xref: /linux/drivers/net/ethernet/dlink/dl2k.c (revision 9410645520e9b820069761f3450ef6661418e279)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 /*
4     Copyright (c) 2001, 2002 by D-Link Corporation
5     Written by Edward Peng.<edward_peng@dlink.com.tw>
6     Created 03-May-2001, base on Linux' sundance.c.
7 
8 */
9 
10 #include "dl2k.h"
11 #include <linux/dma-mapping.h>
12 
13 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16 #define dr32(reg)	ioread32(ioaddr + (reg))
17 #define dr16(reg)	ioread16(ioaddr + (reg))
18 #define dr8(reg)	ioread8(ioaddr + (reg))
19 
20 #define MAX_UNITS 8
21 static int mtu[MAX_UNITS];
22 static int vlan[MAX_UNITS];
23 static int jumbo[MAX_UNITS];
24 static char *media[MAX_UNITS];
25 static int tx_flow=-1;
26 static int rx_flow=-1;
27 static int copy_thresh;
28 static int rx_coalesce=10;	/* Rx frame count each interrupt */
29 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31 
32 
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu, int, NULL, 0);
37 module_param_array(media, charp, NULL, 0);
38 module_param_array(vlan, int, NULL, 0);
39 module_param_array(jumbo, int, NULL, 0);
40 module_param(tx_flow, int, 0);
41 module_param(rx_flow, int, 0);
42 module_param(copy_thresh, int, 0);
43 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46 
47 
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50        UpdateStats | LinkEvent)
51 
dl2k_enable_int(struct netdev_private * np)52 static void dl2k_enable_int(struct netdev_private *np)
53 {
54 	void __iomem *ioaddr = np->ioaddr;
55 
56 	dw16(IntEnable, DEFAULT_INTR);
57 }
58 
59 static const int max_intrloop = 50;
60 static const int multicast_filter_limit = 0x40;
61 
62 static int rio_open (struct net_device *dev);
63 static void rio_timer (struct timer_list *t);
64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67 static void rio_free_tx (struct net_device *dev, int irq);
68 static void tx_error (struct net_device *dev, int tx_status);
69 static int receive_packet (struct net_device *dev);
70 static void rio_error (struct net_device *dev, int int_status);
71 static void set_multicast (struct net_device *dev);
72 static struct net_device_stats *get_stats (struct net_device *dev);
73 static int clear_stats (struct net_device *dev);
74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75 static int rio_close (struct net_device *dev);
76 static int find_miiphy (struct net_device *dev);
77 static int parse_eeprom (struct net_device *dev);
78 static int read_eeprom (struct netdev_private *, int eep_addr);
79 static int mii_wait_link (struct net_device *dev, int wait);
80 static int mii_set_media (struct net_device *dev);
81 static int mii_get_media (struct net_device *dev);
82 static int mii_set_media_pcs (struct net_device *dev);
83 static int mii_get_media_pcs (struct net_device *dev);
84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 		      u16 data);
87 
88 static const struct ethtool_ops ethtool_ops;
89 
90 static const struct net_device_ops netdev_ops = {
91 	.ndo_open		= rio_open,
92 	.ndo_start_xmit	= start_xmit,
93 	.ndo_stop		= rio_close,
94 	.ndo_get_stats		= get_stats,
95 	.ndo_validate_addr	= eth_validate_addr,
96 	.ndo_set_mac_address 	= eth_mac_addr,
97 	.ndo_set_rx_mode	= set_multicast,
98 	.ndo_eth_ioctl		= rio_ioctl,
99 	.ndo_tx_timeout		= rio_tx_timeout,
100 };
101 
102 static int
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104 {
105 	struct net_device *dev;
106 	struct netdev_private *np;
107 	static int card_idx;
108 	int chip_idx = ent->driver_data;
109 	int err, irq;
110 	void __iomem *ioaddr;
111 	void *ring_space;
112 	dma_addr_t ring_dma;
113 
114 	err = pci_enable_device (pdev);
115 	if (err)
116 		return err;
117 
118 	irq = pdev->irq;
119 	err = pci_request_regions (pdev, "dl2k");
120 	if (err)
121 		goto err_out_disable;
122 
123 	pci_set_master (pdev);
124 
125 	err = -ENOMEM;
126 
127 	dev = alloc_etherdev (sizeof (*np));
128 	if (!dev)
129 		goto err_out_res;
130 	SET_NETDEV_DEV(dev, &pdev->dev);
131 
132 	np = netdev_priv(dev);
133 
134 	/* IO registers range. */
135 	ioaddr = pci_iomap(pdev, 0, 0);
136 	if (!ioaddr)
137 		goto err_out_dev;
138 	np->eeprom_addr = ioaddr;
139 
140 #ifdef MEM_MAPPING
141 	/* MM registers range. */
142 	ioaddr = pci_iomap(pdev, 1, 0);
143 	if (!ioaddr)
144 		goto err_out_iounmap;
145 #endif
146 	np->ioaddr = ioaddr;
147 	np->chip_id = chip_idx;
148 	np->pdev = pdev;
149 	spin_lock_init (&np->tx_lock);
150 	spin_lock_init (&np->rx_lock);
151 
152 	/* Parse manual configuration */
153 	np->an_enable = 1;
154 	np->tx_coalesce = 1;
155 	if (card_idx < MAX_UNITS) {
156 		if (media[card_idx] != NULL) {
157 			np->an_enable = 0;
158 			if (strcmp (media[card_idx], "auto") == 0 ||
159 			    strcmp (media[card_idx], "autosense") == 0 ||
160 			    strcmp (media[card_idx], "0") == 0 ) {
161 				np->an_enable = 2;
162 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 			    strcmp (media[card_idx], "4") == 0) {
164 				np->speed = 100;
165 				np->full_duplex = 1;
166 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167 				   strcmp (media[card_idx], "3") == 0) {
168 				np->speed = 100;
169 				np->full_duplex = 0;
170 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 				   strcmp (media[card_idx], "2") == 0) {
172 				np->speed = 10;
173 				np->full_duplex = 1;
174 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 				   strcmp (media[card_idx], "1") == 0) {
176 				np->speed = 10;
177 				np->full_duplex = 0;
178 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 				 strcmp (media[card_idx], "6") == 0) {
180 				np->speed=1000;
181 				np->full_duplex=1;
182 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 				 strcmp (media[card_idx], "5") == 0) {
184 				np->speed = 1000;
185 				np->full_duplex = 0;
186 			} else {
187 				np->an_enable = 1;
188 			}
189 		}
190 		if (jumbo[card_idx] != 0) {
191 			np->jumbo = 1;
192 			dev->mtu = MAX_JUMBO;
193 		} else {
194 			np->jumbo = 0;
195 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 				dev->mtu = mtu[card_idx];
197 		}
198 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 		    vlan[card_idx] : 0;
200 		if (rx_coalesce > 0 && rx_timeout > 0) {
201 			np->rx_coalesce = rx_coalesce;
202 			np->rx_timeout = rx_timeout;
203 			np->coalesce = 1;
204 		}
205 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207 
208 		if (tx_coalesce < 1)
209 			tx_coalesce = 1;
210 		else if (tx_coalesce > TX_RING_SIZE-1)
211 			tx_coalesce = TX_RING_SIZE - 1;
212 	}
213 	dev->netdev_ops = &netdev_ops;
214 	dev->watchdog_timeo = TX_TIMEOUT;
215 	dev->ethtool_ops = &ethtool_ops;
216 #if 0
217 	dev->features = NETIF_F_IP_CSUM;
218 #endif
219 	/* MTU range: 68 - 1536 or 8000 */
220 	dev->min_mtu = ETH_MIN_MTU;
221 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222 
223 	pci_set_drvdata (pdev, dev);
224 
225 	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
226 					GFP_KERNEL);
227 	if (!ring_space)
228 		goto err_out_iounmap;
229 	np->tx_ring = ring_space;
230 	np->tx_ring_dma = ring_dma;
231 
232 	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
