xref: /linux/fs/nilfs2/segment.c (revision c159dfbdd4fc62fa08f6715d9d6c34d39cf40446)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS segment constructor.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/pagemap.h>
12 #include <linux/buffer_head.h>
13 #include <linux/writeback.h>
14 #include <linux/bitops.h>
15 #include <linux/bio.h>
16 #include <linux/completion.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <linux/kthread.h>
21 #include <linux/crc32.h>
22 #include <linux/pagevec.h>
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 
26 #include "nilfs.h"
27 #include "btnode.h"
28 #include "page.h"
29 #include "segment.h"
30 #include "sufile.h"
31 #include "cpfile.h"
32 #include "ifile.h"
33 #include "segbuf.h"
34 
35 
36 /*
37  * Segment constructor
38  */
39 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
40 
41 #define SC_MAX_SEGDELTA 64   /*
42 			      * Upper limit of the number of segments
43 			      * appended in collection retry loop
44 			      */
45 
46 /* Construction mode */
47 enum {
48 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
49 	SC_LSEG_DSYNC,	/*
50 			 * Flush data blocks of a given file and make
51 			 * a logical segment without a super root.
52 			 */
53 	SC_FLUSH_FILE,	/*
54 			 * Flush data files, leads to segment writes without
55 			 * creating a checkpoint.
56 			 */
57 	SC_FLUSH_DAT,	/*
58 			 * Flush DAT file.  This also creates segments
59 			 * without a checkpoint.
60 			 */
61 };
62 
63 /* Stage numbers of dirty block collection */
64 enum {
65 	NILFS_ST_INIT = 0,
66 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
67 	NILFS_ST_FILE,
68 	NILFS_ST_IFILE,
69 	NILFS_ST_CPFILE,
70 	NILFS_ST_SUFILE,
71 	NILFS_ST_DAT,
72 	NILFS_ST_SR,		/* Super root */
73 	NILFS_ST_DSYNC,		/* Data sync blocks */
74 	NILFS_ST_DONE,
75 };
76 
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/nilfs2.h>
79 
80 /*
81  * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
82  * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
83  * the variable must use them because transition of stage count must involve
84  * trace events (trace_nilfs2_collection_stage_transition).
85  *
86  * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
87  * produce tracepoint events. It is provided just for making the intention
88  * clear.
89  */
90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
91 {
92 	sci->sc_stage.scnt++;
93 	trace_nilfs2_collection_stage_transition(sci);
94 }
95 
96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
97 {
98 	sci->sc_stage.scnt = next_scnt;
99 	trace_nilfs2_collection_stage_transition(sci);
100 }
101 
102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
103 {
104 	return sci->sc_stage.scnt;
105 }
106 
107 /* State flags of collection */
108 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
109 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
110 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
111 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
112 
113 /* Operations depending on the construction mode and file type */
114 struct nilfs_sc_operations {
115 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
116 			    struct inode *);
117 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
118 			    struct inode *);
119 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
120 			    struct inode *);
121 	void (*write_data_binfo)(struct nilfs_sc_info *,
122 				 struct nilfs_segsum_pointer *,
123 				 union nilfs_binfo *);
124 	void (*write_node_binfo)(struct nilfs_sc_info *,
125 				 struct nilfs_segsum_pointer *,
126 				 union nilfs_binfo *);
127 };
128 
129 /*
130  * Other definitions
131  */
132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
136 
137 #define nilfs_cnt32_ge(a, b)   \
138 	(typecheck(__u32, a) && typecheck(__u32, b) && \
139 	 ((__s32)((a) - (b)) >= 0))
140 
141 static int nilfs_prepare_segment_lock(struct super_block *sb,
142 				      struct nilfs_transaction_info *ti)
143 {
144 	struct nilfs_transaction_info *cur_ti = current->journal_info;
145 	void *save = NULL;
146 
147 	if (cur_ti) {
148 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
149 			return ++cur_ti->ti_count;
150 
151 		/*
152 		 * If journal_info field is occupied by other FS,
153 		 * it is saved and will be restored on
154 		 * nilfs_transaction_commit().
155 		 */
156 		nilfs_warn(sb, "journal info from a different FS");
157 		save = current->journal_info;
158 	}
159 	if (!ti) {
160 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
161 		if (!ti)
162 			return -ENOMEM;
163 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
164 	} else {
165 		ti->ti_flags = 0;
166 	}
167 	ti->ti_count = 0;
168 	ti->ti_save = save;
169 	ti->ti_magic = NILFS_TI_MAGIC;
170 	current->journal_info = ti;
171 	return 0;
172 }
173 
174 /**
175  * nilfs_transaction_begin - start indivisible file operations.
176  * @sb: super block
177  * @ti: nilfs_transaction_info
178  * @vacancy_check: flags for vacancy rate checks
179  *
180  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
181  * the segment semaphore, to make a segment construction and write tasks
182  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
183  * The region enclosed by these two functions can be nested.  To avoid a
184  * deadlock, the semaphore is only acquired or released in the outermost call.
185  *
186  * This function allocates a nilfs_transaction_info struct to keep context
187  * information on it.  It is initialized and hooked onto the current task in
188  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
189  * instead; otherwise a new struct is assigned from a slab.
190  *
191  * When @vacancy_check flag is set, this function will check the amount of
192  * free space, and will wait for the GC to reclaim disk space if low capacity.
193  *
194  * Return: 0 on success, or one of the following negative error codes on
195  * failure:
196  * * %-ENOMEM	- Insufficient memory available.
197  * * %-ENOSPC	- No space left on device (if checking free space).
198  */
199 int nilfs_transaction_begin(struct super_block *sb,
200 			    struct nilfs_transaction_info *ti,
201 			    int vacancy_check)
202 {
203 	struct the_nilfs *nilfs;
204 	int ret = nilfs_prepare_segment_lock(sb, ti);
205 	struct nilfs_transaction_info *trace_ti;
206 
207 	if (unlikely(ret < 0))
208 		return ret;
209 	if (ret > 0) {
210 		trace_ti = current->journal_info;
211 
212 		trace_nilfs2_transaction_transition(sb, trace_ti,
213 				    trace_ti->ti_count, trace_ti->ti_flags,
214 				    TRACE_NILFS2_TRANSACTION_BEGIN);
215 		return 0;
216 	}
217 
218 	sb_start_intwrite(sb);
219 
220 	nilfs = sb->s_fs_info;
221 	down_read(&nilfs->ns_segctor_sem);
222 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
223 		up_read(&nilfs->ns_segctor_sem);
224 		ret = -ENOSPC;
225 		goto failed;
226 	}
227 
228 	trace_ti = current->journal_info;
229 	trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
230 					    trace_ti->ti_flags,
231 					    TRACE_NILFS2_TRANSACTION_BEGIN);
232 	return 0;
233 
234  failed:
235 	ti = current->journal_info;
236 	current->journal_info = ti->ti_save;
237 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
238 		kmem_cache_free(nilfs_transaction_cachep, ti);
239 	sb_end_intwrite(sb);
240 	return ret;
241 }
242 
243 /**
244  * nilfs_transaction_commit - commit indivisible file operations.
245  * @sb: super block
246  *
247  * nilfs_transaction_commit() releases the read semaphore which is
248  * acquired by nilfs_transaction_begin(). This is only performed
249  * in outermost call of this function.  If a commit flag is set,
250  * nilfs_transaction_commit() sets a timer to start the segment
251  * constructor.  If a sync flag is set, it starts construction
252  * directly.
253  *
254  * Return: 0 on success, or a negative error code on failure.
255  */
256 int nilfs_transaction_commit(struct super_block *sb)
257 {
258 	struct nilfs_transaction_info *ti = current->journal_info;
259 	struct the_nilfs *nilfs = sb->s_fs_info;
260 	int err = 0;
261 
262 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
263 	ti->ti_flags |= NILFS_TI_COMMIT;
264 	if (ti->ti_count > 0) {
265 		ti->ti_count--;
266 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
267 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
268 		return 0;
269 	}
270 	if (nilfs->ns_writer) {
271 		struct nilfs_sc_info *sci = nilfs->ns_writer;
272 
273 		if (ti->ti_flags & NILFS_TI_COMMIT)
274 			nilfs_segctor_start_timer(sci);
275 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
276 			nilfs_segctor_do_flush(sci, 0);
277 	}
278 	up_read(&nilfs->ns_segctor_sem);
279 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
280 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
281 
282 	current->journal_info = ti->ti_save;
283 
284 	if (ti->ti_flags & NILFS_TI_SYNC)
285 		err = nilfs_construct_segment(sb);
286 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
287 		kmem_cache_free(nilfs_transaction_cachep, ti);
288 	sb_end_intwrite(sb);
289 	return err;
290 }
291 
292 void nilfs_transaction_abort(struct super_block *sb)
293 {
294 	struct nilfs_transaction_info *ti = current->journal_info;
295 	struct the_nilfs *nilfs = sb->s_fs_info;
296 
297 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
298 	if (ti->ti_count > 0) {
299 		ti->ti_count--;
300 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
301 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
302 		return;
303 	}
304 	up_read(&nilfs->ns_segctor_sem);
305 
306 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
307 		    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
308 
309 	current->journal_info = ti->ti_save;
310 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
311 		kmem_cache_free(nilfs_transaction_cachep, ti);
312 	sb_end_intwrite(sb);
313 }
314 
315 void nilfs_relax_pressure_in_lock(struct super_block *sb)
316 {
317 	struct the_nilfs *nilfs = sb->s_fs_info;
318 	struct nilfs_sc_info *sci = nilfs->ns_writer;
319 
320 	if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request)
321 		return;
322 
323 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
324 	up_read(&nilfs->ns_segctor_sem);
325 
326 	down_write(&nilfs->ns_segctor_sem);
327 	if (sci->sc_flush_request &&
328 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
329 		struct nilfs_transaction_info *ti = current->journal_info;
330 
331 		ti->ti_flags |= NILFS_TI_WRITER;
332 		nilfs_segctor_do_immediate_flush(sci);
333 		ti->ti_flags &= ~NILFS_TI_WRITER;
334 	}
335 	downgrade_write(&nilfs->ns_segctor_sem);
336 }
337 
338 static void nilfs_transaction_lock(struct super_block *sb,
339 				   struct nilfs_transaction_info *ti,
340 				   int gcflag)
341 {
342 	struct nilfs_transaction_info *cur_ti = current->journal_info;
343 	struct the_nilfs *nilfs = sb->s_fs_info;
344 	struct nilfs_sc_info *sci = nilfs->ns_writer;
345 
346 	WARN_ON(cur_ti);
347 	ti->ti_flags = NILFS_TI_WRITER;
348 	ti->ti_count = 0;
349 	ti->ti_save = cur_ti;
350 	ti->ti_magic = NILFS_TI_MAGIC;
351 	current->journal_info = ti;
352 
353 	for (;;) {
354 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
355 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
356 
357 		down_write(&nilfs->ns_segctor_sem);
358 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
359 			break;
360 
361 		nilfs_segctor_do_immediate_flush(sci);
362 
363 		up_write(&nilfs->ns_segctor_sem);
364 		cond_resched();
365 	}
366 	if (gcflag)
367 		ti->ti_flags |= NILFS_TI_GC;
368 
369 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
370 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
371 }
372 
373 static void nilfs_transaction_unlock(struct super_block *sb)
374 {
375 	struct nilfs_transaction_info *ti = current->journal_info;
376 	struct the_nilfs *nilfs = sb->s_fs_info;
377 
378 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
379 	BUG_ON(ti->ti_count > 0);
380 
381 	up_write(&nilfs->ns_segctor_sem);
382 	current->journal_info = ti->ti_save;
383 
384 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
385 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
386 }
387 
388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
389 					    struct nilfs_segsum_pointer *ssp,
390 					    unsigned int bytes)
391 {
392 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
393 	unsigned int blocksize = sci->sc_super->s_blocksize;
394 	void *p;
395 
396 	if (unlikely(ssp->offset + bytes > blocksize)) {
397 		ssp->offset = 0;
398 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
399 					       &segbuf->sb_segsum_buffers));
400 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
401 	}
402 	p = ssp->bh->b_data + ssp->offset;
403 	ssp->offset += bytes;
404 	return p;
405 }
406 
407 /**
408  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
409  * @sci: nilfs_sc_info
410  *
411  * Return: 0 on success, or a negative error code on failure.
