1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/sdt.h>
61 #include <sys/socket.h>
62 #include <sys/sysctl.h>
63 #include <sys/taskqueue.h>
64 #include <sys/ucred.h>
65
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_private.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71 #include <net/route.h>
72 #include <net/route/nhop.h>
73 #include <net/vnet.h>
74
75 #include <net/pfil.h>
76 #include <net/pfvar.h>
77 #include <net/if_pflog.h>
78 #include <net/if_pfsync.h>
79
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_var.h>
82 #include <netinet/in_fib.h>
83 #include <netinet/ip.h>
84 #include <netinet/ip_fw.h>
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/udp.h>
94 #include <netinet/udp_var.h>
95
96 /* dummynet */
97 #include <netinet/ip_dummynet.h>
98 #include <netinet/ip_fw.h>
99 #include <netpfil/ipfw/dn_heap.h>
100 #include <netpfil/ipfw/ip_fw_private.h>
101 #include <netpfil/ipfw/ip_dn_private.h>
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet6/in6_fib.h>
110 #include <netinet6/scope6_var.h>
111 #endif /* INET6 */
112
113 #include <netinet/sctp_header.h>
114 #include <netinet/sctp_crc32.h>
115
116 #include <machine/in_cksum.h>
117 #include <security/mac/mac_framework.h>
118
119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
120
121 SDT_PROVIDER_DEFINE(pf);
122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
123 "struct pf_kstate *");
124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
126 "struct pf_kstate *");
127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
128 "struct pfi_kkif *");
129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
138 "struct pf_krule *", "struct mbuf *", "int");
139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
140 "struct pf_sctp_source *");
141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
142 "struct pf_kstate *", "struct pf_sctp_source *");
143
144 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
145 "struct mbuf *");
146 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
147 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
148 "int", "struct pf_keth_rule *", "char *");
149 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
150 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
151 "int", "struct pf_keth_rule *");
152 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
153
154 /*
155 * Global variables
156 */
157
158 /* state tables */
159 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
160 VNET_DEFINE(struct pf_kpalist, pf_pabuf);
161 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
162 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
163 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
164 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
165 VNET_DEFINE(struct pf_kstatus, pf_status);
166
167 VNET_DEFINE(u_int32_t, ticket_altqs_active);
168 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
169 VNET_DEFINE(int, altqs_inactive_open);
170 VNET_DEFINE(u_int32_t, ticket_pabuf);
171
172 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx);
173 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
174 VNET_DEFINE(u_char, pf_tcp_secret[16]);
175 #define V_pf_tcp_secret VNET(pf_tcp_secret)
176 VNET_DEFINE(int, pf_tcp_secret_init);
177 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
178 VNET_DEFINE(int, pf_tcp_iss_off);
179 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
180 VNET_DECLARE(int, pf_vnet_active);
181 #define V_pf_vnet_active VNET(pf_vnet_active)
182
183 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
184 #define V_pf_purge_idx VNET(pf_purge_idx)
185
186 #ifdef PF_WANT_32_TO_64_COUNTER
187 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
188 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
189
190 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
191 VNET_DEFINE(size_t, pf_allrulecount);
192 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
193 #endif
194
195 struct pf_sctp_endpoint;
196 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
197 struct pf_sctp_source {
198 sa_family_t af;
199 struct pf_addr addr;
200 TAILQ_ENTRY(pf_sctp_source) entry;
201 };
202 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
203 struct pf_sctp_endpoint
204 {
205 uint32_t v_tag;
206 struct pf_sctp_sources sources;
207 RB_ENTRY(pf_sctp_endpoint) entry;
208 };
209 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)210 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
211 {
212 return (a->v_tag - b->v_tag);
213 }
214 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
215 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
216 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
217 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
218 static struct mtx_padalign pf_sctp_endpoints_mtx;
219 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
220 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
221 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
222
223 /*
224 * Queue for pf_intr() sends.
225 */
226 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
227 struct pf_send_entry {
228 STAILQ_ENTRY(pf_send_entry) pfse_next;
229 struct mbuf *pfse_m;
230 enum {
231 PFSE_IP,
232 PFSE_IP6,
233 PFSE_ICMP,
234 PFSE_ICMP6,
235 } pfse_type;
236 struct {
237 int type;
238 int code;
239 int mtu;
240 } icmpopts;
241 };
242
243 STAILQ_HEAD(pf_send_head, pf_send_entry);
244 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
245 #define V_pf_sendqueue VNET(pf_sendqueue)
246
247 static struct mtx_padalign pf_sendqueue_mtx;
248 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
249 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
250 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
251
252 /*
253 * Queue for pf_overload_task() tasks.
254 */
255 struct pf_overload_entry {
256 SLIST_ENTRY(pf_overload_entry) next;
257 struct pf_addr addr;
258 sa_family_t af;
259 uint8_t dir;
260 struct pf_krule *rule;
261 };
262
263 SLIST_HEAD(pf_overload_head, pf_overload_entry);
264 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
265 #define V_pf_overloadqueue VNET(pf_overloadqueue)
266 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
267 #define V_pf_overloadtask VNET(pf_overloadtask)
268
269 static struct mtx_padalign pf_overloadqueue_mtx;
270 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
271 "pf overload/flush queue", MTX_DEF);
272 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
273 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
274
275 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
276 struct mtx_padalign pf_unlnkdrules_mtx;
277 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
278 MTX_DEF);
279
280 struct sx pf_config_lock;
281 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
282
283 struct mtx_padalign pf_table_stats_lock;
284 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
285 MTX_DEF);
286
287 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
288 #define V_pf_sources_z VNET(pf_sources_z)
289 uma_zone_t pf_mtag_z;
290 VNET_DEFINE(uma_zone_t, pf_state_z);
291 VNET_DEFINE(uma_zone_t, pf_state_key_z);
292 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
293
294 VNET_DEFINE(struct unrhdr64, pf_stateid);
295
296 static void pf_src_tree_remove_state(struct pf_kstate *);
297 static void pf_init_threshold(struct pf_threshold *, u_int32_t,
298 u_int32_t);
299 static void pf_add_threshold(struct pf_threshold *);
300 static int pf_check_threshold(struct pf_threshold *);
301
302 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
303 u_int16_t *, u_int16_t *, struct pf_addr *,
304 u_int16_t, u_int8_t, sa_family_t);
305 static int pf_modulate_sack(struct pf_pdesc *,
306 struct tcphdr *, struct pf_state_peer *);
307 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
308 int *, u_int16_t *, u_int16_t *);
309 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
310 struct pf_addr *, struct pf_addr *, u_int16_t,
311 u_int16_t *, u_int16_t *, u_int16_t *,
312 u_int16_t *, u_int8_t, sa_family_t);
313 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
314 sa_family_t, struct pf_krule *, int);
315 static void pf_detach_state(struct pf_kstate *);
316 static int pf_state_key_attach(struct pf_state_key *,
317 struct pf_state_key *, struct pf_kstate *);
318 static void pf_state_key_detach(struct pf_kstate *, int);
319 static int pf_state_key_ctor(void *, int, void *, int);
320 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
321 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
322 struct pf_mtag *pf_mtag);
323 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
324 struct pf_krule *, struct mbuf **);
325 static int pf_dummynet_route(struct pf_pdesc *,
326 struct pf_kstate *, struct pf_krule *,
327 struct ifnet *, struct sockaddr *, struct mbuf **);
328 static int pf_test_eth_rule(int, struct pfi_kkif *,
329 struct mbuf **);
330 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
331 struct pf_pdesc *, struct pf_krule **,
332 struct pf_kruleset **, struct inpcb *);
333 static int pf_create_state(struct pf_krule *, struct pf_krule *,
334 struct pf_krule *, struct pf_pdesc *,
335 struct pf_ksrc_node *, struct pf_state_key *,
336 struct pf_state_key *,
337 u_int16_t, u_int16_t, int *,
338 struct pf_kstate **, int, u_int16_t, u_int16_t,
339 struct pf_krule_slist *, struct pf_udp_mapping *);
340 static int pf_state_key_addr_setup(struct pf_pdesc *,
341 struct pf_state_key_cmp *, int);
342 static int pf_tcp_track_full(struct pf_kstate **,
343 struct pf_pdesc *, u_short *, int *);
344 static int pf_tcp_track_sloppy(struct pf_kstate **,
345 struct pf_pdesc *, u_short *);
346 static int pf_test_state_tcp(struct pf_kstate **,
347 struct pf_pdesc *, u_short *);
348 static int pf_test_state_udp(struct pf_kstate **,
349 struct pf_pdesc *);
350 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
351 struct pf_pdesc *, struct pf_kstate **,
352 int, u_int16_t, u_int16_t,
353 int, int *, int, int);
354 static int pf_test_state_icmp(struct pf_kstate **,
355 struct pf_pdesc *, u_short *);
356 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
357 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
358 struct pfi_kkif *, struct pf_kstate *, int);
359 static int pf_test_state_sctp(struct pf_kstate **,
360 struct pf_pdesc *, u_short *);
361 static int pf_test_state_other(struct pf_kstate **,
362 struct pf_pdesc *);
363 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
364 int, u_int16_t);
365 static int pf_check_proto_cksum(struct mbuf *, int, int,
366 u_int8_t, sa_family_t);
367 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *,
368 u_short *);
369 static void pf_print_state_parts(struct pf_kstate *,
370 struct pf_state_key *, struct pf_state_key *);
371 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
372 bool, u_int8_t);
373 static struct pf_kstate *pf_find_state(struct pfi_kkif *,
374 const struct pf_state_key_cmp *, u_int);
375 static int pf_src_connlimit(struct pf_kstate **);
376 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
377 static void pf_counters_inc(int, struct pf_pdesc *,
378 struct pf_kstate *, struct pf_krule *,
379 struct pf_krule *);
380 static void pf_overload_task(void *v, int pending);
381 static u_short pf_insert_src_node(struct pf_ksrc_node **,
382 struct pf_krule *, struct pf_addr *, sa_family_t);
383 static u_int pf_purge_expired_states(u_int, int);
384 static void pf_purge_unlinked_rules(void);
385 static int pf_mtag_uminit(void *, int, int);
386 static void pf_mtag_free(struct m_tag *);
387 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *,
388 int, struct pf_state_key *);
389 #ifdef INET
390 static void pf_route(struct mbuf **, struct pf_krule *,
391 struct ifnet *, struct pf_kstate *,
392 struct pf_pdesc *, struct inpcb *);
393 #endif /* INET */
394 #ifdef INET6
395 static void pf_change_a6(struct pf_addr *, u_int16_t *,
396 struct pf_addr *, u_int8_t);
397 static void pf_route6(struct mbuf **, struct pf_krule *,
398 struct ifnet *, struct pf_kstate *,
399 struct pf_pdesc *, struct inpcb *);
400 #endif /* INET6 */
401 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
402
403 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
404
405 extern int pf_end_threads;
406 extern struct proc *pf_purge_proc;
407
408 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
409
410 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK };
411
412 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \
413 do { \
414 struct pf_state_key *nk; \
415 if ((pd->dir) == PF_OUT) \
416 nk = (_s)->key[PF_SK_STACK]; \
417 else \
418 nk = (_s)->key[PF_SK_WIRE]; \
419 pf_packet_rework_nat(_m, _pd, _off, nk); \
420 } while (0)
421
422 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
423 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
424
425 #define STATE_LOOKUP(k, s, pd) \
426 do { \
427 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \
428 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \
429 if ((s) == NULL) \
430 return (PF_DROP); \
431 if (PACKET_LOOPED(pd)) \
432 return (PF_PASS); \
433 } while (0)
434
435 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pfi_kkif * k)436 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k)
437 {
438 SDT_PROBE2(pf, ip, , bound_iface, st, k);
439
440 /* Floating unless otherwise specified. */
441 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
442 return (V_pfi_all);
443
444 /*
445 * Initially set to all, because we don't know what interface we'll be
446 * sending this out when we create the state.
447 */
448 if (st->rule->rt == PF_REPLYTO)
449 return (V_pfi_all);
450
451 /* Don't overrule the interface for states created on incoming packets. */
452 if (st->direction == PF_IN)
453 return (k);
454
455 /* No route-to, so don't overrule. */
456 if (st->rt != PF_ROUTETO)
457 return (k);
458
459 /* Bind to the route-to interface. */
460 return (st->rt_kif);
461 }
462
463 #define STATE_INC_COUNTERS(s) \
464 do { \
465 struct pf_krule_item *mrm; \
466 counter_u64_add(s->rule->states_cur, 1); \
467 counter_u64_add(s->rule->states_tot, 1); \
468 if (s->anchor != NULL) { \
469 counter_u64_add(s->anchor->states_cur, 1); \
470 counter_u64_add(s->anchor->states_tot, 1); \
471 } \
472 if (s->nat_rule != NULL) { \
473 counter_u64_add(s->nat_rule->states_cur, 1);\
474 counter_u64_add(s->nat_rule->states_tot, 1);\
475 } \
476 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
477 counter_u64_add(mrm->r->states_cur, 1); \
478 counter_u64_add(mrm->r->states_tot, 1); \
479 } \
480 } while (0)
481
482 #define STATE_DEC_COUNTERS(s) \
483 do { \
484 struct pf_krule_item *mrm; \
485 if (s->nat_rule != NULL) \
486 counter_u64_add(s->nat_rule->states_cur, -1);\
487 if (s->anchor != NULL) \
488 counter_u64_add(s->anchor->states_cur, -1); \
489 counter_u64_add(s->rule->states_cur, -1); \
490 SLIST_FOREACH(mrm, &s->match_rules, entry) \
491 counter_u64_add(mrm->r->states_cur, -1); \
492 } while (0)
493
494 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
495 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
496 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
497 VNET_DEFINE(struct pf_idhash *, pf_idhash);
498 VNET_DEFINE(struct pf_srchash *, pf_srchash);
499 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
500 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
501
502 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
503 "pf(4)");
504
505 VNET_DEFINE(u_long, pf_hashmask);
506 VNET_DEFINE(u_long, pf_srchashmask);
507 VNET_DEFINE(u_long, pf_udpendpointhashmask);
508 VNET_DEFINE_STATIC(u_long, pf_hashsize);
509 #define V_pf_hashsize VNET(pf_hashsize)
510 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
511 #define V_pf_srchashsize VNET(pf_srchashsize)
512 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
513 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
514 u_long pf_ioctl_maxcount = 65535;
515
516 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
517 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
518 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
519 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
520 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
521 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
522 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
523 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
524
525 VNET_DEFINE(void *, pf_swi_cookie);
526 VNET_DEFINE(struct intr_event *, pf_swi_ie);
527
528 VNET_DEFINE(uint32_t, pf_hashseed);
529 #define V_pf_hashseed VNET(pf_hashseed)
530
531 static void
pf_sctp_checksum(struct mbuf * m,int off)532 pf_sctp_checksum(struct mbuf *m, int off)
533 {
534 uint32_t sum = 0;
535
536 /* Zero out the checksum, to enable recalculation. */
537 m_copyback(m, off + offsetof(struct sctphdr, checksum),
538 sizeof(sum), (caddr_t)&sum);
539
540 sum = sctp_calculate_cksum(m, off);
541
542 m_copyback(m, off + offsetof(struct sctphdr, checksum),
543 sizeof(sum), (caddr_t)&sum);
544 }
545
546 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)547 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
548 {
549
550 switch (af) {
551 #ifdef INET
552 case AF_INET:
553 if (a->addr32[0] > b->addr32[0])
554 return (1);
555 if (a->addr32[0] < b->addr32[0])
556 return (-1);
557 break;
558 #endif /* INET */
559 #ifdef INET6
560 case AF_INET6:
561 if (a->addr32[3] > b->addr32[3])
562 return (1);
563 if (a->addr32[3] < b->addr32[3])
564 return (-1);
565 if (a->addr32[2] > b->addr32[2])
566 return (1);
567 if (a->addr32[2] < b->addr32[2])
568 return (-1);
569 if (a->addr32[1] > b->addr32[1])
570 return (1);
571 if (a->addr32[1] < b->addr32[1])
572 return (-1);
573 if (a->addr32[0] > b->addr32[0])
574 return (1);
575 if (a->addr32[0] < b->addr32[0])
576 return (-1);
577 break;
578 #endif /* INET6 */
579 }
580 return (0);
581 }
582
583 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)584 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
585 {
586 switch (af) {
587 #ifdef INET
588 case AF_INET:
589 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
590 #endif
591 case AF_INET6:
592 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
593 default:
594 panic("Unknown af %d", af);
595 }
596 }
597
598 static void
pf_packet_rework_nat(struct mbuf * m,struct pf_pdesc * pd,int off,struct pf_state_key * nk)599 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off,
600 struct pf_state_key *nk)
601 {
602
603 switch (pd->proto) {
604 case IPPROTO_TCP: {
605 struct tcphdr *th = &pd->hdr.tcp;
606
607 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
608 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum,
609 &th->th_sum, &nk->addr[pd->sidx],
610 nk->port[pd->sidx], 0, pd->af);
611 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
612 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum,
613 &th->th_sum, &nk->addr[pd->didx],
614 nk->port[pd->didx], 0, pd->af);
615 m_copyback(m, off, sizeof(*th), (caddr_t)th);
616 break;
617 }
618 case IPPROTO_UDP: {
619 struct udphdr *uh = &pd->hdr.udp;
620
621 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
622 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
623 &uh->uh_sum, &nk->addr[pd->sidx],
624 nk->port[pd->sidx], 1, pd->af);
625 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
626 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
627 &uh->uh_sum, &nk->addr[pd->didx],
628 nk->port[pd->didx], 1, pd->af);
629 m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
630 break;
631 }
632 case IPPROTO_SCTP: {
633 struct sctphdr *sh = &pd->hdr.sctp;
634 uint16_t checksum = 0;
635
636 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
637 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum,
638 &checksum, &nk->addr[pd->sidx],
639 nk->port[pd->sidx], 1, pd->af);
640 }
641 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
642 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum,
643 &checksum, &nk->addr[pd->didx],
644 nk->port[pd->didx], 1, pd->af);
645 }
646
647 break;
648 }
649 case IPPROTO_ICMP: {
650 struct icmp *ih = &pd->hdr.icmp;
651
652 if (nk->port[pd->sidx] != ih->icmp_id) {
653 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
654 ih->icmp_cksum, ih->icmp_id,
655 nk->port[pd->sidx], 0);
656 ih->icmp_id = nk->port[pd->sidx];
657 pd->sport = &ih->icmp_id;
658
659 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih);
660 }
661 /* FALLTHROUGH */
662 }
663 default:
664 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
665 switch (pd->af) {
666 case AF_INET:
667 pf_change_a(&pd->src->v4.s_addr,
668 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
669 0);
670 break;
671 case AF_INET6:
672 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
673 break;
674 }
675 }
676 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
677 switch (pd->af) {
678 case AF_INET:
679 pf_change_a(&pd->dst->v4.s_addr,
680 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
681 0);
682 break;
683 case AF_INET6:
684 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
685 break;
686 }
687 }
688 break;
689 }
690 }
691
692 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)693 pf_hashkey(const struct pf_state_key *sk)
694 {
695 uint32_t h;
696
697 h = murmur3_32_hash32((const uint32_t *)sk,
698 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
699 V_pf_hashseed);
700
701 return (h & V_pf_hashmask);
702 }
703
704 static __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)705 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
706 {
707 uint32_t h;
708
709 switch (af) {
710 case AF_INET:
711 h = murmur3_32_hash32((uint32_t *)&addr->v4,
712 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
713 break;
714 case AF_INET6:
715 h = murmur3_32_hash32((uint32_t *)&addr->v6,
716 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
717 break;
718 }
719
720 return (h & V_pf_srchashmask);
721 }
722
723 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)724 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
725 {
726 uint32_t h;
727
728 h = murmur3_32_hash32((uint32_t *)endpoint,
729 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
730 V_pf_hashseed);
731 return (h & V_pf_udpendpointhashmask);
732 }
733
734 #ifdef ALTQ
735 static int
pf_state_hash(struct pf_kstate * s)736 pf_state_hash(struct pf_kstate *s)
737 {
738 u_int32_t hv = (intptr_t)s / sizeof(*s);
739
740 hv ^= crc32(&s->src, sizeof(s->src));
741 hv ^= crc32(&s->dst, sizeof(s->dst));
742 if (hv == 0)
743 hv = 1;
744 return (hv);
745 }
746 #endif
747
748 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)749 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
750 {
751 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
752 s->dst.state = newstate;
753 if (which == PF_PEER_DST)
754 return;
755 if (s->src.state == newstate)
756 return;
757 if (s->creatorid == V_pf_status.hostid &&
758 s->key[PF_SK_STACK] != NULL &&
759 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
760 !(TCPS_HAVEESTABLISHED(s->src.state) ||
761 s->src.state == TCPS_CLOSED) &&
762 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
763 atomic_add_32(&V_pf_status.states_halfopen, -1);
764
765 s->src.state = newstate;
766 }
767
768 #ifdef INET6
769 void
pf_addrcpy(struct pf_addr * dst,struct pf_addr * src,sa_family_t af)770 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
771 {
772 switch (af) {
773 #ifdef INET
774 case AF_INET:
775 memcpy(&dst->v4, &src->v4, sizeof(dst->v4));
776 break;
777 #endif /* INET */
778 case AF_INET6:
779 memcpy(&dst->v6, &src->v6, sizeof(dst->v6));
780 break;
781 }
782 }
783 #endif /* INET6 */
784
785 static void
pf_init_threshold(struct pf_threshold * threshold,u_int32_t limit,u_int32_t seconds)786 pf_init_threshold(struct pf_threshold *threshold,
787 u_int32_t limit, u_int32_t seconds)
788 {
789 threshold->limit = limit * PF_THRESHOLD_MULT;
790 threshold->seconds = seconds;
791 threshold->count = 0;
792 threshold->last = time_uptime;
793 }
794
795 static void
pf_add_threshold(struct pf_threshold * threshold)796 pf_add_threshold(struct pf_threshold *threshold)
797 {
798 u_int32_t t = time_uptime, diff = t - threshold->last;
799
800 if (diff >= threshold->seconds)
801 threshold->count = 0;
802 else
803 threshold->count -= threshold->count * diff /
804 threshold->seconds;
805 threshold->count += PF_THRESHOLD_MULT;
806 threshold->last = t;
807 }
808
809 static int
pf_check_threshold(struct pf_threshold * threshold)810 pf_check_threshold(struct pf_threshold *threshold)
811 {
812 return (threshold->count > threshold->limit);
813 }
814
815 static int
pf_src_connlimit(struct pf_kstate ** state)816 pf_src_connlimit(struct pf_kstate **state)
817 {
818 struct pf_overload_entry *pfoe;
819 int bad = 0;
820
821 PF_STATE_LOCK_ASSERT(*state);
822 /*
823 * XXXKS: The src node is accessed unlocked!
824 * PF_SRC_NODE_LOCK_ASSERT((*state)->src_node);
825 */
826
827 (*state)->src_node->conn++;
828 (*state)->src.tcp_est = 1;
829 pf_add_threshold(&(*state)->src_node->conn_rate);
830
831 if ((*state)->rule->max_src_conn &&
832 (*state)->rule->max_src_conn <
833 (*state)->src_node->conn) {
834 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
835 bad++;
836 }
837
838 if ((*state)->rule->max_src_conn_rate.limit &&
839 pf_check_threshold(&(*state)->src_node->conn_rate)) {
840 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
841 bad++;
842 }
843
844 if (!bad)
845 return (0);
846
847 /* Kill this state. */
848 (*state)->timeout = PFTM_PURGE;
849 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
850
851 if ((*state)->rule->overload_tbl == NULL)
852 return (1);
853
854 /* Schedule overloading and flushing task. */
855 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
856 if (pfoe == NULL)
857 return (1); /* too bad :( */
858
859 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
860 pfoe->af = (*state)->key[PF_SK_WIRE]->af;
861 pfoe->rule = (*state)->rule;
862 pfoe->dir = (*state)->direction;
863 PF_OVERLOADQ_LOCK();
864 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
865 PF_OVERLOADQ_UNLOCK();
866 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
867
868 return (1);
869 }
870
871 static void
pf_overload_task(void * v,int pending)872 pf_overload_task(void *v, int pending)
873 {
874 struct pf_overload_head queue;
875 struct pfr_addr p;
876 struct pf_overload_entry *pfoe, *pfoe1;
877 uint32_t killed = 0;
878
879 CURVNET_SET((struct vnet *)v);
880
881 PF_OVERLOADQ_LOCK();
882 queue = V_pf_overloadqueue;
883 SLIST_INIT(&V_pf_overloadqueue);
884 PF_OVERLOADQ_UNLOCK();
885
886 bzero(&p, sizeof(p));
887 SLIST_FOREACH(pfoe, &queue, next) {
888 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
889 if (V_pf_status.debug >= PF_DEBUG_MISC) {
890 printf("%s: blocking address ", __func__);
891 pf_print_host(&pfoe->addr, 0, pfoe->af);
892 printf("\n");
893 }
894
895 p.pfra_af = pfoe->af;
896 switch (pfoe->af) {
897 #ifdef INET
898 case AF_INET:
899 p.pfra_net = 32;
900 p.pfra_ip4addr = pfoe->addr.v4;
901 break;
902 #endif
903 #ifdef INET6
904 case AF_INET6:
905 p.pfra_net = 128;
906 p.pfra_ip6addr = pfoe->addr.v6;
907 break;
908 #endif
909 }
910
911 PF_RULES_WLOCK();
912 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
913 PF_RULES_WUNLOCK();
914 }
915
916 /*
917 * Remove those entries, that don't need flushing.
918 */
919 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
920 if (pfoe->rule->flush == 0) {
921 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
922 free(pfoe, M_PFTEMP);
923 } else
924 counter_u64_add(
925 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
926
927 /* If nothing to flush, return. */
928 if (SLIST_EMPTY(&queue)) {
929 CURVNET_RESTORE();
930 return;
931 }
932
933 for (int i = 0; i <= V_pf_hashmask; i++) {
934 struct pf_idhash *ih = &V_pf_idhash[i];
935 struct pf_state_key *sk;
936 struct pf_kstate *s;
937
938 PF_HASHROW_LOCK(ih);
939 LIST_FOREACH(s, &ih->states, entry) {
940 sk = s->key[PF_SK_WIRE];
941 SLIST_FOREACH(pfoe, &queue, next)
942 if (sk->af == pfoe->af &&
943 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
944 pfoe->rule == s->rule) &&
945 ((pfoe->dir == PF_OUT &&
946 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
947 (pfoe->dir == PF_IN &&
948 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
949 s->timeout = PFTM_PURGE;
950 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
951 killed++;
952 }
953 }
954 PF_HASHROW_UNLOCK(ih);
955 }
956 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
957 free(pfoe, M_PFTEMP);
958 if (V_pf_status.debug >= PF_DEBUG_MISC)
959 printf("%s: %u states killed", __func__, killed);
960
961 CURVNET_RESTORE();
962 }
963
964 /*
965 * Can return locked on failure, so that we can consistently
966 * allocate and insert a new one.
967 */
968 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,bool returnlocked)969 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
970 struct pf_srchash **sh, bool returnlocked)
971 {
972 struct pf_ksrc_node *n;
973
974 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
975
976 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
977 PF_HASHROW_LOCK(*sh);
978 LIST_FOREACH(n, &(*sh)->nodes, entry)
979 if (n->rule == rule && n->af == af &&
980 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
981 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
982 break;
983
984 if (n != NULL) {
985 n->states++;
986 PF_HASHROW_UNLOCK(*sh);
987 } else if (returnlocked == false)
988 PF_HASHROW_UNLOCK(*sh);
989
990 return (n);
991 }
992
993 static void
pf_free_src_node(struct pf_ksrc_node * sn)994 pf_free_src_node(struct pf_ksrc_node *sn)
995 {
996
997 for (int i = 0; i < 2; i++) {
998 counter_u64_free(sn->bytes[i]);
999 counter_u64_free(sn->packets[i]);
1000 }
1001 uma_zfree(V_pf_sources_z, sn);
1002 }
1003
1004 static u_short
pf_insert_src_node(struct pf_ksrc_node ** sn,struct pf_krule * rule,struct pf_addr * src,sa_family_t af)1005 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule,
1006 struct pf_addr *src, sa_family_t af)
1007 {
1008 u_short reason = 0;
1009 struct pf_srchash *sh = NULL;
1010
1011 KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
1012 rule->rpool.opts & PF_POOL_STICKYADDR),
1013 ("%s for non-tracking rule %p", __func__, rule));
1014
1015 if (*sn == NULL)
1016 *sn = pf_find_src_node(src, rule, af, &sh, true);
1017
1018 if (*sn == NULL) {
1019 PF_HASHROW_ASSERT(sh);
1020
1021 if (rule->max_src_nodes &&
1022 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) {
1023 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1024 PF_HASHROW_UNLOCK(sh);
1025 reason = PFRES_SRCLIMIT;
1026 goto done;
1027 }
1028
1029 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1030 if ((*sn) == NULL) {
1031 PF_HASHROW_UNLOCK(sh);
1032 reason = PFRES_MEMORY;
1033 goto done;
1034 }
1035
1036 for (int i = 0; i < 2; i++) {
1037 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1038 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1039
1040 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1041 pf_free_src_node(*sn);
1042 PF_HASHROW_UNLOCK(sh);
1043 reason = PFRES_MEMORY;
1044 goto done;
1045 }
1046 }
1047
1048 pf_init_threshold(&(*sn)->conn_rate,
1049 rule->max_src_conn_rate.limit,
1050 rule->max_src_conn_rate.seconds);
1051
1052 MPASS((*sn)->lock == NULL);
1053 (*sn)->lock = &sh->lock;
1054
1055 (*sn)->af = af;
1056 (*sn)->rule = rule;
1057 PF_ACPY(&(*sn)->addr, src, af);
1058 LIST_INSERT_HEAD(&sh->nodes, *sn, entry);
1059 (*sn)->creation = time_uptime;
1060 (*sn)->ruletype = rule->action;
1061 (*sn)->states = 1;
1062 if ((*sn)->rule != NULL)
1063 counter_u64_add((*sn)->rule->src_nodes, 1);
1064 PF_HASHROW_UNLOCK(sh);
1065 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1066 } else {
1067 if (rule->max_src_states &&
1068 (*sn)->states >= rule->max_src_states) {
1069 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1070 1);
1071 reason = PFRES_SRCLIMIT;
1072 goto done;
1073 }
1074 }
1075 done:
1076 return (reason);
1077 }
1078
1079 void
pf_unlink_src_node(struct pf_ksrc_node * src)1080 pf_unlink_src_node(struct pf_ksrc_node *src)
1081 {
1082 PF_SRC_NODE_LOCK_ASSERT(src);
1083
1084 LIST_REMOVE(src, entry);
1085 if (src->rule)
1086 counter_u64_add(src->rule->src_nodes, -1);
1087 }
1088
1089 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1090 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1091 {
1092 struct pf_ksrc_node *sn, *tmp;
1093 u_int count = 0;
1094
1095 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1096 pf_free_src_node(sn);
1097 count++;
1098 }
1099
1100 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1101
1102 return (count);
1103 }
1104
1105 void
pf_mtag_initialize(void)1106 pf_mtag_initialize(void)
1107 {
1108
1109 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1110 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1111 UMA_ALIGN_PTR, 0);
1112 }
1113
1114 /* Per-vnet data storage structures initialization. */
1115 void
pf_initialize(void)1116 pf_initialize(void)
1117 {
1118 struct pf_keyhash *kh;
1119 struct pf_idhash *ih;
1120 struct pf_srchash *sh;
1121 struct pf_udpendpointhash *uh;
1122 u_int i;
1123
1124 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1125 V_pf_hashsize = PF_HASHSIZ;
1126 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1127 V_pf_srchashsize = PF_SRCHASHSIZ;
1128 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1129 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1130
1131 V_pf_hashseed = arc4random();
1132
1133 /* States and state keys storage. */
1134 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1135 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1136 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1137 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1138 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1139
1140 V_pf_state_key_z = uma_zcreate("pf state keys",
1141 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1142 UMA_ALIGN_PTR, 0);
1143
1144 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1145 M_PFHASH, M_NOWAIT | M_ZERO);
1146 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1147 M_PFHASH, M_NOWAIT | M_ZERO);
1148 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1149 printf("pf: Unable to allocate memory for "
1150 "state_hashsize %lu.\n", V_pf_hashsize);
1151
1152 free(V_pf_keyhash, M_PFHASH);
1153 free(V_pf_idhash, M_PFHASH);
1154
1155 V_pf_hashsize = PF_HASHSIZ;
1156 V_pf_keyhash = mallocarray(V_pf_hashsize,
1157 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1158 V_pf_idhash = mallocarray(V_pf_hashsize,
1159 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1160 }
1161
1162 V_pf_hashmask = V_pf_hashsize - 1;
1163 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1164 i++, kh++, ih++) {
1165 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1166 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1167 }
1168
1169 /* Source nodes. */
1170 V_pf_sources_z = uma_zcreate("pf source nodes",
1171 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1172 0);
1173 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1174 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1175 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1176
1177 V_pf_srchash = mallocarray(V_pf_srchashsize,
1178 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1179 if (V_pf_srchash == NULL) {
1180 printf("pf: Unable to allocate memory for "
1181 "source_hashsize %lu.\n", V_pf_srchashsize);
1182
1183 V_pf_srchashsize = PF_SRCHASHSIZ;
1184 V_pf_srchash = mallocarray(V_pf_srchashsize,
1185 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1186 }
1187
1188 V_pf_srchashmask = V_pf_srchashsize - 1;
1189 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1190 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1191
1192
1193 /* UDP endpoint mappings. */
1194 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1195 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1196 UMA_ALIGN_PTR, 0);
1197 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1198 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1199 if (V_pf_udpendpointhash == NULL) {
1200 printf("pf: Unable to allocate memory for "
1201 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1202
1203 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1204 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1205 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1206 }
1207
1208 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1209 for (i = 0, uh = V_pf_udpendpointhash;
1210 i <= V_pf_udpendpointhashmask;
1211 i++, uh++) {
1212 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1213 MTX_DEF | MTX_DUPOK);
1214 }
1215
1216 /* ALTQ */
1217 TAILQ_INIT(&V_pf_altqs[0]);
1218 TAILQ_INIT(&V_pf_altqs[1]);
1219 TAILQ_INIT(&V_pf_altqs[2]);
1220 TAILQ_INIT(&V_pf_altqs[3]);
1221 TAILQ_INIT(&V_pf_pabuf);
1222 V_pf_altqs_active = &V_pf_altqs[0];
1223 V_pf_altq_ifs_active = &V_pf_altqs[1];
1224 V_pf_altqs_inactive = &V_pf_altqs[2];
1225 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1226
1227 /* Send & overload+flush queues. */
1228 STAILQ_INIT(&V_pf_sendqueue);
1229 SLIST_INIT(&V_pf_overloadqueue);
1230 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1231
1232 /* Unlinked, but may be referenced rules. */
1233 TAILQ_INIT(&V_pf_unlinked_rules);
1234 }
1235
1236 void
pf_mtag_cleanup(void)1237 pf_mtag_cleanup(void)
1238 {
1239
1240 uma_zdestroy(pf_mtag_z);
1241 }
1242
1243 void
pf_cleanup(void)1244 pf_cleanup(void)
1245 {
1246 struct pf_keyhash *kh;
1247 struct pf_idhash *ih;
1248 struct pf_srchash *sh;
1249 struct pf_udpendpointhash *uh;
1250 struct pf_send_entry *pfse, *next;
1251 u_int i;
1252
1253 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1254 i <= V_pf_hashmask;
1255 i++, kh++, ih++) {
1256 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1257 __func__));
1258 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1259 __func__));
1260 mtx_destroy(&kh->lock);
1261 mtx_destroy(&ih->lock);
1262 }
1263 free(V_pf_keyhash, M_PFHASH);
1264 free(V_pf_idhash, M_PFHASH);
1265
1266 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1267 KASSERT(LIST_EMPTY(&sh->nodes),
1268 ("%s: source node hash not empty", __func__));
1269 mtx_destroy(&sh->lock);
1270 }
1271 free(V_pf_srchash, M_PFHASH);
1272
1273 for (i = 0, uh = V_pf_udpendpointhash;
1274 i <= V_pf_udpendpointhashmask;
1275 i++, uh++) {
1276 KASSERT(LIST_EMPTY(&uh->endpoints),
1277 ("%s: udp endpoint hash not empty", __func__));
1278 mtx_destroy(&uh->lock);
1279 }
1280 free(V_pf_udpendpointhash, M_PFHASH);
1281
1282 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1283 m_freem(pfse->pfse_m);
1284 free(pfse, M_PFTEMP);
1285 }
1286 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1287
1288 uma_zdestroy(V_pf_sources_z);
1289 uma_zdestroy(V_pf_state_z);
1290 uma_zdestroy(V_pf_state_key_z);
1291 uma_zdestroy(V_pf_udp_mapping_z);
1292 }
1293
1294 static int
pf_mtag_uminit(void * mem,int size,int how)1295 pf_mtag_uminit(void *mem, int size, int how)
1296 {
1297 struct m_tag *t;
1298
1299 t = (struct m_tag *)mem;
1300 t->m_tag_cookie = MTAG_ABI_COMPAT;
1301 t->m_tag_id = PACKET_TAG_PF;
1302 t->m_tag_len = sizeof(struct pf_mtag);
1303 t->m_tag_free = pf_mtag_free;
1304
1305 return (0);
1306 }
1307
1308 static void
pf_mtag_free(struct m_tag * t)1309 pf_mtag_free(struct m_tag *t)
1310 {
1311
1312 uma_zfree(pf_mtag_z, t);
1313 }
1314
1315 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1316 pf_get_mtag(struct mbuf *m)
1317 {
1318 struct m_tag *mtag;
1319
1320 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1321 return ((struct pf_mtag *)(mtag + 1));
1322
1323 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1324 if (mtag == NULL)
1325 return (NULL);
1326 bzero(mtag + 1, sizeof(struct pf_mtag));
1327 m_tag_prepend(m, mtag);
1328
1329 return ((struct pf_mtag *)(mtag + 1));
1330 }
1331
1332 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1333 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1334 struct pf_kstate *s)
1335 {
1336 struct pf_keyhash *khs, *khw, *kh;
1337 struct pf_state_key *sk, *cur;
1338 struct pf_kstate *si, *olds = NULL;
1339 int idx;
1340
1341 NET_EPOCH_ASSERT();
1342 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1343 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1344 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1345
1346 /*
1347 * We need to lock hash slots of both keys. To avoid deadlock
1348 * we always lock the slot with lower address first. Unlock order
1349 * isn't important.
