1 /*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2003 Peter Wemm
9 * All rights reserved.
10 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
11 * All rights reserved.
12 * Copyright (c) 2014 Andrew Turner
13 * All rights reserved.
14 * Copyright (c) 2014-2016 The FreeBSD Foundation
15 * All rights reserved.
16 *
17 * This code is derived from software contributed to Berkeley by
18 * the Systems Programming Group of the University of Utah Computer
19 * Science Department and William Jolitz of UUNET Technologies Inc.
20 *
21 * This software was developed by Andrew Turner under sponsorship from
22 * the FreeBSD Foundation.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 * must display the following acknowledgement:
34 * This product includes software developed by the University of
35 * California, Berkeley and its contributors.
36 * 4. Neither the name of the University nor the names of its contributors
37 * may be used to endorse or promote products derived from this software
38 * without specific prior written permission.
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 */
52 /*-
53 * Copyright (c) 2003 Networks Associates Technology, Inc.
54 * All rights reserved.
55 *
56 * This software was developed for the FreeBSD Project by Jake Burkholder,
57 * Safeport Network Services, and Network Associates Laboratories, the
58 * Security Research Division of Network Associates, Inc. under
59 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
60 * CHATS research program.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81 * SUCH DAMAGE.
82 */
83
84 #include <sys/cdefs.h>
85 /*
86 * Manages physical address maps.
87 *
88 * Since the information managed by this module is
89 * also stored by the logical address mapping module,
90 * this module may throw away valid virtual-to-physical
91 * mappings at almost any time. However, invalidations
92 * of virtual-to-physical mappings must be done as
93 * requested.
94 *
95 * In order to cope with hardware architectures which
96 * make virtual-to-physical map invalidates expensive,
97 * this module may delay invalidate or reduced protection
98 * operations until such time as they are actually
99 * necessary. This module is given full information as
100 * to which processors are currently using which maps,
101 * and to when physical maps must be made correct.
102 */
103
104 #include "opt_vm.h"
105
106 #include <sys/param.h>
107 #include <sys/asan.h>
108 #include <sys/bitstring.h>
109 #include <sys/bus.h>
110 #include <sys/systm.h>
111 #include <sys/kernel.h>
112 #include <sys/ktr.h>
113 #include <sys/limits.h>
114 #include <sys/lock.h>
115 #include <sys/malloc.h>
116 #include <sys/mman.h>
117 #include <sys/msan.h>
118 #include <sys/msgbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/physmem.h>
121 #include <sys/proc.h>
122 #include <sys/rangeset.h>
123 #include <sys/rwlock.h>
124 #include <sys/sbuf.h>
125 #include <sys/sx.h>
126 #include <sys/vmem.h>
127 #include <sys/vmmeter.h>
128 #include <sys/sched.h>
129 #include <sys/sysctl.h>
130 #include <sys/_unrhdr.h>
131 #include <sys/smp.h>
132
133 #include <vm/vm.h>
134 #include <vm/vm_param.h>
135 #include <vm/vm_kern.h>
136 #include <vm/vm_page.h>
137 #include <vm/vm_map.h>
138 #include <vm/vm_object.h>
139 #include <vm/vm_extern.h>
140 #include <vm/vm_pageout.h>
141 #include <vm/vm_pager.h>
142 #include <vm/vm_phys.h>
143 #include <vm/vm_radix.h>
144 #include <vm/vm_reserv.h>
145 #include <vm/vm_dumpset.h>
146 #include <vm/uma.h>
147
148 #include <machine/asan.h>
149 #include <machine/cpu_feat.h>
150 #include <machine/machdep.h>
151 #include <machine/md_var.h>
152 #include <machine/pcb.h>
153
154 #ifdef NUMA
155 #define PMAP_MEMDOM MAXMEMDOM
156 #else
157 #define PMAP_MEMDOM 1
158 #endif
159
160 #define PMAP_ASSERT_STAGE1(pmap) MPASS((pmap)->pm_stage == PM_STAGE1)
161 #define PMAP_ASSERT_STAGE2(pmap) MPASS((pmap)->pm_stage == PM_STAGE2)
162
163 #define NL0PG (PAGE_SIZE/(sizeof (pd_entry_t)))
164 #define NL1PG (PAGE_SIZE/(sizeof (pd_entry_t)))
165 #define NL2PG (PAGE_SIZE/(sizeof (pd_entry_t)))
166 #define NL3PG (PAGE_SIZE/(sizeof (pt_entry_t)))
167
168 #define NUL0E L0_ENTRIES
169 #define NUL1E (NUL0E * NL1PG)
170 #define NUL2E (NUL1E * NL2PG)
171
172 #ifdef PV_STATS
173 #define PV_STAT(x) do { x ; } while (0)
174 #define __pvused
175 #else
176 #define PV_STAT(x) do { } while (0)
177 #define __pvused __unused
178 #endif
179
180 #define pmap_l0_pindex(v) (NUL2E + NUL1E + ((v) >> L0_SHIFT))
181 #define pmap_l1_pindex(v) (NUL2E + ((v) >> L1_SHIFT))
182 #define pmap_l2_pindex(v) ((v) >> L2_SHIFT)
183
184 #ifdef __ARM_FEATURE_BTI_DEFAULT
185 #define ATTR_KERN_GP ATTR_S1_GP
186 #else
187 #define ATTR_KERN_GP 0
188 #endif
189 #define PMAP_SAN_PTE_BITS (ATTR_AF | ATTR_S1_XN | pmap_sh_attr | \
190 ATTR_KERN_GP | ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | ATTR_S1_AP(ATTR_S1_AP_RW))
191
192 struct pmap_large_md_page {
193 struct rwlock pv_lock;
194 struct md_page pv_page;
195 /* Pad to a power of 2, see pmap_init_pv_table(). */
196 int pv_pad[2];
197 };
198
199 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
200 #define pv_dummy pv_dummy_large.pv_page
201 __read_mostly static struct pmap_large_md_page *pv_table;
202
203 static struct pmap_large_md_page *
_pa_to_pmdp(vm_paddr_t pa)204 _pa_to_pmdp(vm_paddr_t pa)
205 {
206 struct vm_phys_seg *seg;
207
208 if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
209 return ((struct pmap_large_md_page *)seg->md_first +
210 pmap_l2_pindex(pa) - pmap_l2_pindex(seg->start));
211 return (NULL);
212 }
213
214 static struct pmap_large_md_page *
pa_to_pmdp(vm_paddr_t pa)215 pa_to_pmdp(vm_paddr_t pa)
216 {
217 struct pmap_large_md_page *pvd;
218
219 pvd = _pa_to_pmdp(pa);
220 if (pvd == NULL)
221 panic("pa 0x%jx not within vm_phys_segs", (uintmax_t)pa);
222 return (pvd);
223 }
224
225 static struct pmap_large_md_page *
page_to_pmdp(vm_page_t m)226 page_to_pmdp(vm_page_t m)
227 {
228 struct vm_phys_seg *seg;
229
230 seg = &vm_phys_segs[m->segind];
231 return ((struct pmap_large_md_page *)seg->md_first +
232 pmap_l2_pindex(VM_PAGE_TO_PHYS(m)) - pmap_l2_pindex(seg->start));
233 }
234
235 #define pa_to_pvh(pa) (&(pa_to_pmdp(pa)->pv_page))
236 #define page_to_pvh(m) (&(page_to_pmdp(m)->pv_page))
237
238 #define PHYS_TO_PV_LIST_LOCK(pa) ({ \
239 struct pmap_large_md_page *_pvd; \
240 struct rwlock *_lock; \
241 _pvd = _pa_to_pmdp(pa); \
242 if (__predict_false(_pvd == NULL)) \
243 _lock = &pv_dummy_large.pv_lock; \
244 else \
245 _lock = &(_pvd->pv_lock); \
246 _lock; \
247 })
248
249 static struct rwlock *
VM_PAGE_TO_PV_LIST_LOCK(vm_page_t m)250 VM_PAGE_TO_PV_LIST_LOCK(vm_page_t m)
251 {
252 if ((m->flags & PG_FICTITIOUS) == 0)
253 return (&page_to_pmdp(m)->pv_lock);
254 else
255 return (&pv_dummy_large.pv_lock);
256 }
257
258 #define CHANGE_PV_LIST_LOCK(lockp, new_lock) do { \
259 struct rwlock **_lockp = (lockp); \
260 struct rwlock *_new_lock = (new_lock); \
261 \
262 if (_new_lock != *_lockp) { \
263 if (*_lockp != NULL) \
264 rw_wunlock(*_lockp); \
265 *_lockp = _new_lock; \
266 rw_wlock(*_lockp); \
267 } \
268 } while (0)
269
270 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) \
271 CHANGE_PV_LIST_LOCK(lockp, PHYS_TO_PV_LIST_LOCK(pa))
272
273 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
274 CHANGE_PV_LIST_LOCK(lockp, VM_PAGE_TO_PV_LIST_LOCK(m))
275
276 #define RELEASE_PV_LIST_LOCK(lockp) do { \
277 struct rwlock **_lockp = (lockp); \
278 \
279 if (*_lockp != NULL) { \
280 rw_wunlock(*_lockp); \
281 *_lockp = NULL; \
282 } \
283 } while (0)
284
285 #define PTE_TO_VM_PAGE(pte) PHYS_TO_VM_PAGE(PTE_TO_PHYS(pte))
286 #define VM_PAGE_TO_PTE(m) PHYS_TO_PTE(VM_PAGE_TO_PHYS(m))
287
288 /*
289 * The presence of this flag indicates that the mapping is writeable.
290 * If the ATTR_S1_AP_RO bit is also set, then the mapping is clean, otherwise
291 * it is dirty. This flag may only be set on managed mappings.
292 *
293 * The DBM bit is reserved on ARMv8.0 but it seems we can safely treat it
294 * as a software managed bit.
295 */
296 #define ATTR_SW_DBM ATTR_DBM
297
298 struct pmap kernel_pmap_store;
299
300 /* Used for mapping ACPI memory before VM is initialized */
301 #define PMAP_PREINIT_MAPPING_COUNT 32
302 #define PMAP_PREINIT_MAPPING_SIZE (PMAP_PREINIT_MAPPING_COUNT * L2_SIZE)
303 static vm_offset_t preinit_map_va; /* Start VA of pre-init mapping space */
304 static int vm_initialized = 0; /* No need to use pre-init maps when set */
305
306 /*
307 * Reserve a few L2 blocks starting from 'preinit_map_va' pointer.
308 * Always map entire L2 block for simplicity.
309 * VA of L2 block = preinit_map_va + i * L2_SIZE
310 */
311 static struct pmap_preinit_mapping {
312 vm_paddr_t pa;
313 vm_offset_t va;
314 vm_size_t size;
315 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
316
317 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
318 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
319 vm_offset_t kernel_vm_end = 0;
320
321 /*
322 * Data for the pv entry allocation mechanism.
323 */
324 #ifdef NUMA
325 static __inline int
pc_to_domain(struct pv_chunk * pc)326 pc_to_domain(struct pv_chunk *pc)
327 {
328 return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
329 }
330 #else
331 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)332 pc_to_domain(struct pv_chunk *pc __unused)
333 {
334 return (0);
335 }
336 #endif
337
338 struct pv_chunks_list {
339 struct mtx pvc_lock;
340 TAILQ_HEAD(pch, pv_chunk) pvc_list;
341 int active_reclaims;
342 } __aligned(CACHE_LINE_SIZE);
343
344 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
345
346 vm_paddr_t dmap_phys_base; /* The start of the dmap region */
347 vm_paddr_t dmap_phys_max; /* The limit of the dmap region */
348 vm_offset_t dmap_max_addr; /* The virtual address limit of the dmap */
349
350 extern pt_entry_t pagetable_l0_ttbr1[];
351
352 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
353 static vm_paddr_t physmap[PHYSMAP_SIZE];
354 static u_int physmap_idx;
355
356 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
357 "VM/pmap parameters");
358
359 bool pmap_lpa_enabled __read_mostly = false;
360 pt_entry_t pmap_sh_attr __read_mostly = ATTR_SH(ATTR_SH_IS);
361
362 #if PAGE_SIZE == PAGE_SIZE_4K
363 #define L1_BLOCKS_SUPPORTED 1
364 #else
365 #define L1_BLOCKS_SUPPORTED (pmap_lpa_enabled)
366 #endif
367
368 #define PMAP_ASSERT_L1_BLOCKS_SUPPORTED MPASS(L1_BLOCKS_SUPPORTED)
369
370 static bool pmap_l1_supported __read_mostly = false;
371
372 /*
373 * This ASID allocator uses a bit vector ("asid_set") to remember which ASIDs
374 * that it has currently allocated to a pmap, a cursor ("asid_next") to
375 * optimize its search for a free ASID in the bit vector, and an epoch number
376 * ("asid_epoch") to indicate when it has reclaimed all previously allocated
377 * ASIDs that are not currently active on a processor.
378 *
379 * The current epoch number is always in the range [0, INT_MAX). Negative
380 * numbers and INT_MAX are reserved for special cases that are described
381 * below.
382 */
383 struct asid_set {
384 int asid_bits;
385 bitstr_t *asid_set;
386 int asid_set_size;
387 int asid_next;
388 int asid_epoch;
389 struct mtx asid_set_mutex;
390 };
391
392 static struct asid_set asids;
393 static struct asid_set vmids;
394
395 static SYSCTL_NODE(_vm_pmap, OID_AUTO, asid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
396 "ASID allocator");
397 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, bits, CTLFLAG_RD, &asids.asid_bits, 0,
398 "The number of bits in an ASID");
399 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, next, CTLFLAG_RD, &asids.asid_next, 0,
400 "The last allocated ASID plus one");
401 SYSCTL_INT(_vm_pmap_asid, OID_AUTO, epoch, CTLFLAG_RD, &asids.asid_epoch, 0,
402 "The current epoch number");
403
404 static SYSCTL_NODE(_vm_pmap, OID_AUTO, vmid, CTLFLAG_RD, 0, "VMID allocator");
405 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, bits, CTLFLAG_RD, &vmids.asid_bits, 0,
406 "The number of bits in an VMID");
407 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, next, CTLFLAG_RD, &vmids.asid_next, 0,
408 "The last allocated VMID plus one");
409 SYSCTL_INT(_vm_pmap_vmid, OID_AUTO, epoch, CTLFLAG_RD, &vmids.asid_epoch, 0,
410 "The current epoch number");
411
412 void (*pmap_clean_stage2_tlbi)(void);
413 void (*pmap_stage2_invalidate_range)(uint64_t, vm_offset_t, vm_offset_t, bool);
414 void (*pmap_stage2_invalidate_all)(uint64_t);
415
416 /*
417 * A pmap's cookie encodes an ASID and epoch number. Cookies for reserved
418 * ASIDs have a negative epoch number, specifically, INT_MIN. Cookies for
419 * dynamically allocated ASIDs have a non-negative epoch number.
420 *
421 * An invalid ASID is represented by -1.
422 *
423 * There are two special-case cookie values: (1) COOKIE_FROM(-1, INT_MIN),
424 * which indicates that an ASID should never be allocated to the pmap, and
425 * (2) COOKIE_FROM(-1, INT_MAX), which indicates that an ASID should be
426 * allocated when the pmap is next activated.
427 */
428 #define COOKIE_FROM(asid, epoch) ((long)((u_int)(asid) | \
429 ((u_long)(epoch) << 32)))
430 #define COOKIE_TO_ASID(cookie) ((int)(cookie))
431 #define COOKIE_TO_EPOCH(cookie) ((int)((u_long)(cookie) >> 32))
432
433 #define TLBI_VA_SHIFT 12
434 #define TLBI_VA_MASK ((1ul << 44) - 1)
435 #define TLBI_VA(addr) (((addr) >> TLBI_VA_SHIFT) & TLBI_VA_MASK)
436
437 static int __read_frequently superpages_enabled = 1;
438 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
439 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0,
440 "Are large page mappings enabled?");
441
442 /*
443 * True when Branch Target Identification should be used by userspace. This
444 * allows pmap to mark pages as guarded with ATTR_S1_GP.
445 */
446 __read_mostly static bool pmap_bti_support = false;
447
448 /*
449 * Internal flags for pmap_enter()'s helper functions.
450 */
451 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
452 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
453
454 TAILQ_HEAD(pv_chunklist, pv_chunk);
455
456 static void free_pv_chunk(struct pv_chunk *pc);
457 static void free_pv_chunk_batch(struct pv_chunklist *batch);
458 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
459 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
460 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
461 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
462 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
463 vm_offset_t va);
464
465 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
466 static bool pmap_activate_int(pmap_t pmap);
467 static void pmap_alloc_asid(pmap_t pmap);
468 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
469 vm_prot_t prot, int mode, bool skip_unmapped);
470 static bool pmap_copy_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va,
471 pt_entry_t l3e, vm_page_t ml3, struct rwlock **lockp);
472 static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va);
473 static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2,
474 vm_offset_t va, struct rwlock **lockp);
475 static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
476 static bool pmap_demote_l2c(pmap_t pmap, pt_entry_t *l2p, vm_offset_t va);
477 static bool pmap_demote_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va);
478 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
479 vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
480 static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
481 u_int flags, vm_page_t m, struct rwlock **lockp);
482 static int pmap_enter_l3c(pmap_t pmap, vm_offset_t va, pt_entry_t l3e, u_int flags,
483 vm_page_t m, vm_page_t *ml3p, struct rwlock **lockp);
484 static bool pmap_every_pte_zero(vm_paddr_t pa);
485 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
486 bool all_l3e_AF_set);
487 static pt_entry_t pmap_load_l3c(pt_entry_t *l3p);
488 static void pmap_mask_set_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va,
489 vm_offset_t *vap, vm_offset_t va_next, pt_entry_t mask, pt_entry_t nbits);
490 static bool pmap_pv_insert_l3c(pmap_t pmap, vm_offset_t va, vm_page_t m,
491 struct rwlock **lockp);
492 static void pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va);
493 static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
494 pd_entry_t l1e, struct spglist *free, struct rwlock **lockp);
495 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
496 pd_entry_t l2e, struct spglist *free, struct rwlock **lockp);
497 static bool pmap_remove_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va,
498 vm_offset_t *vap, vm_offset_t va_next, vm_page_t ml3, struct spglist *free,
499 struct rwlock **lockp);
500 static void pmap_reset_asid_set(pmap_t pmap);
501 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
502 vm_page_t m, struct rwlock **lockp);
503
504 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
505 struct rwlock **lockp);
506
507 static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m,
508 struct spglist *free);
509 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
510 static void pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte,
511 vm_offset_t va, vm_size_t size);
512 static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
513
514 static uma_zone_t pmap_bti_ranges_zone;
515 static bool pmap_bti_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
516 pt_entry_t *pte);
517 static pt_entry_t pmap_pte_bti(pmap_t pmap, vm_offset_t va);
518 static void pmap_bti_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
519 static void *bti_dup_range(void *ctx, void *data);
520 static void bti_free_range(void *ctx, void *node);
521 static int pmap_bti_copy(pmap_t dst_pmap, pmap_t src_pmap);
522 static void pmap_bti_deassign_all(pmap_t pmap);
523
524 /*
525 * These load the old table data and store the new value.
526 * They need to be atomic as the System MMU may write to the table at
527 * the same time as the CPU.
528 */
529 #define pmap_clear(table) atomic_store_64(table, 0)
530 #define pmap_clear_bits(table, bits) atomic_clear_64(table, bits)
531 #define pmap_load(table) (*table)
532 #define pmap_load_clear(table) atomic_swap_64(table, 0)
533 #define pmap_load_store(table, entry) atomic_swap_64(table, entry)
534 #define pmap_set_bits(table, bits) atomic_set_64(table, bits)
535 #define pmap_store(table, entry) atomic_store_64(table, entry)
536
537 /********************/
538 /* Inline functions */
539 /********************/
540
541 static __inline void
pagecopy(void * s,void * d)542 pagecopy(void *s, void *d)
543 {
544
545 memcpy(d, s, PAGE_SIZE);
546 }
547
548 static __inline pd_entry_t *
pmap_l0(pmap_t pmap,vm_offset_t va)549 pmap_l0(pmap_t pmap, vm_offset_t va)
550 {
551
552 return (&pmap->pm_l0[pmap_l0_index(va)]);
553 }
554
555 static __inline pd_entry_t *
pmap_l0_to_l1(pd_entry_t * l0,vm_offset_t va)556 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
557 {
558 pd_entry_t *l1;
559
560 l1 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l0)));
561 return (&l1[pmap_l1_index(va)]);
562 }
563
564 static __inline pd_entry_t *
pmap_l1(pmap_t pmap,vm_offset_t va)565 pmap_l1(pmap_t pmap, vm_offset_t va)
566 {
567 pd_entry_t *l0;
568
569 l0 = pmap_l0(pmap, va);
570 if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE)
571 return (NULL);
572
573 return (pmap_l0_to_l1(l0, va));
574 }
575
576 static __inline pd_entry_t *
pmap_l1_to_l2(pd_entry_t * l1p,vm_offset_t va)577 pmap_l1_to_l2(pd_entry_t *l1p, vm_offset_t va)
578 {
579 pd_entry_t l1, *l2p;
580
581 l1 = pmap_load(l1p);
582
583 KASSERT(ADDR_IS_CANONICAL(va),
584 ("%s: Address not in canonical form: %lx", __func__, va));
585 /*
586 * The valid bit may be clear if pmap_update_entry() is concurrently
587 * modifying the entry, so for KVA only the entry type may be checked.
588 */
589 KASSERT(ADDR_IS_KERNEL(va) || (l1 & ATTR_DESCR_VALID) != 0,
590 ("%s: L1 entry %#lx for %#lx is invalid", __func__, l1, va));
591 KASSERT((l1 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
592 ("%s: L1 entry %#lx for %#lx is a leaf", __func__, l1, va));
593 l2p = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(l1));
594 return (&l2p[pmap_l2_index(va)]);
595 }
596
597 static __inline pd_entry_t *
pmap_l2(pmap_t pmap,vm_offset_t va)598 pmap_l2(pmap_t pmap, vm_offset_t va)
599 {
600 pd_entry_t *l1;
601
602 l1 = pmap_l1(pmap, va);
603 if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE)
604 return (NULL);
605
606 return (pmap_l1_to_l2(l1, va));
607 }
608
609 static __inline pt_entry_t *
pmap_l2_to_l3(pd_entry_t * l2p,vm_offset_t va)610 pmap_l2_to_l3(pd_entry_t *l2p, vm_offset_t va)
611 {
612 pd_entry_t l2;
613 pt_entry_t *l3p;
614
615 l2 = pmap_load(l2p);
616
617 KASSERT(ADDR_IS_CANONICAL(va),
618 ("%s: Address not in canonical form: %lx", __func__, va));
619 /*
620 * The valid bit may be clear if pmap_update_entry() is concurrently
621 * modifying the entry, so for KVA only the entry type may be checked.
622 */
623 KASSERT(ADDR_IS_KERNEL(va) || (l2 & ATTR_DESCR_VALID) != 0,
624 ("%s: L2 entry %#lx for %#lx is invalid", __func__, l2, va));
625 KASSERT((l2 & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_TABLE,
626 ("%s: L2 entry %#lx for %#lx is a leaf", __func__, l2, va));
627 l3p = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(l2));
628 return (&l3p[pmap_l3_index(va)]);
629 }
630
631 /*
632 * Returns the lowest valid pde for a given virtual address.
633 * The next level may or may not point to a valid page or block.
634 */
635 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va,int * level)636 pmap_pde(pmap_t pmap, vm_offset_t va, int *level)
637 {
638 pd_entry_t *l0, *l1, *l2, desc;
639
640 l0 = pmap_l0(pmap, va);
641 desc = pmap_load(l0) & ATTR_DESCR_MASK;
642 if (desc != L0_TABLE) {
643 *level = -1;
644 return (NULL);
645 }
646
647 l1 = pmap_l0_to_l1(l0, va);
648 desc = pmap_load(l1) & ATTR_DESCR_MASK;
649 if (desc != L1_TABLE) {
650 *level = 0;
651 return (l0);
652 }
653
654 l2 = pmap_l1_to_l2(l1, va);
655 desc = pmap_load(l2) & ATTR_DESCR_MASK;
656 if (desc != L2_TABLE) {
657 *level = 1;
658 return (l1);
659 }
660
661 *level = 2;
662 return (l2);
663 }
664
665 /*
666 * Returns the lowest valid pte block or table entry for a given virtual
667 * address. If there are no valid entries return NULL and set the level to
668 * the first invalid level.
669 */
670 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va,int * level)671 pmap_pte(pmap_t pmap, vm_offset_t va, int *level)
672 {
673 pd_entry_t *l1, *l2, desc;
674 pt_entry_t *l3;
675
676 l1 = pmap_l1(pmap, va);
677 if (l1 == NULL) {
678 *level = 0;
679 return (NULL);
680 }
681 desc = pmap_load(l1) & ATTR_DESCR_MASK;
682 if (desc == L1_BLOCK) {
683 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
684 *level = 1;
685 return (l1);
686 }
687
688 if (desc != L1_TABLE) {
689 *level = 1;
690 return (NULL);
691 }
692
693 l2 = pmap_l1_to_l2(l1, va);
694 desc = pmap_load(l2) & ATTR_DESCR_MASK;
695 if (desc == L2_BLOCK) {
696 *level = 2;
697 return (l2);
698 }
699
700 if (desc != L2_TABLE) {
701 *level = 2;
702 return (NULL);
703 }
704
705 *level = 3;
706 l3 = pmap_l2_to_l3(l2, va);
707 if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE)
708 return (NULL);
709
710 return (l3);
711 }
712
713 /*
714 * If the given pmap has an L{1,2}_BLOCK or L3_PAGE entry at the specified
715 * level that maps the specified virtual address, then a pointer to that entry
716 * is returned. Otherwise, NULL is returned, unless INVARIANTS are enabled
717 * and a diagnostic message is provided, in which case this function panics.
718 */
719 static __always_inline pt_entry_t *
pmap_pte_exists(pmap_t pmap,vm_offset_t va,int level,const char * diag)720 pmap_pte_exists(pmap_t pmap, vm_offset_t va, int level, const char *diag)
721 {
722 pd_entry_t *l0p, *l1p, *l2p;
723 pt_entry_t desc, *l3p;
724 int walk_level __diagused;
725
726 KASSERT(level >= 0 && level < 4,
727 ("%s: %s passed an out-of-range level (%d)", __func__, diag,
728 level));
729 l0p = pmap_l0(pmap, va);
730 desc = pmap_load(l0p) & ATTR_DESCR_MASK;
731 if (desc == L0_TABLE && level > 0) {
732 l1p = pmap_l0_to_l1(l0p, va);
733 desc = pmap_load(l1p) & ATTR_DESCR_MASK;
734 if (desc == L1_BLOCK && level == 1) {
735 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
736 return (l1p);
737 }
738 if (desc == L1_TABLE && level > 1) {
739 l2p = pmap_l1_to_l2(l1p, va);
740 desc = pmap_load(l2p) & ATTR_DESCR_MASK;
741 if (desc == L2_BLOCK && level == 2)
742 return (l2p);
743 else if (desc == L2_TABLE && level > 2) {
744 l3p = pmap_l2_to_l3(l2p, va);
745 desc = pmap_load(l3p) & ATTR_DESCR_MASK;
746 if (desc == L3_PAGE && level == 3)
747 return (l3p);
748 else
749 walk_level = 3;
750 } else
751 walk_level = 2;
752 } else
753 walk_level = 1;
754 } else
755 walk_level = 0;
756 KASSERT(diag == NULL,
757 ("%s: va %#lx not mapped at level %d, desc %ld at level %d",
758 diag, va, level, desc, walk_level));
759 return (NULL);
760 }
761
762 bool
pmap_ps_enabled(pmap_t pmap)763 pmap_ps_enabled(pmap_t pmap)
764 {
765 /*
766 * Promotion requires a hypervisor call when the kernel is running
767 * in EL1. To stop this disable superpage support on non-stage 1
768 * pmaps for now.
769 */
770 if (pmap->pm_stage != PM_STAGE1)
771 return (false);
772
773 #ifdef KMSAN
774 /*
775 * The break-before-make in pmap_update_entry() results in a situation
776 * where a CPU may call into the KMSAN runtime while the entry is
777 * invalid. If the entry is used to map the current thread structure,
778 * then the runtime will attempt to access unmapped memory. Avoid this
779 * by simply disabling superpage promotion for the kernel map.
780 */
781 if (pmap == kernel_pmap)
782 return (false);
783 #endif
784
785 return (superpages_enabled != 0);
786 }
787
788 bool
pmap_get_tables(pmap_t pmap,vm_offset_t va,pd_entry_t ** l0,pd_entry_t ** l1,pd_entry_t ** l2,pt_entry_t ** l3)789 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1,
790 pd_entry_t **l2, pt_entry_t **l3)
791 {
792 pd_entry_t *l0p, *l1p, *l2p;
793
794 if (pmap->pm_l0 == NULL)
795 return (false);
796
797 l0p = pmap_l0(pmap, va);
798 *l0 = l0p;
799
800 if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE)
801 return (false);
802
803 l1p = pmap_l0_to_l1(l0p, va);
804 *l1 = l1p;
805
806 if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) {
807 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
808 *l2 = NULL;
809 *l3 = NULL;
810 return (true);
811 }
812
813 if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE)
814 return (false);
815
816 l2p = pmap_l1_to_l2(l1p, va);
817 *l2 = l2p;
818
819 if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) {
820 *l3 = NULL;
821 return (true);
822 }
823
824 if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE)
825 return (false);
826
827 *l3 = pmap_l2_to_l3(l2p, va);
828
829 return (true);
830 }
831
832 static __inline int
pmap_l3_valid(pt_entry_t l3)833 pmap_l3_valid(pt_entry_t l3)
834 {
835
836 return ((l3 & ATTR_DESCR_MASK) == L3_PAGE);
837 }
838
839 CTASSERT(L1_BLOCK == L2_BLOCK);
840
841 static pt_entry_t
pmap_pte_memattr(pmap_t pmap,vm_memattr_t memattr)842 pmap_pte_memattr(pmap_t pmap, vm_memattr_t memattr)
843 {
844 pt_entry_t val;
845
846 if (pmap->pm_stage == PM_STAGE1) {
847 val = ATTR_S1_IDX(memattr);
848 if (memattr == VM_MEMATTR_DEVICE)
849 val |= ATTR_S1_XN;
850 return (val);
851 }
852
853 val = 0;
854
855 switch (memattr) {
856 case VM_MEMATTR_DEVICE:
857 return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_DEVICE_nGnRnE) |
858 ATTR_S2_XN(ATTR_S2_XN_ALL));
859 case VM_MEMATTR_UNCACHEABLE:
860 return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_NC));
861 case VM_MEMATTR_WRITE_BACK:
862 return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_WB));
863 case VM_MEMATTR_WRITE_THROUGH:
864 return (ATTR_S2_MEMATTR(ATTR_S2_MEMATTR_WT));
865 default:
866 panic("%s: invalid memory attribute %x", __func__, memattr);
867 }
868 }
869
870 static pt_entry_t
pmap_pte_prot(pmap_t pmap,vm_prot_t prot)871 pmap_pte_prot(pmap_t pmap, vm_prot_t prot)
872 {
873 pt_entry_t val;
874
875 val = 0;
876 if (pmap->pm_stage == PM_STAGE1) {
877 if ((prot & VM_PROT_EXECUTE) == 0)
878 val |= ATTR_S1_XN;
879 if ((prot & VM_PROT_WRITE) == 0)
880 val |= ATTR_S1_AP(ATTR_S1_AP_RO);
881 } else {
882 if ((prot & VM_PROT_WRITE) != 0)
883 val |= ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
884 if ((prot & VM_PROT_READ) != 0)
885 val |= ATTR_S2_S2AP(ATTR_S2_S2AP_READ);
886 if ((prot & VM_PROT_EXECUTE) == 0)
887 val |= ATTR_S2_XN(ATTR_S2_XN_ALL);
888 }
889
890 return (val);
891 }
892
893 /*
894 * Checks if the PTE is dirty.
895 */
896 static inline int
pmap_pte_dirty(pmap_t pmap,pt_entry_t pte)897 pmap_pte_dirty(pmap_t pmap, pt_entry_t pte)
898 {
899
900 KASSERT((pte & ATTR_SW_MANAGED) != 0, ("pte %#lx is unmanaged", pte));
901
902 if (pmap->pm_stage == PM_STAGE1) {
903 KASSERT((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) != 0,
904 ("pte %#lx is writeable and missing ATTR_SW_DBM", pte));
905
906 return ((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
907 (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM));
908 }
909
910 return ((pte & ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)) ==
911 ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE));
912 }
913
914 static __inline void
pmap_resident_count_inc(pmap_t pmap,int count)915 pmap_resident_count_inc(pmap_t pmap, int count)
916 {
917
918 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
919 pmap->pm_stats.resident_count += count;
920 }
921
922 static __inline void
pmap_resident_count_dec(pmap_t pmap,int count)923 pmap_resident_count_dec(pmap_t pmap, int count)
924 {
925
926 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
927 KASSERT(pmap->pm_stats.resident_count >= count,
928 ("pmap %p resident count underflow %ld %d", pmap,
929 pmap->pm_stats.resident_count, count));
930 pmap->pm_stats.resident_count -= count;
931 }
932
933 static vm_paddr_t
pmap_early_vtophys(vm_offset_t va)934 pmap_early_vtophys(vm_offset_t va)
935 {
936 vm_paddr_t pa_page;
937
938 pa_page = arm64_address_translate_s1e1r(va) & PAR_PA_MASK;
939 return (pa_page | (va & PAR_LOW_MASK));
940 }
941
942 /* State of the bootstrapped DMAP page tables */
943 struct pmap_bootstrap_state {
944 pt_entry_t *l1;
945 pt_entry_t *l2;
946 pt_entry_t *l3;
947 vm_offset_t freemempos;
948 vm_offset_t va;
949 vm_paddr_t pa;
950 pt_entry_t table_attrs;
951 u_int l0_slot;
952 u_int l1_slot;
953 u_int l2_slot;
954 bool dmap_valid;
955 };
956
957 /* The bootstrap state */
958 static struct pmap_bootstrap_state bs_state = {
959 .l1 = NULL,
960 .l2 = NULL,
961 .l3 = NULL,
962 .table_attrs = TATTR_PXN_TABLE,
963 .l0_slot = L0_ENTRIES,
964 .l1_slot = Ln_ENTRIES,
965 .l2_slot = Ln_ENTRIES,
966 .dmap_valid = false,
967 };
968
969 static void
pmap_bootstrap_l0_table(struct pmap_bootstrap_state * state)970 pmap_bootstrap_l0_table(struct pmap_bootstrap_state *state)
971 {
972 vm_paddr_t l1_pa;
973 pd_entry_t l0e;
974 u_int l0_slot;
975
976 /* Link the level 0 table to a level 1 table */
977 l0_slot = pmap_l0_index(state->va);
978 if (l0_slot != state->l0_slot) {
979 /*
980 * Make sure we move from a low address to high address
981 * before the DMAP region is ready. This ensures we never
982 * modify an existing mapping until we can map from a
983 * physical address to a virtual address.
984 */
985 MPASS(state->l0_slot < l0_slot ||
986 state->l0_slot == L0_ENTRIES ||
987 state->dmap_valid);
988
989 /* Reset lower levels */
990 state->l2 = NULL;
991 state->l3 = NULL;
992 state->l1_slot = Ln_ENTRIES;
993 state->l2_slot = Ln_ENTRIES;
994
995 /* Check the existing L0 entry */
996 state->l0_slot = l0_slot;
997 if (state->dmap_valid) {
998 l0e = pagetable_l0_ttbr1[l0_slot];
999 if ((l0e & ATTR_DESCR_VALID) != 0) {
1000 MPASS((l0e & ATTR_DESCR_MASK) == L0_TABLE);
1001 l1_pa = PTE_TO_PHYS(l0e);
1002 state->l1 = (pt_entry_t *)PHYS_TO_DMAP(l1_pa);
1003 return;
1004 }
1005 }
1006
1007 /* Create a new L0 table entry */
1008 state->l1 = (pt_entry_t *)state->freemempos;
1009 memset(state->l1, 0, PAGE_SIZE);
1010 state->freemempos += PAGE_SIZE;
1011
1012 l1_pa = pmap_early_vtophys((vm_offset_t)state->l1);
1013 MPASS((l1_pa & Ln_TABLE_MASK) == 0);
1014 MPASS(pagetable_l0_ttbr1[l0_slot] == 0);
1015 pmap_store(&pagetable_l0_ttbr1[l0_slot], PHYS_TO_PTE(l1_pa) |
1016 TATTR_UXN_TABLE | TATTR_AP_TABLE_NO_EL0 | L0_TABLE);
1017 }
1018 KASSERT(state->l1 != NULL, ("%s: NULL l1", __func__));
1019 }
1020
1021 static void
pmap_bootstrap_l1_table(struct pmap_bootstrap_state * state)1022 pmap_bootstrap_l1_table(struct pmap_bootstrap_state *state)
1023 {
1024 vm_paddr_t l2_pa;
1025 pd_entry_t l1e;
1026 u_int l1_slot;
1027
1028 /* Make sure there is a valid L0 -> L1 table */
1029 pmap_bootstrap_l0_table(state);
1030
1031 /* Link the level 1 table to a level 2 table */
1032 l1_slot = pmap_l1_index(state->va);
1033 if (l1_slot != state->l1_slot) {
1034 /* See pmap_bootstrap_l0_table for a description */
1035 MPASS(state->l1_slot < l1_slot ||
1036 state->l1_slot == Ln_ENTRIES ||
1037 state->dmap_valid);
1038
1039 /* Reset lower levels */
1040 state->l3 = NULL;
1041 state->l2_slot = Ln_ENTRIES;
1042
1043 /* Check the existing L1 entry */
1044 state->l1_slot = l1_slot;
1045 if (state->dmap_valid) {
1046 l1e = state->l1[l1_slot];
1047 if ((l1e & ATTR_DESCR_VALID) != 0) {
1048 MPASS((l1e & ATTR_DESCR_MASK) == L1_TABLE);
1049 l2_pa = PTE_TO_PHYS(l1e);
1050 state->l2 = (pt_entry_t *)PHYS_TO_DMAP(l2_pa);
1051 return;
1052 }
1053 }
1054
1055 /* Create a new L1 table entry */
1056 state->l2 = (pt_entry_t *)state->freemempos;
1057 memset(state->l2, 0, PAGE_SIZE);
1058 state->freemempos += PAGE_SIZE;
1059
1060 l2_pa = pmap_early_vtophys((vm_offset_t)state->l2);
1061 MPASS((l2_pa & Ln_TABLE_MASK) == 0);
1062 MPASS(state->l1[l1_slot] == 0);
1063 pmap_store(&state->l1[l1_slot], PHYS_TO_PTE(l2_pa) |
1064 state->table_attrs | L1_TABLE);
1065 }
1066 KASSERT(state->l2 != NULL, ("%s: NULL l2", __func__));
1067 }
1068
1069 static void
pmap_bootstrap_l2_table(struct pmap_bootstrap_state * state)1070 pmap_bootstrap_l2_table(struct pmap_bootstrap_state *state)
1071 {
1072 vm_paddr_t l3_pa;
1073 pd_entry_t l2e;
1074 u_int l2_slot;
1075
1076 /* Make sure there is a valid L1 -> L2 table */
1077 pmap_bootstrap_l1_table(state);
1078
1079 /* Link the level 2 table to a level 3 table */
1080 l2_slot = pmap_l2_index(state->va);
1081 if (l2_slot != state->l2_slot) {
1082 /* See pmap_bootstrap_l0_table for a description */
1083 MPASS(state->l2_slot < l2_slot ||
1084 state->l2_slot == Ln_ENTRIES ||
1085 state->dmap_valid);
1086
1087 /* Check the existing L2 entry */
1088 state->l2_slot = l2_slot;
1089 if (state->dmap_valid) {
1090 l2e = state->l2[l2_slot];
1091 if ((l2e & ATTR_DESCR_VALID) != 0) {
1092 MPASS((l2e & ATTR_DESCR_MASK) == L2_TABLE);
1093 l3_pa = PTE_TO_PHYS(l2e);
1094 state->l3 = (pt_entry_t *)PHYS_TO_DMAP(l3_pa);
1095 return;
1096 }
1097 }
1098
1099 /* Create a new L2 table entry */
1100 state->l3 = (pt_entry_t *)state->freemempos;
1101 memset(state->l3, 0, PAGE_SIZE);
1102 state->freemempos += PAGE_SIZE;
1103
1104 l3_pa = pmap_early_vtophys((vm_offset_t)state->l3);
1105 MPASS((l3_pa & Ln_TABLE_MASK) == 0);
1106 MPASS(state->l2[l2_slot] == 0);
1107 pmap_store(&state->l2[l2_slot], PHYS_TO_PTE(l3_pa) |
1108 state->table_attrs | L2_TABLE);
1109 }
1110 KASSERT(state->l3 != NULL, ("%s: NULL l3", __func__));
1111 }
1112
1113 static void
pmap_bootstrap_l2_block(struct pmap_bootstrap_state * state,int i)1114 pmap_bootstrap_l2_block(struct pmap_bootstrap_state *state, int i)
1115 {
1116 pt_entry_t contig;
1117 u_int l2_slot;
1118 bool first;
1119
1120 if ((physmap[i + 1] - state->pa) < L2_SIZE)
1121 return;
1122
1123 /* Make sure there is a valid L1 table */
1124 pmap_bootstrap_l1_table(state);
1125
1126 MPASS((state->va & L2_OFFSET) == 0);
1127 for (first = true, contig = 0;
1128 state->va < DMAP_MAX_ADDRESS &&
1129 (physmap[i + 1] - state->pa) >= L2_SIZE;
1130 state->va += L2_SIZE, state->pa += L2_SIZE) {
1131 /*
1132 * Stop if we are about to walk off the end of what the
1133 * current L1 slot can address.
1134 */
1135 if (!first && (state->pa & L1_OFFSET) == 0)
1136 break;
1137
1138 /*
1139 * If we have an aligned, contiguous chunk of L2C_ENTRIES
1140 * L2 blocks, set the contiguous bit within each PTE so that
1141 * the chunk can be cached using only one TLB entry.
1142 */
1143 if ((state->pa & L2C_OFFSET) == 0) {
1144 if (state->va + L2C_SIZE < DMAP_MAX_ADDRESS &&
1145 physmap[i + 1] - state->pa >= L2C_SIZE) {
1146 contig = ATTR_CONTIGUOUS;
1147 } else {
1148 contig = 0;
1149 }
1150 }
1151
1152 first = false;
1153 l2_slot = pmap_l2_index(state->va);
1154 MPASS((state->pa & L2_OFFSET) == 0);
1155 MPASS(state->l2[l2_slot] == 0);
1156 pmap_store(&state->l2[l2_slot], PHYS_TO_PTE(state->pa) |
1157 ATTR_AF | pmap_sh_attr | ATTR_S1_XN | ATTR_KERN_GP |
1158 ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | contig | L2_BLOCK);
1159 }
1160 MPASS(state->va == (state->pa - dmap_phys_base + DMAP_MIN_ADDRESS));
1161 }
1162
1163 static void
pmap_bootstrap_l3_page(struct pmap_bootstrap_state * state,int i)1164 pmap_bootstrap_l3_page(struct pmap_bootstrap_state *state, int i)
1165 {
1166 pt_entry_t contig;
1167 u_int l3_slot;
1168 bool first;
1169
1170 if (physmap[i + 1] - state->pa < L3_SIZE)
1171 return;
1172
1173 /* Make sure there is a valid L2 table */
1174 pmap_bootstrap_l2_table(state);
1175
1176 MPASS((state->va & L3_OFFSET) == 0);
1177 for (first = true, contig = 0;
1178 state->va < DMAP_MAX_ADDRESS &&
1179 physmap[i + 1] - state->pa >= L3_SIZE;
1180 state->va += L3_SIZE, state->pa += L3_SIZE) {
1181 /*
1182 * Stop if we are about to walk off the end of what the
1183 * current L2 slot can address.
1184 */
1185 if (!first && (state->pa & L2_OFFSET) == 0)
1186 break;
1187
1188 /*
1189 * If we have an aligned, contiguous chunk of L3C_ENTRIES
1190 * L3 pages, set the contiguous bit within each PTE so that
1191 * the chunk can be cached using only one TLB entry.
1192 */
1193 if ((state->pa & L3C_OFFSET) == 0) {
1194 if (state->va + L3C_SIZE < DMAP_MAX_ADDRESS &&
1195 physmap[i + 1] - state->pa >= L3C_SIZE) {
1196 contig = ATTR_CONTIGUOUS;
1197 } else {
1198 contig = 0;
1199 }
1200 }
1201
1202 first = false;
1203 l3_slot = pmap_l3_index(state->va);
1204 MPASS((state->pa & L3_OFFSET) == 0);
1205 MPASS(state->l3[l3_slot] == 0);
1206 pmap_store(&state->l3[l3_slot], PHYS_TO_PTE(state->pa) |
1207 ATTR_AF | pmap_sh_attr | ATTR_S1_XN | ATTR_KERN_GP |
1208 ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | contig | L3_PAGE);
1209 }
1210 MPASS(state->va == (state->pa - dmap_phys_base + DMAP_MIN_ADDRESS));
1211 }
1212
1213 static void
pmap_bootstrap_dmap(void)1214 pmap_bootstrap_dmap(void)
1215 {
1216 int i;
1217
1218 /* Fill in physmap array. */
1219 physmap_idx = physmem_avail(physmap, nitems(physmap));
1220
1221 dmap_phys_base = physmap[0] & ~L1_OFFSET;
1222 dmap_phys_max = 0;
1223 dmap_max_addr = 0;
1224
1225 for (i = 0; i < physmap_idx; i += 2) {
1226 bs_state.pa = physmap[i] & ~L3_OFFSET;
1227 bs_state.va = bs_state.pa - dmap_phys_base + DMAP_MIN_ADDRESS;
1228
1229 /* Create L3 mappings at the start of the region */
1230 if ((bs_state.pa & L2_OFFSET) != 0)
1231 pmap_bootstrap_l3_page(&bs_state, i);
1232 MPASS(bs_state.pa <= physmap[i + 1]);
1233
1234 if (L1_BLOCKS_SUPPORTED) {
1235 /* Create L2 mappings at the start of the region */
1236 if ((bs_state.pa & L1_OFFSET) != 0)
1237 pmap_bootstrap_l2_block(&bs_state, i);
1238 MPASS(bs_state.pa <= physmap[i + 1]);
1239
1240 /* Create the main L1 block mappings */
1241 for (; bs_state.va < DMAP_MAX_ADDRESS &&
1242 (physmap[i + 1] - bs_state.pa) >= L1_SIZE;
1243 bs_state.va += L1_SIZE, bs_state.pa += L1_SIZE) {
1244 /* Make sure there is a valid L1 table */
1245 pmap_bootstrap_l0_table(&bs_state);
1246 MPASS((bs_state.pa & L1_OFFSET) == 0);
1247 pmap_store(
1248 &bs_state.l1[pmap_l1_index(bs_state.va)],
1249 PHYS_TO_PTE(bs_state.pa) | ATTR_AF |
1250 pmap_sh_attr |
1251 ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) |
1252 ATTR_S1_XN | ATTR_KERN_GP | L1_BLOCK);
1253 }
1254 MPASS(bs_state.pa <= physmap[i + 1]);
1255
1256 /* Create L2 mappings at the end of the region */
1257 pmap_bootstrap_l2_block(&bs_state, i);
1258 } else {
1259 while (bs_state.va < DMAP_MAX_ADDRESS &&
1260 (physmap[i + 1] - bs_state.pa) >= L2_SIZE) {
1261 pmap_bootstrap_l2_block(&bs_state, i);
1262 }
1263 }
1264 MPASS(bs_state.pa <= physmap[i + 1]);
1265
1266 /* Create L3 mappings at the end of the region */
1267 pmap_bootstrap_l3_page(&bs_state, i);
1268 MPASS(bs_state.pa == physmap[i + 1]);
1269
1270 if (bs_state.pa > dmap_phys_max) {
1271 dmap_phys_max = bs_state.pa;
1272 dmap_max_addr = bs_state.va;
1273 }
1274 }
1275
1276 cpu_tlb_flushID();
1277 }
1278
1279 static void
pmap_bootstrap_l2(vm_offset_t va)1280 pmap_bootstrap_l2(vm_offset_t va)
1281 {
1282 KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address"));
1283
1284 /* Leave bs_state.pa as it's only needed to bootstrap blocks and pages*/
1285 bs_state.va = va;
1286
1287 for (; bs_state.va < VM_MAX_KERNEL_ADDRESS; bs_state.va += L1_SIZE)
1288 pmap_bootstrap_l1_table(&bs_state);
1289 }
1290
1291 static void
pmap_bootstrap_l3(vm_offset_t va)1292 pmap_bootstrap_l3(vm_offset_t va)
1293 {
1294 KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
1295
1296 /* Leave bs_state.pa as it's only needed to bootstrap blocks and pages*/
1297 bs_state.va = va;
1298
1299 for (; bs_state.va < VM_MAX_KERNEL_ADDRESS; bs_state.va += L2_SIZE)
1300 pmap_bootstrap_l2_table(&bs_state);
1301 }
1302
1303 /*
1304 * Bootstrap the system enough to run with virtual memory.
