1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_ddb.h"
34 #include "opt_ktrace.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_stack.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bitstring.h>
41 #include <sys/conf.h>
42 #include <sys/elf.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/ipc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/loginclass.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/shm.h>
66 #include <sys/smp.h>
67 #include <sys/stack.h>
68 #include <sys/stat.h>
69 #include <sys/dtrace_bsd.h>
70 #include <sys/sysctl.h>
71 #include <sys/filedesc.h>
72 #include <sys/tty.h>
73 #include <sys/signalvar.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/user.h>
77 #include <sys/vnode.h>
78 #include <sys/wait.h>
79 #ifdef KTRACE
80 #include <sys/ktrace.h>
81 #endif
82
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/vm_extern.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/uma.h>
95
96 #include <fs/devfs/devfs.h>
97
98 #ifdef COMPAT_FREEBSD32
99 #include <compat/freebsd32/freebsd32.h>
100 #include <compat/freebsd32/freebsd32_util.h>
101 #endif
102
103 SDT_PROVIDER_DEFINE(proc);
104
105 MALLOC_DEFINE(M_SESSION, "session", "session header");
106 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
107 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
108
109 static void doenterpgrp(struct proc *, struct pgrp *);
110 static void orphanpg(struct pgrp *pg);
111 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
112 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
114 int preferthread);
115 static void pgdelete(struct pgrp *);
116 static int pgrp_init(void *mem, int size, int flags);
117 static int proc_ctor(void *mem, int size, void *arg, int flags);
118 static void proc_dtor(void *mem, int size, void *arg);
119 static int proc_init(void *mem, int size, int flags);
120 static void proc_fini(void *mem, int size);
121 static void pargs_free(struct pargs *pa);
122
123 /*
124 * Other process lists
125 */
126 struct pidhashhead *pidhashtbl = NULL;
127 struct sx *pidhashtbl_lock;
128 u_long pidhash;
129 u_long pidhashlock;
130 struct pgrphashhead *pgrphashtbl;
131 u_long pgrphash;
132 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
133 struct sx __exclusive_cache_line allproc_lock;
134 struct sx __exclusive_cache_line proctree_lock;
135 struct mtx __exclusive_cache_line ppeers_lock;
136 struct mtx __exclusive_cache_line procid_lock;
137 uma_zone_t proc_zone;
138 uma_zone_t pgrp_zone;
139
140 /*
141 * The offset of various fields in struct proc and struct thread.
142 * These are used by kernel debuggers to enumerate kernel threads and
143 * processes.
144 */
145 const int proc_off_p_pid = offsetof(struct proc, p_pid);
146 const int proc_off_p_comm = offsetof(struct proc, p_comm);
147 const int proc_off_p_list = offsetof(struct proc, p_list);
148 const int proc_off_p_hash = offsetof(struct proc, p_hash);
149 const int proc_off_p_threads = offsetof(struct proc, p_threads);
150 const int thread_off_td_tid = offsetof(struct thread, td_tid);
151 const int thread_off_td_name = offsetof(struct thread, td_name);
152 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
153 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
154 const int thread_off_td_plist = offsetof(struct thread, td_plist);
155
156 EVENTHANDLER_LIST_DEFINE(process_ctor);
157 EVENTHANDLER_LIST_DEFINE(process_dtor);
158 EVENTHANDLER_LIST_DEFINE(process_init);
159 EVENTHANDLER_LIST_DEFINE(process_fini);
160 EVENTHANDLER_LIST_DEFINE(process_exit);
161 EVENTHANDLER_LIST_DEFINE(process_fork);
162 EVENTHANDLER_LIST_DEFINE(process_exec);
163
164 int kstack_pages = KSTACK_PAGES;
165 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
166 &kstack_pages, 0,
167 "Kernel stack size in pages");
168 static int vmmap_skip_res_cnt = 0;
169 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
170 &vmmap_skip_res_cnt, 0,
171 "Skip calculation of the pages resident count in kern.proc.vmmap");
172
173 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
174 #ifdef COMPAT_FREEBSD32
175 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
176 #endif
177
178 /*
179 * Initialize global process hashing structures.
180 */
181 void
procinit(void)182 procinit(void)
183 {
184 u_long i;
185
186 sx_init(&allproc_lock, "allproc");
187 sx_init(&proctree_lock, "proctree");
188 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
189 mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
190 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
191 pidhashlock = (pidhash + 1) / 64;
192 if (pidhashlock > 0)
193 pidhashlock--;
194 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
195 M_PROC, M_WAITOK | M_ZERO);
196 for (i = 0; i < pidhashlock + 1; i++)
197 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
198 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
199 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
200 proc_ctor, proc_dtor, proc_init, proc_fini,
201 UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
203 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 uihashinit();
205 }
206
207 /*
208 * Prepare a proc for use.
209 */
210 static int
proc_ctor(void * mem,int size,void * arg,int flags)211 proc_ctor(void *mem, int size, void *arg, int flags)
212 {
213 struct proc *p;
214 struct thread *td;
215
216 p = (struct proc *)mem;
217 #ifdef KDTRACE_HOOKS
218 kdtrace_proc_ctor(p);
219 #endif
220 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
221 td = FIRST_THREAD_IN_PROC(p);
222 if (td != NULL) {
223 /* Make sure all thread constructors are executed */
224 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
225 }
226 return (0);
227 }
228
229 /*
230 * Reclaim a proc after use.
231 */
232 static void
proc_dtor(void * mem,int size,void * arg)233 proc_dtor(void *mem, int size, void *arg)
234 {
235 struct proc *p;
236 struct thread *td;
237
238 /* INVARIANTS checks go here */
239 p = (struct proc *)mem;
240 td = FIRST_THREAD_IN_PROC(p);
241 if (td != NULL) {
242 #ifdef INVARIANTS
243 KASSERT((p->p_numthreads == 1),
244 ("bad number of threads in exiting process"));
245 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
246 #endif
247 /* Free all OSD associated to this thread. */
248 osd_thread_exit(td);
249 ast_kclear(td);
250
251 /* Make sure all thread destructors are executed */
252 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
253 }
254 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
255 #ifdef KDTRACE_HOOKS
256 kdtrace_proc_dtor(p);
257 #endif
258 if (p->p_ksi != NULL)
259 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
260 }
261
262 /*
263 * Initialize type-stable parts of a proc (when newly created).
264 */
265 static int
proc_init(void * mem,int size,int flags)266 proc_init(void *mem, int size, int flags)
267 {
268 struct proc *p;
269
270 p = (struct proc *)mem;
271 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
272 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
273 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
274 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
275 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
276 cv_init(&p->p_pwait, "ppwait");
277 TAILQ_INIT(&p->p_threads); /* all threads in proc */
278 EVENTHANDLER_DIRECT_INVOKE(process_init, p);
279 p->p_stats = pstats_alloc();
280 p->p_pgrp = NULL;
281 TAILQ_INIT(&p->p_kqtim_stop);
282 return (0);
283 }
284
285 /*
286 * UMA should ensure that this function is never called.
287 * Freeing a proc structure would violate type stability.
288 */
289 static void
proc_fini(void * mem,int size)290 proc_fini(void *mem, int size)
291 {
292 #ifdef notnow
293 struct proc *p;
294
295 p = (struct proc *)mem;
296 EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
297 pstats_free(p->p_stats);
298 thread_free(FIRST_THREAD_IN_PROC(p));
299 mtx_destroy(&p->p_mtx);
300 if (p->p_ksi != NULL)
301 ksiginfo_free(p->p_ksi);
302 #else
303 panic("proc reclaimed");
304 #endif
305 }
306
307 static int
pgrp_init(void * mem,int size,int flags)308 pgrp_init(void *mem, int size, int flags)
309 {
310 struct pgrp *pg;
311
312 pg = mem;
313 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
314 sx_init(&pg->pg_killsx, "killpg racer");
315 return (0);
316 }
317
318 /*
319 * PID space management.
320 *
321 * These bitmaps are used by fork_findpid.
322 */
323 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
324 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
325 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
326 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
327
328 static bitstr_t *proc_id_array[] = {
329 proc_id_pidmap,
330 proc_id_grpidmap,
331 proc_id_sessidmap,
332 proc_id_reapmap,
333 };
334
335 void
proc_id_set(int type,pid_t id)336 proc_id_set(int type, pid_t id)
337 {
338
339 KASSERT(type >= 0 && type < nitems(proc_id_array),
340 ("invalid type %d\n", type));
341 mtx_lock(&procid_lock);
342 KASSERT(bit_test(proc_id_array[type], id) == 0,
343 ("bit %d already set in %d\n", id, type));
344 bit_set(proc_id_array[type], id);
345 mtx_unlock(&procid_lock);
346 }
347
348 void
proc_id_set_cond(int type,pid_t id)349 proc_id_set_cond(int type, pid_t id)
350 {
351
352 KASSERT(type >= 0 && type < nitems(proc_id_array),
353 ("invalid type %d\n", type));
354 if (bit_test(proc_id_array[type], id))
355 return;
356 mtx_lock(&procid_lock);
357 bit_set(proc_id_array[type], id);
358 mtx_unlock(&procid_lock);
359 }
360
361 void
proc_id_clear(int type,pid_t id)362 proc_id_clear(int type, pid_t id)
363 {
364
365 KASSERT(type >= 0 && type < nitems(proc_id_array),
366 ("invalid type %d\n", type));
367 mtx_lock(&procid_lock);
368 KASSERT(bit_test(proc_id_array[type], id) != 0,
369 ("bit %d not set in %d\n", id, type));
370 bit_clear(proc_id_array[type], id);
371 mtx_unlock(&procid_lock);
372 }
373
374 /*
375 * Is p an inferior of the current process?
376 */
377 int
inferior(struct proc * p)378 inferior(struct proc *p)
379 {
380
381 sx_assert(&proctree_lock, SX_LOCKED);
382 PROC_LOCK_ASSERT(p, MA_OWNED);
383 for (; p != curproc; p = proc_realparent(p)) {
384 if (p->p_pid == 0)
385 return (0);
386 }
387 return (1);
388 }
389
390 /*
391 * Shared lock all the pid hash lists.
392 */
393 void
pidhash_slockall(void)394 pidhash_slockall(void)
395 {
396 u_long i;
397
398 for (i = 0; i < pidhashlock + 1; i++)
399 sx_slock(&pidhashtbl_lock[i]);
400 }
401
402 /*
403 * Shared unlock all the pid hash lists.
404 */
405 void
pidhash_sunlockall(void)406 pidhash_sunlockall(void)
407 {
408 u_long i;
409
410 for (i = 0; i < pidhashlock + 1; i++)
411 sx_sunlock(&pidhashtbl_lock[i]);
412 }
413
414 /*
415 * Similar to pfind_any(), this function finds zombies.
416 */
417 struct proc *
pfind_any_locked(pid_t pid)418 pfind_any_locked(pid_t pid)
419 {
420 struct proc *p;
421
422 sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
423 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
424 if (p->p_pid == pid) {
425 PROC_LOCK(p);
426 if (p->p_state == PRS_NEW) {
427 PROC_UNLOCK(p);
428 p = NULL;
429 }
430 break;
431 }
432 }
433 return (p);
434 }
435
436 /*
437 * Locate a process by number.
438 *
439 * By not returning processes in the PRS_NEW state, we allow callers to avoid
440 * testing for that condition to avoid dereferencing p_ucred, et al.
441 */
442 static __always_inline struct proc *
_pfind(pid_t pid,bool zombie)443 _pfind(pid_t pid, bool zombie)
444 {
445 struct proc *p;
446
447 p = curproc;
448 if (p->p_pid == pid) {
449 PROC_LOCK(p);
450 return (p);
451 }
452 sx_slock(PIDHASHLOCK(pid));
453 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
454 if (p->p_pid == pid) {
455 PROC_LOCK(p);
456 if (p->p_state == PRS_NEW ||
457 (!zombie && p->p_state == PRS_ZOMBIE)) {
458 PROC_UNLOCK(p);
459 p = NULL;
460 }
461 break;
462 }
463 }
464 sx_sunlock(PIDHASHLOCK(pid));
465 return (p);
466 }
467
468 struct proc *
pfind(pid_t pid)469 pfind(pid_t pid)
470 {
471
472 return (_pfind(pid, false));
473 }
474
475 /*
476 * Same as pfind but allow zombies.
477 */
478 struct proc *
pfind_any(pid_t pid)479 pfind_any(pid_t pid)
480 {
481
482 return (_pfind(pid, true));
483 }
484
485 /*
486 * Locate a process group by number.
487 * The caller must hold proctree_lock.
488 */
489 struct pgrp *
pgfind(pid_t pgid)490 pgfind(pid_t pgid)
491 {
492 struct pgrp *pgrp;
493
494 sx_assert(&proctree_lock, SX_LOCKED);
495
496 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
497 if (pgrp->pg_id == pgid) {
498 PGRP_LOCK(pgrp);
499 return (pgrp);
500 }
501 }
502 return (NULL);
503 }
504
505 /*
506 * Locate process and do additional manipulations, depending on flags.
507 */
508 int
pget(pid_t pid,int flags,struct proc ** pp)509 pget(pid_t pid, int flags, struct proc **pp)
510 {
511 struct proc *p;
512 struct thread *td1;
513 int error;
514
515 p = curproc;
516 if (p->p_pid == pid) {
517 PROC_LOCK(p);
518 } else {
519 p = NULL;
520 if (pid <= PID_MAX) {
521 if ((flags & PGET_NOTWEXIT) == 0)
522 p = pfind_any(pid);
523 else
524 p = pfind(pid);
525 } else if ((flags & PGET_NOTID) == 0) {
526 td1 = tdfind(pid, -1);
527 if (td1 != NULL)
528 p = td1->td_proc;
529 }
530 if (p == NULL)
531 return (ESRCH);
532 if ((flags & PGET_CANSEE) != 0) {
533 error = p_cansee(curthread, p);
534 if (error != 0)
535 goto errout;
536 }
537 }
538 if ((flags & PGET_CANDEBUG) != 0) {
539 error = p_candebug(curthread, p);
540 if (error != 0)
541 goto errout;
542 }
543 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
544 error = EPERM;
545 goto errout;
546 }
547 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
548 error = ESRCH;
549 goto errout;
550 }
551 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
552 /*
553 * XXXRW: Not clear ESRCH is the right error during proc
554 * execve().
