1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2010 Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2023 Oxide Computer Company
28 */
29
30 /*
31 * sunpm.c builds sunpm.o "power management framework"
32 * kernel-resident power management code. Implements power management
33 * policy
34 * Assumes: all backwards compat. device components wake up on &
35 * the pm_info pointer in dev_info is initially NULL
36 *
37 * PM - (device) Power Management
38 *
39 * Each device may have 0 or more components. If a device has no components,
40 * then it can't be power managed. Each component has 2 or more
41 * power states.
42 *
43 * "Backwards Compatible" (bc) devices:
44 * There are two different types of devices from the point of view of this
45 * code. The original type, left over from the original PM implementation on
46 * the voyager platform are known in this code as "backwards compatible"
47 * devices (PM_ISBC(dip) returns true).
48 * They are recognized by the pm code by the lack of a pm-components property
49 * and a call made by the driver to pm_create_components(9F).
50 * For these devices, component 0 is special, and represents the power state
51 * of the device. If component 0 is to be set to power level 0 (off), then
52 * the framework must first call into the driver's detach(9E) routine with
53 * DDI_PM_SUSPEND, to get the driver to save the hardware state of the device.
54 * After setting component 0 from 0 to a non-zero power level, a call must be
55 * made into the driver's attach(9E) routine with DDI_PM_RESUME.
56 *
57 * Currently, the only way to get a bc device power managed is via a set of
58 * ioctls (PM_DIRECT_PM, PM_SET_CURRENT_POWER) issued to /dev/pm.
59 *
60 * For non-bc devices, the driver describes the components by exporting a
61 * pm-components(9P) property that tells how many components there are,
62 * tells what each component's power state values are, and provides human
63 * readable strings (currently unused) for each component name and power state.
64 * Devices which export pm-components(9P) are automatically power managed
65 * whenever autopm is enabled (via PM_START_PM ioctl issued by pmconfig(8)
66 * after parsing power.conf(5)). The exception to this rule is that power
67 * manageable CPU devices may be automatically managed independently of autopm
68 * by either enabling or disabling (via PM_START_CPUPM and PM_STOP_CPUPM
69 * ioctls) cpupm. If the CPU devices are not managed independently, then they
70 * are managed by autopm. In either case, for automatically power managed
71 * devices, all components are considered independent of each other, and it is
72 * up to the driver to decide when a transition requires saving or restoring
73 * hardware state.
74 *
75 * Each device component also has a threshold time associated with each power
76 * transition (see power.conf(5)), and a busy/idle state maintained by the
77 * driver calling pm_idle_component(9F) and pm_busy_component(9F).
78 * Components are created idle.
79 *
80 * The PM framework provides several functions:
81 * -implement PM policy as described in power.conf(5)
82 * Policy is set by pmconfig(8) issuing pm ioctls based on power.conf(5).
83 * Policies consist of:
84 * -set threshold values (defaults if none provided by pmconfig)
85 * -set dependencies among devices
86 * -enable/disable autopm
87 * -enable/disable cpupm
88 * -turn down idle components based on thresholds (if autopm or cpupm is
89 * enabled) (aka scanning)
90 * -maintain power states based on dependencies among devices
91 * -upon request, or when the frame buffer powers off, attempt to turn off
92 * all components that are idle or become idle over the next (10 sec)
93 * period in an attempt to get down to an EnergyStar compliant state
94 * -prevent powering off of a device which exported the
95 * pm-no-involuntary-power-cycles property without active involvement of
96 * the device's driver (so no removing power when the device driver is
97 * not attached)
98 * -provide a mechanism for a device driver to request that a device's component
99 * be brought back to the power level necessary for the use of the device
100 * -allow a process to directly control the power levels of device components
101 * (via ioctls issued to /dev/pm--see usr/src/uts/common/io/pm.c)
102 * -ensure that the console frame buffer is powered up before being referenced
103 * via prom_printf() or other prom calls that might generate console output
104 * -maintain implicit dependencies (e.g. parent must be powered up if child is)
105 * -provide "backwards compatible" behavior for devices without pm-components
106 * property
107 *
108 * Scanning:
109 * Whenever autopm or cpupm is enabled, the framework attempts to bring each
110 * component of each managed device to its lowest power based on the threshold
111 * of idleness associated with each transition and the busy/idle state of the
112 * component.
113 *
114 * The actual work of this is done by pm_scan_dev(), which cycles through each
115 * component of a device, checking its idleness against its current threshold,
116 * and calling pm_set_power() as appropriate to change the power level.
117 * This function also indicates when it would next be profitable to scan the
118 * device again, and a new scan is scheduled after that time.
119 *
120 * Dependencies:
121 * It is possible to establish a dependency between the power states of two
122 * otherwise unrelated devices. This is currently done to ensure that the
123 * cdrom is always up whenever the console framebuffer is up, so that the user
124 * can insert a cdrom and see a popup as a result.
125 *
126 * The dependency terminology used in power.conf(5) is not easy to understand,
127 * so we've adopted a different terminology in the implementation. We write
128 * of a "keeps up" and a "kept up" device. A relationship can be established
129 * where one device keeps up another. That means that if the keepsup device
130 * has any component that is at a non-zero power level, all components of the
131 * "kept up" device must be brought to full power. This relationship is
132 * asynchronous. When the keeping device is powered up, a request is queued
133 * to a worker thread to bring up the kept device. The caller does not wait.
134 * Scan will not turn down a kept up device.
135 *
136 * Direct PM:
137 * A device may be directly power managed by a process. If a device is
138 * directly pm'd, then it will not be scanned, and dependencies will not be
139 * enforced. * If a directly pm'd device's driver requests a power change (via
140 * pm_raise_power(9F)), then the request is blocked and notification is sent
141 * to the controlling process, which must issue the requested power change for
142 * the driver to proceed.
143 *
144 */
145
146 #include <sys/types.h>
147 #include <sys/errno.h>
148 #include <sys/callb.h> /* callback registration during CPR */
149 #include <sys/conf.h> /* driver flags and functions */
150 #include <sys/open.h> /* OTYP_CHR definition */
151 #include <sys/stat.h> /* S_IFCHR definition */
152 #include <sys/pathname.h> /* name -> dev_info xlation */
153 #include <sys/ddi_impldefs.h> /* dev_info node fields */
154 #include <sys/kmem.h> /* memory alloc stuff */
155 #include <sys/debug.h>
156 #include <sys/archsystm.h>
157 #include <sys/pm.h>
158 #include <sys/ddi.h>
159 #include <sys/sunddi.h>
160 #include <sys/sunndi.h>
161 #include <sys/sunpm.h>
162 #include <sys/epm.h>
163 #include <sys/vfs.h>
164 #include <sys/mode.h>
165 #include <sys/mkdev.h>
166 #include <sys/promif.h>
167 #include <sys/consdev.h>
168 #include <sys/esunddi.h>
169 #include <sys/modctl.h>
170 #include <sys/fs/ufs_fs.h>
171 #include <sys/note.h>
172 #include <sys/taskq.h>
173 #include <sys/bootconf.h>
174 #include <sys/reboot.h>
175 #include <sys/spl.h>
176 #include <sys/disp.h>
177 #include <sys/sobject.h>
178 #include <sys/sunmdi.h>
179 #include <sys/systm.h>
180 #include <sys/cpuvar.h>
181 #include <sys/cyclic.h>
182 #include <sys/uadmin.h>
183 #include <sys/srn.h>
184
185
186 /*
187 * PM LOCKING
188 * The list of locks:
189 * Global pm mutex locks.
190 *
191 * pm_scan_lock:
192 * It protects the timeout id of the scan thread, and the value
193 * of autopm_enabled and cpupm. This lock is not held
194 * concurrently with any other PM locks.
195 *
196 * pm_clone_lock: Protects the clone list and count of poll events
197 * pending for the pm driver.
198 * Lock ordering:
199 * pm_clone_lock -> pm_pscc_interest_rwlock,
200 * pm_clone_lock -> pm_pscc_direct_rwlock.
201 *
202 * pm_rsvp_lock:
203 * Used to synchronize the data structures used for processes
204 * to rendezvous with state change information when doing
205 * direct PM.
206 * Lock ordering:
207 * pm_rsvp_lock -> pm_pscc_interest_rwlock,
208 * pm_rsvp_lock -> pm_pscc_direct_rwlock,
209 * pm_rsvp_lock -> pm_clone_lock.
210 *
211 * ppm_lock: protects the list of registered ppm drivers
212 * Lock ordering:
213 * ppm_lock -> ppm driver unit_lock
214 *
215 * pm_compcnt_lock:
216 * Protects count of components that are not at their lowest
217 * power level.
218 * Lock ordering:
219 * pm_compcnt_lock -> ppm_lock.
220 *
221 * pm_dep_thread_lock:
222 * Protects work list for pm_dep_thread. Not taken concurrently
223 * with any other pm lock.
224 *
225 * pm_remdrv_lock:
226 * Serializes the operation of removing noinvol data structure
227 * entries for a branch of the tree when a driver has been
228 * removed from the system (modctl_rem_major).
229 * Lock ordering:
230 * pm_remdrv_lock -> pm_noinvol_rwlock.
231 *
232 * pm_cfb_lock: (High level spin lock)
233 * Protects the count of how many components of the console
234 * frame buffer are off (so we know if we have to bring up the
235 * console as a result of a prom_printf, etc.
236 * No other locks are taken while holding this lock.
237 *
238 * pm_loan_lock:
239 * Protects the lock_loan list. List is used to record that one
240 * thread has acquired a power lock but has launched another thread
241 * to complete its processing. An entry in the list indicates that
242 * the worker thread can borrow the lock held by the other thread,
243 * which must block on the completion of the worker. Use is
244 * specific to module loading.
245 * No other locks are taken while holding this lock.
246 *
247 * Global PM rwlocks
248 *
249 * pm_thresh_rwlock:
250 * Protects the list of thresholds recorded for future use (when
251 * devices attach).
252 * Lock ordering:
253 * pm_thresh_rwlock -> devi_pm_lock
254 *
255 * pm_noinvol_rwlock:
256 * Protects list of detached nodes that had noinvol registered.
257 * No other PM locks are taken while holding pm_noinvol_rwlock.
258 *
259 * pm_pscc_direct_rwlock:
260 * Protects the list that maps devices being directly power
261 * managed to the processes that manage them.
262 * Lock ordering:
263 * pm_pscc_direct_rwlock -> psce_lock
264 *
265 * pm_pscc_interest_rwlock;
266 * Protects the list that maps state change events to processes
267 * that want to know about them.
268 * Lock ordering:
269 * pm_pscc_interest_rwlock -> psce_lock
270 *
271 * per-dip locks:
272 *
273 * Each node has these per-dip locks, which are only used if the device is
274 * a candidate for power management (e.g. has pm components)
275 *
276 * devi_pm_lock:
277 * Protects all power management state of the node except for
278 * power level, which is protected by ndi_devi_enter().
279 * Encapsulated in macros PM_LOCK_DIP()/PM_UNLOCK_DIP().
280 * Lock ordering:
281 * devi_pm_lock -> pm_rsvp_lock,
282 * devi_pm_lock -> pm_dep_thread_lock,
283 * devi_pm_lock -> pm_noinvol_rwlock,
284 * devi_pm_lock -> power lock
285 *
286 * power lock (ndi_devi_enter()):
287 * Since changing power level is possibly a slow operation (30
288 * seconds to spin up a disk drive), this is locked separately.
289 * Since a call into the driver to change the power level of one
290 * component may result in a call back into the framework to change
291 * the power level of another, this lock allows re-entrancy by
292 * the same thread (ndi_devi_enter is used for this because
293 * the USB framework uses ndi_devi_enter in its power entry point,
294 * and use of any other lock would produce a deadlock.
295 *
296 * devi_pm_busy_lock:
297 * This lock protects the integrity of the busy count. It is
298 * only taken by pm_busy_component() and pm_idle_component and
299 * some code that adjust the busy time after the timer gets set
300 * up or after a CPR operation. It is per-dip to keep from
301 * single-threading all the disk drivers on a system.
302 * It could be per component instead, but most devices have
303 * only one component.
304 * No other PM locks are taken while holding this lock.
305 *
306 */
307
308 static int stdout_is_framebuffer;
309 static kmutex_t e_pm_power_lock;
310 static kmutex_t pm_loan_lock;
311 kmutex_t pm_scan_lock;
312 callb_id_t pm_cpr_cb_id;
313 callb_id_t pm_panic_cb_id;
314 callb_id_t pm_halt_cb_id;
315 int pm_comps_notlowest; /* no. of comps not at lowest power */
316 int pm_powering_down; /* cpr is source of DDI_SUSPEND calls */
317
318 clock_t pm_id_ticks = 5; /* ticks to wait before scan during idle-down */
319 clock_t pm_default_min_scan = PM_DEFAULT_MIN_SCAN;
320 clock_t pm_cpu_min_scan = PM_CPU_MIN_SCAN;
321
322 #define PM_MIN_SCAN(dip) (PM_ISCPU(dip) ? pm_cpu_min_scan : \
323 pm_default_min_scan)
324
325 static int pm_busop_set_power(dev_info_t *,
326 void *, pm_bus_power_op_t, void *, void *);
327 static int pm_busop_match_request(dev_info_t *, void *);
328 static int pm_all_to_normal_nexus(dev_info_t *, pm_canblock_t);
329 static void e_pm_set_max_power(dev_info_t *, int, int);
330 static int e_pm_get_max_power(dev_info_t *, int);
331
332 /*
333 * Dependency Processing is done thru a seperate thread.
334 */
335 kmutex_t pm_dep_thread_lock;
336 kcondvar_t pm_dep_thread_cv;
337 pm_dep_wk_t *pm_dep_thread_workq = NULL;
338 pm_dep_wk_t *pm_dep_thread_tail = NULL;
339
340 /*
341 * Autopm must be turned on by a PM_START_PM ioctl, so we don't end up
342 * power managing things in single user mode that have been suppressed via
343 * power.conf entries. Protected by pm_scan_lock.
344 */
345 int autopm_enabled;
346
347 /*
348 * cpupm is turned on and off, by the PM_START_CPUPM and PM_STOP_CPUPM ioctls,
349 * to define the power management behavior of CPU devices separate from
350 * autopm. Protected by pm_scan_lock.
351 */
352 pm_cpupm_t cpupm = PM_CPUPM_NOTSET;
353
354 /*
355 * Defines the default mode of operation for CPU power management,
356 * either the polling implementation, or the event based dispatcher driven
357 * implementation.
358 */
359 pm_cpupm_t cpupm_default_mode = PM_CPUPM_EVENT;
360
361 /*
362 * AutoS3 depends on autopm being enabled, and must be enabled by
363 * PM_START_AUTOS3 command.
364 */
365 int autoS3_enabled;
366
367 #if !defined(__sparc)
368 /*
369 * on sparc these live in fillsysinfo.c
370 *
371 * If this variable is non-zero, cpr should return "not supported" when
372 * it is queried even though it would normally be supported on this platform.
373 */
374 int cpr_supported_override;
375
376 /*
377 * Some platforms may need to support CPR even in the absence of
378 * having the correct platform id information. If this
379 * variable is non-zero, cpr should proceed even in the absence
380 * of otherwise being qualified.
381 */
382 int cpr_platform_enable = 0;
383
384 #endif
385
386 /*
387 * pm_S3_enabled indicates that we believe the platform can support S3,
388 * which we get from pmconfig(8)
389 */
390 int pm_S3_enabled;
391
392 /*
393 * This flag is true while processes are stopped for a checkpoint/resume.
394 * Controlling processes of direct pm'd devices are not available to
395 * participate in power level changes, so we bypass them when this is set.
396 */
397 static int pm_processes_stopped;
398
399 #ifdef DEBUG
400
401 /*
402 * see common/sys/epm.h for PMD_* values
403 */
404
405 uint_t pm_debug = 0;
406
407 /*
408 * If pm_divertdebug is set, then no prom_printf calls will be made by
409 * PMD(), which will prevent debug output from bringing up the console
410 * frame buffer. Clearing this variable before setting pm_debug will result
411 * in PMD output going to the console.
412 *
413 * pm_divertdebug is incremented in pm_set_power() if dip == cfb_dip to avoid
414 * deadlocks and decremented at the end of pm_set_power()
415 */
416 uint_t pm_divertdebug = 1;
417 volatile uint_t pm_debug_to_console = 0;
418 kmutex_t pm_debug_lock; /* protects pm_divertdebug */
419
420 void prdeps(char *);
421 #endif
422
423 /* Globals */
424
425 /*
426 * List of recorded thresholds and dependencies
427 */
428 pm_thresh_rec_t *pm_thresh_head;
429 krwlock_t pm_thresh_rwlock;
430
431 pm_pdr_t *pm_dep_head;
432 static int pm_unresolved_deps = 0;
433 static int pm_prop_deps = 0;
434
435 /*
436 * List of devices that exported no-involuntary-power-cycles property
437 */
438 pm_noinvol_t *pm_noinvol_head;
439
440 /*
441 * Locks used in noinvol processing
442 */
443 krwlock_t pm_noinvol_rwlock;
444 kmutex_t pm_remdrv_lock;
445
446 int pm_default_idle_threshold = PM_DEFAULT_SYS_IDLENESS;
447 int pm_system_idle_threshold;
448 int pm_cpu_idle_threshold;
449
450 /*
451 * By default nexus has 0 threshold, and depends on its children to keep it up
452 */
453 int pm_default_nexus_threshold = 0;
454
455 /*
456 * Data structures shared with common/io/pm.c
457 */
458 kmutex_t pm_clone_lock;
459 kcondvar_t pm_clones_cv[PM_MAX_CLONE];
460 uint_t pm_poll_cnt[PM_MAX_CLONE]; /* count of events for poll */
461 unsigned char pm_interest[PM_MAX_CLONE];
462 struct pollhead pm_pollhead;
463
464 /*
465 * Data structures shared with common/io/srn.c
466 */
467 kmutex_t srn_clone_lock; /* protects srn_signal, srn_inuse */
468 void (*srn_signal)(int type, int event);
469 int srn_inuse; /* stop srn detach */
470
471 extern int hz;
472 extern char *platform_module_list[];
473
474 /*
475 * Wrappers for use in ddi_walk_devs
476 */
477
478 static int pm_set_dev_thr_walk(dev_info_t *, void *);
479 static int pm_restore_direct_lvl_walk(dev_info_t *, void *);
480 static int pm_save_direct_lvl_walk(dev_info_t *, void *);
481 static int pm_discard_dep_walk(dev_info_t *, void *);
482 #ifdef DEBUG
483 static int pm_desc_pwrchk_walk(dev_info_t *, void *);
484 #endif
485
486 /*
487 * Routines for managing noinvol devices
488 */
489 int pm_noinvol_update(int, int, int, char *, dev_info_t *);
490 void pm_noinvol_update_node(dev_info_t *,
491 pm_bp_noinvol_t *req);
492
493 kmutex_t pm_rsvp_lock;
494 kmutex_t pm_compcnt_lock;
495 krwlock_t pm_pscc_direct_rwlock;
496 krwlock_t pm_pscc_interest_rwlock;
497
498 #define PSC_INTEREST 0 /* belongs to interest psc list */
499 #define PSC_DIRECT 1 /* belongs to direct psc list */
500
501 pscc_t *pm_pscc_interest;
502 pscc_t *pm_pscc_direct;
503
504 #define PM_MAJOR(dip) ddi_driver_major(dip)
505 #define PM_IS_NEXUS(dip) ((PM_MAJOR(dip) == DDI_MAJOR_T_NONE) ? 0 : \
506 NEXUS_DRV(devopsp[PM_MAJOR(dip)]))
507 #define POWERING_ON(old, new) ((old) == 0 && (new) != 0)
508 #define POWERING_OFF(old, new) ((old) != 0 && (new) == 0)
509
510 #define PM_INCR_NOTLOWEST(dip) { \
511 mutex_enter(&pm_compcnt_lock); \
512 if (!PM_IS_NEXUS(dip) || \
513 (DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\
514 if (pm_comps_notlowest == 0) \
515 pm_ppm_notify_all_lowest(dip, PM_NOT_ALL_LOWEST);\
516 pm_comps_notlowest++; \
517 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr notlowest->%d\n",\
518 pmf, PM_DEVICE(dip), pm_comps_notlowest)) \
519 } \
520 mutex_exit(&pm_compcnt_lock); \
521 }
522 #define PM_DECR_NOTLOWEST(dip) { \
523 mutex_enter(&pm_compcnt_lock); \
524 if (!PM_IS_NEXUS(dip) || \
525 (DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\
526 ASSERT(pm_comps_notlowest); \
527 pm_comps_notlowest--; \
528 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr notlowest to " \
529 "%d\n", pmf, PM_DEVICE(dip), pm_comps_notlowest))\
530 if (pm_comps_notlowest == 0) \
531 pm_ppm_notify_all_lowest(dip, PM_ALL_LOWEST); \
532 } \
533 mutex_exit(&pm_compcnt_lock); \
534 }
535
536 /*
537 * console frame-buffer power-management is not enabled when
538 * debugging services are present. to override, set pm_cfb_override
539 * to non-zero.
540 */
541 uint_t pm_cfb_comps_off = 0; /* PM_LEVEL_UNKNOWN is considered on */
542 kmutex_t pm_cfb_lock;
543 int pm_cfb_enabled = 1; /* non-zero allows pm of console frame buffer */
544 #ifdef DEBUG
545 int pm_cfb_override = 1; /* non-zero allows pm of cfb with debuggers */
546 #else
547 int pm_cfb_override = 0; /* non-zero allows pm of cfb with debuggers */
548 #endif
549
550 static dev_info_t *cfb_dip = 0;
551 static dev_info_t *cfb_dip_detaching = 0;
552 uint_t cfb_inuse = 0;
553 static ddi_softintr_t pm_soft_id;
554 static boolean_t pm_soft_pending;
555 int pm_scans_disabled = 0;
556
557 /*
558 * A structure to record the fact that one thread has borrowed a lock held
559 * by another thread. The context requires that the lender block on the
560 * completion of the borrower.
561 */
562 typedef struct lock_loan {
563 struct lock_loan *pmlk_next;
564 kthread_t *pmlk_borrower;
565 kthread_t *pmlk_lender;
566 dev_info_t *pmlk_dip;
567 } lock_loan_t;
568 static lock_loan_t lock_loan_head; /* list head is a dummy element */
569
570 #ifdef DEBUG
571 #ifdef PMDDEBUG
572 #define PMD_FUNC(func, name) char *(func) = (name);
573 #else /* !PMDDEBUG */
574 #define PMD_FUNC(func, name)
575 #endif /* PMDDEBUG */
576 #else /* !DEBUG */
577 #define PMD_FUNC(func, name)
578 #endif /* DEBUG */
579
580
581 /*
582 * Must be called before first device (including pseudo) attach
583 */
584 void
pm_init_locks(void)585 pm_init_locks(void)
586 {
587 mutex_init(&pm_scan_lock, NULL, MUTEX_DRIVER, NULL);
588 mutex_init(&pm_rsvp_lock, NULL, MUTEX_DRIVER, NULL);
589 mutex_init(&pm_compcnt_lock, NULL, MUTEX_DRIVER, NULL);
590 mutex_init(&pm_dep_thread_lock, NULL, MUTEX_DRIVER, NULL);
591 mutex_init(&pm_remdrv_lock, NULL, MUTEX_DRIVER, NULL);
592 mutex_init(&pm_loan_lock, NULL, MUTEX_DRIVER, NULL);
593 rw_init(&pm_thresh_rwlock, NULL, RW_DEFAULT, NULL);
594 rw_init(&pm_noinvol_rwlock, NULL, RW_DEFAULT, NULL);
595 cv_init(&pm_dep_thread_cv, NULL, CV_DEFAULT, NULL);
596 }
597
598 static int pm_reset_timestamps(dev_info_t *, void *);
599
600 static boolean_t
pm_cpr_callb(void * arg,int code)601 pm_cpr_callb(void *arg, int code)
602 {
603 _NOTE(ARGUNUSED(arg))
604 static int auto_save;
605 static pm_cpupm_t cpupm_save;
606
607 switch (code) {
608 case CB_CODE_CPR_CHKPT:
609 /*
610 * Cancel scan or wait for scan in progress to finish
611 * Other threads may be trying to restart the scan, so we
612 * have to keep at it unil it sticks
613 */
614 mutex_enter(&pm_scan_lock);
615 ASSERT(!pm_scans_disabled);
616 pm_scans_disabled = 1;
617 auto_save = autopm_enabled;
618 autopm_enabled = 0;
619 cpupm_save = cpupm;
620 cpupm = PM_CPUPM_NOTSET;
621 mutex_exit(&pm_scan_lock);
622 ddi_walk_devs(ddi_root_node(), pm_scan_stop_walk, NULL);
623 break;
624
625 case CB_CODE_CPR_RESUME:
626 ASSERT(!autopm_enabled);
627 ASSERT(cpupm == PM_CPUPM_NOTSET);
628 ASSERT(pm_scans_disabled);
629 pm_scans_disabled = 0;
630 /*
631 * Call pm_reset_timestamps to reset timestamps of each
632 * device to the time when the system is resumed so that their
633 * idleness can be re-calculated. That's to avoid devices from
634 * being powered down right after resume if the system was in
635 * suspended mode long enough.
636 */
637 ddi_walk_devs(ddi_root_node(), pm_reset_timestamps, NULL);
638
639 autopm_enabled = auto_save;
640 cpupm = cpupm_save;
641 /*
642 * If there is any auto-pm device, get the scanning
643 * going. Otherwise don't bother.
644 */
645 ddi_walk_devs(ddi_root_node(), pm_rescan_walk, NULL);
646 break;
647 }
648 return (B_TRUE);
649 }
650
651 /*
652 * This callback routine is called when there is a system panic. This function
653 * exists for prototype matching.
654 */
655 static boolean_t
pm_panic_callb(void * arg,int code)656 pm_panic_callb(void *arg, int code)
657 {
658 _NOTE(ARGUNUSED(arg, code))
659 void pm_cfb_check_and_powerup(void);
660 PMD(PMD_CFB, ("pm_panic_callb\n"))
661 pm_cfb_check_and_powerup();
662 return (B_TRUE);
663 }
664
665 static boolean_t
pm_halt_callb(void * arg,int code)666 pm_halt_callb(void *arg, int code)
667 {
668 _NOTE(ARGUNUSED(arg, code))
669 return (B_TRUE);
670 }
671
672 static void pm_dep_thread(void);
673
674 /*
675 * This needs to be called after the root and platform drivers are loaded
676 * and be single-threaded with respect to driver attach/detach
677 */
678 void
pm_init(void)679 pm_init(void)
680 {
681 PMD_FUNC(pmf, "pm_init")
682 char **mod;
683 extern pri_t minclsyspri;
684
685 pm_comps_notlowest = 0;
686 pm_system_idle_threshold = pm_default_idle_threshold;
687 pm_cpu_idle_threshold = 0;
688
689 pm_cpr_cb_id = callb_add(pm_cpr_callb, (void *)NULL,
690 CB_CL_CPR_PM, "pm_cpr");
691 pm_panic_cb_id = callb_add(pm_panic_callb, (void *)NULL,
692 CB_CL_PANIC, "pm_panic");
693 pm_halt_cb_id = callb_add(pm_halt_callb, (void *)NULL,
694 CB_CL_HALT, "pm_halt");
695
696 /*
697 * Create a thread to do dependency processing.
698 */
699 (void) thread_create(NULL, 0, (void (*)())pm_dep_thread, NULL, 0, &p0,
700 TS_RUN, minclsyspri);
701
702 /*
703 * loadrootmodules already loaded these ppm drivers, now get them
704 * attached so they can claim the root drivers as they attach
705 */
706 for (mod = platform_module_list; *mod; mod++) {
707 if (i_ddi_attach_hw_nodes(*mod) != DDI_SUCCESS) {
708 cmn_err(CE_WARN, "!cannot load platform pm driver %s\n",
709 *mod);
710 } else {
711 PMD(PMD_DHR, ("%s: %s (%s)\n", pmf, *mod,
712 ddi_major_to_name(ddi_name_to_major(*mod))))
713 }
714 }
715 }
716
717 /*
718 * pm_scan_init - create pm scan data structure. Called (if autopm or cpupm
719 * enabled) when device becomes power managed or after a failed detach and
720 * when autopm is started via PM_START_PM or PM_START_CPUPM ioctls, and after
721 * a CPR resume to get all the devices scanning again.
722 */
723 void
pm_scan_init(dev_info_t * dip)724 pm_scan_init(dev_info_t *dip)
725 {
726 PMD_FUNC(pmf, "scan_init")
727 pm_scan_t *scanp;
728
729 ASSERT(!PM_ISBC(dip));
730
731 PM_LOCK_DIP(dip);
732 scanp = PM_GET_PM_SCAN(dip);
733 if (!scanp) {
734 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): create scan data\n",
735 pmf, PM_DEVICE(dip)))
736 scanp = kmem_zalloc(sizeof (pm_scan_t), KM_SLEEP);
737 DEVI(dip)->devi_pm_scan = scanp;
738 } else if (scanp->ps_scan_flags & PM_SCAN_STOP) {
739 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): "
740 "clear PM_SCAN_STOP flag\n", pmf, PM_DEVICE(dip)))
741 scanp->ps_scan_flags &= ~PM_SCAN_STOP;
742 }
743 PM_UNLOCK_DIP(dip);
744 }
745
746 /*
747 * pm_scan_fini - remove pm scan data structure when stopping pm on the device
748 */
749 void
pm_scan_fini(dev_info_t * dip)750 pm_scan_fini(dev_info_t *dip)
751 {
752 PMD_FUNC(pmf, "scan_fini")
753 pm_scan_t *scanp;
754
755 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
756 ASSERT(!PM_ISBC(dip));
757 PM_LOCK_DIP(dip);
758 scanp = PM_GET_PM_SCAN(dip);
759 if (!scanp) {
760 PM_UNLOCK_DIP(dip);
761 return;
762 }
763
764 ASSERT(!scanp->ps_scan_id && !(scanp->ps_scan_flags &
765 (PM_SCANNING | PM_SCAN_DISPATCHED | PM_SCAN_AGAIN)));
766
767 kmem_free(scanp, sizeof (pm_scan_t));
768 DEVI(dip)->devi_pm_scan = NULL;
769 PM_UNLOCK_DIP(dip);
770 }
771
772 /*
773 * Given a pointer to a component struct, return the current power level
774 * (struct contains index unless it is a continuous level).
775 * Located here in hopes of getting both this and dev_is_needed into the
776 * cache together
777 */
778 static int
cur_power(pm_component_t * cp)779 cur_power(pm_component_t *cp)
780 {
781 if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN)
782 return (cp->pmc_cur_pwr);
783
784 return (cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]);
785 }
786
787 static char *
pm_decode_direction(int direction)788 pm_decode_direction(int direction)
789 {
790 switch (direction) {
791 case PM_LEVEL_UPONLY:
792 return ("up");
793
794 case PM_LEVEL_EXACT:
795 return ("exact");
796
797 case PM_LEVEL_DOWNONLY:
798 return ("down");
799
800 default:
801 return ("INVALID DIRECTION");
802 }
803 }
804
805 char *
pm_decode_op(pm_bus_power_op_t op)806 pm_decode_op(pm_bus_power_op_t op)
807 {
808 switch (op) {
809 case BUS_POWER_CHILD_PWRCHG:
810 return ("CHILD_PWRCHG");
811 case BUS_POWER_NEXUS_PWRUP:
812 return ("NEXUS_PWRUP");
813 case BUS_POWER_PRE_NOTIFICATION:
814 return ("PRE_NOTIFICATION");
815 case BUS_POWER_POST_NOTIFICATION:
816 return ("POST_NOTIFICATION");
817 case BUS_POWER_HAS_CHANGED:
818 return ("HAS_CHANGED");
819 case BUS_POWER_NOINVOL:
820 return ("NOINVOL");
821 default:
822 return ("UNKNOWN OP");
823 }
824 }
825
826 /*
827 * Returns true if level is a possible (valid) power level for component
828 */
829 int
e_pm_valid_power(dev_info_t * dip,int cmpt,int level)830 e_pm_valid_power(dev_info_t *dip, int cmpt, int level)
831 {
832 PMD_FUNC(pmf, "e_pm_valid_power")
833 pm_component_t *cp = PM_CP(dip, cmpt);
834 int i;
835 int *ip = cp->pmc_comp.pmc_lvals;
836 int limit = cp->pmc_comp.pmc_numlevels;
837
838 if (level < 0)
839 return (0);
840 for (i = 0; i < limit; i++) {
841 if (level == *ip++)
842 return (1);
843 }
844 #ifdef DEBUG
845 if (pm_debug & PMD_FAIL) {
846 ip = cp->pmc_comp.pmc_lvals;
847
848 for (i = 0; i < limit; i++)
849 PMD(PMD_FAIL, ("%s: index=%d, level=%d\n",
850 pmf, i, *ip++))
851 }
852 #endif
853 return (0);
854 }
855
856 static int pm_start(dev_info_t *dip);
857 /*
858 * Returns true if device is pm'd (after calling pm_start if need be)
859 */
860 int
e_pm_valid_info(dev_info_t * dip,pm_info_t ** infop)861 e_pm_valid_info(dev_info_t *dip, pm_info_t **infop)
862 {
863 pm_info_t *info;
864
865 /*
866 * Check if the device is power managed if not.
867 * To make the common case (device is power managed already)
868 * fast, we check without the lock. If device is not already
869 * power managed, then we take the lock and the long route through
870 * go get it managed. Devices never go unmanaged until they
871 * detach.
872 */
873 info = PM_GET_PM_INFO(dip);
874 if (!info) {
875 if (!DEVI_IS_ATTACHING(dip)) {
876 return (0);
877 }
878 if (pm_start(dip) != DDI_SUCCESS) {
879 return (0);
880 }
881 info = PM_GET_PM_INFO(dip);
882 }
883 ASSERT(info);
884 if (infop != NULL)
885 *infop = info;
886 return (1);
887 }
888
889 int
e_pm_valid_comp(dev_info_t * dip,int cmpt,pm_component_t ** cpp)890 e_pm_valid_comp(dev_info_t *dip, int cmpt, pm_component_t **cpp)
891 {
892 if (cmpt >= 0 && cmpt < PM_NUMCMPTS(dip)) {
893 if (cpp != NULL)
894 *cpp = PM_CP(dip, cmpt);
895 return (1);
896 } else {
897 return (0);
898 }
899 }
900
901 /*
902 * Internal guts of ddi_dev_is_needed and pm_raise/lower_power
903 */
904 static int
dev_is_needed(dev_info_t * dip,int cmpt,int level,int direction)905 dev_is_needed(dev_info_t *dip, int cmpt, int level, int direction)
906 {
907 PMD_FUNC(pmf, "din")
908 pm_component_t *cp;
909 char *pathbuf;
910 int result;
911
912 ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY);
913 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp) ||
914 !e_pm_valid_power(dip, cmpt, level))
915 return (DDI_FAILURE);
916
917 PMD(PMD_DIN, ("%s: %s@%s(%s#%d) cmpt=%d, dir=%s, new=%d, cur=%d\n",
918 pmf, PM_DEVICE(dip), cmpt, pm_decode_direction(direction),
919 level, cur_power(cp)))
920
921 if (pm_set_power(dip, cmpt, level, direction,
922 PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) {
923 if (direction == PM_LEVEL_UPONLY) {
924 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
925 (void) ddi_pathname(dip, pathbuf);
926 cmn_err(CE_WARN, "Device %s failed to power up.",
927 pathbuf);
928 kmem_free(pathbuf, MAXPATHLEN);
929 }
930 PMD(PMD_DIN | PMD_FAIL, ("%s: %s@%s(%s#%d) [%d] %s->%d failed, "
931 "errno %d\n", pmf, PM_DEVICE(dip), cmpt,
932 pm_decode_direction(direction), level, result))
933 return (DDI_FAILURE);
934 }
935
936 PMD(PMD_RESCAN | PMD_DIN, ("%s: pm_rescan %s@%s(%s#%d)\n", pmf,
937 PM_DEVICE(dip)))
938 pm_rescan(dip);
939 return (DDI_SUCCESS);
940 }
941
942 /*
943 * We can get multiple pm_rescan() threads, if one of them discovers
944 * that no scan is running at the moment, it kicks it into action.
945 * Otherwise, it tells the current scanning thread to scan again when
946 * it is done by asserting the PM_SCAN_AGAIN flag. The PM_SCANNING and
947 * PM_SCAN_AGAIN flags are used to regulate scan, to make sure only one
948 * thread at a time runs the pm_scan_dev() code.
949 */
950 void
pm_rescan(void * arg)951 pm_rescan(void *arg)
952 {
953 PMD_FUNC(pmf, "rescan")
954 dev_info_t *dip = (dev_info_t *)arg;
955 pm_info_t *info;
956 pm_scan_t *scanp;
957 timeout_id_t scanid;
958
959 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
960 PM_LOCK_DIP(dip);
961 info = PM_GET_PM_INFO(dip);
962 scanp = PM_GET_PM_SCAN(dip);
963 if (pm_scans_disabled || !PM_SCANABLE(dip) || !info || !scanp ||
964 (scanp->ps_scan_flags & PM_SCAN_STOP)) {
965 PM_UNLOCK_DIP(dip);
966 return;
967 }
968 if (scanp->ps_scan_flags & PM_SCANNING) {
969 scanp->ps_scan_flags |= PM_SCAN_AGAIN;
970 PM_UNLOCK_DIP(dip);
971 return;
972 } else if (scanp->ps_scan_id) {
973 scanid = scanp->ps_scan_id;
974 scanp->ps_scan_id = 0;
975 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): cancel timeout scanid %lx\n",
976 pmf, PM_DEVICE(dip), (ulong_t)scanid))
977 PM_UNLOCK_DIP(dip);
978 (void) untimeout(scanid);
979 PM_LOCK_DIP(dip);
980 }
981
982 /*
983 * Dispatching pm_scan during attach time is risky due to the fact that
984 * attach might soon fail and dip dissolved, and panic may happen while
985 * attempting to stop scan. So schedule a pm_rescan instead.
986 * (Note that if either of the first two terms are true, taskq_dispatch
987 * will not be invoked).
988 *
989 * Multiple pm_scan dispatching is unecessary and costly to keep track
990 * of. The PM_SCAN_DISPATCHED flag is used between pm_rescan and pm_scan
991 * to regulate the dispatching.
992 *
993 * Scan is stopped before the device is detached (in pm_detaching())
994 * but it may get re-started during the post_detach processing if the
995 * driver fails to detach.
996 */
997 if (DEVI_IS_ATTACHING(dip) ||
998 (scanp->ps_scan_flags & PM_SCAN_DISPATCHED) ||
999 taskq_dispatch(system_taskq, pm_scan, (void *)dip, TQ_NOSLEEP) ==
1000 TASKQID_INVALID) {
1001 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): attaching, pm_scan already "
1002 "dispatched or dispatching failed\n", pmf, PM_DEVICE(dip)))
1003 if (scanp->ps_scan_id) {
1004 scanid = scanp->ps_scan_id;
1005 scanp->ps_scan_id = 0;
1006 PM_UNLOCK_DIP(dip);
1007 (void) untimeout(scanid);
1008 PM_LOCK_DIP(dip);
1009 if (scanp->ps_scan_id) {
1010 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): a competing "
1011 "thread scheduled pm_rescan, scanid %lx\n",
1012 pmf, PM_DEVICE(dip),
1013 (ulong_t)scanp->ps_scan_id))
1014 PM_UNLOCK_DIP(dip);
1015 return;
1016 }
1017 }
1018 scanp->ps_scan_id = timeout(pm_rescan, (void *)dip,
1019 (scanp->ps_idle_down ? pm_id_ticks :
1020 (PM_MIN_SCAN(dip) * hz)));
1021 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): scheduled next pm_rescan, "
1022 "scanid %lx\n", pmf, PM_DEVICE(dip),
1023 (ulong_t)scanp->ps_scan_id))
1024 } else {
1025 PMD(PMD_SCAN, ("%s: dispatched pm_scan for %s@%s(%s#%d)\n",
1026 pmf, PM_DEVICE(dip)))
1027 scanp->ps_scan_flags |= PM_SCAN_DISPATCHED;
1028 }
1029 PM_UNLOCK_DIP(dip);
1030 }
1031
1032 void
pm_scan(void * arg)1033 pm_scan(void *arg)
1034 {
1035 PMD_FUNC(pmf, "scan")
1036 dev_info_t *dip = (dev_info_t *)arg;
1037 pm_scan_t *scanp;
1038 time_t nextscan;
1039
1040 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
1041
1042 PM_LOCK_DIP(dip);
1043 scanp = PM_GET_PM_SCAN(dip);
1044 ASSERT(scanp && PM_GET_PM_INFO(dip));
1045
1046 if (pm_scans_disabled || !PM_SCANABLE(dip) ||
1047 (scanp->ps_scan_flags & PM_SCAN_STOP)) {
1048 scanp->ps_scan_flags &= ~(PM_SCAN_AGAIN | PM_SCAN_DISPATCHED);
1049 PM_UNLOCK_DIP(dip);
1050 return;
1051 }
1052
1053 if (scanp->ps_idle_down) {
1054 /*
1055 * make sure we remember idledown was in affect until
1056 * we've completed the scan
1057 */
1058 PMID_SET_SCANS(scanp->ps_idle_down)
1059 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown starts "
1060 "(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down))
1061 }
1062
1063 /* possible having two threads running pm_scan() */
1064 if (scanp->ps_scan_flags & PM_SCANNING) {
1065 scanp->ps_scan_flags |= PM_SCAN_AGAIN;
1066 PMD(PMD_SCAN, ("%s: scanning, will scan %s@%s(%s#%d) again\n",
1067 pmf, PM_DEVICE(dip)))
1068 scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED;
1069 PM_UNLOCK_DIP(dip);
1070 return;
1071 }
1072
1073 scanp->ps_scan_flags |= PM_SCANNING;
1074 scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED;
1075 do {
1076 scanp->ps_scan_flags &= ~PM_SCAN_AGAIN;
1077 PM_UNLOCK_DIP(dip);
1078 nextscan = pm_scan_dev(dip);
1079 PM_LOCK_DIP(dip);
1080 } while (scanp->ps_scan_flags & PM_SCAN_AGAIN);
1081
1082 ASSERT(scanp->ps_scan_flags & PM_SCANNING);
1083 scanp->ps_scan_flags &= ~PM_SCANNING;
1084
1085 if (scanp->ps_idle_down) {
1086 scanp->ps_idle_down &= ~PMID_SCANS;
1087 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown ends "
1088 "(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down))
1089 }
1090
1091 /* schedule for next idle check */
1092 if (nextscan != LONG_MAX) {
1093 if (nextscan > (LONG_MAX / hz))
1094 nextscan = (LONG_MAX - 1) / hz;
1095 if (scanp->ps_scan_id) {
1096 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): while scanning "
1097 "another rescan scheduled scanid(%lx)\n", pmf,
1098 PM_DEVICE(dip), (ulong_t)scanp->ps_scan_id))
1099 PM_UNLOCK_DIP(dip);
1100 return;
1101 } else if (!(scanp->ps_scan_flags & PM_SCAN_STOP)) {
1102 scanp->ps_scan_id = timeout(pm_rescan, (void *)dip,
1103 (clock_t)(nextscan * hz));
1104 PMD(PMD_SCAN, ("%s: nextscan for %s@%s(%s#%d) in "
1105 "%lx sec, scanid(%lx) \n", pmf, PM_DEVICE(dip),
1106 (ulong_t)nextscan, (ulong_t)scanp->ps_scan_id))
1107 }
1108 }
1109 PM_UNLOCK_DIP(dip);
1110 }
1111
1112 void
pm_get_timestamps(dev_info_t * dip,time_t * valuep)1113 pm_get_timestamps(dev_info_t *dip, time_t *valuep)
1114 {
1115 int components = PM_NUMCMPTS(dip);
1116 int i;
1117
1118 ASSERT(components > 0);
1119 PM_LOCK_BUSY(dip); /* so we get a consistent view */
1120 for (i = 0; i < components; i++) {
1121 valuep[i] = PM_CP(dip, i)->pmc_timestamp;
1122 }
1123 PM_UNLOCK_BUSY(dip);
1124 }
1125
1126 /*
1127 * Returns true if device needs to be kept up because it exported the
1128 * "no-involuntary-power-cycles" property or we're pretending it did (console
1129 * fb case) or it is an ancestor of such a device and has used up the "one
1130 * free cycle" allowed when all such leaf nodes have voluntarily powered down
1131 * upon detach
1132 */
1133 int
pm_noinvol(dev_info_t * dip)1134 pm_noinvol(dev_info_t *dip)
1135 {
1136 PMD_FUNC(pmf, "noinvol")
1137
1138 /*
1139 * This doesn't change over the life of a driver, so no locking needed
1140 */
1141 if (PM_IS_CFB(dip)) {
1142 PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB %s@%s(%s#%d)\n",
1143 pmf, PM_DEVICE(dip)))
1144 return (1);
1145 }
1146 /*
1147 * Not an issue if no such kids
1148 */
1149 if (DEVI(dip)->devi_pm_noinvolpm == 0) {
1150 #ifdef DEBUG
1151 if (DEVI(dip)->devi_pm_volpmd != 0) {
1152 dev_info_t *pdip = dip;
1153 do {
1154 PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d) noinvol %d "
1155 "volpmd %d\n", pmf, PM_DEVICE(pdip),
1156 DEVI(pdip)->devi_pm_noinvolpm,
1157 DEVI(pdip)->devi_pm_volpmd))
1158 pdip = ddi_get_parent(pdip);
1159 } while (pdip);
1160 }
1161 #endif
1162 ASSERT(DEVI(dip)->devi_pm_volpmd == 0);
1163 return (0);
1164 }
1165
1166 /*
1167 * Since we now maintain the counts correct at every node, we no longer
1168 * need to look up the tree. An ancestor cannot use up the free cycle
1169 * without the children getting their counts adjusted.
1170 */
1171
1172 #ifdef DEBUG
1173 if (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd)
1174 PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s@%s(%s#%d)\n", pmf,
1175 DEVI(dip)->devi_pm_noinvolpm, DEVI(dip)->devi_pm_volpmd,
1176 PM_DEVICE(dip)))
1177 #endif
1178 return (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd);
1179 }
1180
1181 static int cur_threshold(dev_info_t *, int);
1182 static int pm_next_lower_power(pm_component_t *, int);
1183
1184 /*
1185 * This function performs the actual scanning of the device.
1186 * It attempts to power off the indicated device's components if they have
1187 * been idle and other restrictions are met.
