xref: /linux/drivers/infiniband/hw/bnxt_re/qplib_sp.c (revision ec8c17e5ecb4a5a74069687ccb6d2cfe1851302e)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: Slow Path Operators
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/sched.h>
44 #include <linux/pci.h>
45 
46 #include "roce_hsi.h"
47 
48 #include "qplib_res.h"
49 #include "qplib_rcfw.h"
50 #include "qplib_sp.h"
51 #include "qplib_tlv.h"
52 
53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54 						     0, 0, 0, 0, 0, 0, 0, 0 } };
55 
56 /* Device */
57 
bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw * rcfw)58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
59 {
60 	u16 pcie_ctl2 = 0;
61 
62 	if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx))
63 		return false;
64 
65 	pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66 	return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
67 }
68 
bnxt_qplib_query_version(struct bnxt_qplib_rcfw * rcfw,char * fw_ver)69 static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
70 				     char *fw_ver)
71 {
72 	struct creq_query_version_resp resp = {};
73 	struct bnxt_qplib_cmdqmsg msg = {};
74 	struct cmdq_query_version req = {};
75 	int rc;
76 
77 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
78 				 CMDQ_BASE_OPCODE_QUERY_VERSION,
79 				 sizeof(req));
80 
81 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
82 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
83 	if (rc)
84 		return;
85 	fw_ver[0] = resp.fw_maj;
86 	fw_ver[1] = resp.fw_minor;
87 	fw_ver[2] = resp.fw_bld;
88 	fw_ver[3] = resp.fw_rsvd;
89 }
90 
bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw * rcfw,struct bnxt_qplib_dev_attr * attr)91 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw,
92 			    struct bnxt_qplib_dev_attr *attr)
93 {
94 	struct creq_query_func_resp resp = {};
95 	struct bnxt_qplib_cmdqmsg msg = {};
96 	struct creq_query_func_resp_sb *sb;
97 	struct bnxt_qplib_rcfw_sbuf sbuf;
98 	struct bnxt_qplib_chip_ctx *cctx;
99 	struct cmdq_query_func req = {};
100 	u8 *tqm_alloc;
101 	int i, rc;
102 	u32 temp;
103 
104 	cctx = rcfw->res->cctx;
105 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
106 				 CMDQ_BASE_OPCODE_QUERY_FUNC,
107 				 sizeof(req));
108 
109 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
110 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
111 				     &sbuf.dma_addr, GFP_KERNEL);
112 	if (!sbuf.sb)
113 		return -ENOMEM;
114 	sb = sbuf.sb;
115 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
116 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
117 				sizeof(resp), 0);
118 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
119 	if (rc)
120 		goto bail;
121 
122 	/* Extract the context from the side buffer */
123 	attr->max_qp = le32_to_cpu(sb->max_qp);
124 	/* max_qp value reported by FW doesn't include the QP1 */
125 	attr->max_qp += 1;
126 	attr->max_qp_rd_atom =
127 		sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
128 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
129 	attr->max_qp_init_rd_atom =
130 		sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
131 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
132 	attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr);
133 	/*
134 	 * 128 WQEs needs to be reserved for the HW (8916). Prevent
135 	 * reporting the max number
136 	 */
137 	attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
138 
139 	attr->max_qp_sges = cctx->modes.wqe_mode == BNXT_QPLIB_WQE_MODE_VARIABLE ?
140 			    min_t(u32, sb->max_sge_var_wqe, BNXT_VAR_MAX_SGE) : 6;
141 	attr->max_cq = le32_to_cpu(sb->max_cq);
142 	attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
143 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
144 		attr->max_cq_wqes = min_t(u32, BNXT_QPLIB_MAX_CQ_WQES, attr->max_cq_wqes);
145 	attr->max_cq_sges = attr->max_qp_sges;
146 	attr->max_mr = le32_to_cpu(sb->max_mr);
147 	attr->max_mw = le32_to_cpu(sb->max_mw);
148 
149 	attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
150 	attr->max_pd = 64 * 1024;
151 	attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
152 	attr->max_ah = le32_to_cpu(sb->max_ah);
153 
154 	attr->max_srq = le16_to_cpu(sb->max_srq);
155 	attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
156 	attr->max_srq_sges = sb->max_srq_sge;
157 	attr->max_pkey = 1;
158 	attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
159 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
160 		attr->l2_db_size = (sb->l2_db_space_size + 1) *
161 				    (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
162 	/*
163 	 * Read the max gid supported by HW.
