1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64
65 #include <crypto/sha2/sha512.h>
66
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116
117 #include <machine/in_cksum.h>
118 #include <security/mac/mac_framework.h>
119
120 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
121
122 SDT_PROVIDER_DEFINE(pf);
123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
125 "struct pf_kstate *");
126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
128 "struct pf_kstate *");
129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
130 "struct pfi_kkif *");
131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
132 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
136 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
140 "struct pf_krule *", "struct mbuf *", "int");
141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
142 "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
144 "struct pf_kstate *", "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
146 "int", "struct pf_pdesc *", "int");
147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
149 "int");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
151 "int");
152
153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
154 "struct mbuf *");
155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
157 "int", "struct pf_keth_rule *", "char *");
158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
160 "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
162
163 /*
164 * Global variables
165 */
166
167 /* state tables */
168 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
169 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]);
170 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
171 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
172 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
173 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
174 VNET_DEFINE(struct pf_kstatus, pf_status);
175
176 VNET_DEFINE(u_int32_t, ticket_altqs_active);
177 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
178 VNET_DEFINE(int, altqs_inactive_open);
179 VNET_DEFINE(u_int32_t, ticket_pabuf);
180
181 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx);
182 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
183 VNET_DEFINE(u_char, pf_tcp_secret[16]);
184 #define V_pf_tcp_secret VNET(pf_tcp_secret)
185 VNET_DEFINE(int, pf_tcp_secret_init);
186 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
187 VNET_DEFINE(int, pf_tcp_iss_off);
188 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
189 VNET_DECLARE(int, pf_vnet_active);
190 #define V_pf_vnet_active VNET(pf_vnet_active)
191
192 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
193 #define V_pf_purge_idx VNET(pf_purge_idx)
194
195 #ifdef PF_WANT_32_TO_64_COUNTER
196 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
197 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
198
199 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
200 VNET_DEFINE(size_t, pf_allrulecount);
201 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
202 #endif
203
204 struct pf_sctp_endpoint;
205 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
206 struct pf_sctp_source {
207 sa_family_t af;
208 struct pf_addr addr;
209 TAILQ_ENTRY(pf_sctp_source) entry;
210 };
211 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
212 struct pf_sctp_endpoint
213 {
214 uint32_t v_tag;
215 struct pf_sctp_sources sources;
216 RB_ENTRY(pf_sctp_endpoint) entry;
217 };
218 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)219 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
220 {
221 return (a->v_tag - b->v_tag);
222 }
223 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
224 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
225 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
226 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
227 static struct mtx_padalign pf_sctp_endpoints_mtx;
228 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
229 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
230 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
231
232 /*
233 * Queue for pf_intr() sends.
234 */
235 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
236 struct pf_send_entry {
237 STAILQ_ENTRY(pf_send_entry) pfse_next;
238 struct mbuf *pfse_m;
239 enum {
240 PFSE_IP,
241 PFSE_IP6,
242 PFSE_ICMP,
243 PFSE_ICMP6,
244 } pfse_type;
245 struct {
246 int type;
247 int code;
248 int mtu;
249 } icmpopts;
250 };
251
252 STAILQ_HEAD(pf_send_head, pf_send_entry);
253 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
254 #define V_pf_sendqueue VNET(pf_sendqueue)
255
256 static struct mtx_padalign pf_sendqueue_mtx;
257 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
258 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
259 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
260
261 /*
262 * Queue for pf_overload_task() tasks.
263 */
264 struct pf_overload_entry {
265 SLIST_ENTRY(pf_overload_entry) next;
266 struct pf_addr addr;
267 sa_family_t af;
268 uint8_t dir;
269 struct pf_krule *rule;
270 };
271
272 SLIST_HEAD(pf_overload_head, pf_overload_entry);
273 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
274 #define V_pf_overloadqueue VNET(pf_overloadqueue)
275 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
276 #define V_pf_overloadtask VNET(pf_overloadtask)
277
278 static struct mtx_padalign pf_overloadqueue_mtx;
279 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
280 "pf overload/flush queue", MTX_DEF);
281 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
282 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
283
284 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
285 struct mtx_padalign pf_unlnkdrules_mtx;
286 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
287 MTX_DEF);
288
289 struct sx pf_config_lock;
290 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
291
292 struct mtx_padalign pf_table_stats_lock;
293 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
294 MTX_DEF);
295
296 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
297 #define V_pf_sources_z VNET(pf_sources_z)
298 uma_zone_t pf_mtag_z;
299 VNET_DEFINE(uma_zone_t, pf_state_z);
300 VNET_DEFINE(uma_zone_t, pf_state_key_z);
301 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
302
303 VNET_DEFINE(struct unrhdr64, pf_stateid);
304
305 static void pf_src_tree_remove_state(struct pf_kstate *);
306 static void pf_init_threshold(struct pf_threshold *, u_int32_t,
307 u_int32_t);
308 static void pf_add_threshold(struct pf_threshold *);
309 static int pf_check_threshold(struct pf_threshold *);
310
311 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
312 u_int16_t *, u_int16_t *, struct pf_addr *,
313 u_int16_t, u_int8_t, sa_family_t, sa_family_t);
314 static int pf_modulate_sack(struct pf_pdesc *,
315 struct tcphdr *, struct pf_state_peer *);
316 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
317 u_int16_t *, u_int16_t *);
318 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
319 struct pf_addr *, struct pf_addr *, u_int16_t,
320 u_int16_t *, u_int16_t *, u_int16_t *,
321 u_int16_t *, u_int8_t, sa_family_t);
322 int pf_change_icmp_af(struct mbuf *, int,
323 struct pf_pdesc *, struct pf_pdesc *,
324 struct pf_addr *, struct pf_addr *, sa_family_t,
325 sa_family_t);
326 int pf_translate_icmp_af(int, void *);
327 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
328 sa_family_t, struct pf_krule *, int);
329 static void pf_detach_state(struct pf_kstate *);
330 static int pf_state_key_attach(struct pf_state_key *,
331 struct pf_state_key *, struct pf_kstate *);
332 static void pf_state_key_detach(struct pf_kstate *, int);
333 static int pf_state_key_ctor(void *, int, void *, int);
334 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
335 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
336 struct pf_mtag *pf_mtag);
337 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
338 struct pf_krule *, struct mbuf **);
339 static int pf_dummynet_route(struct pf_pdesc *,
340 struct pf_kstate *, struct pf_krule *,
341 struct ifnet *, const struct sockaddr *, struct mbuf **);
342 static int pf_test_eth_rule(int, struct pfi_kkif *,
343 struct mbuf **);
344 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
345 struct pf_pdesc *, struct pf_krule **,
346 struct pf_kruleset **, u_short *, struct inpcb *);
347 static int pf_create_state(struct pf_krule *, struct pf_krule *,
348 struct pf_krule *, struct pf_pdesc *,
349 struct pf_state_key *, struct pf_state_key *, int *,
350 struct pf_kstate **, int, u_int16_t, u_int16_t,
351 struct pf_krule_slist *, struct pf_udp_mapping *);
352 static int pf_state_key_addr_setup(struct pf_pdesc *,
353 struct pf_state_key_cmp *, int);
354 static int pf_tcp_track_full(struct pf_kstate *,
355 struct pf_pdesc *, u_short *, int *,
356 struct pf_state_peer *, struct pf_state_peer *,
357 u_int8_t, u_int8_t);
358 static int pf_tcp_track_sloppy(struct pf_kstate *,
359 struct pf_pdesc *, u_short *,
360 struct pf_state_peer *, struct pf_state_peer *,
361 u_int8_t, u_int8_t);
362 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *,
363 u_short *);
364 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
365 struct pf_pdesc *, struct pf_kstate **,
366 u_int16_t, u_int16_t, int, int *, int, int);
367 static int pf_test_state_icmp(struct pf_kstate **,
368 struct pf_pdesc *, u_short *);
369 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
370 u_short *);
371 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
372 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
373 struct pfi_kkif *, struct pf_kstate *, int);
374 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
375 int, u_int16_t);
376 static int pf_check_proto_cksum(struct mbuf *, int, int,
377 u_int8_t, sa_family_t);
378 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
379 int, int, u_short *);
380 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
381 u_short *);
382 static void pf_print_state_parts(struct pf_kstate *,
383 struct pf_state_key *, struct pf_state_key *);
384 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
385 bool, u_int8_t);
386 static struct pf_kstate *pf_find_state(struct pfi_kkif *,
387 const struct pf_state_key_cmp *, u_int);
388 static bool pf_src_connlimit(struct pf_kstate *);
389 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
390 static void pf_counters_inc(int, struct pf_pdesc *,
391 struct pf_kstate *, struct pf_krule *,
392 struct pf_krule *);
393 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *,
394 struct pf_krule *, struct pf_kruleset *,
395 struct pf_krule_slist *);
396 static void pf_overload_task(void *v, int pending);
397 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
398 struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
399 struct pf_addr *, sa_family_t, struct pf_addr *,
400 struct pfi_kkif *, pf_sn_types_t);
401 static u_int pf_purge_expired_states(u_int, int);
402 static void pf_purge_unlinked_rules(void);
403 static int pf_mtag_uminit(void *, int, int);
404 static void pf_mtag_free(struct m_tag *);
405 static void pf_packet_rework_nat(struct pf_pdesc *, int,
406 struct pf_state_key *);
407 #ifdef INET
408 static void pf_route(struct mbuf **, struct pf_krule *,
409 struct ifnet *, struct pf_kstate *,
410 struct pf_pdesc *, struct inpcb *);
411 #endif /* INET */
412 #ifdef INET6
413 static void pf_change_a6(struct pf_addr *, u_int16_t *,
414 struct pf_addr *, u_int8_t);
415 static void pf_route6(struct mbuf **, struct pf_krule *,
416 struct ifnet *, struct pf_kstate *,
417 struct pf_pdesc *, struct inpcb *);
418 #endif /* INET6 */
419 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
420
421 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
422
423 extern int pf_end_threads;
424 extern struct proc *pf_purge_proc;
425
426 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
427
428 #define PACKET_UNDO_NAT(_pd, _off, _s) \
429 do { \
430 struct pf_state_key *nk; \
431 if ((pd->dir) == PF_OUT) \
432 nk = (_s)->key[PF_SK_STACK]; \
433 else \
434 nk = (_s)->key[PF_SK_WIRE]; \
435 pf_packet_rework_nat(_pd, _off, nk); \
436 } while (0)
437
438 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
439 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
440
441 #define STATE_LOOKUP(k, s, pd) \
442 do { \
443 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \
444 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \
445 if ((s) == NULL) \
446 return (PF_DROP); \
447 if (PACKET_LOOPED(pd)) \
448 return (PF_PASS); \
449 } while (0)
450
451 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)452 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
453 {
454 struct pfi_kkif *k = pd->kif;
455
456 SDT_PROBE2(pf, ip, , bound_iface, st, k);
457
458 /* Floating unless otherwise specified. */
459 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
460 return (V_pfi_all);
461
462 /*
463 * Initially set to all, because we don't know what interface we'll be
464 * sending this out when we create the state.
465 */
466 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
467 return (V_pfi_all);
468
469 /*
470 * If this state is created based on another state (e.g. SCTP
471 * multihome) always set it floating initially. We can't know for sure
472 * what interface the actual traffic for this state will come in on.
473 */
474 if (pd->related_rule)
475 return (V_pfi_all);
476
477 /* Don't overrule the interface for states created on incoming packets. */
478 if (st->direction == PF_IN)
479 return (k);
480
481 /* No route-to, so don't overrule. */
482 if (st->act.rt != PF_ROUTETO)
483 return (k);
484
485 /* Bind to the route-to interface. */
486 return (st->act.rt_kif);
487 }
488
489 #define STATE_INC_COUNTERS(s) \
490 do { \
491 struct pf_krule_item *mrm; \
492 counter_u64_add(s->rule->states_cur, 1); \
493 counter_u64_add(s->rule->states_tot, 1); \
494 if (s->anchor != NULL) { \
495 counter_u64_add(s->anchor->states_cur, 1); \
496 counter_u64_add(s->anchor->states_tot, 1); \
497 } \
498 if (s->nat_rule != NULL) { \
499 counter_u64_add(s->nat_rule->states_cur, 1);\
500 counter_u64_add(s->nat_rule->states_tot, 1);\
501 } \
502 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
503 counter_u64_add(mrm->r->states_cur, 1); \
504 counter_u64_add(mrm->r->states_tot, 1); \
505 } \
506 } while (0)
507
508 #define STATE_DEC_COUNTERS(s) \
509 do { \
510 struct pf_krule_item *mrm; \
511 if (s->nat_rule != NULL) \
512 counter_u64_add(s->nat_rule->states_cur, -1);\
513 if (s->anchor != NULL) \
514 counter_u64_add(s->anchor->states_cur, -1); \
515 counter_u64_add(s->rule->states_cur, -1); \
516 SLIST_FOREACH(mrm, &s->match_rules, entry) \
517 counter_u64_add(mrm->r->states_cur, -1); \
518 } while (0)
519
520 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
521 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
522 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
523 VNET_DEFINE(struct pf_idhash *, pf_idhash);
524 VNET_DEFINE(struct pf_srchash *, pf_srchash);
525 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
526 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
527
528 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
529 "pf(4)");
530
531 VNET_DEFINE(u_long, pf_hashmask);
532 VNET_DEFINE(u_long, pf_srchashmask);
533 VNET_DEFINE(u_long, pf_udpendpointhashmask);
534 VNET_DEFINE_STATIC(u_long, pf_hashsize);
535 #define V_pf_hashsize VNET(pf_hashsize)
536 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
537 #define V_pf_srchashsize VNET(pf_srchashsize)
538 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
539 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
540 u_long pf_ioctl_maxcount = 65535;
541
542 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
543 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
544 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
545 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
546 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
547 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
548 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
549 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
550
551 VNET_DEFINE(void *, pf_swi_cookie);
552 VNET_DEFINE(struct intr_event *, pf_swi_ie);
553
554 VNET_DEFINE(uint32_t, pf_hashseed);
555 #define V_pf_hashseed VNET(pf_hashseed)
556
557 static void
pf_sctp_checksum(struct mbuf * m,int off)558 pf_sctp_checksum(struct mbuf *m, int off)
559 {
560 uint32_t sum = 0;
561
562 /* Zero out the checksum, to enable recalculation. */
563 m_copyback(m, off + offsetof(struct sctphdr, checksum),
564 sizeof(sum), (caddr_t)&sum);
565
566 sum = sctp_calculate_cksum(m, off);
567
568 m_copyback(m, off + offsetof(struct sctphdr, checksum),
569 sizeof(sum), (caddr_t)&sum);
570 }
571
572 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)573 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
574 {
575
576 switch (af) {
577 #ifdef INET
578 case AF_INET:
579 if (a->addr32[0] > b->addr32[0])
580 return (1);
581 if (a->addr32[0] < b->addr32[0])
582 return (-1);
583 break;
584 #endif /* INET */
585 #ifdef INET6
586 case AF_INET6:
587 if (a->addr32[3] > b->addr32[3])
588 return (1);
589 if (a->addr32[3] < b->addr32[3])
590 return (-1);
591 if (a->addr32[2] > b->addr32[2])
592 return (1);
593 if (a->addr32[2] < b->addr32[2])
594 return (-1);
595 if (a->addr32[1] > b->addr32[1])
596 return (1);
597 if (a->addr32[1] < b->addr32[1])
598 return (-1);
599 if (a->addr32[0] > b->addr32[0])
600 return (1);
601 if (a->addr32[0] < b->addr32[0])
602 return (-1);
603 break;
604 #endif /* INET6 */
605 default:
606 unhandled_af(af);
607 }
608 return (0);
609 }
610
611 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)612 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
613 {
614 switch (af) {
615 #ifdef INET
616 case AF_INET:
617 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
618 #endif /* INET */
619 case AF_INET6:
620 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
621 default:
622 unhandled_af(af);
623 }
624 }
625
626 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)627 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
628 {
629
630 switch (pd->proto) {
631 case IPPROTO_TCP: {
632 struct tcphdr *th = &pd->hdr.tcp;
633
634 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
635 pf_change_ap(pd, pd->src, &th->th_sport, pd->ip_sum,
636 &th->th_sum, &nk->addr[pd->sidx],
637 nk->port[pd->sidx], 0, pd->af, pd->naf);
638 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
639 pf_change_ap(pd, pd->dst, &th->th_dport, pd->ip_sum,
640 &th->th_sum, &nk->addr[pd->didx],
641 nk->port[pd->didx], 0, pd->af, pd->naf);
642 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
643 break;
644 }
645 case IPPROTO_UDP: {
646 struct udphdr *uh = &pd->hdr.udp;
647
648 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
649 pf_change_ap(pd, pd->src, &uh->uh_sport, pd->ip_sum,
650 &uh->uh_sum, &nk->addr[pd->sidx],
651 nk->port[pd->sidx], 1, pd->af, pd->naf);
652 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
653 pf_change_ap(pd, pd->dst, &uh->uh_dport, pd->ip_sum,
654 &uh->uh_sum, &nk->addr[pd->didx],
655 nk->port[pd->didx], 1, pd->af, pd->naf);
656 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
657 break;
658 }
659 case IPPROTO_SCTP: {
660 struct sctphdr *sh = &pd->hdr.sctp;
661 uint16_t checksum = 0;
662
663 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
664 pf_change_ap(pd, pd->src, &sh->src_port, pd->ip_sum,
665 &checksum, &nk->addr[pd->sidx],
666 nk->port[pd->sidx], 1, pd->af, pd->naf);
667 }
668 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
669 pf_change_ap(pd, pd->dst, &sh->dest_port, pd->ip_sum,
670 &checksum, &nk->addr[pd->didx],
671 nk->port[pd->didx], 1, pd->af, pd->naf);
672 }
673
674 break;
675 }
676 case IPPROTO_ICMP: {
677 struct icmp *ih = &pd->hdr.icmp;
678
679 if (nk->port[pd->sidx] != ih->icmp_id) {
680 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
681 ih->icmp_cksum, ih->icmp_id,
682 nk->port[pd->sidx], 0);
683 ih->icmp_id = nk->port[pd->sidx];
684 pd->sport = &ih->icmp_id;
685
686 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
687 }
688 /* FALLTHROUGH */
689 }
690 default:
691 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
692 switch (pd->af) {
693 case AF_INET:
694 pf_change_a(&pd->src->v4.s_addr,
695 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
696 0);
697 break;
698 case AF_INET6:
699 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
700 break;
701 default:
702 unhandled_af(pd->af);
703 }
704 }
705 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
706 switch (pd->af) {
707 case AF_INET:
708 pf_change_a(&pd->dst->v4.s_addr,
709 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
710 0);
711 break;
712 case AF_INET6:
713 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
714 break;
715 default:
716 unhandled_af(pd->af);
717 }
718 }
719 break;
720 }
721 }
722
723 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)724 pf_hashkey(const struct pf_state_key *sk)
725 {
726 uint32_t h;
727
728 h = murmur3_32_hash32((const uint32_t *)sk,
729 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
730 V_pf_hashseed);
731
732 return (h & V_pf_hashmask);
733 }
734
735 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)736 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
737 {
738 uint32_t h;
739
740 switch (af) {
741 case AF_INET:
742 h = murmur3_32_hash32((uint32_t *)&addr->v4,
743 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
744 break;
745 case AF_INET6:
746 h = murmur3_32_hash32((uint32_t *)&addr->v6,
747 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
748 break;
749 default:
750 unhandled_af(af);
751 }
752
753 return (h & V_pf_srchashmask);
754 }
755
756 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)757 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
758 {
759 uint32_t h;
760
761 h = murmur3_32_hash32((uint32_t *)endpoint,
762 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
763 V_pf_hashseed);
764 return (h & V_pf_udpendpointhashmask);
765 }
766
767 #ifdef ALTQ
768 static int
pf_state_hash(struct pf_kstate * s)769 pf_state_hash(struct pf_kstate *s)
770 {
771 u_int32_t hv = (intptr_t)s / sizeof(*s);
772
773 hv ^= crc32(&s->src, sizeof(s->src));
774 hv ^= crc32(&s->dst, sizeof(s->dst));
775 if (hv == 0)
776 hv = 1;
777 return (hv);
778 }
779 #endif /* ALTQ */
780
781 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)782 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
783 {
784 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
785 s->dst.state = newstate;
786 if (which == PF_PEER_DST)
787 return;
788 if (s->src.state == newstate)
789 return;
790 if (s->creatorid == V_pf_status.hostid &&
791 s->key[PF_SK_STACK] != NULL &&
792 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
793 !(TCPS_HAVEESTABLISHED(s->src.state) ||
794 s->src.state == TCPS_CLOSED) &&
795 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
796 atomic_add_32(&V_pf_status.states_halfopen, -1);
797
798 s->src.state = newstate;
799 }
800
801 static void
pf_init_threshold(struct pf_threshold * threshold,u_int32_t limit,u_int32_t seconds)802 pf_init_threshold(struct pf_threshold *threshold,
803 u_int32_t limit, u_int32_t seconds)
804 {
805 threshold->limit = limit * PF_THRESHOLD_MULT;
806 threshold->seconds = seconds;
807 threshold->count = 0;
808 threshold->last = time_uptime;
809 }
810
811 static void
pf_add_threshold(struct pf_threshold * threshold)812 pf_add_threshold(struct pf_threshold *threshold)
813 {
814 u_int32_t t = time_uptime, diff = t - threshold->last;
815
816 if (diff >= threshold->seconds)
817 threshold->count = 0;
818 else
819 threshold->count -= threshold->count * diff /
820 threshold->seconds;
821 threshold->count += PF_THRESHOLD_MULT;
822 threshold->last = t;
823 }
824
825 static int
pf_check_threshold(struct pf_threshold * threshold)826 pf_check_threshold(struct pf_threshold *threshold)
827 {
828 return (threshold->count > threshold->limit);
829 }
830
831 static bool
pf_src_connlimit(struct pf_kstate * state)832 pf_src_connlimit(struct pf_kstate *state)
833 {
834 struct pf_overload_entry *pfoe;
835 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT];
836 bool limited = false;
837
838 PF_STATE_LOCK_ASSERT(state);
839 PF_SRC_NODE_LOCK(src_node);
840
841 src_node->conn++;
842 state->src.tcp_est = 1;
843 pf_add_threshold(&src_node->conn_rate);
844
845 if (state->rule->max_src_conn &&
846 state->rule->max_src_conn <
847 src_node->conn) {
848 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
849 limited = true;
850 }
851
852 if (state->rule->max_src_conn_rate.limit &&
853 pf_check_threshold(&src_node->conn_rate)) {
854 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
855 limited = true;
856 }
857
858 if (!limited)
859 goto done;
860
861 /* Kill this state. */
862 state->timeout = PFTM_PURGE;
863 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
864
865 if (state->rule->overload_tbl == NULL)
866 goto done;
867
868 /* Schedule overloading and flushing task. */
869 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
870 if (pfoe == NULL)
871 goto done; /* too bad :( */
872
873 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
874 pfoe->af = state->key[PF_SK_WIRE]->af;
875 pfoe->rule = state->rule;
876 pfoe->dir = state->direction;
877 PF_OVERLOADQ_LOCK();
878 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
879 PF_OVERLOADQ_UNLOCK();
880 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
881
882 done:
883 PF_SRC_NODE_UNLOCK(src_node);
884 return (limited);
885 }
886
887 static void
pf_overload_task(void * v,int pending)888 pf_overload_task(void *v, int pending)
889 {
890 struct pf_overload_head queue;
891 struct pfr_addr p;
892 struct pf_overload_entry *pfoe, *pfoe1;
893 uint32_t killed = 0;
894
895 CURVNET_SET((struct vnet *)v);
896
897 PF_OVERLOADQ_LOCK();
898 queue = V_pf_overloadqueue;
899 SLIST_INIT(&V_pf_overloadqueue);
900 PF_OVERLOADQ_UNLOCK();
901
902 bzero(&p, sizeof(p));
903 SLIST_FOREACH(pfoe, &queue, next) {
904 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
905 if (V_pf_status.debug >= PF_DEBUG_MISC) {
906 printf("%s: blocking address ", __func__);
907 pf_print_host(&pfoe->addr, 0, pfoe->af);
908 printf("\n");
909 }
910
911 p.pfra_af = pfoe->af;
912 switch (pfoe->af) {
913 #ifdef INET
914 case AF_INET:
915 p.pfra_net = 32;
916 p.pfra_ip4addr = pfoe->addr.v4;
917 break;
918 #endif /* INET */
919 #ifdef INET6
920 case AF_INET6:
921 p.pfra_net = 128;
922 p.pfra_ip6addr = pfoe->addr.v6;
923 break;
924 #endif /* INET6 */
925 default:
926 unhandled_af(pfoe->af);
927 }
928
929 PF_RULES_WLOCK();
930 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
931 PF_RULES_WUNLOCK();
932 }
933
934 /*
935 * Remove those entries, that don't need flushing.
936 */
937 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
938 if (pfoe->rule->flush == 0) {
939 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
940 free(pfoe, M_PFTEMP);
941 } else
942 counter_u64_add(
943 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
944
945 /* If nothing to flush, return. */
946 if (SLIST_EMPTY(&queue)) {
947 CURVNET_RESTORE();
948 return;
949 }
950
951 for (int i = 0; i <= V_pf_hashmask; i++) {
952 struct pf_idhash *ih = &V_pf_idhash[i];
953 struct pf_state_key *sk;
954 struct pf_kstate *s;
955
956 PF_HASHROW_LOCK(ih);
957 LIST_FOREACH(s, &ih->states, entry) {
958 sk = s->key[PF_SK_WIRE];
959 SLIST_FOREACH(pfoe, &queue, next)
960 if (sk->af == pfoe->af &&
961 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
962 pfoe->rule == s->rule) &&
963 ((pfoe->dir == PF_OUT &&
964 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
965 (pfoe->dir == PF_IN &&
966 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
967 s->timeout = PFTM_PURGE;
968 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
969 killed++;
970 }
971 }
972 PF_HASHROW_UNLOCK(ih);
973 }
974 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
975 free(pfoe, M_PFTEMP);
976 if (V_pf_status.debug >= PF_DEBUG_MISC)
977 printf("%s: %u states killed", __func__, killed);
978
979 CURVNET_RESTORE();
980 }
981
982 /*
983 * On node found always returns locked. On not found its configurable.
984 */
985 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)986 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
987 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
988 {
989 struct pf_ksrc_node *n;
990
991 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
992
993 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
994 PF_HASHROW_LOCK(*sh);
995 LIST_FOREACH(n, &(*sh)->nodes, entry)
996 if (n->rule == rule && n->af == af && n->type == sn_type &&
997 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
998 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
999 break;
1000
1001 if (n == NULL && !returnlocked)
1002 PF_HASHROW_UNLOCK(*sh);
1003
1004 return (n);
1005 }
1006
1007 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)1008 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
1009 {
1010 struct pf_ksrc_node *cur;
1011
1012 if ((*sn) == NULL)
1013 return (false);
1014
1015 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
1016
1017 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
1018 PF_HASHROW_LOCK(sh);
1019 LIST_FOREACH(cur, &(sh->nodes), entry) {
1020 if (cur == (*sn) &&
1021 cur->expire != 1) /* Ignore nodes being killed */
1022 return (true);
1023 }
1024 PF_HASHROW_UNLOCK(sh);
1025 (*sn) = NULL;
1026 return (false);
1027 }
1028
1029 static void
pf_free_src_node(struct pf_ksrc_node * sn)1030 pf_free_src_node(struct pf_ksrc_node *sn)
1031 {
1032
1033 for (int i = 0; i < 2; i++) {
1034 counter_u64_free(sn->bytes[i]);
1035 counter_u64_free(sn->packets[i]);
1036 }
1037 uma_zfree(V_pf_sources_z, sn);
1038 }
1039
1040 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,pf_sn_types_t sn_type)1041 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1042 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1043 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1044 struct pfi_kkif *rkif, pf_sn_types_t sn_type)
1045 {
1046 u_short reason = 0;
1047 struct pf_krule *r_track = rule;
1048 struct pf_ksrc_node **sn = &(sns[sn_type]);
1049 struct pf_srchash **sh = &(snhs[sn_type]);
1050
1051 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1052 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1053
1054 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1055 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1056
1057 /*
1058 * XXX: There could be a KASSERT for
1059 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1060 * but we'd need to pass pool *only* for this KASSERT.
1061 */
1062
1063 if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1064 !(rule->rule_flag & PFRULE_RULESRCTRACK))
1065 r_track = &V_pf_default_rule;
1066
1067 /*
1068 * Request the sh to always be locked, as we might insert a new sn.
1069 */
1070 if (*sn == NULL)
1071 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1072
1073 if (*sn == NULL) {
1074 PF_HASHROW_ASSERT(*sh);
1075
1076 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1077 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1078 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1079 reason = PFRES_SRCLIMIT;
1080 goto done;
1081 }
1082
1083 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1084 if ((*sn) == NULL) {
1085 reason = PFRES_MEMORY;
1086 goto done;
1087 }
1088
1089 for (int i = 0; i < 2; i++) {
1090 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1091 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1092
1093 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1094 pf_free_src_node(*sn);
1095 reason = PFRES_MEMORY;
1096 goto done;
1097 }
1098 }
1099
1100 if (sn_type == PF_SN_LIMIT)
1101 pf_init_threshold(&(*sn)->conn_rate,
1102 rule->max_src_conn_rate.limit,
1103 rule->max_src_conn_rate.seconds);
1104
1105 MPASS((*sn)->lock == NULL);
1106 (*sn)->lock = &(*sh)->lock;
1107
1108 (*sn)->af = af;
1109 (*sn)->rule = r_track;
1110 PF_ACPY(&(*sn)->addr, src, af);
1111 if (raddr != NULL)
1112 PF_ACPY(&(*sn)->raddr, raddr, af);
1113 (*sn)->rkif = rkif;
1114 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1115 (*sn)->creation = time_uptime;
1116 (*sn)->ruletype = rule->action;
1117 (*sn)->type = sn_type;
1118 counter_u64_add(r_track->src_nodes[sn_type], 1);
1119 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1120 } else {
1121 if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1122 (*sn)->states >= rule->max_src_states) {
1123 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1124 1);
1125 reason = PFRES_SRCLIMIT;
1126 goto done;
1127 }
1128 }
1129 done:
1130 if (reason == 0)
1131 (*sn)->states++;
1132 else
1133 (*sn) = NULL;
1134
1135 PF_HASHROW_UNLOCK(*sh);
1136 return (reason);
1137 }
1138
1139 void
pf_unlink_src_node(struct pf_ksrc_node * src)1140 pf_unlink_src_node(struct pf_ksrc_node *src)
1141 {
1142 PF_SRC_NODE_LOCK_ASSERT(src);
1143
1144 LIST_REMOVE(src, entry);
1145 if (src->rule)
1146 counter_u64_add(src->rule->src_nodes[src->type], -1);
1147 }
1148
1149 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1150 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1151 {
1152 struct pf_ksrc_node *sn, *tmp;
1153 u_int count = 0;
1154
1155 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1156 pf_free_src_node(sn);
1157 count++;
1158 }
1159
1160 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1161
1162 return (count);
1163 }
1164
1165 void
pf_mtag_initialize(void)1166 pf_mtag_initialize(void)
1167 {
1168
1169 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1170 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1171 UMA_ALIGN_PTR, 0);
1172 }
1173
1174 /* Per-vnet data storage structures initialization. */
1175 void
pf_initialize(void)1176 pf_initialize(void)
1177 {
1178 struct pf_keyhash *kh;
1179 struct pf_idhash *ih;
1180 struct pf_srchash *sh;
1181 struct pf_udpendpointhash *uh;
1182 u_int i;
1183
1184 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1185 V_pf_hashsize = PF_HASHSIZ;
1186 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1187 V_pf_srchashsize = PF_SRCHASHSIZ;
1188 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1189 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1190
1191 V_pf_hashseed = arc4random();
1192
1193 /* States and state keys storage. */
1194 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1195 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1196 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1197 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1198 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1199
1200 V_pf_state_key_z = uma_zcreate("pf state keys",
1201 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1202 UMA_ALIGN_PTR, 0);
1203
1204 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1205 M_PFHASH, M_NOWAIT | M_ZERO);
1206 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1207 M_PFHASH, M_NOWAIT | M_ZERO);
1208 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1209 printf("pf: Unable to allocate memory for "
1210 "state_hashsize %lu.\n", V_pf_hashsize);
1211
1212 free(V_pf_keyhash, M_PFHASH);
1213 free(V_pf_idhash, M_PFHASH);
1214
1215 V_pf_hashsize = PF_HASHSIZ;
1216 V_pf_keyhash = mallocarray(V_pf_hashsize,
1217 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1218 V_pf_idhash = mallocarray(V_pf_hashsize,
1219 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1220 }
1221
1222 V_pf_hashmask = V_pf_hashsize - 1;
1223 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1224 i++, kh++, ih++) {
1225 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1226 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1227 }
1228
1229 /* Source nodes. */
1230 V_pf_sources_z = uma_zcreate("pf source nodes",
1231 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1232 0);
1233 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1234 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1235 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1236
1237 V_pf_srchash = mallocarray(V_pf_srchashsize,
1238 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1239 if (V_pf_srchash == NULL) {
1240 printf("pf: Unable to allocate memory for "
1241 "source_hashsize %lu.\n", V_pf_srchashsize);
1242
1243 V_pf_srchashsize = PF_SRCHASHSIZ;
1244 V_pf_srchash = mallocarray(V_pf_srchashsize,
1245 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1246 }
1247
1248 V_pf_srchashmask = V_pf_srchashsize - 1;
1249 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1250 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1251
1252
1253 /* UDP endpoint mappings. */
1254 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1255 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1256 UMA_ALIGN_PTR, 0);
1257 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1258 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1259 if (V_pf_udpendpointhash == NULL) {
1260 printf("pf: Unable to allocate memory for "
1261 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1262
1263 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1264 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1265 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1266 }
1267
1268 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1269 for (i = 0, uh = V_pf_udpendpointhash;
1270 i <= V_pf_udpendpointhashmask;
1271 i++, uh++) {
1272 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1273 MTX_DEF | MTX_DUPOK);
1274 }
1275
1276 /* ALTQ */
1277 TAILQ_INIT(&V_pf_altqs[0]);
1278 TAILQ_INIT(&V_pf_altqs[1]);
1279 TAILQ_INIT(&V_pf_altqs[2]);
1280 TAILQ_INIT(&V_pf_altqs[3]);
1281 TAILQ_INIT(&V_pf_pabuf[0]);
1282 TAILQ_INIT(&V_pf_pabuf[1]);
1283 TAILQ_INIT(&V_pf_pabuf[2]);
1284 V_pf_altqs_active = &V_pf_altqs[0];
1285 V_pf_altq_ifs_active = &V_pf_altqs[1];
1286 V_pf_altqs_inactive = &V_pf_altqs[2];
1287 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1288
1289 /* Send & overload+flush queues. */
1290 STAILQ_INIT(&V_pf_sendqueue);
1291 SLIST_INIT(&V_pf_overloadqueue);
1292 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1293
1294 /* Unlinked, but may be referenced rules. */
1295 TAILQ_INIT(&V_pf_unlinked_rules);
1296 }
1297
1298 void
pf_mtag_cleanup(void)1299 pf_mtag_cleanup(void)
1300 {
1301
1302 uma_zdestroy(pf_mtag_z);
1303 }
1304
1305 void
pf_cleanup(void)1306 pf_cleanup(void)
1307 {
1308 struct pf_keyhash *kh;
1309 struct pf_idhash *ih;
1310 struct pf_srchash *sh;
1311 struct pf_udpendpointhash *uh;
1312 struct pf_send_entry *pfse, *next;
1313 u_int i;
1314
1315 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1316 i <= V_pf_hashmask;
1317 i++, kh++, ih++) {
1318 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1319 __func__));
1320 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1321 __func__));
1322 mtx_destroy(&kh->lock);
1323 mtx_destroy(&ih->lock);
1324 }
1325 free(V_pf_keyhash, M_PFHASH);
1326 free(V_pf_idhash, M_PFHASH);
1327
1328 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1329 KASSERT(LIST_EMPTY(&sh->nodes),
1330 ("%s: source node hash not empty", __func__));
1331 mtx_destroy(&sh->lock);
1332 }
1333 free(V_pf_srchash, M_PFHASH);
1334
1335 for (i = 0, uh = V_pf_udpendpointhash;
1336 i <= V_pf_udpendpointhashmask;
1337 i++, uh++) {
1338 KASSERT(LIST_EMPTY(&uh->endpoints),
1339 ("%s: udp endpoint hash not empty", __func__));
1340 mtx_destroy(&uh->lock);
1341 }
1342 free(V_pf_udpendpointhash, M_PFHASH);
1343
1344 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1345 m_freem(pfse->pfse_m);
1346 free(pfse, M_PFTEMP);
1347 }
1348 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1349
1350 uma_zdestroy(V_pf_sources_z);
1351 uma_zdestroy(V_pf_state_z);
1352 uma_zdestroy(V_pf_state_key_z);
1353 uma_zdestroy(V_pf_udp_mapping_z);
1354 }
1355
1356 static int
pf_mtag_uminit(void * mem,int size,int how)1357 pf_mtag_uminit(void *mem, int size, int how)
1358 {
1359 struct m_tag *t;
1360
1361 t = (struct m_tag *)mem;
1362 t->m_tag_cookie = MTAG_ABI_COMPAT;
1363 t->m_tag_id = PACKET_TAG_PF;
1364 t->m_tag_len = sizeof(struct pf_mtag);
1365 t->m_tag_free = pf_mtag_free;
1366
1367 return (0);
1368 }
1369
1370 static void
pf_mtag_free(struct m_tag * t)1371 pf_mtag_free(struct m_tag *t)
1372 {
1373
1374 uma_zfree(pf_mtag_z, t);
1375 }
1376
1377 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1378 pf_get_mtag(struct mbuf *m)
1379 {
1380 struct m_tag *mtag;
1381
1382 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1383 return ((struct pf_mtag *)(mtag + 1));
1384
1385 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1386 if (mtag == NULL)
1387 return (NULL);
1388 bzero(mtag + 1, sizeof(struct pf_mtag));
1389 m_tag_prepend(m, mtag);
1390
1391 return ((struct pf_mtag *)(mtag + 1));
1392 }
1393
1394 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1395 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1396 struct pf_kstate *s)
1397 {
1398 struct pf_keyhash *khs, *khw, *kh;
1399 struct pf_state_key *sk, *cur;
1400 struct pf_kstate *si, *olds = NULL;
1401 int idx;
1402
1403 NET_EPOCH_ASSERT();
1404 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1405 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1406 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1407
1408 /*
1409 * We need to lock hash slots of both keys. To avoid deadlock
1410 * we always lock the slot with lower address first. Unlock order
1411 * isn't important.
1412 *
1413 * We also need to lock ID hash slot before dropping key
1414 * locks. On success we return with ID hash slot locked.
1415 */
1416
1417 if (skw == sks) {
1418 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1419 PF_HASHROW_LOCK(khs);
1420 } else {
1421 khs = &V_pf_keyhash[pf_hashkey(sks)];
1422 khw = &V_pf_keyhash[pf_hashkey(skw)];
1423 if (khs == khw) {
1424 PF_HASHROW_LOCK(khs);
1425 } else if (khs < khw) {
1426 PF_HASHROW_LOCK(khs);
1427 PF_HASHROW_LOCK(khw);
1428 } else {
1429 PF_HASHROW_LOCK(khw);
1430 PF_HASHROW_LOCK(khs);
1431 }
1432 }
1433
1434 #define KEYS_UNLOCK() do { \
1435 if (khs != khw) { \
1436 PF_HASHROW_UNLOCK(khs); \
1437 PF_HASHROW_UNLOCK(khw); \
1438 } else \
1439 PF_HASHROW_UNLOCK(khs); \
1440 } while (0)
1441
1442 /*
1443 * First run: start with wire key.
1444 */
1445 sk = skw;
1446 kh = khw;
1447 idx = PF_SK_WIRE;
1448
1449 MPASS(s->lock == NULL);
1450 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1451
1452 keyattach:
1453 LIST_FOREACH(cur, &kh->keys, entry)
1454 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1455 break;
1456
1457 if (cur != NULL) {
1458 /* Key exists. Check for same kif, if none, add to key. */
1459 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1460 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1461
1462 PF_HASHROW_LOCK(ih);
1463 if (si->kif == s->kif &&
1464 ((si->key[PF_SK_WIRE]->af == sk->af &&
1465 si->direction == s->direction) ||
1466 (si->key[PF_SK_WIRE]->af !=
1467 si->key[PF_SK_STACK]->af &&
1468 sk->af == si->key[PF_SK_STACK]->af &&
1469 si->direction != s->direction))) {
1470 if (sk->proto == IPPROTO_TCP &&
1471 si->src.state >= TCPS_FIN_WAIT_2 &&
1472 si->dst.state >= TCPS_FIN_WAIT_2) {
1473 /*
1474 * New state matches an old >FIN_WAIT_2
1475 * state. We can't drop key hash locks,
1476 * thus we can't unlink it properly.
1477 *
1478 * As a workaround we drop it into
1479 * TCPS_CLOSED state, schedule purge
1480 * ASAP and push it into the very end
1481 * of the slot TAILQ, so that it won't
1482 * conflict with our new state.
1483 */
1484 pf_set_protostate(si, PF_PEER_BOTH,
1485 TCPS_CLOSED);
1486 si->timeout = PFTM_PURGE;
1487 olds = si;
1488 } else {
1489 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1490 printf("pf: %s key attach "
1491 "failed on %s: ",
1492 (idx == PF_SK_WIRE) ?