412  */
413 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
414 {
415 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
416 	struct buffer_head *sumbh;
417 	unsigned int sumbytes;
418 	unsigned int flags = 0;
419 	int err;
420 
421 	if (nilfs_doing_gc())
422 		flags = NILFS_SS_GC;
423 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
424 	if (unlikely(err))
425 		return err;
426 
427 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
428 	sumbytes = segbuf->sb_sum.sumbytes;
429 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
430 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
431 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
432 	return 0;
433 }
434 
435 /**
436  * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area
437  * @sci: segment constructor object
438  *
439  * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of
440  * the current segment summary block.
441  */
442 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci)
443 {
444 	struct nilfs_segsum_pointer *ssp;
445 
446 	ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr;
447 	if (ssp->offset < ssp->bh->b_size)
448 		memset(ssp->bh->b_data + ssp->offset, 0,
449 		       ssp->bh->b_size - ssp->offset);
450 }
451 
452 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
453 {
454 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
455 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
456 		return -E2BIG; /*
457 				* The current segment is filled up
458 				* (internal code)
459 				*/
460 	nilfs_segctor_zeropad_segsum(sci);
461 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
462 	return nilfs_segctor_reset_segment_buffer(sci);
463 }
464 
465 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
466 {
467 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
468 	int err;
469 
470 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
471 		err = nilfs_segctor_feed_segment(sci);
472 		if (err)
473 			return err;
474 		segbuf = sci->sc_curseg;
475 	}
476 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
477 	if (likely(!err))
478 		segbuf->sb_sum.flags |= NILFS_SS_SR;
479 	return err;
480 }
481 
482 /*
483  * Functions for making segment summary and payloads
484  */
485 static int nilfs_segctor_segsum_block_required(
486 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
487 	unsigned int binfo_size)
488 {
489 	unsigned int blocksize = sci->sc_super->s_blocksize;
490 	/* Size of finfo and binfo is enough small against blocksize */
491 
492 	return ssp->offset + binfo_size +
493 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
494 		blocksize;
495 }
496 
497 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
498 				      struct inode *inode)
499 {
500 	sci->sc_curseg->sb_sum.nfinfo++;
501 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
502 	nilfs_segctor_map_segsum_entry(
503 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
504 
505 	if (NILFS_I(inode)->i_root &&
506 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
507 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
508 	/* skip finfo */
509 }
510 
511 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
512 				    struct inode *inode)
513 {
514 	struct nilfs_finfo *finfo;
515 	struct nilfs_inode_info *ii;
516 	struct nilfs_segment_buffer *segbuf;
517 	__u64 cno;
518 
519 	if (sci->sc_blk_cnt == 0)
520 		return;
521 
522 	ii = NILFS_I(inode);
523 
524 	if (ii->i_type & NILFS_I_TYPE_GC)
525 		cno = ii->i_cno;
526 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
527 		cno = 0;
528 	else
529 		cno = sci->sc_cno;
530 
531 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
532 						 sizeof(*finfo));
533 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
534 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
535 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
536 	finfo->fi_cno = cpu_to_le64(cno);
537 
538 	segbuf = sci->sc_curseg;
539 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
540 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
541 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
542 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
543 }
544 
545 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
546 					struct buffer_head *bh,
547 					struct inode *inode,
548 					unsigned int binfo_size)
549 {
550 	struct nilfs_segment_buffer *segbuf;
551 	int required, err = 0;
552 
553  retry:
554 	segbuf = sci->sc_curseg;
555 	required = nilfs_segctor_segsum_block_required(
556 		sci, &sci->sc_binfo_ptr, binfo_size);
557 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
558 		nilfs_segctor_end_finfo(sci, inode);
559 		err = nilfs_segctor_feed_segment(sci);
560 		if (err)
561 			return err;
562 		goto retry;
563 	}
564 	if (unlikely(required)) {
565 		nilfs_segctor_zeropad_segsum(sci);
566 		err = nilfs_segbuf_extend_segsum(segbuf);
567 		if (unlikely(err))
568 			goto failed;
569 	}
570 	if (sci->sc_blk_cnt == 0)
571 		nilfs_segctor_begin_finfo(sci, inode);
572 
573 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
574 	/* Substitution to vblocknr is delayed until update_blocknr() */
575 	nilfs_segbuf_add_file_buffer(segbuf, bh);
576 	sci->sc_blk_cnt++;
577  failed:
578 	return err;
579 }
580 
581 /*
582  * Callback functions that enumerate, mark, and collect dirty blocks
583  */
584 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
585 				   struct buffer_head *bh, struct inode *inode)
586 {
587 	int err;
588 
589 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
590 	if (err < 0)
591 		return err;
592 
593 	err = nilfs_segctor_add_file_block(sci, bh, inode,
594 					   sizeof(struct nilfs_binfo_v));
595 	if (!err)
596 		sci->sc_datablk_cnt++;
597 	return err;
598 }
599 
600 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
601 				   struct buffer_head *bh,
602 				   struct inode *inode)
603 {
604 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
605 }
606 
607 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
608 				   struct buffer_head *bh,
609 				   struct inode *inode)
610 {
611 	WARN_ON(!buffer_dirty(bh));
612 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
613 }
614 
615 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
616 					struct nilfs_segsum_pointer *ssp,
617 					union nilfs_binfo *binfo)
618 {
619 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
620 		sci, ssp, sizeof(*binfo_v));
621 	*binfo_v = binfo->bi_v;
622 }
623 
624 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
625 					struct nilfs_segsum_pointer *ssp,
626 					union nilfs_binfo *binfo)
627 {
628 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
629 		sci, ssp, sizeof(*vblocknr));
630 	*vblocknr = binfo->bi_v.bi_vblocknr;
631 }
632 
633 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
634 	.collect_data = nilfs_collect_file_data,
635 	.collect_node = nilfs_collect_file_node,
636 	.collect_bmap = nilfs_collect_file_bmap,
637 	.write_data_binfo = nilfs_write_file_data_binfo,
638 	.write_node_binfo = nilfs_write_file_node_binfo,
639 };
640 
641 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
642 				  struct buffer_head *bh, struct inode *inode)
643 {
644 	int err;
645 
646 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
647 	if (err < 0)
648 		return err;
649 
650 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
651 	if (!err)
652 		sci->sc_datablk_cnt++;
653 	return err;
654 }
655 
656 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
657 				  struct buffer_head *bh, struct inode *inode)
658 {
659 	WARN_ON(!buffer_dirty(bh));
660 	return nilfs_segctor_add_file_block(sci, bh, inode,
661 					    sizeof(struct nilfs_binfo_dat));
662 }
663 
664 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
665 				       struct nilfs_segsum_pointer *ssp,
666 				       union nilfs_binfo *binfo)
667 {
668 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
669 							  sizeof(*blkoff));
670 	*blkoff = binfo->bi_dat.bi_blkoff;
671 }
672 
673 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
674 				       struct nilfs_segsum_pointer *ssp,
675 				       union nilfs_binfo *binfo)
676 {
677 	struct nilfs_binfo_dat *binfo_dat =
678 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
679 	*binfo_dat = binfo->bi_dat;
680 }
681 
682 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
683 	.collect_data = nilfs_collect_dat_data,
684 	.collect_node = nilfs_collect_file_node,
685 	.collect_bmap = nilfs_collect_dat_bmap,
686 	.write_data_binfo = nilfs_write_dat_data_binfo,
687 	.write_node_binfo = nilfs_write_dat_node_binfo,
688 };
689 
690 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
691 	.collect_data = nilfs_collect_file_data,
692 	.collect_node = NULL,
693 	.collect_bmap = NULL,
694 	.write_data_binfo = nilfs_write_file_data_binfo,
695 	.write_node_binfo = NULL,
696 };
697 
698 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
699 					      struct list_head *listp,
700 					      size_t nlimit,
701 					      loff_t start, loff_t end)
702 {
703 	struct address_space *mapping = inode->i_mapping;
704 	struct folio_batch fbatch;
705 	pgoff_t index = 0, last = ULONG_MAX;
706 	size_t ndirties = 0;
707 	int i;
708 
709 	if (unlikely(start != 0 || end != LLONG_MAX)) {
710 		/*
711 		 * A valid range is given for sync-ing data pages. The
712 		 * range is rounded to per-page; extra dirty buffers
713 		 * may be included if blocksize < pagesize.