1350 *
1351 * We also need to lock ID hash slot before dropping key
1352 * locks. On success we return with ID hash slot locked.
1353 */
1354
1355 if (skw == sks) {
1356 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1357 PF_HASHROW_LOCK(khs);
1358 } else {
1359 khs = &V_pf_keyhash[pf_hashkey(sks)];
1360 khw = &V_pf_keyhash[pf_hashkey(skw)];
1361 if (khs == khw) {
1362 PF_HASHROW_LOCK(khs);
1363 } else if (khs < khw) {
1364 PF_HASHROW_LOCK(khs);
1365 PF_HASHROW_LOCK(khw);
1366 } else {
1367 PF_HASHROW_LOCK(khw);
1368 PF_HASHROW_LOCK(khs);
1369 }
1370 }
1371
1372 #define KEYS_UNLOCK() do { \
1373 if (khs != khw) { \
1374 PF_HASHROW_UNLOCK(khs); \
1375 PF_HASHROW_UNLOCK(khw); \
1376 } else \
1377 PF_HASHROW_UNLOCK(khs); \
1378 } while (0)
1379
1380 /*
1381 * First run: start with wire key.
1382 */
1383 sk = skw;
1384 kh = khw;
1385 idx = PF_SK_WIRE;
1386
1387 MPASS(s->lock == NULL);
1388 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1389
1390 keyattach:
1391 LIST_FOREACH(cur, &kh->keys, entry)
1392 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1393 break;
1394
1395 if (cur != NULL) {
1396 /* Key exists. Check for same kif, if none, add to key. */
1397 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1398 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1399
1400 PF_HASHROW_LOCK(ih);
1401 if (si->kif == s->kif &&
1402 si->direction == s->direction) {
1403 if (sk->proto == IPPROTO_TCP &&
1404 si->src.state >= TCPS_FIN_WAIT_2 &&
1405 si->dst.state >= TCPS_FIN_WAIT_2) {
1406 /*
1407 * New state matches an old >FIN_WAIT_2
1408 * state. We can't drop key hash locks,
1409 * thus we can't unlink it properly.
1410 *
1411 * As a workaround we drop it into
1412 * TCPS_CLOSED state, schedule purge
1413 * ASAP and push it into the very end
1414 * of the slot TAILQ, so that it won't
1415 * conflict with our new state.
1416 */
1417 pf_set_protostate(si, PF_PEER_BOTH,
1418 TCPS_CLOSED);
1419 si->timeout = PFTM_PURGE;
1420 olds = si;
1421 } else {
1422 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1423 printf("pf: %s key attach "
1424 "failed on %s: ",
1425 (idx == PF_SK_WIRE) ?
1426 "wire" : "stack",
1427 s->kif->pfik_name);
1428 pf_print_state_parts(s,
1429 (idx == PF_SK_WIRE) ?
1430 sk : NULL,
1431 (idx == PF_SK_STACK) ?
1432 sk : NULL);
1433 printf(", existing: ");
1434 pf_print_state_parts(si,
1435 (idx == PF_SK_WIRE) ?
1436 sk : NULL,
1437 (idx == PF_SK_STACK) ?
1438 sk : NULL);
1439 printf("\n");
1440 }
1441 s->timeout = PFTM_UNLINKED;
1442 PF_HASHROW_UNLOCK(ih);
1443 KEYS_UNLOCK();
1444 uma_zfree(V_pf_state_key_z, skw);
1445 if (skw != sks)
1446 uma_zfree(V_pf_state_key_z, sks);
1447 if (idx == PF_SK_STACK)
1448 pf_detach_state(s);
1449 return (EEXIST); /* collision! */
1450 }
1451 }
1452 PF_HASHROW_UNLOCK(ih);
1453 }
1454 uma_zfree(V_pf_state_key_z, sk);
1455 s->key[idx] = cur;
1456 } else {
1457 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1458 s->key[idx] = sk;
1459 }
1460
1461 stateattach:
1462 /* List is sorted, if-bound states before floating. */
1463 if (s->kif == V_pfi_all)
1464 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1465 else
1466 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1467
1468 if (olds) {
1469 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1470 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1471 key_list[idx]);
1472 olds = NULL;
1473 }
1474
1475 /*
1476 * Attach done. See how should we (or should not?)
1477 * attach a second key.
1478 */
1479 if (sks == skw) {
1480 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1481 idx = PF_SK_STACK;
1482 sks = NULL;
1483 goto stateattach;
1484 } else if (sks != NULL) {
1485 /*
1486 * Continue attaching with stack key.
1487 */
1488 sk = sks;
1489 kh = khs;
1490 idx = PF_SK_STACK;
1491 sks = NULL;
1492 goto keyattach;
1493 }
1494
1495 PF_STATE_LOCK(s);
1496 KEYS_UNLOCK();
1497
1498 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1499 ("%s failure", __func__));
1500
1501 return (0);
1502 #undef KEYS_UNLOCK
1503 }
1504
1505 static void
pf_detach_state(struct pf_kstate * s)1506 pf_detach_state(struct pf_kstate *s)
1507 {
1508 struct pf_state_key *sks = s->key[PF_SK_STACK];
1509 struct pf_keyhash *kh;
1510
1511 NET_EPOCH_ASSERT();
1512 MPASS(s->timeout >= PFTM_MAX);
1513
1514 pf_sctp_multihome_detach_addr(s);
1515
1516 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1517 V_pflow_export_state_ptr(s);
1518
1519 if (sks != NULL) {
1520 kh = &V_pf_keyhash[pf_hashkey(sks)];
1521 PF_HASHROW_LOCK(kh);
1522 if (s->key[PF_SK_STACK] != NULL)
1523 pf_state_key_detach(s, PF_SK_STACK);
1524 /*
1525 * If both point to same key, then we are done.
1526 */
1527 if (sks == s->key[PF_SK_WIRE]) {
1528 pf_state_key_detach(s, PF_SK_WIRE);
1529 PF_HASHROW_UNLOCK(kh);
1530 return;
1531 }
1532 PF_HASHROW_UNLOCK(kh);
1533 }
1534
1535 if (s->key[PF_SK_WIRE] != NULL) {
1536 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1537 PF_HASHROW_LOCK(kh);
1538 if (s->key[PF_SK_WIRE] != NULL)
1539 pf_state_key_detach(s, PF_SK_WIRE);
1540 PF_HASHROW_UNLOCK(kh);
1541 }
1542 }
1543
1544 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1545 pf_state_key_detach(struct pf_kstate *s, int idx)
1546 {
1547 struct pf_state_key *sk = s->key[idx];
1548 #ifdef INVARIANTS
1549 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1550
1551 PF_HASHROW_ASSERT(kh);
1552 #endif
1553 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1554 s->key[idx] = NULL;
1555
1556 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1557 LIST_REMOVE(sk, entry);
1558 uma_zfree(V_pf_state_key_z, sk);
1559 }
1560 }
1561
1562 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1563 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1564 {
1565 struct pf_state_key *sk = mem;
1566
1567 bzero(sk, sizeof(struct pf_state_key_cmp));
1568 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1569 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1570
1571 return (0);
1572 }
1573
1574 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1575 pf_state_key_addr_setup(struct pf_pdesc *pd,
1576 struct pf_state_key_cmp *key, int multi)
1577 {
1578 struct pf_addr *saddr = pd->src;
1579 struct pf_addr *daddr = pd->dst;
1580 #ifdef INET6
1581 struct nd_neighbor_solicit nd;
1582 struct pf_addr *target;
1583 u_short action, reason;
1584
1585 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1586 goto copy;
1587
1588 switch (pd->hdr.icmp6.icmp6_type) {
1589 case ND_NEIGHBOR_SOLICIT:
1590 if (multi)
1591 return (-1);
1592 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1593 return (-1);
1594 target = (struct pf_addr *)&nd.nd_ns_target;
1595 daddr = target;
1596 break;
1597 case ND_NEIGHBOR_ADVERT:
1598 if (multi)
1599 return (-1);
1600 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1601 return (-1);
1602 target = (struct pf_addr *)&nd.nd_ns_target;
1603 saddr = target;
1604 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1605 key->addr[pd->didx].addr32[0] = 0;
1606 key->addr[pd->didx].addr32[1] = 0;
1607 key->addr[pd->didx].addr32[2] = 0;
1608 key->addr[pd->didx].addr32[3] = 0;
1609 daddr = NULL; /* overwritten */
1610 }
1611 break;
1612 default:
1613 if (multi == PF_ICMP_MULTI_LINK) {
1614 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1615 key->addr[pd->sidx].addr32[1] = 0;
1616 key->addr[pd->sidx].addr32[2] = 0;
1617 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1618 saddr = NULL; /* overwritten */
1619 }
1620 }
1621 copy:
1622 #endif
1623 if (saddr)
1624 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1625 if (daddr)
1626 PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1627
1628 return (0);
1629 }
1630
1631 struct pf_state_key *
pf_state_key_setup(struct pf_pdesc * pd,struct pf_addr * saddr,struct pf_addr * daddr,u_int16_t sport,u_int16_t dport)1632 pf_state_key_setup(struct pf_pdesc *pd,
1633 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport,
1634 u_int16_t dport)
1635 {
1636 struct pf_state_key *sk;
1637
1638 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1639 if (sk == NULL)
1640 return (NULL);
1641
1642 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk,
1643 0)) {
1644 uma_zfree(V_pf_state_key_z, sk);
1645 return (NULL);
1646 }
1647
1648 sk->port[pd->sidx] = sport;
1649 sk->port[pd->didx] = dport;
1650 sk->proto = pd->proto;
1651 sk->af = pd->af;
1652
1653 return (sk);
1654 }
1655
1656 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1657 pf_state_key_clone(const struct pf_state_key *orig)
1658 {
1659 struct pf_state_key *sk;
1660
1661 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1662 if (sk == NULL)
1663 return (NULL);
1664
1665 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1666
1667 return (sk);
1668 }
1669
1670 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1671 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1672 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1673 {
1674 struct pf_idhash *ih;
1675 struct pf_kstate *cur;
1676 int error;
1677
1678 NET_EPOCH_ASSERT();
1679
1680 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1681 ("%s: sks not pristine", __func__));
1682 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1683 ("%s: skw not pristine", __func__));
1684 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1685
1686 s->kif = kif;
1687 s->orig_kif = orig_kif;
1688
1689 if (s->id == 0 && s->creatorid == 0) {
1690 s->id = alloc_unr64(&V_pf_stateid);
1691 s->id = htobe64(s->id);
1692 s->creatorid = V_pf_status.hostid;
1693 }
1694
1695 /* Returns with ID locked on success. */
1696 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1697 return (error);
1698
1699 ih = &V_pf_idhash[PF_IDHASH(s)];
1700 PF_HASHROW_ASSERT(ih);
1701 LIST_FOREACH(cur, &ih->states, entry)
1702 if (cur->id == s->id && cur->creatorid == s->creatorid)
1703 break;
1704
1705 if (cur != NULL) {
1706 s->timeout = PFTM_UNLINKED;
1707 PF_HASHROW_UNLOCK(ih);
1708 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1709 printf("pf: state ID collision: "
1710 "id: %016llx creatorid: %08x\n",
1711 (unsigned long long)be64toh(s->id),
1712 ntohl(s->creatorid));
1713 }
1714 pf_detach_state(s);
1715 return (EEXIST);
1716 }
1717 LIST_INSERT_HEAD(&ih->states, s, entry);
1718 /* One for keys, one for ID hash. */
1719 refcount_init(&s->refs, 2);
1720
1721 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1722 if (V_pfsync_insert_state_ptr != NULL)
1723 V_pfsync_insert_state_ptr(s);
1724
1725 /* Returns locked. */
1726 return (0);
1727 }
1728
1729 /*
1730 * Find state by ID: returns with locked row on success.
1731 */
1732 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1733 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1734 {
1735 struct pf_idhash *ih;
1736 struct pf_kstate *s;
1737
1738 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1739
1740 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))];
1741
1742 PF_HASHROW_LOCK(ih);
1743 LIST_FOREACH(s, &ih->states, entry)
1744 if (s->id == id && s->creatorid == creatorid)
1745 break;
1746
1747 if (s == NULL)
1748 PF_HASHROW_UNLOCK(ih);
1749
1750 return (s);
1751 }
1752
1753 /*
1754 * Find state by key.
1755 * Returns with ID hash slot locked on success.
1756 */
1757 static struct pf_kstate *
pf_find_state(struct pfi_kkif * kif,const struct pf_state_key_cmp * key,u_int dir)1758 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1759 u_int dir)
1760 {
1761 struct pf_keyhash *kh;
1762 struct pf_state_key *sk;
1763 struct pf_kstate *s;
1764 int idx;
1765
1766 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1767
1768 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1769
1770 PF_HASHROW_LOCK(kh);
1771 LIST_FOREACH(sk, &kh->keys, entry)
1772 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1773 break;
1774 if (sk == NULL) {
1775 PF_HASHROW_UNLOCK(kh);
1776 return (NULL);
1777 }
1778
1779 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1780
1781 /* List is sorted, if-bound states before floating ones. */
1782 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1783 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1784 PF_STATE_LOCK(s);
1785 PF_HASHROW_UNLOCK(kh);
1786 if (__predict_false(s->timeout >= PFTM_MAX)) {
1787 /*
1788 * State is either being processed by
1789 * pf_unlink_state() in an other thread, or
1790 * is scheduled for immediate expiry.
1791 */
1792 PF_STATE_UNLOCK(s);
1793 return (NULL);
1794 }
1795 return (s);
1796 }
1797 PF_HASHROW_UNLOCK(kh);
1798
1799 return (NULL);
1800 }
1801
1802 /*
1803 * Returns with ID hash slot locked on success.
1804 */
1805 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1806 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1807 {
1808 struct pf_keyhash *kh;
1809 struct pf_state_key *sk;
1810 struct pf_kstate *s, *ret = NULL;
1811 int idx, inout = 0;
1812
1813 if (more != NULL)
1814 *more = 0;
1815
1816 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1817
1818 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1819
1820 PF_HASHROW_LOCK(kh);
1821 LIST_FOREACH(sk, &kh->keys, entry)
1822 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1823 break;
1824 if (sk == NULL) {
1825 PF_HASHROW_UNLOCK(kh);
1826 return (NULL);
1827 }
1828 switch (dir) {
1829 case PF_IN:
1830 idx = PF_SK_WIRE;
1831 break;
1832 case PF_OUT:
1833 idx = PF_SK_STACK;
1834 break;
1835 case PF_INOUT:
1836 idx = PF_SK_WIRE;
1837 inout = 1;
1838 break;
1839 default:
1840 panic("%s: dir %u", __func__, dir);
1841 }
1842 second_run:
1843 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1844 if (more == NULL) {
1845 PF_STATE_LOCK(s);
1846 PF_HASHROW_UNLOCK(kh);
1847 return (s);
1848 }
1849
1850 if (ret)
1851 (*more)++;
1852 else {
1853 ret = s;
1854 PF_STATE_LOCK(s);
1855 }
1856 }
1857 if (inout == 1) {
1858 inout = 0;
1859 idx = PF_SK_STACK;
1860 goto second_run;
1861 }
1862 PF_HASHROW_UNLOCK(kh);
1863
1864 return (ret);
1865 }
1866
1867 /*
1868 * FIXME
1869 * This routine is inefficient -- locks the state only to unlock immediately on
1870 * return.
1871 * It is racy -- after the state is unlocked nothing stops other threads from
1872 * removing it.
1873 */
1874 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)1875 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
1876 {
1877 struct pf_kstate *s;
1878
1879 s = pf_find_state_all(key, dir, NULL);
1880 if (s != NULL) {
1881 PF_STATE_UNLOCK(s);
1882 return (true);
1883 }
1884 return (false);
1885 }
1886
1887 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)1888 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
1889 struct pf_addr *nat_addr, uint16_t nat_port)
1890 {
1891 struct pf_udp_mapping *mapping;
1892
1893 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
1894 if (mapping == NULL)
1895 return (NULL);
1896 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
1897 mapping->endpoints[0].port = src_port;
1898 mapping->endpoints[0].af = af;
1899 mapping->endpoints[0].mapping = mapping;
1900 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
1901 mapping->endpoints[1].port = nat_port;
1902 mapping->endpoints[1].af = af;
1903 mapping->endpoints[1].mapping = mapping;
1904 refcount_init(&mapping->refs, 1);
1905 return (mapping);
1906 }
1907
1908 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)1909 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
1910 {
1911 struct pf_udpendpointhash *h0, *h1;
1912 struct pf_udp_endpoint *endpoint;
1913 int ret = EEXIST;
1914
1915 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
1916 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
1917 if (h0 == h1) {
1918 PF_HASHROW_LOCK(h0);
1919 } else if (h0 < h1) {
1920 PF_HASHROW_LOCK(h0);
1921 PF_HASHROW_LOCK(h1);
1922 } else {
1923 PF_HASHROW_LOCK(h1);
1924 PF_HASHROW_LOCK(h0);
1925 }
1926
1927 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
1928 if (bcmp(endpoint, &mapping->endpoints[0],
1929 sizeof(struct pf_udp_endpoint_cmp)) == 0)
1930 break;
1931 }
1932 if (endpoint != NULL)
1933 goto cleanup;
1934 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
1935 if (bcmp(endpoint, &mapping->endpoints[1],
1936 sizeof(struct pf_udp_endpoint_cmp)) == 0)
1937 break;
1938 }
1939 if (endpoint != NULL)
1940 goto cleanup;
1941 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
1942 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
1943 ret = 0;
1944
1945 cleanup:
1946 if (h0 != h1) {
1947 PF_HASHROW_UNLOCK(h0);
1948 PF_HASHROW_UNLOCK(h1);
1949 } else {
1950 PF_HASHROW_UNLOCK(h0);
1951 }
1952 return (ret);
1953 }
1954
1955 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)1956 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
1957 {
1958 /* refcount is synchronized on the source endpoint's row lock */
1959 struct pf_udpendpointhash *h0, *h1;
1960
1961 if (mapping == NULL)
1962 return;
1963
1964 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
1965 PF_HASHROW_LOCK(h0);
1966 if (refcount_release(&mapping->refs)) {
1967 LIST_REMOVE(&mapping->endpoints[0], entry);
1968 PF_HASHROW_UNLOCK(h0);
1969 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
1970 PF_HASHROW_LOCK(h1);
1971 LIST_REMOVE(&mapping->endpoints[1], entry);
1972 PF_HASHROW_UNLOCK(h1);
1973
1974 uma_zfree(V_pf_udp_mapping_z, mapping);
1975 } else {
1976 PF_HASHROW_UNLOCK(h0);
1977 }
1978 }
1979
1980
1981 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)1982 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
1983 {
1984 struct pf_udpendpointhash *uh;
1985 struct pf_udp_endpoint *endpoint;
1986
1987 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
1988
1989 PF_HASHROW_LOCK(uh);
1990 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
1991 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
1992 bcmp(endpoint, &endpoint->mapping->endpoints[0],
1993 sizeof(struct pf_udp_endpoint_cmp)) == 0)
1994 break;
1995 }
1996 if (endpoint == NULL) {
1997 PF_HASHROW_UNLOCK(uh);
1998 return (NULL);
1999 }
2000 refcount_acquire(&endpoint->mapping->refs);
2001 PF_HASHROW_UNLOCK(uh);
2002 return (endpoint->mapping);
2003 }
2004 /* END state table stuff */
2005
2006 static void
pf_send(struct pf_send_entry * pfse)2007 pf_send(struct pf_send_entry *pfse)
2008 {
2009
2010 PF_SENDQ_LOCK();
2011 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2012 PF_SENDQ_UNLOCK();
2013 swi_sched(V_pf_swi_cookie, 0);
2014 }
2015
2016 static bool
pf_isforlocal(struct mbuf * m,int af)2017 pf_isforlocal(struct mbuf *m, int af)
2018 {
2019 switch (af) {
2020 #ifdef INET
2021 case AF_INET: {
2022 struct ip *ip = mtod(m, struct ip *);
2023
2024 return (in_localip(ip->ip_dst));
2025 }
2026 #endif
2027 #ifdef INET6
2028 case AF_INET6: {
2029 struct ip6_hdr *ip6;
2030 struct in6_ifaddr *ia;
2031 ip6 = mtod(m, struct ip6_hdr *);
2032 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2033 if (ia == NULL)
2034 return (false);
2035 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2036 }
2037 #endif
2038 }
2039
2040 return (false);
2041 }
2042
2043 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,int * multi,u_int16_t * virtual_id,u_int16_t * virtual_type)2044 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2045 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type)
2046 {
2047 /*
2048 * ICMP types marked with PF_OUT are typically responses to
2049 * PF_IN, and will match states in the opposite direction.
2050 * PF_IN ICMP types need to match a state with that type.
2051 */
2052 *icmp_dir = PF_OUT;
2053 *multi = PF_ICMP_MULTI_LINK;
2054 /* Queries (and responses) */
2055 switch (pd->af) {
2056 #ifdef INET
2057 case AF_INET:
2058 switch (type) {
2059 case ICMP_ECHO:
2060 *icmp_dir = PF_IN;
2061 case ICMP_ECHOREPLY:
2062 *virtual_type = ICMP_ECHO;
2063 *virtual_id = pd->hdr.icmp.icmp_id;
2064 break;
2065
2066 case ICMP_TSTAMP:
2067 *icmp_dir = PF_IN;
2068 case ICMP_TSTAMPREPLY:
2069 *virtual_type = ICMP_TSTAMP;
2070 *virtual_id = pd->hdr.icmp.icmp_id;
2071 break;
2072
2073 case ICMP_IREQ:
2074 *icmp_dir = PF_IN;
2075 case ICMP_IREQREPLY:
2076 *virtual_type = ICMP_IREQ;
2077 *virtual_id = pd->hdr.icmp.icmp_id;
2078 break;
2079
2080 case ICMP_MASKREQ:
2081 *icmp_dir = PF_IN;
2082 case ICMP_MASKREPLY:
2083 *virtual_type = ICMP_MASKREQ;
2084 *virtual_id = pd->hdr.icmp.icmp_id;
2085 break;
2086
2087 case ICMP_IPV6_WHEREAREYOU:
2088 *icmp_dir = PF_IN;
2089 case ICMP_IPV6_IAMHERE:
2090 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2091 *virtual_id = 0; /* Nothing sane to match on! */
2092 break;
2093
2094 case ICMP_MOBILE_REGREQUEST:
2095 *icmp_dir = PF_IN;
2096 case ICMP_MOBILE_REGREPLY:
2097 *virtual_type = ICMP_MOBILE_REGREQUEST;
2098 *virtual_id = 0; /* Nothing sane to match on! */
2099 break;
2100
2101 case ICMP_ROUTERSOLICIT:
2102 *icmp_dir = PF_IN;
2103 case ICMP_ROUTERADVERT:
2104 *virtual_type = ICMP_ROUTERSOLICIT;
2105 *virtual_id = 0; /* Nothing sane to match on! */
2106 break;
2107
2108 /* These ICMP types map to other connections */
2109 case ICMP_UNREACH:
2110 case ICMP_SOURCEQUENCH:
2111 case ICMP_REDIRECT:
2112 case ICMP_TIMXCEED:
2113 case ICMP_PARAMPROB:
2114 /* These will not be used, but set them anyway */
2115 *icmp_dir = PF_IN;
2116 *virtual_type = type;
2117 *virtual_id = 0;
2118 HTONS(*virtual_type);
2119 return (1); /* These types match to another state */
2120
2121 /*
2122 * All remaining ICMP types get their own states,
2123 * and will only match in one direction.
2124 */
2125 default:
2126 *icmp_dir = PF_IN;
2127 *virtual_type = type;
2128 *virtual_id = 0;
2129 break;
2130 }
2131 break;
2132 #endif /* INET */
2133 #ifdef INET6
2134 case AF_INET6:
2135 switch (type) {
2136 case ICMP6_ECHO_REQUEST:
2137 *icmp_dir = PF_IN;
2138 case ICMP6_ECHO_REPLY:
2139 *virtual_type = ICMP6_ECHO_REQUEST;
2140 *virtual_id = pd->hdr.icmp6.icmp6_id;
2141 break;
2142
2143 case MLD_LISTENER_QUERY:
2144 case MLD_LISTENER_REPORT: {
2145 /*
2146 * Listener Report can be sent by clients
2147 * without an associated Listener Query.
2148 * In addition to that, when Report is sent as a
2149 * reply to a Query its source and destination
2150 * address are different.
2151 */
2152 *icmp_dir = PF_IN;
2153 *virtual_type = MLD_LISTENER_QUERY;
2154 *virtual_id = 0;
2155 break;
2156 }
2157 case MLD_MTRACE:
2158 *icmp_dir = PF_IN;
2159 case MLD_MTRACE_RESP:
2160 *virtual_type = MLD_MTRACE;
2161 *virtual_id = 0; /* Nothing sane to match on! */
2162 break;
2163
2164 case ND_NEIGHBOR_SOLICIT:
2165 *icmp_dir = PF_IN;
2166 case ND_NEIGHBOR_ADVERT: {
2167 *virtual_type = ND_NEIGHBOR_SOLICIT;
2168 *virtual_id = 0;
2169 break;
2170 }
2171
2172 /*
2173 * These ICMP types map to other connections.
2174 * ND_REDIRECT can't be in this list because the triggering
2175 * packet header is optional.
2176 */
2177 case ICMP6_DST_UNREACH:
2178 case ICMP6_PACKET_TOO_BIG:
2179 case ICMP6_TIME_EXCEEDED:
2180 case ICMP6_PARAM_PROB:
2181 /* These will not be used, but set them anyway */
2182 *icmp_dir = PF_IN;
2183 *virtual_type = type;
2184 *virtual_id = 0;
2185 HTONS(*virtual_type);
2186 return (1); /* These types match to another state */
2187 /*
2188 * All remaining ICMP6 types get their own states,
2189 * and will only match in one direction.
2190 */
2191 default:
2192 *icmp_dir = PF_IN;
2193 *virtual_type = type;
2194 *virtual_id = 0;
2195 break;
2196 }
2197 break;
2198 #endif /* INET6 */
2199 }
2200 HTONS(*virtual_type);
2201 return (0); /* These types match to their own state */
2202 }
2203
2204 void
pf_intr(void * v)2205 pf_intr(void *v)
2206 {
2207 struct epoch_tracker et;
2208 struct pf_send_head queue;
2209 struct pf_send_entry *pfse, *next;
2210
2211 CURVNET_SET((struct vnet *)v);
2212
2213 PF_SENDQ_LOCK();
2214 queue = V_pf_sendqueue;
2215 STAILQ_INIT(&V_pf_sendqueue);
2216 PF_SENDQ_UNLOCK();
2217
2218 NET_EPOCH_ENTER(et);
2219
2220 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2221 switch (pfse->pfse_type) {
2222 #ifdef INET
2223 case PFSE_IP: {
2224 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2225 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2226 ("%s: rcvif != loif", __func__));
2227
2228 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2229 pfse->pfse_m->m_pkthdr.csum_flags |=
2230 CSUM_IP_VALID | CSUM_IP_CHECKED;
2231 ip_input(pfse->pfse_m);
2232 } else {
2233 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2234 NULL);
2235 }
2236 break;
2237 }
2238 case PFSE_ICMP:
2239 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2240 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2241 break;
2242 #endif /* INET */
2243 #ifdef INET6
2244 case PFSE_IP6:
2245 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2246 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2247 ("%s: rcvif != loif", __func__));
2248
2249 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2250 M_LOOP;
2251 ip6_input(pfse->pfse_m);
2252 } else {
2253 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2254 NULL, NULL);
2255 }
2256 break;
2257 case PFSE_ICMP6:
2258 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2259 pfse->icmpopts.code, pfse->icmpopts.mtu);
2260 break;
2261 #endif /* INET6 */
2262 default:
2263 panic("%s: unknown type", __func__);
2264 }
2265 free(pfse, M_PFTEMP);
2266 }
2267 NET_EPOCH_EXIT(et);
2268 CURVNET_RESTORE();
2269 }
2270
2271 #define pf_purge_thread_period (hz / 10)
2272
2273 #ifdef PF_WANT_32_TO_64_COUNTER
2274 static void
pf_status_counter_u64_periodic(void)2275 pf_status_counter_u64_periodic(void)
2276 {
2277
2278 PF_RULES_RASSERT();
2279
2280 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2281 return;
2282 }
2283
2284 for (int i = 0; i < FCNT_MAX; i++) {
2285 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2286 }
2287 }
2288
2289 static void
pf_kif_counter_u64_periodic(void)2290 pf_kif_counter_u64_periodic(void)
2291 {
2292 struct pfi_kkif *kif;
2293 size_t r, run;
2294
2295 PF_RULES_RASSERT();
2296
2297 if (__predict_false(V_pf_allkifcount == 0)) {
2298 return;
2299 }
2300
2301 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2302 return;
2303 }
2304
2305 run = V_pf_allkifcount / 10;
2306 if (run < 5)
2307 run = 5;
2308
2309 for (r = 0; r < run; r++) {
2310 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2311 if (kif == NULL) {
2312 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2313 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2314 break;
2315 }
2316
2317 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2318 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2319
2320 for (int i = 0; i < 2; i++) {
2321 for (int j = 0; j < 2; j++) {
2322 for (int k = 0; k < 2; k++) {
2323 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2324 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2325 }
2326 }
2327 }
2328 }
2329 }
2330
2331 static void
pf_rule_counter_u64_periodic(void)2332 pf_rule_counter_u64_periodic(void)
2333 {
2334 struct pf_krule *rule;
2335 size_t r, run;
2336
2337 PF_RULES_RASSERT();
2338
2339 if (__predict_false(V_pf_allrulecount == 0)) {
2340 return;
2341 }
2342
2343 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2344 return;
2345 }
2346
2347 run = V_pf_allrulecount / 10;
2348 if (run < 5)
2349 run = 5;
2350
2351 for (r = 0; r < run; r++) {
2352 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2353 if (rule == NULL) {
2354 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2355 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2356 break;
2357 }
2358
2359 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2360 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2361
2362 pf_counter_u64_periodic(&rule->evaluations);
2363 for (int i = 0; i < 2; i++) {
2364 pf_counter_u64_periodic(&rule->packets[i]);
2365 pf_counter_u64_periodic(&rule->bytes[i]);
2366 }
2367 }
2368 }
2369
2370 static void
pf_counter_u64_periodic_main(void)2371 pf_counter_u64_periodic_main(void)
2372 {
2373 PF_RULES_RLOCK_TRACKER;
2374
2375 V_pf_counter_periodic_iter++;
2376
2377 PF_RULES_RLOCK();
2378 pf_counter_u64_critical_enter();
2379 pf_status_counter_u64_periodic();
2380 pf_kif_counter_u64_periodic();
2381 pf_rule_counter_u64_periodic();
2382 pf_counter_u64_critical_exit();
2383 PF_RULES_RUNLOCK();
2384 }
2385 #else
2386 #define pf_counter_u64_periodic_main() do { } while (0)
2387 #endif
2388
2389 void
pf_purge_thread(void * unused __unused)2390 pf_purge_thread(void *unused __unused)
2391 {
2392 struct epoch_tracker et;
2393
2394 VNET_ITERATOR_DECL(vnet_iter);
2395
2396 sx_xlock(&pf_end_lock);
2397 while (pf_end_threads == 0) {
2398 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2399
2400 VNET_LIST_RLOCK();
2401 NET_EPOCH_ENTER(et);
2402 VNET_FOREACH(vnet_iter) {
2403 CURVNET_SET(vnet_iter);
2404
2405 /* Wait until V_pf_default_rule is initialized. */
2406 if (V_pf_vnet_active == 0) {
2407 CURVNET_RESTORE();
2408 continue;
2409 }
2410
2411 pf_counter_u64_periodic_main();
2412
2413 /*
2414 * Process 1/interval fraction of the state
2415 * table every run.
2416 */
2417 V_pf_purge_idx =
2418 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2419 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2420
2421 /*
2422 * Purge other expired types every
2423 * PFTM_INTERVAL seconds.
2424 */
2425 if (V_pf_purge_idx == 0) {
2426 /*
2427 * Order is important:
2428 * - states and src nodes reference rules
2429 * - states and rules reference kifs
2430 */
2431 pf_purge_expired_fragments();
2432 pf_purge_expired_src_nodes();
2433 pf_purge_unlinked_rules();
2434 pfi_kkif_purge();
2435 }
2436 CURVNET_RESTORE();
2437 }
2438 NET_EPOCH_EXIT(et);
2439 VNET_LIST_RUNLOCK();
2440 }
2441
2442 pf_end_threads++;
2443 sx_xunlock(&pf_end_lock);
2444 kproc_exit(0);
2445 }
2446
2447 void
pf_unload_vnet_purge(void)2448 pf_unload_vnet_purge(void)
2449 {
2450
2451 /*
2452 * To cleanse up all kifs and rules we need
2453 * two runs: first one clears reference flags,
2454 * then pf_purge_expired_states() doesn't
2455 * raise them, and then second run frees.
2456 */
2457 pf_purge_unlinked_rules();
2458 pfi_kkif_purge();
2459
2460 /*
2461 * Now purge everything.
2462 */
2463 pf_purge_expired_states(0, V_pf_hashmask);
2464 pf_purge_fragments(UINT_MAX);
2465 pf_purge_expired_src_nodes();
2466
2467 /*
2468 * Now all kifs & rules should be unreferenced,
2469 * thus should be successfully freed.
2470 */
2471 pf_purge_unlinked_rules();
2472 pfi_kkif_purge();
2473 }
2474
2475 u_int32_t
pf_state_expires(const struct pf_kstate * state)2476 pf_state_expires(const struct pf_kstate *state)
2477 {
2478 u_int32_t timeout;
2479 u_int32_t start;
2480 u_int32_t end;
2481 u_int32_t states;
2482
2483 /* handle all PFTM_* > PFTM_MAX here */
2484 if (state->timeout == PFTM_PURGE)
2485 return (time_uptime);
2486 KASSERT(state->timeout != PFTM_UNLINKED,
2487 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2488 KASSERT((state->timeout < PFTM_MAX),
2489 ("pf_state_expires: timeout > PFTM_MAX"));
2490 timeout = state->rule->timeout[state->timeout];
2491 if (!timeout)
2492 timeout = V_pf_default_rule.timeout[state->timeout];
2493 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2494 if (start && state->rule != &V_pf_default_rule) {
2495 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2496 states = counter_u64_fetch(state->rule->states_cur);
2497 } else {
2498 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2499 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2500 states = V_pf_status.states;
2501 }
2502 if (end && states > start && start < end) {
2503 if (states < end) {
2504 timeout = (u_int64_t)timeout * (end - states) /
2505 (end - start);
2506 return ((state->expire / 1000) + timeout);
2507 }
2508 else
2509 return (time_uptime);
2510 }
2511 return ((state->expire / 1000) + timeout);
2512 }
2513
2514 void
pf_purge_expired_src_nodes(void)2515 pf_purge_expired_src_nodes(void)
2516 {
2517 struct pf_ksrc_node_list freelist;
2518 struct pf_srchash *sh;
2519 struct pf_ksrc_node *cur, *next;
2520 int i;
2521
2522 LIST_INIT(&freelist);
2523 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2524 PF_HASHROW_LOCK(sh);
2525 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2526 if (cur->states == 0 && cur->expire <= time_uptime) {
2527 pf_unlink_src_node(cur);
2528 LIST_INSERT_HEAD(&freelist, cur, entry);
2529 } else if (cur->rule != NULL)
2530 cur->rule->rule_ref |= PFRULE_REFS;
2531 PF_HASHROW_UNLOCK(sh);
2532 }
2533
2534 pf_free_src_nodes(&freelist);
2535
2536 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2537 }
2538
2539 static void
pf_src_tree_remove_state(struct pf_kstate * s)2540 pf_src_tree_remove_state(struct pf_kstate *s)
2541 {
2542 struct pf_ksrc_node *sn;
2543 uint32_t timeout;
2544
2545 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2546 s->rule->timeout[PFTM_SRC_NODE] :
2547 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2548
2549 if (s->src_node != NULL) {
2550 sn = s->src_node;
2551 PF_SRC_NODE_LOCK(sn);
2552 if (s->src.tcp_est)
2553 --sn->conn;
2554 if (--sn->states == 0)
2555 sn->expire = time_uptime + timeout;
2556 PF_SRC_NODE_UNLOCK(sn);
2557 }
2558 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
2559 sn = s->nat_src_node;
2560 PF_SRC_NODE_LOCK(sn);
2561 if (--sn->states == 0)
2562 sn->expire = time_uptime + timeout;
2563 PF_SRC_NODE_UNLOCK(sn);
2564 }
2565 s->src_node = s->nat_src_node = NULL;
2566 }
2567
2568 /*
2569 * Unlink and potentilly free a state. Function may be
2570 * called with ID hash row locked, but always returns
2571 * unlocked, since it needs to go through key hash locking.