233 					GFP_KERNEL);
234 	if (!ring_space)
235 		goto err_out_unmap_tx;
236 	np->rx_ring = ring_space;
237 	np->rx_ring_dma = ring_dma;
238 
239 	/* Parse eeprom data */
240 	parse_eeprom (dev);
241 
242 	/* Find PHY address */
243 	err = find_miiphy (dev);
244 	if (err)
245 		goto err_out_unmap_rx;
246 
247 	/* Fiber device? */
248 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
249 	np->link_status = 0;
250 	/* Set media and reset PHY */
251 	if (np->phy_media) {
252 		/* default Auto-Negotiation for fiber deivices */
253 	 	if (np->an_enable == 2) {
254 			np->an_enable = 1;
255 		}
256 	} else {
257 		/* Auto-Negotiation is mandatory for 1000BASE-T,
258 		   IEEE 802.3ab Annex 28D page 14 */
259 		if (np->speed == 1000)
260 			np->an_enable = 1;
261 	}
262 
263 	err = register_netdev (dev);
264 	if (err)
265 		goto err_out_unmap_rx;
266 
267 	card_idx++;
268 
269 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270 		dev->name, np->name, dev->dev_addr, irq);
271 	if (tx_coalesce > 1)
272 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
273 				tx_coalesce);
274 	if (np->coalesce)
275 		printk(KERN_INFO
276 		       "rx_coalesce:\t%d packets\n"
277 		       "rx_timeout: \t%d ns\n",
278 				np->rx_coalesce, np->rx_timeout*640);
279 	if (np->vlan)
280 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
281 	return 0;
282 
283 err_out_unmap_rx:
284 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
285 			  np->rx_ring_dma);
286 err_out_unmap_tx:
287 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
288 			  np->tx_ring_dma);
289 err_out_iounmap:
290 #ifdef MEM_MAPPING
291 	pci_iounmap(pdev, np->ioaddr);
292 #endif
293 	pci_iounmap(pdev, np->eeprom_addr);
294 err_out_dev:
295 	free_netdev (dev);
296 err_out_res:
297 	pci_release_regions (pdev);
298 err_out_disable:
299 	pci_disable_device (pdev);
300 	return err;
301 }
302 
303 static int
find_miiphy(struct net_device * dev)304 find_miiphy (struct net_device *dev)
305 {
306 	struct netdev_private *np = netdev_priv(dev);
307 	int i, phy_found = 0;
308 
309 	np->phy_addr = 1;
310 
311 	for (i = 31; i >= 0; i--) {
312 		int mii_status = mii_read (dev, i, 1);
313 		if (mii_status != 0xffff && mii_status != 0x0000) {
314 			np->phy_addr = i;
315 			phy_found++;
316 		}
317 	}
318 	if (!phy_found) {
319 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
320 		return -ENODEV;
321 	}
322 	return 0;
323 }
324 
325 static int
parse_eeprom(struct net_device * dev)326 parse_eeprom (struct net_device *dev)
327 {
328 	struct netdev_private *np = netdev_priv(dev);
329 	void __iomem *ioaddr = np->ioaddr;
330 	int i, j;
331 	u8 sromdata[256];
332 	u8 *psib;
333 	u32 crc;
334 	PSROM_t psrom = (PSROM_t) sromdata;
335 
336 	int cid, next;
337 
338 	for (i = 0; i < 128; i++)
339 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
340 
341 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
342 		/* Check CRC */
343 		crc = ~ether_crc_le (256 - 4, sromdata);
344 		if (psrom->crc != cpu_to_le32(crc)) {
345 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
346 					dev->name);
347 			return -1;
348 		}
349 	}
350 
351 	/* Set MAC address */
352 	eth_hw_addr_set(dev, psrom->mac_addr);
353 
354 	if (np->chip_id == CHIP_IP1000A) {
355 		np->led_mode = psrom->led_mode;
356 		return 0;
357 	}
358 
359 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
360 		return 0;
361 	}
362 
363 	/* Parse Software Information Block */
364 	i = 0x30;
365 	psib = (u8 *) sromdata;
366 	do {
367 		cid = psib[i++];
368 		next = psib[i++];
369 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
370 			printk (KERN_ERR "Cell data error\n");
371 			return -1;
372 		}
373 		switch (cid) {
374 		case 0:	/* Format version */
375 			break;
376 		case 1:	/* End of cell */
377 			return 0;
378 		case 2:	/* Duplex Polarity */
379 			np->duplex_polarity = psib[i];
380 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
381 			break;
382 		case 3:	/* Wake Polarity */
383 			np->wake_polarity = psib[i];
384 			break;
385 		case 9:	/* Adapter description */
386 			j = (next - i > 255) ? 255 : next - i;
387 			memcpy (np->name, &(psib[i]), j);
388 			break;
389 		case 4:
390 		case 5:
391 		case 6:
392 		case 7:
393 		case 8:	/* Reversed */
394 			break;
395 		default:	/* Unknown cell */
396 			return -1;
397 		}
398 		i = next;
399 	} while (1);
400 
401 	return 0;
402 }
403 
rio_set_led_mode(struct net_device * dev)404 static void rio_set_led_mode(struct net_device *dev)
405 {
406 	struct netdev_private *np = netdev_priv(dev);
407 	void __iomem *ioaddr = np->ioaddr;
408 	u32 mode;
409 
410 	if (np->chip_id != CHIP_IP1000A)
411 		return;
412 
413 	mode = dr32(ASICCtrl);
414 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
415 
416 	if (np->led_mode & 0x01)
417 		mode |= IPG_AC_LED_MODE;
418 	if (np->led_mode & 0x02)
419 		mode |= IPG_AC_LED_MODE_BIT_1;
420 	if (np->led_mode & 0x08)
421 		mode |= IPG_AC_LED_SPEED;
422 
423 	dw32(ASICCtrl, mode);
424 }
425 
desc_to_dma(struct netdev_desc * desc)426 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
427 {
428 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
429 }
430 
free_list(struct net_device * dev)431 static void free_list(struct net_device *dev)
432 {
433 	struct netdev_private *np = netdev_priv(dev);
434 	struct sk_buff *skb;
435 	int i;
436 
437 	/* Free all the skbuffs in the queue. */
438 	for (i = 0; i < RX_RING_SIZE; i++) {
439 		skb = np->rx_skbuff[i];
440 		if (skb) {
441 			dma_unmap_single(&np->pdev->dev,
442 					 desc_to_dma(&np->rx_ring[i]),
443 					 skb->len, DMA_FROM_DEVICE);
444 			dev_kfree_skb(skb);
445 			np->rx_skbuff[i] = NULL;
446 		}
447 		np->rx_ring[i].status = 0;
448 		np->rx_ring[i].fraginfo = 0;
449 	}
450 	for (i = 0; i < TX_RING_SIZE; i++) {
451 		skb = np->tx_skbuff[i];
452 		if (skb) {
453 			dma_unmap_single(&np->pdev->dev,
454 					 desc_to_dma(&np->tx_ring[i]),
455 					 skb->len, DMA_TO_DEVICE);
456 			dev_kfree_skb(skb);
457 			np->tx_skbuff[i] = NULL;
458 		}
459 	}
460 }
461 
rio_reset_ring(struct netdev_private * np)462 static void rio_reset_ring(struct netdev_private *np)
463 {
464 	int i;
465 
466 	np->cur_rx = 0;
467 	np->cur_tx = 0;
468 	np->old_rx = 0;
469 	np->old_tx = 0;
470 
471 	for (i = 0; i < TX_RING_SIZE; i++)
472 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
473 
474 	for (i = 0; i < RX_RING_SIZE; i++)
475 		np->rx_ring[i].status = 0;
476 }
477 
478  /* allocate and initialize Tx and Rx descriptors */
alloc_list(struct net_device * dev)479 static int alloc_list(struct net_device *dev)
480 {
481 	struct netdev_private *np = netdev_priv(dev);
482 	int i;
483 
484 	rio_reset_ring(np);
485 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
486 
487 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
488 	for (i = 0; i < TX_RING_SIZE; i++) {
489 		np->tx_skbuff[i] = NULL;
490 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
491 					      ((i + 1) % TX_RING_SIZE) *
492 					      sizeof(struct netdev_desc));
493 	}
494 
495 	/* Initialize Rx descriptors & allocate buffers */
496 	for (i = 0; i < RX_RING_SIZE; i++) {