1493 "wire" : "stack",
1494 s->kif->pfik_name);
1495 pf_print_state_parts(s,
1496 (idx == PF_SK_WIRE) ?
1497 sk : NULL,
1498 (idx == PF_SK_STACK) ?
1499 sk : NULL);
1500 printf(", existing: ");
1501 pf_print_state_parts(si,
1502 (idx == PF_SK_WIRE) ?
1503 sk : NULL,
1504 (idx == PF_SK_STACK) ?
1505 sk : NULL);
1506 printf("\n");
1507 }
1508 s->timeout = PFTM_UNLINKED;
1509 if (idx == PF_SK_STACK)
1510 /*
1511 * Remove the wire key from
1512 * the hash. Other threads
1513 * can't be referencing it
1514 * because we still hold the
1515 * hash lock.
1516 */
1517 pf_state_key_detach(s,
1518 PF_SK_WIRE);
1519 PF_HASHROW_UNLOCK(ih);
1520 KEYS_UNLOCK();
1521 if (idx == PF_SK_WIRE)
1522 /*
1523 * We've not inserted either key.
1524 * Free both.
1525 */
1526 uma_zfree(V_pf_state_key_z, skw);
1527 if (skw != sks)
1528 uma_zfree(
1529 V_pf_state_key_z,
1530 sks);
1531 return (EEXIST); /* collision! */
1532 }
1533 }
1534 PF_HASHROW_UNLOCK(ih);
1535 }
1536 uma_zfree(V_pf_state_key_z, sk);
1537 s->key[idx] = cur;
1538 } else {
1539 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1540 s->key[idx] = sk;
1541 }
1542
1543 stateattach:
1544 /* List is sorted, if-bound states before floating. */
1545 if (s->kif == V_pfi_all)
1546 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1547 else
1548 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1549
1550 if (olds) {
1551 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1552 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1553 key_list[idx]);
1554 olds = NULL;
1555 }
1556
1557 /*
1558 * Attach done. See how should we (or should not?)
1559 * attach a second key.
1560 */
1561 if (sks == skw) {
1562 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1563 idx = PF_SK_STACK;
1564 sks = NULL;
1565 goto stateattach;
1566 } else if (sks != NULL) {
1567 /*
1568 * Continue attaching with stack key.
1569 */
1570 sk = sks;
1571 kh = khs;
1572 idx = PF_SK_STACK;
1573 sks = NULL;
1574 goto keyattach;
1575 }
1576
1577 PF_STATE_LOCK(s);
1578 KEYS_UNLOCK();
1579
1580 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1581 ("%s failure", __func__));
1582
1583 return (0);
1584 #undef KEYS_UNLOCK
1585 }
1586
1587 static void
pf_detach_state(struct pf_kstate * s)1588 pf_detach_state(struct pf_kstate *s)
1589 {
1590 struct pf_state_key *sks = s->key[PF_SK_STACK];
1591 struct pf_keyhash *kh;
1592
1593 NET_EPOCH_ASSERT();
1594 MPASS(s->timeout >= PFTM_MAX);
1595
1596 pf_sctp_multihome_detach_addr(s);
1597
1598 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1599 V_pflow_export_state_ptr(s);
1600
1601 if (sks != NULL) {
1602 kh = &V_pf_keyhash[pf_hashkey(sks)];
1603 PF_HASHROW_LOCK(kh);
1604 if (s->key[PF_SK_STACK] != NULL)
1605 pf_state_key_detach(s, PF_SK_STACK);
1606 /*
1607 * If both point to same key, then we are done.
1608 */
1609 if (sks == s->key[PF_SK_WIRE]) {
1610 pf_state_key_detach(s, PF_SK_WIRE);
1611 PF_HASHROW_UNLOCK(kh);
1612 return;
1613 }
1614 PF_HASHROW_UNLOCK(kh);
1615 }
1616
1617 if (s->key[PF_SK_WIRE] != NULL) {
1618 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1619 PF_HASHROW_LOCK(kh);
1620 if (s->key[PF_SK_WIRE] != NULL)
1621 pf_state_key_detach(s, PF_SK_WIRE);
1622 PF_HASHROW_UNLOCK(kh);
1623 }
1624 }
1625
1626 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1627 pf_state_key_detach(struct pf_kstate *s, int idx)
1628 {
1629 struct pf_state_key *sk = s->key[idx];
1630 #ifdef INVARIANTS
1631 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1632
1633 PF_HASHROW_ASSERT(kh);
1634 #endif /* INVARIANTS */
1635 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1636 s->key[idx] = NULL;
1637
1638 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1639 LIST_REMOVE(sk, entry);
1640 uma_zfree(V_pf_state_key_z, sk);
1641 }
1642 }
1643
1644 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1645 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1646 {
1647 struct pf_state_key *sk = mem;
1648
1649 bzero(sk, sizeof(struct pf_state_key_cmp));
1650 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1651 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1652
1653 return (0);
1654 }
1655
1656 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1657 pf_state_key_addr_setup(struct pf_pdesc *pd,
1658 struct pf_state_key_cmp *key, int multi)
1659 {
1660 struct pf_addr *saddr = pd->src;
1661 struct pf_addr *daddr = pd->dst;
1662 #ifdef INET6
1663 struct nd_neighbor_solicit nd;
1664 struct pf_addr *target;
1665 u_short action, reason;
1666
1667 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1668 goto copy;
1669
1670 switch (pd->hdr.icmp6.icmp6_type) {
1671 case ND_NEIGHBOR_SOLICIT:
1672 if (multi)
1673 return (-1);
1674 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1675 return (-1);
1676 target = (struct pf_addr *)&nd.nd_ns_target;
1677 daddr = target;
1678 break;
1679 case ND_NEIGHBOR_ADVERT:
1680 if (multi)
1681 return (-1);
1682 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1683 return (-1);
1684 target = (struct pf_addr *)&nd.nd_ns_target;
1685 saddr = target;
1686 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1687 key->addr[pd->didx].addr32[0] = 0;
1688 key->addr[pd->didx].addr32[1] = 0;
1689 key->addr[pd->didx].addr32[2] = 0;
1690 key->addr[pd->didx].addr32[3] = 0;
1691 daddr = NULL; /* overwritten */
1692 }
1693 break;
1694 default:
1695 if (multi) {
1696 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1697 key->addr[pd->sidx].addr32[1] = 0;
1698 key->addr[pd->sidx].addr32[2] = 0;
1699 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1700 saddr = NULL; /* overwritten */
1701 }
1702 }
1703 copy:
1704 #endif /* INET6 */
1705 if (saddr)
1706 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1707 if (daddr)
1708 PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1709
1710 return (0);
1711 }
1712
1713 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1714 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1715 struct pf_state_key **sk, struct pf_state_key **nk)
1716 {
1717 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1718 if (*sk == NULL)
1719 return (ENOMEM);
1720
1721 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1722 0)) {
1723 uma_zfree(V_pf_state_key_z, *sk);
1724 *sk = NULL;
1725 return (ENOMEM);
1726 }
1727
1728 (*sk)->port[pd->sidx] = sport;
1729 (*sk)->port[pd->didx] = dport;
1730 (*sk)->proto = pd->proto;
1731 (*sk)->af = pd->af;
1732
1733 *nk = pf_state_key_clone(*sk);
1734 if (*nk == NULL) {
1735 uma_zfree(V_pf_state_key_z, *sk);
1736 *sk = NULL;
1737 return (ENOMEM);
1738 }
1739
1740 if (pd->af != pd->naf) {
1741 (*sk)->port[pd->sidx] = pd->osport;
1742 (*sk)->port[pd->didx] = pd->odport;
1743
1744 (*nk)->af = pd->naf;
1745
1746 /*
1747 * We're overwriting an address here, so potentially there's bits of an IPv6
1748 * address left in here. Clear that out first.
1749 */
1750 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1751 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1752 if (pd->dir == PF_IN) {
1753 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf);
1754 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf);
1755 (*nk)->port[pd->didx] = pd->nsport;
1756 (*nk)->port[pd->sidx] = pd->ndport;
1757 } else {
1758 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->nsaddr, pd->naf);
1759 PF_ACPY(&(*nk)->addr[pd->didx], &pd->ndaddr, pd->naf);
1760 (*nk)->port[pd->sidx] = pd->nsport;
1761 (*nk)->port[pd->didx] = pd->ndport;
1762 }
1763
1764 switch (pd->proto) {
1765 case IPPROTO_ICMP:
1766 (*nk)->proto = IPPROTO_ICMPV6;
1767 break;
1768 case IPPROTO_ICMPV6:
1769 (*nk)->proto = IPPROTO_ICMP;
1770 break;
1771 default:
1772 (*nk)->proto = pd->proto;
1773 }
1774 }
1775
1776 return (0);
1777 }
1778
1779 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1780 pf_state_key_clone(const struct pf_state_key *orig)
1781 {
1782 struct pf_state_key *sk;
1783
1784 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1785 if (sk == NULL)
1786 return (NULL);
1787
1788 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1789
1790 return (sk);
1791 }
1792
1793 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1794 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1795 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1796 {
1797 struct pf_idhash *ih;
1798 struct pf_kstate *cur;
1799 int error;
1800
1801 NET_EPOCH_ASSERT();
1802
1803 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1804 ("%s: sks not pristine", __func__));
1805 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1806 ("%s: skw not pristine", __func__));
1807 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1808
1809 s->kif = kif;
1810 s->orig_kif = orig_kif;
1811
1812 if (s->id == 0 && s->creatorid == 0) {
1813 s->id = alloc_unr64(&V_pf_stateid);
1814 s->id = htobe64(s->id);
1815 s->creatorid = V_pf_status.hostid;
1816 }
1817
1818 /* Returns with ID locked on success. */
1819 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1820 return (error);
1821 skw = sks = NULL;
1822
1823 ih = &V_pf_idhash[PF_IDHASH(s)];
1824 PF_HASHROW_ASSERT(ih);
1825 LIST_FOREACH(cur, &ih->states, entry)
1826 if (cur->id == s->id && cur->creatorid == s->creatorid)
1827 break;
1828
1829 if (cur != NULL) {
1830 s->timeout = PFTM_UNLINKED;
1831 PF_HASHROW_UNLOCK(ih);
1832 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1833 printf("pf: state ID collision: "
1834 "id: %016llx creatorid: %08x\n",
1835 (unsigned long long)be64toh(s->id),
1836 ntohl(s->creatorid));
1837 }
1838 pf_detach_state(s);
1839 return (EEXIST);
1840 }
1841 LIST_INSERT_HEAD(&ih->states, s, entry);
1842 /* One for keys, one for ID hash. */
1843 refcount_init(&s->refs, 2);
1844
1845 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1846 if (V_pfsync_insert_state_ptr != NULL)
1847 V_pfsync_insert_state_ptr(s);
1848
1849 /* Returns locked. */
1850 return (0);
1851 }
1852
1853 /*
1854 * Find state by ID: returns with locked row on success.
1855 */
1856 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1857 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1858 {
1859 struct pf_idhash *ih;
1860 struct pf_kstate *s;
1861
1862 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1863
1864 ih = &V_pf_idhash[PF_IDHASHID(id)];
1865
1866 PF_HASHROW_LOCK(ih);
1867 LIST_FOREACH(s, &ih->states, entry)
1868 if (s->id == id && s->creatorid == creatorid)
1869 break;
1870
1871 if (s == NULL)
1872 PF_HASHROW_UNLOCK(ih);
1873
1874 return (s);
1875 }
1876
1877 /*
1878 * Find state by key.
1879 * Returns with ID hash slot locked on success.
1880 */
1881 static struct pf_kstate *
pf_find_state(struct pfi_kkif * kif,const struct pf_state_key_cmp * key,u_int dir)1882 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1883 u_int dir)
1884 {
1885 struct pf_keyhash *kh;
1886 struct pf_state_key *sk;
1887 struct pf_kstate *s;
1888 int idx;
1889
1890 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1891
1892 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1893
1894 PF_HASHROW_LOCK(kh);
1895 LIST_FOREACH(sk, &kh->keys, entry)
1896 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1897 break;
1898 if (sk == NULL) {
1899 PF_HASHROW_UNLOCK(kh);
1900 return (NULL);
1901 }
1902
1903 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1904
1905 /* List is sorted, if-bound states before floating ones. */
1906 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1907 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1908 PF_STATE_LOCK(s);
1909 PF_HASHROW_UNLOCK(kh);
1910 if (__predict_false(s->timeout >= PFTM_MAX)) {
1911 /*
1912 * State is either being processed by
1913 * pf_remove_state() in an other thread, or
1914 * is scheduled for immediate expiry.
1915 */
1916 PF_STATE_UNLOCK(s);
1917 return (NULL);
1918 }
1919 return (s);
1920 }
1921
1922 /* Look through the other list, in case of AF-TO */
1923 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1924 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1925 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1926 continue;
1927 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1928 PF_STATE_LOCK(s);
1929 PF_HASHROW_UNLOCK(kh);
1930 if (__predict_false(s->timeout >= PFTM_MAX)) {
1931 /*
1932 * State is either being processed by
1933 * pf_remove_state() in an other thread, or
1934 * is scheduled for immediate expiry.
1935 */
1936 PF_STATE_UNLOCK(s);
1937 return (NULL);
1938 }
1939 return (s);
1940 }
1941 }
1942
1943 PF_HASHROW_UNLOCK(kh);
1944
1945 return (NULL);
1946 }
1947
1948 /*
1949 * Returns with ID hash slot locked on success.
1950 */
1951 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1952 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1953 {
1954 struct pf_keyhash *kh;
1955 struct pf_state_key *sk;
1956 struct pf_kstate *s, *ret = NULL;
1957 int idx, inout = 0;
1958
1959 if (more != NULL)
1960 *more = 0;
1961
1962 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1963
1964 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1965
1966 PF_HASHROW_LOCK(kh);
1967 LIST_FOREACH(sk, &kh->keys, entry)
1968 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1969 break;
1970 if (sk == NULL) {
1971 PF_HASHROW_UNLOCK(kh);
1972 return (NULL);
1973 }
1974 switch (dir) {
1975 case PF_IN:
1976 idx = PF_SK_WIRE;
1977 break;
1978 case PF_OUT:
1979 idx = PF_SK_STACK;
1980 break;
1981 case PF_INOUT:
1982 idx = PF_SK_WIRE;
1983 inout = 1;
1984 break;
1985 default:
1986 panic("%s: dir %u", __func__, dir);
1987 }
1988 second_run:
1989 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1990 if (more == NULL) {
1991 PF_STATE_LOCK(s);
1992 PF_HASHROW_UNLOCK(kh);
1993 return (s);
1994 }
1995
1996 if (ret)
1997 (*more)++;
1998 else {
1999 ret = s;
2000 PF_STATE_LOCK(s);
2001 }
2002 }
2003 if (inout == 1) {
2004 inout = 0;
2005 idx = PF_SK_STACK;
2006 goto second_run;
2007 }
2008 PF_HASHROW_UNLOCK(kh);
2009
2010 return (ret);
2011 }
2012
2013 /*
2014 * FIXME
2015 * This routine is inefficient -- locks the state only to unlock immediately on
2016 * return.
2017 * It is racy -- after the state is unlocked nothing stops other threads from
2018 * removing it.
2019 */
2020 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2021 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2022 {
2023 struct pf_kstate *s;
2024
2025 s = pf_find_state_all(key, dir, NULL);
2026 if (s != NULL) {
2027 PF_STATE_UNLOCK(s);
2028 return (true);
2029 }
2030 return (false);
2031 }
2032
2033 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2034 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2035 struct pf_addr *nat_addr, uint16_t nat_port)
2036 {
2037 struct pf_udp_mapping *mapping;
2038
2039 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2040 if (mapping == NULL)
2041 return (NULL);
2042 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
2043 mapping->endpoints[0].port = src_port;
2044 mapping->endpoints[0].af = af;
2045 mapping->endpoints[0].mapping = mapping;
2046 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
2047 mapping->endpoints[1].port = nat_port;
2048 mapping->endpoints[1].af = af;
2049 mapping->endpoints[1].mapping = mapping;
2050 refcount_init(&mapping->refs, 1);
2051 return (mapping);
2052 }
2053
2054 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2055 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2056 {
2057 struct pf_udpendpointhash *h0, *h1;
2058 struct pf_udp_endpoint *endpoint;
2059 int ret = EEXIST;
2060
2061 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2062 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2063 if (h0 == h1) {
2064 PF_HASHROW_LOCK(h0);
2065 } else if (h0 < h1) {
2066 PF_HASHROW_LOCK(h0);
2067 PF_HASHROW_LOCK(h1);
2068 } else {
2069 PF_HASHROW_LOCK(h1);
2070 PF_HASHROW_LOCK(h0);
2071 }
2072
2073 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2074 if (bcmp(endpoint, &mapping->endpoints[0],
2075 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2076 break;
2077 }
2078 if (endpoint != NULL)
2079 goto cleanup;
2080 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2081 if (bcmp(endpoint, &mapping->endpoints[1],
2082 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2083 break;
2084 }
2085 if (endpoint != NULL)
2086 goto cleanup;
2087 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2088 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2089 ret = 0;
2090
2091 cleanup:
2092 if (h0 != h1) {
2093 PF_HASHROW_UNLOCK(h0);
2094 PF_HASHROW_UNLOCK(h1);
2095 } else {
2096 PF_HASHROW_UNLOCK(h0);
2097 }
2098 return (ret);
2099 }
2100
2101 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2102 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2103 {
2104 /* refcount is synchronized on the source endpoint's row lock */
2105 struct pf_udpendpointhash *h0, *h1;
2106
2107 if (mapping == NULL)
2108 return;
2109
2110 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2111 PF_HASHROW_LOCK(h0);
2112 if (refcount_release(&mapping->refs)) {
2113 LIST_REMOVE(&mapping->endpoints[0], entry);
2114 PF_HASHROW_UNLOCK(h0);
2115 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2116 PF_HASHROW_LOCK(h1);
2117 LIST_REMOVE(&mapping->endpoints[1], entry);
2118 PF_HASHROW_UNLOCK(h1);
2119
2120 uma_zfree(V_pf_udp_mapping_z, mapping);
2121 } else {
2122 PF_HASHROW_UNLOCK(h0);
2123 }
2124 }
2125
2126
2127 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2128 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2129 {
2130 struct pf_udpendpointhash *uh;
2131 struct pf_udp_endpoint *endpoint;
2132
2133 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2134
2135 PF_HASHROW_LOCK(uh);
2136 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2137 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2138 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2139 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2140 break;
2141 }
2142 if (endpoint == NULL) {
2143 PF_HASHROW_UNLOCK(uh);
2144 return (NULL);
2145 }
2146 refcount_acquire(&endpoint->mapping->refs);
2147 PF_HASHROW_UNLOCK(uh);
2148 return (endpoint->mapping);
2149 }
2150 /* END state table stuff */
2151
2152 static void
pf_send(struct pf_send_entry * pfse)2153 pf_send(struct pf_send_entry *pfse)
2154 {
2155
2156 PF_SENDQ_LOCK();
2157 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2158 PF_SENDQ_UNLOCK();
2159 swi_sched(V_pf_swi_cookie, 0);
2160 }
2161
2162 static bool
pf_isforlocal(struct mbuf * m,int af)2163 pf_isforlocal(struct mbuf *m, int af)
2164 {
2165 switch (af) {
2166 #ifdef INET
2167 case AF_INET: {
2168 struct ip *ip = mtod(m, struct ip *);
2169
2170 return (in_localip(ip->ip_dst));
2171 }
2172 #endif /* INET */
2173 #ifdef INET6
2174 case AF_INET6: {
2175 struct ip6_hdr *ip6;
2176 struct in6_ifaddr *ia;
2177 ip6 = mtod(m, struct ip6_hdr *);
2178 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2179 if (ia == NULL)
2180 return (false);
2181 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2182 }
2183 #endif /* INET6 */
2184 default:
2185 unhandled_af(af);
2186 }
2187
2188 return (false);
2189 }
2190
2191 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2192 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2193 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2194 {
2195 /*
2196 * ICMP types marked with PF_OUT are typically responses to
2197 * PF_IN, and will match states in the opposite direction.
2198 * PF_IN ICMP types need to match a state with that type.
2199 */
2200 *icmp_dir = PF_OUT;
2201
2202 /* Queries (and responses) */
2203 switch (pd->af) {
2204 #ifdef INET
2205 case AF_INET:
2206 switch (type) {
2207 case ICMP_ECHO:
2208 *icmp_dir = PF_IN;
2209 /* FALLTHROUGH */
2210 case ICMP_ECHOREPLY:
2211 *virtual_type = ICMP_ECHO;
2212 *virtual_id = pd->hdr.icmp.icmp_id;
2213 break;
2214
2215 case ICMP_TSTAMP:
2216 *icmp_dir = PF_IN;
2217 /* FALLTHROUGH */
2218 case ICMP_TSTAMPREPLY:
2219 *virtual_type = ICMP_TSTAMP;
2220 *virtual_id = pd->hdr.icmp.icmp_id;
2221 break;
2222
2223 case ICMP_IREQ:
2224 *icmp_dir = PF_IN;
2225 /* FALLTHROUGH */
2226 case ICMP_IREQREPLY:
2227 *virtual_type = ICMP_IREQ;
2228 *virtual_id = pd->hdr.icmp.icmp_id;
2229 break;
2230
2231 case ICMP_MASKREQ:
2232 *icmp_dir = PF_IN;
2233 /* FALLTHROUGH */
2234 case ICMP_MASKREPLY:
2235 *virtual_type = ICMP_MASKREQ;
2236 *virtual_id = pd->hdr.icmp.icmp_id;
2237 break;
2238
2239 case ICMP_IPV6_WHEREAREYOU:
2240 *icmp_dir = PF_IN;
2241 /* FALLTHROUGH */
2242 case ICMP_IPV6_IAMHERE:
2243 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2244 *virtual_id = 0; /* Nothing sane to match on! */
2245 break;
2246
2247 case ICMP_MOBILE_REGREQUEST:
2248 *icmp_dir = PF_IN;
2249 /* FALLTHROUGH */
2250 case ICMP_MOBILE_REGREPLY:
2251 *virtual_type = ICMP_MOBILE_REGREQUEST;
2252 *virtual_id = 0; /* Nothing sane to match on! */
2253 break;
2254
2255 case ICMP_ROUTERSOLICIT:
2256 *icmp_dir = PF_IN;
2257 /* FALLTHROUGH */
2258 case ICMP_ROUTERADVERT:
2259 *virtual_type = ICMP_ROUTERSOLICIT;
2260 *virtual_id = 0; /* Nothing sane to match on! */
2261 break;
2262
2263 /* These ICMP types map to other connections */
2264 case ICMP_UNREACH:
2265 case ICMP_SOURCEQUENCH:
2266 case ICMP_REDIRECT:
2267 case ICMP_TIMXCEED:
2268 case ICMP_PARAMPROB:
2269 /* These will not be used, but set them anyway */
2270 *icmp_dir = PF_IN;
2271 *virtual_type = type;
2272 *virtual_id = 0;
2273 *virtual_type = htons(*virtual_type);
2274 return (1); /* These types match to another state */
2275
2276 /*
2277 * All remaining ICMP types get their own states,
2278 * and will only match in one direction.
2279 */
2280 default:
2281 *icmp_dir = PF_IN;
2282 *virtual_type = type;
2283 *virtual_id = 0;
2284 break;
2285 }
2286 break;
2287 #endif /* INET */
2288 #ifdef INET6
2289 case AF_INET6:
2290 switch (type) {
2291 case ICMP6_ECHO_REQUEST:
2292 *icmp_dir = PF_IN;
2293 /* FALLTHROUGH */
2294 case ICMP6_ECHO_REPLY:
2295 *virtual_type = ICMP6_ECHO_REQUEST;
2296 *virtual_id = pd->hdr.icmp6.icmp6_id;
2297 break;
2298
2299 case MLD_LISTENER_QUERY:
2300 case MLD_LISTENER_REPORT: {
2301 /*
2302 * Listener Report can be sent by clients
2303 * without an associated Listener Query.
2304 * In addition to that, when Report is sent as a
2305 * reply to a Query its source and destination
2306 * address are different.
2307 */
2308 *icmp_dir = PF_IN;
2309 *virtual_type = MLD_LISTENER_QUERY;
2310 *virtual_id = 0;
2311 break;
2312 }
2313 case MLD_MTRACE:
2314 *icmp_dir = PF_IN;
2315 /* FALLTHROUGH */
2316 case MLD_MTRACE_RESP:
2317 *virtual_type = MLD_MTRACE;
2318 *virtual_id = 0; /* Nothing sane to match on! */
2319 break;
2320
2321 case ND_NEIGHBOR_SOLICIT:
2322 *icmp_dir = PF_IN;
2323 /* FALLTHROUGH */
2324 case ND_NEIGHBOR_ADVERT: {
2325 *virtual_type = ND_NEIGHBOR_SOLICIT;
2326 *virtual_id = 0;
2327 break;
2328 }
2329
2330 /*
2331 * These ICMP types map to other connections.
2332 * ND_REDIRECT can't be in this list because the triggering
2333 * packet header is optional.
2334 */
2335 case ICMP6_DST_UNREACH:
2336 case ICMP6_PACKET_TOO_BIG:
2337 case ICMP6_TIME_EXCEEDED:
2338 case ICMP6_PARAM_PROB:
2339 /* These will not be used, but set them anyway */
2340 *icmp_dir = PF_IN;
2341 *virtual_type = type;
2342 *virtual_id = 0;
2343 *virtual_type = htons(*virtual_type);
2344 return (1); /* These types match to another state */
2345 /*
2346 * All remaining ICMP6 types get their own states,
2347 * and will only match in one direction.
2348 */
2349 default:
2350 *icmp_dir = PF_IN;
2351 *virtual_type = type;
2352 *virtual_id = 0;
2353 break;
2354 }
2355 break;
2356 #endif /* INET6 */
2357 default:
2358 unhandled_af(pd->af);
2359 }
2360 *virtual_type = htons(*virtual_type);
2361 return (0); /* These types match to their own state */
2362 }
2363
2364 void
pf_intr(void * v)2365 pf_intr(void *v)
2366 {
2367 struct epoch_tracker et;
2368 struct pf_send_head queue;
2369 struct pf_send_entry *pfse, *next;
2370
2371 CURVNET_SET((struct vnet *)v);
2372
2373 PF_SENDQ_LOCK();
2374 queue = V_pf_sendqueue;
2375 STAILQ_INIT(&V_pf_sendqueue);
2376 PF_SENDQ_UNLOCK();
2377
2378 NET_EPOCH_ENTER(et);
2379
2380 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2381 switch (pfse->pfse_type) {
2382 #ifdef INET
2383 case PFSE_IP: {
2384 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2385 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2386 ("%s: rcvif != loif", __func__));
2387
2388 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2389 pfse->pfse_m->m_pkthdr.csum_flags |=
2390 CSUM_IP_VALID | CSUM_IP_CHECKED |
2391 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2392 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2393 ip_input(pfse->pfse_m);
2394 } else {
2395 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2396 NULL);
2397 }
2398 break;
2399 }
2400 case PFSE_ICMP:
2401 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2402 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2403 break;
2404 #endif /* INET */
2405 #ifdef INET6
2406 case PFSE_IP6:
2407 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2408 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2409 ("%s: rcvif != loif", __func__));
2410
2411 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2412 M_LOOP;
2413 pfse->pfse_m->m_pkthdr.csum_flags |=
2414 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2415 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2416 ip6_input(pfse->pfse_m);
2417 } else {
2418 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2419 NULL, NULL);
2420 }
2421 break;
2422 case PFSE_ICMP6:
2423 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2424 pfse->icmpopts.code, pfse->icmpopts.mtu);
2425 break;
2426 #endif /* INET6 */
2427 default:
2428 panic("%s: unknown type", __func__);
2429 }
2430 free(pfse, M_PFTEMP);
2431 }
2432 NET_EPOCH_EXIT(et);
2433 CURVNET_RESTORE();
2434 }
2435
2436 #define pf_purge_thread_period (hz / 10)
2437
2438 #ifdef PF_WANT_32_TO_64_COUNTER
2439 static void
pf_status_counter_u64_periodic(void)2440 pf_status_counter_u64_periodic(void)
2441 {
2442
2443 PF_RULES_RASSERT();
2444
2445 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2446 return;
2447 }
2448
2449 for (int i = 0; i < FCNT_MAX; i++) {
2450 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2451 }
2452 }
2453
2454 static void
pf_kif_counter_u64_periodic(void)2455 pf_kif_counter_u64_periodic(void)
2456 {
2457 struct pfi_kkif *kif;
2458 size_t r, run;
2459
2460 PF_RULES_RASSERT();
2461
2462 if (__predict_false(V_pf_allkifcount == 0)) {
2463 return;
2464 }
2465
2466 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2467 return;
2468 }
2469
2470 run = V_pf_allkifcount / 10;
2471 if (run < 5)
2472 run = 5;
2473
2474 for (r = 0; r < run; r++) {
2475 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2476 if (kif == NULL) {
2477 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2478 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2479 break;
2480 }
2481
2482 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2483 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2484
2485 for (int i = 0; i < 2; i++) {
2486 for (int j = 0; j < 2; j++) {
2487 for (int k = 0; k < 2; k++) {
2488 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2489 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2490 }
2491 }
2492 }
2493 }
2494 }
2495
2496 static void
pf_rule_counter_u64_periodic(void)2497 pf_rule_counter_u64_periodic(void)
2498 {
2499 struct pf_krule *rule;
2500 size_t r, run;
2501
2502 PF_RULES_RASSERT();
2503
2504 if (__predict_false(V_pf_allrulecount == 0)) {
2505 return;
2506 }
2507
2508 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2509 return;
2510 }
2511
2512 run = V_pf_allrulecount / 10;
2513 if (run < 5)
2514 run = 5;
2515
2516 for (r = 0; r < run; r++) {
2517 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2518 if (rule == NULL) {
2519 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2520 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2521 break;
2522 }
2523
2524 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2525 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2526
2527 pf_counter_u64_periodic(&rule->evaluations);
2528 for (int i = 0; i < 2; i++) {
2529 pf_counter_u64_periodic(&rule->packets[i]);
2530 pf_counter_u64_periodic(&rule->bytes[i]);
2531 }
2532 }
2533 }
2534
2535 static void
pf_counter_u64_periodic_main(void)2536 pf_counter_u64_periodic_main(void)
2537 {
2538 PF_RULES_RLOCK_TRACKER;
2539
2540 V_pf_counter_periodic_iter++;
2541
2542 PF_RULES_RLOCK();
2543 pf_counter_u64_critical_enter();
2544 pf_status_counter_u64_periodic();
2545 pf_kif_counter_u64_periodic();
2546 pf_rule_counter_u64_periodic();
2547 pf_counter_u64_critical_exit();
2548 PF_RULES_RUNLOCK();
2549 }
2550 #else
2551 #define pf_counter_u64_periodic_main() do { } while (0)
2552 #endif
2553
2554 void
pf_purge_thread(void * unused __unused)2555 pf_purge_thread(void *unused __unused)
2556 {
2557 struct epoch_tracker et;
2558
2559 VNET_ITERATOR_DECL(vnet_iter);
2560
2561 sx_xlock(&pf_end_lock);
2562 while (pf_end_threads == 0) {
2563 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2564
2565 VNET_LIST_RLOCK();
2566 NET_EPOCH_ENTER(et);
2567 VNET_FOREACH(vnet_iter) {
2568 CURVNET_SET(vnet_iter);
2569
2570 /* Wait until V_pf_default_rule is initialized. */
2571 if (V_pf_vnet_active == 0) {
2572 CURVNET_RESTORE();
2573 continue;
2574 }
2575
2576 pf_counter_u64_periodic_main();
2577
2578 /*
2579 * Process 1/interval fraction of the state
2580 * table every run.
2581 */
2582 V_pf_purge_idx =
2583 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2584 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2585
2586 /*
2587 * Purge other expired types every
2588 * PFTM_INTERVAL seconds.
2589 */
2590 if (V_pf_purge_idx == 0) {
2591 /*
2592 * Order is important:
2593 * - states and src nodes reference rules
2594 * - states and rules reference kifs
2595 */
2596 pf_purge_expired_fragments();
2597 pf_purge_expired_src_nodes();
2598 pf_purge_unlinked_rules();
2599 pfi_kkif_purge();
2600 }
2601 CURVNET_RESTORE();
2602 }
2603 NET_EPOCH_EXIT(et);
2604 VNET_LIST_RUNLOCK();
2605 }
2606
2607 pf_end_threads++;
2608 sx_xunlock(&pf_end_lock);
2609 kproc_exit(0);
2610 }
2611
2612 void
pf_unload_vnet_purge(void)2613 pf_unload_vnet_purge(void)
2614 {
2615
2616 /*
2617 * To cleanse up all kifs and rules we need
2618 * two runs: first one clears reference flags,
2619 * then pf_purge_expired_states() doesn't
2620 * raise them, and then second run frees.
2621 */
2622 pf_purge_unlinked_rules();
2623 pfi_kkif_purge();
2624
2625 /*
2626 * Now purge everything.
2627 */
2628 pf_purge_expired_states(0, V_pf_hashmask);
2629 pf_purge_fragments(UINT_MAX);
2630 pf_purge_expired_src_nodes();
2631
2632 /*
2633 * Now all kifs & rules should be unreferenced,
2634 * thus should be successfully freed.
2635 */
2636 pf_purge_unlinked_rules();
2637 pfi_kkif_purge();
2638 }
2639
2640 u_int32_t
pf_state_expires(const struct pf_kstate * state)2641 pf_state_expires(const struct pf_kstate *state)
2642 {
2643 u_int32_t timeout;
2644 u_int32_t start;
2645 u_int32_t end;
2646 u_int32_t states;
2647
2648 /* handle all PFTM_* > PFTM_MAX here */
2649 if (state->timeout == PFTM_PURGE)
2650 return (time_uptime);
2651 KASSERT(state->timeout != PFTM_UNLINKED,
2652 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2653 KASSERT((state->timeout < PFTM_MAX),
2654 ("pf_state_expires: timeout > PFTM_MAX"));
2655 timeout = state->rule->timeout[state->timeout];
2656 if (!timeout)
2657 timeout = V_pf_default_rule.timeout[state->timeout];
2658 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2659 if (start && state->rule != &V_pf_default_rule) {
2660 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2661 states = counter_u64_fetch(state->rule->states_cur);
2662 } else {
2663 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2664 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2665 states = V_pf_status.states;
2666 }
2667 if (end && states > start && start < end) {
2668 if (states < end) {
2669 timeout = (u_int64_t)timeout * (end - states) /
2670 (end - start);
2671 return ((state->expire / 1000) + timeout);
2672 }
2673 else
2674 return (time_uptime);
2675 }
2676 return ((state->expire / 1000) + timeout);
2677 }
2678
2679 void
pf_purge_expired_src_nodes(void)2680 pf_purge_expired_src_nodes(void)
2681 {
2682 struct pf_ksrc_node_list freelist;
2683 struct pf_srchash *sh;
2684 struct pf_ksrc_node *cur, *next;
2685 int i;
2686
2687 LIST_INIT(&freelist);
2688 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2689 PF_HASHROW_LOCK(sh);
2690 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2691 if (cur->states == 0 && cur->expire <= time_uptime) {
2692 pf_unlink_src_node(cur);
2693 LIST_INSERT_HEAD(&freelist, cur, entry);
2694 } else if (cur->rule != NULL)
2695 cur->rule->rule_ref |= PFRULE_REFS;
2696 PF_HASHROW_UNLOCK(sh);
2697 }
2698
2699 pf_free_src_nodes(&freelist);
2700
2701 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2702 }
2703
2704 static void
pf_src_tree_remove_state(struct pf_kstate * s)2705 pf_src_tree_remove_state(struct pf_kstate *s)
2706 {
2707 uint32_t timeout;
2708
2709 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2710 s->rule->timeout[PFTM_SRC_NODE] :
2711 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2712
2713 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2714 if (s->sns[sn_type] == NULL)
2715 continue;
2716 PF_SRC_NODE_LOCK(s->sns[sn_type]);
2717 if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2718 --(s->sns[sn_type]->conn);
2719 if (--(s->sns[sn_type]->states) == 0)
2720 s->sns[sn_type]->expire = time_uptime + timeout;
2721 PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2722 s->sns[sn_type] = NULL;
2723 }
2724
2725 }
2726
2727 /*
2728 * Unlink and potentilly free a state. Function may be
2729 * called with ID hash row locked, but always returns
2730 * unlocked, since it needs to go through key hash locking.
2731 */
2732 int
pf_remove_state(struct pf_kstate * s)2733 pf_remove_state(struct pf_kstate *s)
2734 {
2735 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2736
2737 NET_EPOCH_ASSERT();
2738 PF_HASHROW_ASSERT(ih);
2739
2740 if (s->timeout == PFTM_UNLINKED) {
2741 /*
2742 * State is being processed
2743 * by pf_remove_state() in
2744 * an other thread.
2745 */
2746 PF_HASHROW_UNLOCK(ih);
2747 return (0); /* XXXGL: undefined actually */
2748 }
2749
2750 if (s->src.state == PF_TCPS_PROXY_DST) {
2751 /* XXX wire key the right one? */
2752 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2753 &s->key[PF_SK_WIRE]->addr[1],
2754 &s->key[PF_SK_WIRE]->addr[0],
2755 s->key[PF_SK_WIRE]->port[1],
2756 s->key[PF_SK_WIRE]->port[0],
2757 s->src.seqhi, s->src.seqlo + 1,
2758 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2759 s->act.rtableid);
2760 }
2761
2762 LIST_REMOVE(s, entry);
2763 pf_src_tree_remove_state(s);
2764
2765 if (V_pfsync_delete_state_ptr != NULL)
2766 V_pfsync_delete_state_ptr(s);
2767
2768 STATE_DEC_COUNTERS(s);
2769
2770 s->timeout = PFTM_UNLINKED;
2771
2772 /* Ensure we remove it from the list of halfopen states, if needed. */
2773 if (s->key[PF_SK_STACK] != NULL &&
2774 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2775 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2776
2777 PF_HASHROW_UNLOCK(ih);
2778
2779 pf_detach_state(s);
2780
2781 pf_udp_mapping_release(s->udp_mapping);
2782
2783 /* pf_state_insert() initialises refs to 2 */
2784 return (pf_release_staten(s, 2));
2785 }
2786
2787 struct pf_kstate *
pf_alloc_state(int flags)2788 pf_alloc_state(int flags)
2789 {
2790
2791 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2792 }
2793
2794 void
pf_free_state(struct pf_kstate * cur)2795 pf_free_state(struct pf_kstate *cur)
2796 {
2797 struct pf_krule_item *ri;
2798
2799 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2800 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2801 cur->timeout));
2802
2803 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2804 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2805 free(ri, M_PF_RULE_ITEM);
2806 }
2807
2808 pf_normalize_tcp_cleanup(cur);
2809 uma_zfree(V_pf_state_z, cur);
2810 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2811 }
2812
2813 /*
2814 * Called only from pf_purge_thread(), thus serialized.
2815 */
2816 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2817 pf_purge_expired_states(u_int i, int maxcheck)
2818 {
2819 struct pf_idhash *ih;
2820 struct pf_kstate *s;
2821 struct pf_krule_item *mrm;
2822 size_t count __unused;
2823
2824 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2825
2826 /*
2827 * Go through hash and unlink states that expire now.
2828 */
2829 while (maxcheck > 0) {
2830 count = 0;
2831 ih = &V_pf_idhash[i];
2832
2833 /* only take the lock if we expect to do work */
2834 if (!LIST_EMPTY(&ih->states)) {
2835 relock:
2836 PF_HASHROW_LOCK(ih);
2837 LIST_FOREACH(s, &ih->states, entry) {
2838 if (pf_state_expires(s) <= time_uptime) {
2839 V_pf_status.states -=
2840 pf_remove_state(s);
2841 goto relock;
2842 }
2843 s->rule->rule_ref |= PFRULE_REFS;
2844 if (s->nat_rule != NULL)
2845 s->nat_rule->rule_ref |= PFRULE_REFS;
2846 if (s->anchor != NULL)
2847 s->anchor->rule_ref |= PFRULE_REFS;
2848 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2849 SLIST_FOREACH(mrm, &s->match_rules, entry)
2850 mrm->r->rule_ref |= PFRULE_REFS;
2851 if (s->act.rt_kif)
2852 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2853 count++;
2854 }
2855 PF_HASHROW_UNLOCK(ih);
2856 }
2857
2858 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2859
2860 /* Return when we hit end of hash. */
2861 if (++i > V_pf_hashmask) {
2862 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2863 return (0);
2864 }
2865
2866 maxcheck--;
2867 }
2868
2869 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2870
2871 return (i);
2872 }
2873
2874 static void
pf_purge_unlinked_rules(void)2875 pf_purge_unlinked_rules(void)
2876 {
2877 struct pf_krulequeue tmpq;
2878 struct pf_krule *r, *r1;
2879
2880 /*
2881 * If we have overloading task pending, then we'd
2882 * better skip purging this time. There is a tiny
2883 * probability that overloading task references
2884 * an already unlinked rule.
2885 */
2886 PF_OVERLOADQ_LOCK();
2887 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2888 PF_OVERLOADQ_UNLOCK();
2889 return;
2890 }
2891 PF_OVERLOADQ_UNLOCK();
2892
2893 /*
2894 * Do naive mark-and-sweep garbage collecting of old rules.
2895 * Reference flag is raised by pf_purge_expired_states()
2896 * and pf_purge_expired_src_nodes().
2897 *
2898 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2899 * use a temporary queue.
