1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64
65 #include <crypto/sha2/sha512.h>
66
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116
117 #include <netipsec/ah.h>
118
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121
122 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
123
124 SDT_PROVIDER_DEFINE(pf);
125 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
126 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
127 "struct pf_kstate *");
128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
130 "struct pf_kstate *");
131 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
132 "struct pfi_kkif *");
133 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
135 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
136 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
137 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
138 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
139 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
140 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
141 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
142 "struct pf_krule *", "struct mbuf *", "int");
143 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
144 "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
146 "struct pf_kstate *", "struct pf_sctp_source *");
147 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
148 "int", "struct pf_pdesc *", "int");
149 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
151 "int");
152 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
153 "int");
154
155 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
156 "struct mbuf *");
157 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
158 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
159 "int", "struct pf_keth_rule *", "char *");
160 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
162 "int", "struct pf_keth_rule *");
163 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
164
165 /*
166 * Global variables
167 */
168
169 /* state tables */
170 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
171 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]);
172 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
173 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
174 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
175 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
176 VNET_DEFINE(struct pf_kstatus, pf_status);
177
178 VNET_DEFINE(u_int32_t, ticket_altqs_active);
179 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
180 VNET_DEFINE(int, altqs_inactive_open);
181 VNET_DEFINE(u_int32_t, ticket_pabuf);
182
183 static const int PF_HDR_LIMIT = 20; /* arbitrary limit */
184
185 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx);
186 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
187 VNET_DEFINE(u_char, pf_tcp_secret[16]);
188 #define V_pf_tcp_secret VNET(pf_tcp_secret)
189 VNET_DEFINE(int, pf_tcp_secret_init);
190 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
191 VNET_DEFINE(int, pf_tcp_iss_off);
192 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
193 VNET_DECLARE(int, pf_vnet_active);
194 #define V_pf_vnet_active VNET(pf_vnet_active)
195
196 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
197 #define V_pf_purge_idx VNET(pf_purge_idx)
198
199 #ifdef PF_WANT_32_TO_64_COUNTER
200 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
201 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
202
203 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
204 VNET_DEFINE(size_t, pf_allrulecount);
205 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
206 #endif
207
208 #define PF_SCTP_MAX_ENDPOINTS 8
209
210 struct pf_sctp_endpoint;
211 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
212 struct pf_sctp_source {
213 sa_family_t af;
214 struct pf_addr addr;
215 TAILQ_ENTRY(pf_sctp_source) entry;
216 };
217 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
218 struct pf_sctp_endpoint
219 {
220 uint32_t v_tag;
221 struct pf_sctp_sources sources;
222 RB_ENTRY(pf_sctp_endpoint) entry;
223 };
224 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)225 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
226 {
227 return (a->v_tag - b->v_tag);
228 }
229 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
231 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
232 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
233 static struct mtx_padalign pf_sctp_endpoints_mtx;
234 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
235 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
236 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
237
238 /*
239 * Queue for pf_intr() sends.
240 */
241 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
242 struct pf_send_entry {
243 STAILQ_ENTRY(pf_send_entry) pfse_next;
244 struct mbuf *pfse_m;
245 enum {
246 PFSE_IP,
247 PFSE_IP6,
248 PFSE_ICMP,
249 PFSE_ICMP6,
250 } pfse_type;
251 struct {
252 int type;
253 int code;
254 int mtu;
255 } icmpopts;
256 };
257
258 STAILQ_HEAD(pf_send_head, pf_send_entry);
259 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
260 #define V_pf_sendqueue VNET(pf_sendqueue)
261
262 static struct mtx_padalign pf_sendqueue_mtx;
263 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
264 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
265 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
266
267 /*
268 * Queue for pf_overload_task() tasks.
269 */
270 struct pf_overload_entry {
271 SLIST_ENTRY(pf_overload_entry) next;
272 struct pf_addr addr;
273 sa_family_t af;
274 uint8_t dir;
275 struct pf_krule *rule;
276 };
277
278 SLIST_HEAD(pf_overload_head, pf_overload_entry);
279 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
280 #define V_pf_overloadqueue VNET(pf_overloadqueue)
281 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
282 #define V_pf_overloadtask VNET(pf_overloadtask)
283
284 static struct mtx_padalign pf_overloadqueue_mtx;
285 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
286 "pf overload/flush queue", MTX_DEF);
287 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
288 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
289
290 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
291 struct mtx_padalign pf_unlnkdrules_mtx;
292 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
293 MTX_DEF);
294
295 struct sx pf_config_lock;
296 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
297
298 struct mtx_padalign pf_table_stats_lock;
299 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
300 MTX_DEF);
301
302 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
303 #define V_pf_sources_z VNET(pf_sources_z)
304 uma_zone_t pf_mtag_z;
305 VNET_DEFINE(uma_zone_t, pf_state_z);
306 VNET_DEFINE(uma_zone_t, pf_state_key_z);
307 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
308
309 VNET_DEFINE(struct unrhdr64, pf_stateid);
310
311 static void pf_src_tree_remove_state(struct pf_kstate *);
312 static int pf_check_threshold(struct pf_kthreshold *);
313
314 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
315 struct pf_addr *, u_int16_t);
316 static int pf_modulate_sack(struct pf_pdesc *,
317 struct tcphdr *, struct pf_state_peer *);
318 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
319 u_int16_t *, u_int16_t *);
320 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
321 struct pf_addr *, struct pf_addr *, u_int16_t,
322 u_int16_t *, u_int16_t *, u_int16_t *,
323 u_int16_t *, u_int8_t, sa_family_t);
324 int pf_change_icmp_af(struct mbuf *, int,
325 struct pf_pdesc *, struct pf_pdesc *,
326 struct pf_addr *, struct pf_addr *, sa_family_t,
327 sa_family_t);
328 int pf_translate_icmp_af(int, void *);
329 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
330 int, sa_family_t, struct pf_krule *, int);
331 static void pf_detach_state(struct pf_kstate *);
332 static int pf_state_key_attach(struct pf_state_key *,
333 struct pf_state_key *, struct pf_kstate *);
334 static void pf_state_key_detach(struct pf_kstate *, int);
335 static int pf_state_key_ctor(void *, int, void *, int);
336 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
337 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
338 struct pf_mtag *pf_mtag);
339 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
340 struct pf_krule *, struct mbuf **);
341 static int pf_dummynet_route(struct pf_pdesc *,
342 struct pf_kstate *, struct pf_krule *,
343 struct ifnet *, const struct sockaddr *, struct mbuf **);
344 static int pf_test_eth_rule(int, struct pfi_kkif *,
345 struct mbuf **);
346 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
347 struct pf_pdesc *, struct pf_krule **,
348 struct pf_kruleset **, u_short *, struct inpcb *);
349 static int pf_create_state(struct pf_krule *,
350 struct pf_test_ctx *,
351 struct pf_kstate **, u_int16_t, u_int16_t);
352 static int pf_state_key_addr_setup(struct pf_pdesc *,
353 struct pf_state_key_cmp *, int);
354 static int pf_tcp_track_full(struct pf_kstate *,
355 struct pf_pdesc *, u_short *, int *,
356 struct pf_state_peer *, struct pf_state_peer *,
357 u_int8_t, u_int8_t);
358 static int pf_tcp_track_sloppy(struct pf_kstate *,
359 struct pf_pdesc *, u_short *,
360 struct pf_state_peer *, struct pf_state_peer *,
361 u_int8_t, u_int8_t);
362 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *,
363 u_short *);
364 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
365 struct pf_pdesc *, struct pf_kstate **,
366 u_int16_t, u_int16_t, int, int *, int, int);
367 static int pf_test_state_icmp(struct pf_kstate **,
368 struct pf_pdesc *, u_short *);
369 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
370 u_short *);
371 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
372 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
373 struct pfi_kkif *, struct pf_kstate *, int);
374 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
375 int, u_int16_t);
376 static int pf_check_proto_cksum(struct mbuf *, int, int,
377 u_int8_t, sa_family_t);
378 static int pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
379 #ifdef INET6
380 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
381 int, int, u_short *);
382 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
383 u_short *);
384 #endif
385 static void pf_print_state_parts(struct pf_kstate *,
386 struct pf_state_key *, struct pf_state_key *);
387 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
388 bool);
389 static int pf_find_state(struct pf_pdesc *,
390 const struct pf_state_key_cmp *, struct pf_kstate **);
391 static bool pf_src_connlimit(struct pf_kstate *);
392 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
393 static void pf_counters_inc(int, struct pf_pdesc *,
394 struct pf_kstate *, struct pf_krule *,
395 struct pf_krule *);
396 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *,
397 struct pf_krule *, struct pf_kruleset *,
398 struct pf_krule_slist *);
399 static void pf_overload_task(void *v, int pending);
400 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
401 struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
402 struct pf_addr *, sa_family_t, struct pf_addr *,
403 struct pfi_kkif *, pf_sn_types_t);
404 static u_int pf_purge_expired_states(u_int, int);
405 static void pf_purge_unlinked_rules(void);
406 static int pf_mtag_uminit(void *, int, int);
407 static void pf_mtag_free(struct m_tag *);
408 static void pf_packet_rework_nat(struct pf_pdesc *, int,
409 struct pf_state_key *);
410 #ifdef INET
411 static void pf_route(struct pf_krule *,
412 struct ifnet *, struct pf_kstate *,
413 struct pf_pdesc *, struct inpcb *);
414 #endif /* INET */
415 #ifdef INET6
416 static void pf_change_a6(struct pf_addr *, u_int16_t *,
417 struct pf_addr *, u_int8_t);
418 static void pf_route6(struct pf_krule *,
419 struct ifnet *, struct pf_kstate *,
420 struct pf_pdesc *, struct inpcb *);
421 #endif /* INET6 */
422 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
423
424 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
425
426 extern int pf_end_threads;
427 extern struct proc *pf_purge_proc;
428
429 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
430
431 #define PACKET_UNDO_NAT(_pd, _off, _s) \
432 do { \
433 struct pf_state_key *nk; \
434 if ((pd->dir) == PF_OUT) \
435 nk = (_s)->key[PF_SK_STACK]; \
436 else \
437 nk = (_s)->key[PF_SK_WIRE]; \
438 pf_packet_rework_nat(_pd, _off, nk); \
439 } while (0)
440
441 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
442 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
443
444 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)445 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
446 {
447 struct pfi_kkif *k = pd->kif;
448
449 SDT_PROBE2(pf, ip, , bound_iface, st, k);
450
451 /* Floating unless otherwise specified. */
452 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
453 return (V_pfi_all);
454
455 /*
456 * Initially set to all, because we don't know what interface we'll be
457 * sending this out when we create the state.
458 */
459 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
460 return (V_pfi_all);
461
462 /*
463 * If this state is created based on another state (e.g. SCTP
464 * multihome) always set it floating initially. We can't know for sure
465 * what interface the actual traffic for this state will come in on.
466 */
467 if (pd->related_rule)
468 return (V_pfi_all);
469
470 /* Don't overrule the interface for states created on incoming packets. */
471 if (st->direction == PF_IN)
472 return (k);
473
474 /* No route-to, so don't overrule. */
475 if (st->act.rt != PF_ROUTETO)
476 return (k);
477
478 /* Bind to the route-to interface. */
479 return (st->act.rt_kif);
480 }
481
482 #define STATE_INC_COUNTERS(s) \
483 do { \
484 struct pf_krule_item *mrm; \
485 counter_u64_add(s->rule->states_cur, 1); \
486 counter_u64_add(s->rule->states_tot, 1); \
487 if (s->anchor != NULL) { \
488 counter_u64_add(s->anchor->states_cur, 1); \
489 counter_u64_add(s->anchor->states_tot, 1); \
490 } \
491 if (s->nat_rule != NULL) { \
492 counter_u64_add(s->nat_rule->states_cur, 1);\
493 counter_u64_add(s->nat_rule->states_tot, 1);\
494 } \
495 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
496 counter_u64_add(mrm->r->states_cur, 1); \
497 counter_u64_add(mrm->r->states_tot, 1); \
498 } \
499 } while (0)
500
501 #define STATE_DEC_COUNTERS(s) \
502 do { \
503 struct pf_krule_item *mrm; \
504 if (s->nat_rule != NULL) \
505 counter_u64_add(s->nat_rule->states_cur, -1);\
506 if (s->anchor != NULL) \
507 counter_u64_add(s->anchor->states_cur, -1); \
508 counter_u64_add(s->rule->states_cur, -1); \
509 SLIST_FOREACH(mrm, &s->match_rules, entry) \
510 counter_u64_add(mrm->r->states_cur, -1); \
511 } while (0)
512
513 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
514 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
515 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
516 VNET_DEFINE(struct pf_idhash *, pf_idhash);
517 VNET_DEFINE(struct pf_srchash *, pf_srchash);
518 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
519 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
520
521 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
522 "pf(4)");
523
524 VNET_DEFINE(u_long, pf_hashmask);
525 VNET_DEFINE(u_long, pf_srchashmask);
526 VNET_DEFINE(u_long, pf_udpendpointhashmask);
527 VNET_DEFINE_STATIC(u_long, pf_hashsize);
528 #define V_pf_hashsize VNET(pf_hashsize)
529 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
530 #define V_pf_srchashsize VNET(pf_srchashsize)
531 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
532 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
533 u_long pf_ioctl_maxcount = 65535;
534
535 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
536 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
537 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
538 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
539 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
540 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
541 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
542 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
543
544 VNET_DEFINE(void *, pf_swi_cookie);
545 VNET_DEFINE(struct intr_event *, pf_swi_ie);
546
547 VNET_DEFINE(uint32_t, pf_hashseed);
548 #define V_pf_hashseed VNET(pf_hashseed)
549
550 static void
pf_sctp_checksum(struct mbuf * m,int off)551 pf_sctp_checksum(struct mbuf *m, int off)
552 {
553 uint32_t sum = 0;
554
555 /* Zero out the checksum, to enable recalculation. */
556 m_copyback(m, off + offsetof(struct sctphdr, checksum),
557 sizeof(sum), (caddr_t)&sum);
558
559 sum = sctp_calculate_cksum(m, off);
560
561 m_copyback(m, off + offsetof(struct sctphdr, checksum),
562 sizeof(sum), (caddr_t)&sum);
563 }
564
565 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)566 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
567 {
568
569 switch (af) {
570 #ifdef INET
571 case AF_INET:
572 if (a->addr32[0] > b->addr32[0])
573 return (1);
574 if (a->addr32[0] < b->addr32[0])
575 return (-1);
576 break;
577 #endif /* INET */
578 #ifdef INET6
579 case AF_INET6:
580 if (a->addr32[3] > b->addr32[3])
581 return (1);
582 if (a->addr32[3] < b->addr32[3])
583 return (-1);
584 if (a->addr32[2] > b->addr32[2])
585 return (1);
586 if (a->addr32[2] < b->addr32[2])
587 return (-1);
588 if (a->addr32[1] > b->addr32[1])
589 return (1);
590 if (a->addr32[1] < b->addr32[1])
591 return (-1);
592 if (a->addr32[0] > b->addr32[0])
593 return (1);
594 if (a->addr32[0] < b->addr32[0])
595 return (-1);
596 break;
597 #endif /* INET6 */
598 default:
599 unhandled_af(af);
600 }
601 return (0);
602 }
603
604 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)605 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
606 {
607 switch (af) {
608 #ifdef INET
609 case AF_INET:
610 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
611 #endif /* INET */
612 case AF_INET6:
613 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
614 default:
615 unhandled_af(af);
616 }
617 }
618
619 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)620 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
621 {
622
623 switch (pd->proto) {
624 case IPPROTO_TCP: {
625 struct tcphdr *th = &pd->hdr.tcp;
626
627 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
628 pf_change_ap(pd, pd->src, &th->th_sport,
629 &nk->addr[pd->sidx], nk->port[pd->sidx]);
630 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
631 pf_change_ap(pd, pd->dst, &th->th_dport,
632 &nk->addr[pd->didx], nk->port[pd->didx]);
633 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
634 break;
635 }
636 case IPPROTO_UDP: {
637 struct udphdr *uh = &pd->hdr.udp;
638
639 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
640 pf_change_ap(pd, pd->src, &uh->uh_sport,
641 &nk->addr[pd->sidx], nk->port[pd->sidx]);
642 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
643 pf_change_ap(pd, pd->dst, &uh->uh_dport,
644 &nk->addr[pd->didx], nk->port[pd->didx]);
645 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
646 break;
647 }
648 case IPPROTO_SCTP: {
649 struct sctphdr *sh = &pd->hdr.sctp;
650
651 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
652 pf_change_ap(pd, pd->src, &sh->src_port,
653 &nk->addr[pd->sidx], nk->port[pd->sidx]);
654 }
655 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
656 pf_change_ap(pd, pd->dst, &sh->dest_port,
657 &nk->addr[pd->didx], nk->port[pd->didx]);
658 }
659
660 break;
661 }
662 case IPPROTO_ICMP: {
663 struct icmp *ih = &pd->hdr.icmp;
664
665 if (nk->port[pd->sidx] != ih->icmp_id) {
666 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
667 ih->icmp_cksum, ih->icmp_id,
668 nk->port[pd->sidx], 0);
669 ih->icmp_id = nk->port[pd->sidx];
670 pd->sport = &ih->icmp_id;
671
672 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
673 }
674 /* FALLTHROUGH */
675 }
676 default:
677 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
678 switch (pd->af) {
679 case AF_INET:
680 pf_change_a(&pd->src->v4.s_addr,
681 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
682 0);
683 break;
684 case AF_INET6:
685 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
686 break;
687 default:
688 unhandled_af(pd->af);
689 }
690 }
691 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
692 switch (pd->af) {
693 case AF_INET:
694 pf_change_a(&pd->dst->v4.s_addr,
695 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
696 0);
697 break;
698 case AF_INET6:
699 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
700 break;
701 default:
702 unhandled_af(pd->af);
703 }
704 }
705 break;
706 }
707 }
708
709 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)710 pf_hashkey(const struct pf_state_key *sk)
711 {
712 uint32_t h;
713
714 h = murmur3_32_hash32((const uint32_t *)sk,
715 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
716 V_pf_hashseed);
717
718 return (h & V_pf_hashmask);
719 }
720
721 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)722 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
723 {
724 uint32_t h;
725
726 switch (af) {
727 case AF_INET:
728 h = murmur3_32_hash32((uint32_t *)&addr->v4,
729 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
730 break;
731 case AF_INET6:
732 h = murmur3_32_hash32((uint32_t *)&addr->v6,
733 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
734 break;
735 default:
736 unhandled_af(af);
737 }
738
739 return (h & V_pf_srchashmask);
740 }
741
742 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)743 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
744 {
745 uint32_t h;
746
747 h = murmur3_32_hash32((uint32_t *)endpoint,
748 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
749 V_pf_hashseed);
750 return (h & V_pf_udpendpointhashmask);
751 }
752
753 #ifdef ALTQ
754 static int
pf_state_hash(struct pf_kstate * s)755 pf_state_hash(struct pf_kstate *s)
756 {
757 u_int32_t hv = (intptr_t)s / sizeof(*s);
758
759 hv ^= crc32(&s->src, sizeof(s->src));
760 hv ^= crc32(&s->dst, sizeof(s->dst));
761 if (hv == 0)
762 hv = 1;
763 return (hv);
764 }
765 #endif /* ALTQ */
766
767 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)768 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
769 {
770 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
771 s->dst.state = newstate;
772 if (which == PF_PEER_DST)
773 return;
774 if (s->src.state == newstate)
775 return;
776 if (s->creatorid == V_pf_status.hostid &&
777 s->key[PF_SK_STACK] != NULL &&
778 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
779 !(TCPS_HAVEESTABLISHED(s->src.state) ||
780 s->src.state == TCPS_CLOSED) &&
781 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
782 atomic_add_32(&V_pf_status.states_halfopen, -1);
783
784 s->src.state = newstate;
785 }
786
787 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)788 pf_init_threshold(struct pf_kthreshold *threshold,
789 u_int32_t limit, u_int32_t seconds)
790 {
791 threshold->limit = limit;
792 threshold->seconds = seconds;
793 threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
794
795 return (threshold->cr != NULL);
796 }
797
798 static int
pf_check_threshold(struct pf_kthreshold * threshold)799 pf_check_threshold(struct pf_kthreshold *threshold)
800 {
801 return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
802 }
803
804 static bool
pf_src_connlimit(struct pf_kstate * state)805 pf_src_connlimit(struct pf_kstate *state)
806 {
807 struct pf_overload_entry *pfoe;
808 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT];
809 bool limited = false;
810
811 PF_STATE_LOCK_ASSERT(state);
812 PF_SRC_NODE_LOCK(src_node);
813
814 src_node->conn++;
815 state->src.tcp_est = 1;
816
817 if (state->rule->max_src_conn &&
818 state->rule->max_src_conn <
819 src_node->conn) {
820 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
821 limited = true;
822 }
823
824 if (state->rule->max_src_conn_rate.limit &&
825 pf_check_threshold(&src_node->conn_rate)) {
826 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
827 limited = true;
828 }
829
830 if (!limited)
831 goto done;
832
833 /* Kill this state. */
834 state->timeout = PFTM_PURGE;
835 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
836
837 if (state->rule->overload_tbl == NULL)
838 goto done;
839
840 /* Schedule overloading and flushing task. */
841 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
842 if (pfoe == NULL)
843 goto done; /* too bad :( */
844
845 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
846 pfoe->af = state->key[PF_SK_WIRE]->af;
847 pfoe->rule = state->rule;
848 pfoe->dir = state->direction;
849 PF_OVERLOADQ_LOCK();
850 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
851 PF_OVERLOADQ_UNLOCK();
852 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
853
854 done:
855 PF_SRC_NODE_UNLOCK(src_node);
856 return (limited);
857 }
858
859 static void
pf_overload_task(void * v,int pending)860 pf_overload_task(void *v, int pending)
861 {
862 struct pf_overload_head queue;
863 struct pfr_addr p;
864 struct pf_overload_entry *pfoe, *pfoe1;
865 uint32_t killed = 0;
866
867 CURVNET_SET((struct vnet *)v);
868
869 PF_OVERLOADQ_LOCK();
870 queue = V_pf_overloadqueue;
871 SLIST_INIT(&V_pf_overloadqueue);
872 PF_OVERLOADQ_UNLOCK();
873
874 bzero(&p, sizeof(p));
875 SLIST_FOREACH(pfoe, &queue, next) {
876 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
877 if (V_pf_status.debug >= PF_DEBUG_MISC) {
878 printf("%s: blocking address ", __func__);
879 pf_print_host(&pfoe->addr, 0, pfoe->af);
880 printf("\n");
881 }
882
883 p.pfra_af = pfoe->af;
884 switch (pfoe->af) {
885 #ifdef INET
886 case AF_INET:
887 p.pfra_net = 32;
888 p.pfra_ip4addr = pfoe->addr.v4;
889 break;
890 #endif /* INET */
891 #ifdef INET6
892 case AF_INET6:
893 p.pfra_net = 128;
894 p.pfra_ip6addr = pfoe->addr.v6;
895 break;
896 #endif /* INET6 */
897 default:
898 unhandled_af(pfoe->af);
899 }
900
901 PF_RULES_WLOCK();
902 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
903 PF_RULES_WUNLOCK();
904 }
905
906 /*
907 * Remove those entries, that don't need flushing.
908 */
909 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
910 if (pfoe->rule->flush == 0) {
911 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
912 free(pfoe, M_PFTEMP);
913 } else
914 counter_u64_add(
915 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
916
917 /* If nothing to flush, return. */
918 if (SLIST_EMPTY(&queue)) {
919 CURVNET_RESTORE();
920 return;
921 }
922
923 for (int i = 0; i <= V_pf_hashmask; i++) {
924 struct pf_idhash *ih = &V_pf_idhash[i];
925 struct pf_state_key *sk;
926 struct pf_kstate *s;
927
928 PF_HASHROW_LOCK(ih);
929 LIST_FOREACH(s, &ih->states, entry) {
930 sk = s->key[PF_SK_WIRE];
931 SLIST_FOREACH(pfoe, &queue, next)
932 if (sk->af == pfoe->af &&
933 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
934 pfoe->rule == s->rule) &&
935 ((pfoe->dir == PF_OUT &&
936 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
937 (pfoe->dir == PF_IN &&
938 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
939 s->timeout = PFTM_PURGE;
940 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
941 killed++;
942 }
943 }
944 PF_HASHROW_UNLOCK(ih);
945 }
946 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
947 free(pfoe, M_PFTEMP);
948 if (V_pf_status.debug >= PF_DEBUG_MISC)
949 printf("%s: %u states killed", __func__, killed);
950
951 CURVNET_RESTORE();
952 }
953
954 /*
955 * On node found always returns locked. On not found its configurable.
956 */
957 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)958 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
959 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
960 {
961 struct pf_ksrc_node *n;
962
963 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
964
965 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
966 PF_HASHROW_LOCK(*sh);
967 LIST_FOREACH(n, &(*sh)->nodes, entry)
968 if (n->rule == rule && n->af == af && n->type == sn_type &&
969 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
970 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
971 break;
972
973 if (n == NULL && !returnlocked)
974 PF_HASHROW_UNLOCK(*sh);
975
976 return (n);
977 }
978
979 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)980 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
981 {
982 struct pf_ksrc_node *cur;
983
984 if ((*sn) == NULL)
985 return (false);
986
987 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
988
989 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
990 PF_HASHROW_LOCK(sh);
991 LIST_FOREACH(cur, &(sh->nodes), entry) {
992 if (cur == (*sn) &&
993 cur->expire != 1) /* Ignore nodes being killed */
994 return (true);
995 }
996 PF_HASHROW_UNLOCK(sh);
997 (*sn) = NULL;
998 return (false);
999 }
1000
1001 static void
pf_free_src_node(struct pf_ksrc_node * sn)1002 pf_free_src_node(struct pf_ksrc_node *sn)
1003 {
1004
1005 for (int i = 0; i < 2; i++) {
1006 counter_u64_free(sn->bytes[i]);
1007 counter_u64_free(sn->packets[i]);
1008 }
1009 counter_rate_free(sn->conn_rate.cr);
1010 uma_zfree(V_pf_sources_z, sn);
1011 }
1012
1013 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,pf_sn_types_t sn_type)1014 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1015 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1016 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1017 struct pfi_kkif *rkif, pf_sn_types_t sn_type)
1018 {
1019 u_short reason = 0;
1020 struct pf_krule *r_track = rule;
1021 struct pf_ksrc_node **sn = &(sns[sn_type]);
1022 struct pf_srchash **sh = &(snhs[sn_type]);
1023
1024 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1025 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1026
1027 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1028 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1029
1030 /*
1031 * XXX: There could be a KASSERT for
1032 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1033 * but we'd need to pass pool *only* for this KASSERT.
1034 */
1035
1036 if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1037 !(rule->rule_flag & PFRULE_RULESRCTRACK))
1038 r_track = &V_pf_default_rule;
1039
1040 /*
1041 * Request the sh to always be locked, as we might insert a new sn.
1042 */
1043 if (*sn == NULL)
1044 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1045
1046 if (*sn == NULL) {
1047 PF_HASHROW_ASSERT(*sh);
1048
1049 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1050 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1051 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1052 reason = PFRES_SRCLIMIT;
1053 goto done;
1054 }
1055
1056 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1057 if ((*sn) == NULL) {
1058 reason = PFRES_MEMORY;
1059 goto done;
1060 }
1061
1062 for (int i = 0; i < 2; i++) {
1063 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1064 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1065
1066 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1067 pf_free_src_node(*sn);
1068 reason = PFRES_MEMORY;
1069 goto done;
1070 }
1071 }
1072
1073 if (sn_type == PF_SN_LIMIT)
1074 if (! pf_init_threshold(&(*sn)->conn_rate,
1075 rule->max_src_conn_rate.limit,
1076 rule->max_src_conn_rate.seconds)) {
1077 pf_free_src_node(*sn);
1078 reason = PFRES_MEMORY;
1079 goto done;
1080 }
1081
1082 MPASS((*sn)->lock == NULL);
1083 (*sn)->lock = &(*sh)->lock;
1084
1085 (*sn)->af = af;
1086 (*sn)->rule = r_track;
1087 PF_ACPY(&(*sn)->addr, src, af);
1088 if (raddr != NULL)
1089 PF_ACPY(&(*sn)->raddr, raddr, af);
1090 (*sn)->rkif = rkif;
1091 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1092 (*sn)->creation = time_uptime;
1093 (*sn)->ruletype = rule->action;
1094 (*sn)->type = sn_type;
1095 counter_u64_add(r_track->src_nodes[sn_type], 1);
1096 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1097 } else {
1098 if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1099 (*sn)->states >= rule->max_src_states) {
1100 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1101 1);
1102 reason = PFRES_SRCLIMIT;
1103 goto done;
1104 }
1105 }
1106 done:
1107 if (reason == 0)
1108 (*sn)->states++;
1109 else
1110 (*sn) = NULL;
1111
1112 PF_HASHROW_UNLOCK(*sh);
1113 return (reason);
1114 }
1115
1116 void
pf_unlink_src_node(struct pf_ksrc_node * src)1117 pf_unlink_src_node(struct pf_ksrc_node *src)
1118 {
1119 PF_SRC_NODE_LOCK_ASSERT(src);
1120
1121 LIST_REMOVE(src, entry);
1122 if (src->rule)
1123 counter_u64_add(src->rule->src_nodes[src->type], -1);
1124 }
1125
1126 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1127 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1128 {
1129 struct pf_ksrc_node *sn, *tmp;
1130 u_int count = 0;
1131
1132 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1133 pf_free_src_node(sn);
1134 count++;
1135 }
1136
1137 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1138
1139 return (count);
1140 }
1141
1142 void
pf_mtag_initialize(void)1143 pf_mtag_initialize(void)
1144 {
1145
1146 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1147 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1148 UMA_ALIGN_PTR, 0);
1149 }
1150
1151 /* Per-vnet data storage structures initialization. */
1152 void
pf_initialize(void)1153 pf_initialize(void)
1154 {
1155 struct pf_keyhash *kh;
1156 struct pf_idhash *ih;
1157 struct pf_srchash *sh;
1158 struct pf_udpendpointhash *uh;
1159 u_int i;
1160
1161 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1162 V_pf_hashsize = PF_HASHSIZ;
1163 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1164 V_pf_srchashsize = PF_SRCHASHSIZ;
1165 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1166 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1167
1168 V_pf_hashseed = arc4random();
1169
1170 /* States and state keys storage. */
1171 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1172 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1173 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1174 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1175 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1176
1177 V_pf_state_key_z = uma_zcreate("pf state keys",
1178 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1179 UMA_ALIGN_PTR, 0);
1180
1181 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1182 M_PFHASH, M_NOWAIT | M_ZERO);
1183 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1184 M_PFHASH, M_NOWAIT | M_ZERO);
1185 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1186 printf("pf: Unable to allocate memory for "
1187 "state_hashsize %lu.\n", V_pf_hashsize);
1188
1189 free(V_pf_keyhash, M_PFHASH);
1190 free(V_pf_idhash, M_PFHASH);
1191
1192 V_pf_hashsize = PF_HASHSIZ;
1193 V_pf_keyhash = mallocarray(V_pf_hashsize,
1194 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1195 V_pf_idhash = mallocarray(V_pf_hashsize,
1196 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1197 }
1198
1199 V_pf_hashmask = V_pf_hashsize - 1;
1200 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1201 i++, kh++, ih++) {
1202 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1203 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1204 }
1205
1206 /* Source nodes. */
1207 V_pf_sources_z = uma_zcreate("pf source nodes",
1208 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1209 0);
1210 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1211 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1212 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1213
1214 V_pf_srchash = mallocarray(V_pf_srchashsize,
1215 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1216 if (V_pf_srchash == NULL) {
1217 printf("pf: Unable to allocate memory for "
1218 "source_hashsize %lu.\n", V_pf_srchashsize);
1219
1220 V_pf_srchashsize = PF_SRCHASHSIZ;
1221 V_pf_srchash = mallocarray(V_pf_srchashsize,
1222 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1223 }
1224
1225 V_pf_srchashmask = V_pf_srchashsize - 1;
1226 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1227 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1228
1229
1230 /* UDP endpoint mappings. */
1231 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1232 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1233 UMA_ALIGN_PTR, 0);
1234 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1235 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1236 if (V_pf_udpendpointhash == NULL) {
1237 printf("pf: Unable to allocate memory for "
1238 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1239
1240 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1241 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1242 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1243 }
1244
1245 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1246 for (i = 0, uh = V_pf_udpendpointhash;
1247 i <= V_pf_udpendpointhashmask;
1248 i++, uh++) {
1249 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1250 MTX_DEF | MTX_DUPOK);
1251 }
1252
1253 /* ALTQ */
1254 TAILQ_INIT(&V_pf_altqs[0]);
1255 TAILQ_INIT(&V_pf_altqs[1]);
1256 TAILQ_INIT(&V_pf_altqs[2]);
1257 TAILQ_INIT(&V_pf_altqs[3]);
1258 TAILQ_INIT(&V_pf_pabuf[0]);
1259 TAILQ_INIT(&V_pf_pabuf[1]);
1260 TAILQ_INIT(&V_pf_pabuf[2]);
1261 V_pf_altqs_active = &V_pf_altqs[0];
1262 V_pf_altq_ifs_active = &V_pf_altqs[1];
1263 V_pf_altqs_inactive = &V_pf_altqs[2];
1264 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1265
1266 /* Send & overload+flush queues. */
1267 STAILQ_INIT(&V_pf_sendqueue);
1268 SLIST_INIT(&V_pf_overloadqueue);
1269 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1270
1271 /* Unlinked, but may be referenced rules. */
1272 TAILQ_INIT(&V_pf_unlinked_rules);
1273 }
1274
1275 void
pf_mtag_cleanup(void)1276 pf_mtag_cleanup(void)
1277 {
1278
1279 uma_zdestroy(pf_mtag_z);
1280 }
1281
1282 void
pf_cleanup(void)1283 pf_cleanup(void)
1284 {
1285 struct pf_keyhash *kh;
1286 struct pf_idhash *ih;
1287 struct pf_srchash *sh;
1288 struct pf_udpendpointhash *uh;
1289 struct pf_send_entry *pfse, *next;
1290 u_int i;
1291
1292 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1293 i <= V_pf_hashmask;
1294 i++, kh++, ih++) {
1295 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1296 __func__));
1297 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1298 __func__));
1299 mtx_destroy(&kh->lock);
1300 mtx_destroy(&ih->lock);
1301 }
1302 free(V_pf_keyhash, M_PFHASH);
1303 free(V_pf_idhash, M_PFHASH);
1304
1305 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1306 KASSERT(LIST_EMPTY(&sh->nodes),
1307 ("%s: source node hash not empty", __func__));
1308 mtx_destroy(&sh->lock);
1309 }
1310 free(V_pf_srchash, M_PFHASH);
1311
1312 for (i = 0, uh = V_pf_udpendpointhash;
1313 i <= V_pf_udpendpointhashmask;
1314 i++, uh++) {
1315 KASSERT(LIST_EMPTY(&uh->endpoints),
1316 ("%s: udp endpoint hash not empty", __func__));
1317 mtx_destroy(&uh->lock);
1318 }
1319 free(V_pf_udpendpointhash, M_PFHASH);
1320
1321 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1322 m_freem(pfse->pfse_m);
1323 free(pfse, M_PFTEMP);
1324 }
1325 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1326
1327 uma_zdestroy(V_pf_sources_z);
1328 uma_zdestroy(V_pf_state_z);
1329 uma_zdestroy(V_pf_state_key_z);
1330 uma_zdestroy(V_pf_udp_mapping_z);
1331 }
1332
1333 static int
pf_mtag_uminit(void * mem,int size,int how)1334 pf_mtag_uminit(void *mem, int size, int how)
1335 {
1336 struct m_tag *t;
1337
1338 t = (struct m_tag *)mem;
1339 t->m_tag_cookie = MTAG_ABI_COMPAT;
1340 t->m_tag_id = PACKET_TAG_PF;
1341 t->m_tag_len = sizeof(struct pf_mtag);
1342 t->m_tag_free = pf_mtag_free;
1343
1344 return (0);
1345 }
1346
1347 static void
pf_mtag_free(struct m_tag * t)1348 pf_mtag_free(struct m_tag *t)
1349 {
1350
1351 uma_zfree(pf_mtag_z, t);
1352 }
1353
1354 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1355 pf_get_mtag(struct mbuf *m)
1356 {
1357 struct m_tag *mtag;
1358
1359 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1360 return ((struct pf_mtag *)(mtag + 1));
1361
1362 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1363 if (mtag == NULL)
1364 return (NULL);
1365 bzero(mtag + 1, sizeof(struct pf_mtag));
1366 m_tag_prepend(m, mtag);
1367
1368 return ((struct pf_mtag *)(mtag + 1));
1369 }
1370
1371 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1372 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1373 struct pf_kstate *s)
1374 {
1375 struct pf_keyhash *khs, *khw, *kh;
1376 struct pf_state_key *sk, *cur;
1377 struct pf_kstate *si, *olds = NULL;
1378 int idx;
1379
1380 NET_EPOCH_ASSERT();
1381 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1382 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1383 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1384
1385 /*
1386 * We need to lock hash slots of both keys. To avoid deadlock
1387 * we always lock the slot with lower address first. Unlock order
1388 * isn't important.
1389 *
1390 * We also need to lock ID hash slot before dropping key
1391 * locks. On success we return with ID hash slot locked.
1392 */
1393
1394 if (skw == sks) {
1395 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1396 PF_HASHROW_LOCK(khs);
1397 } else {
1398 khs = &V_pf_keyhash[pf_hashkey(sks)];
1399 khw = &V_pf_keyhash[pf_hashkey(skw)];
1400 if (khs == khw) {
1401 PF_HASHROW_LOCK(khs);
1402 } else if (khs < khw) {
1403 PF_HASHROW_LOCK(khs);
1404 PF_HASHROW_LOCK(khw);
1405 } else {
1406 PF_HASHROW_LOCK(khw);
1407 PF_HASHROW_LOCK(khs);
1408 }
1409 }
1410
1411 #define KEYS_UNLOCK() do { \
1412 if (khs != khw) { \
1413 PF_HASHROW_UNLOCK(khs); \
1414 PF_HASHROW_UNLOCK(khw); \
1415 } else \
1416 PF_HASHROW_UNLOCK(khs); \
1417 } while (0)
1418
1419 /*
1420 * First run: start with wire key.
1421 */
1422 sk = skw;
1423 kh = khw;
1424 idx = PF_SK_WIRE;
1425
1426 MPASS(s->lock == NULL);
1427 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1428
1429 keyattach:
1430 LIST_FOREACH(cur, &kh->keys, entry)
1431 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1432 break;
1433
1434 if (cur != NULL) {
1435 /* Key exists. Check for same kif, if none, add to key. */
1436 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1437 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1438
1439 PF_HASHROW_LOCK(ih);
1440 if (si->kif == s->kif &&
1441 ((si->key[PF_SK_WIRE]->af == sk->af &&
1442 si->direction == s->direction) ||
1443 (si->key[PF_SK_WIRE]->af !=
1444 si->key[PF_SK_STACK]->af &&
1445 sk->af == si->key[PF_SK_STACK]->af &&
1446 si->direction != s->direction))) {
1447 bool reuse = false;
1448
1449 if (sk->proto == IPPROTO_TCP &&
1450 si->src.state >= TCPS_FIN_WAIT_2 &&
1451 si->dst.state >= TCPS_FIN_WAIT_2)
1452 reuse = true;
1453
1454 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1455 printf("pf: %s key attach "
1456 "%s on %s: ",
1457 (idx == PF_SK_WIRE) ?
1458 "wire" : "stack",
1459 reuse ? "reuse" : "failed",
1460 s->kif->pfik_name);
1461 pf_print_state_parts(s,
1462 (idx == PF_SK_WIRE) ?
1463 sk : NULL,
1464 (idx == PF_SK_STACK) ?
1465 sk : NULL);
1466 printf(", existing: ");
1467 pf_print_state_parts(si,
1468 (idx == PF_SK_WIRE) ?
1469 sk : NULL,
1470 (idx == PF_SK_STACK) ?
1471 sk : NULL);
1472 printf("\n");
1473 }
1474
1475 if (reuse) {
1476 /*
1477 * New state matches an old >FIN_WAIT_2
1478 * state. We can't drop key hash locks,
1479 * thus we can't unlink it properly.
1480 *
1481 * As a workaround we drop it into
1482 * TCPS_CLOSED state, schedule purge
1483 * ASAP and push it into the very end
1484 * of the slot TAILQ, so that it won't
1485 * conflict with our new state.
1486 */
1487 pf_set_protostate(si, PF_PEER_BOTH,
1488 TCPS_CLOSED);
1489 si->timeout = PFTM_PURGE;
1490 olds = si;
1491 } else {
1492 s->timeout = PFTM_UNLINKED;
1493 if (idx == PF_SK_STACK)
1494 /*
1495 * Remove the wire key from
1496 * the hash. Other threads
1497 * can't be referencing it
1498 * because we still hold the
1499 * hash lock.
1500 */
1501 pf_state_key_detach(s,
1502 PF_SK_WIRE);
1503 PF_HASHROW_UNLOCK(ih);
1504 KEYS_UNLOCK();
1505 if (idx == PF_SK_WIRE)
1506 /*
1507 * We've not inserted either key.
1508 * Free both.
1509 */
1510 uma_zfree(V_pf_state_key_z, skw);
1511 if (skw != sks)
1512 uma_zfree(
1513 V_pf_state_key_z,
1514 sks);
1515 return (EEXIST); /* collision! */
1516 }
1517 }
1518 PF_HASHROW_UNLOCK(ih);
1519 }
1520 uma_zfree(V_pf_state_key_z, sk);
1521 s->key[idx] = cur;
1522 } else {
1523 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1524 s->key[idx] = sk;
1525 }
1526
1527 stateattach:
1528 /* List is sorted, if-bound states before floating. */
1529 if (s->kif == V_pfi_all)
1530 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1531 else
1532 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1533
1534 if (olds) {
1535 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1536 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1537 key_list[idx]);
1538 olds = NULL;
1539 }
1540
1541 /*
1542 * Attach done. See how should we (or should not?)