714 		 */
715 		index = start >> PAGE_SHIFT;
716 		last = end >> PAGE_SHIFT;
717 	}
718 	folio_batch_init(&fbatch);
719  repeat:
720 	if (unlikely(index > last) ||
721 	      !filemap_get_folios_tag(mapping, &index, last,
722 		      PAGECACHE_TAG_DIRTY, &fbatch))
723 		return ndirties;
724 
725 	for (i = 0; i < folio_batch_count(&fbatch); i++) {
726 		struct buffer_head *bh, *head;
727 		struct folio *folio = fbatch.folios[i];
728 
729 		folio_lock(folio);
730 		if (unlikely(folio->mapping != mapping)) {
731 			/* Exclude folios removed from the address space */
732 			folio_unlock(folio);
733 			continue;
734 		}
735 		head = folio_buffers(folio);
736 		if (!head)
737 			head = create_empty_buffers(folio,
738 					i_blocksize(inode), 0);
739 
740 		bh = head;
741 		do {
742 			if (!buffer_dirty(bh) || buffer_async_write(bh))
743 				continue;
744 			get_bh(bh);
745 			list_add_tail(&bh->b_assoc_buffers, listp);
746 			ndirties++;
747 			if (unlikely(ndirties >= nlimit)) {
748 				folio_unlock(folio);
749 				folio_batch_release(&fbatch);
750 				cond_resched();
751 				return ndirties;
752 			}
753 		} while (bh = bh->b_this_page, bh != head);
754 
755 		folio_unlock(folio);
756 	}
757 	folio_batch_release(&fbatch);
758 	cond_resched();
759 	goto repeat;
760 }
761 
762 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
763 					    struct list_head *listp)
764 {
765 	struct nilfs_inode_info *ii = NILFS_I(inode);
766 	struct inode *btnc_inode = ii->i_assoc_inode;
767 	struct folio_batch fbatch;
768 	struct buffer_head *bh, *head;
769 	unsigned int i;
770 	pgoff_t index = 0;
771 
772 	if (!btnc_inode)
773 		return;
774 	folio_batch_init(&fbatch);
775 
776 	while (filemap_get_folios_tag(btnc_inode->i_mapping, &index,
777 				(pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) {
778 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
779 			bh = head = folio_buffers(fbatch.folios[i]);
780 			do {
781 				if (buffer_dirty(bh) &&
782 						!buffer_async_write(bh)) {
783 					get_bh(bh);
784 					list_add_tail(&bh->b_assoc_buffers,
785 						      listp);
786 				}
787 				bh = bh->b_this_page;
788 			} while (bh != head);
789 		}
790 		folio_batch_release(&fbatch);
791 		cond_resched();
792 	}
793 }
794 
795 static void nilfs_dispose_list(struct the_nilfs *nilfs,
796 			       struct list_head *head, int force)
797 {
798 	struct nilfs_inode_info *ii, *n;
799 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
800 	unsigned int nv = 0;
801 
802 	while (!list_empty(head)) {
803 		spin_lock(&nilfs->ns_inode_lock);
804 		list_for_each_entry_safe(ii, n, head, i_dirty) {
805 			list_del_init(&ii->i_dirty);
806 			if (force) {
807 				if (unlikely(ii->i_bh)) {
808 					brelse(ii->i_bh);
809 					ii->i_bh = NULL;
810 				}
811 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
812 				set_bit(NILFS_I_QUEUED, &ii->i_state);
813 				list_add_tail(&ii->i_dirty,
814 					      &nilfs->ns_dirty_files);
815 				continue;
816 			}
817 			ivec[nv++] = ii;
818 			if (nv == SC_N_INODEVEC)
819 				break;
820 		}
821 		spin_unlock(&nilfs->ns_inode_lock);
822 
823 		for (pii = ivec; nv > 0; pii++, nv--)
824 			iput(&(*pii)->vfs_inode);
825 	}
826 }
827 
828 static void nilfs_iput_work_func(struct work_struct *work)
829 {
830 	struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
831 						 sc_iput_work);
832 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
833 
834 	nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
835 }
836 
837 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
838 				     struct nilfs_root *root)
839 {
840 	int ret = 0;
841 
842 	if (nilfs_mdt_fetch_dirty(root->ifile))
843 		ret++;
844 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
845 		ret++;
846 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
847 		ret++;
848 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
849 		ret++;
850 	return ret;
851 }
852 
853 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
854 {
855 	return list_empty(&sci->sc_dirty_files) &&
856 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
857 		sci->sc_nfreesegs == 0 &&
858 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
859 }
860 
861 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
862 {
863 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
864 	int ret = 0;
865 
866 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
867 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
868 
869 	spin_lock(&nilfs->ns_inode_lock);
870 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
871 		ret++;
872 
873 	spin_unlock(&nilfs->ns_inode_lock);
874 	return ret;
875 }
876 
877 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
878 {
879 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
880 
881 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
882 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
883 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
884 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
885 }
886 
887 static void nilfs_fill_in_file_bmap(struct inode *ifile,
888 				    struct nilfs_inode_info *ii)
889 
890 {
891 	struct buffer_head *ibh;
892 	struct nilfs_inode *raw_inode;
893 
894 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
895 		ibh = ii->i_bh;
896 		BUG_ON(!ibh);
897 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
898 						  ibh);
899 		nilfs_bmap_write(ii->i_bmap, raw_inode);
900 		nilfs_ifile_unmap_inode(raw_inode);
901 	}
902 }
903 
904 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
905 {
906 	struct nilfs_inode_info *ii;
907 
908 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
909 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
910 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
911 	}
912 }
913 
914 /**
915  * nilfs_write_root_mdt_inode - export root metadata inode information to
916  *                              the on-disk inode
917  * @inode:     inode object of the root metadata file
918  * @raw_inode: on-disk inode
919  *
920  * nilfs_write_root_mdt_inode() writes inode information and bmap data of
921  * @inode to the inode area of the metadata file allocated on the super root
922  * block created to finalize the log.  Since super root blocks are configured
923  * each time, this function zero-fills the unused area of @raw_inode.
924  */
925 static void nilfs_write_root_mdt_inode(struct inode *inode,
926 				       struct nilfs_inode *raw_inode)
927 {
928 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
929 
930 	nilfs_write_inode_common(inode, raw_inode);
931 
932 	/* zero-fill unused portion of raw_inode */
933 	raw_inode->i_xattr = 0;
934 	raw_inode->i_pad = 0;
935 	memset((void *)raw_inode + sizeof(*raw_inode), 0,
936 	       nilfs->ns_inode_size - sizeof(*raw_inode));
937 
938 	nilfs_bmap_write(NILFS_I(inode)->i_bmap, raw_inode);
939 }
940 
941 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
942 					     struct the_nilfs *nilfs)
943 {
944 	struct buffer_head *bh_sr;
945 	struct nilfs_super_root *raw_sr;
946 	unsigned int isz, srsz;
947 
948 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
949 
950 	lock_buffer(bh_sr);
951 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
952 	isz = nilfs->ns_inode_size;
953 	srsz = NILFS_SR_BYTES(isz);
954 
955 	raw_sr->sr_sum = 0;  /* Ensure initialization within this update */
956 	raw_sr->sr_bytes = cpu_to_le16(srsz);
957 	raw_sr->sr_nongc_ctime
958 		= cpu_to_le64(nilfs_doing_gc() ?
959 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
960 	raw_sr->sr_flags = 0;
961 
962 	nilfs_write_root_mdt_inode(nilfs->ns_dat, (void *)raw_sr +
963 				   NILFS_SR_DAT_OFFSET(isz));
964 	nilfs_write_root_mdt_inode(nilfs->ns_cpfile, (void *)raw_sr +
965 				   NILFS_SR_CPFILE_OFFSET(isz));
966 	nilfs_write_root_mdt_inode(nilfs->ns_sufile, (void *)raw_sr +
967 				   NILFS_SR_SUFILE_OFFSET(isz));
968 
969 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
970 	set_buffer_uptodate(bh_sr);
971 	unlock_buffer(bh_sr);
972 }
973 
974 static void nilfs_redirty_inodes(struct list_head *head)
975 {
976 	struct nilfs_inode_info *ii;
977 
978 	list_for_each_entry(ii, head, i_dirty) {
979 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
980 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
981 	}
982 }
983 
984 static void nilfs_drop_collected_inodes(struct list_head *head)
985 {
986 	struct nilfs_inode_info *ii;
987 
988 	list_for_each_entry(ii, head, i_dirty) {
989 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
990 			continue;
991 
992 		clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
993 		set_bit(NILFS_I_UPDATED, &ii->i_state);
994 	}
995 }
996 
997 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
998 				       struct inode *inode,
999 				       struct list_head *listp,
1000 				       int (*collect)(struct nilfs_sc_info *,
1001 						      struct buffer_head *,
1002 						      struct inode *))
1003 {
1004 	struct buffer_head *bh, *n;
1005 	int err = 0;
1006 
1007 	if (collect) {
1008 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1009 			list_del_init(&bh->b_assoc_buffers);
1010 			err = collect(sci, bh, inode);
1011 			brelse(bh);
1012 			if (unlikely(err))
1013 				goto dispose_buffers;
1014 		}
1015 		return 0;
1016 	}
1017 
1018  dispose_buffers:
1019 	while (!list_empty(listp)) {
1020 		bh = list_first_entry(listp, struct buffer_head,
1021 				      b_assoc_buffers);
1022 		list_del_init(&bh->b_assoc_buffers);
1023 		brelse(bh);
1024 	}
1025 	return err;
1026 }
1027 
1028 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1029 {
1030 	/* Remaining number of blocks within segment buffer */
1031 	return sci->sc_segbuf_nblocks -
1032 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1033 }
1034 
1035 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1036 				   struct inode *inode,
1037 				   const struct nilfs_sc_operations *sc_ops)
1038 {
1039 	LIST_HEAD(data_buffers);
1040 	LIST_HEAD(node_buffers);
1041 	int err;
1042 
1043 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1044 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
1045 
1046 		n = nilfs_lookup_dirty_data_buffers(
1047 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1048 		if (n > rest) {
1049 			err = nilfs_segctor_apply_buffers(
1050 				sci, inode, &data_buffers,
1051 				sc_ops->collect_data);
1052 			BUG_ON(!err); /* always receive -E2BIG or true error */
1053 			goto break_or_fail;
1054 		}
1055 	}
1056 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1057 
1058 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1059 		err = nilfs_segctor_apply_buffers(
1060 			sci, inode, &data_buffers, sc_ops->collect_data);
1061 		if (unlikely(err)) {
1062 			/* dispose node list */
1063 			nilfs_segctor_apply_buffers(
1064 				sci, inode, &node_buffers, NULL);
1065 			goto break_or_fail;
1066 		}
1067 		sci->sc_stage.flags |= NILFS_CF_NODE;
1068 	}
1069 	/* Collect node */
1070 	err = nilfs_segctor_apply_buffers(
1071 		sci, inode, &node_buffers, sc_ops->collect_node);
1072 	if (unlikely(err))
1073 		goto break_or_fail;
1074 
1075 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1076 	err = nilfs_segctor_apply_buffers(
1077 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1078 	if (unlikely(err))
1079 		goto break_or_fail;
1080 
1081 	nilfs_segctor_end_finfo(sci, inode);
1082 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1083 
1084  break_or_fail:
1085 	return err;
1086 }
1087 
1088 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1089 					 struct inode *inode)
1090 {
1091 	LIST_HEAD(data_buffers);
1092 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1093 	int err;
1094 
1095 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1096 					    sci->sc_dsync_start,
1097 					    sci->sc_dsync_end);
1098 
1099 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1100 					  nilfs_collect_file_data);
1101 	if (!err) {
1102 		nilfs_segctor_end_finfo(sci, inode);
1103 		BUG_ON(n > rest);
1104 		/* always receive -E2BIG or true error if n > rest */
1105 	}
1106 	return err;
1107 }
1108 
1109 /**
1110  * nilfs_free_segments - free the segments given by an array of segment numbers
1111  * @nilfs:   nilfs object
1112  * @segnumv: array of segment numbers to be freed
1113  * @nsegs:   number of segments to be freed in @segnumv
1114  *
1115  * nilfs_free_segments() wraps nilfs_sufile_freev() and
1116  * nilfs_sufile_cancel_freev(), and edits the segment usage metadata file
1117  * (sufile) to free all segments given by @segnumv and @nsegs at once.  If
1118  * it fails midway, it cancels the changes so that none of the segments are
1119  * freed.  If @nsegs is 0, this function does nothing.
1120  *
1121  * The freeing of segments is not finalized until the writing of a log with
1122  * a super root block containing this sufile change is complete, and it can
1123  * be canceled with nilfs_sufile_cancel_freev() until then.
1124  *
1125  * Return: 0 on success, or one of the following negative error codes on
1126  * failure:
1127  * * %-EINVAL	- Invalid segment number.
1128  * * %-EIO	- I/O error (including metadata corruption).
1129  * * %-ENOMEM	- Insufficient memory available.