555 */
556 error = ESRCH;
557 goto errout;
558 }
559 if ((flags & PGET_HOLD) != 0) {
560 _PHOLD(p);
561 PROC_UNLOCK(p);
562 }
563 *pp = p;
564 return (0);
565 errout:
566 PROC_UNLOCK(p);
567 return (error);
568 }
569
570 /*
571 * Create a new process group.
572 * pgid must be equal to the pid of p.
573 * Begin a new session if required.
574 */
575 int
enterpgrp(struct proc * p,pid_t pgid,struct pgrp * pgrp,struct session * sess)576 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
577 {
578 struct pgrp *old_pgrp;
579
580 sx_assert(&proctree_lock, SX_XLOCKED);
581
582 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
583 KASSERT(p->p_pid == pgid,
584 ("enterpgrp: new pgrp and pid != pgid"));
585 KASSERT(pgfind(pgid) == NULL,
586 ("enterpgrp: pgrp with pgid exists"));
587 KASSERT(!SESS_LEADER(p),
588 ("enterpgrp: session leader attempted setpgrp"));
589
590 old_pgrp = p->p_pgrp;
591 if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
592 sx_xunlock(&proctree_lock);
593 sx_xlock(&old_pgrp->pg_killsx);
594 sx_xunlock(&old_pgrp->pg_killsx);
595 return (ERESTART);
596 }
597 MPASS(old_pgrp == p->p_pgrp);
598
599 if (sess != NULL) {
600 /*
601 * new session
602 */
603 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
604 PROC_LOCK(p);
605 p->p_flag &= ~P_CONTROLT;
606 PROC_UNLOCK(p);
607 PGRP_LOCK(pgrp);
608 sess->s_leader = p;
609 sess->s_sid = p->p_pid;
610 proc_id_set(PROC_ID_SESSION, p->p_pid);
611 refcount_init(&sess->s_count, 1);
612 sess->s_ttyvp = NULL;
613 sess->s_ttydp = NULL;
614 sess->s_ttyp = NULL;
615 bcopy(p->p_session->s_login, sess->s_login,
616 sizeof(sess->s_login));
617 pgrp->pg_session = sess;
618 KASSERT(p == curproc,
619 ("enterpgrp: mksession and p != curproc"));
620 } else {
621 pgrp->pg_session = p->p_session;
622 sess_hold(pgrp->pg_session);
623 PGRP_LOCK(pgrp);
624 }
625 pgrp->pg_id = pgid;
626 proc_id_set(PROC_ID_GROUP, p->p_pid);
627 LIST_INIT(&pgrp->pg_members);
628 pgrp->pg_flags = 0;
629
630 /*
631 * As we have an exclusive lock of proctree_lock,
632 * this should not deadlock.
633 */
634 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
635 SLIST_INIT(&pgrp->pg_sigiolst);
636 PGRP_UNLOCK(pgrp);
637
638 doenterpgrp(p, pgrp);
639
640 sx_xunlock(&old_pgrp->pg_killsx);
641 return (0);
642 }
643
644 /*
645 * Move p to an existing process group
646 */
647 int
enterthispgrp(struct proc * p,struct pgrp * pgrp)648 enterthispgrp(struct proc *p, struct pgrp *pgrp)
649 {
650 struct pgrp *old_pgrp;
651
652 sx_assert(&proctree_lock, SX_XLOCKED);
653 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
654 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
655 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
656 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
657 KASSERT(pgrp->pg_session == p->p_session,
658 ("%s: pgrp's session %p, p->p_session %p proc %p\n",
659 __func__, pgrp->pg_session, p->p_session, p));
660 KASSERT(pgrp != p->p_pgrp,
661 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
662
663 old_pgrp = p->p_pgrp;
664 if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
665 sx_xunlock(&proctree_lock);
666 sx_xlock(&old_pgrp->pg_killsx);
667 sx_xunlock(&old_pgrp->pg_killsx);
668 return (ERESTART);
669 }
670 MPASS(old_pgrp == p->p_pgrp);
671 if (!sx_try_xlock(&pgrp->pg_killsx)) {
672 sx_xunlock(&old_pgrp->pg_killsx);
673 sx_xunlock(&proctree_lock);
674 sx_xlock(&pgrp->pg_killsx);
675 sx_xunlock(&pgrp->pg_killsx);
676 return (ERESTART);
677 }
678
679 doenterpgrp(p, pgrp);
680
681 sx_xunlock(&pgrp->pg_killsx);
682 sx_xunlock(&old_pgrp->pg_killsx);
683 return (0);
684 }
685
686 /*
687 * If true, any child of q which belongs to group pgrp, qualifies the
688 * process group pgrp as not orphaned.
689 */
690 static bool
isjobproc(struct proc * q,struct pgrp * pgrp)691 isjobproc(struct proc *q, struct pgrp *pgrp)
692 {
693 sx_assert(&proctree_lock, SX_LOCKED);
694
695 return (q->p_pgrp != pgrp &&
696 q->p_pgrp->pg_session == pgrp->pg_session);
697 }
698
699 static struct proc *
jobc_reaper(struct proc * p)700 jobc_reaper(struct proc *p)
701 {
702 struct proc *pp;
703
704 sx_assert(&proctree_lock, SA_LOCKED);
705
706 for (pp = p;;) {
707 pp = pp->p_reaper;
708 if (pp->p_reaper == pp ||
709 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
710 return (pp);
711 }
712 }
713
714 static struct proc *
jobc_parent(struct proc * p,struct proc * p_exiting)715 jobc_parent(struct proc *p, struct proc *p_exiting)
716 {
717 struct proc *pp;
718
719 sx_assert(&proctree_lock, SA_LOCKED);
720
721 pp = proc_realparent(p);
722 if (pp->p_pptr == NULL || pp == p_exiting ||
723 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
724 return (pp);
725 return (jobc_reaper(pp));
726 }
727
728 static int
pgrp_calc_jobc(struct pgrp * pgrp)729 pgrp_calc_jobc(struct pgrp *pgrp)
730 {
731 struct proc *q;
732 int cnt;
733
734 #ifdef INVARIANTS
735 if (!mtx_owned(&pgrp->pg_mtx))
736 sx_assert(&proctree_lock, SA_LOCKED);
737 #endif
738
739 cnt = 0;
740 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
741 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
742 q->p_pptr == NULL)
743 continue;
744 if (isjobproc(jobc_parent(q, NULL), pgrp))
745 cnt++;
746 }
747 return (cnt);
748 }
749
750 /*
751 * Move p to a process group
752 */
753 static void
doenterpgrp(struct proc * p,struct pgrp * pgrp)754 doenterpgrp(struct proc *p, struct pgrp *pgrp)
755 {
756 struct pgrp *savepgrp;
757 struct proc *pp;
758
759 sx_assert(&proctree_lock, SX_XLOCKED);
760 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
761 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
762 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
763 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
764
765 savepgrp = p->p_pgrp;
766 pp = jobc_parent(p, NULL);
767
768 PGRP_LOCK(pgrp);
769 PGRP_LOCK(savepgrp);
770 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
771 orphanpg(savepgrp);
772 PROC_LOCK(p);
773 LIST_REMOVE(p, p_pglist);
774 p->p_pgrp = pgrp;
775 PROC_UNLOCK(p);
776 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
777 if (isjobproc(pp, pgrp))
778 pgrp->pg_flags &= ~PGRP_ORPHANED;
779 PGRP_UNLOCK(savepgrp);
780 PGRP_UNLOCK(pgrp);
781 if (LIST_EMPTY(&savepgrp->pg_members))
782 pgdelete(savepgrp);
783 }
784
785 /*
786 * remove process from process group
787 */
788 int
leavepgrp(struct proc * p)789 leavepgrp(struct proc *p)
790 {
791 struct pgrp *savepgrp;
792
793 sx_assert(&proctree_lock, SX_XLOCKED);
794 savepgrp = p->p_pgrp;
795 PGRP_LOCK(savepgrp);
796 PROC_LOCK(p);
797 LIST_REMOVE(p, p_pglist);
798 p->p_pgrp = NULL;
799 PROC_UNLOCK(p);
800 PGRP_UNLOCK(savepgrp);
801 if (LIST_EMPTY(&savepgrp->pg_members))
802 pgdelete(savepgrp);
803 return (0);
804 }
805
806 /*
807 * delete a process group
808 */
809 static void
pgdelete(struct pgrp * pgrp)810 pgdelete(struct pgrp *pgrp)
811 {
812 struct session *savesess;
813 struct tty *tp;
814
815 sx_assert(&proctree_lock, SX_XLOCKED);
816 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
817 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
818
819 /*
820 * Reset any sigio structures pointing to us as a result of
821 * F_SETOWN with our pgid. The proctree lock ensures that
822 * new sigio structures will not be added after this point.
823 */
824 funsetownlst(&pgrp->pg_sigiolst);
825
826 PGRP_LOCK(pgrp);
827 tp = pgrp->pg_session->s_ttyp;
828 LIST_REMOVE(pgrp, pg_hash);
829 savesess = pgrp->pg_session;
830 PGRP_UNLOCK(pgrp);
831
832 /* Remove the reference to the pgrp before deallocating it. */
833 if (tp != NULL) {
834 tty_lock(tp);
835 tty_rel_pgrp(tp, pgrp);
836 }
837
838 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
839 uma_zfree(pgrp_zone, pgrp);
840 sess_release(savesess);
841 }
842
843
844 static void
fixjobc_kill(struct proc * p)845 fixjobc_kill(struct proc *p)
846 {
847 struct proc *q;
848 struct pgrp *pgrp;
849
850 sx_assert(&proctree_lock, SX_LOCKED);
851 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
852 pgrp = p->p_pgrp;
853 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
854 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
855
856 /*
857 * p no longer affects process group orphanage for children.
858 * It is marked by the flag because p is only physically
859 * removed from its process group on wait(2).
860 */
861 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
862 p->p_treeflag |= P_TREE_GRPEXITED;
863
864 /*
865 * Check if exiting p orphans its own group.
866 */
867 pgrp = p->p_pgrp;
868 if (isjobproc(jobc_parent(p, NULL), pgrp)) {
869 PGRP_LOCK(pgrp);
870 if (pgrp_calc_jobc(pgrp) == 0)
871 orphanpg(pgrp);
872 PGRP_UNLOCK(pgrp);
873 }
874
875 /*
876 * Check this process' children to see whether they qualify
877 * their process groups after reparenting to reaper.
878 */
879 LIST_FOREACH(q, &p->p_children, p_sibling) {
880 pgrp = q->p_pgrp;
881 PGRP_LOCK(pgrp);
882 if (pgrp_calc_jobc(pgrp) == 0) {
883 /*
884 * We want to handle exactly the children that
885 * has p as realparent. Then, when calculating
886 * jobc_parent for children, we should ignore
887 * P_TREE_GRPEXITED flag already set on p.
888 */
889 if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
890 orphanpg(pgrp);
891 } else
892 pgrp->pg_flags &= ~PGRP_ORPHANED;
893 PGRP_UNLOCK(pgrp);
894 }
895 LIST_FOREACH(q, &p->p_orphans, p_orphan) {
896 pgrp = q->p_pgrp;
897 PGRP_LOCK(pgrp);
898 if (pgrp_calc_jobc(pgrp) == 0) {
899 if (isjobproc(p, pgrp))
900 orphanpg(pgrp);
901 } else
902 pgrp->pg_flags &= ~PGRP_ORPHANED;
903 PGRP_UNLOCK(pgrp);
904 }
905 }
906
907 void
killjobc(void)908 killjobc(void)
909 {
910 struct session *sp;
911 struct tty *tp;
912 struct proc *p;
913 struct vnode *ttyvp;
914
915 p = curproc;
916 MPASS(p->p_flag & P_WEXIT);
917 sx_assert(&proctree_lock, SX_LOCKED);
918
919 if (SESS_LEADER(p)) {
920 sp = p->p_session;
921
922 /*
923 * s_ttyp is not zero'd; we use this to indicate that
924 * the session once had a controlling terminal. (for
925 * logging and informational purposes)
926 */
927 SESS_LOCK(sp);
928 ttyvp = sp->s_ttyvp;
929 tp = sp->s_ttyp;
930 sp->s_ttyvp = NULL;
931 sp->s_ttydp = NULL;
932 sp->s_leader = NULL;
933 SESS_UNLOCK(sp);
934
935 /*
936 * Signal foreground pgrp and revoke access to
937 * controlling terminal if it has not been revoked
938 * already.
939 *
940 * Because the TTY may have been revoked in the mean
941 * time and could already have a new session associated
942 * with it, make sure we don't send a SIGHUP to a
943 * foreground process group that does not belong to this
944 * session.
945 */
946
947 if (tp != NULL) {
948 tty_lock(tp);
949 if (tp->t_session == sp)
950 tty_signal_pgrp(tp, SIGHUP);
951 tty_unlock(tp);
952 }
953
954 if (ttyvp != NULL) {
955 sx_xunlock(&proctree_lock);
956 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
957 VOP_REVOKE(ttyvp, REVOKEALL);
958 VOP_UNLOCK(ttyvp);
959 }
960 devfs_ctty_unref(ttyvp);
961 sx_xlock(&proctree_lock);
962 }
963 }
964 fixjobc_kill(p);
965 }
966
967 /*
968 * A process group has become orphaned, mark it as such for signal
969 * delivery code. If there are any stopped processes in the group,
970 * hang-up all process in that group.