164 	 * For each entry in HW  GID in HW table, we consume 2
165 	 * GID entries in the kernel GID table.  So max_gid reported
166 	 * to stack can be up to twice the value reported by the HW, up to 256 gids.
167 	 */
168 	attr->max_sgid = le32_to_cpu(sb->max_gid);
169 	attr->max_sgid = min_t(u32, BNXT_QPLIB_NUM_GIDS_SUPPORTED, 2 * attr->max_sgid);
170 	attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
171 	attr->dev_cap_flags2 = le16_to_cpu(sb->dev_cap_ext_flags_2);
172 
173 	bnxt_qplib_query_version(rcfw, attr->fw_ver);
174 
175 	for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
176 		temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
177 		tqm_alloc = (u8 *)&temp;
178 		attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
179 		attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
180 		attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
181 		attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
182 	}
183 
184 	if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
185 		attr->max_dpi = le32_to_cpu(sb->max_dpi);
186 
187 	attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
188 bail:
189 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
190 			  sbuf.sb, sbuf.dma_addr);
191 	return rc;
192 }
193 
bnxt_qplib_set_func_resources(struct bnxt_qplib_res * res,struct bnxt_qplib_rcfw * rcfw,struct bnxt_qplib_ctx * ctx)194 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
195 				  struct bnxt_qplib_rcfw *rcfw,
196 				  struct bnxt_qplib_ctx *ctx)
197 {
198 	struct creq_set_func_resources_resp resp = {};
199 	struct cmdq_set_func_resources req = {};
200 	struct bnxt_qplib_cmdqmsg msg = {};
201 	int rc;
202 
203 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
204 				 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
205 				 sizeof(req));
206 
207 	req.number_of_qp = cpu_to_le32(ctx->qpc_count);
208 	req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
209 	req.number_of_srq =  cpu_to_le32(ctx->srqc_count);
210 	req.number_of_cq = cpu_to_le32(ctx->cq_count);
211 
212 	req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
213 	req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
214 	req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
215 	req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
216 	req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
217 
218 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
219 				sizeof(resp), 0);
220 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
221 	if (rc) {
222 		dev_err(&res->pdev->dev, "Failed to set function resources\n");
223 	}
224 	return rc;
225 }
226 
227 /* SGID */
bnxt_qplib_get_sgid(struct bnxt_qplib_res * res,struct bnxt_qplib_sgid_tbl * sgid_tbl,int index,struct bnxt_qplib_gid * gid)228 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
229 			struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
230 			struct bnxt_qplib_gid *gid)
231 {
232 	if (index >= sgid_tbl->max) {
233 		dev_err(&res->pdev->dev,
234 			"Index %d exceeded SGID table max (%d)\n",
235 			index, sgid_tbl->max);
236 		return -EINVAL;
237 	}
238 	memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
239 	return 0;
240 }
241 
bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl * sgid_tbl,struct bnxt_qplib_gid * gid,u16 vlan_id,bool update)242 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
243 			struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
244 {
245 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
246 						   struct bnxt_qplib_res,
247 						   sgid_tbl);
248 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
249 	int index;
250 
251 	/* Do we need a sgid_lock here? */