1130  */
1131 static int nilfs_free_segments(struct the_nilfs *nilfs, __u64 *segnumv,
1132 			       size_t nsegs)
1133 {
1134 	size_t ndone;
1135 	int ret;
1136 
1137 	if (!nsegs)
1138 		return 0;
1139 
1140 	ret = nilfs_sufile_freev(nilfs->ns_sufile, segnumv, nsegs, &ndone);
1141 	if (unlikely(ret)) {
1142 		nilfs_sufile_cancel_freev(nilfs->ns_sufile, segnumv, ndone,
1143 					  NULL);
1144 		/*
1145 		 * If a segment usage of the segments to be freed is in a
1146 		 * hole block, nilfs_sufile_freev() will return -ENOENT.
1147 		 * In this case, -EINVAL should be returned to the caller
1148 		 * since there is something wrong with the given segment
1149 		 * number array.  This error can only occur during GC, so
1150 		 * there is no need to worry about it propagating to other
1151 		 * callers (such as fsync).
1152 		 */
1153 		if (ret == -ENOENT) {
1154 			nilfs_err(nilfs->ns_sb,
1155 				  "The segment usage entry %llu to be freed is invalid (in a hole)",
1156 				  (unsigned long long)segnumv[ndone]);
1157 			ret = -EINVAL;
1158 		}
1159 	}
1160 	return ret;
1161 }
1162 
1163 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1164 {
1165 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1166 	struct list_head *head;
1167 	struct nilfs_inode_info *ii;
1168 	int err = 0;
1169 
1170 	switch (nilfs_sc_cstage_get(sci)) {
1171 	case NILFS_ST_INIT:
1172 		/* Pre-processes */
1173 		sci->sc_stage.flags = 0;
1174 
1175 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1176 			sci->sc_nblk_inc = 0;
1177 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1178 			if (mode == SC_LSEG_DSYNC) {
1179 				nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1180 				goto dsync_mode;
1181 			}
1182 		}
1183 
1184 		sci->sc_stage.dirty_file_ptr = NULL;
1185 		sci->sc_stage.gc_inode_ptr = NULL;
1186 		if (mode == SC_FLUSH_DAT) {
1187 			nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1188 			goto dat_stage;
1189 		}
1190 		nilfs_sc_cstage_inc(sci);
1191 		fallthrough;
1192 	case NILFS_ST_GC:
1193 		if (nilfs_doing_gc()) {
1194 			head = &sci->sc_gc_inodes;
1195 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1196 						head, i_dirty);
1197 			list_for_each_entry_continue(ii, head, i_dirty) {
1198 				err = nilfs_segctor_scan_file(
1199 					sci, &ii->vfs_inode,
1200 					&nilfs_sc_file_ops);
1201 				if (unlikely(err)) {
1202 					sci->sc_stage.gc_inode_ptr = list_entry(
1203 						ii->i_dirty.prev,
1204 						struct nilfs_inode_info,
1205 						i_dirty);
1206 					goto break_or_fail;
1207 				}
1208 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1209 			}
1210 			sci->sc_stage.gc_inode_ptr = NULL;
1211 		}
1212 		nilfs_sc_cstage_inc(sci);
1213 		fallthrough;
1214 	case NILFS_ST_FILE:
1215 		head = &sci->sc_dirty_files;
1216 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1217 					i_dirty);
1218 		list_for_each_entry_continue(ii, head, i_dirty) {
1219 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1220 
1221 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1222 						      &nilfs_sc_file_ops);
1223 			if (unlikely(err)) {
1224 				sci->sc_stage.dirty_file_ptr =
1225 					list_entry(ii->i_dirty.prev,
1226 						   struct nilfs_inode_info,
1227 						   i_dirty);
1228 				goto break_or_fail;
1229 			}
1230 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1231 			/* XXX: required ? */
1232 		}
1233 		sci->sc_stage.dirty_file_ptr = NULL;
1234 		if (mode == SC_FLUSH_FILE) {
1235 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1236 			return 0;
1237 		}
1238 		nilfs_sc_cstage_inc(sci);
1239 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1240 		fallthrough;
1241 	case NILFS_ST_IFILE:
1242 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1243 					      &nilfs_sc_file_ops);
1244 		if (unlikely(err))
1245 			break;
1246 		nilfs_sc_cstage_inc(sci);
1247 		/* Creating a checkpoint */
1248 		err = nilfs_cpfile_create_checkpoint(nilfs->ns_cpfile,
1249 						     nilfs->ns_cno);
1250 		if (unlikely(err))
1251 			break;
1252 		fallthrough;
1253 	case NILFS_ST_CPFILE:
1254 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1255 					      &nilfs_sc_file_ops);
1256 		if (unlikely(err))
1257 			break;
1258 		nilfs_sc_cstage_inc(sci);
1259 		fallthrough;
1260 	case NILFS_ST_SUFILE:
1261 		err = nilfs_free_segments(nilfs, sci->sc_freesegs,
1262 					  sci->sc_nfreesegs);
1263 		if (unlikely(err))
1264 			break;
1265 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1266 
1267 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1268 					      &nilfs_sc_file_ops);
1269 		if (unlikely(err))
1270 			break;
1271 		nilfs_sc_cstage_inc(sci);
1272 		fallthrough;
1273 	case NILFS_ST_DAT:
1274  dat_stage:
1275 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1276 					      &nilfs_sc_dat_ops);
1277 		if (unlikely(err))
1278 			break;
1279 		if (mode == SC_FLUSH_DAT) {
1280 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1281 			return 0;
1282 		}
1283 		nilfs_sc_cstage_inc(sci);
1284 		fallthrough;
1285 	case NILFS_ST_SR:
1286 		if (mode == SC_LSEG_SR) {
1287 			/* Appending a super root */
1288 			err = nilfs_segctor_add_super_root(sci);
1289 			if (unlikely(err))
1290 				break;
1291 		}
1292 		/* End of a logical segment */
1293 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1294 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1295 		return 0;
1296 	case NILFS_ST_DSYNC:
1297  dsync_mode:
1298 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1299 		ii = sci->sc_dsync_inode;
1300 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1301 			break;
1302 
1303 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1304 		if (unlikely(err))
1305 			break;
1306 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1307 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1308 		return 0;
1309 	case NILFS_ST_DONE:
1310 		return 0;
1311 	default:
1312 		BUG();
1313 	}
1314 
1315  break_or_fail:
1316 	return err;
1317 }
1318 
1319 /**
1320  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1321  * @sci: nilfs_sc_info
1322  * @nilfs: nilfs object
1323  *
1324  * Return: 0 on success, or a negative error code on failure.
1325  */
1326 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1327 					    struct the_nilfs *nilfs)
1328 {
1329 	struct nilfs_segment_buffer *segbuf, *prev;
1330 	__u64 nextnum;
1331 	int err, alloc = 0;
1332 
1333 	segbuf = nilfs_segbuf_new(sci->sc_super);
1334 	if (unlikely(!segbuf))
1335 		return -ENOMEM;
1336 
1337 	if (list_empty(&sci->sc_write_logs)) {
1338 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1339 				 nilfs->ns_pseg_offset, nilfs);
1340 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1341 			nilfs_shift_to_next_segment(nilfs);
1342 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1343 		}
1344 
1345 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1346 		nextnum = nilfs->ns_nextnum;
1347 
1348 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1349 			/* Start from the head of a new full segment */
1350 			alloc++;
1351 	} else {
1352 		/* Continue logs */
1353 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1354 		nilfs_segbuf_map_cont(segbuf, prev);
1355 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1356 		nextnum = prev->sb_nextnum;
1357 
1358 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1359 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1360 			segbuf->sb_sum.seg_seq++;
1361 			alloc++;
1362 		}
1363 	}
1364 
1365 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1366 	if (err)
1367 		goto failed;
1368 
1369 	if (alloc) {
1370 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1371 		if (err)
1372 			goto failed;
1373 	}
1374 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1375 
1376 	BUG_ON(!list_empty(&sci->sc_segbufs));
1377 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1378 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1379 	return 0;
1380 
1381  failed:
1382 	nilfs_segbuf_free(segbuf);
1383 	return err;
1384 }
1385 
1386 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1387 					 struct the_nilfs *nilfs, int nadd)
1388 {
1389 	struct nilfs_segment_buffer *segbuf, *prev;
1390 	struct inode *sufile = nilfs->ns_sufile;
1391 	__u64 nextnextnum;
1392 	LIST_HEAD(list);
1393 	int err, ret, i;
1394 
1395 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1396 	/*
1397 	 * Since the segment specified with nextnum might be allocated during
1398 	 * the previous construction, the buffer including its segusage may
1399 	 * not be dirty.  The following call ensures that the buffer is dirty
1400 	 * and will pin the buffer on memory until the sufile is written.