497 		/* Allocated fixed size of skbuff */
498 		struct sk_buff *skb;
499 
500 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
501 		np->rx_skbuff[i] = skb;
502 		if (!skb) {
503 			free_list(dev);
504 			return -ENOMEM;
505 		}
506 
507 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
508 						((i + 1) % RX_RING_SIZE) *
509 						sizeof(struct netdev_desc));
510 		/* Rubicon now supports 40 bits of addressing space. */
511 		np->rx_ring[i].fraginfo =
512 		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
513 					       np->rx_buf_sz, DMA_FROM_DEVICE));
514 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
515 	}
516 
517 	return 0;
518 }
519 
rio_hw_init(struct net_device * dev)520 static void rio_hw_init(struct net_device *dev)
521 {
522 	struct netdev_private *np = netdev_priv(dev);
523 	void __iomem *ioaddr = np->ioaddr;
524 	int i;
525 	u16 macctrl;
526 
527 	/* Reset all logic functions */
528 	dw16(ASICCtrl + 2,
529 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
530 	mdelay(10);
531 
532 	rio_set_led_mode(dev);
533 
534 	/* DebugCtrl bit 4, 5, 9 must set */
535 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
536 
537 	if (np->chip_id == CHIP_IP1000A &&
538 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
539 		/* PHY magic taken from ipg driver, undocumented registers */
540 		mii_write(dev, np->phy_addr, 31, 0x0001);
541 		mii_write(dev, np->phy_addr, 27, 0x01e0);
542 		mii_write(dev, np->phy_addr, 31, 0x0002);
543 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
544 		mii_write(dev, np->phy_addr, 31, 0x0000);
545 		mii_write(dev, np->phy_addr, 30, 0x005e);
546 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
547 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
548 	}
549 
550 	if (np->phy_media)
551 		mii_set_media_pcs(dev);
552 	else
553 		mii_set_media(dev);
554 
555 	/* Jumbo frame */
556 	if (np->jumbo != 0)
557 		dw16(MaxFrameSize, MAX_JUMBO+14);
558 
559 	/* Set RFDListPtr */
560 	dw32(RFDListPtr0, np->rx_ring_dma);
561 	dw32(RFDListPtr1, 0);
562 
563 	/* Set station address */
564 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
565 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
566 	 */
567 	for (i = 0; i < 3; i++)
568 		dw16(StationAddr0 + 2 * i, get_unaligned_le16(&dev->dev_addr[2 * i]));
569 
570 	set_multicast (dev);
571 	if (np->coalesce) {
572 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
573 	}
574 	/* Set RIO to poll every N*320nsec. */
575 	dw8(RxDMAPollPeriod, 0x20);
576 	dw8(TxDMAPollPeriod, 0xff);
577 	dw8(RxDMABurstThresh, 0x30);
578 	dw8(RxDMAUrgentThresh, 0x30);
579 	dw32(RmonStatMask, 0x0007ffff);
580 	/* clear statistics */
581 	clear_stats (dev);
582 
583 	/* VLAN supported */
584 	if (np->vlan) {
585 		/* priority field in RxDMAIntCtrl  */
586 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
587 		/* VLANId */
588 		dw16(VLANId, np->vlan);
589 		/* Length/Type should be 0x8100 */
590 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
591 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
592 		   VLAN information tagged by TFC' VID, CFI fields. */
593 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
594 	}
595 
596 	/* Start Tx/Rx */
597 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
598 
599 	macctrl = 0;
600 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
601 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
602 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
603 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
604 	dw16(MACCtrl, macctrl);
605 }
606 
rio_hw_stop(struct net_device * dev)607 static void rio_hw_stop(struct net_device *dev)
608 {
609 	struct netdev_private *np = netdev_priv(dev);
610 	void __iomem *ioaddr = np->ioaddr;
611 
612 	/* Disable interrupts */
613 	dw16(IntEnable, 0);
614 
615 	/* Stop Tx and Rx logics */
616 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
617 }
618 
rio_open(struct net_device * dev)619 static int rio_open(struct net_device *dev)
620 {
621 	struct netdev_private *np = netdev_priv(dev);
622 	const int irq = np->pdev->irq;
623 	int i;
624 
625 	i = alloc_list(dev);
626 	if (i)
627 		return i;
628 
629 	rio_hw_init(dev);
630 
631 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
632 	if (i) {
633 		rio_hw_stop(dev);
634 		free_list(dev);
635 		return i;
636 	}
637 
638 	timer_setup(&np->timer, rio_timer, 0);
639 	np->timer.expires = jiffies + 1 * HZ;
640 	add_timer(&np->timer);
641 
642 	netif_start_queue (dev);
643 
644 	dl2k_enable_int(np);
645 	return 0;
646 }
647 
648 static void
rio_timer(struct timer_list * t)649 rio_timer (struct timer_list *t)
650 {
651 	struct netdev_private *np = from_timer(np, t, timer);
652 	struct net_device *dev = pci_get_drvdata(np->pdev);
653 	unsigned int entry;
654 	int next_tick = 1*HZ;
655 	unsigned long flags;
656 
657 	spin_lock_irqsave(&np->rx_lock, flags);
658 	/* Recover rx ring exhausted error */
659 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
660 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
661 		/* Re-allocate skbuffs to fill the descriptor ring */
662 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
663 			struct sk_buff *skb;
664 			entry = np->old_rx % RX_RING_SIZE;
665 			/* Dropped packets don't need to re-allocate */
666 			if (np->rx_skbuff[entry] == NULL) {
667 				skb = netdev_alloc_skb_ip_align(dev,
668 								np->rx_buf_sz);
669 				if (skb == NULL) {
670 					np->rx_ring[entry].fraginfo = 0;
671 					printk (KERN_INFO
672 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
673 						dev->name, entry);
674 					break;
675 				}
676 				np->rx_skbuff[entry] = skb;
677 				np->rx_ring[entry].fraginfo =
678 				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
679 								np->rx_buf_sz, DMA_FROM_DEVICE));
680 			}
681 			np->rx_ring[entry].fraginfo |=
682 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
683 			np->rx_ring[entry].status = 0;
684 		} /* end for */
685 	} /* end if */
686 	spin_unlock_irqrestore (&np->rx_lock, flags);
687 	np->timer.expires = jiffies + next_tick;
688 	add_timer(&np->timer);
689 }
690 
691 static void
rio_tx_timeout(struct net_device * dev,unsigned int txqueue)692 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
693 {
694 	struct netdev_private *np = netdev_priv(dev);
695 	void __iomem *ioaddr = np->ioaddr;
696 
697 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
698 		dev->name, dr32(TxStatus));
699 	rio_free_tx(dev, 0);
700 	dev->if_port = 0;
701 	netif_trans_update(dev); /* prevent tx timeout */
702 }
703 
704 static netdev_tx_t
start_xmit(struct sk_buff * skb,struct net_device * dev)705 start_xmit (struct sk_buff *skb, struct net_device *dev)
706 {
707 	struct netdev_private *np = netdev_priv(dev);
708 	void __iomem *ioaddr = np->ioaddr;
709 	struct netdev_desc *txdesc;
710 	unsigned entry;
711 	u64 tfc_vlan_tag = 0;
712 
713 	if (np->link_status == 0) {	/* Link Down */
714 		dev_kfree_skb(skb);
715 		return NETDEV_TX_OK;
716 	}
717 	entry = np->cur_tx % TX_RING_SIZE;
718 	np->tx_skbuff[entry] = skb;
719 	txdesc = &np->tx_ring[entry];