252 	if (!sgid_tbl->active) {
253 		dev_err(&res->pdev->dev, "SGID table has no active entries\n");
254 		return -ENOMEM;
255 	}
256 	for (index = 0; index < sgid_tbl->max; index++) {
257 		if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
258 		    vlan_id == sgid_tbl->tbl[index].vlan_id)
259 			break;
260 	}
261 	if (index == sgid_tbl->max) {
262 		dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
263 		return 0;
264 	}
265 	/* Remove GID from the SGID table */
266 	if (update) {
267 		struct creq_delete_gid_resp resp = {};
268 		struct bnxt_qplib_cmdqmsg msg = {};
269 		struct cmdq_delete_gid req = {};
270 		int rc;
271 
272 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
273 					 CMDQ_BASE_OPCODE_DELETE_GID,
274 					 sizeof(req));
275 		if (sgid_tbl->hw_id[index] == 0xFFFF) {
276 			dev_err(&res->pdev->dev,
277 				"GID entry contains an invalid HW id\n");
278 			return -EINVAL;
279 		}
280 		req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
281 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
282 					sizeof(resp), 0);
283 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
284 		if (rc)
285 			return rc;
286 	}
287 	memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
288 	       sizeof(bnxt_qplib_gid_zero));
289 	sgid_tbl->tbl[index].vlan_id = 0xFFFF;
290 	sgid_tbl->vlan[index] = 0;
291 	sgid_tbl->active--;
292 	dev_dbg(&res->pdev->dev,
293 		"SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
294 		 index, sgid_tbl->hw_id[index], sgid_tbl->active);
295 	sgid_tbl->hw_id[index] = (u16)-1;
296 
297 	/* unlock */
298 	return 0;
299 }
300 
bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl * sgid_tbl,struct bnxt_qplib_gid * gid,const u8 * smac,u16 vlan_id,bool update,u32 * index)301 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
302 			struct bnxt_qplib_gid *gid, const u8 *smac,
303 			u16 vlan_id, bool update, u32 *index)
304 {
305 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
306 						   struct bnxt_qplib_res,
307 						   sgid_tbl);
308 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
309 	int i, free_idx;
310 
311 	/* Do we need a sgid_lock here? */
312 	if (sgid_tbl->active == sgid_tbl->max) {
313 		dev_err(&res->pdev->dev, "SGID table is full\n");
314 		return -ENOMEM;
315 	}
316 	free_idx = sgid_tbl->max;
317 	for (i = 0; i < sgid_tbl->max; i++) {
318 		if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
319 		    sgid_tbl->tbl[i].vlan_id == vlan_id) {
320 			dev_dbg(&res->pdev->dev,
321 				"SGID entry already exist in entry %d!\n", i);
322 			*index = i;
323 			return -EALREADY;
324 		} else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
325 				   sizeof(bnxt_qplib_gid_zero)) &&
326 			   free_idx == sgid_tbl->max) {
327 			free_idx = i;
328 		}
329 	}
330 	if (free_idx == sgid_tbl->max) {
331 		dev_err(&res->pdev->dev,
332 			"SGID table is FULL but count is not MAX??\n");
333 		return -ENOMEM;
334 	}
335 	if (update) {
336 		struct creq_add_gid_resp resp = {};
337 		struct bnxt_qplib_cmdqmsg msg = {};
338 		struct cmdq_add_gid req = {};
339 		int rc;
340 
341 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
342 					 CMDQ_BASE_OPCODE_ADD_GID,
343 					 sizeof(req));
344 
345 		req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
346 		req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
347 		req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
348 		req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
349 		/*
350 		 * driver should ensure that all RoCE traffic is always VLAN
351 		 * tagged if RoCE traffic is running on non-zero VLAN ID or
352 		 * RoCE traffic is running on non-zero Priority.