2900 */
2901 TAILQ_INIT(&tmpq);
2902 PF_UNLNKDRULES_LOCK();
2903 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2904 if (!(r->rule_ref & PFRULE_REFS)) {
2905 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2906 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2907 } else
2908 r->rule_ref &= ~PFRULE_REFS;
2909 }
2910 PF_UNLNKDRULES_UNLOCK();
2911
2912 if (!TAILQ_EMPTY(&tmpq)) {
2913 PF_CONFIG_LOCK();
2914 PF_RULES_WLOCK();
2915 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2916 TAILQ_REMOVE(&tmpq, r, entries);
2917 pf_free_rule(r);
2918 }
2919 PF_RULES_WUNLOCK();
2920 PF_CONFIG_UNLOCK();
2921 }
2922 }
2923
2924 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2925 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2926 {
2927 switch (af) {
2928 #ifdef INET
2929 case AF_INET: {
2930 u_int32_t a = ntohl(addr->addr32[0]);
2931 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2932 (a>>8)&255, a&255);
2933 if (p) {
2934 p = ntohs(p);
2935 printf(":%u", p);
2936 }
2937 break;
2938 }
2939 #endif /* INET */
2940 #ifdef INET6
2941 case AF_INET6: {
2942 u_int16_t b;
2943 u_int8_t i, curstart, curend, maxstart, maxend;
2944 curstart = curend = maxstart = maxend = 255;
2945 for (i = 0; i < 8; i++) {
2946 if (!addr->addr16[i]) {
2947 if (curstart == 255)
2948 curstart = i;
2949 curend = i;
2950 } else {
2951 if ((curend - curstart) >
2952 (maxend - maxstart)) {
2953 maxstart = curstart;
2954 maxend = curend;
2955 }
2956 curstart = curend = 255;
2957 }
2958 }
2959 if ((curend - curstart) >
2960 (maxend - maxstart)) {
2961 maxstart = curstart;
2962 maxend = curend;
2963 }
2964 for (i = 0; i < 8; i++) {
2965 if (i >= maxstart && i <= maxend) {
2966 if (i == 0)
2967 printf(":");
2968 if (i == maxend)
2969 printf(":");
2970 } else {
2971 b = ntohs(addr->addr16[i]);
2972 printf("%x", b);
2973 if (i < 7)
2974 printf(":");
2975 }
2976 }
2977 if (p) {
2978 p = ntohs(p);
2979 printf("[%u]", p);
2980 }
2981 break;
2982 }
2983 #endif /* INET6 */
2984 default:
2985 unhandled_af(af);
2986 }
2987 }
2988
2989 void
pf_print_state(struct pf_kstate * s)2990 pf_print_state(struct pf_kstate *s)
2991 {
2992 pf_print_state_parts(s, NULL, NULL);
2993 }
2994
2995 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)2996 pf_print_state_parts(struct pf_kstate *s,
2997 struct pf_state_key *skwp, struct pf_state_key *sksp)
2998 {
2999 struct pf_state_key *skw, *sks;
3000 u_int8_t proto, dir;
3001
3002 /* Do our best to fill these, but they're skipped if NULL */
3003 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3004 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3005 proto = skw ? skw->proto : (sks ? sks->proto : 0);
3006 dir = s ? s->direction : 0;
3007
3008 switch (proto) {
3009 case IPPROTO_IPV4:
3010 printf("IPv4");
3011 break;
3012 case IPPROTO_IPV6:
3013 printf("IPv6");
3014 break;
3015 case IPPROTO_TCP:
3016 printf("TCP");
3017 break;
3018 case IPPROTO_UDP:
3019 printf("UDP");
3020 break;
3021 case IPPROTO_ICMP:
3022 printf("ICMP");
3023 break;
3024 case IPPROTO_ICMPV6:
3025 printf("ICMPv6");
3026 break;
3027 default:
3028 printf("%u", proto);
3029 break;
3030 }
3031 switch (dir) {
3032 case PF_IN:
3033 printf(" in");
3034 break;
3035 case PF_OUT:
3036 printf(" out");
3037 break;
3038 }
3039 if (skw) {
3040 printf(" wire: ");
3041 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3042 printf(" ");
3043 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3044 }
3045 if (sks) {
3046 printf(" stack: ");
3047 if (sks != skw) {
3048 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3049 printf(" ");
3050 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3051 } else
3052 printf("-");
3053 }
3054 if (s) {
3055 if (proto == IPPROTO_TCP) {
3056 printf(" [lo=%u high=%u win=%u modulator=%u",
3057 s->src.seqlo, s->src.seqhi,
3058 s->src.max_win, s->src.seqdiff);
3059 if (s->src.wscale && s->dst.wscale)
3060 printf(" wscale=%u",
3061 s->src.wscale & PF_WSCALE_MASK);
3062 printf("]");
3063 printf(" [lo=%u high=%u win=%u modulator=%u",
3064 s->dst.seqlo, s->dst.seqhi,
3065 s->dst.max_win, s->dst.seqdiff);
3066 if (s->src.wscale && s->dst.wscale)
3067 printf(" wscale=%u",
3068 s->dst.wscale & PF_WSCALE_MASK);
3069 printf("]");
3070 }
3071 printf(" %u:%u", s->src.state, s->dst.state);
3072 if (s->rule)
3073 printf(" @%d", s->rule->nr);
3074 }
3075 }
3076
3077 void
pf_print_flags(uint16_t f)3078 pf_print_flags(uint16_t f)
3079 {
3080 if (f)
3081 printf(" ");
3082 if (f & TH_FIN)
3083 printf("F");
3084 if (f & TH_SYN)
3085 printf("S");
3086 if (f & TH_RST)
3087 printf("R");
3088 if (f & TH_PUSH)
3089 printf("P");
3090 if (f & TH_ACK)
3091 printf("A");
3092 if (f & TH_URG)
3093 printf("U");
3094 if (f & TH_ECE)
3095 printf("E");
3096 if (f & TH_CWR)
3097 printf("W");
3098 if (f & TH_AE)
3099 printf("e");
3100 }
3101
3102 #define PF_SET_SKIP_STEPS(i) \
3103 do { \
3104 while (head[i] != cur) { \
3105 head[i]->skip[i] = cur; \
3106 head[i] = TAILQ_NEXT(head[i], entries); \
3107 } \
3108 } while (0)
3109
3110 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3111 pf_calc_skip_steps(struct pf_krulequeue *rules)
3112 {
3113 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3114 int i;
3115
3116 cur = TAILQ_FIRST(rules);
3117 prev = cur;
3118 for (i = 0; i < PF_SKIP_COUNT; ++i)
3119 head[i] = cur;
3120 while (cur != NULL) {
3121 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3122 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3123 if (cur->direction != prev->direction)
3124 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3125 if (cur->af != prev->af)
3126 PF_SET_SKIP_STEPS(PF_SKIP_AF);
3127 if (cur->proto != prev->proto)
3128 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3129 if (cur->src.neg != prev->src.neg ||
3130 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3131 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3132 if (cur->dst.neg != prev->dst.neg ||
3133 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3134 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3135 if (cur->src.port[0] != prev->src.port[0] ||
3136 cur->src.port[1] != prev->src.port[1] ||
3137 cur->src.port_op != prev->src.port_op)
3138 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3139 if (cur->dst.port[0] != prev->dst.port[0] ||
3140 cur->dst.port[1] != prev->dst.port[1] ||
3141 cur->dst.port_op != prev->dst.port_op)
3142 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3143
3144 prev = cur;
3145 cur = TAILQ_NEXT(cur, entries);
3146 }
3147 for (i = 0; i < PF_SKIP_COUNT; ++i)
3148 PF_SET_SKIP_STEPS(i);
3149 }
3150
3151 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3152 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3153 {
3154 if (aw1->type != aw2->type)
3155 return (1);
3156 switch (aw1->type) {
3157 case PF_ADDR_ADDRMASK:
3158 case PF_ADDR_RANGE:
3159 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3160 return (1);
3161 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3162 return (1);
3163 return (0);
3164 case PF_ADDR_DYNIFTL:
3165 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3166 case PF_ADDR_NONE:
3167 case PF_ADDR_NOROUTE:
3168 case PF_ADDR_URPFFAILED:
3169 return (0);
3170 case PF_ADDR_TABLE:
3171 return (aw1->p.tbl != aw2->p.tbl);
3172 default:
3173 printf("invalid address type: %d\n", aw1->type);
3174 return (1);
3175 }
3176 }
3177
3178 /**
3179 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3180 * header isn't always a full checksum. In some cases (i.e. output) it's a
3181 * pseudo-header checksum, which is a partial checksum over src/dst IP
3182 * addresses, protocol number and length.
3183 *
3184 * That means we have the following cases:
3185 * * Input or forwarding: we don't have TSO, the checksum fields are full
3186 * checksums, we need to update the checksum whenever we change anything.
3187 * * Output (i.e. the checksum is a pseudo-header checksum):
3188 * x The field being updated is src/dst address or affects the length of
3189 * the packet. We need to update the pseudo-header checksum (note that this
3190 * checksum is not ones' complement).
3191 * x Some other field is being modified (e.g. src/dst port numbers): We
3192 * don't have to update anything.
3193 **/
3194 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3195 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3196 {
3197 u_int32_t x;
3198
3199 x = cksum + old - new;
3200 x = (x + (x >> 16)) & 0xffff;
3201
3202 /* optimise: eliminate a branch when not udp */
3203 if (udp && cksum == 0x0000)
3204 return cksum;
3205 if (udp && x == 0x0000)
3206 x = 0xffff;
3207
3208 return (u_int16_t)(x);
3209 }
3210
3211 static void
pf_patch_8(struct mbuf * m,u_int16_t * cksum,u_int8_t * f,u_int8_t v,bool hi,u_int8_t udp)3212 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
3213 u_int8_t udp)
3214 {
3215 u_int16_t old = htons(hi ? (*f << 8) : *f);
3216 u_int16_t new = htons(hi ? ( v << 8) : v);
3217
3218 if (*f == v)
3219 return;
3220
3221 *f = v;
3222
3223 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3224 return;
3225
3226 *cksum = pf_cksum_fixup(*cksum, old, new, udp);
3227 }
3228
3229 void
pf_patch_16_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int16_t v,bool hi,u_int8_t udp)3230 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
3231 bool hi, u_int8_t udp)
3232 {
3233 u_int8_t *fb = (u_int8_t *)f;
3234 u_int8_t *vb = (u_int8_t *)&v;
3235
3236 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3237 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3238 }
3239
3240 void
pf_patch_32_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int32_t v,bool hi,u_int8_t udp)3241 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
3242 bool hi, u_int8_t udp)
3243 {
3244 u_int8_t *fb = (u_int8_t *)f;
3245 u_int8_t *vb = (u_int8_t *)&v;
3246
3247 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3248 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3249 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3250 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3251 }
3252
3253 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3254 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3255 u_int16_t new, u_int8_t udp)
3256 {
3257 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3258 return (cksum);
3259
3260 return (pf_cksum_fixup(cksum, old, new, udp));
3261 }
3262
3263 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,u_int16_t * ic,u_int16_t * pc,struct pf_addr * an,u_int16_t pn,u_int8_t u,sa_family_t af,sa_family_t naf)3264 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
3265 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
3266 sa_family_t af, sa_family_t naf)
3267 {
3268 struct pf_addr ao;
3269 u_int16_t po;
3270
3271 PF_ACPY(&ao, a, af);
3272 if (af == naf)
3273 PF_ACPY(a, an, af);
3274
3275 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3276 *pc = ~*pc;
3277
3278 if (p == NULL) /* no port -> done. no cksum to worry about. */
3279 return;
3280 po = *p;
3281 *p = pn;
3282
3283 switch (af) {
3284 #ifdef INET
3285 case AF_INET:
3286 switch (naf) {
3287 case AF_INET:
3288 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3289 ao.addr16[0], an->addr16[0], 0),
3290 ao.addr16[1], an->addr16[1], 0);
3291 *p = pn;
3292
3293 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
3294 ao.addr16[0], an->addr16[0], u),
3295 ao.addr16[1], an->addr16[1], u);
3296
3297 *pc = pf_proto_cksum_fixup(pd->m, *pc, po, pn, u);
3298 break;
3299 #ifdef INET6
3300 case AF_INET6:
3301 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3302 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3303 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
3304 ao.addr16[0], an->addr16[0], u),
3305 ao.addr16[1], an->addr16[1], u),
3306 0, an->addr16[2], u),
3307 0, an->addr16[3], u),
3308 0, an->addr16[4], u),
3309 0, an->addr16[5], u),
3310 0, an->addr16[6], u),
3311 0, an->addr16[7], u),
3312 po, pn, u);
3313
3314 /* XXXKP TODO *ic checksum? */
3315 break;
3316 #endif /* INET6 */
3317 }
3318 break;
3319 #endif /* INET */
3320 #ifdef INET6
3321 case AF_INET6:
3322 switch (naf) {
3323 #ifdef INET
3324 case AF_INET:
3325 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3326 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3327 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
3328 ao.addr16[0], an->addr16[0], u),
3329 ao.addr16[1], an->addr16[1], u),
3330 ao.addr16[2], 0, u),
3331 ao.addr16[3], 0, u),
3332 ao.addr16[4], 0, u),
3333 ao.addr16[5], 0, u),
3334 ao.addr16[6], 0, u),
3335 ao.addr16[7], 0, u),
3336 po, pn, u);
3337
3338 /* XXXKP TODO *ic checksum? */
3339 break;
3340 #endif /* INET */
3341 case AF_INET6:
3342 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3343 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3344 pf_cksum_fixup(pf_cksum_fixup(*pc,
3345 ao.addr16[0], an->addr16[0], u),
3346 ao.addr16[1], an->addr16[1], u),
3347 ao.addr16[2], an->addr16[2], u),
3348 ao.addr16[3], an->addr16[3], u),
3349 ao.addr16[4], an->addr16[4], u),
3350 ao.addr16[5], an->addr16[5], u),
3351 ao.addr16[6], an->addr16[6], u),
3352 ao.addr16[7], an->addr16[7], u);
3353
3354 *pc = pf_proto_cksum_fixup(pd->m, *pc, po, pn, u);
3355 break;
3356 }
3357 break;
3358 #endif /* INET6 */
3359 default:
3360 unhandled_af(af);
3361 }
3362
3363 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3364 CSUM_DELAY_DATA_IPV6)) {
3365 *pc = ~*pc;
3366 if (! *pc)
3367 *pc = 0xffff;
3368 }
3369 }
3370
3371 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3372 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3373 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3374 {
3375 u_int32_t ao;
3376
3377 memcpy(&ao, a, sizeof(ao));
3378 memcpy(a, &an, sizeof(u_int32_t));
3379 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3380 ao % 65536, an % 65536, u);
3381 }
3382
3383 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3384 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3385 {
3386 u_int32_t ao;
3387
3388 memcpy(&ao, a, sizeof(ao));
3389 memcpy(a, &an, sizeof(u_int32_t));
3390
3391 *c = pf_proto_cksum_fixup(m,
3392 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3393 ao % 65536, an % 65536, udp);
3394 }
3395
3396 #ifdef INET6
3397 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3398 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3399 {
3400 struct pf_addr ao;
3401
3402 PF_ACPY(&ao, a, AF_INET6);
3403 PF_ACPY(a, an, AF_INET6);
3404
3405 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3406 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3407 pf_cksum_fixup(pf_cksum_fixup(*c,
3408 ao.addr16[0], an->addr16[0], u),
3409 ao.addr16[1], an->addr16[1], u),
3410 ao.addr16[2], an->addr16[2], u),
3411 ao.addr16[3], an->addr16[3], u),
3412 ao.addr16[4], an->addr16[4], u),
3413 ao.addr16[5], an->addr16[5], u),
3414 ao.addr16[6], an->addr16[6], u),
3415 ao.addr16[7], an->addr16[7], u);
3416 }
3417 #endif /* INET6 */
3418
3419 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3420 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3421 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3422 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3423 {
3424 struct pf_addr oia, ooa;
3425
3426 PF_ACPY(&oia, ia, af);
3427 if (oa)
3428 PF_ACPY(&ooa, oa, af);
3429
3430 /* Change inner protocol port, fix inner protocol checksum. */
3431 if (ip != NULL) {
3432 u_int16_t oip = *ip;
3433 u_int32_t opc;
3434
3435 if (pc != NULL)
3436 opc = *pc;
3437 *ip = np;
3438 if (pc != NULL)
3439 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3440 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3441 if (pc != NULL)
3442 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3443 }
3444 /* Change inner ip address, fix inner ip and icmp checksums. */
3445 PF_ACPY(ia, na, af);
3446 switch (af) {
3447 #ifdef INET
3448 case AF_INET: {
3449 u_int32_t oh2c = *h2c;
3450
3451 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3452 oia.addr16[0], ia->addr16[0], 0),
3453 oia.addr16[1], ia->addr16[1], 0);
3454 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3455 oia.addr16[0], ia->addr16[0], 0),
3456 oia.addr16[1], ia->addr16[1], 0);
3457 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3458 break;
3459 }
3460 #endif /* INET */
3461 #ifdef INET6
3462 case AF_INET6:
3463 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3464 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3465 pf_cksum_fixup(pf_cksum_fixup(*ic,
3466 oia.addr16[0], ia->addr16[0], u),
3467 oia.addr16[1], ia->addr16[1], u),
3468 oia.addr16[2], ia->addr16[2], u),
3469 oia.addr16[3], ia->addr16[3], u),
3470 oia.addr16[4], ia->addr16[4], u),
3471 oia.addr16[5], ia->addr16[5], u),
3472 oia.addr16[6], ia->addr16[6], u),
3473 oia.addr16[7], ia->addr16[7], u);
3474 break;
3475 #endif /* INET6 */
3476 }
3477 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3478 if (oa) {
3479 PF_ACPY(oa, na, af);
3480 switch (af) {
3481 #ifdef INET
3482 case AF_INET:
3483 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3484 ooa.addr16[0], oa->addr16[0], 0),
3485 ooa.addr16[1], oa->addr16[1], 0);
3486 break;
3487 #endif /* INET */
3488 #ifdef INET6
3489 case AF_INET6:
3490 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3491 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3492 pf_cksum_fixup(pf_cksum_fixup(*ic,
3493 ooa.addr16[0], oa->addr16[0], u),
3494 ooa.addr16[1], oa->addr16[1], u),
3495 ooa.addr16[2], oa->addr16[2], u),
3496 ooa.addr16[3], oa->addr16[3], u),
3497 ooa.addr16[4], oa->addr16[4], u),
3498 ooa.addr16[5], oa->addr16[5], u),
3499 ooa.addr16[6], oa->addr16[6], u),
3500 ooa.addr16[7], oa->addr16[7], u);
3501 break;
3502 #endif /* INET6 */
3503 }
3504 }
3505 }
3506
3507 int
pf_translate_af(struct pf_pdesc * pd)3508 pf_translate_af(struct pf_pdesc *pd)
3509 {
3510 #if defined(INET) && defined(INET6)
3511 struct mbuf *mp;
3512 struct ip *ip4;
3513 struct ip6_hdr *ip6;
3514 struct icmp6_hdr *icmp;
3515 struct m_tag *mtag;
3516 struct pf_fragment_tag *ftag;
3517 int hlen;
3518
3519 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3520
3521 /* trim the old header */
3522 m_adj(pd->m, pd->off);
3523
3524 /* prepend a new one */
3525 M_PREPEND(pd->m, hlen, M_NOWAIT);
3526 if (pd->m == NULL)
3527 return (-1);
3528
3529 switch (pd->naf) {
3530 case AF_INET:
3531 ip4 = mtod(pd->m, struct ip *);
3532 bzero(ip4, hlen);
3533 ip4->ip_v = IPVERSION;
3534 ip4->ip_hl = hlen >> 2;
3535 ip4->ip_tos = pd->tos;
3536 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3537 ip_fillid(ip4, V_ip_random_id);
3538 ip4->ip_ttl = pd->ttl;
3539 ip4->ip_p = pd->proto;
3540 ip4->ip_src = pd->nsaddr.v4;
3541 ip4->ip_dst = pd->ndaddr.v4;
3542 pd->src = (struct pf_addr *)&ip4->ip_src;
3543 pd->dst = (struct pf_addr *)&ip4->ip_dst;
3544 pd->off = sizeof(struct ip);
3545 break;
3546 case AF_INET6:
3547 ip6 = mtod(pd->m, struct ip6_hdr *);
3548 bzero(ip6, hlen);
3549 ip6->ip6_vfc = IPV6_VERSION;
3550 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3551 ip6->ip6_plen = htons(pd->tot_len - pd->off);
3552 ip6->ip6_nxt = pd->proto;
3553 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3554 ip6->ip6_hlim = IPV6_DEFHLIM;
3555 else
3556 ip6->ip6_hlim = pd->ttl;
3557 ip6->ip6_src = pd->nsaddr.v6;
3558 ip6->ip6_dst = pd->ndaddr.v6;
3559 pd->src = (struct pf_addr *)&ip6->ip6_src;
3560 pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3561 pd->off = sizeof(struct ip6_hdr);
3562
3563 /*
3564 * If we're dealing with a reassembled packet we need to adjust
3565 * the header length from the IPv4 header size to IPv6 header
3566 * size.
3567 */
3568 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3569 if (mtag) {
3570 ftag = (struct pf_fragment_tag *)(mtag + 1);
3571 ftag->ft_hdrlen = sizeof(*ip6);
3572 ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3573 sizeof(struct ip) + sizeof(struct ip6_frag);
3574 }
3575 break;
3576 default:
3577 return (-1);
3578 }
3579
3580 /* recalculate icmp/icmp6 checksums */
3581 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3582 int off;
3583 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3584 NULL) {
3585 pd->m = NULL;
3586 return (-1);
3587 }
3588 icmp = (struct icmp6_hdr *)(mp->m_data + off);
3589 icmp->icmp6_cksum = 0;
3590 icmp->icmp6_cksum = pd->naf == AF_INET ?
3591 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3592 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3593 ntohs(ip6->ip6_plen));
3594 }
3595 #endif /* INET && INET6 */
3596
3597 return (0);
3598 }
3599
3600 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3601 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3602 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3603 sa_family_t af, sa_family_t naf)
3604 {
3605 #if defined(INET) && defined(INET6)
3606 struct mbuf *n = NULL;
3607 struct ip *ip4;
3608 struct ip6_hdr *ip6;
3609 int hlen, olen, mlen;
3610
3611 if (af == naf || (af != AF_INET && af != AF_INET6) ||
3612 (naf != AF_INET && naf != AF_INET6))
3613 return (-1);
3614
3615 /* split the mbuf chain on the inner ip/ip6 header boundary */
3616 if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3617 return (-1);
3618
3619 /* old header */
3620 olen = pd2->off - off;
3621 /* new header */
3622 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3623
3624 /* trim old header */
3625 m_adj(n, olen);
3626
3627 /* prepend a new one */
3628 M_PREPEND(n, hlen, M_NOWAIT);
3629 if (n == NULL)
3630 return (-1);
3631
3632 /* translate inner ip/ip6 header */
3633 switch (naf) {
3634 case AF_INET:
3635 ip4 = mtod(n, struct ip *);
3636 bzero(ip4, sizeof(*ip4));
3637 ip4->ip_v = IPVERSION;
3638 ip4->ip_hl = sizeof(*ip4) >> 2;
3639 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3640 ip_fillid(ip4, V_ip_random_id);
3641 ip4->ip_off = htons(IP_DF);
3642 ip4->ip_ttl = pd2->ttl;
3643 if (pd2->proto == IPPROTO_ICMPV6)
3644 ip4->ip_p = IPPROTO_ICMP;
3645 else
3646 ip4->ip_p = pd2->proto;
3647 ip4->ip_src = src->v4;
3648 ip4->ip_dst = dst->v4;
3649 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3650 break;
3651 case AF_INET6:
3652 ip6 = mtod(n, struct ip6_hdr *);
3653 bzero(ip6, sizeof(*ip6));
3654 ip6->ip6_vfc = IPV6_VERSION;
3655 ip6->ip6_plen = htons(pd2->tot_len - olen);
3656 if (pd2->proto == IPPROTO_ICMP)
3657 ip6->ip6_nxt = IPPROTO_ICMPV6;
3658 else
3659 ip6->ip6_nxt = pd2->proto;
3660 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3661 ip6->ip6_hlim = IPV6_DEFHLIM;
3662 else
3663 ip6->ip6_hlim = pd2->ttl;
3664 ip6->ip6_src = src->v6;
3665 ip6->ip6_dst = dst->v6;
3666 break;
3667 default:
3668 unhandled_af(naf);
3669 }
3670
3671 /* adjust payload offset and total packet length */
3672 pd2->off += hlen - olen;
3673 pd->tot_len += hlen - olen;
3674
3675 /* merge modified inner packet with the original header */
3676 mlen = n->m_pkthdr.len;
3677 m_cat(m, n);
3678 m->m_pkthdr.len += mlen;
3679 #endif /* INET && INET6 */
3680
3681 return (0);
3682 }
3683
3684 #define PTR_IP(field) (offsetof(struct ip, field))
3685 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field))
3686
3687 int
pf_translate_icmp_af(int af,void * arg)3688 pf_translate_icmp_af(int af, void *arg)
3689 {
3690 #if defined(INET) && defined(INET6)
3691 struct icmp *icmp4;
3692 struct icmp6_hdr *icmp6;
3693 u_int32_t mtu;
3694 int32_t ptr = -1;
3695 u_int8_t type;
3696 u_int8_t code;
3697
3698 switch (af) {
3699 case AF_INET:
3700 icmp6 = arg;
3701 type = icmp6->icmp6_type;
3702 code = icmp6->icmp6_code;
3703 mtu = ntohl(icmp6->icmp6_mtu);
3704
3705 switch (type) {
3706 case ICMP6_ECHO_REQUEST:
3707 type = ICMP_ECHO;
3708 break;
3709 case ICMP6_ECHO_REPLY:
3710 type = ICMP_ECHOREPLY;
3711 break;
3712 case ICMP6_DST_UNREACH:
3713 type = ICMP_UNREACH;
3714 switch (code) {
3715 case ICMP6_DST_UNREACH_NOROUTE:
3716 case ICMP6_DST_UNREACH_BEYONDSCOPE:
3717 case ICMP6_DST_UNREACH_ADDR:
3718 code = ICMP_UNREACH_HOST;
3719 break;
3720 case ICMP6_DST_UNREACH_ADMIN:
3721 code = ICMP_UNREACH_HOST_PROHIB;
3722 break;
3723 case ICMP6_DST_UNREACH_NOPORT:
3724 code = ICMP_UNREACH_PORT;
3725 break;
3726 default:
3727 return (-1);
3728 }
3729 break;
3730 case ICMP6_PACKET_TOO_BIG:
3731 type = ICMP_UNREACH;
3732 code = ICMP_UNREACH_NEEDFRAG;
3733 mtu -= 20;
3734 break;
3735 case ICMP6_TIME_EXCEEDED:
3736 type = ICMP_TIMXCEED;
3737 break;
3738 case ICMP6_PARAM_PROB:
3739 switch (code) {
3740 case ICMP6_PARAMPROB_HEADER:
3741 type = ICMP_PARAMPROB;
3742 code = ICMP_PARAMPROB_ERRATPTR;
3743 ptr = ntohl(icmp6->icmp6_pptr);
3744
3745 if (ptr == PTR_IP6(ip6_vfc))
3746 ; /* preserve */
3747 else if (ptr == PTR_IP6(ip6_vfc) + 1)
3748 ptr = PTR_IP(ip_tos);
3749 else if (ptr == PTR_IP6(ip6_plen) ||
3750 ptr == PTR_IP6(ip6_plen) + 1)
3751 ptr = PTR_IP(ip_len);
3752 else if (ptr == PTR_IP6(ip6_nxt))
3753 ptr = PTR_IP(ip_p);
3754 else if (ptr == PTR_IP6(ip6_hlim))
3755 ptr = PTR_IP(ip_ttl);
3756 else if (ptr >= PTR_IP6(ip6_src) &&
3757 ptr < PTR_IP6(ip6_dst))
3758 ptr = PTR_IP(ip_src);
3759 else if (ptr >= PTR_IP6(ip6_dst) &&
3760 ptr < sizeof(struct ip6_hdr))
3761 ptr = PTR_IP(ip_dst);
3762 else {
3763 return (-1);
3764 }
3765 break;
3766 case ICMP6_PARAMPROB_NEXTHEADER:
3767 type = ICMP_UNREACH;
3768 code = ICMP_UNREACH_PROTOCOL;
3769 break;
3770 default:
3771 return (-1);
3772 }
3773 break;
3774 default:
3775 return (-1);
3776 }
3777 if (icmp6->icmp6_type != type) {
3778 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3779 icmp6->icmp6_type, type, 0);
3780 icmp6->icmp6_type = type;
3781 }
3782 if (icmp6->icmp6_code != code) {
3783 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3784 icmp6->icmp6_code, code, 0);
3785 icmp6->icmp6_code = code;
3786 }
3787 if (icmp6->icmp6_mtu != htonl(mtu)) {
3788 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3789 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3790 /* aligns well with a icmpv4 nextmtu */
3791 icmp6->icmp6_mtu = htonl(mtu);
3792 }
3793 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3794 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3795 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3796 /* icmpv4 pptr is a one most significant byte */
3797 icmp6->icmp6_pptr = htonl(ptr << 24);
3798 }
3799 break;
3800 case AF_INET6:
3801 icmp4 = arg;
3802 type = icmp4->icmp_type;
3803 code = icmp4->icmp_code;
3804 mtu = ntohs(icmp4->icmp_nextmtu);
3805
3806 switch (type) {
3807 case ICMP_ECHO:
3808 type = ICMP6_ECHO_REQUEST;
3809 break;
3810 case ICMP_ECHOREPLY:
3811 type = ICMP6_ECHO_REPLY;
3812 break;
3813 case ICMP_UNREACH:
3814 type = ICMP6_DST_UNREACH;
3815 switch (code) {
3816 case ICMP_UNREACH_NET:
3817 case ICMP_UNREACH_HOST:
3818 case ICMP_UNREACH_NET_UNKNOWN:
3819 case ICMP_UNREACH_HOST_UNKNOWN:
3820 case ICMP_UNREACH_ISOLATED:
3821 case ICMP_UNREACH_TOSNET:
3822 case ICMP_UNREACH_TOSHOST:
3823 code = ICMP6_DST_UNREACH_NOROUTE;
3824 break;
3825 case ICMP_UNREACH_PORT:
3826 code = ICMP6_DST_UNREACH_NOPORT;
3827 break;
3828 case ICMP_UNREACH_NET_PROHIB:
3829 case ICMP_UNREACH_HOST_PROHIB:
3830 case ICMP_UNREACH_FILTER_PROHIB:
3831 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3832 code = ICMP6_DST_UNREACH_ADMIN;
3833 break;
3834 case ICMP_UNREACH_PROTOCOL:
3835 type = ICMP6_PARAM_PROB;
3836 code = ICMP6_PARAMPROB_NEXTHEADER;
3837 ptr = offsetof(struct ip6_hdr, ip6_nxt);
3838 break;
3839 case ICMP_UNREACH_NEEDFRAG:
3840 type = ICMP6_PACKET_TOO_BIG;
3841 code = 0;
3842 mtu += 20;
3843 break;
3844 default:
3845 return (-1);
3846 }
3847 break;
3848 case ICMP_TIMXCEED:
3849 type = ICMP6_TIME_EXCEEDED;
3850 break;
3851 case ICMP_PARAMPROB:
3852 type = ICMP6_PARAM_PROB;
3853 switch (code) {
3854 case ICMP_PARAMPROB_ERRATPTR:
3855 code = ICMP6_PARAMPROB_HEADER;
3856 break;
3857 case ICMP_PARAMPROB_LENGTH:
3858 code = ICMP6_PARAMPROB_HEADER;
3859 break;
3860 default:
3861 return (-1);
3862 }
3863
3864 ptr = icmp4->icmp_pptr;
3865 if (ptr == 0 || ptr == PTR_IP(ip_tos))
3866 ; /* preserve */
3867 else if (ptr == PTR_IP(ip_len) ||
3868 ptr == PTR_IP(ip_len) + 1)
3869 ptr = PTR_IP6(ip6_plen);
3870 else if (ptr == PTR_IP(ip_ttl))
3871 ptr = PTR_IP6(ip6_hlim);
3872 else if (ptr == PTR_IP(ip_p))
3873 ptr = PTR_IP6(ip6_nxt);
3874 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3875 ptr = PTR_IP6(ip6_src);
3876 else if (ptr >= PTR_IP(ip_dst) &&
3877 ptr < sizeof(struct ip))
3878 ptr = PTR_IP6(ip6_dst);
3879 else {
3880 return (-1);
3881 }
3882 break;
3883 default:
3884 return (-1);
3885 }
3886 if (icmp4->icmp_type != type) {
3887 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3888 icmp4->icmp_type, type, 0);
3889 icmp4->icmp_type = type;
3890 }
3891 if (icmp4->icmp_code != code) {
3892 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3893 icmp4->icmp_code, code, 0);
3894 icmp4->icmp_code = code;
3895 }
3896 if (icmp4->icmp_nextmtu != htons(mtu)) {
3897 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3898 icmp4->icmp_nextmtu, htons(mtu), 0);
3899 icmp4->icmp_nextmtu = htons(mtu);
3900 }
3901 if (ptr >= 0 && icmp4->icmp_void != ptr) {
3902 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3903 htons(icmp4->icmp_pptr), htons(ptr), 0);
3904 icmp4->icmp_void = htonl(ptr);
3905 }
3906 break;
3907 default:
3908 unhandled_af(af);
3909 }
3910 #endif /* INET && INET6 */
3911
3912 return (0);
3913 }
3914
3915 /*
3916 * Need to modulate the sequence numbers in the TCP SACK option
3917 * (credits to Krzysztof Pfaff for report and patch)
3918 */
3919 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3920 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3921 struct pf_state_peer *dst)
3922 {
3923 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
3924 u_int8_t opts[TCP_MAXOLEN], *opt = opts;
3925 int copyback = 0, i, olen;
3926 struct sackblk sack;
3927
3928 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2)
3929 if (hlen < TCPOLEN_SACKLEN || hlen > MAX_TCPOPTLEN ||
3930 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
3931 return 0;
3932
3933 while (hlen >= TCPOLEN_SACKLEN) {
3934 size_t startoff = opt - opts;
3935 olen = opt[1];
3936 switch (*opt) {
3937 case TCPOPT_EOL: /* FALLTHROUGH */
3938 case TCPOPT_NOP:
3939 opt++;
3940 hlen--;
3941 break;
3942 case TCPOPT_SACK:
3943 if (olen > hlen)
3944 olen = hlen;
3945 if (olen >= TCPOLEN_SACKLEN) {
3946 for (i = 2; i + TCPOLEN_SACK <= olen;
3947 i += TCPOLEN_SACK) {
3948 memcpy(&sack, &opt[i], sizeof(sack));
3949 pf_patch_32_unaligned(pd->m,
3950 &th->th_sum, &sack.start,
3951 htonl(ntohl(sack.start) - dst->seqdiff),
3952 PF_ALGNMNT(startoff),
3953 0);
3954 pf_patch_32_unaligned(pd->m, &th->th_sum,
3955 &sack.end,
3956 htonl(ntohl(sack.end) - dst->seqdiff),
3957 PF_ALGNMNT(startoff),
3958 0);
3959 memcpy(&opt[i], &sack, sizeof(sack));
3960 }
3961 copyback = 1;
3962 }
3963 /* FALLTHROUGH */
3964 default:
3965 if (olen < 2)
3966 olen = 2;
3967 hlen -= olen;
3968 opt += olen;
3969 }
3970 }
3971
3972 if (copyback)
3973 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts);
3974 return (copyback);
3975 }
3976
3977 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)3978 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3979 const struct pf_addr *saddr, const struct pf_addr *daddr,
3980 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3981 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3982 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3983 {
3984 struct mbuf *m;
3985 int len, tlen;
3986 #ifdef INET
3987 struct ip *h = NULL;
3988 #endif /* INET */
3989 #ifdef INET6
3990 struct ip6_hdr *h6 = NULL;
3991 #endif /* INET6 */
3992 struct tcphdr *th;
3993 char *opt;
3994 struct pf_mtag *pf_mtag;
3995
3996 len = 0;
3997 th = NULL;
3998
3999 /* maximum segment size tcp option */
4000 tlen = sizeof(struct tcphdr);
4001 if (mss)
4002 tlen += 4;
4003
4004 switch (af) {
4005 #ifdef INET
4006 case AF_INET:
4007 len = sizeof(struct ip) + tlen;
4008 break;
4009 #endif /* INET */
4010 #ifdef INET6
4011 case AF_INET6:
4012 len = sizeof(struct ip6_hdr) + tlen;
4013 break;
4014 #endif /* INET6 */
4015 default:
4016 unhandled_af(af);
4017 }
4018
4019 m = m_gethdr(M_NOWAIT, MT_DATA);
4020 if (m == NULL)
4021 return (NULL);
4022
4023 #ifdef MAC
4024 mac_netinet_firewall_send(m);
4025 #endif
4026 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4027 m_freem(m);
4028 return (NULL);
4029 }
4030 m->m_flags |= mbuf_flags;
4031 pf_mtag->tag = mtag_tag;
4032 pf_mtag->flags = mtag_flags;
4033
4034 if (rtableid >= 0)
4035 M_SETFIB(m, rtableid);
4036
4037 #ifdef ALTQ
4038 if (r != NULL && r->qid) {
4039 pf_mtag->qid = r->qid;
4040
4041 /* add hints for ecn */
4042 pf_mtag->hdr = mtod(m, struct ip *);
4043 }
4044 #endif /* ALTQ */
4045 m->m_data += max_linkhdr;
4046 m->m_pkthdr.len = m->m_len = len;
4047 /* The rest of the stack assumes a rcvif, so provide one.
4048 * This is a locally generated packet, so .. close enough. */
4049 m->m_pkthdr.rcvif = V_loif;
4050 bzero(m->m_data, len);
4051 switch (af) {
4052 #ifdef INET
4053 case AF_INET:
4054 m->m_pkthdr.csum_flags |= CSUM_TCP;
4055 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4056
4057 h = mtod(m, struct ip *);
4058
4059 h->ip_p = IPPROTO_TCP;
4060 h->ip_len = htons(tlen);
4061 h->ip_v = 4;
4062 h->ip_hl = sizeof(*h) >> 2;
4063 h->ip_tos = IPTOS_LOWDELAY;
4064 h->ip_len = htons(len);
4065 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4066 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4067 h->ip_sum = 0;
4068 h->ip_src.s_addr = saddr->v4.s_addr;
4069 h->ip_dst.s_addr = daddr->v4.s_addr;
4070
4071 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4072 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4073 htons(len - sizeof(struct ip) + IPPROTO_TCP));
4074 break;
4075 #endif /* INET */
4076 #ifdef INET6
4077 case AF_INET6:
4078 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4079 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4080
4081 h6 = mtod(m, struct ip6_hdr *);
4082
4083 /* IP header fields included in the TCP checksum */
4084 h6->ip6_nxt = IPPROTO_TCP;
4085 h6->ip6_plen = htons(tlen);
4086 h6->ip6_vfc |= IPV6_VERSION;
4087 h6->ip6_hlim = V_ip6_defhlim;
4088 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4089 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4090
4091 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4092 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4093 IPPROTO_TCP, 0);
4094 break;
4095 #endif /* INET6 */
4096 }
4097
4098 /* TCP header */
4099 th->th_sport = sport;
4100 th->th_dport = dport;
4101 th->th_seq = htonl(seq);
4102 th->th_ack = htonl(ack);
4103 th->th_off = tlen >> 2;
4104 tcp_set_flags(th, tcp_flags);
4105 th->th_win = htons(win);
4106
4107 if (mss) {
4108 opt = (char *)(th + 1);
4109 opt[0] = TCPOPT_MAXSEG;
4110 opt[1] = 4;
4111 mss = htons(mss);
4112 memcpy((opt + 2), &mss, 2);
4113 }
4114
4115 return (m);
4116 }
4117
4118 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4119 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4120 uint8_t ttl, int rtableid)
4121 {
4122 struct mbuf *m;
4123 #ifdef INET
4124 struct ip *h = NULL;
4125 #endif /* INET */
4126 #ifdef INET6
4127 struct ip6_hdr *h6 = NULL;
4128 #endif /* INET6 */
4129 struct sctphdr *hdr;
4130 struct sctp_chunkhdr *chunk;
4131 struct pf_send_entry *pfse;
4132 int off = 0;
4133
4134 MPASS(af == pd->af);
4135
4136 m = m_gethdr(M_NOWAIT, MT_DATA);
4137 if (m == NULL)
4138 return;
4139
4140 m->m_data += max_linkhdr;
4141 m->m_flags |= M_SKIP_FIREWALL;
4142 /* The rest of the stack assumes a rcvif, so provide one.
