1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64
65 #include <crypto/sha2/sha512.h>
66
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116
117 #include <netipsec/ah.h>
118
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121
122 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
123
124 SDT_PROVIDER_DEFINE(pf);
125 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
126 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
127 "struct pf_kstate *");
128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
130 "struct pf_kstate *");
131 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
132 "struct pfi_kkif *");
133 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
135 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
136 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
137 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
138 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
139 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
140 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
141 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
142 "struct pf_krule *", "struct mbuf *", "int");
143 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
144 "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
146 "struct pf_kstate *", "struct pf_sctp_source *");
147 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
148 "int", "struct pf_pdesc *", "int");
149 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
151 "int");
152 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
153 "int");
154
155 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
156 "struct mbuf *");
157 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
158 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
159 "int", "struct pf_keth_rule *", "char *");
160 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
162 "int", "struct pf_keth_rule *");
163 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
164
165 /*
166 * Global variables
167 */
168
169 /* state tables */
170 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
171 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]);
172 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
173 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
174 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
175 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
176 VNET_DEFINE(struct pf_kstatus, pf_status);
177
178 VNET_DEFINE(u_int32_t, ticket_altqs_active);
179 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
180 VNET_DEFINE(int, altqs_inactive_open);
181 VNET_DEFINE(u_int32_t, ticket_pabuf);
182
183 static const int PF_HDR_LIMIT = 20; /* arbitrary limit */
184
185 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx);
186 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
187 VNET_DEFINE(u_char, pf_tcp_secret[16]);
188 #define V_pf_tcp_secret VNET(pf_tcp_secret)
189 VNET_DEFINE(int, pf_tcp_secret_init);
190 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
191 VNET_DEFINE(int, pf_tcp_iss_off);
192 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
193 VNET_DECLARE(int, pf_vnet_active);
194 #define V_pf_vnet_active VNET(pf_vnet_active)
195
196 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
197 #define V_pf_purge_idx VNET(pf_purge_idx)
198
199 #ifdef PF_WANT_32_TO_64_COUNTER
200 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
201 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
202
203 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
204 VNET_DEFINE(size_t, pf_allrulecount);
205 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
206 #endif
207
208 #define PF_SCTP_MAX_ENDPOINTS 8
209
210 struct pf_sctp_endpoint;
211 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
212 struct pf_sctp_source {
213 sa_family_t af;
214 struct pf_addr addr;
215 TAILQ_ENTRY(pf_sctp_source) entry;
216 };
217 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
218 struct pf_sctp_endpoint
219 {
220 uint32_t v_tag;
221 struct pf_sctp_sources sources;
222 RB_ENTRY(pf_sctp_endpoint) entry;
223 };
224 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)225 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
226 {
227 return (a->v_tag - b->v_tag);
228 }
229 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
231 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
232 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
233 static struct mtx_padalign pf_sctp_endpoints_mtx;
234 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
235 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
236 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
237
238 /*
239 * Queue for pf_intr() sends.
240 */
241 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
242 struct pf_send_entry {
243 STAILQ_ENTRY(pf_send_entry) pfse_next;
244 struct mbuf *pfse_m;
245 enum {
246 PFSE_IP,
247 PFSE_IP6,
248 PFSE_ICMP,
249 PFSE_ICMP6,
250 } pfse_type;
251 struct {
252 int type;
253 int code;
254 int mtu;
255 } icmpopts;
256 };
257
258 STAILQ_HEAD(pf_send_head, pf_send_entry);
259 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
260 #define V_pf_sendqueue VNET(pf_sendqueue)
261
262 static struct mtx_padalign pf_sendqueue_mtx;
263 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
264 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
265 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
266
267 /*
268 * Queue for pf_overload_task() tasks.
269 */
270 struct pf_overload_entry {
271 SLIST_ENTRY(pf_overload_entry) next;
272 struct pf_addr addr;
273 sa_family_t af;
274 uint8_t dir;
275 struct pf_krule *rule;
276 };
277
278 SLIST_HEAD(pf_overload_head, pf_overload_entry);
279 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
280 #define V_pf_overloadqueue VNET(pf_overloadqueue)
281 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
282 #define V_pf_overloadtask VNET(pf_overloadtask)
283
284 static struct mtx_padalign pf_overloadqueue_mtx;
285 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
286 "pf overload/flush queue", MTX_DEF);
287 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
288 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
289
290 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
291 struct mtx_padalign pf_unlnkdrules_mtx;
292 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
293 MTX_DEF);
294
295 struct sx pf_config_lock;
296 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
297
298 struct mtx_padalign pf_table_stats_lock;
299 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
300 MTX_DEF);
301
302 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
303 #define V_pf_sources_z VNET(pf_sources_z)
304 uma_zone_t pf_mtag_z;
305 VNET_DEFINE(uma_zone_t, pf_state_z);
306 VNET_DEFINE(uma_zone_t, pf_state_key_z);
307 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
308
309 VNET_DEFINE(struct unrhdr64, pf_stateid);
310
311 static void pf_src_tree_remove_state(struct pf_kstate *);
312 static int pf_check_threshold(struct pf_kthreshold *);
313
314 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
315 struct pf_addr *, u_int16_t);
316 static int pf_modulate_sack(struct pf_pdesc *,
317 struct tcphdr *, struct pf_state_peer *);
318 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
319 u_int16_t *, u_int16_t *);
320 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
321 struct pf_addr *, struct pf_addr *, u_int16_t,
322 u_int16_t *, u_int16_t *, u_int16_t *,
323 u_int16_t *, u_int8_t, sa_family_t);
324 int pf_change_icmp_af(struct mbuf *, int,
325 struct pf_pdesc *, struct pf_pdesc *,
326 struct pf_addr *, struct pf_addr *, sa_family_t,
327 sa_family_t);
328 int pf_translate_icmp_af(int, void *);
329 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
330 int, sa_family_t, struct pf_krule *, int);
331 static void pf_detach_state(struct pf_kstate *);
332 static int pf_state_key_attach(struct pf_state_key *,
333 struct pf_state_key *, struct pf_kstate *);
334 static void pf_state_key_detach(struct pf_kstate *, int);
335 static int pf_state_key_ctor(void *, int, void *, int);
336 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
337 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
338 struct pf_mtag *pf_mtag);
339 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
340 struct pf_krule *, struct mbuf **);
341 static int pf_dummynet_route(struct pf_pdesc *,
342 struct pf_kstate *, struct pf_krule *,
343 struct ifnet *, const struct sockaddr *, struct mbuf **);
344 static int pf_test_eth_rule(int, struct pfi_kkif *,
345 struct mbuf **);
346 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
347 struct pf_pdesc *, struct pf_krule **,
348 struct pf_kruleset **, u_short *, struct inpcb *);
349 static int pf_create_state(struct pf_krule *,
350 struct pf_test_ctx *,
351 struct pf_kstate **, u_int16_t, u_int16_t);
352 static int pf_state_key_addr_setup(struct pf_pdesc *,
353 struct pf_state_key_cmp *, int);
354 static int pf_tcp_track_full(struct pf_kstate *,
355 struct pf_pdesc *, u_short *, int *,
356 struct pf_state_peer *, struct pf_state_peer *,
357 u_int8_t, u_int8_t);
358 static int pf_tcp_track_sloppy(struct pf_kstate *,
359 struct pf_pdesc *, u_short *,
360 struct pf_state_peer *, struct pf_state_peer *,
361 u_int8_t, u_int8_t);
362 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *,
363 u_short *);
364 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
365 struct pf_pdesc *, struct pf_kstate **,
366 u_int16_t, u_int16_t, int, int *, int, int);
367 static int pf_test_state_icmp(struct pf_kstate **,
368 struct pf_pdesc *, u_short *);
369 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
370 u_short *);
371 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
372 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
373 struct pfi_kkif *, struct pf_kstate *, int);
374 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
375 int, u_int16_t);
376 static int pf_check_proto_cksum(struct mbuf *, int, int,
377 u_int8_t, sa_family_t);
378 static int pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
379 #ifdef INET6
380 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
381 int, int, u_short *);
382 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
383 u_short *);
384 #endif
385 static void pf_print_state_parts(struct pf_kstate *,
386 struct pf_state_key *, struct pf_state_key *);
387 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
388 bool);
389 static int pf_find_state(struct pf_pdesc *,
390 const struct pf_state_key_cmp *, struct pf_kstate **);
391 static bool pf_src_connlimit(struct pf_kstate *);
392 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
393 static void pf_counters_inc(int, struct pf_pdesc *,
394 struct pf_kstate *, struct pf_krule *,
395 struct pf_krule *);
396 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *,
397 struct pf_krule *, struct pf_kruleset *,
398 struct pf_krule_slist *);
399 static void pf_overload_task(void *v, int pending);
400 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
401 struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
402 struct pf_addr *, sa_family_t, struct pf_addr *,
403 struct pfi_kkif *, pf_sn_types_t);
404 static u_int pf_purge_expired_states(u_int, int);
405 static void pf_purge_unlinked_rules(void);
406 static int pf_mtag_uminit(void *, int, int);
407 static void pf_mtag_free(struct m_tag *);
408 static void pf_packet_rework_nat(struct pf_pdesc *, int,
409 struct pf_state_key *);
410 #ifdef INET
411 static void pf_route(struct pf_krule *,
412 struct ifnet *, struct pf_kstate *,
413 struct pf_pdesc *, struct inpcb *);
414 #endif /* INET */
415 #ifdef INET6
416 static void pf_change_a6(struct pf_addr *, u_int16_t *,
417 struct pf_addr *, u_int8_t);
418 static void pf_route6(struct pf_krule *,
419 struct ifnet *, struct pf_kstate *,
420 struct pf_pdesc *, struct inpcb *);
421 #endif /* INET6 */
422 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
423
424 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
425
426 extern int pf_end_threads;
427 extern struct proc *pf_purge_proc;
428
429 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
430
431 #define PACKET_UNDO_NAT(_pd, _off, _s) \
432 do { \
433 struct pf_state_key *nk; \
434 if ((pd->dir) == PF_OUT) \
435 nk = (_s)->key[PF_SK_STACK]; \
436 else \
437 nk = (_s)->key[PF_SK_WIRE]; \
438 pf_packet_rework_nat(_pd, _off, nk); \
439 } while (0)
440
441 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
442 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
443
444 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)445 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
446 {
447 struct pfi_kkif *k = pd->kif;
448
449 SDT_PROBE2(pf, ip, , bound_iface, st, k);
450
451 /* Floating unless otherwise specified. */
452 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
453 return (V_pfi_all);
454
455 /*
456 * Initially set to all, because we don't know what interface we'll be
457 * sending this out when we create the state.
458 */
459 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
460 return (V_pfi_all);
461
462 /*
463 * If this state is created based on another state (e.g. SCTP
464 * multihome) always set it floating initially. We can't know for sure
465 * what interface the actual traffic for this state will come in on.
466 */
467 if (pd->related_rule)
468 return (V_pfi_all);
469
470 /* Don't overrule the interface for states created on incoming packets. */
471 if (st->direction == PF_IN)
472 return (k);
473
474 /* No route-to, so don't overrule. */
475 if (st->act.rt != PF_ROUTETO)
476 return (k);
477
478 /* Bind to the route-to interface. */
479 return (st->act.rt_kif);
480 }
481
482 #define STATE_INC_COUNTERS(s) \
483 do { \
484 struct pf_krule_item *mrm; \
485 counter_u64_add(s->rule->states_cur, 1); \
486 counter_u64_add(s->rule->states_tot, 1); \
487 if (s->anchor != NULL) { \
488 counter_u64_add(s->anchor->states_cur, 1); \
489 counter_u64_add(s->anchor->states_tot, 1); \
490 } \
491 if (s->nat_rule != NULL) { \
492 counter_u64_add(s->nat_rule->states_cur, 1);\
493 counter_u64_add(s->nat_rule->states_tot, 1);\
494 } \
495 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
496 counter_u64_add(mrm->r->states_cur, 1); \
497 counter_u64_add(mrm->r->states_tot, 1); \
498 } \
499 } while (0)
500
501 #define STATE_DEC_COUNTERS(s) \
502 do { \
503 struct pf_krule_item *mrm; \
504 if (s->nat_rule != NULL) \
505 counter_u64_add(s->nat_rule->states_cur, -1);\
506 if (s->anchor != NULL) \
507 counter_u64_add(s->anchor->states_cur, -1); \
508 counter_u64_add(s->rule->states_cur, -1); \
509 SLIST_FOREACH(mrm, &s->match_rules, entry) \
510 counter_u64_add(mrm->r->states_cur, -1); \
511 } while (0)
512
513 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
514 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
515 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
516 VNET_DEFINE(struct pf_idhash *, pf_idhash);
517 VNET_DEFINE(struct pf_srchash *, pf_srchash);
518 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
519 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
520
521 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
522 "pf(4)");
523
524 VNET_DEFINE(u_long, pf_hashmask);
525 VNET_DEFINE(u_long, pf_srchashmask);
526 VNET_DEFINE(u_long, pf_udpendpointhashmask);
527 VNET_DEFINE_STATIC(u_long, pf_hashsize);
528 #define V_pf_hashsize VNET(pf_hashsize)
529 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
530 #define V_pf_srchashsize VNET(pf_srchashsize)
531 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
532 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
533 u_long pf_ioctl_maxcount = 65535;
534
535 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
536 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
537 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
538 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
539 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
540 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
541 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
542 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
543
544 VNET_DEFINE(void *, pf_swi_cookie);
545 VNET_DEFINE(struct intr_event *, pf_swi_ie);
546
547 VNET_DEFINE(uint32_t, pf_hashseed);
548 #define V_pf_hashseed VNET(pf_hashseed)
549
550 static void
pf_sctp_checksum(struct mbuf * m,int off)551 pf_sctp_checksum(struct mbuf *m, int off)
552 {
553 uint32_t sum = 0;
554
555 /* Zero out the checksum, to enable recalculation. */
556 m_copyback(m, off + offsetof(struct sctphdr, checksum),
557 sizeof(sum), (caddr_t)&sum);
558
559 sum = sctp_calculate_cksum(m, off);
560
561 m_copyback(m, off + offsetof(struct sctphdr, checksum),
562 sizeof(sum), (caddr_t)&sum);
563 }
564
565 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)566 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
567 {
568
569 switch (af) {
570 #ifdef INET
571 case AF_INET:
572 if (a->addr32[0] > b->addr32[0])
573 return (1);
574 if (a->addr32[0] < b->addr32[0])
575 return (-1);
576 break;
577 #endif /* INET */
578 #ifdef INET6
579 case AF_INET6:
580 if (a->addr32[3] > b->addr32[3])
581 return (1);
582 if (a->addr32[3] < b->addr32[3])
583 return (-1);
584 if (a->addr32[2] > b->addr32[2])
585 return (1);
586 if (a->addr32[2] < b->addr32[2])
587 return (-1);
588 if (a->addr32[1] > b->addr32[1])
589 return (1);
590 if (a->addr32[1] < b->addr32[1])
591 return (-1);
592 if (a->addr32[0] > b->addr32[0])
593 return (1);
594 if (a->addr32[0] < b->addr32[0])
595 return (-1);
596 break;
597 #endif /* INET6 */
598 default:
599 unhandled_af(af);
600 }
601 return (0);
602 }
603
604 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)605 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
606 {
607 switch (af) {
608 #ifdef INET
609 case AF_INET:
610 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
611 #endif /* INET */
612 case AF_INET6:
613 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
614 default:
615 unhandled_af(af);
616 }
617 }
618
619 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)620 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
621 {
622
623 switch (pd->proto) {
624 case IPPROTO_TCP: {
625 struct tcphdr *th = &pd->hdr.tcp;
626
627 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
628 pf_change_ap(pd, pd->src, &th->th_sport,
629 &nk->addr[pd->sidx], nk->port[pd->sidx]);
630 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
631 pf_change_ap(pd, pd->dst, &th->th_dport,
632 &nk->addr[pd->didx], nk->port[pd->didx]);
633 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
634 break;
635 }
636 case IPPROTO_UDP: {
637 struct udphdr *uh = &pd->hdr.udp;
638
639 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
640 pf_change_ap(pd, pd->src, &uh->uh_sport,
641 &nk->addr[pd->sidx], nk->port[pd->sidx]);
642 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
643 pf_change_ap(pd, pd->dst, &uh->uh_dport,
644 &nk->addr[pd->didx], nk->port[pd->didx]);
645 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
646 break;
647 }
648 case IPPROTO_SCTP: {
649 struct sctphdr *sh = &pd->hdr.sctp;
650
651 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
652 pf_change_ap(pd, pd->src, &sh->src_port,
653 &nk->addr[pd->sidx], nk->port[pd->sidx]);
654 }
655 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
656 pf_change_ap(pd, pd->dst, &sh->dest_port,
657 &nk->addr[pd->didx], nk->port[pd->didx]);
658 }
659
660 break;
661 }
662 case IPPROTO_ICMP: {
663 struct icmp *ih = &pd->hdr.icmp;
664
665 if (nk->port[pd->sidx] != ih->icmp_id) {
666 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
667 ih->icmp_cksum, ih->icmp_id,
668 nk->port[pd->sidx], 0);
669 ih->icmp_id = nk->port[pd->sidx];
670 pd->sport = &ih->icmp_id;
671
672 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
673 }
674 /* FALLTHROUGH */
675 }
676 default:
677 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
678 switch (pd->af) {
679 case AF_INET:
680 pf_change_a(&pd->src->v4.s_addr,
681 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
682 0);
683 break;
684 case AF_INET6:
685 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
686 break;
687 default:
688 unhandled_af(pd->af);
689 }
690 }
691 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
692 switch (pd->af) {
693 case AF_INET:
694 pf_change_a(&pd->dst->v4.s_addr,
695 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
696 0);
697 break;
698 case AF_INET6:
699 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
700 break;
701 default:
702 unhandled_af(pd->af);
703 }
704 }
705 break;
706 }
707 }
708
709 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)710 pf_hashkey(const struct pf_state_key *sk)
711 {
712 uint32_t h;
713
714 h = murmur3_32_hash32((const uint32_t *)sk,
715 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
716 V_pf_hashseed);
717
718 return (h & V_pf_hashmask);
719 }
720
721 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)722 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
723 {
724 uint32_t h;
725
726 switch (af) {
727 case AF_INET:
728 h = murmur3_32_hash32((uint32_t *)&addr->v4,
729 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
730 break;
731 case AF_INET6:
732 h = murmur3_32_hash32((uint32_t *)&addr->v6,
733 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
734 break;
735 default:
736 unhandled_af(af);
737 }
738
739 return (h & V_pf_srchashmask);
740 }
741
742 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)743 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
744 {
745 uint32_t h;
746
747 h = murmur3_32_hash32((uint32_t *)endpoint,
748 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
749 V_pf_hashseed);
750 return (h & V_pf_udpendpointhashmask);
751 }
752
753 #ifdef ALTQ
754 static int
pf_state_hash(struct pf_kstate * s)755 pf_state_hash(struct pf_kstate *s)
756 {
757 u_int32_t hv = (intptr_t)s / sizeof(*s);
758
759 hv ^= crc32(&s->src, sizeof(s->src));
760 hv ^= crc32(&s->dst, sizeof(s->dst));
761 if (hv == 0)
762 hv = 1;
763 return (hv);
764 }
765 #endif /* ALTQ */
766
767 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)768 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
769 {
770 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
771 s->dst.state = newstate;
772 if (which == PF_PEER_DST)
773 return;
774 if (s->src.state == newstate)
775 return;
776 if (s->creatorid == V_pf_status.hostid &&
777 s->key[PF_SK_STACK] != NULL &&
778 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
779 !(TCPS_HAVEESTABLISHED(s->src.state) ||
780 s->src.state == TCPS_CLOSED) &&
781 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
782 atomic_add_32(&V_pf_status.states_halfopen, -1);
783
784 s->src.state = newstate;
785 }
786
787 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)788 pf_init_threshold(struct pf_kthreshold *threshold,
789 u_int32_t limit, u_int32_t seconds)
790 {
791 threshold->limit = limit;
792 threshold->seconds = seconds;
793 threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
794
795 return (threshold->cr != NULL);
796 }
797
798 static int
pf_check_threshold(struct pf_kthreshold * threshold)799 pf_check_threshold(struct pf_kthreshold *threshold)
800 {
801 return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
802 }
803
804 static bool
pf_src_connlimit(struct pf_kstate * state)805 pf_src_connlimit(struct pf_kstate *state)
806 {
807 struct pf_overload_entry *pfoe;
808 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT];
809 bool limited = false;
810
811 PF_STATE_LOCK_ASSERT(state);
812 PF_SRC_NODE_LOCK(src_node);
813
814 src_node->conn++;
815 state->src.tcp_est = 1;
816
817 if (state->rule->max_src_conn &&
818 state->rule->max_src_conn <
819 src_node->conn) {
820 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
821 limited = true;
822 }
823
824 if (state->rule->max_src_conn_rate.limit &&
825 pf_check_threshold(&src_node->conn_rate)) {
826 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
827 limited = true;
828 }
829
830 if (!limited)
831 goto done;
832
833 /* Kill this state. */
834 state->timeout = PFTM_PURGE;
835 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
836
837 if (state->rule->overload_tbl == NULL)
838 goto done;
839
840 /* Schedule overloading and flushing task. */
841 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
842 if (pfoe == NULL)
843 goto done; /* too bad :( */
844
845 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
846 pfoe->af = state->key[PF_SK_WIRE]->af;
847 pfoe->rule = state->rule;
848 pfoe->dir = state->direction;
849 PF_OVERLOADQ_LOCK();
850 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
851 PF_OVERLOADQ_UNLOCK();
852 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
853
854 done:
855 PF_SRC_NODE_UNLOCK(src_node);
856 return (limited);
857 }
858
859 static void
pf_overload_task(void * v,int pending)860 pf_overload_task(void *v, int pending)
861 {
862 struct pf_overload_head queue;
863 struct pfr_addr p;
864 struct pf_overload_entry *pfoe, *pfoe1;
865 uint32_t killed = 0;
866
867 CURVNET_SET((struct vnet *)v);
868
869 PF_OVERLOADQ_LOCK();
870 queue = V_pf_overloadqueue;
871 SLIST_INIT(&V_pf_overloadqueue);
872 PF_OVERLOADQ_UNLOCK();
873
874 bzero(&p, sizeof(p));
875 SLIST_FOREACH(pfoe, &queue, next) {
876 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
877 if (V_pf_status.debug >= PF_DEBUG_MISC) {
878 printf("%s: blocking address ", __func__);
879 pf_print_host(&pfoe->addr, 0, pfoe->af);
880 printf("\n");
881 }
882
883 p.pfra_af = pfoe->af;
884 switch (pfoe->af) {
885 #ifdef INET
886 case AF_INET:
887 p.pfra_net = 32;
888 p.pfra_ip4addr = pfoe->addr.v4;
889 break;
890 #endif /* INET */
891 #ifdef INET6
892 case AF_INET6:
893 p.pfra_net = 128;
894 p.pfra_ip6addr = pfoe->addr.v6;
895 break;
896 #endif /* INET6 */
897 default:
898 unhandled_af(pfoe->af);
899 }
900
901 PF_RULES_WLOCK();
902 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
903 PF_RULES_WUNLOCK();
904 }
905
906 /*
907 * Remove those entries, that don't need flushing.
908 */
909 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
910 if (pfoe->rule->flush == 0) {
911 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
912 free(pfoe, M_PFTEMP);
913 } else
914 counter_u64_add(
915 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
916
917 /* If nothing to flush, return. */
918 if (SLIST_EMPTY(&queue)) {
919 CURVNET_RESTORE();
920 return;
921 }
922
923 for (int i = 0; i <= V_pf_hashmask; i++) {
924 struct pf_idhash *ih = &V_pf_idhash[i];
925 struct pf_state_key *sk;
926 struct pf_kstate *s;
927
928 PF_HASHROW_LOCK(ih);
929 LIST_FOREACH(s, &ih->states, entry) {
930 sk = s->key[PF_SK_WIRE];
931 SLIST_FOREACH(pfoe, &queue, next)
932 if (sk->af == pfoe->af &&
933 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
934 pfoe->rule == s->rule) &&
935 ((pfoe->dir == PF_OUT &&
936 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
937 (pfoe->dir == PF_IN &&
938 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
939 s->timeout = PFTM_PURGE;
940 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
941 killed++;
942 }
943 }
944 PF_HASHROW_UNLOCK(ih);
945 }
946 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
947 free(pfoe, M_PFTEMP);
948 if (V_pf_status.debug >= PF_DEBUG_MISC)
949 printf("%s: %u states killed", __func__, killed);
950
951 CURVNET_RESTORE();
952 }
953
954 /*
955 * On node found always returns locked. On not found its configurable.
956 */
957 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)958 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
959 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
960 {
961 struct pf_ksrc_node *n;
962
963 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
964
965 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
966 PF_HASHROW_LOCK(*sh);
967 LIST_FOREACH(n, &(*sh)->nodes, entry)
968 if (n->rule == rule && n->af == af && n->type == sn_type &&
969 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
970 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
971 break;
972
973 if (n == NULL && !returnlocked)
974 PF_HASHROW_UNLOCK(*sh);
975
976 return (n);
977 }
978
979 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)980 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
981 {
982 struct pf_ksrc_node *cur;
983
984 if ((*sn) == NULL)
985 return (false);
986
987 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
988
989 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
990 PF_HASHROW_LOCK(sh);
991 LIST_FOREACH(cur, &(sh->nodes), entry) {
992 if (cur == (*sn) &&
993 cur->expire != 1) /* Ignore nodes being killed */
994 return (true);
995 }
996 PF_HASHROW_UNLOCK(sh);
997 (*sn) = NULL;
998 return (false);
999 }
1000
1001 static void
pf_free_src_node(struct pf_ksrc_node * sn)1002 pf_free_src_node(struct pf_ksrc_node *sn)
1003 {
1004
1005 for (int i = 0; i < 2; i++) {
1006 counter_u64_free(sn->bytes[i]);
1007 counter_u64_free(sn->packets[i]);
1008 }
1009 counter_rate_free(sn->conn_rate.cr);
1010 uma_zfree(V_pf_sources_z, sn);
1011 }
1012
1013 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,pf_sn_types_t sn_type)1014 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1015 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1016 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1017 struct pfi_kkif *rkif, pf_sn_types_t sn_type)
1018 {
1019 u_short reason = 0;
1020 struct pf_krule *r_track = rule;
1021 struct pf_ksrc_node **sn = &(sns[sn_type]);
1022 struct pf_srchash **sh = &(snhs[sn_type]);
1023
1024 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1025 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1026
1027 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1028 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1029
1030 /*
1031 * XXX: There could be a KASSERT for
1032 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1033 * but we'd need to pass pool *only* for this KASSERT.
1034 */
1035
1036 if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1037 !(rule->rule_flag & PFRULE_RULESRCTRACK))
1038 r_track = &V_pf_default_rule;
1039
1040 /*
1041 * Request the sh to always be locked, as we might insert a new sn.
1042 */
1043 if (*sn == NULL)
1044 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1045
1046 if (*sn == NULL) {
1047 PF_HASHROW_ASSERT(*sh);
1048
1049 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1050 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1051 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1052 reason = PFRES_SRCLIMIT;
1053 goto done;
1054 }
1055
1056 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1057 if ((*sn) == NULL) {
1058 reason = PFRES_MEMORY;
1059 goto done;
1060 }
1061
1062 for (int i = 0; i < 2; i++) {
1063 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1064 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1065
1066 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1067 pf_free_src_node(*sn);
1068 reason = PFRES_MEMORY;
1069 goto done;
1070 }
1071 }
1072
1073 if (sn_type == PF_SN_LIMIT)
1074 if (! pf_init_threshold(&(*sn)->conn_rate,
1075 rule->max_src_conn_rate.limit,
1076 rule->max_src_conn_rate.seconds)) {
1077 pf_free_src_node(*sn);
1078 reason = PFRES_MEMORY;
1079 goto done;
1080 }
1081
1082 MPASS((*sn)->lock == NULL);
1083 (*sn)->lock = &(*sh)->lock;
1084
1085 (*sn)->af = af;
1086 (*sn)->rule = r_track;
1087 PF_ACPY(&(*sn)->addr, src, af);
1088 if (raddr != NULL)
1089 PF_ACPY(&(*sn)->raddr, raddr, af);
1090 (*sn)->rkif = rkif;
1091 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1092 (*sn)->creation = time_uptime;
1093 (*sn)->ruletype = rule->action;
1094 (*sn)->type = sn_type;
1095 counter_u64_add(r_track->src_nodes[sn_type], 1);
1096 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1097 } else {
1098 if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1099 (*sn)->states >= rule->max_src_states) {
1100 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1101 1);
1102 reason = PFRES_SRCLIMIT;
1103 goto done;
1104 }
1105 }
1106 done:
1107 if (reason == 0)
1108 (*sn)->states++;
1109 else
1110 (*sn) = NULL;
1111
1112 PF_HASHROW_UNLOCK(*sh);
1113 return (reason);
1114 }
1115
1116 void
pf_unlink_src_node(struct pf_ksrc_node * src)1117 pf_unlink_src_node(struct pf_ksrc_node *src)
1118 {
1119 PF_SRC_NODE_LOCK_ASSERT(src);
1120
1121 LIST_REMOVE(src, entry);
1122 if (src->rule)
1123 counter_u64_add(src->rule->src_nodes[src->type], -1);
1124 }
1125
1126 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1127 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1128 {
1129 struct pf_ksrc_node *sn, *tmp;
1130 u_int count = 0;
1131
1132 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1133 pf_free_src_node(sn);
1134 count++;
1135 }
1136
1137 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1138
1139 return (count);
1140 }
1141
1142 void
pf_mtag_initialize(void)1143 pf_mtag_initialize(void)
1144 {
1145
1146 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1147 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1148 UMA_ALIGN_PTR, 0);
1149 }
1150
1151 /* Per-vnet data storage structures initialization. */
1152 void
pf_initialize(void)1153 pf_initialize(void)
1154 {
1155 struct pf_keyhash *kh;
1156 struct pf_idhash *ih;
1157 struct pf_srchash *sh;
1158 struct pf_udpendpointhash *uh;
1159 u_int i;
1160
1161 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1162 V_pf_hashsize = PF_HASHSIZ;
1163 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1164 V_pf_srchashsize = PF_SRCHASHSIZ;
1165 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1166 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1167
1168 V_pf_hashseed = arc4random();
1169
1170 /* States and state keys storage. */
1171 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1172 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1173 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1174 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1175 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1176
1177 V_pf_state_key_z = uma_zcreate("pf state keys",
1178 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1179 UMA_ALIGN_PTR, 0);
1180
1181 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1182 M_PFHASH, M_NOWAIT | M_ZERO);
1183 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1184 M_PFHASH, M_NOWAIT | M_ZERO);
1185 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1186 printf("pf: Unable to allocate memory for "
1187 "state_hashsize %lu.\n", V_pf_hashsize);
1188
1189 free(V_pf_keyhash, M_PFHASH);
1190 free(V_pf_idhash, M_PFHASH);
1191
1192 V_pf_hashsize = PF_HASHSIZ;
1193 V_pf_keyhash = mallocarray(V_pf_hashsize,
1194 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1195 V_pf_idhash = mallocarray(V_pf_hashsize,
1196 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1197 }
1198
1199 V_pf_hashmask = V_pf_hashsize - 1;
1200 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1201 i++, kh++, ih++) {
1202 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1203 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1204 }
1205
1206 /* Source nodes. */
1207 V_pf_sources_z = uma_zcreate("pf source nodes",
1208 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1209 0);
1210 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1211 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1212 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1213
1214 V_pf_srchash = mallocarray(V_pf_srchashsize,
1215 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1216 if (V_pf_srchash == NULL) {
1217 printf("pf: Unable to allocate memory for "
1218 "source_hashsize %lu.\n", V_pf_srchashsize);
1219
1220 V_pf_srchashsize = PF_SRCHASHSIZ;
1221 V_pf_srchash = mallocarray(V_pf_srchashsize,
1222 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1223 }
1224
1225 V_pf_srchashmask = V_pf_srchashsize - 1;
1226 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1227 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1228
1229
1230 /* UDP endpoint mappings. */
1231 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1232 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1233 UMA_ALIGN_PTR, 0);
1234 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1235 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1236 if (V_pf_udpendpointhash == NULL) {
1237 printf("pf: Unable to allocate memory for "
1238 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1239
1240 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1241 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1242 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1243 }
1244
1245 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1246 for (i = 0, uh = V_pf_udpendpointhash;
1247 i <= V_pf_udpendpointhashmask;
1248 i++, uh++) {
1249 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1250 MTX_DEF | MTX_DUPOK);
1251 }
1252
1253 /* ALTQ */
1254 TAILQ_INIT(&V_pf_altqs[0]);
1255 TAILQ_INIT(&V_pf_altqs[1]);
1256 TAILQ_INIT(&V_pf_altqs[2]);
1257 TAILQ_INIT(&V_pf_altqs[3]);
1258 TAILQ_INIT(&V_pf_pabuf[0]);
1259 TAILQ_INIT(&V_pf_pabuf[1]);
1260 TAILQ_INIT(&V_pf_pabuf[2]);
1261 V_pf_altqs_active = &V_pf_altqs[0];
1262 V_pf_altq_ifs_active = &V_pf_altqs[1];
1263 V_pf_altqs_inactive = &V_pf_altqs[2];
1264 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1265
1266 /* Send & overload+flush queues. */
1267 STAILQ_INIT(&V_pf_sendqueue);
1268 SLIST_INIT(&V_pf_overloadqueue);
1269 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1270
1271 /* Unlinked, but may be referenced rules. */
1272 TAILQ_INIT(&V_pf_unlinked_rules);
1273 }
1274
1275 void
pf_mtag_cleanup(void)1276 pf_mtag_cleanup(void)
1277 {
1278
1279 uma_zdestroy(pf_mtag_z);
1280 }
1281
1282 void
pf_cleanup(void)1283 pf_cleanup(void)
1284 {
1285 struct pf_keyhash *kh;
1286 struct pf_idhash *ih;
1287 struct pf_srchash *sh;
1288 struct pf_udpendpointhash *uh;
1289 struct pf_send_entry *pfse, *next;
1290 u_int i;
1291
1292 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1293 i <= V_pf_hashmask;
1294 i++, kh++, ih++) {
1295 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1296 __func__));
1297 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1298 __func__));
1299 mtx_destroy(&kh->lock);
1300 mtx_destroy(&ih->lock);
1301 }
1302 free(V_pf_keyhash, M_PFHASH);
1303 free(V_pf_idhash, M_PFHASH);
1304
1305 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1306 KASSERT(LIST_EMPTY(&sh->nodes),
1307 ("%s: source node hash not empty", __func__));
1308 mtx_destroy(&sh->lock);
1309 }
1310 free(V_pf_srchash, M_PFHASH);
1311
1312 for (i = 0, uh = V_pf_udpendpointhash;
1313 i <= V_pf_udpendpointhashmask;
1314 i++, uh++) {
1315 KASSERT(LIST_EMPTY(&uh->endpoints),
1316 ("%s: udp endpoint hash not empty", __func__));
1317 mtx_destroy(&uh->lock);
1318 }
1319 free(V_pf_udpendpointhash, M_PFHASH);
1320
1321 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1322 m_freem(pfse->pfse_m);
1323 free(pfse, M_PFTEMP);
1324 }
1325 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1326
1327 uma_zdestroy(V_pf_sources_z);
1328 uma_zdestroy(V_pf_state_z);
1329 uma_zdestroy(V_pf_state_key_z);
1330 uma_zdestroy(V_pf_udp_mapping_z);
1331 }
1332
1333 static int
pf_mtag_uminit(void * mem,int size,int how)1334 pf_mtag_uminit(void *mem, int size, int how)
1335 {
1336 struct m_tag *t;
1337
1338 t = (struct m_tag *)mem;
1339 t->m_tag_cookie = MTAG_ABI_COMPAT;
1340 t->m_tag_id = PACKET_TAG_PF;
1341 t->m_tag_len = sizeof(struct pf_mtag);
1342 t->m_tag_free = pf_mtag_free;
1343
1344 return (0);
1345 }
1346
1347 static void
pf_mtag_free(struct m_tag * t)1348 pf_mtag_free(struct m_tag *t)
1349 {
1350
1351 uma_zfree(pf_mtag_z, t);
1352 }
1353
1354 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1355 pf_get_mtag(struct mbuf *m)
1356 {
1357 struct m_tag *mtag;
1358
1359 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1360 return ((struct pf_mtag *)(mtag + 1));
1361
1362 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1363 if (mtag == NULL)
1364 return (NULL);
1365 bzero(mtag + 1, sizeof(struct pf_mtag));
1366 m_tag_prepend(m, mtag);
1367
1368 return ((struct pf_mtag *)(mtag + 1));
1369 }
1370
1371 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1372 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1373 struct pf_kstate *s)
1374 {
1375 struct pf_keyhash *khs, *khw, *kh;
1376 struct pf_state_key *sk, *cur;
1377 struct pf_kstate *si, *olds = NULL;
1378 int idx;
1379
1380 NET_EPOCH_ASSERT();
1381 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1382 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1383 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1384
1385 /*
1386 * We need to lock hash slots of both keys. To avoid deadlock
1387 * we always lock the slot with lower address first. Unlock order
1388 * isn't important.
