * the Meltdown bug in some Intel CPUs. Under PTI, each user address
2833 * space is served by two page tables, user and kernel. The user
2834 * page table only maps user space and a kernel trampoline. The
2835 * kernel trampoline includes the entirety of the kernel text but
2836 * only the kernel data that is needed to switch from user to kernel
2837 * mode. The kernel page table maps the user and kernel address
2838 * spaces in their entirety. It is identical to the per-process
2839 * page table used in non-PTI mode.
2840 *
2841 * User page tables are only used when the CPU is in user mode.
2842 * Consequently, some TLB invalidations can be postponed until the
2843 * switch from kernel to user mode. In contrast, the user
2844 * space part of the kernel page table is used for copyout(9), so
2845 * TLB invalidations on this page table cannot be similarly postponed.
2846 *
2847 * The existence of a user mode page table for the given pmap is
2848 * indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2849 * which case pm_ucr3 contains the %cr3 register value for the user
2850 * mode page table's root.
2851 *
2852 * * The pm_active bitmask indicates which CPUs currently have the
2853 * pmap active. A CPU's bit is set on context switch to the pmap, and
2854 * cleared on switching off this CPU. For the kernel page table,
2855 * the pm_active field is immutable and contains all CPUs. The
2856 * kernel page table is always logically active on every processor,
2857 * but not necessarily in use by the hardware, e.g., in PTI mode.
2858 *
2859 * When requesting invalidation of virtual addresses with
2860 * pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2861 * all CPUs recorded as active in pm_active. Updates to and reads
2862 * from pm_active are not synchronized, and so they may race with
2863 * each other. Shootdown handlers are prepared to handle the race.
2864 *
2865 * * PCID is an optional feature of the long mode x86 MMU where TLB
2866 * entries are tagged with the 'Process ID' of the address space
2867 * they belong to. This feature provides a limited namespace for
2868 * process identifiers, 12 bits, supporting 4095 simultaneous IDs
2869 * total.
2870 *
2871 * Allocation of a PCID to a pmap is done by an algorithm described
2872 * in section 15.12, "Other TLB Consistency Algorithms", of
2873 * Vahalia's book "Unix Internals". A PCID cannot be allocated for
2874 * the whole lifetime of a pmap in pmap_pinit() due to the limited
2875 * namespace. Instead, a per-CPU, per-pmap PCID is assigned when
2876 * the CPU is about to start caching TLB entries from a pmap,
2877 * i.e., on the context switch that activates the pmap on the CPU.
2878 *
2879 * The PCID allocator maintains a per-CPU, per-pmap generation
2880 * count, pm_gen, which is incremented each time a new PCID is
2881 * allocated. On TLB invalidation, the generation counters for the
2882 * pmap are zeroed, which signals the context switch code that the
2883 * previously allocated PCID is no longer valid. Effectively,
2884 * zeroing any of these counters triggers a TLB shootdown for the
2885 * given CPU/address space, due to the allocation of a new PCID.
2886 *
2887 * Zeroing can be performed remotely. Consequently, if a pmap is
2888 * inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2889 * be initiated by an ordinary memory access to reset the target
2890 * CPU's generation count within the pmap. The CPU initiating the
2891 * TLB shootdown does not need to send an IPI to the target CPU.
2892 *
2893 * * PTI + PCID. The available PCIDs are divided into two sets: PCIDs
2894 * for complete (kernel) page tables, and PCIDs for user mode page
2895 * tables. A user PCID value is obtained from the kernel PCID value
2896 * by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2897 *
2898 * User space page tables are activated on return to user mode, by
2899 * loading pm_ucr3 into %cr3. If the PCPU(ucr3_load_mask) requests
2900 * clearing bit 63 of the loaded ucr3, this effectively causes
2901 * complete invalidation of the user mode TLB entries for the
2902 * current pmap. In which case, local invalidations of individual
2903 * pages in the user page table are skipped.
2904 *
2905 * * Local invalidation, all modes. If the requested invalidation is
2906 * for a specific address or the total invalidation of a currently
2907 * active pmap, then the TLB is flushed using INVLPG for a kernel
2908 * page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2909 * user space page table(s).
2910 *
2911 * If the INVPCID instruction is available, it is used to flush user
2912 * entries from the kernel page table.
2913 *
2914 * When PCID is enabled, the INVLPG instruction invalidates all TLB
2915 * entries for the given page that either match the current PCID or
2916 * are global. Since TLB entries for the same page under different
2917 * PCIDs are unaffected, kernel pages which reside in all address
2918 * spaces could be problematic. We avoid the problem by creating
2919 * all kernel PTEs with the global flag (PG_G) set, when PTI is
2920 * disabled.
2921 *
2922 * * mode: PTI disabled, PCID present. The kernel reserves PCID 0 for its
2923 * address space, all other 4095 PCIDs are used for user mode spaces
2924 * as described above. A context switch allocates a new PCID if
2925 * the recorded PCID is zero or the recorded generation does not match
2926 * the CPU's generation, effectively flushing the TLB for this address space.
2927 * Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2928 * local user page: INVLPG
2929 * local kernel page: INVLPG
2930 * local user total: INVPCID(CTX)
2931 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2932 * remote user page, inactive pmap: zero pm_gen
2933 * remote user page, active pmap: zero pm_gen + IPI:INVLPG
2934 * (Both actions are required to handle the aforementioned pm_active races.)
2935 * remote kernel page: IPI:INVLPG
2936 * remote user total, inactive pmap: zero pm_gen
2937 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2938 * reload %cr3)
2939 * (See note above about pm_active races.)
2940 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2941 *
2942 * PTI enabled, PCID present.
2943 * local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2944 * for upt
2945 * local kernel page: INVLPG
2946 * local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2947 * on loading UCR3 into %cr3 for upt
2948 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2949 * remote user page, inactive pmap: zero pm_gen
2950 * remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2951 * INVPCID(ADDR) for upt)
2952 * remote kernel page: IPI:INVLPG
2953 * remote user total, inactive pmap: zero pm_gen
2954 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2955 * clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2956 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2957 *
2958 * No PCID.
2959 * local user page: INVLPG
2960 * local kernel page: INVLPG
2961 * local user total: reload %cr3
2962 * local kernel total: invltlb_glob()
2963 * remote user page, inactive pmap: -
2964 * remote user page, active pmap: IPI:INVLPG
2965 * remote kernel page: IPI:INVLPG
2966 * remote user total, inactive pmap: -
2967 * remote user total, active pmap: IPI:(reload %cr3)
2968 * remote kernel total: IPI:invltlb_glob()
2969 * Since on return to user mode, the reload of %cr3 with ucr3 causes
2970 * TLB invalidation, no specific action is required for user page table.
2971 *
2972 * EPT. EPT pmaps do not map KVA, all mappings are userspace.
2973 * XXX TODO
2974 */
2975
2976 #ifdef SMP
2977 /*
2978 * Interrupt the cpus that are executing in the guest context.
2979 * This will force the vcpu to exit and the cached EPT mappings
2980 * will be invalidated by the host before the next vmresume.
2981 */
2982 static __inline void
pmap_invalidate_ept(pmap_t pmap)2983 pmap_invalidate_ept(pmap_t pmap)
2984 {
2985 smr_seq_t goal;
2986 int ipinum;
2987
2988 sched_pin();
2989 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
2990 ("pmap_invalidate_ept: absurd pm_active"));
2991
2992 /*
2993 * The TLB mappings associated with a vcpu context are not
2994 * flushed each time a different vcpu is chosen to execute.
2995 *
2996 * This is in contrast with a process's vtop mappings that
2997 * are flushed from the TLB on each context switch.
2998 *
2999 * Therefore we need to do more than just a TLB shootdown on
3000 * the active cpus in 'pmap->pm_active'. To do this we keep
3001 * track of the number of invalidations performed on this pmap.
3002 *
3003 * Each vcpu keeps a cache of this counter and compares it
3004 * just before a vmresume. If the counter is out-of-date an
3005 * invept will be done to flush stale mappings from the TLB.
3006 *
3007 * To ensure that all vCPU threads have observed the new counter
3008 * value before returning, we use SMR. Ordering is important here:
3009 * the VMM enters an SMR read section before loading the counter
3010 * and after updating the pm_active bit set. Thus, pm_active is
3011 * a superset of active readers, and any reader that has observed
3012 * the goal has observed the new counter value.
3013 */
3014 atomic_add_long(&pmap->pm_eptgen, 1);
3015
3016 goal = smr_advance(pmap->pm_eptsmr);
3017
3018 /*
3019 * Force the vcpu to exit and trap back into the hypervisor.
3020 */
3021 ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3022 ipi_selected(pmap->pm_active, ipinum);
3023 sched_unpin();
3024
3025 /*
3026 * Ensure that all active vCPUs will observe the new generation counter
3027 * value before executing any more guest instructions.
3028 */
3029 smr_wait(pmap->pm_eptsmr, goal);
3030 }
3031
3032 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3033 pmap_invalidate_preipi_pcid(pmap_t pmap)
3034 {
3035 struct pmap_pcid *pcidp;
3036 u_int cpuid, i;
3037
3038 sched_pin();
3039
3040 cpuid = PCPU_GET(cpuid);
3041 if (pmap != PCPU_GET(curpmap))
3042 cpuid = 0xffffffff; /* An impossible value */
3043
3044 CPU_FOREACH(i) {
3045 if (cpuid != i) {
3046 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3047 pcidp->pm_gen = 0;
3048 }
3049 }
3050
3051 /*
3052 * The fence is between stores to pm_gen and the read of the
3053 * pm_active mask. We need to ensure that it is impossible
3054 * for us to miss the bit update in pm_active and
3055 * simultaneously observe a non-zero pm_gen in
3056 * pmap_activate_sw(), otherwise TLB update is missed.
3057 * Without the fence, IA32 allows such an outcome. Note that
3058 * pm_active is updated by a locked operation, which provides
3059 * the reciprocal fence.
3060 */
3061 atomic_thread_fence_seq_cst();
3062 }
3063
3064 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3065 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3066 {
3067 sched_pin();
3068 }
3069
3070 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3071 {
3072 return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3073 pmap_invalidate_preipi_nopcid);
3074 }
3075
3076 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3077 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3078 const bool invpcid_works1)
3079 {
3080 struct invpcid_descr d;
3081 uint64_t kcr3, ucr3;
3082 uint32_t pcid;
3083
3084 /*
3085 * Because pm_pcid is recalculated on a context switch, we
3086 * must ensure there is no preemption, not just pinning.
3087 * Otherwise, we might use a stale value below.
3088 */
3089 CRITICAL_ASSERT(curthread);
3090
3091 /*
3092 * No need to do anything with user page tables invalidation
3093 * if there is no user page table, or invalidation is deferred
3094 * until the return to userspace. ucr3_load_mask is stable
3095 * because we have preemption disabled.
3096 */
3097 if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3098 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3099 return;
3100
3101 pcid = pmap_get_pcid(pmap);
3102 if (invpcid_works1) {
3103 d.pcid = pcid | PMAP_PCID_USER_PT;
3104 d.pad = 0;
3105 d.addr = va;
3106 invpcid(&d, INVPCID_ADDR);
3107 } else {
3108 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3109 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3110 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3111 }
3112 }
3113
3114 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3115 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3116 {
3117 pmap_invalidate_page_pcid_cb(pmap, va, true);
3118 }
3119
3120 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3121 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3122 {
3123 pmap_invalidate_page_pcid_cb(pmap, va, false);
3124 }
3125
3126 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3127 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3128 {
3129 }
3130
3131 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3132 {
3133 if (pmap_pcid_enabled)
3134 return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3135 pmap_invalidate_page_pcid_noinvpcid_cb);
3136 return (pmap_invalidate_page_nopcid_cb);
3137 }
3138
3139 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3140 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3141 vm_offset_t addr2 __unused)
3142 {
3143 if (pmap == kernel_pmap) {
3144 pmap_invlpg(kernel_pmap, va);
3145 } else if (pmap == PCPU_GET(curpmap)) {
3146 invlpg(va);
3147 pmap_invalidate_page_cb(pmap, va);
3148 }
3149 }
3150
3151 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3152 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3153 {
3154 if (pmap_type_guest(pmap)) {
3155 pmap_invalidate_ept(pmap);
3156 return;
3157 }
3158
3159 KASSERT(pmap->pm_type == PT_X86,
3160 ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3161
3162 pmap_invalidate_preipi(pmap);
3163 smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3164 }
3165
3166 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3167 #define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
3168
3169 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3170 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3171 const bool invpcid_works1)
3172 {
3173 struct invpcid_descr d;
3174 uint64_t kcr3, ucr3;
3175 uint32_t pcid;
3176
3177 CRITICAL_ASSERT(curthread);
3178
3179 if (pmap != PCPU_GET(curpmap) ||
3180 pmap->pm_ucr3 == PMAP_NO_CR3 ||
3181 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3182 return;
3183
3184 pcid = pmap_get_pcid(pmap);
3185 if (invpcid_works1) {
3186 d.pcid = pcid | PMAP_PCID_USER_PT;
3187 d.pad = 0;
3188 for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3189 invpcid(&d, INVPCID_ADDR);
3190 } else {
3191 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3192 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3193 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3194 }
3195 }
3196
3197 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3198 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3199 vm_offset_t eva)
3200 {
3201 pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3202 }
3203
3204 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3205 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3206 vm_offset_t eva)
3207 {
3208 pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3209 }
3210
3211 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3212 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3213 vm_offset_t eva __unused)
3214 {
3215 }
3216
3217 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3218 vm_offset_t))
3219 {
3220 if (pmap_pcid_enabled)
3221 return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3222 pmap_invalidate_range_pcid_noinvpcid_cb);
3223 return (pmap_invalidate_range_nopcid_cb);
3224 }
3225
3226 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3227 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3228 {
3229 vm_offset_t addr;
3230
3231 if (pmap == kernel_pmap) {
3232 if (PCPU_GET(pcid_invlpg_workaround)) {
3233 struct invpcid_descr d = { 0 };
3234
3235 invpcid(&d, INVPCID_CTXGLOB);
3236 } else {
3237 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3238 invlpg(addr);
3239 }
3240 } else if (pmap == PCPU_GET(curpmap)) {
3241 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3242 invlpg(addr);
3243 pmap_invalidate_range_cb(pmap, sva, eva);
3244 }
3245 }
3246
3247 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3248 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3249 {
3250 if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3251 pmap_invalidate_all(pmap);
3252 return;
3253 }
3254
3255 if (pmap_type_guest(pmap)) {
3256 pmap_invalidate_ept(pmap);
3257 return;
3258 }
3259
3260 KASSERT(pmap->pm_type == PT_X86,
3261 ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3262
3263 pmap_invalidate_preipi(pmap);
3264 smp_masked_invlpg_range(sva, eva, pmap,
3265 pmap_invalidate_range_curcpu_cb);
3266 }
3267
3268 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3269 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3270 {
3271 struct invpcid_descr d;
3272 uint64_t kcr3;
3273 uint32_t pcid;
3274
3275 if (pmap == kernel_pmap) {
3276 if (invpcid_works1) {
3277 bzero(&d, sizeof(d));
3278 invpcid(&d, INVPCID_CTXGLOB);
3279 } else {
3280 invltlb_glob();
3281 }
3282 } else if (pmap == PCPU_GET(curpmap)) {
3283 CRITICAL_ASSERT(curthread);
3284
3285 pcid = pmap_get_pcid(pmap);
3286 if (invpcid_works1) {
3287 d.pcid = pcid;
3288 d.pad = 0;
3289 d.addr = 0;
3290 invpcid(&d, INVPCID_CTX);
3291 } else {
3292 kcr3 = pmap->pm_cr3 | pcid;
3293 load_cr3(kcr3);
3294 }
3295 if (pmap->pm_ucr3 != PMAP_NO_CR3)
3296 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3297 }
3298 }
3299
3300 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3301 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3302 {
3303 pmap_invalidate_all_pcid_cb(pmap, true);
3304 }
3305
3306 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3307 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3308 {
3309 pmap_invalidate_all_pcid_cb(pmap, false);
3310 }
3311
3312 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3313 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3314 {
3315 if (pmap == kernel_pmap)
3316 invltlb_glob();
3317 else if (pmap == PCPU_GET(curpmap))
3318 invltlb();
3319 }
3320
3321 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3322 {
3323 if (pmap_pcid_enabled)
3324 return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3325 pmap_invalidate_all_pcid_noinvpcid_cb);
3326 return (pmap_invalidate_all_nopcid_cb);
3327 }
3328
3329 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3330 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3331 vm_offset_t addr2 __unused)
3332 {
3333 pmap_invalidate_all_cb(pmap);
3334 }
3335
3336 void
pmap_invalidate_all(pmap_t pmap)3337 pmap_invalidate_all(pmap_t pmap)
3338 {
3339 if (pmap_type_guest(pmap)) {
3340 pmap_invalidate_ept(pmap);
3341 return;
3342 }
3343
3344 KASSERT(pmap->pm_type == PT_X86,
3345 ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3346
3347 pmap_invalidate_preipi(pmap);
3348 smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3349 }
3350
3351 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3352 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3353 vm_offset_t addr2 __unused)
3354 {
3355 wbinvd();
3356 }
3357
3358 void
pmap_invalidate_cache(void)3359 pmap_invalidate_cache(void)
3360 {
3361 sched_pin();
3362 smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3363 }
3364
3365 struct pde_action {
3366 cpuset_t invalidate; /* processors that invalidate their TLB */
3367 pmap_t pmap;
3368 vm_offset_t va;
3369 pd_entry_t *pde;
3370 pd_entry_t newpde;
3371 u_int store; /* processor that updates the PDE */
3372 };
3373
3374 static void
pmap_update_pde_action(void * arg)3375 pmap_update_pde_action(void *arg)
3376 {
3377 struct pde_action *act = arg;
3378
3379 if (act->store == PCPU_GET(cpuid))
3380 pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3381 }
3382
3383 static void
pmap_update_pde_teardown(void * arg)3384 pmap_update_pde_teardown(void *arg)
3385 {
3386 struct pde_action *act = arg;
3387
3388 if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3389 pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3390 }
3391
3392 /*
3393 * Change the page size for the specified virtual address in a way that
3394 * prevents any possibility of the TLB ever having two entries that map the
3395 * same virtual address using different page sizes. This is the recommended
3396 * workaround for Erratum 383 on AMD Family 10h processors. It prevents a
3397 * machine check exception for a TLB state that is improperly diagnosed as a
3398 * hardware error.
3399 */
3400 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3401 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3402 {
3403 struct pde_action act;
3404 cpuset_t active, other_cpus;
3405 u_int cpuid;
3406
3407 sched_pin();
3408 cpuid = PCPU_GET(cpuid);
3409 other_cpus = all_cpus;
3410 CPU_CLR(cpuid, &other_cpus);
3411 if (pmap == kernel_pmap || pmap_type_guest(pmap))
3412 active = all_cpus;
3413 else {
3414 active = pmap->pm_active;
3415 }
3416 if (CPU_OVERLAP(&active, &other_cpus)) {
3417 act.store = cpuid;
3418 act.invalidate = active;
3419 act.va = va;
3420 act.pmap = pmap;
3421 act.pde = pde;
3422 act.newpde = newpde;
3423 CPU_SET(cpuid, &active);
3424 smp_rendezvous_cpus(active,
3425 smp_no_rendezvous_barrier, pmap_update_pde_action,
3426 pmap_update_pde_teardown, &act);
3427 } else {
3428 pmap_update_pde_store(pmap, pde, newpde);
3429 if (CPU_ISSET(cpuid, &active))
3430 pmap_update_pde_invalidate(pmap, va, newpde);
3431 }
3432 sched_unpin();
3433 }
3434 #else /* !SMP */
3435 /*
3436 * Normal, non-SMP, invalidation functions.
3437 */
3438 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3439 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3440 {
3441 struct invpcid_descr d;
3442 struct pmap_pcid *pcidp;
3443 uint64_t kcr3, ucr3;
3444 uint32_t pcid;
3445
3446 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3447 pmap->pm_eptgen++;
3448 return;
3449 }
3450 KASSERT(pmap->pm_type == PT_X86,
3451 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3452
3453 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3454 invlpg(va);
3455 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3456 pmap->pm_ucr3 != PMAP_NO_CR3) {
3457 critical_enter();
3458 pcid = pmap_get_pcid(pmap);
3459 if (invpcid_works) {
3460 d.pcid = pcid | PMAP_PCID_USER_PT;
3461 d.pad = 0;
3462 d.addr = va;
3463 invpcid(&d, INVPCID_ADDR);
3464 } else {
3465 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3466 ucr3 = pmap->pm_ucr3 | pcid |
3467 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3468 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3469 }
3470 critical_exit();
3471 }
3472 } else if (pmap_pcid_enabled) {
3473 pcidp = zpcpu_get(pmap->pm_pcidp);
3474 pcidp->pm_gen = 0;
3475 }
3476 }
3477
3478 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3479 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3480 {
3481 struct invpcid_descr d;
3482 struct pmap_pcid *pcidp;
3483 vm_offset_t addr;
3484 uint64_t kcr3, ucr3;
3485 uint32_t pcid;
3486
3487 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3488 pmap->pm_eptgen++;
3489 return;
3490 }
3491 KASSERT(pmap->pm_type == PT_X86,
3492 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3493
3494 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3495 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3496 invlpg(addr);
3497 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3498 pmap->pm_ucr3 != PMAP_NO_CR3) {
3499 critical_enter();
3500 pcid = pmap_get_pcid(pmap);
3501 if (invpcid_works) {
3502 d.pcid = pcid | PMAP_PCID_USER_PT;
3503 d.pad = 0;
3504 d.addr = sva;
3505 for (; d.addr < eva; d.addr += PAGE_SIZE)
3506 invpcid(&d, INVPCID_ADDR);
3507 } else {
3508 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3509 ucr3 = pmap->pm_ucr3 | pcid |
3510 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3511 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3512 }
3513 critical_exit();
3514 }
3515 } else if (pmap_pcid_enabled) {
3516 pcidp = zpcpu_get(pmap->pm_pcidp);
3517 pcidp->pm_gen = 0;
3518 }
3519 }
3520
3521 void
pmap_invalidate_all(pmap_t pmap)3522 pmap_invalidate_all(pmap_t pmap)
3523 {
3524 struct invpcid_descr d;
3525 struct pmap_pcid *pcidp;
3526 uint64_t kcr3, ucr3;
3527 uint32_t pcid;
3528
3529 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3530 pmap->pm_eptgen++;
3531 return;
3532 }
3533 KASSERT(pmap->pm_type == PT_X86,
3534 ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3535
3536 if (pmap == kernel_pmap) {
3537 if (pmap_pcid_enabled && invpcid_works) {
3538 bzero(&d, sizeof(d));
3539 invpcid(&d, INVPCID_CTXGLOB);
3540 } else {
3541 invltlb_glob();
3542 }
3543 } else if (pmap == PCPU_GET(curpmap)) {
3544 if (pmap_pcid_enabled) {
3545 critical_enter();
3546 pcid = pmap_get_pcid(pmap);
3547 if (invpcid_works) {
3548 d.pcid = pcid;
3549 d.pad = 0;
3550 d.addr = 0;
3551 invpcid(&d, INVPCID_CTX);
3552 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3553 d.pcid |= PMAP_PCID_USER_PT;
3554 invpcid(&d, INVPCID_CTX);
3555 }
3556 } else {
3557 kcr3 = pmap->pm_cr3 | pcid;
3558 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3559 ucr3 = pmap->pm_ucr3 | pcid |
3560 PMAP_PCID_USER_PT;
3561 pmap_pti_pcid_invalidate(ucr3, kcr3);
3562 } else
3563 load_cr3(kcr3);
3564 }
3565 critical_exit();
3566 } else {
3567 invltlb();
3568 }
3569 } else if (pmap_pcid_enabled) {
3570 pcidp = zpcpu_get(pmap->pm_pcidp);
3571 pcidp->pm_gen = 0;
3572 }
3573 }
3574
3575 void
pmap_invalidate_cache(void)3576 pmap_invalidate_cache(void)
3577 {
3578
3579 wbinvd();
3580 }
3581
3582 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3583 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3584 {
3585 struct pmap_pcid *pcidp;
3586
3587 pmap_update_pde_store(pmap, pde, newpde);
3588 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3589 pmap_update_pde_invalidate(pmap, va, newpde);
3590 else {
3591 pcidp = zpcpu_get(pmap->pm_pcidp);
3592 pcidp->pm_gen = 0;
3593 }
3594 }
3595 #endif /* !SMP */
3596
3597 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3598 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3599 {
3600
3601 /*
3602 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3603 * by a promotion that did not invalidate the 512 4KB page mappings
3604 * that might exist in the TLB. Consequently, at this point, the TLB
3605 * may hold both 4KB and 2MB page mappings for the address range [va,
3606 * va + NBPDR). Therefore, the entire range must be invalidated here.
3607 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3608 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3609 * single INVLPG suffices to invalidate the 2MB page mapping from the
3610 * TLB.
3611 */
3612 if ((pde & PG_PROMOTED) != 0)
3613 pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3614 else
3615 pmap_invalidate_page(pmap, va);
3616 }
3617
3618 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3619 (vm_offset_t sva, vm_offset_t eva))
3620 {
3621
3622 if ((cpu_feature & CPUID_SS) != 0)
3623 return (pmap_invalidate_cache_range_selfsnoop);
3624 if ((cpu_feature & CPUID_CLFSH) != 0)
3625 return (pmap_force_invalidate_cache_range);
3626 return (pmap_invalidate_cache_range_all);
3627 }
3628
3629 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
3630
3631 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3632 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3633 {
3634
3635 KASSERT((sva & PAGE_MASK) == 0,
3636 ("pmap_invalidate_cache_range: sva not page-aligned"));
3637 KASSERT((eva & PAGE_MASK) == 0,
3638 ("pmap_invalidate_cache_range: eva not page-aligned"));
3639 }
3640
3641 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3642 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3643 {
3644
3645 pmap_invalidate_cache_range_check_align(sva, eva);
3646 }
3647
3648 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3649 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3650 {
3651
3652 sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3653
3654 /*
3655 * XXX: Some CPUs fault, hang, or trash the local APIC
3656 * registers if we use CLFLUSH on the local APIC range. The
3657 * local APIC is always uncached, so we don't need to flush
3658 * for that range anyway.
3659 */
3660 if (pmap_kextract(sva) == lapic_paddr)
3661 return;
3662
3663 if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3664 /*
3665 * Do per-cache line flush. Use a locked
3666 * instruction to insure that previous stores are
3667 * included in the write-back. The processor
3668 * propagates flush to other processors in the cache
3669 * coherence domain.
3670 */
3671 atomic_thread_fence_seq_cst();
3672 for (; sva < eva; sva += cpu_clflush_line_size)
3673 clflushopt(sva);
3674 atomic_thread_fence_seq_cst();
3675 } else {
3676 /*
3677 * Writes are ordered by CLFLUSH on Intel CPUs.
3678 */
3679 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3680 mfence();
3681 for (; sva < eva; sva += cpu_clflush_line_size)
3682 clflush(sva);
3683 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3684 mfence();
3685 }
3686 }
3687
3688 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3689 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3690 {
3691
3692 pmap_invalidate_cache_range_check_align(sva, eva);
3693 pmap_invalidate_cache();
3694 }
3695
3696 /*
3697 * Remove the specified set of pages from the data and instruction caches.
3698 *
3699 * In contrast to pmap_invalidate_cache_range(), this function does not
3700 * rely on the CPU's self-snoop feature, because it is intended for use
3701 * when moving pages into a different cache domain.
3702 */
3703 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3704 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3705 {
3706 vm_offset_t daddr, eva;
3707 int i;
3708 bool useclflushopt;
3709
3710 useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3711 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3712 ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3713 pmap_invalidate_cache();
3714 else {
3715 if (useclflushopt)
3716 atomic_thread_fence_seq_cst();
3717 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3718 mfence();
3719 for (i = 0; i < count; i++) {
3720 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3721 eva = daddr + PAGE_SIZE;
3722 for (; daddr < eva; daddr += cpu_clflush_line_size) {
3723 if (useclflushopt)
3724 clflushopt(daddr);
3725 else
3726 clflush(daddr);
3727 }
3728 }
3729 if (useclflushopt)
3730 atomic_thread_fence_seq_cst();
3731 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3732 mfence();
3733 }
3734 }
3735
3736 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3737 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3738 {
3739
3740 pmap_invalidate_cache_range_check_align(sva, eva);
3741
3742 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3743 pmap_force_invalidate_cache_range(sva, eva);
3744 return;
3745 }
3746
3747 /* See comment in pmap_force_invalidate_cache_range(). */
3748 if (pmap_kextract(sva) == lapic_paddr)
3749 return;
3750
3751 atomic_thread_fence_seq_cst();
3752 for (; sva < eva; sva += cpu_clflush_line_size)
3753 clwb(sva);
3754 atomic_thread_fence_seq_cst();
3755 }
3756
3757 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3758 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3759 {
3760 pt_entry_t *pte;
3761 vm_offset_t vaddr;
3762 int error __diagused;
3763 int pte_bits;
3764
3765 KASSERT((spa & PAGE_MASK) == 0,
3766 ("pmap_flush_cache_phys_range: spa not page-aligned"));
3767 KASSERT((epa & PAGE_MASK) == 0,
3768 ("pmap_flush_cache_phys_range: epa not page-aligned"));
3769
3770 if (spa < dmaplimit) {
3771 pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3772 dmaplimit, epa)));
3773 if (dmaplimit >= epa)
3774 return;
3775 spa = dmaplimit;
3776 }
3777
3778 pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3779 X86_PG_V;
3780 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3781 &vaddr);
3782 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3783 pte = vtopte(vaddr);
3784 for (; spa < epa; spa += PAGE_SIZE) {
3785 sched_pin();
3786 pte_store(pte, spa | pte_bits);
3787 pmap_invlpg(kernel_pmap, vaddr);
3788 /* XXXKIB atomic inside flush_cache_range are excessive */
3789 pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3790 sched_unpin();
3791 }
3792 vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3793 }
3794
3795 /*
3796 * Routine: pmap_extract
3797 * Function:
3798 * Extract the physical page address associated
3799 * with the given map/virtual_address pair.
3800 */
3801 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3802 pmap_extract(pmap_t pmap, vm_offset_t va)
3803 {
3804 pdp_entry_t *pdpe;
3805 pd_entry_t *pde;
3806 pt_entry_t *pte, PG_V;
3807 vm_paddr_t pa;
3808
3809 pa = 0;
3810 PG_V = pmap_valid_bit(pmap);
3811 PMAP_LOCK(pmap);
3812 pdpe = pmap_pdpe(pmap, va);
3813 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3814 if ((*pdpe & PG_PS) != 0)
3815 pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3816 else {
3817 pde = pmap_pdpe_to_pde(pdpe, va);
3818 if ((*pde & PG_V) != 0) {
3819 if ((*pde & PG_PS) != 0) {
3820 pa = (*pde & PG_PS_FRAME) |
3821 (va & PDRMASK);
3822 } else {
3823 pte = pmap_pde_to_pte(pde, va);
3824 pa = (*pte & PG_FRAME) |
3825 (va & PAGE_MASK);
3826 }
3827 }
3828 }
3829 }
3830 PMAP_UNLOCK(pmap);
3831 return (pa);
3832 }
3833
3834 /*
3835 * Routine: pmap_extract_and_hold
3836 * Function:
3837 * Atomically extract and hold the physical page
3838 * with the given pmap and virtual address pair
3839 * if that mapping permits the given protection.
3840 */
3841 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3842 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3843 {
3844 pdp_entry_t pdpe, *pdpep;
3845 pd_entry_t pde, *pdep;
3846 pt_entry_t pte, PG_RW, PG_V;
3847 vm_page_t m;
3848
3849 m = NULL;
3850 PG_RW = pmap_rw_bit(pmap);
3851 PG_V = pmap_valid_bit(pmap);
3852 PMAP_LOCK(pmap);
3853
3854 pdpep = pmap_pdpe(pmap, va);
3855 if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3856 goto out;
3857 if ((pdpe & PG_PS) != 0) {
3858 if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3859 goto out;
3860 m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3861 goto check_page;
3862 }
3863
3864 pdep = pmap_pdpe_to_pde(pdpep, va);
3865 if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3866 goto out;
3867 if ((pde & PG_PS) != 0) {
3868 if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3869 goto out;
3870 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3871 goto check_page;
3872 }
3873
3874 pte = *pmap_pde_to_pte(pdep, va);
3875 if ((pte & PG_V) == 0 ||
3876 ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3877 goto out;
3878 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3879
3880 check_page:
3881 if (m != NULL && !vm_page_wire_mapped(m))
3882 m = NULL;
3883 out:
3884 PMAP_UNLOCK(pmap);
3885 return (m);
3886 }
3887
3888 /*
3889 * Routine: pmap_kextract
3890 * Function:
3891 * Extract the physical page address associated with the given kernel
3892 * virtual address.
3893 */
3894 vm_paddr_t
pmap_kextract(vm_offset_t va)3895 pmap_kextract(vm_offset_t va)
3896 {
3897 pd_entry_t pde;
3898 vm_paddr_t pa;
3899
3900 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3901 pa = DMAP_TO_PHYS(va);
3902 } else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3903 pa = pmap_large_map_kextract(va);
3904 } else {
3905 pde = *vtopde(va);
3906 if (pde & PG_PS) {
3907 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3908 } else {
3909 /*
3910 * Beware of a concurrent promotion that changes the
3911 * PDE at this point! For example, vtopte() must not
3912 * be used to access the PTE because it would use the
3913 * new PDE. It is, however, safe to use the old PDE
3914 * because the page table page is preserved by the
3915 * promotion.
3916 */
3917 pa = *pmap_pde_to_pte(&pde, va);
3918 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3919 }
3920 }
3921 return (pa);
3922 }
3923
3924 /***************************************************
3925 * Low level mapping routines.....
3926 ***************************************************/
3927
3928 /*
3929 * Add a wired page to the kva.
3930 * Note: not SMP coherent.
3931 */
3932 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3933 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3934 {
3935 pt_entry_t *pte;
3936
3937 pte = vtopte(va);
3938 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3939 X86_PG_RW | X86_PG_V);
3940 }
3941
3942 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3943 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3944 {
3945 pt_entry_t *pte;
3946 int cache_bits;
3947
3948 pte = vtopte(va);
3949 cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3950 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3951 X86_PG_RW | X86_PG_V | cache_bits);
3952 }
3953
3954 /*
3955 * Remove a page from the kernel pagetables.
3956 * Note: not SMP coherent.
3957 */
3958 void
pmap_kremove(vm_offset_t va)3959 pmap_kremove(vm_offset_t va)
3960 {
3961 pt_entry_t *pte;
3962
3963 pte = vtopte(va);
3964 pte_clear(pte);
3965 }
3966
3967 /*
3968 * Used to map a range of physical addresses into kernel
3969 * virtual address space.
3970 *
3971 * The value passed in '*virt' is a suggested virtual address for
3972 * the mapping. Architectures which can support a direct-mapped
3973 * physical to virtual region can return the appropriate address
3974 * within that region, leaving '*virt' unchanged. Other
3975 * architectures should map the pages starting at '*virt' and
3976 * update '*virt' with the first usable address after the mapped
3977 * region.
3978 */
3979 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)3980 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
3981 {
3982 return PHYS_TO_DMAP(start);
3983 }
3984
3985 /*
3986 * Add a list of wired pages to the kva
3987 * this routine is only used for temporary
3988 * kernel mappings that do not need to have
3989 * page modification or references recorded.
3990 * Note that old mappings are simply written
3991 * over. The page *must* be wired.
3992 * Note: SMP coherent. Uses a ranged shootdown IPI.
3993 */
3994 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)3995 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
3996 {
3997 pt_entry_t *endpte, oldpte, pa, *pte;
3998 vm_page_t m;
3999 int cache_bits;
4000
4001 oldpte = 0;
4002 pte = vtopte(sva);
4003 endpte = pte + count;
4004 while (pte < endpte) {
4005 m = *ma++;
4006 cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4007 pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4008 if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4009 oldpte |= *pte;
4010 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4011 X86_PG_M | X86_PG_RW | X86_PG_V);
4012 }
4013 pte++;
4014 }
4015 if (__predict_false((oldpte & X86_PG_V) != 0))
4016 pmap_invalidate_range(kernel_pmap, sva, sva + count *
4017 PAGE_SIZE);
4018 }
4019
4020 /*
4021 * This routine tears out page mappings from the
4022 * kernel -- it is meant only for temporary mappings.
4023 * Note: SMP coherent. Uses a ranged shootdown IPI.
