1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 * Copyright (c) 2014 Andrew Turner
13 * All rights reserved.
14 * Copyright (c) 2014-2016 The FreeBSD Foundation
15 * All rights reserved.
16 *
17 * This code is derived from software contributed to Berkeley by
18 * the Systems Programming Group of the University of Utah Computer
19 * Science Department and William Jolitz of UUNET Technologies Inc.
20 *
21 * This software was developed by Andrew Turner under sponsorship from
22 * the FreeBSD Foundation.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 * must display the following acknowledgement:
34 * This product includes software developed by the University of
35 * California, Berkeley and its contributors.
36 * 4. Neither the name of the University nor the names of its contributors
37 * may be used to endorse or promote products derived from this software
38 * without specific prior written permission.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 */
52 /*-
53 * Copyright (c) 2003 Networks Associates Technology, Inc.
54 * All rights reserved.
55 *
56 * This software was developed for the FreeBSD Project by Jake Burkholder,
57 * Safeport Network Services, and Network Associates Laboratories, the
58 * Security Research Division of Network Associates, Inc. under
59 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
60 * CHATS research program.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81 * SUCH DAMAGE.
82 */
83
84 #include <sys/cdefs.h>
85 /*
86 * Manages physical address maps.
87 *
88 * Since the information managed by this module is
89 * also stored by the logical address mapping module,
90 * this module may throw away valid virtual-to-physical
91 * mappings at almost any time. However, invalidations
92 * of virtual-to-physical mappings must be done as
93 * requested.
94 *
95 * In order to cope with hardware architectures which
96 * make virtual-to-physical map invalidates expensive,
97 * this module may delay invalidate or reduced protection
98 * operations until such time as they are actually
99 * necessary. This module is given full information as
100 * to which processors are currently using which maps,
101 * and to when physical maps must be made correct.
102 */
103
104 #include "opt_vm.h"
105
106 #include <sys/param.h>
107 #include <sys/asan.h>
108 #include <sys/bitstring.h>
109 #include <sys/bus.h>
110 #include <sys/systm.h>
111 #include <sys/kernel.h>
112 #include <sys/ktr.h>
113 #include <sys/limits.h>
114 #include <sys/lock.h>
115 #include <sys/malloc.h>
116 #include <sys/mman.h>
117 #include <sys/msan.h>
118 #include <sys/msgbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/physmem.h>
121 #include <sys/proc.h>
122 #include <sys/rangeset.h>
123 #include <sys/rwlock.h>
124 #include <sys/sbuf.h>
125 #include <sys/sx.h>
126 #include <sys/vmem.h>
127 #include <sys/vmmeter.h>
128 #include <sys/sched.h>
129 #include <sys/sysctl.h>
130 #include <sys/_unrhdr.h>
131 #include <sys/smp.h>
132
133 #include <vm/vm.h>
134 #include <vm/vm_param.h>
135 #include <vm/vm_kern.h>
136 #include <vm/vm_page.h>
137 #include <vm/vm_map.h>
138 #include <vm/vm_object.h>
139 #include <vm/vm_extern.h>
140 #include <vm/vm_pageout.h>
141 #include <vm/vm_pager.h>
142 #include <vm/vm_phys.h>
143 #include <vm/vm_radix.h>
144 #include <vm/vm_reserv.h>
145 #include <vm/vm_dumpset.h>
146 #include <vm/uma.h>
147
148 #include <machine/asan.h>
149 #include <machine/cpu_feat.h>
150 #include <machine/machdep.h>
151 #include <machine/md_var.h>
152 #include <machine/pcb.h>
153
154 #ifdef NUMA
155 #define PMAP_MEMDOM MAXMEMDOM
156 #else
157 #define PMAP_MEMDOM 1
158 #endif
159
160 #define PMAP_ASSERT_STAGE1(pmap) MPASS((pmap)->pm_stage == PM_STAGE1)
161 #define PMAP_ASSERT_STAGE2(pmap) MPASS((pmap)->pm_stage == PM_STAGE2)
162
163 #define NL0PG (PAGE_SIZE/(sizeof (pd_entry_t)))
164 #define NL1PG (PAGE_SIZE/(sizeof (pd_entry_t)))
165 #define NL2PG (PAGE_SIZE/(sizeof (pd_entry_t)))
166 #define NL3PG (PAGE_SIZE/(sizeof (pt_entry_t)))
167
168 #define NUL0E L0_ENTRIES
169 #define NUL1E (NUL0E * NL1PG)
170 #define NUL2E (NUL1E * NL2PG)
171
172 #ifdef PV_STATS
173 #define PV_STAT(x) do { x ; } while (0)
174 #define __pvused
175 #else
176 #define PV_STAT(x) do { } while (0)
177 #define __pvused __unused
178 #endif
179
180 #define pmap_l0_pindex(v) (NUL2E + NUL1E + ((v) >> L0_SHIFT))
181 #define pmap_l1_pindex(v) (NUL2E + ((v) >> L1_SHIFT))
182 #define pmap_l2_pindex(v) ((v) >> L2_SHIFT)
183
184 #ifdef __ARM_FEATURE_BTI_DEFAULT
185 pt_entry_t __read_mostly pmap_gp_attr;
186 #define ATTR_KERN_GP pmap_gp_attr
187 #else
188 #define ATTR_KERN_GP 0
189 #endif
190 #define PMAP_SAN_PTE_BITS (ATTR_AF | ATTR_S1_XN | pmap_sh_attr | \
191 ATTR_KERN_GP | ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | ATTR_S1_AP(ATTR_S1_AP_RW))
192
193 struct pmap_large_md_page {
194 struct rwlock pv_lock;
195 struct md_page pv_page;
196 /* Pad to a power of 2, see pmap_init_pv_table(). */
197 int pv_pad[2];
198 };
199
200 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
201 #define pv_dummy pv_dummy_large.pv_page
202 __read_mostly static struct pmap_large_md_page *pv_table;
203
204 static struct pmap_large_md_page *
_pa_to_pmdp(vm_paddr_t pa)205 _pa_to_pmdp(vm_paddr_t pa)
206 {
207 struct vm_phys_seg *seg;
208
209 if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
210 return ((struct pmap_large_md_page *)seg->md_first +
211 pmap_l2_pindex(pa) - pmap_l2_pindex(seg->start));
212 return (NULL);
213 }
214
215 static struct pmap_large_md_page *
pa_to_pmdp(vm_paddr_t pa)216 pa_to_pmdp(vm_paddr_t pa)
217 {
218 struct pmap_large_md_page *pvd;
219
220 pvd = _pa_to_pmdp(pa);
221 if (pvd == NULL)
222 panic("pa 0x%jx not within vm_phys_segs", (uintmax_t)pa);
223 return (pvd);
224 }
225
226 static struct pmap_large_md_page *
page_to_pmdp(vm_page_t m)227 page_to_pmdp(vm_page_t m)
228 {
229 struct vm_phys_seg *seg;
230
231 seg = &vm_phys_segs[m->segind];
232 return ((struct pmap_large_md_page *)seg->md_first +
233 pmap_l2_pindex(VM_PAGE_TO_PHYS(m)) - pmap_l2_pindex(seg->start));
234 }
235
236 #define pa_to_pvh(pa) (&(pa_to_pmdp(pa)->pv_page))
237 #define page_to_pvh(m) (&(page_to_pmdp(m)->pv_page))
238
239 #define PHYS_TO_PV_LIST_LOCK(pa) ({ \
240 struct pmap_large_md_page *_pvd; \
241 struct rwlock *_lock; \
242 _pvd = _pa_to_pmdp(pa); \
243 if (__predict_false(_pvd == NULL)) \
244 _lock = &pv_dummy_large.pv_lock; \
245 else \
246 _lock = &(_pvd->pv_lock); \
247 _lock; \
248 })
249
250 static struct rwlock *
VM_PAGE_TO_PV_LIST_LOCK(vm_page_t m)251 VM_PAGE_TO_PV_LIST_LOCK(vm_page_t m)
252 {
253 if ((m->flags & PG_FICTITIOUS) == 0)
254 return (&page_to_pmdp(m)->pv_lock);
255 else
256 return (&pv_dummy_large.pv_lock);
257 }
258
259 #define CHANGE_PV_LIST_LOCK(lockp, new_lock) do { \
260 struct rwlock **_lockp = (lockp); \
261 struct rwlock *_new_lock = (new_lock); \
262 \
263 if (_new_lock != *_lockp) { \
264 if (*_lockp != NULL) \
265 rw_wunlock(*_lockp); \
266 *_lockp = _new_lock; \
267 rw_wlock(*_lockp); \
268 } \
269 } while (0)
270
271 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) \
272 CHANGE_PV_LIST_LOCK(lockp, PHYS_TO_PV_LIST_LOCK(pa))
273
274 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
275 CHANGE_PV_LIST_LOCK(lockp, VM_PAGE_TO_PV_LIST_LOCK(m))
276
277 #define RELEASE_PV_LIST_LOCK(lockp) do { \
278 struct rwlock **_lockp = (lockp); \
279 \
280 if (*_lockp != NULL) { \
281 rw_wunlock(*_lockp); \
282 *_lockp = NULL; \
283 } \
284 } while (0)
285
286 #define PTE_TO_VM_PAGE(pte) PHYS_TO_VM_PAGE(PTE_TO_PHYS(pte))
287 #define VM_PAGE_TO_PTE(m) PHYS_TO_PTE(VM_PAGE_TO_PHYS(m))
288
289 /*
290 * The presence of this flag indicates that the mapping is writeable.
291 * If the ATTR_S1_AP_RO bit is also set, then the mapping is clean, otherwise
292 * it is dirty. This flag may only be set on managed mappings.
293 *
294 * The DBM bit is reserved on ARMv8.0 but it seems we can safely treat it
295 * as a software managed bit.
296 */
297 #define ATTR_SW_DBM ATTR_DBM
298
299 struct pmap kernel_pmap_store;
300
301 /* Used for mapping ACPI memory before VM is initialized */
302 #define PMAP_PREINIT_MAPPING_COUNT 32
303 #define PMAP_PREINIT_MAPPING_SIZE (PMAP_PREINIT_MAPPING_COUNT * L2_SIZE)
304 static vm_offset_t preinit_map_va; /* Start VA of pre-init mapping space */
305 static int vm_initialized = 0; /* No need to use pre-init maps when set */
306
307 /*
308 * Reserve a few L2 blocks starting from 'preinit_map_va' pointer.
309 * Always map entire L2 block for simplicity.
310 * VA of L2 block = preinit_map_va + i * L2_SIZE
311 */
312 static struct pmap_preinit_mapping {
313 vm_paddr_t pa;
314 vm_offset_t va;
315 vm_size_t size;
316 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
317
318 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
319 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
320 vm_offset_t kernel_vm_end = 0;
321
322 /*
323 * Data for the pv entry allocation mechanism.
324 */
325 #ifdef NUMA
326 static __inline int
pc_to_domain(struct pv_chunk * pc)327 pc_to_domain(struct pv_chunk *pc)
328 {
329 return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
330 }
331 #else
332 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)333 pc_to_domain(struct pv_chunk *pc __unused)
334 {
335 return (0);
336 }
337 #endif
338
339 struct pv_chunks_list {
340 struct mtx pvc_lock;
341 TAILQ_HEAD(pch, pv_chunk) pvc_list;
342 int active_reclaims;
343 } __aligned(CACHE_LINE_SIZE);
344
345 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
346
347 vm_paddr_t dmap_phys_base; /* The start of the dmap region */
348 vm_paddr_t dmap_phys_max; /* The limit of the dmap region */
349 vm_offset_t dmap_max_addr; /* The virtual address limit of the dmap */
350
351 extern pt_entry_t pagetable_l0_ttbr1[];
352
353 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
354 static vm_paddr_t physmap[PHYSMAP_SIZE];
355 static u_int physmap_idx;
356
357 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
358 "VM/pmap parameters");
359
360 static int pmap_growkernel_panic = 0;
361 SYSCTL_INT(_vm_pmap, OID_AUTO, growkernel_panic, CTLFLAG_RDTUN,
362 &pmap_growkernel_panic, 0,
363 "panic on failure to allocate kernel page table page");
364
365 bool pmap_lpa_enabled __read_mostly = false;
366 pt_entry_t pmap_sh_attr __read_mostly = ATTR_SH(ATTR_SH_IS);
367
368 #if PAGE_SIZE == PAGE_SIZE_4K
369 #define L1_BLOCKS_SUPPORTED 1
370 #else
371 #define L1_BLOCKS_SUPPORTED (pmap_lpa_enabled)
372 #endif
373
374 #define PMAP_ASSERT_L1_BLOCKS_SUPPORTED MPASS(L1_BLOCKS_SUPPORTED)
375
376 static bool pmap_l1_supported __read_mostly = false;
377
378 /*
379 * This ASID allocator uses a bit vector ("asid_set") to remember which ASIDs
380 * that it has currently allocated to a pmap, a cursor ("asid_next") to
381 * optimize its search for a free ASID in the bit vector, and an epoch number
382 * ("asid_epoch") to indicate when it has reclaimed all previously allocated
383 * ASIDs that are not currently active on a processor.
384 *
385 * The current epoch number is always in the range [0, INT_MAX). Negative
386 * numbers and INT_MAX are reserved for special cases that are described
387 * below.
388 */
389 struct asid_set {
390 int asid_bits;
391 bitstr_t *asid_set;
392 int asid_set_size;
393 int asid_next;
394 int asid_epoch;
395 struct mtx asid_set_mutex;
396 };
397
398 static struct asid_set asids;
399 static struct asid_set vmids;
400
401 static SYSCTL_NODE(_vm_pmap, OID_AUTO, asid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
402 "ASID allocator");
403 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, bits, CTLFLAG_RD, &asids.asid_bits, 0,
404 "The number of bits in an ASID");
405 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, next, CTLFLAG_RD, &asids.asid_next, 0,
406 "The last allocated ASID plus one");
407 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, epoch, CTLFLAG_RD, &asids.asid_epoch, 0,
408 "The current epoch number");
409
410 static SYSCTL_NODE(_vm_pmap, OID_AUTO, vmid, CTLFLAG_RD, 0, "VMID allocator");
411 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, bits, CTLFLAG_RD, &vmids.asid_bits, 0,
412 "The number of bits in an VMID");
413 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, next, CTLFLAG_RD, &vmids.asid_next, 0,
414 "The last allocated VMID plus one");
415 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, epoch, CTLFLAG_RD, &vmids.asid_epoch, 0,
416 "The current epoch number");
417
418 void (*pmap_clean_stage2_tlbi)(void);
419 void (*pmap_stage2_invalidate_range)(uint64_t, vm_offset_t, vm_offset_t, bool);
420 void (*pmap_stage2_invalidate_all)(uint64_t);
421
422 /*
423 * A pmap's cookie encodes an ASID and epoch number. Cookies for reserved
424 * ASIDs have a negative epoch number, specifically, INT_MIN. Cookies for
425 * dynamically allocated ASIDs have a non-negative epoch number.
426 *
427 * An invalid ASID is represented by -1.
428 *
429 * There are two special-case cookie values: (1) COOKIE_FROM(-1, INT_MIN),
430 * which indicates that an ASID should never be allocated to the pmap, and
431 * (2) COOKIE_FROM(-1, INT_MAX), which indicates that an ASID should be
432 * allocated when the pmap is next activated.
433 */
434 #define COOKIE_FROM(asid, epoch) ((long)((u_int)(asid) | \
435 ((u_long)(epoch) << 32)))
436 #define COOKIE_TO_ASID(cookie) ((int)(cookie))
437 #define COOKIE_TO_EPOCH(cookie) ((int)((u_long)(cookie) >> 32))
438
439 #define TLBI_VA_SHIFT 12
440 #define TLBI_VA_MASK ((1ul << 44) - 1)
441 #define TLBI_VA(addr) (((addr) >> TLBI_VA_SHIFT) & TLBI_VA_MASK)
442
443 static int __read_frequently superpages_enabled = 1;
444 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
445 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
446 "Are large page mappings enabled?");
447
448 /*
449 * True when Branch Target Identification should be used by userspace. This
450 * allows pmap to mark pages as guarded with ATTR_S1_GP.
451 */
452 __read_mostly static bool pmap_bti_support = false;
453
454 /*
455 * Internal flags for pmap_enter()'s helper functions.
456 */
457 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
458 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
459
460 TAILQ_HEAD(pv_chunklist, pv_chunk);
461
462 static void free_pv_chunk(struct pv_chunk *pc);
463 static void free_pv_chunk_batch(struct pv_chunklist *batch);
464 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
465 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
466 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
467 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
468 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
469 vm_offset_t va);
470
471 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
472 static bool pmap_activate_int(pmap_t pmap);
473 static void pmap_alloc_asid(pmap_t pmap);
474 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
475 vm_prot_t prot, int mode, bool skip_unmapped);
476 static bool pmap_copy_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va,
477 pt_entry_t l3e, vm_page_t ml3, struct rwlock **lockp);
478 static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
479 static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
480 vm_offset_t va, struct rwlock **lockp);
481 static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
482 static bool pmap_demote_l2c(pmap_t pmap, pt_entry_t *l2p, vm_offset_t va);
483 static bool pmap_demote_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va);
484 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
485 vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
486 static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
487 u_int flags, vm_page_t m, struct rwlock **lockp);
488 static int pmap_enter_l3c(pmap_t pmap, vm_offset_t va, pt_entry_t l3e, u_int flags,
489 vm_page_t m, vm_page_t *ml3p, struct rwlock **lockp);
490 static bool pmap_every_pte_zero(vm_paddr_t pa);
491 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
492 bool all_l3e_AF_set);
493 static pt_entry_t pmap_load_l3c(pt_entry_t *l3p);
494 static void pmap_mask_set_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va,
495 vm_offset_t *vap, vm_offset_t va_next, pt_entry_t mask, pt_entry_t nbits);
496 static bool pmap_pv_insert_l3c(pmap_t pmap, vm_offset_t va, vm_page_t m,
497 struct rwlock **lockp);
498 static void pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
499 static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
500 pd_entry_t l1e, struct spglist *free, struct rwlock **lockp);
501 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
502 pd_entry_t l2e, struct spglist *free, struct rwlock **lockp);
503 static bool pmap_remove_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va,
504 vm_offset_t *vap, vm_offset_t va_next, vm_page_t ml3, struct spglist *free,
505 struct rwlock **lockp);
506 static void pmap_reset_asid_set(pmap_t pmap);
507 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
508 vm_page_t m, struct rwlock **lockp);
509
510 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
511 struct rwlock **lockp);
512
513 static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
514 struct spglist *free);
515 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
516 static void pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
517 vm_offset_t va, vm_size_t size);
518 static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
519
520 static uma_zone_t pmap_bti_ranges_zone;
521 static bool pmap_bti_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
522 pt_entry_t *pte);
523 static pt_entry_t pmap_pte_bti(pmap_t pmap, vm_offset_t va);
524 static void pmap_bti_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
525 static void *bti_dup_range(void *ctx, void *data);
526 static void bti_free_range(void *ctx, void *node);
527 static int pmap_bti_copy(pmap_t dst_pmap, pmap_t src_pmap);
528 static void pmap_bti_deassign_all(pmap_t pmap);
529
530 /*
531 * These load the old table data and store the new value.
532 * They need to be atomic as the System MMU may write to the table at
533 * the same time as the CPU.
534 */
535 #define pmap_clear(table) atomic_store_64(table, 0)
536 #define pmap_clear_bits(table, bits) atomic_clear_64(table, bits)
537 #define pmap_load(table) (*table)
538 #define pmap_load_clear(table) atomic_swap_64(table, 0)
539 #define pmap_load_store(table, entry) atomic_swap_64(table, entry)
540 #define pmap_set_bits(table, bits) atomic_set_64(table, bits)
541 #define pmap_store(table, entry) atomic_store_64(table, entry)
542
543 /********************/
544 /* Inline functions */
545 /********************/
546
547 static __inline void
pagecopy(void * s,void * d)548 pagecopy(void *s, void *d)
549 {
550
551 memcpy(d, s, PAGE_SIZE);
552 }
553
554 static __inline pd_entry_t *
pmap_l0(pmap_t pmap,vm_offset_t va)555 pmap_l0(pmap_t pmap, vm_offset_t va)
556 {
557
558 return (&pmap->pm_l0[pmap_l0_index(va)]);
559 }
560
561 static __inline pd_entry_t *
pmap_l0_to_l1(pd_entry_t * l0,vm_offset_t va)562 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
563 {
564 pd_entry_t *l1;
565
566 l1 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l0)));
567 return (&l1[pmap_l1_index(va)]);
568 }
569
570 static __inline pd_entry_t *
pmap_l1(pmap_t pmap,vm_offset_t va)571 pmap_l1(pmap_t pmap, vm_offset_t va)
572 {
573 pd_entry_t *l0;
574
575 l0 = pmap_l0(pmap, va);
576 if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
577 return (NULL);
578
579 return (pmap_l0_to_l1(l0, va));
580 }
581
582 static __inline pd_entry_t *
pmap_l1_to_l2(pd_entry_t * l1p,vm_offset_t va)583 pmap_l1_to_l2(pd_entry_t *l1p, vm_offset_t va)
584 {
585 pd_entry_t l1, *l2p;
586
587 l1 = pmap_load(l1p);
588
589 KASSERT(ADDR_IS_CANONICAL(va),
590 ("%s: Address not in canonical form: %lx", __func__, va));
591 /*
592 * The valid bit may be clear if pmap_update_entry() is concurrently
593 * modifying the entry, so for KVA only the entry type may be checked.
594 */
595 KASSERT(ADDR_IS_KERNEL(va) || (l1 & ATTR_DESCR_VALID) != 0,
596 ("%s: L1 entry %#lx for %#lx is invalid", __func__, l1, va));
597 KASSERT((l1 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
598 ("%s: L1 entry %#lx for %#lx is a leaf", __func__, l1, va));
599 l2p = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(l1));
600 return (&l2p[pmap_l2_index(va)]);
601 }
602
603 static __inline pd_entry_t *
pmap_l2(pmap_t pmap,vm_offset_t va)604 pmap_l2(pmap_t pmap, vm_offset_t va)
605 {
606 pd_entry_t *l1;
607
608 l1 = pmap_l1(pmap, va);
609 if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
610 return (NULL);
611
612 return (pmap_l1_to_l2(l1, va));
613 }
614
615 static __inline pt_entry_t *
pmap_l2_to_l3(pd_entry_t * l2p,vm_offset_t va)616 pmap_l2_to_l3(pd_entry_t *l2p, vm_offset_t va)
617 {
618 pd_entry_t l2;
619 pt_entry_t *l3p;
620
621 l2 = pmap_load(l2p);
622
623 KASSERT(ADDR_IS_CANONICAL(va),
624 ("%s: Address not in canonical form: %lx", __func__, va));
625 /*
626 * The valid bit may be clear if pmap_update_entry() is concurrently
627 * modifying the entry, so for KVA only the entry type may be checked.
628 */
629 KASSERT(ADDR_IS_KERNEL(va) || (l2 & ATTR_DESCR_VALID) != 0,
630 ("%s: L2 entry %#lx for %#lx is invalid", __func__, l2, va));
631 KASSERT((l2 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
632 ("%s: L2 entry %#lx for %#lx is a leaf", __func__, l2, va));
633 l3p = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(l2));
634 return (&l3p[pmap_l3_index(va)]);
635 }
636
637 /*
638 * Returns the lowest valid pde for a given virtual address.
639 * The next level may or may not point to a valid page or block.
640 */
641 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va,int * level)642 pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
643 {
644 pd_entry_t *l0, *l1, *l2, desc;
645
646 l0 = pmap_l0(pmap, va);
647 desc = pmap_load(l0) & ATTR_DESCR_MASK;
648 if (desc != L0_TABLE) {
649 *level = -1;
650 return (NULL);
651 }
652
653 l1 = pmap_l0_to_l1(l0, va);
654 desc = pmap_load(l1) & ATTR_DESCR_MASK;
655 if (desc != L1_TABLE) {
656 *level = 0;
657 return (l0);
658 }
659
660 l2 = pmap_l1_to_l2(l1, va);
661 desc = pmap_load(l2) & ATTR_DESCR_MASK;
662 if (desc != L2_TABLE) {
663 *level = 1;
664 return (l1);
665 }
666
667 *level = 2;
668 return (l2);
669 }
670
671 /*
672 * Returns the lowest valid pte block or table entry for a given virtual
673 * address. If there are no valid entries return NULL and set the level to
674 * the first invalid level.
675 */
676 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va,int * level)677 pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
678 {
679 pd_entry_t *l1, *l2, desc;
680 pt_entry_t *l3;
681
682 l1 = pmap_l1(pmap, va);
683 if (l1 == NULL) {
684 *level = 0;
685 return (NULL);
686 }
687 desc = pmap_load(l1) & ATTR_DESCR_MASK;
688 if (desc == L1_BLOCK) {
689 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
690 *level = 1;
691 return (l1);
692 }
693
694 if (desc != L1_TABLE) {
695 *level = 1;
696 return (NULL);
697 }
698
699 l2 = pmap_l1_to_l2(l1, va);
700 desc = pmap_load(l2) & ATTR_DESCR_MASK;
701 if (desc == L2_BLOCK) {
702 *level = 2;
703 return (l2);
704 }
705
706 if (desc != L2_TABLE) {
707 *level = 2;
708 return (NULL);
709 }
710
711 *level = 3;
712 l3 = pmap_l2_to_l3(l2, va);
713 if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
714 return (NULL);
715
716 return (l3);
717 }
718
719 /*
720 * If the given pmap has an L{1,2}_BLOCK or L3_PAGE entry at the specified
721 * level that maps the specified virtual address, then a pointer to that entry
722 * is returned. Otherwise, NULL is returned, unless INVARIANTS are enabled
723 * and a diagnostic message is provided, in which case this function panics.
724 */
725 static __always_inline pt_entry_t *
pmap_pte_exists(pmap_t pmap,vm_offset_t va,int level,const char * diag)726 pmap_pte_exists(pmap_t pmap, vm_offset_t va, int level, const char *diag)
727 {
728 pd_entry_t *l0p, *l1p, *l2p;
729 pt_entry_t desc, *l3p;
730 int walk_level __diagused;
731
732 KASSERT(level >= 0 && level < 4,
733 ("%s: %s passed an out-of-range level (%d)", __func__, diag,
734 level));
735 l0p = pmap_l0(pmap, va);
736 desc = pmap_load(l0p) & ATTR_DESCR_MASK;
737 if (desc == L0_TABLE && level > 0) {
738 l1p = pmap_l0_to_l1(l0p, va);
739 desc = pmap_load(l1p) & ATTR_DESCR_MASK;
740 if (desc == L1_BLOCK && level == 1) {
741 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
742 return (l1p);
743 }
744 if (desc == L1_TABLE && level > 1) {
745 l2p = pmap_l1_to_l2(l1p, va);
746 desc = pmap_load(l2p) & ATTR_DESCR_MASK;
747 if (desc == L2_BLOCK && level == 2)
748 return (l2p);
749 else if (desc == L2_TABLE && level > 2) {
750 l3p = pmap_l2_to_l3(l2p, va);
751 desc = pmap_load(l3p) & ATTR_DESCR_MASK;
752 if (desc == L3_PAGE && level == 3)
753 return (l3p);
754 else
755 walk_level = 3;
756 } else
757 walk_level = 2;
758 } else
759 walk_level = 1;
760 } else
761 walk_level = 0;
762 KASSERT(diag == NULL,
763 ("%s: va %#lx not mapped at level %d, desc %ld at level %d",
764 diag, va, level, desc, walk_level));
765 return (NULL);
766 }
767
768 bool
pmap_ps_enabled(pmap_t pmap)769 pmap_ps_enabled(pmap_t pmap)
770 {
771 /*
772 * Promotion requires a hypervisor call when the kernel is running
773 * in EL1. To stop this disable superpage support on non-stage 1
774 * pmaps for now.
775 */
776 if (pmap->pm_stage != PM_STAGE1)
777 return (false);
778
779 #ifdef KMSAN
780 /*
781 * The break-before-make in pmap_update_entry() results in a situation
782 * where a CPU may call into the KMSAN runtime while the entry is
783 * invalid. If the entry is used to map the current thread structure,
784 * then the runtime will attempt to access unmapped memory. Avoid this
785 * by simply disabling superpage promotion for the kernel map.
786 */
787 if (pmap == kernel_pmap)
788 return (false);
789 #endif
790
791 return (superpages_enabled != 0);
792 }
793
794 bool
pmap_get_tables(pmap_t pmap,vm_offset_t va,pd_entry_t ** l0,pd_entry_t ** l1,pd_entry_t ** l2,pt_entry_t ** l3)795 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
796 pd_entry_t **l2, pt_entry_t **l3)
797 {
798 pd_entry_t *l0p, *l1p, *l2p;
799
800 if (pmap->pm_l0 == NULL)
801 return (false);
802
803 l0p = pmap_l0(pmap, va);
804 *l0 = l0p;
805
806 if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
807 return (false);
808
809 l1p = pmap_l0_to_l1(l0p, va);
810 *l1 = l1p;
811
812 if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
813 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
814 *l2 = NULL;
815 *l3 = NULL;
816 return (true);
817 }
818
819 if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
820 return (false);
821
822 l2p = pmap_l1_to_l2(l1p, va);
823 *l2 = l2p;
824
825 if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
826 *l3 = NULL;
827 return (true);
828 }
829
830 if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE)
831 return (false);
832
833 *l3 = pmap_l2_to_l3(l2p, va);
834
835 return (true);
836 }
837
838 static __inline int
pmap_l3_valid(pt_entry_t l3)839 pmap_l3_valid(pt_entry_t l3)
840 {
841
842 return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
843 }
844
845 CTASSERT(L1_BLOCK == L2_BLOCK);
846
847 static pt_entry_t
pmap_pte_memattr(pmap_t pmap,vm_memattr_t memattr)848 pmap_pte_memattr(pmap_t pmap, vm_memattr_t memattr)
849 {
850 pt_entry_t val;
851
852 if (pmap->pm_stage == PM_STAGE1) {
853 val = ATTR_S1_IDX(memattr);
854 if (memattr == VM_MEMATTR_DEVICE)
855 val |= ATTR_S1_XN;
856 return (val);
857 }
858
859 val = 0;
860
861 switch (memattr) {
862 case VM_MEMATTR_DEVICE:
863 return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_DEVICE_nGnRnE) |
864 ATTR_S2_XN(ATTR_S2_XN_ALL));
865 case VM_MEMATTR_UNCACHEABLE:
866 return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_NC));
867 case VM_MEMATTR_WRITE_BACK:
868 return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_WB));
869 case VM_MEMATTR_WRITE_THROUGH:
870 return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_WT));
871 default:
872 panic("%s: invalid memory attribute %x", __func__, memattr);
873 }
874 }
875
876 static pt_entry_t
pmap_pte_prot(pmap_t pmap,vm_prot_t prot)877 pmap_pte_prot(pmap_t pmap, vm_prot_t prot)
878 {
879 pt_entry_t val;
880
881 val = 0;
882 if (pmap->pm_stage == PM_STAGE1) {
883 if ((prot & VM_PROT_EXECUTE) == 0)
884 val |= ATTR_S1_XN;
885 if ((prot & VM_PROT_WRITE) == 0)
886 val |= ATTR_S1_AP(ATTR_S1_AP_RO);
887 } else {
888 if ((prot & VM_PROT_WRITE) != 0)
889 val |= ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
890 if ((prot & VM_PROT_READ) != 0)
891 val |= ATTR_S2_S2AP(ATTR_S2_S2AP_READ);
892 if ((prot & VM_PROT_EXECUTE) == 0)
893 val |= ATTR_S2_XN(ATTR_S2_XN_ALL);
894 }
895
896 return (val);
897 }
898
899 /*
900 * Checks if the PTE is dirty.
901 */
902 static inline int
pmap_pte_dirty(pmap_t pmap,pt_entry_t pte)903 pmap_pte_dirty(pmap_t pmap, pt_entry_t pte)
904 {
905
906 KASSERT((pte & ATTR_SW_MANAGED) != 0, ("pte %#lx is unmanaged", pte));
907
908 if (pmap->pm_stage == PM_STAGE1) {
909 KASSERT((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) != 0,
910 ("pte %#lx is writeable and missing ATTR_SW_DBM", pte));
911
912 return ((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
913 (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM));
914 }
915
916 return ((pte & ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)) ==
917 ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE));
918 }
919
920 static __inline void
pmap_resident_count_inc(pmap_t pmap,int count)921 pmap_resident_count_inc(pmap_t pmap, int count)
922 {
923
924 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
925 pmap->pm_stats.resident_count += count;
926 }
927
928 static __inline void
pmap_resident_count_dec(pmap_t pmap,int count)929 pmap_resident_count_dec(pmap_t pmap, int count)
930 {
931
932 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
933 KASSERT(pmap->pm_stats.resident_count >= count,
934 ("pmap %p resident count underflow %ld %d", pmap,
935 pmap->pm_stats.resident_count, count));
936 pmap->pm_stats.resident_count -= count;
937 }
938
939 static vm_paddr_t
pmap_early_vtophys(vm_offset_t va)940 pmap_early_vtophys(vm_offset_t va)
941 {
942 vm_paddr_t pa_page;
943
944 pa_page = arm64_address_translate_s1e1r(va) & PAR_PA_MASK;
945 return (pa_page | (va & PAR_LOW_MASK));
946 }
947
948 /* State of the bootstrapped DMAP page tables */
949 struct pmap_bootstrap_state {
950 pt_entry_t *l1;
951 pt_entry_t *l2;
952 pt_entry_t *l3;
953 vm_offset_t freemempos;
954 vm_offset_t va;
955 vm_paddr_t pa;
956 pt_entry_t table_attrs;
957 u_int l0_slot;
958 u_int l1_slot;
959 u_int l2_slot;
960 bool dmap_valid;
961 };
962
963 /* The bootstrap state */
964 static struct pmap_bootstrap_state bs_state = {
965 .l1 = NULL,
966 .l2 = NULL,
967 .l3 = NULL,
968 .table_attrs = TATTR_PXN_TABLE,
969 .l0_slot = L0_ENTRIES,
970 .l1_slot = Ln_ENTRIES,
971 .l2_slot = Ln_ENTRIES,
972 .dmap_valid = false,
973 };
974
975 static void
pmap_bootstrap_l0_table(struct pmap_bootstrap_state * state)976 pmap_bootstrap_l0_table(struct pmap_bootstrap_state *state)
977 {
978 vm_paddr_t l1_pa;
979 pd_entry_t l0e;
980 u_int l0_slot;
981
982 /* Link the level 0 table to a level 1 table */
983 l0_slot = pmap_l0_index(state->va);
984 if (l0_slot != state->l0_slot) {
985 /*
986 * Make sure we move from a low address to high address
987 * before the DMAP region is ready. This ensures we never
988 * modify an existing mapping until we can map from a
989 * physical address to a virtual address.
990 */
991 MPASS(state->l0_slot < l0_slot ||
992 state->l0_slot == L0_ENTRIES ||
993 state->dmap_valid);
994
995 /* Reset lower levels */
996 state->l2 = NULL;
997 state->l3 = NULL;
998 state->l1_slot = Ln_ENTRIES;
999 state->l2_slot = Ln_ENTRIES;
1000
1001 /* Check the existing L0 entry */
1002 state->l0_slot = l0_slot;
1003 if (state->dmap_valid) {
1004 l0e = pagetable_l0_ttbr1[l0_slot];
1005 if ((l0e & ATTR_DESCR_VALID) != 0) {
1006 MPASS((l0e & ATTR_DESCR_MASK) == L0_TABLE);
1007 l1_pa = PTE_TO_PHYS(l0e);
1008 state->l1 = (pt_entry_t *)PHYS_TO_DMAP(l1_pa);
1009 return;
1010 }
1011 }
1012
1013 /* Create a new L0 table entry */
1014 state->l1 = (pt_entry_t *)state->freemempos;
1015 memset(state->l1, 0, PAGE_SIZE);
1016 state->freemempos += PAGE_SIZE;
1017
1018 l1_pa = pmap_early_vtophys((vm_offset_t)state->l1);
1019 MPASS((l1_pa & Ln_TABLE_MASK) == 0);
1020 MPASS(pagetable_l0_ttbr1[l0_slot] == 0);
1021 pmap_store(&pagetable_l0_ttbr1[l0_slot], PHYS_TO_PTE(l1_pa) |
1022 TATTR_UXN_TABLE | TATTR_AP_TABLE_NO_EL0 | L0_TABLE);
1023 }
1024 KASSERT(state->l1 != NULL, ("%s: NULL l1", __func__));
1025 }
1026
1027 static void
pmap_bootstrap_l1_table(struct pmap_bootstrap_state * state)1028 pmap_bootstrap_l1_table(struct pmap_bootstrap_state *state)
1029 {
1030 vm_paddr_t l2_pa;
1031 pd_entry_t l1e;
1032 u_int l1_slot;
1033
1034 /* Make sure there is a valid L0 -> L1 table */
1035 pmap_bootstrap_l0_table(state);
1036
1037 /* Link the level 1 table to a level 2 table */
1038 l1_slot = pmap_l1_index(state->va);
1039 if (l1_slot != state->l1_slot) {
1040 /* See pmap_bootstrap_l0_table for a description */
1041 MPASS(state->l1_slot < l1_slot ||
1042 state->l1_slot == Ln_ENTRIES ||
1043 state->dmap_valid);
1044
1045 /* Reset lower levels */
1046 state->l3 = NULL;
1047 state->l2_slot = Ln_ENTRIES;
1048
1049 /* Check the existing L1 entry */
1050 state->l1_slot = l1_slot;
1051 if (state->dmap_valid) {
1052 l1e = state->l1[l1_slot];
1053 if ((l1e & ATTR_DESCR_VALID) != 0) {
1054 MPASS((l1e & ATTR_DESCR_MASK) == L1_TABLE);
1055 l2_pa = PTE_TO_PHYS(l1e);
1056 state->l2 = (pt_entry_t *)PHYS_TO_DMAP(l2_pa);
1057 return;
1058 }
1059 }
1060
1061 /* Create a new L1 table entry */
1062 state->l2 = (pt_entry_t *)state->freemempos;
1063 memset(state->l2, 0, PAGE_SIZE);
1064 state->freemempos += PAGE_SIZE;
1065
1066 l2_pa = pmap_early_vtophys((vm_offset_t)state->l2);
1067 MPASS((l2_pa & Ln_TABLE_MASK) == 0);
1068 MPASS(state->l1[l1_slot] == 0);
1069 pmap_store(&state->l1[l1_slot], PHYS_TO_PTE(l2_pa) |
1070 state->table_attrs | L1_TABLE);
1071 }
1072 KASSERT(state->l2 != NULL, ("%s: NULL l2", __func__));
1073 }
1074
1075 static void
pmap_bootstrap_l2_table(struct pmap_bootstrap_state * state)1076 pmap_bootstrap_l2_table(struct pmap_bootstrap_state *state)
1077 {
1078 vm_paddr_t l3_pa;
1079 pd_entry_t l2e;
1080 u_int l2_slot;
1081
1082 /* Make sure there is a valid L1 -> L2 table */
1083 pmap_bootstrap_l1_table(state);
1084
1085 /* Link the level 2 table to a level 3 table */
1086 l2_slot = pmap_l2_index(state->va);
1087 if (l2_slot != state->l2_slot) {
1088 /* See pmap_bootstrap_l0_table for a description */
1089 MPASS(state->l2_slot < l2_slot ||
1090 state->l2_slot == Ln_ENTRIES ||
1091 state->dmap_valid);
1092
1093 /* Check the existing L2 entry */
1094 state->l2_slot = l2_slot;
1095 if (state->dmap_valid) {
1096 l2e = state->l2[l2_slot];
1097 if ((l2e & ATTR_DESCR_VALID) != 0) {
1098 MPASS((l2e & ATTR_DESCR_MASK) == L2_TABLE);
1099 l3_pa = PTE_TO_PHYS(l2e);
1100 state->l3 = (pt_entry_t *)PHYS_TO_DMAP(l3_pa);
1101 return;
1102 }
1103 }
1104
1105 /* Create a new L2 table entry */
1106 state->l3 = (pt_entry_t *)state->freemempos;
1107 memset(state->l3, 0, PAGE_SIZE);
1108 state->freemempos += PAGE_SIZE;
1109
1110 l3_pa = pmap_early_vtophys((vm_offset_t)state->l3);
1111 MPASS((l3_pa & Ln_TABLE_MASK) == 0);
1112 MPASS(state->l2[l2_slot] == 0);
1113 pmap_store(&state->l2[l2_slot], PHYS_TO_PTE(l3_pa) |
1114 state->table_attrs | L2_TABLE);
1115 }
1116 KASSERT(state->l3 != NULL, ("%s: NULL l3", __func__));
1117 }
1118
1119 static void
pmap_bootstrap_l2_block(struct pmap_bootstrap_state * state,int i)1120 pmap_bootstrap_l2_block(struct pmap_bootstrap_state *state, int i)
1121 {
1122 pt_entry_t contig;
1123 u_int l2_slot;
1124 bool first;
1125
1126 if ((physmap[i + 1] - state->pa) < L2_SIZE)
1127 return;
1128
1129 /* Make sure there is a valid L1 table */
1130 pmap_bootstrap_l1_table(state);
1131
1132 MPASS((state->va & L2_OFFSET) == 0);
1133 for (first = true, contig = 0;
1134 state->va < DMAP_MAX_ADDRESS &&
1135 (physmap[i + 1] - state->pa) >= L2_SIZE;
1136 state->va += L2_SIZE, state->pa += L2_SIZE) {
1137 /*
1138 * Stop if we are about to walk off the end of what the
1139 * current L1 slot can address.
1140 */
1141 if (!first && (state->pa & L1_OFFSET) == 0)
1142 break;
1143
1144 /*
1145 * If we have an aligned, contiguous chunk of L2C_ENTRIES
1146 * L2 blocks, set the contiguous bit within each PTE so that
1147 * the chunk can be cached using only one TLB entry.
1148 */
1149 if ((state->pa & L2C_OFFSET) == 0) {
1150 if (state->va + L2C_SIZE < DMAP_MAX_ADDRESS &&
1151 physmap[i + 1] - state->pa >= L2C_SIZE) {
1152 contig = ATTR_CONTIGUOUS;
1153 } else {
1154 contig = 0;
1155 }
1156 }
1157
1158 first = false;
1159 l2_slot = pmap_l2_index(state->va);
1160 MPASS((state->pa & L2_OFFSET) == 0);
1161 MPASS(state->l2[l2_slot] == 0);
1162 pmap_store(&state->l2[l2_slot], PHYS_TO_PTE(state->pa) |
1163 ATTR_AF | pmap_sh_attr | ATTR_S1_XN | ATTR_KERN_GP |
1164 ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | contig | L2_BLOCK);
1165 }
1166 MPASS(state->va == (state->pa - dmap_phys_base + DMAP_MIN_ADDRESS));
1167 }
1168
1169 static void
pmap_bootstrap_l3_page(struct pmap_bootstrap_state * state,int i)1170 pmap_bootstrap_l3_page(struct pmap_bootstrap_state *state, int i)
1171 {
1172 pt_entry_t contig;
1173 u_int l3_slot;
1174 bool first;
1175
1176 if (physmap[i + 1] - state->pa < L3_SIZE)
1177 return;
1178
1179 /* Make sure there is a valid L2 table */
1180 pmap_bootstrap_l2_table(state);
1181
1182 MPASS((state->va & L3_OFFSET) == 0);
1183 for (first = true, contig = 0;
1184 state->va < DMAP_MAX_ADDRESS &&
1185 physmap[i + 1] - state->pa >= L3_SIZE;
1186 state->va += L3_SIZE, state->pa += L3_SIZE) {
1187 /*
1188 * Stop if we are about to walk off the end of what the
1189 * current L2 slot can address.
1190 */
1191 if (!first && (state->pa & L2_OFFSET) == 0)
1192 break;
1193
1194 /*
1195 * If we have an aligned, contiguous chunk of L3C_ENTRIES
1196 * L3 pages, set the contiguous bit within each PTE so that
1197 * the chunk can be cached using only one TLB entry.
1198 */
1199 if ((state->pa & L3C_OFFSET) == 0) {
1200 if (state->va + L3C_SIZE < DMAP_MAX_ADDRESS &&
1201 physmap[i + 1] - state->pa >= L3C_SIZE) {
1202 contig = ATTR_CONTIGUOUS;
1203 } else {
1204 contig = 0;
1205 }
1206 }
1207
1208 first = false;
1209 l3_slot = pmap_l3_index(state->va);
1210 MPASS((state->pa & L3_OFFSET) == 0);
1211 MPASS(state->l3[l3_slot] == 0);
1212 pmap_store(&state->l3[l3_slot], PHYS_TO_PTE(state->pa) |
1213 ATTR_AF | pmap_sh_attr | ATTR_S1_XN | ATTR_KERN_GP |
1214 ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | contig | L3_PAGE);
1215 }
1216 MPASS(state->va == (state->pa - dmap_phys_base + DMAP_MIN_ADDRESS));
1217 }
1218
1219 void
pmap_bootstrap_dmap(vm_size_t kernlen)1220 pmap_bootstrap_dmap(vm_size_t kernlen)
1221 {
1222 vm_paddr_t start_pa, pa;
1223 uint64_t tcr;
1224 int i;
1225
1226 tcr = READ_SPECIALREG(tcr_el1);
1227
1228 /* Verify that the ASID is set through TTBR0. */
1229 KASSERT((tcr & TCR_A1) == 0, ("pmap_bootstrap: TCR_EL1.A1 != 0"));
1230
1231 if ((tcr & TCR_DS) != 0)
1232 pmap_lpa_enabled = true;
1233
1234 pmap_l1_supported = L1_BLOCKS_SUPPORTED;
1235
1236 start_pa = pmap_early_vtophys(KERNBASE);
1237
1238 bs_state.freemempos = KERNBASE + kernlen;
1239 bs_state.freemempos = roundup2(bs_state.freemempos, PAGE_SIZE);
1240
1241 /* Fill in physmap array. */
1242 physmap_idx = physmem_avail(physmap, nitems(physmap));
1243
1244 dmap_phys_base = physmap[0] & ~L1_OFFSET;
1245 dmap_phys_max = 0;
1246 dmap_max_addr = 0;
1247
1248 for (i = 0; i < physmap_idx; i += 2) {
1249 bs_state.pa = physmap[i] & ~L3_OFFSET;
1250 bs_state.va = bs_state.pa - dmap_phys_base + DMAP_MIN_ADDRESS;
1251
1252 /* Create L3 mappings at the start of the region */
1253 if ((bs_state.pa & L2_OFFSET) != 0)
1254 pmap_bootstrap_l3_page(&bs_state, i);
1255 MPASS(bs_state.pa <= physmap[i + 1]);
1256
1257 if (L1_BLOCKS_SUPPORTED) {
1258 /* Create L2 mappings at the start of the region */
1259 if ((bs_state.pa & L1_OFFSET) != 0)
1260 pmap_bootstrap_l2_block(&bs_state, i);
1261 MPASS(bs_state.pa <= physmap[i + 1]);
1262
1263 /* Create the main L1 block mappings */
1264 for (; bs_state.va < DMAP_MAX_ADDRESS &&
1265 (physmap[i + 1] - bs_state.pa) >= L1_SIZE;
1266 bs_state.va += L1_SIZE, bs_state.pa += L1_SIZE) {
1267 /* Make sure there is a valid L1 table */
1268 pmap_bootstrap_l0_table(&bs_state);
1269 MPASS((bs_state.pa & L1_OFFSET) == 0);
1270 pmap_store(
1271 &bs_state.l1[pmap_l1_index(bs_state.va)],
1272 PHYS_TO_PTE(bs_state.pa) | ATTR_AF |
1273 pmap_sh_attr |
1274 ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) |
1275 ATTR_S1_XN | ATTR_KERN_GP | L1_BLOCK);
1276 }
1277 MPASS(bs_state.pa <= physmap[i + 1]);
1278
1279 /* Create L2 mappings at the end of the region */
1280 pmap_bootstrap_l2_block(&bs_state, i);
1281 } else {
1282 while (bs_state.va < DMAP_MAX_ADDRESS &&
1283 (physmap[i + 1] - bs_state.pa) >= L2_SIZE) {
1284 pmap_bootstrap_l2_block(&bs_state, i);
1285 }
1286 }
1287 MPASS(bs_state.pa <= physmap[i + 1]);
1288
1289 /* Create L3 mappings at the end of the region */
1290 pmap_bootstrap_l3_page(&bs_state, i);
1291 MPASS(bs_state.pa == physmap[i + 1]);
1292
1293 if (bs_state.pa > dmap_phys_max) {
1294 dmap_phys_max = bs_state.pa;
1295 dmap_max_addr = bs_state.va;
1296 }
1297 }
1298
1299 cpu_tlb_flushID();
1300
1301 bs_state.dmap_valid = true;
1302
1303 /* Exclude the kernel and DMAP region */
1304 pa = pmap_early_vtophys(bs_state.freemempos);
1305 physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC);
1306 }
1307
1308 static void
pmap_bootstrap_l2(vm_offset_t va)1309 pmap_bootstrap_l2(vm_offset_t va)
1310 {
1311 KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
1312
1313 /* Leave bs_state.pa as it's only needed to bootstrap blocks and pages*/
1314 bs_state.va = va;
1315
1316 for (; bs_state.va < VM_MAX_KERNEL_ADDRESS; bs_state.va += L1_SIZE)
1317 pmap_bootstrap_l1_table(&bs_state);
1318 }
1319
1320 static void
pmap_bootstrap_l3(vm_offset_t va)1321 pmap_bootstrap_l3(vm_offset_t va)
1322 {
1323 KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
1324
1325 /* Leave bs_state.pa as it's only needed to bootstrap blocks and pages*/
1326 bs_state.va = va;
1327
1328 for (; bs_state.va < VM_MAX_KERNEL_ADDRESS; bs_state.va += L2_SIZE)
1329 pmap_bootstrap_l2_table(&bs_state);
1330 }
1331
1332 /*
1333 * Bootstrap the system enough to run with virtual memory.