2572 */
2573 int
pf_unlink_state(struct pf_kstate * s)2574 pf_unlink_state(struct pf_kstate *s)
2575 {
2576 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2577
2578 NET_EPOCH_ASSERT();
2579 PF_HASHROW_ASSERT(ih);
2580
2581 if (s->timeout == PFTM_UNLINKED) {
2582 /*
2583 * State is being processed
2584 * by pf_unlink_state() in
2585 * an other thread.
2586 */
2587 PF_HASHROW_UNLOCK(ih);
2588 return (0); /* XXXGL: undefined actually */
2589 }
2590
2591 if (s->src.state == PF_TCPS_PROXY_DST) {
2592 /* XXX wire key the right one? */
2593 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2594 &s->key[PF_SK_WIRE]->addr[1],
2595 &s->key[PF_SK_WIRE]->addr[0],
2596 s->key[PF_SK_WIRE]->port[1],
2597 s->key[PF_SK_WIRE]->port[0],
2598 s->src.seqhi, s->src.seqlo + 1,
2599 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2600 s->act.rtableid);
2601 }
2602
2603 LIST_REMOVE(s, entry);
2604 pf_src_tree_remove_state(s);
2605
2606 if (V_pfsync_delete_state_ptr != NULL)
2607 V_pfsync_delete_state_ptr(s);
2608
2609 STATE_DEC_COUNTERS(s);
2610
2611 s->timeout = PFTM_UNLINKED;
2612
2613 /* Ensure we remove it from the list of halfopen states, if needed. */
2614 if (s->key[PF_SK_STACK] != NULL &&
2615 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2616 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2617
2618 PF_HASHROW_UNLOCK(ih);
2619
2620 pf_detach_state(s);
2621
2622 pf_udp_mapping_release(s->udp_mapping);
2623
2624 /* pf_state_insert() initialises refs to 2 */
2625 return (pf_release_staten(s, 2));
2626 }
2627
2628 struct pf_kstate *
pf_alloc_state(int flags)2629 pf_alloc_state(int flags)
2630 {
2631
2632 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2633 }
2634
2635 void
pf_free_state(struct pf_kstate * cur)2636 pf_free_state(struct pf_kstate *cur)
2637 {
2638 struct pf_krule_item *ri;
2639
2640 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2641 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2642 cur->timeout));
2643
2644 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2645 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2646 free(ri, M_PF_RULE_ITEM);
2647 }
2648
2649 pf_normalize_tcp_cleanup(cur);
2650 uma_zfree(V_pf_state_z, cur);
2651 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2652 }
2653
2654 /*
2655 * Called only from pf_purge_thread(), thus serialized.
2656 */
2657 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2658 pf_purge_expired_states(u_int i, int maxcheck)
2659 {
2660 struct pf_idhash *ih;
2661 struct pf_kstate *s;
2662 struct pf_krule_item *mrm;
2663 size_t count __unused;
2664
2665 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2666
2667 /*
2668 * Go through hash and unlink states that expire now.
2669 */
2670 while (maxcheck > 0) {
2671 count = 0;
2672 ih = &V_pf_idhash[i];
2673
2674 /* only take the lock if we expect to do work */
2675 if (!LIST_EMPTY(&ih->states)) {
2676 relock:
2677 PF_HASHROW_LOCK(ih);
2678 LIST_FOREACH(s, &ih->states, entry) {
2679 if (pf_state_expires(s) <= time_uptime) {
2680 V_pf_status.states -=
2681 pf_unlink_state(s);
2682 goto relock;
2683 }
2684 s->rule->rule_ref |= PFRULE_REFS;
2685 if (s->nat_rule != NULL)
2686 s->nat_rule->rule_ref |= PFRULE_REFS;
2687 if (s->anchor != NULL)
2688 s->anchor->rule_ref |= PFRULE_REFS;
2689 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2690 SLIST_FOREACH(mrm, &s->match_rules, entry)
2691 mrm->r->rule_ref |= PFRULE_REFS;
2692 if (s->rt_kif)
2693 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2694 count++;
2695 }
2696 PF_HASHROW_UNLOCK(ih);
2697 }
2698
2699 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2700
2701 /* Return when we hit end of hash. */
2702 if (++i > V_pf_hashmask) {
2703 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2704 return (0);
2705 }
2706
2707 maxcheck--;
2708 }
2709
2710 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2711
2712 return (i);
2713 }
2714
2715 static void
pf_purge_unlinked_rules(void)2716 pf_purge_unlinked_rules(void)
2717 {
2718 struct pf_krulequeue tmpq;
2719 struct pf_krule *r, *r1;
2720
2721 /*
2722 * If we have overloading task pending, then we'd
2723 * better skip purging this time. There is a tiny
2724 * probability that overloading task references
2725 * an already unlinked rule.
2726 */
2727 PF_OVERLOADQ_LOCK();
2728 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2729 PF_OVERLOADQ_UNLOCK();
2730 return;
2731 }
2732 PF_OVERLOADQ_UNLOCK();
2733
2734 /*
2735 * Do naive mark-and-sweep garbage collecting of old rules.
2736 * Reference flag is raised by pf_purge_expired_states()
2737 * and pf_purge_expired_src_nodes().
2738 *
2739 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2740 * use a temporary queue.
2741 */
2742 TAILQ_INIT(&tmpq);
2743 PF_UNLNKDRULES_LOCK();
2744 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2745 if (!(r->rule_ref & PFRULE_REFS)) {
2746 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2747 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2748 } else
2749 r->rule_ref &= ~PFRULE_REFS;
2750 }
2751 PF_UNLNKDRULES_UNLOCK();
2752
2753 if (!TAILQ_EMPTY(&tmpq)) {
2754 PF_CONFIG_LOCK();
2755 PF_RULES_WLOCK();
2756 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2757 TAILQ_REMOVE(&tmpq, r, entries);
2758 pf_free_rule(r);
2759 }
2760 PF_RULES_WUNLOCK();
2761 PF_CONFIG_UNLOCK();
2762 }
2763 }
2764
2765 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2766 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2767 {
2768 switch (af) {
2769 #ifdef INET
2770 case AF_INET: {
2771 u_int32_t a = ntohl(addr->addr32[0]);
2772 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2773 (a>>8)&255, a&255);
2774 if (p) {
2775 p = ntohs(p);
2776 printf(":%u", p);
2777 }
2778 break;
2779 }
2780 #endif /* INET */
2781 #ifdef INET6
2782 case AF_INET6: {
2783 u_int16_t b;
2784 u_int8_t i, curstart, curend, maxstart, maxend;
2785 curstart = curend = maxstart = maxend = 255;
2786 for (i = 0; i < 8; i++) {
2787 if (!addr->addr16[i]) {
2788 if (curstart == 255)
2789 curstart = i;
2790 curend = i;
2791 } else {
2792 if ((curend - curstart) >
2793 (maxend - maxstart)) {
2794 maxstart = curstart;
2795 maxend = curend;
2796 }
2797 curstart = curend = 255;
2798 }
2799 }
2800 if ((curend - curstart) >
2801 (maxend - maxstart)) {
2802 maxstart = curstart;
2803 maxend = curend;
2804 }
2805 for (i = 0; i < 8; i++) {
2806 if (i >= maxstart && i <= maxend) {
2807 if (i == 0)
2808 printf(":");
2809 if (i == maxend)
2810 printf(":");
2811 } else {
2812 b = ntohs(addr->addr16[i]);
2813 printf("%x", b);
2814 if (i < 7)
2815 printf(":");
2816 }
2817 }
2818 if (p) {
2819 p = ntohs(p);
2820 printf("[%u]", p);
2821 }
2822 break;
2823 }
2824 #endif /* INET6 */
2825 }
2826 }
2827
2828 void
pf_print_state(struct pf_kstate * s)2829 pf_print_state(struct pf_kstate *s)
2830 {
2831 pf_print_state_parts(s, NULL, NULL);
2832 }
2833
2834 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)2835 pf_print_state_parts(struct pf_kstate *s,
2836 struct pf_state_key *skwp, struct pf_state_key *sksp)
2837 {
2838 struct pf_state_key *skw, *sks;
2839 u_int8_t proto, dir;
2840
2841 /* Do our best to fill these, but they're skipped if NULL */
2842 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
2843 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
2844 proto = skw ? skw->proto : (sks ? sks->proto : 0);
2845 dir = s ? s->direction : 0;
2846
2847 switch (proto) {
2848 case IPPROTO_IPV4:
2849 printf("IPv4");
2850 break;
2851 case IPPROTO_IPV6:
2852 printf("IPv6");
2853 break;
2854 case IPPROTO_TCP:
2855 printf("TCP");
2856 break;
2857 case IPPROTO_UDP:
2858 printf("UDP");
2859 break;
2860 case IPPROTO_ICMP:
2861 printf("ICMP");
2862 break;
2863 case IPPROTO_ICMPV6:
2864 printf("ICMPv6");
2865 break;
2866 default:
2867 printf("%u", proto);
2868 break;
2869 }
2870 switch (dir) {
2871 case PF_IN:
2872 printf(" in");
2873 break;
2874 case PF_OUT:
2875 printf(" out");
2876 break;
2877 }
2878 if (skw) {
2879 printf(" wire: ");
2880 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
2881 printf(" ");
2882 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
2883 }
2884 if (sks) {
2885 printf(" stack: ");
2886 if (sks != skw) {
2887 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
2888 printf(" ");
2889 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
2890 } else
2891 printf("-");
2892 }
2893 if (s) {
2894 if (proto == IPPROTO_TCP) {
2895 printf(" [lo=%u high=%u win=%u modulator=%u",
2896 s->src.seqlo, s->src.seqhi,
2897 s->src.max_win, s->src.seqdiff);
2898 if (s->src.wscale && s->dst.wscale)
2899 printf(" wscale=%u",
2900 s->src.wscale & PF_WSCALE_MASK);
2901 printf("]");
2902 printf(" [lo=%u high=%u win=%u modulator=%u",
2903 s->dst.seqlo, s->dst.seqhi,
2904 s->dst.max_win, s->dst.seqdiff);
2905 if (s->src.wscale && s->dst.wscale)
2906 printf(" wscale=%u",
2907 s->dst.wscale & PF_WSCALE_MASK);
2908 printf("]");
2909 }
2910 printf(" %u:%u", s->src.state, s->dst.state);
2911 if (s->rule)
2912 printf(" @%d", s->rule->nr);
2913 }
2914 }
2915
2916 void
pf_print_flags(u_int8_t f)2917 pf_print_flags(u_int8_t f)
2918 {
2919 if (f)
2920 printf(" ");
2921 if (f & TH_FIN)
2922 printf("F");
2923 if (f & TH_SYN)
2924 printf("S");
2925 if (f & TH_RST)
2926 printf("R");
2927 if (f & TH_PUSH)
2928 printf("P");
2929 if (f & TH_ACK)
2930 printf("A");
2931 if (f & TH_URG)
2932 printf("U");
2933 if (f & TH_ECE)
2934 printf("E");
2935 if (f & TH_CWR)
2936 printf("W");
2937 }
2938
2939 #define PF_SET_SKIP_STEPS(i) \
2940 do { \
2941 while (head[i] != cur) { \
2942 head[i]->skip[i] = cur; \
2943 head[i] = TAILQ_NEXT(head[i], entries); \
2944 } \
2945 } while (0)
2946
2947 void
pf_calc_skip_steps(struct pf_krulequeue * rules)2948 pf_calc_skip_steps(struct pf_krulequeue *rules)
2949 {
2950 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
2951 int i;
2952
2953 cur = TAILQ_FIRST(rules);
2954 prev = cur;
2955 for (i = 0; i < PF_SKIP_COUNT; ++i)
2956 head[i] = cur;
2957 while (cur != NULL) {
2958 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
2959 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
2960 if (cur->direction != prev->direction)
2961 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
2962 if (cur->af != prev->af)
2963 PF_SET_SKIP_STEPS(PF_SKIP_AF);
2964 if (cur->proto != prev->proto)
2965 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
2966 if (cur->src.neg != prev->src.neg ||
2967 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
2968 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
2969 if (cur->dst.neg != prev->dst.neg ||
2970 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
2971 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
2972 if (cur->src.port[0] != prev->src.port[0] ||
2973 cur->src.port[1] != prev->src.port[1] ||
2974 cur->src.port_op != prev->src.port_op)
2975 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
2976 if (cur->dst.port[0] != prev->dst.port[0] ||
2977 cur->dst.port[1] != prev->dst.port[1] ||
2978 cur->dst.port_op != prev->dst.port_op)
2979 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
2980
2981 prev = cur;
2982 cur = TAILQ_NEXT(cur, entries);
2983 }
2984 for (i = 0; i < PF_SKIP_COUNT; ++i)
2985 PF_SET_SKIP_STEPS(i);
2986 }
2987
2988 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)2989 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
2990 {
2991 if (aw1->type != aw2->type)
2992 return (1);
2993 switch (aw1->type) {
2994 case PF_ADDR_ADDRMASK:
2995 case PF_ADDR_RANGE:
2996 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
2997 return (1);
2998 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
2999 return (1);
3000 return (0);
3001 case PF_ADDR_DYNIFTL:
3002 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3003 case PF_ADDR_NOROUTE:
3004 case PF_ADDR_URPFFAILED:
3005 return (0);
3006 case PF_ADDR_TABLE:
3007 return (aw1->p.tbl != aw2->p.tbl);
3008 default:
3009 printf("invalid address type: %d\n", aw1->type);
3010 return (1);
3011 }
3012 }
3013
3014 /**
3015 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3016 * header isn't always a full checksum. In some cases (i.e. output) it's a
3017 * pseudo-header checksum, which is a partial checksum over src/dst IP
3018 * addresses, protocol number and length.
3019 *
3020 * That means we have the following cases:
3021 * * Input or forwarding: we don't have TSO, the checksum fields are full
3022 * checksums, we need to update the checksum whenever we change anything.
3023 * * Output (i.e. the checksum is a pseudo-header checksum):
3024 * x The field being updated is src/dst address or affects the length of
3025 * the packet. We need to update the pseudo-header checksum (note that this
3026 * checksum is not ones' complement).
3027 * x Some other field is being modified (e.g. src/dst port numbers): We
3028 * don't have to update anything.
3029 **/
3030 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3031 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3032 {
3033 u_int32_t x;
3034
3035 x = cksum + old - new;
3036 x = (x + (x >> 16)) & 0xffff;
3037
3038 /* optimise: eliminate a branch when not udp */
3039 if (udp && cksum == 0x0000)
3040 return cksum;
3041 if (udp && x == 0x0000)
3042 x = 0xffff;
3043
3044 return (u_int16_t)(x);
3045 }
3046
3047 static void
pf_patch_8(struct mbuf * m,u_int16_t * cksum,u_int8_t * f,u_int8_t v,bool hi,u_int8_t udp)3048 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
3049 u_int8_t udp)
3050 {
3051 u_int16_t old = htons(hi ? (*f << 8) : *f);
3052 u_int16_t new = htons(hi ? ( v << 8) : v);
3053
3054 if (*f == v)
3055 return;
3056
3057 *f = v;
3058
3059 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3060 return;
3061
3062 *cksum = pf_cksum_fixup(*cksum, old, new, udp);
3063 }
3064
3065 void
pf_patch_16_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int16_t v,bool hi,u_int8_t udp)3066 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
3067 bool hi, u_int8_t udp)
3068 {
3069 u_int8_t *fb = (u_int8_t *)f;
3070 u_int8_t *vb = (u_int8_t *)&v;
3071
3072 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3073 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3074 }
3075
3076 void
pf_patch_32_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int32_t v,bool hi,u_int8_t udp)3077 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
3078 bool hi, u_int8_t udp)
3079 {
3080 u_int8_t *fb = (u_int8_t *)f;
3081 u_int8_t *vb = (u_int8_t *)&v;
3082
3083 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3084 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3085 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3086 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3087 }
3088
3089 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3090 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3091 u_int16_t new, u_int8_t udp)
3092 {
3093 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3094 return (cksum);
3095
3096 return (pf_cksum_fixup(cksum, old, new, udp));
3097 }
3098
3099 static void
pf_change_ap(struct mbuf * m,struct pf_addr * a,u_int16_t * p,u_int16_t * ic,u_int16_t * pc,struct pf_addr * an,u_int16_t pn,u_int8_t u,sa_family_t af)3100 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
3101 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
3102 sa_family_t af)
3103 {
3104 struct pf_addr ao;
3105 u_int16_t po = *p;
3106
3107 PF_ACPY(&ao, a, af);
3108 PF_ACPY(a, an, af);
3109
3110 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3111 *pc = ~*pc;
3112
3113 *p = pn;
3114
3115 switch (af) {
3116 #ifdef INET
3117 case AF_INET:
3118 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3119 ao.addr16[0], an->addr16[0], 0),
3120 ao.addr16[1], an->addr16[1], 0);
3121 *p = pn;
3122
3123 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
3124 ao.addr16[0], an->addr16[0], u),
3125 ao.addr16[1], an->addr16[1], u);
3126
3127 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3128 break;
3129 #endif /* INET */
3130 #ifdef INET6
3131 case AF_INET6:
3132 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3133 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3134 pf_cksum_fixup(pf_cksum_fixup(*pc,
3135 ao.addr16[0], an->addr16[0], u),
3136 ao.addr16[1], an->addr16[1], u),
3137 ao.addr16[2], an->addr16[2], u),
3138 ao.addr16[3], an->addr16[3], u),
3139 ao.addr16[4], an->addr16[4], u),
3140 ao.addr16[5], an->addr16[5], u),
3141 ao.addr16[6], an->addr16[6], u),
3142 ao.addr16[7], an->addr16[7], u);
3143
3144 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3145 break;
3146 #endif /* INET6 */
3147 }
3148
3149 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3150 CSUM_DELAY_DATA_IPV6)) {
3151 *pc = ~*pc;
3152 if (! *pc)
3153 *pc = 0xffff;
3154 }
3155 }
3156
3157 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3158 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3159 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3160 {
3161 u_int32_t ao;
3162
3163 memcpy(&ao, a, sizeof(ao));
3164 memcpy(a, &an, sizeof(u_int32_t));
3165 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3166 ao % 65536, an % 65536, u);
3167 }
3168
3169 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3170 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3171 {
3172 u_int32_t ao;
3173
3174 memcpy(&ao, a, sizeof(ao));
3175 memcpy(a, &an, sizeof(u_int32_t));
3176
3177 *c = pf_proto_cksum_fixup(m,
3178 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3179 ao % 65536, an % 65536, udp);
3180 }
3181
3182 #ifdef INET6
3183 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3184 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3185 {
3186 struct pf_addr ao;
3187
3188 PF_ACPY(&ao, a, AF_INET6);
3189 PF_ACPY(a, an, AF_INET6);
3190
3191 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3192 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3193 pf_cksum_fixup(pf_cksum_fixup(*c,
3194 ao.addr16[0], an->addr16[0], u),
3195 ao.addr16[1], an->addr16[1], u),
3196 ao.addr16[2], an->addr16[2], u),
3197 ao.addr16[3], an->addr16[3], u),
3198 ao.addr16[4], an->addr16[4], u),
3199 ao.addr16[5], an->addr16[5], u),
3200 ao.addr16[6], an->addr16[6], u),
3201 ao.addr16[7], an->addr16[7], u);
3202 }
3203 #endif /* INET6 */
3204
3205 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3206 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3207 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3208 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3209 {
3210 struct pf_addr oia, ooa;
3211
3212 PF_ACPY(&oia, ia, af);
3213 if (oa)
3214 PF_ACPY(&ooa, oa, af);
3215
3216 /* Change inner protocol port, fix inner protocol checksum. */
3217 if (ip != NULL) {
3218 u_int16_t oip = *ip;
3219 u_int32_t opc;
3220
3221 if (pc != NULL)
3222 opc = *pc;
3223 *ip = np;
3224 if (pc != NULL)
3225 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3226 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3227 if (pc != NULL)
3228 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3229 }
3230 /* Change inner ip address, fix inner ip and icmp checksums. */
3231 PF_ACPY(ia, na, af);
3232 switch (af) {
3233 #ifdef INET
3234 case AF_INET: {
3235 u_int32_t oh2c = *h2c;
3236
3237 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3238 oia.addr16[0], ia->addr16[0], 0),
3239 oia.addr16[1], ia->addr16[1], 0);
3240 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3241 oia.addr16[0], ia->addr16[0], 0),
3242 oia.addr16[1], ia->addr16[1], 0);
3243 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3244 break;
3245 }
3246 #endif /* INET */
3247 #ifdef INET6
3248 case AF_INET6:
3249 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3250 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3251 pf_cksum_fixup(pf_cksum_fixup(*ic,
3252 oia.addr16[0], ia->addr16[0], u),
3253 oia.addr16[1], ia->addr16[1], u),
3254 oia.addr16[2], ia->addr16[2], u),
3255 oia.addr16[3], ia->addr16[3], u),
3256 oia.addr16[4], ia->addr16[4], u),
3257 oia.addr16[5], ia->addr16[5], u),
3258 oia.addr16[6], ia->addr16[6], u),
3259 oia.addr16[7], ia->addr16[7], u);
3260 break;
3261 #endif /* INET6 */
3262 }
3263 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3264 if (oa) {
3265 PF_ACPY(oa, na, af);
3266 switch (af) {
3267 #ifdef INET
3268 case AF_INET:
3269 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3270 ooa.addr16[0], oa->addr16[0], 0),
3271 ooa.addr16[1], oa->addr16[1], 0);
3272 break;
3273 #endif /* INET */
3274 #ifdef INET6
3275 case AF_INET6:
3276 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3277 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3278 pf_cksum_fixup(pf_cksum_fixup(*ic,
3279 ooa.addr16[0], oa->addr16[0], u),
3280 ooa.addr16[1], oa->addr16[1], u),
3281 ooa.addr16[2], oa->addr16[2], u),
3282 ooa.addr16[3], oa->addr16[3], u),
3283 ooa.addr16[4], oa->addr16[4], u),
3284 ooa.addr16[5], oa->addr16[5], u),
3285 ooa.addr16[6], oa->addr16[6], u),
3286 ooa.addr16[7], oa->addr16[7], u);
3287 break;
3288 #endif /* INET6 */
3289 }
3290 }
3291 }
3292
3293 /*
3294 * Need to modulate the sequence numbers in the TCP SACK option
3295 * (credits to Krzysztof Pfaff for report and patch)
3296 */
3297 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3298 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3299 struct pf_state_peer *dst)
3300 {
3301 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
3302 u_int8_t opts[TCP_MAXOLEN], *opt = opts;
3303 int copyback = 0, i, olen;
3304 struct sackblk sack;
3305
3306 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2)
3307 if (hlen < TCPOLEN_SACKLEN ||
3308 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
3309 return 0;
3310
3311 while (hlen >= TCPOLEN_SACKLEN) {
3312 size_t startoff = opt - opts;
3313 olen = opt[1];
3314 switch (*opt) {
3315 case TCPOPT_EOL: /* FALLTHROUGH */
3316 case TCPOPT_NOP:
3317 opt++;
3318 hlen--;
3319 break;
3320 case TCPOPT_SACK:
3321 if (olen > hlen)
3322 olen = hlen;
3323 if (olen >= TCPOLEN_SACKLEN) {
3324 for (i = 2; i + TCPOLEN_SACK <= olen;
3325 i += TCPOLEN_SACK) {
3326 memcpy(&sack, &opt[i], sizeof(sack));
3327 pf_patch_32_unaligned(pd->m,
3328 &th->th_sum, &sack.start,
3329 htonl(ntohl(sack.start) - dst->seqdiff),
3330 PF_ALGNMNT(startoff),
3331 0);
3332 pf_patch_32_unaligned(pd->m, &th->th_sum,
3333 &sack.end,
3334 htonl(ntohl(sack.end) - dst->seqdiff),
3335 PF_ALGNMNT(startoff),
3336 0);
3337 memcpy(&opt[i], &sack, sizeof(sack));
3338 }
3339 copyback = 1;
3340 }
3341 /* FALLTHROUGH */
3342 default:
3343 if (olen < 2)
3344 olen = 2;
3345 hlen -= olen;
3346 opt += olen;
3347 }
3348 }
3349
3350 if (copyback)
3351 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts);
3352 return (copyback);
3353 }
3354
3355 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)3356 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3357 const struct pf_addr *saddr, const struct pf_addr *daddr,
3358 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3359 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3360 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3361 {
3362 struct mbuf *m;
3363 int len, tlen;
3364 #ifdef INET
3365 struct ip *h = NULL;
3366 #endif /* INET */
3367 #ifdef INET6
3368 struct ip6_hdr *h6 = NULL;
3369 #endif /* INET6 */
3370 struct tcphdr *th;
3371 char *opt;
3372 struct pf_mtag *pf_mtag;
3373
3374 len = 0;
3375 th = NULL;
3376
3377 /* maximum segment size tcp option */
3378 tlen = sizeof(struct tcphdr);
3379 if (mss)
3380 tlen += 4;
3381
3382 switch (af) {
3383 #ifdef INET
3384 case AF_INET:
3385 len = sizeof(struct ip) + tlen;
3386 break;
3387 #endif /* INET */
3388 #ifdef INET6
3389 case AF_INET6:
3390 len = sizeof(struct ip6_hdr) + tlen;
3391 break;
3392 #endif /* INET6 */
3393 }
3394
3395 m = m_gethdr(M_NOWAIT, MT_DATA);
3396 if (m == NULL)
3397 return (NULL);
3398
3399 #ifdef MAC
3400 mac_netinet_firewall_send(m);
3401 #endif
3402 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
3403 m_freem(m);
3404 return (NULL);
3405 }
3406 m->m_flags |= mbuf_flags;
3407 pf_mtag->tag = mtag_tag;
3408 pf_mtag->flags = mtag_flags;
3409
3410 if (rtableid >= 0)
3411 M_SETFIB(m, rtableid);
3412
3413 #ifdef ALTQ
3414 if (r != NULL && r->qid) {
3415 pf_mtag->qid = r->qid;
3416
3417 /* add hints for ecn */
3418 pf_mtag->hdr = mtod(m, struct ip *);
3419 }
3420 #endif /* ALTQ */
3421 m->m_data += max_linkhdr;
3422 m->m_pkthdr.len = m->m_len = len;
3423 /* The rest of the stack assumes a rcvif, so provide one.
3424 * This is a locally generated packet, so .. close enough. */
3425 m->m_pkthdr.rcvif = V_loif;
3426 bzero(m->m_data, len);
3427 switch (af) {
3428 #ifdef INET
3429 case AF_INET:
3430 h = mtod(m, struct ip *);
3431
3432 /* IP header fields included in the TCP checksum */
3433 h->ip_p = IPPROTO_TCP;
3434 h->ip_len = htons(tlen);
3435 h->ip_src.s_addr = saddr->v4.s_addr;
3436 h->ip_dst.s_addr = daddr->v4.s_addr;
3437
3438 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
3439 break;
3440 #endif /* INET */
3441 #ifdef INET6
3442 case AF_INET6:
3443 h6 = mtod(m, struct ip6_hdr *);
3444
3445 /* IP header fields included in the TCP checksum */
3446 h6->ip6_nxt = IPPROTO_TCP;
3447 h6->ip6_plen = htons(tlen);
3448 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
3449 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
3450
3451 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
3452 break;
3453 #endif /* INET6 */
3454 }
3455
3456 /* TCP header */
3457 th->th_sport = sport;
3458 th->th_dport = dport;
3459 th->th_seq = htonl(seq);
3460 th->th_ack = htonl(ack);
3461 th->th_off = tlen >> 2;
3462 th->th_flags = tcp_flags;
3463 th->th_win = htons(win);
3464
3465 if (mss) {
3466 opt = (char *)(th + 1);
3467 opt[0] = TCPOPT_MAXSEG;
3468 opt[1] = 4;
3469 HTONS(mss);
3470 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
3471 }
3472
3473 switch (af) {
3474 #ifdef INET
3475 case AF_INET:
3476 /* TCP checksum */
3477 th->th_sum = in_cksum(m, len);
3478
3479 /* Finish the IP header */
3480 h->ip_v = 4;
3481 h->ip_hl = sizeof(*h) >> 2;
3482 h->ip_tos = IPTOS_LOWDELAY;
3483 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
3484 h->ip_len = htons(len);
3485 h->ip_ttl = ttl ? ttl : V_ip_defttl;
3486 h->ip_sum = 0;
3487 break;
3488 #endif /* INET */
3489 #ifdef INET6
3490 case AF_INET6:
3491 /* TCP checksum */
3492 th->th_sum = in6_cksum(m, IPPROTO_TCP,
3493 sizeof(struct ip6_hdr), tlen);
3494
3495 h6->ip6_vfc |= IPV6_VERSION;
3496 h6->ip6_hlim = IPV6_DEFHLIM;
3497 break;
3498 #endif /* INET6 */
3499 }
3500
3501 return (m);
3502 }
3503
3504 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)3505 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
3506 uint8_t ttl, int rtableid)
3507 {
3508 struct mbuf *m;
3509 #ifdef INET
3510 struct ip *h = NULL;
3511 #endif /* INET */
3512 #ifdef INET6
3513 struct ip6_hdr *h6 = NULL;
3514 #endif /* INET6 */
3515 struct sctphdr *hdr;
3516 struct sctp_chunkhdr *chunk;
3517 struct pf_send_entry *pfse;
3518 int off = 0;
3519
3520 MPASS(af == pd->af);
3521
3522 m = m_gethdr(M_NOWAIT, MT_DATA);
3523 if (m == NULL)
3524 return;
3525
3526 m->m_data += max_linkhdr;
3527 m->m_flags |= M_SKIP_FIREWALL;
3528 /* The rest of the stack assumes a rcvif, so provide one.
3529 * This is a locally generated packet, so .. close enough. */
3530 m->m_pkthdr.rcvif = V_loif;
3531
3532 /* IPv4|6 header */
3533 switch (af) {
3534 #ifdef INET
3535 case AF_INET:
3536 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
3537
3538 h = mtod(m, struct ip *);
3539
3540 /* IP header fields included in the TCP checksum */
3541
3542 h->ip_p = IPPROTO_SCTP;
3543 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
3544 h->ip_ttl = ttl ? ttl : V_ip_defttl;
3545 h->ip_src = pd->dst->v4;
3546 h->ip_dst = pd->src->v4;
3547
3548 off += sizeof(struct ip);
3549 break;
3550 #endif /* INET */
3551 #ifdef INET6
3552 case AF_INET6:
3553 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
3554
3555 h6 = mtod(m, struct ip6_hdr *);
3556
3557 /* IP header fields included in the TCP checksum */
3558 h6->ip6_vfc |= IPV6_VERSION;
3559 h6->ip6_nxt = IPPROTO_SCTP;
3560 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
3561 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
3562 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
3563 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
3564
3565 off += sizeof(struct ip6_hdr);
3566 break;
3567 #endif /* INET6 */
3568 }
3569
3570 /* SCTP header */
3571 hdr = mtodo(m, off);
3572
3573 hdr->src_port = pd->hdr.sctp.dest_port;
3574 hdr->dest_port = pd->hdr.sctp.src_port;
3575 hdr->v_tag = pd->sctp_initiate_tag;
3576 hdr->checksum = 0;
3577
3578 /* Abort chunk. */
3579 off += sizeof(struct sctphdr);
3580 chunk = mtodo(m, off);
3581
3582 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
3583 chunk->chunk_length = htons(sizeof(*chunk));
3584
3585 /* SCTP checksum */
3586 off += sizeof(*chunk);
3587 m->m_pkthdr.len = m->m_len = off;
3588
3589 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
3590
3591 if (rtableid >= 0)
3592 M_SETFIB(m, rtableid);
3593
3594 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
3595 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3596 if (pfse == NULL) {
3597 m_freem(m);
3598 return;
3599 }
3600
3601 switch (af) {
3602 #ifdef INET
3603 case AF_INET:
3604 pfse->pfse_type = PFSE_IP;
3605 break;
3606 #endif /* INET */
3607 #ifdef INET6
3608 case AF_INET6:
3609 pfse->pfse_type = PFSE_IP6;
3610 break;
3611 #endif /* INET6 */
3612 }
3613
3614 pfse->pfse_m = m;
3615 pf_send(pfse);
3616 }
3617
3618 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)3619 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
3620 const struct pf_addr *saddr, const struct pf_addr *daddr,
3621 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3622 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3623 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3624 {
3625 struct pf_send_entry *pfse;
3626 struct mbuf *m;
3627
3628 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
3629 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid);
3630 if (m == NULL)
3631 return;
3632
3633 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
3634 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3635 if (pfse == NULL) {
3636 m_freem(m);
3637 return;
3638 }
3639
3640 switch (af) {
3641 #ifdef INET
3642 case AF_INET:
3643 pfse->pfse_type = PFSE_IP;
3644 break;
3645 #endif /* INET */
3646 #ifdef INET6
3647 case AF_INET6:
3648 pfse->pfse_type = PFSE_IP6;
3649 break;
3650 #endif /* INET6 */
3651 }
3652
3653 pfse->pfse_m = m;
3654 pf_send(pfse);
3655 }
3656
3657 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct pf_state_key * sk,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)3658 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
3659 struct pf_state_key *sk, struct tcphdr *th,
3660 u_int16_t bproto_sum, u_int16_t bip_sum,
3661 u_short *reason, int rtableid)
3662 {
3663 struct pf_addr * const saddr = pd->src;
3664 struct pf_addr * const daddr = pd->dst;
3665
3666 /* undo NAT changes, if they have taken place */
3667 if (nr != NULL) {
3668 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af);
3669 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af);
3670 if (pd->sport)
3671 *pd->sport = sk->port[pd->sidx];
3672 if (pd->dport)
3673 *pd->dport = sk->port[pd->didx];
3674 if (pd->proto_sum)
3675 *pd->proto_sum = bproto_sum;
3676 if (pd->ip_sum)
3677 *pd->ip_sum = bip_sum;
3678 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
3679 }
3680 if (pd->proto == IPPROTO_TCP &&
3681 ((r->rule_flag & PFRULE_RETURNRST) ||
3682 (r->rule_flag & PFRULE_RETURN)) &&
3683 !(th->th_flags & TH_RST)) {
3684 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
3685
3686 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
3687 IPPROTO_TCP, pd->af))
3688 REASON_SET(reason, PFRES_PROTCKSUM);
3689 else {
3690 if (th->th_flags & TH_SYN)
3691 ack++;
3692 if (th->th_flags & TH_FIN)
3693 ack++;
3694 pf_send_tcp(r, pd->af, pd->dst,
3695 pd->src, th->th_dport, th->th_sport,
3696 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
3697 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
3698 }
3699 } else if (pd->proto == IPPROTO_SCTP &&
3700 (r->rule_flag & PFRULE_RETURN)) {
3701 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
3702 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
3703 r->return_icmp)
3704 pf_send_icmp(pd->m, r->return_icmp >> 8,
3705 r->return_icmp & 255, pd->af, r, rtableid);
3706 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
3707 r->return_icmp6)
3708 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
3709 r->return_icmp6 & 255, pd->af, r, rtableid);
3710 }
3711
3712 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)3713 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
3714 {
3715 struct m_tag *mtag;
3716 u_int8_t mpcp;
3717
3718 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
3719 if (mtag == NULL)
3720 return (0);
3721
3722 if (prio == PF_PRIO_ZERO)
3723 prio = 0;
3724
3725 mpcp = *(uint8_t *)(mtag + 1);
3726
3727 return (mpcp == prio);
3728 }
3729
3730 static int
pf_icmp_to_bandlim(uint8_t type)3731 pf_icmp_to_bandlim(uint8_t type)
3732 {
3733 switch (type) {
3734 case ICMP_ECHO:
3735 case ICMP_ECHOREPLY:
3736 return (BANDLIM_ICMP_ECHO);
3737 case ICMP_TSTAMP:
3738 case ICMP_TSTAMPREPLY:
3739 return (BANDLIM_ICMP_TSTAMP);
3740 case ICMP_UNREACH:
3741 default:
3742 return (BANDLIM_ICMP_UNREACH);
3743 }
3744 }
3745
3746 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,sa_family_t af,struct pf_krule * r,int rtableid)3747 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
3748 struct pf_krule *r, int rtableid)
3749 {
3750 struct pf_send_entry *pfse;
3751 struct mbuf *m0;
3752 struct pf_mtag *pf_mtag;
3753
3754 /* ICMP packet rate limitation. */
3755 switch (af) {
3756 #ifdef INET6
3757 case AF_INET6:
3758 if (icmp6_ratelimit(NULL, type, code))
3759 return;
3760 break;
3761 #endif
3762 #ifdef INET
3763 case AF_INET:
3764 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
3765 return;
3766 break;
3767 #endif
3768 }
3769
3770 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
3771 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3772 if (pfse == NULL)
3773 return;
3774
3775 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
3776 free(pfse, M_PFTEMP);
3777 return;
3778 }
3779
3780 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
3781 free(pfse, M_PFTEMP);
3782 return;
3783 }
3784 /* XXX: revisit */
3785 m0->m_flags |= M_SKIP_FIREWALL;
3786
3787 if (rtableid >= 0)
3788 M_SETFIB(m0, rtableid);
3789
3790 #ifdef ALTQ
3791 if (r->qid) {
3792 pf_mtag->qid = r->qid;
3793 /* add hints for ecn */
3794 pf_mtag->hdr = mtod(m0, struct ip *);
3795 }
3796 #endif /* ALTQ */
3797
3798 switch (af) {
3799 #ifdef INET
3800 case AF_INET:
3801 pfse->pfse_type = PFSE_ICMP;
3802 break;
3803 #endif /* INET */
3804 #ifdef INET6
3805 case AF_INET6:
3806 pfse->pfse_type = PFSE_ICMP6;
3807 break;
3808 #endif /* INET6 */
3809 }
3810 pfse->pfse_m = m0;
3811 pfse->icmpopts.type = type;
3812 pfse->icmpopts.code = code;
3813 pf_send(pfse);
3814 }
3815
3816 /*
3817 * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
3818 * If n is 0, they match if they are equal. If n is != 0, they match if they
3819 * are different.
