xref: /freebsd/sys/kern/kern_proc.c (revision 7212b37345936899e979c63d0b054e114576faa0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_ddb.h"
34 #include "opt_ktrace.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_stack.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bitstring.h>
41 #include <sys/conf.h>
42 #include <sys/elf.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/ipc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/loginclass.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/shm.h>
66 #include <sys/smp.h>
67 #include <sys/stack.h>
68 #include <sys/stat.h>
69 #include <sys/dtrace_bsd.h>
70 #include <sys/sysctl.h>
71 #include <sys/filedesc.h>
72 #include <sys/tty.h>
73 #include <sys/signalvar.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/user.h>
77 #include <sys/vnode.h>
78 #include <sys/wait.h>
79 #ifdef KTRACE
80 #include <sys/ktrace.h>
81 #endif
82 
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/vm_extern.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_radix.h>
96 #include <vm/uma.h>
97 
98 #include <fs/devfs/devfs.h>
99 
100 #ifdef COMPAT_FREEBSD32
101 #include <compat/freebsd32/freebsd32.h>
102 #include <compat/freebsd32/freebsd32_util.h>
103 #endif
104 
105 SDT_PROVIDER_DEFINE(proc);
106 
107 MALLOC_DEFINE(M_SESSION, "session", "session header");
108 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
109 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
110 
111 static void doenterpgrp(struct proc *, struct pgrp *);
112 static void orphanpg(struct pgrp *pg);
113 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
115 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
116     int preferthread);
117 static void pgdelete(struct pgrp *);
118 static int pgrp_init(void *mem, int size, int flags);
119 static int proc_ctor(void *mem, int size, void *arg, int flags);
120 static void proc_dtor(void *mem, int size, void *arg);
121 static int proc_init(void *mem, int size, int flags);
122 static void proc_fini(void *mem, int size);
123 static void pargs_free(struct pargs *pa);
124 
125 /*
126  * Other process lists
127  */
128 struct pidhashhead *pidhashtbl = NULL;
129 struct sx *pidhashtbl_lock;
130 u_long pidhash;
131 u_long pidhashlock;
132 struct pgrphashhead *pgrphashtbl;
133 u_long pgrphash;
134 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
135 struct sx __exclusive_cache_line allproc_lock;
136 struct sx __exclusive_cache_line proctree_lock;
137 struct mtx __exclusive_cache_line ppeers_lock;
138 struct mtx __exclusive_cache_line procid_lock;
139 uma_zone_t proc_zone;
140 uma_zone_t pgrp_zone;
141 
142 /*
143  * The offset of various fields in struct proc and struct thread.
144  * These are used by kernel debuggers to enumerate kernel threads and
145  * processes.
146  */
147 const int proc_off_p_pid = offsetof(struct proc, p_pid);
148 const int proc_off_p_comm = offsetof(struct proc, p_comm);
149 const int proc_off_p_list = offsetof(struct proc, p_list);
150 const int proc_off_p_hash = offsetof(struct proc, p_hash);
151 const int proc_off_p_threads = offsetof(struct proc, p_threads);
152 const int thread_off_td_tid = offsetof(struct thread, td_tid);
153 const int thread_off_td_name = offsetof(struct thread, td_name);
154 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
155 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
156 const int thread_off_td_plist = offsetof(struct thread, td_plist);
157 
158 EVENTHANDLER_LIST_DEFINE(process_ctor);
159 EVENTHANDLER_LIST_DEFINE(process_dtor);
160 EVENTHANDLER_LIST_DEFINE(process_init);
161 EVENTHANDLER_LIST_DEFINE(process_fini);
162 EVENTHANDLER_LIST_DEFINE(process_exit);
163 EVENTHANDLER_LIST_DEFINE(process_fork);
164 EVENTHANDLER_LIST_DEFINE(process_exec);
165 
166 int kstack_pages = KSTACK_PAGES;
167 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168     &kstack_pages, 0,
169     "Kernel stack size in pages");
170 static int vmmap_skip_res_cnt = 0;
171 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
172     &vmmap_skip_res_cnt, 0,
173     "Skip calculation of the pages resident count in kern.proc.vmmap");
174 
175 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
176 #ifdef COMPAT_FREEBSD32
177 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
178 #endif
179 
180 /*
181  * Initialize global process hashing structures.
182  */
183 void
procinit(void)184 procinit(void)
185 {
186 	u_long i;
187 
188 	sx_init(&allproc_lock, "allproc");
189 	sx_init(&proctree_lock, "proctree");
190 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
191 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
192 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
193 	pidhashlock = (pidhash + 1) / 64;
194 	if (pidhashlock > 0)
195 		pidhashlock--;
196 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
197 	    M_PROC, M_WAITOK | M_ZERO);
198 	for (i = 0; i < pidhashlock + 1; i++)
199 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
200 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
201 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
202 	    proc_ctor, proc_dtor, proc_init, proc_fini,
203 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 	pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
205 	    pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206 	uihashinit();
207 }
208 
209 /*
210  * Prepare a proc for use.
211  */
212 static int
proc_ctor(void * mem,int size,void * arg,int flags)213 proc_ctor(void *mem, int size, void *arg, int flags)
214 {
215 	struct proc *p;
216 	struct thread *td;
217 
218 	p = (struct proc *)mem;
219 #ifdef KDTRACE_HOOKS
220 	kdtrace_proc_ctor(p);
221 #endif
222 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
223 	td = FIRST_THREAD_IN_PROC(p);
224 	if (td != NULL) {
225 		/* Make sure all thread constructors are executed */
226 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
227 	}
228 	return (0);
229 }
230 
231 /*
232  * Reclaim a proc after use.
233  */
234 static void
proc_dtor(void * mem,int size,void * arg)235 proc_dtor(void *mem, int size, void *arg)
236 {
237 	struct proc *p;
238 	struct thread *td;
239 
240 	/* INVARIANTS checks go here */
241 	p = (struct proc *)mem;
242 	td = FIRST_THREAD_IN_PROC(p);
243 	if (td != NULL) {
244 #ifdef INVARIANTS
245 		KASSERT((p->p_numthreads == 1),
246 		    ("bad number of threads in exiting process"));
247 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
248 #endif
249 		/* Free all OSD associated to this thread. */
250 		osd_thread_exit(td);
251 		ast_kclear(td);
252 
253 		/* Make sure all thread destructors are executed */
254 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
255 	}
256 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
257 #ifdef KDTRACE_HOOKS
258 	kdtrace_proc_dtor(p);
259 #endif
260 	if (p->p_ksi != NULL)
261 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
262 }
263 
264 /*
265  * Initialize type-stable parts of a proc (when newly created).
266  */
267 static int
proc_init(void * mem,int size,int flags)268 proc_init(void *mem, int size, int flags)
269 {
270 	struct proc *p;
271 
272 	p = (struct proc *)mem;
273 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
274 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
275 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
276 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
277 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
278 	cv_init(&p->p_pwait, "ppwait");
279 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
280 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
281 	p->p_stats = pstats_alloc();
282 	p->p_pgrp = NULL;
283 	TAILQ_INIT(&p->p_kqtim_stop);
284 	return (0);
285 }
286 
287 /*
288  * UMA should ensure that this function is never called.
289  * Freeing a proc structure would violate type stability.
290  */
291 static void
proc_fini(void * mem,int size)292 proc_fini(void *mem, int size)
293 {
294 #ifdef notnow
295 	struct proc *p;
296 
297 	p = (struct proc *)mem;
298 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
299 	pstats_free(p->p_stats);
300 	thread_free(FIRST_THREAD_IN_PROC(p));
301 	mtx_destroy(&p->p_mtx);
302 	if (p->p_ksi != NULL)
303 		ksiginfo_free(p->p_ksi);
304 #else
305 	panic("proc reclaimed");
306 #endif
307 }
308 
309 static int
pgrp_init(void * mem,int size,int flags)310 pgrp_init(void *mem, int size, int flags)
311 {
312 	struct pgrp *pg;
313 
314 	pg = mem;
315 	mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
316 	sx_init(&pg->pg_killsx, "killpg racer");
317 	return (0);
318 }
319 
320 /*
321  * PID space management.
322  *
323  * These bitmaps are used by fork_findpid.
324  */
325 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
326 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
327 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
328 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
329 
330 static bitstr_t *proc_id_array[] = {
331 	proc_id_pidmap,
332 	proc_id_grpidmap,
333 	proc_id_sessidmap,
334 	proc_id_reapmap,
335 };
336 
337 void
proc_id_set(int type,pid_t id)338 proc_id_set(int type, pid_t id)
339 {
340 
341 	KASSERT(type >= 0 && type < nitems(proc_id_array),
342 	    ("invalid type %d\n", type));
343 	mtx_lock(&procid_lock);
344 	KASSERT(bit_test(proc_id_array[type], id) == 0,
345 	    ("bit %d already set in %d\n", id, type));
346 	bit_set(proc_id_array[type], id);
347 	mtx_unlock(&procid_lock);
348 }
349 
350 void
proc_id_set_cond(int type,pid_t id)351 proc_id_set_cond(int type, pid_t id)
352 {
353 
354 	KASSERT(type >= 0 && type < nitems(proc_id_array),
355 	    ("invalid type %d\n", type));
356 	if (bit_test(proc_id_array[type], id))
357 		return;
358 	mtx_lock(&procid_lock);
359 	bit_set(proc_id_array[type], id);
360 	mtx_unlock(&procid_lock);
361 }
362 
363 void
proc_id_clear(int type,pid_t id)364 proc_id_clear(int type, pid_t id)
365 {
366 
367 	KASSERT(type >= 0 && type < nitems(proc_id_array),
368 	    ("invalid type %d\n", type));
369 	mtx_lock(&procid_lock);
370 	KASSERT(bit_test(proc_id_array[type], id) != 0,
371 	    ("bit %d not set in %d\n", id, type));
372 	bit_clear(proc_id_array[type], id);
373 	mtx_unlock(&procid_lock);
374 }
375 
376 /*
377  * Is p an inferior of the current process?
378  */
379 int
inferior(struct proc * p)380 inferior(struct proc *p)
381 {
382 
383 	sx_assert(&proctree_lock, SX_LOCKED);
384 	PROC_LOCK_ASSERT(p, MA_OWNED);
385 	for (; p != curproc; p = proc_realparent(p)) {
386 		if (p->p_pid == 0)
387 			return (0);
388 	}
389 	return (1);
390 }
391 
392 /*
393  * Shared lock all the pid hash lists.
394  */
395 void
pidhash_slockall(void)396 pidhash_slockall(void)
397 {
398 	u_long i;
399 
400 	for (i = 0; i < pidhashlock + 1; i++)
401 		sx_slock(&pidhashtbl_lock[i]);
402 }
403 
404 /*
405  * Shared unlock all the pid hash lists.
406  */
407 void
pidhash_sunlockall(void)408 pidhash_sunlockall(void)
409 {
410 	u_long i;
411 
412 	for (i = 0; i < pidhashlock + 1; i++)
413 		sx_sunlock(&pidhashtbl_lock[i]);
414 }
415 
416 /*
417  * Similar to pfind(), this function locate a process by number.
418  */
419 struct proc *
pfind_any_locked(pid_t pid)420 pfind_any_locked(pid_t pid)
421 {
422 	struct proc *p;
423 
424 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
425 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
426 		if (p->p_pid == pid) {
427 			PROC_LOCK(p);
428 			if (p->p_state == PRS_NEW) {
429 				PROC_UNLOCK(p);
430 				p = NULL;
431 			}
432 			break;
433 		}
434 	}
435 	return (p);
436 }
437 
438 /*
439  * Locate a process by number.
440  *
441  * By not returning processes in the PRS_NEW state, we allow callers to avoid
442  * testing for that condition to avoid dereferencing p_ucred, et al.
443  */
444 static __always_inline struct proc *
_pfind(pid_t pid,bool zombie)445 _pfind(pid_t pid, bool zombie)
446 {
447 	struct proc *p;
448 
449 	p = curproc;
450 	if (p->p_pid == pid) {
451 		PROC_LOCK(p);
452 		return (p);
453 	}
454 	sx_slock(PIDHASHLOCK(pid));
455 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
456 		if (p->p_pid == pid) {
457 			PROC_LOCK(p);
458 			if (p->p_state == PRS_NEW ||
459 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
460 				PROC_UNLOCK(p);
461 				p = NULL;
462 			}
463 			break;
464 		}
465 	}
466 	sx_sunlock(PIDHASHLOCK(pid));
467 	return (p);
468 }
469 
470 struct proc *
pfind(pid_t pid)471 pfind(pid_t pid)
472 {
473 
474 	return (_pfind(pid, false));
475 }
476 
477 /*
478  * Same as pfind but allow zombies.
479  */
480 struct proc *
pfind_any(pid_t pid)481 pfind_any(pid_t pid)
482 {
483 
484 	return (_pfind(pid, true));
485 }
486 
487 /*
488  * Locate a process group by number.
489  * The caller must hold proctree_lock.
490  */
491 struct pgrp *
pgfind(pid_t pgid)492 pgfind(pid_t pgid)
493 {
494 	struct pgrp *pgrp;
495 
496 	sx_assert(&proctree_lock, SX_LOCKED);
497 
498 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
499 		if (pgrp->pg_id == pgid) {
500 			PGRP_LOCK(pgrp);
501 			return (pgrp);
502 		}
503 	}
504 	return (NULL);
505 }
506 
507 /*
508  * Locate process and do additional manipulations, depending on flags.
509  */
510 int
pget(pid_t pid,int flags,struct proc ** pp)511 pget(pid_t pid, int flags, struct proc **pp)
512 {
513 	struct proc *p;
514 	struct thread *td1;
515 	int error;
516 
517 	p = curproc;
518 	if (p->p_pid == pid) {
519 		PROC_LOCK(p);
520 	} else {
521 		p = NULL;
522 		if (pid <= PID_MAX) {
523 			if ((flags & PGET_NOTWEXIT) == 0)
524 				p = pfind_any(pid);
525 			else
526 				p = pfind(pid);
527 		} else if ((flags & PGET_NOTID) == 0) {
528 			td1 = tdfind(pid, -1);
529 			if (td1 != NULL)
530 				p = td1->td_proc;
531 		}
532 		if (p == NULL)
533 			return (ESRCH);
534 		if ((flags & PGET_CANSEE) != 0) {
535 			error = p_cansee(curthread, p);
536 			if (error != 0)
537 				goto errout;
538 		}
539 	}
540 	if ((flags & PGET_CANDEBUG) != 0) {
541 		error = p_candebug(curthread, p);
542 		if (error != 0)
543 			goto errout;
544 	}
545 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
546 		error = EPERM;
547 		goto errout;
548 	}
549 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
550 		error = ESRCH;
551 		goto errout;
552 	}
553 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
554 		/*
555 		 * XXXRW: Not clear ESRCH is the right error during proc
556 		 * execve().