1188 * pm_scan_dev calculates and returns when the next scan should happen for
1189 * this device.
1190 */
1191 time_t
pm_scan_dev(dev_info_t * dip)1192 pm_scan_dev(dev_info_t *dip)
1193 {
1194 PMD_FUNC(pmf, "scan_dev")
1195 pm_scan_t *scanp;
1196 time_t *timestamp, idletime, now, thresh;
1197 time_t timeleft = 0;
1198 #ifdef PMDDEBUG
1199 int curpwr;
1200 #endif
1201 int i, nxtpwr, pwrndx, unused;
1202 size_t size;
1203 pm_component_t *cp;
1204 dev_info_t *pdip = ddi_get_parent(dip);
1205 clock_t min_scan = pm_default_min_scan;
1206
1207 /*
1208 * skip attaching device
1209 */
1210 if (DEVI_IS_ATTACHING(dip)) {
1211 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) is attaching, timeleft(%lx)\n",
1212 pmf, PM_DEVICE(dip), min_scan))
1213 return (min_scan);
1214 }
1215
1216 PM_LOCK_DIP(dip);
1217 scanp = PM_GET_PM_SCAN(dip);
1218 min_scan = PM_MIN_SCAN(dip);
1219 ASSERT(scanp && PM_GET_PM_INFO(dip));
1220
1221 PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip)))
1222 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): kuc is %d\n", pmf, PM_DEVICE(dip),
1223 PM_KUC(dip)))
1224
1225 /* no scan under the following conditions */
1226 if (pm_scans_disabled || !PM_SCANABLE(dip) ||
1227 (scanp->ps_scan_flags & PM_SCAN_STOP) ||
1228 (PM_KUC(dip) != 0) ||
1229 PM_ISDIRECT(dip) || pm_noinvol(dip)) {
1230 PM_UNLOCK_DIP(dip);
1231 PMD(PMD_SCAN, ("%s: [END, %s@%s(%s#%d)] no scan, "
1232 "scan_disabled(%d), apm_enabled(%d), cpupm(%d), "
1233 "kuc(%d), %s directpm, %s pm_noinvol\n",
1234 pmf, PM_DEVICE(dip), pm_scans_disabled, autopm_enabled,
1235 cpupm, PM_KUC(dip),
1236 PM_ISDIRECT(dip) ? "is" : "is not",
1237 pm_noinvol(dip) ? "is" : "is not"))
1238 return (LONG_MAX);
1239 }
1240 PM_UNLOCK_DIP(dip);
1241
1242 if (!ndi_devi_tryenter(pdip)) {
1243 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) can't hold pdip",
1244 pmf, PM_DEVICE(pdip)))
1245 return ((time_t)1);
1246 }
1247 now = gethrestime_sec();
1248 size = PM_NUMCMPTS(dip) * sizeof (time_t);
1249 timestamp = kmem_alloc(size, KM_SLEEP);
1250 pm_get_timestamps(dip, timestamp);
1251
1252 /*
1253 * Since we removed support for backwards compatible devices,
1254 * (see big comment at top of file)
1255 * it is no longer required to deal with component 0 last.
1256 */
1257 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
1258 /*
1259 * If already off (an optimization, perhaps)
1260 */
1261 cp = PM_CP(dip, i);
1262 pwrndx = cp->pmc_cur_pwr;
1263 #ifdef PMDDEBUG
1264 curpwr = (pwrndx == PM_LEVEL_UNKNOWN) ?
1265 PM_LEVEL_UNKNOWN :
1266 cp->pmc_comp.pmc_lvals[pwrndx];
1267 #endif
1268
1269 if (pwrndx == 0) {
1270 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d off or "
1271 "lowest\n", pmf, PM_DEVICE(dip), i))
1272 /* skip device if off or at its lowest */
1273 continue;
1274 }
1275
1276 thresh = cur_threshold(dip, i); /* comp i threshold */
1277 if ((timestamp[i] == 0) || (cp->pmc_busycount > 0)) {
1278 /* were busy or newly became busy by another thread */
1279 if (timeleft == 0)
1280 timeleft = max(thresh, min_scan);
1281 else
1282 timeleft = min(
1283 timeleft, max(thresh, min_scan));
1284 continue;
1285 }
1286
1287 idletime = now - timestamp[i]; /* idle time */
1288 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d idle time %lx\n",
1289 pmf, PM_DEVICE(dip), i, idletime))
1290 if (idletime >= thresh || PM_IS_PID(dip)) {
1291 nxtpwr = pm_next_lower_power(cp, pwrndx);
1292 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, %d->%d\n",
1293 pmf, PM_DEVICE(dip), i, curpwr, nxtpwr))
1294 if (pm_set_power(dip, i, nxtpwr, PM_LEVEL_DOWNONLY,
1295 PM_CANBLOCK_FAIL, 1, &unused) != DDI_SUCCESS &&
1296 PM_CURPOWER(dip, i) != nxtpwr) {
1297 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, "
1298 "%d->%d Failed\n", pmf, PM_DEVICE(dip),
1299 i, curpwr, nxtpwr))
1300 timeleft = min_scan;
1301 continue;
1302 } else {
1303 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, "
1304 "%d->%d, GOOD curpwr %d\n", pmf,
1305 PM_DEVICE(dip), i, curpwr, nxtpwr,
1306 cur_power(cp)))
1307
1308 if (nxtpwr == 0) /* component went off */
1309 continue;
1310
1311 /*
1312 * scan to next lower level
1313 */
1314 if (timeleft == 0)
1315 timeleft = max(
1316 1, cur_threshold(dip, i));
1317 else
1318 timeleft = min(timeleft,
1319 max(1, cur_threshold(dip, i)));
1320 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, "
1321 "timeleft(%lx)\n", pmf, PM_DEVICE(dip),
1322 i, timeleft))
1323 }
1324 } else { /* comp not idle long enough */
1325 if (timeleft == 0)
1326 timeleft = thresh - idletime;
1327 else
1328 timeleft = min(timeleft, (thresh - idletime));
1329 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, timeleft="
1330 "%lx\n", pmf, PM_DEVICE(dip), i, timeleft))
1331 }
1332 }
1333 ndi_devi_exit(pdip);
1334 kmem_free(timestamp, size);
1335 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] timeleft(%lx)\n", pmf,
1336 PM_DEVICE(dip), timeleft))
1337
1338 /*
1339 * if components are already at lowest level, timeleft is left 0
1340 */
1341 return ((timeleft == 0) ? LONG_MAX : timeleft);
1342 }
1343
1344 /*
1345 * pm_scan_stop - cancel scheduled pm_rescan,
1346 * wait for termination of dispatched pm_scan thread
1347 * and active pm_scan_dev thread.
1348 */
1349 void
pm_scan_stop(dev_info_t * dip)1350 pm_scan_stop(dev_info_t *dip)
1351 {
1352 PMD_FUNC(pmf, "scan_stop")
1353 pm_scan_t *scanp;
1354 timeout_id_t scanid;
1355
1356 PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip)))
1357 PM_LOCK_DIP(dip);
1358 scanp = PM_GET_PM_SCAN(dip);
1359 if (!scanp) {
1360 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] scan not initialized\n",
1361 pmf, PM_DEVICE(dip)))
1362 PM_UNLOCK_DIP(dip);
1363 return;
1364 }
1365 scanp->ps_scan_flags |= PM_SCAN_STOP;
1366
1367 /* cancel scheduled scan taskq */
1368 while (scanp->ps_scan_id) {
1369 scanid = scanp->ps_scan_id;
1370 scanp->ps_scan_id = 0;
1371 PM_UNLOCK_DIP(dip);
1372 (void) untimeout(scanid);
1373 PM_LOCK_DIP(dip);
1374 }
1375
1376 while (scanp->ps_scan_flags & (PM_SCANNING | PM_SCAN_DISPATCHED)) {
1377 PM_UNLOCK_DIP(dip);
1378 delay(1);
1379 PM_LOCK_DIP(dip);
1380 }
1381 PM_UNLOCK_DIP(dip);
1382 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip)))
1383 }
1384
1385 int
pm_scan_stop_walk(dev_info_t * dip,void * arg)1386 pm_scan_stop_walk(dev_info_t *dip, void *arg)
1387 {
1388 _NOTE(ARGUNUSED(arg))
1389
1390 if (!PM_GET_PM_SCAN(dip))
1391 return (DDI_WALK_CONTINUE);
1392 ASSERT(!PM_ISBC(dip));
1393 pm_scan_stop(dip);
1394 return (DDI_WALK_CONTINUE);
1395 }
1396
1397 /*
1398 * Converts a power level value to its index
1399 */
1400 static int
power_val_to_index(pm_component_t * cp,int val)1401 power_val_to_index(pm_component_t *cp, int val)
1402 {
1403 int limit, i, *ip;
1404
1405 ASSERT(val != PM_LEVEL_UPONLY && val != PM_LEVEL_DOWNONLY &&
1406 val != PM_LEVEL_EXACT);
1407 /* convert power value into index (i) */
1408 limit = cp->pmc_comp.pmc_numlevels;
1409 ip = cp->pmc_comp.pmc_lvals;
1410 for (i = 0; i < limit; i++)
1411 if (val == *ip++)
1412 return (i);
1413 return (-1);
1414 }
1415
1416 /*
1417 * Converts a numeric power level to a printable string
1418 */
1419 static char *
power_val_to_string(pm_component_t * cp,int val)1420 power_val_to_string(pm_component_t *cp, int val)
1421 {
1422 int index;
1423
1424 if (val == PM_LEVEL_UPONLY)
1425 return ("<UPONLY>");
1426
1427 if (val == PM_LEVEL_UNKNOWN ||
1428 (index = power_val_to_index(cp, val)) == -1)
1429 return ("<LEVEL_UNKNOWN>");
1430
1431 return (cp->pmc_comp.pmc_lnames[index]);
1432 }
1433
1434 /*
1435 * Return true if this node has been claimed by a ppm.
1436 */
1437 static int
pm_ppm_claimed(dev_info_t * dip)1438 pm_ppm_claimed(dev_info_t *dip)
1439 {
1440 return (PPM(dip) != NULL);
1441 }
1442
1443 /*
1444 * A node which was voluntarily power managed has just used up its "free cycle"
1445 * and need is volpmd field cleared, and the same done to all its descendents
1446 */
1447 static void
pm_clear_volpm_dip(dev_info_t * dip)1448 pm_clear_volpm_dip(dev_info_t *dip)
1449 {
1450 PMD_FUNC(pmf, "clear_volpm_dip")
1451
1452 if (dip == NULL)
1453 return;
1454 PMD(PMD_NOINVOL, ("%s: clear volpm from %s@%s(%s#%d)\n", pmf,
1455 PM_DEVICE(dip)))
1456 DEVI(dip)->devi_pm_volpmd = 0;
1457 for (dip = ddi_get_child(dip); dip; dip = ddi_get_next_sibling(dip)) {
1458 pm_clear_volpm_dip(dip);
1459 }
1460 }
1461
1462 /*
1463 * A node which was voluntarily power managed has used up the "free cycles"
1464 * for the subtree that it is the root of. Scan through the list of detached
1465 * nodes and adjust the counts of any that are descendents of the node.
1466 */
1467 static void
pm_clear_volpm_list(dev_info_t * dip)1468 pm_clear_volpm_list(dev_info_t *dip)
1469 {
1470 PMD_FUNC(pmf, "clear_volpm_list")
1471 char *pathbuf;
1472 size_t len;
1473 pm_noinvol_t *ip;
1474
1475 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1476 (void) ddi_pathname(dip, pathbuf);
1477 len = strlen(pathbuf);
1478 PMD(PMD_NOINVOL, ("%s: clear volpm list %s\n", pmf, pathbuf))
1479 rw_enter(&pm_noinvol_rwlock, RW_WRITER);
1480 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
1481 PMD(PMD_NOINVOL, ("%s: clear volpm: ni_path %s\n", pmf,
1482 ip->ni_path))
1483 if (strncmp(pathbuf, ip->ni_path, len) == 0 &&
1484 ip->ni_path[len] == '/') {
1485 PMD(PMD_NOINVOL, ("%s: clear volpm: %s\n", pmf,
1486 ip->ni_path))
1487 ip->ni_volpmd = 0;
1488 ip->ni_wasvolpmd = 0;
1489 }
1490 }
1491 kmem_free(pathbuf, MAXPATHLEN);
1492 rw_exit(&pm_noinvol_rwlock);
1493 }
1494
1495 /*
1496 * Powers a device, suspending or resuming the driver if it is a backward
1497 * compatible device, calling into ppm to change power level.
1498 * Called with the component's power lock held.
1499 */
1500 static int
power_dev(dev_info_t * dip,int comp,int level,int old_level,pm_canblock_t canblock,pm_ppm_devlist_t ** devlist)1501 power_dev(dev_info_t *dip, int comp, int level, int old_level,
1502 pm_canblock_t canblock, pm_ppm_devlist_t **devlist)
1503 {
1504 PMD_FUNC(pmf, "power_dev")
1505 power_req_t power_req;
1506 int power_op_ret; /* DDI_SUCCESS or DDI_FAILURE */
1507 int resume_needed = 0;
1508 int suspended = 0;
1509 int result;
1510 #ifdef PMDDEBUG
1511 struct pm_component *cp = PM_CP(dip, comp);
1512 #endif
1513 int bc = PM_ISBC(dip);
1514 int pm_all_components_off(dev_info_t *);
1515 int clearvolpmd = 0;
1516 char pathbuf[MAXNAMELEN];
1517 #ifdef PMDDEBUG
1518 char *ppmname, *ppmaddr;
1519 #endif
1520 /*
1521 * If this is comp 0 of a backwards compat device and we are
1522 * going to take the power away, we need to detach it with
1523 * DDI_PM_SUSPEND command.
1524 */
1525 if (bc && comp == 0 && POWERING_OFF(old_level, level)) {
1526 if (devi_detach(dip, DDI_PM_SUSPEND) != DDI_SUCCESS) {
1527 /* We could not suspend before turning cmpt zero off */
1528 PMD(PMD_ERROR, ("%s: could not suspend %s@%s(%s#%d)\n",
1529 pmf, PM_DEVICE(dip)))
1530 return (DDI_FAILURE);
1531 } else {
1532 DEVI(dip)->devi_pm_flags |= PMC_SUSPENDED;
1533 suspended++;
1534 }
1535 }
1536 power_req.request_type = PMR_PPM_SET_POWER;
1537 power_req.req.ppm_set_power_req.who = dip;
1538 power_req.req.ppm_set_power_req.cmpt = comp;
1539 power_req.req.ppm_set_power_req.old_level = old_level;
1540 power_req.req.ppm_set_power_req.new_level = level;
1541 power_req.req.ppm_set_power_req.canblock = canblock;
1542 power_req.req.ppm_set_power_req.cookie = NULL;
1543 #ifdef PMDDEBUG
1544 if (pm_ppm_claimed(dip)) {
1545 ppmname = PM_NAME(PPM(dip));
1546 ppmaddr = PM_ADDR(PPM(dip));
1547
1548 } else {
1549 ppmname = "noppm";
1550 ppmaddr = "0";
1551 }
1552 PMD(PMD_PPM, ("%s: %s@%s(%s#%d):%s[%d] %s (%d) -> %s (%d) via %s@%s\n",
1553 pmf, PM_DEVICE(dip), cp->pmc_comp.pmc_name, comp,
1554 power_val_to_string(cp, old_level), old_level,
1555 power_val_to_string(cp, level), level, ppmname, ppmaddr))
1556 #endif
1557 /*
1558 * If non-bc noinvolpm device is turning first comp on, or noinvolpm
1559 * bc device comp 0 is powering on, then we count it as a power cycle
1560 * against its voluntary count.
1561 */
1562 if (DEVI(dip)->devi_pm_volpmd &&
1563 (!bc && pm_all_components_off(dip) && level != 0) ||
1564 (bc && comp == 0 && POWERING_ON(old_level, level)))
1565 clearvolpmd = 1;
1566 if ((power_op_ret = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER,
1567 &power_req, &result)) == DDI_SUCCESS) {
1568 /*
1569 * Now do involuntary pm accounting; If we've just cycled power
1570 * on a voluntarily pm'd node, and by inference on its entire
1571 * subtree, we need to set the subtree (including those nodes
1572 * already detached) volpmd counts to 0, and subtract out the
1573 * value of the current node's volpmd count from the ancestors
1574 */
1575 if (clearvolpmd) {
1576 int volpmd = DEVI(dip)->devi_pm_volpmd;
1577 pm_clear_volpm_dip(dip);
1578 pm_clear_volpm_list(dip);
1579 if (volpmd) {
1580 (void) ddi_pathname(dip, pathbuf);
1581 (void) pm_noinvol_update(PM_BP_NOINVOL_POWER,
1582 volpmd, 0, pathbuf, dip);
1583 }
1584 }
1585 } else {
1586 PMD(PMD_FAIL, ("%s: can't set comp %d (%s) of %s@%s(%s#%d) "
1587 "to level %d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name,
1588 PM_DEVICE(dip), level, power_val_to_string(cp, level)))
1589 }
1590 /*
1591 * If some other devices were also powered up (e.g. other cpus in
1592 * the same domain) return a pointer to that list
1593 */
1594 if (devlist) {
1595 *devlist = (pm_ppm_devlist_t *)
1596 power_req.req.ppm_set_power_req.cookie;
1597 }
1598 /*
1599 * We will have to resume the device if the device is backwards compat
1600 * device and either of the following is true:
1601 * -This is comp 0 and we have successfully powered it up
1602 * -This is comp 0 and we have failed to power it down. Resume is
1603 * needed because we have suspended it above
1604 */
1605
1606 if (bc && comp == 0) {
1607 ASSERT(PM_ISDIRECT(dip) || DEVI_IS_DETACHING(dip));
1608 if (power_op_ret == DDI_SUCCESS) {
1609 if (POWERING_ON(old_level, level)) {
1610 /*
1611 * It must be either suspended or resumed
1612 * via pm_power_has_changed path
1613 */
1614 ASSERT((DEVI(dip)->devi_pm_flags &
1615 PMC_SUSPENDED) ||
1616 (PM_CP(dip, comp)->pmc_flags &
1617 PM_PHC_WHILE_SET_POWER));
1618
1619 resume_needed = suspended;
1620 }
1621 } else {
1622 if (POWERING_OFF(old_level, level)) {
1623 /*
1624 * It must be either suspended or resumed
1625 * via pm_power_has_changed path
1626 */
1627 ASSERT((DEVI(dip)->devi_pm_flags &
1628 PMC_SUSPENDED) ||
1629 (PM_CP(dip, comp)->pmc_flags &
1630 PM_PHC_WHILE_SET_POWER));
1631
1632 resume_needed = suspended;
1633 }
1634 }
1635 }
1636 if (resume_needed) {
1637 ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED);
1638 /* ppm is not interested in DDI_PM_RESUME */
1639 if ((power_op_ret = devi_attach(dip, DDI_PM_RESUME)) ==
1640 DDI_SUCCESS) {
1641 DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED;
1642 } else
1643 cmn_err(CE_WARN, "!pm: Can't resume %s@%s(%s#%d)",
1644 PM_DEVICE(dip));
1645 }
1646 return (power_op_ret);
1647 }
1648
1649 /*
1650 * Return true if we are the owner or a borrower of the devi lock. See
1651 * pm_lock_power_single() about borrowing the lock.
1652 */
1653 static int
pm_devi_lock_held(dev_info_t * dip)1654 pm_devi_lock_held(dev_info_t *dip)
1655 {
1656 lock_loan_t *cur;
1657
1658 if (DEVI_BUSY_OWNED(dip))
1659 return (1);
1660
1661 /* return false if no locks borrowed */
1662 if (lock_loan_head.pmlk_next == NULL)
1663 return (0);
1664
1665 mutex_enter(&pm_loan_lock);
1666 /* see if our thread is registered as a lock borrower. */
1667 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next)
1668 if (cur->pmlk_borrower == curthread)
1669 break;
1670 mutex_exit(&pm_loan_lock);
1671
1672 return (cur != NULL && cur->pmlk_lender == DEVI(dip)->devi_busy_thread);
1673 }
1674
1675 /*
1676 * pm_set_power: adjusts power level of device. Assumes device is power
1677 * manageable & component exists.
1678 *
1679 * Cases which require us to bring up devices we keep up ("wekeepups") for
1680 * backwards compatible devices:
1681 * component 0 is off and we're bringing it up from 0
1682 * bring up wekeepup first
1683 * and recursively when component 0 is off and we bring some other
1684 * component up from 0
1685 * For devices which are not backward compatible, our dependency notion is much
1686 * simpler. Unless all components are off, then wekeeps must be on.
1687 * We don't treat component 0 differently.
1688 * Canblock tells how to deal with a direct pm'd device.
1689 * Scan arg tells us if we were called from scan, in which case we don't need
1690 * to go back to the root node and walk down to change power.
1691 */
1692 int
pm_set_power(dev_info_t * dip,int comp,int level,int direction,pm_canblock_t canblock,int scan,int * retp)1693 pm_set_power(dev_info_t *dip, int comp, int level, int direction,
1694 pm_canblock_t canblock, int scan, int *retp)
1695 {
1696 PMD_FUNC(pmf, "set_power")
1697 char *pathbuf;
1698 pm_bp_child_pwrchg_t bpc;
1699 pm_sp_misc_t pspm;
1700 int ret = DDI_SUCCESS;
1701 int unused = DDI_SUCCESS;
1702 dev_info_t *pdip = ddi_get_parent(dip);
1703
1704 #ifdef DEBUG
1705 int diverted = 0;
1706
1707 /*
1708 * This prevents operations on the console from calling prom_printf and
1709 * either deadlocking or bringing up the console because of debug
1710 * output
1711 */
1712 if (dip == cfb_dip) {
1713 diverted++;
1714 mutex_enter(&pm_debug_lock);
1715 pm_divertdebug++;
1716 mutex_exit(&pm_debug_lock);
1717 }
1718 #endif
1719 ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY ||
1720 direction == PM_LEVEL_EXACT);
1721 PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d, dir=%s, new=%d\n",
1722 pmf, PM_DEVICE(dip), comp, pm_decode_direction(direction), level))
1723 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1724 (void) ddi_pathname(dip, pathbuf);
1725 bpc.bpc_dip = dip;
1726 bpc.bpc_path = pathbuf;
1727 bpc.bpc_comp = comp;
1728 bpc.bpc_olevel = PM_CURPOWER(dip, comp);
1729 bpc.bpc_nlevel = level;
1730 pspm.pspm_direction = direction;
1731 pspm.pspm_errnop = retp;
1732 pspm.pspm_canblock = canblock;
1733 pspm.pspm_scan = scan;
1734 bpc.bpc_private = &pspm;
1735
1736 /*
1737 * If a config operation is being done (we've locked the parent) or
1738 * we already hold the power lock (we've locked the node)
1739 * then we can operate directly on the node because we have already
1740 * brought up all the ancestors, otherwise, we have to go back to the
1741 * top of the tree.
1742 */
1743 if (pm_devi_lock_held(pdip) || pm_devi_lock_held(dip))
1744 ret = pm_busop_set_power(dip, NULL, BUS_POWER_CHILD_PWRCHG,
1745 (void *)&bpc, (void *)&unused);
1746 else
1747 ret = pm_busop_bus_power(ddi_root_node(), NULL,
1748 BUS_POWER_CHILD_PWRCHG, (void *)&bpc, (void *)&unused);
1749 #ifdef DEBUG
1750 if (ret != DDI_SUCCESS || *retp != DDI_SUCCESS) {
1751 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) can't change power, ret=%d, "
1752 "errno=%d\n", pmf, PM_DEVICE(dip), ret, *retp))
1753 }
1754 if (diverted) {
1755 mutex_enter(&pm_debug_lock);
1756 pm_divertdebug--;
1757 mutex_exit(&pm_debug_lock);
1758 }
1759 #endif
1760 kmem_free(pathbuf, MAXPATHLEN);
1761 return (ret);
1762 }
1763
1764 /*
1765 * If holddip is set, then if a dip is found we return with the node held.
1766 *
1767 * This code uses the same locking scheme as e_ddi_hold_devi_by_path
1768 * (resolve_pathname), but it does not drive attach.
1769 */
1770 dev_info_t *
pm_name_to_dip(char * pathname,int holddip)1771 pm_name_to_dip(char *pathname, int holddip)
1772 {
1773 struct pathname pn;
1774 char *component;
1775 dev_info_t *parent, *child;
1776
1777 if ((pathname == NULL) || (*pathname != '/'))
1778 return (NULL);
1779
1780 /* setup pathname and allocate component */
1781 if (pn_get(pathname, UIO_SYSSPACE, &pn))
1782 return (NULL);
1783 component = kmem_alloc(MAXNAMELEN, KM_SLEEP);
1784
1785 /* start at top, process '/' component */
1786 parent = child = ddi_root_node();
1787 ndi_hold_devi(parent);
1788 pn_skipslash(&pn);
1789 ASSERT(i_ddi_devi_attached(parent));
1790
1791 /* process components of pathname */
1792 while (pn_pathleft(&pn)) {
1793 (void) pn_getcomponent(&pn, component);
1794
1795 /* enter parent and search for component child */
1796 ndi_devi_enter(parent);
1797 child = ndi_devi_findchild(parent, component);
1798 if ((child == NULL) || !i_ddi_devi_attached(child)) {
1799 child = NULL;
1800 ndi_devi_exit(parent);
1801 ndi_rele_devi(parent);
1802 goto out;
1803 }
1804
1805 /* attached child found, hold child and release parent */
1806 ndi_hold_devi(child);
1807 ndi_devi_exit(parent);
1808 ndi_rele_devi(parent);
1809
1810 /* child becomes parent, and process next component */
1811 parent = child;
1812 pn_skipslash(&pn);
1813
1814 /* loop with active ndi_devi_hold of child->parent */
1815 }
1816
1817 out:
1818 pn_free(&pn);
1819 kmem_free(component, MAXNAMELEN);
1820
1821 /* if we are not asked to return with hold, drop current hold */
1822 if (child && !holddip)
1823 ndi_rele_devi(child);
1824 return (child);
1825 }
1826
1827 /*
1828 * Search for a dependency and mark it unsatisfied
1829 */
1830 static void
pm_unsatisfy(char * keeper,char * kept)1831 pm_unsatisfy(char *keeper, char *kept)
1832 {
1833 PMD_FUNC(pmf, "unsatisfy")
1834 pm_pdr_t *dp;
1835
1836 PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf, keeper, kept))
1837 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
1838 if (!dp->pdr_isprop) {
1839 if (strcmp(dp->pdr_keeper, keeper) == 0 &&
1840 (dp->pdr_kept_count > 0) &&
1841 strcmp(dp->pdr_kept_paths[0], kept) == 0) {
1842 if (dp->pdr_satisfied) {
1843 dp->pdr_satisfied = 0;
1844 pm_unresolved_deps++;
1845 PMD(PMD_KEEPS, ("%s: clear satisfied, "
1846 "pm_unresolved_deps now %d\n", pmf,
1847 pm_unresolved_deps))
1848 }
1849 }
1850 }
1851 }
1852 }
1853
1854 /*
1855 * Device dip is being un power managed, it keeps up count other devices.
1856 * We need to release any hold we have on the kept devices, and also
1857 * mark the dependency no longer satisfied.
1858 */
1859 static void
pm_unkeeps(int count,char * keeper,char ** keptpaths,int pwr)1860 pm_unkeeps(int count, char *keeper, char **keptpaths, int pwr)
1861 {
1862 PMD_FUNC(pmf, "unkeeps")
1863 int i, j;
1864 dev_info_t *kept;
1865 dev_info_t *dip;
1866 struct pm_component *cp;
1867 int keeper_on = 0;
1868
1869 PMD(PMD_KEEPS, ("%s: count=%d, keeper=%s, keptpaths=%p\n", pmf, count,
1870 keeper, (void *)keptpaths))
1871 /*
1872 * Try to grab keeper. Keeper may have gone away by now,
1873 * in this case, used the passed in value pwr
1874 */
1875 dip = pm_name_to_dip(keeper, 1);
1876 for (i = 0; i < count; i++) {
1877 /* Release power hold */
1878 kept = pm_name_to_dip(keptpaths[i], 1);
1879 if (kept) {
1880 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)[%d]\n", pmf,
1881 PM_DEVICE(kept), i))
1882 /*
1883 * We need to check if we skipped a bringup here
1884 * because we could have failed the bringup
1885 * (ie DIRECT PM device) and have
1886 * not increment the count.
1887 */
1888 if ((dip != NULL) && (PM_GET_PM_INFO(dip) != NULL)) {
1889 keeper_on = 0;
1890 PM_LOCK_POWER(dip);
1891 for (j = 0; j < PM_NUMCMPTS(dip); j++) {
1892 cp = &DEVI(dip)->devi_pm_components[j];
1893 if (cur_power(cp)) {
1894 keeper_on++;
1895 break;
1896 }
1897 }
1898 if (keeper_on && (PM_SKBU(kept) == 0)) {
1899 pm_rele_power(kept);
1900 DEVI(kept)->devi_pm_flags
1901 &= ~PMC_SKIP_BRINGUP;
1902 }
1903 PM_UNLOCK_POWER(dip);
1904 } else if (pwr) {
1905 if (PM_SKBU(kept) == 0) {
1906 pm_rele_power(kept);
1907 DEVI(kept)->devi_pm_flags
1908 &= ~PMC_SKIP_BRINGUP;
1909 }
1910 }
1911 ddi_release_devi(kept);
1912 }
1913 /*
1914 * mark this dependency not satisfied
1915 */
1916 pm_unsatisfy(keeper, keptpaths[i]);
1917 }
1918 if (dip)
1919 ddi_release_devi(dip);
1920 }
1921
1922 /*
1923 * Device kept is being un power managed, it is kept up by keeper.
1924 * We need to mark the dependency no longer satisfied.
1925 */
1926 static void
pm_unkepts(char * kept,char * keeper)1927 pm_unkepts(char *kept, char *keeper)
1928 {
1929 PMD_FUNC(pmf, "unkepts")
1930 PMD(PMD_KEEPS, ("%s: kept=%s, keeper=%s\n", pmf, kept, keeper))
1931 ASSERT(keeper != NULL);
1932 /*
1933 * mark this dependency not satisfied
1934 */
1935 pm_unsatisfy(keeper, kept);
1936 }
1937
1938 /*
1939 * Removes dependency information and hold on the kepts, if the path is a
1940 * path of a keeper.
1941 */
1942 static void
pm_free_keeper(char * path,int pwr)1943 pm_free_keeper(char *path, int pwr)
1944 {
1945 pm_pdr_t *dp;
1946 int i;
1947 size_t length;
1948
1949 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
1950 if (strcmp(dp->pdr_keeper, path) != 0)
1951 continue;
1952 /*
1953 * Remove all our kept holds and the dependency records,
1954 * then free up the kept lists.
1955 */
1956 pm_unkeeps(dp->pdr_kept_count, path, dp->pdr_kept_paths, pwr);
1957 if (dp->pdr_kept_count) {
1958 for (i = 0; i < dp->pdr_kept_count; i++) {
1959 length = strlen(dp->pdr_kept_paths[i]);
1960 kmem_free(dp->pdr_kept_paths[i], length + 1);
1961 }
1962 kmem_free(dp->pdr_kept_paths,
1963 dp->pdr_kept_count * sizeof (char **));
1964 dp->pdr_kept_paths = NULL;
1965 dp->pdr_kept_count = 0;
1966 }
1967 }
1968 }
1969
1970 /*
1971 * Removes the device represented by path from the list of kepts, if the
1972 * path is a path of a kept
1973 */
1974 static void
pm_free_kept(char * path)1975 pm_free_kept(char *path)
1976 {
1977 pm_pdr_t *dp;
1978 int i;
1979 int j, count;
1980 size_t length;
1981 char **paths;
1982
1983 paths = NULL;
1984 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
1985 if (dp->pdr_kept_count == 0)
1986 continue;
1987 count = dp->pdr_kept_count;
1988 /* Remove this device from the kept path lists */
1989 for (i = 0; i < count; i++) {
1990 if (strcmp(dp->pdr_kept_paths[i], path) == 0) {
1991 pm_unkepts(path, dp->pdr_keeper);
1992 length = strlen(dp->pdr_kept_paths[i]) + 1;
1993 kmem_free(dp->pdr_kept_paths[i], length);
1994 dp->pdr_kept_paths[i] = NULL;
1995 dp->pdr_kept_count--;
1996 }
1997 }
1998 /* Compact the kept paths array */
1999 if (dp->pdr_kept_count) {
2000 length = dp->pdr_kept_count * sizeof (char **);
2001 paths = kmem_zalloc(length, KM_SLEEP);
2002 j = 0;
2003 for (i = 0; i < count; i++) {
2004 if (dp->pdr_kept_paths[i] != NULL) {
2005 paths[j] = dp->pdr_kept_paths[i];
2006 j++;
2007 }
2008 }
2009 ASSERT(j == dp->pdr_kept_count);
2010 }
2011 /* Now free the old array and point to the new one */
2012 kmem_free(dp->pdr_kept_paths, count * sizeof (char **));
2013 dp->pdr_kept_paths = paths;
2014 }
2015 }
2016
2017 /*
2018 * Free the dependency information for a device.
2019 */
2020 void
pm_free_keeps(char * path,int pwr)2021 pm_free_keeps(char *path, int pwr)
2022 {
2023 PMD_FUNC(pmf, "free_keeps")
2024
2025 #ifdef DEBUG
2026 int doprdeps = 0;
2027 void prdeps(char *);
2028
2029 PMD(PMD_KEEPS, ("%s: %s\n", pmf, path))
2030 if (pm_debug & PMD_KEEPS) {
2031 doprdeps = 1;
2032 prdeps("pm_free_keeps before");
2033 }
2034 #endif
2035 /*
2036 * First assume we are a keeper and remove all our kepts.
2037 */
2038 pm_free_keeper(path, pwr);
2039 /*
2040 * Now assume we a kept device, and remove all our records.
2041 */
2042 pm_free_kept(path);
2043 #ifdef DEBUG
2044 if (doprdeps) {
2045 prdeps("pm_free_keeps after");
2046 }
2047 #endif
2048 }
2049
2050 static int
pm_is_kept(char * path)2051 pm_is_kept(char *path)
2052 {
2053 pm_pdr_t *dp;
2054 int i;
2055
2056 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
2057 if (dp->pdr_kept_count == 0)
2058 continue;
2059 for (i = 0; i < dp->pdr_kept_count; i++) {
2060 if (strcmp(dp->pdr_kept_paths[i], path) == 0)
2061 return (1);
2062 }
2063 }
2064 return (0);
2065 }
2066
2067 static void
e_pm_hold_rele_power(dev_info_t * dip,int cnt)2068 e_pm_hold_rele_power(dev_info_t *dip, int cnt)
2069 {
2070 PMD_FUNC(pmf, "hold_rele_power")
2071
2072 if ((dip == NULL) ||
2073 (PM_GET_PM_INFO(dip) == NULL) || PM_ISBC(dip))
2074 return;
2075
2076 PM_LOCK_POWER(dip);
2077 ASSERT(cnt >= 0 || (cnt < 0 && PM_KUC(dip) > 0));
2078 PMD(PMD_KIDSUP, ("%s: kidsupcnt for %s@%s(%s#%d) %d->%d\n", pmf,
2079 PM_DEVICE(dip), PM_KUC(dip), (PM_KUC(dip) + cnt)))
2080
2081 PM_KUC(dip) += cnt;
2082
2083 PM_UNLOCK_POWER(dip);
2084
2085 if (cnt < 0 && PM_KUC(dip) == 0)
2086 pm_rescan(dip);
2087 }
2088
2089 #define MAX_PPM_HANDLERS 4
2090
2091 kmutex_t ppm_lock; /* in case we ever do multi-threaded startup */
2092
2093 struct ppm_callbacks {
2094 int (*ppmc_func)(dev_info_t *);
2095 dev_info_t *ppmc_dip;
2096 } ppm_callbacks[MAX_PPM_HANDLERS + 1];
2097
2098
2099 /*
2100 * This routine calls into all the registered ppms to notify them
2101 * that either all components of power-managed devices are at their
2102 * lowest levels or no longer all are at their lowest levels.
2103 */
2104 static void
pm_ppm_notify_all_lowest(dev_info_t * dip,int mode)2105 pm_ppm_notify_all_lowest(dev_info_t *dip, int mode)
2106 {
2107 struct ppm_callbacks *ppmcp;
2108 power_req_t power_req;
2109 int result = 0;
2110
2111 power_req.request_type = PMR_PPM_ALL_LOWEST;
2112 power_req.req.ppm_all_lowest_req.mode = mode;
2113 mutex_enter(&ppm_lock);
2114 for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++)
2115 (void) pm_ctlops((dev_info_t *)ppmcp->ppmc_dip, dip,
2116 DDI_CTLOPS_POWER, &power_req, &result);
2117 mutex_exit(&ppm_lock);
2118 if (mode == PM_ALL_LOWEST) {
2119 if (autoS3_enabled) {
2120 PMD(PMD_SX, ("pm_ppm_notify_all_lowest triggering "
2121 "autos3\n"))
2122 mutex_enter(&srn_clone_lock);
2123 if (srn_signal) {
2124 srn_inuse++;
2125 PMD(PMD_SX, ("(*srn_signal)(AUTOSX, 3)\n"))
2126 (*srn_signal)(SRN_TYPE_AUTOSX, 3);
2127 srn_inuse--;
2128 } else {
2129 PMD(PMD_SX, ("srn_signal NULL\n"))
2130 }
2131 mutex_exit(&srn_clone_lock);
2132 } else {
2133 PMD(PMD_SX, ("pm_ppm_notify_all_lowest autos3 "
2134 "disabled\n"));
2135 }
2136 }
2137 }
2138
2139 static void
pm_set_pm_info(dev_info_t * dip,void * value)2140 pm_set_pm_info(dev_info_t *dip, void *value)
2141 {
2142 DEVI(dip)->devi_pm_info = value;
2143 }
2144
2145 pm_rsvp_t *pm_blocked_list;
2146
2147 /*
2148 * Look up an entry in the blocked list by dip and component
2149 */
2150 static pm_rsvp_t *
pm_rsvp_lookup(dev_info_t * dip,int comp)2151 pm_rsvp_lookup(dev_info_t *dip, int comp)
2152 {
2153 pm_rsvp_t *p;
2154 ASSERT(MUTEX_HELD(&pm_rsvp_lock));
2155 for (p = pm_blocked_list; p; p = p->pr_next)
2156 if (p->pr_dip == dip && p->pr_comp == comp) {
2157 return (p);
2158 }
2159 return (NULL);
2160 }
2161
2162 /*
2163 * Called when a device which is direct power managed (or the parent or
2164 * dependent of such a device) changes power, or when a pm clone is closed
2165 * that was direct power managing a device. This call results in pm_blocked()
2166 * (below) returning.
2167 */
2168 void
pm_proceed(dev_info_t * dip,int cmd,int comp,int newlevel)2169 pm_proceed(dev_info_t *dip, int cmd, int comp, int newlevel)
2170 {
2171 PMD_FUNC(pmf, "proceed")
2172 pm_rsvp_t *found = NULL;
2173 pm_rsvp_t *p;
2174
2175 mutex_enter(&pm_rsvp_lock);
2176 switch (cmd) {
2177 /*
2178 * we're giving up control, let any pending op continue
2179 */
2180 case PMP_RELEASE:
2181 for (p = pm_blocked_list; p; p = p->pr_next) {
2182 if (dip == p->pr_dip) {
2183 p->pr_retval = PMP_RELEASE;
2184 PMD(PMD_DPM, ("%s: RELEASE %s@%s(%s#%d)\n",
2185 pmf, PM_DEVICE(dip)))
2186 cv_signal(&p->pr_cv);
2187 }
2188 }
2189 break;
2190
2191 /*
2192 * process has done PM_SET_CURRENT_POWER; let a matching request
2193 * succeed and a non-matching request for the same device fail
2194 */
2195 case PMP_SETPOWER:
2196 found = pm_rsvp_lookup(dip, comp);
2197 if (!found) /* if driver not waiting */
2198 break;
2199 /*
2200 * This cannot be pm_lower_power, since that can only happen
2201 * during detach or probe
2202 */
2203 if (found->pr_newlevel <= newlevel) {
2204 found->pr_retval = PMP_SUCCEED;
2205 PMD(PMD_DPM, ("%s: SUCCEED %s@%s(%s#%d)\n", pmf,
2206 PM_DEVICE(dip)))
2207 } else {
2208 found->pr_retval = PMP_FAIL;
2209 PMD(PMD_DPM, ("%s: FAIL %s@%s(%s#%d)\n", pmf,
2210 PM_DEVICE(dip)))
2211 }
2212 cv_signal(&found->pr_cv);
2213 break;
2214
2215 default:
2216 panic("pm_proceed unknown cmd %d", cmd);
2217 }
2218 mutex_exit(&pm_rsvp_lock);
2219 }
2220
2221 /*
2222 * This routine dispatches new work to the dependency thread. Caller must
2223 * be prepared to block for memory if necessary.
2224 */
2225 void
pm_dispatch_to_dep_thread(int cmd,char * keeper,char * kept,int wait,int * res,int cached_pwr)2226 pm_dispatch_to_dep_thread(int cmd, char *keeper, char *kept, int wait,
2227 int *res, int cached_pwr)
2228 {
2229 pm_dep_wk_t *new_work;
2230
2231 new_work = kmem_zalloc(sizeof (pm_dep_wk_t), KM_SLEEP);
2232 new_work->pdw_type = cmd;
2233 new_work->pdw_wait = wait;
2234 new_work->pdw_done = 0;
2235 new_work->pdw_ret = 0;
2236 new_work->pdw_pwr = cached_pwr;
2237 cv_init(&new_work->pdw_cv, NULL, CV_DEFAULT, NULL);
2238 if (keeper != NULL) {
2239 new_work->pdw_keeper = kmem_zalloc(strlen(keeper) + 1,
2240 KM_SLEEP);
2241 (void) strcpy(new_work->pdw_keeper, keeper);
2242 }
2243 if (kept != NULL) {
2244 new_work->pdw_kept = kmem_zalloc(strlen(kept) + 1, KM_SLEEP);
2245 (void) strcpy(new_work->pdw_kept, kept);
2246 }
2247 mutex_enter(&pm_dep_thread_lock);
2248 if (pm_dep_thread_workq == NULL) {
2249 pm_dep_thread_workq = new_work;
2250 pm_dep_thread_tail = new_work;
2251 new_work->pdw_next = NULL;
2252 } else {
2253 pm_dep_thread_tail->pdw_next = new_work;
2254 pm_dep_thread_tail = new_work;
2255 new_work->pdw_next = NULL;
2256 }
2257 cv_signal(&pm_dep_thread_cv);
2258 /* If caller asked for it, wait till it is done. */
2259 if (wait) {
2260 while (!new_work->pdw_done)
2261 cv_wait(&new_work->pdw_cv, &pm_dep_thread_lock);
2262 /*
2263 * Pass return status, if any, back.
2264 */
2265 if (res != NULL)
2266 *res = new_work->pdw_ret;
2267 /*
2268 * If we asked to wait, it is our job to free the request
2269 * structure.
2270 */
2271 if (new_work->pdw_keeper)
2272 kmem_free(new_work->pdw_keeper,
2273 strlen(new_work->pdw_keeper) + 1);
2274 if (new_work->pdw_kept)
2275 kmem_free(new_work->pdw_kept,
2276 strlen(new_work->pdw_kept) + 1);
2277 kmem_free(new_work, sizeof (pm_dep_wk_t));
2278 }
2279 mutex_exit(&pm_dep_thread_lock);
2280 }
2281
2282 /*
2283 * Release the pm resource for this device.
2284 */
2285 void
pm_rem_info(dev_info_t * dip)2286 pm_rem_info(dev_info_t *dip)
2287 {
2288 PMD_FUNC(pmf, "rem_info")
2289 int i, count = 0;
2290 pm_info_t *info = PM_GET_PM_INFO(dip);
2291 dev_info_t *pdip = ddi_get_parent(dip);
2292 char *pathbuf;
2293 int work_type = PM_DEP_WK_DETACH;
2294
2295 ASSERT(info);
2296
2297 ASSERT(!PM_IAM_LOCKING_DIP(dip));
2298 if (PM_ISDIRECT(dip)) {
2299 info->pmi_dev_pm_state &= ~PM_DIRECT;
2300 ASSERT(info->pmi_clone);
2301 info->pmi_clone = 0;
2302 pm_proceed(dip, PMP_RELEASE, -1, -1);
2303 }
2304 ASSERT(!PM_GET_PM_SCAN(dip));
2305
2306 /*
2307 * Now adjust parent's kidsupcnt. BC nodes we check only comp 0,
2308 * Others we check all components. BC node that has already
2309 * called pm_destroy_components() has zero component count.
2310 * Parents that get notification are not adjusted because their
2311 * kidsupcnt is always 0 (or 1 during configuration).
2312 */
2313 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d) has %d components\n", pmf,
2314 PM_DEVICE(dip), PM_NUMCMPTS(dip)))
2315
2316 /* node is detached, so we can examine power without locking */
2317 if (PM_ISBC(dip)) {
2318 count = (PM_CURPOWER(dip, 0) != 0);
2319 } else {
2320 for (i = 0; i < PM_NUMCMPTS(dip); i++)
2321 count += (PM_CURPOWER(dip, i) != 0);
2322 }
2323
2324 if (PM_NUMCMPTS(dip) && pdip && !PM_WANTS_NOTIFICATION(pdip))
2325 e_pm_hold_rele_power(pdip, -count);
2326
2327 /* Schedule a request to clean up dependency records */
2328 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
2329 (void) ddi_pathname(dip, pathbuf);
2330 pm_dispatch_to_dep_thread(work_type, pathbuf, pathbuf,
2331 PM_DEP_NOWAIT, NULL, (count > 0));
2332 kmem_free(pathbuf, MAXPATHLEN);
2333
2334 /*
2335 * Adjust the pm_comps_notlowest count since this device is
2336 * not being power-managed anymore.
2337 */
2338 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
2339 pm_component_t *cp = PM_CP(dip, i);
2340 if (cp->pmc_cur_pwr != 0)
2341 PM_DECR_NOTLOWEST(dip)
2342 }
2343 /*
2344 * Once we clear the info pointer, it looks like it is not power
2345 * managed to everybody else.