353 		 */
354 		if ((vlan_id != 0xFFFF) || res->prio) {
355 			if (vlan_id != 0xFFFF)
356 				req.vlan = cpu_to_le16
357 				(vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
358 			req.vlan |= cpu_to_le16
359 					(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
360 					 CMDQ_ADD_GID_VLAN_VLAN_EN);
361 		}
362 
363 		/* MAC in network format */
364 		req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
365 		req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
366 		req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
367 
368 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
369 					sizeof(resp), 0);
370 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
371 		if (rc)
372 			return rc;
373 		sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
374 	}
375 	/* Add GID to the sgid_tbl */
376 	memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
377 	sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
378 	sgid_tbl->active++;
379 	if (vlan_id != 0xFFFF)
380 		sgid_tbl->vlan[free_idx] = 1;
381 
382 	dev_dbg(&res->pdev->dev,
383 		"SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
384 		 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
385 
386 	*index = free_idx;
387 	/* unlock */
388 	return 0;
389 }
390 
bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl * sgid_tbl,struct bnxt_qplib_gid * gid,u16 gid_idx,const u8 * smac)391 int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
392 			   struct bnxt_qplib_gid *gid, u16 gid_idx,
393 			   const u8 *smac)
394 {
395 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
396 						   struct bnxt_qplib_res,
397 						   sgid_tbl);
398 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
399 	struct creq_modify_gid_resp resp = {};
400 	struct bnxt_qplib_cmdqmsg msg = {};
401 	struct cmdq_modify_gid req = {};
402 	int rc;
403 
404 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
405 				 CMDQ_BASE_OPCODE_MODIFY_GID,
406 				 sizeof(req));
407 
408 	req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
409 	req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
410 	req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
411 	req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
412 	if (res->prio) {
413 		req.vlan |= cpu_to_le16
414 			(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
415 			 CMDQ_ADD_GID_VLAN_VLAN_EN);
416 	}
417 
418 	/* MAC in network format */
419 	req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
420 	req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
421 	req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
422 
423 	req.gid_index = cpu_to_le16(gid_idx);
424 
425 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
426 				sizeof(resp), 0);
427 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
428 	return rc;
429 }
430 
431 /* AH */
bnxt_qplib_create_ah(struct bnxt_qplib_res * res,struct bnxt_qplib_ah * ah,bool block)432 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
433 			 bool block)
434 {
435 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
436 	struct creq_create_ah_resp resp = {};
437 	struct bnxt_qplib_cmdqmsg msg = {};
438 	struct cmdq_create_ah req = {};
439 	u32 temp32[4];
440 	u16 temp16[3];
441 	int rc;
442 
443 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
444 				 CMDQ_BASE_OPCODE_CREATE_AH,
445 				 sizeof(req));
446 
447 	memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
448 	req.dgid[0] = cpu_to_le32(temp32[0]);
449 	req.dgid[1] = cpu_to_le32(temp32[1]);
450 	req.dgid[2] = cpu_to_le32(temp32[2]);
451 	req.dgid[3] = cpu_to_le32(temp32[3]);
452 
453 	req.type = ah->nw_type;
454 	req.hop_limit = ah->hop_limit;
455 	req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
456 	req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
457 					CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
458 					CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
459 	req.pd_id = cpu_to_le32(ah->pd->id);
460 	req.traffic_class = ah->traffic_class;
461 
462 	/* MAC in network format */
463 	memcpy(temp16, ah->dmac, 6);
464 	req.dest_mac[0] = cpu_to_le16(temp16[0]);
465 	req.dest_mac[1] = cpu_to_le16(temp16[1]);
466 	req.dest_mac[2] = cpu_to_le16(temp16[2]);
467 
468 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
469 				sizeof(resp), block);
470 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
471 	if (rc)
472 		return rc;
473 
474 	ah->id = le32_to_cpu(resp.xid);
475 	return 0;
476 }
477 
bnxt_qplib_destroy_ah(struct bnxt_qplib_res * res,struct bnxt_qplib_ah * ah,bool block)478 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
479 			  bool block)
480 {
481 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
482 	struct creq_destroy_ah_resp resp = {};
483 	struct bnxt_qplib_cmdqmsg msg = {};