557 		 */
558 		error = ESRCH;
559 		goto errout;
560 	}
561 	if ((flags & PGET_HOLD) != 0) {
562 		_PHOLD(p);
563 		PROC_UNLOCK(p);
564 	}
565 	*pp = p;
566 	return (0);
567 errout:
568 	PROC_UNLOCK(p);
569 	return (error);
570 }
571 
572 /*
573  * Create a new process group.
574  * pgid must be equal to the pid of p.
575  * Begin a new session if required.
576  */
577 int
enterpgrp(struct proc * p,pid_t pgid,struct pgrp * pgrp,struct session * sess)578 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
579 {
580 	struct pgrp *old_pgrp;
581 
582 	sx_assert(&proctree_lock, SX_XLOCKED);
583 
584 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
585 	KASSERT(p->p_pid == pgid,
586 	    ("enterpgrp: new pgrp and pid != pgid"));
587 	KASSERT(pgfind(pgid) == NULL,
588 	    ("enterpgrp: pgrp with pgid exists"));
589 	KASSERT(!SESS_LEADER(p),
590 	    ("enterpgrp: session leader attempted setpgrp"));
591 
592 	old_pgrp = p->p_pgrp;
593 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
594 		sx_xunlock(&proctree_lock);
595 		sx_xlock(&old_pgrp->pg_killsx);
596 		sx_xunlock(&old_pgrp->pg_killsx);
597 		return (ERESTART);
598 	}
599 	MPASS(old_pgrp == p->p_pgrp);
600 
601 	if (sess != NULL) {
602 		/*
603 		 * new session
604 		 */
605 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
606 		PROC_LOCK(p);
607 		p->p_flag &= ~P_CONTROLT;
608 		PROC_UNLOCK(p);
609 		PGRP_LOCK(pgrp);
610 		sess->s_leader = p;
611 		sess->s_sid = p->p_pid;
612 		proc_id_set(PROC_ID_SESSION, p->p_pid);
613 		refcount_init(&sess->s_count, 1);
614 		sess->s_ttyvp = NULL;
615 		sess->s_ttydp = NULL;
616 		sess->s_ttyp = NULL;
617 		bcopy(p->p_session->s_login, sess->s_login,
618 			    sizeof(sess->s_login));
619 		pgrp->pg_session = sess;
620 		KASSERT(p == curproc,
621 		    ("enterpgrp: mksession and p != curproc"));
622 	} else {
623 		pgrp->pg_session = p->p_session;
624 		sess_hold(pgrp->pg_session);
625 		PGRP_LOCK(pgrp);
626 	}
627 	pgrp->pg_id = pgid;
628 	proc_id_set(PROC_ID_GROUP, p->p_pid);
629 	LIST_INIT(&pgrp->pg_members);
630 	pgrp->pg_flags = 0;
631 
632 	/*
633 	 * As we have an exclusive lock of proctree_lock,
634 	 * this should not deadlock.
635 	 */
636 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
637 	SLIST_INIT(&pgrp->pg_sigiolst);
638 	PGRP_UNLOCK(pgrp);
639 
640 	doenterpgrp(p, pgrp);
641 
642 	sx_xunlock(&old_pgrp->pg_killsx);
643 	return (0);
644 }
645 
646 /*
647  * Move p to an existing process group
648  */
649 int
enterthispgrp(struct proc * p,struct pgrp * pgrp)650 enterthispgrp(struct proc *p, struct pgrp *pgrp)
651 {
652 	struct pgrp *old_pgrp;
653 
654 	sx_assert(&proctree_lock, SX_XLOCKED);
655 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
656 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
657 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
658 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
659 	KASSERT(pgrp->pg_session == p->p_session,
660 	    ("%s: pgrp's session %p, p->p_session %p proc %p\n",
661 	    __func__, pgrp->pg_session, p->p_session, p));
662 	KASSERT(pgrp != p->p_pgrp,
663 	    ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
664 
665 	old_pgrp = p->p_pgrp;
666 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
667 		sx_xunlock(&proctree_lock);
668 		sx_xlock(&old_pgrp->pg_killsx);
669 		sx_xunlock(&old_pgrp->pg_killsx);
670 		return (ERESTART);
671 	}
672 	MPASS(old_pgrp == p->p_pgrp);
673 	if (!sx_try_xlock(&pgrp->pg_killsx)) {
674 		sx_xunlock(&old_pgrp->pg_killsx);
675 		sx_xunlock(&proctree_lock);
676 		sx_xlock(&pgrp->pg_killsx);
677 		sx_xunlock(&pgrp->pg_killsx);
678 		return (ERESTART);
679 	}
680 
681 	doenterpgrp(p, pgrp);
682 
683 	sx_xunlock(&pgrp->pg_killsx);
684 	sx_xunlock(&old_pgrp->pg_killsx);
685 	return (0);
686 }
687 
688 /*
689  * If true, any child of q which belongs to group pgrp, qualifies the
690  * process group pgrp as not orphaned.
691  */
692 static bool
isjobproc(struct proc * q,struct pgrp * pgrp)693 isjobproc(struct proc *q, struct pgrp *pgrp)
694 {
695 	sx_assert(&proctree_lock, SX_LOCKED);
696 
697 	return (q->p_pgrp != pgrp &&
698 	    q->p_pgrp->pg_session == pgrp->pg_session);
699 }
700 
701 static struct proc *
jobc_reaper(struct proc * p)702 jobc_reaper(struct proc *p)
703 {
704 	struct proc *pp;
705 
706 	sx_assert(&proctree_lock, SA_LOCKED);
707 
708 	for (pp = p;;) {
709 		pp = pp->p_reaper;
710 		if (pp->p_reaper == pp ||
711 		    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
712 			return (pp);
713 	}
714 }
715 
716 static struct proc *
jobc_parent(struct proc * p,struct proc * p_exiting)717 jobc_parent(struct proc *p, struct proc *p_exiting)
718 {
719 	struct proc *pp;
720 
721 	sx_assert(&proctree_lock, SA_LOCKED);
722 
723 	pp = proc_realparent(p);
724 	if (pp->p_pptr == NULL || pp == p_exiting ||
725 	    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
726 		return (pp);
727 	return (jobc_reaper(pp));
728 }
729 
730 int
pgrp_calc_jobc(struct pgrp * pgrp)731 pgrp_calc_jobc(struct pgrp *pgrp)
732 {
733 	struct proc *q;
734 	int cnt;
735 
736 #ifdef INVARIANTS
737 	if (!mtx_owned(&pgrp->pg_mtx))
738 		sx_assert(&proctree_lock, SA_LOCKED);
739 #endif
740 
741 	cnt = 0;
742 	LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
743 		if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
744 		    q->p_pptr == NULL)
745 			continue;
746 		if (isjobproc(jobc_parent(q, NULL), pgrp))
747 			cnt++;
748 	}
749 	return (cnt);
750 }
751 
752 /*
753  * Move p to a process group
754  */
755 static void
doenterpgrp(struct proc * p,struct pgrp * pgrp)756 doenterpgrp(struct proc *p, struct pgrp *pgrp)
757 {
758 	struct pgrp *savepgrp;
759 	struct proc *pp;
760 
761 	sx_assert(&proctree_lock, SX_XLOCKED);
762 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
763 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
764 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
765 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
766 
767 	savepgrp = p->p_pgrp;
768 	pp = jobc_parent(p, NULL);
769 
770 	PGRP_LOCK(pgrp);
771 	PGRP_LOCK(savepgrp);
772 	if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
773 		orphanpg(savepgrp);
774 	PROC_LOCK(p);
775 	LIST_REMOVE(p, p_pglist);
776 	p->p_pgrp = pgrp;
777 	PROC_UNLOCK(p);
778 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
779 	if (isjobproc(pp, pgrp))
780 		pgrp->pg_flags &= ~PGRP_ORPHANED;
781 	PGRP_UNLOCK(savepgrp);
782 	PGRP_UNLOCK(pgrp);
783 	if (LIST_EMPTY(&savepgrp->pg_members))
784 		pgdelete(savepgrp);
785 }
786 
787 /*
788  * remove process from process group
789  */
790 int
leavepgrp(struct proc * p)791 leavepgrp(struct proc *p)
792 {
793 	struct pgrp *savepgrp;
794 
795 	sx_assert(&proctree_lock, SX_XLOCKED);
796 	savepgrp = p->p_pgrp;
797 	PGRP_LOCK(savepgrp);
798 	PROC_LOCK(p);
799 	LIST_REMOVE(p, p_pglist);
800 	p->p_pgrp = NULL;
801 	PROC_UNLOCK(p);
802 	PGRP_UNLOCK(savepgrp);
803 	if (LIST_EMPTY(&savepgrp->pg_members))
804 		pgdelete(savepgrp);
805 	return (0);
806 }
807 
808 /*
809  * delete a process group
810  */
811 static void
pgdelete(struct pgrp * pgrp)812 pgdelete(struct pgrp *pgrp)
813 {
814 	struct session *savesess;
815 	struct tty *tp;
816 
817 	sx_assert(&proctree_lock, SX_XLOCKED);
818 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
819 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
820 
821 	/*
822 	 * Reset any sigio structures pointing to us as a result of
823 	 * F_SETOWN with our pgid.  The proctree lock ensures that
824 	 * new sigio structures will not be added after this point.
825 	 */
826 	funsetownlst(&pgrp->pg_sigiolst);
827 
828 	PGRP_LOCK(pgrp);
829 	tp = pgrp->pg_session->s_ttyp;
830 	LIST_REMOVE(pgrp, pg_hash);
831 	savesess = pgrp->pg_session;
832 	PGRP_UNLOCK(pgrp);
833 
834 	/* Remove the reference to the pgrp before deallocating it. */
835 	if (tp != NULL) {
836 		tty_lock(tp);
837 		tty_rel_pgrp(tp, pgrp);
838 	}
839 
840 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
841 	uma_zfree(pgrp_zone, pgrp);
842 	sess_release(savesess);
843 }
844 
845 
846 static void
fixjobc_kill(struct proc * p)847 fixjobc_kill(struct proc *p)
848 {
849 	struct proc *q;
850 	struct pgrp *pgrp;
851 
852 	sx_assert(&proctree_lock, SX_LOCKED);
853 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
854 	pgrp = p->p_pgrp;
855 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
856 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
857 
858 	/*
859 	 * p no longer affects process group orphanage for children.
860 	 * It is marked by the flag because p is only physically
861 	 * removed from its process group on wait(2).
862 	 */
863 	MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
864 	p->p_treeflag |= P_TREE_GRPEXITED;
865 
866 	/*
867 	 * Check if exiting p orphans its own group.
868 	 */
869 	pgrp = p->p_pgrp;
870 	if (isjobproc(jobc_parent(p, NULL), pgrp)) {
871 		PGRP_LOCK(pgrp);
872 		if (pgrp_calc_jobc(pgrp) == 0)
873 			orphanpg(pgrp);
874 		PGRP_UNLOCK(pgrp);
875 	}
876 
877 	/*
878 	 * Check this process' children to see whether they qualify
879 	 * their process groups after reparenting to reaper.
880 	 */
881 	LIST_FOREACH(q, &p->p_children, p_sibling) {
882 		pgrp = q->p_pgrp;
883 		PGRP_LOCK(pgrp);
884 		if (pgrp_calc_jobc(pgrp) == 0) {
885 			/*
886 			 * We want to handle exactly the children that
887 			 * has p as realparent.  Then, when calculating
888 			 * jobc_parent for children, we should ignore
889 			 * P_TREE_GRPEXITED flag already set on p.
890 			 */
891 			if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
892 				orphanpg(pgrp);
893 		} else
894 			pgrp->pg_flags &= ~PGRP_ORPHANED;
895 		PGRP_UNLOCK(pgrp);
896 	}
897 	LIST_FOREACH(q, &p->p_orphans, p_orphan) {
898 		pgrp = q->p_pgrp;
899 		PGRP_LOCK(pgrp);
900 		if (pgrp_calc_jobc(pgrp) == 0) {
901 			if (isjobproc(p, pgrp))
902 				orphanpg(pgrp);
903 		} else
904 			pgrp->pg_flags &= ~PGRP_ORPHANED;
905 		PGRP_UNLOCK(pgrp);
906 	}
907 }
908 
909 void
killjobc(void)910 killjobc(void)
911 {
912 	struct session *sp;
913 	struct tty *tp;
914 	struct proc *p;
915 	struct vnode *ttyvp;
916 
917 	p = curproc;
918 	MPASS(p->p_flag & P_WEXIT);
919 	sx_assert(&proctree_lock, SX_LOCKED);
920 
921 	if (SESS_LEADER(p)) {
922 		sp = p->p_session;
923 
924 		/*
925 		 * s_ttyp is not zero'd; we use this to indicate that
926 		 * the session once had a controlling terminal. (for
927 		 * logging and informational purposes)
928 		 */
929 		SESS_LOCK(sp);
930 		ttyvp = sp->s_ttyvp;
931 		tp = sp->s_ttyp;
932 		sp->s_ttyvp = NULL;
933 		sp->s_ttydp = NULL;
934 		sp->s_leader = NULL;
935 		SESS_UNLOCK(sp);
936 
937 		/*
938 		 * Signal foreground pgrp and revoke access to
939 		 * controlling terminal if it has not been revoked
940 		 * already.
941 		 *
942 		 * Because the TTY may have been revoked in the mean
943 		 * time and could already have a new session associated
944 		 * with it, make sure we don't send a SIGHUP to a
945 		 * foreground process group that does not belong to this
946 		 * session.