1334 */
1335 void
pmap_bootstrap(void)1336 pmap_bootstrap(void)
1337 {
1338 vm_offset_t dpcpu, msgbufpv;
1339 vm_paddr_t start_pa, pa;
1340 size_t largest_phys_size;
1341
1342 /* Set this early so we can use the pagetable walking functions */
1343 kernel_pmap_store.pm_l0 = pagetable_l0_ttbr1;
1344 PMAP_LOCK_INIT(kernel_pmap);
1345 kernel_pmap->pm_l0_paddr =
1346 pmap_early_vtophys((vm_offset_t)kernel_pmap_store.pm_l0);
1347 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1348 vm_radix_init(&kernel_pmap->pm_root);
1349 kernel_pmap->pm_cookie = COOKIE_FROM(-1, INT_MIN);
1350 kernel_pmap->pm_stage = PM_STAGE1;
1351 kernel_pmap->pm_levels = 4;
1352 kernel_pmap->pm_ttbr = kernel_pmap->pm_l0_paddr;
1353 kernel_pmap->pm_asid_set = &asids;
1354
1355 /* Reserve some VA space for early BIOS/ACPI mapping */
1356 preinit_map_va = roundup2(bs_state.freemempos, L2_SIZE);
1357
1358 virtual_avail = preinit_map_va + PMAP_PREINIT_MAPPING_SIZE;
1359 virtual_avail = roundup2(virtual_avail, L1_SIZE);
1360 virtual_end = VM_MAX_KERNEL_ADDRESS - PMAP_MAPDEV_EARLY_SIZE;
1361 kernel_vm_end = virtual_avail;
1362
1363 /*
1364 * We only use PXN when we know nothing will be executed from it, e.g.
1365 * the DMAP region.
1366 */
1367 bs_state.table_attrs &= ~TATTR_PXN_TABLE;
1368
1369 /*
1370 * Find the physical memory we could use. This needs to be after we
1371 * exclude any memory that is mapped into the DMAP region but should
1372 * not be used by the kernel, e.g. some UEFI memory types.
1373 */
1374 physmap_idx = physmem_avail(physmap, nitems(physmap));
1375
1376 /*
1377 * Find space for early allocations. We search for the largest
1378 * region. This is because the user may choose a large msgbuf.
1379 * This could be smarter, e.g. to allow multiple regions to be
1380 * used & switch to the next when one is full.
1381 */
1382 largest_phys_size = 0;
1383 for (int i = 0; i < physmap_idx; i += 2) {
1384 if ((physmap[i + 1] - physmap[i]) > largest_phys_size) {
1385 largest_phys_size = physmap[i + 1] - physmap[i];
1386 bs_state.freemempos = PHYS_TO_DMAP(physmap[i]);
1387 }
1388 }
1389
1390 start_pa = pmap_early_vtophys(bs_state.freemempos);
1391
1392 /*
1393 * Create the l2 tables up to VM_MAX_KERNEL_ADDRESS. We assume that the
1394 * loader allocated the first and only l2 page table page used to map
1395 * the kernel, preloaded files and module metadata.
1396 */
1397 pmap_bootstrap_l2(KERNBASE + L1_SIZE);
1398 /* And the l3 tables for the early devmap */
1399 pmap_bootstrap_l3(VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE));
1400
1401 cpu_tlb_flushID();
1402
1403 #define alloc_pages(var, np) \
1404 (var) = bs_state.freemempos; \
1405 bs_state.freemempos += (np * PAGE_SIZE); \
1406 memset((char *)(var), 0, ((np) * PAGE_SIZE));
1407
1408 /* Allocate dynamic per-cpu area. */
1409 alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1410 dpcpu_init((void *)dpcpu, 0);
1411
1412 /* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
1413 alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1414 msgbufp = (void *)msgbufpv;
1415
1416 pa = pmap_early_vtophys(bs_state.freemempos);
1417
1418 physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC);
1419 }
1420
1421 #if defined(KASAN) || defined(KMSAN)
1422 static void
pmap_bootstrap_allocate_san_l2(vm_paddr_t start_pa,vm_paddr_t end_pa,vm_offset_t * vap,vm_offset_t eva)1423 pmap_bootstrap_allocate_san_l2(vm_paddr_t start_pa, vm_paddr_t end_pa,
1424 vm_offset_t *vap, vm_offset_t eva)
1425 {
1426 vm_paddr_t pa;
1427 vm_offset_t va;
1428 pd_entry_t *l2;
1429
1430 va = *vap;
1431 pa = rounddown2(end_pa - L2_SIZE, L2_SIZE);
1432 for (; pa >= start_pa && va < eva; va += L2_SIZE, pa -= L2_SIZE) {
1433 l2 = pmap_l2(kernel_pmap, va);
1434
1435 /*
1436 * KASAN stack checking results in us having already allocated
1437 * part of our shadow map, so we can just skip those segments.
1438 */
1439 if ((pmap_load(l2) & ATTR_DESCR_VALID) != 0) {
1440 pa += L2_SIZE;
1441 continue;
1442 }
1443
1444 bzero((void *)PHYS_TO_DMAP(pa), L2_SIZE);
1445 physmem_exclude_region(pa, L2_SIZE, EXFLAG_NOALLOC);
1446 pmap_store(l2, PHYS_TO_PTE(pa) | PMAP_SAN_PTE_BITS | L2_BLOCK);
1447 }
1448 *vap = va;
1449 }
1450
1451 /*
1452 * Finish constructing the initial shadow map:
1453 * - Count how many pages from KERNBASE to virtual_avail (scaled for
1454 * shadow map)
1455 * - Map that entire range using L2 superpages.
1456 */
1457 static void
pmap_bootstrap_san1(vm_offset_t va,int scale)1458 pmap_bootstrap_san1(vm_offset_t va, int scale)
1459 {
1460 vm_offset_t eva;
1461 vm_paddr_t kernstart;
1462 int i;
1463
1464 kernstart = pmap_early_vtophys(KERNBASE);
1465
1466 /*
1467 * Rebuild physmap one more time, we may have excluded more regions from
1468 * allocation since pmap_bootstrap().
1469 */
1470 physmap_idx = physmem_avail(physmap, nitems(physmap));
1471
1472 eva = va + (virtual_avail - VM_MIN_KERNEL_ADDRESS) / scale;
1473
1474 /*
1475 * Find a slot in the physmap large enough for what we needed. We try to put
1476 * the shadow map as high up as we can to avoid depleting the lower 4GB in case
1477 * it's needed for, e.g., an xhci controller that can only do 32-bit DMA.
1478 */
1479 for (i = physmap_idx - 2; i >= 0; i -= 2) {
1480 vm_paddr_t plow, phigh;
1481
1482 /* L2 mappings must be backed by memory that is L2-aligned */
1483 plow = roundup2(physmap[i], L2_SIZE);
1484 phigh = physmap[i + 1];
1485 if (plow >= phigh)
1486 continue;
1487 if (kernstart >= plow && kernstart < phigh)
1488 phigh = kernstart;
1489 if (phigh - plow >= L2_SIZE) {
1490 pmap_bootstrap_allocate_san_l2(plow, phigh, &va, eva);
1491 if (va >= eva)
1492 break;
1493 }
1494 }
1495 if (i < 0)
1496 panic("Could not find phys region for shadow map");
1497
1498 /*
1499 * Done. We should now have a valid shadow address mapped for all KVA
1500 * that has been mapped so far, i.e., KERNBASE to virtual_avail. Thus,
1501 * shadow accesses by the sanitizer runtime will succeed for this range.
1502 * When the kernel virtual address range is later expanded, as will
1503 * happen in vm_mem_init(), the shadow map will be grown as well. This
1504 * is handled by pmap_san_enter().
1505 */
1506 }
1507
1508 void
pmap_bootstrap_san(void)1509 pmap_bootstrap_san(void)
1510 {
1511 #ifdef KASAN
1512 pmap_bootstrap_san1(KASAN_MIN_ADDRESS, KASAN_SHADOW_SCALE);
1513 #else
1514 static uint8_t kmsan_shad_ptp[PAGE_SIZE * 2] __aligned(PAGE_SIZE);
1515 static uint8_t kmsan_orig_ptp[PAGE_SIZE * 2] __aligned(PAGE_SIZE);
1516 pd_entry_t *l0, *l1;
1517
1518 if (virtual_avail - VM_MIN_KERNEL_ADDRESS > L1_SIZE)
1519 panic("initial kernel map is too large");
1520
1521 l0 = pmap_l0(kernel_pmap, KMSAN_SHAD_MIN_ADDRESS);
1522 pmap_store(l0, L0_TABLE | PHYS_TO_PTE(
1523 pmap_early_vtophys((vm_offset_t)kmsan_shad_ptp)));
1524 l1 = pmap_l0_to_l1(l0, KMSAN_SHAD_MIN_ADDRESS);
1525 pmap_store(l1, L1_TABLE | PHYS_TO_PTE(
1526 pmap_early_vtophys((vm_offset_t)kmsan_shad_ptp + PAGE_SIZE)));
1527 pmap_bootstrap_san1(KMSAN_SHAD_MIN_ADDRESS, 1);
1528
1529 l0 = pmap_l0(kernel_pmap, KMSAN_ORIG_MIN_ADDRESS);
1530 pmap_store(l0, L0_TABLE | PHYS_TO_PTE(
1531 pmap_early_vtophys((vm_offset_t)kmsan_orig_ptp)));
1532 l1 = pmap_l0_to_l1(l0, KMSAN_ORIG_MIN_ADDRESS);
1533 pmap_store(l1, L1_TABLE | PHYS_TO_PTE(
1534 pmap_early_vtophys((vm_offset_t)kmsan_orig_ptp + PAGE_SIZE)));
1535 pmap_bootstrap_san1(KMSAN_ORIG_MIN_ADDRESS, 1);
1536 #endif
1537 }
1538 #endif
1539
1540 /*
1541 * Initialize a vm_page's machine-dependent fields.
1542 */
1543 void
pmap_page_init(vm_page_t m)1544 pmap_page_init(vm_page_t m)
1545 {
1546
1547 TAILQ_INIT(&m->md.pv_list);
1548 m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
1549 }
1550
1551 static void
pmap_init_asids(struct asid_set * set,int bits)1552 pmap_init_asids(struct asid_set *set, int bits)
1553 {
1554 int i;
1555
1556 set->asid_bits = bits;
1557
1558 /*
1559 * We may be too early in the overall initialization process to use
1560 * bit_alloc().
1561 */
1562 set->asid_set_size = 1 << set->asid_bits;
1563 set->asid_set = kmem_malloc(bitstr_size(set->asid_set_size),
1564 M_WAITOK | M_ZERO);
1565 for (i = 0; i < ASID_FIRST_AVAILABLE; i++)
1566 bit_set(set->asid_set, i);
1567 set->asid_next = ASID_FIRST_AVAILABLE;
1568 mtx_init(&set->asid_set_mutex, "asid set", NULL, MTX_SPIN);
1569 }
1570
1571 static void
pmap_init_pv_table(void)1572 pmap_init_pv_table(void)
1573 {
1574 struct vm_phys_seg *seg, *next_seg;
1575 struct pmap_large_md_page *pvd;
1576 vm_size_t s;
1577 int domain, i, j, pages;
1578
1579 /*
1580 * We depend on the size being evenly divisible into a page so
1581 * that the pv_table array can be indexed directly while
1582 * safely spanning multiple pages from different domains.
1583 */
1584 CTASSERT(PAGE_SIZE % sizeof(*pvd) == 0);
1585
1586 /*
1587 * Calculate the size of the array.
1588 */
1589 s = 0;
1590 for (i = 0; i < vm_phys_nsegs; i++) {
1591 seg = &vm_phys_segs[i];
1592 pages = pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1593 pmap_l2_pindex(seg->start);
1594 s += round_page(pages * sizeof(*pvd));
1595 }
1596 pv_table = (struct pmap_large_md_page *)kva_alloc(s);
1597 if (pv_table == NULL)
1598 panic("%s: kva_alloc failed\n", __func__);
1599
1600 /*
1601 * Iterate physical segments to allocate domain-local memory for PV
1602 * list headers.
1603 */
1604 pvd = pv_table;
1605 for (i = 0; i < vm_phys_nsegs; i++) {
1606 seg = &vm_phys_segs[i];
1607 pages = pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1608 pmap_l2_pindex(seg->start);
1609 domain = seg->domain;
1610
1611 s = round_page(pages * sizeof(*pvd));
1612
1613 for (j = 0; j < s; j += PAGE_SIZE) {
1614 vm_page_t m = vm_page_alloc_noobj_domain(domain,
1615 VM_ALLOC_ZERO);
1616 if (m == NULL)
1617 panic("failed to allocate PV table page");
1618 pmap_qenter((vm_offset_t)pvd + j, &m, 1);
1619 }
1620
1621 for (j = 0; j < s / sizeof(*pvd); j++) {
1622 rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
1623 TAILQ_INIT(&pvd->pv_page.pv_list);
1624 pvd++;
1625 }
1626 }
1627 pvd = &pv_dummy_large;
1628 memset(pvd, 0, sizeof(*pvd));
1629 rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
1630 TAILQ_INIT(&pvd->pv_page.pv_list);
1631
1632 /*
1633 * Set pointers from vm_phys_segs to pv_table.
1634 */
1635 for (i = 0, pvd = pv_table; i < vm_phys_nsegs; i++) {
1636 seg = &vm_phys_segs[i];
1637 seg->md_first = pvd;
1638 pvd += pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1639 pmap_l2_pindex(seg->start);
1640
1641 /*
1642 * If there is a following segment, and the final
1643 * superpage of this segment and the initial superpage
1644 * of the next segment are the same then adjust the
1645 * pv_table entry for that next segment down by one so
1646 * that the pv_table entries will be shared.
1647 */
1648 if (i + 1 < vm_phys_nsegs) {
1649 next_seg = &vm_phys_segs[i + 1];
1650 if (pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) - 1 ==
1651 pmap_l2_pindex(next_seg->start)) {
1652 pvd--;
1653 }
1654 }
1655 }
1656 }
1657
1658 static bool
pmap_dbm_check(const struct cpu_feat * feat __unused,u_int midr __unused)1659 pmap_dbm_check(const struct cpu_feat *feat __unused, u_int midr __unused)
1660 {
1661 uint64_t id_aa64mmfr1;
1662
1663 id_aa64mmfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
1664 return (ID_AA64MMFR1_HAFDBS_VAL(id_aa64mmfr1) >=
1665 ID_AA64MMFR1_HAFDBS_AF_DBS);
1666 }
1667
1668 static bool
pmap_dbm_has_errata(const struct cpu_feat * feat __unused,u_int midr,u_int ** errata_list,u_int * errata_count)1669 pmap_dbm_has_errata(const struct cpu_feat *feat __unused, u_int midr,
1670 u_int **errata_list, u_int *errata_count)
1671 {
1672 /* Disable on Cortex-A55 for erratum 1024718 - all revisions */
1673 if (CPU_MATCH(CPU_IMPL_MASK | CPU_PART_MASK, CPU_IMPL_ARM,
1674 CPU_PART_CORTEX_A55, 0, 0)) {
1675 static u_int errata_id = 1024718;
1676
1677 *errata_list = &errata_id;
1678 *errata_count = 1;
1679 return (true);
1680 }
1681
1682 /* Disable on Cortex-A510 for erratum 2051678 - r0p0 to r0p2 */
1683 if (CPU_MATCH(CPU_IMPL_MASK | CPU_PART_MASK | CPU_VAR_MASK,
1684 CPU_IMPL_ARM, CPU_PART_CORTEX_A510, 0, 0)) {
1685 if (CPU_REV(PCPU_GET(midr)) < 3) {
1686 static u_int errata_id = 2051678;
1687
1688 *errata_list = &errata_id;
1689 *errata_count = 1;
1690 return (true);
1691 }
1692 }
1693
1694 return (false);
1695 }
1696
1697 static void
pmap_dbm_enable(const struct cpu_feat * feat __unused,cpu_feat_errata errata_status,u_int * errata_list __unused,u_int errata_count)1698 pmap_dbm_enable(const struct cpu_feat *feat __unused,
1699 cpu_feat_errata errata_status, u_int *errata_list __unused,
1700 u_int errata_count)
1701 {
1702 uint64_t tcr;
1703
1704 /* Skip if there is an erratum affecting DBM */
1705 if (errata_status != ERRATA_NONE)
1706 return;
1707
1708 tcr = READ_SPECIALREG(tcr_el1) | TCR_HD;
1709 WRITE_SPECIALREG(tcr_el1, tcr);
1710 isb();
1711 /* Flush the local TLB for the TCR_HD flag change */
1712 dsb(nshst);
1713 __asm __volatile("tlbi vmalle1");
1714 dsb(nsh);
1715 isb();
1716 }
1717
1718 static struct cpu_feat feat_dbm = {
1719 .feat_name = "FEAT_HAFDBS (DBM)",
1720 .feat_check = pmap_dbm_check,
1721 .feat_has_errata = pmap_dbm_has_errata,
1722 .feat_enable = pmap_dbm_enable,
1723 .feat_flags = CPU_FEAT_AFTER_DEV | CPU_FEAT_PER_CPU,
1724 };
1725 DATA_SET(cpu_feat_set, feat_dbm);
1726
1727 /*
1728 * Initialize the pmap module.
1729 *
1730 * Called by vm_mem_init(), to initialize any structures that the pmap
1731 * system needs to map virtual memory.
1732 */
1733 void
pmap_init(void)1734 pmap_init(void)
1735 {
1736 uint64_t mmfr1;
1737 int i, vmid_bits;
1738
1739 /*
1740 * Are large page mappings enabled?
1741 */
1742 TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1743 if (superpages_enabled) {
1744 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1745 ("pmap_init: can't assign to pagesizes[1]"));
1746 pagesizes[1] = L3C_SIZE;
1747 KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
1748 ("pmap_init: can't assign to pagesizes[2]"));
1749 pagesizes[2] = L2_SIZE;
1750 if (L1_BLOCKS_SUPPORTED) {
1751 KASSERT(MAXPAGESIZES > 3 && pagesizes[3] == 0,
1752 ("pmap_init: can't assign to pagesizes[3]"));
1753 pagesizes[3] = L1_SIZE;
1754 }
1755 }
1756
1757 /*
1758 * Initialize the ASID allocator.
1759 */
1760 pmap_init_asids(&asids,
1761 (READ_SPECIALREG(tcr_el1) & TCR_ASID_16) != 0 ? 16 : 8);
1762
1763 if (has_hyp()) {
1764 mmfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
1765 vmid_bits = 8;
1766
1767 if (ID_AA64MMFR1_VMIDBits_VAL(mmfr1) ==
1768 ID_AA64MMFR1_VMIDBits_16)
1769 vmid_bits = 16;
1770 pmap_init_asids(&vmids, vmid_bits);
1771 }
1772
1773 /*
1774 * Initialize pv chunk lists.
1775 */
1776 for (i = 0; i < PMAP_MEMDOM; i++) {
1777 mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL,
1778 MTX_DEF);
1779 TAILQ_INIT(&pv_chunks[i].pvc_list);
1780 }
1781 pmap_init_pv_table();
1782
1783 vm_initialized = 1;
1784 }
1785
1786 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1787 "L1 (1GB/64GB) page mapping counters");
1788
1789 static COUNTER_U64_DEFINE_EARLY(pmap_l1_demotions);
1790 SYSCTL_COUNTER_U64(_vm_pmap_l1, OID_AUTO, demotions, CTLFLAG_RD,
1791 &pmap_l1_demotions, "L1 (1GB/64GB) page demotions");
1792
1793 SYSCTL_BOOL(_vm_pmap_l1, OID_AUTO, supported, CTLFLAG_RD, &pmap_l1_supported,
1794 0, "L1 blocks are supported");
1795
1796 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2c, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1797 "L2C (32MB/1GB) page mapping counters");
1798
1799 static COUNTER_U64_DEFINE_EARLY(pmap_l2c_demotions);
1800 SYSCTL_COUNTER_U64(_vm_pmap_l2c, OID_AUTO, demotions, CTLFLAG_RD,
1801 &pmap_l2c_demotions, "L2C (32MB/1GB) page demotions");
1802
1803 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1804 "2MB page mapping counters");
1805
1806 static COUNTER_U64_DEFINE_EARLY(pmap_l2_demotions);
1807 SYSCTL_COUNTER_U64(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
1808 &pmap_l2_demotions, "L2 (2MB/32MB) page demotions");
1809
1810 static COUNTER_U64_DEFINE_EARLY(pmap_l2_mappings);
1811 SYSCTL_COUNTER_U64(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
1812 &pmap_l2_mappings, "L2 (2MB/32MB) page mappings");
1813
1814 static COUNTER_U64_DEFINE_EARLY(pmap_l2_p_failures);
1815 SYSCTL_COUNTER_U64(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
1816 &pmap_l2_p_failures, "L2 (2MB/32MB) page promotion failures");
1817
1818 static COUNTER_U64_DEFINE_EARLY(pmap_l2_promotions);
1819 SYSCTL_COUNTER_U64(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
1820 &pmap_l2_promotions, "L2 (2MB/32MB) page promotions");
1821
1822 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3c, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1823 "L3C (64KB/2MB) page mapping counters");
1824
1825 static COUNTER_U64_DEFINE_EARLY(pmap_l3c_demotions);
1826 SYSCTL_COUNTER_U64(_vm_pmap_l3c, OID_AUTO, demotions, CTLFLAG_RD,
1827 &pmap_l3c_demotions, "L3C (64KB/2MB) page demotions");
1828
1829 static COUNTER_U64_DEFINE_EARLY(pmap_l3c_mappings);
1830 SYSCTL_COUNTER_U64(_vm_pmap_l3c, OID_AUTO, mappings, CTLFLAG_RD,
1831 &pmap_l3c_mappings, "L3C (64KB/2MB) page mappings");
1832
1833 static COUNTER_U64_DEFINE_EARLY(pmap_l3c_p_failures);
1834 SYSCTL_COUNTER_U64(_vm_pmap_l3c, OID_AUTO, p_failures, CTLFLAG_RD,
1835 &pmap_l3c_p_failures, "L3C (64KB/2MB) page promotion failures");
1836
1837 static COUNTER_U64_DEFINE_EARLY(pmap_l3c_promotions);
1838 SYSCTL_COUNTER_U64(_vm_pmap_l3c, OID_AUTO, promotions, CTLFLAG_RD,
1839 &pmap_l3c_promotions, "L3C (64KB/2MB) page promotions");
1840
1841 /*
1842 * If the given value for "final_only" is false, then any cached intermediate-
1843 * level entries, i.e., L{0,1,2}_TABLE entries, are invalidated in addition to
1844 * any cached final-level entry, i.e., either an L{1,2}_BLOCK or L3_PAGE entry.
1845 * Otherwise, just the cached final-level entry is invalidated.
1846 */
1847 static __inline void
pmap_s1_invalidate_kernel(uint64_t r,bool final_only)1848 pmap_s1_invalidate_kernel(uint64_t r, bool final_only)
1849 {
1850 if (final_only)
1851 __asm __volatile("tlbi vaale1is, %0" : : "r" (r));
1852 else
1853 __asm __volatile("tlbi vaae1is, %0" : : "r" (r));
1854 }
1855
1856 static __inline void
pmap_s1_invalidate_user(uint64_t r,bool final_only)1857 pmap_s1_invalidate_user(uint64_t r, bool final_only)
1858 {
1859 if (final_only)
1860 __asm __volatile("tlbi vale1is, %0" : : "r" (r));
1861 else
1862 __asm __volatile("tlbi vae1is, %0" : : "r" (r));
1863 }
1864
1865 /*
1866 * Invalidates any cached final- and optionally intermediate-level TLB entries
1867 * for the specified virtual address in the given virtual address space.
1868 */
1869 static __inline void
pmap_s1_invalidate_page(pmap_t pmap,vm_offset_t va,bool final_only)1870 pmap_s1_invalidate_page(pmap_t pmap, vm_offset_t va, bool final_only)
1871 {
1872 uint64_t r;
1873
1874 PMAP_ASSERT_STAGE1(pmap);
1875
1876 dsb(ishst);
1877 r = TLBI_VA(va);
1878 if (pmap == kernel_pmap) {
1879 pmap_s1_invalidate_kernel(r, final_only);
1880 } else {
1881 r |= ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1882 pmap_s1_invalidate_user(r, final_only);
1883 }
1884 dsb(ish);
1885 isb();
1886 }
1887
1888 static __inline void
pmap_s2_invalidate_page(pmap_t pmap,vm_offset_t va,bool final_only)1889 pmap_s2_invalidate_page(pmap_t pmap, vm_offset_t va, bool final_only)
1890 {
1891 PMAP_ASSERT_STAGE2(pmap);
1892 MPASS(pmap_stage2_invalidate_range != NULL);
1893 pmap_stage2_invalidate_range(pmap_to_ttbr0(pmap), va, va + PAGE_SIZE,
1894 final_only);
1895 }
1896
1897 static __inline void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va,bool final_only)1898 pmap_invalidate_page(pmap_t pmap, vm_offset_t va, bool final_only)
1899 {
1900 if (pmap->pm_stage == PM_STAGE1)
1901 pmap_s1_invalidate_page(pmap, va, final_only);
1902 else
1903 pmap_s2_invalidate_page(pmap, va, final_only);
1904 }
1905
1906 /*
1907 * Use stride L{1,2}_SIZE when invalidating the TLB entries for L{1,2}_BLOCK
1908 * mappings. Otherwise, use stride L3_SIZE.
1909 */
1910 static __inline void
pmap_s1_invalidate_strided(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_offset_t stride,bool final_only)1911 pmap_s1_invalidate_strided(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1912 vm_offset_t stride, bool final_only)
1913 {
1914 uint64_t end, r, start;
1915
1916 PMAP_ASSERT_STAGE1(pmap);
1917
1918 dsb(ishst);
1919 if (pmap == kernel_pmap) {
1920 start = TLBI_VA(sva);
1921 end = TLBI_VA(eva);
1922 for (r = start; r < end; r += TLBI_VA(stride))
1923 pmap_s1_invalidate_kernel(r, final_only);
1924 } else {
1925 start = end = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1926 start |= TLBI_VA(sva);
1927 end |= TLBI_VA(eva);
1928 for (r = start; r < end; r += TLBI_VA(stride))
1929 pmap_s1_invalidate_user(r, final_only);
1930 }
1931 dsb(ish);
1932 isb();
1933 }
1934
1935 /*
1936 * Invalidates any cached final- and optionally intermediate-level TLB entries
1937 * for the specified virtual address range in the given virtual address space.
1938 */
1939 static __inline void
pmap_s1_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool final_only)1940 pmap_s1_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1941 bool final_only)
1942 {
1943 pmap_s1_invalidate_strided(pmap, sva, eva, L3_SIZE, final_only);
1944 }
1945
1946 static __inline void
pmap_s2_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool final_only)1947 pmap_s2_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1948 bool final_only)
1949 {
1950 PMAP_ASSERT_STAGE2(pmap);
1951 MPASS(pmap_stage2_invalidate_range != NULL);
1952 pmap_stage2_invalidate_range(pmap_to_ttbr0(pmap), sva, eva, final_only);
1953 }
1954
1955 static __inline void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool final_only)1956 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1957 bool final_only)
1958 {
1959 if (pmap->pm_stage == PM_STAGE1)
1960 pmap_s1_invalidate_range(pmap, sva, eva, final_only);
1961 else
1962 pmap_s2_invalidate_range(pmap, sva, eva, final_only);
1963 }
1964
1965 /*
1966 * Invalidates all cached intermediate- and final-level TLB entries for the
1967 * given virtual address space.
1968 */
1969 static __inline void
pmap_s1_invalidate_all(pmap_t pmap)1970 pmap_s1_invalidate_all(pmap_t pmap)
1971 {
1972 uint64_t r;
1973
1974 PMAP_ASSERT_STAGE1(pmap);
1975
1976 dsb(ishst);
1977 if (pmap == kernel_pmap) {
1978 __asm __volatile("tlbi vmalle1is");
1979 } else {
1980 r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1981 __asm __volatile("tlbi aside1is, %0" : : "r" (r));
1982 }
1983 dsb(ish);
1984 isb();
1985 }
1986
1987 static __inline void
pmap_s2_invalidate_all(pmap_t pmap)1988 pmap_s2_invalidate_all(pmap_t pmap)
1989 {
1990 PMAP_ASSERT_STAGE2(pmap);
1991 MPASS(pmap_stage2_invalidate_all != NULL);
1992 pmap_stage2_invalidate_all(pmap_to_ttbr0(pmap));
1993 }
1994
1995 static __inline void
pmap_invalidate_all(pmap_t pmap)1996 pmap_invalidate_all(pmap_t pmap)
1997 {
1998 if (pmap->pm_stage == PM_STAGE1)
1999 pmap_s1_invalidate_all(pmap);
2000 else
2001 pmap_s2_invalidate_all(pmap);
2002 }
2003
2004 /*
2005 * Routine: pmap_extract
2006 * Function:
2007 * Extract the physical page address associated
2008 * with the given map/virtual_address pair.
2009 */
2010 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)2011 pmap_extract(pmap_t pmap, vm_offset_t va)
2012 {
2013 pt_entry_t *pte, tpte;
2014 vm_paddr_t pa;
2015 int lvl;
2016
2017 pa = 0;
2018 PMAP_LOCK(pmap);
2019 /*
2020 * Find the block or page map for this virtual address. pmap_pte
2021 * will return either a valid block/page entry, or NULL.
2022 */
2023 pte = pmap_pte(pmap, va, &lvl);
2024 if (pte != NULL) {
2025 tpte = pmap_load(pte);
2026 pa = PTE_TO_PHYS(tpte);
2027 switch(lvl) {
2028 case 1:
2029 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
2030 KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
2031 ("pmap_extract: Invalid L1 pte found: %lx",
2032 tpte & ATTR_DESCR_MASK));
2033 pa |= (va & L1_OFFSET);
2034 break;
2035 case 2:
2036 KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
2037 ("pmap_extract: Invalid L2 pte found: %lx",
2038 tpte & ATTR_DESCR_MASK));
2039 pa |= (va & L2_OFFSET);
2040 break;
2041 case 3:
2042 KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
2043 ("pmap_extract: Invalid L3 pte found: %lx",
2044 tpte & ATTR_DESCR_MASK));
2045 pa |= (va & L3_OFFSET);
2046 break;
2047 }
2048 }
2049 PMAP_UNLOCK(pmap);
2050 return (pa);
2051 }
2052
2053 /*
2054 * Routine: pmap_extract_and_hold
2055 * Function:
2056 * Atomically extract and hold the physical page
2057 * with the given pmap and virtual address pair
2058 * if that mapping permits the given protection.
2059 */
2060 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)2061 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
2062 {
2063 pt_entry_t *pte, tpte;
2064 vm_offset_t off;
2065 vm_page_t m;
2066 int lvl;
2067 bool use;
2068
2069 m = NULL;
2070 PMAP_LOCK(pmap);
2071 pte = pmap_pte(pmap, va, &lvl);
2072 if (pte != NULL) {
2073 tpte = pmap_load(pte);
2074
2075 KASSERT(lvl > 0 && lvl <= 3,
2076 ("pmap_extract_and_hold: Invalid level %d", lvl));
2077 /*
2078 * Check that the pte is either a L3 page, or a L1 or L2 block
2079 * entry. We can assume L1_BLOCK == L2_BLOCK.
2080 */
2081 KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
2082 (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
2083 ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
2084 tpte & ATTR_DESCR_MASK));
2085
2086 use = false;
2087 if ((prot & VM_PROT_WRITE) == 0)
2088 use = true;
2089 else if (pmap->pm_stage == PM_STAGE1 &&
2090 (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW))
2091 use = true;
2092 else if (pmap->pm_stage == PM_STAGE2 &&
2093 ((tpte & ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)) ==
2094 ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)))
2095 use = true;
2096
2097 if (use) {
2098 switch (lvl) {
2099 case 1:
2100 off = va & L1_OFFSET;
2101 break;
2102 case 2:
2103 off = va & L2_OFFSET;
2104 break;
2105 case 3:
2106 default:
2107 off = 0;
2108 }
2109 m = PHYS_TO_VM_PAGE(PTE_TO_PHYS(tpte) | off);
2110 if (m != NULL && !vm_page_wire_mapped(m))
2111 m = NULL;
2112 }
2113 }
2114 PMAP_UNLOCK(pmap);
2115 return (m);
2116 }
2117
2118 /*
2119 * Returns true if the entire kernel virtual address range is mapped
2120 */
2121 static bool
pmap_kmapped_range(vm_offset_t sva,vm_size_t size)2122 pmap_kmapped_range(vm_offset_t sva, vm_size_t size)
2123 {
2124 pt_entry_t *pte, tpte;
2125 vm_offset_t eva;
2126
2127 KASSERT(sva >= VM_MIN_KERNEL_ADDRESS,
2128 ("%s: Invalid virtual address: %lx", __func__, sva));
2129 MPASS(size != 0);
2130 eva = sva + size - 1;
2131 KASSERT(eva > sva, ("%s: Size too large: sva %lx, size %lx", __func__,
2132 sva, size));
2133
2134 while (sva <= eva) {
2135 pte = pmap_l1(kernel_pmap, sva);
2136 if (pte == NULL)
2137 return (false);
2138 tpte = pmap_load(pte);
2139 if (tpte == 0)
2140 return (false);
2141 if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
2142 sva = (sva & ~L1_OFFSET) + L1_SIZE;
2143 continue;
2144 }
2145
2146 pte = pmap_l1_to_l2(&tpte, sva);
2147 tpte = pmap_load(pte);
2148 if (tpte == 0)
2149 return (false);
2150 if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
2151 sva = (sva & ~L2_OFFSET) + L2_SIZE;
2152 continue;
2153 }
2154 pte = pmap_l2_to_l3(&tpte, sva);
2155 tpte = pmap_load(pte);
2156 if (tpte == 0)
2157 return (false);
2158 MPASS((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_PAGE);
2159 if ((tpte & ATTR_CONTIGUOUS) == ATTR_CONTIGUOUS)
2160 sva = (sva & ~L3C_OFFSET) + L3C_SIZE;
2161 else
2162 sva = (sva & ~L3_OFFSET) + L3_SIZE;
2163 }
2164
2165 return (true);
2166 }
2167
2168 /*
2169 * Walks the page tables to translate a kernel virtual address to a
2170 * physical address. Returns true if the kva is valid and stores the
2171 * physical address in pa if it is not NULL.
2172 *
2173 * See the comment above data_abort() for the rationale for specifying
2174 * NO_PERTHREAD_SSP here.
2175 */
2176 bool NO_PERTHREAD_SSP
pmap_klookup(vm_offset_t va,vm_paddr_t * pa)2177 pmap_klookup(vm_offset_t va, vm_paddr_t *pa)
2178 {
2179 pt_entry_t *pte, tpte;
2180 register_t intr;
2181 uint64_t par;
2182
2183 /*
2184 * Disable interrupts so we don't get interrupted between asking
2185 * for address translation, and getting the result back.
2186 */
2187 intr = intr_disable();
2188 par = arm64_address_translate_s1e1r(va);
2189 intr_restore(intr);
2190
2191 if (PAR_SUCCESS(par)) {
2192 if (pa != NULL)
2193 *pa = (par & PAR_PA_MASK) | (va & PAR_LOW_MASK);
2194 return (true);
2195 }
2196
2197 /*
2198 * Fall back to walking the page table. The address translation
2199 * instruction may fail when the page is in a break-before-make
2200 * sequence. As we only clear the valid bit in said sequence we
2201 * can walk the page table to find the physical address.
2202 */
2203
2204 pte = pmap_l1(kernel_pmap, va);
2205 if (pte == NULL)
2206 return (false);
2207
2208 /*
2209 * A concurrent pmap_update_entry() will clear the entry's valid bit
2210 * but leave the rest of the entry unchanged. Therefore, we treat a
2211 * non-zero entry as being valid, and we ignore the valid bit when
2212 * determining whether the entry maps a block, page, or table.
2213 */
2214 tpte = pmap_load(pte);
2215 if (tpte == 0)
2216 return (false);
2217 if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
2218 if (pa != NULL)
2219 *pa = PTE_TO_PHYS(tpte) | (va & L1_OFFSET);
2220 return (true);
2221 }
2222 pte = pmap_l1_to_l2(&tpte, va);
2223 tpte = pmap_load(pte);
2224 if (tpte == 0)
2225 return (false);
2226 if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
2227 if (pa != NULL)
2228 *pa = PTE_TO_PHYS(tpte) | (va & L2_OFFSET);
2229 return (true);
2230 }
2231 pte = pmap_l2_to_l3(&tpte, va);
2232 tpte = pmap_load(pte);
2233 if (tpte == 0)
2234 return (false);
2235 if (pa != NULL)
2236 *pa = PTE_TO_PHYS(tpte) | (va & L3_OFFSET);
2237 return (true);
2238 }
2239
2240 /*
2241 * Routine: pmap_kextract
2242 * Function:
2243 * Extract the physical page address associated with the given kernel
2244 * virtual address.
2245 */
2246 vm_paddr_t
pmap_kextract(vm_offset_t va)2247 pmap_kextract(vm_offset_t va)
2248 {
2249 vm_paddr_t pa;
2250
2251 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
2252 return (DMAP_TO_PHYS(va));
2253
2254 if (pmap_klookup(va, &pa) == false)
2255 return (0);
2256 return (pa);
2257 }
2258
2259 /***************************************************
2260 * Low level mapping routines.....
2261 ***************************************************/
2262
2263 void
pmap_kenter(vm_offset_t sva,vm_size_t size,vm_paddr_t pa,int mode)2264 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
2265 {
2266 pd_entry_t *pde;
2267 pt_entry_t attr, old_l3e, *pte;
2268 vm_offset_t va;
2269 vm_page_t mpte;
2270 int error, lvl;
2271
2272 KASSERT((pa & L3_OFFSET) == 0,
2273 ("pmap_kenter: Invalid physical address"));
2274 KASSERT((sva & L3_OFFSET) == 0,
2275 ("pmap_kenter: Invalid virtual address"));
2276 KASSERT((size & PAGE_MASK) == 0,
2277 ("pmap_kenter: Mapping is not page-sized"));
2278
2279 attr = ATTR_AF | pmap_sh_attr | ATTR_S1_AP(ATTR_S1_AP_RW) |
2280 ATTR_S1_XN | ATTR_KERN_GP | ATTR_S1_IDX(mode);
2281 old_l3e = 0;
2282 va = sva;
2283 while (size != 0) {
2284 pde = pmap_pde(kernel_pmap, va, &lvl);
2285 KASSERT(pde != NULL,
2286 ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
2287 KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
2288
2289 /*
2290 * If we have an aligned, contiguous chunk of L2_SIZE, try
2291 * to create an L2_BLOCK mapping.
2292 */
2293 if ((va & L2_OFFSET) == 0 && size >= L2_SIZE &&
2294 (pa & L2_OFFSET) == 0 && vm_initialized) {
2295 mpte = PTE_TO_VM_PAGE(pmap_load(pde));
2296 KASSERT(pmap_every_pte_zero(VM_PAGE_TO_PHYS(mpte)),
2297 ("pmap_kenter: Unexpected mapping"));
2298 PMAP_LOCK(kernel_pmap);
2299 error = pmap_insert_pt_page(kernel_pmap, mpte, false,
2300 false);
2301 if (error == 0) {
2302 attr &= ~ATTR_CONTIGUOUS;
2303
2304 /*
2305 * Although the page table page "mpte" should
2306 * be devoid of mappings, the TLB might hold
2307 * intermediate entries that reference it, so
2308 * we perform a single-page invalidation.
2309 */
2310 pmap_update_entry(kernel_pmap, pde,
2311 PHYS_TO_PTE(pa) | attr | L2_BLOCK, va,
2312 PAGE_SIZE);
2313 }
2314 PMAP_UNLOCK(kernel_pmap);
2315 if (error == 0) {
2316 va += L2_SIZE;
2317 pa += L2_SIZE;
2318 size -= L2_SIZE;
2319 continue;
2320 }
2321 }
2322
2323 /*
2324 * If we have an aligned, contiguous chunk of L3C_ENTRIES
2325 * L3 pages, set the contiguous bit within each PTE so that
2326 * the chunk can be cached using only one TLB entry.
2327 */
2328 if ((va & L3C_OFFSET) == 0 && (pa & L3C_OFFSET) == 0) {
2329 if (size >= L3C_SIZE)
2330 attr |= ATTR_CONTIGUOUS;
2331 else
2332 attr &= ~ATTR_CONTIGUOUS;
2333 }
2334
2335 pte = pmap_l2_to_l3(pde, va);
2336 old_l3e |= pmap_load_store(pte, PHYS_TO_PTE(pa) | attr |
2337 L3_PAGE);
2338
2339 va += PAGE_SIZE;
2340 pa += PAGE_SIZE;
2341 size -= PAGE_SIZE;
2342 }
2343 if ((old_l3e & ATTR_DESCR_VALID) != 0)
2344 pmap_s1_invalidate_range(kernel_pmap, sva, va, true);
2345 else {
2346 /*
2347 * Because the old entries were invalid and the new mappings
2348 * are not executable, an isb is not required.
2349 */
2350 dsb(ishst);
2351 }
2352 }
2353
2354 void
pmap_kenter_device(vm_offset_t sva,vm_size_t size,vm_paddr_t pa)2355 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
2356 {
2357
2358 pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE);
2359 }
2360
2361 /*
2362 * Remove a page from the kernel pagetables.
2363 */
2364 void
pmap_kremove(vm_offset_t va)2365 pmap_kremove(vm_offset_t va)
2366 {
2367 pt_entry_t *pte;
2368
2369 pte = pmap_pte_exists(kernel_pmap, va, 3, __func__);
2370 KASSERT((pmap_load(pte) & ATTR_CONTIGUOUS) == 0,
2371 ("pmap_kremove: unexpected ATTR_CONTIGUOUS"));
2372 pmap_clear(pte);
2373 pmap_s1_invalidate_page(kernel_pmap, va, true);
2374 }
2375
2376 /*
2377 * Remove the specified range of mappings from the kernel address space.
2378 *
2379 * Should only be applied to mappings that were created by pmap_kenter() or
2380 * pmap_kenter_device(). Nothing about this function is actually specific
2381 * to device mappings.
2382 */
2383 void
pmap_kremove_device(vm_offset_t sva,vm_size_t size)2384 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
2385 {
2386 pt_entry_t *ptep, *ptep_end;
2387 vm_offset_t va;
2388 int lvl;
2389
2390 KASSERT((sva & L3_OFFSET) == 0,
2391 ("pmap_kremove_device: Invalid virtual address"));
2392 KASSERT((size & PAGE_MASK) == 0,
2393 ("pmap_kremove_device: Mapping is not page-sized"));
2394
2395 va = sva;
2396 while (size != 0) {
2397 ptep = pmap_pte(kernel_pmap, va, &lvl);
2398 KASSERT(ptep != NULL, ("Invalid page table, va: 0x%lx", va));
2399 switch (lvl) {
2400 case 2:
2401 KASSERT((va & L2_OFFSET) == 0,
2402 ("Unaligned virtual address"));
2403 KASSERT(size >= L2_SIZE, ("Insufficient size"));
2404
2405 if (va != sva) {
2406 pmap_s1_invalidate_range(kernel_pmap, sva, va,
2407 true);
2408 }
2409 pmap_clear(ptep);
2410 pmap_s1_invalidate_page(kernel_pmap, va, true);
2411 PMAP_LOCK(kernel_pmap);
2412 pmap_remove_kernel_l2(kernel_pmap, ptep, va);
2413 PMAP_UNLOCK(kernel_pmap);
2414
2415 va += L2_SIZE;
2416 sva = va;
2417 size -= L2_SIZE;
2418 break;
2419 case 3:
2420 if ((pmap_load(ptep) & ATTR_CONTIGUOUS) != 0) {
2421 KASSERT((va & L3C_OFFSET) == 0,
2422 ("Unaligned L3C virtual address"));
2423 KASSERT(size >= L3C_SIZE,
2424 ("Insufficient L3C size"));
2425
2426 ptep_end = ptep + L3C_ENTRIES;
2427 for (; ptep < ptep_end; ptep++)
2428 pmap_clear(ptep);
2429
2430 va += L3C_SIZE;
2431 size -= L3C_SIZE;
2432 break;
2433 }
2434 pmap_clear(ptep);
2435
2436 va += PAGE_SIZE;
2437 size -= PAGE_SIZE;
2438 break;
2439 default:
2440 __assert_unreachable();
2441 break;
2442 }
2443 }
2444 if (va != sva)
2445 pmap_s1_invalidate_range(kernel_pmap, sva, va, true);
2446 }
2447
2448 /*
2449 * Used to map a range of physical addresses into kernel
2450 * virtual address space.
2451 *
2452 * The value passed in '*virt' is a suggested virtual address for
2453 * the mapping. Architectures which can support a direct-mapped
2454 * physical to virtual region can return the appropriate address
2455 * within that region, leaving '*virt' unchanged. Other
2456 * architectures should map the pages starting at '*virt' and
2457 * update '*virt' with the first usable address after the mapped
2458 * region.
2459 */
2460 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)2461 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
2462 {
2463 return PHYS_TO_DMAP(start);
2464 }
2465
2466 /*
2467 * Add a list of wired pages to the kva
2468 * this routine is only used for temporary
2469 * kernel mappings that do not need to have
2470 * page modification or references recorded.
2471 * Note that old mappings are simply written
2472 * over. The page *must* be wired.
2473 * Note: SMP coherent. Uses a ranged shootdown IPI.