4143 * This is a locally generated packet, so .. close enough. */
4144 m->m_pkthdr.rcvif = V_loif;
4145
4146 /* IPv4|6 header */
4147 switch (af) {
4148 #ifdef INET
4149 case AF_INET:
4150 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4151
4152 h = mtod(m, struct ip *);
4153
4154 /* IP header fields included in the TCP checksum */
4155
4156 h->ip_p = IPPROTO_SCTP;
4157 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4158 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4159 h->ip_src = pd->dst->v4;
4160 h->ip_dst = pd->src->v4;
4161
4162 off += sizeof(struct ip);
4163 break;
4164 #endif /* INET */
4165 #ifdef INET6
4166 case AF_INET6:
4167 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4168
4169 h6 = mtod(m, struct ip6_hdr *);
4170
4171 /* IP header fields included in the TCP checksum */
4172 h6->ip6_vfc |= IPV6_VERSION;
4173 h6->ip6_nxt = IPPROTO_SCTP;
4174 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4175 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4176 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4177 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4178
4179 off += sizeof(struct ip6_hdr);
4180 break;
4181 #endif /* INET6 */
4182 default:
4183 unhandled_af(af);
4184 }
4185
4186 /* SCTP header */
4187 hdr = mtodo(m, off);
4188
4189 hdr->src_port = pd->hdr.sctp.dest_port;
4190 hdr->dest_port = pd->hdr.sctp.src_port;
4191 hdr->v_tag = pd->sctp_initiate_tag;
4192 hdr->checksum = 0;
4193
4194 /* Abort chunk. */
4195 off += sizeof(struct sctphdr);
4196 chunk = mtodo(m, off);
4197
4198 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4199 chunk->chunk_length = htons(sizeof(*chunk));
4200
4201 /* SCTP checksum */
4202 off += sizeof(*chunk);
4203 m->m_pkthdr.len = m->m_len = off;
4204
4205 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4206
4207 if (rtableid >= 0)
4208 M_SETFIB(m, rtableid);
4209
4210 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4211 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4212 if (pfse == NULL) {
4213 m_freem(m);
4214 return;
4215 }
4216
4217 switch (af) {
4218 #ifdef INET
4219 case AF_INET:
4220 pfse->pfse_type = PFSE_IP;
4221 break;
4222 #endif /* INET */
4223 #ifdef INET6
4224 case AF_INET6:
4225 pfse->pfse_type = PFSE_IP6;
4226 break;
4227 #endif /* INET6 */
4228 }
4229
4230 pfse->pfse_m = m;
4231 pf_send(pfse);
4232 }
4233
4234 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4235 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4236 const struct pf_addr *saddr, const struct pf_addr *daddr,
4237 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4238 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4239 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4240 {
4241 struct pf_send_entry *pfse;
4242 struct mbuf *m;
4243
4244 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4245 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid);
4246 if (m == NULL)
4247 return;
4248
4249 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4250 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4251 if (pfse == NULL) {
4252 m_freem(m);
4253 return;
4254 }
4255
4256 switch (af) {
4257 #ifdef INET
4258 case AF_INET:
4259 pfse->pfse_type = PFSE_IP;
4260 break;
4261 #endif /* INET */
4262 #ifdef INET6
4263 case AF_INET6:
4264 pfse->pfse_type = PFSE_IP6;
4265 break;
4266 #endif /* INET6 */
4267 default:
4268 unhandled_af(af);
4269 }
4270
4271 pfse->pfse_m = m;
4272 pf_send(pfse);
4273 }
4274
4275 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4276 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4277 {
4278 /* undo NAT changes, if they have taken place */
4279 if (nr != NULL) {
4280 PF_ACPY(pd->src, &pd->osrc, pd->af);
4281 PF_ACPY(pd->dst, &pd->odst, pd->af);
4282 if (pd->sport)
4283 *pd->sport = pd->osport;
4284 if (pd->dport)
4285 *pd->dport = pd->odport;
4286 if (pd->ip_sum)
4287 *pd->ip_sum = bip_sum;
4288 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4289 }
4290 }
4291
4292 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4293 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4294 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4295 u_short *reason, int rtableid)
4296 {
4297 pf_undo_nat(nr, pd, bip_sum);
4298
4299 if (pd->proto == IPPROTO_TCP &&
4300 ((r->rule_flag & PFRULE_RETURNRST) ||
4301 (r->rule_flag & PFRULE_RETURN)) &&
4302 !(tcp_get_flags(th) & TH_RST)) {
4303 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
4304
4305 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4306 IPPROTO_TCP, pd->af))
4307 REASON_SET(reason, PFRES_PROTCKSUM);
4308 else {
4309 if (tcp_get_flags(th) & TH_SYN)
4310 ack++;
4311 if (tcp_get_flags(th) & TH_FIN)
4312 ack++;
4313 pf_send_tcp(r, pd->af, pd->dst,
4314 pd->src, th->th_dport, th->th_sport,
4315 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4316 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4317 }
4318 } else if (pd->proto == IPPROTO_SCTP &&
4319 (r->rule_flag & PFRULE_RETURN)) {
4320 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4321 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4322 r->return_icmp)
4323 pf_send_icmp(pd->m, r->return_icmp >> 8,
4324 r->return_icmp & 255, pd->af, r, rtableid);
4325 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4326 r->return_icmp6)
4327 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4328 r->return_icmp6 & 255, pd->af, r, rtableid);
4329 }
4330
4331 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4332 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4333 {
4334 struct m_tag *mtag;
4335 u_int8_t mpcp;
4336
4337 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4338 if (mtag == NULL)
4339 return (0);
4340
4341 if (prio == PF_PRIO_ZERO)
4342 prio = 0;
4343
4344 mpcp = *(uint8_t *)(mtag + 1);
4345
4346 return (mpcp == prio);
4347 }
4348
4349 static int
pf_icmp_to_bandlim(uint8_t type)4350 pf_icmp_to_bandlim(uint8_t type)
4351 {
4352 switch (type) {
4353 case ICMP_ECHO:
4354 case ICMP_ECHOREPLY:
4355 return (BANDLIM_ICMP_ECHO);
4356 case ICMP_TSTAMP:
4357 case ICMP_TSTAMPREPLY:
4358 return (BANDLIM_ICMP_TSTAMP);
4359 case ICMP_UNREACH:
4360 default:
4361 return (BANDLIM_ICMP_UNREACH);
4362 }
4363 }
4364
4365 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,sa_family_t af,struct pf_krule * r,int rtableid)4366 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
4367 struct pf_krule *r, int rtableid)
4368 {
4369 struct pf_send_entry *pfse;
4370 struct mbuf *m0;
4371 struct pf_mtag *pf_mtag;
4372
4373 /* ICMP packet rate limitation. */
4374 switch (af) {
4375 #ifdef INET6
4376 case AF_INET6:
4377 if (icmp6_ratelimit(NULL, type, code))
4378 return;
4379 break;
4380 #endif /* INET6 */
4381 #ifdef INET
4382 case AF_INET:
4383 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4384 return;
4385 break;
4386 #endif /* INET */
4387 }
4388
4389 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4390 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4391 if (pfse == NULL)
4392 return;
4393
4394 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4395 free(pfse, M_PFTEMP);
4396 return;
4397 }
4398
4399 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4400 free(pfse, M_PFTEMP);
4401 return;
4402 }
4403 /* XXX: revisit */
4404 m0->m_flags |= M_SKIP_FIREWALL;
4405
4406 if (rtableid >= 0)
4407 M_SETFIB(m0, rtableid);
4408
4409 #ifdef ALTQ
4410 if (r->qid) {
4411 pf_mtag->qid = r->qid;
4412 /* add hints for ecn */
4413 pf_mtag->hdr = mtod(m0, struct ip *);
4414 }
4415 #endif /* ALTQ */
4416
4417 switch (af) {
4418 #ifdef INET
4419 case AF_INET:
4420 pfse->pfse_type = PFSE_ICMP;
4421 break;
4422 #endif /* INET */
4423 #ifdef INET6
4424 case AF_INET6:
4425 pfse->pfse_type = PFSE_ICMP6;
4426 break;
4427 #endif /* INET6 */
4428 }
4429 pfse->pfse_m = m0;
4430 pfse->icmpopts.type = type;
4431 pfse->icmpopts.code = code;
4432 pf_send(pfse);
4433 }
4434
4435 /*
4436 * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
4437 * If n is 0, they match if they are equal. If n is != 0, they match if they
4438 * are different.
4439 */
4440 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4441 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4442 const struct pf_addr *b, sa_family_t af)
4443 {
4444 int match = 0;
4445
4446 switch (af) {
4447 #ifdef INET
4448 case AF_INET:
4449 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4450 match++;
4451 break;
4452 #endif /* INET */
4453 #ifdef INET6
4454 case AF_INET6:
4455 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4456 match++;
4457 break;
4458 #endif /* INET6 */
4459 }
4460 if (match) {
4461 if (n)
4462 return (0);
4463 else
4464 return (1);
4465 } else {
4466 if (n)
4467 return (1);
4468 else
4469 return (0);
4470 }
4471 }
4472
4473 /*
4474 * Return 1 if b <= a <= e, otherwise return 0.
4475 */
4476 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4477 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4478 const struct pf_addr *a, sa_family_t af)
4479 {
4480 switch (af) {
4481 #ifdef INET
4482 case AF_INET:
4483 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4484 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4485 return (0);
4486 break;
4487 #endif /* INET */
4488 #ifdef INET6
4489 case AF_INET6: {
4490 int i;
4491
4492 /* check a >= b */
4493 for (i = 0; i < 4; ++i)
4494 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4495 break;
4496 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4497 return (0);
4498 /* check a <= e */
4499 for (i = 0; i < 4; ++i)
4500 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4501 break;
4502 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4503 return (0);
4504 break;
4505 }
4506 #endif /* INET6 */
4507 }
4508 return (1);
4509 }
4510
4511 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4512 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4513 {
4514 switch (op) {
4515 case PF_OP_IRG:
4516 return ((p > a1) && (p < a2));
4517 case PF_OP_XRG:
4518 return ((p < a1) || (p > a2));
4519 case PF_OP_RRG:
4520 return ((p >= a1) && (p <= a2));
4521 case PF_OP_EQ:
4522 return (p == a1);
4523 case PF_OP_NE:
4524 return (p != a1);
4525 case PF_OP_LT:
4526 return (p < a1);
4527 case PF_OP_LE:
4528 return (p <= a1);
4529 case PF_OP_GT:
4530 return (p > a1);
4531 case PF_OP_GE:
4532 return (p >= a1);
4533 }
4534 return (0); /* never reached */
4535 }
4536
4537 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4538 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4539 {
4540 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4541 }
4542
4543 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4544 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4545 {
4546 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4547 return (0);
4548 return (pf_match(op, a1, a2, u));
4549 }
4550
4551 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4552 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4553 {
4554 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4555 return (0);
4556 return (pf_match(op, a1, a2, g));
4557 }
4558
4559 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4560 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4561 {
4562 if (*tag == -1)
4563 *tag = mtag;
4564
4565 return ((!r->match_tag_not && r->match_tag == *tag) ||
4566 (r->match_tag_not && r->match_tag != *tag));
4567 }
4568
4569 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4570 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4571 {
4572 struct ifnet *ifp = m->m_pkthdr.rcvif;
4573 struct pfi_kkif *kif;
4574
4575 if (ifp == NULL)
4576 return (0);
4577
4578 kif = (struct pfi_kkif *)ifp->if_pf_kif;
4579
4580 if (kif == NULL) {
4581 DPFPRINTF(PF_DEBUG_URGENT,
4582 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr,
4583 r->rcv_ifname));
4584 return (0);
4585 }
4586
4587 return (pfi_kkif_match(r->rcv_kif, kif));
4588 }
4589
4590 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4591 pf_tag_packet(struct pf_pdesc *pd, int tag)
4592 {
4593
4594 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4595
4596 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4597 return (ENOMEM);
4598
4599 pd->pf_mtag->tag = tag;
4600
4601 return (0);
4602 }
4603
4604 #define PF_ANCHOR_STACKSIZE 32
4605 struct pf_kanchor_stackframe {
4606 struct pf_kruleset *rs;
4607 struct pf_krule *r; /* XXX: + match bit */
4608 struct pf_kanchor *child;
4609 };
4610
4611 /*
4612 * XXX: We rely on malloc(9) returning pointer aligned addresses.
4613 */
4614 #define PF_ANCHORSTACK_MATCH 0x00000001
4615 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4616
4617 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4618 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4619 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4620 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4621 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4622 } while (0)
4623
4624 void
pf_step_into_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a)4625 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4626 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a)
4627 {
4628 struct pf_kanchor_stackframe *f;
4629
4630 PF_RULES_RASSERT();
4631
4632 if (*depth >= PF_ANCHOR_STACKSIZE) {
4633 printf("%s: anchor stack overflow on %s\n",
4634 __func__, (*r)->anchor->name);
4635 *r = TAILQ_NEXT(*r, entries);
4636 return;
4637 } else if (*depth == 0 && a != NULL)
4638 *a = *r;
4639 f = stack + (*depth)++;
4640 f->rs = *rs;
4641 f->r = *r;
4642 if ((*r)->anchor_wildcard) {
4643 struct pf_kanchor_node *parent = &(*r)->anchor->children;
4644
4645 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
4646 *r = NULL;
4647 return;
4648 }
4649 *rs = &f->child->ruleset;
4650 } else {
4651 f->child = NULL;
4652 *rs = &(*r)->anchor->ruleset;
4653 }
4654 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4655 }
4656
4657 int
pf_step_out_of_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4658 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4659 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4660 int *match)
4661 {
4662 struct pf_kanchor_stackframe *f;
4663 struct pf_krule *fr;
4664 int quick = 0;
4665
4666 PF_RULES_RASSERT();
4667
4668 do {
4669 if (*depth <= 0)
4670 break;
4671 f = stack + *depth - 1;
4672 fr = PF_ANCHOR_RULE(f);
4673 if (f->child != NULL) {
4674 f->child = RB_NEXT(pf_kanchor_node,
4675 &fr->anchor->children, f->child);
4676 if (f->child != NULL) {
4677 *rs = &f->child->ruleset;
4678 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4679 if (*r == NULL)
4680 continue;
4681 else
4682 break;
4683 }
4684 }
4685 (*depth)--;
4686 if (*depth == 0 && a != NULL)
4687 *a = NULL;
4688 *rs = f->rs;
4689 if (match != NULL && *match > *depth) {
4690 *match = *depth;
4691 if (f->r->quick)
4692 quick = 1;
4693 }
4694 *r = TAILQ_NEXT(fr, entries);
4695 } while (*r == NULL);
4696
4697 return (quick);
4698 }
4699
4700 struct pf_keth_anchor_stackframe {
4701 struct pf_keth_ruleset *rs;
4702 struct pf_keth_rule *r; /* XXX: + match bit */
4703 struct pf_keth_anchor *child;
4704 };
4705
4706 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4707 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4708 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4709 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4710 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4711 } while (0)
4712
4713 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4714 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4715 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4716 struct pf_keth_rule **a, int *match)
4717 {
4718 struct pf_keth_anchor_stackframe *f;
4719
4720 NET_EPOCH_ASSERT();
4721
4722 if (match)
4723 *match = 0;
4724 if (*depth >= PF_ANCHOR_STACKSIZE) {
4725 printf("%s: anchor stack overflow on %s\n",
4726 __func__, (*r)->anchor->name);
4727 *r = TAILQ_NEXT(*r, entries);
4728 return;
4729 } else if (*depth == 0 && a != NULL)
4730 *a = *r;
4731 f = stack + (*depth)++;
4732 f->rs = *rs;
4733 f->r = *r;
4734 if ((*r)->anchor_wildcard) {
4735 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4736
4737 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4738 *r = NULL;
4739 return;
4740 }
4741 *rs = &f->child->ruleset;
4742 } else {
4743 f->child = NULL;
4744 *rs = &(*r)->anchor->ruleset;
4745 }
4746 *r = TAILQ_FIRST((*rs)->active.rules);
4747 }
4748
4749 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4750 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4751 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4752 struct pf_keth_rule **a, int *match)
4753 {
4754 struct pf_keth_anchor_stackframe *f;
4755 struct pf_keth_rule *fr;
4756 int quick = 0;
4757
4758 NET_EPOCH_ASSERT();
4759
4760 do {
4761 if (*depth <= 0)
4762 break;
4763 f = stack + *depth - 1;
4764 fr = PF_ETH_ANCHOR_RULE(f);
4765 if (f->child != NULL) {
4766 /*
4767 * This block traverses through
4768 * a wildcard anchor.
4769 */
4770 if (match != NULL && *match) {
4771 /*
4772 * If any of "*" matched, then
4773 * "foo/ *" matched, mark frame
4774 * appropriately.
4775 */
4776 PF_ETH_ANCHOR_SET_MATCH(f);
4777 *match = 0;
4778 }
4779 f->child = RB_NEXT(pf_keth_anchor_node,
4780 &fr->anchor->children, f->child);
4781 if (f->child != NULL) {
4782 *rs = &f->child->ruleset;
4783 *r = TAILQ_FIRST((*rs)->active.rules);
4784 if (*r == NULL)
4785 continue;
4786 else
4787 break;
4788 }
4789 }
4790 (*depth)--;
4791 if (*depth == 0 && a != NULL)
4792 *a = NULL;
4793 *rs = f->rs;
4794 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4795 quick = fr->quick;
4796 *r = TAILQ_NEXT(fr, entries);
4797 } while (*r == NULL);
4798
4799 return (quick);
4800 }
4801
4802 #ifdef INET6
4803 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4804 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4805 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4806 {
4807 switch (af) {
4808 #ifdef INET
4809 case AF_INET:
4810 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4811 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4812 break;
4813 #endif /* INET */
4814 case AF_INET6:
4815 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4816 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4817 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4818 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4819 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4820 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4821 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4822 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4823 break;
4824 }
4825 }
4826
4827 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4828 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4829 {
4830 switch (af) {
4831 #ifdef INET
4832 case AF_INET:
4833 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4834 break;
4835 #endif /* INET */
4836 case AF_INET6:
4837 if (addr->addr32[3] == 0xffffffff) {
4838 addr->addr32[3] = 0;
4839 if (addr->addr32[2] == 0xffffffff) {
4840 addr->addr32[2] = 0;
4841 if (addr->addr32[1] == 0xffffffff) {
4842 addr->addr32[1] = 0;
4843 addr->addr32[0] =
4844 htonl(ntohl(addr->addr32[0]) + 1);
4845 } else
4846 addr->addr32[1] =
4847 htonl(ntohl(addr->addr32[1]) + 1);
4848 } else
4849 addr->addr32[2] =
4850 htonl(ntohl(addr->addr32[2]) + 1);
4851 } else
4852 addr->addr32[3] =
4853 htonl(ntohl(addr->addr32[3]) + 1);
4854 break;
4855 }
4856 }
4857 #endif /* INET6 */
4858
4859 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4860 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4861 {
4862 /*
4863 * Modern rules use the same flags in rules as they do in states.
4864 */
4865 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4866 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4867
4868 /*
4869 * Old-style scrub rules have different flags which need to be translated.
4870 */
4871 if (r->rule_flag & PFRULE_RANDOMID)
4872 a->flags |= PFSTATE_RANDOMID;
4873 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4874 a->flags |= PFSTATE_SETTOS;
4875 a->set_tos = r->set_tos;
4876 }
4877
4878 if (r->qid)
4879 a->qid = r->qid;
4880 if (r->pqid)
4881 a->pqid = r->pqid;
4882 if (r->rtableid >= 0)
4883 a->rtableid = r->rtableid;
4884 a->log |= r->log;
4885 if (r->min_ttl)
4886 a->min_ttl = r->min_ttl;
4887 if (r->max_mss)
4888 a->max_mss = r->max_mss;
4889 if (r->dnpipe)
4890 a->dnpipe = r->dnpipe;
4891 if (r->dnrpipe)
4892 a->dnrpipe = r->dnrpipe;
4893 if (r->dnpipe || r->dnrpipe) {
4894 if (r->free_flags & PFRULE_DN_IS_PIPE)
4895 a->flags |= PFSTATE_DN_IS_PIPE;
4896 else
4897 a->flags &= ~PFSTATE_DN_IS_PIPE;
4898 }
4899 if (r->scrub_flags & PFSTATE_SETPRIO) {
4900 a->set_prio[0] = r->set_prio[0];
4901 a->set_prio[1] = r->set_prio[1];
4902 }
4903 if (r->allow_opts)
4904 a->allow_opts = r->allow_opts;
4905 }
4906
4907 int
pf_socket_lookup(struct pf_pdesc * pd)4908 pf_socket_lookup(struct pf_pdesc *pd)
4909 {
4910 struct pf_addr *saddr, *daddr;
4911 u_int16_t sport, dport;
4912 struct inpcbinfo *pi;
4913 struct inpcb *inp;
4914
4915 pd->lookup.uid = UID_MAX;
4916 pd->lookup.gid = GID_MAX;
4917
4918 switch (pd->proto) {
4919 case IPPROTO_TCP:
4920 sport = pd->hdr.tcp.th_sport;
4921 dport = pd->hdr.tcp.th_dport;
4922 pi = &V_tcbinfo;
4923 break;
4924 case IPPROTO_UDP:
4925 sport = pd->hdr.udp.uh_sport;
4926 dport = pd->hdr.udp.uh_dport;
4927 pi = &V_udbinfo;
4928 break;
4929 default:
4930 return (-1);
4931 }
4932 if (pd->dir == PF_IN) {
4933 saddr = pd->src;
4934 daddr = pd->dst;
4935 } else {
4936 u_int16_t p;
4937
4938 p = sport;
4939 sport = dport;
4940 dport = p;
4941 saddr = pd->dst;
4942 daddr = pd->src;
4943 }
4944 switch (pd->af) {
4945 #ifdef INET
4946 case AF_INET:
4947 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4948 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4949 if (inp == NULL) {
4950 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4951 daddr->v4, dport, INPLOOKUP_WILDCARD |
4952 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4953 if (inp == NULL)
4954 return (-1);
4955 }
4956 break;
4957 #endif /* INET */
4958 #ifdef INET6
4959 case AF_INET6:
4960 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4961 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4962 if (inp == NULL) {
4963 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4964 &daddr->v6, dport, INPLOOKUP_WILDCARD |
4965 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4966 if (inp == NULL)
4967 return (-1);
4968 }
4969 break;
4970 #endif /* INET6 */
4971 default:
4972 unhandled_af(pd->af);
4973 }
4974 INP_RLOCK_ASSERT(inp);
4975 pd->lookup.uid = inp->inp_cred->cr_uid;
4976 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4977 INP_RUNLOCK(inp);
4978
4979 return (1);
4980 }
4981
4982 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)4983 pf_get_wscale(struct pf_pdesc *pd)
4984 {
4985 struct tcphdr *th = &pd->hdr.tcp;
4986 int hlen;
4987 u_int8_t hdr[60];
4988 u_int8_t *opt, optlen;
4989 u_int8_t wscale = 0;
4990
4991 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4992 if (hlen <= sizeof(struct tcphdr))
4993 return (0);
4994 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4995 return (0);
4996 opt = hdr + sizeof(struct tcphdr);
4997 hlen -= sizeof(struct tcphdr);
4998 while (hlen >= 3) {
4999 switch (*opt) {
5000 case TCPOPT_EOL:
5001 case TCPOPT_NOP:
5002 ++opt;
5003 --hlen;
5004 break;
5005 case TCPOPT_WINDOW:
5006 wscale = opt[2];
5007 if (wscale > TCP_MAX_WINSHIFT)
5008 wscale = TCP_MAX_WINSHIFT;
5009 wscale |= PF_WSCALE_FLAG;
5010 /* FALLTHROUGH */
5011 default:
5012 optlen = opt[1];
5013 if (optlen < 2)
5014 optlen = 2;
5015 hlen -= optlen;
5016 opt += optlen;
5017 break;
5018 }
5019 }
5020 return (wscale);
5021 }
5022
5023 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5024 pf_get_mss(struct pf_pdesc *pd)
5025 {
5026 struct tcphdr *th = &pd->hdr.tcp;
5027 int hlen;
5028 u_int8_t hdr[60];
5029 u_int8_t *opt, optlen;
5030 u_int16_t mss = V_tcp_mssdflt;
5031
5032 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
5033 if (hlen <= sizeof(struct tcphdr))
5034 return (0);
5035 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
5036 return (0);
5037 opt = hdr + sizeof(struct tcphdr);
5038 hlen -= sizeof(struct tcphdr);
5039 while (hlen >= TCPOLEN_MAXSEG) {
5040 switch (*opt) {
5041 case TCPOPT_EOL:
5042 case TCPOPT_NOP:
5043 ++opt;
5044 --hlen;
5045 break;
5046 case TCPOPT_MAXSEG:
5047 memcpy(&mss, (opt + 2), 2);
5048 mss = ntohs(mss);
5049 /* FALLTHROUGH */
5050 default:
5051 optlen = opt[1];
5052 if (optlen < 2)
5053 optlen = 2;
5054 hlen -= optlen;
5055 opt += optlen;
5056 break;
5057 }
5058 }
5059 return (mss);
5060 }
5061
5062 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5063 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5064 {
5065 struct nhop_object *nh;
5066 #ifdef INET6
5067 struct in6_addr dst6;
5068 uint32_t scopeid;
5069 #endif /* INET6 */
5070 int hlen = 0;
5071 uint16_t mss = 0;
5072
5073 NET_EPOCH_ASSERT();
5074
5075 switch (af) {
5076 #ifdef INET
5077 case AF_INET:
5078 hlen = sizeof(struct ip);
5079 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5080 if (nh != NULL)
5081 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5082 break;
5083 #endif /* INET */
5084 #ifdef INET6
5085 case AF_INET6:
5086 hlen = sizeof(struct ip6_hdr);
5087 in6_splitscope(&addr->v6, &dst6, &scopeid);
5088 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5089 if (nh != NULL)
5090 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5091 break;
5092 #endif /* INET6 */
5093 }
5094
5095 mss = max(V_tcp_mssdflt, mss);
5096 mss = min(mss, offer);
5097 mss = max(mss, 64); /* sanity - at least max opt space */
5098 return (mss);
5099 }
5100
5101 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5102 pf_tcp_iss(struct pf_pdesc *pd)
5103 {
5104 SHA512_CTX ctx;
5105 union {
5106 uint8_t bytes[SHA512_DIGEST_LENGTH];
5107 uint32_t words[1];
5108 } digest;
5109
5110 if (V_pf_tcp_secret_init == 0) {
5111 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5112 SHA512_Init(&V_pf_tcp_secret_ctx);
5113 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5114 sizeof(V_pf_tcp_secret));
5115 V_pf_tcp_secret_init = 1;
5116 }
5117
5118 ctx = V_pf_tcp_secret_ctx;
5119
5120 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5121 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5122 switch (pd->af) {
5123 case AF_INET6:
5124 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5125 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5126 break;
5127 case AF_INET:
5128 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5129 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5130 break;
5131 }
5132 SHA512_Final(digest.bytes, &ctx);
5133 V_pf_tcp_iss_off += 4096;
5134 #define ISN_RANDOM_INCREMENT (4096 - 1)
5135 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5136 V_pf_tcp_iss_off);
5137 #undef ISN_RANDOM_INCREMENT
5138 }
5139
5140 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5141 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5142 {
5143 bool match = true;
5144
5145 /* Always matches if not set */
5146 if (! r->isset)
5147 return (!r->neg);
5148
5149 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5150 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5151 match = false;
5152 break;
5153 }
5154 }
5155
5156 return (match ^ r->neg);
5157 }
5158
5159 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5160 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5161 {
5162 if (*tag == -1)
5163 *tag = mtag;
5164
5165 return ((!r->match_tag_not && r->match_tag == *tag) ||
5166 (r->match_tag_not && r->match_tag != *tag));
5167 }
5168
5169 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5170 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5171 {
5172 /* If we don't have the interface drop the packet. */
5173 if (ifp == NULL) {
5174 m_freem(m);
5175 return;
5176 }
5177
5178 switch (ifp->if_type) {
5179 case IFT_ETHER:
5180 case IFT_XETHER:
5181 case IFT_L2VLAN:
5182 case IFT_BRIDGE:
5183 case IFT_IEEE8023ADLAG:
5184 break;
5185 default:
5186 m_freem(m);
5187 return;
5188 }
5189
5190 ifp->if_transmit(ifp, m);
5191 }
5192
5193 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5194 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5195 {
5196 #ifdef INET
5197 struct ip ip;
5198 #endif /* INET */
5199 #ifdef INET6
5200 struct ip6_hdr ip6;
5201 #endif /* INET6 */
5202 struct mbuf *m = *m0;
5203 struct ether_header *e;
5204 struct pf_keth_rule *r, *rm, *a = NULL;
5205 struct pf_keth_ruleset *ruleset = NULL;
5206 struct pf_mtag *mtag;
5207 struct pf_keth_ruleq *rules;
5208 struct pf_addr *src = NULL, *dst = NULL;
5209 struct pfi_kkif *bridge_to;
5210 sa_family_t af = 0;
5211 uint16_t proto;
5212 int asd = 0, match = 0;
5213 int tag = -1;
5214 uint8_t action;
5215 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
5216
5217 MPASS(kif->pfik_ifp->if_vnet == curvnet);
5218 NET_EPOCH_ASSERT();
5219
5220 PF_RULES_RLOCK_TRACKER;
5221
5222 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5223
5224 mtag = pf_find_mtag(m);
5225 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5226 /* Dummynet re-injects packets after they've
5227 * completed their delay. We've already
5228 * processed them, so pass unconditionally. */
5229
5230 /* But only once. We may see the packet multiple times (e.g.
5231 * PFIL_IN/PFIL_OUT). */
5232 pf_dummynet_flag_remove(m, mtag);
5233
5234 return (PF_PASS);
5235 }
5236
5237 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5238 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5239 DPFPRINTF(PF_DEBUG_URGENT,
5240 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)"
5241 ", pullup failed\n"));
5242 return (PF_DROP);
5243 }
5244 e = mtod(m, struct ether_header *);
5245 proto = ntohs(e->ether_type);
5246
5247 switch (proto) {
5248 #ifdef INET
5249 case ETHERTYPE_IP: {
5250 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5251 sizeof(ip)))
5252 return (PF_DROP);
5253
5254 af = AF_INET;
5255 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5256 (caddr_t)&ip);
5257 src = (struct pf_addr *)&ip.ip_src;
5258 dst = (struct pf_addr *)&ip.ip_dst;
5259 break;
5260 }
5261 #endif /* INET */
5262 #ifdef INET6
5263 case ETHERTYPE_IPV6: {
5264 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5265 sizeof(ip6)))
5266 return (PF_DROP);
5267
5268 af = AF_INET6;
5269 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5270 (caddr_t)&ip6);
5271 src = (struct pf_addr *)&ip6.ip6_src;
5272 dst = (struct pf_addr *)&ip6.ip6_dst;
5273 break;
5274 }
5275 #endif /* INET6 */
5276 }
5277
5278 PF_RULES_RLOCK();
5279
5280 ruleset = V_pf_keth;
5281 rules = atomic_load_ptr(&ruleset->active.rules);
5282 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5283 counter_u64_add(r->evaluations, 1);
5284 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5285
5286 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5287 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5288 "kif");
5289 r = r->skip[PFE_SKIP_IFP].ptr;
5290 }
5291 else if (r->direction && r->direction != dir) {
5292 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5293 "dir");
5294 r = r->skip[PFE_SKIP_DIR].ptr;
5295 }
5296 else if (r->proto && r->proto != proto) {
5297 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5298 "proto");
5299 r = r->skip[PFE_SKIP_PROTO].ptr;
5300 }
5301 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5302 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5303 "src");
5304 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5305 }
5306 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5307 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5308 "dst");
5309 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5310 }
5311 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5312 r->ipsrc.neg, kif, M_GETFIB(m))) {
5313 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5314 "ip_src");
5315 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5316 }
5317 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5318 r->ipdst.neg, kif, M_GETFIB(m))) {
5319 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5320 "ip_dst");
5321 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5322 }
5323 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5324 mtag ? mtag->tag : 0)) {
5325 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5326 "match_tag");
5327 r = TAILQ_NEXT(r, entries);
5328 }
5329 else {
5330 if (r->tag)
5331 tag = r->tag;
5332 if (r->anchor == NULL) {
5333 /* Rule matches */
5334 rm = r;
5335
5336 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5337
5338 if (r->quick)
5339 break;
5340
5341 r = TAILQ_NEXT(r, entries);
5342 } else {
5343 pf_step_into_keth_anchor(anchor_stack, &asd,
5344 &ruleset, &r, &a, &match);
5345 }
5346 }
5347 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5348 &ruleset, &r, &a, &match))
5349 break;
5350 }
5351
5352 r = rm;
5353
5354 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5355
5356 /* Default to pass. */
5357 if (r == NULL) {
5358 PF_RULES_RUNLOCK();
5359 return (PF_PASS);
5360 }
5361
5362 /* Execute action. */
5363 counter_u64_add(r->packets[dir == PF_OUT], 1);
5364 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5365 pf_update_timestamp(r);
5366
5367 /* Shortcut. Don't tag if we're just going to drop anyway. */
5368 if (r->action == PF_DROP) {
5369 PF_RULES_RUNLOCK();
5370 return (PF_DROP);
5371 }
5372
5373 if (tag > 0) {
5374 if (mtag == NULL)
5375 mtag = pf_get_mtag(m);
5376 if (mtag == NULL) {
5377 PF_RULES_RUNLOCK();
5378 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5379 return (PF_DROP);
5380 }
5381 mtag->tag = tag;
5382 }
5383
5384 if (r->qid != 0) {
5385 if (mtag == NULL)
5386 mtag = pf_get_mtag(m);
5387 if (mtag == NULL) {
5388 PF_RULES_RUNLOCK();
5389 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5390 return (PF_DROP);
5391 }
5392 mtag->qid = r->qid;
5393 }
5394
5395 action = r->action;
5396 bridge_to = r->bridge_to;
5397
5398 /* Dummynet */
5399 if (r->dnpipe) {
5400 struct ip_fw_args dnflow;
5401
5402 /* Drop packet if dummynet is not loaded. */
5403 if (ip_dn_io_ptr == NULL) {
5404 PF_RULES_RUNLOCK();
5405 m_freem(m);
5406 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5407 return (PF_DROP);
5408 }
5409 if (mtag == NULL)
5410 mtag = pf_get_mtag(m);
5411 if (mtag == NULL) {
5412 PF_RULES_RUNLOCK();
5413 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5414 return (PF_DROP);
5415 }
5416
5417 bzero(&dnflow, sizeof(dnflow));
5418
5419 /* We don't have port numbers here, so we set 0. That means
5420 * that we'll be somewhat limited in distinguishing flows (i.e.