484 	struct cmdq_destroy_ah req = {};
485 	int rc;
486 
487 	/* Clean up the AH table in the device */
488 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
489 				 CMDQ_BASE_OPCODE_DESTROY_AH,
490 				 sizeof(req));
491 
492 	req.ah_cid = cpu_to_le32(ah->id);
493 
494 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
495 				sizeof(resp), block);
496 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
497 	return rc;
498 }
499 
500 /* MRW */
bnxt_qplib_free_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw)501 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
502 {
503 	struct creq_deallocate_key_resp resp = {};
504 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
505 	struct cmdq_deallocate_key req = {};
506 	struct bnxt_qplib_cmdqmsg msg = {};
507 	int rc;
508 
509 	if (mrw->lkey == 0xFFFFFFFF) {
510 		dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
511 		return 0;
512 	}
513 
514 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
515 				 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
516 				 sizeof(req));
517 
518 	req.mrw_flags = mrw->type;
519 
520 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
521 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
522 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
523 		req.key = cpu_to_le32(mrw->rkey);
524 	else
525 		req.key = cpu_to_le32(mrw->lkey);
526 
527 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
528 				sizeof(resp), 0);
529 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
530 	if (rc)
531 		return rc;
532 
533 	/* Free the qplib's MRW memory */
534 	if (mrw->hwq.max_elements)
535 		bnxt_qplib_free_hwq(res, &mrw->hwq);
536 
537 	return 0;
538 }
539 
bnxt_qplib_alloc_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw)540 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
541 {
542 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
543 	struct creq_allocate_mrw_resp resp = {};
544 	struct bnxt_qplib_cmdqmsg msg = {};
545 	struct cmdq_allocate_mrw req = {};
546 	unsigned long tmp;
547 	int rc;
548 
549 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
550 				 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
551 				 sizeof(req));
552 
553 	req.pd_id = cpu_to_le32(mrw->pd->id);
554 	req.mrw_flags = mrw->type;
555 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
556 	     mrw->access_flags & BNXT_QPLIB_FR_PMR) ||
557 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
558 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
559 		req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
560 	tmp = (unsigned long)mrw;
561 	req.mrw_handle = cpu_to_le64(tmp);
562 
563 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
564 				sizeof(resp), 0);
565 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
566 	if (rc)
567 		return rc;
568 
569 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
570 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
571 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
572 		mrw->rkey = le32_to_cpu(resp.xid);
573 	else
574 		mrw->lkey = le32_to_cpu(resp.xid);
575 	return 0;
576 }
577 
bnxt_qplib_dereg_mrw(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mrw,bool block)578 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
579 			 bool block)
580 {
581 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
582 	struct creq_deregister_mr_resp resp = {};
583 	struct bnxt_qplib_cmdqmsg msg = {};
584 	struct cmdq_deregister_mr req = {};
585 	int rc;
586 
587 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
588 				 CMDQ_BASE_OPCODE_DEREGISTER_MR,
589 				 sizeof(req));
590 
591 	req.lkey = cpu_to_le32(mrw->lkey);
592 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
593 				sizeof(resp), block);
594 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
595 	if (rc)
596 		return rc;
597 
598 	/* Free the qplib's MR memory */
599 	if (mrw->hwq.max_elements) {
600 		mrw->va = 0;
601 		mrw->total_size = 0;
602 		bnxt_qplib_free_hwq(res, &mrw->hwq);
603 	}
604 
605 	return 0;
606 }
607 
bnxt_qplib_reg_mr(struct bnxt_qplib_res * res,struct bnxt_qplib_mrw * mr,struct ib_umem * umem,int num_pbls,u32 buf_pg_size)608 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
609 		      struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
610 {
611 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
612 	struct bnxt_qplib_hwq_attr hwq_attr = {};
613 	struct bnxt_qplib_sg_info sginfo = {};
614 	struct creq_register_mr_resp resp = {};
615 	struct bnxt_qplib_cmdqmsg msg = {};
616 	struct cmdq_register_mr req = {};
617 	int pages, rc;
618 	u32 pg_size;
619 	u16 level;
620 
621 	if (num_pbls) {
622 		pages = roundup_pow_of_two(num_pbls);
623 		/* Allocate memory for the non-leaf pages to store buf ptrs.