2474 */
2475 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)2476 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
2477 {
2478 pd_entry_t *pde;
2479 pt_entry_t attr, old_l3e, *pte;
2480 vm_offset_t va;
2481 vm_page_t m;
2482 int i, lvl;
2483
2484 old_l3e = 0;
2485 va = sva;
2486 for (i = 0; i < count; i++) {
2487 pde = pmap_pde(kernel_pmap, va, &lvl);
2488 KASSERT(pde != NULL,
2489 ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
2490 KASSERT(lvl == 2,
2491 ("pmap_qenter: Invalid level %d", lvl));
2492
2493 m = ma[i];
2494 attr = ATTR_AF | pmap_sh_attr |
2495 ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN |
2496 ATTR_KERN_GP | ATTR_S1_IDX(m->md.pv_memattr) | L3_PAGE;
2497 pte = pmap_l2_to_l3(pde, va);
2498 old_l3e |= pmap_load_store(pte, VM_PAGE_TO_PTE(m) | attr);
2499
2500 va += L3_SIZE;
2501 }
2502 if ((old_l3e & ATTR_DESCR_VALID) != 0)
2503 pmap_s1_invalidate_range(kernel_pmap, sva, va, true);
2504 else {
2505 /*
2506 * Because the old entries were invalid and the new mappings
2507 * are not executable, an isb is not required.
2508 */
2509 dsb(ishst);
2510 }
2511 }
2512
2513 /*
2514 * This routine tears out page mappings from the
2515 * kernel -- it is meant only for temporary mappings.
2516 */
2517 void
pmap_qremove(vm_offset_t sva,int count)2518 pmap_qremove(vm_offset_t sva, int count)
2519 {
2520 pt_entry_t *pte;
2521 vm_offset_t va;
2522
2523 KASSERT(ADDR_IS_CANONICAL(sva),
2524 ("%s: Address not in canonical form: %lx", __func__, sva));
2525 KASSERT(ADDR_IS_KERNEL(sva), ("usermode va %lx", sva));
2526
2527 va = sva;
2528 while (count-- > 0) {
2529 pte = pmap_pte_exists(kernel_pmap, va, 3, NULL);
2530 if (pte != NULL) {
2531 pmap_clear(pte);
2532 }
2533
2534 va += PAGE_SIZE;
2535 }
2536 pmap_s1_invalidate_range(kernel_pmap, sva, va, true);
2537 }
2538
2539 /***************************************************
2540 * Page table page management routines.....
2541 ***************************************************/
2542 /*
2543 * Schedule the specified unused page table page to be freed. Specifically,
2544 * add the page to the specified list of pages that will be released to the
2545 * physical memory manager after the TLB has been updated.
2546 */
2547 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)2548 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
2549 {
2550
2551 if (set_PG_ZERO)
2552 m->flags |= PG_ZERO;
2553 else
2554 m->flags &= ~PG_ZERO;
2555 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2556 }
2557
2558 /*
2559 * Decrements a page table page's reference count, which is used to record the
2560 * number of valid page table entries within the page. If the reference count
2561 * drops to zero, then the page table page is unmapped. Returns true if the
2562 * page table page was unmapped and false otherwise.
2563 */
2564 static inline bool
pmap_unwire_l3(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)2565 pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2566 {
2567
2568 --m->ref_count;
2569 if (m->ref_count == 0) {
2570 _pmap_unwire_l3(pmap, va, m, free);
2571 return (true);
2572 } else
2573 return (false);
2574 }
2575
2576 static void
_pmap_unwire_l3(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)2577 _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2578 {
2579
2580 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2581 /*
2582 * unmap the page table page
2583 */
2584 if (m->pindex >= (NUL2E + NUL1E)) {
2585 /* l1 page */
2586 pd_entry_t *l0;
2587
2588 l0 = pmap_l0(pmap, va);
2589 pmap_clear(l0);
2590 } else if (m->pindex >= NUL2E) {
2591 /* l2 page */
2592 pd_entry_t *l1;
2593
2594 l1 = pmap_l1(pmap, va);
2595 pmap_clear(l1);
2596 } else {
2597 /* l3 page */
2598 pd_entry_t *l2;
2599
2600 l2 = pmap_l2(pmap, va);
2601 pmap_clear(l2);
2602 }
2603 pmap_resident_count_dec(pmap, 1);
2604 if (m->pindex < NUL2E) {
2605 /* We just released an l3, unhold the matching l2 */
2606 pd_entry_t *l1, tl1;
2607 vm_page_t l2pg;
2608
2609 l1 = pmap_l1(pmap, va);
2610 tl1 = pmap_load(l1);
2611 l2pg = PTE_TO_VM_PAGE(tl1);
2612 pmap_unwire_l3(pmap, va, l2pg, free);
2613 } else if (m->pindex < (NUL2E + NUL1E)) {
2614 /* We just released an l2, unhold the matching l1 */
2615 pd_entry_t *l0, tl0;
2616 vm_page_t l1pg;
2617
2618 l0 = pmap_l0(pmap, va);
2619 tl0 = pmap_load(l0);
2620 l1pg = PTE_TO_VM_PAGE(tl0);
2621 pmap_unwire_l3(pmap, va, l1pg, free);
2622 }
2623 pmap_invalidate_page(pmap, va, false);
2624
2625 /*
2626 * Put page on a list so that it is released after
2627 * *ALL* TLB shootdown is done
2628 */
2629 pmap_add_delayed_free_list(m, free, true);
2630 }
2631
2632 /*
2633 * After removing a page table entry, this routine is used to
2634 * conditionally free the page, and manage the reference count.
2635 */
2636 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)2637 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
2638 struct spglist *free)
2639 {
2640 vm_page_t mpte;
2641
2642 KASSERT(ADDR_IS_CANONICAL(va),
2643 ("%s: Address not in canonical form: %lx", __func__, va));
2644 if (ADDR_IS_KERNEL(va))
2645 return (0);
2646 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
2647 mpte = PTE_TO_VM_PAGE(ptepde);
2648 return (pmap_unwire_l3(pmap, va, mpte, free));
2649 }
2650
2651 /*
2652 * Release a page table page reference after a failed attempt to create a
2653 * mapping.
2654 */
2655 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)2656 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
2657 {
2658 struct spglist free;
2659
2660 SLIST_INIT(&free);
2661 if (pmap_unwire_l3(pmap, va, mpte, &free))
2662 vm_page_free_pages_toq(&free, true);
2663 }
2664
2665 void
pmap_pinit0(pmap_t pmap)2666 pmap_pinit0(pmap_t pmap)
2667 {
2668
2669 PMAP_LOCK_INIT(pmap);
2670 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
2671 pmap->pm_l0_paddr = READ_SPECIALREG(ttbr0_el1);
2672 pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
2673 TAILQ_INIT(&pmap->pm_pvchunk);
2674 vm_radix_init(&pmap->pm_root);
2675 pmap->pm_cookie = COOKIE_FROM(ASID_RESERVED_FOR_PID_0, INT_MIN);
2676 pmap->pm_stage = PM_STAGE1;
2677 pmap->pm_levels = 4;
2678 pmap->pm_ttbr = pmap->pm_l0_paddr;
2679 pmap->pm_asid_set = &asids;
2680 pmap->pm_bti = NULL;
2681
2682 PCPU_SET(curpmap, pmap);
2683 }
2684
2685 int
pmap_pinit_stage(pmap_t pmap,enum pmap_stage stage,int levels)2686 pmap_pinit_stage(pmap_t pmap, enum pmap_stage stage, int levels)
2687 {
2688 vm_page_t m;
2689
2690 /*
2691 * allocate the l0 page
2692 */
2693 m = vm_page_alloc_noobj(VM_ALLOC_WAITOK | VM_ALLOC_WIRED |
2694 VM_ALLOC_ZERO);
2695 pmap->pm_l0_paddr = VM_PAGE_TO_PHYS(m);
2696 pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
2697
2698 TAILQ_INIT(&pmap->pm_pvchunk);
2699 vm_radix_init(&pmap->pm_root);
2700 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
2701 pmap->pm_cookie = COOKIE_FROM(-1, INT_MAX);
2702
2703 MPASS(levels == 3 || levels == 4);
2704 pmap->pm_levels = levels;
2705 pmap->pm_stage = stage;
2706 pmap->pm_bti = NULL;
2707 switch (stage) {
2708 case PM_STAGE1:
2709 pmap->pm_asid_set = &asids;
2710 if (pmap_bti_support) {
2711 pmap->pm_bti = malloc(sizeof(struct rangeset), M_DEVBUF,
2712 M_ZERO | M_WAITOK);
2713 rangeset_init(pmap->pm_bti, bti_dup_range,
2714 bti_free_range, pmap, M_NOWAIT);
2715 }
2716 break;
2717 case PM_STAGE2:
2718 pmap->pm_asid_set = &vmids;
2719 break;
2720 default:
2721 panic("%s: Invalid pmap type %d", __func__, stage);
2722 break;
2723 }
2724
2725 /* XXX Temporarily disable deferred ASID allocation. */
2726 pmap_alloc_asid(pmap);
2727
2728 /*
2729 * Allocate the level 1 entry to use as the root. This will increase
2730 * the refcount on the level 1 page so it won't be removed until
2731 * pmap_release() is called.
2732 */
2733 if (pmap->pm_levels == 3) {
2734 PMAP_LOCK(pmap);
2735 m = _pmap_alloc_l3(pmap, NUL2E + NUL1E, NULL);
2736 PMAP_UNLOCK(pmap);
2737 }
2738 pmap->pm_ttbr = VM_PAGE_TO_PHYS(m);
2739
2740 return (1);
2741 }
2742
2743 int
pmap_pinit(pmap_t pmap)2744 pmap_pinit(pmap_t pmap)
2745 {
2746
2747 return (pmap_pinit_stage(pmap, PM_STAGE1, 4));
2748 }
2749
2750 /*
2751 * This routine is called if the desired page table page does not exist.
2752 *
2753 * If page table page allocation fails, this routine may sleep before
2754 * returning NULL. It sleeps only if a lock pointer was given.
2755 *
2756 * Note: If a page allocation fails at page table level two or three,
2757 * one or two pages may be held during the wait, only to be released
2758 * afterwards. This conservative approach is easily argued to avoid
2759 * race conditions.
2760 */
2761 static vm_page_t
_pmap_alloc_l3(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp)2762 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
2763 {
2764 vm_page_t m, l1pg, l2pg;
2765
2766 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2767
2768 /*
2769 * Allocate a page table page.
2770 */
2771 if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2772 if (lockp != NULL) {
2773 RELEASE_PV_LIST_LOCK(lockp);
2774 PMAP_UNLOCK(pmap);
2775 vm_wait(NULL);
2776 PMAP_LOCK(pmap);
2777 }
2778
2779 /*
2780 * Indicate the need to retry. While waiting, the page table
2781 * page may have been allocated.
2782 */
2783 return (NULL);
2784 }
2785 m->pindex = ptepindex;
2786
2787 /*
2788 * Because of AArch64's weak memory consistency model, we must have a
2789 * barrier here to ensure that the stores for zeroing "m", whether by
2790 * pmap_zero_page() or an earlier function, are visible before adding
2791 * "m" to the page table. Otherwise, a page table walk by another
2792 * processor's MMU could see the mapping to "m" and a stale, non-zero
2793 * PTE within "m".
2794 */
2795 dmb(ishst);
2796
2797 /*
2798 * Map the pagetable page into the process address space, if
2799 * it isn't already there.
2800 */
2801
2802 if (ptepindex >= (NUL2E + NUL1E)) {
2803 pd_entry_t *l0p, l0e;
2804 vm_pindex_t l0index;
2805
2806 l0index = ptepindex - (NUL2E + NUL1E);
2807 l0p = &pmap->pm_l0[l0index];
2808 KASSERT((pmap_load(l0p) & ATTR_DESCR_VALID) == 0,
2809 ("%s: L0 entry %#lx is valid", __func__, pmap_load(l0p)));
2810 l0e = VM_PAGE_TO_PTE(m) | L0_TABLE;
2811
2812 /*
2813 * Mark all kernel memory as not accessible from userspace
2814 * and userspace memory as not executable from the kernel.
2815 * This has been done for the bootstrap L0 entries in
2816 * locore.S.
2817 */
2818 if (pmap == kernel_pmap)
2819 l0e |= TATTR_UXN_TABLE | TATTR_AP_TABLE_NO_EL0;
2820 else
2821 l0e |= TATTR_PXN_TABLE;
2822 pmap_store(l0p, l0e);
2823 } else if (ptepindex >= NUL2E) {
2824 vm_pindex_t l0index, l1index;
2825 pd_entry_t *l0, *l1;
2826 pd_entry_t tl0;
2827
2828 l1index = ptepindex - NUL2E;
2829 l0index = l1index >> Ln_ENTRIES_SHIFT;
2830
2831 l0 = &pmap->pm_l0[l0index];
2832 tl0 = pmap_load(l0);
2833 if (tl0 == 0) {
2834 /* recurse for allocating page dir */
2835 if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
2836 lockp) == NULL) {
2837 vm_page_unwire_noq(m);
2838 vm_page_free_zero(m);
2839 return (NULL);
2840 }
2841 } else {
2842 l1pg = PTE_TO_VM_PAGE(tl0);
2843 l1pg->ref_count++;
2844 }
2845
2846 l1 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l0)));
2847 l1 = &l1[ptepindex & Ln_ADDR_MASK];
2848 KASSERT((pmap_load(l1) & ATTR_DESCR_VALID) == 0,
2849 ("%s: L1 entry %#lx is valid", __func__, pmap_load(l1)));
2850 pmap_store(l1, VM_PAGE_TO_PTE(m) | L1_TABLE);
2851 } else {
2852 vm_pindex_t l0index, l1index;
2853 pd_entry_t *l0, *l1, *l2;
2854 pd_entry_t tl0, tl1;
2855
2856 l1index = ptepindex >> Ln_ENTRIES_SHIFT;
2857 l0index = l1index >> Ln_ENTRIES_SHIFT;
2858
2859 l0 = &pmap->pm_l0[l0index];
2860 tl0 = pmap_load(l0);
2861 if (tl0 == 0) {
2862 /* recurse for allocating page dir */
2863 if (_pmap_alloc_l3(pmap, NUL2E + l1index,
2864 lockp) == NULL) {
2865 vm_page_unwire_noq(m);
2866 vm_page_free_zero(m);
2867 return (NULL);
2868 }
2869 tl0 = pmap_load(l0);
2870 l1 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(tl0));
2871 l1 = &l1[l1index & Ln_ADDR_MASK];
2872 } else {
2873 l1 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(tl0));
2874 l1 = &l1[l1index & Ln_ADDR_MASK];
2875 tl1 = pmap_load(l1);
2876 if (tl1 == 0) {
2877 /* recurse for allocating page dir */
2878 if (_pmap_alloc_l3(pmap, NUL2E + l1index,
2879 lockp) == NULL) {
2880 vm_page_unwire_noq(m);
2881 vm_page_free_zero(m);
2882 return (NULL);
2883 }
2884 } else {
2885 l2pg = PTE_TO_VM_PAGE(tl1);
2886 l2pg->ref_count++;
2887 }
2888 }
2889
2890 l2 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l1)));
2891 l2 = &l2[ptepindex & Ln_ADDR_MASK];
2892 KASSERT((pmap_load(l2) & ATTR_DESCR_VALID) == 0,
2893 ("%s: L2 entry %#lx is valid", __func__, pmap_load(l2)));
2894 pmap_store(l2, VM_PAGE_TO_PTE(m) | L2_TABLE);
2895 }
2896
2897 pmap_resident_count_inc(pmap, 1);
2898
2899 return (m);
2900 }
2901
2902 static pd_entry_t *
pmap_alloc_l2(pmap_t pmap,vm_offset_t va,vm_page_t * l2pgp,struct rwlock ** lockp)2903 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, vm_page_t *l2pgp,
2904 struct rwlock **lockp)
2905 {
2906 pd_entry_t *l1, *l2;
2907 vm_page_t l2pg;
2908 vm_pindex_t l2pindex;
2909
2910 KASSERT(ADDR_IS_CANONICAL(va),
2911 ("%s: Address not in canonical form: %lx", __func__, va));
2912
2913 retry:
2914 l1 = pmap_l1(pmap, va);
2915 if (l1 != NULL && (pmap_load(l1) & ATTR_DESCR_MASK) == L1_TABLE) {
2916 l2 = pmap_l1_to_l2(l1, va);
2917 if (!ADDR_IS_KERNEL(va)) {
2918 /* Add a reference to the L2 page. */
2919 l2pg = PTE_TO_VM_PAGE(pmap_load(l1));
2920 l2pg->ref_count++;
2921 } else
2922 l2pg = NULL;
2923 } else if (!ADDR_IS_KERNEL(va)) {
2924 /* Allocate a L2 page. */
2925 l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT;
2926 l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp);
2927 if (l2pg == NULL) {
2928 if (lockp != NULL)
2929 goto retry;
2930 else
2931 return (NULL);
2932 }
2933 l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
2934 l2 = &l2[pmap_l2_index(va)];
2935 } else
2936 panic("pmap_alloc_l2: missing page table page for va %#lx",
2937 va);
2938 *l2pgp = l2pg;
2939 return (l2);
2940 }
2941
2942 static vm_page_t
pmap_alloc_l3(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)2943 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2944 {
2945 vm_pindex_t ptepindex;
2946 pd_entry_t *pde, tpde;
2947 #ifdef INVARIANTS
2948 pt_entry_t *pte;
2949 #endif
2950 vm_page_t m;
2951 int lvl;
2952
2953 /*
2954 * Calculate pagetable page index
2955 */
2956 ptepindex = pmap_l2_pindex(va);
2957 retry:
2958 /*
2959 * Get the page directory entry
2960 */
2961 pde = pmap_pde(pmap, va, &lvl);
2962
2963 /*
2964 * If the page table page is mapped, we just increment the hold count,
2965 * and activate it. If we get a level 2 pde it will point to a level 3
2966 * table.
2967 */
2968 switch (lvl) {
2969 case -1:
2970 break;
2971 case 0:
2972 #ifdef INVARIANTS
2973 pte = pmap_l0_to_l1(pde, va);
2974 KASSERT(pmap_load(pte) == 0,
2975 ("pmap_alloc_l3: TODO: l0 superpages"));
2976 #endif
2977 break;
2978 case 1:
2979 #ifdef INVARIANTS
2980 pte = pmap_l1_to_l2(pde, va);
2981 KASSERT(pmap_load(pte) == 0,
2982 ("pmap_alloc_l3: TODO: l1 superpages"));
2983 #endif
2984 break;
2985 case 2:
2986 tpde = pmap_load(pde);
2987 if (tpde != 0) {
2988 m = PTE_TO_VM_PAGE(tpde);
2989 m->ref_count++;
2990 return (m);
2991 }
2992 break;
2993 default:
2994 panic("pmap_alloc_l3: Invalid level %d", lvl);
2995 }
2996
2997 /*
2998 * Here if the pte page isn't mapped, or if it has been deallocated.
2999 */
3000 m = _pmap_alloc_l3(pmap, ptepindex, lockp);
3001 if (m == NULL && lockp != NULL)
3002 goto retry;
3003
3004 return (m);
3005 }
3006
3007 /***************************************************
3008 * Pmap allocation/deallocation routines.
3009 ***************************************************/
3010
3011 /*
3012 * Release any resources held by the given physical map.
3013 * Called when a pmap initialized by pmap_pinit is being released.
3014 * Should only be called if the map contains no valid mappings.
3015 */
3016 void
pmap_release(pmap_t pmap)3017 pmap_release(pmap_t pmap)
3018 {
3019 bool rv __diagused;
3020 struct spglist freelist;
3021 struct asid_set *set;
3022 vm_page_t m;
3023 int asid;
3024
3025 if (pmap->pm_levels != 4) {
3026 PMAP_ASSERT_STAGE2(pmap);
3027 KASSERT(pmap->pm_stats.resident_count == 1,
3028 ("pmap_release: pmap resident count %ld != 0",
3029 pmap->pm_stats.resident_count));
3030 KASSERT((pmap->pm_l0[0] & ATTR_DESCR_VALID) == ATTR_DESCR_VALID,
3031 ("pmap_release: Invalid l0 entry: %lx", pmap->pm_l0[0]));
3032
3033 SLIST_INIT(&freelist);
3034 m = PHYS_TO_VM_PAGE(pmap->pm_ttbr);
3035 PMAP_LOCK(pmap);
3036 rv = pmap_unwire_l3(pmap, 0, m, &freelist);
3037 PMAP_UNLOCK(pmap);
3038 MPASS(rv == true);
3039 vm_page_free_pages_toq(&freelist, true);
3040 }
3041
3042 KASSERT(pmap->pm_stats.resident_count == 0,
3043 ("pmap_release: pmap resident count %ld != 0",
3044 pmap->pm_stats.resident_count));
3045 KASSERT(vm_radix_is_empty(&pmap->pm_root),
3046 ("pmap_release: pmap has reserved page table page(s)"));
3047
3048 set = pmap->pm_asid_set;
3049 KASSERT(set != NULL, ("%s: NULL asid set", __func__));
3050
3051 /*
3052 * Allow the ASID to be reused. In stage 2 VMIDs we don't invalidate
3053 * the entries when removing them so rely on a later tlb invalidation.
3054 * this will happen when updating the VMID generation. Because of this
3055 * we don't reuse VMIDs within a generation.
3056 */
3057 if (pmap->pm_stage == PM_STAGE1) {
3058 mtx_lock_spin(&set->asid_set_mutex);
3059 if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch) {
3060 asid = COOKIE_TO_ASID(pmap->pm_cookie);
3061 KASSERT(asid >= ASID_FIRST_AVAILABLE &&
3062 asid < set->asid_set_size,
3063 ("pmap_release: pmap cookie has out-of-range asid"));
3064 bit_clear(set->asid_set, asid);
3065 }
3066 mtx_unlock_spin(&set->asid_set_mutex);
3067
3068 if (pmap->pm_bti != NULL) {
3069 rangeset_fini(pmap->pm_bti);
3070 free(pmap->pm_bti, M_DEVBUF);
3071 }
3072 }
3073
3074 m = PHYS_TO_VM_PAGE(pmap->pm_l0_paddr);
3075 vm_page_unwire_noq(m);
3076 vm_page_free_zero(m);
3077 }
3078
3079 static int
kvm_size(SYSCTL_HANDLER_ARGS)3080 kvm_size(SYSCTL_HANDLER_ARGS)
3081 {
3082 unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
3083
3084 return sysctl_handle_long(oidp, &ksize, 0, req);
3085 }
3086 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
3087 0, 0, kvm_size, "LU",
3088 "Size of KVM");
3089
3090 static int
kvm_free(SYSCTL_HANDLER_ARGS)3091 kvm_free(SYSCTL_HANDLER_ARGS)
3092 {
3093 unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
3094
3095 return sysctl_handle_long(oidp, &kfree, 0, req);
3096 }
3097 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
3098 0, 0, kvm_free, "LU",
3099 "Amount of KVM free");
3100
3101 /*
3102 * grow the number of kernel page table entries, if needed
3103 */
3104 static int
pmap_growkernel_nopanic(vm_offset_t addr)3105 pmap_growkernel_nopanic(vm_offset_t addr)
3106 {
3107 vm_page_t nkpg;
3108 pd_entry_t *l0, *l1, *l2;
3109
3110 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
3111
3112 addr = roundup2(addr, L2_SIZE);
3113 if (addr - 1 >= vm_map_max(kernel_map))
3114 addr = vm_map_max(kernel_map);
3115 if (kernel_vm_end < addr) {
3116 kasan_shadow_map(kernel_vm_end, addr - kernel_vm_end);
3117 kmsan_shadow_map(kernel_vm_end, addr - kernel_vm_end);
3118 }
3119 while (kernel_vm_end < addr) {
3120 l0 = pmap_l0(kernel_pmap, kernel_vm_end);
3121 KASSERT(pmap_load(l0) != 0,
3122 ("pmap_growkernel: No level 0 kernel entry"));
3123
3124 l1 = pmap_l0_to_l1(l0, kernel_vm_end);
3125 if (pmap_load(l1) == 0) {
3126 /* We need a new PDP entry */
3127 nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3128 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3129 if (nkpg == NULL)
3130 return (KERN_RESOURCE_SHORTAGE);
3131 nkpg->pindex = pmap_l1_pindex(kernel_vm_end);
3132 /* See the dmb() in _pmap_alloc_l3(). */
3133 dmb(ishst);
3134 pmap_store(l1, VM_PAGE_TO_PTE(nkpg) | L1_TABLE);
3135 continue; /* try again */
3136 }
3137 l2 = pmap_l1_to_l2(l1, kernel_vm_end);
3138 if (pmap_load(l2) != 0) {
3139 kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
3140 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3141 kernel_vm_end = vm_map_max(kernel_map);
3142 break;
3143 }
3144 continue;
3145 }
3146
3147 nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3148 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3149 if (nkpg == NULL)
3150 return (KERN_RESOURCE_SHORTAGE);
3151 nkpg->pindex = pmap_l2_pindex(kernel_vm_end);
3152 /* See the dmb() in _pmap_alloc_l3(). */
3153 dmb(ishst);
3154 pmap_store(l2, VM_PAGE_TO_PTE(nkpg) | L2_TABLE);
3155
3156 kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
3157 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3158 kernel_vm_end = vm_map_max(kernel_map);
3159 break;
3160 }
3161 }
3162 return (KERN_SUCCESS);
3163 }
3164
3165 int
pmap_growkernel(vm_offset_t addr)3166 pmap_growkernel(vm_offset_t addr)
3167 {
3168 int rv;
3169
3170 rv = pmap_growkernel_nopanic(addr);
3171 if (rv != KERN_SUCCESS && pmap_growkernel_panic)
3172 panic("pmap_growkernel: no memory to grow kernel");
3173 return (rv);
3174 }
3175
3176 /***************************************************
3177 * page management routines.
3178 ***************************************************/
3179
3180 static const uint64_t pc_freemask[_NPCM] = {
3181 [0 ... _NPCM - 2] = PC_FREEN,
3182 [_NPCM - 1] = PC_FREEL
3183 };
3184
3185 #ifdef PV_STATS
3186 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
3187
3188 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
3189 "Current number of pv entry chunks");
3190 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
3191 "Current number of pv entry chunks allocated");
3192 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
3193 "Current number of pv entry chunks frees");
3194 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
3195 "Number of times tried to get a chunk page but failed.");
3196
3197 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
3198 static int pv_entry_spare;
3199
3200 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
3201 "Current number of pv entry frees");
3202 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
3203 "Current number of pv entry allocs");
3204 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
3205 "Current number of pv entries");
3206 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
3207 "Current number of spare pv entries");
3208 #endif
3209
3210 /*
3211 * We are in a serious low memory condition. Resort to
3212 * drastic measures to free some pages so we can allocate
3213 * another pv entry chunk.
3214 *
3215 * Returns NULL if PV entries were reclaimed from the specified pmap.
3216 *
3217 * We do not, however, unmap 2mpages because subsequent accesses will
3218 * allocate per-page pv entries until repromotion occurs, thereby
3219 * exacerbating the shortage of free pv entries.
3220 */
3221 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)3222 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
3223 {
3224 struct pv_chunks_list *pvc;
3225 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
3226 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
3227 struct md_page *pvh;
3228 pd_entry_t *pde;
3229 pmap_t next_pmap, pmap;
3230 pt_entry_t *pte, tpte;
3231 pv_entry_t pv;
3232 vm_offset_t va;
3233 vm_page_t m, m_pc;
3234 struct spglist free;
3235 uint64_t inuse;
3236 int bit, field, freed, lvl;
3237
3238 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
3239 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
3240
3241 pmap = NULL;
3242 m_pc = NULL;
3243 SLIST_INIT(&free);
3244 bzero(&pc_marker_b, sizeof(pc_marker_b));
3245 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
3246 pc_marker = (struct pv_chunk *)&pc_marker_b;
3247 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
3248
3249 pvc = &pv_chunks[domain];
3250 mtx_lock(&pvc->pvc_lock);
3251 pvc->active_reclaims++;
3252 TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
3253 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
3254 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
3255 SLIST_EMPTY(&free)) {
3256 next_pmap = pc->pc_pmap;
3257 if (next_pmap == NULL) {
3258 /*
3259 * The next chunk is a marker. However, it is
3260 * not our marker, so active_reclaims must be
3261 * > 1. Consequently, the next_chunk code
3262 * will not rotate the pv_chunks list.
3263 */
3264 goto next_chunk;
3265 }
3266 mtx_unlock(&pvc->pvc_lock);
3267
3268 /*
3269 * A pv_chunk can only be removed from the pc_lru list
3270 * when both pvc->pvc_lock is owned and the
3271 * corresponding pmap is locked.
3272 */
3273 if (pmap != next_pmap) {
3274 if (pmap != NULL && pmap != locked_pmap)
3275 PMAP_UNLOCK(pmap);
3276 pmap = next_pmap;
3277 /* Avoid deadlock and lock recursion. */
3278 if (pmap > locked_pmap) {
3279 RELEASE_PV_LIST_LOCK(lockp);
3280 PMAP_LOCK(pmap);
3281 mtx_lock(&pvc->pvc_lock);
3282 continue;
3283 } else if (pmap != locked_pmap) {
3284 if (PMAP_TRYLOCK(pmap)) {
3285 mtx_lock(&pvc->pvc_lock);
3286 continue;
3287 } else {
3288 pmap = NULL; /* pmap is not locked */
3289 mtx_lock(&pvc->pvc_lock);
3290 pc = TAILQ_NEXT(pc_marker, pc_lru);
3291 if (pc == NULL ||
3292 pc->pc_pmap != next_pmap)
3293 continue;
3294 goto next_chunk;
3295 }
3296 }
3297 }
3298
3299 /*
3300 * Destroy every non-wired, 4 KB page mapping in the chunk.
3301 */
3302 freed = 0;
3303 for (field = 0; field < _NPCM; field++) {
3304 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
3305 inuse != 0; inuse &= ~(1UL << bit)) {
3306 bit = ffsl(inuse) - 1;
3307 pv = &pc->pc_pventry[field * 64 + bit];
3308 va = pv->pv_va;
3309 pde = pmap_pde(pmap, va, &lvl);
3310 if (lvl != 2)
3311 continue;
3312 pte = pmap_l2_to_l3(pde, va);
3313 tpte = pmap_load(pte);
3314 if ((tpte & ATTR_SW_WIRED) != 0)
3315 continue;
3316 if ((tpte & ATTR_CONTIGUOUS) != 0)
3317 (void)pmap_demote_l3c(pmap, pte, va);
3318 tpte = pmap_load_clear(pte);
3319 m = PTE_TO_VM_PAGE(tpte);
3320 if (pmap_pte_dirty(pmap, tpte))
3321 vm_page_dirty(m);
3322 if ((tpte & ATTR_AF) != 0) {
3323 pmap_s1_invalidate_page(pmap, va, true);
3324 vm_page_aflag_set(m, PGA_REFERENCED);
3325 }
3326 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3327 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3328 m->md.pv_gen++;
3329 if (TAILQ_EMPTY(&m->md.pv_list) &&
3330 (m->flags & PG_FICTITIOUS) == 0) {
3331 pvh = page_to_pvh(m);
3332 if (TAILQ_EMPTY(&pvh->pv_list)) {
3333 vm_page_aflag_clear(m,
3334 PGA_WRITEABLE);
3335 }
3336 }
3337 pc->pc_map[field] |= 1UL << bit;
3338 pmap_unuse_pt(pmap, va, pmap_load(pde), &free);
3339 freed++;
3340 }
3341 }
3342 if (freed == 0) {
3343 mtx_lock(&pvc->pvc_lock);
3344 goto next_chunk;
3345 }
3346 /* Every freed mapping is for a 4 KB page. */
3347 pmap_resident_count_dec(pmap, freed);
3348 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
3349 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
3350 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
3351 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3352 if (pc_is_free(pc)) {
3353 PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
3354 PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
3355 PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
3356 /* Entire chunk is free; return it. */
3357 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
3358 dump_drop_page(m_pc->phys_addr);
3359 mtx_lock(&pvc->pvc_lock);
3360 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
3361 break;
3362 }
3363 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3364 mtx_lock(&pvc->pvc_lock);
3365 /* One freed pv entry in locked_pmap is sufficient. */
3366 if (pmap == locked_pmap)
3367 break;
3368
3369 next_chunk:
3370 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
3371 TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
3372 if (pvc->active_reclaims == 1 && pmap != NULL) {
3373 /*
3374 * Rotate the pv chunks list so that we do not
3375 * scan the same pv chunks that could not be
3376 * freed (because they contained a wired
3377 * and/or superpage mapping) on every
3378 * invocation of reclaim_pv_chunk().
3379 */
3380 while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker){
3381 MPASS(pc->pc_pmap != NULL);
3382 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
3383 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
3384 }
3385 }
3386 }
3387 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
3388 TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
3389 pvc->active_reclaims--;
3390 mtx_unlock(&pvc->pvc_lock);
3391 if (pmap != NULL && pmap != locked_pmap)
3392 PMAP_UNLOCK(pmap);
3393 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
3394 m_pc = SLIST_FIRST(&free);
3395 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3396 /* Recycle a freed page table page. */
3397 m_pc->ref_count = 1;
3398 }
3399 vm_page_free_pages_toq(&free, true);
3400 return (m_pc);
3401 }
3402
3403 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)3404 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
3405 {
3406 vm_page_t m;
3407 int i, domain;
3408
3409 domain = PCPU_GET(domain);
3410 for (i = 0; i < vm_ndomains; i++) {
3411 m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
3412 if (m != NULL)
3413 break;
3414 domain = (domain + 1) % vm_ndomains;
3415 }
3416
3417 return (m);
3418 }
3419
3420 /*
3421 * free the pv_entry back to the free list
3422 */
3423 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)3424 free_pv_entry(pmap_t pmap, pv_entry_t pv)
3425 {
3426 struct pv_chunk *pc;
3427 int idx, field, bit;
3428
3429 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3430 PV_STAT(atomic_add_long(&pv_entry_frees, 1));
3431 PV_STAT(atomic_add_int(&pv_entry_spare, 1));
3432 PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
3433 pc = pv_to_chunk(pv);
3434 idx = pv - &pc->pc_pventry[0];
3435 field = idx / 64;
3436 bit = idx % 64;
3437 pc->pc_map[field] |= 1ul << bit;
3438 if (!pc_is_free(pc)) {
3439 /* 98% of the time, pc is already at the head of the list. */
3440 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
3441 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3442 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3443 }
3444 return;
3445 }
3446 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3447 free_pv_chunk(pc);
3448 }
3449
3450 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)3451 free_pv_chunk_dequeued(struct pv_chunk *pc)
3452 {
3453 vm_page_t m;
3454
3455 PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
3456 PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
3457 PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
3458 /* entire chunk is free, return it */
3459 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
3460 dump_drop_page(m->phys_addr);
3461 vm_page_unwire_noq(m);
3462 vm_page_free(m);
3463 }
3464
3465 static void
free_pv_chunk(struct pv_chunk * pc)3466 free_pv_chunk(struct pv_chunk *pc)
3467 {
3468 struct pv_chunks_list *pvc;
3469
3470 pvc = &pv_chunks[pc_to_domain(pc)];
3471 mtx_lock(&pvc->pvc_lock);
3472 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
3473 mtx_unlock(&pvc->pvc_lock);
3474 free_pv_chunk_dequeued(pc);
3475 }
3476
3477 static void
free_pv_chunk_batch(struct pv_chunklist * batch)3478 free_pv_chunk_batch(struct pv_chunklist *batch)
3479 {
3480 struct pv_chunks_list *pvc;
3481 struct pv_chunk *pc, *npc;
3482 int i;
3483
3484 for (i = 0; i < vm_ndomains; i++) {
3485 if (TAILQ_EMPTY(&batch[i]))
3486 continue;
3487 pvc = &pv_chunks[i];
3488 mtx_lock(&pvc->pvc_lock);
3489 TAILQ_FOREACH(pc, &batch[i], pc_list) {
3490 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
3491 }
3492 mtx_unlock(&pvc->pvc_lock);
3493 }
3494
3495 for (i = 0; i < vm_ndomains; i++) {
3496 TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
3497 free_pv_chunk_dequeued(pc);
3498 }
3499 }
3500 }
3501
3502 /*
3503 * Returns a new PV entry, allocating a new PV chunk from the system when
3504 * needed. If this PV chunk allocation fails and a PV list lock pointer was
3505 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
3506 * returned.
3507 *
3508 * The given PV list lock may be released.
3509 */
3510 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)3511 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
3512 {
3513 struct pv_chunks_list *pvc;
3514 int bit, field;
3515 pv_entry_t pv;
3516 struct pv_chunk *pc;
3517 vm_page_t m;
3518
3519 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3520 PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
3521 retry:
3522 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3523 if (pc != NULL) {
3524 for (field = 0; field < _NPCM; field++) {
3525 if (pc->pc_map[field]) {
3526 bit = ffsl(pc->pc_map[field]) - 1;
3527 break;
3528 }
3529 }
3530 if (field < _NPCM) {
3531 pv = &pc->pc_pventry[field * 64 + bit];
3532 pc->pc_map[field] &= ~(1ul << bit);
3533 /* If this was the last item, move it to tail */
3534 if (pc_is_full(pc)) {
3535 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3536 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
3537 pc_list);
3538 }
3539 PV_STAT(atomic_add_long(&pv_entry_count, 1));
3540 PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
3541 return (pv);
3542 }
3543 }
3544 /* No free items, allocate another chunk */
3545 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
3546 if (m == NULL) {
3547 if (lockp == NULL) {
3548 PV_STAT(pc_chunk_tryfail++);
3549 return (NULL);
3550 }
3551 m = reclaim_pv_chunk(pmap, lockp);
3552 if (m == NULL)
3553 goto retry;
3554 }
3555 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3556 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3557 dump_add_page(m->phys_addr);
3558 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3559 pc->pc_pmap = pmap;
3560 memcpy(pc->pc_map, pc_freemask, sizeof(pc_freemask));
3561 pc->pc_map[0] &= ~1ul; /* preallocated bit 0 */
3562 pvc = &pv_chunks[vm_page_domain(m)];
3563 mtx_lock(&pvc->pvc_lock);
3564 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
3565 mtx_unlock(&pvc->pvc_lock);
3566 pv = &pc->pc_pventry[0];
3567 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3568 PV_STAT(atomic_add_long(&pv_entry_count, 1));
3569 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
3570 return (pv);
3571 }
3572
3573 /*
3574 * Ensure that the number of spare PV entries in the specified pmap meets or
3575 * exceeds the given count, "needed".
3576 *
3577 * The given PV list lock may be released.
3578 */
3579 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)3580 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
3581 {
3582 struct pv_chunks_list *pvc;
3583 struct pch new_tail[PMAP_MEMDOM];
3584 struct pv_chunk *pc;
3585 vm_page_t m;
3586 int avail, free, i;
3587 bool reclaimed;
3588
3589 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3590 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
3591
3592 /*
3593 * Newly allocated PV chunks must be stored in a private list until
3594 * the required number of PV chunks have been allocated. Otherwise,
3595 * reclaim_pv_chunk() could recycle one of these chunks. In
3596 * contrast, these chunks must be added to the pmap upon allocation.
3597 */
3598 for (i = 0; i < PMAP_MEMDOM; i++)
3599 TAILQ_INIT(&new_tail[i]);
3600 retry:
3601 avail = 0;
3602 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
3603 bit_count((bitstr_t *)pc->pc_map, 0,
3604 sizeof(pc->pc_map) * NBBY, &free);
3605 if (free == 0)
3606 break;
3607 avail += free;
3608 if (avail >= needed)
3609 break;
3610 }
3611 for (reclaimed = false; avail < needed; avail += _NPCPV) {
3612 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
3613 if (m == NULL) {
3614 m = reclaim_pv_chunk(pmap, lockp);
3615 if (m == NULL)
3616 goto retry;
3617 reclaimed = true;
3618 }
3619 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3620 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3621 dump_add_page(m->phys_addr);
3622 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3623 pc->pc_pmap = pmap;
3624 memcpy(pc->pc_map, pc_freemask, sizeof(pc_freemask));
3625 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3626 TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
3627 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
3628
3629 /*
3630 * The reclaim might have freed a chunk from the current pmap.
3631 * If that chunk contained available entries, we need to
3632 * re-count the number of available entries.
3633 */
3634 if (reclaimed)
3635 goto retry;
3636 }
3637 for (i = 0; i < vm_ndomains; i++) {
3638 if (TAILQ_EMPTY(&new_tail[i]))
3639 continue;
3640 pvc = &pv_chunks[i];
3641 mtx_lock(&pvc->pvc_lock);
3642 TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
3643 mtx_unlock(&pvc->pvc_lock);
3644 }
3645 }
3646
3647 /*
3648 * First find and then remove the pv entry for the specified pmap and virtual
3649 * address from the specified pv list. Returns the pv entry if found and NULL
3650 * otherwise. This operation can be performed on pv lists for either 4KB or
3651 * 2MB page mappings.
3652 */
3653 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)3654 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3655 {
3656 pv_entry_t pv;
3657
3658 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3659 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3660 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3661 pvh->pv_gen++;
3662 break;
3663 }
3664 }
3665 return (pv);
3666 }
3667
3668 /*
3669 * After demotion from a 2MB page mapping to 512 4KB page mappings,
3670 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
3671 * entries for each of the 4KB page mappings.
3672 */
3673 static void
pmap_pv_demote_l2(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)3674 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3675 struct rwlock **lockp)
3676 {
3677 struct md_page *pvh;
3678 struct pv_chunk *pc;
3679 pv_entry_t pv;
3680 vm_offset_t va_last;
3681 vm_page_t m;
3682 int bit, field;
3683
3684 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3685 KASSERT((va & L2_OFFSET) == 0,
3686 ("pmap_pv_demote_l2: va is not 2mpage aligned"));
3687 KASSERT((pa & L2_OFFSET) == 0,
3688 ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
3689 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3690
3691 /*
3692 * Transfer the 2mpage's pv entry for this mapping to the first
3693 * page's pv list. Once this transfer begins, the pv list lock
3694 * must not be released until the last pv entry is reinstantiated.
3695 */
3696 pvh = pa_to_pvh(pa);
3697 pv = pmap_pvh_remove(pvh, pmap, va);
3698 KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
3699 m = PHYS_TO_VM_PAGE(pa);
3700 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3701 m->md.pv_gen++;
3702 /* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
3703 PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
3704 va_last = va + L2_SIZE - PAGE_SIZE;
3705 for (;;) {
3706 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3707 KASSERT(!pc_is_full(pc), ("pmap_pv_demote_l2: missing spare"));
3708 for (field = 0; field < _NPCM; field++) {
3709 while (pc->pc_map[field]) {
3710 bit = ffsl(pc->pc_map[field]) - 1;
3711 pc->pc_map[field] &= ~(1ul << bit);
3712 pv = &pc->pc_pventry[field * 64 + bit];
3713 va += PAGE_SIZE;
3714 pv->pv_va = va;
3715 m++;
3716 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3717 ("pmap_pv_demote_l2: page %p is not managed", m));
3718 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3719 m->md.pv_gen++;
3720 if (va == va_last)
3721 goto out;
3722 }
3723 }
3724 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3725 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3726 }
3727 out:
3728 if (pc_is_full(pc)) {
3729 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3730 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3731 }
3732 PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
3733 PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
3734 }
3735
3736 /*
3737 * First find and then destroy the pv entry for the specified pmap and virtual
3738 * address. This operation can be performed on pv lists for either 4KB or 2MB
3739 * page mappings.
3740 */
3741 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)3742 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3743 {
3744 pv_entry_t pv;
3745
3746 pv = pmap_pvh_remove(pvh, pmap, va);
3747 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3748 free_pv_entry(pmap, pv);
3749 }
3750
3751 /*
3752 * Conditionally create the PV entry for a 4KB page mapping if the required
3753 * memory can be allocated without resorting to reclamation.
3754 */
3755 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)3756 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
3757 struct rwlock **lockp)
3758 {
3759 pv_entry_t pv;
3760
3761 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3762 /* Pass NULL instead of the lock pointer to disable reclamation. */
3763 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
3764 pv->pv_va = va;
3765 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3766 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3767 m->md.pv_gen++;
3768 return (true);
3769 } else
3770 return (false);
3771 }
3772
3773 /*
3774 * Create the PV entry for a 2MB page mapping. Always returns true unless the
3775 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
3776 * false if the PV entry cannot be allocated without resorting to reclamation.
3777 */
3778 static bool
pmap_pv_insert_l2(pmap_t pmap,vm_offset_t va,pd_entry_t l2e,u_int flags,struct rwlock ** lockp)3779 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
3780 struct rwlock **lockp)
3781 {
3782 struct md_page *pvh;
3783 pv_entry_t pv;
3784 vm_paddr_t pa;
3785
3786 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3787 /* Pass NULL instead of the lock pointer to disable reclamation. */
3788 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
3789 NULL : lockp)) == NULL)
3790 return (false);
3791 pv->pv_va = va;
3792 pa = PTE_TO_PHYS(l2e);
3793 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3794 pvh = pa_to_pvh(pa);
3795 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3796 pvh->pv_gen++;
3797 return (true);
3798 }
3799
3800 /*
3801 * Conditionally creates the PV entries for a L3C superpage mapping if
3802 * the required memory can be allocated without resorting to reclamation.
3803 */
3804 static bool
pmap_pv_insert_l3c(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)3805 pmap_pv_insert_l3c(pmap_t pmap, vm_offset_t va, vm_page_t m,
3806 struct rwlock **lockp)
3807 {
3808 pv_entry_t pv;
3809 vm_offset_t tva;
3810 vm_paddr_t pa __diagused;
3811 vm_page_t mt;
3812
3813 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3814 KASSERT((va & L3C_OFFSET) == 0,
3815 ("pmap_pv_insert_l3c: va is not aligned"));
3816 pa = VM_PAGE_TO_PHYS(m);
3817 KASSERT((pa & L3C_OFFSET) == 0,
3818 ("pmap_pv_insert_l3c: pa is not aligned"));
3819 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3820 for (mt = m, tva = va; mt < &m[L3C_ENTRIES]; mt++, tva += L3_SIZE) {
3821 /* Pass NULL instead of lockp to disable reclamation. */
3822 pv = get_pv_entry(pmap, NULL);
3823 if (__predict_false(pv == NULL)) {
3824 while (tva > va) {
3825 mt--;
3826 tva -= L3_SIZE;
3827 pmap_pvh_free(&mt->md, pmap, tva);
3828 }
3829 return (false);
3830 }
3831 pv->pv_va = tva;
3832 TAILQ_INSERT_TAIL(&mt->md.pv_list, pv, pv_next);
3833 mt->md.pv_gen++;
3834 }
3835 return (true);
3836 }
3837
3838 static void
pmap_remove_kernel_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t va)3839 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
3840 {
3841 pt_entry_t newl2, oldl2 __diagused;
3842 vm_page_t ml3;
3843 vm_paddr_t ml3pa;
3844
3845 KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
3846 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
3847 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3848
3849 ml3 = pmap_remove_pt_page(pmap, va);
3850 if (ml3 == NULL)
3851 panic("pmap_remove_kernel_l2: Missing pt page");
3852
3853 ml3pa = VM_PAGE_TO_PHYS(ml3);
3854 newl2 = PHYS_TO_PTE(ml3pa) | L2_TABLE;
3855
3856 /*
3857 * If this page table page was unmapped by a promotion, then it
3858 * contains valid mappings. Zero it to invalidate those mappings.
3859 */
3860 if (vm_page_any_valid(ml3))
3861 pagezero((void *)PHYS_TO_DMAP(ml3pa));
3862
3863 /*
3864 * Demote the mapping. The caller must have already invalidated the
3865 * mapping (i.e., the "break" in break-before-make).
3866 */
3867 oldl2 = pmap_load_store(l2, newl2);
3868 KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
3869 __func__, l2, oldl2));
3870 }
3871
3872 /*
3873 * pmap_remove_l2: Do the things to unmap a level 2 superpage.