720 
721 #if 0
722 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
723 		txdesc->status |=
724 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
725 				 IPChecksumEnable);
726 	}
727 #endif
728 	if (np->vlan) {
729 		tfc_vlan_tag = VLANTagInsert |
730 		    ((u64)np->vlan << 32) |
731 		    ((u64)skb->priority << 45);
732 	}
733 	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
734 						       skb->len, DMA_TO_DEVICE));
735 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
736 
737 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
738 	 * Work around: Always use 1 descriptor in 10Mbps mode */
739 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
740 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
741 					      WordAlignDisable |
742 					      TxDMAIndicate |
743 					      (1 << FragCountShift));
744 	else
745 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
746 					      WordAlignDisable |
747 					      (1 << FragCountShift));
748 
749 	/* TxDMAPollNow */
750 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
751 	/* Schedule ISR */
752 	dw32(CountDown, 10000);
753 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
754 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
755 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
756 		/* do nothing */
757 	} else if (!netif_queue_stopped(dev)) {
758 		netif_stop_queue (dev);
759 	}
760 
761 	/* The first TFDListPtr */
762 	if (!dr32(TFDListPtr0)) {
763 		dw32(TFDListPtr0, np->tx_ring_dma +
764 		     entry * sizeof (struct netdev_desc));
765 		dw32(TFDListPtr1, 0);
766 	}
767 
768 	return NETDEV_TX_OK;
769 }
770 
771 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)772 rio_interrupt (int irq, void *dev_instance)
773 {
774 	struct net_device *dev = dev_instance;
775 	struct netdev_private *np = netdev_priv(dev);
776 	void __iomem *ioaddr = np->ioaddr;
777 	unsigned int_status;
778 	int cnt = max_intrloop;
779 	int handled = 0;
780 
781 	while (1) {
782 		int_status = dr16(IntStatus);
783 		dw16(IntStatus, int_status);
784 		int_status &= DEFAULT_INTR;
785 		if (int_status == 0 || --cnt < 0)
786 			break;
787 		handled = 1;
788 		/* Processing received packets */
789 		if (int_status & RxDMAComplete)
790 			receive_packet (dev);
791 		/* TxDMAComplete interrupt */
792 		if ((int_status & (TxDMAComplete|IntRequested))) {
793 			int tx_status;
794 			tx_status = dr32(TxStatus);
795 			if (tx_status & 0x01)
796 				tx_error (dev, tx_status);
797 			/* Free used tx skbuffs */
798 			rio_free_tx (dev, 1);
799 		}
800 
801 		/* Handle uncommon events */
802 		if (int_status &
803 		    (HostError | LinkEvent | UpdateStats))
804 			rio_error (dev, int_status);
805 	}
806 	if (np->cur_tx != np->old_tx)
807 		dw32(CountDown, 100);
808 	return IRQ_RETVAL(handled);
809 }
810 
811 static void
rio_free_tx(struct net_device * dev,int irq)812 rio_free_tx (struct net_device *dev, int irq)
813 {
814 	struct netdev_private *np = netdev_priv(dev);
815 	int entry = np->old_tx % TX_RING_SIZE;
816 	unsigned long flag = 0;
817 
818 	if (irq)
819 		spin_lock(&np->tx_lock);
820 	else
821 		spin_lock_irqsave(&np->tx_lock, flag);
822 
823 	/* Free used tx skbuffs */
824 	while (entry != np->cur_tx) {
825 		struct sk_buff *skb;
826 
827 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
828 			break;
829 		skb = np->tx_skbuff[entry];
830 		dma_unmap_single(&np->pdev->dev,
831 				 desc_to_dma(&np->tx_ring[entry]), skb->len,
832 				 DMA_TO_DEVICE);
833 		if (irq)
834 			dev_consume_skb_irq(skb);
835 		else
836 			dev_kfree_skb(skb);
837 
838 		np->tx_skbuff[entry] = NULL;
839 		entry = (entry + 1) % TX_RING_SIZE;
840 	}
841 	if (irq)
842 		spin_unlock(&np->tx_lock);
843 	else
844 		spin_unlock_irqrestore(&np->tx_lock, flag);
845 	np->old_tx = entry;
846 
847 	/* If the ring is no longer full, clear tx_full and
848 	   call netif_wake_queue() */
849 
850 	if (netif_queue_stopped(dev) &&
851 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
852 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
853 		netif_wake_queue (dev);
854 	}
855 }
856 
857 static void
tx_error(struct net_device * dev,int tx_status)858 tx_error (struct net_device *dev, int tx_status)
859 {
860 	struct netdev_private *np = netdev_priv(dev);
861 	void __iomem *ioaddr = np->ioaddr;
862 	int frame_id;
863 	int i;
864 
865 	frame_id = (tx_status & 0xffff0000);
866 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
867 		dev->name, tx_status, frame_id);
868 	dev->stats.tx_errors++;
869 	/* Ttransmit Underrun */
870 	if (tx_status & 0x10) {
871 		dev->stats.tx_fifo_errors++;
872 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
873 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
874 		dw16(ASICCtrl + 2,
875 		     TxReset | DMAReset | FIFOReset | NetworkReset);
876 		/* Wait for ResetBusy bit clear */
877 		for (i = 50; i > 0; i--) {
878 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
879 				break;
880 			mdelay (1);
881 		}
882 		rio_set_led_mode(dev);
883 		rio_free_tx (dev, 1);
884 		/* Reset TFDListPtr */
885 		dw32(TFDListPtr0, np->tx_ring_dma +
886 		     np->old_tx * sizeof (struct netdev_desc));
887 		dw32(TFDListPtr1, 0);
888 
889 		/* Let TxStartThresh stay default value */
890 	}
891 	/* Late Collision */
892 	if (tx_status & 0x04) {
893 		dev->stats.tx_fifo_errors++;
894 		/* TxReset and clear FIFO */
895 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
896 		/* Wait reset done */
897 		for (i = 50; i > 0; i--) {
898 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
899 				break;
900 			mdelay (1);
901 		}
902 		rio_set_led_mode(dev);
903 		/* Let TxStartThresh stay default value */
904 	}
905 	/* Maximum Collisions */
906 	if (tx_status & 0x08)
907 		dev->stats.collisions++;
908 	/* Restart the Tx */
909 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
910 }
911 
912 static int
receive_packet(struct net_device * dev)913 receive_packet (struct net_device *dev)
914 {
915 	struct netdev_private *np = netdev_priv(dev);
916 	int entry = np->cur_rx % RX_RING_SIZE;
917 	int cnt = 30;
918 
919 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
920 	while (1) {
921 		struct netdev_desc *desc = &np->rx_ring[entry];
922 		int pkt_len;
923 		u64 frame_status;
924 
925 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
926 		    !(desc->status & cpu_to_le64(FrameStart)) ||
927 		    !(desc->status & cpu_to_le64(FrameEnd)))
928 			break;
929 
930 		/* Chip omits the CRC. */
931 		frame_status = le64_to_cpu(desc->status);
932 		pkt_len = frame_status & 0xffff;
933 		if (--cnt < 0)
934 			break;
935 		/* Update rx error statistics, drop packet. */
936 		if (frame_status & RFS_Errors) {
937 			dev->stats.rx_errors++;
938 			if (frame_status & (RxRuntFrame | RxLengthError))
939 				dev->stats.rx_length_errors++;
940 			if (frame_status & RxFCSError)
941 				dev->stats.rx_crc_errors++;
942 			if (frame_status & RxAlignmentError && np->speed != 1000)
943 				dev->stats.rx_frame_errors++;
944 			if (frame_status & RxFIFOOverrun)
945 				dev->stats.rx_fifo_errors++;
946 		} else {
947 			struct sk_buff *skb;