4024 */
4025 void
pmap_qremove(vm_offset_t sva,int count)4026 pmap_qremove(vm_offset_t sva, int count)
4027 {
4028 vm_offset_t va;
4029
4030 va = sva;
4031 while (count-- > 0) {
4032 /*
4033 * pmap_enter() calls within the kernel virtual
4034 * address space happen on virtual addresses from
4035 * subarenas that import superpage-sized and -aligned
4036 * address ranges. So, the virtual address that we
4037 * allocate to use with pmap_qenter() can't be close
4038 * enough to one of those pmap_enter() calls for it to
4039 * be caught up in a promotion.
4040 */
4041 KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4042 KASSERT((*vtopde(va) & X86_PG_PS) == 0,
4043 ("pmap_qremove on promoted va %#lx", va));
4044
4045 pmap_kremove(va);
4046 va += PAGE_SIZE;
4047 }
4048 pmap_invalidate_range(kernel_pmap, sva, va);
4049 }
4050
4051 /***************************************************
4052 * Page table page management routines.....
4053 ***************************************************/
4054 /*
4055 * Schedule the specified unused page table page to be freed. Specifically,
4056 * add the page to the specified list of pages that will be released to the
4057 * physical memory manager after the TLB has been updated.
4058 */
4059 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4060 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4061 {
4062
4063 if (set_PG_ZERO)
4064 m->flags |= PG_ZERO;
4065 else
4066 m->flags &= ~PG_ZERO;
4067 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4068 }
4069
4070 /*
4071 * Inserts the specified page table page into the specified pmap's collection
4072 * of idle page table pages. Each of a pmap's page table pages is responsible
4073 * for mapping a distinct range of virtual addresses. The pmap's collection is
4074 * ordered by this virtual address range.
4075 *
4076 * If "promoted" is false, then the page table page "mpte" must be zero filled;
4077 * "mpte"'s valid field will be set to 0.
4078 *
4079 * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4080 * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4081 * valid field will be set to 1.
4082 *
4083 * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4084 * valid mappings with identical attributes including PG_A; "mpte"'s valid
4085 * field will be set to VM_PAGE_BITS_ALL.
4086 */
4087 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4088 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4089 bool allpte_PG_A_set)
4090 {
4091
4092 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4093 KASSERT(promoted || !allpte_PG_A_set,
4094 ("a zero-filled PTP can't have PG_A set in every PTE"));
4095 mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4096 return (vm_radix_insert(&pmap->pm_root, mpte));
4097 }
4098
4099 /*
4100 * Removes the page table page mapping the specified virtual address from the
4101 * specified pmap's collection of idle page table pages, and returns it.
4102 * Otherwise, returns NULL if there is no page table page corresponding to the
4103 * specified virtual address.
4104 */
4105 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4106 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4107 {
4108
4109 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4110 return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4111 }
4112
4113 /*
4114 * Decrements a page table page's reference count, which is used to record the
4115 * number of valid page table entries within the page. If the reference count
4116 * drops to zero, then the page table page is unmapped. Returns true if the
4117 * page table page was unmapped and false otherwise.
4118 */
4119 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4120 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4121 {
4122
4123 --m->ref_count;
4124 if (m->ref_count == 0) {
4125 _pmap_unwire_ptp(pmap, va, m, free);
4126 return (true);
4127 } else
4128 return (false);
4129 }
4130
4131 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4132 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4133 {
4134 pml5_entry_t *pml5;
4135 pml4_entry_t *pml4;
4136 pdp_entry_t *pdp;
4137 pd_entry_t *pd;
4138 vm_page_t pdpg, pdppg, pml4pg;
4139
4140 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4141
4142 /*
4143 * unmap the page table page
4144 */
4145 if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4146 /* PML4 page */
4147 MPASS(pmap_is_la57(pmap));
4148 pml5 = pmap_pml5e(pmap, va);
4149 *pml5 = 0;
4150 if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4151 pml5 = pmap_pml5e_u(pmap, va);
4152 *pml5 = 0;
4153 }
4154 } else if (m->pindex >= NUPDE + NUPDPE) {
4155 /* PDP page */
4156 pml4 = pmap_pml4e(pmap, va);
4157 *pml4 = 0;
4158 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4159 va <= VM_MAXUSER_ADDRESS) {
4160 pml4 = pmap_pml4e_u(pmap, va);
4161 *pml4 = 0;
4162 }
4163 } else if (m->pindex >= NUPDE) {
4164 /* PD page */
4165 pdp = pmap_pdpe(pmap, va);
4166 *pdp = 0;
4167 } else {
4168 /* PTE page */
4169 pd = pmap_pde(pmap, va);
4170 *pd = 0;
4171 }
4172 if (m->pindex < NUPDE) {
4173 /* We just released a PT, unhold the matching PD */
4174 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4175 pmap_unwire_ptp(pmap, va, pdpg, free);
4176 } else if (m->pindex < NUPDE + NUPDPE) {
4177 /* We just released a PD, unhold the matching PDP */
4178 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4179 pmap_unwire_ptp(pmap, va, pdppg, free);
4180 } else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4181 /* We just released a PDP, unhold the matching PML4 */
4182 pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4183 pmap_unwire_ptp(pmap, va, pml4pg, free);
4184 }
4185
4186 pmap_pt_page_count_adj(pmap, -1);
4187
4188 /*
4189 * Put page on a list so that it is released after
4190 * *ALL* TLB shootdown is done
4191 */
4192 pmap_add_delayed_free_list(m, free, true);
4193 }
4194
4195 /*
4196 * After removing a page table entry, this routine is used to
4197 * conditionally free the page, and manage the reference count.
4198 */
4199 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4200 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4201 struct spglist *free)
4202 {
4203 vm_page_t mpte;
4204
4205 if (va >= VM_MAXUSER_ADDRESS)
4206 return (0);
4207 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4208 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4209 return (pmap_unwire_ptp(pmap, va, mpte, free));
4210 }
4211
4212 /*
4213 * Release a page table page reference after a failed attempt to create a
4214 * mapping.
4215 */
4216 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4217 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4218 {
4219 struct spglist free;
4220
4221 SLIST_INIT(&free);
4222 if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4223 /*
4224 * Although "va" was never mapped, paging-structure caches
4225 * could nonetheless have entries that refer to the freed
4226 * page table pages. Invalidate those entries.
4227 */
4228 pmap_invalidate_page(pmap, va);
4229 vm_page_free_pages_toq(&free, true);
4230 }
4231 }
4232
4233 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4234 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4235 {
4236 struct pmap_pcid *pcidp;
4237 int i;
4238
4239 CPU_FOREACH(i) {
4240 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4241 pcidp->pm_pcid = pcid;
4242 pcidp->pm_gen = gen;
4243 }
4244 }
4245
4246 void
pmap_pinit0(pmap_t pmap)4247 pmap_pinit0(pmap_t pmap)
4248 {
4249 struct proc *p;
4250 struct thread *td;
4251
4252 PMAP_LOCK_INIT(pmap);
4253 pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4254 pmap->pm_pmltopu = NULL;
4255 pmap->pm_cr3 = kernel_pmap->pm_cr3;
4256 /* hack to keep pmap_pti_pcid_invalidate() alive */
4257 pmap->pm_ucr3 = PMAP_NO_CR3;
4258 vm_radix_init(&pmap->pm_root);
4259 CPU_ZERO(&pmap->pm_active);
4260 TAILQ_INIT(&pmap->pm_pvchunk);
4261 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4262 pmap->pm_flags = pmap_flags;
4263 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4264 pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4265 pmap_activate_boot(pmap);
4266 td = curthread;
4267 if (pti) {
4268 p = td->td_proc;
4269 PROC_LOCK(p);
4270 p->p_md.md_flags |= P_MD_KPTI;
4271 PROC_UNLOCK(p);
4272 }
4273 pmap_thread_init_invl_gen(td);
4274
4275 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4276 pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4277 sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4278 UMA_ALIGN_PTR, 0);
4279 }
4280 }
4281
4282 void
pmap_pinit_pml4(vm_page_t pml4pg)4283 pmap_pinit_pml4(vm_page_t pml4pg)
4284 {
4285 pml4_entry_t *pm_pml4;
4286 int i;
4287
4288 pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4289
4290 /* Wire in kernel global address entries. */
4291 for (i = 0; i < NKPML4E; i++) {
4292 pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4293 X86_PG_V;
4294 }
4295 #ifdef KASAN
4296 for (i = 0; i < NKASANPML4E; i++) {
4297 pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4298 X86_PG_V | pg_nx;
4299 }
4300 #endif
4301 #ifdef KMSAN
4302 for (i = 0; i < NKMSANSHADPML4E; i++) {
4303 pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4304 X86_PG_RW | X86_PG_V | pg_nx;
4305 }
4306 for (i = 0; i < NKMSANORIGPML4E; i++) {
4307 pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4308 X86_PG_RW | X86_PG_V | pg_nx;
4309 }
4310 #endif
4311 for (i = 0; i < ndmpdpphys; i++) {
4312 pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4313 X86_PG_V;
4314 }
4315
4316 /* install self-referential address mapping entry(s) */
4317 pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4318 X86_PG_A | X86_PG_M;
4319
4320 /* install large map entries if configured */
4321 for (i = 0; i < lm_ents; i++)
4322 pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4323 }
4324
4325 void
pmap_pinit_pml5(vm_page_t pml5pg)4326 pmap_pinit_pml5(vm_page_t pml5pg)
4327 {
4328 pml5_entry_t *pm_pml5;
4329
4330 pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4331
4332 /*
4333 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4334 * entering all existing kernel mappings into level 5 table.
4335 */
4336 pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4337 X86_PG_RW | X86_PG_A | X86_PG_M;
4338
4339 /*
4340 * Install self-referential address mapping entry.
4341 */
4342 pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4343 X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A;
4344 }
4345
4346 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4347 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4348 {
4349 pml4_entry_t *pm_pml4u;
4350 int i;
4351
4352 pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4353 for (i = 0; i < NPML4EPG; i++)
4354 pm_pml4u[i] = pti_pml4[i];
4355 }
4356
4357 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4358 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4359 {
4360 pml5_entry_t *pm_pml5u;
4361
4362 pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4363 pagezero(pm_pml5u);
4364
4365 /*
4366 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4367 * table, entering all kernel mappings needed for usermode
4368 * into level 5 table.
4369 */
4370 pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4371 pmap_kextract((vm_offset_t)pti_pml4) |
4372 X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4373 }
4374
4375 /* Allocate a page table page and do related bookkeeping */
4376 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4377 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4378 {
4379 vm_page_t m;
4380
4381 m = vm_page_alloc_noobj(flags);
4382 if (__predict_false(m == NULL))
4383 return (NULL);
4384 m->pindex = pindex;
4385 pmap_pt_page_count_adj(pmap, 1);
4386 return (m);
4387 }
4388
4389 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4390 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4391 {
4392 /*
4393 * This function assumes the page will need to be unwired,
4394 * even though the counterpart allocation in pmap_alloc_pt_page()
4395 * doesn't enforce VM_ALLOC_WIRED. However, all current uses
4396 * of pmap_free_pt_page() require unwiring. The case in which
4397 * a PT page doesn't require unwiring because its ref_count has
4398 * naturally reached 0 is handled through _pmap_unwire_ptp().
4399 */
4400 vm_page_unwire_noq(m);
4401 if (zerofilled)
4402 vm_page_free_zero(m);
4403 else
4404 vm_page_free(m);
4405
4406 pmap_pt_page_count_adj(pmap, -1);
4407 }
4408
4409 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4410
4411 /*
4412 * Initialize a preallocated and zeroed pmap structure,
4413 * such as one in a vmspace structure.
4414 */
4415 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4416 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4417 {
4418 vm_page_t pmltop_pg, pmltop_pgu;
4419 vm_paddr_t pmltop_phys;
4420
4421 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4422
4423 /*
4424 * Allocate the page directory page. Pass NULL instead of a
4425 * pointer to the pmap here to avoid calling
4426 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4427 * since that requires pmap lock. Instead do the accounting
4428 * manually.
4429 *
4430 * Note that final call to pmap_remove() optimization that
4431 * checks for zero resident_count is basically disabled by
4432 * accounting for top-level page. But the optimization was
4433 * not effective since we started using non-managed mapping of
4434 * the shared page.
4435 */
4436 pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4437 VM_ALLOC_WAITOK);
4438 pmap_pt_page_count_pinit(pmap, 1);
4439
4440 pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4441 pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4442
4443 if (pmap_pcid_enabled) {
4444 if (pmap->pm_pcidp == NULL)
4445 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4446 M_WAITOK);
4447 pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4448 }
4449 pmap->pm_cr3 = PMAP_NO_CR3; /* initialize to an invalid value */
4450 pmap->pm_ucr3 = PMAP_NO_CR3;
4451 pmap->pm_pmltopu = NULL;
4452
4453 pmap->pm_type = pm_type;
4454
4455 /*
4456 * Do not install the host kernel mappings in the nested page
4457 * tables. These mappings are meaningless in the guest physical
4458 * address space.
4459 * Install minimal kernel mappings in PTI case.
4460 */
4461 switch (pm_type) {
4462 case PT_X86:
4463 pmap->pm_cr3 = pmltop_phys;
4464 if (pmap_is_la57(pmap))
4465 pmap_pinit_pml5(pmltop_pg);
4466 else
4467 pmap_pinit_pml4(pmltop_pg);
4468 if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4469 /*
4470 * As with pmltop_pg, pass NULL instead of a
4471 * pointer to the pmap to ensure that the PTI
4472 * page counted explicitly.
4473 */
4474 pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4475 VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4476 pmap_pt_page_count_pinit(pmap, 1);
4477 pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4478 VM_PAGE_TO_PHYS(pmltop_pgu));
4479 if (pmap_is_la57(pmap))
4480 pmap_pinit_pml5_pti(pmltop_pgu);
4481 else
4482 pmap_pinit_pml4_pti(pmltop_pgu);
4483 pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4484 }
4485 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4486 rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4487 pkru_free_range, pmap, M_NOWAIT);
4488 }
4489 break;
4490 case PT_EPT:
4491 case PT_RVI:
4492 pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4493 break;
4494 }
4495
4496 vm_radix_init(&pmap->pm_root);
4497 CPU_ZERO(&pmap->pm_active);
4498 TAILQ_INIT(&pmap->pm_pvchunk);
4499 pmap->pm_flags = flags;
4500 pmap->pm_eptgen = 0;
4501
4502 return (1);
4503 }
4504
4505 int
pmap_pinit(pmap_t pmap)4506 pmap_pinit(pmap_t pmap)
4507 {
4508
4509 return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4510 }
4511
4512 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4513 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4514 {
4515 vm_page_t mpg;
4516 struct spglist free;
4517
4518 mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4519 if (mpg->ref_count != 0)
4520 return;
4521 SLIST_INIT(&free);
4522 _pmap_unwire_ptp(pmap, va, mpg, &free);
4523 pmap_invalidate_page(pmap, va);
4524 vm_page_free_pages_toq(&free, true);
4525 }
4526
4527 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4528 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4529 bool addref)
4530 {
4531 vm_pindex_t pml5index;
4532 pml5_entry_t *pml5;
4533 pml4_entry_t *pml4;
4534 vm_page_t pml4pg;
4535 pt_entry_t PG_V;
4536 bool allocated;
4537
4538 if (!pmap_is_la57(pmap))
4539 return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4540
4541 PG_V = pmap_valid_bit(pmap);
4542 pml5index = pmap_pml5e_index(va);
4543 pml5 = &pmap->pm_pmltop[pml5index];
4544 if ((*pml5 & PG_V) == 0) {
4545 if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4546 va) == NULL)
4547 return (NULL);
4548 allocated = true;
4549 } else {
4550 allocated = false;
4551 }
4552 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4553 pml4 = &pml4[pmap_pml4e_index(va)];
4554 if ((*pml4 & PG_V) == 0) {
4555 pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4556 if (allocated && !addref)
4557 pml4pg->ref_count--;
4558 else if (!allocated && addref)
4559 pml4pg->ref_count++;
4560 }
4561 return (pml4);
4562 }
4563
4564 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4565 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4566 bool addref)
4567 {
4568 vm_page_t pdppg;
4569 pml4_entry_t *pml4;
4570 pdp_entry_t *pdp;
4571 pt_entry_t PG_V;
4572 bool allocated;
4573
4574 PG_V = pmap_valid_bit(pmap);
4575
4576 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4577 if (pml4 == NULL)
4578 return (NULL);
4579
4580 if ((*pml4 & PG_V) == 0) {
4581 /* Have to allocate a new pdp, recurse */
4582 if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4583 va) == NULL) {
4584 if (pmap_is_la57(pmap))
4585 pmap_allocpte_free_unref(pmap, va,
4586 pmap_pml5e(pmap, va));
4587 return (NULL);
4588 }
4589 allocated = true;
4590 } else {
4591 allocated = false;
4592 }
4593 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4594 pdp = &pdp[pmap_pdpe_index(va)];
4595 if ((*pdp & PG_V) == 0) {
4596 pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4597 if (allocated && !addref)
4598 pdppg->ref_count--;
4599 else if (!allocated && addref)
4600 pdppg->ref_count++;
4601 }
4602 return (pdp);
4603 }
4604
4605 /*
4606 * The ptepindexes, i.e. page indices, of the page table pages encountered
4607 * while translating virtual address va are defined as follows:
4608 * - for the page table page (last level),
4609 * ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4610 * in other words, it is just the index of the PDE that maps the page
4611 * table page.
4612 * - for the page directory page,
4613 * ptepindex = NUPDE (number of userland PD entries) +
4614 * (pmap_pde_index(va) >> NPDEPGSHIFT)
4615 * i.e. index of PDPE is put after the last index of PDE,
4616 * - for the page directory pointer page,
4617 * ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4618 * NPML4EPGSHIFT),
4619 * i.e. index of pml4e is put after the last index of PDPE,
4620 * - for the PML4 page (if LA57 mode is enabled),
4621 * ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4622 * (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4623 * i.e. index of pml5e is put after the last index of PML4E.
4624 *
4625 * Define an order on the paging entries, where all entries of the
4626 * same height are put together, then heights are put from deepest to
4627 * root. Then ptexpindex is the sequential number of the
4628 * corresponding paging entry in this order.
4629 *
4630 * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4631 * LA57 paging structures even in LA48 paging mode. Moreover, the
4632 * ptepindexes are calculated as if the paging structures were 5-level
4633 * regardless of the actual mode of operation.
4634 *
4635 * The root page at PML4/PML5 does not participate in this indexing scheme,
4636 * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4637 */
4638 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4639 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4640 vm_offset_t va)
4641 {
4642 vm_pindex_t pml5index, pml4index;
4643 pml5_entry_t *pml5, *pml5u;
4644 pml4_entry_t *pml4, *pml4u;
4645 pdp_entry_t *pdp;
4646 pd_entry_t *pd;
4647 vm_page_t m, pdpg;
4648 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4649
4650 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4651
4652 PG_A = pmap_accessed_bit(pmap);
4653 PG_M = pmap_modified_bit(pmap);
4654 PG_V = pmap_valid_bit(pmap);
4655 PG_RW = pmap_rw_bit(pmap);
4656
4657 /*
4658 * Allocate a page table page.
4659 */
4660 m = pmap_alloc_pt_page(pmap, ptepindex,
4661 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4662 if (m == NULL)
4663 return (NULL);
4664
4665 /*
4666 * Map the pagetable page into the process address space, if
4667 * it isn't already there.
4668 */
4669 if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4670 MPASS(pmap_is_la57(pmap));
4671
4672 pml5index = pmap_pml5e_index(va);
4673 pml5 = &pmap->pm_pmltop[pml5index];
4674 KASSERT((*pml5 & PG_V) == 0,
4675 ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4676 *pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4677
4678 if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4679 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4680 *pml5 |= pg_nx;
4681
4682 pml5u = &pmap->pm_pmltopu[pml5index];
4683 *pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4684 PG_A | PG_M;
4685 }
4686 } else if (ptepindex >= NUPDE + NUPDPE) {
4687 pml4index = pmap_pml4e_index(va);
4688 /* Wire up a new PDPE page */
4689 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4690 if (pml4 == NULL) {
4691 pmap_free_pt_page(pmap, m, true);
4692 return (NULL);
4693 }
4694 KASSERT((*pml4 & PG_V) == 0,
4695 ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4696 *pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4697
4698 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4699 pml4index < NUPML4E) {
4700 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4701
4702 /*
4703 * PTI: Make all user-space mappings in the
4704 * kernel-mode page table no-execute so that
4705 * we detect any programming errors that leave
4706 * the kernel-mode page table active on return
4707 * to user space.
4708 */
4709 *pml4 |= pg_nx;
4710
4711 pml4u = &pmap->pm_pmltopu[pml4index];
4712 *pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4713 PG_A | PG_M;
4714 }
4715 } else if (ptepindex >= NUPDE) {
4716 /* Wire up a new PDE page */
4717 pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4718 if (pdp == NULL) {
4719 pmap_free_pt_page(pmap, m, true);
4720 return (NULL);
4721 }
4722 KASSERT((*pdp & PG_V) == 0,
4723 ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4724 *pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4725 } else {
4726 /* Wire up a new PTE page */
4727 pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4728 if (pdp == NULL) {
4729 pmap_free_pt_page(pmap, m, true);
4730 return (NULL);
4731 }
4732 if ((*pdp & PG_V) == 0) {
4733 /* Have to allocate a new pd, recurse */
4734 if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4735 lockp, va) == NULL) {
4736 pmap_allocpte_free_unref(pmap, va,
4737 pmap_pml4e(pmap, va));
4738 pmap_free_pt_page(pmap, m, true);
4739 return (NULL);
4740 }
4741 } else {
4742 /* Add reference to the pd page */
4743 pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4744 pdpg->ref_count++;
4745 }
4746 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4747
4748 /* Now we know where the page directory page is */
4749 pd = &pd[pmap_pde_index(va)];
4750 KASSERT((*pd & PG_V) == 0,
4751 ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4752 *pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4753 }
4754
4755 return (m);
4756 }
4757
4758 /*
4759 * This routine is called if the desired page table page does not exist.
4760 *
4761 * If page table page allocation fails, this routine may sleep before
4762 * returning NULL. It sleeps only if a lock pointer was given. Sleep
4763 * occurs right before returning to the caller. This way, we never
4764 * drop pmap lock to sleep while a page table page has ref_count == 0,
4765 * which prevents the page from being freed under us.
4766 */
4767 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4768 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4769 vm_offset_t va)
4770 {
4771 vm_page_t m;
4772
4773 m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4774 if (m == NULL && lockp != NULL) {
4775 RELEASE_PV_LIST_LOCK(lockp);
4776 PMAP_UNLOCK(pmap);
4777 PMAP_ASSERT_NOT_IN_DI();
4778 vm_wait(NULL);
4779 PMAP_LOCK(pmap);
4780 }
4781 return (m);
4782 }
4783
4784 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4785 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4786 struct rwlock **lockp)
4787 {
4788 pdp_entry_t *pdpe, PG_V;
4789 pd_entry_t *pde;
4790 vm_page_t pdpg;
4791 vm_pindex_t pdpindex;
4792
4793 PG_V = pmap_valid_bit(pmap);
4794
4795 retry:
4796 pdpe = pmap_pdpe(pmap, va);
4797 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4798 pde = pmap_pdpe_to_pde(pdpe, va);
4799 if (va < VM_MAXUSER_ADDRESS) {
4800 /* Add a reference to the pd page. */
4801 pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4802 pdpg->ref_count++;
4803 } else
4804 pdpg = NULL;
4805 } else if (va < VM_MAXUSER_ADDRESS) {
4806 /* Allocate a pd page. */
4807 pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4808 pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4809 if (pdpg == NULL) {
4810 if (lockp != NULL)
4811 goto retry;
4812 else
4813 return (NULL);
4814 }
4815 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4816 pde = &pde[pmap_pde_index(va)];
4817 } else
4818 panic("pmap_alloc_pde: missing page table page for va %#lx",
4819 va);
4820 *pdpgp = pdpg;
4821 return (pde);
4822 }
4823
4824 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4825 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4826 {
4827 vm_pindex_t ptepindex;
4828 pd_entry_t *pd, PG_V;
4829 vm_page_t m;
4830
4831 PG_V = pmap_valid_bit(pmap);
4832
4833 /*
4834 * Calculate pagetable page index
4835 */
4836 ptepindex = pmap_pde_pindex(va);
4837 retry:
4838 /*
4839 * Get the page directory entry
4840 */
4841 pd = pmap_pde(pmap, va);
4842
4843 /*
4844 * This supports switching from a 2MB page to a
4845 * normal 4K page.
4846 */
4847 if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4848 if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4849 /*
4850 * Invalidation of the 2MB page mapping may have caused
4851 * the deallocation of the underlying PD page.
4852 */
4853 pd = NULL;
4854 }
4855 }
4856
4857 /*
4858 * If the page table page is mapped, we just increment the
4859 * hold count, and activate it.
4860 */
4861 if (pd != NULL && (*pd & PG_V) != 0) {
4862 m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4863 m->ref_count++;
4864 } else {
4865 /*
4866 * Here if the pte page isn't mapped, or if it has been
4867 * deallocated.
4868 */
4869 m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4870 if (m == NULL && lockp != NULL)
4871 goto retry;
4872 }
4873 return (m);
4874 }
4875
4876 /***************************************************
4877 * Pmap allocation/deallocation routines.
4878 ***************************************************/
4879
4880 /*
4881 * Release any resources held by the given physical map.
4882 * Called when a pmap initialized by pmap_pinit is being released.
4883 * Should only be called if the map contains no valid mappings.
4884 */
4885 void
pmap_release(pmap_t pmap)4886 pmap_release(pmap_t pmap)
4887 {
4888 vm_page_t m;
4889 int i;
4890
4891 KASSERT(vm_radix_is_empty(&pmap->pm_root),
4892 ("pmap_release: pmap %p has reserved page table page(s)",
4893 pmap));
4894 KASSERT(CPU_EMPTY(&pmap->pm_active),
4895 ("releasing active pmap %p", pmap));
4896
4897 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4898
4899 if (pmap_is_la57(pmap)) {
4900 pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4901 pmap->pm_pmltop[PML5PML5I] = 0;
4902 } else {
4903 for (i = 0; i < NKPML4E; i++) /* KVA */
4904 pmap->pm_pmltop[KPML4BASE + i] = 0;
4905 #ifdef KASAN
4906 for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4907 pmap->pm_pmltop[KASANPML4I + i] = 0;
4908 #endif
4909 #ifdef KMSAN
4910 for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4911 pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4912 for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4913 pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4914 #endif
4915 for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4916 pmap->pm_pmltop[DMPML4I + i] = 0;
4917 pmap->pm_pmltop[PML4PML4I] = 0; /* Recursive Mapping */
4918 for (i = 0; i < lm_ents; i++) /* Large Map */
4919 pmap->pm_pmltop[LMSPML4I + i] = 0;
4920 }
4921
4922 pmap_free_pt_page(NULL, m, true);
4923 pmap_pt_page_count_pinit(pmap, -1);
4924
4925 if (pmap->pm_pmltopu != NULL) {
4926 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4927 pm_pmltopu));
4928 pmap_free_pt_page(NULL, m, false);
4929 pmap_pt_page_count_pinit(pmap, -1);
4930 }
4931 if (pmap->pm_type == PT_X86 &&
4932 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4933 rangeset_fini(&pmap->pm_pkru);
4934
4935 KASSERT(pmap->pm_stats.resident_count == 0,
4936 ("pmap_release: pmap %p resident count %ld != 0",
4937 pmap, pmap->pm_stats.resident_count));
4938 }
4939
4940 static int
kvm_size(SYSCTL_HANDLER_ARGS)4941 kvm_size(SYSCTL_HANDLER_ARGS)
4942 {
4943 unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4944
4945 return sysctl_handle_long(oidp, &ksize, 0, req);
4946 }
4947 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4948 0, 0, kvm_size, "LU",
4949 "Size of KVM");
4950
4951 static int
kvm_free(SYSCTL_HANDLER_ARGS)4952 kvm_free(SYSCTL_HANDLER_ARGS)
4953 {
4954 unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4955
4956 return sysctl_handle_long(oidp, &kfree, 0, req);
4957 }
4958 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4959 0, 0, kvm_free, "LU",
4960 "Amount of KVM free");
4961
4962 #ifdef KMSAN
4963 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4964 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4965 {
4966 pdp_entry_t *pdpe;
4967 pd_entry_t *pde;
4968 pt_entry_t *pte;
4969 vm_paddr_t dummypa, dummypd, dummypt;
4970 int i, npde, npdpg;
4971
4972 npdpg = howmany(size, NBPDP);
4973 npde = size / NBPDR;
4974
4975 dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
4976 pagezero((void *)PHYS_TO_DMAP(dummypa));
4977
4978 dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
4979 pagezero((void *)PHYS_TO_DMAP(dummypt));
4980 dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
4981 for (i = 0; i < npdpg; i++)
4982 pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
4983
4984 pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
4985 for (i = 0; i < NPTEPG; i++)
4986 pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
4987 X86_PG_A | X86_PG_M | pg_nx);
4988
4989 pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
4990 for (i = 0; i < npde; i++)
4991 pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
4992
4993 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
4994 for (i = 0; i < npdpg; i++)
4995 pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
4996 X86_PG_RW | pg_nx);
4997 }
4998
4999 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5000 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5001 {
5002 vm_size_t size;
5003
5004 KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5005
5006 /*
5007 * The end of the page array's KVA region is 2MB aligned, see
5008 * kmem_init().
5009 */
5010 size = round_2mpage(end) - start;
5011 pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5012 pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5013 }
5014 #endif
5015
5016 /*
5017 * Allocate physical memory for the vm_page array and map it into KVA,
5018 * attempting to back the vm_pages with domain-local memory.
5019 */
5020 void
pmap_page_array_startup(long pages)5021 pmap_page_array_startup(long pages)
5022 {
5023 pdp_entry_t *pdpe;
5024 pd_entry_t *pde, newpdir;
5025 vm_offset_t va, start, end;
5026 vm_paddr_t pa;
5027 long pfn;
5028 int domain, i;
5029
5030 vm_page_array_size = pages;
5031
5032 start = VM_MIN_KERNEL_ADDRESS;
5033 end = start + pages * sizeof(struct vm_page);
5034 for (va = start; va < end; va += NBPDR) {
5035 pfn = first_page + (va - start) / sizeof(struct vm_page);
5036 domain = vm_phys_domain(ptoa(pfn));
5037 pdpe = pmap_pdpe(kernel_pmap, va);
5038 if ((*pdpe & X86_PG_V) == 0) {
5039 pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5040 dump_add_page(pa);
5041 pagezero((void *)PHYS_TO_DMAP(pa));
5042 *pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5043 X86_PG_A | X86_PG_M);
5044 }
5045 pde = pmap_pdpe_to_pde(pdpe, va);
5046 if ((*pde & X86_PG_V) != 0)
5047 panic("Unexpected pde");
5048 pa = vm_phys_early_alloc(domain, NBPDR);
5049 for (i = 0; i < NPDEPG; i++)
5050 dump_add_page(pa + i * PAGE_SIZE);
5051 newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5052 X86_PG_M | PG_PS | pg_g | pg_nx);
5053 pde_store(pde, newpdir);
5054 }
5055 vm_page_array = (vm_page_t)start;
5056
5057 #ifdef KMSAN
5058 pmap_kmsan_page_array_startup(start, end);
5059 #endif
5060 }
5061
5062 /*
5063 * grow the number of kernel page table entries, if needed
5064 */
5065 static int
pmap_growkernel_nopanic(vm_offset_t addr)5066 pmap_growkernel_nopanic(vm_offset_t addr)
5067 {
5068 vm_paddr_t paddr;
5069 vm_page_t nkpg;
5070 pd_entry_t *pde, newpdir;
5071 pdp_entry_t *pdpe;
5072 vm_offset_t end;
5073 int rv;
5074
5075 TSENTER();
5076 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5077 rv = KERN_SUCCESS;
5078
5079 /*
5080 * The kernel map covers two distinct regions of KVA: that used
5081 * for dynamic kernel memory allocations, and the uppermost 2GB
5082 * of the virtual address space. The latter is used to map the
5083 * kernel and loadable kernel modules. This scheme enables the
5084 * use of a special code generation model for kernel code which
5085 * takes advantage of compact addressing modes in machine code.
5086 *
5087 * Both regions grow upwards; to avoid wasting memory, the gap
5088 * in between is unmapped. If "addr" is above "KERNBASE", the
5089 * kernel's region is grown, otherwise the kmem region is grown.
5090 *
5091 * The correctness of this action is based on the following
5092 * argument: vm_map_insert() allocates contiguous ranges of the
5093 * kernel virtual address space. It calls this function if a range
5094 * ends after "kernel_vm_end". If the kernel is mapped between
5095 * "kernel_vm_end" and "addr", then the range cannot begin at
5096 * "kernel_vm_end". In fact, its beginning address cannot be less
5097 * than the kernel. Thus, there is no immediate need to allocate
5098 * any new kernel page table pages between "kernel_vm_end" and
5099 * "KERNBASE".
5100 */
5101 if (KERNBASE < addr) {
5102 end = KERNBASE + nkpt * NBPDR;
5103 if (end == 0) {
5104 TSEXIT();
5105 return (rv);
5106 }
5107 } else {
5108 end = kernel_vm_end;
5109 }
5110
5111 addr = roundup2(addr, NBPDR);
5112 if (addr - 1 >= vm_map_max(kernel_map))
5113 addr = vm_map_max(kernel_map);
5114 if (addr <= end) {
5115 /*
5116 * The grown region is already mapped, so there is
5117 * nothing to do.
5118 */
5119 TSEXIT();
5120 return (rv);
5121 }
5122
5123 kasan_shadow_map(end, addr - end);
5124 kmsan_shadow_map(end, addr - end);
5125 while (end < addr) {
5126 pdpe = pmap_pdpe(kernel_pmap, end);
5127 if ((*pdpe & X86_PG_V) == 0) {
5128 nkpg = pmap_alloc_pt_page(kernel_pmap,
5129 pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5130 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5131 if (nkpg == NULL) {
5132 rv = KERN_RESOURCE_SHORTAGE;
5133 break;
5134 }
5135 paddr = VM_PAGE_TO_PHYS(nkpg);
5136 *pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5137 X86_PG_A | X86_PG_M);
5138 continue; /* try again */
5139 }
5140 pde = pmap_pdpe_to_pde(pdpe, end);
5141 if ((*pde & X86_PG_V) != 0) {
5142 end = (end + NBPDR) & ~PDRMASK;
5143 if (end - 1 >= vm_map_max(kernel_map)) {
5144 end = vm_map_max(kernel_map);
5145 break;
5146 }
5147 continue;
5148 }
5149
5150 nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5151 VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5152 VM_ALLOC_ZERO);
5153 if (nkpg == NULL) {
5154 rv = KERN_RESOURCE_SHORTAGE;
5155 break;
5156 }
5157
5158 paddr = VM_PAGE_TO_PHYS(nkpg);
5159 newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5160 pde_store(pde, newpdir);
5161
5162 end = (end + NBPDR) & ~PDRMASK;
5163 if (end - 1 >= vm_map_max(kernel_map)) {
5164 end = vm_map_max(kernel_map);
5165 break;
5166 }
5167 }
5168
5169 if (end <= KERNBASE)
5170 kernel_vm_end = end;
5171 else
5172 nkpt = howmany(end - KERNBASE, NBPDR);
5173 TSEXIT();
5174 return (rv);
5175 }
5176
5177 int
pmap_growkernel(vm_offset_t addr)5178 pmap_growkernel(vm_offset_t addr)
5179 {
5180 int rv;
5181
5182 rv = pmap_growkernel_nopanic(addr);
5183 if (rv != KERN_SUCCESS && pmap_growkernel_panic)
5184 panic("pmap_growkernel: no memory to grow kernel");
5185 return (rv);
5186 }
5187
5188 /***************************************************
5189 * page management routines.
5190 ***************************************************/
5191
5192 static const uint64_t pc_freemask[_NPCM] = {
5193 [0 ... _NPCM - 2] = PC_FREEN,
5194 [_NPCM - 1] = PC_FREEL
5195 };
5196
5197 #ifdef PV_STATS
5198
5199 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5200 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5201 &pc_chunk_count, "Current number of pv entry cnunks");
5202
5203 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5204 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5205 &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5206
5207 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5208 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5209 &pc_chunk_frees, "Total number of pv entry chunks freed");
5210
5211 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5212 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5213 &pc_chunk_tryfail,
5214 "Number of failed attempts to get a pv entry chunk page");
5215
5216 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5217 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5218 &pv_entry_frees, "Total number of pv entries freed");
5219
5220 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5221 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5222 &pv_entry_allocs, "Total number of pv entries allocated");
5223
5224 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5225 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5226 &pv_entry_count, "Current number of pv entries");
5227
5228 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5229 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5230 &pv_entry_spare, "Current number of spare pv entries");
5231 #endif
5232
5233 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5234 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5235 {
5236
5237 if (pmap == NULL)
5238 return;
5239 pmap_invalidate_all(pmap);
5240 if (pmap != locked_pmap)
5241 PMAP_UNLOCK(pmap);
5242 if (start_di)
5243 pmap_delayed_invl_finish();
5244 }
5245
5246 /*
5247 * We are in a serious low memory condition. Resort to
5248 * drastic measures to free some pages so we can allocate
5249 * another pv entry chunk.