1389 *
1390 * We also need to lock ID hash slot before dropping key
1391 * locks. On success we return with ID hash slot locked.
1392 */
1393
1394 if (skw == sks) {
1395 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1396 PF_HASHROW_LOCK(khs);
1397 } else {
1398 khs = &V_pf_keyhash[pf_hashkey(sks)];
1399 khw = &V_pf_keyhash[pf_hashkey(skw)];
1400 if (khs == khw) {
1401 PF_HASHROW_LOCK(khs);
1402 } else if (khs < khw) {
1403 PF_HASHROW_LOCK(khs);
1404 PF_HASHROW_LOCK(khw);
1405 } else {
1406 PF_HASHROW_LOCK(khw);
1407 PF_HASHROW_LOCK(khs);
1408 }
1409 }
1410
1411 #define KEYS_UNLOCK() do { \
1412 if (khs != khw) { \
1413 PF_HASHROW_UNLOCK(khs); \
1414 PF_HASHROW_UNLOCK(khw); \
1415 } else \
1416 PF_HASHROW_UNLOCK(khs); \
1417 } while (0)
1418
1419 /*
1420 * First run: start with wire key.
1421 */
1422 sk = skw;
1423 kh = khw;
1424 idx = PF_SK_WIRE;
1425
1426 MPASS(s->lock == NULL);
1427 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1428
1429 keyattach:
1430 LIST_FOREACH(cur, &kh->keys, entry)
1431 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1432 break;
1433
1434 if (cur != NULL) {
1435 /* Key exists. Check for same kif, if none, add to key. */
1436 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1437 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1438
1439 PF_HASHROW_LOCK(ih);
1440 if (si->kif == s->kif &&
1441 ((si->key[PF_SK_WIRE]->af == sk->af &&
1442 si->direction == s->direction) ||
1443 (si->key[PF_SK_WIRE]->af !=
1444 si->key[PF_SK_STACK]->af &&
1445 sk->af == si->key[PF_SK_STACK]->af &&
1446 si->direction != s->direction))) {
1447 bool reuse = false;
1448
1449 if (sk->proto == IPPROTO_TCP &&
1450 si->src.state >= TCPS_FIN_WAIT_2 &&
1451 si->dst.state >= TCPS_FIN_WAIT_2)
1452 reuse = true;
1453
1454 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1455 printf("pf: %s key attach "
1456 "%s on %s: ",
1457 (idx == PF_SK_WIRE) ?
1458 "wire" : "stack",
1459 reuse ? "reuse" : "failed",
1460 s->kif->pfik_name);
1461 pf_print_state_parts(s,
1462 (idx == PF_SK_WIRE) ?
1463 sk : NULL,
1464 (idx == PF_SK_STACK) ?
1465 sk : NULL);
1466 printf(", existing: ");
1467 pf_print_state_parts(si,
1468 (idx == PF_SK_WIRE) ?
1469 sk : NULL,
1470 (idx == PF_SK_STACK) ?
1471 sk : NULL);
1472 printf("\n");
1473 }
1474
1475 if (reuse) {
1476 /*
1477 * New state matches an old >FIN_WAIT_2
1478 * state. We can't drop key hash locks,
1479 * thus we can't unlink it properly.
1480 *
1481 * As a workaround we drop it into
1482 * TCPS_CLOSED state, schedule purge
1483 * ASAP and push it into the very end
1484 * of the slot TAILQ, so that it won't
1485 * conflict with our new state.
1486 */
1487 pf_set_protostate(si, PF_PEER_BOTH,
1488 TCPS_CLOSED);
1489 si->timeout = PFTM_PURGE;
1490 olds = si;
1491 } else {
1492 s->timeout = PFTM_UNLINKED;
1493 if (idx == PF_SK_STACK)
1494 /*
1495 * Remove the wire key from
1496 * the hash. Other threads
1497 * can't be referencing it
1498 * because we still hold the
1499 * hash lock.
1500 */
1501 pf_state_key_detach(s,
1502 PF_SK_WIRE);
1503 PF_HASHROW_UNLOCK(ih);
1504 KEYS_UNLOCK();
1505 if (idx == PF_SK_WIRE)
1506 /*
1507 * We've not inserted either key.
1508 * Free both.
1509 */
1510 uma_zfree(V_pf_state_key_z, skw);
1511 if (skw != sks)
1512 uma_zfree(
1513 V_pf_state_key_z,
1514 sks);
1515 return (EEXIST); /* collision! */
1516 }
1517 }
1518 PF_HASHROW_UNLOCK(ih);
1519 }
1520 uma_zfree(V_pf_state_key_z, sk);
1521 s->key[idx] = cur;
1522 } else {
1523 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1524 s->key[idx] = sk;
1525 }
1526
1527 stateattach:
1528 /* List is sorted, if-bound states before floating. */
1529 if (s->kif == V_pfi_all)
1530 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1531 else
1532 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1533
1534 if (olds) {
1535 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1536 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1537 key_list[idx]);
1538 olds = NULL;
1539 }
1540
1541 /*
1542 * Attach done. See how should we (or should not?)
1543 * attach a second key.
1544 */
1545 if (sks == skw) {
1546 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1547 idx = PF_SK_STACK;
1548 sks = NULL;
1549 goto stateattach;
1550 } else if (sks != NULL) {
1551 /*
1552 * Continue attaching with stack key.
1553 */
1554 sk = sks;
1555 kh = khs;
1556 idx = PF_SK_STACK;
1557 sks = NULL;
1558 goto keyattach;
1559 }
1560
1561 PF_STATE_LOCK(s);
1562 KEYS_UNLOCK();
1563
1564 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1565 ("%s failure", __func__));
1566
1567 return (0);
1568 #undef KEYS_UNLOCK
1569 }
1570
1571 static void
pf_detach_state(struct pf_kstate * s)1572 pf_detach_state(struct pf_kstate *s)
1573 {
1574 struct pf_state_key *sks = s->key[PF_SK_STACK];
1575 struct pf_keyhash *kh;
1576
1577 NET_EPOCH_ASSERT();
1578 MPASS(s->timeout >= PFTM_MAX);
1579
1580 pf_sctp_multihome_detach_addr(s);
1581
1582 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1583 V_pflow_export_state_ptr(s);
1584
1585 if (sks != NULL) {
1586 kh = &V_pf_keyhash[pf_hashkey(sks)];
1587 PF_HASHROW_LOCK(kh);
1588 if (s->key[PF_SK_STACK] != NULL)
1589 pf_state_key_detach(s, PF_SK_STACK);
1590 /*
1591 * If both point to same key, then we are done.
1592 */
1593 if (sks == s->key[PF_SK_WIRE]) {
1594 pf_state_key_detach(s, PF_SK_WIRE);
1595 PF_HASHROW_UNLOCK(kh);
1596 return;
1597 }
1598 PF_HASHROW_UNLOCK(kh);
1599 }
1600
1601 if (s->key[PF_SK_WIRE] != NULL) {
1602 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1603 PF_HASHROW_LOCK(kh);
1604 if (s->key[PF_SK_WIRE] != NULL)
1605 pf_state_key_detach(s, PF_SK_WIRE);
1606 PF_HASHROW_UNLOCK(kh);
1607 }
1608 }
1609
1610 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1611 pf_state_key_detach(struct pf_kstate *s, int idx)
1612 {
1613 struct pf_state_key *sk = s->key[idx];
1614 #ifdef INVARIANTS
1615 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1616
1617 PF_HASHROW_ASSERT(kh);
1618 #endif /* INVARIANTS */
1619 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1620 s->key[idx] = NULL;
1621
1622 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1623 LIST_REMOVE(sk, entry);
1624 uma_zfree(V_pf_state_key_z, sk);
1625 }
1626 }
1627
1628 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1629 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1630 {
1631 struct pf_state_key *sk = mem;
1632
1633 bzero(sk, sizeof(struct pf_state_key_cmp));
1634 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1635 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1636
1637 return (0);
1638 }
1639
1640 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1641 pf_state_key_addr_setup(struct pf_pdesc *pd,
1642 struct pf_state_key_cmp *key, int multi)
1643 {
1644 struct pf_addr *saddr = pd->src;
1645 struct pf_addr *daddr = pd->dst;
1646 #ifdef INET6
1647 struct nd_neighbor_solicit nd;
1648 struct pf_addr *target;
1649 u_short action, reason;
1650
1651 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1652 goto copy;
1653
1654 switch (pd->hdr.icmp6.icmp6_type) {
1655 case ND_NEIGHBOR_SOLICIT:
1656 if (multi)
1657 return (-1);
1658 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1659 return (-1);
1660 target = (struct pf_addr *)&nd.nd_ns_target;
1661 daddr = target;
1662 break;
1663 case ND_NEIGHBOR_ADVERT:
1664 if (multi)
1665 return (-1);
1666 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1667 return (-1);
1668 target = (struct pf_addr *)&nd.nd_ns_target;
1669 saddr = target;
1670 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1671 key->addr[pd->didx].addr32[0] = 0;
1672 key->addr[pd->didx].addr32[1] = 0;
1673 key->addr[pd->didx].addr32[2] = 0;
1674 key->addr[pd->didx].addr32[3] = 0;
1675 daddr = NULL; /* overwritten */
1676 }
1677 break;
1678 default:
1679 if (multi) {
1680 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1681 key->addr[pd->sidx].addr32[1] = 0;
1682 key->addr[pd->sidx].addr32[2] = 0;
1683 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1684 saddr = NULL; /* overwritten */
1685 }
1686 }
1687 copy:
1688 #endif /* INET6 */
1689 if (saddr)
1690 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1691 if (daddr)
1692 PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1693
1694 return (0);
1695 }
1696
1697 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1698 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1699 struct pf_state_key **sk, struct pf_state_key **nk)
1700 {
1701 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1702 if (*sk == NULL)
1703 return (ENOMEM);
1704
1705 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1706 0)) {
1707 uma_zfree(V_pf_state_key_z, *sk);
1708 *sk = NULL;
1709 return (ENOMEM);
1710 }
1711
1712 (*sk)->port[pd->sidx] = sport;
1713 (*sk)->port[pd->didx] = dport;
1714 (*sk)->proto = pd->proto;
1715 (*sk)->af = pd->af;
1716
1717 *nk = pf_state_key_clone(*sk);
1718 if (*nk == NULL) {
1719 uma_zfree(V_pf_state_key_z, *sk);
1720 *sk = NULL;
1721 return (ENOMEM);
1722 }
1723
1724 if (pd->af != pd->naf) {
1725 (*sk)->port[pd->sidx] = pd->osport;
1726 (*sk)->port[pd->didx] = pd->odport;
1727
1728 (*nk)->af = pd->naf;
1729
1730 /*
1731 * We're overwriting an address here, so potentially there's bits of an IPv6
1732 * address left in here. Clear that out first.
1733 */
1734 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1735 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1736 if (pd->dir == PF_IN) {
1737 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf);
1738 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf);
1739 (*nk)->port[pd->didx] = pd->nsport;
1740 (*nk)->port[pd->sidx] = pd->ndport;
1741 } else {
1742 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->nsaddr, pd->naf);
1743 PF_ACPY(&(*nk)->addr[pd->didx], &pd->ndaddr, pd->naf);
1744 (*nk)->port[pd->sidx] = pd->nsport;
1745 (*nk)->port[pd->didx] = pd->ndport;
1746 }
1747
1748 switch (pd->proto) {
1749 case IPPROTO_ICMP:
1750 (*nk)->proto = IPPROTO_ICMPV6;
1751 break;
1752 case IPPROTO_ICMPV6:
1753 (*nk)->proto = IPPROTO_ICMP;
1754 break;
1755 default:
1756 (*nk)->proto = pd->proto;
1757 }
1758 }
1759
1760 return (0);
1761 }
1762
1763 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1764 pf_state_key_clone(const struct pf_state_key *orig)
1765 {
1766 struct pf_state_key *sk;
1767
1768 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1769 if (sk == NULL)
1770 return (NULL);
1771
1772 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1773
1774 return (sk);
1775 }
1776
1777 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1778 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1779 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1780 {
1781 struct pf_idhash *ih;
1782 struct pf_kstate *cur;
1783 int error;
1784
1785 NET_EPOCH_ASSERT();
1786
1787 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1788 ("%s: sks not pristine", __func__));
1789 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1790 ("%s: skw not pristine", __func__));
1791 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1792
1793 s->kif = kif;
1794 s->orig_kif = orig_kif;
1795
1796 if (s->id == 0 && s->creatorid == 0) {
1797 s->id = alloc_unr64(&V_pf_stateid);
1798 s->id = htobe64(s->id);
1799 s->creatorid = V_pf_status.hostid;
1800 }
1801
1802 /* Returns with ID locked on success. */
1803 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1804 return (error);
1805 skw = sks = NULL;
1806
1807 ih = &V_pf_idhash[PF_IDHASH(s)];
1808 PF_HASHROW_ASSERT(ih);
1809 LIST_FOREACH(cur, &ih->states, entry)
1810 if (cur->id == s->id && cur->creatorid == s->creatorid)
1811 break;
1812
1813 if (cur != NULL) {
1814 s->timeout = PFTM_UNLINKED;
1815 PF_HASHROW_UNLOCK(ih);
1816 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1817 printf("pf: state ID collision: "
1818 "id: %016llx creatorid: %08x\n",
1819 (unsigned long long)be64toh(s->id),
1820 ntohl(s->creatorid));
1821 }
1822 pf_detach_state(s);
1823 return (EEXIST);
1824 }
1825 LIST_INSERT_HEAD(&ih->states, s, entry);
1826 /* One for keys, one for ID hash. */
1827 refcount_init(&s->refs, 2);
1828
1829 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1830 if (V_pfsync_insert_state_ptr != NULL)
1831 V_pfsync_insert_state_ptr(s);
1832
1833 /* Returns locked. */
1834 return (0);
1835 }
1836
1837 /*
1838 * Find state by ID: returns with locked row on success.
1839 */
1840 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1841 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1842 {
1843 struct pf_idhash *ih;
1844 struct pf_kstate *s;
1845
1846 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1847
1848 ih = &V_pf_idhash[PF_IDHASHID(id)];
1849
1850 PF_HASHROW_LOCK(ih);
1851 LIST_FOREACH(s, &ih->states, entry)
1852 if (s->id == id && s->creatorid == creatorid)
1853 break;
1854
1855 if (s == NULL)
1856 PF_HASHROW_UNLOCK(ih);
1857
1858 return (s);
1859 }
1860
1861 /*
1862 * Find state by key.
1863 * Returns with ID hash slot locked on success.
1864 */
1865 static int
pf_find_state(struct pf_pdesc * pd,const struct pf_state_key_cmp * key,struct pf_kstate ** state)1866 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key,
1867 struct pf_kstate **state)
1868 {
1869 struct pf_keyhash *kh;
1870 struct pf_state_key *sk;
1871 struct pf_kstate *s;
1872 int idx;
1873
1874 *state = NULL;
1875
1876 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1877
1878 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1879
1880 PF_HASHROW_LOCK(kh);
1881 LIST_FOREACH(sk, &kh->keys, entry)
1882 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1883 break;
1884 if (sk == NULL) {
1885 PF_HASHROW_UNLOCK(kh);
1886 return (PF_DROP);
1887 }
1888
1889 idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1890
1891 /* List is sorted, if-bound states before floating ones. */
1892 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1893 if (s->kif == V_pfi_all || s->kif == pd->kif ||
1894 s->orig_kif == pd->kif) {
1895 PF_STATE_LOCK(s);
1896 PF_HASHROW_UNLOCK(kh);
1897 if (__predict_false(s->timeout >= PFTM_MAX)) {
1898 /*
1899 * State is either being processed by
1900 * pf_remove_state() in an other thread, or
1901 * is scheduled for immediate expiry.
1902 */
1903 PF_STATE_UNLOCK(s);
1904 SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1905 key, (pd->dir), pd, *state);
1906 return (PF_DROP);
1907 }
1908 goto out;
1909 }
1910
1911 /* Look through the other list, in case of AF-TO */
1912 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1913 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1914 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1915 continue;
1916 if (s->kif == V_pfi_all || s->kif == pd->kif ||
1917 s->orig_kif == pd->kif) {
1918 PF_STATE_LOCK(s);
1919 PF_HASHROW_UNLOCK(kh);
1920 if (__predict_false(s->timeout >= PFTM_MAX)) {
1921 /*
1922 * State is either being processed by
1923 * pf_remove_state() in an other thread, or
1924 * is scheduled for immediate expiry.
1925 */
1926 PF_STATE_UNLOCK(s);
1927 SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1928 key, (pd->dir), pd, NULL);
1929 return (PF_DROP);
1930 }
1931 goto out;
1932 }
1933 }
1934
1935 PF_HASHROW_UNLOCK(kh);
1936
1937 out:
1938 SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state);
1939
1940 if (s == NULL || s->timeout == PFTM_PURGE) {
1941 if (s)
1942 PF_STATE_UNLOCK(s);
1943 return (PF_DROP);
1944 }
1945
1946 if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) {
1947 if (pf_check_threshold(&(s)->rule->pktrate)) {
1948 PF_STATE_UNLOCK(s);
1949 return (PF_DROP);
1950 }
1951 }
1952 if (PACKET_LOOPED(pd)) {
1953 PF_STATE_UNLOCK(s);
1954 return (PF_PASS);
1955 }
1956
1957 *state = s;
1958
1959 return (PF_MATCH);
1960 }
1961
1962 /*
1963 * Returns with ID hash slot locked on success.
1964 */
1965 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1966 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1967 {
1968 struct pf_keyhash *kh;
1969 struct pf_state_key *sk;
1970 struct pf_kstate *s, *ret = NULL;
1971 int idx, inout = 0;
1972
1973 if (more != NULL)
1974 *more = 0;
1975
1976 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1977
1978 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1979
1980 PF_HASHROW_LOCK(kh);
1981 LIST_FOREACH(sk, &kh->keys, entry)
1982 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1983 break;
1984 if (sk == NULL) {
1985 PF_HASHROW_UNLOCK(kh);
1986 return (NULL);
1987 }
1988 switch (dir) {
1989 case PF_IN:
1990 idx = PF_SK_WIRE;
1991 break;
1992 case PF_OUT:
1993 idx = PF_SK_STACK;
1994 break;
1995 case PF_INOUT:
1996 idx = PF_SK_WIRE;
1997 inout = 1;
1998 break;
1999 default:
2000 panic("%s: dir %u", __func__, dir);
2001 }
2002 second_run:
2003 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2004 if (more == NULL) {
2005 PF_STATE_LOCK(s);
2006 PF_HASHROW_UNLOCK(kh);
2007 return (s);
2008 }
2009
2010 if (ret)
2011 (*more)++;
2012 else {
2013 ret = s;
2014 PF_STATE_LOCK(s);
2015 }
2016 }
2017 if (inout == 1) {
2018 inout = 0;
2019 idx = PF_SK_STACK;
2020 goto second_run;
2021 }
2022 PF_HASHROW_UNLOCK(kh);
2023
2024 return (ret);
2025 }
2026
2027 /*
2028 * FIXME
2029 * This routine is inefficient -- locks the state only to unlock immediately on
2030 * return.
2031 * It is racy -- after the state is unlocked nothing stops other threads from
2032 * removing it.
2033 */
2034 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2035 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2036 {
2037 struct pf_kstate *s;
2038
2039 s = pf_find_state_all(key, dir, NULL);
2040 if (s != NULL) {
2041 PF_STATE_UNLOCK(s);
2042 return (true);
2043 }
2044 return (false);
2045 }
2046
2047 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2048 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2049 struct pf_addr *nat_addr, uint16_t nat_port)
2050 {
2051 struct pf_udp_mapping *mapping;
2052
2053 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2054 if (mapping == NULL)
2055 return (NULL);
2056 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
2057 mapping->endpoints[0].port = src_port;
2058 mapping->endpoints[0].af = af;
2059 mapping->endpoints[0].mapping = mapping;
2060 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
2061 mapping->endpoints[1].port = nat_port;
2062 mapping->endpoints[1].af = af;
2063 mapping->endpoints[1].mapping = mapping;
2064 refcount_init(&mapping->refs, 1);
2065 return (mapping);
2066 }
2067
2068 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2069 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2070 {
2071 struct pf_udpendpointhash *h0, *h1;
2072 struct pf_udp_endpoint *endpoint;
2073 int ret = EEXIST;
2074
2075 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2076 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2077 if (h0 == h1) {
2078 PF_HASHROW_LOCK(h0);
2079 } else if (h0 < h1) {
2080 PF_HASHROW_LOCK(h0);
2081 PF_HASHROW_LOCK(h1);
2082 } else {
2083 PF_HASHROW_LOCK(h1);
2084 PF_HASHROW_LOCK(h0);
2085 }
2086
2087 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2088 if (bcmp(endpoint, &mapping->endpoints[0],
2089 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2090 break;
2091 }
2092 if (endpoint != NULL)
2093 goto cleanup;
2094 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2095 if (bcmp(endpoint, &mapping->endpoints[1],
2096 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2097 break;
2098 }
2099 if (endpoint != NULL)
2100 goto cleanup;
2101 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2102 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2103 ret = 0;
2104
2105 cleanup:
2106 if (h0 != h1) {
2107 PF_HASHROW_UNLOCK(h0);
2108 PF_HASHROW_UNLOCK(h1);
2109 } else {
2110 PF_HASHROW_UNLOCK(h0);
2111 }
2112 return (ret);
2113 }
2114
2115 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2116 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2117 {
2118 /* refcount is synchronized on the source endpoint's row lock */
2119 struct pf_udpendpointhash *h0, *h1;
2120
2121 if (mapping == NULL)
2122 return;
2123
2124 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2125 PF_HASHROW_LOCK(h0);
2126 if (refcount_release(&mapping->refs)) {
2127 LIST_REMOVE(&mapping->endpoints[0], entry);
2128 PF_HASHROW_UNLOCK(h0);
2129 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2130 PF_HASHROW_LOCK(h1);
2131 LIST_REMOVE(&mapping->endpoints[1], entry);
2132 PF_HASHROW_UNLOCK(h1);
2133
2134 uma_zfree(V_pf_udp_mapping_z, mapping);
2135 } else {
2136 PF_HASHROW_UNLOCK(h0);
2137 }
2138 }
2139
2140
2141 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2142 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2143 {
2144 struct pf_udpendpointhash *uh;
2145 struct pf_udp_endpoint *endpoint;
2146
2147 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2148
2149 PF_HASHROW_LOCK(uh);
2150 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2151 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2152 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2153 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2154 break;
2155 }
2156 if (endpoint == NULL) {
2157 PF_HASHROW_UNLOCK(uh);
2158 return (NULL);
2159 }
2160 refcount_acquire(&endpoint->mapping->refs);
2161 PF_HASHROW_UNLOCK(uh);
2162 return (endpoint->mapping);
2163 }
2164 /* END state table stuff */
2165
2166 static void
pf_send(struct pf_send_entry * pfse)2167 pf_send(struct pf_send_entry *pfse)
2168 {
2169
2170 PF_SENDQ_LOCK();
2171 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2172 PF_SENDQ_UNLOCK();
2173 swi_sched(V_pf_swi_cookie, 0);
2174 }
2175
2176 static bool
pf_isforlocal(struct mbuf * m,int af)2177 pf_isforlocal(struct mbuf *m, int af)
2178 {
2179 switch (af) {
2180 #ifdef INET
2181 case AF_INET: {
2182 struct ip *ip = mtod(m, struct ip *);
2183
2184 return (in_localip(ip->ip_dst));
2185 }
2186 #endif /* INET */
2187 #ifdef INET6
2188 case AF_INET6: {
2189 struct ip6_hdr *ip6;
2190 struct in6_ifaddr *ia;
2191 ip6 = mtod(m, struct ip6_hdr *);
2192 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2193 if (ia == NULL)
2194 return (false);
2195 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2196 }
2197 #endif /* INET6 */
2198 default:
2199 unhandled_af(af);
2200 }
2201
2202 return (false);
2203 }
2204
2205 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2206 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2207 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2208 {
2209 /*
2210 * ICMP types marked with PF_OUT are typically responses to
2211 * PF_IN, and will match states in the opposite direction.
2212 * PF_IN ICMP types need to match a state with that type.
2213 */
2214 *icmp_dir = PF_OUT;
2215
2216 /* Queries (and responses) */
2217 switch (pd->af) {
2218 #ifdef INET
2219 case AF_INET:
2220 switch (type) {
2221 case ICMP_ECHO:
2222 *icmp_dir = PF_IN;
2223 /* FALLTHROUGH */
2224 case ICMP_ECHOREPLY:
2225 *virtual_type = ICMP_ECHO;
2226 *virtual_id = pd->hdr.icmp.icmp_id;
2227 break;
2228
2229 case ICMP_TSTAMP:
2230 *icmp_dir = PF_IN;
2231 /* FALLTHROUGH */
2232 case ICMP_TSTAMPREPLY:
2233 *virtual_type = ICMP_TSTAMP;
2234 *virtual_id = pd->hdr.icmp.icmp_id;
2235 break;
2236
2237 case ICMP_IREQ:
2238 *icmp_dir = PF_IN;
2239 /* FALLTHROUGH */
2240 case ICMP_IREQREPLY:
2241 *virtual_type = ICMP_IREQ;
2242 *virtual_id = pd->hdr.icmp.icmp_id;
2243 break;
2244
2245 case ICMP_MASKREQ:
2246 *icmp_dir = PF_IN;
2247 /* FALLTHROUGH */
2248 case ICMP_MASKREPLY:
2249 *virtual_type = ICMP_MASKREQ;
2250 *virtual_id = pd->hdr.icmp.icmp_id;
2251 break;
2252
2253 case ICMP_IPV6_WHEREAREYOU:
2254 *icmp_dir = PF_IN;
2255 /* FALLTHROUGH */
2256 case ICMP_IPV6_IAMHERE:
2257 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2258 *virtual_id = 0; /* Nothing sane to match on! */
2259 break;
2260
2261 case ICMP_MOBILE_REGREQUEST:
2262 *icmp_dir = PF_IN;
2263 /* FALLTHROUGH */
2264 case ICMP_MOBILE_REGREPLY:
2265 *virtual_type = ICMP_MOBILE_REGREQUEST;
2266 *virtual_id = 0; /* Nothing sane to match on! */
2267 break;
2268
2269 case ICMP_ROUTERSOLICIT:
2270 *icmp_dir = PF_IN;
2271 /* FALLTHROUGH */
2272 case ICMP_ROUTERADVERT:
2273 *virtual_type = ICMP_ROUTERSOLICIT;
2274 *virtual_id = 0; /* Nothing sane to match on! */
2275 break;
2276
2277 /* These ICMP types map to other connections */
2278 case ICMP_UNREACH:
2279 case ICMP_SOURCEQUENCH:
2280 case ICMP_REDIRECT:
2281 case ICMP_TIMXCEED:
2282 case ICMP_PARAMPROB:
2283 /* These will not be used, but set them anyway */
2284 *icmp_dir = PF_IN;
2285 *virtual_type = type;
2286 *virtual_id = 0;
2287 *virtual_type = htons(*virtual_type);
2288 return (1); /* These types match to another state */
2289
2290 /*
2291 * All remaining ICMP types get their own states,
2292 * and will only match in one direction.
2293 */
2294 default:
2295 *icmp_dir = PF_IN;
2296 *virtual_type = type;
2297 *virtual_id = 0;
2298 break;
2299 }
2300 break;
2301 #endif /* INET */
2302 #ifdef INET6
2303 case AF_INET6:
2304 switch (type) {
2305 case ICMP6_ECHO_REQUEST:
2306 *icmp_dir = PF_IN;
2307 /* FALLTHROUGH */
2308 case ICMP6_ECHO_REPLY:
2309 *virtual_type = ICMP6_ECHO_REQUEST;
2310 *virtual_id = pd->hdr.icmp6.icmp6_id;
2311 break;
2312
2313 case MLD_LISTENER_QUERY:
2314 case MLD_LISTENER_REPORT: {
2315 /*
2316 * Listener Report can be sent by clients
2317 * without an associated Listener Query.
2318 * In addition to that, when Report is sent as a
2319 * reply to a Query its source and destination
2320 * address are different.
2321 */
2322 *icmp_dir = PF_IN;
2323 *virtual_type = MLD_LISTENER_QUERY;
2324 *virtual_id = 0;
2325 break;
2326 }
2327 case MLD_MTRACE:
2328 *icmp_dir = PF_IN;
2329 /* FALLTHROUGH */
2330 case MLD_MTRACE_RESP:
2331 *virtual_type = MLD_MTRACE;
2332 *virtual_id = 0; /* Nothing sane to match on! */
2333 break;
2334
2335 case ND_NEIGHBOR_SOLICIT:
2336 *icmp_dir = PF_IN;
2337 /* FALLTHROUGH */
2338 case ND_NEIGHBOR_ADVERT: {
2339 *virtual_type = ND_NEIGHBOR_SOLICIT;
2340 *virtual_id = 0;
2341 break;
2342 }
2343
2344 /*
2345 * These ICMP types map to other connections.
2346 * ND_REDIRECT can't be in this list because the triggering
2347 * packet header is optional.
2348 */
2349 case ICMP6_DST_UNREACH:
2350 case ICMP6_PACKET_TOO_BIG:
2351 case ICMP6_TIME_EXCEEDED:
2352 case ICMP6_PARAM_PROB:
2353 /* These will not be used, but set them anyway */
2354 *icmp_dir = PF_IN;
2355 *virtual_type = type;
2356 *virtual_id = 0;
2357 *virtual_type = htons(*virtual_type);
2358 return (1); /* These types match to another state */
2359 /*
2360 * All remaining ICMP6 types get their own states,
2361 * and will only match in one direction.