1305 */
1306 void
pmap_bootstrap(vm_size_t kernlen)1307 pmap_bootstrap(vm_size_t kernlen)
1308 {
1309 vm_offset_t dpcpu, msgbufpv;
1310 vm_paddr_t start_pa, pa;
1311 uint64_t tcr;
1312
1313 tcr = READ_SPECIALREG(tcr_el1);
1314
1315 /* Verify that the ASID is set through TTBR0. */
1316 KASSERT((tcr & TCR_A1) == 0, ("pmap_bootstrap: TCR_EL1.A1 != 0"));
1317
1318 if ((tcr & TCR_DS) != 0)
1319 pmap_lpa_enabled = true;
1320
1321 pmap_l1_supported = L1_BLOCKS_SUPPORTED;
1322
1323 /* Set this early so we can use the pagetable walking functions */
1324 kernel_pmap_store.pm_l0 = pagetable_l0_ttbr1;
1325 PMAP_LOCK_INIT(kernel_pmap);
1326 kernel_pmap->pm_l0_paddr =
1327 pmap_early_vtophys((vm_offset_t)kernel_pmap_store.pm_l0);
1328 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1329 vm_radix_init(&kernel_pmap->pm_root);
1330 kernel_pmap->pm_cookie = COOKIE_FROM(-1, INT_MIN);
1331 kernel_pmap->pm_stage = PM_STAGE1;
1332 kernel_pmap->pm_levels = 4;
1333 kernel_pmap->pm_ttbr = kernel_pmap->pm_l0_paddr;
1334 kernel_pmap->pm_asid_set = &asids;
1335
1336 bs_state.freemempos = KERNBASE + kernlen;
1337 bs_state.freemempos = roundup2(bs_state.freemempos, PAGE_SIZE);
1338
1339 /* Create a direct map region early so we can use it for pa -> va */
1340 pmap_bootstrap_dmap();
1341 bs_state.dmap_valid = true;
1342
1343 /*
1344 * We only use PXN when we know nothing will be executed from it, e.g.
1345 * the DMAP region.
1346 */
1347 bs_state.table_attrs &= ~TATTR_PXN_TABLE;
1348
1349 start_pa = pa = pmap_early_vtophys(KERNBASE);
1350
1351 /*
1352 * Create the l2 tables up to VM_MAX_KERNEL_ADDRESS. We assume that the
1353 * loader allocated the first and only l2 page table page used to map
1354 * the kernel, preloaded files and module metadata.
1355 */
1356 pmap_bootstrap_l2(KERNBASE + L1_SIZE);
1357 /* And the l3 tables for the early devmap */
1358 pmap_bootstrap_l3(VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE));
1359
1360 cpu_tlb_flushID();
1361
1362 #define alloc_pages(var, np) \
1363 (var) = bs_state.freemempos; \
1364 bs_state.freemempos += (np * PAGE_SIZE); \
1365 memset((char *)(var), 0, ((np) * PAGE_SIZE));
1366
1367 /* Allocate dynamic per-cpu area. */
1368 alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
1369 dpcpu_init((void *)dpcpu, 0);
1370
1371 /* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
1372 alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
1373 msgbufp = (void *)msgbufpv;
1374
1375 /* Reserve some VA space for early BIOS/ACPI mapping */
1376 preinit_map_va = roundup2(bs_state.freemempos, L2_SIZE);
1377
1378 virtual_avail = preinit_map_va + PMAP_PREINIT_MAPPING_SIZE;
1379 virtual_avail = roundup2(virtual_avail, L1_SIZE);
1380 virtual_end = VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE);
1381 kernel_vm_end = virtual_avail;
1382
1383 pa = pmap_early_vtophys(bs_state.freemempos);
1384
1385 physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC);
1386
1387 cpu_tlb_flushID();
1388 }
1389
1390 #if defined(KASAN) || defined(KMSAN)
1391 static void
pmap_bootstrap_allocate_san_l2(vm_paddr_t start_pa,vm_paddr_t end_pa,vm_offset_t * vap,vm_offset_t eva)1392 pmap_bootstrap_allocate_san_l2(vm_paddr_t start_pa, vm_paddr_t end_pa,
1393 vm_offset_t *vap, vm_offset_t eva)
1394 {
1395 vm_paddr_t pa;
1396 vm_offset_t va;
1397 pd_entry_t *l2;
1398
1399 va = *vap;
1400 pa = rounddown2(end_pa - L2_SIZE, L2_SIZE);
1401 for (; pa >= start_pa && va < eva; va += L2_SIZE, pa -= L2_SIZE) {
1402 l2 = pmap_l2(kernel_pmap, va);
1403
1404 /*
1405 * KASAN stack checking results in us having already allocated
1406 * part of our shadow map, so we can just skip those segments.
1407 */
1408 if ((pmap_load(l2) & ATTR_DESCR_VALID) != 0) {
1409 pa += L2_SIZE;
1410 continue;
1411 }
1412
1413 bzero((void *)PHYS_TO_DMAP(pa), L2_SIZE);
1414 physmem_exclude_region(pa, L2_SIZE, EXFLAG_NOALLOC);
1415 pmap_store(l2, PHYS_TO_PTE(pa) | PMAP_SAN_PTE_BITS | L2_BLOCK);
1416 }
1417 *vap = va;
1418 }
1419
1420 /*
1421 * Finish constructing the initial shadow map:
1422 * - Count how many pages from KERNBASE to virtual_avail (scaled for
1423 * shadow map)
1424 * - Map that entire range using L2 superpages.
1425 */
1426 static void
pmap_bootstrap_san1(vm_offset_t va,int scale)1427 pmap_bootstrap_san1(vm_offset_t va, int scale)
1428 {
1429 vm_offset_t eva;
1430 vm_paddr_t kernstart;
1431 int i;
1432
1433 kernstart = pmap_early_vtophys(KERNBASE);
1434
1435 /*
1436 * Rebuild physmap one more time, we may have excluded more regions from
1437 * allocation since pmap_bootstrap().
1438 */
1439 physmap_idx = physmem_avail(physmap, nitems(physmap));
1440
1441 eva = va + (virtual_avail - VM_MIN_KERNEL_ADDRESS) / scale;
1442
1443 /*
1444 * Find a slot in the physmap large enough for what we needed. We try to put
1445 * the shadow map as high up as we can to avoid depleting the lower 4GB in case
1446 * it's needed for, e.g., an xhci controller that can only do 32-bit DMA.
1447 */
1448 for (i = physmap_idx - 2; i >= 0; i -= 2) {
1449 vm_paddr_t plow, phigh;
1450
1451 /* L2 mappings must be backed by memory that is L2-aligned */
1452 plow = roundup2(physmap[i], L2_SIZE);
1453 phigh = physmap[i + 1];
1454 if (plow >= phigh)
1455 continue;
1456 if (kernstart >= plow && kernstart < phigh)
1457 phigh = kernstart;
1458 if (phigh - plow >= L2_SIZE) {
1459 pmap_bootstrap_allocate_san_l2(plow, phigh, &va, eva);
1460 if (va >= eva)
1461 break;
1462 }
1463 }
1464 if (i < 0)
1465 panic("Could not find phys region for shadow map");
1466
1467 /*
1468 * Done. We should now have a valid shadow address mapped for all KVA
1469 * that has been mapped so far, i.e., KERNBASE to virtual_avail. Thus,
1470 * shadow accesses by the sanitizer runtime will succeed for this range.
1471 * When the kernel virtual address range is later expanded, as will
1472 * happen in vm_mem_init(), the shadow map will be grown as well. This
1473 * is handled by pmap_san_enter().
1474 */
1475 }
1476
1477 void
pmap_bootstrap_san(void)1478 pmap_bootstrap_san(void)
1479 {
1480 #ifdef KASAN
1481 pmap_bootstrap_san1(KASAN_MIN_ADDRESS, KASAN_SHADOW_SCALE);
1482 #else
1483 static uint8_t kmsan_shad_ptp[PAGE_SIZE * 2] __aligned(PAGE_SIZE);
1484 static uint8_t kmsan_orig_ptp[PAGE_SIZE * 2] __aligned(PAGE_SIZE);
1485 pd_entry_t *l0, *l1;
1486
1487 if (virtual_avail - VM_MIN_KERNEL_ADDRESS > L1_SIZE)
1488 panic("initial kernel map is too large");
1489
1490 l0 = pmap_l0(kernel_pmap, KMSAN_SHAD_MIN_ADDRESS);
1491 pmap_store(l0, L0_TABLE | PHYS_TO_PTE(
1492 pmap_early_vtophys((vm_offset_t)kmsan_shad_ptp)));
1493 l1 = pmap_l0_to_l1(l0, KMSAN_SHAD_MIN_ADDRESS);
1494 pmap_store(l1, L1_TABLE | PHYS_TO_PTE(
1495 pmap_early_vtophys((vm_offset_t)kmsan_shad_ptp + PAGE_SIZE)));
1496 pmap_bootstrap_san1(KMSAN_SHAD_MIN_ADDRESS, 1);
1497
1498 l0 = pmap_l0(kernel_pmap, KMSAN_ORIG_MIN_ADDRESS);
1499 pmap_store(l0, L0_TABLE | PHYS_TO_PTE(
1500 pmap_early_vtophys((vm_offset_t)kmsan_orig_ptp)));
1501 l1 = pmap_l0_to_l1(l0, KMSAN_ORIG_MIN_ADDRESS);
1502 pmap_store(l1, L1_TABLE | PHYS_TO_PTE(
1503 pmap_early_vtophys((vm_offset_t)kmsan_orig_ptp + PAGE_SIZE)));
1504 pmap_bootstrap_san1(KMSAN_ORIG_MIN_ADDRESS, 1);
1505 #endif
1506 }
1507 #endif
1508
1509 /*
1510 * Initialize a vm_page's machine-dependent fields.
1511 */
1512 void
pmap_page_init(vm_page_t m)1513 pmap_page_init(vm_page_t m)
1514 {
1515
1516 TAILQ_INIT(&m->md.pv_list);
1517 m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
1518 }
1519
1520 static void
pmap_init_asids(struct asid_set * set,int bits)1521 pmap_init_asids(struct asid_set *set, int bits)
1522 {
1523 int i;
1524
1525 set->asid_bits = bits;
1526
1527 /*
1528 * We may be too early in the overall initialization process to use
1529 * bit_alloc().
1530 */
1531 set->asid_set_size = 1 << set->asid_bits;
1532 set->asid_set = kmem_malloc(bitstr_size(set->asid_set_size),
1533 M_WAITOK | M_ZERO);
1534 for (i = 0; i < ASID_FIRST_AVAILABLE; i++)
1535 bit_set(set->asid_set, i);
1536 set->asid_next = ASID_FIRST_AVAILABLE;
1537 mtx_init(&set->asid_set_mutex, "asid set", NULL, MTX_SPIN);
1538 }
1539
1540 static void
pmap_init_pv_table(void)1541 pmap_init_pv_table(void)
1542 {
1543 struct vm_phys_seg *seg, *next_seg;
1544 struct pmap_large_md_page *pvd;
1545 vm_size_t s;
1546 int domain, i, j, pages;
1547
1548 /*
1549 * We depend on the size being evenly divisible into a page so
1550 * that the pv_table array can be indexed directly while
1551 * safely spanning multiple pages from different domains.
1552 */
1553 CTASSERT(PAGE_SIZE % sizeof(*pvd) == 0);
1554
1555 /*
1556 * Calculate the size of the array.
1557 */
1558 s = 0;
1559 for (i = 0; i < vm_phys_nsegs; i++) {
1560 seg = &vm_phys_segs[i];
1561 pages = pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1562 pmap_l2_pindex(seg->start);
1563 s += round_page(pages * sizeof(*pvd));
1564 }
1565 pv_table = (struct pmap_large_md_page *)kva_alloc(s);
1566 if (pv_table == NULL)
1567 panic("%s: kva_alloc failed\n", __func__);
1568
1569 /*
1570 * Iterate physical segments to allocate domain-local memory for PV
1571 * list headers.
1572 */
1573 pvd = pv_table;
1574 for (i = 0; i < vm_phys_nsegs; i++) {
1575 seg = &vm_phys_segs[i];
1576 pages = pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1577 pmap_l2_pindex(seg->start);
1578 domain = seg->domain;
1579
1580 s = round_page(pages * sizeof(*pvd));
1581
1582 for (j = 0; j < s; j += PAGE_SIZE) {
1583 vm_page_t m = vm_page_alloc_noobj_domain(domain,
1584 VM_ALLOC_ZERO);
1585 if (m == NULL)
1586 panic("failed to allocate PV table page");
1587 pmap_qenter((vm_offset_t)pvd + j, &m, 1);
1588 }
1589
1590 for (j = 0; j < s / sizeof(*pvd); j++) {
1591 rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
1592 TAILQ_INIT(&pvd->pv_page.pv_list);
1593 pvd++;
1594 }
1595 }
1596 pvd = &pv_dummy_large;
1597 memset(pvd, 0, sizeof(*pvd));
1598 rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
1599 TAILQ_INIT(&pvd->pv_page.pv_list);
1600
1601 /*
1602 * Set pointers from vm_phys_segs to pv_table.
1603 */
1604 for (i = 0, pvd = pv_table; i < vm_phys_nsegs; i++) {
1605 seg = &vm_phys_segs[i];
1606 seg->md_first = pvd;
1607 pvd += pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) -
1608 pmap_l2_pindex(seg->start);
1609
1610 /*
1611 * If there is a following segment, and the final
1612 * superpage of this segment and the initial superpage
1613 * of the next segment are the same then adjust the
1614 * pv_table entry for that next segment down by one so
1615 * that the pv_table entries will be shared.
1616 */
1617 if (i + 1 < vm_phys_nsegs) {
1618 next_seg = &vm_phys_segs[i + 1];
1619 if (pmap_l2_pindex(roundup2(seg->end, L2_SIZE)) - 1 ==
1620 pmap_l2_pindex(next_seg->start)) {
1621 pvd--;
1622 }
1623 }
1624 }
1625 }
1626
1627 static bool
pmap_dbm_check(const struct cpu_feat * feat __unused,u_int midr __unused)1628 pmap_dbm_check(const struct cpu_feat *feat __unused, u_int midr __unused)
1629 {
1630 uint64_t id_aa64mmfr1;
1631
1632 id_aa64mmfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
1633 return (ID_AA64MMFR1_HAFDBS_VAL(id_aa64mmfr1) >=
1634 ID_AA64MMFR1_HAFDBS_AF_DBS);
1635 }
1636
1637 static bool
pmap_dbm_has_errata(const struct cpu_feat * feat __unused,u_int midr,u_int ** errata_list,u_int * errata_count)1638 pmap_dbm_has_errata(const struct cpu_feat *feat __unused, u_int midr,
1639 u_int **errata_list, u_int *errata_count)
1640 {
1641 /* Disable on Cortex-A55 for erratum 1024718 - all revisions */
1642 if (CPU_MATCH(CPU_IMPL_MASK | CPU_PART_MASK, CPU_IMPL_ARM,
1643 CPU_PART_CORTEX_A55, 0, 0)) {
1644 static u_int errata_id = 1024718;
1645
1646 *errata_list = &errata_id;
1647 *errata_count = 1;
1648 return (true);
1649 }
1650
1651 /* Disable on Cortex-A510 for erratum 2051678 - r0p0 to r0p2 */
1652 if (CPU_MATCH(CPU_IMPL_MASK | CPU_PART_MASK | CPU_VAR_MASK,
1653 CPU_IMPL_ARM, CPU_PART_CORTEX_A510, 0, 0)) {
1654 if (CPU_REV(PCPU_GET(midr)) < 3) {
1655 static u_int errata_id = 2051678;
1656
1657 *errata_list = &errata_id;
1658 *errata_count = 1;
1659 return (true);
1660 }
1661 }
1662
1663 return (false);
1664 }
1665
1666 static void
pmap_dbm_enable(const struct cpu_feat * feat __unused,cpu_feat_errata errata_status,u_int * errata_list __unused,u_int errata_count)1667 pmap_dbm_enable(const struct cpu_feat *feat __unused,
1668 cpu_feat_errata errata_status, u_int *errata_list __unused,
1669 u_int errata_count)
1670 {
1671 uint64_t tcr;
1672
1673 /* Skip if there is an erratum affecting DBM */
1674 if (errata_status != ERRATA_NONE)
1675 return;
1676
1677 tcr = READ_SPECIALREG(tcr_el1) | TCR_HD;
1678 WRITE_SPECIALREG(tcr_el1, tcr);
1679 isb();
1680 /* Flush the local TLB for the TCR_HD flag change */
1681 dsb(nshst);
1682 __asm __volatile("tlbi vmalle1");
1683 dsb(nsh);
1684 isb();
1685 }
1686
1687 static struct cpu_feat feat_dbm = {
1688 .feat_name = "FEAT_HAFDBS (DBM)",
1689 .feat_check = pmap_dbm_check,
1690 .feat_has_errata = pmap_dbm_has_errata,
1691 .feat_enable = pmap_dbm_enable,
1692 .feat_flags = CPU_FEAT_AFTER_DEV | CPU_FEAT_PER_CPU,
1693 };
1694 DATA_SET(cpu_feat_set, feat_dbm);
1695
1696 /*
1697 * Initialize the pmap module.
1698 *
1699 * Called by vm_mem_init(), to initialize any structures that the pmap
1700 * system needs to map virtual memory.
1701 */
1702 void
pmap_init(void)1703 pmap_init(void)
1704 {
1705 uint64_t mmfr1;
1706 int i, vmid_bits;
1707
1708 /*
1709 * Are large page mappings enabled?
1710 */
1711 TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1712 if (superpages_enabled) {
1713 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1714 ("pmap_init: can't assign to pagesizes[1]"));
1715 pagesizes[1] = L3C_SIZE;
1716 KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
1717 ("pmap_init: can't assign to pagesizes[2]"));
1718 pagesizes[2] = L2_SIZE;
1719 if (L1_BLOCKS_SUPPORTED) {
1720 KASSERT(MAXPAGESIZES > 3 && pagesizes[3] == 0,
1721 ("pmap_init: can't assign to pagesizes[3]"));
1722 pagesizes[3] = L1_SIZE;
1723 }
1724 }
1725
1726 /*
1727 * Initialize the ASID allocator.
1728 */
1729 pmap_init_asids(&asids,
1730 (READ_SPECIALREG(tcr_el1) & TCR_ASID_16) != 0 ? 16 : 8);
1731
1732 if (has_hyp()) {
1733 mmfr1 = READ_SPECIALREG(id_aa64mmfr1_el1);
1734 vmid_bits = 8;
1735
1736 if (ID_AA64MMFR1_VMIDBits_VAL(mmfr1) ==
1737 ID_AA64MMFR1_VMIDBits_16)
1738 vmid_bits = 16;
1739 pmap_init_asids(&vmids, vmid_bits);
1740 }
1741
1742 /*
1743 * Initialize pv chunk lists.
1744 */
1745 for (i = 0; i < PMAP_MEMDOM; i++) {
1746 mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL,
1747 MTX_DEF);
1748 TAILQ_INIT(&pv_chunks[i].pvc_list);
1749 }
1750 pmap_init_pv_table();
1751
1752 vm_initialized = 1;
1753 }
1754
1755 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1756 "L1 (1GB/64GB) page mapping counters");
1757
1758 static COUNTER_U64_DEFINE_EARLY(pmap_l1_demotions);
1759 SYSCTL_COUNTER_U64(_vm_pmap_l1, OID_AUTO, demotions, CTLFLAG_RD,
1760 &pmap_l1_demotions, "L1 (1GB/64GB) page demotions");
1761
1762 SYSCTL_BOOL(_vm_pmap_l1, OID_AUTO, supported, CTLFLAG_RD, &pmap_l1_supported,
1763 0, "L1 blocks are supported");
1764
1765 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2c, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1766 "L2C (32MB/1GB) page mapping counters");
1767
1768 static COUNTER_U64_DEFINE_EARLY(pmap_l2c_demotions);
1769 SYSCTL_COUNTER_U64(_vm_pmap_l2c, OID_AUTO, demotions, CTLFLAG_RD,
1770 &pmap_l2c_demotions, "L2C (32MB/1GB) page demotions");
1771
1772 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1773 "2MB page mapping counters");
1774
1775 static u_long pmap_l2_demotions;
1776 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
1777 &pmap_l2_demotions, 0, "2MB page demotions");
1778
1779 static u_long pmap_l2_mappings;
1780 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
1781 &pmap_l2_mappings, 0, "2MB page mappings");
1782
1783 static u_long pmap_l2_p_failures;
1784 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
1785 &pmap_l2_p_failures, 0, "2MB page promotion failures");
1786
1787 static u_long pmap_l2_promotions;
1788 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
1789 &pmap_l2_promotions, 0, "2MB page promotions");
1790
1791 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3c, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1792 "L3C (64KB/2MB) page mapping counters");
1793
1794 static COUNTER_U64_DEFINE_EARLY(pmap_l3c_demotions);
1795 SYSCTL_COUNTER_U64(_vm_pmap_l3c, OID_AUTO, demotions, CTLFLAG_RD,
1796 &pmap_l3c_demotions, "L3C (64KB/2MB) page demotions");
1797
1798 static COUNTER_U64_DEFINE_EARLY(pmap_l3c_mappings);
1799 SYSCTL_COUNTER_U64(_vm_pmap_l3c, OID_AUTO, mappings, CTLFLAG_RD,
1800 &pmap_l3c_mappings, "L3C (64KB/2MB) page mappings");
1801
1802 static COUNTER_U64_DEFINE_EARLY(pmap_l3c_p_failures);
1803 SYSCTL_COUNTER_U64(_vm_pmap_l3c, OID_AUTO, p_failures, CTLFLAG_RD,
1804 &pmap_l3c_p_failures, "L3C (64KB/2MB) page promotion failures");
1805
1806 static COUNTER_U64_DEFINE_EARLY(pmap_l3c_promotions);
1807 SYSCTL_COUNTER_U64(_vm_pmap_l3c, OID_AUTO, promotions, CTLFLAG_RD,
1808 &pmap_l3c_promotions, "L3C (64KB/2MB) page promotions");
1809
1810 /*
1811 * If the given value for "final_only" is false, then any cached intermediate-
1812 * level entries, i.e., L{0,1,2}_TABLE entries, are invalidated in addition to
1813 * any cached final-level entry, i.e., either an L{1,2}_BLOCK or L3_PAGE entry.
1814 * Otherwise, just the cached final-level entry is invalidated.
1815 */
1816 static __inline void
pmap_s1_invalidate_kernel(uint64_t r,bool final_only)1817 pmap_s1_invalidate_kernel(uint64_t r, bool final_only)
1818 {
1819 if (final_only)
1820 __asm __volatile("tlbi vaale1is, %0" : : "r" (r));
1821 else
1822 __asm __volatile("tlbi vaae1is, %0" : : "r" (r));
1823 }
1824
1825 static __inline void
pmap_s1_invalidate_user(uint64_t r,bool final_only)1826 pmap_s1_invalidate_user(uint64_t r, bool final_only)
1827 {
1828 if (final_only)
1829 __asm __volatile("tlbi vale1is, %0" : : "r" (r));
1830 else
1831 __asm __volatile("tlbi vae1is, %0" : : "r" (r));
1832 }
1833
1834 /*
1835 * Invalidates any cached final- and optionally intermediate-level TLB entries
1836 * for the specified virtual address in the given virtual address space.
1837 */
1838 static __inline void
pmap_s1_invalidate_page(pmap_t pmap,vm_offset_t va,bool final_only)1839 pmap_s1_invalidate_page(pmap_t pmap, vm_offset_t va, bool final_only)
1840 {
1841 uint64_t r;
1842
1843 PMAP_ASSERT_STAGE1(pmap);
1844
1845 dsb(ishst);
1846 r = TLBI_VA(va);
1847 if (pmap == kernel_pmap) {
1848 pmap_s1_invalidate_kernel(r, final_only);
1849 } else {
1850 r |= ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1851 pmap_s1_invalidate_user(r, final_only);
1852 }
1853 dsb(ish);
1854 isb();
1855 }
1856
1857 static __inline void
pmap_s2_invalidate_page(pmap_t pmap,vm_offset_t va,bool final_only)1858 pmap_s2_invalidate_page(pmap_t pmap, vm_offset_t va, bool final_only)
1859 {
1860 PMAP_ASSERT_STAGE2(pmap);
1861 MPASS(pmap_stage2_invalidate_range != NULL);
1862 pmap_stage2_invalidate_range(pmap_to_ttbr0(pmap), va, va + PAGE_SIZE,
1863 final_only);
1864 }
1865
1866 static __inline void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va,bool final_only)1867 pmap_invalidate_page(pmap_t pmap, vm_offset_t va, bool final_only)
1868 {
1869 if (pmap->pm_stage == PM_STAGE1)
1870 pmap_s1_invalidate_page(pmap, va, final_only);
1871 else
1872 pmap_s2_invalidate_page(pmap, va, final_only);
1873 }
1874
1875 /*
1876 * Use stride L{1,2}_SIZE when invalidating the TLB entries for L{1,2}_BLOCK
1877 * mappings. Otherwise, use stride L3_SIZE.
1878 */
1879 static __inline void
pmap_s1_invalidate_strided(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_offset_t stride,bool final_only)1880 pmap_s1_invalidate_strided(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1881 vm_offset_t stride, bool final_only)
1882 {
1883 uint64_t end, r, start;
1884
1885 PMAP_ASSERT_STAGE1(pmap);
1886
1887 dsb(ishst);
1888 if (pmap == kernel_pmap) {
1889 start = TLBI_VA(sva);
1890 end = TLBI_VA(eva);
1891 for (r = start; r < end; r += TLBI_VA(stride))
1892 pmap_s1_invalidate_kernel(r, final_only);
1893 } else {
1894 start = end = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1895 start |= TLBI_VA(sva);
1896 end |= TLBI_VA(eva);
1897 for (r = start; r < end; r += TLBI_VA(stride))
1898 pmap_s1_invalidate_user(r, final_only);
1899 }
1900 dsb(ish);
1901 isb();
1902 }
1903
1904 /*
1905 * Invalidates any cached final- and optionally intermediate-level TLB entries
1906 * for the specified virtual address range in the given virtual address space.
1907 */
1908 static __inline void
pmap_s1_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool final_only)1909 pmap_s1_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1910 bool final_only)
1911 {
1912 pmap_s1_invalidate_strided(pmap, sva, eva, L3_SIZE, final_only);
1913 }
1914
1915 static __inline void
pmap_s2_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool final_only)1916 pmap_s2_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1917 bool final_only)
1918 {
1919 PMAP_ASSERT_STAGE2(pmap);
1920 MPASS(pmap_stage2_invalidate_range != NULL);
1921 pmap_stage2_invalidate_range(pmap_to_ttbr0(pmap), sva, eva, final_only);
1922 }
1923
1924 static __inline void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool final_only)1925 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1926 bool final_only)
1927 {
1928 if (pmap->pm_stage == PM_STAGE1)
1929 pmap_s1_invalidate_range(pmap, sva, eva, final_only);
1930 else
1931 pmap_s2_invalidate_range(pmap, sva, eva, final_only);
1932 }
1933
1934 /*
1935 * Invalidates all cached intermediate- and final-level TLB entries for the
1936 * given virtual address space.
1937 */
1938 static __inline void
pmap_s1_invalidate_all(pmap_t pmap)1939 pmap_s1_invalidate_all(pmap_t pmap)
1940 {
1941 uint64_t r;
1942
1943 PMAP_ASSERT_STAGE1(pmap);
1944
1945 dsb(ishst);
1946 if (pmap == kernel_pmap) {
1947 __asm __volatile("tlbi vmalle1is");
1948 } else {
1949 r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
1950 __asm __volatile("tlbi aside1is, %0" : : "r" (r));
1951 }
1952 dsb(ish);
1953 isb();
1954 }
1955
1956 static __inline void
pmap_s2_invalidate_all(pmap_t pmap)1957 pmap_s2_invalidate_all(pmap_t pmap)
1958 {
1959 PMAP_ASSERT_STAGE2(pmap);
1960 MPASS(pmap_stage2_invalidate_all != NULL);
1961 pmap_stage2_invalidate_all(pmap_to_ttbr0(pmap));
1962 }
1963
1964 static __inline void
pmap_invalidate_all(pmap_t pmap)1965 pmap_invalidate_all(pmap_t pmap)
1966 {
1967 if (pmap->pm_stage == PM_STAGE1)
1968 pmap_s1_invalidate_all(pmap);
1969 else
1970 pmap_s2_invalidate_all(pmap);
1971 }
1972
1973 /*
1974 * Routine: pmap_extract
1975 * Function:
1976 * Extract the physical page address associated
1977 * with the given map/virtual_address pair.
1978 */
1979 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)1980 pmap_extract(pmap_t pmap, vm_offset_t va)
1981 {
1982 pt_entry_t *pte, tpte;
1983 vm_paddr_t pa;
1984 int lvl;
1985
1986 pa = 0;
1987 PMAP_LOCK(pmap);
1988 /*
1989 * Find the block or page map for this virtual address. pmap_pte
1990 * will return either a valid block/page entry, or NULL.
1991 */
1992 pte = pmap_pte(pmap, va, &lvl);
1993 if (pte != NULL) {
1994 tpte = pmap_load(pte);
1995 pa = PTE_TO_PHYS(tpte);
1996 switch(lvl) {
1997 case 1:
1998 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
1999 KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK,
2000 ("pmap_extract: Invalid L1 pte found: %lx",
2001 tpte & ATTR_DESCR_MASK));
2002 pa |= (va & L1_OFFSET);
2003 break;
2004 case 2:
2005 KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK,
2006 ("pmap_extract: Invalid L2 pte found: %lx",
2007 tpte & ATTR_DESCR_MASK));
2008 pa |= (va & L2_OFFSET);
2009 break;
2010 case 3:
2011 KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE,
2012 ("pmap_extract: Invalid L3 pte found: %lx",
2013 tpte & ATTR_DESCR_MASK));
2014 pa |= (va & L3_OFFSET);
2015 break;
2016 }
2017 }
2018 PMAP_UNLOCK(pmap);
2019 return (pa);
2020 }
2021
2022 /*
2023 * Routine: pmap_extract_and_hold
2024 * Function:
2025 * Atomically extract and hold the physical page
2026 * with the given pmap and virtual address pair
2027 * if that mapping permits the given protection.
2028 */
2029 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)2030 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
2031 {
2032 pt_entry_t *pte, tpte;
2033 vm_offset_t off;
2034 vm_page_t m;
2035 int lvl;
2036 bool use;
2037
2038 m = NULL;
2039 PMAP_LOCK(pmap);
2040 pte = pmap_pte(pmap, va, &lvl);
2041 if (pte != NULL) {
2042 tpte = pmap_load(pte);
2043
2044 KASSERT(lvl > 0 && lvl <= 3,
2045 ("pmap_extract_and_hold: Invalid level %d", lvl));
2046 /*
2047 * Check that the pte is either a L3 page, or a L1 or L2 block
2048 * entry. We can assume L1_BLOCK == L2_BLOCK.
2049 */
2050 KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) ||
2051 (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK),
2052 ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl,
2053 tpte & ATTR_DESCR_MASK));
2054
2055 use = false;
2056 if ((prot & VM_PROT_WRITE) == 0)
2057 use = true;
2058 else if (pmap->pm_stage == PM_STAGE1 &&
2059 (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW))
2060 use = true;
2061 else if (pmap->pm_stage == PM_STAGE2 &&
2062 ((tpte & ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)) ==
2063 ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE)))
2064 use = true;
2065
2066 if (use) {
2067 switch (lvl) {
2068 case 1:
2069 off = va & L1_OFFSET;
2070 break;
2071 case 2:
2072 off = va & L2_OFFSET;
2073 break;
2074 case 3:
2075 default:
2076 off = 0;
2077 }
2078 m = PHYS_TO_VM_PAGE(PTE_TO_PHYS(tpte) | off);
2079 if (m != NULL && !vm_page_wire_mapped(m))
2080 m = NULL;
2081 }
2082 }
2083 PMAP_UNLOCK(pmap);
2084 return (m);
2085 }
2086
2087 /*
2088 * Walks the page tables to translate a kernel virtual address to a
2089 * physical address. Returns true if the kva is valid and stores the
2090 * physical address in pa if it is not NULL.
2091 *
2092 * See the comment above data_abort() for the rationale for specifying
2093 * NO_PERTHREAD_SSP here.
2094 */
2095 bool NO_PERTHREAD_SSP
pmap_klookup(vm_offset_t va,vm_paddr_t * pa)2096 pmap_klookup(vm_offset_t va, vm_paddr_t *pa)
2097 {
2098 pt_entry_t *pte, tpte;
2099 register_t intr;
2100 uint64_t par;
2101
2102 /*
2103 * Disable interrupts so we don't get interrupted between asking
2104 * for address translation, and getting the result back.
2105 */
2106 intr = intr_disable();
2107 par = arm64_address_translate_s1e1r(va);
2108 intr_restore(intr);
2109
2110 if (PAR_SUCCESS(par)) {
2111 if (pa != NULL)
2112 *pa = (par & PAR_PA_MASK) | (va & PAR_LOW_MASK);
2113 return (true);
2114 }
2115
2116 /*
2117 * Fall back to walking the page table. The address translation
2118 * instruction may fail when the page is in a break-before-make
2119 * sequence. As we only clear the valid bit in said sequence we
2120 * can walk the page table to find the physical address.
2121 */
2122
2123 pte = pmap_l1(kernel_pmap, va);
2124 if (pte == NULL)
2125 return (false);
2126
2127 /*
2128 * A concurrent pmap_update_entry() will clear the entry's valid bit
2129 * but leave the rest of the entry unchanged. Therefore, we treat a
2130 * non-zero entry as being valid, and we ignore the valid bit when
2131 * determining whether the entry maps a block, page, or table.
2132 */
2133 tpte = pmap_load(pte);
2134 if (tpte == 0)
2135 return (false);
2136 if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
2137 if (pa != NULL)
2138 *pa = PTE_TO_PHYS(tpte) | (va & L1_OFFSET);
2139 return (true);
2140 }
2141 pte = pmap_l1_to_l2(&tpte, va);
2142 tpte = pmap_load(pte);
2143 if (tpte == 0)
2144 return (false);
2145 if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
2146 if (pa != NULL)
2147 *pa = PTE_TO_PHYS(tpte) | (va & L2_OFFSET);
2148 return (true);
2149 }
2150 pte = pmap_l2_to_l3(&tpte, va);
2151 tpte = pmap_load(pte);
2152 if (tpte == 0)
2153 return (false);
2154 if (pa != NULL)
2155 *pa = PTE_TO_PHYS(tpte) | (va & L3_OFFSET);
2156 return (true);
2157 }
2158
2159 /*
2160 * Routine: pmap_kextract
2161 * Function:
2162 * Extract the physical page address associated with the given kernel
2163 * virtual address.
2164 */
2165 vm_paddr_t
pmap_kextract(vm_offset_t va)2166 pmap_kextract(vm_offset_t va)
2167 {
2168 vm_paddr_t pa;
2169
2170 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
2171 return (DMAP_TO_PHYS(va));
2172
2173 if (pmap_klookup(va, &pa) == false)
2174 return (0);
2175 return (pa);
2176 }
2177
2178 /***************************************************
2179 * Low level mapping routines.....
2180 ***************************************************/
2181
2182 void
pmap_kenter(vm_offset_t sva,vm_size_t size,vm_paddr_t pa,int mode)2183 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode)
2184 {
2185 pd_entry_t *pde;
2186 pt_entry_t attr, old_l3e, *pte;
2187 vm_offset_t va;
2188 vm_page_t mpte;
2189 int error, lvl;
2190
2191 KASSERT((pa & L3_OFFSET) == 0,
2192 ("pmap_kenter: Invalid physical address"));
2193 KASSERT((sva & L3_OFFSET) == 0,
2194 ("pmap_kenter: Invalid virtual address"));
2195 KASSERT((size & PAGE_MASK) == 0,
2196 ("pmap_kenter: Mapping is not page-sized"));
2197
2198 attr = ATTR_AF | pmap_sh_attr | ATTR_S1_AP(ATTR_S1_AP_RW) |
2199 ATTR_S1_XN | ATTR_KERN_GP | ATTR_S1_IDX(mode);
2200 old_l3e = 0;
2201 va = sva;
2202 while (size != 0) {
2203 pde = pmap_pde(kernel_pmap, va, &lvl);
2204 KASSERT(pde != NULL,
2205 ("pmap_kenter: Invalid page entry, va: 0x%lx", va));
2206 KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl));
2207
2208 /*
2209 * If we have an aligned, contiguous chunk of L2_SIZE, try
2210 * to create an L2_BLOCK mapping.
2211 */
2212 if ((va & L2_OFFSET) == 0 && size >= L2_SIZE &&
2213 (pa & L2_OFFSET) == 0 && vm_initialized) {
2214 mpte = PTE_TO_VM_PAGE(pmap_load(pde));
2215 KASSERT(pmap_every_pte_zero(VM_PAGE_TO_PHYS(mpte)),
2216 ("pmap_kenter: Unexpected mapping"));
2217 PMAP_LOCK(kernel_pmap);
2218 error = pmap_insert_pt_page(kernel_pmap, mpte, false,
2219 false);
2220 if (error == 0) {
2221 attr &= ~ATTR_CONTIGUOUS;
2222
2223 /*
2224 * Although the page table page "mpte" should
2225 * be devoid of mappings, the TLB might hold
2226 * intermediate entries that reference it, so
2227 * we perform a single-page invalidation.
2228 */
2229 pmap_update_entry(kernel_pmap, pde,
2230 PHYS_TO_PTE(pa) | attr | L2_BLOCK, va,
2231 PAGE_SIZE);
2232 }
2233 PMAP_UNLOCK(kernel_pmap);
2234 if (error == 0) {
2235 va += L2_SIZE;
2236 pa += L2_SIZE;
2237 size -= L2_SIZE;
2238 continue;
2239 }
2240 }
2241
2242 /*
2243 * If we have an aligned, contiguous chunk of L3C_ENTRIES
2244 * L3 pages, set the contiguous bit within each PTE so that
2245 * the chunk can be cached using only one TLB entry.
2246 */
2247 if ((va & L3C_OFFSET) == 0 && (pa & L3C_OFFSET) == 0) {
2248 if (size >= L3C_SIZE)
2249 attr |= ATTR_CONTIGUOUS;
2250 else
2251 attr &= ~ATTR_CONTIGUOUS;
2252 }
2253
2254 pte = pmap_l2_to_l3(pde, va);
2255 old_l3e |= pmap_load_store(pte, PHYS_TO_PTE(pa) | attr |
2256 L3_PAGE);
2257
2258 va += PAGE_SIZE;
2259 pa += PAGE_SIZE;
2260 size -= PAGE_SIZE;
2261 }
2262 if ((old_l3e & ATTR_DESCR_VALID) != 0)
2263 pmap_s1_invalidate_range(kernel_pmap, sva, va, true);
2264 else {
2265 /*
2266 * Because the old entries were invalid and the new mappings
2267 * are not executable, an isb is not required.
2268 */
2269 dsb(ishst);
2270 }
2271 }
2272
2273 void
pmap_kenter_device(vm_offset_t sva,vm_size_t size,vm_paddr_t pa)2274 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
2275 {
2276
2277 pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE);
2278 }
2279
2280 /*
2281 * Remove a page from the kernel pagetables.
2282 */
2283 void
pmap_kremove(vm_offset_t va)2284 pmap_kremove(vm_offset_t va)
2285 {
2286 pt_entry_t *pte;
2287
2288 pte = pmap_pte_exists(kernel_pmap, va, 3, __func__);
2289 KASSERT((pmap_load(pte) & ATTR_CONTIGUOUS) == 0,
2290 ("pmap_kremove: unexpected ATTR_CONTIGUOUS"));
2291 pmap_clear(pte);
2292 pmap_s1_invalidate_page(kernel_pmap, va, true);
2293 }
2294
2295 /*
2296 * Remove the specified range of mappings from the kernel address space.
2297 *
2298 * Should only be applied to mappings that were created by pmap_kenter() or
2299 * pmap_kenter_device(). Nothing about this function is actually specific
2300 * to device mappings.
2301 */
2302 void
pmap_kremove_device(vm_offset_t sva,vm_size_t size)2303 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
2304 {
2305 pt_entry_t *ptep, *ptep_end;
2306 vm_offset_t va;
2307 int lvl;
2308
2309 KASSERT((sva & L3_OFFSET) == 0,
2310 ("pmap_kremove_device: Invalid virtual address"));
2311 KASSERT((size & PAGE_MASK) == 0,
2312 ("pmap_kremove_device: Mapping is not page-sized"));
2313
2314 va = sva;
2315 while (size != 0) {
2316 ptep = pmap_pte(kernel_pmap, va, &lvl);
2317 KASSERT(ptep != NULL, ("Invalid page table, va: 0x%lx", va));
2318 switch (lvl) {
2319 case 2:
2320 KASSERT((va & L2_OFFSET) == 0,
2321 ("Unaligned virtual address"));
2322 KASSERT(size >= L2_SIZE, ("Insufficient size"));
2323
2324 if (va != sva) {
2325 pmap_s1_invalidate_range(kernel_pmap, sva, va,
2326 true);
2327 }
2328 pmap_clear(ptep);
2329 pmap_s1_invalidate_page(kernel_pmap, va, true);
2330 PMAP_LOCK(kernel_pmap);
2331 pmap_remove_kernel_l2(kernel_pmap, ptep, va);
2332 PMAP_UNLOCK(kernel_pmap);
2333
2334 va += L2_SIZE;
2335 sva = va;
2336 size -= L2_SIZE;
2337 break;
2338 case 3:
2339 if ((pmap_load(ptep) & ATTR_CONTIGUOUS) != 0) {
2340 KASSERT((va & L3C_OFFSET) == 0,
2341 ("Unaligned L3C virtual address"));
2342 KASSERT(size >= L3C_SIZE,
2343 ("Insufficient L3C size"));
2344
2345 ptep_end = ptep + L3C_ENTRIES;
2346 for (; ptep < ptep_end; ptep++)
2347 pmap_clear(ptep);
2348
2349 va += L3C_SIZE;
2350 size -= L3C_SIZE;
2351 break;
2352 }
2353 pmap_clear(ptep);
2354
2355 va += PAGE_SIZE;
2356 size -= PAGE_SIZE;
2357 break;
2358 default:
2359 __assert_unreachable();
2360 break;
2361 }
2362 }
2363 if (va != sva)
2364 pmap_s1_invalidate_range(kernel_pmap, sva, va, true);
2365 }
2366
2367 /*
2368 * Used to map a range of physical addresses into kernel
2369 * virtual address space.
2370 *
2371 * The value passed in '*virt' is a suggested virtual address for
2372 * the mapping. Architectures which can support a direct-mapped
2373 * physical to virtual region can return the appropriate address
2374 * within that region, leaving '*virt' unchanged. Other
2375 * architectures should map the pages starting at '*virt' and
2376 * update '*virt' with the first usable address after the mapped
2377 * region.
2378 */
2379 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)2380 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
2381 {
2382 return PHYS_TO_DMAP(start);
2383 }
2384
2385 /*
2386 * Add a list of wired pages to the kva
2387 * this routine is only used for temporary
2388 * kernel mappings that do not need to have
2389 * page modification or references recorded.
2390 * Note that old mappings are simply written
2391 * over. The page *must* be wired.
2392 * Note: SMP coherent. Uses a ranged shootdown IPI.
2393 */
2394 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)2395 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
2396 {
2397 pd_entry_t *pde;
2398 pt_entry_t attr, old_l3e, *pte;
2399 vm_offset_t va;
2400 vm_page_t m;
2401 int i, lvl;
2402
2403 old_l3e = 0;
2404 va = sva;
2405 for (i = 0; i < count; i++) {
2406 pde = pmap_pde(kernel_pmap, va, &lvl);
2407 KASSERT(pde != NULL,
2408 ("pmap_qenter: Invalid page entry, va: 0x%lx", va));
2409 KASSERT(lvl == 2,
2410 ("pmap_qenter: Invalid level %d", lvl));
2411
2412 m = ma[i];
2413 attr = ATTR_AF | pmap_sh_attr |
2414 ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN |
2415 ATTR_KERN_GP | ATTR_S1_IDX(m->md.pv_memattr) | L3_PAGE;
2416 pte = pmap_l2_to_l3(pde, va);
2417 old_l3e |= pmap_load_store(pte, VM_PAGE_TO_PTE(m) | attr);
2418
2419 va += L3_SIZE;
2420 }
2421 if ((old_l3e & ATTR_DESCR_VALID) != 0)
2422 pmap_s1_invalidate_range(kernel_pmap, sva, va, true);
2423 else {
2424 /*
2425 * Because the old entries were invalid and the new mappings
2426 * are not executable, an isb is not required.
2427 */
2428 dsb(ishst);
2429 }
2430 }
2431
2432 /*
2433 * This routine tears out page mappings from the
2434 * kernel -- it is meant only for temporary mappings.
2435 */
2436 void
pmap_qremove(vm_offset_t sva,int count)2437 pmap_qremove(vm_offset_t sva, int count)
2438 {
2439 pt_entry_t *pte;
2440 vm_offset_t va;
2441
2442 KASSERT(ADDR_IS_CANONICAL(sva),
2443 ("%s: Address not in canonical form: %lx", __func__, sva));
2444 KASSERT(ADDR_IS_KERNEL(sva), ("usermode va %lx", sva));
2445
2446 va = sva;
2447 while (count-- > 0) {
2448 pte = pmap_pte_exists(kernel_pmap, va, 3, NULL);
2449 if (pte != NULL) {
2450 pmap_clear(pte);
2451 }
2452
2453 va += PAGE_SIZE;
2454 }
2455 pmap_s1_invalidate_range(kernel_pmap, sva, va, true);
2456 }
2457
2458 /***************************************************
2459 * Page table page management routines.....