971 */
972 static void
orphanpg(struct pgrp * pg)973 orphanpg(struct pgrp *pg)
974 {
975 struct proc *p;
976
977 PGRP_LOCK_ASSERT(pg, MA_OWNED);
978
979 pg->pg_flags |= PGRP_ORPHANED;
980
981 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
982 PROC_LOCK(p);
983 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
984 PROC_UNLOCK(p);
985 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
986 PROC_LOCK(p);
987 kern_psignal(p, SIGHUP);
988 kern_psignal(p, SIGCONT);
989 PROC_UNLOCK(p);
990 }
991 return;
992 }
993 PROC_UNLOCK(p);
994 }
995 }
996
997 void
sess_hold(struct session * s)998 sess_hold(struct session *s)
999 {
1000
1001 refcount_acquire(&s->s_count);
1002 }
1003
1004 void
sess_release(struct session * s)1005 sess_release(struct session *s)
1006 {
1007
1008 if (refcount_release(&s->s_count)) {
1009 if (s->s_ttyp != NULL) {
1010 tty_lock(s->s_ttyp);
1011 tty_rel_sess(s->s_ttyp, s);
1012 }
1013 proc_id_clear(PROC_ID_SESSION, s->s_sid);
1014 mtx_destroy(&s->s_mtx);
1015 free(s, M_SESSION);
1016 }
1017 }
1018
1019 #ifdef DDB
1020
1021 static void
db_print_pgrp_one(struct pgrp * pgrp,struct proc * p)1022 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1023 {
1024 db_printf(
1025 " pid %d at %p pr %d pgrp %p e %d jc %d\n",
1026 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1027 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1028 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1029 }
1030
DB_SHOW_COMMAND_FLAGS(pgrpdump,pgrpdump,DB_CMD_MEMSAFE)1031 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1032 {
1033 struct pgrp *pgrp;
1034 struct proc *p;
1035 int i;
1036
1037 for (i = 0; i <= pgrphash; i++) {
1038 if (!LIST_EMPTY(&pgrphashtbl[i])) {
1039 db_printf("indx %d\n", i);
1040 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1041 db_printf(
1042 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1043 pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1044 pgrp->pg_session->s_count,
1045 LIST_FIRST(&pgrp->pg_members));
1046 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1047 db_print_pgrp_one(pgrp, p);
1048 }
1049 }
1050 }
1051 }
1052 #endif /* DDB */
1053
1054 /*
1055 * Calculate the kinfo_proc members which contain process-wide
1056 * informations.
1057 * Must be called with the target process locked.
1058 */
1059 static void
fill_kinfo_aggregate(struct proc * p,struct kinfo_proc * kp)1060 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1061 {
1062 struct thread *td;
1063
1064 PROC_LOCK_ASSERT(p, MA_OWNED);
1065
1066 kp->ki_estcpu = 0;
1067 kp->ki_pctcpu = 0;
1068 FOREACH_THREAD_IN_PROC(p, td) {
1069 thread_lock(td);
1070 kp->ki_pctcpu += sched_pctcpu(td);
1071 kp->ki_estcpu += sched_estcpu(td);
1072 thread_unlock(td);
1073 }
1074 }
1075
1076 /*
1077 * Fill in any information that is common to all threads in the process.
1078 * Must be called with the target process locked.
1079 */
1080 static void
fill_kinfo_proc_only(struct proc * p,struct kinfo_proc * kp)1081 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1082 {
1083 struct thread *td0;
1084 struct ucred *cred;
1085 struct sigacts *ps;
1086 struct timeval boottime;
1087
1088 PROC_LOCK_ASSERT(p, MA_OWNED);
1089
1090 kp->ki_structsize = sizeof(*kp);
1091 kp->ki_paddr = p;
1092 kp->ki_addr =/* p->p_addr; */0; /* XXX */
1093 kp->ki_args = p->p_args;
1094 kp->ki_textvp = p->p_textvp;
1095 #ifdef KTRACE
1096 kp->ki_tracep = ktr_get_tracevp(p, false);
1097 kp->ki_traceflag = p->p_traceflag;
1098 #endif
1099 kp->ki_fd = p->p_fd;
1100 kp->ki_pd = p->p_pd;
1101 kp->ki_vmspace = p->p_vmspace;
1102 kp->ki_flag = p->p_flag;
1103 kp->ki_flag2 = p->p_flag2;
1104 cred = p->p_ucred;
1105 if (cred) {
1106 kp->ki_uid = cred->cr_uid;
1107 kp->ki_ruid = cred->cr_ruid;
1108 kp->ki_svuid = cred->cr_svuid;
1109 kp->ki_cr_flags = 0;
1110 if (cred->cr_flags & CRED_FLAG_CAPMODE)
1111 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1112 /* XXX bde doesn't like KI_NGROUPS */
1113 if (cred->cr_ngroups > KI_NGROUPS) {
1114 kp->ki_ngroups = KI_NGROUPS;
1115 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1116 } else
1117 kp->ki_ngroups = cred->cr_ngroups;
1118 bcopy(cred->cr_groups, kp->ki_groups,
1119 kp->ki_ngroups * sizeof(gid_t));
1120 kp->ki_rgid = cred->cr_rgid;
1121 kp->ki_svgid = cred->cr_svgid;
1122 /* If jailed(cred), emulate the old P_JAILED flag. */
1123 if (jailed(cred)) {
1124 kp->ki_flag |= P_JAILED;
1125 /* If inside the jail, use 0 as a jail ID. */
1126 if (cred->cr_prison != curthread->td_ucred->cr_prison)
1127 kp->ki_jid = cred->cr_prison->pr_id;
1128 }
1129 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1130 sizeof(kp->ki_loginclass));
1131 }
1132 ps = p->p_sigacts;
1133 if (ps) {
1134 mtx_lock(&ps->ps_mtx);
1135 kp->ki_sigignore = ps->ps_sigignore;
1136 kp->ki_sigcatch = ps->ps_sigcatch;
1137 mtx_unlock(&ps->ps_mtx);
1138 }
1139 if (p->p_state != PRS_NEW &&
1140 p->p_state != PRS_ZOMBIE &&
1141 p->p_vmspace != NULL) {
1142 struct vmspace *vm = p->p_vmspace;
1143
1144 kp->ki_size = vm->vm_map.size;
1145 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1146 FOREACH_THREAD_IN_PROC(p, td0)
1147 kp->ki_rssize += td0->td_kstack_pages;
1148 kp->ki_swrss = vm->vm_swrss;
1149 kp->ki_tsize = vm->vm_tsize;
1150 kp->ki_dsize = vm->vm_dsize;
1151 kp->ki_ssize = vm->vm_ssize;
1152 } else if (p->p_state == PRS_ZOMBIE)
1153 kp->ki_stat = SZOMB;
1154 kp->ki_sflag = PS_INMEM;
1155 /* Calculate legacy swtime as seconds since 'swtick'. */
1156 kp->ki_swtime = (ticks - p->p_swtick) / hz;
1157 kp->ki_pid = p->p_pid;
1158 kp->ki_nice = p->p_nice;
1159 kp->ki_fibnum = p->p_fibnum;
1160 kp->ki_start = p->p_stats->p_start;
1161 getboottime(&boottime);
1162 timevaladd(&kp->ki_start, &boottime);
1163 PROC_STATLOCK(p);
1164 rufetch(p, &kp->ki_rusage);
1165 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1166 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1167 PROC_STATUNLOCK(p);
1168 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1169 /* Some callers want child times in a single value. */
1170 kp->ki_childtime = kp->ki_childstime;
1171 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1172
1173 FOREACH_THREAD_IN_PROC(p, td0)
1174 kp->ki_cow += td0->td_cow;
1175
1176 if (p->p_comm[0] != '\0')
1177 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1178 if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1179 p->p_sysent->sv_name[0] != '\0')
1180 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1181 kp->ki_siglist = p->p_siglist;
1182 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1183 kp->ki_acflag = p->p_acflag;
1184 kp->ki_lock = p->p_lock;
1185 if (p->p_pptr) {
1186 kp->ki_ppid = p->p_oppid;
1187 if (p->p_flag & P_TRACED)
1188 kp->ki_tracer = p->p_pptr->p_pid;
1189 }
1190 }
1191
1192 /*
1193 * Fill job-related process information.
1194 */
1195 static void
fill_kinfo_proc_pgrp(struct proc * p,struct kinfo_proc * kp)1196 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1197 {
1198 struct tty *tp;
1199 struct session *sp;
1200 struct pgrp *pgrp;
1201
1202 sx_assert(&proctree_lock, SA_LOCKED);
1203 PROC_LOCK_ASSERT(p, MA_OWNED);
1204
1205 pgrp = p->p_pgrp;
1206 if (pgrp == NULL)
1207 return;
1208
1209 kp->ki_pgid = pgrp->pg_id;
1210 kp->ki_jobc = pgrp_calc_jobc(pgrp);
1211
1212 sp = pgrp->pg_session;
1213 tp = NULL;
1214
1215 if (sp != NULL) {
1216 kp->ki_sid = sp->s_sid;
1217 SESS_LOCK(sp);
1218 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1219 if (sp->s_ttyvp)
1220 kp->ki_kiflag |= KI_CTTY;
1221 if (SESS_LEADER(p))
1222 kp->ki_kiflag |= KI_SLEADER;
1223 tp = sp->s_ttyp;
1224 SESS_UNLOCK(sp);
1225 }
1226
1227 if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1228 kp->ki_tdev = tty_udev(tp);
1229 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1230 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1231 if (tp->t_session)
1232 kp->ki_tsid = tp->t_session->s_sid;
1233 } else {
1234 kp->ki_tdev = NODEV;
1235 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1236 }
1237 }
1238
1239 /*
1240 * Fill in information that is thread specific. Must be called with
1241 * target process locked. If 'preferthread' is set, overwrite certain
1242 * process-related fields that are maintained for both threads and
1243 * processes.
1244 */
1245 static void
fill_kinfo_thread(struct thread * td,struct kinfo_proc * kp,int preferthread)1246 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1247 {
1248 struct proc *p;
1249
1250 p = td->td_proc;
1251 kp->ki_tdaddr = td;
1252 PROC_LOCK_ASSERT(p, MA_OWNED);
1253
1254 if (preferthread)
1255 PROC_STATLOCK(p);
1256 thread_lock(td);
1257 if (td->td_wmesg != NULL)
1258 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1259 else
1260 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1261 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1262 sizeof(kp->ki_tdname)) {
1263 strlcpy(kp->ki_moretdname,
1264 td->td_name + sizeof(kp->ki_tdname) - 1,
1265 sizeof(kp->ki_moretdname));
1266 } else {
1267 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1268 }
1269 if (TD_ON_LOCK(td)) {
1270 kp->ki_kiflag |= KI_LOCKBLOCK;
1271 strlcpy(kp->ki_lockname, td->td_lockname,
1272 sizeof(kp->ki_lockname));
1273 } else {
1274 kp->ki_kiflag &= ~KI_LOCKBLOCK;
1275 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1276 }
1277
1278 if (p->p_state == PRS_NORMAL) { /* approximate. */
1279 if (TD_ON_RUNQ(td) ||
1280 TD_CAN_RUN(td) ||
1281 TD_IS_RUNNING(td)) {
1282 kp->ki_stat = SRUN;
1283 } else if (P_SHOULDSTOP(p)) {
1284 kp->ki_stat = SSTOP;
1285 } else if (TD_IS_SLEEPING(td)) {
1286 kp->ki_stat = SSLEEP;
1287 } else if (TD_ON_LOCK(td)) {
1288 kp->ki_stat = SLOCK;
1289 } else {
1290 kp->ki_stat = SWAIT;
1291 }
1292 } else if (p->p_state == PRS_ZOMBIE) {
1293 kp->ki_stat = SZOMB;
1294 } else {
1295 kp->ki_stat = SIDL;
1296 }
1297
1298 /* Things in the thread */
1299 kp->ki_wchan = td->td_wchan;
1300 kp->ki_pri.pri_level = td->td_priority;
1301 kp->ki_pri.pri_native = td->td_base_pri;
1302
1303 /*
1304 * Note: legacy fields; clamp at the old NOCPU value and/or
1305 * the maximum u_char CPU value.
1306 */
1307 if (td->td_lastcpu == NOCPU)
1308 kp->ki_lastcpu_old = NOCPU_OLD;
1309 else if (td->td_lastcpu > MAXCPU_OLD)
1310 kp->ki_lastcpu_old = MAXCPU_OLD;
1311 else
1312 kp->ki_lastcpu_old = td->td_lastcpu;
1313
1314 if (td->td_oncpu == NOCPU)
1315 kp->ki_oncpu_old = NOCPU_OLD;
1316 else if (td->td_oncpu > MAXCPU_OLD)
1317 kp->ki_oncpu_old = MAXCPU_OLD;
1318 else
1319 kp->ki_oncpu_old = td->td_oncpu;
1320
1321 kp->ki_lastcpu = td->td_lastcpu;
1322 kp->ki_oncpu = td->td_oncpu;
1323 kp->ki_tdflags = td->td_flags;
1324 kp->ki_tid = td->td_tid;
1325 kp->ki_numthreads = p->p_numthreads;
1326 kp->ki_pcb = td->td_pcb;
1327 kp->ki_kstack = (void *)td->td_kstack;
1328 kp->ki_slptime = (ticks - td->td_slptick) / hz;
1329 kp->ki_pri.pri_class = td->td_pri_class;
1330 kp->ki_pri.pri_user = td->td_user_pri;
1331
1332 if (preferthread) {
1333 rufetchtd(td, &kp->ki_rusage);
1334 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1335 kp->ki_pctcpu = sched_pctcpu(td);
1336 kp->ki_estcpu = sched_estcpu(td);
1337 kp->ki_cow = td->td_cow;
1338 }
1339
1340 /* We can't get this anymore but ps etc never used it anyway. */
1341 kp->ki_rqindex = 0;
1342
1343 if (preferthread)
1344 kp->ki_siglist = td->td_siglist;
1345 kp->ki_sigmask = td->td_sigmask;
1346 thread_unlock(td);
1347 if (preferthread)
1348 PROC_STATUNLOCK(p);
1349 }
1350
1351 /*
1352 * Fill in a kinfo_proc structure for the specified process.
1353 * Must be called with the target process locked.