5250 *
5251 * Returns NULL if PV entries were reclaimed from the specified pmap.
5252 *
5253 * We do not, however, unmap 2mpages because subsequent accesses will
5254 * allocate per-page pv entries until repromotion occurs, thereby
5255 * exacerbating the shortage of free pv entries.
5256 */
5257 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5258 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5259 {
5260 struct pv_chunks_list *pvc;
5261 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5262 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5263 struct md_page *pvh;
5264 pd_entry_t *pde;
5265 pmap_t next_pmap, pmap;
5266 pt_entry_t *pte, tpte;
5267 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5268 pv_entry_t pv;
5269 vm_offset_t va;
5270 vm_page_t m, m_pc;
5271 struct spglist free;
5272 uint64_t inuse;
5273 int bit, field, freed;
5274 bool start_di, restart;
5275
5276 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5277 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5278 pmap = NULL;
5279 m_pc = NULL;
5280 PG_G = PG_A = PG_M = PG_RW = 0;
5281 SLIST_INIT(&free);
5282 bzero(&pc_marker_b, sizeof(pc_marker_b));
5283 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5284 pc_marker = (struct pv_chunk *)&pc_marker_b;
5285 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5286
5287 /*
5288 * A delayed invalidation block should already be active if
5289 * pmap_advise() or pmap_remove() called this function by way
5290 * of pmap_demote_pde_locked().
5291 */
5292 start_di = pmap_not_in_di();
5293
5294 pvc = &pv_chunks[domain];
5295 mtx_lock(&pvc->pvc_lock);
5296 pvc->active_reclaims++;
5297 TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5298 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5299 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5300 SLIST_EMPTY(&free)) {
5301 next_pmap = pc->pc_pmap;
5302 if (next_pmap == NULL) {
5303 /*
5304 * The next chunk is a marker. However, it is
5305 * not our marker, so active_reclaims must be
5306 * > 1. Consequently, the next_chunk code
5307 * will not rotate the pv_chunks list.
5308 */
5309 goto next_chunk;
5310 }
5311 mtx_unlock(&pvc->pvc_lock);
5312
5313 /*
5314 * A pv_chunk can only be removed from the pc_lru list
5315 * when both pc_chunks_mutex is owned and the
5316 * corresponding pmap is locked.
5317 */
5318 if (pmap != next_pmap) {
5319 restart = false;
5320 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5321 start_di);
5322 pmap = next_pmap;
5323 /* Avoid deadlock and lock recursion. */
5324 if (pmap > locked_pmap) {
5325 RELEASE_PV_LIST_LOCK(lockp);
5326 PMAP_LOCK(pmap);
5327 if (start_di)
5328 pmap_delayed_invl_start();
5329 mtx_lock(&pvc->pvc_lock);
5330 restart = true;
5331 } else if (pmap != locked_pmap) {
5332 if (PMAP_TRYLOCK(pmap)) {
5333 if (start_di)
5334 pmap_delayed_invl_start();
5335 mtx_lock(&pvc->pvc_lock);
5336 restart = true;
5337 } else {
5338 pmap = NULL; /* pmap is not locked */
5339 mtx_lock(&pvc->pvc_lock);
5340 pc = TAILQ_NEXT(pc_marker, pc_lru);
5341 if (pc == NULL ||
5342 pc->pc_pmap != next_pmap)
5343 continue;
5344 goto next_chunk;
5345 }
5346 } else if (start_di)
5347 pmap_delayed_invl_start();
5348 PG_G = pmap_global_bit(pmap);
5349 PG_A = pmap_accessed_bit(pmap);
5350 PG_M = pmap_modified_bit(pmap);
5351 PG_RW = pmap_rw_bit(pmap);
5352 if (restart)
5353 continue;
5354 }
5355
5356 /*
5357 * Destroy every non-wired, 4 KB page mapping in the chunk.
5358 */
5359 freed = 0;
5360 for (field = 0; field < _NPCM; field++) {
5361 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5362 inuse != 0; inuse &= ~(1UL << bit)) {
5363 bit = bsfq(inuse);
5364 pv = &pc->pc_pventry[field * 64 + bit];
5365 va = pv->pv_va;
5366 pde = pmap_pde(pmap, va);
5367 if ((*pde & PG_PS) != 0)
5368 continue;
5369 pte = pmap_pde_to_pte(pde, va);
5370 if ((*pte & PG_W) != 0)
5371 continue;
5372 tpte = pte_load_clear(pte);
5373 if ((tpte & PG_G) != 0)
5374 pmap_invalidate_page(pmap, va);
5375 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5376 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5377 vm_page_dirty(m);
5378 if ((tpte & PG_A) != 0)
5379 vm_page_aflag_set(m, PGA_REFERENCED);
5380 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5381 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5382 m->md.pv_gen++;
5383 if (TAILQ_EMPTY(&m->md.pv_list) &&
5384 (m->flags & PG_FICTITIOUS) == 0) {
5385 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5386 if (TAILQ_EMPTY(&pvh->pv_list)) {
5387 vm_page_aflag_clear(m,
5388 PGA_WRITEABLE);
5389 }
5390 }
5391 pmap_delayed_invl_page(m);
5392 pc->pc_map[field] |= 1UL << bit;
5393 pmap_unuse_pt(pmap, va, *pde, &free);
5394 freed++;
5395 }
5396 }
5397 if (freed == 0) {
5398 mtx_lock(&pvc->pvc_lock);
5399 goto next_chunk;
5400 }
5401 /* Every freed mapping is for a 4 KB page. */
5402 pmap_resident_count_adj(pmap, -freed);
5403 PV_STAT(counter_u64_add(pv_entry_frees, freed));
5404 PV_STAT(counter_u64_add(pv_entry_spare, freed));
5405 PV_STAT(counter_u64_add(pv_entry_count, -freed));
5406 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5407 if (pc_is_free(pc)) {
5408 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5409 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5410 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5411 /* Entire chunk is free; return it. */
5412 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5413 dump_drop_page(m_pc->phys_addr);
5414 mtx_lock(&pvc->pvc_lock);
5415 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5416 break;
5417 }
5418 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5419 mtx_lock(&pvc->pvc_lock);
5420 /* One freed pv entry in locked_pmap is sufficient. */
5421 if (pmap == locked_pmap)
5422 break;
5423 next_chunk:
5424 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5425 TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5426 if (pvc->active_reclaims == 1 && pmap != NULL) {
5427 /*
5428 * Rotate the pv chunks list so that we do not
5429 * scan the same pv chunks that could not be
5430 * freed (because they contained a wired
5431 * and/or superpage mapping) on every
5432 * invocation of reclaim_pv_chunk().
5433 */
5434 while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5435 MPASS(pc->pc_pmap != NULL);
5436 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5437 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5438 }
5439 }
5440 }
5441 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5442 TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5443 pvc->active_reclaims--;
5444 mtx_unlock(&pvc->pvc_lock);
5445 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5446 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5447 m_pc = SLIST_FIRST(&free);
5448 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5449 /* Recycle a freed page table page. */
5450 m_pc->ref_count = 1;
5451 }
5452 vm_page_free_pages_toq(&free, true);
5453 return (m_pc);
5454 }
5455
5456 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5457 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5458 {
5459 vm_page_t m;
5460 int i, domain;
5461
5462 domain = PCPU_GET(domain);
5463 for (i = 0; i < vm_ndomains; i++) {
5464 m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5465 if (m != NULL)
5466 break;
5467 domain = (domain + 1) % vm_ndomains;
5468 }
5469
5470 return (m);
5471 }
5472
5473 /*
5474 * free the pv_entry back to the free list
5475 */
5476 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5477 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5478 {
5479 struct pv_chunk *pc;
5480 int idx, field, bit;
5481
5482 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5483 PV_STAT(counter_u64_add(pv_entry_frees, 1));
5484 PV_STAT(counter_u64_add(pv_entry_spare, 1));
5485 PV_STAT(counter_u64_add(pv_entry_count, -1));
5486 pc = pv_to_chunk(pv);
5487 idx = pv - &pc->pc_pventry[0];
5488 field = idx / 64;
5489 bit = idx % 64;
5490 pc->pc_map[field] |= 1ul << bit;
5491 if (!pc_is_free(pc)) {
5492 /* 98% of the time, pc is already at the head of the list. */
5493 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5494 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5495 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5496 }
5497 return;
5498 }
5499 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5500 free_pv_chunk(pc);
5501 }
5502
5503 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5504 free_pv_chunk_dequeued(struct pv_chunk *pc)
5505 {
5506 vm_page_t m;
5507
5508 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5509 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5510 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5511 counter_u64_add(pv_page_count, -1);
5512 /* entire chunk is free, return it */
5513 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5514 dump_drop_page(m->phys_addr);
5515 vm_page_unwire_noq(m);
5516 vm_page_free(m);
5517 }
5518
5519 static void
free_pv_chunk(struct pv_chunk * pc)5520 free_pv_chunk(struct pv_chunk *pc)
5521 {
5522 struct pv_chunks_list *pvc;
5523
5524 pvc = &pv_chunks[pc_to_domain(pc)];
5525 mtx_lock(&pvc->pvc_lock);
5526 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5527 mtx_unlock(&pvc->pvc_lock);
5528 free_pv_chunk_dequeued(pc);
5529 }
5530
5531 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5532 free_pv_chunk_batch(struct pv_chunklist *batch)
5533 {
5534 struct pv_chunks_list *pvc;
5535 struct pv_chunk *pc, *npc;
5536 int i;
5537
5538 for (i = 0; i < vm_ndomains; i++) {
5539 if (TAILQ_EMPTY(&batch[i]))
5540 continue;
5541 pvc = &pv_chunks[i];
5542 mtx_lock(&pvc->pvc_lock);
5543 TAILQ_FOREACH(pc, &batch[i], pc_list) {
5544 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5545 }
5546 mtx_unlock(&pvc->pvc_lock);
5547 }
5548
5549 for (i = 0; i < vm_ndomains; i++) {
5550 TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5551 free_pv_chunk_dequeued(pc);
5552 }
5553 }
5554 }
5555
5556 /*
5557 * Returns a new PV entry, allocating a new PV chunk from the system when
5558 * needed. If this PV chunk allocation fails and a PV list lock pointer was
5559 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
5560 * returned.
5561 *
5562 * The given PV list lock may be released.
5563 */
5564 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5565 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5566 {
5567 struct pv_chunks_list *pvc;
5568 int bit, field;
5569 pv_entry_t pv;
5570 struct pv_chunk *pc;
5571 vm_page_t m;
5572
5573 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5574 PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5575 retry:
5576 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5577 if (pc != NULL) {
5578 for (field = 0; field < _NPCM; field++) {
5579 if (pc->pc_map[field]) {
5580 bit = bsfq(pc->pc_map[field]);
5581 break;
5582 }
5583 }
5584 if (field < _NPCM) {
5585 pv = &pc->pc_pventry[field * 64 + bit];
5586 pc->pc_map[field] &= ~(1ul << bit);
5587 /* If this was the last item, move it to tail */
5588 if (pc_is_full(pc)) {
5589 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5590 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5591 pc_list);
5592 }
5593 PV_STAT(counter_u64_add(pv_entry_count, 1));
5594 PV_STAT(counter_u64_add(pv_entry_spare, -1));
5595 return (pv);
5596 }
5597 }
5598 /* No free items, allocate another chunk */
5599 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5600 if (m == NULL) {
5601 if (lockp == NULL) {
5602 PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5603 return (NULL);
5604 }
5605 m = reclaim_pv_chunk(pmap, lockp);
5606 if (m == NULL)
5607 goto retry;
5608 } else
5609 counter_u64_add(pv_page_count, 1);
5610 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5611 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5612 dump_add_page(m->phys_addr);
5613 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5614 pc->pc_pmap = pmap;
5615 pc->pc_map[0] = PC_FREEN & ~1ul; /* preallocated bit 0 */
5616 pc->pc_map[1] = PC_FREEN;
5617 pc->pc_map[2] = PC_FREEL;
5618 pvc = &pv_chunks[vm_page_domain(m)];
5619 mtx_lock(&pvc->pvc_lock);
5620 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5621 mtx_unlock(&pvc->pvc_lock);
5622 pv = &pc->pc_pventry[0];
5623 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5624 PV_STAT(counter_u64_add(pv_entry_count, 1));
5625 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5626 return (pv);
5627 }
5628
5629 /*
5630 * Returns the number of one bits within the given PV chunk map.
5631 *
5632 * The erratas for Intel processors state that "POPCNT Instruction May
5633 * Take Longer to Execute Than Expected". It is believed that the
5634 * issue is the spurious dependency on the destination register.
5635 * Provide a hint to the register rename logic that the destination
5636 * value is overwritten, by clearing it, as suggested in the
5637 * optimization manual. It should be cheap for unaffected processors
5638 * as well.
5639 *
5640 * Reference numbers for erratas are
5641 * 4th Gen Core: HSD146
5642 * 5th Gen Core: BDM85
5643 * 6th Gen Core: SKL029
5644 */
5645 static int
popcnt_pc_map_pq(uint64_t * map)5646 popcnt_pc_map_pq(uint64_t *map)
5647 {
5648 u_long result, tmp;
5649
5650 __asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5651 "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5652 "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5653 : "=&r" (result), "=&r" (tmp)
5654 : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5655 return (result);
5656 }
5657
5658 /*
5659 * Ensure that the number of spare PV entries in the specified pmap meets or
5660 * exceeds the given count, "needed".
5661 *
5662 * The given PV list lock may be released.
5663 */
5664 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5665 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5666 {
5667 struct pv_chunks_list *pvc;
5668 struct pch new_tail[PMAP_MEMDOM];
5669 struct pv_chunk *pc;
5670 vm_page_t m;
5671 int avail, free, i;
5672 bool reclaimed;
5673
5674 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5675 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5676
5677 /*
5678 * Newly allocated PV chunks must be stored in a private list until
5679 * the required number of PV chunks have been allocated. Otherwise,
5680 * reclaim_pv_chunk() could recycle one of these chunks. In
5681 * contrast, these chunks must be added to the pmap upon allocation.
5682 */
5683 for (i = 0; i < PMAP_MEMDOM; i++)
5684 TAILQ_INIT(&new_tail[i]);
5685 retry:
5686 avail = 0;
5687 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5688 #ifndef __POPCNT__
5689 if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5690 bit_count((bitstr_t *)pc->pc_map, 0,
5691 sizeof(pc->pc_map) * NBBY, &free);
5692 else
5693 #endif
5694 free = popcnt_pc_map_pq(pc->pc_map);
5695 if (free == 0)
5696 break;
5697 avail += free;
5698 if (avail >= needed)
5699 break;
5700 }
5701 for (reclaimed = false; avail < needed; avail += _NPCPV) {
5702 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5703 if (m == NULL) {
5704 m = reclaim_pv_chunk(pmap, lockp);
5705 if (m == NULL)
5706 goto retry;
5707 reclaimed = true;
5708 } else
5709 counter_u64_add(pv_page_count, 1);
5710 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5711 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5712 dump_add_page(m->phys_addr);
5713 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5714 pc->pc_pmap = pmap;
5715 pc->pc_map[0] = PC_FREEN;
5716 pc->pc_map[1] = PC_FREEN;
5717 pc->pc_map[2] = PC_FREEL;
5718 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5719 TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5720 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5721
5722 /*
5723 * The reclaim might have freed a chunk from the current pmap.
5724 * If that chunk contained available entries, we need to
5725 * re-count the number of available entries.
5726 */
5727 if (reclaimed)
5728 goto retry;
5729 }
5730 for (i = 0; i < vm_ndomains; i++) {
5731 if (TAILQ_EMPTY(&new_tail[i]))
5732 continue;
5733 pvc = &pv_chunks[i];
5734 mtx_lock(&pvc->pvc_lock);
5735 TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5736 mtx_unlock(&pvc->pvc_lock);
5737 }
5738 }
5739
5740 /*
5741 * First find and then remove the pv entry for the specified pmap and virtual
5742 * address from the specified pv list. Returns the pv entry if found and NULL
5743 * otherwise. This operation can be performed on pv lists for either 4KB or
5744 * 2MB page mappings.
5745 */
5746 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5747 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5748 {
5749 pv_entry_t pv;
5750
5751 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5752 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5753 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5754 pvh->pv_gen++;
5755 break;
5756 }
5757 }
5758 return (pv);
5759 }
5760
5761 /*
5762 * After demotion from a 2MB page mapping to 512 4KB page mappings,
5763 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5764 * entries for each of the 4KB page mappings.
5765 */
5766 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5767 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5768 struct rwlock **lockp)
5769 {
5770 struct md_page *pvh;
5771 struct pv_chunk *pc;
5772 pv_entry_t pv;
5773 vm_offset_t va_last;
5774 vm_page_t m;
5775 int bit, field;
5776
5777 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5778 KASSERT((pa & PDRMASK) == 0,
5779 ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5780 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5781
5782 /*
5783 * Transfer the 2mpage's pv entry for this mapping to the first
5784 * page's pv list. Once this transfer begins, the pv list lock
5785 * must not be released until the last pv entry is reinstantiated.
5786 */
5787 pvh = pa_to_pvh(pa);
5788 va = trunc_2mpage(va);
5789 pv = pmap_pvh_remove(pvh, pmap, va);
5790 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5791 m = PHYS_TO_VM_PAGE(pa);
5792 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5793 m->md.pv_gen++;
5794 /* Instantiate the remaining NPTEPG - 1 pv entries. */
5795 PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5796 va_last = va + NBPDR - PAGE_SIZE;
5797 for (;;) {
5798 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5799 KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5800 for (field = 0; field < _NPCM; field++) {
5801 while (pc->pc_map[field]) {
5802 bit = bsfq(pc->pc_map[field]);
5803 pc->pc_map[field] &= ~(1ul << bit);
5804 pv = &pc->pc_pventry[field * 64 + bit];
5805 va += PAGE_SIZE;
5806 pv->pv_va = va;
5807 m++;
5808 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5809 ("pmap_pv_demote_pde: page %p is not managed", m));
5810 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5811 m->md.pv_gen++;
5812 if (va == va_last)
5813 goto out;
5814 }
5815 }
5816 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5817 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5818 }
5819 out:
5820 if (pc_is_full(pc)) {
5821 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5822 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5823 }
5824 PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5825 PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5826 }
5827
5828 #if VM_NRESERVLEVEL > 0
5829 /*
5830 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5831 * replace the many pv entries for the 4KB page mappings by a single pv entry
5832 * for the 2MB page mapping.
5833 */
5834 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5835 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5836 struct rwlock **lockp)
5837 {
5838 struct md_page *pvh;
5839 pv_entry_t pv;
5840 vm_offset_t va_last;
5841 vm_page_t m;
5842
5843 KASSERT((pa & PDRMASK) == 0,
5844 ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5845 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5846
5847 /*
5848 * Transfer the first page's pv entry for this mapping to the 2mpage's
5849 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
5850 * a transfer avoids the possibility that get_pv_entry() calls
5851 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5852 * mappings that is being promoted.
5853 */
5854 m = PHYS_TO_VM_PAGE(pa);
5855 va = trunc_2mpage(va);
5856 pv = pmap_pvh_remove(&m->md, pmap, va);
5857 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5858 pvh = pa_to_pvh(pa);
5859 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5860 pvh->pv_gen++;
5861 /* Free the remaining NPTEPG - 1 pv entries. */
5862 va_last = va + NBPDR - PAGE_SIZE;
5863 do {
5864 m++;
5865 va += PAGE_SIZE;
5866 pmap_pvh_free(&m->md, pmap, va);
5867 } while (va < va_last);
5868 }
5869 #endif /* VM_NRESERVLEVEL > 0 */
5870
5871 /*
5872 * First find and then destroy the pv entry for the specified pmap and virtual
5873 * address. This operation can be performed on pv lists for either 4KB or 2MB
5874 * page mappings.
5875 */
5876 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5877 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5878 {
5879 pv_entry_t pv;
5880
5881 pv = pmap_pvh_remove(pvh, pmap, va);
5882 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5883 free_pv_entry(pmap, pv);
5884 }
5885
5886 /*
5887 * Conditionally create the PV entry for a 4KB page mapping if the required
5888 * memory can be allocated without resorting to reclamation.
5889 */
5890 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5891 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5892 struct rwlock **lockp)
5893 {
5894 pv_entry_t pv;
5895
5896 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5897 /* Pass NULL instead of the lock pointer to disable reclamation. */
5898 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5899 pv->pv_va = va;
5900 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5901 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5902 m->md.pv_gen++;
5903 return (true);
5904 } else
5905 return (false);
5906 }
5907
5908 /*
5909 * Create the PV entry for a 2MB page mapping. Always returns true unless the
5910 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
5911 * false if the PV entry cannot be allocated without resorting to reclamation.
5912 */
5913 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5914 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5915 struct rwlock **lockp)
5916 {
5917 struct md_page *pvh;
5918 pv_entry_t pv;
5919 vm_paddr_t pa;
5920
5921 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5922 /* Pass NULL instead of the lock pointer to disable reclamation. */
5923 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5924 NULL : lockp)) == NULL)
5925 return (false);
5926 pv->pv_va = va;
5927 pa = pde & PG_PS_FRAME;
5928 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5929 pvh = pa_to_pvh(pa);
5930 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5931 pvh->pv_gen++;
5932 return (true);
5933 }
5934
5935 /*
5936 * Fills a page table page with mappings to consecutive physical pages.
5937 */
5938 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5939 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5940 {
5941 pt_entry_t *pte;
5942
5943 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5944 *pte = newpte;
5945 newpte += PAGE_SIZE;
5946 }
5947 }
5948
5949 /*
5950 * Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
5951 * mapping is invalidated.
5952 */
5953 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5954 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5955 {
5956 struct rwlock *lock;
5957 bool rv;
5958
5959 lock = NULL;
5960 rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5961 if (lock != NULL)
5962 rw_wunlock(lock);
5963 return (rv);
5964 }
5965
5966 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5967 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5968 {
5969 #ifdef INVARIANTS
5970 #ifdef DIAGNOSTIC
5971 pt_entry_t *xpte, *ypte;
5972
5973 for (xpte = firstpte; xpte < firstpte + NPTEPG;
5974 xpte++, newpte += PAGE_SIZE) {
5975 if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5976 printf("pmap_demote_pde: xpte %zd and newpte map "
5977 "different pages: found %#lx, expected %#lx\n",
5978 xpte - firstpte, *xpte, newpte);
5979 printf("page table dump\n");
5980 for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5981 printf("%zd %#lx\n", ypte - firstpte, *ypte);
5982 panic("firstpte");
5983 }
5984 }
5985 #else
5986 KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5987 ("pmap_demote_pde: firstpte and newpte map different physical"
5988 " addresses"));
5989 #endif
5990 #endif
5991 }
5992
5993 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)5994 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
5995 pd_entry_t oldpde, struct rwlock **lockp)
5996 {
5997 struct spglist free;
5998 vm_offset_t sva;
5999
6000 SLIST_INIT(&free);
6001 sva = trunc_2mpage(va);
6002 pmap_remove_pde(pmap, pde, sva, &free, lockp);
6003 if ((oldpde & pmap_global_bit(pmap)) == 0)
6004 pmap_invalidate_pde_page(pmap, sva, oldpde);
6005 vm_page_free_pages_toq(&free, true);
6006 CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6007 va, pmap);
6008 }
6009
6010 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6011 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6012 struct rwlock **lockp)
6013 {
6014 pd_entry_t newpde, oldpde;
6015 pt_entry_t *firstpte, newpte;
6016 pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6017 vm_paddr_t mptepa;
6018 vm_page_t mpte;
6019 int PG_PTE_CACHE;
6020 bool in_kernel;
6021
6022 PG_A = pmap_accessed_bit(pmap);
6023 PG_G = pmap_global_bit(pmap);
6024 PG_M = pmap_modified_bit(pmap);
6025 PG_RW = pmap_rw_bit(pmap);
6026 PG_V = pmap_valid_bit(pmap);
6027 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6028 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6029
6030 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6031 in_kernel = va >= VM_MAXUSER_ADDRESS;
6032 oldpde = *pde;
6033 KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6034 ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6035
6036 /*
6037 * Invalidate the 2MB page mapping and return "failure" if the
6038 * mapping was never accessed.
6039 */
6040 if ((oldpde & PG_A) == 0) {
6041 KASSERT((oldpde & PG_W) == 0,
6042 ("pmap_demote_pde: a wired mapping is missing PG_A"));
6043 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6044 return (false);
6045 }
6046
6047 mpte = pmap_remove_pt_page(pmap, va);
6048 if (mpte == NULL) {
6049 KASSERT((oldpde & PG_W) == 0,
6050 ("pmap_demote_pde: page table page for a wired mapping"
6051 " is missing"));
6052
6053 /*
6054 * If the page table page is missing and the mapping
6055 * is for a kernel address, the mapping must belong to
6056 * the direct map. Page table pages are preallocated
6057 * for every other part of the kernel address space,
6058 * so the direct map region is the only part of the
6059 * kernel address space that must be handled here.
6060 */
6061 KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6062 va < DMAP_MAX_ADDRESS),
6063 ("pmap_demote_pde: No saved mpte for va %#lx", va));
6064
6065 /*
6066 * If the 2MB page mapping belongs to the direct map
6067 * region of the kernel's address space, then the page
6068 * allocation request specifies the highest possible
6069 * priority (VM_ALLOC_INTERRUPT). Otherwise, the
6070 * priority is normal.
6071 */
6072 mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6073 (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6074
6075 /*
6076 * If the allocation of the new page table page fails,
6077 * invalidate the 2MB page mapping and return "failure".
6078 */
6079 if (mpte == NULL) {
6080 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6081 return (false);
6082 }
6083
6084 if (!in_kernel)
6085 mpte->ref_count = NPTEPG;
6086 }
6087 mptepa = VM_PAGE_TO_PHYS(mpte);
6088 firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6089 newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6090 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6091 ("pmap_demote_pde: oldpde is missing PG_M"));
6092 newpte = oldpde & ~PG_PS;
6093 newpte = pmap_swap_pat(pmap, newpte);
6094
6095 /*
6096 * If the PTP is not leftover from an earlier promotion or it does not
6097 * have PG_A set in every PTE, then fill it. The new PTEs will all
6098 * have PG_A set.
6099 */
6100 if (!vm_page_all_valid(mpte))
6101 pmap_fill_ptp(firstpte, newpte);
6102
6103 pmap_demote_pde_check(firstpte, newpte);
6104
6105 /*
6106 * If the mapping has changed attributes, update the PTEs.
6107 */
6108 if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6109 pmap_fill_ptp(firstpte, newpte);
6110
6111 /*
6112 * The spare PV entries must be reserved prior to demoting the
6113 * mapping, that is, prior to changing the PDE. Otherwise, the state
6114 * of the PDE and the PV lists will be inconsistent, which can result
6115 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6116 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6117 * PV entry for the 2MB page mapping that is being demoted.
6118 */
6119 if ((oldpde & PG_MANAGED) != 0)
6120 reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6121
6122 /*
6123 * Demote the mapping. This pmap is locked. The old PDE has
6124 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
6125 * set. Thus, there is no danger of a race with another
6126 * processor changing the setting of PG_A and/or PG_M between
6127 * the read above and the store below.
6128 */
6129 if (workaround_erratum383)
6130 pmap_update_pde(pmap, va, pde, newpde);
6131 else
6132 pde_store(pde, newpde);
6133
6134 /*
6135 * Invalidate a stale recursive mapping of the page table page.
6136 */
6137 if (in_kernel)
6138 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6139
6140 /*
6141 * Demote the PV entry.
6142 */
6143 if ((oldpde & PG_MANAGED) != 0)
6144 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6145
6146 counter_u64_add(pmap_pde_demotions, 1);
6147 CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6148 va, pmap);
6149 return (true);
6150 }
6151
6152 /*
6153 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6154 */
6155 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6156 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6157 {
6158 pd_entry_t newpde;
6159 vm_paddr_t mptepa;
6160 vm_page_t mpte;
6161
6162 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6163 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6164 mpte = pmap_remove_pt_page(pmap, va);
6165 if (mpte == NULL)
6166 panic("pmap_remove_kernel_pde: Missing pt page.");
6167
6168 mptepa = VM_PAGE_TO_PHYS(mpte);
6169 newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6170
6171 /*
6172 * If this page table page was unmapped by a promotion, then it
6173 * contains valid mappings. Zero it to invalidate those mappings.
6174 */
6175 if (vm_page_any_valid(mpte))
6176 pagezero((void *)PHYS_TO_DMAP(mptepa));
6177
6178 /*
6179 * Demote the mapping.
6180 */
6181 if (workaround_erratum383)
6182 pmap_update_pde(pmap, va, pde, newpde);
6183 else
6184 pde_store(pde, newpde);
6185
6186 /*
6187 * Invalidate a stale recursive mapping of the page table page.
6188 */
6189 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6190 }
6191
6192 /*
6193 * pmap_remove_pde: do the things to unmap a superpage in a process
6194 */
6195 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)6196 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6197 struct spglist *free, struct rwlock **lockp)
6198 {
6199 struct md_page *pvh;
6200 pd_entry_t oldpde;
6201 vm_offset_t eva, va;
6202 vm_page_t m, mpte;
6203 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6204
6205 PG_G = pmap_global_bit(pmap);
6206 PG_A = pmap_accessed_bit(pmap);
6207 PG_M = pmap_modified_bit(pmap);
6208 PG_RW = pmap_rw_bit(pmap);
6209
6210 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6211 KASSERT((sva & PDRMASK) == 0,
6212 ("pmap_remove_pde: sva is not 2mpage aligned"));
6213 oldpde = pte_load_clear(pdq);
6214 if (oldpde & PG_W)
6215 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6216 if ((oldpde & PG_G) != 0)
6217 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6218 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6219 if (oldpde & PG_MANAGED) {
6220 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6221 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6222 pmap_pvh_free(pvh, pmap, sva);
6223 eva = sva + NBPDR;
6224 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6225 va < eva; va += PAGE_SIZE, m++) {
6226 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6227 vm_page_dirty(m);
6228 if (oldpde & PG_A)
6229 vm_page_aflag_set(m, PGA_REFERENCED);
6230 if (TAILQ_EMPTY(&m->md.pv_list) &&
6231 TAILQ_EMPTY(&pvh->pv_list))
6232 vm_page_aflag_clear(m, PGA_WRITEABLE);
6233 pmap_delayed_invl_page(m);
6234 }
6235 }
6236 if (pmap == kernel_pmap) {
6237 pmap_remove_kernel_pde(pmap, pdq, sva);
6238 } else {
6239 mpte = pmap_remove_pt_page(pmap, sva);
6240 if (mpte != NULL) {
6241 KASSERT(vm_page_any_valid(mpte),
6242 ("pmap_remove_pde: pte page not promoted"));
6243 pmap_pt_page_count_adj(pmap, -1);
6244 KASSERT(mpte->ref_count == NPTEPG,
6245 ("pmap_remove_pde: pte page ref count error"));
6246 mpte->ref_count = 0;
6247 pmap_add_delayed_free_list(mpte, free, false);
6248 }
6249 }
6250 return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6251 }
6252
6253 /*
6254 * pmap_remove_pte: do the things to unmap a page in a process
6255 */
6256 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6257 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6258 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6259 {
6260 struct md_page *pvh;
6261 pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6262 vm_page_t m;
6263
6264 PG_A = pmap_accessed_bit(pmap);
6265 PG_M = pmap_modified_bit(pmap);
6266 PG_RW = pmap_rw_bit(pmap);
6267
6268 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6269 oldpte = pte_load_clear(ptq);
6270 if (oldpte & PG_W)
6271 pmap->pm_stats.wired_count -= 1;
6272 pmap_resident_count_adj(pmap, -1);
6273 if (oldpte & PG_MANAGED) {
6274 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6275 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6276 vm_page_dirty(m);
6277 if (oldpte & PG_A)
6278 vm_page_aflag_set(m, PGA_REFERENCED);
6279 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6280 pmap_pvh_free(&m->md, pmap, va);
6281 if (TAILQ_EMPTY(&m->md.pv_list) &&
6282 (m->flags & PG_FICTITIOUS) == 0) {
6283 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6284 if (TAILQ_EMPTY(&pvh->pv_list))
6285 vm_page_aflag_clear(m, PGA_WRITEABLE);
6286 }
6287 pmap_delayed_invl_page(m);
6288 }
6289 return (pmap_unuse_pt(pmap, va, ptepde, free));
6290 }
6291
6292 /*
6293 * Remove a single page from a process address space
6294 */
6295 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6296 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6297 struct spglist *free)
6298 {
6299 struct rwlock *lock;
6300 pt_entry_t *pte, PG_V;
6301
6302 PG_V = pmap_valid_bit(pmap);
6303 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6304 if ((*pde & PG_V) == 0)
6305 return;
6306 pte = pmap_pde_to_pte(pde, va);
6307 if ((*pte & PG_V) == 0)
6308 return;
6309 lock = NULL;
6310 pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6311 if (lock != NULL)
6312 rw_wunlock(lock);
6313 pmap_invalidate_page(pmap, va);
6314 }
6315
6316 /*
6317 * Removes the specified range of addresses from the page table page.
6318 */
6319 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6320 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6321 pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6322 {
6323 pt_entry_t PG_G, *pte;
6324 vm_offset_t va;
6325 bool anyvalid;
6326
6327 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6328 PG_G = pmap_global_bit(pmap);
6329 anyvalid = false;
6330 va = eva;
6331 for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6332 sva += PAGE_SIZE) {
6333 if (*pte == 0) {
6334 if (va != eva) {
6335 pmap_invalidate_range(pmap, va, sva);
6336 va = eva;
6337 }
6338 continue;
6339 }
6340 if ((*pte & PG_G) == 0)
6341 anyvalid = true;
6342 else if (va == eva)
6343 va = sva;
6344 if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6345 sva += PAGE_SIZE;
6346 break;
6347 }
6348 }
6349 if (va != eva)
6350 pmap_invalidate_range(pmap, va, sva);
6351 return (anyvalid);
6352 }
6353
6354 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6355 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6356 {
6357 struct rwlock *lock;
6358 vm_page_t mt;
6359 vm_offset_t va_next;
6360 pml5_entry_t *pml5e;
6361 pml4_entry_t *pml4e;
6362 pdp_entry_t *pdpe;
6363 pd_entry_t ptpaddr, *pde;
6364 pt_entry_t PG_G, PG_V;
6365 struct spglist free;
6366 int anyvalid;
6367
6368 PG_G = pmap_global_bit(pmap);
6369 PG_V = pmap_valid_bit(pmap);
6370
6371 /*
6372 * If there are no resident pages besides the top level page
6373 * table page(s), there is nothing to do. Kernel pmap always
6374 * accounts whole preloaded area as resident, which makes its
6375 * resident count > 2.
6376 * Perform an unsynchronized read. This is, however, safe.
6377 */
6378 if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6379 1 : 0))
6380 return;
6381
6382 anyvalid = 0;
6383 SLIST_INIT(&free);
6384
6385 pmap_delayed_invl_start();
6386 PMAP_LOCK(pmap);
6387 if (map_delete)
6388 pmap_pkru_on_remove(pmap, sva, eva);
6389
6390 /*
6391 * special handling of removing one page. a very
6392 * common operation and easy to short circuit some
6393 * code.
6394 */
6395 if (sva + PAGE_SIZE == eva) {
6396 pde = pmap_pde(pmap, sva);
6397 if (pde && (*pde & PG_PS) == 0) {
6398 pmap_remove_page(pmap, sva, pde, &free);
6399 goto out;
6400 }
6401 }
6402
6403 lock = NULL;
6404 for (; sva < eva; sva = va_next) {
6405 if (pmap->pm_stats.resident_count == 0)
6406 break;
6407
6408 if (pmap_is_la57(pmap)) {
6409 pml5e = pmap_pml5e(pmap, sva);
6410 if ((*pml5e & PG_V) == 0) {
6411 va_next = (sva + NBPML5) & ~PML5MASK;
6412 if (va_next < sva)
6413 va_next = eva;
6414 continue;
6415 }
6416 pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6417 } else {
6418 pml4e = pmap_pml4e(pmap, sva);
6419 }
6420 if ((*pml4e & PG_V) == 0) {
6421 va_next = (sva + NBPML4) & ~PML4MASK;
6422 if (va_next < sva)
6423 va_next = eva;
6424 continue;
6425 }
6426
6427 va_next = (sva + NBPDP) & ~PDPMASK;
6428 if (va_next < sva)
6429 va_next = eva;
6430 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6431 if ((*pdpe & PG_V) == 0)
6432 continue;
6433 if ((*pdpe & PG_PS) != 0) {
6434 KASSERT(va_next <= eva,
6435 ("partial update of non-transparent 1G mapping "
6436 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6437 *pdpe, sva, eva, va_next));
6438 MPASS(pmap != kernel_pmap); /* XXXKIB */
6439 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6440 anyvalid = 1;
6441 *pdpe = 0;
6442 pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6443 mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6444 pmap_unwire_ptp(pmap, sva, mt, &free);
6445 continue;
6446 }
6447
6448 /*
6449 * Calculate index for next page table.