5421 * only based on IP addresses, not based on port numbers), but
5422 * it's better than nothing. */
5423 dnflow.f_id.dst_port = 0;
5424 dnflow.f_id.src_port = 0;
5425 dnflow.f_id.proto = 0;
5426
5427 dnflow.rule.info = r->dnpipe;
5428 dnflow.rule.info |= IPFW_IS_DUMMYNET;
5429 if (r->dnflags & PFRULE_DN_IS_PIPE)
5430 dnflow.rule.info |= IPFW_IS_PIPE;
5431
5432 dnflow.f_id.extra = dnflow.rule.info;
5433
5434 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5435 dnflow.flags |= IPFW_ARGS_ETHER;
5436 dnflow.ifp = kif->pfik_ifp;
5437
5438 switch (af) {
5439 case AF_INET:
5440 dnflow.f_id.addr_type = 4;
5441 dnflow.f_id.src_ip = src->v4.s_addr;
5442 dnflow.f_id.dst_ip = dst->v4.s_addr;
5443 break;
5444 case AF_INET6:
5445 dnflow.flags |= IPFW_ARGS_IP6;
5446 dnflow.f_id.addr_type = 6;
5447 dnflow.f_id.src_ip6 = src->v6;
5448 dnflow.f_id.dst_ip6 = dst->v6;
5449 break;
5450 }
5451
5452 PF_RULES_RUNLOCK();
5453
5454 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5455 ip_dn_io_ptr(m0, &dnflow);
5456 if (*m0 != NULL)
5457 pf_dummynet_flag_remove(m, mtag);
5458 } else {
5459 PF_RULES_RUNLOCK();
5460 }
5461
5462 if (action == PF_PASS && bridge_to) {
5463 pf_bridge_to(bridge_to->pfik_ifp, *m0);
5464 *m0 = NULL; /* We've eaten the packet. */
5465 }
5466
5467 return (action);
5468 }
5469
5470 #define PF_TEST_ATTRIB(t, a)\
5471 do { \
5472 if (t) { \
5473 r = a; \
5474 goto nextrule; \
5475 } \
5476 } while (0)
5477
5478 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp)5479 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5480 struct pf_pdesc *pd, struct pf_krule **am,
5481 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp)
5482 {
5483 struct pf_krule *nr = NULL;
5484 struct pf_krule *r, *a = NULL;
5485 struct pf_kruleset *ruleset = NULL;
5486 struct pf_krule_slist match_rules;
5487 struct pf_krule_item *ri;
5488 struct tcphdr *th = &pd->hdr.tcp;
5489 struct pf_state_key *sk = NULL, *nk = NULL;
5490 u_short transerror;
5491 int rewrite = 0;
5492 int tag = -1;
5493 int asd = 0;
5494 int match = 0;
5495 int state_icmp = 0, icmp_dir;
5496 int action = PF_PASS;
5497 u_int16_t virtual_type, virtual_id;
5498 u_int16_t bproto_sum = 0, bip_sum = 0;
5499 u_int8_t icmptype = 0, icmpcode = 0;
5500 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
5501 struct pf_udp_mapping *udp_mapping = NULL;
5502
5503 PF_RULES_RASSERT();
5504
5505 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5506 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5507
5508 SLIST_INIT(&match_rules);
5509
5510 if (inp != NULL) {
5511 INP_LOCK_ASSERT(inp);
5512 pd->lookup.uid = inp->inp_cred->cr_uid;
5513 pd->lookup.gid = inp->inp_cred->cr_groups[0];
5514 pd->lookup.done = 1;
5515 }
5516
5517 switch (pd->virtual_proto) {
5518 case IPPROTO_TCP:
5519 pd->nsport = th->th_sport;
5520 pd->ndport = th->th_dport;
5521 break;
5522 case IPPROTO_UDP:
5523 pd->nsport = pd->hdr.udp.uh_sport;
5524 pd->ndport = pd->hdr.udp.uh_dport;
5525 break;
5526 case IPPROTO_SCTP:
5527 pd->nsport = pd->hdr.sctp.src_port;
5528 pd->ndport = pd->hdr.sctp.dest_port;
5529 break;
5530 #ifdef INET
5531 case IPPROTO_ICMP:
5532 MPASS(pd->af == AF_INET);
5533 icmptype = pd->hdr.icmp.icmp_type;
5534 icmpcode = pd->hdr.icmp.icmp_code;
5535 state_icmp = pf_icmp_mapping(pd, icmptype,
5536 &icmp_dir, &virtual_id, &virtual_type);
5537 if (icmp_dir == PF_IN) {
5538 pd->nsport = virtual_id;
5539 pd->ndport = virtual_type;
5540 } else {
5541 pd->nsport = virtual_type;
5542 pd->ndport = virtual_id;
5543 }
5544 break;
5545 #endif /* INET */
5546 #ifdef INET6
5547 case IPPROTO_ICMPV6:
5548 MPASS(pd->af == AF_INET6);
5549 icmptype = pd->hdr.icmp6.icmp6_type;
5550 icmpcode = pd->hdr.icmp6.icmp6_code;
5551 state_icmp = pf_icmp_mapping(pd, icmptype,
5552 &icmp_dir, &virtual_id, &virtual_type);
5553 if (icmp_dir == PF_IN) {
5554 pd->nsport = virtual_id;
5555 pd->ndport = virtual_type;
5556 } else {
5557 pd->nsport = virtual_type;
5558 pd->ndport = virtual_id;
5559 }
5560
5561 break;
5562 #endif /* INET6 */
5563 default:
5564 pd->nsport = pd->ndport = 0;
5565 break;
5566 }
5567 pd->osport = pd->nsport;
5568 pd->odport = pd->ndport;
5569
5570 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
5571
5572 /* check packet for BINAT/NAT/RDR */
5573 transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack,
5574 &nr, &udp_mapping);
5575 switch (transerror) {
5576 default:
5577 /* A translation error occurred. */
5578 REASON_SET(reason, transerror);
5579 goto cleanup;
5580 case PFRES_MAX:
5581 /* No match. */
5582 break;
5583 case PFRES_MATCH:
5584 KASSERT(sk != NULL, ("%s: null sk", __func__));
5585 KASSERT(nk != NULL, ("%s: null nk", __func__));
5586
5587 if (nr->log) {
5588 PFLOG_PACKET(nr->action, PFRES_MATCH, nr, a,
5589 ruleset, pd, 1, NULL);
5590 }
5591
5592 if (pd->ip_sum)
5593 bip_sum = *pd->ip_sum;
5594
5595 switch (pd->proto) {
5596 case IPPROTO_TCP:
5597 bproto_sum = th->th_sum;
5598
5599 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5600 nk->port[pd->sidx] != pd->nsport) {
5601 pf_change_ap(pd, pd->src, &th->th_sport,
5602 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
5603 nk->port[pd->sidx], 0, pd->af, pd->naf);
5604 pd->sport = &th->th_sport;
5605 pd->nsport = th->th_sport;
5606 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5607 }
5608
5609 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5610 nk->port[pd->didx] != pd->ndport) {
5611 pf_change_ap(pd, pd->dst, &th->th_dport,
5612 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
5613 nk->port[pd->didx], 0, pd->af, pd->naf);
5614 pd->dport = &th->th_dport;
5615 pd->ndport = th->th_dport;
5616 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5617 }
5618 rewrite++;
5619 break;
5620 case IPPROTO_UDP:
5621 bproto_sum = pd->hdr.udp.uh_sum;
5622
5623 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5624 nk->port[pd->sidx] != pd->nsport) {
5625 pf_change_ap(pd, pd->src,
5626 &pd->hdr.udp.uh_sport,
5627 pd->ip_sum, &pd->hdr.udp.uh_sum,
5628 &nk->addr[pd->sidx],
5629 nk->port[pd->sidx], 1, pd->af, pd->naf);
5630 pd->sport = &pd->hdr.udp.uh_sport;
5631 pd->nsport = pd->hdr.udp.uh_sport;
5632 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5633 }
5634
5635 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5636 nk->port[pd->didx] != pd->ndport) {
5637 pf_change_ap(pd, pd->dst,
5638 &pd->hdr.udp.uh_dport,
5639 pd->ip_sum, &pd->hdr.udp.uh_sum,
5640 &nk->addr[pd->didx],
5641 nk->port[pd->didx], 1, pd->af, pd->naf);
5642 pd->dport = &pd->hdr.udp.uh_dport;
5643 pd->ndport = pd->hdr.udp.uh_dport;
5644 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5645 }
5646 rewrite++;
5647 break;
5648 case IPPROTO_SCTP: {
5649 uint16_t checksum = 0;
5650
5651 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5652 nk->port[pd->sidx] != pd->nsport) {
5653 pf_change_ap(pd, pd->src,
5654 &pd->hdr.sctp.src_port, pd->ip_sum, &checksum,
5655 &nk->addr[pd->sidx],
5656 nk->port[pd->sidx], 1, pd->af, pd->naf);
5657 pd->sport = &pd->hdr.sctp.src_port;
5658 pd->nsport = pd->hdr.sctp.src_port;
5659 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5660 }
5661 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5662 nk->port[pd->didx] != pd->ndport) {
5663 pf_change_ap(pd, pd->dst,
5664 &pd->hdr.sctp.dest_port, pd->ip_sum, &checksum,
5665 &nk->addr[pd->didx],
5666 nk->port[pd->didx], 1, pd->af, pd->naf);
5667 pd->dport = &pd->hdr.sctp.dest_port;
5668 pd->ndport = pd->hdr.sctp.dest_port;
5669 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5670 }
5671 break;
5672 }
5673 #ifdef INET
5674 case IPPROTO_ICMP:
5675 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
5676 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
5677 nk->addr[pd->sidx].v4.s_addr, 0);
5678 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5679 }
5680
5681 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
5682 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
5683 nk->addr[pd->didx].v4.s_addr, 0);
5684 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5685 }
5686
5687 if (virtual_type == htons(ICMP_ECHO) &&
5688 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
5689 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
5690 pd->hdr.icmp.icmp_cksum, pd->nsport,
5691 nk->port[pd->sidx], 0);
5692 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
5693 pd->sport = &pd->hdr.icmp.icmp_id;
5694 }
5695 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5696 break;
5697 #endif /* INET */
5698 #ifdef INET6
5699 case IPPROTO_ICMPV6:
5700 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
5701 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
5702 &nk->addr[pd->sidx], 0);
5703 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5704 }
5705
5706 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
5707 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
5708 &nk->addr[pd->didx], 0);
5709 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5710 }
5711 rewrite++;
5712 break;
5713 #endif /* INET */
5714 default:
5715 switch (pd->af) {
5716 #ifdef INET
5717 case AF_INET:
5718 if (PF_ANEQ(&pd->nsaddr,
5719 &nk->addr[pd->sidx], AF_INET)) {
5720 pf_change_a(&pd->src->v4.s_addr,
5721 pd->ip_sum,
5722 nk->addr[pd->sidx].v4.s_addr, 0);
5723 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5724 }
5725
5726 if (PF_ANEQ(&pd->ndaddr,
5727 &nk->addr[pd->didx], AF_INET)) {
5728 pf_change_a(&pd->dst->v4.s_addr,
5729 pd->ip_sum,
5730 nk->addr[pd->didx].v4.s_addr, 0);
5731 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5732 }
5733 break;
5734 #endif /* INET */
5735 #ifdef INET6
5736 case AF_INET6:
5737 if (PF_ANEQ(&pd->nsaddr,
5738 &nk->addr[pd->sidx], AF_INET6)) {
5739 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af);
5740 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
5741 }
5742
5743 if (PF_ANEQ(&pd->ndaddr,
5744 &nk->addr[pd->didx], AF_INET6)) {
5745 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af);
5746 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
5747 }
5748 break;
5749 #endif /* INET6 */
5750 }
5751 break;
5752 }
5753 if (nr->natpass)
5754 r = NULL;
5755 }
5756
5757 while (r != NULL) {
5758 if (pd->related_rule) {
5759 *rm = pd->related_rule;
5760 break;
5761 }
5762 pf_counter_u64_add(&r->evaluations, 1);
5763 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5764 r->skip[PF_SKIP_IFP]);
5765 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5766 r->skip[PF_SKIP_DIR]);
5767 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5768 r->skip[PF_SKIP_AF]);
5769 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5770 r->skip[PF_SKIP_PROTO]);
5771 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5772 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5773 r->skip[PF_SKIP_SRC_ADDR]);
5774 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5775 r->dst.neg, NULL, M_GETFIB(pd->m)),
5776 r->skip[PF_SKIP_DST_ADDR]);
5777 switch (pd->virtual_proto) {
5778 case PF_VPROTO_FRAGMENT:
5779 /* tcp/udp only. port_op always 0 in other cases */
5780 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5781 TAILQ_NEXT(r, entries));
5782 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5783 TAILQ_NEXT(r, entries));
5784 /* icmp only. type/code always 0 in other cases */
5785 PF_TEST_ATTRIB((r->type || r->code),
5786 TAILQ_NEXT(r, entries));
5787 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5788 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5789 TAILQ_NEXT(r, entries));
5790 break;
5791
5792 case IPPROTO_TCP:
5793 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags,
5794 TAILQ_NEXT(r, entries));
5795 /* FALLTHROUGH */
5796 case IPPROTO_SCTP:
5797 case IPPROTO_UDP:
5798 /* tcp/udp only. port_op always 0 in other cases */
5799 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5800 r->src.port[0], r->src.port[1], pd->nsport),
5801 r->skip[PF_SKIP_SRC_PORT]);
5802 /* tcp/udp only. port_op always 0 in other cases */
5803 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5804 r->dst.port[0], r->dst.port[1], pd->ndport),
5805 r->skip[PF_SKIP_DST_PORT]);
5806 /* tcp/udp only. uid.op always 0 in other cases */
5807 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5808 pf_socket_lookup(pd), 1)) &&
5809 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5810 pd->lookup.uid),
5811 TAILQ_NEXT(r, entries));
5812 /* tcp/udp only. gid.op always 0 in other cases */
5813 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5814 pf_socket_lookup(pd), 1)) &&
5815 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5816 pd->lookup.gid),
5817 TAILQ_NEXT(r, entries));
5818 break;
5819
5820 case IPPROTO_ICMP:
5821 case IPPROTO_ICMPV6:
5822 /* icmp only. type always 0 in other cases */
5823 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1,
5824 TAILQ_NEXT(r, entries));
5825 /* icmp only. type always 0 in other cases */
5826 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1,
5827 TAILQ_NEXT(r, entries));
5828 break;
5829
5830 default:
5831 break;
5832 }
5833 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5834 TAILQ_NEXT(r, entries));
5835 PF_TEST_ATTRIB(r->prio &&
5836 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5837 TAILQ_NEXT(r, entries));
5838 PF_TEST_ATTRIB(r->prob &&
5839 r->prob <= arc4random(),
5840 TAILQ_NEXT(r, entries));
5841 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag,
5842 pd->pf_mtag ? pd->pf_mtag->tag : 0),
5843 TAILQ_NEXT(r, entries));
5844 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5845 r->rcvifnot),
5846 TAILQ_NEXT(r, entries));
5847 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5848 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5849 TAILQ_NEXT(r, entries));
5850 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5851 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5852 pf_osfp_fingerprint(pd, th),
5853 r->os_fingerprint)),
5854 TAILQ_NEXT(r, entries));
5855 /* FALLTHROUGH */
5856 if (r->tag)
5857 tag = r->tag;
5858 if (r->anchor == NULL) {
5859 if (r->action == PF_MATCH) {
5860 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5861 if (ri == NULL) {
5862 REASON_SET(reason, PFRES_MEMORY);
5863 goto cleanup;
5864 }
5865 ri->r = r;
5866 SLIST_INSERT_HEAD(&match_rules, ri, entry);
5867 pf_counter_u64_critical_enter();
5868 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5869 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5870 pf_counter_u64_critical_exit();
5871 pf_rule_to_actions(r, &pd->act);
5872 if (r->rule_flag & PFRULE_AFTO)
5873 pd->naf = r->naf;
5874 if (pd->af != pd->naf) {
5875 if (pf_get_transaddr_af(r, pd) == -1) {
5876 REASON_SET(reason, PFRES_TRANSLATE);
5877 goto cleanup;
5878 }
5879 }
5880 if (r->log)
5881 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5882 a, ruleset, pd, 1, NULL);
5883 } else {
5884 match = asd;
5885 *rm = r;
5886 *am = a;
5887 *rsm = ruleset;
5888 }
5889 if (pd->act.log & PF_LOG_MATCHES)
5890 pf_log_matches(pd, r, a, ruleset, &match_rules);
5891 if (r->quick)
5892 break;
5893 r = TAILQ_NEXT(r, entries);
5894 } else
5895 pf_step_into_anchor(anchor_stack, &asd,
5896 &ruleset, PF_RULESET_FILTER, &r, &a);
5897 nextrule:
5898 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
5899 &ruleset, PF_RULESET_FILTER, &r, &a, &match))
5900 break;
5901 }
5902 r = *rm;
5903 a = *am;
5904 ruleset = *rsm;
5905
5906 REASON_SET(reason, PFRES_MATCH);
5907
5908 /* apply actions for last matching pass/block rule */
5909 pf_rule_to_actions(r, &pd->act);
5910 if (r->rule_flag & PFRULE_AFTO)
5911 pd->naf = r->naf;
5912 if (pd->af != pd->naf) {
5913 if (pf_get_transaddr_af(r, pd) == -1) {
5914 REASON_SET(reason, PFRES_TRANSLATE);
5915 goto cleanup;
5916 }
5917 }
5918
5919 if (r->log) {
5920 if (rewrite)
5921 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5922 PFLOG_PACKET(r->action, *reason, r, a, ruleset, pd, 1, NULL);
5923 }
5924 if (pd->act.log & PF_LOG_MATCHES)
5925 pf_log_matches(pd, r, a, ruleset, &match_rules);
5926 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5927 (r->action == PF_DROP) &&
5928 ((r->rule_flag & PFRULE_RETURNRST) ||
5929 (r->rule_flag & PFRULE_RETURNICMP) ||
5930 (r->rule_flag & PFRULE_RETURN))) {
5931 pf_return(r, nr, pd, th, bproto_sum,
5932 bip_sum, reason, r->rtableid);
5933 }
5934
5935 if (r->action == PF_DROP)
5936 goto cleanup;
5937
5938 if (tag > 0 && pf_tag_packet(pd, tag)) {
5939 REASON_SET(reason, PFRES_MEMORY);
5940 goto cleanup;
5941 }
5942 if (pd->act.rtableid >= 0)
5943 M_SETFIB(pd->m, pd->act.rtableid);
5944
5945 if (r->rt) {
5946 struct pf_ksrc_node *sn = NULL;
5947 struct pf_srchash *snh = NULL;
5948 struct pf_kpool *pool = &r->route;
5949
5950 /* Backwards compatibility. */
5951 if (TAILQ_EMPTY(&pool->list))
5952 pool = &r->rdr;
5953
5954 /*
5955 * Set act.rt here instead of in pf_rule_to_actions() because
5956 * it is applied only from the last pass rule.
5957 */
5958 pd->act.rt = r->rt;
5959 /* Don't use REASON_SET, pf_map_addr increases the reason counters */
5960 *reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr,
5961 &pd->act.rt_kif, NULL, &sn, &snh, pool, PF_SN_ROUTE);
5962 if (*reason != 0)
5963 goto cleanup;
5964 }
5965
5966 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5967 (!state_icmp && (r->keep_state || nr != NULL ||
5968 (pd->flags & PFDESC_TCP_NORM)))) {
5969 bool nat64;
5970
5971 action = pf_create_state(r, nr, a, pd, nk, sk,
5972 &rewrite, sm, tag, bproto_sum, bip_sum,
5973 &match_rules, udp_mapping);
5974 sk = nk = NULL;
5975 if (action != PF_PASS) {
5976 pf_udp_mapping_release(udp_mapping);
5977 pd->act.log |= PF_LOG_FORCE;
5978 if (action == PF_DROP &&
5979 (r->rule_flag & PFRULE_RETURN))
5980 pf_return(r, nr, pd, th,
5981 bproto_sum, bip_sum, reason,
5982 pd->act.rtableid);
5983 return (action);
5984 }
5985
5986 nat64 = pd->af != pd->naf;
5987 if (nat64) {
5988 int ret;
5989
5990 if (sk == NULL)
5991 sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
5992 if (nk == NULL)
5993 nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
5994
5995 if (pd->dir == PF_IN) {
5996 ret = pf_translate(pd, &sk->addr[pd->didx],
5997 sk->port[pd->didx], &sk->addr[pd->sidx],
5998 sk->port[pd->sidx], virtual_type,
5999 icmp_dir);
6000 } else {
6001 ret = pf_translate(pd, &sk->addr[pd->sidx],
6002 sk->port[pd->sidx], &sk->addr[pd->didx],
6003 sk->port[pd->didx], virtual_type,
6004 icmp_dir);
6005 }
6006
6007 if (ret < 0)
6008 goto cleanup;
6009
6010 rewrite += ret;
6011
6012 if (rewrite && sk->af != nk->af)
6013 action = PF_AFRT;
6014 }
6015 } else {
6016 while ((ri = SLIST_FIRST(&match_rules))) {
6017 SLIST_REMOVE_HEAD(&match_rules, entry);
6018 free(ri, M_PF_RULE_ITEM);
6019 }
6020
6021 uma_zfree(V_pf_state_key_z, sk);
6022 uma_zfree(V_pf_state_key_z, nk);
6023 sk = nk = NULL;
6024 pf_udp_mapping_release(udp_mapping);
6025 }
6026
6027 /* copy back packet headers if we performed NAT operations */
6028 if (rewrite)
6029 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6030
6031 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
6032 pd->dir == PF_OUT &&
6033 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m))
6034 /*
6035 * We want the state created, but we dont
6036 * want to send this in case a partner
6037 * firewall has to know about it to allow
6038 * replies through it.
6039 */
6040 return (PF_DEFER);
6041
6042 return (action);
6043
6044 cleanup:
6045 while ((ri = SLIST_FIRST(&match_rules))) {
6046 SLIST_REMOVE_HEAD(&match_rules, entry);
6047 free(ri, M_PF_RULE_ITEM);
6048 }
6049
6050 uma_zfree(V_pf_state_key_z, sk);
6051 uma_zfree(V_pf_state_key_z, nk);
6052 pf_udp_mapping_release(udp_mapping);
6053
6054 return (PF_DROP);
6055 }
6056
6057 static int
pf_create_state(struct pf_krule * r,struct pf_krule * nr,struct pf_krule * a,struct pf_pdesc * pd,struct pf_state_key * nk,struct pf_state_key * sk,int * rewrite,struct pf_kstate ** sm,int tag,u_int16_t bproto_sum,u_int16_t bip_sum,struct pf_krule_slist * match_rules,struct pf_udp_mapping * udp_mapping)6058 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
6059 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk,
6060 int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum,
6061 u_int16_t bip_sum, struct pf_krule_slist *match_rules,
6062 struct pf_udp_mapping *udp_mapping)
6063 {
6064 struct pf_kstate *s = NULL;
6065 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL };
6066 /*
6067 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6068 * but for PF_SN_NAT it is different. Don't try optimizing it,
6069 * just store all 3 hashes.
6070 */
6071 struct pf_srchash *snhs[PF_SN_MAX] = { NULL };
6072 struct tcphdr *th = &pd->hdr.tcp;
6073 u_int16_t mss = V_tcp_mssdflt;
6074 u_short reason, sn_reason;
6075 struct pf_krule_item *ri;
6076 struct pf_kpool *pool_route = &r->route;
6077
6078 /* check maximums */
6079 if (r->max_states &&
6080 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6081 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6082 REASON_SET(&reason, PFRES_MAXSTATES);
6083 goto csfailed;
6084 }
6085 /* src node for limits */
6086 if ((r->rule_flag & PFRULE_SRCTRACK) &&
6087 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6088 NULL, NULL, PF_SN_LIMIT)) != 0) {
6089 REASON_SET(&reason, sn_reason);
6090 goto csfailed;
6091 }
6092 /* src node for route-to rule */
6093 if (TAILQ_EMPTY(&pool_route->list)) /* Backwards compatibility. */
6094 pool_route = &r->rdr;
6095 if ((pool_route->opts & PF_POOL_STICKYADDR) &&
6096 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6097 &pd->act.rt_addr, pd->act.rt_kif, PF_SN_ROUTE)) != 0) {
6098 REASON_SET(&reason, sn_reason);
6099 goto csfailed;
6100 }
6101 /* src node for translation rule */
6102 if (nr != NULL && (nr->rdr.opts & PF_POOL_STICKYADDR) &&
6103 (sn_reason = pf_insert_src_node(sns, snhs, nr, &sk->addr[pd->sidx],
6104 pd->af, &nk->addr[1], NULL, PF_SN_NAT)) != 0 ) {
6105 REASON_SET(&reason, sn_reason);
6106 goto csfailed;
6107 }
6108 s = pf_alloc_state(M_NOWAIT);
6109 if (s == NULL) {
6110 REASON_SET(&reason, PFRES_MEMORY);
6111 goto csfailed;
6112 }
6113 s->rule = r;
6114 s->nat_rule = nr;
6115 s->anchor = a;
6116 memcpy(&s->match_rules, match_rules, sizeof(s->match_rules));
6117 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6118
6119 if (pd->act.allow_opts)
6120 s->state_flags |= PFSTATE_ALLOWOPTS;
6121 if (r->rule_flag & PFRULE_STATESLOPPY)
6122 s->state_flags |= PFSTATE_SLOPPY;
6123 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6124 s->state_flags |= PFSTATE_SCRUB_TCP;
6125 if ((r->rule_flag & PFRULE_PFLOW) ||
6126 (nr != NULL && nr->rule_flag & PFRULE_PFLOW))
6127 s->state_flags |= PFSTATE_PFLOW;
6128
6129 s->act.log = pd->act.log & PF_LOG_ALL;
6130 s->sync_state = PFSYNC_S_NONE;
6131 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6132
6133 if (nr != NULL)
6134 s->act.log |= nr->log & PF_LOG_ALL;
6135 switch (pd->proto) {
6136 case IPPROTO_TCP:
6137 s->src.seqlo = ntohl(th->th_seq);
6138 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6139 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6140 r->keep_state == PF_STATE_MODULATE) {
6141 /* Generate sequence number modulator */
6142 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6143 0)
6144 s->src.seqdiff = 1;
6145 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6146 htonl(s->src.seqlo + s->src.seqdiff), 0);
6147 *rewrite = 1;
6148 } else
6149 s->src.seqdiff = 0;
6150 if (tcp_get_flags(th) & TH_SYN) {
6151 s->src.seqhi++;
6152 s->src.wscale = pf_get_wscale(pd);
6153 }
6154 s->src.max_win = MAX(ntohs(th->th_win), 1);
6155 if (s->src.wscale & PF_WSCALE_MASK) {
6156 /* Remove scale factor from initial window */
6157 int win = s->src.max_win;
6158 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6159 s->src.max_win = (win - 1) >>
6160 (s->src.wscale & PF_WSCALE_MASK);
6161 }
6162 if (tcp_get_flags(th) & TH_FIN)
6163 s->src.seqhi++;
6164 s->dst.seqhi = 1;
6165 s->dst.max_win = 1;
6166 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6167 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6168 s->timeout = PFTM_TCP_FIRST_PACKET;
6169 atomic_add_32(&V_pf_status.states_halfopen, 1);
6170 break;
6171 case IPPROTO_UDP:
6172 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6173 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6174 s->timeout = PFTM_UDP_FIRST_PACKET;
6175 break;
6176 case IPPROTO_SCTP:
6177 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6178 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6179 s->timeout = PFTM_SCTP_FIRST_PACKET;
6180 break;
6181 case IPPROTO_ICMP:
6182 #ifdef INET6
6183 case IPPROTO_ICMPV6:
6184 #endif /* INET6 */
6185 s->timeout = PFTM_ICMP_FIRST_PACKET;
6186 break;
6187 default:
6188 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6189 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6190 s->timeout = PFTM_OTHER_FIRST_PACKET;
6191 }
6192
6193 s->creation = s->expire = pf_get_uptime();
6194
6195 if (pd->proto == IPPROTO_TCP) {
6196 if (s->state_flags & PFSTATE_SCRUB_TCP &&
6197 pf_normalize_tcp_init(pd, th, &s->src)) {
6198 REASON_SET(&reason, PFRES_MEMORY);
6199 goto csfailed;
6200 }
6201 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6202 pf_normalize_tcp_stateful(pd, &reason, th, s,
6203 &s->src, &s->dst, rewrite)) {
6204 /* This really shouldn't happen!!! */
6205 DPFPRINTF(PF_DEBUG_URGENT,
6206 ("pf_normalize_tcp_stateful failed on first "
6207 "pkt\n"));
6208 goto csfailed;
6209 }
6210 } else if (pd->proto == IPPROTO_SCTP) {
6211 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6212 goto csfailed;
6213 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6214 goto csfailed;
6215 }
6216 s->direction = pd->dir;
6217
6218 /*
6219 * sk/nk could already been setup by pf_get_translation().
6220 */
6221 if (nr == NULL) {
6222 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
6223 __func__, nr, sk, nk));
6224 MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6225 MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6226 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) {
6227 goto csfailed;
6228 }
6229 } else
6230 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
6231 __func__, nr, sk, nk));
6232
6233 /* Swap sk/nk for PF_OUT. */
6234 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6235 (pd->dir == PF_IN) ? sk : nk,
6236 (pd->dir == PF_IN) ? nk : sk, s)) {
6237 REASON_SET(&reason, PFRES_STATEINS);
6238 goto drop;
6239 } else
6240 *sm = s;
6241 sk = nk = NULL;
6242
6243 STATE_INC_COUNTERS(s);
6244
6245 /*
6246 * Lock order is important: first state, then source node.
6247 */
6248 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6249 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6250 s->sns[sn_type] = sns[sn_type];
6251 PF_HASHROW_UNLOCK(snhs[sn_type]);
6252 }
6253 }
6254
6255 if (tag > 0)
6256 s->tag = tag;
6257 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6258 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
6259 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6260 pf_undo_nat(nr, pd, bip_sum);
6261 s->src.seqhi = htonl(arc4random());
6262 /* Find mss option */
6263 int rtid = M_GETFIB(pd->m);
6264 mss = pf_get_mss(pd);
6265 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6266 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6267 s->src.mss = mss;
6268 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6269 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6270 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6271 pd->act.rtableid);
6272 REASON_SET(&reason, PFRES_SYNPROXY);
6273 return (PF_SYNPROXY_DROP);
6274 }
6275
6276 s->udp_mapping = udp_mapping;
6277
6278 return (PF_PASS);
6279
6280 csfailed:
6281 while ((ri = SLIST_FIRST(match_rules))) {
6282 SLIST_REMOVE_HEAD(match_rules, entry);
6283 free(ri, M_PF_RULE_ITEM);
6284 }
6285
6286 uma_zfree(V_pf_state_key_z, sk);
6287 uma_zfree(V_pf_state_key_z, nk);
6288
6289 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6290 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6291 if (--sns[sn_type]->states == 0 &&
6292 sns[sn_type]->expire == 0) {
6293 pf_unlink_src_node(sns[sn_type]);
6294 pf_free_src_node(sns[sn_type]);
6295 counter_u64_add(
6296 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6297 }
6298 PF_HASHROW_UNLOCK(snhs[sn_type]);
6299 }
6300 }
6301
6302 drop:
6303 if (s != NULL) {
6304 pf_src_tree_remove_state(s);
6305 s->timeout = PFTM_UNLINKED;
6306 pf_free_state(s);
6307 }
6308
6309 return (PF_DROP);
6310 }
6311
6312 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6313 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6314 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6315 int icmp_dir)
6316 {
6317 /*
6318 * pf_translate() implements OpenBSD's "new" NAT approach.
6319 * We don't follow it, because it involves a breaking syntax change
6320 * (removing nat/rdr rules, moving it into regular pf rules.)
6321 * It also moves NAT processing to be done after normal rules evaluation
6322 * whereas in FreeBSD that's done before rules processing.
6323 *
6324 * We adopt the function only for nat64, and keep other NAT processing
6325 * before rules processing.
6326 */
6327 int rewrite = 0;
6328 int afto = pd->af != pd->naf;
6329
6330 MPASS(afto);
6331
6332 switch (pd->proto) {
6333 case IPPROTO_TCP:
6334 if (afto || *pd->sport != sport) {
6335 pf_change_ap(pd, pd->src, pd->sport, pd->ip_sum, &pd->hdr.tcp.th_sum,
6336 saddr, sport, 0, pd->af, pd->naf);
6337 rewrite = 1;
6338 }
6339 if (afto || *pd->dport != dport) {
6340 pf_change_ap(pd, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.tcp.th_sum,
6341 daddr, dport, 0, pd->af, pd->naf);
6342 rewrite = 1;
6343 }
6344 break;
6345
6346 case IPPROTO_UDP:
6347 if (afto || *pd->sport != sport) {
6348 pf_change_ap(pd, pd->src, pd->sport, pd->ip_sum, &pd->hdr.udp.uh_sum,
6349 saddr, sport, 1, pd->af, pd->naf);
6350 rewrite = 1;
6351 }
6352 if (afto || *pd->dport != dport) {
6353 pf_change_ap(pd, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.udp.uh_sum,
6354 daddr, dport, 1, pd->af, pd->naf);
6355 rewrite = 1;
6356 }
6357 break;
6358
6359 case IPPROTO_SCTP: {
6360 uint16_t checksum = 0;
6361 if (afto || *pd->sport != sport) {
6362 pf_change_ap(pd, pd->src, pd->sport, pd->ip_sum, &checksum,
6363 saddr, sport, 1, pd->af, pd->naf);
6364 rewrite = 1;
6365 }
6366 if (afto || *pd->dport != dport) {
6367 pf_change_ap(pd, pd->dst, pd->dport, pd->ip_sum, &checksum,
6368 daddr, dport, 1, pd->af, pd->naf);
6369 rewrite = 1;
6370 }
6371 break;
6372 }
6373
6374 #ifdef INET
6375 case IPPROTO_ICMP:
6376 /* pf_translate() is also used when logging invalid packets */
6377 if (pd->af != AF_INET)
6378 return (0);
6379
6380 if (afto) {
6381 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6382 return (-1);
6383 pd->proto = IPPROTO_ICMPV6;
6384 rewrite = 1;
6385 }
6386 if (virtual_type == htons(ICMP_ECHO)) {
6387 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6388
6389 if (icmpid != pd->hdr.icmp.icmp_id) {
6390 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6391 pd->hdr.icmp.icmp_cksum,
6392 pd->hdr.icmp.icmp_id, icmpid, 0);
6393 pd->hdr.icmp.icmp_id = icmpid;
6394 /* XXX TODO copyback. */
6395 rewrite = 1;
6396 }
6397 }
6398 break;
6399 #endif /* INET */
6400
6401 #ifdef INET6
6402 case IPPROTO_ICMPV6:
6403 /* pf_translate() is also used when logging invalid packets */
6404 if (pd->af != AF_INET6)
6405 return (0);
6406
6407 if (afto) {
6408 /* ip_sum will be recalculated in pf_translate_af */
6409 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6410 return (0);
6411 pd->proto = IPPROTO_ICMP;
6412 rewrite = 1;
6413 }
6414 break;
6415 #endif /* INET6 */
6416
6417 default:
6418 break;
6419 }
6420
6421 return (rewrite);
6422 }
6423
6424 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6425 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6426 u_short *reason, int *copyback, struct pf_state_peer *src,
6427 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6428 {
6429 struct tcphdr *th = &pd->hdr.tcp;
6430 u_int16_t win = ntohs(th->th_win);
6431 u_int32_t ack, end, data_end, seq, orig_seq;
6432 u_int8_t sws, dws;
6433 int ackskew;
6434
6435 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6436 sws = src->wscale & PF_WSCALE_MASK;
6437 dws = dst->wscale & PF_WSCALE_MASK;
6438 } else
6439 sws = dws = 0;
6440
6441 /*
6442 * Sequence tracking algorithm from Guido van Rooij's paper:
6443 * http://www.madison-gurkha.com/publications/tcp_filtering/
6444 * tcp_filtering.ps
6445 */
6446
6447 orig_seq = seq = ntohl(th->th_seq);
6448 if (src->seqlo == 0) {
6449 /* First packet from this end. Set its state */
6450
6451 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6452 src->scrub == NULL) {
6453 if (pf_normalize_tcp_init(pd, th, src)) {
6454 REASON_SET(reason, PFRES_MEMORY);
6455 return (PF_DROP);
6456 }
6457 }
6458
6459 /* Deferred generation of sequence number modulator */
6460 if (dst->seqdiff && !src->seqdiff) {
6461 /* use random iss for the TCP server */
6462 while ((src->seqdiff = arc4random() - seq) == 0)
6463 ;
6464 ack = ntohl(th->th_ack) - dst->seqdiff;
6465 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6466 src->seqdiff), 0);
6467 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6468 *copyback = 1;
6469 } else {
6470 ack = ntohl(th->th_ack);
6471 }
6472
6473 end = seq + pd->p_len;
6474 if (tcp_get_flags(th) & TH_SYN) {
6475 end++;
6476 if (dst->wscale & PF_WSCALE_FLAG) {
6477 src->wscale = pf_get_wscale(pd);
6478 if (src->wscale & PF_WSCALE_FLAG) {
6479 /* Remove scale factor from initial
6480 * window */
6481 sws = src->wscale & PF_WSCALE_MASK;
6482 win = ((u_int32_t)win + (1 << sws) - 1)
6483 >> sws;
6484 dws = dst->wscale & PF_WSCALE_MASK;
6485 } else {
6486 /* fixup other window */
6487 dst->max_win = MIN(TCP_MAXWIN,
6488 (u_int32_t)dst->max_win <<
6489 (dst->wscale & PF_WSCALE_MASK));
6490 /* in case of a retrans SYN|ACK */
6491 dst->wscale = 0;
6492 }
6493 }
6494 }
6495 data_end = end;
6496 if (tcp_get_flags(th) & TH_FIN)
6497 end++;
6498
6499 src->seqlo = seq;
6500 if (src->state < TCPS_SYN_SENT)
6501 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6502
6503 /*
6504 * May need to slide the window (seqhi may have been set by
6505 * the crappy stack check or if we picked up the connection
6506 * after establishment)
6507 */
6508 if (src->seqhi == 1 ||
6509 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6510 src->seqhi = end + MAX(1, dst->max_win << dws);
6511 if (win > src->max_win)
6512 src->max_win = win;
6513
6514 } else {
6515 ack = ntohl(th->th_ack) - dst->seqdiff;
6516 if (src->seqdiff) {
6517 /* Modulate sequence numbers */
6518 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6519 src->seqdiff), 0);
6520 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6521 *copyback = 1;
6522 }
6523 end = seq + pd->p_len;
6524 if (tcp_get_flags(th) & TH_SYN)
6525 end++;
6526 data_end = end;
6527 if (tcp_get_flags(th) & TH_FIN)
6528 end++;
6529 }
6530
6531 if ((tcp_get_flags(th) & TH_ACK) == 0) {
6532 /* Let it pass through the ack skew check */
6533 ack = dst->seqlo;
6534 } else if ((ack == 0 &&
6535 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6536 /* broken tcp stacks do not set ack */
6537 (dst->state < TCPS_SYN_SENT)) {
6538 /*
6539 * Many stacks (ours included) will set the ACK number in an
6540 * FIN|ACK if the SYN times out -- no sequence to ACK.
6541 */
6542 ack = dst->seqlo;
6543 }
6544
6545 if (seq == end) {
6546 /* Ease sequencing restrictions on no data packets */
6547 seq = src->seqlo;
6548 data_end = end = seq;
6549 }
6550
6551 ackskew = dst->seqlo - ack;
6552
6553 /*
6554 * Need to demodulate the sequence numbers in any TCP SACK options
6555 * (Selective ACK). We could optionally validate the SACK values
6556 * against the current ACK window, either forwards or backwards, but
6557 * I'm not confident that SACK has been implemented properly
6558 * everywhere. It wouldn't surprise me if several stacks accidentally
6559 * SACK too far backwards of previously ACKed data. There really aren't
6560 * any security implications of bad SACKing unless the target stack
6561 * doesn't validate the option length correctly. Someone trying to
6562 * spoof into a TCP connection won't bother blindly sending SACK
6563 * options anyway.
6564 */
6565 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6566 if (pf_modulate_sack(pd, th, dst))
6567 *copyback = 1;
6568 }
6569
6570 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
6571 if (SEQ_GEQ(src->seqhi, data_end) &&
6572 /* Last octet inside other's window space */
6573 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6574 /* Retrans: not more than one window back */
6575 (ackskew >= -MAXACKWINDOW) &&
6576 /* Acking not more than one reassembled fragment backwards */
6577 (ackskew <= (MAXACKWINDOW << sws)) &&
6578 /* Acking not more than one window forward */
6579 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6580 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6581 /* Require an exact/+1 sequence match on resets when possible */
6582
6583 if (dst->scrub || src->scrub) {
6584 if (pf_normalize_tcp_stateful(pd, reason, th,
6585 state, src, dst, copyback))
6586 return (PF_DROP);
6587 }
6588
6589 /* update max window */
6590 if (src->max_win < win)
6591 src->max_win = win;
6592 /* synchronize sequencing */
6593 if (SEQ_GT(end, src->seqlo))
6594 src->seqlo = end;
6595 /* slide the window of what the other end can send */
6596 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6597 dst->seqhi = ack + MAX((win << sws), 1);
6598
6599 /* update states */
6600 if (tcp_get_flags(th) & TH_SYN)
6601 if (src->state < TCPS_SYN_SENT)
6602 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6603 if (tcp_get_flags(th) & TH_FIN)
6604 if (src->state < TCPS_CLOSING)
6605 pf_set_protostate(state, psrc, TCPS_CLOSING);
6606 if (tcp_get_flags(th) & TH_ACK) {
6607 if (dst->state == TCPS_SYN_SENT) {
6608 pf_set_protostate(state, pdst,
6609 TCPS_ESTABLISHED);
6610 if (src->state == TCPS_ESTABLISHED &&
6611 state->sns[PF_SN_LIMIT] != NULL &&
6612 pf_src_connlimit(state)) {
6613 REASON_SET(reason, PFRES_SRCLIMIT);
6614 return (PF_DROP);
6615 }
6616 } else if (dst->state == TCPS_CLOSING)
6617 pf_set_protostate(state, pdst,
6618 TCPS_FIN_WAIT_2);
6619 }
6620 if (tcp_get_flags(th) & TH_RST)
6621 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6622
6623 /* update expire time */
6624 state->expire = pf_get_uptime();
6625 if (src->state >= TCPS_FIN_WAIT_2 &&
6626 dst->state >= TCPS_FIN_WAIT_2)
6627 state->timeout = PFTM_TCP_CLOSED;
6628 else if (src->state >= TCPS_CLOSING &&
6629 dst->state >= TCPS_CLOSING)
6630 state->timeout = PFTM_TCP_FIN_WAIT;
6631 else if (src->state < TCPS_ESTABLISHED ||
6632 dst->state < TCPS_ESTABLISHED)
6633 state->timeout = PFTM_TCP_OPENING;
6634 else if (src->state >= TCPS_CLOSING ||
6635 dst->state >= TCPS_CLOSING)
6636 state->timeout = PFTM_TCP_CLOSING;
6637 else
6638 state->timeout = PFTM_TCP_ESTABLISHED;
6639
6640 /* Fall through to PASS packet */
6641
6642 } else if ((dst->state < TCPS_SYN_SENT ||
6643 dst->state >= TCPS_FIN_WAIT_2 ||
6644 src->state >= TCPS_FIN_WAIT_2) &&
6645 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6646 /* Within a window forward of the originating packet */
6647 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6648 /* Within a window backward of the originating packet */
6649
6650 /*
6651 * This currently handles three situations:
6652 * 1) Stupid stacks will shotgun SYNs before their peer
6653 * replies.
6654 * 2) When PF catches an already established stream (the
6655 * firewall rebooted, the state table was flushed, routes
6656 * changed...)
6657 * 3) Packets get funky immediately after the connection
6658 * closes (this should catch Solaris spurious ACK|FINs
6659 * that web servers like to spew after a close)
6660 *
6661 * This must be a little more careful than the above code
6662 * since packet floods will also be caught here. We don't
6663 * update the TTL here to mitigate the damage of a packet
6664 * flood and so the same code can handle awkward establishment
6665 * and a loosened connection close.
6666 * In the establishment case, a correct peer response will
6667 * validate the connection, go through the normal state code
6668 * and keep updating the state TTL.
6669 */
6670
6671 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6672 printf("pf: loose state match: ");
6673 pf_print_state(state);
6674 pf_print_flags(tcp_get_flags(th));
6675 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6676 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6677 pd->p_len, ackskew, (unsigned long long)state->packets[0],
6678 (unsigned long long)state->packets[1],
6679 pd->dir == PF_IN ? "in" : "out",
6680 pd->dir == state->direction ? "fwd" : "rev");
6681 }
6682
6683 if (dst->scrub || src->scrub) {
6684 if (pf_normalize_tcp_stateful(pd, reason, th,
6685 state, src, dst, copyback))
6686 return (PF_DROP);
6687 }
6688
6689 /* update max window */
6690 if (src->max_win < win)
6691 src->max_win = win;
6692 /* synchronize sequencing */
6693 if (SEQ_GT(end, src->seqlo))
6694 src->seqlo = end;
6695 /* slide the window of what the other end can send */
6696 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6697 dst->seqhi = ack + MAX((win << sws), 1);
6698
6699 /*
6700 * Cannot set dst->seqhi here since this could be a shotgunned
6701 * SYN and not an already established connection.
6702 */
6703
6704 if (tcp_get_flags(th) & TH_FIN)
6705 if (src->state < TCPS_CLOSING)
6706 pf_set_protostate(state, psrc, TCPS_CLOSING);
6707 if (tcp_get_flags(th) & TH_RST)
6708 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6709
6710 /* Fall through to PASS packet */
6711
6712 } else {
6713 if (state->dst.state == TCPS_SYN_SENT &&
6714 state->src.state == TCPS_SYN_SENT) {
6715 /* Send RST for state mismatches during handshake */
6716 if (!(tcp_get_flags(th) & TH_RST))
6717 pf_send_tcp(state->rule, pd->af,
6718 pd->dst, pd->src, th->th_dport,
6719 th->th_sport, ntohl(th->th_ack), 0,
6720 TH_RST, 0, 0,
6721 state->rule->return_ttl, M_SKIP_FIREWALL,
6722 0, 0, state->act.rtableid);
6723 src->seqlo = 0;
6724 src->seqhi = 1;
6725 src->max_win = 1;
6726 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6727 printf("pf: BAD state: ");
6728 pf_print_state(state);
6729 pf_print_flags(tcp_get_flags(th));
6730 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6731 "pkts=%llu:%llu dir=%s,%s\n",
6732 seq, orig_seq, ack, pd->p_len, ackskew,
6733 (unsigned long long)state->packets[0],
6734 (unsigned long long)state->packets[1],
6735 pd->dir == PF_IN ? "in" : "out",
6736 pd->dir == state->direction ? "fwd" : "rev");
6737 printf("pf: State failure on: %c %c %c %c | %c %c\n",
6738 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6739 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6740 ' ': '2',
6741 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6742 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6743 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6744 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6745 }
6746 REASON_SET(reason, PFRES_BADSTATE);
6747 return (PF_DROP);
6748 }
6749
6750 return (PF_PASS);
6751 }
6752
6753 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6754 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6755 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6756 u_int8_t psrc, u_int8_t pdst)
6757 {
6758 struct tcphdr *th = &pd->hdr.tcp;
6759
6760 if (tcp_get_flags(th) & TH_SYN)
6761 if (src->state < TCPS_SYN_SENT)
6762 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6763 if (tcp_get_flags(th) & TH_FIN)
6764 if (src->state < TCPS_CLOSING)
6765 pf_set_protostate(state, psrc, TCPS_CLOSING);
6766 if (tcp_get_flags(th) & TH_ACK) {
6767 if (dst->state == TCPS_SYN_SENT) {
6768 pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
6769 if (src->state == TCPS_ESTABLISHED &&
6770 state->sns[PF_SN_LIMIT] != NULL &&
6771 pf_src_connlimit(state)) {
6772 REASON_SET(reason, PFRES_SRCLIMIT);
6773 return (PF_DROP);
6774 }
6775 } else if (dst->state == TCPS_CLOSING) {
6776 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
6777 } else if (src->state == TCPS_SYN_SENT &&
6778 dst->state < TCPS_SYN_SENT) {
6779 /*
6780 * Handle a special sloppy case where we only see one
6781 * half of the connection. If there is a ACK after
6782 * the initial SYN without ever seeing a packet from
6783 * the destination, set the connection to established.
6784 */
6785 pf_set_protostate(state, PF_PEER_BOTH,
6786 TCPS_ESTABLISHED);
6787 dst->state = src->state = TCPS_ESTABLISHED;
6788 if (state->sns[PF_SN_LIMIT] != NULL &&
6789 pf_src_connlimit(state)) {
6790 REASON_SET(reason, PFRES_SRCLIMIT);
6791 return (PF_DROP);
6792 }
6793 } else if (src->state == TCPS_CLOSING &&
6794 dst->state == TCPS_ESTABLISHED &&
6795 dst->seqlo == 0) {
6796 /*
6797 * Handle the closing of half connections where we
6798 * don't see the full bidirectional FIN/ACK+ACK
6799 * handshake.