3820 */
3821 int
pf_match_addr(u_int8_t n,struct pf_addr * a,struct pf_addr * m,struct pf_addr * b,sa_family_t af)3822 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
3823 struct pf_addr *b, sa_family_t af)
3824 {
3825 int match = 0;
3826
3827 switch (af) {
3828 #ifdef INET
3829 case AF_INET:
3830 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
3831 match++;
3832 break;
3833 #endif /* INET */
3834 #ifdef INET6
3835 case AF_INET6:
3836 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
3837 match++;
3838 break;
3839 #endif /* INET6 */
3840 }
3841 if (match) {
3842 if (n)
3843 return (0);
3844 else
3845 return (1);
3846 } else {
3847 if (n)
3848 return (1);
3849 else
3850 return (0);
3851 }
3852 }
3853
3854 /*
3855 * Return 1 if b <= a <= e, otherwise return 0.
3856 */
3857 int
pf_match_addr_range(struct pf_addr * b,struct pf_addr * e,struct pf_addr * a,sa_family_t af)3858 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
3859 struct pf_addr *a, sa_family_t af)
3860 {
3861 switch (af) {
3862 #ifdef INET
3863 case AF_INET:
3864 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
3865 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
3866 return (0);
3867 break;
3868 #endif /* INET */
3869 #ifdef INET6
3870 case AF_INET6: {
3871 int i;
3872
3873 /* check a >= b */
3874 for (i = 0; i < 4; ++i)
3875 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
3876 break;
3877 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
3878 return (0);
3879 /* check a <= e */
3880 for (i = 0; i < 4; ++i)
3881 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
3882 break;
3883 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
3884 return (0);
3885 break;
3886 }
3887 #endif /* INET6 */
3888 }
3889 return (1);
3890 }
3891
3892 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)3893 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
3894 {
3895 switch (op) {
3896 case PF_OP_IRG:
3897 return ((p > a1) && (p < a2));
3898 case PF_OP_XRG:
3899 return ((p < a1) || (p > a2));
3900 case PF_OP_RRG:
3901 return ((p >= a1) && (p <= a2));
3902 case PF_OP_EQ:
3903 return (p == a1);
3904 case PF_OP_NE:
3905 return (p != a1);
3906 case PF_OP_LT:
3907 return (p < a1);
3908 case PF_OP_LE:
3909 return (p <= a1);
3910 case PF_OP_GT:
3911 return (p > a1);
3912 case PF_OP_GE:
3913 return (p >= a1);
3914 }
3915 return (0); /* never reached */
3916 }
3917
3918 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)3919 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
3920 {
3921 NTOHS(a1);
3922 NTOHS(a2);
3923 NTOHS(p);
3924 return (pf_match(op, a1, a2, p));
3925 }
3926
3927 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)3928 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
3929 {
3930 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3931 return (0);
3932 return (pf_match(op, a1, a2, u));
3933 }
3934
3935 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)3936 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
3937 {
3938 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3939 return (0);
3940 return (pf_match(op, a1, a2, g));
3941 }
3942
3943 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)3944 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
3945 {
3946 if (*tag == -1)
3947 *tag = mtag;
3948
3949 return ((!r->match_tag_not && r->match_tag == *tag) ||
3950 (r->match_tag_not && r->match_tag != *tag));
3951 }
3952
3953 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)3954 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
3955 {
3956 struct ifnet *ifp = m->m_pkthdr.rcvif;
3957 struct pfi_kkif *kif;
3958
3959 if (ifp == NULL)
3960 return (0);
3961
3962 kif = (struct pfi_kkif *)ifp->if_pf_kif;
3963
3964 if (kif == NULL) {
3965 DPFPRINTF(PF_DEBUG_URGENT,
3966 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr,
3967 r->rcv_ifname));
3968 return (0);
3969 }
3970
3971 return (pfi_kkif_match(r->rcv_kif, kif));
3972 }
3973
3974 int
pf_tag_packet(struct pf_pdesc * pd,int tag)3975 pf_tag_packet(struct pf_pdesc *pd, int tag)
3976 {
3977
3978 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
3979
3980 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
3981 return (ENOMEM);
3982
3983 pd->pf_mtag->tag = tag;
3984
3985 return (0);
3986 }
3987
3988 #define PF_ANCHOR_STACKSIZE 32
3989 struct pf_kanchor_stackframe {
3990 struct pf_kruleset *rs;
3991 struct pf_krule *r; /* XXX: + match bit */
3992 struct pf_kanchor *child;
3993 };
3994
3995 /*
3996 * XXX: We rely on malloc(9) returning pointer aligned addresses.
3997 */
3998 #define PF_ANCHORSTACK_MATCH 0x00000001
3999 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4000
4001 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4002 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4003 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4004 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4005 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4006 } while (0)
4007
4008 void
pf_step_into_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4009 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4010 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4011 int *match)
4012 {
4013 struct pf_kanchor_stackframe *f;
4014
4015 PF_RULES_RASSERT();
4016
4017 if (match)
4018 *match = 0;
4019 if (*depth >= PF_ANCHOR_STACKSIZE) {
4020 printf("%s: anchor stack overflow on %s\n",
4021 __func__, (*r)->anchor->name);
4022 *r = TAILQ_NEXT(*r, entries);
4023 return;
4024 } else if (*depth == 0 && a != NULL)
4025 *a = *r;
4026 f = stack + (*depth)++;
4027 f->rs = *rs;
4028 f->r = *r;
4029 if ((*r)->anchor_wildcard) {
4030 struct pf_kanchor_node *parent = &(*r)->anchor->children;
4031
4032 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
4033 *r = NULL;
4034 return;
4035 }
4036 *rs = &f->child->ruleset;
4037 } else {
4038 f->child = NULL;
4039 *rs = &(*r)->anchor->ruleset;
4040 }
4041 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4042 }
4043
4044 int
pf_step_out_of_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4045 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4046 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4047 int *match)
4048 {
4049 struct pf_kanchor_stackframe *f;
4050 struct pf_krule *fr;
4051 int quick = 0;
4052
4053 PF_RULES_RASSERT();
4054
4055 do {
4056 if (*depth <= 0)
4057 break;
4058 f = stack + *depth - 1;
4059 fr = PF_ANCHOR_RULE(f);
4060 if (f->child != NULL) {
4061 /*
4062 * This block traverses through
4063 * a wildcard anchor.
4064 */
4065 if (match != NULL && *match) {
4066 /*
4067 * If any of "*" matched, then
4068 * "foo/ *" matched, mark frame
4069 * appropriately.
4070 */
4071 PF_ANCHOR_SET_MATCH(f);
4072 *match = 0;
4073 }
4074 f->child = RB_NEXT(pf_kanchor_node,
4075 &fr->anchor->children, f->child);
4076 if (f->child != NULL) {
4077 *rs = &f->child->ruleset;
4078 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4079 if (*r == NULL)
4080 continue;
4081 else
4082 break;
4083 }
4084 }
4085 (*depth)--;
4086 if (*depth == 0 && a != NULL)
4087 *a = NULL;
4088 *rs = f->rs;
4089 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
4090 quick = fr->quick;
4091 *r = TAILQ_NEXT(fr, entries);
4092 } while (*r == NULL);
4093
4094 return (quick);
4095 }
4096
4097 struct pf_keth_anchor_stackframe {
4098 struct pf_keth_ruleset *rs;
4099 struct pf_keth_rule *r; /* XXX: + match bit */
4100 struct pf_keth_anchor *child;
4101 };
4102
4103 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4104 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4105 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4106 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4107 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4108 } while (0)
4109
4110 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4111 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4112 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4113 struct pf_keth_rule **a, int *match)
4114 {
4115 struct pf_keth_anchor_stackframe *f;
4116
4117 NET_EPOCH_ASSERT();
4118
4119 if (match)
4120 *match = 0;
4121 if (*depth >= PF_ANCHOR_STACKSIZE) {
4122 printf("%s: anchor stack overflow on %s\n",
4123 __func__, (*r)->anchor->name);
4124 *r = TAILQ_NEXT(*r, entries);
4125 return;
4126 } else if (*depth == 0 && a != NULL)
4127 *a = *r;
4128 f = stack + (*depth)++;
4129 f->rs = *rs;
4130 f->r = *r;
4131 if ((*r)->anchor_wildcard) {
4132 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4133
4134 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4135 *r = NULL;
4136 return;
4137 }
4138 *rs = &f->child->ruleset;
4139 } else {
4140 f->child = NULL;
4141 *rs = &(*r)->anchor->ruleset;
4142 }
4143 *r = TAILQ_FIRST((*rs)->active.rules);
4144 }
4145
4146 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4147 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4148 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4149 struct pf_keth_rule **a, int *match)
4150 {
4151 struct pf_keth_anchor_stackframe *f;
4152 struct pf_keth_rule *fr;
4153 int quick = 0;
4154
4155 NET_EPOCH_ASSERT();
4156
4157 do {
4158 if (*depth <= 0)
4159 break;
4160 f = stack + *depth - 1;
4161 fr = PF_ETH_ANCHOR_RULE(f);
4162 if (f->child != NULL) {
4163 /*
4164 * This block traverses through
4165 * a wildcard anchor.
4166 */
4167 if (match != NULL && *match) {
4168 /*
4169 * If any of "*" matched, then
4170 * "foo/ *" matched, mark frame
4171 * appropriately.
4172 */
4173 PF_ETH_ANCHOR_SET_MATCH(f);
4174 *match = 0;
4175 }
4176 f->child = RB_NEXT(pf_keth_anchor_node,
4177 &fr->anchor->children, f->child);
4178 if (f->child != NULL) {
4179 *rs = &f->child->ruleset;
4180 *r = TAILQ_FIRST((*rs)->active.rules);
4181 if (*r == NULL)
4182 continue;
4183 else
4184 break;
4185 }
4186 }
4187 (*depth)--;
4188 if (*depth == 0 && a != NULL)
4189 *a = NULL;
4190 *rs = f->rs;
4191 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4192 quick = fr->quick;
4193 *r = TAILQ_NEXT(fr, entries);
4194 } while (*r == NULL);
4195
4196 return (quick);
4197 }
4198
4199 #ifdef INET6
4200 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4201 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4202 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4203 {
4204 switch (af) {
4205 #ifdef INET
4206 case AF_INET:
4207 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4208 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4209 break;
4210 #endif /* INET */
4211 case AF_INET6:
4212 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4213 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4214 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4215 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4216 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4217 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4218 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4219 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4220 break;
4221 }
4222 }
4223
4224 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4225 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4226 {
4227 switch (af) {
4228 #ifdef INET
4229 case AF_INET:
4230 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4231 break;
4232 #endif /* INET */
4233 case AF_INET6:
4234 if (addr->addr32[3] == 0xffffffff) {
4235 addr->addr32[3] = 0;
4236 if (addr->addr32[2] == 0xffffffff) {
4237 addr->addr32[2] = 0;
4238 if (addr->addr32[1] == 0xffffffff) {
4239 addr->addr32[1] = 0;
4240 addr->addr32[0] =
4241 htonl(ntohl(addr->addr32[0]) + 1);
4242 } else
4243 addr->addr32[1] =
4244 htonl(ntohl(addr->addr32[1]) + 1);
4245 } else
4246 addr->addr32[2] =
4247 htonl(ntohl(addr->addr32[2]) + 1);
4248 } else
4249 addr->addr32[3] =
4250 htonl(ntohl(addr->addr32[3]) + 1);
4251 break;
4252 }
4253 }
4254 #endif /* INET6 */
4255
4256 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4257 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4258 {
4259 /*
4260 * Modern rules use the same flags in rules as they do in states.
4261 */
4262 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4263 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4264
4265 /*
4266 * Old-style scrub rules have different flags which need to be translated.
4267 */
4268 if (r->rule_flag & PFRULE_RANDOMID)
4269 a->flags |= PFSTATE_RANDOMID;
4270 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4271 a->flags |= PFSTATE_SETTOS;
4272 a->set_tos = r->set_tos;
4273 }
4274
4275 if (r->qid)
4276 a->qid = r->qid;
4277 if (r->pqid)
4278 a->pqid = r->pqid;
4279 if (r->rtableid >= 0)
4280 a->rtableid = r->rtableid;
4281 a->log |= r->log;
4282 if (r->min_ttl)
4283 a->min_ttl = r->min_ttl;
4284 if (r->max_mss)
4285 a->max_mss = r->max_mss;
4286 if (r->dnpipe)
4287 a->dnpipe = r->dnpipe;
4288 if (r->dnrpipe)
4289 a->dnrpipe = r->dnrpipe;
4290 if (r->dnpipe || r->dnrpipe) {
4291 if (r->free_flags & PFRULE_DN_IS_PIPE)
4292 a->flags |= PFSTATE_DN_IS_PIPE;
4293 else
4294 a->flags &= ~PFSTATE_DN_IS_PIPE;
4295 }
4296 if (r->scrub_flags & PFSTATE_SETPRIO) {
4297 a->set_prio[0] = r->set_prio[0];
4298 a->set_prio[1] = r->set_prio[1];
4299 }
4300 }
4301
4302 int
pf_socket_lookup(struct pf_pdesc * pd)4303 pf_socket_lookup(struct pf_pdesc *pd)
4304 {
4305 struct pf_addr *saddr, *daddr;
4306 u_int16_t sport, dport;
4307 struct inpcbinfo *pi;
4308 struct inpcb *inp;
4309
4310 pd->lookup.uid = UID_MAX;
4311 pd->lookup.gid = GID_MAX;
4312
4313 switch (pd->proto) {
4314 case IPPROTO_TCP:
4315 sport = pd->hdr.tcp.th_sport;
4316 dport = pd->hdr.tcp.th_dport;
4317 pi = &V_tcbinfo;
4318 break;
4319 case IPPROTO_UDP:
4320 sport = pd->hdr.udp.uh_sport;
4321 dport = pd->hdr.udp.uh_dport;
4322 pi = &V_udbinfo;
4323 break;
4324 default:
4325 return (-1);
4326 }
4327 if (pd->dir == PF_IN) {
4328 saddr = pd->src;
4329 daddr = pd->dst;
4330 } else {
4331 u_int16_t p;
4332
4333 p = sport;
4334 sport = dport;
4335 dport = p;
4336 saddr = pd->dst;
4337 daddr = pd->src;
4338 }
4339 switch (pd->af) {
4340 #ifdef INET
4341 case AF_INET:
4342 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4343 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4344 if (inp == NULL) {
4345 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4346 daddr->v4, dport, INPLOOKUP_WILDCARD |
4347 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4348 if (inp == NULL)
4349 return (-1);
4350 }
4351 break;
4352 #endif /* INET */
4353 #ifdef INET6
4354 case AF_INET6:
4355 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4356 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4357 if (inp == NULL) {
4358 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4359 &daddr->v6, dport, INPLOOKUP_WILDCARD |
4360 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4361 if (inp == NULL)
4362 return (-1);
4363 }
4364 break;
4365 #endif /* INET6 */
4366 }
4367 INP_RLOCK_ASSERT(inp);
4368 pd->lookup.uid = inp->inp_cred->cr_uid;
4369 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4370 INP_RUNLOCK(inp);
4371
4372 return (1);
4373 }
4374
4375 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)4376 pf_get_wscale(struct pf_pdesc *pd)
4377 {
4378 struct tcphdr *th = &pd->hdr.tcp;
4379 int hlen;
4380 u_int8_t hdr[60];
4381 u_int8_t *opt, optlen;
4382 u_int8_t wscale = 0;
4383
4384 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4385 if (hlen <= sizeof(struct tcphdr))
4386 return (0);
4387 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4388 return (0);
4389 opt = hdr + sizeof(struct tcphdr);
4390 hlen -= sizeof(struct tcphdr);
4391 while (hlen >= 3) {
4392 switch (*opt) {
4393 case TCPOPT_EOL:
4394 case TCPOPT_NOP:
4395 ++opt;
4396 --hlen;
4397 break;
4398 case TCPOPT_WINDOW:
4399 wscale = opt[2];
4400 if (wscale > TCP_MAX_WINSHIFT)
4401 wscale = TCP_MAX_WINSHIFT;
4402 wscale |= PF_WSCALE_FLAG;
4403 /* FALLTHROUGH */
4404 default:
4405 optlen = opt[1];
4406 if (optlen < 2)
4407 optlen = 2;
4408 hlen -= optlen;
4409 opt += optlen;
4410 break;
4411 }
4412 }
4413 return (wscale);
4414 }
4415
4416 u_int16_t
pf_get_mss(struct pf_pdesc * pd)4417 pf_get_mss(struct pf_pdesc *pd)
4418 {
4419 struct tcphdr *th = &pd->hdr.tcp;
4420 int hlen;
4421 u_int8_t hdr[60];
4422 u_int8_t *opt, optlen;
4423 u_int16_t mss = V_tcp_mssdflt;
4424
4425 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4426 if (hlen <= sizeof(struct tcphdr))
4427 return (0);
4428 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4429 return (0);
4430 opt = hdr + sizeof(struct tcphdr);
4431 hlen -= sizeof(struct tcphdr);
4432 while (hlen >= TCPOLEN_MAXSEG) {
4433 switch (*opt) {
4434 case TCPOPT_EOL:
4435 case TCPOPT_NOP:
4436 ++opt;
4437 --hlen;
4438 break;
4439 case TCPOPT_MAXSEG:
4440 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
4441 NTOHS(mss);
4442 /* FALLTHROUGH */
4443 default:
4444 optlen = opt[1];
4445 if (optlen < 2)
4446 optlen = 2;
4447 hlen -= optlen;
4448 opt += optlen;
4449 break;
4450 }
4451 }
4452 return (mss);
4453 }
4454
4455 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)4456 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
4457 {
4458 struct nhop_object *nh;
4459 #ifdef INET6
4460 struct in6_addr dst6;
4461 uint32_t scopeid;
4462 #endif /* INET6 */
4463 int hlen = 0;
4464 uint16_t mss = 0;
4465
4466 NET_EPOCH_ASSERT();
4467
4468 switch (af) {
4469 #ifdef INET
4470 case AF_INET:
4471 hlen = sizeof(struct ip);
4472 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
4473 if (nh != NULL)
4474 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
4475 break;
4476 #endif /* INET */
4477 #ifdef INET6
4478 case AF_INET6:
4479 hlen = sizeof(struct ip6_hdr);
4480 in6_splitscope(&addr->v6, &dst6, &scopeid);
4481 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
4482 if (nh != NULL)
4483 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
4484 break;
4485 #endif /* INET6 */
4486 }
4487
4488 mss = max(V_tcp_mssdflt, mss);
4489 mss = min(mss, offer);
4490 mss = max(mss, 64); /* sanity - at least max opt space */
4491 return (mss);
4492 }
4493
4494 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)4495 pf_tcp_iss(struct pf_pdesc *pd)
4496 {
4497 MD5_CTX ctx;
4498 u_int32_t digest[4];
4499
4500 if (V_pf_tcp_secret_init == 0) {
4501 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
4502 MD5Init(&V_pf_tcp_secret_ctx);
4503 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
4504 sizeof(V_pf_tcp_secret));
4505 V_pf_tcp_secret_init = 1;
4506 }
4507
4508 ctx = V_pf_tcp_secret_ctx;
4509
4510 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
4511 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
4512 switch (pd->af) {
4513 case AF_INET6:
4514 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
4515 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
4516 break;
4517 case AF_INET:
4518 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
4519 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
4520 break;
4521 }
4522 MD5Final((u_char *)digest, &ctx);
4523 V_pf_tcp_iss_off += 4096;
4524 #define ISN_RANDOM_INCREMENT (4096 - 1)
4525 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
4526 V_pf_tcp_iss_off);
4527 #undef ISN_RANDOM_INCREMENT
4528 }
4529
4530 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)4531 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
4532 {
4533 bool match = true;
4534
4535 /* Always matches if not set */
4536 if (! r->isset)
4537 return (!r->neg);
4538
4539 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
4540 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
4541 match = false;
4542 break;
4543 }
4544 }
4545
4546 return (match ^ r->neg);
4547 }
4548
4549 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)4550 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
4551 {
4552 if (*tag == -1)
4553 *tag = mtag;
4554
4555 return ((!r->match_tag_not && r->match_tag == *tag) ||
4556 (r->match_tag_not && r->match_tag != *tag));
4557 }
4558
4559 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)4560 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
4561 {
4562 /* If we don't have the interface drop the packet. */
4563 if (ifp == NULL) {
4564 m_freem(m);
4565 return;
4566 }
4567
4568 switch (ifp->if_type) {
4569 case IFT_ETHER:
4570 case IFT_XETHER:
4571 case IFT_L2VLAN:
4572 case IFT_BRIDGE:
4573 case IFT_IEEE8023ADLAG:
4574 break;
4575 default:
4576 m_freem(m);
4577 return;
4578 }
4579
4580 ifp->if_transmit(ifp, m);
4581 }
4582
4583 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)4584 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
4585 {
4586 #ifdef INET
4587 struct ip ip;
4588 #endif
4589 #ifdef INET6
4590 struct ip6_hdr ip6;
4591 #endif
4592 struct mbuf *m = *m0;
4593 struct ether_header *e;
4594 struct pf_keth_rule *r, *rm, *a = NULL;
4595 struct pf_keth_ruleset *ruleset = NULL;
4596 struct pf_mtag *mtag;
4597 struct pf_keth_ruleq *rules;
4598 struct pf_addr *src = NULL, *dst = NULL;
4599 struct pfi_kkif *bridge_to;
4600 sa_family_t af = 0;
4601 uint16_t proto;
4602 int asd = 0, match = 0;
4603 int tag = -1;
4604 uint8_t action;
4605 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
4606
4607 MPASS(kif->pfik_ifp->if_vnet == curvnet);
4608 NET_EPOCH_ASSERT();
4609
4610 PF_RULES_RLOCK_TRACKER;
4611
4612 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
4613
4614 mtag = pf_find_mtag(m);
4615 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
4616 /* Dummynet re-injects packets after they've
4617 * completed their delay. We've already
4618 * processed them, so pass unconditionally. */
4619
4620 /* But only once. We may see the packet multiple times (e.g.
4621 * PFIL_IN/PFIL_OUT). */
4622 pf_dummynet_flag_remove(m, mtag);
4623
4624 return (PF_PASS);
4625 }
4626
4627 ruleset = V_pf_keth;
4628 rules = ck_pr_load_ptr(&ruleset->active.rules);
4629 r = TAILQ_FIRST(rules);
4630 rm = NULL;
4631
4632 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
4633 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
4634 DPFPRINTF(PF_DEBUG_URGENT,
4635 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)"
4636 ", pullup failed\n"));
4637 return (PF_DROP);
4638 }
4639 e = mtod(m, struct ether_header *);
4640 proto = ntohs(e->ether_type);
4641
4642 switch (proto) {
4643 #ifdef INET
4644 case ETHERTYPE_IP: {
4645 if (m_length(m, NULL) < (sizeof(struct ether_header) +
4646 sizeof(ip)))
4647 return (PF_DROP);
4648
4649 af = AF_INET;
4650 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
4651 (caddr_t)&ip);
4652 src = (struct pf_addr *)&ip.ip_src;
4653 dst = (struct pf_addr *)&ip.ip_dst;
4654 break;
4655 }
4656 #endif /* INET */
4657 #ifdef INET6
4658 case ETHERTYPE_IPV6: {
4659 if (m_length(m, NULL) < (sizeof(struct ether_header) +
4660 sizeof(ip6)))
4661 return (PF_DROP);
4662
4663 af = AF_INET6;
4664 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
4665 (caddr_t)&ip6);
4666 src = (struct pf_addr *)&ip6.ip6_src;
4667 dst = (struct pf_addr *)&ip6.ip6_dst;
4668 break;
4669 }
4670 #endif /* INET6 */
4671 }
4672
4673 PF_RULES_RLOCK();
4674
4675 while (r != NULL) {
4676 counter_u64_add(r->evaluations, 1);
4677 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
4678
4679 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
4680 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4681 "kif");
4682 r = r->skip[PFE_SKIP_IFP].ptr;
4683 }
4684 else if (r->direction && r->direction != dir) {
4685 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4686 "dir");
4687 r = r->skip[PFE_SKIP_DIR].ptr;
4688 }
4689 else if (r->proto && r->proto != proto) {
4690 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4691 "proto");
4692 r = r->skip[PFE_SKIP_PROTO].ptr;
4693 }
4694 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
4695 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4696 "src");
4697 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
4698 }
4699 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
4700 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4701 "dst");
4702 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
4703 }
4704 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
4705 r->ipsrc.neg, kif, M_GETFIB(m))) {
4706 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4707 "ip_src");
4708 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
4709 }
4710 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
4711 r->ipdst.neg, kif, M_GETFIB(m))) {
4712 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4713 "ip_dst");
4714 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
4715 }
4716 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
4717 mtag ? mtag->tag : 0)) {
4718 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4719 "match_tag");
4720 r = TAILQ_NEXT(r, entries);
4721 }
4722 else {
4723 if (r->tag)
4724 tag = r->tag;
4725 if (r->anchor == NULL) {
4726 /* Rule matches */
4727 rm = r;
4728
4729 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
4730
4731 if (r->quick)
4732 break;
4733
4734 r = TAILQ_NEXT(r, entries);
4735 } else {
4736 pf_step_into_keth_anchor(anchor_stack, &asd,
4737 &ruleset, &r, &a, &match);
4738 }
4739 }
4740 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
4741 &ruleset, &r, &a, &match))
4742 break;
4743 }
4744
4745 r = rm;
4746
4747 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
4748
4749 /* Default to pass. */
4750 if (r == NULL) {
4751 PF_RULES_RUNLOCK();
4752 return (PF_PASS);
4753 }
4754
4755 /* Execute action. */
4756 counter_u64_add(r->packets[dir == PF_OUT], 1);
4757 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
4758 pf_update_timestamp(r);
4759
4760 /* Shortcut. Don't tag if we're just going to drop anyway. */
4761 if (r->action == PF_DROP) {
4762 PF_RULES_RUNLOCK();
4763 return (PF_DROP);
4764 }
4765
4766 if (tag > 0) {
4767 if (mtag == NULL)
4768 mtag = pf_get_mtag(m);
4769 if (mtag == NULL) {
4770 PF_RULES_RUNLOCK();
4771 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4772 return (PF_DROP);
4773 }
4774 mtag->tag = tag;
4775 }
4776
4777 if (r->qid != 0) {
4778 if (mtag == NULL)
4779 mtag = pf_get_mtag(m);
4780 if (mtag == NULL) {
4781 PF_RULES_RUNLOCK();
4782 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4783 return (PF_DROP);
4784 }
4785 mtag->qid = r->qid;
4786 }
4787
4788 action = r->action;
4789 bridge_to = r->bridge_to;
4790
4791 /* Dummynet */
4792 if (r->dnpipe) {
4793 struct ip_fw_args dnflow;
4794
4795 /* Drop packet if dummynet is not loaded. */
4796 if (ip_dn_io_ptr == NULL) {
4797 PF_RULES_RUNLOCK();
4798 m_freem(m);
4799 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4800 return (PF_DROP);
4801 }
4802 if (mtag == NULL)
4803 mtag = pf_get_mtag(m);
4804 if (mtag == NULL) {
4805 PF_RULES_RUNLOCK();
4806 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4807 return (PF_DROP);
4808 }
4809
4810 bzero(&dnflow, sizeof(dnflow));
4811
4812 /* We don't have port numbers here, so we set 0. That means
4813 * that we'll be somewhat limited in distinguishing flows (i.e.