1543 * attach a second key.
1544 */
1545 if (sks == skw) {
1546 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1547 idx = PF_SK_STACK;
1548 sks = NULL;
1549 goto stateattach;
1550 } else if (sks != NULL) {
1551 /*
1552 * Continue attaching with stack key.
1553 */
1554 sk = sks;
1555 kh = khs;
1556 idx = PF_SK_STACK;
1557 sks = NULL;
1558 goto keyattach;
1559 }
1560
1561 PF_STATE_LOCK(s);
1562 KEYS_UNLOCK();
1563
1564 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1565 ("%s failure", __func__));
1566
1567 return (0);
1568 #undef KEYS_UNLOCK
1569 }
1570
1571 static void
pf_detach_state(struct pf_kstate * s)1572 pf_detach_state(struct pf_kstate *s)
1573 {
1574 struct pf_state_key *sks = s->key[PF_SK_STACK];
1575 struct pf_keyhash *kh;
1576
1577 NET_EPOCH_ASSERT();
1578 MPASS(s->timeout >= PFTM_MAX);
1579
1580 pf_sctp_multihome_detach_addr(s);
1581
1582 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1583 V_pflow_export_state_ptr(s);
1584
1585 if (sks != NULL) {
1586 kh = &V_pf_keyhash[pf_hashkey(sks)];
1587 PF_HASHROW_LOCK(kh);
1588 if (s->key[PF_SK_STACK] != NULL)
1589 pf_state_key_detach(s, PF_SK_STACK);
1590 /*
1591 * If both point to same key, then we are done.
1592 */
1593 if (sks == s->key[PF_SK_WIRE]) {
1594 pf_state_key_detach(s, PF_SK_WIRE);
1595 PF_HASHROW_UNLOCK(kh);
1596 return;
1597 }
1598 PF_HASHROW_UNLOCK(kh);
1599 }
1600
1601 if (s->key[PF_SK_WIRE] != NULL) {
1602 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1603 PF_HASHROW_LOCK(kh);
1604 if (s->key[PF_SK_WIRE] != NULL)
1605 pf_state_key_detach(s, PF_SK_WIRE);
1606 PF_HASHROW_UNLOCK(kh);
1607 }
1608 }
1609
1610 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1611 pf_state_key_detach(struct pf_kstate *s, int idx)
1612 {
1613 struct pf_state_key *sk = s->key[idx];
1614 #ifdef INVARIANTS
1615 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1616
1617 PF_HASHROW_ASSERT(kh);
1618 #endif /* INVARIANTS */
1619 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1620 s->key[idx] = NULL;
1621
1622 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1623 LIST_REMOVE(sk, entry);
1624 uma_zfree(V_pf_state_key_z, sk);
1625 }
1626 }
1627
1628 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1629 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1630 {
1631 struct pf_state_key *sk = mem;
1632
1633 bzero(sk, sizeof(struct pf_state_key_cmp));
1634 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1635 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1636
1637 return (0);
1638 }
1639
1640 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1641 pf_state_key_addr_setup(struct pf_pdesc *pd,
1642 struct pf_state_key_cmp *key, int multi)
1643 {
1644 struct pf_addr *saddr = pd->src;
1645 struct pf_addr *daddr = pd->dst;
1646 #ifdef INET6
1647 struct nd_neighbor_solicit nd;
1648 struct pf_addr *target;
1649 u_short action, reason;
1650
1651 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1652 goto copy;
1653
1654 switch (pd->hdr.icmp6.icmp6_type) {
1655 case ND_NEIGHBOR_SOLICIT:
1656 if (multi)
1657 return (-1);
1658 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1659 return (-1);
1660 target = (struct pf_addr *)&nd.nd_ns_target;
1661 daddr = target;
1662 break;
1663 case ND_NEIGHBOR_ADVERT:
1664 if (multi)
1665 return (-1);
1666 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1667 return (-1);
1668 target = (struct pf_addr *)&nd.nd_ns_target;
1669 saddr = target;
1670 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1671 key->addr[pd->didx].addr32[0] = 0;
1672 key->addr[pd->didx].addr32[1] = 0;
1673 key->addr[pd->didx].addr32[2] = 0;
1674 key->addr[pd->didx].addr32[3] = 0;
1675 daddr = NULL; /* overwritten */
1676 }
1677 break;
1678 default:
1679 if (multi) {
1680 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1681 key->addr[pd->sidx].addr32[1] = 0;
1682 key->addr[pd->sidx].addr32[2] = 0;
1683 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1684 saddr = NULL; /* overwritten */
1685 }
1686 }
1687 copy:
1688 #endif /* INET6 */
1689 if (saddr)
1690 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1691 if (daddr)
1692 PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1693
1694 return (0);
1695 }
1696
1697 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1698 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1699 struct pf_state_key **sk, struct pf_state_key **nk)
1700 {
1701 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1702 if (*sk == NULL)
1703 return (ENOMEM);
1704
1705 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1706 0)) {
1707 uma_zfree(V_pf_state_key_z, *sk);
1708 *sk = NULL;
1709 return (ENOMEM);
1710 }
1711
1712 (*sk)->port[pd->sidx] = sport;
1713 (*sk)->port[pd->didx] = dport;
1714 (*sk)->proto = pd->proto;
1715 (*sk)->af = pd->af;
1716
1717 *nk = pf_state_key_clone(*sk);
1718 if (*nk == NULL) {
1719 uma_zfree(V_pf_state_key_z, *sk);
1720 *sk = NULL;
1721 return (ENOMEM);
1722 }
1723
1724 if (pd->af != pd->naf) {
1725 (*sk)->port[pd->sidx] = pd->osport;
1726 (*sk)->port[pd->didx] = pd->odport;
1727
1728 (*nk)->af = pd->naf;
1729
1730 /*
1731 * We're overwriting an address here, so potentially there's bits of an IPv6
1732 * address left in here. Clear that out first.
1733 */
1734 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1735 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1736 if (pd->dir == PF_IN) {
1737 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf);
1738 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf);
1739 (*nk)->port[pd->didx] = pd->nsport;
1740 (*nk)->port[pd->sidx] = pd->ndport;
1741 } else {
1742 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->nsaddr, pd->naf);
1743 PF_ACPY(&(*nk)->addr[pd->didx], &pd->ndaddr, pd->naf);
1744 (*nk)->port[pd->sidx] = pd->nsport;
1745 (*nk)->port[pd->didx] = pd->ndport;
1746 }
1747
1748 switch (pd->proto) {
1749 case IPPROTO_ICMP:
1750 (*nk)->proto = IPPROTO_ICMPV6;
1751 break;
1752 case IPPROTO_ICMPV6:
1753 (*nk)->proto = IPPROTO_ICMP;
1754 break;
1755 default:
1756 (*nk)->proto = pd->proto;
1757 }
1758 }
1759
1760 return (0);
1761 }
1762
1763 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1764 pf_state_key_clone(const struct pf_state_key *orig)
1765 {
1766 struct pf_state_key *sk;
1767
1768 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1769 if (sk == NULL)
1770 return (NULL);
1771
1772 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1773
1774 return (sk);
1775 }
1776
1777 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1778 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1779 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1780 {
1781 struct pf_idhash *ih;
1782 struct pf_kstate *cur;
1783 int error;
1784
1785 NET_EPOCH_ASSERT();
1786
1787 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1788 ("%s: sks not pristine", __func__));
1789 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1790 ("%s: skw not pristine", __func__));
1791 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1792
1793 s->kif = kif;
1794 s->orig_kif = orig_kif;
1795
1796 if (s->id == 0 && s->creatorid == 0) {
1797 s->id = alloc_unr64(&V_pf_stateid);
1798 s->id = htobe64(s->id);
1799 s->creatorid = V_pf_status.hostid;
1800 }
1801
1802 /* Returns with ID locked on success. */
1803 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1804 return (error);
1805 skw = sks = NULL;
1806
1807 ih = &V_pf_idhash[PF_IDHASH(s)];
1808 PF_HASHROW_ASSERT(ih);
1809 LIST_FOREACH(cur, &ih->states, entry)
1810 if (cur->id == s->id && cur->creatorid == s->creatorid)
1811 break;
1812
1813 if (cur != NULL) {
1814 s->timeout = PFTM_UNLINKED;
1815 PF_HASHROW_UNLOCK(ih);
1816 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1817 printf("pf: state ID collision: "
1818 "id: %016llx creatorid: %08x\n",
1819 (unsigned long long)be64toh(s->id),
1820 ntohl(s->creatorid));
1821 }
1822 pf_detach_state(s);
1823 return (EEXIST);
1824 }
1825 LIST_INSERT_HEAD(&ih->states, s, entry);
1826 /* One for keys, one for ID hash. */
1827 refcount_init(&s->refs, 2);
1828
1829 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1830 if (V_pfsync_insert_state_ptr != NULL)
1831 V_pfsync_insert_state_ptr(s);
1832
1833 /* Returns locked. */
1834 return (0);
1835 }
1836
1837 /*
1838 * Find state by ID: returns with locked row on success.
1839 */
1840 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1841 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1842 {
1843 struct pf_idhash *ih;
1844 struct pf_kstate *s;
1845
1846 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1847
1848 ih = &V_pf_idhash[PF_IDHASHID(id)];
1849
1850 PF_HASHROW_LOCK(ih);
1851 LIST_FOREACH(s, &ih->states, entry)
1852 if (s->id == id && s->creatorid == creatorid)
1853 break;
1854
1855 if (s == NULL)
1856 PF_HASHROW_UNLOCK(ih);
1857
1858 return (s);
1859 }
1860
1861 /*
1862 * Find state by key.
1863 * Returns with ID hash slot locked on success.
1864 */
1865 static int
pf_find_state(struct pf_pdesc * pd,const struct pf_state_key_cmp * key,struct pf_kstate ** state)1866 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key,
1867 struct pf_kstate **state)
1868 {
1869 struct pf_keyhash *kh;
1870 struct pf_state_key *sk;
1871 struct pf_kstate *s;
1872 int idx;
1873
1874 *state = NULL;
1875
1876 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1877
1878 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1879
1880 PF_HASHROW_LOCK(kh);
1881 LIST_FOREACH(sk, &kh->keys, entry)
1882 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1883 break;
1884 if (sk == NULL) {
1885 PF_HASHROW_UNLOCK(kh);
1886 return (PF_DROP);
1887 }
1888
1889 idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1890
1891 /* List is sorted, if-bound states before floating ones. */
1892 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1893 if (s->kif == V_pfi_all || s->kif == pd->kif ||
1894 s->orig_kif == pd->kif) {
1895 PF_STATE_LOCK(s);
1896 PF_HASHROW_UNLOCK(kh);
1897 if (__predict_false(s->timeout >= PFTM_MAX)) {
1898 /*
1899 * State is either being processed by
1900 * pf_remove_state() in an other thread, or
1901 * is scheduled for immediate expiry.
1902 */
1903 PF_STATE_UNLOCK(s);
1904 SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1905 key, (pd->dir), pd, *state);
1906 return (PF_DROP);
1907 }
1908 goto out;
1909 }
1910
1911 /* Look through the other list, in case of AF-TO */
1912 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1913 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1914 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1915 continue;
1916 if (s->kif == V_pfi_all || s->kif == pd->kif ||
1917 s->orig_kif == pd->kif) {
1918 PF_STATE_LOCK(s);
1919 PF_HASHROW_UNLOCK(kh);
1920 if (__predict_false(s->timeout >= PFTM_MAX)) {
1921 /*
1922 * State is either being processed by
1923 * pf_remove_state() in an other thread, or
1924 * is scheduled for immediate expiry.
1925 */
1926 PF_STATE_UNLOCK(s);
1927 SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1928 key, (pd->dir), pd, NULL);
1929 return (PF_DROP);
1930 }
1931 goto out;
1932 }
1933 }
1934
1935 PF_HASHROW_UNLOCK(kh);
1936
1937 out:
1938 SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state);
1939
1940 if (s == NULL || s->timeout == PFTM_PURGE) {
1941 if (s)
1942 PF_STATE_UNLOCK(s);
1943 return (PF_DROP);
1944 }
1945
1946 if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) {
1947 if (pf_check_threshold(&(s)->rule->pktrate)) {
1948 PF_STATE_UNLOCK(s);
1949 return (PF_DROP);
1950 }
1951 }
1952 if (PACKET_LOOPED(pd)) {
1953 PF_STATE_UNLOCK(s);
1954 return (PF_PASS);
1955 }
1956
1957 *state = s;
1958
1959 return (PF_MATCH);
1960 }
1961
1962 /*
1963 * Returns with ID hash slot locked on success.
1964 */
1965 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1966 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1967 {
1968 struct pf_keyhash *kh;
1969 struct pf_state_key *sk;
1970 struct pf_kstate *s, *ret = NULL;
1971 int idx, inout = 0;
1972
1973 if (more != NULL)
1974 *more = 0;
1975
1976 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1977
1978 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1979
1980 PF_HASHROW_LOCK(kh);
1981 LIST_FOREACH(sk, &kh->keys, entry)
1982 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1983 break;
1984 if (sk == NULL) {
1985 PF_HASHROW_UNLOCK(kh);
1986 return (NULL);
1987 }
1988 switch (dir) {
1989 case PF_IN:
1990 idx = PF_SK_WIRE;
1991 break;
1992 case PF_OUT:
1993 idx = PF_SK_STACK;
1994 break;
1995 case PF_INOUT:
1996 idx = PF_SK_WIRE;
1997 inout = 1;
1998 break;
1999 default:
2000 panic("%s: dir %u", __func__, dir);
2001 }
2002 second_run:
2003 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2004 if (more == NULL) {
2005 PF_STATE_LOCK(s);
2006 PF_HASHROW_UNLOCK(kh);
2007 return (s);
2008 }
2009
2010 if (ret)
2011 (*more)++;
2012 else {
2013 ret = s;
2014 PF_STATE_LOCK(s);
2015 }
2016 }
2017 if (inout == 1) {
2018 inout = 0;
2019 idx = PF_SK_STACK;
2020 goto second_run;
2021 }
2022 PF_HASHROW_UNLOCK(kh);
2023
2024 return (ret);
2025 }
2026
2027 /*
2028 * FIXME
2029 * This routine is inefficient -- locks the state only to unlock immediately on
2030 * return.
2031 * It is racy -- after the state is unlocked nothing stops other threads from
2032 * removing it.
2033 */
2034 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2035 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2036 {
2037 struct pf_kstate *s;
2038
2039 s = pf_find_state_all(key, dir, NULL);
2040 if (s != NULL) {
2041 PF_STATE_UNLOCK(s);
2042 return (true);
2043 }
2044 return (false);
2045 }
2046
2047 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2048 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2049 struct pf_addr *nat_addr, uint16_t nat_port)
2050 {
2051 struct pf_udp_mapping *mapping;
2052
2053 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2054 if (mapping == NULL)
2055 return (NULL);
2056 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
2057 mapping->endpoints[0].port = src_port;
2058 mapping->endpoints[0].af = af;
2059 mapping->endpoints[0].mapping = mapping;
2060 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
2061 mapping->endpoints[1].port = nat_port;
2062 mapping->endpoints[1].af = af;
2063 mapping->endpoints[1].mapping = mapping;
2064 refcount_init(&mapping->refs, 1);
2065 return (mapping);
2066 }
2067
2068 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2069 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2070 {
2071 struct pf_udpendpointhash *h0, *h1;
2072 struct pf_udp_endpoint *endpoint;
2073 int ret = EEXIST;
2074
2075 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2076 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2077 if (h0 == h1) {
2078 PF_HASHROW_LOCK(h0);
2079 } else if (h0 < h1) {
2080 PF_HASHROW_LOCK(h0);
2081 PF_HASHROW_LOCK(h1);
2082 } else {
2083 PF_HASHROW_LOCK(h1);
2084 PF_HASHROW_LOCK(h0);
2085 }
2086
2087 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2088 if (bcmp(endpoint, &mapping->endpoints[0],
2089 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2090 break;
2091 }
2092 if (endpoint != NULL)
2093 goto cleanup;
2094 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2095 if (bcmp(endpoint, &mapping->endpoints[1],
2096 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2097 break;
2098 }
2099 if (endpoint != NULL)
2100 goto cleanup;
2101 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2102 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2103 ret = 0;
2104
2105 cleanup:
2106 if (h0 != h1) {
2107 PF_HASHROW_UNLOCK(h0);
2108 PF_HASHROW_UNLOCK(h1);
2109 } else {
2110 PF_HASHROW_UNLOCK(h0);
2111 }
2112 return (ret);
2113 }
2114
2115 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2116 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2117 {
2118 /* refcount is synchronized on the source endpoint's row lock */
2119 struct pf_udpendpointhash *h0, *h1;
2120
2121 if (mapping == NULL)
2122 return;
2123
2124 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2125 PF_HASHROW_LOCK(h0);
2126 if (refcount_release(&mapping->refs)) {
2127 LIST_REMOVE(&mapping->endpoints[0], entry);
2128 PF_HASHROW_UNLOCK(h0);
2129 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2130 PF_HASHROW_LOCK(h1);
2131 LIST_REMOVE(&mapping->endpoints[1], entry);
2132 PF_HASHROW_UNLOCK(h1);
2133
2134 uma_zfree(V_pf_udp_mapping_z, mapping);
2135 } else {
2136 PF_HASHROW_UNLOCK(h0);
2137 }
2138 }
2139
2140
2141 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2142 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2143 {
2144 struct pf_udpendpointhash *uh;
2145 struct pf_udp_endpoint *endpoint;
2146
2147 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2148
2149 PF_HASHROW_LOCK(uh);
2150 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2151 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2152 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2153 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2154 break;
2155 }
2156 if (endpoint == NULL) {
2157 PF_HASHROW_UNLOCK(uh);
2158 return (NULL);
2159 }
2160 refcount_acquire(&endpoint->mapping->refs);
2161 PF_HASHROW_UNLOCK(uh);
2162 return (endpoint->mapping);
2163 }
2164 /* END state table stuff */
2165
2166 static void
pf_send(struct pf_send_entry * pfse)2167 pf_send(struct pf_send_entry *pfse)
2168 {
2169
2170 PF_SENDQ_LOCK();
2171 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2172 PF_SENDQ_UNLOCK();
2173 swi_sched(V_pf_swi_cookie, 0);
2174 }
2175
2176 static bool
pf_isforlocal(struct mbuf * m,int af)2177 pf_isforlocal(struct mbuf *m, int af)
2178 {
2179 switch (af) {
2180 #ifdef INET
2181 case AF_INET: {
2182 struct ip *ip = mtod(m, struct ip *);
2183
2184 return (in_localip(ip->ip_dst));
2185 }
2186 #endif /* INET */
2187 #ifdef INET6
2188 case AF_INET6: {
2189 struct ip6_hdr *ip6;
2190 struct in6_ifaddr *ia;
2191 ip6 = mtod(m, struct ip6_hdr *);
2192 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2193 if (ia == NULL)
2194 return (false);
2195 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2196 }
2197 #endif /* INET6 */
2198 default:
2199 unhandled_af(af);
2200 }
2201
2202 return (false);
2203 }
2204
2205 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2206 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2207 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2208 {
2209 /*
2210 * ICMP types marked with PF_OUT are typically responses to
2211 * PF_IN, and will match states in the opposite direction.
2212 * PF_IN ICMP types need to match a state with that type.
2213 */
2214 *icmp_dir = PF_OUT;
2215
2216 /* Queries (and responses) */
2217 switch (pd->af) {
2218 #ifdef INET
2219 case AF_INET:
2220 switch (type) {
2221 case ICMP_ECHO:
2222 *icmp_dir = PF_IN;
2223 /* FALLTHROUGH */
2224 case ICMP_ECHOREPLY:
2225 *virtual_type = ICMP_ECHO;
2226 *virtual_id = pd->hdr.icmp.icmp_id;
2227 break;
2228
2229 case ICMP_TSTAMP:
2230 *icmp_dir = PF_IN;
2231 /* FALLTHROUGH */
2232 case ICMP_TSTAMPREPLY:
2233 *virtual_type = ICMP_TSTAMP;
2234 *virtual_id = pd->hdr.icmp.icmp_id;
2235 break;
2236
2237 case ICMP_IREQ:
2238 *icmp_dir = PF_IN;
2239 /* FALLTHROUGH */
2240 case ICMP_IREQREPLY:
2241 *virtual_type = ICMP_IREQ;
2242 *virtual_id = pd->hdr.icmp.icmp_id;
2243 break;
2244
2245 case ICMP_MASKREQ:
2246 *icmp_dir = PF_IN;
2247 /* FALLTHROUGH */
2248 case ICMP_MASKREPLY:
2249 *virtual_type = ICMP_MASKREQ;
2250 *virtual_id = pd->hdr.icmp.icmp_id;
2251 break;
2252
2253 case ICMP_IPV6_WHEREAREYOU:
2254 *icmp_dir = PF_IN;
2255 /* FALLTHROUGH */
2256 case ICMP_IPV6_IAMHERE:
2257 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2258 *virtual_id = 0; /* Nothing sane to match on! */
2259 break;
2260
2261 case ICMP_MOBILE_REGREQUEST:
2262 *icmp_dir = PF_IN;
2263 /* FALLTHROUGH */
2264 case ICMP_MOBILE_REGREPLY:
2265 *virtual_type = ICMP_MOBILE_REGREQUEST;
2266 *virtual_id = 0; /* Nothing sane to match on! */
2267 break;
2268
2269 case ICMP_ROUTERSOLICIT:
2270 *icmp_dir = PF_IN;
2271 /* FALLTHROUGH */
2272 case ICMP_ROUTERADVERT:
2273 *virtual_type = ICMP_ROUTERSOLICIT;
2274 *virtual_id = 0; /* Nothing sane to match on! */
2275 break;
2276
2277 /* These ICMP types map to other connections */
2278 case ICMP_UNREACH:
2279 case ICMP_SOURCEQUENCH:
2280 case ICMP_REDIRECT:
2281 case ICMP_TIMXCEED:
2282 case ICMP_PARAMPROB:
2283 /* These will not be used, but set them anyway */
2284 *icmp_dir = PF_IN;
2285 *virtual_type = type;
2286 *virtual_id = 0;
2287 *virtual_type = htons(*virtual_type);
2288 return (1); /* These types match to another state */
2289
2290 /*
2291 * All remaining ICMP types get their own states,
2292 * and will only match in one direction.
2293 */
2294 default:
2295 *icmp_dir = PF_IN;
2296 *virtual_type = type;
2297 *virtual_id = 0;
2298 break;
2299 }
2300 break;
2301 #endif /* INET */
2302 #ifdef INET6
2303 case AF_INET6:
2304 switch (type) {
2305 case ICMP6_ECHO_REQUEST:
2306 *icmp_dir = PF_IN;
2307 /* FALLTHROUGH */
2308 case ICMP6_ECHO_REPLY:
2309 *virtual_type = ICMP6_ECHO_REQUEST;
2310 *virtual_id = pd->hdr.icmp6.icmp6_id;
2311 break;
2312
2313 case MLD_LISTENER_QUERY:
2314 case MLD_LISTENER_REPORT: {
2315 /*
2316 * Listener Report can be sent by clients
2317 * without an associated Listener Query.
2318 * In addition to that, when Report is sent as a
2319 * reply to a Query its source and destination
2320 * address are different.
2321 */
2322 *icmp_dir = PF_IN;
2323 *virtual_type = MLD_LISTENER_QUERY;
2324 *virtual_id = 0;
2325 break;
2326 }
2327 case MLD_MTRACE:
2328 *icmp_dir = PF_IN;
2329 /* FALLTHROUGH */
2330 case MLD_MTRACE_RESP:
2331 *virtual_type = MLD_MTRACE;
2332 *virtual_id = 0; /* Nothing sane to match on! */
2333 break;
2334
2335 case ND_NEIGHBOR_SOLICIT:
2336 *icmp_dir = PF_IN;
2337 /* FALLTHROUGH */
2338 case ND_NEIGHBOR_ADVERT: {
2339 *virtual_type = ND_NEIGHBOR_SOLICIT;
2340 *virtual_id = 0;
2341 break;
2342 }
2343
2344 /*
2345 * These ICMP types map to other connections.
2346 * ND_REDIRECT can't be in this list because the triggering
2347 * packet header is optional.
2348 */
2349 case ICMP6_DST_UNREACH:
2350 case ICMP6_PACKET_TOO_BIG:
2351 case ICMP6_TIME_EXCEEDED:
2352 case ICMP6_PARAM_PROB:
2353 /* These will not be used, but set them anyway */
2354 *icmp_dir = PF_IN;
2355 *virtual_type = type;
2356 *virtual_id = 0;
2357 *virtual_type = htons(*virtual_type);
2358 return (1); /* These types match to another state */
2359 /*
2360 * All remaining ICMP6 types get their own states,
2361 * and will only match in one direction.
2362 */
2363 default:
2364 *icmp_dir = PF_IN;
2365 *virtual_type = type;
2366 *virtual_id = 0;
2367 break;
2368 }
2369 break;
2370 #endif /* INET6 */
2371 default:
2372 unhandled_af(pd->af);
2373 }
2374 *virtual_type = htons(*virtual_type);
2375 return (0); /* These types match to their own state */
2376 }
2377
2378 void
pf_intr(void * v)2379 pf_intr(void *v)
2380 {
2381 struct epoch_tracker et;
2382 struct pf_send_head queue;
2383 struct pf_send_entry *pfse, *next;
2384
2385 CURVNET_SET((struct vnet *)v);
2386
2387 PF_SENDQ_LOCK();
2388 queue = V_pf_sendqueue;
2389 STAILQ_INIT(&V_pf_sendqueue);
2390 PF_SENDQ_UNLOCK();
2391
2392 NET_EPOCH_ENTER(et);
2393
2394 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2395 switch (pfse->pfse_type) {
2396 #ifdef INET
2397 case PFSE_IP: {
2398 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2399 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2400 ("%s: rcvif != loif", __func__));
2401
2402 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2403 pfse->pfse_m->m_pkthdr.csum_flags |=
2404 CSUM_IP_VALID | CSUM_IP_CHECKED |
2405 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2406 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2407 ip_input(pfse->pfse_m);
2408 } else {
2409 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2410 NULL);
2411 }
2412 break;
2413 }
2414 case PFSE_ICMP:
2415 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2416 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2417 break;
2418 #endif /* INET */
2419 #ifdef INET6
2420 case PFSE_IP6:
2421 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2422 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2423 ("%s: rcvif != loif", __func__));
2424
2425 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2426 M_LOOP;
2427 pfse->pfse_m->m_pkthdr.csum_flags |=
2428 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2429 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2430 ip6_input(pfse->pfse_m);
2431 } else {
2432 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2433 NULL, NULL);
2434 }
2435 break;
2436 case PFSE_ICMP6:
2437 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2438 pfse->icmpopts.code, pfse->icmpopts.mtu);
2439 break;
2440 #endif /* INET6 */
2441 default:
2442 panic("%s: unknown type", __func__);
2443 }
2444 free(pfse, M_PFTEMP);
2445 }
2446 NET_EPOCH_EXIT(et);
2447 CURVNET_RESTORE();
2448 }
2449
2450 #define pf_purge_thread_period (hz / 10)
2451
2452 #ifdef PF_WANT_32_TO_64_COUNTER
2453 static void
pf_status_counter_u64_periodic(void)2454 pf_status_counter_u64_periodic(void)
2455 {
2456
2457 PF_RULES_RASSERT();
2458
2459 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2460 return;
2461 }
2462
2463 for (int i = 0; i < FCNT_MAX; i++) {
2464 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2465 }
2466 }
2467
2468 static void
pf_kif_counter_u64_periodic(void)2469 pf_kif_counter_u64_periodic(void)
2470 {
2471 struct pfi_kkif *kif;
2472 size_t r, run;
2473
2474 PF_RULES_RASSERT();
2475
2476 if (__predict_false(V_pf_allkifcount == 0)) {
2477 return;
2478 }
2479
2480 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2481 return;
2482 }
2483
2484 run = V_pf_allkifcount / 10;
2485 if (run < 5)
2486 run = 5;
2487
2488 for (r = 0; r < run; r++) {
2489 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2490 if (kif == NULL) {
2491 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2492 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2493 break;
2494 }
2495
2496 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2497 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2498
2499 for (int i = 0; i < 2; i++) {
2500 for (int j = 0; j < 2; j++) {
2501 for (int k = 0; k < 2; k++) {
2502 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2503 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2504 }
2505 }
2506 }
2507 }
2508 }
2509
2510 static void
pf_rule_counter_u64_periodic(void)2511 pf_rule_counter_u64_periodic(void)
2512 {
2513 struct pf_krule *rule;
2514 size_t r, run;
2515
2516 PF_RULES_RASSERT();
2517
2518 if (__predict_false(V_pf_allrulecount == 0)) {
2519 return;
2520 }
2521
2522 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2523 return;
2524 }
2525
2526 run = V_pf_allrulecount / 10;
2527 if (run < 5)
2528 run = 5;
2529
2530 for (r = 0; r < run; r++) {
2531 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2532 if (rule == NULL) {
2533 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2534 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2535 break;
2536 }
2537
2538 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2539 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2540
2541 pf_counter_u64_periodic(&rule->evaluations);
2542 for (int i = 0; i < 2; i++) {
2543 pf_counter_u64_periodic(&rule->packets[i]);
2544 pf_counter_u64_periodic(&rule->bytes[i]);
2545 }
2546 }
2547 }
2548
2549 static void
pf_counter_u64_periodic_main(void)2550 pf_counter_u64_periodic_main(void)
2551 {
2552 PF_RULES_RLOCK_TRACKER;
2553
2554 V_pf_counter_periodic_iter++;
2555
2556 PF_RULES_RLOCK();
2557 pf_counter_u64_critical_enter();
2558 pf_status_counter_u64_periodic();
2559 pf_kif_counter_u64_periodic();
2560 pf_rule_counter_u64_periodic();
2561 pf_counter_u64_critical_exit();
2562 PF_RULES_RUNLOCK();
2563 }
2564 #else
2565 #define pf_counter_u64_periodic_main() do { } while (0)
2566 #endif
2567
2568 void
pf_purge_thread(void * unused __unused)2569 pf_purge_thread(void *unused __unused)
2570 {
2571 struct epoch_tracker et;
2572
2573 VNET_ITERATOR_DECL(vnet_iter);
2574
2575 sx_xlock(&pf_end_lock);
2576 while (pf_end_threads == 0) {
2577 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2578
2579 VNET_LIST_RLOCK();
2580 NET_EPOCH_ENTER(et);
2581 VNET_FOREACH(vnet_iter) {
2582 CURVNET_SET(vnet_iter);
2583
2584 /* Wait until V_pf_default_rule is initialized. */
2585 if (V_pf_vnet_active == 0) {
2586 CURVNET_RESTORE();
2587 continue;
2588 }
2589
2590 pf_counter_u64_periodic_main();
2591
2592 /*
2593 * Process 1/interval fraction of the state
2594 * table every run.
2595 */
2596 V_pf_purge_idx =
2597 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2598 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2599
2600 /*
2601 * Purge other expired types every
2602 * PFTM_INTERVAL seconds.
2603 */
2604 if (V_pf_purge_idx == 0) {
2605 /*
2606 * Order is important:
2607 * - states and src nodes reference rules
2608 * - states and rules reference kifs
2609 */
2610 pf_purge_expired_fragments();
2611 pf_purge_expired_src_nodes();
2612 pf_purge_unlinked_rules();
2613 pfi_kkif_purge();
2614 }
2615 CURVNET_RESTORE();
2616 }
2617 NET_EPOCH_EXIT(et);
2618 VNET_LIST_RUNLOCK();
2619 }
2620
2621 pf_end_threads++;
2622 sx_xunlock(&pf_end_lock);
2623 kproc_exit(0);
2624 }
2625
2626 void
pf_unload_vnet_purge(void)2627 pf_unload_vnet_purge(void)
2628 {
2629
2630 /*
2631 * To cleanse up all kifs and rules we need
2632 * two runs: first one clears reference flags,
2633 * then pf_purge_expired_states() doesn't
2634 * raise them, and then second run frees.
2635 */
2636 pf_purge_unlinked_rules();
2637 pfi_kkif_purge();
2638
2639 /*
2640 * Now purge everything.
2641 */
2642 pf_purge_expired_states(0, V_pf_hashmask);
2643 pf_purge_fragments(UINT_MAX);
2644 pf_purge_expired_src_nodes();
2645
2646 /*
2647 * Now all kifs & rules should be unreferenced,
2648 * thus should be successfully freed.
2649 */
2650 pf_purge_unlinked_rules();
2651 pfi_kkif_purge();
2652 }
2653
2654 u_int32_t
pf_state_expires(const struct pf_kstate * state)2655 pf_state_expires(const struct pf_kstate *state)
2656 {
2657 u_int32_t timeout;
2658 u_int32_t start;
2659 u_int32_t end;
2660 u_int32_t states;
2661
2662 /* handle all PFTM_* > PFTM_MAX here */
2663 if (state->timeout == PFTM_PURGE)
2664 return (time_uptime);
2665 KASSERT(state->timeout != PFTM_UNLINKED,
2666 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2667 KASSERT((state->timeout < PFTM_MAX),
2668 ("pf_state_expires: timeout > PFTM_MAX"));
2669 timeout = state->rule->timeout[state->timeout];
2670 if (!timeout)
2671 timeout = V_pf_default_rule.timeout[state->timeout];
2672 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2673 if (start && state->rule != &V_pf_default_rule) {
2674 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2675 states = counter_u64_fetch(state->rule->states_cur);
2676 } else {
2677 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2678 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2679 states = V_pf_status.states;
2680 }
2681 if (end && states > start && start < end) {
2682 if (states < end) {
2683 timeout = (u_int64_t)timeout * (end - states) /
2684 (end - start);
2685 return ((state->expire / 1000) + timeout);
2686 }
2687 else
2688 return (time_uptime);
2689 }
2690 return ((state->expire / 1000) + timeout);
2691 }
2692
2693 void
pf_purge_expired_src_nodes(void)2694 pf_purge_expired_src_nodes(void)
2695 {
2696 struct pf_ksrc_node_list freelist;
2697 struct pf_srchash *sh;
2698 struct pf_ksrc_node *cur, *next;
2699 int i;
2700
2701 LIST_INIT(&freelist);
2702 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2703 PF_HASHROW_LOCK(sh);
2704 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2705 if (cur->states == 0 && cur->expire <= time_uptime) {
2706 pf_unlink_src_node(cur);
2707 LIST_INSERT_HEAD(&freelist, cur, entry);
2708 } else if (cur->rule != NULL)
2709 cur->rule->rule_ref |= PFRULE_REFS;
2710 PF_HASHROW_UNLOCK(sh);
2711 }
2712
2713 pf_free_src_nodes(&freelist);
2714
2715 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2716 }
2717
2718 static void
pf_src_tree_remove_state(struct pf_kstate * s)2719 pf_src_tree_remove_state(struct pf_kstate *s)
2720 {
2721 uint32_t timeout;
2722
2723 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2724 s->rule->timeout[PFTM_SRC_NODE] :
2725 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2726
2727 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2728 if (s->sns[sn_type] == NULL)
2729 continue;
2730 PF_SRC_NODE_LOCK(s->sns[sn_type]);
2731 if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2732 --(s->sns[sn_type]->conn);
2733 if (--(s->sns[sn_type]->states) == 0)
2734 s->sns[sn_type]->expire = time_uptime + timeout;
2735 PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2736 s->sns[sn_type] = NULL;
2737 }
2738
2739 }
2740
2741 /*
2742 * Unlink and potentilly free a state. Function may be
2743 * called with ID hash row locked, but always returns
2744 * unlocked, since it needs to go through key hash locking.
2745 */
2746 int
pf_remove_state(struct pf_kstate * s)2747 pf_remove_state(struct pf_kstate *s)
2748 {
2749 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2750
2751 NET_EPOCH_ASSERT();
2752 PF_HASHROW_ASSERT(ih);
2753
2754 if (s->timeout == PFTM_UNLINKED) {
2755 /*
2756 * State is being processed
2757 * by pf_remove_state() in
2758 * an other thread.
2759 */
2760 PF_HASHROW_UNLOCK(ih);
2761 return (0); /* XXXGL: undefined actually */
2762 }
2763
2764 if (s->src.state == PF_TCPS_PROXY_DST) {
2765 /* XXX wire key the right one? */
2766 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2767 &s->key[PF_SK_WIRE]->addr[1],
2768 &s->key[PF_SK_WIRE]->addr[0],
2769 s->key[PF_SK_WIRE]->port[1],
2770 s->key[PF_SK_WIRE]->port[0],
2771 s->src.seqhi, s->src.seqlo + 1,
2772 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2773 s->act.rtableid);
2774 }
2775
2776 LIST_REMOVE(s, entry);
2777 pf_src_tree_remove_state(s);
2778
2779 if (V_pfsync_delete_state_ptr != NULL)
2780 V_pfsync_delete_state_ptr(s);
2781
2782 STATE_DEC_COUNTERS(s);
2783
2784 s->timeout = PFTM_UNLINKED;
2785
2786 /* Ensure we remove it from the list of halfopen states, if needed. */
2787 if (s->key[PF_SK_STACK] != NULL &&
2788 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2789 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2790
2791 PF_HASHROW_UNLOCK(ih);
2792
2793 pf_detach_state(s);
2794
2795 pf_udp_mapping_release(s->udp_mapping);
2796
2797 /* pf_state_insert() initialises refs to 2 */
2798 return (pf_release_staten(s, 2));
2799 }
2800
2801 struct pf_kstate *
pf_alloc_state(int flags)2802 pf_alloc_state(int flags)
2803 {
2804
2805 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2806 }
2807
2808 void
pf_free_state(struct pf_kstate * cur)2809 pf_free_state(struct pf_kstate *cur)
2810 {
2811 struct pf_krule_item *ri;
2812
2813 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2814 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2815 cur->timeout));
2816
2817 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2818 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2819 free(ri, M_PF_RULE_ITEM);
2820 }
2821
2822 pf_normalize_tcp_cleanup(cur);
2823 uma_zfree(V_pf_state_z, cur);
2824 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2825 }
2826
2827 /*
2828 * Called only from pf_purge_thread(), thus serialized.
2829 */
2830 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2831 pf_purge_expired_states(u_int i, int maxcheck)
2832 {
2833 struct pf_idhash *ih;
2834 struct pf_kstate *s;
2835 struct pf_krule_item *mrm;
2836 size_t count __unused;
2837
2838 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2839
2840 /*
2841 * Go through hash and unlink states that expire now.
2842 */
2843 while (maxcheck > 0) {
2844 count = 0;
2845 ih = &V_pf_idhash[i];
2846
2847 /* only take the lock if we expect to do work */
2848 if (!LIST_EMPTY(&ih->states)) {
2849 relock:
2850 PF_HASHROW_LOCK(ih);
2851 LIST_FOREACH(s, &ih->states, entry) {
2852 if (pf_state_expires(s) <= time_uptime) {
2853 V_pf_status.states -=
2854 pf_remove_state(s);
2855 goto relock;
2856 }
2857 s->rule->rule_ref |= PFRULE_REFS;
2858 if (s->nat_rule != NULL)
2859 s->nat_rule->rule_ref |= PFRULE_REFS;
2860 if (s->anchor != NULL)
2861 s->anchor->rule_ref |= PFRULE_REFS;
2862 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2863 SLIST_FOREACH(mrm, &s->match_rules, entry)
2864 mrm->r->rule_ref |= PFRULE_REFS;
2865 if (s->act.rt_kif)
2866 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2867 count++;
2868 }
2869 PF_HASHROW_UNLOCK(ih);
2870 }
2871
2872 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2873
2874 /* Return when we hit end of hash. */
2875 if (++i > V_pf_hashmask) {
2876 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2877 return (0);
2878 }
2879
2880 maxcheck--;
2881 }
2882
2883 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2884
2885 return (i);
2886 }
2887
2888 static void
pf_purge_unlinked_rules(void)2889 pf_purge_unlinked_rules(void)
2890 {
2891 struct pf_krulequeue tmpq;
2892 struct pf_krule *r, *r1;
2893
2894 /*
2895 * If we have overloading task pending, then we'd
2896 * better skip purging this time. There is a tiny
2897 * probability that overloading task references
2898 * an already unlinked rule.
2899 */
2900 PF_OVERLOADQ_LOCK();
2901 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2902 PF_OVERLOADQ_UNLOCK();
2903 return;
2904 }
2905 PF_OVERLOADQ_UNLOCK();
2906
2907 /*
2908 * Do naive mark-and-sweep garbage collecting of old rules.
2909 * Reference flag is raised by pf_purge_expired_states()
2910 * and pf_purge_expired_src_nodes().
2911 *
2912 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2913 * use a temporary queue.