1354 */
1355 void
fill_kinfo_proc(struct proc * p,struct kinfo_proc * kp)1356 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1357 {
1358 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1359
1360 bzero(kp, sizeof(*kp));
1361
1362 fill_kinfo_proc_pgrp(p,kp);
1363 fill_kinfo_proc_only(p, kp);
1364 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1365 fill_kinfo_aggregate(p, kp);
1366 }
1367
1368 struct pstats *
pstats_alloc(void)1369 pstats_alloc(void)
1370 {
1371
1372 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1373 }
1374
1375 /*
1376 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1377 */
1378 void
pstats_fork(struct pstats * src,struct pstats * dst)1379 pstats_fork(struct pstats *src, struct pstats *dst)
1380 {
1381
1382 bzero(&dst->pstat_startzero,
1383 __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1384 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1385 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1386 }
1387
1388 void
pstats_free(struct pstats * ps)1389 pstats_free(struct pstats *ps)
1390 {
1391
1392 free(ps, M_SUBPROC);
1393 }
1394
1395 #ifdef COMPAT_FREEBSD32
1396
1397 /*
1398 * This function is typically used to copy out the kernel address, so
1399 * it can be replaced by assignment of zero.
1400 */
1401 static inline uint32_t
ptr32_trim(const void * ptr)1402 ptr32_trim(const void *ptr)
1403 {
1404 uintptr_t uptr;
1405
1406 uptr = (uintptr_t)ptr;
1407 return ((uptr > UINT_MAX) ? 0 : uptr);
1408 }
1409
1410 #define PTRTRIM_CP(src,dst,fld) \
1411 do { (dst).fld = ptr32_trim((src).fld); } while (0)
1412
1413 static void
freebsd32_kinfo_proc_out(const struct kinfo_proc * ki,struct kinfo_proc32 * ki32)1414 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1415 {
1416 int i;
1417
1418 bzero(ki32, sizeof(struct kinfo_proc32));
1419 ki32->ki_structsize = sizeof(struct kinfo_proc32);
1420 CP(*ki, *ki32, ki_layout);
1421 PTRTRIM_CP(*ki, *ki32, ki_args);
1422 PTRTRIM_CP(*ki, *ki32, ki_paddr);
1423 PTRTRIM_CP(*ki, *ki32, ki_addr);
1424 PTRTRIM_CP(*ki, *ki32, ki_tracep);
1425 PTRTRIM_CP(*ki, *ki32, ki_textvp);
1426 PTRTRIM_CP(*ki, *ki32, ki_fd);
1427 PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1428 PTRTRIM_CP(*ki, *ki32, ki_wchan);
1429 CP(*ki, *ki32, ki_pid);
1430 CP(*ki, *ki32, ki_ppid);
1431 CP(*ki, *ki32, ki_pgid);
1432 CP(*ki, *ki32, ki_tpgid);
1433 CP(*ki, *ki32, ki_sid);
1434 CP(*ki, *ki32, ki_tsid);
1435 CP(*ki, *ki32, ki_jobc);
1436 CP(*ki, *ki32, ki_tdev);
1437 CP(*ki, *ki32, ki_tdev_freebsd11);
1438 CP(*ki, *ki32, ki_siglist);
1439 CP(*ki, *ki32, ki_sigmask);
1440 CP(*ki, *ki32, ki_sigignore);
1441 CP(*ki, *ki32, ki_sigcatch);
1442 CP(*ki, *ki32, ki_uid);
1443 CP(*ki, *ki32, ki_ruid);
1444 CP(*ki, *ki32, ki_svuid);
1445 CP(*ki, *ki32, ki_rgid);
1446 CP(*ki, *ki32, ki_svgid);
1447 CP(*ki, *ki32, ki_ngroups);
1448 for (i = 0; i < KI_NGROUPS; i++)
1449 CP(*ki, *ki32, ki_groups[i]);
1450 CP(*ki, *ki32, ki_size);
1451 CP(*ki, *ki32, ki_rssize);
1452 CP(*ki, *ki32, ki_swrss);
1453 CP(*ki, *ki32, ki_tsize);
1454 CP(*ki, *ki32, ki_dsize);
1455 CP(*ki, *ki32, ki_ssize);
1456 CP(*ki, *ki32, ki_xstat);
1457 CP(*ki, *ki32, ki_acflag);
1458 CP(*ki, *ki32, ki_pctcpu);
1459 CP(*ki, *ki32, ki_estcpu);
1460 CP(*ki, *ki32, ki_slptime);
1461 CP(*ki, *ki32, ki_swtime);
1462 CP(*ki, *ki32, ki_cow);
1463 CP(*ki, *ki32, ki_runtime);
1464 TV_CP(*ki, *ki32, ki_start);
1465 TV_CP(*ki, *ki32, ki_childtime);
1466 CP(*ki, *ki32, ki_flag);
1467 CP(*ki, *ki32, ki_kiflag);
1468 CP(*ki, *ki32, ki_traceflag);
1469 CP(*ki, *ki32, ki_stat);
1470 CP(*ki, *ki32, ki_nice);
1471 CP(*ki, *ki32, ki_lock);
1472 CP(*ki, *ki32, ki_rqindex);
1473 CP(*ki, *ki32, ki_oncpu);
1474 CP(*ki, *ki32, ki_lastcpu);
1475
1476 /* XXX TODO: wrap cpu value as appropriate */
1477 CP(*ki, *ki32, ki_oncpu_old);
1478 CP(*ki, *ki32, ki_lastcpu_old);
1479
1480 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1481 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1482 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1483 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1484 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1485 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1486 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1487 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1488 CP(*ki, *ki32, ki_tracer);
1489 CP(*ki, *ki32, ki_flag2);
1490 CP(*ki, *ki32, ki_fibnum);
1491 CP(*ki, *ki32, ki_cr_flags);
1492 CP(*ki, *ki32, ki_jid);
1493 CP(*ki, *ki32, ki_numthreads);
1494 CP(*ki, *ki32, ki_tid);
1495 CP(*ki, *ki32, ki_pri);
1496 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1497 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1498 PTRTRIM_CP(*ki, *ki32, ki_pcb);
1499 PTRTRIM_CP(*ki, *ki32, ki_kstack);
1500 PTRTRIM_CP(*ki, *ki32, ki_udata);
1501 PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1502 CP(*ki, *ki32, ki_sflag);
1503 CP(*ki, *ki32, ki_tdflags);
1504 }
1505 #endif
1506
1507 static ssize_t
kern_proc_out_size(struct proc * p,int flags)1508 kern_proc_out_size(struct proc *p, int flags)
1509 {
1510 ssize_t size = 0;
1511
1512 PROC_LOCK_ASSERT(p, MA_OWNED);
1513
1514 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1515 #ifdef COMPAT_FREEBSD32
1516 if ((flags & KERN_PROC_MASK32) != 0) {
1517 size += sizeof(struct kinfo_proc32);
1518 } else
1519 #endif
1520 size += sizeof(struct kinfo_proc);
1521 } else {
1522 #ifdef COMPAT_FREEBSD32
1523 if ((flags & KERN_PROC_MASK32) != 0)
1524 size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1525 else
1526 #endif
1527 size += sizeof(struct kinfo_proc) * p->p_numthreads;
1528 }
1529 PROC_UNLOCK(p);
1530 return (size);
1531 }
1532
1533 int
kern_proc_out(struct proc * p,struct sbuf * sb,int flags)1534 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1535 {
1536 struct thread *td;
1537 struct kinfo_proc ki;
1538 #ifdef COMPAT_FREEBSD32
1539 struct kinfo_proc32 ki32;
1540 #endif
1541 int error;
1542
1543 PROC_LOCK_ASSERT(p, MA_OWNED);
1544 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1545
1546 error = 0;
1547 fill_kinfo_proc(p, &ki);
1548 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1549 #ifdef COMPAT_FREEBSD32
1550 if ((flags & KERN_PROC_MASK32) != 0) {
1551 freebsd32_kinfo_proc_out(&ki, &ki32);
1552 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1553 error = ENOMEM;
1554 } else
1555 #endif
1556 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1557 error = ENOMEM;
1558 } else {
1559 FOREACH_THREAD_IN_PROC(p, td) {
1560 fill_kinfo_thread(td, &ki, 1);
1561 #ifdef COMPAT_FREEBSD32
1562 if ((flags & KERN_PROC_MASK32) != 0) {
1563 freebsd32_kinfo_proc_out(&ki, &ki32);
1564 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1565 error = ENOMEM;
1566 } else
1567 #endif
1568 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1569 error = ENOMEM;
1570 if (error != 0)
1571 break;
1572 }
1573 }
1574 PROC_UNLOCK(p);
1575 return (error);
1576 }
1577
1578 static int
sysctl_out_proc(struct proc * p,struct sysctl_req * req,int flags)1579 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1580 {
1581 struct sbuf sb;
1582 struct kinfo_proc ki;
1583 int error, error2;
1584
1585 if (req->oldptr == NULL)
1586 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1587
1588 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1589 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1590 error = kern_proc_out(p, &sb, flags);
1591 error2 = sbuf_finish(&sb);
1592 sbuf_delete(&sb);
1593 if (error != 0)
1594 return (error);
1595 else if (error2 != 0)
1596 return (error2);
1597 return (0);
1598 }
1599
1600 int
proc_iterate(int (* cb)(struct proc *,void *),void * cbarg)1601 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1602 {
1603 struct proc *p;
1604 int error, i, j;
1605
1606 for (i = 0; i < pidhashlock + 1; i++) {
1607 sx_slock(&proctree_lock);
1608 sx_slock(&pidhashtbl_lock[i]);
1609 for (j = i; j <= pidhash; j += pidhashlock + 1) {
1610 LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1611 if (p->p_state == PRS_NEW)
1612 continue;
1613 error = cb(p, cbarg);
1614 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1615 if (error != 0) {
1616 sx_sunlock(&pidhashtbl_lock[i]);
1617 sx_sunlock(&proctree_lock);
1618 return (error);
1619 }
1620 }
1621 }
1622 sx_sunlock(&pidhashtbl_lock[i]);
1623 sx_sunlock(&proctree_lock);
1624 }
1625 return (0);
1626 }
1627
1628 struct kern_proc_out_args {
1629 struct sysctl_req *req;
1630 int flags;
1631 int oid_number;
1632 int *name;
1633 };
1634
1635 static int
sysctl_kern_proc_iterate(struct proc * p,void * origarg)1636 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1637 {
1638 struct kern_proc_out_args *arg = origarg;
1639 int *name = arg->name;
1640 int oid_number = arg->oid_number;
1641 int flags = arg->flags;
1642 struct sysctl_req *req = arg->req;
1643 int error = 0;
1644
1645 PROC_LOCK(p);
1646
1647 KASSERT(p->p_ucred != NULL,
1648 ("process credential is NULL for non-NEW proc"));
1649 /*
1650 * Show a user only appropriate processes.
1651 */
1652 if (p_cansee(curthread, p))
1653 goto skip;
1654 /*
1655 * TODO - make more efficient (see notes below).
1656 * do by session.
1657 */
1658 switch (oid_number) {
1659 case KERN_PROC_GID:
1660 if (p->p_ucred->cr_gid != (gid_t)name[0])
1661 goto skip;
1662 break;
1663
1664 case KERN_PROC_PGRP:
1665 /* could do this by traversing pgrp */
1666 if (p->p_pgrp == NULL ||
1667 p->p_pgrp->pg_id != (pid_t)name[0])
1668 goto skip;
1669 break;
1670
1671 case KERN_PROC_RGID:
1672 if (p->p_ucred->cr_rgid != (gid_t)name[0])
1673 goto skip;
1674 break;
1675
1676 case KERN_PROC_SESSION:
1677 if (p->p_session == NULL ||
1678 p->p_session->s_sid != (pid_t)name[0])
1679 goto skip;
1680 break;
1681
1682 case KERN_PROC_TTY:
1683 if ((p->p_flag & P_CONTROLT) == 0 ||
1684 p->p_session == NULL)
1685 goto skip;
1686 /* XXX proctree_lock */
1687 SESS_LOCK(p->p_session);
1688 if (p->p_session->s_ttyp == NULL ||
1689 tty_udev(p->p_session->s_ttyp) !=
1690 (dev_t)name[0]) {
1691 SESS_UNLOCK(p->p_session);
1692 goto skip;
1693 }
1694 SESS_UNLOCK(p->p_session);
1695 break;
1696
1697 case KERN_PROC_UID:
1698 if (p->p_ucred->cr_uid != (uid_t)name[0])
1699 goto skip;
1700 break;
1701
1702 case KERN_PROC_RUID:
1703 if (p->p_ucred->cr_ruid != (uid_t)name[0])
1704 goto skip;
1705 break;
1706
1707 case KERN_PROC_PROC:
1708 break;
1709
1710 default:
1711 break;
1712 }
1713 error = sysctl_out_proc(p, req, flags);
1714 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1715 return (error);
1716 skip:
1717 PROC_UNLOCK(p);
1718 return (0);
1719 }
1720
1721 static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)1722 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1723 {
1724 struct kern_proc_out_args iterarg;
1725 int *name = (int *)arg1;
1726 u_int namelen = arg2;
1727 struct proc *p;
1728 int flags, oid_number;
1729 int error = 0;
1730
1731 oid_number = oidp->oid_number;
1732 if (oid_number != KERN_PROC_ALL &&
1733 (oid_number & KERN_PROC_INC_THREAD) == 0)
1734 flags = KERN_PROC_NOTHREADS;
1735 else {
1736 flags = 0;
1737 oid_number &= ~KERN_PROC_INC_THREAD;
1738 }
1739 #ifdef COMPAT_FREEBSD32
1740 if (req->flags & SCTL_MASK32)
1741 flags |= KERN_PROC_MASK32;
1742 #endif
1743 if (oid_number == KERN_PROC_PID) {
1744 if (namelen != 1)
1745 return (EINVAL);
1746 error = sysctl_wire_old_buffer(req, 0);
1747 if (error)
1748 return (error);
1749 sx_slock(&proctree_lock);
1750 error = pget((pid_t)name[0], PGET_CANSEE, &p);
1751 if (error == 0)
1752 error = sysctl_out_proc(p, req, flags);
1753 sx_sunlock(&proctree_lock);
1754 return (error);
1755 }
1756
1757 switch (oid_number) {
1758 case KERN_PROC_ALL:
1759 if (namelen != 0)
1760 return (EINVAL);
1761 break;
1762 case KERN_PROC_PROC:
1763 if (namelen != 0 && namelen != 1)
1764 return (EINVAL);
1765 break;
1766 default:
1767 if (namelen != 1)
1768 return (EINVAL);
1769 break;
1770 }
1771
1772 if (req->oldptr == NULL) {
1773 /* overestimate by 5 procs */
1774 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1775 if (error)
1776 return (error);
1777 } else {
1778 error = sysctl_wire_old_buffer(req, 0);
1779 if (error != 0)
1780 return (error);
1781 }
1782 iterarg.flags = flags;
1783 iterarg.oid_number = oid_number;
1784 iterarg.req = req;
1785 iterarg.name = name;
1786 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1787 return (error);
1788 }
1789
1790 struct pargs *
pargs_alloc(int len)1791 pargs_alloc(int len)
1792 {
1793 struct pargs *pa;
1794
1795 pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1796 M_WAITOK);
1797 refcount_init(&pa->ar_ref, 1);
1798 pa->ar_length = len;
1799 return (pa);
1800 }
1801
1802 static void
pargs_free(struct pargs * pa)1803 pargs_free(struct pargs *pa)
1804 {
1805
1806 free(pa, M_PARGS);
1807 }
1808
1809 void
pargs_hold(struct pargs * pa)1810 pargs_hold(struct pargs *pa)
1811 {
1812
1813 if (pa == NULL)
1814 return;
1815 refcount_acquire(&pa->ar_ref);
1816 }
1817
1818 void
pargs_drop(struct pargs * pa)1819 pargs_drop(struct pargs *pa)
1820 {
1821
1822 if (pa == NULL)
1823 return;
1824 if (refcount_release(&pa->ar_ref))
1825 pargs_free(pa);
1826 }
1827
1828 static int
proc_read_string(struct thread * td,struct proc * p,const char * sptr,char * buf,size_t len)1829 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1830 size_t len)
1831 {
1832 ssize_t n;
1833
1834 /*
1835 * This may return a short read if the string is shorter than the chunk
1836 * and is aligned at the end of the page, and the following page is not
1837 * mapped.