1401 	 */
1402 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1403 	if (unlikely(err))
1404 		return err;
1405 
1406 	for (i = 0; i < nadd; i++) {
1407 		/* extend segment info */
1408 		err = -ENOMEM;
1409 		segbuf = nilfs_segbuf_new(sci->sc_super);
1410 		if (unlikely(!segbuf))
1411 			goto failed;
1412 
1413 		/* map this buffer to region of segment on-disk */
1414 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1415 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1416 
1417 		/* allocate the next next full segment */
1418 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1419 		if (unlikely(err))
1420 			goto failed_segbuf;
1421 
1422 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1423 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1424 
1425 		list_add_tail(&segbuf->sb_list, &list);
1426 		prev = segbuf;
1427 	}
1428 	list_splice_tail(&list, &sci->sc_segbufs);
1429 	return 0;
1430 
1431  failed_segbuf:
1432 	nilfs_segbuf_free(segbuf);
1433  failed:
1434 	list_for_each_entry(segbuf, &list, sb_list) {
1435 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1436 		WARN_ON(ret); /* never fails */
1437 	}
1438 	nilfs_destroy_logs(&list);
1439 	return err;
1440 }
1441 
1442 static void nilfs_free_incomplete_logs(struct list_head *logs,
1443 				       struct the_nilfs *nilfs)
1444 {
1445 	struct nilfs_segment_buffer *segbuf, *prev;
1446 	struct inode *sufile = nilfs->ns_sufile;
1447 	int ret;
1448 
1449 	segbuf = NILFS_FIRST_SEGBUF(logs);
1450 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1451 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1452 		WARN_ON(ret); /* never fails */
1453 	}
1454 	if (atomic_read(&segbuf->sb_err)) {
1455 		/* Case 1: The first segment failed */
1456 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1457 			/*
1458 			 * Case 1a:  Partial segment appended into an existing
1459 			 * segment
1460 			 */
1461 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1462 						segbuf->sb_fseg_end);
1463 		else /* Case 1b:  New full segment */
1464 			set_nilfs_discontinued(nilfs);
1465 	}
1466 
1467 	prev = segbuf;
1468 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1469 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1470 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1471 			WARN_ON(ret); /* never fails */
1472 		}
1473 		if (atomic_read(&segbuf->sb_err) &&
1474 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1475 			/* Case 2: extended segment (!= next) failed */
1476 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1477 		prev = segbuf;
1478 	}
1479 }
1480 
1481 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1482 					  struct inode *sufile)
1483 {
1484 	struct nilfs_segment_buffer *segbuf;
1485 	unsigned long live_blocks;
1486 	int ret;
1487 
1488 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1489 		live_blocks = segbuf->sb_sum.nblocks +
1490 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1491 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1492 						     live_blocks,
1493 						     sci->sc_seg_ctime);
1494 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1495 	}
1496 }
1497 
1498 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1499 {
1500 	struct nilfs_segment_buffer *segbuf;
1501 	int ret;
1502 
1503 	segbuf = NILFS_FIRST_SEGBUF(logs);
1504 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1505 					     segbuf->sb_pseg_start -
1506 					     segbuf->sb_fseg_start, 0);
1507 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1508 
1509 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1510 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1511 						     0, 0);
1512 		WARN_ON(ret); /* always succeed */
1513 	}
1514 }
1515 
1516 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1517 					    struct nilfs_segment_buffer *last,
1518 					    struct inode *sufile)
1519 {
1520 	struct nilfs_segment_buffer *segbuf = last;
1521 	int ret;
1522 
1523 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1524 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1525 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1526 		WARN_ON(ret);
1527 	}
1528 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1529 }
1530 
1531 
1532 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1533 				 struct the_nilfs *nilfs, int mode)
1534 {
1535 	struct nilfs_cstage prev_stage = sci->sc_stage;
1536 	int err, nadd = 1;
1537 
1538 	/* Collection retry loop */
1539 	for (;;) {
1540 		sci->sc_nblk_this_inc = 0;
1541 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1542 
1543 		err = nilfs_segctor_reset_segment_buffer(sci);
1544 		if (unlikely(err))
1545 			goto failed;
1546 
1547 		err = nilfs_segctor_collect_blocks(sci, mode);
1548 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1549 		if (!err)
1550 			break;
1551 
1552 		if (unlikely(err != -E2BIG))
1553 			goto failed;
1554 
1555 		/* The current segment is filled up */
1556 		if (mode != SC_LSEG_SR ||
1557 		    nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1558 			break;
1559 
1560 		nilfs_clear_logs(&sci->sc_segbufs);
1561 
1562 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1563 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1564 							sci->sc_freesegs,
1565 							sci->sc_nfreesegs,
1566 							NULL);
1567 			WARN_ON(err); /* do not happen */
1568 			sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1569 		}
1570 
1571 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1572 		if (unlikely(err))
1573 			return err;
1574 
1575 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1576 		sci->sc_stage = prev_stage;
1577 	}
1578 	nilfs_segctor_zeropad_segsum(sci);
1579 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1580 	return 0;
1581 
1582  failed:
1583 	return err;
1584 }
1585 
1586 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1587 				      struct buffer_head *new_bh)
1588 {
1589 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1590 
1591 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1592 	/* The caller must release old_bh */
1593 }
1594 
1595 static int
1596 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1597 				     struct nilfs_segment_buffer *segbuf,
1598 				     int mode)
1599 {
1600 	struct inode *inode = NULL;
1601 	sector_t blocknr;
1602 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1603 	unsigned long nblocks = 0, ndatablk = 0;
1604 	const struct nilfs_sc_operations *sc_op = NULL;
1605 	struct nilfs_segsum_pointer ssp;
1606 	struct nilfs_finfo *finfo = NULL;
1607 	union nilfs_binfo binfo;
1608 	struct buffer_head *bh, *bh_org;
1609 	ino_t ino = 0;
1610 	int err = 0;
1611 
1612 	if (!nfinfo)
1613 		goto out;
1614 
1615 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1616 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1617 	ssp.offset = sizeof(struct nilfs_segment_summary);
1618 
1619 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1620 		if (bh == segbuf->sb_super_root)
1621 			break;
1622 		if (!finfo) {
1623 			finfo =	nilfs_segctor_map_segsum_entry(
1624 				sci, &ssp, sizeof(*finfo));
1625 			ino = le64_to_cpu(finfo->fi_ino);
1626 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1627 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1628 
1629 			inode = bh->b_folio->mapping->host;
1630 
1631 			if (mode == SC_LSEG_DSYNC)
1632 				sc_op = &nilfs_sc_dsync_ops;
1633 			else if (ino == NILFS_DAT_INO)
1634 				sc_op = &nilfs_sc_dat_ops;
1635 			else /* file blocks */
1636 				sc_op = &nilfs_sc_file_ops;
1637 		}
1638 		bh_org = bh;
1639 		get_bh(bh_org);
1640 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1641 					&binfo);
1642 		if (bh != bh_org)
1643 			nilfs_list_replace_buffer(bh_org, bh);
1644 		brelse(bh_org);
1645 		if (unlikely(err))
1646 			goto failed_bmap;
1647 
1648 		if (ndatablk > 0)
1649 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1650 		else
1651 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1652 
1653 		blocknr++;
1654 		if (--nblocks == 0) {
1655 			finfo = NULL;
1656 			if (--nfinfo == 0)
1657 				break;
1658 		} else if (ndatablk > 0)
1659 			ndatablk--;
1660 	}
1661  out:
1662 	return 0;
1663 
1664  failed_bmap:
1665 	return err;
1666 }
1667 
1668 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1669 {
1670 	struct nilfs_segment_buffer *segbuf;
1671 	int err;
1672 
1673 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1674 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1675 		if (unlikely(err))
1676 			return err;
1677 		nilfs_segbuf_fill_in_segsum(segbuf);
1678 	}
1679 	return 0;
1680 }
1681 
1682 static void nilfs_begin_folio_io(struct folio *folio)
1683 {
1684 	if (!folio || folio_test_writeback(folio))
1685 		/*
1686 		 * For split b-tree node pages, this function may be called
1687 		 * twice.  We ignore the 2nd or later calls by this check.
1688 		 */
1689 		return;
1690 
1691 	folio_lock(folio);
1692 	folio_clear_dirty_for_io(folio);
1693 	folio_start_writeback(folio);
1694 	folio_unlock(folio);
1695 }
1696 
1697 /**
1698  * nilfs_prepare_write_logs - prepare to write logs
1699  * @logs: logs to prepare for writing
1700  * @seed: checksum seed value
1701  *
1702  * nilfs_prepare_write_logs() adds checksums and prepares the block
1703  * buffers/folios for writing logs.  In order to stabilize folios of
1704  * memory-mapped file blocks by putting them in writeback state before
1705  * calculating the checksums, first prepare to write payload blocks other
1706  * than segment summary and super root blocks in which the checksums will
1707  * be embedded.
1708  */
1709 static void nilfs_prepare_write_logs(struct list_head *logs, u32 seed)
1710 {
1711 	struct nilfs_segment_buffer *segbuf;
1712 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1713 	struct buffer_head *bh;
1714 
1715 	/* Prepare to write payload blocks */
1716 	list_for_each_entry(segbuf, logs, sb_list) {
1717 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1718 				    b_assoc_buffers) {
1719 			if (bh == segbuf->sb_super_root)
1720 				break;
1721 			set_buffer_async_write(bh);
1722 			if (bh->b_folio != fs_folio) {
1723 				nilfs_begin_folio_io(fs_folio);
1724 				fs_folio = bh->b_folio;
1725 			}
1726 		}
1727 	}
1728 	nilfs_begin_folio_io(fs_folio);
1729 
1730 	nilfs_add_checksums_on_logs(logs, seed);
1731 
1732 	/* Prepare to write segment summary blocks */
1733 	list_for_each_entry(segbuf, logs, sb_list) {
1734 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1735 				    b_assoc_buffers) {
1736 			mark_buffer_dirty(bh);
1737 			if (bh->b_folio == bd_folio)
1738 				continue;
1739 			if (bd_folio) {
1740 				folio_lock(bd_folio);
1741 				folio_wait_writeback(bd_folio);
1742 				folio_clear_dirty_for_io(bd_folio);
1743 				folio_start_writeback(bd_folio);
1744 				folio_unlock(bd_folio);
1745 			}
1746 			bd_folio = bh->b_folio;
1747 		}
1748 	}
1749 
1750 	/* Prepare to write super root block */
1751 	bh = NILFS_LAST_SEGBUF(logs)->sb_super_root;
1752 	if (bh) {
1753 		mark_buffer_dirty(bh);
1754 		if (bh->b_folio != bd_folio) {
1755 			folio_lock(bd_folio);
1756 			folio_wait_writeback(bd_folio);
1757 			folio_clear_dirty_for_io(bd_folio);
1758 			folio_start_writeback(bd_folio);
1759 			folio_unlock(bd_folio);
1760 			bd_folio = bh->b_folio;
1761 		}
1762 	}
1763 
1764 	if (bd_folio) {
1765 		folio_lock(bd_folio);
1766 		folio_wait_writeback(bd_folio);
1767 		folio_clear_dirty_for_io(bd_folio);
1768 		folio_start_writeback(bd_folio);
1769 		folio_unlock(bd_folio);
1770 	}
1771 }
1772 
1773 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1774 			       struct the_nilfs *nilfs)
1775 {
1776 	int ret;
1777 
1778 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1779 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1780 	return ret;
1781 }
1782 
1783 static void nilfs_end_folio_io(struct folio *folio, int err)
1784 {
1785 	if (!folio)
1786 		return;
1787 
1788 	if (buffer_nilfs_node(folio_buffers(folio)) &&
1789 			!folio_test_writeback(folio)) {
1790 		/*
1791 		 * For b-tree node pages, this function may be called twice
1792 		 * or more because they might be split in a segment.
1793 		 */
1794 		if (folio_test_dirty(folio)) {
1795 			/*
1796 			 * For pages holding split b-tree node buffers, dirty
1797 			 * flag on the buffers may be cleared discretely.
1798 			 * In that case, the page is once redirtied for
1799 			 * remaining buffers, and it must be cancelled if
1800 			 * all the buffers get cleaned later.
1801 			 */
1802 			folio_lock(folio);
1803 			if (nilfs_folio_buffers_clean(folio))
1804 				__nilfs_clear_folio_dirty(folio);
1805 			folio_unlock(folio);
1806 		}
1807 		return;
1808 	}
1809 
1810 	if (err || !nilfs_folio_buffers_clean(folio))
1811 		filemap_dirty_folio(folio->mapping, folio);
1812 
1813 	folio_end_writeback(folio);
1814 }
1815 
1816 static void nilfs_abort_logs(struct list_head *logs, int err)
1817 {
1818 	struct nilfs_segment_buffer *segbuf;
1819 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1820 	struct buffer_head *bh;
1821 
1822 	if (list_empty(logs))
1823 		return;
1824 
1825 	list_for_each_entry(segbuf, logs, sb_list) {
1826 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1827 				    b_assoc_buffers) {
1828 			clear_buffer_uptodate(bh);
1829 			if (bh->b_folio != bd_folio) {
1830 				if (bd_folio)
1831 					folio_end_writeback(bd_folio);
1832 				bd_folio = bh->b_folio;
1833 			}
1834 		}
1835 
1836 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1837 				    b_assoc_buffers) {
1838 			if (bh == segbuf->sb_super_root) {
1839 				clear_buffer_uptodate(bh);
1840 				if (bh->b_folio != bd_folio) {
1841 					folio_end_writeback(bd_folio);
1842 					bd_folio = bh->b_folio;
1843 				}
1844 				break;
1845 			}
1846 			clear_buffer_async_write(bh);
1847 			if (bh->b_folio != fs_folio) {
1848 				nilfs_end_folio_io(fs_folio, err);
1849 				fs_folio = bh->b_folio;
1850 			}
1851 		}
1852 	}
1853 	if (bd_folio)
1854 		folio_end_writeback(bd_folio);
1855 
1856 	nilfs_end_folio_io(fs_folio, err);
1857 }
1858 
1859 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1860 					     struct the_nilfs *nilfs, int err)
1861 {
1862 	LIST_HEAD(logs);
1863 	int ret;
1864 
1865 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1866 	ret = nilfs_wait_on_logs(&logs);
1867 	nilfs_abort_logs(&logs, ret ? : err);
1868 
1869 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1870 	if (list_empty(&logs))
1871 		return; /* if the first segment buffer preparation failed */
1872 
1873 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1874 	nilfs_free_incomplete_logs(&logs, nilfs);
1875 
1876 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1877 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1878 						sci->sc_freesegs,
1879 						sci->sc_nfreesegs,
1880 						NULL);
1881 		WARN_ON(ret); /* do not happen */
1882 	}
1883 
1884 	nilfs_destroy_logs(&logs);
1885 }
1886 
1887 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1888 				   struct nilfs_segment_buffer *segbuf)
1889 {
1890 	nilfs->ns_segnum = segbuf->sb_segnum;
1891 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1892 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1893 		+ segbuf->sb_sum.nblocks;
1894 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1895 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1896 }
1897 
1898 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1899 {
1900 	struct nilfs_segment_buffer *segbuf;
1901 	struct folio *bd_folio = NULL, *fs_folio = NULL;
1902 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1903 	int update_sr = false;
1904 
1905 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1906 		struct buffer_head *bh;
1907 
1908 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1909 				    b_assoc_buffers) {
1910 			set_buffer_uptodate(bh);
1911 			clear_buffer_dirty(bh);
1912 			if (bh->b_folio != bd_folio) {
1913 				if (bd_folio)
1914 					folio_end_writeback(bd_folio);
1915 				bd_folio = bh->b_folio;
1916 			}
1917 		}
1918 		/*
1919 		 * We assume that the buffers which belong to the same folio
1920 		 * continue over the buffer list.