2914 */
2915 TAILQ_INIT(&tmpq);
2916 PF_UNLNKDRULES_LOCK();
2917 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2918 if (!(r->rule_ref & PFRULE_REFS)) {
2919 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2920 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2921 } else
2922 r->rule_ref &= ~PFRULE_REFS;
2923 }
2924 PF_UNLNKDRULES_UNLOCK();
2925
2926 if (!TAILQ_EMPTY(&tmpq)) {
2927 PF_CONFIG_LOCK();
2928 PF_RULES_WLOCK();
2929 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2930 TAILQ_REMOVE(&tmpq, r, entries);
2931 pf_free_rule(r);
2932 }
2933 PF_RULES_WUNLOCK();
2934 PF_CONFIG_UNLOCK();
2935 }
2936 }
2937
2938 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2939 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2940 {
2941 switch (af) {
2942 #ifdef INET
2943 case AF_INET: {
2944 u_int32_t a = ntohl(addr->addr32[0]);
2945 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2946 (a>>8)&255, a&255);
2947 if (p) {
2948 p = ntohs(p);
2949 printf(":%u", p);
2950 }
2951 break;
2952 }
2953 #endif /* INET */
2954 #ifdef INET6
2955 case AF_INET6: {
2956 u_int16_t b;
2957 u_int8_t i, curstart, curend, maxstart, maxend;
2958 curstart = curend = maxstart = maxend = 255;
2959 for (i = 0; i < 8; i++) {
2960 if (!addr->addr16[i]) {
2961 if (curstart == 255)
2962 curstart = i;
2963 curend = i;
2964 } else {
2965 if ((curend - curstart) >
2966 (maxend - maxstart)) {
2967 maxstart = curstart;
2968 maxend = curend;
2969 }
2970 curstart = curend = 255;
2971 }
2972 }
2973 if ((curend - curstart) >
2974 (maxend - maxstart)) {
2975 maxstart = curstart;
2976 maxend = curend;
2977 }
2978 for (i = 0; i < 8; i++) {
2979 if (i >= maxstart && i <= maxend) {
2980 if (i == 0)
2981 printf(":");
2982 if (i == maxend)
2983 printf(":");
2984 } else {
2985 b = ntohs(addr->addr16[i]);
2986 printf("%x", b);
2987 if (i < 7)
2988 printf(":");
2989 }
2990 }
2991 if (p) {
2992 p = ntohs(p);
2993 printf("[%u]", p);
2994 }
2995 break;
2996 }
2997 #endif /* INET6 */
2998 default:
2999 unhandled_af(af);
3000 }
3001 }
3002
3003 void
pf_print_state(struct pf_kstate * s)3004 pf_print_state(struct pf_kstate *s)
3005 {
3006 pf_print_state_parts(s, NULL, NULL);
3007 }
3008
3009 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)3010 pf_print_state_parts(struct pf_kstate *s,
3011 struct pf_state_key *skwp, struct pf_state_key *sksp)
3012 {
3013 struct pf_state_key *skw, *sks;
3014 u_int8_t proto, dir;
3015
3016 /* Do our best to fill these, but they're skipped if NULL */
3017 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3018 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3019 proto = skw ? skw->proto : (sks ? sks->proto : 0);
3020 dir = s ? s->direction : 0;
3021
3022 switch (proto) {
3023 case IPPROTO_IPV4:
3024 printf("IPv4");
3025 break;
3026 case IPPROTO_IPV6:
3027 printf("IPv6");
3028 break;
3029 case IPPROTO_TCP:
3030 printf("TCP");
3031 break;
3032 case IPPROTO_UDP:
3033 printf("UDP");
3034 break;
3035 case IPPROTO_ICMP:
3036 printf("ICMP");
3037 break;
3038 case IPPROTO_ICMPV6:
3039 printf("ICMPv6");
3040 break;
3041 default:
3042 printf("%u", proto);
3043 break;
3044 }
3045 switch (dir) {
3046 case PF_IN:
3047 printf(" in");
3048 break;
3049 case PF_OUT:
3050 printf(" out");
3051 break;
3052 }
3053 if (skw) {
3054 printf(" wire: ");
3055 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3056 printf(" ");
3057 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3058 }
3059 if (sks) {
3060 printf(" stack: ");
3061 if (sks != skw) {
3062 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3063 printf(" ");
3064 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3065 } else
3066 printf("-");
3067 }
3068 if (s) {
3069 if (proto == IPPROTO_TCP) {
3070 printf(" [lo=%u high=%u win=%u modulator=%u",
3071 s->src.seqlo, s->src.seqhi,
3072 s->src.max_win, s->src.seqdiff);
3073 if (s->src.wscale && s->dst.wscale)
3074 printf(" wscale=%u",
3075 s->src.wscale & PF_WSCALE_MASK);
3076 printf("]");
3077 printf(" [lo=%u high=%u win=%u modulator=%u",
3078 s->dst.seqlo, s->dst.seqhi,
3079 s->dst.max_win, s->dst.seqdiff);
3080 if (s->src.wscale && s->dst.wscale)
3081 printf(" wscale=%u",
3082 s->dst.wscale & PF_WSCALE_MASK);
3083 printf("]");
3084 }
3085 printf(" %u:%u", s->src.state, s->dst.state);
3086 if (s->rule)
3087 printf(" @%d", s->rule->nr);
3088 }
3089 }
3090
3091 void
pf_print_flags(uint16_t f)3092 pf_print_flags(uint16_t f)
3093 {
3094 if (f)
3095 printf(" ");
3096 if (f & TH_FIN)
3097 printf("F");
3098 if (f & TH_SYN)
3099 printf("S");
3100 if (f & TH_RST)
3101 printf("R");
3102 if (f & TH_PUSH)
3103 printf("P");
3104 if (f & TH_ACK)
3105 printf("A");
3106 if (f & TH_URG)
3107 printf("U");
3108 if (f & TH_ECE)
3109 printf("E");
3110 if (f & TH_CWR)
3111 printf("W");
3112 if (f & TH_AE)
3113 printf("e");
3114 }
3115
3116 #define PF_SET_SKIP_STEPS(i) \
3117 do { \
3118 while (head[i] != cur) { \
3119 head[i]->skip[i] = cur; \
3120 head[i] = TAILQ_NEXT(head[i], entries); \
3121 } \
3122 } while (0)
3123
3124 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3125 pf_calc_skip_steps(struct pf_krulequeue *rules)
3126 {
3127 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3128 int i;
3129
3130 cur = TAILQ_FIRST(rules);
3131 prev = cur;
3132 for (i = 0; i < PF_SKIP_COUNT; ++i)
3133 head[i] = cur;
3134 while (cur != NULL) {
3135 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3136 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3137 if (cur->direction != prev->direction)
3138 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3139 if (cur->af != prev->af)
3140 PF_SET_SKIP_STEPS(PF_SKIP_AF);
3141 if (cur->proto != prev->proto)
3142 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3143 if (cur->src.neg != prev->src.neg ||
3144 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3145 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3146 if (cur->dst.neg != prev->dst.neg ||
3147 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3148 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3149 if (cur->src.port[0] != prev->src.port[0] ||
3150 cur->src.port[1] != prev->src.port[1] ||
3151 cur->src.port_op != prev->src.port_op)
3152 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3153 if (cur->dst.port[0] != prev->dst.port[0] ||
3154 cur->dst.port[1] != prev->dst.port[1] ||
3155 cur->dst.port_op != prev->dst.port_op)
3156 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3157
3158 prev = cur;
3159 cur = TAILQ_NEXT(cur, entries);
3160 }
3161 for (i = 0; i < PF_SKIP_COUNT; ++i)
3162 PF_SET_SKIP_STEPS(i);
3163 }
3164
3165 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3166 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3167 {
3168 if (aw1->type != aw2->type)
3169 return (1);
3170 switch (aw1->type) {
3171 case PF_ADDR_ADDRMASK:
3172 case PF_ADDR_RANGE:
3173 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3174 return (1);
3175 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3176 return (1);
3177 return (0);
3178 case PF_ADDR_DYNIFTL:
3179 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3180 case PF_ADDR_NONE:
3181 case PF_ADDR_NOROUTE:
3182 case PF_ADDR_URPFFAILED:
3183 return (0);
3184 case PF_ADDR_TABLE:
3185 return (aw1->p.tbl != aw2->p.tbl);
3186 default:
3187 printf("invalid address type: %d\n", aw1->type);
3188 return (1);
3189 }
3190 }
3191
3192 /**
3193 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3194 * header isn't always a full checksum. In some cases (i.e. output) it's a
3195 * pseudo-header checksum, which is a partial checksum over src/dst IP
3196 * addresses, protocol number and length.
3197 *
3198 * That means we have the following cases:
3199 * * Input or forwarding: we don't have TSO, the checksum fields are full
3200 * checksums, we need to update the checksum whenever we change anything.
3201 * * Output (i.e. the checksum is a pseudo-header checksum):
3202 * x The field being updated is src/dst address or affects the length of
3203 * the packet. We need to update the pseudo-header checksum (note that this
3204 * checksum is not ones' complement).
3205 * x Some other field is being modified (e.g. src/dst port numbers): We
3206 * don't have to update anything.
3207 **/
3208 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3209 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3210 {
3211 u_int32_t x;
3212
3213 x = cksum + old - new;
3214 x = (x + (x >> 16)) & 0xffff;
3215
3216 /* optimise: eliminate a branch when not udp */
3217 if (udp && cksum == 0x0000)
3218 return cksum;
3219 if (udp && x == 0x0000)
3220 x = 0xffff;
3221
3222 return (u_int16_t)(x);
3223 }
3224
3225 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3226 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3227 {
3228 int rewrite = 0;
3229
3230 if (*f != v) {
3231 uint16_t old = htons(hi ? (*f << 8) : *f);
3232 uint16_t new = htons(hi ? ( v << 8) : v);
3233
3234 *f = v;
3235
3236 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3237 CSUM_DELAY_DATA_IPV6)))
3238 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3239 pd->proto == IPPROTO_UDP);
3240
3241 rewrite = 1;
3242 }
3243
3244 return (rewrite);
3245 }
3246
3247 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3248 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3249 {
3250 int rewrite = 0;
3251 u_int8_t *fb = (u_int8_t *)f;
3252 u_int8_t *vb = (u_int8_t *)&v;
3253
3254 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3255 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3256
3257 return (rewrite);
3258 }
3259
3260 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3261 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3262 {
3263 int rewrite = 0;
3264 u_int8_t *fb = (u_int8_t *)f;
3265 u_int8_t *vb = (u_int8_t *)&v;
3266
3267 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3268 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3269 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3270 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3271
3272 return (rewrite);
3273 }
3274
3275 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3276 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3277 u_int16_t new, u_int8_t udp)
3278 {
3279 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3280 return (cksum);
3281
3282 return (pf_cksum_fixup(cksum, old, new, udp));
3283 }
3284
3285 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3286 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3287 struct pf_addr *an, u_int16_t pn)
3288 {
3289 struct pf_addr ao;
3290 u_int16_t po;
3291 uint8_t u = pd->virtual_proto == IPPROTO_UDP;
3292
3293 MPASS(pd->pcksum);
3294 if (pd->af == AF_INET) {
3295 MPASS(pd->ip_sum);
3296 }
3297
3298 PF_ACPY(&ao, a, pd->af);
3299 if (pd->af == pd->naf)
3300 PF_ACPY(a, an, pd->af);
3301
3302 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3303 *pd->pcksum = ~*pd->pcksum;
3304
3305 if (p == NULL) /* no port -> done. no cksum to worry about. */
3306 return;
3307 po = *p;
3308 *p = pn;
3309
3310 switch (pd->af) {
3311 #ifdef INET
3312 case AF_INET:
3313 switch (pd->naf) {
3314 case AF_INET:
3315 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3316 ao.addr16[0], an->addr16[0], 0),
3317 ao.addr16[1], an->addr16[1], 0);
3318 *p = pn;
3319
3320 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3321 ao.addr16[0], an->addr16[0], u),
3322 ao.addr16[1], an->addr16[1], u);
3323
3324 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3325 break;
3326 #ifdef INET6
3327 case AF_INET6:
3328 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3329 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3330 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3331 ao.addr16[0], an->addr16[0], u),
3332 ao.addr16[1], an->addr16[1], u),
3333 0, an->addr16[2], u),
3334 0, an->addr16[3], u),
3335 0, an->addr16[4], u),
3336 0, an->addr16[5], u),
3337 0, an->addr16[6], u),
3338 0, an->addr16[7], u),
3339 po, pn, u);
3340 break;
3341 #endif /* INET6 */
3342 default:
3343 unhandled_af(pd->naf);
3344 }
3345 break;
3346 #endif /* INET */
3347 #ifdef INET6
3348 case AF_INET6:
3349 switch (pd->naf) {
3350 #ifdef INET
3351 case AF_INET:
3352 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3353 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3354 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3355 ao.addr16[0], an->addr16[0], u),
3356 ao.addr16[1], an->addr16[1], u),
3357 ao.addr16[2], 0, u),
3358 ao.addr16[3], 0, u),
3359 ao.addr16[4], 0, u),
3360 ao.addr16[5], 0, u),
3361 ao.addr16[6], 0, u),
3362 ao.addr16[7], 0, u),
3363 po, pn, u);
3364 break;
3365 #endif /* INET */
3366 case AF_INET6:
3367 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3368 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3369 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3370 ao.addr16[0], an->addr16[0], u),
3371 ao.addr16[1], an->addr16[1], u),
3372 ao.addr16[2], an->addr16[2], u),
3373 ao.addr16[3], an->addr16[3], u),
3374 ao.addr16[4], an->addr16[4], u),
3375 ao.addr16[5], an->addr16[5], u),
3376 ao.addr16[6], an->addr16[6], u),
3377 ao.addr16[7], an->addr16[7], u);
3378
3379 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3380 break;
3381 default:
3382 unhandled_af(pd->naf);
3383 }
3384 break;
3385 #endif /* INET6 */
3386 default:
3387 unhandled_af(pd->af);
3388 }
3389
3390 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3391 CSUM_DELAY_DATA_IPV6)) {
3392 *pd->pcksum = ~*pd->pcksum;
3393 if (! *pd->pcksum)
3394 *pd->pcksum = 0xffff;
3395 }
3396 }
3397
3398 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3399 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3400 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3401 {
3402 u_int32_t ao;
3403
3404 memcpy(&ao, a, sizeof(ao));
3405 memcpy(a, &an, sizeof(u_int32_t));
3406 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3407 ao % 65536, an % 65536, u);
3408 }
3409
3410 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3411 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3412 {
3413 u_int32_t ao;
3414
3415 memcpy(&ao, a, sizeof(ao));
3416 memcpy(a, &an, sizeof(u_int32_t));
3417
3418 *c = pf_proto_cksum_fixup(m,
3419 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3420 ao % 65536, an % 65536, udp);
3421 }
3422
3423 #ifdef INET6
3424 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3425 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3426 {
3427 struct pf_addr ao;
3428
3429 PF_ACPY(&ao, a, AF_INET6);
3430 PF_ACPY(a, an, AF_INET6);
3431
3432 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3433 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3434 pf_cksum_fixup(pf_cksum_fixup(*c,
3435 ao.addr16[0], an->addr16[0], u),
3436 ao.addr16[1], an->addr16[1], u),
3437 ao.addr16[2], an->addr16[2], u),
3438 ao.addr16[3], an->addr16[3], u),
3439 ao.addr16[4], an->addr16[4], u),
3440 ao.addr16[5], an->addr16[5], u),
3441 ao.addr16[6], an->addr16[6], u),
3442 ao.addr16[7], an->addr16[7], u);
3443 }
3444 #endif /* INET6 */
3445
3446 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3447 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3448 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3449 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3450 {
3451 struct pf_addr oia, ooa;
3452
3453 PF_ACPY(&oia, ia, af);
3454 if (oa)
3455 PF_ACPY(&ooa, oa, af);
3456
3457 /* Change inner protocol port, fix inner protocol checksum. */
3458 if (ip != NULL) {
3459 u_int16_t oip = *ip;
3460 u_int32_t opc;
3461
3462 if (pc != NULL)
3463 opc = *pc;
3464 *ip = np;
3465 if (pc != NULL)
3466 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3467 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3468 if (pc != NULL)
3469 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3470 }
3471 /* Change inner ip address, fix inner ip and icmp checksums. */
3472 PF_ACPY(ia, na, af);
3473 switch (af) {
3474 #ifdef INET
3475 case AF_INET: {
3476 u_int32_t oh2c = *h2c;
3477
3478 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3479 oia.addr16[0], ia->addr16[0], 0),
3480 oia.addr16[1], ia->addr16[1], 0);
3481 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3482 oia.addr16[0], ia->addr16[0], 0),
3483 oia.addr16[1], ia->addr16[1], 0);
3484 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3485 break;
3486 }
3487 #endif /* INET */
3488 #ifdef INET6
3489 case AF_INET6:
3490 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3491 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3492 pf_cksum_fixup(pf_cksum_fixup(*ic,
3493 oia.addr16[0], ia->addr16[0], u),
3494 oia.addr16[1], ia->addr16[1], u),
3495 oia.addr16[2], ia->addr16[2], u),
3496 oia.addr16[3], ia->addr16[3], u),
3497 oia.addr16[4], ia->addr16[4], u),
3498 oia.addr16[5], ia->addr16[5], u),
3499 oia.addr16[6], ia->addr16[6], u),
3500 oia.addr16[7], ia->addr16[7], u);
3501 break;
3502 #endif /* INET6 */
3503 }
3504 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3505 if (oa) {
3506 PF_ACPY(oa, na, af);
3507 switch (af) {
3508 #ifdef INET
3509 case AF_INET:
3510 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3511 ooa.addr16[0], oa->addr16[0], 0),
3512 ooa.addr16[1], oa->addr16[1], 0);
3513 break;
3514 #endif /* INET */
3515 #ifdef INET6
3516 case AF_INET6:
3517 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3518 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3519 pf_cksum_fixup(pf_cksum_fixup(*ic,
3520 ooa.addr16[0], oa->addr16[0], u),
3521 ooa.addr16[1], oa->addr16[1], u),
3522 ooa.addr16[2], oa->addr16[2], u),
3523 ooa.addr16[3], oa->addr16[3], u),
3524 ooa.addr16[4], oa->addr16[4], u),
3525 ooa.addr16[5], oa->addr16[5], u),
3526 ooa.addr16[6], oa->addr16[6], u),
3527 ooa.addr16[7], oa->addr16[7], u);
3528 break;
3529 #endif /* INET6 */
3530 }
3531 }
3532 }
3533
3534 int
pf_translate_af(struct pf_pdesc * pd)3535 pf_translate_af(struct pf_pdesc *pd)
3536 {
3537 #if defined(INET) && defined(INET6)
3538 struct mbuf *mp;
3539 struct ip *ip4;
3540 struct ip6_hdr *ip6;
3541 struct icmp6_hdr *icmp;
3542 struct m_tag *mtag;
3543 struct pf_fragment_tag *ftag;
3544 int hlen;
3545
3546 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3547
3548 /* trim the old header */
3549 m_adj(pd->m, pd->off);
3550
3551 /* prepend a new one */
3552 M_PREPEND(pd->m, hlen, M_NOWAIT);
3553 if (pd->m == NULL)
3554 return (-1);
3555
3556 switch (pd->naf) {
3557 case AF_INET:
3558 ip4 = mtod(pd->m, struct ip *);
3559 bzero(ip4, hlen);
3560 ip4->ip_v = IPVERSION;
3561 ip4->ip_hl = hlen >> 2;
3562 ip4->ip_tos = pd->tos;
3563 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3564 ip_fillid(ip4, V_ip_random_id);
3565 ip4->ip_ttl = pd->ttl;
3566 ip4->ip_p = pd->proto;
3567 ip4->ip_src = pd->nsaddr.v4;
3568 ip4->ip_dst = pd->ndaddr.v4;
3569 pd->src = (struct pf_addr *)&ip4->ip_src;
3570 pd->dst = (struct pf_addr *)&ip4->ip_dst;
3571 pd->off = sizeof(struct ip);
3572 break;
3573 case AF_INET6:
3574 ip6 = mtod(pd->m, struct ip6_hdr *);
3575 bzero(ip6, hlen);
3576 ip6->ip6_vfc = IPV6_VERSION;
3577 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3578 ip6->ip6_plen = htons(pd->tot_len - pd->off);
3579 ip6->ip6_nxt = pd->proto;
3580 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3581 ip6->ip6_hlim = IPV6_DEFHLIM;
3582 else
3583 ip6->ip6_hlim = pd->ttl;
3584 ip6->ip6_src = pd->nsaddr.v6;
3585 ip6->ip6_dst = pd->ndaddr.v6;
3586 pd->src = (struct pf_addr *)&ip6->ip6_src;
3587 pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3588 pd->off = sizeof(struct ip6_hdr);
3589
3590 /*
3591 * If we're dealing with a reassembled packet we need to adjust
3592 * the header length from the IPv4 header size to IPv6 header
3593 * size.
3594 */
3595 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3596 if (mtag) {
3597 ftag = (struct pf_fragment_tag *)(mtag + 1);
3598 ftag->ft_hdrlen = sizeof(*ip6);
3599 ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3600 sizeof(struct ip) + sizeof(struct ip6_frag);
3601 }
3602 break;
3603 default:
3604 return (-1);
3605 }
3606
3607 /* recalculate icmp/icmp6 checksums */
3608 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3609 int off;
3610 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3611 NULL) {
3612 pd->m = NULL;
3613 return (-1);
3614 }
3615 icmp = (struct icmp6_hdr *)(mp->m_data + off);
3616 icmp->icmp6_cksum = 0;
3617 icmp->icmp6_cksum = pd->naf == AF_INET ?
3618 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3619 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3620 ntohs(ip6->ip6_plen));
3621 }
3622 #endif /* INET && INET6 */
3623
3624 return (0);
3625 }
3626
3627 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3628 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3629 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3630 sa_family_t af, sa_family_t naf)
3631 {
3632 #if defined(INET) && defined(INET6)
3633 struct mbuf *n = NULL;
3634 struct ip *ip4;
3635 struct ip6_hdr *ip6;
3636 int hlen, olen, mlen;
3637
3638 if (af == naf || (af != AF_INET && af != AF_INET6) ||
3639 (naf != AF_INET && naf != AF_INET6))
3640 return (-1);
3641
3642 /* split the mbuf chain on the inner ip/ip6 header boundary */
3643 if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3644 return (-1);
3645
3646 /* old header */
3647 olen = pd2->off - off;
3648 /* new header */
3649 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3650
3651 /* trim old header */
3652 m_adj(n, olen);
3653
3654 /* prepend a new one */
3655 M_PREPEND(n, hlen, M_NOWAIT);
3656 if (n == NULL)
3657 return (-1);
3658
3659 /* translate inner ip/ip6 header */
3660 switch (naf) {
3661 case AF_INET:
3662 ip4 = mtod(n, struct ip *);
3663 bzero(ip4, sizeof(*ip4));
3664 ip4->ip_v = IPVERSION;
3665 ip4->ip_hl = sizeof(*ip4) >> 2;
3666 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3667 ip_fillid(ip4, V_ip_random_id);
3668 ip4->ip_off = htons(IP_DF);
3669 ip4->ip_ttl = pd2->ttl;
3670 if (pd2->proto == IPPROTO_ICMPV6)
3671 ip4->ip_p = IPPROTO_ICMP;
3672 else
3673 ip4->ip_p = pd2->proto;
3674 ip4->ip_src = src->v4;
3675 ip4->ip_dst = dst->v4;
3676 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3677 break;
3678 case AF_INET6:
3679 ip6 = mtod(n, struct ip6_hdr *);
3680 bzero(ip6, sizeof(*ip6));
3681 ip6->ip6_vfc = IPV6_VERSION;
3682 ip6->ip6_plen = htons(pd2->tot_len - olen);
3683 if (pd2->proto == IPPROTO_ICMP)
3684 ip6->ip6_nxt = IPPROTO_ICMPV6;
3685 else
3686 ip6->ip6_nxt = pd2->proto;
3687 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3688 ip6->ip6_hlim = IPV6_DEFHLIM;
3689 else
3690 ip6->ip6_hlim = pd2->ttl;
3691 ip6->ip6_src = src->v6;
3692 ip6->ip6_dst = dst->v6;
3693 break;
3694 default:
3695 unhandled_af(naf);
3696 }
3697
3698 /* adjust payload offset and total packet length */
3699 pd2->off += hlen - olen;
3700 pd->tot_len += hlen - olen;
3701
3702 /* merge modified inner packet with the original header */
3703 mlen = n->m_pkthdr.len;
3704 m_cat(m, n);
3705 m->m_pkthdr.len += mlen;
3706 #endif /* INET && INET6 */
3707
3708 return (0);
3709 }
3710
3711 #define PTR_IP(field) (offsetof(struct ip, field))
3712 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field))
3713
3714 int
pf_translate_icmp_af(int af,void * arg)3715 pf_translate_icmp_af(int af, void *arg)
3716 {
3717 #if defined(INET) && defined(INET6)
3718 struct icmp *icmp4;
3719 struct icmp6_hdr *icmp6;
3720 u_int32_t mtu;
3721 int32_t ptr = -1;
3722 u_int8_t type;
3723 u_int8_t code;
3724
3725 switch (af) {
3726 case AF_INET:
3727 icmp6 = arg;
3728 type = icmp6->icmp6_type;
3729 code = icmp6->icmp6_code;
3730 mtu = ntohl(icmp6->icmp6_mtu);
3731
3732 switch (type) {
3733 case ICMP6_ECHO_REQUEST:
3734 type = ICMP_ECHO;
3735 break;
3736 case ICMP6_ECHO_REPLY:
3737 type = ICMP_ECHOREPLY;
3738 break;
3739 case ICMP6_DST_UNREACH:
3740 type = ICMP_UNREACH;
3741 switch (code) {
3742 case ICMP6_DST_UNREACH_NOROUTE:
3743 case ICMP6_DST_UNREACH_BEYONDSCOPE:
3744 case ICMP6_DST_UNREACH_ADDR:
3745 code = ICMP_UNREACH_HOST;
3746 break;
3747 case ICMP6_DST_UNREACH_ADMIN:
3748 code = ICMP_UNREACH_HOST_PROHIB;
3749 break;
3750 case ICMP6_DST_UNREACH_NOPORT:
3751 code = ICMP_UNREACH_PORT;
3752 break;
3753 default:
3754 return (-1);
3755 }
3756 break;
3757 case ICMP6_PACKET_TOO_BIG:
3758 type = ICMP_UNREACH;
3759 code = ICMP_UNREACH_NEEDFRAG;
3760 mtu -= 20;
3761 break;
3762 case ICMP6_TIME_EXCEEDED:
3763 type = ICMP_TIMXCEED;
3764 break;
3765 case ICMP6_PARAM_PROB:
3766 switch (code) {
3767 case ICMP6_PARAMPROB_HEADER:
3768 type = ICMP_PARAMPROB;
3769 code = ICMP_PARAMPROB_ERRATPTR;
3770 ptr = ntohl(icmp6->icmp6_pptr);
3771
3772 if (ptr == PTR_IP6(ip6_vfc))
3773 ; /* preserve */
3774 else if (ptr == PTR_IP6(ip6_vfc) + 1)
3775 ptr = PTR_IP(ip_tos);
3776 else if (ptr == PTR_IP6(ip6_plen) ||
3777 ptr == PTR_IP6(ip6_plen) + 1)
3778 ptr = PTR_IP(ip_len);
3779 else if (ptr == PTR_IP6(ip6_nxt))
3780 ptr = PTR_IP(ip_p);
3781 else if (ptr == PTR_IP6(ip6_hlim))
3782 ptr = PTR_IP(ip_ttl);
3783 else if (ptr >= PTR_IP6(ip6_src) &&
3784 ptr < PTR_IP6(ip6_dst))
3785 ptr = PTR_IP(ip_src);
3786 else if (ptr >= PTR_IP6(ip6_dst) &&
3787 ptr < sizeof(struct ip6_hdr))
3788 ptr = PTR_IP(ip_dst);
3789 else {
3790 return (-1);
3791 }
3792 break;
3793 case ICMP6_PARAMPROB_NEXTHEADER:
3794 type = ICMP_UNREACH;
3795 code = ICMP_UNREACH_PROTOCOL;
3796 break;
3797 default:
3798 return (-1);
3799 }
3800 break;
3801 default:
3802 return (-1);
3803 }
3804 if (icmp6->icmp6_type != type) {
3805 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3806 icmp6->icmp6_type, type, 0);
3807 icmp6->icmp6_type = type;
3808 }
3809 if (icmp6->icmp6_code != code) {
3810 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3811 icmp6->icmp6_code, code, 0);
3812 icmp6->icmp6_code = code;
3813 }
3814 if (icmp6->icmp6_mtu != htonl(mtu)) {
3815 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3816 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3817 /* aligns well with a icmpv4 nextmtu */
3818 icmp6->icmp6_mtu = htonl(mtu);
3819 }
3820 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3821 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3822 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3823 /* icmpv4 pptr is a one most significant byte */
3824 icmp6->icmp6_pptr = htonl(ptr << 24);
3825 }
3826 break;
3827 case AF_INET6:
3828 icmp4 = arg;
3829 type = icmp4->icmp_type;
3830 code = icmp4->icmp_code;
3831 mtu = ntohs(icmp4->icmp_nextmtu);
3832
3833 switch (type) {
3834 case ICMP_ECHO:
3835 type = ICMP6_ECHO_REQUEST;
3836 break;
3837 case ICMP_ECHOREPLY:
3838 type = ICMP6_ECHO_REPLY;
3839 break;
3840 case ICMP_UNREACH:
3841 type = ICMP6_DST_UNREACH;
3842 switch (code) {
3843 case ICMP_UNREACH_NET:
3844 case ICMP_UNREACH_HOST:
3845 case ICMP_UNREACH_NET_UNKNOWN:
3846 case ICMP_UNREACH_HOST_UNKNOWN:
3847 case ICMP_UNREACH_ISOLATED:
3848 case ICMP_UNREACH_TOSNET:
3849 case ICMP_UNREACH_TOSHOST:
3850 code = ICMP6_DST_UNREACH_NOROUTE;
3851 break;
3852 case ICMP_UNREACH_PORT:
3853 code = ICMP6_DST_UNREACH_NOPORT;
3854 break;
3855 case ICMP_UNREACH_NET_PROHIB:
3856 case ICMP_UNREACH_HOST_PROHIB:
3857 case ICMP_UNREACH_FILTER_PROHIB:
3858 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3859 code = ICMP6_DST_UNREACH_ADMIN;
3860 break;
3861 case ICMP_UNREACH_PROTOCOL:
3862 type = ICMP6_PARAM_PROB;
3863 code = ICMP6_PARAMPROB_NEXTHEADER;
3864 ptr = offsetof(struct ip6_hdr, ip6_nxt);
3865 break;
3866 case ICMP_UNREACH_NEEDFRAG:
3867 type = ICMP6_PACKET_TOO_BIG;
3868 code = 0;
3869 mtu += 20;
3870 break;
3871 default:
3872 return (-1);
3873 }
3874 break;
3875 case ICMP_TIMXCEED:
3876 type = ICMP6_TIME_EXCEEDED;
3877 break;
3878 case ICMP_PARAMPROB:
3879 type = ICMP6_PARAM_PROB;
3880 switch (code) {
3881 case ICMP_PARAMPROB_ERRATPTR:
3882 code = ICMP6_PARAMPROB_HEADER;
3883 break;
3884 case ICMP_PARAMPROB_LENGTH:
3885 code = ICMP6_PARAMPROB_HEADER;
3886 break;
3887 default:
3888 return (-1);
3889 }
3890
3891 ptr = icmp4->icmp_pptr;
3892 if (ptr == 0 || ptr == PTR_IP(ip_tos))
3893 ; /* preserve */
3894 else if (ptr == PTR_IP(ip_len) ||
3895 ptr == PTR_IP(ip_len) + 1)
3896 ptr = PTR_IP6(ip6_plen);
3897 else if (ptr == PTR_IP(ip_ttl))
3898 ptr = PTR_IP6(ip6_hlim);
3899 else if (ptr == PTR_IP(ip_p))
3900 ptr = PTR_IP6(ip6_nxt);
3901 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3902 ptr = PTR_IP6(ip6_src);
3903 else if (ptr >= PTR_IP(ip_dst) &&
3904 ptr < sizeof(struct ip))
3905 ptr = PTR_IP6(ip6_dst);
3906 else {
3907 return (-1);
3908 }
3909 break;
3910 default:
3911 return (-1);
3912 }
3913 if (icmp4->icmp_type != type) {
3914 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3915 icmp4->icmp_type, type, 0);
3916 icmp4->icmp_type = type;
3917 }
3918 if (icmp4->icmp_code != code) {
3919 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3920 icmp4->icmp_code, code, 0);
3921 icmp4->icmp_code = code;
3922 }
3923 if (icmp4->icmp_nextmtu != htons(mtu)) {
3924 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3925 icmp4->icmp_nextmtu, htons(mtu), 0);
3926 icmp4->icmp_nextmtu = htons(mtu);
3927 }
3928 if (ptr >= 0 && icmp4->icmp_void != ptr) {
3929 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3930 htons(icmp4->icmp_pptr), htons(ptr), 0);
3931 icmp4->icmp_void = htonl(ptr);
3932 }
3933 break;
3934 default:
3935 unhandled_af(af);
3936 }
3937 #endif /* INET && INET6 */
3938
3939 return (0);
3940 }
3941
3942 /*
3943 * Need to modulate the sequence numbers in the TCP SACK option
3944 * (credits to Krzysztof Pfaff for report and patch)
3945 */
3946 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3947 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3948 struct pf_state_peer *dst)
3949 {
3950 struct sackblk sack;
3951 int copyback = 0, i;
3952 int olen, optsoff;
3953 uint8_t opts[MAX_TCPOPTLEN], *opt, *eoh;
3954
3955 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
3956 optsoff = pd->off + sizeof(struct tcphdr);
3957 #define TCPOLEN_MINSACK (TCPOLEN_SACK + 2)
3958 if (olen < TCPOLEN_MINSACK ||
3959 !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af))
3960 return (0);
3961
3962 eoh = opts + olen;
3963 opt = opts;
3964 while ((opt = pf_find_tcpopt(opt, opts, olen,
3965 TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
3966 {
3967 size_t safelen = MIN(opt[1], (eoh - opt));
3968 for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
3969 size_t startoff = (opt + i) - opts;
3970 memcpy(&sack, &opt[i], sizeof(sack));
3971 pf_patch_32(pd, &sack.start,
3972 htonl(ntohl(sack.start) - dst->seqdiff),
3973 PF_ALGNMNT(startoff));
3974 pf_patch_32(pd, &sack.end,
3975 htonl(ntohl(sack.end) - dst->seqdiff),
3976 PF_ALGNMNT(startoff + sizeof(sack.start)));
3977 memcpy(&opt[i], &sack, sizeof(sack));
3978 }
3979 copyback = 1;
3980 opt += opt[1];
3981 }
3982
3983 if (copyback)
3984 m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
3985
3986 return (copyback);
3987 }
3988
3989 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid)3990 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3991 const struct pf_addr *saddr, const struct pf_addr *daddr,
3992 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3993 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3994 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
3995 int rtableid)
3996 {
3997 struct mbuf *m;
3998 int len, tlen;
3999 #ifdef INET
4000 struct ip *h = NULL;
4001 #endif /* INET */
4002 #ifdef INET6
4003 struct ip6_hdr *h6 = NULL;
4004 #endif /* INET6 */
4005 struct tcphdr *th;
4006 char *opt;
4007 struct pf_mtag *pf_mtag;
4008
4009 len = 0;
4010 th = NULL;
4011
4012 /* maximum segment size tcp option */
4013 tlen = sizeof(struct tcphdr);
4014 if (mss)
4015 tlen += 4;
4016 if (sack)
4017 tlen += 2;
4018
4019 switch (af) {
4020 #ifdef INET
4021 case AF_INET:
4022 len = sizeof(struct ip) + tlen;
4023 break;
4024 #endif /* INET */
4025 #ifdef INET6
4026 case AF_INET6:
4027 len = sizeof(struct ip6_hdr) + tlen;
4028 break;
4029 #endif /* INET6 */
4030 default:
4031 unhandled_af(af);
4032 }
4033
4034 m = m_gethdr(M_NOWAIT, MT_DATA);
4035 if (m == NULL)
4036 return (NULL);
4037
4038 #ifdef MAC
4039 mac_netinet_firewall_send(m);
4040 #endif
4041 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4042 m_freem(m);
4043 return (NULL);
4044 }
4045 m->m_flags |= mbuf_flags;
4046 pf_mtag->tag = mtag_tag;
4047 pf_mtag->flags = mtag_flags;
4048
4049 if (rtableid >= 0)
4050 M_SETFIB(m, rtableid);
4051
4052 #ifdef ALTQ
4053 if (r != NULL && r->qid) {
4054 pf_mtag->qid = r->qid;
4055
4056 /* add hints for ecn */
4057 pf_mtag->hdr = mtod(m, struct ip *);
4058 }
4059 #endif /* ALTQ */
4060 m->m_data += max_linkhdr;
4061 m->m_pkthdr.len = m->m_len = len;
4062 /* The rest of the stack assumes a rcvif, so provide one.
4063 * This is a locally generated packet, so .. close enough. */
4064 m->m_pkthdr.rcvif = V_loif;
4065 bzero(m->m_data, len);
4066 switch (af) {
4067 #ifdef INET
4068 case AF_INET:
4069 m->m_pkthdr.csum_flags |= CSUM_TCP;
4070 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4071
4072 h = mtod(m, struct ip *);
4073
4074 h->ip_p = IPPROTO_TCP;
4075 h->ip_len = htons(tlen);
4076 h->ip_v = 4;
4077 h->ip_hl = sizeof(*h) >> 2;
4078 h->ip_tos = IPTOS_LOWDELAY;
4079 h->ip_len = htons(len);
4080 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4081 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4082 h->ip_sum = 0;
4083 h->ip_src.s_addr = saddr->v4.s_addr;
4084 h->ip_dst.s_addr = daddr->v4.s_addr;
4085
4086 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4087 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4088 htons(len - sizeof(struct ip) + IPPROTO_TCP));
4089 break;
4090 #endif /* INET */
4091 #ifdef INET6
4092 case AF_INET6:
4093 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4094 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4095
4096 h6 = mtod(m, struct ip6_hdr *);
4097
4098 /* IP header fields included in the TCP checksum */
4099 h6->ip6_nxt = IPPROTO_TCP;
4100 h6->ip6_plen = htons(tlen);
4101 h6->ip6_vfc |= IPV6_VERSION;
4102 h6->ip6_hlim = V_ip6_defhlim;
4103 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4104 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4105
4106 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4107 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4108 IPPROTO_TCP, 0);
4109 break;
4110 #endif /* INET6 */
4111 }
4112
4113 /* TCP header */
4114 th->th_sport = sport;
4115 th->th_dport = dport;
4116 th->th_seq = htonl(seq);
4117 th->th_ack = htonl(ack);
4118 th->th_off = tlen >> 2;
4119 tcp_set_flags(th, tcp_flags);
4120 th->th_win = htons(win);
4121
4122 opt = (char *)(th + 1);
4123 if (mss) {
4124 opt = (char *)(th + 1);
4125 opt[0] = TCPOPT_MAXSEG;
4126 opt[1] = 4;
4127 mss = htons(mss);
4128 memcpy((opt + 2), &mss, 2);
4129 opt += 4;
4130 }
4131 if (sack) {
4132 opt[0] = TCPOPT_SACK_PERMITTED;
4133 opt[1] = 2;
4134 opt += 2;
4135 }
4136
4137 return (m);
4138 }
4139
4140 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4141 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4142 uint8_t ttl, int rtableid)
4143 {
4144 struct mbuf *m;
4145 #ifdef INET
4146 struct ip *h = NULL;
4147 #endif /* INET */
4148 #ifdef INET6
4149 struct ip6_hdr *h6 = NULL;
4150 #endif /* INET6 */
4151 struct sctphdr *hdr;
4152 struct sctp_chunkhdr *chunk;
4153 struct pf_send_entry *pfse;
4154 int off = 0;
4155
4156 MPASS(af == pd->af);
4157
4158 m = m_gethdr(M_NOWAIT, MT_DATA);
4159 if (m == NULL)
4160 return;
4161
4162 m->m_data += max_linkhdr;
4163 m->m_flags |= M_SKIP_FIREWALL;
4164 /* The rest of the stack assumes a rcvif, so provide one.