6800 */
6801 pf_set_protostate(state, pdst, TCPS_CLOSING);
6802 }
6803 }
6804 if (tcp_get_flags(th) & TH_RST)
6805 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6806
6807 /* update expire time */
6808 state->expire = pf_get_uptime();
6809 if (src->state >= TCPS_FIN_WAIT_2 &&
6810 dst->state >= TCPS_FIN_WAIT_2)
6811 state->timeout = PFTM_TCP_CLOSED;
6812 else if (src->state >= TCPS_CLOSING &&
6813 dst->state >= TCPS_CLOSING)
6814 state->timeout = PFTM_TCP_FIN_WAIT;
6815 else if (src->state < TCPS_ESTABLISHED ||
6816 dst->state < TCPS_ESTABLISHED)
6817 state->timeout = PFTM_TCP_OPENING;
6818 else if (src->state >= TCPS_CLOSING ||
6819 dst->state >= TCPS_CLOSING)
6820 state->timeout = PFTM_TCP_CLOSING;
6821 else
6822 state->timeout = PFTM_TCP_ESTABLISHED;
6823
6824 return (PF_PASS);
6825 }
6826
6827 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)6828 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
6829 {
6830 struct pf_state_key *sk = state->key[pd->didx];
6831 struct tcphdr *th = &pd->hdr.tcp;
6832
6833 if (state->src.state == PF_TCPS_PROXY_SRC) {
6834 if (pd->dir != state->direction) {
6835 REASON_SET(reason, PFRES_SYNPROXY);
6836 return (PF_SYNPROXY_DROP);
6837 }
6838 if (tcp_get_flags(th) & TH_SYN) {
6839 if (ntohl(th->th_seq) != state->src.seqlo) {
6840 REASON_SET(reason, PFRES_SYNPROXY);
6841 return (PF_DROP);
6842 }
6843 pf_send_tcp(state->rule, pd->af, pd->dst,
6844 pd->src, th->th_dport, th->th_sport,
6845 state->src.seqhi, ntohl(th->th_seq) + 1,
6846 TH_SYN|TH_ACK, 0, state->src.mss, 0,
6847 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
6848 REASON_SET(reason, PFRES_SYNPROXY);
6849 return (PF_SYNPROXY_DROP);
6850 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6851 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
6852 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
6853 REASON_SET(reason, PFRES_SYNPROXY);
6854 return (PF_DROP);
6855 } else if (state->sns[PF_SN_LIMIT] != NULL &&
6856 pf_src_connlimit(state)) {
6857 REASON_SET(reason, PFRES_SRCLIMIT);
6858 return (PF_DROP);
6859 } else
6860 pf_set_protostate(state, PF_PEER_SRC,
6861 PF_TCPS_PROXY_DST);
6862 }
6863 if (state->src.state == PF_TCPS_PROXY_DST) {
6864 if (pd->dir == state->direction) {
6865 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
6866 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
6867 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
6868 REASON_SET(reason, PFRES_SYNPROXY);
6869 return (PF_DROP);
6870 }
6871 state->src.max_win = MAX(ntohs(th->th_win), 1);
6872 if (state->dst.seqhi == 1)
6873 state->dst.seqhi = htonl(arc4random());
6874 pf_send_tcp(state->rule, pd->af,
6875 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6876 sk->port[pd->sidx], sk->port[pd->didx],
6877 state->dst.seqhi, 0, TH_SYN, 0,
6878 state->src.mss, 0,
6879 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6880 state->tag, 0, state->act.rtableid);
6881 REASON_SET(reason, PFRES_SYNPROXY);
6882 return (PF_SYNPROXY_DROP);
6883 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
6884 (TH_SYN|TH_ACK)) ||
6885 (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
6886 REASON_SET(reason, PFRES_SYNPROXY);
6887 return (PF_DROP);
6888 } else {
6889 state->dst.max_win = MAX(ntohs(th->th_win), 1);
6890 state->dst.seqlo = ntohl(th->th_seq);
6891 pf_send_tcp(state->rule, pd->af, pd->dst,
6892 pd->src, th->th_dport, th->th_sport,
6893 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6894 TH_ACK, state->src.max_win, 0, 0, 0,
6895 state->tag, 0, state->act.rtableid);
6896 pf_send_tcp(state->rule, pd->af,
6897 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6898 sk->port[pd->sidx], sk->port[pd->didx],
6899 state->src.seqhi + 1, state->src.seqlo + 1,
6900 TH_ACK, state->dst.max_win, 0, 0,
6901 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
6902 state->src.seqdiff = state->dst.seqhi -
6903 state->src.seqlo;
6904 state->dst.seqdiff = state->src.seqhi -
6905 state->dst.seqlo;
6906 state->src.seqhi = state->src.seqlo +
6907 state->dst.max_win;
6908 state->dst.seqhi = state->dst.seqlo +
6909 state->src.max_win;
6910 state->src.wscale = state->dst.wscale = 0;
6911 pf_set_protostate(state, PF_PEER_BOTH,
6912 TCPS_ESTABLISHED);
6913 REASON_SET(reason, PFRES_SYNPROXY);
6914 return (PF_SYNPROXY_DROP);
6915 }
6916 }
6917
6918 return (PF_PASS);
6919 }
6920
6921 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6922 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
6923 {
6924 struct pf_state_key_cmp key;
6925 int copyback = 0;
6926 struct pf_state_peer *src, *dst;
6927 uint8_t psrc, pdst;
6928 int action = PF_PASS;
6929
6930 bzero(&key, sizeof(key));
6931 key.af = pd->af;
6932 key.proto = pd->virtual_proto;
6933 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
6934 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
6935 key.port[pd->sidx] = pd->osport;
6936 key.port[pd->didx] = pd->odport;
6937
6938 STATE_LOOKUP(&key, *state, pd);
6939
6940 if (pd->dir == (*state)->direction) {
6941 if (PF_REVERSED_KEY(*state, pd->af)) {
6942 src = &(*state)->dst;
6943 dst = &(*state)->src;
6944 psrc = PF_PEER_DST;
6945 pdst = PF_PEER_SRC;
6946 } else {
6947 src = &(*state)->src;
6948 dst = &(*state)->dst;
6949 psrc = PF_PEER_SRC;
6950 pdst = PF_PEER_DST;
6951 }
6952 } else {
6953 if (PF_REVERSED_KEY(*state, pd->af)) {
6954 src = &(*state)->src;
6955 dst = &(*state)->dst;
6956 psrc = PF_PEER_SRC;
6957 pdst = PF_PEER_DST;
6958 } else {
6959 src = &(*state)->dst;
6960 dst = &(*state)->src;
6961 psrc = PF_PEER_DST;
6962 pdst = PF_PEER_SRC;
6963 }
6964 }
6965
6966 switch (pd->virtual_proto) {
6967 case IPPROTO_TCP: {
6968 struct tcphdr *th = &pd->hdr.tcp;
6969
6970 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
6971 return (action);
6972 if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
6973 (*state)->dst.state >= TCPS_FIN_WAIT_2 &&
6974 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) ||
6975 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK &&
6976 pf_syncookie_check(pd) && pd->dir == PF_IN))) {
6977 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6978 printf("pf: state reuse ");
6979 pf_print_state(*state);
6980 pf_print_flags(tcp_get_flags(th));
6981 printf("\n");
6982 }
6983 /* XXX make sure it's the same direction ?? */
6984 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
6985 pf_remove_state(*state);
6986 *state = NULL;
6987 return (PF_DROP);
6988 }
6989 if ((*state)->state_flags & PFSTATE_SLOPPY) {
6990 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
6991 psrc, pdst) == PF_DROP)
6992 return (PF_DROP);
6993 } else {
6994 int ret;
6995
6996 ret = pf_tcp_track_full(*state, pd, reason,
6997 ©back, src, dst, psrc, pdst);
6998 if (ret == PF_DROP)
6999 return (PF_DROP);
7000 }
7001 break;
7002 }
7003 case IPPROTO_UDP:
7004 /* update states */
7005 if (src->state < PFUDPS_SINGLE)
7006 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7007 if (dst->state == PFUDPS_SINGLE)
7008 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7009
7010 /* update expire time */
7011 (*state)->expire = pf_get_uptime();
7012 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7013 (*state)->timeout = PFTM_UDP_MULTIPLE;
7014 else
7015 (*state)->timeout = PFTM_UDP_SINGLE;
7016 break;
7017 case IPPROTO_SCTP:
7018 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7019 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7020 pd->sctp_flags & PFDESC_SCTP_INIT) {
7021 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7022 pf_remove_state(*state);
7023 *state = NULL;
7024 return (PF_DROP);
7025 }
7026
7027 if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7028 return (PF_DROP);
7029
7030 /* Track state. */
7031 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7032 if (src->state < SCTP_COOKIE_WAIT) {
7033 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7034 (*state)->timeout = PFTM_SCTP_OPENING;
7035 }
7036 }
7037 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7038 MPASS(dst->scrub != NULL);
7039 if (dst->scrub->pfss_v_tag == 0)
7040 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7041 }
7042
7043 /*
7044 * Bind to the correct interface if we're if-bound. For multihomed
7045 * extra associations we don't know which interface that will be until
7046 * here, so we've inserted the state on V_pf_all. Fix that now.
7047 */
7048 if ((*state)->kif == V_pfi_all &&
7049 (*state)->rule->rule_flag & PFRULE_IFBOUND)
7050 (*state)->kif = pd->kif;
7051
7052 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7053 if (src->state < SCTP_ESTABLISHED) {
7054 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7055 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
7056 }
7057 }
7058 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7059 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7060 if (src->state < SCTP_SHUTDOWN_PENDING) {
7061 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7062 (*state)->timeout = PFTM_SCTP_CLOSING;
7063 }
7064 }
7065 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7066 pf_set_protostate(*state, psrc, SCTP_CLOSED);
7067 (*state)->timeout = PFTM_SCTP_CLOSED;
7068 }
7069
7070 (*state)->expire = pf_get_uptime();
7071 break;
7072 default:
7073 /* update states */
7074 if (src->state < PFOTHERS_SINGLE)
7075 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7076 if (dst->state == PFOTHERS_SINGLE)
7077 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7078
7079 /* update expire time */
7080 (*state)->expire = pf_get_uptime();
7081 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7082 (*state)->timeout = PFTM_OTHER_MULTIPLE;
7083 else
7084 (*state)->timeout = PFTM_OTHER_SINGLE;
7085 break;
7086 }
7087
7088 /* translate source/destination address, if necessary */
7089 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7090 struct pf_state_key *nk;
7091 int afto, sidx, didx;
7092
7093 if (PF_REVERSED_KEY(*state, pd->af))
7094 nk = (*state)->key[pd->sidx];
7095 else
7096 nk = (*state)->key[pd->didx];
7097
7098 afto = pd->af != nk->af;
7099
7100 if (afto && (*state)->direction == PF_IN) {
7101 sidx = pd->didx;
7102 didx = pd->sidx;
7103 } else {
7104 sidx = pd->sidx;
7105 didx = pd->didx;
7106 }
7107
7108 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7109 nk->port[sidx] != pd->osport)
7110 pf_change_ap(pd, pd->src, pd->sport, pd->ip_sum,
7111 pd->pcksum, &nk->addr[sidx],
7112 nk->port[sidx], pd->virtual_proto == IPPROTO_UDP,
7113 pd->af, nk->af);
7114
7115 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7116 nk->port[didx] != pd->odport)
7117 pf_change_ap(pd, pd->dst, pd->dport, pd->ip_sum,
7118 pd->pcksum, &nk->addr[didx],
7119 nk->port[didx], pd->virtual_proto == IPPROTO_UDP,
7120 pd->af, nk->af);
7121
7122 if (afto) {
7123 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7124 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7125 pd->naf = nk->af;
7126 action = PF_AFRT;
7127 }
7128
7129 copyback = 1;
7130 }
7131
7132 if (copyback && pd->hdrlen > 0)
7133 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7134
7135 return (action);
7136 }
7137
7138 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7139 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7140 u_short *reason)
7141 {
7142 struct pf_state_peer *src;
7143 if (pd->dir == state->direction) {
7144 if (PF_REVERSED_KEY(state, pd->af))
7145 src = &state->dst;
7146 else
7147 src = &state->src;
7148 } else {
7149 if (PF_REVERSED_KEY(state, pd->af))
7150 src = &state->src;
7151 else
7152 src = &state->dst;
7153 }
7154
7155 if (src->scrub != NULL) {
7156 if (src->scrub->pfss_v_tag == 0)
7157 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7158 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7159 return (PF_DROP);
7160 }
7161
7162 return (PF_PASS);
7163 }
7164
7165 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7166 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7167 {
7168 struct pf_sctp_endpoint key;
7169 struct pf_sctp_endpoint *ep;
7170 struct pf_state_key *sks = s->key[PF_SK_STACK];
7171 struct pf_sctp_source *i, *tmp;
7172
7173 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7174 return;
7175
7176 PF_SCTP_ENDPOINTS_LOCK();
7177
7178 key.v_tag = s->dst.scrub->pfss_v_tag;
7179 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7180 if (ep != NULL) {
7181 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7182 if (pf_addr_cmp(&i->addr,
7183 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7184 s->key[PF_SK_WIRE]->af) == 0) {
7185 SDT_PROBE3(pf, sctp, multihome, remove,
7186 key.v_tag, s, i);
7187 TAILQ_REMOVE(&ep->sources, i, entry);
7188 free(i, M_PFTEMP);
7189 break;
7190 }
7191 }
7192
7193 if (TAILQ_EMPTY(&ep->sources)) {
7194 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7195 free(ep, M_PFTEMP);
7196 }
7197 }
7198
7199 /* Other direction. */
7200 key.v_tag = s->src.scrub->pfss_v_tag;
7201 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7202 if (ep != NULL) {
7203 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7204 if (pf_addr_cmp(&i->addr,
7205 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7206 s->key[PF_SK_WIRE]->af) == 0) {
7207 SDT_PROBE3(pf, sctp, multihome, remove,
7208 key.v_tag, s, i);
7209 TAILQ_REMOVE(&ep->sources, i, entry);
7210 free(i, M_PFTEMP);
7211 break;
7212 }
7213 }
7214
7215 if (TAILQ_EMPTY(&ep->sources)) {
7216 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7217 free(ep, M_PFTEMP);
7218 }
7219 }
7220
7221 PF_SCTP_ENDPOINTS_UNLOCK();
7222 }
7223
7224 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7225 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7226 {
7227 struct pf_sctp_endpoint key = {
7228 .v_tag = v_tag,
7229 };
7230 struct pf_sctp_source *i;
7231 struct pf_sctp_endpoint *ep;
7232
7233 PF_SCTP_ENDPOINTS_LOCK();
7234
7235 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7236 if (ep == NULL) {
7237 ep = malloc(sizeof(struct pf_sctp_endpoint),
7238 M_PFTEMP, M_NOWAIT);
7239 if (ep == NULL) {
7240 PF_SCTP_ENDPOINTS_UNLOCK();
7241 return;
7242 }
7243
7244 ep->v_tag = v_tag;
7245 TAILQ_INIT(&ep->sources);
7246 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7247 }
7248
7249 /* Avoid inserting duplicates. */
7250 TAILQ_FOREACH(i, &ep->sources, entry) {
7251 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7252 PF_SCTP_ENDPOINTS_UNLOCK();
7253 return;
7254 }
7255 }
7256
7257 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7258 if (i == NULL) {
7259 PF_SCTP_ENDPOINTS_UNLOCK();
7260 return;
7261 }
7262
7263 i->af = pd->af;
7264 memcpy(&i->addr, a, sizeof(*a));
7265 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7266 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7267
7268 PF_SCTP_ENDPOINTS_UNLOCK();
7269 }
7270
7271 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7272 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7273 struct pf_kstate *s, int action)
7274 {
7275 struct pf_sctp_multihome_job *j, *tmp;
7276 struct pf_sctp_source *i;
7277 int ret __unused;
7278 struct pf_kstate *sm = NULL;
7279 struct pf_krule *ra = NULL;
7280 struct pf_krule *r = &V_pf_default_rule;
7281 struct pf_kruleset *rs = NULL;
7282 u_short reason;
7283 bool do_extra = true;
7284
7285 PF_RULES_RLOCK_TRACKER;
7286
7287 again:
7288 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7289 if (s == NULL || action != PF_PASS)
7290 goto free;
7291
7292 /* Confirm we don't recurse here. */
7293 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7294
7295 switch (j->op) {
7296 case SCTP_ADD_IP_ADDRESS: {
7297 uint32_t v_tag = pd->sctp_initiate_tag;
7298
7299 if (v_tag == 0) {
7300 if (s->direction == pd->dir)
7301 v_tag = s->src.scrub->pfss_v_tag;
7302 else
7303 v_tag = s->dst.scrub->pfss_v_tag;
7304 }
7305
7306 /*
7307 * Avoid duplicating states. We'll already have
7308 * created a state based on the source address of
7309 * the packet, but SCTP endpoints may also list this
7310 * address again in the INIT(_ACK) parameters.
7311 */
7312 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7313 break;
7314 }
7315
7316 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7317 PF_RULES_RLOCK();
7318 sm = NULL;
7319 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7320 j->pd.related_rule = s->rule;
7321 }
7322 ret = pf_test_rule(&r, &sm,
7323 &j->pd, &ra, &rs, &reason, NULL);
7324 PF_RULES_RUNLOCK();
7325 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7326 if (ret != PF_DROP && sm != NULL) {
7327 /* Inherit v_tag values. */
7328 if (sm->direction == s->direction) {
7329 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7330 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7331 } else {
7332 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7333 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7334 }
7335 PF_STATE_UNLOCK(sm);
7336 } else {
7337 /* If we try duplicate inserts? */
7338 break;
7339 }
7340
7341 /* Only add the address if we've actually allowed the state. */
7342 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7343
7344 if (! do_extra) {
7345 break;
7346 }
7347 /*
7348 * We need to do this for each of our source addresses.
7349 * Find those based on the verification tag.
7350 */
7351 struct pf_sctp_endpoint key = {
7352 .v_tag = pd->hdr.sctp.v_tag,
7353 };
7354 struct pf_sctp_endpoint *ep;
7355
7356 PF_SCTP_ENDPOINTS_LOCK();
7357 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7358 if (ep == NULL) {
7359 PF_SCTP_ENDPOINTS_UNLOCK();
7360 break;
7361 }
7362 MPASS(ep != NULL);
7363
7364 TAILQ_FOREACH(i, &ep->sources, entry) {
7365 struct pf_sctp_multihome_job *nj;
7366
7367 /* SCTP can intermingle IPv4 and IPv6. */
7368 if (i->af != pd->af)
7369 continue;
7370
7371 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7372 if (! nj) {
7373 continue;
7374 }
7375 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7376 memcpy(&nj->src, &j->src, sizeof(nj->src));
7377 nj->pd.src = &nj->src;
7378 // New destination address!
7379 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7380 nj->pd.dst = &nj->dst;
7381 nj->pd.m = j->pd.m;
7382 nj->op = j->op;
7383
7384 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7385 }
7386 PF_SCTP_ENDPOINTS_UNLOCK();
7387
7388 break;
7389 }
7390 case SCTP_DEL_IP_ADDRESS: {
7391 struct pf_state_key_cmp key;
7392 uint8_t psrc;
7393
7394 bzero(&key, sizeof(key));
7395 key.af = j->pd.af;
7396 key.proto = IPPROTO_SCTP;
7397 if (j->pd.dir == PF_IN) { /* wire side, straight */
7398 PF_ACPY(&key.addr[0], j->pd.src, key.af);
7399 PF_ACPY(&key.addr[1], j->pd.dst, key.af);
7400 key.port[0] = j->pd.hdr.sctp.src_port;
7401 key.port[1] = j->pd.hdr.sctp.dest_port;
7402 } else { /* stack side, reverse */
7403 PF_ACPY(&key.addr[1], j->pd.src, key.af);
7404 PF_ACPY(&key.addr[0], j->pd.dst, key.af);
7405 key.port[1] = j->pd.hdr.sctp.src_port;
7406 key.port[0] = j->pd.hdr.sctp.dest_port;
7407 }
7408
7409 sm = pf_find_state(kif, &key, j->pd.dir);
7410 if (sm != NULL) {
7411 PF_STATE_LOCK_ASSERT(sm);
7412 if (j->pd.dir == sm->direction) {
7413 psrc = PF_PEER_SRC;
7414 } else {
7415 psrc = PF_PEER_DST;
7416 }
7417 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7418 sm->timeout = PFTM_SCTP_CLOSING;
7419 PF_STATE_UNLOCK(sm);
7420 }
7421 break;
7422 default:
7423 panic("Unknown op %#x", j->op);
7424 }
7425 }
7426
7427 free:
7428 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7429 free(j, M_PFTEMP);
7430 }
7431
7432 /* We may have inserted extra work while processing the list. */
7433 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7434 do_extra = false;
7435 goto again;
7436 }
7437 }
7438
7439 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7440 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7441 {
7442 int off = 0;
7443 struct pf_sctp_multihome_job *job;
7444
7445 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7446
7447 while (off < len) {
7448 struct sctp_paramhdr h;
7449
7450 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7451 pd->af))
7452 return (PF_DROP);
7453
7454 /* Parameters are at least 4 bytes. */
7455 if (ntohs(h.param_length) < 4)
7456 return (PF_DROP);
7457
7458 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7459 ntohs(h.param_length));
7460
7461 switch (ntohs(h.param_type)) {
7462 case SCTP_IPV4_ADDRESS: {
7463 struct in_addr t;
7464
7465 if (ntohs(h.param_length) !=
7466 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7467 return (PF_DROP);
7468
7469 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7470 NULL, NULL, pd->af))
7471 return (PF_DROP);
7472
7473 if (in_nullhost(t))
7474 t.s_addr = pd->src->v4.s_addr;
7475
7476 /*
7477 * We hold the state lock (idhash) here, which means
7478 * that we can't acquire the keyhash, or we'll get a
7479 * LOR (and potentially double-lock things too). We also
7480 * can't release the state lock here, so instead we'll
7481 * enqueue this for async handling.
7482 * There's a relatively small race here, in that a
7483 * packet using the new addresses could arrive already,
7484 * but that's just though luck for it.
7485 */
7486 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7487 if (! job)
7488 return (PF_DROP);
7489
7490 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7491
7492 memcpy(&job->pd, pd, sizeof(*pd));
7493
7494 // New source address!
7495 memcpy(&job->src, &t, sizeof(t));
7496 job->pd.src = &job->src;
7497 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7498 job->pd.dst = &job->dst;
7499 job->pd.m = pd->m;
7500 job->op = op;
7501
7502 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7503 break;
7504 }
7505 #ifdef INET6
7506 case SCTP_IPV6_ADDRESS: {
7507 struct in6_addr t;
7508
7509 if (ntohs(h.param_length) !=
7510 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7511 return (PF_DROP);
7512
7513 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7514 NULL, NULL, pd->af))
7515 return (PF_DROP);
7516 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7517 break;
7518 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7519 memcpy(&t, &pd->src->v6, sizeof(t));
7520
7521 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7522 if (! job)
7523 return (PF_DROP);
7524
7525 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7526
7527 memcpy(&job->pd, pd, sizeof(*pd));
7528 memcpy(&job->src, &t, sizeof(t));
7529 job->pd.src = &job->src;
7530 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7531 job->pd.dst = &job->dst;
7532 job->pd.m = pd->m;
7533 job->op = op;
7534
7535 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7536 break;
7537 }
7538 #endif /* INET6 */
7539 case SCTP_ADD_IP_ADDRESS: {
7540 int ret;
7541 struct sctp_asconf_paramhdr ah;
7542
7543 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7544 NULL, NULL, pd->af))
7545 return (PF_DROP);
7546
7547 ret = pf_multihome_scan(start + off + sizeof(ah),
7548 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7549 SCTP_ADD_IP_ADDRESS);
7550 if (ret != PF_PASS)
7551 return (ret);
7552 break;
7553 }
7554 case SCTP_DEL_IP_ADDRESS: {
7555 int ret;
7556 struct sctp_asconf_paramhdr ah;
7557
7558 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7559 NULL, NULL, pd->af))
7560 return (PF_DROP);
7561 ret = pf_multihome_scan(start + off + sizeof(ah),
7562 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7563 SCTP_DEL_IP_ADDRESS);
7564 if (ret != PF_PASS)
7565 return (ret);
7566 break;
7567 }
7568 default:
7569 break;
7570 }
7571
7572 off += roundup(ntohs(h.param_length), 4);
7573 }
7574
7575 return (PF_PASS);
7576 }
7577
7578 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7579 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7580 {
7581 start += sizeof(struct sctp_init_chunk);
7582 len -= sizeof(struct sctp_init_chunk);
7583
7584 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7585 }
7586
7587 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7588 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7589 {
7590 start += sizeof(struct sctp_asconf_chunk);
7591 len -= sizeof(struct sctp_asconf_chunk);
7592
7593 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7594 }
7595
7596 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7597 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7598 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7599 int *iidx, int multi, int inner)
7600 {
7601 int direction = pd->dir;
7602
7603 key->af = pd->af;
7604 key->proto = pd->proto;
7605 if (icmp_dir == PF_IN) {
7606 *iidx = pd->sidx;
7607 key->port[pd->sidx] = icmpid;
7608 key->port[pd->didx] = type;
7609 } else {
7610 *iidx = pd->didx;
7611 key->port[pd->sidx] = type;
7612 key->port[pd->didx] = icmpid;
7613 }
7614 if (pf_state_key_addr_setup(pd, key, multi))
7615 return (PF_DROP);
7616
7617 STATE_LOOKUP(key, *state, pd);
7618
7619 if ((*state)->state_flags & PFSTATE_SLOPPY)
7620 return (-1);
7621
7622 /* Is this ICMP message flowing in right direction? */
7623 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7624 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7625 PF_IN : PF_OUT;
7626 else
7627 direction = (*state)->direction;
7628 if ((*state)->rule->type &&
7629 (((!inner && direction == pd->dir) ||
7630 (inner && direction != pd->dir)) ?
7631 PF_IN : PF_OUT) != icmp_dir) {
7632 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7633 printf("pf: icmp type %d in wrong direction (%d): ",
7634 ntohs(type), icmp_dir);
7635 pf_print_state(*state);
7636 printf("\n");
7637 }
7638 PF_STATE_UNLOCK(*state);
7639 *state = NULL;
7640 return (PF_DROP);
7641 }
7642 return (-1);
7643 }
7644
7645 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7646 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7647 u_short *reason)
7648 {
7649 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
7650 u_int16_t *icmpsum, virtual_id, virtual_type;
7651 u_int8_t icmptype, icmpcode;
7652 int icmp_dir, iidx, ret;
7653 struct pf_state_key_cmp key;
7654 #ifdef INET
7655 u_int16_t icmpid;
7656 #endif /* INET*/
7657
7658 MPASS(*state == NULL);
7659
7660 bzero(&key, sizeof(key));
7661 switch (pd->proto) {
7662 #ifdef INET
7663 case IPPROTO_ICMP:
7664 icmptype = pd->hdr.icmp.icmp_type;
7665 icmpcode = pd->hdr.icmp.icmp_code;
7666 icmpid = pd->hdr.icmp.icmp_id;
7667 icmpsum = &pd->hdr.icmp.icmp_cksum;
7668 break;
7669 #endif /* INET */
7670 #ifdef INET6
7671 case IPPROTO_ICMPV6:
7672 icmptype = pd->hdr.icmp6.icmp6_type;
7673 icmpcode = pd->hdr.icmp6.icmp6_code;
7674 #ifdef INET
7675 icmpid = pd->hdr.icmp6.icmp6_id;
7676 #endif /* INET */
7677 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7678 break;
7679 #endif /* INET6 */
7680 default:
7681 panic("unhandled proto %d", pd->proto);
7682 }
7683
7684 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7685 &virtual_type) == 0) {
7686 /*
7687 * ICMP query/reply message not related to a TCP/UDP/SCTP
7688 * packet. Search for an ICMP state.
7689 */
7690 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7691 virtual_type, icmp_dir, &iidx, 0, 0);
7692 /* IPv6? try matching a multicast address */
7693 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7694 MPASS(*state == NULL);
7695 ret = pf_icmp_state_lookup(&key, pd, state,
7696 virtual_id, virtual_type,
7697 icmp_dir, &iidx, 1, 0);
7698 }
7699 if (ret >= 0) {
7700 MPASS(*state == NULL);
7701 return (ret);
7702 }
7703
7704 (*state)->expire = pf_get_uptime();
7705 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7706
7707 /* translate source/destination address, if necessary */
7708 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7709 struct pf_state_key *nk;
7710 int afto, sidx, didx;
7711
7712 if (PF_REVERSED_KEY(*state, pd->af))
7713 nk = (*state)->key[pd->sidx];
7714 else
7715 nk = (*state)->key[pd->didx];
7716
7717 afto = pd->af != nk->af;
7718
7719 if (afto && (*state)->direction == PF_IN) {
7720 sidx = pd->didx;
7721 didx = pd->sidx;
7722 iidx = !iidx;
7723 } else {
7724 sidx = pd->sidx;
7725 didx = pd->didx;
7726 }
7727
7728 switch (pd->af) {
7729 #ifdef INET
7730 case AF_INET:
7731 #ifdef INET6
7732 if (afto) {
7733 if (pf_translate_icmp_af(AF_INET6,
7734 &pd->hdr.icmp))
7735 return (PF_DROP);
7736 pd->proto = IPPROTO_ICMPV6;
7737 }
7738 #endif /* INET6 */
7739 if (!afto &&
7740 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7741 pf_change_a(&saddr->v4.s_addr,
7742 pd->ip_sum,
7743 nk->addr[sidx].v4.s_addr,
7744 0);
7745
7746 if (!afto && PF_ANEQ(pd->dst,
7747 &nk->addr[didx], AF_INET))
7748 pf_change_a(&daddr->v4.s_addr,
7749 pd->ip_sum,
7750 nk->addr[didx].v4.s_addr, 0);
7751
7752 if (nk->port[iidx] !=
7753 pd->hdr.icmp.icmp_id) {
7754 pd->hdr.icmp.icmp_cksum =
7755 pf_cksum_fixup(
7756 pd->hdr.icmp.icmp_cksum, icmpid,
7757 nk->port[iidx], 0);
7758 pd->hdr.icmp.icmp_id =
7759 nk->port[iidx];
7760 }
7761
7762 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7763 (caddr_t )&pd->hdr.icmp);
7764 break;
7765 #endif /* INET */
7766 #ifdef INET6
7767 case AF_INET6:
7768 #ifdef INET
7769 if (afto) {
7770 if (pf_translate_icmp_af(AF_INET,
7771 &pd->hdr.icmp6))
7772 return (PF_DROP);
7773 pd->proto = IPPROTO_ICMP;
7774 }
7775 #endif /* INET */
7776 if (!afto &&
7777 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7778 pf_change_a6(saddr,
7779 &pd->hdr.icmp6.icmp6_cksum,
7780 &nk->addr[sidx], 0);
7781
7782 if (!afto && PF_ANEQ(pd->dst,
7783 &nk->addr[didx], AF_INET6))
7784 pf_change_a6(daddr,
7785 &pd->hdr.icmp6.icmp6_cksum,
7786 &nk->addr[didx], 0);
7787
7788 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7789 pd->hdr.icmp6.icmp6_id =
7790 nk->port[iidx];
7791
7792 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7793 (caddr_t )&pd->hdr.icmp6);
7794 break;
7795 #endif /* INET6 */
7796 }
7797 if (afto) {
7798 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7799 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7800 pd->naf = nk->af;
7801 return (PF_AFRT);
7802 }
7803 }
7804 return (PF_PASS);
7805
7806 } else {
7807 /*
7808 * ICMP error message in response to a TCP/UDP packet.
7809 * Extract the inner TCP/UDP header and search for that state.
7810 */
7811
7812 struct pf_pdesc pd2;
7813 bzero(&pd2, sizeof pd2);
7814 #ifdef INET
7815 struct ip h2;
7816 #endif /* INET */
7817 #ifdef INET6
7818 struct ip6_hdr h2_6;
7819 #endif /* INET6 */
7820 int ipoff2 = 0;
7821
7822 pd2.af = pd->af;
7823 pd2.dir = pd->dir;
7824 /* Payload packet is from the opposite direction. */
7825 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7826 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7827 pd2.m = pd->m;
7828 pd2.kif = pd->kif;
7829 switch (pd->af) {
7830 #ifdef INET
7831 case AF_INET:
7832 /* offset of h2 in mbuf chain */
7833 ipoff2 = pd->off + ICMP_MINLEN;
7834
7835 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7836 NULL, reason, pd2.af)) {
7837 DPFPRINTF(PF_DEBUG_MISC,
7838 ("pf: ICMP error message too short "
7839 "(ip)\n"));
7840 return (PF_DROP);
7841 }
7842 /*
7843 * ICMP error messages don't refer to non-first
7844 * fragments
7845 */
7846 if (h2.ip_off & htons(IP_OFFMASK)) {
7847 REASON_SET(reason, PFRES_FRAG);
7848 return (PF_DROP);
7849 }
7850
7851 /* offset of protocol header that follows h2 */
7852 pd2.off = ipoff2 + (h2.ip_hl << 2);
7853
7854 pd2.proto = h2.ip_p;
7855 pd2.tot_len = ntohs(h2.ip_len);
7856 pd2.src = (struct pf_addr *)&h2.ip_src;
7857 pd2.dst = (struct pf_addr *)&h2.ip_dst;
7858 pd2.ip_sum = &h2.ip_sum;
7859 break;
7860 #endif /* INET */
7861 #ifdef INET6
7862 case AF_INET6:
7863 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7864
7865 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7866 NULL, reason, pd2.af)) {
7867 DPFPRINTF(PF_DEBUG_MISC,
7868 ("pf: ICMP error message too short "
7869 "(ip6)\n"));
7870 return (PF_DROP);
7871 }
7872 pd2.off = ipoff2;
7873 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
7874 return (PF_DROP);
7875
7876 pd2.tot_len = ntohs(h2_6.ip6_plen) +
7877 sizeof(struct ip6_hdr);
7878 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7879 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7880 pd2.ip_sum = NULL;
7881 break;
7882 #endif /* INET6 */
7883 default:
7884 unhandled_af(pd->af);
7885 }
7886
7887 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7888 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7889 printf("pf: BAD ICMP %d:%d outer dst: ",
7890 icmptype, icmpcode);
7891 pf_print_host(pd->src, 0, pd->af);
7892 printf(" -> ");
7893 pf_print_host(pd->dst, 0, pd->af);
7894 printf(" inner src: ");
7895 pf_print_host(pd2.src, 0, pd2.af);
7896 printf(" -> ");
7897 pf_print_host(pd2.dst, 0, pd2.af);
7898 printf("\n");
7899 }
7900 REASON_SET(reason, PFRES_BADSTATE);
7901 return (PF_DROP);
7902 }
7903
7904 switch (pd2.proto) {
7905 case IPPROTO_TCP: {
7906 struct tcphdr th;
7907 u_int32_t seq;
7908 struct pf_state_peer *src, *dst;
7909 u_int8_t dws;
7910 int copyback = 0;
7911
7912 /*
7913 * Only the first 8 bytes of the TCP header can be
7914 * expected. Don't access any TCP header fields after
7915 * th_seq, an ackskew test is not possible.
7916 */
7917 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason,
7918 pd2.af)) {
7919 DPFPRINTF(PF_DEBUG_MISC,
7920 ("pf: ICMP error message too short "
7921 "(tcp)\n"));
7922 return (PF_DROP);
7923 }
7924
7925 key.af = pd2.af;
7926 key.proto = IPPROTO_TCP;
7927 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7928 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7929 key.port[pd2.sidx] = th.th_sport;
7930 key.port[pd2.didx] = th.th_dport;
7931
7932 STATE_LOOKUP(&key, *state, pd);
7933
7934 if (pd->dir == (*state)->direction) {
7935 if (PF_REVERSED_KEY(*state, pd->af)) {
7936 src = &(*state)->src;
7937 dst = &(*state)->dst;
7938 } else {
7939 src = &(*state)->dst;
7940 dst = &(*state)->src;
7941 }
7942 } else {
7943 if (PF_REVERSED_KEY(*state, pd->af)) {
7944 src = &(*state)->dst;
7945 dst = &(*state)->src;
7946 } else {
7947 src = &(*state)->src;
7948 dst = &(*state)->dst;
7949 }
7950 }
7951
7952 if (src->wscale && dst->wscale)
7953 dws = dst->wscale & PF_WSCALE_MASK;
7954 else
7955 dws = 0;
7956
7957 /* Demodulate sequence number */
7958 seq = ntohl(th.th_seq) - src->seqdiff;
7959 if (src->seqdiff) {
7960 pf_change_a(&th.th_seq, icmpsum,
7961 htonl(seq), 0);
7962 copyback = 1;
7963 }
7964
7965 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
7966 (!SEQ_GEQ(src->seqhi, seq) ||
7967 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
7968 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7969 printf("pf: BAD ICMP %d:%d ",
7970 icmptype, icmpcode);
7971 pf_print_host(pd->src, 0, pd->af);
7972 printf(" -> ");
7973 pf_print_host(pd->dst, 0, pd->af);
7974 printf(" state: ");
7975 pf_print_state(*state);
7976 printf(" seq=%u\n", seq);
7977 }
7978 REASON_SET(reason, PFRES_BADSTATE);
7979 return (PF_DROP);
7980 } else {
7981 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7982 printf("pf: OK ICMP %d:%d ",
7983 icmptype, icmpcode);
7984 pf_print_host(pd->src, 0, pd->af);
7985 printf(" -> ");
7986 pf_print_host(pd->dst, 0, pd->af);
7987 printf(" state: ");
7988 pf_print_state(*state);
7989 printf(" seq=%u\n", seq);
7990 }
7991 }
7992
7993 /* translate source/destination address, if necessary */
7994 if ((*state)->key[PF_SK_WIRE] !=
7995 (*state)->key[PF_SK_STACK]) {
7996
7997 struct pf_state_key *nk;
7998
7999 if (PF_REVERSED_KEY(*state, pd->af))
8000 nk = (*state)->key[pd->sidx];
8001 else
8002 nk = (*state)->key[pd->didx];
8003
8004 #if defined(INET) && defined(INET6)
8005 int afto, sidx, didx;
8006 u_int16_t dummy_cksum = 0;
8007
8008 afto = pd->af != nk->af;
8009
8010 if (afto && (*state)->direction == PF_IN) {
8011 sidx = pd2.didx;
8012 didx = pd2.sidx;
8013 } else {
8014 sidx = pd2.sidx;
8015 didx = pd2.didx;
8016 }
8017
8018 if (afto) {
8019 if (pf_translate_icmp_af(nk->af,
8020 &pd->hdr.icmp))
8021 return (PF_DROP);
8022 m_copyback(pd->m, pd->off,
8023 sizeof(struct icmp6_hdr),
8024 (c_caddr_t)&pd->hdr.icmp6);
8025 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8026 &pd2, &nk->addr[sidx],
8027 &nk->addr[didx], pd->af,
8028 nk->af))
8029 return (PF_DROP);
8030 pf_change_ap(pd, pd2.src, &th.th_sport,
8031 pd->ip_sum, &dummy_cksum, &nk->addr[pd2.sidx],
8032 nk->port[sidx], 1, pd->af, nk->af);
8033 pf_change_ap(pd, pd2.dst, &th.th_dport,
8034 pd->ip_sum, &dummy_cksum, &nk->addr[pd2.didx],
8035 nk->port[didx], 1, pd->af, nk->af);
8036 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)&th);
8037 PF_ACPY(&pd->nsaddr, &nk->addr[pd2.sidx],
8038 nk->af);
8039 PF_ACPY(&pd->ndaddr,
8040 &nk->addr[pd2.didx], nk->af);
8041 if (nk->af == AF_INET) {
8042 pd->proto = IPPROTO_ICMP;
8043 } else {
8044 pd->proto = IPPROTO_ICMPV6;
8045 /*
8046 * IPv4 becomes IPv6 so we must
8047 * copy IPv4 src addr to least
8048 * 32bits in IPv6 address to
8049 * keep traceroute/icmp
8050 * working.