2362 */
2363 default:
2364 *icmp_dir = PF_IN;
2365 *virtual_type = type;
2366 *virtual_id = 0;
2367 break;
2368 }
2369 break;
2370 #endif /* INET6 */
2371 default:
2372 unhandled_af(pd->af);
2373 }
2374 *virtual_type = htons(*virtual_type);
2375 return (0); /* These types match to their own state */
2376 }
2377
2378 void
pf_intr(void * v)2379 pf_intr(void *v)
2380 {
2381 struct epoch_tracker et;
2382 struct pf_send_head queue;
2383 struct pf_send_entry *pfse, *next;
2384
2385 CURVNET_SET((struct vnet *)v);
2386
2387 PF_SENDQ_LOCK();
2388 queue = V_pf_sendqueue;
2389 STAILQ_INIT(&V_pf_sendqueue);
2390 PF_SENDQ_UNLOCK();
2391
2392 NET_EPOCH_ENTER(et);
2393
2394 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2395 switch (pfse->pfse_type) {
2396 #ifdef INET
2397 case PFSE_IP: {
2398 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2399 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2400 ("%s: rcvif != loif", __func__));
2401
2402 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2403 pfse->pfse_m->m_pkthdr.csum_flags |=
2404 CSUM_IP_VALID | CSUM_IP_CHECKED |
2405 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2406 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2407 ip_input(pfse->pfse_m);
2408 } else {
2409 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2410 NULL);
2411 }
2412 break;
2413 }
2414 case PFSE_ICMP:
2415 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2416 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2417 break;
2418 #endif /* INET */
2419 #ifdef INET6
2420 case PFSE_IP6:
2421 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2422 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2423 ("%s: rcvif != loif", __func__));
2424
2425 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2426 M_LOOP;
2427 pfse->pfse_m->m_pkthdr.csum_flags |=
2428 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2429 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2430 ip6_input(pfse->pfse_m);
2431 } else {
2432 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2433 NULL, NULL);
2434 }
2435 break;
2436 case PFSE_ICMP6:
2437 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2438 pfse->icmpopts.code, pfse->icmpopts.mtu);
2439 break;
2440 #endif /* INET6 */
2441 default:
2442 panic("%s: unknown type", __func__);
2443 }
2444 free(pfse, M_PFTEMP);
2445 }
2446 NET_EPOCH_EXIT(et);
2447 CURVNET_RESTORE();
2448 }
2449
2450 #define pf_purge_thread_period (hz / 10)
2451
2452 #ifdef PF_WANT_32_TO_64_COUNTER
2453 static void
pf_status_counter_u64_periodic(void)2454 pf_status_counter_u64_periodic(void)
2455 {
2456
2457 PF_RULES_RASSERT();
2458
2459 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2460 return;
2461 }
2462
2463 for (int i = 0; i < FCNT_MAX; i++) {
2464 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2465 }
2466 }
2467
2468 static void
pf_kif_counter_u64_periodic(void)2469 pf_kif_counter_u64_periodic(void)
2470 {
2471 struct pfi_kkif *kif;
2472 size_t r, run;
2473
2474 PF_RULES_RASSERT();
2475
2476 if (__predict_false(V_pf_allkifcount == 0)) {
2477 return;
2478 }
2479
2480 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2481 return;
2482 }
2483
2484 run = V_pf_allkifcount / 10;
2485 if (run < 5)
2486 run = 5;
2487
2488 for (r = 0; r < run; r++) {
2489 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2490 if (kif == NULL) {
2491 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2492 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2493 break;
2494 }
2495
2496 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2497 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2498
2499 for (int i = 0; i < 2; i++) {
2500 for (int j = 0; j < 2; j++) {
2501 for (int k = 0; k < 2; k++) {
2502 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2503 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2504 }
2505 }
2506 }
2507 }
2508 }
2509
2510 static void
pf_rule_counter_u64_periodic(void)2511 pf_rule_counter_u64_periodic(void)
2512 {
2513 struct pf_krule *rule;
2514 size_t r, run;
2515
2516 PF_RULES_RASSERT();
2517
2518 if (__predict_false(V_pf_allrulecount == 0)) {
2519 return;
2520 }
2521
2522 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2523 return;
2524 }
2525
2526 run = V_pf_allrulecount / 10;
2527 if (run < 5)
2528 run = 5;
2529
2530 for (r = 0; r < run; r++) {
2531 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2532 if (rule == NULL) {
2533 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2534 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2535 break;
2536 }
2537
2538 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2539 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2540
2541 pf_counter_u64_periodic(&rule->evaluations);
2542 for (int i = 0; i < 2; i++) {
2543 pf_counter_u64_periodic(&rule->packets[i]);
2544 pf_counter_u64_periodic(&rule->bytes[i]);
2545 }
2546 }
2547 }
2548
2549 static void
pf_counter_u64_periodic_main(void)2550 pf_counter_u64_periodic_main(void)
2551 {
2552 PF_RULES_RLOCK_TRACKER;
2553
2554 V_pf_counter_periodic_iter++;
2555
2556 PF_RULES_RLOCK();
2557 pf_counter_u64_critical_enter();
2558 pf_status_counter_u64_periodic();
2559 pf_kif_counter_u64_periodic();
2560 pf_rule_counter_u64_periodic();
2561 pf_counter_u64_critical_exit();
2562 PF_RULES_RUNLOCK();
2563 }
2564 #else
2565 #define pf_counter_u64_periodic_main() do { } while (0)
2566 #endif
2567
2568 void
pf_purge_thread(void * unused __unused)2569 pf_purge_thread(void *unused __unused)
2570 {
2571 struct epoch_tracker et;
2572
2573 VNET_ITERATOR_DECL(vnet_iter);
2574
2575 sx_xlock(&pf_end_lock);
2576 while (pf_end_threads == 0) {
2577 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2578
2579 VNET_LIST_RLOCK();
2580 NET_EPOCH_ENTER(et);
2581 VNET_FOREACH(vnet_iter) {
2582 CURVNET_SET(vnet_iter);
2583
2584 /* Wait until V_pf_default_rule is initialized. */
2585 if (V_pf_vnet_active == 0) {
2586 CURVNET_RESTORE();
2587 continue;
2588 }
2589
2590 pf_counter_u64_periodic_main();
2591
2592 /*
2593 * Process 1/interval fraction of the state
2594 * table every run.
2595 */
2596 V_pf_purge_idx =
2597 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2598 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2599
2600 /*
2601 * Purge other expired types every
2602 * PFTM_INTERVAL seconds.
2603 */
2604 if (V_pf_purge_idx == 0) {
2605 /*
2606 * Order is important:
2607 * - states and src nodes reference rules
2608 * - states and rules reference kifs
2609 */
2610 pf_purge_expired_fragments();
2611 pf_purge_expired_src_nodes();
2612 pf_purge_unlinked_rules();
2613 pfi_kkif_purge();
2614 }
2615 CURVNET_RESTORE();
2616 }
2617 NET_EPOCH_EXIT(et);
2618 VNET_LIST_RUNLOCK();
2619 }
2620
2621 pf_end_threads++;
2622 sx_xunlock(&pf_end_lock);
2623 kproc_exit(0);
2624 }
2625
2626 void
pf_unload_vnet_purge(void)2627 pf_unload_vnet_purge(void)
2628 {
2629
2630 /*
2631 * To cleanse up all kifs and rules we need
2632 * two runs: first one clears reference flags,
2633 * then pf_purge_expired_states() doesn't
2634 * raise them, and then second run frees.
2635 */
2636 pf_purge_unlinked_rules();
2637 pfi_kkif_purge();
2638
2639 /*
2640 * Now purge everything.
2641 */
2642 pf_purge_expired_states(0, V_pf_hashmask);
2643 pf_purge_fragments(UINT_MAX);
2644 pf_purge_expired_src_nodes();
2645
2646 /*
2647 * Now all kifs & rules should be unreferenced,
2648 * thus should be successfully freed.
2649 */
2650 pf_purge_unlinked_rules();
2651 pfi_kkif_purge();
2652 }
2653
2654 u_int32_t
pf_state_expires(const struct pf_kstate * state)2655 pf_state_expires(const struct pf_kstate *state)
2656 {
2657 u_int32_t timeout;
2658 u_int32_t start;
2659 u_int32_t end;
2660 u_int32_t states;
2661
2662 /* handle all PFTM_* > PFTM_MAX here */
2663 if (state->timeout == PFTM_PURGE)
2664 return (time_uptime);
2665 KASSERT(state->timeout != PFTM_UNLINKED,
2666 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2667 KASSERT((state->timeout < PFTM_MAX),
2668 ("pf_state_expires: timeout > PFTM_MAX"));
2669 timeout = state->rule->timeout[state->timeout];
2670 if (!timeout)
2671 timeout = V_pf_default_rule.timeout[state->timeout];
2672 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2673 if (start && state->rule != &V_pf_default_rule) {
2674 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2675 states = counter_u64_fetch(state->rule->states_cur);
2676 } else {
2677 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2678 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2679 states = V_pf_status.states;
2680 }
2681 if (end && states > start && start < end) {
2682 if (states < end) {
2683 timeout = (u_int64_t)timeout * (end - states) /
2684 (end - start);
2685 return ((state->expire / 1000) + timeout);
2686 }
2687 else
2688 return (time_uptime);
2689 }
2690 return ((state->expire / 1000) + timeout);
2691 }
2692
2693 void
pf_purge_expired_src_nodes(void)2694 pf_purge_expired_src_nodes(void)
2695 {
2696 struct pf_ksrc_node_list freelist;
2697 struct pf_srchash *sh;
2698 struct pf_ksrc_node *cur, *next;
2699 int i;
2700
2701 LIST_INIT(&freelist);
2702 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2703 PF_HASHROW_LOCK(sh);
2704 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2705 if (cur->states == 0 && cur->expire <= time_uptime) {
2706 pf_unlink_src_node(cur);
2707 LIST_INSERT_HEAD(&freelist, cur, entry);
2708 } else if (cur->rule != NULL)
2709 cur->rule->rule_ref |= PFRULE_REFS;
2710 PF_HASHROW_UNLOCK(sh);
2711 }
2712
2713 pf_free_src_nodes(&freelist);
2714
2715 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2716 }
2717
2718 static void
pf_src_tree_remove_state(struct pf_kstate * s)2719 pf_src_tree_remove_state(struct pf_kstate *s)
2720 {
2721 uint32_t timeout;
2722
2723 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2724 s->rule->timeout[PFTM_SRC_NODE] :
2725 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2726
2727 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2728 if (s->sns[sn_type] == NULL)
2729 continue;
2730 PF_SRC_NODE_LOCK(s->sns[sn_type]);
2731 if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2732 --(s->sns[sn_type]->conn);
2733 if (--(s->sns[sn_type]->states) == 0)
2734 s->sns[sn_type]->expire = time_uptime + timeout;
2735 PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2736 s->sns[sn_type] = NULL;
2737 }
2738
2739 }
2740
2741 /*
2742 * Unlink and potentilly free a state. Function may be
2743 * called with ID hash row locked, but always returns
2744 * unlocked, since it needs to go through key hash locking.
2745 */
2746 int
pf_remove_state(struct pf_kstate * s)2747 pf_remove_state(struct pf_kstate *s)
2748 {
2749 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2750
2751 NET_EPOCH_ASSERT();
2752 PF_HASHROW_ASSERT(ih);
2753
2754 if (s->timeout == PFTM_UNLINKED) {
2755 /*
2756 * State is being processed
2757 * by pf_remove_state() in
2758 * an other thread.
2759 */
2760 PF_HASHROW_UNLOCK(ih);
2761 return (0); /* XXXGL: undefined actually */
2762 }
2763
2764 if (s->src.state == PF_TCPS_PROXY_DST) {
2765 /* XXX wire key the right one? */
2766 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2767 &s->key[PF_SK_WIRE]->addr[1],
2768 &s->key[PF_SK_WIRE]->addr[0],
2769 s->key[PF_SK_WIRE]->port[1],
2770 s->key[PF_SK_WIRE]->port[0],
2771 s->src.seqhi, s->src.seqlo + 1,
2772 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2773 s->act.rtableid);
2774 }
2775
2776 LIST_REMOVE(s, entry);
2777 pf_src_tree_remove_state(s);
2778
2779 if (V_pfsync_delete_state_ptr != NULL)
2780 V_pfsync_delete_state_ptr(s);
2781
2782 STATE_DEC_COUNTERS(s);
2783
2784 s->timeout = PFTM_UNLINKED;
2785
2786 /* Ensure we remove it from the list of halfopen states, if needed. */
2787 if (s->key[PF_SK_STACK] != NULL &&
2788 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2789 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2790
2791 PF_HASHROW_UNLOCK(ih);
2792
2793 pf_detach_state(s);
2794
2795 pf_udp_mapping_release(s->udp_mapping);
2796
2797 /* pf_state_insert() initialises refs to 2 */
2798 return (pf_release_staten(s, 2));
2799 }
2800
2801 struct pf_kstate *
pf_alloc_state(int flags)2802 pf_alloc_state(int flags)
2803 {
2804
2805 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2806 }
2807
2808 void
pf_free_state(struct pf_kstate * cur)2809 pf_free_state(struct pf_kstate *cur)
2810 {
2811 struct pf_krule_item *ri;
2812
2813 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2814 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2815 cur->timeout));
2816
2817 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2818 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2819 free(ri, M_PF_RULE_ITEM);
2820 }
2821
2822 pf_normalize_tcp_cleanup(cur);
2823 uma_zfree(V_pf_state_z, cur);
2824 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2825 }
2826
2827 /*
2828 * Called only from pf_purge_thread(), thus serialized.
2829 */
2830 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2831 pf_purge_expired_states(u_int i, int maxcheck)
2832 {
2833 struct pf_idhash *ih;
2834 struct pf_kstate *s;
2835 struct pf_krule_item *mrm;
2836 size_t count __unused;
2837
2838 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2839
2840 /*
2841 * Go through hash and unlink states that expire now.
2842 */
2843 while (maxcheck > 0) {
2844 count = 0;
2845 ih = &V_pf_idhash[i];
2846
2847 /* only take the lock if we expect to do work */
2848 if (!LIST_EMPTY(&ih->states)) {
2849 relock:
2850 PF_HASHROW_LOCK(ih);
2851 LIST_FOREACH(s, &ih->states, entry) {
2852 if (pf_state_expires(s) <= time_uptime) {
2853 V_pf_status.states -=
2854 pf_remove_state(s);
2855 goto relock;
2856 }
2857 s->rule->rule_ref |= PFRULE_REFS;
2858 if (s->nat_rule != NULL)
2859 s->nat_rule->rule_ref |= PFRULE_REFS;
2860 if (s->anchor != NULL)
2861 s->anchor->rule_ref |= PFRULE_REFS;
2862 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2863 SLIST_FOREACH(mrm, &s->match_rules, entry)
2864 mrm->r->rule_ref |= PFRULE_REFS;
2865 if (s->act.rt_kif)
2866 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2867 count++;
2868 }
2869 PF_HASHROW_UNLOCK(ih);
2870 }
2871
2872 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2873
2874 /* Return when we hit end of hash. */
2875 if (++i > V_pf_hashmask) {
2876 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2877 return (0);
2878 }
2879
2880 maxcheck--;
2881 }
2882
2883 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2884
2885 return (i);
2886 }
2887
2888 static void
pf_purge_unlinked_rules(void)2889 pf_purge_unlinked_rules(void)
2890 {
2891 struct pf_krulequeue tmpq;
2892 struct pf_krule *r, *r1;
2893
2894 /*
2895 * If we have overloading task pending, then we'd
2896 * better skip purging this time. There is a tiny
2897 * probability that overloading task references
2898 * an already unlinked rule.
2899 */
2900 PF_OVERLOADQ_LOCK();
2901 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2902 PF_OVERLOADQ_UNLOCK();
2903 return;
2904 }
2905 PF_OVERLOADQ_UNLOCK();
2906
2907 /*
2908 * Do naive mark-and-sweep garbage collecting of old rules.
2909 * Reference flag is raised by pf_purge_expired_states()
2910 * and pf_purge_expired_src_nodes().
2911 *
2912 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2913 * use a temporary queue.
2914 */
2915 TAILQ_INIT(&tmpq);
2916 PF_UNLNKDRULES_LOCK();
2917 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2918 if (!(r->rule_ref & PFRULE_REFS)) {
2919 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2920 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2921 } else
2922 r->rule_ref &= ~PFRULE_REFS;
2923 }
2924 PF_UNLNKDRULES_UNLOCK();
2925
2926 if (!TAILQ_EMPTY(&tmpq)) {
2927 PF_CONFIG_LOCK();
2928 PF_RULES_WLOCK();
2929 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2930 TAILQ_REMOVE(&tmpq, r, entries);
2931 pf_free_rule(r);
2932 }
2933 PF_RULES_WUNLOCK();
2934 PF_CONFIG_UNLOCK();
2935 }
2936 }
2937
2938 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2939 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2940 {
2941 switch (af) {
2942 #ifdef INET
2943 case AF_INET: {
2944 u_int32_t a = ntohl(addr->addr32[0]);
2945 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2946 (a>>8)&255, a&255);
2947 if (p) {
2948 p = ntohs(p);
2949 printf(":%u", p);
2950 }
2951 break;
2952 }
2953 #endif /* INET */
2954 #ifdef INET6
2955 case AF_INET6: {
2956 u_int16_t b;
2957 u_int8_t i, curstart, curend, maxstart, maxend;
2958 curstart = curend = maxstart = maxend = 255;
2959 for (i = 0; i < 8; i++) {
2960 if (!addr->addr16[i]) {
2961 if (curstart == 255)
2962 curstart = i;
2963 curend = i;
2964 } else {
2965 if ((curend - curstart) >
2966 (maxend - maxstart)) {
2967 maxstart = curstart;
2968 maxend = curend;
2969 }
2970 curstart = curend = 255;
2971 }
2972 }
2973 if ((curend - curstart) >
2974 (maxend - maxstart)) {
2975 maxstart = curstart;
2976 maxend = curend;
2977 }
2978 for (i = 0; i < 8; i++) {
2979 if (i >= maxstart && i <= maxend) {
2980 if (i == 0)
2981 printf(":");
2982 if (i == maxend)
2983 printf(":");
2984 } else {
2985 b = ntohs(addr->addr16[i]);
2986 printf("%x", b);
2987 if (i < 7)
2988 printf(":");
2989 }
2990 }
2991 if (p) {
2992 p = ntohs(p);
2993 printf("[%u]", p);
2994 }
2995 break;
2996 }
2997 #endif /* INET6 */
2998 default:
2999 unhandled_af(af);
3000 }
3001 }
3002
3003 void
pf_print_state(struct pf_kstate * s)3004 pf_print_state(struct pf_kstate *s)
3005 {
3006 pf_print_state_parts(s, NULL, NULL);
3007 }
3008
3009 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)3010 pf_print_state_parts(struct pf_kstate *s,
3011 struct pf_state_key *skwp, struct pf_state_key *sksp)
3012 {
3013 struct pf_state_key *skw, *sks;
3014 u_int8_t proto, dir;
3015
3016 /* Do our best to fill these, but they're skipped if NULL */
3017 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3018 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3019 proto = skw ? skw->proto : (sks ? sks->proto : 0);
3020 dir = s ? s->direction : 0;
3021
3022 switch (proto) {
3023 case IPPROTO_IPV4:
3024 printf("IPv4");
3025 break;
3026 case IPPROTO_IPV6:
3027 printf("IPv6");
3028 break;
3029 case IPPROTO_TCP:
3030 printf("TCP");
3031 break;
3032 case IPPROTO_UDP:
3033 printf("UDP");
3034 break;
3035 case IPPROTO_ICMP:
3036 printf("ICMP");
3037 break;
3038 case IPPROTO_ICMPV6:
3039 printf("ICMPv6");
3040 break;
3041 default:
3042 printf("%u", proto);
3043 break;
3044 }
3045 switch (dir) {
3046 case PF_IN:
3047 printf(" in");
3048 break;
3049 case PF_OUT:
3050 printf(" out");
3051 break;
3052 }
3053 if (skw) {
3054 printf(" wire: ");
3055 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3056 printf(" ");
3057 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3058 }
3059 if (sks) {
3060 printf(" stack: ");
3061 if (sks != skw) {
3062 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3063 printf(" ");
3064 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3065 } else
3066 printf("-");
3067 }
3068 if (s) {
3069 if (proto == IPPROTO_TCP) {
3070 printf(" [lo=%u high=%u win=%u modulator=%u",
3071 s->src.seqlo, s->src.seqhi,
3072 s->src.max_win, s->src.seqdiff);
3073 if (s->src.wscale && s->dst.wscale)
3074 printf(" wscale=%u",
3075 s->src.wscale & PF_WSCALE_MASK);
3076 printf("]");
3077 printf(" [lo=%u high=%u win=%u modulator=%u",
3078 s->dst.seqlo, s->dst.seqhi,
3079 s->dst.max_win, s->dst.seqdiff);
3080 if (s->src.wscale && s->dst.wscale)
3081 printf(" wscale=%u",
3082 s->dst.wscale & PF_WSCALE_MASK);
3083 printf("]");
3084 }
3085 printf(" %u:%u", s->src.state, s->dst.state);
3086 if (s->rule)
3087 printf(" @%d", s->rule->nr);
3088 }
3089 }
3090
3091 void
pf_print_flags(uint16_t f)3092 pf_print_flags(uint16_t f)
3093 {
3094 if (f)
3095 printf(" ");
3096 if (f & TH_FIN)
3097 printf("F");
3098 if (f & TH_SYN)
3099 printf("S");
3100 if (f & TH_RST)
3101 printf("R");
3102 if (f & TH_PUSH)
3103 printf("P");
3104 if (f & TH_ACK)
3105 printf("A");
3106 if (f & TH_URG)
3107 printf("U");
3108 if (f & TH_ECE)
3109 printf("E");
3110 if (f & TH_CWR)
3111 printf("W");
3112 if (f & TH_AE)
3113 printf("e");
3114 }
3115
3116 #define PF_SET_SKIP_STEPS(i) \
3117 do { \
3118 while (head[i] != cur) { \
3119 head[i]->skip[i] = cur; \
3120 head[i] = TAILQ_NEXT(head[i], entries); \
3121 } \
3122 } while (0)
3123
3124 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3125 pf_calc_skip_steps(struct pf_krulequeue *rules)
3126 {
3127 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3128 int i;
3129
3130 cur = TAILQ_FIRST(rules);
3131 prev = cur;
3132 for (i = 0; i < PF_SKIP_COUNT; ++i)
3133 head[i] = cur;
3134 while (cur != NULL) {
3135 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3136 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3137 if (cur->direction != prev->direction)
3138 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3139 if (cur->af != prev->af)
3140 PF_SET_SKIP_STEPS(PF_SKIP_AF);
3141 if (cur->proto != prev->proto)
3142 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3143 if (cur->src.neg != prev->src.neg ||
3144 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3145 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3146 if (cur->dst.neg != prev->dst.neg ||
3147 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3148 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3149 if (cur->src.port[0] != prev->src.port[0] ||
3150 cur->src.port[1] != prev->src.port[1] ||
3151 cur->src.port_op != prev->src.port_op)
3152 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3153 if (cur->dst.port[0] != prev->dst.port[0] ||
3154 cur->dst.port[1] != prev->dst.port[1] ||
3155 cur->dst.port_op != prev->dst.port_op)
3156 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3157
3158 prev = cur;
3159 cur = TAILQ_NEXT(cur, entries);
3160 }
3161 for (i = 0; i < PF_SKIP_COUNT; ++i)
3162 PF_SET_SKIP_STEPS(i);
3163 }
3164
3165 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3166 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3167 {
3168 if (aw1->type != aw2->type)
3169 return (1);
3170 switch (aw1->type) {
3171 case PF_ADDR_ADDRMASK:
3172 case PF_ADDR_RANGE:
3173 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3174 return (1);
3175 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3176 return (1);
3177 return (0);
3178 case PF_ADDR_DYNIFTL:
3179 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3180 case PF_ADDR_NONE:
3181 case PF_ADDR_NOROUTE:
3182 case PF_ADDR_URPFFAILED:
3183 return (0);
3184 case PF_ADDR_TABLE:
3185 return (aw1->p.tbl != aw2->p.tbl);
3186 default:
3187 printf("invalid address type: %d\n", aw1->type);
3188 return (1);
3189 }
3190 }
3191
3192 /**
3193 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3194 * header isn't always a full checksum. In some cases (i.e. output) it's a
3195 * pseudo-header checksum, which is a partial checksum over src/dst IP
3196 * addresses, protocol number and length.
3197 *
3198 * That means we have the following cases:
3199 * * Input or forwarding: we don't have TSO, the checksum fields are full
3200 * checksums, we need to update the checksum whenever we change anything.
3201 * * Output (i.e. the checksum is a pseudo-header checksum):
3202 * x The field being updated is src/dst address or affects the length of
3203 * the packet. We need to update the pseudo-header checksum (note that this
3204 * checksum is not ones' complement).
3205 * x Some other field is being modified (e.g. src/dst port numbers): We
3206 * don't have to update anything.
3207 **/
3208 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3209 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3210 {
3211 u_int32_t x;
3212
3213 x = cksum + old - new;
3214 x = (x + (x >> 16)) & 0xffff;
3215
3216 /* optimise: eliminate a branch when not udp */
3217 if (udp && cksum == 0x0000)
3218 return cksum;
3219 if (udp && x == 0x0000)
3220 x = 0xffff;
3221
3222 return (u_int16_t)(x);
3223 }
3224
3225 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3226 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3227 {
3228 int rewrite = 0;
3229
3230 if (*f != v) {
3231 uint16_t old = htons(hi ? (*f << 8) : *f);
3232 uint16_t new = htons(hi ? ( v << 8) : v);
3233
3234 *f = v;
3235
3236 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3237 CSUM_DELAY_DATA_IPV6)))
3238 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3239 pd->proto == IPPROTO_UDP);
3240
3241 rewrite = 1;
3242 }
3243
3244 return (rewrite);
3245 }
3246
3247 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3248 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3249 {
3250 int rewrite = 0;
3251 u_int8_t *fb = (u_int8_t *)f;
3252 u_int8_t *vb = (u_int8_t *)&v;
3253
3254 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3255 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3256
3257 return (rewrite);
3258 }
3259
3260 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3261 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3262 {
3263 int rewrite = 0;
3264 u_int8_t *fb = (u_int8_t *)f;
3265 u_int8_t *vb = (u_int8_t *)&v;
3266
3267 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3268 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3269 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3270 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3271
3272 return (rewrite);
3273 }
3274
3275 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3276 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3277 u_int16_t new, u_int8_t udp)
3278 {
3279 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3280 return (cksum);
3281
3282 return (pf_cksum_fixup(cksum, old, new, udp));
3283 }
3284
3285 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3286 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3287 struct pf_addr *an, u_int16_t pn)
3288 {
3289 struct pf_addr ao;
3290 u_int16_t po;
3291 uint8_t u = pd->virtual_proto == IPPROTO_UDP;
3292
3293 MPASS(pd->pcksum);
3294 if (pd->af == AF_INET) {
3295 MPASS(pd->ip_sum);
3296 }
3297
3298 PF_ACPY(&ao, a, pd->af);
3299 if (pd->af == pd->naf)
3300 PF_ACPY(a, an, pd->af);
3301
3302 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3303 *pd->pcksum = ~*pd->pcksum;
3304
3305 if (p == NULL) /* no port -> done. no cksum to worry about. */
3306 return;
3307 po = *p;
3308 *p = pn;
3309
3310 switch (pd->af) {
3311 #ifdef INET
3312 case AF_INET:
3313 switch (pd->naf) {
3314 case AF_INET:
3315 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3316 ao.addr16[0], an->addr16[0], 0),
3317 ao.addr16[1], an->addr16[1], 0);
3318 *p = pn;
3319
3320 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3321 ao.addr16[0], an->addr16[0], u),
3322 ao.addr16[1], an->addr16[1], u);
3323
3324 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3325 break;
3326 #ifdef INET6
3327 case AF_INET6:
3328 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3329 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3330 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3331 ao.addr16[0], an->addr16[0], u),
3332 ao.addr16[1], an->addr16[1], u),
3333 0, an->addr16[2], u),
3334 0, an->addr16[3], u),
3335 0, an->addr16[4], u),
3336 0, an->addr16[5], u),
3337 0, an->addr16[6], u),
3338 0, an->addr16[7], u),
3339 po, pn, u);
3340 break;
3341 #endif /* INET6 */
3342 default:
3343 unhandled_af(pd->naf);
3344 }
3345 break;
3346 #endif /* INET */
3347 #ifdef INET6
3348 case AF_INET6:
3349 switch (pd->naf) {
3350 #ifdef INET
3351 case AF_INET:
3352 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3353 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3354 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3355 ao.addr16[0], an->addr16[0], u),
3356 ao.addr16[1], an->addr16[1], u),
3357 ao.addr16[2], 0, u),
3358 ao.addr16[3], 0, u),
3359 ao.addr16[4], 0, u),
3360 ao.addr16[5], 0, u),
3361 ao.addr16[6], 0, u),
3362 ao.addr16[7], 0, u),
3363 po, pn, u);
3364 break;
3365 #endif /* INET */
3366 case AF_INET6:
3367 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3368 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3369 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3370 ao.addr16[0], an->addr16[0], u),
3371 ao.addr16[1], an->addr16[1], u),
3372 ao.addr16[2], an->addr16[2], u),
3373 ao.addr16[3], an->addr16[3], u),
3374 ao.addr16[4], an->addr16[4], u),
3375 ao.addr16[5], an->addr16[5], u),
3376 ao.addr16[6], an->addr16[6], u),
3377 ao.addr16[7], an->addr16[7], u);
3378
3379 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3380 break;
3381 default:
3382 unhandled_af(pd->naf);
3383 }
3384 break;
3385 #endif /* INET6 */
3386 default:
3387 unhandled_af(pd->af);
3388 }
3389
3390 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3391 CSUM_DELAY_DATA_IPV6)) {
3392 *pd->pcksum = ~*pd->pcksum;
3393 if (! *pd->pcksum)
3394 *pd->pcksum = 0xffff;
3395 }
3396 }
3397
3398 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3399 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3400 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3401 {
3402 u_int32_t ao;
3403
3404 memcpy(&ao, a, sizeof(ao));
3405 memcpy(a, &an, sizeof(u_int32_t));
3406 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3407 ao % 65536, an % 65536, u);
3408 }
3409
3410 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3411 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3412 {
3413 u_int32_t ao;
3414
3415 memcpy(&ao, a, sizeof(ao));
3416 memcpy(a, &an, sizeof(u_int32_t));
3417
3418 *c = pf_proto_cksum_fixup(m,
3419 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3420 ao % 65536, an % 65536, udp);
3421 }
3422
3423 #ifdef INET6
3424 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3425 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3426 {
3427 struct pf_addr ao;
3428
3429 PF_ACPY(&ao, a, AF_INET6);
3430 PF_ACPY(a, an, AF_INET6);
3431
3432 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3433 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3434 pf_cksum_fixup(pf_cksum_fixup(*c,
3435 ao.addr16[0], an->addr16[0], u),
3436 ao.addr16[1], an->addr16[1], u),
3437 ao.addr16[2], an->addr16[2], u),
3438 ao.addr16[3], an->addr16[3], u),
3439 ao.addr16[4], an->addr16[4], u),
3440 ao.addr16[5], an->addr16[5], u),
3441 ao.addr16[6], an->addr16[6], u),
3442 ao.addr16[7], an->addr16[7], u);
3443 }
3444 #endif /* INET6 */
3445
3446 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3447 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3448 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3449 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3450 {
3451 struct pf_addr oia, ooa;
3452
3453 PF_ACPY(&oia, ia, af);
3454 if (oa)
3455 PF_ACPY(&ooa, oa, af);
3456
3457 /* Change inner protocol port, fix inner protocol checksum. */
3458 if (ip != NULL) {
3459 u_int16_t oip = *ip;
3460 u_int32_t opc;
3461
3462 if (pc != NULL)
3463 opc = *pc;
3464 *ip = np;
3465 if (pc != NULL)
3466 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3467 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3468 if (pc != NULL)
3469 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3470 }
3471 /* Change inner ip address, fix inner ip and icmp checksums. */
3472 PF_ACPY(ia, na, af);
3473 switch (af) {
3474 #ifdef INET
3475 case AF_INET: {
3476 u_int32_t oh2c = *h2c;
3477
3478 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3479 oia.addr16[0], ia->addr16[0], 0),
3480 oia.addr16[1], ia->addr16[1], 0);
3481 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3482 oia.addr16[0], ia->addr16[0], 0),
3483 oia.addr16[1], ia->addr16[1], 0);
3484 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3485 break;
3486 }
3487 #endif /* INET */
3488 #ifdef INET6
3489 case AF_INET6:
3490 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3491 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3492 pf_cksum_fixup(pf_cksum_fixup(*ic,
3493 oia.addr16[0], ia->addr16[0], u),
3494 oia.addr16[1], ia->addr16[1], u),
3495 oia.addr16[2], ia->addr16[2], u),
3496 oia.addr16[3], ia->addr16[3], u),
3497 oia.addr16[4], ia->addr16[4], u),
3498 oia.addr16[5], ia->addr16[5], u),
3499 oia.addr16[6], ia->addr16[6], u),
3500 oia.addr16[7], ia->addr16[7], u);
3501 break;
3502 #endif /* INET6 */
3503 }
3504 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3505 if (oa) {
3506 PF_ACPY(oa, na, af);
3507 switch (af) {
3508 #ifdef INET
3509 case AF_INET:
3510 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3511 ooa.addr16[0], oa->addr16[0], 0),
3512 ooa.addr16[1], oa->addr16[1], 0);
3513 break;
3514 #endif /* INET */
3515 #ifdef INET6
3516 case AF_INET6:
3517 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3518 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3519 pf_cksum_fixup(pf_cksum_fixup(*ic,
3520 ooa.addr16[0], oa->addr16[0], u),
3521 ooa.addr16[1], oa->addr16[1], u),
3522 ooa.addr16[2], oa->addr16[2], u),
3523 ooa.addr16[3], oa->addr16[3], u),
3524 ooa.addr16[4], oa->addr16[4], u),
3525 ooa.addr16[5], oa->addr16[5], u),
3526 ooa.addr16[6], oa->addr16[6], u),
3527 ooa.addr16[7], oa->addr16[7], u);
3528 break;
3529 #endif /* INET6 */
3530 }
3531 }
3532 }
3533
3534 int
pf_translate_af(struct pf_pdesc * pd)3535 pf_translate_af(struct pf_pdesc *pd)
3536 {
3537 #if defined(INET) && defined(INET6)
3538 struct mbuf *mp;
3539 struct ip *ip4;
3540 struct ip6_hdr *ip6;
3541 struct icmp6_hdr *icmp;
3542 struct m_tag *mtag;
3543 struct pf_fragment_tag *ftag;
3544 int hlen;
3545
3546 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3547
3548 /* trim the old header */
3549 m_adj(pd->m, pd->off);
3550
3551 /* prepend a new one */
3552 M_PREPEND(pd->m, hlen, M_NOWAIT);
3553 if (pd->m == NULL)
3554 return (-1);
3555
3556 switch (pd->naf) {
3557 case AF_INET:
3558 ip4 = mtod(pd->m, struct ip *);
3559 bzero(ip4, hlen);
3560 ip4->ip_v = IPVERSION;
3561 ip4->ip_hl = hlen >> 2;
3562 ip4->ip_tos = pd->tos;
3563 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3564 ip_fillid(ip4, V_ip_random_id);
3565 ip4->ip_ttl = pd->ttl;
3566 ip4->ip_p = pd->proto;
3567 ip4->ip_src = pd->nsaddr.v4;
3568 ip4->ip_dst = pd->ndaddr.v4;
3569 pd->src = (struct pf_addr *)&ip4->ip_src;
3570 pd->dst = (struct pf_addr *)&ip4->ip_dst;
3571 pd->off = sizeof(struct ip);
3572 break;
3573 case AF_INET6:
3574 ip6 = mtod(pd->m, struct ip6_hdr *);
3575 bzero(ip6, hlen);
3576 ip6->ip6_vfc = IPV6_VERSION;
3577 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3578 ip6->ip6_plen = htons(pd->tot_len - pd->off);
3579 ip6->ip6_nxt = pd->proto;
3580 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3581 ip6->ip6_hlim = IPV6_DEFHLIM;
3582 else
3583 ip6->ip6_hlim = pd->ttl;
3584 ip6->ip6_src = pd->nsaddr.v6;
3585 ip6->ip6_dst = pd->ndaddr.v6;
3586 pd->src = (struct pf_addr *)&ip6->ip6_src;
3587 pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3588 pd->off = sizeof(struct ip6_hdr);
3589
3590 /*
3591 * If we're dealing with a reassembled packet we need to adjust
3592 * the header length from the IPv4 header size to IPv6 header
3593 * size.