947 		 */
948 
949 		if (tp != NULL) {
950 			tty_lock(tp);
951 			if (tp->t_session == sp)
952 				tty_signal_pgrp(tp, SIGHUP);
953 			tty_unlock(tp);
954 		}
955 
956 		if (ttyvp != NULL) {
957 			sx_xunlock(&proctree_lock);
958 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
959 				VOP_REVOKE(ttyvp, REVOKEALL);
960 				VOP_UNLOCK(ttyvp);
961 			}
962 			devfs_ctty_unref(ttyvp);
963 			sx_xlock(&proctree_lock);
964 		}
965 	}
966 	fixjobc_kill(p);
967 }
968 
969 /*
970  * A process group has become orphaned, mark it as such for signal
971  * delivery code.  If there are any stopped processes in the group,
972  * hang-up all process in that group.
973  */
974 static void
orphanpg(struct pgrp * pg)975 orphanpg(struct pgrp *pg)
976 {
977 	struct proc *p;
978 
979 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
980 
981 	pg->pg_flags |= PGRP_ORPHANED;
982 
983 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
984 		PROC_LOCK(p);
985 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
986 			PROC_UNLOCK(p);
987 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
988 				PROC_LOCK(p);
989 				kern_psignal(p, SIGHUP);
990 				kern_psignal(p, SIGCONT);
991 				PROC_UNLOCK(p);
992 			}
993 			return;
994 		}
995 		PROC_UNLOCK(p);
996 	}
997 }
998 
999 void
sess_hold(struct session * s)1000 sess_hold(struct session *s)
1001 {
1002 
1003 	refcount_acquire(&s->s_count);
1004 }
1005 
1006 void
sess_release(struct session * s)1007 sess_release(struct session *s)
1008 {
1009 
1010 	if (refcount_release(&s->s_count)) {
1011 		if (s->s_ttyp != NULL) {
1012 			tty_lock(s->s_ttyp);
1013 			tty_rel_sess(s->s_ttyp, s);
1014 		}
1015 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
1016 		mtx_destroy(&s->s_mtx);
1017 		free(s, M_SESSION);
1018 	}
1019 }
1020 
1021 #ifdef DDB
1022 
1023 static void
db_print_pgrp_one(struct pgrp * pgrp,struct proc * p)1024 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1025 {
1026 	db_printf(
1027 	    "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
1028 	    p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1029 	    p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1030 	    p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1031 }
1032 
DB_SHOW_COMMAND_FLAGS(pgrpdump,pgrpdump,DB_CMD_MEMSAFE)1033 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1034 {
1035 	struct pgrp *pgrp;
1036 	struct proc *p;
1037 	int i;
1038 
1039 	for (i = 0; i <= pgrphash; i++) {
1040 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
1041 			db_printf("indx %d\n", i);
1042 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1043 				db_printf(
1044 			"  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1045 				    pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1046 				    pgrp->pg_session->s_count,
1047 				    LIST_FIRST(&pgrp->pg_members));
1048 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1049 					db_print_pgrp_one(pgrp, p);
1050 			}
1051 		}
1052 	}
1053 }
1054 #endif /* DDB */
1055 
1056 /*
1057  * Calculate the kinfo_proc members which contain process-wide
1058  * informations.
1059  * Must be called with the target process locked.
1060  */
1061 static void
fill_kinfo_aggregate(struct proc * p,struct kinfo_proc * kp)1062 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1063 {
1064 	struct thread *td;
1065 
1066 	PROC_LOCK_ASSERT(p, MA_OWNED);
1067 
1068 	kp->ki_estcpu = 0;
1069 	kp->ki_pctcpu = 0;
1070 	FOREACH_THREAD_IN_PROC(p, td) {
1071 		thread_lock(td);
1072 		kp->ki_pctcpu += sched_pctcpu(td);
1073 		kp->ki_estcpu += sched_estcpu(td);
1074 		thread_unlock(td);
1075 	}
1076 }
1077 
1078 /*
1079  * Fill in any information that is common to all threads in the process.
1080  * Must be called with the target process locked.
1081  */
1082 static void
fill_kinfo_proc_only(struct proc * p,struct kinfo_proc * kp)1083 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1084 {
1085 	struct thread *td0;
1086 	struct ucred *cred;
1087 	struct sigacts *ps;
1088 	struct timeval boottime;
1089 
1090 	PROC_LOCK_ASSERT(p, MA_OWNED);
1091 
1092 	kp->ki_structsize = sizeof(*kp);
1093 	kp->ki_paddr = p;
1094 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
1095 	kp->ki_args = p->p_args;
1096 	kp->ki_textvp = p->p_textvp;
1097 #ifdef KTRACE
1098 	kp->ki_tracep = ktr_get_tracevp(p, false);
1099 	kp->ki_traceflag = p->p_traceflag;
1100 #endif
1101 	kp->ki_fd = p->p_fd;
1102 	kp->ki_pd = p->p_pd;
1103 	kp->ki_vmspace = p->p_vmspace;
1104 	kp->ki_flag = p->p_flag;
1105 	kp->ki_flag2 = p->p_flag2;
1106 	cred = p->p_ucred;
1107 	if (cred) {
1108 		kp->ki_uid = cred->cr_uid;
1109 		kp->ki_ruid = cred->cr_ruid;
1110 		kp->ki_svuid = cred->cr_svuid;
1111 		kp->ki_cr_flags = 0;
1112 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
1113 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1114 		/* XXX bde doesn't like KI_NGROUPS */
1115 		if (cred->cr_ngroups > KI_NGROUPS) {
1116 			kp->ki_ngroups = KI_NGROUPS;
1117 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1118 		} else
1119 			kp->ki_ngroups = cred->cr_ngroups;
1120 		bcopy(cred->cr_groups, kp->ki_groups,
1121 		    kp->ki_ngroups * sizeof(gid_t));
1122 		kp->ki_rgid = cred->cr_rgid;
1123 		kp->ki_svgid = cred->cr_svgid;
1124 		/* If jailed(cred), emulate the old P_JAILED flag. */
1125 		if (jailed(cred)) {
1126 			kp->ki_flag |= P_JAILED;
1127 			/* If inside the jail, use 0 as a jail ID. */
1128 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
1129 				kp->ki_jid = cred->cr_prison->pr_id;
1130 		}
1131 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1132 		    sizeof(kp->ki_loginclass));
1133 	}
1134 	ps = p->p_sigacts;
1135 	if (ps) {
1136 		mtx_lock(&ps->ps_mtx);
1137 		kp->ki_sigignore = ps->ps_sigignore;
1138 		kp->ki_sigcatch = ps->ps_sigcatch;
1139 		mtx_unlock(&ps->ps_mtx);
1140 	}
1141 	if (p->p_state != PRS_NEW &&
1142 	    p->p_state != PRS_ZOMBIE &&
1143 	    p->p_vmspace != NULL) {
1144 		struct vmspace *vm = p->p_vmspace;
1145 
1146 		kp->ki_size = vm->vm_map.size;
1147 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1148 		FOREACH_THREAD_IN_PROC(p, td0)
1149 			kp->ki_rssize += td0->td_kstack_pages;
1150 		kp->ki_swrss = vm->vm_swrss;
1151 		kp->ki_tsize = vm->vm_tsize;
1152 		kp->ki_dsize = vm->vm_dsize;
1153 		kp->ki_ssize = vm->vm_ssize;
1154 	} else if (p->p_state == PRS_ZOMBIE)
1155 		kp->ki_stat = SZOMB;
1156 	kp->ki_sflag = PS_INMEM;
1157 	/* Calculate legacy swtime as seconds since 'swtick'. */
1158 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
1159 	kp->ki_pid = p->p_pid;
1160 	kp->ki_nice = p->p_nice;
1161 	kp->ki_fibnum = p->p_fibnum;
1162 	kp->ki_start = p->p_stats->p_start;
1163 	getboottime(&boottime);
1164 	timevaladd(&kp->ki_start, &boottime);
1165 	PROC_STATLOCK(p);
1166 	rufetch(p, &kp->ki_rusage);
1167 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1168 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1169 	PROC_STATUNLOCK(p);
1170 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1171 	/* Some callers want child times in a single value. */
1172 	kp->ki_childtime = kp->ki_childstime;
1173 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1174 
1175 	FOREACH_THREAD_IN_PROC(p, td0)
1176 		kp->ki_cow += td0->td_cow;
1177 
1178 	if (p->p_comm[0] != '\0')
1179 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1180 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1181 	    p->p_sysent->sv_name[0] != '\0')
1182 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1183 	kp->ki_siglist = p->p_siglist;
1184 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1185 	kp->ki_acflag = p->p_acflag;
1186 	kp->ki_lock = p->p_lock;
1187 	if (p->p_pptr) {
1188 		kp->ki_ppid = p->p_oppid;
1189 		if (p->p_flag & P_TRACED)
1190 			kp->ki_tracer = p->p_pptr->p_pid;
1191 	}
1192 }
1193 
1194 /*
1195  * Fill job-related process information.
1196  */
1197 static void
fill_kinfo_proc_pgrp(struct proc * p,struct kinfo_proc * kp)1198 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1199 {
1200 	struct tty *tp;
1201 	struct session *sp;
1202 	struct pgrp *pgrp;
1203 
1204 	sx_assert(&proctree_lock, SA_LOCKED);
1205 	PROC_LOCK_ASSERT(p, MA_OWNED);
1206 
1207 	pgrp = p->p_pgrp;
1208 	if (pgrp == NULL)
1209 		return;
1210 
1211 	kp->ki_pgid = pgrp->pg_id;
1212 	kp->ki_jobc = pgrp_calc_jobc(pgrp);
1213 
1214 	sp = pgrp->pg_session;
1215 	tp = NULL;
1216 
1217 	if (sp != NULL) {
1218 		kp->ki_sid = sp->s_sid;
1219 		SESS_LOCK(sp);
1220 		strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1221 		if (sp->s_ttyvp)
1222 			kp->ki_kiflag |= KI_CTTY;
1223 		if (SESS_LEADER(p))
1224 			kp->ki_kiflag |= KI_SLEADER;
1225 		tp = sp->s_ttyp;
1226 		SESS_UNLOCK(sp);
1227 	}
1228 
1229 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1230 		kp->ki_tdev = tty_udev(tp);
1231 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1232 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1233 		if (tp->t_session)
1234 			kp->ki_tsid = tp->t_session->s_sid;
1235 	} else {
1236 		kp->ki_tdev = NODEV;
1237 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1238 	}
1239 }
1240 
1241 /*
1242  * Fill in information that is thread specific.  Must be called with
1243  * target process locked.  If 'preferthread' is set, overwrite certain
1244  * process-related fields that are maintained for both threads and
1245  * processes.
1246  */
1247 static void
fill_kinfo_thread(struct thread * td,struct kinfo_proc * kp,int preferthread)1248 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1249 {
1250 	struct proc *p;
1251 
1252 	p = td->td_proc;
1253 	kp->ki_tdaddr = td;
1254 	PROC_LOCK_ASSERT(p, MA_OWNED);
1255 
1256 	if (preferthread)
1257 		PROC_STATLOCK(p);
1258 	thread_lock(td);
1259 	if (td->td_wmesg != NULL)
1260 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1261 	else
1262 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1263 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1264 	    sizeof(kp->ki_tdname)) {
1265 		strlcpy(kp->ki_moretdname,
1266 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1267 		    sizeof(kp->ki_moretdname));
1268 	} else {
1269 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1270 	}
1271 	if (TD_ON_LOCK(td)) {
1272 		kp->ki_kiflag |= KI_LOCKBLOCK;
1273 		strlcpy(kp->ki_lockname, td->td_lockname,
1274 		    sizeof(kp->ki_lockname));
1275 	} else {
1276 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1277 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1278 	}
1279 
1280 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1281 		if (TD_ON_RUNQ(td) ||
1282 		    TD_CAN_RUN(td) ||
1283 		    TD_IS_RUNNING(td)) {
1284 			kp->ki_stat = SRUN;
1285 		} else if (P_SHOULDSTOP(p)) {
1286 			kp->ki_stat = SSTOP;
1287 		} else if (TD_IS_SLEEPING(td)) {
1288 			kp->ki_stat = SSLEEP;
1289 		} else if (TD_ON_LOCK(td)) {
1290 			kp->ki_stat = SLOCK;
1291 		} else {
1292 			kp->ki_stat = SWAIT;
1293 		}
1294 	} else if (p->p_state == PRS_ZOMBIE) {
1295 		kp->ki_stat = SZOMB;
1296 	} else {
1297 		kp->ki_stat = SIDL;
1298 	}
1299 
1300 	/* Things in the thread */
1301 	kp->ki_wchan = td->td_wchan;
1302 	kp->ki_pri.pri_level = td->td_priority;
1303 	kp->ki_pri.pri_native = td->td_base_pri;
1304 
1305 	/*
1306 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1307 	 * the maximum u_char CPU value.
1308 	 */
1309 	if (td->td_lastcpu == NOCPU)
1310 		kp->ki_lastcpu_old = NOCPU_OLD;
1311 	else if (td->td_lastcpu > MAXCPU_OLD)
1312 		kp->ki_lastcpu_old = MAXCPU_OLD;
1313 	else
1314 		kp->ki_lastcpu_old = td->td_lastcpu;
1315 
1316 	if (td->td_oncpu == NOCPU)
1317 		kp->ki_oncpu_old = NOCPU_OLD;
1318 	else if (td->td_oncpu > MAXCPU_OLD)
1319 		kp->ki_oncpu_old = MAXCPU_OLD;
1320 	else
1321 		kp->ki_oncpu_old = td->td_oncpu;
1322 
1323 	kp->ki_lastcpu = td->td_lastcpu;
1324 	kp->ki_oncpu = td->td_oncpu;
1325 	kp->ki_tdflags = td->td_flags;
1326 	kp->ki_tid = td->td_tid;
1327 	kp->ki_numthreads = p->p_numthreads;
1328 	kp->ki_pcb = td->td_pcb;
1329 	kp->ki_kstack = (void *)td->td_kstack;
1330 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1331 	kp->ki_pri.pri_class = td->td_pri_class;
1332 	kp->ki_pri.pri_user = td->td_user_pri;
1333 
1334 	if (preferthread) {
1335 		rufetchtd(td, &kp->ki_rusage);
1336 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1337 		kp->ki_pctcpu = sched_pctcpu(td);
1338 		kp->ki_estcpu = sched_estcpu(td);
1339 		kp->ki_cow = td->td_cow;
1340 	}
1341 
1342 	/* We can't get this anymore but ps etc never used it anyway. */
1343 	kp->ki_rqindex = 0;
1344 
1345 	if (preferthread)
1346 		kp->ki_siglist = td->td_siglist;
1347 	kp->ki_sigmask = td->td_sigmask;
1348 	thread_unlock(td);
1349 	if (preferthread)
1350 		PROC_STATUNLOCK(p);
1351 
1352 	if ((td->td_pflags & TDP2_UEXTERR) != 0)
1353 		kp->ki_uerrmsg = td->td_exterr_ptr;
1354 }
1355 
1356 /*
1357  * Fill in a kinfo_proc structure for the specified process.