948 
949 			/* Small skbuffs for short packets */
950 			if (pkt_len > copy_thresh) {
951 				dma_unmap_single(&np->pdev->dev,
952 						 desc_to_dma(desc),
953 						 np->rx_buf_sz,
954 						 DMA_FROM_DEVICE);
955 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
956 				np->rx_skbuff[entry] = NULL;
957 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
958 				dma_sync_single_for_cpu(&np->pdev->dev,
959 							desc_to_dma(desc),
960 							np->rx_buf_sz,
961 							DMA_FROM_DEVICE);
962 				skb_copy_to_linear_data (skb,
963 						  np->rx_skbuff[entry]->data,
964 						  pkt_len);
965 				skb_put (skb, pkt_len);
966 				dma_sync_single_for_device(&np->pdev->dev,
967 							   desc_to_dma(desc),
968 							   np->rx_buf_sz,
969 							   DMA_FROM_DEVICE);
970 			}
971 			skb->protocol = eth_type_trans (skb, dev);
972 #if 0
973 			/* Checksum done by hw, but csum value unavailable. */
974 			if (np->pdev->pci_rev_id >= 0x0c &&
975 				!(frame_status & (TCPError | UDPError | IPError))) {
976 				skb->ip_summed = CHECKSUM_UNNECESSARY;
977 			}
978 #endif
979 			netif_rx (skb);
980 		}
981 		entry = (entry + 1) % RX_RING_SIZE;
982 	}
983 	spin_lock(&np->rx_lock);
984 	np->cur_rx = entry;
985 	/* Re-allocate skbuffs to fill the descriptor ring */
986 	entry = np->old_rx;
987 	while (entry != np->cur_rx) {
988 		struct sk_buff *skb;
989 		/* Dropped packets don't need to re-allocate */
990 		if (np->rx_skbuff[entry] == NULL) {
991 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
992 			if (skb == NULL) {
993 				np->rx_ring[entry].fraginfo = 0;
994 				printk (KERN_INFO
995 					"%s: receive_packet: "
996 					"Unable to re-allocate Rx skbuff.#%d\n",
997 					dev->name, entry);
998 				break;
999 			}
1000 			np->rx_skbuff[entry] = skb;
1001 			np->rx_ring[entry].fraginfo =
1002 			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1003 						       np->rx_buf_sz, DMA_FROM_DEVICE));
1004 		}
1005 		np->rx_ring[entry].fraginfo |=
1006 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1007 		np->rx_ring[entry].status = 0;
1008 		entry = (entry + 1) % RX_RING_SIZE;
1009 	}
1010 	np->old_rx = entry;
1011 	spin_unlock(&np->rx_lock);
1012 	return 0;
1013 }
1014 
1015 static void
rio_error(struct net_device * dev,int int_status)1016 rio_error (struct net_device *dev, int int_status)
1017 {
1018 	struct netdev_private *np = netdev_priv(dev);
1019 	void __iomem *ioaddr = np->ioaddr;
1020 	u16 macctrl;
1021 
1022 	/* Link change event */
1023 	if (int_status & LinkEvent) {
1024 		if (mii_wait_link (dev, 10) == 0) {
1025 			printk (KERN_INFO "%s: Link up\n", dev->name);
1026 			if (np->phy_media)
1027 				mii_get_media_pcs (dev);
1028 			else
1029 				mii_get_media (dev);
1030 			if (np->speed == 1000)
1031 				np->tx_coalesce = tx_coalesce;
1032 			else
1033 				np->tx_coalesce = 1;
1034 			macctrl = 0;
1035 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1036 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1037 			macctrl |= (np->tx_flow) ?
1038 				TxFlowControlEnable : 0;
1039 			macctrl |= (np->rx_flow) ?
1040 				RxFlowControlEnable : 0;
1041 			dw16(MACCtrl, macctrl);
1042 			np->link_status = 1;
1043 			netif_carrier_on(dev);
1044 		} else {
1045 			printk (KERN_INFO "%s: Link off\n", dev->name);
1046 			np->link_status = 0;
1047 			netif_carrier_off(dev);
1048 		}
1049 	}
1050 
1051 	/* UpdateStats statistics registers */
1052 	if (int_status & UpdateStats) {
1053 		get_stats (dev);
1054 	}
1055 
1056 	/* PCI Error, a catastronphic error related to the bus interface
1057 	   occurs, set GlobalReset and HostReset to reset. */
1058 	if (int_status & HostError) {
1059 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1060 			dev->name, int_status);
1061 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1062 		mdelay (500);
1063 		rio_set_led_mode(dev);
1064 	}
1065 }
1066 
1067 static struct net_device_stats *
get_stats(struct net_device * dev)1068 get_stats (struct net_device *dev)
1069 {
1070 	struct netdev_private *np = netdev_priv(dev);
1071 	void __iomem *ioaddr = np->ioaddr;
1072 #ifdef MEM_MAPPING
1073 	int i;
1074 #endif
1075 	unsigned int stat_reg;
1076 
1077 	/* All statistics registers need to be acknowledged,
1078 	   else statistic overflow could cause problems */
1079 
1080 	dev->stats.rx_packets += dr32(FramesRcvOk);
1081 	dev->stats.tx_packets += dr32(FramesXmtOk);
1082 	dev->stats.rx_bytes += dr32(OctetRcvOk);
1083 	dev->stats.tx_bytes += dr32(OctetXmtOk);
1084 
1085 	dev->stats.multicast = dr32(McstFramesRcvdOk);
1086 	dev->stats.collisions += dr32(SingleColFrames)
1087 			     +  dr32(MultiColFrames);
1088 
1089 	/* detailed tx errors */
1090 	stat_reg = dr16(FramesAbortXSColls);
1091 	dev->stats.tx_aborted_errors += stat_reg;
1092 	dev->stats.tx_errors += stat_reg;
1093 
1094 	stat_reg = dr16(CarrierSenseErrors);
1095 	dev->stats.tx_carrier_errors += stat_reg;
1096 	dev->stats.tx_errors += stat_reg;
1097 
1098 	/* Clear all other statistic register. */
1099 	dr32(McstOctetXmtOk);
1100 	dr16(BcstFramesXmtdOk);
1101 	dr32(McstFramesXmtdOk);
1102 	dr16(BcstFramesRcvdOk);
1103 	dr16(MacControlFramesRcvd);
1104 	dr16(FrameTooLongErrors);
1105 	dr16(InRangeLengthErrors);
1106 	dr16(FramesCheckSeqErrors);
1107 	dr16(FramesLostRxErrors);
1108 	dr32(McstOctetXmtOk);
1109 	dr32(BcstOctetXmtOk);
1110 	dr32(McstFramesXmtdOk);
1111 	dr32(FramesWDeferredXmt);
1112 	dr32(LateCollisions);
1113 	dr16(BcstFramesXmtdOk);
1114 	dr16(MacControlFramesXmtd);
1115 	dr16(FramesWEXDeferal);
1116 
1117 #ifdef MEM_MAPPING
1118 	for (i = 0x100; i <= 0x150; i += 4)
1119 		dr32(i);
1120 #endif
1121 	dr16(TxJumboFrames);
1122 	dr16(RxJumboFrames);
1123 	dr16(TCPCheckSumErrors);
1124 	dr16(UDPCheckSumErrors);
1125 	dr16(IPCheckSumErrors);
1126 	return &dev->stats;
1127 }
1128 
1129 static int
clear_stats(struct net_device * dev)1130 clear_stats (struct net_device *dev)
1131 {
1132 	struct netdev_private *np = netdev_priv(dev);
1133 	void __iomem *ioaddr = np->ioaddr;
1134 #ifdef MEM_MAPPING
1135 	int i;
1136 #endif
1137 
1138 	/* All statistics registers need to be acknowledged,
1139 	   else statistic overflow could cause problems */
1140 	dr32(FramesRcvOk);
1141 	dr32(FramesXmtOk);
1142 	dr32(OctetRcvOk);
1143 	dr32(OctetXmtOk);
1144 
1145 	dr32(McstFramesRcvdOk);
1146 	dr32(SingleColFrames);
1147 	dr32(MultiColFrames);
1148 	dr32(LateCollisions);
1149 	/* detailed rx errors */
1150 	dr16(FrameTooLongErrors);
1151 	dr16(InRangeLengthErrors);
1152 	dr16(FramesCheckSeqErrors);
1153 	dr16(FramesLostRxErrors);
1154 
1155 	/* detailed tx errors */
1156 	dr16(FramesAbortXSColls);
1157 	dr16(CarrierSenseErrors);
1158 
1159 	/* Clear all other statistic register. */
1160 	dr32(McstOctetXmtOk);
1161 	dr16(BcstFramesXmtdOk);
1162 	dr32(McstFramesXmtdOk);
1163 	dr16(BcstFramesRcvdOk);
1164 	dr16(MacControlFramesRcvd);
1165 	dr32(McstOctetXmtOk);
1166 	dr32(BcstOctetXmtOk);
1167 	dr32(McstFramesXmtdOk);
1168 	dr32(FramesWDeferredXmt);
1169 	dr16(BcstFramesXmtdOk);
1170 	dr16(MacControlFramesXmtd);
1171 	dr16(FramesWEXDeferal);
1172 #ifdef MEM_MAPPING
1173 	for (i = 0x100; i <= 0x150; i += 4)