4165 * This is a locally generated packet, so .. close enough. */
4166 m->m_pkthdr.rcvif = V_loif;
4167
4168 /* IPv4|6 header */
4169 switch (af) {
4170 #ifdef INET
4171 case AF_INET:
4172 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4173
4174 h = mtod(m, struct ip *);
4175
4176 /* IP header fields included in the TCP checksum */
4177
4178 h->ip_p = IPPROTO_SCTP;
4179 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4180 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4181 h->ip_src = pd->dst->v4;
4182 h->ip_dst = pd->src->v4;
4183
4184 off += sizeof(struct ip);
4185 break;
4186 #endif /* INET */
4187 #ifdef INET6
4188 case AF_INET6:
4189 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4190
4191 h6 = mtod(m, struct ip6_hdr *);
4192
4193 /* IP header fields included in the TCP checksum */
4194 h6->ip6_vfc |= IPV6_VERSION;
4195 h6->ip6_nxt = IPPROTO_SCTP;
4196 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4197 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4198 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4199 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4200
4201 off += sizeof(struct ip6_hdr);
4202 break;
4203 #endif /* INET6 */
4204 default:
4205 unhandled_af(af);
4206 }
4207
4208 /* SCTP header */
4209 hdr = mtodo(m, off);
4210
4211 hdr->src_port = pd->hdr.sctp.dest_port;
4212 hdr->dest_port = pd->hdr.sctp.src_port;
4213 hdr->v_tag = pd->sctp_initiate_tag;
4214 hdr->checksum = 0;
4215
4216 /* Abort chunk. */
4217 off += sizeof(struct sctphdr);
4218 chunk = mtodo(m, off);
4219
4220 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4221 chunk->chunk_length = htons(sizeof(*chunk));
4222
4223 /* SCTP checksum */
4224 off += sizeof(*chunk);
4225 m->m_pkthdr.len = m->m_len = off;
4226
4227 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4228
4229 if (rtableid >= 0)
4230 M_SETFIB(m, rtableid);
4231
4232 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4233 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4234 if (pfse == NULL) {
4235 m_freem(m);
4236 return;
4237 }
4238
4239 switch (af) {
4240 #ifdef INET
4241 case AF_INET:
4242 pfse->pfse_type = PFSE_IP;
4243 break;
4244 #endif /* INET */
4245 #ifdef INET6
4246 case AF_INET6:
4247 pfse->pfse_type = PFSE_IP6;
4248 break;
4249 #endif /* INET6 */
4250 }
4251
4252 pfse->pfse_m = m;
4253 pf_send(pfse);
4254 }
4255
4256 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4257 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4258 const struct pf_addr *saddr, const struct pf_addr *daddr,
4259 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4260 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4261 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4262 {
4263 struct pf_send_entry *pfse;
4264 struct mbuf *m;
4265
4266 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4267 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid);
4268 if (m == NULL)
4269 return;
4270
4271 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4272 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4273 if (pfse == NULL) {
4274 m_freem(m);
4275 return;
4276 }
4277
4278 switch (af) {
4279 #ifdef INET
4280 case AF_INET:
4281 pfse->pfse_type = PFSE_IP;
4282 break;
4283 #endif /* INET */
4284 #ifdef INET6
4285 case AF_INET6:
4286 pfse->pfse_type = PFSE_IP6;
4287 break;
4288 #endif /* INET6 */
4289 default:
4290 unhandled_af(af);
4291 }
4292
4293 pfse->pfse_m = m;
4294 pf_send(pfse);
4295 }
4296
4297 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4298 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4299 {
4300 /* undo NAT changes, if they have taken place */
4301 if (nr != NULL) {
4302 PF_ACPY(pd->src, &pd->osrc, pd->af);
4303 PF_ACPY(pd->dst, &pd->odst, pd->af);
4304 if (pd->sport)
4305 *pd->sport = pd->osport;
4306 if (pd->dport)
4307 *pd->dport = pd->odport;
4308 if (pd->ip_sum)
4309 *pd->ip_sum = bip_sum;
4310 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4311 }
4312 }
4313
4314 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4315 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4316 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4317 u_short *reason, int rtableid)
4318 {
4319 pf_undo_nat(nr, pd, bip_sum);
4320
4321 if (pd->proto == IPPROTO_TCP &&
4322 ((r->rule_flag & PFRULE_RETURNRST) ||
4323 (r->rule_flag & PFRULE_RETURN)) &&
4324 !(tcp_get_flags(th) & TH_RST)) {
4325 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
4326
4327 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4328 IPPROTO_TCP, pd->af))
4329 REASON_SET(reason, PFRES_PROTCKSUM);
4330 else {
4331 if (tcp_get_flags(th) & TH_SYN)
4332 ack++;
4333 if (tcp_get_flags(th) & TH_FIN)
4334 ack++;
4335 pf_send_tcp(r, pd->af, pd->dst,
4336 pd->src, th->th_dport, th->th_sport,
4337 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4338 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4339 }
4340 } else if (pd->proto == IPPROTO_SCTP &&
4341 (r->rule_flag & PFRULE_RETURN)) {
4342 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4343 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4344 r->return_icmp)
4345 pf_send_icmp(pd->m, r->return_icmp >> 8,
4346 r->return_icmp & 255, 0, pd->af, r, rtableid);
4347 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4348 r->return_icmp6)
4349 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4350 r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4351 }
4352
4353 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4354 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4355 {
4356 struct m_tag *mtag;
4357 u_int8_t mpcp;
4358
4359 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4360 if (mtag == NULL)
4361 return (0);
4362
4363 if (prio == PF_PRIO_ZERO)
4364 prio = 0;
4365
4366 mpcp = *(uint8_t *)(mtag + 1);
4367
4368 return (mpcp == prio);
4369 }
4370
4371 static int
pf_icmp_to_bandlim(uint8_t type)4372 pf_icmp_to_bandlim(uint8_t type)
4373 {
4374 switch (type) {
4375 case ICMP_ECHO:
4376 case ICMP_ECHOREPLY:
4377 return (BANDLIM_ICMP_ECHO);
4378 case ICMP_TSTAMP:
4379 case ICMP_TSTAMPREPLY:
4380 return (BANDLIM_ICMP_TSTAMP);
4381 case ICMP_UNREACH:
4382 default:
4383 return (BANDLIM_ICMP_UNREACH);
4384 }
4385 }
4386
4387 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst)4388 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4389 struct pf_state_peer *src, struct pf_state_peer *dst)
4390 {
4391 /*
4392 * We are sending challenge ACK as a response to SYN packet, which
4393 * matches existing state (modulo TCP window check). Therefore packet
4394 * must be sent on behalf of destination.
4395 *
4396 * We expect sender to remain either silent, or send RST packet
4397 * so both, firewall and remote peer, can purge dead state from
4398 * memory.
4399 */
4400 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4401 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4402 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4403 s->rule->rtableid);
4404 }
4405
4406 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4407 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4408 sa_family_t af, struct pf_krule *r, int rtableid)
4409 {
4410 struct pf_send_entry *pfse;
4411 struct mbuf *m0;
4412 struct pf_mtag *pf_mtag;
4413
4414 /* ICMP packet rate limitation. */
4415 switch (af) {
4416 #ifdef INET6
4417 case AF_INET6:
4418 if (icmp6_ratelimit(NULL, type, code))
4419 return;
4420 break;
4421 #endif /* INET6 */
4422 #ifdef INET
4423 case AF_INET:
4424 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4425 return;
4426 break;
4427 #endif /* INET */
4428 }
4429
4430 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4431 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4432 if (pfse == NULL)
4433 return;
4434
4435 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4436 free(pfse, M_PFTEMP);
4437 return;
4438 }
4439
4440 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4441 free(pfse, M_PFTEMP);
4442 return;
4443 }
4444 /* XXX: revisit */
4445 m0->m_flags |= M_SKIP_FIREWALL;
4446
4447 if (rtableid >= 0)
4448 M_SETFIB(m0, rtableid);
4449
4450 #ifdef ALTQ
4451 if (r->qid) {
4452 pf_mtag->qid = r->qid;
4453 /* add hints for ecn */
4454 pf_mtag->hdr = mtod(m0, struct ip *);
4455 }
4456 #endif /* ALTQ */
4457
4458 switch (af) {
4459 #ifdef INET
4460 case AF_INET:
4461 pfse->pfse_type = PFSE_ICMP;
4462 break;
4463 #endif /* INET */
4464 #ifdef INET6
4465 case AF_INET6:
4466 pfse->pfse_type = PFSE_ICMP6;
4467 break;
4468 #endif /* INET6 */
4469 }
4470 pfse->pfse_m = m0;
4471 pfse->icmpopts.type = type;
4472 pfse->icmpopts.code = code;
4473 pfse->icmpopts.mtu = mtu;
4474 pf_send(pfse);
4475 }
4476
4477 /*
4478 * Return ((n = 0) == (a = b [with mask m]))
4479 * Note: n != 0 => returns (a != b [with mask m])
4480 */
4481 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4482 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4483 const struct pf_addr *b, sa_family_t af)
4484 {
4485 switch (af) {
4486 #ifdef INET
4487 case AF_INET:
4488 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4489 return (n == 0);
4490 break;
4491 #endif /* INET */
4492 #ifdef INET6
4493 case AF_INET6:
4494 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4495 return (n == 0);
4496 break;
4497 #endif /* INET6 */
4498 }
4499
4500 return (n != 0);
4501 }
4502
4503 /*
4504 * Return 1 if b <= a <= e, otherwise return 0.
4505 */
4506 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4507 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4508 const struct pf_addr *a, sa_family_t af)
4509 {
4510 switch (af) {
4511 #ifdef INET
4512 case AF_INET:
4513 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4514 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4515 return (0);
4516 break;
4517 #endif /* INET */
4518 #ifdef INET6
4519 case AF_INET6: {
4520 int i;
4521
4522 /* check a >= b */
4523 for (i = 0; i < 4; ++i)
4524 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4525 break;
4526 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4527 return (0);
4528 /* check a <= e */
4529 for (i = 0; i < 4; ++i)
4530 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4531 break;
4532 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4533 return (0);
4534 break;
4535 }
4536 #endif /* INET6 */
4537 }
4538 return (1);
4539 }
4540
4541 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4542 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4543 {
4544 switch (op) {
4545 case PF_OP_IRG:
4546 return ((p > a1) && (p < a2));
4547 case PF_OP_XRG:
4548 return ((p < a1) || (p > a2));
4549 case PF_OP_RRG:
4550 return ((p >= a1) && (p <= a2));
4551 case PF_OP_EQ:
4552 return (p == a1);
4553 case PF_OP_NE:
4554 return (p != a1);
4555 case PF_OP_LT:
4556 return (p < a1);
4557 case PF_OP_LE:
4558 return (p <= a1);
4559 case PF_OP_GT:
4560 return (p > a1);
4561 case PF_OP_GE:
4562 return (p >= a1);
4563 }
4564 return (0); /* never reached */
4565 }
4566
4567 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4568 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4569 {
4570 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4571 }
4572
4573 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4574 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4575 {
4576 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4577 return (0);
4578 return (pf_match(op, a1, a2, u));
4579 }
4580
4581 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4582 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4583 {
4584 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4585 return (0);
4586 return (pf_match(op, a1, a2, g));
4587 }
4588
4589 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4590 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4591 {
4592 if (*tag == -1)
4593 *tag = mtag;
4594
4595 return ((!r->match_tag_not && r->match_tag == *tag) ||
4596 (r->match_tag_not && r->match_tag != *tag));
4597 }
4598
4599 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4600 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4601 {
4602 struct ifnet *ifp = m->m_pkthdr.rcvif;
4603 struct pfi_kkif *kif;
4604
4605 if (ifp == NULL)
4606 return (0);
4607
4608 kif = (struct pfi_kkif *)ifp->if_pf_kif;
4609
4610 if (kif == NULL) {
4611 DPFPRINTF(PF_DEBUG_URGENT,
4612 ("%s: kif == NULL, @%d via %s\n", __func__, r->nr,
4613 r->rcv_ifname));
4614 return (0);
4615 }
4616
4617 return (pfi_kkif_match(r->rcv_kif, kif));
4618 }
4619
4620 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4621 pf_tag_packet(struct pf_pdesc *pd, int tag)
4622 {
4623
4624 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4625
4626 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4627 return (ENOMEM);
4628
4629 pd->pf_mtag->tag = tag;
4630
4631 return (0);
4632 }
4633
4634 /*
4635 * XXX: We rely on malloc(9) returning pointer aligned addresses.
4636 */
4637 #define PF_ANCHORSTACK_MATCH 0x00000001
4638 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4639
4640 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4641 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4642 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4643 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4644 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4645 } while (0)
4646
4647 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r)4648 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r)
4649 {
4650 enum pf_test_status rv;
4651
4652 PF_RULES_RASSERT();
4653
4654 if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
4655 printf("%s: anchor stack overflow on %s\n",
4656 __func__, r->anchor->name);
4657 return (PF_TEST_FAIL);
4658 }
4659
4660 ctx->depth++;
4661
4662 if (r->anchor_wildcard) {
4663 struct pf_kanchor *child;
4664 rv = PF_TEST_OK;
4665 RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
4666 rv = pf_match_rule(ctx, &child->ruleset);
4667 if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
4668 /*
4669 * we either hit a rule with quick action
4670 * (more likely), or hit some runtime
4671 * error (e.g. pool_get() failure).
4672 */
4673 break;
4674 }
4675 }
4676 } else {
4677 rv = pf_match_rule(ctx, &r->anchor->ruleset);
4678 }
4679
4680 ctx->depth--;
4681
4682 return (rv);
4683 }
4684
4685 struct pf_keth_anchor_stackframe {
4686 struct pf_keth_ruleset *rs;
4687 struct pf_keth_rule *r; /* XXX: + match bit */
4688 struct pf_keth_anchor *child;
4689 };
4690
4691 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4692 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4693 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4694 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4695 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4696 } while (0)
4697
4698 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4699 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4700 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4701 struct pf_keth_rule **a, int *match)
4702 {
4703 struct pf_keth_anchor_stackframe *f;
4704
4705 NET_EPOCH_ASSERT();
4706
4707 if (match)
4708 *match = 0;
4709 if (*depth >= PF_ANCHOR_STACK_MAX) {
4710 printf("%s: anchor stack overflow on %s\n",
4711 __func__, (*r)->anchor->name);
4712 *r = TAILQ_NEXT(*r, entries);
4713 return;
4714 } else if (*depth == 0 && a != NULL)
4715 *a = *r;
4716 f = stack + (*depth)++;
4717 f->rs = *rs;
4718 f->r = *r;
4719 if ((*r)->anchor_wildcard) {
4720 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4721
4722 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4723 *r = NULL;
4724 return;
4725 }
4726 *rs = &f->child->ruleset;
4727 } else {
4728 f->child = NULL;
4729 *rs = &(*r)->anchor->ruleset;
4730 }
4731 *r = TAILQ_FIRST((*rs)->active.rules);
4732 }
4733
4734 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4735 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4736 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4737 struct pf_keth_rule **a, int *match)
4738 {
4739 struct pf_keth_anchor_stackframe *f;
4740 struct pf_keth_rule *fr;
4741 int quick = 0;
4742
4743 NET_EPOCH_ASSERT();
4744
4745 do {
4746 if (*depth <= 0)
4747 break;
4748 f = stack + *depth - 1;
4749 fr = PF_ETH_ANCHOR_RULE(f);
4750 if (f->child != NULL) {
4751 /*
4752 * This block traverses through
4753 * a wildcard anchor.
4754 */
4755 if (match != NULL && *match) {
4756 /*
4757 * If any of "*" matched, then
4758 * "foo/ *" matched, mark frame
4759 * appropriately.
4760 */
4761 PF_ETH_ANCHOR_SET_MATCH(f);
4762 *match = 0;
4763 }
4764 f->child = RB_NEXT(pf_keth_anchor_node,
4765 &fr->anchor->children, f->child);
4766 if (f->child != NULL) {
4767 *rs = &f->child->ruleset;
4768 *r = TAILQ_FIRST((*rs)->active.rules);
4769 if (*r == NULL)
4770 continue;
4771 else
4772 break;
4773 }
4774 }
4775 (*depth)--;
4776 if (*depth == 0 && a != NULL)
4777 *a = NULL;
4778 *rs = f->rs;
4779 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4780 quick = fr->quick;
4781 *r = TAILQ_NEXT(fr, entries);
4782 } while (*r == NULL);
4783
4784 return (quick);
4785 }
4786
4787 #ifdef INET6
4788 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4789 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4790 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4791 {
4792 switch (af) {
4793 #ifdef INET
4794 case AF_INET:
4795 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4796 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4797 break;
4798 #endif /* INET */
4799 case AF_INET6:
4800 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4801 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4802 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4803 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4804 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4805 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4806 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4807 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4808 break;
4809 }
4810 }
4811
4812 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4813 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4814 {
4815 switch (af) {
4816 #ifdef INET
4817 case AF_INET:
4818 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4819 break;
4820 #endif /* INET */
4821 case AF_INET6:
4822 if (addr->addr32[3] == 0xffffffff) {
4823 addr->addr32[3] = 0;
4824 if (addr->addr32[2] == 0xffffffff) {
4825 addr->addr32[2] = 0;
4826 if (addr->addr32[1] == 0xffffffff) {
4827 addr->addr32[1] = 0;
4828 addr->addr32[0] =
4829 htonl(ntohl(addr->addr32[0]) + 1);
4830 } else
4831 addr->addr32[1] =
4832 htonl(ntohl(addr->addr32[1]) + 1);
4833 } else
4834 addr->addr32[2] =
4835 htonl(ntohl(addr->addr32[2]) + 1);
4836 } else
4837 addr->addr32[3] =
4838 htonl(ntohl(addr->addr32[3]) + 1);
4839 break;
4840 }
4841 }
4842 #endif /* INET6 */
4843
4844 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4845 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4846 {
4847 /*
4848 * Modern rules use the same flags in rules as they do in states.
4849 */
4850 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4851 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4852
4853 /*
4854 * Old-style scrub rules have different flags which need to be translated.
4855 */
4856 if (r->rule_flag & PFRULE_RANDOMID)
4857 a->flags |= PFSTATE_RANDOMID;
4858 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4859 a->flags |= PFSTATE_SETTOS;
4860 a->set_tos = r->set_tos;
4861 }
4862
4863 if (r->qid)
4864 a->qid = r->qid;
4865 if (r->pqid)
4866 a->pqid = r->pqid;
4867 if (r->rtableid >= 0)
4868 a->rtableid = r->rtableid;
4869 a->log |= r->log;
4870 if (r->min_ttl)
4871 a->min_ttl = r->min_ttl;
4872 if (r->max_mss)
4873 a->max_mss = r->max_mss;
4874 if (r->dnpipe)
4875 a->dnpipe = r->dnpipe;
4876 if (r->dnrpipe)
4877 a->dnrpipe = r->dnrpipe;
4878 if (r->dnpipe || r->dnrpipe) {
4879 if (r->free_flags & PFRULE_DN_IS_PIPE)
4880 a->flags |= PFSTATE_DN_IS_PIPE;
4881 else
4882 a->flags &= ~PFSTATE_DN_IS_PIPE;
4883 }
4884 if (r->scrub_flags & PFSTATE_SETPRIO) {
4885 a->set_prio[0] = r->set_prio[0];
4886 a->set_prio[1] = r->set_prio[1];
4887 }
4888 if (r->allow_opts)
4889 a->allow_opts = r->allow_opts;
4890 if (r->max_pkt_size)
4891 a->max_pkt_size = r->max_pkt_size;
4892 }
4893
4894 int
pf_socket_lookup(struct pf_pdesc * pd)4895 pf_socket_lookup(struct pf_pdesc *pd)
4896 {
4897 struct pf_addr *saddr, *daddr;
4898 u_int16_t sport, dport;
4899 struct inpcbinfo *pi;
4900 struct inpcb *inp;
4901
4902 pd->lookup.uid = UID_MAX;
4903 pd->lookup.gid = GID_MAX;
4904
4905 switch (pd->proto) {
4906 case IPPROTO_TCP:
4907 sport = pd->hdr.tcp.th_sport;
4908 dport = pd->hdr.tcp.th_dport;
4909 pi = &V_tcbinfo;
4910 break;
4911 case IPPROTO_UDP:
4912 sport = pd->hdr.udp.uh_sport;
4913 dport = pd->hdr.udp.uh_dport;
4914 pi = &V_udbinfo;
4915 break;
4916 default:
4917 return (-1);
4918 }
4919 if (pd->dir == PF_IN) {
4920 saddr = pd->src;
4921 daddr = pd->dst;
4922 } else {
4923 u_int16_t p;
4924
4925 p = sport;
4926 sport = dport;
4927 dport = p;
4928 saddr = pd->dst;
4929 daddr = pd->src;
4930 }
4931 switch (pd->af) {
4932 #ifdef INET
4933 case AF_INET:
4934 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4935 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4936 if (inp == NULL) {
4937 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4938 daddr->v4, dport, INPLOOKUP_WILDCARD |
4939 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4940 if (inp == NULL)
4941 return (-1);
4942 }
4943 break;
4944 #endif /* INET */
4945 #ifdef INET6
4946 case AF_INET6:
4947 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4948 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4949 if (inp == NULL) {
4950 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4951 &daddr->v6, dport, INPLOOKUP_WILDCARD |
4952 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4953 if (inp == NULL)
4954 return (-1);
4955 }
4956 break;
4957 #endif /* INET6 */
4958 default:
4959 unhandled_af(pd->af);
4960 }
4961 INP_RLOCK_ASSERT(inp);
4962 pd->lookup.uid = inp->inp_cred->cr_uid;
4963 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4964 INP_RUNLOCK(inp);
4965
4966 return (1);
4967 }
4968
4969 /* post: r => (r[0] == type /\ r[1] >= min_typelen >= 2 "validity"
4970 * /\ (eoh - r) >= min_typelen >= 2 "safety" )
4971 *
4972 * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
4973 */
4974 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)4975 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
4976 u_int8_t min_typelen)
4977 {
4978 uint8_t *eoh = opts + hlen;
4979
4980 if (min_typelen < 2)
4981 return (NULL);
4982
4983 while ((eoh - opt) >= min_typelen) {
4984 switch (*opt) {
4985 case TCPOPT_EOL:
4986 /* FALLTHROUGH - Workaround the failure of some
4987 systems to NOP-pad their bzero'd option buffers,
4988 producing spurious EOLs */
4989 case TCPOPT_NOP:
4990 opt++;
4991 continue;
4992 default:
4993 if (opt[0] == type &&
4994 opt[1] >= min_typelen)
4995 return (opt);
4996 }
4997
4998 opt += MAX(opt[1], 2); /* evade infinite loops */
4999 }
5000
5001 return (NULL);
5002 }
5003
5004 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)5005 pf_get_wscale(struct pf_pdesc *pd)
5006 {
5007 int olen;
5008 uint8_t opts[MAX_TCPOPTLEN], *opt;
5009 uint8_t wscale = 0;
5010
5011 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5012 if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
5013 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5014 return (0);
5015
5016 opt = opts;
5017 while ((opt = pf_find_tcpopt(opt, opts, olen,
5018 TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5019 wscale = opt[2];
5020 wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5021 wscale |= PF_WSCALE_FLAG;
5022
5023 opt += opt[1];
5024 }
5025
5026 return (wscale);
5027 }
5028
5029 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5030 pf_get_mss(struct pf_pdesc *pd)
5031 {
5032 int olen;
5033 uint8_t opts[MAX_TCPOPTLEN], *opt;
5034 u_int16_t mss = V_tcp_mssdflt;
5035
5036 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5037 if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5038 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5039 return (0);
5040
5041 opt = opts;
5042 while ((opt = pf_find_tcpopt(opt, opts, olen,
5043 TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5044 memcpy(&mss, (opt + 2), 2);
5045 mss = ntohs(mss);
5046 opt += opt[1];
5047 }
5048
5049 return (mss);
5050 }
5051
5052 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5053 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5054 {
5055 struct nhop_object *nh;
5056 #ifdef INET6
5057 struct in6_addr dst6;
5058 uint32_t scopeid;
5059 #endif /* INET6 */
5060 int hlen = 0;
5061 uint16_t mss = 0;
5062
5063 NET_EPOCH_ASSERT();
5064
5065 switch (af) {
5066 #ifdef INET
5067 case AF_INET:
5068 hlen = sizeof(struct ip);
5069 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5070 if (nh != NULL)
5071 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5072 break;
5073 #endif /* INET */
5074 #ifdef INET6
5075 case AF_INET6:
5076 hlen = sizeof(struct ip6_hdr);
5077 in6_splitscope(&addr->v6, &dst6, &scopeid);
5078 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5079 if (nh != NULL)
5080 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5081 break;
5082 #endif /* INET6 */
5083 }
5084
5085 mss = max(V_tcp_mssdflt, mss);
5086 mss = min(mss, offer);
5087 mss = max(mss, 64); /* sanity - at least max opt space */
5088 return (mss);
5089 }
5090
5091 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5092 pf_tcp_iss(struct pf_pdesc *pd)
5093 {
5094 SHA512_CTX ctx;
5095 union {
5096 uint8_t bytes[SHA512_DIGEST_LENGTH];
5097 uint32_t words[1];
5098 } digest;
5099
5100 if (V_pf_tcp_secret_init == 0) {
5101 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5102 SHA512_Init(&V_pf_tcp_secret_ctx);
5103 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5104 sizeof(V_pf_tcp_secret));
5105 V_pf_tcp_secret_init = 1;
5106 }
5107
5108 ctx = V_pf_tcp_secret_ctx;
5109
5110 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5111 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5112 switch (pd->af) {
5113 case AF_INET6:
5114 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5115 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5116 break;
5117 case AF_INET:
5118 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5119 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5120 break;
5121 }
5122 SHA512_Final(digest.bytes, &ctx);
5123 V_pf_tcp_iss_off += 4096;
5124 #define ISN_RANDOM_INCREMENT (4096 - 1)
5125 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5126 V_pf_tcp_iss_off);
5127 #undef ISN_RANDOM_INCREMENT
5128 }
5129
5130 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5131 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5132 {
5133 bool match = true;
5134
5135 /* Always matches if not set */
5136 if (! r->isset)
5137 return (!r->neg);
5138
5139 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5140 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5141 match = false;
5142 break;
5143 }
5144 }
5145
5146 return (match ^ r->neg);
5147 }
5148
5149 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5150 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5151 {
5152 if (*tag == -1)
5153 *tag = mtag;
5154
5155 return ((!r->match_tag_not && r->match_tag == *tag) ||
5156 (r->match_tag_not && r->match_tag != *tag));
5157 }
5158
5159 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5160 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5161 {
5162 /* If we don't have the interface drop the packet. */
5163 if (ifp == NULL) {
5164 m_freem(m);
5165 return;
5166 }
5167
5168 switch (ifp->if_type) {
5169 case IFT_ETHER:
5170 case IFT_XETHER:
5171 case IFT_L2VLAN:
5172 case IFT_BRIDGE:
5173 case IFT_IEEE8023ADLAG:
5174 break;
5175 default:
5176 m_freem(m);
5177 return;
5178 }
5179
5180 ifp->if_transmit(ifp, m);
5181 }
5182
5183 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5184 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5185 {
5186 #ifdef INET
5187 struct ip ip;
5188 #endif /* INET */
5189 #ifdef INET6
5190 struct ip6_hdr ip6;
5191 #endif /* INET6 */
5192 struct mbuf *m = *m0;
5193 struct ether_header *e;
5194 struct pf_keth_rule *r, *rm, *a = NULL;
5195 struct pf_keth_ruleset *ruleset = NULL;
5196 struct pf_mtag *mtag;
5197 struct pf_keth_ruleq *rules;
5198 struct pf_addr *src = NULL, *dst = NULL;
5199 struct pfi_kkif *bridge_to;
5200 sa_family_t af = 0;
5201 uint16_t proto;
5202 int asd = 0, match = 0;
5203 int tag = -1;
5204 uint8_t action;
5205 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACK_MAX];
5206
5207 MPASS(kif->pfik_ifp->if_vnet == curvnet);
5208 NET_EPOCH_ASSERT();
5209
5210 PF_RULES_RLOCK_TRACKER;
5211
5212 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5213
5214 mtag = pf_find_mtag(m);
5215 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5216 /* Dummynet re-injects packets after they've
5217 * completed their delay. We've already
5218 * processed them, so pass unconditionally. */
5219
5220 /* But only once. We may see the packet multiple times (e.g.
5221 * PFIL_IN/PFIL_OUT). */
5222 pf_dummynet_flag_remove(m, mtag);
5223
5224 return (PF_PASS);
5225 }
5226
5227 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5228 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5229 DPFPRINTF(PF_DEBUG_URGENT,
5230 ("%s: m_len < sizeof(struct ether_header)"
5231 ", pullup failed\n", __func__));
5232 return (PF_DROP);
5233 }
5234 e = mtod(m, struct ether_header *);
5235 proto = ntohs(e->ether_type);
5236
5237 switch (proto) {
5238 #ifdef INET
5239 case ETHERTYPE_IP: {
5240 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5241 sizeof(ip)))
5242 return (PF_DROP);
5243
5244 af = AF_INET;
5245 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5246 (caddr_t)&ip);
5247 src = (struct pf_addr *)&ip.ip_src;
5248 dst = (struct pf_addr *)&ip.ip_dst;
5249 break;
5250 }
5251 #endif /* INET */
5252 #ifdef INET6
5253 case ETHERTYPE_IPV6: {
5254 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5255 sizeof(ip6)))
5256 return (PF_DROP);
5257
5258 af = AF_INET6;
5259 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5260 (caddr_t)&ip6);
5261 src = (struct pf_addr *)&ip6.ip6_src;
5262 dst = (struct pf_addr *)&ip6.ip6_dst;
5263 break;
5264 }
5265 #endif /* INET6 */
5266 }
5267
5268 PF_RULES_RLOCK();
5269
5270 ruleset = V_pf_keth;
5271 rules = atomic_load_ptr(&ruleset->active.rules);
5272 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5273 counter_u64_add(r->evaluations, 1);
5274 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5275
5276 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5277 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5278 "kif");
5279 r = r->skip[PFE_SKIP_IFP].ptr;
5280 }
5281 else if (r->direction && r->direction != dir) {
5282 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5283 "dir");
5284 r = r->skip[PFE_SKIP_DIR].ptr;
5285 }
5286 else if (r->proto && r->proto != proto) {
5287 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5288 "proto");
5289 r = r->skip[PFE_SKIP_PROTO].ptr;
5290 }
5291 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5292 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5293 "src");
5294 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5295 }
5296 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5297 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5298 "dst");
5299 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5300 }
5301 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5302 r->ipsrc.neg, kif, M_GETFIB(m))) {
5303 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5304 "ip_src");
5305 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5306 }
5307 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5308 r->ipdst.neg, kif, M_GETFIB(m))) {
5309 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5310 "ip_dst");
5311 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5312 }
5313 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5314 mtag ? mtag->tag : 0)) {
5315 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5316 "match_tag");
5317 r = TAILQ_NEXT(r, entries);
5318 }
5319 else {
5320 if (r->tag)
5321 tag = r->tag;
5322 if (r->anchor == NULL) {
5323 /* Rule matches */
5324 rm = r;
5325
5326 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5327
5328 if (r->quick)
5329 break;
5330
5331 r = TAILQ_NEXT(r, entries);
5332 } else {
5333 pf_step_into_keth_anchor(anchor_stack, &asd,
5334 &ruleset, &r, &a, &match);
5335 }
5336 }
5337 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5338 &ruleset, &r, &a, &match))
5339 break;
5340 }
5341
5342 r = rm;
5343
5344 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5345
5346 /* Default to pass. */
5347 if (r == NULL) {
5348 PF_RULES_RUNLOCK();
5349 return (PF_PASS);
5350 }
5351
5352 /* Execute action. */
5353 counter_u64_add(r->packets[dir == PF_OUT], 1);
5354 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5355 pf_update_timestamp(r);
5356
5357 /* Shortcut. Don't tag if we're just going to drop anyway. */
5358 if (r->action == PF_DROP) {
5359 PF_RULES_RUNLOCK();
5360 return (PF_DROP);
5361 }
5362
5363 if (tag > 0) {
5364 if (mtag == NULL)
5365 mtag = pf_get_mtag(m);
5366 if (mtag == NULL) {
5367 PF_RULES_RUNLOCK();
5368 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5369 return (PF_DROP);
5370 }
5371 mtag->tag = tag;
5372 }
5373
5374 if (r->qid != 0) {
5375 if (mtag == NULL)
5376 mtag = pf_get_mtag(m);
5377 if (mtag == NULL) {
5378 PF_RULES_RUNLOCK();
5379 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5380 return (PF_DROP);
5381 }
5382 mtag->qid = r->qid;
5383 }
5384
5385 action = r->action;
5386 bridge_to = r->bridge_to;
5387
5388 /* Dummynet */
5389 if (r->dnpipe) {
5390 struct ip_fw_args dnflow;
5391
5392 /* Drop packet if dummynet is not loaded. */
5393 if (ip_dn_io_ptr == NULL) {
5394 PF_RULES_RUNLOCK();
5395 m_freem(m);
5396 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5397 return (PF_DROP);
5398 }
5399 if (mtag == NULL)
5400 mtag = pf_get_mtag(m);
5401 if (mtag == NULL) {
5402 PF_RULES_RUNLOCK();
5403 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5404 return (PF_DROP);
5405 }
5406
5407 bzero(&dnflow, sizeof(dnflow));
5408
5409 /* We don't have port numbers here, so we set 0. That means
5410 * that we'll be somewhat limited in distinguishing flows (i.e.
5411 * only based on IP addresses, not based on port numbers), but
5412 * it's better than nothing. */
5413 dnflow.f_id.dst_port = 0;
5414 dnflow.f_id.src_port = 0;
5415 dnflow.f_id.proto = 0;
5416
5417 dnflow.rule.info = r->dnpipe;
5418 dnflow.rule.info |= IPFW_IS_DUMMYNET;
5419 if (r->dnflags & PFRULE_DN_IS_PIPE)
5420 dnflow.rule.info |= IPFW_IS_PIPE;
5421
5422 dnflow.f_id.extra = dnflow.rule.info;
5423
5424 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5425 dnflow.flags |= IPFW_ARGS_ETHER;
5426 dnflow.ifp = kif->pfik_ifp;
5427
5428 switch (af) {
5429 case AF_INET:
5430 dnflow.f_id.addr_type = 4;
5431 dnflow.f_id.src_ip = src->v4.s_addr;
5432 dnflow.f_id.dst_ip = dst->v4.s_addr;
5433 break;
5434 case AF_INET6:
5435 dnflow.flags |= IPFW_ARGS_IP6;
5436 dnflow.f_id.addr_type = 6;
5437 dnflow.f_id.src_ip6 = src->v6;
5438 dnflow.f_id.dst_ip6 = dst->v6;
5439 break;
5440 }
5441
5442 PF_RULES_RUNLOCK();
5443
5444 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5445 ip_dn_io_ptr(m0, &dnflow);
5446 if (*m0 != NULL)
5447 pf_dummynet_flag_remove(m, mtag);
5448 } else {
5449 PF_RULES_RUNLOCK();
5450 }
5451
5452 if (action == PF_PASS && bridge_to) {
5453 pf_bridge_to(bridge_to->pfik_ifp, *m0);
5454 *m0 = NULL; /* We've eaten the packet. */
5455 }
5456
5457 return (action);
5458 }
5459
5460 #define PF_TEST_ATTRIB(t, a) \
5461 if (t) { \
5462 r = a; \
5463 continue; \
5464 } else do { \
5465 } while (0)
5466
5467 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5468 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5469 {
5470 struct pf_pdesc *pd = ctx->pd;
5471 u_short transerror;
5472 u_int8_t nat_action;
5473
5474 if (r->rule_flag & PFRULE_AFTO) {
5475 /* Don't translate if there was an old style NAT rule */
5476 if (ctx->nr != NULL)
5477 return (PFRES_TRANSLATE);
5478
5479 /* pass af-to rules, unsupported on match rules */
5480 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5481 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5482 ctx->nat_pool = &(r->nat);
5483 ctx->nr = r;
5484 pd->naf = r->naf;
5485 if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5486 return (PFRES_TRANSLATE);
5487 }
5488 return (PFRES_MATCH);
5489 } else if (r->rdr.cur || r->nat.cur) {
5490 /* Don't translate if there was an old style NAT rule */
5491 if (ctx->nr != NULL)
5492 return (PFRES_TRANSLATE);
5493
5494 /* match/pass nat-to/rdr-to rules */
5495 ctx->nr = r;
5496 if (r->nat.cur) {
5497 nat_action = PF_NAT;
5498 ctx->nat_pool = &(r->nat);
5499 } else {
5500 nat_action = PF_RDR;
5501 ctx->nat_pool = &(r->rdr);
5502 }
5503
5504 transerror = pf_get_transaddr(ctx, ctx->nr,
5505 nat_action, ctx->nat_pool);
5506 if (transerror == PFRES_MATCH) {
5507 ctx->rewrite += pf_translate_compat(ctx);
5508 return(PFRES_MATCH);
5509 }
5510 return (transerror);
5511 }
5512
5513 return (PFRES_MAX);
5514 }
5515
5516 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset)5517 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset)
5518 {
5519 struct pf_krule_item *ri;
5520 struct pf_krule *r;
5521 struct pf_krule *save_a;
5522 struct pf_kruleset *save_aruleset;
5523 struct pf_pdesc *pd = ctx->pd;
5524 u_short transerror;
5525
5526 r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5527 while (r != NULL) {
5528 if (ctx->pd->related_rule) {
5529 *ctx->rm = ctx->pd->related_rule;
5530 break;
5531 }
5532 pf_counter_u64_add(&r->evaluations, 1);
5533 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5534 r->skip[PF_SKIP_IFP]);
5535 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5536 r->skip[PF_SKIP_DIR]);
5537 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5538 r->skip[PF_SKIP_AF]);
5539 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5540 r->skip[PF_SKIP_PROTO]);
5541 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5542 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5543 r->skip[PF_SKIP_SRC_ADDR]);
5544 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5545 r->dst.neg, NULL, M_GETFIB(pd->m)),
5546 r->skip[PF_SKIP_DST_ADDR]);
5547 switch (pd->virtual_proto) {
5548 case PF_VPROTO_FRAGMENT:
5549 /* tcp/udp only. port_op always 0 in other cases */
5550 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5551 TAILQ_NEXT(r, entries));
5552 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5553 TAILQ_NEXT(r, entries));
5554 /* icmp only. type/code always 0 in other cases */
5555 PF_TEST_ATTRIB((r->type || r->code),
5556 TAILQ_NEXT(r, entries));
5557 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5558 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5559 TAILQ_NEXT(r, entries));
5560 break;
5561
5562 case IPPROTO_TCP:
5563 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
5564 != r->flags,
5565 TAILQ_NEXT(r, entries));
5566 /* FALLTHROUGH */
5567 case IPPROTO_SCTP:
5568 case IPPROTO_UDP:
5569 /* tcp/udp only. port_op always 0 in other cases */
5570 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5571 r->src.port[0], r->src.port[1], pd->nsport),
5572 r->skip[PF_SKIP_SRC_PORT]);
5573 /* tcp/udp only. port_op always 0 in other cases */
5574 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5575 r->dst.port[0], r->dst.port[1], pd->ndport),
5576 r->skip[PF_SKIP_DST_PORT]);
5577 /* tcp/udp only. uid.op always 0 in other cases */
5578 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5579 pf_socket_lookup(pd), 1)) &&
5580 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5581 pd->lookup.uid),
5582 TAILQ_NEXT(r, entries));
5583 /* tcp/udp only. gid.op always 0 in other cases */
5584 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5585 pf_socket_lookup(pd), 1)) &&
5586 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5587 pd->lookup.gid),
5588 TAILQ_NEXT(r, entries));
5589 break;
5590
5591 case IPPROTO_ICMP:
5592 case IPPROTO_ICMPV6:
5593 /* icmp only. type always 0 in other cases */
5594 PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
5595 TAILQ_NEXT(r, entries));
5596 /* icmp only. type always 0 in other cases */
5597 PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
5598 TAILQ_NEXT(r, entries));
5599 break;
5600
5601 default:
5602 break;
5603 }
5604 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5605 TAILQ_NEXT(r, entries));
5606 PF_TEST_ATTRIB(r->prio &&
5607 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5608 TAILQ_NEXT(r, entries));
5609 PF_TEST_ATTRIB(r->prob &&
5610 r->prob <= arc4random(),
5611 TAILQ_NEXT(r, entries));
5612 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
5613 &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
5614 TAILQ_NEXT(r, entries));
5615 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5616 r->rcvifnot),
5617 TAILQ_NEXT(r, entries));
5618 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5619 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5620 TAILQ_NEXT(r, entries));
5621 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5622 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5623 pf_osfp_fingerprint(pd, ctx->th),
5624 r->os_fingerprint)),
5625 TAILQ_NEXT(r, entries));
5626 /* must be last! */
5627 if (r->pktrate.limit) {
5628 PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
5629 TAILQ_NEXT(r, entries));
5630 }
5631 /* FALLTHROUGH */
5632 if (r->tag)
5633 ctx->tag = r->tag;
5634 if (r->anchor == NULL) {
5635 if (r->action == PF_MATCH) {
5636 /*
5637 * Apply translations before increasing counters,
5638 * in case it fails.
5639 */
5640 transerror = pf_rule_apply_nat(ctx, r);
5641 switch (transerror) {
5642 case PFRES_MATCH:
5643 /* Translation action found in rule and applied successfully */
5644 case PFRES_MAX:
5645 /* No translation action found in rule */
5646 break;
5647 default:
5648 /* Translation action found in rule but failed to apply */
5649 REASON_SET(&ctx->reason, transerror);
5650 return (PF_TEST_FAIL);
5651 }
5652 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5653 if (ri == NULL) {
5654 REASON_SET(&ctx->reason, PFRES_MEMORY);
5655 return (PF_TEST_FAIL);
5656 }
5657 ri->r = r;
5658 SLIST_INSERT_HEAD(&ctx->rules, ri, entry);
5659 pf_counter_u64_critical_enter();
5660 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5661 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5662 pf_counter_u64_critical_exit();
5663 pf_rule_to_actions(r, &pd->act);
5664 if (r->log)
5665 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5666 ctx->a, ruleset, pd, 1, NULL);
5667 } else {
5668 /*
5669 * found matching r
5670 */
5671 *ctx->rm = r;
5672 /*
5673 * anchor, with ruleset, where r belongs to
5674 */
5675 *ctx->am = ctx->a;
5676 /*
5677 * ruleset where r belongs to
5678 */
5679 *ctx->rsm = ruleset;
5680 /*
5681 * ruleset, where anchor belongs to.
5682 */
5683 ctx->arsm = ctx->aruleset;
5684 }
5685 if (pd->act.log & PF_LOG_MATCHES)
5686 pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules);
5687 if (r->quick) {
5688 ctx->test_status = PF_TEST_QUICK;
5689 break;
5690 }
5691 } else {
5692 save_a = ctx->a;
5693 save_aruleset = ctx->aruleset;
5694
5695 ctx->a = r; /* remember anchor */
5696 ctx->aruleset = ruleset; /* and its ruleset */
5697 if (ctx->a->quick)
5698 ctx->test_status = PF_TEST_QUICK;
5699 /*
5700 * Note: we don't need to restore if we are not going
5701 * to continue with ruleset evaluation.