3874 */
3875 static int
pmap_remove_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t sva,pd_entry_t l1e,struct spglist * free,struct rwlock ** lockp)3876 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
3877 pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
3878 {
3879 struct md_page *pvh;
3880 pt_entry_t old_l2;
3881 vm_page_t m, ml3, mt;
3882
3883 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3884 KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
3885 old_l2 = pmap_load_clear(l2);
3886 KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
3887 ("pmap_remove_l2: L2e %lx is not a block mapping", old_l2));
3888
3889 /*
3890 * Since a promotion must break the 4KB page mappings before making
3891 * the 2MB page mapping, a pmap_s1_invalidate_page() suffices.
3892 */
3893 pmap_s1_invalidate_page(pmap, sva, true);
3894
3895 if (old_l2 & ATTR_SW_WIRED)
3896 pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
3897 pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
3898 if (old_l2 & ATTR_SW_MANAGED) {
3899 m = PTE_TO_VM_PAGE(old_l2);
3900 pvh = page_to_pvh(m);
3901 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3902 pmap_pvh_free(pvh, pmap, sva);
3903 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++) {
3904 if (pmap_pte_dirty(pmap, old_l2))
3905 vm_page_dirty(mt);
3906 if (old_l2 & ATTR_AF)
3907 vm_page_aflag_set(mt, PGA_REFERENCED);
3908 if (TAILQ_EMPTY(&mt->md.pv_list) &&
3909 TAILQ_EMPTY(&pvh->pv_list))
3910 vm_page_aflag_clear(mt, PGA_WRITEABLE);
3911 }
3912 }
3913 if (pmap == kernel_pmap) {
3914 pmap_remove_kernel_l2(pmap, l2, sva);
3915 } else {
3916 ml3 = pmap_remove_pt_page(pmap, sva);
3917 if (ml3 != NULL) {
3918 KASSERT(vm_page_any_valid(ml3),
3919 ("pmap_remove_l2: l3 page not promoted"));
3920 pmap_resident_count_dec(pmap, 1);
3921 KASSERT(ml3->ref_count == NL3PG,
3922 ("pmap_remove_l2: l3 page ref count error"));
3923 ml3->ref_count = 0;
3924 pmap_add_delayed_free_list(ml3, free, false);
3925 }
3926 }
3927 return (pmap_unuse_pt(pmap, sva, l1e, free));
3928 }
3929
3930 /*
3931 * pmap_remove_l3: do the things to unmap a page in a process
3932 */
3933 static int
pmap_remove_l3(pmap_t pmap,pt_entry_t * l3,vm_offset_t va,pd_entry_t l2e,struct spglist * free,struct rwlock ** lockp)3934 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
3935 pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
3936 {
3937 struct md_page *pvh;
3938 pt_entry_t old_l3;
3939 vm_page_t m;
3940
3941 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3942 old_l3 = pmap_load(l3);
3943 if ((old_l3 & ATTR_CONTIGUOUS) != 0)
3944 (void)pmap_demote_l3c(pmap, l3, va);
3945 old_l3 = pmap_load_clear(l3);
3946 pmap_s1_invalidate_page(pmap, va, true);
3947 if (old_l3 & ATTR_SW_WIRED)
3948 pmap->pm_stats.wired_count -= 1;
3949 pmap_resident_count_dec(pmap, 1);
3950 if (old_l3 & ATTR_SW_MANAGED) {
3951 m = PTE_TO_VM_PAGE(old_l3);
3952 if (pmap_pte_dirty(pmap, old_l3))
3953 vm_page_dirty(m);
3954 if (old_l3 & ATTR_AF)
3955 vm_page_aflag_set(m, PGA_REFERENCED);
3956 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3957 pmap_pvh_free(&m->md, pmap, va);
3958 if (TAILQ_EMPTY(&m->md.pv_list) &&
3959 (m->flags & PG_FICTITIOUS) == 0) {
3960 pvh = page_to_pvh(m);
3961 if (TAILQ_EMPTY(&pvh->pv_list))
3962 vm_page_aflag_clear(m, PGA_WRITEABLE);
3963 }
3964 }
3965 return (pmap_unuse_pt(pmap, va, l2e, free));
3966 }
3967
3968 /*
3969 * Removes the specified L3C superpage mapping. Requests TLB invalidations
3970 * to be performed by the caller through the returned "*vap". Returns true
3971 * if the level 3 table "ml3" was unmapped and added to the spglist "free".
3972 * Otherwise, returns false.
3973 */
3974 static bool
pmap_remove_l3c(pmap_t pmap,pt_entry_t * l3p,vm_offset_t va,vm_offset_t * vap,vm_offset_t va_next,vm_page_t ml3,struct spglist * free,struct rwlock ** lockp)3975 pmap_remove_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va, vm_offset_t *vap,
3976 vm_offset_t va_next, vm_page_t ml3, struct spglist *free,
3977 struct rwlock **lockp)
3978 {
3979 struct md_page *pvh;
3980 struct rwlock *new_lock;
3981 pt_entry_t first_l3e, l3e, *tl3p;
3982 vm_offset_t tva;
3983 vm_page_t m, mt;
3984
3985 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3986 KASSERT(((uintptr_t)l3p & ((L3C_ENTRIES * sizeof(pt_entry_t)) - 1)) ==
3987 0, ("pmap_remove_l3c: l3p is not aligned"));
3988 KASSERT((va & L3C_OFFSET) == 0,
3989 ("pmap_remove_l3c: va is not aligned"));
3990
3991 /*
3992 * Hardware accessed and dirty bit maintenance might only update a
3993 * single L3 entry, so we must combine the accessed and dirty bits
3994 * from this entire set of contiguous L3 entries.
3995 */
3996 first_l3e = pmap_load_clear(l3p);
3997 for (tl3p = l3p + 1; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
3998 l3e = pmap_load_clear(tl3p);
3999 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
4000 ("pmap_remove_l3c: l3e is missing ATTR_CONTIGUOUS"));
4001 if ((l3e & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) ==
4002 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RW)))
4003 first_l3e &= ~ATTR_S1_AP_RW_BIT;
4004 first_l3e |= l3e & ATTR_AF;
4005 }
4006 if ((first_l3e & ATTR_SW_WIRED) != 0)
4007 pmap->pm_stats.wired_count -= L3C_ENTRIES;
4008 pmap_resident_count_dec(pmap, L3C_ENTRIES);
4009 if ((first_l3e & ATTR_SW_MANAGED) != 0) {
4010 m = PTE_TO_VM_PAGE(first_l3e);
4011 new_lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4012 if (new_lock != *lockp) {
4013 if (*lockp != NULL) {
4014 /*
4015 * Pending TLB invalidations must be
4016 * performed before the PV list lock is
4017 * released. Otherwise, a concurrent
4018 * pmap_remove_all() on a physical page
4019 * could return while a stale TLB entry
4020 * still provides access to that page.
4021 */
4022 if (*vap != va_next) {
4023 pmap_invalidate_range(pmap, *vap, va,
4024 true);
4025 *vap = va_next;
4026 }
4027 rw_wunlock(*lockp);
4028 }
4029 *lockp = new_lock;
4030 rw_wlock(*lockp);
4031 }
4032 pvh = page_to_pvh(m);
4033 for (mt = m, tva = va; mt < &m[L3C_ENTRIES]; mt++, tva +=
4034 L3_SIZE) {
4035 if (pmap_pte_dirty(pmap, first_l3e))
4036 vm_page_dirty(mt);
4037 if ((first_l3e & ATTR_AF) != 0)
4038 vm_page_aflag_set(mt, PGA_REFERENCED);
4039 pmap_pvh_free(&mt->md, pmap, tva);
4040 if (TAILQ_EMPTY(&mt->md.pv_list) &&
4041 TAILQ_EMPTY(&pvh->pv_list))
4042 vm_page_aflag_clear(mt, PGA_WRITEABLE);
4043 }
4044 }
4045 if (*vap == va_next)
4046 *vap = va;
4047 if (ml3 != NULL) {
4048 ml3->ref_count -= L3C_ENTRIES;
4049 if (ml3->ref_count == 0) {
4050 _pmap_unwire_l3(pmap, va, ml3, free);
4051 return (true);
4052 }
4053 }
4054 return (false);
4055 }
4056
4057 /*
4058 * Remove the specified range of addresses from the L3 page table that is
4059 * identified by the given L2 entry.
4060 */
4061 static void
pmap_remove_l3_range(pmap_t pmap,pd_entry_t l2e,vm_offset_t sva,vm_offset_t eva,struct spglist * free,struct rwlock ** lockp)4062 pmap_remove_l3_range(pmap_t pmap, pd_entry_t l2e, vm_offset_t sva,
4063 vm_offset_t eva, struct spglist *free, struct rwlock **lockp)
4064 {
4065 struct md_page *pvh;
4066 struct rwlock *new_lock;
4067 pt_entry_t *l3, old_l3;
4068 vm_offset_t va;
4069 vm_page_t l3pg, m;
4070
4071 KASSERT(ADDR_IS_CANONICAL(sva),
4072 ("%s: Start address not in canonical form: %lx", __func__, sva));
4073 KASSERT(ADDR_IS_CANONICAL(eva) || eva == VM_MAX_USER_ADDRESS,
4074 ("%s: End address not in canonical form: %lx", __func__, eva));
4075
4076 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4077 KASSERT(rounddown2(sva, L2_SIZE) + L2_SIZE == roundup2(eva, L2_SIZE),
4078 ("pmap_remove_l3_range: range crosses an L3 page table boundary"));
4079 l3pg = !ADDR_IS_KERNEL(sva) ? PTE_TO_VM_PAGE(l2e) : NULL;
4080 va = eva;
4081 for (l3 = pmap_l2_to_l3(&l2e, sva); sva != eva; l3++, sva += L3_SIZE) {
4082 old_l3 = pmap_load(l3);
4083 if (!pmap_l3_valid(old_l3)) {
4084 if (va != eva) {
4085 pmap_invalidate_range(pmap, va, sva, true);
4086 va = eva;
4087 }
4088 continue;
4089 }
4090 if ((old_l3 & ATTR_CONTIGUOUS) != 0) {
4091 /*
4092 * Is this entire set of contiguous L3 entries being
4093 * removed? Handle the possibility that "eva" is zero
4094 * because of address wraparound.
4095 */
4096 if ((sva & L3C_OFFSET) == 0 &&
4097 sva + L3C_OFFSET <= eva - 1) {
4098 if (pmap_remove_l3c(pmap, l3, sva, &va, eva,
4099 l3pg, free, lockp)) {
4100 /* The L3 table was unmapped. */
4101 sva += L3C_SIZE;
4102 break;
4103 }
4104 l3 += L3C_ENTRIES - 1;
4105 sva += L3C_SIZE - L3_SIZE;
4106 continue;
4107 }
4108
4109 (void)pmap_demote_l3c(pmap, l3, sva);
4110 }
4111 old_l3 = pmap_load_clear(l3);
4112 if ((old_l3 & ATTR_SW_WIRED) != 0)
4113 pmap->pm_stats.wired_count--;
4114 pmap_resident_count_dec(pmap, 1);
4115 if ((old_l3 & ATTR_SW_MANAGED) != 0) {
4116 m = PTE_TO_VM_PAGE(old_l3);
4117 if (pmap_pte_dirty(pmap, old_l3))
4118 vm_page_dirty(m);
4119 if ((old_l3 & ATTR_AF) != 0)
4120 vm_page_aflag_set(m, PGA_REFERENCED);
4121 new_lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4122 if (new_lock != *lockp) {
4123 if (*lockp != NULL) {
4124 /*
4125 * Pending TLB invalidations must be
4126 * performed before the PV list lock is
4127 * released. Otherwise, a concurrent
4128 * pmap_remove_all() on a physical page
4129 * could return while a stale TLB entry
4130 * still provides access to that page.
4131 */
4132 if (va != eva) {
4133 pmap_invalidate_range(pmap, va,
4134 sva, true);
4135 va = eva;
4136 }
4137 rw_wunlock(*lockp);
4138 }
4139 *lockp = new_lock;
4140 rw_wlock(*lockp);
4141 }
4142 pmap_pvh_free(&m->md, pmap, sva);
4143 if (TAILQ_EMPTY(&m->md.pv_list) &&
4144 (m->flags & PG_FICTITIOUS) == 0) {
4145 pvh = page_to_pvh(m);
4146 if (TAILQ_EMPTY(&pvh->pv_list))
4147 vm_page_aflag_clear(m, PGA_WRITEABLE);
4148 }
4149 }
4150 if (l3pg != NULL && pmap_unwire_l3(pmap, sva, l3pg, free)) {
4151 /*
4152 * _pmap_unwire_l3() has already invalidated the TLB
4153 * entries at all levels for "sva". So, we need not
4154 * perform "sva += L3_SIZE;" here. Moreover, we need
4155 * not perform "va = sva;" if "sva" is at the start
4156 * of a new valid range consisting of a single page.
4157 */
4158 break;
4159 }
4160 if (va == eva)
4161 va = sva;
4162 }
4163 if (va != eva)
4164 pmap_invalidate_range(pmap, va, sva, true);
4165 }
4166
4167 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)4168 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
4169 {
4170 struct rwlock *lock;
4171 vm_offset_t va_next;
4172 pd_entry_t *l0, *l1, *l2;
4173 pt_entry_t l3_paddr;
4174 struct spglist free;
4175
4176 /*
4177 * Perform an unsynchronized read. This is, however, safe.
4178 */
4179 if (pmap->pm_stats.resident_count == 0)
4180 return;
4181
4182 SLIST_INIT(&free);
4183
4184 PMAP_LOCK(pmap);
4185 if (map_delete)
4186 pmap_bti_on_remove(pmap, sva, eva);
4187
4188 lock = NULL;
4189 for (; sva < eva; sva = va_next) {
4190 if (pmap->pm_stats.resident_count == 0)
4191 break;
4192
4193 l0 = pmap_l0(pmap, sva);
4194 if (pmap_load(l0) == 0) {
4195 va_next = (sva + L0_SIZE) & ~L0_OFFSET;
4196 if (va_next < sva)
4197 va_next = eva;
4198 continue;
4199 }
4200
4201 va_next = (sva + L1_SIZE) & ~L1_OFFSET;
4202 if (va_next < sva)
4203 va_next = eva;
4204 l1 = pmap_l0_to_l1(l0, sva);
4205 if (pmap_load(l1) == 0)
4206 continue;
4207 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
4208 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
4209 KASSERT(va_next <= eva,
4210 ("partial update of non-transparent 1G page "
4211 "l1 %#lx sva %#lx eva %#lx va_next %#lx",
4212 pmap_load(l1), sva, eva, va_next));
4213 MPASS(pmap != kernel_pmap);
4214 MPASS((pmap_load(l1) & ATTR_SW_MANAGED) == 0);
4215 pmap_clear(l1);
4216 pmap_s1_invalidate_page(pmap, sva, true);
4217 pmap_resident_count_dec(pmap, L1_SIZE / PAGE_SIZE);
4218 pmap_unuse_pt(pmap, sva, pmap_load(l0), &free);
4219 continue;
4220 }
4221
4222 /*
4223 * Calculate index for next page table.
4224 */
4225 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
4226 if (va_next < sva)
4227 va_next = eva;
4228
4229 l2 = pmap_l1_to_l2(l1, sva);
4230 l3_paddr = pmap_load(l2);
4231
4232 if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
4233 if (sva + L2_SIZE == va_next && eva >= va_next) {
4234 pmap_remove_l2(pmap, l2, sva, pmap_load(l1),
4235 &free, &lock);
4236 continue;
4237 } else if (pmap_demote_l2_locked(pmap, l2, sva,
4238 &lock) == NULL)
4239 continue;
4240 l3_paddr = pmap_load(l2);
4241 }
4242
4243 /*
4244 * Weed out invalid mappings.
4245 */
4246 if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
4247 continue;
4248
4249 /*
4250 * Limit our scan to either the end of the va represented
4251 * by the current page table page, or to the end of the
4252 * range being removed.
4253 */
4254 if (va_next > eva)
4255 va_next = eva;
4256
4257 pmap_remove_l3_range(pmap, l3_paddr, sva, va_next, &free,
4258 &lock);
4259 }
4260 if (lock != NULL)
4261 rw_wunlock(lock);
4262 PMAP_UNLOCK(pmap);
4263 vm_page_free_pages_toq(&free, true);
4264 }
4265
4266 /*
4267 * Remove the given range of addresses from the specified map.
4268 *
4269 * It is assumed that the start and end are properly
4270 * rounded to the page size.
4271 */
4272 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)4273 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4274 {
4275 pmap_remove1(pmap, sva, eva, false);
4276 }
4277
4278 /*
4279 * Remove the given range of addresses as part of a logical unmap
4280 * operation. This has the effect of calling pmap_remove(), but
4281 * also clears any metadata that should persist for the lifetime
4282 * of a logical mapping.
4283 */
4284 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)4285 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4286 {
4287 pmap_remove1(pmap, sva, eva, true);
4288 }
4289
4290 /*
4291 * Routine: pmap_remove_all
4292 * Function:
4293 * Removes this physical page from
4294 * all physical maps in which it resides.
4295 * Reflects back modify bits to the pager.
4296 *
4297 * Notes:
4298 * Original versions of this routine were very
4299 * inefficient because they iteratively called
4300 * pmap_remove (slow...)
4301 */
4302
4303 void
pmap_remove_all(vm_page_t m)4304 pmap_remove_all(vm_page_t m)
4305 {
4306 struct md_page *pvh;
4307 pv_entry_t pv;
4308 pmap_t pmap;
4309 struct rwlock *lock;
4310 pd_entry_t *pde, tpde;
4311 pt_entry_t *pte, tpte;
4312 vm_offset_t va;
4313 struct spglist free;
4314 int lvl, pvh_gen, md_gen;
4315
4316 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4317 ("pmap_remove_all: page %p is not managed", m));
4318 SLIST_INIT(&free);
4319 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4320 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
4321 rw_wlock(lock);
4322 retry:
4323 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4324 pmap = PV_PMAP(pv);
4325 if (!PMAP_TRYLOCK(pmap)) {
4326 pvh_gen = pvh->pv_gen;
4327 rw_wunlock(lock);
4328 PMAP_LOCK(pmap);
4329 rw_wlock(lock);
4330 if (pvh_gen != pvh->pv_gen) {
4331 PMAP_UNLOCK(pmap);
4332 goto retry;
4333 }
4334 }
4335 va = pv->pv_va;
4336 pte = pmap_pte_exists(pmap, va, 2, __func__);
4337 pmap_demote_l2_locked(pmap, pte, va, &lock);
4338 PMAP_UNLOCK(pmap);
4339 }
4340 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4341 pmap = PV_PMAP(pv);
4342 if (!PMAP_TRYLOCK(pmap)) {
4343 pvh_gen = pvh->pv_gen;
4344 md_gen = m->md.pv_gen;
4345 rw_wunlock(lock);
4346 PMAP_LOCK(pmap);
4347 rw_wlock(lock);
4348 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4349 PMAP_UNLOCK(pmap);
4350 goto retry;
4351 }
4352 }
4353 pmap_resident_count_dec(pmap, 1);
4354
4355 pde = pmap_pde(pmap, pv->pv_va, &lvl);
4356 KASSERT(pde != NULL,
4357 ("pmap_remove_all: no page directory entry found"));
4358 KASSERT(lvl == 2,
4359 ("pmap_remove_all: invalid pde level %d", lvl));
4360 tpde = pmap_load(pde);
4361
4362 pte = pmap_l2_to_l3(pde, pv->pv_va);
4363 tpte = pmap_load(pte);
4364 if ((tpte & ATTR_CONTIGUOUS) != 0)
4365 (void)pmap_demote_l3c(pmap, pte, pv->pv_va);
4366 tpte = pmap_load_clear(pte);
4367 if (tpte & ATTR_SW_WIRED)
4368 pmap->pm_stats.wired_count--;
4369 if ((tpte & ATTR_AF) != 0) {
4370 pmap_invalidate_page(pmap, pv->pv_va, true);
4371 vm_page_aflag_set(m, PGA_REFERENCED);
4372 }
4373
4374 /*
4375 * Update the vm_page_t clean and reference bits.
4376 */
4377 if (pmap_pte_dirty(pmap, tpte))
4378 vm_page_dirty(m);
4379 pmap_unuse_pt(pmap, pv->pv_va, tpde, &free);
4380 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4381 m->md.pv_gen++;
4382 free_pv_entry(pmap, pv);
4383 PMAP_UNLOCK(pmap);
4384 }
4385 vm_page_aflag_clear(m, PGA_WRITEABLE);
4386 rw_wunlock(lock);
4387 vm_page_free_pages_toq(&free, true);
4388 }
4389
4390 /*
4391 * Masks and sets bits in a level 2 page table entries in the specified pmap
4392 */
4393 static void
pmap_protect_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t sva,pt_entry_t mask,pt_entry_t nbits)4394 pmap_protect_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pt_entry_t mask,
4395 pt_entry_t nbits)
4396 {
4397 pd_entry_t old_l2;
4398 vm_page_t m, mt;
4399
4400 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4401 PMAP_ASSERT_STAGE1(pmap);
4402 KASSERT((sva & L2_OFFSET) == 0,
4403 ("pmap_protect_l2: sva is not 2mpage aligned"));
4404 old_l2 = pmap_load(l2);
4405 KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
4406 ("pmap_protect_l2: L2e %lx is not a block mapping", old_l2));
4407
4408 /*
4409 * Return if the L2 entry already has the desired access restrictions
4410 * in place.
4411 */
4412 if ((old_l2 & mask) == nbits)
4413 return;
4414
4415 while (!atomic_fcmpset_64(l2, &old_l2, (old_l2 & ~mask) | nbits))
4416 cpu_spinwait();
4417
4418 /*
4419 * When a dirty read/write superpage mapping is write protected,
4420 * update the dirty field of each of the superpage's constituent 4KB
4421 * pages.
4422 */
4423 if ((old_l2 & ATTR_SW_MANAGED) != 0 &&
4424 (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
4425 pmap_pte_dirty(pmap, old_l2)) {
4426 m = PTE_TO_VM_PAGE(old_l2);
4427 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4428 vm_page_dirty(mt);
4429 }
4430
4431 /*
4432 * Since a promotion must break the 4KB page mappings before making
4433 * the 2MB page mapping, a pmap_s1_invalidate_page() suffices.
4434 */
4435 pmap_s1_invalidate_page(pmap, sva, true);
4436 }
4437
4438 /*
4439 * Masks and sets bits in the specified L3C superpage mapping.
4440 *
4441 * Requests TLB invalidations to be performed by the caller through the
4442 * returned "*vap".
4443 */
4444 static void
pmap_mask_set_l3c(pmap_t pmap,pt_entry_t * l3p,vm_offset_t va,vm_offset_t * vap,vm_offset_t va_next,pt_entry_t mask,pt_entry_t nbits)4445 pmap_mask_set_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va,
4446 vm_offset_t *vap, vm_offset_t va_next, pt_entry_t mask, pt_entry_t nbits)
4447 {
4448 pt_entry_t l3e, *tl3p;
4449 vm_page_t m, mt;
4450 bool dirty;
4451
4452 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4453 KASSERT(((uintptr_t)l3p & ((L3C_ENTRIES * sizeof(pt_entry_t)) - 1)) ==
4454 0, ("pmap_mask_set_l3c: l3p is not aligned"));
4455 KASSERT((va & L3C_OFFSET) == 0,
4456 ("pmap_mask_set_l3c: va is not aligned"));
4457 dirty = false;
4458 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
4459 l3e = pmap_load(tl3p);
4460 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
4461 ("pmap_mask_set_l3c: l3e is missing ATTR_CONTIGUOUS"));
4462 while (!atomic_fcmpset_64(tl3p, &l3e, (l3e & ~mask) | nbits))
4463 cpu_spinwait();
4464 if ((l3e & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) ==
4465 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RW)))
4466 dirty = true;
4467 }
4468
4469 /*
4470 * When a dirty read/write superpage mapping is write protected,
4471 * update the dirty field of each of the superpage's constituent 4KB
4472 * pages.
4473 */
4474 if ((l3e & ATTR_SW_MANAGED) != 0 &&
4475 (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
4476 dirty) {
4477 m = PTE_TO_VM_PAGE(pmap_load(l3p));
4478 for (mt = m; mt < &m[L3C_ENTRIES]; mt++)
4479 vm_page_dirty(mt);
4480 }
4481
4482 if (*vap == va_next)
4483 *vap = va;
4484 }
4485
4486 /*
4487 * Masks and sets bits in last level page table entries in the specified
4488 * pmap and range
4489 */
4490 static void
pmap_mask_set_locked(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t mask,pt_entry_t nbits,bool invalidate)4491 pmap_mask_set_locked(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t mask,
4492 pt_entry_t nbits, bool invalidate)
4493 {
4494 vm_offset_t va, va_next;
4495 pd_entry_t *l0, *l1, *l2;
4496 pt_entry_t *l3p, l3;
4497
4498 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4499 for (; sva < eva; sva = va_next) {
4500 l0 = pmap_l0(pmap, sva);
4501 if (pmap_load(l0) == 0) {
4502 va_next = (sva + L0_SIZE) & ~L0_OFFSET;
4503 if (va_next < sva)
4504 va_next = eva;
4505 continue;
4506 }
4507
4508 va_next = (sva + L1_SIZE) & ~L1_OFFSET;
4509 if (va_next < sva)
4510 va_next = eva;
4511 l1 = pmap_l0_to_l1(l0, sva);
4512 if (pmap_load(l1) == 0)
4513 continue;
4514 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
4515 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
4516 KASSERT(va_next <= eva,
4517 ("partial update of non-transparent 1G page "
4518 "l1 %#lx sva %#lx eva %#lx va_next %#lx",
4519 pmap_load(l1), sva, eva, va_next));
4520 MPASS((pmap_load(l1) & ATTR_SW_MANAGED) == 0);
4521 if ((pmap_load(l1) & mask) != nbits) {
4522 pmap_store(l1, (pmap_load(l1) & ~mask) | nbits);
4523 if (invalidate)
4524 pmap_s1_invalidate_page(pmap, sva, true);
4525 }
4526 continue;
4527 }
4528
4529 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
4530 if (va_next < sva)
4531 va_next = eva;
4532
4533 l2 = pmap_l1_to_l2(l1, sva);
4534 if (pmap_load(l2) == 0)
4535 continue;
4536
4537 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
4538 if (sva + L2_SIZE == va_next && eva >= va_next) {
4539 pmap_protect_l2(pmap, l2, sva, mask, nbits);
4540 continue;
4541 } else if ((pmap_load(l2) & mask) == nbits ||
4542 pmap_demote_l2(pmap, l2, sva) == NULL)
4543 continue;
4544 }
4545 KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
4546 ("pmap_protect: Invalid L2 entry after demotion"));
4547
4548 if (va_next > eva)
4549 va_next = eva;
4550
4551 va = va_next;
4552 for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
4553 sva += L3_SIZE) {
4554 l3 = pmap_load(l3p);
4555
4556 /*
4557 * Go to the next L3 entry if the current one is
4558 * invalid or already has the desired access
4559 * restrictions in place. (The latter case occurs
4560 * frequently. For example, in a "buildworld"
4561 * workload, almost 1 out of 4 L3 entries already
4562 * have the desired restrictions.)
4563 */
4564 if (!pmap_l3_valid(l3) || (l3 & mask) == nbits) {
4565 if (va != va_next) {
4566 if (invalidate)
4567 pmap_s1_invalidate_range(pmap,
4568 va, sva, true);
4569 va = va_next;
4570 }
4571 if ((l3 & ATTR_CONTIGUOUS) != 0) {
4572 /*
4573 * Does this L3C page extend beyond
4574 * the requested range? Handle the
4575 * possibility that "va_next" is zero.
4576 */
4577 if ((sva | L3C_OFFSET) > va_next - 1)
4578 break;
4579
4580 /*
4581 * Skip ahead to the last L3_PAGE
4582 * within this L3C page.
4583 */
4584 l3p = (pt_entry_t *)((uintptr_t)l3p |
4585 ((L3C_ENTRIES - 1) *
4586 sizeof(pt_entry_t)));
4587 sva |= L3C_SIZE - L3_SIZE;
4588 }
4589 continue;
4590 }
4591
4592 if ((l3 & ATTR_CONTIGUOUS) != 0) {
4593 /*
4594 * Is this entire set of contiguous L3 entries
4595 * being protected? Handle the possibility
4596 * that "va_next" is zero because of address
4597 * wraparound.
4598 */
4599 if ((sva & L3C_OFFSET) == 0 &&
4600 sva + L3C_OFFSET <= va_next - 1) {
4601 pmap_mask_set_l3c(pmap, l3p, sva, &va,
4602 va_next, mask, nbits);
4603 l3p += L3C_ENTRIES - 1;
4604 sva += L3C_SIZE - L3_SIZE;
4605 continue;
4606 }
4607
4608 (void)pmap_demote_l3c(pmap, l3p, sva);
4609
4610 /*
4611 * The L3 entry's accessed bit may have changed.
4612 */
4613 l3 = pmap_load(l3p);
4614 }
4615 while (!atomic_fcmpset_64(l3p, &l3, (l3 & ~mask) |
4616 nbits))
4617 cpu_spinwait();
4618
4619 /*
4620 * When a dirty read/write mapping is write protected,
4621 * update the page's dirty field.
4622 */
4623 if ((l3 & ATTR_SW_MANAGED) != 0 &&
4624 (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
4625 pmap_pte_dirty(pmap, l3))
4626 vm_page_dirty(PTE_TO_VM_PAGE(l3));
4627
4628 if (va == va_next)
4629 va = sva;
4630 }
4631 if (va != va_next && invalidate)
4632 pmap_s1_invalidate_range(pmap, va, sva, true);
4633 }
4634 }
4635
4636 static void
pmap_mask_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t mask,pt_entry_t nbits,bool invalidate)4637 pmap_mask_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t mask,
4638 pt_entry_t nbits, bool invalidate)
4639 {
4640 PMAP_LOCK(pmap);
4641 pmap_mask_set_locked(pmap, sva, eva, mask, nbits, invalidate);
4642 PMAP_UNLOCK(pmap);
4643 }
4644
4645 /*
4646 * Set the physical protection on the
4647 * specified range of this map as requested.
4648 */
4649 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)4650 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4651 {
4652 pt_entry_t mask, nbits;
4653
4654 PMAP_ASSERT_STAGE1(pmap);
4655 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4656 if (prot == VM_PROT_NONE) {
4657 pmap_remove(pmap, sva, eva);
4658 return;
4659 }
4660
4661 mask = nbits = 0;
4662 if ((prot & VM_PROT_WRITE) == 0) {
4663 mask |= ATTR_S1_AP_RW_BIT | ATTR_SW_DBM;
4664 nbits |= ATTR_S1_AP(ATTR_S1_AP_RO);
4665 }
4666 if ((prot & VM_PROT_EXECUTE) == 0) {
4667 mask |= ATTR_S1_XN;
4668 nbits |= ATTR_S1_XN;
4669 }
4670 if (pmap == kernel_pmap) {
4671 mask |= ATTR_KERN_GP;
4672 nbits |= ATTR_KERN_GP;
4673 }
4674 if (mask == 0)
4675 return;
4676
4677 pmap_mask_set(pmap, sva, eva, mask, nbits, true);
4678 }
4679
4680 void
pmap_disable_promotion(vm_offset_t sva,vm_size_t size)4681 pmap_disable_promotion(vm_offset_t sva, vm_size_t size)
4682 {
4683
4684 MPASS((sva & L3_OFFSET) == 0);
4685 MPASS(((sva + size) & L3_OFFSET) == 0);
4686
4687 pmap_mask_set(kernel_pmap, sva, sva + size, ATTR_SW_NO_PROMOTE,
4688 ATTR_SW_NO_PROMOTE, false);
4689 }
4690
4691 /*
4692 * Inserts the specified page table page into the specified pmap's collection
4693 * of idle page table pages. Each of a pmap's page table pages is responsible
4694 * for mapping a distinct range of virtual addresses. The pmap's collection is
4695 * ordered by this virtual address range.
4696 *
4697 * If "promoted" is false, then the page table page "mpte" must be zero filled;
4698 * "mpte"'s valid field will be set to 0.
4699 *
4700 * If "promoted" is true and "all_l3e_AF_set" is false, then "mpte" must
4701 * contain valid mappings with identical attributes except for ATTR_AF;
4702 * "mpte"'s valid field will be set to 1.
4703 *
4704 * If "promoted" and "all_l3e_AF_set" are both true, then "mpte" must contain
4705 * valid mappings with identical attributes including ATTR_AF; "mpte"'s valid
4706 * field will be set to VM_PAGE_BITS_ALL.
4707 */
4708 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool all_l3e_AF_set)4709 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4710 bool all_l3e_AF_set)
4711 {
4712
4713 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4714 KASSERT(promoted || !all_l3e_AF_set,
4715 ("a zero-filled PTP can't have ATTR_AF set in every PTE"));
4716 mpte->valid = promoted ? (all_l3e_AF_set ? VM_PAGE_BITS_ALL : 1) : 0;
4717 return (vm_radix_insert(&pmap->pm_root, mpte));
4718 }
4719
4720 /*
4721 * Removes the page table page mapping the specified virtual address from the
4722 * specified pmap's collection of idle page table pages, and returns it.
4723 * Otherwise, returns NULL if there is no page table page corresponding to the
4724 * specified virtual address.
4725 */
4726 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4727 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4728 {
4729
4730 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4731 return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
4732 }
4733
4734 /*
4735 * Performs a break-before-make update of a pmap entry. This is needed when
4736 * either promoting or demoting pages to ensure the TLB doesn't get into an
4737 * inconsistent state.
4738 */
4739 static void
pmap_update_entry(pmap_t pmap,pd_entry_t * ptep,pd_entry_t newpte,vm_offset_t va,vm_size_t size)4740 pmap_update_entry(pmap_t pmap, pd_entry_t *ptep, pd_entry_t newpte,
4741 vm_offset_t va, vm_size_t size)
4742 {
4743 register_t intr;
4744
4745 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4746 KASSERT((newpte & ATTR_SW_NO_PROMOTE) == 0,
4747 ("%s: Updating non-promote pte", __func__));
4748
4749 /*
4750 * Ensure we don't get switched out with the page table in an
4751 * inconsistent state. We also need to ensure no interrupts fire
4752 * as they may make use of an address we are about to invalidate.
4753 */
4754 intr = intr_disable();
4755
4756 /*
4757 * Clear the old mapping's valid bit, but leave the rest of the entry
4758 * unchanged, so that a lockless, concurrent pmap_kextract() can still
4759 * lookup the physical address.
4760 */
4761 pmap_clear_bits(ptep, ATTR_DESCR_VALID);
4762
4763 /*
4764 * When promoting, the L{1,2}_TABLE entry that is being replaced might
4765 * be cached, so we invalidate intermediate entries as well as final
4766 * entries.
4767 */
4768 pmap_s1_invalidate_range(pmap, va, va + size, false);
4769
4770 /* Create the new mapping */
4771 pmap_store(ptep, newpte);
4772 dsb(ishst);
4773
4774 intr_restore(intr);
4775 }
4776
4777 /*
4778 * Performs a break-before-make update of an ATTR_CONTIGUOUS mapping.
4779 */
4780 static void __nosanitizecoverage
pmap_update_strided(pmap_t pmap,pd_entry_t * ptep,pd_entry_t * ptep_end,pd_entry_t newpte,vm_offset_t va,vm_offset_t stride,vm_size_t size)4781 pmap_update_strided(pmap_t pmap, pd_entry_t *ptep, pd_entry_t *ptep_end,
4782 pd_entry_t newpte, vm_offset_t va, vm_offset_t stride, vm_size_t size)
4783 {
4784 pd_entry_t *lip;
4785 register_t intr;
4786
4787 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4788 KASSERT((newpte & ATTR_SW_NO_PROMOTE) == 0,
4789 ("%s: Updating non-promote pte", __func__));
4790
4791 /*
4792 * Ensure we don't get switched out with the page table in an
4793 * inconsistent state. We also need to ensure no interrupts fire
4794 * as they may make use of an address we are about to invalidate.
4795 */
4796 intr = intr_disable();
4797
4798 /*
4799 * Clear the old mapping's valid bits, but leave the rest of each
4800 * entry unchanged, so that a lockless, concurrent pmap_kextract() can
4801 * still lookup the physical address.
4802 */
4803 for (lip = ptep; lip < ptep_end; lip++)
4804 pmap_clear_bits(lip, ATTR_DESCR_VALID);
4805
4806 /* Only final entries are changing. */
4807 pmap_s1_invalidate_strided(pmap, va, va + size, stride, true);
4808
4809 /* Create the new mapping. */
4810 for (lip = ptep; lip < ptep_end; lip++) {
4811 pmap_store(lip, newpte);
4812 newpte += stride;
4813 }
4814 dsb(ishst);
4815
4816 intr_restore(intr);
4817 }
4818
4819 #if VM_NRESERVLEVEL > 0
4820 /*
4821 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
4822 * replace the many pv entries for the 4KB page mappings by a single pv entry
4823 * for the 2MB page mapping.
4824 */
4825 static void
pmap_pv_promote_l2(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)4826 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
4827 struct rwlock **lockp)
4828 {
4829 struct md_page *pvh;
4830 pv_entry_t pv;
4831 vm_offset_t va_last;
4832 vm_page_t m;
4833
4834 KASSERT((pa & L2_OFFSET) == 0,
4835 ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
4836 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4837
4838 /*
4839 * Transfer the first page's pv entry for this mapping to the 2mpage's
4840 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
4841 * a transfer avoids the possibility that get_pv_entry() calls
4842 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
4843 * mappings that is being promoted.
4844 */
4845 m = PHYS_TO_VM_PAGE(pa);
4846 va = va & ~L2_OFFSET;
4847 pv = pmap_pvh_remove(&m->md, pmap, va);
4848 KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
4849 pvh = page_to_pvh(m);
4850 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4851 pvh->pv_gen++;
4852 /* Free the remaining NPTEPG - 1 pv entries. */
4853 va_last = va + L2_SIZE - PAGE_SIZE;
4854 do {
4855 m++;
4856 va += PAGE_SIZE;
4857 pmap_pvh_free(&m->md, pmap, va);
4858 } while (va < va_last);
4859 }
4860
4861 /*
4862 * Tries to promote the 512, contiguous 4KB page mappings that are within a
4863 * single level 2 table entry to a single 2MB page mapping. For promotion
4864 * to occur, two conditions must be met: (1) the 4KB page mappings must map
4865 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
4866 * identical characteristics.
4867 */
4868 static bool
pmap_promote_l2(pmap_t pmap,pd_entry_t * l2,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)4869 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va, vm_page_t mpte,
4870 struct rwlock **lockp)
4871 {
4872 pt_entry_t all_l3e_AF, *firstl3, *l3, newl2, oldl3, pa;
4873
4874 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4875
4876 /*
4877 * Currently, this function only supports promotion on stage 1 pmaps
4878 * because it tests stage 1 specific fields and performs a break-
4879 * before-make sequence that is incorrect for stage 2 pmaps.
4880 */
4881 if (pmap->pm_stage != PM_STAGE1 || !pmap_ps_enabled(pmap))
4882 return (false);
4883
4884 /*
4885 * Examine the first L3E in the specified PTP. Abort if this L3E is
4886 * ineligible for promotion...
4887 */
4888 firstl3 = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l2)));
4889 newl2 = pmap_load(firstl3);
4890 if ((newl2 & ATTR_SW_NO_PROMOTE) != 0)
4891 return (false);
4892 /* ... is not the first physical page within an L2 block */
4893 if ((PTE_TO_PHYS(newl2) & L2_OFFSET) != 0 ||
4894 ((newl2 & ATTR_DESCR_MASK) != L3_PAGE)) { /* ... or is invalid */
4895 counter_u64_add(pmap_l2_p_failures, 1);
4896 CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
4897 " in pmap %p", va, pmap);
4898 return (false);
4899 }
4900
4901 /*
4902 * Both here and in the below "for" loop, to allow for repromotion
4903 * after MADV_FREE, conditionally write protect a clean L3E before
4904 * possibly aborting the promotion due to other L3E attributes. Why?
4905 * Suppose that MADV_FREE is applied to a part of a superpage, the
4906 * address range [S, E). pmap_advise() will demote the superpage
4907 * mapping, destroy the 4KB page mapping at the end of [S, E), and
4908 * set AP_RO and clear AF in the L3Es for the rest of [S, E). Later,
4909 * imagine that the memory in [S, E) is recycled, but the last 4KB
4910 * page in [S, E) is not the last to be rewritten, or simply accessed.
4911 * In other words, there is still a 4KB page in [S, E), call it P,
4912 * that is writeable but AP_RO is set and AF is clear in P's L3E.
4913 * Unless we write protect P before aborting the promotion, if and
4914 * when P is finally rewritten, there won't be a page fault to trigger
4915 * repromotion.
4916 */
4917 setl2:
4918 if ((newl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
4919 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
4920 /*
4921 * When the mapping is clean, i.e., ATTR_S1_AP_RO is set,
4922 * ATTR_SW_DBM can be cleared without a TLB invalidation.
4923 */
4924 if (!atomic_fcmpset_64(firstl3, &newl2, newl2 & ~ATTR_SW_DBM))
4925 goto setl2;
4926 newl2 &= ~ATTR_SW_DBM;
4927 CTR2(KTR_PMAP, "pmap_promote_l2: protect for va %#lx"
4928 " in pmap %p", va & ~L2_OFFSET, pmap);
4929 }
4930
4931 /*
4932 * Examine each of the other L3Es in the specified PTP. Abort if this
4933 * L3E maps an unexpected 4KB physical page or does not have identical
4934 * characteristics to the first L3E. If ATTR_AF is not set in every
4935 * PTE, then request that the PTP be refilled on demotion.
4936 */
4937 all_l3e_AF = newl2 & ATTR_AF;
4938 pa = (PTE_TO_PHYS(newl2) | (newl2 & ATTR_DESCR_MASK))
4939 + L2_SIZE - PAGE_SIZE;
4940 for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
4941 oldl3 = pmap_load(l3);
4942 if ((PTE_TO_PHYS(oldl3) | (oldl3 & ATTR_DESCR_MASK)) != pa) {
4943 counter_u64_add(pmap_l2_p_failures, 1);
4944 CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
4945 " in pmap %p", va, pmap);
4946 return (false);
4947 }
4948 setl3:
4949 if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
4950 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
4951 /*
4952 * When the mapping is clean, i.e., ATTR_S1_AP_RO is
4953 * set, ATTR_SW_DBM can be cleared without a TLB
4954 * invalidation.
4955 */
4956 if (!atomic_fcmpset_64(l3, &oldl3, oldl3 &
4957 ~ATTR_SW_DBM))
4958 goto setl3;
4959 oldl3 &= ~ATTR_SW_DBM;
4960 }
4961 if ((oldl3 & ATTR_PROMOTE) != (newl2 & ATTR_PROMOTE)) {
4962 counter_u64_add(pmap_l2_p_failures, 1);
4963 CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
4964 " in pmap %p", va, pmap);
4965 return (false);
4966 }
4967 all_l3e_AF &= oldl3;
4968 pa -= PAGE_SIZE;
4969 }
4970
4971 /*
4972 * Unless all PTEs have ATTR_AF set, clear it from the superpage
4973 * mapping, so that promotions triggered by speculative mappings,
4974 * such as pmap_enter_quick(), don't automatically mark the
4975 * underlying pages as referenced.
4976 */
4977 newl2 &= ~(ATTR_CONTIGUOUS | ATTR_AF | ATTR_DESCR_MASK) | all_l3e_AF;
4978
4979 /*
4980 * Save the page table page in its current state until the L2
4981 * mapping the superpage is demoted by pmap_demote_l2() or
4982 * destroyed by pmap_remove_l3().
4983 */
4984 if (mpte == NULL)
4985 mpte = PTE_TO_VM_PAGE(pmap_load(l2));
4986 KASSERT(mpte >= vm_page_array &&
4987 mpte < &vm_page_array[vm_page_array_size],
4988 ("pmap_promote_l2: page table page is out of range"));
4989 KASSERT(mpte->pindex == pmap_l2_pindex(va),
4990 ("pmap_promote_l2: page table page's pindex is wrong"));
4991 if (pmap_insert_pt_page(pmap, mpte, true, all_l3e_AF != 0)) {
4992 counter_u64_add(pmap_l2_p_failures, 1);
4993 CTR2(KTR_PMAP,
4994 "pmap_promote_l2: failure for va %#lx in pmap %p", va,
4995 pmap);
4996 return (false);
4997 }
4998
4999 if ((newl2 & ATTR_SW_MANAGED) != 0)
5000 pmap_pv_promote_l2(pmap, va, PTE_TO_PHYS(newl2), lockp);
5001
5002 pmap_update_entry(pmap, l2, newl2 | L2_BLOCK, va & ~L2_OFFSET, L2_SIZE);
5003
5004 counter_u64_add(pmap_l2_promotions, 1);
5005 CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
5006 pmap);
5007 return (true);
5008 }
5009
5010 /*
5011 * Tries to promote an aligned, contiguous set of base page mappings to a
5012 * single L3C page mapping. For promotion to occur, two conditions must be
5013 * met: (1) the base page mappings must map aligned, contiguous physical
5014 * memory and (2) the base page mappings must have identical characteristics
5015 * except for the accessed flag.
5016 */
5017 static bool
pmap_promote_l3c(pmap_t pmap,pd_entry_t * l3p,vm_offset_t va)5018 pmap_promote_l3c(pmap_t pmap, pd_entry_t *l3p, vm_offset_t va)
5019 {
5020 pd_entry_t all_l3e_AF, firstl3c, *l3, oldl3, pa;
5021
5022 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5023
5024 /*
5025 * Currently, this function only supports promotion on stage 1 pmaps
5026 * because it tests stage 1 specific fields and performs a break-
5027 * before-make sequence that is incorrect for stage 2 pmaps.
5028 */
5029 if (pmap->pm_stage != PM_STAGE1 || !pmap_ps_enabled(pmap))
5030 return (false);
5031
5032 /*
5033 * Compute the address of the first L3 entry in the superpage
5034 * candidate.
5035 */
5036 l3p = (pt_entry_t *)((uintptr_t)l3p & ~((L3C_ENTRIES *
5037 sizeof(pt_entry_t)) - 1));
5038
5039 firstl3c = pmap_load(l3p);
5040
5041 /*
5042 * Examine the first L3 entry. Abort if this L3E is ineligible for
5043 * promotion...
5044 */
5045 if ((firstl3c & ATTR_SW_NO_PROMOTE) != 0)
5046 return (false);
5047 /* ...is not properly aligned... */
5048 if ((PTE_TO_PHYS(firstl3c) & L3C_OFFSET) != 0 ||
5049 (firstl3c & ATTR_DESCR_MASK) != L3_PAGE) { /* ...or is invalid. */
5050 counter_u64_add(pmap_l3c_p_failures, 1);
5051 CTR2(KTR_PMAP, "pmap_promote_l3c: failure for va %#lx"
5052 " in pmap %p", va, pmap);
5053 return (false);
5054 }
5055
5056 /*
5057 * If the first L3 entry is a clean read-write mapping, convert it
5058 * to a read-only mapping. See pmap_promote_l2() for the rationale.
5059 */
5060 set_first:
5061 if ((firstl3c & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
5062 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
5063 /*
5064 * When the mapping is clean, i.e., ATTR_S1_AP_RO is set,
5065 * ATTR_SW_DBM can be cleared without a TLB invalidation.
5066 */
5067 if (!atomic_fcmpset_64(l3p, &firstl3c, firstl3c & ~ATTR_SW_DBM))
5068 goto set_first;
5069 firstl3c &= ~ATTR_SW_DBM;
5070 CTR2(KTR_PMAP, "pmap_promote_l3c: protect for va %#lx"
5071 " in pmap %p", va & ~L3C_OFFSET, pmap);
5072 }
5073
5074 /*
5075 * Check that the rest of the L3 entries are compatible with the first,
5076 * and convert clean read-write mappings to read-only mappings.