2346 */
2347 pm_set_pm_info(dip, NULL);
2348 kmem_free(info, sizeof (pm_info_t));
2349 }
2350
2351 int
pm_get_norm_pwrs(dev_info_t * dip,int ** valuep,size_t * length)2352 pm_get_norm_pwrs(dev_info_t *dip, int **valuep, size_t *length)
2353 {
2354 int components = PM_NUMCMPTS(dip);
2355 int *bufp;
2356 size_t size;
2357 int i;
2358
2359 if (components <= 0) {
2360 cmn_err(CE_NOTE, "!pm: %s@%s(%s#%d) has no components, "
2361 "can't get normal power values\n", PM_DEVICE(dip));
2362 return (DDI_FAILURE);
2363 } else {
2364 size = components * sizeof (int);
2365 bufp = kmem_alloc(size, KM_SLEEP);
2366 for (i = 0; i < components; i++) {
2367 bufp[i] = pm_get_normal_power(dip, i);
2368 }
2369 }
2370 *length = size;
2371 *valuep = bufp;
2372 return (DDI_SUCCESS);
2373 }
2374
2375 static int
pm_reset_timestamps(dev_info_t * dip,void * arg)2376 pm_reset_timestamps(dev_info_t *dip, void *arg)
2377 {
2378 _NOTE(ARGUNUSED(arg))
2379
2380 int components;
2381 int i;
2382
2383 if (!PM_GET_PM_INFO(dip))
2384 return (DDI_WALK_CONTINUE);
2385 components = PM_NUMCMPTS(dip);
2386 ASSERT(components > 0);
2387 PM_LOCK_BUSY(dip);
2388 for (i = 0; i < components; i++) {
2389 struct pm_component *cp;
2390 /*
2391 * If the component was not marked as busy,
2392 * reset its timestamp to now.
2393 */
2394 cp = PM_CP(dip, i);
2395 if (cp->pmc_timestamp)
2396 cp->pmc_timestamp = gethrestime_sec();
2397 }
2398 PM_UNLOCK_BUSY(dip);
2399 return (DDI_WALK_CONTINUE);
2400 }
2401
2402 /*
2403 * Convert a power level to an index into the levels array (or
2404 * just PM_LEVEL_UNKNOWN in that special case).
2405 */
2406 static int
pm_level_to_index(dev_info_t * dip,pm_component_t * cp,int level)2407 pm_level_to_index(dev_info_t *dip, pm_component_t *cp, int level)
2408 {
2409 PMD_FUNC(pmf, "level_to_index")
2410 int i;
2411 int limit = cp->pmc_comp.pmc_numlevels;
2412 int *ip = cp->pmc_comp.pmc_lvals;
2413
2414 if (level == PM_LEVEL_UNKNOWN)
2415 return (level);
2416
2417 for (i = 0; i < limit; i++) {
2418 if (level == *ip++) {
2419 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d)[%d] to %x\n",
2420 pmf, PM_DEVICE(dip),
2421 (int)(cp - DEVI(dip)->devi_pm_components), level))
2422 return (i);
2423 }
2424 }
2425 panic("pm_level_to_index: level %d not found for device "
2426 "%s@%s(%s#%d)", level, PM_DEVICE(dip));
2427 /*NOTREACHED*/
2428 }
2429
2430 /*
2431 * Internal function to set current power level
2432 */
2433 static void
e_pm_set_cur_pwr(dev_info_t * dip,pm_component_t * cp,int level)2434 e_pm_set_cur_pwr(dev_info_t *dip, pm_component_t *cp, int level)
2435 {
2436 PMD_FUNC(pmf, "set_cur_pwr")
2437 int curpwr = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ?
2438 cp->pmc_phc_pwr : cp->pmc_cur_pwr);
2439
2440 /*
2441 * Nothing to adjust if current & new levels are the same.
2442 */
2443 if (curpwr != PM_LEVEL_UNKNOWN &&
2444 level == cp->pmc_comp.pmc_lvals[curpwr])
2445 return;
2446
2447 /*
2448 * Keep the count for comps doing transition to/from lowest
2449 * level.
2450 */
2451 if (curpwr == 0) {
2452 PM_INCR_NOTLOWEST(dip);
2453 } else if (level == cp->pmc_comp.pmc_lvals[0]) {
2454 PM_DECR_NOTLOWEST(dip);
2455 }
2456 cp->pmc_phc_pwr = PM_LEVEL_UNKNOWN;
2457 cp->pmc_cur_pwr = pm_level_to_index(dip, cp, level);
2458 }
2459
2460 static int pm_phc_impl(dev_info_t *, int, int, int);
2461
2462 /*
2463 * This is the default method of setting the power of a device if no ppm
2464 * driver has claimed it.
2465 */
2466 int
pm_power(dev_info_t * dip,int comp,int level)2467 pm_power(dev_info_t *dip, int comp, int level)
2468 {
2469 PMD_FUNC(pmf, "power")
2470 struct dev_ops *ops;
2471 int (*fn)(dev_info_t *, int, int);
2472 struct pm_component *cp = PM_CP(dip, comp);
2473 int retval;
2474 pm_info_t *info = PM_GET_PM_INFO(dip);
2475
2476 PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf,
2477 PM_DEVICE(dip), comp, level))
2478 if (!(ops = ddi_get_driver(dip))) {
2479 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) has no ops\n", pmf,
2480 PM_DEVICE(dip)))
2481 return (DDI_FAILURE);
2482 }
2483 if ((ops->devo_rev < 2) || !(fn = ops->devo_power)) {
2484 PMD(PMD_FAIL, ("%s: %s%s\n", pmf,
2485 (ops->devo_rev < 2 ? " wrong devo_rev" : ""),
2486 (!fn ? " devo_power NULL" : "")))
2487 return (DDI_FAILURE);
2488 }
2489 cp->pmc_flags |= PM_POWER_OP;
2490 retval = (*fn)(dip, comp, level);
2491 cp->pmc_flags &= ~PM_POWER_OP;
2492 if (retval == DDI_SUCCESS) {
2493 e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level);
2494 return (DDI_SUCCESS);
2495 }
2496
2497 /*
2498 * If pm_power_has_changed() detected a deadlock with pm_power() it
2499 * updated only the power level of the component. If our attempt to
2500 * set the device new to a power level above has failed we sync the
2501 * total power state via phc code now.
2502 */
2503 if (cp->pmc_flags & PM_PHC_WHILE_SET_POWER) {
2504 int phc_lvl =
2505 cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr];
2506
2507 ASSERT(info);
2508 (void) pm_phc_impl(dip, comp, phc_lvl, 0);
2509 PMD(PMD_PHC, ("%s: phc %s@%s(%s#%d) comp=%d level=%d\n",
2510 pmf, PM_DEVICE(dip), comp, phc_lvl))
2511 }
2512
2513 PMD(PMD_FAIL, ("%s: can't set comp=%d (%s) of %s@%s(%s#%d) to "
2514 "level=%d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name, PM_DEVICE(dip),
2515 level, power_val_to_string(cp, level)));
2516 return (DDI_FAILURE);
2517 }
2518
2519 int
pm_unmanage(dev_info_t * dip)2520 pm_unmanage(dev_info_t *dip)
2521 {
2522 PMD_FUNC(pmf, "unmanage")
2523 power_req_t power_req;
2524 int result, retval = 0;
2525
2526 ASSERT(!PM_IAM_LOCKING_DIP(dip));
2527 PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf,
2528 PM_DEVICE(dip)))
2529 power_req.request_type = PMR_PPM_UNMANAGE;
2530 power_req.req.ppm_config_req.who = dip;
2531 if (pm_ppm_claimed(dip))
2532 retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER,
2533 &power_req, &result);
2534 #ifdef DEBUG
2535 else
2536 retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER,
2537 &power_req, &result);
2538 #endif
2539 ASSERT(retval == DDI_SUCCESS);
2540 pm_rem_info(dip);
2541 return (retval);
2542 }
2543
2544 int
pm_raise_power(dev_info_t * dip,int comp,int level)2545 pm_raise_power(dev_info_t *dip, int comp, int level)
2546 {
2547 if (level < 0)
2548 return (DDI_FAILURE);
2549 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) ||
2550 !e_pm_valid_power(dip, comp, level))
2551 return (DDI_FAILURE);
2552
2553 return (dev_is_needed(dip, comp, level, PM_LEVEL_UPONLY));
2554 }
2555
2556 int
pm_lower_power(dev_info_t * dip,int comp,int level)2557 pm_lower_power(dev_info_t *dip, int comp, int level)
2558 {
2559 PMD_FUNC(pmf, "pm_lower_power")
2560
2561 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) ||
2562 !e_pm_valid_power(dip, comp, level)) {
2563 PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) "
2564 "comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level))
2565 return (DDI_FAILURE);
2566 }
2567
2568 if (!DEVI_IS_DETACHING(dip)) {
2569 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) not detaching\n",
2570 pmf, PM_DEVICE(dip)))
2571 return (DDI_FAILURE);
2572 }
2573
2574 /*
2575 * If we don't care about saving power, or we're treating this node
2576 * specially, then this is a no-op
2577 */
2578 if (!PM_SCANABLE(dip) || pm_noinvol(dip)) {
2579 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) %s%s%s%s\n",
2580 pmf, PM_DEVICE(dip),
2581 !autopm_enabled ? "!autopm_enabled " : "",
2582 !PM_POLLING_CPUPM ? "!cpupm_polling " : "",
2583 PM_CPUPM_DISABLED ? "cpupm_disabled " : "",
2584 pm_noinvol(dip) ? "pm_noinvol()" : ""))
2585 return (DDI_SUCCESS);
2586 }
2587
2588 if (dev_is_needed(dip, comp, level, PM_LEVEL_DOWNONLY) != DDI_SUCCESS) {
2589 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) dev_is_needed failed\n", pmf,
2590 PM_DEVICE(dip)))
2591 return (DDI_FAILURE);
2592 }
2593 return (DDI_SUCCESS);
2594 }
2595
2596 /*
2597 * Find the entries struct for a given dip in the blocked list, return it locked
2598 */
2599 static psce_t *
pm_psc_dip_to_direct(dev_info_t * dip,pscc_t ** psccp)2600 pm_psc_dip_to_direct(dev_info_t *dip, pscc_t **psccp)
2601 {
2602 pscc_t *p;
2603 psce_t *psce;
2604
2605 rw_enter(&pm_pscc_direct_rwlock, RW_READER);
2606 for (p = pm_pscc_direct; p; p = p->pscc_next) {
2607 if (p->pscc_dip == dip) {
2608 *psccp = p;
2609 psce = p->pscc_entries;
2610 mutex_enter(&psce->psce_lock);
2611 ASSERT(psce);
2612 rw_exit(&pm_pscc_direct_rwlock);
2613 return (psce);
2614 }
2615 }
2616 rw_exit(&pm_pscc_direct_rwlock);
2617 panic("sunpm: no entry for dip %p in direct list", (void *)dip);
2618 /*NOTREACHED*/
2619 }
2620
2621 /*
2622 * Write an entry indicating a power level change (to be passed to a process
2623 * later) in the given psce.
2624 * If we were called in the path that brings up the console fb in the
2625 * case of entering the prom, we don't want to sleep. If the alloc fails, then
2626 * we create a record that has a size of -1, a physaddr of NULL, and that
2627 * has the overflow flag set.
2628 */
2629 static int
psc_entry(ushort_t event,psce_t * psce,dev_info_t * dip,int comp,int new,int old,int which,pm_canblock_t canblock)2630 psc_entry(ushort_t event, psce_t *psce, dev_info_t *dip, int comp, int new,
2631 int old, int which, pm_canblock_t canblock)
2632 {
2633 char buf[MAXNAMELEN];
2634 pm_state_change_t *p;
2635 size_t size;
2636 caddr_t physpath = NULL;
2637 int overrun = 0;
2638
2639 ASSERT(MUTEX_HELD(&psce->psce_lock));
2640 (void) ddi_pathname(dip, buf);
2641 size = strlen(buf) + 1;
2642 p = psce->psce_in;
2643 if (canblock == PM_CANBLOCK_BYPASS) {
2644 physpath = kmem_alloc(size, KM_NOSLEEP);
2645 if (physpath == NULL) {
2646 /*
2647 * mark current entry as overrun
2648 */
2649 p->flags |= PSC_EVENT_LOST;
2650 size = (size_t)-1;
2651 }
2652 } else
2653 physpath = kmem_alloc(size, KM_SLEEP);
2654 if (p->size) { /* overflow; mark the next entry */
2655 if (p->size != (size_t)-1)
2656 kmem_free(p->physpath, p->size);
2657 ASSERT(psce->psce_out == p);
2658 if (p == psce->psce_last) {
2659 psce->psce_first->flags |= PSC_EVENT_LOST;
2660 psce->psce_out = psce->psce_first;
2661 } else {
2662 (p + 1)->flags |= PSC_EVENT_LOST;
2663 psce->psce_out = (p + 1);
2664 }
2665 overrun++;
2666 } else if (physpath == NULL) { /* alloc failed, mark this entry */
2667 p->flags |= PSC_EVENT_LOST;
2668 p->size = 0;
2669 p->physpath = NULL;
2670 }
2671 if (which == PSC_INTEREST) {
2672 mutex_enter(&pm_compcnt_lock);
2673 if (pm_comps_notlowest == 0)
2674 p->flags |= PSC_ALL_LOWEST;
2675 else
2676 p->flags &= ~PSC_ALL_LOWEST;
2677 mutex_exit(&pm_compcnt_lock);
2678 }
2679 p->event = event;
2680 p->timestamp = gethrestime_sec();
2681 p->component = comp;
2682 p->old_level = old;
2683 p->new_level = new;
2684 p->physpath = physpath;
2685 p->size = size;
2686 if (physpath != NULL)
2687 (void) strcpy(p->physpath, buf);
2688 if (p == psce->psce_last)
2689 psce->psce_in = psce->psce_first;
2690 else
2691 psce->psce_in = ++p;
2692 mutex_exit(&psce->psce_lock);
2693 return (overrun);
2694 }
2695
2696 /*
2697 * Find the next entry on the interest list. We keep a pointer to the item we
2698 * last returned in the user's cooke. Returns a locked entries struct.
2699 */
2700 static psce_t *
psc_interest(void ** cookie,pscc_t ** psccp)2701 psc_interest(void **cookie, pscc_t **psccp)
2702 {
2703 pscc_t *pscc;
2704 pscc_t **cookiep = (pscc_t **)cookie;
2705
2706 if (*cookiep == NULL)
2707 pscc = pm_pscc_interest;
2708 else
2709 pscc = (*cookiep)->pscc_next;
2710 if (pscc) {
2711 *cookiep = pscc;
2712 *psccp = pscc;
2713 mutex_enter(&pscc->pscc_entries->psce_lock);
2714 return (pscc->pscc_entries);
2715 } else {
2716 return (NULL);
2717 }
2718 }
2719
2720 /*
2721 * Create an entry for a process to pick up indicating a power level change.
2722 */
2723 static void
pm_enqueue_notify(ushort_t cmd,dev_info_t * dip,int comp,int newlevel,int oldlevel,pm_canblock_t canblock)2724 pm_enqueue_notify(ushort_t cmd, dev_info_t *dip, int comp,
2725 int newlevel, int oldlevel, pm_canblock_t canblock)
2726 {
2727 PMD_FUNC(pmf, "enqueue_notify")
2728 pscc_t *pscc;
2729 psce_t *psce;
2730 void *cookie = NULL;
2731 int overrun;
2732
2733 ASSERT(MUTEX_HELD(&pm_rsvp_lock));
2734 switch (cmd) {
2735 case PSC_PENDING_CHANGE: /* only for controlling process */
2736 PMD(PMD_DPM, ("%s: PENDING %s@%s(%s#%d), comp %d, %d -> %d\n",
2737 pmf, PM_DEVICE(dip), comp, oldlevel, newlevel))
2738 psce = pm_psc_dip_to_direct(dip, &pscc);
2739 ASSERT(psce);
2740 PMD(PMD_IOCTL, ("%s: PENDING: %s@%s(%s#%d) pm_poll_cnt[%d] "
2741 "%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone,
2742 pm_poll_cnt[pscc->pscc_clone]))
2743 overrun = psc_entry(cmd, psce, dip, comp, newlevel, oldlevel,
2744 PSC_DIRECT, canblock);
2745 PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone))
2746 mutex_enter(&pm_clone_lock);
2747 if (!overrun)
2748 pm_poll_cnt[pscc->pscc_clone]++;
2749 cv_signal(&pm_clones_cv[pscc->pscc_clone]);
2750 pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN));
2751 mutex_exit(&pm_clone_lock);
2752 break;
2753 case PSC_HAS_CHANGED:
2754 PMD(PMD_DPM, ("%s: HAS %s@%s(%s#%d), comp %d, %d -> %d\n",
2755 pmf, PM_DEVICE(dip), comp, oldlevel, newlevel))
2756 if (PM_ISDIRECT(dip) && canblock != PM_CANBLOCK_BYPASS) {
2757 psce = pm_psc_dip_to_direct(dip, &pscc);
2758 PMD(PMD_IOCTL, ("%s: HAS: %s@%s(%s#%d) pm_poll_cnt[%d] "
2759 "%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone,
2760 pm_poll_cnt[pscc->pscc_clone]))
2761 overrun = psc_entry(cmd, psce, dip, comp, newlevel,
2762 oldlevel, PSC_DIRECT, canblock);
2763 PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone))
2764 mutex_enter(&pm_clone_lock);
2765 if (!overrun)
2766 pm_poll_cnt[pscc->pscc_clone]++;
2767 cv_signal(&pm_clones_cv[pscc->pscc_clone]);
2768 pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN));
2769 mutex_exit(&pm_clone_lock);
2770 }
2771 mutex_enter(&pm_clone_lock);
2772 rw_enter(&pm_pscc_interest_rwlock, RW_READER);
2773 while ((psce = psc_interest(&cookie, &pscc)) != NULL) {
2774 (void) psc_entry(cmd, psce, dip, comp, newlevel,
2775 oldlevel, PSC_INTEREST, canblock);
2776 cv_signal(&pm_clones_cv[pscc->pscc_clone]);
2777 }
2778 rw_exit(&pm_pscc_interest_rwlock);
2779 mutex_exit(&pm_clone_lock);
2780 break;
2781 #ifdef DEBUG
2782 default:
2783 ASSERT(0);
2784 #endif
2785 }
2786 }
2787
2788 static void
pm_enqueue_notify_others(pm_ppm_devlist_t ** listp,pm_canblock_t canblock)2789 pm_enqueue_notify_others(pm_ppm_devlist_t **listp, pm_canblock_t canblock)
2790 {
2791 if (listp) {
2792 pm_ppm_devlist_t *p, *next = NULL;
2793
2794 for (p = *listp; p; p = next) {
2795 next = p->ppd_next;
2796 pm_enqueue_notify(PSC_HAS_CHANGED, p->ppd_who,
2797 p->ppd_cmpt, p->ppd_new_level, p->ppd_old_level,
2798 canblock);
2799 kmem_free(p, sizeof (pm_ppm_devlist_t));
2800 }
2801 *listp = NULL;
2802 }
2803 }
2804
2805 /*
2806 * Try to get the power locks of the parent node and target (child)
2807 * node. Return true if successful (with both locks held) or false
2808 * (with no locks held).
2809 */
2810 static int
pm_try_parent_child_locks(dev_info_t * pdip,dev_info_t * dip)2811 pm_try_parent_child_locks(dev_info_t *pdip, dev_info_t *dip)
2812 {
2813 if (ndi_devi_tryenter(pdip)) {
2814 if (PM_TRY_LOCK_POWER(dip)) {
2815 return (1);
2816 }
2817 ndi_devi_exit(pdip);
2818 }
2819 return (0);
2820 }
2821
2822 /*
2823 * Determine if the power lock owner is blocked by current thread.
2824 * returns :
2825 * 1 - If the thread owning the effective power lock (the first lock on
2826 * which a thread blocks when it does PM_LOCK_POWER) is blocked by
2827 * a mutex held by the current thread.
2828 *
2829 * 0 - otherwise
2830 *
2831 * Note : This function is called by pm_power_has_changed to determine whether
2832 * it is executing in parallel with pm_set_power.
2833 */
2834 static int
pm_blocked_by_us(dev_info_t * dip)2835 pm_blocked_by_us(dev_info_t *dip)
2836 {
2837 power_req_t power_req;
2838 kthread_t *owner;
2839 int result;
2840 kmutex_t *mp;
2841 dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm;
2842
2843 power_req.request_type = PMR_PPM_POWER_LOCK_OWNER;
2844 power_req.req.ppm_power_lock_owner_req.who = dip;
2845 if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req, &result) !=
2846 DDI_SUCCESS) {
2847 /*
2848 * It is assumed that if the device is claimed by ppm, ppm
2849 * will always implement this request type and it'll always
2850 * return success. We panic here, if it fails.
2851 */
2852 panic("pm: Can't determine power lock owner of %s@%s(%s#%d)\n",
2853 PM_DEVICE(dip));
2854 /*NOTREACHED*/
2855 }
2856
2857 if ((owner = power_req.req.ppm_power_lock_owner_req.owner) != NULL &&
2858 owner->t_state == TS_SLEEP &&
2859 owner->t_sobj_ops &&
2860 SOBJ_TYPE(owner->t_sobj_ops) == SOBJ_MUTEX &&
2861 (mp = (kmutex_t *)owner->t_wchan) &&
2862 mutex_owner(mp) == curthread)
2863 return (1);
2864
2865 return (0);
2866 }
2867
2868 /*
2869 * Notify parent which wants to hear about a child's power changes.
2870 */
2871 static void
pm_notify_parent(dev_info_t * dip,dev_info_t * pdip,int comp,int old_level,int level)2872 pm_notify_parent(dev_info_t *dip,
2873 dev_info_t *pdip, int comp, int old_level, int level)
2874 {
2875 pm_bp_has_changed_t bphc;
2876 pm_sp_misc_t pspm;
2877 char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2878 int result = DDI_SUCCESS;
2879
2880 bphc.bphc_dip = dip;
2881 bphc.bphc_path = ddi_pathname(dip, pathbuf);
2882 bphc.bphc_comp = comp;
2883 bphc.bphc_olevel = old_level;
2884 bphc.bphc_nlevel = level;
2885 pspm.pspm_canblock = PM_CANBLOCK_BLOCK;
2886 pspm.pspm_scan = 0;
2887 bphc.bphc_private = &pspm;
2888 (void) (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL,
2889 BUS_POWER_HAS_CHANGED, (void *)&bphc, (void *)&result);
2890 kmem_free(pathbuf, MAXPATHLEN);
2891 }
2892
2893 /*
2894 * Check if we need to resume a BC device, and make the attach call as required.
2895 */
2896 static int
pm_check_and_resume(dev_info_t * dip,int comp,int old_level,int level)2897 pm_check_and_resume(dev_info_t *dip, int comp, int old_level, int level)
2898 {
2899 int ret = DDI_SUCCESS;
2900
2901 if (PM_ISBC(dip) && comp == 0 && old_level == 0 && level != 0) {
2902 ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED);
2903 /* ppm is not interested in DDI_PM_RESUME */
2904 if ((ret = devi_attach(dip, DDI_PM_RESUME)) != DDI_SUCCESS)
2905 /* XXX Should we mark it resumed, */
2906 /* even though it failed? */
2907 cmn_err(CE_WARN, "!pm: Can't resume %s@%s",
2908 PM_NAME(dip), PM_ADDR(dip));
2909 DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED;
2910 }
2911
2912 return (ret);
2913 }
2914
2915 /*
2916 * Tests outside the lock to see if we should bother to enqueue an entry
2917 * for any watching process. If yes, then caller will take the lock and
2918 * do the full protocol
2919 */
2920 static int
pm_watchers()2921 pm_watchers()
2922 {
2923 if (pm_processes_stopped)
2924 return (0);
2925 return (pm_pscc_direct || pm_pscc_interest);
2926 }
2927
2928 static int pm_phc_impl(dev_info_t *, int, int, int);
2929
2930 /*
2931 * A driver is reporting that the power of one of its device's components
2932 * has changed. Update the power state accordingly.
2933 */
2934 int
pm_power_has_changed(dev_info_t * dip,int comp,int level)2935 pm_power_has_changed(dev_info_t *dip, int comp, int level)
2936 {
2937 PMD_FUNC(pmf, "pm_power_has_changed")
2938 int ret;
2939 dev_info_t *pdip = ddi_get_parent(dip);
2940 struct pm_component *cp;
2941 int blocked, old_level;
2942
2943 if (level < 0) {
2944 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d): bad level=%d\n", pmf,
2945 PM_DEVICE(dip), level))
2946 return (DDI_FAILURE);
2947 }
2948
2949 PMD(PMD_KIDSUP | PMD_DEP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf,
2950 PM_DEVICE(dip), comp, level))
2951
2952 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, &cp) ||
2953 !e_pm_valid_power(dip, comp, level))
2954 return (DDI_FAILURE);
2955
2956 /*
2957 * A driver thread calling pm_power_has_changed and another thread
2958 * calling pm_set_power can deadlock. The problem is not resolvable
2959 * by changing lock order, so we use pm_blocked_by_us() to detect
2960 * this specific deadlock. If we can't get the lock immediately
2961 * and we are deadlocked, just update the component's level, do
2962 * notifications, and return. We intend to update the total power
2963 * state later (if the other thread fails to set power to the
2964 * desired level). If we were called because of a power change on a
2965 * component that isn't involved in a set_power op, update all state
2966 * immediately.
2967 */
2968 cp = PM_CP(dip, comp);
2969 while (!pm_try_parent_child_locks(pdip, dip)) {
2970 if (((blocked = pm_blocked_by_us(dip)) != 0) &&
2971 (cp->pmc_flags & PM_POWER_OP)) {
2972 if (pm_watchers()) {
2973 mutex_enter(&pm_rsvp_lock);
2974 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp,
2975 level, cur_power(cp), PM_CANBLOCK_BLOCK);
2976 mutex_exit(&pm_rsvp_lock);
2977 }
2978 if (pdip && PM_WANTS_NOTIFICATION(pdip))
2979 pm_notify_parent(dip,
2980 pdip, comp, cur_power(cp), level);
2981 (void) pm_check_and_resume(dip,
2982 comp, cur_power(cp), level);
2983
2984 /*
2985 * Stash the old power index, update curpwr, and flag
2986 * that the total power state needs to be synched.
2987 */
2988 cp->pmc_flags |= PM_PHC_WHILE_SET_POWER;
2989 /*
2990 * Several pm_power_has_changed calls could arrive
2991 * while the set power path remains blocked. Keep the
2992 * oldest old power and the newest new power of any
2993 * sequence of phc calls which arrive during deadlock.
2994 */
2995 if (cp->pmc_phc_pwr == PM_LEVEL_UNKNOWN)
2996 cp->pmc_phc_pwr = cp->pmc_cur_pwr;
2997 cp->pmc_cur_pwr =
2998 pm_level_to_index(dip, cp, level);
2999 PMD(PMD_PHC, ("%s: deadlock for %s@%s(%s#%d), comp=%d, "
3000 "level=%d\n", pmf, PM_DEVICE(dip), comp, level))
3001 return (DDI_SUCCESS);
3002 } else
3003 if (blocked) { /* blocked, but different cmpt? */
3004 if (!ndi_devi_tryenter(pdip)) {
3005 cmn_err(CE_NOTE,
3006 "!pm: parent kuc not updated due "
3007 "to possible deadlock.\n");
3008 return (pm_phc_impl(dip,
3009 comp, level, 1));
3010 }
3011 old_level = cur_power(cp);
3012 if (pdip && !PM_WANTS_NOTIFICATION(pdip) &&
3013 (!PM_ISBC(dip) || comp == 0) &&
3014 POWERING_ON(old_level, level))
3015 pm_hold_power(pdip);
3016 ret = pm_phc_impl(dip, comp, level, 1);
3017 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) {
3018 if ((!PM_ISBC(dip) ||
3019 comp == 0) && level == 0 &&
3020 old_level != PM_LEVEL_UNKNOWN)
3021 pm_rele_power(pdip);
3022 }
3023 ndi_devi_exit(pdip);
3024 /* child lock not held: deadlock */
3025 return (ret);
3026 }
3027 delay(1);
3028 PMD(PMD_PHC, ("%s: try lock again\n", pmf))
3029 }
3030
3031 /* non-deadlock case */
3032 old_level = cur_power(cp);
3033 if (pdip && !PM_WANTS_NOTIFICATION(pdip) &&
3034 (!PM_ISBC(dip) || comp == 0) && POWERING_ON(old_level, level))
3035 pm_hold_power(pdip);
3036 ret = pm_phc_impl(dip, comp, level, 1);
3037 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) {
3038 if ((!PM_ISBC(dip) || comp == 0) && level == 0 &&
3039 old_level != PM_LEVEL_UNKNOWN)
3040 pm_rele_power(pdip);
3041 }
3042 PM_UNLOCK_POWER(dip);
3043 ndi_devi_exit(pdip);
3044 return (ret);
3045 }
3046
3047 /*
3048 * Account for power changes to a component of the the console frame buffer.
3049 * If lowering power from full (or "unkown", which is treatd as full)
3050 * we will increment the "components off" count of the fb device.
3051 * Subsequent lowering of the same component doesn't affect the count. If
3052 * raising a component back to full power, we will decrement the count.
3053 *
3054 * Return: the increment value for pm_cfb_comps_off (-1, 0, or 1)
3055 */
3056 static int
calc_cfb_comps_incr(dev_info_t * dip,int cmpt,int old,int new)3057 calc_cfb_comps_incr(dev_info_t *dip, int cmpt, int old, int new)
3058 {
3059 struct pm_component *cp = PM_CP(dip, cmpt);
3060 int on = (old == PM_LEVEL_UNKNOWN || old == cp->pmc_norm_pwr);
3061 int want_normal = (new == cp->pmc_norm_pwr);
3062 int incr = 0;
3063
3064 if (on && !want_normal)
3065 incr = 1;
3066 else if (!on && want_normal)
3067 incr = -1;
3068 return (incr);
3069 }
3070
3071 /*
3072 * Adjust the count of console frame buffer components < full power.
3073 */
3074 static void
update_comps_off(int incr,dev_info_t * dip)3075 update_comps_off(int incr, dev_info_t *dip)
3076 {
3077 mutex_enter(&pm_cfb_lock);
3078 pm_cfb_comps_off += incr;
3079 ASSERT(pm_cfb_comps_off <= PM_NUMCMPTS(dip));
3080 mutex_exit(&pm_cfb_lock);
3081 }
3082
3083 /*
3084 * Update the power state in the framework (via the ppm). The 'notify'
3085 * argument tells whether to notify watchers. Power lock is already held.
3086 */
3087 static int
pm_phc_impl(dev_info_t * dip,int comp,int level,int notify)3088 pm_phc_impl(dev_info_t *dip, int comp, int level, int notify)
3089 {
3090 PMD_FUNC(pmf, "phc_impl")
3091 power_req_t power_req;
3092 int i, dodeps = 0;
3093 dev_info_t *pdip = ddi_get_parent(dip);
3094 int result;
3095 int old_level;
3096 struct pm_component *cp;
3097 int incr = 0;
3098 dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm;
3099 int work_type = 0;
3100 char *pathbuf;
3101
3102 /* Must use "official" power level for this test. */
3103 cp = PM_CP(dip, comp);
3104 old_level = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ?
3105 cp->pmc_phc_pwr : cp->pmc_cur_pwr);
3106 if (old_level != PM_LEVEL_UNKNOWN)
3107 old_level = cp->pmc_comp.pmc_lvals[old_level];
3108
3109 if (level == old_level) {
3110 PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d is already at "
3111 "level=%d\n", pmf, PM_DEVICE(dip), comp, level))
3112 return (DDI_SUCCESS);
3113 }
3114
3115 /*
3116 * Tell ppm about this.
3117 */
3118 power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY;
3119 power_req.req.ppm_notify_level_req.who = dip;
3120 power_req.req.ppm_notify_level_req.cmpt = comp;
3121 power_req.req.ppm_notify_level_req.new_level = level;
3122 power_req.req.ppm_notify_level_req.old_level = old_level;
3123 if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req,
3124 &result) == DDI_FAILURE) {
3125 PMD(PMD_FAIL, ("%s: pm_ctlops %s@%s(%s#%d) to %d failed\n",
3126 pmf, PM_DEVICE(dip), level))
3127 return (DDI_FAILURE);
3128 }
3129
3130 if (PM_IS_CFB(dip)) {
3131 incr = calc_cfb_comps_incr(dip, comp, old_level, level);
3132
3133 if (incr) {
3134 update_comps_off(incr, dip);
3135 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) comp=%d %d->%d "
3136 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip),
3137 comp, old_level, level, pm_cfb_comps_off))
3138 }
3139 }
3140 e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level);
3141 result = DDI_SUCCESS;
3142
3143 if (notify) {
3144 if (pdip && PM_WANTS_NOTIFICATION(pdip))
3145 pm_notify_parent(dip, pdip, comp, old_level, level);
3146 (void) pm_check_and_resume(dip, comp, old_level, level);
3147 }
3148
3149 /*
3150 * Decrement the dependency kidsup count if we turn a device
3151 * off.
3152 */
3153 if (POWERING_OFF(old_level, level)) {
3154 dodeps = 1;
3155 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
3156 cp = PM_CP(dip, i);
3157 if (cur_power(cp)) {
3158 dodeps = 0;
3159 break;
3160 }
3161 }
3162 if (dodeps)
3163 work_type = PM_DEP_WK_POWER_OFF;
3164 }
3165
3166 /*
3167 * Increment if we turn it on. Check to see
3168 * if other comps are already on, if so,
3169 * dont increment.
3170 */
3171 if (POWERING_ON(old_level, level)) {
3172 dodeps = 1;
3173 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
3174 cp = PM_CP(dip, i);
3175 if (comp == i)
3176 continue;
3177 /* -1 also treated as 0 in this case */
3178 if (cur_power(cp) > 0) {
3179 dodeps = 0;
3180 break;
3181 }
3182 }
3183 if (dodeps)
3184 work_type = PM_DEP_WK_POWER_ON;
3185 }
3186
3187 if (dodeps) {
3188 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3189 (void) ddi_pathname(dip, pathbuf);
3190 pm_dispatch_to_dep_thread(work_type, pathbuf, NULL,
3191 PM_DEP_NOWAIT, NULL, 0);
3192 kmem_free(pathbuf, MAXPATHLEN);
3193 }
3194
3195 if (notify && (level != old_level) && pm_watchers()) {
3196 mutex_enter(&pm_rsvp_lock);
3197 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, level, old_level,
3198 PM_CANBLOCK_BLOCK);
3199 mutex_exit(&pm_rsvp_lock);
3200 }
3201
3202 PMD(PMD_RESCAN, ("%s: %s@%s(%s#%d): pm_rescan\n", pmf, PM_DEVICE(dip)))
3203 pm_rescan(dip);
3204 return (DDI_SUCCESS);
3205 }
3206
3207 /*
3208 * This function is called at startup time to notify pm of the existence
3209 * of any platform power managers for this platform. As a result of
3210 * this registration, each function provided will be called each time
3211 * a device node is attached, until one returns true, and it must claim the
3212 * device node (by returning non-zero) if it wants to be involved in the
3213 * node's power management. If it does claim the node, then it will
3214 * subsequently be notified of attach and detach events.
3215 *
3216 */
3217
3218 int
pm_register_ppm(int (* func)(dev_info_t *),dev_info_t * dip)3219 pm_register_ppm(int (*func)(dev_info_t *), dev_info_t *dip)
3220 {
3221 PMD_FUNC(pmf, "register_ppm")
3222 struct ppm_callbacks *ppmcp;
3223 pm_component_t *cp;
3224 int i, pwr, result;
3225 power_req_t power_req;
3226 struct ppm_notify_level_req *p = &power_req.req.ppm_notify_level_req;
3227 void pm_ppm_claim(dev_info_t *);
3228
3229 mutex_enter(&ppm_lock);
3230 ppmcp = ppm_callbacks;
3231 for (i = 0; i < MAX_PPM_HANDLERS; i++, ppmcp++) {
3232 if (ppmcp->ppmc_func == NULL) {
3233 ppmcp->ppmc_func = func;
3234 ppmcp->ppmc_dip = dip;
3235 break;
3236 }
3237 }
3238 mutex_exit(&ppm_lock);
3239
3240 if (i >= MAX_PPM_HANDLERS)
3241 return (DDI_FAILURE);
3242 while ((dip = ddi_get_parent(dip)) != NULL) {
3243 if (dip != ddi_root_node() && PM_GET_PM_INFO(dip) == NULL)
3244 continue;
3245 pm_ppm_claim(dip);
3246 /* don't bother with the not power-manageable nodes */
3247 if (pm_ppm_claimed(dip) && PM_GET_PM_INFO(dip)) {
3248 /*
3249 * Tell ppm about this.
3250 */
3251 power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY;
3252 p->old_level = PM_LEVEL_UNKNOWN;
3253 p->who = dip;
3254 PM_LOCK_POWER(dip);
3255 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
3256 cp = PM_CP(dip, i);
3257 pwr = cp->pmc_cur_pwr;
3258 if (pwr != PM_LEVEL_UNKNOWN) {
3259 p->cmpt = i;
3260 p->new_level = cur_power(cp);
3261 p->old_level = PM_LEVEL_UNKNOWN;
3262 if (pm_ctlops(PPM(dip), dip,
3263 DDI_CTLOPS_POWER, &power_req,
3264 &result) == DDI_FAILURE) {
3265 PMD(PMD_FAIL, ("%s: pc "
3266 "%s@%s(%s#%d) to %d "
3267 "fails\n", pmf,
3268 PM_DEVICE(dip), pwr))
3269 }
3270 }
3271 }
3272 PM_UNLOCK_POWER(dip);
3273 }
3274 }
3275 return (DDI_SUCCESS);
3276 }
3277
3278 /*
3279 * Call the ppm's that have registered and adjust the devinfo struct as
3280 * appropriate. First one to claim it gets it. The sets of devices claimed
3281 * by each ppm are assumed to be disjoint.
3282 */
3283 void
pm_ppm_claim(dev_info_t * dip)3284 pm_ppm_claim(dev_info_t *dip)
3285 {
3286 struct ppm_callbacks *ppmcp;
3287
3288 if (PPM(dip)) {
3289 return;
3290 }
3291 mutex_enter(&ppm_lock);
3292 for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++) {
3293 if ((*ppmcp->ppmc_func)(dip)) {
3294 DEVI(dip)->devi_pm_ppm =
3295 (struct dev_info *)ppmcp->ppmc_dip;
3296 mutex_exit(&ppm_lock);
3297 return;
3298 }
3299 }
3300 mutex_exit(&ppm_lock);
3301 }
3302
3303 /*
3304 * Node is being detached so stop autopm until we see if it succeeds, in which
3305 * case pm_stop will be called. For backwards compatible devices we bring the
3306 * device up to full power on the assumption the detach will succeed.
3307 */
3308 void
pm_detaching(dev_info_t * dip)3309 pm_detaching(dev_info_t *dip)
3310 {
3311 PMD_FUNC(pmf, "detaching")
3312 pm_info_t *info = PM_GET_PM_INFO(dip);
3313 int iscons;
3314
3315 PMD(PMD_REMDEV, ("%s: %s@%s(%s#%d), %d comps\n", pmf, PM_DEVICE(dip),
3316 PM_NUMCMPTS(dip)))
3317 if (info == NULL)
3318 return;
3319 ASSERT(DEVI_IS_DETACHING(dip));
3320 PM_LOCK_DIP(dip);
3321 info->pmi_dev_pm_state |= PM_DETACHING;
3322 PM_UNLOCK_DIP(dip);
3323 if (!PM_ISBC(dip))
3324 pm_scan_stop(dip);
3325
3326 /*
3327 * console and old-style devices get brought up when detaching.
3328 */
3329 iscons = PM_IS_CFB(dip);
3330 if (iscons || PM_ISBC(dip)) {
3331 (void) pm_all_to_normal(dip, PM_CANBLOCK_BYPASS);
3332 if (iscons) {
3333 mutex_enter(&pm_cfb_lock);
3334 while (cfb_inuse) {
3335 mutex_exit(&pm_cfb_lock);
3336 PMD(PMD_CFB, ("%s: delay; cfb_inuse\n", pmf))
3337 delay(1);
3338 mutex_enter(&pm_cfb_lock);
3339 }
3340 ASSERT(cfb_dip_detaching == NULL);
3341 ASSERT(cfb_dip);
3342 cfb_dip_detaching = cfb_dip; /* case detach fails */
3343 cfb_dip = NULL;
3344 mutex_exit(&pm_cfb_lock);
3345 }
3346 }
3347 }
3348
3349 /*
3350 * Node failed to detach. If it used to be autopm'd, make it so again.
3351 */
3352 void
pm_detach_failed(dev_info_t * dip)3353 pm_detach_failed(dev_info_t *dip)
3354 {
3355 PMD_FUNC(pmf, "detach_failed")
3356 pm_info_t *info = PM_GET_PM_INFO(dip);
3357 int pm_all_at_normal(dev_info_t *);
3358
3359 if (info == NULL)
3360 return;
3361 ASSERT(DEVI_IS_DETACHING(dip));
3362 if (info->pmi_dev_pm_state & PM_DETACHING) {
3363 info->pmi_dev_pm_state &= ~PM_DETACHING;
3364 if (info->pmi_dev_pm_state & PM_ALLNORM_DEFERRED) {
3365 /* Make sure the operation is still needed */
3366 if (!pm_all_at_normal(dip)) {
3367 if (pm_all_to_normal(dip,
3368 PM_CANBLOCK_FAIL) != DDI_SUCCESS) {
3369 PMD(PMD_ERROR, ("%s: could not bring "
3370 "%s@%s(%s#%d) to normal\n", pmf,
3371 PM_DEVICE(dip)))
3372 }
3373 }
3374 info->pmi_dev_pm_state &= ~PM_ALLNORM_DEFERRED;
3375 }
3376 }
3377 if (!PM_ISBC(dip)) {
3378 mutex_enter(&pm_scan_lock);
3379 if (PM_SCANABLE(dip))
3380 pm_scan_init(dip);
3381 mutex_exit(&pm_scan_lock);
3382 pm_rescan(dip);
3383 }
3384 }
3385
3386 /* generic Backwards Compatible component */
3387 static char *bc_names[] = {"off", "on"};
3388
3389 static pm_comp_t bc_comp = {"unknown", 2, NULL, NULL, &bc_names[0]};
3390
3391 static void
e_pm_default_levels(dev_info_t * dip,pm_component_t * cp,int norm)3392 e_pm_default_levels(dev_info_t *dip, pm_component_t *cp, int norm)
3393 {
3394 pm_comp_t *pmc;
3395 pmc = &cp->pmc_comp;
3396 pmc->pmc_numlevels = 2;
3397 pmc->pmc_lvals[0] = 0;
3398 pmc->pmc_lvals[1] = norm;
3399 e_pm_set_cur_pwr(dip, cp, norm);
3400 }
3401
3402 static void
e_pm_default_components(dev_info_t * dip,int cmpts)3403 e_pm_default_components(dev_info_t *dip, int cmpts)
3404 {
3405 int i;
3406 pm_component_t *p = DEVI(dip)->devi_pm_components;
3407
3408 p = DEVI(dip)->devi_pm_components;
3409 for (i = 0; i < cmpts; i++, p++) {
3410 p->pmc_comp = bc_comp; /* struct assignment */
3411 p->pmc_comp.pmc_lvals = kmem_zalloc(2 * sizeof (int),
3412 KM_SLEEP);
3413 p->pmc_comp.pmc_thresh = kmem_alloc(2 * sizeof (int),
3414 KM_SLEEP);
3415 p->pmc_comp.pmc_numlevels = 2;
3416 p->pmc_comp.pmc_thresh[0] = INT_MAX;
3417 p->pmc_comp.pmc_thresh[1] = INT_MAX;
3418 }
3419 }
3420
3421 /*
3422 * Called from functions that require components to exist already to allow
3423 * for their creation by parsing the pm-components property.
3424 * Device will not be power managed as a result of this call
3425 * No locking needed because we're single threaded by the ndi_devi_enter
3426 * done while attaching, and the device isn't visible until after it has
3427 * attached
3428 */
3429 int
pm_premanage(dev_info_t * dip,int style)3430 pm_premanage(dev_info_t *dip, int style)
3431 {
3432 PMD_FUNC(pmf, "premanage")
3433 pm_comp_t *pcp, *compp;
3434 int cmpts, i, norm, error;
3435 pm_component_t *p = DEVI(dip)->devi_pm_components;
3436 pm_comp_t *pm_autoconfig(dev_info_t *, int *);
3437
3438 ASSERT(!PM_IAM_LOCKING_DIP(dip));
3439 /*
3440 * If this dip has already been processed, don't mess with it
3441 */
3442 if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE)
3443 return (DDI_SUCCESS);
3444 if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_FAILED) {
3445 return (DDI_FAILURE);
3446 }
3447 /*
3448 * Look up pm-components property and create components accordingly
3449 * If that fails, fall back to backwards compatibility
3450 */
3451 if ((compp = pm_autoconfig(dip, &error)) == NULL) {
3452 /*
3453 * If error is set, the property existed but was not well formed
3454 */
3455 if (error || (style == PM_STYLE_NEW)) {
3456 DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_FAILED;
3457 return (DDI_FAILURE);
3458 }
3459 /*
3460 * If they don't have the pm-components property, then we
3461 * want the old "no pm until PM_SET_DEVICE_THRESHOLDS ioctl"
3462 * behavior driver must have called pm_create_components, and
3463 * we need to flesh out dummy components
3464 */
3465 if ((cmpts = PM_NUMCMPTS(dip)) == 0) {
3466 /*
3467 * Not really failure, but we don't want the
3468 * caller to treat it as success
3469 */
3470 return (DDI_FAILURE);
3471 }
3472 DEVI(dip)->devi_pm_flags |= PMC_BC;
3473 e_pm_default_components(dip, cmpts);
3474 for (i = 0; i < cmpts; i++) {
3475 /*
3476 * if normal power not set yet, we don't really know
3477 * what *ANY* of the power values are. If normal
3478 * power is set, then we assume for this backwards
3479 * compatible case that the values are 0, normal power.
3480 */
3481 norm = pm_get_normal_power(dip, i);
3482 if (norm == (uint_t)-1) {
3483 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d)[%d]\n", pmf,
3484 PM_DEVICE(dip), i))
3485 return (DDI_FAILURE);
3486 }
3487 /*
3488 * Components of BC devices start at their normal power,
3489 * so count them to be not at their lowest power.