1174 		dr32(i);
1175 #endif
1176 	dr16(TxJumboFrames);
1177 	dr16(RxJumboFrames);
1178 	dr16(TCPCheckSumErrors);
1179 	dr16(UDPCheckSumErrors);
1180 	dr16(IPCheckSumErrors);
1181 	return 0;
1182 }
1183 
1184 static void
set_multicast(struct net_device * dev)1185 set_multicast (struct net_device *dev)
1186 {
1187 	struct netdev_private *np = netdev_priv(dev);
1188 	void __iomem *ioaddr = np->ioaddr;
1189 	u32 hash_table[2];
1190 	u16 rx_mode = 0;
1191 
1192 	hash_table[0] = hash_table[1] = 0;
1193 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1194 	hash_table[1] |= 0x02000000;
1195 	if (dev->flags & IFF_PROMISC) {
1196 		/* Receive all frames promiscuously. */
1197 		rx_mode = ReceiveAllFrames;
1198 	} else if ((dev->flags & IFF_ALLMULTI) ||
1199 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1200 		/* Receive broadcast and multicast frames */
1201 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1202 	} else if (!netdev_mc_empty(dev)) {
1203 		struct netdev_hw_addr *ha;
1204 		/* Receive broadcast frames and multicast frames filtering
1205 		   by Hashtable */
1206 		rx_mode =
1207 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1208 		netdev_for_each_mc_addr(ha, dev) {
1209 			int bit, index = 0;
1210 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1211 			/* The inverted high significant 6 bits of CRC are
1212 			   used as an index to hashtable */
1213 			for (bit = 0; bit < 6; bit++)
1214 				if (crc & (1 << (31 - bit)))
1215 					index |= (1 << bit);
1216 			hash_table[index / 32] |= (1 << (index % 32));
1217 		}
1218 	} else {
1219 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1220 	}
1221 	if (np->vlan) {
1222 		/* ReceiveVLANMatch field in ReceiveMode */
1223 		rx_mode |= ReceiveVLANMatch;
1224 	}
1225 
1226 	dw32(HashTable0, hash_table[0]);
1227 	dw32(HashTable1, hash_table[1]);
1228 	dw16(ReceiveMode, rx_mode);
1229 }
1230 
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1231 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1232 {
1233 	struct netdev_private *np = netdev_priv(dev);
1234 
1235 	strscpy(info->driver, "dl2k", sizeof(info->driver));
1236 	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1237 }
1238 
rio_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1239 static int rio_get_link_ksettings(struct net_device *dev,
1240 				  struct ethtool_link_ksettings *cmd)
1241 {
1242 	struct netdev_private *np = netdev_priv(dev);
1243 	u32 supported, advertising;
1244 
1245 	if (np->phy_media) {
1246 		/* fiber device */
1247 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1248 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1249 		cmd->base.port = PORT_FIBRE;
1250 	} else {
1251 		/* copper device */
1252 		supported = SUPPORTED_10baseT_Half |
1253 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1254 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1255 			SUPPORTED_Autoneg | SUPPORTED_MII;
1256 		advertising = ADVERTISED_10baseT_Half |
1257 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1258 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1259 			ADVERTISED_Autoneg | ADVERTISED_MII;
1260 		cmd->base.port = PORT_MII;
1261 	}
1262 	if (np->link_status) {
1263 		cmd->base.speed = np->speed;
1264 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1265 	} else {
1266 		cmd->base.speed = SPEED_UNKNOWN;
1267 		cmd->base.duplex = DUPLEX_UNKNOWN;
1268 	}
1269 	if (np->an_enable)
1270 		cmd->base.autoneg = AUTONEG_ENABLE;
1271 	else
1272 		cmd->base.autoneg = AUTONEG_DISABLE;
1273 
1274 	cmd->base.phy_address = np->phy_addr;
1275 
1276 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1277 						supported);
1278 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1279 						advertising);
1280 
1281 	return 0;
1282 }
1283 
rio_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1284 static int rio_set_link_ksettings(struct net_device *dev,
1285 				  const struct ethtool_link_ksettings *cmd)
1286 {
1287 	struct netdev_private *np = netdev_priv(dev);
1288 	u32 speed = cmd->base.speed;
1289 	u8 duplex = cmd->base.duplex;
1290 
1291 	netif_carrier_off(dev);
1292 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1293 		if (np->an_enable) {
1294 			return 0;
1295 		} else {
1296 			np->an_enable = 1;
1297 			mii_set_media(dev);
1298 			return 0;
1299 		}
1300 	} else {
1301 		np->an_enable = 0;
1302 		if (np->speed == 1000) {
1303 			speed = SPEED_100;
1304 			duplex = DUPLEX_FULL;
1305 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1306 		}
1307 		switch (speed) {
1308 		case SPEED_10:
1309 			np->speed = 10;
1310 			np->full_duplex = (duplex == DUPLEX_FULL);
1311 			break;
1312 		case SPEED_100:
1313 			np->speed = 100;
1314 			np->full_duplex = (duplex == DUPLEX_FULL);
1315 			break;
1316 		case SPEED_1000: /* not supported */
1317 		default:
1318 			return -EINVAL;
1319 		}
1320 		mii_set_media(dev);
1321 	}
1322 	return 0;
1323 }
1324 
rio_get_link(struct net_device * dev)1325 static u32 rio_get_link(struct net_device *dev)
1326 {
1327 	struct netdev_private *np = netdev_priv(dev);
1328 	return np->link_status;
1329 }
1330 
1331 static const struct ethtool_ops ethtool_ops = {
1332 	.get_drvinfo = rio_get_drvinfo,
1333 	.get_link = rio_get_link,
1334 	.get_link_ksettings = rio_get_link_ksettings,
1335 	.set_link_ksettings = rio_set_link_ksettings,
1336 };
1337 
1338 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1339 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1340 {
1341 	int phy_addr;
1342 	struct netdev_private *np = netdev_priv(dev);
1343 	struct mii_ioctl_data *miidata = if_mii(rq);
1344 
1345 	phy_addr = np->phy_addr;
1346 	switch (cmd) {
1347 	case SIOCGMIIPHY:
1348 		miidata->phy_id = phy_addr;
1349 		break;
1350 	case SIOCGMIIREG:
1351 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1352 		break;
1353 	case SIOCSMIIREG:
1354 		if (!capable(CAP_NET_ADMIN))
1355 			return -EPERM;
1356 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1357 		break;
1358 	default:
1359 		return -EOPNOTSUPP;
1360 	}
1361 	return 0;
1362 }
1363 
1364 #define EEP_READ 0x0200
1365 #define EEP_BUSY 0x8000
1366 /* Read the EEPROM word */
1367 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
read_eeprom(struct netdev_private * np,int eep_addr)1368 static int read_eeprom(struct netdev_private *np, int eep_addr)
1369 {
1370 	void __iomem *ioaddr = np->eeprom_addr;
1371 	int i = 1000;
1372 
1373 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1374 	while (i-- > 0) {
1375 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1376 			return dr16(EepromData);
1377 	}
1378 	return 0;
1379 }
1380 
1381 enum phy_ctrl_bits {
1382 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1383 	MII_DUPLEX = 0x08,
1384 };
1385 
1386 #define mii_delay() dr8(PhyCtrl)
1387 static void
mii_sendbit(struct net_device * dev,u32 data)1388 mii_sendbit (struct net_device *dev, u32 data)
1389 {
1390 	struct netdev_private *np = netdev_priv(dev);
1391 	void __iomem *ioaddr = np->ioaddr;
1392 
1393 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1394 	dw8(PhyCtrl, data);
1395 	mii_delay ();