3594 */
3595 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3596 if (mtag) {
3597 ftag = (struct pf_fragment_tag *)(mtag + 1);
3598 ftag->ft_hdrlen = sizeof(*ip6);
3599 ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3600 sizeof(struct ip) + sizeof(struct ip6_frag);
3601 }
3602 break;
3603 default:
3604 return (-1);
3605 }
3606
3607 /* recalculate icmp/icmp6 checksums */
3608 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3609 int off;
3610 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3611 NULL) {
3612 pd->m = NULL;
3613 return (-1);
3614 }
3615 icmp = (struct icmp6_hdr *)(mp->m_data + off);
3616 icmp->icmp6_cksum = 0;
3617 icmp->icmp6_cksum = pd->naf == AF_INET ?
3618 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3619 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3620 ntohs(ip6->ip6_plen));
3621 }
3622 #endif /* INET && INET6 */
3623
3624 return (0);
3625 }
3626
3627 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3628 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3629 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3630 sa_family_t af, sa_family_t naf)
3631 {
3632 #if defined(INET) && defined(INET6)
3633 struct mbuf *n = NULL;
3634 struct ip *ip4;
3635 struct ip6_hdr *ip6;
3636 int hlen, olen, mlen;
3637
3638 if (af == naf || (af != AF_INET && af != AF_INET6) ||
3639 (naf != AF_INET && naf != AF_INET6))
3640 return (-1);
3641
3642 /* split the mbuf chain on the inner ip/ip6 header boundary */
3643 if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3644 return (-1);
3645
3646 /* old header */
3647 olen = pd2->off - off;
3648 /* new header */
3649 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3650
3651 /* trim old header */
3652 m_adj(n, olen);
3653
3654 /* prepend a new one */
3655 M_PREPEND(n, hlen, M_NOWAIT);
3656 if (n == NULL)
3657 return (-1);
3658
3659 /* translate inner ip/ip6 header */
3660 switch (naf) {
3661 case AF_INET:
3662 ip4 = mtod(n, struct ip *);
3663 bzero(ip4, sizeof(*ip4));
3664 ip4->ip_v = IPVERSION;
3665 ip4->ip_hl = sizeof(*ip4) >> 2;
3666 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3667 ip_fillid(ip4, V_ip_random_id);
3668 ip4->ip_off = htons(IP_DF);
3669 ip4->ip_ttl = pd2->ttl;
3670 if (pd2->proto == IPPROTO_ICMPV6)
3671 ip4->ip_p = IPPROTO_ICMP;
3672 else
3673 ip4->ip_p = pd2->proto;
3674 ip4->ip_src = src->v4;
3675 ip4->ip_dst = dst->v4;
3676 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3677 break;
3678 case AF_INET6:
3679 ip6 = mtod(n, struct ip6_hdr *);
3680 bzero(ip6, sizeof(*ip6));
3681 ip6->ip6_vfc = IPV6_VERSION;
3682 ip6->ip6_plen = htons(pd2->tot_len - olen);
3683 if (pd2->proto == IPPROTO_ICMP)
3684 ip6->ip6_nxt = IPPROTO_ICMPV6;
3685 else
3686 ip6->ip6_nxt = pd2->proto;
3687 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3688 ip6->ip6_hlim = IPV6_DEFHLIM;
3689 else
3690 ip6->ip6_hlim = pd2->ttl;
3691 ip6->ip6_src = src->v6;
3692 ip6->ip6_dst = dst->v6;
3693 break;
3694 default:
3695 unhandled_af(naf);
3696 }
3697
3698 /* adjust payload offset and total packet length */
3699 pd2->off += hlen - olen;
3700 pd->tot_len += hlen - olen;
3701
3702 /* merge modified inner packet with the original header */
3703 mlen = n->m_pkthdr.len;
3704 m_cat(m, n);
3705 m->m_pkthdr.len += mlen;
3706 #endif /* INET && INET6 */
3707
3708 return (0);
3709 }
3710
3711 #define PTR_IP(field) (offsetof(struct ip, field))
3712 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field))
3713
3714 int
pf_translate_icmp_af(int af,void * arg)3715 pf_translate_icmp_af(int af, void *arg)
3716 {
3717 #if defined(INET) && defined(INET6)
3718 struct icmp *icmp4;
3719 struct icmp6_hdr *icmp6;
3720 u_int32_t mtu;
3721 int32_t ptr = -1;
3722 u_int8_t type;
3723 u_int8_t code;
3724
3725 switch (af) {
3726 case AF_INET:
3727 icmp6 = arg;
3728 type = icmp6->icmp6_type;
3729 code = icmp6->icmp6_code;
3730 mtu = ntohl(icmp6->icmp6_mtu);
3731
3732 switch (type) {
3733 case ICMP6_ECHO_REQUEST:
3734 type = ICMP_ECHO;
3735 break;
3736 case ICMP6_ECHO_REPLY:
3737 type = ICMP_ECHOREPLY;
3738 break;
3739 case ICMP6_DST_UNREACH:
3740 type = ICMP_UNREACH;
3741 switch (code) {
3742 case ICMP6_DST_UNREACH_NOROUTE:
3743 case ICMP6_DST_UNREACH_BEYONDSCOPE:
3744 case ICMP6_DST_UNREACH_ADDR:
3745 code = ICMP_UNREACH_HOST;
3746 break;
3747 case ICMP6_DST_UNREACH_ADMIN:
3748 code = ICMP_UNREACH_HOST_PROHIB;
3749 break;
3750 case ICMP6_DST_UNREACH_NOPORT:
3751 code = ICMP_UNREACH_PORT;
3752 break;
3753 default:
3754 return (-1);
3755 }
3756 break;
3757 case ICMP6_PACKET_TOO_BIG:
3758 type = ICMP_UNREACH;
3759 code = ICMP_UNREACH_NEEDFRAG;
3760 mtu -= 20;
3761 break;
3762 case ICMP6_TIME_EXCEEDED:
3763 type = ICMP_TIMXCEED;
3764 break;
3765 case ICMP6_PARAM_PROB:
3766 switch (code) {
3767 case ICMP6_PARAMPROB_HEADER:
3768 type = ICMP_PARAMPROB;
3769 code = ICMP_PARAMPROB_ERRATPTR;
3770 ptr = ntohl(icmp6->icmp6_pptr);
3771
3772 if (ptr == PTR_IP6(ip6_vfc))
3773 ; /* preserve */
3774 else if (ptr == PTR_IP6(ip6_vfc) + 1)
3775 ptr = PTR_IP(ip_tos);
3776 else if (ptr == PTR_IP6(ip6_plen) ||
3777 ptr == PTR_IP6(ip6_plen) + 1)
3778 ptr = PTR_IP(ip_len);
3779 else if (ptr == PTR_IP6(ip6_nxt))
3780 ptr = PTR_IP(ip_p);
3781 else if (ptr == PTR_IP6(ip6_hlim))
3782 ptr = PTR_IP(ip_ttl);
3783 else if (ptr >= PTR_IP6(ip6_src) &&
3784 ptr < PTR_IP6(ip6_dst))
3785 ptr = PTR_IP(ip_src);
3786 else if (ptr >= PTR_IP6(ip6_dst) &&
3787 ptr < sizeof(struct ip6_hdr))
3788 ptr = PTR_IP(ip_dst);
3789 else {
3790 return (-1);
3791 }
3792 break;
3793 case ICMP6_PARAMPROB_NEXTHEADER:
3794 type = ICMP_UNREACH;
3795 code = ICMP_UNREACH_PROTOCOL;
3796 break;
3797 default:
3798 return (-1);
3799 }
3800 break;
3801 default:
3802 return (-1);
3803 }
3804 if (icmp6->icmp6_type != type) {
3805 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3806 icmp6->icmp6_type, type, 0);
3807 icmp6->icmp6_type = type;
3808 }
3809 if (icmp6->icmp6_code != code) {
3810 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3811 icmp6->icmp6_code, code, 0);
3812 icmp6->icmp6_code = code;
3813 }
3814 if (icmp6->icmp6_mtu != htonl(mtu)) {
3815 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3816 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3817 /* aligns well with a icmpv4 nextmtu */
3818 icmp6->icmp6_mtu = htonl(mtu);
3819 }
3820 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3821 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3822 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3823 /* icmpv4 pptr is a one most significant byte */
3824 icmp6->icmp6_pptr = htonl(ptr << 24);
3825 }
3826 break;
3827 case AF_INET6:
3828 icmp4 = arg;
3829 type = icmp4->icmp_type;
3830 code = icmp4->icmp_code;
3831 mtu = ntohs(icmp4->icmp_nextmtu);
3832
3833 switch (type) {
3834 case ICMP_ECHO:
3835 type = ICMP6_ECHO_REQUEST;
3836 break;
3837 case ICMP_ECHOREPLY:
3838 type = ICMP6_ECHO_REPLY;
3839 break;
3840 case ICMP_UNREACH:
3841 type = ICMP6_DST_UNREACH;
3842 switch (code) {
3843 case ICMP_UNREACH_NET:
3844 case ICMP_UNREACH_HOST:
3845 case ICMP_UNREACH_NET_UNKNOWN:
3846 case ICMP_UNREACH_HOST_UNKNOWN:
3847 case ICMP_UNREACH_ISOLATED:
3848 case ICMP_UNREACH_TOSNET:
3849 case ICMP_UNREACH_TOSHOST:
3850 code = ICMP6_DST_UNREACH_NOROUTE;
3851 break;
3852 case ICMP_UNREACH_PORT:
3853 code = ICMP6_DST_UNREACH_NOPORT;
3854 break;
3855 case ICMP_UNREACH_NET_PROHIB:
3856 case ICMP_UNREACH_HOST_PROHIB:
3857 case ICMP_UNREACH_FILTER_PROHIB:
3858 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3859 code = ICMP6_DST_UNREACH_ADMIN;
3860 break;
3861 case ICMP_UNREACH_PROTOCOL:
3862 type = ICMP6_PARAM_PROB;
3863 code = ICMP6_PARAMPROB_NEXTHEADER;
3864 ptr = offsetof(struct ip6_hdr, ip6_nxt);
3865 break;
3866 case ICMP_UNREACH_NEEDFRAG:
3867 type = ICMP6_PACKET_TOO_BIG;
3868 code = 0;
3869 mtu += 20;
3870 break;
3871 default:
3872 return (-1);
3873 }
3874 break;
3875 case ICMP_TIMXCEED:
3876 type = ICMP6_TIME_EXCEEDED;
3877 break;
3878 case ICMP_PARAMPROB:
3879 type = ICMP6_PARAM_PROB;
3880 switch (code) {
3881 case ICMP_PARAMPROB_ERRATPTR:
3882 code = ICMP6_PARAMPROB_HEADER;
3883 break;
3884 case ICMP_PARAMPROB_LENGTH:
3885 code = ICMP6_PARAMPROB_HEADER;
3886 break;
3887 default:
3888 return (-1);
3889 }
3890
3891 ptr = icmp4->icmp_pptr;
3892 if (ptr == 0 || ptr == PTR_IP(ip_tos))
3893 ; /* preserve */
3894 else if (ptr == PTR_IP(ip_len) ||
3895 ptr == PTR_IP(ip_len) + 1)
3896 ptr = PTR_IP6(ip6_plen);
3897 else if (ptr == PTR_IP(ip_ttl))
3898 ptr = PTR_IP6(ip6_hlim);
3899 else if (ptr == PTR_IP(ip_p))
3900 ptr = PTR_IP6(ip6_nxt);
3901 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3902 ptr = PTR_IP6(ip6_src);
3903 else if (ptr >= PTR_IP(ip_dst) &&
3904 ptr < sizeof(struct ip))
3905 ptr = PTR_IP6(ip6_dst);
3906 else {
3907 return (-1);
3908 }
3909 break;
3910 default:
3911 return (-1);
3912 }
3913 if (icmp4->icmp_type != type) {
3914 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3915 icmp4->icmp_type, type, 0);
3916 icmp4->icmp_type = type;
3917 }
3918 if (icmp4->icmp_code != code) {
3919 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3920 icmp4->icmp_code, code, 0);
3921 icmp4->icmp_code = code;
3922 }
3923 if (icmp4->icmp_nextmtu != htons(mtu)) {
3924 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3925 icmp4->icmp_nextmtu, htons(mtu), 0);
3926 icmp4->icmp_nextmtu = htons(mtu);
3927 }
3928 if (ptr >= 0 && icmp4->icmp_void != ptr) {
3929 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3930 htons(icmp4->icmp_pptr), htons(ptr), 0);
3931 icmp4->icmp_void = htonl(ptr);
3932 }
3933 break;
3934 default:
3935 unhandled_af(af);
3936 }
3937 #endif /* INET && INET6 */
3938
3939 return (0);
3940 }
3941
3942 /*
3943 * Need to modulate the sequence numbers in the TCP SACK option
3944 * (credits to Krzysztof Pfaff for report and patch)
3945 */
3946 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3947 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3948 struct pf_state_peer *dst)
3949 {
3950 struct sackblk sack;
3951 int copyback = 0, i;
3952 int olen, optsoff;
3953 uint8_t opts[MAX_TCPOPTLEN], *opt, *eoh;
3954
3955 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
3956 optsoff = pd->off + sizeof(struct tcphdr);
3957 #define TCPOLEN_MINSACK (TCPOLEN_SACK + 2)
3958 if (olen < TCPOLEN_MINSACK ||
3959 !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af))
3960 return (0);
3961
3962 eoh = opts + olen;
3963 opt = opts;
3964 while ((opt = pf_find_tcpopt(opt, opts, olen,
3965 TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
3966 {
3967 size_t safelen = MIN(opt[1], (eoh - opt));
3968 for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
3969 size_t startoff = (opt + i) - opts;
3970 memcpy(&sack, &opt[i], sizeof(sack));
3971 pf_patch_32(pd, &sack.start,
3972 htonl(ntohl(sack.start) - dst->seqdiff),
3973 PF_ALGNMNT(startoff));
3974 pf_patch_32(pd, &sack.end,
3975 htonl(ntohl(sack.end) - dst->seqdiff),
3976 PF_ALGNMNT(startoff + sizeof(sack.start)));
3977 memcpy(&opt[i], &sack, sizeof(sack));
3978 }
3979 copyback = 1;
3980 opt += opt[1];
3981 }
3982
3983 if (copyback)
3984 m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
3985
3986 return (copyback);
3987 }
3988
3989 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid)3990 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3991 const struct pf_addr *saddr, const struct pf_addr *daddr,
3992 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3993 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3994 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
3995 int rtableid)
3996 {
3997 struct mbuf *m;
3998 int len, tlen;
3999 #ifdef INET
4000 struct ip *h = NULL;
4001 #endif /* INET */
4002 #ifdef INET6
4003 struct ip6_hdr *h6 = NULL;
4004 #endif /* INET6 */
4005 struct tcphdr *th;
4006 char *opt;
4007 struct pf_mtag *pf_mtag;
4008
4009 len = 0;
4010 th = NULL;
4011
4012 /* maximum segment size tcp option */
4013 tlen = sizeof(struct tcphdr);
4014 if (mss)
4015 tlen += 4;
4016 if (sack)
4017 tlen += 2;
4018
4019 switch (af) {
4020 #ifdef INET
4021 case AF_INET:
4022 len = sizeof(struct ip) + tlen;
4023 break;
4024 #endif /* INET */
4025 #ifdef INET6
4026 case AF_INET6:
4027 len = sizeof(struct ip6_hdr) + tlen;
4028 break;
4029 #endif /* INET6 */
4030 default:
4031 unhandled_af(af);
4032 }
4033
4034 m = m_gethdr(M_NOWAIT, MT_DATA);
4035 if (m == NULL)
4036 return (NULL);
4037
4038 #ifdef MAC
4039 mac_netinet_firewall_send(m);
4040 #endif
4041 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4042 m_freem(m);
4043 return (NULL);
4044 }
4045 m->m_flags |= mbuf_flags;
4046 pf_mtag->tag = mtag_tag;
4047 pf_mtag->flags = mtag_flags;
4048
4049 if (rtableid >= 0)
4050 M_SETFIB(m, rtableid);
4051
4052 #ifdef ALTQ
4053 if (r != NULL && r->qid) {
4054 pf_mtag->qid = r->qid;
4055
4056 /* add hints for ecn */
4057 pf_mtag->hdr = mtod(m, struct ip *);
4058 }
4059 #endif /* ALTQ */
4060 m->m_data += max_linkhdr;
4061 m->m_pkthdr.len = m->m_len = len;
4062 /* The rest of the stack assumes a rcvif, so provide one.
4063 * This is a locally generated packet, so .. close enough. */
4064 m->m_pkthdr.rcvif = V_loif;
4065 bzero(m->m_data, len);
4066 switch (af) {
4067 #ifdef INET
4068 case AF_INET:
4069 m->m_pkthdr.csum_flags |= CSUM_TCP;
4070 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4071
4072 h = mtod(m, struct ip *);
4073
4074 h->ip_p = IPPROTO_TCP;
4075 h->ip_len = htons(tlen);
4076 h->ip_v = 4;
4077 h->ip_hl = sizeof(*h) >> 2;
4078 h->ip_tos = IPTOS_LOWDELAY;
4079 h->ip_len = htons(len);
4080 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4081 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4082 h->ip_sum = 0;
4083 h->ip_src.s_addr = saddr->v4.s_addr;
4084 h->ip_dst.s_addr = daddr->v4.s_addr;
4085
4086 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4087 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4088 htons(len - sizeof(struct ip) + IPPROTO_TCP));
4089 break;
4090 #endif /* INET */
4091 #ifdef INET6
4092 case AF_INET6:
4093 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4094 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4095
4096 h6 = mtod(m, struct ip6_hdr *);
4097
4098 /* IP header fields included in the TCP checksum */
4099 h6->ip6_nxt = IPPROTO_TCP;
4100 h6->ip6_plen = htons(tlen);
4101 h6->ip6_vfc |= IPV6_VERSION;
4102 h6->ip6_hlim = V_ip6_defhlim;
4103 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4104 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4105
4106 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4107 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4108 IPPROTO_TCP, 0);
4109 break;
4110 #endif /* INET6 */
4111 }
4112
4113 /* TCP header */
4114 th->th_sport = sport;
4115 th->th_dport = dport;
4116 th->th_seq = htonl(seq);
4117 th->th_ack = htonl(ack);
4118 th->th_off = tlen >> 2;
4119 tcp_set_flags(th, tcp_flags);
4120 th->th_win = htons(win);
4121
4122 opt = (char *)(th + 1);
4123 if (mss) {
4124 opt = (char *)(th + 1);
4125 opt[0] = TCPOPT_MAXSEG;
4126 opt[1] = 4;
4127 mss = htons(mss);
4128 memcpy((opt + 2), &mss, 2);
4129 opt += 4;
4130 }
4131 if (sack) {
4132 opt[0] = TCPOPT_SACK_PERMITTED;
4133 opt[1] = 2;
4134 opt += 2;
4135 }
4136
4137 return (m);
4138 }
4139
4140 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4141 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4142 uint8_t ttl, int rtableid)
4143 {
4144 struct mbuf *m;
4145 #ifdef INET
4146 struct ip *h = NULL;
4147 #endif /* INET */
4148 #ifdef INET6
4149 struct ip6_hdr *h6 = NULL;
4150 #endif /* INET6 */
4151 struct sctphdr *hdr;
4152 struct sctp_chunkhdr *chunk;
4153 struct pf_send_entry *pfse;
4154 int off = 0;
4155
4156 MPASS(af == pd->af);
4157
4158 m = m_gethdr(M_NOWAIT, MT_DATA);
4159 if (m == NULL)
4160 return;
4161
4162 m->m_data += max_linkhdr;
4163 m->m_flags |= M_SKIP_FIREWALL;
4164 /* The rest of the stack assumes a rcvif, so provide one.
4165 * This is a locally generated packet, so .. close enough. */
4166 m->m_pkthdr.rcvif = V_loif;
4167
4168 /* IPv4|6 header */
4169 switch (af) {
4170 #ifdef INET
4171 case AF_INET:
4172 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4173
4174 h = mtod(m, struct ip *);
4175
4176 /* IP header fields included in the TCP checksum */
4177
4178 h->ip_p = IPPROTO_SCTP;
4179 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4180 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4181 h->ip_src = pd->dst->v4;
4182 h->ip_dst = pd->src->v4;
4183
4184 off += sizeof(struct ip);
4185 break;
4186 #endif /* INET */
4187 #ifdef INET6
4188 case AF_INET6:
4189 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4190
4191 h6 = mtod(m, struct ip6_hdr *);
4192
4193 /* IP header fields included in the TCP checksum */
4194 h6->ip6_vfc |= IPV6_VERSION;
4195 h6->ip6_nxt = IPPROTO_SCTP;
4196 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4197 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4198 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4199 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4200
4201 off += sizeof(struct ip6_hdr);
4202 break;
4203 #endif /* INET6 */
4204 default:
4205 unhandled_af(af);
4206 }
4207
4208 /* SCTP header */
4209 hdr = mtodo(m, off);
4210
4211 hdr->src_port = pd->hdr.sctp.dest_port;
4212 hdr->dest_port = pd->hdr.sctp.src_port;
4213 hdr->v_tag = pd->sctp_initiate_tag;
4214 hdr->checksum = 0;
4215
4216 /* Abort chunk. */
4217 off += sizeof(struct sctphdr);
4218 chunk = mtodo(m, off);
4219
4220 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4221 chunk->chunk_length = htons(sizeof(*chunk));
4222
4223 /* SCTP checksum */
4224 off += sizeof(*chunk);
4225 m->m_pkthdr.len = m->m_len = off;
4226
4227 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4228
4229 if (rtableid >= 0)
4230 M_SETFIB(m, rtableid);
4231
4232 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4233 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4234 if (pfse == NULL) {
4235 m_freem(m);
4236 return;
4237 }
4238
4239 switch (af) {
4240 #ifdef INET
4241 case AF_INET:
4242 pfse->pfse_type = PFSE_IP;
4243 break;
4244 #endif /* INET */
4245 #ifdef INET6
4246 case AF_INET6:
4247 pfse->pfse_type = PFSE_IP6;
4248 break;
4249 #endif /* INET6 */
4250 }
4251
4252 pfse->pfse_m = m;
4253 pf_send(pfse);
4254 }
4255
4256 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4257 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4258 const struct pf_addr *saddr, const struct pf_addr *daddr,
4259 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4260 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4261 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4262 {
4263 struct pf_send_entry *pfse;
4264 struct mbuf *m;
4265
4266 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4267 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid);
4268 if (m == NULL)
4269 return;
4270
4271 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4272 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4273 if (pfse == NULL) {
4274 m_freem(m);
4275 return;
4276 }
4277
4278 switch (af) {
4279 #ifdef INET
4280 case AF_INET:
4281 pfse->pfse_type = PFSE_IP;
4282 break;
4283 #endif /* INET */
4284 #ifdef INET6
4285 case AF_INET6:
4286 pfse->pfse_type = PFSE_IP6;
4287 break;
4288 #endif /* INET6 */
4289 default:
4290 unhandled_af(af);
4291 }
4292
4293 pfse->pfse_m = m;
4294 pf_send(pfse);
4295 }
4296
4297 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4298 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4299 {
4300 /* undo NAT changes, if they have taken place */
4301 if (nr != NULL) {
4302 PF_ACPY(pd->src, &pd->osrc, pd->af);
4303 PF_ACPY(pd->dst, &pd->odst, pd->af);
4304 if (pd->sport)
4305 *pd->sport = pd->osport;
4306 if (pd->dport)
4307 *pd->dport = pd->odport;
4308 if (pd->ip_sum)
4309 *pd->ip_sum = bip_sum;
4310 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4311 }
4312 }
4313
4314 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4315 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4316 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4317 u_short *reason, int rtableid)
4318 {
4319 pf_undo_nat(nr, pd, bip_sum);
4320
4321 if (pd->proto == IPPROTO_TCP &&
4322 ((r->rule_flag & PFRULE_RETURNRST) ||
4323 (r->rule_flag & PFRULE_RETURN)) &&
4324 !(tcp_get_flags(th) & TH_RST)) {
4325 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
4326
4327 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4328 IPPROTO_TCP, pd->af))
4329 REASON_SET(reason, PFRES_PROTCKSUM);
4330 else {
4331 if (tcp_get_flags(th) & TH_SYN)
4332 ack++;
4333 if (tcp_get_flags(th) & TH_FIN)
4334 ack++;
4335 pf_send_tcp(r, pd->af, pd->dst,
4336 pd->src, th->th_dport, th->th_sport,
4337 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4338 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4339 }
4340 } else if (pd->proto == IPPROTO_SCTP &&
4341 (r->rule_flag & PFRULE_RETURN)) {
4342 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4343 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4344 r->return_icmp)
4345 pf_send_icmp(pd->m, r->return_icmp >> 8,
4346 r->return_icmp & 255, 0, pd->af, r, rtableid);
4347 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4348 r->return_icmp6)
4349 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4350 r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4351 }
4352
4353 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4354 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4355 {
4356 struct m_tag *mtag;
4357 u_int8_t mpcp;
4358
4359 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4360 if (mtag == NULL)
4361 return (0);
4362
4363 if (prio == PF_PRIO_ZERO)
4364 prio = 0;
4365
4366 mpcp = *(uint8_t *)(mtag + 1);
4367
4368 return (mpcp == prio);
4369 }
4370
4371 static int
pf_icmp_to_bandlim(uint8_t type)4372 pf_icmp_to_bandlim(uint8_t type)
4373 {
4374 switch (type) {
4375 case ICMP_ECHO:
4376 case ICMP_ECHOREPLY:
4377 return (BANDLIM_ICMP_ECHO);
4378 case ICMP_TSTAMP:
4379 case ICMP_TSTAMPREPLY:
4380 return (BANDLIM_ICMP_TSTAMP);
4381 case ICMP_UNREACH:
4382 default:
4383 return (BANDLIM_ICMP_UNREACH);
4384 }
4385 }
4386
4387 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst)4388 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4389 struct pf_state_peer *src, struct pf_state_peer *dst)
4390 {
4391 /*
4392 * We are sending challenge ACK as a response to SYN packet, which
4393 * matches existing state (modulo TCP window check). Therefore packet
4394 * must be sent on behalf of destination.
4395 *
4396 * We expect sender to remain either silent, or send RST packet
4397 * so both, firewall and remote peer, can purge dead state from
4398 * memory.
4399 */
4400 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4401 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4402 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4403 s->rule->rtableid);
4404 }
4405
4406 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4407 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4408 sa_family_t af, struct pf_krule *r, int rtableid)
4409 {
4410 struct pf_send_entry *pfse;
4411 struct mbuf *m0;
4412 struct pf_mtag *pf_mtag;
4413
4414 /* ICMP packet rate limitation. */
4415 switch (af) {
4416 #ifdef INET6
4417 case AF_INET6:
4418 if (icmp6_ratelimit(NULL, type, code))
4419 return;
4420 break;
4421 #endif /* INET6 */
4422 #ifdef INET
4423 case AF_INET:
4424 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4425 return;
4426 break;
4427 #endif /* INET */
4428 }
4429
4430 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4431 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4432 if (pfse == NULL)
4433 return;
4434
4435 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4436 free(pfse, M_PFTEMP);
4437 return;
4438 }
4439
4440 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4441 free(pfse, M_PFTEMP);
4442 return;
4443 }
4444 /* XXX: revisit */
4445 m0->m_flags |= M_SKIP_FIREWALL;
4446
4447 if (rtableid >= 0)
4448 M_SETFIB(m0, rtableid);
4449
4450 #ifdef ALTQ
4451 if (r->qid) {
4452 pf_mtag->qid = r->qid;
4453 /* add hints for ecn */
4454 pf_mtag->hdr = mtod(m0, struct ip *);
4455 }
4456 #endif /* ALTQ */
4457
4458 switch (af) {
4459 #ifdef INET
4460 case AF_INET:
4461 pfse->pfse_type = PFSE_ICMP;
4462 break;
4463 #endif /* INET */
4464 #ifdef INET6
4465 case AF_INET6:
4466 pfse->pfse_type = PFSE_ICMP6;
4467 break;
4468 #endif /* INET6 */
4469 }
4470 pfse->pfse_m = m0;
4471 pfse->icmpopts.type = type;
4472 pfse->icmpopts.code = code;
4473 pfse->icmpopts.mtu = mtu;
4474 pf_send(pfse);
4475 }
4476
4477 /*
4478 * Return ((n = 0) == (a = b [with mask m]))
4479 * Note: n != 0 => returns (a != b [with mask m])
4480 */
4481 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4482 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4483 const struct pf_addr *b, sa_family_t af)
4484 {
4485 switch (af) {
4486 #ifdef INET
4487 case AF_INET:
4488 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4489 return (n == 0);
4490 break;
4491 #endif /* INET */
4492 #ifdef INET6
4493 case AF_INET6:
4494 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4495 return (n == 0);
4496 break;
4497 #endif /* INET6 */
4498 }
4499
4500 return (n != 0);
4501 }
4502
4503 /*
4504 * Return 1 if b <= a <= e, otherwise return 0.
4505 */
4506 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4507 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4508 const struct pf_addr *a, sa_family_t af)
4509 {
4510 switch (af) {
4511 #ifdef INET
4512 case AF_INET:
4513 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4514 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4515 return (0);
4516 break;
4517 #endif /* INET */
4518 #ifdef INET6
4519 case AF_INET6: {
4520 int i;
4521
4522 /* check a >= b */
4523 for (i = 0; i < 4; ++i)
4524 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4525 break;
4526 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4527 return (0);
4528 /* check a <= e */
4529 for (i = 0; i < 4; ++i)
4530 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4531 break;
4532 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4533 return (0);
4534 break;
4535 }
4536 #endif /* INET6 */
4537 }
4538 return (1);
4539 }
4540
4541 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4542 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4543 {
4544 switch (op) {
4545 case PF_OP_IRG:
4546 return ((p > a1) && (p < a2));
4547 case PF_OP_XRG:
4548 return ((p < a1) || (p > a2));
4549 case PF_OP_RRG:
4550 return ((p >= a1) && (p <= a2));
4551 case PF_OP_EQ:
4552 return (p == a1);
4553 case PF_OP_NE:
4554 return (p != a1);
4555 case PF_OP_LT:
4556 return (p < a1);
4557 case PF_OP_LE:
4558 return (p <= a1);
4559 case PF_OP_GT:
4560 return (p > a1);
4561 case PF_OP_GE:
4562 return (p >= a1);
4563 }
4564 return (0); /* never reached */
4565 }
4566
4567 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4568 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4569 {
4570 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4571 }
4572
4573 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4574 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4575 {
4576 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4577 return (0);
4578 return (pf_match(op, a1, a2, u));
4579 }
4580
4581 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4582 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4583 {
4584 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4585 return (0);
4586 return (pf_match(op, a1, a2, g));
4587 }
4588
4589 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4590 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4591 {
4592 if (*tag == -1)
4593 *tag = mtag;
4594
4595 return ((!r->match_tag_not && r->match_tag == *tag) ||
4596 (r->match_tag_not && r->match_tag != *tag));
4597 }
4598
4599 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4600 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4601 {
4602 struct ifnet *ifp = m->m_pkthdr.rcvif;
4603 struct pfi_kkif *kif;
4604
4605 if (ifp == NULL)
4606 return (0);
4607
4608 kif = (struct pfi_kkif *)ifp->if_pf_kif;
4609
4610 if (kif == NULL) {
4611 DPFPRINTF(PF_DEBUG_URGENT,
4612 ("%s: kif == NULL, @%d via %s\n", __func__, r->nr,
4613 r->rcv_ifname));
4614 return (0);
4615 }
4616
4617 return (pfi_kkif_match(r->rcv_kif, kif));
4618 }
4619
4620 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4621 pf_tag_packet(struct pf_pdesc *pd, int tag)
4622 {
4623
4624 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4625
4626 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4627 return (ENOMEM);
4628
4629 pd->pf_mtag->tag = tag;
4630
4631 return (0);
4632 }
4633
4634 /*
4635 * XXX: We rely on malloc(9) returning pointer aligned addresses.
4636 */
4637 #define PF_ANCHORSTACK_MATCH 0x00000001
4638 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4639
4640 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4641 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4642 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4643 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4644 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4645 } while (0)
4646
4647 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r)4648 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r)
4649 {
4650 enum pf_test_status rv;
4651
4652 PF_RULES_RASSERT();
4653
4654 if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
4655 printf("%s: anchor stack overflow on %s\n",
4656 __func__, r->anchor->name);
4657 return (PF_TEST_FAIL);
4658 }
4659
4660 ctx->depth++;
4661
4662 if (r->anchor_wildcard) {
4663 struct pf_kanchor *child;
4664 rv = PF_TEST_OK;
4665 RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
4666 rv = pf_match_rule(ctx, &child->ruleset);
4667 if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
4668 /*
4669 * we either hit a rule with quick action
4670 * (more likely), or hit some runtime
4671 * error (e.g. pool_get() failure).
4672 */
4673 break;
4674 }
4675 }
4676 } else {
4677 rv = pf_match_rule(ctx, &r->anchor->ruleset);
4678 /*
4679 * Unless there was an error inside the anchor,
4680 * retain its quick state.