3490 */
3491 PM_INCR_NOTLOWEST(dip);
3492 e_pm_default_levels(dip, PM_CP(dip, i), norm);
3493 }
3494 } else {
3495 /*
3496 * e_pm_create_components was called from pm_autoconfig(), it
3497 * creates components with no descriptions (or known levels)
3498 */
3499 cmpts = PM_NUMCMPTS(dip);
3500 ASSERT(cmpts != 0);
3501 pcp = compp;
3502 p = DEVI(dip)->devi_pm_components;
3503 for (i = 0; i < cmpts; i++, p++) {
3504 p->pmc_comp = *pcp++; /* struct assignment */
3505 ASSERT(PM_CP(dip, i)->pmc_cur_pwr == 0);
3506 e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN);
3507 }
3508 if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH)
3509 pm_set_device_threshold(dip, pm_cpu_idle_threshold,
3510 PMC_CPU_THRESH);
3511 else
3512 pm_set_device_threshold(dip, pm_system_idle_threshold,
3513 PMC_DEF_THRESH);
3514 kmem_free(compp, cmpts * sizeof (pm_comp_t));
3515 }
3516 return (DDI_SUCCESS);
3517 }
3518
3519 /*
3520 * Called from during or after the device's attach to let us know it is ready
3521 * to play autopm. Look up the pm model and manage the device accordingly.
3522 * Returns system call errno value.
3523 * If DDI_ATTACH and DDI_DETACH were in same namespace, this would be
3524 * a little cleaner
3525 *
3526 * Called with dip lock held, return with dip lock unheld.
3527 */
3528
3529 int
e_pm_manage(dev_info_t * dip,int style)3530 e_pm_manage(dev_info_t *dip, int style)
3531 {
3532 PMD_FUNC(pmf, "e_manage")
3533 pm_info_t *info;
3534 dev_info_t *pdip = ddi_get_parent(dip);
3535 int pm_thresh_specd(dev_info_t *);
3536 int count;
3537 char *pathbuf;
3538
3539 if (pm_premanage(dip, style) != DDI_SUCCESS) {
3540 return (DDI_FAILURE);
3541 }
3542 PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
3543 ASSERT(PM_GET_PM_INFO(dip) == NULL);
3544 info = kmem_zalloc(sizeof (pm_info_t), KM_SLEEP);
3545
3546 /*
3547 * Now set up parent's kidsupcnt. BC nodes are assumed to start
3548 * out at their normal power, so they are "up", others start out
3549 * unknown, which is effectively "up". Parent which want notification
3550 * get kidsupcnt of 0 always.
3551 */
3552 count = (PM_ISBC(dip)) ? 1 : PM_NUMCMPTS(dip);
3553 if (count && pdip && !PM_WANTS_NOTIFICATION(pdip))
3554 e_pm_hold_rele_power(pdip, count);
3555
3556 pm_set_pm_info(dip, info);
3557 /*
3558 * Apply any recorded thresholds
3559 */
3560 (void) pm_thresh_specd(dip);
3561
3562 /*
3563 * Do dependency processing.
3564 */
3565 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3566 (void) ddi_pathname(dip, pathbuf);
3567 pm_dispatch_to_dep_thread(PM_DEP_WK_ATTACH, pathbuf, pathbuf,
3568 PM_DEP_NOWAIT, NULL, 0);
3569 kmem_free(pathbuf, MAXPATHLEN);
3570
3571 if (!PM_ISBC(dip)) {
3572 mutex_enter(&pm_scan_lock);
3573 if (PM_SCANABLE(dip)) {
3574 pm_scan_init(dip);
3575 mutex_exit(&pm_scan_lock);
3576 pm_rescan(dip);
3577 } else {
3578 mutex_exit(&pm_scan_lock);
3579 }
3580 }
3581 return (0);
3582 }
3583
3584 /*
3585 * This is the obsolete exported interface for a driver to find out its
3586 * "normal" (max) power.
3587 * We only get components destroyed while no power management is
3588 * going on (and the device is detached), so we don't need a mutex here
3589 */
3590 int
pm_get_normal_power(dev_info_t * dip,int comp)3591 pm_get_normal_power(dev_info_t *dip, int comp)
3592 {
3593
3594 if (comp >= 0 && comp < PM_NUMCMPTS(dip)) {
3595 return (PM_CP(dip, comp)->pmc_norm_pwr);
3596 }
3597 return (DDI_FAILURE);
3598 }
3599
3600 /*
3601 * Fetches the current power level. Return DDI_SUCCESS or DDI_FAILURE.
3602 */
3603 int
pm_get_current_power(dev_info_t * dip,int comp,int * levelp)3604 pm_get_current_power(dev_info_t *dip, int comp, int *levelp)
3605 {
3606 if (comp >= 0 && comp < PM_NUMCMPTS(dip)) {
3607 *levelp = PM_CURPOWER(dip, comp);
3608 return (DDI_SUCCESS);
3609 }
3610 return (DDI_FAILURE);
3611 }
3612
3613 /*
3614 * Returns current threshold of indicated component
3615 */
3616 static int
cur_threshold(dev_info_t * dip,int comp)3617 cur_threshold(dev_info_t *dip, int comp)
3618 {
3619 pm_component_t *cp = PM_CP(dip, comp);
3620 int pwr;
3621
3622 if (PM_ISBC(dip)) {
3623 /*
3624 * backwards compatible nodes only have one threshold
3625 */
3626 return (cp->pmc_comp.pmc_thresh[1]);
3627 }
3628 pwr = cp->pmc_cur_pwr;
3629 if (pwr == PM_LEVEL_UNKNOWN) {
3630 int thresh;
3631 if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH)
3632 thresh = pm_default_nexus_threshold;
3633 else if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH)
3634 thresh = pm_cpu_idle_threshold;
3635 else
3636 thresh = pm_system_idle_threshold;
3637 return (thresh);
3638 }
3639 ASSERT(cp->pmc_comp.pmc_thresh);
3640 return (cp->pmc_comp.pmc_thresh[pwr]);
3641 }
3642
3643 /*
3644 * Compute next lower component power level given power index.
3645 */
3646 static int
pm_next_lower_power(pm_component_t * cp,int pwrndx)3647 pm_next_lower_power(pm_component_t *cp, int pwrndx)
3648 {
3649 int nxt_pwr;
3650
3651 if (pwrndx == PM_LEVEL_UNKNOWN) {
3652 nxt_pwr = cp->pmc_comp.pmc_lvals[0];
3653 } else {
3654 pwrndx--;
3655 ASSERT(pwrndx >= 0);
3656 nxt_pwr = cp->pmc_comp.pmc_lvals[pwrndx];
3657 }
3658 return (nxt_pwr);
3659 }
3660
3661 /*
3662 * Update the maxpower (normal) power of a component. Note that the
3663 * component's power level is only changed if it's current power level
3664 * is higher than the new max power.
3665 */
3666 int
pm_update_maxpower(dev_info_t * dip,int comp,int level)3667 pm_update_maxpower(dev_info_t *dip, int comp, int level)
3668 {
3669 PMD_FUNC(pmf, "update_maxpower")
3670 int old;
3671 int result;
3672
3673 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) ||
3674 !e_pm_valid_power(dip, comp, level)) {
3675 PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) "
3676 "comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level))
3677 return (DDI_FAILURE);
3678 }
3679 old = e_pm_get_max_power(dip, comp);
3680 e_pm_set_max_power(dip, comp, level);
3681
3682 if (pm_set_power(dip, comp, level, PM_LEVEL_DOWNONLY,
3683 PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) {
3684 e_pm_set_max_power(dip, comp, old);
3685 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) pm_set_power failed\n", pmf,
3686 PM_DEVICE(dip)))
3687 return (DDI_FAILURE);
3688 }
3689 return (DDI_SUCCESS);
3690 }
3691
3692 /*
3693 * Bring all components of device to normal power
3694 */
3695 int
pm_all_to_normal(dev_info_t * dip,pm_canblock_t canblock)3696 pm_all_to_normal(dev_info_t *dip, pm_canblock_t canblock)
3697 {
3698 PMD_FUNC(pmf, "all_to_normal")
3699 int *normal;
3700 int i, ncomps, result;
3701 size_t size;
3702 int changefailed = 0;
3703
3704 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
3705 ASSERT(PM_GET_PM_INFO(dip));
3706 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) {
3707 PMD(PMD_ALLNORM, ("%s: can't get norm pwrs for "
3708 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
3709 return (DDI_FAILURE);
3710 }
3711 ncomps = PM_NUMCMPTS(dip);
3712 for (i = 0; i < ncomps; i++) {
3713 if (pm_set_power(dip, i, normal[i],
3714 PM_LEVEL_UPONLY, canblock, 0, &result) != DDI_SUCCESS) {
3715 changefailed++;
3716 PMD(PMD_ALLNORM | PMD_FAIL, ("%s: failed to set "
3717 "%s@%s(%s#%d)[%d] to %d, errno %d\n", pmf,
3718 PM_DEVICE(dip), i, normal[i], result))
3719 }
3720 }
3721 kmem_free(normal, size);
3722 if (changefailed) {
3723 PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) "
3724 "to full power\n", pmf, changefailed, PM_DEVICE(dip)))
3725 return (DDI_FAILURE);
3726 }
3727 return (DDI_SUCCESS);
3728 }
3729
3730 /*
3731 * Returns true if all components of device are at normal power
3732 */
3733 int
pm_all_at_normal(dev_info_t * dip)3734 pm_all_at_normal(dev_info_t *dip)
3735 {
3736 PMD_FUNC(pmf, "all_at_normal")
3737 int *normal;
3738 int i;
3739 size_t size;
3740
3741 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
3742 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) {
3743 PMD(PMD_ALLNORM, ("%s: can't get normal power\n", pmf))
3744 return (DDI_FAILURE);
3745 }
3746 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
3747 int current = PM_CURPOWER(dip, i);
3748 if (normal[i] > current) {
3749 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d) comp=%d, "
3750 "norm=%d, cur=%d\n", pmf, PM_DEVICE(dip), i,
3751 normal[i], current))
3752 break;
3753 }
3754 }
3755 kmem_free(normal, size);
3756 if (i != PM_NUMCMPTS(dip)) {
3757 return (0);
3758 }
3759 return (1);
3760 }
3761
3762 static void bring_pmdep_up(dev_info_t *, int);
3763
3764 static void
bring_wekeeps_up(char * keeper)3765 bring_wekeeps_up(char *keeper)
3766 {
3767 PMD_FUNC(pmf, "bring_wekeeps_up")
3768 int i;
3769 pm_pdr_t *dp;
3770 pm_info_t *wku_info;
3771 char *kept_path;
3772 dev_info_t *kept;
3773
3774 if (panicstr) {
3775 return;
3776 }
3777 /*
3778 * We process the request even if the keeper detaches because
3779 * detach processing expects this to increment kidsupcnt of kept.
3780 */
3781 PMD(PMD_BRING, ("%s: keeper= %s\n", pmf, keeper))
3782 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
3783 if (strcmp(dp->pdr_keeper, keeper) != 0)
3784 continue;
3785 for (i = 0; i < dp->pdr_kept_count; i++) {
3786 kept_path = dp->pdr_kept_paths[i];
3787 if (kept_path == NULL)
3788 continue;
3789 ASSERT(kept_path[0] != '\0');
3790 if ((kept = pm_name_to_dip(kept_path, 1)) == NULL)
3791 continue;
3792 wku_info = PM_GET_PM_INFO(kept);
3793 if (wku_info == NULL) {
3794 if (kept)
3795 ddi_release_devi(kept);
3796 continue;
3797 }
3798 /*
3799 * Don't mess with it if it is being detached, it isn't
3800 * safe to call its power entry point
3801 */
3802 if (wku_info->pmi_dev_pm_state & PM_DETACHING) {
3803 if (kept)
3804 ddi_release_devi(kept);
3805 continue;
3806 }
3807 bring_pmdep_up(kept, 1);
3808 ddi_release_devi(kept);
3809 }
3810 }
3811 }
3812
3813 /*
3814 * Bring up the 'kept' device passed as argument
3815 */
3816 static void
bring_pmdep_up(dev_info_t * kept_dip,int hold)3817 bring_pmdep_up(dev_info_t *kept_dip, int hold)
3818 {
3819 PMD_FUNC(pmf, "bring_pmdep_up")
3820 int is_all_at_normal = 0;
3821
3822 /*
3823 * If the kept device has been unmanaged, do nothing.
3824 */
3825 if (!PM_GET_PM_INFO(kept_dip))
3826 return;
3827
3828 /* Just ignore DIRECT PM device till they are released. */
3829 if (!pm_processes_stopped && PM_ISDIRECT(kept_dip) &&
3830 !(is_all_at_normal = pm_all_at_normal(kept_dip))) {
3831 PMD(PMD_BRING, ("%s: can't bring up PM_DIRECT %s@%s(%s#%d) "
3832 "controlling process did something else\n", pmf,
3833 PM_DEVICE(kept_dip)))
3834 DEVI(kept_dip)->devi_pm_flags |= PMC_SKIP_BRINGUP;
3835 return;
3836 }
3837 /* if we got here the keeper had a transition from OFF->ON */
3838 if (hold)
3839 pm_hold_power(kept_dip);
3840
3841 if (!is_all_at_normal)
3842 (void) pm_all_to_normal(kept_dip, PM_CANBLOCK_FAIL);
3843 }
3844
3845 /*
3846 * A bunch of stuff that belongs only to the next routine (or two)
3847 */
3848
3849 static const char namestr[] = "NAME=";
3850 static const int nameln = sizeof (namestr) - 1;
3851 static const char pmcompstr[] = "pm-components";
3852
3853 struct pm_comp_pkg {
3854 pm_comp_t *comp;
3855 struct pm_comp_pkg *next;
3856 };
3857
3858 #define isdigit(ch) ((ch) >= '0' && (ch) <= '9')
3859
3860 #define isxdigit(ch) (isdigit(ch) || ((ch) >= 'a' && (ch) <= 'f') || \
3861 ((ch) >= 'A' && (ch) <= 'F'))
3862
3863 /*
3864 * Rather than duplicate this code ...
3865 * (this code excerpted from the function that follows it)
3866 */
3867 #define FINISH_COMP { \
3868 ASSERT(compp); \
3869 compp->pmc_lnames_sz = size; \
3870 tp = compp->pmc_lname_buf = kmem_alloc(size, KM_SLEEP); \
3871 compp->pmc_numlevels = level; \
3872 compp->pmc_lnames = kmem_alloc(level * sizeof (char *), KM_SLEEP); \
3873 compp->pmc_lvals = kmem_alloc(level * sizeof (int), KM_SLEEP); \
3874 compp->pmc_thresh = kmem_alloc(level * sizeof (int), KM_SLEEP); \
3875 /* copy string out of prop array into buffer */ \
3876 for (j = 0; j < level; j++) { \
3877 compp->pmc_thresh[j] = INT_MAX; /* only [0] sticks */ \
3878 compp->pmc_lvals[j] = lvals[j]; \
3879 (void) strcpy(tp, lnames[j]); \
3880 compp->pmc_lnames[j] = tp; \
3881 tp += lszs[j]; \
3882 } \
3883 ASSERT(tp > compp->pmc_lname_buf && tp <= \
3884 compp->pmc_lname_buf + compp->pmc_lnames_sz); \
3885 }
3886
3887 /*
3888 * Create (empty) component data structures.
3889 */
3890 static void
e_pm_create_components(dev_info_t * dip,int num_components)3891 e_pm_create_components(dev_info_t *dip, int num_components)
3892 {
3893 struct pm_component *compp, *ocompp;
3894 int i, size = 0;
3895
3896 ASSERT(!PM_IAM_LOCKING_DIP(dip));
3897 ASSERT(!DEVI(dip)->devi_pm_components);
3898 ASSERT(!(DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE));
3899 size = sizeof (struct pm_component) * num_components;
3900
3901 compp = kmem_zalloc(size, KM_SLEEP);
3902 ocompp = compp;
3903 DEVI(dip)->devi_pm_comp_size = size;
3904 DEVI(dip)->devi_pm_num_components = num_components;
3905 PM_LOCK_BUSY(dip);
3906 for (i = 0; i < num_components; i++) {
3907 compp->pmc_timestamp = gethrestime_sec();
3908 compp->pmc_norm_pwr = (uint_t)-1;
3909 compp++;
3910 }
3911 PM_UNLOCK_BUSY(dip);
3912 DEVI(dip)->devi_pm_components = ocompp;
3913 DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_DONE;
3914 }
3915
3916 /*
3917 * Parse hex or decimal value from char string
3918 */
3919 static char *
pm_parsenum(char * cp,int * valp)3920 pm_parsenum(char *cp, int *valp)
3921 {
3922 int ch, offset;
3923 char numbuf[256];
3924 char *np = numbuf;
3925 int value = 0;
3926
3927 ch = *cp++;
3928 if (isdigit(ch)) {
3929 if (ch == '0') {
3930 if ((ch = *cp++) == 'x' || ch == 'X') {
3931 ch = *cp++;
3932 while (isxdigit(ch)) {
3933 *np++ = (char)ch;
3934 ch = *cp++;
3935 }
3936 *np = 0;
3937 cp--;
3938 goto hexval;
3939 } else {
3940 goto digit;
3941 }
3942 } else {
3943 digit:
3944 while (isdigit(ch)) {
3945 *np++ = (char)ch;
3946 ch = *cp++;
3947 }
3948 *np = 0;
3949 cp--;
3950 goto decval;
3951 }
3952 } else
3953 return (NULL);
3954
3955 hexval:
3956 offset = 0;
3957 for (np = numbuf; *np; np++) {
3958 if (*np >= 'a' && *np <= 'f')
3959 offset = 'a' - 10;
3960 else if (*np >= 'A' && *np <= 'F')
3961 offset = 'A' - 10;
3962 else if (*np >= '0' && *np <= '9')
3963 offset = '0';
3964 value *= 16;
3965 value += *np - offset;
3966 }
3967 *valp = value;
3968 return (cp);
3969
3970 decval:
3971 offset = '0';
3972 for (np = numbuf; *np; np++) {
3973 value *= 10;
3974 value += *np - offset;
3975 }
3976 *valp = value;
3977 return (cp);
3978 }
3979
3980 /*
3981 * Set max (previously documented as "normal") power.
3982 */
3983 static void
e_pm_set_max_power(dev_info_t * dip,int component_number,int level)3984 e_pm_set_max_power(dev_info_t *dip, int component_number, int level)
3985 {
3986 PM_CP(dip, component_number)->pmc_norm_pwr = level;
3987 }
3988
3989 /*
3990 * Get max (previously documented as "normal") power.
3991 */
3992 static int
e_pm_get_max_power(dev_info_t * dip,int component_number)3993 e_pm_get_max_power(dev_info_t *dip, int component_number)
3994 {
3995 return (PM_CP(dip, component_number)->pmc_norm_pwr);
3996 }
3997
3998 /*
3999 * Internal routine for destroying components
4000 * It is called even when there might not be any, so it must be forgiving.
4001 */
4002 static void
e_pm_destroy_components(dev_info_t * dip)4003 e_pm_destroy_components(dev_info_t *dip)
4004 {
4005 int i;
4006 struct pm_component *cp;
4007
4008 ASSERT(!PM_IAM_LOCKING_DIP(dip));
4009 if (PM_NUMCMPTS(dip) == 0)
4010 return;
4011 cp = DEVI(dip)->devi_pm_components;
4012 ASSERT(cp);
4013 for (i = 0; i < PM_NUMCMPTS(dip); i++, cp++) {
4014 int nlevels = cp->pmc_comp.pmc_numlevels;
4015 kmem_free(cp->pmc_comp.pmc_lvals, nlevels * sizeof (int));
4016 kmem_free(cp->pmc_comp.pmc_thresh, nlevels * sizeof (int));
4017 /*
4018 * For BC nodes, the rest is static in bc_comp, so skip it
4019 */
4020 if (PM_ISBC(dip))
4021 continue;
4022 kmem_free(cp->pmc_comp.pmc_name, cp->pmc_comp.pmc_name_sz);
4023 kmem_free(cp->pmc_comp.pmc_lnames, nlevels * sizeof (char *));
4024 kmem_free(cp->pmc_comp.pmc_lname_buf,
4025 cp->pmc_comp.pmc_lnames_sz);
4026 }
4027 kmem_free(DEVI(dip)->devi_pm_components, DEVI(dip)->devi_pm_comp_size);
4028 DEVI(dip)->devi_pm_components = NULL;
4029 DEVI(dip)->devi_pm_num_components = 0;
4030 DEVI(dip)->devi_pm_flags &=
4031 ~(PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED);
4032 }
4033
4034 /*
4035 * Read the pm-components property (if there is one) and use it to set up
4036 * components. Returns a pointer to an array of component structures if
4037 * pm-components found and successfully parsed, else returns NULL.
4038 * Sets error return *errp to true to indicate a failure (as opposed to no
4039 * property being present).
4040 */
4041 pm_comp_t *
pm_autoconfig(dev_info_t * dip,int * errp)4042 pm_autoconfig(dev_info_t *dip, int *errp)
4043 {
4044 PMD_FUNC(pmf, "autoconfig")
4045 uint_t nelems;
4046 char **pp;
4047 pm_comp_t *compp = NULL;
4048 int i, j, level, components = 0;
4049 size_t size = 0;
4050 struct pm_comp_pkg *p, *ptail;
4051 struct pm_comp_pkg *phead = NULL;
4052 int *lvals = NULL;
4053 int *lszs = NULL;
4054 int *np = NULL;
4055 int npi = 0;
4056 char **lnames = NULL;
4057 char *cp, *tp;
4058 pm_comp_t *ret = NULL;
4059
4060 ASSERT(!PM_IAM_LOCKING_DIP(dip));
4061 *errp = 0; /* assume success */
4062 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4063 (char *)pmcompstr, &pp, &nelems) != DDI_PROP_SUCCESS) {
4064 return (NULL);
4065 }
4066
4067 if (nelems < 3) { /* need at least one name and two levels */
4068 goto errout;
4069 }
4070
4071 /*
4072 * pm_create_components is no longer allowed
4073 */
4074 if (PM_NUMCMPTS(dip) != 0) {
4075 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) has %d comps\n",
4076 pmf, PM_DEVICE(dip), PM_NUMCMPTS(dip)))
4077 goto errout;
4078 }
4079
4080 lvals = kmem_alloc(nelems * sizeof (int), KM_SLEEP);
4081 lszs = kmem_alloc(nelems * sizeof (int), KM_SLEEP);
4082 lnames = kmem_alloc(nelems * sizeof (char *), KM_SLEEP);
4083 np = kmem_alloc(nelems * sizeof (int), KM_SLEEP);
4084
4085 level = 0;
4086 phead = NULL;
4087 for (i = 0; i < nelems; i++) {
4088 cp = pp[i];
4089 if (!isdigit(*cp)) { /* must be name */
4090 if (strncmp(cp, namestr, nameln) != 0) {
4091 goto errout;
4092 }
4093 if (i != 0) {
4094 if (level == 0) { /* no level spec'd */
4095 PMD(PMD_ERROR, ("%s: no level spec'd\n",
4096 pmf))
4097 goto errout;
4098 }
4099 np[npi++] = lvals[level - 1];
4100 /* finish up previous component levels */
4101 FINISH_COMP;
4102 }
4103 cp += nameln;
4104 if (!*cp) {
4105 PMD(PMD_ERROR, ("%s: nsa\n", pmf))
4106 goto errout;
4107 }
4108 p = kmem_zalloc(sizeof (*phead), KM_SLEEP);
4109 if (phead == NULL) {
4110 phead = ptail = p;
4111 } else {
4112 ptail->next = p;
4113 ptail = p;
4114 }
4115 compp = p->comp = kmem_zalloc(sizeof (pm_comp_t),
4116 KM_SLEEP);
4117 compp->pmc_name_sz = strlen(cp) + 1;
4118 compp->pmc_name = kmem_zalloc(compp->pmc_name_sz,
4119 KM_SLEEP);
4120 (void) strncpy(compp->pmc_name, cp, compp->pmc_name_sz);
4121 components++;
4122 level = 0;
4123 } else { /* better be power level <num>=<name> */
4124 #ifdef DEBUG
4125 tp = cp;
4126 #endif
4127 if (i == 0 ||
4128 (cp = pm_parsenum(cp, &lvals[level])) == NULL) {
4129 PMD(PMD_ERROR, ("%s: parsenum(%s)\n", pmf, tp))
4130 goto errout;
4131 }
4132 #ifdef DEBUG
4133 tp = cp;
4134 #endif
4135 if (*cp++ != '=' || !*cp) {
4136 PMD(PMD_ERROR, ("%s: ex =, got %s\n", pmf, tp))
4137 goto errout;
4138 }
4139
4140 lszs[level] = strlen(cp) + 1;
4141 size += lszs[level];
4142 lnames[level] = cp; /* points into prop string */
4143 level++;
4144 }
4145 }
4146 np[npi++] = lvals[level - 1];
4147 if (level == 0) { /* ended with a name */
4148 PMD(PMD_ERROR, ("%s: ewn\n", pmf))
4149 goto errout;
4150 }
4151 FINISH_COMP;
4152
4153
4154 /*
4155 * Now we have a list of components--we have to return instead an
4156 * array of them, but we can just copy the top level and leave
4157 * the rest as is
4158 */
4159 (void) e_pm_create_components(dip, components);
4160 for (i = 0; i < components; i++)
4161 e_pm_set_max_power(dip, i, np[i]);
4162
4163 ret = kmem_zalloc(components * sizeof (pm_comp_t), KM_SLEEP);
4164 for (i = 0, p = phead; i < components; i++) {
4165 ASSERT(p);
4166 /*
4167 * Now sanity-check values: levels must be monotonically
4168 * increasing
4169 */
4170 if (p->comp->pmc_numlevels < 2) {
4171 PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) only %d "
4172 "levels\n", pmf,
4173 p->comp->pmc_name, PM_DEVICE(dip),
4174 p->comp->pmc_numlevels))
4175 goto errout;
4176 }
4177 for (j = 0; j < p->comp->pmc_numlevels; j++) {
4178 if ((p->comp->pmc_lvals[j] < 0) || ((j > 0) &&
4179 (p->comp->pmc_lvals[j] <=
4180 p->comp->pmc_lvals[j - 1]))) {
4181 PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) "
4182 "not mono. incr, %d follows %d\n", pmf,
4183 p->comp->pmc_name, PM_DEVICE(dip),
4184 p->comp->pmc_lvals[j],
4185 p->comp->pmc_lvals[j - 1]))
4186 goto errout;
4187 }
4188 }
4189 ret[i] = *p->comp; /* struct assignment */
4190 for (j = 0; j < i; j++) {
4191 /*
4192 * Test for unique component names
4193 */
4194 if (strcmp(ret[j].pmc_name, ret[i].pmc_name) == 0) {
4195 PMD(PMD_ERROR, ("%s: %s of %s@%s(%s#%d) not "
4196 "unique\n", pmf, ret[j].pmc_name,
4197 PM_DEVICE(dip)))
4198 goto errout;
4199 }
4200 }
4201 ptail = p;
4202 p = p->next;
4203 phead = p; /* errout depends on phead making sense */
4204 kmem_free(ptail->comp, sizeof (*ptail->comp));
4205 kmem_free(ptail, sizeof (*ptail));
4206 }
4207 out:
4208 ddi_prop_free(pp);
4209 if (lvals)
4210 kmem_free(lvals, nelems * sizeof (int));
4211 if (lszs)
4212 kmem_free(lszs, nelems * sizeof (int));
4213 if (lnames)
4214 kmem_free(lnames, nelems * sizeof (char *));
4215 if (np)
4216 kmem_free(np, nelems * sizeof (int));
4217 return (ret);
4218
4219 errout:
4220 e_pm_destroy_components(dip);
4221 *errp = 1; /* signal failure */
4222 cmn_err(CE_CONT, "!pm: %s property ", pmcompstr);
4223 for (i = 0; i < nelems - 1; i++)
4224 cmn_err(CE_CONT, "!'%s', ", pp[i]);
4225 if (nelems != 0)
4226 cmn_err(CE_CONT, "!'%s'", pp[nelems - 1]);
4227 cmn_err(CE_CONT, "! for %s@%s(%s#%d) is ill-formed.\n", PM_DEVICE(dip));
4228 for (p = phead; p; ) {
4229 pm_comp_t *pp;
4230 int n;
4231
4232 ptail = p;
4233 /*
4234 * Free component data structures
4235 */
4236 pp = p->comp;
4237 n = pp->pmc_numlevels;
4238 if (pp->pmc_name_sz) {
4239 kmem_free(pp->pmc_name, pp->pmc_name_sz);
4240 }
4241 if (pp->pmc_lnames_sz) {
4242 kmem_free(pp->pmc_lname_buf, pp->pmc_lnames_sz);
4243 }
4244 if (pp->pmc_lnames) {
4245 kmem_free(pp->pmc_lnames, n * (sizeof (char *)));
4246 }
4247 if (pp->pmc_thresh) {
4248 kmem_free(pp->pmc_thresh, n * (sizeof (int)));
4249 }
4250 if (pp->pmc_lvals) {
4251 kmem_free(pp->pmc_lvals, n * (sizeof (int)));
4252 }
4253 p = ptail->next;
4254 kmem_free(ptail, sizeof (*ptail));
4255 }
4256 if (ret != NULL)
4257 kmem_free(ret, components * sizeof (pm_comp_t));
4258 ret = NULL;
4259 goto out;
4260 }
4261
4262 /*
4263 * Set threshold values for a devices components by dividing the target
4264 * threshold (base) by the number of transitions and assign each transition
4265 * that threshold. This will get the entire device down in the target time if
4266 * all components are idle and even if there are dependencies among components.
4267 *
4268 * Devices may well get powered all the way down before the target time, but
4269 * at least the EPA will be happy.
4270 */
4271 void
pm_set_device_threshold(dev_info_t * dip,int base,int flag)4272 pm_set_device_threshold(dev_info_t *dip, int base, int flag)
4273 {
4274 PMD_FUNC(pmf, "set_device_threshold")
4275 int target_threshold = (base * 95) / 100;
4276 int level, comp; /* loop counters */
4277 int transitions = 0;
4278 int ncomp = PM_NUMCMPTS(dip);
4279 int thresh;
4280 int remainder;
4281 pm_comp_t *pmc;
4282 int i;
4283
4284 ASSERT(!PM_IAM_LOCKING_DIP(dip));
4285 PM_LOCK_DIP(dip);
4286 /*
4287 * First we handle the easy one. If we're setting the default
4288 * threshold for a node with children, then we set it to the
4289 * default nexus threshold (currently 0) and mark it as default
4290 * nexus threshold instead
4291 */
4292 if (PM_IS_NEXUS(dip)) {
4293 if (flag == PMC_DEF_THRESH) {
4294 PMD(PMD_THRESH, ("%s: [%s@%s(%s#%d) NEXDEF]\n", pmf,
4295 PM_DEVICE(dip)))
4296 thresh = pm_default_nexus_threshold;
4297 for (comp = 0; comp < ncomp; comp++) {
4298 pmc = &PM_CP(dip, comp)->pmc_comp;
4299 for (level = 1; level < pmc->pmc_numlevels;
4300 level++) {
4301 pmc->pmc_thresh[level] = thresh;
4302 }
4303 }
4304 DEVI(dip)->devi_pm_dev_thresh =
4305 pm_default_nexus_threshold;
4306 /*
4307 * If the nexus node is being reconfigured back to
4308 * the default threshold, adjust the notlowest count.
4309 */
4310 if (DEVI(dip)->devi_pm_flags &
4311 (PMC_DEV_THRESH|PMC_COMP_THRESH)) {
4312 PM_LOCK_POWER(dip);
4313 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
4314 if (PM_CURPOWER(dip, i) == 0)
4315 continue;
4316 mutex_enter(&pm_compcnt_lock);
4317 ASSERT(pm_comps_notlowest);
4318 pm_comps_notlowest--;
4319 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr "
4320 "notlowest to %d\n", pmf,
4321 PM_DEVICE(dip), pm_comps_notlowest))
4322 if (pm_comps_notlowest == 0)
4323 pm_ppm_notify_all_lowest(dip,
4324 PM_ALL_LOWEST);
4325 mutex_exit(&pm_compcnt_lock);
4326 }
4327 PM_UNLOCK_POWER(dip);
4328 }
4329 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE;
4330 DEVI(dip)->devi_pm_flags |= PMC_NEXDEF_THRESH;
4331 PM_UNLOCK_DIP(dip);
4332 return;
4333 } else if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH) {
4334 /*
4335 * If the nexus node is being configured for a
4336 * non-default threshold, include that node in
4337 * the notlowest accounting.
4338 */
4339 PM_LOCK_POWER(dip);
4340 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
4341 if (PM_CURPOWER(dip, i) == 0)
4342 continue;
4343 mutex_enter(&pm_compcnt_lock);
4344 if (pm_comps_notlowest == 0)
4345 pm_ppm_notify_all_lowest(dip,
4346 PM_NOT_ALL_LOWEST);
4347 pm_comps_notlowest++;
4348 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr "
4349 "notlowest to %d\n", pmf,
4350 PM_DEVICE(dip), pm_comps_notlowest))
4351 mutex_exit(&pm_compcnt_lock);
4352 }
4353 PM_UNLOCK_POWER(dip);
4354 }
4355 }
4356 /*
4357 * Compute the total number of transitions for all components
4358 * of the device. Distribute the threshold evenly over them
4359 */
4360 for (comp = 0; comp < ncomp; comp++) {
4361 pmc = &PM_CP(dip, comp)->pmc_comp;
4362 ASSERT(pmc->pmc_numlevels > 1);
4363 transitions += pmc->pmc_numlevels - 1;
4364 }
4365 ASSERT(transitions);
4366 thresh = target_threshold / transitions;
4367
4368 for (comp = 0; comp < ncomp; comp++) {
4369 pmc = &PM_CP(dip, comp)->pmc_comp;
4370 for (level = 1; level < pmc->pmc_numlevels; level++) {
4371 pmc->pmc_thresh[level] = thresh;
4372 }
4373 }
4374
4375 #ifdef DEBUG
4376 for (comp = 0; comp < ncomp; comp++) {
4377 pmc = &PM_CP(dip, comp)->pmc_comp;
4378 for (level = 1; level < pmc->pmc_numlevels; level++) {
4379 PMD(PMD_THRESH, ("%s: thresh before %s@%s(%s#%d) "
4380 "comp=%d, level=%d, %d\n", pmf, PM_DEVICE(dip),
4381 comp, level, pmc->pmc_thresh[level]))
4382 }
4383 }
4384 #endif
4385 /*
4386 * Distribute any remainder till they are all gone
4387 */
4388 remainder = target_threshold - thresh * transitions;
4389 level = 1;
4390 #ifdef DEBUG
4391 PMD(PMD_THRESH, ("%s: remainder=%d target_threshold=%d thresh=%d "
4392 "trans=%d\n", pmf, remainder, target_threshold, thresh,
4393 transitions))
4394 #endif
4395 while (remainder > 0) {
4396 comp = 0;
4397 while (remainder && (comp < ncomp)) {
4398 pmc = &PM_CP(dip, comp)->pmc_comp;
4399 if (level < pmc->pmc_numlevels) {
4400 pmc->pmc_thresh[level] += 1;
4401 remainder--;
4402 }
4403 comp++;
4404 }
4405 level++;
4406 }
4407 #ifdef DEBUG
4408 for (comp = 0; comp < ncomp; comp++) {
4409 pmc = &PM_CP(dip, comp)->pmc_comp;
4410 for (level = 1; level < pmc->pmc_numlevels; level++) {
4411 PMD(PMD_THRESH, ("%s: thresh after %s@%s(%s#%d) "
4412 "comp=%d level=%d, %d\n", pmf, PM_DEVICE(dip),
4413 comp, level, pmc->pmc_thresh[level]))
4414 }
4415 }
4416 #endif
4417 ASSERT(PM_IAM_LOCKING_DIP(dip));
4418 DEVI(dip)->devi_pm_dev_thresh = base;
4419 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE;
4420 DEVI(dip)->devi_pm_flags |= flag;
4421 PM_UNLOCK_DIP(dip);
4422 }
4423
4424 /*
4425 * Called when there is no old-style platform power management driver
4426 */
4427 static int
ddi_no_platform_power(power_req_t * req)4428 ddi_no_platform_power(power_req_t *req)
4429 {
4430 _NOTE(ARGUNUSED(req))
4431 return (DDI_FAILURE);
4432 }
4433
4434 /*
4435 * This function calls the entry point supplied by the platform-specific
4436 * pm driver to bring the device component 'pm_cmpt' to power level 'pm_level'.
4437 * The use of global for getting the function name from platform-specific
4438 * pm driver is not ideal, but it is simple and efficient.
4439 * The previous property lookup was being done in the idle loop on swift
4440 * systems without pmc chips and hurt deskbench performance as well as
4441 * violating scheduler locking rules
4442 */
4443 int (*pm_platform_power)(power_req_t *) = ddi_no_platform_power;
4444
4445 /*
4446 * Old obsolete interface for a device to request a power change (but only
4447 * an increase in power)
4448 */
4449 int
ddi_dev_is_needed(dev_info_t * dip,int cmpt,int level)4450 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level)
4451 {
4452 return (pm_raise_power(dip, cmpt, level));
4453 }
4454
4455 /*
4456 * The old obsolete interface to platform power management. Only used by
4457 * Gypsy platform and APM on X86.
4458 */
4459 int
ddi_power(dev_info_t * dip,int pm_cmpt,int pm_level)4460 ddi_power(dev_info_t *dip, int pm_cmpt, int pm_level)
4461 {
4462 power_req_t request;
4463
4464 request.request_type = PMR_SET_POWER;
4465 request.req.set_power_req.who = dip;
4466 request.req.set_power_req.cmpt = pm_cmpt;
4467 request.req.set_power_req.level = pm_level;
4468 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL));
4469 }
4470
4471 /*
4472 * A driver can invoke this from its detach routine when DDI_SUSPEND is
4473 * passed. Returns true if subsequent processing could result in power being
4474 * removed from the device. The arg is not currently used because it is
4475 * implicit in the operation of cpr/DR.
4476 */
4477 int
ddi_removing_power(dev_info_t * dip)4478 ddi_removing_power(dev_info_t *dip)
4479 {
4480 _NOTE(ARGUNUSED(dip))
4481 return (pm_powering_down);
4482 }
4483
4484 /*
4485 * Returns true if a device indicates that its parent handles suspend/resume
4486 * processing for it.
4487 */
4488 int
e_ddi_parental_suspend_resume(dev_info_t * dip)4489 e_ddi_parental_suspend_resume(dev_info_t *dip)
4490 {
4491 return (DEVI(dip)->devi_pm_flags & PMC_PARENTAL_SR);
4492 }
4493
4494 /*
4495 * Called for devices which indicate that their parent does suspend/resume
4496 * handling for them
4497 */
4498 int
e_ddi_suspend(dev_info_t * dip,ddi_detach_cmd_t cmd)4499 e_ddi_suspend(dev_info_t *dip, ddi_detach_cmd_t cmd)
4500 {
4501 power_req_t request;
4502 request.request_type = PMR_SUSPEND;
4503 request.req.suspend_req.who = dip;
4504 request.req.suspend_req.cmd = cmd;
4505 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL));
4506 }
4507
4508 /*
4509 * Called for devices which indicate that their parent does suspend/resume
4510 * handling for them
4511 */
4512 int
e_ddi_resume(dev_info_t * dip,ddi_attach_cmd_t cmd)4513 e_ddi_resume(dev_info_t *dip, ddi_attach_cmd_t cmd)
4514 {
4515 power_req_t request;
4516 request.request_type = PMR_RESUME;
4517 request.req.resume_req.who = dip;
4518 request.req.resume_req.cmd = cmd;
4519 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL));
4520 }
4521
4522 /*
4523 * Old obsolete exported interface for drivers to create components.
4524 * This is now handled by exporting the pm-components property.
4525 */
4526 int
pm_create_components(dev_info_t * dip,int num_components)4527 pm_create_components(dev_info_t *dip, int num_components)
4528 {
4529 PMD_FUNC(pmf, "pm_create_components")
4530
4531 if (num_components < 1)
4532 return (DDI_FAILURE);
4533
4534 if (!DEVI_IS_ATTACHING(dip)) {
4535 return (DDI_FAILURE);
4536 }
4537
4538 /* don't need to lock dip because attach is single threaded */
4539 if (DEVI(dip)->devi_pm_components) {
4540 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) already has %d\n", pmf,
4541 PM_DEVICE(dip), PM_NUMCMPTS(dip)))
4542 return (DDI_FAILURE);
4543 }
4544 e_pm_create_components(dip, num_components);
4545 DEVI(dip)->devi_pm_flags |= PMC_BC;
4546 e_pm_default_components(dip, num_components);
4547 return (DDI_SUCCESS);
4548 }
4549
4550 /*
4551 * Obsolete interface previously called by drivers to destroy their components
4552 * at detach time. This is now done automatically. However, we need to keep
4553 * this for the old drivers.
4554 */
4555 void
pm_destroy_components(dev_info_t * dip)4556 pm_destroy_components(dev_info_t *dip)
4557 {
4558 PMD_FUNC(pmf, "pm_destroy_components")
4559 dev_info_t *pdip = ddi_get_parent(dip);
4560
4561 PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf,
4562 PM_DEVICE(dip)))
4563 ASSERT(DEVI_IS_DETACHING(dip));
4564 #ifdef DEBUG
4565 if (!PM_ISBC(dip))
4566 cmn_err(CE_WARN, "!driver exporting pm-components property "
4567 "(%s@%s) calls pm_destroy_components", PM_NAME(dip),
4568 PM_ADDR(dip));
4569 #endif
4570 /*
4571 * We ignore this unless this is an old-style driver, except for
4572 * printing the message above
4573 */
4574 if (PM_NUMCMPTS(dip) == 0 || !PM_ISBC(dip)) {
4575 PMD(PMD_REMDEV, ("%s: ignore %s@%s(%s#%d)\n", pmf,
4576 PM_DEVICE(dip)))
4577 return;
4578 }
4579 ASSERT(PM_GET_PM_INFO(dip));
4580
4581 /*
4582 * pm_unmanage will clear info pointer later, after dealing with
4583 * dependencies
4584 */
4585 ASSERT(!PM_GET_PM_SCAN(dip)); /* better be gone already */
4586 /*
4587 * Now adjust parent's kidsupcnt. We check only comp 0.
4588 * Parents that get notification are not adjusted because their
4589 * kidsupcnt is always 0 (or 1 during probe and attach).
4590 */
4591 if ((PM_CURPOWER(dip, 0) != 0) && pdip && !PM_WANTS_NOTIFICATION(pdip))
4592 pm_rele_power(pdip);
4593 #ifdef DEBUG
4594 else {
4595 PMD(PMD_KIDSUP, ("%s: kuc stays %s@%s(%s#%d) comps gone\n",
4596 pmf, PM_DEVICE(dip)))
4597 }
4598 #endif
4599 e_pm_destroy_components(dip);
4600 /*
4601 * Forget we ever knew anything about the components of this device
4602 */
4603 DEVI(dip)->devi_pm_flags &=
4604 ~(PMC_BC | PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED);
4605 }
4606
4607 /*
4608 * Exported interface for a driver to set a component busy.
4609 */
4610 int
pm_busy_component(dev_info_t * dip,int cmpt)4611 pm_busy_component(dev_info_t *dip, int cmpt)
4612 {
4613 struct pm_component *cp;
4614
4615 ASSERT(dip != NULL);
4616 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp))
4617 return (DDI_FAILURE);
4618 PM_LOCK_BUSY(dip);
4619 cp->pmc_busycount++;
4620 cp->pmc_timestamp = 0;
4621 PM_UNLOCK_BUSY(dip);
4622 return (DDI_SUCCESS);
4623 }
4624
4625 /*
4626 * Exported interface for a driver to set a component idle.
4627 */
4628 int
pm_idle_component(dev_info_t * dip,int cmpt)4629 pm_idle_component(dev_info_t *dip, int cmpt)
4630 {
4631 PMD_FUNC(pmf, "pm_idle_component")
4632 struct pm_component *cp;
4633 pm_scan_t *scanp = PM_GET_PM_SCAN(dip);
4634
4635 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp))
4636 return (DDI_FAILURE);
4637
4638 PM_LOCK_BUSY(dip);
4639 if (cp->pmc_busycount) {
4640 if (--(cp->pmc_busycount) == 0)
4641 cp->pmc_timestamp = gethrestime_sec();
4642 } else {
4643 cp->pmc_timestamp = gethrestime_sec();
4644 }
4645
4646 PM_UNLOCK_BUSY(dip);
4647
4648 /*
4649 * if device becomes idle during idle down period, try scan it down
4650 */
4651 if (scanp && PM_IS_PID(dip)) {
4652 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d) idle.\n", pmf,
4653 PM_DEVICE(dip)))
4654 pm_rescan(dip);
4655 return (DDI_SUCCESS);
4656 }
4657
4658 /*
4659 * handle scan not running with nexus threshold == 0
4660 */
4661
4662 if (PM_IS_NEXUS(dip) && (cp->pmc_busycount == 0)) {
4663 pm_rescan(dip);
4664 }
4665
4666 return (DDI_SUCCESS);
4667 }
4668
4669 /*
4670 * This is the old obsolete interface called by drivers to set their normal
4671 * power. Thus we can't fix its behavior or return a value.
4672 * This functionality is replaced by the pm-component property.
4673 * We'll only get components destroyed while no power management is
4674 * going on (and the device is detached), so we don't need a mutex here
4675 */
4676 void
pm_set_normal_power(dev_info_t * dip,int comp,int level)4677 pm_set_normal_power(dev_info_t *dip, int comp, int level)
4678 {
4679 PMD_FUNC(pmf, "set_normal_power")
4680 #ifdef DEBUG
4681 if (!PM_ISBC(dip))
4682 cmn_err(CE_WARN, "!call to pm_set_normal_power() by %s@%s "
4683 "(driver exporting pm-components property) ignored",
4684 PM_NAME(dip), PM_ADDR(dip));
4685 #endif
4686 if (PM_ISBC(dip)) {
4687 PMD(PMD_NORM, ("%s: %s@%s(%s#%d) set normal power comp=%d, "
4688 "level=%d\n", pmf, PM_DEVICE(dip), comp, level))
4689 e_pm_set_max_power(dip, comp, level);
4690 e_pm_default_levels(dip, PM_CP(dip, comp), level);
4691 }
4692 }
4693
4694 /*
4695 * Called on a successfully detached driver to free pm resources
4696 */
4697 static void
pm_stop(dev_info_t * dip)4698 pm_stop(dev_info_t *dip)
4699 {
4700 PMD_FUNC(pmf, "stop")
4701 dev_info_t *pdip = ddi_get_parent(dip);
4702
4703 ASSERT(!PM_IAM_LOCKING_DIP(dip));
4704 /* stopping scan, destroy scan data structure */
4705 if (!PM_ISBC(dip)) {
4706 pm_scan_stop(dip);
4707 pm_scan_fini(dip);
4708 }
4709
4710 if (PM_GET_PM_INFO(dip) != NULL) {
4711 if (pm_unmanage(dip) == DDI_SUCCESS) {
4712 /*
4713 * Old style driver may have called
4714 * pm_destroy_components already, but just in case ...