624 		 * Non-leaf pages always uses system PAGE_SIZE
625 		 */
626 		/* Free the hwq if it already exist, must be a rereg */
627 		if (mr->hwq.max_elements)
628 			bnxt_qplib_free_hwq(res, &mr->hwq);
629 		hwq_attr.res = res;
630 		hwq_attr.depth = pages;
631 		hwq_attr.stride = sizeof(dma_addr_t);
632 		hwq_attr.type = HWQ_TYPE_MR;
633 		hwq_attr.sginfo = &sginfo;
634 		hwq_attr.sginfo->umem = umem;
635 		hwq_attr.sginfo->npages = pages;
636 		hwq_attr.sginfo->pgsize = buf_pg_size;
637 		hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
638 		rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
639 		if (rc) {
640 			dev_err(&res->pdev->dev,
641 				"SP: Reg MR memory allocation failed\n");
642 			return -ENOMEM;
643 		}
644 	}
645 
646 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
647 				 CMDQ_BASE_OPCODE_REGISTER_MR,
648 				 sizeof(req));
649 
650 	/* Configure the request */
651 	if (mr->hwq.level == PBL_LVL_MAX) {
652 		/* No PBL provided, just use system PAGE_SIZE */
653 		level = 0;
654 		req.pbl = 0;
655 		pg_size = PAGE_SIZE;
656 	} else {
657 		level = mr->hwq.level;
658 		req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
659 	}
660 	pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
661 	req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
662 			       ((ilog2(pg_size) <<
663 				 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
664 				CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
665 	req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
666 				 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
667 				CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
668 	req.access = (mr->access_flags & 0xFFFF);
669 	req.va = cpu_to_le64(mr->va);
670 	req.key = cpu_to_le32(mr->lkey);
671 	if (_is_alloc_mr_unified(res->dattr->dev_cap_flags))
672 		req.key = cpu_to_le32(mr->pd->id);
673 	req.flags = cpu_to_le16(mr->flags);
674 	req.mr_size = cpu_to_le64(mr->total_size);
675 
676 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
677 				sizeof(resp), 0);
678 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
679 	if (rc)
680 		goto fail;
681 
682 	if (_is_alloc_mr_unified(res->dattr->dev_cap_flags)) {
683 		mr->lkey = le32_to_cpu(resp.xid);
684 		mr->rkey = mr->lkey;
685 	}
686 
687 	return 0;
688 
689 fail:
690 	if (mr->hwq.max_elements)
691 		bnxt_qplib_free_hwq(res, &mr->hwq);
692 	return rc;
693 }
694 
bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res * res,struct bnxt_qplib_frpl * frpl,int max_pg_ptrs)695 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
696 					struct bnxt_qplib_frpl *frpl,
697 					int max_pg_ptrs)
698 {
699 	struct bnxt_qplib_hwq_attr hwq_attr = {};
700 	struct bnxt_qplib_sg_info sginfo = {};
701 	int pg_ptrs, pages, rc;
702 
703 	/* Re-calculate the max to fit the HWQ allocation model */
704 	pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
705 	pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
706 	if (!pages)
707 		pages++;
708 
709 	if (pages > MAX_PBL_LVL_1_PGS)
710 		return -ENOMEM;
711 
712 	sginfo.pgsize = PAGE_SIZE;
713 	sginfo.nopte = true;
714 
715 	hwq_attr.res = res;
716 	hwq_attr.depth = pg_ptrs;
717 	hwq_attr.stride = PAGE_SIZE;
718 	hwq_attr.sginfo = &sginfo;
719 	hwq_attr.type = HWQ_TYPE_CTX;
720 	rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
721 	if (!rc)
722 		frpl->max_pg_ptrs = pg_ptrs;
723 
724 	return rc;
725 }
726 
bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res * res,struct bnxt_qplib_frpl * frpl)727 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
728 				       struct bnxt_qplib_frpl *frpl)
729 {
730 	bnxt_qplib_free_hwq(res, &frpl->hwq);
731 	return 0;
732 }
733 
bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw * rcfw,struct bnxt_qplib_roce_stats * stats)734 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
735 			      struct bnxt_qplib_roce_stats *stats)
736 {
737 	struct creq_query_roce_stats_resp resp = {};
738 	struct creq_query_roce_stats_resp_sb *sb;
739 	struct cmdq_query_roce_stats req = {};
740 	struct bnxt_qplib_cmdqmsg msg = {};
741 	struct bnxt_qplib_rcfw_sbuf sbuf;
742 	int rc;
743 
744 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
745 				 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
746 				 sizeof(req));
747 
748 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
749 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
750 				     &sbuf.dma_addr, GFP_KERNEL);
751 	if (!sbuf.sb)
752 		return -ENOMEM;
753 	sb = sbuf.sb;
754 
755 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
756 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
757 				sizeof(resp), 0);
758 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
759 	if (rc)
760 		goto bail;
761 	/* Extract the context from the side buffer */
762 	stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
763 	stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
764 	stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
765 	stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
766 	stats->missing_resp = le64_to_cpu(sb->missing_resp);
767 	stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
768 	stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
769 	stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
770 	stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
771 	stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
772 	stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
773 	stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