1838 */
1839 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1840 if (n <= 0)
1841 return (ENOMEM);
1842 return (0);
1843 }
1844
1845 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
1846
1847 enum proc_vector_type {
1848 PROC_ARG,
1849 PROC_ENV,
1850 PROC_AUX,
1851 };
1852
1853 #ifdef COMPAT_FREEBSD32
1854 static int
get_proc_vector32(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1855 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1856 size_t *vsizep, enum proc_vector_type type)
1857 {
1858 struct freebsd32_ps_strings pss;
1859 Elf32_Auxinfo aux;
1860 vm_offset_t vptr, ptr;
1861 uint32_t *proc_vector32;
1862 char **proc_vector;
1863 size_t vsize, size;
1864 int i, error;
1865
1866 error = 0;
1867 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1868 sizeof(pss))
1869 return (ENOMEM);
1870 switch (type) {
1871 case PROC_ARG:
1872 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1873 vsize = pss.ps_nargvstr;
1874 if (vsize > ARG_MAX)
1875 return (ENOEXEC);
1876 size = vsize * sizeof(int32_t);
1877 break;
1878 case PROC_ENV:
1879 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1880 vsize = pss.ps_nenvstr;
1881 if (vsize > ARG_MAX)
1882 return (ENOEXEC);
1883 size = vsize * sizeof(int32_t);
1884 break;
1885 case PROC_AUX:
1886 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1887 (pss.ps_nenvstr + 1) * sizeof(int32_t);
1888 if (vptr % 4 != 0)
1889 return (ENOEXEC);
1890 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1891 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1892 sizeof(aux))
1893 return (ENOMEM);
1894 if (aux.a_type == AT_NULL)
1895 break;
1896 ptr += sizeof(aux);
1897 }
1898 if (aux.a_type != AT_NULL)
1899 return (ENOEXEC);
1900 vsize = i + 1;
1901 size = vsize * sizeof(aux);
1902 break;
1903 default:
1904 KASSERT(0, ("Wrong proc vector type: %d", type));
1905 return (EINVAL);
1906 }
1907 proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1908 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1909 error = ENOMEM;
1910 goto done;
1911 }
1912 if (type == PROC_AUX) {
1913 *proc_vectorp = (char **)proc_vector32;
1914 *vsizep = vsize;
1915 return (0);
1916 }
1917 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1918 for (i = 0; i < (int)vsize; i++)
1919 proc_vector[i] = PTRIN(proc_vector32[i]);
1920 *proc_vectorp = proc_vector;
1921 *vsizep = vsize;
1922 done:
1923 free(proc_vector32, M_TEMP);
1924 return (error);
1925 }
1926 #endif
1927
1928 static int
get_proc_vector(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1929 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1930 size_t *vsizep, enum proc_vector_type type)
1931 {
1932 struct ps_strings pss;
1933 Elf_Auxinfo aux;
1934 vm_offset_t vptr, ptr;
1935 char **proc_vector;
1936 size_t vsize, size;
1937 int i;
1938
1939 #ifdef COMPAT_FREEBSD32
1940 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1941 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1942 #endif
1943 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1944 sizeof(pss))
1945 return (ENOMEM);
1946 switch (type) {
1947 case PROC_ARG:
1948 vptr = (vm_offset_t)pss.ps_argvstr;
1949 vsize = pss.ps_nargvstr;
1950 if (vsize > ARG_MAX)
1951 return (ENOEXEC);
1952 size = vsize * sizeof(char *);
1953 break;
1954 case PROC_ENV:
1955 vptr = (vm_offset_t)pss.ps_envstr;
1956 vsize = pss.ps_nenvstr;
1957 if (vsize > ARG_MAX)
1958 return (ENOEXEC);
1959 size = vsize * sizeof(char *);
1960 break;
1961 case PROC_AUX:
1962 /*
1963 * The aux array is just above env array on the stack. Check
1964 * that the address is naturally aligned.
1965 */
1966 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1967 * sizeof(char *);
1968 #if __ELF_WORD_SIZE == 64
1969 if (vptr % sizeof(uint64_t) != 0)
1970 #else
1971 if (vptr % sizeof(uint32_t) != 0)
1972 #endif
1973 return (ENOEXEC);
1974 /*
1975 * We count the array size reading the aux vectors from the
1976 * stack until AT_NULL vector is returned. So (to keep the code
1977 * simple) we read the process stack twice: the first time here
1978 * to find the size and the second time when copying the vectors
1979 * to the allocated proc_vector.
1980 */
1981 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1982 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1983 sizeof(aux))
1984 return (ENOMEM);
1985 if (aux.a_type == AT_NULL)
1986 break;
1987 ptr += sizeof(aux);
1988 }
1989 /*
1990 * If the PROC_AUXV_MAX entries are iterated over, and we have
1991 * not reached AT_NULL, it is most likely we are reading wrong
1992 * data: either the process doesn't have auxv array or data has
1993 * been modified. Return the error in this case.
1994 */
1995 if (aux.a_type != AT_NULL)
1996 return (ENOEXEC);
1997 vsize = i + 1;
1998 size = vsize * sizeof(aux);
1999 break;
2000 default:
2001 KASSERT(0, ("Wrong proc vector type: %d", type));
2002 return (EINVAL); /* In case we are built without INVARIANTS. */
2003 }
2004 proc_vector = malloc(size, M_TEMP, M_WAITOK);
2005 if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2006 free(proc_vector, M_TEMP);
2007 return (ENOMEM);
2008 }
2009 *proc_vectorp = proc_vector;
2010 *vsizep = vsize;
2011
2012 return (0);
2013 }
2014
2015 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
2016
2017 static int
get_ps_strings(struct thread * td,struct proc * p,struct sbuf * sb,enum proc_vector_type type)2018 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2019 enum proc_vector_type type)
2020 {
2021 size_t done, len, nchr, vsize;
2022 int error, i;
2023 char **proc_vector, *sptr;
2024 char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2025
2026 PROC_ASSERT_HELD(p);
2027
2028 /*
2029 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2030 */
2031 nchr = 2 * (PATH_MAX + ARG_MAX);
2032
2033 error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2034 if (error != 0)
2035 return (error);
2036 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2037 /*
2038 * The program may have scribbled into its argv array, e.g. to
2039 * remove some arguments. If that has happened, break out
2040 * before trying to read from NULL.
2041 */
2042 if (proc_vector[i] == NULL)
2043 break;
2044 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2045 error = proc_read_string(td, p, sptr, pss_string,
2046 sizeof(pss_string));
2047 if (error != 0)
2048 goto done;
2049 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2050 if (done + len >= nchr)
2051 len = nchr - done - 1;
2052 sbuf_bcat(sb, pss_string, len);
2053 if (len != GET_PS_STRINGS_CHUNK_SZ)
2054 break;
2055 done += GET_PS_STRINGS_CHUNK_SZ;
2056 }
2057 sbuf_bcat(sb, "", 1);
2058 done += len + 1;
2059 }
2060 done:
2061 free(proc_vector, M_TEMP);
2062 return (error);
2063 }
2064
2065 int
proc_getargv(struct thread * td,struct proc * p,struct sbuf * sb)2066 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2067 {
2068
2069 return (get_ps_strings(curthread, p, sb, PROC_ARG));
2070 }
2071
2072 int
proc_getenvv(struct thread * td,struct proc * p,struct sbuf * sb)2073 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2074 {
2075
2076 return (get_ps_strings(curthread, p, sb, PROC_ENV));
2077 }
2078
2079 int
proc_getauxv(struct thread * td,struct proc * p,struct sbuf * sb)2080 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2081 {
2082 size_t vsize, size;
2083 char **auxv;
2084 int error;
2085
2086 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2087 if (error == 0) {
2088 #ifdef COMPAT_FREEBSD32
2089 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2090 size = vsize * sizeof(Elf32_Auxinfo);
2091 else
2092 #endif
2093 size = vsize * sizeof(Elf_Auxinfo);
2094 if (sbuf_bcat(sb, auxv, size) != 0)
2095 error = ENOMEM;
2096 free(auxv, M_TEMP);
2097 }
2098 return (error);
2099 }
2100
2101 /*
2102 * This sysctl allows a process to retrieve the argument list or process
2103 * title for another process without groping around in the address space
2104 * of the other process. It also allow a process to set its own "process
2105 * title to a string of its own choice.
2106 */
2107 static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)2108 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2109 {
2110 int *name = (int *)arg1;
2111 u_int namelen = arg2;
2112 struct pargs *newpa, *pa;
2113 struct proc *p;
2114 struct sbuf sb;
2115 int flags, error = 0, error2;
2116 pid_t pid;
2117
2118 if (namelen != 1)
2119 return (EINVAL);
2120
2121 p = curproc;
2122 pid = (pid_t)name[0];
2123 if (pid == -1) {
2124 pid = p->p_pid;
2125 }
2126
2127 /*
2128 * If the query is for this process and it is single-threaded, there
2129 * is nobody to modify pargs, thus we can just read.
2130 */
2131 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2132 (pa = p->p_args) != NULL)
2133 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2134
2135 flags = PGET_CANSEE;
2136 if (req->newptr != NULL)
2137 flags |= PGET_ISCURRENT;
2138 error = pget(pid, flags, &p);
2139 if (error)
2140 return (error);
2141
2142 pa = p->p_args;
2143 if (pa != NULL) {
2144 pargs_hold(pa);
2145 PROC_UNLOCK(p);
2146 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2147 pargs_drop(pa);
2148 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2149 _PHOLD(p);
2150 PROC_UNLOCK(p);
2151 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2152 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2153 error = proc_getargv(curthread, p, &sb);
2154 error2 = sbuf_finish(&sb);
2155 PRELE(p);
2156 sbuf_delete(&sb);
2157 if (error == 0 && error2 != 0)
2158 error = error2;
2159 } else {
2160 PROC_UNLOCK(p);
2161 }
2162 if (error != 0 || req->newptr == NULL)
2163 return (error);
2164
2165 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2166 return (ENOMEM);
2167
2168 if (req->newlen == 0) {
2169 /*
2170 * Clear the argument pointer, so that we'll fetch arguments
2171 * with proc_getargv() until further notice.
2172 */
2173 newpa = NULL;
2174 } else {
2175 newpa = pargs_alloc(req->newlen);
2176 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2177 if (error != 0) {
2178 pargs_free(newpa);
2179 return (error);
2180 }
2181 }
2182 PROC_LOCK(p);
2183 pa = p->p_args;
2184 p->p_args = newpa;
2185 PROC_UNLOCK(p);
2186 pargs_drop(pa);
2187 return (0);
2188 }
2189
2190 /*
2191 * This sysctl allows a process to retrieve environment of another process.
2192 */
2193 static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)2194 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2195 {
2196 int *name = (int *)arg1;
2197 u_int namelen = arg2;
2198 struct proc *p;
2199 struct sbuf sb;
2200 int error, error2;
2201
2202 if (namelen != 1)
2203 return (EINVAL);
2204
2205 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2206 if (error != 0)
2207 return (error);
2208 if ((p->p_flag & P_SYSTEM) != 0) {
2209 PRELE(p);
2210 return (0);
2211 }
2212
2213 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2214 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2215 error = proc_getenvv(curthread, p, &sb);
2216 error2 = sbuf_finish(&sb);
2217 PRELE(p);
2218 sbuf_delete(&sb);
2219 return (error != 0 ? error : error2);
2220 }
2221
2222 /*
2223 * This sysctl allows a process to retrieve ELF auxiliary vector of
2224 * another process.