1358  * Must be called with the target process locked.
1359  */
1360 void
fill_kinfo_proc(struct proc * p,struct kinfo_proc * kp)1361 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1362 {
1363 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1364 
1365 	bzero(kp, sizeof(*kp));
1366 
1367 	fill_kinfo_proc_pgrp(p,kp);
1368 	fill_kinfo_proc_only(p, kp);
1369 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1370 	fill_kinfo_aggregate(p, kp);
1371 }
1372 
1373 struct pstats *
pstats_alloc(void)1374 pstats_alloc(void)
1375 {
1376 
1377 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1378 }
1379 
1380 /*
1381  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1382  */
1383 void
pstats_fork(struct pstats * src,struct pstats * dst)1384 pstats_fork(struct pstats *src, struct pstats *dst)
1385 {
1386 
1387 	bzero(&dst->pstat_startzero,
1388 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1389 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1390 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1391 }
1392 
1393 void
pstats_free(struct pstats * ps)1394 pstats_free(struct pstats *ps)
1395 {
1396 
1397 	free(ps, M_SUBPROC);
1398 }
1399 
1400 #ifdef COMPAT_FREEBSD32
1401 
1402 /*
1403  * This function is typically used to copy out the kernel address, so
1404  * it can be replaced by assignment of zero.
1405  */
1406 static inline uint32_t
ptr32_trim(const void * ptr)1407 ptr32_trim(const void *ptr)
1408 {
1409 	uintptr_t uptr;
1410 
1411 	uptr = (uintptr_t)ptr;
1412 	return ((uptr > UINT_MAX) ? 0 : uptr);
1413 }
1414 
1415 #define PTRTRIM_CP(src,dst,fld) \
1416 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1417 
1418 static void
freebsd32_kinfo_proc_out(const struct kinfo_proc * ki,struct kinfo_proc32 * ki32)1419 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1420 {
1421 	int i;
1422 
1423 	bzero(ki32, sizeof(struct kinfo_proc32));
1424 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1425 	CP(*ki, *ki32, ki_layout);
1426 	PTRTRIM_CP(*ki, *ki32, ki_args);
1427 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1428 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1429 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1430 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1431 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1432 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1433 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1434 	CP(*ki, *ki32, ki_pid);
1435 	CP(*ki, *ki32, ki_ppid);
1436 	CP(*ki, *ki32, ki_pgid);
1437 	CP(*ki, *ki32, ki_tpgid);
1438 	CP(*ki, *ki32, ki_sid);
1439 	CP(*ki, *ki32, ki_tsid);
1440 	CP(*ki, *ki32, ki_jobc);
1441 	CP(*ki, *ki32, ki_tdev);
1442 	CP(*ki, *ki32, ki_tdev_freebsd11);
1443 	CP(*ki, *ki32, ki_siglist);
1444 	CP(*ki, *ki32, ki_sigmask);
1445 	CP(*ki, *ki32, ki_sigignore);
1446 	CP(*ki, *ki32, ki_sigcatch);
1447 	CP(*ki, *ki32, ki_uid);
1448 	CP(*ki, *ki32, ki_ruid);
1449 	CP(*ki, *ki32, ki_svuid);
1450 	CP(*ki, *ki32, ki_rgid);
1451 	CP(*ki, *ki32, ki_svgid);
1452 	CP(*ki, *ki32, ki_ngroups);
1453 	for (i = 0; i < KI_NGROUPS; i++)
1454 		CP(*ki, *ki32, ki_groups[i]);
1455 	CP(*ki, *ki32, ki_size);
1456 	CP(*ki, *ki32, ki_rssize);
1457 	CP(*ki, *ki32, ki_swrss);
1458 	CP(*ki, *ki32, ki_tsize);
1459 	CP(*ki, *ki32, ki_dsize);
1460 	CP(*ki, *ki32, ki_ssize);
1461 	CP(*ki, *ki32, ki_xstat);
1462 	CP(*ki, *ki32, ki_acflag);
1463 	CP(*ki, *ki32, ki_pctcpu);
1464 	CP(*ki, *ki32, ki_estcpu);
1465 	CP(*ki, *ki32, ki_slptime);
1466 	CP(*ki, *ki32, ki_swtime);
1467 	CP(*ki, *ki32, ki_cow);
1468 	CP(*ki, *ki32, ki_runtime);
1469 	TV_CP(*ki, *ki32, ki_start);
1470 	TV_CP(*ki, *ki32, ki_childtime);
1471 	CP(*ki, *ki32, ki_flag);
1472 	CP(*ki, *ki32, ki_kiflag);
1473 	CP(*ki, *ki32, ki_traceflag);
1474 	CP(*ki, *ki32, ki_stat);
1475 	CP(*ki, *ki32, ki_nice);
1476 	CP(*ki, *ki32, ki_lock);
1477 	CP(*ki, *ki32, ki_rqindex);
1478 	CP(*ki, *ki32, ki_oncpu);
1479 	CP(*ki, *ki32, ki_lastcpu);
1480 
1481 	/* XXX TODO: wrap cpu value as appropriate */
1482 	CP(*ki, *ki32, ki_oncpu_old);
1483 	CP(*ki, *ki32, ki_lastcpu_old);
1484 
1485 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1486 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1487 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1488 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1489 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1490 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1491 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1492 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1493 	CP(*ki, *ki32, ki_tracer);
1494 	CP(*ki, *ki32, ki_flag2);
1495 	CP(*ki, *ki32, ki_fibnum);
1496 	CP(*ki, *ki32, ki_cr_flags);
1497 	CP(*ki, *ki32, ki_jid);
1498 	CP(*ki, *ki32, ki_numthreads);
1499 	CP(*ki, *ki32, ki_tid);
1500 	CP(*ki, *ki32, ki_pri);
1501 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1502 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1503 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1504 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1505 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1506 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1507 	CP(*ki, *ki32, ki_sflag);
1508 	CP(*ki, *ki32, ki_tdflags);
1509 	PTRTRIM_CP(*ki, *ki32, ki_uerrmsg);
1510 }
1511 #endif
1512 
1513 static ssize_t
kern_proc_out_size(struct proc * p,int flags)1514 kern_proc_out_size(struct proc *p, int flags)
1515 {
1516 	ssize_t size = 0;
1517 
1518 	PROC_LOCK_ASSERT(p, MA_OWNED);
1519 
1520 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1521 #ifdef COMPAT_FREEBSD32
1522 		if ((flags & KERN_PROC_MASK32) != 0) {
1523 			size += sizeof(struct kinfo_proc32);
1524 		} else
1525 #endif
1526 			size += sizeof(struct kinfo_proc);
1527 	} else {
1528 #ifdef COMPAT_FREEBSD32
1529 		if ((flags & KERN_PROC_MASK32) != 0)
1530 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1531 		else
1532 #endif
1533 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
1534 	}
1535 	PROC_UNLOCK(p);
1536 	return (size);
1537 }
1538 
1539 int
kern_proc_out(struct proc * p,struct sbuf * sb,int flags)1540 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1541 {
1542 	struct thread *td;
1543 	struct kinfo_proc ki;
1544 #ifdef COMPAT_FREEBSD32
1545 	struct kinfo_proc32 ki32;
1546 #endif
1547 	int error;
1548 
1549 	PROC_LOCK_ASSERT(p, MA_OWNED);
1550 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1551 
1552 	error = 0;
1553 	fill_kinfo_proc(p, &ki);
1554 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1555 #ifdef COMPAT_FREEBSD32
1556 		if ((flags & KERN_PROC_MASK32) != 0) {
1557 			freebsd32_kinfo_proc_out(&ki, &ki32);
1558 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1559 				error = ENOMEM;
1560 		} else
1561 #endif
1562 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1563 				error = ENOMEM;
1564 	} else {
1565 		FOREACH_THREAD_IN_PROC(p, td) {
1566 			fill_kinfo_thread(td, &ki, 1);
1567 #ifdef COMPAT_FREEBSD32
1568 			if ((flags & KERN_PROC_MASK32) != 0) {
1569 				freebsd32_kinfo_proc_out(&ki, &ki32);
1570 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1571 					error = ENOMEM;
1572 			} else
1573 #endif
1574 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1575 					error = ENOMEM;
1576 			if (error != 0)
1577 				break;
1578 		}
1579 	}
1580 	PROC_UNLOCK(p);
1581 	return (error);
1582 }
1583 
1584 static int
sysctl_out_proc(struct proc * p,struct sysctl_req * req,int flags)1585 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1586 {
1587 	struct sbuf sb;
1588 	struct kinfo_proc ki;
1589 	int error, error2;
1590 
1591 	if (req->oldptr == NULL)
1592 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1593 
1594 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1595 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1596 	error = kern_proc_out(p, &sb, flags);
1597 	error2 = sbuf_finish(&sb);
1598 	sbuf_delete(&sb);
1599 	if (error != 0)
1600 		return (error);
1601 	else if (error2 != 0)
1602 		return (error2);
1603 	return (0);
1604 }
1605 
1606 int
proc_iterate(int (* cb)(struct proc *,void *),void * cbarg)1607 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1608 {
1609 	struct proc *p;
1610 	int error, i, j;
1611 
1612 	for (i = 0; i < pidhashlock + 1; i++) {
1613 		sx_slock(&proctree_lock);
1614 		sx_slock(&pidhashtbl_lock[i]);
1615 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
1616 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1617 				if (p->p_state == PRS_NEW)
1618 					continue;
1619 				error = cb(p, cbarg);
1620 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1621 				if (error != 0) {
1622 					sx_sunlock(&pidhashtbl_lock[i]);
1623 					sx_sunlock(&proctree_lock);
1624 					return (error);
1625 				}
1626 			}
1627 		}
1628 		sx_sunlock(&pidhashtbl_lock[i]);
1629 		sx_sunlock(&proctree_lock);
1630 	}
1631 	return (0);
1632 }
1633 
1634 struct kern_proc_out_args {
1635 	struct sysctl_req *req;
1636 	int flags;
1637 	int oid_number;
1638 	int *name;
1639 };
1640 
1641 static int
sysctl_kern_proc_iterate(struct proc * p,void * origarg)1642 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1643 {
1644 	struct kern_proc_out_args *arg = origarg;
1645 	int *name = arg->name;
1646 	int oid_number = arg->oid_number;
1647 	int flags = arg->flags;
1648 	struct sysctl_req *req = arg->req;
1649 	int error = 0;
1650 
1651 	PROC_LOCK(p);
1652 
1653 	KASSERT(p->p_ucred != NULL,
1654 	    ("process credential is NULL for non-NEW proc"));
1655 	/*
1656 	 * Show a user only appropriate processes.
1657 	 */
1658 	if (p_cansee(curthread, p))
1659 		goto skip;
1660 	/*
1661 	 * TODO - make more efficient (see notes below).
1662 	 * do by session.
1663 	 */
1664 	switch (oid_number) {
1665 	case KERN_PROC_GID:
1666 		if (p->p_ucred->cr_gid != (gid_t)name[0])
1667 			goto skip;
1668 		break;
1669 
1670 	case KERN_PROC_PGRP:
1671 		/* could do this by traversing pgrp */
1672 		if (p->p_pgrp == NULL ||
1673 		    p->p_pgrp->pg_id != (pid_t)name[0])
1674 			goto skip;
1675 		break;
1676 
1677 	case KERN_PROC_RGID:
1678 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
1679 			goto skip;
1680 		break;
1681 
1682 	case KERN_PROC_SESSION:
1683 		if (p->p_session == NULL ||
1684 		    p->p_session->s_sid != (pid_t)name[0])
1685 			goto skip;
1686 		break;
1687 
1688 	case KERN_PROC_TTY:
1689 		if ((p->p_flag & P_CONTROLT) == 0 ||
1690 		    p->p_session == NULL)
1691 			goto skip;
1692 		/* XXX proctree_lock */
1693 		SESS_LOCK(p->p_session);
1694 		if (p->p_session->s_ttyp == NULL ||
1695 		    tty_udev(p->p_session->s_ttyp) !=
1696 		    (dev_t)name[0]) {
1697 			SESS_UNLOCK(p->p_session);
1698 			goto skip;
1699 		}
1700 		SESS_UNLOCK(p->p_session);
1701 		break;
1702 
1703 	case KERN_PROC_UID:
1704 		if (p->p_ucred->cr_uid != (uid_t)name[0])
1705 			goto skip;
1706 		break;
1707 
1708 	case KERN_PROC_RUID:
1709 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
1710 			goto skip;
1711 		break;
1712 
1713 	case KERN_PROC_PROC:
1714 		break;
1715 
1716 	default:
1717 		break;
1718 	}
1719 	error = sysctl_out_proc(p, req, flags);
1720 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1721 	return (error);
1722 skip:
1723 	PROC_UNLOCK(p);
1724 	return (0);
1725 }
1726 
1727 static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)1728 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1729 {
1730 	struct kern_proc_out_args iterarg;
1731 	int *name = (int *)arg1;
1732 	u_int namelen = arg2;
1733 	struct proc *p;
1734 	int flags, oid_number;
1735 	int error = 0;
1736 
1737 	oid_number = oidp->oid_number;
1738 	if (oid_number != KERN_PROC_ALL &&
1739 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1740 		flags = KERN_PROC_NOTHREADS;
1741 	else {
1742 		flags = 0;
1743 		oid_number &= ~KERN_PROC_INC_THREAD;
1744 	}
1745 #ifdef COMPAT_FREEBSD32
1746 	if (req->flags & SCTL_MASK32)
1747 		flags |= KERN_PROC_MASK32;
1748 #endif
1749 	if (oid_number == KERN_PROC_PID) {
1750 		if (namelen != 1)
1751 			return (EINVAL);
1752 		error = sysctl_wire_old_buffer(req, 0);
1753 		if (error)
1754 			return (error);
1755 		sx_slock(&proctree_lock);
1756 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1757 		if (error == 0)
1758 			error = sysctl_out_proc(p, req, flags);
1759 		sx_sunlock(&proctree_lock);
1760 		return (error);
1761 	}
1762 
1763 	switch (oid_number) {
1764 	case KERN_PROC_ALL:
1765 		if (namelen != 0)
1766 			return (EINVAL);
1767 		break;
1768 	case KERN_PROC_PROC:
1769 		if (namelen != 0 && namelen != 1)
1770 			return (EINVAL);
1771 		break;
1772 	default:
1773 		if (namelen != 1)
1774 			return (EINVAL);
1775 		break;
1776 	}
1777 
1778 	if (req->oldptr == NULL) {
1779 		/* overestimate by 5 procs */
1780 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1781 		if (error)
1782 			return (error);
1783 	} else {
1784 		error = sysctl_wire_old_buffer(req, 0);
1785 		if (error != 0)
1786 			return (error);
1787 	}
1788 	iterarg.flags = flags;
1789 	iterarg.oid_number = oid_number;
1790 	iterarg.req = req;
1791 	iterarg.name = name;
1792 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1793 	return (error);
1794 }
1795 
1796 struct pargs *
pargs_alloc(int len)1797 pargs_alloc(int len)
1798 {
1799 	struct pargs *pa;
1800 
1801 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1802 		M_WAITOK);
1803 	refcount_init(&pa->ar_ref, 1);
1804 	pa->ar_length = len;
1805 	return (pa);
1806 }
1807 
1808 static void
pargs_free(struct pargs * pa)1809 pargs_free(struct pargs *pa)
1810 {
1811 
1812 	free(pa, M_PARGS);
1813 }
1814 
1815 void
pargs_hold(struct pargs * pa)1816 pargs_hold(struct pargs *pa)
1817 {
1818 
1819 	if (pa == NULL)
1820 		return;
1821 	refcount_acquire(&pa->ar_ref);
1822 }
1823 
1824 void
pargs_drop(struct pargs * pa)1825 pargs_drop(struct pargs *pa)
1826 {
1827 
1828 	if (pa == NULL)
1829 		return;
1830 	if (refcount_release(&pa->ar_ref))
1831 		pargs_free(pa);
1832 }
1833 
1834 static int
proc_read_string(struct thread * td,struct proc * p,const char * sptr,char * buf,size_t len)1835 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1836     size_t len)
1837 {
1838 	ssize_t n;
1839 
1840 	/*
1841 	 * This may return a short read if the string is shorter than the chunk
1842 	 * and is aligned at the end of the page, and the following page is not
1843 	 * mapped.