5077 */
5078 all_l3e_AF = firstl3c & ATTR_AF;
5079 pa = (PTE_TO_PHYS(firstl3c) | (firstl3c & ATTR_DESCR_MASK)) +
5080 L3C_SIZE - PAGE_SIZE;
5081 for (l3 = l3p + L3C_ENTRIES - 1; l3 > l3p; l3--) {
5082 oldl3 = pmap_load(l3);
5083 if ((PTE_TO_PHYS(oldl3) | (oldl3 & ATTR_DESCR_MASK)) != pa) {
5084 counter_u64_add(pmap_l3c_p_failures, 1);
5085 CTR2(KTR_PMAP, "pmap_promote_l3c: failure for va %#lx"
5086 " in pmap %p", va, pmap);
5087 return (false);
5088 }
5089 set_l3:
5090 if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
5091 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
5092 /*
5093 * When the mapping is clean, i.e., ATTR_S1_AP_RO is
5094 * set, ATTR_SW_DBM can be cleared without a TLB
5095 * invalidation.
5096 */
5097 if (!atomic_fcmpset_64(l3, &oldl3, oldl3 &
5098 ~ATTR_SW_DBM))
5099 goto set_l3;
5100 oldl3 &= ~ATTR_SW_DBM;
5101 CTR2(KTR_PMAP, "pmap_promote_l3c: protect for va %#lx"
5102 " in pmap %p", (oldl3 & ~ATTR_MASK & L3C_OFFSET) |
5103 (va & ~L3C_OFFSET), pmap);
5104 }
5105 if ((oldl3 & ATTR_PROMOTE) != (firstl3c & ATTR_PROMOTE)) {
5106 counter_u64_add(pmap_l3c_p_failures, 1);
5107 CTR2(KTR_PMAP, "pmap_promote_l3c: failure for va %#lx"
5108 " in pmap %p", va, pmap);
5109 return (false);
5110 }
5111 all_l3e_AF &= oldl3;
5112 pa -= PAGE_SIZE;
5113 }
5114
5115 /*
5116 * Unless all PTEs have ATTR_AF set, clear it from the superpage
5117 * mapping, so that promotions triggered by speculative mappings,
5118 * such as pmap_enter_quick(), don't automatically mark the
5119 * underlying pages as referenced.
5120 */
5121 firstl3c &= ~ATTR_AF | all_l3e_AF;
5122
5123 /*
5124 * Remake the mappings with the contiguous bit set.
5125 */
5126 pmap_update_strided(pmap, l3p, l3p + L3C_ENTRIES, firstl3c |
5127 ATTR_CONTIGUOUS, va & ~L3C_OFFSET, L3_SIZE, L3C_SIZE);
5128
5129 counter_u64_add(pmap_l3c_promotions, 1);
5130 CTR2(KTR_PMAP, "pmap_promote_l3c: success for va %#lx in pmap %p", va,
5131 pmap);
5132 return (true);
5133 }
5134 #endif /* VM_NRESERVLEVEL > 0 */
5135
5136 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t pte,int flags,int psind)5137 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t pte, int flags,
5138 int psind)
5139 {
5140 pd_entry_t *l0p, *l1p, *l2p, *l3p, newpte, origpte, *tl3p;
5141 vm_page_t mp;
5142
5143 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5144 KASSERT(psind > 0 && psind < MAXPAGESIZES,
5145 ("psind %d unexpected", psind));
5146 KASSERT((PTE_TO_PHYS(pte) & (pagesizes[psind] - 1)) == 0,
5147 ("unaligned phys address %#lx pte %#lx psind %d",
5148 PTE_TO_PHYS(pte), pte, psind));
5149
5150 restart:
5151 newpte = pte;
5152 if (!pmap_bti_same(pmap, va, va + pagesizes[psind], &newpte))
5153 return (KERN_PROTECTION_FAILURE);
5154 if (psind == 3) {
5155 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
5156
5157 KASSERT(pagesizes[psind] == L1_SIZE,
5158 ("pagesizes[%d] != L1_SIZE", psind));
5159 l0p = pmap_l0(pmap, va);
5160 if ((pmap_load(l0p) & ATTR_DESCR_VALID) == 0) {
5161 mp = _pmap_alloc_l3(pmap, pmap_l0_pindex(va), NULL);
5162 if (mp == NULL) {
5163 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
5164 return (KERN_RESOURCE_SHORTAGE);
5165 PMAP_UNLOCK(pmap);
5166 vm_wait(NULL);
5167 PMAP_LOCK(pmap);
5168 goto restart;
5169 }
5170 l1p = pmap_l0_to_l1(l0p, va);
5171 KASSERT(l1p != NULL, ("va %#lx lost l1 entry", va));
5172 origpte = pmap_load(l1p);
5173 } else {
5174 l1p = pmap_l0_to_l1(l0p, va);
5175 KASSERT(l1p != NULL, ("va %#lx lost l1 entry", va));
5176 origpte = pmap_load(l1p);
5177 if ((origpte & ATTR_DESCR_VALID) == 0) {
5178 mp = PTE_TO_VM_PAGE(pmap_load(l0p));
5179 mp->ref_count++;
5180 }
5181 }
5182 KASSERT((PTE_TO_PHYS(origpte) == PTE_TO_PHYS(newpte) &&
5183 (origpte & ATTR_DESCR_MASK) == L1_BLOCK) ||
5184 (origpte & ATTR_DESCR_VALID) == 0,
5185 ("va %#lx changing 1G phys page l1 %#lx newpte %#lx",
5186 va, origpte, newpte));
5187 pmap_store(l1p, newpte);
5188 } else if (psind == 2) {
5189 KASSERT(pagesizes[psind] == L2_SIZE,
5190 ("pagesizes[%d] != L2_SIZE", psind));
5191 l2p = pmap_l2(pmap, va);
5192 if (l2p == NULL) {
5193 mp = _pmap_alloc_l3(pmap, pmap_l1_pindex(va), NULL);
5194 if (mp == NULL) {
5195 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
5196 return (KERN_RESOURCE_SHORTAGE);
5197 PMAP_UNLOCK(pmap);
5198 vm_wait(NULL);
5199 PMAP_LOCK(pmap);
5200 goto restart;
5201 }
5202 l2p = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
5203 l2p = &l2p[pmap_l2_index(va)];
5204 origpte = pmap_load(l2p);
5205 } else {
5206 l1p = pmap_l1(pmap, va);
5207 origpte = pmap_load(l2p);
5208 if ((origpte & ATTR_DESCR_VALID) == 0) {
5209 mp = PTE_TO_VM_PAGE(pmap_load(l1p));
5210 mp->ref_count++;
5211 }
5212 }
5213 KASSERT((origpte & ATTR_DESCR_VALID) == 0 ||
5214 ((origpte & ATTR_DESCR_MASK) == L2_BLOCK &&
5215 PTE_TO_PHYS(origpte) == PTE_TO_PHYS(newpte)),
5216 ("va %#lx changing 2M phys page l2 %#lx newpte %#lx",
5217 va, origpte, newpte));
5218 pmap_store(l2p, newpte);
5219 } else /* (psind == 1) */ {
5220 KASSERT(pagesizes[psind] == L3C_SIZE,
5221 ("pagesizes[%d] != L3C_SIZE", psind));
5222 l2p = pmap_l2(pmap, va);
5223 if (l2p == NULL || (pmap_load(l2p) & ATTR_DESCR_VALID) == 0) {
5224 mp = _pmap_alloc_l3(pmap, pmap_l2_pindex(va), NULL);
5225 if (mp == NULL) {
5226 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
5227 return (KERN_RESOURCE_SHORTAGE);
5228 PMAP_UNLOCK(pmap);
5229 vm_wait(NULL);
5230 PMAP_LOCK(pmap);
5231 goto restart;
5232 }
5233 mp->ref_count += L3C_ENTRIES - 1;
5234 l3p = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
5235 l3p = &l3p[pmap_l3_index(va)];
5236 } else {
5237 l3p = pmap_l2_to_l3(l2p, va);
5238 if ((pmap_load(l3p) & ATTR_DESCR_VALID) == 0) {
5239 mp = PTE_TO_VM_PAGE(pmap_load(l2p));
5240 mp->ref_count += L3C_ENTRIES;
5241 }
5242 }
5243 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
5244 origpte = pmap_load(tl3p);
5245 KASSERT((origpte & ATTR_DESCR_VALID) == 0 ||
5246 ((origpte & ATTR_CONTIGUOUS) != 0 &&
5247 PTE_TO_PHYS(origpte) == PTE_TO_PHYS(newpte)),
5248 ("va %#lx changing 64K phys page l3 %#lx newpte %#lx",
5249 va, origpte, newpte));
5250 pmap_store(tl3p, newpte);
5251 newpte += L3_SIZE;
5252 }
5253 }
5254 dsb(ishst);
5255
5256 if ((origpte & ATTR_DESCR_VALID) == 0)
5257 pmap_resident_count_inc(pmap, pagesizes[psind] / PAGE_SIZE);
5258 if ((newpte & ATTR_SW_WIRED) != 0 && (origpte & ATTR_SW_WIRED) == 0)
5259 pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
5260 else if ((newpte & ATTR_SW_WIRED) == 0 &&
5261 (origpte & ATTR_SW_WIRED) != 0)
5262 pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
5263
5264 return (KERN_SUCCESS);
5265 }
5266
5267 /*
5268 * Insert the given physical page (p) at
5269 * the specified virtual address (v) in the
5270 * target physical map with the protection requested.
5271 *
5272 * If specified, the page will be wired down, meaning
5273 * that the related pte can not be reclaimed.
5274 *
5275 * NB: This is the only routine which MAY NOT lazy-evaluate
5276 * or lose information. That is, this routine must actually
5277 * insert this page into the given map NOW.
5278 */
5279 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)5280 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
5281 u_int flags, int8_t psind)
5282 {
5283 struct rwlock *lock;
5284 pd_entry_t *pde;
5285 pt_entry_t new_l3, orig_l3;
5286 pt_entry_t *l2, *l3;
5287 pv_entry_t pv;
5288 vm_paddr_t opa, pa;
5289 vm_page_t mpte, om;
5290 bool nosleep;
5291 int full_lvl, lvl, rv;
5292
5293 KASSERT(ADDR_IS_CANONICAL(va),
5294 ("%s: Address not in canonical form: %lx", __func__, va));
5295
5296 va = trunc_page(va);
5297 if ((m->oflags & VPO_UNMANAGED) == 0)
5298 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5299 pa = VM_PAGE_TO_PHYS(m);
5300 new_l3 = (pt_entry_t)(PHYS_TO_PTE(pa) | ATTR_AF | pmap_sh_attr |
5301 L3_PAGE);
5302 new_l3 |= pmap_pte_memattr(pmap, m->md.pv_memattr);
5303 new_l3 |= pmap_pte_prot(pmap, prot);
5304 if ((flags & PMAP_ENTER_WIRED) != 0)
5305 new_l3 |= ATTR_SW_WIRED;
5306 if (pmap->pm_stage == PM_STAGE1) {
5307 if (!ADDR_IS_KERNEL(va))
5308 new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
5309 else
5310 new_l3 |= ATTR_S1_UXN;
5311 if (pmap != kernel_pmap)
5312 new_l3 |= ATTR_S1_nG;
5313 } else {
5314 /*
5315 * Clear the access flag on executable mappings, this will be
5316 * set later when the page is accessed. The fault handler is
5317 * required to invalidate the I-cache.
5318 *
5319 * TODO: Switch to the valid flag to allow hardware management
5320 * of the access flag. Much of the pmap code assumes the
5321 * valid flag is set and fails to destroy the old page tables
5322 * correctly if it is clear.
5323 */
5324 if (prot & VM_PROT_EXECUTE)
5325 new_l3 &= ~ATTR_AF;
5326 }
5327 if ((m->oflags & VPO_UNMANAGED) == 0) {
5328 new_l3 |= ATTR_SW_MANAGED;
5329 if ((prot & VM_PROT_WRITE) != 0) {
5330 new_l3 |= ATTR_SW_DBM;
5331 if ((flags & VM_PROT_WRITE) == 0) {
5332 if (pmap->pm_stage == PM_STAGE1)
5333 new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
5334 else
5335 new_l3 &=
5336 ~ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
5337 }
5338 }
5339 }
5340
5341 CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
5342
5343 lock = NULL;
5344 PMAP_LOCK(pmap);
5345 if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
5346 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
5347 ("managed largepage va %#lx flags %#x", va, flags));
5348 if (psind == 3) {
5349 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
5350 new_l3 &= ~L3_PAGE;
5351 new_l3 |= L1_BLOCK;
5352 } else if (psind == 2) {
5353 new_l3 &= ~L3_PAGE;
5354 new_l3 |= L2_BLOCK;
5355 } else /* (psind == 1) */
5356 new_l3 |= ATTR_CONTIGUOUS;
5357 rv = pmap_enter_largepage(pmap, va, new_l3, flags, psind);
5358 goto out;
5359 }
5360 if (psind == 2) {
5361 /* Assert the required virtual and physical alignment. */
5362 KASSERT((va & L2_OFFSET) == 0, ("pmap_enter: va unaligned"));
5363 KASSERT(m->psind > 1, ("pmap_enter: m->psind < psind"));
5364 rv = pmap_enter_l2(pmap, va, (new_l3 & ~L3_PAGE) | L2_BLOCK,
5365 flags, m, &lock);
5366 goto out;
5367 }
5368 mpte = NULL;
5369 if (psind == 1) {
5370 KASSERT((va & L3C_OFFSET) == 0, ("pmap_enter: va unaligned"));
5371 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
5372 rv = pmap_enter_l3c(pmap, va, new_l3 | ATTR_CONTIGUOUS, flags,
5373 m, &mpte, &lock);
5374 #if VM_NRESERVLEVEL > 0
5375 /*
5376 * Attempt L2 promotion, if both the PTP and a level 1
5377 * reservation are fully populated.
5378 */
5379 if (rv == KERN_SUCCESS &&
5380 (mpte == NULL || mpte->ref_count == NL3PG) &&
5381 (m->flags & PG_FICTITIOUS) == 0 &&
5382 vm_reserv_level_iffullpop(m) == 1) {
5383 pde = pmap_l2(pmap, va);
5384 (void)pmap_promote_l2(pmap, pde, va, mpte, &lock);
5385 }
5386 #endif
5387 goto out;
5388 }
5389
5390 /*
5391 * In the case that a page table page is not
5392 * resident, we are creating it here.
5393 */
5394 retry:
5395 pde = pmap_pde(pmap, va, &lvl);
5396 if (pde != NULL && lvl == 2) {
5397 l3 = pmap_l2_to_l3(pde, va);
5398 if (!ADDR_IS_KERNEL(va) && mpte == NULL) {
5399 mpte = PTE_TO_VM_PAGE(pmap_load(pde));
5400 mpte->ref_count++;
5401 }
5402 goto havel3;
5403 } else if (pde != NULL && lvl == 1) {
5404 l2 = pmap_l1_to_l2(pde, va);
5405 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
5406 (l3 = pmap_demote_l2_locked(pmap, l2, va, &lock)) != NULL) {
5407 l3 = &l3[pmap_l3_index(va)];
5408 if (!ADDR_IS_KERNEL(va)) {
5409 mpte = PTE_TO_VM_PAGE(pmap_load(l2));
5410 mpte->ref_count++;
5411 }
5412 goto havel3;
5413 }
5414 /* We need to allocate an L3 table. */
5415 }
5416 if (!ADDR_IS_KERNEL(va)) {
5417 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
5418
5419 /*
5420 * We use _pmap_alloc_l3() instead of pmap_alloc_l3() in order
5421 * to handle the possibility that a superpage mapping for "va"
5422 * was created while we slept.
5423 */
5424 mpte = _pmap_alloc_l3(pmap, pmap_l2_pindex(va),
5425 nosleep ? NULL : &lock);
5426 if (mpte == NULL && nosleep) {
5427 CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
5428 rv = KERN_RESOURCE_SHORTAGE;
5429 goto out;
5430 }
5431 goto retry;
5432 } else
5433 panic("pmap_enter: missing L3 table for kernel va %#lx", va);
5434
5435 havel3:
5436 orig_l3 = pmap_load(l3);
5437 opa = PTE_TO_PHYS(orig_l3);
5438 pv = NULL;
5439 new_l3 |= pmap_pte_bti(pmap, va);
5440
5441 /*
5442 * Is the specified virtual address already mapped?
5443 */
5444 if (pmap_l3_valid(orig_l3)) {
5445 /*
5446 * Wiring change, just update stats. We don't worry about
5447 * wiring PT pages as they remain resident as long as there
5448 * are valid mappings in them. Hence, if a user page is wired,
5449 * the PT page will be also.
5450 */
5451 if ((flags & PMAP_ENTER_WIRED) != 0 &&
5452 (orig_l3 & ATTR_SW_WIRED) == 0)
5453 pmap->pm_stats.wired_count++;
5454 else if ((flags & PMAP_ENTER_WIRED) == 0 &&
5455 (orig_l3 & ATTR_SW_WIRED) != 0)
5456 pmap->pm_stats.wired_count--;
5457
5458 /*
5459 * Remove the extra PT page reference.
5460 */
5461 if (mpte != NULL) {
5462 mpte->ref_count--;
5463 KASSERT(mpte->ref_count > 0,
5464 ("pmap_enter: missing reference to page table page,"
5465 " va: 0x%lx", va));
5466 }
5467
5468 /*
5469 * Has the physical page changed?
5470 */
5471 if (opa == pa) {
5472 /*
5473 * No, might be a protection or wiring change.
5474 */
5475 if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
5476 (new_l3 & ATTR_SW_DBM) != 0)
5477 vm_page_aflag_set(m, PGA_WRITEABLE);
5478 goto validate;
5479 }
5480
5481 /*
5482 * The physical page has changed. Temporarily invalidate
5483 * the mapping.
5484 */
5485 if ((orig_l3 & ATTR_CONTIGUOUS) != 0)
5486 (void)pmap_demote_l3c(pmap, l3, va);
5487 orig_l3 = pmap_load_clear(l3);
5488 KASSERT(PTE_TO_PHYS(orig_l3) == opa,
5489 ("pmap_enter: unexpected pa update for %#lx", va));
5490 if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
5491 om = PHYS_TO_VM_PAGE(opa);
5492
5493 /*
5494 * The pmap lock is sufficient to synchronize with
5495 * concurrent calls to pmap_page_test_mappings() and
5496 * pmap_ts_referenced().
5497 */
5498 if (pmap_pte_dirty(pmap, orig_l3))
5499 vm_page_dirty(om);
5500 if ((orig_l3 & ATTR_AF) != 0) {
5501 pmap_invalidate_page(pmap, va, true);
5502 vm_page_aflag_set(om, PGA_REFERENCED);
5503 }
5504 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, om);
5505 pv = pmap_pvh_remove(&om->md, pmap, va);
5506 if ((m->oflags & VPO_UNMANAGED) != 0)
5507 free_pv_entry(pmap, pv);
5508 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
5509 TAILQ_EMPTY(&om->md.pv_list) &&
5510 ((om->flags & PG_FICTITIOUS) != 0 ||
5511 TAILQ_EMPTY(&page_to_pvh(om)->pv_list)))
5512 vm_page_aflag_clear(om, PGA_WRITEABLE);
5513 } else {
5514 KASSERT((orig_l3 & ATTR_AF) != 0,
5515 ("pmap_enter: unmanaged mapping lacks ATTR_AF"));
5516 pmap_invalidate_page(pmap, va, true);
5517 }
5518 orig_l3 = 0;
5519 } else {
5520 /*
5521 * Increment the counters.
5522 */
5523 if ((new_l3 & ATTR_SW_WIRED) != 0)
5524 pmap->pm_stats.wired_count++;
5525 pmap_resident_count_inc(pmap, 1);
5526 }
5527 /*
5528 * Enter on the PV list if part of our managed memory.
5529 */
5530 if ((m->oflags & VPO_UNMANAGED) == 0) {
5531 if (pv == NULL) {
5532 pv = get_pv_entry(pmap, &lock);
5533 pv->pv_va = va;
5534 }
5535 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5536 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5537 m->md.pv_gen++;
5538 if ((new_l3 & ATTR_SW_DBM) != 0)
5539 vm_page_aflag_set(m, PGA_WRITEABLE);
5540 }
5541
5542 validate:
5543 if (pmap->pm_stage == PM_STAGE1) {
5544 /*
5545 * Sync icache if exec permission and attribute
5546 * VM_MEMATTR_WRITE_BACK is set. Do it now, before the mapping
5547 * is stored and made valid for hardware table walk. If done
5548 * later, then other can access this page before caches are
5549 * properly synced. Don't do it for kernel memory which is
5550 * mapped with exec permission even if the memory isn't going
5551 * to hold executable code. The only time when icache sync is
5552 * needed is after kernel module is loaded and the relocation
5553 * info is processed. And it's done in elf_cpu_load_file().
5554 */
5555 if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
5556 m->md.pv_memattr == VM_MEMATTR_WRITE_BACK &&
5557 (opa != pa || (orig_l3 & ATTR_S1_XN))) {
5558 PMAP_ASSERT_STAGE1(pmap);
5559 cpu_icache_sync_range((void *)PHYS_TO_DMAP(pa),
5560 PAGE_SIZE);
5561 }
5562 } else {
5563 cpu_dcache_wb_range((void *)PHYS_TO_DMAP(pa), PAGE_SIZE);
5564 }
5565
5566 /*
5567 * Update the L3 entry
5568 */
5569 if (pmap_l3_valid(orig_l3)) {
5570 KASSERT(opa == pa, ("pmap_enter: invalid update"));
5571 if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) {
5572 /* same PA, different attributes */
5573 if ((orig_l3 & ATTR_CONTIGUOUS) != 0)
5574 (void)pmap_demote_l3c(pmap, l3, va);
5575 orig_l3 = pmap_load_store(l3, new_l3);
5576 pmap_invalidate_page(pmap, va, true);
5577 if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
5578 pmap_pte_dirty(pmap, orig_l3))
5579 vm_page_dirty(m);
5580 } else {
5581 /*
5582 * orig_l3 == new_l3
5583 * This can happens if multiple threads simultaneously
5584 * access not yet mapped page. This bad for performance
5585 * since this can cause full demotion-NOP-promotion
5586 * cycle.
5587 * Another possible reasons are:
5588 * - VM and pmap memory layout are diverged
5589 * - tlb flush is missing somewhere and CPU doesn't see
5590 * actual mapping.
5591 */
5592 CTR4(KTR_PMAP, "%s: already mapped page - "
5593 "pmap %p va 0x%#lx pte 0x%lx",
5594 __func__, pmap, va, new_l3);
5595 }
5596 } else {
5597 /* New mapping */
5598 pmap_store(l3, new_l3);
5599 dsb(ishst);
5600 }
5601
5602 #if VM_NRESERVLEVEL > 0
5603 /*
5604 * First, attempt L3C promotion, if the virtual and physical addresses
5605 * are aligned with each other and an underlying reservation has the
5606 * neighboring L3 pages allocated. The first condition is simply an
5607 * optimization that recognizes some eventual promotion failures early
5608 * at a lower run-time cost. Then, if both a level 1 reservation and
5609 * the PTP are fully populated, attempt L2 promotion.
5610 */
5611 if ((va & L3C_OFFSET) == (pa & L3C_OFFSET) &&
5612 (m->flags & PG_FICTITIOUS) == 0 &&
5613 (full_lvl = vm_reserv_level_iffullpop(m)) >= 0 &&
5614 pmap_promote_l3c(pmap, l3, va) &&
5615 full_lvl == 1 && (mpte == NULL || mpte->ref_count == NL3PG))
5616 (void)pmap_promote_l2(pmap, pde, va, mpte, &lock);
5617 #endif
5618
5619 rv = KERN_SUCCESS;
5620 out:
5621 if (lock != NULL)
5622 rw_wunlock(lock);
5623 PMAP_UNLOCK(pmap);
5624 return (rv);
5625 }
5626
5627 /*
5628 * Tries to create a read- and/or execute-only L2 page mapping. Returns
5629 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
5630 * value. See pmap_enter_l2() for the possible error values when "no sleep",
5631 * "no replace", and "no reclaim" are specified.
5632 */
5633 static int
pmap_enter_l2_rx(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)5634 pmap_enter_l2_rx(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
5635 struct rwlock **lockp)
5636 {
5637 pd_entry_t new_l2;
5638
5639 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5640 PMAP_ASSERT_STAGE1(pmap);
5641 KASSERT(ADDR_IS_CANONICAL(va),
5642 ("%s: Address not in canonical form: %lx", __func__, va));
5643
5644 new_l2 = (pd_entry_t)(VM_PAGE_TO_PTE(m) | pmap_sh_attr |
5645 ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) |
5646 L2_BLOCK);
5647 if ((m->oflags & VPO_UNMANAGED) == 0)
5648 new_l2 |= ATTR_SW_MANAGED;
5649 else
5650 new_l2 |= ATTR_AF;
5651 if ((prot & VM_PROT_EXECUTE) == 0 ||
5652 m->md.pv_memattr == VM_MEMATTR_DEVICE)
5653 new_l2 |= ATTR_S1_XN;
5654 if (!ADDR_IS_KERNEL(va))
5655 new_l2 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
5656 else
5657 new_l2 |= ATTR_S1_UXN;
5658 if (pmap != kernel_pmap)
5659 new_l2 |= ATTR_S1_nG;
5660 return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
5661 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m, lockp));
5662 }
5663
5664 /*
5665 * Returns true if every page table entry in the specified page table is
5666 * zero.
5667 */
5668 static bool
pmap_every_pte_zero(vm_paddr_t pa)5669 pmap_every_pte_zero(vm_paddr_t pa)
5670 {
5671 pt_entry_t *pt_end, *pte;
5672
5673 KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
5674 pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
5675 for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) {
5676 if (*pte != 0)
5677 return (false);
5678 }
5679 return (true);
5680 }
5681
5682 /*
5683 * Tries to create the specified L2 page mapping. Returns KERN_SUCCESS if
5684 * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE, or
5685 * KERN_RESOURCE_SHORTAGE otherwise. Returns KERN_FAILURE if
5686 * PMAP_ENTER_NOREPLACE was specified and a base page mapping already exists
5687 * within the L2 virtual address range starting at the specified virtual
5688 * address. Returns KERN_NO_SPACE if PMAP_ENTER_NOREPLACE was specified and a
5689 * L2 page mapping already exists at the specified virtual address. Returns
5690 * KERN_RESOURCE_SHORTAGE if either (1) PMAP_ENTER_NOSLEEP was specified and a
5691 * page table page allocation failed or (2) PMAP_ENTER_NORECLAIM was specified
5692 * and a PV entry allocation failed.
5693 */
5694 static int
pmap_enter_l2(pmap_t pmap,vm_offset_t va,pd_entry_t new_l2,u_int flags,vm_page_t m,struct rwlock ** lockp)5695 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
5696 vm_page_t m, struct rwlock **lockp)
5697 {
5698 struct spglist free;
5699 pd_entry_t *l2, old_l2;
5700 vm_page_t l2pg, mt;
5701 vm_page_t uwptpg;
5702
5703 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5704 KASSERT(ADDR_IS_CANONICAL(va),
5705 ("%s: Address not in canonical form: %lx", __func__, va));
5706
5707 if ((l2 = pmap_alloc_l2(pmap, va, &l2pg, (flags &
5708 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
5709 CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p",
5710 va, pmap);
5711 return (KERN_RESOURCE_SHORTAGE);
5712 }
5713
5714 /*
5715 * If bti is not the same for the whole l2 range, return failure
5716 * and let vm_fault() cope. Check after l2 allocation, since
5717 * it could sleep.
5718 */
5719 if (!pmap_bti_same(pmap, va, va + L2_SIZE, &new_l2)) {
5720 KASSERT(l2pg != NULL, ("pmap_enter_l2: missing L2 PTP"));
5721 pmap_abort_ptp(pmap, va, l2pg);
5722 return (KERN_PROTECTION_FAILURE);
5723 }
5724
5725 /*
5726 * If there are existing mappings, either abort or remove them.
5727 */
5728 if ((old_l2 = pmap_load(l2)) != 0) {
5729 KASSERT(l2pg == NULL || l2pg->ref_count > 1,
5730 ("pmap_enter_l2: l2pg's ref count is too low"));
5731 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
5732 if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK) {
5733 if (l2pg != NULL)
5734 l2pg->ref_count--;
5735 CTR2(KTR_PMAP,
5736 "pmap_enter_l2: no space for va %#lx"
5737 " in pmap %p", va, pmap);
5738 return (KERN_NO_SPACE);
5739 } else if (!ADDR_IS_KERNEL(va) ||
5740 !pmap_every_pte_zero(PTE_TO_PHYS(old_l2))) {
5741 if (l2pg != NULL)
5742 l2pg->ref_count--;
5743 CTR2(KTR_PMAP,
5744 "pmap_enter_l2: failure for va %#lx"
5745 " in pmap %p", va, pmap);
5746 return (KERN_FAILURE);
5747 }
5748 }
5749 SLIST_INIT(&free);
5750 if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK)
5751 (void)pmap_remove_l2(pmap, l2, va,
5752 pmap_load(pmap_l1(pmap, va)), &free, lockp);
5753 else
5754 pmap_remove_l3_range(pmap, old_l2, va, va + L2_SIZE,
5755 &free, lockp);
5756 if (!ADDR_IS_KERNEL(va)) {
5757 vm_page_free_pages_toq(&free, true);
5758 KASSERT(pmap_load(l2) == 0,
5759 ("pmap_enter_l2: non-zero L2 entry %p", l2));
5760 } else {
5761 KASSERT(SLIST_EMPTY(&free),
5762 ("pmap_enter_l2: freed kernel page table page"));
5763
5764 /*
5765 * Both pmap_remove_l2() and pmap_remove_l3_range()
5766 * will leave the kernel page table page zero filled.
5767 * Nonetheless, the TLB could have an intermediate
5768 * entry for the kernel page table page, so request
5769 * an invalidation at all levels after clearing
5770 * the L2_TABLE entry.
5771 */
5772 mt = PTE_TO_VM_PAGE(pmap_load(l2));
5773 if (pmap_insert_pt_page(pmap, mt, false, false))
5774 panic("pmap_enter_l2: trie insert failed");
5775 pmap_clear(l2);
5776 pmap_s1_invalidate_page(pmap, va, false);
5777 }
5778 }
5779
5780 /*
5781 * Allocate leaf ptpage for wired userspace pages.
5782 */
5783 uwptpg = NULL;
5784 if ((new_l2 & ATTR_SW_WIRED) != 0 && pmap != kernel_pmap) {
5785 uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5786 if (uwptpg == NULL) {
5787 pmap_abort_ptp(pmap, va, l2pg);
5788 return (KERN_RESOURCE_SHORTAGE);
5789 }
5790 uwptpg->pindex = pmap_l2_pindex(va);
5791 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
5792 vm_page_unwire_noq(uwptpg);
5793 vm_page_free(uwptpg);
5794 pmap_abort_ptp(pmap, va, l2pg);
5795 return (KERN_RESOURCE_SHORTAGE);
5796 }
5797 pmap_resident_count_inc(pmap, 1);
5798 uwptpg->ref_count = NL3PG;
5799 }
5800 if ((new_l2 & ATTR_SW_MANAGED) != 0) {
5801 /*
5802 * Abort this mapping if its PV entry could not be created.
5803 */
5804 if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
5805 if (l2pg != NULL)
5806 pmap_abort_ptp(pmap, va, l2pg);
5807 if (uwptpg != NULL) {
5808 mt = pmap_remove_pt_page(pmap, va);
5809 KASSERT(mt == uwptpg,
5810 ("removed pt page %p, expected %p", mt,
5811 uwptpg));
5812 pmap_resident_count_dec(pmap, 1);
5813 uwptpg->ref_count = 1;
5814 vm_page_unwire_noq(uwptpg);
5815 vm_page_free(uwptpg);
5816 }
5817 CTR2(KTR_PMAP,
5818 "pmap_enter_l2: failure for va %#lx in pmap %p",
5819 va, pmap);
5820 return (KERN_RESOURCE_SHORTAGE);
5821 }
5822 if ((new_l2 & ATTR_SW_DBM) != 0)
5823 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
5824 vm_page_aflag_set(mt, PGA_WRITEABLE);
5825 }
5826
5827 /*
5828 * Increment counters.
5829 */
5830 if ((new_l2 & ATTR_SW_WIRED) != 0)
5831 pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
5832 pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
5833
5834 /*
5835 * Conditionally sync the icache. See pmap_enter() for details.
5836 */
5837 if ((new_l2 & ATTR_S1_XN) == 0 && (PTE_TO_PHYS(new_l2) !=
5838 PTE_TO_PHYS(old_l2) || (old_l2 & ATTR_S1_XN) != 0) &&
5839 pmap != kernel_pmap && m->md.pv_memattr == VM_MEMATTR_WRITE_BACK) {
5840 cpu_icache_sync_range((void *)PHYS_TO_DMAP(PTE_TO_PHYS(new_l2)),
5841 L2_SIZE);
5842 }
5843
5844 /*
5845 * Map the superpage.
5846 */
5847 pmap_store(l2, new_l2);
5848 dsb(ishst);
5849
5850 counter_u64_add(pmap_l2_mappings, 1);
5851 CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
5852 va, pmap);
5853
5854 return (KERN_SUCCESS);
5855 }
5856
5857 /*
5858 * Tries to create a read- and/or execute-only L3C page mapping. Returns
5859 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
5860 * value.
5861 */
5862 static int
pmap_enter_l3c_rx(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_page_t * ml3p,vm_prot_t prot,struct rwlock ** lockp)5863 pmap_enter_l3c_rx(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t *ml3p,
5864 vm_prot_t prot, struct rwlock **lockp)
5865 {
5866 pt_entry_t l3e;
5867
5868 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5869 PMAP_ASSERT_STAGE1(pmap);
5870 KASSERT(ADDR_IS_CANONICAL(va),
5871 ("%s: Address not in canonical form: %lx", __func__, va));
5872
5873 l3e = VM_PAGE_TO_PTE(m) | pmap_sh_attr |
5874 ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) |
5875 ATTR_CONTIGUOUS | L3_PAGE;
5876 if ((m->oflags & VPO_UNMANAGED) == 0)
5877 l3e |= ATTR_SW_MANAGED;
5878 else
5879 l3e |= ATTR_AF;
5880 if ((prot & VM_PROT_EXECUTE) == 0 ||
5881 m->md.pv_memattr == VM_MEMATTR_DEVICE)
5882 l3e |= ATTR_S1_XN;
5883 if (!ADDR_IS_KERNEL(va))
5884 l3e |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
5885 else
5886 l3e |= ATTR_S1_UXN;
5887 if (pmap != kernel_pmap)
5888 l3e |= ATTR_S1_nG;
5889 return (pmap_enter_l3c(pmap, va, l3e, PMAP_ENTER_NOSLEEP |
5890 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m, ml3p, lockp));
5891 }
5892
5893 static int
pmap_enter_l3c(pmap_t pmap,vm_offset_t va,pt_entry_t l3e,u_int flags,vm_page_t m,vm_page_t * ml3p,struct rwlock ** lockp)5894 pmap_enter_l3c(pmap_t pmap, vm_offset_t va, pt_entry_t l3e, u_int flags,
5895 vm_page_t m, vm_page_t *ml3p, struct rwlock **lockp)
5896 {
5897 pd_entry_t *l2p, *pde;
5898 pt_entry_t *l3p, *tl3p;
5899 vm_page_t mt;
5900 vm_paddr_t pa;
5901 vm_pindex_t l2pindex;
5902 int lvl;
5903
5904 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5905 KASSERT((va & L3C_OFFSET) == 0,
5906 ("pmap_enter_l3c: va is not aligned"));
5907 KASSERT(!VA_IS_CLEANMAP(va) || (l3e & ATTR_SW_MANAGED) == 0,
5908 ("pmap_enter_l3c: managed mapping within the clean submap"));
5909 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
5910 ("pmap_enter_l3c: l3e is missing ATTR_CONTIGUOUS"));
5911
5912 /*
5913 * If the L3 PTP is not resident, we attempt to create it here.
5914 */
5915 if (!ADDR_IS_KERNEL(va)) {
5916 /*
5917 * Were we given the correct L3 PTP? If so, we can simply
5918 * increment its ref count.
5919 */
5920 l2pindex = pmap_l2_pindex(va);
5921 if (*ml3p != NULL && (*ml3p)->pindex == l2pindex) {
5922 (*ml3p)->ref_count += L3C_ENTRIES;
5923 } else {
5924 retry:
5925 /*
5926 * Get the L2 entry.
5927 */
5928 pde = pmap_pde(pmap, va, &lvl);
5929
5930 /*
5931 * If the L2 entry is a superpage, we either abort or
5932 * demote depending on the given flags.
5933 */
5934 if (lvl == 1) {
5935 l2p = pmap_l1_to_l2(pde, va);
5936 if ((pmap_load(l2p) & ATTR_DESCR_MASK) ==
5937 L2_BLOCK) {
5938 if ((flags & PMAP_ENTER_NOREPLACE) != 0)
5939 return (KERN_FAILURE);
5940 l3p = pmap_demote_l2_locked(pmap, l2p,
5941 va, lockp);
5942 if (l3p != NULL) {
5943 *ml3p = PTE_TO_VM_PAGE(
5944 pmap_load(l2p));
5945 (*ml3p)->ref_count +=
5946 L3C_ENTRIES;
5947 goto have_l3p;
5948 }
5949 }
5950 /* We need to allocate an L3 PTP. */
5951 }
5952
5953 /*
5954 * If the L3 PTP is mapped, we just increment its ref
5955 * count. Otherwise, we attempt to allocate it.
5956 */
5957 if (lvl == 2 && pmap_load(pde) != 0) {
5958 *ml3p = PTE_TO_VM_PAGE(pmap_load(pde));
5959 (*ml3p)->ref_count += L3C_ENTRIES;
5960 } else {
5961 *ml3p = _pmap_alloc_l3(pmap, l2pindex, (flags &
5962 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp);
5963 if (*ml3p == NULL) {
5964 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
5965 return (KERN_FAILURE);
5966
5967 /*
5968 * The page table may have changed
5969 * while we slept.
5970 */
5971 goto retry;
5972 }
5973 (*ml3p)->ref_count += L3C_ENTRIES - 1;
5974 }
5975 }
5976 l3p = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(*ml3p));
5977 } else {
5978 *ml3p = NULL;
5979
5980 /*
5981 * If the L2 entry is a superpage, we either abort or demote
5982 * depending on the given flags.
5983 */
5984 pde = pmap_pde(kernel_pmap, va, &lvl);
5985 if (lvl == 1) {
5986 l2p = pmap_l1_to_l2(pde, va);
5987 KASSERT((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK,
5988 ("pmap_enter_l3c: missing L2 block"));
5989 if ((flags & PMAP_ENTER_NOREPLACE) != 0)
5990 return (KERN_FAILURE);
5991 l3p = pmap_demote_l2_locked(pmap, l2p, va, lockp);
5992 } else {
5993 KASSERT(lvl == 2,
5994 ("pmap_enter_l3c: Invalid level %d", lvl));
5995 l3p = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(
5996 pmap_load(pde)));
5997 }
5998 }
5999 have_l3p:
6000 l3p = &l3p[pmap_l3_index(va)];
6001
6002 /*
6003 * If bti is not the same for the whole L3C range, return failure
6004 * and let vm_fault() cope. Check after L3 allocation, since
6005 * it could sleep.
6006 */
6007 if (!pmap_bti_same(pmap, va, va + L3C_SIZE, &l3e)) {
6008 KASSERT(*ml3p != NULL, ("pmap_enter_l3c: missing L3 PTP"));
6009 (*ml3p)->ref_count -= L3C_ENTRIES - 1;
6010 pmap_abort_ptp(pmap, va, *ml3p);
6011 *ml3p = NULL;
6012 return (KERN_PROTECTION_FAILURE);
6013 }
6014
6015 /*
6016 * If there are existing mappings, either abort or remove them.
6017 */
6018 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
6019 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
6020 if (pmap_load(tl3p) != 0) {
6021 if (*ml3p != NULL)
6022 (*ml3p)->ref_count -= L3C_ENTRIES;
6023 return (KERN_FAILURE);
6024 }
6025 }
6026 } else {
6027 /*
6028 * Because we increment the L3 page's reference count above,
6029 * it is guaranteed not to be freed here and we can pass NULL
6030 * instead of a valid free list.
6031 */
6032 pmap_remove_l3_range(pmap, pmap_load(pmap_l2(pmap, va)), va,
6033 va + L3C_SIZE, NULL, lockp);
6034 }
6035
6036 /*
6037 * Enter on the PV list if part of our managed memory.
6038 */
6039 if ((l3e & ATTR_SW_MANAGED) != 0) {
6040 if (!pmap_pv_insert_l3c(pmap, va, m, lockp)) {
6041 if (*ml3p != NULL) {
6042 (*ml3p)->ref_count -= L3C_ENTRIES - 1;
6043 pmap_abort_ptp(pmap, va, *ml3p);
6044 *ml3p = NULL;
6045 }
6046 return (KERN_RESOURCE_SHORTAGE);
6047 }
6048 if ((l3e & ATTR_SW_DBM) != 0)
6049 for (mt = m; mt < &m[L3C_ENTRIES]; mt++)
6050 vm_page_aflag_set(mt, PGA_WRITEABLE);
6051 }
6052
6053 /*
6054 * Increment counters.
6055 */
6056 if ((l3e & ATTR_SW_WIRED) != 0)
6057 pmap->pm_stats.wired_count += L3C_ENTRIES;
6058 pmap_resident_count_inc(pmap, L3C_ENTRIES);
6059
6060 pa = VM_PAGE_TO_PHYS(m);
6061 KASSERT((pa & L3C_OFFSET) == 0, ("pmap_enter_l3c: pa is not aligned"));
6062
6063 /*
6064 * Sync the icache before the mapping is stored.
6065 */
6066 if ((l3e & ATTR_S1_XN) == 0 && pmap != kernel_pmap &&
6067 m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
6068 cpu_icache_sync_range((void *)PHYS_TO_DMAP(pa), L3C_SIZE);
6069
6070 /*
6071 * Map the superpage.
6072 */
6073 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
6074 pmap_store(tl3p, l3e);
6075 l3e += L3_SIZE;
6076 }
6077 dsb(ishst);
6078
6079 counter_u64_add(pmap_l3c_mappings, 1);
6080 CTR2(KTR_PMAP, "pmap_enter_l3c: success for va %#lx in pmap %p",
6081 va, pmap);
6082 return (KERN_SUCCESS);
6083 }
6084
6085 /*
6086 * Maps a sequence of resident pages belonging to the same object.
6087 * The sequence begins with the given page m_start. This page is
6088 * mapped at the given virtual address start. Each subsequent page is
6089 * mapped at a virtual address that is offset from start by the same
6090 * amount as the page is offset from m_start within the object. The
6091 * last page in the sequence is the page with the largest offset from
6092 * m_start that can be mapped at a virtual address less than the given
6093 * virtual address end. Not every virtual page between start and end
6094 * is mapped; only those for which a resident page exists with the
6095 * corresponding offset from m_start are mapped.
6096 */
6097 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)6098 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
6099 vm_page_t m_start, vm_prot_t prot)
6100 {
6101 struct pctrie_iter pages;
6102 struct rwlock *lock;
6103 vm_offset_t va;
6104 vm_page_t m, mpte;
6105 int rv;
6106
6107 VM_OBJECT_ASSERT_LOCKED(m_start->object);
6108
6109 mpte = NULL;
6110 vm_page_iter_limit_init(&pages, m_start->object,
6111 m_start->pindex + atop(end - start));
6112 m = vm_radix_iter_lookup(&pages, m_start->pindex);
6113 lock = NULL;
6114 PMAP_LOCK(pmap);
6115 while (m != NULL) {
6116 va = start + ptoa(m->pindex - m_start->pindex);
6117 if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
6118 m->psind == 2 && pmap_ps_enabled(pmap) &&
6119 ((rv = pmap_enter_l2_rx(pmap, va, m, prot, &lock)) ==
6120 KERN_SUCCESS || rv == KERN_NO_SPACE)) {
6121 m = vm_radix_iter_jump(&pages, L2_SIZE / PAGE_SIZE);
6122 } else if ((va & L3C_OFFSET) == 0 && va + L3C_SIZE <= end &&
6123 m->psind >= 1 && pmap_ps_enabled(pmap) &&
6124 ((rv = pmap_enter_l3c_rx(pmap, va, m, &mpte, prot,
6125 &lock)) == KERN_SUCCESS || rv == KERN_NO_SPACE)) {
6126 m = vm_radix_iter_jump(&pages, L3C_ENTRIES);
6127 } else {
6128 /*
6129 * In general, if a superpage mapping were possible,
6130 * it would have been created above. That said, if
6131 * start and end are not superpage aligned, then
6132 * promotion might be possible at the ends of [start,
6133 * end). However, in practice, those promotion
6134 * attempts are so unlikely to succeed that they are
6135 * not worth trying.
6136 */
6137 mpte = pmap_enter_quick_locked(pmap, va, m, prot |
6138 VM_PROT_NO_PROMOTE, mpte, &lock);
6139 m = vm_radix_iter_step(&pages);
6140 }
6141 }
6142 if (lock != NULL)
6143 rw_wunlock(lock);
6144 PMAP_UNLOCK(pmap);
6145 }
6146
6147 /*
6148 * this code makes some *MAJOR* assumptions:
6149 * 1. Current pmap & pmap exists.
6150 * 2. Not wired.
6151 * 3. Read access.
6152 * 4. No page table pages.
6153 * but is *MUCH* faster than pmap_enter...
6154 */
6155
6156 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)6157 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
6158 {
6159 struct rwlock *lock;
6160
6161 lock = NULL;
6162 PMAP_LOCK(pmap);
6163 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
6164 if (lock != NULL)
6165 rw_wunlock(lock);
6166 PMAP_UNLOCK(pmap);
6167 }
6168
6169 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)6170 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
6171 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
6172 {
6173 pt_entry_t *l1, *l2, *l3, l3_val;
6174 vm_paddr_t pa;
6175 int full_lvl, lvl;
6176
6177 KASSERT(!VA_IS_CLEANMAP(va) ||
6178 (m->oflags & VPO_UNMANAGED) != 0,
6179 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
6180 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6181 PMAP_ASSERT_STAGE1(pmap);
6182 KASSERT(ADDR_IS_CANONICAL(va),
6183 ("%s: Address not in canonical form: %lx", __func__, va));
6184 l2 = NULL;
6185
6186 CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
6187 /*
6188 * In the case that a page table page is not
6189 * resident, we are creating it here.
6190 */
6191 if (!ADDR_IS_KERNEL(va)) {
6192 vm_pindex_t l2pindex;
6193
6194 /*
6195 * Calculate pagetable page index
6196 */
6197 l2pindex = pmap_l2_pindex(va);
6198 if (mpte && (mpte->pindex == l2pindex)) {
6199 mpte->ref_count++;
6200 } else {
6201 /*
6202 * If the page table page is mapped, we just increment
6203 * the hold count, and activate it. Otherwise, we
6204 * attempt to allocate a page table page, passing NULL
6205 * instead of the PV list lock pointer because we don't
6206 * intend to sleep. If this attempt fails, we don't
6207 * retry. Instead, we give up.