5702 */
5703 if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) {
5704 break;
5705 }
5706 ctx->a = save_a;
5707 ctx->aruleset = save_aruleset;
5708 }
5709 r = TAILQ_NEXT(r, entries);
5710 }
5711
5712 return (ctx->test_status);
5713 }
5714
5715 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp)5716 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5717 struct pf_pdesc *pd, struct pf_krule **am,
5718 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp)
5719 {
5720 struct pf_krule *r = NULL;
5721 struct pf_kruleset *ruleset = NULL;
5722 struct pf_krule_item *ri;
5723 struct pf_test_ctx ctx;
5724 u_short transerror;
5725 int action = PF_PASS;
5726 u_int16_t bproto_sum = 0, bip_sum = 0;
5727 enum pf_test_status rv;
5728
5729 PF_RULES_RASSERT();
5730
5731 bzero(&ctx, sizeof(ctx));
5732 ctx.tag = -1;
5733 ctx.pd = pd;
5734 ctx.rm = rm;
5735 ctx.am = am;
5736 ctx.rsm = rsm;
5737 ctx.th = &pd->hdr.tcp;
5738 ctx.reason = *reason;
5739 SLIST_INIT(&ctx.rules);
5740
5741 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5742 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5743
5744 if (inp != NULL) {
5745 INP_LOCK_ASSERT(inp);
5746 pd->lookup.uid = inp->inp_cred->cr_uid;
5747 pd->lookup.gid = inp->inp_cred->cr_groups[0];
5748 pd->lookup.done = 1;
5749 }
5750
5751 if (pd->ip_sum)
5752 bip_sum = *pd->ip_sum;
5753
5754 switch (pd->virtual_proto) {
5755 case IPPROTO_TCP:
5756 bproto_sum = ctx.th->th_sum;
5757 pd->nsport = ctx.th->th_sport;
5758 pd->ndport = ctx.th->th_dport;
5759 break;
5760 case IPPROTO_UDP:
5761 bproto_sum = pd->hdr.udp.uh_sum;
5762 pd->nsport = pd->hdr.udp.uh_sport;
5763 pd->ndport = pd->hdr.udp.uh_dport;
5764 break;
5765 case IPPROTO_SCTP:
5766 pd->nsport = pd->hdr.sctp.src_port;
5767 pd->ndport = pd->hdr.sctp.dest_port;
5768 break;
5769 #ifdef INET
5770 case IPPROTO_ICMP:
5771 MPASS(pd->af == AF_INET);
5772 ctx.icmptype = pd->hdr.icmp.icmp_type;
5773 ctx.icmpcode = pd->hdr.icmp.icmp_code;
5774 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5775 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5776 if (ctx.icmp_dir == PF_IN) {
5777 pd->nsport = ctx.virtual_id;
5778 pd->ndport = ctx.virtual_type;
5779 } else {
5780 pd->nsport = ctx.virtual_type;
5781 pd->ndport = ctx.virtual_id;
5782 }
5783 break;
5784 #endif /* INET */
5785 #ifdef INET6
5786 case IPPROTO_ICMPV6:
5787 MPASS(pd->af == AF_INET6);
5788 ctx.icmptype = pd->hdr.icmp6.icmp6_type;
5789 ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
5790 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5791 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5792 if (ctx.icmp_dir == PF_IN) {
5793 pd->nsport = ctx.virtual_id;
5794 pd->ndport = ctx.virtual_type;
5795 } else {
5796 pd->nsport = ctx.virtual_type;
5797 pd->ndport = ctx.virtual_id;
5798 }
5799
5800 break;
5801 #endif /* INET6 */
5802 default:
5803 pd->nsport = pd->ndport = 0;
5804 break;
5805 }
5806 pd->osport = pd->nsport;
5807 pd->odport = pd->ndport;
5808
5809 /* check packet for BINAT/NAT/RDR */
5810 transerror = pf_get_translation(&ctx);
5811 switch (transerror) {
5812 default:
5813 /* A translation error occurred. */
5814 REASON_SET(&ctx.reason, transerror);
5815 goto cleanup;
5816 case PFRES_MAX:
5817 /* No match. */
5818 break;
5819 case PFRES_MATCH:
5820 KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
5821 KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
5822 if (ctx.nr->log) {
5823 PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
5824 ruleset, pd, 1, NULL);
5825 }
5826
5827 ctx.rewrite += pf_translate_compat(&ctx);
5828 ctx.nat_pool = &(ctx.nr->rdr);
5829 }
5830
5831 ruleset = &pf_main_ruleset;
5832 rv = pf_match_rule(&ctx, ruleset);
5833 if (rv == PF_TEST_FAIL) {
5834 /*
5835 * Reason has been set in pf_match_rule() already.
5836 */
5837 goto cleanup;
5838 }
5839
5840 r = *ctx.rm; /* matching rule */
5841 ctx.a = *ctx.am; /* rule that defines an anchor containing 'r' */
5842 ruleset = *ctx.rsm; /* ruleset of the anchor defined by the rule 'a' */
5843 ctx.aruleset = ctx.arsm; /* ruleset of the 'a' rule itself */
5844
5845 REASON_SET(&ctx.reason, PFRES_MATCH);
5846
5847 /* apply actions for last matching pass/block rule */
5848 pf_rule_to_actions(r, &pd->act);
5849 transerror = pf_rule_apply_nat(&ctx, r);
5850 switch (transerror) {
5851 case PFRES_MATCH:
5852 /* Translation action found in rule and applied successfully */
5853 case PFRES_MAX:
5854 /* No translation action found in rule */
5855 break;
5856 default:
5857 /* Translation action found in rule but failed to apply */
5858 REASON_SET(&ctx.reason, transerror);
5859 goto cleanup;
5860 }
5861
5862 if (r->log) {
5863 if (ctx.rewrite)
5864 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5865 PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
5866 }
5867 if (pd->act.log & PF_LOG_MATCHES)
5868 pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules);
5869 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5870 (r->action == PF_DROP) &&
5871 ((r->rule_flag & PFRULE_RETURNRST) ||
5872 (r->rule_flag & PFRULE_RETURNICMP) ||
5873 (r->rule_flag & PFRULE_RETURN))) {
5874 pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
5875 bip_sum, &ctx.reason, r->rtableid);
5876 }
5877
5878 if (r->action == PF_DROP)
5879 goto cleanup;
5880
5881 if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
5882 REASON_SET(&ctx.reason, PFRES_MEMORY);
5883 goto cleanup;
5884 }
5885 if (pd->act.rtableid >= 0)
5886 M_SETFIB(pd->m, pd->act.rtableid);
5887
5888 if (r->rt) {
5889 struct pf_ksrc_node *sn = NULL;
5890 struct pf_srchash *snh = NULL;
5891 /*
5892 * Set act.rt here instead of in pf_rule_to_actions() because
5893 * it is applied only from the last pass rule.
5894 */
5895 pd->act.rt = r->rt;
5896 /* Don't use REASON_SET, pf_map_addr increases the reason counters */
5897 ctx.reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr,
5898 &pd->act.rt_kif, NULL, &sn, &snh, &(r->route), PF_SN_ROUTE);
5899 if (ctx.reason != 0)
5900 goto cleanup;
5901 }
5902
5903 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5904 (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
5905 (pd->flags & PFDESC_TCP_NORM)))) {
5906 bool nat64;
5907
5908 action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum);
5909 ctx.sk = ctx.nk = NULL;
5910 if (action != PF_PASS) {
5911 pf_udp_mapping_release(ctx.udp_mapping);
5912 if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
5913 ctx.reason == PFRES_MEMORY)
5914 pd->act.log |= PF_LOG_FORCE;
5915 if (action == PF_DROP &&
5916 (r->rule_flag & PFRULE_RETURN))
5917 pf_return(r, ctx.nr, pd, ctx.th,
5918 bproto_sum, bip_sum, &ctx.reason,
5919 pd->act.rtableid);
5920 *reason = ctx.reason;
5921 return (action);
5922 }
5923
5924 nat64 = pd->af != pd->naf;
5925 if (nat64) {
5926 int ret;
5927
5928 if (ctx.sk == NULL)
5929 ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
5930 if (ctx.nk == NULL)
5931 ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
5932
5933 if (pd->dir == PF_IN) {
5934 ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
5935 ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
5936 ctx.sk->port[pd->sidx], ctx.virtual_type,
5937 ctx.icmp_dir);
5938 } else {
5939 ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
5940 ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
5941 ctx.sk->port[pd->didx], ctx.virtual_type,
5942 ctx.icmp_dir);
5943 }
5944
5945 if (ret < 0)
5946 goto cleanup;
5947
5948 ctx.rewrite += ret;
5949
5950 if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
5951 action = PF_AFRT;
5952 }
5953 } else {
5954 while ((ri = SLIST_FIRST(&ctx.rules))) {
5955 SLIST_REMOVE_HEAD(&ctx.rules, entry);
5956 free(ri, M_PF_RULE_ITEM);
5957 }
5958
5959 uma_zfree(V_pf_state_key_z, ctx.sk);
5960 uma_zfree(V_pf_state_key_z, ctx.nk);
5961 ctx.sk = ctx.nk = NULL;
5962 pf_udp_mapping_release(ctx.udp_mapping);
5963 }
5964
5965 /* copy back packet headers if we performed NAT operations */
5966 if (ctx.rewrite)
5967 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5968
5969 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5970 pd->dir == PF_OUT &&
5971 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
5972 /*
5973 * We want the state created, but we dont
5974 * want to send this in case a partner
5975 * firewall has to know about it to allow
5976 * replies through it.
5977 */
5978 *reason = ctx.reason;
5979 return (PF_DEFER);
5980 }
5981
5982 *reason = ctx.reason;
5983 return (action);
5984
5985 cleanup:
5986 while ((ri = SLIST_FIRST(&ctx.rules))) {
5987 SLIST_REMOVE_HEAD(&ctx.rules, entry);
5988 free(ri, M_PF_RULE_ITEM);
5989 }
5990
5991 uma_zfree(V_pf_state_key_z, ctx.sk);
5992 uma_zfree(V_pf_state_key_z, ctx.nk);
5993 pf_udp_mapping_release(ctx.udp_mapping);
5994 *reason = ctx.reason;
5995
5996 return (PF_DROP);
5997 }
5998
5999 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum)6000 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
6001 struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum)
6002 {
6003 struct pf_pdesc *pd = ctx->pd;
6004 struct pf_kstate *s = NULL;
6005 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL };
6006 /*
6007 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6008 * but for PF_SN_NAT it is different. Don't try optimizing it,
6009 * just store all 3 hashes.
6010 */
6011 struct pf_srchash *snhs[PF_SN_MAX] = { NULL };
6012 struct tcphdr *th = &pd->hdr.tcp;
6013 u_int16_t mss = V_tcp_mssdflt;
6014 u_short sn_reason;
6015 struct pf_krule_item *ri;
6016
6017 /* check maximums */
6018 if (r->max_states &&
6019 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6020 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6021 REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6022 goto csfailed;
6023 }
6024 /* src node for limits */
6025 if ((r->rule_flag & PFRULE_SRCTRACK) &&
6026 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6027 NULL, NULL, PF_SN_LIMIT)) != 0) {
6028 REASON_SET(&ctx->reason, sn_reason);
6029 goto csfailed;
6030 }
6031 /* src node for route-to rule */
6032 if (r->rt) {
6033 if ((r->route.opts & PF_POOL_STICKYADDR) &&
6034 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6035 pd->af, &pd->act.rt_addr, pd->act.rt_kif,
6036 PF_SN_ROUTE)) != 0) {
6037 REASON_SET(&ctx->reason, sn_reason);
6038 goto csfailed;
6039 }
6040 }
6041 /* src node for translation rule */
6042 if (ctx->nr != NULL) {
6043 KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6044 if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6045 (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6046 &ctx->sk->addr[pd->sidx], pd->af, &ctx->nk->addr[1], NULL,
6047 PF_SN_NAT)) != 0 ) {
6048 REASON_SET(&ctx->reason, sn_reason);
6049 goto csfailed;
6050 }
6051 }
6052 s = pf_alloc_state(M_NOWAIT);
6053 if (s == NULL) {
6054 REASON_SET(&ctx->reason, PFRES_MEMORY);
6055 goto csfailed;
6056 }
6057 s->rule = r;
6058 s->nat_rule = ctx->nr;
6059 s->anchor = ctx->a;
6060 memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules));
6061 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6062
6063 if (pd->act.allow_opts)
6064 s->state_flags |= PFSTATE_ALLOWOPTS;
6065 if (r->rule_flag & PFRULE_STATESLOPPY)
6066 s->state_flags |= PFSTATE_SLOPPY;
6067 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6068 s->state_flags |= PFSTATE_SCRUB_TCP;
6069 if ((r->rule_flag & PFRULE_PFLOW) ||
6070 (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6071 s->state_flags |= PFSTATE_PFLOW;
6072
6073 s->act.log = pd->act.log & PF_LOG_ALL;
6074 s->sync_state = PFSYNC_S_NONE;
6075 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6076
6077 if (ctx->nr != NULL)
6078 s->act.log |= ctx->nr->log & PF_LOG_ALL;
6079 switch (pd->proto) {
6080 case IPPROTO_TCP:
6081 s->src.seqlo = ntohl(th->th_seq);
6082 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6083 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6084 r->keep_state == PF_STATE_MODULATE) {
6085 /* Generate sequence number modulator */
6086 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6087 0)
6088 s->src.seqdiff = 1;
6089 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6090 htonl(s->src.seqlo + s->src.seqdiff), 0);
6091 ctx->rewrite = 1;
6092 } else
6093 s->src.seqdiff = 0;
6094 if (tcp_get_flags(th) & TH_SYN) {
6095 s->src.seqhi++;
6096 s->src.wscale = pf_get_wscale(pd);
6097 }
6098 s->src.max_win = MAX(ntohs(th->th_win), 1);
6099 if (s->src.wscale & PF_WSCALE_MASK) {
6100 /* Remove scale factor from initial window */
6101 int win = s->src.max_win;
6102 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6103 s->src.max_win = (win - 1) >>
6104 (s->src.wscale & PF_WSCALE_MASK);
6105 }
6106 if (tcp_get_flags(th) & TH_FIN)
6107 s->src.seqhi++;
6108 s->dst.seqhi = 1;
6109 s->dst.max_win = 1;
6110 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6111 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6112 s->timeout = PFTM_TCP_FIRST_PACKET;
6113 atomic_add_32(&V_pf_status.states_halfopen, 1);
6114 break;
6115 case IPPROTO_UDP:
6116 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6117 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6118 s->timeout = PFTM_UDP_FIRST_PACKET;
6119 break;
6120 case IPPROTO_SCTP:
6121 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6122 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6123 s->timeout = PFTM_SCTP_FIRST_PACKET;
6124 break;
6125 case IPPROTO_ICMP:
6126 #ifdef INET6
6127 case IPPROTO_ICMPV6:
6128 #endif /* INET6 */
6129 s->timeout = PFTM_ICMP_FIRST_PACKET;
6130 break;
6131 default:
6132 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6133 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6134 s->timeout = PFTM_OTHER_FIRST_PACKET;
6135 }
6136
6137 s->creation = s->expire = pf_get_uptime();
6138
6139 if (pd->proto == IPPROTO_TCP) {
6140 if (s->state_flags & PFSTATE_SCRUB_TCP &&
6141 pf_normalize_tcp_init(pd, th, &s->src)) {
6142 REASON_SET(&ctx->reason, PFRES_MEMORY);
6143 goto csfailed;
6144 }
6145 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6146 pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6147 &s->src, &s->dst, &ctx->rewrite)) {
6148 /* This really shouldn't happen!!! */
6149 DPFPRINTF(PF_DEBUG_URGENT,
6150 ("%s: tcp normalize failed on first "
6151 "pkt\n", __func__));
6152 goto csfailed;
6153 }
6154 } else if (pd->proto == IPPROTO_SCTP) {
6155 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6156 goto csfailed;
6157 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6158 goto csfailed;
6159 }
6160 s->direction = pd->dir;
6161
6162 /*
6163 * sk/nk could already been setup by pf_get_translation().
6164 */
6165 if (ctx->sk == NULL && ctx->nk == NULL) {
6166 MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6167 MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6168 if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6169 &ctx->sk, &ctx->nk)) {
6170 goto csfailed;
6171 }
6172 } else
6173 KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6174 __func__, ctx->nr, ctx->sk, ctx->nk));
6175
6176 /* Swap sk/nk for PF_OUT. */
6177 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6178 (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6179 (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6180 REASON_SET(&ctx->reason, PFRES_STATEINS);
6181 goto drop;
6182 } else
6183 *sm = s;
6184 ctx->sk = ctx->nk = NULL;
6185
6186 STATE_INC_COUNTERS(s);
6187
6188 /*
6189 * Lock order is important: first state, then source node.
6190 */
6191 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6192 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6193 s->sns[sn_type] = sns[sn_type];
6194 PF_HASHROW_UNLOCK(snhs[sn_type]);
6195 }
6196 }
6197
6198 if (ctx->tag > 0)
6199 s->tag = ctx->tag;
6200 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6201 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
6202 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6203 pf_undo_nat(ctx->nr, pd, bip_sum);
6204 s->src.seqhi = arc4random();
6205 /* Find mss option */
6206 int rtid = M_GETFIB(pd->m);
6207 mss = pf_get_mss(pd);
6208 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6209 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6210 s->src.mss = mss;
6211 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6212 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6213 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6214 pd->act.rtableid);
6215 REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6216 return (PF_SYNPROXY_DROP);
6217 }
6218
6219 s->udp_mapping = ctx->udp_mapping;
6220
6221 return (PF_PASS);
6222
6223 csfailed:
6224 while ((ri = SLIST_FIRST(&ctx->rules))) {
6225 SLIST_REMOVE_HEAD(&ctx->rules, entry);
6226 free(ri, M_PF_RULE_ITEM);
6227 }
6228
6229 uma_zfree(V_pf_state_key_z, ctx->sk);
6230 uma_zfree(V_pf_state_key_z, ctx->nk);
6231
6232 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6233 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6234 if (--sns[sn_type]->states == 0 &&
6235 sns[sn_type]->expire == 0) {
6236 pf_unlink_src_node(sns[sn_type]);
6237 pf_free_src_node(sns[sn_type]);
6238 counter_u64_add(
6239 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6240 }
6241 PF_HASHROW_UNLOCK(snhs[sn_type]);
6242 }
6243 }
6244
6245 drop:
6246 if (s != NULL) {
6247 pf_src_tree_remove_state(s);
6248 s->timeout = PFTM_UNLINKED;
6249 pf_free_state(s);
6250 }
6251
6252 return (PF_DROP);
6253 }
6254
6255 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6256 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6257 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6258 int icmp_dir)
6259 {
6260 /*
6261 * pf_translate() implements OpenBSD's "new" NAT approach.
6262 * We don't follow it, because it involves a breaking syntax change
6263 * (removing nat/rdr rules, moving it into regular pf rules.)
6264 * It also moves NAT processing to be done after normal rules evaluation
6265 * whereas in FreeBSD that's done before rules processing.
6266 *
6267 * We adopt the function only for nat64, and keep other NAT processing
6268 * before rules processing.
6269 */
6270 int rewrite = 0;
6271 int afto = pd->af != pd->naf;
6272
6273 MPASS(afto);
6274
6275 switch (pd->proto) {
6276 case IPPROTO_TCP:
6277 case IPPROTO_UDP:
6278 case IPPROTO_SCTP:
6279 if (afto || *pd->sport != sport) {
6280 pf_change_ap(pd, pd->src, pd->sport,
6281 saddr, sport);
6282 rewrite = 1;
6283 }
6284 if (afto || *pd->dport != dport) {
6285 pf_change_ap(pd, pd->dst, pd->dport,
6286 daddr, dport);
6287 rewrite = 1;
6288 }
6289 break;
6290
6291 #ifdef INET
6292 case IPPROTO_ICMP:
6293 /* pf_translate() is also used when logging invalid packets */
6294 if (pd->af != AF_INET)
6295 return (0);
6296
6297 if (afto) {
6298 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6299 return (-1);
6300 pd->proto = IPPROTO_ICMPV6;
6301 rewrite = 1;
6302 }
6303 if (virtual_type == htons(ICMP_ECHO)) {
6304 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6305
6306 if (icmpid != pd->hdr.icmp.icmp_id) {
6307 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6308 pd->hdr.icmp.icmp_cksum,
6309 pd->hdr.icmp.icmp_id, icmpid, 0);
6310 pd->hdr.icmp.icmp_id = icmpid;
6311 /* XXX TODO copyback. */
6312 rewrite = 1;
6313 }
6314 }
6315 break;
6316 #endif /* INET */
6317
6318 #ifdef INET6
6319 case IPPROTO_ICMPV6:
6320 /* pf_translate() is also used when logging invalid packets */
6321 if (pd->af != AF_INET6)
6322 return (0);
6323
6324 if (afto) {
6325 /* ip_sum will be recalculated in pf_translate_af */
6326 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6327 return (0);
6328 pd->proto = IPPROTO_ICMP;
6329 rewrite = 1;
6330 }
6331 break;
6332 #endif /* INET6 */
6333
6334 default:
6335 break;
6336 }
6337
6338 return (rewrite);
6339 }
6340
6341 int
pf_translate_compat(struct pf_test_ctx * ctx)6342 pf_translate_compat(struct pf_test_ctx *ctx)
6343 {
6344 struct pf_pdesc *pd = ctx->pd;
6345 struct pf_state_key *nk = ctx->nk;
6346 struct tcphdr *th = &pd->hdr.tcp;
6347 int rewrite = 0;
6348
6349 KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
6350 KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
6351
6352 switch (pd->proto) {
6353 case IPPROTO_TCP:
6354 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6355 nk->port[pd->sidx] != pd->nsport) {
6356 pf_change_ap(pd, pd->src, &th->th_sport,
6357 &nk->addr[pd->sidx], nk->port[pd->sidx]);
6358 pd->sport = &th->th_sport;
6359 pd->nsport = th->th_sport;
6360 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6361 }
6362
6363 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6364 nk->port[pd->didx] != pd->ndport) {
6365 pf_change_ap(pd, pd->dst, &th->th_dport,
6366 &nk->addr[pd->didx], nk->port[pd->didx]);
6367 pd->dport = &th->th_dport;
6368 pd->ndport = th->th_dport;
6369 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6370 }
6371 rewrite++;
6372 break;
6373 case IPPROTO_UDP:
6374 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6375 nk->port[pd->sidx] != pd->nsport) {
6376 pf_change_ap(pd, pd->src,
6377 &pd->hdr.udp.uh_sport,
6378 &nk->addr[pd->sidx],
6379 nk->port[pd->sidx]);
6380 pd->sport = &pd->hdr.udp.uh_sport;
6381 pd->nsport = pd->hdr.udp.uh_sport;
6382 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6383 }
6384
6385 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6386 nk->port[pd->didx] != pd->ndport) {
6387 pf_change_ap(pd, pd->dst,
6388 &pd->hdr.udp.uh_dport,
6389 &nk->addr[pd->didx],
6390 nk->port[pd->didx]);
6391 pd->dport = &pd->hdr.udp.uh_dport;
6392 pd->ndport = pd->hdr.udp.uh_dport;
6393 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6394 }
6395 rewrite++;
6396 break;
6397 case IPPROTO_SCTP: {
6398 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6399 nk->port[pd->sidx] != pd->nsport) {
6400 pf_change_ap(pd, pd->src,
6401 &pd->hdr.sctp.src_port,
6402 &nk->addr[pd->sidx],
6403 nk->port[pd->sidx]);
6404 pd->sport = &pd->hdr.sctp.src_port;
6405 pd->nsport = pd->hdr.sctp.src_port;
6406 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6407 }
6408 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6409 nk->port[pd->didx] != pd->ndport) {
6410 pf_change_ap(pd, pd->dst,
6411 &pd->hdr.sctp.dest_port,
6412 &nk->addr[pd->didx],
6413 nk->port[pd->didx]);
6414 pd->dport = &pd->hdr.sctp.dest_port;
6415 pd->ndport = pd->hdr.sctp.dest_port;
6416 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6417 }
6418 break;
6419 }
6420 #ifdef INET
6421 case IPPROTO_ICMP:
6422 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
6423 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
6424 nk->addr[pd->sidx].v4.s_addr, 0);
6425 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6426 }
6427
6428 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
6429 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
6430 nk->addr[pd->didx].v4.s_addr, 0);
6431 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6432 }
6433
6434 if (ctx->virtual_type == htons(ICMP_ECHO) &&
6435 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
6436 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6437 pd->hdr.icmp.icmp_cksum, pd->nsport,
6438 nk->port[pd->sidx], 0);
6439 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
6440 pd->sport = &pd->hdr.icmp.icmp_id;
6441 }
6442 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
6443 break;
6444 #endif /* INET */
6445 #ifdef INET6
6446 case IPPROTO_ICMPV6:
6447 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
6448 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
6449 &nk->addr[pd->sidx], 0);
6450 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6451 }
6452
6453 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
6454 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
6455 &nk->addr[pd->didx], 0);
6456 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6457 }
6458 rewrite++;
6459 break;
6460 #endif /* INET */
6461 default:
6462 switch (pd->af) {
6463 #ifdef INET
6464 case AF_INET:
6465 if (PF_ANEQ(&pd->nsaddr,
6466 &nk->addr[pd->sidx], AF_INET)) {
6467 pf_change_a(&pd->src->v4.s_addr,
6468 pd->ip_sum,
6469 nk->addr[pd->sidx].v4.s_addr, 0);
6470 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6471 }
6472
6473 if (PF_ANEQ(&pd->ndaddr,
6474 &nk->addr[pd->didx], AF_INET)) {
6475 pf_change_a(&pd->dst->v4.s_addr,
6476 pd->ip_sum,
6477 nk->addr[pd->didx].v4.s_addr, 0);
6478 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6479 }
6480 break;
6481 #endif /* INET */
6482 #ifdef INET6
6483 case AF_INET6:
6484 if (PF_ANEQ(&pd->nsaddr,
6485 &nk->addr[pd->sidx], AF_INET6)) {
6486 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af);
6487 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
6488 }
6489
6490 if (PF_ANEQ(&pd->ndaddr,
6491 &nk->addr[pd->didx], AF_INET6)) {
6492 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af);
6493 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
6494 }
6495 break;
6496 #endif /* INET6 */
6497 }
6498 break;
6499 }
6500 return (rewrite);
6501 }
6502
6503 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6504 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6505 u_short *reason, int *copyback, struct pf_state_peer *src,
6506 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6507 {
6508 struct tcphdr *th = &pd->hdr.tcp;
6509 u_int16_t win = ntohs(th->th_win);
6510 u_int32_t ack, end, data_end, seq, orig_seq;
6511 u_int8_t sws, dws;
6512 int ackskew;
6513
6514 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6515 sws = src->wscale & PF_WSCALE_MASK;
6516 dws = dst->wscale & PF_WSCALE_MASK;
6517 } else
6518 sws = dws = 0;
6519
6520 /*
6521 * Sequence tracking algorithm from Guido van Rooij's paper:
6522 * http://www.madison-gurkha.com/publications/tcp_filtering/
6523 * tcp_filtering.ps
6524 */
6525
6526 orig_seq = seq = ntohl(th->th_seq);
6527 if (src->seqlo == 0) {
6528 /* First packet from this end. Set its state */
6529
6530 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6531 src->scrub == NULL) {
6532 if (pf_normalize_tcp_init(pd, th, src)) {
6533 REASON_SET(reason, PFRES_MEMORY);
6534 return (PF_DROP);
6535 }
6536 }
6537
6538 /* Deferred generation of sequence number modulator */
6539 if (dst->seqdiff && !src->seqdiff) {
6540 /* use random iss for the TCP server */
6541 while ((src->seqdiff = arc4random() - seq) == 0)
6542 ;
6543 ack = ntohl(th->th_ack) - dst->seqdiff;
6544 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6545 src->seqdiff), 0);
6546 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6547 *copyback = 1;
6548 } else {
6549 ack = ntohl(th->th_ack);
6550 }
6551
6552 end = seq + pd->p_len;
6553 if (tcp_get_flags(th) & TH_SYN) {
6554 end++;
6555 if (dst->wscale & PF_WSCALE_FLAG) {
6556 src->wscale = pf_get_wscale(pd);
6557 if (src->wscale & PF_WSCALE_FLAG) {
6558 /* Remove scale factor from initial
6559 * window */
6560 sws = src->wscale & PF_WSCALE_MASK;
6561 win = ((u_int32_t)win + (1 << sws) - 1)
6562 >> sws;
6563 dws = dst->wscale & PF_WSCALE_MASK;
6564 } else {
6565 /* fixup other window */
6566 dst->max_win = MIN(TCP_MAXWIN,
6567 (u_int32_t)dst->max_win <<
6568 (dst->wscale & PF_WSCALE_MASK));
6569 /* in case of a retrans SYN|ACK */
6570 dst->wscale = 0;
6571 }
6572 }
6573 }
6574 data_end = end;
6575 if (tcp_get_flags(th) & TH_FIN)
6576 end++;
6577
6578 src->seqlo = seq;
6579 if (src->state < TCPS_SYN_SENT)
6580 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6581
6582 /*
6583 * May need to slide the window (seqhi may have been set by
6584 * the crappy stack check or if we picked up the connection
6585 * after establishment)
6586 */
6587 if (src->seqhi == 1 ||
6588 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6589 src->seqhi = end + MAX(1, dst->max_win << dws);
6590 if (win > src->max_win)
6591 src->max_win = win;
6592
6593 } else {
6594 ack = ntohl(th->th_ack) - dst->seqdiff;
6595 if (src->seqdiff) {
6596 /* Modulate sequence numbers */
6597 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6598 src->seqdiff), 0);
6599 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6600 *copyback = 1;
6601 }
6602 end = seq + pd->p_len;
6603 if (tcp_get_flags(th) & TH_SYN)
6604 end++;
6605 data_end = end;
6606 if (tcp_get_flags(th) & TH_FIN)
6607 end++;
6608 }
6609
6610 if ((tcp_get_flags(th) & TH_ACK) == 0) {
6611 /* Let it pass through the ack skew check */
6612 ack = dst->seqlo;
6613 } else if ((ack == 0 &&
6614 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6615 /* broken tcp stacks do not set ack */
6616 (dst->state < TCPS_SYN_SENT)) {
6617 /*
6618 * Many stacks (ours included) will set the ACK number in an
6619 * FIN|ACK if the SYN times out -- no sequence to ACK.
6620 */
6621 ack = dst->seqlo;
6622 }
6623
6624 if (seq == end) {
6625 /* Ease sequencing restrictions on no data packets */
6626 seq = src->seqlo;
6627 data_end = end = seq;
6628 }
6629
6630 ackskew = dst->seqlo - ack;
6631
6632 /*
6633 * Need to demodulate the sequence numbers in any TCP SACK options
6634 * (Selective ACK). We could optionally validate the SACK values
6635 * against the current ACK window, either forwards or backwards, but
6636 * I'm not confident that SACK has been implemented properly
6637 * everywhere. It wouldn't surprise me if several stacks accidentally
6638 * SACK too far backwards of previously ACKed data. There really aren't
6639 * any security implications of bad SACKing unless the target stack
6640 * doesn't validate the option length correctly. Someone trying to
6641 * spoof into a TCP connection won't bother blindly sending SACK
6642 * options anyway.
6643 */
6644 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6645 if (pf_modulate_sack(pd, th, dst))
6646 *copyback = 1;
6647 }
6648
6649 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
6650 if (SEQ_GEQ(src->seqhi, data_end) &&
6651 /* Last octet inside other's window space */
6652 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6653 /* Retrans: not more than one window back */
6654 (ackskew >= -MAXACKWINDOW) &&
6655 /* Acking not more than one reassembled fragment backwards */
6656 (ackskew <= (MAXACKWINDOW << sws)) &&
6657 /* Acking not more than one window forward */
6658 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6659 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6660 /* Require an exact/+1 sequence match on resets when possible */
6661
6662 if (dst->scrub || src->scrub) {
6663 if (pf_normalize_tcp_stateful(pd, reason, th,
6664 state, src, dst, copyback))
6665 return (PF_DROP);
6666 }
6667
6668 /* update max window */
6669 if (src->max_win < win)
6670 src->max_win = win;
6671 /* synchronize sequencing */
6672 if (SEQ_GT(end, src->seqlo))
6673 src->seqlo = end;
6674 /* slide the window of what the other end can send */
6675 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6676 dst->seqhi = ack + MAX((win << sws), 1);
6677
6678 /* update states */
6679 if (tcp_get_flags(th) & TH_SYN)
6680 if (src->state < TCPS_SYN_SENT)
6681 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6682 if (tcp_get_flags(th) & TH_FIN)
6683 if (src->state < TCPS_CLOSING)
6684 pf_set_protostate(state, psrc, TCPS_CLOSING);
6685 if (tcp_get_flags(th) & TH_ACK) {
6686 if (dst->state == TCPS_SYN_SENT) {
6687 pf_set_protostate(state, pdst,
6688 TCPS_ESTABLISHED);
6689 if (src->state == TCPS_ESTABLISHED &&
6690 state->sns[PF_SN_LIMIT] != NULL &&
6691 pf_src_connlimit(state)) {
6692 REASON_SET(reason, PFRES_SRCLIMIT);
6693 return (PF_DROP);
6694 }
6695 } else if (dst->state == TCPS_CLOSING)
6696 pf_set_protostate(state, pdst,
6697 TCPS_FIN_WAIT_2);
6698 }
6699 if (tcp_get_flags(th) & TH_RST)
6700 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6701
6702 /* update expire time */
6703 state->expire = pf_get_uptime();
6704 if (src->state >= TCPS_FIN_WAIT_2 &&
6705 dst->state >= TCPS_FIN_WAIT_2)
6706 state->timeout = PFTM_TCP_CLOSED;
6707 else if (src->state >= TCPS_CLOSING &&
6708 dst->state >= TCPS_CLOSING)
6709 state->timeout = PFTM_TCP_FIN_WAIT;
6710 else if (src->state < TCPS_ESTABLISHED ||
6711 dst->state < TCPS_ESTABLISHED)
6712 state->timeout = PFTM_TCP_OPENING;
6713 else if (src->state >= TCPS_CLOSING ||
6714 dst->state >= TCPS_CLOSING)
6715 state->timeout = PFTM_TCP_CLOSING;
6716 else
6717 state->timeout = PFTM_TCP_ESTABLISHED;
6718
6719 /* Fall through to PASS packet */
6720
6721 } else if ((dst->state < TCPS_SYN_SENT ||
6722 dst->state >= TCPS_FIN_WAIT_2 ||
6723 src->state >= TCPS_FIN_WAIT_2) &&
6724 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6725 /* Within a window forward of the originating packet */
6726 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6727 /* Within a window backward of the originating packet */
6728
6729 /*
6730 * This currently handles three situations:
6731 * 1) Stupid stacks will shotgun SYNs before their peer
6732 * replies.
6733 * 2) When PF catches an already established stream (the
6734 * firewall rebooted, the state table was flushed, routes
6735 * changed...)
6736 * 3) Packets get funky immediately after the connection
6737 * closes (this should catch Solaris spurious ACK|FINs
6738 * that web servers like to spew after a close)
6739 *
6740 * This must be a little more careful than the above code
6741 * since packet floods will also be caught here. We don't
6742 * update the TTL here to mitigate the damage of a packet
6743 * flood and so the same code can handle awkward establishment
6744 * and a loosened connection close.
6745 * In the establishment case, a correct peer response will
6746 * validate the connection, go through the normal state code
6747 * and keep updating the state TTL.
6748 */
6749
6750 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6751 printf("pf: loose state match: ");
6752 pf_print_state(state);
6753 pf_print_flags(tcp_get_flags(th));
6754 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6755 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6756 pd->p_len, ackskew, (unsigned long long)state->packets[0],
6757 (unsigned long long)state->packets[1],
6758 pd->dir == PF_IN ? "in" : "out",
6759 pd->dir == state->direction ? "fwd" : "rev");
6760 }
6761
6762 if (dst->scrub || src->scrub) {
6763 if (pf_normalize_tcp_stateful(pd, reason, th,
6764 state, src, dst, copyback))
6765 return (PF_DROP);
6766 }
6767
6768 /* update max window */
6769 if (src->max_win < win)
6770 src->max_win = win;
6771 /* synchronize sequencing */
6772 if (SEQ_GT(end, src->seqlo))
6773 src->seqlo = end;
6774 /* slide the window of what the other end can send */
6775 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6776 dst->seqhi = ack + MAX((win << sws), 1);
6777
6778 /*
6779 * Cannot set dst->seqhi here since this could be a shotgunned
6780 * SYN and not an already established connection.
6781 */
6782
6783 if (tcp_get_flags(th) & TH_FIN)
6784 if (src->state < TCPS_CLOSING)
6785 pf_set_protostate(state, psrc, TCPS_CLOSING);
6786 if (tcp_get_flags(th) & TH_RST)
6787 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6788
6789 /* Fall through to PASS packet */
6790
6791 } else {
6792 if (state->dst.state == TCPS_SYN_SENT &&
6793 state->src.state == TCPS_SYN_SENT) {
6794 /* Send RST for state mismatches during handshake */
6795 if (!(tcp_get_flags(th) & TH_RST))
6796 pf_send_tcp(state->rule, pd->af,
6797 pd->dst, pd->src, th->th_dport,
6798 th->th_sport, ntohl(th->th_ack), 0,
6799 TH_RST, 0, 0,
6800 state->rule->return_ttl, M_SKIP_FIREWALL,
6801 0, 0, state->act.rtableid);
6802 src->seqlo = 0;
6803 src->seqhi = 1;
6804 src->max_win = 1;
6805 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6806 printf("pf: BAD state: ");
6807 pf_print_state(state);
6808 pf_print_flags(tcp_get_flags(th));
6809 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6810 "pkts=%llu:%llu dir=%s,%s\n",
6811 seq, orig_seq, ack, pd->p_len, ackskew,
6812 (unsigned long long)state->packets[0],
6813 (unsigned long long)state->packets[1],
6814 pd->dir == PF_IN ? "in" : "out",
6815 pd->dir == state->direction ? "fwd" : "rev");
6816 printf("pf: State failure on: %c %c %c %c | %c %c\n",
6817 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6818 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6819 ' ': '2',
6820 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6821 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6822 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6823 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6824 }
6825 REASON_SET(reason, PFRES_BADSTATE);
6826 return (PF_DROP);
6827 }
6828
6829 return (PF_PASS);
6830 }
6831
6832 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6833 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6834 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6835 u_int8_t psrc, u_int8_t pdst)
6836 {
6837 struct tcphdr *th = &pd->hdr.tcp;
6838
6839 if (tcp_get_flags(th) & TH_SYN)
6840 if (src->state < TCPS_SYN_SENT)
6841 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6842 if (tcp_get_flags(th) & TH_FIN)
6843 if (src->state < TCPS_CLOSING)
6844 pf_set_protostate(state, psrc, TCPS_CLOSING);
6845 if (tcp_get_flags(th) & TH_ACK) {
6846 if (dst->state == TCPS_SYN_SENT) {
6847 pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
6848 if (src->state == TCPS_ESTABLISHED &&
6849 state->sns[PF_SN_LIMIT] != NULL &&
6850 pf_src_connlimit(state)) {
6851 REASON_SET(reason, PFRES_SRCLIMIT);
6852 return (PF_DROP);
6853 }
6854 } else if (dst->state == TCPS_CLOSING) {
6855 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
6856 } else if (src->state == TCPS_SYN_SENT &&
6857 dst->state < TCPS_SYN_SENT) {
6858 /*
6859 * Handle a special sloppy case where we only see one
6860 * half of the connection. If there is a ACK after
6861 * the initial SYN without ever seeing a packet from
6862 * the destination, set the connection to established.
6863 */
6864 pf_set_protostate(state, PF_PEER_BOTH,
6865 TCPS_ESTABLISHED);
6866 dst->state = src->state = TCPS_ESTABLISHED;
6867 if (state->sns[PF_SN_LIMIT] != NULL &&
6868 pf_src_connlimit(state)) {
6869 REASON_SET(reason, PFRES_SRCLIMIT);
6870 return (PF_DROP);
6871 }
6872 } else if (src->state == TCPS_CLOSING &&
6873 dst->state == TCPS_ESTABLISHED &&
6874 dst->seqlo == 0) {
6875 /*
6876 * Handle the closing of half connections where we
6877 * don't see the full bidirectional FIN/ACK+ACK
6878 * handshake.