8051 */
8052 pd->nsaddr.addr32[3] =
8053 pd->src->addr32[0];
8054 }
8055 pd->naf = nk->af;
8056 return (PF_AFRT);
8057 }
8058 #endif /* INET && INET6 */
8059
8060 if (PF_ANEQ(pd2.src,
8061 &nk->addr[pd2.sidx], pd2.af) ||
8062 nk->port[pd2.sidx] != th.th_sport)
8063 pf_change_icmp(pd2.src, &th.th_sport,
8064 daddr, &nk->addr[pd2.sidx],
8065 nk->port[pd2.sidx], NULL,
8066 pd2.ip_sum, icmpsum,
8067 pd->ip_sum, 0, pd2.af);
8068
8069 if (PF_ANEQ(pd2.dst,
8070 &nk->addr[pd2.didx], pd2.af) ||
8071 nk->port[pd2.didx] != th.th_dport)
8072 pf_change_icmp(pd2.dst, &th.th_dport,
8073 saddr, &nk->addr[pd2.didx],
8074 nk->port[pd2.didx], NULL,
8075 pd2.ip_sum, icmpsum,
8076 pd->ip_sum, 0, pd2.af);
8077 copyback = 1;
8078 }
8079
8080 if (copyback) {
8081 switch (pd2.af) {
8082 #ifdef INET
8083 case AF_INET:
8084 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8085 (caddr_t )&pd->hdr.icmp);
8086 m_copyback(pd->m, ipoff2, sizeof(h2),
8087 (caddr_t )&h2);
8088 break;
8089 #endif /* INET */
8090 #ifdef INET6
8091 case AF_INET6:
8092 m_copyback(pd->m, pd->off,
8093 sizeof(struct icmp6_hdr),
8094 (caddr_t )&pd->hdr.icmp6);
8095 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8096 (caddr_t )&h2_6);
8097 break;
8098 #endif /* INET6 */
8099 default:
8100 unhandled_af(pd->af);
8101 }
8102 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th);
8103 }
8104
8105 return (PF_PASS);
8106 break;
8107 }
8108 case IPPROTO_UDP: {
8109 struct udphdr uh;
8110
8111 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh),
8112 NULL, reason, pd2.af)) {
8113 DPFPRINTF(PF_DEBUG_MISC,
8114 ("pf: ICMP error message too short "
8115 "(udp)\n"));
8116 return (PF_DROP);
8117 }
8118
8119 key.af = pd2.af;
8120 key.proto = IPPROTO_UDP;
8121 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8122 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8123 key.port[pd2.sidx] = uh.uh_sport;
8124 key.port[pd2.didx] = uh.uh_dport;
8125
8126 STATE_LOOKUP(&key, *state, pd);
8127
8128 /* translate source/destination address, if necessary */
8129 if ((*state)->key[PF_SK_WIRE] !=
8130 (*state)->key[PF_SK_STACK]) {
8131 struct pf_state_key *nk;
8132
8133 if (PF_REVERSED_KEY(*state, pd->af))
8134 nk = (*state)->key[pd->sidx];
8135 else
8136 nk = (*state)->key[pd->didx];
8137
8138 #if defined(INET) && defined(INET6)
8139 int afto, sidx, didx;
8140
8141 afto = pd->af != nk->af;
8142
8143 if (afto && (*state)->direction == PF_IN) {
8144 sidx = pd2.didx;
8145 didx = pd2.sidx;
8146 } else {
8147 sidx = pd2.sidx;
8148 didx = pd2.didx;
8149 }
8150
8151 if (afto) {
8152 if (pf_translate_icmp_af(nk->af,
8153 &pd->hdr.icmp))
8154 return (PF_DROP);
8155 m_copyback(pd->m, pd->off,
8156 sizeof(struct icmp6_hdr),
8157 (c_caddr_t)&pd->hdr.icmp6);
8158 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8159 &pd2, &nk->addr[sidx],
8160 &nk->addr[didx], pd->af,
8161 nk->af))
8162 return (PF_DROP);
8163 pf_change_ap(pd, pd2.src, &uh.uh_sport,
8164 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.sidx],
8165 nk->port[sidx], 1, pd->af, nk->af);
8166 pf_change_ap(pd, pd2.dst, &uh.uh_dport,
8167 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.didx],
8168 nk->port[didx], 1, pd->af, nk->af);
8169 m_copyback(pd2.m, pd2.off, sizeof(uh),
8170 (c_caddr_t)&uh);
8171 PF_ACPY(&pd->nsaddr,
8172 &nk->addr[pd2.sidx], nk->af);
8173 PF_ACPY(&pd->ndaddr,
8174 &nk->addr[pd2.didx], nk->af);
8175 if (nk->af == AF_INET) {
8176 pd->proto = IPPROTO_ICMP;
8177 } else {
8178 pd->proto = IPPROTO_ICMPV6;
8179 /*
8180 * IPv4 becomes IPv6 so we must
8181 * copy IPv4 src addr to least
8182 * 32bits in IPv6 address to
8183 * keep traceroute/icmp
8184 * working.
8185 */
8186 pd->nsaddr.addr32[3] =
8187 pd->src->addr32[0];
8188 }
8189 pd->naf = nk->af;
8190 return (PF_AFRT);
8191 }
8192 #endif /* INET && INET6 */
8193
8194 if (PF_ANEQ(pd2.src,
8195 &nk->addr[pd2.sidx], pd2.af) ||
8196 nk->port[pd2.sidx] != uh.uh_sport)
8197 pf_change_icmp(pd2.src, &uh.uh_sport,
8198 daddr, &nk->addr[pd2.sidx],
8199 nk->port[pd2.sidx], &uh.uh_sum,
8200 pd2.ip_sum, icmpsum,
8201 pd->ip_sum, 1, pd2.af);
8202
8203 if (PF_ANEQ(pd2.dst,
8204 &nk->addr[pd2.didx], pd2.af) ||
8205 nk->port[pd2.didx] != uh.uh_dport)
8206 pf_change_icmp(pd2.dst, &uh.uh_dport,
8207 saddr, &nk->addr[pd2.didx],
8208 nk->port[pd2.didx], &uh.uh_sum,
8209 pd2.ip_sum, icmpsum,
8210 pd->ip_sum, 1, pd2.af);
8211
8212 switch (pd2.af) {
8213 #ifdef INET
8214 case AF_INET:
8215 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8216 (caddr_t )&pd->hdr.icmp);
8217 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8218 break;
8219 #endif /* INET */
8220 #ifdef INET6
8221 case AF_INET6:
8222 m_copyback(pd->m, pd->off,
8223 sizeof(struct icmp6_hdr),
8224 (caddr_t )&pd->hdr.icmp6);
8225 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8226 (caddr_t )&h2_6);
8227 break;
8228 #endif /* INET6 */
8229 }
8230 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh);
8231 }
8232 return (PF_PASS);
8233 break;
8234 }
8235 #ifdef INET
8236 case IPPROTO_SCTP: {
8237 struct sctphdr sh;
8238 struct pf_state_peer *src;
8239 int copyback = 0;
8240
8241 if (! pf_pull_hdr(pd->m, pd2.off, &sh, sizeof(sh), NULL, reason,
8242 pd2.af)) {
8243 DPFPRINTF(PF_DEBUG_MISC,
8244 ("pf: ICMP error message too short "
8245 "(sctp)\n"));
8246 return (PF_DROP);
8247 }
8248
8249 key.af = pd2.af;
8250 key.proto = IPPROTO_SCTP;
8251 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8252 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8253 key.port[pd2.sidx] = sh.src_port;
8254 key.port[pd2.didx] = sh.dest_port;
8255
8256 STATE_LOOKUP(&key, *state, pd);
8257
8258 if (pd->dir == (*state)->direction) {
8259 if (PF_REVERSED_KEY(*state, pd->af))
8260 src = &(*state)->src;
8261 else
8262 src = &(*state)->dst;
8263 } else {
8264 if (PF_REVERSED_KEY(*state, pd->af))
8265 src = &(*state)->dst;
8266 else
8267 src = &(*state)->src;
8268 }
8269
8270 if (src->scrub->pfss_v_tag != sh.v_tag) {
8271 DPFPRINTF(PF_DEBUG_MISC,
8272 ("pf: ICMP error message has incorrect "
8273 "SCTP v_tag\n"));
8274 return (PF_DROP);
8275 }
8276
8277 /* translate source/destination address, if necessary */
8278 if ((*state)->key[PF_SK_WIRE] !=
8279 (*state)->key[PF_SK_STACK]) {
8280
8281 struct pf_state_key *nk;
8282
8283 if (PF_REVERSED_KEY(*state, pd->af))
8284 nk = (*state)->key[pd->sidx];
8285 else
8286 nk = (*state)->key[pd->didx];
8287
8288 #if defined(INET) && defined(INET6)
8289 int afto, sidx, didx;
8290
8291 afto = pd->af != nk->af;
8292
8293 if (afto && (*state)->direction == PF_IN) {
8294 sidx = pd2.didx;
8295 didx = pd2.sidx;
8296 } else {
8297 sidx = pd2.sidx;
8298 didx = pd2.didx;
8299 }
8300
8301 if (afto) {
8302 if (pf_translate_icmp_af(nk->af,
8303 &pd->hdr.icmp))
8304 return (PF_DROP);
8305 m_copyback(pd->m, pd->off,
8306 sizeof(struct icmp6_hdr),
8307 (c_caddr_t)&pd->hdr.icmp6);
8308 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8309 &pd2, &nk->addr[sidx],
8310 &nk->addr[didx], pd->af,
8311 nk->af))
8312 return (PF_DROP);
8313 sh.src_port = nk->port[sidx];
8314 sh.dest_port = nk->port[didx];
8315 m_copyback(pd2.m, pd2.off, sizeof(sh), (c_caddr_t)&sh);
8316 PF_ACPY(&pd->nsaddr,
8317 &nk->addr[pd2.sidx], nk->af);
8318 PF_ACPY(&pd->ndaddr,
8319 &nk->addr[pd2.didx], nk->af);
8320 if (nk->af == AF_INET) {
8321 pd->proto = IPPROTO_ICMP;
8322 } else {
8323 pd->proto = IPPROTO_ICMPV6;
8324 /*
8325 * IPv4 becomes IPv6 so we must
8326 * copy IPv4 src addr to least
8327 * 32bits in IPv6 address to
8328 * keep traceroute/icmp
8329 * working.
8330 */
8331 pd->nsaddr.addr32[3] =
8332 pd->src->addr32[0];
8333 }
8334 pd->naf = nk->af;
8335 return (PF_AFRT);
8336 }
8337 #endif /* INET && INET6 */
8338
8339 if (PF_ANEQ(pd2.src,
8340 &nk->addr[pd2.sidx], pd2.af) ||
8341 nk->port[pd2.sidx] != sh.src_port)
8342 pf_change_icmp(pd2.src, &sh.src_port,
8343 daddr, &nk->addr[pd2.sidx],
8344 nk->port[pd2.sidx], NULL,
8345 pd2.ip_sum, icmpsum,
8346 pd->ip_sum, 0, pd2.af);
8347
8348 if (PF_ANEQ(pd2.dst,
8349 &nk->addr[pd2.didx], pd2.af) ||
8350 nk->port[pd2.didx] != sh.dest_port)
8351 pf_change_icmp(pd2.dst, &sh.dest_port,
8352 saddr, &nk->addr[pd2.didx],
8353 nk->port[pd2.didx], NULL,
8354 pd2.ip_sum, icmpsum,
8355 pd->ip_sum, 0, pd2.af);
8356 copyback = 1;
8357 }
8358
8359 if (copyback) {
8360 switch (pd2.af) {
8361 #ifdef INET
8362 case AF_INET:
8363 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8364 (caddr_t )&pd->hdr.icmp);
8365 m_copyback(pd->m, ipoff2, sizeof(h2),
8366 (caddr_t )&h2);
8367 break;
8368 #endif /* INET */
8369 #ifdef INET6
8370 case AF_INET6:
8371 m_copyback(pd->m, pd->off,
8372 sizeof(struct icmp6_hdr),
8373 (caddr_t )&pd->hdr.icmp6);
8374 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8375 (caddr_t )&h2_6);
8376 break;
8377 #endif /* INET6 */
8378 }
8379 m_copyback(pd->m, pd2.off, sizeof(sh), (caddr_t)&sh);
8380 }
8381
8382 return (PF_PASS);
8383 break;
8384 }
8385 case IPPROTO_ICMP: {
8386 struct icmp *iih = &pd2.hdr.icmp;
8387
8388 if (pd2.af != AF_INET) {
8389 REASON_SET(reason, PFRES_NORM);
8390 return (PF_DROP);
8391 }
8392
8393 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8394 NULL, reason, pd2.af)) {
8395 DPFPRINTF(PF_DEBUG_MISC,
8396 ("pf: ICMP error message too short i"
8397 "(icmp)\n"));
8398 return (PF_DROP);
8399 }
8400
8401 icmpid = iih->icmp_id;
8402 pf_icmp_mapping(&pd2, iih->icmp_type,
8403 &icmp_dir, &virtual_id, &virtual_type);
8404
8405 ret = pf_icmp_state_lookup(&key, &pd2, state,
8406 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8407 if (ret >= 0) {
8408 MPASS(*state == NULL);
8409 return (ret);
8410 }
8411
8412 /* translate source/destination address, if necessary */
8413 if ((*state)->key[PF_SK_WIRE] !=
8414 (*state)->key[PF_SK_STACK]) {
8415 struct pf_state_key *nk;
8416
8417 if (PF_REVERSED_KEY(*state, pd->af))
8418 nk = (*state)->key[pd->sidx];
8419 else
8420 nk = (*state)->key[pd->didx];
8421
8422 #if defined(INET) && defined(INET6)
8423 int afto, sidx, didx;
8424
8425 afto = pd->af != nk->af;
8426
8427 if (afto && (*state)->direction == PF_IN) {
8428 sidx = pd2.didx;
8429 didx = pd2.sidx;
8430 iidx = !iidx;
8431 } else {
8432 sidx = pd2.sidx;
8433 didx = pd2.didx;
8434 }
8435
8436 if (afto) {
8437 if (nk->af != AF_INET6)
8438 return (PF_DROP);
8439 if (pf_translate_icmp_af(nk->af,
8440 &pd->hdr.icmp))
8441 return (PF_DROP);
8442 m_copyback(pd->m, pd->off,
8443 sizeof(struct icmp6_hdr),
8444 (c_caddr_t)&pd->hdr.icmp6);
8445 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8446 &pd2, &nk->addr[sidx],
8447 &nk->addr[didx], pd->af,
8448 nk->af))
8449 return (PF_DROP);
8450 pd->proto = IPPROTO_ICMPV6;
8451 if (pf_translate_icmp_af(nk->af, iih))
8452 return (PF_DROP);
8453 if (virtual_type == htons(ICMP_ECHO) &&
8454 nk->port[iidx] != iih->icmp_id)
8455 iih->icmp_id = nk->port[iidx];
8456 m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8457 (c_caddr_t)iih);
8458 PF_ACPY(&pd->nsaddr,
8459 &nk->addr[pd2.sidx], nk->af);
8460 PF_ACPY(&pd->ndaddr,
8461 &nk->addr[pd2.didx], nk->af);
8462 /*
8463 * IPv4 becomes IPv6 so we must copy
8464 * IPv4 src addr to least 32bits in
8465 * IPv6 address to keep traceroute
8466 * working.
8467 */
8468 pd->nsaddr.addr32[3] =
8469 pd->src->addr32[0];
8470 pd->naf = nk->af;
8471 return (PF_AFRT);
8472 }
8473 #endif /* INET && INET6 */
8474
8475 if (PF_ANEQ(pd2.src,
8476 &nk->addr[pd2.sidx], pd2.af) ||
8477 (virtual_type == htons(ICMP_ECHO) &&
8478 nk->port[iidx] != iih->icmp_id))
8479 pf_change_icmp(pd2.src,
8480 (virtual_type == htons(ICMP_ECHO)) ?
8481 &iih->icmp_id : NULL,
8482 daddr, &nk->addr[pd2.sidx],
8483 (virtual_type == htons(ICMP_ECHO)) ?
8484 nk->port[iidx] : 0, NULL,
8485 pd2.ip_sum, icmpsum,
8486 pd->ip_sum, 0, AF_INET);
8487
8488 if (PF_ANEQ(pd2.dst,
8489 &nk->addr[pd2.didx], pd2.af))
8490 pf_change_icmp(pd2.dst, NULL, NULL,
8491 &nk->addr[pd2.didx], 0, NULL,
8492 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8493 AF_INET);
8494
8495 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8496 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8497 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8498 }
8499 return (PF_PASS);
8500 break;
8501 }
8502 #endif /* INET */
8503 #ifdef INET6
8504 case IPPROTO_ICMPV6: {
8505 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
8506
8507 if (pd2.af != AF_INET6) {
8508 REASON_SET(reason, PFRES_NORM);
8509 return (PF_DROP);
8510 }
8511
8512 if (!pf_pull_hdr(pd->m, pd2.off, iih,
8513 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8514 DPFPRINTF(PF_DEBUG_MISC,
8515 ("pf: ICMP error message too short "
8516 "(icmp6)\n"));
8517 return (PF_DROP);
8518 }
8519
8520 pf_icmp_mapping(&pd2, iih->icmp6_type,
8521 &icmp_dir, &virtual_id, &virtual_type);
8522
8523 ret = pf_icmp_state_lookup(&key, &pd2, state,
8524 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8525 /* IPv6? try matching a multicast address */
8526 if (ret == PF_DROP && pd2.af == AF_INET6 &&
8527 icmp_dir == PF_OUT) {
8528 MPASS(*state == NULL);
8529 ret = pf_icmp_state_lookup(&key, &pd2,
8530 state, virtual_id, virtual_type,
8531 icmp_dir, &iidx, 1, 1);
8532 }
8533 if (ret >= 0) {
8534 MPASS(*state == NULL);
8535 return (ret);
8536 }
8537
8538 /* translate source/destination address, if necessary */
8539 if ((*state)->key[PF_SK_WIRE] !=
8540 (*state)->key[PF_SK_STACK]) {
8541 struct pf_state_key *nk;
8542
8543 if (PF_REVERSED_KEY(*state, pd->af))
8544 nk = (*state)->key[pd->sidx];
8545 else
8546 nk = (*state)->key[pd->didx];
8547
8548 #if defined(INET) && defined(INET6)
8549 int afto, sidx, didx;
8550
8551 afto = pd->af != nk->af;
8552
8553 if (afto && (*state)->direction == PF_IN) {
8554 sidx = pd2.didx;
8555 didx = pd2.sidx;
8556 iidx = !iidx;
8557 } else {
8558 sidx = pd2.sidx;
8559 didx = pd2.didx;
8560 }
8561
8562 if (afto) {
8563 if (nk->af != AF_INET)
8564 return (PF_DROP);
8565 if (pf_translate_icmp_af(nk->af,
8566 &pd->hdr.icmp))
8567 return (PF_DROP);
8568 m_copyback(pd->m, pd->off,
8569 sizeof(struct icmp6_hdr),
8570 (c_caddr_t)&pd->hdr.icmp6);
8571 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8572 &pd2, &nk->addr[sidx],
8573 &nk->addr[didx], pd->af,
8574 nk->af))
8575 return (PF_DROP);
8576 pd->proto = IPPROTO_ICMP;
8577 if (pf_translate_icmp_af(nk->af, iih))
8578 return (PF_DROP);
8579 if (virtual_type ==
8580 htons(ICMP6_ECHO_REQUEST) &&
8581 nk->port[iidx] != iih->icmp6_id)
8582 iih->icmp6_id = nk->port[iidx];
8583 m_copyback(pd2.m, pd2.off,
8584 sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8585 PF_ACPY(&pd->nsaddr,
8586 &nk->addr[pd2.sidx], nk->af);
8587 PF_ACPY(&pd->ndaddr,
8588 &nk->addr[pd2.didx], nk->af);
8589 pd->naf = nk->af;
8590 return (PF_AFRT);
8591 }
8592 #endif /* INET && INET6 */
8593
8594 if (PF_ANEQ(pd2.src,
8595 &nk->addr[pd2.sidx], pd2.af) ||
8596 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8597 nk->port[pd2.sidx] != iih->icmp6_id))
8598 pf_change_icmp(pd2.src,
8599 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8600 ? &iih->icmp6_id : NULL,
8601 daddr, &nk->addr[pd2.sidx],
8602 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8603 ? nk->port[iidx] : 0, NULL,
8604 pd2.ip_sum, icmpsum,
8605 pd->ip_sum, 0, AF_INET6);
8606
8607 if (PF_ANEQ(pd2.dst,
8608 &nk->addr[pd2.didx], pd2.af))
8609 pf_change_icmp(pd2.dst, NULL, NULL,
8610 &nk->addr[pd2.didx], 0, NULL,
8611 pd2.ip_sum, icmpsum,
8612 pd->ip_sum, 0, AF_INET6);
8613
8614 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8615 (caddr_t)&pd->hdr.icmp6);
8616 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8617 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8618 (caddr_t)iih);
8619 }
8620 return (PF_PASS);
8621 break;
8622 }
8623 #endif /* INET6 */
8624 default: {
8625 key.af = pd2.af;
8626 key.proto = pd2.proto;
8627 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8628 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8629 key.port[0] = key.port[1] = 0;
8630
8631 STATE_LOOKUP(&key, *state, pd);
8632
8633 /* translate source/destination address, if necessary */
8634 if ((*state)->key[PF_SK_WIRE] !=
8635 (*state)->key[PF_SK_STACK]) {
8636 struct pf_state_key *nk =
8637 (*state)->key[pd->didx];
8638
8639 if (PF_ANEQ(pd2.src,
8640 &nk->addr[pd2.sidx], pd2.af))
8641 pf_change_icmp(pd2.src, NULL, daddr,
8642 &nk->addr[pd2.sidx], 0, NULL,
8643 pd2.ip_sum, icmpsum,
8644 pd->ip_sum, 0, pd2.af);
8645
8646 if (PF_ANEQ(pd2.dst,
8647 &nk->addr[pd2.didx], pd2.af))
8648 pf_change_icmp(pd2.dst, NULL, saddr,
8649 &nk->addr[pd2.didx], 0, NULL,
8650 pd2.ip_sum, icmpsum,
8651 pd->ip_sum, 0, pd2.af);
8652
8653 switch (pd2.af) {
8654 #ifdef INET
8655 case AF_INET:
8656 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8657 (caddr_t)&pd->hdr.icmp);
8658 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8659 break;
8660 #endif /* INET */
8661 #ifdef INET6
8662 case AF_INET6:
8663 m_copyback(pd->m, pd->off,
8664 sizeof(struct icmp6_hdr),
8665 (caddr_t )&pd->hdr.icmp6);
8666 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8667 (caddr_t )&h2_6);
8668 break;
8669 #endif /* INET6 */
8670 }
8671 }
8672 return (PF_PASS);
8673 break;
8674 }
8675 }
8676 }
8677 }
8678
8679 /*
8680 * ipoff and off are measured from the start of the mbuf chain.
8681 * h must be at "ipoff" on the mbuf chain.
8682 */
8683 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8684 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8685 u_short *actionp, u_short *reasonp, sa_family_t af)
8686 {
8687 switch (af) {
8688 #ifdef INET
8689 case AF_INET: {
8690 const struct ip *h = mtod(m, struct ip *);
8691 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8692
8693 if (fragoff) {
8694 if (fragoff >= len)
8695 ACTION_SET(actionp, PF_PASS);
8696 else {
8697 ACTION_SET(actionp, PF_DROP);
8698 REASON_SET(reasonp, PFRES_FRAG);
8699 }
8700 return (NULL);
8701 }
8702 if (m->m_pkthdr.len < off + len ||
8703 ntohs(h->ip_len) < off + len) {
8704 ACTION_SET(actionp, PF_DROP);
8705 REASON_SET(reasonp, PFRES_SHORT);
8706 return (NULL);
8707 }
8708 break;
8709 }
8710 #endif /* INET */
8711 #ifdef INET6
8712 case AF_INET6: {
8713 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8714
8715 if (m->m_pkthdr.len < off + len ||
8716 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
8717 (unsigned)(off + len)) {
8718 ACTION_SET(actionp, PF_DROP);
8719 REASON_SET(reasonp, PFRES_SHORT);
8720 return (NULL);
8721 }
8722 break;
8723 }
8724 #endif /* INET6 */
8725 }
8726 m_copydata(m, off, len, p);
8727 return (p);
8728 }
8729
8730 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8731 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8732 int rtableid)
8733 {
8734 struct ifnet *ifp;
8735
8736 /*
8737 * Skip check for addresses with embedded interface scope,
8738 * as they would always match anyway.
8739 */
8740 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8741 return (1);
8742
8743 if (af != AF_INET && af != AF_INET6)
8744 return (0);
8745
8746 if (kif == V_pfi_all)
8747 return (1);
8748
8749 /* Skip checks for ipsec interfaces */
8750 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8751 return (1);
8752
8753 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8754
8755 switch (af) {
8756 #ifdef INET6
8757 case AF_INET6:
8758 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8759 ifp));
8760 #endif /* INET6 */
8761 #ifdef INET
8762 case AF_INET:
8763 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8764 ifp));
8765 #endif /* INET */
8766 }
8767
8768 return (0);
8769 }
8770
8771 #ifdef INET
8772 static void
pf_route(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8773 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
8774 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8775 {
8776 struct mbuf *m0, *m1, *md;
8777 struct route ro;
8778 const struct sockaddr *gw = &ro.ro_dst;
8779 struct sockaddr_in *dst;
8780 struct ip *ip;
8781 struct ifnet *ifp = NULL;
8782 int error = 0;
8783 uint16_t ip_len, ip_off;
8784 uint16_t tmp;
8785 int r_dir;
8786 bool skip_test = false;
8787
8788 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
8789
8790 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp);
8791
8792 if (s) {
8793 r_dir = s->direction;
8794 } else {
8795 r_dir = r->direction;
8796 }
8797
8798 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
8799 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
8800 __func__));
8801
8802 if ((pd->pf_mtag == NULL &&
8803 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
8804 pd->pf_mtag->routed++ > 3) {
8805 m0 = *m;
8806 *m = NULL;
8807 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8808 goto bad_locked;
8809 }
8810
8811 if (pd->act.rt_kif != NULL)
8812 ifp = pd->act.rt_kif->pfik_ifp;
8813
8814 if (pd->act.rt == PF_DUPTO) {
8815 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
8816 if (s != NULL) {
8817 PF_STATE_UNLOCK(s);
8818 }
8819 if (ifp == oifp) {
8820 /* When the 2nd interface is not skipped */
8821 return;
8822 } else {
8823 m0 = *m;
8824 *m = NULL;
8825 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8826 goto bad;
8827 }
8828 } else {
8829 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
8830 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
8831 if (s)
8832 PF_STATE_UNLOCK(s);
8833 return;
8834 }
8835 }
8836 } else {
8837 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
8838 if (pd->af == pd->naf) {
8839 pf_dummynet(pd, s, r, m);
8840 if (s)
8841 PF_STATE_UNLOCK(s);
8842 return;
8843 } else {
8844 if (r_dir == PF_IN) {
8845 skip_test = true;
8846 }
8847 }
8848 }
8849
8850 /*
8851 * If we're actually doing route-to and af-to and are in the
8852 * reply direction.
8853 */
8854 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
8855 pd->af != pd->naf) {
8856 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
8857 /* Un-set ifp so we do a plain route lookup. */
8858 ifp = NULL;
8859 }
8860 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
8861 /* Un-set ifp so we do a plain route lookup. */
8862 ifp = NULL;
8863 }
8864 }
8865 m0 = *m;
8866 }
8867
8868 ip = mtod(m0, struct ip *);
8869
8870 bzero(&ro, sizeof(ro));
8871 dst = (struct sockaddr_in *)&ro.ro_dst;
8872 dst->sin_family = AF_INET;
8873 dst->sin_len = sizeof(struct sockaddr_in);
8874 dst->sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
8875
8876 if (s != NULL){
8877 if (ifp == NULL && (pd->af != pd->naf)) {
8878 /* We're in the AFTO case. Do a route lookup. */
8879 const struct nhop_object *nh;
8880 nh = fib4_lookup(M_GETFIB(*m), ip->ip_dst, 0, NHR_NONE, 0);
8881 if (nh) {
8882 ifp = nh->nh_ifp;
8883
8884 /* Use the gateway if needed. */
8885 if (nh->nh_flags & NHF_GATEWAY) {
8886 gw = &nh->gw_sa;
8887 ro.ro_flags |= RT_HAS_GW;
8888 } else {
8889 dst->sin_addr = ip->ip_dst;
8890 }
8891
8892 /*
8893 * Bind to the correct interface if we're
8894 * if-bound. We don't know which interface
8895 * that will be until here, so we've inserted
8896 * the state on V_pf_all. Fix that now.
8897 */
8898 if (s->kif == V_pfi_all && ifp != NULL &&
8899 r->rule_flag & PFRULE_IFBOUND)
8900 s->kif = ifp->if_pf_kif;
8901 }
8902 }
8903
8904 if (r->rule_flag & PFRULE_IFBOUND &&
8905 pd->act.rt == PF_REPLYTO &&
8906 s->kif == V_pfi_all) {
8907 s->kif = pd->act.rt_kif;
8908 s->orig_kif = oifp->if_pf_kif;
8909 }
8910
8911 PF_STATE_UNLOCK(s);
8912 }
8913
8914 if (ifp == NULL) {
8915 m0 = *m;
8916 *m = NULL;
8917 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8918 goto bad;
8919 }
8920
8921 if (pd->dir == PF_IN && !skip_test) {
8922 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
8923 &pd->act) != PF_PASS) {
8924 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8925 goto bad;
8926 } else if (m0 == NULL) {
8927 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8928 goto done;
8929 }
8930 if (m0->m_len < sizeof(struct ip)) {
8931 DPFPRINTF(PF_DEBUG_URGENT,
8932 ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
8933 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8934 goto bad;
8935 }
8936 ip = mtod(m0, struct ip *);
8937 }
8938
8939 if (ifp->if_flags & IFF_LOOPBACK)
8940 m0->m_flags |= M_SKIP_FIREWALL;
8941
8942 ip_len = ntohs(ip->ip_len);
8943 ip_off = ntohs(ip->ip_off);
8944
8945 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
8946 m0->m_pkthdr.csum_flags |= CSUM_IP;
8947 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
8948 in_delayed_cksum(m0);
8949 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
8950 }
8951 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
8952 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
8953 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
8954 }
8955
8956 if (pd->dir == PF_IN) {
8957 /*
8958 * Make sure dummynet gets the correct direction, in case it needs to
8959 * re-inject later.
8960 */
8961 pd->dir = PF_OUT;
8962
8963 /*
8964 * The following processing is actually the rest of the inbound processing, even
8965 * though we've marked it as outbound (so we don't look through dummynet) and it
8966 * happens after the outbound processing (pf_test(PF_OUT) above).
8967 * Swap the dummynet pipe numbers, because it's going to come to the wrong
8968 * conclusion about what direction it's processing, and we can't fix it or it
8969 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
8970 * decision will pick the right pipe, and everything will mostly work as expected.
8971 */
8972 tmp = pd->act.dnrpipe;
8973 pd->act.dnrpipe = pd->act.dnpipe;
8974 pd->act.dnpipe = tmp;
8975 }
8976
8977 /*
8978 * If small enough for interface, or the interface will take
8979 * care of the fragmentation for us, we can just send directly.
8980 */
8981 if (ip_len <= ifp->if_mtu ||
8982 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
8983 ip->ip_sum = 0;
8984 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
8985 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
8986 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
8987 }
8988 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
8989
8990 md = m0;
8991 error = pf_dummynet_route(pd, s, r, ifp, gw, &md);
8992 if (md != NULL) {
8993 error = (*ifp->if_output)(ifp, md, gw, &ro);
8994 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
8995 }
8996 goto done;
8997 }
8998
8999 /* Balk when DF bit is set or the interface didn't support TSO. */
9000 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9001 error = EMSGSIZE;
9002 KMOD_IPSTAT_INC(ips_cantfrag);
9003 if (pd->act.rt != PF_DUPTO) {
9004 if (s && s->nat_rule != NULL)
9005 MPASS(m0 == pd->m);
9006 PACKET_UNDO_NAT(pd,
9007 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9008 s);
9009
9010 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
9011 ifp->if_mtu);
9012 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9013 goto done;
9014 } else {
9015 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9016 goto bad;
9017 }
9018 }
9019
9020 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9021 if (error) {
9022 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9023 goto bad;
9024 }
9025
9026 for (; m0; m0 = m1) {
9027 m1 = m0->m_nextpkt;
9028 m0->m_nextpkt = NULL;
9029 if (error == 0) {
9030 m_clrprotoflags(m0);
9031 md = m0;
9032 pd->pf_mtag = pf_find_mtag(md);
9033 error = pf_dummynet_route(pd, s, r, ifp,
9034 gw, &md);
9035 if (md != NULL) {
9036 error = (*ifp->if_output)(ifp, md, gw, &ro);
9037 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9038 }
9039 } else
9040 m_freem(m0);
9041 }
9042
9043 if (error == 0)
9044 KMOD_IPSTAT_INC(ips_fragmented);
9045
9046 done:
9047 if (pd->act.rt != PF_DUPTO)
9048 *m = NULL;
9049 return;
9050
9051 bad_locked:
9052 if (s)
9053 PF_STATE_UNLOCK(s);
9054 bad:
9055 m_freem(m0);
9056 goto done;
9057 }
9058 #endif /* INET */
9059
9060 #ifdef INET6
9061 static void
pf_route6(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9062 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
9063 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9064 {
9065 struct mbuf *m0, *md;
9066 struct m_tag *mtag;
9067 struct sockaddr_in6 dst;
9068 struct ip6_hdr *ip6;
9069 struct ifnet *ifp = NULL;
9070 int r_dir;
9071 bool skip_test = false;
9072
9073 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
9074
9075 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp);
9076
9077 if (s) {
9078 r_dir = s->direction;
9079 } else {
9080 r_dir = r->direction;
9081 }
9082
9083 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9084 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9085 __func__));
9086
9087 if ((pd->pf_mtag == NULL &&
9088 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
9089 pd->pf_mtag->routed++ > 3) {
9090 m0 = *m;
9091 *m = NULL;
9092 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9093 goto bad_locked;
9094 }
9095
9096 if (pd->act.rt_kif != NULL)
9097 ifp = pd->act.rt_kif->pfik_ifp;
9098
9099 if (pd->act.rt == PF_DUPTO) {
9100 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9101 if (s != NULL) {
9102 PF_STATE_UNLOCK(s);
9103 }
9104 if (ifp == oifp) {
9105 /* When the 2nd interface is not skipped */
9106 return;
9107 } else {
9108 m0 = *m;
9109 *m = NULL;
9110 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9111 goto bad;
9112 }
9113 } else {
9114 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9115 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
9116 if (s)
9117 PF_STATE_UNLOCK(s);
9118 return;
9119 }
9120 }
9121 } else {
9122 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9123 if (pd->af == pd->naf) {
9124 pf_dummynet(pd, s, r, m);
9125 if (s)
9126 PF_STATE_UNLOCK(s);
9127 return;
9128 } else {
9129 if (r_dir == PF_IN) {
9130 skip_test = true;
9131 }
9132 }
9133 }
9134
9135 /*
9136 * If we're actually doing route-to and af-to and are in the
9137 * reply direction.
9138 */
9139 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9140 pd->af != pd->naf) {
9141 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9142 /* Un-set ifp so we do a plain route lookup. */
9143 ifp = NULL;
9144 }
9145 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9146 /* Un-set ifp so we do a plain route lookup. */
9147 ifp = NULL;
9148 }
9149 }
9150 m0 = *m;
9151 }
9152
9153 ip6 = mtod(m0, struct ip6_hdr *);
9154
9155 bzero(&dst, sizeof(dst));
9156 dst.sin6_family = AF_INET6;
9157 dst.sin6_len = sizeof(dst);
9158 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6);
9159
9160 if (s != NULL) {
9161 if (ifp == NULL && (pd->af != pd->naf)) {
9162 const struct nhop_object *nh;
9163 nh = fib6_lookup(M_GETFIB(*m), &ip6->ip6_dst, 0, NHR_NONE, 0);
9164 if (nh) {
9165 ifp = nh->nh_ifp;
9166
9167 /* Use the gateway if needed. */
9168 if (nh->nh_flags & NHF_GATEWAY)
9169 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9170 sizeof(dst.sin6_addr));
9171 else
9172 dst.sin6_addr = ip6->ip6_dst;
9173
9174 /*
9175 * Bind to the correct interface if we're
9176 * if-bound. We don't know which interface
9177 * that will be until here, so we've inserted
9178 * the state on V_pf_all. Fix that now.
9179 */
9180 if (s->kif == V_pfi_all && ifp != NULL &&
9181 r->rule_flag & PFRULE_IFBOUND)
9182 s->kif = ifp->if_pf_kif;
9183 }
9184 }
9185
9186 if (r->rule_flag & PFRULE_IFBOUND &&
9187 pd->act.rt == PF_REPLYTO &&
9188 s->kif == V_pfi_all) {
9189 s->kif = pd->act.rt_kif;
9190 s->orig_kif = oifp->if_pf_kif;
9191 }
9192
9193 PF_STATE_UNLOCK(s);
9194 }
9195
9196 if (pd->af != pd->naf) {
9197 struct udphdr *uh = &pd->hdr.udp;
9198
9199 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9200 uh->uh_sum = in6_cksum_pseudo(ip6,
9201 ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9202 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9203 }
9204 }
9205
9206 if (ifp == NULL) {
9207 m0 = *m;
9208 *m = NULL;
9209 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9210 goto bad;
9211 }
9212
9213 if (pd->dir == PF_IN && !skip_test) {
9214 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9215 ifp, &m0, inp, &pd->act) != PF_PASS) {
9216 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9217 goto bad;
9218 } else if (m0 == NULL) {
9219 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9220 goto done;
9221 }
9222 if (m0->m_len < sizeof(struct ip6_hdr)) {
9223 DPFPRINTF(PF_DEBUG_URGENT,
9224 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
9225 __func__));
9226 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9227 goto bad;
9228 }
9229 ip6 = mtod(m0, struct ip6_hdr *);
9230 }
9231
9232 if (ifp->if_flags & IFF_LOOPBACK)
9233 m0->m_flags |= M_SKIP_FIREWALL;
9234
9235 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9236 ~ifp->if_hwassist) {
9237 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9238 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9239 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9240 }
9241
9242 if (pd->dir == PF_IN) {
9243 uint16_t tmp;
9244 /*
9245 * Make sure dummynet gets the correct direction, in case it needs to
9246 * re-inject later.
9247 */
9248 pd->dir = PF_OUT;
9249
9250 /*
9251 * The following processing is actually the rest of the inbound processing, even
9252 * though we've marked it as outbound (so we don't look through dummynet) and it
9253 * happens after the outbound processing (pf_test(PF_OUT) above).
9254 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9255 * conclusion about what direction it's processing, and we can't fix it or it
9256 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9257 * decision will pick the right pipe, and everything will mostly work as expected.
9258 */
9259 tmp = pd->act.dnrpipe;
9260 pd->act.dnrpipe = pd->act.dnpipe;
9261 pd->act.dnpipe = tmp;
9262 }
9263
9264 /*
9265 * If the packet is too large for the outgoing interface,
9266 * send back an icmp6 error.
9267 */
9268 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9269 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9270 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9271 if (mtag != NULL) {
9272 int ret __sdt_used;
9273 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9274 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9275 goto done;
9276 }
9277
9278 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9279 md = m0;
9280 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9281 if (md != NULL) {
9282 int ret __sdt_used;
9283 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9284 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9285 }
9286 }
9287 else {
9288 in6_ifstat_inc(ifp, ifs6_in_toobig);
9289 if (pd->act.rt != PF_DUPTO) {
9290 if (s && s->nat_rule != NULL)
9291 MPASS(m0 == pd->m);
9292 PACKET_UNDO_NAT(pd,
9293 ((caddr_t)ip6 - m0->m_data) +
9294 sizeof(struct ip6_hdr), s);
9295
9296 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
9297 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9298 } else {
9299 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9300 goto bad;
9301 }
9302 }
9303
9304 done:
9305 if (pd->act.rt != PF_DUPTO)
9306 *m = NULL;
9307 return;
9308
9309 bad_locked:
9310 if (s)
9311 PF_STATE_UNLOCK(s);
9312 bad:
9313 m_freem(m0);
9314 goto done;
9315 }
9316 #endif /* INET6 */
9317
9318 /*
9319 * FreeBSD supports cksum offloads for the following drivers.
9320 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9321 *
9322 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9323 * network driver performed cksum including pseudo header, need to verify
9324 * csum_data
9325 * CSUM_DATA_VALID :
9326 * network driver performed cksum, needs to additional pseudo header
9327 * cksum computation with partial csum_data(i.e. lack of H/W support for
9328 * pseudo header, for instance sk(4) and possibly gem(4))
9329 *
9330 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9331 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9332 * TCP/UDP layer.
9333 * Also, set csum_data to 0xffff to force cksum validation.