6208 */
6209 l1 = pmap_l1(pmap, va);
6210 if (l1 != NULL && pmap_load(l1) != 0) {
6211 if ((pmap_load(l1) & ATTR_DESCR_MASK) ==
6212 L1_BLOCK)
6213 return (NULL);
6214 l2 = pmap_l1_to_l2(l1, va);
6215 if (pmap_load(l2) != 0) {
6216 if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
6217 L2_BLOCK)
6218 return (NULL);
6219 mpte = PTE_TO_VM_PAGE(pmap_load(l2));
6220 mpte->ref_count++;
6221 } else {
6222 mpte = _pmap_alloc_l3(pmap, l2pindex,
6223 NULL);
6224 if (mpte == NULL)
6225 return (mpte);
6226 }
6227 } else {
6228 mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
6229 if (mpte == NULL)
6230 return (mpte);
6231 }
6232 }
6233 l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
6234 l3 = &l3[pmap_l3_index(va)];
6235 } else {
6236 mpte = NULL;
6237 l2 = pmap_pde(kernel_pmap, va, &lvl);
6238 KASSERT(l2 != NULL,
6239 ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
6240 va));
6241 KASSERT(lvl == 2,
6242 ("pmap_enter_quick_locked: Invalid level %d", lvl));
6243 l3 = pmap_l2_to_l3(l2, va);
6244 }
6245
6246 /*
6247 * Abort if a mapping already exists.
6248 */
6249 if (pmap_load(l3) != 0) {
6250 if (mpte != NULL)
6251 mpte->ref_count--;
6252 return (NULL);
6253 }
6254
6255 /*
6256 * Enter on the PV list if part of our managed memory.
6257 */
6258 if ((m->oflags & VPO_UNMANAGED) == 0 &&
6259 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
6260 if (mpte != NULL)
6261 pmap_abort_ptp(pmap, va, mpte);
6262 return (NULL);
6263 }
6264
6265 /*
6266 * Increment counters
6267 */
6268 pmap_resident_count_inc(pmap, 1);
6269
6270 pa = VM_PAGE_TO_PHYS(m);
6271 l3_val = PHYS_TO_PTE(pa) | pmap_sh_attr |
6272 ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) | L3_PAGE;
6273 l3_val |= pmap_pte_bti(pmap, va);
6274 if ((prot & VM_PROT_EXECUTE) == 0 ||
6275 m->md.pv_memattr == VM_MEMATTR_DEVICE)
6276 l3_val |= ATTR_S1_XN;
6277 if (!ADDR_IS_KERNEL(va))
6278 l3_val |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
6279 else
6280 l3_val |= ATTR_S1_UXN;
6281 if (pmap != kernel_pmap)
6282 l3_val |= ATTR_S1_nG;
6283
6284 /*
6285 * Now validate mapping with RO protection
6286 */
6287 if ((m->oflags & VPO_UNMANAGED) == 0)
6288 l3_val |= ATTR_SW_MANAGED;
6289 else
6290 l3_val |= ATTR_AF;
6291
6292 /* Sync icache before the mapping is stored to PTE */
6293 if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
6294 m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
6295 cpu_icache_sync_range((void *)PHYS_TO_DMAP(pa), PAGE_SIZE);
6296
6297 pmap_store(l3, l3_val);
6298 dsb(ishst);
6299
6300 #if VM_NRESERVLEVEL > 0
6301 /*
6302 * First, attempt L3C promotion, if the virtual and physical addresses
6303 * are aligned with each other and an underlying reservation has the
6304 * neighboring L3 pages allocated. The first condition is simply an
6305 * optimization that recognizes some eventual promotion failures early
6306 * at a lower run-time cost. Then, attempt L2 promotion, if both a
6307 * level 1 reservation and the PTP are fully populated.
6308 */
6309 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
6310 (va & L3C_OFFSET) == (pa & L3C_OFFSET) &&
6311 (m->flags & PG_FICTITIOUS) == 0 &&
6312 (full_lvl = vm_reserv_level_iffullpop(m)) >= 0 &&
6313 pmap_promote_l3c(pmap, l3, va) &&
6314 full_lvl == 1 && (mpte == NULL || mpte->ref_count == NL3PG)) {
6315 if (l2 == NULL)
6316 l2 = pmap_l2(pmap, va);
6317
6318 /*
6319 * If promotion succeeds, then the next call to this function
6320 * should not be given the unmapped PTP as a hint.
6321 */
6322 if (pmap_promote_l2(pmap, l2, va, mpte, lockp))
6323 mpte = NULL;
6324 }
6325 #endif
6326
6327 return (mpte);
6328 }
6329
6330 /*
6331 * This code maps large physical mmap regions into the
6332 * processor address space. Note that some shortcuts
6333 * are taken, but the code works.
6334 */
6335 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)6336 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
6337 vm_pindex_t pindex, vm_size_t size)
6338 {
6339
6340 VM_OBJECT_ASSERT_WLOCKED(object);
6341 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
6342 ("pmap_object_init_pt: non-device object"));
6343 }
6344
6345 /*
6346 * Clear the wired attribute from the mappings for the specified range of
6347 * addresses in the given pmap. Every valid mapping within that range
6348 * must have the wired attribute set. In contrast, invalid mappings
6349 * cannot have the wired attribute set, so they are ignored.
6350 *
6351 * The wired attribute of the page table entry is not a hardware feature,
6352 * so there is no need to invalidate any TLB entries.
6353 */
6354 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6355 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6356 {
6357 vm_offset_t va_next;
6358 pd_entry_t *l0, *l1, *l2;
6359 pt_entry_t *l3;
6360 bool partial_l3c;
6361
6362 PMAP_LOCK(pmap);
6363 for (; sva < eva; sva = va_next) {
6364 l0 = pmap_l0(pmap, sva);
6365 if (pmap_load(l0) == 0) {
6366 va_next = (sva + L0_SIZE) & ~L0_OFFSET;
6367 if (va_next < sva)
6368 va_next = eva;
6369 continue;
6370 }
6371
6372 l1 = pmap_l0_to_l1(l0, sva);
6373 va_next = (sva + L1_SIZE) & ~L1_OFFSET;
6374 if (va_next < sva)
6375 va_next = eva;
6376 if (pmap_load(l1) == 0)
6377 continue;
6378
6379 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
6380 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
6381 KASSERT(va_next <= eva,
6382 ("partial update of non-transparent 1G page "
6383 "l1 %#lx sva %#lx eva %#lx va_next %#lx",
6384 pmap_load(l1), sva, eva, va_next));
6385 MPASS(pmap != kernel_pmap);
6386 MPASS((pmap_load(l1) & (ATTR_SW_MANAGED |
6387 ATTR_SW_WIRED)) == ATTR_SW_WIRED);
6388 pmap_clear_bits(l1, ATTR_SW_WIRED);
6389 pmap->pm_stats.wired_count -= L1_SIZE / PAGE_SIZE;
6390 continue;
6391 }
6392
6393 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
6394 if (va_next < sva)
6395 va_next = eva;
6396
6397 l2 = pmap_l1_to_l2(l1, sva);
6398 if (pmap_load(l2) == 0)
6399 continue;
6400
6401 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
6402 if ((pmap_load(l2) & ATTR_SW_WIRED) == 0)
6403 panic("pmap_unwire: l2 %#jx is missing "
6404 "ATTR_SW_WIRED", (uintmax_t)pmap_load(l2));
6405
6406 /*
6407 * Are we unwiring the entire large page? If not,
6408 * demote the mapping and fall through.
6409 */
6410 if (sva + L2_SIZE == va_next && eva >= va_next) {
6411 pmap_clear_bits(l2, ATTR_SW_WIRED);
6412 pmap->pm_stats.wired_count -= L2_SIZE /
6413 PAGE_SIZE;
6414 continue;
6415 } else if (pmap_demote_l2(pmap, l2, sva) == NULL)
6416 panic("pmap_unwire: demotion failed");
6417 }
6418 KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
6419 ("pmap_unwire: Invalid l2 entry after demotion"));
6420
6421 if (va_next > eva)
6422 va_next = eva;
6423 for (partial_l3c = true, l3 = pmap_l2_to_l3(l2, sva);
6424 sva != va_next; l3++, sva += L3_SIZE) {
6425 if (pmap_load(l3) == 0)
6426 continue;
6427 if ((pmap_load(l3) & ATTR_CONTIGUOUS) != 0) {
6428 /*
6429 * Avoid demotion for whole-page unwiring.
6430 */
6431 if ((sva & L3C_OFFSET) == 0) {
6432 /*
6433 * Handle the possibility that
6434 * "va_next" is zero because of
6435 * address wraparound.
6436 */
6437 partial_l3c = sva + L3C_OFFSET >
6438 va_next - 1;
6439 }
6440 if (partial_l3c)
6441 (void)pmap_demote_l3c(pmap, l3, sva);
6442 }
6443 if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
6444 panic("pmap_unwire: l3 %#jx is missing "
6445 "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
6446
6447 /*
6448 * ATTR_SW_WIRED must be cleared atomically. Although
6449 * the pmap lock synchronizes access to ATTR_SW_WIRED,
6450 * the System MMU may write to the entry concurrently.
6451 */
6452 pmap_clear_bits(l3, ATTR_SW_WIRED);
6453 pmap->pm_stats.wired_count--;
6454 }
6455 }
6456 PMAP_UNLOCK(pmap);
6457 }
6458
6459 /*
6460 * This function requires that the caller has already added one to ml3's
6461 * ref_count in anticipation of creating a 4KB page mapping.
6462 */
6463 static bool
pmap_copy_l3c(pmap_t pmap,pt_entry_t * l3p,vm_offset_t va,pt_entry_t l3e,vm_page_t ml3,struct rwlock ** lockp)6464 pmap_copy_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va, pt_entry_t l3e,
6465 vm_page_t ml3, struct rwlock **lockp)
6466 {
6467 pt_entry_t *tl3p;
6468
6469 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6470 KASSERT((va & L3C_OFFSET) == 0,
6471 ("pmap_copy_l3c: va is not aligned"));
6472 KASSERT((l3e & ATTR_SW_MANAGED) != 0,
6473 ("pmap_copy_l3c: l3e is not managed"));
6474
6475 /*
6476 * Abort if a mapping already exists.
6477 */
6478 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++)
6479 if (pmap_load(tl3p) != 0) {
6480 if (ml3 != NULL)
6481 ml3->ref_count--;
6482 return (false);
6483 }
6484
6485 if (!pmap_pv_insert_l3c(pmap, va, PTE_TO_VM_PAGE(l3e), lockp)) {
6486 if (ml3 != NULL)
6487 pmap_abort_ptp(pmap, va, ml3);
6488 return (false);
6489 }
6490 ml3->ref_count += L3C_ENTRIES - 1;
6491
6492 /*
6493 * Clear the wired and accessed bits. However, leave the dirty bit
6494 * unchanged because read/write superpage mappings are required to be
6495 * dirty.
6496 */
6497 l3e &= ~(ATTR_SW_WIRED | ATTR_AF);
6498
6499 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
6500 pmap_store(tl3p, l3e);
6501 l3e += L3_SIZE;
6502 }
6503 pmap_resident_count_inc(pmap, L3C_ENTRIES);
6504 counter_u64_add(pmap_l3c_mappings, 1);
6505 CTR2(KTR_PMAP, "pmap_copy_l3c: success for va %#lx in pmap %p",
6506 va, pmap);
6507 return (true);
6508 }
6509
6510 /*
6511 * Copy the range specified by src_addr/len
6512 * from the source map to the range dst_addr/len
6513 * in the destination map.
6514 *
6515 * This routine is only advisory and need not do anything.
6516 *
6517 * Because the executable mappings created by this routine are copied,
6518 * it should not have to flush the instruction cache.
6519 */
6520 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)6521 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
6522 vm_offset_t src_addr)
6523 {
6524 struct rwlock *lock;
6525 pd_entry_t *l0, *l1, *l2, srcptepaddr;
6526 pt_entry_t *dst_pte, mask, nbits, ptetemp, *src_pte;
6527 vm_offset_t addr, end_addr, va_next;
6528 vm_page_t dst_m, dstmpte, srcmpte;
6529
6530 PMAP_ASSERT_STAGE1(dst_pmap);
6531 PMAP_ASSERT_STAGE1(src_pmap);
6532
6533 if (dst_addr != src_addr)
6534 return;
6535 end_addr = src_addr + len;
6536 lock = NULL;
6537 if (dst_pmap < src_pmap) {
6538 PMAP_LOCK(dst_pmap);
6539 PMAP_LOCK(src_pmap);
6540 } else {
6541 PMAP_LOCK(src_pmap);
6542 PMAP_LOCK(dst_pmap);
6543 }
6544 for (addr = src_addr; addr < end_addr; addr = va_next) {
6545 l0 = pmap_l0(src_pmap, addr);
6546 if (pmap_load(l0) == 0) {
6547 va_next = (addr + L0_SIZE) & ~L0_OFFSET;
6548 if (va_next < addr)
6549 va_next = end_addr;
6550 continue;
6551 }
6552
6553 va_next = (addr + L1_SIZE) & ~L1_OFFSET;
6554 if (va_next < addr)
6555 va_next = end_addr;
6556 l1 = pmap_l0_to_l1(l0, addr);
6557 if (pmap_load(l1) == 0)
6558 continue;
6559 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
6560 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
6561 KASSERT(va_next <= end_addr,
6562 ("partial update of non-transparent 1G page "
6563 "l1 %#lx addr %#lx end_addr %#lx va_next %#lx",
6564 pmap_load(l1), addr, end_addr, va_next));
6565 srcptepaddr = pmap_load(l1);
6566 l1 = pmap_l1(dst_pmap, addr);
6567 if (l1 == NULL) {
6568 if (_pmap_alloc_l3(dst_pmap,
6569 pmap_l0_pindex(addr), NULL) == NULL)
6570 break;
6571 l1 = pmap_l1(dst_pmap, addr);
6572 } else {
6573 l0 = pmap_l0(dst_pmap, addr);
6574 dst_m = PTE_TO_VM_PAGE(pmap_load(l0));
6575 dst_m->ref_count++;
6576 }
6577 KASSERT(pmap_load(l1) == 0,
6578 ("1G mapping present in dst pmap "
6579 "l1 %#lx addr %#lx end_addr %#lx va_next %#lx",
6580 pmap_load(l1), addr, end_addr, va_next));
6581 pmap_store(l1, srcptepaddr & ~ATTR_SW_WIRED);
6582 pmap_resident_count_inc(dst_pmap, L1_SIZE / PAGE_SIZE);
6583 continue;
6584 }
6585
6586 va_next = (addr + L2_SIZE) & ~L2_OFFSET;
6587 if (va_next < addr)
6588 va_next = end_addr;
6589 l2 = pmap_l1_to_l2(l1, addr);
6590 srcptepaddr = pmap_load(l2);
6591 if (srcptepaddr == 0)
6592 continue;
6593 if ((srcptepaddr & ATTR_DESCR_MASK) == L2_BLOCK) {
6594 /*
6595 * We can only virtual copy whole superpages.
6596 */
6597 if ((addr & L2_OFFSET) != 0 ||
6598 addr + L2_SIZE > end_addr)
6599 continue;
6600 l2 = pmap_alloc_l2(dst_pmap, addr, &dst_m, NULL);
6601 if (l2 == NULL)
6602 break;
6603 if (pmap_load(l2) == 0 &&
6604 ((srcptepaddr & ATTR_SW_MANAGED) == 0 ||
6605 pmap_pv_insert_l2(dst_pmap, addr, srcptepaddr,
6606 PMAP_ENTER_NORECLAIM, &lock))) {
6607 /*
6608 * We leave the dirty bit unchanged because
6609 * managed read/write superpage mappings are
6610 * required to be dirty. However, managed
6611 * superpage mappings are not required to
6612 * have their accessed bit set, so we clear
6613 * it because we don't know if this mapping
6614 * will be used.
6615 */
6616 srcptepaddr &= ~ATTR_SW_WIRED;
6617 if ((srcptepaddr & ATTR_SW_MANAGED) != 0)
6618 srcptepaddr &= ~ATTR_AF;
6619 pmap_store(l2, srcptepaddr);
6620 pmap_resident_count_inc(dst_pmap, L2_SIZE /
6621 PAGE_SIZE);
6622 counter_u64_add(pmap_l2_mappings, 1);
6623 } else
6624 pmap_abort_ptp(dst_pmap, addr, dst_m);
6625 continue;
6626 }
6627 KASSERT((srcptepaddr & ATTR_DESCR_MASK) == L2_TABLE,
6628 ("pmap_copy: invalid L2 entry"));
6629 srcmpte = PTE_TO_VM_PAGE(srcptepaddr);
6630 KASSERT(srcmpte->ref_count > 0,
6631 ("pmap_copy: source page table page is unused"));
6632 if (va_next > end_addr)
6633 va_next = end_addr;
6634 src_pte = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(srcptepaddr));
6635 src_pte = &src_pte[pmap_l3_index(addr)];
6636 dstmpte = NULL;
6637 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
6638 ptetemp = pmap_load(src_pte);
6639
6640 /*
6641 * We only virtual copy managed pages.
6642 */
6643 if ((ptetemp & ATTR_SW_MANAGED) == 0)
6644 continue;
6645
6646 if (dstmpte != NULL) {
6647 KASSERT(dstmpte->pindex == pmap_l2_pindex(addr),
6648 ("dstmpte pindex/addr mismatch"));
6649 dstmpte->ref_count++;
6650 } else if ((dstmpte = pmap_alloc_l3(dst_pmap, addr,
6651 NULL)) == NULL)
6652 goto out;
6653 dst_pte = (pt_entry_t *)
6654 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
6655 dst_pte = &dst_pte[pmap_l3_index(addr)];
6656 if ((ptetemp & ATTR_CONTIGUOUS) != 0 && (addr &
6657 L3C_OFFSET) == 0 && addr + L3C_OFFSET <=
6658 va_next - 1) {
6659 if (!pmap_copy_l3c(dst_pmap, dst_pte, addr,
6660 ptetemp, dstmpte, &lock))
6661 goto out;
6662 addr += L3C_SIZE - PAGE_SIZE;
6663 src_pte += L3C_ENTRIES - 1;
6664 } else if (pmap_load(dst_pte) == 0 &&
6665 pmap_try_insert_pv_entry(dst_pmap, addr,
6666 PTE_TO_VM_PAGE(ptetemp), &lock)) {
6667 /*
6668 * Clear the wired, contiguous, modified, and
6669 * accessed bits from the destination PTE.
6670 * The contiguous bit is cleared because we
6671 * are not copying the entire L3C superpage.
6672 */
6673 mask = ATTR_SW_WIRED | ATTR_CONTIGUOUS |
6674 ATTR_AF;
6675 nbits = 0;
6676 if ((ptetemp & ATTR_SW_DBM) != 0)
6677 nbits |= ATTR_S1_AP_RW_BIT;
6678 pmap_store(dst_pte, (ptetemp & ~mask) | nbits);
6679 pmap_resident_count_inc(dst_pmap, 1);
6680 } else {
6681 pmap_abort_ptp(dst_pmap, addr, dstmpte);
6682 goto out;
6683 }
6684 /* Have we copied all of the valid mappings? */
6685 if (dstmpte->ref_count >= srcmpte->ref_count)
6686 break;
6687 }
6688 }
6689 out:
6690 /*
6691 * XXX This barrier may not be needed because the destination pmap is
6692 * not active.
6693 */
6694 dsb(ishst);
6695
6696 if (lock != NULL)
6697 rw_wunlock(lock);
6698 PMAP_UNLOCK(src_pmap);
6699 PMAP_UNLOCK(dst_pmap);
6700 }
6701
6702 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)6703 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
6704 {
6705 int error;
6706
6707 if (dst_pmap->pm_stage != src_pmap->pm_stage)
6708 return (EINVAL);
6709
6710 if (dst_pmap->pm_stage != PM_STAGE1 || src_pmap->pm_bti == NULL)
6711 return (0);
6712
6713 for (;;) {
6714 if (dst_pmap < src_pmap) {
6715 PMAP_LOCK(dst_pmap);
6716 PMAP_LOCK(src_pmap);
6717 } else {
6718 PMAP_LOCK(src_pmap);
6719 PMAP_LOCK(dst_pmap);
6720 }
6721 error = pmap_bti_copy(dst_pmap, src_pmap);
6722 /* Clean up partial copy on failure due to no memory. */
6723 if (error == ENOMEM)
6724 pmap_bti_deassign_all(dst_pmap);
6725 PMAP_UNLOCK(src_pmap);
6726 PMAP_UNLOCK(dst_pmap);
6727 if (error != ENOMEM)
6728 break;
6729 vm_wait(NULL);
6730 }
6731 return (error);
6732 }
6733
6734 /*
6735 * pmap_zero_page zeros the specified hardware page by mapping
6736 * the page into KVM and using bzero to clear its contents.
6737 */
6738 void
pmap_zero_page(vm_page_t m)6739 pmap_zero_page(vm_page_t m)
6740 {
6741 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
6742
6743 pagezero((void *)va);
6744 }
6745
6746 /*
6747 * pmap_zero_page_area zeros the specified hardware page by mapping
6748 * the page into KVM and using bzero to clear its contents.
6749 *
6750 * off and size may not cover an area beyond a single hardware page.
6751 */
6752 void
pmap_zero_page_area(vm_page_t m,int off,int size)6753 pmap_zero_page_area(vm_page_t m, int off, int size)
6754 {
6755 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
6756
6757 if (off == 0 && size == PAGE_SIZE)
6758 pagezero((void *)va);
6759 else
6760 bzero((char *)va + off, size);
6761 }
6762
6763 /*
6764 * pmap_copy_page copies the specified (machine independent)
6765 * page by mapping the page into virtual memory and using
6766 * bcopy to copy the page, one machine dependent page at a
6767 * time.
6768 */
6769 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)6770 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
6771 {
6772 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
6773 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
6774
6775 pagecopy((void *)src, (void *)dst);
6776 }
6777
6778 int unmapped_buf_allowed = 1;
6779
6780 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)6781 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
6782 vm_offset_t b_offset, int xfersize)
6783 {
6784 void *a_cp, *b_cp;
6785 vm_page_t m_a, m_b;
6786 vm_paddr_t p_a, p_b;
6787 vm_offset_t a_pg_offset, b_pg_offset;
6788 int cnt;
6789
6790 while (xfersize > 0) {
6791 a_pg_offset = a_offset & PAGE_MASK;
6792 m_a = ma[a_offset >> PAGE_SHIFT];
6793 p_a = m_a->phys_addr;
6794 b_pg_offset = b_offset & PAGE_MASK;
6795 m_b = mb[b_offset >> PAGE_SHIFT];
6796 p_b = m_b->phys_addr;
6797 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
6798 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
6799 if (__predict_false(!PHYS_IN_DMAP(p_a))) {
6800 panic("!DMAP a %lx", p_a);
6801 } else {
6802 a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
6803 }
6804 if (__predict_false(!PHYS_IN_DMAP(p_b))) {
6805 panic("!DMAP b %lx", p_b);
6806 } else {
6807 b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
6808 }
6809 bcopy(a_cp, b_cp, cnt);
6810 a_offset += cnt;
6811 b_offset += cnt;
6812 xfersize -= cnt;
6813 }
6814 }
6815
6816 vm_offset_t
pmap_quick_enter_page(vm_page_t m)6817 pmap_quick_enter_page(vm_page_t m)
6818 {
6819
6820 return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
6821 }
6822
6823 void
pmap_quick_remove_page(vm_offset_t addr)6824 pmap_quick_remove_page(vm_offset_t addr)
6825 {
6826 }
6827
6828 /*
6829 * Returns true if the pmap's pv is one of the first
6830 * 16 pvs linked to from this page. This count may
6831 * be changed upwards or downwards in the future; it
6832 * is only necessary that true be returned for a small
6833 * subset of pmaps for proper page aging.
6834 */
6835 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)6836 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
6837 {
6838 struct md_page *pvh;
6839 struct rwlock *lock;
6840 pv_entry_t pv;
6841 int loops = 0;
6842 bool rv;
6843
6844 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6845 ("pmap_page_exists_quick: page %p is not managed", m));
6846 rv = false;
6847 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6848 rw_rlock(lock);
6849 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
6850 if (PV_PMAP(pv) == pmap) {
6851 rv = true;
6852 break;
6853 }
6854 loops++;
6855 if (loops >= 16)
6856 break;
6857 }
6858 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
6859 pvh = page_to_pvh(m);
6860 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
6861 if (PV_PMAP(pv) == pmap) {
6862 rv = true;
6863 break;
6864 }
6865 loops++;
6866 if (loops >= 16)
6867 break;
6868 }
6869 }
6870 rw_runlock(lock);
6871 return (rv);
6872 }
6873
6874 /*
6875 * pmap_page_wired_mappings:
6876 *
6877 * Return the number of managed mappings to the given physical page
6878 * that are wired.
6879 */
6880 int
pmap_page_wired_mappings(vm_page_t m)6881 pmap_page_wired_mappings(vm_page_t m)
6882 {
6883 struct rwlock *lock;
6884 struct md_page *pvh;
6885 pmap_t pmap;
6886 pt_entry_t *pte;
6887 pv_entry_t pv;
6888 int count, md_gen, pvh_gen;
6889
6890 if ((m->oflags & VPO_UNMANAGED) != 0)
6891 return (0);
6892 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6893 rw_rlock(lock);
6894 restart:
6895 count = 0;
6896 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
6897 pmap = PV_PMAP(pv);
6898 if (!PMAP_TRYLOCK(pmap)) {
6899 md_gen = m->md.pv_gen;
6900 rw_runlock(lock);
6901 PMAP_LOCK(pmap);
6902 rw_rlock(lock);
6903 if (md_gen != m->md.pv_gen) {
6904 PMAP_UNLOCK(pmap);
6905 goto restart;
6906 }
6907 }
6908 pte = pmap_pte_exists(pmap, pv->pv_va, 3, __func__);
6909 if ((pmap_load(pte) & ATTR_SW_WIRED) != 0)
6910 count++;
6911 PMAP_UNLOCK(pmap);
6912 }
6913 if ((m->flags & PG_FICTITIOUS) == 0) {
6914 pvh = page_to_pvh(m);
6915 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
6916 pmap = PV_PMAP(pv);
6917 if (!PMAP_TRYLOCK(pmap)) {
6918 md_gen = m->md.pv_gen;
6919 pvh_gen = pvh->pv_gen;
6920 rw_runlock(lock);
6921 PMAP_LOCK(pmap);
6922 rw_rlock(lock);
6923 if (md_gen != m->md.pv_gen ||
6924 pvh_gen != pvh->pv_gen) {
6925 PMAP_UNLOCK(pmap);
6926 goto restart;
6927 }
6928 }
6929 pte = pmap_pte_exists(pmap, pv->pv_va, 2, __func__);
6930 if ((pmap_load(pte) & ATTR_SW_WIRED) != 0)
6931 count++;
6932 PMAP_UNLOCK(pmap);
6933 }
6934 }
6935 rw_runlock(lock);
6936 return (count);
6937 }
6938
6939 /*
6940 * Returns true if the given page is mapped individually or as part of
6941 * a 2mpage. Otherwise, returns false.
6942 */
6943 bool
pmap_page_is_mapped(vm_page_t m)6944 pmap_page_is_mapped(vm_page_t m)
6945 {
6946 struct rwlock *lock;
6947 bool rv;
6948
6949 if ((m->oflags & VPO_UNMANAGED) != 0)
6950 return (false);
6951 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6952 rw_rlock(lock);
6953 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
6954 ((m->flags & PG_FICTITIOUS) == 0 &&
6955 !TAILQ_EMPTY(&page_to_pvh(m)->pv_list));
6956 rw_runlock(lock);
6957 return (rv);
6958 }
6959
6960 /*
6961 * Destroy all managed, non-wired mappings in the given user-space
6962 * pmap. This pmap cannot be active on any processor besides the
6963 * caller.
6964 *
6965 * This function cannot be applied to the kernel pmap. Moreover, it
6966 * is not intended for general use. It is only to be used during
6967 * process termination. Consequently, it can be implemented in ways
6968 * that make it faster than pmap_remove(). First, it can more quickly
6969 * destroy mappings by iterating over the pmap's collection of PV
6970 * entries, rather than searching the page table. Second, it doesn't
6971 * have to test and clear the page table entries atomically, because
6972 * no processor is currently accessing the user address space. In
6973 * particular, a page table entry's dirty bit won't change state once
6974 * this function starts.
6975 */
6976 void
pmap_remove_pages(pmap_t pmap)6977 pmap_remove_pages(pmap_t pmap)
6978 {
6979 pd_entry_t *pde;
6980 pt_entry_t *pte, tpte;
6981 struct spglist free;
6982 struct pv_chunklist free_chunks[PMAP_MEMDOM];
6983 vm_page_t m, ml3, mt;
6984 pv_entry_t pv;
6985 struct md_page *pvh;
6986 struct pv_chunk *pc, *npc;
6987 struct rwlock *lock;
6988 int64_t bit;
6989 uint64_t inuse, bitmask;
6990 int allfree, field, i, idx, lvl;
6991 int freed __pvused;
6992 vm_paddr_t pa;
6993
6994 lock = NULL;
6995
6996 for (i = 0; i < PMAP_MEMDOM; i++)
6997 TAILQ_INIT(&free_chunks[i]);
6998 SLIST_INIT(&free);
6999 PMAP_LOCK(pmap);
7000 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
7001 allfree = 1;
7002 freed = 0;
7003 for (field = 0; field < _NPCM; field++) {
7004 inuse = ~pc->pc_map[field] & pc_freemask[field];
7005 while (inuse != 0) {
7006 bit = ffsl(inuse) - 1;
7007 bitmask = 1UL << bit;
7008 idx = field * 64 + bit;
7009 pv = &pc->pc_pventry[idx];
7010 inuse &= ~bitmask;
7011
7012 pde = pmap_pde(pmap, pv->pv_va, &lvl);
7013 KASSERT(pde != NULL,
7014 ("Attempting to remove an unmapped page"));
7015
7016 switch(lvl) {
7017 case 1:
7018 pte = pmap_l1_to_l2(pde, pv->pv_va);
7019 tpte = pmap_load(pte);
7020 KASSERT((tpte & ATTR_DESCR_MASK) ==
7021 L2_BLOCK,
7022 ("Attempting to remove an invalid "
7023 "block: %lx", tpte));
7024 break;
7025 case 2:
7026 pte = pmap_l2_to_l3(pde, pv->pv_va);
7027 tpte = pmap_load(pte);
7028 KASSERT((tpte & ATTR_DESCR_MASK) ==
7029 L3_PAGE,
7030 ("Attempting to remove an invalid "
7031 "page: %lx", tpte));
7032 break;
7033 default:
7034 panic(
7035 "Invalid page directory level: %d",
7036 lvl);
7037 }
7038
7039 /*
7040 * We cannot remove wired mappings at this time.
7041 *
7042 * For L3C superpages, all of the constituent PTEs
7043 * should have the wired bit set, so we don't
7044 * check for ATTR_CONTIGUOUS here.
7045 */
7046 if (tpte & ATTR_SW_WIRED) {
7047 allfree = 0;
7048 continue;
7049 }
7050
7051 /* Mark free */
7052 pc->pc_map[field] |= bitmask;
7053
7054 /*
7055 * Because this pmap is not active on other
7056 * processors, the dirty bit cannot have
7057 * changed state since we last loaded pte.
7058 */
7059 pmap_clear(pte);
7060
7061 pa = PTE_TO_PHYS(tpte);
7062
7063 m = PHYS_TO_VM_PAGE(pa);
7064 KASSERT(m->phys_addr == pa,
7065 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
7066 m, (uintmax_t)m->phys_addr,
7067 (uintmax_t)tpte));
7068
7069 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
7070 m < &vm_page_array[vm_page_array_size],
7071 ("pmap_remove_pages: bad pte %#jx",
7072 (uintmax_t)tpte));
7073
7074 /*
7075 * Update the vm_page_t clean/reference bits.
7076 *
7077 * We don't check for ATTR_CONTIGUOUS here
7078 * because writeable L3C superpages are expected
7079 * to be dirty, i.e., every constituent PTE
7080 * should be dirty.
7081 */
7082 if (pmap_pte_dirty(pmap, tpte)) {
7083 switch (lvl) {
7084 case 1:
7085 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
7086 vm_page_dirty(mt);
7087 break;
7088 case 2:
7089 vm_page_dirty(m);
7090 break;
7091 }
7092 }
7093
7094 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
7095
7096 switch (lvl) {
7097 case 1:
7098 pmap_resident_count_dec(pmap,
7099 L2_SIZE / PAGE_SIZE);
7100 pvh = page_to_pvh(m);
7101 TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
7102 pvh->pv_gen++;
7103 if (TAILQ_EMPTY(&pvh->pv_list)) {
7104 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
7105 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
7106 TAILQ_EMPTY(&mt->md.pv_list))
7107 vm_page_aflag_clear(mt, PGA_WRITEABLE);
7108 }
7109 ml3 = pmap_remove_pt_page(pmap,
7110 pv->pv_va);
7111 if (ml3 != NULL) {
7112 KASSERT(vm_page_any_valid(ml3),
7113 ("pmap_remove_pages: l3 page not promoted"));
7114 pmap_resident_count_dec(pmap,1);
7115 KASSERT(ml3->ref_count == NL3PG,
7116 ("pmap_remove_pages: l3 page ref count error"));
7117 ml3->ref_count = 0;
7118 pmap_add_delayed_free_list(ml3,
7119 &free, false);
7120 }
7121 break;
7122 case 2:
7123 pmap_resident_count_dec(pmap, 1);
7124 TAILQ_REMOVE(&m->md.pv_list, pv,
7125 pv_next);
7126 m->md.pv_gen++;
7127 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
7128 TAILQ_EMPTY(&m->md.pv_list) &&
7129 (m->flags & PG_FICTITIOUS) == 0) {
7130 pvh = page_to_pvh(m);
7131 if (TAILQ_EMPTY(&pvh->pv_list))
7132 vm_page_aflag_clear(m,
7133 PGA_WRITEABLE);
7134 }
7135 break;
7136 }
7137 pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde),
7138 &free);
7139 freed++;
7140 }
7141 }
7142 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
7143 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
7144 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
7145 if (allfree) {
7146 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
7147 TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc,
7148 pc_list);
7149 }
7150 }
7151 if (lock != NULL)
7152 rw_wunlock(lock);
7153 pmap_invalidate_all(pmap);
7154 pmap_bti_deassign_all(pmap);
7155 free_pv_chunk_batch(free_chunks);
7156 PMAP_UNLOCK(pmap);
7157 vm_page_free_pages_toq(&free, true);
7158 }
7159
7160 /*
7161 * This is used to check if a page has been accessed or modified.
7162 */
7163 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)7164 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
7165 {
7166 struct rwlock *lock;
7167 pv_entry_t pv;
7168 struct md_page *pvh;
7169 pt_entry_t l3e, mask, *pte, value;
7170 pmap_t pmap;
7171 int md_gen, pvh_gen;
7172 bool rv;
7173
7174 rv = false;
7175 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7176 rw_rlock(lock);
7177 restart:
7178 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7179 pmap = PV_PMAP(pv);
7180 PMAP_ASSERT_STAGE1(pmap);
7181 if (!PMAP_TRYLOCK(pmap)) {
7182 md_gen = m->md.pv_gen;
7183 rw_runlock(lock);
7184 PMAP_LOCK(pmap);
7185 rw_rlock(lock);
7186 if (md_gen != m->md.pv_gen) {
7187 PMAP_UNLOCK(pmap);
7188 goto restart;
7189 }
7190 }
7191 pte = pmap_pte_exists(pmap, pv->pv_va, 3, __func__);
7192 mask = 0;
7193 value = 0;
7194 if (modified) {
7195 mask |= ATTR_S1_AP_RW_BIT;
7196 value |= ATTR_S1_AP(ATTR_S1_AP_RW);
7197 }
7198 if (accessed) {
7199 mask |= ATTR_AF | ATTR_DESCR_MASK;
7200 value |= ATTR_AF | L3_PAGE;
7201 }
7202 l3e = pmap_load(pte);
7203 if ((l3e & ATTR_CONTIGUOUS) != 0)
7204 l3e = pmap_load_l3c(pte);
7205 PMAP_UNLOCK(pmap);
7206 rv = (l3e & mask) == value;
7207 if (rv)
7208 goto out;
7209 }
7210 if ((m->flags & PG_FICTITIOUS) == 0) {
7211 pvh = page_to_pvh(m);
7212 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
7213 pmap = PV_PMAP(pv);
7214 PMAP_ASSERT_STAGE1(pmap);
7215 if (!PMAP_TRYLOCK(pmap)) {
7216 md_gen = m->md.pv_gen;
7217 pvh_gen = pvh->pv_gen;
7218 rw_runlock(lock);
7219 PMAP_LOCK(pmap);
7220 rw_rlock(lock);
7221 if (md_gen != m->md.pv_gen ||
7222 pvh_gen != pvh->pv_gen) {
7223 PMAP_UNLOCK(pmap);
7224 goto restart;
7225 }
7226 }
7227 pte = pmap_pte_exists(pmap, pv->pv_va, 2, __func__);
7228 mask = 0;
7229 value = 0;
7230 if (modified) {
7231 mask |= ATTR_S1_AP_RW_BIT;
7232 value |= ATTR_S1_AP(ATTR_S1_AP_RW);
7233 }
7234 if (accessed) {
7235 mask |= ATTR_AF | ATTR_DESCR_MASK;
7236 value |= ATTR_AF | L2_BLOCK;
7237 }
7238 rv = (pmap_load(pte) & mask) == value;
7239 PMAP_UNLOCK(pmap);
7240 if (rv)
7241 goto out;
7242 }
7243 }
7244 out:
7245 rw_runlock(lock);
7246 return (rv);
7247 }
7248
7249 /*
7250 * pmap_is_modified:
7251 *
7252 * Return whether or not the specified physical page was modified
7253 * in any physical maps.
7254 */
7255 bool
pmap_is_modified(vm_page_t m)7256 pmap_is_modified(vm_page_t m)
7257 {
7258
7259 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7260 ("pmap_is_modified: page %p is not managed", m));
7261
7262 /*
7263 * If the page is not busied then this check is racy.
7264 */
7265 if (!pmap_page_is_write_mapped(m))
7266 return (false);
7267 return (pmap_page_test_mappings(m, false, true));
7268 }
7269
7270 /*
7271 * pmap_is_prefaultable:
7272 *
7273 * Return whether or not the specified virtual address is eligible
7274 * for prefault.
7275 */
7276 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)7277 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
7278 {
7279 pd_entry_t *pde;
7280 pt_entry_t *pte;
7281 bool rv;
7282 int lvl;
7283
7284 /*
7285 * Return true if and only if the L3 entry for the specified virtual
7286 * address is allocated but invalid.
7287 */
7288 rv = false;
7289 PMAP_LOCK(pmap);
7290 pde = pmap_pde(pmap, addr, &lvl);
7291 if (pde != NULL && lvl == 2) {
7292 pte = pmap_l2_to_l3(pde, addr);
7293 rv = pmap_load(pte) == 0;
7294 }
7295 PMAP_UNLOCK(pmap);
7296 return (rv);
7297 }
7298
7299 /*
7300 * pmap_is_referenced:
7301 *
7302 * Return whether or not the specified physical page was referenced
7303 * in any physical maps.
7304 */
7305 bool
pmap_is_referenced(vm_page_t m)7306 pmap_is_referenced(vm_page_t m)
7307 {
7308
7309 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7310 ("pmap_is_referenced: page %p is not managed", m));
7311 return (pmap_page_test_mappings(m, true, false));
7312 }
7313
7314 /*
7315 * Clear the write and modified bits in each of the given page's mappings.
7316 */
7317 void
pmap_remove_write(vm_page_t m)7318 pmap_remove_write(vm_page_t m)
7319 {
7320 struct md_page *pvh;
7321 pmap_t pmap;
7322 struct rwlock *lock;
7323 pv_entry_t next_pv, pv;
7324 pt_entry_t oldpte, *pte, set, clear, mask, val;
7325 vm_offset_t va;
7326 int md_gen, pvh_gen;
7327
7328 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7329 ("pmap_remove_write: page %p is not managed", m));
7330 vm_page_assert_busied(m);
7331
7332 if (!pmap_page_is_write_mapped(m))
7333 return;
7334 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7335 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
7336 rw_wlock(lock);
7337 retry:
7338 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
7339 pmap = PV_PMAP(pv);
7340 PMAP_ASSERT_STAGE1(pmap);
7341 if (!PMAP_TRYLOCK(pmap)) {
7342 pvh_gen = pvh->pv_gen;
7343 rw_wunlock(lock);
7344 PMAP_LOCK(pmap);
7345 rw_wlock(lock);
7346 if (pvh_gen != pvh->pv_gen) {
7347 PMAP_UNLOCK(pmap);
7348 goto retry;
7349 }
7350 }
7351 va = pv->pv_va;
7352 pte = pmap_pte_exists(pmap, va, 2, __func__);
7353 if ((pmap_load(pte) & ATTR_SW_DBM) != 0)
7354 (void)pmap_demote_l2_locked(pmap, pte, va, &lock);
7355 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
7356 ("inconsistent pv lock %p %p for page %p",
7357 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
7358 PMAP_UNLOCK(pmap);
7359 }
7360 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7361 pmap = PV_PMAP(pv);
7362 if (!PMAP_TRYLOCK(pmap)) {
7363 pvh_gen = pvh->pv_gen;
7364 md_gen = m->md.pv_gen;
7365 rw_wunlock(lock);
7366 PMAP_LOCK(pmap);
7367 rw_wlock(lock);
7368 if (pvh_gen != pvh->pv_gen ||
7369 md_gen != m->md.pv_gen) {
7370 PMAP_UNLOCK(pmap);
7371 goto retry;
7372 }
7373 }
7374 pte = pmap_pte_exists(pmap, pv->pv_va, 3, __func__);
7375 oldpte = pmap_load(pte);
7376 if ((oldpte & ATTR_SW_DBM) != 0) {
7377 if ((oldpte & ATTR_CONTIGUOUS) != 0) {
7378 (void)pmap_demote_l3c(pmap, pte, pv->pv_va);
7379
7380 /*
7381 * The L3 entry's accessed bit may have
7382 * changed.
7383 */
7384 oldpte = pmap_load(pte);
7385 }
7386 if (pmap->pm_stage == PM_STAGE1) {
7387 set = ATTR_S1_AP_RW_BIT;
7388 clear = 0;
7389 mask = ATTR_S1_AP_RW_BIT;
7390 val = ATTR_S1_AP(ATTR_S1_AP_RW);
7391 } else {
7392 set = 0;
7393 clear = ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
7394 mask = ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
7395 val = ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
7396 }
7397 clear |= ATTR_SW_DBM;
7398 while (!atomic_fcmpset_64(pte, &oldpte,
7399 (oldpte | set) & ~clear))
7400 cpu_spinwait();
7401
7402 if ((oldpte & mask) == val)
7403 vm_page_dirty(m);
7404 pmap_invalidate_page(pmap, pv->pv_va, true);
7405 }
7406 PMAP_UNLOCK(pmap);
7407 }
7408 rw_wunlock(lock);
7409 vm_page_aflag_clear(m, PGA_WRITEABLE);
7410 }
7411
7412 /*
7413 * pmap_ts_referenced:
7414 *
7415 * Return a count of reference bits for a page, clearing those bits.
7416 * It is not necessary for every reference bit to be cleared, but it
7417 * is necessary that 0 only be returned when there are truly no
7418 * reference bits set.
7419 *
7420 * As an optimization, update the page's dirty field if a modified bit is
7421 * found while counting reference bits. This opportunistic update can be
7422 * performed at low cost and can eliminate the need for some future calls
7423 * to pmap_is_modified(). However, since this function stops after
7424 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
7425 * dirty pages. Those dirty pages will only be detected by a future call
7426 * to pmap_is_modified().
7427 */
7428 int
pmap_ts_referenced(vm_page_t m)7429 pmap_ts_referenced(vm_page_t m)
7430 {
7431 struct md_page *pvh;
7432 pv_entry_t pv, pvf;
7433 pmap_t pmap;
7434 struct rwlock *lock;
7435 pt_entry_t *pte, tpte;
7436 vm_offset_t va;
7437 vm_paddr_t pa;
7438 int cleared, md_gen, not_cleared, pvh_gen;
7439 struct spglist free;
7440
7441 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7442 ("pmap_ts_referenced: page %p is not managed", m));
7443 SLIST_INIT(&free);
7444 cleared = 0;
7445 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
7446 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7447 rw_wlock(lock);
7448 retry:
7449 not_cleared = 0;
7450 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
7451 goto small_mappings;
7452 pv = pvf;
7453 do {
7454 if (pvf == NULL)
7455 pvf = pv;
7456 pmap = PV_PMAP(pv);
7457 if (!PMAP_TRYLOCK(pmap)) {
7458 pvh_gen = pvh->pv_gen;
7459 rw_wunlock(lock);
7460 PMAP_LOCK(pmap);
7461 rw_wlock(lock);
7462 if (pvh_gen != pvh->pv_gen) {
7463 PMAP_UNLOCK(pmap);
7464 goto retry;
7465 }
7466 }
7467 va = pv->pv_va;
7468 pte = pmap_pte_exists(pmap, va, 2, __func__);
7469 tpte = pmap_load(pte);
7470 if (pmap_pte_dirty(pmap, tpte)) {
7471 /*
7472 * Although "tpte" is mapping a 2MB page, because
7473 * this function is called at a 4KB page granularity,
7474 * we only update the 4KB page under test.
7475 */
7476 vm_page_dirty(m);
7477 }
7478 if ((tpte & ATTR_AF) != 0) {
7479 pa = VM_PAGE_TO_PHYS(m);
7480
7481 /*
7482 * Since this reference bit is shared by 512 4KB pages,
7483 * it should not be cleared every time it is tested.
7484 * Apply a simple "hash" function on the physical page
7485 * number, the virtual superpage number, and the pmap
7486 * address to select one 4KB page out of the 512 on
7487 * which testing the reference bit will result in
7488 * clearing that reference bit. This function is
7489 * designed to avoid the selection of the same 4KB page
7490 * for every 2MB page mapping.
7491 *
7492 * On demotion, a mapping that hasn't been referenced
7493 * is simply destroyed. To avoid the possibility of a
7494 * subsequent page fault on a demoted wired mapping,
7495 * always leave its reference bit set. Moreover,
7496 * since the superpage is wired, the current state of
7497 * its reference bit won't affect page replacement.
7498 */
7499 if ((((pa >> PAGE_SHIFT) ^ (va >> L2_SHIFT) ^
7500 (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
7501 (tpte & ATTR_SW_WIRED) == 0) {
7502 pmap_clear_bits(pte, ATTR_AF);
7503 pmap_invalidate_page(pmap, va, true);
7504 cleared++;
7505 } else
7506 not_cleared++;
7507 }
7508 PMAP_UNLOCK(pmap);
7509 /* Rotate the PV list if it has more than one entry. */
7510 if (TAILQ_NEXT(pv, pv_next) != NULL) {
7511 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
7512 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
7513 pvh->pv_gen++;
7514 }
7515 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
7516 goto out;
7517 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
7518 small_mappings:
7519 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
7520 goto out;
7521 pv = pvf;
7522 do {
7523 if (pvf == NULL)
7524 pvf = pv;
7525 pmap = PV_PMAP(pv);
7526 if (!PMAP_TRYLOCK(pmap)) {
7527 pvh_gen = pvh->pv_gen;
7528 md_gen = m->md.pv_gen;
7529 rw_wunlock(lock);
7530 PMAP_LOCK(pmap);
7531 rw_wlock(lock);
7532 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
7533 PMAP_UNLOCK(pmap);
7534 goto retry;
7535 }
7536 }
7537 pte = pmap_pte_exists(pmap, pv->pv_va, 3, __func__);
7538 tpte = pmap_load(pte);
7539 if (pmap_pte_dirty(pmap, tpte))
7540 vm_page_dirty(m);
7541 if ((tpte & ATTR_AF) != 0) {
7542 if ((tpte & ATTR_SW_WIRED) == 0) {
7543 /*
7544 * Clear the accessed bit in this L3 entry
7545 * regardless of the contiguous bit.