2460 ***************************************************/
2461 /*
2462 * Schedule the specified unused page table page to be freed. Specifically,
2463 * add the page to the specified list of pages that will be released to the
2464 * physical memory manager after the TLB has been updated.
2465 */
2466 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)2467 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
2468 {
2469
2470 if (set_PG_ZERO)
2471 m->flags |= PG_ZERO;
2472 else
2473 m->flags &= ~PG_ZERO;
2474 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2475 }
2476
2477 /*
2478 * Decrements a page table page's reference count, which is used to record the
2479 * number of valid page table entries within the page. If the reference count
2480 * drops to zero, then the page table page is unmapped. Returns true if the
2481 * page table page was unmapped and false otherwise.
2482 */
2483 static inline bool
pmap_unwire_l3(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)2484 pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2485 {
2486
2487 --m->ref_count;
2488 if (m->ref_count == 0) {
2489 _pmap_unwire_l3(pmap, va, m, free);
2490 return (true);
2491 } else
2492 return (false);
2493 }
2494
2495 static void
_pmap_unwire_l3(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)2496 _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2497 {
2498
2499 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2500 /*
2501 * unmap the page table page
2502 */
2503 if (m->pindex >= (NUL2E + NUL1E)) {
2504 /* l1 page */
2505 pd_entry_t *l0;
2506
2507 l0 = pmap_l0(pmap, va);
2508 pmap_clear(l0);
2509 } else if (m->pindex >= NUL2E) {
2510 /* l2 page */
2511 pd_entry_t *l1;
2512
2513 l1 = pmap_l1(pmap, va);
2514 pmap_clear(l1);
2515 } else {
2516 /* l3 page */
2517 pd_entry_t *l2;
2518
2519 l2 = pmap_l2(pmap, va);
2520 pmap_clear(l2);
2521 }
2522 pmap_resident_count_dec(pmap, 1);
2523 if (m->pindex < NUL2E) {
2524 /* We just released an l3, unhold the matching l2 */
2525 pd_entry_t *l1, tl1;
2526 vm_page_t l2pg;
2527
2528 l1 = pmap_l1(pmap, va);
2529 tl1 = pmap_load(l1);
2530 l2pg = PTE_TO_VM_PAGE(tl1);
2531 pmap_unwire_l3(pmap, va, l2pg, free);
2532 } else if (m->pindex < (NUL2E + NUL1E)) {
2533 /* We just released an l2, unhold the matching l1 */
2534 pd_entry_t *l0, tl0;
2535 vm_page_t l1pg;
2536
2537 l0 = pmap_l0(pmap, va);
2538 tl0 = pmap_load(l0);
2539 l1pg = PTE_TO_VM_PAGE(tl0);
2540 pmap_unwire_l3(pmap, va, l1pg, free);
2541 }
2542 pmap_invalidate_page(pmap, va, false);
2543
2544 /*
2545 * Put page on a list so that it is released after
2546 * *ALL* TLB shootdown is done
2547 */
2548 pmap_add_delayed_free_list(m, free, true);
2549 }
2550
2551 /*
2552 * After removing a page table entry, this routine is used to
2553 * conditionally free the page, and manage the reference count.
2554 */
2555 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)2556 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
2557 struct spglist *free)
2558 {
2559 vm_page_t mpte;
2560
2561 KASSERT(ADDR_IS_CANONICAL(va),
2562 ("%s: Address not in canonical form: %lx", __func__, va));
2563 if (ADDR_IS_KERNEL(va))
2564 return (0);
2565 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
2566 mpte = PTE_TO_VM_PAGE(ptepde);
2567 return (pmap_unwire_l3(pmap, va, mpte, free));
2568 }
2569
2570 /*
2571 * Release a page table page reference after a failed attempt to create a
2572 * mapping.
2573 */
2574 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)2575 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
2576 {
2577 struct spglist free;
2578
2579 SLIST_INIT(&free);
2580 if (pmap_unwire_l3(pmap, va, mpte, &free))
2581 vm_page_free_pages_toq(&free, true);
2582 }
2583
2584 void
pmap_pinit0(pmap_t pmap)2585 pmap_pinit0(pmap_t pmap)
2586 {
2587
2588 PMAP_LOCK_INIT(pmap);
2589 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
2590 pmap->pm_l0_paddr = READ_SPECIALREG(ttbr0_el1);
2591 pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
2592 TAILQ_INIT(&pmap->pm_pvchunk);
2593 vm_radix_init(&pmap->pm_root);
2594 pmap->pm_cookie = COOKIE_FROM(ASID_RESERVED_FOR_PID_0, INT_MIN);
2595 pmap->pm_stage = PM_STAGE1;
2596 pmap->pm_levels = 4;
2597 pmap->pm_ttbr = pmap->pm_l0_paddr;
2598 pmap->pm_asid_set = &asids;
2599 pmap->pm_bti = NULL;
2600
2601 PCPU_SET(curpmap, pmap);
2602 }
2603
2604 int
pmap_pinit_stage(pmap_t pmap,enum pmap_stage stage,int levels)2605 pmap_pinit_stage(pmap_t pmap, enum pmap_stage stage, int levels)
2606 {
2607 vm_page_t m;
2608
2609 /*
2610 * allocate the l0 page
2611 */
2612 m = vm_page_alloc_noobj(VM_ALLOC_WAITOK | VM_ALLOC_WIRED |
2613 VM_ALLOC_ZERO);
2614 pmap->pm_l0_paddr = VM_PAGE_TO_PHYS(m);
2615 pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr);
2616
2617 TAILQ_INIT(&pmap->pm_pvchunk);
2618 vm_radix_init(&pmap->pm_root);
2619 bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
2620 pmap->pm_cookie = COOKIE_FROM(-1, INT_MAX);
2621
2622 MPASS(levels == 3 || levels == 4);
2623 pmap->pm_levels = levels;
2624 pmap->pm_stage = stage;
2625 pmap->pm_bti = NULL;
2626 switch (stage) {
2627 case PM_STAGE1:
2628 pmap->pm_asid_set = &asids;
2629 if (pmap_bti_support) {
2630 pmap->pm_bti = malloc(sizeof(struct rangeset), M_DEVBUF,
2631 M_ZERO | M_WAITOK);
2632 rangeset_init(pmap->pm_bti, bti_dup_range,
2633 bti_free_range, pmap, M_NOWAIT);
2634 }
2635 break;
2636 case PM_STAGE2:
2637 pmap->pm_asid_set = &vmids;
2638 break;
2639 default:
2640 panic("%s: Invalid pmap type %d", __func__, stage);
2641 break;
2642 }
2643
2644 /* XXX Temporarily disable deferred ASID allocation. */
2645 pmap_alloc_asid(pmap);
2646
2647 /*
2648 * Allocate the level 1 entry to use as the root. This will increase
2649 * the refcount on the level 1 page so it won't be removed until
2650 * pmap_release() is called.
2651 */
2652 if (pmap->pm_levels == 3) {
2653 PMAP_LOCK(pmap);
2654 m = _pmap_alloc_l3(pmap, NUL2E + NUL1E, NULL);
2655 PMAP_UNLOCK(pmap);
2656 }
2657 pmap->pm_ttbr = VM_PAGE_TO_PHYS(m);
2658
2659 return (1);
2660 }
2661
2662 int
pmap_pinit(pmap_t pmap)2663 pmap_pinit(pmap_t pmap)
2664 {
2665
2666 return (pmap_pinit_stage(pmap, PM_STAGE1, 4));
2667 }
2668
2669 /*
2670 * This routine is called if the desired page table page does not exist.
2671 *
2672 * If page table page allocation fails, this routine may sleep before
2673 * returning NULL. It sleeps only if a lock pointer was given.
2674 *
2675 * Note: If a page allocation fails at page table level two or three,
2676 * one or two pages may be held during the wait, only to be released
2677 * afterwards. This conservative approach is easily argued to avoid
2678 * race conditions.
2679 */
2680 static vm_page_t
_pmap_alloc_l3(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp)2681 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
2682 {
2683 vm_page_t m, l1pg, l2pg;
2684
2685 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2686
2687 /*
2688 * Allocate a page table page.
2689 */
2690 if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
2691 if (lockp != NULL) {
2692 RELEASE_PV_LIST_LOCK(lockp);
2693 PMAP_UNLOCK(pmap);
2694 vm_wait(NULL);
2695 PMAP_LOCK(pmap);
2696 }
2697
2698 /*
2699 * Indicate the need to retry. While waiting, the page table
2700 * page may have been allocated.
2701 */
2702 return (NULL);
2703 }
2704 m->pindex = ptepindex;
2705
2706 /*
2707 * Because of AArch64's weak memory consistency model, we must have a
2708 * barrier here to ensure that the stores for zeroing "m", whether by
2709 * pmap_zero_page() or an earlier function, are visible before adding
2710 * "m" to the page table. Otherwise, a page table walk by another
2711 * processor's MMU could see the mapping to "m" and a stale, non-zero
2712 * PTE within "m".
2713 */
2714 dmb(ishst);
2715
2716 /*
2717 * Map the pagetable page into the process address space, if
2718 * it isn't already there.
2719 */
2720
2721 if (ptepindex >= (NUL2E + NUL1E)) {
2722 pd_entry_t *l0p, l0e;
2723 vm_pindex_t l0index;
2724
2725 l0index = ptepindex - (NUL2E + NUL1E);
2726 l0p = &pmap->pm_l0[l0index];
2727 KASSERT((pmap_load(l0p) & ATTR_DESCR_VALID) == 0,
2728 ("%s: L0 entry %#lx is valid", __func__, pmap_load(l0p)));
2729 l0e = VM_PAGE_TO_PTE(m) | L0_TABLE;
2730
2731 /*
2732 * Mark all kernel memory as not accessible from userspace
2733 * and userspace memory as not executable from the kernel.
2734 * This has been done for the bootstrap L0 entries in
2735 * locore.S.
2736 */
2737 if (pmap == kernel_pmap)
2738 l0e |= TATTR_UXN_TABLE | TATTR_AP_TABLE_NO_EL0;
2739 else
2740 l0e |= TATTR_PXN_TABLE;
2741 pmap_store(l0p, l0e);
2742 } else if (ptepindex >= NUL2E) {
2743 vm_pindex_t l0index, l1index;
2744 pd_entry_t *l0, *l1;
2745 pd_entry_t tl0;
2746
2747 l1index = ptepindex - NUL2E;
2748 l0index = l1index >> Ln_ENTRIES_SHIFT;
2749
2750 l0 = &pmap->pm_l0[l0index];
2751 tl0 = pmap_load(l0);
2752 if (tl0 == 0) {
2753 /* recurse for allocating page dir */
2754 if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index,
2755 lockp) == NULL) {
2756 vm_page_unwire_noq(m);
2757 vm_page_free_zero(m);
2758 return (NULL);
2759 }
2760 } else {
2761 l1pg = PTE_TO_VM_PAGE(tl0);
2762 l1pg->ref_count++;
2763 }
2764
2765 l1 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l0)));
2766 l1 = &l1[ptepindex & Ln_ADDR_MASK];
2767 KASSERT((pmap_load(l1) & ATTR_DESCR_VALID) == 0,
2768 ("%s: L1 entry %#lx is valid", __func__, pmap_load(l1)));
2769 pmap_store(l1, VM_PAGE_TO_PTE(m) | L1_TABLE);
2770 } else {
2771 vm_pindex_t l0index, l1index;
2772 pd_entry_t *l0, *l1, *l2;
2773 pd_entry_t tl0, tl1;
2774
2775 l1index = ptepindex >> Ln_ENTRIES_SHIFT;
2776 l0index = l1index >> Ln_ENTRIES_SHIFT;
2777
2778 l0 = &pmap->pm_l0[l0index];
2779 tl0 = pmap_load(l0);
2780 if (tl0 == 0) {
2781 /* recurse for allocating page dir */
2782 if (_pmap_alloc_l3(pmap, NUL2E + l1index,
2783 lockp) == NULL) {
2784 vm_page_unwire_noq(m);
2785 vm_page_free_zero(m);
2786 return (NULL);
2787 }
2788 tl0 = pmap_load(l0);
2789 l1 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(tl0));
2790 l1 = &l1[l1index & Ln_ADDR_MASK];
2791 } else {
2792 l1 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(tl0));
2793 l1 = &l1[l1index & Ln_ADDR_MASK];
2794 tl1 = pmap_load(l1);
2795 if (tl1 == 0) {
2796 /* recurse for allocating page dir */
2797 if (_pmap_alloc_l3(pmap, NUL2E + l1index,
2798 lockp) == NULL) {
2799 vm_page_unwire_noq(m);
2800 vm_page_free_zero(m);
2801 return (NULL);
2802 }
2803 } else {
2804 l2pg = PTE_TO_VM_PAGE(tl1);
2805 l2pg->ref_count++;
2806 }
2807 }
2808
2809 l2 = (pd_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l1)));
2810 l2 = &l2[ptepindex & Ln_ADDR_MASK];
2811 KASSERT((pmap_load(l2) & ATTR_DESCR_VALID) == 0,
2812 ("%s: L2 entry %#lx is valid", __func__, pmap_load(l2)));
2813 pmap_store(l2, VM_PAGE_TO_PTE(m) | L2_TABLE);
2814 }
2815
2816 pmap_resident_count_inc(pmap, 1);
2817
2818 return (m);
2819 }
2820
2821 static pd_entry_t *
pmap_alloc_l2(pmap_t pmap,vm_offset_t va,vm_page_t * l2pgp,struct rwlock ** lockp)2822 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, vm_page_t *l2pgp,
2823 struct rwlock **lockp)
2824 {
2825 pd_entry_t *l1, *l2;
2826 vm_page_t l2pg;
2827 vm_pindex_t l2pindex;
2828
2829 KASSERT(ADDR_IS_CANONICAL(va),
2830 ("%s: Address not in canonical form: %lx", __func__, va));
2831
2832 retry:
2833 l1 = pmap_l1(pmap, va);
2834 if (l1 != NULL && (pmap_load(l1) & ATTR_DESCR_MASK) == L1_TABLE) {
2835 l2 = pmap_l1_to_l2(l1, va);
2836 if (!ADDR_IS_KERNEL(va)) {
2837 /* Add a reference to the L2 page. */
2838 l2pg = PTE_TO_VM_PAGE(pmap_load(l1));
2839 l2pg->ref_count++;
2840 } else
2841 l2pg = NULL;
2842 } else if (!ADDR_IS_KERNEL(va)) {
2843 /* Allocate a L2 page. */
2844 l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT;
2845 l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp);
2846 if (l2pg == NULL) {
2847 if (lockp != NULL)
2848 goto retry;
2849 else
2850 return (NULL);
2851 }
2852 l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
2853 l2 = &l2[pmap_l2_index(va)];
2854 } else
2855 panic("pmap_alloc_l2: missing page table page for va %#lx",
2856 va);
2857 *l2pgp = l2pg;
2858 return (l2);
2859 }
2860
2861 static vm_page_t
pmap_alloc_l3(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)2862 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
2863 {
2864 vm_pindex_t ptepindex;
2865 pd_entry_t *pde, tpde;
2866 #ifdef INVARIANTS
2867 pt_entry_t *pte;
2868 #endif
2869 vm_page_t m;
2870 int lvl;
2871
2872 /*
2873 * Calculate pagetable page index
2874 */
2875 ptepindex = pmap_l2_pindex(va);
2876 retry:
2877 /*
2878 * Get the page directory entry
2879 */
2880 pde = pmap_pde(pmap, va, &lvl);
2881
2882 /*
2883 * If the page table page is mapped, we just increment the hold count,
2884 * and activate it. If we get a level 2 pde it will point to a level 3
2885 * table.
2886 */
2887 switch (lvl) {
2888 case -1:
2889 break;
2890 case 0:
2891 #ifdef INVARIANTS
2892 pte = pmap_l0_to_l1(pde, va);
2893 KASSERT(pmap_load(pte) == 0,
2894 ("pmap_alloc_l3: TODO: l0 superpages"));
2895 #endif
2896 break;
2897 case 1:
2898 #ifdef INVARIANTS
2899 pte = pmap_l1_to_l2(pde, va);
2900 KASSERT(pmap_load(pte) == 0,
2901 ("pmap_alloc_l3: TODO: l1 superpages"));
2902 #endif
2903 break;
2904 case 2:
2905 tpde = pmap_load(pde);
2906 if (tpde != 0) {
2907 m = PTE_TO_VM_PAGE(tpde);
2908 m->ref_count++;
2909 return (m);
2910 }
2911 break;
2912 default:
2913 panic("pmap_alloc_l3: Invalid level %d", lvl);
2914 }
2915
2916 /*
2917 * Here if the pte page isn't mapped, or if it has been deallocated.
2918 */
2919 m = _pmap_alloc_l3(pmap, ptepindex, lockp);
2920 if (m == NULL && lockp != NULL)
2921 goto retry;
2922
2923 return (m);
2924 }
2925
2926 /***************************************************
2927 * Pmap allocation/deallocation routines.
2928 ***************************************************/
2929
2930 /*
2931 * Release any resources held by the given physical map.
2932 * Called when a pmap initialized by pmap_pinit is being released.
2933 * Should only be called if the map contains no valid mappings.
2934 */
2935 void
pmap_release(pmap_t pmap)2936 pmap_release(pmap_t pmap)
2937 {
2938 bool rv __diagused;
2939 struct spglist freelist;
2940 struct asid_set *set;
2941 vm_page_t m;
2942 int asid;
2943
2944 if (pmap->pm_levels != 4) {
2945 PMAP_ASSERT_STAGE2(pmap);
2946 KASSERT(pmap->pm_stats.resident_count == 1,
2947 ("pmap_release: pmap resident count %ld != 0",
2948 pmap->pm_stats.resident_count));
2949 KASSERT((pmap->pm_l0[0] & ATTR_DESCR_VALID) == ATTR_DESCR_VALID,
2950 ("pmap_release: Invalid l0 entry: %lx", pmap->pm_l0[0]));
2951
2952 SLIST_INIT(&freelist);
2953 m = PHYS_TO_VM_PAGE(pmap->pm_ttbr);
2954 PMAP_LOCK(pmap);
2955 rv = pmap_unwire_l3(pmap, 0, m, &freelist);
2956 PMAP_UNLOCK(pmap);
2957 MPASS(rv == true);
2958 vm_page_free_pages_toq(&freelist, true);
2959 }
2960
2961 KASSERT(pmap->pm_stats.resident_count == 0,
2962 ("pmap_release: pmap resident count %ld != 0",
2963 pmap->pm_stats.resident_count));
2964 KASSERT(vm_radix_is_empty(&pmap->pm_root),
2965 ("pmap_release: pmap has reserved page table page(s)"));
2966
2967 set = pmap->pm_asid_set;
2968 KASSERT(set != NULL, ("%s: NULL asid set", __func__));
2969
2970 /*
2971 * Allow the ASID to be reused. In stage 2 VMIDs we don't invalidate
2972 * the entries when removing them so rely on a later tlb invalidation.
2973 * this will happen when updating the VMID generation. Because of this
2974 * we don't reuse VMIDs within a generation.
2975 */
2976 if (pmap->pm_stage == PM_STAGE1) {
2977 mtx_lock_spin(&set->asid_set_mutex);
2978 if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch) {
2979 asid = COOKIE_TO_ASID(pmap->pm_cookie);
2980 KASSERT(asid >= ASID_FIRST_AVAILABLE &&
2981 asid < set->asid_set_size,
2982 ("pmap_release: pmap cookie has out-of-range asid"));
2983 bit_clear(set->asid_set, asid);
2984 }
2985 mtx_unlock_spin(&set->asid_set_mutex);
2986
2987 if (pmap->pm_bti != NULL) {
2988 rangeset_fini(pmap->pm_bti);
2989 free(pmap->pm_bti, M_DEVBUF);
2990 }
2991 }
2992
2993 m = PHYS_TO_VM_PAGE(pmap->pm_l0_paddr);
2994 vm_page_unwire_noq(m);
2995 vm_page_free_zero(m);
2996 }
2997
2998 static int
kvm_size(SYSCTL_HANDLER_ARGS)2999 kvm_size(SYSCTL_HANDLER_ARGS)
3000 {
3001 unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
3002
3003 return sysctl_handle_long(oidp, &ksize, 0, req);
3004 }
3005 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
3006 0, 0, kvm_size, "LU",
3007 "Size of KVM");
3008
3009 static int
kvm_free(SYSCTL_HANDLER_ARGS)3010 kvm_free(SYSCTL_HANDLER_ARGS)
3011 {
3012 unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
3013
3014 return sysctl_handle_long(oidp, &kfree, 0, req);
3015 }
3016 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
3017 0, 0, kvm_free, "LU",
3018 "Amount of KVM free");
3019
3020 /*
3021 * grow the number of kernel page table entries, if needed
3022 */
3023 void
pmap_growkernel(vm_offset_t addr)3024 pmap_growkernel(vm_offset_t addr)
3025 {
3026 vm_page_t nkpg;
3027 pd_entry_t *l0, *l1, *l2;
3028
3029 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
3030
3031 addr = roundup2(addr, L2_SIZE);
3032 if (addr - 1 >= vm_map_max(kernel_map))
3033 addr = vm_map_max(kernel_map);
3034 if (kernel_vm_end < addr) {
3035 kasan_shadow_map(kernel_vm_end, addr - kernel_vm_end);
3036 kmsan_shadow_map(kernel_vm_end, addr - kernel_vm_end);
3037 }
3038 while (kernel_vm_end < addr) {
3039 l0 = pmap_l0(kernel_pmap, kernel_vm_end);
3040 KASSERT(pmap_load(l0) != 0,
3041 ("pmap_growkernel: No level 0 kernel entry"));
3042
3043 l1 = pmap_l0_to_l1(l0, kernel_vm_end);
3044 if (pmap_load(l1) == 0) {
3045 /* We need a new PDP entry */
3046 nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3047 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3048 if (nkpg == NULL)
3049 panic("pmap_growkernel: no memory to grow kernel");
3050 nkpg->pindex = pmap_l1_pindex(kernel_vm_end);
3051 /* See the dmb() in _pmap_alloc_l3(). */
3052 dmb(ishst);
3053 pmap_store(l1, VM_PAGE_TO_PTE(nkpg) | L1_TABLE);
3054 continue; /* try again */
3055 }
3056 l2 = pmap_l1_to_l2(l1, kernel_vm_end);
3057 if (pmap_load(l2) != 0) {
3058 kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
3059 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3060 kernel_vm_end = vm_map_max(kernel_map);
3061 break;
3062 }
3063 continue;
3064 }
3065
3066 nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3067 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3068 if (nkpg == NULL)
3069 panic("pmap_growkernel: no memory to grow kernel");
3070 nkpg->pindex = pmap_l2_pindex(kernel_vm_end);
3071 /* See the dmb() in _pmap_alloc_l3(). */
3072 dmb(ishst);
3073 pmap_store(l2, VM_PAGE_TO_PTE(nkpg) | L2_TABLE);
3074
3075 kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
3076 if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3077 kernel_vm_end = vm_map_max(kernel_map);
3078 break;
3079 }
3080 }
3081 }
3082
3083 /***************************************************
3084 * page management routines.
3085 ***************************************************/
3086
3087 static const uint64_t pc_freemask[_NPCM] = {
3088 [0 ... _NPCM - 2] = PC_FREEN,
3089 [_NPCM - 1] = PC_FREEL
3090 };
3091
3092 #ifdef PV_STATS
3093 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
3094
3095 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
3096 "Current number of pv entry chunks");
3097 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
3098 "Current number of pv entry chunks allocated");
3099 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
3100 "Current number of pv entry chunks frees");
3101 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
3102 "Number of times tried to get a chunk page but failed.");
3103
3104 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
3105 static int pv_entry_spare;
3106
3107 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
3108 "Current number of pv entry frees");
3109 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
3110 "Current number of pv entry allocs");
3111 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
3112 "Current number of pv entries");
3113 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
3114 "Current number of spare pv entries");
3115 #endif
3116
3117 /*
3118 * We are in a serious low memory condition. Resort to
3119 * drastic measures to free some pages so we can allocate
3120 * another pv entry chunk.
3121 *
3122 * Returns NULL if PV entries were reclaimed from the specified pmap.
3123 *
3124 * We do not, however, unmap 2mpages because subsequent accesses will
3125 * allocate per-page pv entries until repromotion occurs, thereby
3126 * exacerbating the shortage of free pv entries.
3127 */
3128 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)3129 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
3130 {
3131 struct pv_chunks_list *pvc;
3132 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
3133 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
3134 struct md_page *pvh;
3135 pd_entry_t *pde;
3136 pmap_t next_pmap, pmap;
3137 pt_entry_t *pte, tpte;
3138 pv_entry_t pv;
3139 vm_offset_t va;
3140 vm_page_t m, m_pc;
3141 struct spglist free;
3142 uint64_t inuse;
3143 int bit, field, freed, lvl;
3144
3145 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
3146 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
3147
3148 pmap = NULL;
3149 m_pc = NULL;
3150 SLIST_INIT(&free);
3151 bzero(&pc_marker_b, sizeof(pc_marker_b));
3152 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
3153 pc_marker = (struct pv_chunk *)&pc_marker_b;
3154 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
3155
3156 pvc = &pv_chunks[domain];
3157 mtx_lock(&pvc->pvc_lock);
3158 pvc->active_reclaims++;
3159 TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
3160 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
3161 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
3162 SLIST_EMPTY(&free)) {
3163 next_pmap = pc->pc_pmap;
3164 if (next_pmap == NULL) {
3165 /*
3166 * The next chunk is a marker. However, it is
3167 * not our marker, so active_reclaims must be
3168 * > 1. Consequently, the next_chunk code
3169 * will not rotate the pv_chunks list.
3170 */
3171 goto next_chunk;
3172 }
3173 mtx_unlock(&pvc->pvc_lock);
3174
3175 /*
3176 * A pv_chunk can only be removed from the pc_lru list
3177 * when both pvc->pvc_lock is owned and the
3178 * corresponding pmap is locked.
3179 */
3180 if (pmap != next_pmap) {
3181 if (pmap != NULL && pmap != locked_pmap)
3182 PMAP_UNLOCK(pmap);
3183 pmap = next_pmap;
3184 /* Avoid deadlock and lock recursion. */
3185 if (pmap > locked_pmap) {
3186 RELEASE_PV_LIST_LOCK(lockp);
3187 PMAP_LOCK(pmap);
3188 mtx_lock(&pvc->pvc_lock);
3189 continue;
3190 } else if (pmap != locked_pmap) {
3191 if (PMAP_TRYLOCK(pmap)) {
3192 mtx_lock(&pvc->pvc_lock);
3193 continue;
3194 } else {
3195 pmap = NULL; /* pmap is not locked */
3196 mtx_lock(&pvc->pvc_lock);
3197 pc = TAILQ_NEXT(pc_marker, pc_lru);
3198 if (pc == NULL ||
3199 pc->pc_pmap != next_pmap)
3200 continue;
3201 goto next_chunk;
3202 }
3203 }
3204 }
3205
3206 /*
3207 * Destroy every non-wired, 4 KB page mapping in the chunk.
3208 */
3209 freed = 0;
3210 for (field = 0; field < _NPCM; field++) {
3211 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
3212 inuse != 0; inuse &= ~(1UL << bit)) {
3213 bit = ffsl(inuse) - 1;
3214 pv = &pc->pc_pventry[field * 64 + bit];
3215 va = pv->pv_va;
3216 pde = pmap_pde(pmap, va, &lvl);
3217 if (lvl != 2)
3218 continue;
3219 pte = pmap_l2_to_l3(pde, va);
3220 tpte = pmap_load(pte);
3221 if ((tpte & ATTR_SW_WIRED) != 0)
3222 continue;
3223 if ((tpte & ATTR_CONTIGUOUS) != 0)
3224 (void)pmap_demote_l3c(pmap, pte, va);
3225 tpte = pmap_load_clear(pte);
3226 m = PTE_TO_VM_PAGE(tpte);
3227 if (pmap_pte_dirty(pmap, tpte))
3228 vm_page_dirty(m);
3229 if ((tpte & ATTR_AF) != 0) {
3230 pmap_s1_invalidate_page(pmap, va, true);
3231 vm_page_aflag_set(m, PGA_REFERENCED);
3232 }
3233 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3234 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3235 m->md.pv_gen++;
3236 if (TAILQ_EMPTY(&m->md.pv_list) &&
3237 (m->flags & PG_FICTITIOUS) == 0) {
3238 pvh = page_to_pvh(m);
3239 if (TAILQ_EMPTY(&pvh->pv_list)) {
3240 vm_page_aflag_clear(m,
3241 PGA_WRITEABLE);
3242 }
3243 }
3244 pc->pc_map[field] |= 1UL << bit;
3245 pmap_unuse_pt(pmap, va, pmap_load(pde), &free);
3246 freed++;
3247 }
3248 }
3249 if (freed == 0) {
3250 mtx_lock(&pvc->pvc_lock);
3251 goto next_chunk;
3252 }
3253 /* Every freed mapping is for a 4 KB page. */
3254 pmap_resident_count_dec(pmap, freed);
3255 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
3256 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
3257 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
3258 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3259 if (pc_is_free(pc)) {
3260 PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
3261 PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
3262 PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
3263 /* Entire chunk is free; return it. */
3264 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
3265 dump_drop_page(m_pc->phys_addr);
3266 mtx_lock(&pvc->pvc_lock);
3267 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
3268 break;
3269 }
3270 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3271 mtx_lock(&pvc->pvc_lock);
3272 /* One freed pv entry in locked_pmap is sufficient. */
3273 if (pmap == locked_pmap)
3274 break;
3275
3276 next_chunk:
3277 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
3278 TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
3279 if (pvc->active_reclaims == 1 && pmap != NULL) {
3280 /*
3281 * Rotate the pv chunks list so that we do not
3282 * scan the same pv chunks that could not be
3283 * freed (because they contained a wired
3284 * and/or superpage mapping) on every
3285 * invocation of reclaim_pv_chunk().
3286 */
3287 while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker){
3288 MPASS(pc->pc_pmap != NULL);
3289 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
3290 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
3291 }
3292 }
3293 }
3294 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
3295 TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
3296 pvc->active_reclaims--;
3297 mtx_unlock(&pvc->pvc_lock);
3298 if (pmap != NULL && pmap != locked_pmap)
3299 PMAP_UNLOCK(pmap);
3300 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
3301 m_pc = SLIST_FIRST(&free);
3302 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3303 /* Recycle a freed page table page. */
3304 m_pc->ref_count = 1;
3305 }
3306 vm_page_free_pages_toq(&free, true);
3307 return (m_pc);
3308 }
3309
3310 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)3311 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
3312 {
3313 vm_page_t m;
3314 int i, domain;
3315
3316 domain = PCPU_GET(domain);
3317 for (i = 0; i < vm_ndomains; i++) {
3318 m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
3319 if (m != NULL)
3320 break;
3321 domain = (domain + 1) % vm_ndomains;
3322 }
3323
3324 return (m);
3325 }
3326
3327 /*
3328 * free the pv_entry back to the free list
3329 */
3330 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)3331 free_pv_entry(pmap_t pmap, pv_entry_t pv)
3332 {
3333 struct pv_chunk *pc;
3334 int idx, field, bit;
3335
3336 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3337 PV_STAT(atomic_add_long(&pv_entry_frees, 1));
3338 PV_STAT(atomic_add_int(&pv_entry_spare, 1));
3339 PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
3340 pc = pv_to_chunk(pv);
3341 idx = pv - &pc->pc_pventry[0];
3342 field = idx / 64;
3343 bit = idx % 64;
3344 pc->pc_map[field] |= 1ul << bit;
3345 if (!pc_is_free(pc)) {
3346 /* 98% of the time, pc is already at the head of the list. */
3347 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
3348 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3349 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3350 }
3351 return;
3352 }
3353 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3354 free_pv_chunk(pc);
3355 }
3356
3357 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)3358 free_pv_chunk_dequeued(struct pv_chunk *pc)
3359 {
3360 vm_page_t m;
3361
3362 PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
3363 PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
3364 PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
3365 /* entire chunk is free, return it */
3366 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
3367 dump_drop_page(m->phys_addr);
3368 vm_page_unwire_noq(m);
3369 vm_page_free(m);
3370 }
3371
3372 static void
free_pv_chunk(struct pv_chunk * pc)3373 free_pv_chunk(struct pv_chunk *pc)
3374 {
3375 struct pv_chunks_list *pvc;
3376
3377 pvc = &pv_chunks[pc_to_domain(pc)];
3378 mtx_lock(&pvc->pvc_lock);
3379 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
3380 mtx_unlock(&pvc->pvc_lock);
3381 free_pv_chunk_dequeued(pc);
3382 }
3383
3384 static void
free_pv_chunk_batch(struct pv_chunklist * batch)3385 free_pv_chunk_batch(struct pv_chunklist *batch)
3386 {
3387 struct pv_chunks_list *pvc;
3388 struct pv_chunk *pc, *npc;
3389 int i;
3390
3391 for (i = 0; i < vm_ndomains; i++) {
3392 if (TAILQ_EMPTY(&batch[i]))
3393 continue;
3394 pvc = &pv_chunks[i];
3395 mtx_lock(&pvc->pvc_lock);
3396 TAILQ_FOREACH(pc, &batch[i], pc_list) {
3397 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
3398 }
3399 mtx_unlock(&pvc->pvc_lock);
3400 }
3401
3402 for (i = 0; i < vm_ndomains; i++) {
3403 TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
3404 free_pv_chunk_dequeued(pc);
3405 }
3406 }
3407 }
3408
3409 /*
3410 * Returns a new PV entry, allocating a new PV chunk from the system when
3411 * needed. If this PV chunk allocation fails and a PV list lock pointer was
3412 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
3413 * returned.
3414 *
3415 * The given PV list lock may be released.
3416 */
3417 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)3418 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
3419 {
3420 struct pv_chunks_list *pvc;
3421 int bit, field;
3422 pv_entry_t pv;
3423 struct pv_chunk *pc;
3424 vm_page_t m;
3425
3426 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3427 PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
3428 retry:
3429 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3430 if (pc != NULL) {
3431 for (field = 0; field < _NPCM; field++) {
3432 if (pc->pc_map[field]) {
3433 bit = ffsl(pc->pc_map[field]) - 1;
3434 break;
3435 }
3436 }
3437 if (field < _NPCM) {
3438 pv = &pc->pc_pventry[field * 64 + bit];
3439 pc->pc_map[field] &= ~(1ul << bit);
3440 /* If this was the last item, move it to tail */
3441 if (pc_is_full(pc)) {
3442 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3443 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
3444 pc_list);
3445 }
3446 PV_STAT(atomic_add_long(&pv_entry_count, 1));
3447 PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
3448 return (pv);
3449 }
3450 }
3451 /* No free items, allocate another chunk */
3452 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
3453 if (m == NULL) {
3454 if (lockp == NULL) {
3455 PV_STAT(pc_chunk_tryfail++);
3456 return (NULL);
3457 }
3458 m = reclaim_pv_chunk(pmap, lockp);
3459 if (m == NULL)
3460 goto retry;
3461 }
3462 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3463 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3464 dump_add_page(m->phys_addr);
3465 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3466 pc->pc_pmap = pmap;
3467 memcpy(pc->pc_map, pc_freemask, sizeof(pc_freemask));
3468 pc->pc_map[0] &= ~1ul; /* preallocated bit 0 */
3469 pvc = &pv_chunks[vm_page_domain(m)];
3470 mtx_lock(&pvc->pvc_lock);
3471 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
3472 mtx_unlock(&pvc->pvc_lock);
3473 pv = &pc->pc_pventry[0];
3474 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3475 PV_STAT(atomic_add_long(&pv_entry_count, 1));
3476 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
3477 return (pv);
3478 }
3479
3480 /*
3481 * Ensure that the number of spare PV entries in the specified pmap meets or
3482 * exceeds the given count, "needed".
3483 *
3484 * The given PV list lock may be released.
3485 */
3486 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)3487 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
3488 {
3489 struct pv_chunks_list *pvc;
3490 struct pch new_tail[PMAP_MEMDOM];
3491 struct pv_chunk *pc;
3492 vm_page_t m;
3493 int avail, free, i;
3494 bool reclaimed;
3495
3496 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3497 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
3498
3499 /*
3500 * Newly allocated PV chunks must be stored in a private list until
3501 * the required number of PV chunks have been allocated. Otherwise,
3502 * reclaim_pv_chunk() could recycle one of these chunks. In
3503 * contrast, these chunks must be added to the pmap upon allocation.
3504 */
3505 for (i = 0; i < PMAP_MEMDOM; i++)
3506 TAILQ_INIT(&new_tail[i]);
3507 retry:
3508 avail = 0;
3509 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
3510 bit_count((bitstr_t *)pc->pc_map, 0,
3511 sizeof(pc->pc_map) * NBBY, &free);
3512 if (free == 0)
3513 break;
3514 avail += free;
3515 if (avail >= needed)
3516 break;
3517 }
3518 for (reclaimed = false; avail < needed; avail += _NPCPV) {
3519 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
3520 if (m == NULL) {
3521 m = reclaim_pv_chunk(pmap, lockp);
3522 if (m == NULL)
3523 goto retry;
3524 reclaimed = true;
3525 }
3526 PV_STAT(atomic_add_int(&pc_chunk_count, 1));
3527 PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
3528 dump_add_page(m->phys_addr);
3529 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
3530 pc->pc_pmap = pmap;
3531 memcpy(pc->pc_map, pc_freemask, sizeof(pc_freemask));
3532 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3533 TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
3534 PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
3535
3536 /*
3537 * The reclaim might have freed a chunk from the current pmap.
3538 * If that chunk contained available entries, we need to
3539 * re-count the number of available entries.
3540 */
3541 if (reclaimed)
3542 goto retry;
3543 }
3544 for (i = 0; i < vm_ndomains; i++) {
3545 if (TAILQ_EMPTY(&new_tail[i]))
3546 continue;
3547 pvc = &pv_chunks[i];
3548 mtx_lock(&pvc->pvc_lock);
3549 TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
3550 mtx_unlock(&pvc->pvc_lock);
3551 }
3552 }
3553
3554 /*
3555 * First find and then remove the pv entry for the specified pmap and virtual
3556 * address from the specified pv list. Returns the pv entry if found and NULL
3557 * otherwise. This operation can be performed on pv lists for either 4KB or
3558 * 2MB page mappings.
3559 */
3560 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)3561 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3562 {
3563 pv_entry_t pv;
3564
3565 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3566 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3567 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3568 pvh->pv_gen++;
3569 break;
3570 }
3571 }
3572 return (pv);
3573 }
3574
3575 /*
3576 * After demotion from a 2MB page mapping to 512 4KB page mappings,
3577 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
3578 * entries for each of the 4KB page mappings.
3579 */
3580 static void
pmap_pv_demote_l2(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)3581 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
3582 struct rwlock **lockp)
3583 {
3584 struct md_page *pvh;
3585 struct pv_chunk *pc;
3586 pv_entry_t pv;
3587 vm_offset_t va_last;
3588 vm_page_t m;
3589 int bit, field;
3590
3591 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3592 KASSERT((va & L2_OFFSET) == 0,
3593 ("pmap_pv_demote_l2: va is not 2mpage aligned"));
3594 KASSERT((pa & L2_OFFSET) == 0,
3595 ("pmap_pv_demote_l2: pa is not 2mpage aligned"));
3596 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3597
3598 /*
3599 * Transfer the 2mpage's pv entry for this mapping to the first
3600 * page's pv list. Once this transfer begins, the pv list lock
3601 * must not be released until the last pv entry is reinstantiated.
3602 */
3603 pvh = pa_to_pvh(pa);
3604 pv = pmap_pvh_remove(pvh, pmap, va);
3605 KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
3606 m = PHYS_TO_VM_PAGE(pa);
3607 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3608 m->md.pv_gen++;
3609 /* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */
3610 PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1));
3611 va_last = va + L2_SIZE - PAGE_SIZE;
3612 for (;;) {
3613 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3614 KASSERT(!pc_is_full(pc), ("pmap_pv_demote_l2: missing spare"));
3615 for (field = 0; field < _NPCM; field++) {
3616 while (pc->pc_map[field]) {
3617 bit = ffsl(pc->pc_map[field]) - 1;
3618 pc->pc_map[field] &= ~(1ul << bit);
3619 pv = &pc->pc_pventry[field * 64 + bit];
3620 va += PAGE_SIZE;
3621 pv->pv_va = va;
3622 m++;
3623 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3624 ("pmap_pv_demote_l2: page %p is not managed", m));
3625 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3626 m->md.pv_gen++;
3627 if (va == va_last)
3628 goto out;
3629 }
3630 }
3631 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3632 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3633 }
3634 out:
3635 if (pc_is_full(pc)) {
3636 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3637 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3638 }
3639 PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1));
3640 PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1));
3641 }
3642
3643 /*
3644 * First find and then destroy the pv entry for the specified pmap and virtual
3645 * address. This operation can be performed on pv lists for either 4KB or 2MB
3646 * page mappings.
3647 */
3648 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)3649 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3650 {
3651 pv_entry_t pv;
3652
3653 pv = pmap_pvh_remove(pvh, pmap, va);
3654 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3655 free_pv_entry(pmap, pv);
3656 }
3657
3658 /*
3659 * Conditionally create the PV entry for a 4KB page mapping if the required
3660 * memory can be allocated without resorting to reclamation.
3661 */
3662 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)3663 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
3664 struct rwlock **lockp)
3665 {
3666 pv_entry_t pv;
3667
3668 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3669 /* Pass NULL instead of the lock pointer to disable reclamation. */
3670 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
3671 pv->pv_va = va;
3672 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3673 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3674 m->md.pv_gen++;
3675 return (true);
3676 } else
3677 return (false);
3678 }
3679
3680 /*
3681 * Create the PV entry for a 2MB page mapping. Always returns true unless the
3682 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
3683 * false if the PV entry cannot be allocated without resorting to reclamation.
3684 */
3685 static bool
pmap_pv_insert_l2(pmap_t pmap,vm_offset_t va,pd_entry_t l2e,u_int flags,struct rwlock ** lockp)3686 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
3687 struct rwlock **lockp)
3688 {
3689 struct md_page *pvh;
3690 pv_entry_t pv;
3691 vm_paddr_t pa;
3692
3693 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3694 /* Pass NULL instead of the lock pointer to disable reclamation. */
3695 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
3696 NULL : lockp)) == NULL)
3697 return (false);
3698 pv->pv_va = va;
3699 pa = PTE_TO_PHYS(l2e);
3700 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
3701 pvh = pa_to_pvh(pa);
3702 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3703 pvh->pv_gen++;
3704 return (true);
3705 }
3706
3707 /*
3708 * Conditionally creates the PV entries for a L3C superpage mapping if
3709 * the required memory can be allocated without resorting to reclamation.
3710 */
3711 static bool
pmap_pv_insert_l3c(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)3712 pmap_pv_insert_l3c(pmap_t pmap, vm_offset_t va, vm_page_t m,
3713 struct rwlock **lockp)
3714 {
3715 pv_entry_t pv;
3716 vm_offset_t tva;
3717 vm_paddr_t pa __diagused;
3718 vm_page_t mt;
3719
3720 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3721 KASSERT((va & L3C_OFFSET) == 0,
3722 ("pmap_pv_insert_l3c: va is not aligned"));
3723 pa = VM_PAGE_TO_PHYS(m);
3724 KASSERT((pa & L3C_OFFSET) == 0,
3725 ("pmap_pv_insert_l3c: pa is not aligned"));
3726 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3727 for (mt = m, tva = va; mt < &m[L3C_ENTRIES]; mt++, tva += L3_SIZE) {
3728 /* Pass NULL instead of lockp to disable reclamation. */
3729 pv = get_pv_entry(pmap, NULL);
3730 if (__predict_false(pv == NULL)) {
3731 while (tva > va) {
3732 mt--;
3733 tva -= L3_SIZE;
3734 pmap_pvh_free(&mt->md, pmap, tva);
3735 }
3736 return (false);
3737 }
3738 pv->pv_va = tva;
3739 TAILQ_INSERT_TAIL(&mt->md.pv_list, pv, pv_next);
3740 mt->md.pv_gen++;
3741 }
3742 return (true);
3743 }
3744
3745 static void
pmap_remove_kernel_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t va)3746 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
3747 {
3748 pt_entry_t newl2, oldl2 __diagused;
3749 vm_page_t ml3;
3750 vm_paddr_t ml3pa;
3751
3752 KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
3753 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
3754 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3755
3756 ml3 = pmap_remove_pt_page(pmap, va);
3757 if (ml3 == NULL)
3758 panic("pmap_remove_kernel_l2: Missing pt page");
3759
3760 ml3pa = VM_PAGE_TO_PHYS(ml3);
3761 newl2 = PHYS_TO_PTE(ml3pa) | L2_TABLE;
3762
3763 /*
3764 * If this page table page was unmapped by a promotion, then it
3765 * contains valid mappings. Zero it to invalidate those mappings.
3766 */
3767 if (vm_page_any_valid(ml3))
3768 pagezero((void *)PHYS_TO_DMAP(ml3pa));
3769
3770 /*
3771 * Demote the mapping. The caller must have already invalidated the
3772 * mapping (i.e., the "break" in break-before-make).
3773 */
3774 oldl2 = pmap_load_store(l2, newl2);
3775 KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
3776 __func__, l2, oldl2));
3777 }
3778
3779 /*
3780 * pmap_remove_l2: Do the things to unmap a level 2 superpage.
3781 */
3782 static int
pmap_remove_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t sva,pd_entry_t l1e,struct spglist * free,struct rwlock ** lockp)3783 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
3784 pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
3785 {
3786 struct md_page *pvh;
3787 pt_entry_t old_l2;
3788 vm_page_t m, ml3, mt;
3789
3790 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3791 KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
3792 old_l2 = pmap_load_clear(l2);
3793 KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
3794 ("pmap_remove_l2: L2e %lx is not a block mapping", old_l2));
3795
3796 /*
3797 * Since a promotion must break the 4KB page mappings before making
3798 * the 2MB page mapping, a pmap_s1_invalidate_page() suffices.