6450 */
6451 va_next = (sva + NBPDR) & ~PDRMASK;
6452 if (va_next < sva)
6453 va_next = eva;
6454
6455 pde = pmap_pdpe_to_pde(pdpe, sva);
6456 ptpaddr = *pde;
6457
6458 /*
6459 * Weed out invalid mappings.
6460 */
6461 if (ptpaddr == 0)
6462 continue;
6463
6464 /*
6465 * Check for large page.
6466 */
6467 if ((ptpaddr & PG_PS) != 0) {
6468 /*
6469 * Are we removing the entire large page? If not,
6470 * demote the mapping and fall through.
6471 */
6472 if (sva + NBPDR == va_next && eva >= va_next) {
6473 /*
6474 * The TLB entry for a PG_G mapping is
6475 * invalidated by pmap_remove_pde().
6476 */
6477 if ((ptpaddr & PG_G) == 0)
6478 anyvalid = 1;
6479 pmap_remove_pde(pmap, pde, sva, &free, &lock);
6480 continue;
6481 } else if (!pmap_demote_pde_locked(pmap, pde, sva,
6482 &lock)) {
6483 /* The large page mapping was destroyed. */
6484 continue;
6485 } else
6486 ptpaddr = *pde;
6487 }
6488
6489 /*
6490 * Limit our scan to either the end of the va represented
6491 * by the current page table page, or to the end of the
6492 * range being removed.
6493 */
6494 if (va_next > eva)
6495 va_next = eva;
6496
6497 if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6498 anyvalid = 1;
6499 }
6500 if (lock != NULL)
6501 rw_wunlock(lock);
6502 out:
6503 if (anyvalid)
6504 pmap_invalidate_all(pmap);
6505 PMAP_UNLOCK(pmap);
6506 pmap_delayed_invl_finish();
6507 vm_page_free_pages_toq(&free, true);
6508 }
6509
6510 /*
6511 * Remove the given range of addresses from the specified map.
6512 *
6513 * It is assumed that the start and end are properly
6514 * rounded to the page size.
6515 */
6516 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6517 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6518 {
6519 pmap_remove1(pmap, sva, eva, false);
6520 }
6521
6522 /*
6523 * Remove the given range of addresses as part of a logical unmap
6524 * operation. This has the effect of calling pmap_remove(), but
6525 * also clears any metadata that should persist for the lifetime
6526 * of a logical mapping.
6527 */
6528 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6529 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6530 {
6531 pmap_remove1(pmap, sva, eva, true);
6532 }
6533
6534 /*
6535 * Routine: pmap_remove_all
6536 * Function:
6537 * Removes this physical page from
6538 * all physical maps in which it resides.
6539 * Reflects back modify bits to the pager.
6540 *
6541 * Notes:
6542 * Original versions of this routine were very
6543 * inefficient because they iteratively called
6544 * pmap_remove (slow...)
6545 */
6546
6547 void
pmap_remove_all(vm_page_t m)6548 pmap_remove_all(vm_page_t m)
6549 {
6550 struct md_page *pvh;
6551 pv_entry_t pv;
6552 pmap_t pmap;
6553 struct rwlock *lock;
6554 pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6555 pd_entry_t *pde;
6556 vm_offset_t va;
6557 struct spglist free;
6558 int pvh_gen, md_gen;
6559
6560 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6561 ("pmap_remove_all: page %p is not managed", m));
6562 SLIST_INIT(&free);
6563 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6564 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6565 pa_to_pvh(VM_PAGE_TO_PHYS(m));
6566 rw_wlock(lock);
6567 retry:
6568 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6569 pmap = PV_PMAP(pv);
6570 if (!PMAP_TRYLOCK(pmap)) {
6571 pvh_gen = pvh->pv_gen;
6572 rw_wunlock(lock);
6573 PMAP_LOCK(pmap);
6574 rw_wlock(lock);
6575 if (pvh_gen != pvh->pv_gen) {
6576 PMAP_UNLOCK(pmap);
6577 goto retry;
6578 }
6579 }
6580 va = pv->pv_va;
6581 pde = pmap_pde(pmap, va);
6582 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6583 PMAP_UNLOCK(pmap);
6584 }
6585 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6586 pmap = PV_PMAP(pv);
6587 if (!PMAP_TRYLOCK(pmap)) {
6588 pvh_gen = pvh->pv_gen;
6589 md_gen = m->md.pv_gen;
6590 rw_wunlock(lock);
6591 PMAP_LOCK(pmap);
6592 rw_wlock(lock);
6593 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6594 PMAP_UNLOCK(pmap);
6595 goto retry;
6596 }
6597 }
6598 PG_A = pmap_accessed_bit(pmap);
6599 PG_M = pmap_modified_bit(pmap);
6600 PG_RW = pmap_rw_bit(pmap);
6601 pmap_resident_count_adj(pmap, -1);
6602 pde = pmap_pde(pmap, pv->pv_va);
6603 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6604 " a 2mpage in page %p's pv list", m));
6605 pte = pmap_pde_to_pte(pde, pv->pv_va);
6606 tpte = pte_load_clear(pte);
6607 if (tpte & PG_W)
6608 pmap->pm_stats.wired_count--;
6609 if (tpte & PG_A)
6610 vm_page_aflag_set(m, PGA_REFERENCED);
6611
6612 /*
6613 * Update the vm_page_t clean and reference bits.
6614 */
6615 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6616 vm_page_dirty(m);
6617 pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6618 pmap_invalidate_page(pmap, pv->pv_va);
6619 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6620 m->md.pv_gen++;
6621 free_pv_entry(pmap, pv);
6622 PMAP_UNLOCK(pmap);
6623 }
6624 vm_page_aflag_clear(m, PGA_WRITEABLE);
6625 rw_wunlock(lock);
6626 pmap_delayed_invl_wait(m);
6627 vm_page_free_pages_toq(&free, true);
6628 }
6629
6630 /*
6631 * pmap_protect_pde: do the things to protect a 2mpage in a process
6632 */
6633 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6634 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6635 {
6636 pd_entry_t newpde, oldpde;
6637 vm_page_t m, mt;
6638 bool anychanged;
6639 pt_entry_t PG_G, PG_M, PG_RW;
6640
6641 PG_G = pmap_global_bit(pmap);
6642 PG_M = pmap_modified_bit(pmap);
6643 PG_RW = pmap_rw_bit(pmap);
6644
6645 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6646 KASSERT((sva & PDRMASK) == 0,
6647 ("pmap_protect_pde: sva is not 2mpage aligned"));
6648 anychanged = false;
6649 retry:
6650 oldpde = newpde = *pde;
6651 if ((prot & VM_PROT_WRITE) == 0) {
6652 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6653 (PG_MANAGED | PG_M | PG_RW)) {
6654 m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6655 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6656 vm_page_dirty(mt);
6657 }
6658 newpde &= ~(PG_RW | PG_M);
6659 }
6660 if ((prot & VM_PROT_EXECUTE) == 0)
6661 newpde |= pg_nx;
6662 if (newpde != oldpde) {
6663 /*
6664 * As an optimization to future operations on this PDE, clear
6665 * PG_PROMOTED. The impending invalidation will remove any
6666 * lingering 4KB page mappings from the TLB.
6667 */
6668 if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6669 goto retry;
6670 if ((oldpde & PG_G) != 0)
6671 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6672 else
6673 anychanged = true;
6674 }
6675 return (anychanged);
6676 }
6677
6678 /*
6679 * Set the physical protection on the
6680 * specified range of this map as requested.
6681 */
6682 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6683 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6684 {
6685 vm_page_t m;
6686 vm_offset_t va_next;
6687 pml4_entry_t *pml4e;
6688 pdp_entry_t *pdpe;
6689 pd_entry_t ptpaddr, *pde;
6690 pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6691 pt_entry_t obits, pbits;
6692 bool anychanged;
6693
6694 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6695 if (prot == VM_PROT_NONE) {
6696 pmap_remove(pmap, sva, eva);
6697 return;
6698 }
6699
6700 if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6701 (VM_PROT_WRITE|VM_PROT_EXECUTE))
6702 return;
6703
6704 PG_G = pmap_global_bit(pmap);
6705 PG_M = pmap_modified_bit(pmap);
6706 PG_V = pmap_valid_bit(pmap);
6707 PG_RW = pmap_rw_bit(pmap);
6708 anychanged = false;
6709
6710 /*
6711 * Although this function delays and batches the invalidation
6712 * of stale TLB entries, it does not need to call
6713 * pmap_delayed_invl_start() and
6714 * pmap_delayed_invl_finish(), because it does not
6715 * ordinarily destroy mappings. Stale TLB entries from
6716 * protection-only changes need only be invalidated before the
6717 * pmap lock is released, because protection-only changes do
6718 * not destroy PV entries. Even operations that iterate over
6719 * a physical page's PV list of mappings, like
6720 * pmap_remove_write(), acquire the pmap lock for each
6721 * mapping. Consequently, for protection-only changes, the
6722 * pmap lock suffices to synchronize both page table and TLB
6723 * updates.
6724 *
6725 * This function only destroys a mapping if pmap_demote_pde()
6726 * fails. In that case, stale TLB entries are immediately
6727 * invalidated.
6728 */
6729
6730 PMAP_LOCK(pmap);
6731 for (; sva < eva; sva = va_next) {
6732 pml4e = pmap_pml4e(pmap, sva);
6733 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6734 va_next = (sva + NBPML4) & ~PML4MASK;
6735 if (va_next < sva)
6736 va_next = eva;
6737 continue;
6738 }
6739
6740 va_next = (sva + NBPDP) & ~PDPMASK;
6741 if (va_next < sva)
6742 va_next = eva;
6743 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6744 if ((*pdpe & PG_V) == 0)
6745 continue;
6746 if ((*pdpe & PG_PS) != 0) {
6747 KASSERT(va_next <= eva,
6748 ("partial update of non-transparent 1G mapping "
6749 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6750 *pdpe, sva, eva, va_next));
6751 retry_pdpe:
6752 obits = pbits = *pdpe;
6753 MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6754 MPASS(pmap != kernel_pmap); /* XXXKIB */
6755 if ((prot & VM_PROT_WRITE) == 0)
6756 pbits &= ~(PG_RW | PG_M);
6757 if ((prot & VM_PROT_EXECUTE) == 0)
6758 pbits |= pg_nx;
6759
6760 if (pbits != obits) {
6761 if (!atomic_cmpset_long(pdpe, obits, pbits))
6762 /* PG_PS cannot be cleared under us, */
6763 goto retry_pdpe;
6764 anychanged = true;
6765 }
6766 continue;
6767 }
6768
6769 va_next = (sva + NBPDR) & ~PDRMASK;
6770 if (va_next < sva)
6771 va_next = eva;
6772
6773 pde = pmap_pdpe_to_pde(pdpe, sva);
6774 ptpaddr = *pde;
6775
6776 /*
6777 * Weed out invalid mappings.
6778 */
6779 if (ptpaddr == 0)
6780 continue;
6781
6782 /*
6783 * Check for large page.
6784 */
6785 if ((ptpaddr & PG_PS) != 0) {
6786 /*
6787 * Are we protecting the entire large page?
6788 */
6789 if (sva + NBPDR == va_next && eva >= va_next) {
6790 /*
6791 * The TLB entry for a PG_G mapping is
6792 * invalidated by pmap_protect_pde().
6793 */
6794 if (pmap_protect_pde(pmap, pde, sva, prot))
6795 anychanged = true;
6796 continue;
6797 }
6798
6799 /*
6800 * Does the large page mapping need to change? If so,
6801 * demote it and fall through.
6802 */
6803 pbits = ptpaddr;
6804 if ((prot & VM_PROT_WRITE) == 0)
6805 pbits &= ~(PG_RW | PG_M);
6806 if ((prot & VM_PROT_EXECUTE) == 0)
6807 pbits |= pg_nx;
6808 if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6809 sva)) {
6810 /*
6811 * Either the large page mapping doesn't need
6812 * to change, or it was destroyed during
6813 * demotion.
6814 */
6815 continue;
6816 }
6817 }
6818
6819 if (va_next > eva)
6820 va_next = eva;
6821
6822 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6823 sva += PAGE_SIZE) {
6824 retry:
6825 obits = pbits = *pte;
6826 if ((pbits & PG_V) == 0)
6827 continue;
6828
6829 if ((prot & VM_PROT_WRITE) == 0) {
6830 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6831 (PG_MANAGED | PG_M | PG_RW)) {
6832 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6833 vm_page_dirty(m);
6834 }
6835 pbits &= ~(PG_RW | PG_M);
6836 }
6837 if ((prot & VM_PROT_EXECUTE) == 0)
6838 pbits |= pg_nx;
6839
6840 if (pbits != obits) {
6841 if (!atomic_cmpset_long(pte, obits, pbits))
6842 goto retry;
6843 if (obits & PG_G)
6844 pmap_invalidate_page(pmap, sva);
6845 else
6846 anychanged = true;
6847 }
6848 }
6849 }
6850 if (anychanged)
6851 pmap_invalidate_all(pmap);
6852 PMAP_UNLOCK(pmap);
6853 }
6854
6855 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6856 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6857 {
6858
6859 if (pmap->pm_type != PT_EPT)
6860 return (false);
6861 return ((pde & EPT_PG_EXECUTE) != 0);
6862 }
6863
6864 #if VM_NRESERVLEVEL > 0
6865 /*
6866 * Tries to promote the 512, contiguous 4KB page mappings that are within a
6867 * single page table page (PTP) to a single 2MB page mapping. For promotion
6868 * to occur, two conditions must be met: (1) the 4KB page mappings must map
6869 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6870 * identical characteristics.
6871 */
6872 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6873 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6874 struct rwlock **lockp)
6875 {
6876 pd_entry_t newpde;
6877 pt_entry_t *firstpte, oldpte, pa, *pte;
6878 pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6879 int PG_PTE_CACHE;
6880
6881 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6882 if (!pmap_ps_enabled(pmap))
6883 return (false);
6884
6885 PG_A = pmap_accessed_bit(pmap);
6886 PG_G = pmap_global_bit(pmap);
6887 PG_M = pmap_modified_bit(pmap);
6888 PG_V = pmap_valid_bit(pmap);
6889 PG_RW = pmap_rw_bit(pmap);
6890 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6891 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6892
6893 /*
6894 * Examine the first PTE in the specified PTP. Abort if this PTE is
6895 * ineligible for promotion due to hardware errata, invalid, or does
6896 * not map the first 4KB physical page within a 2MB page.
6897 */
6898 firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6899 newpde = *firstpte;
6900 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6901 return (false);
6902 if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6903 counter_u64_add(pmap_pde_p_failures, 1);
6904 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6905 " in pmap %p", va, pmap);
6906 return (false);
6907 }
6908
6909 /*
6910 * Both here and in the below "for" loop, to allow for repromotion
6911 * after MADV_FREE, conditionally write protect a clean PTE before
6912 * possibly aborting the promotion due to other PTE attributes. Why?
6913 * Suppose that MADV_FREE is applied to a part of a superpage, the
6914 * address range [S, E). pmap_advise() will demote the superpage
6915 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6916 * clear PG_M and PG_A in the PTEs for the rest of [S, E). Later,
6917 * imagine that the memory in [S, E) is recycled, but the last 4KB
6918 * page in [S, E) is not the last to be rewritten, or simply accessed.
6919 * In other words, there is still a 4KB page in [S, E), call it P,
6920 * that is writeable but PG_M and PG_A are clear in P's PTE. Unless
6921 * we write protect P before aborting the promotion, if and when P is
6922 * finally rewritten, there won't be a page fault to trigger
6923 * repromotion.
6924 */
6925 setpde:
6926 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6927 /*
6928 * When PG_M is already clear, PG_RW can be cleared without
6929 * a TLB invalidation.
6930 */
6931 if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6932 goto setpde;
6933 newpde &= ~PG_RW;
6934 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6935 " in pmap %p", va & ~PDRMASK, pmap);
6936 }
6937
6938 /*
6939 * Examine each of the other PTEs in the specified PTP. Abort if this
6940 * PTE maps an unexpected 4KB physical page or does not have identical
6941 * characteristics to the first PTE.
6942 */
6943 allpte_PG_A = newpde & PG_A;
6944 pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6945 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6946 oldpte = *pte;
6947 if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6948 counter_u64_add(pmap_pde_p_failures, 1);
6949 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6950 " in pmap %p", va, pmap);
6951 return (false);
6952 }
6953 setpte:
6954 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6955 /*
6956 * When PG_M is already clear, PG_RW can be cleared
6957 * without a TLB invalidation.
6958 */
6959 if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6960 goto setpte;
6961 oldpte &= ~PG_RW;
6962 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6963 " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6964 (va & ~PDRMASK), pmap);
6965 }
6966 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6967 counter_u64_add(pmap_pde_p_failures, 1);
6968 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6969 " in pmap %p", va, pmap);
6970 return (false);
6971 }
6972 allpte_PG_A &= oldpte;
6973 pa -= PAGE_SIZE;
6974 }
6975
6976 /*
6977 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6978 * so that promotions triggered by speculative mappings, such as
6979 * pmap_enter_quick(), don't automatically mark the underlying pages
6980 * as referenced.
6981 */
6982 newpde &= ~PG_A | allpte_PG_A;
6983
6984 /*
6985 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6986 * MMUs supporting EPT.
6987 */
6988 KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6989 ("unsupported EPT PTE"));
6990
6991 /*
6992 * Save the PTP in its current state until the PDE mapping the
6993 * superpage is demoted by pmap_demote_pde() or destroyed by
6994 * pmap_remove_pde(). If PG_A is not set in every PTE, then request
6995 * that the PTP be refilled on demotion.
6996 */
6997 if (mpte == NULL)
6998 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6999 KASSERT(mpte >= vm_page_array &&
7000 mpte < &vm_page_array[vm_page_array_size],
7001 ("pmap_promote_pde: page table page is out of range"));
7002 KASSERT(mpte->pindex == pmap_pde_pindex(va),
7003 ("pmap_promote_pde: page table page's pindex is wrong "
7004 "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7005 mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7006 if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7007 counter_u64_add(pmap_pde_p_failures, 1);
7008 CTR2(KTR_PMAP,
7009 "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7010 pmap);
7011 return (false);
7012 }
7013
7014 /*
7015 * Promote the pv entries.
7016 */
7017 if ((newpde & PG_MANAGED) != 0)
7018 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7019
7020 /*
7021 * Propagate the PAT index to its proper position.
7022 */
7023 newpde = pmap_swap_pat(pmap, newpde);
7024
7025 /*
7026 * Map the superpage.
7027 */
7028 if (workaround_erratum383)
7029 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7030 else
7031 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7032
7033 counter_u64_add(pmap_pde_promotions, 1);
7034 CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7035 " in pmap %p", va, pmap);
7036 return (true);
7037 }
7038 #endif /* VM_NRESERVLEVEL > 0 */
7039
7040 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7041 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7042 int psind)
7043 {
7044 vm_page_t mp;
7045 pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7046
7047 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7048 KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7049 ("psind %d unexpected", psind));
7050 KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7051 ("unaligned phys address %#lx newpte %#lx psind %d",
7052 newpte & PG_FRAME, newpte, psind));
7053 KASSERT((va & (pagesizes[psind] - 1)) == 0,
7054 ("unaligned va %#lx psind %d", va, psind));
7055 KASSERT(va < VM_MAXUSER_ADDRESS,
7056 ("kernel mode non-transparent superpage")); /* XXXKIB */
7057 KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7058 ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7059
7060 PG_V = pmap_valid_bit(pmap);
7061
7062 restart:
7063 pten = newpte;
7064 if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7065 return (KERN_PROTECTION_FAILURE);
7066
7067 if (psind == 2) { /* 1G */
7068 pml4e = pmap_pml4e(pmap, va);
7069 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7070 mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7071 NULL, va);
7072 if (mp == NULL)
7073 goto allocf;
7074 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7075 pdpe = &pdpe[pmap_pdpe_index(va)];
7076 origpte = *pdpe;
7077 MPASS(origpte == 0);
7078 } else {
7079 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7080 KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7081 origpte = *pdpe;
7082 if ((origpte & PG_V) == 0) {
7083 mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7084 mp->ref_count++;
7085 }
7086 }
7087 *pdpe = pten;
7088 } else /* (psind == 1) */ { /* 2M */
7089 pde = pmap_pde(pmap, va);
7090 if (pde == NULL) {
7091 mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7092 NULL, va);
7093 if (mp == NULL)
7094 goto allocf;
7095 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7096 pde = &pde[pmap_pde_index(va)];
7097 origpte = *pde;
7098 MPASS(origpte == 0);
7099 } else {
7100 origpte = *pde;
7101 if ((origpte & PG_V) == 0) {
7102 pdpe = pmap_pdpe(pmap, va);
7103 MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7104 mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7105 mp->ref_count++;
7106 }
7107 }
7108 *pde = pten;
7109 }
7110 KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7111 (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7112 ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7113 va, psind == 2 ? "1G" : "2M", origpte, pten));
7114 if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7115 pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7116 else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7117 pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7118 if ((origpte & PG_V) == 0)
7119 pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7120
7121 return (KERN_SUCCESS);
7122
7123 allocf:
7124 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7125 return (KERN_RESOURCE_SHORTAGE);
7126 PMAP_UNLOCK(pmap);
7127 vm_wait(NULL);
7128 PMAP_LOCK(pmap);
7129 goto restart;
7130 }
7131
7132 /*
7133 * Insert the given physical page (p) at
7134 * the specified virtual address (v) in the
7135 * target physical map with the protection requested.
7136 *
7137 * If specified, the page will be wired down, meaning
7138 * that the related pte can not be reclaimed.
7139 *
7140 * NB: This is the only routine which MAY NOT lazy-evaluate
7141 * or lose information. That is, this routine must actually
7142 * insert this page into the given map NOW.
7143 *
7144 * When destroying both a page table and PV entry, this function
7145 * performs the TLB invalidation before releasing the PV list
7146 * lock, so we do not need pmap_delayed_invl_page() calls here.
7147 */
7148 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7149 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7150 u_int flags, int8_t psind)
7151 {
7152 struct rwlock *lock;
7153 pd_entry_t *pde;
7154 pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7155 pt_entry_t newpte, origpte;
7156 pv_entry_t pv;
7157 vm_paddr_t opa, pa;
7158 vm_page_t mpte, om;
7159 int rv;
7160 bool nosleep;
7161
7162 PG_A = pmap_accessed_bit(pmap);
7163 PG_G = pmap_global_bit(pmap);
7164 PG_M = pmap_modified_bit(pmap);
7165 PG_V = pmap_valid_bit(pmap);
7166 PG_RW = pmap_rw_bit(pmap);
7167
7168 va = trunc_page(va);
7169 KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7170 KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7171 ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7172 va));
7173 KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7174 ("pmap_enter: managed mapping within the clean submap"));
7175 if ((m->oflags & VPO_UNMANAGED) == 0)
7176 VM_PAGE_OBJECT_BUSY_ASSERT(m);
7177 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7178 ("pmap_enter: flags %u has reserved bits set", flags));
7179 pa = VM_PAGE_TO_PHYS(m);
7180 newpte = (pt_entry_t)(pa | PG_A | PG_V);
7181 if ((flags & VM_PROT_WRITE) != 0)
7182 newpte |= PG_M;
7183 if ((prot & VM_PROT_WRITE) != 0)
7184 newpte |= PG_RW;
7185 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7186 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7187 if ((prot & VM_PROT_EXECUTE) == 0)
7188 newpte |= pg_nx;
7189 if ((flags & PMAP_ENTER_WIRED) != 0)
7190 newpte |= PG_W;
7191 if (va < VM_MAXUSER_ADDRESS)
7192 newpte |= PG_U;
7193 if (pmap == kernel_pmap)
7194 newpte |= PG_G;
7195 newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7196
7197 /*
7198 * Set modified bit gratuitously for writeable mappings if
7199 * the page is unmanaged. We do not want to take a fault
7200 * to do the dirty bit accounting for these mappings.
7201 */
7202 if ((m->oflags & VPO_UNMANAGED) != 0) {
7203 if ((newpte & PG_RW) != 0)
7204 newpte |= PG_M;
7205 } else
7206 newpte |= PG_MANAGED;
7207
7208 lock = NULL;
7209 PMAP_LOCK(pmap);
7210 if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7211 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7212 ("managed largepage va %#lx flags %#x", va, flags));
7213 rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7214 psind);
7215 goto out;
7216 }
7217 if (psind == 1) {
7218 /* Assert the required virtual and physical alignment. */
7219 KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7220 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7221 rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7222 goto out;
7223 }
7224 mpte = NULL;
7225
7226 /*
7227 * In the case that a page table page is not
7228 * resident, we are creating it here.
7229 */
7230 retry:
7231 pde = pmap_pde(pmap, va);
7232 if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7233 pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7234 pte = pmap_pde_to_pte(pde, va);
7235 if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7236 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7237 mpte->ref_count++;
7238 }
7239 } else if (va < VM_MAXUSER_ADDRESS) {
7240 /*
7241 * Here if the pte page isn't mapped, or if it has been
7242 * deallocated.
7243 */
7244 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7245 mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7246 nosleep ? NULL : &lock, va);
7247 if (mpte == NULL && nosleep) {
7248 rv = KERN_RESOURCE_SHORTAGE;
7249 goto out;
7250 }
7251 goto retry;
7252 } else
7253 panic("pmap_enter: invalid page directory va=%#lx", va);
7254
7255 origpte = *pte;
7256 pv = NULL;
7257 if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7258 newpte |= pmap_pkru_get(pmap, va);
7259
7260 /*
7261 * Is the specified virtual address already mapped?
7262 */
7263 if ((origpte & PG_V) != 0) {
7264 /*
7265 * Wiring change, just update stats. We don't worry about
7266 * wiring PT pages as they remain resident as long as there
7267 * are valid mappings in them. Hence, if a user page is wired,
7268 * the PT page will be also.
7269 */
7270 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7271 pmap->pm_stats.wired_count++;
7272 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7273 pmap->pm_stats.wired_count--;
7274
7275 /*
7276 * Remove the extra PT page reference.
7277 */
7278 if (mpte != NULL) {
7279 mpte->ref_count--;
7280 KASSERT(mpte->ref_count > 0,
7281 ("pmap_enter: missing reference to page table page,"
7282 " va: 0x%lx", va));
7283 }
7284
7285 /*
7286 * Has the physical page changed?
7287 */
7288 opa = origpte & PG_FRAME;
7289 if (opa == pa) {
7290 /*
7291 * No, might be a protection or wiring change.
7292 */
7293 if ((origpte & PG_MANAGED) != 0 &&
7294 (newpte & PG_RW) != 0)
7295 vm_page_aflag_set(m, PGA_WRITEABLE);
7296 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7297 goto unchanged;
7298 goto validate;
7299 }
7300
7301 /*
7302 * The physical page has changed. Temporarily invalidate
7303 * the mapping. This ensures that all threads sharing the
7304 * pmap keep a consistent view of the mapping, which is
7305 * necessary for the correct handling of COW faults. It
7306 * also permits reuse of the old mapping's PV entry,
7307 * avoiding an allocation.
7308 *
7309 * For consistency, handle unmanaged mappings the same way.
7310 */
7311 origpte = pte_load_clear(pte);
7312 KASSERT((origpte & PG_FRAME) == opa,
7313 ("pmap_enter: unexpected pa update for %#lx", va));
7314 if ((origpte & PG_MANAGED) != 0) {
7315 om = PHYS_TO_VM_PAGE(opa);
7316
7317 /*
7318 * The pmap lock is sufficient to synchronize with
7319 * concurrent calls to pmap_page_test_mappings() and
7320 * pmap_ts_referenced().
7321 */
7322 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7323 vm_page_dirty(om);
7324 if ((origpte & PG_A) != 0) {
7325 pmap_invalidate_page(pmap, va);
7326 vm_page_aflag_set(om, PGA_REFERENCED);
7327 }
7328 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7329 pv = pmap_pvh_remove(&om->md, pmap, va);
7330 KASSERT(pv != NULL,
7331 ("pmap_enter: no PV entry for %#lx", va));
7332 if ((newpte & PG_MANAGED) == 0)
7333 free_pv_entry(pmap, pv);
7334 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7335 TAILQ_EMPTY(&om->md.pv_list) &&
7336 ((om->flags & PG_FICTITIOUS) != 0 ||
7337 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7338 vm_page_aflag_clear(om, PGA_WRITEABLE);
7339 } else {
7340 /*
7341 * Since this mapping is unmanaged, assume that PG_A
7342 * is set.
7343 */
7344 pmap_invalidate_page(pmap, va);
7345 }
7346 origpte = 0;
7347 } else {
7348 /*
7349 * Increment the counters.
7350 */
7351 if ((newpte & PG_W) != 0)
7352 pmap->pm_stats.wired_count++;
7353 pmap_resident_count_adj(pmap, 1);
7354 }
7355
7356 /*
7357 * Enter on the PV list if part of our managed memory.
7358 */
7359 if ((newpte & PG_MANAGED) != 0) {
7360 if (pv == NULL) {
7361 pv = get_pv_entry(pmap, &lock);
7362 pv->pv_va = va;
7363 }
7364 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7365 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7366 m->md.pv_gen++;
7367 if ((newpte & PG_RW) != 0)
7368 vm_page_aflag_set(m, PGA_WRITEABLE);
7369 }
7370
7371 /*
7372 * Update the PTE.
7373 */
7374 if ((origpte & PG_V) != 0) {
7375 validate:
7376 origpte = pte_load_store(pte, newpte);
7377 KASSERT((origpte & PG_FRAME) == pa,
7378 ("pmap_enter: unexpected pa update for %#lx", va));
7379 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7380 (PG_M | PG_RW)) {
7381 if ((origpte & PG_MANAGED) != 0)
7382 vm_page_dirty(m);
7383
7384 /*
7385 * Although the PTE may still have PG_RW set, TLB
7386 * invalidation may nonetheless be required because
7387 * the PTE no longer has PG_M set.
7388 */
7389 } else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7390 /*
7391 * This PTE change does not require TLB invalidation.
7392 */
7393 goto unchanged;
7394 }
7395 if ((origpte & PG_A) != 0)
7396 pmap_invalidate_page(pmap, va);
7397 } else
7398 pte_store(pte, newpte);
7399
7400 unchanged:
7401
7402 #if VM_NRESERVLEVEL > 0
7403 /*
7404 * If both the page table page and the reservation are fully
7405 * populated, then attempt promotion.
7406 */
7407 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7408 (m->flags & PG_FICTITIOUS) == 0 &&
7409 vm_reserv_level_iffullpop(m) == 0)
7410 (void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7411 #endif
7412
7413 rv = KERN_SUCCESS;
7414 out:
7415 if (lock != NULL)
7416 rw_wunlock(lock);
7417 PMAP_UNLOCK(pmap);
7418 return (rv);
7419 }
7420
7421 /*
7422 * Tries to create a read- and/or execute-only 2MB page mapping. Returns
7423 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
7424 * value. See pmap_enter_pde() for the possible error values when "no sleep",
7425 * "no replace", and "no reclaim" are specified.
7426 */
7427 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7428 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7429 struct rwlock **lockp)
7430 {
7431 pd_entry_t newpde;
7432 pt_entry_t PG_V;
7433
7434 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7435 PG_V = pmap_valid_bit(pmap);
7436 newpde = VM_PAGE_TO_PHYS(m) |
7437 pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7438 if ((m->oflags & VPO_UNMANAGED) == 0)
7439 newpde |= PG_MANAGED;
7440 if ((prot & VM_PROT_EXECUTE) == 0)
7441 newpde |= pg_nx;
7442 if (va < VM_MAXUSER_ADDRESS)
7443 newpde |= PG_U;
7444 return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7445 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7446 }
7447
7448 /*
7449 * Returns true if every page table entry in the specified page table page is
7450 * zero.
7451 */
7452 static bool
pmap_every_pte_zero(vm_paddr_t pa)7453 pmap_every_pte_zero(vm_paddr_t pa)
7454 {
7455 pt_entry_t *pt_end, *pte;
7456
7457 KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7458 pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7459 for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7460 if (*pte != 0)
7461 return (false);
7462 }
7463 return (true);
7464 }
7465
7466 /*
7467 * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
7468 * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7469 * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise. Returns
7470 * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7471 * page mapping already exists within the 2MB virtual address range starting
7472 * at the specified virtual address or (2) the requested 2MB page mapping is
7473 * not supported due to hardware errata. Returns KERN_NO_SPACE if
7474 * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7475 * the specified virtual address. Returns KERN_PROTECTION_FAILURE if the PKRU
7476 * settings are not the same across the 2MB virtual address range starting at
7477 * the specified virtual address. Returns KERN_RESOURCE_SHORTAGE if either
7478 * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7479 * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7480 * failed.
7481 *
7482 * The parameter "m" is only used when creating a managed, writeable mapping.
7483 */
7484 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7485 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7486 vm_page_t m, struct rwlock **lockp)
7487 {
7488 struct spglist free;
7489 pd_entry_t oldpde, *pde;
7490 pt_entry_t PG_G, PG_RW, PG_V;
7491 vm_page_t mt, pdpg;
7492 vm_page_t uwptpg;
7493
7494 PG_G = pmap_global_bit(pmap);
7495 PG_RW = pmap_rw_bit(pmap);
7496 KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7497 ("pmap_enter_pde: newpde is missing PG_M"));
7498 PG_V = pmap_valid_bit(pmap);
7499 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7500
7501 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7502 newpde))) {
7503 CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7504 " in pmap %p", va, pmap);
7505 return (KERN_FAILURE);
7506 }
7507 if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7508 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7509 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7510 " in pmap %p", va, pmap);
7511 return (KERN_RESOURCE_SHORTAGE);
7512 }
7513
7514 /*
7515 * If pkru is not same for the whole pde range, return failure
7516 * and let vm_fault() cope. Check after pde allocation, since
7517 * it could sleep.
7518 */
7519 if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7520 pmap_abort_ptp(pmap, va, pdpg);
7521 return (KERN_PROTECTION_FAILURE);
7522 }
7523
7524 /*
7525 * If there are existing mappings, either abort or remove them.
7526 */
7527 oldpde = *pde;
7528 if ((oldpde & PG_V) != 0) {
7529 KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7530 ("pmap_enter_pde: pdpg's reference count is too low"));
7531 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7532 if ((oldpde & PG_PS) != 0) {
7533 if (pdpg != NULL)
7534 pdpg->ref_count--;
7535 CTR2(KTR_PMAP,
7536 "pmap_enter_pde: no space for va %#lx"
7537 " in pmap %p", va, pmap);
7538 return (KERN_NO_SPACE);
7539 } else if (va < VM_MAXUSER_ADDRESS ||
7540 !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7541 if (pdpg != NULL)
7542 pdpg->ref_count--;
7543 CTR2(KTR_PMAP,
7544 "pmap_enter_pde: failure for va %#lx"
7545 " in pmap %p", va, pmap);
7546 return (KERN_FAILURE);
7547 }
7548 }
7549 /* Break the existing mapping(s). */
7550 SLIST_INIT(&free);
7551 if ((oldpde & PG_PS) != 0) {
7552 /*
7553 * The reference to the PD page that was acquired by
7554 * pmap_alloc_pde() ensures that it won't be freed.
7555 * However, if the PDE resulted from a promotion, then
7556 * a reserved PT page could be freed.
7557 */
7558 (void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7559 if ((oldpde & PG_G) == 0)
7560 pmap_invalidate_pde_page(pmap, va, oldpde);
7561 } else {
7562 pmap_delayed_invl_start();
7563 if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7564 lockp))
7565 pmap_invalidate_all(pmap);
7566 pmap_delayed_invl_finish();
7567 }
7568 if (va < VM_MAXUSER_ADDRESS) {
7569 vm_page_free_pages_toq(&free, true);
7570 KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7571 pde));
7572 } else {
7573 KASSERT(SLIST_EMPTY(&free),
7574 ("pmap_enter_pde: freed kernel page table page"));
7575
7576 /*
7577 * Both pmap_remove_pde() and pmap_remove_ptes() will
7578 * leave the kernel page table page zero filled.