7546 */
7547 pmap_clear_bits(pte, ATTR_AF);
7548 pmap_invalidate_page(pmap, pv->pv_va, true);
7549 cleared++;
7550 } else
7551 not_cleared++;
7552 } else if ((tpte & ATTR_CONTIGUOUS) != 0 &&
7553 (pmap_load_l3c(pte) & ATTR_AF) != 0) {
7554 /*
7555 * An L3C superpage mapping is regarded as accessed
7556 * until the accessed bit has been cleared in all
7557 * of its constituent entries.
7558 */
7559 not_cleared++;
7560 }
7561 PMAP_UNLOCK(pmap);
7562 /* Rotate the PV list if it has more than one entry. */
7563 if (TAILQ_NEXT(pv, pv_next) != NULL) {
7564 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
7565 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7566 m->md.pv_gen++;
7567 }
7568 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
7569 not_cleared < PMAP_TS_REFERENCED_MAX);
7570 out:
7571 rw_wunlock(lock);
7572 vm_page_free_pages_toq(&free, true);
7573 return (cleared + not_cleared);
7574 }
7575
7576 /*
7577 * Apply the given advice to the specified range of addresses within the
7578 * given pmap. Depending on the advice, clear the referenced and/or
7579 * modified flags in each mapping and set the mapped page's dirty field.
7580 */
7581 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)7582 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
7583 {
7584 struct rwlock *lock;
7585 vm_offset_t va, va_next, dva;
7586 vm_page_t m;
7587 pd_entry_t *l0, *l1, *l2, oldl2;
7588 pt_entry_t *l3, *dl3, oldl3;
7589
7590 PMAP_ASSERT_STAGE1(pmap);
7591
7592 if (advice != MADV_DONTNEED && advice != MADV_FREE)
7593 return;
7594
7595 PMAP_LOCK(pmap);
7596 for (; sva < eva; sva = va_next) {
7597 l0 = pmap_l0(pmap, sva);
7598 if (pmap_load(l0) == 0) {
7599 va_next = (sva + L0_SIZE) & ~L0_OFFSET;
7600 if (va_next < sva)
7601 va_next = eva;
7602 continue;
7603 }
7604
7605 va_next = (sva + L1_SIZE) & ~L1_OFFSET;
7606 if (va_next < sva)
7607 va_next = eva;
7608 l1 = pmap_l0_to_l1(l0, sva);
7609 if (pmap_load(l1) == 0)
7610 continue;
7611 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
7612 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
7613 continue;
7614 }
7615
7616 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
7617 if (va_next < sva)
7618 va_next = eva;
7619 l2 = pmap_l1_to_l2(l1, sva);
7620 oldl2 = pmap_load(l2);
7621 if (oldl2 == 0)
7622 continue;
7623 if ((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK) {
7624 if ((oldl2 & ATTR_SW_MANAGED) == 0)
7625 continue;
7626 lock = NULL;
7627 if (!pmap_demote_l2_locked(pmap, l2, sva, &lock)) {
7628 if (lock != NULL)
7629 rw_wunlock(lock);
7630
7631 /*
7632 * The 2MB page mapping was destroyed.
7633 */
7634 continue;
7635 }
7636
7637 /*
7638 * Unless the page mappings are wired, remove the
7639 * mapping to a single page so that a subsequent
7640 * access may repromote. Choosing the last page
7641 * within the address range [sva, min(va_next, eva))
7642 * generally results in more repromotions. Since the
7643 * underlying page table page is fully populated, this
7644 * removal never frees a page table page.
7645 */
7646 if ((oldl2 & ATTR_SW_WIRED) == 0) {
7647 va = eva;
7648 if (va > va_next)
7649 va = va_next;
7650 va -= PAGE_SIZE;
7651 KASSERT(va >= sva,
7652 ("pmap_advise: no address gap"));
7653 l3 = pmap_l2_to_l3(l2, va);
7654 KASSERT(pmap_load(l3) != 0,
7655 ("pmap_advise: invalid PTE"));
7656 pmap_remove_l3(pmap, l3, va, pmap_load(l2),
7657 NULL, &lock);
7658 }
7659 if (lock != NULL)
7660 rw_wunlock(lock);
7661 }
7662 KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
7663 ("pmap_advise: invalid L2 entry after demotion"));
7664 if (va_next > eva)
7665 va_next = eva;
7666 va = va_next;
7667 for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
7668 sva += L3_SIZE) {
7669 oldl3 = pmap_load(l3);
7670 if ((oldl3 & (ATTR_SW_MANAGED | ATTR_DESCR_MASK)) !=
7671 (ATTR_SW_MANAGED | L3_PAGE))
7672 goto maybe_invlrng;
7673 else if (pmap_pte_dirty(pmap, oldl3)) {
7674 if (advice == MADV_DONTNEED) {
7675 /*
7676 * Future calls to pmap_is_modified()
7677 * can be avoided by making the page
7678 * dirty now.
7679 */
7680 m = PTE_TO_VM_PAGE(oldl3);
7681 vm_page_dirty(m);
7682 }
7683 if ((oldl3 & ATTR_CONTIGUOUS) != 0) {
7684 /*
7685 * Unconditionally demote the L3C
7686 * superpage because we do not allow
7687 * writeable, clean superpages.
7688 */
7689 (void)pmap_demote_l3c(pmap, l3, sva);
7690
7691 /*
7692 * Destroy the final mapping before the
7693 * next L3C boundary or va_next,
7694 * whichever comes first, so that a
7695 * subsequent access may act as a
7696 * repromotion trigger.
7697 */
7698 if ((oldl3 & ATTR_SW_WIRED) == 0) {
7699 dva = MIN((sva & ~L3C_OFFSET) +
7700 L3C_SIZE - PAGE_SIZE,
7701 va_next - PAGE_SIZE);
7702 dl3 = pmap_l2_to_l3(l2, dva);
7703 KASSERT(pmap_load(dl3) != 0,
7704 ("pmap_advise: invalid PTE"));
7705 lock = NULL;
7706 pmap_remove_l3(pmap, dl3, dva,
7707 pmap_load(l2), NULL, &lock);
7708 if (lock != NULL)
7709 rw_wunlock(lock);
7710 }
7711
7712 /*
7713 * The L3 entry's accessed bit may have
7714 * changed.
7715 */
7716 oldl3 = pmap_load(l3);
7717 }
7718
7719 /*
7720 * Check that we did not just destroy this entry so
7721 * we avoid corrupting the page able.
7722 */
7723 if (oldl3 != 0) {
7724 while (!atomic_fcmpset_long(l3, &oldl3,
7725 (oldl3 & ~ATTR_AF) |
7726 ATTR_S1_AP(ATTR_S1_AP_RO)))
7727 cpu_spinwait();
7728 }
7729 } else if ((oldl3 & ATTR_AF) != 0) {
7730 /*
7731 * Clear the accessed bit in this L3 entry
7732 * regardless of the contiguous bit.
7733 */
7734 pmap_clear_bits(l3, ATTR_AF);
7735 } else
7736 goto maybe_invlrng;
7737 if (va == va_next)
7738 va = sva;
7739 continue;
7740 maybe_invlrng:
7741 if (va != va_next) {
7742 pmap_s1_invalidate_range(pmap, va, sva, true);
7743 va = va_next;
7744 }
7745 }
7746 if (va != va_next)
7747 pmap_s1_invalidate_range(pmap, va, sva, true);
7748 }
7749 PMAP_UNLOCK(pmap);
7750 }
7751
7752 /*
7753 * Clear the modify bits on the specified physical page.
7754 */
7755 void
pmap_clear_modify(vm_page_t m)7756 pmap_clear_modify(vm_page_t m)
7757 {
7758 struct md_page *pvh;
7759 struct rwlock *lock;
7760 pmap_t pmap;
7761 pv_entry_t next_pv, pv;
7762 pd_entry_t *l2, oldl2;
7763 pt_entry_t *l3, oldl3;
7764 vm_offset_t va;
7765 int md_gen, pvh_gen;
7766
7767 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7768 ("pmap_clear_modify: page %p is not managed", m));
7769 vm_page_assert_busied(m);
7770
7771 if (!pmap_page_is_write_mapped(m))
7772 return;
7773 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
7774 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7775 rw_wlock(lock);
7776 restart:
7777 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
7778 pmap = PV_PMAP(pv);
7779 PMAP_ASSERT_STAGE1(pmap);
7780 if (!PMAP_TRYLOCK(pmap)) {
7781 pvh_gen = pvh->pv_gen;
7782 rw_wunlock(lock);
7783 PMAP_LOCK(pmap);
7784 rw_wlock(lock);
7785 if (pvh_gen != pvh->pv_gen) {
7786 PMAP_UNLOCK(pmap);
7787 goto restart;
7788 }
7789 }
7790 va = pv->pv_va;
7791 l2 = pmap_l2(pmap, va);
7792 oldl2 = pmap_load(l2);
7793 /* If oldl2 has ATTR_SW_DBM set, then it is also dirty. */
7794 if ((oldl2 & ATTR_SW_DBM) != 0 &&
7795 pmap_demote_l2_locked(pmap, l2, va, &lock) &&
7796 (oldl2 & ATTR_SW_WIRED) == 0) {
7797 /*
7798 * Write protect the mapping to a single page so that
7799 * a subsequent write access may repromote.
7800 */
7801 va += VM_PAGE_TO_PHYS(m) - PTE_TO_PHYS(oldl2);
7802 l3 = pmap_l2_to_l3(l2, va);
7803 oldl3 = pmap_load(l3);
7804 while (!atomic_fcmpset_long(l3, &oldl3,
7805 (oldl3 & ~ATTR_SW_DBM) | ATTR_S1_AP(ATTR_S1_AP_RO)))
7806 cpu_spinwait();
7807 vm_page_dirty(m);
7808 pmap_s1_invalidate_page(pmap, va, true);
7809 }
7810 PMAP_UNLOCK(pmap);
7811 }
7812 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7813 pmap = PV_PMAP(pv);
7814 PMAP_ASSERT_STAGE1(pmap);
7815 if (!PMAP_TRYLOCK(pmap)) {
7816 md_gen = m->md.pv_gen;
7817 pvh_gen = pvh->pv_gen;
7818 rw_wunlock(lock);
7819 PMAP_LOCK(pmap);
7820 rw_wlock(lock);
7821 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
7822 PMAP_UNLOCK(pmap);
7823 goto restart;
7824 }
7825 }
7826 l2 = pmap_l2(pmap, pv->pv_va);
7827 l3 = pmap_l2_to_l3(l2, pv->pv_va);
7828 oldl3 = pmap_load(l3);
7829 KASSERT((oldl3 & ATTR_CONTIGUOUS) == 0 ||
7830 (oldl3 & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) !=
7831 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RO)),
7832 ("writeable L3C superpage not dirty"));
7833 if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == ATTR_SW_DBM) {
7834 if ((oldl3 & ATTR_CONTIGUOUS) != 0)
7835 (void)pmap_demote_l3c(pmap, l3, pv->pv_va);
7836 pmap_set_bits(l3, ATTR_S1_AP(ATTR_S1_AP_RO));
7837 pmap_s1_invalidate_page(pmap, pv->pv_va, true);
7838 }
7839 PMAP_UNLOCK(pmap);
7840 }
7841 rw_wunlock(lock);
7842 }
7843
7844 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)7845 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
7846 {
7847 struct pmap_preinit_mapping *ppim;
7848 vm_offset_t va, offset;
7849 pd_entry_t old_l2e, *pde;
7850 pt_entry_t *l2;
7851 int i, lvl, l2_blocks, free_l2_count, start_idx;
7852
7853 /* Use the DMAP region if we can */
7854 if (PHYS_IN_DMAP(pa) && PHYS_IN_DMAP(pa + size - 1) &&
7855 pmap_kmapped_range(PHYS_TO_DMAP(pa), size))
7856 return ((void *)PHYS_TO_DMAP(pa));
7857
7858 if (!vm_initialized) {
7859 /*
7860 * No L3 ptables so map entire L2 blocks where start VA is:
7861 * preinit_map_va + start_idx * L2_SIZE
7862 * There may be duplicate mappings (multiple VA -> same PA) but
7863 * ARM64 dcache is always PIPT so that's acceptable.
7864 */
7865 if (size == 0)
7866 return (NULL);
7867
7868 /* Calculate how many L2 blocks are needed for the mapping */
7869 l2_blocks = (roundup2(pa + size, L2_SIZE) -
7870 rounddown2(pa, L2_SIZE)) >> L2_SHIFT;
7871
7872 offset = pa & L2_OFFSET;
7873
7874 if (preinit_map_va == 0)
7875 return (NULL);
7876
7877 /* Map 2MiB L2 blocks from reserved VA space */
7878
7879 free_l2_count = 0;
7880 start_idx = -1;
7881 /* Find enough free contiguous VA space */
7882 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
7883 ppim = pmap_preinit_mapping + i;
7884 if (free_l2_count > 0 && ppim->pa != 0) {
7885 /* Not enough space here */
7886 free_l2_count = 0;
7887 start_idx = -1;
7888 continue;
7889 }
7890
7891 if (ppim->pa == 0) {
7892 /* Free L2 block */
7893 if (start_idx == -1)
7894 start_idx = i;
7895 free_l2_count++;
7896 if (free_l2_count == l2_blocks)
7897 break;
7898 }
7899 }
7900 if (free_l2_count != l2_blocks)
7901 panic("%s: too many preinit mappings", __func__);
7902
7903 va = preinit_map_va + (start_idx * L2_SIZE);
7904 for (i = start_idx; i < start_idx + l2_blocks; i++) {
7905 /* Mark entries as allocated */
7906 ppim = pmap_preinit_mapping + i;
7907 ppim->pa = pa;
7908 ppim->va = va + offset;
7909 ppim->size = size;
7910 }
7911
7912 /* Map L2 blocks */
7913 pa = rounddown2(pa, L2_SIZE);
7914 old_l2e = 0;
7915 for (i = 0; i < l2_blocks; i++) {
7916 pde = pmap_pde(kernel_pmap, va, &lvl);
7917 KASSERT(pde != NULL,
7918 ("pmap_mapbios: Invalid page entry, va: 0x%lx",
7919 va));
7920 KASSERT(lvl == 1,
7921 ("pmap_mapbios: Invalid level %d", lvl));
7922
7923 /* Insert L2_BLOCK */
7924 l2 = pmap_l1_to_l2(pde, va);
7925 old_l2e |= pmap_load_store(l2,
7926 PHYS_TO_PTE(pa) | ATTR_AF | pmap_sh_attr |
7927 ATTR_S1_XN | ATTR_KERN_GP |
7928 ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L2_BLOCK);
7929
7930 va += L2_SIZE;
7931 pa += L2_SIZE;
7932 }
7933 if ((old_l2e & ATTR_DESCR_VALID) != 0)
7934 pmap_s1_invalidate_all(kernel_pmap);
7935 else {
7936 /*
7937 * Because the old entries were invalid and the new
7938 * mappings are not executable, an isb is not required.
7939 */
7940 dsb(ishst);
7941 }
7942
7943 va = preinit_map_va + (start_idx * L2_SIZE);
7944
7945 } else {
7946 /* kva_alloc may be used to map the pages */
7947 offset = pa & PAGE_MASK;
7948 size = round_page(offset + size);
7949
7950 va = kva_alloc(size);
7951 if (va == 0)
7952 panic("%s: Couldn't allocate KVA", __func__);
7953
7954 pde = pmap_pde(kernel_pmap, va, &lvl);
7955 KASSERT(lvl == 2, ("pmap_mapbios: Invalid level %d", lvl));
7956
7957 /* L3 table is linked */
7958 va = trunc_page(va);
7959 pa = trunc_page(pa);
7960 pmap_kenter(va, size, pa, memory_mapping_mode(pa));
7961 }
7962
7963 return ((void *)(va + offset));
7964 }
7965
7966 void
pmap_unmapbios(void * p,vm_size_t size)7967 pmap_unmapbios(void *p, vm_size_t size)
7968 {
7969 struct pmap_preinit_mapping *ppim;
7970 vm_offset_t offset, va, va_trunc;
7971 pd_entry_t *pde;
7972 pt_entry_t *l2;
7973 int error __diagused, i, lvl, l2_blocks, block;
7974 bool preinit_map;
7975
7976 va = (vm_offset_t)p;
7977 if (VIRT_IN_DMAP(va)) {
7978 KASSERT(VIRT_IN_DMAP(va + size - 1),
7979 ("%s: End address not in DMAP region: %lx", __func__,
7980 va + size - 1));
7981 /* Ensure the attributes are as expected for the DMAP region */
7982 PMAP_LOCK(kernel_pmap);
7983 error = pmap_change_props_locked(va, size,
7984 PROT_READ | PROT_WRITE, VM_MEMATTR_DEFAULT, false);
7985 PMAP_UNLOCK(kernel_pmap);
7986 KASSERT(error == 0, ("%s: Failed to reset DMAP attributes: %d",
7987 __func__, error));
7988
7989 return;
7990 }
7991
7992 l2_blocks =
7993 (roundup2(va + size, L2_SIZE) - rounddown2(va, L2_SIZE)) >> L2_SHIFT;
7994 KASSERT(l2_blocks > 0, ("pmap_unmapbios: invalid size %lx", size));
7995
7996 /* Remove preinit mapping */
7997 preinit_map = false;
7998 block = 0;
7999 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
8000 ppim = pmap_preinit_mapping + i;
8001 if (ppim->va == va) {
8002 KASSERT(ppim->size == size,
8003 ("pmap_unmapbios: size mismatch"));
8004 ppim->va = 0;
8005 ppim->pa = 0;
8006 ppim->size = 0;
8007 preinit_map = true;
8008 offset = block * L2_SIZE;
8009 va_trunc = rounddown2(va, L2_SIZE) + offset;
8010
8011 /* Remove L2_BLOCK */
8012 pde = pmap_pde(kernel_pmap, va_trunc, &lvl);
8013 KASSERT(pde != NULL,
8014 ("pmap_unmapbios: Invalid page entry, va: 0x%lx",
8015 va_trunc));
8016 l2 = pmap_l1_to_l2(pde, va_trunc);
8017 pmap_clear(l2);
8018
8019 if (block == (l2_blocks - 1))
8020 break;
8021 block++;
8022 }
8023 }
8024 if (preinit_map) {
8025 pmap_s1_invalidate_all(kernel_pmap);
8026 return;
8027 }
8028
8029 /* Unmap the pages reserved with kva_alloc. */
8030 if (vm_initialized) {
8031 offset = va & PAGE_MASK;
8032 size = round_page(offset + size);
8033 va = trunc_page(va);
8034
8035 /* Unmap and invalidate the pages */
8036 pmap_kremove_device(va, size);
8037
8038 kva_free(va, size);
8039 }
8040 }
8041
8042 /*
8043 * Sets the memory attribute for the specified page.
8044 */
8045 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)8046 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
8047 {
8048
8049 m->md.pv_memattr = ma;
8050
8051 /*
8052 * If "m" is a normal page, update its direct mapping. This update
8053 * can be relied upon to perform any cache operations that are
8054 * required for data coherence.
8055 */
8056 if ((m->flags & PG_FICTITIOUS) == 0 &&
8057 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
8058 m->md.pv_memattr) != 0)
8059 panic("memory attribute change on the direct map failed");
8060 }
8061
8062 /*
8063 * Changes the specified virtual address range's memory type to that given by
8064 * the parameter "mode". The specified virtual address range must be
8065 * completely contained within either the direct map or the kernel map. If
8066 * the virtual address range is contained within the kernel map, then the
8067 * memory type for each of the corresponding ranges of the direct map is also
8068 * changed. (The corresponding ranges of the direct map are those ranges that
8069 * map the same physical pages as the specified virtual address range.) These
8070 * changes to the direct map are necessary because Intel describes the
8071 * behavior of their processors as "undefined" if two or more mappings to the
8072 * same physical page have different memory types.
8073 *
8074 * Returns zero if the change completed successfully, and either EINVAL or
8075 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
8076 * of the virtual address range was not mapped, and ENOMEM is returned if
8077 * there was insufficient memory available to complete the change. In the
8078 * latter case, the memory type may have been changed on some part of the
8079 * virtual address range or the direct map.
8080 */
8081 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)8082 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
8083 {
8084 int error;
8085
8086 PMAP_LOCK(kernel_pmap);
8087 error = pmap_change_props_locked(va, size, PROT_NONE, mode, false);
8088 PMAP_UNLOCK(kernel_pmap);
8089 return (error);
8090 }
8091
8092 /*
8093 * Changes the specified virtual address range's protections to those
8094 * specified by "prot". Like pmap_change_attr(), protections for aliases
8095 * in the direct map are updated as well. Protections on aliasing mappings may
8096 * be a subset of the requested protections; for example, mappings in the direct
8097 * map are never executable.
8098 */
8099 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)8100 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
8101 {
8102 int error;
8103
8104 /* Only supported within the kernel map. */
8105 if (va < VM_MIN_KERNEL_ADDRESS)
8106 return (EINVAL);
8107
8108 PMAP_LOCK(kernel_pmap);
8109 error = pmap_change_props_locked(va, size, prot, -1, false);
8110 PMAP_UNLOCK(kernel_pmap);
8111 return (error);
8112 }
8113
8114 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,bool skip_unmapped)8115 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
8116 int mode, bool skip_unmapped)
8117 {
8118 vm_offset_t base, offset, tmpva;
8119 vm_size_t pte_size;
8120 vm_paddr_t pa;
8121 pt_entry_t pte, *ptep, *newpte;
8122 pt_entry_t bits, mask;
8123 int lvl, rv;
8124
8125 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
8126 base = trunc_page(va);
8127 offset = va & PAGE_MASK;
8128 size = round_page(offset + size);
8129
8130 if (!VIRT_IN_DMAP(base) &&
8131 !(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS))
8132 return (EINVAL);
8133
8134 bits = 0;
8135 mask = 0;
8136 if (mode != -1) {
8137 bits = ATTR_S1_IDX(mode);
8138 mask = ATTR_S1_IDX_MASK;
8139 if (mode == VM_MEMATTR_DEVICE) {
8140 mask |= ATTR_S1_XN;
8141 bits |= ATTR_S1_XN;
8142 }
8143 }
8144 if (prot != VM_PROT_NONE) {
8145 /* Don't mark the DMAP as executable. It never is on arm64. */
8146 if (VIRT_IN_DMAP(base)) {
8147 prot &= ~VM_PROT_EXECUTE;
8148 /*
8149 * XXX Mark the DMAP as writable for now. We rely
8150 * on this in ddb & dtrace to insert breakpoint
8151 * instructions.
8152 */
8153 prot |= VM_PROT_WRITE;
8154 }
8155
8156 if ((prot & VM_PROT_WRITE) == 0) {
8157 bits |= ATTR_S1_AP(ATTR_S1_AP_RO);
8158 }
8159 if ((prot & VM_PROT_EXECUTE) == 0) {
8160 bits |= ATTR_S1_PXN;
8161 }
8162 bits |= ATTR_S1_UXN;
8163 mask |= ATTR_S1_AP_MASK | ATTR_S1_XN;
8164 }
8165
8166 for (tmpva = base; tmpva < base + size; ) {
8167 ptep = pmap_pte(kernel_pmap, tmpva, &lvl);
8168 if (ptep == NULL && !skip_unmapped) {
8169 return (EINVAL);
8170 } else if ((ptep == NULL && skip_unmapped) ||
8171 (pmap_load(ptep) & mask) == bits) {
8172 /*
8173 * We already have the correct attribute or there
8174 * is no memory mapped at this address and we are
8175 * skipping unmapped memory.
8176 */
8177 switch (lvl) {
8178 default:
8179 panic("Invalid DMAP table level: %d\n", lvl);
8180 case 1:
8181 tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
8182 break;
8183 case 2:
8184 tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
8185 break;
8186 case 3:
8187 tmpva += PAGE_SIZE;
8188 break;
8189 }
8190 } else {
8191 /* We can't demote/promote this entry */
8192 MPASS((pmap_load(ptep) & ATTR_SW_NO_PROMOTE) == 0);
8193
8194 /*
8195 * Find the entry and demote it if the requested change
8196 * only applies to part of the address range mapped by
8197 * the entry.
8198 */
8199 switch (lvl) {
8200 default:
8201 panic("Invalid DMAP table level: %d\n", lvl);
8202 case 1:
8203 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
8204 if ((tmpva & L1_OFFSET) == 0 &&
8205 (base + size - tmpva) >= L1_SIZE) {
8206 pte_size = L1_SIZE;
8207 break;
8208 }
8209 newpte = pmap_demote_l1(kernel_pmap, ptep,
8210 tmpva & ~L1_OFFSET);
8211 if (newpte == NULL)
8212 return (EINVAL);
8213 ptep = pmap_l1_to_l2(ptep, tmpva);
8214 /* FALLTHROUGH */
8215 case 2:
8216 if ((pmap_load(ptep) & ATTR_CONTIGUOUS) != 0) {
8217 if ((tmpva & L2C_OFFSET) == 0 &&
8218 (base + size - tmpva) >= L2C_SIZE) {
8219 pte_size = L2C_SIZE;
8220 break;
8221 }
8222 if (!pmap_demote_l2c(kernel_pmap, ptep,
8223 tmpva))
8224 return (EINVAL);
8225 }
8226 if ((tmpva & L2_OFFSET) == 0 &&
8227 (base + size - tmpva) >= L2_SIZE) {
8228 pte_size = L2_SIZE;
8229 break;
8230 }
8231 newpte = pmap_demote_l2(kernel_pmap, ptep,
8232 tmpva);
8233 if (newpte == NULL)
8234 return (EINVAL);
8235 ptep = pmap_l2_to_l3(ptep, tmpva);
8236 /* FALLTHROUGH */
8237 case 3:
8238 if ((pmap_load(ptep) & ATTR_CONTIGUOUS) != 0) {
8239 if ((tmpva & L3C_OFFSET) == 0 &&
8240 (base + size - tmpva) >= L3C_SIZE) {
8241 pte_size = L3C_SIZE;
8242 break;
8243 }
8244 if (!pmap_demote_l3c(kernel_pmap, ptep,
8245 tmpva))
8246 return (EINVAL);
8247 }
8248 pte_size = PAGE_SIZE;
8249 break;
8250 }
8251
8252 /* Update the entry */
8253 pte = pmap_load(ptep);
8254 pte &= ~mask;
8255 pte |= bits;
8256
8257 switch (pte_size) {
8258 case L2C_SIZE:
8259 pmap_update_strided(kernel_pmap, ptep, ptep +
8260 L2C_ENTRIES, pte, tmpva, L2_SIZE, L2C_SIZE);
8261 break;
8262 case L3C_SIZE:
8263 pmap_update_strided(kernel_pmap, ptep, ptep +
8264 L3C_ENTRIES, pte, tmpva, L3_SIZE, L3C_SIZE);
8265 break;
8266 default:
8267 /*
8268 * We are updating a single block or page entry,
8269 * so regardless of pte_size pass PAGE_SIZE in
8270 * order that a single TLB invalidation is
8271 * performed.
8272 */
8273 pmap_update_entry(kernel_pmap, ptep, pte, tmpva,
8274 PAGE_SIZE);
8275 break;
8276 }
8277
8278 pa = PTE_TO_PHYS(pte);
8279 if (!VIRT_IN_DMAP(tmpva) && PHYS_IN_DMAP(pa)) {
8280 /*
8281 * Keep the DMAP memory in sync.
8282 */
8283 rv = pmap_change_props_locked(
8284 PHYS_TO_DMAP(pa), pte_size,
8285 prot, mode, true);
8286 if (rv != 0)
8287 return (rv);
8288 }
8289
8290 /*
8291 * If moving to a non-cacheable entry flush
8292 * the cache.
8293 */
8294 if (mode == VM_MEMATTR_UNCACHEABLE)
8295 cpu_dcache_wbinv_range((void *)tmpva, pte_size);
8296 tmpva += pte_size;
8297 }
8298 }
8299
8300 return (0);
8301 }
8302
8303 /*
8304 * Create an L2 table to map all addresses within an L1 mapping.
8305 */
8306 static pt_entry_t *
pmap_demote_l1(pmap_t pmap,pt_entry_t * l1,vm_offset_t va)8307 pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
8308 {
8309 pt_entry_t *l2, newl2, oldl1;
8310 vm_offset_t tmpl1;
8311 vm_paddr_t l2phys, phys;
8312 vm_page_t ml2;
8313 int i;
8314
8315 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
8316 oldl1 = pmap_load(l1);
8317 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
8318 KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
8319 ("pmap_demote_l1: Demoting a non-block entry"));
8320 KASSERT((va & L1_OFFSET) == 0,
8321 ("pmap_demote_l1: Invalid virtual address %#lx", va));
8322 KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
8323 ("pmap_demote_l1: Level 1 table shouldn't be managed"));
8324 KASSERT((oldl1 & ATTR_SW_NO_PROMOTE) == 0,
8325 ("pmap_demote_l1: Demoting entry with no-demote flag set"));
8326
8327 tmpl1 = 0;
8328 if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
8329 tmpl1 = kva_alloc(PAGE_SIZE);
8330 if (tmpl1 == 0)
8331 return (NULL);
8332 }
8333
8334 if ((ml2 = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED)) ==
8335 NULL) {
8336 CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
8337 " in pmap %p", va, pmap);
8338 l2 = NULL;
8339 goto fail;
8340 }
8341
8342 l2phys = VM_PAGE_TO_PHYS(ml2);
8343 l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
8344
8345 /* Address the range points at */
8346 phys = PTE_TO_PHYS(oldl1);
8347 /* The attributed from the old l1 table to be copied */
8348 newl2 = oldl1 & ATTR_MASK;
8349
8350 /* Create the new entries */
8351 newl2 |= ATTR_CONTIGUOUS;
8352 for (i = 0; i < Ln_ENTRIES; i++) {
8353 l2[i] = newl2 | phys;
8354 phys += L2_SIZE;
8355 }
8356 KASSERT(l2[0] == (ATTR_CONTIGUOUS | (oldl1 & ~ATTR_DESCR_MASK) |
8357 L2_BLOCK), ("Invalid l2 page (%lx != %lx)", l2[0],
8358 ATTR_CONTIGUOUS | (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
8359
8360 if (tmpl1 != 0) {
8361 pmap_kenter(tmpl1, PAGE_SIZE,
8362 DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET,
8363 VM_MEMATTR_WRITE_BACK);
8364 l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
8365 }
8366
8367 pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
8368
8369 counter_u64_add(pmap_l1_demotions, 1);
8370 fail:
8371 if (tmpl1 != 0) {
8372 pmap_kremove(tmpl1);
8373 kva_free(tmpl1, PAGE_SIZE);
8374 }
8375
8376 return (l2);
8377 }
8378
8379 static void
pmap_fill_l3(pt_entry_t * firstl3,pt_entry_t newl3)8380 pmap_fill_l3(pt_entry_t *firstl3, pt_entry_t newl3)
8381 {
8382 pt_entry_t *l3;
8383
8384 for (l3 = firstl3; l3 - firstl3 < Ln_ENTRIES; l3++) {
8385 *l3 = newl3;
8386 newl3 += L3_SIZE;
8387 }
8388 }
8389
8390 static void
pmap_demote_l2_check(pt_entry_t * firstl3p __unused,pt_entry_t newl3e __unused)8391 pmap_demote_l2_check(pt_entry_t *firstl3p __unused, pt_entry_t newl3e __unused)
8392 {
8393 #ifdef INVARIANTS
8394 #ifdef DIAGNOSTIC
8395 pt_entry_t *xl3p, *yl3p;
8396
8397 for (xl3p = firstl3p; xl3p < firstl3p + Ln_ENTRIES;
8398 xl3p++, newl3e += PAGE_SIZE) {
8399 if (PTE_TO_PHYS(pmap_load(xl3p)) != PTE_TO_PHYS(newl3e)) {
8400 printf("pmap_demote_l2: xl3e %zd and newl3e map "
8401 "different pages: found %#lx, expected %#lx\n",
8402 xl3p - firstl3p, pmap_load(xl3p), newl3e);
8403 printf("page table dump\n");
8404 for (yl3p = firstl3p; yl3p < firstl3p + Ln_ENTRIES;
8405 yl3p++) {
8406 printf("%zd %#lx\n", yl3p - firstl3p,
8407 pmap_load(yl3p));
8408 }
8409 panic("firstpte");
8410 }
8411 }
8412 #else
8413 KASSERT(PTE_TO_PHYS(pmap_load(firstl3p)) == PTE_TO_PHYS(newl3e),
8414 ("pmap_demote_l2: firstl3 and newl3e map different physical"
8415 " addresses"));
8416 #endif
8417 #endif
8418 }
8419
8420 static void
pmap_demote_l2_abort(pmap_t pmap,vm_offset_t va,pt_entry_t * l2,struct rwlock ** lockp)8421 pmap_demote_l2_abort(pmap_t pmap, vm_offset_t va, pt_entry_t *l2,
8422 struct rwlock **lockp)
8423 {
8424 struct spglist free;
8425
8426 SLIST_INIT(&free);
8427 (void)pmap_remove_l2(pmap, l2, va, pmap_load(pmap_l1(pmap, va)), &free,
8428 lockp);
8429 vm_page_free_pages_toq(&free, true);
8430 }
8431
8432 /*
8433 * Create an L3 table to map all addresses within an L2 mapping.
8434 */
8435 static pt_entry_t *
pmap_demote_l2_locked(pmap_t pmap,pt_entry_t * l2,vm_offset_t va,struct rwlock ** lockp)8436 pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
8437 struct rwlock **lockp)
8438 {
8439 pt_entry_t *l3, newl3, oldl2;
8440 vm_offset_t tmpl2;
8441 vm_paddr_t l3phys;
8442 vm_page_t ml3;
8443
8444 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
8445 PMAP_ASSERT_STAGE1(pmap);
8446 KASSERT(ADDR_IS_CANONICAL(va),
8447 ("%s: Address not in canonical form: %lx", __func__, va));
8448
8449 l3 = NULL;
8450 oldl2 = pmap_load(l2);
8451 KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
8452 ("pmap_demote_l2: Demoting a non-block entry"));
8453 KASSERT((oldl2 & ATTR_SW_NO_PROMOTE) == 0,
8454 ("pmap_demote_l2: Demoting entry with no-demote flag set"));
8455 va &= ~L2_OFFSET;
8456
8457 tmpl2 = 0;
8458 if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
8459 tmpl2 = kva_alloc(PAGE_SIZE);
8460 if (tmpl2 == 0)
8461 return (NULL);
8462 }
8463
8464 /*
8465 * Invalidate the 2MB page mapping and return "failure" if the
8466 * mapping was never accessed.
8467 */
8468 if ((oldl2 & ATTR_AF) == 0) {
8469 KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
8470 ("pmap_demote_l2: a wired mapping is missing ATTR_AF"));
8471 pmap_demote_l2_abort(pmap, va, l2, lockp);
8472 CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx in pmap %p",
8473 va, pmap);
8474 goto fail;
8475 }
8476
8477 if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
8478 KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
8479 ("pmap_demote_l2: page table page for a wired mapping"
8480 " is missing"));
8481
8482 /*
8483 * If the page table page is missing and the mapping
8484 * is for a kernel address, the mapping must belong to
8485 * either the direct map or the early kernel memory.
8486 * Page table pages are preallocated for every other
8487 * part of the kernel address space, so the direct map
8488 * region and early kernel memory are the only parts of the
8489 * kernel address space that must be handled here.
8490 */
8491 KASSERT(!ADDR_IS_KERNEL(va) || VIRT_IN_DMAP(va) ||
8492 (va >= VM_MIN_KERNEL_ADDRESS && va < kernel_vm_end),
8493 ("pmap_demote_l2: No saved mpte for va %#lx", va));
8494
8495 /*
8496 * If the 2MB page mapping belongs to the direct map
8497 * region of the kernel's address space, then the page
8498 * allocation request specifies the highest possible
8499 * priority (VM_ALLOC_INTERRUPT). Otherwise, the
8500 * priority is normal.
8501 */
8502 ml3 = vm_page_alloc_noobj(
8503 (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : 0) |
8504 VM_ALLOC_WIRED);
8505
8506 /*
8507 * If the allocation of the new page table page fails,
8508 * invalidate the 2MB page mapping and return "failure".
8509 */
8510 if (ml3 == NULL) {
8511 pmap_demote_l2_abort(pmap, va, l2, lockp);
8512 CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
8513 " in pmap %p", va, pmap);
8514 goto fail;
8515 }
8516 ml3->pindex = pmap_l2_pindex(va);
8517
8518 if (!ADDR_IS_KERNEL(va)) {
8519 ml3->ref_count = NL3PG;
8520 pmap_resident_count_inc(pmap, 1);
8521 }
8522 }
8523 l3phys = VM_PAGE_TO_PHYS(ml3);
8524 l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
8525 newl3 = ATTR_CONTIGUOUS | (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE;
8526 KASSERT((oldl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) !=
8527 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM),
8528 ("pmap_demote_l2: L2 entry is writeable but not dirty"));
8529
8530 /*
8531 * If the PTP is not leftover from an earlier promotion or it does not
8532 * have ATTR_AF set in every L3E, then fill it. The new L3Es will all
8533 * have ATTR_AF set.
8534 *
8535 * When pmap_update_entry() clears the old L2 mapping, it (indirectly)
8536 * performs a dsb(). That dsb() ensures that the stores for filling
8537 * "l3" are visible before "l3" is added to the page table.
8538 */
8539 if (!vm_page_all_valid(ml3))
8540 pmap_fill_l3(l3, newl3);
8541
8542 pmap_demote_l2_check(l3, newl3);
8543
8544 /*
8545 * If the mapping has changed attributes, update the L3Es.
8546 */
8547 if ((pmap_load(l3) & ATTR_PROMOTE) != (newl3 & ATTR_PROMOTE))
8548 pmap_fill_l3(l3, newl3);
8549
8550 /*
8551 * Map the temporary page so we don't lose access to the l2 table.
8552 */
8553 if (tmpl2 != 0) {
8554 pmap_kenter(tmpl2, PAGE_SIZE,
8555 DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET,
8556 VM_MEMATTR_WRITE_BACK);
8557 l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
8558 }
8559
8560 /*
8561 * The spare PV entries must be reserved prior to demoting the
8562 * mapping, that is, prior to changing the PDE. Otherwise, the state
8563 * of the L2 and the PV lists will be inconsistent, which can result
8564 * in reclaim_pv_chunk() attempting to remove a PV entry from the
8565 * wrong PV list and pmap_pv_demote_l2() failing to find the expected
8566 * PV entry for the 2MB page mapping that is being demoted.
8567 */
8568 if ((oldl2 & ATTR_SW_MANAGED) != 0)
8569 reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
8570
8571 /*
8572 * Pass PAGE_SIZE so that a single TLB invalidation is performed on
8573 * the 2MB page mapping.
8574 */
8575 pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
8576
8577 /*
8578 * Demote the PV entry.
8579 */
8580 if ((oldl2 & ATTR_SW_MANAGED) != 0)
8581 pmap_pv_demote_l2(pmap, va, PTE_TO_PHYS(oldl2), lockp);
8582
8583 counter_u64_add(pmap_l2_demotions, 1);
8584 CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
8585 " in pmap %p %lx", va, pmap, l3[0]);
8586
8587 fail:
8588 if (tmpl2 != 0) {
8589 pmap_kremove(tmpl2);
8590 kva_free(tmpl2, PAGE_SIZE);
8591 }
8592
8593 return (l3);
8594
8595 }
8596
8597 static pt_entry_t *
pmap_demote_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t va)8598 pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
8599 {
8600 struct rwlock *lock;
8601 pt_entry_t *l3;
8602
8603 lock = NULL;
8604 l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
8605 if (lock != NULL)
8606 rw_wunlock(lock);
8607 return (l3);
8608 }
8609
8610 /*
8611 * Demote an L2C superpage mapping to L2C_ENTRIES L2 block mappings.
8612 */
8613 static bool
pmap_demote_l2c(pmap_t pmap,pt_entry_t * l2p,vm_offset_t va)8614 pmap_demote_l2c(pmap_t pmap, pt_entry_t *l2p, vm_offset_t va)
8615 {
8616 pd_entry_t *l2c_end, *l2c_start, l2e, mask, nbits, *tl2p;
8617 vm_offset_t tmpl3;
8618 register_t intr;
8619
8620 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
8621 PMAP_ASSERT_STAGE1(pmap);
8622 l2c_start = (pd_entry_t *)((uintptr_t)l2p & ~((L2C_ENTRIES *
8623 sizeof(pd_entry_t)) - 1));
8624 l2c_end = l2c_start + L2C_ENTRIES;
8625 tmpl3 = 0;
8626 if ((va & ~L2C_OFFSET) < (vm_offset_t)l2c_end &&
8627 (vm_offset_t)l2c_start < (va & ~L2C_OFFSET) + L2C_SIZE) {
8628 tmpl3 = kva_alloc(PAGE_SIZE);
8629 if (tmpl3 == 0)
8630 return (false);
8631 pmap_kenter(tmpl3, PAGE_SIZE,
8632 DMAP_TO_PHYS((vm_offset_t)l2c_start) & ~L3_OFFSET,
8633 VM_MEMATTR_WRITE_BACK);
8634 l2c_start = (pd_entry_t *)(tmpl3 +
8635 ((vm_offset_t)l2c_start & PAGE_MASK));
8636 l2c_end = (pd_entry_t *)(tmpl3 +
8637 ((vm_offset_t)l2c_end & PAGE_MASK));
8638 }
8639 mask = 0;
8640 nbits = ATTR_DESCR_VALID;
8641 intr = intr_disable();
8642
8643 /*
8644 * Break the mappings.
8645 */
8646 for (tl2p = l2c_start; tl2p < l2c_end; tl2p++) {
8647 /*
8648 * Clear the mapping's contiguous and valid bits, but leave
8649 * the rest of the entry unchanged, so that a lockless,
8650 * concurrent pmap_kextract() can still lookup the physical
8651 * address.
8652 */
8653 l2e = pmap_load(tl2p);
8654 KASSERT((l2e & ATTR_CONTIGUOUS) != 0,
8655 ("pmap_demote_l2c: missing ATTR_CONTIGUOUS"));
8656 KASSERT((l2e & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) !=
8657 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RO)),
8658 ("pmap_demote_l2c: missing ATTR_S1_AP_RW"));
8659 while (!atomic_fcmpset_64(tl2p, &l2e, l2e & ~(ATTR_CONTIGUOUS |
8660 ATTR_DESCR_VALID)))
8661 cpu_spinwait();
8662
8663 /*
8664 * Hardware accessed and dirty bit maintenance might only
8665 * update a single L2 entry, so we must combine the accessed
8666 * and dirty bits from this entire set of contiguous L2
8667 * entries.
8668 */
8669 if ((l2e & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
8670 (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM))
8671 mask = ATTR_S1_AP_RW_BIT;
8672 nbits |= l2e & ATTR_AF;
8673 }
8674 if ((nbits & ATTR_AF) != 0) {
8675 pmap_s1_invalidate_strided(pmap, va & ~L2C_OFFSET, (va +
8676 L2C_SIZE) & ~L2C_OFFSET, L2_SIZE, true);
8677 }
8678
8679 /*
8680 * Remake the mappings, updating the accessed and dirty bits.
8681 */
8682 l2e = (pmap_load(l2c_start) & ~mask) | nbits;
8683 for (tl2p = l2c_start; tl2p < l2c_end; tl2p++) {
8684 pmap_store(tl2p, l2e);
8685 l2e += L2_SIZE;
8686 }
8687 dsb(ishst);
8688
8689 intr_restore(intr);
8690 if (tmpl3 != 0) {
8691 pmap_kremove(tmpl3);
8692 kva_free(tmpl3, PAGE_SIZE);
8693 }
8694 counter_u64_add(pmap_l2c_demotions, 1);
8695 CTR2(KTR_PMAP, "pmap_demote_l2c: success for va %#lx in pmap %p",
8696 va, pmap);
8697 return (true);
8698 }
8699
8700 /*
8701 * Demote a L3C superpage mapping to L3C_ENTRIES 4KB page mappings.
8702 */
8703 static bool
pmap_demote_l3c(pmap_t pmap,pt_entry_t * l3p,vm_offset_t va)8704 pmap_demote_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va)
8705 {
8706 pt_entry_t *l3c_end, *l3c_start, l3e, mask, nbits, *tl3p;
8707 vm_offset_t tmpl3;
8708 register_t intr;
8709
8710 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
8711 l3c_start = (pt_entry_t *)((uintptr_t)l3p & ~((L3C_ENTRIES *
8712 sizeof(pt_entry_t)) - 1));
8713 l3c_end = l3c_start + L3C_ENTRIES;
8714 tmpl3 = 0;
8715 if ((va & ~L3C_OFFSET) < (vm_offset_t)l3c_end &&
8716 (vm_offset_t)l3c_start < (va & ~L3C_OFFSET) + L3C_SIZE) {
8717 tmpl3 = kva_alloc(PAGE_SIZE);
8718 if (tmpl3 == 0)
8719 return (false);
8720 pmap_kenter(tmpl3, PAGE_SIZE,
8721 DMAP_TO_PHYS((vm_offset_t)l3c_start) & ~L3_OFFSET,
8722 VM_MEMATTR_WRITE_BACK);
8723 l3c_start = (pt_entry_t *)(tmpl3 +
8724 ((vm_offset_t)l3c_start & PAGE_MASK));
8725 l3c_end = (pt_entry_t *)(tmpl3 +
8726 ((vm_offset_t)l3c_end & PAGE_MASK));
8727 }
8728 mask = 0;
8729 nbits = ATTR_DESCR_VALID;
8730 intr = intr_disable();
8731
8732 /*
8733 * Break the mappings.
8734 */
8735 for (tl3p = l3c_start; tl3p < l3c_end; tl3p++) {
8736 /*
8737 * Clear the mapping's contiguous and valid bits, but leave
8738 * the rest of the entry unchanged, so that a lockless,
8739 * concurrent pmap_kextract() can still lookup the physical
8740 * address.
8741 */
8742 l3e = pmap_load(tl3p);
8743 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
8744 ("pmap_demote_l3c: missing ATTR_CONTIGUOUS"));
8745 KASSERT((l3e & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) !=
8746 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RO)),
8747 ("pmap_demote_l3c: missing ATTR_S1_AP_RW"));
8748 while (!atomic_fcmpset_64(tl3p, &l3e, l3e & ~(ATTR_CONTIGUOUS |
8749 ATTR_DESCR_VALID)))
8750 cpu_spinwait();
8751
8752 /*
8753 * Hardware accessed and dirty bit maintenance might only
8754 * update a single L3 entry, so we must combine the accessed
8755 * and dirty bits from this entire set of contiguous L3
8756 * entries.
8757 */
8758 if ((l3e & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
8759 (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM))
8760 mask = ATTR_S1_AP_RW_BIT;
8761 nbits |= l3e & ATTR_AF;
8762 }
8763 if ((nbits & ATTR_AF) != 0) {
8764 pmap_invalidate_range(pmap, va & ~L3C_OFFSET, (va + L3C_SIZE) &
8765 ~L3C_OFFSET, true);
8766 }
8767
8768 /*
8769 * Remake the mappings, updating the accessed and dirty bits.
8770 */
8771 l3e = (pmap_load(l3c_start) & ~mask) | nbits;
8772 for (tl3p = l3c_start; tl3p < l3c_end; tl3p++) {
8773 pmap_store(tl3p, l3e);
8774 l3e += L3_SIZE;
8775 }
8776 dsb(ishst);
8777
8778 intr_restore(intr);
8779 if (tmpl3 != 0) {
8780 pmap_kremove(tmpl3);
8781 kva_free(tmpl3, PAGE_SIZE);
8782 }
8783 counter_u64_add(pmap_l3c_demotions, 1);
8784 CTR2(KTR_PMAP, "pmap_demote_l3c: success for va %#lx in pmap %p",
8785 va, pmap);
8786 return (true);
8787 }
8788
8789 /*
8790 * Accumulate the accessed and dirty bits within a L3C superpage and
8791 * return the specified PTE with them applied correctly.