4681 */
4682 if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK)
4683 rv = PF_TEST_QUICK;
4684 }
4685
4686 ctx->depth--;
4687
4688 return (rv);
4689 }
4690
4691 struct pf_keth_anchor_stackframe {
4692 struct pf_keth_ruleset *rs;
4693 struct pf_keth_rule *r; /* XXX: + match bit */
4694 struct pf_keth_anchor *child;
4695 };
4696
4697 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4698 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4699 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4700 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4701 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4702 } while (0)
4703
4704 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4705 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4706 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4707 struct pf_keth_rule **a, int *match)
4708 {
4709 struct pf_keth_anchor_stackframe *f;
4710
4711 NET_EPOCH_ASSERT();
4712
4713 if (match)
4714 *match = 0;
4715 if (*depth >= PF_ANCHOR_STACK_MAX) {
4716 printf("%s: anchor stack overflow on %s\n",
4717 __func__, (*r)->anchor->name);
4718 *r = TAILQ_NEXT(*r, entries);
4719 return;
4720 } else if (*depth == 0 && a != NULL)
4721 *a = *r;
4722 f = stack + (*depth)++;
4723 f->rs = *rs;
4724 f->r = *r;
4725 if ((*r)->anchor_wildcard) {
4726 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4727
4728 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4729 *r = NULL;
4730 return;
4731 }
4732 *rs = &f->child->ruleset;
4733 } else {
4734 f->child = NULL;
4735 *rs = &(*r)->anchor->ruleset;
4736 }
4737 *r = TAILQ_FIRST((*rs)->active.rules);
4738 }
4739
4740 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4741 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4742 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4743 struct pf_keth_rule **a, int *match)
4744 {
4745 struct pf_keth_anchor_stackframe *f;
4746 struct pf_keth_rule *fr;
4747 int quick = 0;
4748
4749 NET_EPOCH_ASSERT();
4750
4751 do {
4752 if (*depth <= 0)
4753 break;
4754 f = stack + *depth - 1;
4755 fr = PF_ETH_ANCHOR_RULE(f);
4756 if (f->child != NULL) {
4757 /*
4758 * This block traverses through
4759 * a wildcard anchor.
4760 */
4761 if (match != NULL && *match) {
4762 /*
4763 * If any of "*" matched, then
4764 * "foo/ *" matched, mark frame
4765 * appropriately.
4766 */
4767 PF_ETH_ANCHOR_SET_MATCH(f);
4768 *match = 0;
4769 }
4770 f->child = RB_NEXT(pf_keth_anchor_node,
4771 &fr->anchor->children, f->child);
4772 if (f->child != NULL) {
4773 *rs = &f->child->ruleset;
4774 *r = TAILQ_FIRST((*rs)->active.rules);
4775 if (*r == NULL)
4776 continue;
4777 else
4778 break;
4779 }
4780 }
4781 (*depth)--;
4782 if (*depth == 0 && a != NULL)
4783 *a = NULL;
4784 *rs = f->rs;
4785 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4786 quick = fr->quick;
4787 *r = TAILQ_NEXT(fr, entries);
4788 } while (*r == NULL);
4789
4790 return (quick);
4791 }
4792
4793 #ifdef INET6
4794 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4795 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4796 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4797 {
4798 switch (af) {
4799 #ifdef INET
4800 case AF_INET:
4801 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4802 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4803 break;
4804 #endif /* INET */
4805 case AF_INET6:
4806 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4807 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4808 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4809 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4810 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4811 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4812 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4813 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4814 break;
4815 }
4816 }
4817
4818 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4819 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4820 {
4821 switch (af) {
4822 #ifdef INET
4823 case AF_INET:
4824 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4825 break;
4826 #endif /* INET */
4827 case AF_INET6:
4828 if (addr->addr32[3] == 0xffffffff) {
4829 addr->addr32[3] = 0;
4830 if (addr->addr32[2] == 0xffffffff) {
4831 addr->addr32[2] = 0;
4832 if (addr->addr32[1] == 0xffffffff) {
4833 addr->addr32[1] = 0;
4834 addr->addr32[0] =
4835 htonl(ntohl(addr->addr32[0]) + 1);
4836 } else
4837 addr->addr32[1] =
4838 htonl(ntohl(addr->addr32[1]) + 1);
4839 } else
4840 addr->addr32[2] =
4841 htonl(ntohl(addr->addr32[2]) + 1);
4842 } else
4843 addr->addr32[3] =
4844 htonl(ntohl(addr->addr32[3]) + 1);
4845 break;
4846 }
4847 }
4848 #endif /* INET6 */
4849
4850 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4851 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4852 {
4853 /*
4854 * Modern rules use the same flags in rules as they do in states.
4855 */
4856 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4857 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4858
4859 /*
4860 * Old-style scrub rules have different flags which need to be translated.
4861 */
4862 if (r->rule_flag & PFRULE_RANDOMID)
4863 a->flags |= PFSTATE_RANDOMID;
4864 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4865 a->flags |= PFSTATE_SETTOS;
4866 a->set_tos = r->set_tos;
4867 }
4868
4869 if (r->qid)
4870 a->qid = r->qid;
4871 if (r->pqid)
4872 a->pqid = r->pqid;
4873 if (r->rtableid >= 0)
4874 a->rtableid = r->rtableid;
4875 a->log |= r->log;
4876 if (r->min_ttl)
4877 a->min_ttl = r->min_ttl;
4878 if (r->max_mss)
4879 a->max_mss = r->max_mss;
4880 if (r->dnpipe)
4881 a->dnpipe = r->dnpipe;
4882 if (r->dnrpipe)
4883 a->dnrpipe = r->dnrpipe;
4884 if (r->dnpipe || r->dnrpipe) {
4885 if (r->free_flags & PFRULE_DN_IS_PIPE)
4886 a->flags |= PFSTATE_DN_IS_PIPE;
4887 else
4888 a->flags &= ~PFSTATE_DN_IS_PIPE;
4889 }
4890 if (r->scrub_flags & PFSTATE_SETPRIO) {
4891 a->set_prio[0] = r->set_prio[0];
4892 a->set_prio[1] = r->set_prio[1];
4893 }
4894 if (r->allow_opts)
4895 a->allow_opts = r->allow_opts;
4896 if (r->max_pkt_size)
4897 a->max_pkt_size = r->max_pkt_size;
4898 }
4899
4900 int
pf_socket_lookup(struct pf_pdesc * pd)4901 pf_socket_lookup(struct pf_pdesc *pd)
4902 {
4903 struct pf_addr *saddr, *daddr;
4904 u_int16_t sport, dport;
4905 struct inpcbinfo *pi;
4906 struct inpcb *inp;
4907
4908 pd->lookup.uid = UID_MAX;
4909 pd->lookup.gid = GID_MAX;
4910
4911 switch (pd->proto) {
4912 case IPPROTO_TCP:
4913 sport = pd->hdr.tcp.th_sport;
4914 dport = pd->hdr.tcp.th_dport;
4915 pi = &V_tcbinfo;
4916 break;
4917 case IPPROTO_UDP:
4918 sport = pd->hdr.udp.uh_sport;
4919 dport = pd->hdr.udp.uh_dport;
4920 pi = &V_udbinfo;
4921 break;
4922 default:
4923 return (-1);
4924 }
4925 if (pd->dir == PF_IN) {
4926 saddr = pd->src;
4927 daddr = pd->dst;
4928 } else {
4929 u_int16_t p;
4930
4931 p = sport;
4932 sport = dport;
4933 dport = p;
4934 saddr = pd->dst;
4935 daddr = pd->src;
4936 }
4937 switch (pd->af) {
4938 #ifdef INET
4939 case AF_INET:
4940 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4941 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4942 if (inp == NULL) {
4943 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4944 daddr->v4, dport, INPLOOKUP_WILDCARD |
4945 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4946 if (inp == NULL)
4947 return (-1);
4948 }
4949 break;
4950 #endif /* INET */
4951 #ifdef INET6
4952 case AF_INET6:
4953 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4954 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4955 if (inp == NULL) {
4956 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4957 &daddr->v6, dport, INPLOOKUP_WILDCARD |
4958 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4959 if (inp == NULL)
4960 return (-1);
4961 }
4962 break;
4963 #endif /* INET6 */
4964 default:
4965 unhandled_af(pd->af);
4966 }
4967 INP_RLOCK_ASSERT(inp);
4968 pd->lookup.uid = inp->inp_cred->cr_uid;
4969 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4970 INP_RUNLOCK(inp);
4971
4972 return (1);
4973 }
4974
4975 /* post: r => (r[0] == type /\ r[1] >= min_typelen >= 2 "validity"
4976 * /\ (eoh - r) >= min_typelen >= 2 "safety" )
4977 *
4978 * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
4979 */
4980 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)4981 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
4982 u_int8_t min_typelen)
4983 {
4984 uint8_t *eoh = opts + hlen;
4985
4986 if (min_typelen < 2)
4987 return (NULL);
4988
4989 while ((eoh - opt) >= min_typelen) {
4990 switch (*opt) {
4991 case TCPOPT_EOL:
4992 /* FALLTHROUGH - Workaround the failure of some
4993 systems to NOP-pad their bzero'd option buffers,
4994 producing spurious EOLs */
4995 case TCPOPT_NOP:
4996 opt++;
4997 continue;
4998 default:
4999 if (opt[0] == type &&
5000 opt[1] >= min_typelen)
5001 return (opt);
5002 }
5003
5004 opt += MAX(opt[1], 2); /* evade infinite loops */
5005 }
5006
5007 return (NULL);
5008 }
5009
5010 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)5011 pf_get_wscale(struct pf_pdesc *pd)
5012 {
5013 int olen;
5014 uint8_t opts[MAX_TCPOPTLEN], *opt;
5015 uint8_t wscale = 0;
5016
5017 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5018 if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
5019 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5020 return (0);
5021
5022 opt = opts;
5023 while ((opt = pf_find_tcpopt(opt, opts, olen,
5024 TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5025 wscale = opt[2];
5026 wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5027 wscale |= PF_WSCALE_FLAG;
5028
5029 opt += opt[1];
5030 }
5031
5032 return (wscale);
5033 }
5034
5035 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5036 pf_get_mss(struct pf_pdesc *pd)
5037 {
5038 int olen;
5039 uint8_t opts[MAX_TCPOPTLEN], *opt;
5040 u_int16_t mss = V_tcp_mssdflt;
5041
5042 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5043 if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5044 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5045 return (0);
5046
5047 opt = opts;
5048 while ((opt = pf_find_tcpopt(opt, opts, olen,
5049 TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5050 memcpy(&mss, (opt + 2), 2);
5051 mss = ntohs(mss);
5052 opt += opt[1];
5053 }
5054
5055 return (mss);
5056 }
5057
5058 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5059 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5060 {
5061 struct nhop_object *nh;
5062 #ifdef INET6
5063 struct in6_addr dst6;
5064 uint32_t scopeid;
5065 #endif /* INET6 */
5066 int hlen = 0;
5067 uint16_t mss = 0;
5068
5069 NET_EPOCH_ASSERT();
5070
5071 switch (af) {
5072 #ifdef INET
5073 case AF_INET:
5074 hlen = sizeof(struct ip);
5075 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5076 if (nh != NULL)
5077 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5078 break;
5079 #endif /* INET */
5080 #ifdef INET6
5081 case AF_INET6:
5082 hlen = sizeof(struct ip6_hdr);
5083 in6_splitscope(&addr->v6, &dst6, &scopeid);
5084 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5085 if (nh != NULL)
5086 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5087 break;
5088 #endif /* INET6 */
5089 }
5090
5091 mss = max(V_tcp_mssdflt, mss);
5092 mss = min(mss, offer);
5093 mss = max(mss, 64); /* sanity - at least max opt space */
5094 return (mss);
5095 }
5096
5097 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5098 pf_tcp_iss(struct pf_pdesc *pd)
5099 {
5100 SHA512_CTX ctx;
5101 union {
5102 uint8_t bytes[SHA512_DIGEST_LENGTH];
5103 uint32_t words[1];
5104 } digest;
5105
5106 if (V_pf_tcp_secret_init == 0) {
5107 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5108 SHA512_Init(&V_pf_tcp_secret_ctx);
5109 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5110 sizeof(V_pf_tcp_secret));
5111 V_pf_tcp_secret_init = 1;
5112 }
5113
5114 ctx = V_pf_tcp_secret_ctx;
5115
5116 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5117 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5118 switch (pd->af) {
5119 case AF_INET6:
5120 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5121 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5122 break;
5123 case AF_INET:
5124 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5125 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5126 break;
5127 }
5128 SHA512_Final(digest.bytes, &ctx);
5129 V_pf_tcp_iss_off += 4096;
5130 #define ISN_RANDOM_INCREMENT (4096 - 1)
5131 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5132 V_pf_tcp_iss_off);
5133 #undef ISN_RANDOM_INCREMENT
5134 }
5135
5136 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5137 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5138 {
5139 bool match = true;
5140
5141 /* Always matches if not set */
5142 if (! r->isset)
5143 return (!r->neg);
5144
5145 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5146 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5147 match = false;
5148 break;
5149 }
5150 }
5151
5152 return (match ^ r->neg);
5153 }
5154
5155 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5156 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5157 {
5158 if (*tag == -1)
5159 *tag = mtag;
5160
5161 return ((!r->match_tag_not && r->match_tag == *tag) ||
5162 (r->match_tag_not && r->match_tag != *tag));
5163 }
5164
5165 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5166 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5167 {
5168 /* If we don't have the interface drop the packet. */
5169 if (ifp == NULL) {
5170 m_freem(m);
5171 return;
5172 }
5173
5174 switch (ifp->if_type) {
5175 case IFT_ETHER:
5176 case IFT_XETHER:
5177 case IFT_L2VLAN:
5178 case IFT_BRIDGE:
5179 case IFT_IEEE8023ADLAG:
5180 break;
5181 default:
5182 m_freem(m);
5183 return;
5184 }
5185
5186 ifp->if_transmit(ifp, m);
5187 }
5188
5189 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5190 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5191 {
5192 #ifdef INET
5193 struct ip ip;
5194 #endif /* INET */
5195 #ifdef INET6
5196 struct ip6_hdr ip6;
5197 #endif /* INET6 */
5198 struct mbuf *m = *m0;
5199 struct ether_header *e;
5200 struct pf_keth_rule *r, *rm, *a = NULL;
5201 struct pf_keth_ruleset *ruleset = NULL;
5202 struct pf_mtag *mtag;
5203 struct pf_keth_ruleq *rules;
5204 struct pf_addr *src = NULL, *dst = NULL;
5205 struct pfi_kkif *bridge_to;
5206 sa_family_t af = 0;
5207 uint16_t proto;
5208 int asd = 0, match = 0;
5209 int tag = -1;
5210 uint8_t action;
5211 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACK_MAX];
5212
5213 MPASS(kif->pfik_ifp->if_vnet == curvnet);
5214 NET_EPOCH_ASSERT();
5215
5216 PF_RULES_RLOCK_TRACKER;
5217
5218 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5219
5220 mtag = pf_find_mtag(m);
5221 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5222 /* Dummynet re-injects packets after they've
5223 * completed their delay. We've already
5224 * processed them, so pass unconditionally. */
5225
5226 /* But only once. We may see the packet multiple times (e.g.
5227 * PFIL_IN/PFIL_OUT). */
5228 pf_dummynet_flag_remove(m, mtag);
5229
5230 return (PF_PASS);
5231 }
5232
5233 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5234 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5235 DPFPRINTF(PF_DEBUG_URGENT,
5236 ("%s: m_len < sizeof(struct ether_header)"
5237 ", pullup failed\n", __func__));
5238 return (PF_DROP);
5239 }
5240 e = mtod(m, struct ether_header *);
5241 proto = ntohs(e->ether_type);
5242
5243 switch (proto) {
5244 #ifdef INET
5245 case ETHERTYPE_IP: {
5246 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5247 sizeof(ip)))
5248 return (PF_DROP);
5249
5250 af = AF_INET;
5251 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5252 (caddr_t)&ip);
5253 src = (struct pf_addr *)&ip.ip_src;
5254 dst = (struct pf_addr *)&ip.ip_dst;
5255 break;
5256 }
5257 #endif /* INET */
5258 #ifdef INET6
5259 case ETHERTYPE_IPV6: {
5260 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5261 sizeof(ip6)))
5262 return (PF_DROP);
5263
5264 af = AF_INET6;
5265 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5266 (caddr_t)&ip6);
5267 src = (struct pf_addr *)&ip6.ip6_src;
5268 dst = (struct pf_addr *)&ip6.ip6_dst;
5269 break;
5270 }
5271 #endif /* INET6 */
5272 }
5273
5274 PF_RULES_RLOCK();
5275
5276 ruleset = V_pf_keth;
5277 rules = atomic_load_ptr(&ruleset->active.rules);
5278 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5279 counter_u64_add(r->evaluations, 1);
5280 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5281
5282 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5283 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5284 "kif");
5285 r = r->skip[PFE_SKIP_IFP].ptr;
5286 }
5287 else if (r->direction && r->direction != dir) {
5288 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5289 "dir");
5290 r = r->skip[PFE_SKIP_DIR].ptr;
5291 }
5292 else if (r->proto && r->proto != proto) {
5293 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5294 "proto");
5295 r = r->skip[PFE_SKIP_PROTO].ptr;
5296 }
5297 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5298 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5299 "src");
5300 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5301 }
5302 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5303 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5304 "dst");
5305 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5306 }
5307 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5308 r->ipsrc.neg, kif, M_GETFIB(m))) {
5309 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5310 "ip_src");
5311 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5312 }
5313 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5314 r->ipdst.neg, kif, M_GETFIB(m))) {
5315 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5316 "ip_dst");
5317 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5318 }
5319 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5320 mtag ? mtag->tag : 0)) {
5321 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5322 "match_tag");
5323 r = TAILQ_NEXT(r, entries);
5324 }
5325 else {
5326 if (r->tag)
5327 tag = r->tag;
5328 if (r->anchor == NULL) {
5329 /* Rule matches */
5330 rm = r;
5331
5332 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5333
5334 if (r->quick)
5335 break;
5336
5337 r = TAILQ_NEXT(r, entries);
5338 } else {
5339 pf_step_into_keth_anchor(anchor_stack, &asd,
5340 &ruleset, &r, &a, &match);
5341 }
5342 }
5343 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5344 &ruleset, &r, &a, &match))
5345 break;
5346 }
5347
5348 r = rm;
5349
5350 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5351
5352 /* Default to pass. */
5353 if (r == NULL) {
5354 PF_RULES_RUNLOCK();
5355 return (PF_PASS);
5356 }
5357
5358 /* Execute action. */
5359 counter_u64_add(r->packets[dir == PF_OUT], 1);
5360 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5361 pf_update_timestamp(r);
5362
5363 /* Shortcut. Don't tag if we're just going to drop anyway. */
5364 if (r->action == PF_DROP) {
5365 PF_RULES_RUNLOCK();
5366 return (PF_DROP);
5367 }
5368
5369 if (tag > 0) {
5370 if (mtag == NULL)
5371 mtag = pf_get_mtag(m);
5372 if (mtag == NULL) {
5373 PF_RULES_RUNLOCK();
5374 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5375 return (PF_DROP);
5376 }
5377 mtag->tag = tag;
5378 }
5379
5380 if (r->qid != 0) {
5381 if (mtag == NULL)
5382 mtag = pf_get_mtag(m);
5383 if (mtag == NULL) {
5384 PF_RULES_RUNLOCK();
5385 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5386 return (PF_DROP);
5387 }
5388 mtag->qid = r->qid;
5389 }
5390
5391 action = r->action;
5392 bridge_to = r->bridge_to;
5393
5394 /* Dummynet */
5395 if (r->dnpipe) {
5396 struct ip_fw_args dnflow;
5397
5398 /* Drop packet if dummynet is not loaded. */
5399 if (ip_dn_io_ptr == NULL) {
5400 PF_RULES_RUNLOCK();
5401 m_freem(m);
5402 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5403 return (PF_DROP);
5404 }
5405 if (mtag == NULL)
5406 mtag = pf_get_mtag(m);
5407 if (mtag == NULL) {
5408 PF_RULES_RUNLOCK();
5409 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5410 return (PF_DROP);
5411 }
5412
5413 bzero(&dnflow, sizeof(dnflow));
5414
5415 /* We don't have port numbers here, so we set 0. That means
5416 * that we'll be somewhat limited in distinguishing flows (i.e.
5417 * only based on IP addresses, not based on port numbers), but
5418 * it's better than nothing. */
5419 dnflow.f_id.dst_port = 0;
5420 dnflow.f_id.src_port = 0;
5421 dnflow.f_id.proto = 0;
5422
5423 dnflow.rule.info = r->dnpipe;
5424 dnflow.rule.info |= IPFW_IS_DUMMYNET;
5425 if (r->dnflags & PFRULE_DN_IS_PIPE)
5426 dnflow.rule.info |= IPFW_IS_PIPE;
5427
5428 dnflow.f_id.extra = dnflow.rule.info;
5429
5430 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5431 dnflow.flags |= IPFW_ARGS_ETHER;
5432 dnflow.ifp = kif->pfik_ifp;
5433
5434 switch (af) {
5435 case AF_INET:
5436 dnflow.f_id.addr_type = 4;
5437 dnflow.f_id.src_ip = src->v4.s_addr;
5438 dnflow.f_id.dst_ip = dst->v4.s_addr;
5439 break;
5440 case AF_INET6:
5441 dnflow.flags |= IPFW_ARGS_IP6;
5442 dnflow.f_id.addr_type = 6;
5443 dnflow.f_id.src_ip6 = src->v6;
5444 dnflow.f_id.dst_ip6 = dst->v6;
5445 break;
5446 }
5447
5448 PF_RULES_RUNLOCK();
5449
5450 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5451 ip_dn_io_ptr(m0, &dnflow);
5452 if (*m0 != NULL)
5453 pf_dummynet_flag_remove(m, mtag);
5454 } else {
5455 PF_RULES_RUNLOCK();
5456 }
5457
5458 if (action == PF_PASS && bridge_to) {
5459 pf_bridge_to(bridge_to->pfik_ifp, *m0);
5460 *m0 = NULL; /* We've eaten the packet. */
5461 }
5462
5463 return (action);
5464 }
5465
5466 #define PF_TEST_ATTRIB(t, a) \
5467 if (t) { \
5468 r = a; \
5469 continue; \
5470 } else do { \
5471 } while (0)
5472
5473 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5474 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5475 {
5476 struct pf_pdesc *pd = ctx->pd;
5477 u_short transerror;
5478 u_int8_t nat_action;
5479
5480 if (r->rule_flag & PFRULE_AFTO) {
5481 /* Don't translate if there was an old style NAT rule */
5482 if (ctx->nr != NULL)
5483 return (PFRES_TRANSLATE);
5484
5485 /* pass af-to rules, unsupported on match rules */
5486 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5487 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5488 ctx->nat_pool = &(r->nat);
5489 ctx->nr = r;
5490 pd->naf = r->naf;
5491 if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5492 return (PFRES_TRANSLATE);
5493 }
5494 return (PFRES_MATCH);
5495 } else if (r->rdr.cur || r->nat.cur) {
5496 /* Don't translate if there was an old style NAT rule */
5497 if (ctx->nr != NULL)
5498 return (PFRES_TRANSLATE);
5499
5500 /* match/pass nat-to/rdr-to rules */
5501 ctx->nr = r;
5502 if (r->nat.cur) {
5503 nat_action = PF_NAT;
5504 ctx->nat_pool = &(r->nat);
5505 } else {
5506 nat_action = PF_RDR;
5507 ctx->nat_pool = &(r->rdr);
5508 }
5509
5510 transerror = pf_get_transaddr(ctx, ctx->nr,
5511 nat_action, ctx->nat_pool);
5512 if (transerror == PFRES_MATCH) {
5513 ctx->rewrite += pf_translate_compat(ctx);
5514 return(PFRES_MATCH);
5515 }
5516 return (transerror);
5517 }
5518
5519 return (PFRES_MAX);
5520 }
5521
5522 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset)5523 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset)
5524 {
5525 struct pf_krule_item *ri;
5526 struct pf_krule *r;
5527 struct pf_krule *save_a;
5528 struct pf_kruleset *save_aruleset;
5529 struct pf_pdesc *pd = ctx->pd;
5530 u_short transerror;
5531
5532 r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5533 while (r != NULL) {
5534 if (ctx->pd->related_rule) {
5535 *ctx->rm = ctx->pd->related_rule;
5536 break;
5537 }
5538 pf_counter_u64_add(&r->evaluations, 1);
5539 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5540 r->skip[PF_SKIP_IFP]);
5541 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5542 r->skip[PF_SKIP_DIR]);
5543 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5544 r->skip[PF_SKIP_AF]);
5545 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5546 r->skip[PF_SKIP_PROTO]);
5547 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5548 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5549 r->skip[PF_SKIP_SRC_ADDR]);
5550 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5551 r->dst.neg, NULL, M_GETFIB(pd->m)),
5552 r->skip[PF_SKIP_DST_ADDR]);
5553 switch (pd->virtual_proto) {
5554 case PF_VPROTO_FRAGMENT:
5555 /* tcp/udp only. port_op always 0 in other cases */
5556 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5557 TAILQ_NEXT(r, entries));
5558 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5559 TAILQ_NEXT(r, entries));
5560 /* icmp only. type/code always 0 in other cases */
5561 PF_TEST_ATTRIB((r->type || r->code),
5562 TAILQ_NEXT(r, entries));
5563 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5564 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5565 TAILQ_NEXT(r, entries));
5566 break;
5567
5568 case IPPROTO_TCP:
5569 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
5570 != r->flags,
5571 TAILQ_NEXT(r, entries));
5572 /* FALLTHROUGH */
5573 case IPPROTO_SCTP:
5574 case IPPROTO_UDP:
5575 /* tcp/udp only. port_op always 0 in other cases */
5576 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5577 r->src.port[0], r->src.port[1], pd->nsport),
5578 r->skip[PF_SKIP_SRC_PORT]);
5579 /* tcp/udp only. port_op always 0 in other cases */
5580 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5581 r->dst.port[0], r->dst.port[1], pd->ndport),
5582 r->skip[PF_SKIP_DST_PORT]);
5583 /* tcp/udp only. uid.op always 0 in other cases */
5584 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5585 pf_socket_lookup(pd), 1)) &&
5586 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5587 pd->lookup.uid),
5588 TAILQ_NEXT(r, entries));
5589 /* tcp/udp only. gid.op always 0 in other cases */
5590 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5591 pf_socket_lookup(pd), 1)) &&
5592 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5593 pd->lookup.gid),
5594 TAILQ_NEXT(r, entries));
5595 break;
5596
5597 case IPPROTO_ICMP:
5598 case IPPROTO_ICMPV6:
5599 /* icmp only. type always 0 in other cases */
5600 PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
5601 TAILQ_NEXT(r, entries));
5602 /* icmp only. type always 0 in other cases */
5603 PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
5604 TAILQ_NEXT(r, entries));
5605 break;
5606
5607 default:
5608 break;
5609 }
5610 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5611 TAILQ_NEXT(r, entries));
5612 PF_TEST_ATTRIB(r->prio &&
5613 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5614 TAILQ_NEXT(r, entries));
5615 PF_TEST_ATTRIB(r->prob &&
5616 r->prob <= arc4random(),
5617 TAILQ_NEXT(r, entries));
5618 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
5619 &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
5620 TAILQ_NEXT(r, entries));
5621 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5622 r->rcvifnot),
5623 TAILQ_NEXT(r, entries));
5624 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5625 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5626 TAILQ_NEXT(r, entries));
5627 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5628 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5629 pf_osfp_fingerprint(pd, ctx->th),
5630 r->os_fingerprint)),
5631 TAILQ_NEXT(r, entries));
5632 /* must be last! */
5633 if (r->pktrate.limit) {
5634 PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
5635 TAILQ_NEXT(r, entries));
5636 }
5637 /* FALLTHROUGH */
5638 if (r->tag)
5639 ctx->tag = r->tag;
5640 if (r->anchor == NULL) {
5641 if (r->action == PF_MATCH) {
5642 /*
5643 * Apply translations before increasing counters,
5644 * in case it fails.
5645 */
5646 transerror = pf_rule_apply_nat(ctx, r);
5647 switch (transerror) {
5648 case PFRES_MATCH:
5649 /* Translation action found in rule and applied successfully */
5650 case PFRES_MAX:
5651 /* No translation action found in rule */
5652 break;
5653 default:
5654 /* Translation action found in rule but failed to apply */
5655 REASON_SET(&ctx->reason, transerror);
5656 return (PF_TEST_FAIL);
5657 }
5658 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5659 if (ri == NULL) {
5660 REASON_SET(&ctx->reason, PFRES_MEMORY);
5661 return (PF_TEST_FAIL);
5662 }
5663 ri->r = r;
5664 SLIST_INSERT_HEAD(&ctx->rules, ri, entry);
5665 pf_counter_u64_critical_enter();
5666 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5667 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5668 pf_counter_u64_critical_exit();
5669 pf_rule_to_actions(r, &pd->act);
5670 if (r->log)
5671 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5672 ctx->a, ruleset, pd, 1, NULL);
5673 } else {
5674 /*
5675 * found matching r
5676 */
5677 *ctx->rm = r;
5678 /*
5679 * anchor, with ruleset, where r belongs to
5680 */
5681 *ctx->am = ctx->a;
5682 /*
5683 * ruleset where r belongs to
5684 */
5685 *ctx->rsm = ruleset;
5686 /*
5687 * ruleset, where anchor belongs to.
5688 */
5689 ctx->arsm = ctx->aruleset;
5690 }
5691 if (pd->act.log & PF_LOG_MATCHES)
5692 pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules);
5693 if (r->quick) {
5694 ctx->test_status = PF_TEST_QUICK;
5695 break;
5696 }
5697 } else {
5698 save_a = ctx->a;
5699 save_aruleset = ctx->aruleset;
5700
5701 ctx->a = r; /* remember anchor */
5702 ctx->aruleset = ruleset; /* and its ruleset */
5703 if (ctx->a->quick)
5704 ctx->test_status = PF_TEST_QUICK;
5705 /*
5706 * Note: we don't need to restore if we are not going
5707 * to continue with ruleset evaluation.
5708 */
5709 if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) {
5710 break;
5711 }
5712 ctx->a = save_a;
5713 ctx->aruleset = save_aruleset;
5714 }
5715 r = TAILQ_NEXT(r, entries);
5716 }
5717
5718 return (ctx->test_status);
5719 }
5720
5721 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp)5722 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5723 struct pf_pdesc *pd, struct pf_krule **am,
5724 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp)
5725 {
5726 struct pf_krule *r = NULL;
5727 struct pf_kruleset *ruleset = NULL;
5728 struct pf_krule_item *ri;
5729 struct pf_test_ctx ctx;
5730 u_short transerror;
5731 int action = PF_PASS;
5732 u_int16_t bproto_sum = 0, bip_sum = 0;
5733 enum pf_test_status rv;
5734
5735 PF_RULES_RASSERT();
5736
5737 bzero(&ctx, sizeof(ctx));
5738 ctx.tag = -1;
5739 ctx.pd = pd;
5740 ctx.rm = rm;
5741 ctx.am = am;
5742 ctx.rsm = rsm;
5743 ctx.th = &pd->hdr.tcp;
5744 ctx.reason = *reason;
5745 SLIST_INIT(&ctx.rules);
5746
5747 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5748 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5749
5750 if (inp != NULL) {
5751 INP_LOCK_ASSERT(inp);
5752 pd->lookup.uid = inp->inp_cred->cr_uid;
5753 pd->lookup.gid = inp->inp_cred->cr_groups[0];
5754 pd->lookup.done = 1;
5755 }
5756
5757 if (pd->ip_sum)
5758 bip_sum = *pd->ip_sum;
5759
5760 switch (pd->virtual_proto) {
5761 case IPPROTO_TCP:
5762 bproto_sum = ctx.th->th_sum;
5763 pd->nsport = ctx.th->th_sport;
5764 pd->ndport = ctx.th->th_dport;
5765 break;
5766 case IPPROTO_UDP:
5767 bproto_sum = pd->hdr.udp.uh_sum;
5768 pd->nsport = pd->hdr.udp.uh_sport;
5769 pd->ndport = pd->hdr.udp.uh_dport;
5770 break;
5771 case IPPROTO_SCTP:
5772 pd->nsport = pd->hdr.sctp.src_port;
5773 pd->ndport = pd->hdr.sctp.dest_port;
5774 break;
5775 #ifdef INET
5776 case IPPROTO_ICMP:
5777 MPASS(pd->af == AF_INET);
5778 ctx.icmptype = pd->hdr.icmp.icmp_type;
5779 ctx.icmpcode = pd->hdr.icmp.icmp_code;
5780 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5781 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5782 if (ctx.icmp_dir == PF_IN) {
5783 pd->nsport = ctx.virtual_id;
5784 pd->ndport = ctx.virtual_type;
5785 } else {
5786 pd->nsport = ctx.virtual_type;
5787 pd->ndport = ctx.virtual_id;
5788 }
5789 break;
5790 #endif /* INET */
5791 #ifdef INET6
5792 case IPPROTO_ICMPV6:
5793 MPASS(pd->af == AF_INET6);
5794 ctx.icmptype = pd->hdr.icmp6.icmp6_type;
5795 ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
5796 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5797 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5798 if (ctx.icmp_dir == PF_IN) {
5799 pd->nsport = ctx.virtual_id;
5800 pd->ndport = ctx.virtual_type;
5801 } else {
5802 pd->nsport = ctx.virtual_type;
5803 pd->ndport = ctx.virtual_id;
5804 }
5805
5806 break;
5807 #endif /* INET6 */
5808 default:
5809 pd->nsport = pd->ndport = 0;
5810 break;
5811 }
5812 pd->osport = pd->nsport;
5813 pd->odport = pd->ndport;
5814
5815 /* check packet for BINAT/NAT/RDR */
5816 transerror = pf_get_translation(&ctx);
5817 switch (transerror) {
5818 default:
5819 /* A translation error occurred. */
5820 REASON_SET(&ctx.reason, transerror);
5821 goto cleanup;
5822 case PFRES_MAX:
5823 /* No match. */
5824 break;
5825 case PFRES_MATCH:
5826 KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
5827 KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
5828 if (ctx.nr->log) {
5829 PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
5830 ruleset, pd, 1, NULL);
5831 }
5832
5833 ctx.rewrite += pf_translate_compat(&ctx);
5834 ctx.nat_pool = &(ctx.nr->rdr);
5835 }
5836
5837 ruleset = &pf_main_ruleset;
5838 rv = pf_match_rule(&ctx, ruleset);
5839 if (rv == PF_TEST_FAIL) {
5840 /*
5841 * Reason has been set in pf_match_rule() already.