6879 */
6880 pf_set_protostate(state, pdst, TCPS_CLOSING);
6881 }
6882 }
6883 if (tcp_get_flags(th) & TH_RST)
6884 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6885
6886 /* update expire time */
6887 state->expire = pf_get_uptime();
6888 if (src->state >= TCPS_FIN_WAIT_2 &&
6889 dst->state >= TCPS_FIN_WAIT_2)
6890 state->timeout = PFTM_TCP_CLOSED;
6891 else if (src->state >= TCPS_CLOSING &&
6892 dst->state >= TCPS_CLOSING)
6893 state->timeout = PFTM_TCP_FIN_WAIT;
6894 else if (src->state < TCPS_ESTABLISHED ||
6895 dst->state < TCPS_ESTABLISHED)
6896 state->timeout = PFTM_TCP_OPENING;
6897 else if (src->state >= TCPS_CLOSING ||
6898 dst->state >= TCPS_CLOSING)
6899 state->timeout = PFTM_TCP_CLOSING;
6900 else
6901 state->timeout = PFTM_TCP_ESTABLISHED;
6902
6903 return (PF_PASS);
6904 }
6905
6906 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)6907 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
6908 {
6909 struct pf_state_key *sk = state->key[pd->didx];
6910 struct tcphdr *th = &pd->hdr.tcp;
6911
6912 if (state->src.state == PF_TCPS_PROXY_SRC) {
6913 if (pd->dir != state->direction) {
6914 REASON_SET(reason, PFRES_SYNPROXY);
6915 return (PF_SYNPROXY_DROP);
6916 }
6917 if (tcp_get_flags(th) & TH_SYN) {
6918 if (ntohl(th->th_seq) != state->src.seqlo) {
6919 REASON_SET(reason, PFRES_SYNPROXY);
6920 return (PF_DROP);
6921 }
6922 pf_send_tcp(state->rule, pd->af, pd->dst,
6923 pd->src, th->th_dport, th->th_sport,
6924 state->src.seqhi, ntohl(th->th_seq) + 1,
6925 TH_SYN|TH_ACK, 0, state->src.mss, 0,
6926 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
6927 REASON_SET(reason, PFRES_SYNPROXY);
6928 return (PF_SYNPROXY_DROP);
6929 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6930 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
6931 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
6932 REASON_SET(reason, PFRES_SYNPROXY);
6933 return (PF_DROP);
6934 } else if (state->sns[PF_SN_LIMIT] != NULL &&
6935 pf_src_connlimit(state)) {
6936 REASON_SET(reason, PFRES_SRCLIMIT);
6937 return (PF_DROP);
6938 } else
6939 pf_set_protostate(state, PF_PEER_SRC,
6940 PF_TCPS_PROXY_DST);
6941 }
6942 if (state->src.state == PF_TCPS_PROXY_DST) {
6943 if (pd->dir == state->direction) {
6944 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
6945 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
6946 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
6947 REASON_SET(reason, PFRES_SYNPROXY);
6948 return (PF_DROP);
6949 }
6950 state->src.max_win = MAX(ntohs(th->th_win), 1);
6951 if (state->dst.seqhi == 1)
6952 state->dst.seqhi = arc4random();
6953 pf_send_tcp(state->rule, pd->af,
6954 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6955 sk->port[pd->sidx], sk->port[pd->didx],
6956 state->dst.seqhi, 0, TH_SYN, 0,
6957 state->src.mss, 0,
6958 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6959 state->tag, 0, state->act.rtableid);
6960 REASON_SET(reason, PFRES_SYNPROXY);
6961 return (PF_SYNPROXY_DROP);
6962 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
6963 (TH_SYN|TH_ACK)) ||
6964 (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
6965 REASON_SET(reason, PFRES_SYNPROXY);
6966 return (PF_DROP);
6967 } else {
6968 state->dst.max_win = MAX(ntohs(th->th_win), 1);
6969 state->dst.seqlo = ntohl(th->th_seq);
6970 pf_send_tcp(state->rule, pd->af, pd->dst,
6971 pd->src, th->th_dport, th->th_sport,
6972 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6973 TH_ACK, state->src.max_win, 0, 0, 0,
6974 state->tag, 0, state->act.rtableid);
6975 pf_send_tcp(state->rule, pd->af,
6976 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6977 sk->port[pd->sidx], sk->port[pd->didx],
6978 state->src.seqhi + 1, state->src.seqlo + 1,
6979 TH_ACK, state->dst.max_win, 0, 0,
6980 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
6981 state->src.seqdiff = state->dst.seqhi -
6982 state->src.seqlo;
6983 state->dst.seqdiff = state->src.seqhi -
6984 state->dst.seqlo;
6985 state->src.seqhi = state->src.seqlo +
6986 state->dst.max_win;
6987 state->dst.seqhi = state->dst.seqlo +
6988 state->src.max_win;
6989 state->src.wscale = state->dst.wscale = 0;
6990 pf_set_protostate(state, PF_PEER_BOTH,
6991 TCPS_ESTABLISHED);
6992 REASON_SET(reason, PFRES_SYNPROXY);
6993 return (PF_SYNPROXY_DROP);
6994 }
6995 }
6996
6997 return (PF_PASS);
6998 }
6999
7000 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7001 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
7002 {
7003 struct pf_state_key_cmp key;
7004 int copyback = 0;
7005 struct pf_state_peer *src, *dst;
7006 uint8_t psrc, pdst;
7007 int action;
7008
7009 bzero(&key, sizeof(key));
7010 key.af = pd->af;
7011 key.proto = pd->virtual_proto;
7012 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
7013 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
7014 key.port[pd->sidx] = pd->osport;
7015 key.port[pd->didx] = pd->odport;
7016
7017 action = pf_find_state(pd, &key, state);
7018 if (action != PF_MATCH)
7019 return (action);
7020
7021 action = PF_PASS;
7022 if (pd->dir == (*state)->direction) {
7023 if (PF_REVERSED_KEY(*state, pd->af)) {
7024 src = &(*state)->dst;
7025 dst = &(*state)->src;
7026 psrc = PF_PEER_DST;
7027 pdst = PF_PEER_SRC;
7028 } else {
7029 src = &(*state)->src;
7030 dst = &(*state)->dst;
7031 psrc = PF_PEER_SRC;
7032 pdst = PF_PEER_DST;
7033 }
7034 } else {
7035 if (PF_REVERSED_KEY(*state, pd->af)) {
7036 src = &(*state)->src;
7037 dst = &(*state)->dst;
7038 psrc = PF_PEER_SRC;
7039 pdst = PF_PEER_DST;
7040 } else {
7041 src = &(*state)->dst;
7042 dst = &(*state)->src;
7043 psrc = PF_PEER_DST;
7044 pdst = PF_PEER_SRC;
7045 }
7046 }
7047
7048 switch (pd->virtual_proto) {
7049 case IPPROTO_TCP: {
7050 struct tcphdr *th = &pd->hdr.tcp;
7051
7052 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7053 return (action);
7054 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7055 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7056 pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7057 if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7058 (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7059 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7060 printf("pf: state reuse ");
7061 pf_print_state(*state);
7062 pf_print_flags(tcp_get_flags(th));
7063 printf("\n");
7064 }
7065 /* XXX make sure it's the same direction ?? */
7066 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7067 pf_remove_state(*state);
7068 *state = NULL;
7069 return (PF_DROP);
7070 } else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7071 (*state)->dst.state >= TCPS_ESTABLISHED) {
7072 /*
7073 * SYN matches existing state???
7074 * Typically happens when sender boots up after
7075 * sudden panic. Certain protocols (NFSv3) are
7076 * always using same port numbers. Challenge
7077 * ACK enables all parties (firewall and peers)
7078 * to get in sync again.
7079 */
7080 pf_send_challenge_ack(pd, *state, src, dst);
7081 return (PF_DROP);
7082 }
7083 }
7084 if ((*state)->state_flags & PFSTATE_SLOPPY) {
7085 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7086 psrc, pdst) == PF_DROP)
7087 return (PF_DROP);
7088 } else {
7089 int ret;
7090
7091 ret = pf_tcp_track_full(*state, pd, reason,
7092 ©back, src, dst, psrc, pdst);
7093 if (ret == PF_DROP)
7094 return (PF_DROP);
7095 }
7096 break;
7097 }
7098 case IPPROTO_UDP:
7099 /* update states */
7100 if (src->state < PFUDPS_SINGLE)
7101 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7102 if (dst->state == PFUDPS_SINGLE)
7103 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7104
7105 /* update expire time */
7106 (*state)->expire = pf_get_uptime();
7107 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7108 (*state)->timeout = PFTM_UDP_MULTIPLE;
7109 else
7110 (*state)->timeout = PFTM_UDP_SINGLE;
7111 break;
7112 case IPPROTO_SCTP:
7113 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7114 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7115 pd->sctp_flags & PFDESC_SCTP_INIT) {
7116 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7117 pf_remove_state(*state);
7118 *state = NULL;
7119 return (PF_DROP);
7120 }
7121
7122 if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7123 return (PF_DROP);
7124
7125 /* Track state. */
7126 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7127 if (src->state < SCTP_COOKIE_WAIT) {
7128 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7129 (*state)->timeout = PFTM_SCTP_OPENING;
7130 }
7131 }
7132 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7133 MPASS(dst->scrub != NULL);
7134 if (dst->scrub->pfss_v_tag == 0)
7135 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7136 }
7137
7138 /*
7139 * Bind to the correct interface if we're if-bound. For multihomed
7140 * extra associations we don't know which interface that will be until
7141 * here, so we've inserted the state on V_pf_all. Fix that now.
7142 */
7143 if ((*state)->kif == V_pfi_all &&
7144 (*state)->rule->rule_flag & PFRULE_IFBOUND)
7145 (*state)->kif = pd->kif;
7146
7147 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7148 if (src->state < SCTP_ESTABLISHED) {
7149 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7150 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
7151 }
7152 }
7153 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7154 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7155 if (src->state < SCTP_SHUTDOWN_PENDING) {
7156 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7157 (*state)->timeout = PFTM_SCTP_CLOSING;
7158 }
7159 }
7160 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7161 pf_set_protostate(*state, psrc, SCTP_CLOSED);
7162 (*state)->timeout = PFTM_SCTP_CLOSED;
7163 }
7164
7165 (*state)->expire = pf_get_uptime();
7166 break;
7167 default:
7168 /* update states */
7169 if (src->state < PFOTHERS_SINGLE)
7170 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7171 if (dst->state == PFOTHERS_SINGLE)
7172 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7173
7174 /* update expire time */
7175 (*state)->expire = pf_get_uptime();
7176 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7177 (*state)->timeout = PFTM_OTHER_MULTIPLE;
7178 else
7179 (*state)->timeout = PFTM_OTHER_SINGLE;
7180 break;
7181 }
7182
7183 /* translate source/destination address, if necessary */
7184 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7185 struct pf_state_key *nk;
7186 int afto, sidx, didx;
7187
7188 if (PF_REVERSED_KEY(*state, pd->af))
7189 nk = (*state)->key[pd->sidx];
7190 else
7191 nk = (*state)->key[pd->didx];
7192
7193 afto = pd->af != nk->af;
7194
7195 if (afto && (*state)->direction == PF_IN) {
7196 sidx = pd->didx;
7197 didx = pd->sidx;
7198 } else {
7199 sidx = pd->sidx;
7200 didx = pd->didx;
7201 }
7202
7203 if (afto) {
7204 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7205 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7206 pd->naf = nk->af;
7207 action = PF_AFRT;
7208 }
7209
7210 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7211 nk->port[sidx] != pd->osport)
7212 pf_change_ap(pd, pd->src, pd->sport,
7213 &nk->addr[sidx], nk->port[sidx]);
7214
7215 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7216 nk->port[didx] != pd->odport)
7217 pf_change_ap(pd, pd->dst, pd->dport,
7218 &nk->addr[didx], nk->port[didx]);
7219
7220 copyback = 1;
7221 }
7222
7223 if (copyback && pd->hdrlen > 0)
7224 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7225
7226 return (action);
7227 }
7228
7229 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7230 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7231 u_short *reason)
7232 {
7233 struct pf_state_peer *src;
7234 if (pd->dir == state->direction) {
7235 if (PF_REVERSED_KEY(state, pd->af))
7236 src = &state->dst;
7237 else
7238 src = &state->src;
7239 } else {
7240 if (PF_REVERSED_KEY(state, pd->af))
7241 src = &state->src;
7242 else
7243 src = &state->dst;
7244 }
7245
7246 if (src->scrub != NULL) {
7247 if (src->scrub->pfss_v_tag == 0)
7248 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7249 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7250 return (PF_DROP);
7251 }
7252
7253 return (PF_PASS);
7254 }
7255
7256 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7257 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7258 {
7259 struct pf_sctp_endpoint key;
7260 struct pf_sctp_endpoint *ep;
7261 struct pf_state_key *sks = s->key[PF_SK_STACK];
7262 struct pf_sctp_source *i, *tmp;
7263
7264 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7265 return;
7266
7267 PF_SCTP_ENDPOINTS_LOCK();
7268
7269 key.v_tag = s->dst.scrub->pfss_v_tag;
7270 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7271 if (ep != NULL) {
7272 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7273 if (pf_addr_cmp(&i->addr,
7274 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7275 s->key[PF_SK_WIRE]->af) == 0) {
7276 SDT_PROBE3(pf, sctp, multihome, remove,
7277 key.v_tag, s, i);
7278 TAILQ_REMOVE(&ep->sources, i, entry);
7279 free(i, M_PFTEMP);
7280 break;
7281 }
7282 }
7283
7284 if (TAILQ_EMPTY(&ep->sources)) {
7285 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7286 free(ep, M_PFTEMP);
7287 }
7288 }
7289
7290 /* Other direction. */
7291 key.v_tag = s->src.scrub->pfss_v_tag;
7292 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7293 if (ep != NULL) {
7294 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7295 if (pf_addr_cmp(&i->addr,
7296 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7297 s->key[PF_SK_WIRE]->af) == 0) {
7298 SDT_PROBE3(pf, sctp, multihome, remove,
7299 key.v_tag, s, i);
7300 TAILQ_REMOVE(&ep->sources, i, entry);
7301 free(i, M_PFTEMP);
7302 break;
7303 }
7304 }
7305
7306 if (TAILQ_EMPTY(&ep->sources)) {
7307 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7308 free(ep, M_PFTEMP);
7309 }
7310 }
7311
7312 PF_SCTP_ENDPOINTS_UNLOCK();
7313 }
7314
7315 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7316 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7317 {
7318 struct pf_sctp_endpoint key = {
7319 .v_tag = v_tag,
7320 };
7321 struct pf_sctp_source *i;
7322 struct pf_sctp_endpoint *ep;
7323 int count;
7324
7325 PF_SCTP_ENDPOINTS_LOCK();
7326
7327 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7328 if (ep == NULL) {
7329 ep = malloc(sizeof(struct pf_sctp_endpoint),
7330 M_PFTEMP, M_NOWAIT);
7331 if (ep == NULL) {
7332 PF_SCTP_ENDPOINTS_UNLOCK();
7333 return;
7334 }
7335
7336 ep->v_tag = v_tag;
7337 TAILQ_INIT(&ep->sources);
7338 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7339 }
7340
7341 /* Avoid inserting duplicates. */
7342 count = 0;
7343 TAILQ_FOREACH(i, &ep->sources, entry) {
7344 count++;
7345 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7346 PF_SCTP_ENDPOINTS_UNLOCK();
7347 return;
7348 }
7349 }
7350
7351 /* Limit the number of addresses per endpoint. */
7352 if (count >= PF_SCTP_MAX_ENDPOINTS) {
7353 PF_SCTP_ENDPOINTS_UNLOCK();
7354 return;
7355 }
7356
7357 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7358 if (i == NULL) {
7359 PF_SCTP_ENDPOINTS_UNLOCK();
7360 return;
7361 }
7362
7363 i->af = pd->af;
7364 memcpy(&i->addr, a, sizeof(*a));
7365 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7366 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7367
7368 PF_SCTP_ENDPOINTS_UNLOCK();
7369 }
7370
7371 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7372 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7373 struct pf_kstate *s, int action)
7374 {
7375 struct pf_sctp_multihome_job *j, *tmp;
7376 struct pf_sctp_source *i;
7377 int ret __unused;
7378 struct pf_kstate *sm = NULL;
7379 struct pf_krule *ra = NULL;
7380 struct pf_krule *r = &V_pf_default_rule;
7381 struct pf_kruleset *rs = NULL;
7382 u_short reason;
7383 bool do_extra = true;
7384
7385 PF_RULES_RLOCK_TRACKER;
7386
7387 again:
7388 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7389 if (s == NULL || action != PF_PASS)
7390 goto free;
7391
7392 /* Confirm we don't recurse here. */
7393 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7394
7395 switch (j->op) {
7396 case SCTP_ADD_IP_ADDRESS: {
7397 uint32_t v_tag = pd->sctp_initiate_tag;
7398
7399 if (v_tag == 0) {
7400 if (s->direction == pd->dir)
7401 v_tag = s->src.scrub->pfss_v_tag;
7402 else
7403 v_tag = s->dst.scrub->pfss_v_tag;
7404 }
7405
7406 /*
7407 * Avoid duplicating states. We'll already have
7408 * created a state based on the source address of
7409 * the packet, but SCTP endpoints may also list this
7410 * address again in the INIT(_ACK) parameters.
7411 */
7412 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7413 break;
7414 }
7415
7416 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7417 PF_RULES_RLOCK();
7418 sm = NULL;
7419 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7420 j->pd.related_rule = s->rule;
7421 }
7422 ret = pf_test_rule(&r, &sm,
7423 &j->pd, &ra, &rs, &reason, NULL);
7424 PF_RULES_RUNLOCK();
7425 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7426 if (ret != PF_DROP && sm != NULL) {
7427 /* Inherit v_tag values. */
7428 if (sm->direction == s->direction) {
7429 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7430 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7431 } else {
7432 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7433 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7434 }
7435 PF_STATE_UNLOCK(sm);
7436 } else {
7437 /* If we try duplicate inserts? */
7438 break;
7439 }
7440
7441 /* Only add the address if we've actually allowed the state. */
7442 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7443
7444 if (! do_extra) {
7445 break;
7446 }
7447 /*
7448 * We need to do this for each of our source addresses.
7449 * Find those based on the verification tag.
7450 */
7451 struct pf_sctp_endpoint key = {
7452 .v_tag = pd->hdr.sctp.v_tag,
7453 };
7454 struct pf_sctp_endpoint *ep;
7455
7456 PF_SCTP_ENDPOINTS_LOCK();
7457 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7458 if (ep == NULL) {
7459 PF_SCTP_ENDPOINTS_UNLOCK();
7460 break;
7461 }
7462 MPASS(ep != NULL);
7463
7464 TAILQ_FOREACH(i, &ep->sources, entry) {
7465 struct pf_sctp_multihome_job *nj;
7466
7467 /* SCTP can intermingle IPv4 and IPv6. */
7468 if (i->af != pd->af)
7469 continue;
7470
7471 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7472 if (! nj) {
7473 continue;
7474 }
7475 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7476 memcpy(&nj->src, &j->src, sizeof(nj->src));
7477 nj->pd.src = &nj->src;
7478 // New destination address!
7479 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7480 nj->pd.dst = &nj->dst;
7481 nj->pd.m = j->pd.m;
7482 nj->op = j->op;
7483
7484 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7485 }
7486 PF_SCTP_ENDPOINTS_UNLOCK();
7487
7488 break;
7489 }
7490 case SCTP_DEL_IP_ADDRESS: {
7491 struct pf_state_key_cmp key;
7492 uint8_t psrc;
7493 int action;
7494
7495 bzero(&key, sizeof(key));
7496 key.af = j->pd.af;
7497 key.proto = IPPROTO_SCTP;
7498 if (j->pd.dir == PF_IN) { /* wire side, straight */
7499 PF_ACPY(&key.addr[0], j->pd.src, key.af);
7500 PF_ACPY(&key.addr[1], j->pd.dst, key.af);
7501 key.port[0] = j->pd.hdr.sctp.src_port;
7502 key.port[1] = j->pd.hdr.sctp.dest_port;
7503 } else { /* stack side, reverse */
7504 PF_ACPY(&key.addr[1], j->pd.src, key.af);
7505 PF_ACPY(&key.addr[0], j->pd.dst, key.af);
7506 key.port[1] = j->pd.hdr.sctp.src_port;
7507 key.port[0] = j->pd.hdr.sctp.dest_port;
7508 }
7509
7510 action = pf_find_state(&j->pd, &key, &sm);
7511 if (action == PF_MATCH) {
7512 PF_STATE_LOCK_ASSERT(sm);
7513 if (j->pd.dir == sm->direction) {
7514 psrc = PF_PEER_SRC;
7515 } else {
7516 psrc = PF_PEER_DST;
7517 }
7518 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7519 sm->timeout = PFTM_SCTP_CLOSING;
7520 PF_STATE_UNLOCK(sm);
7521 }
7522 break;
7523 default:
7524 panic("Unknown op %#x", j->op);
7525 }
7526 }
7527
7528 free:
7529 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7530 free(j, M_PFTEMP);
7531 }
7532
7533 /* We may have inserted extra work while processing the list. */
7534 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7535 do_extra = false;
7536 goto again;
7537 }
7538 }
7539
7540 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7541 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7542 {
7543 int off = 0;
7544 struct pf_sctp_multihome_job *job;
7545
7546 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7547
7548 while (off < len) {
7549 struct sctp_paramhdr h;
7550
7551 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7552 pd->af))
7553 return (PF_DROP);
7554
7555 /* Parameters are at least 4 bytes. */
7556 if (ntohs(h.param_length) < 4)
7557 return (PF_DROP);
7558
7559 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7560 ntohs(h.param_length));
7561
7562 switch (ntohs(h.param_type)) {
7563 case SCTP_IPV4_ADDRESS: {
7564 struct in_addr t;
7565
7566 if (ntohs(h.param_length) !=
7567 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7568 return (PF_DROP);
7569
7570 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7571 NULL, NULL, pd->af))
7572 return (PF_DROP);
7573
7574 if (in_nullhost(t))
7575 t.s_addr = pd->src->v4.s_addr;
7576
7577 /*
7578 * We hold the state lock (idhash) here, which means
7579 * that we can't acquire the keyhash, or we'll get a
7580 * LOR (and potentially double-lock things too). We also
7581 * can't release the state lock here, so instead we'll
7582 * enqueue this for async handling.
7583 * There's a relatively small race here, in that a
7584 * packet using the new addresses could arrive already,
7585 * but that's just though luck for it.
7586 */
7587 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7588 if (! job)
7589 return (PF_DROP);
7590
7591 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7592
7593 memcpy(&job->pd, pd, sizeof(*pd));
7594
7595 // New source address!
7596 memcpy(&job->src, &t, sizeof(t));
7597 job->pd.src = &job->src;
7598 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7599 job->pd.dst = &job->dst;
7600 job->pd.m = pd->m;
7601 job->op = op;
7602
7603 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7604 break;
7605 }
7606 #ifdef INET6
7607 case SCTP_IPV6_ADDRESS: {
7608 struct in6_addr t;
7609
7610 if (ntohs(h.param_length) !=
7611 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7612 return (PF_DROP);
7613
7614 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7615 NULL, NULL, pd->af))
7616 return (PF_DROP);
7617 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7618 break;
7619 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7620 memcpy(&t, &pd->src->v6, sizeof(t));
7621
7622 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7623 if (! job)
7624 return (PF_DROP);
7625
7626 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7627
7628 memcpy(&job->pd, pd, sizeof(*pd));
7629 memcpy(&job->src, &t, sizeof(t));
7630 job->pd.src = &job->src;
7631 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7632 job->pd.dst = &job->dst;
7633 job->pd.m = pd->m;
7634 job->op = op;
7635
7636 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7637 break;
7638 }
7639 #endif /* INET6 */
7640 case SCTP_ADD_IP_ADDRESS: {
7641 int ret;
7642 struct sctp_asconf_paramhdr ah;
7643
7644 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7645 NULL, NULL, pd->af))
7646 return (PF_DROP);
7647
7648 ret = pf_multihome_scan(start + off + sizeof(ah),
7649 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7650 SCTP_ADD_IP_ADDRESS);
7651 if (ret != PF_PASS)
7652 return (ret);
7653 break;
7654 }
7655 case SCTP_DEL_IP_ADDRESS: {
7656 int ret;
7657 struct sctp_asconf_paramhdr ah;
7658
7659 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7660 NULL, NULL, pd->af))
7661 return (PF_DROP);
7662 ret = pf_multihome_scan(start + off + sizeof(ah),
7663 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7664 SCTP_DEL_IP_ADDRESS);
7665 if (ret != PF_PASS)
7666 return (ret);
7667 break;
7668 }
7669 default:
7670 break;
7671 }
7672
7673 off += roundup(ntohs(h.param_length), 4);
7674 }
7675
7676 return (PF_PASS);
7677 }
7678
7679 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7680 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7681 {
7682 start += sizeof(struct sctp_init_chunk);
7683 len -= sizeof(struct sctp_init_chunk);
7684
7685 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7686 }
7687
7688 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7689 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7690 {
7691 start += sizeof(struct sctp_asconf_chunk);
7692 len -= sizeof(struct sctp_asconf_chunk);
7693
7694 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7695 }
7696
7697 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7698 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7699 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7700 int *iidx, int multi, int inner)
7701 {
7702 int action, direction = pd->dir;
7703
7704 key->af = pd->af;
7705 key->proto = pd->proto;
7706 if (icmp_dir == PF_IN) {
7707 *iidx = pd->sidx;
7708 key->port[pd->sidx] = icmpid;
7709 key->port[pd->didx] = type;
7710 } else {
7711 *iidx = pd->didx;
7712 key->port[pd->sidx] = type;
7713 key->port[pd->didx] = icmpid;
7714 }
7715 if (pf_state_key_addr_setup(pd, key, multi))
7716 return (PF_DROP);
7717
7718 action = pf_find_state(pd, key, state);
7719 if (action != PF_MATCH)
7720 return (action);
7721
7722 if ((*state)->state_flags & PFSTATE_SLOPPY)
7723 return (-1);
7724
7725 /* Is this ICMP message flowing in right direction? */
7726 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7727 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7728 PF_IN : PF_OUT;
7729 else
7730 direction = (*state)->direction;
7731 if ((*state)->rule->type &&
7732 (((!inner && direction == pd->dir) ||
7733 (inner && direction != pd->dir)) ?
7734 PF_IN : PF_OUT) != icmp_dir) {
7735 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7736 printf("pf: icmp type %d in wrong direction (%d): ",
7737 ntohs(type), icmp_dir);
7738 pf_print_state(*state);
7739 printf("\n");
7740 }
7741 PF_STATE_UNLOCK(*state);
7742 *state = NULL;
7743 return (PF_DROP);
7744 }
7745 return (-1);
7746 }
7747
7748 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7749 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7750 u_short *reason)
7751 {
7752 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
7753 u_int16_t *icmpsum, virtual_id, virtual_type;
7754 u_int8_t icmptype, icmpcode;
7755 int icmp_dir, iidx, ret;
7756 struct pf_state_key_cmp key;
7757 #ifdef INET
7758 u_int16_t icmpid;
7759 #endif /* INET*/
7760
7761 MPASS(*state == NULL);
7762
7763 bzero(&key, sizeof(key));
7764 switch (pd->proto) {
7765 #ifdef INET
7766 case IPPROTO_ICMP:
7767 icmptype = pd->hdr.icmp.icmp_type;
7768 icmpcode = pd->hdr.icmp.icmp_code;
7769 icmpid = pd->hdr.icmp.icmp_id;
7770 icmpsum = &pd->hdr.icmp.icmp_cksum;
7771 break;
7772 #endif /* INET */
7773 #ifdef INET6
7774 case IPPROTO_ICMPV6:
7775 icmptype = pd->hdr.icmp6.icmp6_type;
7776 icmpcode = pd->hdr.icmp6.icmp6_code;
7777 #ifdef INET
7778 icmpid = pd->hdr.icmp6.icmp6_id;
7779 #endif /* INET */
7780 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7781 break;
7782 #endif /* INET6 */
7783 default:
7784 panic("unhandled proto %d", pd->proto);
7785 }
7786
7787 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7788 &virtual_type) == 0) {
7789 /*
7790 * ICMP query/reply message not related to a TCP/UDP/SCTP
7791 * packet. Search for an ICMP state.
7792 */
7793 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7794 virtual_type, icmp_dir, &iidx, 0, 0);
7795 /* IPv6? try matching a multicast address */
7796 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7797 MPASS(*state == NULL);
7798 ret = pf_icmp_state_lookup(&key, pd, state,
7799 virtual_id, virtual_type,
7800 icmp_dir, &iidx, 1, 0);
7801 }
7802 if (ret >= 0) {
7803 MPASS(*state == NULL);
7804 return (ret);
7805 }
7806
7807 (*state)->expire = pf_get_uptime();
7808 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7809
7810 /* translate source/destination address, if necessary */
7811 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7812 struct pf_state_key *nk;
7813 int afto, sidx, didx;
7814
7815 if (PF_REVERSED_KEY(*state, pd->af))
7816 nk = (*state)->key[pd->sidx];
7817 else
7818 nk = (*state)->key[pd->didx];
7819
7820 afto = pd->af != nk->af;
7821
7822 if (afto && (*state)->direction == PF_IN) {
7823 sidx = pd->didx;
7824 didx = pd->sidx;
7825 iidx = !iidx;
7826 } else {
7827 sidx = pd->sidx;
7828 didx = pd->didx;
7829 }
7830
7831 switch (pd->af) {
7832 #ifdef INET
7833 case AF_INET:
7834 #ifdef INET6
7835 if (afto) {
7836 if (pf_translate_icmp_af(AF_INET6,
7837 &pd->hdr.icmp))
7838 return (PF_DROP);
7839 pd->proto = IPPROTO_ICMPV6;
7840 }
7841 #endif /* INET6 */
7842 if (!afto &&
7843 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7844 pf_change_a(&saddr->v4.s_addr,
7845 pd->ip_sum,
7846 nk->addr[sidx].v4.s_addr,
7847 0);
7848
7849 if (!afto && PF_ANEQ(pd->dst,
7850 &nk->addr[didx], AF_INET))
7851 pf_change_a(&daddr->v4.s_addr,
7852 pd->ip_sum,
7853 nk->addr[didx].v4.s_addr, 0);
7854
7855 if (nk->port[iidx] !=
7856 pd->hdr.icmp.icmp_id) {
7857 pd->hdr.icmp.icmp_cksum =
7858 pf_cksum_fixup(
7859 pd->hdr.icmp.icmp_cksum, icmpid,
7860 nk->port[iidx], 0);
7861 pd->hdr.icmp.icmp_id =
7862 nk->port[iidx];
7863 }
7864
7865 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7866 (caddr_t )&pd->hdr.icmp);
7867 break;
7868 #endif /* INET */
7869 #ifdef INET6
7870 case AF_INET6:
7871 #ifdef INET
7872 if (afto) {
7873 if (pf_translate_icmp_af(AF_INET,
7874 &pd->hdr.icmp6))
7875 return (PF_DROP);
7876 pd->proto = IPPROTO_ICMP;
7877 }
7878 #endif /* INET */
7879 if (!afto &&
7880 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7881 pf_change_a6(saddr,
7882 &pd->hdr.icmp6.icmp6_cksum,
7883 &nk->addr[sidx], 0);
7884
7885 if (!afto && PF_ANEQ(pd->dst,
7886 &nk->addr[didx], AF_INET6))
7887 pf_change_a6(daddr,
7888 &pd->hdr.icmp6.icmp6_cksum,
7889 &nk->addr[didx], 0);
7890
7891 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7892 pd->hdr.icmp6.icmp6_id =
7893 nk->port[iidx];
7894
7895 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7896 (caddr_t )&pd->hdr.icmp6);
7897 break;
7898 #endif /* INET6 */
7899 }
7900 if (afto) {
7901 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7902 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7903 pd->naf = nk->af;
7904 return (PF_AFRT);
7905 }
7906 }
7907 return (PF_PASS);
7908
7909 } else {
7910 /*
7911 * ICMP error message in response to a TCP/UDP packet.
7912 * Extract the inner TCP/UDP header and search for that state.
7913 */
7914
7915 struct pf_pdesc pd2;
7916 bzero(&pd2, sizeof pd2);
7917 #ifdef INET
7918 struct ip h2;
7919 #endif /* INET */
7920 #ifdef INET6
7921 struct ip6_hdr h2_6;
7922 #endif /* INET6 */
7923 int ipoff2 = 0;
7924
7925 pd2.af = pd->af;
7926 pd2.dir = pd->dir;
7927 /* Payload packet is from the opposite direction. */
7928 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7929 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7930 pd2.m = pd->m;
7931 pd2.pf_mtag = pd->pf_mtag;
7932 pd2.kif = pd->kif;
7933 switch (pd->af) {
7934 #ifdef INET
7935 case AF_INET:
7936 /* offset of h2 in mbuf chain */
7937 ipoff2 = pd->off + ICMP_MINLEN;
7938
7939 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7940 NULL, reason, pd2.af)) {
7941 DPFPRINTF(PF_DEBUG_MISC,
7942 ("pf: ICMP error message too short "
7943 "(ip)\n"));
7944 return (PF_DROP);
7945 }
7946 /*
7947 * ICMP error messages don't refer to non-first
7948 * fragments
7949 */
7950 if (h2.ip_off & htons(IP_OFFMASK)) {
7951 REASON_SET(reason, PFRES_FRAG);
7952 return (PF_DROP);
7953 }
7954
7955 /* offset of protocol header that follows h2 */
7956 pd2.off = ipoff2;
7957 if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
7958 return (PF_DROP);
7959
7960 pd2.tot_len = ntohs(h2.ip_len);
7961 pd2.src = (struct pf_addr *)&h2.ip_src;
7962 pd2.dst = (struct pf_addr *)&h2.ip_dst;
7963 pd2.ip_sum = &h2.ip_sum;
7964 break;
7965 #endif /* INET */
7966 #ifdef INET6
7967 case AF_INET6:
7968 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7969
7970 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7971 NULL, reason, pd2.af)) {
7972 DPFPRINTF(PF_DEBUG_MISC,
7973 ("pf: ICMP error message too short "
7974 "(ip6)\n"));
7975 return (PF_DROP);
7976 }
7977 pd2.off = ipoff2;
7978 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
7979 return (PF_DROP);
7980
7981 pd2.tot_len = ntohs(h2_6.ip6_plen) +
7982 sizeof(struct ip6_hdr);
7983 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7984 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7985 pd2.ip_sum = NULL;
7986 break;
7987 #endif /* INET6 */
7988 default:
7989 unhandled_af(pd->af);
7990 }
7991
7992 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7993 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7994 printf("pf: BAD ICMP %d:%d outer dst: ",
7995 icmptype, icmpcode);
7996 pf_print_host(pd->src, 0, pd->af);
7997 printf(" -> ");
7998 pf_print_host(pd->dst, 0, pd->af);
7999 printf(" inner src: ");
8000 pf_print_host(pd2.src, 0, pd2.af);
8001 printf(" -> ");
8002 pf_print_host(pd2.dst, 0, pd2.af);
8003 printf("\n");
8004 }
8005 REASON_SET(reason, PFRES_BADSTATE);
8006 return (PF_DROP);
8007 }
8008
8009 switch (pd2.proto) {
8010 case IPPROTO_TCP: {
8011 struct tcphdr *th = &pd2.hdr.tcp;
8012 u_int32_t seq;
8013 struct pf_state_peer *src, *dst;
8014 u_int8_t dws;
8015 int copyback = 0;
8016 int action;
8017
8018 /*
8019 * Only the first 8 bytes of the TCP header can be
8020 * expected. Don't access any TCP header fields after
8021 * th_seq, an ackskew test is not possible.
8022 */
8023 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason,
8024 pd2.af)) {
8025 DPFPRINTF(PF_DEBUG_MISC,
8026 ("pf: ICMP error message too short "
8027 "(tcp)\n"));
8028 return (PF_DROP);
8029 }
8030 pd2.pcksum = &pd2.hdr.tcp.th_sum;
8031
8032 key.af = pd2.af;
8033 key.proto = IPPROTO_TCP;
8034 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8035 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8036 key.port[pd2.sidx] = th->th_sport;
8037 key.port[pd2.didx] = th->th_dport;
8038
8039 action = pf_find_state(&pd2, &key, state);
8040 if (action != PF_MATCH)
8041 return (action);
8042
8043 if (pd->dir == (*state)->direction) {
8044 if (PF_REVERSED_KEY(*state, pd->af)) {
8045 src = &(*state)->src;
8046 dst = &(*state)->dst;
8047 } else {
8048 src = &(*state)->dst;
8049 dst = &(*state)->src;
8050 }
8051 } else {
8052 if (PF_REVERSED_KEY(*state, pd->af)) {
8053 src = &(*state)->dst;
8054 dst = &(*state)->src;
8055 } else {
8056 src = &(*state)->src;
8057 dst = &(*state)->dst;
8058 }
8059 }
8060
8061 if (src->wscale && dst->wscale)
8062 dws = dst->wscale & PF_WSCALE_MASK;
8063 else
8064 dws = 0;
8065
8066 /* Demodulate sequence number */
8067 seq = ntohl(th->th_seq) - src->seqdiff;
8068 if (src->seqdiff) {
8069 pf_change_a(&th->th_seq, icmpsum,
8070 htonl(seq), 0);
8071 copyback = 1;
8072 }
8073
8074 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8075 (!SEQ_GEQ(src->seqhi, seq) ||
8076 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8077 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8078 printf("pf: BAD ICMP %d:%d ",
8079 icmptype, icmpcode);
8080 pf_print_host(pd->src, 0, pd->af);
8081 printf(" -> ");
8082 pf_print_host(pd->dst, 0, pd->af);
8083 printf(" state: ");
8084 pf_print_state(*state);
8085 printf(" seq=%u\n", seq);
8086 }
8087 REASON_SET(reason, PFRES_BADSTATE);
8088 return (PF_DROP);
8089 } else {
8090 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8091 printf("pf: OK ICMP %d:%d ",
8092 icmptype, icmpcode);
8093 pf_print_host(pd->src, 0, pd->af);
8094 printf(" -> ");
8095 pf_print_host(pd->dst, 0, pd->af);
8096 printf(" state: ");
8097 pf_print_state(*state);
8098 printf(" seq=%u\n", seq);
8099 }
8100 }
8101
8102 /* translate source/destination address, if necessary */
8103 if ((*state)->key[PF_SK_WIRE] !=
8104 (*state)->key[PF_SK_STACK]) {
8105
8106 struct pf_state_key *nk;
8107
8108 if (PF_REVERSED_KEY(*state, pd->af))
8109 nk = (*state)->key[pd->sidx];
8110 else
8111 nk = (*state)->key[pd->didx];
8112
8113 #if defined(INET) && defined(INET6)
8114 int afto, sidx, didx;
8115
8116 afto = pd->af != nk->af;
8117
8118 if (afto && (*state)->direction == PF_IN) {
8119 sidx = pd2.didx;
8120 didx = pd2.sidx;
8121 } else {
8122 sidx = pd2.sidx;
8123 didx = pd2.didx;
8124 }
8125
8126 if (afto) {
8127 if (pf_translate_icmp_af(nk->af,
8128 &pd->hdr.icmp))
8129 return (PF_DROP);
8130 m_copyback(pd->m, pd->off,
8131 sizeof(struct icmp6_hdr),
8132 (c_caddr_t)&pd->hdr.icmp6);
8133 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8134 &pd2, &nk->addr[sidx],
8135 &nk->addr[didx], pd->af,
8136 nk->af))
8137 return (PF_DROP);
8138 PF_ACPY(&pd->nsaddr, &nk->addr[pd2.sidx],
8139 nk->af);
8140 PF_ACPY(&pd->ndaddr,
8141 &nk->addr[pd2.didx], nk->af);
8142 if (nk->af == AF_INET) {
8143 pd->proto = IPPROTO_ICMP;
8144 } else {
8145 pd->proto = IPPROTO_ICMPV6;
8146 /*
8147 * IPv4 becomes IPv6 so we must
8148 * copy IPv4 src addr to least
8149 * 32bits in IPv6 address to
8150 * keep traceroute/icmp
8151 * working.
8152 */
8153 pd->nsaddr.addr32[3] =
8154 pd->src->addr32[0];
8155 }
8156 pd->naf = pd2.naf = nk->af;
8157 pf_change_ap(&pd2, pd2.src, &th->th_sport,
8158 &nk->addr[pd2.sidx], nk->port[sidx]);
8159 pf_change_ap(&pd2, pd2.dst, &th->th_dport,
8160 &nk->addr[pd2.didx], nk->port[didx]);
8161 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
8162 return (PF_AFRT);
8163 }
8164 #endif /* INET && INET6 */
8165
8166 if (PF_ANEQ(pd2.src,
8167 &nk->addr[pd2.sidx], pd2.af) ||
8168 nk->port[pd2.sidx] != th->th_sport)
8169 pf_change_icmp(pd2.src, &th->th_sport,
8170 daddr, &nk->addr[pd2.sidx],
8171 nk->port[pd2.sidx], NULL,
8172 pd2.ip_sum, icmpsum,
8173 pd->ip_sum, 0, pd2.af);
8174
8175 if (PF_ANEQ(pd2.dst,
8176 &nk->addr[pd2.didx], pd2.af) ||
8177 nk->port[pd2.didx] != th->th_dport)
8178 pf_change_icmp(pd2.dst, &th->th_dport,
8179 saddr, &nk->addr[pd2.didx],
8180 nk->port[pd2.didx], NULL,
8181 pd2.ip_sum, icmpsum,
8182 pd->ip_sum, 0, pd2.af);
8183 copyback = 1;
8184 }
8185
8186 if (copyback) {
8187 switch (pd2.af) {
8188 #ifdef INET
8189 case AF_INET:
8190 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8191 (caddr_t )&pd->hdr.icmp);
8192 m_copyback(pd->m, ipoff2, sizeof(h2),
8193 (caddr_t )&h2);
8194 break;
8195 #endif /* INET */
8196 #ifdef INET6
8197 case AF_INET6:
8198 m_copyback(pd->m, pd->off,
8199 sizeof(struct icmp6_hdr),
8200 (caddr_t )&pd->hdr.icmp6);
8201 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8202 (caddr_t )&h2_6);
8203 break;
8204 #endif /* INET6 */
8205 default:
8206 unhandled_af(pd->af);
8207 }
8208 m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
8209 }
8210
8211 return (PF_PASS);
8212 break;
8213 }
8214 case IPPROTO_UDP: {
8215 struct udphdr *uh = &pd2.hdr.udp;
8216 int action;
8217
8218 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
8219 NULL, reason, pd2.af)) {
8220 DPFPRINTF(PF_DEBUG_MISC,
8221 ("pf: ICMP error message too short "
8222 "(udp)\n"));
8223 return (PF_DROP);
8224 }
8225 pd2.pcksum = &pd2.hdr.udp.uh_sum;
8226
8227 key.af = pd2.af;
8228 key.proto = IPPROTO_UDP;
8229 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8230 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8231 key.port[pd2.sidx] = uh->uh_sport;
8232 key.port[pd2.didx] = uh->uh_dport;
8233
8234 action = pf_find_state(&pd2, &key, state);
8235 if (action != PF_MATCH)
8236 return (action);
8237
8238 /* translate source/destination address, if necessary */
8239 if ((*state)->key[PF_SK_WIRE] !=
8240 (*state)->key[PF_SK_STACK]) {
8241 struct pf_state_key *nk;
8242
8243 if (PF_REVERSED_KEY(*state, pd->af))
8244 nk = (*state)->key[pd->sidx];
8245 else
8246 nk = (*state)->key[pd->didx];
8247
8248 #if defined(INET) && defined(INET6)
8249 int afto, sidx, didx;
8250
8251 afto = pd->af != nk->af;
8252
8253 if (afto && (*state)->direction == PF_IN) {
8254 sidx = pd2.didx;
8255 didx = pd2.sidx;
8256 } else {
8257 sidx = pd2.sidx;
8258 didx = pd2.didx;
8259 }
8260
8261 if (afto) {
8262 if (pf_translate_icmp_af(nk->af,
8263 &pd->hdr.icmp))
8264 return (PF_DROP);
8265 m_copyback(pd->m, pd->off,
8266 sizeof(struct icmp6_hdr),
8267 (c_caddr_t)&pd->hdr.icmp6);
8268 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8269 &pd2, &nk->addr[sidx],
8270 &nk->addr[didx], pd->af,
8271 nk->af))
8272 return (PF_DROP);
8273 PF_ACPY(&pd->nsaddr,
8274 &nk->addr[pd2.sidx], nk->af);
8275 PF_ACPY(&pd->ndaddr,
8276 &nk->addr[pd2.didx], nk->af);
8277 if (nk->af == AF_INET) {
8278 pd->proto = IPPROTO_ICMP;
8279 } else {
8280 pd->proto = IPPROTO_ICMPV6;
8281 /*
8282 * IPv4 becomes IPv6 so we must
8283 * copy IPv4 src addr to least
8284 * 32bits in IPv6 address to
8285 * keep traceroute/icmp
8286 * working.