1844 	 */
1845 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1846 	if (n <= 0)
1847 		return (ENOMEM);
1848 	return (0);
1849 }
1850 
1851 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1852 
1853 enum proc_vector_type {
1854 	PROC_ARG,
1855 	PROC_ENV,
1856 	PROC_AUX,
1857 };
1858 
1859 #ifdef COMPAT_FREEBSD32
1860 static int
get_proc_vector32(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1861 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1862     size_t *vsizep, enum proc_vector_type type)
1863 {
1864 	struct freebsd32_ps_strings pss;
1865 	Elf32_Auxinfo aux;
1866 	vm_offset_t vptr, ptr;
1867 	uint32_t *proc_vector32;
1868 	char **proc_vector;
1869 	size_t vsize, size;
1870 	int i, error;
1871 
1872 	error = 0;
1873 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1874 	    sizeof(pss))
1875 		return (ENOMEM);
1876 	switch (type) {
1877 	case PROC_ARG:
1878 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1879 		vsize = pss.ps_nargvstr;
1880 		if (vsize > ARG_MAX)
1881 			return (ENOEXEC);
1882 		size = vsize * sizeof(int32_t);
1883 		break;
1884 	case PROC_ENV:
1885 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1886 		vsize = pss.ps_nenvstr;
1887 		if (vsize > ARG_MAX)
1888 			return (ENOEXEC);
1889 		size = vsize * sizeof(int32_t);
1890 		break;
1891 	case PROC_AUX:
1892 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1893 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1894 		if (vptr % 4 != 0)
1895 			return (ENOEXEC);
1896 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1897 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1898 			    sizeof(aux))
1899 				return (ENOMEM);
1900 			if (aux.a_type == AT_NULL)
1901 				break;
1902 			ptr += sizeof(aux);
1903 		}
1904 		if (aux.a_type != AT_NULL)
1905 			return (ENOEXEC);
1906 		vsize = i + 1;
1907 		size = vsize * sizeof(aux);
1908 		break;
1909 	default:
1910 		KASSERT(0, ("Wrong proc vector type: %d", type));
1911 		return (EINVAL);
1912 	}
1913 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1914 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1915 		error = ENOMEM;
1916 		goto done;
1917 	}
1918 	if (type == PROC_AUX) {
1919 		*proc_vectorp = (char **)proc_vector32;
1920 		*vsizep = vsize;
1921 		return (0);
1922 	}
1923 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1924 	for (i = 0; i < (int)vsize; i++)
1925 		proc_vector[i] = PTRIN(proc_vector32[i]);
1926 	*proc_vectorp = proc_vector;
1927 	*vsizep = vsize;
1928 done:
1929 	free(proc_vector32, M_TEMP);
1930 	return (error);
1931 }
1932 #endif
1933 
1934 static int
get_proc_vector(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1935 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1936     size_t *vsizep, enum proc_vector_type type)
1937 {
1938 	struct ps_strings pss;
1939 	Elf_Auxinfo aux;
1940 	vm_offset_t vptr, ptr;
1941 	char **proc_vector;
1942 	size_t vsize, size;
1943 	int i;
1944 
1945 #ifdef COMPAT_FREEBSD32
1946 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1947 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1948 #endif
1949 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1950 	    sizeof(pss))
1951 		return (ENOMEM);
1952 	switch (type) {
1953 	case PROC_ARG:
1954 		vptr = (vm_offset_t)pss.ps_argvstr;
1955 		vsize = pss.ps_nargvstr;
1956 		if (vsize > ARG_MAX)
1957 			return (ENOEXEC);
1958 		size = vsize * sizeof(char *);
1959 		break;
1960 	case PROC_ENV:
1961 		vptr = (vm_offset_t)pss.ps_envstr;
1962 		vsize = pss.ps_nenvstr;
1963 		if (vsize > ARG_MAX)
1964 			return (ENOEXEC);
1965 		size = vsize * sizeof(char *);
1966 		break;
1967 	case PROC_AUX:
1968 		/*
1969 		 * The aux array is just above env array on the stack. Check
1970 		 * that the address is naturally aligned.
1971 		 */
1972 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1973 		    * sizeof(char *);
1974 #if __ELF_WORD_SIZE == 64
1975 		if (vptr % sizeof(uint64_t) != 0)
1976 #else
1977 		if (vptr % sizeof(uint32_t) != 0)
1978 #endif
1979 			return (ENOEXEC);
1980 		/*
1981 		 * We count the array size reading the aux vectors from the
1982 		 * stack until AT_NULL vector is returned.  So (to keep the code
1983 		 * simple) we read the process stack twice: the first time here
1984 		 * to find the size and the second time when copying the vectors
1985 		 * to the allocated proc_vector.
1986 		 */
1987 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1988 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1989 			    sizeof(aux))
1990 				return (ENOMEM);
1991 			if (aux.a_type == AT_NULL)
1992 				break;
1993 			ptr += sizeof(aux);
1994 		}
1995 		/*
1996 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1997 		 * not reached AT_NULL, it is most likely we are reading wrong
1998 		 * data: either the process doesn't have auxv array or data has
1999 		 * been modified. Return the error in this case.
2000 		 */
2001 		if (aux.a_type != AT_NULL)
2002 			return (ENOEXEC);
2003 		vsize = i + 1;
2004 		size = vsize * sizeof(aux);
2005 		break;
2006 	default:
2007 		KASSERT(0, ("Wrong proc vector type: %d", type));
2008 		return (EINVAL); /* In case we are built without INVARIANTS. */
2009 	}
2010 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
2011 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2012 		free(proc_vector, M_TEMP);
2013 		return (ENOMEM);
2014 	}
2015 	*proc_vectorp = proc_vector;
2016 	*vsizep = vsize;
2017 
2018 	return (0);
2019 }
2020 
2021 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
2022 
2023 static int
get_ps_strings(struct thread * td,struct proc * p,struct sbuf * sb,enum proc_vector_type type)2024 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2025     enum proc_vector_type type)
2026 {
2027 	size_t done, len, nchr, vsize;
2028 	int error, i;
2029 	char **proc_vector, *sptr;
2030 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2031 
2032 	PROC_ASSERT_HELD(p);
2033 
2034 	/*
2035 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2036 	 */
2037 	nchr = 2 * (PATH_MAX + ARG_MAX);
2038 
2039 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2040 	if (error != 0)
2041 		return (error);
2042 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2043 		/*
2044 		 * The program may have scribbled into its argv array, e.g. to
2045 		 * remove some arguments.  If that has happened, break out
2046 		 * before trying to read from NULL.
2047 		 */
2048 		if (proc_vector[i] == NULL)
2049 			break;
2050 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2051 			error = proc_read_string(td, p, sptr, pss_string,
2052 			    sizeof(pss_string));
2053 			if (error != 0)
2054 				goto done;
2055 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2056 			if (done + len >= nchr)
2057 				len = nchr - done - 1;
2058 			sbuf_bcat(sb, pss_string, len);
2059 			if (len != GET_PS_STRINGS_CHUNK_SZ)
2060 				break;
2061 			done += GET_PS_STRINGS_CHUNK_SZ;
2062 		}
2063 		sbuf_bcat(sb, "", 1);
2064 		done += len + 1;
2065 	}
2066 done:
2067 	free(proc_vector, M_TEMP);
2068 	return (error);
2069 }
2070 
2071 int
proc_getargv(struct thread * td,struct proc * p,struct sbuf * sb)2072 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2073 {
2074 
2075 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
2076 }
2077 
2078 int
proc_getenvv(struct thread * td,struct proc * p,struct sbuf * sb)2079 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2080 {
2081 
2082 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
2083 }
2084 
2085 int
proc_getauxv(struct thread * td,struct proc * p,struct sbuf * sb)2086 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2087 {
2088 	size_t vsize, size;
2089 	char **auxv;
2090 	int error;
2091 
2092 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2093 	if (error == 0) {
2094 #ifdef COMPAT_FREEBSD32
2095 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2096 			size = vsize * sizeof(Elf32_Auxinfo);
2097 		else
2098 #endif
2099 			size = vsize * sizeof(Elf_Auxinfo);
2100 		if (sbuf_bcat(sb, auxv, size) != 0)
2101 			error = ENOMEM;
2102 		free(auxv, M_TEMP);
2103 	}
2104 	return (error);
2105 }
2106 
2107 /*
2108  * This sysctl allows a process to retrieve the argument list or process
2109  * title for another process without groping around in the address space
2110  * of the other process.  It also allow a process to set its own "process
2111  * title to a string of its own choice.
2112  */
2113 static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)2114 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2115 {
2116 	int *name = (int *)arg1;
2117 	u_int namelen = arg2;
2118 	struct pargs *newpa, *pa;
2119 	struct proc *p;
2120 	struct sbuf sb;
2121 	int flags, error = 0, error2;
2122 	pid_t pid;
2123 
2124 	if (namelen != 1)
2125 		return (EINVAL);
2126 
2127 	p = curproc;
2128 	pid = (pid_t)name[0];
2129 	if (pid == -1) {
2130 		pid = p->p_pid;
2131 	}
2132 
2133 	/*
2134 	 * If the query is for this process and it is single-threaded, there
2135 	 * is nobody to modify pargs, thus we can just read.
2136 	 */
2137 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2138 	    (pa = p->p_args) != NULL)
2139 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2140 
2141 	flags = PGET_CANSEE;
2142 	if (req->newptr != NULL)
2143 		flags |= PGET_ISCURRENT;
2144 	error = pget(pid, flags, &p);
2145 	if (error)
2146 		return (error);
2147 
2148 	pa = p->p_args;
2149 	if (pa != NULL) {
2150 		pargs_hold(pa);
2151 		PROC_UNLOCK(p);
2152 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2153 		pargs_drop(pa);
2154 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2155 		_PHOLD(p);
2156 		PROC_UNLOCK(p);
2157 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2158 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2159 		error = proc_getargv(curthread, p, &sb);
2160 		error2 = sbuf_finish(&sb);
2161 		PRELE(p);
2162 		sbuf_delete(&sb);
2163 		if (error == 0 && error2 != 0)
2164 			error = error2;
2165 	} else {
2166 		PROC_UNLOCK(p);
2167 	}
2168 	if (error != 0 || req->newptr == NULL)
2169 		return (error);
2170 
2171 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2172 		return (ENOMEM);
2173 
2174 	if (req->newlen == 0) {
2175 		/*
2176 		 * Clear the argument pointer, so that we'll fetch arguments
2177 		 * with proc_getargv() until further notice.
2178 		 */
2179 		newpa = NULL;
2180 	} else {
2181 		newpa = pargs_alloc(req->newlen);
2182 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2183 		if (error != 0) {
2184 			pargs_free(newpa);
2185 			return (error);
2186 		}
2187 	}
2188 	PROC_LOCK(p);
2189 	pa = p->p_args;
2190 	p->p_args = newpa;
2191 	PROC_UNLOCK(p);
2192 	pargs_drop(pa);
2193 	return (0);
2194 }
2195 
2196 /*
2197  * This sysctl allows a process to retrieve environment of another process.
2198  */
2199 static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)2200 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2201 {
2202 	int *name = (int *)arg1;
2203 	u_int namelen = arg2;
2204 	struct proc *p;
2205 	struct sbuf sb;
2206 	int error, error2;
2207 
2208 	if (namelen != 1)
2209 		return (EINVAL);
2210 
2211 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2212 	if (error != 0)
2213 		return (error);
2214 	if ((p->p_flag & P_SYSTEM) != 0) {
2215 		PRELE(p);
2216 		return (0);
2217 	}
2218 
2219 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2220 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2221 	error = proc_getenvv(curthread, p, &sb);
2222 	error2 = sbuf_finish(&sb);
2223 	PRELE(p);
2224 	sbuf_delete(&sb);
2225 	return (error != 0 ? error : error2);
2226 }
2227 
2228 /*
2229  * This sysctl allows a process to retrieve ELF auxiliary vector of
2230  * another process.