3799 */
3800 pmap_s1_invalidate_page(pmap, sva, true);
3801
3802 if (old_l2 & ATTR_SW_WIRED)
3803 pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
3804 pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
3805 if (old_l2 & ATTR_SW_MANAGED) {
3806 m = PTE_TO_VM_PAGE(old_l2);
3807 pvh = page_to_pvh(m);
3808 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3809 pmap_pvh_free(pvh, pmap, sva);
3810 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++) {
3811 if (pmap_pte_dirty(pmap, old_l2))
3812 vm_page_dirty(mt);
3813 if (old_l2 & ATTR_AF)
3814 vm_page_aflag_set(mt, PGA_REFERENCED);
3815 if (TAILQ_EMPTY(&mt->md.pv_list) &&
3816 TAILQ_EMPTY(&pvh->pv_list))
3817 vm_page_aflag_clear(mt, PGA_WRITEABLE);
3818 }
3819 }
3820 if (pmap == kernel_pmap) {
3821 pmap_remove_kernel_l2(pmap, l2, sva);
3822 } else {
3823 ml3 = pmap_remove_pt_page(pmap, sva);
3824 if (ml3 != NULL) {
3825 KASSERT(vm_page_any_valid(ml3),
3826 ("pmap_remove_l2: l3 page not promoted"));
3827 pmap_resident_count_dec(pmap, 1);
3828 KASSERT(ml3->ref_count == NL3PG,
3829 ("pmap_remove_l2: l3 page ref count error"));
3830 ml3->ref_count = 0;
3831 pmap_add_delayed_free_list(ml3, free, false);
3832 }
3833 }
3834 return (pmap_unuse_pt(pmap, sva, l1e, free));
3835 }
3836
3837 /*
3838 * pmap_remove_l3: do the things to unmap a page in a process
3839 */
3840 static int
pmap_remove_l3(pmap_t pmap,pt_entry_t * l3,vm_offset_t va,pd_entry_t l2e,struct spglist * free,struct rwlock ** lockp)3841 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
3842 pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
3843 {
3844 struct md_page *pvh;
3845 pt_entry_t old_l3;
3846 vm_page_t m;
3847
3848 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3849 old_l3 = pmap_load(l3);
3850 if ((old_l3 & ATTR_CONTIGUOUS) != 0)
3851 (void)pmap_demote_l3c(pmap, l3, va);
3852 old_l3 = pmap_load_clear(l3);
3853 pmap_s1_invalidate_page(pmap, va, true);
3854 if (old_l3 & ATTR_SW_WIRED)
3855 pmap->pm_stats.wired_count -= 1;
3856 pmap_resident_count_dec(pmap, 1);
3857 if (old_l3 & ATTR_SW_MANAGED) {
3858 m = PTE_TO_VM_PAGE(old_l3);
3859 if (pmap_pte_dirty(pmap, old_l3))
3860 vm_page_dirty(m);
3861 if (old_l3 & ATTR_AF)
3862 vm_page_aflag_set(m, PGA_REFERENCED);
3863 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
3864 pmap_pvh_free(&m->md, pmap, va);
3865 if (TAILQ_EMPTY(&m->md.pv_list) &&
3866 (m->flags & PG_FICTITIOUS) == 0) {
3867 pvh = page_to_pvh(m);
3868 if (TAILQ_EMPTY(&pvh->pv_list))
3869 vm_page_aflag_clear(m, PGA_WRITEABLE);
3870 }
3871 }
3872 return (pmap_unuse_pt(pmap, va, l2e, free));
3873 }
3874
3875 /*
3876 * Removes the specified L3C superpage mapping. Requests TLB invalidations
3877 * to be performed by the caller through the returned "*vap". Returns true
3878 * if the level 3 table "ml3" was unmapped and added to the spglist "free".
3879 * Otherwise, returns false.
3880 */
3881 static bool
pmap_remove_l3c(pmap_t pmap,pt_entry_t * l3p,vm_offset_t va,vm_offset_t * vap,vm_offset_t va_next,vm_page_t ml3,struct spglist * free,struct rwlock ** lockp)3882 pmap_remove_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va, vm_offset_t *vap,
3883 vm_offset_t va_next, vm_page_t ml3, struct spglist *free,
3884 struct rwlock **lockp)
3885 {
3886 struct md_page *pvh;
3887 struct rwlock *new_lock;
3888 pt_entry_t first_l3e, l3e, *tl3p;
3889 vm_offset_t tva;
3890 vm_page_t m, mt;
3891
3892 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3893 KASSERT(((uintptr_t)l3p & ((L3C_ENTRIES * sizeof(pt_entry_t)) - 1)) ==
3894 0, ("pmap_remove_l3c: l3p is not aligned"));
3895 KASSERT((va & L3C_OFFSET) == 0,
3896 ("pmap_remove_l3c: va is not aligned"));
3897
3898 /*
3899 * Hardware accessed and dirty bit maintenance might only update a
3900 * single L3 entry, so we must combine the accessed and dirty bits
3901 * from this entire set of contiguous L3 entries.
3902 */
3903 first_l3e = pmap_load_clear(l3p);
3904 for (tl3p = l3p + 1; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
3905 l3e = pmap_load_clear(tl3p);
3906 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
3907 ("pmap_remove_l3c: l3e is missing ATTR_CONTIGUOUS"));
3908 if ((l3e & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) ==
3909 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RW)))
3910 first_l3e &= ~ATTR_S1_AP_RW_BIT;
3911 first_l3e |= l3e & ATTR_AF;
3912 }
3913 if ((first_l3e & ATTR_SW_WIRED) != 0)
3914 pmap->pm_stats.wired_count -= L3C_ENTRIES;
3915 pmap_resident_count_dec(pmap, L3C_ENTRIES);
3916 if ((first_l3e & ATTR_SW_MANAGED) != 0) {
3917 m = PTE_TO_VM_PAGE(first_l3e);
3918 new_lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3919 if (new_lock != *lockp) {
3920 if (*lockp != NULL) {
3921 /*
3922 * Pending TLB invalidations must be
3923 * performed before the PV list lock is
3924 * released. Otherwise, a concurrent
3925 * pmap_remove_all() on a physical page
3926 * could return while a stale TLB entry
3927 * still provides access to that page.
3928 */
3929 if (*vap != va_next) {
3930 pmap_invalidate_range(pmap, *vap, va,
3931 true);
3932 *vap = va_next;
3933 }
3934 rw_wunlock(*lockp);
3935 }
3936 *lockp = new_lock;
3937 rw_wlock(*lockp);
3938 }
3939 pvh = page_to_pvh(m);
3940 for (mt = m, tva = va; mt < &m[L3C_ENTRIES]; mt++, tva +=
3941 L3_SIZE) {
3942 if (pmap_pte_dirty(pmap, first_l3e))
3943 vm_page_dirty(mt);
3944 if ((first_l3e & ATTR_AF) != 0)
3945 vm_page_aflag_set(mt, PGA_REFERENCED);
3946 pmap_pvh_free(&mt->md, pmap, tva);
3947 if (TAILQ_EMPTY(&mt->md.pv_list) &&
3948 TAILQ_EMPTY(&pvh->pv_list))
3949 vm_page_aflag_clear(mt, PGA_WRITEABLE);
3950 }
3951 }
3952 if (*vap == va_next)
3953 *vap = va;
3954 if (ml3 != NULL) {
3955 ml3->ref_count -= L3C_ENTRIES;
3956 if (ml3->ref_count == 0) {
3957 _pmap_unwire_l3(pmap, va, ml3, free);
3958 return (true);
3959 }
3960 }
3961 return (false);
3962 }
3963
3964 /*
3965 * Remove the specified range of addresses from the L3 page table that is
3966 * identified by the given L2 entry.
3967 */
3968 static void
pmap_remove_l3_range(pmap_t pmap,pd_entry_t l2e,vm_offset_t sva,vm_offset_t eva,struct spglist * free,struct rwlock ** lockp)3969 pmap_remove_l3_range(pmap_t pmap, pd_entry_t l2e, vm_offset_t sva,
3970 vm_offset_t eva, struct spglist *free, struct rwlock **lockp)
3971 {
3972 struct md_page *pvh;
3973 struct rwlock *new_lock;
3974 pt_entry_t *l3, old_l3;
3975 vm_offset_t va;
3976 vm_page_t l3pg, m;
3977
3978 KASSERT(ADDR_IS_CANONICAL(sva),
3979 ("%s: Start address not in canonical form: %lx", __func__, sva));
3980 KASSERT(ADDR_IS_CANONICAL(eva) || eva == VM_MAX_USER_ADDRESS,
3981 ("%s: End address not in canonical form: %lx", __func__, eva));
3982
3983 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3984 KASSERT(rounddown2(sva, L2_SIZE) + L2_SIZE == roundup2(eva, L2_SIZE),
3985 ("pmap_remove_l3_range: range crosses an L3 page table boundary"));
3986 l3pg = !ADDR_IS_KERNEL(sva) ? PTE_TO_VM_PAGE(l2e) : NULL;
3987 va = eva;
3988 for (l3 = pmap_l2_to_l3(&l2e, sva); sva != eva; l3++, sva += L3_SIZE) {
3989 old_l3 = pmap_load(l3);
3990 if (!pmap_l3_valid(old_l3)) {
3991 if (va != eva) {
3992 pmap_invalidate_range(pmap, va, sva, true);
3993 va = eva;
3994 }
3995 continue;
3996 }
3997 if ((old_l3 & ATTR_CONTIGUOUS) != 0) {
3998 /*
3999 * Is this entire set of contiguous L3 entries being
4000 * removed? Handle the possibility that "eva" is zero
4001 * because of address wraparound.
4002 */
4003 if ((sva & L3C_OFFSET) == 0 &&
4004 sva + L3C_OFFSET <= eva - 1) {
4005 if (pmap_remove_l3c(pmap, l3, sva, &va, eva,
4006 l3pg, free, lockp)) {
4007 /* The L3 table was unmapped. */
4008 sva += L3C_SIZE;
4009 break;
4010 }
4011 l3 += L3C_ENTRIES - 1;
4012 sva += L3C_SIZE - L3_SIZE;
4013 continue;
4014 }
4015
4016 (void)pmap_demote_l3c(pmap, l3, sva);
4017 }
4018 old_l3 = pmap_load_clear(l3);
4019 if ((old_l3 & ATTR_SW_WIRED) != 0)
4020 pmap->pm_stats.wired_count--;
4021 pmap_resident_count_dec(pmap, 1);
4022 if ((old_l3 & ATTR_SW_MANAGED) != 0) {
4023 m = PTE_TO_VM_PAGE(old_l3);
4024 if (pmap_pte_dirty(pmap, old_l3))
4025 vm_page_dirty(m);
4026 if ((old_l3 & ATTR_AF) != 0)
4027 vm_page_aflag_set(m, PGA_REFERENCED);
4028 new_lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4029 if (new_lock != *lockp) {
4030 if (*lockp != NULL) {
4031 /*
4032 * Pending TLB invalidations must be
4033 * performed before the PV list lock is
4034 * released. Otherwise, a concurrent
4035 * pmap_remove_all() on a physical page
4036 * could return while a stale TLB entry
4037 * still provides access to that page.
4038 */
4039 if (va != eva) {
4040 pmap_invalidate_range(pmap, va,
4041 sva, true);
4042 va = eva;
4043 }
4044 rw_wunlock(*lockp);
4045 }
4046 *lockp = new_lock;
4047 rw_wlock(*lockp);
4048 }
4049 pmap_pvh_free(&m->md, pmap, sva);
4050 if (TAILQ_EMPTY(&m->md.pv_list) &&
4051 (m->flags & PG_FICTITIOUS) == 0) {
4052 pvh = page_to_pvh(m);
4053 if (TAILQ_EMPTY(&pvh->pv_list))
4054 vm_page_aflag_clear(m, PGA_WRITEABLE);
4055 }
4056 }
4057 if (l3pg != NULL && pmap_unwire_l3(pmap, sva, l3pg, free)) {
4058 /*
4059 * _pmap_unwire_l3() has already invalidated the TLB
4060 * entries at all levels for "sva". So, we need not
4061 * perform "sva += L3_SIZE;" here. Moreover, we need
4062 * not perform "va = sva;" if "sva" is at the start
4063 * of a new valid range consisting of a single page.
4064 */
4065 break;
4066 }
4067 if (va == eva)
4068 va = sva;
4069 }
4070 if (va != eva)
4071 pmap_invalidate_range(pmap, va, sva, true);
4072 }
4073
4074 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)4075 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
4076 {
4077 struct rwlock *lock;
4078 vm_offset_t va_next;
4079 pd_entry_t *l0, *l1, *l2;
4080 pt_entry_t l3_paddr;
4081 struct spglist free;
4082
4083 /*
4084 * Perform an unsynchronized read. This is, however, safe.
4085 */
4086 if (pmap->pm_stats.resident_count == 0)
4087 return;
4088
4089 SLIST_INIT(&free);
4090
4091 PMAP_LOCK(pmap);
4092 if (map_delete)
4093 pmap_bti_on_remove(pmap, sva, eva);
4094
4095 lock = NULL;
4096 for (; sva < eva; sva = va_next) {
4097 if (pmap->pm_stats.resident_count == 0)
4098 break;
4099
4100 l0 = pmap_l0(pmap, sva);
4101 if (pmap_load(l0) == 0) {
4102 va_next = (sva + L0_SIZE) & ~L0_OFFSET;
4103 if (va_next < sva)
4104 va_next = eva;
4105 continue;
4106 }
4107
4108 va_next = (sva + L1_SIZE) & ~L1_OFFSET;
4109 if (va_next < sva)
4110 va_next = eva;
4111 l1 = pmap_l0_to_l1(l0, sva);
4112 if (pmap_load(l1) == 0)
4113 continue;
4114 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
4115 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
4116 KASSERT(va_next <= eva,
4117 ("partial update of non-transparent 1G page "
4118 "l1 %#lx sva %#lx eva %#lx va_next %#lx",
4119 pmap_load(l1), sva, eva, va_next));
4120 MPASS(pmap != kernel_pmap);
4121 MPASS((pmap_load(l1) & ATTR_SW_MANAGED) == 0);
4122 pmap_clear(l1);
4123 pmap_s1_invalidate_page(pmap, sva, true);
4124 pmap_resident_count_dec(pmap, L1_SIZE / PAGE_SIZE);
4125 pmap_unuse_pt(pmap, sva, pmap_load(l0), &free);
4126 continue;
4127 }
4128
4129 /*
4130 * Calculate index for next page table.
4131 */
4132 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
4133 if (va_next < sva)
4134 va_next = eva;
4135
4136 l2 = pmap_l1_to_l2(l1, sva);
4137 if (l2 == NULL)
4138 continue;
4139
4140 l3_paddr = pmap_load(l2);
4141
4142 if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) {
4143 if (sva + L2_SIZE == va_next && eva >= va_next) {
4144 pmap_remove_l2(pmap, l2, sva, pmap_load(l1),
4145 &free, &lock);
4146 continue;
4147 } else if (pmap_demote_l2_locked(pmap, l2, sva,
4148 &lock) == NULL)
4149 continue;
4150 l3_paddr = pmap_load(l2);
4151 }
4152
4153 /*
4154 * Weed out invalid mappings.
4155 */
4156 if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE)
4157 continue;
4158
4159 /*
4160 * Limit our scan to either the end of the va represented
4161 * by the current page table page, or to the end of the
4162 * range being removed.
4163 */
4164 if (va_next > eva)
4165 va_next = eva;
4166
4167 pmap_remove_l3_range(pmap, l3_paddr, sva, va_next, &free,
4168 &lock);
4169 }
4170 if (lock != NULL)
4171 rw_wunlock(lock);
4172 PMAP_UNLOCK(pmap);
4173 vm_page_free_pages_toq(&free, true);
4174 }
4175
4176 /*
4177 * Remove the given range of addresses from the specified map.
4178 *
4179 * It is assumed that the start and end are properly
4180 * rounded to the page size.
4181 */
4182 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)4183 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4184 {
4185 pmap_remove1(pmap, sva, eva, false);
4186 }
4187
4188 /*
4189 * Remove the given range of addresses as part of a logical unmap
4190 * operation. This has the effect of calling pmap_remove(), but
4191 * also clears any metadata that should persist for the lifetime
4192 * of a logical mapping.
4193 */
4194 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)4195 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4196 {
4197 pmap_remove1(pmap, sva, eva, true);
4198 }
4199
4200 /*
4201 * Routine: pmap_remove_all
4202 * Function:
4203 * Removes this physical page from
4204 * all physical maps in which it resides.
4205 * Reflects back modify bits to the pager.
4206 *
4207 * Notes:
4208 * Original versions of this routine were very
4209 * inefficient because they iteratively called
4210 * pmap_remove (slow...)
4211 */
4212
4213 void
pmap_remove_all(vm_page_t m)4214 pmap_remove_all(vm_page_t m)
4215 {
4216 struct md_page *pvh;
4217 pv_entry_t pv;
4218 pmap_t pmap;
4219 struct rwlock *lock;
4220 pd_entry_t *pde, tpde;
4221 pt_entry_t *pte, tpte;
4222 vm_offset_t va;
4223 struct spglist free;
4224 int lvl, pvh_gen, md_gen;
4225
4226 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4227 ("pmap_remove_all: page %p is not managed", m));
4228 SLIST_INIT(&free);
4229 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4230 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
4231 rw_wlock(lock);
4232 retry:
4233 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4234 pmap = PV_PMAP(pv);
4235 if (!PMAP_TRYLOCK(pmap)) {
4236 pvh_gen = pvh->pv_gen;
4237 rw_wunlock(lock);
4238 PMAP_LOCK(pmap);
4239 rw_wlock(lock);
4240 if (pvh_gen != pvh->pv_gen) {
4241 PMAP_UNLOCK(pmap);
4242 goto retry;
4243 }
4244 }
4245 va = pv->pv_va;
4246 pte = pmap_pte_exists(pmap, va, 2, __func__);
4247 pmap_demote_l2_locked(pmap, pte, va, &lock);
4248 PMAP_UNLOCK(pmap);
4249 }
4250 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4251 pmap = PV_PMAP(pv);
4252 if (!PMAP_TRYLOCK(pmap)) {
4253 pvh_gen = pvh->pv_gen;
4254 md_gen = m->md.pv_gen;
4255 rw_wunlock(lock);
4256 PMAP_LOCK(pmap);
4257 rw_wlock(lock);
4258 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4259 PMAP_UNLOCK(pmap);
4260 goto retry;
4261 }
4262 }
4263 pmap_resident_count_dec(pmap, 1);
4264
4265 pde = pmap_pde(pmap, pv->pv_va, &lvl);
4266 KASSERT(pde != NULL,
4267 ("pmap_remove_all: no page directory entry found"));
4268 KASSERT(lvl == 2,
4269 ("pmap_remove_all: invalid pde level %d", lvl));
4270 tpde = pmap_load(pde);
4271
4272 pte = pmap_l2_to_l3(pde, pv->pv_va);
4273 tpte = pmap_load(pte);
4274 if ((tpte & ATTR_CONTIGUOUS) != 0)
4275 (void)pmap_demote_l3c(pmap, pte, pv->pv_va);
4276 tpte = pmap_load_clear(pte);
4277 if (tpte & ATTR_SW_WIRED)
4278 pmap->pm_stats.wired_count--;
4279 if ((tpte & ATTR_AF) != 0) {
4280 pmap_invalidate_page(pmap, pv->pv_va, true);
4281 vm_page_aflag_set(m, PGA_REFERENCED);
4282 }
4283
4284 /*
4285 * Update the vm_page_t clean and reference bits.
4286 */
4287 if (pmap_pte_dirty(pmap, tpte))
4288 vm_page_dirty(m);
4289 pmap_unuse_pt(pmap, pv->pv_va, tpde, &free);
4290 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4291 m->md.pv_gen++;
4292 free_pv_entry(pmap, pv);
4293 PMAP_UNLOCK(pmap);
4294 }
4295 vm_page_aflag_clear(m, PGA_WRITEABLE);
4296 rw_wunlock(lock);
4297 vm_page_free_pages_toq(&free, true);
4298 }
4299
4300 /*
4301 * Masks and sets bits in a level 2 page table entries in the specified pmap
4302 */
4303 static void
pmap_protect_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t sva,pt_entry_t mask,pt_entry_t nbits)4304 pmap_protect_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pt_entry_t mask,
4305 pt_entry_t nbits)
4306 {
4307 pd_entry_t old_l2;
4308 vm_page_t m, mt;
4309
4310 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4311 PMAP_ASSERT_STAGE1(pmap);
4312 KASSERT((sva & L2_OFFSET) == 0,
4313 ("pmap_protect_l2: sva is not 2mpage aligned"));
4314 old_l2 = pmap_load(l2);
4315 KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK,
4316 ("pmap_protect_l2: L2e %lx is not a block mapping", old_l2));
4317
4318 /*
4319 * Return if the L2 entry already has the desired access restrictions
4320 * in place.
4321 */
4322 if ((old_l2 & mask) == nbits)
4323 return;
4324
4325 while (!atomic_fcmpset_64(l2, &old_l2, (old_l2 & ~mask) | nbits))
4326 cpu_spinwait();
4327
4328 /*
4329 * When a dirty read/write superpage mapping is write protected,
4330 * update the dirty field of each of the superpage's constituent 4KB
4331 * pages.
4332 */
4333 if ((old_l2 & ATTR_SW_MANAGED) != 0 &&
4334 (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
4335 pmap_pte_dirty(pmap, old_l2)) {
4336 m = PTE_TO_VM_PAGE(old_l2);
4337 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
4338 vm_page_dirty(mt);
4339 }
4340
4341 /*
4342 * Since a promotion must break the 4KB page mappings before making
4343 * the 2MB page mapping, a pmap_s1_invalidate_page() suffices.
4344 */
4345 pmap_s1_invalidate_page(pmap, sva, true);
4346 }
4347
4348 /*
4349 * Masks and sets bits in the specified L3C superpage mapping.
4350 *
4351 * Requests TLB invalidations to be performed by the caller through the
4352 * returned "*vap".
4353 */
4354 static void
pmap_mask_set_l3c(pmap_t pmap,pt_entry_t * l3p,vm_offset_t va,vm_offset_t * vap,vm_offset_t va_next,pt_entry_t mask,pt_entry_t nbits)4355 pmap_mask_set_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va,
4356 vm_offset_t *vap, vm_offset_t va_next, pt_entry_t mask, pt_entry_t nbits)
4357 {
4358 pt_entry_t l3e, *tl3p;
4359 vm_page_t m, mt;
4360 bool dirty;
4361
4362 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4363 KASSERT(((uintptr_t)l3p & ((L3C_ENTRIES * sizeof(pt_entry_t)) - 1)) ==
4364 0, ("pmap_mask_set_l3c: l3p is not aligned"));
4365 KASSERT((va & L3C_OFFSET) == 0,
4366 ("pmap_mask_set_l3c: va is not aligned"));
4367 dirty = false;
4368 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
4369 l3e = pmap_load(tl3p);
4370 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
4371 ("pmap_mask_set_l3c: l3e is missing ATTR_CONTIGUOUS"));
4372 while (!atomic_fcmpset_64(tl3p, &l3e, (l3e & ~mask) | nbits))
4373 cpu_spinwait();
4374 if ((l3e & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) ==
4375 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RW)))
4376 dirty = true;
4377 }
4378
4379 /*
4380 * When a dirty read/write superpage mapping is write protected,
4381 * update the dirty field of each of the superpage's constituent 4KB
4382 * pages.
4383 */
4384 if ((l3e & ATTR_SW_MANAGED) != 0 &&
4385 (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
4386 dirty) {
4387 m = PTE_TO_VM_PAGE(pmap_load(l3p));
4388 for (mt = m; mt < &m[L3C_ENTRIES]; mt++)
4389 vm_page_dirty(mt);
4390 }
4391
4392 if (*vap == va_next)
4393 *vap = va;
4394 }
4395
4396 /*
4397 * Masks and sets bits in last level page table entries in the specified
4398 * pmap and range
4399 */
4400 static void
pmap_mask_set_locked(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t mask,pt_entry_t nbits,bool invalidate)4401 pmap_mask_set_locked(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t mask,
4402 pt_entry_t nbits, bool invalidate)
4403 {
4404 vm_offset_t va, va_next;
4405 pd_entry_t *l0, *l1, *l2;
4406 pt_entry_t *l3p, l3;
4407
4408 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4409 for (; sva < eva; sva = va_next) {
4410 l0 = pmap_l0(pmap, sva);
4411 if (pmap_load(l0) == 0) {
4412 va_next = (sva + L0_SIZE) & ~L0_OFFSET;
4413 if (va_next < sva)
4414 va_next = eva;
4415 continue;
4416 }
4417
4418 va_next = (sva + L1_SIZE) & ~L1_OFFSET;
4419 if (va_next < sva)
4420 va_next = eva;
4421 l1 = pmap_l0_to_l1(l0, sva);
4422 if (pmap_load(l1) == 0)
4423 continue;
4424 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
4425 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
4426 KASSERT(va_next <= eva,
4427 ("partial update of non-transparent 1G page "
4428 "l1 %#lx sva %#lx eva %#lx va_next %#lx",
4429 pmap_load(l1), sva, eva, va_next));
4430 MPASS((pmap_load(l1) & ATTR_SW_MANAGED) == 0);
4431 if ((pmap_load(l1) & mask) != nbits) {
4432 pmap_store(l1, (pmap_load(l1) & ~mask) | nbits);
4433 if (invalidate)
4434 pmap_s1_invalidate_page(pmap, sva, true);
4435 }
4436 continue;
4437 }
4438
4439 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
4440 if (va_next < sva)
4441 va_next = eva;
4442
4443 l2 = pmap_l1_to_l2(l1, sva);
4444 if (pmap_load(l2) == 0)
4445 continue;
4446
4447 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
4448 if (sva + L2_SIZE == va_next && eva >= va_next) {
4449 pmap_protect_l2(pmap, l2, sva, mask, nbits);
4450 continue;
4451 } else if ((pmap_load(l2) & mask) == nbits ||
4452 pmap_demote_l2(pmap, l2, sva) == NULL)
4453 continue;
4454 }
4455 KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
4456 ("pmap_protect: Invalid L2 entry after demotion"));
4457
4458 if (va_next > eva)
4459 va_next = eva;
4460
4461 va = va_next;
4462 for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++,
4463 sva += L3_SIZE) {
4464 l3 = pmap_load(l3p);
4465
4466 /*
4467 * Go to the next L3 entry if the current one is
4468 * invalid or already has the desired access
4469 * restrictions in place. (The latter case occurs
4470 * frequently. For example, in a "buildworld"
4471 * workload, almost 1 out of 4 L3 entries already
4472 * have the desired restrictions.)
4473 */
4474 if (!pmap_l3_valid(l3) || (l3 & mask) == nbits) {
4475 if (va != va_next) {
4476 if (invalidate)
4477 pmap_s1_invalidate_range(pmap,
4478 va, sva, true);
4479 va = va_next;
4480 }
4481 if ((l3 & ATTR_CONTIGUOUS) != 0) {
4482 /*
4483 * Does this L3C page extend beyond
4484 * the requested range? Handle the
4485 * possibility that "va_next" is zero.
4486 */
4487 if ((sva | L3C_OFFSET) > va_next - 1)
4488 break;
4489
4490 /*
4491 * Skip ahead to the last L3_PAGE
4492 * within this L3C page.
4493 */
4494 l3p = (pt_entry_t *)((uintptr_t)l3p |
4495 ((L3C_ENTRIES - 1) *
4496 sizeof(pt_entry_t)));
4497 sva |= L3C_SIZE - L3_SIZE;
4498 }
4499 continue;
4500 }
4501
4502 if ((l3 & ATTR_CONTIGUOUS) != 0) {
4503 /*
4504 * Is this entire set of contiguous L3 entries
4505 * being protected? Handle the possibility
4506 * that "va_next" is zero because of address
4507 * wraparound.
4508 */
4509 if ((sva & L3C_OFFSET) == 0 &&
4510 sva + L3C_OFFSET <= va_next - 1) {
4511 pmap_mask_set_l3c(pmap, l3p, sva, &va,
4512 va_next, mask, nbits);
4513 l3p += L3C_ENTRIES - 1;
4514 sva += L3C_SIZE - L3_SIZE;
4515 continue;
4516 }
4517
4518 (void)pmap_demote_l3c(pmap, l3p, sva);
4519
4520 /*
4521 * The L3 entry's accessed bit may have changed.
4522 */
4523 l3 = pmap_load(l3p);
4524 }
4525 while (!atomic_fcmpset_64(l3p, &l3, (l3 & ~mask) |
4526 nbits))
4527 cpu_spinwait();
4528
4529 /*
4530 * When a dirty read/write mapping is write protected,
4531 * update the page's dirty field.
4532 */
4533 if ((l3 & ATTR_SW_MANAGED) != 0 &&
4534 (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 &&
4535 pmap_pte_dirty(pmap, l3))
4536 vm_page_dirty(PTE_TO_VM_PAGE(l3));
4537
4538 if (va == va_next)
4539 va = sva;
4540 }
4541 if (va != va_next && invalidate)
4542 pmap_s1_invalidate_range(pmap, va, sva, true);
4543 }
4544 }
4545
4546 static void
pmap_mask_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t mask,pt_entry_t nbits,bool invalidate)4547 pmap_mask_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t mask,
4548 pt_entry_t nbits, bool invalidate)
4549 {
4550 PMAP_LOCK(pmap);
4551 pmap_mask_set_locked(pmap, sva, eva, mask, nbits, invalidate);
4552 PMAP_UNLOCK(pmap);
4553 }
4554
4555 /*
4556 * Set the physical protection on the
4557 * specified range of this map as requested.
4558 */
4559 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)4560 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4561 {
4562 pt_entry_t mask, nbits;
4563
4564 PMAP_ASSERT_STAGE1(pmap);
4565 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4566 if (prot == VM_PROT_NONE) {
4567 pmap_remove(pmap, sva, eva);
4568 return;
4569 }
4570
4571 mask = nbits = 0;
4572 if ((prot & VM_PROT_WRITE) == 0) {
4573 mask |= ATTR_S1_AP_RW_BIT | ATTR_SW_DBM;
4574 nbits |= ATTR_S1_AP(ATTR_S1_AP_RO);
4575 }
4576 if ((prot & VM_PROT_EXECUTE) == 0) {
4577 mask |= ATTR_S1_XN;
4578 nbits |= ATTR_S1_XN;
4579 }
4580 if (pmap == kernel_pmap) {
4581 mask |= ATTR_KERN_GP;
4582 nbits |= ATTR_KERN_GP;
4583 }
4584 if (mask == 0)
4585 return;
4586
4587 pmap_mask_set(pmap, sva, eva, mask, nbits, true);
4588 }
4589
4590 void
pmap_disable_promotion(vm_offset_t sva,vm_size_t size)4591 pmap_disable_promotion(vm_offset_t sva, vm_size_t size)
4592 {
4593
4594 MPASS((sva & L3_OFFSET) == 0);
4595 MPASS(((sva + size) & L3_OFFSET) == 0);
4596
4597 pmap_mask_set(kernel_pmap, sva, sva + size, ATTR_SW_NO_PROMOTE,
4598 ATTR_SW_NO_PROMOTE, false);
4599 }
4600
4601 /*
4602 * Inserts the specified page table page into the specified pmap's collection
4603 * of idle page table pages. Each of a pmap's page table pages is responsible
4604 * for mapping a distinct range of virtual addresses. The pmap's collection is
4605 * ordered by this virtual address range.
4606 *
4607 * If "promoted" is false, then the page table page "mpte" must be zero filled;
4608 * "mpte"'s valid field will be set to 0.
4609 *
4610 * If "promoted" is true and "all_l3e_AF_set" is false, then "mpte" must
4611 * contain valid mappings with identical attributes except for ATTR_AF;
4612 * "mpte"'s valid field will be set to 1.
4613 *
4614 * If "promoted" and "all_l3e_AF_set" are both true, then "mpte" must contain
4615 * valid mappings with identical attributes including ATTR_AF; "mpte"'s valid
4616 * field will be set to VM_PAGE_BITS_ALL.
4617 */
4618 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool all_l3e_AF_set)4619 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4620 bool all_l3e_AF_set)
4621 {
4622
4623 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4624 KASSERT(promoted || !all_l3e_AF_set,
4625 ("a zero-filled PTP can't have ATTR_AF set in every PTE"));
4626 mpte->valid = promoted ? (all_l3e_AF_set ? VM_PAGE_BITS_ALL : 1) : 0;
4627 return (vm_radix_insert(&pmap->pm_root, mpte));
4628 }
4629
4630 /*
4631 * Removes the page table page mapping the specified virtual address from the
4632 * specified pmap's collection of idle page table pages, and returns it.
4633 * Otherwise, returns NULL if there is no page table page corresponding to the
4634 * specified virtual address.
4635 */
4636 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4637 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4638 {
4639
4640 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4641 return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
4642 }
4643
4644 /*
4645 * Performs a break-before-make update of a pmap entry. This is needed when
4646 * either promoting or demoting pages to ensure the TLB doesn't get into an
4647 * inconsistent state.
4648 */
4649 static void
pmap_update_entry(pmap_t pmap,pd_entry_t * ptep,pd_entry_t newpte,vm_offset_t va,vm_size_t size)4650 pmap_update_entry(pmap_t pmap, pd_entry_t *ptep, pd_entry_t newpte,
4651 vm_offset_t va, vm_size_t size)
4652 {
4653 register_t intr;
4654
4655 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4656 KASSERT((newpte & ATTR_SW_NO_PROMOTE) == 0,
4657 ("%s: Updating non-promote pte", __func__));
4658
4659 /*
4660 * Ensure we don't get switched out with the page table in an
4661 * inconsistent state. We also need to ensure no interrupts fire
4662 * as they may make use of an address we are about to invalidate.
4663 */
4664 intr = intr_disable();
4665
4666 /*
4667 * Clear the old mapping's valid bit, but leave the rest of the entry
4668 * unchanged, so that a lockless, concurrent pmap_kextract() can still
4669 * lookup the physical address.
4670 */
4671 pmap_clear_bits(ptep, ATTR_DESCR_VALID);
4672
4673 /*
4674 * When promoting, the L{1,2}_TABLE entry that is being replaced might
4675 * be cached, so we invalidate intermediate entries as well as final
4676 * entries.
4677 */
4678 pmap_s1_invalidate_range(pmap, va, va + size, false);
4679
4680 /* Create the new mapping */
4681 pmap_store(ptep, newpte);
4682 dsb(ishst);
4683
4684 intr_restore(intr);
4685 }
4686
4687 /*
4688 * Performs a break-before-make update of an ATTR_CONTIGUOUS mapping.
4689 */
4690 static void __nosanitizecoverage
pmap_update_strided(pmap_t pmap,pd_entry_t * ptep,pd_entry_t * ptep_end,pd_entry_t newpte,vm_offset_t va,vm_offset_t stride,vm_size_t size)4691 pmap_update_strided(pmap_t pmap, pd_entry_t *ptep, pd_entry_t *ptep_end,
4692 pd_entry_t newpte, vm_offset_t va, vm_offset_t stride, vm_size_t size)
4693 {
4694 pd_entry_t *lip;
4695 register_t intr;
4696
4697 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4698 KASSERT((newpte & ATTR_SW_NO_PROMOTE) == 0,
4699 ("%s: Updating non-promote pte", __func__));
4700
4701 /*
4702 * Ensure we don't get switched out with the page table in an
4703 * inconsistent state. We also need to ensure no interrupts fire
4704 * as they may make use of an address we are about to invalidate.
4705 */
4706 intr = intr_disable();
4707
4708 /*
4709 * Clear the old mapping's valid bits, but leave the rest of each
4710 * entry unchanged, so that a lockless, concurrent pmap_kextract() can
4711 * still lookup the physical address.
4712 */
4713 for (lip = ptep; lip < ptep_end; lip++)
4714 pmap_clear_bits(lip, ATTR_DESCR_VALID);
4715
4716 /* Only final entries are changing. */
4717 pmap_s1_invalidate_strided(pmap, va, va + size, stride, true);
4718
4719 /* Create the new mapping. */
4720 for (lip = ptep; lip < ptep_end; lip++) {
4721 pmap_store(lip, newpte);
4722 newpte += stride;
4723 }
4724 dsb(ishst);
4725
4726 intr_restore(intr);
4727 }
4728
4729 #if VM_NRESERVLEVEL > 0
4730 /*
4731 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
4732 * replace the many pv entries for the 4KB page mappings by a single pv entry
4733 * for the 2MB page mapping.
4734 */
4735 static void
pmap_pv_promote_l2(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)4736 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
4737 struct rwlock **lockp)
4738 {
4739 struct md_page *pvh;
4740 pv_entry_t pv;
4741 vm_offset_t va_last;
4742 vm_page_t m;
4743
4744 KASSERT((pa & L2_OFFSET) == 0,
4745 ("pmap_pv_promote_l2: pa is not 2mpage aligned"));
4746 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4747
4748 /*
4749 * Transfer the first page's pv entry for this mapping to the 2mpage's
4750 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
4751 * a transfer avoids the possibility that get_pv_entry() calls
4752 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
4753 * mappings that is being promoted.
4754 */
4755 m = PHYS_TO_VM_PAGE(pa);
4756 va = va & ~L2_OFFSET;
4757 pv = pmap_pvh_remove(&m->md, pmap, va);
4758 KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found"));
4759 pvh = page_to_pvh(m);
4760 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4761 pvh->pv_gen++;
4762 /* Free the remaining NPTEPG - 1 pv entries. */
4763 va_last = va + L2_SIZE - PAGE_SIZE;
4764 do {
4765 m++;
4766 va += PAGE_SIZE;
4767 pmap_pvh_free(&m->md, pmap, va);
4768 } while (va < va_last);
4769 }
4770
4771 /*
4772 * Tries to promote the 512, contiguous 4KB page mappings that are within a
4773 * single level 2 table entry to a single 2MB page mapping. For promotion
4774 * to occur, two conditions must be met: (1) the 4KB page mappings must map
4775 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
4776 * identical characteristics.
4777 */
4778 static bool
pmap_promote_l2(pmap_t pmap,pd_entry_t * l2,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)4779 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va, vm_page_t mpte,
4780 struct rwlock **lockp)
4781 {
4782 pt_entry_t all_l3e_AF, *firstl3, *l3, newl2, oldl3, pa;
4783
4784 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4785
4786 /*
4787 * Currently, this function only supports promotion on stage 1 pmaps
4788 * because it tests stage 1 specific fields and performs a break-
4789 * before-make sequence that is incorrect for stage 2 pmaps.
4790 */
4791 if (pmap->pm_stage != PM_STAGE1 || !pmap_ps_enabled(pmap))
4792 return (false);
4793
4794 /*
4795 * Examine the first L3E in the specified PTP. Abort if this L3E is
4796 * ineligible for promotion...
4797 */
4798 firstl3 = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l2)));
4799 newl2 = pmap_load(firstl3);
4800 if ((newl2 & ATTR_SW_NO_PROMOTE) != 0)
4801 return (false);
4802 /* ... is not the first physical page within an L2 block */
4803 if ((PTE_TO_PHYS(newl2) & L2_OFFSET) != 0 ||
4804 ((newl2 & ATTR_DESCR_MASK) != L3_PAGE)) { /* ... or is invalid */
4805 atomic_add_long(&pmap_l2_p_failures, 1);
4806 CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
4807 " in pmap %p", va, pmap);
4808 return (false);
4809 }
4810
4811 /*
4812 * Both here and in the below "for" loop, to allow for repromotion
4813 * after MADV_FREE, conditionally write protect a clean L3E before
4814 * possibly aborting the promotion due to other L3E attributes. Why?
4815 * Suppose that MADV_FREE is applied to a part of a superpage, the
4816 * address range [S, E). pmap_advise() will demote the superpage
4817 * mapping, destroy the 4KB page mapping at the end of [S, E), and
4818 * set AP_RO and clear AF in the L3Es for the rest of [S, E). Later,
4819 * imagine that the memory in [S, E) is recycled, but the last 4KB
4820 * page in [S, E) is not the last to be rewritten, or simply accessed.
4821 * In other words, there is still a 4KB page in [S, E), call it P,
4822 * that is writeable but AP_RO is set and AF is clear in P's L3E.
4823 * Unless we write protect P before aborting the promotion, if and
4824 * when P is finally rewritten, there won't be a page fault to trigger
4825 * repromotion.
4826 */
4827 setl2:
4828 if ((newl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
4829 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
4830 /*
4831 * When the mapping is clean, i.e., ATTR_S1_AP_RO is set,
4832 * ATTR_SW_DBM can be cleared without a TLB invalidation.
4833 */
4834 if (!atomic_fcmpset_64(firstl3, &newl2, newl2 & ~ATTR_SW_DBM))
4835 goto setl2;
4836 newl2 &= ~ATTR_SW_DBM;
4837 CTR2(KTR_PMAP, "pmap_promote_l2: protect for va %#lx"
4838 " in pmap %p", va & ~L2_OFFSET, pmap);
4839 }
4840
4841 /*
4842 * Examine each of the other L3Es in the specified PTP. Abort if this
4843 * L3E maps an unexpected 4KB physical page or does not have identical
4844 * characteristics to the first L3E. If ATTR_AF is not set in every
4845 * PTE, then request that the PTP be refilled on demotion.
4846 */
4847 all_l3e_AF = newl2 & ATTR_AF;
4848 pa = (PTE_TO_PHYS(newl2) | (newl2 & ATTR_DESCR_MASK))
4849 + L2_SIZE - PAGE_SIZE;
4850 for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) {
4851 oldl3 = pmap_load(l3);
4852 if ((PTE_TO_PHYS(oldl3) | (oldl3 & ATTR_DESCR_MASK)) != pa) {
4853 atomic_add_long(&pmap_l2_p_failures, 1);
4854 CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
4855 " in pmap %p", va, pmap);
4856 return (false);
4857 }
4858 setl3:
4859 if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
4860 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
4861 /*
4862 * When the mapping is clean, i.e., ATTR_S1_AP_RO is
4863 * set, ATTR_SW_DBM can be cleared without a TLB
4864 * invalidation.
4865 */
4866 if (!atomic_fcmpset_64(l3, &oldl3, oldl3 &
4867 ~ATTR_SW_DBM))
4868 goto setl3;
4869 oldl3 &= ~ATTR_SW_DBM;
4870 }
4871 if ((oldl3 & ATTR_PROMOTE) != (newl2 & ATTR_PROMOTE)) {
4872 atomic_add_long(&pmap_l2_p_failures, 1);
4873 CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx"
4874 " in pmap %p", va, pmap);
4875 return (false);
4876 }
4877 all_l3e_AF &= oldl3;
4878 pa -= PAGE_SIZE;
4879 }
4880
4881 /*
4882 * Unless all PTEs have ATTR_AF set, clear it from the superpage
4883 * mapping, so that promotions triggered by speculative mappings,
4884 * such as pmap_enter_quick(), don't automatically mark the
4885 * underlying pages as referenced.
4886 */
4887 newl2 &= ~(ATTR_CONTIGUOUS | ATTR_AF | ATTR_DESCR_MASK) | all_l3e_AF;
4888
4889 /*
4890 * Save the page table page in its current state until the L2
4891 * mapping the superpage is demoted by pmap_demote_l2() or
4892 * destroyed by pmap_remove_l3().
4893 */
4894 if (mpte == NULL)
4895 mpte = PTE_TO_VM_PAGE(pmap_load(l2));
4896 KASSERT(mpte >= vm_page_array &&
4897 mpte < &vm_page_array[vm_page_array_size],
4898 ("pmap_promote_l2: page table page is out of range"));
4899 KASSERT(mpte->pindex == pmap_l2_pindex(va),
4900 ("pmap_promote_l2: page table page's pindex is wrong"));
4901 if (pmap_insert_pt_page(pmap, mpte, true, all_l3e_AF != 0)) {
4902 atomic_add_long(&pmap_l2_p_failures, 1);
4903 CTR2(KTR_PMAP,
4904 "pmap_promote_l2: failure for va %#lx in pmap %p", va,
4905 pmap);
4906 return (false);
4907 }
4908
4909 if ((newl2 & ATTR_SW_MANAGED) != 0)
4910 pmap_pv_promote_l2(pmap, va, PTE_TO_PHYS(newl2), lockp);
4911
4912 pmap_update_entry(pmap, l2, newl2 | L2_BLOCK, va & ~L2_OFFSET, L2_SIZE);
4913
4914 atomic_add_long(&pmap_l2_promotions, 1);
4915 CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
4916 pmap);
4917 return (true);
4918 }
4919
4920 /*
4921 * Tries to promote an aligned, contiguous set of base page mappings to a
4922 * single L3C page mapping. For promotion to occur, two conditions must be
4923 * met: (1) the base page mappings must map aligned, contiguous physical
4924 * memory and (2) the base page mappings must have identical characteristics
4925 * except for the accessed flag.
4926 */
4927 static bool
pmap_promote_l3c(pmap_t pmap,pd_entry_t * l3p,vm_offset_t va)4928 pmap_promote_l3c(pmap_t pmap, pd_entry_t *l3p, vm_offset_t va)
4929 {
4930 pd_entry_t all_l3e_AF, firstl3c, *l3, oldl3, pa;
4931
4932 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4933
4934 /*
4935 * Currently, this function only supports promotion on stage 1 pmaps
4936 * because it tests stage 1 specific fields and performs a break-
4937 * before-make sequence that is incorrect for stage 2 pmaps.
4938 */
4939 if (pmap->pm_stage != PM_STAGE1 || !pmap_ps_enabled(pmap))
4940 return (false);
4941
4942 /*
4943 * Compute the address of the first L3 entry in the superpage
4944 * candidate.
4945 */
4946 l3p = (pt_entry_t *)((uintptr_t)l3p & ~((L3C_ENTRIES *
4947 sizeof(pt_entry_t)) - 1));
4948
4949 firstl3c = pmap_load(l3p);
4950
4951 /*
4952 * Examine the first L3 entry. Abort if this L3E is ineligible for
4953 * promotion...
4954 */
4955 if ((firstl3c & ATTR_SW_NO_PROMOTE) != 0)
4956 return (false);
4957 /* ...is not properly aligned... */
4958 if ((PTE_TO_PHYS(firstl3c) & L3C_OFFSET) != 0 ||
4959 (firstl3c & ATTR_DESCR_MASK) != L3_PAGE) { /* ...or is invalid. */
4960 counter_u64_add(pmap_l3c_p_failures, 1);
4961 CTR2(KTR_PMAP, "pmap_promote_l3c: failure for va %#lx"
4962 " in pmap %p", va, pmap);
4963 return (false);
4964 }
4965
4966 /*
4967 * If the first L3 entry is a clean read-write mapping, convert it
4968 * to a read-only mapping. See pmap_promote_l2() for the rationale.
4969 */
4970 set_first:
4971 if ((firstl3c & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
4972 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
4973 /*
4974 * When the mapping is clean, i.e., ATTR_S1_AP_RO is set,
4975 * ATTR_SW_DBM can be cleared without a TLB invalidation.
4976 */
4977 if (!atomic_fcmpset_64(l3p, &firstl3c, firstl3c & ~ATTR_SW_DBM))
4978 goto set_first;
4979 firstl3c &= ~ATTR_SW_DBM;
4980 CTR2(KTR_PMAP, "pmap_promote_l3c: protect for va %#lx"
4981 " in pmap %p", va & ~L3C_OFFSET, pmap);
4982 }
4983
4984 /*
4985 * Check that the rest of the L3 entries are compatible with the first,
4986 * and convert clean read-write mappings to read-only mappings.
4987 */
4988 all_l3e_AF = firstl3c & ATTR_AF;
4989 pa = (PTE_TO_PHYS(firstl3c) | (firstl3c & ATTR_DESCR_MASK)) +
4990 L3C_SIZE - PAGE_SIZE;
4991 for (l3 = l3p + L3C_ENTRIES - 1; l3 > l3p; l3--) {
4992 oldl3 = pmap_load(l3);
4993 if ((PTE_TO_PHYS(oldl3) | (oldl3 & ATTR_DESCR_MASK)) != pa) {
4994 counter_u64_add(pmap_l3c_p_failures, 1);
4995 CTR2(KTR_PMAP, "pmap_promote_l3c: failure for va %#lx"
4996 " in pmap %p", va, pmap);
4997 return (false);
4998 }
4999 set_l3:
5000 if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
5001 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) {
5002 /*
5003 * When the mapping is clean, i.e., ATTR_S1_AP_RO is
5004 * set, ATTR_SW_DBM can be cleared without a TLB
5005 * invalidation.
5006 */
5007 if (!atomic_fcmpset_64(l3, &oldl3, oldl3 &
5008 ~ATTR_SW_DBM))
5009 goto set_l3;
5010 oldl3 &= ~ATTR_SW_DBM;
5011 CTR2(KTR_PMAP, "pmap_promote_l3c: protect for va %#lx"
5012 " in pmap %p", (oldl3 & ~ATTR_MASK & L3C_OFFSET) |
5013 (va & ~L3C_OFFSET), pmap);
5014 }
5015 if ((oldl3 & ATTR_PROMOTE) != (firstl3c & ATTR_PROMOTE)) {
5016 counter_u64_add(pmap_l3c_p_failures, 1);
5017 CTR2(KTR_PMAP, "pmap_promote_l3c: failure for va %#lx"
5018 " in pmap %p", va, pmap);
5019 return (false);
5020 }
5021 all_l3e_AF &= oldl3;
5022 pa -= PAGE_SIZE;
5023 }
5024
5025 /*
5026 * Unless all PTEs have ATTR_AF set, clear it from the superpage
5027 * mapping, so that promotions triggered by speculative mappings,
5028 * such as pmap_enter_quick(), don't automatically mark the
5029 * underlying pages as referenced.