2225 */
2226 static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)2227 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2228 {
2229 int *name = (int *)arg1;
2230 u_int namelen = arg2;
2231 struct proc *p;
2232 struct sbuf sb;
2233 int error, error2;
2234
2235 if (namelen != 1)
2236 return (EINVAL);
2237
2238 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2239 if (error != 0)
2240 return (error);
2241 if ((p->p_flag & P_SYSTEM) != 0) {
2242 PRELE(p);
2243 return (0);
2244 }
2245 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2246 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2247 error = proc_getauxv(curthread, p, &sb);
2248 error2 = sbuf_finish(&sb);
2249 PRELE(p);
2250 sbuf_delete(&sb);
2251 return (error != 0 ? error : error2);
2252 }
2253
2254 /*
2255 * Look up the canonical executable path running in the specified process.
2256 * It tries to return the same hardlink name as was used for execve(2).
2257 * This allows the programs that modify their behavior based on their progname,
2258 * to operate correctly.
2259 *
2260 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2261 * calling conventions.
2262 * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2263 * allocated and freed by caller.
2264 * freebuf should be freed by caller, from the M_TEMP malloc type.
2265 */
2266 int
proc_get_binpath(struct proc * p,char * binname,char ** retbuf,char ** freebuf)2267 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2268 char **freebuf)
2269 {
2270 struct nameidata nd;
2271 struct vnode *vp, *dvp;
2272 size_t freepath_size;
2273 int error;
2274 bool do_fullpath;
2275
2276 PROC_LOCK_ASSERT(p, MA_OWNED);
2277
2278 vp = p->p_textvp;
2279 if (vp == NULL) {
2280 PROC_UNLOCK(p);
2281 *retbuf = "";
2282 *freebuf = NULL;
2283 return (0);
2284 }
2285 vref(vp);
2286 dvp = p->p_textdvp;
2287 if (dvp != NULL)
2288 vref(dvp);
2289 if (p->p_binname != NULL)
2290 strlcpy(binname, p->p_binname, MAXPATHLEN);
2291 PROC_UNLOCK(p);
2292
2293 do_fullpath = true;
2294 *freebuf = NULL;
2295 if (dvp != NULL && binname[0] != '\0') {
2296 freepath_size = MAXPATHLEN;
2297 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2298 retbuf, freebuf, &freepath_size) == 0) {
2299 /*
2300 * Recheck the looked up path. The binary
2301 * might have been renamed or replaced, in
2302 * which case we should not report old name.
2303 */
2304 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2305 error = namei(&nd);
2306 if (error == 0) {
2307 if (nd.ni_vp == vp)
2308 do_fullpath = false;
2309 vrele(nd.ni_vp);
2310 NDFREE_PNBUF(&nd);
2311 }
2312 }
2313 }
2314 if (do_fullpath) {
2315 free(*freebuf, M_TEMP);
2316 *freebuf = NULL;
2317 error = vn_fullpath(vp, retbuf, freebuf);
2318 }
2319 vrele(vp);
2320 if (dvp != NULL)
2321 vrele(dvp);
2322 return (error);
2323 }
2324
2325 /*
2326 * This sysctl allows a process to retrieve the path of the executable for
2327 * itself or another process.
2328 */
2329 static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)2330 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2331 {
2332 pid_t *pidp = (pid_t *)arg1;
2333 unsigned int arglen = arg2;
2334 struct proc *p;
2335 char *retbuf, *freebuf, *binname;
2336 int error;
2337
2338 if (arglen != 1)
2339 return (EINVAL);
2340 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2341 binname[0] = '\0';
2342 if (*pidp == -1) { /* -1 means this process */
2343 error = 0;
2344 p = req->td->td_proc;
2345 PROC_LOCK(p);
2346 } else {
2347 error = pget(*pidp, PGET_CANSEE, &p);
2348 }
2349
2350 if (error == 0)
2351 error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2352 free(binname, M_TEMP);
2353 if (error != 0)
2354 return (error);
2355 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2356 free(freebuf, M_TEMP);
2357 return (error);
2358 }
2359
2360 static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)2361 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2362 {
2363 struct proc *p;
2364 char *sv_name;
2365 int *name;
2366 int namelen;
2367 int error;
2368
2369 namelen = arg2;
2370 if (namelen != 1)
2371 return (EINVAL);
2372
2373 name = (int *)arg1;
2374 error = pget((pid_t)name[0], PGET_CANSEE, &p);
2375 if (error != 0)
2376 return (error);
2377 sv_name = p->p_sysent->sv_name;
2378 PROC_UNLOCK(p);
2379 return (sysctl_handle_string(oidp, sv_name, 0, req));
2380 }
2381
2382 #ifdef KINFO_OVMENTRY_SIZE
2383 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2384 #endif
2385
2386 #ifdef COMPAT_FREEBSD7
2387 static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)2388 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2389 {
2390 vm_map_entry_t entry, tmp_entry;
2391 unsigned int last_timestamp, namelen;
2392 char *fullpath, *freepath;
2393 struct kinfo_ovmentry *kve;
2394 struct vattr va;
2395 struct ucred *cred;
2396 int error, *name;
2397 struct vnode *vp;
2398 struct proc *p;
2399 vm_map_t map;
2400 struct vmspace *vm;
2401
2402 namelen = arg2;
2403 if (namelen != 1)
2404 return (EINVAL);
2405
2406 name = (int *)arg1;
2407 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2408 if (error != 0)
2409 return (error);
2410 vm = vmspace_acquire_ref(p);
2411 if (vm == NULL) {
2412 PRELE(p);
2413 return (ESRCH);
2414 }
2415 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2416
2417 map = &vm->vm_map;
2418 vm_map_lock_read(map);
2419 VM_MAP_ENTRY_FOREACH(entry, map) {
2420 vm_object_t obj, tobj, lobj;
2421 vm_offset_t addr;
2422
2423 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2424 continue;
2425
2426 bzero(kve, sizeof(*kve));
2427 kve->kve_structsize = sizeof(*kve);
2428
2429 kve->kve_private_resident = 0;
2430 obj = entry->object.vm_object;
2431 if (obj != NULL) {
2432 VM_OBJECT_RLOCK(obj);
2433 if (obj->shadow_count == 1)
2434 kve->kve_private_resident =
2435 obj->resident_page_count;
2436 }
2437 kve->kve_resident = 0;
2438 addr = entry->start;
2439 while (addr < entry->end) {
2440 if (pmap_extract(map->pmap, addr))
2441 kve->kve_resident++;
2442 addr += PAGE_SIZE;
2443 }
2444
2445 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2446 if (tobj != obj) {
2447 VM_OBJECT_RLOCK(tobj);
2448 kve->kve_offset += tobj->backing_object_offset;
2449 }
2450 if (lobj != obj)
2451 VM_OBJECT_RUNLOCK(lobj);
2452 lobj = tobj;
2453 }
2454
2455 kve->kve_start = (void*)entry->start;
2456 kve->kve_end = (void*)entry->end;
2457 kve->kve_offset += (off_t)entry->offset;
2458
2459 if (entry->protection & VM_PROT_READ)
2460 kve->kve_protection |= KVME_PROT_READ;
2461 if (entry->protection & VM_PROT_WRITE)
2462 kve->kve_protection |= KVME_PROT_WRITE;
2463 if (entry->protection & VM_PROT_EXECUTE)
2464 kve->kve_protection |= KVME_PROT_EXEC;
2465
2466 if (entry->eflags & MAP_ENTRY_COW)
2467 kve->kve_flags |= KVME_FLAG_COW;
2468 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2469 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2470 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2471 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2472
2473 last_timestamp = map->timestamp;
2474 vm_map_unlock_read(map);
2475
2476 kve->kve_fileid = 0;
2477 kve->kve_fsid = 0;
2478 freepath = NULL;
2479 fullpath = "";
2480 if (lobj) {
2481 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2482 if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2483 kve->kve_type = KVME_TYPE_UNKNOWN;
2484 if (vp != NULL)
2485 vref(vp);
2486 if (lobj != obj)
2487 VM_OBJECT_RUNLOCK(lobj);
2488
2489 kve->kve_ref_count = obj->ref_count;
2490 kve->kve_shadow_count = obj->shadow_count;
2491 VM_OBJECT_RUNLOCK(obj);
2492 if (vp != NULL) {
2493 vn_fullpath(vp, &fullpath, &freepath);
2494 cred = curthread->td_ucred;
2495 vn_lock(vp, LK_SHARED | LK_RETRY);
2496 if (VOP_GETATTR(vp, &va, cred) == 0) {
2497 kve->kve_fileid = va.va_fileid;
2498 /* truncate */
2499 kve->kve_fsid = va.va_fsid;
2500 }
2501 vput(vp);
2502 }
2503 } else {
2504 kve->kve_type = KVME_TYPE_NONE;
2505 kve->kve_ref_count = 0;
2506 kve->kve_shadow_count = 0;
2507 }
2508
2509 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2510 if (freepath != NULL)
2511 free(freepath, M_TEMP);
2512
2513 error = SYSCTL_OUT(req, kve, sizeof(*kve));
2514 vm_map_lock_read(map);
2515 if (error)
2516 break;
2517 if (last_timestamp != map->timestamp) {
2518 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2519 entry = tmp_entry;
2520 }
2521 }
2522 vm_map_unlock_read(map);
2523 vmspace_free(vm);
2524 PRELE(p);
2525 free(kve, M_TEMP);
2526 return (error);
2527 }
2528 #endif /* COMPAT_FREEBSD7 */
2529
2530 #ifdef KINFO_VMENTRY_SIZE
2531 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2532 #endif
2533
2534 void
kern_proc_vmmap_resident(vm_map_t map,vm_map_entry_t entry,int * resident_count,bool * super)2535 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2536 int *resident_count, bool *super)
2537 {
2538 vm_object_t obj, tobj;
2539 vm_page_t m, m_adv;
2540 vm_offset_t addr;
2541 vm_paddr_t pa;
2542 vm_pindex_t pi, pi_adv, pindex;
2543 int incore;
2544
2545 *super = false;
2546 *resident_count = 0;
2547 if (vmmap_skip_res_cnt)
2548 return;
2549
2550 pa = 0;
2551 obj = entry->object.vm_object;
2552 addr = entry->start;
2553 m_adv = NULL;
2554 pi = OFF_TO_IDX(entry->offset);
2555 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2556 if (m_adv != NULL) {
2557 m = m_adv;
2558 } else {
2559 pi_adv = atop(entry->end - addr);
2560 pindex = pi;
2561 for (tobj = obj;; tobj = tobj->backing_object) {
2562 m = vm_page_find_least(tobj, pindex);
2563 if (m != NULL) {
2564 if (m->pindex == pindex)
2565 break;
2566 if (pi_adv > m->pindex - pindex) {
2567 pi_adv = m->pindex - pindex;
2568 m_adv = m;
2569 }
2570 }
2571 if (tobj->backing_object == NULL)
2572 goto next;
2573 pindex += OFF_TO_IDX(tobj->
2574 backing_object_offset);
2575 }
2576 }
2577 m_adv = NULL;
2578 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2579 (addr & (pagesizes[1] - 1)) == 0 && (incore =
2580 pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2581 *super = true;
2582 /*
2583 * The virtual page might be smaller than the physical
2584 * page, so we use the page size reported by the pmap
2585 * rather than m->psind.
2586 */
2587 pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]);
2588 } else {
2589 /*
2590 * We do not test the found page on validity.
2591 * Either the page is busy and being paged in,
2592 * or it was invalidated. The first case
2593 * should be counted as resident, the second
2594 * is not so clear; we do account both.
2595 */
2596 pi_adv = 1;
2597 }
2598 *resident_count += pi_adv;
2599 next:;
2600 }
2601 }
2602
2603 /*
2604 * Must be called with the process locked and will return unlocked.