5842 */
5843 goto cleanup;
5844 }
5845
5846 r = *ctx.rm; /* matching rule */
5847 ctx.a = *ctx.am; /* rule that defines an anchor containing 'r' */
5848 ruleset = *ctx.rsm; /* ruleset of the anchor defined by the rule 'a' */
5849 ctx.aruleset = ctx.arsm; /* ruleset of the 'a' rule itself */
5850
5851 REASON_SET(&ctx.reason, PFRES_MATCH);
5852
5853 /* apply actions for last matching pass/block rule */
5854 pf_rule_to_actions(r, &pd->act);
5855 transerror = pf_rule_apply_nat(&ctx, r);
5856 switch (transerror) {
5857 case PFRES_MATCH:
5858 /* Translation action found in rule and applied successfully */
5859 case PFRES_MAX:
5860 /* No translation action found in rule */
5861 break;
5862 default:
5863 /* Translation action found in rule but failed to apply */
5864 REASON_SET(&ctx.reason, transerror);
5865 goto cleanup;
5866 }
5867
5868 if (r->log) {
5869 if (ctx.rewrite)
5870 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5871 PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
5872 }
5873 if (pd->act.log & PF_LOG_MATCHES)
5874 pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules);
5875 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5876 (r->action == PF_DROP) &&
5877 ((r->rule_flag & PFRULE_RETURNRST) ||
5878 (r->rule_flag & PFRULE_RETURNICMP) ||
5879 (r->rule_flag & PFRULE_RETURN))) {
5880 pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
5881 bip_sum, &ctx.reason, r->rtableid);
5882 }
5883
5884 if (r->action == PF_DROP)
5885 goto cleanup;
5886
5887 if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
5888 REASON_SET(&ctx.reason, PFRES_MEMORY);
5889 goto cleanup;
5890 }
5891 if (pd->act.rtableid >= 0)
5892 M_SETFIB(pd->m, pd->act.rtableid);
5893
5894 if (r->rt) {
5895 struct pf_ksrc_node *sn = NULL;
5896 struct pf_srchash *snh = NULL;
5897 /*
5898 * Set act.rt here instead of in pf_rule_to_actions() because
5899 * it is applied only from the last pass rule.
5900 */
5901 pd->act.rt = r->rt;
5902 /* Don't use REASON_SET, pf_map_addr increases the reason counters */
5903 ctx.reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr,
5904 &pd->act.rt_kif, NULL, &sn, &snh, &(r->route), PF_SN_ROUTE);
5905 if (ctx.reason != 0)
5906 goto cleanup;
5907 }
5908
5909 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5910 (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
5911 (pd->flags & PFDESC_TCP_NORM)))) {
5912 bool nat64;
5913
5914 action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum);
5915 ctx.sk = ctx.nk = NULL;
5916 if (action != PF_PASS) {
5917 pf_udp_mapping_release(ctx.udp_mapping);
5918 if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
5919 ctx.reason == PFRES_MEMORY)
5920 pd->act.log |= PF_LOG_FORCE;
5921 if (action == PF_DROP &&
5922 (r->rule_flag & PFRULE_RETURN))
5923 pf_return(r, ctx.nr, pd, ctx.th,
5924 bproto_sum, bip_sum, &ctx.reason,
5925 pd->act.rtableid);
5926 *reason = ctx.reason;
5927 return (action);
5928 }
5929
5930 nat64 = pd->af != pd->naf;
5931 if (nat64) {
5932 int ret;
5933
5934 if (ctx.sk == NULL)
5935 ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
5936 if (ctx.nk == NULL)
5937 ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
5938
5939 if (pd->dir == PF_IN) {
5940 ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
5941 ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
5942 ctx.sk->port[pd->sidx], ctx.virtual_type,
5943 ctx.icmp_dir);
5944 } else {
5945 ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
5946 ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
5947 ctx.sk->port[pd->didx], ctx.virtual_type,
5948 ctx.icmp_dir);
5949 }
5950
5951 if (ret < 0)
5952 goto cleanup;
5953
5954 ctx.rewrite += ret;
5955
5956 if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
5957 action = PF_AFRT;
5958 }
5959 } else {
5960 while ((ri = SLIST_FIRST(&ctx.rules))) {
5961 SLIST_REMOVE_HEAD(&ctx.rules, entry);
5962 free(ri, M_PF_RULE_ITEM);
5963 }
5964
5965 uma_zfree(V_pf_state_key_z, ctx.sk);
5966 uma_zfree(V_pf_state_key_z, ctx.nk);
5967 ctx.sk = ctx.nk = NULL;
5968 pf_udp_mapping_release(ctx.udp_mapping);
5969 }
5970
5971 /* copy back packet headers if we performed NAT operations */
5972 if (ctx.rewrite)
5973 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5974
5975 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5976 pd->dir == PF_OUT &&
5977 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
5978 /*
5979 * We want the state created, but we dont
5980 * want to send this in case a partner
5981 * firewall has to know about it to allow
5982 * replies through it.
5983 */
5984 *reason = ctx.reason;
5985 return (PF_DEFER);
5986 }
5987
5988 *reason = ctx.reason;
5989 return (action);
5990
5991 cleanup:
5992 while ((ri = SLIST_FIRST(&ctx.rules))) {
5993 SLIST_REMOVE_HEAD(&ctx.rules, entry);
5994 free(ri, M_PF_RULE_ITEM);
5995 }
5996
5997 uma_zfree(V_pf_state_key_z, ctx.sk);
5998 uma_zfree(V_pf_state_key_z, ctx.nk);
5999 pf_udp_mapping_release(ctx.udp_mapping);
6000 *reason = ctx.reason;
6001
6002 return (PF_DROP);
6003 }
6004
6005 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum)6006 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
6007 struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum)
6008 {
6009 struct pf_pdesc *pd = ctx->pd;
6010 struct pf_kstate *s = NULL;
6011 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL };
6012 /*
6013 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6014 * but for PF_SN_NAT it is different. Don't try optimizing it,
6015 * just store all 3 hashes.
6016 */
6017 struct pf_srchash *snhs[PF_SN_MAX] = { NULL };
6018 struct tcphdr *th = &pd->hdr.tcp;
6019 u_int16_t mss = V_tcp_mssdflt;
6020 u_short sn_reason;
6021 struct pf_krule_item *ri;
6022
6023 /* check maximums */
6024 if (r->max_states &&
6025 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6026 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6027 REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6028 goto csfailed;
6029 }
6030 /* src node for limits */
6031 if ((r->rule_flag & PFRULE_SRCTRACK) &&
6032 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6033 NULL, NULL, PF_SN_LIMIT)) != 0) {
6034 REASON_SET(&ctx->reason, sn_reason);
6035 goto csfailed;
6036 }
6037 /* src node for route-to rule */
6038 if (r->rt) {
6039 if ((r->route.opts & PF_POOL_STICKYADDR) &&
6040 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6041 pd->af, &pd->act.rt_addr, pd->act.rt_kif,
6042 PF_SN_ROUTE)) != 0) {
6043 REASON_SET(&ctx->reason, sn_reason);
6044 goto csfailed;
6045 }
6046 }
6047 /* src node for translation rule */
6048 if (ctx->nr != NULL) {
6049 KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6050 if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6051 (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6052 &ctx->sk->addr[pd->sidx], pd->af, &ctx->nk->addr[1], NULL,
6053 PF_SN_NAT)) != 0 ) {
6054 REASON_SET(&ctx->reason, sn_reason);
6055 goto csfailed;
6056 }
6057 }
6058 s = pf_alloc_state(M_NOWAIT);
6059 if (s == NULL) {
6060 REASON_SET(&ctx->reason, PFRES_MEMORY);
6061 goto csfailed;
6062 }
6063 s->rule = r;
6064 s->nat_rule = ctx->nr;
6065 s->anchor = ctx->a;
6066 memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules));
6067 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6068
6069 if (pd->act.allow_opts)
6070 s->state_flags |= PFSTATE_ALLOWOPTS;
6071 if (r->rule_flag & PFRULE_STATESLOPPY)
6072 s->state_flags |= PFSTATE_SLOPPY;
6073 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6074 s->state_flags |= PFSTATE_SCRUB_TCP;
6075 if ((r->rule_flag & PFRULE_PFLOW) ||
6076 (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6077 s->state_flags |= PFSTATE_PFLOW;
6078
6079 s->act.log = pd->act.log & PF_LOG_ALL;
6080 s->sync_state = PFSYNC_S_NONE;
6081 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6082
6083 if (ctx->nr != NULL)
6084 s->act.log |= ctx->nr->log & PF_LOG_ALL;
6085 switch (pd->proto) {
6086 case IPPROTO_TCP:
6087 s->src.seqlo = ntohl(th->th_seq);
6088 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6089 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6090 r->keep_state == PF_STATE_MODULATE) {
6091 /* Generate sequence number modulator */
6092 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6093 0)
6094 s->src.seqdiff = 1;
6095 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6096 htonl(s->src.seqlo + s->src.seqdiff), 0);
6097 ctx->rewrite = 1;
6098 } else
6099 s->src.seqdiff = 0;
6100 if (tcp_get_flags(th) & TH_SYN) {
6101 s->src.seqhi++;
6102 s->src.wscale = pf_get_wscale(pd);
6103 }
6104 s->src.max_win = MAX(ntohs(th->th_win), 1);
6105 if (s->src.wscale & PF_WSCALE_MASK) {
6106 /* Remove scale factor from initial window */
6107 int win = s->src.max_win;
6108 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6109 s->src.max_win = (win - 1) >>
6110 (s->src.wscale & PF_WSCALE_MASK);
6111 }
6112 if (tcp_get_flags(th) & TH_FIN)
6113 s->src.seqhi++;
6114 s->dst.seqhi = 1;
6115 s->dst.max_win = 1;
6116 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6117 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6118 s->timeout = PFTM_TCP_FIRST_PACKET;
6119 atomic_add_32(&V_pf_status.states_halfopen, 1);
6120 break;
6121 case IPPROTO_UDP:
6122 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6123 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6124 s->timeout = PFTM_UDP_FIRST_PACKET;
6125 break;
6126 case IPPROTO_SCTP:
6127 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6128 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6129 s->timeout = PFTM_SCTP_FIRST_PACKET;
6130 break;
6131 case IPPROTO_ICMP:
6132 #ifdef INET6
6133 case IPPROTO_ICMPV6:
6134 #endif /* INET6 */
6135 s->timeout = PFTM_ICMP_FIRST_PACKET;
6136 break;
6137 default:
6138 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6139 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6140 s->timeout = PFTM_OTHER_FIRST_PACKET;
6141 }
6142
6143 s->creation = s->expire = pf_get_uptime();
6144
6145 if (pd->proto == IPPROTO_TCP) {
6146 if (s->state_flags & PFSTATE_SCRUB_TCP &&
6147 pf_normalize_tcp_init(pd, th, &s->src)) {
6148 REASON_SET(&ctx->reason, PFRES_MEMORY);
6149 goto csfailed;
6150 }
6151 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6152 pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6153 &s->src, &s->dst, &ctx->rewrite)) {
6154 /* This really shouldn't happen!!! */
6155 DPFPRINTF(PF_DEBUG_URGENT,
6156 ("%s: tcp normalize failed on first "
6157 "pkt\n", __func__));
6158 goto csfailed;
6159 }
6160 } else if (pd->proto == IPPROTO_SCTP) {
6161 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6162 goto csfailed;
6163 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6164 goto csfailed;
6165 }
6166 s->direction = pd->dir;
6167
6168 /*
6169 * sk/nk could already been setup by pf_get_translation().
6170 */
6171 if (ctx->sk == NULL && ctx->nk == NULL) {
6172 MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6173 MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6174 if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6175 &ctx->sk, &ctx->nk)) {
6176 goto csfailed;
6177 }
6178 } else
6179 KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6180 __func__, ctx->nr, ctx->sk, ctx->nk));
6181
6182 /* Swap sk/nk for PF_OUT. */
6183 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6184 (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6185 (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6186 REASON_SET(&ctx->reason, PFRES_STATEINS);
6187 goto drop;
6188 } else
6189 *sm = s;
6190 ctx->sk = ctx->nk = NULL;
6191
6192 STATE_INC_COUNTERS(s);
6193
6194 /*
6195 * Lock order is important: first state, then source node.
6196 */
6197 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6198 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6199 s->sns[sn_type] = sns[sn_type];
6200 PF_HASHROW_UNLOCK(snhs[sn_type]);
6201 }
6202 }
6203
6204 if (ctx->tag > 0)
6205 s->tag = ctx->tag;
6206 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6207 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
6208 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6209 pf_undo_nat(ctx->nr, pd, bip_sum);
6210 s->src.seqhi = arc4random();
6211 /* Find mss option */
6212 int rtid = M_GETFIB(pd->m);
6213 mss = pf_get_mss(pd);
6214 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6215 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6216 s->src.mss = mss;
6217 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6218 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6219 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6220 pd->act.rtableid);
6221 REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6222 return (PF_SYNPROXY_DROP);
6223 }
6224
6225 s->udp_mapping = ctx->udp_mapping;
6226
6227 return (PF_PASS);
6228
6229 csfailed:
6230 while ((ri = SLIST_FIRST(&ctx->rules))) {
6231 SLIST_REMOVE_HEAD(&ctx->rules, entry);
6232 free(ri, M_PF_RULE_ITEM);
6233 }
6234
6235 uma_zfree(V_pf_state_key_z, ctx->sk);
6236 uma_zfree(V_pf_state_key_z, ctx->nk);
6237
6238 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6239 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6240 if (--sns[sn_type]->states == 0 &&
6241 sns[sn_type]->expire == 0) {
6242 pf_unlink_src_node(sns[sn_type]);
6243 pf_free_src_node(sns[sn_type]);
6244 counter_u64_add(
6245 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6246 }
6247 PF_HASHROW_UNLOCK(snhs[sn_type]);
6248 }
6249 }
6250
6251 drop:
6252 if (s != NULL) {
6253 pf_src_tree_remove_state(s);
6254 s->timeout = PFTM_UNLINKED;
6255 pf_free_state(s);
6256 }
6257
6258 return (PF_DROP);
6259 }
6260
6261 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6262 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6263 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6264 int icmp_dir)
6265 {
6266 /*
6267 * pf_translate() implements OpenBSD's "new" NAT approach.
6268 * We don't follow it, because it involves a breaking syntax change
6269 * (removing nat/rdr rules, moving it into regular pf rules.)
6270 * It also moves NAT processing to be done after normal rules evaluation
6271 * whereas in FreeBSD that's done before rules processing.
6272 *
6273 * We adopt the function only for nat64, and keep other NAT processing
6274 * before rules processing.
6275 */
6276 int rewrite = 0;
6277 int afto = pd->af != pd->naf;
6278
6279 MPASS(afto);
6280
6281 switch (pd->proto) {
6282 case IPPROTO_TCP:
6283 case IPPROTO_UDP:
6284 case IPPROTO_SCTP:
6285 if (afto || *pd->sport != sport) {
6286 pf_change_ap(pd, pd->src, pd->sport,
6287 saddr, sport);
6288 rewrite = 1;
6289 }
6290 if (afto || *pd->dport != dport) {
6291 pf_change_ap(pd, pd->dst, pd->dport,
6292 daddr, dport);
6293 rewrite = 1;
6294 }
6295 break;
6296
6297 #ifdef INET
6298 case IPPROTO_ICMP:
6299 /* pf_translate() is also used when logging invalid packets */
6300 if (pd->af != AF_INET)
6301 return (0);
6302
6303 if (afto) {
6304 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6305 return (-1);
6306 pd->proto = IPPROTO_ICMPV6;
6307 rewrite = 1;
6308 }
6309 if (virtual_type == htons(ICMP_ECHO)) {
6310 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6311
6312 if (icmpid != pd->hdr.icmp.icmp_id) {
6313 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6314 pd->hdr.icmp.icmp_cksum,
6315 pd->hdr.icmp.icmp_id, icmpid, 0);
6316 pd->hdr.icmp.icmp_id = icmpid;
6317 /* XXX TODO copyback. */
6318 rewrite = 1;
6319 }
6320 }
6321 break;
6322 #endif /* INET */
6323
6324 #ifdef INET6
6325 case IPPROTO_ICMPV6:
6326 /* pf_translate() is also used when logging invalid packets */
6327 if (pd->af != AF_INET6)
6328 return (0);
6329
6330 if (afto) {
6331 /* ip_sum will be recalculated in pf_translate_af */
6332 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6333 return (0);
6334 pd->proto = IPPROTO_ICMP;
6335 rewrite = 1;
6336 }
6337 break;
6338 #endif /* INET6 */
6339
6340 default:
6341 break;
6342 }
6343
6344 return (rewrite);
6345 }
6346
6347 int
pf_translate_compat(struct pf_test_ctx * ctx)6348 pf_translate_compat(struct pf_test_ctx *ctx)
6349 {
6350 struct pf_pdesc *pd = ctx->pd;
6351 struct pf_state_key *nk = ctx->nk;
6352 struct tcphdr *th = &pd->hdr.tcp;
6353 int rewrite = 0;
6354
6355 KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
6356 KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
6357
6358 switch (pd->proto) {
6359 case IPPROTO_TCP:
6360 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6361 nk->port[pd->sidx] != pd->nsport) {
6362 pf_change_ap(pd, pd->src, &th->th_sport,
6363 &nk->addr[pd->sidx], nk->port[pd->sidx]);
6364 pd->sport = &th->th_sport;
6365 pd->nsport = th->th_sport;
6366 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6367 }
6368
6369 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6370 nk->port[pd->didx] != pd->ndport) {
6371 pf_change_ap(pd, pd->dst, &th->th_dport,
6372 &nk->addr[pd->didx], nk->port[pd->didx]);
6373 pd->dport = &th->th_dport;
6374 pd->ndport = th->th_dport;
6375 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6376 }
6377 rewrite++;
6378 break;
6379 case IPPROTO_UDP:
6380 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6381 nk->port[pd->sidx] != pd->nsport) {
6382 pf_change_ap(pd, pd->src,
6383 &pd->hdr.udp.uh_sport,
6384 &nk->addr[pd->sidx],
6385 nk->port[pd->sidx]);
6386 pd->sport = &pd->hdr.udp.uh_sport;
6387 pd->nsport = pd->hdr.udp.uh_sport;
6388 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6389 }
6390
6391 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6392 nk->port[pd->didx] != pd->ndport) {
6393 pf_change_ap(pd, pd->dst,
6394 &pd->hdr.udp.uh_dport,
6395 &nk->addr[pd->didx],
6396 nk->port[pd->didx]);
6397 pd->dport = &pd->hdr.udp.uh_dport;
6398 pd->ndport = pd->hdr.udp.uh_dport;
6399 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6400 }
6401 rewrite++;
6402 break;
6403 case IPPROTO_SCTP: {
6404 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6405 nk->port[pd->sidx] != pd->nsport) {
6406 pf_change_ap(pd, pd->src,
6407 &pd->hdr.sctp.src_port,
6408 &nk->addr[pd->sidx],
6409 nk->port[pd->sidx]);
6410 pd->sport = &pd->hdr.sctp.src_port;
6411 pd->nsport = pd->hdr.sctp.src_port;
6412 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6413 }
6414 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6415 nk->port[pd->didx] != pd->ndport) {
6416 pf_change_ap(pd, pd->dst,
6417 &pd->hdr.sctp.dest_port,
6418 &nk->addr[pd->didx],
6419 nk->port[pd->didx]);
6420 pd->dport = &pd->hdr.sctp.dest_port;
6421 pd->ndport = pd->hdr.sctp.dest_port;
6422 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6423 }
6424 break;
6425 }
6426 #ifdef INET
6427 case IPPROTO_ICMP:
6428 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
6429 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
6430 nk->addr[pd->sidx].v4.s_addr, 0);
6431 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6432 }
6433
6434 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
6435 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
6436 nk->addr[pd->didx].v4.s_addr, 0);
6437 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6438 }
6439
6440 if (ctx->virtual_type == htons(ICMP_ECHO) &&
6441 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
6442 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6443 pd->hdr.icmp.icmp_cksum, pd->nsport,
6444 nk->port[pd->sidx], 0);
6445 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
6446 pd->sport = &pd->hdr.icmp.icmp_id;
6447 }
6448 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
6449 break;
6450 #endif /* INET */
6451 #ifdef INET6
6452 case IPPROTO_ICMPV6:
6453 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
6454 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
6455 &nk->addr[pd->sidx], 0);
6456 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6457 }
6458
6459 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
6460 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
6461 &nk->addr[pd->didx], 0);
6462 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6463 }
6464 rewrite++;
6465 break;
6466 #endif /* INET */
6467 default:
6468 switch (pd->af) {
6469 #ifdef INET
6470 case AF_INET:
6471 if (PF_ANEQ(&pd->nsaddr,
6472 &nk->addr[pd->sidx], AF_INET)) {
6473 pf_change_a(&pd->src->v4.s_addr,
6474 pd->ip_sum,
6475 nk->addr[pd->sidx].v4.s_addr, 0);
6476 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6477 }
6478
6479 if (PF_ANEQ(&pd->ndaddr,
6480 &nk->addr[pd->didx], AF_INET)) {
6481 pf_change_a(&pd->dst->v4.s_addr,
6482 pd->ip_sum,
6483 nk->addr[pd->didx].v4.s_addr, 0);
6484 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6485 }
6486 break;
6487 #endif /* INET */
6488 #ifdef INET6
6489 case AF_INET6:
6490 if (PF_ANEQ(&pd->nsaddr,
6491 &nk->addr[pd->sidx], AF_INET6)) {
6492 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af);
6493 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
6494 }
6495
6496 if (PF_ANEQ(&pd->ndaddr,
6497 &nk->addr[pd->didx], AF_INET6)) {
6498 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af);
6499 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
6500 }
6501 break;
6502 #endif /* INET6 */
6503 }
6504 break;
6505 }
6506 return (rewrite);
6507 }
6508
6509 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6510 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6511 u_short *reason, int *copyback, struct pf_state_peer *src,
6512 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6513 {
6514 struct tcphdr *th = &pd->hdr.tcp;
6515 u_int16_t win = ntohs(th->th_win);
6516 u_int32_t ack, end, data_end, seq, orig_seq;
6517 u_int8_t sws, dws;
6518 int ackskew;
6519
6520 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6521 sws = src->wscale & PF_WSCALE_MASK;
6522 dws = dst->wscale & PF_WSCALE_MASK;
6523 } else
6524 sws = dws = 0;
6525
6526 /*
6527 * Sequence tracking algorithm from Guido van Rooij's paper:
6528 * http://www.madison-gurkha.com/publications/tcp_filtering/
6529 * tcp_filtering.ps
6530 */
6531
6532 orig_seq = seq = ntohl(th->th_seq);
6533 if (src->seqlo == 0) {
6534 /* First packet from this end. Set its state */
6535
6536 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6537 src->scrub == NULL) {
6538 if (pf_normalize_tcp_init(pd, th, src)) {
6539 REASON_SET(reason, PFRES_MEMORY);
6540 return (PF_DROP);
6541 }
6542 }
6543
6544 /* Deferred generation of sequence number modulator */
6545 if (dst->seqdiff && !src->seqdiff) {
6546 /* use random iss for the TCP server */
6547 while ((src->seqdiff = arc4random() - seq) == 0)
6548 ;
6549 ack = ntohl(th->th_ack) - dst->seqdiff;
6550 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6551 src->seqdiff), 0);
6552 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6553 *copyback = 1;
6554 } else {
6555 ack = ntohl(th->th_ack);
6556 }
6557
6558 end = seq + pd->p_len;
6559 if (tcp_get_flags(th) & TH_SYN) {
6560 end++;
6561 if (dst->wscale & PF_WSCALE_FLAG) {
6562 src->wscale = pf_get_wscale(pd);
6563 if (src->wscale & PF_WSCALE_FLAG) {
6564 /* Remove scale factor from initial
6565 * window */
6566 sws = src->wscale & PF_WSCALE_MASK;
6567 win = ((u_int32_t)win + (1 << sws) - 1)
6568 >> sws;
6569 dws = dst->wscale & PF_WSCALE_MASK;
6570 } else {
6571 /* fixup other window */
6572 dst->max_win = MIN(TCP_MAXWIN,
6573 (u_int32_t)dst->max_win <<
6574 (dst->wscale & PF_WSCALE_MASK));
6575 /* in case of a retrans SYN|ACK */
6576 dst->wscale = 0;
6577 }
6578 }
6579 }
6580 data_end = end;
6581 if (tcp_get_flags(th) & TH_FIN)
6582 end++;
6583
6584 src->seqlo = seq;
6585 if (src->state < TCPS_SYN_SENT)
6586 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6587
6588 /*
6589 * May need to slide the window (seqhi may have been set by
6590 * the crappy stack check or if we picked up the connection
6591 * after establishment)
6592 */
6593 if (src->seqhi == 1 ||
6594 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6595 src->seqhi = end + MAX(1, dst->max_win << dws);
6596 if (win > src->max_win)
6597 src->max_win = win;
6598
6599 } else {
6600 ack = ntohl(th->th_ack) - dst->seqdiff;
6601 if (src->seqdiff) {
6602 /* Modulate sequence numbers */
6603 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6604 src->seqdiff), 0);
6605 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6606 *copyback = 1;
6607 }
6608 end = seq + pd->p_len;
6609 if (tcp_get_flags(th) & TH_SYN)
6610 end++;
6611 data_end = end;
6612 if (tcp_get_flags(th) & TH_FIN)
6613 end++;
6614 }
6615
6616 if ((tcp_get_flags(th) & TH_ACK) == 0) {
6617 /* Let it pass through the ack skew check */
6618 ack = dst->seqlo;
6619 } else if ((ack == 0 &&
6620 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6621 /* broken tcp stacks do not set ack */
6622 (dst->state < TCPS_SYN_SENT)) {
6623 /*
6624 * Many stacks (ours included) will set the ACK number in an
6625 * FIN|ACK if the SYN times out -- no sequence to ACK.
6626 */
6627 ack = dst->seqlo;
6628 }
6629
6630 if (seq == end) {
6631 /* Ease sequencing restrictions on no data packets */
6632 seq = src->seqlo;
6633 data_end = end = seq;
6634 }
6635
6636 ackskew = dst->seqlo - ack;
6637
6638 /*
6639 * Need to demodulate the sequence numbers in any TCP SACK options
6640 * (Selective ACK). We could optionally validate the SACK values
6641 * against the current ACK window, either forwards or backwards, but
6642 * I'm not confident that SACK has been implemented properly
6643 * everywhere. It wouldn't surprise me if several stacks accidentally
6644 * SACK too far backwards of previously ACKed data. There really aren't
6645 * any security implications of bad SACKing unless the target stack
6646 * doesn't validate the option length correctly. Someone trying to
6647 * spoof into a TCP connection won't bother blindly sending SACK
6648 * options anyway.
6649 */
6650 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6651 if (pf_modulate_sack(pd, th, dst))
6652 *copyback = 1;
6653 }
6654
6655 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
6656 if (SEQ_GEQ(src->seqhi, data_end) &&
6657 /* Last octet inside other's window space */
6658 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6659 /* Retrans: not more than one window back */
6660 (ackskew >= -MAXACKWINDOW) &&
6661 /* Acking not more than one reassembled fragment backwards */
6662 (ackskew <= (MAXACKWINDOW << sws)) &&
6663 /* Acking not more than one window forward */
6664 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6665 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6666 /* Require an exact/+1 sequence match on resets when possible */
6667
6668 if (dst->scrub || src->scrub) {
6669 if (pf_normalize_tcp_stateful(pd, reason, th,
6670 state, src, dst, copyback))
6671 return (PF_DROP);
6672 }
6673
6674 /* update max window */
6675 if (src->max_win < win)
6676 src->max_win = win;
6677 /* synchronize sequencing */
6678 if (SEQ_GT(end, src->seqlo))
6679 src->seqlo = end;
6680 /* slide the window of what the other end can send */
6681 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6682 dst->seqhi = ack + MAX((win << sws), 1);
6683
6684 /* update states */
6685 if (tcp_get_flags(th) & TH_SYN)
6686 if (src->state < TCPS_SYN_SENT)
6687 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6688 if (tcp_get_flags(th) & TH_FIN)
6689 if (src->state < TCPS_CLOSING)
6690 pf_set_protostate(state, psrc, TCPS_CLOSING);
6691 if (tcp_get_flags(th) & TH_ACK) {
6692 if (dst->state == TCPS_SYN_SENT) {
6693 pf_set_protostate(state, pdst,
6694 TCPS_ESTABLISHED);
6695 if (src->state == TCPS_ESTABLISHED &&
6696 state->sns[PF_SN_LIMIT] != NULL &&
6697 pf_src_connlimit(state)) {
6698 REASON_SET(reason, PFRES_SRCLIMIT);
6699 return (PF_DROP);
6700 }
6701 } else if (dst->state == TCPS_CLOSING)
6702 pf_set_protostate(state, pdst,
6703 TCPS_FIN_WAIT_2);
6704 }
6705 if (tcp_get_flags(th) & TH_RST)
6706 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6707
6708 /* update expire time */
6709 state->expire = pf_get_uptime();
6710 if (src->state >= TCPS_FIN_WAIT_2 &&
6711 dst->state >= TCPS_FIN_WAIT_2)
6712 state->timeout = PFTM_TCP_CLOSED;
6713 else if (src->state >= TCPS_CLOSING &&
6714 dst->state >= TCPS_CLOSING)
6715 state->timeout = PFTM_TCP_FIN_WAIT;
6716 else if (src->state < TCPS_ESTABLISHED ||
6717 dst->state < TCPS_ESTABLISHED)
6718 state->timeout = PFTM_TCP_OPENING;
6719 else if (src->state >= TCPS_CLOSING ||
6720 dst->state >= TCPS_CLOSING)
6721 state->timeout = PFTM_TCP_CLOSING;
6722 else
6723 state->timeout = PFTM_TCP_ESTABLISHED;
6724
6725 /* Fall through to PASS packet */
6726
6727 } else if ((dst->state < TCPS_SYN_SENT ||
6728 dst->state >= TCPS_FIN_WAIT_2 ||
6729 src->state >= TCPS_FIN_WAIT_2) &&
6730 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6731 /* Within a window forward of the originating packet */
6732 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6733 /* Within a window backward of the originating packet */
6734
6735 /*
6736 * This currently handles three situations:
6737 * 1) Stupid stacks will shotgun SYNs before their peer
6738 * replies.
6739 * 2) When PF catches an already established stream (the
6740 * firewall rebooted, the state table was flushed, routes
6741 * changed...)
6742 * 3) Packets get funky immediately after the connection
6743 * closes (this should catch Solaris spurious ACK|FINs
6744 * that web servers like to spew after a close)
6745 *
6746 * This must be a little more careful than the above code
6747 * since packet floods will also be caught here. We don't
6748 * update the TTL here to mitigate the damage of a packet
6749 * flood and so the same code can handle awkward establishment
6750 * and a loosened connection close.
6751 * In the establishment case, a correct peer response will
6752 * validate the connection, go through the normal state code
6753 * and keep updating the state TTL.
6754 */
6755
6756 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6757 printf("pf: loose state match: ");
6758 pf_print_state(state);
6759 pf_print_flags(tcp_get_flags(th));
6760 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6761 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6762 pd->p_len, ackskew, (unsigned long long)state->packets[0],
6763 (unsigned long long)state->packets[1],
6764 pd->dir == PF_IN ? "in" : "out",
6765 pd->dir == state->direction ? "fwd" : "rev");
6766 }
6767
6768 if (dst->scrub || src->scrub) {
6769 if (pf_normalize_tcp_stateful(pd, reason, th,
6770 state, src, dst, copyback))
6771 return (PF_DROP);
6772 }
6773
6774 /* update max window */
6775 if (src->max_win < win)
6776 src->max_win = win;
6777 /* synchronize sequencing */
6778 if (SEQ_GT(end, src->seqlo))
6779 src->seqlo = end;
6780 /* slide the window of what the other end can send */
6781 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6782 dst->seqhi = ack + MAX((win << sws), 1);
6783
6784 /*
6785 * Cannot set dst->seqhi here since this could be a shotgunned
6786 * SYN and not an already established connection.
6787 */
6788
6789 if (tcp_get_flags(th) & TH_FIN)
6790 if (src->state < TCPS_CLOSING)
6791 pf_set_protostate(state, psrc, TCPS_CLOSING);
6792 if (tcp_get_flags(th) & TH_RST)
6793 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6794
6795 /* Fall through to PASS packet */
6796
6797 } else {
6798 if (state->dst.state == TCPS_SYN_SENT &&
6799 state->src.state == TCPS_SYN_SENT) {
6800 /* Send RST for state mismatches during handshake */
6801 if (!(tcp_get_flags(th) & TH_RST))
6802 pf_send_tcp(state->rule, pd->af,
6803 pd->dst, pd->src, th->th_dport,
6804 th->th_sport, ntohl(th->th_ack), 0,
6805 TH_RST, 0, 0,
6806 state->rule->return_ttl, M_SKIP_FIREWALL,
6807 0, 0, state->act.rtableid);
6808 src->seqlo = 0;
6809 src->seqhi = 1;
6810 src->max_win = 1;
6811 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6812 printf("pf: BAD state: ");
6813 pf_print_state(state);
6814 pf_print_flags(tcp_get_flags(th));
6815 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6816 "pkts=%llu:%llu dir=%s,%s\n",
6817 seq, orig_seq, ack, pd->p_len, ackskew,
6818 (unsigned long long)state->packets[0],
6819 (unsigned long long)state->packets[1],
6820 pd->dir == PF_IN ? "in" : "out",
6821 pd->dir == state->direction ? "fwd" : "rev");
6822 printf("pf: State failure on: %c %c %c %c | %c %c\n",
6823 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6824 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6825 ' ': '2',
6826 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6827 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6828 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6829 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6830 }
6831 REASON_SET(reason, PFRES_BADSTATE);
6832 return (PF_DROP);
6833 }
6834
6835 return (PF_PASS);
6836 }
6837
6838 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6839 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6840 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6841 u_int8_t psrc, u_int8_t pdst)
6842 {
6843 struct tcphdr *th = &pd->hdr.tcp;
6844
6845 if (tcp_get_flags(th) & TH_SYN)
6846 if (src->state < TCPS_SYN_SENT)
6847 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6848 if (tcp_get_flags(th) & TH_FIN)
6849 if (src->state < TCPS_CLOSING)
6850 pf_set_protostate(state, psrc, TCPS_CLOSING);
6851 if (tcp_get_flags(th) & TH_ACK) {
6852 if (dst->state == TCPS_SYN_SENT) {
6853 pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
6854 if (src->state == TCPS_ESTABLISHED &&
6855 state->sns[PF_SN_LIMIT] != NULL &&
6856 pf_src_connlimit(state)) {
6857 REASON_SET(reason, PFRES_SRCLIMIT);
6858 return (PF_DROP);
6859 }
6860 } else if (dst->state == TCPS_CLOSING) {
6861 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
6862 } else if (src->state == TCPS_SYN_SENT &&
6863 dst->state < TCPS_SYN_SENT) {
6864 /*
6865 * Handle a special sloppy case where we only see one
6866 * half of the connection. If there is a ACK after
6867 * the initial SYN without ever seeing a packet from
6868 * the destination, set the connection to established.