774 	stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
775 	stats->dup_req = le64_to_cpu(sb->dup_req);
776 	stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
777 	stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
778 	stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
779 	stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
780 	stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
781 	stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
782 	stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
783 	stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
784 	stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
785 	stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
786 	stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
787 	stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
788 	stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
789 	stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
790 	stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
791 	stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
792 	stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
793 	stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
794 	stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
795 	stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
796 	stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
797 	stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
798 	stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
799 	stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
800 	stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
801 	if (!rcfw->init_oos_stats) {
802 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
803 		rcfw->init_oos_stats = 1;
804 	} else {
805 		stats->res_oos_drop_count +=
806 				(le64_to_cpu(sb->res_oos_drop_count) -
807 				 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
808 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
809 	}
810 
811 bail:
812 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
813 			  sbuf.sb, sbuf.dma_addr);
814 	return rc;
815 }
816 
bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw * rcfw,u32 fid,struct bnxt_qplib_ext_stat * estat)817 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
818 			 struct bnxt_qplib_ext_stat *estat)
819 {
820 	struct creq_query_roce_stats_ext_resp resp = {};
821 	struct creq_query_roce_stats_ext_resp_sb *sb;
822 	struct cmdq_query_roce_stats_ext req = {};
823 	struct bnxt_qplib_cmdqmsg msg = {};
824 	struct bnxt_qplib_rcfw_sbuf sbuf;
825 	int rc;
826 
827 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
828 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
829 				     &sbuf.dma_addr, GFP_KERNEL);
830 	if (!sbuf.sb)
831 		return -ENOMEM;
832 
833 	sb = sbuf.sb;
834 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
835 				 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
836 				 sizeof(req));
837 
838 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
839 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
840 	req.function_id = cpu_to_le32(fid);
841 	req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
842 
843 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
844 				sizeof(resp), 0);
845 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
846 	if (rc)
847 		goto bail;
848 
849 	estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
850 	estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
851 	estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
852 	estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
853 	estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
854 	estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
855 	estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
856 	estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
857 	estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
858 	estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
859 	estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
860 	estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
861 	estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
862 	estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
863 	estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
864 	estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
865 	estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
866 	estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
867 	estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
868 	estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
869 	estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
870 
871 bail:
872 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
873 			  sbuf.sb, sbuf.dma_addr);
874 	return rc;
875 }
876 
bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv * ext_req,struct bnxt_qplib_cc_param_ext * cc_ext)877 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
878 				    struct bnxt_qplib_cc_param_ext *cc_ext)
879 {
880 	ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
881 	cc_ext->ext_mask = 0;
882 	ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
883 	ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
884 	ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
885 	ext_req->tr_update_mode = cc_ext->tr_update_mode;
886 	ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
887 	ext_req->fr_num_rtts = cc_ext->fr_rtt;
888 	ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
889 	ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