4715 */
4716 e_pm_destroy_components(dip);
4717 } else {
4718 PMD(PMD_FAIL, ("%s: can't pm_unmanage %s@%s(%s#%d)\n",
4719 pmf, PM_DEVICE(dip)))
4720 }
4721 } else {
4722 if (PM_NUMCMPTS(dip))
4723 e_pm_destroy_components(dip);
4724 else {
4725 if (DEVI(dip)->devi_pm_flags & PMC_NOPMKID) {
4726 DEVI(dip)->devi_pm_flags &= ~PMC_NOPMKID;
4727 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) {
4728 pm_rele_power(pdip);
4729 } else if (pdip &&
4730 MDI_VHCI(pdip) && MDI_CLIENT(dip)) {
4731 (void) mdi_power(pdip,
4732 MDI_PM_RELE_POWER,
4733 (void *)dip, NULL, 0);
4734 }
4735 }
4736 }
4737 }
4738 }
4739
4740 /*
4741 * The node is the subject of a reparse pm props ioctl. Throw away the old
4742 * info and start over.
4743 */
4744 int
e_new_pm_props(dev_info_t * dip)4745 e_new_pm_props(dev_info_t *dip)
4746 {
4747 if (PM_GET_PM_INFO(dip) != NULL) {
4748 pm_stop(dip);
4749
4750 if (e_pm_manage(dip, PM_STYLE_NEW) != DDI_SUCCESS) {
4751 return (DDI_FAILURE);
4752 }
4753 }
4754 e_pm_props(dip);
4755 return (DDI_SUCCESS);
4756 }
4757
4758 /*
4759 * Device has been attached, so process its pm properties
4760 */
4761 void
e_pm_props(dev_info_t * dip)4762 e_pm_props(dev_info_t *dip)
4763 {
4764 char *pp;
4765 int len;
4766 int flags = 0;
4767 int propflag = DDI_PROP_DONTPASS|DDI_PROP_CANSLEEP;
4768
4769 /*
4770 * It doesn't matter if we do this more than once, we should always
4771 * get the same answers, and if not, then the last one in is the
4772 * best one.
4773 */
4774 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-hardware-state",
4775 (caddr_t)&pp, &len) == DDI_PROP_SUCCESS) {
4776 if (strcmp(pp, "needs-suspend-resume") == 0) {
4777 flags = PMC_NEEDS_SR;
4778 } else if (strcmp(pp, "no-suspend-resume") == 0) {
4779 flags = PMC_NO_SR;
4780 } else if (strcmp(pp, "parental-suspend-resume") == 0) {
4781 flags = PMC_PARENTAL_SR;
4782 } else {
4783 cmn_err(CE_NOTE, "!device %s@%s has unrecognized "
4784 "%s property value '%s'", PM_NAME(dip),
4785 PM_ADDR(dip), "pm-hardware-state", pp);
4786 }
4787 kmem_free(pp, len);
4788 }
4789 /*
4790 * This next segment (PMC_WANTS_NOTIFY) is in
4791 * support of nexus drivers which will want to be involved in
4792 * (or at least notified of) their child node's power level transitions.
4793 * "pm-want-child-notification?" is defined by the parent.
4794 */
4795 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag,
4796 "pm-want-child-notification?") && PM_HAS_BUS_POWER(dip))
4797 flags |= PMC_WANTS_NOTIFY;
4798 ASSERT(PM_HAS_BUS_POWER(dip) || !ddi_prop_exists(DDI_DEV_T_ANY,
4799 dip, propflag, "pm-want-child-notification?"));
4800 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag,
4801 "no-involuntary-power-cycles"))
4802 flags |= PMC_NO_INVOL;
4803 /*
4804 * Is the device a CPU device?
4805 */
4806 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-class",
4807 (caddr_t)&pp, &len) == DDI_PROP_SUCCESS) {
4808 if (strcmp(pp, "CPU") == 0) {
4809 flags |= PMC_CPU_DEVICE;
4810 } else {
4811 cmn_err(CE_NOTE, "!device %s@%s has unrecognized "
4812 "%s property value '%s'", PM_NAME(dip),
4813 PM_ADDR(dip), "pm-class", pp);
4814 }
4815 kmem_free(pp, len);
4816 }
4817 /* devfs single threads us */
4818 DEVI(dip)->devi_pm_flags |= flags;
4819 }
4820
4821 /*
4822 * This is the DDI_CTLOPS_POWER handler that is used when there is no ppm
4823 * driver which has claimed a node.
4824 * Sets old_power in arg struct.
4825 */
4826 static int
pm_default_ctlops(dev_info_t * dip,dev_info_t * rdip,ddi_ctl_enum_t ctlop,void * arg,void * result)4827 pm_default_ctlops(dev_info_t *dip, dev_info_t *rdip,
4828 ddi_ctl_enum_t ctlop, void *arg, void *result)
4829 {
4830 _NOTE(ARGUNUSED(dip))
4831 PMD_FUNC(pmf, "ctlops")
4832 power_req_t *reqp = (power_req_t *)arg;
4833 int retval;
4834 dev_info_t *target_dip;
4835 int new_level, old_level, cmpt;
4836 #ifdef PMDDEBUG
4837 char *format;
4838 #endif
4839
4840 /*
4841 * The interface for doing the actual power level changes is now
4842 * through the DDI_CTLOPS_POWER bus_ctl, so that we can plug in
4843 * different platform-specific power control drivers.
4844 *
4845 * This driver implements the "default" version of this interface.
4846 * If no ppm driver has been installed then this interface is called
4847 * instead.
4848 */
4849 ASSERT(dip == NULL);
4850 switch (ctlop) {
4851 case DDI_CTLOPS_POWER:
4852 switch (reqp->request_type) {
4853 case PMR_PPM_SET_POWER:
4854 {
4855 target_dip = reqp->req.ppm_set_power_req.who;
4856 ASSERT(target_dip == rdip);
4857 new_level = reqp->req.ppm_set_power_req.new_level;
4858 cmpt = reqp->req.ppm_set_power_req.cmpt;
4859 /* pass back old power for the PM_LEVEL_UNKNOWN case */
4860 old_level = PM_CURPOWER(target_dip, cmpt);
4861 reqp->req.ppm_set_power_req.old_level = old_level;
4862 retval = pm_power(target_dip, cmpt, new_level);
4863 PMD(PMD_PPM, ("%s: PPM_SET_POWER %s@%s(%s#%d)[%d] %d->"
4864 "%d %s\n", pmf, PM_DEVICE(target_dip), cmpt,
4865 old_level, new_level, (retval == DDI_SUCCESS ?
4866 "chd" : "no chg")))
4867 return (retval);
4868 }
4869
4870 case PMR_PPM_PRE_DETACH:
4871 case PMR_PPM_POST_DETACH:
4872 case PMR_PPM_PRE_ATTACH:
4873 case PMR_PPM_POST_ATTACH:
4874 case PMR_PPM_PRE_PROBE:
4875 case PMR_PPM_POST_PROBE:
4876 case PMR_PPM_PRE_RESUME:
4877 case PMR_PPM_INIT_CHILD:
4878 case PMR_PPM_UNINIT_CHILD:
4879 #ifdef PMDDEBUG
4880 switch (reqp->request_type) {
4881 case PMR_PPM_PRE_DETACH:
4882 format = "%s: PMR_PPM_PRE_DETACH "
4883 "%s@%s(%s#%d)\n";
4884 break;
4885 case PMR_PPM_POST_DETACH:
4886 format = "%s: PMR_PPM_POST_DETACH "
4887 "%s@%s(%s#%d) rets %d\n";
4888 break;
4889 case PMR_PPM_PRE_ATTACH:
4890 format = "%s: PMR_PPM_PRE_ATTACH "
4891 "%s@%s(%s#%d)\n";
4892 break;
4893 case PMR_PPM_POST_ATTACH:
4894 format = "%s: PMR_PPM_POST_ATTACH "
4895 "%s@%s(%s#%d) rets %d\n";
4896 break;
4897 case PMR_PPM_PRE_PROBE:
4898 format = "%s: PMR_PPM_PRE_PROBE "
4899 "%s@%s(%s#%d)\n";
4900 break;
4901 case PMR_PPM_POST_PROBE:
4902 format = "%s: PMR_PPM_POST_PROBE "
4903 "%s@%s(%s#%d) rets %d\n";
4904 break;
4905 case PMR_PPM_PRE_RESUME:
4906 format = "%s: PMR_PPM_PRE_RESUME "
4907 "%s@%s(%s#%d) rets %d\n";
4908 break;
4909 case PMR_PPM_INIT_CHILD:
4910 format = "%s: PMR_PPM_INIT_CHILD "
4911 "%s@%s(%s#%d)\n";
4912 break;
4913 case PMR_PPM_UNINIT_CHILD:
4914 format = "%s: PMR_PPM_UNINIT_CHILD "
4915 "%s@%s(%s#%d)\n";
4916 break;
4917 default:
4918 break;
4919 }
4920 PMD(PMD_PPM, (format, pmf, PM_DEVICE(rdip),
4921 reqp->req.ppm_config_req.result))
4922 #endif
4923 return (DDI_SUCCESS);
4924
4925 case PMR_PPM_POWER_CHANGE_NOTIFY:
4926 /*
4927 * Nothing for us to do
4928 */
4929 ASSERT(reqp->req.ppm_notify_level_req.who == rdip);
4930 PMD(PMD_PPM, ("%s: PMR_PPM_POWER_CHANGE_NOTIFY "
4931 "%s@%s(%s#%d)[%d] %d->%d\n", pmf,
4932 PM_DEVICE(reqp->req.ppm_notify_level_req.who),
4933 reqp->req.ppm_notify_level_req.cmpt,
4934 PM_CURPOWER(reqp->req.ppm_notify_level_req.who,
4935 reqp->req.ppm_notify_level_req.cmpt),
4936 reqp->req.ppm_notify_level_req.new_level))
4937 return (DDI_SUCCESS);
4938
4939 case PMR_PPM_UNMANAGE:
4940 PMD(PMD_PPM, ("%s: PMR_PPM_UNMANAGE %s@%s(%s#%d)\n",
4941 pmf, PM_DEVICE(rdip)))
4942 return (DDI_SUCCESS);
4943
4944 case PMR_PPM_LOCK_POWER:
4945 pm_lock_power_single(reqp->req.ppm_lock_power_req.who);
4946 return (DDI_SUCCESS);
4947
4948 case PMR_PPM_UNLOCK_POWER:
4949 pm_unlock_power_single(
4950 reqp->req.ppm_unlock_power_req.who);
4951 return (DDI_SUCCESS);
4952
4953 case PMR_PPM_TRY_LOCK_POWER:
4954 *(int *)result = pm_try_locking_power_single(
4955 reqp->req.ppm_lock_power_req.who);
4956 return (DDI_SUCCESS);
4957
4958 case PMR_PPM_POWER_LOCK_OWNER:
4959 target_dip = reqp->req.ppm_power_lock_owner_req.who;
4960 ASSERT(target_dip == rdip);
4961 reqp->req.ppm_power_lock_owner_req.owner =
4962 DEVI(rdip)->devi_busy_thread;
4963 return (DDI_SUCCESS);
4964 default:
4965 PMD(PMD_ERROR, ("%s: default!\n", pmf))
4966 return (DDI_FAILURE);
4967 }
4968
4969 default:
4970 PMD(PMD_ERROR, ("%s: unknown\n", pmf))
4971 return (DDI_FAILURE);
4972 }
4973 }
4974
4975 /*
4976 * We overload the bus_ctl ops here--perhaps we ought to have a distinct
4977 * power_ops struct for this functionality instead?
4978 * However, we only ever do this on a ppm driver.
4979 */
4980 int
pm_ctlops(dev_info_t * d,dev_info_t * r,ddi_ctl_enum_t op,void * a,void * v)4981 pm_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v)
4982 {
4983 int (*fp)();
4984
4985 /* if no ppm handler, call the default routine */
4986 if (d == NULL) {
4987 return (pm_default_ctlops(d, r, op, a, v));
4988 }
4989 if (!d || !r)
4990 return (DDI_FAILURE);
4991 ASSERT(DEVI(d)->devi_ops && DEVI(d)->devi_ops->devo_bus_ops &&
4992 DEVI(d)->devi_ops->devo_bus_ops->bus_ctl);
4993
4994 fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl;
4995 return ((*fp)(d, r, op, a, v));
4996 }
4997
4998 /*
4999 * Called on a node when attach completes or the driver makes its first pm
5000 * call (whichever comes first).
5001 * In the attach case, device may not be power manageable at all.
5002 * Don't need to lock the dip because we're single threaded by the devfs code
5003 */
5004 static int
pm_start(dev_info_t * dip)5005 pm_start(dev_info_t *dip)
5006 {
5007 PMD_FUNC(pmf, "start")
5008 int ret;
5009 dev_info_t *pdip = ddi_get_parent(dip);
5010 int e_pm_manage(dev_info_t *, int);
5011 void pm_noinvol_specd(dev_info_t *dip);
5012
5013 e_pm_props(dip);
5014 pm_noinvol_specd(dip);
5015 /*
5016 * If this dip has already been processed, don't mess with it
5017 * (but decrement the speculative count we did above, as whatever
5018 * code put it under pm already will have dealt with it)
5019 */
5020 if (PM_GET_PM_INFO(dip)) {
5021 PMD(PMD_KIDSUP, ("%s: pm already done for %s@%s(%s#%d)\n",
5022 pmf, PM_DEVICE(dip)))
5023 return (0);
5024 }
5025 ret = e_pm_manage(dip, PM_STYLE_UNKNOWN);
5026
5027 if (PM_GET_PM_INFO(dip) == NULL) {
5028 /*
5029 * keep the kidsupcount increment as is
5030 */
5031 DEVI(dip)->devi_pm_flags |= PMC_NOPMKID;
5032 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) {
5033 pm_hold_power(pdip);
5034 } else if (pdip && MDI_VHCI(pdip) && MDI_CLIENT(dip)) {
5035 (void) mdi_power(pdip, MDI_PM_HOLD_POWER,
5036 (void *)dip, NULL, 0);
5037 }
5038
5039 PMD(PMD_KIDSUP, ("%s: pm of %s@%s(%s#%d) failed, parent "
5040 "left up\n", pmf, PM_DEVICE(dip)))
5041 }
5042
5043 return (ret);
5044 }
5045
5046 /*
5047 * Keep a list of recorded thresholds. For now we just keep a list and
5048 * search it linearly. We don't expect too many entries. Can always hash it
5049 * later if we need to.
5050 */
5051 void
pm_record_thresh(pm_thresh_rec_t * rp)5052 pm_record_thresh(pm_thresh_rec_t *rp)
5053 {
5054 pm_thresh_rec_t *pptr, *ptr;
5055
5056 ASSERT(*rp->ptr_physpath);
5057 rw_enter(&pm_thresh_rwlock, RW_WRITER);
5058 for (pptr = NULL, ptr = pm_thresh_head;
5059 ptr; pptr = ptr, ptr = ptr->ptr_next) {
5060 if (strcmp(rp->ptr_physpath, ptr->ptr_physpath) == 0) {
5061 /* replace this one */
5062 rp->ptr_next = ptr->ptr_next;
5063 if (pptr) {
5064 pptr->ptr_next = rp;
5065 } else {
5066 pm_thresh_head = rp;
5067 }
5068 rw_exit(&pm_thresh_rwlock);
5069 kmem_free(ptr, ptr->ptr_size);
5070 return;
5071 }
5072 continue;
5073 }
5074 /*
5075 * There was not a match in the list, insert this one in front
5076 */
5077 if (pm_thresh_head) {
5078 rp->ptr_next = pm_thresh_head;
5079 pm_thresh_head = rp;
5080 } else {
5081 rp->ptr_next = NULL;
5082 pm_thresh_head = rp;
5083 }
5084 rw_exit(&pm_thresh_rwlock);
5085 }
5086
5087 /*
5088 * Create a new dependency record and hang a new dependency entry off of it
5089 */
5090 pm_pdr_t *
newpdr(char * kept,char * keeps,int isprop)5091 newpdr(char *kept, char *keeps, int isprop)
5092 {
5093 size_t size = strlen(kept) + strlen(keeps) + 2 + sizeof (pm_pdr_t);
5094 pm_pdr_t *p = kmem_zalloc(size, KM_SLEEP);
5095 p->pdr_size = size;
5096 p->pdr_isprop = isprop;
5097 p->pdr_kept_paths = NULL;
5098 p->pdr_kept_count = 0;
5099 p->pdr_kept = (char *)((intptr_t)p + sizeof (pm_pdr_t));
5100 (void) strcpy(p->pdr_kept, kept);
5101 p->pdr_keeper = (char *)((intptr_t)p->pdr_kept + strlen(kept) + 1);
5102 (void) strcpy(p->pdr_keeper, keeps);
5103 ASSERT((intptr_t)p->pdr_keeper + strlen(p->pdr_keeper) + 1 <=
5104 (intptr_t)p + size);
5105 ASSERT((intptr_t)p->pdr_kept + strlen(p->pdr_kept) + 1 <=
5106 (intptr_t)p + size);
5107 return (p);
5108 }
5109
5110 /*
5111 * Keep a list of recorded dependencies. We only keep the
5112 * keeper -> kept list for simplification. At this point We do not
5113 * care about whether the devices are attached or not yet,
5114 * this would be done in pm_keeper() and pm_kept().
5115 * If a PM_RESET_PM happens, then we tear down and forget the dependencies,
5116 * and it is up to the user to issue the ioctl again if they want it
5117 * (e.g. pmconfig)
5118 * Returns true if dependency already exists in the list.
5119 */
5120 int
pm_record_keeper(char * kept,char * keeper,int isprop)5121 pm_record_keeper(char *kept, char *keeper, int isprop)
5122 {
5123 PMD_FUNC(pmf, "record_keeper")
5124 pm_pdr_t *npdr, *ppdr, *pdr;
5125
5126 PMD(PMD_KEEPS, ("%s: %s, %s\n", pmf, kept, keeper))
5127 ASSERT(kept && keeper);
5128 #ifdef DEBUG
5129 if (pm_debug & PMD_KEEPS)
5130 prdeps("pm_record_keeper entry");
5131 #endif
5132 for (ppdr = NULL, pdr = pm_dep_head; pdr;
5133 ppdr = pdr, pdr = pdr->pdr_next) {
5134 PMD(PMD_KEEPS, ("%s: check %s, %s\n", pmf, pdr->pdr_kept,
5135 pdr->pdr_keeper))
5136 if (strcmp(kept, pdr->pdr_kept) == 0 &&
5137 strcmp(keeper, pdr->pdr_keeper) == 0) {
5138 PMD(PMD_KEEPS, ("%s: match\n", pmf))
5139 return (1);
5140 }
5141 }
5142 /*
5143 * We did not find any match, so we have to make an entry
5144 */
5145 npdr = newpdr(kept, keeper, isprop);
5146 if (ppdr) {
5147 ASSERT(ppdr->pdr_next == NULL);
5148 ppdr->pdr_next = npdr;
5149 } else {
5150 ASSERT(pm_dep_head == NULL);
5151 pm_dep_head = npdr;
5152 }
5153 #ifdef DEBUG
5154 if (pm_debug & PMD_KEEPS)
5155 prdeps("pm_record_keeper after new record");
5156 #endif
5157 if (!isprop)
5158 pm_unresolved_deps++;
5159 else
5160 pm_prop_deps++;
5161 return (0);
5162 }
5163
5164 /*
5165 * Look up this device in the set of devices we've seen ioctls for
5166 * to see if we are holding a threshold spec for it. If so, make it so.
5167 * At ioctl time, we were given the physical path of the device.
5168 */
5169 int
pm_thresh_specd(dev_info_t * dip)5170 pm_thresh_specd(dev_info_t *dip)
5171 {
5172 void pm_apply_recorded_thresh(dev_info_t *, pm_thresh_rec_t *);
5173 char *path = 0;
5174 char pathbuf[MAXNAMELEN];
5175 pm_thresh_rec_t *rp;
5176
5177 path = ddi_pathname(dip, pathbuf);
5178
5179 rw_enter(&pm_thresh_rwlock, RW_READER);
5180 for (rp = pm_thresh_head; rp; rp = rp->ptr_next) {
5181 if (strcmp(rp->ptr_physpath, path) != 0)
5182 continue;
5183 pm_apply_recorded_thresh(dip, rp);
5184 rw_exit(&pm_thresh_rwlock);
5185 return (1);
5186 }
5187 rw_exit(&pm_thresh_rwlock);
5188 return (0);
5189 }
5190
5191 static int
pm_set_keeping(dev_info_t * keeper,dev_info_t * kept)5192 pm_set_keeping(dev_info_t *keeper, dev_info_t *kept)
5193 {
5194 PMD_FUNC(pmf, "set_keeping")
5195 int j, up = 0;
5196 void prdeps(char *);
5197
5198 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), kept=%s@%s(%s#%d)\n", pmf,
5199 PM_DEVICE(keeper), PM_DEVICE(kept)))
5200 #ifdef DEBUG
5201 if (pm_debug & PMD_KEEPS)
5202 prdeps("Before PAD\n");
5203 #endif
5204 ASSERT(keeper != kept);
5205 if (PM_GET_PM_INFO(keeper) == NULL) {
5206 cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device "
5207 "%s@%s(%s#%d), but the former is not power managed",
5208 PM_DEVICE(keeper), PM_DEVICE(kept));
5209 PMD((PMD_FAIL | PMD_KEEPS), ("%s: keeper %s@%s(%s#%d) is not"
5210 "power managed\n", pmf, PM_DEVICE(keeper)))
5211 return (0);
5212 }
5213 if (PM_GET_PM_INFO(kept) == NULL) {
5214 cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device "
5215 "%s@%s(%s#%d), but the latter is not power managed",
5216 PM_DEVICE(keeper), PM_DEVICE(kept));
5217 PMD((PMD_FAIL | PMD_KEEPS), ("%s: kept %s@%s(%s#%d) is not"
5218 "power managed\n", pmf, PM_DEVICE(kept)))
5219 return (0);
5220 }
5221
5222 PM_LOCK_POWER(keeper);
5223 for (j = 0; j < PM_NUMCMPTS(keeper); j++) {
5224 if (PM_CURPOWER(keeper, j)) {
5225 up++;
5226 break;
5227 }
5228 }
5229 if (up) {
5230 /* Bringup and maintain a hold on the kept */
5231 PMD(PMD_KEEPS, ("%s: place a hold on kept %s@%s(%s#%d)\n", pmf,
5232 PM_DEVICE(kept)))
5233 bring_pmdep_up(kept, 1);
5234 }
5235 PM_UNLOCK_POWER(keeper);
5236 #ifdef DEBUG
5237 if (pm_debug & PMD_KEEPS)
5238 prdeps("After PAD\n");
5239 #endif
5240 return (1);
5241 }
5242
5243 /*
5244 * Should this device keep up another device?
5245 * Look up this device in the set of devices we've seen ioctls for
5246 * to see if we are holding a dependency spec for it. If so, make it so.
5247 * Because we require the kept device to be attached already in order to
5248 * make the list entry (and hold it), we only need to look for keepers.
5249 * At ioctl time, we were given the physical path of the device.
5250 */
5251 int
pm_keeper(char * keeper)5252 pm_keeper(char *keeper)
5253 {
5254 PMD_FUNC(pmf, "keeper")
5255 int pm_apply_recorded_dep(dev_info_t *, pm_pdr_t *);
5256 dev_info_t *dip;
5257 pm_pdr_t *dp;
5258 dev_info_t *kept = NULL;
5259 int ret = 0;
5260 int i;
5261
5262 if (!pm_unresolved_deps && !pm_prop_deps)
5263 return (0);
5264 ASSERT(keeper != NULL);
5265 dip = pm_name_to_dip(keeper, 1);
5266 if (dip == NULL)
5267 return (0);
5268 PMD(PMD_KEEPS, ("%s: keeper=%s\n", pmf, keeper))
5269 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
5270 if (!dp->pdr_isprop) {
5271 if (!pm_unresolved_deps)
5272 continue;
5273 PMD(PMD_KEEPS, ("%s: keeper %s\n", pmf, dp->pdr_keeper))
5274 if (dp->pdr_satisfied) {
5275 PMD(PMD_KEEPS, ("%s: satisfied\n", pmf))
5276 continue;
5277 }
5278 if (strcmp(dp->pdr_keeper, keeper) == 0) {
5279 ret += pm_apply_recorded_dep(dip, dp);
5280 }
5281 } else {
5282 if (strcmp(dp->pdr_keeper, keeper) != 0)
5283 continue;
5284 for (i = 0; i < dp->pdr_kept_count; i++) {
5285 if (dp->pdr_kept_paths[i] == NULL)
5286 continue;
5287 kept = pm_name_to_dip(dp->pdr_kept_paths[i], 1);
5288 if (kept == NULL)
5289 continue;
5290 ASSERT(ddi_prop_exists(DDI_DEV_T_ANY, kept,
5291 DDI_PROP_DONTPASS, dp->pdr_kept));
5292 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), "
5293 "kept=%s@%s(%s#%d) keptcnt=%d\n",
5294 pmf, PM_DEVICE(dip), PM_DEVICE(kept),
5295 dp->pdr_kept_count))
5296 if (kept != dip) {
5297 ret += pm_set_keeping(dip, kept);
5298 }
5299 ddi_release_devi(kept);
5300 }
5301
5302 }
5303 }
5304 ddi_release_devi(dip);
5305 return (ret);
5306 }
5307
5308 /*
5309 * Should this device be kept up by another device?
5310 * Look up all dependency recorded from PM_ADD_DEPENDENT and
5311 * PM_ADD_DEPENDENT_PROPERTY ioctls. Record down on the keeper's
5312 * kept device lists.
5313 */
5314 static int
pm_kept(char * keptp)5315 pm_kept(char *keptp)
5316 {
5317 PMD_FUNC(pmf, "kept")
5318 pm_pdr_t *dp;
5319 int found = 0;
5320 int ret = 0;
5321 dev_info_t *keeper;
5322 dev_info_t *kept;
5323 size_t length;
5324 int i;
5325 char **paths;
5326 char *path;
5327
5328 ASSERT(keptp != NULL);
5329 kept = pm_name_to_dip(keptp, 1);
5330 if (kept == NULL)
5331 return (0);
5332 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(kept)))
5333 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
5334 if (dp->pdr_isprop) {
5335 PMD(PMD_KEEPS, ("%s: property %s\n", pmf, dp->pdr_kept))
5336 if (ddi_prop_exists(DDI_DEV_T_ANY, kept,
5337 DDI_PROP_DONTPASS, dp->pdr_kept)) {
5338 /*
5339 * Dont allow self dependency.
5340 */
5341 if (strcmp(dp->pdr_keeper, keptp) == 0)
5342 continue;
5343 keeper = pm_name_to_dip(dp->pdr_keeper, 1);
5344 if (keeper == NULL)
5345 continue;
5346 PMD(PMD_KEEPS, ("%s: adding to kepts path list "
5347 "%p\n", pmf, (void *)kept))
5348 #ifdef DEBUG
5349 if (pm_debug & PMD_DEP)
5350 prdeps("Before Adding from pm_kept\n");
5351 #endif
5352 /*
5353 * Add ourselves to the dip list.
5354 */
5355 if (dp->pdr_kept_count == 0) {
5356 length = strlen(keptp) + 1;
5357 path =
5358 kmem_alloc(length, KM_SLEEP);
5359 paths = kmem_alloc(sizeof (char **),
5360 KM_SLEEP);
5361 (void) strcpy(path, keptp);
5362 paths[0] = path;
5363 dp->pdr_kept_paths = paths;
5364 dp->pdr_kept_count++;
5365 } else {
5366 /* Check to see if already on list */
5367 for (i = 0; i < dp->pdr_kept_count;
5368 i++) {
5369 if (strcmp(keptp,
5370 dp->pdr_kept_paths[i])
5371 == 0) {
5372 found++;
5373 break;
5374 }
5375 }
5376 if (found) {
5377 ddi_release_devi(keeper);
5378 continue;
5379 }
5380 length = dp->pdr_kept_count *
5381 sizeof (char **);
5382 paths = kmem_alloc(
5383 length + sizeof (char **),
5384 KM_SLEEP);
5385 if (dp->pdr_kept_count) {
5386 bcopy(dp->pdr_kept_paths,
5387 paths, length);
5388 kmem_free(dp->pdr_kept_paths,
5389 length);
5390 }
5391 dp->pdr_kept_paths = paths;
5392 length = strlen(keptp) + 1;
5393 path =
5394 kmem_alloc(length, KM_SLEEP);
5395 (void) strcpy(path, keptp);
5396 dp->pdr_kept_paths[i] = path;
5397 dp->pdr_kept_count++;
5398 }
5399 #ifdef DEBUG
5400 if (pm_debug & PMD_DEP)
5401 prdeps("After from pm_kept\n");
5402 #endif
5403 if (keeper) {
5404 ret += pm_set_keeping(keeper, kept);
5405 ddi_release_devi(keeper);
5406 }
5407 }
5408 } else {
5409 /*
5410 * pm_keeper would be called later to do
5411 * the actual pm_set_keeping.
5412 */
5413 PMD(PMD_KEEPS, ("%s: adding to kepts path list %p\n",
5414 pmf, (void *)kept))
5415 #ifdef DEBUG
5416 if (pm_debug & PMD_DEP)
5417 prdeps("Before Adding from pm_kept\n");
5418 #endif
5419 if (strcmp(keptp, dp->pdr_kept) == 0) {
5420 if (dp->pdr_kept_paths == NULL) {
5421 length = strlen(keptp) + 1;
5422 path =
5423 kmem_alloc(length, KM_SLEEP);
5424 paths = kmem_alloc(sizeof (char **),
5425 KM_SLEEP);
5426 (void) strcpy(path, keptp);
5427 paths[0] = path;
5428 dp->pdr_kept_paths = paths;
5429 dp->pdr_kept_count++;
5430 }
5431 }
5432 #ifdef DEBUG
5433 if (pm_debug & PMD_DEP)
5434 prdeps("After from pm_kept\n");
5435 #endif
5436 }
5437 }
5438 ddi_release_devi(kept);
5439 return (ret);
5440 }
5441
5442 /*
5443 * Apply a recorded dependency. dp specifies the dependency, and
5444 * keeper is already known to be the device that keeps up the other (kept) one.
5445 * We have to the whole tree for the "kept" device, then apply
5446 * the dependency (which may already be applied).
5447 */
5448 int
pm_apply_recorded_dep(dev_info_t * keeper,pm_pdr_t * dp)5449 pm_apply_recorded_dep(dev_info_t *keeper, pm_pdr_t *dp)
5450 {
5451 PMD_FUNC(pmf, "apply_recorded_dep")
5452 dev_info_t *kept = NULL;
5453 int ret = 0;
5454 char *keptp = NULL;
5455
5456 /*
5457 * Device to Device dependency can only be 1 to 1.
5458 */
5459 if (dp->pdr_kept_paths == NULL)
5460 return (0);
5461 keptp = dp->pdr_kept_paths[0];
5462 if (keptp == NULL)
5463 return (0);
5464 ASSERT(*keptp != '\0');
5465 kept = pm_name_to_dip(keptp, 1);
5466 if (kept == NULL)
5467 return (0);
5468 if (kept) {
5469 PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf,
5470 dp->pdr_keeper, keptp))
5471 if (pm_set_keeping(keeper, kept)) {
5472 ASSERT(dp->pdr_satisfied == 0);
5473 dp->pdr_satisfied = 1;
5474 ASSERT(pm_unresolved_deps);
5475 pm_unresolved_deps--;
5476 ret++;
5477 }
5478 }
5479 ddi_release_devi(kept);
5480
5481 return (ret);
5482 }
5483
5484 /*
5485 * Called from common/io/pm.c
5486 */
5487 int
pm_cur_power(pm_component_t * cp)5488 pm_cur_power(pm_component_t *cp)
5489 {
5490 return (cur_power(cp));
5491 }
5492
5493 /*
5494 * External interface to sanity-check a power level.
5495 */
5496 int
pm_valid_power(dev_info_t * dip,int comp,int level)5497 pm_valid_power(dev_info_t *dip, int comp, int level)
5498 {
5499 PMD_FUNC(pmf, "valid_power")
5500
5501 if (comp >= 0 && comp < PM_NUMCMPTS(dip) && level >= 0)
5502 return (e_pm_valid_power(dip, comp, level));
5503 else {
5504 PMD(PMD_FAIL, ("%s: comp=%d, ncomp=%d, level=%d\n",
5505 pmf, comp, PM_NUMCMPTS(dip), level))
5506 return (0);
5507 }
5508 }
5509
5510 /*
5511 * Called when a device that is direct power managed needs to change state.
5512 * This routine arranges to block the request until the process managing
5513 * the device makes the change (or some other incompatible change) or
5514 * the process closes /dev/pm.
5515 */
5516 static int
pm_block(dev_info_t * dip,int comp,int newpower,int oldpower)5517 pm_block(dev_info_t *dip, int comp, int newpower, int oldpower)
5518 {
5519 pm_rsvp_t *new = kmem_zalloc(sizeof (*new), KM_SLEEP);
5520 int ret = 0;
5521 void pm_dequeue_blocked(pm_rsvp_t *);
5522 void pm_enqueue_blocked(pm_rsvp_t *);
5523
5524 ASSERT(!pm_processes_stopped);
5525 ASSERT(PM_IAM_LOCKING_DIP(dip));
5526 new->pr_dip = dip;
5527 new->pr_comp = comp;
5528 new->pr_newlevel = newpower;
5529 new->pr_oldlevel = oldpower;
5530 cv_init(&new->pr_cv, NULL, CV_DEFAULT, NULL);
5531 mutex_enter(&pm_rsvp_lock);
5532 pm_enqueue_blocked(new);
5533 pm_enqueue_notify(PSC_PENDING_CHANGE, dip, comp, newpower, oldpower,
5534 PM_CANBLOCK_BLOCK);
5535 PM_UNLOCK_DIP(dip);
5536 /*
5537 * truss may make the cv_wait_sig return prematurely
5538 */
5539 while (ret == 0) {
5540 /*
5541 * Normally there will be no user context involved, but if
5542 * there is (e.g. we are here via an ioctl call to a driver)
5543 * then we should allow the process to abort the request,
5544 * or we get an unkillable process if the same thread does
5545 * PM_DIRECT_PM and pm_raise_power
5546 */
5547 if (cv_wait_sig(&new->pr_cv, &pm_rsvp_lock) == 0) {
5548 ret = PMP_FAIL;
5549 } else {
5550 ret = new->pr_retval;
5551 }
5552 }
5553 pm_dequeue_blocked(new);
5554 mutex_exit(&pm_rsvp_lock);
5555 cv_destroy(&new->pr_cv);
5556 kmem_free(new, sizeof (*new));
5557 return (ret);
5558 }
5559
5560 /*
5561 * Returns true if the process is interested in power level changes (has issued
5562 * PM_GET_STATE_CHANGE ioctl).
5563 */
5564 int
pm_interest_registered(int clone)5565 pm_interest_registered(int clone)
5566 {
5567 ASSERT(clone >= 0 && clone < PM_MAX_CLONE - 1);
5568 return (pm_interest[clone]);
5569 }
5570
5571 static void pm_enqueue_pscc(pscc_t *, pscc_t **);
5572
5573 /*
5574 * Process with clone has just done PM_DIRECT_PM on dip, or has asked to
5575 * watch all state transitions (dip == NULL). Set up data
5576 * structs to communicate with process about state changes.
5577 */
5578 void
pm_register_watcher(int clone,dev_info_t * dip)5579 pm_register_watcher(int clone, dev_info_t *dip)
5580 {
5581 pscc_t *p;
5582 psce_t *psce;
5583
5584 /*
5585 * We definitely need a control struct, then we have to search to see
5586 * there is already an entries struct (in the dip != NULL case).
5587 */
5588 pscc_t *pscc = kmem_zalloc(sizeof (*pscc), KM_SLEEP);
5589 pscc->pscc_clone = clone;
5590 pscc->pscc_dip = dip;
5591
5592 if (dip) {
5593 int found = 0;
5594 rw_enter(&pm_pscc_direct_rwlock, RW_WRITER);
5595 for (p = pm_pscc_direct; p; p = p->pscc_next) {
5596 /*
5597 * Already an entry for this clone, so just use it
5598 * for the new one (for the case where a single
5599 * process is watching multiple devices)
5600 */
5601 if (p->pscc_clone == clone) {
5602 pscc->pscc_entries = p->pscc_entries;
5603 pscc->pscc_entries->psce_references++;
5604 found++;
5605 break;
5606 }
5607 }
5608 if (!found) { /* create a new one */
5609 psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP);
5610 mutex_init(&psce->psce_lock, NULL, MUTEX_DEFAULT, NULL);
5611 psce->psce_first =
5612 kmem_zalloc(sizeof (pm_state_change_t) * PSCCOUNT,
5613 KM_SLEEP);
5614 psce->psce_in = psce->psce_out = psce->psce_first;
5615 psce->psce_last = &psce->psce_first[PSCCOUNT - 1];
5616 psce->psce_references = 1;
5617 pscc->pscc_entries = psce;
5618 }
5619 pm_enqueue_pscc(pscc, &pm_pscc_direct);
5620 rw_exit(&pm_pscc_direct_rwlock);
5621 } else {
5622 ASSERT(!pm_interest_registered(clone));
5623 rw_enter(&pm_pscc_interest_rwlock, RW_WRITER);
5624 #ifdef DEBUG
5625 for (p = pm_pscc_interest; p; p = p->pscc_next) {
5626 /*
5627 * Should not be an entry for this clone!
5628 */
5629 ASSERT(p->pscc_clone != clone);
5630 }
5631 #endif
5632 psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP);
5633 psce->psce_first = kmem_zalloc(sizeof (pm_state_change_t) *
5634 PSCCOUNT, KM_SLEEP);
5635 psce->psce_in = psce->psce_out = psce->psce_first;
5636 psce->psce_last = &psce->psce_first[PSCCOUNT - 1];
5637 psce->psce_references = 1;
5638 pscc->pscc_entries = psce;
5639 pm_enqueue_pscc(pscc, &pm_pscc_interest);
5640 pm_interest[clone] = 1;
5641 rw_exit(&pm_pscc_interest_rwlock);
5642 }
5643 }
5644
5645 /*
5646 * Remove the given entry from the blocked list
5647 */
5648 void
pm_dequeue_blocked(pm_rsvp_t * p)5649 pm_dequeue_blocked(pm_rsvp_t *p)
5650 {
5651 ASSERT(MUTEX_HELD(&pm_rsvp_lock));
5652 if (pm_blocked_list == p) {
5653 ASSERT(p->pr_prev == NULL);
5654 if (p->pr_next != NULL)
5655 p->pr_next->pr_prev = NULL;
5656 pm_blocked_list = p->pr_next;
5657 } else {
5658 ASSERT(p->pr_prev != NULL);
5659 p->pr_prev->pr_next = p->pr_next;
5660 if (p->pr_next != NULL)
5661 p->pr_next->pr_prev = p->pr_prev;
5662 }
5663 }
5664
5665 /*
5666 * Remove the given control struct from the given list
5667 */
5668 static void
pm_dequeue_pscc(pscc_t * p,pscc_t ** list)5669 pm_dequeue_pscc(pscc_t *p, pscc_t **list)
5670 {
5671 if (*list == p) {
5672 ASSERT(p->pscc_prev == NULL);
5673 if (p->pscc_next != NULL)
5674 p->pscc_next->pscc_prev = NULL;
5675 *list = p->pscc_next;
5676 } else {
5677 ASSERT(p->pscc_prev != NULL);
5678 p->pscc_prev->pscc_next = p->pscc_next;
5679 if (p->pscc_next != NULL)
5680 p->pscc_next->pscc_prev = p->pscc_prev;
5681 }
5682 }
5683
5684 /*
5685 * Stick the control struct specified on the front of the list
5686 */
5687 static void
pm_enqueue_pscc(pscc_t * p,pscc_t ** list)5688 pm_enqueue_pscc(pscc_t *p, pscc_t **list)
5689 {
5690 pscc_t *h; /* entry at head of list */
5691 if ((h = *list) == NULL) {
5692 *list = p;
5693 ASSERT(p->pscc_next == NULL);
5694 ASSERT(p->pscc_prev == NULL);
5695 } else {
5696 p->pscc_next = h;
5697 ASSERT(h->pscc_prev == NULL);
5698 h->pscc_prev = p;
5699 ASSERT(p->pscc_prev == NULL);
5700 *list = p;
5701 }
5702 }
5703
5704 /*
5705 * If dip is NULL, process is closing "clone" clean up all its registrations.
5706 * Otherwise only clean up those for dip because process is just giving up
5707 * control of a direct device.
5708 */
5709 void
pm_deregister_watcher(int clone,dev_info_t * dip)5710 pm_deregister_watcher(int clone, dev_info_t *dip)
5711 {
5712 pscc_t *p, *pn;
5713 psce_t *psce;
5714 int found = 0;
5715
5716 if (dip == NULL) {
5717 rw_enter(&pm_pscc_interest_rwlock, RW_WRITER);
5718 for (p = pm_pscc_interest; p; p = pn) {
5719 pn = p->pscc_next;
5720 if (p->pscc_clone == clone) {
5721 pm_dequeue_pscc(p, &pm_pscc_interest);
5722 psce = p->pscc_entries;
5723 ASSERT(psce->psce_references == 1);
5724 mutex_destroy(&psce->psce_lock);
5725 kmem_free(psce->psce_first,
5726 sizeof (pm_state_change_t) * PSCCOUNT);
5727 kmem_free(psce, sizeof (*psce));
5728 kmem_free(p, sizeof (*p));
5729 }
5730 }
5731 pm_interest[clone] = 0;
5732 rw_exit(&pm_pscc_interest_rwlock);
5733 }
5734 found = 0;
5735 rw_enter(&pm_pscc_direct_rwlock, RW_WRITER);
5736 for (p = pm_pscc_direct; p; p = pn) {
5737 pn = p->pscc_next;
5738 if ((dip && p->pscc_dip == dip) ||
5739 (dip == NULL && clone == p->pscc_clone)) {
5740 ASSERT(clone == p->pscc_clone);
5741 found++;
5742 /*
5743 * Remove from control list
5744 */
5745 pm_dequeue_pscc(p, &pm_pscc_direct);
5746 /*
5747 * If we're the last reference, free the
5748 * entries struct.
5749 */
5750 psce = p->pscc_entries;
5751 ASSERT(psce);
5752 if (psce->psce_references == 1) {
5753 kmem_free(psce->psce_first,
5754 PSCCOUNT * sizeof (pm_state_change_t));
5755 kmem_free(psce, sizeof (*psce));
5756 } else {
5757 psce->psce_references--;
5758 }
5759 kmem_free(p, sizeof (*p));
5760 }
5761 }
5762 ASSERT(dip == NULL || found);
5763 rw_exit(&pm_pscc_direct_rwlock);
5764 }
5765
5766 /*
5767 * Search the indicated list for an entry that matches clone, and return a
5768 * pointer to it. To be interesting, the entry must have something ready to
5769 * be passed up to the controlling process.
5770 * The returned entry will be locked upon return from this call.
5771 */
5772 static psce_t *
pm_psc_find_clone(int clone,pscc_t ** list,krwlock_t * lock)5773 pm_psc_find_clone(int clone, pscc_t **list, krwlock_t *lock)
5774 {
5775 pscc_t *p;
5776 psce_t *psce;
5777 rw_enter(lock, RW_READER);
5778 for (p = *list; p; p = p->pscc_next) {
5779 if (clone == p->pscc_clone) {
5780 psce = p->pscc_entries;
5781 mutex_enter(&psce->psce_lock);
5782 if (psce->psce_out->size) {
5783 rw_exit(lock);
5784 return (psce);
5785 } else {
5786 mutex_exit(&psce->psce_lock);
5787 }
5788 }
5789 }
5790 rw_exit(lock);
5791 return (NULL);
5792 }
5793
5794 static psce_t *pm_psc_find_clone(int, pscc_t **, krwlock_t *);
5795 /*
5796 * Find an entry for a particular clone in the direct list.
5797 */
5798 psce_t *
pm_psc_clone_to_direct(int clone)5799 pm_psc_clone_to_direct(int clone)
5800 {
5801 return (pm_psc_find_clone(clone, &pm_pscc_direct,
5802 &pm_pscc_direct_rwlock));
5803 }
5804
5805 /*
5806 * Find an entry for a particular clone in the interest list.
5807 */
5808 psce_t *
pm_psc_clone_to_interest(int clone)5809 pm_psc_clone_to_interest(int clone)
5810 {
5811 return (pm_psc_find_clone(clone, &pm_pscc_interest,
5812 &pm_pscc_interest_rwlock));
5813 }
5814
5815 /*
5816 * Put the given entry at the head of the blocked list
5817 */
5818 void
pm_enqueue_blocked(pm_rsvp_t * p)5819 pm_enqueue_blocked(pm_rsvp_t *p)
5820 {
5821 ASSERT(MUTEX_HELD(&pm_rsvp_lock));
5822 ASSERT(p->pr_next == NULL);
5823 ASSERT(p->pr_prev == NULL);
5824 if (pm_blocked_list != NULL) {
5825 p->pr_next = pm_blocked_list;
5826 ASSERT(pm_blocked_list->pr_prev == NULL);
5827 pm_blocked_list->pr_prev = p;
5828 pm_blocked_list = p;
5829 } else {
5830 pm_blocked_list = p;
5831 }
5832 }
5833
5834 /*
5835 * Sets every power managed device back to its default threshold
5836 */
5837 void
pm_all_to_default_thresholds(void)5838 pm_all_to_default_thresholds(void)
5839 {
5840 ddi_walk_devs(ddi_root_node(), pm_set_dev_thr_walk,
5841 (void *) &pm_system_idle_threshold);
5842 }
5843
5844 static int
pm_set_dev_thr_walk(dev_info_t * dip,void * arg)5845 pm_set_dev_thr_walk(dev_info_t *dip, void *arg)
5846 {
5847 int thr = (int)(*(int *)arg);
5848
5849 if (!PM_GET_PM_INFO(dip))
5850 return (DDI_WALK_CONTINUE);
5851 pm_set_device_threshold(dip, thr, PMC_DEF_THRESH);
5852 return (DDI_WALK_CONTINUE);
5853 }
5854
5855 /*
5856 * Returns the current threshold value (in seconds) for the indicated component
5857 */
5858 int
pm_current_threshold(dev_info_t * dip,int comp,int * threshp)5859 pm_current_threshold(dev_info_t *dip, int comp, int *threshp)
5860 {
5861 if (comp < 0 || comp >= PM_NUMCMPTS(dip)) {
5862 return (DDI_FAILURE);
5863 } else {
5864 *threshp = cur_threshold(dip, comp);
5865 return (DDI_SUCCESS);
5866 }
5867 }
5868
5869 /*
5870 * To be called when changing the power level of a component of a device.