5030 */
5031 firstl3c &= ~ATTR_AF | all_l3e_AF;
5032
5033 /*
5034 * Remake the mappings with the contiguous bit set.
5035 */
5036 pmap_update_strided(pmap, l3p, l3p + L3C_ENTRIES, firstl3c |
5037 ATTR_CONTIGUOUS, va & ~L3C_OFFSET, L3_SIZE, L3C_SIZE);
5038
5039 counter_u64_add(pmap_l3c_promotions, 1);
5040 CTR2(KTR_PMAP, "pmap_promote_l3c: success for va %#lx in pmap %p", va,
5041 pmap);
5042 return (true);
5043 }
5044 #endif /* VM_NRESERVLEVEL > 0 */
5045
5046 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t pte,int flags,int psind)5047 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t pte, int flags,
5048 int psind)
5049 {
5050 pd_entry_t *l0p, *l1p, *l2p, *l3p, newpte, origpte, *tl3p;
5051 vm_page_t mp;
5052
5053 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5054 KASSERT(psind > 0 && psind < MAXPAGESIZES,
5055 ("psind %d unexpected", psind));
5056 KASSERT((PTE_TO_PHYS(pte) & (pagesizes[psind] - 1)) == 0,
5057 ("unaligned phys address %#lx pte %#lx psind %d",
5058 PTE_TO_PHYS(pte), pte, psind));
5059
5060 restart:
5061 newpte = pte;
5062 if (!pmap_bti_same(pmap, va, va + pagesizes[psind], &newpte))
5063 return (KERN_PROTECTION_FAILURE);
5064 if (psind == 3) {
5065 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
5066
5067 KASSERT(pagesizes[psind] == L1_SIZE,
5068 ("pagesizes[%d] != L1_SIZE", psind));
5069 l0p = pmap_l0(pmap, va);
5070 if ((pmap_load(l0p) & ATTR_DESCR_VALID) == 0) {
5071 mp = _pmap_alloc_l3(pmap, pmap_l0_pindex(va), NULL);
5072 if (mp == NULL) {
5073 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
5074 return (KERN_RESOURCE_SHORTAGE);
5075 PMAP_UNLOCK(pmap);
5076 vm_wait(NULL);
5077 PMAP_LOCK(pmap);
5078 goto restart;
5079 }
5080 l1p = pmap_l0_to_l1(l0p, va);
5081 KASSERT(l1p != NULL, ("va %#lx lost l1 entry", va));
5082 origpte = pmap_load(l1p);
5083 } else {
5084 l1p = pmap_l0_to_l1(l0p, va);
5085 KASSERT(l1p != NULL, ("va %#lx lost l1 entry", va));
5086 origpte = pmap_load(l1p);
5087 if ((origpte & ATTR_DESCR_VALID) == 0) {
5088 mp = PTE_TO_VM_PAGE(pmap_load(l0p));
5089 mp->ref_count++;
5090 }
5091 }
5092 KASSERT((PTE_TO_PHYS(origpte) == PTE_TO_PHYS(newpte) &&
5093 (origpte & ATTR_DESCR_MASK) == L1_BLOCK) ||
5094 (origpte & ATTR_DESCR_VALID) == 0,
5095 ("va %#lx changing 1G phys page l1 %#lx newpte %#lx",
5096 va, origpte, newpte));
5097 pmap_store(l1p, newpte);
5098 } else if (psind == 2) {
5099 KASSERT(pagesizes[psind] == L2_SIZE,
5100 ("pagesizes[%d] != L2_SIZE", psind));
5101 l2p = pmap_l2(pmap, va);
5102 if (l2p == NULL) {
5103 mp = _pmap_alloc_l3(pmap, pmap_l1_pindex(va), NULL);
5104 if (mp == NULL) {
5105 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
5106 return (KERN_RESOURCE_SHORTAGE);
5107 PMAP_UNLOCK(pmap);
5108 vm_wait(NULL);
5109 PMAP_LOCK(pmap);
5110 goto restart;
5111 }
5112 l2p = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
5113 l2p = &l2p[pmap_l2_index(va)];
5114 origpte = pmap_load(l2p);
5115 } else {
5116 l1p = pmap_l1(pmap, va);
5117 origpte = pmap_load(l2p);
5118 if ((origpte & ATTR_DESCR_VALID) == 0) {
5119 mp = PTE_TO_VM_PAGE(pmap_load(l1p));
5120 mp->ref_count++;
5121 }
5122 }
5123 KASSERT((origpte & ATTR_DESCR_VALID) == 0 ||
5124 ((origpte & ATTR_DESCR_MASK) == L2_BLOCK &&
5125 PTE_TO_PHYS(origpte) == PTE_TO_PHYS(newpte)),
5126 ("va %#lx changing 2M phys page l2 %#lx newpte %#lx",
5127 va, origpte, newpte));
5128 pmap_store(l2p, newpte);
5129 } else /* (psind == 1) */ {
5130 KASSERT(pagesizes[psind] == L3C_SIZE,
5131 ("pagesizes[%d] != L3C_SIZE", psind));
5132 l2p = pmap_l2(pmap, va);
5133 if (l2p == NULL || (pmap_load(l2p) & ATTR_DESCR_VALID) == 0) {
5134 mp = _pmap_alloc_l3(pmap, pmap_l2_pindex(va), NULL);
5135 if (mp == NULL) {
5136 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
5137 return (KERN_RESOURCE_SHORTAGE);
5138 PMAP_UNLOCK(pmap);
5139 vm_wait(NULL);
5140 PMAP_LOCK(pmap);
5141 goto restart;
5142 }
5143 mp->ref_count += L3C_ENTRIES - 1;
5144 l3p = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
5145 l3p = &l3p[pmap_l3_index(va)];
5146 } else {
5147 l3p = pmap_l2_to_l3(l2p, va);
5148 if ((pmap_load(l3p) & ATTR_DESCR_VALID) == 0) {
5149 mp = PTE_TO_VM_PAGE(pmap_load(l2p));
5150 mp->ref_count += L3C_ENTRIES;
5151 }
5152 }
5153 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
5154 origpte = pmap_load(tl3p);
5155 KASSERT((origpte & ATTR_DESCR_VALID) == 0 ||
5156 ((origpte & ATTR_CONTIGUOUS) != 0 &&
5157 PTE_TO_PHYS(origpte) == PTE_TO_PHYS(newpte)),
5158 ("va %#lx changing 64K phys page l3 %#lx newpte %#lx",
5159 va, origpte, newpte));
5160 pmap_store(tl3p, newpte);
5161 newpte += L3_SIZE;
5162 }
5163 }
5164 dsb(ishst);
5165
5166 if ((origpte & ATTR_DESCR_VALID) == 0)
5167 pmap_resident_count_inc(pmap, pagesizes[psind] / PAGE_SIZE);
5168 if ((newpte & ATTR_SW_WIRED) != 0 && (origpte & ATTR_SW_WIRED) == 0)
5169 pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
5170 else if ((newpte & ATTR_SW_WIRED) == 0 &&
5171 (origpte & ATTR_SW_WIRED) != 0)
5172 pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
5173
5174 return (KERN_SUCCESS);
5175 }
5176
5177 /*
5178 * Insert the given physical page (p) at
5179 * the specified virtual address (v) in the
5180 * target physical map with the protection requested.
5181 *
5182 * If specified, the page will be wired down, meaning
5183 * that the related pte can not be reclaimed.
5184 *
5185 * NB: This is the only routine which MAY NOT lazy-evaluate
5186 * or lose information. That is, this routine must actually
5187 * insert this page into the given map NOW.
5188 */
5189 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)5190 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
5191 u_int flags, int8_t psind)
5192 {
5193 struct rwlock *lock;
5194 pd_entry_t *pde;
5195 pt_entry_t new_l3, orig_l3;
5196 pt_entry_t *l2, *l3;
5197 pv_entry_t pv;
5198 vm_paddr_t opa, pa;
5199 vm_page_t mpte, om;
5200 bool nosleep;
5201 int full_lvl, lvl, rv;
5202
5203 KASSERT(ADDR_IS_CANONICAL(va),
5204 ("%s: Address not in canonical form: %lx", __func__, va));
5205
5206 va = trunc_page(va);
5207 if ((m->oflags & VPO_UNMANAGED) == 0)
5208 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5209 pa = VM_PAGE_TO_PHYS(m);
5210 new_l3 = (pt_entry_t)(PHYS_TO_PTE(pa) | ATTR_AF | pmap_sh_attr |
5211 L3_PAGE);
5212 new_l3 |= pmap_pte_memattr(pmap, m->md.pv_memattr);
5213 new_l3 |= pmap_pte_prot(pmap, prot);
5214 if ((flags & PMAP_ENTER_WIRED) != 0)
5215 new_l3 |= ATTR_SW_WIRED;
5216 if (pmap->pm_stage == PM_STAGE1) {
5217 if (!ADDR_IS_KERNEL(va))
5218 new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
5219 else
5220 new_l3 |= ATTR_S1_UXN;
5221 if (pmap != kernel_pmap)
5222 new_l3 |= ATTR_S1_nG;
5223 } else {
5224 /*
5225 * Clear the access flag on executable mappings, this will be
5226 * set later when the page is accessed. The fault handler is
5227 * required to invalidate the I-cache.
5228 *
5229 * TODO: Switch to the valid flag to allow hardware management
5230 * of the access flag. Much of the pmap code assumes the
5231 * valid flag is set and fails to destroy the old page tables
5232 * correctly if it is clear.
5233 */
5234 if (prot & VM_PROT_EXECUTE)
5235 new_l3 &= ~ATTR_AF;
5236 }
5237 if ((m->oflags & VPO_UNMANAGED) == 0) {
5238 new_l3 |= ATTR_SW_MANAGED;
5239 if ((prot & VM_PROT_WRITE) != 0) {
5240 new_l3 |= ATTR_SW_DBM;
5241 if ((flags & VM_PROT_WRITE) == 0) {
5242 if (pmap->pm_stage == PM_STAGE1)
5243 new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO);
5244 else
5245 new_l3 &=
5246 ~ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
5247 }
5248 }
5249 }
5250
5251 CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
5252
5253 lock = NULL;
5254 PMAP_LOCK(pmap);
5255 if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
5256 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
5257 ("managed largepage va %#lx flags %#x", va, flags));
5258 if (psind == 3) {
5259 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
5260 new_l3 &= ~L3_PAGE;
5261 new_l3 |= L1_BLOCK;
5262 } else if (psind == 2) {
5263 new_l3 &= ~L3_PAGE;
5264 new_l3 |= L2_BLOCK;
5265 } else /* (psind == 1) */
5266 new_l3 |= ATTR_CONTIGUOUS;
5267 rv = pmap_enter_largepage(pmap, va, new_l3, flags, psind);
5268 goto out;
5269 }
5270 if (psind == 2) {
5271 /* Assert the required virtual and physical alignment. */
5272 KASSERT((va & L2_OFFSET) == 0, ("pmap_enter: va unaligned"));
5273 KASSERT(m->psind > 1, ("pmap_enter: m->psind < psind"));
5274 rv = pmap_enter_l2(pmap, va, (new_l3 & ~L3_PAGE) | L2_BLOCK,
5275 flags, m, &lock);
5276 goto out;
5277 }
5278 mpte = NULL;
5279 if (psind == 1) {
5280 KASSERT((va & L3C_OFFSET) == 0, ("pmap_enter: va unaligned"));
5281 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
5282 rv = pmap_enter_l3c(pmap, va, new_l3 | ATTR_CONTIGUOUS, flags,
5283 m, &mpte, &lock);
5284 #if VM_NRESERVLEVEL > 0
5285 /*
5286 * Attempt L2 promotion, if both the PTP and a level 1
5287 * reservation are fully populated.
5288 */
5289 if (rv == KERN_SUCCESS &&
5290 (mpte == NULL || mpte->ref_count == NL3PG) &&
5291 (m->flags & PG_FICTITIOUS) == 0 &&
5292 vm_reserv_level_iffullpop(m) == 1) {
5293 pde = pmap_l2(pmap, va);
5294 (void)pmap_promote_l2(pmap, pde, va, mpte, &lock);
5295 }
5296 #endif
5297 goto out;
5298 }
5299
5300 /*
5301 * In the case that a page table page is not
5302 * resident, we are creating it here.
5303 */
5304 retry:
5305 pde = pmap_pde(pmap, va, &lvl);
5306 if (pde != NULL && lvl == 2) {
5307 l3 = pmap_l2_to_l3(pde, va);
5308 if (!ADDR_IS_KERNEL(va) && mpte == NULL) {
5309 mpte = PTE_TO_VM_PAGE(pmap_load(pde));
5310 mpte->ref_count++;
5311 }
5312 goto havel3;
5313 } else if (pde != NULL && lvl == 1) {
5314 l2 = pmap_l1_to_l2(pde, va);
5315 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK &&
5316 (l3 = pmap_demote_l2_locked(pmap, l2, va, &lock)) != NULL) {
5317 l3 = &l3[pmap_l3_index(va)];
5318 if (!ADDR_IS_KERNEL(va)) {
5319 mpte = PTE_TO_VM_PAGE(pmap_load(l2));
5320 mpte->ref_count++;
5321 }
5322 goto havel3;
5323 }
5324 /* We need to allocate an L3 table. */
5325 }
5326 if (!ADDR_IS_KERNEL(va)) {
5327 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
5328
5329 /*
5330 * We use _pmap_alloc_l3() instead of pmap_alloc_l3() in order
5331 * to handle the possibility that a superpage mapping for "va"
5332 * was created while we slept.
5333 */
5334 mpte = _pmap_alloc_l3(pmap, pmap_l2_pindex(va),
5335 nosleep ? NULL : &lock);
5336 if (mpte == NULL && nosleep) {
5337 CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
5338 rv = KERN_RESOURCE_SHORTAGE;
5339 goto out;
5340 }
5341 goto retry;
5342 } else
5343 panic("pmap_enter: missing L3 table for kernel va %#lx", va);
5344
5345 havel3:
5346 orig_l3 = pmap_load(l3);
5347 opa = PTE_TO_PHYS(orig_l3);
5348 pv = NULL;
5349 new_l3 |= pmap_pte_bti(pmap, va);
5350
5351 /*
5352 * Is the specified virtual address already mapped?
5353 */
5354 if (pmap_l3_valid(orig_l3)) {
5355 /*
5356 * Wiring change, just update stats. We don't worry about
5357 * wiring PT pages as they remain resident as long as there
5358 * are valid mappings in them. Hence, if a user page is wired,
5359 * the PT page will be also.
5360 */
5361 if ((flags & PMAP_ENTER_WIRED) != 0 &&
5362 (orig_l3 & ATTR_SW_WIRED) == 0)
5363 pmap->pm_stats.wired_count++;
5364 else if ((flags & PMAP_ENTER_WIRED) == 0 &&
5365 (orig_l3 & ATTR_SW_WIRED) != 0)
5366 pmap->pm_stats.wired_count--;
5367
5368 /*
5369 * Remove the extra PT page reference.
5370 */
5371 if (mpte != NULL) {
5372 mpte->ref_count--;
5373 KASSERT(mpte->ref_count > 0,
5374 ("pmap_enter: missing reference to page table page,"
5375 " va: 0x%lx", va));
5376 }
5377
5378 /*
5379 * Has the physical page changed?
5380 */
5381 if (opa == pa) {
5382 /*
5383 * No, might be a protection or wiring change.
5384 */
5385 if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
5386 (new_l3 & ATTR_SW_DBM) != 0)
5387 vm_page_aflag_set(m, PGA_WRITEABLE);
5388 goto validate;
5389 }
5390
5391 /*
5392 * The physical page has changed. Temporarily invalidate
5393 * the mapping.
5394 */
5395 if ((orig_l3 & ATTR_CONTIGUOUS) != 0)
5396 (void)pmap_demote_l3c(pmap, l3, va);
5397 orig_l3 = pmap_load_clear(l3);
5398 KASSERT(PTE_TO_PHYS(orig_l3) == opa,
5399 ("pmap_enter: unexpected pa update for %#lx", va));
5400 if ((orig_l3 & ATTR_SW_MANAGED) != 0) {
5401 om = PHYS_TO_VM_PAGE(opa);
5402
5403 /*
5404 * The pmap lock is sufficient to synchronize with
5405 * concurrent calls to pmap_page_test_mappings() and
5406 * pmap_ts_referenced().
5407 */
5408 if (pmap_pte_dirty(pmap, orig_l3))
5409 vm_page_dirty(om);
5410 if ((orig_l3 & ATTR_AF) != 0) {
5411 pmap_invalidate_page(pmap, va, true);
5412 vm_page_aflag_set(om, PGA_REFERENCED);
5413 }
5414 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, om);
5415 pv = pmap_pvh_remove(&om->md, pmap, va);
5416 if ((m->oflags & VPO_UNMANAGED) != 0)
5417 free_pv_entry(pmap, pv);
5418 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
5419 TAILQ_EMPTY(&om->md.pv_list) &&
5420 ((om->flags & PG_FICTITIOUS) != 0 ||
5421 TAILQ_EMPTY(&page_to_pvh(om)->pv_list)))
5422 vm_page_aflag_clear(om, PGA_WRITEABLE);
5423 } else {
5424 KASSERT((orig_l3 & ATTR_AF) != 0,
5425 ("pmap_enter: unmanaged mapping lacks ATTR_AF"));
5426 pmap_invalidate_page(pmap, va, true);
5427 }
5428 orig_l3 = 0;
5429 } else {
5430 /*
5431 * Increment the counters.
5432 */
5433 if ((new_l3 & ATTR_SW_WIRED) != 0)
5434 pmap->pm_stats.wired_count++;
5435 pmap_resident_count_inc(pmap, 1);
5436 }
5437 /*
5438 * Enter on the PV list if part of our managed memory.
5439 */
5440 if ((m->oflags & VPO_UNMANAGED) == 0) {
5441 if (pv == NULL) {
5442 pv = get_pv_entry(pmap, &lock);
5443 pv->pv_va = va;
5444 }
5445 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5446 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5447 m->md.pv_gen++;
5448 if ((new_l3 & ATTR_SW_DBM) != 0)
5449 vm_page_aflag_set(m, PGA_WRITEABLE);
5450 }
5451
5452 validate:
5453 if (pmap->pm_stage == PM_STAGE1) {
5454 /*
5455 * Sync icache if exec permission and attribute
5456 * VM_MEMATTR_WRITE_BACK is set. Do it now, before the mapping
5457 * is stored and made valid for hardware table walk. If done
5458 * later, then other can access this page before caches are
5459 * properly synced. Don't do it for kernel memory which is
5460 * mapped with exec permission even if the memory isn't going
5461 * to hold executable code. The only time when icache sync is
5462 * needed is after kernel module is loaded and the relocation
5463 * info is processed. And it's done in elf_cpu_load_file().
5464 */
5465 if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
5466 m->md.pv_memattr == VM_MEMATTR_WRITE_BACK &&
5467 (opa != pa || (orig_l3 & ATTR_S1_XN))) {
5468 PMAP_ASSERT_STAGE1(pmap);
5469 cpu_icache_sync_range((void *)PHYS_TO_DMAP(pa),
5470 PAGE_SIZE);
5471 }
5472 } else {
5473 cpu_dcache_wb_range((void *)PHYS_TO_DMAP(pa), PAGE_SIZE);
5474 }
5475
5476 /*
5477 * Update the L3 entry
5478 */
5479 if (pmap_l3_valid(orig_l3)) {
5480 KASSERT(opa == pa, ("pmap_enter: invalid update"));
5481 if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) {
5482 /* same PA, different attributes */
5483 if ((orig_l3 & ATTR_CONTIGUOUS) != 0)
5484 (void)pmap_demote_l3c(pmap, l3, va);
5485 orig_l3 = pmap_load_store(l3, new_l3);
5486 pmap_invalidate_page(pmap, va, true);
5487 if ((orig_l3 & ATTR_SW_MANAGED) != 0 &&
5488 pmap_pte_dirty(pmap, orig_l3))
5489 vm_page_dirty(m);
5490 } else {
5491 /*
5492 * orig_l3 == new_l3
5493 * This can happens if multiple threads simultaneously
5494 * access not yet mapped page. This bad for performance
5495 * since this can cause full demotion-NOP-promotion
5496 * cycle.
5497 * Another possible reasons are:
5498 * - VM and pmap memory layout are diverged
5499 * - tlb flush is missing somewhere and CPU doesn't see
5500 * actual mapping.
5501 */
5502 CTR4(KTR_PMAP, "%s: already mapped page - "
5503 "pmap %p va 0x%#lx pte 0x%lx",
5504 __func__, pmap, va, new_l3);
5505 }
5506 } else {
5507 /* New mapping */
5508 pmap_store(l3, new_l3);
5509 dsb(ishst);
5510 }
5511
5512 #if VM_NRESERVLEVEL > 0
5513 /*
5514 * First, attempt L3C promotion, if the virtual and physical addresses
5515 * are aligned with each other and an underlying reservation has the
5516 * neighboring L3 pages allocated. The first condition is simply an
5517 * optimization that recognizes some eventual promotion failures early
5518 * at a lower run-time cost. Then, if both a level 1 reservation and
5519 * the PTP are fully populated, attempt L2 promotion.
5520 */
5521 if ((va & L3C_OFFSET) == (pa & L3C_OFFSET) &&
5522 (m->flags & PG_FICTITIOUS) == 0 &&
5523 (full_lvl = vm_reserv_level_iffullpop(m)) >= 0 &&
5524 pmap_promote_l3c(pmap, l3, va) &&
5525 full_lvl == 1 && (mpte == NULL || mpte->ref_count == NL3PG))
5526 (void)pmap_promote_l2(pmap, pde, va, mpte, &lock);
5527 #endif
5528
5529 rv = KERN_SUCCESS;
5530 out:
5531 if (lock != NULL)
5532 rw_wunlock(lock);
5533 PMAP_UNLOCK(pmap);
5534 return (rv);
5535 }
5536
5537 /*
5538 * Tries to create a read- and/or execute-only L2 page mapping. Returns
5539 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
5540 * value. See pmap_enter_l2() for the possible error values when "no sleep",
5541 * "no replace", and "no reclaim" are specified.
5542 */
5543 static int
pmap_enter_l2_rx(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)5544 pmap_enter_l2_rx(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
5545 struct rwlock **lockp)
5546 {
5547 pd_entry_t new_l2;
5548
5549 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5550 PMAP_ASSERT_STAGE1(pmap);
5551 KASSERT(ADDR_IS_CANONICAL(va),
5552 ("%s: Address not in canonical form: %lx", __func__, va));
5553
5554 new_l2 = (pd_entry_t)(VM_PAGE_TO_PTE(m) | pmap_sh_attr |
5555 ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) |
5556 L2_BLOCK);
5557 if ((m->oflags & VPO_UNMANAGED) == 0)
5558 new_l2 |= ATTR_SW_MANAGED;
5559 else
5560 new_l2 |= ATTR_AF;
5561 if ((prot & VM_PROT_EXECUTE) == 0 ||
5562 m->md.pv_memattr == VM_MEMATTR_DEVICE)
5563 new_l2 |= ATTR_S1_XN;
5564 if (!ADDR_IS_KERNEL(va))
5565 new_l2 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
5566 else
5567 new_l2 |= ATTR_S1_UXN;
5568 if (pmap != kernel_pmap)
5569 new_l2 |= ATTR_S1_nG;
5570 return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
5571 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m, lockp));
5572 }
5573
5574 /*
5575 * Returns true if every page table entry in the specified page table is
5576 * zero.
5577 */
5578 static bool
pmap_every_pte_zero(vm_paddr_t pa)5579 pmap_every_pte_zero(vm_paddr_t pa)
5580 {
5581 pt_entry_t *pt_end, *pte;
5582
5583 KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
5584 pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
5585 for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) {
5586 if (*pte != 0)
5587 return (false);
5588 }
5589 return (true);
5590 }
5591
5592 /*
5593 * Tries to create the specified L2 page mapping. Returns KERN_SUCCESS if
5594 * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE, or
5595 * KERN_RESOURCE_SHORTAGE otherwise. Returns KERN_FAILURE if
5596 * PMAP_ENTER_NOREPLACE was specified and a base page mapping already exists
5597 * within the L2 virtual address range starting at the specified virtual
5598 * address. Returns KERN_NO_SPACE if PMAP_ENTER_NOREPLACE was specified and a
5599 * L2 page mapping already exists at the specified virtual address. Returns
5600 * KERN_RESOURCE_SHORTAGE if either (1) PMAP_ENTER_NOSLEEP was specified and a
5601 * page table page allocation failed or (2) PMAP_ENTER_NORECLAIM was specified
5602 * and a PV entry allocation failed.
5603 */
5604 static int
pmap_enter_l2(pmap_t pmap,vm_offset_t va,pd_entry_t new_l2,u_int flags,vm_page_t m,struct rwlock ** lockp)5605 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
5606 vm_page_t m, struct rwlock **lockp)
5607 {
5608 struct spglist free;
5609 pd_entry_t *l2, old_l2;
5610 vm_page_t l2pg, mt;
5611 vm_page_t uwptpg;
5612
5613 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5614 KASSERT(ADDR_IS_CANONICAL(va),
5615 ("%s: Address not in canonical form: %lx", __func__, va));
5616
5617 if ((l2 = pmap_alloc_l2(pmap, va, &l2pg, (flags &
5618 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
5619 CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p",
5620 va, pmap);
5621 return (KERN_RESOURCE_SHORTAGE);
5622 }
5623
5624 /*
5625 * If bti is not the same for the whole l2 range, return failure
5626 * and let vm_fault() cope. Check after l2 allocation, since
5627 * it could sleep.
5628 */
5629 if (!pmap_bti_same(pmap, va, va + L2_SIZE, &new_l2)) {
5630 KASSERT(l2pg != NULL, ("pmap_enter_l2: missing L2 PTP"));
5631 pmap_abort_ptp(pmap, va, l2pg);
5632 return (KERN_PROTECTION_FAILURE);
5633 }
5634
5635 /*
5636 * If there are existing mappings, either abort or remove them.
5637 */
5638 if ((old_l2 = pmap_load(l2)) != 0) {
5639 KASSERT(l2pg == NULL || l2pg->ref_count > 1,
5640 ("pmap_enter_l2: l2pg's ref count is too low"));
5641 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
5642 if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK) {
5643 if (l2pg != NULL)
5644 l2pg->ref_count--;
5645 CTR2(KTR_PMAP,
5646 "pmap_enter_l2: no space for va %#lx"
5647 " in pmap %p", va, pmap);
5648 return (KERN_NO_SPACE);
5649 } else if (!ADDR_IS_KERNEL(va) ||
5650 !pmap_every_pte_zero(PTE_TO_PHYS(old_l2))) {
5651 if (l2pg != NULL)
5652 l2pg->ref_count--;
5653 CTR2(KTR_PMAP,
5654 "pmap_enter_l2: failure for va %#lx"
5655 " in pmap %p", va, pmap);
5656 return (KERN_FAILURE);
5657 }
5658 }
5659 SLIST_INIT(&free);
5660 if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK)
5661 (void)pmap_remove_l2(pmap, l2, va,
5662 pmap_load(pmap_l1(pmap, va)), &free, lockp);
5663 else
5664 pmap_remove_l3_range(pmap, old_l2, va, va + L2_SIZE,
5665 &free, lockp);
5666 if (!ADDR_IS_KERNEL(va)) {
5667 vm_page_free_pages_toq(&free, true);
5668 KASSERT(pmap_load(l2) == 0,
5669 ("pmap_enter_l2: non-zero L2 entry %p", l2));
5670 } else {
5671 KASSERT(SLIST_EMPTY(&free),
5672 ("pmap_enter_l2: freed kernel page table page"));
5673
5674 /*
5675 * Both pmap_remove_l2() and pmap_remove_l3_range()
5676 * will leave the kernel page table page zero filled.
5677 * Nonetheless, the TLB could have an intermediate
5678 * entry for the kernel page table page, so request
5679 * an invalidation at all levels after clearing
5680 * the L2_TABLE entry.
5681 */
5682 mt = PTE_TO_VM_PAGE(pmap_load(l2));
5683 if (pmap_insert_pt_page(pmap, mt, false, false))
5684 panic("pmap_enter_l2: trie insert failed");
5685 pmap_clear(l2);
5686 pmap_s1_invalidate_page(pmap, va, false);
5687 }
5688 }
5689
5690 /*
5691 * Allocate leaf ptpage for wired userspace pages.
5692 */
5693 uwptpg = NULL;
5694 if ((new_l2 & ATTR_SW_WIRED) != 0 && pmap != kernel_pmap) {
5695 uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5696 if (uwptpg == NULL) {
5697 pmap_abort_ptp(pmap, va, l2pg);
5698 return (KERN_RESOURCE_SHORTAGE);
5699 }
5700 uwptpg->pindex = pmap_l2_pindex(va);
5701 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
5702 vm_page_unwire_noq(uwptpg);
5703 vm_page_free(uwptpg);
5704 pmap_abort_ptp(pmap, va, l2pg);
5705 return (KERN_RESOURCE_SHORTAGE);
5706 }
5707 pmap_resident_count_inc(pmap, 1);
5708 uwptpg->ref_count = NL3PG;
5709 }
5710 if ((new_l2 & ATTR_SW_MANAGED) != 0) {
5711 /*
5712 * Abort this mapping if its PV entry could not be created.
5713 */
5714 if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
5715 if (l2pg != NULL)
5716 pmap_abort_ptp(pmap, va, l2pg);
5717 if (uwptpg != NULL) {
5718 mt = pmap_remove_pt_page(pmap, va);
5719 KASSERT(mt == uwptpg,
5720 ("removed pt page %p, expected %p", mt,
5721 uwptpg));
5722 pmap_resident_count_dec(pmap, 1);
5723 uwptpg->ref_count = 1;
5724 vm_page_unwire_noq(uwptpg);
5725 vm_page_free(uwptpg);
5726 }
5727 CTR2(KTR_PMAP,
5728 "pmap_enter_l2: failure for va %#lx in pmap %p",
5729 va, pmap);
5730 return (KERN_RESOURCE_SHORTAGE);
5731 }
5732 if ((new_l2 & ATTR_SW_DBM) != 0)
5733 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
5734 vm_page_aflag_set(mt, PGA_WRITEABLE);
5735 }
5736
5737 /*
5738 * Increment counters.
5739 */
5740 if ((new_l2 & ATTR_SW_WIRED) != 0)
5741 pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
5742 pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
5743
5744 /*
5745 * Conditionally sync the icache. See pmap_enter() for details.
5746 */
5747 if ((new_l2 & ATTR_S1_XN) == 0 && (PTE_TO_PHYS(new_l2) !=
5748 PTE_TO_PHYS(old_l2) || (old_l2 & ATTR_S1_XN) != 0) &&
5749 pmap != kernel_pmap && m->md.pv_memattr == VM_MEMATTR_WRITE_BACK) {
5750 cpu_icache_sync_range((void *)PHYS_TO_DMAP(PTE_TO_PHYS(new_l2)),
5751 L2_SIZE);
5752 }
5753
5754 /*
5755 * Map the superpage.
5756 */
5757 pmap_store(l2, new_l2);
5758 dsb(ishst);
5759
5760 atomic_add_long(&pmap_l2_mappings, 1);
5761 CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
5762 va, pmap);
5763
5764 return (KERN_SUCCESS);
5765 }
5766
5767 /*
5768 * Tries to create a read- and/or execute-only L3C page mapping. Returns
5769 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
5770 * value.
5771 */
5772 static int
pmap_enter_l3c_rx(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_page_t * ml3p,vm_prot_t prot,struct rwlock ** lockp)5773 pmap_enter_l3c_rx(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t *ml3p,
5774 vm_prot_t prot, struct rwlock **lockp)
5775 {
5776 pt_entry_t l3e;
5777
5778 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5779 PMAP_ASSERT_STAGE1(pmap);
5780 KASSERT(ADDR_IS_CANONICAL(va),
5781 ("%s: Address not in canonical form: %lx", __func__, va));
5782
5783 l3e = VM_PAGE_TO_PTE(m) | pmap_sh_attr |
5784 ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) |
5785 ATTR_CONTIGUOUS | L3_PAGE;
5786 if ((m->oflags & VPO_UNMANAGED) == 0)
5787 l3e |= ATTR_SW_MANAGED;
5788 else
5789 l3e |= ATTR_AF;
5790 if ((prot & VM_PROT_EXECUTE) == 0 ||
5791 m->md.pv_memattr == VM_MEMATTR_DEVICE)
5792 l3e |= ATTR_S1_XN;
5793 if (!ADDR_IS_KERNEL(va))
5794 l3e |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
5795 else
5796 l3e |= ATTR_S1_UXN;
5797 if (pmap != kernel_pmap)
5798 l3e |= ATTR_S1_nG;
5799 return (pmap_enter_l3c(pmap, va, l3e, PMAP_ENTER_NOSLEEP |
5800 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m, ml3p, lockp));
5801 }
5802
5803 static int
pmap_enter_l3c(pmap_t pmap,vm_offset_t va,pt_entry_t l3e,u_int flags,vm_page_t m,vm_page_t * ml3p,struct rwlock ** lockp)5804 pmap_enter_l3c(pmap_t pmap, vm_offset_t va, pt_entry_t l3e, u_int flags,
5805 vm_page_t m, vm_page_t *ml3p, struct rwlock **lockp)
5806 {
5807 pd_entry_t *l2p, *pde;
5808 pt_entry_t *l3p, *tl3p;
5809 vm_page_t mt;
5810 vm_paddr_t pa;
5811 vm_pindex_t l2pindex;
5812 int lvl;
5813
5814 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5815 KASSERT((va & L3C_OFFSET) == 0,
5816 ("pmap_enter_l3c: va is not aligned"));
5817 KASSERT(!VA_IS_CLEANMAP(va) || (l3e & ATTR_SW_MANAGED) == 0,
5818 ("pmap_enter_l3c: managed mapping within the clean submap"));
5819 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
5820 ("pmap_enter_l3c: l3e is missing ATTR_CONTIGUOUS"));
5821
5822 /*
5823 * If the L3 PTP is not resident, we attempt to create it here.
5824 */
5825 if (!ADDR_IS_KERNEL(va)) {
5826 /*
5827 * Were we given the correct L3 PTP? If so, we can simply
5828 * increment its ref count.
5829 */
5830 l2pindex = pmap_l2_pindex(va);
5831 if (*ml3p != NULL && (*ml3p)->pindex == l2pindex) {
5832 (*ml3p)->ref_count += L3C_ENTRIES;
5833 } else {
5834 retry:
5835 /*
5836 * Get the L2 entry.
5837 */
5838 pde = pmap_pde(pmap, va, &lvl);
5839
5840 /*
5841 * If the L2 entry is a superpage, we either abort or
5842 * demote depending on the given flags.
5843 */
5844 if (lvl == 1) {
5845 l2p = pmap_l1_to_l2(pde, va);
5846 if ((pmap_load(l2p) & ATTR_DESCR_MASK) ==
5847 L2_BLOCK) {
5848 if ((flags & PMAP_ENTER_NOREPLACE) != 0)
5849 return (KERN_FAILURE);
5850 l3p = pmap_demote_l2_locked(pmap, l2p,
5851 va, lockp);
5852 if (l3p != NULL) {
5853 *ml3p = PTE_TO_VM_PAGE(
5854 pmap_load(l2p));
5855 (*ml3p)->ref_count +=
5856 L3C_ENTRIES;
5857 goto have_l3p;
5858 }
5859 }
5860 /* We need to allocate an L3 PTP. */
5861 }
5862
5863 /*
5864 * If the L3 PTP is mapped, we just increment its ref
5865 * count. Otherwise, we attempt to allocate it.
5866 */
5867 if (lvl == 2 && pmap_load(pde) != 0) {
5868 *ml3p = PTE_TO_VM_PAGE(pmap_load(pde));
5869 (*ml3p)->ref_count += L3C_ENTRIES;
5870 } else {
5871 *ml3p = _pmap_alloc_l3(pmap, l2pindex, (flags &
5872 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp);
5873 if (*ml3p == NULL) {
5874 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
5875 return (KERN_FAILURE);
5876
5877 /*
5878 * The page table may have changed
5879 * while we slept.
5880 */
5881 goto retry;
5882 }
5883 (*ml3p)->ref_count += L3C_ENTRIES - 1;
5884 }
5885 }
5886 l3p = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(*ml3p));
5887 } else {
5888 *ml3p = NULL;
5889
5890 /*
5891 * If the L2 entry is a superpage, we either abort or demote
5892 * depending on the given flags.
5893 */
5894 pde = pmap_pde(kernel_pmap, va, &lvl);
5895 if (lvl == 1) {
5896 l2p = pmap_l1_to_l2(pde, va);
5897 KASSERT((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK,
5898 ("pmap_enter_l3c: missing L2 block"));
5899 if ((flags & PMAP_ENTER_NOREPLACE) != 0)
5900 return (KERN_FAILURE);
5901 l3p = pmap_demote_l2_locked(pmap, l2p, va, lockp);
5902 } else {
5903 KASSERT(lvl == 2,
5904 ("pmap_enter_l3c: Invalid level %d", lvl));
5905 l3p = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(
5906 pmap_load(pde)));
5907 }
5908 }
5909 have_l3p:
5910 l3p = &l3p[pmap_l3_index(va)];
5911
5912 /*
5913 * If bti is not the same for the whole L3C range, return failure
5914 * and let vm_fault() cope. Check after L3 allocation, since
5915 * it could sleep.
5916 */
5917 if (!pmap_bti_same(pmap, va, va + L3C_SIZE, &l3e)) {
5918 KASSERT(*ml3p != NULL, ("pmap_enter_l3c: missing L3 PTP"));
5919 (*ml3p)->ref_count -= L3C_ENTRIES - 1;
5920 pmap_abort_ptp(pmap, va, *ml3p);
5921 *ml3p = NULL;
5922 return (KERN_PROTECTION_FAILURE);
5923 }
5924
5925 /*
5926 * If there are existing mappings, either abort or remove them.
5927 */
5928 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
5929 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
5930 if (pmap_load(tl3p) != 0) {
5931 if (*ml3p != NULL)
5932 (*ml3p)->ref_count -= L3C_ENTRIES;
5933 return (KERN_FAILURE);
5934 }
5935 }
5936 } else {
5937 /*
5938 * Because we increment the L3 page's reference count above,
5939 * it is guaranteed not to be freed here and we can pass NULL
5940 * instead of a valid free list.
5941 */
5942 pmap_remove_l3_range(pmap, pmap_load(pmap_l2(pmap, va)), va,
5943 va + L3C_SIZE, NULL, lockp);
5944 }
5945
5946 /*
5947 * Enter on the PV list if part of our managed memory.
5948 */
5949 if ((l3e & ATTR_SW_MANAGED) != 0) {
5950 if (!pmap_pv_insert_l3c(pmap, va, m, lockp)) {
5951 if (*ml3p != NULL) {
5952 (*ml3p)->ref_count -= L3C_ENTRIES - 1;
5953 pmap_abort_ptp(pmap, va, *ml3p);
5954 *ml3p = NULL;
5955 }
5956 return (KERN_RESOURCE_SHORTAGE);
5957 }
5958 if ((l3e & ATTR_SW_DBM) != 0)
5959 for (mt = m; mt < &m[L3C_ENTRIES]; mt++)
5960 vm_page_aflag_set(mt, PGA_WRITEABLE);
5961 }
5962
5963 /*
5964 * Increment counters.
5965 */
5966 if ((l3e & ATTR_SW_WIRED) != 0)
5967 pmap->pm_stats.wired_count += L3C_ENTRIES;
5968 pmap_resident_count_inc(pmap, L3C_ENTRIES);
5969
5970 pa = VM_PAGE_TO_PHYS(m);
5971 KASSERT((pa & L3C_OFFSET) == 0, ("pmap_enter_l3c: pa is not aligned"));
5972
5973 /*
5974 * Sync the icache before the mapping is stored.
5975 */
5976 if ((l3e & ATTR_S1_XN) == 0 && pmap != kernel_pmap &&
5977 m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
5978 cpu_icache_sync_range((void *)PHYS_TO_DMAP(pa), L3C_SIZE);
5979
5980 /*
5981 * Map the superpage.
5982 */
5983 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
5984 pmap_store(tl3p, l3e);
5985 l3e += L3_SIZE;
5986 }
5987 dsb(ishst);
5988
5989 counter_u64_add(pmap_l3c_mappings, 1);
5990 CTR2(KTR_PMAP, "pmap_enter_l3c: success for va %#lx in pmap %p",
5991 va, pmap);
5992 return (KERN_SUCCESS);
5993 }
5994
5995 /*
5996 * Maps a sequence of resident pages belonging to the same object.
5997 * The sequence begins with the given page m_start. This page is
5998 * mapped at the given virtual address start. Each subsequent page is
5999 * mapped at a virtual address that is offset from start by the same
6000 * amount as the page is offset from m_start within the object. The
6001 * last page in the sequence is the page with the largest offset from
6002 * m_start that can be mapped at a virtual address less than the given
6003 * virtual address end. Not every virtual page between start and end
6004 * is mapped; only those for which a resident page exists with the
6005 * corresponding offset from m_start are mapped.
6006 */
6007 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)6008 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
6009 vm_page_t m_start, vm_prot_t prot)
6010 {
6011 struct rwlock *lock;
6012 vm_offset_t va;
6013 vm_page_t m, mpte;
6014 vm_pindex_t diff, psize;
6015 int rv;
6016
6017 VM_OBJECT_ASSERT_LOCKED(m_start->object);
6018
6019 psize = atop(end - start);
6020 mpte = NULL;
6021 m = m_start;
6022 lock = NULL;
6023 PMAP_LOCK(pmap);
6024 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
6025 va = start + ptoa(diff);
6026 if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
6027 m->psind == 2 && pmap_ps_enabled(pmap) &&
6028 ((rv = pmap_enter_l2_rx(pmap, va, m, prot, &lock)) ==
6029 KERN_SUCCESS || rv == KERN_NO_SPACE))
6030 m = &m[L2_SIZE / PAGE_SIZE - 1];
6031 else if ((va & L3C_OFFSET) == 0 && va + L3C_SIZE <= end &&
6032 m->psind >= 1 && pmap_ps_enabled(pmap) &&
6033 ((rv = pmap_enter_l3c_rx(pmap, va, m, &mpte, prot,
6034 &lock)) == KERN_SUCCESS || rv == KERN_NO_SPACE))
6035 m = &m[L3C_ENTRIES - 1];
6036 else {
6037 /*
6038 * In general, if a superpage mapping were possible,
6039 * it would have been created above. That said, if
6040 * start and end are not superpage aligned, then
6041 * promotion might be possible at the ends of [start,
6042 * end). However, in practice, those promotion
6043 * attempts are so unlikely to succeed that they are
6044 * not worth trying.
6045 */
6046 mpte = pmap_enter_quick_locked(pmap, va, m, prot |
6047 VM_PROT_NO_PROMOTE, mpte, &lock);
6048 }
6049 m = TAILQ_NEXT(m, listq);
6050 }
6051 if (lock != NULL)
6052 rw_wunlock(lock);
6053 PMAP_UNLOCK(pmap);
6054 }
6055
6056 /*
6057 * this code makes some *MAJOR* assumptions:
6058 * 1. Current pmap & pmap exists.
6059 * 2. Not wired.
6060 * 3. Read access.
6061 * 4. No page table pages.
6062 * but is *MUCH* faster than pmap_enter...
6063 */
6064
6065 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)6066 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
6067 {
6068 struct rwlock *lock;
6069
6070 lock = NULL;
6071 PMAP_LOCK(pmap);
6072 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
6073 if (lock != NULL)
6074 rw_wunlock(lock);
6075 PMAP_UNLOCK(pmap);
6076 }
6077
6078 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)6079 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
6080 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
6081 {
6082 pt_entry_t *l1, *l2, *l3, l3_val;
6083 vm_paddr_t pa;
6084 int full_lvl, lvl;
6085
6086 KASSERT(!VA_IS_CLEANMAP(va) ||
6087 (m->oflags & VPO_UNMANAGED) != 0,
6088 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
6089 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6090 PMAP_ASSERT_STAGE1(pmap);
6091 KASSERT(ADDR_IS_CANONICAL(va),
6092 ("%s: Address not in canonical form: %lx", __func__, va));
6093 l2 = NULL;
6094
6095 CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
6096 /*
6097 * In the case that a page table page is not
6098 * resident, we are creating it here.
6099 */
6100 if (!ADDR_IS_KERNEL(va)) {
6101 vm_pindex_t l2pindex;
6102
6103 /*
6104 * Calculate pagetable page index
6105 */
6106 l2pindex = pmap_l2_pindex(va);
6107 if (mpte && (mpte->pindex == l2pindex)) {
6108 mpte->ref_count++;
6109 } else {
6110 /*
6111 * If the page table page is mapped, we just increment
6112 * the hold count, and activate it. Otherwise, we
6113 * attempt to allocate a page table page, passing NULL
6114 * instead of the PV list lock pointer because we don't
6115 * intend to sleep. If this attempt fails, we don't
6116 * retry. Instead, we give up.
6117 */
6118 l1 = pmap_l1(pmap, va);
6119 if (l1 != NULL && pmap_load(l1) != 0) {
6120 if ((pmap_load(l1) & ATTR_DESCR_MASK) ==
6121 L1_BLOCK)
6122 return (NULL);
6123 l2 = pmap_l1_to_l2(l1, va);
6124 if (pmap_load(l2) != 0) {
6125 if ((pmap_load(l2) & ATTR_DESCR_MASK) ==
6126 L2_BLOCK)
6127 return (NULL);
6128 mpte = PTE_TO_VM_PAGE(pmap_load(l2));
6129 mpte->ref_count++;
6130 } else {
6131 mpte = _pmap_alloc_l3(pmap, l2pindex,
6132 NULL);
6133 if (mpte == NULL)
6134 return (mpte);
6135 }
6136 } else {
6137 mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
6138 if (mpte == NULL)
6139 return (mpte);
6140 }
6141 }
6142 l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
6143 l3 = &l3[pmap_l3_index(va)];
6144 } else {
6145 mpte = NULL;
6146 l2 = pmap_pde(kernel_pmap, va, &lvl);
6147 KASSERT(l2 != NULL,
6148 ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx",
6149 va));
6150 KASSERT(lvl == 2,
6151 ("pmap_enter_quick_locked: Invalid level %d", lvl));
6152 l3 = pmap_l2_to_l3(l2, va);
6153 }
6154
6155 /*
6156 * Abort if a mapping already exists.
6157 */
6158 if (pmap_load(l3) != 0) {
6159 if (mpte != NULL)
6160 mpte->ref_count--;
6161 return (NULL);
6162 }
6163
6164 /*
6165 * Enter on the PV list if part of our managed memory.