1921 		 * Under this assumption, the last BHs of folios is
1922 		 * identifiable by the discontinuity of bh->b_folio
1923 		 * (folio != fs_folio).
1924 		 *
1925 		 * For B-tree node blocks, however, this assumption is not
1926 		 * guaranteed.  The cleanup code of B-tree node folios needs
1927 		 * special care.
1928 		 */
1929 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1930 				    b_assoc_buffers) {
1931 			const unsigned long set_bits = BIT(BH_Uptodate);
1932 			const unsigned long clear_bits =
1933 				(BIT(BH_Dirty) | BIT(BH_Async_Write) |
1934 				 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1935 				 BIT(BH_NILFS_Redirected));
1936 
1937 			if (bh == segbuf->sb_super_root) {
1938 				set_buffer_uptodate(bh);
1939 				clear_buffer_dirty(bh);
1940 				if (bh->b_folio != bd_folio) {
1941 					folio_end_writeback(bd_folio);
1942 					bd_folio = bh->b_folio;
1943 				}
1944 				update_sr = true;
1945 				break;
1946 			}
1947 			set_mask_bits(&bh->b_state, clear_bits, set_bits);
1948 			if (bh->b_folio != fs_folio) {
1949 				nilfs_end_folio_io(fs_folio, 0);
1950 				fs_folio = bh->b_folio;
1951 			}
1952 		}
1953 
1954 		if (!nilfs_segbuf_simplex(segbuf)) {
1955 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1956 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1957 				sci->sc_lseg_stime = jiffies;
1958 			}
1959 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1960 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1961 		}
1962 	}
1963 	/*
1964 	 * Since folios may continue over multiple segment buffers,
1965 	 * end of the last folio must be checked outside of the loop.
1966 	 */
1967 	if (bd_folio)
1968 		folio_end_writeback(bd_folio);
1969 
1970 	nilfs_end_folio_io(fs_folio, 0);
1971 
1972 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1973 
1974 	if (nilfs_doing_gc())
1975 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1976 	else
1977 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1978 
1979 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1980 
1981 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1982 	nilfs_set_next_segment(nilfs, segbuf);
1983 
1984 	if (update_sr) {
1985 		nilfs->ns_flushed_device = 0;
1986 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1987 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1988 
1989 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1990 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1991 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1992 		nilfs_segctor_clear_metadata_dirty(sci);
1993 	} else
1994 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1995 }
1996 
1997 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1998 {
1999 	int ret;
2000 
2001 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
2002 	if (!ret) {
2003 		nilfs_segctor_complete_write(sci);
2004 		nilfs_destroy_logs(&sci->sc_write_logs);
2005 	}
2006 	return ret;
2007 }
2008 
2009 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
2010 					     struct the_nilfs *nilfs)
2011 {
2012 	struct nilfs_inode_info *ii, *n;
2013 	struct inode *ifile = sci->sc_root->ifile;
2014 
2015 	spin_lock(&nilfs->ns_inode_lock);
2016  retry:
2017 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
2018 		if (!ii->i_bh) {
2019 			struct buffer_head *ibh;
2020 			int err;
2021 
2022 			spin_unlock(&nilfs->ns_inode_lock);
2023 			err = nilfs_ifile_get_inode_block(
2024 				ifile, ii->vfs_inode.i_ino, &ibh);
2025 			if (unlikely(err)) {
2026 				nilfs_warn(sci->sc_super,
2027 					   "log writer: error %d getting inode block (ino=%lu)",
2028 					   err, ii->vfs_inode.i_ino);
2029 				return err;
2030 			}
2031 			spin_lock(&nilfs->ns_inode_lock);
2032 			if (likely(!ii->i_bh))
2033 				ii->i_bh = ibh;
2034 			else
2035 				brelse(ibh);
2036 			goto retry;
2037 		}
2038 
2039 		// Always redirty the buffer to avoid race condition
2040 		mark_buffer_dirty(ii->i_bh);
2041 		nilfs_mdt_mark_dirty(ifile);
2042 
2043 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
2044 		set_bit(NILFS_I_BUSY, &ii->i_state);
2045 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
2046 	}
2047 	spin_unlock(&nilfs->ns_inode_lock);
2048 
2049 	return 0;
2050 }
2051 
2052 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
2053 					     struct the_nilfs *nilfs)
2054 {
2055 	struct nilfs_inode_info *ii, *n;
2056 	int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE);
2057 	int defer_iput = false;
2058 
2059 	spin_lock(&nilfs->ns_inode_lock);
2060 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2061 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2062 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
2063 			continue;
2064 
2065 		clear_bit(NILFS_I_BUSY, &ii->i_state);
2066 		brelse(ii->i_bh);
2067 		ii->i_bh = NULL;
2068 		list_del_init(&ii->i_dirty);
2069 		if (!ii->vfs_inode.i_nlink || during_mount) {
2070 			/*
2071 			 * Defer calling iput() to avoid deadlocks if
2072 			 * i_nlink == 0 or mount is not yet finished.
2073 			 */
2074 			list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2075 			defer_iput = true;
2076 		} else {
2077 			spin_unlock(&nilfs->ns_inode_lock);
2078 			iput(&ii->vfs_inode);
2079 			spin_lock(&nilfs->ns_inode_lock);
2080 		}
2081 	}
2082 	spin_unlock(&nilfs->ns_inode_lock);
2083 
2084 	if (defer_iput)
2085 		schedule_work(&sci->sc_iput_work);
2086 }
2087 
2088 /*
2089  * Main procedure of segment constructor
2090  */
2091 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2092 {
2093 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2094 	int err;
2095 
2096 	if (sb_rdonly(sci->sc_super))
2097 		return -EROFS;
2098 
2099 	nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2100 	sci->sc_cno = nilfs->ns_cno;
2101 
2102 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2103 	if (unlikely(err))
2104 		goto out;
2105 
2106 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2107 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2108 
2109 	if (nilfs_segctor_clean(sci))
2110 		goto out;
2111 
2112 	do {
2113 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2114 
2115 		err = nilfs_segctor_begin_construction(sci, nilfs);
2116 		if (unlikely(err))
2117 			goto failed;
2118 
2119 		/* Update time stamp */
2120 		sci->sc_seg_ctime = ktime_get_real_seconds();
2121 
2122 		err = nilfs_segctor_collect(sci, nilfs, mode);
2123 		if (unlikely(err))
2124 			goto failed;
2125 
2126 		/* Avoid empty segment */
2127 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2128 		    nilfs_segbuf_empty(sci->sc_curseg)) {
2129 			nilfs_segctor_abort_construction(sci, nilfs, 1);
2130 			goto out;
2131 		}
2132 
2133 		err = nilfs_segctor_assign(sci, mode);
2134 		if (unlikely(err))
2135 			goto failed;
2136 
2137 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2138 			nilfs_segctor_fill_in_file_bmap(sci);
2139 
2140 		if (mode == SC_LSEG_SR &&
2141 		    nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2142 			err = nilfs_cpfile_finalize_checkpoint(
2143 				nilfs->ns_cpfile, nilfs->ns_cno, sci->sc_root,
2144 				sci->sc_nblk_inc + sci->sc_nblk_this_inc,
2145 				sci->sc_seg_ctime,
2146 				!test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags));
2147 			if (unlikely(err))
2148 				goto failed_to_write;
2149 
2150 			nilfs_segctor_fill_in_super_root(sci, nilfs);
2151 		}
2152 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2153 
2154 		/* Write partial segments */
2155 		nilfs_prepare_write_logs(&sci->sc_segbufs, nilfs->ns_crc_seed);
2156 
2157 		err = nilfs_segctor_write(sci, nilfs);
2158 		if (unlikely(err))
2159 			goto failed_to_write;
2160 
2161 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2162 		    nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2163 			/*
2164 			 * At this point, we avoid double buffering
2165 			 * for blocksize < pagesize because page dirty
2166 			 * flag is turned off during write and dirty
2167 			 * buffers are not properly collected for
2168 			 * pages crossing over segments.
2169 			 */
2170 			err = nilfs_segctor_wait(sci);
2171 			if (err)
2172 				goto failed_to_write;
2173 		}
2174 	} while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2175 
2176  out:
2177 	nilfs_segctor_drop_written_files(sci, nilfs);
2178 	return err;
2179 
2180  failed_to_write:
2181  failed:
2182 	if (mode == SC_LSEG_SR && nilfs_sc_cstage_get(sci) >= NILFS_ST_IFILE)
2183 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2184 	if (nilfs_doing_gc())
2185 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2186 	nilfs_segctor_abort_construction(sci, nilfs, err);
2187 	goto out;
2188 }
2189 
2190 /**
2191  * nilfs_segctor_start_timer - set timer of background write
2192  * @sci: nilfs_sc_info
2193  *
2194  * If the timer has already been set, it ignores the new request.
2195  * This function MUST be called within a section locking the segment
2196  * semaphore.
2197  */
2198 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2199 {
2200 	spin_lock(&sci->sc_state_lock);
2201 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2202 		if (sci->sc_task) {
2203 			sci->sc_timer.expires = jiffies + sci->sc_interval;
2204 			add_timer(&sci->sc_timer);
2205 		}
2206 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2207 	}
2208 	spin_unlock(&sci->sc_state_lock);
2209 }
2210 
2211 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2212 {
2213 	spin_lock(&sci->sc_state_lock);
2214 	if (!(sci->sc_flush_request & BIT(bn))) {
2215 		unsigned long prev_req = sci->sc_flush_request;
2216 
2217 		sci->sc_flush_request |= BIT(bn);
2218 		if (!prev_req)
2219 			wake_up(&sci->sc_wait_daemon);
2220 	}
2221 	spin_unlock(&sci->sc_state_lock);
2222 }
2223 
2224 /**
2225  * nilfs_flush_segment - trigger a segment construction for resource control
2226  * @sb: super block
2227  * @ino: inode number of the file to be flushed out.