1396 	dw8(PhyCtrl, data | MII_CLK);
1397 	mii_delay ();
1398 }
1399 
1400 static int
mii_getbit(struct net_device * dev)1401 mii_getbit (struct net_device *dev)
1402 {
1403 	struct netdev_private *np = netdev_priv(dev);
1404 	void __iomem *ioaddr = np->ioaddr;
1405 	u8 data;
1406 
1407 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1408 	dw8(PhyCtrl, data);
1409 	mii_delay ();
1410 	dw8(PhyCtrl, data | MII_CLK);
1411 	mii_delay ();
1412 	return (dr8(PhyCtrl) >> 1) & 1;
1413 }
1414 
1415 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1416 mii_send_bits (struct net_device *dev, u32 data, int len)
1417 {
1418 	int i;
1419 
1420 	for (i = len - 1; i >= 0; i--) {
1421 		mii_sendbit (dev, data & (1 << i));
1422 	}
1423 }
1424 
1425 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1426 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1427 {
1428 	u32 cmd;
1429 	int i;
1430 	u32 retval = 0;
1431 
1432 	/* Preamble */
1433 	mii_send_bits (dev, 0xffffffff, 32);
1434 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1435 	/* ST,OP = 0110'b for read operation */
1436 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1437 	mii_send_bits (dev, cmd, 14);
1438 	/* Turnaround */
1439 	if (mii_getbit (dev))
1440 		goto err_out;
1441 	/* Read data */
1442 	for (i = 0; i < 16; i++) {
1443 		retval |= mii_getbit (dev);
1444 		retval <<= 1;
1445 	}
1446 	/* End cycle */
1447 	mii_getbit (dev);
1448 	return (retval >> 1) & 0xffff;
1449 
1450       err_out:
1451 	return 0;
1452 }
1453 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1454 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1455 {
1456 	u32 cmd;
1457 
1458 	/* Preamble */
1459 	mii_send_bits (dev, 0xffffffff, 32);
1460 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1461 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1462 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1463 	mii_send_bits (dev, cmd, 32);
1464 	/* End cycle */
1465 	mii_getbit (dev);
1466 	return 0;
1467 }
1468 static int
mii_wait_link(struct net_device * dev,int wait)1469 mii_wait_link (struct net_device *dev, int wait)
1470 {
1471 	__u16 bmsr;
1472 	int phy_addr;
1473 	struct netdev_private *np;
1474 
1475 	np = netdev_priv(dev);
1476 	phy_addr = np->phy_addr;
1477 
1478 	do {
1479 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1480 		if (bmsr & BMSR_LSTATUS)
1481 			return 0;
1482 		mdelay (1);
1483 	} while (--wait > 0);
1484 	return -1;
1485 }
1486 static int
mii_get_media(struct net_device * dev)1487 mii_get_media (struct net_device *dev)
1488 {
1489 	__u16 negotiate;
1490 	__u16 bmsr;
1491 	__u16 mscr;
1492 	__u16 mssr;
1493 	int phy_addr;
1494 	struct netdev_private *np;
1495 
1496 	np = netdev_priv(dev);
1497 	phy_addr = np->phy_addr;
1498 
1499 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1500 	if (np->an_enable) {
1501 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1502 			/* Auto-Negotiation not completed */
1503 			return -1;
1504 		}
1505 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1506 			mii_read (dev, phy_addr, MII_LPA);
1507 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1508 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1509 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1510 			np->speed = 1000;
1511 			np->full_duplex = 1;
1512 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1513 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1514 			np->speed = 1000;
1515 			np->full_duplex = 0;
1516 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1517 		} else if (negotiate & ADVERTISE_100FULL) {
1518 			np->speed = 100;
1519 			np->full_duplex = 1;
1520 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1521 		} else if (negotiate & ADVERTISE_100HALF) {
1522 			np->speed = 100;
1523 			np->full_duplex = 0;
1524 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1525 		} else if (negotiate & ADVERTISE_10FULL) {
1526 			np->speed = 10;
1527 			np->full_duplex = 1;
1528 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1529 		} else if (negotiate & ADVERTISE_10HALF) {
1530 			np->speed = 10;
1531 			np->full_duplex = 0;
1532 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1533 		}
1534 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1535 			np->tx_flow &= 1;
1536 			np->rx_flow &= 1;
1537 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1538 			np->tx_flow = 0;
1539 			np->rx_flow &= 1;
1540 		}
1541 		/* else tx_flow, rx_flow = user select  */
1542 	} else {
1543 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1544 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1545 		case BMCR_SPEED1000:
1546 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1547 			break;
1548 		case BMCR_SPEED100:
1549 			printk (KERN_INFO "Operating at 100 Mbps, ");
1550 			break;
1551 		case 0:
1552 			printk (KERN_INFO "Operating at 10 Mbps, ");
1553 		}
1554 		if (bmcr & BMCR_FULLDPLX) {
1555 			printk (KERN_CONT "Full duplex\n");
1556 		} else {
1557 			printk (KERN_CONT "Half duplex\n");
1558 		}
1559 	}
1560 	if (np->tx_flow)
1561 		printk(KERN_INFO "Enable Tx Flow Control\n");
1562 	else
1563 		printk(KERN_INFO "Disable Tx Flow Control\n");
1564 	if (np->rx_flow)
1565 		printk(KERN_INFO "Enable Rx Flow Control\n");
1566 	else
1567 		printk(KERN_INFO "Disable Rx Flow Control\n");
1568 
1569 	return 0;
1570 }
1571 
1572 static int
mii_set_media(struct net_device * dev)1573 mii_set_media (struct net_device *dev)
1574 {
1575 	__u16 pscr;
1576 	__u16 bmcr;
1577 	__u16 bmsr;
1578 	__u16 anar;
1579 	int phy_addr;
1580 	struct netdev_private *np;
1581 	np = netdev_priv(dev);
1582 	phy_addr = np->phy_addr;
1583 
1584 	/* Does user set speed? */
1585 	if (np->an_enable) {
1586 		/* Advertise capabilities */
1587 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1588 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1589 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1590 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1591 			  ADVERTISE_100BASE4);
1592 		if (bmsr & BMSR_100FULL)
1593 			anar |= ADVERTISE_100FULL;
1594 		if (bmsr & BMSR_100HALF)
1595 			anar |= ADVERTISE_100HALF;
1596 		if (bmsr & BMSR_100BASE4)
1597 			anar |= ADVERTISE_100BASE4;
1598 		if (bmsr & BMSR_10FULL)
1599 			anar |= ADVERTISE_10FULL;
1600 		if (bmsr & BMSR_10HALF)
1601 			anar |= ADVERTISE_10HALF;
1602 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1603 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1604 
1605 		/* Enable Auto crossover */
1606 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1607 		pscr |= 3 << 5;	/* 11'b */
1608 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1609 
1610 		/* Soft reset PHY */
1611 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1612 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1613 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1614 		mdelay(1);
1615 	} else {
1616 		/* Force speed setting */
1617 		/* 1) Disable Auto crossover */
1618 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1619 		pscr &= ~(3 << 5);
1620 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1621 