6869 */
6870 pf_set_protostate(state, PF_PEER_BOTH,
6871 TCPS_ESTABLISHED);
6872 dst->state = src->state = TCPS_ESTABLISHED;
6873 if (state->sns[PF_SN_LIMIT] != NULL &&
6874 pf_src_connlimit(state)) {
6875 REASON_SET(reason, PFRES_SRCLIMIT);
6876 return (PF_DROP);
6877 }
6878 } else if (src->state == TCPS_CLOSING &&
6879 dst->state == TCPS_ESTABLISHED &&
6880 dst->seqlo == 0) {
6881 /*
6882 * Handle the closing of half connections where we
6883 * don't see the full bidirectional FIN/ACK+ACK
6884 * handshake.
6885 */
6886 pf_set_protostate(state, pdst, TCPS_CLOSING);
6887 }
6888 }
6889 if (tcp_get_flags(th) & TH_RST)
6890 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6891
6892 /* update expire time */
6893 state->expire = pf_get_uptime();
6894 if (src->state >= TCPS_FIN_WAIT_2 &&
6895 dst->state >= TCPS_FIN_WAIT_2)
6896 state->timeout = PFTM_TCP_CLOSED;
6897 else if (src->state >= TCPS_CLOSING &&
6898 dst->state >= TCPS_CLOSING)
6899 state->timeout = PFTM_TCP_FIN_WAIT;
6900 else if (src->state < TCPS_ESTABLISHED ||
6901 dst->state < TCPS_ESTABLISHED)
6902 state->timeout = PFTM_TCP_OPENING;
6903 else if (src->state >= TCPS_CLOSING ||
6904 dst->state >= TCPS_CLOSING)
6905 state->timeout = PFTM_TCP_CLOSING;
6906 else
6907 state->timeout = PFTM_TCP_ESTABLISHED;
6908
6909 return (PF_PASS);
6910 }
6911
6912 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)6913 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
6914 {
6915 struct pf_state_key *sk = state->key[pd->didx];
6916 struct tcphdr *th = &pd->hdr.tcp;
6917
6918 if (state->src.state == PF_TCPS_PROXY_SRC) {
6919 if (pd->dir != state->direction) {
6920 REASON_SET(reason, PFRES_SYNPROXY);
6921 return (PF_SYNPROXY_DROP);
6922 }
6923 if (tcp_get_flags(th) & TH_SYN) {
6924 if (ntohl(th->th_seq) != state->src.seqlo) {
6925 REASON_SET(reason, PFRES_SYNPROXY);
6926 return (PF_DROP);
6927 }
6928 pf_send_tcp(state->rule, pd->af, pd->dst,
6929 pd->src, th->th_dport, th->th_sport,
6930 state->src.seqhi, ntohl(th->th_seq) + 1,
6931 TH_SYN|TH_ACK, 0, state->src.mss, 0,
6932 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
6933 REASON_SET(reason, PFRES_SYNPROXY);
6934 return (PF_SYNPROXY_DROP);
6935 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6936 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
6937 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
6938 REASON_SET(reason, PFRES_SYNPROXY);
6939 return (PF_DROP);
6940 } else if (state->sns[PF_SN_LIMIT] != NULL &&
6941 pf_src_connlimit(state)) {
6942 REASON_SET(reason, PFRES_SRCLIMIT);
6943 return (PF_DROP);
6944 } else
6945 pf_set_protostate(state, PF_PEER_SRC,
6946 PF_TCPS_PROXY_DST);
6947 }
6948 if (state->src.state == PF_TCPS_PROXY_DST) {
6949 if (pd->dir == state->direction) {
6950 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
6951 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
6952 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
6953 REASON_SET(reason, PFRES_SYNPROXY);
6954 return (PF_DROP);
6955 }
6956 state->src.max_win = MAX(ntohs(th->th_win), 1);
6957 if (state->dst.seqhi == 1)
6958 state->dst.seqhi = arc4random();
6959 pf_send_tcp(state->rule, pd->af,
6960 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6961 sk->port[pd->sidx], sk->port[pd->didx],
6962 state->dst.seqhi, 0, TH_SYN, 0,
6963 state->src.mss, 0,
6964 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6965 state->tag, 0, state->act.rtableid);
6966 REASON_SET(reason, PFRES_SYNPROXY);
6967 return (PF_SYNPROXY_DROP);
6968 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
6969 (TH_SYN|TH_ACK)) ||
6970 (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
6971 REASON_SET(reason, PFRES_SYNPROXY);
6972 return (PF_DROP);
6973 } else {
6974 state->dst.max_win = MAX(ntohs(th->th_win), 1);
6975 state->dst.seqlo = ntohl(th->th_seq);
6976 pf_send_tcp(state->rule, pd->af, pd->dst,
6977 pd->src, th->th_dport, th->th_sport,
6978 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6979 TH_ACK, state->src.max_win, 0, 0, 0,
6980 state->tag, 0, state->act.rtableid);
6981 pf_send_tcp(state->rule, pd->af,
6982 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6983 sk->port[pd->sidx], sk->port[pd->didx],
6984 state->src.seqhi + 1, state->src.seqlo + 1,
6985 TH_ACK, state->dst.max_win, 0, 0,
6986 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
6987 state->src.seqdiff = state->dst.seqhi -
6988 state->src.seqlo;
6989 state->dst.seqdiff = state->src.seqhi -
6990 state->dst.seqlo;
6991 state->src.seqhi = state->src.seqlo +
6992 state->dst.max_win;
6993 state->dst.seqhi = state->dst.seqlo +
6994 state->src.max_win;
6995 state->src.wscale = state->dst.wscale = 0;
6996 pf_set_protostate(state, PF_PEER_BOTH,
6997 TCPS_ESTABLISHED);
6998 REASON_SET(reason, PFRES_SYNPROXY);
6999 return (PF_SYNPROXY_DROP);
7000 }
7001 }
7002
7003 return (PF_PASS);
7004 }
7005
7006 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7007 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
7008 {
7009 struct pf_state_key_cmp key;
7010 int copyback = 0;
7011 struct pf_state_peer *src, *dst;
7012 uint8_t psrc, pdst;
7013 int action;
7014
7015 bzero(&key, sizeof(key));
7016 key.af = pd->af;
7017 key.proto = pd->virtual_proto;
7018 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
7019 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
7020 key.port[pd->sidx] = pd->osport;
7021 key.port[pd->didx] = pd->odport;
7022
7023 action = pf_find_state(pd, &key, state);
7024 if (action != PF_MATCH)
7025 return (action);
7026
7027 action = PF_PASS;
7028 if (pd->dir == (*state)->direction) {
7029 if (PF_REVERSED_KEY(*state, pd->af)) {
7030 src = &(*state)->dst;
7031 dst = &(*state)->src;
7032 psrc = PF_PEER_DST;
7033 pdst = PF_PEER_SRC;
7034 } else {
7035 src = &(*state)->src;
7036 dst = &(*state)->dst;
7037 psrc = PF_PEER_SRC;
7038 pdst = PF_PEER_DST;
7039 }
7040 } else {
7041 if (PF_REVERSED_KEY(*state, pd->af)) {
7042 src = &(*state)->src;
7043 dst = &(*state)->dst;
7044 psrc = PF_PEER_SRC;
7045 pdst = PF_PEER_DST;
7046 } else {
7047 src = &(*state)->dst;
7048 dst = &(*state)->src;
7049 psrc = PF_PEER_DST;
7050 pdst = PF_PEER_SRC;
7051 }
7052 }
7053
7054 switch (pd->virtual_proto) {
7055 case IPPROTO_TCP: {
7056 struct tcphdr *th = &pd->hdr.tcp;
7057
7058 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7059 return (action);
7060 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7061 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7062 pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7063 if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7064 (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7065 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7066 printf("pf: state reuse ");
7067 pf_print_state(*state);
7068 pf_print_flags(tcp_get_flags(th));
7069 printf("\n");
7070 }
7071 /* XXX make sure it's the same direction ?? */
7072 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7073 pf_remove_state(*state);
7074 *state = NULL;
7075 return (PF_DROP);
7076 } else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7077 (*state)->dst.state >= TCPS_ESTABLISHED) {
7078 /*
7079 * SYN matches existing state???
7080 * Typically happens when sender boots up after
7081 * sudden panic. Certain protocols (NFSv3) are
7082 * always using same port numbers. Challenge
7083 * ACK enables all parties (firewall and peers)
7084 * to get in sync again.
7085 */
7086 pf_send_challenge_ack(pd, *state, src, dst);
7087 return (PF_DROP);
7088 }
7089 }
7090 if ((*state)->state_flags & PFSTATE_SLOPPY) {
7091 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7092 psrc, pdst) == PF_DROP)
7093 return (PF_DROP);
7094 } else {
7095 int ret;
7096
7097 ret = pf_tcp_track_full(*state, pd, reason,
7098 ©back, src, dst, psrc, pdst);
7099 if (ret == PF_DROP)
7100 return (PF_DROP);
7101 }
7102 break;
7103 }
7104 case IPPROTO_UDP:
7105 /* update states */
7106 if (src->state < PFUDPS_SINGLE)
7107 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7108 if (dst->state == PFUDPS_SINGLE)
7109 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7110
7111 /* update expire time */
7112 (*state)->expire = pf_get_uptime();
7113 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7114 (*state)->timeout = PFTM_UDP_MULTIPLE;
7115 else
7116 (*state)->timeout = PFTM_UDP_SINGLE;
7117 break;
7118 case IPPROTO_SCTP:
7119 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7120 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7121 pd->sctp_flags & PFDESC_SCTP_INIT) {
7122 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7123 pf_remove_state(*state);
7124 *state = NULL;
7125 return (PF_DROP);
7126 }
7127
7128 if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7129 return (PF_DROP);
7130
7131 /* Track state. */
7132 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7133 if (src->state < SCTP_COOKIE_WAIT) {
7134 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7135 (*state)->timeout = PFTM_SCTP_OPENING;
7136 }
7137 }
7138 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7139 MPASS(dst->scrub != NULL);
7140 if (dst->scrub->pfss_v_tag == 0)
7141 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7142 }
7143
7144 /*
7145 * Bind to the correct interface if we're if-bound. For multihomed
7146 * extra associations we don't know which interface that will be until
7147 * here, so we've inserted the state on V_pf_all. Fix that now.
7148 */
7149 if ((*state)->kif == V_pfi_all &&
7150 (*state)->rule->rule_flag & PFRULE_IFBOUND)
7151 (*state)->kif = pd->kif;
7152
7153 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7154 if (src->state < SCTP_ESTABLISHED) {
7155 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7156 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
7157 }
7158 }
7159 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7160 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7161 if (src->state < SCTP_SHUTDOWN_PENDING) {
7162 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7163 (*state)->timeout = PFTM_SCTP_CLOSING;
7164 }
7165 }
7166 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7167 pf_set_protostate(*state, psrc, SCTP_CLOSED);
7168 (*state)->timeout = PFTM_SCTP_CLOSED;
7169 }
7170
7171 (*state)->expire = pf_get_uptime();
7172 break;
7173 default:
7174 /* update states */
7175 if (src->state < PFOTHERS_SINGLE)
7176 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7177 if (dst->state == PFOTHERS_SINGLE)
7178 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7179
7180 /* update expire time */
7181 (*state)->expire = pf_get_uptime();
7182 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7183 (*state)->timeout = PFTM_OTHER_MULTIPLE;
7184 else
7185 (*state)->timeout = PFTM_OTHER_SINGLE;
7186 break;
7187 }
7188
7189 /* translate source/destination address, if necessary */
7190 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7191 struct pf_state_key *nk;
7192 int afto, sidx, didx;
7193
7194 if (PF_REVERSED_KEY(*state, pd->af))
7195 nk = (*state)->key[pd->sidx];
7196 else
7197 nk = (*state)->key[pd->didx];
7198
7199 afto = pd->af != nk->af;
7200
7201 if (afto && (*state)->direction == PF_IN) {
7202 sidx = pd->didx;
7203 didx = pd->sidx;
7204 } else {
7205 sidx = pd->sidx;
7206 didx = pd->didx;
7207 }
7208
7209 if (afto) {
7210 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7211 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7212 pd->naf = nk->af;
7213 action = PF_AFRT;
7214 }
7215
7216 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7217 nk->port[sidx] != pd->osport)
7218 pf_change_ap(pd, pd->src, pd->sport,
7219 &nk->addr[sidx], nk->port[sidx]);
7220
7221 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7222 nk->port[didx] != pd->odport)
7223 pf_change_ap(pd, pd->dst, pd->dport,
7224 &nk->addr[didx], nk->port[didx]);
7225
7226 copyback = 1;
7227 }
7228
7229 if (copyback && pd->hdrlen > 0)
7230 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7231
7232 return (action);
7233 }
7234
7235 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7236 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7237 u_short *reason)
7238 {
7239 struct pf_state_peer *src;
7240 if (pd->dir == state->direction) {
7241 if (PF_REVERSED_KEY(state, pd->af))
7242 src = &state->dst;
7243 else
7244 src = &state->src;
7245 } else {
7246 if (PF_REVERSED_KEY(state, pd->af))
7247 src = &state->src;
7248 else
7249 src = &state->dst;
7250 }
7251
7252 if (src->scrub != NULL) {
7253 if (src->scrub->pfss_v_tag == 0)
7254 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7255 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7256 return (PF_DROP);
7257 }
7258
7259 return (PF_PASS);
7260 }
7261
7262 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7263 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7264 {
7265 struct pf_sctp_endpoint key;
7266 struct pf_sctp_endpoint *ep;
7267 struct pf_state_key *sks = s->key[PF_SK_STACK];
7268 struct pf_sctp_source *i, *tmp;
7269
7270 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7271 return;
7272
7273 PF_SCTP_ENDPOINTS_LOCK();
7274
7275 key.v_tag = s->dst.scrub->pfss_v_tag;
7276 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7277 if (ep != NULL) {
7278 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7279 if (pf_addr_cmp(&i->addr,
7280 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7281 s->key[PF_SK_WIRE]->af) == 0) {
7282 SDT_PROBE3(pf, sctp, multihome, remove,
7283 key.v_tag, s, i);
7284 TAILQ_REMOVE(&ep->sources, i, entry);
7285 free(i, M_PFTEMP);
7286 break;
7287 }
7288 }
7289
7290 if (TAILQ_EMPTY(&ep->sources)) {
7291 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7292 free(ep, M_PFTEMP);
7293 }
7294 }
7295
7296 /* Other direction. */
7297 key.v_tag = s->src.scrub->pfss_v_tag;
7298 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7299 if (ep != NULL) {
7300 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7301 if (pf_addr_cmp(&i->addr,
7302 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7303 s->key[PF_SK_WIRE]->af) == 0) {
7304 SDT_PROBE3(pf, sctp, multihome, remove,
7305 key.v_tag, s, i);
7306 TAILQ_REMOVE(&ep->sources, i, entry);
7307 free(i, M_PFTEMP);
7308 break;
7309 }
7310 }
7311
7312 if (TAILQ_EMPTY(&ep->sources)) {
7313 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7314 free(ep, M_PFTEMP);
7315 }
7316 }
7317
7318 PF_SCTP_ENDPOINTS_UNLOCK();
7319 }
7320
7321 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7322 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7323 {
7324 struct pf_sctp_endpoint key = {
7325 .v_tag = v_tag,
7326 };
7327 struct pf_sctp_source *i;
7328 struct pf_sctp_endpoint *ep;
7329 int count;
7330
7331 PF_SCTP_ENDPOINTS_LOCK();
7332
7333 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7334 if (ep == NULL) {
7335 ep = malloc(sizeof(struct pf_sctp_endpoint),
7336 M_PFTEMP, M_NOWAIT);
7337 if (ep == NULL) {
7338 PF_SCTP_ENDPOINTS_UNLOCK();
7339 return;
7340 }
7341
7342 ep->v_tag = v_tag;
7343 TAILQ_INIT(&ep->sources);
7344 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7345 }
7346
7347 /* Avoid inserting duplicates. */
7348 count = 0;
7349 TAILQ_FOREACH(i, &ep->sources, entry) {
7350 count++;
7351 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7352 PF_SCTP_ENDPOINTS_UNLOCK();
7353 return;
7354 }
7355 }
7356
7357 /* Limit the number of addresses per endpoint. */
7358 if (count >= PF_SCTP_MAX_ENDPOINTS) {
7359 PF_SCTP_ENDPOINTS_UNLOCK();
7360 return;
7361 }
7362
7363 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7364 if (i == NULL) {
7365 PF_SCTP_ENDPOINTS_UNLOCK();
7366 return;
7367 }
7368
7369 i->af = pd->af;
7370 memcpy(&i->addr, a, sizeof(*a));
7371 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7372 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7373
7374 PF_SCTP_ENDPOINTS_UNLOCK();
7375 }
7376
7377 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7378 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7379 struct pf_kstate *s, int action)
7380 {
7381 struct pf_sctp_multihome_job *j, *tmp;
7382 struct pf_sctp_source *i;
7383 int ret __unused;
7384 struct pf_kstate *sm = NULL;
7385 struct pf_krule *ra = NULL;
7386 struct pf_krule *r = &V_pf_default_rule;
7387 struct pf_kruleset *rs = NULL;
7388 u_short reason;
7389 bool do_extra = true;
7390
7391 PF_RULES_RLOCK_TRACKER;
7392
7393 again:
7394 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7395 if (s == NULL || action != PF_PASS)
7396 goto free;
7397
7398 /* Confirm we don't recurse here. */
7399 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7400
7401 switch (j->op) {
7402 case SCTP_ADD_IP_ADDRESS: {
7403 uint32_t v_tag = pd->sctp_initiate_tag;
7404
7405 if (v_tag == 0) {
7406 if (s->direction == pd->dir)
7407 v_tag = s->src.scrub->pfss_v_tag;
7408 else
7409 v_tag = s->dst.scrub->pfss_v_tag;
7410 }
7411
7412 /*
7413 * Avoid duplicating states. We'll already have
7414 * created a state based on the source address of
7415 * the packet, but SCTP endpoints may also list this
7416 * address again in the INIT(_ACK) parameters.
7417 */
7418 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7419 break;
7420 }
7421
7422 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7423 PF_RULES_RLOCK();
7424 sm = NULL;
7425 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7426 j->pd.related_rule = s->rule;
7427 }
7428 ret = pf_test_rule(&r, &sm,
7429 &j->pd, &ra, &rs, &reason, NULL);
7430 PF_RULES_RUNLOCK();
7431 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7432 if (ret != PF_DROP && sm != NULL) {
7433 /* Inherit v_tag values. */
7434 if (sm->direction == s->direction) {
7435 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7436 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7437 } else {
7438 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7439 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7440 }
7441 PF_STATE_UNLOCK(sm);
7442 } else {
7443 /* If we try duplicate inserts? */
7444 break;
7445 }
7446
7447 /* Only add the address if we've actually allowed the state. */
7448 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7449
7450 if (! do_extra) {
7451 break;
7452 }
7453 /*
7454 * We need to do this for each of our source addresses.
7455 * Find those based on the verification tag.
7456 */
7457 struct pf_sctp_endpoint key = {
7458 .v_tag = pd->hdr.sctp.v_tag,
7459 };
7460 struct pf_sctp_endpoint *ep;
7461
7462 PF_SCTP_ENDPOINTS_LOCK();
7463 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7464 if (ep == NULL) {
7465 PF_SCTP_ENDPOINTS_UNLOCK();
7466 break;
7467 }
7468 MPASS(ep != NULL);
7469
7470 TAILQ_FOREACH(i, &ep->sources, entry) {
7471 struct pf_sctp_multihome_job *nj;
7472
7473 /* SCTP can intermingle IPv4 and IPv6. */
7474 if (i->af != pd->af)
7475 continue;
7476
7477 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7478 if (! nj) {
7479 continue;
7480 }
7481 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7482 memcpy(&nj->src, &j->src, sizeof(nj->src));
7483 nj->pd.src = &nj->src;
7484 // New destination address!
7485 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7486 nj->pd.dst = &nj->dst;
7487 nj->pd.m = j->pd.m;
7488 nj->op = j->op;
7489
7490 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7491 }
7492 PF_SCTP_ENDPOINTS_UNLOCK();
7493
7494 break;
7495 }
7496 case SCTP_DEL_IP_ADDRESS: {
7497 struct pf_state_key_cmp key;
7498 uint8_t psrc;
7499 int action;
7500
7501 bzero(&key, sizeof(key));
7502 key.af = j->pd.af;
7503 key.proto = IPPROTO_SCTP;
7504 if (j->pd.dir == PF_IN) { /* wire side, straight */
7505 PF_ACPY(&key.addr[0], j->pd.src, key.af);
7506 PF_ACPY(&key.addr[1], j->pd.dst, key.af);
7507 key.port[0] = j->pd.hdr.sctp.src_port;
7508 key.port[1] = j->pd.hdr.sctp.dest_port;
7509 } else { /* stack side, reverse */
7510 PF_ACPY(&key.addr[1], j->pd.src, key.af);
7511 PF_ACPY(&key.addr[0], j->pd.dst, key.af);
7512 key.port[1] = j->pd.hdr.sctp.src_port;
7513 key.port[0] = j->pd.hdr.sctp.dest_port;
7514 }
7515
7516 action = pf_find_state(&j->pd, &key, &sm);
7517 if (action == PF_MATCH) {
7518 PF_STATE_LOCK_ASSERT(sm);
7519 if (j->pd.dir == sm->direction) {
7520 psrc = PF_PEER_SRC;
7521 } else {
7522 psrc = PF_PEER_DST;
7523 }
7524 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7525 sm->timeout = PFTM_SCTP_CLOSING;
7526 PF_STATE_UNLOCK(sm);
7527 }
7528 break;
7529 default:
7530 panic("Unknown op %#x", j->op);
7531 }
7532 }
7533
7534 free:
7535 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7536 free(j, M_PFTEMP);
7537 }
7538
7539 /* We may have inserted extra work while processing the list. */
7540 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7541 do_extra = false;
7542 goto again;
7543 }
7544 }
7545
7546 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7547 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7548 {
7549 int off = 0;
7550 struct pf_sctp_multihome_job *job;
7551
7552 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7553
7554 while (off < len) {
7555 struct sctp_paramhdr h;
7556
7557 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7558 pd->af))
7559 return (PF_DROP);
7560
7561 /* Parameters are at least 4 bytes. */
7562 if (ntohs(h.param_length) < 4)
7563 return (PF_DROP);
7564
7565 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7566 ntohs(h.param_length));
7567
7568 switch (ntohs(h.param_type)) {
7569 case SCTP_IPV4_ADDRESS: {
7570 struct in_addr t;
7571
7572 if (ntohs(h.param_length) !=
7573 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7574 return (PF_DROP);
7575
7576 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7577 NULL, NULL, pd->af))
7578 return (PF_DROP);
7579
7580 if (in_nullhost(t))
7581 t.s_addr = pd->src->v4.s_addr;
7582
7583 /*
7584 * We hold the state lock (idhash) here, which means
7585 * that we can't acquire the keyhash, or we'll get a
7586 * LOR (and potentially double-lock things too). We also
7587 * can't release the state lock here, so instead we'll
7588 * enqueue this for async handling.
7589 * There's a relatively small race here, in that a
7590 * packet using the new addresses could arrive already,
7591 * but that's just though luck for it.
7592 */
7593 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7594 if (! job)
7595 return (PF_DROP);
7596
7597 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7598
7599 memcpy(&job->pd, pd, sizeof(*pd));
7600
7601 // New source address!
7602 memcpy(&job->src, &t, sizeof(t));
7603 job->pd.src = &job->src;
7604 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7605 job->pd.dst = &job->dst;
7606 job->pd.m = pd->m;
7607 job->op = op;
7608
7609 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7610 break;
7611 }
7612 #ifdef INET6
7613 case SCTP_IPV6_ADDRESS: {
7614 struct in6_addr t;
7615
7616 if (ntohs(h.param_length) !=
7617 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7618 return (PF_DROP);
7619
7620 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7621 NULL, NULL, pd->af))
7622 return (PF_DROP);
7623 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7624 break;
7625 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7626 memcpy(&t, &pd->src->v6, sizeof(t));
7627
7628 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7629 if (! job)
7630 return (PF_DROP);
7631
7632 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7633
7634 memcpy(&job->pd, pd, sizeof(*pd));
7635 memcpy(&job->src, &t, sizeof(t));
7636 job->pd.src = &job->src;
7637 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7638 job->pd.dst = &job->dst;
7639 job->pd.m = pd->m;
7640 job->op = op;
7641
7642 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7643 break;
7644 }
7645 #endif /* INET6 */
7646 case SCTP_ADD_IP_ADDRESS: {
7647 int ret;
7648 struct sctp_asconf_paramhdr ah;
7649
7650 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7651 NULL, NULL, pd->af))
7652 return (PF_DROP);
7653
7654 ret = pf_multihome_scan(start + off + sizeof(ah),
7655 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7656 SCTP_ADD_IP_ADDRESS);
7657 if (ret != PF_PASS)
7658 return (ret);
7659 break;
7660 }
7661 case SCTP_DEL_IP_ADDRESS: {
7662 int ret;
7663 struct sctp_asconf_paramhdr ah;
7664
7665 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7666 NULL, NULL, pd->af))
7667 return (PF_DROP);
7668 ret = pf_multihome_scan(start + off + sizeof(ah),
7669 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7670 SCTP_DEL_IP_ADDRESS);
7671 if (ret != PF_PASS)
7672 return (ret);
7673 break;
7674 }
7675 default:
7676 break;
7677 }
7678
7679 off += roundup(ntohs(h.param_length), 4);
7680 }
7681
7682 return (PF_PASS);
7683 }
7684
7685 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7686 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7687 {
7688 start += sizeof(struct sctp_init_chunk);
7689 len -= sizeof(struct sctp_init_chunk);
7690
7691 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7692 }
7693
7694 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7695 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7696 {
7697 start += sizeof(struct sctp_asconf_chunk);
7698 len -= sizeof(struct sctp_asconf_chunk);
7699
7700 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7701 }
7702
7703 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7704 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7705 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7706 int *iidx, int multi, int inner)
7707 {
7708 int action, direction = pd->dir;
7709
7710 key->af = pd->af;
7711 key->proto = pd->proto;
7712 if (icmp_dir == PF_IN) {
7713 *iidx = pd->sidx;
7714 key->port[pd->sidx] = icmpid;
7715 key->port[pd->didx] = type;
7716 } else {
7717 *iidx = pd->didx;
7718 key->port[pd->sidx] = type;
7719 key->port[pd->didx] = icmpid;
7720 }
7721 if (pf_state_key_addr_setup(pd, key, multi))
7722 return (PF_DROP);
7723
7724 action = pf_find_state(pd, key, state);
7725 if (action != PF_MATCH)
7726 return (action);
7727
7728 if ((*state)->state_flags & PFSTATE_SLOPPY)
7729 return (-1);
7730
7731 /* Is this ICMP message flowing in right direction? */
7732 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7733 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7734 PF_IN : PF_OUT;
7735 else
7736 direction = (*state)->direction;
7737 if ((*state)->rule->type &&
7738 (((!inner && direction == pd->dir) ||
7739 (inner && direction != pd->dir)) ?
7740 PF_IN : PF_OUT) != icmp_dir) {
7741 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7742 printf("pf: icmp type %d in wrong direction (%d): ",
7743 ntohs(type), icmp_dir);
7744 pf_print_state(*state);
7745 printf("\n");
7746 }
7747 PF_STATE_UNLOCK(*state);
7748 *state = NULL;
7749 return (PF_DROP);
7750 }
7751 return (-1);
7752 }
7753
7754 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7755 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7756 u_short *reason)
7757 {
7758 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
7759 u_int16_t *icmpsum, virtual_id, virtual_type;
7760 u_int8_t icmptype, icmpcode;
7761 int icmp_dir, iidx, ret;
7762 struct pf_state_key_cmp key;
7763 #ifdef INET
7764 u_int16_t icmpid;
7765 #endif /* INET*/
7766
7767 MPASS(*state == NULL);
7768
7769 bzero(&key, sizeof(key));
7770 switch (pd->proto) {
7771 #ifdef INET
7772 case IPPROTO_ICMP:
7773 icmptype = pd->hdr.icmp.icmp_type;
7774 icmpcode = pd->hdr.icmp.icmp_code;
7775 icmpid = pd->hdr.icmp.icmp_id;
7776 icmpsum = &pd->hdr.icmp.icmp_cksum;
7777 break;
7778 #endif /* INET */
7779 #ifdef INET6
7780 case IPPROTO_ICMPV6:
7781 icmptype = pd->hdr.icmp6.icmp6_type;
7782 icmpcode = pd->hdr.icmp6.icmp6_code;
7783 #ifdef INET
7784 icmpid = pd->hdr.icmp6.icmp6_id;
7785 #endif /* INET */
7786 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7787 break;
7788 #endif /* INET6 */
7789 default:
7790 panic("unhandled proto %d", pd->proto);
7791 }
7792
7793 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7794 &virtual_type) == 0) {
7795 /*
7796 * ICMP query/reply message not related to a TCP/UDP/SCTP
7797 * packet. Search for an ICMP state.
7798 */
7799 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7800 virtual_type, icmp_dir, &iidx, 0, 0);
7801 /* IPv6? try matching a multicast address */
7802 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7803 MPASS(*state == NULL);
7804 ret = pf_icmp_state_lookup(&key, pd, state,
7805 virtual_id, virtual_type,
7806 icmp_dir, &iidx, 1, 0);
7807 }
7808 if (ret >= 0) {
7809 MPASS(*state == NULL);
7810 return (ret);
7811 }
7812
7813 (*state)->expire = pf_get_uptime();
7814 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7815
7816 /* translate source/destination address, if necessary */
7817 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7818 struct pf_state_key *nk;
7819 int afto, sidx, didx;
7820
7821 if (PF_REVERSED_KEY(*state, pd->af))
7822 nk = (*state)->key[pd->sidx];
7823 else
7824 nk = (*state)->key[pd->didx];
7825
7826 afto = pd->af != nk->af;
7827
7828 if (afto && (*state)->direction == PF_IN) {
7829 sidx = pd->didx;
7830 didx = pd->sidx;
7831 iidx = !iidx;
7832 } else {
7833 sidx = pd->sidx;
7834 didx = pd->didx;
7835 }
7836
7837 switch (pd->af) {
7838 #ifdef INET
7839 case AF_INET:
7840 #ifdef INET6
7841 if (afto) {
7842 if (pf_translate_icmp_af(AF_INET6,
7843 &pd->hdr.icmp))
7844 return (PF_DROP);
7845 pd->proto = IPPROTO_ICMPV6;
7846 }
7847 #endif /* INET6 */
7848 if (!afto &&
7849 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7850 pf_change_a(&saddr->v4.s_addr,
7851 pd->ip_sum,
7852 nk->addr[sidx].v4.s_addr,
7853 0);
7854
7855 if (!afto && PF_ANEQ(pd->dst,
7856 &nk->addr[didx], AF_INET))
7857 pf_change_a(&daddr->v4.s_addr,
7858 pd->ip_sum,
7859 nk->addr[didx].v4.s_addr, 0);
7860
7861 if (nk->port[iidx] !=
7862 pd->hdr.icmp.icmp_id) {
7863 pd->hdr.icmp.icmp_cksum =
7864 pf_cksum_fixup(
7865 pd->hdr.icmp.icmp_cksum, icmpid,
7866 nk->port[iidx], 0);
7867 pd->hdr.icmp.icmp_id =
7868 nk->port[iidx];
7869 }
7870
7871 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7872 (caddr_t )&pd->hdr.icmp);
7873 break;
7874 #endif /* INET */
7875 #ifdef INET6
7876 case AF_INET6:
7877 #ifdef INET
7878 if (afto) {
7879 if (pf_translate_icmp_af(AF_INET,
7880 &pd->hdr.icmp6))
7881 return (PF_DROP);
7882 pd->proto = IPPROTO_ICMP;
7883 }
7884 #endif /* INET */
7885 if (!afto &&
7886 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7887 pf_change_a6(saddr,
7888 &pd->hdr.icmp6.icmp6_cksum,
7889 &nk->addr[sidx], 0);
7890
7891 if (!afto && PF_ANEQ(pd->dst,
7892 &nk->addr[didx], AF_INET6))
7893 pf_change_a6(daddr,
7894 &pd->hdr.icmp6.icmp6_cksum,
7895 &nk->addr[didx], 0);
7896
7897 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7898 pd->hdr.icmp6.icmp6_id =
7899 nk->port[iidx];
7900
7901 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7902 (caddr_t )&pd->hdr.icmp6);
7903 break;
7904 #endif /* INET6 */
7905 }
7906 if (afto) {
7907 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7908 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7909 pd->naf = nk->af;
7910 return (PF_AFRT);
7911 }
7912 }
7913 return (PF_PASS);
7914
7915 } else {
7916 /*
7917 * ICMP error message in response to a TCP/UDP packet.
7918 * Extract the inner TCP/UDP header and search for that state.