5871 * On some platforms, changing power on one device may require that power
5872 * be changed on other, related devices in the same transaction. Thus, we
5873 * always pass this request to the platform power manager so that all the
5874 * affected devices will be locked.
5875 */
5876 void
pm_lock_power(dev_info_t * dip)5877 pm_lock_power(dev_info_t *dip)
5878 {
5879 power_req_t power_req;
5880 int result;
5881
5882 power_req.request_type = PMR_PPM_LOCK_POWER;
5883 power_req.req.ppm_lock_power_req.who = dip;
5884 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result);
5885 }
5886
5887 /*
5888 * Release the lock (or locks) acquired to change the power of a device.
5889 * See comments for pm_lock_power.
5890 */
5891 void
pm_unlock_power(dev_info_t * dip)5892 pm_unlock_power(dev_info_t *dip)
5893 {
5894 power_req_t power_req;
5895 int result;
5896
5897 power_req.request_type = PMR_PPM_UNLOCK_POWER;
5898 power_req.req.ppm_unlock_power_req.who = dip;
5899 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result);
5900 }
5901
5902
5903 /*
5904 * Attempt (without blocking) to acquire the lock(s) needed to change the
5905 * power of a component of a device. See comments for pm_lock_power.
5906 *
5907 * Return: 1 if lock(s) acquired, 0 if not.
5908 */
5909 int
pm_try_locking_power(dev_info_t * dip)5910 pm_try_locking_power(dev_info_t *dip)
5911 {
5912 power_req_t power_req;
5913 int result;
5914
5915 power_req.request_type = PMR_PPM_TRY_LOCK_POWER;
5916 power_req.req.ppm_lock_power_req.who = dip;
5917 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result);
5918 return (result);
5919 }
5920
5921
5922 /*
5923 * Lock power state of a device.
5924 *
5925 * The implementation handles a special case where another thread may have
5926 * acquired the lock and created/launched this thread to do the work. If
5927 * the lock cannot be acquired immediately, we check to see if this thread
5928 * is registered as a borrower of the lock. If so, we may proceed without
5929 * the lock. This assumes that the lending thread blocks on the completion
5930 * of this thread.
5931 *
5932 * Note 1: for use by ppm only.
5933 *
5934 * Note 2: On failing to get the lock immediately, we search lock_loan list
5935 * for curthread (as borrower of the lock). On a hit, we check that the
5936 * lending thread already owns the lock we want. It is safe to compare
5937 * devi_busy_thread and thread id of the lender because in the == case (the
5938 * only one we care about) we know that the owner is blocked. Similarly,
5939 * If we find that curthread isn't registered as a lock borrower, it is safe
5940 * to use the blocking call (ndi_devi_enter) because we know that if we
5941 * weren't already listed as a borrower (upstream on the call stack) we won't
5942 * become one.
5943 */
5944 void
pm_lock_power_single(dev_info_t * dip)5945 pm_lock_power_single(dev_info_t *dip)
5946 {
5947 lock_loan_t *cur;
5948
5949 /* if the lock is available, we are done. */
5950 if (ndi_devi_tryenter(dip))
5951 return;
5952
5953 mutex_enter(&pm_loan_lock);
5954 /* see if our thread is registered as a lock borrower. */
5955 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next)
5956 if (cur->pmlk_borrower == curthread)
5957 break;
5958 mutex_exit(&pm_loan_lock);
5959
5960 /* if this thread not already registered, it is safe to block */
5961 if (cur == NULL)
5962 ndi_devi_enter(dip);
5963 else {
5964 /* registered: does lender own the lock we want? */
5965 if (cur->pmlk_lender == DEVI(dip)->devi_busy_thread) {
5966 ASSERT(cur->pmlk_dip == NULL || cur->pmlk_dip == dip);
5967 cur->pmlk_dip = dip;
5968 } else /* no: just block for it */
5969 ndi_devi_enter(dip);
5970
5971 }
5972 }
5973
5974 /*
5975 * Drop the lock on the device's power state. See comment for
5976 * pm_lock_power_single() for special implementation considerations.
5977 *
5978 * Note: for use by ppm only.
5979 */
5980 void
pm_unlock_power_single(dev_info_t * dip)5981 pm_unlock_power_single(dev_info_t *dip)
5982 {
5983 lock_loan_t *cur;
5984
5985 /* optimization: mutex not needed to check empty list */
5986 if (lock_loan_head.pmlk_next == NULL) {
5987 ndi_devi_exit(dip);
5988 return;
5989 }
5990
5991 mutex_enter(&pm_loan_lock);
5992 /* see if our thread is registered as a lock borrower. */
5993 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next)
5994 if (cur->pmlk_borrower == curthread)
5995 break;
5996 mutex_exit(&pm_loan_lock);
5997
5998 if (cur == NULL || cur->pmlk_dip != dip)
5999 /* we acquired the lock directly, so return it */
6000 ndi_devi_exit(dip);
6001 }
6002
6003 /*
6004 * Try to take the lock for changing the power level of a component.
6005 *
6006 * Note: for use by ppm only.
6007 */
6008 int
pm_try_locking_power_single(dev_info_t * dip)6009 pm_try_locking_power_single(dev_info_t *dip)
6010 {
6011 return (ndi_devi_tryenter(dip));
6012 }
6013
6014 #ifdef DEBUG
6015 /*
6016 * The following are used only to print out data structures for debugging
6017 */
6018 void
prdeps(char * msg)6019 prdeps(char *msg)
6020 {
6021
6022 pm_pdr_t *rp;
6023 int i;
6024
6025 pm_log("pm_dep_head %s %p\n", msg, (void *)pm_dep_head);
6026 for (rp = pm_dep_head; rp; rp = rp->pdr_next) {
6027 pm_log("%p: %s keeper %s, kept %s, kept count %d, next %p\n",
6028 (void *)rp, (rp->pdr_isprop ? "property" : "device"),
6029 rp->pdr_keeper, rp->pdr_kept, rp->pdr_kept_count,
6030 (void *)rp->pdr_next);
6031 if (rp->pdr_kept_count != 0) {
6032 pm_log("kept list = ");
6033 i = 0;
6034 while (i < rp->pdr_kept_count) {
6035 pm_log("%s ", rp->pdr_kept_paths[i]);
6036 i++;
6037 }
6038 pm_log("\n");
6039 }
6040 }
6041 }
6042
6043 void
pr_noinvol(char * hdr)6044 pr_noinvol(char *hdr)
6045 {
6046 pm_noinvol_t *ip;
6047
6048 pm_log("%s\n", hdr);
6049 rw_enter(&pm_noinvol_rwlock, RW_READER);
6050 for (ip = pm_noinvol_head; ip; ip = ip->ni_next)
6051 pm_log("\tmaj %d, flags %x, noinvolpm %d %s\n",
6052 ip->ni_major, ip->ni_flags, ip->ni_noinvolpm, ip->ni_path);
6053 rw_exit(&pm_noinvol_rwlock);
6054 }
6055 #endif
6056
6057 /*
6058 * Attempt to apply the thresholds indicated by rp to the node specified by
6059 * dip.
6060 */
6061 void
pm_apply_recorded_thresh(dev_info_t * dip,pm_thresh_rec_t * rp)6062 pm_apply_recorded_thresh(dev_info_t *dip, pm_thresh_rec_t *rp)
6063 {
6064 PMD_FUNC(pmf, "apply_recorded_thresh")
6065 int i, j;
6066 int comps = PM_NUMCMPTS(dip);
6067 struct pm_component *cp;
6068 pm_pte_t *ep;
6069 int pm_valid_thresh(dev_info_t *, pm_thresh_rec_t *);
6070
6071 PMD(PMD_THRESH, ("%s: part: %s@%s(%s#%d), rp %p, %s\n", pmf,
6072 PM_DEVICE(dip), (void *)rp, rp->ptr_physpath))
6073 PM_LOCK_DIP(dip);
6074 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip) || !pm_valid_thresh(dip, rp)) {
6075 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_GET_PM_INFO %p\n",
6076 pmf, PM_DEVICE(dip), (void*)PM_GET_PM_INFO(dip)))
6077 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_ISBC %d\n",
6078 pmf, PM_DEVICE(dip), PM_ISBC(dip)))
6079 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) pm_valid_thresh %d\n",
6080 pmf, PM_DEVICE(dip), pm_valid_thresh(dip, rp)))
6081 PM_UNLOCK_DIP(dip);
6082 return;
6083 }
6084
6085 ep = rp->ptr_entries;
6086 /*
6087 * Here we do the special case of a device threshold
6088 */
6089 if (rp->ptr_numcomps == 0) { /* PM_SET_DEVICE_THRESHOLD product */
6090 ASSERT(ep && ep->pte_numthresh == 1);
6091 PMD(PMD_THRESH, ("%s: set dev thr %s@%s(%s#%d) to 0x%x\n",
6092 pmf, PM_DEVICE(dip), ep->pte_thresh[0]))
6093 PM_UNLOCK_DIP(dip);
6094 pm_set_device_threshold(dip, ep->pte_thresh[0], PMC_DEV_THRESH);
6095 if (PM_SCANABLE(dip))
6096 pm_rescan(dip);
6097 return;
6098 }
6099 for (i = 0; i < comps; i++) {
6100 cp = PM_CP(dip, i);
6101 for (j = 0; j < ep->pte_numthresh; j++) {
6102 PMD(PMD_THRESH, ("%s: set thr %d for %s@%s(%s#%d)[%d] "
6103 "to %x\n", pmf, j, PM_DEVICE(dip),
6104 i, ep->pte_thresh[j]))
6105 cp->pmc_comp.pmc_thresh[j + 1] = ep->pte_thresh[j];
6106 }
6107 ep++;
6108 }
6109 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE;
6110 DEVI(dip)->devi_pm_flags |= PMC_COMP_THRESH;
6111 PM_UNLOCK_DIP(dip);
6112
6113 if (PM_SCANABLE(dip))
6114 pm_rescan(dip);
6115 }
6116
6117 /*
6118 * Returns true if the threshold specified by rp could be applied to dip
6119 * (that is, the number of components and transitions are the same)
6120 */
6121 int
pm_valid_thresh(dev_info_t * dip,pm_thresh_rec_t * rp)6122 pm_valid_thresh(dev_info_t *dip, pm_thresh_rec_t *rp)
6123 {
6124 PMD_FUNC(pmf, "valid_thresh")
6125 int comps, i;
6126 pm_component_t *cp;
6127 pm_pte_t *ep;
6128
6129 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip)) {
6130 PMD(PMD_ERROR, ("%s: %s: no pm_info or BC\n", pmf,
6131 rp->ptr_physpath))
6132 return (0);
6133 }
6134 /*
6135 * Special case: we represent the PM_SET_DEVICE_THRESHOLD case by
6136 * an entry with numcomps == 0, (since we don't know how many
6137 * components there are in advance). This is always a valid
6138 * spec.
6139 */
6140 if (rp->ptr_numcomps == 0) {
6141 ASSERT(rp->ptr_entries && rp->ptr_entries->pte_numthresh == 1);
6142 return (1);
6143 }
6144 if (rp->ptr_numcomps != (comps = PM_NUMCMPTS(dip))) {
6145 PMD(PMD_ERROR, ("%s: comp # mm (dip %d cmd %d) for %s\n",
6146 pmf, PM_NUMCMPTS(dip), rp->ptr_numcomps, rp->ptr_physpath))
6147 return (0);
6148 }
6149 ep = rp->ptr_entries;
6150 for (i = 0; i < comps; i++) {
6151 cp = PM_CP(dip, i);
6152 if ((ep + i)->pte_numthresh !=
6153 cp->pmc_comp.pmc_numlevels - 1) {
6154 PMD(PMD_ERROR, ("%s: %s[%d]: thresh=%d, record=%d\n",
6155 pmf, rp->ptr_physpath, i,
6156 cp->pmc_comp.pmc_numlevels - 1,
6157 (ep + i)->pte_numthresh))
6158 return (0);
6159 }
6160 }
6161 return (1);
6162 }
6163
6164 /*
6165 * Remove any recorded threshold for device physpath
6166 * We know there will be at most one.
6167 */
6168 void
pm_unrecord_threshold(char * physpath)6169 pm_unrecord_threshold(char *physpath)
6170 {
6171 pm_thresh_rec_t *pptr, *ptr;
6172
6173 rw_enter(&pm_thresh_rwlock, RW_WRITER);
6174 for (pptr = NULL, ptr = pm_thresh_head; ptr; ptr = ptr->ptr_next) {
6175 if (strcmp(physpath, ptr->ptr_physpath) == 0) {
6176 if (pptr) {
6177 pptr->ptr_next = ptr->ptr_next;
6178 } else {
6179 ASSERT(pm_thresh_head == ptr);
6180 pm_thresh_head = ptr->ptr_next;
6181 }
6182 kmem_free(ptr, ptr->ptr_size);
6183 break;
6184 }
6185 pptr = ptr;
6186 }
6187 rw_exit(&pm_thresh_rwlock);
6188 }
6189
6190 /*
6191 * Discard all recorded thresholds. We are returning to the default pm state.
6192 */
6193 void
pm_discard_thresholds(void)6194 pm_discard_thresholds(void)
6195 {
6196 pm_thresh_rec_t *rp;
6197 rw_enter(&pm_thresh_rwlock, RW_WRITER);
6198 while (pm_thresh_head) {
6199 rp = pm_thresh_head;
6200 pm_thresh_head = rp->ptr_next;
6201 kmem_free(rp, rp->ptr_size);
6202 }
6203 rw_exit(&pm_thresh_rwlock);
6204 }
6205
6206 /*
6207 * Discard all recorded dependencies. We are returning to the default pm state.
6208 */
6209 void
pm_discard_dependencies(void)6210 pm_discard_dependencies(void)
6211 {
6212 pm_pdr_t *rp;
6213 int i;
6214 size_t length;
6215
6216 #ifdef DEBUG
6217 if (pm_debug & PMD_DEP)
6218 prdeps("Before discard\n");
6219 #endif
6220 ddi_walk_devs(ddi_root_node(), pm_discard_dep_walk, NULL);
6221
6222 #ifdef DEBUG
6223 if (pm_debug & PMD_DEP)
6224 prdeps("After discard\n");
6225 #endif
6226 while (pm_dep_head) {
6227 rp = pm_dep_head;
6228 if (!rp->pdr_isprop) {
6229 ASSERT(rp->pdr_satisfied == 0);
6230 ASSERT(pm_unresolved_deps);
6231 pm_unresolved_deps--;
6232 } else {
6233 ASSERT(pm_prop_deps);
6234 pm_prop_deps--;
6235 }
6236 pm_dep_head = rp->pdr_next;
6237 if (rp->pdr_kept_count) {
6238 for (i = 0; i < rp->pdr_kept_count; i++) {
6239 length = strlen(rp->pdr_kept_paths[i]) + 1;
6240 kmem_free(rp->pdr_kept_paths[i], length);
6241 }
6242 kmem_free(rp->pdr_kept_paths,
6243 rp->pdr_kept_count * sizeof (char **));
6244 }
6245 kmem_free(rp, rp->pdr_size);
6246 }
6247 }
6248
6249
6250 static int
pm_discard_dep_walk(dev_info_t * dip,void * arg)6251 pm_discard_dep_walk(dev_info_t *dip, void *arg)
6252 {
6253 _NOTE(ARGUNUSED(arg))
6254 char *pathbuf;
6255
6256 if (PM_GET_PM_INFO(dip) == NULL)
6257 return (DDI_WALK_CONTINUE);
6258 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6259 (void) ddi_pathname(dip, pathbuf);
6260 pm_free_keeper(pathbuf, 0);
6261 kmem_free(pathbuf, MAXPATHLEN);
6262 return (DDI_WALK_CONTINUE);
6263 }
6264
6265 static int
pm_kept_walk(dev_info_t * dip,void * arg)6266 pm_kept_walk(dev_info_t *dip, void *arg)
6267 {
6268 _NOTE(ARGUNUSED(arg))
6269 char *pathbuf;
6270
6271 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6272 (void) ddi_pathname(dip, pathbuf);
6273 (void) pm_kept(pathbuf);
6274 kmem_free(pathbuf, MAXPATHLEN);
6275
6276 return (DDI_WALK_CONTINUE);
6277 }
6278
6279 static int
pm_keeper_walk(dev_info_t * dip,void * arg)6280 pm_keeper_walk(dev_info_t *dip, void *arg)
6281 {
6282 _NOTE(ARGUNUSED(arg))
6283 char *pathbuf;
6284
6285 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6286 (void) ddi_pathname(dip, pathbuf);
6287 (void) pm_keeper(pathbuf);
6288 kmem_free(pathbuf, MAXPATHLEN);
6289
6290 return (DDI_WALK_CONTINUE);
6291 }
6292
6293 static char *
pdw_type_decode(int type)6294 pdw_type_decode(int type)
6295 {
6296 switch (type) {
6297 case PM_DEP_WK_POWER_ON:
6298 return ("power on");
6299 case PM_DEP_WK_POWER_OFF:
6300 return ("power off");
6301 case PM_DEP_WK_DETACH:
6302 return ("detach");
6303 case PM_DEP_WK_REMOVE_DEP:
6304 return ("remove dep");
6305 case PM_DEP_WK_BRINGUP_SELF:
6306 return ("bringup self");
6307 case PM_DEP_WK_RECORD_KEEPER:
6308 return ("add dependent");
6309 case PM_DEP_WK_RECORD_KEEPER_PROP:
6310 return ("add dependent property");
6311 case PM_DEP_WK_KEPT:
6312 return ("kept");
6313 case PM_DEP_WK_KEEPER:
6314 return ("keeper");
6315 case PM_DEP_WK_ATTACH:
6316 return ("attach");
6317 case PM_DEP_WK_CHECK_KEPT:
6318 return ("check kept");
6319 case PM_DEP_WK_CPR_SUSPEND:
6320 return ("suspend");
6321 case PM_DEP_WK_CPR_RESUME:
6322 return ("resume");
6323 default:
6324 return ("unknown");
6325 }
6326
6327 }
6328
6329 static void
pm_rele_dep(char * keeper)6330 pm_rele_dep(char *keeper)
6331 {
6332 PMD_FUNC(pmf, "rele_dep")
6333 pm_pdr_t *dp;
6334 char *kept_path = NULL;
6335 dev_info_t *kept = NULL;
6336 int count = 0;
6337
6338 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
6339 if (strcmp(dp->pdr_keeper, keeper) != 0)
6340 continue;
6341 for (count = 0; count < dp->pdr_kept_count; count++) {
6342 kept_path = dp->pdr_kept_paths[count];
6343 if (kept_path == NULL)
6344 continue;
6345 kept = pm_name_to_dip(kept_path, 1);
6346 if (kept) {
6347 PMD(PMD_KEEPS, ("%s: release kept=%s@%s(%s#%d) "
6348 "of keeper=%s\n", pmf, PM_DEVICE(kept),
6349 keeper))
6350 ASSERT(DEVI(kept)->devi_pm_kidsupcnt > 0);
6351 pm_rele_power(kept);
6352 ddi_release_devi(kept);
6353 }
6354 }
6355 }
6356 }
6357
6358 /*
6359 * Called when we are just released from direct PM. Bring ourself up
6360 * if our keeper is up since dependency is not honored while a kept
6361 * device is under direct PM.
6362 */
6363 static void
pm_bring_self_up(char * keptpath)6364 pm_bring_self_up(char *keptpath)
6365 {
6366 PMD_FUNC(pmf, "bring_self_up")
6367 dev_info_t *kept;
6368 dev_info_t *keeper;
6369 pm_pdr_t *dp;
6370 int i, j;
6371 int up = 0;
6372
6373 kept = pm_name_to_dip(keptpath, 1);
6374 if (kept == NULL)
6375 return;
6376 PMD(PMD_KEEPS, ("%s: kept=%s@%s(%s#%d)\n", pmf, PM_DEVICE(kept)))
6377 for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
6378 if (dp->pdr_kept_count == 0)
6379 continue;
6380 for (i = 0; i < dp->pdr_kept_count; i++) {
6381 if (strcmp(dp->pdr_kept_paths[i], keptpath) != 0)
6382 continue;
6383 keeper = pm_name_to_dip(dp->pdr_keeper, 1);
6384 if (keeper) {
6385 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d)\n",
6386 pmf, PM_DEVICE(keeper)))
6387 PM_LOCK_POWER(keeper);
6388 for (j = 0; j < PM_NUMCMPTS(keeper);
6389 j++) {
6390 if (PM_CURPOWER(keeper, j)) {
6391 PMD(PMD_KEEPS, ("%s: comp="
6392 "%d is up\n", pmf, j))
6393 up++;
6394 }
6395 }
6396 if (up) {
6397 if (PM_SKBU(kept))
6398 DEVI(kept)->devi_pm_flags &=
6399 ~PMC_SKIP_BRINGUP;
6400 bring_pmdep_up(kept, 1);
6401 }
6402 PM_UNLOCK_POWER(keeper);
6403 ddi_release_devi(keeper);
6404 }
6405 }
6406 }
6407 ddi_release_devi(kept);
6408 }
6409
6410 static void
pm_process_dep_request(pm_dep_wk_t * work)6411 pm_process_dep_request(pm_dep_wk_t *work)
6412 {
6413 PMD_FUNC(pmf, "dep_req")
6414 int ret;
6415
6416 PMD(PMD_DEP, ("%s: work=%s\n", pmf,
6417 pdw_type_decode(work->pdw_type)))
6418 PMD(PMD_DEP, ("%s: keeper=%s, kept=%s\n", pmf,
6419 (work->pdw_keeper ? work->pdw_keeper : "NULL"),
6420 (work->pdw_kept ? work->pdw_kept : "NULL")))
6421
6422 ret = 0;
6423 switch (work->pdw_type) {
6424 case PM_DEP_WK_POWER_ON:
6425 /* Bring up the kept devices and put a hold on them */
6426 bring_wekeeps_up(work->pdw_keeper);
6427 break;
6428 case PM_DEP_WK_POWER_OFF:
6429 /* Release the kept devices */
6430 pm_rele_dep(work->pdw_keeper);
6431 break;
6432 case PM_DEP_WK_DETACH:
6433 pm_free_keeps(work->pdw_keeper, work->pdw_pwr);
6434 break;
6435 case PM_DEP_WK_REMOVE_DEP:
6436 pm_discard_dependencies();
6437 break;
6438 case PM_DEP_WK_BRINGUP_SELF:
6439 /*
6440 * We deferred satisfying our dependency till now, so satisfy
6441 * it again and bring ourselves up.
6442 */
6443 pm_bring_self_up(work->pdw_kept);
6444 break;
6445 case PM_DEP_WK_RECORD_KEEPER:
6446 (void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 0);
6447 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL);
6448 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL);
6449 break;
6450 case PM_DEP_WK_RECORD_KEEPER_PROP:
6451 (void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 1);
6452 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL);
6453 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL);
6454 break;
6455 case PM_DEP_WK_KEPT:
6456 ret = pm_kept(work->pdw_kept);
6457 PMD(PMD_DEP, ("%s: PM_DEP_WK_KEPT: pm_kept returns %d\n", pmf,
6458 ret))
6459 break;
6460 case PM_DEP_WK_KEEPER:
6461 ret = pm_keeper(work->pdw_keeper);
6462 PMD(PMD_DEP, ("%s: PM_DEP_WK_KEEPER: pm_keeper returns %d\n",
6463 pmf, ret))
6464 break;
6465 case PM_DEP_WK_ATTACH:
6466 ret = pm_keeper(work->pdw_keeper);
6467 PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_keeper returns %d\n",
6468 pmf, ret))
6469 ret = pm_kept(work->pdw_kept);
6470 PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_kept returns %d\n",
6471 pmf, ret))
6472 break;
6473 case PM_DEP_WK_CHECK_KEPT:
6474 ret = pm_is_kept(work->pdw_kept);
6475 PMD(PMD_DEP, ("%s: PM_DEP_WK_CHECK_KEPT: kept=%s, ret=%d\n",
6476 pmf, work->pdw_kept, ret))
6477 break;
6478 case PM_DEP_WK_CPR_SUSPEND:
6479 pm_discard_dependencies();
6480 break;
6481 case PM_DEP_WK_CPR_RESUME:
6482 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL);
6483 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL);
6484 break;
6485 default:
6486 ASSERT(0);
6487 break;
6488 }
6489 /*
6490 * Free the work structure if the requester is not waiting
6491 * Otherwise it is the requester's responsiblity to free it.
6492 */
6493 if (!work->pdw_wait) {
6494 if (work->pdw_keeper)
6495 kmem_free(work->pdw_keeper,
6496 strlen(work->pdw_keeper) + 1);
6497 if (work->pdw_kept)
6498 kmem_free(work->pdw_kept, strlen(work->pdw_kept) + 1);
6499 kmem_free(work, sizeof (pm_dep_wk_t));
6500 } else {
6501 /*
6502 * Notify requester if it is waiting for it.
6503 */
6504 work->pdw_ret = ret;
6505 work->pdw_done = 1;
6506 cv_signal(&work->pdw_cv);
6507 }
6508 }
6509
6510 /*
6511 * Process PM dependency requests.
6512 */
6513 static void
pm_dep_thread(void)6514 pm_dep_thread(void)
6515 {
6516 pm_dep_wk_t *work;
6517 callb_cpr_t cprinfo;
6518
6519 CALLB_CPR_INIT(&cprinfo, &pm_dep_thread_lock, callb_generic_cpr,
6520 "pm_dep_thread");
6521 for (;;) {
6522 mutex_enter(&pm_dep_thread_lock);
6523 if (pm_dep_thread_workq == NULL) {
6524 CALLB_CPR_SAFE_BEGIN(&cprinfo);
6525 cv_wait(&pm_dep_thread_cv, &pm_dep_thread_lock);
6526 CALLB_CPR_SAFE_END(&cprinfo, &pm_dep_thread_lock);
6527 }
6528 work = pm_dep_thread_workq;
6529 pm_dep_thread_workq = work->pdw_next;
6530 if (pm_dep_thread_tail == work)
6531 pm_dep_thread_tail = work->pdw_next;
6532 mutex_exit(&pm_dep_thread_lock);
6533 pm_process_dep_request(work);
6534
6535 }
6536 /*NOTREACHED*/
6537 }
6538
6539 /*
6540 * Set the power level of the indicated device to unknown (if it is not a
6541 * backwards compatible device), as it has just been resumed, and it won't
6542 * know if the power was removed or not. Adjust parent's kidsupcnt if necessary.
6543 */
6544 void
pm_forget_power_level(dev_info_t * dip)6545 pm_forget_power_level(dev_info_t *dip)
6546 {
6547 dev_info_t *pdip = ddi_get_parent(dip);
6548 int i, count = 0;
6549
6550 if (!PM_ISBC(dip)) {
6551 for (i = 0; i < PM_NUMCMPTS(dip); i++)
6552 count += (PM_CURPOWER(dip, i) == 0);
6553
6554 if (count && pdip && !PM_WANTS_NOTIFICATION(pdip))
6555 e_pm_hold_rele_power(pdip, count);
6556
6557 /*
6558 * Count this as a power cycle if we care
6559 */
6560 if (DEVI(dip)->devi_pm_volpmd &&
6561 PM_CP(dip, 0)->pmc_cur_pwr == 0)
6562 DEVI(dip)->devi_pm_volpmd = 0;
6563 for (i = 0; i < PM_NUMCMPTS(dip); i++)
6564 e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN);
6565 }
6566 }
6567
6568 /*
6569 * This function advises the caller whether it should make a power-off
6570 * transition at this time or not. If the transition is not advised
6571 * at this time, the time that the next power-off transition can
6572 * be made from now is returned through "intervalp" pointer.
6573 * This function returns:
6574 *
6575 * 1 power-off advised
6576 * 0 power-off not advised, intervalp will point to seconds from
6577 * now that a power-off is advised. If it is passed the number
6578 * of years that policy specifies the device should last,
6579 * a large number is returned as the time interval.
6580 * -1 error
6581 */
6582 int
pm_trans_check(struct pm_trans_data * datap,time_t * intervalp)6583 pm_trans_check(struct pm_trans_data *datap, time_t *intervalp)
6584 {
6585 PMD_FUNC(pmf, "pm_trans_check")
6586 char dbuf[DC_SCSI_MFR_LEN];
6587 struct pm_scsi_cycles *scp;
6588 int service_years, service_weeks, full_years;
6589 time_t now, service_seconds, tdiff;
6590 time_t within_year, when_allowed;
6591 char *ptr;
6592 int lower_bound_cycles, upper_bound_cycles, cycles_allowed;
6593 int cycles_diff, cycles_over;
6594 struct pm_smart_count *smart_p;
6595
6596 if (datap == NULL) {
6597 PMD(PMD_TCHECK, ("%s: NULL data pointer!\n", pmf))
6598 return (-1);
6599 }
6600
6601 if (datap->format == DC_SCSI_FORMAT) {
6602 /*
6603 * Power cycles of the scsi drives are distributed
6604 * over 5 years with the following percentage ratio:
6605 *
6606 * 30%, 25%, 20%, 15%, and 10%
6607 *
6608 * The power cycle quota for each year is distributed
6609 * linearly through out the year. The equation for
6610 * determining the expected cycles is:
6611 *
6612 * e = a * (n / y)
6613 *
6614 * e = expected cycles
6615 * a = allocated cycles for this year
6616 * n = number of seconds since beginning of this year
6617 * y = number of seconds in a year
6618 *
6619 * Note that beginning of the year starts the day that
6620 * the drive has been put on service.
6621 *
6622 * If the drive has passed its expected cycles, we
6623 * can determine when it can start to power cycle
6624 * again to keep it on track to meet the 5-year
6625 * life expectancy. The equation for determining
6626 * when to power cycle is:
6627 *
6628 * w = y * (c / a)
6629 *
6630 * w = when it can power cycle again
6631 * y = number of seconds in a year
6632 * c = current number of cycles
6633 * a = allocated cycles for the year
6634 *
6635 */
6636 char pcnt[DC_SCSI_NPY] = { 30, 55, 75, 90, 100 };
6637
6638 scp = &datap->un.scsi_cycles;
6639 PMD(PMD_TCHECK, ("%s: format=%d, lifemax=%d, ncycles=%d, "
6640 "svc_date=%s, svc_flag=%d\n", pmf, datap->format,
6641 scp->lifemax, scp->ncycles, scp->svc_date, scp->flag))
6642 if (scp->ncycles < 0 || scp->flag != 0) {
6643 PMD(PMD_TCHECK, ("%s: ncycles < 0 || flag != 0\n", pmf))
6644 return (-1);
6645 }
6646
6647 if (scp->ncycles > scp->lifemax) {
6648 *intervalp = (LONG_MAX / hz);
6649 return (0);
6650 }
6651
6652 /*
6653 * convert service date to time_t
6654 */
6655 bcopy(scp->svc_date, dbuf, DC_SCSI_YEAR_LEN);
6656 dbuf[DC_SCSI_YEAR_LEN] = '\0';
6657 ptr = dbuf;
6658 service_years = stoi(&ptr) - EPOCH_YEAR;
6659 bcopy(&scp->svc_date[DC_SCSI_YEAR_LEN], dbuf,
6660 DC_SCSI_WEEK_LEN);
6661 dbuf[DC_SCSI_WEEK_LEN] = '\0';
6662
6663 /*
6664 * scsi standard does not specify WW data,
6665 * could be (00-51) or (01-52)
6666 */
6667 ptr = dbuf;
6668 service_weeks = stoi(&ptr);
6669 if (service_years < 0 ||
6670 service_weeks < 0 || service_weeks > 52) {
6671 PMD(PMD_TCHECK, ("%s: service year %d and week %d\n",
6672 pmf, service_years, service_weeks))
6673 return (-1);
6674 }
6675
6676 /*
6677 * calculate service date in seconds-since-epoch,
6678 * adding one day for each leap-year.
6679 *
6680 * (years-since-epoch + 2) fixes integer truncation,
6681 * example: (8) leap-years during [1972, 2000]
6682 * (2000 - 1970) = 30; and (30 + 2) / 4 = 8;
6683 */
6684 service_seconds = (service_years * DC_SPY) +
6685 (service_weeks * DC_SPW) +
6686 (((service_years + 2) / 4) * DC_SPD);
6687
6688 now = gethrestime_sec();
6689 /*
6690 * since the granularity of 'svc_date' is day not second,
6691 * 'now' should be rounded up to full day.
6692 */
6693 now = ((now + DC_SPD -1) / DC_SPD) * DC_SPD;
6694 if (service_seconds > now) {
6695 PMD(PMD_TCHECK, ("%s: service date (%ld) later "
6696 "than now (%ld)!\n", pmf, service_seconds, now))
6697 return (-1);
6698 }
6699
6700 tdiff = now - service_seconds;
6701 PMD(PMD_TCHECK, ("%s: age is %ld sec\n", pmf, tdiff))
6702
6703 /*
6704 * NOTE - Leap years are not considered in the calculations
6705 * below.
6706 */
6707 full_years = (tdiff / DC_SPY);
6708 if ((full_years >= DC_SCSI_NPY) &&
6709 (scp->ncycles <= scp->lifemax))
6710 return (1);
6711
6712 /*
6713 * Determine what is the normal cycle usage for the
6714 * device at the beginning and the end of this year.
6715 */
6716 lower_bound_cycles = (!full_years) ? 0 :
6717 ((scp->lifemax * pcnt[full_years - 1]) / 100);
6718 upper_bound_cycles = (scp->lifemax * pcnt[full_years]) / 100;
6719
6720 if (scp->ncycles <= lower_bound_cycles)
6721 return (1);
6722
6723 /*
6724 * The linear slope that determines how many cycles
6725 * are allowed this year is number of seconds
6726 * passed this year over total number of seconds in a year.
6727 */
6728 cycles_diff = (upper_bound_cycles - lower_bound_cycles);
6729 within_year = (tdiff % DC_SPY);
6730 cycles_allowed = lower_bound_cycles +
6731 (((uint64_t)cycles_diff * (uint64_t)within_year) / DC_SPY);
6732 PMD(PMD_TCHECK, ("%s: lived %d yrs and %ld secs\n", pmf,
6733 full_years, within_year))
6734 PMD(PMD_TCHECK, ("%s: # of cycles allowed %d\n", pmf,
6735 cycles_allowed))
6736
6737 if (scp->ncycles <= cycles_allowed)
6738 return (1);
6739
6740 /*
6741 * The transition is not advised now but we can
6742 * determine when the next transition can be made.
6743 *
6744 * Depending on how many cycles the device has been
6745 * over-used, we may need to skip years with
6746 * different percentage quota in order to determine
6747 * when the next transition can be made.
6748 */
6749 cycles_over = (scp->ncycles - lower_bound_cycles);
6750 while (cycles_over > cycles_diff) {
6751 full_years++;
6752 if (full_years >= DC_SCSI_NPY) {
6753 *intervalp = (LONG_MAX / hz);
6754 return (0);
6755 }
6756 cycles_over -= cycles_diff;
6757 lower_bound_cycles = upper_bound_cycles;
6758 upper_bound_cycles =
6759 (scp->lifemax * pcnt[full_years]) / 100;
6760 cycles_diff = (upper_bound_cycles - lower_bound_cycles);
6761 }
6762
6763 /*
6764 * The linear slope that determines when the next transition
6765 * can be made is the relative position of used cycles within a
6766 * year over total number of cycles within that year.
6767 */
6768 when_allowed = service_seconds + (full_years * DC_SPY) +
6769 (((uint64_t)DC_SPY * (uint64_t)cycles_over) / cycles_diff);
6770 *intervalp = (when_allowed - now);
6771 if (*intervalp > (LONG_MAX / hz))
6772 *intervalp = (LONG_MAX / hz);
6773 PMD(PMD_TCHECK, ("%s: no cycle is allowed in %ld secs\n", pmf,
6774 *intervalp))
6775 return (0);
6776 } else if (datap->format == DC_SMART_FORMAT) {
6777 /*
6778 * power cycles of SATA disks are reported from SMART
6779 * attributes.
6780 */
6781 smart_p = &datap->un.smart_count;
6782 if (smart_p->consumed >= smart_p->allowed) {
6783 *intervalp = (LONG_MAX / hz);
6784 PMD(PMD_TCHECK, ("%s: exceeded lifemax cycles.\n", pmf))
6785 return (0);
6786 } else
6787 return (1);
6788 }
6789
6790 PMD(PMD_TCHECK, ("%s: unknown format!\n", pmf))
6791 return (-1);
6792 }
6793
6794 /*
6795 * Nexus drivers call into pm framework to indicate which child driver is about
6796 * to be installed. In some platforms, ppm may need to configure the hardware
6797 * for successful installation of a driver.
6798 */
6799 int
pm_init_child(dev_info_t * dip)6800 pm_init_child(dev_info_t *dip)
6801 {
6802 power_req_t power_req;
6803
6804 ASSERT(ddi_binding_name(dip));
6805 ASSERT(ddi_get_name_addr(dip));
6806 pm_ppm_claim(dip);
6807 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */
6808 power_req.request_type = PMR_PPM_INIT_CHILD;
6809 power_req.req.ppm_config_req.who = dip;
6810 ASSERT(PPM(dip) != NULL);
6811 return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req,
6812 NULL));
6813 } else {
6814 #ifdef DEBUG
6815 /* pass it to the default handler so we can debug things */
6816 power_req.request_type = PMR_PPM_INIT_CHILD;
6817 power_req.req.ppm_config_req.who = dip;
6818 (void) pm_ctlops(NULL, dip,
6819 DDI_CTLOPS_POWER, &power_req, NULL);
6820 #endif
6821 }
6822 return (DDI_SUCCESS);
6823 }
6824
6825 /*
6826 * Bring parent of a node that is about to be probed up to full power, and
6827 * arrange for it to stay up until pm_post_probe() or pm_post_attach() decide
6828 * it is time to let it go down again
6829 */
6830 void
pm_pre_probe(dev_info_t * dip,pm_ppm_cookie_t * cp)6831 pm_pre_probe(dev_info_t *dip, pm_ppm_cookie_t *cp)
6832 {
6833 int result;
6834 power_req_t power_req;
6835
6836 bzero(cp, sizeof (*cp));
6837 cp->ppc_dip = dip;
6838
6839 pm_ppm_claim(dip);
6840 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */
6841 power_req.request_type = PMR_PPM_PRE_PROBE;
6842 power_req.req.ppm_config_req.who = dip;
6843 ASSERT(PPM(dip) != NULL);
6844 (void) pm_ctlops(PPM(dip), dip,
6845 DDI_CTLOPS_POWER, &power_req, &result);
6846 cp->ppc_ppm = PPM(dip);
6847 } else {
6848 #ifdef DEBUG
6849 /* pass it to the default handler so we can debug things */
6850 power_req.request_type = PMR_PPM_PRE_PROBE;
6851 power_req.req.ppm_config_req.who = dip;
6852 (void) pm_ctlops(NULL, dip,
6853 DDI_CTLOPS_POWER, &power_req, &result);
6854 #endif
6855 cp->ppc_ppm = NULL;
6856 }
6857 }
6858
6859 int
pm_pre_config(dev_info_t * dip,char * devnm)6860 pm_pre_config(dev_info_t *dip, char *devnm)
6861 {
6862 PMD_FUNC(pmf, "pre_config")
6863 int ret;
6864
6865 if (MDI_VHCI(dip)) {
6866 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
6867 ret = mdi_power(dip, MDI_PM_PRE_CONFIG, NULL, devnm, 0);
6868 return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
6869 } else if (!PM_GET_PM_INFO(dip))
6870 return (DDI_SUCCESS);
6871
6872 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
6873 pm_hold_power(dip);
6874 ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK);
6875 if (ret != DDI_SUCCESS)
6876 pm_rele_power(dip);
6877 return (ret);
6878 }
6879
6880 /*
6881 * This routine is called by devfs during its walk to unconfigue a node.
6882 * If the call is due to auto mod_unloads and the dip is not at its
6883 * full power, we return DDI_FAILURE to terminate the walk, otherwise
6884 * return DDI_SUCCESS.
6885 */
6886 int
pm_pre_unconfig(dev_info_t * dip,int flags,int * held,char * devnm)6887 pm_pre_unconfig(dev_info_t *dip, int flags, int *held, char *devnm)
6888 {
6889 PMD_FUNC(pmf, "pre_unconfig")
6890 int ret;
6891
6892 if (MDI_VHCI(dip)) {
6893 PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf,
6894 PM_DEVICE(dip), flags))
6895 ret = mdi_power(dip, MDI_PM_PRE_UNCONFIG, held, devnm, flags);
6896 return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
6897 } else if (!PM_GET_PM_INFO(dip))
6898 return (DDI_SUCCESS);
6899
6900 PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf, PM_DEVICE(dip),
6901 flags))
6902 *held = 0;
6903
6904 /*
6905 * If the dip is a leaf node, don't power it up.
6906 */
6907 if (!ddi_get_child(dip))
6908 return (DDI_SUCCESS);
6909
6910 /*
6911 * Do not power up the node if it is called due to auto-modunload.
6912 */
6913 if ((flags & NDI_AUTODETACH) && !pm_all_at_normal(dip))
6914 return (DDI_FAILURE);
6915
6916 pm_hold_power(dip);
6917 *held = 1;
6918 ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK);
6919 if (ret != DDI_SUCCESS) {
6920 pm_rele_power(dip);
6921 *held = 0;
6922 }
6923 return (ret);
6924 }
6925
6926 /*
6927 * Notify ppm of attach action. Parent is already held at full power by
6928 * probe action.
6929 */
6930 void
pm_pre_attach(dev_info_t * dip,pm_ppm_cookie_t * cp,ddi_attach_cmd_t cmd)6931 pm_pre_attach(dev_info_t *dip, pm_ppm_cookie_t *cp, ddi_attach_cmd_t cmd)
6932 {
6933 static char *me = "pm_pre_attach";
6934 power_req_t power_req;
6935 int result;
6936
6937 /*
6938 * Initialize and fill in the PPM cookie
6939 */
6940 bzero(cp, sizeof (*cp));
6941 cp->ppc_cmd = (int)cmd;
6942 cp->ppc_ppm = PPM(dip);
6943 cp->ppc_dip = dip;
6944
6945 /*
6946 * DDI_ATTACH and DDI_RESUME cmds need to call platform specific
6947 * Power Management stuff. DDI_RESUME also has to purge it's
6948 * powerlevel information.
6949 */
6950 switch (cmd) {
6951 case DDI_ATTACH:
6952 if (cp->ppc_ppm) { /* if ppm driver claims the node */
6953 power_req.request_type = PMR_PPM_PRE_ATTACH;
6954 power_req.req.ppm_config_req.who = dip;
6955 ASSERT(PPM(dip));
6956 (void) pm_ctlops(cp->ppc_ppm, dip, DDI_CTLOPS_POWER,
6957 &power_req, &result);
6958 }
6959 #ifdef DEBUG
6960 else {
6961 power_req.request_type = PMR_PPM_PRE_ATTACH;
6962 power_req.req.ppm_config_req.who = dip;
6963 (void) pm_ctlops(NULL, dip,
6964 DDI_CTLOPS_POWER, &power_req, &result);
6965 }
6966 #endif
6967 break;
6968 case DDI_RESUME:
6969 pm_forget_power_level(dip);
6970
6971 if (cp->ppc_ppm) { /* if ppm driver claims the node */
6972 power_req.request_type = PMR_PPM_PRE_RESUME;
6973 power_req.req.resume_req.who = cp->ppc_dip;
6974 power_req.req.resume_req.cmd =
6975 (ddi_attach_cmd_t)cp->ppc_cmd;
6976 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm);
6977 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip,
6978 DDI_CTLOPS_POWER, &power_req, &result);
6979 }
6980 #ifdef DEBUG
6981 else {
6982 power_req.request_type = PMR_PPM_PRE_RESUME;
6983 power_req.req.resume_req.who = cp->ppc_dip;
6984 power_req.req.resume_req.cmd =
6985 (ddi_attach_cmd_t)cp->ppc_cmd;
6986 (void) pm_ctlops(NULL, cp->ppc_dip,
6987 DDI_CTLOPS_POWER, &power_req, &result);
6988 }
6989 #endif
6990 break;
6991
6992 case DDI_PM_RESUME:
6993 break;
6994
6995 default:
6996 panic(me);
6997 }
6998 }
6999
7000 /*
7001 * Nexus drivers call into pm framework to indicate which child driver is
7002 * being uninstalled. In some platforms, ppm may need to reconfigure the
7003 * hardware since the device driver is no longer installed.