7579 */
7580 mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7581 if (pmap_insert_pt_page(pmap, mt, false, false))
7582 panic("pmap_enter_pde: trie insert failed");
7583 }
7584 }
7585
7586 /*
7587 * Allocate leaf ptpage for wired userspace pages.
7588 */
7589 uwptpg = NULL;
7590 if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7591 uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7592 VM_ALLOC_WIRED);
7593 if (uwptpg == NULL) {
7594 pmap_abort_ptp(pmap, va, pdpg);
7595 return (KERN_RESOURCE_SHORTAGE);
7596 }
7597 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7598 pmap_free_pt_page(pmap, uwptpg, false);
7599 pmap_abort_ptp(pmap, va, pdpg);
7600 return (KERN_RESOURCE_SHORTAGE);
7601 }
7602
7603 uwptpg->ref_count = NPTEPG;
7604 }
7605 if ((newpde & PG_MANAGED) != 0) {
7606 /*
7607 * Abort this mapping if its PV entry could not be created.
7608 */
7609 if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7610 if (pdpg != NULL)
7611 pmap_abort_ptp(pmap, va, pdpg);
7612 if (uwptpg != NULL) {
7613 mt = pmap_remove_pt_page(pmap, va);
7614 KASSERT(mt == uwptpg,
7615 ("removed pt page %p, expected %p", mt,
7616 uwptpg));
7617 uwptpg->ref_count = 1;
7618 pmap_free_pt_page(pmap, uwptpg, false);
7619 }
7620 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7621 " in pmap %p", va, pmap);
7622 return (KERN_RESOURCE_SHORTAGE);
7623 }
7624 if ((newpde & PG_RW) != 0) {
7625 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7626 vm_page_aflag_set(mt, PGA_WRITEABLE);
7627 }
7628 }
7629
7630 /*
7631 * Increment counters.
7632 */
7633 if ((newpde & PG_W) != 0)
7634 pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7635 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7636
7637 /*
7638 * Map the superpage. (This is not a promoted mapping; there will not
7639 * be any lingering 4KB page mappings in the TLB.)
7640 */
7641 pde_store(pde, newpde);
7642
7643 counter_u64_add(pmap_pde_mappings, 1);
7644 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7645 va, pmap);
7646 return (KERN_SUCCESS);
7647 }
7648
7649 /*
7650 * Maps a sequence of resident pages belonging to the same object.
7651 * The sequence begins with the given page m_start. This page is
7652 * mapped at the given virtual address start. Each subsequent page is
7653 * mapped at a virtual address that is offset from start by the same
7654 * amount as the page is offset from m_start within the object. The
7655 * last page in the sequence is the page with the largest offset from
7656 * m_start that can be mapped at a virtual address less than the given
7657 * virtual address end. Not every virtual page between start and end
7658 * is mapped; only those for which a resident page exists with the
7659 * corresponding offset from m_start are mapped.
7660 */
7661 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7662 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7663 vm_page_t m_start, vm_prot_t prot)
7664 {
7665 struct pctrie_iter pages;
7666 struct rwlock *lock;
7667 vm_offset_t va;
7668 vm_page_t m, mpte;
7669 int rv;
7670
7671 VM_OBJECT_ASSERT_LOCKED(m_start->object);
7672
7673 mpte = NULL;
7674 vm_page_iter_limit_init(&pages, m_start->object,
7675 m_start->pindex + atop(end - start));
7676 m = vm_radix_iter_lookup(&pages, m_start->pindex);
7677 lock = NULL;
7678 PMAP_LOCK(pmap);
7679 while (m != NULL) {
7680 va = start + ptoa(m->pindex - m_start->pindex);
7681 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7682 m->psind == 1 && pmap_ps_enabled(pmap) &&
7683 ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7684 KERN_SUCCESS || rv == KERN_NO_SPACE))
7685 m = vm_radix_iter_jump(&pages, NBPDR / PAGE_SIZE);
7686 else {
7687 mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7688 mpte, &lock);
7689 m = vm_radix_iter_step(&pages);
7690 }
7691 }
7692 if (lock != NULL)
7693 rw_wunlock(lock);
7694 PMAP_UNLOCK(pmap);
7695 }
7696
7697 /*
7698 * this code makes some *MAJOR* assumptions:
7699 * 1. Current pmap & pmap exists.
7700 * 2. Not wired.
7701 * 3. Read access.
7702 * 4. No page table pages.
7703 * but is *MUCH* faster than pmap_enter...
7704 */
7705
7706 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7707 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7708 {
7709 struct rwlock *lock;
7710
7711 lock = NULL;
7712 PMAP_LOCK(pmap);
7713 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7714 if (lock != NULL)
7715 rw_wunlock(lock);
7716 PMAP_UNLOCK(pmap);
7717 }
7718
7719 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7720 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7721 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7722 {
7723 pd_entry_t *pde;
7724 pt_entry_t newpte, *pte, PG_V;
7725
7726 KASSERT(!VA_IS_CLEANMAP(va) ||
7727 (m->oflags & VPO_UNMANAGED) != 0,
7728 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7729 PG_V = pmap_valid_bit(pmap);
7730 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7731 pde = NULL;
7732
7733 /*
7734 * In the case that a page table page is not
7735 * resident, we are creating it here.
7736 */
7737 if (va < VM_MAXUSER_ADDRESS) {
7738 pdp_entry_t *pdpe;
7739 vm_pindex_t ptepindex;
7740
7741 /*
7742 * Calculate pagetable page index
7743 */
7744 ptepindex = pmap_pde_pindex(va);
7745 if (mpte && (mpte->pindex == ptepindex)) {
7746 mpte->ref_count++;
7747 } else {
7748 /*
7749 * If the page table page is mapped, we just increment
7750 * the hold count, and activate it. Otherwise, we
7751 * attempt to allocate a page table page, passing NULL
7752 * instead of the PV list lock pointer because we don't
7753 * intend to sleep. If this attempt fails, we don't
7754 * retry. Instead, we give up.
7755 */
7756 pdpe = pmap_pdpe(pmap, va);
7757 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7758 if ((*pdpe & PG_PS) != 0)
7759 return (NULL);
7760 pde = pmap_pdpe_to_pde(pdpe, va);
7761 if ((*pde & PG_V) != 0) {
7762 if ((*pde & PG_PS) != 0)
7763 return (NULL);
7764 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7765 mpte->ref_count++;
7766 } else {
7767 mpte = pmap_allocpte_alloc(pmap,
7768 ptepindex, NULL, va);
7769 if (mpte == NULL)
7770 return (NULL);
7771 }
7772 } else {
7773 mpte = pmap_allocpte_alloc(pmap, ptepindex,
7774 NULL, va);
7775 if (mpte == NULL)
7776 return (NULL);
7777 }
7778 }
7779 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7780 pte = &pte[pmap_pte_index(va)];
7781 } else {
7782 mpte = NULL;
7783 pte = vtopte(va);
7784 }
7785 if (*pte) {
7786 if (mpte != NULL)
7787 mpte->ref_count--;
7788 return (NULL);
7789 }
7790
7791 /*
7792 * Enter on the PV list if part of our managed memory.
7793 */
7794 if ((m->oflags & VPO_UNMANAGED) == 0 &&
7795 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7796 if (mpte != NULL)
7797 pmap_abort_ptp(pmap, va, mpte);
7798 return (NULL);
7799 }
7800
7801 /*
7802 * Increment counters
7803 */
7804 pmap_resident_count_adj(pmap, 1);
7805
7806 newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7807 pmap_cache_bits(pmap, m->md.pat_mode, false);
7808 if ((m->oflags & VPO_UNMANAGED) == 0)
7809 newpte |= PG_MANAGED;
7810 if ((prot & VM_PROT_EXECUTE) == 0)
7811 newpte |= pg_nx;
7812 if (va < VM_MAXUSER_ADDRESS)
7813 newpte |= PG_U | pmap_pkru_get(pmap, va);
7814 pte_store(pte, newpte);
7815
7816 #if VM_NRESERVLEVEL > 0
7817 /*
7818 * If both the PTP and the reservation are fully populated, then
7819 * attempt promotion.
7820 */
7821 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7822 (mpte == NULL || mpte->ref_count == NPTEPG) &&
7823 (m->flags & PG_FICTITIOUS) == 0 &&
7824 vm_reserv_level_iffullpop(m) == 0) {
7825 if (pde == NULL)
7826 pde = pmap_pde(pmap, va);
7827
7828 /*
7829 * If promotion succeeds, then the next call to this function
7830 * should not be given the unmapped PTP as a hint.
7831 */
7832 if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7833 mpte = NULL;
7834 }
7835 #endif
7836
7837 return (mpte);
7838 }
7839
7840 /*
7841 * Make a temporary mapping for a physical address. This is only intended
7842 * to be used for panic dumps.
7843 */
7844 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7845 pmap_kenter_temporary(vm_paddr_t pa, int i)
7846 {
7847 vm_offset_t va;
7848
7849 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7850 pmap_kenter(va, pa);
7851 pmap_invlpg(kernel_pmap, va);
7852 return ((void *)crashdumpmap);
7853 }
7854
7855 /*
7856 * This code maps large physical mmap regions into the
7857 * processor address space. Note that some shortcuts
7858 * are taken, but the code works.
7859 */
7860 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7861 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7862 vm_pindex_t pindex, vm_size_t size)
7863 {
7864 struct pctrie_iter pages;
7865 pd_entry_t *pde;
7866 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7867 vm_paddr_t pa, ptepa;
7868 vm_page_t p, pdpg;
7869 int pat_mode;
7870
7871 PG_A = pmap_accessed_bit(pmap);
7872 PG_M = pmap_modified_bit(pmap);
7873 PG_V = pmap_valid_bit(pmap);
7874 PG_RW = pmap_rw_bit(pmap);
7875
7876 VM_OBJECT_ASSERT_WLOCKED(object);
7877 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7878 ("pmap_object_init_pt: non-device object"));
7879 if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7880 if (!pmap_ps_enabled(pmap))
7881 return;
7882 if (!vm_object_populate(object, pindex, pindex + atop(size)))
7883 return;
7884 vm_page_iter_init(&pages, object);
7885 p = vm_radix_iter_lookup(&pages, pindex);
7886 KASSERT(vm_page_all_valid(p),
7887 ("pmap_object_init_pt: invalid page %p", p));
7888 pat_mode = p->md.pat_mode;
7889
7890 /*
7891 * Abort the mapping if the first page is not physically
7892 * aligned to a 2MB page boundary.
7893 */
7894 ptepa = VM_PAGE_TO_PHYS(p);
7895 if (ptepa & (NBPDR - 1))
7896 return;
7897
7898 /*
7899 * Skip the first page. Abort the mapping if the rest of
7900 * the pages are not physically contiguous or have differing
7901 * memory attributes.
7902 */
7903 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7904 pa += PAGE_SIZE) {
7905 p = vm_radix_iter_next(&pages);
7906 KASSERT(vm_page_all_valid(p),
7907 ("pmap_object_init_pt: invalid page %p", p));
7908 if (pa != VM_PAGE_TO_PHYS(p) ||
7909 pat_mode != p->md.pat_mode)
7910 return;
7911 }
7912
7913 /*
7914 * Map using 2MB pages. Since "ptepa" is 2M aligned and
7915 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7916 * will not affect the termination of this loop.
7917 */
7918 PMAP_LOCK(pmap);
7919 for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7920 pa < ptepa + size; pa += NBPDR) {
7921 pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7922 if (pde == NULL) {
7923 /*
7924 * The creation of mappings below is only an
7925 * optimization. If a page directory page
7926 * cannot be allocated without blocking,
7927 * continue on to the next mapping rather than
7928 * blocking.
7929 */
7930 addr += NBPDR;
7931 continue;
7932 }
7933 if ((*pde & PG_V) == 0) {
7934 pde_store(pde, pa | PG_PS | PG_M | PG_A |
7935 PG_U | PG_RW | PG_V);
7936 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7937 counter_u64_add(pmap_pde_mappings, 1);
7938 } else {
7939 /* Continue on if the PDE is already valid. */
7940 pdpg->ref_count--;
7941 KASSERT(pdpg->ref_count > 0,
7942 ("pmap_object_init_pt: missing reference "
7943 "to page directory page, va: 0x%lx", addr));
7944 }
7945 addr += NBPDR;
7946 }
7947 PMAP_UNLOCK(pmap);
7948 }
7949 }
7950
7951 /*
7952 * Clear the wired attribute from the mappings for the specified range of
7953 * addresses in the given pmap. Every valid mapping within that range
7954 * must have the wired attribute set. In contrast, invalid mappings
7955 * cannot have the wired attribute set, so they are ignored.
7956 *
7957 * The wired attribute of the page table entry is not a hardware
7958 * feature, so there is no need to invalidate any TLB entries.
7959 * Since pmap_demote_pde() for the wired entry must never fail,
7960 * pmap_delayed_invl_start()/finish() calls around the
7961 * function are not needed.
7962 */
7963 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7964 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7965 {
7966 vm_offset_t va_next;
7967 pml4_entry_t *pml4e;
7968 pdp_entry_t *pdpe;
7969 pd_entry_t *pde;
7970 pt_entry_t *pte, PG_V, PG_G __diagused;
7971
7972 PG_V = pmap_valid_bit(pmap);
7973 PG_G = pmap_global_bit(pmap);
7974 PMAP_LOCK(pmap);
7975 for (; sva < eva; sva = va_next) {
7976 pml4e = pmap_pml4e(pmap, sva);
7977 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7978 va_next = (sva + NBPML4) & ~PML4MASK;
7979 if (va_next < sva)
7980 va_next = eva;
7981 continue;
7982 }
7983
7984 va_next = (sva + NBPDP) & ~PDPMASK;
7985 if (va_next < sva)
7986 va_next = eva;
7987 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7988 if ((*pdpe & PG_V) == 0)
7989 continue;
7990 if ((*pdpe & PG_PS) != 0) {
7991 KASSERT(va_next <= eva,
7992 ("partial update of non-transparent 1G mapping "
7993 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7994 *pdpe, sva, eva, va_next));
7995 MPASS(pmap != kernel_pmap); /* XXXKIB */
7996 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7997 atomic_clear_long(pdpe, PG_W);
7998 pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7999 continue;
8000 }
8001
8002 va_next = (sva + NBPDR) & ~PDRMASK;
8003 if (va_next < sva)
8004 va_next = eva;
8005 pde = pmap_pdpe_to_pde(pdpe, sva);
8006 if ((*pde & PG_V) == 0)
8007 continue;
8008 if ((*pde & PG_PS) != 0) {
8009 if ((*pde & PG_W) == 0)
8010 panic("pmap_unwire: pde %#jx is missing PG_W",
8011 (uintmax_t)*pde);
8012
8013 /*
8014 * Are we unwiring the entire large page? If not,
8015 * demote the mapping and fall through.
8016 */
8017 if (sva + NBPDR == va_next && eva >= va_next) {
8018 atomic_clear_long(pde, PG_W);
8019 pmap->pm_stats.wired_count -= NBPDR /
8020 PAGE_SIZE;
8021 continue;
8022 } else if (!pmap_demote_pde(pmap, pde, sva))
8023 panic("pmap_unwire: demotion failed");
8024 }
8025 if (va_next > eva)
8026 va_next = eva;
8027 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8028 sva += PAGE_SIZE) {
8029 if ((*pte & PG_V) == 0)
8030 continue;
8031 if ((*pte & PG_W) == 0)
8032 panic("pmap_unwire: pte %#jx is missing PG_W",
8033 (uintmax_t)*pte);
8034
8035 /*
8036 * PG_W must be cleared atomically. Although the pmap
8037 * lock synchronizes access to PG_W, another processor
8038 * could be setting PG_M and/or PG_A concurrently.
8039 */
8040 atomic_clear_long(pte, PG_W);
8041 pmap->pm_stats.wired_count--;
8042 }
8043 }
8044 PMAP_UNLOCK(pmap);
8045 }
8046
8047 /*
8048 * Copy the range specified by src_addr/len
8049 * from the source map to the range dst_addr/len
8050 * in the destination map.
8051 *
8052 * This routine is only advisory and need not do anything.
8053 */
8054 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8055 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8056 vm_offset_t src_addr)
8057 {
8058 struct rwlock *lock;
8059 pml4_entry_t *pml4e;
8060 pdp_entry_t *pdpe;
8061 pd_entry_t *pde, srcptepaddr;
8062 pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8063 vm_offset_t addr, end_addr, va_next;
8064 vm_page_t dst_pdpg, dstmpte, srcmpte;
8065
8066 if (dst_addr != src_addr)
8067 return;
8068
8069 if (dst_pmap->pm_type != src_pmap->pm_type)
8070 return;
8071
8072 /*
8073 * EPT page table entries that require emulation of A/D bits are
8074 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8075 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8076 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8077 * implementations flag an EPT misconfiguration for exec-only
8078 * mappings we skip this function entirely for emulated pmaps.
8079 */
8080 if (pmap_emulate_ad_bits(dst_pmap))
8081 return;
8082
8083 end_addr = src_addr + len;
8084 lock = NULL;
8085 if (dst_pmap < src_pmap) {
8086 PMAP_LOCK(dst_pmap);
8087 PMAP_LOCK(src_pmap);
8088 } else {
8089 PMAP_LOCK(src_pmap);
8090 PMAP_LOCK(dst_pmap);
8091 }
8092
8093 PG_A = pmap_accessed_bit(dst_pmap);
8094 PG_M = pmap_modified_bit(dst_pmap);
8095 PG_V = pmap_valid_bit(dst_pmap);
8096
8097 for (addr = src_addr; addr < end_addr; addr = va_next) {
8098 KASSERT(addr < UPT_MIN_ADDRESS,
8099 ("pmap_copy: invalid to pmap_copy page tables"));
8100
8101 pml4e = pmap_pml4e(src_pmap, addr);
8102 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8103 va_next = (addr + NBPML4) & ~PML4MASK;
8104 if (va_next < addr)
8105 va_next = end_addr;
8106 continue;
8107 }
8108
8109 va_next = (addr + NBPDP) & ~PDPMASK;
8110 if (va_next < addr)
8111 va_next = end_addr;
8112 pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8113 if ((*pdpe & PG_V) == 0)
8114 continue;
8115 if ((*pdpe & PG_PS) != 0) {
8116 KASSERT(va_next <= end_addr,
8117 ("partial update of non-transparent 1G mapping "
8118 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8119 *pdpe, addr, end_addr, va_next));
8120 MPASS((addr & PDPMASK) == 0);
8121 MPASS((*pdpe & PG_MANAGED) == 0);
8122 srcptepaddr = *pdpe;
8123 pdpe = pmap_pdpe(dst_pmap, addr);
8124 if (pdpe == NULL) {
8125 if (pmap_allocpte_alloc(dst_pmap,
8126 pmap_pml4e_pindex(addr), NULL, addr) ==
8127 NULL)
8128 break;
8129 pdpe = pmap_pdpe(dst_pmap, addr);
8130 } else {
8131 pml4e = pmap_pml4e(dst_pmap, addr);
8132 dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8133 dst_pdpg->ref_count++;
8134 }
8135 KASSERT(*pdpe == 0,
8136 ("1G mapping present in dst pmap "
8137 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8138 *pdpe, addr, end_addr, va_next));
8139 *pdpe = srcptepaddr & ~PG_W;
8140 pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8141 continue;
8142 }
8143
8144 va_next = (addr + NBPDR) & ~PDRMASK;
8145 if (va_next < addr)
8146 va_next = end_addr;
8147
8148 pde = pmap_pdpe_to_pde(pdpe, addr);
8149 srcptepaddr = *pde;
8150 if (srcptepaddr == 0)
8151 continue;
8152
8153 if (srcptepaddr & PG_PS) {
8154 /*
8155 * We can only virtual copy whole superpages.
8156 */
8157 if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8158 continue;
8159 pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8160 if (pde == NULL)
8161 break;
8162 if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8163 pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8164 PMAP_ENTER_NORECLAIM, &lock))) {
8165 /*
8166 * We leave the dirty bit unchanged because
8167 * managed read/write superpage mappings are
8168 * required to be dirty. However, managed
8169 * superpage mappings are not required to
8170 * have their accessed bit set, so we clear
8171 * it because we don't know if this mapping
8172 * will be used.
8173 */
8174 srcptepaddr &= ~PG_W;
8175 if ((srcptepaddr & PG_MANAGED) != 0)
8176 srcptepaddr &= ~PG_A;
8177 *pde = srcptepaddr;
8178 pmap_resident_count_adj(dst_pmap, NBPDR /
8179 PAGE_SIZE);
8180 counter_u64_add(pmap_pde_mappings, 1);
8181 } else
8182 pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8183 continue;
8184 }
8185
8186 srcptepaddr &= PG_FRAME;
8187 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8188 KASSERT(srcmpte->ref_count > 0,
8189 ("pmap_copy: source page table page is unused"));
8190
8191 if (va_next > end_addr)
8192 va_next = end_addr;
8193
8194 src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8195 src_pte = &src_pte[pmap_pte_index(addr)];
8196 dstmpte = NULL;
8197 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8198 ptetemp = *src_pte;
8199
8200 /*
8201 * We only virtual copy managed pages.
8202 */
8203 if ((ptetemp & PG_MANAGED) == 0)
8204 continue;
8205
8206 if (dstmpte != NULL) {
8207 KASSERT(dstmpte->pindex ==
8208 pmap_pde_pindex(addr),
8209 ("dstmpte pindex/addr mismatch"));
8210 dstmpte->ref_count++;
8211 } else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8212 NULL)) == NULL)
8213 goto out;
8214 dst_pte = (pt_entry_t *)
8215 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8216 dst_pte = &dst_pte[pmap_pte_index(addr)];
8217 if (*dst_pte == 0 &&
8218 pmap_try_insert_pv_entry(dst_pmap, addr,
8219 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8220 /*
8221 * Clear the wired, modified, and accessed
8222 * (referenced) bits during the copy.
8223 */
8224 *dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8225 pmap_resident_count_adj(dst_pmap, 1);
8226 } else {
8227 pmap_abort_ptp(dst_pmap, addr, dstmpte);
8228 goto out;
8229 }
8230 /* Have we copied all of the valid mappings? */
8231 if (dstmpte->ref_count >= srcmpte->ref_count)
8232 break;
8233 }
8234 }
8235 out:
8236 if (lock != NULL)
8237 rw_wunlock(lock);
8238 PMAP_UNLOCK(src_pmap);
8239 PMAP_UNLOCK(dst_pmap);
8240 }
8241
8242 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8243 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8244 {
8245 int error;
8246
8247 if (dst_pmap->pm_type != src_pmap->pm_type ||
8248 dst_pmap->pm_type != PT_X86 ||
8249 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8250 return (0);
8251 for (;;) {
8252 if (dst_pmap < src_pmap) {
8253 PMAP_LOCK(dst_pmap);
8254 PMAP_LOCK(src_pmap);
8255 } else {
8256 PMAP_LOCK(src_pmap);
8257 PMAP_LOCK(dst_pmap);
8258 }
8259 error = pmap_pkru_copy(dst_pmap, src_pmap);
8260 /* Clean up partial copy on failure due to no memory. */
8261 if (error == ENOMEM)
8262 pmap_pkru_deassign_all(dst_pmap);
8263 PMAP_UNLOCK(src_pmap);
8264 PMAP_UNLOCK(dst_pmap);
8265 if (error != ENOMEM)
8266 break;
8267 vm_wait(NULL);
8268 }
8269 return (error);
8270 }
8271
8272 /*
8273 * Zero the specified hardware page.
8274 */
8275 void
pmap_zero_page(vm_page_t m)8276 pmap_zero_page(vm_page_t m)
8277 {
8278 vm_offset_t va;
8279
8280 #ifdef TSLOG_PAGEZERO
8281 TSENTER();
8282 #endif
8283 va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8284 pagezero((void *)va);
8285 #ifdef TSLOG_PAGEZERO
8286 TSEXIT();
8287 #endif
8288 }
8289
8290 /*
8291 * Zero an area within a single hardware page. off and size must not
8292 * cover an area beyond a single hardware page.
8293 */
8294 void
pmap_zero_page_area(vm_page_t m,int off,int size)8295 pmap_zero_page_area(vm_page_t m, int off, int size)
8296 {
8297 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8298
8299 if (off == 0 && size == PAGE_SIZE)
8300 pagezero((void *)va);
8301 else
8302 bzero((char *)va + off, size);
8303 }
8304
8305 /*
8306 * Copy 1 specified hardware page to another.
8307 */
8308 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8309 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8310 {
8311 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8312 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8313
8314 pagecopy((void *)src, (void *)dst);
8315 }
8316
8317 int unmapped_buf_allowed = 1;
8318
8319 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8320 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8321 vm_offset_t b_offset, int xfersize)
8322 {
8323 void *a_cp, *b_cp;
8324 vm_page_t pages[2];
8325 vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8326 int cnt;
8327 bool mapped;
8328
8329 while (xfersize > 0) {
8330 a_pg_offset = a_offset & PAGE_MASK;
8331 pages[0] = ma[a_offset >> PAGE_SHIFT];
8332 b_pg_offset = b_offset & PAGE_MASK;
8333 pages[1] = mb[b_offset >> PAGE_SHIFT];
8334 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8335 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8336 mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8337 a_cp = (char *)vaddr[0] + a_pg_offset;
8338 b_cp = (char *)vaddr[1] + b_pg_offset;
8339 bcopy(a_cp, b_cp, cnt);
8340 if (__predict_false(mapped))
8341 pmap_unmap_io_transient(pages, vaddr, 2, false);
8342 a_offset += cnt;
8343 b_offset += cnt;
8344 xfersize -= cnt;
8345 }
8346 }
8347
8348 /*
8349 * Returns true if the pmap's pv is one of the first
8350 * 16 pvs linked to from this page. This count may
8351 * be changed upwards or downwards in the future; it
8352 * is only necessary that true be returned for a small
8353 * subset of pmaps for proper page aging.
8354 */
8355 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8356 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8357 {
8358 struct md_page *pvh;
8359 struct rwlock *lock;
8360 pv_entry_t pv;
8361 int loops = 0;
8362 bool rv;
8363
8364 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8365 ("pmap_page_exists_quick: page %p is not managed", m));
8366 rv = false;
8367 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8368 rw_rlock(lock);
8369 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8370 if (PV_PMAP(pv) == pmap) {
8371 rv = true;
8372 break;
8373 }
8374 loops++;
8375 if (loops >= 16)
8376 break;
8377 }
8378 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8379 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8380 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8381 if (PV_PMAP(pv) == pmap) {
8382 rv = true;
8383 break;
8384 }
8385 loops++;
8386 if (loops >= 16)
8387 break;
8388 }
8389 }
8390 rw_runlock(lock);
8391 return (rv);
8392 }
8393
8394 /*
8395 * pmap_page_wired_mappings:
8396 *
8397 * Return the number of managed mappings to the given physical page
8398 * that are wired.
8399 */
8400 int
pmap_page_wired_mappings(vm_page_t m)8401 pmap_page_wired_mappings(vm_page_t m)
8402 {
8403 struct rwlock *lock;
8404 struct md_page *pvh;
8405 pmap_t pmap;
8406 pt_entry_t *pte;
8407 pv_entry_t pv;
8408 int count, md_gen, pvh_gen;
8409
8410 if ((m->oflags & VPO_UNMANAGED) != 0)
8411 return (0);
8412 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8413 rw_rlock(lock);
8414 restart:
8415 count = 0;
8416 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8417 pmap = PV_PMAP(pv);
8418 if (!PMAP_TRYLOCK(pmap)) {
8419 md_gen = m->md.pv_gen;
8420 rw_runlock(lock);
8421 PMAP_LOCK(pmap);
8422 rw_rlock(lock);
8423 if (md_gen != m->md.pv_gen) {
8424 PMAP_UNLOCK(pmap);
8425 goto restart;
8426 }
8427 }
8428 pte = pmap_pte(pmap, pv->pv_va);
8429 if ((*pte & PG_W) != 0)
8430 count++;
8431 PMAP_UNLOCK(pmap);
8432 }
8433 if ((m->flags & PG_FICTITIOUS) == 0) {
8434 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8435 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8436 pmap = PV_PMAP(pv);
8437 if (!PMAP_TRYLOCK(pmap)) {
8438 md_gen = m->md.pv_gen;
8439 pvh_gen = pvh->pv_gen;
8440 rw_runlock(lock);
8441 PMAP_LOCK(pmap);
8442 rw_rlock(lock);
8443 if (md_gen != m->md.pv_gen ||
8444 pvh_gen != pvh->pv_gen) {
8445 PMAP_UNLOCK(pmap);
8446 goto restart;
8447 }
8448 }
8449 pte = pmap_pde(pmap, pv->pv_va);
8450 if ((*pte & PG_W) != 0)
8451 count++;
8452 PMAP_UNLOCK(pmap);
8453 }
8454 }
8455 rw_runlock(lock);
8456 return (count);
8457 }
8458
8459 /*
8460 * Returns true if the given page is mapped individually or as part of
8461 * a 2mpage. Otherwise, returns false.
8462 */
8463 bool
pmap_page_is_mapped(vm_page_t m)8464 pmap_page_is_mapped(vm_page_t m)
8465 {
8466 struct rwlock *lock;
8467 bool rv;
8468
8469 if ((m->oflags & VPO_UNMANAGED) != 0)
8470 return (false);
8471 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8472 rw_rlock(lock);
8473 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8474 ((m->flags & PG_FICTITIOUS) == 0 &&
8475 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8476 rw_runlock(lock);
8477 return (rv);
8478 }
8479
8480 /*
8481 * Destroy all managed, non-wired mappings in the given user-space
8482 * pmap. This pmap cannot be active on any processor besides the
8483 * caller.
8484 *
8485 * This function cannot be applied to the kernel pmap. Moreover, it
8486 * is not intended for general use. It is only to be used during
8487 * process termination. Consequently, it can be implemented in ways
8488 * that make it faster than pmap_remove(). First, it can more quickly
8489 * destroy mappings by iterating over the pmap's collection of PV
8490 * entries, rather than searching the page table. Second, it doesn't
8491 * have to test and clear the page table entries atomically, because
8492 * no processor is currently accessing the user address space. In
8493 * particular, a page table entry's dirty bit won't change state once
8494 * this function starts.
8495 *
8496 * Although this function destroys all of the pmap's managed,
8497 * non-wired mappings, it can delay and batch the invalidation of TLB
8498 * entries without calling pmap_delayed_invl_start() and
8499 * pmap_delayed_invl_finish(). Because the pmap is not active on
8500 * any other processor, none of these TLB entries will ever be used
8501 * before their eventual invalidation. Consequently, there is no need
8502 * for either pmap_remove_all() or pmap_remove_write() to wait for
8503 * that eventual TLB invalidation.
8504 */
8505 void
pmap_remove_pages(pmap_t pmap)8506 pmap_remove_pages(pmap_t pmap)
8507 {
8508 pd_entry_t ptepde;
8509 pt_entry_t *pte, tpte;
8510 pt_entry_t PG_M, PG_RW, PG_V;
8511 struct spglist free;
8512 struct pv_chunklist free_chunks[PMAP_MEMDOM];
8513 vm_page_t m, mpte, mt;
8514 pv_entry_t pv;
8515 struct md_page *pvh;
8516 struct pv_chunk *pc, *npc;
8517 struct rwlock *lock;
8518 int64_t bit;
8519 uint64_t inuse, bitmask;
8520 int allfree, field, i, idx;
8521 #ifdef PV_STATS
8522 int freed;
8523 #endif
8524 bool superpage;
8525 vm_paddr_t pa;
8526
8527 /*
8528 * Assert that the given pmap is only active on the current
8529 * CPU. Unfortunately, we cannot block another CPU from
8530 * activating the pmap while this function is executing.
8531 */
8532 KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8533 #ifdef INVARIANTS
8534 {
8535 cpuset_t other_cpus;
8536
8537 other_cpus = all_cpus;
8538 critical_enter();
8539 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8540 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8541 critical_exit();
8542 KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8543 }
8544 #endif
8545
8546 lock = NULL;
8547 PG_M = pmap_modified_bit(pmap);
8548 PG_V = pmap_valid_bit(pmap);
8549 PG_RW = pmap_rw_bit(pmap);
8550
8551 for (i = 0; i < PMAP_MEMDOM; i++)
8552 TAILQ_INIT(&free_chunks[i]);
8553 SLIST_INIT(&free);
8554 PMAP_LOCK(pmap);
8555 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8556 allfree = 1;
8557 #ifdef PV_STATS
8558 freed = 0;
8559 #endif
8560 for (field = 0; field < _NPCM; field++) {
8561 inuse = ~pc->pc_map[field] & pc_freemask[field];
8562 while (inuse != 0) {
8563 bit = bsfq(inuse);
8564 bitmask = 1UL << bit;
8565 idx = field * 64 + bit;
8566 pv = &pc->pc_pventry[idx];
8567 inuse &= ~bitmask;
8568
8569 pte = pmap_pdpe(pmap, pv->pv_va);
8570 ptepde = *pte;
8571 pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8572 tpte = *pte;
8573 if ((tpte & (PG_PS | PG_V)) == PG_V) {
8574 superpage = false;
8575 ptepde = tpte;
8576 pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8577 PG_FRAME);
8578 pte = &pte[pmap_pte_index(pv->pv_va)];
8579 tpte = *pte;
8580 } else {
8581 /*
8582 * Keep track whether 'tpte' is a
8583 * superpage explicitly instead of
8584 * relying on PG_PS being set.
8585 *
8586 * This is because PG_PS is numerically
8587 * identical to PG_PTE_PAT and thus a
8588 * regular page could be mistaken for
8589 * a superpage.
8590 */
8591 superpage = true;
8592 }
8593
8594 if ((tpte & PG_V) == 0) {
8595 panic("bad pte va %lx pte %lx",
8596 pv->pv_va, tpte);
8597 }
8598
8599 /*
8600 * We cannot remove wired pages from a process' mapping at this time
8601 */
8602 if (tpte & PG_W) {
8603 allfree = 0;
8604 continue;
8605 }
8606
8607 /* Mark free */
8608 pc->pc_map[field] |= bitmask;
8609
8610 /*
8611 * Because this pmap is not active on other
8612 * processors, the dirty bit cannot have
8613 * changed state since we last loaded pte.
8614 */
8615 pte_clear(pte);
8616
8617 if (superpage)
8618 pa = tpte & PG_PS_FRAME;
8619 else
8620 pa = tpte & PG_FRAME;
8621
8622 m = PHYS_TO_VM_PAGE(pa);
8623 KASSERT(m->phys_addr == pa,
8624 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8625 m, (uintmax_t)m->phys_addr,
8626 (uintmax_t)tpte));
8627
8628 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8629 m < &vm_page_array[vm_page_array_size],
8630 ("pmap_remove_pages: bad tpte %#jx",
8631 (uintmax_t)tpte));
8632
8633 /*
8634 * Update the vm_page_t clean/reference bits.