2231  */
2232 static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)2233 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2234 {
2235 	int *name = (int *)arg1;
2236 	u_int namelen = arg2;
2237 	struct proc *p;
2238 	struct sbuf sb;
2239 	int error, error2;
2240 
2241 	if (namelen != 1)
2242 		return (EINVAL);
2243 
2244 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2245 	if (error != 0)
2246 		return (error);
2247 	if ((p->p_flag & P_SYSTEM) != 0) {
2248 		PRELE(p);
2249 		return (0);
2250 	}
2251 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2252 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2253 	error = proc_getauxv(curthread, p, &sb);
2254 	error2 = sbuf_finish(&sb);
2255 	PRELE(p);
2256 	sbuf_delete(&sb);
2257 	return (error != 0 ? error : error2);
2258 }
2259 
2260 /*
2261  * Look up the canonical executable path running in the specified process.
2262  * It tries to return the same hardlink name as was used for execve(2).
2263  * This allows the programs that modify their behavior based on their progname,
2264  * to operate correctly.
2265  *
2266  * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2267  *   calling conventions.
2268  * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2269  *   allocated and freed by caller.
2270  * freebuf should be freed by caller, from the M_TEMP malloc type.
2271  */
2272 int
proc_get_binpath(struct proc * p,char * binname,char ** retbuf,char ** freebuf)2273 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2274     char **freebuf)
2275 {
2276 	struct nameidata nd;
2277 	struct vnode *vp, *dvp;
2278 	size_t freepath_size;
2279 	int error;
2280 	bool do_fullpath;
2281 
2282 	PROC_LOCK_ASSERT(p, MA_OWNED);
2283 
2284 	vp = p->p_textvp;
2285 	if (vp == NULL) {
2286 		PROC_UNLOCK(p);
2287 		*retbuf = "";
2288 		*freebuf = NULL;
2289 		return (0);
2290 	}
2291 	vref(vp);
2292 	dvp = p->p_textdvp;
2293 	if (dvp != NULL)
2294 		vref(dvp);
2295 	if (p->p_binname != NULL)
2296 		strlcpy(binname, p->p_binname, MAXPATHLEN);
2297 	PROC_UNLOCK(p);
2298 
2299 	do_fullpath = true;
2300 	*freebuf = NULL;
2301 	if (dvp != NULL && binname[0] != '\0') {
2302 		freepath_size = MAXPATHLEN;
2303 		if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2304 		    retbuf, freebuf, &freepath_size) == 0) {
2305 			/*
2306 			 * Recheck the looked up path.  The binary
2307 			 * might have been renamed or replaced, in
2308 			 * which case we should not report old name.
2309 			 */
2310 			NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2311 			error = namei(&nd);
2312 			if (error == 0) {
2313 				if (nd.ni_vp == vp)
2314 					do_fullpath = false;
2315 				vrele(nd.ni_vp);
2316 				NDFREE_PNBUF(&nd);
2317 			}
2318 		}
2319 	}
2320 	if (do_fullpath) {
2321 		free(*freebuf, M_TEMP);
2322 		*freebuf = NULL;
2323 		error = vn_fullpath(vp, retbuf, freebuf);
2324 	}
2325 	vrele(vp);
2326 	if (dvp != NULL)
2327 		vrele(dvp);
2328 	return (error);
2329 }
2330 
2331 /*
2332  * This sysctl allows a process to retrieve the path of the executable for
2333  * itself or another process.
2334  */
2335 static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)2336 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2337 {
2338 	pid_t *pidp = (pid_t *)arg1;
2339 	unsigned int arglen = arg2;
2340 	struct proc *p;
2341 	char *retbuf, *freebuf, *binname;
2342 	int error;
2343 
2344 	if (arglen != 1)
2345 		return (EINVAL);
2346 	binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2347 	binname[0] = '\0';
2348 	if (*pidp == -1) {	/* -1 means this process */
2349 		error = 0;
2350 		p = req->td->td_proc;
2351 		PROC_LOCK(p);
2352 	} else {
2353 		error = pget(*pidp, PGET_CANSEE, &p);
2354 	}
2355 
2356 	if (error == 0)
2357 		error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2358 	free(binname, M_TEMP);
2359 	if (error != 0)
2360 		return (error);
2361 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2362 	free(freebuf, M_TEMP);
2363 	return (error);
2364 }
2365 
2366 static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)2367 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2368 {
2369 	struct proc *p;
2370 	char *sv_name;
2371 	int *name;
2372 	int namelen;
2373 	int error;
2374 
2375 	namelen = arg2;
2376 	if (namelen != 1)
2377 		return (EINVAL);
2378 
2379 	name = (int *)arg1;
2380 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2381 	if (error != 0)
2382 		return (error);
2383 	sv_name = p->p_sysent->sv_name;
2384 	PROC_UNLOCK(p);
2385 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2386 }
2387 
2388 #ifdef KINFO_OVMENTRY_SIZE
2389 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2390 #endif
2391 
2392 #ifdef COMPAT_FREEBSD7
2393 static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)2394 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2395 {
2396 	vm_map_entry_t entry, tmp_entry;
2397 	unsigned int last_timestamp, namelen;
2398 	char *fullpath, *freepath;
2399 	struct kinfo_ovmentry *kve;
2400 	struct vattr va;
2401 	struct ucred *cred;
2402 	int error, *name;
2403 	struct vnode *vp;
2404 	struct proc *p;
2405 	vm_map_t map;
2406 	struct vmspace *vm;
2407 
2408 	namelen = arg2;
2409 	if (namelen != 1)
2410 		return (EINVAL);
2411 
2412 	name = (int *)arg1;
2413 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2414 	if (error != 0)
2415 		return (error);
2416 	vm = vmspace_acquire_ref(p);
2417 	if (vm == NULL) {
2418 		PRELE(p);
2419 		return (ESRCH);
2420 	}
2421 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2422 
2423 	map = &vm->vm_map;
2424 	vm_map_lock_read(map);
2425 	VM_MAP_ENTRY_FOREACH(entry, map) {
2426 		vm_object_t obj, tobj, lobj;
2427 		vm_offset_t addr;
2428 
2429 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2430 			continue;
2431 
2432 		bzero(kve, sizeof(*kve));
2433 		kve->kve_structsize = sizeof(*kve);
2434 
2435 		kve->kve_private_resident = 0;
2436 		obj = entry->object.vm_object;
2437 		if (obj != NULL) {
2438 			VM_OBJECT_RLOCK(obj);
2439 			if (obj->shadow_count == 1)
2440 				kve->kve_private_resident =
2441 				    obj->resident_page_count;
2442 		}
2443 		kve->kve_resident = 0;
2444 		addr = entry->start;
2445 		while (addr < entry->end) {
2446 			if (pmap_extract(map->pmap, addr))
2447 				kve->kve_resident++;
2448 			addr += PAGE_SIZE;
2449 		}
2450 
2451 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2452 			if (tobj != obj) {
2453 				VM_OBJECT_RLOCK(tobj);
2454 				kve->kve_offset += tobj->backing_object_offset;
2455 			}
2456 			if (lobj != obj)
2457 				VM_OBJECT_RUNLOCK(lobj);
2458 			lobj = tobj;
2459 		}
2460 
2461 		kve->kve_start = (void*)entry->start;
2462 		kve->kve_end = (void*)entry->end;
2463 		kve->kve_offset += (off_t)entry->offset;
2464 
2465 		if (entry->protection & VM_PROT_READ)
2466 			kve->kve_protection |= KVME_PROT_READ;
2467 		if (entry->protection & VM_PROT_WRITE)
2468 			kve->kve_protection |= KVME_PROT_WRITE;
2469 		if (entry->protection & VM_PROT_EXECUTE)
2470 			kve->kve_protection |= KVME_PROT_EXEC;
2471 
2472 		if (entry->eflags & MAP_ENTRY_COW)
2473 			kve->kve_flags |= KVME_FLAG_COW;
2474 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2475 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2476 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2477 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2478 
2479 		last_timestamp = map->timestamp;
2480 		vm_map_unlock_read(map);
2481 
2482 		kve->kve_fileid = 0;
2483 		kve->kve_fsid = 0;
2484 		freepath = NULL;
2485 		fullpath = "";
2486 		if (lobj) {
2487 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2488 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2489 				kve->kve_type = KVME_TYPE_UNKNOWN;
2490 			if (vp != NULL)
2491 				vref(vp);
2492 			if (lobj != obj)
2493 				VM_OBJECT_RUNLOCK(lobj);
2494 
2495 			kve->kve_ref_count = obj->ref_count;
2496 			kve->kve_shadow_count = obj->shadow_count;
2497 			VM_OBJECT_RUNLOCK(obj);
2498 			if (vp != NULL) {
2499 				vn_fullpath(vp, &fullpath, &freepath);
2500 				cred = curthread->td_ucred;
2501 				vn_lock(vp, LK_SHARED | LK_RETRY);
2502 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2503 					kve->kve_fileid = va.va_fileid;
2504 					/* truncate */
2505 					kve->kve_fsid = va.va_fsid;
2506 				}
2507 				vput(vp);
2508 			}
2509 		} else {
2510 			kve->kve_type = KVME_TYPE_NONE;
2511 			kve->kve_ref_count = 0;
2512 			kve->kve_shadow_count = 0;
2513 		}
2514 
2515 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2516 		if (freepath != NULL)
2517 			free(freepath, M_TEMP);
2518 
2519 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2520 		vm_map_lock_read(map);
2521 		if (error)
2522 			break;
2523 		if (last_timestamp != map->timestamp) {
2524 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2525 			entry = tmp_entry;
2526 		}
2527 	}
2528 	vm_map_unlock_read(map);
2529 	vmspace_free(vm);
2530 	PRELE(p);
2531 	free(kve, M_TEMP);
2532 	return (error);
2533 }
2534 #endif	/* COMPAT_FREEBSD7 */
2535 
2536 #ifdef KINFO_VMENTRY_SIZE
2537 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2538 #endif
2539 
2540 void
kern_proc_vmmap_resident(vm_map_t map,vm_map_entry_t entry,int * resident_count,bool * super)2541 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2542     int *resident_count, bool *super)
2543 {
2544 	vm_object_t obj, tobj;
2545 	vm_page_t m, m_adv;
2546 	vm_offset_t addr;
2547 	vm_paddr_t pa;
2548 	vm_pindex_t pi, pi_adv, pindex;
2549 	int incore;
2550 
2551 	*super = false;
2552 	*resident_count = 0;
2553 	if (vmmap_skip_res_cnt)
2554 		return;
2555 
2556 	pa = 0;
2557 	obj = entry->object.vm_object;
2558 	addr = entry->start;
2559 	m_adv = NULL;
2560 	pi = OFF_TO_IDX(entry->offset);
2561 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2562 		if (m_adv != NULL) {
2563 			m = m_adv;
2564 		} else {
2565 			pi_adv = atop(entry->end - addr);
2566 			pindex = pi;
2567 			for (tobj = obj;; tobj = tobj->backing_object) {
2568 				m = vm_radix_lookup_ge(&tobj->rtree, pindex);
2569 				if (m != NULL) {
2570 					if (m->pindex == pindex)
2571 						break;
2572 					if (pi_adv > m->pindex - pindex) {
2573 						pi_adv = m->pindex - pindex;
2574 						m_adv = m;
2575 					}
2576 				}
2577 				if (tobj->backing_object == NULL)
2578 					goto next;
2579 				pindex += OFF_TO_IDX(tobj->
2580 				    backing_object_offset);
2581 			}
2582 		}
2583 		m_adv = NULL;
2584 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2585 		    (addr & (pagesizes[1] - 1)) == 0 && (incore =
2586 		    pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2587 			*super = true;
2588 			/*
2589 			 * The virtual page might be smaller than the physical
2590 			 * page, so we use the page size reported by the pmap
2591 			 * rather than m->psind.
2592 			 */
2593 			pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]);
2594 		} else {
2595 			/*
2596 			 * We do not test the found page on validity.
2597 			 * Either the page is busy and being paged in,
2598 			 * or it was invalidated.  The first case
2599 			 * should be counted as resident, the second
2600 			 * is not so clear; we do account both.
2601 			 */
2602 			pi_adv = 1;
2603 		}
2604 		*resident_count += pi_adv;
2605 next:;
2606 	}
2607 }
2608 
2609 /*
2610  * Must be called with the process locked and will return unlocked.