7004 */
7005 int
pm_uninit_child(dev_info_t * dip)7006 pm_uninit_child(dev_info_t *dip)
7007 {
7008 power_req_t power_req;
7009
7010 ASSERT(ddi_binding_name(dip));
7011 ASSERT(ddi_get_name_addr(dip));
7012 pm_ppm_claim(dip);
7013 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */
7014 power_req.request_type = PMR_PPM_UNINIT_CHILD;
7015 power_req.req.ppm_config_req.who = dip;
7016 ASSERT(PPM(dip));
7017 return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req,
7018 NULL));
7019 } else {
7020 #ifdef DEBUG
7021 /* pass it to the default handler so we can debug things */
7022 power_req.request_type = PMR_PPM_UNINIT_CHILD;
7023 power_req.req.ppm_config_req.who = dip;
7024 (void) pm_ctlops(NULL, dip, DDI_CTLOPS_POWER, &power_req, NULL);
7025 #endif
7026 }
7027 return (DDI_SUCCESS);
7028 }
7029 /*
7030 * Decrement kidsupcnt so scan can turn the parent back off if it is idle
7031 * Also notify ppm of result of probe if there is a ppm that cares
7032 */
7033 void
pm_post_probe(pm_ppm_cookie_t * cp,int ret,int probe_failed)7034 pm_post_probe(pm_ppm_cookie_t *cp, int ret, int probe_failed)
7035 {
7036 _NOTE(ARGUNUSED(probe_failed))
7037 int result;
7038 power_req_t power_req;
7039
7040 if (cp->ppc_ppm) { /* if ppm driver claims the node */
7041 power_req.request_type = PMR_PPM_POST_PROBE;
7042 power_req.req.ppm_config_req.who = cp->ppc_dip;
7043 power_req.req.ppm_config_req.result = ret;
7044 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm);
7045 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, DDI_CTLOPS_POWER,
7046 &power_req, &result);
7047 }
7048 #ifdef DEBUG
7049 else {
7050 power_req.request_type = PMR_PPM_POST_PROBE;
7051 power_req.req.ppm_config_req.who = cp->ppc_dip;
7052 power_req.req.ppm_config_req.result = ret;
7053 (void) pm_ctlops(NULL, cp->ppc_dip, DDI_CTLOPS_POWER,
7054 &power_req, &result);
7055 }
7056 #endif
7057 }
7058
7059 void
pm_post_config(dev_info_t * dip,char * devnm)7060 pm_post_config(dev_info_t *dip, char *devnm)
7061 {
7062 PMD_FUNC(pmf, "post_config")
7063
7064 if (MDI_VHCI(dip)) {
7065 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
7066 (void) mdi_power(dip, MDI_PM_POST_CONFIG, NULL, devnm, 0);
7067 return;
7068 } else if (!PM_GET_PM_INFO(dip))
7069 return;
7070
7071 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
7072 pm_rele_power(dip);
7073 }
7074
7075 void
pm_post_unconfig(dev_info_t * dip,int held,char * devnm)7076 pm_post_unconfig(dev_info_t *dip, int held, char *devnm)
7077 {
7078 PMD_FUNC(pmf, "post_unconfig")
7079
7080 if (MDI_VHCI(dip)) {
7081 PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf,
7082 PM_DEVICE(dip), held))
7083 (void) mdi_power(dip, MDI_PM_POST_UNCONFIG, &held, devnm, 0);
7084 return;
7085 } else if (!PM_GET_PM_INFO(dip))
7086 return;
7087
7088 PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf, PM_DEVICE(dip),
7089 held))
7090 if (!held)
7091 return;
7092 /*
7093 * We have held power in pre_unconfig, release it here.
7094 */
7095 pm_rele_power(dip);
7096 }
7097
7098 /*
7099 * Notify ppm of result of attach if there is a ppm that cares
7100 */
7101 void
pm_post_attach(pm_ppm_cookie_t * cp,int ret)7102 pm_post_attach(pm_ppm_cookie_t *cp, int ret)
7103 {
7104 int result;
7105 power_req_t power_req;
7106 dev_info_t *dip;
7107
7108 if (cp->ppc_cmd != DDI_ATTACH)
7109 return;
7110
7111 dip = cp->ppc_dip;
7112
7113 if (ret == DDI_SUCCESS) {
7114 /*
7115 * Attach succeeded, so proceed to doing post-attach pm tasks
7116 */
7117 if (PM_GET_PM_INFO(dip) == NULL)
7118 (void) pm_start(dip);
7119 } else {
7120 /*
7121 * Attach may have got pm started before failing
7122 */
7123 pm_stop(dip);
7124 }
7125
7126 if (cp->ppc_ppm) { /* if ppm driver claims the node */
7127 power_req.request_type = PMR_PPM_POST_ATTACH;
7128 power_req.req.ppm_config_req.who = cp->ppc_dip;
7129 power_req.req.ppm_config_req.result = ret;
7130 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm);
7131 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip,
7132 DDI_CTLOPS_POWER, &power_req, &result);
7133 }
7134 #ifdef DEBUG
7135 else {
7136 power_req.request_type = PMR_PPM_POST_ATTACH;
7137 power_req.req.ppm_config_req.who = cp->ppc_dip;
7138 power_req.req.ppm_config_req.result = ret;
7139 (void) pm_ctlops(NULL, cp->ppc_dip,
7140 DDI_CTLOPS_POWER, &power_req, &result);
7141 }
7142 #endif
7143 }
7144
7145 /*
7146 * Notify ppm of attach action. Parent is already held at full power by
7147 * probe action.
7148 */
7149 void
pm_pre_detach(dev_info_t * dip,ddi_detach_cmd_t cmd,pm_ppm_cookie_t * cp)7150 pm_pre_detach(dev_info_t *dip, ddi_detach_cmd_t cmd, pm_ppm_cookie_t *cp)
7151 {
7152 int result;
7153 power_req_t power_req;
7154
7155 bzero(cp, sizeof (*cp));
7156 cp->ppc_dip = dip;
7157 cp->ppc_cmd = (int)cmd;
7158
7159 switch (cmd) {
7160 case DDI_DETACH:
7161 pm_detaching(dip); /* suspend pm while detaching */
7162 if (pm_ppm_claimed(dip)) { /* if ppm driver claims node */
7163 power_req.request_type = PMR_PPM_PRE_DETACH;
7164 power_req.req.ppm_config_req.who = dip;
7165 ASSERT(PPM(dip));
7166 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER,
7167 &power_req, &result);
7168 cp->ppc_ppm = PPM(dip);
7169 } else {
7170 #ifdef DEBUG
7171 /* pass to the default handler so we can debug things */
7172 power_req.request_type = PMR_PPM_PRE_DETACH;
7173 power_req.req.ppm_config_req.who = dip;
7174 (void) pm_ctlops(NULL, dip,
7175 DDI_CTLOPS_POWER, &power_req, &result);
7176 #endif
7177 cp->ppc_ppm = NULL;
7178 }
7179 break;
7180
7181 default:
7182 break;
7183 }
7184 }
7185
7186 /*
7187 * Dip is either a leaf node that exported "no-involuntary-power-cycles" prop.,
7188 * (if devi_pm_noinvol count is 0) or an ancestor of such a node. We need to
7189 * make an entry to record the details, which includes certain flag settings.
7190 */
7191 static void
pm_record_invol_path(char * path,int flags,int noinvolpm,int volpmd,int wasvolpmd,major_t major)7192 pm_record_invol_path(char *path, int flags, int noinvolpm, int volpmd,
7193 int wasvolpmd, major_t major)
7194 {
7195 PMD_FUNC(pmf, "record_invol_path")
7196 major_t pm_path_to_major(char *);
7197 size_t plen;
7198 pm_noinvol_t *ip, *np, *pp;
7199 pp = NULL;
7200
7201 plen = strlen(path) + 1;
7202 np = kmem_zalloc(sizeof (*np), KM_SLEEP);
7203 np->ni_size = plen;
7204 np->ni_path = kmem_alloc(plen, KM_SLEEP);
7205 np->ni_noinvolpm = noinvolpm;
7206 np->ni_volpmd = volpmd;
7207 np->ni_wasvolpmd = wasvolpmd;
7208 np->ni_flags = flags;
7209 (void) strcpy(np->ni_path, path);
7210 /*
7211 * If we haven't actually seen the node attached, it is hard to figure
7212 * out its major. If we could hold the node by path, we would be much
7213 * happier here.
7214 */
7215 if (major == DDI_MAJOR_T_NONE) {
7216 np->ni_major = pm_path_to_major(path);
7217 } else {
7218 np->ni_major = major;
7219 }
7220 rw_enter(&pm_noinvol_rwlock, RW_WRITER);
7221 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) {
7222 int comp = strcmp(path, ip->ni_path);
7223 if (comp < 0) {
7224 PMD(PMD_NOINVOL, ("%s: %s insert before %s\n",
7225 pmf, path, ip->ni_path))
7226 /* insert before current entry */
7227 np->ni_next = ip;
7228 if (pp) {
7229 pp->ni_next = np;
7230 } else {
7231 pm_noinvol_head = np;
7232 }
7233 rw_exit(&pm_noinvol_rwlock);
7234 #ifdef DEBUG
7235 if (pm_debug & PMD_NOINVOL)
7236 pr_noinvol("record_invol_path exit0");
7237 #endif
7238 return;
7239 } else if (comp == 0) {
7240 panic("%s already in pm_noinvol list", path);
7241 }
7242 }
7243 /*
7244 * If we did not find an entry in the list that this should go before,
7245 * then it must go at the end
7246 */
7247 if (pp) {
7248 PMD(PMD_NOINVOL, ("%s: %s append after %s\n", pmf, path,
7249 pp->ni_path))
7250 ASSERT(pp->ni_next == 0);
7251 pp->ni_next = np;
7252 } else {
7253 PMD(PMD_NOINVOL, ("%s: %s added to end-of-list\n", pmf, path))
7254 ASSERT(!pm_noinvol_head);
7255 pm_noinvol_head = np;
7256 }
7257 rw_exit(&pm_noinvol_rwlock);
7258 #ifdef DEBUG
7259 if (pm_debug & PMD_NOINVOL)
7260 pr_noinvol("record_invol_path exit");
7261 #endif
7262 }
7263
7264 void
pm_record_invol(dev_info_t * dip)7265 pm_record_invol(dev_info_t *dip)
7266 {
7267 char *pathbuf;
7268 int pm_all_components_off(dev_info_t *);
7269 int volpmd = (PM_NUMCMPTS(dip) > 0) && pm_all_components_off(dip);
7270
7271 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7272 (void) ddi_pathname(dip, pathbuf);
7273
7274 pm_record_invol_path(pathbuf, (DEVI(dip)->devi_pm_flags &
7275 (PMC_NO_INVOL | PMC_CONSOLE_FB)), DEVI(dip)->devi_pm_noinvolpm,
7276 DEVI(dip)->devi_pm_volpmd, volpmd, PM_MAJOR(dip));
7277
7278 /*
7279 * If this child's detach will be holding up its ancestors, then we
7280 * allow for an exception to that if all children of this type have
7281 * gone down voluntarily.
7282 * Now walk down the tree incrementing devi_pm_noinvolpm
7283 */
7284 (void) pm_noinvol_update(PM_BP_NOINVOL_DETACH, 0, volpmd, pathbuf,
7285 dip);
7286 kmem_free(pathbuf, MAXPATHLEN);
7287 }
7288
7289 void
pm_post_detach(pm_ppm_cookie_t * cp,int ret)7290 pm_post_detach(pm_ppm_cookie_t *cp, int ret)
7291 {
7292 dev_info_t *dip = cp->ppc_dip;
7293 int result;
7294 power_req_t power_req;
7295
7296 switch (cp->ppc_cmd) {
7297 case DDI_DETACH:
7298 if (cp->ppc_ppm) { /* if ppm driver claims the node */
7299 power_req.request_type = PMR_PPM_POST_DETACH;
7300 power_req.req.ppm_config_req.who = cp->ppc_dip;
7301 power_req.req.ppm_config_req.result = ret;
7302 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm);
7303 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip,
7304 DDI_CTLOPS_POWER, &power_req, &result);
7305 }
7306 #ifdef DEBUG
7307 else {
7308 power_req.request_type = PMR_PPM_POST_DETACH;
7309 power_req.req.ppm_config_req.who = cp->ppc_dip;
7310 power_req.req.ppm_config_req.result = ret;
7311 (void) pm_ctlops(NULL, cp->ppc_dip,
7312 DDI_CTLOPS_POWER, &power_req, &result);
7313 }
7314 #endif
7315 if (ret == DDI_SUCCESS) {
7316 /*
7317 * For hotplug detach we assume it is *really* gone
7318 */
7319 if (cp->ppc_cmd == DDI_DETACH &&
7320 ((DEVI(dip)->devi_pm_flags &
7321 (PMC_NO_INVOL | PMC_CONSOLE_FB)) ||
7322 DEVI(dip)->devi_pm_noinvolpm))
7323 pm_record_invol(dip);
7324 DEVI(dip)->devi_pm_flags &=
7325 ~(PMC_NO_INVOL | PMC_NOINVOL_DONE);
7326
7327 /*
7328 * If console fb is detaching, then we don't need to
7329 * worry any more about it going off (pm_detaching has
7330 * brought up all components)
7331 */
7332 if (PM_IS_CFB(dip)) {
7333 mutex_enter(&pm_cfb_lock);
7334 ASSERT(cfb_dip_detaching);
7335 ASSERT(cfb_dip == NULL);
7336 ASSERT(pm_cfb_comps_off == 0);
7337 cfb_dip_detaching = NULL;
7338 mutex_exit(&pm_cfb_lock);
7339 }
7340 pm_stop(dip); /* make it permanent */
7341 } else {
7342 if (PM_IS_CFB(dip)) {
7343 mutex_enter(&pm_cfb_lock);
7344 ASSERT(cfb_dip_detaching);
7345 ASSERT(cfb_dip == NULL);
7346 ASSERT(pm_cfb_comps_off == 0);
7347 cfb_dip = cfb_dip_detaching;
7348 cfb_dip_detaching = NULL;
7349 mutex_exit(&pm_cfb_lock);
7350 }
7351 pm_detach_failed(dip); /* resume power management */
7352 }
7353 break;
7354 case DDI_PM_SUSPEND:
7355 break;
7356 case DDI_SUSPEND:
7357 break; /* legal, but nothing to do */
7358 default:
7359 #ifdef DEBUG
7360 panic("pm_post_detach: unrecognized cmd %d for detach",
7361 cp->ppc_cmd);
7362 /*NOTREACHED*/
7363 #else
7364 break;
7365 #endif
7366 }
7367 }
7368
7369 /*
7370 * Called after vfs_mountroot has got the clock started to fix up timestamps
7371 * that were set when root bush drivers attached. hresttime was 0 then, so the
7372 * devices look busy but have a 0 busycnt
7373 */
7374 int
pm_adjust_timestamps(dev_info_t * dip,void * arg)7375 pm_adjust_timestamps(dev_info_t *dip, void *arg)
7376 {
7377 _NOTE(ARGUNUSED(arg))
7378
7379 pm_info_t *info = PM_GET_PM_INFO(dip);
7380 struct pm_component *cp;
7381 int i;
7382
7383 if (!info)
7384 return (DDI_WALK_CONTINUE);
7385 PM_LOCK_BUSY(dip);
7386 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
7387 cp = PM_CP(dip, i);
7388 if (cp->pmc_timestamp == 0 && cp->pmc_busycount == 0)
7389 cp->pmc_timestamp = gethrestime_sec();
7390 }
7391 PM_UNLOCK_BUSY(dip);
7392 return (DDI_WALK_CONTINUE);
7393 }
7394
7395 /*
7396 * Called at attach time to see if the device being attached has a record in
7397 * the no involuntary power cycles list. If so, we do some bookkeeping on the
7398 * parents and set a flag in the dip
7399 */
7400 void
pm_noinvol_specd(dev_info_t * dip)7401 pm_noinvol_specd(dev_info_t *dip)
7402 {
7403 PMD_FUNC(pmf, "noinvol_specd")
7404 char *pathbuf;
7405 pm_noinvol_t *ip, *pp = NULL;
7406 int wasvolpmd;
7407 int found = 0;
7408
7409 if (DEVI(dip)->devi_pm_flags & PMC_NOINVOL_DONE)
7410 return;
7411 DEVI(dip)->devi_pm_flags |= PMC_NOINVOL_DONE;
7412 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7413 (void) ddi_pathname(dip, pathbuf);
7414
7415 PM_LOCK_DIP(dip);
7416 DEVI(dip)->devi_pm_volpmd = 0;
7417 DEVI(dip)->devi_pm_noinvolpm = 0;
7418 rw_enter(&pm_noinvol_rwlock, RW_READER);
7419 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) {
7420 PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n",
7421 pmf, pathbuf, ip->ni_path))
7422 if (strcmp(pathbuf, ip->ni_path) == 0) {
7423 found++;
7424 break;
7425 }
7426 }
7427 rw_exit(&pm_noinvol_rwlock);
7428 if (!found) {
7429 PM_UNLOCK_DIP(dip);
7430 kmem_free(pathbuf, MAXPATHLEN);
7431 return;
7432 }
7433 rw_enter(&pm_noinvol_rwlock, RW_WRITER);
7434 pp = NULL;
7435 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) {
7436 PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n",
7437 pmf, pathbuf, ip->ni_path))
7438 if (strcmp(pathbuf, ip->ni_path) == 0) {
7439 ip->ni_flags &= ~PMC_DRIVER_REMOVED;
7440 DEVI(dip)->devi_pm_flags |= ip->ni_flags;
7441 /*
7442 * Handle special case of console fb
7443 */
7444 if (PM_IS_CFB(dip)) {
7445 mutex_enter(&pm_cfb_lock);
7446 cfb_dip = dip;
7447 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) setting "
7448 "cfb_dip\n", pmf, PM_DEVICE(dip)))
7449 mutex_exit(&pm_cfb_lock);
7450 }
7451 DEVI(dip)->devi_pm_noinvolpm = ip->ni_noinvolpm;
7452 ASSERT((DEVI(dip)->devi_pm_flags &
7453 (PMC_NO_INVOL | PMC_CONSOLE_FB)) ||
7454 DEVI(dip)->devi_pm_noinvolpm);
7455 DEVI(dip)->devi_pm_volpmd = ip->ni_volpmd;
7456 PMD(PMD_NOINVOL, ("%s: noinvol=%d, volpmd=%d, "
7457 "wasvolpmd=%d, flags=%x, path=%s\n", pmf,
7458 ip->ni_noinvolpm, ip->ni_volpmd,
7459 ip->ni_wasvolpmd, ip->ni_flags, ip->ni_path))
7460 /*
7461 * free the entry in hopes the list will now be empty
7462 * and we won't have to search it any more until the
7463 * device detaches
7464 */
7465 if (pp) {
7466 PMD(PMD_NOINVOL, ("%s: free %s, prev %s\n",
7467 pmf, ip->ni_path, pp->ni_path))
7468 pp->ni_next = ip->ni_next;
7469 } else {
7470 PMD(PMD_NOINVOL, ("%s: free %s head\n",
7471 pmf, ip->ni_path))
7472 ASSERT(pm_noinvol_head == ip);
7473 pm_noinvol_head = ip->ni_next;
7474 }
7475 PM_UNLOCK_DIP(dip);
7476 wasvolpmd = ip->ni_wasvolpmd;
7477 rw_exit(&pm_noinvol_rwlock);
7478 kmem_free(ip->ni_path, ip->ni_size);
7479 kmem_free(ip, sizeof (*ip));
7480 /*
7481 * Now walk up the tree decrementing devi_pm_noinvolpm
7482 * (and volpmd if appropriate)
7483 */
7484 (void) pm_noinvol_update(PM_BP_NOINVOL_ATTACH, 0,
7485 wasvolpmd, pathbuf, dip);
7486 #ifdef DEBUG
7487 if (pm_debug & PMD_NOINVOL)
7488 pr_noinvol("noinvol_specd exit");
7489 #endif
7490 kmem_free(pathbuf, MAXPATHLEN);
7491 return;
7492 }
7493 }
7494 kmem_free(pathbuf, MAXPATHLEN);
7495 rw_exit(&pm_noinvol_rwlock);
7496 PM_UNLOCK_DIP(dip);
7497 }
7498
7499 int
pm_all_components_off(dev_info_t * dip)7500 pm_all_components_off(dev_info_t *dip)
7501 {
7502 int i;
7503 pm_component_t *cp;
7504
7505 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
7506 cp = PM_CP(dip, i);
7507 if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN ||
7508 cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr])
7509 return (0);
7510 }
7511 return (1); /* all off */
7512 }
7513
7514 /*
7515 * Make sure that all "no involuntary power cycles" devices are attached.
7516 * Called before doing a cpr suspend to make sure the driver has a say about
7517 * the power cycle
7518 */
7519 int
pm_reattach_noinvol(void)7520 pm_reattach_noinvol(void)
7521 {
7522 PMD_FUNC(pmf, "reattach_noinvol")
7523 pm_noinvol_t *ip;
7524 char *path;
7525 dev_info_t *dip;
7526
7527 /*
7528 * Prevent the modunload thread from unloading any modules until we
7529 * have completely stopped all kernel threads.
7530 */
7531 modunload_disable();
7532 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
7533 /*
7534 * Forget we'v ever seen any entry
7535 */
7536 ip->ni_persistent = 0;
7537 }
7538 restart:
7539 rw_enter(&pm_noinvol_rwlock, RW_READER);
7540 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
7541 #ifdef PMDDEBUG
7542 major_t maj;
7543 maj = ip->ni_major;
7544 #endif
7545 path = ip->ni_path;
7546 if (path != NULL && !(ip->ni_flags & PMC_DRIVER_REMOVED)) {
7547 if (ip->ni_persistent) {
7548 /*
7549 * If we weren't able to make this entry
7550 * go away, then we give up, as
7551 * holding/attaching the driver ought to have
7552 * resulted in this entry being deleted
7553 */
7554 PMD(PMD_NOINVOL, ("%s: can't reattach %s "
7555 "(%s|%d)\n", pmf, ip->ni_path,
7556 ddi_major_to_name(maj), (int)maj))
7557 cmn_err(CE_WARN, "cpr: unable to reattach %s ",
7558 ip->ni_path);
7559 modunload_enable();
7560 rw_exit(&pm_noinvol_rwlock);
7561 return (0);
7562 }
7563 ip->ni_persistent++;
7564 rw_exit(&pm_noinvol_rwlock);
7565 PMD(PMD_NOINVOL, ("%s: holding %s\n", pmf, path))
7566 dip = e_ddi_hold_devi_by_path(path, 0);
7567 if (dip == NULL) {
7568 PMD(PMD_NOINVOL, ("%s: can't hold (%s|%d)\n",
7569 pmf, path, (int)maj))
7570 cmn_err(CE_WARN, "cpr: unable to hold %s "
7571 "driver", path);
7572 modunload_enable();
7573 return (0);
7574 } else {
7575 PMD(PMD_DHR, ("%s: release %s\n", pmf, path))
7576 /*
7577 * Since the modunload thread is stopped, we
7578 * don't have to keep the driver held, which
7579 * saves a ton of bookkeeping
7580 */
7581 ddi_release_devi(dip);
7582 goto restart;
7583 }
7584 } else {
7585 PMD(PMD_NOINVOL, ("%s: skip %s; unknown major\n",
7586 pmf, ip->ni_path))
7587 continue;
7588 }
7589 }
7590 rw_exit(&pm_noinvol_rwlock);
7591 return (1);
7592 }
7593
7594 void
pm_reattach_noinvol_fini(void)7595 pm_reattach_noinvol_fini(void)
7596 {
7597 modunload_enable();
7598 }
7599
7600 /*
7601 * Display pm support code
7602 */
7603
7604
7605 /*
7606 * console frame-buffer power-mgmt gets enabled when debugging
7607 * services are not present or console fbpm override is set
7608 */
7609 void
pm_cfb_setup(const char * stdout_path)7610 pm_cfb_setup(const char *stdout_path)
7611 {
7612 PMD_FUNC(pmf, "cfb_setup")
7613 extern int obpdebug;
7614 char *devname;
7615 dev_info_t *dip;
7616 int devname_len;
7617 extern dev_info_t *fbdip;
7618
7619 /*
7620 * By virtue of this function being called (from consconfig),
7621 * we know stdout is a framebuffer.
7622 */
7623 stdout_is_framebuffer = 1;
7624
7625 if (obpdebug || (boothowto & RB_DEBUG)) {
7626 if (pm_cfb_override == 0) {
7627 /*
7628 * Console is frame buffer, but we want to suppress
7629 * pm on it because of debugging setup
7630 */
7631 pm_cfb_enabled = 0;
7632 cmn_err(CE_NOTE, "Kernel debugger present: disabling "
7633 "console power management.");
7634 /*
7635 * however, we still need to know which is the console
7636 * fb in order to suppress pm on it
7637 */
7638 } else {
7639 cmn_err(CE_WARN, "Kernel debugger present: see "
7640 "kmdb(1) for interaction with power management.");
7641 }
7642 }
7643 #ifdef DEBUG
7644 /*
7645 * IF console is fb and is power managed, don't do prom_printfs from
7646 * pm debug macro
7647 */
7648 if (pm_cfb_enabled && !pm_debug_to_console) {
7649 if (pm_debug)
7650 prom_printf("pm debug output will be to log only\n");
7651 pm_divertdebug++;
7652 }
7653 #endif
7654 devname = i_ddi_strdup((char *)stdout_path, KM_SLEEP);
7655 devname_len = strlen(devname) + 1;
7656 PMD(PMD_CFB, ("%s: stripped %s\n", pmf, devname))
7657 /* if the driver is attached */
7658 if ((dip = fbdip) != NULL) {
7659 PMD(PMD_CFB, ("%s: attached: %s@%s(%s#%d)\n", pmf,
7660 PM_DEVICE(dip)))
7661 /*
7662 * We set up here as if the driver were power manageable in case
7663 * we get a later attach of a pm'able driver (which would result
7664 * in a panic later)
7665 */
7666 cfb_dip = dip;
7667 DEVI(dip)->devi_pm_flags |= (PMC_CONSOLE_FB | PMC_NO_INVOL);
7668 PMD(PMD_CFB, ("%s: cfb_dip -> %s@%s(%s#%d)\n", pmf,
7669 PM_DEVICE(dip)))
7670 #ifdef DEBUG
7671 if (!(PM_GET_PM_INFO(dip) != NULL && PM_NUMCMPTS(dip))) {
7672 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) not power-managed\n",
7673 pmf, PM_DEVICE(dip)))
7674 }
7675 #endif
7676 } else {
7677 char *ep;
7678 PMD(PMD_CFB, ("%s: pntd %s failed\n", pmf, devname))
7679 pm_record_invol_path(devname,
7680 (PMC_CONSOLE_FB | PMC_NO_INVOL), 1, 0, 0,
7681 DDI_MAJOR_T_NONE);
7682 for (ep = strrchr(devname, '/'); ep != devname;
7683 ep = strrchr(devname, '/')) {
7684 PMD(PMD_CFB, ("%s: devname %s\n", pmf, devname))
7685 *ep = '\0';
7686 dip = pm_name_to_dip(devname, 0);
7687 if (dip != NULL) {
7688 /*
7689 * Walk up the tree incrementing
7690 * devi_pm_noinvolpm
7691 */
7692 (void) pm_noinvol_update(PM_BP_NOINVOL_CFB,
7693 0, 0, devname, dip);
7694 break;
7695 } else {
7696 pm_record_invol_path(devname,
7697 PMC_NO_INVOL, 1, 0, 0, DDI_MAJOR_T_NONE);
7698 }
7699 }
7700 }
7701 kmem_free(devname, devname_len);
7702 }
7703
7704 void
pm_cfb_rele(void)7705 pm_cfb_rele(void)
7706 {
7707 mutex_enter(&pm_cfb_lock);
7708 /*
7709 * this call isn't using the console any more, it is ok to take it
7710 * down if the count goes to 0
7711 */
7712 cfb_inuse--;
7713 mutex_exit(&pm_cfb_lock);
7714 }
7715
7716 /*
7717 * software interrupt handler for fbpm; this function exists because we can't
7718 * bring up the frame buffer power from above lock level. So if we need to,
7719 * we instead schedule a softint that runs this routine and takes us into
7720 * debug_enter (a bit delayed from the original request, but avoiding a panic).
7721 */
7722 static uint_t
pm_cfb_softint(caddr_t int_handler_arg)7723 pm_cfb_softint(caddr_t int_handler_arg)
7724 {
7725 _NOTE(ARGUNUSED(int_handler_arg))
7726 int rval = DDI_INTR_UNCLAIMED;
7727
7728 mutex_enter(&pm_cfb_lock);
7729 if (pm_soft_pending) {
7730 mutex_exit(&pm_cfb_lock);
7731 debug_enter((char *)NULL);
7732 /* acquired in debug_enter before calling pm_cfb_trigger */
7733 pm_cfb_rele();
7734 mutex_enter(&pm_cfb_lock);
7735 pm_soft_pending = B_FALSE;
7736 mutex_exit(&pm_cfb_lock);
7737 rval = DDI_INTR_CLAIMED;
7738 } else
7739 mutex_exit(&pm_cfb_lock);
7740
7741 return (rval);
7742 }
7743
7744 void
pm_cfb_setup_intr(void)7745 pm_cfb_setup_intr(void)
7746 {
7747 PMD_FUNC(pmf, "cfb_setup_intr")
7748 extern void prom_set_outfuncs(void (*)(void), void (*)(void));
7749 void pm_cfb_check_and_powerup(void);
7750
7751 mutex_init(&pm_cfb_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8));
7752 #ifdef PMDDEBUG
7753 mutex_init(&pm_debug_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8));
7754 #endif
7755
7756 if (!stdout_is_framebuffer) {
7757 PMD(PMD_CFB, ("%s: console not fb\n", pmf))
7758 return;
7759 }
7760
7761 /*
7762 * setup software interrupt handler
7763 */
7764 if (ddi_add_softintr(ddi_root_node(), DDI_SOFTINT_HIGH, &pm_soft_id,
7765 NULL, NULL, pm_cfb_softint, NULL) != DDI_SUCCESS)
7766 panic("pm: unable to register soft intr.");
7767
7768 prom_set_outfuncs(pm_cfb_check_and_powerup, pm_cfb_rele);
7769 }
7770
7771 /*
7772 * Checks to see if it is safe to write to the console wrt power management
7773 * (i.e. if the console is a framebuffer, then it must be at full power)
7774 * returns 1 when power is off (power-up is needed)
7775 * returns 0 when power is on (power-up not needed)
7776 */
7777 int
pm_cfb_check_and_hold(void)7778 pm_cfb_check_and_hold(void)
7779 {
7780 /*
7781 * cfb_dip is set iff console is a power manageable frame buffer
7782 * device
7783 */
7784 extern int modrootloaded;
7785
7786 mutex_enter(&pm_cfb_lock);
7787 cfb_inuse++;
7788 ASSERT(cfb_inuse); /* wrap? */
7789 if (modrootloaded && cfb_dip) {
7790 /*
7791 * don't power down the frame buffer, the prom is using it
7792 */
7793 if (pm_cfb_comps_off) {
7794 mutex_exit(&pm_cfb_lock);
7795 return (1);
7796 }
7797 }
7798 mutex_exit(&pm_cfb_lock);
7799 return (0);
7800 }
7801
7802 /*
7803 * turn on cfb power (which is known to be off).
7804 * Must be called below lock level!
7805 */
7806 void
pm_cfb_powerup(void)7807 pm_cfb_powerup(void)
7808 {
7809 pm_info_t *info;
7810 int norm;
7811 int ccount, ci;
7812 int unused;
7813 #ifdef DEBUG
7814 /*
7815 * Can't reenter prom_prekern, so suppress pm debug messages
7816 * (still go to circular buffer).
7817 */
7818 mutex_enter(&pm_debug_lock);
7819 pm_divertdebug++;
7820 mutex_exit(&pm_debug_lock);
7821 #endif
7822 info = PM_GET_PM_INFO(cfb_dip);
7823 ASSERT(info);
7824
7825 ccount = PM_NUMCMPTS(cfb_dip);
7826 for (ci = 0; ci < ccount; ci++) {
7827 norm = pm_get_normal_power(cfb_dip, ci);
7828 (void) pm_set_power(cfb_dip, ci, norm, PM_LEVEL_UPONLY,
7829 PM_CANBLOCK_BYPASS, 0, &unused);
7830 }
7831 #ifdef DEBUG
7832 mutex_enter(&pm_debug_lock);
7833 pm_divertdebug--;
7834 mutex_exit(&pm_debug_lock);
7835 #endif
7836 }
7837
7838 /*
7839 * Check if the console framebuffer is powered up. If not power it up.
7840 * Note: Calling pm_cfb_check_and_hold has put a hold on the power state which
7841 * must be released by calling pm_cfb_rele when the console fb operation
7842 * is completed.
7843 */
7844 void
pm_cfb_check_and_powerup(void)7845 pm_cfb_check_and_powerup(void)
7846 {
7847 if (pm_cfb_check_and_hold())
7848 pm_cfb_powerup();
7849 }
7850
7851 /*
7852 * Trigger a low level interrupt to power up console frame buffer.
7853 */
7854 void
pm_cfb_trigger(void)7855 pm_cfb_trigger(void)
7856 {
7857 if (cfb_dip == NULL)
7858 return;
7859
7860 mutex_enter(&pm_cfb_lock);
7861 /*
7862 * If the machine appears to be hung, pulling the keyboard connector of
7863 * the console will cause a high level interrupt and go to debug_enter.
7864 * But, if the fb is powered down, this routine will be called to bring
7865 * it up (by generating a softint to do the work). If a second attempt
7866 * at triggering this softint happens before the first one completes,
7867 * we panic as softints are most likely not being handled.
7868 */
7869 if (pm_soft_pending) {
7870 panicstr = "pm_cfb_trigger: failed to enter the debugger";
7871 panic(panicstr); /* does a power up at any intr level */
7872 /* NOTREACHED */
7873 }
7874 pm_soft_pending = B_TRUE;
7875 mutex_exit(&pm_cfb_lock);
7876 ddi_trigger_softintr(pm_soft_id);
7877 }
7878
7879 static major_t i_path_to_major(char *, char *);
7880
7881 major_t
pm_path_to_major(char * path)7882 pm_path_to_major(char *path)
7883 {
7884 PMD_FUNC(pmf, "path_to_major")
7885 char *np, *ap, *bp;
7886 major_t ret;
7887 size_t len;
7888
7889 PMD(PMD_NOINVOL, ("%s: %s\n", pmf, path))
7890
7891 np = strrchr(path, '/');
7892 if (np != NULL)
7893 np++;
7894 else
7895 np = path;
7896 len = strlen(np) + 1;
7897 bp = kmem_alloc(len, KM_SLEEP);
7898 (void) strcpy(bp, np);
7899 if ((ap = strchr(bp, '@')) != NULL) {
7900 *ap = '\0';
7901 }
7902 PMD(PMD_NOINVOL, ("%s: %d\n", pmf, ddi_name_to_major(np)))
7903 ret = i_path_to_major(path, np);
7904 kmem_free(bp, len);
7905 return (ret);
7906 }
7907
7908 #ifdef DEBUG
7909 #ifndef sparc
7910 clock_t pt_sleep = 1;
7911 #endif
7912
7913 char *pm_msgp;
7914 char *pm_bufend;
7915 char *pm_msgbuf = NULL;
7916 int pm_logpages = 0x100;
7917 #include <sys/sunldi.h>
7918 #include <sys/uio.h>
7919 clock_t pm_log_sleep = 1000;
7920 int pm_extra_cr = 1;
7921 volatile int pm_tty = 1;
7922
7923 #define PMLOGPGS pm_logpages
7924
7925 #if defined(__x86)
7926 void pm_printf(char *s);
7927 #endif
7928
7929 /*PRINTFLIKE1*/
7930 void
pm_log(const char * fmt,...)7931 pm_log(const char *fmt, ...)
7932 {
7933 va_list adx;
7934 size_t size;
7935
7936 mutex_enter(&pm_debug_lock);
7937 if (pm_msgbuf == NULL) {
7938 pm_msgbuf = kmem_zalloc(mmu_ptob(PMLOGPGS), KM_SLEEP);
7939 pm_bufend = pm_msgbuf + mmu_ptob(PMLOGPGS) - 1;
7940 pm_msgp = pm_msgbuf;
7941 }
7942 va_start(adx, fmt);
7943 size = vsnprintf(NULL, 0, fmt, adx) + 1;
7944 va_end(adx);
7945 va_start(adx, fmt);
7946 if (size > (pm_bufend - pm_msgp)) { /* wraps */
7947 bzero(pm_msgp, pm_bufend - pm_msgp);
7948 (void) vsnprintf(pm_msgbuf, size, fmt, adx);
7949 if (!pm_divertdebug)
7950 prom_printf("%s", pm_msgp);
7951 #if defined(__x86)
7952 if (pm_tty) {
7953 pm_printf(pm_msgp);
7954 if (pm_extra_cr)
7955 pm_printf("\r");
7956 }
7957 #endif
7958 pm_msgp = pm_msgbuf + size;
7959 } else {
7960 (void) vsnprintf(pm_msgp, size, fmt, adx);
7961 #if defined(__x86)
7962 if (pm_tty) {
7963 pm_printf(pm_msgp);
7964 if (pm_extra_cr)
7965 pm_printf("\r");
7966 }
7967 #endif
7968 if (!pm_divertdebug)
7969 prom_printf("%s", pm_msgp);
7970 pm_msgp += size;
7971 }
7972 va_end(adx);
7973 mutex_exit(&pm_debug_lock);
7974 drv_usecwait((clock_t)pm_log_sleep);
7975 }
7976 #endif /* DEBUG */
7977
7978 /*
7979 * We want to save the state of any directly pm'd devices over the suspend/
7980 * resume process so that we can put them back the way the controlling
7981 * process left them.
7982 */
7983 void
pm_save_direct_levels(void)7984 pm_save_direct_levels(void)
7985 {
7986 pm_processes_stopped = 1;
7987 ddi_walk_devs(ddi_root_node(), pm_save_direct_lvl_walk, 0);
7988 }
7989
7990 static int
pm_save_direct_lvl_walk(dev_info_t * dip,void * arg)7991 pm_save_direct_lvl_walk(dev_info_t *dip, void *arg)
7992 {
7993 _NOTE(ARGUNUSED(arg))
7994 int i;
7995 int *ip;
7996 pm_info_t *info = PM_GET_PM_INFO(dip);
7997
7998 if (!info)
7999 return (DDI_WALK_CONTINUE);
8000
8001 if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) {
8002 if (PM_NUMCMPTS(dip) > 2) {
8003 info->pmi_lp = kmem_alloc(PM_NUMCMPTS(dip) *
8004 sizeof (int), KM_SLEEP);
8005 ip = info->pmi_lp;
8006 } else {
8007 ip = info->pmi_levels;
8008 }
8009 /* autopm and processes are stopped, ok not to lock power */
8010 for (i = 0; i < PM_NUMCMPTS(dip); i++)
8011 *ip++ = PM_CURPOWER(dip, i);
8012 /*
8013 * There is a small window between stopping the
8014 * processes and setting pm_processes_stopped where
8015 * a driver could get hung up in a pm_raise_power()
8016 * call. Free any such driver now.
8017 */
8018 pm_proceed(dip, PMP_RELEASE, -1, -1);
8019 }
8020
8021 return (DDI_WALK_CONTINUE);
8022 }
8023
8024 void
pm_restore_direct_levels(void)8025 pm_restore_direct_levels(void)
8026 {
8027 /*
8028 * If cpr didn't call pm_save_direct_levels, (because stopping user
8029 * threads failed) then we don't want to try to restore them
8030 */
8031 if (!pm_processes_stopped)
8032 return;
8033
8034 ddi_walk_devs(ddi_root_node(), pm_restore_direct_lvl_walk, 0);
8035 pm_processes_stopped = 0;
8036 }
8037
8038 static int
pm_restore_direct_lvl_walk(dev_info_t * dip,void * arg)8039 pm_restore_direct_lvl_walk(dev_info_t *dip, void *arg)
8040 {
8041 _NOTE(ARGUNUSED(arg))
8042 PMD_FUNC(pmf, "restore_direct_lvl_walk")
8043 int i, nc, result;
8044 int *ip;
8045
8046 pm_info_t *info = PM_GET_PM_INFO(dip);
8047 if (!info)
8048 return (DDI_WALK_CONTINUE);
8049
8050 if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) {
8051 if ((nc = PM_NUMCMPTS(dip)) > 2) {
8052 ip = &info->pmi_lp[nc - 1];
8053 } else {
8054 ip = &info->pmi_levels[nc - 1];
8055 }
8056 /*
8057 * Because fb drivers fail attempts to turn off the
8058 * fb when the monitor is on, but treat a request to
8059 * turn on the monitor as a request to turn on the
8060 * fb too, we process components in descending order
8061 * Because autopm is disabled and processes aren't
8062 * running, it is ok to examine current power outside
8063 * of the power lock
8064 */
8065 for (i = nc - 1; i >= 0; i--, ip--) {
8066 if (PM_CURPOWER(dip, i) == *ip)
8067 continue;
8068 if (pm_set_power(dip, i, *ip, PM_LEVEL_EXACT,
8069 PM_CANBLOCK_BYPASS, 0, &result) != DDI_SUCCESS) {
8070 cmn_err(CE_WARN, "cpr: unable "
8071 "to restore power level of "
8072 "component %d of directly "
8073 "power manged device %s@%s"
8074 " to %d",
8075 i, PM_NAME(dip),
8076 PM_ADDR(dip), *ip);
8077 PMD(PMD_FAIL, ("%s: failed to restore "
8078 "%s@%s(%s#%d)[%d] exact(%d)->%d, "
8079 "errno %d\n", pmf, PM_DEVICE(dip), i,
8080 PM_CURPOWER(dip, i), *ip, result))
8081 }
8082 }
8083 if (nc > 2) {
8084 kmem_free(info->pmi_lp, nc * sizeof (int));
8085 info->pmi_lp = NULL;
8086 }
8087 }
8088 return (DDI_WALK_CONTINUE);
8089 }
8090
8091 /*
8092 * Stolen from the bootdev module
8093 * attempt to convert a path to a major number
8094 */
8095 static major_t
i_path_to_major(char * path,char * leaf_name)8096 i_path_to_major(char *path, char *leaf_name)
8097 {
8098 extern major_t path_to_major(char *pathname);
8099 major_t maj;
8100
8101 if ((maj = path_to_major(path)) == DDI_MAJOR_T_NONE) {
8102 maj = ddi_name_to_major(leaf_name);
8103 }
8104
8105 return (maj);
8106 }
8107
8108 static void i_pm_driver_removed(major_t major);
8109
8110 /*
8111 * When user calls rem_drv, we need to forget no-involuntary-power-cycles state
8112 * An entry in the list means that the device is detached, so we need to
8113 * adjust its ancestors as if they had just seen this attach, and any detached
8114 * ancestors need to have their list entries adjusted.
8115 */
8116 void
pm_driver_removed(major_t major)8117 pm_driver_removed(major_t major)
8118 {
8119
8120 /*
8121 * Serialize removal of drivers. This is to keep ancestors of
8122 * a node that is being deleted from getting deleted and added back
8123 * with different counters.
8124 */
8125 mutex_enter(&pm_remdrv_lock);
8126 i_pm_driver_removed(major);
8127 mutex_exit(&pm_remdrv_lock);
8128 }
8129
8130 static void adjust_ancestors(char *, int);
8131 static int pm_is_noinvol_ancestor(pm_noinvol_t *);
8132 static void pm_noinvol_process_ancestors(char *);
8133
8134 /*
8135 * This routine is called recursively by pm_noinvol_process_ancestors()
8136 */
8137 static void
i_pm_driver_removed(major_t major)8138 i_pm_driver_removed(major_t major)
8139 {
8140 PMD_FUNC(pmf, "driver_removed")
8141 pm_noinvol_t *ip, *pp = NULL;
8142 int wasvolpmd;
8143 ASSERT(major != DDI_MAJOR_T_NONE);
8144 PMD(PMD_NOINVOL, ("%s: %s\n", pmf, ddi_major_to_name(major)))
8145 again:
8146 rw_enter(&pm_noinvol_rwlock, RW_WRITER);
8147 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) {
8148 if (major != ip->ni_major)
8149 continue;
8150 /*
8151 * If it is an ancestor of no-invol node, which is
8152 * not removed, skip it. This is to cover the case of
8153 * ancestor removed without removing its descendants.
8154 */
8155 if (pm_is_noinvol_ancestor(ip)) {
8156 ip->ni_flags |= PMC_DRIVER_REMOVED;
8157 continue;
8158 }
8159 wasvolpmd = ip->ni_wasvolpmd;
8160 /*
8161 * remove the entry from the list
8162 */
8163 if (pp) {
8164 PMD(PMD_NOINVOL, ("%s: freeing %s, prev is %s\n",
8165 pmf, ip->ni_path, pp->ni_path))
8166 pp->ni_next = ip->ni_next;
8167 } else {
8168 PMD(PMD_NOINVOL, ("%s: free %s head\n", pmf,
8169 ip->ni_path))
8170 ASSERT(pm_noinvol_head == ip);
8171 pm_noinvol_head = ip->ni_next;
8172 }
8173 rw_exit(&pm_noinvol_rwlock);
8174 adjust_ancestors(ip->ni_path, wasvolpmd);
8175 /*
8176 * Had an ancestor been removed before this node, it would have
8177 * been skipped. Adjust the no-invol counters for such skipped
8178 * ancestors.
8179 */
8180 pm_noinvol_process_ancestors(ip->ni_path);
8181 kmem_free(ip->ni_path, ip->ni_size);
8182 kmem_free(ip, sizeof (*ip));
8183 goto again;
8184 }
8185 rw_exit(&pm_noinvol_rwlock);
8186 }
8187
8188 /*
8189 * returns 1, if *aip is a ancestor of a no-invol node
8190 * 0, otherwise
8191 */
8192 static int
pm_is_noinvol_ancestor(pm_noinvol_t * aip)8193 pm_is_noinvol_ancestor(pm_noinvol_t *aip)
8194 {
8195 pm_noinvol_t *ip;
8196
8197 ASSERT(strlen(aip->ni_path) != 0);
8198 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
8199 if (ip == aip)
8200 continue;
8201 /*
8202 * To be an ancestor, the path must be an initial substring of
8203 * the descendent, and end just before a '/' in the
8204 * descendent's path.
8205 */
8206 if ((strstr(ip->ni_path, aip->ni_path) == ip->ni_path) &&
8207 (ip->ni_path[strlen(aip->ni_path)] == '/'))
8208 return (1);
8209 }
8210 return (0);
8211 }
8212
8213 /*
8214 * scan through the pm_noinvolpm list adjusting ancestors of the current
8215 * node; Modifies string *path.