8635 */
8636 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8637 if (superpage) {
8638 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8639 vm_page_dirty(mt);
8640 } else
8641 vm_page_dirty(m);
8642 }
8643
8644 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8645
8646 if (superpage) {
8647 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8648 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8649 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8650 pvh->pv_gen++;
8651 if (TAILQ_EMPTY(&pvh->pv_list)) {
8652 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8653 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8654 TAILQ_EMPTY(&mt->md.pv_list))
8655 vm_page_aflag_clear(mt, PGA_WRITEABLE);
8656 }
8657 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8658 if (mpte != NULL) {
8659 KASSERT(vm_page_any_valid(mpte),
8660 ("pmap_remove_pages: pte page not promoted"));
8661 pmap_pt_page_count_adj(pmap, -1);
8662 KASSERT(mpte->ref_count == NPTEPG,
8663 ("pmap_remove_pages: pte page reference count error"));
8664 mpte->ref_count = 0;
8665 pmap_add_delayed_free_list(mpte, &free, false);
8666 }
8667 } else {
8668 pmap_resident_count_adj(pmap, -1);
8669 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8670 m->md.pv_gen++;
8671 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8672 TAILQ_EMPTY(&m->md.pv_list) &&
8673 (m->flags & PG_FICTITIOUS) == 0) {
8674 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8675 if (TAILQ_EMPTY(&pvh->pv_list))
8676 vm_page_aflag_clear(m, PGA_WRITEABLE);
8677 }
8678 }
8679 pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8680 #ifdef PV_STATS
8681 freed++;
8682 #endif
8683 }
8684 }
8685 PV_STAT(counter_u64_add(pv_entry_frees, freed));
8686 PV_STAT(counter_u64_add(pv_entry_spare, freed));
8687 PV_STAT(counter_u64_add(pv_entry_count, -freed));
8688 if (allfree) {
8689 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8690 TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8691 }
8692 }
8693 if (lock != NULL)
8694 rw_wunlock(lock);
8695 pmap_invalidate_all(pmap);
8696 pmap_pkru_deassign_all(pmap);
8697 free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8698 PMAP_UNLOCK(pmap);
8699 vm_page_free_pages_toq(&free, true);
8700 }
8701
8702 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8703 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8704 {
8705 struct rwlock *lock;
8706 pv_entry_t pv;
8707 struct md_page *pvh;
8708 pt_entry_t *pte, mask;
8709 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8710 pmap_t pmap;
8711 int md_gen, pvh_gen;
8712 bool rv;
8713
8714 rv = false;
8715 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8716 rw_rlock(lock);
8717 restart:
8718 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8719 pmap = PV_PMAP(pv);
8720 if (!PMAP_TRYLOCK(pmap)) {
8721 md_gen = m->md.pv_gen;
8722 rw_runlock(lock);
8723 PMAP_LOCK(pmap);
8724 rw_rlock(lock);
8725 if (md_gen != m->md.pv_gen) {
8726 PMAP_UNLOCK(pmap);
8727 goto restart;
8728 }
8729 }
8730 pte = pmap_pte(pmap, pv->pv_va);
8731 mask = 0;
8732 if (modified) {
8733 PG_M = pmap_modified_bit(pmap);
8734 PG_RW = pmap_rw_bit(pmap);
8735 mask |= PG_RW | PG_M;
8736 }
8737 if (accessed) {
8738 PG_A = pmap_accessed_bit(pmap);
8739 PG_V = pmap_valid_bit(pmap);
8740 mask |= PG_V | PG_A;
8741 }
8742 rv = (*pte & mask) == mask;
8743 PMAP_UNLOCK(pmap);
8744 if (rv)
8745 goto out;
8746 }
8747 if ((m->flags & PG_FICTITIOUS) == 0) {
8748 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8749 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8750 pmap = PV_PMAP(pv);
8751 if (!PMAP_TRYLOCK(pmap)) {
8752 md_gen = m->md.pv_gen;
8753 pvh_gen = pvh->pv_gen;
8754 rw_runlock(lock);
8755 PMAP_LOCK(pmap);
8756 rw_rlock(lock);
8757 if (md_gen != m->md.pv_gen ||
8758 pvh_gen != pvh->pv_gen) {
8759 PMAP_UNLOCK(pmap);
8760 goto restart;
8761 }
8762 }
8763 pte = pmap_pde(pmap, pv->pv_va);
8764 mask = 0;
8765 if (modified) {
8766 PG_M = pmap_modified_bit(pmap);
8767 PG_RW = pmap_rw_bit(pmap);
8768 mask |= PG_RW | PG_M;
8769 }
8770 if (accessed) {
8771 PG_A = pmap_accessed_bit(pmap);
8772 PG_V = pmap_valid_bit(pmap);
8773 mask |= PG_V | PG_A;
8774 }
8775 rv = (*pte & mask) == mask;
8776 PMAP_UNLOCK(pmap);
8777 if (rv)
8778 goto out;
8779 }
8780 }
8781 out:
8782 rw_runlock(lock);
8783 return (rv);
8784 }
8785
8786 /*
8787 * pmap_is_modified:
8788 *
8789 * Return whether or not the specified physical page was modified
8790 * in any physical maps.
8791 */
8792 bool
pmap_is_modified(vm_page_t m)8793 pmap_is_modified(vm_page_t m)
8794 {
8795
8796 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8797 ("pmap_is_modified: page %p is not managed", m));
8798
8799 /*
8800 * If the page is not busied then this check is racy.
8801 */
8802 if (!pmap_page_is_write_mapped(m))
8803 return (false);
8804 return (pmap_page_test_mappings(m, false, true));
8805 }
8806
8807 /*
8808 * pmap_is_prefaultable:
8809 *
8810 * Return whether or not the specified virtual address is eligible
8811 * for prefault.
8812 */
8813 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8814 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8815 {
8816 pd_entry_t *pde;
8817 pt_entry_t *pte, PG_V;
8818 bool rv;
8819
8820 PG_V = pmap_valid_bit(pmap);
8821
8822 /*
8823 * Return true if and only if the PTE for the specified virtual
8824 * address is allocated but invalid.
8825 */
8826 rv = false;
8827 PMAP_LOCK(pmap);
8828 pde = pmap_pde(pmap, addr);
8829 if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8830 pte = pmap_pde_to_pte(pde, addr);
8831 rv = (*pte & PG_V) == 0;
8832 }
8833 PMAP_UNLOCK(pmap);
8834 return (rv);
8835 }
8836
8837 /*
8838 * pmap_is_referenced:
8839 *
8840 * Return whether or not the specified physical page was referenced
8841 * in any physical maps.
8842 */
8843 bool
pmap_is_referenced(vm_page_t m)8844 pmap_is_referenced(vm_page_t m)
8845 {
8846
8847 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8848 ("pmap_is_referenced: page %p is not managed", m));
8849 return (pmap_page_test_mappings(m, true, false));
8850 }
8851
8852 /*
8853 * Clear the write and modified bits in each of the given page's mappings.
8854 */
8855 void
pmap_remove_write(vm_page_t m)8856 pmap_remove_write(vm_page_t m)
8857 {
8858 struct md_page *pvh;
8859 pmap_t pmap;
8860 struct rwlock *lock;
8861 pv_entry_t next_pv, pv;
8862 pd_entry_t *pde;
8863 pt_entry_t oldpte, *pte, PG_M, PG_RW;
8864 vm_offset_t va;
8865 int pvh_gen, md_gen;
8866
8867 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8868 ("pmap_remove_write: page %p is not managed", m));
8869
8870 vm_page_assert_busied(m);
8871 if (!pmap_page_is_write_mapped(m))
8872 return;
8873
8874 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8875 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8876 pa_to_pvh(VM_PAGE_TO_PHYS(m));
8877 rw_wlock(lock);
8878 retry:
8879 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8880 pmap = PV_PMAP(pv);
8881 if (!PMAP_TRYLOCK(pmap)) {
8882 pvh_gen = pvh->pv_gen;
8883 rw_wunlock(lock);
8884 PMAP_LOCK(pmap);
8885 rw_wlock(lock);
8886 if (pvh_gen != pvh->pv_gen) {
8887 PMAP_UNLOCK(pmap);
8888 goto retry;
8889 }
8890 }
8891 PG_RW = pmap_rw_bit(pmap);
8892 va = pv->pv_va;
8893 pde = pmap_pde(pmap, va);
8894 if ((*pde & PG_RW) != 0)
8895 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8896 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8897 ("inconsistent pv lock %p %p for page %p",
8898 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8899 PMAP_UNLOCK(pmap);
8900 }
8901 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8902 pmap = PV_PMAP(pv);
8903 if (!PMAP_TRYLOCK(pmap)) {
8904 pvh_gen = pvh->pv_gen;
8905 md_gen = m->md.pv_gen;
8906 rw_wunlock(lock);
8907 PMAP_LOCK(pmap);
8908 rw_wlock(lock);
8909 if (pvh_gen != pvh->pv_gen ||
8910 md_gen != m->md.pv_gen) {
8911 PMAP_UNLOCK(pmap);
8912 goto retry;
8913 }
8914 }
8915 PG_M = pmap_modified_bit(pmap);
8916 PG_RW = pmap_rw_bit(pmap);
8917 pde = pmap_pde(pmap, pv->pv_va);
8918 KASSERT((*pde & PG_PS) == 0,
8919 ("pmap_remove_write: found a 2mpage in page %p's pv list",
8920 m));
8921 pte = pmap_pde_to_pte(pde, pv->pv_va);
8922 oldpte = *pte;
8923 if (oldpte & PG_RW) {
8924 while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8925 ~(PG_RW | PG_M)))
8926 cpu_spinwait();
8927 if ((oldpte & PG_M) != 0)
8928 vm_page_dirty(m);
8929 pmap_invalidate_page(pmap, pv->pv_va);
8930 }
8931 PMAP_UNLOCK(pmap);
8932 }
8933 rw_wunlock(lock);
8934 vm_page_aflag_clear(m, PGA_WRITEABLE);
8935 pmap_delayed_invl_wait(m);
8936 }
8937
8938 /*
8939 * pmap_ts_referenced:
8940 *
8941 * Return a count of reference bits for a page, clearing those bits.
8942 * It is not necessary for every reference bit to be cleared, but it
8943 * is necessary that 0 only be returned when there are truly no
8944 * reference bits set.
8945 *
8946 * As an optimization, update the page's dirty field if a modified bit is
8947 * found while counting reference bits. This opportunistic update can be
8948 * performed at low cost and can eliminate the need for some future calls
8949 * to pmap_is_modified(). However, since this function stops after
8950 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8951 * dirty pages. Those dirty pages will only be detected by a future call
8952 * to pmap_is_modified().
8953 *
8954 * A DI block is not needed within this function, because
8955 * invalidations are performed before the PV list lock is
8956 * released.
8957 */
8958 int
pmap_ts_referenced(vm_page_t m)8959 pmap_ts_referenced(vm_page_t m)
8960 {
8961 struct md_page *pvh;
8962 pv_entry_t pv, pvf;
8963 pmap_t pmap;
8964 struct rwlock *lock;
8965 pd_entry_t oldpde, *pde;
8966 pt_entry_t *pte, PG_A, PG_M, PG_RW;
8967 vm_offset_t va;
8968 vm_paddr_t pa;
8969 int cleared, md_gen, not_cleared, pvh_gen;
8970 struct spglist free;
8971 bool demoted;
8972
8973 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8974 ("pmap_ts_referenced: page %p is not managed", m));
8975 SLIST_INIT(&free);
8976 cleared = 0;
8977 pa = VM_PAGE_TO_PHYS(m);
8978 lock = PHYS_TO_PV_LIST_LOCK(pa);
8979 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8980 rw_wlock(lock);
8981 retry:
8982 not_cleared = 0;
8983 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8984 goto small_mappings;
8985 pv = pvf;
8986 do {
8987 if (pvf == NULL)
8988 pvf = pv;
8989 pmap = PV_PMAP(pv);
8990 if (!PMAP_TRYLOCK(pmap)) {
8991 pvh_gen = pvh->pv_gen;
8992 rw_wunlock(lock);
8993 PMAP_LOCK(pmap);
8994 rw_wlock(lock);
8995 if (pvh_gen != pvh->pv_gen) {
8996 PMAP_UNLOCK(pmap);
8997 goto retry;
8998 }
8999 }
9000 PG_A = pmap_accessed_bit(pmap);
9001 PG_M = pmap_modified_bit(pmap);
9002 PG_RW = pmap_rw_bit(pmap);
9003 va = pv->pv_va;
9004 pde = pmap_pde(pmap, pv->pv_va);
9005 oldpde = *pde;
9006 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9007 /*
9008 * Although "oldpde" is mapping a 2MB page, because
9009 * this function is called at a 4KB page granularity,
9010 * we only update the 4KB page under test.
9011 */
9012 vm_page_dirty(m);
9013 }
9014 if ((oldpde & PG_A) != 0) {
9015 /*
9016 * Since this reference bit is shared by 512 4KB
9017 * pages, it should not be cleared every time it is
9018 * tested. Apply a simple "hash" function on the
9019 * physical page number, the virtual superpage number,
9020 * and the pmap address to select one 4KB page out of
9021 * the 512 on which testing the reference bit will
9022 * result in clearing that reference bit. This
9023 * function is designed to avoid the selection of the
9024 * same 4KB page for every 2MB page mapping.
9025 *
9026 * On demotion, a mapping that hasn't been referenced
9027 * is simply destroyed. To avoid the possibility of a
9028 * subsequent page fault on a demoted wired mapping,
9029 * always leave its reference bit set. Moreover,
9030 * since the superpage is wired, the current state of
9031 * its reference bit won't affect page replacement.
9032 */
9033 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9034 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9035 (oldpde & PG_W) == 0) {
9036 if (safe_to_clear_referenced(pmap, oldpde)) {
9037 atomic_clear_long(pde, PG_A);
9038 pmap_invalidate_page(pmap, pv->pv_va);
9039 demoted = false;
9040 } else if (pmap_demote_pde_locked(pmap, pde,
9041 pv->pv_va, &lock)) {
9042 /*
9043 * Remove the mapping to a single page
9044 * so that a subsequent access may
9045 * repromote. Since the underlying
9046 * page table page is fully populated,
9047 * this removal never frees a page
9048 * table page.
9049 */
9050 demoted = true;
9051 va += VM_PAGE_TO_PHYS(m) - (oldpde &
9052 PG_PS_FRAME);
9053 pte = pmap_pde_to_pte(pde, va);
9054 pmap_remove_pte(pmap, pte, va, *pde,
9055 NULL, &lock);
9056 pmap_invalidate_page(pmap, va);
9057 } else
9058 demoted = true;
9059
9060 if (demoted) {
9061 /*
9062 * The superpage mapping was removed
9063 * entirely and therefore 'pv' is no
9064 * longer valid.
9065 */
9066 if (pvf == pv)
9067 pvf = NULL;
9068 pv = NULL;
9069 }
9070 cleared++;
9071 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9072 ("inconsistent pv lock %p %p for page %p",
9073 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9074 } else
9075 not_cleared++;
9076 }
9077 PMAP_UNLOCK(pmap);
9078 /* Rotate the PV list if it has more than one entry. */
9079 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9080 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9081 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9082 pvh->pv_gen++;
9083 }
9084 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9085 goto out;
9086 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9087 small_mappings:
9088 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9089 goto out;
9090 pv = pvf;
9091 do {
9092 if (pvf == NULL)
9093 pvf = pv;
9094 pmap = PV_PMAP(pv);
9095 if (!PMAP_TRYLOCK(pmap)) {
9096 pvh_gen = pvh->pv_gen;
9097 md_gen = m->md.pv_gen;
9098 rw_wunlock(lock);
9099 PMAP_LOCK(pmap);
9100 rw_wlock(lock);
9101 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9102 PMAP_UNLOCK(pmap);
9103 goto retry;
9104 }
9105 }
9106 PG_A = pmap_accessed_bit(pmap);
9107 PG_M = pmap_modified_bit(pmap);
9108 PG_RW = pmap_rw_bit(pmap);
9109 pde = pmap_pde(pmap, pv->pv_va);
9110 KASSERT((*pde & PG_PS) == 0,
9111 ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9112 m));
9113 pte = pmap_pde_to_pte(pde, pv->pv_va);
9114 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9115 vm_page_dirty(m);
9116 if ((*pte & PG_A) != 0) {
9117 if (safe_to_clear_referenced(pmap, *pte)) {
9118 atomic_clear_long(pte, PG_A);
9119 pmap_invalidate_page(pmap, pv->pv_va);
9120 cleared++;
9121 } else if ((*pte & PG_W) == 0) {
9122 /*
9123 * Wired pages cannot be paged out so
9124 * doing accessed bit emulation for
9125 * them is wasted effort. We do the
9126 * hard work for unwired pages only.
9127 */
9128 pmap_remove_pte(pmap, pte, pv->pv_va,
9129 *pde, &free, &lock);
9130 pmap_invalidate_page(pmap, pv->pv_va);
9131 cleared++;
9132 if (pvf == pv)
9133 pvf = NULL;
9134 pv = NULL;
9135 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9136 ("inconsistent pv lock %p %p for page %p",
9137 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9138 } else
9139 not_cleared++;
9140 }
9141 PMAP_UNLOCK(pmap);
9142 /* Rotate the PV list if it has more than one entry. */
9143 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9144 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9145 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9146 m->md.pv_gen++;
9147 }
9148 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9149 not_cleared < PMAP_TS_REFERENCED_MAX);
9150 out:
9151 rw_wunlock(lock);
9152 vm_page_free_pages_toq(&free, true);
9153 return (cleared + not_cleared);
9154 }
9155
9156 /*
9157 * Apply the given advice to the specified range of addresses within the
9158 * given pmap. Depending on the advice, clear the referenced and/or
9159 * modified flags in each mapping and set the mapped page's dirty field.
9160 */
9161 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9162 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9163 {
9164 struct rwlock *lock;
9165 pml4_entry_t *pml4e;
9166 pdp_entry_t *pdpe;
9167 pd_entry_t oldpde, *pde;
9168 pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9169 vm_offset_t va, va_next;
9170 vm_page_t m;
9171 bool anychanged;
9172
9173 if (advice != MADV_DONTNEED && advice != MADV_FREE)
9174 return;
9175
9176 /*
9177 * A/D bit emulation requires an alternate code path when clearing
9178 * the modified and accessed bits below. Since this function is
9179 * advisory in nature we skip it entirely for pmaps that require
9180 * A/D bit emulation.
9181 */
9182 if (pmap_emulate_ad_bits(pmap))
9183 return;
9184
9185 PG_A = pmap_accessed_bit(pmap);
9186 PG_G = pmap_global_bit(pmap);
9187 PG_M = pmap_modified_bit(pmap);
9188 PG_V = pmap_valid_bit(pmap);
9189 PG_RW = pmap_rw_bit(pmap);
9190 anychanged = false;
9191 pmap_delayed_invl_start();
9192 PMAP_LOCK(pmap);
9193 for (; sva < eva; sva = va_next) {
9194 pml4e = pmap_pml4e(pmap, sva);
9195 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9196 va_next = (sva + NBPML4) & ~PML4MASK;
9197 if (va_next < sva)
9198 va_next = eva;
9199 continue;
9200 }
9201
9202 va_next = (sva + NBPDP) & ~PDPMASK;
9203 if (va_next < sva)
9204 va_next = eva;
9205 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9206 if ((*pdpe & PG_V) == 0)
9207 continue;
9208 if ((*pdpe & PG_PS) != 0)
9209 continue;
9210
9211 va_next = (sva + NBPDR) & ~PDRMASK;
9212 if (va_next < sva)
9213 va_next = eva;
9214 pde = pmap_pdpe_to_pde(pdpe, sva);
9215 oldpde = *pde;
9216 if ((oldpde & PG_V) == 0)
9217 continue;
9218 else if ((oldpde & PG_PS) != 0) {
9219 if ((oldpde & PG_MANAGED) == 0)
9220 continue;
9221 lock = NULL;
9222 if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9223 if (lock != NULL)
9224 rw_wunlock(lock);
9225
9226 /*
9227 * The large page mapping was destroyed.
9228 */
9229 continue;
9230 }
9231
9232 /*
9233 * Unless the page mappings are wired, remove the
9234 * mapping to a single page so that a subsequent
9235 * access may repromote. Choosing the last page
9236 * within the address range [sva, min(va_next, eva))
9237 * generally results in more repromotions. Since the
9238 * underlying page table page is fully populated, this
9239 * removal never frees a page table page.
9240 */
9241 if ((oldpde & PG_W) == 0) {
9242 va = eva;
9243 if (va > va_next)
9244 va = va_next;
9245 va -= PAGE_SIZE;
9246 KASSERT(va >= sva,
9247 ("pmap_advise: no address gap"));
9248 pte = pmap_pde_to_pte(pde, va);
9249 KASSERT((*pte & PG_V) != 0,
9250 ("pmap_advise: invalid PTE"));
9251 pmap_remove_pte(pmap, pte, va, *pde, NULL,
9252 &lock);
9253 anychanged = true;
9254 }
9255 if (lock != NULL)
9256 rw_wunlock(lock);
9257 }
9258 if (va_next > eva)
9259 va_next = eva;
9260 va = va_next;
9261 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9262 sva += PAGE_SIZE) {
9263 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9264 goto maybe_invlrng;
9265 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9266 if (advice == MADV_DONTNEED) {
9267 /*
9268 * Future calls to pmap_is_modified()
9269 * can be avoided by making the page
9270 * dirty now.
9271 */
9272 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9273 vm_page_dirty(m);
9274 }
9275 atomic_clear_long(pte, PG_M | PG_A);
9276 } else if ((*pte & PG_A) != 0)
9277 atomic_clear_long(pte, PG_A);
9278 else
9279 goto maybe_invlrng;
9280
9281 if ((*pte & PG_G) != 0) {
9282 if (va == va_next)
9283 va = sva;
9284 } else
9285 anychanged = true;
9286 continue;
9287 maybe_invlrng:
9288 if (va != va_next) {
9289 pmap_invalidate_range(pmap, va, sva);
9290 va = va_next;
9291 }
9292 }
9293 if (va != va_next)
9294 pmap_invalidate_range(pmap, va, sva);
9295 }
9296 if (anychanged)
9297 pmap_invalidate_all(pmap);
9298 PMAP_UNLOCK(pmap);
9299 pmap_delayed_invl_finish();
9300 }
9301
9302 /*
9303 * Clear the modify bits on the specified physical page.
9304 */
9305 void
pmap_clear_modify(vm_page_t m)9306 pmap_clear_modify(vm_page_t m)
9307 {
9308 struct md_page *pvh;
9309 pmap_t pmap;
9310 pv_entry_t next_pv, pv;
9311 pd_entry_t oldpde, *pde;
9312 pt_entry_t *pte, PG_M, PG_RW;
9313 struct rwlock *lock;
9314 vm_offset_t va;
9315 int md_gen, pvh_gen;
9316
9317 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9318 ("pmap_clear_modify: page %p is not managed", m));
9319 vm_page_assert_busied(m);
9320
9321 if (!pmap_page_is_write_mapped(m))
9322 return;
9323 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9324 pa_to_pvh(VM_PAGE_TO_PHYS(m));
9325 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9326 rw_wlock(lock);
9327 restart:
9328 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9329 pmap = PV_PMAP(pv);
9330 if (!PMAP_TRYLOCK(pmap)) {
9331 pvh_gen = pvh->pv_gen;
9332 rw_wunlock(lock);
9333 PMAP_LOCK(pmap);
9334 rw_wlock(lock);
9335 if (pvh_gen != pvh->pv_gen) {
9336 PMAP_UNLOCK(pmap);
9337 goto restart;
9338 }
9339 }
9340 PG_M = pmap_modified_bit(pmap);
9341 PG_RW = pmap_rw_bit(pmap);
9342 va = pv->pv_va;
9343 pde = pmap_pde(pmap, va);
9344 oldpde = *pde;
9345 /* If oldpde has PG_RW set, then it also has PG_M set. */
9346 if ((oldpde & PG_RW) != 0 &&
9347 pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9348 (oldpde & PG_W) == 0) {
9349 /*
9350 * Write protect the mapping to a single page so that
9351 * a subsequent write access may repromote.
9352 */
9353 va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9354 pte = pmap_pde_to_pte(pde, va);
9355 atomic_clear_long(pte, PG_M | PG_RW);
9356 vm_page_dirty(m);
9357 pmap_invalidate_page(pmap, va);
9358 }
9359 PMAP_UNLOCK(pmap);
9360 }
9361 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9362 pmap = PV_PMAP(pv);
9363 if (!PMAP_TRYLOCK(pmap)) {
9364 md_gen = m->md.pv_gen;
9365 pvh_gen = pvh->pv_gen;
9366 rw_wunlock(lock);
9367 PMAP_LOCK(pmap);
9368 rw_wlock(lock);
9369 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9370 PMAP_UNLOCK(pmap);
9371 goto restart;
9372 }
9373 }
9374 PG_M = pmap_modified_bit(pmap);
9375 PG_RW = pmap_rw_bit(pmap);
9376 pde = pmap_pde(pmap, pv->pv_va);
9377 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9378 " a 2mpage in page %p's pv list", m));
9379 pte = pmap_pde_to_pte(pde, pv->pv_va);
9380 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9381 atomic_clear_long(pte, PG_M);
9382 pmap_invalidate_page(pmap, pv->pv_va);
9383 }
9384 PMAP_UNLOCK(pmap);
9385 }
9386 rw_wunlock(lock);
9387 }
9388
9389 /*
9390 * Miscellaneous support routines follow
9391 */
9392
9393 /* Adjust the properties for a leaf page table entry. */
9394 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9395 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9396 {
9397 u_long opte, npte;
9398
9399 opte = *(u_long *)pte;
9400 do {
9401 npte = opte & ~mask;
9402 npte |= bits;
9403 } while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9404 npte));
9405 }
9406
9407 /*
9408 * Map a set of physical memory pages into the kernel virtual
9409 * address space. Return a pointer to where it is mapped. This
9410 * routine is intended to be used for mapping device memory,
9411 * NOT real memory.
9412 */
9413 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9414 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9415 {
9416 struct pmap_preinit_mapping *ppim;
9417 vm_offset_t va, offset;
9418 vm_size_t tmpsize;
9419 int i;
9420
9421 offset = pa & PAGE_MASK;
9422 size = round_page(offset + size);
9423 pa = trunc_page(pa);
9424
9425 if (!pmap_initialized) {
9426 va = 0;
9427 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9428 ppim = pmap_preinit_mapping + i;
9429 if (ppim->va == 0) {
9430 ppim->pa = pa;
9431 ppim->sz = size;
9432 ppim->mode = mode;
9433 ppim->va = virtual_avail;
9434 virtual_avail += size;
9435 va = ppim->va;
9436 break;
9437 }
9438 }
9439 if (va == 0)
9440 panic("%s: too many preinit mappings", __func__);
9441 } else {
9442 /*
9443 * If we have a preinit mapping, reuse it.
9444 */
9445 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9446 ppim = pmap_preinit_mapping + i;
9447 if (ppim->pa == pa && ppim->sz == size &&
9448 (ppim->mode == mode ||
9449 (flags & MAPDEV_SETATTR) == 0))
9450 return ((void *)(ppim->va + offset));
9451 }
9452 /*
9453 * If the specified range of physical addresses fits within
9454 * the direct map window, use the direct map.
9455 */
9456 if (pa < dmaplimit && pa + size <= dmaplimit) {
9457 va = PHYS_TO_DMAP(pa);
9458 if ((flags & MAPDEV_SETATTR) != 0) {
9459 PMAP_LOCK(kernel_pmap);
9460 i = pmap_change_props_locked(va, size,
9461 PROT_NONE, mode, flags);
9462 PMAP_UNLOCK(kernel_pmap);
9463 } else
9464 i = 0;
9465 if (!i)
9466 return ((void *)(va + offset));
9467 }
9468 va = kva_alloc(size);
9469 if (va == 0)
9470 panic("%s: Couldn't allocate KVA", __func__);
9471 }
9472 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9473 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9474 pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9475 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9476 pmap_invalidate_cache_range(va, va + tmpsize);
9477 return ((void *)(va + offset));
9478 }
9479
9480 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9481 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9482 {
9483
9484 return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9485 MAPDEV_SETATTR));
9486 }
9487
9488 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9489 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9490 {
9491
9492 return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9493 }
9494
9495 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9496 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9497 {
9498
9499 return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9500 MAPDEV_SETATTR));
9501 }
9502
9503 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9504 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9505 {
9506
9507 return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9508 MAPDEV_FLUSHCACHE));
9509 }
9510
9511 void
pmap_unmapdev(void * p,vm_size_t size)9512 pmap_unmapdev(void *p, vm_size_t size)
9513 {
9514 struct pmap_preinit_mapping *ppim;
9515 vm_offset_t offset, va;
9516 int i;
9517
9518 va = (vm_offset_t)p;
9519
9520 /* If we gave a direct map region in pmap_mapdev, do nothing */
9521 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9522 return;
9523 offset = va & PAGE_MASK;
9524 size = round_page(offset + size);
9525 va = trunc_page(va);
9526 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9527 ppim = pmap_preinit_mapping + i;
9528 if (ppim->va == va && ppim->sz == size) {
9529 if (pmap_initialized)
9530 return;
9531 ppim->pa = 0;
9532 ppim->va = 0;
9533 ppim->sz = 0;
9534 ppim->mode = 0;
9535 if (va + size == virtual_avail)
9536 virtual_avail = va;
9537 return;
9538 }
9539 }
9540 if (pmap_initialized) {
9541 pmap_qremove(va, atop(size));
9542 kva_free(va, size);
9543 }
9544 }
9545
9546 /*
9547 * Tries to demote a 1GB page mapping.
9548 */
9549 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9550 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9551 {
9552 pdp_entry_t newpdpe, oldpdpe;
9553 pd_entry_t *firstpde, newpde, *pde;
9554 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9555 vm_paddr_t pdpgpa;
9556 vm_page_t pdpg;
9557
9558 PG_A = pmap_accessed_bit(pmap);
9559 PG_M = pmap_modified_bit(pmap);
9560 PG_V = pmap_valid_bit(pmap);
9561 PG_RW = pmap_rw_bit(pmap);
9562
9563 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9564 oldpdpe = *pdpe;
9565 KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9566 ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9567 pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9568 VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9569 if (pdpg == NULL) {
9570 CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9571 " in pmap %p", va, pmap);
9572 return (false);
9573 }
9574 pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9575 firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9576 newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9577 KASSERT((oldpdpe & PG_A) != 0,
9578 ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9579 KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9580 ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9581 newpde = oldpdpe;
9582
9583 /*
9584 * Initialize the page directory page.
9585 */
9586 for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9587 *pde = newpde;
9588 newpde += NBPDR;
9589 }
9590
9591 /*
9592 * Demote the mapping.
9593 */
9594 *pdpe = newpdpe;
9595
9596 /*
9597 * Invalidate a stale recursive mapping of the page directory page.
9598 */
9599 pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9600
9601 counter_u64_add(pmap_pdpe_demotions, 1);
9602 CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9603 " in pmap %p", va, pmap);
9604 return (true);
9605 }
9606
9607 /*
9608 * Sets the memory attribute for the specified page.
9609 */
9610 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9611 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9612 {
9613
9614 m->md.pat_mode = ma;
9615
9616 /*
9617 * If "m" is a normal page, update its direct mapping. This update
9618 * can be relied upon to perform any cache operations that are
9619 * required for data coherence.
9620 */
9621 if ((m->flags & PG_FICTITIOUS) == 0 &&
9622 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9623 m->md.pat_mode))
9624 panic("memory attribute change on the direct map failed");
9625 }
9626
9627 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9628 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9629 {
9630 int error;
9631
9632 m->md.pat_mode = ma;
9633
9634 if ((m->flags & PG_FICTITIOUS) != 0)
9635 return;
9636 PMAP_LOCK(kernel_pmap);
9637 error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9638 PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9639 PMAP_UNLOCK(kernel_pmap);
9640 if (error != 0)
9641 panic("memory attribute change on the direct map failed");
9642 }
9643
9644 /*
9645 * Changes the specified virtual address range's memory type to that given by
9646 * the parameter "mode". The specified virtual address range must be
9647 * completely contained within either the direct map or the kernel map. If
9648 * the virtual address range is contained within the kernel map, then the
9649 * memory type for each of the corresponding ranges of the direct map is also
9650 * changed. (The corresponding ranges of the direct map are those ranges that
9651 * map the same physical pages as the specified virtual address range.) These
9652 * changes to the direct map are necessary because Intel describes the
9653 * behavior of their processors as "undefined" if two or more mappings to the
9654 * same physical page have different memory types.
9655 *
9656 * Returns zero if the change completed successfully, and either EINVAL or
9657 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
9658 * of the virtual address range was not mapped, and ENOMEM is returned if
9659 * there was insufficient memory available to complete the change. In the
9660 * latter case, the memory type may have been changed on some part of the
9661 * virtual address range or the direct map.
9662 */
9663 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9664 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9665 {
9666 int error;
9667
9668 PMAP_LOCK(kernel_pmap);
9669 error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9670 MAPDEV_FLUSHCACHE);
9671 PMAP_UNLOCK(kernel_pmap);
9672 return (error);
9673 }
9674
9675 /*
9676 * Changes the specified virtual address range's protections to those
9677 * specified by "prot". Like pmap_change_attr(), protections for aliases
9678 * in the direct map are updated as well. Protections on aliasing mappings may
9679 * be a subset of the requested protections; for example, mappings in the direct
9680 * map are never executable.
9681 */
9682 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9683 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9684 {
9685 int error;
9686
9687 /* Only supported within the kernel map. */
9688 if (va < VM_MIN_KERNEL_ADDRESS)
9689 return (EINVAL);
9690
9691 PMAP_LOCK(kernel_pmap);
9692 error = pmap_change_props_locked(va, size, prot, -1,
9693 MAPDEV_ASSERTVALID);
9694 PMAP_UNLOCK(kernel_pmap);
9695 return (error);
9696 }
9697
9698 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9699 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9700 int mode, int flags)
9701 {
9702 vm_offset_t base, offset, tmpva;
9703 vm_paddr_t pa_start, pa_end, pa_end1;
9704 pdp_entry_t *pdpe;
9705 pd_entry_t *pde, pde_bits, pde_mask;
9706 pt_entry_t *pte, pte_bits, pte_mask;
9707 int error;
9708 bool changed;
9709
9710 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9711 base = trunc_page(va);
9712 offset = va & PAGE_MASK;
9713 size = round_page(offset + size);
9714
9715 /*
9716 * Only supported on kernel virtual addresses, including the direct
9717 * map but excluding the recursive map.
9718 */
9719 if (base < DMAP_MIN_ADDRESS)
9720 return (EINVAL);
9721
9722 /*
9723 * Construct our flag sets and masks. "bits" is the subset of
9724 * "mask" that will be set in each modified PTE.
9725 *
9726 * Mappings in the direct map are never allowed to be executable.
9727 */
9728 pde_bits = pte_bits = 0;
9729 pde_mask = pte_mask = 0;
9730 if (mode != -1) {
9731 pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9732 pde_mask |= X86_PG_PDE_CACHE;
9733 pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9734 pte_mask |= X86_PG_PTE_CACHE;
9735 }
9736 if (prot != VM_PROT_NONE) {
9737 if ((prot & VM_PROT_WRITE) != 0) {
9738 pde_bits |= X86_PG_RW;
9739 pte_bits |= X86_PG_RW;
9740 }
9741 if ((prot & VM_PROT_EXECUTE) == 0 ||
9742 va < VM_MIN_KERNEL_ADDRESS) {
9743 pde_bits |= pg_nx;
9744 pte_bits |= pg_nx;
9745 }
9746 pde_mask |= X86_PG_RW | pg_nx;
9747 pte_mask |= X86_PG_RW | pg_nx;
9748 }
9749
9750 /*
9751 * Pages that aren't mapped aren't supported. Also break down 2MB pages
9752 * into 4KB pages if required.
9753 */
9754 for (tmpva = base; tmpva < base + size; ) {
9755 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9756 if (pdpe == NULL || *pdpe == 0) {
9757 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9758 ("%s: addr %#lx is not mapped", __func__, tmpva));
9759 return (EINVAL);
9760 }
9761 if (*pdpe & PG_PS) {
9762 /*
9763 * If the current 1GB page already has the required
9764 * properties, then we need not demote this page. Just
9765 * increment tmpva to the next 1GB page frame.
9766 */
9767 if ((*pdpe & pde_mask) == pde_bits) {
9768 tmpva = trunc_1gpage(tmpva) + NBPDP;
9769 continue;
9770 }
9771
9772 /*
9773 * If the current offset aligns with a 1GB page frame
9774 * and there is at least 1GB left within the range, then
9775 * we need not break down this page into 2MB pages.
9776 */
9777 if ((tmpva & PDPMASK) == 0 &&
9778 tmpva + PDPMASK < base + size) {
9779 tmpva += NBPDP;
9780 continue;
9781 }
9782 if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9783 return (ENOMEM);
9784 }
9785 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9786 if (*pde == 0) {
9787 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9788 ("%s: addr %#lx is not mapped", __func__, tmpva));
9789 return (EINVAL);
9790 }
9791 if (*pde & PG_PS) {
9792 /*
9793 * If the current 2MB page already has the required
9794 * properties, then we need not demote this page. Just
9795 * increment tmpva to the next 2MB page frame.
9796 */
9797 if ((*pde & pde_mask) == pde_bits) {
9798 tmpva = trunc_2mpage(tmpva) + NBPDR;
9799 continue;
9800 }
9801
9802 /*
9803 * If the current offset aligns with a 2MB page frame
9804 * and there is at least 2MB left within the range, then
9805 * we need not break down this page into 4KB pages.
9806 */
9807 if ((tmpva & PDRMASK) == 0 &&
9808 tmpva + PDRMASK < base + size) {
9809 tmpva += NBPDR;
9810 continue;
9811 }
9812 if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9813 return (ENOMEM);
9814 }
9815 pte = pmap_pde_to_pte(pde, tmpva);
9816 if (*pte == 0) {
9817 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9818 ("%s: addr %#lx is not mapped", __func__, tmpva));
9819 return (EINVAL);
9820 }
9821 tmpva += PAGE_SIZE;
9822 }
9823 error = 0;
9824
9825 /*
9826 * Ok, all the pages exist, so run through them updating their
9827 * properties if required.