2228  */
2229 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2230 {
2231 	struct the_nilfs *nilfs = sb->s_fs_info;
2232 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2233 
2234 	if (!sci || nilfs_doing_construction())
2235 		return;
2236 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2237 					/* assign bit 0 to data files */
2238 }
2239 
2240 struct nilfs_segctor_wait_request {
2241 	wait_queue_entry_t	wq;
2242 	__u32		seq;
2243 	int		err;
2244 	atomic_t	done;
2245 };
2246 
2247 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2248 {
2249 	struct nilfs_segctor_wait_request wait_req;
2250 	int err = 0;
2251 
2252 	init_wait(&wait_req.wq);
2253 	wait_req.err = 0;
2254 	atomic_set(&wait_req.done, 0);
2255 	init_waitqueue_entry(&wait_req.wq, current);
2256 
2257 	/*
2258 	 * To prevent a race issue where completion notifications from the
2259 	 * log writer thread are missed, increment the request sequence count
2260 	 * "sc_seq_request" and insert a wait queue entry using the current
2261 	 * sequence number into the "sc_wait_request" queue at the same time
2262 	 * within the lock section of "sc_state_lock".
2263 	 */
2264 	spin_lock(&sci->sc_state_lock);
2265 	wait_req.seq = ++sci->sc_seq_request;
2266 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2267 	spin_unlock(&sci->sc_state_lock);
2268 
2269 	wake_up(&sci->sc_wait_daemon);
2270 
2271 	for (;;) {
2272 		set_current_state(TASK_INTERRUPTIBLE);
2273 
2274 		/*
2275 		 * Synchronize only while the log writer thread is alive.
2276 		 * Leave flushing out after the log writer thread exits to
2277 		 * the cleanup work in nilfs_segctor_destroy().
2278 		 */
2279 		if (!sci->sc_task)
2280 			break;
2281 
2282 		if (atomic_read(&wait_req.done)) {
2283 			err = wait_req.err;
2284 			break;
2285 		}
2286 		if (!signal_pending(current)) {
2287 			schedule();
2288 			continue;
2289 		}
2290 		err = -ERESTARTSYS;
2291 		break;
2292 	}
2293 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2294 	return err;
2295 }
2296 
2297 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force)
2298 {
2299 	struct nilfs_segctor_wait_request *wrq, *n;
2300 	unsigned long flags;
2301 
2302 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2303 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
2304 		if (!atomic_read(&wrq->done) &&
2305 		    (force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) {
2306 			wrq->err = err;
2307 			atomic_set(&wrq->done, 1);
2308 		}
2309 		if (atomic_read(&wrq->done)) {
2310 			wrq->wq.func(&wrq->wq,
2311 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2312 				     0, NULL);
2313 		}
2314 	}
2315 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2316 }
2317 
2318 /**
2319  * nilfs_construct_segment - construct a logical segment
2320  * @sb: super block
2321  *
2322  * Return: 0 on success, or one of the following negative error codes on
2323  * failure:
2324  * * %-EIO		- I/O error (including metadata corruption).
2325  * * %-ENOMEM		- Insufficient memory available.
2326  * * %-ENOSPC		- No space left on device (only in a panic state).
2327  * * %-ERESTARTSYS	- Interrupted.
2328  * * %-EROFS		- Read only filesystem.
2329  */
2330 int nilfs_construct_segment(struct super_block *sb)
2331 {
2332 	struct the_nilfs *nilfs = sb->s_fs_info;
2333 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2334 	struct nilfs_transaction_info *ti;
2335 
2336 	if (sb_rdonly(sb) || unlikely(!sci))
2337 		return -EROFS;
2338 
2339 	/* A call inside transactions causes a deadlock. */
2340 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2341 
2342 	return nilfs_segctor_sync(sci);
2343 }
2344 
2345 /**
2346  * nilfs_construct_dsync_segment - construct a data-only logical segment
2347  * @sb: super block
2348  * @inode: inode whose data blocks should be written out
2349  * @start: start byte offset
2350  * @end: end byte offset (inclusive)
2351  *
2352  * Return: 0 on success, or one of the following negative error codes on
2353  * failure:
2354  * * %-EIO		- I/O error (including metadata corruption).
2355  * * %-ENOMEM		- Insufficient memory available.
2356  * * %-ENOSPC		- No space left on device (only in a panic state).
2357  * * %-ERESTARTSYS	- Interrupted.
2358  * * %-EROFS		- Read only filesystem.
2359  */
2360 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2361 				  loff_t start, loff_t end)
2362 {
2363 	struct the_nilfs *nilfs = sb->s_fs_info;
2364 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2365 	struct nilfs_inode_info *ii;
2366 	struct nilfs_transaction_info ti;
2367 	int err = 0;
2368 
2369 	if (sb_rdonly(sb) || unlikely(!sci))
2370 		return -EROFS;
2371 
2372 	nilfs_transaction_lock(sb, &ti, 0);
2373 
2374 	ii = NILFS_I(inode);
2375 	if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2376 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2377 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2378 	    nilfs_discontinued(nilfs)) {
2379 		nilfs_transaction_unlock(sb);
2380 		err = nilfs_segctor_sync(sci);
2381 		return err;
2382 	}
2383 
2384 	spin_lock(&nilfs->ns_inode_lock);
2385 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2386 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2387 		spin_unlock(&nilfs->ns_inode_lock);
2388 		nilfs_transaction_unlock(sb);
2389 		return 0;
2390 	}
2391 	spin_unlock(&nilfs->ns_inode_lock);
2392 	sci->sc_dsync_inode = ii;
2393 	sci->sc_dsync_start = start;
2394 	sci->sc_dsync_end = end;
2395 
2396 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2397 	if (!err)
2398 		nilfs->ns_flushed_device = 0;
2399 
2400 	nilfs_transaction_unlock(sb);
2401 	return err;
2402 }
2403 
2404 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2405 #define FLUSH_DAT_BIT	BIT(NILFS_DAT_INO) /* DAT only */
2406 
2407 /**
2408  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2409  * @sci: segment constructor object
2410  */
2411 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2412 {
2413 	bool thread_is_alive;
2414 
2415 	spin_lock(&sci->sc_state_lock);
2416 	sci->sc_seq_accepted = sci->sc_seq_request;
2417 	thread_is_alive = (bool)sci->sc_task;
2418 	spin_unlock(&sci->sc_state_lock);
2419 
2420 	/*
2421 	 * This function does not race with the log writer thread's
2422 	 * termination.  Therefore, deleting sc_timer, which should not be
2423 	 * done after the log writer thread exits, can be done safely outside
2424 	 * the area protected by sc_state_lock.
2425 	 */
2426 	if (thread_is_alive)
2427 		del_timer_sync(&sci->sc_timer);
2428 }
2429 
2430 /**
2431  * nilfs_segctor_notify - notify the result of request to caller threads
2432  * @sci: segment constructor object
2433  * @mode: mode of log forming
2434  * @err: error code to be notified
2435  */
2436 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2437 {
2438 	/* Clear requests (even when the construction failed) */
2439 	spin_lock(&sci->sc_state_lock);
2440 
2441 	if (mode == SC_LSEG_SR) {
2442 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2443 		sci->sc_seq_done = sci->sc_seq_accepted;
2444 		nilfs_segctor_wakeup(sci, err, false);
2445 		sci->sc_flush_request = 0;
2446 	} else {
2447 		if (mode == SC_FLUSH_FILE)
2448 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2449 		else if (mode == SC_FLUSH_DAT)
2450 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2451 
2452 		/* re-enable timer if checkpoint creation was not done */
2453 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task &&
2454 		    time_before(jiffies, sci->sc_timer.expires))
2455 			add_timer(&sci->sc_timer);
2456 	}
2457 	spin_unlock(&sci->sc_state_lock);
2458 }
2459 
2460 /**
2461  * nilfs_segctor_construct - form logs and write them to disk
2462  * @sci: segment constructor object
2463  * @mode: mode of log forming
2464  *
2465  * Return: 0 on success, or a negative error code on failure.
2466  */
2467 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2468 {
2469 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2470 	struct nilfs_super_block **sbp;
2471 	int err = 0;
2472 
2473 	nilfs_segctor_accept(sci);
2474 
2475 	if (nilfs_discontinued(nilfs))
2476 		mode = SC_LSEG_SR;
2477 	if (!nilfs_segctor_confirm(sci))
2478 		err = nilfs_segctor_do_construct(sci, mode);
2479 
2480 	if (likely(!err)) {
2481 		if (mode != SC_FLUSH_DAT)
2482 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2483 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2484 		    nilfs_discontinued(nilfs)) {
2485 			down_write(&nilfs->ns_sem);
2486 			err = -EIO;
2487 			sbp = nilfs_prepare_super(sci->sc_super,
2488 						  nilfs_sb_will_flip(nilfs));
2489 			if (likely(sbp)) {
2490 				nilfs_set_log_cursor(sbp[0], nilfs);
2491 				err = nilfs_commit_super(sci->sc_super,
2492 							 NILFS_SB_COMMIT);
2493 			}
2494 			up_write(&nilfs->ns_sem);
2495 		}
2496 	}
2497 
2498 	nilfs_segctor_notify(sci, mode, err);
2499 	return err;
2500 }
2501 
2502 static void nilfs_construction_timeout(struct timer_list *t)
2503 {
2504 	struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer);
2505 
2506 	wake_up_process(sci->sc_task);
2507 }
2508 
2509 static void
2510 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2511 {
2512 	struct nilfs_inode_info *ii, *n;
2513 
2514 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2515 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2516 			continue;
2517 		list_del_init(&ii->i_dirty);
2518 		truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2519 		nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
2520 		iput(&ii->vfs_inode);
2521 	}
2522 }
2523 
2524 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2525 			 void **kbufs)
2526 {
2527 	struct the_nilfs *nilfs = sb->s_fs_info;
2528 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2529 	struct nilfs_transaction_info ti;
2530 	int err;
2531 
2532 	if (unlikely(!sci))
2533 		return -EROFS;
2534 
2535 	nilfs_transaction_lock(sb, &ti, 1);
2536 
2537 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2538 	if (unlikely(err))
2539 		goto out_unlock;
2540 
2541 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2542 	if (unlikely(err)) {
2543 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2544 		goto out_unlock;
2545 	}
2546 
2547 	sci->sc_freesegs = kbufs[4];
2548 	sci->sc_nfreesegs = argv[4].v_nmembs;
2549 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2550 
2551 	for (;;) {
2552 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2553 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2554 
2555 		if (likely(!err))
2556 			break;
2557 
2558 		nilfs_warn(sb, "error %d cleaning segments", err);
2559 		set_current_state(TASK_INTERRUPTIBLE);
2560 		schedule_timeout(sci->sc_interval);
2561 	}
2562 	if (nilfs_test_opt(nilfs, DISCARD)) {
2563 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2564 						 sci->sc_nfreesegs);
2565 		if (ret) {
2566 			nilfs_warn(sb,
2567 				   "error %d on discard request, turning discards off for the device",
2568 				   ret);
2569 			nilfs_clear_opt(nilfs, DISCARD);
2570 		}
2571 	}
2572 
2573  out_unlock:
2574 	sci->sc_freesegs = NULL;
2575 	sci->sc_nfreesegs = 0;
2576 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2577 	nilfs_transaction_unlock(sb);
2578 	return err;
2579 }
2580 
2581 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2582 {
2583 	struct nilfs_transaction_info ti;
2584 
2585 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2586 	nilfs_segctor_construct(sci, mode);
2587 
2588 	/*
2589 	 * Unclosed segment should be retried.  We do this using sc_timer.