6166 */
6167 if ((m->oflags & VPO_UNMANAGED) == 0 &&
6168 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
6169 if (mpte != NULL)
6170 pmap_abort_ptp(pmap, va, mpte);
6171 return (NULL);
6172 }
6173
6174 /*
6175 * Increment counters
6176 */
6177 pmap_resident_count_inc(pmap, 1);
6178
6179 pa = VM_PAGE_TO_PHYS(m);
6180 l3_val = PHYS_TO_PTE(pa) | pmap_sh_attr |
6181 ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) | L3_PAGE;
6182 l3_val |= pmap_pte_bti(pmap, va);
6183 if ((prot & VM_PROT_EXECUTE) == 0 ||
6184 m->md.pv_memattr == VM_MEMATTR_DEVICE)
6185 l3_val |= ATTR_S1_XN;
6186 if (!ADDR_IS_KERNEL(va))
6187 l3_val |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN;
6188 else
6189 l3_val |= ATTR_S1_UXN;
6190 if (pmap != kernel_pmap)
6191 l3_val |= ATTR_S1_nG;
6192
6193 /*
6194 * Now validate mapping with RO protection
6195 */
6196 if ((m->oflags & VPO_UNMANAGED) == 0)
6197 l3_val |= ATTR_SW_MANAGED;
6198 else
6199 l3_val |= ATTR_AF;
6200
6201 /* Sync icache before the mapping is stored to PTE */
6202 if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
6203 m->md.pv_memattr == VM_MEMATTR_WRITE_BACK)
6204 cpu_icache_sync_range((void *)PHYS_TO_DMAP(pa), PAGE_SIZE);
6205
6206 pmap_store(l3, l3_val);
6207 dsb(ishst);
6208
6209 #if VM_NRESERVLEVEL > 0
6210 /*
6211 * First, attempt L3C promotion, if the virtual and physical addresses
6212 * are aligned with each other and an underlying reservation has the
6213 * neighboring L3 pages allocated. The first condition is simply an
6214 * optimization that recognizes some eventual promotion failures early
6215 * at a lower run-time cost. Then, attempt L2 promotion, if both a
6216 * level 1 reservation and the PTP are fully populated.
6217 */
6218 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
6219 (va & L3C_OFFSET) == (pa & L3C_OFFSET) &&
6220 (m->flags & PG_FICTITIOUS) == 0 &&
6221 (full_lvl = vm_reserv_level_iffullpop(m)) >= 0 &&
6222 pmap_promote_l3c(pmap, l3, va) &&
6223 full_lvl == 1 && (mpte == NULL || mpte->ref_count == NL3PG)) {
6224 if (l2 == NULL)
6225 l2 = pmap_l2(pmap, va);
6226
6227 /*
6228 * If promotion succeeds, then the next call to this function
6229 * should not be given the unmapped PTP as a hint.
6230 */
6231 if (pmap_promote_l2(pmap, l2, va, mpte, lockp))
6232 mpte = NULL;
6233 }
6234 #endif
6235
6236 return (mpte);
6237 }
6238
6239 /*
6240 * This code maps large physical mmap regions into the
6241 * processor address space. Note that some shortcuts
6242 * are taken, but the code works.
6243 */
6244 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)6245 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
6246 vm_pindex_t pindex, vm_size_t size)
6247 {
6248
6249 VM_OBJECT_ASSERT_WLOCKED(object);
6250 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
6251 ("pmap_object_init_pt: non-device object"));
6252 }
6253
6254 /*
6255 * Clear the wired attribute from the mappings for the specified range of
6256 * addresses in the given pmap. Every valid mapping within that range
6257 * must have the wired attribute set. In contrast, invalid mappings
6258 * cannot have the wired attribute set, so they are ignored.
6259 *
6260 * The wired attribute of the page table entry is not a hardware feature,
6261 * so there is no need to invalidate any TLB entries.
6262 */
6263 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6264 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6265 {
6266 vm_offset_t va_next;
6267 pd_entry_t *l0, *l1, *l2;
6268 pt_entry_t *l3;
6269 bool partial_l3c;
6270
6271 PMAP_LOCK(pmap);
6272 for (; sva < eva; sva = va_next) {
6273 l0 = pmap_l0(pmap, sva);
6274 if (pmap_load(l0) == 0) {
6275 va_next = (sva + L0_SIZE) & ~L0_OFFSET;
6276 if (va_next < sva)
6277 va_next = eva;
6278 continue;
6279 }
6280
6281 l1 = pmap_l0_to_l1(l0, sva);
6282 va_next = (sva + L1_SIZE) & ~L1_OFFSET;
6283 if (va_next < sva)
6284 va_next = eva;
6285 if (pmap_load(l1) == 0)
6286 continue;
6287
6288 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
6289 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
6290 KASSERT(va_next <= eva,
6291 ("partial update of non-transparent 1G page "
6292 "l1 %#lx sva %#lx eva %#lx va_next %#lx",
6293 pmap_load(l1), sva, eva, va_next));
6294 MPASS(pmap != kernel_pmap);
6295 MPASS((pmap_load(l1) & (ATTR_SW_MANAGED |
6296 ATTR_SW_WIRED)) == ATTR_SW_WIRED);
6297 pmap_clear_bits(l1, ATTR_SW_WIRED);
6298 pmap->pm_stats.wired_count -= L1_SIZE / PAGE_SIZE;
6299 continue;
6300 }
6301
6302 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
6303 if (va_next < sva)
6304 va_next = eva;
6305
6306 l2 = pmap_l1_to_l2(l1, sva);
6307 if (pmap_load(l2) == 0)
6308 continue;
6309
6310 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) {
6311 if ((pmap_load(l2) & ATTR_SW_WIRED) == 0)
6312 panic("pmap_unwire: l2 %#jx is missing "
6313 "ATTR_SW_WIRED", (uintmax_t)pmap_load(l2));
6314
6315 /*
6316 * Are we unwiring the entire large page? If not,
6317 * demote the mapping and fall through.
6318 */
6319 if (sva + L2_SIZE == va_next && eva >= va_next) {
6320 pmap_clear_bits(l2, ATTR_SW_WIRED);
6321 pmap->pm_stats.wired_count -= L2_SIZE /
6322 PAGE_SIZE;
6323 continue;
6324 } else if (pmap_demote_l2(pmap, l2, sva) == NULL)
6325 panic("pmap_unwire: demotion failed");
6326 }
6327 KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
6328 ("pmap_unwire: Invalid l2 entry after demotion"));
6329
6330 if (va_next > eva)
6331 va_next = eva;
6332 for (partial_l3c = true, l3 = pmap_l2_to_l3(l2, sva);
6333 sva != va_next; l3++, sva += L3_SIZE) {
6334 if (pmap_load(l3) == 0)
6335 continue;
6336 if ((pmap_load(l3) & ATTR_CONTIGUOUS) != 0) {
6337 /*
6338 * Avoid demotion for whole-page unwiring.
6339 */
6340 if ((sva & L3C_OFFSET) == 0) {
6341 /*
6342 * Handle the possibility that
6343 * "va_next" is zero because of
6344 * address wraparound.
6345 */
6346 partial_l3c = sva + L3C_OFFSET >
6347 va_next - 1;
6348 }
6349 if (partial_l3c)
6350 (void)pmap_demote_l3c(pmap, l3, sva);
6351 }
6352 if ((pmap_load(l3) & ATTR_SW_WIRED) == 0)
6353 panic("pmap_unwire: l3 %#jx is missing "
6354 "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3));
6355
6356 /*
6357 * ATTR_SW_WIRED must be cleared atomically. Although
6358 * the pmap lock synchronizes access to ATTR_SW_WIRED,
6359 * the System MMU may write to the entry concurrently.
6360 */
6361 pmap_clear_bits(l3, ATTR_SW_WIRED);
6362 pmap->pm_stats.wired_count--;
6363 }
6364 }
6365 PMAP_UNLOCK(pmap);
6366 }
6367
6368 /*
6369 * This function requires that the caller has already added one to ml3's
6370 * ref_count in anticipation of creating a 4KB page mapping.
6371 */
6372 static bool
pmap_copy_l3c(pmap_t pmap,pt_entry_t * l3p,vm_offset_t va,pt_entry_t l3e,vm_page_t ml3,struct rwlock ** lockp)6373 pmap_copy_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va, pt_entry_t l3e,
6374 vm_page_t ml3, struct rwlock **lockp)
6375 {
6376 pt_entry_t *tl3p;
6377
6378 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6379 KASSERT((va & L3C_OFFSET) == 0,
6380 ("pmap_copy_l3c: va is not aligned"));
6381 KASSERT((l3e & ATTR_SW_MANAGED) != 0,
6382 ("pmap_copy_l3c: l3e is not managed"));
6383
6384 /*
6385 * Abort if a mapping already exists.
6386 */
6387 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++)
6388 if (pmap_load(tl3p) != 0) {
6389 if (ml3 != NULL)
6390 ml3->ref_count--;
6391 return (false);
6392 }
6393
6394 if (!pmap_pv_insert_l3c(pmap, va, PTE_TO_VM_PAGE(l3e), lockp)) {
6395 if (ml3 != NULL)
6396 pmap_abort_ptp(pmap, va, ml3);
6397 return (false);
6398 }
6399 ml3->ref_count += L3C_ENTRIES - 1;
6400
6401 /*
6402 * Clear the wired and accessed bits. However, leave the dirty bit
6403 * unchanged because read/write superpage mappings are required to be
6404 * dirty.
6405 */
6406 l3e &= ~(ATTR_SW_WIRED | ATTR_AF);
6407
6408 for (tl3p = l3p; tl3p < &l3p[L3C_ENTRIES]; tl3p++) {
6409 pmap_store(tl3p, l3e);
6410 l3e += L3_SIZE;
6411 }
6412 pmap_resident_count_inc(pmap, L3C_ENTRIES);
6413 counter_u64_add(pmap_l3c_mappings, 1);
6414 CTR2(KTR_PMAP, "pmap_copy_l3c: success for va %#lx in pmap %p",
6415 va, pmap);
6416 return (true);
6417 }
6418
6419 /*
6420 * Copy the range specified by src_addr/len
6421 * from the source map to the range dst_addr/len
6422 * in the destination map.
6423 *
6424 * This routine is only advisory and need not do anything.
6425 *
6426 * Because the executable mappings created by this routine are copied,
6427 * it should not have to flush the instruction cache.
6428 */
6429 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)6430 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
6431 vm_offset_t src_addr)
6432 {
6433 struct rwlock *lock;
6434 pd_entry_t *l0, *l1, *l2, srcptepaddr;
6435 pt_entry_t *dst_pte, mask, nbits, ptetemp, *src_pte;
6436 vm_offset_t addr, end_addr, va_next;
6437 vm_page_t dst_m, dstmpte, srcmpte;
6438
6439 PMAP_ASSERT_STAGE1(dst_pmap);
6440 PMAP_ASSERT_STAGE1(src_pmap);
6441
6442 if (dst_addr != src_addr)
6443 return;
6444 end_addr = src_addr + len;
6445 lock = NULL;
6446 if (dst_pmap < src_pmap) {
6447 PMAP_LOCK(dst_pmap);
6448 PMAP_LOCK(src_pmap);
6449 } else {
6450 PMAP_LOCK(src_pmap);
6451 PMAP_LOCK(dst_pmap);
6452 }
6453 for (addr = src_addr; addr < end_addr; addr = va_next) {
6454 l0 = pmap_l0(src_pmap, addr);
6455 if (pmap_load(l0) == 0) {
6456 va_next = (addr + L0_SIZE) & ~L0_OFFSET;
6457 if (va_next < addr)
6458 va_next = end_addr;
6459 continue;
6460 }
6461
6462 va_next = (addr + L1_SIZE) & ~L1_OFFSET;
6463 if (va_next < addr)
6464 va_next = end_addr;
6465 l1 = pmap_l0_to_l1(l0, addr);
6466 if (pmap_load(l1) == 0)
6467 continue;
6468 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
6469 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
6470 KASSERT(va_next <= end_addr,
6471 ("partial update of non-transparent 1G page "
6472 "l1 %#lx addr %#lx end_addr %#lx va_next %#lx",
6473 pmap_load(l1), addr, end_addr, va_next));
6474 srcptepaddr = pmap_load(l1);
6475 l1 = pmap_l1(dst_pmap, addr);
6476 if (l1 == NULL) {
6477 if (_pmap_alloc_l3(dst_pmap,
6478 pmap_l0_pindex(addr), NULL) == NULL)
6479 break;
6480 l1 = pmap_l1(dst_pmap, addr);
6481 } else {
6482 l0 = pmap_l0(dst_pmap, addr);
6483 dst_m = PTE_TO_VM_PAGE(pmap_load(l0));
6484 dst_m->ref_count++;
6485 }
6486 KASSERT(pmap_load(l1) == 0,
6487 ("1G mapping present in dst pmap "
6488 "l1 %#lx addr %#lx end_addr %#lx va_next %#lx",
6489 pmap_load(l1), addr, end_addr, va_next));
6490 pmap_store(l1, srcptepaddr & ~ATTR_SW_WIRED);
6491 pmap_resident_count_inc(dst_pmap, L1_SIZE / PAGE_SIZE);
6492 continue;
6493 }
6494
6495 va_next = (addr + L2_SIZE) & ~L2_OFFSET;
6496 if (va_next < addr)
6497 va_next = end_addr;
6498 l2 = pmap_l1_to_l2(l1, addr);
6499 srcptepaddr = pmap_load(l2);
6500 if (srcptepaddr == 0)
6501 continue;
6502 if ((srcptepaddr & ATTR_DESCR_MASK) == L2_BLOCK) {
6503 /*
6504 * We can only virtual copy whole superpages.
6505 */
6506 if ((addr & L2_OFFSET) != 0 ||
6507 addr + L2_SIZE > end_addr)
6508 continue;
6509 l2 = pmap_alloc_l2(dst_pmap, addr, &dst_m, NULL);
6510 if (l2 == NULL)
6511 break;
6512 if (pmap_load(l2) == 0 &&
6513 ((srcptepaddr & ATTR_SW_MANAGED) == 0 ||
6514 pmap_pv_insert_l2(dst_pmap, addr, srcptepaddr,
6515 PMAP_ENTER_NORECLAIM, &lock))) {
6516 /*
6517 * We leave the dirty bit unchanged because
6518 * managed read/write superpage mappings are
6519 * required to be dirty. However, managed
6520 * superpage mappings are not required to
6521 * have their accessed bit set, so we clear
6522 * it because we don't know if this mapping
6523 * will be used.
6524 */
6525 srcptepaddr &= ~ATTR_SW_WIRED;
6526 if ((srcptepaddr & ATTR_SW_MANAGED) != 0)
6527 srcptepaddr &= ~ATTR_AF;
6528 pmap_store(l2, srcptepaddr);
6529 pmap_resident_count_inc(dst_pmap, L2_SIZE /
6530 PAGE_SIZE);
6531 atomic_add_long(&pmap_l2_mappings, 1);
6532 } else
6533 pmap_abort_ptp(dst_pmap, addr, dst_m);
6534 continue;
6535 }
6536 KASSERT((srcptepaddr & ATTR_DESCR_MASK) == L2_TABLE,
6537 ("pmap_copy: invalid L2 entry"));
6538 srcmpte = PTE_TO_VM_PAGE(srcptepaddr);
6539 KASSERT(srcmpte->ref_count > 0,
6540 ("pmap_copy: source page table page is unused"));
6541 if (va_next > end_addr)
6542 va_next = end_addr;
6543 src_pte = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(srcptepaddr));
6544 src_pte = &src_pte[pmap_l3_index(addr)];
6545 dstmpte = NULL;
6546 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
6547 ptetemp = pmap_load(src_pte);
6548
6549 /*
6550 * We only virtual copy managed pages.
6551 */
6552 if ((ptetemp & ATTR_SW_MANAGED) == 0)
6553 continue;
6554
6555 if (dstmpte != NULL) {
6556 KASSERT(dstmpte->pindex == pmap_l2_pindex(addr),
6557 ("dstmpte pindex/addr mismatch"));
6558 dstmpte->ref_count++;
6559 } else if ((dstmpte = pmap_alloc_l3(dst_pmap, addr,
6560 NULL)) == NULL)
6561 goto out;
6562 dst_pte = (pt_entry_t *)
6563 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
6564 dst_pte = &dst_pte[pmap_l3_index(addr)];
6565 if ((ptetemp & ATTR_CONTIGUOUS) != 0 && (addr &
6566 L3C_OFFSET) == 0 && addr + L3C_OFFSET <=
6567 va_next - 1) {
6568 if (!pmap_copy_l3c(dst_pmap, dst_pte, addr,
6569 ptetemp, dstmpte, &lock))
6570 goto out;
6571 addr += L3C_SIZE - PAGE_SIZE;
6572 src_pte += L3C_ENTRIES - 1;
6573 } else if (pmap_load(dst_pte) == 0 &&
6574 pmap_try_insert_pv_entry(dst_pmap, addr,
6575 PTE_TO_VM_PAGE(ptetemp), &lock)) {
6576 /*
6577 * Clear the wired, contiguous, modified, and
6578 * accessed bits from the destination PTE.
6579 * The contiguous bit is cleared because we
6580 * are not copying the entire L3C superpage.
6581 */
6582 mask = ATTR_SW_WIRED | ATTR_CONTIGUOUS |
6583 ATTR_AF;
6584 nbits = 0;
6585 if ((ptetemp & ATTR_SW_DBM) != 0)
6586 nbits |= ATTR_S1_AP_RW_BIT;
6587 pmap_store(dst_pte, (ptetemp & ~mask) | nbits);
6588 pmap_resident_count_inc(dst_pmap, 1);
6589 } else {
6590 pmap_abort_ptp(dst_pmap, addr, dstmpte);
6591 goto out;
6592 }
6593 /* Have we copied all of the valid mappings? */
6594 if (dstmpte->ref_count >= srcmpte->ref_count)
6595 break;
6596 }
6597 }
6598 out:
6599 /*
6600 * XXX This barrier may not be needed because the destination pmap is
6601 * not active.
6602 */
6603 dsb(ishst);
6604
6605 if (lock != NULL)
6606 rw_wunlock(lock);
6607 PMAP_UNLOCK(src_pmap);
6608 PMAP_UNLOCK(dst_pmap);
6609 }
6610
6611 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)6612 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
6613 {
6614 int error;
6615
6616 if (dst_pmap->pm_stage != src_pmap->pm_stage)
6617 return (EINVAL);
6618
6619 if (dst_pmap->pm_stage != PM_STAGE1 || src_pmap->pm_bti == NULL)
6620 return (0);
6621
6622 for (;;) {
6623 if (dst_pmap < src_pmap) {
6624 PMAP_LOCK(dst_pmap);
6625 PMAP_LOCK(src_pmap);
6626 } else {
6627 PMAP_LOCK(src_pmap);
6628 PMAP_LOCK(dst_pmap);
6629 }
6630 error = pmap_bti_copy(dst_pmap, src_pmap);
6631 /* Clean up partial copy on failure due to no memory. */
6632 if (error == ENOMEM)
6633 pmap_bti_deassign_all(dst_pmap);
6634 PMAP_UNLOCK(src_pmap);
6635 PMAP_UNLOCK(dst_pmap);
6636 if (error != ENOMEM)
6637 break;
6638 vm_wait(NULL);
6639 }
6640 return (error);
6641 }
6642
6643 /*
6644 * pmap_zero_page zeros the specified hardware page by mapping
6645 * the page into KVM and using bzero to clear its contents.
6646 */
6647 void
pmap_zero_page(vm_page_t m)6648 pmap_zero_page(vm_page_t m)
6649 {
6650 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
6651
6652 pagezero((void *)va);
6653 }
6654
6655 /*
6656 * pmap_zero_page_area zeros the specified hardware page by mapping
6657 * the page into KVM and using bzero to clear its contents.
6658 *
6659 * off and size may not cover an area beyond a single hardware page.
6660 */
6661 void
pmap_zero_page_area(vm_page_t m,int off,int size)6662 pmap_zero_page_area(vm_page_t m, int off, int size)
6663 {
6664 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
6665
6666 if (off == 0 && size == PAGE_SIZE)
6667 pagezero((void *)va);
6668 else
6669 bzero((char *)va + off, size);
6670 }
6671
6672 /*
6673 * pmap_copy_page copies the specified (machine independent)
6674 * page by mapping the page into virtual memory and using
6675 * bcopy to copy the page, one machine dependent page at a
6676 * time.
6677 */
6678 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)6679 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
6680 {
6681 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
6682 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
6683
6684 pagecopy((void *)src, (void *)dst);
6685 }
6686
6687 int unmapped_buf_allowed = 1;
6688
6689 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)6690 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
6691 vm_offset_t b_offset, int xfersize)
6692 {
6693 void *a_cp, *b_cp;
6694 vm_page_t m_a, m_b;
6695 vm_paddr_t p_a, p_b;
6696 vm_offset_t a_pg_offset, b_pg_offset;
6697 int cnt;
6698
6699 while (xfersize > 0) {
6700 a_pg_offset = a_offset & PAGE_MASK;
6701 m_a = ma[a_offset >> PAGE_SHIFT];
6702 p_a = m_a->phys_addr;
6703 b_pg_offset = b_offset & PAGE_MASK;
6704 m_b = mb[b_offset >> PAGE_SHIFT];
6705 p_b = m_b->phys_addr;
6706 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
6707 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
6708 if (__predict_false(!PHYS_IN_DMAP(p_a))) {
6709 panic("!DMAP a %lx", p_a);
6710 } else {
6711 a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
6712 }
6713 if (__predict_false(!PHYS_IN_DMAP(p_b))) {
6714 panic("!DMAP b %lx", p_b);
6715 } else {
6716 b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
6717 }
6718 bcopy(a_cp, b_cp, cnt);
6719 a_offset += cnt;
6720 b_offset += cnt;
6721 xfersize -= cnt;
6722 }
6723 }
6724
6725 vm_offset_t
pmap_quick_enter_page(vm_page_t m)6726 pmap_quick_enter_page(vm_page_t m)
6727 {
6728
6729 return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
6730 }
6731
6732 void
pmap_quick_remove_page(vm_offset_t addr)6733 pmap_quick_remove_page(vm_offset_t addr)
6734 {
6735 }
6736
6737 /*
6738 * Returns true if the pmap's pv is one of the first
6739 * 16 pvs linked to from this page. This count may
6740 * be changed upwards or downwards in the future; it
6741 * is only necessary that true be returned for a small
6742 * subset of pmaps for proper page aging.
6743 */
6744 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)6745 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
6746 {
6747 struct md_page *pvh;
6748 struct rwlock *lock;
6749 pv_entry_t pv;
6750 int loops = 0;
6751 bool rv;
6752
6753 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6754 ("pmap_page_exists_quick: page %p is not managed", m));
6755 rv = false;
6756 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6757 rw_rlock(lock);
6758 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
6759 if (PV_PMAP(pv) == pmap) {
6760 rv = true;
6761 break;
6762 }
6763 loops++;
6764 if (loops >= 16)
6765 break;
6766 }
6767 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
6768 pvh = page_to_pvh(m);
6769 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
6770 if (PV_PMAP(pv) == pmap) {
6771 rv = true;
6772 break;
6773 }
6774 loops++;
6775 if (loops >= 16)
6776 break;
6777 }
6778 }
6779 rw_runlock(lock);
6780 return (rv);
6781 }
6782
6783 /*
6784 * pmap_page_wired_mappings:
6785 *
6786 * Return the number of managed mappings to the given physical page
6787 * that are wired.
6788 */
6789 int
pmap_page_wired_mappings(vm_page_t m)6790 pmap_page_wired_mappings(vm_page_t m)
6791 {
6792 struct rwlock *lock;
6793 struct md_page *pvh;
6794 pmap_t pmap;
6795 pt_entry_t *pte;
6796 pv_entry_t pv;
6797 int count, md_gen, pvh_gen;
6798
6799 if ((m->oflags & VPO_UNMANAGED) != 0)
6800 return (0);
6801 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6802 rw_rlock(lock);
6803 restart:
6804 count = 0;
6805 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
6806 pmap = PV_PMAP(pv);
6807 if (!PMAP_TRYLOCK(pmap)) {
6808 md_gen = m->md.pv_gen;
6809 rw_runlock(lock);
6810 PMAP_LOCK(pmap);
6811 rw_rlock(lock);
6812 if (md_gen != m->md.pv_gen) {
6813 PMAP_UNLOCK(pmap);
6814 goto restart;
6815 }
6816 }
6817 pte = pmap_pte_exists(pmap, pv->pv_va, 3, __func__);
6818 if ((pmap_load(pte) & ATTR_SW_WIRED) != 0)
6819 count++;
6820 PMAP_UNLOCK(pmap);
6821 }
6822 if ((m->flags & PG_FICTITIOUS) == 0) {
6823 pvh = page_to_pvh(m);
6824 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
6825 pmap = PV_PMAP(pv);
6826 if (!PMAP_TRYLOCK(pmap)) {
6827 md_gen = m->md.pv_gen;
6828 pvh_gen = pvh->pv_gen;
6829 rw_runlock(lock);
6830 PMAP_LOCK(pmap);
6831 rw_rlock(lock);
6832 if (md_gen != m->md.pv_gen ||
6833 pvh_gen != pvh->pv_gen) {
6834 PMAP_UNLOCK(pmap);
6835 goto restart;
6836 }
6837 }
6838 pte = pmap_pte_exists(pmap, pv->pv_va, 2, __func__);
6839 if ((pmap_load(pte) & ATTR_SW_WIRED) != 0)
6840 count++;
6841 PMAP_UNLOCK(pmap);
6842 }
6843 }
6844 rw_runlock(lock);
6845 return (count);
6846 }
6847
6848 /*
6849 * Returns true if the given page is mapped individually or as part of
6850 * a 2mpage. Otherwise, returns false.
6851 */
6852 bool
pmap_page_is_mapped(vm_page_t m)6853 pmap_page_is_mapped(vm_page_t m)
6854 {
6855 struct rwlock *lock;
6856 bool rv;
6857
6858 if ((m->oflags & VPO_UNMANAGED) != 0)
6859 return (false);
6860 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6861 rw_rlock(lock);
6862 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
6863 ((m->flags & PG_FICTITIOUS) == 0 &&
6864 !TAILQ_EMPTY(&page_to_pvh(m)->pv_list));
6865 rw_runlock(lock);
6866 return (rv);
6867 }
6868
6869 /*
6870 * Destroy all managed, non-wired mappings in the given user-space
6871 * pmap. This pmap cannot be active on any processor besides the
6872 * caller.
6873 *
6874 * This function cannot be applied to the kernel pmap. Moreover, it
6875 * is not intended for general use. It is only to be used during
6876 * process termination. Consequently, it can be implemented in ways
6877 * that make it faster than pmap_remove(). First, it can more quickly
6878 * destroy mappings by iterating over the pmap's collection of PV
6879 * entries, rather than searching the page table. Second, it doesn't
6880 * have to test and clear the page table entries atomically, because
6881 * no processor is currently accessing the user address space. In
6882 * particular, a page table entry's dirty bit won't change state once
6883 * this function starts.
6884 */
6885 void
pmap_remove_pages(pmap_t pmap)6886 pmap_remove_pages(pmap_t pmap)
6887 {
6888 pd_entry_t *pde;
6889 pt_entry_t *pte, tpte;
6890 struct spglist free;
6891 struct pv_chunklist free_chunks[PMAP_MEMDOM];
6892 vm_page_t m, ml3, mt;
6893 pv_entry_t pv;
6894 struct md_page *pvh;
6895 struct pv_chunk *pc, *npc;
6896 struct rwlock *lock;
6897 int64_t bit;
6898 uint64_t inuse, bitmask;
6899 int allfree, field, i, idx, lvl;
6900 int freed __pvused;
6901 vm_paddr_t pa;
6902
6903 lock = NULL;
6904
6905 for (i = 0; i < PMAP_MEMDOM; i++)
6906 TAILQ_INIT(&free_chunks[i]);
6907 SLIST_INIT(&free);
6908 PMAP_LOCK(pmap);
6909 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
6910 allfree = 1;
6911 freed = 0;
6912 for (field = 0; field < _NPCM; field++) {
6913 inuse = ~pc->pc_map[field] & pc_freemask[field];
6914 while (inuse != 0) {
6915 bit = ffsl(inuse) - 1;
6916 bitmask = 1UL << bit;
6917 idx = field * 64 + bit;
6918 pv = &pc->pc_pventry[idx];
6919 inuse &= ~bitmask;
6920
6921 pde = pmap_pde(pmap, pv->pv_va, &lvl);
6922 KASSERT(pde != NULL,
6923 ("Attempting to remove an unmapped page"));
6924
6925 switch(lvl) {
6926 case 1:
6927 pte = pmap_l1_to_l2(pde, pv->pv_va);
6928 tpte = pmap_load(pte);
6929 KASSERT((tpte & ATTR_DESCR_MASK) ==
6930 L2_BLOCK,
6931 ("Attempting to remove an invalid "
6932 "block: %lx", tpte));
6933 break;
6934 case 2:
6935 pte = pmap_l2_to_l3(pde, pv->pv_va);
6936 tpte = pmap_load(pte);
6937 KASSERT((tpte & ATTR_DESCR_MASK) ==
6938 L3_PAGE,
6939 ("Attempting to remove an invalid "
6940 "page: %lx", tpte));
6941 break;
6942 default:
6943 panic(
6944 "Invalid page directory level: %d",
6945 lvl);
6946 }
6947
6948 /*
6949 * We cannot remove wired mappings at this time.
6950 *
6951 * For L3C superpages, all of the constituent PTEs
6952 * should have the wired bit set, so we don't
6953 * check for ATTR_CONTIGUOUS here.
6954 */
6955 if (tpte & ATTR_SW_WIRED) {
6956 allfree = 0;
6957 continue;
6958 }
6959
6960 /* Mark free */
6961 pc->pc_map[field] |= bitmask;
6962
6963 /*
6964 * Because this pmap is not active on other
6965 * processors, the dirty bit cannot have
6966 * changed state since we last loaded pte.
6967 */
6968 pmap_clear(pte);
6969
6970 pa = PTE_TO_PHYS(tpte);
6971
6972 m = PHYS_TO_VM_PAGE(pa);
6973 KASSERT(m->phys_addr == pa,
6974 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
6975 m, (uintmax_t)m->phys_addr,
6976 (uintmax_t)tpte));
6977
6978 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
6979 m < &vm_page_array[vm_page_array_size],
6980 ("pmap_remove_pages: bad pte %#jx",
6981 (uintmax_t)tpte));
6982
6983 /*
6984 * Update the vm_page_t clean/reference bits.
6985 *
6986 * We don't check for ATTR_CONTIGUOUS here
6987 * because writeable L3C superpages are expected
6988 * to be dirty, i.e., every constituent PTE
6989 * should be dirty.
6990 */
6991 if (pmap_pte_dirty(pmap, tpte)) {
6992 switch (lvl) {
6993 case 1:
6994 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
6995 vm_page_dirty(mt);
6996 break;
6997 case 2:
6998 vm_page_dirty(m);
6999 break;
7000 }
7001 }
7002
7003 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
7004
7005 switch (lvl) {
7006 case 1:
7007 pmap_resident_count_dec(pmap,
7008 L2_SIZE / PAGE_SIZE);
7009 pvh = page_to_pvh(m);
7010 TAILQ_REMOVE(&pvh->pv_list, pv,pv_next);
7011 pvh->pv_gen++;
7012 if (TAILQ_EMPTY(&pvh->pv_list)) {
7013 for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
7014 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
7015 TAILQ_EMPTY(&mt->md.pv_list))
7016 vm_page_aflag_clear(mt, PGA_WRITEABLE);
7017 }
7018 ml3 = pmap_remove_pt_page(pmap,
7019 pv->pv_va);
7020 if (ml3 != NULL) {
7021 KASSERT(vm_page_any_valid(ml3),
7022 ("pmap_remove_pages: l3 page not promoted"));
7023 pmap_resident_count_dec(pmap,1);
7024 KASSERT(ml3->ref_count == NL3PG,
7025 ("pmap_remove_pages: l3 page ref count error"));
7026 ml3->ref_count = 0;
7027 pmap_add_delayed_free_list(ml3,
7028 &free, false);
7029 }
7030 break;
7031 case 2:
7032 pmap_resident_count_dec(pmap, 1);
7033 TAILQ_REMOVE(&m->md.pv_list, pv,
7034 pv_next);
7035 m->md.pv_gen++;
7036 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
7037 TAILQ_EMPTY(&m->md.pv_list) &&
7038 (m->flags & PG_FICTITIOUS) == 0) {
7039 pvh = page_to_pvh(m);
7040 if (TAILQ_EMPTY(&pvh->pv_list))
7041 vm_page_aflag_clear(m,
7042 PGA_WRITEABLE);
7043 }
7044 break;
7045 }
7046 pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde),
7047 &free);
7048 freed++;
7049 }
7050 }
7051 PV_STAT(atomic_add_long(&pv_entry_frees, freed));
7052 PV_STAT(atomic_add_int(&pv_entry_spare, freed));
7053 PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
7054 if (allfree) {
7055 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
7056 TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc,
7057 pc_list);
7058 }
7059 }
7060 if (lock != NULL)
7061 rw_wunlock(lock);
7062 pmap_invalidate_all(pmap);
7063 pmap_bti_deassign_all(pmap);
7064 free_pv_chunk_batch(free_chunks);
7065 PMAP_UNLOCK(pmap);
7066 vm_page_free_pages_toq(&free, true);
7067 }
7068
7069 /*
7070 * This is used to check if a page has been accessed or modified.
7071 */
7072 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)7073 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
7074 {
7075 struct rwlock *lock;
7076 pv_entry_t pv;
7077 struct md_page *pvh;
7078 pt_entry_t l3e, mask, *pte, value;
7079 pmap_t pmap;
7080 int md_gen, pvh_gen;
7081 bool rv;
7082
7083 rv = false;
7084 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7085 rw_rlock(lock);
7086 restart:
7087 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7088 pmap = PV_PMAP(pv);
7089 PMAP_ASSERT_STAGE1(pmap);
7090 if (!PMAP_TRYLOCK(pmap)) {
7091 md_gen = m->md.pv_gen;
7092 rw_runlock(lock);
7093 PMAP_LOCK(pmap);
7094 rw_rlock(lock);
7095 if (md_gen != m->md.pv_gen) {
7096 PMAP_UNLOCK(pmap);
7097 goto restart;
7098 }
7099 }
7100 pte = pmap_pte_exists(pmap, pv->pv_va, 3, __func__);
7101 mask = 0;
7102 value = 0;
7103 if (modified) {
7104 mask |= ATTR_S1_AP_RW_BIT;
7105 value |= ATTR_S1_AP(ATTR_S1_AP_RW);
7106 }
7107 if (accessed) {
7108 mask |= ATTR_AF | ATTR_DESCR_MASK;
7109 value |= ATTR_AF | L3_PAGE;
7110 }
7111 l3e = pmap_load(pte);
7112 if ((l3e & ATTR_CONTIGUOUS) != 0)
7113 l3e = pmap_load_l3c(pte);
7114 PMAP_UNLOCK(pmap);
7115 rv = (l3e & mask) == value;
7116 if (rv)
7117 goto out;
7118 }
7119 if ((m->flags & PG_FICTITIOUS) == 0) {
7120 pvh = page_to_pvh(m);
7121 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
7122 pmap = PV_PMAP(pv);
7123 PMAP_ASSERT_STAGE1(pmap);
7124 if (!PMAP_TRYLOCK(pmap)) {
7125 md_gen = m->md.pv_gen;
7126 pvh_gen = pvh->pv_gen;
7127 rw_runlock(lock);
7128 PMAP_LOCK(pmap);
7129 rw_rlock(lock);
7130 if (md_gen != m->md.pv_gen ||
7131 pvh_gen != pvh->pv_gen) {
7132 PMAP_UNLOCK(pmap);
7133 goto restart;
7134 }
7135 }
7136 pte = pmap_pte_exists(pmap, pv->pv_va, 2, __func__);
7137 mask = 0;
7138 value = 0;
7139 if (modified) {
7140 mask |= ATTR_S1_AP_RW_BIT;
7141 value |= ATTR_S1_AP(ATTR_S1_AP_RW);
7142 }
7143 if (accessed) {
7144 mask |= ATTR_AF | ATTR_DESCR_MASK;
7145 value |= ATTR_AF | L2_BLOCK;
7146 }
7147 rv = (pmap_load(pte) & mask) == value;
7148 PMAP_UNLOCK(pmap);
7149 if (rv)
7150 goto out;
7151 }
7152 }
7153 out:
7154 rw_runlock(lock);
7155 return (rv);
7156 }
7157
7158 /*
7159 * pmap_is_modified:
7160 *
7161 * Return whether or not the specified physical page was modified
7162 * in any physical maps.
7163 */
7164 bool
pmap_is_modified(vm_page_t m)7165 pmap_is_modified(vm_page_t m)
7166 {
7167
7168 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7169 ("pmap_is_modified: page %p is not managed", m));
7170
7171 /*
7172 * If the page is not busied then this check is racy.
7173 */
7174 if (!pmap_page_is_write_mapped(m))
7175 return (false);
7176 return (pmap_page_test_mappings(m, false, true));
7177 }
7178
7179 /*
7180 * pmap_is_prefaultable:
7181 *
7182 * Return whether or not the specified virtual address is eligible
7183 * for prefault.
7184 */
7185 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)7186 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
7187 {
7188 pd_entry_t *pde;
7189 pt_entry_t *pte;
7190 bool rv;
7191 int lvl;
7192
7193 /*
7194 * Return true if and only if the L3 entry for the specified virtual
7195 * address is allocated but invalid.
7196 */
7197 rv = false;
7198 PMAP_LOCK(pmap);
7199 pde = pmap_pde(pmap, addr, &lvl);
7200 if (pde != NULL && lvl == 2) {
7201 pte = pmap_l2_to_l3(pde, addr);
7202 rv = pmap_load(pte) == 0;
7203 }
7204 PMAP_UNLOCK(pmap);
7205 return (rv);
7206 }
7207
7208 /*
7209 * pmap_is_referenced:
7210 *
7211 * Return whether or not the specified physical page was referenced
7212 * in any physical maps.
7213 */
7214 bool
pmap_is_referenced(vm_page_t m)7215 pmap_is_referenced(vm_page_t m)
7216 {
7217
7218 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7219 ("pmap_is_referenced: page %p is not managed", m));
7220 return (pmap_page_test_mappings(m, true, false));
7221 }
7222
7223 /*
7224 * Clear the write and modified bits in each of the given page's mappings.
7225 */
7226 void
pmap_remove_write(vm_page_t m)7227 pmap_remove_write(vm_page_t m)
7228 {
7229 struct md_page *pvh;
7230 pmap_t pmap;
7231 struct rwlock *lock;
7232 pv_entry_t next_pv, pv;
7233 pt_entry_t oldpte, *pte, set, clear, mask, val;
7234 vm_offset_t va;
7235 int md_gen, pvh_gen;
7236
7237 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7238 ("pmap_remove_write: page %p is not managed", m));
7239 vm_page_assert_busied(m);
7240
7241 if (!pmap_page_is_write_mapped(m))
7242 return;
7243 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7244 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
7245 rw_wlock(lock);
7246 retry:
7247 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
7248 pmap = PV_PMAP(pv);
7249 PMAP_ASSERT_STAGE1(pmap);
7250 if (!PMAP_TRYLOCK(pmap)) {
7251 pvh_gen = pvh->pv_gen;
7252 rw_wunlock(lock);
7253 PMAP_LOCK(pmap);
7254 rw_wlock(lock);
7255 if (pvh_gen != pvh->pv_gen) {
7256 PMAP_UNLOCK(pmap);
7257 goto retry;
7258 }
7259 }
7260 va = pv->pv_va;
7261 pte = pmap_pte_exists(pmap, va, 2, __func__);
7262 if ((pmap_load(pte) & ATTR_SW_DBM) != 0)
7263 (void)pmap_demote_l2_locked(pmap, pte, va, &lock);
7264 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
7265 ("inconsistent pv lock %p %p for page %p",
7266 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
7267 PMAP_UNLOCK(pmap);
7268 }
7269 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7270 pmap = PV_PMAP(pv);
7271 if (!PMAP_TRYLOCK(pmap)) {
7272 pvh_gen = pvh->pv_gen;
7273 md_gen = m->md.pv_gen;
7274 rw_wunlock(lock);
7275 PMAP_LOCK(pmap);
7276 rw_wlock(lock);
7277 if (pvh_gen != pvh->pv_gen ||
7278 md_gen != m->md.pv_gen) {
7279 PMAP_UNLOCK(pmap);
7280 goto retry;
7281 }
7282 }
7283 pte = pmap_pte_exists(pmap, pv->pv_va, 3, __func__);
7284 oldpte = pmap_load(pte);
7285 if ((oldpte & ATTR_SW_DBM) != 0) {
7286 if ((oldpte & ATTR_CONTIGUOUS) != 0) {
7287 (void)pmap_demote_l3c(pmap, pte, pv->pv_va);
7288
7289 /*
7290 * The L3 entry's accessed bit may have
7291 * changed.
7292 */
7293 oldpte = pmap_load(pte);
7294 }
7295 if (pmap->pm_stage == PM_STAGE1) {
7296 set = ATTR_S1_AP_RW_BIT;
7297 clear = 0;
7298 mask = ATTR_S1_AP_RW_BIT;
7299 val = ATTR_S1_AP(ATTR_S1_AP_RW);
7300 } else {
7301 set = 0;
7302 clear = ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
7303 mask = ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
7304 val = ATTR_S2_S2AP(ATTR_S2_S2AP_WRITE);
7305 }
7306 clear |= ATTR_SW_DBM;
7307 while (!atomic_fcmpset_64(pte, &oldpte,
7308 (oldpte | set) & ~clear))
7309 cpu_spinwait();
7310
7311 if ((oldpte & mask) == val)
7312 vm_page_dirty(m);
7313 pmap_invalidate_page(pmap, pv->pv_va, true);
7314 }
7315 PMAP_UNLOCK(pmap);
7316 }
7317 rw_wunlock(lock);
7318 vm_page_aflag_clear(m, PGA_WRITEABLE);
7319 }
7320
7321 /*
7322 * pmap_ts_referenced:
7323 *
7324 * Return a count of reference bits for a page, clearing those bits.
7325 * It is not necessary for every reference bit to be cleared, but it
7326 * is necessary that 0 only be returned when there are truly no
7327 * reference bits set.
7328 *
7329 * As an optimization, update the page's dirty field if a modified bit is
7330 * found while counting reference bits. This opportunistic update can be
7331 * performed at low cost and can eliminate the need for some future calls
7332 * to pmap_is_modified(). However, since this function stops after
7333 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
7334 * dirty pages. Those dirty pages will only be detected by a future call
7335 * to pmap_is_modified().
7336 */
7337 int
pmap_ts_referenced(vm_page_t m)7338 pmap_ts_referenced(vm_page_t m)
7339 {
7340 struct md_page *pvh;
7341 pv_entry_t pv, pvf;
7342 pmap_t pmap;
7343 struct rwlock *lock;
7344 pt_entry_t *pte, tpte;
7345 vm_offset_t va;
7346 vm_paddr_t pa;
7347 int cleared, md_gen, not_cleared, pvh_gen;
7348 struct spglist free;
7349
7350 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7351 ("pmap_ts_referenced: page %p is not managed", m));
7352 SLIST_INIT(&free);
7353 cleared = 0;
7354 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
7355 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7356 rw_wlock(lock);
7357 retry:
7358 not_cleared = 0;
7359 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
7360 goto small_mappings;
7361 pv = pvf;
7362 do {
7363 if (pvf == NULL)
7364 pvf = pv;
7365 pmap = PV_PMAP(pv);
7366 if (!PMAP_TRYLOCK(pmap)) {
7367 pvh_gen = pvh->pv_gen;
7368 rw_wunlock(lock);
7369 PMAP_LOCK(pmap);
7370 rw_wlock(lock);
7371 if (pvh_gen != pvh->pv_gen) {
7372 PMAP_UNLOCK(pmap);
7373 goto retry;
7374 }
7375 }
7376 va = pv->pv_va;
7377 pte = pmap_pte_exists(pmap, va, 2, __func__);
7378 tpte = pmap_load(pte);
7379 if (pmap_pte_dirty(pmap, tpte)) {
7380 /*
7381 * Although "tpte" is mapping a 2MB page, because
7382 * this function is called at a 4KB page granularity,
7383 * we only update the 4KB page under test.
7384 */
7385 vm_page_dirty(m);
7386 }
7387 if ((tpte & ATTR_AF) != 0) {
7388 pa = VM_PAGE_TO_PHYS(m);
7389
7390 /*
7391 * Since this reference bit is shared by 512 4KB pages,
7392 * it should not be cleared every time it is tested.
7393 * Apply a simple "hash" function on the physical page
7394 * number, the virtual superpage number, and the pmap
7395 * address to select one 4KB page out of the 512 on
7396 * which testing the reference bit will result in
7397 * clearing that reference bit. This function is
7398 * designed to avoid the selection of the same 4KB page
7399 * for every 2MB page mapping.
7400 *
7401 * On demotion, a mapping that hasn't been referenced
7402 * is simply destroyed. To avoid the possibility of a
7403 * subsequent page fault on a demoted wired mapping,
7404 * always leave its reference bit set. Moreover,
7405 * since the superpage is wired, the current state of
7406 * its reference bit won't affect page replacement.
7407 */
7408 if ((((pa >> PAGE_SHIFT) ^ (va >> L2_SHIFT) ^
7409 (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
7410 (tpte & ATTR_SW_WIRED) == 0) {
7411 pmap_clear_bits(pte, ATTR_AF);
7412 pmap_invalidate_page(pmap, va, true);
7413 cleared++;
7414 } else
7415 not_cleared++;
7416 }
7417 PMAP_UNLOCK(pmap);
7418 /* Rotate the PV list if it has more than one entry. */
7419 if (TAILQ_NEXT(pv, pv_next) != NULL) {
7420 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
7421 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
7422 pvh->pv_gen++;
7423 }
7424 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
7425 goto out;
7426 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
7427 small_mappings:
7428 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
7429 goto out;
7430 pv = pvf;
7431 do {
7432 if (pvf == NULL)
7433 pvf = pv;
7434 pmap = PV_PMAP(pv);
7435 if (!PMAP_TRYLOCK(pmap)) {
7436 pvh_gen = pvh->pv_gen;
7437 md_gen = m->md.pv_gen;
7438 rw_wunlock(lock);
7439 PMAP_LOCK(pmap);
7440 rw_wlock(lock);
7441 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
7442 PMAP_UNLOCK(pmap);
7443 goto retry;
7444 }
7445 }
7446 pte = pmap_pte_exists(pmap, pv->pv_va, 3, __func__);
7447 tpte = pmap_load(pte);
7448 if (pmap_pte_dirty(pmap, tpte))
7449 vm_page_dirty(m);
7450 if ((tpte & ATTR_AF) != 0) {
7451 if ((tpte & ATTR_SW_WIRED) == 0) {
7452 /*
7453 * Clear the accessed bit in this L3 entry
7454 * regardless of the contiguous bit.
7455 */
7456 pmap_clear_bits(pte, ATTR_AF);
7457 pmap_invalidate_page(pmap, pv->pv_va, true);
7458 cleared++;
7459 } else
7460 not_cleared++;
7461 } else if ((tpte & ATTR_CONTIGUOUS) != 0 &&
7462 (pmap_load_l3c(pte) & ATTR_AF) != 0) {
7463 /*
7464 * An L3C superpage mapping is regarded as accessed
7465 * until the accessed bit has been cleared in all
7466 * of its constituent entries.