2605 */
2606 int
kern_proc_vmmap_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)2607 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2608 {
2609 vm_map_entry_t entry, tmp_entry;
2610 struct vattr va;
2611 vm_map_t map;
2612 vm_object_t lobj, nobj, obj, tobj;
2613 char *fullpath, *freepath;
2614 struct kinfo_vmentry *kve;
2615 struct ucred *cred;
2616 struct vnode *vp;
2617 struct vmspace *vm;
2618 struct cdev *cdev;
2619 struct cdevsw *csw;
2620 vm_offset_t addr;
2621 unsigned int last_timestamp;
2622 int error, ref;
2623 key_t key;
2624 unsigned short seq;
2625 bool guard, super;
2626
2627 PROC_LOCK_ASSERT(p, MA_OWNED);
2628
2629 _PHOLD(p);
2630 PROC_UNLOCK(p);
2631 vm = vmspace_acquire_ref(p);
2632 if (vm == NULL) {
2633 PRELE(p);
2634 return (ESRCH);
2635 }
2636 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2637
2638 error = 0;
2639 map = &vm->vm_map;
2640 vm_map_lock_read(map);
2641 VM_MAP_ENTRY_FOREACH(entry, map) {
2642 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2643 continue;
2644
2645 addr = entry->end;
2646 bzero(kve, sizeof(*kve));
2647 obj = entry->object.vm_object;
2648 if (obj != NULL) {
2649 if ((obj->flags & OBJ_ANON) != 0)
2650 kve->kve_obj = (uintptr_t)obj;
2651
2652 for (tobj = obj; tobj != NULL;
2653 tobj = tobj->backing_object) {
2654 VM_OBJECT_RLOCK(tobj);
2655 kve->kve_offset += tobj->backing_object_offset;
2656 lobj = tobj;
2657 }
2658 if (obj->backing_object == NULL)
2659 kve->kve_private_resident =
2660 obj->resident_page_count;
2661 kern_proc_vmmap_resident(map, entry,
2662 &kve->kve_resident, &super);
2663 if (super)
2664 kve->kve_flags |= KVME_FLAG_SUPER;
2665 for (tobj = obj; tobj != NULL; tobj = nobj) {
2666 nobj = tobj->backing_object;
2667 if (tobj != obj && tobj != lobj)
2668 VM_OBJECT_RUNLOCK(tobj);
2669 }
2670 } else {
2671 lobj = NULL;
2672 }
2673
2674 kve->kve_start = entry->start;
2675 kve->kve_end = entry->end;
2676 kve->kve_offset += entry->offset;
2677
2678 if (entry->protection & VM_PROT_READ)
2679 kve->kve_protection |= KVME_PROT_READ;
2680 if (entry->protection & VM_PROT_WRITE)
2681 kve->kve_protection |= KVME_PROT_WRITE;
2682 if (entry->protection & VM_PROT_EXECUTE)
2683 kve->kve_protection |= KVME_PROT_EXEC;
2684 if (entry->max_protection & VM_PROT_READ)
2685 kve->kve_protection |= KVME_MAX_PROT_READ;
2686 if (entry->max_protection & VM_PROT_WRITE)
2687 kve->kve_protection |= KVME_MAX_PROT_WRITE;
2688 if (entry->max_protection & VM_PROT_EXECUTE)
2689 kve->kve_protection |= KVME_MAX_PROT_EXEC;
2690
2691 if (entry->eflags & MAP_ENTRY_COW)
2692 kve->kve_flags |= KVME_FLAG_COW;
2693 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2694 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2695 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2696 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2697 if (entry->eflags & MAP_ENTRY_GROWS_UP)
2698 kve->kve_flags |= KVME_FLAG_GROWS_UP;
2699 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2700 kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2701 if (entry->eflags & MAP_ENTRY_USER_WIRED)
2702 kve->kve_flags |= KVME_FLAG_USER_WIRED;
2703
2704 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2705
2706 last_timestamp = map->timestamp;
2707 vm_map_unlock_read(map);
2708
2709 freepath = NULL;
2710 fullpath = "";
2711 if (lobj != NULL) {
2712 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2713 if (vp != NULL)
2714 vref(vp);
2715 if (lobj != obj)
2716 VM_OBJECT_RUNLOCK(lobj);
2717
2718 kve->kve_ref_count = obj->ref_count;
2719 kve->kve_shadow_count = obj->shadow_count;
2720 if ((obj->type == OBJT_DEVICE ||
2721 obj->type == OBJT_MGTDEVICE) &&
2722 (obj->flags & OBJ_CDEVH) != 0) {
2723 cdev = obj->un_pager.devp.handle;
2724 if (cdev != NULL) {
2725 csw = dev_refthread(cdev, &ref);
2726 if (csw != NULL) {
2727 strlcpy(kve->kve_path,
2728 cdev->si_name, sizeof(
2729 kve->kve_path));
2730 dev_relthread(cdev, ref);
2731 }
2732 }
2733 }
2734 VM_OBJECT_RUNLOCK(obj);
2735 if ((lobj->flags & OBJ_SYSVSHM) != 0) {
2736 kve->kve_flags |= KVME_FLAG_SYSVSHM;
2737 shmobjinfo(lobj, &key, &seq);
2738 kve->kve_vn_fileid = key;
2739 kve->kve_vn_fsid_freebsd11 = seq;
2740 }
2741 if ((lobj->flags & OBJ_POSIXSHM) != 0) {
2742 kve->kve_flags |= KVME_FLAG_POSIXSHM;
2743 shm_get_path(lobj, kve->kve_path,
2744 sizeof(kve->kve_path));
2745 }
2746 if (vp != NULL) {
2747 vn_fullpath(vp, &fullpath, &freepath);
2748 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2749 cred = curthread->td_ucred;
2750 vn_lock(vp, LK_SHARED | LK_RETRY);
2751 if (VOP_GETATTR(vp, &va, cred) == 0) {
2752 kve->kve_vn_fileid = va.va_fileid;
2753 kve->kve_vn_fsid = va.va_fsid;
2754 kve->kve_vn_fsid_freebsd11 =
2755 kve->kve_vn_fsid; /* truncate */
2756 kve->kve_vn_mode =
2757 MAKEIMODE(va.va_type, va.va_mode);
2758 kve->kve_vn_size = va.va_size;
2759 kve->kve_vn_rdev = va.va_rdev;
2760 kve->kve_vn_rdev_freebsd11 =
2761 kve->kve_vn_rdev; /* truncate */
2762 kve->kve_status = KF_ATTR_VALID;
2763 }
2764 vput(vp);
2765 strlcpy(kve->kve_path, fullpath, sizeof(
2766 kve->kve_path));
2767 free(freepath, M_TEMP);
2768 }
2769 } else {
2770 kve->kve_type = guard ? KVME_TYPE_GUARD :
2771 KVME_TYPE_NONE;
2772 kve->kve_ref_count = 0;
2773 kve->kve_shadow_count = 0;
2774 }
2775
2776 /* Pack record size down */
2777 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2778 kve->kve_structsize =
2779 offsetof(struct kinfo_vmentry, kve_path) +
2780 strlen(kve->kve_path) + 1;
2781 else
2782 kve->kve_structsize = sizeof(*kve);
2783 kve->kve_structsize = roundup(kve->kve_structsize,
2784 sizeof(uint64_t));
2785
2786 /* Halt filling and truncate rather than exceeding maxlen */
2787 if (maxlen != -1 && maxlen < kve->kve_structsize) {
2788 error = 0;
2789 vm_map_lock_read(map);
2790 break;
2791 } else if (maxlen != -1)
2792 maxlen -= kve->kve_structsize;
2793
2794 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2795 error = ENOMEM;
2796 vm_map_lock_read(map);
2797 if (error != 0)
2798 break;
2799 if (last_timestamp != map->timestamp) {
2800 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2801 entry = tmp_entry;
2802 }
2803 }
2804 vm_map_unlock_read(map);
2805 vmspace_free(vm);
2806 PRELE(p);
2807 free(kve, M_TEMP);
2808 return (error);
2809 }
2810
2811 static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)2812 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2813 {
2814 struct proc *p;
2815 struct sbuf sb;
2816 u_int namelen;
2817 int error, error2, *name;
2818
2819 namelen = arg2;
2820 if (namelen != 1)
2821 return (EINVAL);
2822
2823 name = (int *)arg1;
2824 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2825 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2826 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2827 if (error != 0) {
2828 sbuf_delete(&sb);
2829 return (error);
2830 }
2831 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2832 error2 = sbuf_finish(&sb);
2833 sbuf_delete(&sb);
2834 return (error != 0 ? error : error2);
2835 }
2836
2837 #if defined(STACK) || defined(DDB)
2838 static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)2839 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2840 {
2841 struct kinfo_kstack *kkstp;
2842 int error, i, *name, numthreads;
2843 lwpid_t *lwpidarray;
2844 struct thread *td;
2845 struct stack *st;
2846 struct sbuf sb;
2847 struct proc *p;
2848 u_int namelen;
2849
2850 namelen = arg2;
2851 if (namelen != 1)
2852 return (EINVAL);
2853
2854 name = (int *)arg1;
2855 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2856 if (error != 0)
2857 return (error);
2858
2859 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2860 st = stack_create(M_WAITOK);
2861
2862 lwpidarray = NULL;
2863 PROC_LOCK(p);
2864 do {
2865 if (lwpidarray != NULL) {
2866 free(lwpidarray, M_TEMP);
2867 lwpidarray = NULL;
2868 }
2869 numthreads = p->p_numthreads;
2870 PROC_UNLOCK(p);
2871 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2872 M_WAITOK | M_ZERO);
2873 PROC_LOCK(p);
2874 } while (numthreads < p->p_numthreads);
2875
2876 /*
2877 * XXXRW: During the below loop, execve(2) and countless other sorts
2878 * of changes could have taken place. Should we check to see if the
2879 * vmspace has been replaced, or the like, in order to prevent
2880 * giving a snapshot that spans, say, execve(2), with some threads
2881 * before and some after? Among other things, the credentials could
2882 * have changed, in which case the right to extract debug info might
2883 * no longer be assured.
2884 */
2885 i = 0;
2886 FOREACH_THREAD_IN_PROC(p, td) {
2887 KASSERT(i < numthreads,
2888 ("sysctl_kern_proc_kstack: numthreads"));
2889 lwpidarray[i] = td->td_tid;
2890 i++;
2891 }
2892 PROC_UNLOCK(p);
2893 numthreads = i;
2894 for (i = 0; i < numthreads; i++) {
2895 td = tdfind(lwpidarray[i], p->p_pid);
2896 if (td == NULL) {
2897 continue;
2898 }
2899 bzero(kkstp, sizeof(*kkstp));
2900 (void)sbuf_new(&sb, kkstp->kkst_trace,
2901 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2902 thread_lock(td);
2903 kkstp->kkst_tid = td->td_tid;
2904 if (stack_save_td(st, td) == 0)
2905 kkstp->kkst_state = KKST_STATE_STACKOK;
2906 else
2907 kkstp->kkst_state = KKST_STATE_RUNNING;
2908 thread_unlock(td);
2909 PROC_UNLOCK(p);
2910 stack_sbuf_print(&sb, st);
2911 sbuf_finish(&sb);
2912 sbuf_delete(&sb);
2913 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2914 if (error)
2915 break;
2916 }
2917 PRELE(p);
2918 if (lwpidarray != NULL)
2919 free(lwpidarray, M_TEMP);
2920 stack_destroy(st);
2921 free(kkstp, M_TEMP);
2922 return (error);
2923 }
2924 #endif
2925
2926 /*
2927 * This sysctl allows a process to retrieve the full list of groups from
2928 * itself or another process.
2929 */
2930 static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)2931 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2932 {
2933 pid_t *pidp = (pid_t *)arg1;
2934 unsigned int arglen = arg2;
2935 struct proc *p;
2936 struct ucred *cred;
2937 int error;
2938
2939 if (arglen != 1)
2940 return (EINVAL);
2941 if (*pidp == -1) { /* -1 means this process */
2942 p = req->td->td_proc;
2943 PROC_LOCK(p);
2944 } else {
2945 error = pget(*pidp, PGET_CANSEE, &p);
2946 if (error != 0)
2947 return (error);
2948 }
2949
2950 cred = crhold(p->p_ucred);
2951 PROC_UNLOCK(p);
2952
2953 error = SYSCTL_OUT(req, cred->cr_groups,
2954 cred->cr_ngroups * sizeof(gid_t));
2955 crfree(cred);
2956 return (error);
2957 }
2958
2959 /*
2960 * This sysctl allows a process to retrieve or/and set the resource limit for
2961 * another process.
2962 */
2963 static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)2964 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2965 {
2966 int *name = (int *)arg1;
2967 u_int namelen = arg2;
2968 struct rlimit rlim;
2969 struct proc *p;
2970 u_int which;
2971 int flags, error;
2972
2973 if (namelen != 2)
2974 return (EINVAL);
2975
2976 which = (u_int)name[1];
2977 if (which >= RLIM_NLIMITS)
2978 return (EINVAL);
2979
2980 if (req->newptr != NULL && req->newlen != sizeof(rlim))
2981 return (EINVAL);
2982
2983 flags = PGET_HOLD | PGET_NOTWEXIT;
2984 if (req->newptr != NULL)
2985 flags |= PGET_CANDEBUG;
2986 else
2987 flags |= PGET_CANSEE;
2988 error = pget((pid_t)name[0], flags, &p);
2989 if (error != 0)
2990 return (error);
2991
2992 /*
2993 * Retrieve limit.
2994 */
2995 if (req->oldptr != NULL) {
2996 PROC_LOCK(p);
2997 lim_rlimit_proc(p, which, &rlim);
2998 PROC_UNLOCK(p);
2999 }
3000 error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
3001 if (error != 0)
3002 goto errout;
3003
3004 /*
3005 * Set limit.
3006 */
3007 if (req->newptr != NULL) {
3008 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
3009 if (error == 0)
3010 error = kern_proc_setrlimit(curthread, p, which, &rlim);
3011 }
3012
3013 errout:
3014 PRELE(p);
3015 return (error);
3016 }
3017
3018 /*
3019 * This sysctl allows a process to retrieve ps_strings structure location of
3020 * another process.
3021 */
3022 static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)3023 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
3024 {
3025 int *name = (int *)arg1;
3026 u_int namelen = arg2;
3027 struct proc *p;
3028 vm_offset_t ps_strings;
3029 int error;
3030 #ifdef COMPAT_FREEBSD32
3031 uint32_t ps_strings32;
3032 #endif
3033
3034 if (namelen != 1)
3035 return (EINVAL);
3036
3037 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3038 if (error != 0)
3039 return (error);
3040 #ifdef COMPAT_FREEBSD32
3041 if ((req->flags & SCTL_MASK32) != 0) {
3042 /*
3043 * We return 0 if the 32 bit emulation request is for a 64 bit
3044 * process.
3045 */
3046 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
3047 PTROUT(PROC_PS_STRINGS(p)) : 0;
3048 PROC_UNLOCK(p);
3049 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
3050 return (error);
3051 }
3052 #endif
3053 ps_strings = PROC_PS_STRINGS(p);
3054 PROC_UNLOCK(p);
3055 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
3056 return (error);
3057 }
3058
3059 /*
3060 * This sysctl allows a process to retrieve umask of another process.
3061 */
3062 static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)3063 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3064 {
3065 int *name = (int *)arg1;
3066 u_int namelen = arg2;
3067 struct proc *p;
3068 int error;
3069 u_short cmask;
3070 pid_t pid;
3071
3072 if (namelen != 1)
3073 return (EINVAL);
3074
3075 pid = (pid_t)name[0];
3076 p = curproc;
3077 if (pid == p->p_pid || pid == 0) {
3078 cmask = p->p_pd->pd_cmask;
3079 goto out;
3080 }
3081
3082 error = pget(pid, PGET_WANTREAD, &p);
3083 if (error != 0)
3084 return (error);
3085
3086 cmask = p->p_pd->pd_cmask;
3087 PRELE(p);
3088 out:
3089 error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3090 return (error);
3091 }
3092
3093 /*
3094 * This sysctl allows a process to set and retrieve binary osreldate of
3095 * another process.