2590 	 * Timeout of sc_timer will invoke complete construction which leads
2591 	 * to close the current logical segment.
2592 	 */
2593 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2594 		nilfs_segctor_start_timer(sci);
2595 
2596 	nilfs_transaction_unlock(sci->sc_super);
2597 }
2598 
2599 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2600 {
2601 	int mode = 0;
2602 
2603 	spin_lock(&sci->sc_state_lock);
2604 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2605 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2606 	spin_unlock(&sci->sc_state_lock);
2607 
2608 	if (mode) {
2609 		nilfs_segctor_do_construct(sci, mode);
2610 
2611 		spin_lock(&sci->sc_state_lock);
2612 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2613 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2614 		spin_unlock(&sci->sc_state_lock);
2615 	}
2616 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2617 }
2618 
2619 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2620 {
2621 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2622 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2623 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2624 			return SC_FLUSH_FILE;
2625 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2626 			return SC_FLUSH_DAT;
2627 	}
2628 	return SC_LSEG_SR;
2629 }
2630 
2631 /**
2632  * nilfs_log_write_required - determine whether log writing is required
2633  * @sci:   nilfs_sc_info struct
2634  * @modep: location for storing log writing mode
2635  *
2636  * Return: true if log writing is required, false otherwise.  If log writing
2637  * is required, the mode is stored in the location pointed to by @modep.
2638  */
2639 static bool nilfs_log_write_required(struct nilfs_sc_info *sci, int *modep)
2640 {
2641 	bool timedout, ret = true;
2642 
2643 	spin_lock(&sci->sc_state_lock);
2644 	timedout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2645 		   time_after_eq(jiffies, sci->sc_timer.expires));
2646 	if (timedout || sci->sc_seq_request != sci->sc_seq_done)
2647 		*modep = SC_LSEG_SR;
2648 	else if (sci->sc_flush_request)
2649 		*modep = nilfs_segctor_flush_mode(sci);
2650 	else
2651 		ret = false;
2652 
2653 	spin_unlock(&sci->sc_state_lock);
2654 	return ret;
2655 }
2656 
2657 /**
2658  * nilfs_segctor_thread - main loop of the log writer thread
2659  * @arg: pointer to a struct nilfs_sc_info.
2660  *
2661  * nilfs_segctor_thread() is the main loop function of the log writer kernel
2662  * thread, which determines whether log writing is necessary, and if so,
2663  * performs the log write in the background, or waits if not.  It is also
2664  * used to decide the background writeback of the superblock.
2665  *
2666  * Return: Always 0.
2667  */
2668 static int nilfs_segctor_thread(void *arg)
2669 {
2670 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2671 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2672 
2673 	nilfs_info(sci->sc_super,
2674 		   "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2675 		   sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2676 
2677 	set_freezable();
2678 
2679 	while (!kthread_should_stop()) {
2680 		DEFINE_WAIT(wait);
2681 		bool should_write;
2682 		int mode;
2683 
2684 		if (freezing(current)) {
2685 			try_to_freeze();
2686 			continue;
2687 		}
2688 
2689 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2690 				TASK_INTERRUPTIBLE);
2691 		should_write = nilfs_log_write_required(sci, &mode);
2692 		if (!should_write)
2693 			schedule();
2694 		finish_wait(&sci->sc_wait_daemon, &wait);
2695 
2696 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2697 			set_nilfs_discontinued(nilfs);
2698 
2699 		if (should_write)
2700 			nilfs_segctor_thread_construct(sci, mode);
2701 	}
2702 
2703 	/* end sync. */
2704 	spin_lock(&sci->sc_state_lock);
2705 	sci->sc_task = NULL;
2706 	timer_shutdown_sync(&sci->sc_timer);
2707 	spin_unlock(&sci->sc_state_lock);
2708 	return 0;
2709 }
2710 
2711 /*
2712  * Setup & clean-up functions
2713  */
2714 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2715 					       struct nilfs_root *root)
2716 {
2717 	struct the_nilfs *nilfs = sb->s_fs_info;
2718 	struct nilfs_sc_info *sci;
2719 
2720 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2721 	if (!sci)
2722 		return NULL;
2723 
2724 	sci->sc_super = sb;
2725 
2726 	nilfs_get_root(root);
2727 	sci->sc_root = root;
2728 
2729 	init_waitqueue_head(&sci->sc_wait_request);
2730 	init_waitqueue_head(&sci->sc_wait_daemon);
2731 	spin_lock_init(&sci->sc_state_lock);
2732 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2733 	INIT_LIST_HEAD(&sci->sc_segbufs);
2734 	INIT_LIST_HEAD(&sci->sc_write_logs);
2735 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2736 	INIT_LIST_HEAD(&sci->sc_iput_queue);
2737 	INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2738 
2739 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2740 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2741 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2742 
2743 	if (nilfs->ns_interval)
2744 		sci->sc_interval = HZ * nilfs->ns_interval;
2745 	if (nilfs->ns_watermark)
2746 		sci->sc_watermark = nilfs->ns_watermark;
2747 	return sci;
2748 }
2749 
2750 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2751 {
2752 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2753 
2754 	/*
2755 	 * The segctord thread was stopped and its timer was removed.
2756 	 * But some tasks remain.
2757 	 */
2758 	do {
2759 		struct nilfs_transaction_info ti;
2760 
2761 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2762 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2763 		nilfs_transaction_unlock(sci->sc_super);
2764 
2765 		flush_work(&sci->sc_iput_work);
2766 
2767 	} while (ret && ret != -EROFS && retrycount-- > 0);
2768 }
2769 
2770 /**
2771  * nilfs_segctor_destroy - destroy the segment constructor.
2772  * @sci: nilfs_sc_info
2773  *
2774  * nilfs_segctor_destroy() kills the segctord thread and frees
2775  * the nilfs_sc_info struct.
2776  * Caller must hold the segment semaphore.
2777  */
2778 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2779 {
2780 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2781 	int flag;
2782 
2783 	up_write(&nilfs->ns_segctor_sem);
2784 
2785 	if (sci->sc_task) {
2786 		wake_up(&sci->sc_wait_daemon);
2787 		kthread_stop(sci->sc_task);
2788 	}
2789 
2790 	spin_lock(&sci->sc_state_lock);
2791 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2792 		|| sci->sc_seq_request != sci->sc_seq_done);
2793 	spin_unlock(&sci->sc_state_lock);
2794 
2795 	/*
2796 	 * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can
2797 	 * be called from delayed iput() via nilfs_evict_inode() and can race
2798 	 * with the above log writer thread termination.
2799 	 */
2800 	nilfs_segctor_wakeup(sci, 0, true);
2801 
2802 	if (flush_work(&sci->sc_iput_work))
2803 		flag = true;
2804 
2805 	if (flag || !nilfs_segctor_confirm(sci))
2806 		nilfs_segctor_write_out(sci);
2807 
2808 	if (!list_empty(&sci->sc_dirty_files)) {
2809 		nilfs_warn(sci->sc_super,
2810 			   "disposed unprocessed dirty file(s) when stopping log writer");
2811 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2812 	}
2813 
2814 	if (!list_empty(&sci->sc_iput_queue)) {
2815 		nilfs_warn(sci->sc_super,
2816 			   "disposed unprocessed inode(s) in iput queue when stopping log writer");
2817 		nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2818 	}
2819 
2820 	WARN_ON(!list_empty(&sci->sc_segbufs));
2821 	WARN_ON(!list_empty(&sci->sc_write_logs));
2822 
2823 	nilfs_put_root(sci->sc_root);
2824 
2825 	down_write(&nilfs->ns_segctor_sem);
2826 
2827 	kfree(sci);
2828 }
2829 
2830 /**
2831  * nilfs_attach_log_writer - attach log writer
2832  * @sb: super block instance
2833  * @root: root object of the current filesystem tree
2834  *
2835  * This allocates a log writer object, initializes it, and starts the
2836  * log writer.
2837  *
2838  * Return: 0 on success, or one of the following negative error codes on
2839  * failure:
2840  * * %-EINTR	- Log writer thread creation failed due to interruption.
2841  * * %-ENOMEM	- Insufficient memory available.
2842  */
2843 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2844 {
2845 	struct the_nilfs *nilfs = sb->s_fs_info;
2846 	struct nilfs_sc_info *sci;
2847 	struct task_struct *t;
2848 	int err;
2849 
2850 	if (nilfs->ns_writer) {
2851 		/*
2852 		 * This happens if the filesystem is made read-only by
2853 		 * __nilfs_error or nilfs_remount and then remounted
2854 		 * read/write.  In these cases, reuse the existing
2855 		 * writer.
2856 		 */
2857 		return 0;
2858 	}
2859 
2860 	sci = nilfs_segctor_new(sb, root);
2861 	if (unlikely(!sci))
2862 		return -ENOMEM;
2863 
2864 	nilfs->ns_writer = sci;
2865 	t = kthread_create(nilfs_segctor_thread, sci, "segctord");
2866 	if (IS_ERR(t)) {
2867 		err = PTR_ERR(t);
2868 		nilfs_err(sb, "error %d creating segctord thread", err);
2869 		nilfs_detach_log_writer(sb);
2870 		return err;
2871 	}
2872 	sci->sc_task = t;
2873 	timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0);
2874 
2875 	wake_up_process(sci->sc_task);
2876 	return 0;
2877 }
2878 
2879 /**
2880  * nilfs_detach_log_writer - destroy log writer
2881  * @sb: super block instance
2882  *
2883  * This kills log writer daemon, frees the log writer object, and
2884  * destroys list of dirty files.
2885  */
2886 void nilfs_detach_log_writer(struct super_block *sb)
2887 {
2888 	struct the_nilfs *nilfs = sb->s_fs_info;
2889 	LIST_HEAD(garbage_list);
2890 
2891 	down_write(&nilfs->ns_segctor_sem);
2892 	if (nilfs->ns_writer) {
2893 		nilfs_segctor_destroy(nilfs->ns_writer);
2894 		nilfs->ns_writer = NULL;
2895 	}
2896 	set_nilfs_purging(nilfs);
2897 
2898 	/* Force to free the list of dirty files */
2899 	spin_lock(&nilfs->ns_inode_lock);
2900 	if (!list_empty(&nilfs->ns_dirty_files)) {
2901 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2902 		nilfs_warn(sb,
2903 			   "disposed unprocessed dirty file(s) when detaching log writer");
2904 	}
2905 	spin_unlock(&nilfs->ns_inode_lock);
2906 	up_write(&nilfs->ns_segctor_sem);
2907 
2908 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2909 	clear_nilfs_purging(nilfs);
2910 }
2911