9828 */
9829 changed = false;
9830 pa_start = pa_end = 0;
9831 for (tmpva = base; tmpva < base + size; ) {
9832 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9833 if (*pdpe & PG_PS) {
9834 if ((*pdpe & pde_mask) != pde_bits) {
9835 pmap_pte_props(pdpe, pde_bits, pde_mask);
9836 changed = true;
9837 }
9838 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9839 (*pdpe & PG_PS_FRAME) < dmaplimit) {
9840 if (pa_start == pa_end) {
9841 /* Start physical address run. */
9842 pa_start = *pdpe & PG_PS_FRAME;
9843 pa_end = pa_start + NBPDP;
9844 } else if (pa_end == (*pdpe & PG_PS_FRAME))
9845 pa_end += NBPDP;
9846 else {
9847 /* Run ended, update direct map. */
9848 error = pmap_change_props_locked(
9849 PHYS_TO_DMAP(pa_start),
9850 pa_end - pa_start, prot, mode,
9851 flags);
9852 if (error != 0)
9853 break;
9854 /* Start physical address run. */
9855 pa_start = *pdpe & PG_PS_FRAME;
9856 pa_end = pa_start + NBPDP;
9857 }
9858 }
9859 tmpva = trunc_1gpage(tmpva) + NBPDP;
9860 continue;
9861 }
9862 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9863 if (*pde & PG_PS) {
9864 if ((*pde & pde_mask) != pde_bits) {
9865 pmap_pte_props(pde, pde_bits, pde_mask);
9866 changed = true;
9867 }
9868 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9869 (*pde & PG_PS_FRAME) < dmaplimit) {
9870 if (pa_start == pa_end) {
9871 /* Start physical address run. */
9872 pa_start = *pde & PG_PS_FRAME;
9873 pa_end = pa_start + NBPDR;
9874 } else if (pa_end == (*pde & PG_PS_FRAME))
9875 pa_end += NBPDR;
9876 else {
9877 /* Run ended, update direct map. */
9878 error = pmap_change_props_locked(
9879 PHYS_TO_DMAP(pa_start),
9880 pa_end - pa_start, prot, mode,
9881 flags);
9882 if (error != 0)
9883 break;
9884 /* Start physical address run. */
9885 pa_start = *pde & PG_PS_FRAME;
9886 pa_end = pa_start + NBPDR;
9887 }
9888 }
9889 tmpva = trunc_2mpage(tmpva) + NBPDR;
9890 } else {
9891 pte = pmap_pde_to_pte(pde, tmpva);
9892 if ((*pte & pte_mask) != pte_bits) {
9893 pmap_pte_props(pte, pte_bits, pte_mask);
9894 changed = true;
9895 }
9896 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9897 (*pte & PG_FRAME) < dmaplimit) {
9898 if (pa_start == pa_end) {
9899 /* Start physical address run. */
9900 pa_start = *pte & PG_FRAME;
9901 pa_end = pa_start + PAGE_SIZE;
9902 } else if (pa_end == (*pte & PG_FRAME))
9903 pa_end += PAGE_SIZE;
9904 else {
9905 /* Run ended, update direct map. */
9906 error = pmap_change_props_locked(
9907 PHYS_TO_DMAP(pa_start),
9908 pa_end - pa_start, prot, mode,
9909 flags);
9910 if (error != 0)
9911 break;
9912 /* Start physical address run. */
9913 pa_start = *pte & PG_FRAME;
9914 pa_end = pa_start + PAGE_SIZE;
9915 }
9916 }
9917 tmpva += PAGE_SIZE;
9918 }
9919 }
9920 if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9921 pa_end1 = MIN(pa_end, dmaplimit);
9922 if (pa_start != pa_end1)
9923 error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9924 pa_end1 - pa_start, prot, mode, flags);
9925 }
9926
9927 /*
9928 * Flush CPU caches if required to make sure any data isn't cached that
9929 * shouldn't be, etc.
9930 */
9931 if (changed) {
9932 pmap_invalidate_range(kernel_pmap, base, tmpva);
9933 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9934 pmap_invalidate_cache_range(base, tmpva);
9935 }
9936 return (error);
9937 }
9938
9939 /*
9940 * Demotes any mapping within the direct map region that covers more than the
9941 * specified range of physical addresses. This range's size must be a power
9942 * of two and its starting address must be a multiple of its size. Since the
9943 * demotion does not change any attributes of the mapping, a TLB invalidation
9944 * is not mandatory. The caller may, however, request a TLB invalidation.
9945 */
9946 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9947 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9948 {
9949 pdp_entry_t *pdpe;
9950 pd_entry_t *pde;
9951 vm_offset_t va;
9952 bool changed;
9953
9954 if (len == 0)
9955 return;
9956 KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9957 KASSERT((base & (len - 1)) == 0,
9958 ("pmap_demote_DMAP: base is not a multiple of len"));
9959 if (len < NBPDP && base < dmaplimit) {
9960 va = PHYS_TO_DMAP(base);
9961 changed = false;
9962 PMAP_LOCK(kernel_pmap);
9963 pdpe = pmap_pdpe(kernel_pmap, va);
9964 if ((*pdpe & X86_PG_V) == 0)
9965 panic("pmap_demote_DMAP: invalid PDPE");
9966 if ((*pdpe & PG_PS) != 0) {
9967 if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9968 panic("pmap_demote_DMAP: PDPE failed");
9969 changed = true;
9970 }
9971 if (len < NBPDR) {
9972 pde = pmap_pdpe_to_pde(pdpe, va);
9973 if ((*pde & X86_PG_V) == 0)
9974 panic("pmap_demote_DMAP: invalid PDE");
9975 if ((*pde & PG_PS) != 0) {
9976 if (!pmap_demote_pde(kernel_pmap, pde, va))
9977 panic("pmap_demote_DMAP: PDE failed");
9978 changed = true;
9979 }
9980 }
9981 if (changed && invalidate)
9982 pmap_invalidate_page(kernel_pmap, va);
9983 PMAP_UNLOCK(kernel_pmap);
9984 }
9985 }
9986
9987 /*
9988 * Perform the pmap work for mincore(2). If the page is not both referenced and
9989 * modified by this pmap, returns its physical address so that the caller can
9990 * find other mappings.
9991 */
9992 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)9993 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9994 {
9995 pdp_entry_t *pdpe;
9996 pd_entry_t *pdep;
9997 pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
9998 vm_paddr_t pa;
9999 int val;
10000
10001 PG_A = pmap_accessed_bit(pmap);
10002 PG_M = pmap_modified_bit(pmap);
10003 PG_V = pmap_valid_bit(pmap);
10004 PG_RW = pmap_rw_bit(pmap);
10005
10006 PMAP_LOCK(pmap);
10007 pte = 0;
10008 pa = 0;
10009 val = 0;
10010 pdpe = pmap_pdpe(pmap, addr);
10011 if (pdpe == NULL)
10012 goto out;
10013 if ((*pdpe & PG_V) != 0) {
10014 if ((*pdpe & PG_PS) != 0) {
10015 pte = *pdpe;
10016 pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10017 PG_FRAME;
10018 val = MINCORE_PSIND(2);
10019 } else {
10020 pdep = pmap_pde(pmap, addr);
10021 if (pdep != NULL && (*pdep & PG_V) != 0) {
10022 if ((*pdep & PG_PS) != 0) {
10023 pte = *pdep;
10024 /* Compute the physical address of the 4KB page. */
10025 pa = ((pte & PG_PS_FRAME) | (addr &
10026 PDRMASK)) & PG_FRAME;
10027 val = MINCORE_PSIND(1);
10028 } else {
10029 pte = *pmap_pde_to_pte(pdep, addr);
10030 pa = pte & PG_FRAME;
10031 val = 0;
10032 }
10033 }
10034 }
10035 }
10036 if ((pte & PG_V) != 0) {
10037 val |= MINCORE_INCORE;
10038 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10039 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10040 if ((pte & PG_A) != 0)
10041 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10042 }
10043 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10044 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10045 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10046 *pap = pa;
10047 }
10048 out:
10049 PMAP_UNLOCK(pmap);
10050 return (val);
10051 }
10052
10053 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10054 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10055 {
10056 uint32_t gen, new_gen, pcid_next;
10057
10058 CRITICAL_ASSERT(curthread);
10059 gen = PCPU_GET(pcid_gen);
10060 if (pcidp->pm_pcid == PMAP_PCID_KERN)
10061 return (pti ? 0 : CR3_PCID_SAVE);
10062 if (pcidp->pm_gen == gen)
10063 return (CR3_PCID_SAVE);
10064 pcid_next = PCPU_GET(pcid_next);
10065 KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10066 (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10067 ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10068 if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10069 (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10070 new_gen = gen + 1;
10071 if (new_gen == 0)
10072 new_gen = 1;
10073 PCPU_SET(pcid_gen, new_gen);
10074 pcid_next = PMAP_PCID_KERN + 1;
10075 } else {
10076 new_gen = gen;
10077 }
10078 pcidp->pm_pcid = pcid_next;
10079 pcidp->pm_gen = new_gen;
10080 PCPU_SET(pcid_next, pcid_next + 1);
10081 return (0);
10082 }
10083
10084 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10085 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10086 {
10087 uint64_t cached;
10088
10089 cached = pmap_pcid_alloc(pmap, pcidp);
10090 KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10091 ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10092 KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10093 ("non-kernel pmap pmap %p cpu %d pcid %#x",
10094 pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10095 return (cached);
10096 }
10097
10098 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10099 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10100 {
10101
10102 PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10103 PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10104 }
10105
10106 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10107 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10108 {
10109 pmap_t old_pmap;
10110 struct pmap_pcid *pcidp, *old_pcidp;
10111 uint64_t cached, cr3, kcr3, ucr3;
10112
10113 KASSERT((read_rflags() & PSL_I) == 0,
10114 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10115
10116 /* See the comment in pmap_invalidate_page_pcid(). */
10117 if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10118 PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10119 old_pmap = PCPU_GET(curpmap);
10120 MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10121 old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10122 old_pcidp->pm_gen = 0;
10123 }
10124
10125 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10126 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10127 cr3 = rcr3();
10128 if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10129 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10130 PCPU_SET(curpmap, pmap);
10131 kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10132 ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10133
10134 if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10135 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10136
10137 PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10138 PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10139 if (cached)
10140 counter_u64_add(pcid_save_cnt, 1);
10141
10142 pmap_activate_sw_pti_post(td, pmap);
10143 }
10144
10145 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10146 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10147 u_int cpuid)
10148 {
10149 struct pmap_pcid *pcidp;
10150 uint64_t cached, cr3;
10151
10152 KASSERT((read_rflags() & PSL_I) == 0,
10153 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10154
10155 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10156 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10157 cr3 = rcr3();
10158 if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10159 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10160 PCPU_SET(curpmap, pmap);
10161 if (cached)
10162 counter_u64_add(pcid_save_cnt, 1);
10163 }
10164
10165 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10166 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10167 u_int cpuid __unused)
10168 {
10169
10170 load_cr3(pmap->pm_cr3);
10171 PCPU_SET(curpmap, pmap);
10172 }
10173
10174 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10175 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10176 u_int cpuid __unused)
10177 {
10178
10179 pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10180 PCPU_SET(kcr3, pmap->pm_cr3);
10181 PCPU_SET(ucr3, pmap->pm_ucr3);
10182 pmap_activate_sw_pti_post(td, pmap);
10183 }
10184
10185 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10186 u_int))
10187 {
10188
10189 if (pmap_pcid_enabled && pti)
10190 return (pmap_activate_sw_pcid_pti);
10191 else if (pmap_pcid_enabled && !pti)
10192 return (pmap_activate_sw_pcid_nopti);
10193 else if (!pmap_pcid_enabled && pti)
10194 return (pmap_activate_sw_nopcid_pti);
10195 else /* if (!pmap_pcid_enabled && !pti) */
10196 return (pmap_activate_sw_nopcid_nopti);
10197 }
10198
10199 void
pmap_activate_sw(struct thread * td)10200 pmap_activate_sw(struct thread *td)
10201 {
10202 pmap_t oldpmap, pmap;
10203 u_int cpuid;
10204
10205 oldpmap = PCPU_GET(curpmap);
10206 pmap = vmspace_pmap(td->td_proc->p_vmspace);
10207 if (oldpmap == pmap) {
10208 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10209 mfence();
10210 return;
10211 }
10212 cpuid = PCPU_GET(cpuid);
10213 #ifdef SMP
10214 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10215 #else
10216 CPU_SET(cpuid, &pmap->pm_active);
10217 #endif
10218 pmap_activate_sw_mode(td, pmap, cpuid);
10219 #ifdef SMP
10220 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10221 #else
10222 CPU_CLR(cpuid, &oldpmap->pm_active);
10223 #endif
10224 }
10225
10226 void
pmap_activate(struct thread * td)10227 pmap_activate(struct thread *td)
10228 {
10229 /*
10230 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10231 * invalidate_all IPI, which checks for curpmap ==
10232 * smp_tlb_pmap. The below sequence of operations has a
10233 * window where %CR3 is loaded with the new pmap's PML4
10234 * address, but the curpmap value has not yet been updated.
10235 * This causes the invltlb IPI handler, which is called
10236 * between the updates, to execute as a NOP, which leaves
10237 * stale TLB entries.
10238 *
10239 * Note that the most common use of pmap_activate_sw(), from
10240 * a context switch, is immune to this race, because
10241 * interrupts are disabled (while the thread lock is owned),
10242 * so the IPI is delayed until after curpmap is updated. Protect
10243 * other callers in a similar way, by disabling interrupts
10244 * around the %cr3 register reload and curpmap assignment.
10245 */
10246 spinlock_enter();
10247 pmap_activate_sw(td);
10248 spinlock_exit();
10249 }
10250
10251 void
pmap_activate_boot(pmap_t pmap)10252 pmap_activate_boot(pmap_t pmap)
10253 {
10254 uint64_t kcr3;
10255 u_int cpuid;
10256
10257 /*
10258 * kernel_pmap must be never deactivated, and we ensure that
10259 * by never activating it at all.
10260 */
10261 MPASS(pmap != kernel_pmap);
10262
10263 cpuid = PCPU_GET(cpuid);
10264 #ifdef SMP
10265 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10266 #else
10267 CPU_SET(cpuid, &pmap->pm_active);
10268 #endif
10269 PCPU_SET(curpmap, pmap);
10270 if (pti) {
10271 kcr3 = pmap->pm_cr3;
10272 if (pmap_pcid_enabled)
10273 kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10274 } else {
10275 kcr3 = PMAP_NO_CR3;
10276 }
10277 PCPU_SET(kcr3, kcr3);
10278 PCPU_SET(ucr3, PMAP_NO_CR3);
10279 }
10280
10281 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10282 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10283 {
10284 *res = pmap->pm_active;
10285 }
10286
10287 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10288 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10289 {
10290 }
10291
10292 /*
10293 * Increase the starting virtual address of the given mapping if a
10294 * different alignment might result in more superpage mappings.
10295 */
10296 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10297 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10298 vm_offset_t *addr, vm_size_t size)
10299 {
10300 vm_offset_t superpage_offset;
10301
10302 if (size < NBPDR)
10303 return;
10304 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10305 offset += ptoa(object->pg_color);
10306 superpage_offset = offset & PDRMASK;
10307 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10308 (*addr & PDRMASK) == superpage_offset)
10309 return;
10310 if ((*addr & PDRMASK) < superpage_offset)
10311 *addr = (*addr & ~PDRMASK) + superpage_offset;
10312 else
10313 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10314 }
10315
10316 #ifdef INVARIANTS
10317 static unsigned long num_dirty_emulations;
10318 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10319 &num_dirty_emulations, 0, NULL);
10320
10321 static unsigned long num_accessed_emulations;
10322 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10323 &num_accessed_emulations, 0, NULL);
10324
10325 static unsigned long num_superpage_accessed_emulations;
10326 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10327 &num_superpage_accessed_emulations, 0, NULL);
10328
10329 static unsigned long ad_emulation_superpage_promotions;
10330 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10331 &ad_emulation_superpage_promotions, 0, NULL);
10332 #endif /* INVARIANTS */
10333
10334 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10335 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10336 {
10337 int rv;
10338 struct rwlock *lock;
10339 #if VM_NRESERVLEVEL > 0
10340 vm_page_t m, mpte;
10341 #endif
10342 pd_entry_t *pde;
10343 pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10344
10345 KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10346 ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10347
10348 if (!pmap_emulate_ad_bits(pmap))
10349 return (-1);
10350
10351 PG_A = pmap_accessed_bit(pmap);
10352 PG_M = pmap_modified_bit(pmap);
10353 PG_V = pmap_valid_bit(pmap);
10354 PG_RW = pmap_rw_bit(pmap);
10355
10356 rv = -1;
10357 lock = NULL;
10358 PMAP_LOCK(pmap);
10359
10360 pde = pmap_pde(pmap, va);
10361 if (pde == NULL || (*pde & PG_V) == 0)
10362 goto done;
10363
10364 if ((*pde & PG_PS) != 0) {
10365 if (ftype == VM_PROT_READ) {
10366 #ifdef INVARIANTS
10367 atomic_add_long(&num_superpage_accessed_emulations, 1);
10368 #endif
10369 *pde |= PG_A;
10370 rv = 0;
10371 }
10372 goto done;
10373 }
10374
10375 pte = pmap_pde_to_pte(pde, va);
10376 if ((*pte & PG_V) == 0)
10377 goto done;
10378
10379 if (ftype == VM_PROT_WRITE) {
10380 if ((*pte & PG_RW) == 0)
10381 goto done;
10382 /*
10383 * Set the modified and accessed bits simultaneously.
10384 *
10385 * Intel EPT PTEs that do software emulation of A/D bits map
10386 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10387 * An EPT misconfiguration is triggered if the PTE is writable
10388 * but not readable (WR=10). This is avoided by setting PG_A
10389 * and PG_M simultaneously.
10390 */
10391 *pte |= PG_M | PG_A;
10392 } else {
10393 *pte |= PG_A;
10394 }
10395
10396 #if VM_NRESERVLEVEL > 0
10397 /* try to promote the mapping */
10398 if (va < VM_MAXUSER_ADDRESS)
10399 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10400 else
10401 mpte = NULL;
10402
10403 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10404
10405 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10406 (m->flags & PG_FICTITIOUS) == 0 &&
10407 vm_reserv_level_iffullpop(m) == 0 &&
10408 pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10409 #ifdef INVARIANTS
10410 atomic_add_long(&ad_emulation_superpage_promotions, 1);
10411 #endif
10412 }
10413 #endif
10414
10415 #ifdef INVARIANTS
10416 if (ftype == VM_PROT_WRITE)
10417 atomic_add_long(&num_dirty_emulations, 1);
10418 else
10419 atomic_add_long(&num_accessed_emulations, 1);
10420 #endif
10421 rv = 0; /* success */
10422 done:
10423 if (lock != NULL)
10424 rw_wunlock(lock);
10425 PMAP_UNLOCK(pmap);
10426 return (rv);
10427 }
10428
10429 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10430 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10431 {
10432 pml4_entry_t *pml4;
10433 pdp_entry_t *pdp;
10434 pd_entry_t *pde;
10435 pt_entry_t *pte, PG_V;
10436 int idx;
10437
10438 idx = 0;
10439 PG_V = pmap_valid_bit(pmap);
10440 PMAP_LOCK(pmap);
10441
10442 pml4 = pmap_pml4e(pmap, va);
10443 if (pml4 == NULL)
10444 goto done;
10445 ptr[idx++] = *pml4;
10446 if ((*pml4 & PG_V) == 0)
10447 goto done;
10448
10449 pdp = pmap_pml4e_to_pdpe(pml4, va);
10450 ptr[idx++] = *pdp;
10451 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10452 goto done;
10453
10454 pde = pmap_pdpe_to_pde(pdp, va);
10455 ptr[idx++] = *pde;
10456 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10457 goto done;
10458
10459 pte = pmap_pde_to_pte(pde, va);
10460 ptr[idx++] = *pte;
10461
10462 done:
10463 PMAP_UNLOCK(pmap);
10464 *num = idx;
10465 }
10466
10467 /**
10468 * Get the kernel virtual address of a set of physical pages. If there are
10469 * physical addresses not covered by the DMAP perform a transient mapping
10470 * that will be removed when calling pmap_unmap_io_transient.
10471 *
10472 * \param page The pages the caller wishes to obtain the virtual
10473 * address on the kernel memory map.
10474 * \param vaddr On return contains the kernel virtual memory address
10475 * of the pages passed in the page parameter.
10476 * \param count Number of pages passed in.
10477 * \param can_fault true if the thread using the mapped pages can take
10478 * page faults, false otherwise.
10479 *
10480 * \returns true if the caller must call pmap_unmap_io_transient when
10481 * finished or false otherwise.
10482 *
10483 */
10484 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10485 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10486 bool can_fault)
10487 {
10488 vm_paddr_t paddr;
10489 bool needs_mapping;
10490 int error __unused, i;
10491
10492 /*
10493 * Allocate any KVA space that we need, this is done in a separate
10494 * loop to prevent calling vmem_alloc while pinned.
10495 */
10496 needs_mapping = false;
10497 for (i = 0; i < count; i++) {
10498 paddr = VM_PAGE_TO_PHYS(page[i]);
10499 if (__predict_false(paddr >= dmaplimit)) {
10500 error = vmem_alloc(kernel_arena, PAGE_SIZE,
10501 M_BESTFIT | M_WAITOK, &vaddr[i]);
10502 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10503 needs_mapping = true;
10504 } else {
10505 vaddr[i] = PHYS_TO_DMAP(paddr);
10506 }
10507 }
10508
10509 /* Exit early if everything is covered by the DMAP */
10510 if (!needs_mapping)
10511 return (false);
10512
10513 /*
10514 * NB: The sequence of updating a page table followed by accesses
10515 * to the corresponding pages used in the !DMAP case is subject to
10516 * the situation described in the "AMD64 Architecture Programmer's
10517 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10518 * Coherency Considerations". Therefore, issuing the INVLPG right
10519 * after modifying the PTE bits is crucial.
10520 */
10521 if (!can_fault)
10522 sched_pin();
10523 for (i = 0; i < count; i++) {
10524 paddr = VM_PAGE_TO_PHYS(page[i]);
10525 if (paddr >= dmaplimit) {
10526 if (can_fault) {
10527 /*
10528 * Slow path, since we can get page faults
10529 * while mappings are active don't pin the
10530 * thread to the CPU and instead add a global
10531 * mapping visible to all CPUs.
10532 */
10533 pmap_qenter(vaddr[i], &page[i], 1);
10534 } else {
10535 pmap_kenter_attr(vaddr[i], paddr,
10536 page[i]->md.pat_mode);
10537 pmap_invlpg(kernel_pmap, vaddr[i]);
10538 }
10539 }
10540 }
10541
10542 return (needs_mapping);
10543 }
10544
10545 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10546 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10547 bool can_fault)
10548 {
10549 vm_paddr_t paddr;
10550 int i;
10551
10552 if (!can_fault)
10553 sched_unpin();
10554 for (i = 0; i < count; i++) {
10555 paddr = VM_PAGE_TO_PHYS(page[i]);
10556 if (paddr >= dmaplimit) {
10557 if (can_fault)
10558 pmap_qremove(vaddr[i], 1);
10559 vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10560 }
10561 }
10562 }
10563
10564 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10565 pmap_quick_enter_page(vm_page_t m)
10566 {
10567 vm_paddr_t paddr;
10568
10569 paddr = VM_PAGE_TO_PHYS(m);
10570 if (paddr < dmaplimit)
10571 return (PHYS_TO_DMAP(paddr));
10572 mtx_lock_spin(&qframe_mtx);
10573 KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10574
10575 /*
10576 * Since qframe is exclusively mapped by us, and we do not set
10577 * PG_G, we can use INVLPG here.
10578 */
10579 invlpg(qframe);
10580
10581 pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10582 X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10583 return (qframe);
10584 }
10585
10586 void
pmap_quick_remove_page(vm_offset_t addr)10587 pmap_quick_remove_page(vm_offset_t addr)
10588 {
10589
10590 if (addr != qframe)
10591 return;
10592 pte_store(vtopte(qframe), 0);
10593 mtx_unlock_spin(&qframe_mtx);
10594 }
10595
10596 /*
10597 * Pdp pages from the large map are managed differently from either
10598 * kernel or user page table pages. They are permanently allocated at
10599 * initialization time, and their reference count is permanently set to
10600 * zero. The pml4 entries pointing to those pages are copied into
10601 * each allocated pmap.
10602 *
10603 * In contrast, pd and pt pages are managed like user page table
10604 * pages. They are dynamically allocated, and their reference count
10605 * represents the number of valid entries within the page.
10606 */
10607 static vm_page_t
pmap_large_map_getptp_unlocked(void)10608 pmap_large_map_getptp_unlocked(void)
10609 {
10610 return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10611 }
10612
10613 static vm_page_t
pmap_large_map_getptp(void)10614 pmap_large_map_getptp(void)
10615 {
10616 vm_page_t m;
10617
10618 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10619 m = pmap_large_map_getptp_unlocked();
10620 if (m == NULL) {
10621 PMAP_UNLOCK(kernel_pmap);
10622 vm_wait(NULL);
10623 PMAP_LOCK(kernel_pmap);
10624 /* Callers retry. */
10625 }
10626 return (m);
10627 }
10628
10629 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10630 pmap_large_map_pdpe(vm_offset_t va)
10631 {
10632 vm_pindex_t pml4_idx;
10633 vm_paddr_t mphys;
10634
10635 pml4_idx = pmap_pml4e_index(va);
10636 KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10637 ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10638 "%#jx lm_ents %d",
10639 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10640 KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10641 ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10642 "LMSPML4I %#jx lm_ents %d",
10643 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10644 mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10645 return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10646 }
10647
10648 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10649 pmap_large_map_pde(vm_offset_t va)
10650 {
10651 pdp_entry_t *pdpe;
10652 vm_page_t m;
10653 vm_paddr_t mphys;
10654
10655 retry:
10656 pdpe = pmap_large_map_pdpe(va);
10657 if (*pdpe == 0) {
10658 m = pmap_large_map_getptp();
10659 if (m == NULL)
10660 goto retry;
10661 mphys = VM_PAGE_TO_PHYS(m);
10662 *pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10663 } else {
10664 MPASS((*pdpe & X86_PG_PS) == 0);
10665 mphys = *pdpe & PG_FRAME;
10666 }
10667 return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10668 }
10669
10670 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10671 pmap_large_map_pte(vm_offset_t va)
10672 {
10673 pd_entry_t *pde;
10674 vm_page_t m;
10675 vm_paddr_t mphys;
10676
10677 retry:
10678 pde = pmap_large_map_pde(va);
10679 if (*pde == 0) {
10680 m = pmap_large_map_getptp();
10681 if (m == NULL)
10682 goto retry;
10683 mphys = VM_PAGE_TO_PHYS(m);
10684 *pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10685 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10686 } else {
10687 MPASS((*pde & X86_PG_PS) == 0);
10688 mphys = *pde & PG_FRAME;
10689 }
10690 return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10691 }
10692
10693 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10694 pmap_large_map_kextract(vm_offset_t va)
10695 {
10696 pdp_entry_t *pdpe, pdp;
10697 pd_entry_t *pde, pd;
10698 pt_entry_t *pte, pt;
10699
10700 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10701 ("not largemap range %#lx", (u_long)va));
10702 pdpe = pmap_large_map_pdpe(va);
10703 pdp = *pdpe;
10704 KASSERT((pdp & X86_PG_V) != 0,
10705 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10706 (u_long)pdpe, pdp));
10707 if ((pdp & X86_PG_PS) != 0) {
10708 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10709 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10710 (u_long)pdpe, pdp));
10711 return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10712 }
10713 pde = pmap_pdpe_to_pde(pdpe, va);
10714 pd = *pde;
10715 KASSERT((pd & X86_PG_V) != 0,
10716 ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10717 if ((pd & X86_PG_PS) != 0)
10718 return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10719 pte = pmap_pde_to_pte(pde, va);
10720 pt = *pte;
10721 KASSERT((pt & X86_PG_V) != 0,
10722 ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10723 return ((pt & PG_FRAME) | (va & PAGE_MASK));
10724 }
10725
10726 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10727 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10728 vmem_addr_t *vmem_res)
10729 {
10730
10731 /*
10732 * Large mappings are all but static. Consequently, there
10733 * is no point in waiting for an earlier allocation to be
10734 * freed.
10735 */
10736 return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10737 VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10738 }
10739
10740 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10741 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10742 vm_memattr_t mattr)
10743 {
10744 pdp_entry_t *pdpe;
10745 pd_entry_t *pde;
10746 pt_entry_t *pte;
10747 vm_offset_t va, inc;
10748 vmem_addr_t vmem_res;
10749 vm_paddr_t pa;
10750 int error;
10751
10752 if (len == 0 || spa + len < spa)
10753 return (EINVAL);
10754
10755 /* See if DMAP can serve. */
10756 if (spa + len <= dmaplimit) {
10757 va = PHYS_TO_DMAP(spa);
10758 *addr = (void *)va;
10759 return (pmap_change_attr(va, len, mattr));
10760 }
10761
10762 /*
10763 * No, allocate KVA. Fit the address with best possible
10764 * alignment for superpages. Fall back to worse align if
10765 * failed.
10766 */
10767 error = ENOMEM;
10768 if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10769 NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10770 error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10771 &vmem_res);
10772 if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10773 NBPDR) + NBPDR)
10774 error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10775 &vmem_res);
10776 if (error != 0)
10777 error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10778 if (error != 0)
10779 return (error);
10780
10781 /*
10782 * Fill pagetable. PG_M is not pre-set, we scan modified bits
10783 * in the pagetable to minimize flushing. No need to
10784 * invalidate TLB, since we only update invalid entries.
10785 */
10786 PMAP_LOCK(kernel_pmap);
10787 for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10788 len -= inc) {
10789 if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10790 (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10791 pdpe = pmap_large_map_pdpe(va);
10792 MPASS(*pdpe == 0);
10793 *pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10794 X86_PG_V | X86_PG_A | pg_nx |
10795 pmap_cache_bits(kernel_pmap, mattr, true);
10796 inc = NBPDP;
10797 } else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10798 (va & PDRMASK) == 0) {
10799 pde = pmap_large_map_pde(va);
10800 MPASS(*pde == 0);
10801 *pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10802 X86_PG_V | X86_PG_A | pg_nx |
10803 pmap_cache_bits(kernel_pmap, mattr, true);
10804 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10805 ref_count++;
10806 inc = NBPDR;
10807 } else {
10808 pte = pmap_large_map_pte(va);
10809 MPASS(*pte == 0);
10810 *pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10811 X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10812 mattr, false);
10813 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10814 ref_count++;
10815 inc = PAGE_SIZE;
10816 }
10817 }
10818 PMAP_UNLOCK(kernel_pmap);
10819 MPASS(len == 0);
10820
10821 *addr = (void *)vmem_res;
10822 return (0);
10823 }
10824
10825 void
pmap_large_unmap(void * svaa,vm_size_t len)10826 pmap_large_unmap(void *svaa, vm_size_t len)
10827 {
10828 vm_offset_t sva, va;
10829 vm_size_t inc;
10830 pdp_entry_t *pdpe, pdp;
10831 pd_entry_t *pde, pd;
10832 pt_entry_t *pte;
10833 vm_page_t m;
10834 struct spglist spgf;
10835
10836 sva = (vm_offset_t)svaa;
10837 if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10838 sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10839 return;
10840
10841 SLIST_INIT(&spgf);
10842 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10843 PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10844 ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10845 PMAP_LOCK(kernel_pmap);
10846 for (va = sva; va < sva + len; va += inc) {
10847 pdpe = pmap_large_map_pdpe(va);
10848 pdp = *pdpe;
10849 KASSERT((pdp & X86_PG_V) != 0,
10850 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10851 (u_long)pdpe, pdp));
10852 if ((pdp & X86_PG_PS) != 0) {
10853 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10854 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10855 (u_long)pdpe, pdp));
10856 KASSERT((va & PDPMASK) == 0,
10857 ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10858 (u_long)pdpe, pdp));
10859 KASSERT(va + NBPDP <= sva + len,
10860 ("unmap covers partial 1GB page, sva %#lx va %#lx "
10861 "pdpe %#lx pdp %#lx len %#lx", sva, va,
10862 (u_long)pdpe, pdp, len));
10863 *pdpe = 0;
10864 inc = NBPDP;
10865 continue;
10866 }
10867 pde = pmap_pdpe_to_pde(pdpe, va);
10868 pd = *pde;
10869 KASSERT((pd & X86_PG_V) != 0,
10870 ("invalid pd va %#lx pde %#lx pd %#lx", va,
10871 (u_long)pde, pd));
10872 if ((pd & X86_PG_PS) != 0) {
10873 KASSERT((va & PDRMASK) == 0,
10874 ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10875 (u_long)pde, pd));
10876 KASSERT(va + NBPDR <= sva + len,
10877 ("unmap covers partial 2MB page, sva %#lx va %#lx "
10878 "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10879 pd, len));
10880 pde_store(pde, 0);
10881 inc = NBPDR;
10882 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10883 m->ref_count--;
10884 if (m->ref_count == 0) {
10885 *pdpe = 0;
10886 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10887 }
10888 continue;
10889 }
10890 pte = pmap_pde_to_pte(pde, va);
10891 KASSERT((*pte & X86_PG_V) != 0,
10892 ("invalid pte va %#lx pte %#lx pt %#lx", va,
10893 (u_long)pte, *pte));
10894 pte_clear(pte);
10895 inc = PAGE_SIZE;
10896 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10897 m->ref_count--;
10898 if (m->ref_count == 0) {
10899 *pde = 0;
10900 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10901 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10902 m->ref_count--;
10903 if (m->ref_count == 0) {
10904 *pdpe = 0;
10905 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10906 }
10907 }
10908 }
10909 pmap_invalidate_range(kernel_pmap, sva, sva + len);
10910 PMAP_UNLOCK(kernel_pmap);
10911 vm_page_free_pages_toq(&spgf, false);
10912 vmem_free(large_vmem, sva, len);
10913 }
10914
10915 static void
pmap_large_map_wb_fence_mfence(void)10916 pmap_large_map_wb_fence_mfence(void)
10917 {
10918
10919 mfence();
10920 }
10921
10922 static void
pmap_large_map_wb_fence_atomic(void)10923 pmap_large_map_wb_fence_atomic(void)
10924 {
10925
10926 atomic_thread_fence_seq_cst();
10927 }
10928
10929 static void
pmap_large_map_wb_fence_nop(void)10930 pmap_large_map_wb_fence_nop(void)
10931 {
10932 }
10933
10934 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10935 {
10936
10937 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10938 return (pmap_large_map_wb_fence_mfence);
10939 else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10940 CPUID_STDEXT_CLFLUSHOPT)) == 0)
10941 return (pmap_large_map_wb_fence_atomic);
10942 else
10943 /* clflush is strongly enough ordered */
10944 return (pmap_large_map_wb_fence_nop);
10945 }
10946
10947 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10948 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10949 {
10950
10951 for (; len > 0; len -= cpu_clflush_line_size,
10952 va += cpu_clflush_line_size)
10953 clwb(va);
10954 }
10955
10956 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10957 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10958 {
10959
10960 for (; len > 0; len -= cpu_clflush_line_size,
10961 va += cpu_clflush_line_size)
10962 clflushopt(va);
10963 }
10964
10965 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10966 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10967 {
10968
10969 for (; len > 0; len -= cpu_clflush_line_size,
10970 va += cpu_clflush_line_size)
10971 clflush(va);
10972 }
10973
10974 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10975 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10976 {
10977 }
10978
10979 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10980 {
10981
10982 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10983 return (pmap_large_map_flush_range_clwb);
10984 else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10985 return (pmap_large_map_flush_range_clflushopt);
10986 else if ((cpu_feature & CPUID_CLFSH) != 0)
10987 return (pmap_large_map_flush_range_clflush);
10988 else
10989 return (pmap_large_map_flush_range_nop);
10990 }
10991
10992 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)10993 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
10994 {
10995 volatile u_long *pe;
10996 u_long p;
10997 vm_offset_t va;
10998 vm_size_t inc;
10999 bool seen_other;
11000
11001 for (va = sva; va < eva; va += inc) {
11002 inc = 0;
11003 if ((amd_feature & AMDID_PAGE1GB) != 0) {
11004 pe = (volatile u_long *)pmap_large_map_pdpe(va);
11005 p = *pe;
11006 if ((p & X86_PG_PS) != 0)
11007 inc = NBPDP;
11008 }
11009 if (inc == 0) {
11010 pe = (volatile u_long *)pmap_large_map_pde(va);
11011 p = *pe;
11012 if ((p & X86_PG_PS) != 0)
11013 inc = NBPDR;
11014 }
11015 if (inc == 0) {
11016 pe = (volatile u_long *)pmap_large_map_pte(va);
11017 p = *pe;
11018 inc = PAGE_SIZE;
11019 }
11020 seen_other = false;
11021 for (;;) {
11022 if ((p & X86_PG_AVAIL1) != 0) {
11023 /*
11024 * Spin-wait for the end of a parallel
11025 * write-back.