2611  */
2612 int
kern_proc_vmmap_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)2613 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2614 {
2615 	vm_map_entry_t entry, tmp_entry;
2616 	struct vattr va;
2617 	vm_map_t map;
2618 	vm_object_t lobj, nobj, obj, tobj;
2619 	char *fullpath, *freepath;
2620 	struct kinfo_vmentry *kve;
2621 	struct ucred *cred;
2622 	struct vnode *vp;
2623 	struct vmspace *vm;
2624 	vm_offset_t addr;
2625 	unsigned int last_timestamp;
2626 	int error;
2627 	key_t key;
2628 	unsigned short seq;
2629 	bool guard, super;
2630 
2631 	PROC_LOCK_ASSERT(p, MA_OWNED);
2632 
2633 	_PHOLD(p);
2634 	PROC_UNLOCK(p);
2635 	vm = vmspace_acquire_ref(p);
2636 	if (vm == NULL) {
2637 		PRELE(p);
2638 		return (ESRCH);
2639 	}
2640 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2641 
2642 	error = 0;
2643 	map = &vm->vm_map;
2644 	vm_map_lock_read(map);
2645 	VM_MAP_ENTRY_FOREACH(entry, map) {
2646 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2647 			continue;
2648 
2649 		addr = entry->end;
2650 		bzero(kve, sizeof(*kve));
2651 		obj = entry->object.vm_object;
2652 		if (obj != NULL) {
2653 			if ((obj->flags & OBJ_ANON) != 0)
2654 				kve->kve_obj = (uintptr_t)obj;
2655 
2656 			for (tobj = obj; tobj != NULL;
2657 			    tobj = tobj->backing_object) {
2658 				VM_OBJECT_RLOCK(tobj);
2659 				kve->kve_offset += tobj->backing_object_offset;
2660 				lobj = tobj;
2661 			}
2662 			if (obj->backing_object == NULL)
2663 				kve->kve_private_resident =
2664 				    obj->resident_page_count;
2665 			kern_proc_vmmap_resident(map, entry,
2666 			    &kve->kve_resident, &super);
2667 			if (super)
2668 				kve->kve_flags |= KVME_FLAG_SUPER;
2669 			for (tobj = obj; tobj != NULL; tobj = nobj) {
2670 				nobj = tobj->backing_object;
2671 				if (tobj != obj && tobj != lobj)
2672 					VM_OBJECT_RUNLOCK(tobj);
2673 			}
2674 		} else {
2675 			lobj = NULL;
2676 		}
2677 
2678 		kve->kve_start = entry->start;
2679 		kve->kve_end = entry->end;
2680 		kve->kve_offset += entry->offset;
2681 
2682 		if (entry->protection & VM_PROT_READ)
2683 			kve->kve_protection |= KVME_PROT_READ;
2684 		if (entry->protection & VM_PROT_WRITE)
2685 			kve->kve_protection |= KVME_PROT_WRITE;
2686 		if (entry->protection & VM_PROT_EXECUTE)
2687 			kve->kve_protection |= KVME_PROT_EXEC;
2688 		if (entry->max_protection & VM_PROT_READ)
2689 			kve->kve_protection |= KVME_MAX_PROT_READ;
2690 		if (entry->max_protection & VM_PROT_WRITE)
2691 			kve->kve_protection |= KVME_MAX_PROT_WRITE;
2692 		if (entry->max_protection & VM_PROT_EXECUTE)
2693 			kve->kve_protection |= KVME_MAX_PROT_EXEC;
2694 
2695 		if (entry->eflags & MAP_ENTRY_COW)
2696 			kve->kve_flags |= KVME_FLAG_COW;
2697 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2698 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2699 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2700 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2701 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2702 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2703 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
2704 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
2705 
2706 		guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2707 
2708 		last_timestamp = map->timestamp;
2709 		vm_map_unlock_read(map);
2710 
2711 		freepath = NULL;
2712 		fullpath = "";
2713 		if (lobj != NULL) {
2714 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2715 			if (vp != NULL)
2716 				vref(vp);
2717 			if (lobj != obj)
2718 				VM_OBJECT_RUNLOCK(lobj);
2719 
2720 			kve->kve_ref_count = obj->ref_count;
2721 			kve->kve_shadow_count = obj->shadow_count;
2722 			if (obj->type == OBJT_DEVICE ||
2723 			    obj->type == OBJT_MGTDEVICE) {
2724 				cdev_pager_get_path(obj, kve->kve_path,
2725 				    sizeof(kve->kve_path));
2726 			}
2727 			VM_OBJECT_RUNLOCK(obj);
2728 			if ((lobj->flags & OBJ_SYSVSHM) != 0) {
2729 				kve->kve_flags |= KVME_FLAG_SYSVSHM;
2730 				shmobjinfo(lobj, &key, &seq);
2731 				kve->kve_vn_fileid = key;
2732 				kve->kve_vn_fsid_freebsd11 = seq;
2733 			}
2734 			if ((lobj->flags & OBJ_POSIXSHM) != 0) {
2735 				kve->kve_flags |= KVME_FLAG_POSIXSHM;
2736 				shm_get_path(lobj, kve->kve_path,
2737 				    sizeof(kve->kve_path));
2738 			}
2739 			if (vp != NULL) {
2740 				vn_fullpath(vp, &fullpath, &freepath);
2741 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2742 				cred = curthread->td_ucred;
2743 				vn_lock(vp, LK_SHARED | LK_RETRY);
2744 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2745 					kve->kve_vn_fileid = va.va_fileid;
2746 					kve->kve_vn_fsid = va.va_fsid;
2747 					kve->kve_vn_fsid_freebsd11 =
2748 					    kve->kve_vn_fsid; /* truncate */
2749 					kve->kve_vn_mode =
2750 					    MAKEIMODE(va.va_type, va.va_mode);
2751 					kve->kve_vn_size = va.va_size;
2752 					kve->kve_vn_rdev = va.va_rdev;
2753 					kve->kve_vn_rdev_freebsd11 =
2754 					    kve->kve_vn_rdev; /* truncate */
2755 					kve->kve_status = KF_ATTR_VALID;
2756 				}
2757 				vput(vp);
2758 				strlcpy(kve->kve_path, fullpath, sizeof(
2759 				    kve->kve_path));
2760 				free(freepath, M_TEMP);
2761 			}
2762 		} else {
2763 			kve->kve_type = guard ? KVME_TYPE_GUARD :
2764 			    KVME_TYPE_NONE;
2765 			kve->kve_ref_count = 0;
2766 			kve->kve_shadow_count = 0;
2767 		}
2768 
2769 		/* Pack record size down */
2770 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2771 			kve->kve_structsize =
2772 			    offsetof(struct kinfo_vmentry, kve_path) +
2773 			    strlen(kve->kve_path) + 1;
2774 		else
2775 			kve->kve_structsize = sizeof(*kve);
2776 		kve->kve_structsize = roundup(kve->kve_structsize,
2777 		    sizeof(uint64_t));
2778 
2779 		/* Halt filling and truncate rather than exceeding maxlen */
2780 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2781 			error = 0;
2782 			vm_map_lock_read(map);
2783 			break;
2784 		} else if (maxlen != -1)
2785 			maxlen -= kve->kve_structsize;
2786 
2787 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2788 			error = ENOMEM;
2789 		vm_map_lock_read(map);
2790 		if (error != 0)
2791 			break;
2792 		if (last_timestamp != map->timestamp) {
2793 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2794 			entry = tmp_entry;
2795 		}
2796 	}
2797 	vm_map_unlock_read(map);
2798 	vmspace_free(vm);
2799 	PRELE(p);
2800 	free(kve, M_TEMP);
2801 	return (error);
2802 }
2803 
2804 static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)2805 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2806 {
2807 	struct proc *p;
2808 	struct sbuf sb;
2809 	u_int namelen;
2810 	int error, error2, *name;
2811 
2812 	namelen = arg2;
2813 	if (namelen != 1)
2814 		return (EINVAL);
2815 
2816 	name = (int *)arg1;
2817 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2818 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2819 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2820 	if (error != 0) {
2821 		sbuf_delete(&sb);
2822 		return (error);
2823 	}
2824 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2825 	error2 = sbuf_finish(&sb);
2826 	sbuf_delete(&sb);
2827 	return (error != 0 ? error : error2);
2828 }
2829 
2830 #if defined(STACK) || defined(DDB)
2831 static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)2832 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2833 {
2834 	struct kinfo_kstack *kkstp;
2835 	int error, i, *name, numthreads;
2836 	lwpid_t *lwpidarray;
2837 	struct thread *td;
2838 	struct stack *st;
2839 	struct sbuf sb;
2840 	struct proc *p;
2841 	u_int namelen;
2842 
2843 	namelen = arg2;
2844 	if (namelen != 1)
2845 		return (EINVAL);
2846 
2847 	name = (int *)arg1;
2848 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2849 	if (error != 0)
2850 		return (error);
2851 
2852 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2853 	st = stack_create(M_WAITOK);
2854 
2855 	lwpidarray = NULL;
2856 	PROC_LOCK(p);
2857 	do {
2858 		if (lwpidarray != NULL) {
2859 			free(lwpidarray, M_TEMP);
2860 			lwpidarray = NULL;
2861 		}
2862 		numthreads = p->p_numthreads;
2863 		PROC_UNLOCK(p);
2864 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2865 		    M_WAITOK | M_ZERO);
2866 		PROC_LOCK(p);
2867 	} while (numthreads < p->p_numthreads);
2868 
2869 	/*
2870 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2871 	 * of changes could have taken place.  Should we check to see if the
2872 	 * vmspace has been replaced, or the like, in order to prevent
2873 	 * giving a snapshot that spans, say, execve(2), with some threads
2874 	 * before and some after?  Among other things, the credentials could
2875 	 * have changed, in which case the right to extract debug info might
2876 	 * no longer be assured.
2877 	 */
2878 	i = 0;
2879 	FOREACH_THREAD_IN_PROC(p, td) {
2880 		KASSERT(i < numthreads,
2881 		    ("sysctl_kern_proc_kstack: numthreads"));
2882 		lwpidarray[i] = td->td_tid;
2883 		i++;
2884 	}
2885 	PROC_UNLOCK(p);
2886 	numthreads = i;
2887 	for (i = 0; i < numthreads; i++) {
2888 		td = tdfind(lwpidarray[i], p->p_pid);
2889 		if (td == NULL) {
2890 			continue;
2891 		}
2892 		bzero(kkstp, sizeof(*kkstp));
2893 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2894 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2895 		thread_lock(td);
2896 		kkstp->kkst_tid = td->td_tid;
2897 		if (stack_save_td(st, td) == 0)
2898 			kkstp->kkst_state = KKST_STATE_STACKOK;
2899 		else
2900 			kkstp->kkst_state = KKST_STATE_RUNNING;
2901 		thread_unlock(td);
2902 		PROC_UNLOCK(p);
2903 		stack_sbuf_print(&sb, st);
2904 		sbuf_finish(&sb);
2905 		sbuf_delete(&sb);
2906 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2907 		if (error)
2908 			break;
2909 	}
2910 	PRELE(p);
2911 	if (lwpidarray != NULL)
2912 		free(lwpidarray, M_TEMP);
2913 	stack_destroy(st);
2914 	free(kkstp, M_TEMP);
2915 	return (error);
2916 }
2917 #endif
2918 
2919 /*
2920  * This sysctl allows a process to retrieve the full list of groups from
2921  * itself or another process.
2922  */
2923 static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)2924 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2925 {
2926 	pid_t *pidp = (pid_t *)arg1;
2927 	unsigned int arglen = arg2;
2928 	struct proc *p;
2929 	struct ucred *cred;
2930 	int error;
2931 
2932 	if (arglen != 1)
2933 		return (EINVAL);
2934 	if (*pidp == -1) {	/* -1 means this process */
2935 		p = req->td->td_proc;
2936 		PROC_LOCK(p);
2937 	} else {
2938 		error = pget(*pidp, PGET_CANSEE, &p);
2939 		if (error != 0)
2940 			return (error);
2941 	}
2942 
2943 	cred = crhold(p->p_ucred);
2944 	PROC_UNLOCK(p);
2945 
2946 	error = SYSCTL_OUT(req, cred->cr_groups,
2947 	    cred->cr_ngroups * sizeof(gid_t));
2948 	crfree(cred);
2949 	return (error);
2950 }
2951 
2952 /*
2953  * This sysctl allows a process to retrieve or/and set the resource limit for
2954  * another process.
2955  */
2956 static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)2957 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2958 {
2959 	int *name = (int *)arg1;
2960 	u_int namelen = arg2;
2961 	struct rlimit rlim;
2962 	struct proc *p;
2963 	u_int which;
2964 	int flags, error;
2965 
2966 	if (namelen != 2)
2967 		return (EINVAL);
2968 
2969 	which = (u_int)name[1];
2970 	if (which >= RLIM_NLIMITS)
2971 		return (EINVAL);
2972 
2973 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2974 		return (EINVAL);
2975 
2976 	flags = PGET_HOLD | PGET_NOTWEXIT;
2977 	if (req->newptr != NULL)
2978 		flags |= PGET_CANDEBUG;
2979 	else
2980 		flags |= PGET_CANSEE;
2981 	error = pget((pid_t)name[0], flags, &p);
2982 	if (error != 0)
2983 		return (error);
2984 
2985 	/*
2986 	 * Retrieve limit.
2987 	 */
2988 	if (req->oldptr != NULL) {
2989 		PROC_LOCK(p);
2990 		lim_rlimit_proc(p, which, &rlim);
2991 		PROC_UNLOCK(p);
2992 	}
2993 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2994 	if (error != 0)
2995 		goto errout;
2996 
2997 	/*
2998 	 * Set limit.
2999 	 */
3000 	if (req->newptr != NULL) {
3001 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
3002 		if (error == 0)
3003 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
3004 	}
3005 
3006 errout:
3007 	PRELE(p);
3008 	return (error);
3009 }
3010 
3011 /*
3012  * This sysctl allows a process to retrieve ps_strings structure location of
3013  * another process.
3014  */
3015 static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)3016 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
3017 {
3018 	int *name = (int *)arg1;
3019 	u_int namelen = arg2;
3020 	struct proc *p;
3021 	vm_offset_t ps_strings;
3022 	int error;
3023 #ifdef COMPAT_FREEBSD32
3024 	uint32_t ps_strings32;
3025 #endif
3026 
3027 	if (namelen != 1)
3028 		return (EINVAL);
3029 
3030 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3031 	if (error != 0)
3032 		return (error);
3033 #ifdef COMPAT_FREEBSD32
3034 	if ((req->flags & SCTL_MASK32) != 0) {
3035 		/*
3036 		 * We return 0 if the 32 bit emulation request is for a 64 bit
3037 		 * process.
3038 		 */
3039 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
3040 		    PTROUT(PROC_PS_STRINGS(p)) : 0;
3041 		PROC_UNLOCK(p);
3042 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
3043 		return (error);
3044 	}
3045 #endif
3046 	ps_strings = PROC_PS_STRINGS(p);
3047 	PROC_UNLOCK(p);
3048 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
3049 	return (error);
3050 }
3051 
3052 /*
3053  * This sysctl allows a process to retrieve umask of another process.
3054  */
3055 static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)3056 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3057 {
3058 	int *name = (int *)arg1;
3059 	u_int namelen = arg2;
3060 	struct proc *p;
3061 	int error;
3062 	u_short cmask;
3063 	pid_t pid;
3064 
3065 	if (namelen != 1)
3066 		return (EINVAL);
3067 
3068 	pid = (pid_t)name[0];
3069 	p = curproc;
3070 	if (pid == p->p_pid || pid == 0) {
3071 		cmask = p->p_pd->pd_cmask;
3072 		goto out;
3073 	}
3074 
3075 	error = pget(pid, PGET_WANTREAD, &p);
3076 	if (error != 0)
3077 		return (error);
3078 
3079 	cmask = p->p_pd->pd_cmask;
3080 	PRELE(p);
3081 out:
3082 	error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3083 	return (error);
3084 }
3085 
3086 /*
3087  * This sysctl allows a process to set and retrieve binary osreldate of
3088  * another process.