4814 * only based on IP addresses, not based on port numbers), but
4815 * it's better than nothing. */
4816 dnflow.f_id.dst_port = 0;
4817 dnflow.f_id.src_port = 0;
4818 dnflow.f_id.proto = 0;
4819
4820 dnflow.rule.info = r->dnpipe;
4821 dnflow.rule.info |= IPFW_IS_DUMMYNET;
4822 if (r->dnflags & PFRULE_DN_IS_PIPE)
4823 dnflow.rule.info |= IPFW_IS_PIPE;
4824
4825 dnflow.f_id.extra = dnflow.rule.info;
4826
4827 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
4828 dnflow.flags |= IPFW_ARGS_ETHER;
4829 dnflow.ifp = kif->pfik_ifp;
4830
4831 switch (af) {
4832 case AF_INET:
4833 dnflow.f_id.addr_type = 4;
4834 dnflow.f_id.src_ip = src->v4.s_addr;
4835 dnflow.f_id.dst_ip = dst->v4.s_addr;
4836 break;
4837 case AF_INET6:
4838 dnflow.flags |= IPFW_ARGS_IP6;
4839 dnflow.f_id.addr_type = 6;
4840 dnflow.f_id.src_ip6 = src->v6;
4841 dnflow.f_id.dst_ip6 = dst->v6;
4842 break;
4843 }
4844
4845 PF_RULES_RUNLOCK();
4846
4847 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
4848 ip_dn_io_ptr(m0, &dnflow);
4849 if (*m0 != NULL)
4850 pf_dummynet_flag_remove(m, mtag);
4851 } else {
4852 PF_RULES_RUNLOCK();
4853 }
4854
4855 if (action == PF_PASS && bridge_to) {
4856 pf_bridge_to(bridge_to->pfik_ifp, *m0);
4857 *m0 = NULL; /* We've eaten the packet. */
4858 }
4859
4860 return (action);
4861 }
4862
4863 #define PF_TEST_ATTRIB(t, a)\
4864 do { \
4865 if (t) { \
4866 r = a; \
4867 goto nextrule; \
4868 } \
4869 } while (0)
4870
4871 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,struct inpcb * inp)4872 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
4873 struct pf_pdesc *pd, struct pf_krule **am,
4874 struct pf_kruleset **rsm, struct inpcb *inp)
4875 {
4876 struct pf_krule *nr = NULL;
4877 struct pf_addr * const saddr = pd->src;
4878 struct pf_addr * const daddr = pd->dst;
4879 struct pf_krule *r, *a = NULL;
4880 struct pf_kruleset *ruleset = NULL;
4881 struct pf_krule_slist match_rules;
4882 struct pf_krule_item *ri;
4883 struct pf_ksrc_node *nsn = NULL;
4884 struct tcphdr *th = &pd->hdr.tcp;
4885 struct pf_state_key *sk = NULL, *nk = NULL;
4886 u_short reason, transerror;
4887 int rewrite = 0;
4888 int tag = -1;
4889 int asd = 0;
4890 int match = 0;
4891 int state_icmp = 0, icmp_dir, multi;
4892 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id;
4893 u_int16_t bproto_sum = 0, bip_sum = 0;
4894 u_int8_t icmptype = 0, icmpcode = 0;
4895 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
4896 struct pf_udp_mapping *udp_mapping = NULL;
4897
4898 PF_RULES_RASSERT();
4899
4900 SLIST_INIT(&match_rules);
4901
4902 if (inp != NULL) {
4903 INP_LOCK_ASSERT(inp);
4904 pd->lookup.uid = inp->inp_cred->cr_uid;
4905 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4906 pd->lookup.done = 1;
4907 }
4908
4909 switch (pd->virtual_proto) {
4910 case IPPROTO_TCP:
4911 sport = th->th_sport;
4912 dport = th->th_dport;
4913 break;
4914 case IPPROTO_UDP:
4915 sport = pd->hdr.udp.uh_sport;
4916 dport = pd->hdr.udp.uh_dport;
4917 break;
4918 case IPPROTO_SCTP:
4919 sport = pd->hdr.sctp.src_port;
4920 dport = pd->hdr.sctp.dest_port;
4921 break;
4922 #ifdef INET
4923 case IPPROTO_ICMP:
4924 MPASS(pd->af == AF_INET);
4925 icmptype = pd->hdr.icmp.icmp_type;
4926 icmpcode = pd->hdr.icmp.icmp_code;
4927 state_icmp = pf_icmp_mapping(pd, icmptype,
4928 &icmp_dir, &multi, &virtual_id, &virtual_type);
4929 if (icmp_dir == PF_IN) {
4930 sport = virtual_id;
4931 dport = virtual_type;
4932 } else {
4933 sport = virtual_type;
4934 dport = virtual_id;
4935 }
4936 break;
4937 #endif /* INET */
4938 #ifdef INET6
4939 case IPPROTO_ICMPV6:
4940 MPASS(pd->af == AF_INET6);
4941 icmptype = pd->hdr.icmp6.icmp6_type;
4942 icmpcode = pd->hdr.icmp6.icmp6_code;
4943 state_icmp = pf_icmp_mapping(pd, icmptype,
4944 &icmp_dir, &multi, &virtual_id, &virtual_type);
4945 if (icmp_dir == PF_IN) {
4946 sport = virtual_id;
4947 dport = virtual_type;
4948 } else {
4949 sport = virtual_type;
4950 dport = virtual_id;
4951 }
4952
4953 break;
4954 #endif /* INET6 */
4955 default:
4956 sport = dport = 0;
4957 break;
4958 }
4959
4960 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
4961
4962 /* check packet for BINAT/NAT/RDR */
4963 transerror = pf_get_translation(pd, pd->off, &nsn, &sk,
4964 &nk, saddr, daddr, sport, dport, anchor_stack, &nr, &udp_mapping);
4965 switch (transerror) {
4966 default:
4967 /* A translation error occurred. */
4968 REASON_SET(&reason, transerror);
4969 goto cleanup;
4970 case PFRES_MAX:
4971 /* No match. */
4972 break;
4973 case PFRES_MATCH:
4974 KASSERT(sk != NULL, ("%s: null sk", __func__));
4975 KASSERT(nk != NULL, ("%s: null nk", __func__));
4976
4977 if (nr->log) {
4978 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a,
4979 ruleset, pd, 1);
4980 }
4981
4982 if (pd->ip_sum)
4983 bip_sum = *pd->ip_sum;
4984
4985 switch (pd->proto) {
4986 case IPPROTO_TCP:
4987 bproto_sum = th->th_sum;
4988 pd->proto_sum = &th->th_sum;
4989
4990 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
4991 nk->port[pd->sidx] != sport) {
4992 pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum,
4993 &th->th_sum, &nk->addr[pd->sidx],
4994 nk->port[pd->sidx], 0, pd->af);
4995 pd->sport = &th->th_sport;
4996 sport = th->th_sport;
4997 }
4998
4999 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5000 nk->port[pd->didx] != dport) {
5001 pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum,
5002 &th->th_sum, &nk->addr[pd->didx],
5003 nk->port[pd->didx], 0, pd->af);
5004 dport = th->th_dport;
5005 pd->dport = &th->th_dport;
5006 }
5007 rewrite++;
5008 break;
5009 case IPPROTO_UDP:
5010 bproto_sum = pd->hdr.udp.uh_sum;
5011 pd->proto_sum = &pd->hdr.udp.uh_sum;
5012
5013 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5014 nk->port[pd->sidx] != sport) {
5015 pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport,
5016 pd->ip_sum, &pd->hdr.udp.uh_sum,
5017 &nk->addr[pd->sidx],
5018 nk->port[pd->sidx], 1, pd->af);
5019 sport = pd->hdr.udp.uh_sport;
5020 pd->sport = &pd->hdr.udp.uh_sport;
5021 }
5022
5023 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5024 nk->port[pd->didx] != dport) {
5025 pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport,
5026 pd->ip_sum, &pd->hdr.udp.uh_sum,
5027 &nk->addr[pd->didx],
5028 nk->port[pd->didx], 1, pd->af);
5029 dport = pd->hdr.udp.uh_dport;
5030 pd->dport = &pd->hdr.udp.uh_dport;
5031 }
5032 rewrite++;
5033 break;
5034 case IPPROTO_SCTP: {
5035 uint16_t checksum = 0;
5036
5037 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5038 nk->port[pd->sidx] != sport) {
5039 pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port,
5040 pd->ip_sum, &checksum,
5041 &nk->addr[pd->sidx],
5042 nk->port[pd->sidx], 1, pd->af);
5043 }
5044 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5045 nk->port[pd->didx] != dport) {
5046 pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port,
5047 pd->ip_sum, &checksum,
5048 &nk->addr[pd->didx],
5049 nk->port[pd->didx], 1, pd->af);
5050 }
5051 break;
5052 }
5053 #ifdef INET
5054 case IPPROTO_ICMP:
5055 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET))
5056 pf_change_a(&saddr->v4.s_addr, pd->ip_sum,
5057 nk->addr[pd->sidx].v4.s_addr, 0);
5058
5059 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET))
5060 pf_change_a(&daddr->v4.s_addr, pd->ip_sum,
5061 nk->addr[pd->didx].v4.s_addr, 0);
5062
5063 if (virtual_type == htons(ICMP_ECHO) &&
5064 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
5065 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
5066 pd->hdr.icmp.icmp_cksum, sport,
5067 nk->port[pd->sidx], 0);
5068 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
5069 pd->sport = &pd->hdr.icmp.icmp_id;
5070 }
5071 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5072 break;
5073 #endif /* INET */
5074 #ifdef INET6
5075 case IPPROTO_ICMPV6:
5076 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6))
5077 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum,
5078 &nk->addr[pd->sidx], 0);
5079
5080 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6))
5081 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum,
5082 &nk->addr[pd->didx], 0);
5083 rewrite++;
5084 break;
5085 #endif /* INET */
5086 default:
5087 switch (pd->af) {
5088 #ifdef INET
5089 case AF_INET:
5090 if (PF_ANEQ(saddr,
5091 &nk->addr[pd->sidx], AF_INET))
5092 pf_change_a(&saddr->v4.s_addr,
5093 pd->ip_sum,
5094 nk->addr[pd->sidx].v4.s_addr, 0);
5095
5096 if (PF_ANEQ(daddr,
5097 &nk->addr[pd->didx], AF_INET))
5098 pf_change_a(&daddr->v4.s_addr,
5099 pd->ip_sum,
5100 nk->addr[pd->didx].v4.s_addr, 0);
5101 break;
5102 #endif /* INET */
5103 #ifdef INET6
5104 case AF_INET6:
5105 if (PF_ANEQ(saddr,
5106 &nk->addr[pd->sidx], AF_INET6))
5107 PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af);
5108
5109 if (PF_ANEQ(daddr,
5110 &nk->addr[pd->didx], AF_INET6))
5111 PF_ACPY(daddr, &nk->addr[pd->didx], pd->af);
5112 break;
5113 #endif /* INET */
5114 }
5115 break;
5116 }
5117 if (nr->natpass)
5118 r = NULL;
5119 }
5120
5121 while (r != NULL) {
5122 pf_counter_u64_add(&r->evaluations, 1);
5123 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5124 r->skip[PF_SKIP_IFP]);
5125 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5126 r->skip[PF_SKIP_DIR]);
5127 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5128 r->skip[PF_SKIP_AF]);
5129 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5130 r->skip[PF_SKIP_PROTO]);
5131 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af,
5132 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5133 r->skip[PF_SKIP_SRC_ADDR]);
5134 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af,
5135 r->dst.neg, NULL, M_GETFIB(pd->m)),
5136 r->skip[PF_SKIP_DST_ADDR]);
5137 switch (pd->virtual_proto) {
5138 case PF_VPROTO_FRAGMENT:
5139 /* tcp/udp only. port_op always 0 in other cases */
5140 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5141 TAILQ_NEXT(r, entries));
5142 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5143 TAILQ_NEXT(r, entries));
5144 /* icmp only. type/code always 0 in other cases */
5145 PF_TEST_ATTRIB((r->type || r->code),
5146 TAILQ_NEXT(r, entries));
5147 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5148 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5149 TAILQ_NEXT(r, entries));
5150 break;
5151
5152 case IPPROTO_TCP:
5153 PF_TEST_ATTRIB((r->flagset & th->th_flags) != r->flags,
5154 TAILQ_NEXT(r, entries));
5155 /* FALLTHROUGH */
5156 case IPPROTO_SCTP:
5157 case IPPROTO_UDP:
5158 /* tcp/udp only. port_op always 0 in other cases */
5159 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5160 r->src.port[0], r->src.port[1], sport),
5161 r->skip[PF_SKIP_SRC_PORT]);
5162 /* tcp/udp only. port_op always 0 in other cases */
5163 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5164 r->dst.port[0], r->dst.port[1], dport),
5165 r->skip[PF_SKIP_DST_PORT]);
5166 /* tcp/udp only. uid.op always 0 in other cases */
5167 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5168 pf_socket_lookup(pd), 1)) &&
5169 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5170 pd->lookup.uid),
5171 TAILQ_NEXT(r, entries));
5172 /* tcp/udp only. gid.op always 0 in other cases */
5173 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5174 pf_socket_lookup(pd), 1)) &&
5175 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5176 pd->lookup.gid),
5177 TAILQ_NEXT(r, entries));
5178 break;
5179
5180 case IPPROTO_ICMP:
5181 case IPPROTO_ICMPV6:
5182 /* icmp only. type always 0 in other cases */
5183 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1,
5184 TAILQ_NEXT(r, entries));
5185 /* icmp only. type always 0 in other cases */
5186 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1,
5187 TAILQ_NEXT(r, entries));
5188 break;
5189
5190 default:
5191 break;
5192 }
5193 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5194 TAILQ_NEXT(r, entries));
5195 PF_TEST_ATTRIB(r->prio &&
5196 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5197 TAILQ_NEXT(r, entries));
5198 PF_TEST_ATTRIB(r->prob &&
5199 r->prob <= arc4random(),
5200 TAILQ_NEXT(r, entries));
5201 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag,
5202 pd->pf_mtag ? pd->pf_mtag->tag : 0),
5203 TAILQ_NEXT(r, entries));
5204 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r),
5205 TAILQ_NEXT(r, entries));
5206 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5207 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5208 TAILQ_NEXT(r, entries));
5209 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5210 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5211 pf_osfp_fingerprint(pd, th),
5212 r->os_fingerprint)),
5213 TAILQ_NEXT(r, entries));
5214 /* FALLTHROUGH */
5215 if (r->tag)
5216 tag = r->tag;
5217 if (r->anchor == NULL) {
5218 if (r->action == PF_MATCH) {
5219 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5220 if (ri == NULL) {
5221 REASON_SET(&reason, PFRES_MEMORY);
5222 goto cleanup;
5223 }
5224 ri->r = r;
5225 SLIST_INSERT_HEAD(&match_rules, ri, entry);
5226 pf_counter_u64_critical_enter();
5227 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5228 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5229 pf_counter_u64_critical_exit();
5230 pf_rule_to_actions(r, &pd->act);
5231 if (r->log || pd->act.log & PF_LOG_MATCHES)
5232 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5233 a, ruleset, pd, 1);
5234 } else {
5235 match = 1;
5236 *rm = r;
5237 *am = a;
5238 *rsm = ruleset;
5239 if (pd->act.log & PF_LOG_MATCHES)
5240 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5241 a, ruleset, pd, 1);
5242 }
5243 if ((*rm)->quick)
5244 break;
5245 r = TAILQ_NEXT(r, entries);
5246 } else
5247 pf_step_into_anchor(anchor_stack, &asd,
5248 &ruleset, PF_RULESET_FILTER, &r, &a,
5249 &match);
5250 nextrule:
5251 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
5252 &ruleset, PF_RULESET_FILTER, &r, &a, &match))
5253 break;
5254 }
5255 r = *rm;
5256 a = *am;
5257 ruleset = *rsm;
5258
5259 REASON_SET(&reason, PFRES_MATCH);
5260
5261 /* apply actions for last matching pass/block rule */
5262 pf_rule_to_actions(r, &pd->act);
5263
5264 if (r->log || pd->act.log & PF_LOG_MATCHES) {
5265 if (rewrite)
5266 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5267 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1);
5268 }
5269
5270 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5271 (r->action == PF_DROP) &&
5272 ((r->rule_flag & PFRULE_RETURNRST) ||
5273 (r->rule_flag & PFRULE_RETURNICMP) ||
5274 (r->rule_flag & PFRULE_RETURN))) {
5275 pf_return(r, nr, pd, sk, th, bproto_sum,
5276 bip_sum, &reason, r->rtableid);
5277 }
5278
5279 if (r->action == PF_DROP)
5280 goto cleanup;
5281
5282 if (tag > 0 && pf_tag_packet(pd, tag)) {
5283 REASON_SET(&reason, PFRES_MEMORY);
5284 goto cleanup;
5285 }
5286 if (pd->act.rtableid >= 0)
5287 M_SETFIB(pd->m, pd->act.rtableid);
5288
5289 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5290 (!state_icmp && (r->keep_state || nr != NULL ||
5291 (pd->flags & PFDESC_TCP_NORM)))) {
5292 int action;
5293 action = pf_create_state(r, nr, a, pd, nsn, nk, sk,
5294 sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum,
5295 &match_rules, udp_mapping);
5296 if (action != PF_PASS) {
5297 pf_udp_mapping_release(udp_mapping);
5298 if (action == PF_DROP &&
5299 (r->rule_flag & PFRULE_RETURN))
5300 pf_return(r, nr, pd, sk, th,
5301 bproto_sum, bip_sum, &reason,
5302 pd->act.rtableid);
5303 return (action);
5304 }
5305 } else {
5306 while ((ri = SLIST_FIRST(&match_rules))) {
5307 SLIST_REMOVE_HEAD(&match_rules, entry);
5308 free(ri, M_PF_RULE_ITEM);
5309 }
5310
5311 uma_zfree(V_pf_state_key_z, sk);
5312 uma_zfree(V_pf_state_key_z, nk);
5313 pf_udp_mapping_release(udp_mapping);
5314 }
5315
5316 /* copy back packet headers if we performed NAT operations */
5317 if (rewrite)
5318 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5319
5320 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5321 pd->dir == PF_OUT &&
5322 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m))
5323 /*
5324 * We want the state created, but we dont
5325 * want to send this in case a partner
5326 * firewall has to know about it to allow
5327 * replies through it.
5328 */
5329 return (PF_DEFER);
5330
5331 return (PF_PASS);
5332
5333 cleanup:
5334 while ((ri = SLIST_FIRST(&match_rules))) {
5335 SLIST_REMOVE_HEAD(&match_rules, entry);
5336 free(ri, M_PF_RULE_ITEM);
5337 }
5338
5339 uma_zfree(V_pf_state_key_z, sk);
5340 uma_zfree(V_pf_state_key_z, nk);
5341 pf_udp_mapping_release(udp_mapping);
5342
5343 return (PF_DROP);
5344 }
5345
5346 static int
pf_create_state(struct pf_krule * r,struct pf_krule * nr,struct pf_krule * a,struct pf_pdesc * pd,struct pf_ksrc_node * nsn,struct pf_state_key * nk,struct pf_state_key * sk,u_int16_t sport,u_int16_t dport,int * rewrite,struct pf_kstate ** sm,int tag,u_int16_t bproto_sum,u_int16_t bip_sum,struct pf_krule_slist * match_rules,struct pf_udp_mapping * udp_mapping)5347 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
5348 struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk,
5349 struct pf_state_key *sk, u_int16_t sport,
5350 u_int16_t dport, int *rewrite, struct pf_kstate **sm,
5351 int tag, u_int16_t bproto_sum, u_int16_t bip_sum,
5352 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping)
5353 {
5354 struct pf_kstate *s = NULL;
5355 struct pf_ksrc_node *sn = NULL;
5356 struct tcphdr *th = &pd->hdr.tcp;
5357 u_int16_t mss = V_tcp_mssdflt;
5358 u_short reason, sn_reason;
5359 struct pf_krule_item *ri;
5360
5361 /* check maximums */
5362 if (r->max_states &&
5363 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
5364 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
5365 REASON_SET(&reason, PFRES_MAXSTATES);
5366 goto csfailed;
5367 }
5368 /* src node for filter rule */
5369 if ((r->rule_flag & PFRULE_SRCTRACK ||
5370 r->rpool.opts & PF_POOL_STICKYADDR) &&
5371 (sn_reason = pf_insert_src_node(&sn, r, pd->src, pd->af)) != 0) {
5372 REASON_SET(&reason, sn_reason);
5373 goto csfailed;
5374 }
5375 /* src node for translation rule */
5376 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
5377 (sn_reason = pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx],
5378 pd->af)) != 0 ) {
5379 REASON_SET(&reason, sn_reason);
5380 goto csfailed;
5381 }
5382 s = pf_alloc_state(M_NOWAIT);
5383 if (s == NULL) {
5384 REASON_SET(&reason, PFRES_MEMORY);
5385 goto csfailed;
5386 }
5387 s->rule = r;
5388 s->nat_rule = nr;
5389 s->anchor = a;
5390 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules));
5391 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
5392
5393 STATE_INC_COUNTERS(s);
5394 if (r->allow_opts)
5395 s->state_flags |= PFSTATE_ALLOWOPTS;
5396 if (r->rule_flag & PFRULE_STATESLOPPY)
5397 s->state_flags |= PFSTATE_SLOPPY;
5398 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
5399 s->state_flags |= PFSTATE_SCRUB_TCP;
5400 if ((r->rule_flag & PFRULE_PFLOW) ||
5401 (nr != NULL && nr->rule_flag & PFRULE_PFLOW))
5402 s->state_flags |= PFSTATE_PFLOW;
5403
5404 s->act.log = pd->act.log & PF_LOG_ALL;
5405 s->sync_state = PFSYNC_S_NONE;
5406 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
5407
5408 if (nr != NULL)
5409 s->act.log |= nr->log & PF_LOG_ALL;
5410 switch (pd->proto) {
5411 case IPPROTO_TCP:
5412 s->src.seqlo = ntohl(th->th_seq);
5413 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
5414 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN &&
5415 r->keep_state == PF_STATE_MODULATE) {
5416 /* Generate sequence number modulator */
5417 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
5418 0)
5419 s->src.seqdiff = 1;
5420 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
5421 htonl(s->src.seqlo + s->src.seqdiff), 0);
5422 *rewrite = 1;
5423 } else
5424 s->src.seqdiff = 0;
5425 if (th->th_flags & TH_SYN) {
5426 s->src.seqhi++;
5427 s->src.wscale = pf_get_wscale(pd);
5428 }
5429 s->src.max_win = MAX(ntohs(th->th_win), 1);
5430 if (s->src.wscale & PF_WSCALE_MASK) {
5431 /* Remove scale factor from initial window */
5432 int win = s->src.max_win;
5433 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
5434 s->src.max_win = (win - 1) >>
5435 (s->src.wscale & PF_WSCALE_MASK);
5436 }
5437 if (th->th_flags & TH_FIN)
5438 s->src.seqhi++;
5439 s->dst.seqhi = 1;
5440 s->dst.max_win = 1;
5441 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
5442 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
5443 s->timeout = PFTM_TCP_FIRST_PACKET;
5444 atomic_add_32(&V_pf_status.states_halfopen, 1);
5445 break;
5446 case IPPROTO_UDP:
5447 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
5448 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
5449 s->timeout = PFTM_UDP_FIRST_PACKET;
5450 break;
5451 case IPPROTO_SCTP:
5452 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
5453 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
5454 s->timeout = PFTM_SCTP_FIRST_PACKET;
5455 break;
5456 case IPPROTO_ICMP:
5457 #ifdef INET6
5458 case IPPROTO_ICMPV6:
5459 #endif
5460 s->timeout = PFTM_ICMP_FIRST_PACKET;
5461 break;
5462 default:
5463 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
5464 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
5465 s->timeout = PFTM_OTHER_FIRST_PACKET;
5466 }
5467
5468 if (r->rt) {
5469 /* pf_map_addr increases the reason counters */
5470 if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr,
5471 &s->rt_kif, NULL, &sn)) != 0)
5472 goto csfailed;
5473 s->rt = r->rt;
5474 }
5475
5476 s->creation = s->expire = pf_get_uptime();
5477
5478 if (sn != NULL)
5479 s->src_node = sn;
5480 if (nsn != NULL) {
5481 /* XXX We only modify one side for now. */
5482 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af);
5483 s->nat_src_node = nsn;
5484 }
5485 if (pd->proto == IPPROTO_TCP) {
5486 if (s->state_flags & PFSTATE_SCRUB_TCP &&
5487 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) {
5488 REASON_SET(&reason, PFRES_MEMORY);
5489 goto csfailed;
5490 }
5491 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
5492 pf_normalize_tcp_stateful(pd, &reason, th, s,
5493 &s->src, &s->dst, rewrite)) {
5494 /* This really shouldn't happen!!! */
5495 DPFPRINTF(PF_DEBUG_URGENT,
5496 ("pf_normalize_tcp_stateful failed on first "
5497 "pkt\n"));
5498 goto csfailed;
5499 }
5500 } else if (pd->proto == IPPROTO_SCTP) {
5501 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
5502 goto csfailed;
5503 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
5504 goto csfailed;
5505 }
5506 s->direction = pd->dir;
5507
5508 /*
5509 * sk/nk could already been setup by pf_get_translation().
5510 */
5511 if (nr == NULL) {
5512 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
5513 __func__, nr, sk, nk));
5514 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport);
5515 if (sk == NULL)
5516 goto csfailed;
5517 nk = sk;
5518 } else
5519 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
5520 __func__, nr, sk, nk));
5521
5522 /* Swap sk/nk for PF_OUT. */
5523 if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif,
5524 (pd->dir == PF_IN) ? sk : nk,
5525 (pd->dir == PF_IN) ? nk : sk, s)) {
5526 REASON_SET(&reason, PFRES_STATEINS);
5527 goto drop;
5528 } else
5529 *sm = s;
5530
5531 if (tag > 0)
5532 s->tag = tag;
5533 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) ==
5534 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
5535 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
5536 /* undo NAT changes, if they have taken place */
5537 if (nr != NULL) {
5538 struct pf_state_key *skt = s->key[PF_SK_WIRE];
5539 if (pd->dir == PF_OUT)
5540 skt = s->key[PF_SK_STACK];
5541 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
5542 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
5543 if (pd->sport)
5544 *pd->sport = skt->port[pd->sidx];
5545 if (pd->dport)
5546 *pd->dport = skt->port[pd->didx];
5547 if (pd->proto_sum)
5548 *pd->proto_sum = bproto_sum;
5549 if (pd->ip_sum)
5550 *pd->ip_sum = bip_sum;
5551 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5552 }
5553 s->src.seqhi = htonl(arc4random());
5554 /* Find mss option */
5555 int rtid = M_GETFIB(pd->m);
5556 mss = pf_get_mss(pd);
5557 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
5558 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
5559 s->src.mss = mss;
5560 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
5561 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
5562 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
5563 pd->act.rtableid);
5564 REASON_SET(&reason, PFRES_SYNPROXY);
5565 return (PF_SYNPROXY_DROP);
5566 }
5567
5568 s->udp_mapping = udp_mapping;
5569
5570 return (PF_PASS);
5571
5572 csfailed:
5573 while ((ri = SLIST_FIRST(match_rules))) {
5574 SLIST_REMOVE_HEAD(match_rules, entry);
5575 free(ri, M_PF_RULE_ITEM);
5576 }
5577
5578 uma_zfree(V_pf_state_key_z, sk);
5579 uma_zfree(V_pf_state_key_z, nk);
5580
5581 if (sn != NULL) {
5582 PF_SRC_NODE_LOCK(sn);
5583 if (--sn->states == 0 && sn->expire == 0) {
5584 pf_unlink_src_node(sn);
5585 uma_zfree(V_pf_sources_z, sn);
5586 counter_u64_add(
5587 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
5588 }
5589 PF_SRC_NODE_UNLOCK(sn);
5590 }
5591
5592 if (nsn != sn && nsn != NULL) {
5593 PF_SRC_NODE_LOCK(nsn);
5594 if (--nsn->states == 0 && nsn->expire == 0) {
5595 pf_unlink_src_node(nsn);
5596 uma_zfree(V_pf_sources_z, nsn);
5597 counter_u64_add(
5598 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
5599 }
5600 PF_SRC_NODE_UNLOCK(nsn);
5601 }
5602
5603 drop:
5604 if (s != NULL) {
5605 pf_src_tree_remove_state(s);
5606 s->timeout = PFTM_UNLINKED;
5607 STATE_DEC_COUNTERS(s);
5608 pf_free_state(s);
5609 }
5610
5611 return (PF_DROP);
5612 }
5613
5614 static int
pf_tcp_track_full(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason,int * copyback)5615 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd,
5616 u_short *reason, int *copyback)
5617 {
5618 struct tcphdr *th = &pd->hdr.tcp;
5619 struct pf_state_peer *src, *dst;
5620 u_int16_t win = ntohs(th->th_win);
5621 u_int32_t ack, end, data_end, seq, orig_seq;
5622 u_int8_t sws, dws, psrc, pdst;
5623 int ackskew;
5624
5625 if (pd->dir == (*state)->direction) {
5626 src = &(*state)->src;
5627 dst = &(*state)->dst;
5628 psrc = PF_PEER_SRC;
5629 pdst = PF_PEER_DST;
5630 } else {
5631 src = &(*state)->dst;
5632 dst = &(*state)->src;
5633 psrc = PF_PEER_DST;
5634 pdst = PF_PEER_SRC;
5635 }
5636
5637 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) {
5638 sws = src->wscale & PF_WSCALE_MASK;
5639 dws = dst->wscale & PF_WSCALE_MASK;
5640 } else
5641 sws = dws = 0;
5642
5643 /*
5644 * Sequence tracking algorithm from Guido van Rooij's paper:
5645 * http://www.madison-gurkha.com/publications/tcp_filtering/
5646 * tcp_filtering.ps
5647 */
5648
5649 orig_seq = seq = ntohl(th->th_seq);
5650 if (src->seqlo == 0) {
5651 /* First packet from this end. Set its state */
5652
5653 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
5654 src->scrub == NULL) {
5655 if (pf_normalize_tcp_init(pd, th, src, dst)) {
5656 REASON_SET(reason, PFRES_MEMORY);
5657 return (PF_DROP);
5658 }
5659 }
5660
5661 /* Deferred generation of sequence number modulator */
5662 if (dst->seqdiff && !src->seqdiff) {
5663 /* use random iss for the TCP server */
5664 while ((src->seqdiff = arc4random() - seq) == 0)
5665 ;
5666 ack = ntohl(th->th_ack) - dst->seqdiff;
5667 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
5668 src->seqdiff), 0);
5669 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
5670 *copyback = 1;
5671 } else {
5672 ack = ntohl(th->th_ack);
5673 }
5674
5675 end = seq + pd->p_len;
5676 if (th->th_flags & TH_SYN) {
5677 end++;
5678 if (dst->wscale & PF_WSCALE_FLAG) {
5679 src->wscale = pf_get_wscale(pd);
5680 if (src->wscale & PF_WSCALE_FLAG) {
5681 /* Remove scale factor from initial
5682 * window */
5683 sws = src->wscale & PF_WSCALE_MASK;
5684 win = ((u_int32_t)win + (1 << sws) - 1)
5685 >> sws;
5686 dws = dst->wscale & PF_WSCALE_MASK;
5687 } else {
5688 /* fixup other window */
5689 dst->max_win = MIN(TCP_MAXWIN,
5690 (u_int32_t)dst->max_win <<
5691 (dst->wscale & PF_WSCALE_MASK));
5692 /* in case of a retrans SYN|ACK */
5693 dst->wscale = 0;
5694 }
5695 }
5696 }
5697 data_end = end;
5698 if (th->th_flags & TH_FIN)
5699 end++;
5700
5701 src->seqlo = seq;
5702 if (src->state < TCPS_SYN_SENT)
5703 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5704
5705 /*
5706 * May need to slide the window (seqhi may have been set by
5707 * the crappy stack check or if we picked up the connection
5708 * after establishment)
5709 */
5710 if (src->seqhi == 1 ||
5711 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
5712 src->seqhi = end + MAX(1, dst->max_win << dws);
5713 if (win > src->max_win)
5714 src->max_win = win;
5715
5716 } else {
5717 ack = ntohl(th->th_ack) - dst->seqdiff;
5718 if (src->seqdiff) {
5719 /* Modulate sequence numbers */
5720 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
5721 src->seqdiff), 0);
5722 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
5723 *copyback = 1;
5724 }
5725 end = seq + pd->p_len;
5726 if (th->th_flags & TH_SYN)
5727 end++;
5728 data_end = end;
5729 if (th->th_flags & TH_FIN)
5730 end++;
5731 }
5732
5733 if ((th->th_flags & TH_ACK) == 0) {
5734 /* Let it pass through the ack skew check */
5735 ack = dst->seqlo;
5736 } else if ((ack == 0 &&
5737 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
5738 /* broken tcp stacks do not set ack */
5739 (dst->state < TCPS_SYN_SENT)) {
5740 /*
5741 * Many stacks (ours included) will set the ACK number in an
5742 * FIN|ACK if the SYN times out -- no sequence to ACK.
5743 */
5744 ack = dst->seqlo;
5745 }
5746
5747 if (seq == end) {
5748 /* Ease sequencing restrictions on no data packets */
5749 seq = src->seqlo;
5750 data_end = end = seq;
5751 }
5752
5753 ackskew = dst->seqlo - ack;
5754
5755 /*
5756 * Need to demodulate the sequence numbers in any TCP SACK options
5757 * (Selective ACK). We could optionally validate the SACK values
5758 * against the current ACK window, either forwards or backwards, but
5759 * I'm not confident that SACK has been implemented properly
5760 * everywhere. It wouldn't surprise me if several stacks accidentally
5761 * SACK too far backwards of previously ACKed data. There really aren't
5762 * any security implications of bad SACKing unless the target stack
5763 * doesn't validate the option length correctly. Someone trying to
5764 * spoof into a TCP connection won't bother blindly sending SACK
5765 * options anyway.
5766 */
5767 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
5768 if (pf_modulate_sack(pd, th, dst))
5769 *copyback = 1;
5770 }
5771
5772 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
5773 if (SEQ_GEQ(src->seqhi, data_end) &&
5774 /* Last octet inside other's window space */
5775 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
5776 /* Retrans: not more than one window back */
5777 (ackskew >= -MAXACKWINDOW) &&
5778 /* Acking not more than one reassembled fragment backwards */
5779 (ackskew <= (MAXACKWINDOW << sws)) &&
5780 /* Acking not more than one window forward */
5781 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo ||
5782 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
5783 /* Require an exact/+1 sequence match on resets when possible */
5784
5785 if (dst->scrub || src->scrub) {
5786 if (pf_normalize_tcp_stateful(pd, reason, th,
5787 *state, src, dst, copyback))
5788 return (PF_DROP);
5789 }
5790
5791 /* update max window */
5792 if (src->max_win < win)
5793 src->max_win = win;
5794 /* synchronize sequencing */
5795 if (SEQ_GT(end, src->seqlo))
5796 src->seqlo = end;
5797 /* slide the window of what the other end can send */
5798 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
5799 dst->seqhi = ack + MAX((win << sws), 1);
5800
5801 /* update states */
5802 if (th->th_flags & TH_SYN)
5803 if (src->state < TCPS_SYN_SENT)
5804 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5805 if (th->th_flags & TH_FIN)
5806 if (src->state < TCPS_CLOSING)
5807 pf_set_protostate(*state, psrc, TCPS_CLOSING);
5808 if (th->th_flags & TH_ACK) {
5809 if (dst->state == TCPS_SYN_SENT) {
5810 pf_set_protostate(*state, pdst,
5811 TCPS_ESTABLISHED);
5812 if (src->state == TCPS_ESTABLISHED &&
5813 (*state)->src_node != NULL &&
5814 pf_src_connlimit(state)) {
5815 REASON_SET(reason, PFRES_SRCLIMIT);
5816 return (PF_DROP);
5817 }
5818 } else if (dst->state == TCPS_CLOSING)
5819 pf_set_protostate(*state, pdst,
5820 TCPS_FIN_WAIT_2);
5821 }
5822 if (th->th_flags & TH_RST)
5823 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
5824
5825 /* update expire time */
5826 (*state)->expire = pf_get_uptime();
5827 if (src->state >= TCPS_FIN_WAIT_2 &&
5828 dst->state >= TCPS_FIN_WAIT_2)
5829 (*state)->timeout = PFTM_TCP_CLOSED;
5830 else if (src->state >= TCPS_CLOSING &&
5831 dst->state >= TCPS_CLOSING)
5832 (*state)->timeout = PFTM_TCP_FIN_WAIT;
5833 else if (src->state < TCPS_ESTABLISHED ||
5834 dst->state < TCPS_ESTABLISHED)
5835 (*state)->timeout = PFTM_TCP_OPENING;
5836 else if (src->state >= TCPS_CLOSING ||
5837 dst->state >= TCPS_CLOSING)
5838 (*state)->timeout = PFTM_TCP_CLOSING;
5839 else
5840 (*state)->timeout = PFTM_TCP_ESTABLISHED;
5841
5842 /* Fall through to PASS packet */
5843
5844 } else if ((dst->state < TCPS_SYN_SENT ||
5845 dst->state >= TCPS_FIN_WAIT_2 ||
5846 src->state >= TCPS_FIN_WAIT_2) &&
5847 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
5848 /* Within a window forward of the originating packet */
5849 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
5850 /* Within a window backward of the originating packet */
5851
5852 /*
5853 * This currently handles three situations:
5854 * 1) Stupid stacks will shotgun SYNs before their peer
5855 * replies.
5856 * 2) When PF catches an already established stream (the
5857 * firewall rebooted, the state table was flushed, routes
5858 * changed...)
5859 * 3) Packets get funky immediately after the connection
5860 * closes (this should catch Solaris spurious ACK|FINs
5861 * that web servers like to spew after a close)
5862 *
5863 * This must be a little more careful than the above code
5864 * since packet floods will also be caught here. We don't
5865 * update the TTL here to mitigate the damage of a packet
5866 * flood and so the same code can handle awkward establishment
5867 * and a loosened connection close.
5868 * In the establishment case, a correct peer response will
5869 * validate the connection, go through the normal state code
5870 * and keep updating the state TTL.
5871 */
5872
5873 if (V_pf_status.debug >= PF_DEBUG_MISC) {
5874 printf("pf: loose state match: ");
5875 pf_print_state(*state);
5876 pf_print_flags(th->th_flags);
5877 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
5878 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
5879 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
5880 (unsigned long long)(*state)->packets[1],
5881 pd->dir == PF_IN ? "in" : "out",
5882 pd->dir == (*state)->direction ? "fwd" : "rev");
5883 }
5884
5885 if (dst->scrub || src->scrub) {
5886 if (pf_normalize_tcp_stateful(pd, reason, th,
5887 *state, src, dst, copyback))
5888 return (PF_DROP);
5889 }
5890
5891 /* update max window */
5892 if (src->max_win < win)
5893 src->max_win = win;
5894 /* synchronize sequencing */
5895 if (SEQ_GT(end, src->seqlo))
5896 src->seqlo = end;
5897 /* slide the window of what the other end can send */
5898 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
5899 dst->seqhi = ack + MAX((win << sws), 1);
5900
5901 /*
5902 * Cannot set dst->seqhi here since this could be a shotgunned
5903 * SYN and not an already established connection.
5904 */
5905
5906 if (th->th_flags & TH_FIN)
5907 if (src->state < TCPS_CLOSING)
5908 pf_set_protostate(*state, psrc, TCPS_CLOSING);
5909 if (th->th_flags & TH_RST)
5910 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
5911
5912 /* Fall through to PASS packet */
5913
5914 } else {
5915 if ((*state)->dst.state == TCPS_SYN_SENT &&
5916 (*state)->src.state == TCPS_SYN_SENT) {
5917 /* Send RST for state mismatches during handshake */
5918 if (!(th->th_flags & TH_RST))
5919 pf_send_tcp((*state)->rule, pd->af,
5920 pd->dst, pd->src, th->th_dport,
5921 th->th_sport, ntohl(th->th_ack), 0,
5922 TH_RST, 0, 0,
5923 (*state)->rule->return_ttl, M_SKIP_FIREWALL,
5924 0, 0, (*state)->act.rtableid);
5925 src->seqlo = 0;
5926 src->seqhi = 1;
5927 src->max_win = 1;
5928 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
5929 printf("pf: BAD state: ");
5930 pf_print_state(*state);
5931 pf_print_flags(th->th_flags);
5932 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
5933 "pkts=%llu:%llu dir=%s,%s\n",
5934 seq, orig_seq, ack, pd->p_len, ackskew,
5935 (unsigned long long)(*state)->packets[0],
5936 (unsigned long long)(*state)->packets[1],
5937 pd->dir == PF_IN ? "in" : "out",
5938 pd->dir == (*state)->direction ? "fwd" : "rev");
5939 printf("pf: State failure on: %c %c %c %c | %c %c\n",
5940 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
5941 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
5942 ' ': '2',
5943 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
5944 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
5945 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
5946 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
5947 }
5948 REASON_SET(reason, PFRES_BADSTATE);
5949 return (PF_DROP);
5950 }
5951
5952 return (PF_PASS);
5953 }
5954
5955 static int
pf_tcp_track_sloppy(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)5956 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
5957 {
5958 struct tcphdr *th = &pd->hdr.tcp;
5959 struct pf_state_peer *src, *dst;
5960 u_int8_t psrc, pdst;
5961
5962 if (pd->dir == (*state)->direction) {
5963 src = &(*state)->src;
5964 dst = &(*state)->dst;
5965 psrc = PF_PEER_SRC;
5966 pdst = PF_PEER_DST;
5967 } else {
5968 src = &(*state)->dst;
5969 dst = &(*state)->src;
5970 psrc = PF_PEER_DST;
5971 pdst = PF_PEER_SRC;
5972 }
5973
5974 if (th->th_flags & TH_SYN)
5975 if (src->state < TCPS_SYN_SENT)
5976 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5977 if (th->th_flags & TH_FIN)
5978 if (src->state < TCPS_CLOSING)
5979 pf_set_protostate(*state, psrc, TCPS_CLOSING);
5980 if (th->th_flags & TH_ACK) {
5981 if (dst->state == TCPS_SYN_SENT) {
5982 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
5983 if (src->state == TCPS_ESTABLISHED &&
5984 (*state)->src_node != NULL &&
5985 pf_src_connlimit(state)) {
5986 REASON_SET(reason, PFRES_SRCLIMIT);
5987 return (PF_DROP);
5988 }
5989 } else if (dst->state == TCPS_CLOSING) {
5990 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
5991 } else if (src->state == TCPS_SYN_SENT &&
5992 dst->state < TCPS_SYN_SENT) {
5993 /*
5994 * Handle a special sloppy case where we only see one
5995 * half of the connection. If there is a ACK after
5996 * the initial SYN without ever seeing a packet from
5997 * the destination, set the connection to established.
5998 */
5999 pf_set_protostate(*state, PF_PEER_BOTH,
6000 TCPS_ESTABLISHED);
6001 dst->state = src->state = TCPS_ESTABLISHED;
6002 if ((*state)->src_node != NULL &&
6003 pf_src_connlimit(state)) {
6004 REASON_SET(reason, PFRES_SRCLIMIT);
6005 return (PF_DROP);
6006 }
6007 } else if (src->state == TCPS_CLOSING &&
6008 dst->state == TCPS_ESTABLISHED &&
6009 dst->seqlo == 0) {
6010 /*
6011 * Handle the closing of half connections where we
6012 * don't see the full bidirectional FIN/ACK+ACK
6013 * handshake.