8792 */
8793 static pt_entry_t
pmap_load_l3c(pt_entry_t * l3p)8794 pmap_load_l3c(pt_entry_t *l3p)
8795 {
8796 pt_entry_t *l3c_end, *l3c_start, l3e, mask, nbits, *tl3p;
8797
8798 l3c_start = (pt_entry_t *)((uintptr_t)l3p & ~((L3C_ENTRIES *
8799 sizeof(pt_entry_t)) - 1));
8800 l3c_end = l3c_start + L3C_ENTRIES;
8801 mask = 0;
8802 nbits = 0;
8803 /* Iterate over each mapping in the superpage. */
8804 for (tl3p = l3c_start; tl3p < l3c_end; tl3p++) {
8805 l3e = pmap_load(tl3p);
8806 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
8807 ("pmap_load_l3c: missing ATTR_CONTIGUOUS"));
8808 /* Update mask if the current page has its dirty bit set. */
8809 if ((l3e & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
8810 (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM))
8811 mask = ATTR_S1_AP_RW_BIT;
8812 /* Update nbits if the accessed bit is set. */
8813 nbits |= l3e & ATTR_AF;
8814 }
8815 return ((pmap_load(l3p) & ~mask) | nbits);
8816 }
8817
8818 /*
8819 * Perform the pmap work for mincore(2). If the page is not both referenced and
8820 * modified by this pmap, returns its physical address so that the caller can
8821 * find other mappings.
8822 */
8823 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)8824 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
8825 {
8826 pt_entry_t *pte, tpte;
8827 vm_paddr_t mask, pa;
8828 int lvl, psind, val;
8829 bool managed;
8830
8831 PMAP_ASSERT_STAGE1(pmap);
8832 PMAP_LOCK(pmap);
8833 pte = pmap_pte(pmap, addr, &lvl);
8834 if (pte != NULL) {
8835 tpte = pmap_load(pte);
8836
8837 switch (lvl) {
8838 case 3:
8839 mask = L3_OFFSET;
8840 psind = (tpte & ATTR_CONTIGUOUS) != 0 ? 1 : 0;
8841 break;
8842 case 2:
8843 mask = L2_OFFSET;
8844 psind = 2;
8845 break;
8846 case 1:
8847 mask = L1_OFFSET;
8848 psind = 3;
8849 break;
8850 default:
8851 panic("pmap_mincore: invalid level %d", lvl);
8852 }
8853
8854 managed = (tpte & ATTR_SW_MANAGED) != 0;
8855 val = MINCORE_INCORE | MINCORE_PSIND(psind);
8856 if ((managed && pmap_pte_dirty(pmap, tpte)) || (!managed &&
8857 (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW)))
8858 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
8859 if ((tpte & ATTR_AF) == ATTR_AF)
8860 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
8861
8862 pa = PTE_TO_PHYS(tpte) | (addr & mask);
8863 } else {
8864 managed = false;
8865 val = 0;
8866 }
8867
8868 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
8869 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
8870 *pap = pa;
8871 }
8872 PMAP_UNLOCK(pmap);
8873 return (val);
8874 }
8875
8876 /*
8877 * Garbage collect every ASID that is neither active on a processor nor
8878 * reserved.
8879 */
8880 static void
pmap_reset_asid_set(pmap_t pmap)8881 pmap_reset_asid_set(pmap_t pmap)
8882 {
8883 pmap_t curpmap;
8884 int asid, cpuid, epoch;
8885 struct asid_set *set;
8886 enum pmap_stage stage;
8887
8888 set = pmap->pm_asid_set;
8889 stage = pmap->pm_stage;
8890
8891 set = pmap->pm_asid_set;
8892 KASSERT(set != NULL, ("%s: NULL asid set", __func__));
8893 mtx_assert(&set->asid_set_mutex, MA_OWNED);
8894
8895 /*
8896 * Ensure that the store to asid_epoch is globally visible before the
8897 * loads from pc_curpmap are performed.
8898 */
8899 epoch = set->asid_epoch + 1;
8900 if (epoch == INT_MAX)
8901 epoch = 0;
8902 set->asid_epoch = epoch;
8903 dsb(ishst);
8904 if (stage == PM_STAGE1) {
8905 __asm __volatile("tlbi vmalle1is");
8906 } else {
8907 KASSERT(pmap_clean_stage2_tlbi != NULL,
8908 ("%s: Unset stage 2 tlb invalidation callback\n",
8909 __func__));
8910 pmap_clean_stage2_tlbi();
8911 }
8912 dsb(ish);
8913 bit_nclear(set->asid_set, ASID_FIRST_AVAILABLE,
8914 set->asid_set_size - 1);
8915 CPU_FOREACH(cpuid) {
8916 if (cpuid == curcpu)
8917 continue;
8918 if (stage == PM_STAGE1) {
8919 curpmap = pcpu_find(cpuid)->pc_curpmap;
8920 PMAP_ASSERT_STAGE1(pmap);
8921 } else {
8922 curpmap = pcpu_find(cpuid)->pc_curvmpmap;
8923 if (curpmap == NULL)
8924 continue;
8925 PMAP_ASSERT_STAGE2(pmap);
8926 }
8927 KASSERT(curpmap->pm_asid_set == set, ("Incorrect set"));
8928 asid = COOKIE_TO_ASID(curpmap->pm_cookie);
8929 if (asid == -1)
8930 continue;
8931 bit_set(set->asid_set, asid);
8932 curpmap->pm_cookie = COOKIE_FROM(asid, epoch);
8933 }
8934 }
8935
8936 /*
8937 * Allocate a new ASID for the specified pmap.
8938 */
8939 static void
pmap_alloc_asid(pmap_t pmap)8940 pmap_alloc_asid(pmap_t pmap)
8941 {
8942 struct asid_set *set;
8943 int new_asid;
8944
8945 set = pmap->pm_asid_set;
8946 KASSERT(set != NULL, ("%s: NULL asid set", __func__));
8947
8948 mtx_lock_spin(&set->asid_set_mutex);
8949
8950 /*
8951 * While this processor was waiting to acquire the asid set mutex,
8952 * pmap_reset_asid_set() running on another processor might have
8953 * updated this pmap's cookie to the current epoch. In which case, we
8954 * don't need to allocate a new ASID.
8955 */
8956 if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch)
8957 goto out;
8958
8959 bit_ffc_at(set->asid_set, set->asid_next, set->asid_set_size,
8960 &new_asid);
8961 if (new_asid == -1) {
8962 bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
8963 set->asid_next, &new_asid);
8964 if (new_asid == -1) {
8965 pmap_reset_asid_set(pmap);
8966 bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
8967 set->asid_set_size, &new_asid);
8968 KASSERT(new_asid != -1, ("ASID allocation failure"));
8969 }
8970 }
8971 bit_set(set->asid_set, new_asid);
8972 set->asid_next = new_asid + 1;
8973 pmap->pm_cookie = COOKIE_FROM(new_asid, set->asid_epoch);
8974 out:
8975 mtx_unlock_spin(&set->asid_set_mutex);
8976 }
8977
8978 static uint64_t __read_mostly ttbr_flags;
8979
8980 /*
8981 * Compute the value that should be stored in ttbr0 to activate the specified
8982 * pmap. This value may change from time to time.
8983 */
8984 uint64_t
pmap_to_ttbr0(pmap_t pmap)8985 pmap_to_ttbr0(pmap_t pmap)
8986 {
8987 uint64_t ttbr;
8988
8989 ttbr = pmap->pm_ttbr;
8990 ttbr |= ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
8991 ttbr |= ttbr_flags;
8992
8993 return (ttbr);
8994 }
8995
8996 static void
pmap_set_cnp(void * arg)8997 pmap_set_cnp(void *arg)
8998 {
8999 uint64_t ttbr0, ttbr1;
9000 u_int cpuid;
9001
9002 cpuid = *(u_int *)arg;
9003 if (cpuid == curcpu) {
9004 /*
9005 * Set the flags while all CPUs are handling the
9006 * smp_rendezvous so will not call pmap_to_ttbr0. Any calls
9007 * to pmap_to_ttbr0 after this will have the CnP flag set.
9008 * The dsb after invalidating the TLB will act as a barrier
9009 * to ensure all CPUs can observe this change.
9010 */
9011 ttbr_flags |= TTBR_CnP;
9012 }
9013
9014 ttbr0 = READ_SPECIALREG(ttbr0_el1);
9015 ttbr0 |= TTBR_CnP;
9016
9017 ttbr1 = READ_SPECIALREG(ttbr1_el1);
9018 ttbr1 |= TTBR_CnP;
9019
9020 /* Update ttbr{0,1}_el1 with the CnP flag */
9021 WRITE_SPECIALREG(ttbr0_el1, ttbr0);
9022 WRITE_SPECIALREG(ttbr1_el1, ttbr1);
9023 isb();
9024 __asm __volatile("tlbi vmalle1is");
9025 dsb(ish);
9026 isb();
9027 }
9028
9029 /*
9030 * Defer enabling some features until we have read the ID registers to know
9031 * if they are supported on all CPUs.
9032 */
9033 static void
pmap_init_mp(void * dummy __unused)9034 pmap_init_mp(void *dummy __unused)
9035 {
9036 uint64_t reg;
9037
9038 if (get_kernel_reg(ID_AA64PFR1_EL1, ®)) {
9039 if (ID_AA64PFR1_BT_VAL(reg) != ID_AA64PFR1_BT_NONE) {
9040 if (bootverbose)
9041 printf("Enabling BTI\n");
9042 pmap_bti_support = true;
9043
9044 pmap_bti_ranges_zone = uma_zcreate("BTI ranges",
9045 sizeof(struct rs_el), NULL, NULL, NULL, NULL,
9046 UMA_ALIGN_PTR, 0);
9047 }
9048 }
9049 }
9050 SYSINIT(pmap_init_mp, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_mp, NULL);
9051
9052 /*
9053 * Defer enabling CnP until we have read the ID registers to know if it's
9054 * supported on all CPUs.
9055 */
9056 static void
pmap_init_cnp(void * dummy __unused)9057 pmap_init_cnp(void *dummy __unused)
9058 {
9059 uint64_t reg;
9060 u_int cpuid;
9061
9062 if (!get_kernel_reg(ID_AA64MMFR2_EL1, ®))
9063 return;
9064
9065 if (ID_AA64MMFR2_CnP_VAL(reg) != ID_AA64MMFR2_CnP_NONE) {
9066 if (bootverbose)
9067 printf("Enabling CnP\n");
9068 cpuid = curcpu;
9069 smp_rendezvous(NULL, pmap_set_cnp, NULL, &cpuid);
9070 }
9071
9072 }
9073 SYSINIT(pmap_init_cnp, SI_SUB_SMP, SI_ORDER_ANY, pmap_init_cnp, NULL);
9074
9075 static bool
pmap_activate_int(pmap_t pmap)9076 pmap_activate_int(pmap_t pmap)
9077 {
9078 struct asid_set *set;
9079 int epoch;
9080
9081 KASSERT(PCPU_GET(curpmap) != NULL, ("no active pmap"));
9082 KASSERT(pmap != kernel_pmap, ("kernel pmap activation"));
9083
9084 if ((pmap->pm_stage == PM_STAGE1 && pmap == PCPU_GET(curpmap)) ||
9085 (pmap->pm_stage == PM_STAGE2 && pmap == PCPU_GET(curvmpmap))) {
9086 /*
9087 * Handle the possibility that the old thread was preempted
9088 * after an "ic" or "tlbi" instruction but before it performed
9089 * a "dsb" instruction. If the old thread migrates to a new
9090 * processor, its completion of a "dsb" instruction on that
9091 * new processor does not guarantee that the "ic" or "tlbi"
9092 * instructions performed on the old processor have completed.
9093 */
9094 dsb(ish);
9095 return (false);
9096 }
9097
9098 set = pmap->pm_asid_set;
9099 KASSERT(set != NULL, ("%s: NULL asid set", __func__));
9100
9101 /*
9102 * Ensure that the store to curpmap is globally visible before the
9103 * load from asid_epoch is performed.
9104 */
9105 if (pmap->pm_stage == PM_STAGE1)
9106 PCPU_SET(curpmap, pmap);
9107 else
9108 PCPU_SET(curvmpmap, pmap);
9109 dsb(ish);
9110 epoch = COOKIE_TO_EPOCH(pmap->pm_cookie);
9111 if (epoch >= 0 && epoch != set->asid_epoch)
9112 pmap_alloc_asid(pmap);
9113
9114 if (pmap->pm_stage == PM_STAGE1) {
9115 set_ttbr0(pmap_to_ttbr0(pmap));
9116 if (PCPU_GET(bcast_tlbi_workaround) != 0)
9117 invalidate_local_icache();
9118 }
9119 return (true);
9120 }
9121
9122 void
pmap_activate_vm(pmap_t pmap)9123 pmap_activate_vm(pmap_t pmap)
9124 {
9125
9126 PMAP_ASSERT_STAGE2(pmap);
9127
9128 (void)pmap_activate_int(pmap);
9129 }
9130
9131 void
pmap_activate(struct thread * td)9132 pmap_activate(struct thread *td)
9133 {
9134 pmap_t pmap;
9135
9136 pmap = vmspace_pmap(td->td_proc->p_vmspace);
9137 PMAP_ASSERT_STAGE1(pmap);
9138 critical_enter();
9139 (void)pmap_activate_int(pmap);
9140 critical_exit();
9141 }
9142
9143 /*
9144 * Activate the thread we are switching to.
9145 * To simplify the assembly in cpu_throw return the new threads pcb.
9146 */
9147 struct pcb *
pmap_switch(struct thread * new)9148 pmap_switch(struct thread *new)
9149 {
9150 pcpu_bp_harden bp_harden;
9151 struct pcb *pcb;
9152
9153 /* Store the new curthread */
9154 PCPU_SET(curthread, new);
9155
9156 /* And the new pcb */
9157 pcb = new->td_pcb;
9158 PCPU_SET(curpcb, pcb);
9159
9160 /*
9161 * TODO: We may need to flush the cache here if switching
9162 * to a user process.
9163 */
9164
9165 if (pmap_activate_int(vmspace_pmap(new->td_proc->p_vmspace))) {
9166 /*
9167 * Stop userspace from training the branch predictor against
9168 * other processes. This will call into a CPU specific
9169 * function that clears the branch predictor state.
9170 */
9171 bp_harden = PCPU_GET(bp_harden);
9172 if (bp_harden != NULL)
9173 bp_harden();
9174 }
9175
9176 return (pcb);
9177 }
9178
9179 void
pmap_sync_icache(pmap_t pmap,vm_offset_t va,vm_size_t sz)9180 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
9181 {
9182
9183 PMAP_ASSERT_STAGE1(pmap);
9184 KASSERT(ADDR_IS_CANONICAL(va),
9185 ("%s: Address not in canonical form: %lx", __func__, va));
9186
9187 if (ADDR_IS_KERNEL(va)) {
9188 cpu_icache_sync_range((void *)va, sz);
9189 } else {
9190 u_int len, offset;
9191 vm_paddr_t pa;
9192
9193 /* Find the length of data in this page to flush */
9194 offset = va & PAGE_MASK;
9195 len = imin(PAGE_SIZE - offset, sz);
9196
9197 while (sz != 0) {
9198 /* Extract the physical address & find it in the DMAP */
9199 pa = pmap_extract(pmap, va);
9200 if (pa != 0)
9201 cpu_icache_sync_range((void *)PHYS_TO_DMAP(pa),
9202 len);
9203
9204 /* Move to the next page */
9205 sz -= len;
9206 va += len;
9207 /* Set the length for the next iteration */
9208 len = imin(PAGE_SIZE, sz);
9209 }
9210 }
9211 }
9212
9213 static int
pmap_stage2_fault(pmap_t pmap,uint64_t esr,uint64_t far)9214 pmap_stage2_fault(pmap_t pmap, uint64_t esr, uint64_t far)
9215 {
9216 pd_entry_t *pdep;
9217 pt_entry_t *ptep, pte;
9218 int rv, lvl, dfsc;
9219
9220 PMAP_ASSERT_STAGE2(pmap);
9221 rv = KERN_FAILURE;
9222
9223 /* Data and insn aborts use same encoding for FSC field. */
9224 dfsc = esr & ISS_DATA_DFSC_MASK;
9225 switch (dfsc) {
9226 case ISS_DATA_DFSC_TF_L0:
9227 case ISS_DATA_DFSC_TF_L1:
9228 case ISS_DATA_DFSC_TF_L2:
9229 case ISS_DATA_DFSC_TF_L3:
9230 PMAP_LOCK(pmap);
9231 pdep = pmap_pde(pmap, far, &lvl);
9232 if (pdep == NULL || lvl != (dfsc - ISS_DATA_DFSC_TF_L1)) {
9233 PMAP_UNLOCK(pmap);
9234 break;
9235 }
9236
9237 switch (lvl) {
9238 case 0:
9239 ptep = pmap_l0_to_l1(pdep, far);
9240 break;
9241 case 1:
9242 ptep = pmap_l1_to_l2(pdep, far);
9243 break;
9244 case 2:
9245 ptep = pmap_l2_to_l3(pdep, far);
9246 break;
9247 default:
9248 panic("%s: Invalid pde level %d", __func__,lvl);
9249 }
9250 goto fault_exec;
9251
9252 case ISS_DATA_DFSC_AFF_L1:
9253 case ISS_DATA_DFSC_AFF_L2:
9254 case ISS_DATA_DFSC_AFF_L3:
9255 PMAP_LOCK(pmap);
9256 ptep = pmap_pte(pmap, far, &lvl);
9257 fault_exec:
9258 if (ptep != NULL && (pte = pmap_load(ptep)) != 0) {
9259 /*
9260 * If accessing an executable page invalidate
9261 * the I-cache so it will be valid when we
9262 * continue execution in the guest. The D-cache
9263 * is assumed to already be clean to the Point
9264 * of Coherency.
9265 */
9266 if ((pte & ATTR_S2_XN_MASK) !=
9267 ATTR_S2_XN(ATTR_S2_XN_NONE)) {
9268 invalidate_icache();
9269 }
9270 pmap_set_bits(ptep, ATTR_AF | ATTR_DESCR_VALID);
9271 rv = KERN_SUCCESS;
9272 }
9273 PMAP_UNLOCK(pmap);
9274 break;
9275 }
9276
9277 return (rv);
9278 }
9279
9280 int
pmap_fault(pmap_t pmap,uint64_t esr,uint64_t far)9281 pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
9282 {
9283 pt_entry_t pte, *ptep;
9284 register_t intr;
9285 uint64_t ec, par;
9286 int lvl, rv;
9287
9288 rv = KERN_FAILURE;
9289
9290 ec = ESR_ELx_EXCEPTION(esr);
9291 switch (ec) {
9292 case EXCP_INSN_ABORT_L:
9293 case EXCP_INSN_ABORT:
9294 case EXCP_DATA_ABORT_L:
9295 case EXCP_DATA_ABORT:
9296 break;
9297 default:
9298 return (rv);
9299 }
9300
9301 if (pmap->pm_stage == PM_STAGE2)
9302 return (pmap_stage2_fault(pmap, esr, far));
9303
9304 /* Data and insn aborts use same encoding for FSC field. */
9305 switch (esr & ISS_DATA_DFSC_MASK) {
9306 case ISS_DATA_DFSC_AFF_L1:
9307 case ISS_DATA_DFSC_AFF_L2:
9308 case ISS_DATA_DFSC_AFF_L3:
9309 PMAP_LOCK(pmap);
9310 ptep = pmap_pte(pmap, far, &lvl);
9311 if (ptep != NULL) {
9312 pmap_set_bits(ptep, ATTR_AF);
9313 rv = KERN_SUCCESS;
9314 /*
9315 * XXXMJ as an optimization we could mark the entry
9316 * dirty if this is a write fault.
9317 */
9318 }
9319 PMAP_UNLOCK(pmap);
9320 break;
9321 case ISS_DATA_DFSC_PF_L1:
9322 case ISS_DATA_DFSC_PF_L2:
9323 case ISS_DATA_DFSC_PF_L3:
9324 if ((ec != EXCP_DATA_ABORT_L && ec != EXCP_DATA_ABORT) ||
9325 (esr & ISS_DATA_WnR) == 0)
9326 return (rv);
9327 PMAP_LOCK(pmap);
9328 ptep = pmap_pte(pmap, far, &lvl);
9329 if (ptep != NULL &&
9330 ((pte = pmap_load(ptep)) & ATTR_SW_DBM) != 0) {
9331 if ((pte & ATTR_S1_AP_RW_BIT) ==
9332 ATTR_S1_AP(ATTR_S1_AP_RO)) {
9333 pmap_clear_bits(ptep, ATTR_S1_AP_RW_BIT);
9334 pmap_s1_invalidate_page(pmap, far, true);
9335 }
9336 rv = KERN_SUCCESS;
9337 }
9338 PMAP_UNLOCK(pmap);
9339 break;
9340 case ISS_DATA_DFSC_TF_L0:
9341 case ISS_DATA_DFSC_TF_L1:
9342 case ISS_DATA_DFSC_TF_L2:
9343 case ISS_DATA_DFSC_TF_L3:
9344 /*
9345 * Retry the translation. A break-before-make sequence can
9346 * produce a transient fault.
9347 */
9348 if (pmap == kernel_pmap) {
9349 /*
9350 * The translation fault may have occurred within a
9351 * critical section. Therefore, we must check the
9352 * address without acquiring the kernel pmap's lock.
9353 */
9354 if (pmap_klookup(far, NULL))
9355 rv = KERN_SUCCESS;
9356 } else {
9357 bool owned;
9358
9359 /*
9360 * In the EFIRT driver we lock the pmap before
9361 * calling into the runtime service. As the lock
9362 * is already owned by the current thread skip
9363 * locking it again.
9364 */
9365 owned = PMAP_OWNED(pmap);
9366 if (!owned)
9367 PMAP_LOCK(pmap);
9368 /* Ask the MMU to check the address. */
9369 intr = intr_disable();
9370 par = arm64_address_translate_s1e0r(far);
9371 intr_restore(intr);
9372 if (!owned)
9373 PMAP_UNLOCK(pmap);
9374
9375 /*
9376 * If the translation was successful, then we can
9377 * return success to the trap handler.
9378 */
9379 if (PAR_SUCCESS(par))
9380 rv = KERN_SUCCESS;
9381 }
9382 break;
9383 }
9384
9385 return (rv);
9386 }
9387
9388 /*
9389 * Increase the starting virtual address of the given mapping if a
9390 * different alignment might result in more superpage mappings.
9391 */
9392 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)9393 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
9394 vm_offset_t *addr, vm_size_t size)
9395 {
9396 vm_offset_t superpage_offset;
9397
9398 if (size < L3C_SIZE)
9399 return;
9400 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
9401 offset += ptoa(object->pg_color);
9402
9403 /*
9404 * Considering the object's physical alignment, is the mapping large
9405 * enough to encompass an L2 (2MB/32MB) superpage ...
9406 */
9407 superpage_offset = offset & L2_OFFSET;
9408 if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) >= L2_SIZE) {
9409 /*
9410 * If the virtual and physical alignments differ, then
9411 * increase the virtual address so that the alignments match.
9412 */
9413 if ((*addr & L2_OFFSET) < superpage_offset)
9414 *addr = (*addr & ~L2_OFFSET) + superpage_offset;
9415 else if ((*addr & L2_OFFSET) > superpage_offset)
9416 *addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) +
9417 superpage_offset;
9418 return;
9419 }
9420 /* ... or an L3C (64KB/2MB) superpage? */
9421 superpage_offset = offset & L3C_OFFSET;
9422 if (size - ((L3C_SIZE - superpage_offset) & L3C_OFFSET) >= L3C_SIZE) {
9423 if ((*addr & L3C_OFFSET) < superpage_offset)
9424 *addr = (*addr & ~L3C_OFFSET) + superpage_offset;
9425 else if ((*addr & L3C_OFFSET) > superpage_offset)
9426 *addr = ((*addr + L3C_OFFSET) & ~L3C_OFFSET) +
9427 superpage_offset;
9428 }
9429 }
9430
9431 /**
9432 * Get the kernel virtual address of a set of physical pages. If there are
9433 * physical addresses not covered by the DMAP perform a transient mapping
9434 * that will be removed when calling pmap_unmap_io_transient.
9435 *
9436 * \param page The pages the caller wishes to obtain the virtual
9437 * address on the kernel memory map.
9438 * \param vaddr On return contains the kernel virtual memory address
9439 * of the pages passed in the page parameter.
9440 * \param count Number of pages passed in.
9441 * \param can_fault true if the thread using the mapped pages can take
9442 * page faults, false otherwise.
9443 *
9444 * \returns true if the caller must call pmap_unmap_io_transient when
9445 * finished or false otherwise.
9446 *
9447 */
9448 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)9449 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
9450 bool can_fault)
9451 {
9452 vm_paddr_t paddr;
9453 bool needs_mapping;
9454 int error __diagused, i;
9455
9456 /*
9457 * Allocate any KVA space that we need, this is done in a separate
9458 * loop to prevent calling vmem_alloc while pinned.
9459 */
9460 needs_mapping = false;
9461 for (i = 0; i < count; i++) {
9462 paddr = VM_PAGE_TO_PHYS(page[i]);
9463 if (__predict_false(!PHYS_IN_DMAP(paddr))) {
9464 error = vmem_alloc(kernel_arena, PAGE_SIZE,
9465 M_BESTFIT | M_WAITOK, &vaddr[i]);
9466 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
9467 needs_mapping = true;
9468 } else {
9469 vaddr[i] = PHYS_TO_DMAP(paddr);
9470 }
9471 }
9472
9473 /* Exit early if everything is covered by the DMAP */
9474 if (!needs_mapping)
9475 return (false);
9476
9477 if (!can_fault)
9478 sched_pin();
9479 for (i = 0; i < count; i++) {
9480 paddr = VM_PAGE_TO_PHYS(page[i]);
9481 if (!PHYS_IN_DMAP(paddr)) {
9482 panic(
9483 "pmap_map_io_transient: TODO: Map out of DMAP data");
9484 }
9485 }
9486
9487 return (needs_mapping);
9488 }
9489
9490 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)9491 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
9492 bool can_fault)
9493 {
9494 vm_paddr_t paddr;
9495 int i;
9496
9497 if (!can_fault)
9498 sched_unpin();
9499 for (i = 0; i < count; i++) {
9500 paddr = VM_PAGE_TO_PHYS(page[i]);
9501 if (!PHYS_IN_DMAP(paddr)) {
9502 panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
9503 }
9504 }
9505 }
9506
9507 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)9508 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
9509 {
9510
9511 return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_THROUGH);
9512 }
9513
9514 static void *
bti_dup_range(void * ctx __unused,void * data)9515 bti_dup_range(void *ctx __unused, void *data)
9516 {
9517 struct rs_el *node, *new_node;
9518
9519 new_node = uma_zalloc(pmap_bti_ranges_zone, M_NOWAIT);
9520 if (new_node == NULL)
9521 return (NULL);
9522 node = data;
9523 memcpy(new_node, node, sizeof(*node));
9524 return (new_node);
9525 }
9526
9527 static void
bti_free_range(void * ctx __unused,void * node)9528 bti_free_range(void *ctx __unused, void *node)
9529 {
9530
9531 uma_zfree(pmap_bti_ranges_zone, node);
9532 }
9533
9534 static int
pmap_bti_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)9535 pmap_bti_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
9536 {
9537 struct rs_el *rs;
9538 int error;
9539
9540 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9541 PMAP_ASSERT_STAGE1(pmap);
9542 MPASS(pmap->pm_bti != NULL);
9543 rs = uma_zalloc(pmap_bti_ranges_zone, M_NOWAIT);
9544 if (rs == NULL)
9545 return (ENOMEM);
9546 error = rangeset_insert(pmap->pm_bti, sva, eva, rs);
9547 if (error != 0)
9548 uma_zfree(pmap_bti_ranges_zone, rs);
9549 return (error);
9550 }
9551
9552 static void
pmap_bti_deassign_all(pmap_t pmap)9553 pmap_bti_deassign_all(pmap_t pmap)
9554 {
9555
9556 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9557 if (pmap->pm_bti != NULL)
9558 rangeset_remove_all(pmap->pm_bti);
9559 }
9560
9561 /*
9562 * Returns true if the BTI setting is the same across the specified address
9563 * range, and false otherwise. When returning true, updates the referenced PTE
9564 * to reflect the BTI setting.
9565 *
9566 * Only stage 1 pmaps support BTI. The kernel pmap is always a stage 1 pmap
9567 * that has the same BTI setting implicitly across its entire address range.
9568 */
9569 static bool
pmap_bti_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)9570 pmap_bti_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
9571 {
9572 struct rs_el *rs;
9573 vm_offset_t va;
9574
9575 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9576 KASSERT(ADDR_IS_CANONICAL(sva),
9577 ("%s: Start address not in canonical form: %lx", __func__, sva));
9578 KASSERT(ADDR_IS_CANONICAL(eva),
9579 ("%s: End address not in canonical form: %lx", __func__, eva));
9580 KASSERT((*pte & ATTR_S1_GP) == 0,
9581 ("%s: pte %lx has ATTR_S1_GP preset", __func__, *pte));
9582
9583 if (pmap == kernel_pmap) {
9584 *pte |= ATTR_KERN_GP;
9585 return (true);
9586 }
9587 if (pmap->pm_bti == NULL)
9588 return (true);
9589 PMAP_ASSERT_STAGE1(pmap);
9590 rs = rangeset_containing(pmap->pm_bti, sva);
9591 if (rs == NULL)
9592 return (rangeset_empty(pmap->pm_bti, sva, eva));
9593 while ((va = rs->re_end) < eva) {
9594 if ((rs = rangeset_beginning(pmap->pm_bti, va)) == NULL)
9595 return (false);
9596 }
9597 *pte |= ATTR_S1_GP;
9598 return (true);
9599 }
9600
9601 static pt_entry_t
pmap_pte_bti(pmap_t pmap,vm_offset_t va)9602 pmap_pte_bti(pmap_t pmap, vm_offset_t va)
9603 {
9604 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9605 MPASS(ADDR_IS_CANONICAL(va));
9606
9607 if (pmap->pm_stage != PM_STAGE1)
9608 return (0);
9609 if (pmap == kernel_pmap)
9610 return (ATTR_KERN_GP);
9611 if (pmap->pm_bti != NULL &&
9612 rangeset_containing(pmap->pm_bti, va) != NULL)
9613 return (ATTR_S1_GP);
9614 return (0);
9615 }
9616
9617 static void
pmap_bti_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)9618 pmap_bti_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
9619 {
9620
9621 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9622 if (pmap->pm_bti != NULL)
9623 rangeset_remove(pmap->pm_bti, sva, eva);
9624 }
9625
9626 static int
pmap_bti_copy(pmap_t dst_pmap,pmap_t src_pmap)9627 pmap_bti_copy(pmap_t dst_pmap, pmap_t src_pmap)
9628 {
9629
9630 PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
9631 PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
9632 MPASS(src_pmap->pm_stage == dst_pmap->pm_stage);
9633 MPASS(src_pmap->pm_bti != NULL);
9634 MPASS(dst_pmap->pm_bti != NULL);
9635 if (src_pmap->pm_bti->rs_data_ctx == NULL)
9636 return (0);
9637 return (rangeset_copy(dst_pmap->pm_bti, src_pmap->pm_bti));
9638 }
9639
9640 static void
pmap_bti_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool set)9641 pmap_bti_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool set)
9642 {
9643 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9644 PMAP_ASSERT_STAGE1(pmap);
9645
9646 pmap_mask_set_locked(pmap, sva, eva, ATTR_S1_GP, set ? ATTR_S1_GP : 0,
9647 true);
9648 }
9649
9650 int
pmap_bti_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)9651 pmap_bti_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
9652 {
9653 int error;
9654
9655 if (pmap->pm_bti == NULL)
9656 return (0);
9657 if (!ADDR_IS_CANONICAL(sva) || !ADDR_IS_CANONICAL(eva))
9658 return (EINVAL);
9659 if (pmap->pm_stage != PM_STAGE1)
9660 return (EINVAL);
9661 if (eva <= sva || ADDR_IS_KERNEL(eva))
9662 return (EFAULT);
9663
9664 sva = trunc_page(sva);
9665 eva = round_page(eva);
9666 for (;;) {
9667 PMAP_LOCK(pmap);
9668 error = pmap_bti_assign(pmap, sva, eva);
9669 if (error == 0)
9670 pmap_bti_update_range(pmap, sva, eva, true);
9671 PMAP_UNLOCK(pmap);
9672 if (error != ENOMEM)
9673 break;
9674 vm_wait(NULL);
9675 }
9676 return (error);
9677 }
9678
9679 #if defined(KASAN) || defined(KMSAN)
9680 static pd_entry_t *pmap_san_early_l2;
9681
9682 #define SAN_BOOTSTRAP_L2_SIZE (1 * L2_SIZE)
9683 #define SAN_BOOTSTRAP_SIZE (2 * PAGE_SIZE)
9684 static vm_offset_t __nosanitizeaddress
pmap_san_enter_bootstrap_alloc_l2(void)9685 pmap_san_enter_bootstrap_alloc_l2(void)
9686 {
9687 static uint8_t bootstrap_data[SAN_BOOTSTRAP_L2_SIZE] __aligned(L2_SIZE);
9688 static size_t offset = 0;
9689 vm_offset_t addr;
9690
9691 if (offset + L2_SIZE > sizeof(bootstrap_data)) {
9692 panic("%s: out of memory for the bootstrap shadow map L2 entries",
9693 __func__);
9694 }
9695
9696 addr = (uintptr_t)&bootstrap_data[offset];
9697 offset += L2_SIZE;
9698 return (addr);
9699 }
9700
9701 /*
9702 * SAN L1 + L2 pages, maybe L3 entries later?
9703 */
9704 static vm_offset_t __nosanitizeaddress
pmap_san_enter_bootstrap_alloc_pages(int npages)9705 pmap_san_enter_bootstrap_alloc_pages(int npages)
9706 {
9707 static uint8_t bootstrap_data[SAN_BOOTSTRAP_SIZE] __aligned(PAGE_SIZE);
9708 static size_t offset = 0;
9709 vm_offset_t addr;
9710
9711 if (offset + (npages * PAGE_SIZE) > sizeof(bootstrap_data)) {
9712 panic("%s: out of memory for the bootstrap shadow map",
9713 __func__);
9714 }
9715
9716 addr = (uintptr_t)&bootstrap_data[offset];
9717 offset += (npages * PAGE_SIZE);
9718 return (addr);
9719 }
9720
9721 static void __nosanitizeaddress
pmap_san_enter_bootstrap(void)9722 pmap_san_enter_bootstrap(void)
9723 {
9724 vm_offset_t freemempos;
9725
9726 /* L1, L2 */
9727 freemempos = pmap_san_enter_bootstrap_alloc_pages(2);
9728 bs_state.freemempos = freemempos;
9729 bs_state.va = KASAN_MIN_ADDRESS;
9730 pmap_bootstrap_l1_table(&bs_state);
9731 pmap_san_early_l2 = bs_state.l2;
9732 }
9733
9734 static vm_page_t
pmap_san_enter_alloc_l3(void)9735 pmap_san_enter_alloc_l3(void)
9736 {
9737 vm_page_t m;
9738
9739 m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
9740 VM_ALLOC_ZERO);
9741 if (m == NULL)
9742 panic("%s: no memory to grow shadow map", __func__);
9743 return (m);
9744 }
9745
9746 static vm_page_t
pmap_san_enter_alloc_l2(void)9747 pmap_san_enter_alloc_l2(void)
9748 {
9749 return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
9750 Ln_ENTRIES, 0, ~0ul, L2_SIZE, 0, VM_MEMATTR_DEFAULT));
9751 }
9752
9753 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)9754 pmap_san_enter(vm_offset_t va)
9755 {
9756 pd_entry_t *l1, *l2;
9757 pt_entry_t *l3;
9758 vm_page_t m;
9759
9760 if (virtual_avail == 0) {
9761 vm_offset_t block;
9762 int slot;
9763 bool first;
9764
9765 /* Temporary shadow map prior to pmap_bootstrap(). */
9766 first = pmap_san_early_l2 == NULL;
9767 if (first)
9768 pmap_san_enter_bootstrap();
9769
9770 l2 = pmap_san_early_l2;
9771 slot = pmap_l2_index(va);
9772
9773 if ((pmap_load(&l2[slot]) & ATTR_DESCR_VALID) == 0) {
9774 MPASS(first);
9775 block = pmap_san_enter_bootstrap_alloc_l2();
9776 pmap_store(&l2[slot],
9777 PHYS_TO_PTE(pmap_early_vtophys(block)) |
9778 PMAP_SAN_PTE_BITS | L2_BLOCK);
9779 dmb(ishst);
9780 }
9781
9782 return;
9783 }
9784
9785 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
9786 l1 = pmap_l1(kernel_pmap, va);
9787 MPASS(l1 != NULL);
9788 if ((pmap_load(l1) & ATTR_DESCR_VALID) == 0) {
9789 m = pmap_san_enter_alloc_l3();
9790 pmap_store(l1, VM_PAGE_TO_PTE(m) | L1_TABLE);
9791 }
9792 l2 = pmap_l1_to_l2(l1, va);
9793 if ((pmap_load(l2) & ATTR_DESCR_VALID) == 0) {
9794 m = pmap_san_enter_alloc_l2();
9795 if (m != NULL) {
9796 pmap_store(l2, VM_PAGE_TO_PTE(m) |
9797 PMAP_SAN_PTE_BITS | L2_BLOCK);
9798 } else {
9799 m = pmap_san_enter_alloc_l3();
9800 pmap_store(l2, VM_PAGE_TO_PTE(m) | L2_TABLE);
9801 }
9802 dmb(ishst);
9803 }
9804 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK)
9805 return;
9806 l3 = pmap_l2_to_l3(l2, va);
9807 if ((pmap_load(l3) & ATTR_DESCR_VALID) != 0)
9808 return;
9809 m = pmap_san_enter_alloc_l3();
9810 pmap_store(l3, VM_PAGE_TO_PTE(m) | PMAP_SAN_PTE_BITS | L3_PAGE);
9811 dmb(ishst);
9812 }
9813 #endif /* KASAN || KMSAN */
9814
9815 /*
9816 * Track a range of the kernel's virtual address space that is contiguous
9817 * in various mapping attributes.
9818 */
9819 struct pmap_kernel_map_range {
9820 vm_offset_t sva;
9821 pt_entry_t attrs;
9822 int l3pages;
9823 int l3contig;
9824 int l2blocks;
9825 int l2contig;
9826 int l1blocks;
9827 };
9828
9829 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)9830 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
9831 vm_offset_t eva)
9832 {
9833 const char *mode;
9834 int index;
9835
9836 if (eva <= range->sva)
9837 return;
9838
9839 index = range->attrs & ATTR_S1_IDX_MASK;
9840 switch (index) {
9841 case ATTR_S1_IDX(VM_MEMATTR_DEVICE_NP):
9842 mode = "DEV-NP";
9843 break;
9844 case ATTR_S1_IDX(VM_MEMATTR_DEVICE):
9845 mode = "DEV";
9846 break;
9847 case ATTR_S1_IDX(VM_MEMATTR_UNCACHEABLE):
9848 mode = "UC";
9849 break;
9850 case ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK):
9851 mode = "WB";
9852 break;
9853 case ATTR_S1_IDX(VM_MEMATTR_WRITE_THROUGH):
9854 mode = "WT";
9855 break;
9856 default:
9857 printf(
9858 "%s: unknown memory type %x for range 0x%016lx-0x%016lx\n",
9859 __func__, index, range->sva, eva);
9860 mode = "??";
9861 break;
9862 }
9863
9864 sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c%c %6s %d %d %d %d %d\n",
9865 range->sva, eva,
9866 (range->attrs & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP_RW ? 'w' : '-',
9867 (range->attrs & ATTR_S1_PXN) != 0 ? '-' : 'x',
9868 (range->attrs & ATTR_S1_UXN) != 0 ? '-' : 'X',
9869 (range->attrs & ATTR_S1_AP(ATTR_S1_AP_USER)) != 0 ? 'u' : 's',
9870 (range->attrs & ATTR_S1_GP) != 0 ? 'g' : '-',
9871 mode, range->l1blocks, range->l2contig, range->l2blocks,
9872 range->l3contig, range->l3pages);
9873
9874 /* Reset to sentinel value. */
9875 range->sva = 0xfffffffffffffffful;
9876 }
9877
9878 /*
9879 * Determine whether the attributes specified by a page table entry match those
9880 * being tracked by the current range.
9881 */
9882 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)9883 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
9884 {
9885
9886 return (range->attrs == attrs);
9887 }
9888
9889 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)9890 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
9891 pt_entry_t attrs)
9892 {
9893
9894 memset(range, 0, sizeof(*range));
9895 range->sva = va;
9896 range->attrs = attrs;
9897 }
9898
9899 /* Get the block/page attributes that correspond to the table attributes */
9900 static pt_entry_t
sysctl_kmaps_table_attrs(pd_entry_t table)9901 sysctl_kmaps_table_attrs(pd_entry_t table)
9902 {
9903 pt_entry_t attrs;
9904
9905 attrs = 0;
9906 if ((table & TATTR_UXN_TABLE) != 0)
9907 attrs |= ATTR_S1_UXN;
9908 if ((table & TATTR_PXN_TABLE) != 0)
9909 attrs |= ATTR_S1_PXN;
9910 if ((table & TATTR_AP_TABLE_RO) != 0)
9911 attrs |= ATTR_S1_AP(ATTR_S1_AP_RO);
9912
9913 return (attrs);
9914 }
9915
9916 /* Read the block/page attributes we care about */
9917 static pt_entry_t
sysctl_kmaps_block_attrs(pt_entry_t block)9918 sysctl_kmaps_block_attrs(pt_entry_t block)
9919 {
9920 return (block & (ATTR_S1_AP_MASK | ATTR_S1_XN | ATTR_S1_IDX_MASK |
9921 ATTR_S1_GP));
9922 }
9923
9924 /*
9925 * Given a leaf PTE, derive the mapping's attributes. If they do not match
9926 * those of the current run, dump the address range and its attributes, and
9927 * begin a new run.
9928 */
9929 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pd_entry_t l0e,pd_entry_t l1e,pd_entry_t l2e,pt_entry_t l3e)9930 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
9931 vm_offset_t va, pd_entry_t l0e, pd_entry_t l1e, pd_entry_t l2e,
9932 pt_entry_t l3e)
9933 {
9934 pt_entry_t attrs;
9935
9936 attrs = sysctl_kmaps_table_attrs(l0e);
9937
9938 if ((l1e & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
9939 attrs |= sysctl_kmaps_block_attrs(l1e);
9940 goto done;
9941 }
9942 attrs |= sysctl_kmaps_table_attrs(l1e);
9943
9944 if ((l2e & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
9945 attrs |= sysctl_kmaps_block_attrs(l2e);
9946 goto done;
9947 }
9948 attrs |= sysctl_kmaps_table_attrs(l2e);
9949 attrs |= sysctl_kmaps_block_attrs(l3e);
9950
9951 done:
9952 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
9953 sysctl_kmaps_dump(sb, range, va);
9954 sysctl_kmaps_reinit(range, va, attrs);
9955 }
9956 }
9957
9958 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)9959 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
9960 {
9961 struct pmap_kernel_map_range range;
9962 struct sbuf sbuf, *sb;
9963 pd_entry_t l0e, *l1, l1e, *l2, l2e;
9964 pt_entry_t *l3, l3e;
9965 vm_offset_t sva;
9966 vm_paddr_t pa;
9967 int error, i, j, k, l;
9968
9969 error = sysctl_wire_old_buffer(req, 0);
9970 if (error != 0)
9971 return (error);
9972 sb = &sbuf;
9973 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
9974
9975 /* Sentinel value. */
9976 range.sva = 0xfffffffffffffffful;
9977
9978 /*
9979 * Iterate over the kernel page tables without holding the kernel pmap
9980 * lock. Kernel page table pages are never freed, so at worst we will
9981 * observe inconsistencies in the output.
9982 */
9983 for (sva = 0xffff000000000000ul, i = pmap_l0_index(sva); i < Ln_ENTRIES;
9984 i++) {
9985 if (i == pmap_l0_index(DMAP_MIN_ADDRESS))
9986 sbuf_printf(sb, "\nDirect map:\n");
9987 else if (i == pmap_l0_index(VM_MIN_KERNEL_ADDRESS))
9988 sbuf_printf(sb, "\nKernel map:\n");
9989 #ifdef KASAN
9990 else if (i == pmap_l0_index(KASAN_MIN_ADDRESS))
9991 sbuf_printf(sb, "\nKASAN shadow map:\n");
9992 #endif
9993 #ifdef KMSAN
9994 else if (i == pmap_l0_index(KMSAN_SHAD_MIN_ADDRESS))
9995 sbuf_printf(sb, "\nKMSAN shadow map:\n");
9996 else if (i == pmap_l0_index(KMSAN_ORIG_MIN_ADDRESS))
9997 sbuf_printf(sb, "\nKMSAN origin map:\n");
9998 #endif
9999
10000 l0e = kernel_pmap->pm_l0[i];
10001 if ((l0e & ATTR_DESCR_VALID) == 0) {
10002 sysctl_kmaps_dump(sb, &range, sva);
10003 sva += L0_SIZE;
10004 continue;
10005 }
10006 pa = PTE_TO_PHYS(l0e);
10007 l1 = (pd_entry_t *)PHYS_TO_DMAP(pa);
10008
10009 for (j = pmap_l1_index(sva); j < Ln_ENTRIES; j++) {
10010 l1e = l1[j];
10011 if ((l1e & ATTR_DESCR_VALID) == 0) {
10012 sysctl_kmaps_dump(sb, &range, sva);
10013 sva += L1_SIZE;
10014 continue;
10015 }
10016 if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK) {
10017 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
10018 sysctl_kmaps_check(sb, &range, sva, l0e, l1e,
10019 0, 0);
10020 range.l1blocks++;
10021 sva += L1_SIZE;
10022 continue;
10023 }
10024 pa = PTE_TO_PHYS(l1e);
10025 l2 = (pd_entry_t *)PHYS_TO_DMAP(pa);
10026
10027 for (k = pmap_l2_index(sva); k < Ln_ENTRIES; k++) {
10028 l2e = l2[k];
10029 if ((l2e & ATTR_DESCR_VALID) == 0) {
10030 sysctl_kmaps_dump(sb, &range, sva);
10031 sva += L2_SIZE;
10032 continue;
10033 }
10034 if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK) {
10035 sysctl_kmaps_check(sb, &range, sva,
10036 l0e, l1e, l2e, 0);
10037 if ((l2e & ATTR_CONTIGUOUS) != 0)
10038 range.l2contig +=
10039 k % L2C_ENTRIES == 0 ?
10040 1 : 0;
10041 else
10042 range.l2blocks++;
10043 sva += L2_SIZE;
10044 continue;
10045 }
10046 pa = PTE_TO_PHYS(l2e);
10047 l3 = (pt_entry_t *)PHYS_TO_DMAP(pa);
10048
10049 for (l = pmap_l3_index(sva); l < Ln_ENTRIES;
10050 l++, sva += L3_SIZE) {
10051 l3e = l3[l];
10052 if ((l3e & ATTR_DESCR_VALID) == 0) {
10053 sysctl_kmaps_dump(sb, &range,
10054 sva);
10055 continue;
10056 }
10057 sysctl_kmaps_check(sb, &range, sva,
10058 l0e, l1e, l2e, l3e);
10059 if ((l3e & ATTR_CONTIGUOUS) != 0)
10060 range.l3contig +=
10061 l % L3C_ENTRIES == 0 ?
10062 1 : 0;
10063 else
10064 range.l3pages++;
10065 }
10066 }
10067 }
10068 }
10069
10070 error = sbuf_finish(sb);
10071 sbuf_delete(sb);
10072 return (error);
10073 }
10074 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
10075 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
10076 NULL, 0, sysctl_kmaps, "A",
10077 "Dump kernel address layout");
10078