3089  */
3090 static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)3091 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3092 {
3093 	int *name = (int *)arg1;
3094 	u_int namelen = arg2;
3095 	struct proc *p;
3096 	int flags, error, osrel;
3097 
3098 	if (namelen != 1)
3099 		return (EINVAL);
3100 
3101 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
3102 		return (EINVAL);
3103 
3104 	flags = PGET_HOLD | PGET_NOTWEXIT;
3105 	if (req->newptr != NULL)
3106 		flags |= PGET_CANDEBUG;
3107 	else
3108 		flags |= PGET_CANSEE;
3109 	error = pget((pid_t)name[0], flags, &p);
3110 	if (error != 0)
3111 		return (error);
3112 
3113 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3114 	if (error != 0)
3115 		goto errout;
3116 
3117 	if (req->newptr != NULL) {
3118 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3119 		if (error != 0)
3120 			goto errout;
3121 		if (osrel < 0) {
3122 			error = EINVAL;
3123 			goto errout;
3124 		}
3125 		p->p_osrel = osrel;
3126 	}
3127 errout:
3128 	PRELE(p);
3129 	return (error);
3130 }
3131 
3132 static int
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)3133 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3134 {
3135 	int *name = (int *)arg1;
3136 	u_int namelen = arg2;
3137 	struct proc *p;
3138 	struct kinfo_sigtramp kst;
3139 	const struct sysentvec *sv;
3140 	int error;
3141 #ifdef COMPAT_FREEBSD32
3142 	struct kinfo_sigtramp32 kst32;
3143 #endif
3144 
3145 	if (namelen != 1)
3146 		return (EINVAL);
3147 
3148 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3149 	if (error != 0)
3150 		return (error);
3151 	sv = p->p_sysent;
3152 #ifdef COMPAT_FREEBSD32
3153 	if ((req->flags & SCTL_MASK32) != 0) {
3154 		bzero(&kst32, sizeof(kst32));
3155 		if (SV_PROC_FLAG(p, SV_ILP32)) {
3156 			if (PROC_HAS_SHP(p)) {
3157 				kst32.ksigtramp_start = PROC_SIGCODE(p);
3158 				kst32.ksigtramp_end = kst32.ksigtramp_start +
3159 				    ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3160 				    *sv->sv_szsigcode :
3161 				    (uintptr_t)sv->sv_szsigcode);
3162 			} else {
3163 				kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3164 				    *sv->sv_szsigcode;
3165 				kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3166 			}
3167 		}
3168 		PROC_UNLOCK(p);
3169 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3170 		return (error);
3171 	}
3172 #endif
3173 	bzero(&kst, sizeof(kst));
3174 	if (PROC_HAS_SHP(p)) {
3175 		kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3176 		kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3177 		    ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3178 		    (uintptr_t)sv->sv_szsigcode);
3179 	} else {
3180 		kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3181 		    *sv->sv_szsigcode;
3182 		kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3183 	}
3184 	PROC_UNLOCK(p);
3185 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
3186 	return (error);
3187 }
3188 
3189 static int
sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)3190 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3191 {
3192 	int *name = (int *)arg1;
3193 	u_int namelen = arg2;
3194 	pid_t pid;
3195 	struct proc *p;
3196 	struct thread *td1;
3197 	uintptr_t addr;
3198 #ifdef COMPAT_FREEBSD32
3199 	uint32_t addr32;
3200 #endif
3201 	int error;
3202 
3203 	if (namelen != 1 || req->newptr != NULL)
3204 		return (EINVAL);
3205 
3206 	pid = (pid_t)name[0];
3207 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3208 	if (error != 0)
3209 		return (error);
3210 
3211 	PROC_LOCK(p);
3212 #ifdef COMPAT_FREEBSD32
3213 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3214 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3215 			error = EINVAL;
3216 			goto errlocked;
3217 		}
3218 	}
3219 #endif
3220 	if (pid <= PID_MAX) {
3221 		td1 = FIRST_THREAD_IN_PROC(p);
3222 	} else {
3223 		FOREACH_THREAD_IN_PROC(p, td1) {
3224 			if (td1->td_tid == pid)
3225 				break;
3226 		}
3227 	}
3228 	if (td1 == NULL) {
3229 		error = ESRCH;
3230 		goto errlocked;
3231 	}
3232 	/*
3233 	 * The access to the private thread flags.  It is fine as far
3234 	 * as no out-of-thin-air values are read from td_pflags, and
3235 	 * usermode read of the td_sigblock_ptr is racy inherently,
3236 	 * since target process might have already changed it
3237 	 * meantime.
3238 	 */
3239 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3240 		addr = (uintptr_t)td1->td_sigblock_ptr;
3241 	else
3242 		error = ENOTTY;
3243 
3244 errlocked:
3245 	_PRELE(p);
3246 	PROC_UNLOCK(p);
3247 	if (error != 0)
3248 		return (error);
3249 
3250 #ifdef COMPAT_FREEBSD32
3251 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3252 		addr32 = addr;
3253 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3254 	} else
3255 #endif
3256 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
3257 	return (error);
3258 }
3259 
3260 static int
sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)3261 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3262 {
3263 	struct kinfo_vm_layout kvm;
3264 	struct proc *p;
3265 	struct vmspace *vmspace;
3266 	int error, *name;
3267 
3268 	name = (int *)arg1;
3269 	if ((u_int)arg2 != 1)
3270 		return (EINVAL);
3271 
3272 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3273 	if (error != 0)
3274 		return (error);
3275 #ifdef COMPAT_FREEBSD32
3276 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3277 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3278 			PROC_UNLOCK(p);
3279 			return (EINVAL);
3280 		}
3281 	}
3282 #endif
3283 	vmspace = vmspace_acquire_ref(p);
3284 	PROC_UNLOCK(p);
3285 
3286 	memset(&kvm, 0, sizeof(kvm));
3287 	kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3288 	kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3289 	kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3290 	kvm.kvm_text_size = vmspace->vm_tsize;
3291 	kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3292 	kvm.kvm_data_size = vmspace->vm_dsize;
3293 	kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3294 	kvm.kvm_stack_size = vmspace->vm_ssize;
3295 	kvm.kvm_shp_addr = vmspace->vm_shp_base;
3296 	kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3297 	if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3298 		kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3299 	if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3300 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3301 	if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3302 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3303 	if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3304 		kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3305 	if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3306 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3307 	if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3308 	    PROC_HAS_SHP(p))
3309 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3310 
3311 #ifdef COMPAT_FREEBSD32
3312 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3313 		struct kinfo_vm_layout32 kvm32;
3314 
3315 		memset(&kvm32, 0, sizeof(kvm32));
3316 		kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3317 		kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3318 		kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3319 		kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3320 		kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3321 		kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3322 		kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3323 		kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3324 		kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3325 		kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3326 		kvm32.kvm_map_flags = kvm.kvm_map_flags;
3327 		error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3328 		goto out;
3329 	}
3330 #endif
3331 
3332 	error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3333 #ifdef COMPAT_FREEBSD32
3334 out:
3335 #endif
3336 	vmspace_free(vmspace);
3337 	return (error);
3338 }
3339 
3340 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
3341     "Process table");
3342 
3343 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3344 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3345 	"Return entire process table");
3346 
3347 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3348 	sysctl_kern_proc, "Process table");
3349 
3350 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3351 	sysctl_kern_proc, "Process table");
3352 
3353 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3354 	sysctl_kern_proc, "Process table");
3355 
3356 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3357 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3358 
3359 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3360 	sysctl_kern_proc, "Process table");
3361 
3362 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3363 	sysctl_kern_proc, "Process table");
3364 
3365 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3366 	sysctl_kern_proc, "Process table");
3367 
3368 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3369 	sysctl_kern_proc, "Process table");
3370 
3371 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3372 	sysctl_kern_proc, "Return process table, no threads");
3373 
3374 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3375 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3376 	sysctl_kern_proc_args, "Process argument list");
3377 
3378 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3379 	sysctl_kern_proc_env, "Process environment");
3380 
3381 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3382 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3383 
3384 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3385 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3386 
3387 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3388 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3389 	"Process syscall vector name (ABI type)");
3390 
3391 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3392 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3393 
3394 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3395 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3396 
3397 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3398 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3399 
3400 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3401 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3402 
3403 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3404 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3405 
3406 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3407 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3408 
3409 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3410 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3411 
3412 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3413 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3414 
3415 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3416 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3417 	"Return process table, including threads");
3418 
3419 #ifdef COMPAT_FREEBSD7
3420 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3421 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3422 #endif
3423 
3424 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3425 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3426 
3427 #if defined(STACK) || defined(DDB)
3428 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3429 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3430 #endif
3431 
3432 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3433 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3434 
3435 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3436 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3437 	"Process resource limits");
3438 
3439 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3440 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3441 	"Process ps_strings location");
3442 
3443 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3444 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3445 
3446 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3447 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3448 	"Process binary osreldate");
3449 
3450 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3451 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3452 	"Process signal trampoline location");
3453 
3454 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3455 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3456 	"Thread sigfastblock address");
3457 
3458 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3459 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3460 	"Process virtual address space layout info");
3461 
3462 static struct sx stop_all_proc_blocker;
3463 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3464 
3465 bool
stop_all_proc_block(void)3466 stop_all_proc_block(void)
3467 {
3468 	return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3469 }
3470 
3471 void
stop_all_proc_unblock(void)3472 stop_all_proc_unblock(void)
3473 {
3474 	sx_xunlock(&stop_all_proc_blocker);
3475 }
3476 
3477 int allproc_gen;
3478 
3479 /*
3480  * stop_all_proc() purpose is to stop all process which have usermode,
3481  * except current process for obvious reasons.  This makes it somewhat
3482  * unreliable when invoked from multithreaded process.  The service
3483  * must not be user-callable anyway.
3484  */
3485 void
stop_all_proc(void)3486 stop_all_proc(void)
3487 {
3488 	struct proc *cp, *p;
3489 	int r, gen;
3490 	bool restart, seen_stopped, seen_exiting, stopped_some;
3491 
3492 	if (!stop_all_proc_block())
3493 		return;
3494 
3495 	cp = curproc;
3496 allproc_loop:
3497 	sx_xlock(&allproc_lock);
3498 	gen = allproc_gen;
3499 	seen_exiting = seen_stopped = stopped_some = restart = false;
3500 	LIST_REMOVE(cp, p_list);
3501 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3502 	for (;;) {
3503 		p = LIST_NEXT(cp, p_list);
3504 		if (p == NULL)
3505 			break;
3506 		LIST_REMOVE(cp, p_list);
3507 		LIST_INSERT_AFTER(p, cp, p_list);
3508 		PROC_LOCK(p);
3509 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP |
3510 		    P_STOPPED_SIG)) != 0) {
3511 			PROC_UNLOCK(p);
3512 			continue;
3513 		}
3514 		if ((p->p_flag2 & P2_WEXIT) != 0) {
3515 			seen_exiting = true;
3516 			PROC_UNLOCK(p);
3517 			continue;
3518 		}
3519 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3520 			/*
3521 			 * Stopped processes are tolerated when there
3522 			 * are no other processes which might continue
3523 			 * them.  P_STOPPED_SINGLE but not
3524 			 * P_TOTAL_STOP process still has at least one
3525 			 * thread running.
3526 			 */
3527 			seen_stopped = true;
3528 			PROC_UNLOCK(p);
3529 			continue;
3530 		}
3531 		if ((p->p_flag & P_TRACED) != 0) {
3532 			/*
3533 			 * thread_single() below cannot stop traced p,
3534 			 * so skip it.  OTOH, we cannot require
3535 			 * restart because debugger might be either
3536 			 * already stopped or traced as well.
3537 			 */
3538 			PROC_UNLOCK(p);
3539 			continue;
3540 		}
3541 		sx_xunlock(&allproc_lock);
3542 		_PHOLD(p);
3543 		r = thread_single(p, SINGLE_ALLPROC);
3544 		if (r != 0)
3545 			restart = true;
3546 		else
3547 			stopped_some = true;
3548 		_PRELE(p);
3549 		PROC_UNLOCK(p);
3550 		sx_xlock(&allproc_lock);
3551 	}
3552 	/* Catch forked children we did not see in iteration. */
3553 	if (gen != allproc_gen)
3554 		restart = true;
3555 	sx_xunlock(&allproc_lock);
3556 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3557 		kern_yield(PRI_USER);
3558 		goto allproc_loop;
3559 	}
3560 }
3561 
3562 void
resume_all_proc(void)3563 resume_all_proc(void)
3564 {
3565 	struct proc *cp, *p;
3566 
3567 	cp = curproc;
3568 	sx_xlock(&allproc_lock);
3569 again:
3570 	LIST_REMOVE(cp, p_list);
3571 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3572 	for (;;) {
3573 		p = LIST_NEXT(cp, p_list);
3574 		if (p == NULL)
3575 			break;
3576 		LIST_REMOVE(cp, p_list);
3577 		LIST_INSERT_AFTER(p, cp, p_list);
3578 		PROC_LOCK(p);
3579 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3580 			sx_xunlock(&allproc_lock);
3581 			_PHOLD(p);
3582 			thread_single_end(p, SINGLE_ALLPROC);
3583 			_PRELE(p);
3584 			PROC_UNLOCK(p);
3585 			sx_xlock(&allproc_lock);
3586 		} else {
3587 			PROC_UNLOCK(p);
3588 		}
3589 	}
3590 	/*  Did the loop above missed any stopped process ? */
3591 	FOREACH_PROC_IN_SYSTEM(p) {
3592 		/* No need for proc lock. */
3593 		if ((p->p_flag & P_TOTAL_STOP) != 0)
3594 			goto again;
3595 	}
3596 	sx_xunlock(&allproc_lock);
3597 
3598 	stop_all_proc_unblock();
3599 }
3600 
3601 /* #define	TOTAL_STOP_DEBUG	1 */
3602 #ifdef TOTAL_STOP_DEBUG
3603 volatile static int ap_resume;
3604 #include <sys/mount.h>
3605 
3606 static int
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)3607 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3608 {
3609 	int error, val;
3610 
3611 	val = 0;
3612 	ap_resume = 0;
3613 	error = sysctl_handle_int(oidp, &val, 0, req);
3614 	if (error != 0 || req->newptr == NULL)
3615 		return (error);
3616 	if (val != 0) {
3617 		stop_all_proc();
3618 		syncer_suspend();
3619 		while (ap_resume == 0)
3620 			;
3621 		syncer_resume();
3622 		resume_all_proc();
3623 	}
3624 	return (0);
3625 }
3626 
3627 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3628     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3629     sysctl_debug_stop_all_proc, "I",
3630     "");
3631 #endif
3632