6014 */
6015 pf_set_protostate(*state, pdst, TCPS_CLOSING);
6016 }
6017 }
6018 if (th->th_flags & TH_RST)
6019 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6020
6021 /* update expire time */
6022 (*state)->expire = pf_get_uptime();
6023 if (src->state >= TCPS_FIN_WAIT_2 &&
6024 dst->state >= TCPS_FIN_WAIT_2)
6025 (*state)->timeout = PFTM_TCP_CLOSED;
6026 else if (src->state >= TCPS_CLOSING &&
6027 dst->state >= TCPS_CLOSING)
6028 (*state)->timeout = PFTM_TCP_FIN_WAIT;
6029 else if (src->state < TCPS_ESTABLISHED ||
6030 dst->state < TCPS_ESTABLISHED)
6031 (*state)->timeout = PFTM_TCP_OPENING;
6032 else if (src->state >= TCPS_CLOSING ||
6033 dst->state >= TCPS_CLOSING)
6034 (*state)->timeout = PFTM_TCP_CLOSING;
6035 else
6036 (*state)->timeout = PFTM_TCP_ESTABLISHED;
6037
6038 return (PF_PASS);
6039 }
6040
6041 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate ** state,u_short * reason)6042 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
6043 {
6044 struct pf_state_key *sk = (*state)->key[pd->didx];
6045 struct tcphdr *th = &pd->hdr.tcp;
6046
6047 if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
6048 if (pd->dir != (*state)->direction) {
6049 REASON_SET(reason, PFRES_SYNPROXY);
6050 return (PF_SYNPROXY_DROP);
6051 }
6052 if (th->th_flags & TH_SYN) {
6053 if (ntohl(th->th_seq) != (*state)->src.seqlo) {
6054 REASON_SET(reason, PFRES_SYNPROXY);
6055 return (PF_DROP);
6056 }
6057 pf_send_tcp((*state)->rule, pd->af, pd->dst,
6058 pd->src, th->th_dport, th->th_sport,
6059 (*state)->src.seqhi, ntohl(th->th_seq) + 1,
6060 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0,
6061 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6062 REASON_SET(reason, PFRES_SYNPROXY);
6063 return (PF_SYNPROXY_DROP);
6064 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6065 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6066 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6067 REASON_SET(reason, PFRES_SYNPROXY);
6068 return (PF_DROP);
6069 } else if ((*state)->src_node != NULL &&
6070 pf_src_connlimit(state)) {
6071 REASON_SET(reason, PFRES_SRCLIMIT);
6072 return (PF_DROP);
6073 } else
6074 pf_set_protostate(*state, PF_PEER_SRC,
6075 PF_TCPS_PROXY_DST);
6076 }
6077 if ((*state)->src.state == PF_TCPS_PROXY_DST) {
6078 if (pd->dir == (*state)->direction) {
6079 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) ||
6080 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6081 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6082 REASON_SET(reason, PFRES_SYNPROXY);
6083 return (PF_DROP);
6084 }
6085 (*state)->src.max_win = MAX(ntohs(th->th_win), 1);
6086 if ((*state)->dst.seqhi == 1)
6087 (*state)->dst.seqhi = htonl(arc4random());
6088 pf_send_tcp((*state)->rule, pd->af,
6089 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6090 sk->port[pd->sidx], sk->port[pd->didx],
6091 (*state)->dst.seqhi, 0, TH_SYN, 0,
6092 (*state)->src.mss, 0,
6093 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6094 (*state)->tag, 0, (*state)->act.rtableid);
6095 REASON_SET(reason, PFRES_SYNPROXY);
6096 return (PF_SYNPROXY_DROP);
6097 } else if (((th->th_flags & (TH_SYN|TH_ACK)) !=
6098 (TH_SYN|TH_ACK)) ||
6099 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
6100 REASON_SET(reason, PFRES_SYNPROXY);
6101 return (PF_DROP);
6102 } else {
6103 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
6104 (*state)->dst.seqlo = ntohl(th->th_seq);
6105 pf_send_tcp((*state)->rule, pd->af, pd->dst,
6106 pd->src, th->th_dport, th->th_sport,
6107 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6108 TH_ACK, (*state)->src.max_win, 0, 0, 0,
6109 (*state)->tag, 0, (*state)->act.rtableid);
6110 pf_send_tcp((*state)->rule, pd->af,
6111 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6112 sk->port[pd->sidx], sk->port[pd->didx],
6113 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
6114 TH_ACK, (*state)->dst.max_win, 0, 0,
6115 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6116 (*state)->src.seqdiff = (*state)->dst.seqhi -
6117 (*state)->src.seqlo;
6118 (*state)->dst.seqdiff = (*state)->src.seqhi -
6119 (*state)->dst.seqlo;
6120 (*state)->src.seqhi = (*state)->src.seqlo +
6121 (*state)->dst.max_win;
6122 (*state)->dst.seqhi = (*state)->dst.seqlo +
6123 (*state)->src.max_win;
6124 (*state)->src.wscale = (*state)->dst.wscale = 0;
6125 pf_set_protostate(*state, PF_PEER_BOTH,
6126 TCPS_ESTABLISHED);
6127 REASON_SET(reason, PFRES_SYNPROXY);
6128 return (PF_SYNPROXY_DROP);
6129 }
6130 }
6131
6132 return (PF_PASS);
6133 }
6134
6135 static int
pf_test_state_tcp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6136 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd,
6137 u_short *reason)
6138 {
6139 struct pf_state_key_cmp key;
6140 struct tcphdr *th = &pd->hdr.tcp;
6141 int copyback = 0;
6142 int action;
6143 struct pf_state_peer *src, *dst;
6144
6145 bzero(&key, sizeof(key));
6146 key.af = pd->af;
6147 key.proto = IPPROTO_TCP;
6148 if (pd->dir == PF_IN) { /* wire side, straight */
6149 PF_ACPY(&key.addr[0], pd->src, key.af);
6150 PF_ACPY(&key.addr[1], pd->dst, key.af);
6151 key.port[0] = th->th_sport;
6152 key.port[1] = th->th_dport;
6153 } else { /* stack side, reverse */
6154 PF_ACPY(&key.addr[1], pd->src, key.af);
6155 PF_ACPY(&key.addr[0], pd->dst, key.af);
6156 key.port[1] = th->th_sport;
6157 key.port[0] = th->th_dport;
6158 }
6159
6160 STATE_LOOKUP(&key, *state, pd);
6161
6162 if (pd->dir == (*state)->direction) {
6163 src = &(*state)->src;
6164 dst = &(*state)->dst;
6165 } else {
6166 src = &(*state)->dst;
6167 dst = &(*state)->src;
6168 }
6169
6170 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
6171 return (action);
6172
6173 if (dst->state >= TCPS_FIN_WAIT_2 &&
6174 src->state >= TCPS_FIN_WAIT_2 &&
6175 (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) ||
6176 ((th->th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK &&
6177 pf_syncookie_check(pd) && pd->dir == PF_IN))) {
6178 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6179 printf("pf: state reuse ");
6180 pf_print_state(*state);
6181 pf_print_flags(th->th_flags);
6182 printf("\n");
6183 }
6184 /* XXX make sure it's the same direction ?? */
6185 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
6186 pf_unlink_state(*state);
6187 *state = NULL;
6188 return (PF_DROP);
6189 }
6190
6191 if ((*state)->state_flags & PFSTATE_SLOPPY) {
6192 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
6193 return (PF_DROP);
6194 } else {
6195 if (pf_tcp_track_full(state, pd, reason,
6196 ©back) == PF_DROP)
6197 return (PF_DROP);
6198 }
6199
6200 /* translate source/destination address, if necessary */
6201 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6202 struct pf_state_key *nk = (*state)->key[pd->didx];
6203
6204 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6205 nk->port[pd->sidx] != th->th_sport)
6206 pf_change_ap(pd->m, pd->src, &th->th_sport,
6207 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
6208 nk->port[pd->sidx], 0, pd->af);
6209
6210 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6211 nk->port[pd->didx] != th->th_dport)
6212 pf_change_ap(pd->m, pd->dst, &th->th_dport,
6213 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
6214 nk->port[pd->didx], 0, pd->af);
6215 copyback = 1;
6216 }
6217
6218 /* Copyback sequence modulation or stateful scrub changes if needed */
6219 if (copyback)
6220 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
6221
6222 return (PF_PASS);
6223 }
6224
6225 static int
pf_test_state_udp(struct pf_kstate ** state,struct pf_pdesc * pd)6226 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd)
6227 {
6228 struct pf_state_peer *src, *dst;
6229 struct pf_state_key_cmp key;
6230 struct udphdr *uh = &pd->hdr.udp;
6231 uint8_t psrc, pdst;
6232
6233 bzero(&key, sizeof(key));
6234 key.af = pd->af;
6235 key.proto = IPPROTO_UDP;
6236 if (pd->dir == PF_IN) { /* wire side, straight */
6237 PF_ACPY(&key.addr[0], pd->src, key.af);
6238 PF_ACPY(&key.addr[1], pd->dst, key.af);
6239 key.port[0] = uh->uh_sport;
6240 key.port[1] = uh->uh_dport;
6241 } else { /* stack side, reverse */
6242 PF_ACPY(&key.addr[1], pd->src, key.af);
6243 PF_ACPY(&key.addr[0], pd->dst, key.af);
6244 key.port[1] = uh->uh_sport;
6245 key.port[0] = uh->uh_dport;
6246 }
6247
6248 STATE_LOOKUP(&key, *state, pd);
6249
6250 if (pd->dir == (*state)->direction) {
6251 src = &(*state)->src;
6252 dst = &(*state)->dst;
6253 psrc = PF_PEER_SRC;
6254 pdst = PF_PEER_DST;
6255 } else {
6256 src = &(*state)->dst;
6257 dst = &(*state)->src;
6258 psrc = PF_PEER_DST;
6259 pdst = PF_PEER_SRC;
6260 }
6261
6262 /* update states */
6263 if (src->state < PFUDPS_SINGLE)
6264 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
6265 if (dst->state == PFUDPS_SINGLE)
6266 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
6267
6268 /* update expire time */
6269 (*state)->expire = pf_get_uptime();
6270 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
6271 (*state)->timeout = PFTM_UDP_MULTIPLE;
6272 else
6273 (*state)->timeout = PFTM_UDP_SINGLE;
6274
6275 /* translate source/destination address, if necessary */
6276 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6277 struct pf_state_key *nk = (*state)->key[pd->didx];
6278
6279 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6280 nk->port[pd->sidx] != uh->uh_sport)
6281 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum,
6282 &uh->uh_sum, &nk->addr[pd->sidx],
6283 nk->port[pd->sidx], 1, pd->af);
6284
6285 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6286 nk->port[pd->didx] != uh->uh_dport)
6287 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum,
6288 &uh->uh_sum, &nk->addr[pd->didx],
6289 nk->port[pd->didx], 1, pd->af);
6290 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh);
6291 }
6292
6293 return (PF_PASS);
6294 }
6295
6296 static int
pf_test_state_sctp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6297 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd,
6298 u_short *reason)
6299 {
6300 struct pf_state_key_cmp key;
6301 struct pf_state_peer *src, *dst;
6302 struct sctphdr *sh = &pd->hdr.sctp;
6303 u_int8_t psrc; //, pdst;
6304
6305 bzero(&key, sizeof(key));
6306 key.af = pd->af;
6307 key.proto = IPPROTO_SCTP;
6308 if (pd->dir == PF_IN) { /* wire side, straight */
6309 PF_ACPY(&key.addr[0], pd->src, key.af);
6310 PF_ACPY(&key.addr[1], pd->dst, key.af);
6311 key.port[0] = sh->src_port;
6312 key.port[1] = sh->dest_port;
6313 } else { /* stack side, reverse */
6314 PF_ACPY(&key.addr[1], pd->src, key.af);
6315 PF_ACPY(&key.addr[0], pd->dst, key.af);
6316 key.port[1] = sh->src_port;
6317 key.port[0] = sh->dest_port;
6318 }
6319
6320 STATE_LOOKUP(&key, *state, pd);
6321
6322 if (pd->dir == (*state)->direction) {
6323 src = &(*state)->src;
6324 dst = &(*state)->dst;
6325 psrc = PF_PEER_SRC;
6326 } else {
6327 src = &(*state)->dst;
6328 dst = &(*state)->src;
6329 psrc = PF_PEER_DST;
6330 }
6331
6332 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
6333 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
6334 pd->sctp_flags & PFDESC_SCTP_INIT) {
6335 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
6336 pf_unlink_state(*state);
6337 *state = NULL;
6338 return (PF_DROP);
6339 }
6340
6341 /* Track state. */
6342 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
6343 if (src->state < SCTP_COOKIE_WAIT) {
6344 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
6345 (*state)->timeout = PFTM_SCTP_OPENING;
6346 }
6347 }
6348 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
6349 MPASS(dst->scrub != NULL);
6350 if (dst->scrub->pfss_v_tag == 0)
6351 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
6352 }
6353
6354 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
6355 if (src->state < SCTP_ESTABLISHED) {
6356 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
6357 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
6358 }
6359 }
6360 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT |
6361 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
6362 if (src->state < SCTP_SHUTDOWN_PENDING) {
6363 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
6364 (*state)->timeout = PFTM_SCTP_CLOSING;
6365 }
6366 }
6367 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
6368 pf_set_protostate(*state, psrc, SCTP_CLOSED);
6369 (*state)->timeout = PFTM_SCTP_CLOSED;
6370 }
6371
6372 if (src->scrub != NULL) {
6373 if (src->scrub->pfss_v_tag == 0) {
6374 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
6375 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
6376 return (PF_DROP);
6377 }
6378
6379 (*state)->expire = pf_get_uptime();
6380
6381 /* translate source/destination address, if necessary */
6382 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6383 uint16_t checksum = 0;
6384 struct pf_state_key *nk = (*state)->key[pd->didx];
6385
6386 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6387 nk->port[pd->sidx] != pd->hdr.sctp.src_port) {
6388 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port,
6389 pd->ip_sum, &checksum, &nk->addr[pd->sidx],
6390 nk->port[pd->sidx], 1, pd->af);
6391 }
6392
6393 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6394 nk->port[pd->didx] != pd->hdr.sctp.dest_port) {
6395 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port,
6396 pd->ip_sum, &checksum, &nk->addr[pd->didx],
6397 nk->port[pd->didx], 1, pd->af);
6398 }
6399 }
6400
6401 return (PF_PASS);
6402 }
6403
6404 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)6405 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
6406 {
6407 struct pf_sctp_endpoint key;
6408 struct pf_sctp_endpoint *ep;
6409 struct pf_state_key *sks = s->key[PF_SK_STACK];
6410 struct pf_sctp_source *i, *tmp;
6411
6412 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
6413 return;
6414
6415 PF_SCTP_ENDPOINTS_LOCK();
6416
6417 key.v_tag = s->dst.scrub->pfss_v_tag;
6418 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6419 if (ep != NULL) {
6420 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
6421 if (pf_addr_cmp(&i->addr,
6422 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
6423 s->key[PF_SK_WIRE]->af) == 0) {
6424 SDT_PROBE3(pf, sctp, multihome, remove,
6425 key.v_tag, s, i);
6426 TAILQ_REMOVE(&ep->sources, i, entry);
6427 free(i, M_PFTEMP);
6428 break;
6429 }
6430 }
6431
6432 if (TAILQ_EMPTY(&ep->sources)) {
6433 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6434 free(ep, M_PFTEMP);
6435 }
6436 }
6437
6438 /* Other direction. */
6439 key.v_tag = s->src.scrub->pfss_v_tag;
6440 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6441 if (ep != NULL) {
6442 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
6443 if (pf_addr_cmp(&i->addr,
6444 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
6445 s->key[PF_SK_WIRE]->af) == 0) {
6446 SDT_PROBE3(pf, sctp, multihome, remove,
6447 key.v_tag, s, i);
6448 TAILQ_REMOVE(&ep->sources, i, entry);
6449 free(i, M_PFTEMP);
6450 break;
6451 }
6452 }
6453
6454 if (TAILQ_EMPTY(&ep->sources)) {
6455 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6456 free(ep, M_PFTEMP);
6457 }
6458 }
6459
6460 PF_SCTP_ENDPOINTS_UNLOCK();
6461 }
6462
6463 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)6464 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
6465 {
6466 struct pf_sctp_endpoint key = {
6467 .v_tag = v_tag,
6468 };
6469 struct pf_sctp_source *i;
6470 struct pf_sctp_endpoint *ep;
6471
6472 PF_SCTP_ENDPOINTS_LOCK();
6473
6474 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6475 if (ep == NULL) {
6476 ep = malloc(sizeof(struct pf_sctp_endpoint),
6477 M_PFTEMP, M_NOWAIT);
6478 if (ep == NULL) {
6479 PF_SCTP_ENDPOINTS_UNLOCK();
6480 return;
6481 }
6482
6483 ep->v_tag = v_tag;
6484 TAILQ_INIT(&ep->sources);
6485 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6486 }
6487
6488 /* Avoid inserting duplicates. */
6489 TAILQ_FOREACH(i, &ep->sources, entry) {
6490 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
6491 PF_SCTP_ENDPOINTS_UNLOCK();
6492 return;
6493 }
6494 }
6495
6496 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
6497 if (i == NULL) {
6498 PF_SCTP_ENDPOINTS_UNLOCK();
6499 return;
6500 }
6501
6502 i->af = pd->af;
6503 memcpy(&i->addr, a, sizeof(*a));
6504 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
6505 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
6506
6507 PF_SCTP_ENDPOINTS_UNLOCK();
6508 }
6509
6510 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)6511 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
6512 struct pf_kstate *s, int action)
6513 {
6514 struct pf_sctp_multihome_job *j, *tmp;
6515 struct pf_sctp_source *i;
6516 int ret __unused;
6517 struct pf_kstate *sm = NULL;
6518 struct pf_krule *ra = NULL;
6519 struct pf_krule *r = &V_pf_default_rule;
6520 struct pf_kruleset *rs = NULL;
6521 bool do_extra = true;
6522
6523 PF_RULES_RLOCK_TRACKER;
6524
6525 again:
6526 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
6527 if (s == NULL || action != PF_PASS)
6528 goto free;
6529
6530 /* Confirm we don't recurse here. */
6531 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
6532
6533 switch (j->op) {
6534 case SCTP_ADD_IP_ADDRESS: {
6535 uint32_t v_tag = pd->sctp_initiate_tag;
6536
6537 if (v_tag == 0) {
6538 if (s->direction == pd->dir)
6539 v_tag = s->src.scrub->pfss_v_tag;
6540 else
6541 v_tag = s->dst.scrub->pfss_v_tag;
6542 }
6543
6544 /*
6545 * Avoid duplicating states. We'll already have
6546 * created a state based on the source address of
6547 * the packet, but SCTP endpoints may also list this
6548 * address again in the INIT(_ACK) parameters.
6549 */
6550 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
6551 break;
6552 }
6553
6554 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
6555 PF_RULES_RLOCK();
6556 sm = NULL;
6557 /*
6558 * New connections need to be floating, because
6559 * we cannot know what interfaces it will use.
6560 * That's why we pass V_pfi_all rather than kif.
6561 */
6562 j->pd.kif = V_pfi_all;
6563 ret = pf_test_rule(&r, &sm,
6564 &j->pd, &ra, &rs, NULL);
6565 PF_RULES_RUNLOCK();
6566 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
6567 if (ret != PF_DROP && sm != NULL) {
6568 /* Inherit v_tag values. */
6569 if (sm->direction == s->direction) {
6570 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
6571 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
6572 } else {
6573 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
6574 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
6575 }
6576 PF_STATE_UNLOCK(sm);
6577 } else {
6578 /* If we try duplicate inserts? */
6579 break;
6580 }
6581
6582 /* Only add the address if we've actually allowed the state. */
6583 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
6584
6585 if (! do_extra) {
6586 break;
6587 }
6588 /*
6589 * We need to do this for each of our source addresses.
6590 * Find those based on the verification tag.
6591 */
6592 struct pf_sctp_endpoint key = {
6593 .v_tag = pd->hdr.sctp.v_tag,
6594 };
6595 struct pf_sctp_endpoint *ep;
6596
6597 PF_SCTP_ENDPOINTS_LOCK();
6598 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6599 if (ep == NULL) {
6600 PF_SCTP_ENDPOINTS_UNLOCK();
6601 break;
6602 }
6603 MPASS(ep != NULL);
6604
6605 TAILQ_FOREACH(i, &ep->sources, entry) {
6606 struct pf_sctp_multihome_job *nj;
6607
6608 /* SCTP can intermingle IPv4 and IPv6. */
6609 if (i->af != pd->af)
6610 continue;
6611
6612 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
6613 if (! nj) {
6614 continue;
6615 }
6616 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
6617 memcpy(&nj->src, &j->src, sizeof(nj->src));
6618 nj->pd.src = &nj->src;
6619 // New destination address!
6620 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
6621 nj->pd.dst = &nj->dst;
6622 nj->pd.m = j->pd.m;
6623 nj->op = j->op;
6624
6625 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
6626 }
6627 PF_SCTP_ENDPOINTS_UNLOCK();
6628
6629 break;
6630 }
6631 case SCTP_DEL_IP_ADDRESS: {
6632 struct pf_state_key_cmp key;
6633 uint8_t psrc;
6634
6635 bzero(&key, sizeof(key));
6636 key.af = j->pd.af;
6637 key.proto = IPPROTO_SCTP;
6638 if (j->pd.dir == PF_IN) { /* wire side, straight */
6639 PF_ACPY(&key.addr[0], j->pd.src, key.af);
6640 PF_ACPY(&key.addr[1], j->pd.dst, key.af);
6641 key.port[0] = j->pd.hdr.sctp.src_port;
6642 key.port[1] = j->pd.hdr.sctp.dest_port;
6643 } else { /* stack side, reverse */
6644 PF_ACPY(&key.addr[1], j->pd.src, key.af);
6645 PF_ACPY(&key.addr[0], j->pd.dst, key.af);
6646 key.port[1] = j->pd.hdr.sctp.src_port;
6647 key.port[0] = j->pd.hdr.sctp.dest_port;
6648 }
6649
6650 sm = pf_find_state(kif, &key, j->pd.dir);
6651 if (sm != NULL) {
6652 PF_STATE_LOCK_ASSERT(sm);
6653 if (j->pd.dir == sm->direction) {
6654 psrc = PF_PEER_SRC;
6655 } else {
6656 psrc = PF_PEER_DST;
6657 }
6658 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
6659 sm->timeout = PFTM_SCTP_CLOSING;
6660 PF_STATE_UNLOCK(sm);
6661 }
6662 break;
6663 default:
6664 panic("Unknown op %#x", j->op);
6665 }
6666 }
6667
6668 free:
6669 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
6670 free(j, M_PFTEMP);
6671 }
6672
6673 /* We may have inserted extra work while processing the list. */
6674 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
6675 do_extra = false;
6676 goto again;
6677 }
6678 }
6679
6680 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)6681 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
6682 {
6683 int off = 0;
6684 struct pf_sctp_multihome_job *job;
6685
6686 while (off < len) {
6687 struct sctp_paramhdr h;
6688
6689 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
6690 pd->af))
6691 return (PF_DROP);
6692
6693 /* Parameters are at least 4 bytes. */
6694 if (ntohs(h.param_length) < 4)
6695 return (PF_DROP);
6696
6697 switch (ntohs(h.param_type)) {
6698 case SCTP_IPV4_ADDRESS: {
6699 struct in_addr t;
6700
6701 if (ntohs(h.param_length) !=
6702 (sizeof(struct sctp_paramhdr) + sizeof(t)))
6703 return (PF_DROP);
6704
6705 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
6706 NULL, NULL, pd->af))
6707 return (PF_DROP);
6708
6709 if (in_nullhost(t))
6710 t.s_addr = pd->src->v4.s_addr;
6711
6712 /*
6713 * We hold the state lock (idhash) here, which means
6714 * that we can't acquire the keyhash, or we'll get a
6715 * LOR (and potentially double-lock things too). We also
6716 * can't release the state lock here, so instead we'll
6717 * enqueue this for async handling.
6718 * There's a relatively small race here, in that a
6719 * packet using the new addresses could arrive already,
6720 * but that's just though luck for it.
6721 */
6722 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
6723 if (! job)
6724 return (PF_DROP);
6725
6726 memcpy(&job->pd, pd, sizeof(*pd));
6727
6728 // New source address!
6729 memcpy(&job->src, &t, sizeof(t));
6730 job->pd.src = &job->src;
6731 memcpy(&job->dst, pd->dst, sizeof(job->dst));
6732 job->pd.dst = &job->dst;
6733 job->pd.m = pd->m;
6734 job->op = op;
6735
6736 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
6737 break;
6738 }
6739 #ifdef INET6
6740 case SCTP_IPV6_ADDRESS: {
6741 struct in6_addr t;
6742
6743 if (ntohs(h.param_length) !=
6744 (sizeof(struct sctp_paramhdr) + sizeof(t)))
6745 return (PF_DROP);
6746
6747 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
6748 NULL, NULL, pd->af))
6749 return (PF_DROP);
6750 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
6751 break;
6752 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
6753 memcpy(&t, &pd->src->v6, sizeof(t));
6754
6755 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
6756 if (! job)
6757 return (PF_DROP);
6758
6759 memcpy(&job->pd, pd, sizeof(*pd));
6760 memcpy(&job->src, &t, sizeof(t));
6761 job->pd.src = &job->src;
6762 memcpy(&job->dst, pd->dst, sizeof(job->dst));
6763 job->pd.dst = &job->dst;
6764 job->pd.m = pd->m;
6765 job->op = op;
6766
6767 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
6768 break;
6769 }
6770 #endif
6771 case SCTP_ADD_IP_ADDRESS: {
6772 int ret;
6773 struct sctp_asconf_paramhdr ah;
6774
6775 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
6776 NULL, NULL, pd->af))
6777 return (PF_DROP);
6778
6779 ret = pf_multihome_scan(start + off + sizeof(ah),
6780 ntohs(ah.ph.param_length) - sizeof(ah), pd,
6781 SCTP_ADD_IP_ADDRESS);
6782 if (ret != PF_PASS)
6783 return (ret);
6784 break;
6785 }
6786 case SCTP_DEL_IP_ADDRESS: {
6787 int ret;
6788 struct sctp_asconf_paramhdr ah;
6789
6790 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
6791 NULL, NULL, pd->af))
6792 return (PF_DROP);
6793 ret = pf_multihome_scan(start + off + sizeof(ah),
6794 ntohs(ah.ph.param_length) - sizeof(ah), pd,
6795 SCTP_DEL_IP_ADDRESS);
6796 if (ret != PF_PASS)
6797 return (ret);
6798 break;
6799 }
6800 default:
6801 break;
6802 }
6803
6804 off += roundup(ntohs(h.param_length), 4);
6805 }
6806
6807 return (PF_PASS);
6808 }
6809 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)6810 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
6811 {
6812 start += sizeof(struct sctp_init_chunk);
6813 len -= sizeof(struct sctp_init_chunk);
6814
6815 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
6816 }
6817
6818 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)6819 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
6820 {
6821 start += sizeof(struct sctp_asconf_chunk);
6822 len -= sizeof(struct sctp_asconf_chunk);
6823
6824 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
6825 }
6826
6827 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,int direction,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)6828 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
6829 struct pf_kstate **state, int direction,
6830 u_int16_t icmpid, u_int16_t type, int icmp_dir,
6831 int *iidx, int multi, int inner)
6832 {
6833 key->af = pd->af;
6834 key->proto = pd->proto;
6835 if (icmp_dir == PF_IN) {
6836 *iidx = pd->sidx;
6837 key->port[pd->sidx] = icmpid;
6838 key->port[pd->didx] = type;
6839 } else {
6840 *iidx = pd->didx;
6841 key->port[pd->sidx] = type;
6842 key->port[pd->didx] = icmpid;
6843 }
6844 if (pf_state_key_addr_setup(pd, key, multi))
6845 return (PF_DROP);
6846
6847 STATE_LOOKUP(key, *state, pd);
6848
6849 if ((*state)->state_flags & PFSTATE_SLOPPY)
6850 return (-1);
6851
6852 /* Is this ICMP message flowing in right direction? */
6853 if ((*state)->rule->type &&
6854 (((!inner && (*state)->direction == direction) ||
6855 (inner && (*state)->direction != direction)) ?
6856 PF_IN : PF_OUT) != icmp_dir) {
6857 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6858 printf("pf: icmp type %d in wrong direction (%d): ",
6859 ntohs(type), icmp_dir);
6860 pf_print_state(*state);
6861 printf("\n");
6862 }
6863 PF_STATE_UNLOCK(*state);
6864 *state = NULL;
6865 return (PF_DROP);
6866 }
6867 return (-1);
6868 }
6869
6870 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6871 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
6872 u_short *reason)
6873 {
6874 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
6875 u_int16_t *icmpsum, virtual_id, virtual_type;
6876 u_int8_t icmptype, icmpcode;
6877 int icmp_dir, iidx, ret, multi;
6878 struct pf_state_key_cmp key;
6879 #ifdef INET
6880 u_int16_t icmpid;
6881 #endif
6882
6883 MPASS(*state == NULL);
6884
6885 bzero(&key, sizeof(key));
6886 switch (pd->proto) {
6887 #ifdef INET
6888 case IPPROTO_ICMP:
6889 icmptype = pd->hdr.icmp.icmp_type;
6890 icmpcode = pd->hdr.icmp.icmp_code;
6891 icmpid = pd->hdr.icmp.icmp_id;
6892 icmpsum = &pd->hdr.icmp.icmp_cksum;
6893 break;
6894 #endif /* INET */
6895 #ifdef INET6
6896 case IPPROTO_ICMPV6:
6897 icmptype = pd->hdr.icmp6.icmp6_type;
6898 icmpcode = pd->hdr.icmp6.icmp6_code;
6899 #ifdef INET
6900 icmpid = pd->hdr.icmp6.icmp6_id;
6901 #endif
6902 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
6903 break;
6904 #endif /* INET6 */
6905 }
6906
6907 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi,
6908 &virtual_id, &virtual_type) == 0) {
6909 /*
6910 * ICMP query/reply message not related to a TCP/UDP packet.
6911 * Search for an ICMP state.
6912 */
6913 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir,
6914 virtual_id, virtual_type, icmp_dir, &iidx,
6915 PF_ICMP_MULTI_NONE, 0);
6916 if (ret >= 0) {
6917 MPASS(*state == NULL);
6918 if (ret == PF_DROP && pd->af == AF_INET6 &&
6919 icmp_dir == PF_OUT) {
6920 ret = pf_icmp_state_lookup(&key, pd, state,
6921 pd->dir, virtual_id, virtual_type,
6922 icmp_dir, &iidx, multi, 0);
6923 if (ret >= 0) {
6924 MPASS(*state == NULL);
6925 return (ret);
6926 }
6927 } else
6928 return (ret);
6929 }
6930
6931 (*state)->expire = pf_get_uptime();
6932 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
6933
6934 /* translate source/destination address, if necessary */
6935 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6936 struct pf_state_key *nk = (*state)->key[pd->didx];
6937
6938 switch (pd->af) {
6939 #ifdef INET
6940 case AF_INET:
6941 if (PF_ANEQ(pd->src,
6942 &nk->addr[pd->sidx], AF_INET))
6943 pf_change_a(&saddr->v4.s_addr,
6944 pd->ip_sum,
6945 nk->addr[pd->sidx].v4.s_addr, 0);
6946
6947 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx],
6948 AF_INET))
6949 pf_change_a(&daddr->v4.s_addr,
6950 pd->ip_sum,
6951 nk->addr[pd->didx].v4.s_addr, 0);
6952
6953 if (nk->port[iidx] !=
6954 pd->hdr.icmp.icmp_id) {
6955 pd->hdr.icmp.icmp_cksum =
6956 pf_cksum_fixup(
6957 pd->hdr.icmp.icmp_cksum, icmpid,
6958 nk->port[iidx], 0);
6959 pd->hdr.icmp.icmp_id =
6960 nk->port[iidx];
6961 }
6962
6963 m_copyback(pd->m, pd->off, ICMP_MINLEN,
6964 (caddr_t )&pd->hdr.icmp);
6965 break;
6966 #endif /* INET */
6967 #ifdef INET6
6968 case AF_INET6:
6969 if (PF_ANEQ(pd->src,
6970 &nk->addr[pd->sidx], AF_INET6))
6971 pf_change_a6(saddr,
6972 &pd->hdr.icmp6.icmp6_cksum,
6973 &nk->addr[pd->sidx], 0);
6974
6975 if (PF_ANEQ(pd->dst,
6976 &nk->addr[pd->didx], AF_INET6))
6977 pf_change_a6(daddr,
6978 &pd->hdr.icmp6.icmp6_cksum,
6979 &nk->addr[pd->didx], 0);
6980
6981 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
6982 (caddr_t )&pd->hdr.icmp6);
6983 break;
6984 #endif /* INET6 */
6985 }
6986 }
6987 return (PF_PASS);
6988
6989 } else {
6990 /*
6991 * ICMP error message in response to a TCP/UDP packet.
6992 * Extract the inner TCP/UDP header and search for that state.
6993 */
6994
6995 struct pf_pdesc pd2;
6996 bzero(&pd2, sizeof pd2);
6997 #ifdef INET
6998 struct ip h2;
6999 #endif /* INET */
7000 #ifdef INET6
7001 struct ip6_hdr h2_6;
7002 int fragoff2, extoff2;
7003 u_int32_t jumbolen;
7004 #endif /* INET6 */
7005 int ipoff2 = 0;
7006
7007 pd2.af = pd->af;
7008 pd2.dir = pd->dir;
7009 /* Payload packet is from the opposite direction. */
7010 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7011 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7012 pd2.m = pd->m;
7013 switch (pd->af) {
7014 #ifdef INET
7015 case AF_INET:
7016 /* offset of h2 in mbuf chain */
7017 ipoff2 = pd->off + ICMP_MINLEN;
7018
7019 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7020 NULL, reason, pd2.af)) {
7021 DPFPRINTF(PF_DEBUG_MISC,
7022 ("pf: ICMP error message too short "
7023 "(ip)\n"));
7024 return (PF_DROP);
7025 }
7026 /*
7027 * ICMP error messages don't refer to non-first
7028 * fragments
7029 */
7030 if (h2.ip_off & htons(IP_OFFMASK)) {
7031 REASON_SET(reason, PFRES_FRAG);
7032 return (PF_DROP);
7033 }
7034
7035 /* offset of protocol header that follows h2 */
7036 pd2.off = ipoff2 + (h2.ip_hl << 2);
7037
7038 pd2.proto = h2.ip_p;
7039 pd2.src = (struct pf_addr *)&h2.ip_src;
7040 pd2.dst = (struct pf_addr *)&h2.ip_dst;
7041 pd2.ip_sum = &h2.ip_sum;
7042 break;
7043 #endif /* INET */
7044 #ifdef INET6
7045 case AF_INET6:
7046 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7047
7048 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7049 NULL, reason, pd2.af)) {
7050 DPFPRINTF(PF_DEBUG_MISC,
7051 ("pf: ICMP error message too short "
7052 "(ip6)\n"));
7053 return (PF_DROP);
7054 }
7055 pd2.off = ipoff2;
7056 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2,
7057 &fragoff2, &pd2.proto, &jumbolen,
7058 reason) != PF_PASS)
7059 return (PF_DROP);
7060
7061 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7062 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7063 pd2.ip_sum = NULL;
7064 break;
7065 #endif /* INET6 */
7066 }
7067
7068 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7069 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7070 printf("pf: BAD ICMP %d:%d outer dst: ",
7071 icmptype, icmpcode);
7072 pf_print_host(pd->src, 0, pd->af);
7073 printf(" -> ");
7074 pf_print_host(pd->dst, 0, pd->af);
7075 printf(" inner src: ");
7076 pf_print_host(pd2.src, 0, pd2.af);
7077 printf(" -> ");
7078 pf_print_host(pd2.dst, 0, pd2.af);
7079 printf("\n");
7080 }
7081 REASON_SET(reason, PFRES_BADSTATE);
7082 return (PF_DROP);
7083 }
7084
7085 switch (pd2.proto) {
7086 case IPPROTO_TCP: {
7087 struct tcphdr th;
7088 u_int32_t seq;
7089 struct pf_state_peer *src, *dst;
7090 u_int8_t dws;
7091 int copyback = 0;
7092
7093 /*
7094 * Only the first 8 bytes of the TCP header can be
7095 * expected. Don't access any TCP header fields after
7096 * th_seq, an ackskew test is not possible.