8287 */
8288 pd->nsaddr.addr32[3] =
8289 pd->src->addr32[0];
8290 }
8291 pd->naf = pd2.naf = nk->af;
8292 pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
8293 &nk->addr[pd2.sidx], nk->port[sidx]);
8294 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
8295 &nk->addr[pd2.didx], nk->port[didx]);
8296 m_copyback(pd2.m, pd2.off, sizeof(*uh),
8297 (c_caddr_t)uh);
8298 return (PF_AFRT);
8299 }
8300 #endif /* INET && INET6 */
8301
8302 if (PF_ANEQ(pd2.src,
8303 &nk->addr[pd2.sidx], pd2.af) ||
8304 nk->port[pd2.sidx] != uh->uh_sport)
8305 pf_change_icmp(pd2.src, &uh->uh_sport,
8306 daddr, &nk->addr[pd2.sidx],
8307 nk->port[pd2.sidx], &uh->uh_sum,
8308 pd2.ip_sum, icmpsum,
8309 pd->ip_sum, 1, pd2.af);
8310
8311 if (PF_ANEQ(pd2.dst,
8312 &nk->addr[pd2.didx], pd2.af) ||
8313 nk->port[pd2.didx] != uh->uh_dport)
8314 pf_change_icmp(pd2.dst, &uh->uh_dport,
8315 saddr, &nk->addr[pd2.didx],
8316 nk->port[pd2.didx], &uh->uh_sum,
8317 pd2.ip_sum, icmpsum,
8318 pd->ip_sum, 1, pd2.af);
8319
8320 switch (pd2.af) {
8321 #ifdef INET
8322 case AF_INET:
8323 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8324 (caddr_t )&pd->hdr.icmp);
8325 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8326 break;
8327 #endif /* INET */
8328 #ifdef INET6
8329 case AF_INET6:
8330 m_copyback(pd->m, pd->off,
8331 sizeof(struct icmp6_hdr),
8332 (caddr_t )&pd->hdr.icmp6);
8333 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8334 (caddr_t )&h2_6);
8335 break;
8336 #endif /* INET6 */
8337 }
8338 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
8339 }
8340 return (PF_PASS);
8341 break;
8342 }
8343 #ifdef INET
8344 case IPPROTO_SCTP: {
8345 struct sctphdr *sh = &pd2.hdr.sctp;
8346 struct pf_state_peer *src;
8347 int copyback = 0;
8348 int action;
8349
8350 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason,
8351 pd2.af)) {
8352 DPFPRINTF(PF_DEBUG_MISC,
8353 ("pf: ICMP error message too short "
8354 "(sctp)\n"));
8355 return (PF_DROP);
8356 }
8357 pd2.pcksum = &pd2.sctp_dummy_sum;
8358
8359 key.af = pd2.af;
8360 key.proto = IPPROTO_SCTP;
8361 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8362 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8363 key.port[pd2.sidx] = sh->src_port;
8364 key.port[pd2.didx] = sh->dest_port;
8365
8366 action = pf_find_state(&pd2, &key, state);
8367 if (action != PF_MATCH)
8368 return (action);
8369
8370 if (pd->dir == (*state)->direction) {
8371 if (PF_REVERSED_KEY(*state, pd->af))
8372 src = &(*state)->src;
8373 else
8374 src = &(*state)->dst;
8375 } else {
8376 if (PF_REVERSED_KEY(*state, pd->af))
8377 src = &(*state)->dst;
8378 else
8379 src = &(*state)->src;
8380 }
8381
8382 if (src->scrub->pfss_v_tag != sh->v_tag) {
8383 DPFPRINTF(PF_DEBUG_MISC,
8384 ("pf: ICMP error message has incorrect "
8385 "SCTP v_tag\n"));
8386 return (PF_DROP);
8387 }
8388
8389 /* translate source/destination address, if necessary */
8390 if ((*state)->key[PF_SK_WIRE] !=
8391 (*state)->key[PF_SK_STACK]) {
8392
8393 struct pf_state_key *nk;
8394
8395 if (PF_REVERSED_KEY(*state, pd->af))
8396 nk = (*state)->key[pd->sidx];
8397 else
8398 nk = (*state)->key[pd->didx];
8399
8400 #if defined(INET) && defined(INET6)
8401 int afto, sidx, didx;
8402
8403 afto = pd->af != nk->af;
8404
8405 if (afto && (*state)->direction == PF_IN) {
8406 sidx = pd2.didx;
8407 didx = pd2.sidx;
8408 } else {
8409 sidx = pd2.sidx;
8410 didx = pd2.didx;
8411 }
8412
8413 if (afto) {
8414 if (pf_translate_icmp_af(nk->af,
8415 &pd->hdr.icmp))
8416 return (PF_DROP);
8417 m_copyback(pd->m, pd->off,
8418 sizeof(struct icmp6_hdr),
8419 (c_caddr_t)&pd->hdr.icmp6);
8420 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8421 &pd2, &nk->addr[sidx],
8422 &nk->addr[didx], pd->af,
8423 nk->af))
8424 return (PF_DROP);
8425 sh->src_port = nk->port[sidx];
8426 sh->dest_port = nk->port[didx];
8427 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
8428 PF_ACPY(&pd->nsaddr,
8429 &nk->addr[pd2.sidx], nk->af);
8430 PF_ACPY(&pd->ndaddr,
8431 &nk->addr[pd2.didx], nk->af);
8432 if (nk->af == AF_INET) {
8433 pd->proto = IPPROTO_ICMP;
8434 } else {
8435 pd->proto = IPPROTO_ICMPV6;
8436 /*
8437 * IPv4 becomes IPv6 so we must
8438 * copy IPv4 src addr to least
8439 * 32bits in IPv6 address to
8440 * keep traceroute/icmp
8441 * working.
8442 */
8443 pd->nsaddr.addr32[3] =
8444 pd->src->addr32[0];
8445 }
8446 pd->naf = nk->af;
8447 return (PF_AFRT);
8448 }
8449 #endif /* INET && INET6 */
8450
8451 if (PF_ANEQ(pd2.src,
8452 &nk->addr[pd2.sidx], pd2.af) ||
8453 nk->port[pd2.sidx] != sh->src_port)
8454 pf_change_icmp(pd2.src, &sh->src_port,
8455 daddr, &nk->addr[pd2.sidx],
8456 nk->port[pd2.sidx], NULL,
8457 pd2.ip_sum, icmpsum,
8458 pd->ip_sum, 0, pd2.af);
8459
8460 if (PF_ANEQ(pd2.dst,
8461 &nk->addr[pd2.didx], pd2.af) ||
8462 nk->port[pd2.didx] != sh->dest_port)
8463 pf_change_icmp(pd2.dst, &sh->dest_port,
8464 saddr, &nk->addr[pd2.didx],
8465 nk->port[pd2.didx], NULL,
8466 pd2.ip_sum, icmpsum,
8467 pd->ip_sum, 0, pd2.af);
8468 copyback = 1;
8469 }
8470
8471 if (copyback) {
8472 switch (pd2.af) {
8473 #ifdef INET
8474 case AF_INET:
8475 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8476 (caddr_t )&pd->hdr.icmp);
8477 m_copyback(pd->m, ipoff2, sizeof(h2),
8478 (caddr_t )&h2);
8479 break;
8480 #endif /* INET */
8481 #ifdef INET6
8482 case AF_INET6:
8483 m_copyback(pd->m, pd->off,
8484 sizeof(struct icmp6_hdr),
8485 (caddr_t )&pd->hdr.icmp6);
8486 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8487 (caddr_t )&h2_6);
8488 break;
8489 #endif /* INET6 */
8490 }
8491 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
8492 }
8493
8494 return (PF_PASS);
8495 break;
8496 }
8497 case IPPROTO_ICMP: {
8498 struct icmp *iih = &pd2.hdr.icmp;
8499
8500 if (pd2.af != AF_INET) {
8501 REASON_SET(reason, PFRES_NORM);
8502 return (PF_DROP);
8503 }
8504
8505 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8506 NULL, reason, pd2.af)) {
8507 DPFPRINTF(PF_DEBUG_MISC,
8508 ("pf: ICMP error message too short i"
8509 "(icmp)\n"));
8510 return (PF_DROP);
8511 }
8512 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
8513
8514 icmpid = iih->icmp_id;
8515 pf_icmp_mapping(&pd2, iih->icmp_type,
8516 &icmp_dir, &virtual_id, &virtual_type);
8517
8518 ret = pf_icmp_state_lookup(&key, &pd2, state,
8519 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8520 if (ret >= 0) {
8521 MPASS(*state == NULL);
8522 return (ret);
8523 }
8524
8525 /* translate source/destination address, if necessary */
8526 if ((*state)->key[PF_SK_WIRE] !=
8527 (*state)->key[PF_SK_STACK]) {
8528 struct pf_state_key *nk;
8529
8530 if (PF_REVERSED_KEY(*state, pd->af))
8531 nk = (*state)->key[pd->sidx];
8532 else
8533 nk = (*state)->key[pd->didx];
8534
8535 #if defined(INET) && defined(INET6)
8536 int afto, sidx, didx;
8537
8538 afto = pd->af != nk->af;
8539
8540 if (afto && (*state)->direction == PF_IN) {
8541 sidx = pd2.didx;
8542 didx = pd2.sidx;
8543 iidx = !iidx;
8544 } else {
8545 sidx = pd2.sidx;
8546 didx = pd2.didx;
8547 }
8548
8549 if (afto) {
8550 if (nk->af != AF_INET6)
8551 return (PF_DROP);
8552 if (pf_translate_icmp_af(nk->af,
8553 &pd->hdr.icmp))
8554 return (PF_DROP);
8555 m_copyback(pd->m, pd->off,
8556 sizeof(struct icmp6_hdr),
8557 (c_caddr_t)&pd->hdr.icmp6);
8558 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8559 &pd2, &nk->addr[sidx],
8560 &nk->addr[didx], pd->af,
8561 nk->af))
8562 return (PF_DROP);
8563 pd->proto = IPPROTO_ICMPV6;
8564 if (pf_translate_icmp_af(nk->af, iih))
8565 return (PF_DROP);
8566 if (virtual_type == htons(ICMP_ECHO) &&
8567 nk->port[iidx] != iih->icmp_id)
8568 iih->icmp_id = nk->port[iidx];
8569 m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8570 (c_caddr_t)iih);
8571 PF_ACPY(&pd->nsaddr,
8572 &nk->addr[pd2.sidx], nk->af);
8573 PF_ACPY(&pd->ndaddr,
8574 &nk->addr[pd2.didx], nk->af);
8575 /*
8576 * IPv4 becomes IPv6 so we must copy
8577 * IPv4 src addr to least 32bits in
8578 * IPv6 address to keep traceroute
8579 * working.
8580 */
8581 pd->nsaddr.addr32[3] =
8582 pd->src->addr32[0];
8583 pd->naf = nk->af;
8584 return (PF_AFRT);
8585 }
8586 #endif /* INET && INET6 */
8587
8588 if (PF_ANEQ(pd2.src,
8589 &nk->addr[pd2.sidx], pd2.af) ||
8590 (virtual_type == htons(ICMP_ECHO) &&
8591 nk->port[iidx] != iih->icmp_id))
8592 pf_change_icmp(pd2.src,
8593 (virtual_type == htons(ICMP_ECHO)) ?
8594 &iih->icmp_id : NULL,
8595 daddr, &nk->addr[pd2.sidx],
8596 (virtual_type == htons(ICMP_ECHO)) ?
8597 nk->port[iidx] : 0, NULL,
8598 pd2.ip_sum, icmpsum,
8599 pd->ip_sum, 0, AF_INET);
8600
8601 if (PF_ANEQ(pd2.dst,
8602 &nk->addr[pd2.didx], pd2.af))
8603 pf_change_icmp(pd2.dst, NULL, NULL,
8604 &nk->addr[pd2.didx], 0, NULL,
8605 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8606 AF_INET);
8607
8608 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8609 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8610 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8611 }
8612 return (PF_PASS);
8613 break;
8614 }
8615 #endif /* INET */
8616 #ifdef INET6
8617 case IPPROTO_ICMPV6: {
8618 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
8619
8620 if (pd2.af != AF_INET6) {
8621 REASON_SET(reason, PFRES_NORM);
8622 return (PF_DROP);
8623 }
8624
8625 if (!pf_pull_hdr(pd->m, pd2.off, iih,
8626 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8627 DPFPRINTF(PF_DEBUG_MISC,
8628 ("pf: ICMP error message too short "
8629 "(icmp6)\n"));
8630 return (PF_DROP);
8631 }
8632 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
8633
8634 pf_icmp_mapping(&pd2, iih->icmp6_type,
8635 &icmp_dir, &virtual_id, &virtual_type);
8636
8637 ret = pf_icmp_state_lookup(&key, &pd2, state,
8638 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8639 /* IPv6? try matching a multicast address */
8640 if (ret == PF_DROP && pd2.af == AF_INET6 &&
8641 icmp_dir == PF_OUT) {
8642 MPASS(*state == NULL);
8643 ret = pf_icmp_state_lookup(&key, &pd2,
8644 state, virtual_id, virtual_type,
8645 icmp_dir, &iidx, 1, 1);
8646 }
8647 if (ret >= 0) {
8648 MPASS(*state == NULL);
8649 return (ret);
8650 }
8651
8652 /* translate source/destination address, if necessary */
8653 if ((*state)->key[PF_SK_WIRE] !=
8654 (*state)->key[PF_SK_STACK]) {
8655 struct pf_state_key *nk;
8656
8657 if (PF_REVERSED_KEY(*state, pd->af))
8658 nk = (*state)->key[pd->sidx];
8659 else
8660 nk = (*state)->key[pd->didx];
8661
8662 #if defined(INET) && defined(INET6)
8663 int afto, sidx, didx;
8664
8665 afto = pd->af != nk->af;
8666
8667 if (afto && (*state)->direction == PF_IN) {
8668 sidx = pd2.didx;
8669 didx = pd2.sidx;
8670 iidx = !iidx;
8671 } else {
8672 sidx = pd2.sidx;
8673 didx = pd2.didx;
8674 }
8675
8676 if (afto) {
8677 if (nk->af != AF_INET)
8678 return (PF_DROP);
8679 if (pf_translate_icmp_af(nk->af,
8680 &pd->hdr.icmp))
8681 return (PF_DROP);
8682 m_copyback(pd->m, pd->off,
8683 sizeof(struct icmp6_hdr),
8684 (c_caddr_t)&pd->hdr.icmp6);
8685 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8686 &pd2, &nk->addr[sidx],
8687 &nk->addr[didx], pd->af,
8688 nk->af))
8689 return (PF_DROP);
8690 pd->proto = IPPROTO_ICMP;
8691 if (pf_translate_icmp_af(nk->af, iih))
8692 return (PF_DROP);
8693 if (virtual_type ==
8694 htons(ICMP6_ECHO_REQUEST) &&
8695 nk->port[iidx] != iih->icmp6_id)
8696 iih->icmp6_id = nk->port[iidx];
8697 m_copyback(pd2.m, pd2.off,
8698 sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8699 PF_ACPY(&pd->nsaddr,
8700 &nk->addr[pd2.sidx], nk->af);
8701 PF_ACPY(&pd->ndaddr,
8702 &nk->addr[pd2.didx], nk->af);
8703 pd->naf = nk->af;
8704 return (PF_AFRT);
8705 }
8706 #endif /* INET && INET6 */
8707
8708 if (PF_ANEQ(pd2.src,
8709 &nk->addr[pd2.sidx], pd2.af) ||
8710 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8711 nk->port[pd2.sidx] != iih->icmp6_id))
8712 pf_change_icmp(pd2.src,
8713 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8714 ? &iih->icmp6_id : NULL,
8715 daddr, &nk->addr[pd2.sidx],
8716 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8717 ? nk->port[iidx] : 0, NULL,
8718 pd2.ip_sum, icmpsum,
8719 pd->ip_sum, 0, AF_INET6);
8720
8721 if (PF_ANEQ(pd2.dst,
8722 &nk->addr[pd2.didx], pd2.af))
8723 pf_change_icmp(pd2.dst, NULL, NULL,
8724 &nk->addr[pd2.didx], 0, NULL,
8725 pd2.ip_sum, icmpsum,
8726 pd->ip_sum, 0, AF_INET6);
8727
8728 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8729 (caddr_t)&pd->hdr.icmp6);
8730 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8731 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8732 (caddr_t)iih);
8733 }
8734 return (PF_PASS);
8735 break;
8736 }
8737 #endif /* INET6 */
8738 default: {
8739 int action;
8740
8741 key.af = pd2.af;
8742 key.proto = pd2.proto;
8743 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8744 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8745 key.port[0] = key.port[1] = 0;
8746
8747 action = pf_find_state(&pd2, &key, state);
8748 if (action != PF_MATCH)
8749 return (action);
8750
8751 /* translate source/destination address, if necessary */
8752 if ((*state)->key[PF_SK_WIRE] !=
8753 (*state)->key[PF_SK_STACK]) {
8754 struct pf_state_key *nk =
8755 (*state)->key[pd->didx];
8756
8757 if (PF_ANEQ(pd2.src,
8758 &nk->addr[pd2.sidx], pd2.af))
8759 pf_change_icmp(pd2.src, NULL, daddr,
8760 &nk->addr[pd2.sidx], 0, NULL,
8761 pd2.ip_sum, icmpsum,
8762 pd->ip_sum, 0, pd2.af);
8763
8764 if (PF_ANEQ(pd2.dst,
8765 &nk->addr[pd2.didx], pd2.af))
8766 pf_change_icmp(pd2.dst, NULL, saddr,
8767 &nk->addr[pd2.didx], 0, NULL,
8768 pd2.ip_sum, icmpsum,
8769 pd->ip_sum, 0, pd2.af);
8770
8771 switch (pd2.af) {
8772 #ifdef INET
8773 case AF_INET:
8774 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8775 (caddr_t)&pd->hdr.icmp);
8776 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8777 break;
8778 #endif /* INET */
8779 #ifdef INET6
8780 case AF_INET6:
8781 m_copyback(pd->m, pd->off,
8782 sizeof(struct icmp6_hdr),
8783 (caddr_t )&pd->hdr.icmp6);
8784 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8785 (caddr_t )&h2_6);
8786 break;
8787 #endif /* INET6 */
8788 }
8789 }
8790 return (PF_PASS);
8791 break;
8792 }
8793 }
8794 }
8795 }
8796
8797 /*
8798 * ipoff and off are measured from the start of the mbuf chain.
8799 * h must be at "ipoff" on the mbuf chain.
8800 */
8801 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8802 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8803 u_short *actionp, u_short *reasonp, sa_family_t af)
8804 {
8805 int iplen = 0;
8806 switch (af) {
8807 #ifdef INET
8808 case AF_INET: {
8809 const struct ip *h = mtod(m, struct ip *);
8810 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8811
8812 if (fragoff) {
8813 if (fragoff >= len)
8814 ACTION_SET(actionp, PF_PASS);
8815 else {
8816 ACTION_SET(actionp, PF_DROP);
8817 REASON_SET(reasonp, PFRES_FRAG);
8818 }
8819 return (NULL);
8820 }
8821 iplen = ntohs(h->ip_len);
8822 break;
8823 }
8824 #endif /* INET */
8825 #ifdef INET6
8826 case AF_INET6: {
8827 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8828
8829 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8830 break;
8831 }
8832 #endif /* INET6 */
8833 }
8834 if (m->m_pkthdr.len < off + len || iplen < off + len) {
8835 ACTION_SET(actionp, PF_DROP);
8836 REASON_SET(reasonp, PFRES_SHORT);
8837 return (NULL);
8838 }
8839 m_copydata(m, off, len, p);
8840 return (p);
8841 }
8842
8843 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8844 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8845 int rtableid)
8846 {
8847 struct ifnet *ifp;
8848
8849 /*
8850 * Skip check for addresses with embedded interface scope,
8851 * as they would always match anyway.
8852 */
8853 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8854 return (1);
8855
8856 if (af != AF_INET && af != AF_INET6)
8857 return (0);
8858
8859 if (kif == V_pfi_all)
8860 return (1);
8861
8862 /* Skip checks for ipsec interfaces */
8863 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8864 return (1);
8865
8866 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8867
8868 switch (af) {
8869 #ifdef INET6
8870 case AF_INET6:
8871 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8872 ifp));
8873 #endif /* INET6 */
8874 #ifdef INET
8875 case AF_INET:
8876 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8877 ifp));
8878 #endif /* INET */
8879 }
8880
8881 return (0);
8882 }
8883
8884 #ifdef INET
8885 static void
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8886 pf_route(struct pf_krule *r, struct ifnet *oifp,
8887 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8888 {
8889 struct mbuf *m0, *m1, *md;
8890 struct route ro;
8891 const struct sockaddr *gw = &ro.ro_dst;
8892 struct sockaddr_in *dst;
8893 struct ip *ip;
8894 struct ifnet *ifp = NULL;
8895 int error = 0;
8896 uint16_t ip_len, ip_off;
8897 uint16_t tmp;
8898 int r_dir;
8899 bool skip_test = false;
8900
8901 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
8902
8903 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
8904
8905 if (s) {
8906 r_dir = s->direction;
8907 } else {
8908 r_dir = r->direction;
8909 }
8910
8911 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
8912 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
8913 __func__));
8914
8915 if ((pd->pf_mtag == NULL &&
8916 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
8917 pd->pf_mtag->routed++ > 3) {
8918 m0 = pd->m;
8919 pd->m = NULL;
8920 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8921 goto bad_locked;
8922 }
8923
8924 if (pd->act.rt_kif != NULL)
8925 ifp = pd->act.rt_kif->pfik_ifp;
8926
8927 if (pd->act.rt == PF_DUPTO) {
8928 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
8929 if (s != NULL) {
8930 PF_STATE_UNLOCK(s);
8931 }
8932 if (ifp == oifp) {
8933 /* When the 2nd interface is not skipped */
8934 return;
8935 } else {
8936 m0 = pd->m;
8937 pd->m = NULL;
8938 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8939 goto bad;
8940 }
8941 } else {
8942 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
8943 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
8944 if (s)
8945 PF_STATE_UNLOCK(s);
8946 return;
8947 }
8948 }
8949 } else {
8950 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
8951 if (pd->af == pd->naf) {
8952 pf_dummynet(pd, s, r, &pd->m);
8953 if (s)
8954 PF_STATE_UNLOCK(s);
8955 return;
8956 } else {
8957 if (r_dir == PF_IN) {
8958 skip_test = true;
8959 }
8960 }
8961 }
8962
8963 /*
8964 * If we're actually doing route-to and af-to and are in the
8965 * reply direction.
8966 */
8967 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
8968 pd->af != pd->naf) {
8969 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
8970 /* Un-set ifp so we do a plain route lookup. */
8971 ifp = NULL;
8972 }
8973 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
8974 /* Un-set ifp so we do a plain route lookup. */
8975 ifp = NULL;
8976 }
8977 }
8978 m0 = pd->m;
8979 }
8980
8981 ip = mtod(m0, struct ip *);
8982
8983 bzero(&ro, sizeof(ro));
8984 dst = (struct sockaddr_in *)&ro.ro_dst;
8985 dst->sin_family = AF_INET;
8986 dst->sin_len = sizeof(struct sockaddr_in);
8987 dst->sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
8988
8989 if (pd->dir == PF_IN) {
8990 if (ip->ip_ttl <= IPTTLDEC) {
8991 if (r->rt != PF_DUPTO)
8992 pf_send_icmp(m0, ICMP_TIMXCEED,
8993 ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
8994 pd->act.rtableid);
8995 goto bad_locked;
8996 }
8997 ip->ip_ttl -= IPTTLDEC;
8998 }
8999
9000 if (s != NULL) {
9001 if (ifp == NULL && (pd->af != pd->naf)) {
9002 /* We're in the AFTO case. Do a route lookup. */
9003 const struct nhop_object *nh;
9004 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
9005 if (nh) {
9006 ifp = nh->nh_ifp;
9007
9008 /* Use the gateway if needed. */
9009 if (nh->nh_flags & NHF_GATEWAY) {
9010 gw = &nh->gw_sa;
9011 ro.ro_flags |= RT_HAS_GW;
9012 } else {
9013 dst->sin_addr = ip->ip_dst;
9014 }
9015
9016 /*
9017 * Bind to the correct interface if we're
9018 * if-bound. We don't know which interface
9019 * that will be until here, so we've inserted
9020 * the state on V_pf_all. Fix that now.
9021 */
9022 if (s->kif == V_pfi_all && ifp != NULL &&
9023 r->rule_flag & PFRULE_IFBOUND)
9024 s->kif = ifp->if_pf_kif;
9025 }
9026 }
9027
9028 if (r->rule_flag & PFRULE_IFBOUND &&
9029 pd->act.rt == PF_REPLYTO &&
9030 s->kif == V_pfi_all) {
9031 s->kif = pd->act.rt_kif;
9032 s->orig_kif = oifp->if_pf_kif;
9033 }
9034
9035 PF_STATE_UNLOCK(s);
9036 }
9037
9038 if (ifp == NULL) {
9039 m0 = pd->m;
9040 pd->m = NULL;
9041 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9042 goto bad;
9043 }
9044
9045 if (pd->dir == PF_IN && !skip_test) {
9046 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9047 &pd->act) != PF_PASS) {
9048 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9049 goto bad;
9050 } else if (m0 == NULL) {
9051 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9052 goto done;
9053 }
9054 if (m0->m_len < sizeof(struct ip)) {
9055 DPFPRINTF(PF_DEBUG_URGENT,
9056 ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
9057 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9058 goto bad;
9059 }
9060 ip = mtod(m0, struct ip *);
9061 }
9062
9063 if (ifp->if_flags & IFF_LOOPBACK)
9064 m0->m_flags |= M_SKIP_FIREWALL;
9065
9066 ip_len = ntohs(ip->ip_len);
9067 ip_off = ntohs(ip->ip_off);
9068
9069 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
9070 m0->m_pkthdr.csum_flags |= CSUM_IP;
9071 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9072 in_delayed_cksum(m0);
9073 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9074 }
9075 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9076 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9077 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9078 }
9079
9080 if (pd->dir == PF_IN) {
9081 /*
9082 * Make sure dummynet gets the correct direction, in case it needs to
9083 * re-inject later.
9084 */
9085 pd->dir = PF_OUT;
9086
9087 /*
9088 * The following processing is actually the rest of the inbound processing, even
9089 * though we've marked it as outbound (so we don't look through dummynet) and it
9090 * happens after the outbound processing (pf_test(PF_OUT) above).
9091 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9092 * conclusion about what direction it's processing, and we can't fix it or it
9093 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9094 * decision will pick the right pipe, and everything will mostly work as expected.
9095 */
9096 tmp = pd->act.dnrpipe;
9097 pd->act.dnrpipe = pd->act.dnpipe;
9098 pd->act.dnpipe = tmp;
9099 }
9100
9101 /*
9102 * If small enough for interface, or the interface will take
9103 * care of the fragmentation for us, we can just send directly.
9104 */
9105 if (ip_len <= ifp->if_mtu ||
9106 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9107 ip->ip_sum = 0;
9108 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9109 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9110 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9111 }
9112 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
9113
9114 md = m0;
9115 error = pf_dummynet_route(pd, s, r, ifp, gw, &md);
9116 if (md != NULL) {
9117 error = (*ifp->if_output)(ifp, md, gw, &ro);
9118 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9119 }
9120 goto done;
9121 }
9122
9123 /* Balk when DF bit is set or the interface didn't support TSO. */
9124 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9125 error = EMSGSIZE;
9126 KMOD_IPSTAT_INC(ips_cantfrag);
9127 if (pd->act.rt != PF_DUPTO) {
9128 if (s && s->nat_rule != NULL) {
9129 MPASS(m0 == pd->m);
9130 PACKET_UNDO_NAT(pd,
9131 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9132 s);
9133 }
9134
9135 pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
9136 ifp->if_mtu, pd->af, r, pd->act.rtableid);
9137 }
9138 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9139 goto bad;
9140 }
9141
9142 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9143 if (error) {
9144 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9145 goto bad;
9146 }
9147
9148 for (; m0; m0 = m1) {
9149 m1 = m0->m_nextpkt;
9150 m0->m_nextpkt = NULL;
9151 if (error == 0) {
9152 m_clrprotoflags(m0);
9153 md = m0;
9154 pd->pf_mtag = pf_find_mtag(md);
9155 error = pf_dummynet_route(pd, s, r, ifp,
9156 gw, &md);
9157 if (md != NULL) {
9158 error = (*ifp->if_output)(ifp, md, gw, &ro);
9159 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9160 }
9161 } else
9162 m_freem(m0);
9163 }
9164
9165 if (error == 0)
9166 KMOD_IPSTAT_INC(ips_fragmented);
9167
9168 done:
9169 if (pd->act.rt != PF_DUPTO)
9170 pd->m = NULL;
9171 return;
9172
9173 bad_locked:
9174 if (s)
9175 PF_STATE_UNLOCK(s);
9176 bad:
9177 m_freem(m0);
9178 goto done;
9179 }
9180 #endif /* INET */
9181
9182 #ifdef INET6
9183 static void
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9184 pf_route6(struct pf_krule *r, struct ifnet *oifp,
9185 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9186 {
9187 struct mbuf *m0, *md;
9188 struct m_tag *mtag;
9189 struct sockaddr_in6 dst;
9190 struct ip6_hdr *ip6;
9191 struct ifnet *ifp = NULL;
9192 int r_dir;
9193 bool skip_test = false;
9194
9195 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9196
9197 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
9198
9199 if (s) {
9200 r_dir = s->direction;
9201 } else {
9202 r_dir = r->direction;
9203 }
9204
9205 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9206 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9207 __func__));
9208
9209 if ((pd->pf_mtag == NULL &&
9210 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9211 pd->pf_mtag->routed++ > 3) {
9212 m0 = pd->m;
9213 pd->m = NULL;
9214 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9215 goto bad_locked;
9216 }
9217
9218 if (pd->act.rt_kif != NULL)
9219 ifp = pd->act.rt_kif->pfik_ifp;
9220
9221 if (pd->act.rt == PF_DUPTO) {
9222 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9223 if (s != NULL) {
9224 PF_STATE_UNLOCK(s);
9225 }
9226 if (ifp == oifp) {
9227 /* When the 2nd interface is not skipped */
9228 return;
9229 } else {
9230 m0 = pd->m;
9231 pd->m = NULL;
9232 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9233 goto bad;
9234 }
9235 } else {
9236 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9237 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9238 if (s)
9239 PF_STATE_UNLOCK(s);
9240 return;
9241 }
9242 }
9243 } else {
9244 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9245 if (pd->af == pd->naf) {
9246 pf_dummynet(pd, s, r, &pd->m);
9247 if (s)
9248 PF_STATE_UNLOCK(s);
9249 return;
9250 } else {
9251 if (r_dir == PF_IN) {
9252 skip_test = true;
9253 }
9254 }
9255 }
9256
9257 /*
9258 * If we're actually doing route-to and af-to and are in the
9259 * reply direction.
9260 */
9261 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9262 pd->af != pd->naf) {
9263 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9264 /* Un-set ifp so we do a plain route lookup. */
9265 ifp = NULL;
9266 }
9267 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9268 /* Un-set ifp so we do a plain route lookup. */
9269 ifp = NULL;
9270 }
9271 }
9272 m0 = pd->m;
9273 }
9274
9275 ip6 = mtod(m0, struct ip6_hdr *);
9276
9277 bzero(&dst, sizeof(dst));
9278 dst.sin6_family = AF_INET6;
9279 dst.sin6_len = sizeof(dst);
9280 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6);
9281
9282 if (pd->dir == PF_IN) {
9283 if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
9284 if (r->rt != PF_DUPTO)
9285 pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
9286 ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
9287 pd->act.rtableid);
9288 goto bad_locked;
9289 }
9290 ip6->ip6_hlim -= IPV6_HLIMDEC;
9291 }
9292
9293 if (s != NULL) {
9294 if (ifp == NULL && (pd->af != pd->naf)) {
9295 const struct nhop_object *nh;
9296 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
9297 if (nh) {
9298 ifp = nh->nh_ifp;
9299
9300 /* Use the gateway if needed. */
9301 if (nh->nh_flags & NHF_GATEWAY)
9302 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9303 sizeof(dst.sin6_addr));
9304 else
9305 dst.sin6_addr = ip6->ip6_dst;
9306
9307 /*
9308 * Bind to the correct interface if we're
9309 * if-bound. We don't know which interface
9310 * that will be until here, so we've inserted
9311 * the state on V_pf_all. Fix that now.
9312 */
9313 if (s->kif == V_pfi_all && ifp != NULL &&
9314 r->rule_flag & PFRULE_IFBOUND)
9315 s->kif = ifp->if_pf_kif;
9316 }
9317 }
9318
9319 if (r->rule_flag & PFRULE_IFBOUND &&
9320 pd->act.rt == PF_REPLYTO &&
9321 s->kif == V_pfi_all) {
9322 s->kif = pd->act.rt_kif;
9323 s->orig_kif = oifp->if_pf_kif;
9324 }
9325
9326 PF_STATE_UNLOCK(s);
9327 }
9328
9329 if (pd->af != pd->naf) {
9330 struct udphdr *uh = &pd->hdr.udp;
9331
9332 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9333 uh->uh_sum = in6_cksum_pseudo(ip6,
9334 ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9335 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9336 }
9337 }
9338
9339 if (ifp == NULL) {
9340 m0 = pd->m;
9341 pd->m = NULL;
9342 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9343 goto bad;
9344 }
9345
9346 if (pd->dir == PF_IN && !skip_test) {
9347 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9348 ifp, &m0, inp, &pd->act) != PF_PASS) {
9349 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9350 goto bad;
9351 } else if (m0 == NULL) {
9352 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9353 goto done;
9354 }
9355 if (m0->m_len < sizeof(struct ip6_hdr)) {
9356 DPFPRINTF(PF_DEBUG_URGENT,
9357 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
9358 __func__));
9359 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9360 goto bad;
9361 }
9362 ip6 = mtod(m0, struct ip6_hdr *);
9363 }
9364
9365 if (ifp->if_flags & IFF_LOOPBACK)
9366 m0->m_flags |= M_SKIP_FIREWALL;
9367
9368 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9369 ~ifp->if_hwassist) {
9370 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9371 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9372 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9373 }
9374
9375 if (pd->dir == PF_IN) {
9376 uint16_t tmp;
9377 /*
9378 * Make sure dummynet gets the correct direction, in case it needs to
9379 * re-inject later.
9380 */
9381 pd->dir = PF_OUT;
9382
9383 /*
9384 * The following processing is actually the rest of the inbound processing, even
9385 * though we've marked it as outbound (so we don't look through dummynet) and it
9386 * happens after the outbound processing (pf_test(PF_OUT) above).
9387 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9388 * conclusion about what direction it's processing, and we can't fix it or it
9389 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9390 * decision will pick the right pipe, and everything will mostly work as expected.
9391 */
9392 tmp = pd->act.dnrpipe;
9393 pd->act.dnrpipe = pd->act.dnpipe;
9394 pd->act.dnpipe = tmp;
9395 }
9396
9397 /*
9398 * If the packet is too large for the outgoing interface,
9399 * send back an icmp6 error.
9400 */
9401 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9402 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9403 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9404 if (mtag != NULL) {
9405 int ret __sdt_used;
9406 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9407 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9408 goto done;
9409 }
9410
9411 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9412 md = m0;
9413 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9414 if (md != NULL) {
9415 int ret __sdt_used;
9416 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9417 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9418 }
9419 }
9420 else {
9421 in6_ifstat_inc(ifp, ifs6_in_toobig);
9422 if (pd->act.rt != PF_DUPTO) {
9423 if (s && s->nat_rule != NULL) {
9424 MPASS(m0 == pd->m);
9425 PACKET_UNDO_NAT(pd,
9426 ((caddr_t)ip6 - m0->m_data) +
9427 sizeof(struct ip6_hdr), s);
9428 }
9429
9430 if (r->rt != PF_DUPTO)
9431 pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
9432 ifp->if_mtu, pd->af, r, pd->act.rtableid);
9433 }
9434 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9435 goto bad;
9436 }
9437
9438 done:
9439 if (pd->act.rt != PF_DUPTO)
9440 pd->m = NULL;
9441 return;
9442
9443 bad_locked:
9444 if (s)
9445 PF_STATE_UNLOCK(s);
9446 bad:
9447 m_freem(m0);
9448 goto done;
9449 }
9450 #endif /* INET6 */
9451
9452 /*
9453 * FreeBSD supports cksum offloads for the following drivers.
9454 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9455 *
9456 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9457 * network driver performed cksum including pseudo header, need to verify
9458 * csum_data
9459 * CSUM_DATA_VALID :
9460 * network driver performed cksum, needs to additional pseudo header
9461 * cksum computation with partial csum_data(i.e. lack of H/W support for
9462 * pseudo header, for instance sk(4) and possibly gem(4))
9463 *
9464 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9465 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9466 * TCP/UDP layer.
9467 * Also, set csum_data to 0xffff to force cksum validation.
9468 */
9469 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9470 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9471 {
9472 u_int16_t sum = 0;
9473 int hw_assist = 0;
9474 struct ip *ip;
9475
9476 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9477 return (1);
9478 if (m->m_pkthdr.len < off + len)
9479 return (1);
9480
9481 switch (p) {
9482 case IPPROTO_TCP:
9483 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9484 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9485 sum = m->m_pkthdr.csum_data;
9486 } else {
9487 ip = mtod(m, struct ip *);
9488 sum = in_pseudo(ip->ip_src.s_addr,
9489 ip->ip_dst.s_addr, htonl((u_short)len +
9490 m->m_pkthdr.csum_data + IPPROTO_TCP));
9491 }
9492 sum ^= 0xffff;
9493 ++hw_assist;
9494 }
9495 break;
9496 case IPPROTO_UDP:
9497 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9498 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9499 sum = m->m_pkthdr.csum_data;
9500 } else {
9501 ip = mtod(m, struct ip *);
9502 sum = in_pseudo(ip->ip_src.s_addr,
9503 ip->ip_dst.s_addr, htonl((u_short)len +
9504 m->m_pkthdr.csum_data + IPPROTO_UDP));
9505 }
9506 sum ^= 0xffff;
9507 ++hw_assist;
9508 }
9509 break;
9510 case IPPROTO_ICMP:
9511 #ifdef INET6
9512 case IPPROTO_ICMPV6:
9513 #endif /* INET6 */
9514 break;
9515 default:
9516 return (1);
9517 }
9518
9519 if (!hw_assist) {
9520 switch (af) {
9521 case AF_INET:
9522 if (m->m_len < sizeof(struct ip))
9523 return (1);
9524 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9525 break;
9526 #ifdef INET6
9527 case AF_INET6:
9528 if (m->m_len < sizeof(struct ip6_hdr))
9529 return (1);
9530 sum = in6_cksum(m, p, off, len);
9531 break;
9532 #endif /* INET6 */
9533 }
9534 }
9535 if (sum) {
9536 switch (p) {
9537 case IPPROTO_TCP:
9538 {
9539 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9540 break;
9541 }
9542 case IPPROTO_UDP:
9543 {
9544 KMOD_UDPSTAT_INC(udps_badsum);
9545 break;
9546 }
9547 #ifdef INET
9548 case IPPROTO_ICMP:
9549 {
9550 KMOD_ICMPSTAT_INC(icps_checksum);
9551 break;
9552 }
9553 #endif
9554 #ifdef INET6
9555 case IPPROTO_ICMPV6:
9556 {
9557 KMOD_ICMP6STAT_INC(icp6s_checksum);
9558 break;
9559 }
9560 #endif /* INET6 */
9561 }
9562 return (1);
9563 } else {
9564 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9565 m->m_pkthdr.csum_flags |=
9566 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9567 m->m_pkthdr.csum_data = 0xffff;
9568 }
9569 }
9570 return (0);
9571 }
9572
9573 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9574 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9575 const struct pf_kstate *s, struct ip_fw_args *dnflow)
9576 {
9577 int dndir = r->direction;
9578
9579 if (s && dndir == PF_INOUT) {
9580 dndir = s->direction;
9581 } else if (dndir == PF_INOUT) {
9582 /* Assume primary direction. Happens when we've set dnpipe in
9583 * the ethernet level code. */
9584 dndir = pd->dir;
9585 }
9586
9587 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9588 return (false);
9589
9590 memset(dnflow, 0, sizeof(*dnflow));
9591
9592 if (pd->dport != NULL)
9593 dnflow->f_id.dst_port = ntohs(*pd->dport);
9594 if (pd->sport != NULL)
9595 dnflow->f_id.src_port = ntohs(*pd->sport);
9596
9597 if (pd->dir == PF_IN)
9598 dnflow->flags |= IPFW_ARGS_IN;
9599 else
9600 dnflow->flags |= IPFW_ARGS_OUT;
9601
9602 if (pd->dir != dndir && pd->act.dnrpipe) {
9603 dnflow->rule.info = pd->act.dnrpipe;
9604 }
9605 else if (pd->dir == dndir && pd->act.dnpipe) {
9606 dnflow->rule.info = pd->act.dnpipe;
9607 }
9608 else {
9609 return (false);
9610 }
9611
9612 dnflow->rule.info |= IPFW_IS_DUMMYNET;
9613 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9614 dnflow->rule.info |= IPFW_IS_PIPE;
9615
9616 dnflow->f_id.proto = pd->proto;
9617 dnflow->f_id.extra = dnflow->rule.info;
9618 switch (pd->naf) {
9619 case AF_INET:
9620 dnflow->f_id.addr_type = 4;
9621 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9622 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9623 break;
9624 case AF_INET6:
9625 dnflow->flags |= IPFW_ARGS_IP6;
9626 dnflow->f_id.addr_type = 6;
9627 dnflow->f_id.src_ip6 = pd->src->v6;
9628 dnflow->f_id.dst_ip6 = pd->dst->v6;
9629 break;
9630 }
9631
9632 return (true);
9633 }
9634
9635 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9636 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9637 struct inpcb *inp)
9638 {
9639 struct pfi_kkif *kif;
9640 struct mbuf *m = *m0;
9641
9642 M_ASSERTPKTHDR(m);
9643 MPASS(ifp->if_vnet == curvnet);
9644 NET_EPOCH_ASSERT();
9645
9646 if (!V_pf_status.running)
9647 return (PF_PASS);
9648
9649 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9650
9651 if (kif == NULL) {
9652 DPFPRINTF(PF_DEBUG_URGENT,
9653 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
9654 return (PF_DROP);
9655 }
9656 if (kif->pfik_flags & PFI_IFLAG_SKIP)
9657 return (PF_PASS);
9658
9659 if (m->m_flags & M_SKIP_FIREWALL)
9660 return (PF_PASS);
9661
9662 if (__predict_false(! M_WRITABLE(*m0))) {
9663 m = *m0 = m_unshare(*m0, M_NOWAIT);
9664 if (*m0 == NULL)
9665 return (PF_DROP);
9666 }
9667
9668 /* Stateless! */
9669 return (pf_test_eth_rule(dir, kif, m0));
9670 }
9671
9672 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9673 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9674 {
9675 struct m_tag *mtag;
9676
9677 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9678
9679 /* dummynet adds this tag, but pf does not need it,
9680 * and keeping it creates unexpected behavior,
9681 * e.g. in case of divert(4) usage right after dummynet. */
9682 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9683 if (mtag != NULL)
9684 m_tag_delete(m, mtag);
9685 }
9686
9687 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9688 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9689 struct pf_krule *r, struct mbuf **m0)
9690 {
9691 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9692 }
9693
9694 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9695 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9696 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9697 struct mbuf **m0)
9698 {
9699 struct ip_fw_args dnflow;
9700
9701 NET_EPOCH_ASSERT();
9702
9703 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9704 return (0);
9705
9706 if (ip_dn_io_ptr == NULL) {
9707 m_freem(*m0);
9708 *m0 = NULL;
9709 return (ENOMEM);
9710 }
9711
9712 if (pd->pf_mtag == NULL &&
9713 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9714 m_freem(*m0);
9715 *m0 = NULL;
9716 return (ENOMEM);
9717 }
9718
9719 if (ifp != NULL) {
9720 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9721
9722 pd->pf_mtag->if_index = ifp->if_index;
9723 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9724
9725 MPASS(sa != NULL);
9726
9727 switch (sa->sa_family) {
9728 case AF_INET:
9729 memcpy(&pd->pf_mtag->dst, sa,
9730 sizeof(struct sockaddr_in));
9731 break;
9732 case AF_INET6:
9733 memcpy(&pd->pf_mtag->dst, sa,
9734 sizeof(struct sockaddr_in6));
9735 break;
9736 }
9737 }
9738
9739 if (s != NULL && s->nat_rule != NULL &&
9740 s->nat_rule->action == PF_RDR &&
9741 (
9742 #ifdef INET
9743 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9744 #endif /* INET */
9745 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9746 /*
9747 * If we're redirecting to loopback mark this packet
9748 * as being local. Otherwise it might get dropped
9749 * if dummynet re-injects.