11026 */
11027 cpu_spinwait();
11028 p = *pe;
11029
11030 /*
11031 * If we saw other write-back
11032 * occurring, we cannot rely on PG_M to
11033 * indicate state of the cache. The
11034 * PG_M bit is cleared before the
11035 * flush to avoid ignoring new writes,
11036 * and writes which are relevant for
11037 * us might happen after.
11038 */
11039 seen_other = true;
11040 continue;
11041 }
11042
11043 if ((p & X86_PG_M) != 0 || seen_other) {
11044 if (!atomic_fcmpset_long(pe, &p,
11045 (p & ~X86_PG_M) | X86_PG_AVAIL1))
11046 /*
11047 * If we saw PG_M without
11048 * PG_AVAIL1, and then on the
11049 * next attempt we do not
11050 * observe either PG_M or
11051 * PG_AVAIL1, the other
11052 * write-back started after us
11053 * and finished before us. We
11054 * can rely on it doing our
11055 * work.
11056 */
11057 continue;
11058 pmap_large_map_flush_range(va, inc);
11059 atomic_clear_long(pe, X86_PG_AVAIL1);
11060 }
11061 break;
11062 }
11063 maybe_yield();
11064 }
11065 }
11066
11067 /*
11068 * Write-back cache lines for the given address range.
11069 *
11070 * Must be called only on the range or sub-range returned from
11071 * pmap_large_map(). Must not be called on the coalesced ranges.
11072 *
11073 * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11074 * instructions support.
11075 */
11076 void
pmap_large_map_wb(void * svap,vm_size_t len)11077 pmap_large_map_wb(void *svap, vm_size_t len)
11078 {
11079 vm_offset_t eva, sva;
11080
11081 sva = (vm_offset_t)svap;
11082 eva = sva + len;
11083 pmap_large_map_wb_fence();
11084 if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11085 pmap_large_map_flush_range(sva, len);
11086 } else {
11087 KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11088 eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11089 ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11090 pmap_large_map_wb_large(sva, eva);
11091 }
11092 pmap_large_map_wb_fence();
11093 }
11094
11095 static vm_page_t
pmap_pti_alloc_page(void)11096 pmap_pti_alloc_page(void)
11097 {
11098 vm_page_t m;
11099
11100 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11101 m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11102 return (m);
11103 }
11104
11105 static bool
pmap_pti_free_page(vm_page_t m)11106 pmap_pti_free_page(vm_page_t m)
11107 {
11108 if (!vm_page_unwire_noq(m))
11109 return (false);
11110 vm_page_xbusy_claim(m);
11111 vm_page_free_zero(m);
11112 return (true);
11113 }
11114
11115 static void
pmap_pti_init(void)11116 pmap_pti_init(void)
11117 {
11118 vm_page_t pml4_pg;
11119 pdp_entry_t *pdpe;
11120 vm_offset_t va;
11121 int i;
11122
11123 if (!pti)
11124 return;
11125 pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11126 VM_OBJECT_WLOCK(pti_obj);
11127 pml4_pg = pmap_pti_alloc_page();
11128 pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11129 for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11130 va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11131 pdpe = pmap_pti_pdpe(va);
11132 pmap_pti_wire_pte(pdpe);
11133 }
11134 pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11135 (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11136 pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11137 sizeof(struct gate_descriptor) * NIDT, false);
11138 CPU_FOREACH(i) {
11139 /* Doublefault stack IST 1 */
11140 va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11141 pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11142 /* NMI stack IST 2 */
11143 va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11144 pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11145 /* MC# stack IST 3 */
11146 va = __pcpu[i].pc_common_tss.tss_ist3 +
11147 sizeof(struct nmi_pcpu);
11148 pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11149 /* DB# stack IST 4 */
11150 va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11151 pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11152 }
11153 pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11154 true);
11155 pti_finalized = true;
11156 VM_OBJECT_WUNLOCK(pti_obj);
11157 }
11158
11159 static void
pmap_cpu_init(void * arg __unused)11160 pmap_cpu_init(void *arg __unused)
11161 {
11162 CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11163 pmap_pti_init();
11164 }
11165 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11166
11167 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11168 pmap_pti_pdpe(vm_offset_t va)
11169 {
11170 pml4_entry_t *pml4e;
11171 pdp_entry_t *pdpe;
11172 vm_page_t m;
11173 vm_pindex_t pml4_idx;
11174 vm_paddr_t mphys;
11175
11176 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11177
11178 pml4_idx = pmap_pml4e_index(va);
11179 pml4e = &pti_pml4[pml4_idx];
11180 m = NULL;
11181 if (*pml4e == 0) {
11182 if (pti_finalized)
11183 panic("pml4 alloc after finalization\n");
11184 m = pmap_pti_alloc_page();
11185 if (*pml4e != 0) {
11186 pmap_pti_free_page(m);
11187 mphys = *pml4e & ~PAGE_MASK;
11188 } else {
11189 mphys = VM_PAGE_TO_PHYS(m);
11190 *pml4e = mphys | X86_PG_RW | X86_PG_V;
11191 }
11192 } else {
11193 mphys = *pml4e & ~PAGE_MASK;
11194 }
11195 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11196 return (pdpe);
11197 }
11198
11199 static void
pmap_pti_wire_pte(void * pte)11200 pmap_pti_wire_pte(void *pte)
11201 {
11202 vm_page_t m;
11203
11204 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11205 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11206 m->ref_count++;
11207 }
11208
11209 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11210 pmap_pti_unwire_pde(void *pde, bool only_ref)
11211 {
11212 vm_page_t m;
11213
11214 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11215 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11216 MPASS(only_ref || m->ref_count > 1);
11217 pmap_pti_free_page(m);
11218 }
11219
11220 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11221 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11222 {
11223 vm_page_t m;
11224 pd_entry_t *pde;
11225
11226 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11227 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11228 if (pmap_pti_free_page(m)) {
11229 pde = pmap_pti_pde(va);
11230 MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11231 *pde = 0;
11232 pmap_pti_unwire_pde(pde, false);
11233 }
11234 }
11235
11236 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11237 pmap_pti_pde(vm_offset_t va)
11238 {
11239 pdp_entry_t *pdpe;
11240 pd_entry_t *pde;
11241 vm_page_t m;
11242 vm_pindex_t pd_idx;
11243 vm_paddr_t mphys;
11244
11245 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11246
11247 pdpe = pmap_pti_pdpe(va);
11248 if (*pdpe == 0) {
11249 m = pmap_pti_alloc_page();
11250 if (*pdpe != 0) {
11251 pmap_pti_free_page(m);
11252 MPASS((*pdpe & X86_PG_PS) == 0);
11253 mphys = *pdpe & ~PAGE_MASK;
11254 } else {
11255 mphys = VM_PAGE_TO_PHYS(m);
11256 *pdpe = mphys | X86_PG_RW | X86_PG_V;
11257 }
11258 } else {
11259 MPASS((*pdpe & X86_PG_PS) == 0);
11260 mphys = *pdpe & ~PAGE_MASK;
11261 }
11262
11263 pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11264 pd_idx = pmap_pde_index(va);
11265 pde += pd_idx;
11266 return (pde);
11267 }
11268
11269 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11270 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11271 {
11272 pd_entry_t *pde;
11273 pt_entry_t *pte;
11274 vm_page_t m;
11275 vm_paddr_t mphys;
11276
11277 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11278
11279 pde = pmap_pti_pde(va);
11280 if (unwire_pde != NULL) {
11281 *unwire_pde = true;
11282 pmap_pti_wire_pte(pde);
11283 }
11284 if (*pde == 0) {
11285 m = pmap_pti_alloc_page();
11286 if (*pde != 0) {
11287 pmap_pti_free_page(m);
11288 MPASS((*pde & X86_PG_PS) == 0);
11289 mphys = *pde & ~(PAGE_MASK | pg_nx);
11290 } else {
11291 mphys = VM_PAGE_TO_PHYS(m);
11292 *pde = mphys | X86_PG_RW | X86_PG_V;
11293 if (unwire_pde != NULL)
11294 *unwire_pde = false;
11295 }
11296 } else {
11297 MPASS((*pde & X86_PG_PS) == 0);
11298 mphys = *pde & ~(PAGE_MASK | pg_nx);
11299 }
11300
11301 pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11302 pte += pmap_pte_index(va);
11303
11304 return (pte);
11305 }
11306
11307 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11308 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11309 {
11310 vm_paddr_t pa;
11311 pd_entry_t *pde;
11312 pt_entry_t *pte, ptev;
11313 bool unwire_pde;
11314
11315 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11316
11317 sva = trunc_page(sva);
11318 MPASS(sva > VM_MAXUSER_ADDRESS);
11319 eva = round_page(eva);
11320 MPASS(sva < eva);
11321 for (; sva < eva; sva += PAGE_SIZE) {
11322 pte = pmap_pti_pte(sva, &unwire_pde);
11323 pa = pmap_kextract(sva);
11324 ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11325 (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11326 VM_MEMATTR_DEFAULT, false);
11327 if (*pte == 0) {
11328 pte_store(pte, ptev);
11329 pmap_pti_wire_pte(pte);
11330 } else {
11331 KASSERT(!pti_finalized,
11332 ("pti overlap after fin %#lx %#lx %#lx",
11333 sva, *pte, ptev));
11334 KASSERT(*pte == ptev,
11335 ("pti non-identical pte after fin %#lx %#lx %#lx",
11336 sva, *pte, ptev));
11337 }
11338 if (unwire_pde) {
11339 pde = pmap_pti_pde(sva);
11340 pmap_pti_unwire_pde(pde, true);
11341 }
11342 }
11343 }
11344
11345 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11346 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11347 {
11348
11349 if (!pti)
11350 return;
11351 VM_OBJECT_WLOCK(pti_obj);
11352 pmap_pti_add_kva_locked(sva, eva, exec);
11353 VM_OBJECT_WUNLOCK(pti_obj);
11354 }
11355
11356 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11357 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11358 {
11359 pt_entry_t *pte;
11360 vm_offset_t va;
11361
11362 if (!pti)
11363 return;
11364 sva = rounddown2(sva, PAGE_SIZE);
11365 MPASS(sva > VM_MAXUSER_ADDRESS);
11366 eva = roundup2(eva, PAGE_SIZE);
11367 MPASS(sva < eva);
11368 VM_OBJECT_WLOCK(pti_obj);
11369 for (va = sva; va < eva; va += PAGE_SIZE) {
11370 pte = pmap_pti_pte(va, NULL);
11371 KASSERT((*pte & X86_PG_V) != 0,
11372 ("invalid pte va %#lx pte %#lx pt %#lx", va,
11373 (u_long)pte, *pte));
11374 pte_clear(pte);
11375 pmap_pti_unwire_pte(pte, va);
11376 }
11377 pmap_invalidate_range(kernel_pmap, sva, eva);
11378 VM_OBJECT_WUNLOCK(pti_obj);
11379 }
11380
11381 static void *
pkru_dup_range(void * ctx __unused,void * data)11382 pkru_dup_range(void *ctx __unused, void *data)
11383 {
11384 struct pmap_pkru_range *node, *new_node;
11385
11386 new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11387 if (new_node == NULL)
11388 return (NULL);
11389 node = data;
11390 memcpy(new_node, node, sizeof(*node));
11391 return (new_node);
11392 }
11393
11394 static void
pkru_free_range(void * ctx __unused,void * node)11395 pkru_free_range(void *ctx __unused, void *node)
11396 {
11397
11398 uma_zfree(pmap_pkru_ranges_zone, node);
11399 }
11400
11401 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11402 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11403 int flags)
11404 {
11405 struct pmap_pkru_range *ppr;
11406 int error;
11407
11408 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11409 MPASS(pmap->pm_type == PT_X86);
11410 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11411 if ((flags & AMD64_PKRU_EXCL) != 0 &&
11412 !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11413 return (EBUSY);
11414 ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11415 if (ppr == NULL)
11416 return (ENOMEM);
11417 ppr->pkru_keyidx = keyidx;
11418 ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11419 error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11420 if (error != 0)
11421 uma_zfree(pmap_pkru_ranges_zone, ppr);
11422 return (error);
11423 }
11424
11425 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11426 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11427 {
11428
11429 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11430 MPASS(pmap->pm_type == PT_X86);
11431 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11432 return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11433 }
11434
11435 static void
pmap_pkru_deassign_all(pmap_t pmap)11436 pmap_pkru_deassign_all(pmap_t pmap)
11437 {
11438
11439 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11440 if (pmap->pm_type == PT_X86 &&
11441 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11442 rangeset_remove_all(&pmap->pm_pkru);
11443 }
11444
11445 /*
11446 * Returns true if the PKU setting is the same across the specified address
11447 * range, and false otherwise. When returning true, updates the referenced PTE
11448 * to reflect the PKU setting.
11449 */
11450 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11451 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11452 {
11453 struct pmap_pkru_range *ppr;
11454 vm_offset_t va;
11455 u_int keyidx;
11456
11457 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11458 KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11459 ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11460 if (pmap->pm_type != PT_X86 ||
11461 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11462 sva >= VM_MAXUSER_ADDRESS)
11463 return (true);
11464 MPASS(eva <= VM_MAXUSER_ADDRESS);
11465 ppr = rangeset_containing(&pmap->pm_pkru, sva);
11466 if (ppr == NULL)
11467 return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11468 keyidx = ppr->pkru_keyidx;
11469 while ((va = ppr->pkru_rs_el.re_end) < eva) {
11470 if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11471 keyidx != ppr->pkru_keyidx)
11472 return (false);
11473 }
11474 *pte |= X86_PG_PKU(keyidx);
11475 return (true);
11476 }
11477
11478 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11479 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11480 {
11481 struct pmap_pkru_range *ppr;
11482
11483 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11484 if (pmap->pm_type != PT_X86 ||
11485 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11486 va >= VM_MAXUSER_ADDRESS)
11487 return (0);
11488 ppr = rangeset_containing(&pmap->pm_pkru, va);
11489 if (ppr != NULL)
11490 return (X86_PG_PKU(ppr->pkru_keyidx));
11491 return (0);
11492 }
11493
11494 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11495 pred_pkru_on_remove(void *ctx __unused, void *r)
11496 {
11497 struct pmap_pkru_range *ppr;
11498
11499 ppr = r;
11500 return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11501 }
11502
11503 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11504 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11505 {
11506
11507 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11508 if (pmap->pm_type == PT_X86 &&
11509 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11510 rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11511 pred_pkru_on_remove);
11512 }
11513 }
11514
11515 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11516 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11517 {
11518
11519 PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11520 PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11521 MPASS(dst_pmap->pm_type == PT_X86);
11522 MPASS(src_pmap->pm_type == PT_X86);
11523 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11524 if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11525 return (0);
11526 return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11527 }
11528
11529 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11530 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11531 u_int keyidx)
11532 {
11533 pml4_entry_t *pml4e;
11534 pdp_entry_t *pdpe;
11535 pd_entry_t newpde, ptpaddr, *pde;
11536 pt_entry_t newpte, *ptep, pte;
11537 vm_offset_t va, va_next;
11538 bool changed;
11539
11540 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11541 MPASS(pmap->pm_type == PT_X86);
11542 MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11543
11544 for (changed = false, va = sva; va < eva; va = va_next) {
11545 pml4e = pmap_pml4e(pmap, va);
11546 if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11547 va_next = (va + NBPML4) & ~PML4MASK;
11548 if (va_next < va)
11549 va_next = eva;
11550 continue;
11551 }
11552
11553 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11554 if ((*pdpe & X86_PG_V) == 0) {
11555 va_next = (va + NBPDP) & ~PDPMASK;
11556 if (va_next < va)
11557 va_next = eva;
11558 continue;
11559 }
11560
11561 va_next = (va + NBPDR) & ~PDRMASK;
11562 if (va_next < va)
11563 va_next = eva;
11564
11565 pde = pmap_pdpe_to_pde(pdpe, va);
11566 ptpaddr = *pde;
11567 if (ptpaddr == 0)
11568 continue;
11569
11570 MPASS((ptpaddr & X86_PG_V) != 0);
11571 if ((ptpaddr & PG_PS) != 0) {
11572 if (va + NBPDR == va_next && eva >= va_next) {
11573 newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11574 X86_PG_PKU(keyidx);
11575 if (newpde != ptpaddr) {
11576 *pde = newpde;
11577 changed = true;
11578 }
11579 continue;
11580 } else if (!pmap_demote_pde(pmap, pde, va)) {
11581 continue;
11582 }
11583 }
11584
11585 if (va_next > eva)
11586 va_next = eva;
11587
11588 for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11589 ptep++, va += PAGE_SIZE) {
11590 pte = *ptep;
11591 if ((pte & X86_PG_V) == 0)
11592 continue;
11593 newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11594 if (newpte != pte) {
11595 *ptep = newpte;
11596 changed = true;
11597 }
11598 }
11599 }
11600 if (changed)
11601 pmap_invalidate_range(pmap, sva, eva);
11602 }
11603
11604 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11605 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11606 u_int keyidx, int flags)
11607 {
11608
11609 if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11610 (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11611 return (EINVAL);
11612 if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11613 return (EFAULT);
11614 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11615 return (ENOTSUP);
11616 return (0);
11617 }
11618
11619 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11620 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11621 int flags)
11622 {
11623 int error;
11624
11625 sva = trunc_page(sva);
11626 eva = round_page(eva);
11627 error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11628 if (error != 0)
11629 return (error);
11630 for (;;) {
11631 PMAP_LOCK(pmap);
11632 error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11633 if (error == 0)
11634 pmap_pkru_update_range(pmap, sva, eva, keyidx);
11635 PMAP_UNLOCK(pmap);
11636 if (error != ENOMEM)
11637 break;
11638 vm_wait(NULL);
11639 }
11640 return (error);
11641 }
11642
11643 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11644 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11645 {
11646 int error;
11647
11648 sva = trunc_page(sva);
11649 eva = round_page(eva);
11650 error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11651 if (error != 0)
11652 return (error);
11653 for (;;) {
11654 PMAP_LOCK(pmap);
11655 error = pmap_pkru_deassign(pmap, sva, eva);
11656 if (error == 0)
11657 pmap_pkru_update_range(pmap, sva, eva, 0);
11658 PMAP_UNLOCK(pmap);
11659 if (error != ENOMEM)
11660 break;
11661 vm_wait(NULL);
11662 }
11663 return (error);
11664 }
11665
11666 #if defined(KASAN) || defined(KMSAN)
11667
11668 /*
11669 * Reserve enough memory to:
11670 * 1) allocate PDP pages for the shadow map(s),
11671 * 2) shadow the boot stack of KSTACK_PAGES pages,
11672 * 3) assuming that the kernel stack does not cross a 1GB boundary,
11673 * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11674 * pages per shadow map.
11675 */
11676 #ifdef KASAN
11677 #define SAN_EARLY_PAGES \
11678 (NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11679 #else
11680 #define SAN_EARLY_PAGES \
11681 (NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11682 #endif
11683
11684 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11685 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11686 {
11687 static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11688 static size_t offset = 0;
11689 uint64_t pa;
11690
11691 if (offset == sizeof(data)) {
11692 panic("%s: ran out of memory for the bootstrap shadow map",
11693 __func__);
11694 }
11695
11696 pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11697 offset += PAGE_SIZE;
11698 return (pa);
11699 }
11700
11701 /*
11702 * Map a shadow page, before the kernel has bootstrapped its page tables. This
11703 * is currently only used to shadow the temporary boot stack set up by locore.
11704 */
11705 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11706 pmap_san_enter_early(vm_offset_t va)
11707 {
11708 static bool first = true;
11709 pml4_entry_t *pml4e;
11710 pdp_entry_t *pdpe;
11711 pd_entry_t *pde;
11712 pt_entry_t *pte;
11713 uint64_t cr3, pa, base;
11714 int i;
11715
11716 base = amd64_loadaddr();
11717 cr3 = rcr3();
11718
11719 if (first) {
11720 /*
11721 * If this the first call, we need to allocate new PML4Es for
11722 * the bootstrap shadow map(s). We don't know how the PML4 page
11723 * was initialized by the boot loader, so we can't simply test
11724 * whether the shadow map's PML4Es are zero.
11725 */
11726 first = false;
11727 #ifdef KASAN
11728 for (i = 0; i < NKASANPML4E; i++) {
11729 pa = pmap_san_enter_early_alloc_4k(base);
11730
11731 pml4e = (pml4_entry_t *)cr3 +
11732 pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11733 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11734 }
11735 #else
11736 for (i = 0; i < NKMSANORIGPML4E; i++) {
11737 pa = pmap_san_enter_early_alloc_4k(base);
11738
11739 pml4e = (pml4_entry_t *)cr3 +
11740 pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11741 i * NBPML4);
11742 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11743 }
11744 for (i = 0; i < NKMSANSHADPML4E; i++) {
11745 pa = pmap_san_enter_early_alloc_4k(base);
11746
11747 pml4e = (pml4_entry_t *)cr3 +
11748 pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11749 i * NBPML4);
11750 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11751 }
11752 #endif
11753 }
11754 pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11755 pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11756 if (*pdpe == 0) {
11757 pa = pmap_san_enter_early_alloc_4k(base);
11758 *pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11759 }
11760 pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11761 if (*pde == 0) {
11762 pa = pmap_san_enter_early_alloc_4k(base);
11763 *pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11764 }
11765 pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11766 if (*pte != 0)
11767 panic("%s: PTE for %#lx is already initialized", __func__, va);
11768 pa = pmap_san_enter_early_alloc_4k(base);
11769 *pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11770 }
11771
11772 static vm_page_t
pmap_san_enter_alloc_4k(void)11773 pmap_san_enter_alloc_4k(void)
11774 {
11775 vm_page_t m;
11776
11777 m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11778 VM_ALLOC_ZERO);
11779 if (m == NULL)
11780 panic("%s: no memory to grow shadow map", __func__);
11781 return (m);
11782 }
11783
11784 static vm_page_t
pmap_san_enter_alloc_2m(void)11785 pmap_san_enter_alloc_2m(void)
11786 {
11787 return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11788 NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11789 }
11790
11791 /*
11792 * Grow a shadow map by at least one 4KB page at the specified address. Use 2MB
11793 * pages when possible.
11794 */
11795 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11796 pmap_san_enter(vm_offset_t va)
11797 {
11798 pdp_entry_t *pdpe;
11799 pd_entry_t *pde;
11800 pt_entry_t *pte;
11801 vm_page_t m;
11802
11803 if (kernphys == 0) {
11804 /*
11805 * We're creating a temporary shadow map for the boot stack.
11806 */
11807 pmap_san_enter_early(va);
11808 return;
11809 }
11810
11811 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11812
11813 pdpe = pmap_pdpe(kernel_pmap, va);
11814 if ((*pdpe & X86_PG_V) == 0) {
11815 m = pmap_san_enter_alloc_4k();
11816 *pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11817 X86_PG_V | pg_nx);
11818 }
11819 pde = pmap_pdpe_to_pde(pdpe, va);
11820 if ((*pde & X86_PG_V) == 0) {
11821 m = pmap_san_enter_alloc_2m();
11822 if (m != NULL) {
11823 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11824 X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11825 } else {
11826 m = pmap_san_enter_alloc_4k();
11827 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11828 X86_PG_V | pg_nx);
11829 }
11830 }
11831 if ((*pde & X86_PG_PS) != 0)
11832 return;
11833 pte = pmap_pde_to_pte(pde, va);
11834 if ((*pte & X86_PG_V) != 0)
11835 return;
11836 m = pmap_san_enter_alloc_4k();
11837 *pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11838 X86_PG_M | X86_PG_A | pg_nx);
11839 }
11840 #endif
11841
11842 /*
11843 * Track a range of the kernel's virtual address space that is contiguous
11844 * in various mapping attributes.
11845 */
11846 struct pmap_kernel_map_range {
11847 vm_offset_t sva;
11848 pt_entry_t attrs;
11849 int ptes;
11850 int pdes;
11851 int pdpes;
11852 };
11853
11854 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11855 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11856 vm_offset_t eva)
11857 {
11858 const char *mode;
11859 int i, pat_idx;
11860
11861 if (eva <= range->sva)
11862 return;
11863
11864 pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11865 for (i = 0; i < PAT_INDEX_SIZE; i++)
11866 if (pat_index[i] == pat_idx)
11867 break;
11868
11869 switch (i) {
11870 case PAT_WRITE_BACK:
11871 mode = "WB";
11872 break;
11873 case PAT_WRITE_THROUGH:
11874 mode = "WT";
11875 break;
11876 case PAT_UNCACHEABLE:
11877 mode = "UC";
11878 break;
11879 case PAT_UNCACHED:
11880 mode = "U-";
11881 break;
11882 case PAT_WRITE_PROTECTED:
11883 mode = "WP";
11884 break;
11885 case PAT_WRITE_COMBINING:
11886 mode = "WC";
11887 break;
11888 default:
11889 printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11890 __func__, pat_idx, range->sva, eva);
11891 mode = "??";
11892 break;
11893 }
11894
11895 sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11896 range->sva, eva,
11897 (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11898 (range->attrs & pg_nx) != 0 ? '-' : 'x',
11899 (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11900 (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11901 mode, range->pdpes, range->pdes, range->ptes);
11902
11903 /* Reset to sentinel value. */
11904 range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11905 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11906 NPDEPG - 1, NPTEPG - 1);
11907 }
11908
11909 /*
11910 * Determine whether the attributes specified by a page table entry match those
11911 * being tracked by the current range. This is not quite as simple as a direct
11912 * flag comparison since some PAT modes have multiple representations.
11913 */
11914 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11915 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11916 {
11917 pt_entry_t diff, mask;
11918
11919 mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11920 diff = (range->attrs ^ attrs) & mask;
11921 if (diff == 0)
11922 return (true);
11923 if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11924 pmap_pat_index(kernel_pmap, range->attrs, true) ==
11925 pmap_pat_index(kernel_pmap, attrs, true))
11926 return (true);
11927 return (false);
11928 }
11929
11930 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11931 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11932 pt_entry_t attrs)
11933 {
11934
11935 memset(range, 0, sizeof(*range));
11936 range->sva = va;
11937 range->attrs = attrs;
11938 }
11939
11940 /*
11941 * Given a leaf PTE, derive the mapping's attributes. If they do not match
11942 * those of the current run, dump the address range and its attributes, and
11943 * begin a new run.
11944 */
11945 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11946 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11947 vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11948 pt_entry_t pte)
11949 {
11950 pt_entry_t attrs;
11951
11952 attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11953
11954 attrs |= pdpe & pg_nx;
11955 attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11956 if ((pdpe & PG_PS) != 0) {
11957 attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11958 } else if (pde != 0) {
11959 attrs |= pde & pg_nx;
11960 attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11961 }
11962 if ((pde & PG_PS) != 0) {
11963 attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11964 } else if (pte != 0) {
11965 attrs |= pte & pg_nx;
11966 attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11967 attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11968
11969 /* Canonicalize by always using the PDE PAT bit. */
11970 if ((attrs & X86_PG_PTE_PAT) != 0)
11971 attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11972 }
11973
11974 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11975 sysctl_kmaps_dump(sb, range, va);
11976 sysctl_kmaps_reinit(range, va, attrs);
11977 }
11978 }
11979
11980 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)11981 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11982 {
11983 struct pmap_kernel_map_range range;
11984 struct sbuf sbuf, *sb;
11985 pml4_entry_t pml4e;
11986 pdp_entry_t *pdp, pdpe;
11987 pd_entry_t *pd, pde;
11988 pt_entry_t *pt, pte;
11989 vm_offset_t sva;
11990 vm_paddr_t pa;
11991 int error, i, j, k, l;
11992
11993 error = sysctl_wire_old_buffer(req, 0);
11994 if (error != 0)
11995 return (error);
11996 sb = &sbuf;
11997 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
11998
11999 /* Sentinel value. */
12000 range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12001 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12002 NPDEPG - 1, NPTEPG - 1);
12003
12004 /*
12005 * Iterate over the kernel page tables without holding the kernel pmap
12006 * lock. Outside of the large map, kernel page table pages are never
12007 * freed, so at worst we will observe inconsistencies in the output.
12008 * Within the large map, ensure that PDP and PD page addresses are
12009 * valid before descending.
12010 */
12011 for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12012 switch (i) {
12013 case PML4PML4I:
12014 sbuf_printf(sb, "\nRecursive map:\n");
12015 break;
12016 case DMPML4I:
12017 sbuf_printf(sb, "\nDirect map:\n");
12018 break;
12019 #ifdef KASAN
12020 case KASANPML4I:
12021 sbuf_printf(sb, "\nKASAN shadow map:\n");
12022 break;
12023 #endif
12024 #ifdef KMSAN
12025 case KMSANSHADPML4I:
12026 sbuf_printf(sb, "\nKMSAN shadow map:\n");
12027 break;
12028 case KMSANORIGPML4I:
12029 sbuf_printf(sb, "\nKMSAN origin map:\n");
12030 break;
12031 #endif
12032 case KPML4BASE:
12033 sbuf_printf(sb, "\nKernel map:\n");
12034 break;
12035 case LMSPML4I:
12036 sbuf_printf(sb, "\nLarge map:\n");
12037 break;
12038 }
12039
12040 /* Convert to canonical form. */
12041 if (sva == 1ul << 47)
12042 sva |= -1ul << 48;
12043
12044 restart:
12045 pml4e = kernel_pml4[i];
12046 if ((pml4e & X86_PG_V) == 0) {
12047 sva = rounddown2(sva, NBPML4);
12048 sysctl_kmaps_dump(sb, &range, sva);
12049 sva += NBPML4;
12050 continue;
12051 }
12052 pa = pml4e & PG_FRAME;
12053 pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12054
12055 for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12056 pdpe = pdp[j];
12057 if ((pdpe & X86_PG_V) == 0) {
12058 sva = rounddown2(sva, NBPDP);
12059 sysctl_kmaps_dump(sb, &range, sva);
12060 sva += NBPDP;
12061 continue;
12062 }
12063 pa = pdpe & PG_FRAME;
12064 if ((pdpe & PG_PS) != 0) {
12065 sva = rounddown2(sva, NBPDP);
12066 sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12067 0, 0);
12068 range.pdpes++;
12069 sva += NBPDP;
12070 continue;
12071 }
12072 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12073 vm_phys_paddr_to_vm_page(pa) == NULL) {
12074 /*
12075 * Page table pages for the large map may be
12076 * freed. Validate the next-level address
12077 * before descending.
12078 */
12079 goto restart;
12080 }
12081 pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12082
12083 for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12084 pde = pd[k];
12085 if ((pde & X86_PG_V) == 0) {
12086 sva = rounddown2(sva, NBPDR);
12087 sysctl_kmaps_dump(sb, &range, sva);
12088 sva += NBPDR;
12089 continue;
12090 }
12091 pa = pde & PG_FRAME;
12092 if ((pde & PG_PS) != 0) {
12093 sva = rounddown2(sva, NBPDR);
12094 sysctl_kmaps_check(sb, &range, sva,
12095 pml4e, pdpe, pde, 0);
12096 range.pdes++;
12097 sva += NBPDR;
12098 continue;
12099 }
12100 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12101 vm_phys_paddr_to_vm_page(pa) == NULL) {
12102 /*
12103 * Page table pages for the large map
12104 * may be freed. Validate the
12105 * next-level address before descending.
12106 */
12107 goto restart;
12108 }
12109 pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12110
12111 for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12112 sva += PAGE_SIZE) {
12113 pte = pt[l];
12114 if ((pte & X86_PG_V) == 0) {
12115 sysctl_kmaps_dump(sb, &range,
12116 sva);
12117 continue;
12118 }
12119 sysctl_kmaps_check(sb, &range, sva,
12120 pml4e, pdpe, pde, pte);
12121 range.ptes++;
12122 }
12123 }
12124 }
12125 }
12126
12127 error = sbuf_finish(sb);
12128 sbuf_delete(sb);
12129 return (error);
12130 }
12131 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12132 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12133 NULL, 0, sysctl_kmaps, "A",
12134 "Dump kernel address layout");
12135
12136 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12137 DB_SHOW_COMMAND(pte, pmap_print_pte)
12138 {
12139 pmap_t pmap;
12140 pml5_entry_t *pml5;
12141 pml4_entry_t *pml4;
12142 pdp_entry_t *pdp;
12143 pd_entry_t *pde;
12144 pt_entry_t *pte, PG_V;
12145 vm_offset_t va;
12146
12147 if (!have_addr) {
12148 db_printf("show pte addr\n");
12149 return;
12150 }
12151 va = (vm_offset_t)addr;
12152
12153 if (kdb_thread != NULL)
12154 pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12155 else
12156 pmap = PCPU_GET(curpmap);
12157
12158 PG_V = pmap_valid_bit(pmap);
12159 db_printf("VA 0x%016lx", va);
12160
12161 if (pmap_is_la57(pmap)) {
12162 pml5 = pmap_pml5e(pmap, va);
12163 db_printf(" pml5e@0x%016lx 0x%016lx", (uint64_t)pml5, *pml5);
12164 if ((*pml5 & PG_V) == 0) {
12165 db_printf("\n");
12166 return;
12167 }
12168 pml4 = pmap_pml5e_to_pml4e(pml5, va);
12169 } else {
12170 pml4 = pmap_pml4e(pmap, va);
12171 }
12172 db_printf(" pml4e@0x%016lx 0x%016lx", (uint64_t)pml4, *pml4);
12173 if ((*pml4 & PG_V) == 0) {
12174 db_printf("\n");
12175 return;
12176 }
12177 pdp = pmap_pml4e_to_pdpe(pml4, va);
12178 db_printf(" pdpe@0x%016lx 0x%016lx", (uint64_t)pdp, *pdp);
12179 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12180 db_printf("\n");
12181 return;
12182 }
12183 pde = pmap_pdpe_to_pde(pdp, va);
12184 db_printf(" pde@0x%016lx 0x%016lx", (uint64_t)pde, *pde);
12185 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12186 db_printf("\n");
12187 return;
12188 }
12189 pte = pmap_pde_to_pte(pde, va);
12190 db_printf(" pte@0x%016lx 0x%016lx\n", (uint64_t)pte, *pte);
12191 }
12192
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12193 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12194 {
12195 vm_paddr_t a;
12196
12197 if (have_addr) {
12198 a = (vm_paddr_t)addr;
12199 db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12200 } else {
12201 db_printf("show phys2dmap addr\n");
12202 }
12203 }
12204
12205 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12206 ptpages_show_page(int level, int idx, vm_page_t pg)
12207 {
12208 db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12209 level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12210 }
12211
12212 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12213 ptpages_show_complain(int level, int idx, uint64_t pte)
12214 {
12215 db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12216 }
12217
12218 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12219 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12220 {
12221 vm_page_t pg3, pg2, pg1;
12222 pml4_entry_t *pml4;
12223 pdp_entry_t *pdp;
12224 pd_entry_t *pd;
12225 int i4, i3, i2;
12226
12227 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12228 for (i4 = 0; i4 < num_entries; i4++) {
12229 if ((pml4[i4] & PG_V) == 0)
12230 continue;
12231 pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12232 if (pg3 == NULL) {
12233 ptpages_show_complain(3, i4, pml4[i4]);
12234 continue;
12235 }
12236 ptpages_show_page(3, i4, pg3);
12237 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12238 for (i3 = 0; i3 < NPDPEPG; i3++) {
12239 if ((pdp[i3] & PG_V) == 0)
12240 continue;
12241 pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12242 if (pg3 == NULL) {
12243 ptpages_show_complain(2, i3, pdp[i3]);
12244 continue;
12245 }
12246 ptpages_show_page(2, i3, pg2);
12247 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12248 for (i2 = 0; i2 < NPDEPG; i2++) {
12249 if ((pd[i2] & PG_V) == 0)
12250 continue;
12251 pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12252 if (pg1 == NULL) {
12253 ptpages_show_complain(1, i2, pd[i2]);
12254 continue;
12255 }
12256 ptpages_show_page(1, i2, pg1);
12257 }
12258 }
12259 }
12260 }
12261
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12262 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12263 {
12264 pmap_t pmap;
12265 vm_page_t pg;
12266 pml5_entry_t *pml5;
12267 uint64_t PG_V;
12268 int i5;
12269
12270 if (have_addr)
12271 pmap = (pmap_t)addr;
12272 else
12273 pmap = PCPU_GET(curpmap);
12274
12275 PG_V = pmap_valid_bit(pmap);
12276
12277 if (pmap_is_la57(pmap)) {
12278 pml5 = pmap->pm_pmltop;
12279 for (i5 = 0; i5 < NUPML5E; i5++) {
12280 if ((pml5[i5] & PG_V) == 0)
12281 continue;
12282 pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12283 if (pg == NULL) {
12284 ptpages_show_complain(4, i5, pml5[i5]);
12285 continue;
12286 }
12287 ptpages_show_page(4, i5, pg);
12288 ptpages_show_pml4(pg, NPML4EPG, PG_V);
12289 }
12290 } else {
12291 ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12292 (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12293 }
12294 }
12295 #endif
12296