1622 		/* 2) PHY Reset */
1623 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1624 		bmcr |= BMCR_RESET;
1625 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1626 
1627 		/* 3) Power Down */
1628 		bmcr = 0x1940;	/* must be 0x1940 */
1629 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630 		mdelay (100);	/* wait a certain time */
1631 
1632 		/* 4) Advertise nothing */
1633 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1634 
1635 		/* 5) Set media and Power Up */
1636 		bmcr = BMCR_PDOWN;
1637 		if (np->speed == 100) {
1638 			bmcr |= BMCR_SPEED100;
1639 			printk (KERN_INFO "Manual 100 Mbps, ");
1640 		} else if (np->speed == 10) {
1641 			printk (KERN_INFO "Manual 10 Mbps, ");
1642 		}
1643 		if (np->full_duplex) {
1644 			bmcr |= BMCR_FULLDPLX;
1645 			printk (KERN_CONT "Full duplex\n");
1646 		} else {
1647 			printk (KERN_CONT "Half duplex\n");
1648 		}
1649 #if 0
1650 		/* Set 1000BaseT Master/Slave setting */
1651 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1652 		mscr |= MII_MSCR_CFG_ENABLE;
1653 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1654 #endif
1655 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1656 		mdelay(10);
1657 	}
1658 	return 0;
1659 }
1660 
1661 static int
mii_get_media_pcs(struct net_device * dev)1662 mii_get_media_pcs (struct net_device *dev)
1663 {
1664 	__u16 negotiate;
1665 	__u16 bmsr;
1666 	int phy_addr;
1667 	struct netdev_private *np;
1668 
1669 	np = netdev_priv(dev);
1670 	phy_addr = np->phy_addr;
1671 
1672 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1673 	if (np->an_enable) {
1674 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1675 			/* Auto-Negotiation not completed */
1676 			return -1;
1677 		}
1678 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1679 			mii_read (dev, phy_addr, PCS_ANLPAR);
1680 		np->speed = 1000;
1681 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1682 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1683 			np->full_duplex = 1;
1684 		} else {
1685 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1686 			np->full_duplex = 0;
1687 		}
1688 		if (negotiate & PCS_ANAR_PAUSE) {
1689 			np->tx_flow &= 1;
1690 			np->rx_flow &= 1;
1691 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1692 			np->tx_flow = 0;
1693 			np->rx_flow &= 1;
1694 		}
1695 		/* else tx_flow, rx_flow = user select  */
1696 	} else {
1697 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1698 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1699 		if (bmcr & BMCR_FULLDPLX) {
1700 			printk (KERN_CONT "Full duplex\n");
1701 		} else {
1702 			printk (KERN_CONT "Half duplex\n");
1703 		}
1704 	}
1705 	if (np->tx_flow)
1706 		printk(KERN_INFO "Enable Tx Flow Control\n");
1707 	else
1708 		printk(KERN_INFO "Disable Tx Flow Control\n");
1709 	if (np->rx_flow)
1710 		printk(KERN_INFO "Enable Rx Flow Control\n");
1711 	else
1712 		printk(KERN_INFO "Disable Rx Flow Control\n");
1713 
1714 	return 0;
1715 }
1716 
1717 static int
mii_set_media_pcs(struct net_device * dev)1718 mii_set_media_pcs (struct net_device *dev)
1719 {
1720 	__u16 bmcr;
1721 	__u16 esr;
1722 	__u16 anar;
1723 	int phy_addr;
1724 	struct netdev_private *np;
1725 	np = netdev_priv(dev);
1726 	phy_addr = np->phy_addr;
1727 
1728 	/* Auto-Negotiation? */
1729 	if (np->an_enable) {
1730 		/* Advertise capabilities */
1731 		esr = mii_read (dev, phy_addr, PCS_ESR);
1732 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1733 			~PCS_ANAR_HALF_DUPLEX &
1734 			~PCS_ANAR_FULL_DUPLEX;
1735 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1736 			anar |= PCS_ANAR_HALF_DUPLEX;
1737 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1738 			anar |= PCS_ANAR_FULL_DUPLEX;
1739 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1740 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1741 
1742 		/* Soft reset PHY */
1743 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1744 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1745 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1746 		mdelay(1);
1747 	} else {
1748 		/* Force speed setting */
1749 		/* PHY Reset */
1750 		bmcr = BMCR_RESET;
1751 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1752 		mdelay(10);
1753 		if (np->full_duplex) {
1754 			bmcr = BMCR_FULLDPLX;
1755 			printk (KERN_INFO "Manual full duplex\n");
1756 		} else {
1757 			bmcr = 0;
1758 			printk (KERN_INFO "Manual half duplex\n");
1759 		}
1760 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1761 		mdelay(10);
1762 
1763 		/*  Advertise nothing */
1764 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1765 	}
1766 	return 0;
1767 }
1768 
1769 
1770 static int
rio_close(struct net_device * dev)1771 rio_close (struct net_device *dev)
1772 {
1773 	struct netdev_private *np = netdev_priv(dev);
1774 	struct pci_dev *pdev = np->pdev;
1775 
1776 	netif_stop_queue (dev);
1777 
1778 	rio_hw_stop(dev);
1779 
1780 	free_irq(pdev->irq, dev);
1781 	del_timer_sync (&np->timer);
1782 
1783 	free_list(dev);
1784 
1785 	return 0;
1786 }
1787 
1788 static void
rio_remove1(struct pci_dev * pdev)1789 rio_remove1 (struct pci_dev *pdev)
1790 {
1791 	struct net_device *dev = pci_get_drvdata (pdev);
1792 
1793 	if (dev) {
1794 		struct netdev_private *np = netdev_priv(dev);
1795 
1796 		unregister_netdev (dev);
1797 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1798 				  np->rx_ring_dma);
1799 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1800 				  np->tx_ring_dma);
1801 #ifdef MEM_MAPPING
1802 		pci_iounmap(pdev, np->ioaddr);
1803 #endif
1804 		pci_iounmap(pdev, np->eeprom_addr);
1805 		free_netdev (dev);
1806 		pci_release_regions (pdev);
1807 		pci_disable_device (pdev);
1808 	}
1809 }
1810 
1811 #ifdef CONFIG_PM_SLEEP
rio_suspend(struct device * device)1812 static int rio_suspend(struct device *device)
1813 {
1814 	struct net_device *dev = dev_get_drvdata(device);
1815 	struct netdev_private *np = netdev_priv(dev);
1816 
1817 	if (!netif_running(dev))
1818 		return 0;
1819 
1820 	netif_device_detach(dev);
1821 	del_timer_sync(&np->timer);
1822 	rio_hw_stop(dev);
1823 
1824 	return 0;
1825 }
1826 
rio_resume(struct device * device)1827 static int rio_resume(struct device *device)
1828 {
1829 	struct net_device *dev = dev_get_drvdata(device);
1830 	struct netdev_private *np = netdev_priv(dev);
1831 
1832 	if (!netif_running(dev))
1833 		return 0;
1834 
1835 	rio_reset_ring(np);
1836 	rio_hw_init(dev);
1837 	np->timer.expires = jiffies + 1 * HZ;
1838 	add_timer(&np->timer);
1839 	netif_device_attach(dev);
1840 	dl2k_enable_int(np);
1841 
1842 	return 0;
1843 }
1844 
1845 static DEFINE_SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1846 #define RIO_PM_OPS    (&rio_pm_ops)
1847 
1848 #else
1849 
1850 #define RIO_PM_OPS	NULL
1851 
1852 #endif /* CONFIG_PM_SLEEP */
1853 
1854 static struct pci_driver rio_driver = {
1855 	.name		= "dl2k",
1856 	.id_table	= rio_pci_tbl,
1857 	.probe		= rio_probe1,
1858 	.remove		= rio_remove1,
1859 	.driver.pm	= RIO_PM_OPS,
1860 };
1861 
1862 module_pci_driver(rio_driver);
1863 
1864 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1865