7097 */
7098 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason,
7099 pd2.af)) {
7100 DPFPRINTF(PF_DEBUG_MISC,
7101 ("pf: ICMP error message too short "
7102 "(tcp)\n"));
7103 return (PF_DROP);
7104 }
7105
7106 key.af = pd2.af;
7107 key.proto = IPPROTO_TCP;
7108 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7109 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7110 key.port[pd2.sidx] = th.th_sport;
7111 key.port[pd2.didx] = th.th_dport;
7112
7113 STATE_LOOKUP(&key, *state, pd);
7114
7115 if (pd->dir == (*state)->direction) {
7116 src = &(*state)->dst;
7117 dst = &(*state)->src;
7118 } else {
7119 src = &(*state)->src;
7120 dst = &(*state)->dst;
7121 }
7122
7123 if (src->wscale && dst->wscale)
7124 dws = dst->wscale & PF_WSCALE_MASK;
7125 else
7126 dws = 0;
7127
7128 /* Demodulate sequence number */
7129 seq = ntohl(th.th_seq) - src->seqdiff;
7130 if (src->seqdiff) {
7131 pf_change_a(&th.th_seq, icmpsum,
7132 htonl(seq), 0);
7133 copyback = 1;
7134 }
7135
7136 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
7137 (!SEQ_GEQ(src->seqhi, seq) ||
7138 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
7139 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7140 printf("pf: BAD ICMP %d:%d ",
7141 icmptype, icmpcode);
7142 pf_print_host(pd->src, 0, pd->af);
7143 printf(" -> ");
7144 pf_print_host(pd->dst, 0, pd->af);
7145 printf(" state: ");
7146 pf_print_state(*state);
7147 printf(" seq=%u\n", seq);
7148 }
7149 REASON_SET(reason, PFRES_BADSTATE);
7150 return (PF_DROP);
7151 } else {
7152 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7153 printf("pf: OK ICMP %d:%d ",
7154 icmptype, icmpcode);
7155 pf_print_host(pd->src, 0, pd->af);
7156 printf(" -> ");
7157 pf_print_host(pd->dst, 0, pd->af);
7158 printf(" state: ");
7159 pf_print_state(*state);
7160 printf(" seq=%u\n", seq);
7161 }
7162 }
7163
7164 /* translate source/destination address, if necessary */
7165 if ((*state)->key[PF_SK_WIRE] !=
7166 (*state)->key[PF_SK_STACK]) {
7167 struct pf_state_key *nk =
7168 (*state)->key[pd->didx];
7169
7170 if (PF_ANEQ(pd2.src,
7171 &nk->addr[pd2.sidx], pd2.af) ||
7172 nk->port[pd2.sidx] != th.th_sport)
7173 pf_change_icmp(pd2.src, &th.th_sport,
7174 daddr, &nk->addr[pd2.sidx],
7175 nk->port[pd2.sidx], NULL,
7176 pd2.ip_sum, icmpsum,
7177 pd->ip_sum, 0, pd2.af);
7178
7179 if (PF_ANEQ(pd2.dst,
7180 &nk->addr[pd2.didx], pd2.af) ||
7181 nk->port[pd2.didx] != th.th_dport)
7182 pf_change_icmp(pd2.dst, &th.th_dport,
7183 saddr, &nk->addr[pd2.didx],
7184 nk->port[pd2.didx], NULL,
7185 pd2.ip_sum, icmpsum,
7186 pd->ip_sum, 0, pd2.af);
7187 copyback = 1;
7188 }
7189
7190 if (copyback) {
7191 switch (pd2.af) {
7192 #ifdef INET
7193 case AF_INET:
7194 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7195 (caddr_t )&pd->hdr.icmp);
7196 m_copyback(pd->m, ipoff2, sizeof(h2),
7197 (caddr_t )&h2);
7198 break;
7199 #endif /* INET */
7200 #ifdef INET6
7201 case AF_INET6:
7202 m_copyback(pd->m, pd->off,
7203 sizeof(struct icmp6_hdr),
7204 (caddr_t )&pd->hdr.icmp6);
7205 m_copyback(pd->m, ipoff2, sizeof(h2_6),
7206 (caddr_t )&h2_6);
7207 break;
7208 #endif /* INET6 */
7209 }
7210 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th);
7211 }
7212
7213 return (PF_PASS);
7214 break;
7215 }
7216 case IPPROTO_UDP: {
7217 struct udphdr uh;
7218
7219 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh),
7220 NULL, reason, pd2.af)) {
7221 DPFPRINTF(PF_DEBUG_MISC,
7222 ("pf: ICMP error message too short "
7223 "(udp)\n"));
7224 return (PF_DROP);
7225 }
7226
7227 key.af = pd2.af;
7228 key.proto = IPPROTO_UDP;
7229 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7230 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7231 key.port[pd2.sidx] = uh.uh_sport;
7232 key.port[pd2.didx] = uh.uh_dport;
7233
7234 STATE_LOOKUP(&key, *state, pd);
7235
7236 /* translate source/destination address, if necessary */
7237 if ((*state)->key[PF_SK_WIRE] !=
7238 (*state)->key[PF_SK_STACK]) {
7239 struct pf_state_key *nk =
7240 (*state)->key[pd->didx];
7241
7242 if (PF_ANEQ(pd2.src,
7243 &nk->addr[pd2.sidx], pd2.af) ||
7244 nk->port[pd2.sidx] != uh.uh_sport)
7245 pf_change_icmp(pd2.src, &uh.uh_sport,
7246 daddr, &nk->addr[pd2.sidx],
7247 nk->port[pd2.sidx], &uh.uh_sum,
7248 pd2.ip_sum, icmpsum,
7249 pd->ip_sum, 1, pd2.af);
7250
7251 if (PF_ANEQ(pd2.dst,
7252 &nk->addr[pd2.didx], pd2.af) ||
7253 nk->port[pd2.didx] != uh.uh_dport)
7254 pf_change_icmp(pd2.dst, &uh.uh_dport,
7255 saddr, &nk->addr[pd2.didx],
7256 nk->port[pd2.didx], &uh.uh_sum,
7257 pd2.ip_sum, icmpsum,
7258 pd->ip_sum, 1, pd2.af);
7259
7260 switch (pd2.af) {
7261 #ifdef INET
7262 case AF_INET:
7263 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7264 (caddr_t )&pd->hdr.icmp);
7265 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7266 break;
7267 #endif /* INET */
7268 #ifdef INET6
7269 case AF_INET6:
7270 m_copyback(pd->m, pd->off,
7271 sizeof(struct icmp6_hdr),
7272 (caddr_t )&pd->hdr.icmp6);
7273 m_copyback(pd->m, ipoff2, sizeof(h2_6),
7274 (caddr_t )&h2_6);
7275 break;
7276 #endif /* INET6 */
7277 }
7278 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh);
7279 }
7280 return (PF_PASS);
7281 break;
7282 }
7283 #ifdef INET
7284 case IPPROTO_ICMP: {
7285 struct icmp *iih = &pd2.hdr.icmp;
7286
7287 if (pd2.af != AF_INET) {
7288 REASON_SET(reason, PFRES_NORM);
7289 return (PF_DROP);
7290 }
7291
7292 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
7293 NULL, reason, pd2.af)) {
7294 DPFPRINTF(PF_DEBUG_MISC,
7295 ("pf: ICMP error message too short i"
7296 "(icmp)\n"));
7297 return (PF_DROP);
7298 }
7299
7300 icmpid = iih->icmp_id;
7301 pf_icmp_mapping(&pd2, iih->icmp_type,
7302 &icmp_dir, &multi, &virtual_id, &virtual_type);
7303
7304 ret = pf_icmp_state_lookup(&key, &pd2, state,
7305 pd2.dir, virtual_id, virtual_type,
7306 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
7307 if (ret >= 0) {
7308 MPASS(*state == NULL);
7309 return (ret);
7310 }
7311
7312 /* translate source/destination address, if necessary */
7313 if ((*state)->key[PF_SK_WIRE] !=
7314 (*state)->key[PF_SK_STACK]) {
7315 struct pf_state_key *nk =
7316 (*state)->key[pd->didx];
7317
7318 if (PF_ANEQ(pd2.src,
7319 &nk->addr[pd2.sidx], pd2.af) ||
7320 (virtual_type == htons(ICMP_ECHO) &&
7321 nk->port[iidx] != iih->icmp_id))
7322 pf_change_icmp(pd2.src,
7323 (virtual_type == htons(ICMP_ECHO)) ?
7324 &iih->icmp_id : NULL,
7325 daddr, &nk->addr[pd2.sidx],
7326 (virtual_type == htons(ICMP_ECHO)) ?
7327 nk->port[iidx] : 0, NULL,
7328 pd2.ip_sum, icmpsum,
7329 pd->ip_sum, 0, AF_INET);
7330
7331 if (PF_ANEQ(pd2.dst,
7332 &nk->addr[pd2.didx], pd2.af))
7333 pf_change_icmp(pd2.dst, NULL, NULL,
7334 &nk->addr[pd2.didx], 0, NULL,
7335 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
7336 AF_INET);
7337
7338 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
7339 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7340 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
7341 }
7342 return (PF_PASS);
7343 break;
7344 }
7345 #endif /* INET */
7346 #ifdef INET6
7347 case IPPROTO_ICMPV6: {
7348 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
7349
7350 if (pd2.af != AF_INET6) {
7351 REASON_SET(reason, PFRES_NORM);
7352 return (PF_DROP);
7353 }
7354
7355 if (!pf_pull_hdr(pd->m, pd2.off, iih,
7356 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
7357 DPFPRINTF(PF_DEBUG_MISC,
7358 ("pf: ICMP error message too short "
7359 "(icmp6)\n"));
7360 return (PF_DROP);
7361 }
7362
7363 pf_icmp_mapping(&pd2, iih->icmp6_type,
7364 &icmp_dir, &multi, &virtual_id, &virtual_type);
7365
7366 ret = pf_icmp_state_lookup(&key, &pd2, state,
7367 pd->dir, virtual_id, virtual_type,
7368 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
7369 if (ret >= 0) {
7370 MPASS(*state == NULL);
7371 if (ret == PF_DROP && pd2.af == AF_INET6 &&
7372 icmp_dir == PF_OUT) {
7373 ret = pf_icmp_state_lookup(&key, &pd2,
7374 state, pd->dir,
7375 virtual_id, virtual_type,
7376 icmp_dir, &iidx, multi, 1);
7377 if (ret >= 0) {
7378 MPASS(*state == NULL);
7379 return (ret);
7380 }
7381 } else
7382 return (ret);
7383 }
7384
7385 /* translate source/destination address, if necessary */
7386 if ((*state)->key[PF_SK_WIRE] !=
7387 (*state)->key[PF_SK_STACK]) {
7388 struct pf_state_key *nk =
7389 (*state)->key[pd->didx];
7390
7391 if (PF_ANEQ(pd2.src,
7392 &nk->addr[pd2.sidx], pd2.af) ||
7393 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
7394 nk->port[pd2.sidx] != iih->icmp6_id))
7395 pf_change_icmp(pd2.src,
7396 (virtual_type == htons(ICMP6_ECHO_REQUEST))
7397 ? &iih->icmp6_id : NULL,
7398 daddr, &nk->addr[pd2.sidx],
7399 (virtual_type == htons(ICMP6_ECHO_REQUEST))
7400 ? nk->port[iidx] : 0, NULL,
7401 pd2.ip_sum, icmpsum,
7402 pd->ip_sum, 0, AF_INET6);
7403
7404 if (PF_ANEQ(pd2.dst,
7405 &nk->addr[pd2.didx], pd2.af))
7406 pf_change_icmp(pd2.dst, NULL, NULL,
7407 &nk->addr[pd2.didx], 0, NULL,
7408 pd2.ip_sum, icmpsum,
7409 pd->ip_sum, 0, AF_INET6);
7410
7411 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7412 (caddr_t)&pd->hdr.icmp6);
7413 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
7414 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
7415 (caddr_t)iih);
7416 }
7417 return (PF_PASS);
7418 break;
7419 }
7420 #endif /* INET6 */
7421 default: {
7422 key.af = pd2.af;
7423 key.proto = pd2.proto;
7424 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7425 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7426 key.port[0] = key.port[1] = 0;
7427
7428 STATE_LOOKUP(&key, *state, pd);
7429
7430 /* translate source/destination address, if necessary */
7431 if ((*state)->key[PF_SK_WIRE] !=
7432 (*state)->key[PF_SK_STACK]) {
7433 struct pf_state_key *nk =
7434 (*state)->key[pd->didx];
7435
7436 if (PF_ANEQ(pd2.src,
7437 &nk->addr[pd2.sidx], pd2.af))
7438 pf_change_icmp(pd2.src, NULL, daddr,
7439 &nk->addr[pd2.sidx], 0, NULL,
7440 pd2.ip_sum, icmpsum,
7441 pd->ip_sum, 0, pd2.af);
7442
7443 if (PF_ANEQ(pd2.dst,
7444 &nk->addr[pd2.didx], pd2.af))
7445 pf_change_icmp(pd2.dst, NULL, saddr,
7446 &nk->addr[pd2.didx], 0, NULL,
7447 pd2.ip_sum, icmpsum,
7448 pd->ip_sum, 0, pd2.af);
7449
7450 switch (pd2.af) {
7451 #ifdef INET
7452 case AF_INET:
7453 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7454 (caddr_t)&pd->hdr.icmp);
7455 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7456 break;
7457 #endif /* INET */
7458 #ifdef INET6
7459 case AF_INET6:
7460 m_copyback(pd->m, pd->off,
7461 sizeof(struct icmp6_hdr),
7462 (caddr_t )&pd->hdr.icmp6);
7463 m_copyback(pd->m, ipoff2, sizeof(h2_6),
7464 (caddr_t )&h2_6);
7465 break;
7466 #endif /* INET6 */
7467 }
7468 }
7469 return (PF_PASS);
7470 break;
7471 }
7472 }
7473 }
7474 }
7475
7476 static int
pf_test_state_other(struct pf_kstate ** state,struct pf_pdesc * pd)7477 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd)
7478 {
7479 struct pf_state_peer *src, *dst;
7480 struct pf_state_key_cmp key;
7481 uint8_t psrc, pdst;
7482
7483 bzero(&key, sizeof(key));
7484 key.af = pd->af;
7485 key.proto = pd->proto;
7486 if (pd->dir == PF_IN) {
7487 PF_ACPY(&key.addr[0], pd->src, key.af);
7488 PF_ACPY(&key.addr[1], pd->dst, key.af);
7489 key.port[0] = key.port[1] = 0;
7490 } else {
7491 PF_ACPY(&key.addr[1], pd->src, key.af);
7492 PF_ACPY(&key.addr[0], pd->dst, key.af);
7493 key.port[1] = key.port[0] = 0;
7494 }
7495
7496 STATE_LOOKUP(&key, *state, pd);
7497
7498 if (pd->dir == (*state)->direction) {
7499 src = &(*state)->src;
7500 dst = &(*state)->dst;
7501 psrc = PF_PEER_SRC;
7502 pdst = PF_PEER_DST;
7503 } else {
7504 src = &(*state)->dst;
7505 dst = &(*state)->src;
7506 psrc = PF_PEER_DST;
7507 pdst = PF_PEER_SRC;
7508 }
7509
7510 /* update states */
7511 if (src->state < PFOTHERS_SINGLE)
7512 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7513 if (dst->state == PFOTHERS_SINGLE)
7514 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7515
7516 /* update expire time */
7517 (*state)->expire = pf_get_uptime();
7518 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7519 (*state)->timeout = PFTM_OTHER_MULTIPLE;
7520 else
7521 (*state)->timeout = PFTM_OTHER_SINGLE;
7522
7523 /* translate source/destination address, if necessary */
7524 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7525 struct pf_state_key *nk = (*state)->key[pd->didx];
7526
7527 KASSERT(nk, ("%s: nk is null", __func__));
7528 KASSERT(pd, ("%s: pd is null", __func__));
7529 KASSERT(pd->src, ("%s: pd->src is null", __func__));
7530 KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
7531 switch (pd->af) {
7532 #ifdef INET
7533 case AF_INET:
7534 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
7535 pf_change_a(&pd->src->v4.s_addr,
7536 pd->ip_sum,
7537 nk->addr[pd->sidx].v4.s_addr,
7538 0);
7539
7540 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
7541 pf_change_a(&pd->dst->v4.s_addr,
7542 pd->ip_sum,
7543 nk->addr[pd->didx].v4.s_addr,
7544 0);
7545
7546 break;
7547 #endif /* INET */
7548 #ifdef INET6
7549 case AF_INET6:
7550 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6))
7551 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
7552
7553 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6))
7554 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
7555 #endif /* INET6 */
7556 }
7557 }
7558 return (PF_PASS);
7559 }
7560
7561 /*
7562 * ipoff and off are measured from the start of the mbuf chain.
7563 * h must be at "ipoff" on the mbuf chain.
7564 */
7565 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)7566 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
7567 u_short *actionp, u_short *reasonp, sa_family_t af)
7568 {
7569 switch (af) {
7570 #ifdef INET
7571 case AF_INET: {
7572 const struct ip *h = mtod(m, struct ip *);
7573 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
7574
7575 if (fragoff) {
7576 if (fragoff >= len)
7577 ACTION_SET(actionp, PF_PASS);
7578 else {
7579 ACTION_SET(actionp, PF_DROP);
7580 REASON_SET(reasonp, PFRES_FRAG);
7581 }
7582 return (NULL);
7583 }
7584 if (m->m_pkthdr.len < off + len ||
7585 ntohs(h->ip_len) < off + len) {
7586 ACTION_SET(actionp, PF_DROP);
7587 REASON_SET(reasonp, PFRES_SHORT);
7588 return (NULL);
7589 }
7590 break;
7591 }
7592 #endif /* INET */
7593 #ifdef INET6
7594 case AF_INET6: {
7595 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
7596
7597 if (m->m_pkthdr.len < off + len ||
7598 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
7599 (unsigned)(off + len)) {
7600 ACTION_SET(actionp, PF_DROP);
7601 REASON_SET(reasonp, PFRES_SHORT);
7602 return (NULL);
7603 }
7604 break;
7605 }
7606 #endif /* INET6 */
7607 }
7608 m_copydata(m, off, len, p);
7609 return (p);
7610 }
7611
7612 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)7613 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
7614 int rtableid)
7615 {
7616 struct ifnet *ifp;
7617
7618 /*
7619 * Skip check for addresses with embedded interface scope,
7620 * as they would always match anyway.
7621 */
7622 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
7623 return (1);
7624
7625 if (af != AF_INET && af != AF_INET6)
7626 return (0);
7627
7628 if (kif == V_pfi_all)
7629 return (1);
7630
7631 /* Skip checks for ipsec interfaces */
7632 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
7633 return (1);
7634
7635 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
7636
7637 switch (af) {
7638 #ifdef INET6
7639 case AF_INET6:
7640 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
7641 ifp));
7642 #endif
7643 #ifdef INET
7644 case AF_INET:
7645 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
7646 ifp));
7647 #endif
7648 }
7649
7650 return (0);
7651 }
7652
7653 #ifdef INET
7654 static void
pf_route(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)7655 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
7656 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
7657 {
7658 struct mbuf *m0, *m1, *md;
7659 struct sockaddr_in dst;
7660 struct ip *ip;
7661 struct pfi_kkif *nkif = NULL;
7662 struct ifnet *ifp = NULL;
7663 struct pf_addr naddr;
7664 int error = 0;
7665 uint16_t ip_len, ip_off;
7666 uint16_t tmp;
7667 int r_rt, r_dir;
7668
7669 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
7670
7671 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp);
7672
7673 if (s) {
7674 r_rt = s->rt;
7675 r_dir = s->direction;
7676 } else {
7677 r_rt = r->rt;
7678 r_dir = r->direction;
7679 }
7680
7681 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
7682 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
7683 __func__));
7684
7685 if ((pd->pf_mtag == NULL &&
7686 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
7687 pd->pf_mtag->routed++ > 3) {
7688 m0 = *m;
7689 *m = NULL;
7690 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7691 goto bad_locked;
7692 }
7693
7694 if (r_rt == PF_DUPTO) {
7695 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
7696 if (s == NULL) {
7697 ifp = r->rpool.cur->kif ?
7698 r->rpool.cur->kif->pfik_ifp : NULL;
7699 } else {
7700 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7701 /* If pfsync'd */
7702 if (ifp == NULL && r->rpool.cur != NULL)
7703 ifp = r->rpool.cur->kif ?
7704 r->rpool.cur->kif->pfik_ifp : NULL;
7705 PF_STATE_UNLOCK(s);
7706 }
7707 if (ifp == oifp) {
7708 /* When the 2nd interface is not skipped */
7709 return;
7710 } else {
7711 m0 = *m;
7712 *m = NULL;
7713 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7714 goto bad;
7715 }
7716 } else {
7717 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
7718 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
7719 if (s)
7720 PF_STATE_UNLOCK(s);
7721 return;
7722 }
7723 }
7724 } else {
7725 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) {
7726 pf_dummynet(pd, s, r, m);
7727 if (s)
7728 PF_STATE_UNLOCK(s);
7729 return;
7730 }
7731 m0 = *m;
7732 }
7733
7734 ip = mtod(m0, struct ip *);
7735
7736 bzero(&dst, sizeof(dst));
7737 dst.sin_family = AF_INET;
7738 dst.sin_len = sizeof(dst);
7739 dst.sin_addr = ip->ip_dst;
7740
7741 bzero(&naddr, sizeof(naddr));
7742
7743 if (s == NULL) {
7744 if (TAILQ_EMPTY(&r->rpool.list)) {
7745 DPFPRINTF(PF_DEBUG_URGENT,
7746 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
7747 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7748 goto bad_locked;
7749 }
7750 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
7751 &naddr, &nkif, NULL);
7752 if (!PF_AZERO(&naddr, AF_INET))
7753 dst.sin_addr.s_addr = naddr.v4.s_addr;
7754 ifp = nkif ? nkif->pfik_ifp : NULL;
7755 } else {
7756 struct pfi_kkif *kif;
7757
7758 if (!PF_AZERO(&s->rt_addr, AF_INET))
7759 dst.sin_addr.s_addr =
7760 s->rt_addr.v4.s_addr;
7761 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7762 kif = s->rt_kif;
7763 /* If pfsync'd */
7764 if (ifp == NULL && r->rpool.cur != NULL) {
7765 ifp = r->rpool.cur->kif ?
7766 r->rpool.cur->kif->pfik_ifp : NULL;
7767 kif = r->rpool.cur->kif;
7768 }
7769 if (ifp != NULL && kif != NULL &&
7770 r->rule_flag & PFRULE_IFBOUND &&
7771 r->rt == PF_REPLYTO &&
7772 s->kif == V_pfi_all) {
7773 s->kif = kif;
7774 s->orig_kif = oifp->if_pf_kif;
7775 }
7776
7777 PF_STATE_UNLOCK(s);
7778 }
7779
7780 if (ifp == NULL) {
7781 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7782 goto bad;
7783 }
7784
7785 if (pd->dir == PF_IN) {
7786 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
7787 &pd->act) != PF_PASS) {
7788 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7789 goto bad;
7790 } else if (m0 == NULL) {
7791 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7792 goto done;
7793 }
7794 if (m0->m_len < sizeof(struct ip)) {
7795 DPFPRINTF(PF_DEBUG_URGENT,
7796 ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
7797 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7798 goto bad;
7799 }
7800 ip = mtod(m0, struct ip *);
7801 }
7802
7803 if (ifp->if_flags & IFF_LOOPBACK)
7804 m0->m_flags |= M_SKIP_FIREWALL;
7805
7806 ip_len = ntohs(ip->ip_len);
7807 ip_off = ntohs(ip->ip_off);
7808
7809 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
7810 m0->m_pkthdr.csum_flags |= CSUM_IP;
7811 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
7812 in_delayed_cksum(m0);
7813 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
7814 }
7815 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
7816 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
7817 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
7818 }
7819
7820 if (pd->dir == PF_IN) {
7821 /*
7822 * Make sure dummynet gets the correct direction, in case it needs to
7823 * re-inject later.
7824 */
7825 pd->dir = PF_OUT;
7826
7827 /*
7828 * The following processing is actually the rest of the inbound processing, even
7829 * though we've marked it as outbound (so we don't look through dummynet) and it
7830 * happens after the outbound processing (pf_test(PF_OUT) above).
7831 * Swap the dummynet pipe numbers, because it's going to come to the wrong
7832 * conclusion about what direction it's processing, and we can't fix it or it
7833 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
7834 * decision will pick the right pipe, and everything will mostly work as expected.
7835 */
7836 tmp = pd->act.dnrpipe;
7837 pd->act.dnrpipe = pd->act.dnpipe;
7838 pd->act.dnpipe = tmp;
7839 }
7840
7841 /*
7842 * If small enough for interface, or the interface will take
7843 * care of the fragmentation for us, we can just send directly.
7844 */
7845 if (ip_len <= ifp->if_mtu ||
7846 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
7847 ip->ip_sum = 0;
7848 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
7849 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
7850 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
7851 }
7852 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
7853
7854 md = m0;
7855 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
7856 if (md != NULL) {
7857 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL);
7858 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
7859 }
7860 goto done;
7861 }
7862
7863 /* Balk when DF bit is set or the interface didn't support TSO. */
7864 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
7865 error = EMSGSIZE;
7866 KMOD_IPSTAT_INC(ips_cantfrag);
7867 if (r_rt != PF_DUPTO) {
7868 if (s && s->nat_rule != NULL)
7869 PACKET_UNDO_NAT(m0, pd,
7870 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
7871 s);
7872
7873 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
7874 ifp->if_mtu);
7875 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7876 goto done;
7877 } else {
7878 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7879 goto bad;
7880 }
7881 }
7882
7883 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
7884 if (error) {
7885 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7886 goto bad;
7887 }
7888
7889 for (; m0; m0 = m1) {
7890 m1 = m0->m_nextpkt;
7891 m0->m_nextpkt = NULL;
7892 if (error == 0) {
7893 m_clrprotoflags(m0);
7894 md = m0;
7895 pd->pf_mtag = pf_find_mtag(md);
7896 error = pf_dummynet_route(pd, s, r, ifp,
7897 sintosa(&dst), &md);
7898 if (md != NULL) {
7899 error = (*ifp->if_output)(ifp, md,
7900 sintosa(&dst), NULL);
7901 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
7902 }
7903 } else
7904 m_freem(m0);
7905 }
7906
7907 if (error == 0)
7908 KMOD_IPSTAT_INC(ips_fragmented);
7909
7910 done:
7911 if (r_rt != PF_DUPTO)
7912 *m = NULL;
7913 return;
7914
7915 bad_locked:
7916 if (s)
7917 PF_STATE_UNLOCK(s);
7918 bad:
7919 m_freem(m0);
7920 goto done;
7921 }
7922 #endif /* INET */
7923
7924 #ifdef INET6
7925 static void
pf_route6(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)7926 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
7927 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
7928 {
7929 struct mbuf *m0, *md;
7930 struct sockaddr_in6 dst;
7931 struct ip6_hdr *ip6;
7932 struct pfi_kkif *nkif = NULL;
7933 struct ifnet *ifp = NULL;
7934 struct pf_addr naddr;
7935 int r_rt, r_dir;
7936
7937 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
7938
7939 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp);
7940
7941 if (s) {
7942 r_rt = s->rt;
7943 r_dir = s->direction;
7944 } else {
7945 r_rt = r->rt;
7946 r_dir = r->direction;
7947 }
7948
7949 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
7950 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
7951 __func__));
7952
7953 if ((pd->pf_mtag == NULL &&
7954 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
7955 pd->pf_mtag->routed++ > 3) {
7956 m0 = *m;
7957 *m = NULL;
7958 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
7959 goto bad_locked;
7960 }
7961
7962 if (r_rt == PF_DUPTO) {
7963 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
7964 if (s == NULL) {
7965 ifp = r->rpool.cur->kif ?
7966 r->rpool.cur->kif->pfik_ifp : NULL;
7967 } else {
7968 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7969 /* If pfsync'd */
7970 if (ifp == NULL && r->rpool.cur != NULL)
7971 ifp = r->rpool.cur->kif ?
7972 r->rpool.cur->kif->pfik_ifp : NULL;
7973 PF_STATE_UNLOCK(s);
7974 }
7975 if (ifp == oifp) {
7976 /* When the 2nd interface is not skipped */
7977 return;
7978 } else {
7979 m0 = *m;
7980 *m = NULL;
7981 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
7982 goto bad;
7983 }
7984 } else {
7985 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
7986 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
7987 if (s)
7988 PF_STATE_UNLOCK(s);
7989 return;
7990 }
7991 }
7992 } else {
7993 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) {
7994 pf_dummynet(pd, s, r, m);
7995 if (s)
7996 PF_STATE_UNLOCK(s);
7997 return;
7998 }
7999 m0 = *m;
8000 }
8001
8002 ip6 = mtod(m0, struct ip6_hdr *);
8003
8004 bzero(&dst, sizeof(dst));
8005 dst.sin6_family = AF_INET6;
8006 dst.sin6_len = sizeof(dst);
8007 dst.sin6_addr = ip6->ip6_dst;
8008
8009 bzero(&naddr, sizeof(naddr));
8010
8011 if (s == NULL) {
8012 if (TAILQ_EMPTY(&r->rpool.list)) {
8013 DPFPRINTF(PF_DEBUG_URGENT,
8014 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
8015 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8016 goto bad_locked;
8017 }
8018 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src,
8019 &naddr, &nkif, NULL);
8020 if (!PF_AZERO(&naddr, AF_INET6))
8021 PF_ACPY((struct pf_addr *)&dst.sin6_addr,
8022 &naddr, AF_INET6);
8023 ifp = nkif ? nkif->pfik_ifp : NULL;
8024 } else {
8025 struct pfi_kkif *kif;
8026
8027 if (!PF_AZERO(&s->rt_addr, AF_INET6))
8028 PF_ACPY((struct pf_addr *)&dst.sin6_addr,
8029 &s->rt_addr, AF_INET6);
8030 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
8031 kif = s->rt_kif;
8032 /* If pfsync'd */
8033 if (ifp == NULL && r->rpool.cur != NULL) {
8034 ifp = r->rpool.cur->kif ?
8035 r->rpool.cur->kif->pfik_ifp : NULL;
8036 kif = r->rpool.cur->kif;
8037 }
8038 if (ifp != NULL && kif != NULL &&
8039 r->rule_flag & PFRULE_IFBOUND &&
8040 r->rt == PF_REPLYTO &&
8041 s->kif == V_pfi_all) {
8042 s->kif = kif;
8043 s->orig_kif = oifp->if_pf_kif;
8044 }
8045 }
8046
8047 if (s)
8048 PF_STATE_UNLOCK(s);
8049
8050 if (ifp == NULL) {
8051 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8052 goto bad;
8053 }
8054
8055 if (pd->dir == PF_IN) {
8056 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD, ifp, &m0, inp,
8057 &pd->act) != PF_PASS) {
8058 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8059 goto bad;
8060 } else if (m0 == NULL) {
8061 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8062 goto done;
8063 }
8064 if (m0->m_len < sizeof(struct ip6_hdr)) {
8065 DPFPRINTF(PF_DEBUG_URGENT,
8066 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
8067 __func__));
8068 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8069 goto bad;
8070 }
8071 ip6 = mtod(m0, struct ip6_hdr *);
8072 }
8073
8074 if (ifp->if_flags & IFF_LOOPBACK)
8075 m0->m_flags |= M_SKIP_FIREWALL;
8076
8077 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
8078 ~ifp->if_hwassist) {
8079 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
8080 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
8081 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
8082 }
8083
8084 /*
8085 * If the packet is too large for the outgoing interface,
8086 * send back an icmp6 error.
8087 */
8088 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
8089 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
8090 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
8091 md = m0;
8092 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
8093 if (md != NULL) {
8094 int ret __sdt_used;
8095 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
8096 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
8097 }
8098 }
8099 else {
8100 in6_ifstat_inc(ifp, ifs6_in_toobig);
8101 if (r_rt != PF_DUPTO) {
8102 if (s && s->nat_rule != NULL)
8103 PACKET_UNDO_NAT(m0, pd,
8104 ((caddr_t)ip6 - m0->m_data) +
8105 sizeof(struct ip6_hdr), s);
8106
8107 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
8108 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8109 } else {
8110 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8111 goto bad;
8112 }
8113 }
8114
8115 done:
8116 if (r_rt != PF_DUPTO)
8117 *m = NULL;
8118 return;
8119
8120 bad_locked:
8121 if (s)
8122 PF_STATE_UNLOCK(s);
8123 bad:
8124 m_freem(m0);
8125 goto done;
8126 }
8127 #endif /* INET6 */
8128
8129 /*
8130 * FreeBSD supports cksum offloads for the following drivers.
8131 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
8132 *
8133 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
8134 * network driver performed cksum including pseudo header, need to verify
8135 * csum_data
8136 * CSUM_DATA_VALID :
8137 * network driver performed cksum, needs to additional pseudo header
8138 * cksum computation with partial csum_data(i.e. lack of H/W support for
8139 * pseudo header, for instance sk(4) and possibly gem(4))
8140 *
8141 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
8142 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
8143 * TCP/UDP layer.
8144 * Also, set csum_data to 0xffff to force cksum validation.
8145 */
8146 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)8147 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
8148 {
8149 u_int16_t sum = 0;
8150 int hw_assist = 0;
8151 struct ip *ip;
8152
8153 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
8154 return (1);
8155 if (m->m_pkthdr.len < off + len)
8156 return (1);
8157
8158 switch (p) {
8159 case IPPROTO_TCP:
8160 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
8161 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
8162 sum = m->m_pkthdr.csum_data;
8163 } else {
8164 ip = mtod(m, struct ip *);
8165 sum = in_pseudo(ip->ip_src.s_addr,
8166 ip->ip_dst.s_addr, htonl((u_short)len +
8167 m->m_pkthdr.csum_data + IPPROTO_TCP));
8168 }
8169 sum ^= 0xffff;
8170 ++hw_assist;
8171 }
8172 break;
8173 case IPPROTO_UDP:
8174 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
8175 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
8176 sum = m->m_pkthdr.csum_data;
8177 } else {
8178 ip = mtod(m, struct ip *);
8179 sum = in_pseudo(ip->ip_src.s_addr,
8180 ip->ip_dst.s_addr, htonl((u_short)len +
8181 m->m_pkthdr.csum_data + IPPROTO_UDP));
8182 }
8183 sum ^= 0xffff;
8184 ++hw_assist;
8185 }
8186 break;
8187 case IPPROTO_ICMP:
8188 #ifdef INET6
8189 case IPPROTO_ICMPV6:
8190 #endif /* INET6 */
8191 break;
8192 default:
8193 return (1);
8194 }
8195
8196 if (!hw_assist) {
8197 switch (af) {
8198 case AF_INET:
8199 if (p == IPPROTO_ICMP) {
8200 if (m->m_len < off)
8201 return (1);
8202 m->m_data += off;
8203 m->m_len -= off;
8204 sum = in_cksum(m, len);
8205 m->m_data -= off;
8206 m->m_len += off;
8207 } else {
8208 if (m->m_len < sizeof(struct ip))
8209 return (1);
8210 sum = in4_cksum(m, p, off, len);
8211 }
8212 break;
8213 #ifdef INET6
8214 case AF_INET6:
8215 if (m->m_len < sizeof(struct ip6_hdr))
8216 return (1);
8217 sum = in6_cksum(m, p, off, len);
8218 break;
8219 #endif /* INET6 */
8220 }
8221 }
8222 if (sum) {
8223 switch (p) {
8224 case IPPROTO_TCP:
8225 {
8226 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
8227 break;
8228 }
8229 case IPPROTO_UDP:
8230 {
8231 KMOD_UDPSTAT_INC(udps_badsum);
8232 break;
8233 }
8234 #ifdef INET
8235 case IPPROTO_ICMP:
8236 {
8237 KMOD_ICMPSTAT_INC(icps_checksum);
8238 break;
8239 }
8240 #endif
8241 #ifdef INET6
8242 case IPPROTO_ICMPV6:
8243 {
8244 KMOD_ICMP6STAT_INC(icp6s_checksum);
8245 break;
8246 }
8247 #endif /* INET6 */
8248 }
8249 return (1);
8250 } else {
8251 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
8252 m->m_pkthdr.csum_flags |=
8253 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
8254 m->m_pkthdr.csum_data = 0xffff;
8255 }
8256 }
8257 return (0);
8258 }
8259
8260 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)8261 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
8262 const struct pf_kstate *s, struct ip_fw_args *dnflow)
8263 {
8264 int dndir = r->direction;
8265
8266 if (s && dndir == PF_INOUT) {
8267 dndir = s->direction;
8268 } else if (dndir == PF_INOUT) {
8269 /* Assume primary direction. Happens when we've set dnpipe in
8270 * the ethernet level code. */
8271 dndir = pd->dir;
8272 }
8273
8274 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
8275 return (false);
8276
8277 memset(dnflow, 0, sizeof(*dnflow));
8278
8279 if (pd->dport != NULL)
8280 dnflow->f_id.dst_port = ntohs(*pd->dport);
8281 if (pd->sport != NULL)
8282 dnflow->f_id.src_port = ntohs(*pd->sport);
8283
8284 if (pd->dir == PF_IN)
8285 dnflow->flags |= IPFW_ARGS_IN;
8286 else
8287 dnflow->flags |= IPFW_ARGS_OUT;
8288
8289 if (pd->dir != dndir && pd->act.dnrpipe) {
8290 dnflow->rule.info = pd->act.dnrpipe;
8291 }
8292 else if (pd->dir == dndir && pd->act.dnpipe) {
8293 dnflow->rule.info = pd->act.dnpipe;
8294 }
8295 else {
8296 return (false);
8297 }
8298
8299 dnflow->rule.info |= IPFW_IS_DUMMYNET;
8300 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
8301 dnflow->rule.info |= IPFW_IS_PIPE;
8302
8303 dnflow->f_id.proto = pd->proto;
8304 dnflow->f_id.extra = dnflow->rule.info;
8305 switch (pd->af) {
8306 case AF_INET:
8307 dnflow->f_id.addr_type = 4;
8308 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
8309 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
8310 break;
8311 case AF_INET6:
8312 dnflow->flags |= IPFW_ARGS_IP6;
8313 dnflow->f_id.addr_type = 6;
8314 dnflow->f_id.src_ip6 = pd->src->v6;
8315 dnflow->f_id.dst_ip6 = pd->dst->v6;
8316 break;
8317 }
8318
8319 return (true);
8320 }
8321
8322 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)8323 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
8324 struct inpcb *inp)
8325 {
8326 struct pfi_kkif *kif;
8327 struct mbuf *m = *m0;
8328
8329 M_ASSERTPKTHDR(m);
8330 MPASS(ifp->if_vnet == curvnet);
8331 NET_EPOCH_ASSERT();
8332
8333 if (!V_pf_status.running)
8334 return (PF_PASS);
8335
8336 kif = (struct pfi_kkif *)ifp->if_pf_kif;
8337
8338 if (kif == NULL) {
8339 DPFPRINTF(PF_DEBUG_URGENT,
8340 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
8341 return (PF_DROP);
8342 }
8343 if (kif->pfik_flags & PFI_IFLAG_SKIP)
8344 return (PF_PASS);
8345
8346 if (m->m_flags & M_SKIP_FIREWALL)
8347 return (PF_PASS);
8348
8349 if (__predict_false(! M_WRITABLE(*m0))) {
8350 m = *m0 = m_unshare(*m0, M_NOWAIT);
8351 if (*m0 == NULL)
8352 return (PF_DROP);
8353 }
8354
8355 /* Stateless! */
8356 return (pf_test_eth_rule(dir, kif, m0));
8357 }
8358
8359 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)8360 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
8361 {
8362 struct m_tag *mtag;
8363
8364 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
8365
8366 /* dummynet adds this tag, but pf does not need it,
8367 * and keeping it creates unexpected behavior,
8368 * e.g. in case of divert(4) usage right after dummynet. */
8369 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
8370 if (mtag != NULL)
8371 m_tag_delete(m, mtag);
8372 }
8373
8374 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)8375 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
8376 struct pf_krule *r, struct mbuf **m0)
8377 {
8378 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
8379 }
8380
8381 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,struct sockaddr * sa,struct mbuf ** m0)8382 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
8383 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa,
8384 struct mbuf **m0)
8385 {
8386 struct ip_fw_args dnflow;
8387
8388 NET_EPOCH_ASSERT();
8389
8390 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
8391 return (0);
8392
8393 if (ip_dn_io_ptr == NULL) {
8394 m_freem(*m0);
8395 *m0 = NULL;
8396 return (ENOMEM);
8397 }
8398
8399 if (pd->pf_mtag == NULL &&
8400 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
8401 m_freem(*m0);
8402 *m0 = NULL;
8403 return (ENOMEM);
8404 }
8405
8406 if (ifp != NULL) {
8407 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
8408
8409 pd->pf_mtag->if_index = ifp->if_index;
8410 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
8411
8412 MPASS(sa != NULL);
8413
8414 switch (pd->af) {
8415 case AF_INET:
8416 memcpy(&pd->pf_mtag->dst, sa,
8417 sizeof(struct sockaddr_in));
8418 break;
8419 case AF_INET6:
8420 memcpy(&pd->pf_mtag->dst, sa,
8421 sizeof(struct sockaddr_in6));
8422 break;
8423 }
8424 }
8425
8426 if (s != NULL && s->nat_rule != NULL &&
8427 s->nat_rule->action == PF_RDR &&
8428 (
8429 #ifdef INET
8430 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
8431 #endif
8432 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
8433 /*
8434 * If we're redirecting to loopback mark this packet
8435 * as being local. Otherwise it might get dropped
8436 * if dummynet re-injects.