3096 */
3097 static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)3098 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3099 {
3100 int *name = (int *)arg1;
3101 u_int namelen = arg2;
3102 struct proc *p;
3103 int flags, error, osrel;
3104
3105 if (namelen != 1)
3106 return (EINVAL);
3107
3108 if (req->newptr != NULL && req->newlen != sizeof(osrel))
3109 return (EINVAL);
3110
3111 flags = PGET_HOLD | PGET_NOTWEXIT;
3112 if (req->newptr != NULL)
3113 flags |= PGET_CANDEBUG;
3114 else
3115 flags |= PGET_CANSEE;
3116 error = pget((pid_t)name[0], flags, &p);
3117 if (error != 0)
3118 return (error);
3119
3120 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3121 if (error != 0)
3122 goto errout;
3123
3124 if (req->newptr != NULL) {
3125 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3126 if (error != 0)
3127 goto errout;
3128 if (osrel < 0) {
3129 error = EINVAL;
3130 goto errout;
3131 }
3132 p->p_osrel = osrel;
3133 }
3134 errout:
3135 PRELE(p);
3136 return (error);
3137 }
3138
3139 static int
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)3140 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3141 {
3142 int *name = (int *)arg1;
3143 u_int namelen = arg2;
3144 struct proc *p;
3145 struct kinfo_sigtramp kst;
3146 const struct sysentvec *sv;
3147 int error;
3148 #ifdef COMPAT_FREEBSD32
3149 struct kinfo_sigtramp32 kst32;
3150 #endif
3151
3152 if (namelen != 1)
3153 return (EINVAL);
3154
3155 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3156 if (error != 0)
3157 return (error);
3158 sv = p->p_sysent;
3159 #ifdef COMPAT_FREEBSD32
3160 if ((req->flags & SCTL_MASK32) != 0) {
3161 bzero(&kst32, sizeof(kst32));
3162 if (SV_PROC_FLAG(p, SV_ILP32)) {
3163 if (PROC_HAS_SHP(p)) {
3164 kst32.ksigtramp_start = PROC_SIGCODE(p);
3165 kst32.ksigtramp_end = kst32.ksigtramp_start +
3166 ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3167 *sv->sv_szsigcode :
3168 (uintptr_t)sv->sv_szsigcode);
3169 } else {
3170 kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3171 *sv->sv_szsigcode;
3172 kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3173 }
3174 }
3175 PROC_UNLOCK(p);
3176 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3177 return (error);
3178 }
3179 #endif
3180 bzero(&kst, sizeof(kst));
3181 if (PROC_HAS_SHP(p)) {
3182 kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3183 kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3184 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3185 (uintptr_t)sv->sv_szsigcode);
3186 } else {
3187 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3188 *sv->sv_szsigcode;
3189 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3190 }
3191 PROC_UNLOCK(p);
3192 error = SYSCTL_OUT(req, &kst, sizeof(kst));
3193 return (error);
3194 }
3195
3196 static int
sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)3197 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3198 {
3199 int *name = (int *)arg1;
3200 u_int namelen = arg2;
3201 pid_t pid;
3202 struct proc *p;
3203 struct thread *td1;
3204 uintptr_t addr;
3205 #ifdef COMPAT_FREEBSD32
3206 uint32_t addr32;
3207 #endif
3208 int error;
3209
3210 if (namelen != 1 || req->newptr != NULL)
3211 return (EINVAL);
3212
3213 pid = (pid_t)name[0];
3214 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3215 if (error != 0)
3216 return (error);
3217
3218 PROC_LOCK(p);
3219 #ifdef COMPAT_FREEBSD32
3220 if (SV_CURPROC_FLAG(SV_ILP32)) {
3221 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3222 error = EINVAL;
3223 goto errlocked;
3224 }
3225 }
3226 #endif
3227 if (pid <= PID_MAX) {
3228 td1 = FIRST_THREAD_IN_PROC(p);
3229 } else {
3230 FOREACH_THREAD_IN_PROC(p, td1) {
3231 if (td1->td_tid == pid)
3232 break;
3233 }
3234 }
3235 if (td1 == NULL) {
3236 error = ESRCH;
3237 goto errlocked;
3238 }
3239 /*
3240 * The access to the private thread flags. It is fine as far
3241 * as no out-of-thin-air values are read from td_pflags, and
3242 * usermode read of the td_sigblock_ptr is racy inherently,
3243 * since target process might have already changed it
3244 * meantime.
3245 */
3246 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3247 addr = (uintptr_t)td1->td_sigblock_ptr;
3248 else
3249 error = ENOTTY;
3250
3251 errlocked:
3252 _PRELE(p);
3253 PROC_UNLOCK(p);
3254 if (error != 0)
3255 return (error);
3256
3257 #ifdef COMPAT_FREEBSD32
3258 if (SV_CURPROC_FLAG(SV_ILP32)) {
3259 addr32 = addr;
3260 error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3261 } else
3262 #endif
3263 error = SYSCTL_OUT(req, &addr, sizeof(addr));
3264 return (error);
3265 }
3266
3267 static int
sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)3268 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3269 {
3270 struct kinfo_vm_layout kvm;
3271 struct proc *p;
3272 struct vmspace *vmspace;
3273 int error, *name;
3274
3275 name = (int *)arg1;
3276 if ((u_int)arg2 != 1)
3277 return (EINVAL);
3278
3279 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3280 if (error != 0)
3281 return (error);
3282 #ifdef COMPAT_FREEBSD32
3283 if (SV_CURPROC_FLAG(SV_ILP32)) {
3284 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3285 PROC_UNLOCK(p);
3286 return (EINVAL);
3287 }
3288 }
3289 #endif
3290 vmspace = vmspace_acquire_ref(p);
3291 PROC_UNLOCK(p);
3292
3293 memset(&kvm, 0, sizeof(kvm));
3294 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3295 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3296 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3297 kvm.kvm_text_size = vmspace->vm_tsize;
3298 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3299 kvm.kvm_data_size = vmspace->vm_dsize;
3300 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3301 kvm.kvm_stack_size = vmspace->vm_ssize;
3302 kvm.kvm_shp_addr = vmspace->vm_shp_base;
3303 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3304 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3305 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3306 if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3307 kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3308 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3309 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3310 if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3311 kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3312 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3313 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3314 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3315 PROC_HAS_SHP(p))
3316 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3317
3318 #ifdef COMPAT_FREEBSD32
3319 if (SV_CURPROC_FLAG(SV_ILP32)) {
3320 struct kinfo_vm_layout32 kvm32;
3321
3322 memset(&kvm32, 0, sizeof(kvm32));
3323 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3324 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3325 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3326 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3327 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3328 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3329 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3330 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3331 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3332 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3333 kvm32.kvm_map_flags = kvm.kvm_map_flags;
3334 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3335 goto out;
3336 }
3337 #endif
3338
3339 error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3340 #ifdef COMPAT_FREEBSD32
3341 out:
3342 #endif
3343 vmspace_free(vmspace);
3344 return (error);
3345 }
3346
3347 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3348 "Process table");
3349
3350 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3351 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3352 "Return entire process table");
3353
3354 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3355 sysctl_kern_proc, "Process table");
3356
3357 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3358 sysctl_kern_proc, "Process table");
3359
3360 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3361 sysctl_kern_proc, "Process table");
3362
3363 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3364 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3365
3366 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3367 sysctl_kern_proc, "Process table");
3368
3369 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3370 sysctl_kern_proc, "Process table");
3371
3372 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3373 sysctl_kern_proc, "Process table");
3374
3375 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3376 sysctl_kern_proc, "Process table");
3377
3378 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3379 sysctl_kern_proc, "Return process table, no threads");
3380
3381 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3382 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3383 sysctl_kern_proc_args, "Process argument list");
3384
3385 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3386 sysctl_kern_proc_env, "Process environment");
3387
3388 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3389 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3390
3391 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3392 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3393
3394 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3395 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3396 "Process syscall vector name (ABI type)");
3397
3398 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3399 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3400
3401 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3402 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3403
3404 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3405 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3406
3407 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3408 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3409
3410 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3411 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3412
3413 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3414 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3415
3416 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3417 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3418
3419 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3420 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3421
3422 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3423 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3424 "Return process table, including threads");
3425
3426 #ifdef COMPAT_FREEBSD7
3427 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3428 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3429 #endif
3430
3431 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3432 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3433
3434 #if defined(STACK) || defined(DDB)
3435 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3436 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3437 #endif
3438
3439 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3440 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3441
3442 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3443 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3444 "Process resource limits");
3445
3446 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3447 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3448 "Process ps_strings location");
3449
3450 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3451 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3452
3453 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3454 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3455 "Process binary osreldate");
3456
3457 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3458 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3459 "Process signal trampoline location");
3460
3461 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3462 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3463 "Thread sigfastblock address");
3464
3465 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3466 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3467 "Process virtual address space layout info");
3468
3469 static struct sx stop_all_proc_blocker;
3470 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3471
3472 bool
stop_all_proc_block(void)3473 stop_all_proc_block(void)
3474 {
3475 return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3476 }
3477
3478 void
stop_all_proc_unblock(void)3479 stop_all_proc_unblock(void)
3480 {
3481 sx_xunlock(&stop_all_proc_blocker);
3482 }
3483
3484 int allproc_gen;
3485
3486 /*
3487 * stop_all_proc() purpose is to stop all process which have usermode,
3488 * except current process for obvious reasons. This makes it somewhat
3489 * unreliable when invoked from multithreaded process. The service
3490 * must not be user-callable anyway.
3491 */
3492 void
stop_all_proc(void)3493 stop_all_proc(void)
3494 {
3495 struct proc *cp, *p;
3496 int r, gen;
3497 bool restart, seen_stopped, seen_exiting, stopped_some;
3498
3499 if (!stop_all_proc_block())
3500 return;
3501
3502 cp = curproc;
3503 allproc_loop:
3504 sx_xlock(&allproc_lock);
3505 gen = allproc_gen;
3506 seen_exiting = seen_stopped = stopped_some = restart = false;
3507 LIST_REMOVE(cp, p_list);
3508 LIST_INSERT_HEAD(&allproc, cp, p_list);
3509 for (;;) {
3510 p = LIST_NEXT(cp, p_list);
3511 if (p == NULL)
3512 break;
3513 LIST_REMOVE(cp, p_list);
3514 LIST_INSERT_AFTER(p, cp, p_list);
3515 PROC_LOCK(p);
3516 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP |
3517 P_STOPPED_SIG)) != 0) {
3518 PROC_UNLOCK(p);
3519 continue;
3520 }
3521 if ((p->p_flag2 & P2_WEXIT) != 0) {
3522 seen_exiting = true;
3523 PROC_UNLOCK(p);
3524 continue;
3525 }
3526 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3527 /*
3528 * Stopped processes are tolerated when there
3529 * are no other processes which might continue
3530 * them. P_STOPPED_SINGLE but not
3531 * P_TOTAL_STOP process still has at least one
3532 * thread running.
3533 */
3534 seen_stopped = true;
3535 PROC_UNLOCK(p);
3536 continue;
3537 }
3538 if ((p->p_flag & P_TRACED) != 0) {
3539 /*
3540 * thread_single() below cannot stop traced p,
3541 * so skip it. OTOH, we cannot require
3542 * restart because debugger might be either
3543 * already stopped or traced as well.
3544 */
3545 PROC_UNLOCK(p);
3546 continue;
3547 }
3548 sx_xunlock(&allproc_lock);
3549 _PHOLD(p);
3550 r = thread_single(p, SINGLE_ALLPROC);
3551 if (r != 0)
3552 restart = true;
3553 else
3554 stopped_some = true;
3555 _PRELE(p);
3556 PROC_UNLOCK(p);
3557 sx_xlock(&allproc_lock);
3558 }
3559 /* Catch forked children we did not see in iteration. */
3560 if (gen != allproc_gen)
3561 restart = true;
3562 sx_xunlock(&allproc_lock);
3563 if (restart || stopped_some || seen_exiting || seen_stopped) {
3564 kern_yield(PRI_USER);
3565 goto allproc_loop;
3566 }
3567 }
3568
3569 void
resume_all_proc(void)3570 resume_all_proc(void)
3571 {
3572 struct proc *cp, *p;
3573
3574 cp = curproc;
3575 sx_xlock(&allproc_lock);
3576 again:
3577 LIST_REMOVE(cp, p_list);
3578 LIST_INSERT_HEAD(&allproc, cp, p_list);
3579 for (;;) {
3580 p = LIST_NEXT(cp, p_list);
3581 if (p == NULL)
3582 break;
3583 LIST_REMOVE(cp, p_list);
3584 LIST_INSERT_AFTER(p, cp, p_list);
3585 PROC_LOCK(p);
3586 if ((p->p_flag & P_TOTAL_STOP) != 0) {
3587 sx_xunlock(&allproc_lock);
3588 _PHOLD(p);
3589 thread_single_end(p, SINGLE_ALLPROC);
3590 _PRELE(p);
3591 PROC_UNLOCK(p);
3592 sx_xlock(&allproc_lock);
3593 } else {
3594 PROC_UNLOCK(p);
3595 }
3596 }
3597 /* Did the loop above missed any stopped process ? */
3598 FOREACH_PROC_IN_SYSTEM(p) {
3599 /* No need for proc lock. */
3600 if ((p->p_flag & P_TOTAL_STOP) != 0)
3601 goto again;
3602 }
3603 sx_xunlock(&allproc_lock);
3604
3605 stop_all_proc_unblock();
3606 }
3607
3608 /* #define TOTAL_STOP_DEBUG 1 */
3609 #ifdef TOTAL_STOP_DEBUG
3610 volatile static int ap_resume;
3611 #include <sys/mount.h>
3612
3613 static int
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)3614 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3615 {
3616 int error, val;
3617
3618 val = 0;
3619 ap_resume = 0;
3620 error = sysctl_handle_int(oidp, &val, 0, req);
3621 if (error != 0 || req->newptr == NULL)
3622 return (error);
3623 if (val != 0) {
3624 stop_all_proc();
3625 syncer_suspend();
3626 while (ap_resume == 0)
3627 ;
3628 syncer_resume();
3629 resume_all_proc();
3630 }
3631 return (0);
3632 }
3633
3634 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3635 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3636 sysctl_debug_stop_all_proc, "I",
3637 "");
3638 #endif
3639