7467 */
7468 not_cleared++;
7469 }
7470 PMAP_UNLOCK(pmap);
7471 /* Rotate the PV list if it has more than one entry. */
7472 if (TAILQ_NEXT(pv, pv_next) != NULL) {
7473 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
7474 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7475 m->md.pv_gen++;
7476 }
7477 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
7478 not_cleared < PMAP_TS_REFERENCED_MAX);
7479 out:
7480 rw_wunlock(lock);
7481 vm_page_free_pages_toq(&free, true);
7482 return (cleared + not_cleared);
7483 }
7484
7485 /*
7486 * Apply the given advice to the specified range of addresses within the
7487 * given pmap. Depending on the advice, clear the referenced and/or
7488 * modified flags in each mapping and set the mapped page's dirty field.
7489 */
7490 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)7491 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
7492 {
7493 struct rwlock *lock;
7494 vm_offset_t va, va_next, dva;
7495 vm_page_t m;
7496 pd_entry_t *l0, *l1, *l2, oldl2;
7497 pt_entry_t *l3, *dl3, oldl3;
7498
7499 PMAP_ASSERT_STAGE1(pmap);
7500
7501 if (advice != MADV_DONTNEED && advice != MADV_FREE)
7502 return;
7503
7504 PMAP_LOCK(pmap);
7505 for (; sva < eva; sva = va_next) {
7506 l0 = pmap_l0(pmap, sva);
7507 if (pmap_load(l0) == 0) {
7508 va_next = (sva + L0_SIZE) & ~L0_OFFSET;
7509 if (va_next < sva)
7510 va_next = eva;
7511 continue;
7512 }
7513
7514 va_next = (sva + L1_SIZE) & ~L1_OFFSET;
7515 if (va_next < sva)
7516 va_next = eva;
7517 l1 = pmap_l0_to_l1(l0, sva);
7518 if (pmap_load(l1) == 0)
7519 continue;
7520 if ((pmap_load(l1) & ATTR_DESCR_MASK) == L1_BLOCK) {
7521 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
7522 continue;
7523 }
7524
7525 va_next = (sva + L2_SIZE) & ~L2_OFFSET;
7526 if (va_next < sva)
7527 va_next = eva;
7528 l2 = pmap_l1_to_l2(l1, sva);
7529 oldl2 = pmap_load(l2);
7530 if (oldl2 == 0)
7531 continue;
7532 if ((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK) {
7533 if ((oldl2 & ATTR_SW_MANAGED) == 0)
7534 continue;
7535 lock = NULL;
7536 if (!pmap_demote_l2_locked(pmap, l2, sva, &lock)) {
7537 if (lock != NULL)
7538 rw_wunlock(lock);
7539
7540 /*
7541 * The 2MB page mapping was destroyed.
7542 */
7543 continue;
7544 }
7545
7546 /*
7547 * Unless the page mappings are wired, remove the
7548 * mapping to a single page so that a subsequent
7549 * access may repromote. Choosing the last page
7550 * within the address range [sva, min(va_next, eva))
7551 * generally results in more repromotions. Since the
7552 * underlying page table page is fully populated, this
7553 * removal never frees a page table page.
7554 */
7555 if ((oldl2 & ATTR_SW_WIRED) == 0) {
7556 va = eva;
7557 if (va > va_next)
7558 va = va_next;
7559 va -= PAGE_SIZE;
7560 KASSERT(va >= sva,
7561 ("pmap_advise: no address gap"));
7562 l3 = pmap_l2_to_l3(l2, va);
7563 KASSERT(pmap_load(l3) != 0,
7564 ("pmap_advise: invalid PTE"));
7565 pmap_remove_l3(pmap, l3, va, pmap_load(l2),
7566 NULL, &lock);
7567 }
7568 if (lock != NULL)
7569 rw_wunlock(lock);
7570 }
7571 KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE,
7572 ("pmap_advise: invalid L2 entry after demotion"));
7573 if (va_next > eva)
7574 va_next = eva;
7575 va = va_next;
7576 for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
7577 sva += L3_SIZE) {
7578 oldl3 = pmap_load(l3);
7579 if ((oldl3 & (ATTR_SW_MANAGED | ATTR_DESCR_MASK)) !=
7580 (ATTR_SW_MANAGED | L3_PAGE))
7581 goto maybe_invlrng;
7582 else if (pmap_pte_dirty(pmap, oldl3)) {
7583 if (advice == MADV_DONTNEED) {
7584 /*
7585 * Future calls to pmap_is_modified()
7586 * can be avoided by making the page
7587 * dirty now.
7588 */
7589 m = PTE_TO_VM_PAGE(oldl3);
7590 vm_page_dirty(m);
7591 }
7592 if ((oldl3 & ATTR_CONTIGUOUS) != 0) {
7593 /*
7594 * Unconditionally demote the L3C
7595 * superpage because we do not allow
7596 * writeable, clean superpages.
7597 */
7598 (void)pmap_demote_l3c(pmap, l3, sva);
7599
7600 /*
7601 * Destroy the final mapping before the
7602 * next L3C boundary or va_next,
7603 * whichever comes first, so that a
7604 * subsequent access may act as a
7605 * repromotion trigger.
7606 */
7607 if ((oldl3 & ATTR_SW_WIRED) == 0) {
7608 dva = MIN((sva & ~L3C_OFFSET) +
7609 L3C_SIZE - PAGE_SIZE,
7610 va_next - PAGE_SIZE);
7611 dl3 = pmap_l2_to_l3(l2, dva);
7612 KASSERT(pmap_load(dl3) != 0,
7613 ("pmap_advise: invalid PTE"));
7614 lock = NULL;
7615 pmap_remove_l3(pmap, dl3, dva,
7616 pmap_load(l2), NULL, &lock);
7617 if (lock != NULL)
7618 rw_wunlock(lock);
7619 }
7620
7621 /*
7622 * The L3 entry's accessed bit may have
7623 * changed.
7624 */
7625 oldl3 = pmap_load(l3);
7626 }
7627
7628 /*
7629 * Check that we did not just destroy this entry so
7630 * we avoid corrupting the page able.
7631 */
7632 if (oldl3 != 0) {
7633 while (!atomic_fcmpset_long(l3, &oldl3,
7634 (oldl3 & ~ATTR_AF) |
7635 ATTR_S1_AP(ATTR_S1_AP_RO)))
7636 cpu_spinwait();
7637 }
7638 } else if ((oldl3 & ATTR_AF) != 0) {
7639 /*
7640 * Clear the accessed bit in this L3 entry
7641 * regardless of the contiguous bit.
7642 */
7643 pmap_clear_bits(l3, ATTR_AF);
7644 } else
7645 goto maybe_invlrng;
7646 if (va == va_next)
7647 va = sva;
7648 continue;
7649 maybe_invlrng:
7650 if (va != va_next) {
7651 pmap_s1_invalidate_range(pmap, va, sva, true);
7652 va = va_next;
7653 }
7654 }
7655 if (va != va_next)
7656 pmap_s1_invalidate_range(pmap, va, sva, true);
7657 }
7658 PMAP_UNLOCK(pmap);
7659 }
7660
7661 /*
7662 * Clear the modify bits on the specified physical page.
7663 */
7664 void
pmap_clear_modify(vm_page_t m)7665 pmap_clear_modify(vm_page_t m)
7666 {
7667 struct md_page *pvh;
7668 struct rwlock *lock;
7669 pmap_t pmap;
7670 pv_entry_t next_pv, pv;
7671 pd_entry_t *l2, oldl2;
7672 pt_entry_t *l3, oldl3;
7673 vm_offset_t va;
7674 int md_gen, pvh_gen;
7675
7676 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
7677 ("pmap_clear_modify: page %p is not managed", m));
7678 vm_page_assert_busied(m);
7679
7680 if (!pmap_page_is_write_mapped(m))
7681 return;
7682 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : page_to_pvh(m);
7683 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
7684 rw_wlock(lock);
7685 restart:
7686 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
7687 pmap = PV_PMAP(pv);
7688 PMAP_ASSERT_STAGE1(pmap);
7689 if (!PMAP_TRYLOCK(pmap)) {
7690 pvh_gen = pvh->pv_gen;
7691 rw_wunlock(lock);
7692 PMAP_LOCK(pmap);
7693 rw_wlock(lock);
7694 if (pvh_gen != pvh->pv_gen) {
7695 PMAP_UNLOCK(pmap);
7696 goto restart;
7697 }
7698 }
7699 va = pv->pv_va;
7700 l2 = pmap_l2(pmap, va);
7701 oldl2 = pmap_load(l2);
7702 /* If oldl2 has ATTR_SW_DBM set, then it is also dirty. */
7703 if ((oldl2 & ATTR_SW_DBM) != 0 &&
7704 pmap_demote_l2_locked(pmap, l2, va, &lock) &&
7705 (oldl2 & ATTR_SW_WIRED) == 0) {
7706 /*
7707 * Write protect the mapping to a single page so that
7708 * a subsequent write access may repromote.
7709 */
7710 va += VM_PAGE_TO_PHYS(m) - PTE_TO_PHYS(oldl2);
7711 l3 = pmap_l2_to_l3(l2, va);
7712 oldl3 = pmap_load(l3);
7713 while (!atomic_fcmpset_long(l3, &oldl3,
7714 (oldl3 & ~ATTR_SW_DBM) | ATTR_S1_AP(ATTR_S1_AP_RO)))
7715 cpu_spinwait();
7716 vm_page_dirty(m);
7717 pmap_s1_invalidate_page(pmap, va, true);
7718 }
7719 PMAP_UNLOCK(pmap);
7720 }
7721 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
7722 pmap = PV_PMAP(pv);
7723 PMAP_ASSERT_STAGE1(pmap);
7724 if (!PMAP_TRYLOCK(pmap)) {
7725 md_gen = m->md.pv_gen;
7726 pvh_gen = pvh->pv_gen;
7727 rw_wunlock(lock);
7728 PMAP_LOCK(pmap);
7729 rw_wlock(lock);
7730 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
7731 PMAP_UNLOCK(pmap);
7732 goto restart;
7733 }
7734 }
7735 l2 = pmap_l2(pmap, pv->pv_va);
7736 l3 = pmap_l2_to_l3(l2, pv->pv_va);
7737 oldl3 = pmap_load(l3);
7738 KASSERT((oldl3 & ATTR_CONTIGUOUS) == 0 ||
7739 (oldl3 & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) !=
7740 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RO)),
7741 ("writeable L3C superpage not dirty"));
7742 if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == ATTR_SW_DBM) {
7743 if ((oldl3 & ATTR_CONTIGUOUS) != 0)
7744 (void)pmap_demote_l3c(pmap, l3, pv->pv_va);
7745 pmap_set_bits(l3, ATTR_S1_AP(ATTR_S1_AP_RO));
7746 pmap_s1_invalidate_page(pmap, pv->pv_va, true);
7747 }
7748 PMAP_UNLOCK(pmap);
7749 }
7750 rw_wunlock(lock);
7751 }
7752
7753 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)7754 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
7755 {
7756 struct pmap_preinit_mapping *ppim;
7757 vm_offset_t va, offset;
7758 pd_entry_t old_l2e, *pde;
7759 pt_entry_t *l2;
7760 int i, lvl, l2_blocks, free_l2_count, start_idx;
7761
7762 if (!vm_initialized) {
7763 /*
7764 * No L3 ptables so map entire L2 blocks where start VA is:
7765 * preinit_map_va + start_idx * L2_SIZE
7766 * There may be duplicate mappings (multiple VA -> same PA) but
7767 * ARM64 dcache is always PIPT so that's acceptable.
7768 */
7769 if (size == 0)
7770 return (NULL);
7771
7772 /* Calculate how many L2 blocks are needed for the mapping */
7773 l2_blocks = (roundup2(pa + size, L2_SIZE) -
7774 rounddown2(pa, L2_SIZE)) >> L2_SHIFT;
7775
7776 offset = pa & L2_OFFSET;
7777
7778 if (preinit_map_va == 0)
7779 return (NULL);
7780
7781 /* Map 2MiB L2 blocks from reserved VA space */
7782
7783 free_l2_count = 0;
7784 start_idx = -1;
7785 /* Find enough free contiguous VA space */
7786 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
7787 ppim = pmap_preinit_mapping + i;
7788 if (free_l2_count > 0 && ppim->pa != 0) {
7789 /* Not enough space here */
7790 free_l2_count = 0;
7791 start_idx = -1;
7792 continue;
7793 }
7794
7795 if (ppim->pa == 0) {
7796 /* Free L2 block */
7797 if (start_idx == -1)
7798 start_idx = i;
7799 free_l2_count++;
7800 if (free_l2_count == l2_blocks)
7801 break;
7802 }
7803 }
7804 if (free_l2_count != l2_blocks)
7805 panic("%s: too many preinit mappings", __func__);
7806
7807 va = preinit_map_va + (start_idx * L2_SIZE);
7808 for (i = start_idx; i < start_idx + l2_blocks; i++) {
7809 /* Mark entries as allocated */
7810 ppim = pmap_preinit_mapping + i;
7811 ppim->pa = pa;
7812 ppim->va = va + offset;
7813 ppim->size = size;
7814 }
7815
7816 /* Map L2 blocks */
7817 pa = rounddown2(pa, L2_SIZE);
7818 old_l2e = 0;
7819 for (i = 0; i < l2_blocks; i++) {
7820 pde = pmap_pde(kernel_pmap, va, &lvl);
7821 KASSERT(pde != NULL,
7822 ("pmap_mapbios: Invalid page entry, va: 0x%lx",
7823 va));
7824 KASSERT(lvl == 1,
7825 ("pmap_mapbios: Invalid level %d", lvl));
7826
7827 /* Insert L2_BLOCK */
7828 l2 = pmap_l1_to_l2(pde, va);
7829 old_l2e |= pmap_load_store(l2,
7830 PHYS_TO_PTE(pa) | ATTR_AF | pmap_sh_attr |
7831 ATTR_S1_XN | ATTR_KERN_GP |
7832 ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L2_BLOCK);
7833
7834 va += L2_SIZE;
7835 pa += L2_SIZE;
7836 }
7837 if ((old_l2e & ATTR_DESCR_VALID) != 0)
7838 pmap_s1_invalidate_all(kernel_pmap);
7839 else {
7840 /*
7841 * Because the old entries were invalid and the new
7842 * mappings are not executable, an isb is not required.
7843 */
7844 dsb(ishst);
7845 }
7846
7847 va = preinit_map_va + (start_idx * L2_SIZE);
7848
7849 } else {
7850 /* kva_alloc may be used to map the pages */
7851 offset = pa & PAGE_MASK;
7852 size = round_page(offset + size);
7853
7854 va = kva_alloc(size);
7855 if (va == 0)
7856 panic("%s: Couldn't allocate KVA", __func__);
7857
7858 pde = pmap_pde(kernel_pmap, va, &lvl);
7859 KASSERT(lvl == 2, ("pmap_mapbios: Invalid level %d", lvl));
7860
7861 /* L3 table is linked */
7862 va = trunc_page(va);
7863 pa = trunc_page(pa);
7864 pmap_kenter(va, size, pa, memory_mapping_mode(pa));
7865 }
7866
7867 return ((void *)(va + offset));
7868 }
7869
7870 void
pmap_unmapbios(void * p,vm_size_t size)7871 pmap_unmapbios(void *p, vm_size_t size)
7872 {
7873 struct pmap_preinit_mapping *ppim;
7874 vm_offset_t offset, va, va_trunc;
7875 pd_entry_t *pde;
7876 pt_entry_t *l2;
7877 int i, lvl, l2_blocks, block;
7878 bool preinit_map;
7879
7880 va = (vm_offset_t)p;
7881 l2_blocks =
7882 (roundup2(va + size, L2_SIZE) - rounddown2(va, L2_SIZE)) >> L2_SHIFT;
7883 KASSERT(l2_blocks > 0, ("pmap_unmapbios: invalid size %lx", size));
7884
7885 /* Remove preinit mapping */
7886 preinit_map = false;
7887 block = 0;
7888 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
7889 ppim = pmap_preinit_mapping + i;
7890 if (ppim->va == va) {
7891 KASSERT(ppim->size == size,
7892 ("pmap_unmapbios: size mismatch"));
7893 ppim->va = 0;
7894 ppim->pa = 0;
7895 ppim->size = 0;
7896 preinit_map = true;
7897 offset = block * L2_SIZE;
7898 va_trunc = rounddown2(va, L2_SIZE) + offset;
7899
7900 /* Remove L2_BLOCK */
7901 pde = pmap_pde(kernel_pmap, va_trunc, &lvl);
7902 KASSERT(pde != NULL,
7903 ("pmap_unmapbios: Invalid page entry, va: 0x%lx",
7904 va_trunc));
7905 l2 = pmap_l1_to_l2(pde, va_trunc);
7906 pmap_clear(l2);
7907
7908 if (block == (l2_blocks - 1))
7909 break;
7910 block++;
7911 }
7912 }
7913 if (preinit_map) {
7914 pmap_s1_invalidate_all(kernel_pmap);
7915 return;
7916 }
7917
7918 /* Unmap the pages reserved with kva_alloc. */
7919 if (vm_initialized) {
7920 offset = va & PAGE_MASK;
7921 size = round_page(offset + size);
7922 va = trunc_page(va);
7923
7924 /* Unmap and invalidate the pages */
7925 pmap_kremove_device(va, size);
7926
7927 kva_free(va, size);
7928 }
7929 }
7930
7931 /*
7932 * Sets the memory attribute for the specified page.
7933 */
7934 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)7935 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
7936 {
7937
7938 m->md.pv_memattr = ma;
7939
7940 /*
7941 * If "m" is a normal page, update its direct mapping. This update
7942 * can be relied upon to perform any cache operations that are
7943 * required for data coherence.
7944 */
7945 if ((m->flags & PG_FICTITIOUS) == 0 &&
7946 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
7947 m->md.pv_memattr) != 0)
7948 panic("memory attribute change on the direct map failed");
7949 }
7950
7951 /*
7952 * Changes the specified virtual address range's memory type to that given by
7953 * the parameter "mode". The specified virtual address range must be
7954 * completely contained within either the direct map or the kernel map. If
7955 * the virtual address range is contained within the kernel map, then the
7956 * memory type for each of the corresponding ranges of the direct map is also
7957 * changed. (The corresponding ranges of the direct map are those ranges that
7958 * map the same physical pages as the specified virtual address range.) These
7959 * changes to the direct map are necessary because Intel describes the
7960 * behavior of their processors as "undefined" if two or more mappings to the
7961 * same physical page have different memory types.
7962 *
7963 * Returns zero if the change completed successfully, and either EINVAL or
7964 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
7965 * of the virtual address range was not mapped, and ENOMEM is returned if
7966 * there was insufficient memory available to complete the change. In the
7967 * latter case, the memory type may have been changed on some part of the
7968 * virtual address range or the direct map.
7969 */
7970 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)7971 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
7972 {
7973 int error;
7974
7975 PMAP_LOCK(kernel_pmap);
7976 error = pmap_change_props_locked(va, size, PROT_NONE, mode, false);
7977 PMAP_UNLOCK(kernel_pmap);
7978 return (error);
7979 }
7980
7981 /*
7982 * Changes the specified virtual address range's protections to those
7983 * specified by "prot". Like pmap_change_attr(), protections for aliases
7984 * in the direct map are updated as well. Protections on aliasing mappings may
7985 * be a subset of the requested protections; for example, mappings in the direct
7986 * map are never executable.
7987 */
7988 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)7989 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
7990 {
7991 int error;
7992
7993 /* Only supported within the kernel map. */
7994 if (va < VM_MIN_KERNEL_ADDRESS)
7995 return (EINVAL);
7996
7997 PMAP_LOCK(kernel_pmap);
7998 error = pmap_change_props_locked(va, size, prot, -1, false);
7999 PMAP_UNLOCK(kernel_pmap);
8000 return (error);
8001 }
8002
8003 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,bool skip_unmapped)8004 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
8005 int mode, bool skip_unmapped)
8006 {
8007 vm_offset_t base, offset, tmpva;
8008 vm_size_t pte_size;
8009 vm_paddr_t pa;
8010 pt_entry_t pte, *ptep, *newpte;
8011 pt_entry_t bits, mask;
8012 int lvl, rv;
8013
8014 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
8015 base = trunc_page(va);
8016 offset = va & PAGE_MASK;
8017 size = round_page(offset + size);
8018
8019 if (!VIRT_IN_DMAP(base) &&
8020 !(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS))
8021 return (EINVAL);
8022
8023 bits = 0;
8024 mask = 0;
8025 if (mode != -1) {
8026 bits = ATTR_S1_IDX(mode);
8027 mask = ATTR_S1_IDX_MASK;
8028 if (mode == VM_MEMATTR_DEVICE) {
8029 mask |= ATTR_S1_XN;
8030 bits |= ATTR_S1_XN;
8031 }
8032 }
8033 if (prot != VM_PROT_NONE) {
8034 /* Don't mark the DMAP as executable. It never is on arm64. */
8035 if (VIRT_IN_DMAP(base)) {
8036 prot &= ~VM_PROT_EXECUTE;
8037 /*
8038 * XXX Mark the DMAP as writable for now. We rely
8039 * on this in ddb & dtrace to insert breakpoint
8040 * instructions.
8041 */
8042 prot |= VM_PROT_WRITE;
8043 }
8044
8045 if ((prot & VM_PROT_WRITE) == 0) {
8046 bits |= ATTR_S1_AP(ATTR_S1_AP_RO);
8047 }
8048 if ((prot & VM_PROT_EXECUTE) == 0) {
8049 bits |= ATTR_S1_PXN;
8050 }
8051 bits |= ATTR_S1_UXN;
8052 mask |= ATTR_S1_AP_MASK | ATTR_S1_XN;
8053 }
8054
8055 for (tmpva = base; tmpva < base + size; ) {
8056 ptep = pmap_pte(kernel_pmap, tmpva, &lvl);
8057 if (ptep == NULL && !skip_unmapped) {
8058 return (EINVAL);
8059 } else if ((ptep == NULL && skip_unmapped) ||
8060 (pmap_load(ptep) & mask) == bits) {
8061 /*
8062 * We already have the correct attribute or there
8063 * is no memory mapped at this address and we are
8064 * skipping unmapped memory.
8065 */
8066 switch (lvl) {
8067 default:
8068 panic("Invalid DMAP table level: %d\n", lvl);
8069 case 1:
8070 tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
8071 break;
8072 case 2:
8073 tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
8074 break;
8075 case 3:
8076 tmpva += PAGE_SIZE;
8077 break;
8078 }
8079 } else {
8080 /* We can't demote/promote this entry */
8081 MPASS((pmap_load(ptep) & ATTR_SW_NO_PROMOTE) == 0);
8082
8083 /*
8084 * Find the entry and demote it if the requested change
8085 * only applies to part of the address range mapped by
8086 * the entry.
8087 */
8088 switch (lvl) {
8089 default:
8090 panic("Invalid DMAP table level: %d\n", lvl);
8091 case 1:
8092 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
8093 if ((tmpva & L1_OFFSET) == 0 &&
8094 (base + size - tmpva) >= L1_SIZE) {
8095 pte_size = L1_SIZE;
8096 break;
8097 }
8098 newpte = pmap_demote_l1(kernel_pmap, ptep,
8099 tmpva & ~L1_OFFSET);
8100 if (newpte == NULL)
8101 return (EINVAL);
8102 ptep = pmap_l1_to_l2(ptep, tmpva);
8103 /* FALLTHROUGH */
8104 case 2:
8105 if ((pmap_load(ptep) & ATTR_CONTIGUOUS) != 0) {
8106 if ((tmpva & L2C_OFFSET) == 0 &&
8107 (base + size - tmpva) >= L2C_SIZE) {
8108 pte_size = L2C_SIZE;
8109 break;
8110 }
8111 if (!pmap_demote_l2c(kernel_pmap, ptep,
8112 tmpva))
8113 return (EINVAL);
8114 }
8115 if ((tmpva & L2_OFFSET) == 0 &&
8116 (base + size - tmpva) >= L2_SIZE) {
8117 pte_size = L2_SIZE;
8118 break;
8119 }
8120 newpte = pmap_demote_l2(kernel_pmap, ptep,
8121 tmpva);
8122 if (newpte == NULL)
8123 return (EINVAL);
8124 ptep = pmap_l2_to_l3(ptep, tmpva);
8125 /* FALLTHROUGH */
8126 case 3:
8127 if ((pmap_load(ptep) & ATTR_CONTIGUOUS) != 0) {
8128 if ((tmpva & L3C_OFFSET) == 0 &&
8129 (base + size - tmpva) >= L3C_SIZE) {
8130 pte_size = L3C_SIZE;
8131 break;
8132 }
8133 if (!pmap_demote_l3c(kernel_pmap, ptep,
8134 tmpva))
8135 return (EINVAL);
8136 }
8137 pte_size = PAGE_SIZE;
8138 break;
8139 }
8140
8141 /* Update the entry */
8142 pte = pmap_load(ptep);
8143 pte &= ~mask;
8144 pte |= bits;
8145
8146 switch (pte_size) {
8147 case L2C_SIZE:
8148 pmap_update_strided(kernel_pmap, ptep, ptep +
8149 L2C_ENTRIES, pte, tmpva, L2_SIZE, L2C_SIZE);
8150 break;
8151 case L3C_SIZE:
8152 pmap_update_strided(kernel_pmap, ptep, ptep +
8153 L3C_ENTRIES, pte, tmpva, L3_SIZE, L3C_SIZE);
8154 break;
8155 default:
8156 /*
8157 * We are updating a single block or page entry,
8158 * so regardless of pte_size pass PAGE_SIZE in
8159 * order that a single TLB invalidation is
8160 * performed.
8161 */
8162 pmap_update_entry(kernel_pmap, ptep, pte, tmpva,
8163 PAGE_SIZE);
8164 break;
8165 }
8166
8167 pa = PTE_TO_PHYS(pte);
8168 if (!VIRT_IN_DMAP(tmpva) && PHYS_IN_DMAP(pa)) {
8169 /*
8170 * Keep the DMAP memory in sync.
8171 */
8172 rv = pmap_change_props_locked(
8173 PHYS_TO_DMAP(pa), pte_size,
8174 prot, mode, true);
8175 if (rv != 0)
8176 return (rv);
8177 }
8178
8179 /*
8180 * If moving to a non-cacheable entry flush
8181 * the cache.
8182 */
8183 if (mode == VM_MEMATTR_UNCACHEABLE)
8184 cpu_dcache_wbinv_range((void *)tmpva, pte_size);
8185 tmpva += pte_size;
8186 }
8187 }
8188
8189 return (0);
8190 }
8191
8192 /*
8193 * Create an L2 table to map all addresses within an L1 mapping.
8194 */
8195 static pt_entry_t *
pmap_demote_l1(pmap_t pmap,pt_entry_t * l1,vm_offset_t va)8196 pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va)
8197 {
8198 pt_entry_t *l2, newl2, oldl1;
8199 vm_offset_t tmpl1;
8200 vm_paddr_t l2phys, phys;
8201 vm_page_t ml2;
8202 int i;
8203
8204 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
8205 oldl1 = pmap_load(l1);
8206 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
8207 KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK,
8208 ("pmap_demote_l1: Demoting a non-block entry"));
8209 KASSERT((va & L1_OFFSET) == 0,
8210 ("pmap_demote_l1: Invalid virtual address %#lx", va));
8211 KASSERT((oldl1 & ATTR_SW_MANAGED) == 0,
8212 ("pmap_demote_l1: Level 1 table shouldn't be managed"));
8213 KASSERT((oldl1 & ATTR_SW_NO_PROMOTE) == 0,
8214 ("pmap_demote_l1: Demoting entry with no-demote flag set"));
8215
8216 tmpl1 = 0;
8217 if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) {
8218 tmpl1 = kva_alloc(PAGE_SIZE);
8219 if (tmpl1 == 0)
8220 return (NULL);
8221 }
8222
8223 if ((ml2 = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED)) ==
8224 NULL) {
8225 CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx"
8226 " in pmap %p", va, pmap);
8227 l2 = NULL;
8228 goto fail;
8229 }
8230
8231 l2phys = VM_PAGE_TO_PHYS(ml2);
8232 l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys);
8233
8234 /* Address the range points at */
8235 phys = PTE_TO_PHYS(oldl1);
8236 /* The attributed from the old l1 table to be copied */
8237 newl2 = oldl1 & ATTR_MASK;
8238
8239 /* Create the new entries */
8240 newl2 |= ATTR_CONTIGUOUS;
8241 for (i = 0; i < Ln_ENTRIES; i++) {
8242 l2[i] = newl2 | phys;
8243 phys += L2_SIZE;
8244 }
8245 KASSERT(l2[0] == (ATTR_CONTIGUOUS | (oldl1 & ~ATTR_DESCR_MASK) |
8246 L2_BLOCK), ("Invalid l2 page (%lx != %lx)", l2[0],
8247 ATTR_CONTIGUOUS | (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK));
8248
8249 if (tmpl1 != 0) {
8250 pmap_kenter(tmpl1, PAGE_SIZE,
8251 DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET,
8252 VM_MEMATTR_WRITE_BACK);
8253 l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK));
8254 }
8255
8256 pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE);
8257
8258 counter_u64_add(pmap_l1_demotions, 1);
8259 fail:
8260 if (tmpl1 != 0) {
8261 pmap_kremove(tmpl1);
8262 kva_free(tmpl1, PAGE_SIZE);
8263 }
8264
8265 return (l2);
8266 }
8267
8268 static void
pmap_fill_l3(pt_entry_t * firstl3,pt_entry_t newl3)8269 pmap_fill_l3(pt_entry_t *firstl3, pt_entry_t newl3)
8270 {
8271 pt_entry_t *l3;
8272
8273 for (l3 = firstl3; l3 - firstl3 < Ln_ENTRIES; l3++) {
8274 *l3 = newl3;
8275 newl3 += L3_SIZE;
8276 }
8277 }
8278
8279 static void
pmap_demote_l2_check(pt_entry_t * firstl3p __unused,pt_entry_t newl3e __unused)8280 pmap_demote_l2_check(pt_entry_t *firstl3p __unused, pt_entry_t newl3e __unused)
8281 {
8282 #ifdef INVARIANTS
8283 #ifdef DIAGNOSTIC
8284 pt_entry_t *xl3p, *yl3p;
8285
8286 for (xl3p = firstl3p; xl3p < firstl3p + Ln_ENTRIES;
8287 xl3p++, newl3e += PAGE_SIZE) {
8288 if (PTE_TO_PHYS(pmap_load(xl3p)) != PTE_TO_PHYS(newl3e)) {
8289 printf("pmap_demote_l2: xl3e %zd and newl3e map "
8290 "different pages: found %#lx, expected %#lx\n",
8291 xl3p - firstl3p, pmap_load(xl3p), newl3e);
8292 printf("page table dump\n");
8293 for (yl3p = firstl3p; yl3p < firstl3p + Ln_ENTRIES;
8294 yl3p++) {
8295 printf("%zd %#lx\n", yl3p - firstl3p,
8296 pmap_load(yl3p));
8297 }
8298 panic("firstpte");
8299 }
8300 }
8301 #else
8302 KASSERT(PTE_TO_PHYS(pmap_load(firstl3p)) == PTE_TO_PHYS(newl3e),
8303 ("pmap_demote_l2: firstl3 and newl3e map different physical"
8304 " addresses"));
8305 #endif
8306 #endif
8307 }
8308
8309 static void
pmap_demote_l2_abort(pmap_t pmap,vm_offset_t va,pt_entry_t * l2,struct rwlock ** lockp)8310 pmap_demote_l2_abort(pmap_t pmap, vm_offset_t va, pt_entry_t *l2,
8311 struct rwlock **lockp)
8312 {
8313 struct spglist free;
8314
8315 SLIST_INIT(&free);
8316 (void)pmap_remove_l2(pmap, l2, va, pmap_load(pmap_l1(pmap, va)), &free,
8317 lockp);
8318 vm_page_free_pages_toq(&free, true);
8319 }
8320
8321 /*
8322 * Create an L3 table to map all addresses within an L2 mapping.
8323 */
8324 static pt_entry_t *
pmap_demote_l2_locked(pmap_t pmap,pt_entry_t * l2,vm_offset_t va,struct rwlock ** lockp)8325 pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va,
8326 struct rwlock **lockp)
8327 {
8328 pt_entry_t *l3, newl3, oldl2;
8329 vm_offset_t tmpl2;
8330 vm_paddr_t l3phys;
8331 vm_page_t ml3;
8332
8333 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
8334 PMAP_ASSERT_STAGE1(pmap);
8335 KASSERT(ADDR_IS_CANONICAL(va),
8336 ("%s: Address not in canonical form: %lx", __func__, va));
8337
8338 l3 = NULL;
8339 oldl2 = pmap_load(l2);
8340 KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK,
8341 ("pmap_demote_l2: Demoting a non-block entry"));
8342 KASSERT((oldl2 & ATTR_SW_NO_PROMOTE) == 0,
8343 ("pmap_demote_l2: Demoting entry with no-demote flag set"));
8344 va &= ~L2_OFFSET;
8345
8346 tmpl2 = 0;
8347 if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) {
8348 tmpl2 = kva_alloc(PAGE_SIZE);
8349 if (tmpl2 == 0)
8350 return (NULL);
8351 }
8352
8353 /*
8354 * Invalidate the 2MB page mapping and return "failure" if the
8355 * mapping was never accessed.
8356 */
8357 if ((oldl2 & ATTR_AF) == 0) {
8358 KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
8359 ("pmap_demote_l2: a wired mapping is missing ATTR_AF"));
8360 pmap_demote_l2_abort(pmap, va, l2, lockp);
8361 CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx in pmap %p",
8362 va, pmap);
8363 goto fail;
8364 }
8365
8366 if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) {
8367 KASSERT((oldl2 & ATTR_SW_WIRED) == 0,
8368 ("pmap_demote_l2: page table page for a wired mapping"
8369 " is missing"));
8370
8371 /*
8372 * If the page table page is missing and the mapping
8373 * is for a kernel address, the mapping must belong to
8374 * either the direct map or the early kernel memory.
8375 * Page table pages are preallocated for every other
8376 * part of the kernel address space, so the direct map
8377 * region and early kernel memory are the only parts of the
8378 * kernel address space that must be handled here.
8379 */
8380 KASSERT(!ADDR_IS_KERNEL(va) || VIRT_IN_DMAP(va) ||
8381 (va >= VM_MIN_KERNEL_ADDRESS && va < kernel_vm_end),
8382 ("pmap_demote_l2: No saved mpte for va %#lx", va));
8383
8384 /*
8385 * If the 2MB page mapping belongs to the direct map
8386 * region of the kernel's address space, then the page
8387 * allocation request specifies the highest possible
8388 * priority (VM_ALLOC_INTERRUPT). Otherwise, the
8389 * priority is normal.
8390 */
8391 ml3 = vm_page_alloc_noobj(
8392 (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : 0) |
8393 VM_ALLOC_WIRED);
8394
8395 /*
8396 * If the allocation of the new page table page fails,
8397 * invalidate the 2MB page mapping and return "failure".
8398 */
8399 if (ml3 == NULL) {
8400 pmap_demote_l2_abort(pmap, va, l2, lockp);
8401 CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx"
8402 " in pmap %p", va, pmap);
8403 goto fail;
8404 }
8405 ml3->pindex = pmap_l2_pindex(va);
8406
8407 if (!ADDR_IS_KERNEL(va)) {
8408 ml3->ref_count = NL3PG;
8409 pmap_resident_count_inc(pmap, 1);
8410 }
8411 }
8412 l3phys = VM_PAGE_TO_PHYS(ml3);
8413 l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys);
8414 newl3 = ATTR_CONTIGUOUS | (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE;
8415 KASSERT((oldl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) !=
8416 (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM),
8417 ("pmap_demote_l2: L2 entry is writeable but not dirty"));
8418
8419 /*
8420 * If the PTP is not leftover from an earlier promotion or it does not
8421 * have ATTR_AF set in every L3E, then fill it. The new L3Es will all
8422 * have ATTR_AF set.
8423 *
8424 * When pmap_update_entry() clears the old L2 mapping, it (indirectly)
8425 * performs a dsb(). That dsb() ensures that the stores for filling
8426 * "l3" are visible before "l3" is added to the page table.
8427 */
8428 if (!vm_page_all_valid(ml3))
8429 pmap_fill_l3(l3, newl3);
8430
8431 pmap_demote_l2_check(l3, newl3);
8432
8433 /*
8434 * If the mapping has changed attributes, update the L3Es.
8435 */
8436 if ((pmap_load(l3) & ATTR_PROMOTE) != (newl3 & ATTR_PROMOTE))
8437 pmap_fill_l3(l3, newl3);
8438
8439 /*
8440 * Map the temporary page so we don't lose access to the l2 table.
8441 */
8442 if (tmpl2 != 0) {
8443 pmap_kenter(tmpl2, PAGE_SIZE,
8444 DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET,
8445 VM_MEMATTR_WRITE_BACK);
8446 l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK));
8447 }
8448
8449 /*
8450 * The spare PV entries must be reserved prior to demoting the
8451 * mapping, that is, prior to changing the PDE. Otherwise, the state
8452 * of the L2 and the PV lists will be inconsistent, which can result
8453 * in reclaim_pv_chunk() attempting to remove a PV entry from the
8454 * wrong PV list and pmap_pv_demote_l2() failing to find the expected
8455 * PV entry for the 2MB page mapping that is being demoted.
8456 */
8457 if ((oldl2 & ATTR_SW_MANAGED) != 0)
8458 reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
8459
8460 /*
8461 * Pass PAGE_SIZE so that a single TLB invalidation is performed on
8462 * the 2MB page mapping.
8463 */
8464 pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE);
8465
8466 /*
8467 * Demote the PV entry.
8468 */
8469 if ((oldl2 & ATTR_SW_MANAGED) != 0)
8470 pmap_pv_demote_l2(pmap, va, PTE_TO_PHYS(oldl2), lockp);
8471
8472 atomic_add_long(&pmap_l2_demotions, 1);
8473 CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx"
8474 " in pmap %p %lx", va, pmap, l3[0]);
8475
8476 fail:
8477 if (tmpl2 != 0) {
8478 pmap_kremove(tmpl2);
8479 kva_free(tmpl2, PAGE_SIZE);
8480 }
8481
8482 return (l3);
8483
8484 }
8485
8486 static pt_entry_t *
pmap_demote_l2(pmap_t pmap,pt_entry_t * l2,vm_offset_t va)8487 pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
8488 {
8489 struct rwlock *lock;
8490 pt_entry_t *l3;
8491
8492 lock = NULL;
8493 l3 = pmap_demote_l2_locked(pmap, l2, va, &lock);
8494 if (lock != NULL)
8495 rw_wunlock(lock);
8496 return (l3);
8497 }
8498
8499 /*
8500 * Demote an L2C superpage mapping to L2C_ENTRIES L2 block mappings.
8501 */
8502 static bool
pmap_demote_l2c(pmap_t pmap,pt_entry_t * l2p,vm_offset_t va)8503 pmap_demote_l2c(pmap_t pmap, pt_entry_t *l2p, vm_offset_t va)
8504 {
8505 pd_entry_t *l2c_end, *l2c_start, l2e, mask, nbits, *tl2p;
8506 vm_offset_t tmpl3;
8507 register_t intr;
8508
8509 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
8510 PMAP_ASSERT_STAGE1(pmap);
8511 l2c_start = (pd_entry_t *)((uintptr_t)l2p & ~((L2C_ENTRIES *
8512 sizeof(pd_entry_t)) - 1));
8513 l2c_end = l2c_start + L2C_ENTRIES;
8514 tmpl3 = 0;
8515 if ((va & ~L2C_OFFSET) < (vm_offset_t)l2c_end &&
8516 (vm_offset_t)l2c_start < (va & ~L2C_OFFSET) + L2C_SIZE) {
8517 tmpl3 = kva_alloc(PAGE_SIZE);
8518 if (tmpl3 == 0)
8519 return (false);
8520 pmap_kenter(tmpl3, PAGE_SIZE,
8521 DMAP_TO_PHYS((vm_offset_t)l2c_start) & ~L3_OFFSET,
8522 VM_MEMATTR_WRITE_BACK);
8523 l2c_start = (pd_entry_t *)(tmpl3 +
8524 ((vm_offset_t)l2c_start & PAGE_MASK));
8525 l2c_end = (pd_entry_t *)(tmpl3 +
8526 ((vm_offset_t)l2c_end & PAGE_MASK));
8527 }
8528 mask = 0;
8529 nbits = ATTR_DESCR_VALID;
8530 intr = intr_disable();
8531
8532 /*
8533 * Break the mappings.
8534 */
8535 for (tl2p = l2c_start; tl2p < l2c_end; tl2p++) {
8536 /*
8537 * Clear the mapping's contiguous and valid bits, but leave
8538 * the rest of the entry unchanged, so that a lockless,
8539 * concurrent pmap_kextract() can still lookup the physical
8540 * address.
8541 */
8542 l2e = pmap_load(tl2p);
8543 KASSERT((l2e & ATTR_CONTIGUOUS) != 0,
8544 ("pmap_demote_l2c: missing ATTR_CONTIGUOUS"));
8545 KASSERT((l2e & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) !=
8546 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RO)),
8547 ("pmap_demote_l2c: missing ATTR_S1_AP_RW"));
8548 while (!atomic_fcmpset_64(tl2p, &l2e, l2e & ~(ATTR_CONTIGUOUS |
8549 ATTR_DESCR_VALID)))
8550 cpu_spinwait();
8551
8552 /*
8553 * Hardware accessed and dirty bit maintenance might only
8554 * update a single L2 entry, so we must combine the accessed
8555 * and dirty bits from this entire set of contiguous L2
8556 * entries.
8557 */
8558 if ((l2e & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
8559 (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM))
8560 mask = ATTR_S1_AP_RW_BIT;
8561 nbits |= l2e & ATTR_AF;
8562 }
8563 if ((nbits & ATTR_AF) != 0) {
8564 pmap_s1_invalidate_strided(pmap, va & ~L2C_OFFSET, (va +
8565 L2C_SIZE) & ~L2C_OFFSET, L2_SIZE, true);
8566 }
8567
8568 /*
8569 * Remake the mappings, updating the accessed and dirty bits.
8570 */
8571 for (tl2p = l2c_start; tl2p < l2c_end; tl2p++) {
8572 l2e = pmap_load(tl2p);
8573 while (!atomic_fcmpset_64(tl2p, &l2e, (l2e & ~mask) | nbits))
8574 cpu_spinwait();
8575 }
8576 dsb(ishst);
8577
8578 intr_restore(intr);
8579 if (tmpl3 != 0) {
8580 pmap_kremove(tmpl3);
8581 kva_free(tmpl3, PAGE_SIZE);
8582 }
8583 counter_u64_add(pmap_l2c_demotions, 1);
8584 CTR2(KTR_PMAP, "pmap_demote_l2c: success for va %#lx in pmap %p",
8585 va, pmap);
8586 return (true);
8587 }
8588
8589 /*
8590 * Demote a L3C superpage mapping to L3C_ENTRIES 4KB page mappings.
8591 */
8592 static bool
pmap_demote_l3c(pmap_t pmap,pt_entry_t * l3p,vm_offset_t va)8593 pmap_demote_l3c(pmap_t pmap, pt_entry_t *l3p, vm_offset_t va)
8594 {
8595 pt_entry_t *l3c_end, *l3c_start, l3e, mask, nbits, *tl3p;
8596 vm_offset_t tmpl3;
8597 register_t intr;
8598
8599 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
8600 l3c_start = (pt_entry_t *)((uintptr_t)l3p & ~((L3C_ENTRIES *
8601 sizeof(pt_entry_t)) - 1));
8602 l3c_end = l3c_start + L3C_ENTRIES;
8603 tmpl3 = 0;
8604 if ((va & ~L3C_OFFSET) < (vm_offset_t)l3c_end &&
8605 (vm_offset_t)l3c_start < (va & ~L3C_OFFSET) + L3C_SIZE) {
8606 tmpl3 = kva_alloc(PAGE_SIZE);
8607 if (tmpl3 == 0)
8608 return (false);
8609 pmap_kenter(tmpl3, PAGE_SIZE,
8610 DMAP_TO_PHYS((vm_offset_t)l3c_start) & ~L3_OFFSET,
8611 VM_MEMATTR_WRITE_BACK);
8612 l3c_start = (pt_entry_t *)(tmpl3 +
8613 ((vm_offset_t)l3c_start & PAGE_MASK));
8614 l3c_end = (pt_entry_t *)(tmpl3 +
8615 ((vm_offset_t)l3c_end & PAGE_MASK));
8616 }
8617 mask = 0;
8618 nbits = ATTR_DESCR_VALID;
8619 intr = intr_disable();
8620
8621 /*
8622 * Break the mappings.
8623 */
8624 for (tl3p = l3c_start; tl3p < l3c_end; tl3p++) {
8625 /*
8626 * Clear the mapping's contiguous and valid bits, but leave
8627 * the rest of the entry unchanged, so that a lockless,
8628 * concurrent pmap_kextract() can still lookup the physical
8629 * address.
8630 */
8631 l3e = pmap_load(tl3p);
8632 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
8633 ("pmap_demote_l3c: missing ATTR_CONTIGUOUS"));
8634 KASSERT((l3e & (ATTR_SW_DBM | ATTR_S1_AP_RW_BIT)) !=
8635 (ATTR_SW_DBM | ATTR_S1_AP(ATTR_S1_AP_RO)),
8636 ("pmap_demote_l3c: missing ATTR_S1_AP_RW"));
8637 while (!atomic_fcmpset_64(tl3p, &l3e, l3e & ~(ATTR_CONTIGUOUS |
8638 ATTR_DESCR_VALID)))
8639 cpu_spinwait();
8640
8641 /*
8642 * Hardware accessed and dirty bit maintenance might only
8643 * update a single L3 entry, so we must combine the accessed
8644 * and dirty bits from this entire set of contiguous L3
8645 * entries.
8646 */
8647 if ((l3e & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
8648 (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM))
8649 mask = ATTR_S1_AP_RW_BIT;
8650 nbits |= l3e & ATTR_AF;
8651 }
8652 if ((nbits & ATTR_AF) != 0) {
8653 pmap_invalidate_range(pmap, va & ~L3C_OFFSET, (va + L3C_SIZE) &
8654 ~L3C_OFFSET, true);
8655 }
8656
8657 /*
8658 * Remake the mappings, updating the accessed and dirty bits.
8659 */
8660 for (tl3p = l3c_start; tl3p < l3c_end; tl3p++) {
8661 l3e = pmap_load(tl3p);
8662 while (!atomic_fcmpset_64(tl3p, &l3e, (l3e & ~mask) | nbits))
8663 cpu_spinwait();
8664 }
8665 dsb(ishst);
8666
8667 intr_restore(intr);
8668 if (tmpl3 != 0) {
8669 pmap_kremove(tmpl3);
8670 kva_free(tmpl3, PAGE_SIZE);
8671 }
8672 counter_u64_add(pmap_l3c_demotions, 1);
8673 CTR2(KTR_PMAP, "pmap_demote_l3c: success for va %#lx in pmap %p",
8674 va, pmap);
8675 return (true);
8676 }
8677
8678 /*
8679 * Accumulate the accessed and dirty bits within a L3C superpage and
8680 * return the specified PTE with them applied correctly.