8437 */
8438 (*m0)->m_pkthdr.rcvif = V_loif;
8439 }
8440
8441 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
8442 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
8443 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
8444 ip_dn_io_ptr(m0, &dnflow);
8445 if (*m0 != NULL) {
8446 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
8447 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
8448 }
8449 }
8450
8451 return (0);
8452 }
8453
8454 #ifdef INET6
8455 static int
pf_walk_option6(struct mbuf * m,int off,int end,uint32_t * jumbolen,u_short * reason)8456 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen,
8457 u_short *reason)
8458 {
8459 struct ip6_opt opt;
8460 struct ip6_opt_jumbo jumbo;
8461 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8462
8463 while (off < end) {
8464 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type),
8465 NULL, reason, AF_INET6)) {
8466 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
8467 return (PF_DROP);
8468 }
8469 if (opt.ip6o_type == IP6OPT_PAD1) {
8470 off++;
8471 continue;
8472 }
8473 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason,
8474 AF_INET6)) {
8475 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
8476 return (PF_DROP);
8477 }
8478 if (off + sizeof(opt) + opt.ip6o_len > end) {
8479 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
8480 REASON_SET(reason, PFRES_IPOPTIONS);
8481 return (PF_DROP);
8482 }
8483 switch (opt.ip6o_type) {
8484 case IP6OPT_JUMBO:
8485 if (*jumbolen != 0) {
8486 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
8487 REASON_SET(reason, PFRES_IPOPTIONS);
8488 return (PF_DROP);
8489 }
8490 if (ntohs(h->ip6_plen) != 0) {
8491 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
8492 REASON_SET(reason, PFRES_IPOPTIONS);
8493 return (PF_DROP);
8494 }
8495 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL,
8496 reason, AF_INET6)) {
8497 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
8498 return (PF_DROP);
8499 }
8500 memcpy(jumbolen, jumbo.ip6oj_jumbo_len,
8501 sizeof(*jumbolen));
8502 *jumbolen = ntohl(*jumbolen);
8503 if (*jumbolen < IPV6_MAXPACKET) {
8504 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
8505 REASON_SET(reason, PFRES_IPOPTIONS);
8506 return (PF_DROP);
8507 }
8508 break;
8509 default:
8510 break;
8511 }
8512 off += sizeof(opt) + opt.ip6o_len;
8513 }
8514
8515 return (PF_PASS);
8516 }
8517
8518 int
pf_walk_header6(struct mbuf * m,struct ip6_hdr * h,int * off,int * extoff,int * fragoff,uint8_t * nxt,uint32_t * jumbolen,u_short * reason)8519 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff,
8520 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason)
8521 {
8522 struct ip6_frag frag;
8523 struct ip6_ext ext;
8524 struct ip6_rthdr rthdr;
8525 int rthdr_cnt = 0;
8526
8527 *off += sizeof(struct ip6_hdr);
8528 *extoff = *fragoff = 0;
8529 *nxt = h->ip6_nxt;
8530 *jumbolen = 0;
8531 for (;;) {
8532 switch (*nxt) {
8533 case IPPROTO_FRAGMENT:
8534 if (*fragoff != 0) {
8535 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
8536 REASON_SET(reason, PFRES_FRAG);
8537 return (PF_DROP);
8538 }
8539 /* jumbo payload packets cannot be fragmented */
8540 if (*jumbolen != 0) {
8541 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
8542 REASON_SET(reason, PFRES_FRAG);
8543 return (PF_DROP);
8544 }
8545 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL,
8546 reason, AF_INET6)) {
8547 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
8548 return (PF_DROP);
8549 }
8550 *fragoff = *off;
8551 /* stop walking over non initial fragments */
8552 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0)
8553 return (PF_PASS);
8554 *off += sizeof(frag);
8555 *nxt = frag.ip6f_nxt;
8556 break;
8557 case IPPROTO_ROUTING:
8558 if (rthdr_cnt++) {
8559 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
8560 REASON_SET(reason, PFRES_IPOPTIONS);
8561 return (PF_DROP);
8562 }
8563 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL,
8564 reason, AF_INET6)) {
8565 /* fragments may be short */
8566 if (*fragoff != 0) {
8567 *off = *fragoff;
8568 *nxt = IPPROTO_FRAGMENT;
8569 return (PF_PASS);
8570 }
8571 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
8572 return (PF_DROP);
8573 }
8574 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
8575 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
8576 REASON_SET(reason, PFRES_IPOPTIONS);
8577 return (PF_DROP);
8578 }
8579 /* FALLTHROUGH */
8580 case IPPROTO_AH:
8581 case IPPROTO_HOPOPTS:
8582 case IPPROTO_DSTOPTS:
8583 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL,
8584 reason, AF_INET6)) {
8585 /* fragments may be short */
8586 if (*fragoff != 0) {
8587 *off = *fragoff;
8588 *nxt = IPPROTO_FRAGMENT;
8589 return (PF_PASS);
8590 }
8591 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
8592 return (PF_DROP);
8593 }
8594 /* reassembly needs the ext header before the frag */
8595 if (*fragoff == 0)
8596 *extoff = *off;
8597 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) {
8598 if (pf_walk_option6(m, *off + sizeof(ext),
8599 *off + (ext.ip6e_len + 1) * 8, jumbolen,
8600 reason) != PF_PASS)
8601 return (PF_DROP);
8602 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) {
8603 DPFPRINTF(PF_DEBUG_MISC,
8604 ("IPv6 missing jumbo"));
8605 REASON_SET(reason, PFRES_IPOPTIONS);
8606 return (PF_DROP);
8607 }
8608 }
8609 if (*nxt == IPPROTO_AH)
8610 *off += (ext.ip6e_len + 2) * 4;
8611 else
8612 *off += (ext.ip6e_len + 1) * 8;
8613 *nxt = ext.ip6e_nxt;
8614 break;
8615 case IPPROTO_TCP:
8616 case IPPROTO_UDP:
8617 case IPPROTO_SCTP:
8618 case IPPROTO_ICMPV6:
8619 /* fragments may be short, ignore inner header then */
8620 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off +
8621 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) :
8622 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) :
8623 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) :
8624 sizeof(struct icmp6_hdr))) {
8625 *off = *fragoff;
8626 *nxt = IPPROTO_FRAGMENT;
8627 }
8628 /* FALLTHROUGH */
8629 default:
8630 return (PF_PASS);
8631 }
8632 }
8633 }
8634 #endif
8635
8636 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)8637 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
8638 {
8639 memset(pd, 0, sizeof(*pd));
8640 pd->pf_mtag = pf_find_mtag(m);
8641 pd->m = m;
8642 }
8643
8644 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)8645 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
8646 u_short *action, u_short *reason, struct pfi_kkif *kif,
8647 struct pf_rule_actions *default_actions)
8648 {
8649 pd->af = af;
8650 pd->dir = dir;
8651 pd->kif = kif;
8652 pd->m = *m0;
8653 pd->sidx = (dir == PF_IN) ? 0 : 1;
8654 pd->didx = (dir == PF_IN) ? 1 : 0;
8655
8656 TAILQ_INIT(&pd->sctp_multihome_jobs);
8657 if (default_actions != NULL)
8658 memcpy(&pd->act, default_actions, sizeof(pd->act));
8659
8660 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
8661 pd->act.dnpipe = pd->pf_mtag->dnpipe;
8662 pd->act.flags = pd->pf_mtag->dnflags;
8663 }
8664
8665 switch (af) {
8666 #ifdef INET
8667 case AF_INET: {
8668 struct ip *h;
8669
8670 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
8671 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
8672 DPFPRINTF(PF_DEBUG_URGENT,
8673 ("pf_test: m_len < sizeof(struct ip), pullup failed\n"));
8674 *action = PF_DROP;
8675 REASON_SET(reason, PFRES_SHORT);
8676 return (-1);
8677 }
8678
8679 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) {
8680 /* We do IP header normalization and packet reassembly here */
8681 *action = PF_DROP;
8682 return (-1);
8683 }
8684 pd->m = *m0;
8685
8686 h = mtod(pd->m, struct ip *);
8687 pd->off = h->ip_hl << 2;
8688 if (pd->off < (int)sizeof(*h)) {
8689 *action = PF_DROP;
8690 REASON_SET(reason, PFRES_SHORT);
8691 return (-1);
8692 }
8693 pd->src = (struct pf_addr *)&h->ip_src;
8694 pd->dst = (struct pf_addr *)&h->ip_dst;
8695 pd->ip_sum = &h->ip_sum;
8696 pd->proto_sum = NULL;
8697 pd->virtual_proto = pd->proto = h->ip_p;
8698 pd->tos = h->ip_tos;
8699 pd->ttl = h->ip_ttl;
8700 pd->tot_len = ntohs(h->ip_len);
8701 pd->act.rtableid = -1;
8702
8703 if (h->ip_hl > 5) /* has options */
8704 pd->badopts++;
8705
8706 if (h->ip_off & htons(IP_MF | IP_OFFMASK))
8707 pd->virtual_proto = PF_VPROTO_FRAGMENT;
8708
8709 break;
8710 }
8711 #endif
8712 #ifdef INET6
8713 case AF_INET6: {
8714 struct ip6_hdr *h;
8715 int fragoff;
8716 uint32_t jumbolen;
8717 uint8_t nxt;
8718
8719 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
8720 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
8721 DPFPRINTF(PF_DEBUG_URGENT,
8722 ("pf_test6: m_len < sizeof(struct ip6_hdr)"
8723 ", pullup failed\n"));
8724 *action = PF_DROP;
8725 REASON_SET(reason, PFRES_SHORT);
8726 return (-1);
8727 }
8728
8729 h = mtod(pd->m, struct ip6_hdr *);
8730 pd->off = 0;
8731 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
8732 &jumbolen, reason) != PF_PASS) {
8733 *action = PF_DROP;
8734 return (-1);
8735 }
8736
8737 h = mtod(pd->m, struct ip6_hdr *);
8738 pd->src = (struct pf_addr *)&h->ip6_src;
8739 pd->dst = (struct pf_addr *)&h->ip6_dst;
8740 pd->ip_sum = NULL;
8741 pd->proto_sum = NULL;
8742 pd->tos = IPV6_DSCP(h);
8743 pd->ttl = h->ip6_hlim;
8744 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8745 pd->virtual_proto = pd->proto = h->ip6_nxt;
8746 pd->act.rtableid = -1;
8747
8748 if (fragoff != 0)
8749 pd->virtual_proto = PF_VPROTO_FRAGMENT;
8750
8751 /*
8752 * we do not support jumbogram. if we keep going, zero ip6_plen
8753 * will do something bad, so drop the packet for now.
8754 */
8755 if (htons(h->ip6_plen) == 0) {
8756 *action = PF_DROP;
8757 return (-1);
8758 }
8759
8760 /* We do IP header normalization and packet reassembly here */
8761 if (pf_normalize_ip6(m0, fragoff, reason, pd) !=
8762 PF_PASS) {
8763 *action = PF_DROP;
8764 return (-1);
8765 }
8766 pd->m = *m0;
8767 if (pd->m == NULL) {
8768 /* packet sits in reassembly queue, no error */
8769 *action = PF_PASS;
8770 return (-1);
8771 }
8772
8773 /* Update pointers into the packet. */
8774 h = mtod(pd->m, struct ip6_hdr *);
8775 pd->src = (struct pf_addr *)&h->ip6_src;
8776 pd->dst = (struct pf_addr *)&h->ip6_dst;
8777
8778 /*
8779 * Reassembly may have changed the next protocol from fragment
8780 * to something else, so update.
8781 */
8782 pd->virtual_proto = pd->proto = h->ip6_nxt;
8783 pd->off = 0;
8784
8785 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
8786 &jumbolen, reason) != PF_PASS) {
8787 *action = PF_DROP;
8788 return (-1);
8789 }
8790
8791 if (fragoff != 0)
8792 pd->virtual_proto = PF_VPROTO_FRAGMENT;
8793
8794 break;
8795 }
8796 #endif
8797 default:
8798 panic("pf_setup_pdesc called with illegal af %u", af);
8799 }
8800
8801 switch (pd->virtual_proto) {
8802 case IPPROTO_TCP: {
8803 struct tcphdr *th = &pd->hdr.tcp;
8804
8805 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
8806 reason, af)) {
8807 *action = PF_DROP;
8808 REASON_SET(reason, PFRES_SHORT);
8809 return (-1);
8810 }
8811 pd->hdrlen = sizeof(*th);
8812 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
8813 pd->sport = &th->th_sport;
8814 pd->dport = &th->th_dport;
8815 break;
8816 }
8817 case IPPROTO_UDP: {
8818 struct udphdr *uh = &pd->hdr.udp;
8819
8820 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
8821 reason, af)) {
8822 *action = PF_DROP;
8823 REASON_SET(reason, PFRES_SHORT);
8824 return (-1);
8825 }
8826 pd->hdrlen = sizeof(*uh);
8827 if (uh->uh_dport == 0 ||
8828 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
8829 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
8830 *action = PF_DROP;
8831 REASON_SET(reason, PFRES_SHORT);
8832 return (-1);
8833 }
8834 pd->sport = &uh->uh_sport;
8835 pd->dport = &uh->uh_dport;
8836 break;
8837 }
8838 case IPPROTO_SCTP: {
8839 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
8840 action, reason, af)) {
8841 *action = PF_DROP;
8842 REASON_SET(reason, PFRES_SHORT);
8843 return (-1);
8844 }
8845 pd->hdrlen = sizeof(pd->hdr.sctp);
8846 pd->p_len = pd->tot_len - pd->off;
8847
8848 pd->sport = &pd->hdr.sctp.src_port;
8849 pd->dport = &pd->hdr.sctp.dest_port;
8850 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
8851 *action = PF_DROP;
8852 REASON_SET(reason, PFRES_SHORT);
8853 return (-1);
8854 }
8855 if (pf_scan_sctp(pd) != PF_PASS) {
8856 *action = PF_DROP;
8857 REASON_SET(reason, PFRES_SHORT);
8858 return (-1);
8859 }
8860 break;
8861 }
8862 case IPPROTO_ICMP: {
8863 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
8864 action, reason, af)) {
8865 *action = PF_DROP;
8866 REASON_SET(reason, PFRES_SHORT);
8867 return (-1);
8868 }
8869 pd->hdrlen = ICMP_MINLEN;
8870 break;
8871 }
8872 #ifdef INET6
8873 case IPPROTO_ICMPV6: {
8874 size_t icmp_hlen = sizeof(struct icmp6_hdr);
8875
8876 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
8877 action, reason, af)) {
8878 *action = PF_DROP;
8879 REASON_SET(reason, PFRES_SHORT);
8880 return (-1);
8881 }
8882 /* ICMP headers we look further into to match state */
8883 switch (pd->hdr.icmp6.icmp6_type) {
8884 case MLD_LISTENER_QUERY:
8885 case MLD_LISTENER_REPORT:
8886 icmp_hlen = sizeof(struct mld_hdr);
8887 break;
8888 case ND_NEIGHBOR_SOLICIT:
8889 case ND_NEIGHBOR_ADVERT:
8890 icmp_hlen = sizeof(struct nd_neighbor_solicit);
8891 break;
8892 }
8893 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
8894 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
8895 action, reason, af)) {
8896 *action = PF_DROP;
8897 REASON_SET(reason, PFRES_SHORT);
8898 return (-1);
8899 }
8900 pd->hdrlen = icmp_hlen;
8901 break;
8902 }
8903 #endif
8904 }
8905 return (0);
8906 }
8907
8908 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)8909 pf_counters_inc(int action, struct pf_pdesc *pd,
8910 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
8911 {
8912 struct pf_krule *tr;
8913 int dir = pd->dir;
8914 int dirndx;
8915
8916 pf_counter_u64_critical_enter();
8917 pf_counter_u64_add_protected(
8918 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
8919 pd->tot_len);
8920 pf_counter_u64_add_protected(
8921 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
8922 1);
8923
8924 if (action == PF_PASS || r->action == PF_DROP) {
8925 dirndx = (dir == PF_OUT);
8926 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
8927 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
8928 pf_update_timestamp(r);
8929
8930 if (a != NULL) {
8931 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
8932 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
8933 }
8934 if (s != NULL) {
8935 struct pf_krule_item *ri;
8936
8937 if (s->nat_rule != NULL) {
8938 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
8939 1);
8940 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
8941 pd->tot_len);
8942 }
8943 if (s->src_node != NULL) {
8944 counter_u64_add(s->src_node->packets[dirndx],
8945 1);
8946 counter_u64_add(s->src_node->bytes[dirndx],
8947 pd->tot_len);
8948 }
8949 if (s->nat_src_node != NULL) {
8950 counter_u64_add(s->nat_src_node->packets[dirndx],
8951 1);
8952 counter_u64_add(s->nat_src_node->bytes[dirndx],
8953 pd->tot_len);
8954 }
8955 dirndx = (dir == s->direction) ? 0 : 1;
8956 s->packets[dirndx]++;
8957 s->bytes[dirndx] += pd->tot_len;
8958
8959 SLIST_FOREACH(ri, &s->match_rules, entry) {
8960 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
8961 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
8962 }
8963 }
8964
8965 tr = r;
8966 if (s != NULL && s->nat_rule != NULL &&
8967 r == &V_pf_default_rule)
8968 tr = s->nat_rule;
8969
8970 if (tr->src.addr.type == PF_ADDR_TABLE)
8971 pfr_update_stats(tr->src.addr.p.tbl,
8972 (s == NULL) ? pd->src :
8973 &s->key[(s->direction == PF_IN)]->
8974 addr[(s->direction == PF_OUT)],
8975 pd->af, pd->tot_len, dir == PF_OUT,
8976 r->action == PF_PASS, tr->src.neg);
8977 if (tr->dst.addr.type == PF_ADDR_TABLE)
8978 pfr_update_stats(tr->dst.addr.p.tbl,
8979 (s == NULL) ? pd->dst :
8980 &s->key[(s->direction == PF_IN)]->
8981 addr[(s->direction == PF_IN)],
8982 pd->af, pd->tot_len, dir == PF_OUT,
8983 r->action == PF_PASS, tr->dst.neg);
8984 }
8985 pf_counter_u64_critical_exit();
8986 }
8987
8988 #if defined(INET) || defined(INET6)
8989 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)8990 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
8991 struct inpcb *inp, struct pf_rule_actions *default_actions)
8992 {
8993 struct pfi_kkif *kif;
8994 u_short action, reason = 0;
8995 struct m_tag *mtag;
8996 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
8997 struct pf_kstate *s = NULL;
8998 struct pf_kruleset *ruleset = NULL;
8999 struct pf_pdesc pd;
9000 int use_2nd_queue = 0;
9001 uint16_t tag;
9002 uint8_t rt;
9003
9004 PF_RULES_RLOCK_TRACKER;
9005 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
9006 M_ASSERTPKTHDR(*m0);
9007
9008 if (!V_pf_status.running)
9009 return (PF_PASS);
9010
9011 PF_RULES_RLOCK();
9012
9013 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9014
9015 if (__predict_false(kif == NULL)) {
9016 DPFPRINTF(PF_DEBUG_URGENT,
9017 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
9018 PF_RULES_RUNLOCK();
9019 return (PF_DROP);
9020 }
9021 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
9022 PF_RULES_RUNLOCK();
9023 return (PF_PASS);
9024 }
9025
9026 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
9027 PF_RULES_RUNLOCK();
9028 return (PF_PASS);
9029 }
9030
9031 #ifdef INET6
9032 /*
9033 * If we end up changing IP addresses (e.g. binat) the stack may get
9034 * confused and fail to send the icmp6 packet too big error. Just send
9035 * it here, before we do any NAT.
9036 */
9037 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
9038 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
9039 PF_RULES_RUNLOCK();
9040 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
9041 *m0 = NULL;
9042 return (PF_DROP);
9043 }
9044 #endif
9045
9046 if (__predict_false(! M_WRITABLE(*m0))) {
9047 *m0 = m_unshare(*m0, M_NOWAIT);
9048 if (*m0 == NULL) {
9049 PF_RULES_RUNLOCK();
9050 return (PF_DROP);
9051 }
9052 }
9053
9054 pf_init_pdesc(&pd, *m0);
9055
9056 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
9057 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9058
9059 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
9060 pd.pf_mtag->if_idxgen);
9061 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
9062 PF_RULES_RUNLOCK();
9063 m_freem(*m0);
9064 *m0 = NULL;
9065 return (PF_PASS);
9066 }
9067 PF_RULES_RUNLOCK();
9068 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
9069 *m0 = NULL;
9070 return (PF_PASS);
9071 }
9072
9073 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
9074 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
9075 /* Dummynet re-injects packets after they've
9076 * completed their delay. We've already
9077 * processed them, so pass unconditionally. */
9078
9079 /* But only once. We may see the packet multiple times (e.g.
9080 * PFIL_IN/PFIL_OUT). */
9081 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
9082 PF_RULES_RUNLOCK();
9083
9084 return (PF_PASS);
9085 }
9086
9087 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
9088 kif, default_actions) == -1) {
9089 if (action != PF_PASS)
9090 pd.act.log |= PF_LOG_FORCE;
9091 goto done;
9092 }
9093
9094 if (__predict_false(ip_divert_ptr != NULL) &&
9095 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
9096 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
9097 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
9098 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
9099 if (pd.pf_mtag == NULL &&
9100 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9101 action = PF_DROP;
9102 goto done;
9103 }
9104 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
9105 }
9106 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
9107 pd.m->m_flags |= M_FASTFWD_OURS;
9108 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
9109 }
9110 m_tag_delete(pd.m, mtag);
9111
9112 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
9113 if (mtag != NULL)
9114 m_tag_delete(pd.m, mtag);
9115 }
9116
9117 switch (pd.virtual_proto) {
9118 case PF_VPROTO_FRAGMENT:
9119 /*
9120 * handle fragments that aren't reassembled by
9121 * normalization
9122 */
9123 if (kif == NULL || r == NULL) /* pflog */
9124 action = PF_DROP;
9125 else
9126 action = pf_test_rule(&r, &s, &pd, &a,
9127 &ruleset, inp);
9128 if (action != PF_PASS)
9129 REASON_SET(&reason, PFRES_FRAG);
9130 break;
9131
9132 case IPPROTO_TCP: {
9133 /* Respond to SYN with a syncookie. */
9134 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
9135 pd.dir == PF_IN && pf_synflood_check(&pd)) {
9136 pf_syncookie_send(&pd);
9137 action = PF_DROP;
9138 break;
9139 }
9140
9141 if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0)
9142 use_2nd_queue = 1;
9143 action = pf_normalize_tcp(&pd);
9144 if (action == PF_DROP)
9145 goto done;
9146 action = pf_test_state_tcp(&s, &pd, &reason);
9147 if (action == PF_PASS) {
9148 if (V_pfsync_update_state_ptr != NULL)
9149 V_pfsync_update_state_ptr(s);
9150 r = s->rule;
9151 a = s->anchor;
9152 } else if (s == NULL) {
9153 /* Validate remote SYN|ACK, re-create original SYN if
9154 * valid. */
9155 if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) ==
9156 TH_ACK && pf_syncookie_validate(&pd) &&
9157 pd.dir == PF_IN) {
9158 struct mbuf *msyn;
9159
9160 msyn = pf_syncookie_recreate_syn(&pd);
9161 if (msyn == NULL) {
9162 action = PF_DROP;
9163 break;
9164 }
9165
9166 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
9167 &pd.act);
9168 m_freem(msyn);
9169 if (action != PF_PASS)
9170 break;
9171
9172 action = pf_test_state_tcp(&s, &pd, &reason);
9173 if (action != PF_PASS || s == NULL) {
9174 action = PF_DROP;
9175 break;
9176 }
9177
9178 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
9179 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
9180 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
9181 action = pf_synproxy(&pd, &s, &reason);
9182 break;
9183 } else {
9184 action = pf_test_rule(&r, &s, &pd,
9185 &a, &ruleset, inp);
9186 }
9187 }
9188 break;
9189 }
9190
9191 case IPPROTO_UDP: {
9192 action = pf_test_state_udp(&s, &pd);
9193 if (action == PF_PASS) {
9194 if (V_pfsync_update_state_ptr != NULL)
9195 V_pfsync_update_state_ptr(s);
9196 r = s->rule;
9197 a = s->anchor;
9198 } else if (s == NULL)
9199 action = pf_test_rule(&r, &s, &pd,
9200 &a, &ruleset, inp);
9201 break;
9202 }
9203
9204 case IPPROTO_SCTP: {
9205 action = pf_normalize_sctp(&pd);
9206 if (action == PF_DROP)
9207 goto done;
9208 action = pf_test_state_sctp(&s, &pd, &reason);
9209 if (action == PF_PASS) {
9210 if (V_pfsync_update_state_ptr != NULL)
9211 V_pfsync_update_state_ptr(s);
9212 r = s->rule;
9213 a = s->anchor;
9214 } else if (s == NULL) {
9215 action = pf_test_rule(&r, &s,
9216 &pd, &a, &ruleset, inp);
9217 }
9218 break;
9219 }
9220
9221 case IPPROTO_ICMP: {
9222 if (af != AF_INET) {
9223 action = PF_DROP;
9224 REASON_SET(&reason, PFRES_NORM);
9225 DPFPRINTF(PF_DEBUG_MISC,
9226 ("dropping IPv6 packet with ICMPv4 payload"));
9227 goto done;
9228 }
9229 action = pf_test_state_icmp(&s, &pd, &reason);
9230 if (action == PF_PASS) {
9231 if (V_pfsync_update_state_ptr != NULL)
9232 V_pfsync_update_state_ptr(s);
9233 r = s->rule;
9234 a = s->anchor;
9235 } else if (s == NULL)
9236 action = pf_test_rule(&r, &s, &pd,
9237 &a, &ruleset, inp);
9238 break;
9239 }
9240
9241 case IPPROTO_ICMPV6: {
9242 if (af != AF_INET6) {
9243 action = PF_DROP;
9244 REASON_SET(&reason, PFRES_NORM);
9245 DPFPRINTF(PF_DEBUG_MISC,
9246 ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
9247 goto done;
9248 }
9249 action = pf_test_state_icmp(&s, &pd, &reason);
9250 if (action == PF_PASS) {
9251 if (V_pfsync_update_state_ptr != NULL)
9252 V_pfsync_update_state_ptr(s);
9253 r = s->rule;
9254 a = s->anchor;
9255 } else if (s == NULL)
9256 action = pf_test_rule(&r, &s, &pd,
9257 &a, &ruleset, inp);
9258 break;
9259 }
9260
9261 default:
9262 action = pf_test_state_other(&s, &pd);
9263 if (action == PF_PASS) {
9264 if (V_pfsync_update_state_ptr != NULL)
9265 V_pfsync_update_state_ptr(s);
9266 r = s->rule;
9267 a = s->anchor;
9268 } else if (s == NULL)
9269 action = pf_test_rule(&r, &s, &pd,
9270 &a, &ruleset, inp);
9271 break;
9272 }
9273
9274 done:
9275 PF_RULES_RUNLOCK();
9276
9277 if (pd.m == NULL)
9278 goto eat_pkt;
9279
9280 if (action == PF_PASS && pd.badopts &&
9281 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
9282 action = PF_DROP;
9283 REASON_SET(&reason, PFRES_IPOPTIONS);
9284 pd.act.log = PF_LOG_FORCE;
9285 DPFPRINTF(PF_DEBUG_MISC,
9286 ("pf: dropping packet with dangerous headers\n"));
9287 }
9288
9289 if (s) {
9290 uint8_t log = pd.act.log;
9291 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
9292 pd.act.log |= log;
9293 tag = s->tag;
9294 rt = s->rt;
9295 } else {
9296 tag = r->tag;
9297 rt = r->rt;
9298 }
9299
9300 if (tag > 0 && pf_tag_packet(&pd, tag)) {
9301 action = PF_DROP;
9302 REASON_SET(&reason, PFRES_MEMORY);
9303 }
9304
9305 pf_scrub(&pd);
9306 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
9307 pf_normalize_mss(&pd);
9308
9309 if (pd.act.rtableid >= 0)
9310 M_SETFIB(pd.m, pd.act.rtableid);
9311
9312 if (pd.act.flags & PFSTATE_SETPRIO) {
9313 if (pd.tos & IPTOS_LOWDELAY)
9314 use_2nd_queue = 1;
9315 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
9316 action = PF_DROP;
9317 REASON_SET(&reason, PFRES_MEMORY);
9318 pd.act.log = PF_LOG_FORCE;
9319 DPFPRINTF(PF_DEBUG_MISC,
9320 ("pf: failed to allocate 802.1q mtag\n"));
9321 }
9322 }
9323
9324 #ifdef ALTQ
9325 if (action == PF_PASS && pd.act.qid) {
9326 if (pd.pf_mtag == NULL &&
9327 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9328 action = PF_DROP;
9329 REASON_SET(&reason, PFRES_MEMORY);
9330 } else {
9331 if (s != NULL)
9332 pd.pf_mtag->qid_hash = pf_state_hash(s);
9333 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
9334 pd.pf_mtag->qid = pd.act.pqid;
9335 else
9336 pd.pf_mtag->qid = pd.act.qid;
9337 /* Add hints for ecn. */
9338 pd.pf_mtag->hdr = mtod(pd.m, void *);
9339 }
9340 }
9341 #endif /* ALTQ */
9342
9343 /*
9344 * connections redirected to loopback should not match sockets
9345 * bound specifically to loopback due to security implications,
9346 * see tcp_input() and in_pcblookup_listen().
9347 */
9348 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
9349 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
9350 (s->nat_rule->action == PF_RDR ||
9351 s->nat_rule->action == PF_BINAT) &&
9352 pf_is_loopback(af, pd.dst))
9353 pd.m->m_flags |= M_SKIP_FIREWALL;
9354
9355 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
9356 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
9357 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
9358 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
9359 if (mtag != NULL) {
9360 ((struct pf_divert_mtag *)(mtag+1))->port =
9361 ntohs(r->divert.port);
9362 ((struct pf_divert_mtag *)(mtag+1))->idir =
9363 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
9364 PF_DIVERT_MTAG_DIR_OUT;
9365
9366 if (s)
9367 PF_STATE_UNLOCK(s);
9368
9369 m_tag_prepend(pd.m, mtag);
9370 if (pd.m->m_flags & M_FASTFWD_OURS) {
9371 if (pd.pf_mtag == NULL &&
9372 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9373 action = PF_DROP;
9374 REASON_SET(&reason, PFRES_MEMORY);
9375 pd.act.log = PF_LOG_FORCE;
9376 DPFPRINTF(PF_DEBUG_MISC,
9377 ("pf: failed to allocate tag\n"));
9378 } else {
9379 pd.pf_mtag->flags |=
9380 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
9381 pd.m->m_flags &= ~M_FASTFWD_OURS;
9382 }
9383 }
9384 ip_divert_ptr(*m0, dir == PF_IN);
9385 *m0 = NULL;
9386
9387 return (action);
9388 } else {
9389 /* XXX: ipfw has the same behaviour! */
9390 action = PF_DROP;
9391 REASON_SET(&reason, PFRES_MEMORY);
9392 pd.act.log = PF_LOG_FORCE;
9393 DPFPRINTF(PF_DEBUG_MISC,
9394 ("pf: failed to allocate divert tag\n"));
9395 }
9396 }
9397 /* XXX: Anybody working on it?! */
9398 if (af == AF_INET6 && r->divert.port)
9399 printf("pf: divert(9) is not supported for IPv6\n");
9400
9401 /* this flag will need revising if the pkt is forwarded */
9402 if (pd.pf_mtag)
9403 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
9404
9405 if (pd.act.log) {
9406 struct pf_krule *lr;
9407 struct pf_krule_item *ri;
9408
9409 if (s != NULL && s->nat_rule != NULL &&
9410 s->nat_rule->log & PF_LOG_ALL)
9411 lr = s->nat_rule;
9412 else
9413 lr = r;
9414
9415 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
9416 PFLOG_PACKET(action, reason, lr, a,
9417 ruleset, &pd, (s == NULL));
9418 if (s) {
9419 SLIST_FOREACH(ri, &s->match_rules, entry)
9420 if (ri->r->log & PF_LOG_ALL)
9421 PFLOG_PACKET(action,
9422 reason, ri->r, a, ruleset, &pd, 0);
9423 }
9424 }
9425
9426 pf_counters_inc(action, &pd, s, r, a);
9427
9428 switch (action) {
9429 case PF_SYNPROXY_DROP:
9430 m_freem(*m0);
9431 case PF_DEFER:
9432 *m0 = NULL;
9433 action = PF_PASS;
9434 break;
9435 case PF_DROP:
9436 m_freem(*m0);
9437 *m0 = NULL;
9438 break;
9439 default:
9440 if (rt) {
9441 switch (af) {
9442 #ifdef INET
9443 case AF_INET:
9444 /* pf_route() returns unlocked. */
9445 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
9446 break;
9447 #endif
9448 #ifdef INET6
9449 case AF_INET6:
9450 /* pf_route6() returns unlocked. */
9451 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
9452 break;
9453 #endif
9454 }
9455 goto out;
9456 }
9457 if (pf_dummynet(&pd, s, r, m0) != 0) {
9458 action = PF_DROP;
9459 REASON_SET(&reason, PFRES_MEMORY);
9460 }
9461 break;
9462 }
9463
9464 eat_pkt:
9465 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
9466
9467 if (s && action != PF_DROP) {
9468 if (!s->if_index_in && dir == PF_IN)
9469 s->if_index_in = ifp->if_index;
9470 else if (!s->if_index_out && dir == PF_OUT)
9471 s->if_index_out = ifp->if_index;
9472 }
9473
9474 if (s)
9475 PF_STATE_UNLOCK(s);
9476
9477 #ifdef INET6
9478 /* If reassembled packet passed, create new fragments. */
9479 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
9480 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
9481 action = pf_refragment6(ifp, m0, mtag, pflags & PFIL_FWD);
9482 #endif
9483
9484 out:
9485 pf_sctp_multihome_delayed(&pd, kif, s, action);
9486
9487 return (action);
9488 }
9489 #endif /* INET || INET6 */
9490