8216 */
8217 static void
adjust_ancestors(char * path,int wasvolpmd)8218 adjust_ancestors(char *path, int wasvolpmd)
8219 {
8220 PMD_FUNC(pmf, "adjust_ancestors")
8221 char *cp;
8222 pm_noinvol_t *lp;
8223 pm_noinvol_t *pp = NULL;
8224 major_t locked = DDI_MAJOR_T_NONE;
8225 dev_info_t *dip;
8226 char *pathbuf;
8227 size_t pathbuflen = strlen(path) + 1;
8228
8229 /*
8230 * First we look up the ancestor's dip. If we find it, then we
8231 * adjust counts up the tree
8232 */
8233 PMD(PMD_NOINVOL, ("%s: %s wasvolpmd %d\n", pmf, path, wasvolpmd))
8234 pathbuf = kmem_alloc(pathbuflen, KM_SLEEP);
8235 (void) strcpy(pathbuf, path);
8236 cp = strrchr(pathbuf, '/');
8237 if (cp == NULL) {
8238 /* if no ancestors, then nothing to do */
8239 kmem_free(pathbuf, pathbuflen);
8240 return;
8241 }
8242 *cp = '\0';
8243 dip = pm_name_to_dip(pathbuf, 1);
8244 if (dip != NULL) {
8245 locked = PM_MAJOR(dip);
8246
8247 (void) pm_noinvol_update(PM_BP_NOINVOL_REMDRV, 0, wasvolpmd,
8248 path, dip);
8249
8250 if (locked != DDI_MAJOR_T_NONE)
8251 ddi_release_devi(dip);
8252 } else {
8253 char *apath;
8254 size_t len = strlen(pathbuf) + 1;
8255 int lock_held = 1;
8256
8257 /*
8258 * Now check for ancestors that exist only in the list
8259 */
8260 apath = kmem_alloc(len, KM_SLEEP);
8261 (void) strcpy(apath, pathbuf);
8262 rw_enter(&pm_noinvol_rwlock, RW_WRITER);
8263 for (lp = pm_noinvol_head; lp; pp = lp, lp = lp->ni_next) {
8264 /*
8265 * This can only happen once. Since we have to drop
8266 * the lock, we need to extract the relevant info.
8267 */
8268 if (strcmp(pathbuf, lp->ni_path) == 0) {
8269 PMD(PMD_NOINVOL, ("%s: %s no %d -> %d\n", pmf,
8270 lp->ni_path, lp->ni_noinvolpm,
8271 lp->ni_noinvolpm - 1))
8272 lp->ni_noinvolpm--;
8273 if (wasvolpmd && lp->ni_volpmd) {
8274 PMD(PMD_NOINVOL, ("%s: %s vol %d -> "
8275 "%d\n", pmf, lp->ni_path,
8276 lp->ni_volpmd, lp->ni_volpmd - 1))
8277 lp->ni_volpmd--;
8278 }
8279 /*
8280 * remove the entry from the list, if there
8281 * are no more no-invol descendants and node
8282 * itself is not a no-invol node.
8283 */
8284 if (!(lp->ni_noinvolpm ||
8285 (lp->ni_flags & PMC_NO_INVOL))) {
8286 ASSERT(lp->ni_volpmd == 0);
8287 if (pp) {
8288 PMD(PMD_NOINVOL, ("%s: freeing "
8289 "%s, prev is %s\n", pmf,
8290 lp->ni_path, pp->ni_path))
8291 pp->ni_next = lp->ni_next;
8292 } else {
8293 PMD(PMD_NOINVOL, ("%s: free %s "
8294 "head\n", pmf, lp->ni_path))
8295 ASSERT(pm_noinvol_head == lp);
8296 pm_noinvol_head = lp->ni_next;
8297 }
8298 lock_held = 0;
8299 rw_exit(&pm_noinvol_rwlock);
8300 adjust_ancestors(apath, wasvolpmd);
8301 /* restore apath */
8302 (void) strcpy(apath, pathbuf);
8303 kmem_free(lp->ni_path, lp->ni_size);
8304 kmem_free(lp, sizeof (*lp));
8305 }
8306 break;
8307 }
8308 }
8309 if (lock_held)
8310 rw_exit(&pm_noinvol_rwlock);
8311 adjust_ancestors(apath, wasvolpmd);
8312 kmem_free(apath, len);
8313 }
8314 kmem_free(pathbuf, pathbuflen);
8315 }
8316
8317 /*
8318 * Do no-invol processing for any ancestors i.e. adjust counters of ancestors,
8319 * which were skipped even though their drivers were removed.
8320 */
8321 static void
pm_noinvol_process_ancestors(char * path)8322 pm_noinvol_process_ancestors(char *path)
8323 {
8324 pm_noinvol_t *lp;
8325
8326 rw_enter(&pm_noinvol_rwlock, RW_READER);
8327 for (lp = pm_noinvol_head; lp; lp = lp->ni_next) {
8328 if (strstr(path, lp->ni_path) &&
8329 (lp->ni_flags & PMC_DRIVER_REMOVED)) {
8330 rw_exit(&pm_noinvol_rwlock);
8331 i_pm_driver_removed(lp->ni_major);
8332 return;
8333 }
8334 }
8335 rw_exit(&pm_noinvol_rwlock);
8336 }
8337
8338 /*
8339 * Returns true if (detached) device needs to be kept up because it exported the
8340 * "no-involuntary-power-cycles" property or we're pretending it did (console
8341 * fb case) or it is an ancestor of such a device and has used up the "one
8342 * free cycle" allowed when all such leaf nodes have voluntarily powered down
8343 * upon detach. In any event, we need an exact hit on the path or we return
8344 * false.
8345 */
8346 int
pm_noinvol_detached(char * path)8347 pm_noinvol_detached(char *path)
8348 {
8349 PMD_FUNC(pmf, "noinvol_detached")
8350 pm_noinvol_t *ip;
8351 int ret = 0;
8352
8353 rw_enter(&pm_noinvol_rwlock, RW_READER);
8354 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
8355 if (strcmp(path, ip->ni_path) == 0) {
8356 if (ip->ni_flags & PMC_CONSOLE_FB) {
8357 PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB "
8358 "%s\n", pmf, path))
8359 ret = 1;
8360 break;
8361 }
8362 #ifdef DEBUG
8363 if (ip->ni_noinvolpm != ip->ni_volpmd)
8364 PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s"
8365 "\n", pmf, ip->ni_noinvolpm, ip->ni_volpmd,
8366 path))
8367 #endif
8368 ret = (ip->ni_noinvolpm != ip->ni_volpmd);
8369 break;
8370 }
8371 }
8372 rw_exit(&pm_noinvol_rwlock);
8373 return (ret);
8374 }
8375
8376 int
pm_is_cfb(dev_info_t * dip)8377 pm_is_cfb(dev_info_t *dip)
8378 {
8379 return (dip == cfb_dip);
8380 }
8381
8382 #ifdef DEBUG
8383 /*
8384 * Return true if all components of the console frame buffer are at
8385 * "normal" power, i.e., fully on. For the case where the console is not
8386 * a framebuffer, we also return true
8387 */
8388 int
pm_cfb_is_up(void)8389 pm_cfb_is_up(void)
8390 {
8391 return (pm_cfb_comps_off == 0);
8392 }
8393 #endif
8394
8395 /*
8396 * Preventing scan from powering down the node by incrementing the
8397 * kidsupcnt.
8398 */
8399 void
pm_hold_power(dev_info_t * dip)8400 pm_hold_power(dev_info_t *dip)
8401 {
8402 e_pm_hold_rele_power(dip, 1);
8403 }
8404
8405 /*
8406 * Releasing the hold by decrementing the kidsupcnt allowing scan
8407 * to power down the node if all conditions are met.
8408 */
8409 void
pm_rele_power(dev_info_t * dip)8410 pm_rele_power(dev_info_t *dip)
8411 {
8412 e_pm_hold_rele_power(dip, -1);
8413 }
8414
8415 /*
8416 * A wrapper of pm_all_to_normal() to power up a dip
8417 * to its normal level
8418 */
8419 int
pm_powerup(dev_info_t * dip)8420 pm_powerup(dev_info_t *dip)
8421 {
8422 PMD_FUNC(pmf, "pm_powerup")
8423
8424 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
8425 ASSERT(!(servicing_interrupt()));
8426
8427 /*
8428 * in case this node is not already participating pm
8429 */
8430 if (!PM_GET_PM_INFO(dip)) {
8431 if (!DEVI_IS_ATTACHING(dip))
8432 return (DDI_SUCCESS);
8433 if (pm_start(dip) != DDI_SUCCESS)
8434 return (DDI_FAILURE);
8435 if (!PM_GET_PM_INFO(dip))
8436 return (DDI_SUCCESS);
8437 }
8438
8439 return (pm_all_to_normal(dip, PM_CANBLOCK_BLOCK));
8440 }
8441
8442 int
pm_rescan_walk(dev_info_t * dip,void * arg)8443 pm_rescan_walk(dev_info_t *dip, void *arg)
8444 {
8445 _NOTE(ARGUNUSED(arg))
8446
8447 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip))
8448 return (DDI_WALK_CONTINUE);
8449
8450 /*
8451 * Currently pm_cpr_callb/resume code is the only caller
8452 * and it needs to make sure that stopped scan get
8453 * reactivated. Otherwise, rescan walk needn't reactive
8454 * stopped scan.
8455 */
8456 pm_scan_init(dip);
8457
8458 (void) pm_rescan(dip);
8459 return (DDI_WALK_CONTINUE);
8460 }
8461
8462 static dev_info_t *
pm_get_next_descendent(dev_info_t * dip,dev_info_t * tdip)8463 pm_get_next_descendent(dev_info_t *dip, dev_info_t *tdip)
8464 {
8465 dev_info_t *wdip, *pdip;
8466
8467 for (wdip = tdip; wdip != dip; wdip = pdip) {
8468 pdip = ddi_get_parent(wdip);
8469 if (pdip == dip)
8470 return (wdip);
8471 }
8472 return (NULL);
8473 }
8474
8475 int
pm_busop_bus_power(dev_info_t * dip,void * impl_arg,pm_bus_power_op_t op,void * arg,void * result)8476 pm_busop_bus_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op,
8477 void *arg, void *result)
8478 {
8479 PMD_FUNC(pmf, "bp_bus_power")
8480 dev_info_t *cdip;
8481 pm_info_t *cinfo;
8482 pm_bp_child_pwrchg_t *bpc;
8483 pm_sp_misc_t *pspm;
8484 pm_bp_nexus_pwrup_t *bpn;
8485 pm_bp_child_pwrchg_t new_bpc;
8486 pm_bp_noinvol_t *bpi;
8487 dev_info_t *tdip;
8488 char *pathbuf;
8489 int ret = DDI_SUCCESS;
8490 int errno = 0;
8491 pm_component_t *cp;
8492
8493 PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip),
8494 pm_decode_op(op)))
8495 switch (op) {
8496 case BUS_POWER_CHILD_PWRCHG:
8497 bpc = (pm_bp_child_pwrchg_t *)arg;
8498 pspm = (pm_sp_misc_t *)bpc->bpc_private;
8499 tdip = bpc->bpc_dip;
8500 cdip = pm_get_next_descendent(dip, tdip);
8501 cinfo = PM_GET_PM_INFO(cdip);
8502 if (cdip != tdip) {
8503 /*
8504 * If the node is an involved parent, it needs to
8505 * power up the node as it is needed. There is nothing
8506 * else the framework can do here.
8507 */
8508 if (PM_WANTS_NOTIFICATION(cdip)) {
8509 PMD(PMD_SET, ("%s: call bus_power for "
8510 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(cdip)))
8511 return ((*PM_BUS_POWER_FUNC(cdip))(cdip,
8512 impl_arg, op, arg, result));
8513 }
8514 ASSERT(pspm->pspm_direction == PM_LEVEL_UPONLY ||
8515 pspm->pspm_direction == PM_LEVEL_DOWNONLY ||
8516 pspm->pspm_direction == PM_LEVEL_EXACT);
8517 /*
8518 * we presume that the parent needs to be up in
8519 * order for the child to change state (either
8520 * because it must already be on if the child is on
8521 * (and the pm_all_to_normal_nexus() will be a nop)
8522 * or because it will need to be on for the child
8523 * to come on; so we make the call regardless
8524 */
8525 pm_hold_power(cdip);
8526 if (cinfo) {
8527 pm_canblock_t canblock = pspm->pspm_canblock;
8528 ret = pm_all_to_normal_nexus(cdip, canblock);
8529 if (ret != DDI_SUCCESS) {
8530 pm_rele_power(cdip);
8531 return (ret);
8532 }
8533 }
8534 PMD(PMD_SET, ("%s: walk down to %s@%s(%s#%d)\n", pmf,
8535 PM_DEVICE(cdip)))
8536 ret = pm_busop_bus_power(cdip, impl_arg, op, arg,
8537 result);
8538 pm_rele_power(cdip);
8539 } else {
8540 ret = pm_busop_set_power(cdip, impl_arg, op, arg,
8541 result);
8542 }
8543 return (ret);
8544
8545 case BUS_POWER_NEXUS_PWRUP:
8546 bpn = (pm_bp_nexus_pwrup_t *)arg;
8547 pspm = (pm_sp_misc_t *)bpn->bpn_private;
8548
8549 if (!e_pm_valid_info(dip, NULL) ||
8550 !e_pm_valid_comp(dip, bpn->bpn_comp, &cp) ||
8551 !e_pm_valid_power(dip, bpn->bpn_comp, bpn->bpn_level)) {
8552 PMD(PMD_SET, ("%s: %s@%s(%s#%d) has no pm info; EIO\n",
8553 pmf, PM_DEVICE(dip)))
8554 *pspm->pspm_errnop = EIO;
8555 *(int *)result = DDI_FAILURE;
8556 return (DDI_FAILURE);
8557 }
8558
8559 ASSERT(bpn->bpn_dip == dip);
8560 PMD(PMD_SET, ("%s: nexus powerup for %s@%s(%s#%d)\n", pmf,
8561 PM_DEVICE(dip)))
8562 new_bpc.bpc_dip = dip;
8563 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
8564 new_bpc.bpc_path = ddi_pathname(dip, pathbuf);
8565 new_bpc.bpc_comp = bpn->bpn_comp;
8566 new_bpc.bpc_olevel = PM_CURPOWER(dip, bpn->bpn_comp);
8567 new_bpc.bpc_nlevel = bpn->bpn_level;
8568 new_bpc.bpc_private = bpn->bpn_private;
8569 ((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_direction =
8570 PM_LEVEL_UPONLY;
8571 ((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_errnop =
8572 &errno;
8573 ret = pm_busop_set_power(dip, impl_arg, BUS_POWER_CHILD_PWRCHG,
8574 (void *)&new_bpc, result);
8575 kmem_free(pathbuf, MAXPATHLEN);
8576 return (ret);
8577
8578 case BUS_POWER_NOINVOL:
8579 bpi = (pm_bp_noinvol_t *)arg;
8580 tdip = bpi->bpni_dip;
8581 cdip = pm_get_next_descendent(dip, tdip);
8582
8583 /* In case of rem_drv, the leaf node has been removed */
8584 if (cdip == NULL)
8585 return (DDI_SUCCESS);
8586
8587 cinfo = PM_GET_PM_INFO(cdip);
8588 if (cdip != tdip) {
8589 if (PM_WANTS_NOTIFICATION(cdip)) {
8590 PMD(PMD_NOINVOL,
8591 ("%s: call bus_power for %s@%s(%s#%d)\n",
8592 pmf, PM_DEVICE(cdip)))
8593 ret = (*PM_BUS_POWER_FUNC(cdip))
8594 (cdip, NULL, op, arg, result);
8595 if ((cinfo) && (ret == DDI_SUCCESS))
8596 (void) pm_noinvol_update_node(cdip,
8597 bpi);
8598 return (ret);
8599 } else {
8600 PMD(PMD_NOINVOL,
8601 ("%s: walk down to %s@%s(%s#%d)\n", pmf,
8602 PM_DEVICE(cdip)))
8603 ret = pm_busop_bus_power(cdip, NULL, op,
8604 arg, result);
8605 /*
8606 * Update the current node.
8607 */
8608 if ((cinfo) && (ret == DDI_SUCCESS))
8609 (void) pm_noinvol_update_node(cdip,
8610 bpi);
8611 return (ret);
8612 }
8613 } else {
8614 /*
8615 * For attach, detach, power up:
8616 * Do nothing for leaf node since its
8617 * counts are already updated.
8618 * For CFB and driver removal, since the
8619 * path and the target dip passed in is up to and incl.
8620 * the immediate ancestor, need to do the update.
8621 */
8622 PMD(PMD_NOINVOL, ("%s: target %s@%s(%s#%d) is "
8623 "reached\n", pmf, PM_DEVICE(cdip)))
8624 if (cinfo && ((bpi->bpni_cmd == PM_BP_NOINVOL_REMDRV) ||
8625 (bpi->bpni_cmd == PM_BP_NOINVOL_CFB)))
8626 (void) pm_noinvol_update_node(cdip, bpi);
8627 return (DDI_SUCCESS);
8628 }
8629
8630 default:
8631 PMD(PMD_SET, ("%s: operation %d is not supported!\n", pmf, op))
8632 return (DDI_FAILURE);
8633 }
8634 }
8635
8636 static int
pm_busop_set_power(dev_info_t * dip,void * impl_arg,pm_bus_power_op_t op,void * arg,void * resultp)8637 pm_busop_set_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op,
8638 void *arg, void *resultp)
8639 {
8640 _NOTE(ARGUNUSED(impl_arg))
8641 PMD_FUNC(pmf, "bp_set_power")
8642 pm_ppm_devlist_t *devl = NULL;
8643 int clevel;
8644 int ret = DDI_SUCCESS;
8645 dev_info_t *cdip;
8646 pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg;
8647 pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private;
8648 pm_canblock_t canblock = pspm->pspm_canblock;
8649 int scan = pspm->pspm_scan;
8650 int comp = bpc->bpc_comp;
8651 int olevel = bpc->bpc_olevel;
8652 int nlevel = bpc->bpc_nlevel;
8653 int comps_off_incr = 0;
8654 dev_info_t *pdip = ddi_get_parent(dip);
8655 int dodeps;
8656 int direction = pspm->pspm_direction;
8657 int *errnop = pspm->pspm_errnop;
8658 #ifdef PMDDEBUG
8659 char *dir = pm_decode_direction(direction);
8660 #endif
8661 int *iresp = (int *)resultp;
8662 time_t idletime, thresh;
8663 pm_component_t *cp = PM_CP(dip, comp);
8664 int work_type;
8665
8666 *iresp = DDI_SUCCESS;
8667 *errnop = 0;
8668 ASSERT(op == BUS_POWER_CHILD_PWRCHG);
8669 PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip),
8670 pm_decode_op(op)))
8671
8672 /*
8673 * The following set of conditions indicate we are here to handle a
8674 * driver's pm_[raise|lower]_power request, but the device is being
8675 * power managed (PM_DIRECT_PM) by a user process. For that case
8676 * we want to pm_block and pass a status back to the caller based
8677 * on whether the controlling process's next activity on the device
8678 * matches the current request or not. This distinction tells
8679 * downstream functions to avoid calling into a driver or changing
8680 * the framework's power state. To actually block, we need:
8681 *
8682 * PM_ISDIRECT(dip)
8683 * no reason to block unless a process is directly controlling dev
8684 * direction != PM_LEVEL_EXACT
8685 * EXACT is used by controlling proc's PM_SET_CURRENT_POWER ioctl
8686 * !pm_processes_stopped
8687 * don't block if controlling proc already be stopped for cpr
8688 * canblock != PM_CANBLOCK_BYPASS
8689 * our caller must not have explicitly prevented blocking
8690 */
8691 if (direction != PM_LEVEL_EXACT && canblock != PM_CANBLOCK_BYPASS) {
8692 PM_LOCK_DIP(dip);
8693 while (PM_ISDIRECT(dip) && !pm_processes_stopped) {
8694 /* releases dip lock */
8695 ret = pm_busop_match_request(dip, bpc);
8696 if (ret == EAGAIN) {
8697 PM_LOCK_DIP(dip);
8698 continue;
8699 }
8700 return (*iresp = ret);
8701 }
8702 PM_UNLOCK_DIP(dip);
8703 }
8704 /* BC device is never scanned, so power will stick until we are done */
8705 if (PM_ISBC(dip) && comp != 0 && nlevel != 0 &&
8706 direction != PM_LEVEL_DOWNONLY) {
8707 int nrmpwr0 = pm_get_normal_power(dip, 0);
8708 if (pm_set_power(dip, 0, nrmpwr0, direction,
8709 canblock, 0, resultp) != DDI_SUCCESS) {
8710 /* *resultp set by pm_set_power */
8711 return (DDI_FAILURE);
8712 }
8713 }
8714 if (PM_WANTS_NOTIFICATION(pdip)) {
8715 PMD(PMD_SET, ("%s: pre_notify %s@%s(%s#%d) for child "
8716 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(pdip), PM_DEVICE(dip)))
8717 ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL,
8718 BUS_POWER_PRE_NOTIFICATION, bpc, resultp);
8719 if (ret != DDI_SUCCESS) {
8720 PMD(PMD_SET, ("%s: failed to pre_notify %s@%s(%s#%d)\n",
8721 pmf, PM_DEVICE(pdip)))
8722 return (DDI_FAILURE);
8723 }
8724 } else {
8725 /*
8726 * Since we don't know what the actual power level is,
8727 * we place a power hold on the parent no matter what
8728 * component and level is changing.
8729 */
8730 pm_hold_power(pdip);
8731 }
8732 PM_LOCK_POWER(dip);
8733 clevel = PM_CURPOWER(dip, comp);
8734 /*
8735 * It's possible that a call was made to pm_update_maxpower()
8736 * on another thread before we took the lock above. So, we need to
8737 * make sure that this request isn't processed after the
8738 * change of power executed on behalf of pm_update_maxpower().
8739 */
8740 if (nlevel > pm_get_normal_power(dip, comp)) {
8741 PMD(PMD_SET, ("%s: requested level is higher than normal.\n",
8742 pmf))
8743 ret = DDI_FAILURE;
8744 *iresp = DDI_FAILURE;
8745 goto post_notify;
8746 }
8747 PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, olvl=%d, nlvl=%d, clvl=%d, "
8748 "dir=%s\n", pmf, PM_DEVICE(dip), comp, bpc->bpc_olevel, nlevel,
8749 clevel, dir))
8750 switch (direction) {
8751 case PM_LEVEL_UPONLY:
8752 /* Powering up */
8753 if (clevel >= nlevel) {
8754 PMD(PMD_SET, ("%s: current level is already "
8755 "at or above the requested level.\n", pmf))
8756 *iresp = DDI_SUCCESS;
8757 ret = DDI_SUCCESS;
8758 goto post_notify;
8759 }
8760 break;
8761 case PM_LEVEL_EXACT:
8762 /* specific level request */
8763 if (clevel == nlevel && !PM_ISBC(dip)) {
8764 PMD(PMD_SET, ("%s: current level is already "
8765 "at the requested level.\n", pmf))
8766 *iresp = DDI_SUCCESS;
8767 ret = DDI_SUCCESS;
8768 goto post_notify;
8769 } else if (PM_IS_CFB(dip) && (nlevel < clevel)) {
8770 PMD(PMD_CFB, ("%s: powerdown of console\n", pmf))
8771 if (!pm_cfb_enabled) {
8772 PMD(PMD_ERROR | PMD_CFB,
8773 ("%s: !pm_cfb_enabled, fails\n", pmf))
8774 *errnop = EINVAL;
8775 *iresp = DDI_FAILURE;
8776 ret = DDI_FAILURE;
8777 goto post_notify;
8778 }
8779 mutex_enter(&pm_cfb_lock);
8780 while (cfb_inuse) {
8781 mutex_exit(&pm_cfb_lock);
8782 if (delay_sig(1) == EINTR) {
8783 ret = DDI_FAILURE;
8784 *iresp = DDI_FAILURE;
8785 *errnop = EINTR;
8786 goto post_notify;
8787 }
8788 mutex_enter(&pm_cfb_lock);
8789 }
8790 mutex_exit(&pm_cfb_lock);
8791 }
8792 break;
8793 case PM_LEVEL_DOWNONLY:
8794 /* Powering down */
8795 thresh = cur_threshold(dip, comp);
8796 idletime = gethrestime_sec() - cp->pmc_timestamp;
8797 if (scan && ((PM_KUC(dip) != 0) ||
8798 (cp->pmc_busycount > 0) ||
8799 ((idletime < thresh) && !PM_IS_PID(dip)))) {
8800 #ifdef DEBUG
8801 if (DEVI(dip)->devi_pm_kidsupcnt != 0)
8802 PMD(PMD_SET, ("%s: scan failed: "
8803 "kidsupcnt != 0\n", pmf))
8804 if (cp->pmc_busycount > 0)
8805 PMD(PMD_SET, ("%s: scan failed: "
8806 "device become busy\n", pmf))
8807 if (idletime < thresh)
8808 PMD(PMD_SET, ("%s: scan failed: device "
8809 "hasn't been idle long enough\n", pmf))
8810 #endif
8811 *iresp = DDI_FAILURE;
8812 *errnop = EBUSY;
8813 ret = DDI_FAILURE;
8814 goto post_notify;
8815 } else if (clevel != PM_LEVEL_UNKNOWN && clevel <= nlevel) {
8816 PMD(PMD_SET, ("%s: current level is already at "
8817 "or below the requested level.\n", pmf))
8818 *iresp = DDI_SUCCESS;
8819 ret = DDI_SUCCESS;
8820 goto post_notify;
8821 }
8822 break;
8823 }
8824
8825 if (PM_IS_CFB(dip) && (comps_off_incr =
8826 calc_cfb_comps_incr(dip, comp, clevel, nlevel)) > 0) {
8827 /*
8828 * Pre-adjust pm_cfb_comps_off if lowering a console fb
8829 * component from full power. Remember that we tried to
8830 * lower power in case it fails and we need to back out
8831 * the adjustment.
8832 */
8833 update_comps_off(comps_off_incr, dip);
8834 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d cfb_comps_off->%d\n",
8835 pmf, PM_DEVICE(dip), comp, clevel, nlevel,
8836 pm_cfb_comps_off))
8837 }
8838
8839 if ((*iresp = power_dev(dip,
8840 comp, nlevel, clevel, canblock, &devl)) == DDI_SUCCESS) {
8841 #ifdef DEBUG
8842 /*
8843 * All descendents of this node should already be powered off.
8844 */
8845 if (PM_CURPOWER(dip, comp) == 0) {
8846 pm_desc_pwrchk_t pdpchk;
8847 pdpchk.pdpc_dip = dip;
8848 pdpchk.pdpc_par_involved = PM_WANTS_NOTIFICATION(dip);
8849 ndi_devi_enter(dip);
8850 for (cdip = ddi_get_child(dip); cdip != NULL;
8851 cdip = ddi_get_next_sibling(cdip)) {
8852 ndi_devi_enter(cdip);
8853 ddi_walk_devs(cdip, pm_desc_pwrchk_walk,
8854 (void *)&pdpchk);
8855 ndi_devi_exit(cdip);
8856 }
8857 ndi_devi_exit(dip);
8858 }
8859 #endif
8860 /*
8861 * Post-adjust pm_cfb_comps_off if we brought an fb component
8862 * back up to full power.
8863 */
8864 if (PM_IS_CFB(dip) && comps_off_incr < 0) {
8865 update_comps_off(comps_off_incr, dip);
8866 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d "
8867 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip),
8868 comp, clevel, nlevel, pm_cfb_comps_off))
8869 }
8870 dodeps = 0;
8871 if (POWERING_OFF(clevel, nlevel)) {
8872 if (PM_ISBC(dip)) {
8873 dodeps = (comp == 0);
8874 } else {
8875 int i;
8876 dodeps = 1;
8877 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
8878 /* if some component still on */
8879 if (PM_CURPOWER(dip, i)) {
8880 dodeps = 0;
8881 break;
8882 }
8883 }
8884 }
8885 if (dodeps)
8886 work_type = PM_DEP_WK_POWER_OFF;
8887 } else if (POWERING_ON(clevel, nlevel)) {
8888 if (PM_ISBC(dip)) {
8889 dodeps = (comp == 0);
8890 } else {
8891 int i;
8892 dodeps = 1;
8893 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
8894 if (i == comp)
8895 continue;
8896 if (PM_CURPOWER(dip, i) > 0) {
8897 dodeps = 0;
8898 break;
8899 }
8900 }
8901 }
8902 if (dodeps)
8903 work_type = PM_DEP_WK_POWER_ON;
8904 }
8905
8906 if (dodeps) {
8907 char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
8908
8909 (void) ddi_pathname(dip, pathbuf);
8910 pm_dispatch_to_dep_thread(work_type, pathbuf, NULL,
8911 PM_DEP_NOWAIT, NULL, 0);
8912 kmem_free(pathbuf, MAXPATHLEN);
8913 }
8914 if ((PM_CURPOWER(dip, comp) == nlevel) && pm_watchers()) {
8915 int old;
8916
8917 /* If old power cached during deadlock, use it. */
8918 old = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ?
8919 cp->pmc_phc_pwr : olevel);
8920 mutex_enter(&pm_rsvp_lock);
8921 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, nlevel,
8922 old, canblock);
8923 pm_enqueue_notify_others(&devl, canblock);
8924 mutex_exit(&pm_rsvp_lock);
8925 } else {
8926 pm_ppm_devlist_t *p;
8927 pm_ppm_devlist_t *next;
8928 for (p = devl; p != NULL; p = next) {
8929 next = p->ppd_next;
8930 kmem_free(p, sizeof (pm_ppm_devlist_t));
8931 }
8932 devl = NULL;
8933 }
8934
8935 /*
8936 * If we are coming from a scan, don't do it again,
8937 * else we can have infinite loops.
8938 */
8939 if (!scan)
8940 pm_rescan(dip);
8941 } else {
8942 /* if we incremented pm_comps_off_count, but failed */
8943 if (comps_off_incr > 0) {
8944 update_comps_off(-comps_off_incr, dip);
8945 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d "
8946 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip),
8947 comp, clevel, nlevel, pm_cfb_comps_off))
8948 }
8949 *errnop = EIO;
8950 }
8951
8952 post_notify:
8953 /*
8954 * This thread may have been in deadlock with pm_power_has_changed.
8955 * Before releasing power lock, clear the flag which marks this
8956 * condition.
8957 */
8958 cp->pmc_flags &= ~PM_PHC_WHILE_SET_POWER;
8959
8960 /*
8961 * Update the old power level in the bus power structure with the
8962 * actual power level before the transition was made to the new level.
8963 * Some involved parents depend on this information to keep track of
8964 * their children's power transition.
8965 */
8966 if (*iresp != DDI_FAILURE)
8967 bpc->bpc_olevel = clevel;
8968
8969 if (PM_WANTS_NOTIFICATION(pdip)) {
8970 ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL,
8971 BUS_POWER_POST_NOTIFICATION, bpc, resultp);
8972 PM_UNLOCK_POWER(dip);
8973 PMD(PMD_SET, ("%s: post_notify %s@%s(%s#%d) for "
8974 "child %s@%s(%s#%d), ret=%d\n", pmf, PM_DEVICE(pdip),
8975 PM_DEVICE(dip), ret))
8976 } else {
8977 nlevel = cur_power(cp); /* in case phc deadlock updated pwr */
8978 PM_UNLOCK_POWER(dip);
8979 /*
8980 * Now that we know what power transition has occurred
8981 * (if any), release the power hold. Leave the hold
8982 * in effect in the case of OFF->ON transition.
8983 */
8984 if (!(clevel == 0 && nlevel > 0 &&
8985 (!PM_ISBC(dip) || comp == 0)))
8986 pm_rele_power(pdip);
8987 /*
8988 * If the power transition was an ON->OFF transition,
8989 * remove the power hold from the parent.
8990 */
8991 if ((clevel > 0 || clevel == PM_LEVEL_UNKNOWN) &&
8992 nlevel == 0 && (!PM_ISBC(dip) || comp == 0))
8993 pm_rele_power(pdip);
8994 }
8995 if (*iresp != DDI_SUCCESS || ret != DDI_SUCCESS)
8996 return (DDI_FAILURE);
8997 else
8998 return (DDI_SUCCESS);
8999 }
9000
9001 /*
9002 * If an app (SunVTS or Xsun) has taken control, then block until it
9003 * gives it up or makes the requested power level change, unless
9004 * we have other instructions about blocking. Returns DDI_SUCCESS,
9005 * DDI_FAILURE or EAGAIN (owner released device from directpm).
9006 */
9007 static int
pm_busop_match_request(dev_info_t * dip,void * arg)9008 pm_busop_match_request(dev_info_t *dip, void *arg)
9009 {
9010 PMD_FUNC(pmf, "bp_match_request")
9011 pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg;
9012 pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private;
9013 int comp = bpc->bpc_comp;
9014 int nlevel = bpc->bpc_nlevel;
9015 pm_canblock_t canblock = pspm->pspm_canblock;
9016 int direction = pspm->pspm_direction;
9017 int clevel;
9018
9019 ASSERT(PM_IAM_LOCKING_DIP(dip));
9020 PM_LOCK_POWER(dip);
9021 clevel = PM_CURPOWER(dip, comp);
9022 PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, nlvl=%d, clvl=%d\n",
9023 pmf, PM_DEVICE(dip), comp, nlevel, clevel))
9024 if (direction == PM_LEVEL_UPONLY) {
9025 if (clevel >= nlevel) {
9026 PM_UNLOCK_POWER(dip);
9027 PM_UNLOCK_DIP(dip);
9028 return (DDI_SUCCESS);
9029 }
9030 } else if (clevel == nlevel) {
9031 PM_UNLOCK_POWER(dip);
9032 PM_UNLOCK_DIP(dip);
9033 return (DDI_SUCCESS);
9034 }
9035 if (canblock == PM_CANBLOCK_FAIL) {
9036 PM_UNLOCK_POWER(dip);
9037 PM_UNLOCK_DIP(dip);
9038 return (DDI_FAILURE);
9039 }
9040 if (canblock == PM_CANBLOCK_BLOCK) {
9041 /*
9042 * To avoid a deadlock, we must not hold the
9043 * power lock when we pm_block.
9044 */
9045 PM_UNLOCK_POWER(dip);
9046 PMD(PMD_SET, ("%s: blocking\n", pmf))
9047 /* pm_block releases dip lock */
9048 switch (pm_block(dip, comp, nlevel, clevel)) {
9049 case PMP_RELEASE:
9050 return (EAGAIN);
9051 case PMP_SUCCEED:
9052 return (DDI_SUCCESS);
9053 case PMP_FAIL:
9054 return (DDI_FAILURE);
9055 }
9056 } else {
9057 ASSERT(0);
9058 }
9059 _NOTE(NOTREACHED);
9060 return (DDI_FAILURE); /* keep gcc happy */
9061 }
9062
9063 static int
pm_all_to_normal_nexus(dev_info_t * dip,pm_canblock_t canblock)9064 pm_all_to_normal_nexus(dev_info_t *dip, pm_canblock_t canblock)
9065 {
9066 PMD_FUNC(pmf, "all_to_normal_nexus")
9067 int *normal;
9068 int i, ncomps;
9069 size_t size;
9070 int changefailed = 0;
9071 int ret, result = DDI_SUCCESS;
9072 pm_bp_nexus_pwrup_t bpn;
9073 pm_sp_misc_t pspm;
9074
9075 ASSERT(PM_GET_PM_INFO(dip));
9076 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
9077 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) {
9078 PMD(PMD_ALLNORM, ("%s: can't get norm pwrs\n", pmf))
9079 return (DDI_FAILURE);
9080 }
9081 ncomps = PM_NUMCMPTS(dip);
9082 for (i = 0; i < ncomps; i++) {
9083 bpn.bpn_dip = dip;
9084 bpn.bpn_comp = i;
9085 bpn.bpn_level = normal[i];
9086 pspm.pspm_canblock = canblock;
9087 pspm.pspm_scan = 0;
9088 bpn.bpn_private = &pspm;
9089 ret = pm_busop_bus_power(dip, NULL, BUS_POWER_NEXUS_PWRUP,
9090 (void *)&bpn, (void *)&result);
9091 if (ret != DDI_SUCCESS || result != DDI_SUCCESS) {
9092 PMD(PMD_FAIL | PMD_ALLNORM, ("%s: %s@%s(%s#%d)[%d] "
9093 "->%d failure result %d\n", pmf, PM_DEVICE(dip),
9094 i, normal[i], result))
9095 changefailed++;
9096 }
9097 }
9098 kmem_free(normal, size);
9099 if (changefailed) {
9100 PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) "
9101 "full power\n", pmf, changefailed, PM_DEVICE(dip)))
9102 return (DDI_FAILURE);
9103 }
9104 return (DDI_SUCCESS);
9105 }
9106
9107 int
pm_noinvol_update(int subcmd,int volpmd,int wasvolpmd,char * path,dev_info_t * tdip)9108 pm_noinvol_update(int subcmd, int volpmd, int wasvolpmd, char *path,
9109 dev_info_t *tdip)
9110 {
9111 PMD_FUNC(pmf, "noinvol_update")
9112 pm_bp_noinvol_t args;
9113 int ret;
9114 int result = DDI_SUCCESS;
9115
9116 args.bpni_path = path;
9117 args.bpni_dip = tdip;
9118 args.bpni_cmd = subcmd;
9119 args.bpni_wasvolpmd = wasvolpmd;
9120 args.bpni_volpmd = volpmd;
9121 PMD(PMD_NOINVOL, ("%s: update for path %s tdip %p subcmd %d "
9122 "volpmd %d wasvolpmd %d\n", pmf,
9123 path, (void *)tdip, subcmd, wasvolpmd, volpmd))
9124 ret = pm_busop_bus_power(ddi_root_node(), NULL, BUS_POWER_NOINVOL,
9125 &args, &result);
9126 return (ret);
9127 }
9128
9129 void
pm_noinvol_update_node(dev_info_t * dip,pm_bp_noinvol_t * req)9130 pm_noinvol_update_node(dev_info_t *dip, pm_bp_noinvol_t *req)
9131 {
9132 PMD_FUNC(pmf, "noinvol_update_node")
9133
9134 PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
9135 switch (req->bpni_cmd) {
9136 case PM_BP_NOINVOL_ATTACH:
9137 PMD(PMD_NOINVOL, ("%s: PM_PB_NOINVOL_ATTACH %s@%s(%s#%d) "
9138 "noinvol %d->%d\n", pmf, PM_DEVICE(dip),
9139 DEVI(dip)->devi_pm_noinvolpm,
9140 DEVI(dip)->devi_pm_noinvolpm - 1))
9141 ASSERT(DEVI(dip)->devi_pm_noinvolpm);
9142 PM_LOCK_DIP(dip);
9143 DEVI(dip)->devi_pm_noinvolpm--;
9144 if (req->bpni_wasvolpmd) {
9145 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_ATTACH "
9146 "%s@%s(%s#%d) volpmd %d->%d\n", pmf,
9147 PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd,
9148 DEVI(dip)->devi_pm_volpmd - 1))
9149 if (DEVI(dip)->devi_pm_volpmd)
9150 DEVI(dip)->devi_pm_volpmd--;
9151 }
9152 PM_UNLOCK_DIP(dip);
9153 break;
9154
9155 case PM_BP_NOINVOL_DETACH:
9156 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH %s@%s(%s#%d) "
9157 "noinvolpm %d->%d\n", pmf, PM_DEVICE(dip),
9158 DEVI(dip)->devi_pm_noinvolpm,
9159 DEVI(dip)->devi_pm_noinvolpm + 1))
9160 PM_LOCK_DIP(dip);
9161 DEVI(dip)->devi_pm_noinvolpm++;
9162 if (req->bpni_wasvolpmd) {
9163 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH "
9164 "%s@%s(%s#%d) volpmd %d->%d\n", pmf,
9165 PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd,
9166 DEVI(dip)->devi_pm_volpmd + 1))
9167 DEVI(dip)->devi_pm_volpmd++;
9168 }
9169 PM_UNLOCK_DIP(dip);
9170 break;
9171
9172 case PM_BP_NOINVOL_REMDRV:
9173 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) "
9174 "noinvol %d->%d\n", pmf, PM_DEVICE(dip),
9175 DEVI(dip)->devi_pm_noinvolpm,
9176 DEVI(dip)->devi_pm_noinvolpm - 1))
9177 ASSERT(DEVI(dip)->devi_pm_noinvolpm);
9178 PM_LOCK_DIP(dip);
9179 DEVI(dip)->devi_pm_noinvolpm--;
9180 if (req->bpni_wasvolpmd) {
9181 PMD(PMD_NOINVOL,
9182 ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) "
9183 "volpmd %d->%d\n", pmf, PM_DEVICE(dip),
9184 DEVI(dip)->devi_pm_volpmd,
9185 DEVI(dip)->devi_pm_volpmd - 1))
9186 /*
9187 * A power up could come in between and
9188 * clear the volpmd, if that's the case,
9189 * volpmd would be clear.
9190 */
9191 if (DEVI(dip)->devi_pm_volpmd)
9192 DEVI(dip)->devi_pm_volpmd--;
9193 }
9194 PM_UNLOCK_DIP(dip);
9195 break;
9196
9197 case PM_BP_NOINVOL_CFB:
9198 PMD(PMD_NOINVOL,
9199 ("%s: PM_BP_NOIVOL_CFB %s@%s(%s#%d) noinvol %d->%d\n",
9200 pmf, PM_DEVICE(dip), DEVI(dip)->devi_pm_noinvolpm,
9201 DEVI(dip)->devi_pm_noinvolpm + 1))
9202 PM_LOCK_DIP(dip);
9203 DEVI(dip)->devi_pm_noinvolpm++;
9204 PM_UNLOCK_DIP(dip);
9205 break;
9206
9207 case PM_BP_NOINVOL_POWER:
9208 PMD(PMD_NOINVOL,
9209 ("%s: PM_BP_NOIVOL_PWR %s@%s(%s#%d) volpmd %d->%d\n",
9210 pmf, PM_DEVICE(dip),
9211 DEVI(dip)->devi_pm_volpmd, DEVI(dip)->devi_pm_volpmd -
9212 req->bpni_volpmd))
9213 PM_LOCK_DIP(dip);
9214 DEVI(dip)->devi_pm_volpmd -= req->bpni_volpmd;
9215 PM_UNLOCK_DIP(dip);
9216 break;
9217
9218 default:
9219 break;
9220 }
9221
9222 }
9223
9224 #ifdef DEBUG
9225 static int
pm_desc_pwrchk_walk(dev_info_t * dip,void * arg)9226 pm_desc_pwrchk_walk(dev_info_t *dip, void *arg)
9227 {
9228 PMD_FUNC(pmf, "desc_pwrchk")
9229 pm_desc_pwrchk_t *pdpchk = (pm_desc_pwrchk_t *)arg;
9230 pm_info_t *info = PM_GET_PM_INFO(dip);
9231 int i;
9232 /* LINTED */
9233 int curpwr, ce_level;
9234
9235 if (!info)
9236 return (DDI_WALK_CONTINUE);
9237
9238 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
9239 for (i = 0; i < PM_NUMCMPTS(dip); i++) {
9240 /* LINTED */
9241 if ((curpwr = PM_CURPOWER(dip, i)) == 0)
9242 continue;
9243 /* E_FUNC_SET_NOT_USED */
9244 ce_level = (pdpchk->pdpc_par_involved == 0) ? CE_PANIC :
9245 CE_WARN;
9246 PMD(PMD_SET, ("%s: %s@%s(%s#%d) is powered off while desc "
9247 "%s@%s(%s#%d)[%d] is at %d\n", pmf,
9248 PM_DEVICE(pdpchk->pdpc_dip), PM_DEVICE(dip), i, curpwr))
9249 cmn_err(ce_level, "!device %s@%s(%s#%d) is powered on, "
9250 "while its ancestor, %s@%s(%s#%d), is powering off!",
9251 PM_DEVICE(dip), PM_DEVICE(pdpchk->pdpc_dip));
9252 }
9253 return (DDI_WALK_CONTINUE);
9254 }
9255 #endif
9256
9257 /*
9258 * Record the fact that one thread is borrowing the lock on a device node.
9259 * Use is restricted to the case where the lending thread will block until
9260 * the borrowing thread (always curthread) completes.
9261 */
9262 void
pm_borrow_lock(kthread_t * lender)9263 pm_borrow_lock(kthread_t *lender)
9264 {
9265 lock_loan_t *prev = &lock_loan_head;
9266 lock_loan_t *cur = (lock_loan_t *)kmem_zalloc(sizeof (*cur), KM_SLEEP);
9267
9268 cur->pmlk_borrower = curthread;
9269 cur->pmlk_lender = lender;
9270 mutex_enter(&pm_loan_lock);
9271 cur->pmlk_next = prev->pmlk_next;
9272 prev->pmlk_next = cur;
9273 mutex_exit(&pm_loan_lock);
9274 }
9275
9276 /*
9277 * Return the borrowed lock. A thread can borrow only one.
9278 */
9279 void
pm_return_lock(void)9280 pm_return_lock(void)
9281 {
9282 lock_loan_t *cur;
9283 lock_loan_t *prev = &lock_loan_head;
9284
9285 mutex_enter(&pm_loan_lock);
9286 ASSERT(prev->pmlk_next != NULL);
9287 for (cur = prev->pmlk_next; cur; prev = cur, cur = cur->pmlk_next)
9288 if (cur->pmlk_borrower == curthread)
9289 break;
9290
9291 ASSERT(cur != NULL);
9292 prev->pmlk_next = cur->pmlk_next;
9293 mutex_exit(&pm_loan_lock);
9294 kmem_free(cur, sizeof (*cur));
9295 }
9296
9297 #if defined(__x86)
9298
9299 #define CPR_RXR 0x1
9300 #define CPR_TXR 0x20
9301 #define CPR_DATAREG 0x3f8
9302 #define CPR_LSTAT 0x3fd
9303 #define CPR_INTRCTL 0x3f9
9304
9305 char
pm_getchar(void)9306 pm_getchar(void)
9307 {
9308 while ((inb(CPR_LSTAT) & CPR_RXR) != CPR_RXR)
9309 drv_usecwait(10);
9310
9311 return (inb(CPR_DATAREG));
9312
9313 }
9314
9315 void
pm_putchar(char c)9316 pm_putchar(char c)
9317 {
9318 while ((inb(CPR_LSTAT) & CPR_TXR) == 0)
9319 drv_usecwait(10);
9320
9321 outb(CPR_DATAREG, c);
9322 }
9323
9324 void
pm_printf(char * s)9325 pm_printf(char *s)
9326 {
9327 while (*s) {
9328 pm_putchar(*s++);
9329 }
9330 }
9331
9332 #endif
9333
9334 int
pm_ppm_searchlist(pm_searchargs_t * sp)9335 pm_ppm_searchlist(pm_searchargs_t *sp)
9336 {
9337 power_req_t power_req;
9338 int result = 0;
9339 /* LINTED */
9340 int ret;
9341
9342 power_req.request_type = PMR_PPM_SEARCH_LIST;
9343 power_req.req.ppm_search_list_req.searchlist = sp;
9344 ASSERT(DEVI(ddi_root_node())->devi_pm_ppm);
9345 ret = pm_ctlops((dev_info_t *)DEVI(ddi_root_node())->devi_pm_ppm,
9346 ddi_root_node(), DDI_CTLOPS_POWER, &power_req, &result);
9347 PMD(PMD_SX, ("pm_ppm_searchlist returns %d, result %d\n",
9348 ret, result))
9349 return (result);
9350 }
9351