8681 */
8682 static pt_entry_t
pmap_load_l3c(pt_entry_t * l3p)8683 pmap_load_l3c(pt_entry_t *l3p)
8684 {
8685 pt_entry_t *l3c_end, *l3c_start, l3e, mask, nbits, *tl3p;
8686
8687 l3c_start = (pt_entry_t *)((uintptr_t)l3p & ~((L3C_ENTRIES *
8688 sizeof(pt_entry_t)) - 1));
8689 l3c_end = l3c_start + L3C_ENTRIES;
8690 mask = 0;
8691 nbits = 0;
8692 /* Iterate over each mapping in the superpage. */
8693 for (tl3p = l3c_start; tl3p < l3c_end; tl3p++) {
8694 l3e = pmap_load(tl3p);
8695 KASSERT((l3e & ATTR_CONTIGUOUS) != 0,
8696 ("pmap_load_l3c: missing ATTR_CONTIGUOUS"));
8697 /* Update mask if the current page has its dirty bit set. */
8698 if ((l3e & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) ==
8699 (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM))
8700 mask = ATTR_S1_AP_RW_BIT;
8701 /* Update nbits if the accessed bit is set. */
8702 nbits |= l3e & ATTR_AF;
8703 }
8704 return ((pmap_load(l3p) & ~mask) | nbits);
8705 }
8706
8707 /*
8708 * Perform the pmap work for mincore(2). If the page is not both referenced and
8709 * modified by this pmap, returns its physical address so that the caller can
8710 * find other mappings.
8711 */
8712 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)8713 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
8714 {
8715 pt_entry_t *pte, tpte;
8716 vm_paddr_t mask, pa;
8717 int lvl, psind, val;
8718 bool managed;
8719
8720 PMAP_ASSERT_STAGE1(pmap);
8721 PMAP_LOCK(pmap);
8722 pte = pmap_pte(pmap, addr, &lvl);
8723 if (pte != NULL) {
8724 tpte = pmap_load(pte);
8725
8726 switch (lvl) {
8727 case 3:
8728 mask = L3_OFFSET;
8729 psind = (tpte & ATTR_CONTIGUOUS) != 0 ? 1 : 0;
8730 break;
8731 case 2:
8732 mask = L2_OFFSET;
8733 psind = 2;
8734 break;
8735 case 1:
8736 mask = L1_OFFSET;
8737 psind = 3;
8738 break;
8739 default:
8740 panic("pmap_mincore: invalid level %d", lvl);
8741 }
8742
8743 managed = (tpte & ATTR_SW_MANAGED) != 0;
8744 val = MINCORE_INCORE | MINCORE_PSIND(psind);
8745 if ((managed && pmap_pte_dirty(pmap, tpte)) || (!managed &&
8746 (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW)))
8747 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
8748 if ((tpte & ATTR_AF) == ATTR_AF)
8749 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
8750
8751 pa = PTE_TO_PHYS(tpte) | (addr & mask);
8752 } else {
8753 managed = false;
8754 val = 0;
8755 }
8756
8757 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
8758 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
8759 *pap = pa;
8760 }
8761 PMAP_UNLOCK(pmap);
8762 return (val);
8763 }
8764
8765 /*
8766 * Garbage collect every ASID that is neither active on a processor nor
8767 * reserved.
8768 */
8769 static void
pmap_reset_asid_set(pmap_t pmap)8770 pmap_reset_asid_set(pmap_t pmap)
8771 {
8772 pmap_t curpmap;
8773 int asid, cpuid, epoch;
8774 struct asid_set *set;
8775 enum pmap_stage stage;
8776
8777 set = pmap->pm_asid_set;
8778 stage = pmap->pm_stage;
8779
8780 set = pmap->pm_asid_set;
8781 KASSERT(set != NULL, ("%s: NULL asid set", __func__));
8782 mtx_assert(&set->asid_set_mutex, MA_OWNED);
8783
8784 /*
8785 * Ensure that the store to asid_epoch is globally visible before the
8786 * loads from pc_curpmap are performed.
8787 */
8788 epoch = set->asid_epoch + 1;
8789 if (epoch == INT_MAX)
8790 epoch = 0;
8791 set->asid_epoch = epoch;
8792 dsb(ishst);
8793 if (stage == PM_STAGE1) {
8794 __asm __volatile("tlbi vmalle1is");
8795 } else {
8796 KASSERT(pmap_clean_stage2_tlbi != NULL,
8797 ("%s: Unset stage 2 tlb invalidation callback\n",
8798 __func__));
8799 pmap_clean_stage2_tlbi();
8800 }
8801 dsb(ish);
8802 bit_nclear(set->asid_set, ASID_FIRST_AVAILABLE,
8803 set->asid_set_size - 1);
8804 CPU_FOREACH(cpuid) {
8805 if (cpuid == curcpu)
8806 continue;
8807 if (stage == PM_STAGE1) {
8808 curpmap = pcpu_find(cpuid)->pc_curpmap;
8809 PMAP_ASSERT_STAGE1(pmap);
8810 } else {
8811 curpmap = pcpu_find(cpuid)->pc_curvmpmap;
8812 if (curpmap == NULL)
8813 continue;
8814 PMAP_ASSERT_STAGE2(pmap);
8815 }
8816 KASSERT(curpmap->pm_asid_set == set, ("Incorrect set"));
8817 asid = COOKIE_TO_ASID(curpmap->pm_cookie);
8818 if (asid == -1)
8819 continue;
8820 bit_set(set->asid_set, asid);
8821 curpmap->pm_cookie = COOKIE_FROM(asid, epoch);
8822 }
8823 }
8824
8825 /*
8826 * Allocate a new ASID for the specified pmap.
8827 */
8828 static void
pmap_alloc_asid(pmap_t pmap)8829 pmap_alloc_asid(pmap_t pmap)
8830 {
8831 struct asid_set *set;
8832 int new_asid;
8833
8834 set = pmap->pm_asid_set;
8835 KASSERT(set != NULL, ("%s: NULL asid set", __func__));
8836
8837 mtx_lock_spin(&set->asid_set_mutex);
8838
8839 /*
8840 * While this processor was waiting to acquire the asid set mutex,
8841 * pmap_reset_asid_set() running on another processor might have
8842 * updated this pmap's cookie to the current epoch. In which case, we
8843 * don't need to allocate a new ASID.
8844 */
8845 if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch)
8846 goto out;
8847
8848 bit_ffc_at(set->asid_set, set->asid_next, set->asid_set_size,
8849 &new_asid);
8850 if (new_asid == -1) {
8851 bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
8852 set->asid_next, &new_asid);
8853 if (new_asid == -1) {
8854 pmap_reset_asid_set(pmap);
8855 bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE,
8856 set->asid_set_size, &new_asid);
8857 KASSERT(new_asid != -1, ("ASID allocation failure"));
8858 }
8859 }
8860 bit_set(set->asid_set, new_asid);
8861 set->asid_next = new_asid + 1;
8862 pmap->pm_cookie = COOKIE_FROM(new_asid, set->asid_epoch);
8863 out:
8864 mtx_unlock_spin(&set->asid_set_mutex);
8865 }
8866
8867 static uint64_t __read_mostly ttbr_flags;
8868
8869 /*
8870 * Compute the value that should be stored in ttbr0 to activate the specified
8871 * pmap. This value may change from time to time.
8872 */
8873 uint64_t
pmap_to_ttbr0(pmap_t pmap)8874 pmap_to_ttbr0(pmap_t pmap)
8875 {
8876 uint64_t ttbr;
8877
8878 ttbr = pmap->pm_ttbr;
8879 ttbr |= ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie));
8880 ttbr |= ttbr_flags;
8881
8882 return (ttbr);
8883 }
8884
8885 static void
pmap_set_cnp(void * arg)8886 pmap_set_cnp(void *arg)
8887 {
8888 uint64_t ttbr0, ttbr1;
8889 u_int cpuid;
8890
8891 cpuid = *(u_int *)arg;
8892 if (cpuid == curcpu) {
8893 /*
8894 * Set the flags while all CPUs are handling the
8895 * smp_rendezvous so will not call pmap_to_ttbr0. Any calls
8896 * to pmap_to_ttbr0 after this will have the CnP flag set.
8897 * The dsb after invalidating the TLB will act as a barrier
8898 * to ensure all CPUs can observe this change.
8899 */
8900 ttbr_flags |= TTBR_CnP;
8901 }
8902
8903 ttbr0 = READ_SPECIALREG(ttbr0_el1);
8904 ttbr0 |= TTBR_CnP;
8905
8906 ttbr1 = READ_SPECIALREG(ttbr1_el1);
8907 ttbr1 |= TTBR_CnP;
8908
8909 /* Update ttbr{0,1}_el1 with the CnP flag */
8910 WRITE_SPECIALREG(ttbr0_el1, ttbr0);
8911 WRITE_SPECIALREG(ttbr1_el1, ttbr1);
8912 isb();
8913 __asm __volatile("tlbi vmalle1is");
8914 dsb(ish);
8915 isb();
8916 }
8917
8918 /*
8919 * Defer enabling some features until we have read the ID registers to know
8920 * if they are supported on all CPUs.
8921 */
8922 static void
pmap_init_mp(void * dummy __unused)8923 pmap_init_mp(void *dummy __unused)
8924 {
8925 uint64_t reg;
8926
8927 if (get_kernel_reg(ID_AA64PFR1_EL1, ®)) {
8928 if (ID_AA64PFR1_BT_VAL(reg) != ID_AA64PFR1_BT_NONE) {
8929 if (bootverbose)
8930 printf("Enabling BTI\n");
8931 pmap_bti_support = true;
8932
8933 pmap_bti_ranges_zone = uma_zcreate("BTI ranges",
8934 sizeof(struct rs_el), NULL, NULL, NULL, NULL,
8935 UMA_ALIGN_PTR, 0);
8936 }
8937 }
8938 }
8939 SYSINIT(pmap_init_mp, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_mp, NULL);
8940
8941 /*
8942 * Defer enabling CnP until we have read the ID registers to know if it's
8943 * supported on all CPUs.
8944 */
8945 static void
pmap_init_cnp(void * dummy __unused)8946 pmap_init_cnp(void *dummy __unused)
8947 {
8948 uint64_t reg;
8949 u_int cpuid;
8950
8951 if (!get_kernel_reg(ID_AA64MMFR2_EL1, ®))
8952 return;
8953
8954 if (ID_AA64MMFR2_CnP_VAL(reg) != ID_AA64MMFR2_CnP_NONE) {
8955 if (bootverbose)
8956 printf("Enabling CnP\n");
8957 cpuid = curcpu;
8958 smp_rendezvous(NULL, pmap_set_cnp, NULL, &cpuid);
8959 }
8960
8961 }
8962 SYSINIT(pmap_init_cnp, SI_SUB_SMP, SI_ORDER_ANY, pmap_init_cnp, NULL);
8963
8964 static bool
pmap_activate_int(pmap_t pmap)8965 pmap_activate_int(pmap_t pmap)
8966 {
8967 struct asid_set *set;
8968 int epoch;
8969
8970 KASSERT(PCPU_GET(curpmap) != NULL, ("no active pmap"));
8971 KASSERT(pmap != kernel_pmap, ("kernel pmap activation"));
8972
8973 if ((pmap->pm_stage == PM_STAGE1 && pmap == PCPU_GET(curpmap)) ||
8974 (pmap->pm_stage == PM_STAGE2 && pmap == PCPU_GET(curvmpmap))) {
8975 /*
8976 * Handle the possibility that the old thread was preempted
8977 * after an "ic" or "tlbi" instruction but before it performed
8978 * a "dsb" instruction. If the old thread migrates to a new
8979 * processor, its completion of a "dsb" instruction on that
8980 * new processor does not guarantee that the "ic" or "tlbi"
8981 * instructions performed on the old processor have completed.
8982 */
8983 dsb(ish);
8984 return (false);
8985 }
8986
8987 set = pmap->pm_asid_set;
8988 KASSERT(set != NULL, ("%s: NULL asid set", __func__));
8989
8990 /*
8991 * Ensure that the store to curpmap is globally visible before the
8992 * load from asid_epoch is performed.
8993 */
8994 if (pmap->pm_stage == PM_STAGE1)
8995 PCPU_SET(curpmap, pmap);
8996 else
8997 PCPU_SET(curvmpmap, pmap);
8998 dsb(ish);
8999 epoch = COOKIE_TO_EPOCH(pmap->pm_cookie);
9000 if (epoch >= 0 && epoch != set->asid_epoch)
9001 pmap_alloc_asid(pmap);
9002
9003 if (pmap->pm_stage == PM_STAGE1) {
9004 set_ttbr0(pmap_to_ttbr0(pmap));
9005 if (PCPU_GET(bcast_tlbi_workaround) != 0)
9006 invalidate_local_icache();
9007 }
9008 return (true);
9009 }
9010
9011 void
pmap_activate_vm(pmap_t pmap)9012 pmap_activate_vm(pmap_t pmap)
9013 {
9014
9015 PMAP_ASSERT_STAGE2(pmap);
9016
9017 (void)pmap_activate_int(pmap);
9018 }
9019
9020 void
pmap_activate(struct thread * td)9021 pmap_activate(struct thread *td)
9022 {
9023 pmap_t pmap;
9024
9025 pmap = vmspace_pmap(td->td_proc->p_vmspace);
9026 PMAP_ASSERT_STAGE1(pmap);
9027 critical_enter();
9028 (void)pmap_activate_int(pmap);
9029 critical_exit();
9030 }
9031
9032 /*
9033 * Activate the thread we are switching to.
9034 * To simplify the assembly in cpu_throw return the new threads pcb.
9035 */
9036 struct pcb *
pmap_switch(struct thread * new)9037 pmap_switch(struct thread *new)
9038 {
9039 pcpu_bp_harden bp_harden;
9040 struct pcb *pcb;
9041
9042 /* Store the new curthread */
9043 PCPU_SET(curthread, new);
9044
9045 /* And the new pcb */
9046 pcb = new->td_pcb;
9047 PCPU_SET(curpcb, pcb);
9048
9049 /*
9050 * TODO: We may need to flush the cache here if switching
9051 * to a user process.
9052 */
9053
9054 if (pmap_activate_int(vmspace_pmap(new->td_proc->p_vmspace))) {
9055 /*
9056 * Stop userspace from training the branch predictor against
9057 * other processes. This will call into a CPU specific
9058 * function that clears the branch predictor state.
9059 */
9060 bp_harden = PCPU_GET(bp_harden);
9061 if (bp_harden != NULL)
9062 bp_harden();
9063 }
9064
9065 return (pcb);
9066 }
9067
9068 void
pmap_sync_icache(pmap_t pmap,vm_offset_t va,vm_size_t sz)9069 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
9070 {
9071
9072 PMAP_ASSERT_STAGE1(pmap);
9073 KASSERT(ADDR_IS_CANONICAL(va),
9074 ("%s: Address not in canonical form: %lx", __func__, va));
9075
9076 if (ADDR_IS_KERNEL(va)) {
9077 cpu_icache_sync_range((void *)va, sz);
9078 } else {
9079 u_int len, offset;
9080 vm_paddr_t pa;
9081
9082 /* Find the length of data in this page to flush */
9083 offset = va & PAGE_MASK;
9084 len = imin(PAGE_SIZE - offset, sz);
9085
9086 while (sz != 0) {
9087 /* Extract the physical address & find it in the DMAP */
9088 pa = pmap_extract(pmap, va);
9089 if (pa != 0)
9090 cpu_icache_sync_range((void *)PHYS_TO_DMAP(pa),
9091 len);
9092
9093 /* Move to the next page */
9094 sz -= len;
9095 va += len;
9096 /* Set the length for the next iteration */
9097 len = imin(PAGE_SIZE, sz);
9098 }
9099 }
9100 }
9101
9102 static int
pmap_stage2_fault(pmap_t pmap,uint64_t esr,uint64_t far)9103 pmap_stage2_fault(pmap_t pmap, uint64_t esr, uint64_t far)
9104 {
9105 pd_entry_t *pdep;
9106 pt_entry_t *ptep, pte;
9107 int rv, lvl, dfsc;
9108
9109 PMAP_ASSERT_STAGE2(pmap);
9110 rv = KERN_FAILURE;
9111
9112 /* Data and insn aborts use same encoding for FSC field. */
9113 dfsc = esr & ISS_DATA_DFSC_MASK;
9114 switch (dfsc) {
9115 case ISS_DATA_DFSC_TF_L0:
9116 case ISS_DATA_DFSC_TF_L1:
9117 case ISS_DATA_DFSC_TF_L2:
9118 case ISS_DATA_DFSC_TF_L3:
9119 PMAP_LOCK(pmap);
9120 pdep = pmap_pde(pmap, far, &lvl);
9121 if (pdep == NULL || lvl != (dfsc - ISS_DATA_DFSC_TF_L1)) {
9122 PMAP_UNLOCK(pmap);
9123 break;
9124 }
9125
9126 switch (lvl) {
9127 case 0:
9128 ptep = pmap_l0_to_l1(pdep, far);
9129 break;
9130 case 1:
9131 ptep = pmap_l1_to_l2(pdep, far);
9132 break;
9133 case 2:
9134 ptep = pmap_l2_to_l3(pdep, far);
9135 break;
9136 default:
9137 panic("%s: Invalid pde level %d", __func__,lvl);
9138 }
9139 goto fault_exec;
9140
9141 case ISS_DATA_DFSC_AFF_L1:
9142 case ISS_DATA_DFSC_AFF_L2:
9143 case ISS_DATA_DFSC_AFF_L3:
9144 PMAP_LOCK(pmap);
9145 ptep = pmap_pte(pmap, far, &lvl);
9146 fault_exec:
9147 if (ptep != NULL && (pte = pmap_load(ptep)) != 0) {
9148 /*
9149 * If accessing an executable page invalidate
9150 * the I-cache so it will be valid when we
9151 * continue execution in the guest. The D-cache
9152 * is assumed to already be clean to the Point
9153 * of Coherency.
9154 */
9155 if ((pte & ATTR_S2_XN_MASK) !=
9156 ATTR_S2_XN(ATTR_S2_XN_NONE)) {
9157 invalidate_icache();
9158 }
9159 pmap_set_bits(ptep, ATTR_AF | ATTR_DESCR_VALID);
9160 rv = KERN_SUCCESS;
9161 }
9162 PMAP_UNLOCK(pmap);
9163 break;
9164 }
9165
9166 return (rv);
9167 }
9168
9169 int
pmap_fault(pmap_t pmap,uint64_t esr,uint64_t far)9170 pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far)
9171 {
9172 pt_entry_t pte, *ptep;
9173 register_t intr;
9174 uint64_t ec, par;
9175 int lvl, rv;
9176
9177 rv = KERN_FAILURE;
9178
9179 ec = ESR_ELx_EXCEPTION(esr);
9180 switch (ec) {
9181 case EXCP_INSN_ABORT_L:
9182 case EXCP_INSN_ABORT:
9183 case EXCP_DATA_ABORT_L:
9184 case EXCP_DATA_ABORT:
9185 break;
9186 default:
9187 return (rv);
9188 }
9189
9190 if (pmap->pm_stage == PM_STAGE2)
9191 return (pmap_stage2_fault(pmap, esr, far));
9192
9193 /* Data and insn aborts use same encoding for FSC field. */
9194 switch (esr & ISS_DATA_DFSC_MASK) {
9195 case ISS_DATA_DFSC_AFF_L1:
9196 case ISS_DATA_DFSC_AFF_L2:
9197 case ISS_DATA_DFSC_AFF_L3:
9198 PMAP_LOCK(pmap);
9199 ptep = pmap_pte(pmap, far, &lvl);
9200 if (ptep != NULL) {
9201 pmap_set_bits(ptep, ATTR_AF);
9202 rv = KERN_SUCCESS;
9203 /*
9204 * XXXMJ as an optimization we could mark the entry
9205 * dirty if this is a write fault.
9206 */
9207 }
9208 PMAP_UNLOCK(pmap);
9209 break;
9210 case ISS_DATA_DFSC_PF_L1:
9211 case ISS_DATA_DFSC_PF_L2:
9212 case ISS_DATA_DFSC_PF_L3:
9213 if ((ec != EXCP_DATA_ABORT_L && ec != EXCP_DATA_ABORT) ||
9214 (esr & ISS_DATA_WnR) == 0)
9215 return (rv);
9216 PMAP_LOCK(pmap);
9217 ptep = pmap_pte(pmap, far, &lvl);
9218 if (ptep != NULL &&
9219 ((pte = pmap_load(ptep)) & ATTR_SW_DBM) != 0) {
9220 if ((pte & ATTR_S1_AP_RW_BIT) ==
9221 ATTR_S1_AP(ATTR_S1_AP_RO)) {
9222 pmap_clear_bits(ptep, ATTR_S1_AP_RW_BIT);
9223 pmap_s1_invalidate_page(pmap, far, true);
9224 }
9225 rv = KERN_SUCCESS;
9226 }
9227 PMAP_UNLOCK(pmap);
9228 break;
9229 case ISS_DATA_DFSC_TF_L0:
9230 case ISS_DATA_DFSC_TF_L1:
9231 case ISS_DATA_DFSC_TF_L2:
9232 case ISS_DATA_DFSC_TF_L3:
9233 /*
9234 * Retry the translation. A break-before-make sequence can
9235 * produce a transient fault.
9236 */
9237 if (pmap == kernel_pmap) {
9238 /*
9239 * The translation fault may have occurred within a
9240 * critical section. Therefore, we must check the
9241 * address without acquiring the kernel pmap's lock.
9242 */
9243 if (pmap_klookup(far, NULL))
9244 rv = KERN_SUCCESS;
9245 } else {
9246 bool owned;
9247
9248 /*
9249 * In the EFIRT driver we lock the pmap before
9250 * calling into the runtime service. As the lock
9251 * is already owned by the current thread skip
9252 * locking it again.
9253 */
9254 owned = PMAP_OWNED(pmap);
9255 if (!owned)
9256 PMAP_LOCK(pmap);
9257 /* Ask the MMU to check the address. */
9258 intr = intr_disable();
9259 par = arm64_address_translate_s1e0r(far);
9260 intr_restore(intr);
9261 if (!owned)
9262 PMAP_UNLOCK(pmap);
9263
9264 /*
9265 * If the translation was successful, then we can
9266 * return success to the trap handler.
9267 */
9268 if (PAR_SUCCESS(par))
9269 rv = KERN_SUCCESS;
9270 }
9271 break;
9272 }
9273
9274 return (rv);
9275 }
9276
9277 /*
9278 * Increase the starting virtual address of the given mapping if a
9279 * different alignment might result in more superpage mappings.
9280 */
9281 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)9282 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
9283 vm_offset_t *addr, vm_size_t size)
9284 {
9285 vm_offset_t superpage_offset;
9286
9287 if (size < L3C_SIZE)
9288 return;
9289 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
9290 offset += ptoa(object->pg_color);
9291
9292 /*
9293 * Considering the object's physical alignment, is the mapping large
9294 * enough to encompass an L2 (2MB/32MB) superpage ...
9295 */
9296 superpage_offset = offset & L2_OFFSET;
9297 if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) >= L2_SIZE) {
9298 /*
9299 * If the virtual and physical alignments differ, then
9300 * increase the virtual address so that the alignments match.
9301 */
9302 if ((*addr & L2_OFFSET) < superpage_offset)
9303 *addr = (*addr & ~L2_OFFSET) + superpage_offset;
9304 else if ((*addr & L2_OFFSET) > superpage_offset)
9305 *addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) +
9306 superpage_offset;
9307 return;
9308 }
9309 /* ... or an L3C (64KB/2MB) superpage? */
9310 superpage_offset = offset & L3C_OFFSET;
9311 if (size - ((L3C_SIZE - superpage_offset) & L3C_OFFSET) >= L3C_SIZE) {
9312 if ((*addr & L3C_OFFSET) < superpage_offset)
9313 *addr = (*addr & ~L3C_OFFSET) + superpage_offset;
9314 else if ((*addr & L3C_OFFSET) > superpage_offset)
9315 *addr = ((*addr + L3C_OFFSET) & ~L3C_OFFSET) +
9316 superpage_offset;
9317 }
9318 }
9319
9320 /**
9321 * Get the kernel virtual address of a set of physical pages. If there are
9322 * physical addresses not covered by the DMAP perform a transient mapping
9323 * that will be removed when calling pmap_unmap_io_transient.
9324 *
9325 * \param page The pages the caller wishes to obtain the virtual
9326 * address on the kernel memory map.
9327 * \param vaddr On return contains the kernel virtual memory address
9328 * of the pages passed in the page parameter.
9329 * \param count Number of pages passed in.
9330 * \param can_fault true if the thread using the mapped pages can take
9331 * page faults, false otherwise.
9332 *
9333 * \returns true if the caller must call pmap_unmap_io_transient when
9334 * finished or false otherwise.
9335 *
9336 */
9337 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)9338 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
9339 bool can_fault)
9340 {
9341 vm_paddr_t paddr;
9342 bool needs_mapping;
9343 int error __diagused, i;
9344
9345 /*
9346 * Allocate any KVA space that we need, this is done in a separate
9347 * loop to prevent calling vmem_alloc while pinned.
9348 */
9349 needs_mapping = false;
9350 for (i = 0; i < count; i++) {
9351 paddr = VM_PAGE_TO_PHYS(page[i]);
9352 if (__predict_false(!PHYS_IN_DMAP(paddr))) {
9353 error = vmem_alloc(kernel_arena, PAGE_SIZE,
9354 M_BESTFIT | M_WAITOK, &vaddr[i]);
9355 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
9356 needs_mapping = true;
9357 } else {
9358 vaddr[i] = PHYS_TO_DMAP(paddr);
9359 }
9360 }
9361
9362 /* Exit early if everything is covered by the DMAP */
9363 if (!needs_mapping)
9364 return (false);
9365
9366 if (!can_fault)
9367 sched_pin();
9368 for (i = 0; i < count; i++) {
9369 paddr = VM_PAGE_TO_PHYS(page[i]);
9370 if (!PHYS_IN_DMAP(paddr)) {
9371 panic(
9372 "pmap_map_io_transient: TODO: Map out of DMAP data");
9373 }
9374 }
9375
9376 return (needs_mapping);
9377 }
9378
9379 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)9380 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
9381 bool can_fault)
9382 {
9383 vm_paddr_t paddr;
9384 int i;
9385
9386 if (!can_fault)
9387 sched_unpin();
9388 for (i = 0; i < count; i++) {
9389 paddr = VM_PAGE_TO_PHYS(page[i]);
9390 if (!PHYS_IN_DMAP(paddr)) {
9391 panic("ARM64TODO: pmap_unmap_io_transient: Unmap data");
9392 }
9393 }
9394 }
9395
9396 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)9397 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
9398 {
9399
9400 return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_THROUGH);
9401 }
9402
9403 static void *
bti_dup_range(void * ctx __unused,void * data)9404 bti_dup_range(void *ctx __unused, void *data)
9405 {
9406 struct rs_el *node, *new_node;
9407
9408 new_node = uma_zalloc(pmap_bti_ranges_zone, M_NOWAIT);
9409 if (new_node == NULL)
9410 return (NULL);
9411 node = data;
9412 memcpy(new_node, node, sizeof(*node));
9413 return (new_node);
9414 }
9415
9416 static void
bti_free_range(void * ctx __unused,void * node)9417 bti_free_range(void *ctx __unused, void *node)
9418 {
9419
9420 uma_zfree(pmap_bti_ranges_zone, node);
9421 }
9422
9423 static int
pmap_bti_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)9424 pmap_bti_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
9425 {
9426 struct rs_el *rs;
9427 int error;
9428
9429 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9430 PMAP_ASSERT_STAGE1(pmap);
9431 MPASS(pmap->pm_bti != NULL);
9432 rs = uma_zalloc(pmap_bti_ranges_zone, M_NOWAIT);
9433 if (rs == NULL)
9434 return (ENOMEM);
9435 error = rangeset_insert(pmap->pm_bti, sva, eva, rs);
9436 if (error != 0)
9437 uma_zfree(pmap_bti_ranges_zone, rs);
9438 return (error);
9439 }
9440
9441 static void
pmap_bti_deassign_all(pmap_t pmap)9442 pmap_bti_deassign_all(pmap_t pmap)
9443 {
9444
9445 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9446 if (pmap->pm_bti != NULL)
9447 rangeset_remove_all(pmap->pm_bti);
9448 }
9449
9450 /*
9451 * Returns true if the BTI setting is the same across the specified address
9452 * range, and false otherwise. When returning true, updates the referenced PTE
9453 * to reflect the BTI setting.
9454 *
9455 * Only stage 1 pmaps support BTI. The kernel pmap is always a stage 1 pmap
9456 * that has the same BTI setting implicitly across its entire address range.
9457 */
9458 static bool
pmap_bti_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)9459 pmap_bti_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
9460 {
9461 struct rs_el *rs;
9462 vm_offset_t va;
9463
9464 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9465 KASSERT(ADDR_IS_CANONICAL(sva),
9466 ("%s: Start address not in canonical form: %lx", __func__, sva));
9467 KASSERT(ADDR_IS_CANONICAL(eva),
9468 ("%s: End address not in canonical form: %lx", __func__, eva));
9469 KASSERT((*pte & ATTR_S1_GP) == 0,
9470 ("%s: pte %lx has ATTR_S1_GP preset", __func__, *pte));
9471
9472 if (pmap == kernel_pmap) {
9473 *pte |= ATTR_KERN_GP;
9474 return (true);
9475 }
9476 if (pmap->pm_bti == NULL)
9477 return (true);
9478 PMAP_ASSERT_STAGE1(pmap);
9479 rs = rangeset_containing(pmap->pm_bti, sva);
9480 if (rs == NULL)
9481 return (rangeset_empty(pmap->pm_bti, sva, eva));
9482 while ((va = rs->re_end) < eva) {
9483 if ((rs = rangeset_beginning(pmap->pm_bti, va)) == NULL)
9484 return (false);
9485 }
9486 *pte |= ATTR_S1_GP;
9487 return (true);
9488 }
9489
9490 static pt_entry_t
pmap_pte_bti(pmap_t pmap,vm_offset_t va)9491 pmap_pte_bti(pmap_t pmap, vm_offset_t va)
9492 {
9493 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9494 MPASS(ADDR_IS_CANONICAL(va));
9495
9496 if (pmap->pm_stage != PM_STAGE1)
9497 return (0);
9498 if (pmap == kernel_pmap)
9499 return (ATTR_KERN_GP);
9500 if (pmap->pm_bti != NULL &&
9501 rangeset_containing(pmap->pm_bti, va) != NULL)
9502 return (ATTR_S1_GP);
9503 return (0);
9504 }
9505
9506 static void
pmap_bti_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)9507 pmap_bti_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
9508 {
9509
9510 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9511 if (pmap->pm_bti != NULL)
9512 rangeset_remove(pmap->pm_bti, sva, eva);
9513 }
9514
9515 static int
pmap_bti_copy(pmap_t dst_pmap,pmap_t src_pmap)9516 pmap_bti_copy(pmap_t dst_pmap, pmap_t src_pmap)
9517 {
9518
9519 PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
9520 PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
9521 MPASS(src_pmap->pm_stage == dst_pmap->pm_stage);
9522 MPASS(src_pmap->pm_bti != NULL);
9523 MPASS(dst_pmap->pm_bti != NULL);
9524 if (src_pmap->pm_bti->rs_data_ctx == NULL)
9525 return (0);
9526 return (rangeset_copy(dst_pmap->pm_bti, src_pmap->pm_bti));
9527 }
9528
9529 static void
pmap_bti_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool set)9530 pmap_bti_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool set)
9531 {
9532 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9533 PMAP_ASSERT_STAGE1(pmap);
9534
9535 pmap_mask_set_locked(pmap, sva, eva, ATTR_S1_GP, set ? ATTR_S1_GP : 0,
9536 true);
9537 }
9538
9539 int
pmap_bti_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)9540 pmap_bti_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
9541 {
9542 int error;
9543
9544 if (pmap->pm_bti == NULL)
9545 return (0);
9546 if (!ADDR_IS_CANONICAL(sva) || !ADDR_IS_CANONICAL(eva))
9547 return (EINVAL);
9548 if (pmap->pm_stage != PM_STAGE1)
9549 return (EINVAL);
9550 if (eva <= sva || ADDR_IS_KERNEL(eva))
9551 return (EFAULT);
9552
9553 sva = trunc_page(sva);
9554 eva = round_page(eva);
9555 for (;;) {
9556 PMAP_LOCK(pmap);
9557 error = pmap_bti_assign(pmap, sva, eva);
9558 if (error == 0)
9559 pmap_bti_update_range(pmap, sva, eva, true);
9560 PMAP_UNLOCK(pmap);
9561 if (error != ENOMEM)
9562 break;
9563 vm_wait(NULL);
9564 }
9565 return (error);
9566 }
9567
9568 #if defined(KASAN) || defined(KMSAN)
9569 static pd_entry_t *pmap_san_early_l2;
9570
9571 #define SAN_BOOTSTRAP_L2_SIZE (1 * L2_SIZE)
9572 #define SAN_BOOTSTRAP_SIZE (2 * PAGE_SIZE)
9573 static vm_offset_t __nosanitizeaddress
pmap_san_enter_bootstrap_alloc_l2(void)9574 pmap_san_enter_bootstrap_alloc_l2(void)
9575 {
9576 static uint8_t bootstrap_data[SAN_BOOTSTRAP_L2_SIZE] __aligned(L2_SIZE);
9577 static size_t offset = 0;
9578 vm_offset_t addr;
9579
9580 if (offset + L2_SIZE > sizeof(bootstrap_data)) {
9581 panic("%s: out of memory for the bootstrap shadow map L2 entries",
9582 __func__);
9583 }
9584
9585 addr = (uintptr_t)&bootstrap_data[offset];
9586 offset += L2_SIZE;
9587 return (addr);
9588 }
9589
9590 /*
9591 * SAN L1 + L2 pages, maybe L3 entries later?
9592 */
9593 static vm_offset_t __nosanitizeaddress
pmap_san_enter_bootstrap_alloc_pages(int npages)9594 pmap_san_enter_bootstrap_alloc_pages(int npages)
9595 {
9596 static uint8_t bootstrap_data[SAN_BOOTSTRAP_SIZE] __aligned(PAGE_SIZE);
9597 static size_t offset = 0;
9598 vm_offset_t addr;
9599
9600 if (offset + (npages * PAGE_SIZE) > sizeof(bootstrap_data)) {
9601 panic("%s: out of memory for the bootstrap shadow map",
9602 __func__);
9603 }
9604
9605 addr = (uintptr_t)&bootstrap_data[offset];
9606 offset += (npages * PAGE_SIZE);
9607 return (addr);
9608 }
9609
9610 static void __nosanitizeaddress
pmap_san_enter_bootstrap(void)9611 pmap_san_enter_bootstrap(void)
9612 {
9613 vm_offset_t freemempos;
9614
9615 /* L1, L2 */
9616 freemempos = pmap_san_enter_bootstrap_alloc_pages(2);
9617 bs_state.freemempos = freemempos;
9618 bs_state.va = KASAN_MIN_ADDRESS;
9619 pmap_bootstrap_l1_table(&bs_state);
9620 pmap_san_early_l2 = bs_state.l2;
9621 }
9622
9623 static vm_page_t
pmap_san_enter_alloc_l3(void)9624 pmap_san_enter_alloc_l3(void)
9625 {
9626 vm_page_t m;
9627
9628 m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
9629 VM_ALLOC_ZERO);
9630 if (m == NULL)
9631 panic("%s: no memory to grow shadow map", __func__);
9632 return (m);
9633 }
9634
9635 static vm_page_t
pmap_san_enter_alloc_l2(void)9636 pmap_san_enter_alloc_l2(void)
9637 {
9638 return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
9639 Ln_ENTRIES, 0, ~0ul, L2_SIZE, 0, VM_MEMATTR_DEFAULT));
9640 }
9641
9642 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)9643 pmap_san_enter(vm_offset_t va)
9644 {
9645 pd_entry_t *l1, *l2;
9646 pt_entry_t *l3;
9647 vm_page_t m;
9648
9649 if (virtual_avail == 0) {
9650 vm_offset_t block;
9651 int slot;
9652 bool first;
9653
9654 /* Temporary shadow map prior to pmap_bootstrap(). */
9655 first = pmap_san_early_l2 == NULL;
9656 if (first)
9657 pmap_san_enter_bootstrap();
9658
9659 l2 = pmap_san_early_l2;
9660 slot = pmap_l2_index(va);
9661
9662 if ((pmap_load(&l2[slot]) & ATTR_DESCR_VALID) == 0) {
9663 MPASS(first);
9664 block = pmap_san_enter_bootstrap_alloc_l2();
9665 pmap_store(&l2[slot],
9666 PHYS_TO_PTE(pmap_early_vtophys(block)) |
9667 PMAP_SAN_PTE_BITS | L2_BLOCK);
9668 dmb(ishst);
9669 }
9670
9671 return;
9672 }
9673
9674 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
9675 l1 = pmap_l1(kernel_pmap, va);
9676 MPASS(l1 != NULL);
9677 if ((pmap_load(l1) & ATTR_DESCR_VALID) == 0) {
9678 m = pmap_san_enter_alloc_l3();
9679 pmap_store(l1, VM_PAGE_TO_PTE(m) | L1_TABLE);
9680 }
9681 l2 = pmap_l1_to_l2(l1, va);
9682 if ((pmap_load(l2) & ATTR_DESCR_VALID) == 0) {
9683 m = pmap_san_enter_alloc_l2();
9684 if (m != NULL) {
9685 pmap_store(l2, VM_PAGE_TO_PTE(m) |
9686 PMAP_SAN_PTE_BITS | L2_BLOCK);
9687 } else {
9688 m = pmap_san_enter_alloc_l3();
9689 pmap_store(l2, VM_PAGE_TO_PTE(m) | L2_TABLE);
9690 }
9691 dmb(ishst);
9692 }
9693 if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK)
9694 return;
9695 l3 = pmap_l2_to_l3(l2, va);
9696 if ((pmap_load(l3) & ATTR_DESCR_VALID) != 0)
9697 return;
9698 m = pmap_san_enter_alloc_l3();
9699 pmap_store(l3, VM_PAGE_TO_PTE(m) | PMAP_SAN_PTE_BITS | L3_PAGE);
9700 dmb(ishst);
9701 }
9702 #endif /* KASAN || KMSAN */
9703
9704 /*
9705 * Track a range of the kernel's virtual address space that is contiguous
9706 * in various mapping attributes.
9707 */
9708 struct pmap_kernel_map_range {
9709 vm_offset_t sva;
9710 pt_entry_t attrs;
9711 int l3pages;
9712 int l3contig;
9713 int l2blocks;
9714 int l2contig;
9715 int l1blocks;
9716 };
9717
9718 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)9719 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
9720 vm_offset_t eva)
9721 {
9722 const char *mode;
9723 int index;
9724
9725 if (eva <= range->sva)
9726 return;
9727
9728 index = range->attrs & ATTR_S1_IDX_MASK;
9729 switch (index) {
9730 case ATTR_S1_IDX(VM_MEMATTR_DEVICE_NP):
9731 mode = "DEV-NP";
9732 break;
9733 case ATTR_S1_IDX(VM_MEMATTR_DEVICE):
9734 mode = "DEV";
9735 break;
9736 case ATTR_S1_IDX(VM_MEMATTR_UNCACHEABLE):
9737 mode = "UC";
9738 break;
9739 case ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK):
9740 mode = "WB";
9741 break;
9742 case ATTR_S1_IDX(VM_MEMATTR_WRITE_THROUGH):
9743 mode = "WT";
9744 break;
9745 default:
9746 printf(
9747 "%s: unknown memory type %x for range 0x%016lx-0x%016lx\n",
9748 __func__, index, range->sva, eva);
9749 mode = "??";
9750 break;
9751 }
9752
9753 sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c%c %6s %d %d %d %d %d\n",
9754 range->sva, eva,
9755 (range->attrs & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP_RW ? 'w' : '-',
9756 (range->attrs & ATTR_S1_PXN) != 0 ? '-' : 'x',
9757 (range->attrs & ATTR_S1_UXN) != 0 ? '-' : 'X',
9758 (range->attrs & ATTR_S1_AP(ATTR_S1_AP_USER)) != 0 ? 'u' : 's',
9759 (range->attrs & ATTR_S1_GP) != 0 ? 'g' : '-',
9760 mode, range->l1blocks, range->l2contig, range->l2blocks,
9761 range->l3contig, range->l3pages);
9762
9763 /* Reset to sentinel value. */
9764 range->sva = 0xfffffffffffffffful;
9765 }
9766
9767 /*
9768 * Determine whether the attributes specified by a page table entry match those
9769 * being tracked by the current range.
9770 */
9771 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)9772 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
9773 {
9774
9775 return (range->attrs == attrs);
9776 }
9777
9778 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)9779 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
9780 pt_entry_t attrs)
9781 {
9782
9783 memset(range, 0, sizeof(*range));
9784 range->sva = va;
9785 range->attrs = attrs;
9786 }
9787
9788 /* Get the block/page attributes that correspond to the table attributes */
9789 static pt_entry_t
sysctl_kmaps_table_attrs(pd_entry_t table)9790 sysctl_kmaps_table_attrs(pd_entry_t table)
9791 {
9792 pt_entry_t attrs;
9793
9794 attrs = 0;
9795 if ((table & TATTR_UXN_TABLE) != 0)
9796 attrs |= ATTR_S1_UXN;
9797 if ((table & TATTR_PXN_TABLE) != 0)
9798 attrs |= ATTR_S1_PXN;
9799 if ((table & TATTR_AP_TABLE_RO) != 0)
9800 attrs |= ATTR_S1_AP(ATTR_S1_AP_RO);
9801
9802 return (attrs);
9803 }
9804
9805 /* Read the block/page attributes we care about */
9806 static pt_entry_t
sysctl_kmaps_block_attrs(pt_entry_t block)9807 sysctl_kmaps_block_attrs(pt_entry_t block)
9808 {
9809 return (block & (ATTR_S1_AP_MASK | ATTR_S1_XN | ATTR_S1_IDX_MASK |
9810 ATTR_S1_GP));
9811 }
9812
9813 /*
9814 * Given a leaf PTE, derive the mapping's attributes. If they do not match
9815 * those of the current run, dump the address range and its attributes, and
9816 * begin a new run.
9817 */
9818 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pd_entry_t l0e,pd_entry_t l1e,pd_entry_t l2e,pt_entry_t l3e)9819 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
9820 vm_offset_t va, pd_entry_t l0e, pd_entry_t l1e, pd_entry_t l2e,
9821 pt_entry_t l3e)
9822 {
9823 pt_entry_t attrs;
9824
9825 attrs = sysctl_kmaps_table_attrs(l0e);
9826
9827 if ((l1e & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
9828 attrs |= sysctl_kmaps_block_attrs(l1e);
9829 goto done;
9830 }
9831 attrs |= sysctl_kmaps_table_attrs(l1e);
9832
9833 if ((l2e & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) {
9834 attrs |= sysctl_kmaps_block_attrs(l2e);
9835 goto done;
9836 }
9837 attrs |= sysctl_kmaps_table_attrs(l2e);
9838 attrs |= sysctl_kmaps_block_attrs(l3e);
9839
9840 done:
9841 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
9842 sysctl_kmaps_dump(sb, range, va);
9843 sysctl_kmaps_reinit(range, va, attrs);
9844 }
9845 }
9846
9847 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)9848 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
9849 {
9850 struct pmap_kernel_map_range range;
9851 struct sbuf sbuf, *sb;
9852 pd_entry_t l0e, *l1, l1e, *l2, l2e;
9853 pt_entry_t *l3, l3e;
9854 vm_offset_t sva;
9855 vm_paddr_t pa;
9856 int error, i, j, k, l;
9857
9858 error = sysctl_wire_old_buffer(req, 0);
9859 if (error != 0)
9860 return (error);
9861 sb = &sbuf;
9862 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
9863
9864 /* Sentinel value. */
9865 range.sva = 0xfffffffffffffffful;
9866
9867 /*
9868 * Iterate over the kernel page tables without holding the kernel pmap
9869 * lock. Kernel page table pages are never freed, so at worst we will
9870 * observe inconsistencies in the output.
9871 */
9872 for (sva = 0xffff000000000000ul, i = pmap_l0_index(sva); i < Ln_ENTRIES;
9873 i++) {
9874 if (i == pmap_l0_index(DMAP_MIN_ADDRESS))
9875 sbuf_printf(sb, "\nDirect map:\n");
9876 else if (i == pmap_l0_index(VM_MIN_KERNEL_ADDRESS))
9877 sbuf_printf(sb, "\nKernel map:\n");
9878 #ifdef KASAN
9879 else if (i == pmap_l0_index(KASAN_MIN_ADDRESS))
9880 sbuf_printf(sb, "\nKASAN shadow map:\n");
9881 #endif
9882 #ifdef KMSAN
9883 else if (i == pmap_l0_index(KMSAN_SHAD_MIN_ADDRESS))
9884 sbuf_printf(sb, "\nKMSAN shadow map:\n");
9885 else if (i == pmap_l0_index(KMSAN_ORIG_MIN_ADDRESS))
9886 sbuf_printf(sb, "\nKMSAN origin map:\n");
9887 #endif
9888
9889 l0e = kernel_pmap->pm_l0[i];
9890 if ((l0e & ATTR_DESCR_VALID) == 0) {
9891 sysctl_kmaps_dump(sb, &range, sva);
9892 sva += L0_SIZE;
9893 continue;
9894 }
9895 pa = PTE_TO_PHYS(l0e);
9896 l1 = (pd_entry_t *)PHYS_TO_DMAP(pa);
9897
9898 for (j = pmap_l1_index(sva); j < Ln_ENTRIES; j++) {
9899 l1e = l1[j];
9900 if ((l1e & ATTR_DESCR_VALID) == 0) {
9901 sysctl_kmaps_dump(sb, &range, sva);
9902 sva += L1_SIZE;
9903 continue;
9904 }
9905 if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK) {
9906 PMAP_ASSERT_L1_BLOCKS_SUPPORTED;
9907 sysctl_kmaps_check(sb, &range, sva, l0e, l1e,
9908 0, 0);
9909 range.l1blocks++;
9910 sva += L1_SIZE;
9911 continue;
9912 }
9913 pa = PTE_TO_PHYS(l1e);
9914 l2 = (pd_entry_t *)PHYS_TO_DMAP(pa);
9915
9916 for (k = pmap_l2_index(sva); k < Ln_ENTRIES; k++) {
9917 l2e = l2[k];
9918 if ((l2e & ATTR_DESCR_VALID) == 0) {
9919 sysctl_kmaps_dump(sb, &range, sva);
9920 sva += L2_SIZE;
9921 continue;
9922 }
9923 if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK) {
9924 sysctl_kmaps_check(sb, &range, sva,
9925 l0e, l1e, l2e, 0);
9926 if ((l2e & ATTR_CONTIGUOUS) != 0)
9927 range.l2contig +=
9928 k % L2C_ENTRIES == 0 ?
9929 1 : 0;
9930 else
9931 range.l2blocks++;
9932 sva += L2_SIZE;
9933 continue;
9934 }
9935 pa = PTE_TO_PHYS(l2e);
9936 l3 = (pt_entry_t *)PHYS_TO_DMAP(pa);
9937
9938 for (l = pmap_l3_index(sva); l < Ln_ENTRIES;
9939 l++, sva += L3_SIZE) {
9940 l3e = l3[l];
9941 if ((l3e & ATTR_DESCR_VALID) == 0) {
9942 sysctl_kmaps_dump(sb, &range,
9943 sva);
9944 continue;
9945 }
9946 sysctl_kmaps_check(sb, &range, sva,
9947 l0e, l1e, l2e, l3e);
9948 if ((l3e & ATTR_CONTIGUOUS) != 0)
9949 range.l3contig +=
9950 l % L3C_ENTRIES == 0 ?
9951 1 : 0;
9952 else
9953 range.l3pages++;
9954 }
9955 }
9956 }
9957 }
9958
9959 error = sbuf_finish(sb);
9960 sbuf_delete(sb);
9961 return (error);
9962 }
9963 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
9964 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
9965 NULL, 0, sysctl_kmaps, "A",
9966 "Dump kernel address layout");
9967