9750 */
9751 (*m0)->m_pkthdr.rcvif = V_loif;
9752 }
9753
9754 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9755 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9756 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9757 ip_dn_io_ptr(m0, &dnflow);
9758 if (*m0 != NULL) {
9759 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9760 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9761 }
9762 }
9763
9764 return (0);
9765 }
9766
9767 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)9768 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
9769 {
9770 struct ah ext;
9771 u_int32_t hlen, end;
9772 int hdr_cnt;
9773
9774 hlen = h->ip_hl << 2;
9775 if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
9776 REASON_SET(reason, PFRES_SHORT);
9777 return (PF_DROP);
9778 }
9779 if (hlen != sizeof(struct ip))
9780 pd->badopts++;
9781 end = pd->off + ntohs(h->ip_len);
9782 pd->off += hlen;
9783 pd->proto = h->ip_p;
9784 /* stop walking over non initial fragments */
9785 if ((h->ip_off & htons(IP_OFFMASK)) != 0)
9786 return (PF_PASS);
9787 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
9788 switch (pd->proto) {
9789 case IPPROTO_AH:
9790 /* fragments may be short */
9791 if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
9792 end < pd->off + sizeof(ext))
9793 return (PF_PASS);
9794 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9795 NULL, reason, AF_INET)) {
9796 DPFPRINTF(PF_DEBUG_MISC, ("IP short exthdr"));
9797 return (PF_DROP);
9798 }
9799 pd->off += (ext.ah_len + 2) * 4;
9800 pd->proto = ext.ah_nxt;
9801 break;
9802 default:
9803 return (PF_PASS);
9804 }
9805 }
9806 DPFPRINTF(PF_DEBUG_MISC, ("IPv4 nested authentication header limit"));
9807 REASON_SET(reason, PFRES_IPOPTIONS);
9808 return (PF_DROP);
9809 }
9810
9811 #ifdef INET6
9812 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)9813 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
9814 u_short *reason)
9815 {
9816 struct ip6_opt opt;
9817 struct ip6_opt_jumbo jumbo;
9818
9819 while (off < end) {
9820 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
9821 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) {
9822 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
9823 return (PF_DROP);
9824 }
9825 if (opt.ip6o_type == IP6OPT_PAD1) {
9826 off++;
9827 continue;
9828 }
9829 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL,
9830 reason, AF_INET6)) {
9831 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
9832 return (PF_DROP);
9833 }
9834 if (off + sizeof(opt) + opt.ip6o_len > end) {
9835 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
9836 REASON_SET(reason, PFRES_IPOPTIONS);
9837 return (PF_DROP);
9838 }
9839 switch (opt.ip6o_type) {
9840 case IP6OPT_JUMBO:
9841 if (pd->jumbolen != 0) {
9842 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
9843 REASON_SET(reason, PFRES_IPOPTIONS);
9844 return (PF_DROP);
9845 }
9846 if (ntohs(h->ip6_plen) != 0) {
9847 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
9848 REASON_SET(reason, PFRES_IPOPTIONS);
9849 return (PF_DROP);
9850 }
9851 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL,
9852 reason, AF_INET6)) {
9853 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
9854 return (PF_DROP);
9855 }
9856 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
9857 sizeof(pd->jumbolen));
9858 pd->jumbolen = ntohl(pd->jumbolen);
9859 if (pd->jumbolen < IPV6_MAXPACKET) {
9860 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
9861 REASON_SET(reason, PFRES_IPOPTIONS);
9862 return (PF_DROP);
9863 }
9864 break;
9865 default:
9866 break;
9867 }
9868 off += sizeof(opt) + opt.ip6o_len;
9869 }
9870
9871 return (PF_PASS);
9872 }
9873
9874 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)9875 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
9876 {
9877 struct ip6_frag frag;
9878 struct ip6_ext ext;
9879 struct ip6_rthdr rthdr;
9880 uint32_t end;
9881 int hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
9882
9883 pd->off += sizeof(struct ip6_hdr);
9884 end = pd->off + ntohs(h->ip6_plen);
9885 pd->fragoff = pd->extoff = pd->jumbolen = 0;
9886 pd->proto = h->ip6_nxt;
9887 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
9888 switch (pd->proto) {
9889 case IPPROTO_ROUTING:
9890 case IPPROTO_HOPOPTS:
9891 case IPPROTO_DSTOPTS:
9892 pd->badopts++;
9893 break;
9894 }
9895 switch (pd->proto) {
9896 case IPPROTO_FRAGMENT:
9897 if (fraghdr_cnt++) {
9898 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
9899 REASON_SET(reason, PFRES_FRAG);
9900 return (PF_DROP);
9901 }
9902 /* jumbo payload packets cannot be fragmented */
9903 if (pd->jumbolen != 0) {
9904 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
9905 REASON_SET(reason, PFRES_FRAG);
9906 return (PF_DROP);
9907 }
9908 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
9909 NULL, reason, AF_INET6)) {
9910 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
9911 return (PF_DROP);
9912 }
9913 /* stop walking over non initial fragments */
9914 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
9915 pd->fragoff = pd->off;
9916 return (PF_PASS);
9917 }
9918 /* RFC6946: reassemble only non atomic fragments */
9919 if (frag.ip6f_offlg & IP6F_MORE_FRAG)
9920 pd->fragoff = pd->off;
9921 pd->off += sizeof(frag);
9922 pd->proto = frag.ip6f_nxt;
9923 break;
9924 case IPPROTO_ROUTING:
9925 if (rthdr_cnt++) {
9926 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
9927 REASON_SET(reason, PFRES_IPOPTIONS);
9928 return (PF_DROP);
9929 }
9930 /* fragments may be short */
9931 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
9932 pd->off = pd->fragoff;
9933 pd->proto = IPPROTO_FRAGMENT;
9934 return (PF_PASS);
9935 }
9936 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
9937 NULL, reason, AF_INET6)) {
9938 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
9939 return (PF_DROP);
9940 }
9941 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
9942 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
9943 REASON_SET(reason, PFRES_IPOPTIONS);
9944 return (PF_DROP);
9945 }
9946 /* FALLTHROUGH */
9947 case IPPROTO_HOPOPTS:
9948 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */
9949 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
9950 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 hopopts not first"));
9951 REASON_SET(reason, PFRES_IPOPTIONS);
9952 return (PF_DROP);
9953 }
9954 /* FALLTHROUGH */
9955 case IPPROTO_AH:
9956 case IPPROTO_DSTOPTS:
9957 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9958 NULL, reason, AF_INET6)) {
9959 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
9960 return (PF_DROP);
9961 }
9962 /* fragments may be short */
9963 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
9964 pd->off = pd->fragoff;
9965 pd->proto = IPPROTO_FRAGMENT;
9966 return (PF_PASS);
9967 }
9968 /* reassembly needs the ext header before the frag */
9969 if (pd->fragoff == 0)
9970 pd->extoff = pd->off;
9971 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) {
9972 if (pf_walk_option6(pd, h,
9973 pd->off + sizeof(ext),
9974 pd->off + (ext.ip6e_len + 1) * 8, reason)
9975 != PF_PASS)
9976 return (PF_DROP);
9977 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
9978 DPFPRINTF(PF_DEBUG_MISC,
9979 ("IPv6 missing jumbo"));
9980 REASON_SET(reason, PFRES_IPOPTIONS);
9981 return (PF_DROP);
9982 }
9983 }
9984 if (pd->proto == IPPROTO_AH)
9985 pd->off += (ext.ip6e_len + 2) * 4;
9986 else
9987 pd->off += (ext.ip6e_len + 1) * 8;
9988 pd->proto = ext.ip6e_nxt;
9989 break;
9990 case IPPROTO_TCP:
9991 case IPPROTO_UDP:
9992 case IPPROTO_SCTP:
9993 case IPPROTO_ICMPV6:
9994 /* fragments may be short, ignore inner header then */
9995 if (pd->fragoff != 0 && end < pd->off +
9996 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
9997 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
9998 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
9999 sizeof(struct icmp6_hdr))) {
10000 pd->off = pd->fragoff;
10001 pd->proto = IPPROTO_FRAGMENT;
10002 }
10003 /* FALLTHROUGH */
10004 default:
10005 return (PF_PASS);
10006 }
10007 }
10008 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 nested extension header limit"));
10009 REASON_SET(reason, PFRES_IPOPTIONS);
10010 return (PF_DROP);
10011 }
10012 #endif /* INET6 */
10013
10014 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)10015 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
10016 {
10017 memset(pd, 0, sizeof(*pd));
10018 pd->pf_mtag = pf_find_mtag(m);
10019 pd->m = m;
10020 }
10021
10022 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)10023 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
10024 u_short *action, u_short *reason, struct pfi_kkif *kif,
10025 struct pf_rule_actions *default_actions)
10026 {
10027 pd->dir = dir;
10028 pd->kif = kif;
10029 pd->m = *m0;
10030 pd->sidx = (dir == PF_IN) ? 0 : 1;
10031 pd->didx = (dir == PF_IN) ? 1 : 0;
10032 pd->af = pd->naf = af;
10033
10034 TAILQ_INIT(&pd->sctp_multihome_jobs);
10035 if (default_actions != NULL)
10036 memcpy(&pd->act, default_actions, sizeof(pd->act));
10037
10038 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
10039 pd->act.dnpipe = pd->pf_mtag->dnpipe;
10040 pd->act.flags = pd->pf_mtag->dnflags;
10041 }
10042
10043 switch (af) {
10044 #ifdef INET
10045 case AF_INET: {
10046 struct ip *h;
10047
10048 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
10049 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
10050 DPFPRINTF(PF_DEBUG_URGENT,
10051 ("%s: m_len < sizeof(struct ip), pullup failed\n",
10052 __func__));
10053 *action = PF_DROP;
10054 REASON_SET(reason, PFRES_SHORT);
10055 return (-1);
10056 }
10057
10058 if (pf_normalize_ip(reason, pd) != PF_PASS) {
10059 /* We do IP header normalization and packet reassembly here */
10060 *m0 = pd->m;
10061 *action = PF_DROP;
10062 return (-1);
10063 }
10064 *m0 = pd->m;
10065
10066 h = mtod(pd->m, struct ip *);
10067 if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
10068 *action = PF_DROP;
10069 REASON_SET(reason, PFRES_SHORT);
10070 return (-1);
10071 }
10072
10073 if (pf_walk_header(pd, h, reason) != PF_PASS) {
10074 *action = PF_DROP;
10075 return (-1);
10076 }
10077
10078 pd->src = (struct pf_addr *)&h->ip_src;
10079 pd->dst = (struct pf_addr *)&h->ip_dst;
10080 PF_ACPY(&pd->osrc, pd->src, af);
10081 PF_ACPY(&pd->odst, pd->dst, af);
10082 pd->ip_sum = &h->ip_sum;
10083 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
10084 pd->ttl = h->ip_ttl;
10085 pd->tot_len = ntohs(h->ip_len);
10086 pd->act.rtableid = -1;
10087 pd->df = h->ip_off & htons(IP_DF);
10088 pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
10089 PF_VPROTO_FRAGMENT : pd->proto;
10090
10091 break;
10092 }
10093 #endif /* INET */
10094 #ifdef INET6
10095 case AF_INET6: {
10096 struct ip6_hdr *h;
10097
10098 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10099 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10100 DPFPRINTF(PF_DEBUG_URGENT,
10101 ("%s: m_len < sizeof(struct ip6_hdr)"
10102 ", pullup failed\n", __func__));
10103 *action = PF_DROP;
10104 REASON_SET(reason, PFRES_SHORT);
10105 return (-1);
10106 }
10107
10108 h = mtod(pd->m, struct ip6_hdr *);
10109
10110 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10111 *action = PF_DROP;
10112 return (-1);
10113 }
10114
10115 h = mtod(pd->m, struct ip6_hdr *);
10116 pd->src = (struct pf_addr *)&h->ip6_src;
10117 pd->dst = (struct pf_addr *)&h->ip6_dst;
10118 PF_ACPY(&pd->osrc, pd->src, af);
10119 PF_ACPY(&pd->odst, pd->dst, af);
10120 pd->ip_sum = NULL;
10121 pd->tos = IPV6_DSCP(h);
10122 pd->ttl = h->ip6_hlim;
10123 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10124 pd->act.rtableid = -1;
10125
10126 pd->virtual_proto = (pd->fragoff != 0) ?
10127 PF_VPROTO_FRAGMENT : pd->proto;
10128
10129 /*
10130 * we do not support jumbogram. if we keep going, zero ip6_plen
10131 * will do something bad, so drop the packet for now.
10132 */
10133 if (htons(h->ip6_plen) == 0) {
10134 *action = PF_DROP;
10135 return (-1);
10136 }
10137
10138 /* We do IP header normalization and packet reassembly here */
10139 if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10140 PF_PASS) {
10141 *m0 = pd->m;
10142 *action = PF_DROP;
10143 return (-1);
10144 }
10145 *m0 = pd->m;
10146 if (pd->m == NULL) {
10147 /* packet sits in reassembly queue, no error */
10148 *action = PF_PASS;
10149 return (-1);
10150 }
10151
10152 /* Update pointers into the packet. */
10153 h = mtod(pd->m, struct ip6_hdr *);
10154 pd->src = (struct pf_addr *)&h->ip6_src;
10155 pd->dst = (struct pf_addr *)&h->ip6_dst;
10156
10157 pd->off = 0;
10158
10159 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10160 *action = PF_DROP;
10161 return (-1);
10162 }
10163
10164 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10165 /*
10166 * Reassembly may have changed the next protocol from
10167 * fragment to something else, so update.
10168 */
10169 pd->virtual_proto = pd->proto;
10170 MPASS(pd->fragoff == 0);
10171 }
10172
10173 if (pd->fragoff != 0)
10174 pd->virtual_proto = PF_VPROTO_FRAGMENT;
10175
10176 break;
10177 }
10178 #endif /* INET6 */
10179 default:
10180 panic("pf_setup_pdesc called with illegal af %u", af);
10181 }
10182
10183 switch (pd->virtual_proto) {
10184 case IPPROTO_TCP: {
10185 struct tcphdr *th = &pd->hdr.tcp;
10186
10187 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
10188 reason, af)) {
10189 *action = PF_DROP;
10190 REASON_SET(reason, PFRES_SHORT);
10191 return (-1);
10192 }
10193 pd->hdrlen = sizeof(*th);
10194 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10195 pd->sport = &th->th_sport;
10196 pd->dport = &th->th_dport;
10197 pd->pcksum = &th->th_sum;
10198 break;
10199 }
10200 case IPPROTO_UDP: {
10201 struct udphdr *uh = &pd->hdr.udp;
10202
10203 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10204 reason, af)) {
10205 *action = PF_DROP;
10206 REASON_SET(reason, PFRES_SHORT);
10207 return (-1);
10208 }
10209 pd->hdrlen = sizeof(*uh);
10210 if (uh->uh_dport == 0 ||
10211 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10212 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10213 *action = PF_DROP;
10214 REASON_SET(reason, PFRES_SHORT);
10215 return (-1);
10216 }
10217 pd->sport = &uh->uh_sport;
10218 pd->dport = &uh->uh_dport;
10219 pd->pcksum = &uh->uh_sum;
10220 break;
10221 }
10222 case IPPROTO_SCTP: {
10223 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10224 action, reason, af)) {
10225 *action = PF_DROP;
10226 REASON_SET(reason, PFRES_SHORT);
10227 return (-1);
10228 }
10229 pd->hdrlen = sizeof(pd->hdr.sctp);
10230 pd->p_len = pd->tot_len - pd->off;
10231
10232 pd->sport = &pd->hdr.sctp.src_port;
10233 pd->dport = &pd->hdr.sctp.dest_port;
10234 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10235 *action = PF_DROP;
10236 REASON_SET(reason, PFRES_SHORT);
10237 return (-1);
10238 }
10239 if (pf_scan_sctp(pd) != PF_PASS) {
10240 *action = PF_DROP;
10241 REASON_SET(reason, PFRES_SHORT);
10242 return (-1);
10243 }
10244 /*
10245 * Placeholder. The SCTP checksum is 32-bits, but
10246 * pf_test_state() expects to update a 16-bit checksum.
10247 * Provide a dummy value which we'll subsequently ignore.
10248 */
10249 pd->pcksum = &pd->sctp_dummy_sum;
10250 break;
10251 }
10252 case IPPROTO_ICMP: {
10253 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10254 action, reason, af)) {
10255 *action = PF_DROP;
10256 REASON_SET(reason, PFRES_SHORT);
10257 return (-1);
10258 }
10259 pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10260 pd->hdrlen = ICMP_MINLEN;
10261 break;
10262 }
10263 #ifdef INET6
10264 case IPPROTO_ICMPV6: {
10265 size_t icmp_hlen = sizeof(struct icmp6_hdr);
10266
10267 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10268 action, reason, af)) {
10269 *action = PF_DROP;
10270 REASON_SET(reason, PFRES_SHORT);
10271 return (-1);
10272 }
10273 /* ICMP headers we look further into to match state */
10274 switch (pd->hdr.icmp6.icmp6_type) {
10275 case MLD_LISTENER_QUERY:
10276 case MLD_LISTENER_REPORT:
10277 icmp_hlen = sizeof(struct mld_hdr);
10278 break;
10279 case ND_NEIGHBOR_SOLICIT:
10280 case ND_NEIGHBOR_ADVERT:
10281 icmp_hlen = sizeof(struct nd_neighbor_solicit);
10282 /* FALLTHROUGH */
10283 case ND_ROUTER_SOLICIT:
10284 case ND_ROUTER_ADVERT:
10285 case ND_REDIRECT:
10286 if (pd->ttl != 255) {
10287 REASON_SET(reason, PFRES_NORM);
10288 return (PF_DROP);
10289 }
10290 break;
10291 }
10292 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10293 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10294 action, reason, af)) {
10295 *action = PF_DROP;
10296 REASON_SET(reason, PFRES_SHORT);
10297 return (-1);
10298 }
10299 pd->hdrlen = icmp_hlen;
10300 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
10301 break;
10302 }
10303 #endif /* INET6 */
10304 }
10305
10306 if (pd->sport)
10307 pd->osport = pd->nsport = *pd->sport;
10308 if (pd->dport)
10309 pd->odport = pd->ndport = *pd->dport;
10310
10311 return (0);
10312 }
10313
10314 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10315 pf_counters_inc(int action, struct pf_pdesc *pd,
10316 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10317 {
10318 struct pf_krule *tr;
10319 int dir = pd->dir;
10320 int dirndx;
10321
10322 pf_counter_u64_critical_enter();
10323 pf_counter_u64_add_protected(
10324 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10325 pd->tot_len);
10326 pf_counter_u64_add_protected(
10327 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10328 1);
10329
10330 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10331 dirndx = (dir == PF_OUT);
10332 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10333 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10334 pf_update_timestamp(r);
10335
10336 if (a != NULL) {
10337 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10338 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10339 }
10340 if (s != NULL) {
10341 struct pf_krule_item *ri;
10342
10343 if (s->nat_rule != NULL) {
10344 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10345 1);
10346 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10347 pd->tot_len);
10348 }
10349 /*
10350 * Source nodes are accessed unlocked here.
10351 * But since we are operating with stateful tracking
10352 * and the state is locked, those SNs could not have
10353 * been freed.
10354 */
10355 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10356 if (s->sns[sn_type] != NULL) {
10357 counter_u64_add(
10358 s->sns[sn_type]->packets[dirndx],
10359 1);
10360 counter_u64_add(
10361 s->sns[sn_type]->bytes[dirndx],
10362 pd->tot_len);
10363 }
10364 }
10365 dirndx = (dir == s->direction) ? 0 : 1;
10366 s->packets[dirndx]++;
10367 s->bytes[dirndx] += pd->tot_len;
10368
10369 SLIST_FOREACH(ri, &s->match_rules, entry) {
10370 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10371 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10372
10373 if (ri->r->src.addr.type == PF_ADDR_TABLE)
10374 pfr_update_stats(ri->r->src.addr.p.tbl,
10375 (s == NULL) ? pd->src :
10376 &s->key[(s->direction == PF_IN)]->
10377 addr[(s->direction == PF_OUT)],
10378 pd->af, pd->tot_len, dir == PF_OUT,
10379 r->action == PF_PASS, ri->r->src.neg);
10380 if (ri->r->dst.addr.type == PF_ADDR_TABLE)
10381 pfr_update_stats(ri->r->dst.addr.p.tbl,
10382 (s == NULL) ? pd->dst :
10383 &s->key[(s->direction == PF_IN)]->
10384 addr[(s->direction == PF_IN)],
10385 pd->af, pd->tot_len, dir == PF_OUT,
10386 r->action == PF_PASS, ri->r->dst.neg);
10387 }
10388 }
10389
10390 tr = r;
10391 if (s != NULL && s->nat_rule != NULL &&
10392 r == &V_pf_default_rule)
10393 tr = s->nat_rule;
10394
10395 if (tr->src.addr.type == PF_ADDR_TABLE)
10396 pfr_update_stats(tr->src.addr.p.tbl,
10397 (s == NULL) ? pd->src :
10398 &s->key[(s->direction == PF_IN)]->
10399 addr[(s->direction == PF_OUT)],
10400 pd->af, pd->tot_len, dir == PF_OUT,
10401 r->action == PF_PASS, tr->src.neg);
10402 if (tr->dst.addr.type == PF_ADDR_TABLE)
10403 pfr_update_stats(tr->dst.addr.p.tbl,
10404 (s == NULL) ? pd->dst :
10405 &s->key[(s->direction == PF_IN)]->
10406 addr[(s->direction == PF_IN)],
10407 pd->af, pd->tot_len, dir == PF_OUT,
10408 r->action == PF_PASS, tr->dst.neg);
10409 }
10410 pf_counter_u64_critical_exit();
10411 }
10412 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * matchrules)10413 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10414 struct pf_krule *am, struct pf_kruleset *ruleset,
10415 struct pf_krule_slist *matchrules)
10416 {
10417 struct pf_krule_item *ri;
10418
10419 /* if this is the log(matches) rule, packet has been logged already */
10420 if (rm->log & PF_LOG_MATCHES)
10421 return;
10422
10423 SLIST_FOREACH(ri, matchrules, entry)
10424 if (ri->r->log & PF_LOG_MATCHES)
10425 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10426 ruleset, pd, 1, ri->r);
10427 }
10428
10429 #if defined(INET) || defined(INET6)
10430 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10431 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10432 struct inpcb *inp, struct pf_rule_actions *default_actions)
10433 {
10434 struct pfi_kkif *kif;
10435 u_short action, reason = 0;
10436 struct m_tag *mtag;
10437 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
10438 struct pf_kstate *s = NULL;
10439 struct pf_kruleset *ruleset = NULL;
10440 struct pf_pdesc pd;
10441 int use_2nd_queue = 0;
10442 uint16_t tag;
10443
10444 PF_RULES_RLOCK_TRACKER;
10445 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10446 M_ASSERTPKTHDR(*m0);
10447
10448 if (!V_pf_status.running)
10449 return (PF_PASS);
10450
10451 PF_RULES_RLOCK();
10452
10453 kif = (struct pfi_kkif *)ifp->if_pf_kif;
10454
10455 if (__predict_false(kif == NULL)) {
10456 DPFPRINTF(PF_DEBUG_URGENT,
10457 ("%s: kif == NULL, if_xname %s\n",
10458 __func__, ifp->if_xname));
10459 PF_RULES_RUNLOCK();
10460 return (PF_DROP);
10461 }
10462 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10463 PF_RULES_RUNLOCK();
10464 return (PF_PASS);
10465 }
10466
10467 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10468 PF_RULES_RUNLOCK();
10469 return (PF_PASS);
10470 }
10471
10472 if (__predict_false(! M_WRITABLE(*m0))) {
10473 *m0 = m_unshare(*m0, M_NOWAIT);
10474 if (*m0 == NULL) {
10475 PF_RULES_RUNLOCK();
10476 return (PF_DROP);
10477 }
10478 }
10479
10480 pf_init_pdesc(&pd, *m0);
10481
10482 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10483 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10484
10485 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10486 pd.pf_mtag->if_idxgen);
10487 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10488 PF_RULES_RUNLOCK();
10489 m_freem(*m0);
10490 *m0 = NULL;
10491 return (PF_PASS);
10492 }
10493 PF_RULES_RUNLOCK();
10494 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10495 *m0 = NULL;
10496 return (PF_PASS);
10497 }
10498
10499 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10500 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10501 /* Dummynet re-injects packets after they've
10502 * completed their delay. We've already
10503 * processed them, so pass unconditionally. */
10504
10505 /* But only once. We may see the packet multiple times (e.g.
10506 * PFIL_IN/PFIL_OUT). */
10507 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10508 PF_RULES_RUNLOCK();
10509
10510 return (PF_PASS);
10511 }
10512
10513 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10514 kif, default_actions) == -1) {
10515 if (action != PF_PASS)
10516 pd.act.log |= PF_LOG_FORCE;
10517 goto done;
10518 }
10519
10520 #ifdef INET
10521 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
10522 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
10523 PF_RULES_RUNLOCK();
10524 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10525 0, ifp->if_mtu);
10526 *m0 = NULL;
10527 return (PF_DROP);
10528 }
10529 #endif /* INET */
10530 #ifdef INET6
10531 /*
10532 * If we end up changing IP addresses (e.g. binat) the stack may get
10533 * confused and fail to send the icmp6 packet too big error. Just send
10534 * it here, before we do any NAT.
10535 */
10536 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10537 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10538 PF_RULES_RUNLOCK();
10539 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10540 *m0 = NULL;
10541 return (PF_DROP);
10542 }
10543 #endif /* INET6 */
10544
10545 if (__predict_false(ip_divert_ptr != NULL) &&
10546 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10547 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10548 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10549 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10550 if (pd.pf_mtag == NULL &&
10551 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10552 action = PF_DROP;
10553 goto done;
10554 }
10555 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10556 }
10557 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10558 pd.m->m_flags |= M_FASTFWD_OURS;
10559 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10560 }
10561 m_tag_delete(pd.m, mtag);
10562
10563 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10564 if (mtag != NULL)
10565 m_tag_delete(pd.m, mtag);
10566 }
10567
10568 switch (pd.virtual_proto) {
10569 case PF_VPROTO_FRAGMENT:
10570 /*
10571 * handle fragments that aren't reassembled by
10572 * normalization
10573 */
10574 if (kif == NULL || r == NULL) /* pflog */
10575 action = PF_DROP;
10576 else
10577 action = pf_test_rule(&r, &s, &pd, &a,
10578 &ruleset, &reason, inp);
10579 if (action != PF_PASS)
10580 REASON_SET(&reason, PFRES_FRAG);
10581 break;
10582
10583 case IPPROTO_TCP: {
10584 /* Respond to SYN with a syncookie. */
10585 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10586 pd.dir == PF_IN && pf_synflood_check(&pd)) {
10587 pf_syncookie_send(&pd);
10588 action = PF_DROP;
10589 break;
10590 }
10591
10592 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10593 use_2nd_queue = 1;
10594 action = pf_normalize_tcp(&pd);
10595 if (action == PF_DROP)
10596 break;
10597 action = pf_test_state(&s, &pd, &reason);
10598 if (action == PF_PASS || action == PF_AFRT) {
10599 if (V_pfsync_update_state_ptr != NULL)
10600 V_pfsync_update_state_ptr(s);
10601 r = s->rule;
10602 a = s->anchor;
10603 } else if (s == NULL) {
10604 /* Validate remote SYN|ACK, re-create original SYN if
10605 * valid. */
10606 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10607 TH_ACK && pf_syncookie_validate(&pd) &&
10608 pd.dir == PF_IN) {
10609 struct mbuf *msyn;
10610
10611 msyn = pf_syncookie_recreate_syn(&pd);
10612 if (msyn == NULL) {
10613 action = PF_DROP;
10614 break;
10615 }
10616
10617 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10618 &pd.act);
10619 m_freem(msyn);
10620 if (action != PF_PASS)
10621 break;
10622
10623 action = pf_test_state(&s, &pd, &reason);
10624 if (action != PF_PASS || s == NULL) {
10625 action = PF_DROP;
10626 break;
10627 }
10628
10629 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10630 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10631 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10632 action = pf_synproxy(&pd, s, &reason);
10633 break;
10634 } else {
10635 action = pf_test_rule(&r, &s, &pd,
10636 &a, &ruleset, &reason, inp);
10637 }
10638 }
10639 break;
10640 }
10641
10642 case IPPROTO_SCTP:
10643 action = pf_normalize_sctp(&pd);
10644 if (action == PF_DROP)
10645 break;
10646 /* fallthrough */
10647 case IPPROTO_UDP:
10648 default:
10649 action = pf_test_state(&s, &pd, &reason);
10650 if (action == PF_PASS || action == PF_AFRT) {
10651 if (V_pfsync_update_state_ptr != NULL)
10652 V_pfsync_update_state_ptr(s);
10653 r = s->rule;
10654 a = s->anchor;
10655 } else if (s == NULL) {
10656 action = pf_test_rule(&r, &s,
10657 &pd, &a, &ruleset, &reason, inp);
10658 }
10659 break;
10660
10661 case IPPROTO_ICMP:
10662 case IPPROTO_ICMPV6: {
10663 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10664 action = PF_DROP;
10665 REASON_SET(&reason, PFRES_NORM);
10666 DPFPRINTF(PF_DEBUG_MISC,
10667 ("dropping IPv6 packet with ICMPv4 payload"));
10668 break;
10669 }
10670 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10671 action = PF_DROP;
10672 REASON_SET(&reason, PFRES_NORM);
10673 DPFPRINTF(PF_DEBUG_MISC,
10674 ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
10675 break;
10676 }
10677 action = pf_test_state_icmp(&s, &pd, &reason);
10678 if (action == PF_PASS || action == PF_AFRT) {
10679 if (V_pfsync_update_state_ptr != NULL)
10680 V_pfsync_update_state_ptr(s);
10681 r = s->rule;
10682 a = s->anchor;
10683 } else if (s == NULL)
10684 action = pf_test_rule(&r, &s, &pd,
10685 &a, &ruleset, &reason, inp);
10686 break;
10687 }
10688
10689 }
10690
10691 done:
10692 PF_RULES_RUNLOCK();
10693
10694 if (pd.m == NULL)
10695 goto eat_pkt;
10696
10697 if (s)
10698 memcpy(&pd.act, &s->act, sizeof(s->act));
10699
10700 if (action == PF_PASS && pd.badopts && !pd.act.allow_opts) {
10701 action = PF_DROP;
10702 REASON_SET(&reason, PFRES_IPOPTIONS);
10703 pd.act.log = PF_LOG_FORCE;
10704 DPFPRINTF(PF_DEBUG_MISC,
10705 ("pf: dropping packet with dangerous headers\n"));
10706 }
10707
10708 if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
10709 pd.tot_len > pd.act.max_pkt_size) {
10710 action = PF_DROP;
10711 REASON_SET(&reason, PFRES_NORM);
10712 pd.act.log = PF_LOG_FORCE;
10713 DPFPRINTF(PF_DEBUG_MISC,
10714 ("pf: dropping overly long packet\n"));
10715 }
10716
10717 if (s) {
10718 uint8_t log = pd.act.log;
10719 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
10720 pd.act.log |= log;
10721 tag = s->tag;
10722 } else {
10723 tag = r->tag;
10724 }
10725
10726 if (tag > 0 && pf_tag_packet(&pd, tag)) {
10727 action = PF_DROP;
10728 REASON_SET(&reason, PFRES_MEMORY);
10729 }
10730
10731 pf_scrub(&pd);
10732 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
10733 pf_normalize_mss(&pd);
10734
10735 if (pd.act.rtableid >= 0)
10736 M_SETFIB(pd.m, pd.act.rtableid);
10737
10738 if (pd.act.flags & PFSTATE_SETPRIO) {
10739 if (pd.tos & IPTOS_LOWDELAY)
10740 use_2nd_queue = 1;
10741 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
10742 action = PF_DROP;
10743 REASON_SET(&reason, PFRES_MEMORY);
10744 pd.act.log = PF_LOG_FORCE;
10745 DPFPRINTF(PF_DEBUG_MISC,
10746 ("pf: failed to allocate 802.1q mtag\n"));
10747 }
10748 }
10749
10750 #ifdef ALTQ
10751 if (action == PF_PASS && pd.act.qid) {
10752 if (pd.pf_mtag == NULL &&
10753 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10754 action = PF_DROP;
10755 REASON_SET(&reason, PFRES_MEMORY);
10756 } else {
10757 if (s != NULL)
10758 pd.pf_mtag->qid_hash = pf_state_hash(s);
10759 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
10760 pd.pf_mtag->qid = pd.act.pqid;
10761 else
10762 pd.pf_mtag->qid = pd.act.qid;
10763 /* Add hints for ecn. */
10764 pd.pf_mtag->hdr = mtod(pd.m, void *);
10765 }
10766 }
10767 #endif /* ALTQ */
10768
10769 /*
10770 * connections redirected to loopback should not match sockets
10771 * bound specifically to loopback due to security implications,
10772 * see tcp_input() and in_pcblookup_listen().
10773 */
10774 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
10775 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
10776 (s->nat_rule->action == PF_RDR ||
10777 s->nat_rule->action == PF_BINAT) &&
10778 pf_is_loopback(af, pd.dst))
10779 pd.m->m_flags |= M_SKIP_FIREWALL;
10780
10781 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
10782 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
10783 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
10784 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
10785 if (mtag != NULL) {
10786 ((struct pf_divert_mtag *)(mtag+1))->port =
10787 ntohs(r->divert.port);
10788 ((struct pf_divert_mtag *)(mtag+1))->idir =
10789 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
10790 PF_DIVERT_MTAG_DIR_OUT;
10791
10792 if (s)
10793 PF_STATE_UNLOCK(s);
10794
10795 m_tag_prepend(pd.m, mtag);
10796 if (pd.m->m_flags & M_FASTFWD_OURS) {
10797 if (pd.pf_mtag == NULL &&
10798 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10799 action = PF_DROP;
10800 REASON_SET(&reason, PFRES_MEMORY);
10801 pd.act.log = PF_LOG_FORCE;
10802 DPFPRINTF(PF_DEBUG_MISC,
10803 ("pf: failed to allocate tag\n"));
10804 } else {
10805 pd.pf_mtag->flags |=
10806 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10807 pd.m->m_flags &= ~M_FASTFWD_OURS;
10808 }
10809 }
10810 ip_divert_ptr(*m0, dir == PF_IN);
10811 *m0 = NULL;
10812
10813 return (action);
10814 } else {
10815 /* XXX: ipfw has the same behaviour! */
10816 action = PF_DROP;
10817 REASON_SET(&reason, PFRES_MEMORY);
10818 pd.act.log = PF_LOG_FORCE;
10819 DPFPRINTF(PF_DEBUG_MISC,
10820 ("pf: failed to allocate divert tag\n"));
10821 }
10822 }
10823 /* XXX: Anybody working on it?! */
10824 if (af == AF_INET6 && r->divert.port)
10825 printf("pf: divert(9) is not supported for IPv6\n");
10826
10827 /* this flag will need revising if the pkt is forwarded */
10828 if (pd.pf_mtag)
10829 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
10830
10831 if (pd.act.log) {
10832 struct pf_krule *lr;
10833 struct pf_krule_item *ri;
10834
10835 if (s != NULL && s->nat_rule != NULL &&
10836 s->nat_rule->log & PF_LOG_ALL)
10837 lr = s->nat_rule;
10838 else
10839 lr = r;
10840
10841 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
10842 PFLOG_PACKET(action, reason, lr, a,
10843 ruleset, &pd, (s == NULL), NULL);
10844 if (s) {
10845 SLIST_FOREACH(ri, &s->match_rules, entry)
10846 if (ri->r->log & PF_LOG_ALL)
10847 PFLOG_PACKET(action,
10848 reason, ri->r, a, ruleset, &pd, 0, NULL);
10849 }
10850 }
10851
10852 pf_counters_inc(action, &pd, s, r, a);
10853
10854 switch (action) {
10855 case PF_SYNPROXY_DROP:
10856 m_freem(*m0);
10857 case PF_DEFER:
10858 *m0 = NULL;
10859 action = PF_PASS;
10860 break;
10861 case PF_DROP:
10862 m_freem(*m0);
10863 *m0 = NULL;
10864 break;
10865 case PF_AFRT:
10866 if (pf_translate_af(&pd)) {
10867 *m0 = pd.m;
10868 action = PF_DROP;
10869 break;
10870 }
10871 #ifdef INET
10872 if (pd.naf == AF_INET)
10873 pf_route(r, kif->pfik_ifp, s, &pd, inp);
10874 #endif /* INET */
10875 #ifdef INET6
10876 if (pd.naf == AF_INET6)
10877 pf_route6(r, kif->pfik_ifp, s, &pd, inp);
10878 #endif /* INET6 */
10879 *m0 = pd.m;
10880 action = PF_PASS;
10881 goto out;
10882 break;
10883 default:
10884 if (pd.act.rt) {
10885 switch (af) {
10886 #ifdef INET
10887 case AF_INET:
10888 /* pf_route() returns unlocked. */
10889 pf_route(r, kif->pfik_ifp, s, &pd, inp);
10890 break;
10891 #endif /* INET */
10892 #ifdef INET6
10893 case AF_INET6:
10894 /* pf_route6() returns unlocked. */
10895 pf_route6(r, kif->pfik_ifp, s, &pd, inp);
10896 break;
10897 #endif /* INET6 */
10898 }
10899 *m0 = pd.m;
10900 goto out;
10901 }
10902 if (pf_dummynet(&pd, s, r, m0) != 0) {
10903 action = PF_DROP;
10904 REASON_SET(&reason, PFRES_MEMORY);
10905 }
10906 break;
10907 }
10908
10909 eat_pkt:
10910 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
10911
10912 if (s && action != PF_DROP) {
10913 if (!s->if_index_in && dir == PF_IN)
10914 s->if_index_in = ifp->if_index;
10915 else if (!s->if_index_out && dir == PF_OUT)
10916 s->if_index_out = ifp->if_index;
10917 }
10918
10919 if (s)
10920 PF_STATE_UNLOCK(s);
10921
10922 out:
10923 #ifdef INET6
10924 /* If reassembled packet passed, create new fragments. */
10925 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
10926 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
10927 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
10928 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
10929 #endif /* INET6 */
10930
10931 pf_sctp_multihome_delayed(&pd, kif, s, action);
10932
10933 return (action);
10934 }
10935 #endif /* INET || INET6 */
10936