890 	ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
891 	ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
892 	ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
893 	ext_req->actual_cr_factor = cc_ext->cr_factor;
894 	ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
895 	ext_req->cp_bias_en = cc_ext->cp_bias_en;
896 	ext_req->cp_bias = cc_ext->cp_bias;
897 	ext_req->cnp_ecn = cc_ext->cnp_ecn;
898 	ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
899 	ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
900 	ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
901 	ext_req->cr_width = cc_ext->cr_width;
902 	ext_req->quota_period_min = cc_ext->min_quota;
903 	ext_req->quota_period_max = cc_ext->max_quota;
904 	ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
905 	ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
906 	ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
907 	ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
908 	ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
909 	ext_req->red_div = cc_ext->red_div;
910 	ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
911 	ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
912 	ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
913 	ext_req->use_rate_table = cc_ext->low_rate_en;
914 	ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
915 	ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
916 	ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
917 	ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
918 	ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
919 	ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
920 	ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
921 	ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
922 }
923 
bnxt_qplib_modify_cc(struct bnxt_qplib_res * res,struct bnxt_qplib_cc_param * cc_param)924 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
925 			 struct bnxt_qplib_cc_param *cc_param)
926 {
927 	struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
928 	struct creq_modify_roce_cc_resp resp = {};
929 	struct bnxt_qplib_cmdqmsg msg = {};
930 	struct cmdq_modify_roce_cc *req;
931 	int req_size;
932 	void *cmd;
933 	int rc;
934 
935 	/* Prepare the older base command */
936 	req = &tlv_req.base_req;
937 	cmd = req;
938 	req_size = sizeof(*req);
939 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
940 				 sizeof(*req));
941 	req->modify_mask = cpu_to_le32(cc_param->mask);
942 	req->enable_cc = cc_param->enable;
943 	req->g = cc_param->g;
944 	req->num_phases_per_state = cc_param->nph_per_state;
945 	req->time_per_phase = cc_param->time_pph;
946 	req->pkts_per_phase = cc_param->pkts_pph;
947 	req->init_cr = cpu_to_le16(cc_param->init_cr);
948 	req->init_tr = cpu_to_le16(cc_param->init_tr);
949 	req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
950 				(cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
951 	req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
952 	req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
953 	req->rtt = cpu_to_le16(cc_param->rtt);
954 	req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
955 	req->cc_mode = cc_param->cc_mode;
956 	req->inactivity_th = cpu_to_le16(cc_param->inact_th);
957 
958 	/* For chip gen P5 onwards fill extended cmd and header */
959 	if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
960 		struct roce_tlv *hdr;
961 		u32 payload;
962 		u32 chunks;
963 
964 		cmd = &tlv_req;
965 		req_size = sizeof(tlv_req);
966 		/* Prepare primary tlv header */
967 		hdr = &tlv_req.tlv_hdr;
968 		chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
969 		payload = sizeof(struct cmdq_modify_roce_cc);
970 		__roce_1st_tlv_prep(hdr, chunks, payload, true);
971 		/* Prepare secondary tlv header */
972 		hdr = (struct roce_tlv *)&tlv_req.ext_req;
973 		payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
974 			  sizeof(struct roce_tlv);
975 		__roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
976 		bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
977 	}
978 
979 	bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
980 				sizeof(resp), 0);
981 	rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
982 	return rc;
983 }
984 
bnxt_qplib_read_context(struct bnxt_qplib_rcfw * rcfw,u8 res_type,u32 xid,u32 resp_size,void * resp_va)985 int bnxt_qplib_read_context(struct bnxt_qplib_rcfw *rcfw, u8 res_type,
986 			    u32 xid, u32 resp_size, void *resp_va)
987 {
988 	struct creq_read_context resp = {};
989 	struct bnxt_qplib_cmdqmsg msg = {};
990 	struct cmdq_read_context req = {};
991 	struct bnxt_qplib_rcfw_sbuf sbuf;
992 	int rc;
993 
994 	sbuf.size = resp_size;
995 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
996 				     &sbuf.dma_addr, GFP_KERNEL);
997 	if (!sbuf.sb)
998 		return -ENOMEM;
999 
1000 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
1001 				 CMDQ_BASE_OPCODE_READ_CONTEXT, sizeof(req));
1002 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
1003 	req.resp_size = resp_size / BNXT_QPLIB_CMDQE_UNITS;
1004 
1005 	req.xid = cpu_to_le32(xid);
1006 	req.type = res_type;
1007 
1008 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
1009 				sizeof(resp), 0);
1010 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
1011 	if (rc)
1012 		goto free_mem;
1013 
1014 	memcpy(resp_va, sbuf.sb, resp_size);
1015 free_mem:
1016 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size, sbuf.sb, sbuf.dma_addr);
1017 	return rc;
1018 }
1019