9334 */
9335 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9336 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9337 {
9338 u_int16_t sum = 0;
9339 int hw_assist = 0;
9340 struct ip *ip;
9341
9342 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9343 return (1);
9344 if (m->m_pkthdr.len < off + len)
9345 return (1);
9346
9347 switch (p) {
9348 case IPPROTO_TCP:
9349 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9350 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9351 sum = m->m_pkthdr.csum_data;
9352 } else {
9353 ip = mtod(m, struct ip *);
9354 sum = in_pseudo(ip->ip_src.s_addr,
9355 ip->ip_dst.s_addr, htonl((u_short)len +
9356 m->m_pkthdr.csum_data + IPPROTO_TCP));
9357 }
9358 sum ^= 0xffff;
9359 ++hw_assist;
9360 }
9361 break;
9362 case IPPROTO_UDP:
9363 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9364 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9365 sum = m->m_pkthdr.csum_data;
9366 } else {
9367 ip = mtod(m, struct ip *);
9368 sum = in_pseudo(ip->ip_src.s_addr,
9369 ip->ip_dst.s_addr, htonl((u_short)len +
9370 m->m_pkthdr.csum_data + IPPROTO_UDP));
9371 }
9372 sum ^= 0xffff;
9373 ++hw_assist;
9374 }
9375 break;
9376 case IPPROTO_ICMP:
9377 #ifdef INET6
9378 case IPPROTO_ICMPV6:
9379 #endif /* INET6 */
9380 break;
9381 default:
9382 return (1);
9383 }
9384
9385 if (!hw_assist) {
9386 switch (af) {
9387 case AF_INET:
9388 if (m->m_len < sizeof(struct ip))
9389 return (1);
9390 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9391 break;
9392 #ifdef INET6
9393 case AF_INET6:
9394 if (m->m_len < sizeof(struct ip6_hdr))
9395 return (1);
9396 sum = in6_cksum(m, p, off, len);
9397 break;
9398 #endif /* INET6 */
9399 }
9400 }
9401 if (sum) {
9402 switch (p) {
9403 case IPPROTO_TCP:
9404 {
9405 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9406 break;
9407 }
9408 case IPPROTO_UDP:
9409 {
9410 KMOD_UDPSTAT_INC(udps_badsum);
9411 break;
9412 }
9413 #ifdef INET
9414 case IPPROTO_ICMP:
9415 {
9416 KMOD_ICMPSTAT_INC(icps_checksum);
9417 break;
9418 }
9419 #endif
9420 #ifdef INET6
9421 case IPPROTO_ICMPV6:
9422 {
9423 KMOD_ICMP6STAT_INC(icp6s_checksum);
9424 break;
9425 }
9426 #endif /* INET6 */
9427 }
9428 return (1);
9429 } else {
9430 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9431 m->m_pkthdr.csum_flags |=
9432 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9433 m->m_pkthdr.csum_data = 0xffff;
9434 }
9435 }
9436 return (0);
9437 }
9438
9439 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9440 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9441 const struct pf_kstate *s, struct ip_fw_args *dnflow)
9442 {
9443 int dndir = r->direction;
9444
9445 if (s && dndir == PF_INOUT) {
9446 dndir = s->direction;
9447 } else if (dndir == PF_INOUT) {
9448 /* Assume primary direction. Happens when we've set dnpipe in
9449 * the ethernet level code. */
9450 dndir = pd->dir;
9451 }
9452
9453 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9454 return (false);
9455
9456 memset(dnflow, 0, sizeof(*dnflow));
9457
9458 if (pd->dport != NULL)
9459 dnflow->f_id.dst_port = ntohs(*pd->dport);
9460 if (pd->sport != NULL)
9461 dnflow->f_id.src_port = ntohs(*pd->sport);
9462
9463 if (pd->dir == PF_IN)
9464 dnflow->flags |= IPFW_ARGS_IN;
9465 else
9466 dnflow->flags |= IPFW_ARGS_OUT;
9467
9468 if (pd->dir != dndir && pd->act.dnrpipe) {
9469 dnflow->rule.info = pd->act.dnrpipe;
9470 }
9471 else if (pd->dir == dndir && pd->act.dnpipe) {
9472 dnflow->rule.info = pd->act.dnpipe;
9473 }
9474 else {
9475 return (false);
9476 }
9477
9478 dnflow->rule.info |= IPFW_IS_DUMMYNET;
9479 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9480 dnflow->rule.info |= IPFW_IS_PIPE;
9481
9482 dnflow->f_id.proto = pd->proto;
9483 dnflow->f_id.extra = dnflow->rule.info;
9484 switch (pd->naf) {
9485 case AF_INET:
9486 dnflow->f_id.addr_type = 4;
9487 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9488 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9489 break;
9490 case AF_INET6:
9491 dnflow->flags |= IPFW_ARGS_IP6;
9492 dnflow->f_id.addr_type = 6;
9493 dnflow->f_id.src_ip6 = pd->src->v6;
9494 dnflow->f_id.dst_ip6 = pd->dst->v6;
9495 break;
9496 }
9497
9498 return (true);
9499 }
9500
9501 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9502 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9503 struct inpcb *inp)
9504 {
9505 struct pfi_kkif *kif;
9506 struct mbuf *m = *m0;
9507
9508 M_ASSERTPKTHDR(m);
9509 MPASS(ifp->if_vnet == curvnet);
9510 NET_EPOCH_ASSERT();
9511
9512 if (!V_pf_status.running)
9513 return (PF_PASS);
9514
9515 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9516
9517 if (kif == NULL) {
9518 DPFPRINTF(PF_DEBUG_URGENT,
9519 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
9520 return (PF_DROP);
9521 }
9522 if (kif->pfik_flags & PFI_IFLAG_SKIP)
9523 return (PF_PASS);
9524
9525 if (m->m_flags & M_SKIP_FIREWALL)
9526 return (PF_PASS);
9527
9528 if (__predict_false(! M_WRITABLE(*m0))) {
9529 m = *m0 = m_unshare(*m0, M_NOWAIT);
9530 if (*m0 == NULL)
9531 return (PF_DROP);
9532 }
9533
9534 /* Stateless! */
9535 return (pf_test_eth_rule(dir, kif, m0));
9536 }
9537
9538 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9539 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9540 {
9541 struct m_tag *mtag;
9542
9543 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9544
9545 /* dummynet adds this tag, but pf does not need it,
9546 * and keeping it creates unexpected behavior,
9547 * e.g. in case of divert(4) usage right after dummynet. */
9548 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9549 if (mtag != NULL)
9550 m_tag_delete(m, mtag);
9551 }
9552
9553 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9554 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9555 struct pf_krule *r, struct mbuf **m0)
9556 {
9557 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9558 }
9559
9560 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9561 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9562 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9563 struct mbuf **m0)
9564 {
9565 struct ip_fw_args dnflow;
9566
9567 NET_EPOCH_ASSERT();
9568
9569 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9570 return (0);
9571
9572 if (ip_dn_io_ptr == NULL) {
9573 m_freem(*m0);
9574 *m0 = NULL;
9575 return (ENOMEM);
9576 }
9577
9578 if (pd->pf_mtag == NULL &&
9579 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9580 m_freem(*m0);
9581 *m0 = NULL;
9582 return (ENOMEM);
9583 }
9584
9585 if (ifp != NULL) {
9586 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9587
9588 pd->pf_mtag->if_index = ifp->if_index;
9589 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9590
9591 MPASS(sa != NULL);
9592
9593 switch (sa->sa_family) {
9594 case AF_INET:
9595 memcpy(&pd->pf_mtag->dst, sa,
9596 sizeof(struct sockaddr_in));
9597 break;
9598 case AF_INET6:
9599 memcpy(&pd->pf_mtag->dst, sa,
9600 sizeof(struct sockaddr_in6));
9601 break;
9602 }
9603 }
9604
9605 if (s != NULL && s->nat_rule != NULL &&
9606 s->nat_rule->action == PF_RDR &&
9607 (
9608 #ifdef INET
9609 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9610 #endif /* INET */
9611 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9612 /*
9613 * If we're redirecting to loopback mark this packet
9614 * as being local. Otherwise it might get dropped
9615 * if dummynet re-injects.
9616 */
9617 (*m0)->m_pkthdr.rcvif = V_loif;
9618 }
9619
9620 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9621 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9622 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9623 ip_dn_io_ptr(m0, &dnflow);
9624 if (*m0 != NULL) {
9625 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9626 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9627 }
9628 }
9629
9630 return (0);
9631 }
9632
9633 #ifdef INET6
9634 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)9635 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
9636 u_short *reason)
9637 {
9638 struct ip6_opt opt;
9639 struct ip6_opt_jumbo jumbo;
9640
9641 while (off < end) {
9642 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
9643 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) {
9644 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
9645 return (PF_DROP);
9646 }
9647 if (opt.ip6o_type == IP6OPT_PAD1) {
9648 off++;
9649 continue;
9650 }
9651 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL,
9652 reason, AF_INET6)) {
9653 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
9654 return (PF_DROP);
9655 }
9656 if (off + sizeof(opt) + opt.ip6o_len > end) {
9657 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
9658 REASON_SET(reason, PFRES_IPOPTIONS);
9659 return (PF_DROP);
9660 }
9661 switch (opt.ip6o_type) {
9662 case IP6OPT_JUMBO:
9663 if (pd->jumbolen != 0) {
9664 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
9665 REASON_SET(reason, PFRES_IPOPTIONS);
9666 return (PF_DROP);
9667 }
9668 if (ntohs(h->ip6_plen) != 0) {
9669 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
9670 REASON_SET(reason, PFRES_IPOPTIONS);
9671 return (PF_DROP);
9672 }
9673 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL,
9674 reason, AF_INET6)) {
9675 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
9676 return (PF_DROP);
9677 }
9678 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
9679 sizeof(pd->jumbolen));
9680 pd->jumbolen = ntohl(pd->jumbolen);
9681 if (pd->jumbolen < IPV6_MAXPACKET) {
9682 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
9683 REASON_SET(reason, PFRES_IPOPTIONS);
9684 return (PF_DROP);
9685 }
9686 break;
9687 default:
9688 break;
9689 }
9690 off += sizeof(opt) + opt.ip6o_len;
9691 }
9692
9693 return (PF_PASS);
9694 }
9695
9696 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)9697 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
9698 {
9699 struct ip6_frag frag;
9700 struct ip6_ext ext;
9701 struct ip6_rthdr rthdr;
9702 uint32_t end;
9703 int fraghdr_cnt = 0, rthdr_cnt = 0;
9704
9705 pd->off += sizeof(struct ip6_hdr);
9706 end = pd->off + ntohs(h->ip6_plen);
9707 pd->fragoff = pd->extoff = pd->jumbolen = 0;
9708 pd->proto = h->ip6_nxt;
9709 for (;;) {
9710 switch (pd->proto) {
9711 case IPPROTO_FRAGMENT:
9712 if (fraghdr_cnt++) {
9713 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
9714 REASON_SET(reason, PFRES_FRAG);
9715 return (PF_DROP);
9716 }
9717 /* jumbo payload packets cannot be fragmented */
9718 if (pd->jumbolen != 0) {
9719 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
9720 REASON_SET(reason, PFRES_FRAG);
9721 return (PF_DROP);
9722 }
9723 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
9724 NULL, reason, AF_INET6)) {
9725 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
9726 return (PF_DROP);
9727 }
9728 /* stop walking over non initial fragments */
9729 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
9730 pd->fragoff = pd->off;
9731 return (PF_PASS);
9732 }
9733 /* RFC6946: reassemble only non atomic fragments */
9734 if (frag.ip6f_offlg & IP6F_MORE_FRAG)
9735 pd->fragoff = pd->off;
9736 pd->off += sizeof(frag);
9737 pd->proto = frag.ip6f_nxt;
9738 break;
9739 case IPPROTO_ROUTING:
9740 if (rthdr_cnt++) {
9741 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
9742 REASON_SET(reason, PFRES_IPOPTIONS);
9743 return (PF_DROP);
9744 }
9745 /* fragments may be short */
9746 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
9747 pd->off = pd->fragoff;
9748 pd->proto = IPPROTO_FRAGMENT;
9749 return (PF_PASS);
9750 }
9751 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
9752 NULL, reason, AF_INET6)) {
9753 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
9754 return (PF_DROP);
9755 }
9756 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
9757 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
9758 REASON_SET(reason, PFRES_IPOPTIONS);
9759 return (PF_DROP);
9760 }
9761 /* FALLTHROUGH */
9762 case IPPROTO_AH:
9763 case IPPROTO_HOPOPTS:
9764 case IPPROTO_DSTOPTS:
9765 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9766 NULL, reason, AF_INET6)) {
9767 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
9768 return (PF_DROP);
9769 }
9770 /* fragments may be short */
9771 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
9772 pd->off = pd->fragoff;
9773 pd->proto = IPPROTO_FRAGMENT;
9774 return (PF_PASS);
9775 }
9776 /* reassembly needs the ext header before the frag */
9777 if (pd->fragoff == 0)
9778 pd->extoff = pd->off;
9779 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) {
9780 if (pf_walk_option6(pd, h,
9781 pd->off + sizeof(ext),
9782 pd->off + (ext.ip6e_len + 1) * 8, reason)
9783 != PF_PASS)
9784 return (PF_DROP);
9785 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
9786 DPFPRINTF(PF_DEBUG_MISC,
9787 ("IPv6 missing jumbo"));
9788 REASON_SET(reason, PFRES_IPOPTIONS);
9789 return (PF_DROP);
9790 }
9791 }
9792 if (pd->proto == IPPROTO_AH)
9793 pd->off += (ext.ip6e_len + 2) * 4;
9794 else
9795 pd->off += (ext.ip6e_len + 1) * 8;
9796 pd->proto = ext.ip6e_nxt;
9797 break;
9798 case IPPROTO_TCP:
9799 case IPPROTO_UDP:
9800 case IPPROTO_SCTP:
9801 case IPPROTO_ICMPV6:
9802 /* fragments may be short, ignore inner header then */
9803 if (pd->fragoff != 0 && end < pd->off +
9804 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
9805 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
9806 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
9807 sizeof(struct icmp6_hdr))) {
9808 pd->off = pd->fragoff;
9809 pd->proto = IPPROTO_FRAGMENT;
9810 }
9811 /* FALLTHROUGH */
9812 default:
9813 return (PF_PASS);
9814 }
9815 }
9816 }
9817 #endif /* INET6 */
9818
9819 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)9820 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
9821 {
9822 memset(pd, 0, sizeof(*pd));
9823 pd->pf_mtag = pf_find_mtag(m);
9824 pd->m = m;
9825 }
9826
9827 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)9828 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
9829 u_short *action, u_short *reason, struct pfi_kkif *kif,
9830 struct pf_rule_actions *default_actions)
9831 {
9832 pd->dir = dir;
9833 pd->kif = kif;
9834 pd->m = *m0;
9835 pd->sidx = (dir == PF_IN) ? 0 : 1;
9836 pd->didx = (dir == PF_IN) ? 1 : 0;
9837 pd->af = pd->naf = af;
9838
9839 TAILQ_INIT(&pd->sctp_multihome_jobs);
9840 if (default_actions != NULL)
9841 memcpy(&pd->act, default_actions, sizeof(pd->act));
9842
9843 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
9844 pd->act.dnpipe = pd->pf_mtag->dnpipe;
9845 pd->act.flags = pd->pf_mtag->dnflags;
9846 }
9847
9848 switch (af) {
9849 #ifdef INET
9850 case AF_INET: {
9851 struct ip *h;
9852
9853 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
9854 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
9855 DPFPRINTF(PF_DEBUG_URGENT,
9856 ("pf_test: m_len < sizeof(struct ip), pullup failed\n"));
9857 *action = PF_DROP;
9858 REASON_SET(reason, PFRES_SHORT);
9859 return (-1);
9860 }
9861
9862 if (pf_normalize_ip(reason, pd) != PF_PASS) {
9863 /* We do IP header normalization and packet reassembly here */
9864 *m0 = pd->m;
9865 *action = PF_DROP;
9866 return (-1);
9867 }
9868 *m0 = pd->m;
9869
9870 h = mtod(pd->m, struct ip *);
9871 pd->off = h->ip_hl << 2;
9872 if (pd->off < (int)sizeof(*h)) {
9873 *action = PF_DROP;
9874 REASON_SET(reason, PFRES_SHORT);
9875 return (-1);
9876 }
9877 pd->src = (struct pf_addr *)&h->ip_src;
9878 pd->dst = (struct pf_addr *)&h->ip_dst;
9879 PF_ACPY(&pd->osrc, pd->src, af);
9880 PF_ACPY(&pd->odst, pd->dst, af);
9881 pd->ip_sum = &h->ip_sum;
9882 pd->virtual_proto = pd->proto = h->ip_p;
9883 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
9884 pd->ttl = h->ip_ttl;
9885 pd->tot_len = ntohs(h->ip_len);
9886 pd->act.rtableid = -1;
9887 pd->df = h->ip_off & htons(IP_DF);
9888
9889 if (h->ip_hl > 5) /* has options */
9890 pd->badopts++;
9891
9892 if (h->ip_off & htons(IP_MF | IP_OFFMASK))
9893 pd->virtual_proto = PF_VPROTO_FRAGMENT;
9894
9895 break;
9896 }
9897 #endif /* INET */
9898 #ifdef INET6
9899 case AF_INET6: {
9900 struct ip6_hdr *h;
9901
9902 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
9903 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
9904 DPFPRINTF(PF_DEBUG_URGENT,
9905 ("pf_test6: m_len < sizeof(struct ip6_hdr)"
9906 ", pullup failed\n"));
9907 *action = PF_DROP;
9908 REASON_SET(reason, PFRES_SHORT);
9909 return (-1);
9910 }
9911
9912 h = mtod(pd->m, struct ip6_hdr *);
9913 pd->off = 0;
9914 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
9915 *action = PF_DROP;
9916 return (-1);
9917 }
9918
9919 h = mtod(pd->m, struct ip6_hdr *);
9920 pd->src = (struct pf_addr *)&h->ip6_src;
9921 pd->dst = (struct pf_addr *)&h->ip6_dst;
9922 PF_ACPY(&pd->osrc, pd->src, af);
9923 PF_ACPY(&pd->odst, pd->dst, af);
9924 pd->ip_sum = NULL;
9925 pd->tos = IPV6_DSCP(h);
9926 pd->ttl = h->ip6_hlim;
9927 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
9928 pd->virtual_proto = pd->proto = h->ip6_nxt;
9929 pd->act.rtableid = -1;
9930
9931 if (pd->fragoff != 0)
9932 pd->virtual_proto = PF_VPROTO_FRAGMENT;
9933
9934 /*
9935 * we do not support jumbogram. if we keep going, zero ip6_plen
9936 * will do something bad, so drop the packet for now.
9937 */
9938 if (htons(h->ip6_plen) == 0) {
9939 *action = PF_DROP;
9940 return (-1);
9941 }
9942
9943 /* We do IP header normalization and packet reassembly here */
9944 if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
9945 PF_PASS) {
9946 *m0 = pd->m;
9947 *action = PF_DROP;
9948 return (-1);
9949 }
9950 *m0 = pd->m;
9951 if (pd->m == NULL) {
9952 /* packet sits in reassembly queue, no error */
9953 *action = PF_PASS;
9954 return (-1);
9955 }
9956
9957 /* Update pointers into the packet. */
9958 h = mtod(pd->m, struct ip6_hdr *);
9959 pd->src = (struct pf_addr *)&h->ip6_src;
9960 pd->dst = (struct pf_addr *)&h->ip6_dst;
9961
9962 pd->off = 0;
9963
9964 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
9965 *action = PF_DROP;
9966 return (-1);
9967 }
9968
9969 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
9970 /*
9971 * Reassembly may have changed the next protocol from
9972 * fragment to something else, so update.
9973 */
9974 pd->virtual_proto = pd->proto;
9975 MPASS(pd->fragoff == 0);
9976 }
9977
9978 if (pd->fragoff != 0)
9979 pd->virtual_proto = PF_VPROTO_FRAGMENT;
9980
9981 break;
9982 }
9983 #endif /* INET6 */
9984 default:
9985 panic("pf_setup_pdesc called with illegal af %u", af);
9986 }
9987
9988 switch (pd->virtual_proto) {
9989 case IPPROTO_TCP: {
9990 struct tcphdr *th = &pd->hdr.tcp;
9991
9992 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
9993 reason, af)) {
9994 *action = PF_DROP;
9995 REASON_SET(reason, PFRES_SHORT);
9996 return (-1);
9997 }
9998 pd->hdrlen = sizeof(*th);
9999 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10000 pd->sport = &th->th_sport;
10001 pd->dport = &th->th_dport;
10002 pd->pcksum = &th->th_sum;
10003 break;
10004 }
10005 case IPPROTO_UDP: {
10006 struct udphdr *uh = &pd->hdr.udp;
10007
10008 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10009 reason, af)) {
10010 *action = PF_DROP;
10011 REASON_SET(reason, PFRES_SHORT);
10012 return (-1);
10013 }
10014 pd->hdrlen = sizeof(*uh);
10015 if (uh->uh_dport == 0 ||
10016 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10017 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10018 *action = PF_DROP;
10019 REASON_SET(reason, PFRES_SHORT);
10020 return (-1);
10021 }
10022 pd->sport = &uh->uh_sport;
10023 pd->dport = &uh->uh_dport;
10024 pd->pcksum = &uh->uh_sum;
10025 break;
10026 }
10027 case IPPROTO_SCTP: {
10028 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10029 action, reason, af)) {
10030 *action = PF_DROP;
10031 REASON_SET(reason, PFRES_SHORT);
10032 return (-1);
10033 }
10034 pd->hdrlen = sizeof(pd->hdr.sctp);
10035 pd->p_len = pd->tot_len - pd->off;
10036
10037 pd->sport = &pd->hdr.sctp.src_port;
10038 pd->dport = &pd->hdr.sctp.dest_port;
10039 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10040 *action = PF_DROP;
10041 REASON_SET(reason, PFRES_SHORT);
10042 return (-1);
10043 }
10044 if (pf_scan_sctp(pd) != PF_PASS) {
10045 *action = PF_DROP;
10046 REASON_SET(reason, PFRES_SHORT);
10047 return (-1);
10048 }
10049 /*
10050 * Placeholder. The SCTP checksum is 32-bits, but
10051 * pf_test_state() expects to update a 16-bit checksum.
10052 * Provide a dummy value which we'll subsequently ignore.
10053 */
10054 pd->pcksum = &pd->sctp_dummy_sum;
10055 break;
10056 }
10057 case IPPROTO_ICMP: {
10058 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10059 action, reason, af)) {
10060 *action = PF_DROP;
10061 REASON_SET(reason, PFRES_SHORT);
10062 return (-1);
10063 }
10064 pd->hdrlen = ICMP_MINLEN;
10065 break;
10066 }
10067 #ifdef INET6
10068 case IPPROTO_ICMPV6: {
10069 size_t icmp_hlen = sizeof(struct icmp6_hdr);
10070
10071 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10072 action, reason, af)) {
10073 *action = PF_DROP;
10074 REASON_SET(reason, PFRES_SHORT);
10075 return (-1);
10076 }
10077 /* ICMP headers we look further into to match state */
10078 switch (pd->hdr.icmp6.icmp6_type) {
10079 case MLD_LISTENER_QUERY:
10080 case MLD_LISTENER_REPORT:
10081 icmp_hlen = sizeof(struct mld_hdr);
10082 break;
10083 case ND_NEIGHBOR_SOLICIT:
10084 case ND_NEIGHBOR_ADVERT:
10085 icmp_hlen = sizeof(struct nd_neighbor_solicit);
10086 break;
10087 }
10088 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10089 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10090 action, reason, af)) {
10091 *action = PF_DROP;
10092 REASON_SET(reason, PFRES_SHORT);
10093 return (-1);
10094 }
10095 pd->hdrlen = icmp_hlen;
10096 pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10097 break;
10098 }
10099 #endif /* INET6 */
10100 }
10101
10102 if (pd->sport)
10103 pd->osport = pd->nsport = *pd->sport;
10104 if (pd->dport)
10105 pd->odport = pd->ndport = *pd->dport;
10106
10107 return (0);
10108 }
10109
10110 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10111 pf_counters_inc(int action, struct pf_pdesc *pd,
10112 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10113 {
10114 struct pf_krule *tr;
10115 int dir = pd->dir;
10116 int dirndx;
10117
10118 pf_counter_u64_critical_enter();
10119 pf_counter_u64_add_protected(
10120 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10121 pd->tot_len);
10122 pf_counter_u64_add_protected(
10123 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10124 1);
10125
10126 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10127 dirndx = (dir == PF_OUT);
10128 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10129 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10130 pf_update_timestamp(r);
10131
10132 if (a != NULL) {
10133 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10134 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10135 }
10136 if (s != NULL) {
10137 struct pf_krule_item *ri;
10138
10139 if (s->nat_rule != NULL) {
10140 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10141 1);
10142 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10143 pd->tot_len);
10144 }
10145 /*
10146 * Source nodes are accessed unlocked here.
10147 * But since we are operating with stateful tracking
10148 * and the state is locked, those SNs could not have
10149 * been freed.
10150 */
10151 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10152 if (s->sns[sn_type] != NULL) {
10153 counter_u64_add(
10154 s->sns[sn_type]->packets[dirndx],
10155 1);
10156 counter_u64_add(
10157 s->sns[sn_type]->bytes[dirndx],
10158 pd->tot_len);
10159 }
10160 }
10161 dirndx = (dir == s->direction) ? 0 : 1;
10162 s->packets[dirndx]++;
10163 s->bytes[dirndx] += pd->tot_len;
10164
10165 SLIST_FOREACH(ri, &s->match_rules, entry) {
10166 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10167 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10168
10169 if (ri->r->src.addr.type == PF_ADDR_TABLE)
10170 pfr_update_stats(ri->r->src.addr.p.tbl,
10171 (s == NULL) ? pd->src :
10172 &s->key[(s->direction == PF_IN)]->
10173 addr[(s->direction == PF_OUT)],
10174 pd->af, pd->tot_len, dir == PF_OUT,
10175 r->action == PF_PASS, ri->r->src.neg);
10176 if (ri->r->dst.addr.type == PF_ADDR_TABLE)
10177 pfr_update_stats(ri->r->dst.addr.p.tbl,
10178 (s == NULL) ? pd->dst :
10179 &s->key[(s->direction == PF_IN)]->
10180 addr[(s->direction == PF_IN)],
10181 pd->af, pd->tot_len, dir == PF_OUT,
10182 r->action == PF_PASS, ri->r->dst.neg);
10183 }
10184 }
10185
10186 tr = r;
10187 if (s != NULL && s->nat_rule != NULL &&
10188 r == &V_pf_default_rule)
10189 tr = s->nat_rule;
10190
10191 if (tr->src.addr.type == PF_ADDR_TABLE)
10192 pfr_update_stats(tr->src.addr.p.tbl,
10193 (s == NULL) ? pd->src :
10194 &s->key[(s->direction == PF_IN)]->
10195 addr[(s->direction == PF_OUT)],
10196 pd->af, pd->tot_len, dir == PF_OUT,
10197 r->action == PF_PASS, tr->src.neg);
10198 if (tr->dst.addr.type == PF_ADDR_TABLE)
10199 pfr_update_stats(tr->dst.addr.p.tbl,
10200 (s == NULL) ? pd->dst :
10201 &s->key[(s->direction == PF_IN)]->
10202 addr[(s->direction == PF_IN)],
10203 pd->af, pd->tot_len, dir == PF_OUT,
10204 r->action == PF_PASS, tr->dst.neg);
10205 }
10206 pf_counter_u64_critical_exit();
10207 }
10208 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * matchrules)10209 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10210 struct pf_krule *am, struct pf_kruleset *ruleset,
10211 struct pf_krule_slist *matchrules)
10212 {
10213 struct pf_krule_item *ri;
10214
10215 /* if this is the log(matches) rule, packet has been logged already */
10216 if (rm->log & PF_LOG_MATCHES)
10217 return;
10218
10219 SLIST_FOREACH(ri, matchrules, entry)
10220 if (ri->r->log & PF_LOG_MATCHES)
10221 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10222 ruleset, pd, 1, ri->r);
10223 }
10224
10225 #if defined(INET) || defined(INET6)
10226 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10227 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10228 struct inpcb *inp, struct pf_rule_actions *default_actions)
10229 {
10230 struct pfi_kkif *kif;
10231 u_short action, reason = 0;
10232 struct m_tag *mtag;
10233 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
10234 struct pf_kstate *s = NULL;
10235 struct pf_kruleset *ruleset = NULL;
10236 struct pf_pdesc pd;
10237 int use_2nd_queue = 0;
10238 uint16_t tag;
10239
10240 PF_RULES_RLOCK_TRACKER;
10241 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10242 M_ASSERTPKTHDR(*m0);
10243
10244 if (!V_pf_status.running)
10245 return (PF_PASS);
10246
10247 PF_RULES_RLOCK();
10248
10249 kif = (struct pfi_kkif *)ifp->if_pf_kif;
10250
10251 if (__predict_false(kif == NULL)) {
10252 DPFPRINTF(PF_DEBUG_URGENT,
10253 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
10254 PF_RULES_RUNLOCK();
10255 return (PF_DROP);
10256 }
10257 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10258 PF_RULES_RUNLOCK();
10259 return (PF_PASS);
10260 }
10261
10262 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10263 PF_RULES_RUNLOCK();
10264 return (PF_PASS);
10265 }
10266
10267 if (__predict_false(! M_WRITABLE(*m0))) {
10268 *m0 = m_unshare(*m0, M_NOWAIT);
10269 if (*m0 == NULL) {
10270 PF_RULES_RUNLOCK();
10271 return (PF_DROP);
10272 }
10273 }
10274
10275 pf_init_pdesc(&pd, *m0);
10276
10277 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10278 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10279
10280 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10281 pd.pf_mtag->if_idxgen);
10282 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10283 PF_RULES_RUNLOCK();
10284 m_freem(*m0);
10285 *m0 = NULL;
10286 return (PF_PASS);
10287 }
10288 PF_RULES_RUNLOCK();
10289 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10290 *m0 = NULL;
10291 return (PF_PASS);
10292 }
10293
10294 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10295 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10296 /* Dummynet re-injects packets after they've
10297 * completed their delay. We've already
10298 * processed them, so pass unconditionally. */
10299
10300 /* But only once. We may see the packet multiple times (e.g.
10301 * PFIL_IN/PFIL_OUT). */
10302 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10303 PF_RULES_RUNLOCK();
10304
10305 return (PF_PASS);
10306 }
10307
10308 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10309 kif, default_actions) == -1) {
10310 if (action != PF_PASS)
10311 pd.act.log |= PF_LOG_FORCE;
10312 goto done;
10313 }
10314
10315 #ifdef INET
10316 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
10317 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
10318 PF_RULES_RUNLOCK();
10319 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10320 0, ifp->if_mtu);
10321 *m0 = NULL;
10322 return (PF_DROP);
10323 }
10324 #endif /* INET */
10325 #ifdef INET6
10326 /*
10327 * If we end up changing IP addresses (e.g. binat) the stack may get
10328 * confused and fail to send the icmp6 packet too big error. Just send
10329 * it here, before we do any NAT.
10330 */
10331 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10332 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10333 PF_RULES_RUNLOCK();
10334 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10335 *m0 = NULL;
10336 return (PF_DROP);
10337 }
10338 #endif /* INET6 */
10339
10340 if (__predict_false(ip_divert_ptr != NULL) &&
10341 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10342 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10343 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10344 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10345 if (pd.pf_mtag == NULL &&
10346 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10347 action = PF_DROP;
10348 goto done;
10349 }
10350 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10351 }
10352 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10353 pd.m->m_flags |= M_FASTFWD_OURS;
10354 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10355 }
10356 m_tag_delete(pd.m, mtag);
10357
10358 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10359 if (mtag != NULL)
10360 m_tag_delete(pd.m, mtag);
10361 }
10362
10363 switch (pd.virtual_proto) {
10364 case PF_VPROTO_FRAGMENT:
10365 /*
10366 * handle fragments that aren't reassembled by
10367 * normalization
10368 */
10369 if (kif == NULL || r == NULL) /* pflog */
10370 action = PF_DROP;
10371 else
10372 action = pf_test_rule(&r, &s, &pd, &a,
10373 &ruleset, &reason, inp);
10374 if (action != PF_PASS)
10375 REASON_SET(&reason, PFRES_FRAG);
10376 break;
10377
10378 case IPPROTO_TCP: {
10379 /* Respond to SYN with a syncookie. */
10380 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10381 pd.dir == PF_IN && pf_synflood_check(&pd)) {
10382 pf_syncookie_send(&pd);
10383 action = PF_DROP;
10384 break;
10385 }
10386
10387 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10388 use_2nd_queue = 1;
10389 action = pf_normalize_tcp(&pd);
10390 if (action == PF_DROP)
10391 goto done;
10392 action = pf_test_state(&s, &pd, &reason);
10393 if (action == PF_PASS || action == PF_AFRT) {
10394 if (V_pfsync_update_state_ptr != NULL)
10395 V_pfsync_update_state_ptr(s);
10396 r = s->rule;
10397 a = s->anchor;
10398 } else if (s == NULL) {
10399 /* Validate remote SYN|ACK, re-create original SYN if
10400 * valid. */
10401 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10402 TH_ACK && pf_syncookie_validate(&pd) &&
10403 pd.dir == PF_IN) {
10404 struct mbuf *msyn;
10405
10406 msyn = pf_syncookie_recreate_syn(&pd);
10407 if (msyn == NULL) {
10408 action = PF_DROP;
10409 break;
10410 }
10411
10412 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10413 &pd.act);
10414 m_freem(msyn);
10415 if (action != PF_PASS)
10416 break;
10417
10418 action = pf_test_state(&s, &pd, &reason);
10419 if (action != PF_PASS || s == NULL) {
10420 action = PF_DROP;
10421 break;
10422 }
10423
10424 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10425 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10426 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10427 action = pf_synproxy(&pd, s, &reason);
10428 break;
10429 } else {
10430 action = pf_test_rule(&r, &s, &pd,
10431 &a, &ruleset, &reason, inp);
10432 }
10433 }
10434 break;
10435 }
10436
10437 case IPPROTO_SCTP:
10438 action = pf_normalize_sctp(&pd);
10439 if (action == PF_DROP)
10440 goto done;
10441 /* fallthrough */
10442 case IPPROTO_UDP:
10443 default:
10444 action = pf_test_state(&s, &pd, &reason);
10445 if (action == PF_PASS || action == PF_AFRT) {
10446 if (V_pfsync_update_state_ptr != NULL)
10447 V_pfsync_update_state_ptr(s);
10448 r = s->rule;
10449 a = s->anchor;
10450 } else if (s == NULL) {
10451 action = pf_test_rule(&r, &s,
10452 &pd, &a, &ruleset, &reason, inp);
10453 }
10454 break;
10455
10456 case IPPROTO_ICMP:
10457 case IPPROTO_ICMPV6: {
10458 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10459 action = PF_DROP;
10460 REASON_SET(&reason, PFRES_NORM);
10461 DPFPRINTF(PF_DEBUG_MISC,
10462 ("dropping IPv6 packet with ICMPv4 payload"));
10463 goto done;
10464 }
10465 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10466 action = PF_DROP;
10467 REASON_SET(&reason, PFRES_NORM);
10468 DPFPRINTF(PF_DEBUG_MISC,
10469 ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
10470 goto done;
10471 }
10472 action = pf_test_state_icmp(&s, &pd, &reason);
10473 if (action == PF_PASS || action == PF_AFRT) {
10474 if (V_pfsync_update_state_ptr != NULL)
10475 V_pfsync_update_state_ptr(s);
10476 r = s->rule;
10477 a = s->anchor;
10478 } else if (s == NULL)
10479 action = pf_test_rule(&r, &s, &pd,
10480 &a, &ruleset, &reason, inp);
10481 break;
10482 }
10483
10484 }
10485
10486 done:
10487 PF_RULES_RUNLOCK();
10488
10489 if (pd.m == NULL)
10490 goto eat_pkt;
10491
10492 if (action == PF_PASS && pd.badopts &&
10493 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || pd.act.allow_opts)) {
10494 action = PF_DROP;
10495 REASON_SET(&reason, PFRES_IPOPTIONS);
10496 pd.act.log = PF_LOG_FORCE;
10497 DPFPRINTF(PF_DEBUG_MISC,
10498 ("pf: dropping packet with dangerous headers\n"));
10499 }
10500
10501 if (s) {
10502 uint8_t log = pd.act.log;
10503 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
10504 pd.act.log |= log;
10505 tag = s->tag;
10506 } else {
10507 tag = r->tag;
10508 }
10509
10510 if (tag > 0 && pf_tag_packet(&pd, tag)) {
10511 action = PF_DROP;
10512 REASON_SET(&reason, PFRES_MEMORY);
10513 }
10514
10515 pf_scrub(&pd);
10516 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
10517 pf_normalize_mss(&pd);
10518
10519 if (pd.act.rtableid >= 0)
10520 M_SETFIB(pd.m, pd.act.rtableid);
10521
10522 if (pd.act.flags & PFSTATE_SETPRIO) {
10523 if (pd.tos & IPTOS_LOWDELAY)
10524 use_2nd_queue = 1;
10525 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
10526 action = PF_DROP;
10527 REASON_SET(&reason, PFRES_MEMORY);
10528 pd.act.log = PF_LOG_FORCE;
10529 DPFPRINTF(PF_DEBUG_MISC,
10530 ("pf: failed to allocate 802.1q mtag\n"));
10531 }
10532 }
10533
10534 #ifdef ALTQ
10535 if (action == PF_PASS && pd.act.qid) {
10536 if (pd.pf_mtag == NULL &&
10537 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10538 action = PF_DROP;
10539 REASON_SET(&reason, PFRES_MEMORY);
10540 } else {
10541 if (s != NULL)
10542 pd.pf_mtag->qid_hash = pf_state_hash(s);
10543 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
10544 pd.pf_mtag->qid = pd.act.pqid;
10545 else
10546 pd.pf_mtag->qid = pd.act.qid;
10547 /* Add hints for ecn. */
10548 pd.pf_mtag->hdr = mtod(pd.m, void *);
10549 }
10550 }
10551 #endif /* ALTQ */
10552
10553 /*
10554 * connections redirected to loopback should not match sockets
10555 * bound specifically to loopback due to security implications,
10556 * see tcp_input() and in_pcblookup_listen().
10557 */
10558 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
10559 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
10560 (s->nat_rule->action == PF_RDR ||
10561 s->nat_rule->action == PF_BINAT) &&
10562 pf_is_loopback(af, pd.dst))
10563 pd.m->m_flags |= M_SKIP_FIREWALL;
10564
10565 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
10566 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
10567 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
10568 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
10569 if (mtag != NULL) {
10570 ((struct pf_divert_mtag *)(mtag+1))->port =
10571 ntohs(r->divert.port);
10572 ((struct pf_divert_mtag *)(mtag+1))->idir =
10573 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
10574 PF_DIVERT_MTAG_DIR_OUT;
10575
10576 if (s)
10577 PF_STATE_UNLOCK(s);
10578
10579 m_tag_prepend(pd.m, mtag);
10580 if (pd.m->m_flags & M_FASTFWD_OURS) {
10581 if (pd.pf_mtag == NULL &&
10582 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10583 action = PF_DROP;
10584 REASON_SET(&reason, PFRES_MEMORY);
10585 pd.act.log = PF_LOG_FORCE;
10586 DPFPRINTF(PF_DEBUG_MISC,
10587 ("pf: failed to allocate tag\n"));
10588 } else {
10589 pd.pf_mtag->flags |=
10590 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10591 pd.m->m_flags &= ~M_FASTFWD_OURS;
10592 }
10593 }
10594 ip_divert_ptr(*m0, dir == PF_IN);
10595 *m0 = NULL;
10596
10597 return (action);
10598 } else {
10599 /* XXX: ipfw has the same behaviour! */
10600 action = PF_DROP;
10601 REASON_SET(&reason, PFRES_MEMORY);
10602 pd.act.log = PF_LOG_FORCE;
10603 DPFPRINTF(PF_DEBUG_MISC,
10604 ("pf: failed to allocate divert tag\n"));
10605 }
10606 }
10607 /* XXX: Anybody working on it?! */
10608 if (af == AF_INET6 && r->divert.port)
10609 printf("pf: divert(9) is not supported for IPv6\n");
10610
10611 /* this flag will need revising if the pkt is forwarded */
10612 if (pd.pf_mtag)
10613 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
10614
10615 if (pd.act.log) {
10616 struct pf_krule *lr;
10617 struct pf_krule_item *ri;
10618
10619 if (s != NULL && s->nat_rule != NULL &&
10620 s->nat_rule->log & PF_LOG_ALL)
10621 lr = s->nat_rule;
10622 else
10623 lr = r;
10624
10625 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
10626 PFLOG_PACKET(action, reason, lr, a,
10627 ruleset, &pd, (s == NULL), NULL);
10628 if (s) {
10629 SLIST_FOREACH(ri, &s->match_rules, entry)
10630 if (ri->r->log & PF_LOG_ALL)
10631 PFLOG_PACKET(action,
10632 reason, ri->r, a, ruleset, &pd, 0, NULL);
10633 }
10634 }
10635
10636 pf_counters_inc(action, &pd, s, r, a);
10637
10638 switch (action) {
10639 case PF_SYNPROXY_DROP:
10640 m_freem(*m0);
10641 case PF_DEFER:
10642 *m0 = NULL;
10643 action = PF_PASS;
10644 break;
10645 case PF_DROP:
10646 m_freem(*m0);
10647 *m0 = NULL;
10648 break;
10649 case PF_AFRT:
10650 if (pf_translate_af(&pd)) {
10651 if (!pd.m)
10652 *m0 = NULL;
10653 action = PF_DROP;
10654 break;
10655 }
10656 *m0 = pd.m; /* pf_translate_af may change pd.m */
10657 #ifdef INET
10658 if (pd.naf == AF_INET)
10659 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
10660 #endif /* INET */
10661 #ifdef INET6
10662 if (pd.naf == AF_INET6)
10663 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
10664 #endif /* INET6 */
10665 *m0 = NULL;
10666 action = PF_PASS;
10667 goto out;
10668 break;
10669 default:
10670 if (pd.act.rt) {
10671 switch (af) {
10672 #ifdef INET
10673 case AF_INET:
10674 /* pf_route() returns unlocked. */
10675 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
10676 break;
10677 #endif /* INET */
10678 #ifdef INET6
10679 case AF_INET6:
10680 /* pf_route6() returns unlocked. */
10681 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
10682 break;
10683 #endif /* INET6 */
10684 }
10685 goto out;
10686 }
10687 if (pf_dummynet(&pd, s, r, m0) != 0) {
10688 action = PF_DROP;
10689 REASON_SET(&reason, PFRES_MEMORY);
10690 }
10691 break;
10692 }
10693
10694 eat_pkt:
10695 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
10696
10697 if (s && action != PF_DROP) {
10698 if (!s->if_index_in && dir == PF_IN)
10699 s->if_index_in = ifp->if_index;
10700 else if (!s->if_index_out && dir == PF_OUT)
10701 s->if_index_out = ifp->if_index;
10702 }
10703
10704 if (s)
10705 PF_STATE_UNLOCK(s);
10706
10707 out:
10708 #ifdef INET6
10709 /* If reassembled packet passed, create new fragments. */
10710 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
10711 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
10712 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
10713 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
10714 #endif /* INET6 */
10715
10716 pf_sctp_multihome_delayed(&pd, kif, s, action);
10717
10718 return (action);
10719 }
10720 #endif /* INET || INET6 */
10721