7919 */
7920
7921 struct pf_pdesc pd2;
7922 bzero(&pd2, sizeof pd2);
7923 #ifdef INET
7924 struct ip h2;
7925 #endif /* INET */
7926 #ifdef INET6
7927 struct ip6_hdr h2_6;
7928 #endif /* INET6 */
7929 int ipoff2 = 0;
7930
7931 pd2.af = pd->af;
7932 pd2.dir = pd->dir;
7933 /* Payload packet is from the opposite direction. */
7934 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7935 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7936 pd2.m = pd->m;
7937 pd2.pf_mtag = pd->pf_mtag;
7938 pd2.kif = pd->kif;
7939 switch (pd->af) {
7940 #ifdef INET
7941 case AF_INET:
7942 /* offset of h2 in mbuf chain */
7943 ipoff2 = pd->off + ICMP_MINLEN;
7944
7945 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7946 NULL, reason, pd2.af)) {
7947 DPFPRINTF(PF_DEBUG_MISC,
7948 ("pf: ICMP error message too short "
7949 "(ip)\n"));
7950 return (PF_DROP);
7951 }
7952 /*
7953 * ICMP error messages don't refer to non-first
7954 * fragments
7955 */
7956 if (h2.ip_off & htons(IP_OFFMASK)) {
7957 REASON_SET(reason, PFRES_FRAG);
7958 return (PF_DROP);
7959 }
7960
7961 /* offset of protocol header that follows h2 */
7962 pd2.off = ipoff2;
7963 if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
7964 return (PF_DROP);
7965
7966 pd2.tot_len = ntohs(h2.ip_len);
7967 pd2.src = (struct pf_addr *)&h2.ip_src;
7968 pd2.dst = (struct pf_addr *)&h2.ip_dst;
7969 pd2.ip_sum = &h2.ip_sum;
7970 break;
7971 #endif /* INET */
7972 #ifdef INET6
7973 case AF_INET6:
7974 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7975
7976 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7977 NULL, reason, pd2.af)) {
7978 DPFPRINTF(PF_DEBUG_MISC,
7979 ("pf: ICMP error message too short "
7980 "(ip6)\n"));
7981 return (PF_DROP);
7982 }
7983 pd2.off = ipoff2;
7984 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
7985 return (PF_DROP);
7986
7987 pd2.tot_len = ntohs(h2_6.ip6_plen) +
7988 sizeof(struct ip6_hdr);
7989 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7990 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7991 pd2.ip_sum = NULL;
7992 break;
7993 #endif /* INET6 */
7994 default:
7995 unhandled_af(pd->af);
7996 }
7997
7998 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7999 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8000 printf("pf: BAD ICMP %d:%d outer dst: ",
8001 icmptype, icmpcode);
8002 pf_print_host(pd->src, 0, pd->af);
8003 printf(" -> ");
8004 pf_print_host(pd->dst, 0, pd->af);
8005 printf(" inner src: ");
8006 pf_print_host(pd2.src, 0, pd2.af);
8007 printf(" -> ");
8008 pf_print_host(pd2.dst, 0, pd2.af);
8009 printf("\n");
8010 }
8011 REASON_SET(reason, PFRES_BADSTATE);
8012 return (PF_DROP);
8013 }
8014
8015 switch (pd2.proto) {
8016 case IPPROTO_TCP: {
8017 struct tcphdr *th = &pd2.hdr.tcp;
8018 u_int32_t seq;
8019 struct pf_state_peer *src, *dst;
8020 u_int8_t dws;
8021 int copyback = 0;
8022 int action;
8023
8024 /*
8025 * Only the first 8 bytes of the TCP header can be
8026 * expected. Don't access any TCP header fields after
8027 * th_seq, an ackskew test is not possible.
8028 */
8029 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason,
8030 pd2.af)) {
8031 DPFPRINTF(PF_DEBUG_MISC,
8032 ("pf: ICMP error message too short "
8033 "(tcp)\n"));
8034 return (PF_DROP);
8035 }
8036 pd2.pcksum = &pd2.hdr.tcp.th_sum;
8037
8038 key.af = pd2.af;
8039 key.proto = IPPROTO_TCP;
8040 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8041 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8042 key.port[pd2.sidx] = th->th_sport;
8043 key.port[pd2.didx] = th->th_dport;
8044
8045 action = pf_find_state(&pd2, &key, state);
8046 if (action != PF_MATCH)
8047 return (action);
8048
8049 if (pd->dir == (*state)->direction) {
8050 if (PF_REVERSED_KEY(*state, pd->af)) {
8051 src = &(*state)->src;
8052 dst = &(*state)->dst;
8053 } else {
8054 src = &(*state)->dst;
8055 dst = &(*state)->src;
8056 }
8057 } else {
8058 if (PF_REVERSED_KEY(*state, pd->af)) {
8059 src = &(*state)->dst;
8060 dst = &(*state)->src;
8061 } else {
8062 src = &(*state)->src;
8063 dst = &(*state)->dst;
8064 }
8065 }
8066
8067 if (src->wscale && dst->wscale)
8068 dws = dst->wscale & PF_WSCALE_MASK;
8069 else
8070 dws = 0;
8071
8072 /* Demodulate sequence number */
8073 seq = ntohl(th->th_seq) - src->seqdiff;
8074 if (src->seqdiff) {
8075 pf_change_a(&th->th_seq, icmpsum,
8076 htonl(seq), 0);
8077 copyback = 1;
8078 }
8079
8080 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8081 (!SEQ_GEQ(src->seqhi, seq) ||
8082 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8083 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8084 printf("pf: BAD ICMP %d:%d ",
8085 icmptype, icmpcode);
8086 pf_print_host(pd->src, 0, pd->af);
8087 printf(" -> ");
8088 pf_print_host(pd->dst, 0, pd->af);
8089 printf(" state: ");
8090 pf_print_state(*state);
8091 printf(" seq=%u\n", seq);
8092 }
8093 REASON_SET(reason, PFRES_BADSTATE);
8094 return (PF_DROP);
8095 } else {
8096 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8097 printf("pf: OK ICMP %d:%d ",
8098 icmptype, icmpcode);
8099 pf_print_host(pd->src, 0, pd->af);
8100 printf(" -> ");
8101 pf_print_host(pd->dst, 0, pd->af);
8102 printf(" state: ");
8103 pf_print_state(*state);
8104 printf(" seq=%u\n", seq);
8105 }
8106 }
8107
8108 /* translate source/destination address, if necessary */
8109 if ((*state)->key[PF_SK_WIRE] !=
8110 (*state)->key[PF_SK_STACK]) {
8111
8112 struct pf_state_key *nk;
8113
8114 if (PF_REVERSED_KEY(*state, pd->af))
8115 nk = (*state)->key[pd->sidx];
8116 else
8117 nk = (*state)->key[pd->didx];
8118
8119 #if defined(INET) && defined(INET6)
8120 int afto, sidx, didx;
8121
8122 afto = pd->af != nk->af;
8123
8124 if (afto && (*state)->direction == PF_IN) {
8125 sidx = pd2.didx;
8126 didx = pd2.sidx;
8127 } else {
8128 sidx = pd2.sidx;
8129 didx = pd2.didx;
8130 }
8131
8132 if (afto) {
8133 if (pf_translate_icmp_af(nk->af,
8134 &pd->hdr.icmp))
8135 return (PF_DROP);
8136 m_copyback(pd->m, pd->off,
8137 sizeof(struct icmp6_hdr),
8138 (c_caddr_t)&pd->hdr.icmp6);
8139 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8140 &pd2, &nk->addr[sidx],
8141 &nk->addr[didx], pd->af,
8142 nk->af))
8143 return (PF_DROP);
8144 PF_ACPY(&pd->nsaddr, &nk->addr[pd2.sidx],
8145 nk->af);
8146 PF_ACPY(&pd->ndaddr,
8147 &nk->addr[pd2.didx], nk->af);
8148 if (nk->af == AF_INET) {
8149 pd->proto = IPPROTO_ICMP;
8150 } else {
8151 pd->proto = IPPROTO_ICMPV6;
8152 /*
8153 * IPv4 becomes IPv6 so we must
8154 * copy IPv4 src addr to least
8155 * 32bits in IPv6 address to
8156 * keep traceroute/icmp
8157 * working.
8158 */
8159 pd->nsaddr.addr32[3] =
8160 pd->src->addr32[0];
8161 }
8162 pd->naf = pd2.naf = nk->af;
8163 pf_change_ap(&pd2, pd2.src, &th->th_sport,
8164 &nk->addr[pd2.sidx], nk->port[sidx]);
8165 pf_change_ap(&pd2, pd2.dst, &th->th_dport,
8166 &nk->addr[pd2.didx], nk->port[didx]);
8167 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
8168 return (PF_AFRT);
8169 }
8170 #endif /* INET && INET6 */
8171
8172 if (PF_ANEQ(pd2.src,
8173 &nk->addr[pd2.sidx], pd2.af) ||
8174 nk->port[pd2.sidx] != th->th_sport)
8175 pf_change_icmp(pd2.src, &th->th_sport,
8176 daddr, &nk->addr[pd2.sidx],
8177 nk->port[pd2.sidx], NULL,
8178 pd2.ip_sum, icmpsum,
8179 pd->ip_sum, 0, pd2.af);
8180
8181 if (PF_ANEQ(pd2.dst,
8182 &nk->addr[pd2.didx], pd2.af) ||
8183 nk->port[pd2.didx] != th->th_dport)
8184 pf_change_icmp(pd2.dst, &th->th_dport,
8185 saddr, &nk->addr[pd2.didx],
8186 nk->port[pd2.didx], NULL,
8187 pd2.ip_sum, icmpsum,
8188 pd->ip_sum, 0, pd2.af);
8189 copyback = 1;
8190 }
8191
8192 if (copyback) {
8193 switch (pd2.af) {
8194 #ifdef INET
8195 case AF_INET:
8196 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8197 (caddr_t )&pd->hdr.icmp);
8198 m_copyback(pd->m, ipoff2, sizeof(h2),
8199 (caddr_t )&h2);
8200 break;
8201 #endif /* INET */
8202 #ifdef INET6
8203 case AF_INET6:
8204 m_copyback(pd->m, pd->off,
8205 sizeof(struct icmp6_hdr),
8206 (caddr_t )&pd->hdr.icmp6);
8207 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8208 (caddr_t )&h2_6);
8209 break;
8210 #endif /* INET6 */
8211 default:
8212 unhandled_af(pd->af);
8213 }
8214 m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
8215 }
8216
8217 return (PF_PASS);
8218 break;
8219 }
8220 case IPPROTO_UDP: {
8221 struct udphdr *uh = &pd2.hdr.udp;
8222 int action;
8223
8224 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
8225 NULL, reason, pd2.af)) {
8226 DPFPRINTF(PF_DEBUG_MISC,
8227 ("pf: ICMP error message too short "
8228 "(udp)\n"));
8229 return (PF_DROP);
8230 }
8231 pd2.pcksum = &pd2.hdr.udp.uh_sum;
8232
8233 key.af = pd2.af;
8234 key.proto = IPPROTO_UDP;
8235 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8236 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8237 key.port[pd2.sidx] = uh->uh_sport;
8238 key.port[pd2.didx] = uh->uh_dport;
8239
8240 action = pf_find_state(&pd2, &key, state);
8241 if (action != PF_MATCH)
8242 return (action);
8243
8244 /* translate source/destination address, if necessary */
8245 if ((*state)->key[PF_SK_WIRE] !=
8246 (*state)->key[PF_SK_STACK]) {
8247 struct pf_state_key *nk;
8248
8249 if (PF_REVERSED_KEY(*state, pd->af))
8250 nk = (*state)->key[pd->sidx];
8251 else
8252 nk = (*state)->key[pd->didx];
8253
8254 #if defined(INET) && defined(INET6)
8255 int afto, sidx, didx;
8256
8257 afto = pd->af != nk->af;
8258
8259 if (afto && (*state)->direction == PF_IN) {
8260 sidx = pd2.didx;
8261 didx = pd2.sidx;
8262 } else {
8263 sidx = pd2.sidx;
8264 didx = pd2.didx;
8265 }
8266
8267 if (afto) {
8268 if (pf_translate_icmp_af(nk->af,
8269 &pd->hdr.icmp))
8270 return (PF_DROP);
8271 m_copyback(pd->m, pd->off,
8272 sizeof(struct icmp6_hdr),
8273 (c_caddr_t)&pd->hdr.icmp6);
8274 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8275 &pd2, &nk->addr[sidx],
8276 &nk->addr[didx], pd->af,
8277 nk->af))
8278 return (PF_DROP);
8279 PF_ACPY(&pd->nsaddr,
8280 &nk->addr[pd2.sidx], nk->af);
8281 PF_ACPY(&pd->ndaddr,
8282 &nk->addr[pd2.didx], nk->af);
8283 if (nk->af == AF_INET) {
8284 pd->proto = IPPROTO_ICMP;
8285 } else {
8286 pd->proto = IPPROTO_ICMPV6;
8287 /*
8288 * IPv4 becomes IPv6 so we must
8289 * copy IPv4 src addr to least
8290 * 32bits in IPv6 address to
8291 * keep traceroute/icmp
8292 * working.
8293 */
8294 pd->nsaddr.addr32[3] =
8295 pd->src->addr32[0];
8296 }
8297 pd->naf = pd2.naf = nk->af;
8298 pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
8299 &nk->addr[pd2.sidx], nk->port[sidx]);
8300 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
8301 &nk->addr[pd2.didx], nk->port[didx]);
8302 m_copyback(pd2.m, pd2.off, sizeof(*uh),
8303 (c_caddr_t)uh);
8304 return (PF_AFRT);
8305 }
8306 #endif /* INET && INET6 */
8307
8308 if (PF_ANEQ(pd2.src,
8309 &nk->addr[pd2.sidx], pd2.af) ||
8310 nk->port[pd2.sidx] != uh->uh_sport)
8311 pf_change_icmp(pd2.src, &uh->uh_sport,
8312 daddr, &nk->addr[pd2.sidx],
8313 nk->port[pd2.sidx], &uh->uh_sum,
8314 pd2.ip_sum, icmpsum,
8315 pd->ip_sum, 1, pd2.af);
8316
8317 if (PF_ANEQ(pd2.dst,
8318 &nk->addr[pd2.didx], pd2.af) ||
8319 nk->port[pd2.didx] != uh->uh_dport)
8320 pf_change_icmp(pd2.dst, &uh->uh_dport,
8321 saddr, &nk->addr[pd2.didx],
8322 nk->port[pd2.didx], &uh->uh_sum,
8323 pd2.ip_sum, icmpsum,
8324 pd->ip_sum, 1, pd2.af);
8325
8326 switch (pd2.af) {
8327 #ifdef INET
8328 case AF_INET:
8329 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8330 (caddr_t )&pd->hdr.icmp);
8331 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8332 break;
8333 #endif /* INET */
8334 #ifdef INET6
8335 case AF_INET6:
8336 m_copyback(pd->m, pd->off,
8337 sizeof(struct icmp6_hdr),
8338 (caddr_t )&pd->hdr.icmp6);
8339 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8340 (caddr_t )&h2_6);
8341 break;
8342 #endif /* INET6 */
8343 }
8344 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
8345 }
8346 return (PF_PASS);
8347 break;
8348 }
8349 #ifdef INET
8350 case IPPROTO_SCTP: {
8351 struct sctphdr *sh = &pd2.hdr.sctp;
8352 struct pf_state_peer *src;
8353 int copyback = 0;
8354 int action;
8355
8356 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason,
8357 pd2.af)) {
8358 DPFPRINTF(PF_DEBUG_MISC,
8359 ("pf: ICMP error message too short "
8360 "(sctp)\n"));
8361 return (PF_DROP);
8362 }
8363 pd2.pcksum = &pd2.sctp_dummy_sum;
8364
8365 key.af = pd2.af;
8366 key.proto = IPPROTO_SCTP;
8367 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8368 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8369 key.port[pd2.sidx] = sh->src_port;
8370 key.port[pd2.didx] = sh->dest_port;
8371
8372 action = pf_find_state(&pd2, &key, state);
8373 if (action != PF_MATCH)
8374 return (action);
8375
8376 if (pd->dir == (*state)->direction) {
8377 if (PF_REVERSED_KEY(*state, pd->af))
8378 src = &(*state)->src;
8379 else
8380 src = &(*state)->dst;
8381 } else {
8382 if (PF_REVERSED_KEY(*state, pd->af))
8383 src = &(*state)->dst;
8384 else
8385 src = &(*state)->src;
8386 }
8387
8388 if (src->scrub->pfss_v_tag != sh->v_tag) {
8389 DPFPRINTF(PF_DEBUG_MISC,
8390 ("pf: ICMP error message has incorrect "
8391 "SCTP v_tag\n"));
8392 return (PF_DROP);
8393 }
8394
8395 /* translate source/destination address, if necessary */
8396 if ((*state)->key[PF_SK_WIRE] !=
8397 (*state)->key[PF_SK_STACK]) {
8398
8399 struct pf_state_key *nk;
8400
8401 if (PF_REVERSED_KEY(*state, pd->af))
8402 nk = (*state)->key[pd->sidx];
8403 else
8404 nk = (*state)->key[pd->didx];
8405
8406 #if defined(INET) && defined(INET6)
8407 int afto, sidx, didx;
8408
8409 afto = pd->af != nk->af;
8410
8411 if (afto && (*state)->direction == PF_IN) {
8412 sidx = pd2.didx;
8413 didx = pd2.sidx;
8414 } else {
8415 sidx = pd2.sidx;
8416 didx = pd2.didx;
8417 }
8418
8419 if (afto) {
8420 if (pf_translate_icmp_af(nk->af,
8421 &pd->hdr.icmp))
8422 return (PF_DROP);
8423 m_copyback(pd->m, pd->off,
8424 sizeof(struct icmp6_hdr),
8425 (c_caddr_t)&pd->hdr.icmp6);
8426 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8427 &pd2, &nk->addr[sidx],
8428 &nk->addr[didx], pd->af,
8429 nk->af))
8430 return (PF_DROP);
8431 sh->src_port = nk->port[sidx];
8432 sh->dest_port = nk->port[didx];
8433 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
8434 PF_ACPY(&pd->nsaddr,
8435 &nk->addr[pd2.sidx], nk->af);
8436 PF_ACPY(&pd->ndaddr,
8437 &nk->addr[pd2.didx], nk->af);
8438 if (nk->af == AF_INET) {
8439 pd->proto = IPPROTO_ICMP;
8440 } else {
8441 pd->proto = IPPROTO_ICMPV6;
8442 /*
8443 * IPv4 becomes IPv6 so we must
8444 * copy IPv4 src addr to least
8445 * 32bits in IPv6 address to
8446 * keep traceroute/icmp
8447 * working.
8448 */
8449 pd->nsaddr.addr32[3] =
8450 pd->src->addr32[0];
8451 }
8452 pd->naf = nk->af;
8453 return (PF_AFRT);
8454 }
8455 #endif /* INET && INET6 */
8456
8457 if (PF_ANEQ(pd2.src,
8458 &nk->addr[pd2.sidx], pd2.af) ||
8459 nk->port[pd2.sidx] != sh->src_port)
8460 pf_change_icmp(pd2.src, &sh->src_port,
8461 daddr, &nk->addr[pd2.sidx],
8462 nk->port[pd2.sidx], NULL,
8463 pd2.ip_sum, icmpsum,
8464 pd->ip_sum, 0, pd2.af);
8465
8466 if (PF_ANEQ(pd2.dst,
8467 &nk->addr[pd2.didx], pd2.af) ||
8468 nk->port[pd2.didx] != sh->dest_port)
8469 pf_change_icmp(pd2.dst, &sh->dest_port,
8470 saddr, &nk->addr[pd2.didx],
8471 nk->port[pd2.didx], NULL,
8472 pd2.ip_sum, icmpsum,
8473 pd->ip_sum, 0, pd2.af);
8474 copyback = 1;
8475 }
8476
8477 if (copyback) {
8478 switch (pd2.af) {
8479 #ifdef INET
8480 case AF_INET:
8481 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8482 (caddr_t )&pd->hdr.icmp);
8483 m_copyback(pd->m, ipoff2, sizeof(h2),
8484 (caddr_t )&h2);
8485 break;
8486 #endif /* INET */
8487 #ifdef INET6
8488 case AF_INET6:
8489 m_copyback(pd->m, pd->off,
8490 sizeof(struct icmp6_hdr),
8491 (caddr_t )&pd->hdr.icmp6);
8492 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8493 (caddr_t )&h2_6);
8494 break;
8495 #endif /* INET6 */
8496 }
8497 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
8498 }
8499
8500 return (PF_PASS);
8501 break;
8502 }
8503 case IPPROTO_ICMP: {
8504 struct icmp *iih = &pd2.hdr.icmp;
8505
8506 if (pd2.af != AF_INET) {
8507 REASON_SET(reason, PFRES_NORM);
8508 return (PF_DROP);
8509 }
8510
8511 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8512 NULL, reason, pd2.af)) {
8513 DPFPRINTF(PF_DEBUG_MISC,
8514 ("pf: ICMP error message too short i"
8515 "(icmp)\n"));
8516 return (PF_DROP);
8517 }
8518 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
8519
8520 icmpid = iih->icmp_id;
8521 pf_icmp_mapping(&pd2, iih->icmp_type,
8522 &icmp_dir, &virtual_id, &virtual_type);
8523
8524 ret = pf_icmp_state_lookup(&key, &pd2, state,
8525 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8526 if (ret >= 0) {
8527 MPASS(*state == NULL);
8528 return (ret);
8529 }
8530
8531 /* translate source/destination address, if necessary */
8532 if ((*state)->key[PF_SK_WIRE] !=
8533 (*state)->key[PF_SK_STACK]) {
8534 struct pf_state_key *nk;
8535
8536 if (PF_REVERSED_KEY(*state, pd->af))
8537 nk = (*state)->key[pd->sidx];
8538 else
8539 nk = (*state)->key[pd->didx];
8540
8541 #if defined(INET) && defined(INET6)
8542 int afto, sidx, didx;
8543
8544 afto = pd->af != nk->af;
8545
8546 if (afto && (*state)->direction == PF_IN) {
8547 sidx = pd2.didx;
8548 didx = pd2.sidx;
8549 iidx = !iidx;
8550 } else {
8551 sidx = pd2.sidx;
8552 didx = pd2.didx;
8553 }
8554
8555 if (afto) {
8556 if (nk->af != AF_INET6)
8557 return (PF_DROP);
8558 if (pf_translate_icmp_af(nk->af,
8559 &pd->hdr.icmp))
8560 return (PF_DROP);
8561 m_copyback(pd->m, pd->off,
8562 sizeof(struct icmp6_hdr),
8563 (c_caddr_t)&pd->hdr.icmp6);
8564 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8565 &pd2, &nk->addr[sidx],
8566 &nk->addr[didx], pd->af,
8567 nk->af))
8568 return (PF_DROP);
8569 pd->proto = IPPROTO_ICMPV6;
8570 if (pf_translate_icmp_af(nk->af, iih))
8571 return (PF_DROP);
8572 if (virtual_type == htons(ICMP_ECHO) &&
8573 nk->port[iidx] != iih->icmp_id)
8574 iih->icmp_id = nk->port[iidx];
8575 m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8576 (c_caddr_t)iih);
8577 PF_ACPY(&pd->nsaddr,
8578 &nk->addr[pd2.sidx], nk->af);
8579 PF_ACPY(&pd->ndaddr,
8580 &nk->addr[pd2.didx], nk->af);
8581 /*
8582 * IPv4 becomes IPv6 so we must copy
8583 * IPv4 src addr to least 32bits in
8584 * IPv6 address to keep traceroute
8585 * working.
8586 */
8587 pd->nsaddr.addr32[3] =
8588 pd->src->addr32[0];
8589 pd->naf = nk->af;
8590 return (PF_AFRT);
8591 }
8592 #endif /* INET && INET6 */
8593
8594 if (PF_ANEQ(pd2.src,
8595 &nk->addr[pd2.sidx], pd2.af) ||
8596 (virtual_type == htons(ICMP_ECHO) &&
8597 nk->port[iidx] != iih->icmp_id))
8598 pf_change_icmp(pd2.src,
8599 (virtual_type == htons(ICMP_ECHO)) ?
8600 &iih->icmp_id : NULL,
8601 daddr, &nk->addr[pd2.sidx],
8602 (virtual_type == htons(ICMP_ECHO)) ?
8603 nk->port[iidx] : 0, NULL,
8604 pd2.ip_sum, icmpsum,
8605 pd->ip_sum, 0, AF_INET);
8606
8607 if (PF_ANEQ(pd2.dst,
8608 &nk->addr[pd2.didx], pd2.af))
8609 pf_change_icmp(pd2.dst, NULL, NULL,
8610 &nk->addr[pd2.didx], 0, NULL,
8611 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8612 AF_INET);
8613
8614 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8615 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8616 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8617 }
8618 return (PF_PASS);
8619 break;
8620 }
8621 #endif /* INET */
8622 #ifdef INET6
8623 case IPPROTO_ICMPV6: {
8624 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
8625
8626 if (pd2.af != AF_INET6) {
8627 REASON_SET(reason, PFRES_NORM);
8628 return (PF_DROP);
8629 }
8630
8631 if (!pf_pull_hdr(pd->m, pd2.off, iih,
8632 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8633 DPFPRINTF(PF_DEBUG_MISC,
8634 ("pf: ICMP error message too short "
8635 "(icmp6)\n"));
8636 return (PF_DROP);
8637 }
8638 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
8639
8640 pf_icmp_mapping(&pd2, iih->icmp6_type,
8641 &icmp_dir, &virtual_id, &virtual_type);
8642
8643 ret = pf_icmp_state_lookup(&key, &pd2, state,
8644 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8645 /* IPv6? try matching a multicast address */
8646 if (ret == PF_DROP && pd2.af == AF_INET6 &&
8647 icmp_dir == PF_OUT) {
8648 MPASS(*state == NULL);
8649 ret = pf_icmp_state_lookup(&key, &pd2,
8650 state, virtual_id, virtual_type,
8651 icmp_dir, &iidx, 1, 1);
8652 }
8653 if (ret >= 0) {
8654 MPASS(*state == NULL);
8655 return (ret);
8656 }
8657
8658 /* translate source/destination address, if necessary */
8659 if ((*state)->key[PF_SK_WIRE] !=
8660 (*state)->key[PF_SK_STACK]) {
8661 struct pf_state_key *nk;
8662
8663 if (PF_REVERSED_KEY(*state, pd->af))
8664 nk = (*state)->key[pd->sidx];
8665 else
8666 nk = (*state)->key[pd->didx];
8667
8668 #if defined(INET) && defined(INET6)
8669 int afto, sidx, didx;
8670
8671 afto = pd->af != nk->af;
8672
8673 if (afto && (*state)->direction == PF_IN) {
8674 sidx = pd2.didx;
8675 didx = pd2.sidx;
8676 iidx = !iidx;
8677 } else {
8678 sidx = pd2.sidx;
8679 didx = pd2.didx;
8680 }
8681
8682 if (afto) {
8683 if (nk->af != AF_INET)
8684 return (PF_DROP);
8685 if (pf_translate_icmp_af(nk->af,
8686 &pd->hdr.icmp))
8687 return (PF_DROP);
8688 m_copyback(pd->m, pd->off,
8689 sizeof(struct icmp6_hdr),
8690 (c_caddr_t)&pd->hdr.icmp6);
8691 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8692 &pd2, &nk->addr[sidx],
8693 &nk->addr[didx], pd->af,
8694 nk->af))
8695 return (PF_DROP);
8696 pd->proto = IPPROTO_ICMP;
8697 if (pf_translate_icmp_af(nk->af, iih))
8698 return (PF_DROP);
8699 if (virtual_type ==
8700 htons(ICMP6_ECHO_REQUEST) &&
8701 nk->port[iidx] != iih->icmp6_id)
8702 iih->icmp6_id = nk->port[iidx];
8703 m_copyback(pd2.m, pd2.off,
8704 sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8705 PF_ACPY(&pd->nsaddr,
8706 &nk->addr[pd2.sidx], nk->af);
8707 PF_ACPY(&pd->ndaddr,
8708 &nk->addr[pd2.didx], nk->af);
8709 pd->naf = nk->af;
8710 return (PF_AFRT);
8711 }
8712 #endif /* INET && INET6 */
8713
8714 if (PF_ANEQ(pd2.src,
8715 &nk->addr[pd2.sidx], pd2.af) ||
8716 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8717 nk->port[pd2.sidx] != iih->icmp6_id))
8718 pf_change_icmp(pd2.src,
8719 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8720 ? &iih->icmp6_id : NULL,
8721 daddr, &nk->addr[pd2.sidx],
8722 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8723 ? nk->port[iidx] : 0, NULL,
8724 pd2.ip_sum, icmpsum,
8725 pd->ip_sum, 0, AF_INET6);
8726
8727 if (PF_ANEQ(pd2.dst,
8728 &nk->addr[pd2.didx], pd2.af))
8729 pf_change_icmp(pd2.dst, NULL, NULL,
8730 &nk->addr[pd2.didx], 0, NULL,
8731 pd2.ip_sum, icmpsum,
8732 pd->ip_sum, 0, AF_INET6);
8733
8734 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8735 (caddr_t)&pd->hdr.icmp6);
8736 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8737 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8738 (caddr_t)iih);
8739 }
8740 return (PF_PASS);
8741 break;
8742 }
8743 #endif /* INET6 */
8744 default: {
8745 int action;
8746
8747 key.af = pd2.af;
8748 key.proto = pd2.proto;
8749 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8750 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8751 key.port[0] = key.port[1] = 0;
8752
8753 action = pf_find_state(&pd2, &key, state);
8754 if (action != PF_MATCH)
8755 return (action);
8756
8757 /* translate source/destination address, if necessary */
8758 if ((*state)->key[PF_SK_WIRE] !=
8759 (*state)->key[PF_SK_STACK]) {
8760 struct pf_state_key *nk =
8761 (*state)->key[pd->didx];
8762
8763 if (PF_ANEQ(pd2.src,
8764 &nk->addr[pd2.sidx], pd2.af))
8765 pf_change_icmp(pd2.src, NULL, daddr,
8766 &nk->addr[pd2.sidx], 0, NULL,
8767 pd2.ip_sum, icmpsum,
8768 pd->ip_sum, 0, pd2.af);
8769
8770 if (PF_ANEQ(pd2.dst,
8771 &nk->addr[pd2.didx], pd2.af))
8772 pf_change_icmp(pd2.dst, NULL, saddr,
8773 &nk->addr[pd2.didx], 0, NULL,
8774 pd2.ip_sum, icmpsum,
8775 pd->ip_sum, 0, pd2.af);
8776
8777 switch (pd2.af) {
8778 #ifdef INET
8779 case AF_INET:
8780 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8781 (caddr_t)&pd->hdr.icmp);
8782 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8783 break;
8784 #endif /* INET */
8785 #ifdef INET6
8786 case AF_INET6:
8787 m_copyback(pd->m, pd->off,
8788 sizeof(struct icmp6_hdr),
8789 (caddr_t )&pd->hdr.icmp6);
8790 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8791 (caddr_t )&h2_6);
8792 break;
8793 #endif /* INET6 */
8794 }
8795 }
8796 return (PF_PASS);
8797 break;
8798 }
8799 }
8800 }
8801 }
8802
8803 /*
8804 * ipoff and off are measured from the start of the mbuf chain.
8805 * h must be at "ipoff" on the mbuf chain.
8806 */
8807 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8808 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8809 u_short *actionp, u_short *reasonp, sa_family_t af)
8810 {
8811 int iplen = 0;
8812 switch (af) {
8813 #ifdef INET
8814 case AF_INET: {
8815 const struct ip *h = mtod(m, struct ip *);
8816 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8817
8818 if (fragoff) {
8819 if (fragoff >= len)
8820 ACTION_SET(actionp, PF_PASS);
8821 else {
8822 ACTION_SET(actionp, PF_DROP);
8823 REASON_SET(reasonp, PFRES_FRAG);
8824 }
8825 return (NULL);
8826 }
8827 iplen = ntohs(h->ip_len);
8828 break;
8829 }
8830 #endif /* INET */
8831 #ifdef INET6
8832 case AF_INET6: {
8833 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8834
8835 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8836 break;
8837 }
8838 #endif /* INET6 */
8839 }
8840 if (m->m_pkthdr.len < off + len || iplen < off + len) {
8841 ACTION_SET(actionp, PF_DROP);
8842 REASON_SET(reasonp, PFRES_SHORT);
8843 return (NULL);
8844 }
8845 m_copydata(m, off, len, p);
8846 return (p);
8847 }
8848
8849 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8850 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8851 int rtableid)
8852 {
8853 struct ifnet *ifp;
8854
8855 /*
8856 * Skip check for addresses with embedded interface scope,
8857 * as they would always match anyway.
8858 */
8859 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8860 return (1);
8861
8862 if (af != AF_INET && af != AF_INET6)
8863 return (0);
8864
8865 if (kif == V_pfi_all)
8866 return (1);
8867
8868 /* Skip checks for ipsec interfaces */
8869 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8870 return (1);
8871
8872 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8873
8874 switch (af) {
8875 #ifdef INET6
8876 case AF_INET6:
8877 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8878 ifp));
8879 #endif /* INET6 */
8880 #ifdef INET
8881 case AF_INET:
8882 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8883 ifp));
8884 #endif /* INET */
8885 }
8886
8887 return (0);
8888 }
8889
8890 #ifdef INET
8891 static void
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8892 pf_route(struct pf_krule *r, struct ifnet *oifp,
8893 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8894 {
8895 struct mbuf *m0, *m1, *md;
8896 struct route ro;
8897 const struct sockaddr *gw = &ro.ro_dst;
8898 struct sockaddr_in *dst;
8899 struct ip *ip;
8900 struct ifnet *ifp = NULL;
8901 int error = 0;
8902 uint16_t ip_len, ip_off;
8903 uint16_t tmp;
8904 int r_dir;
8905 bool skip_test = false;
8906
8907 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
8908
8909 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
8910
8911 if (s) {
8912 r_dir = s->direction;
8913 } else {
8914 r_dir = r->direction;
8915 }
8916
8917 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
8918 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
8919 __func__));
8920
8921 if ((pd->pf_mtag == NULL &&
8922 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
8923 pd->pf_mtag->routed++ > 3) {
8924 m0 = pd->m;
8925 pd->m = NULL;
8926 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8927 goto bad_locked;
8928 }
8929
8930 if (pd->act.rt_kif != NULL)
8931 ifp = pd->act.rt_kif->pfik_ifp;
8932
8933 if (pd->act.rt == PF_DUPTO) {
8934 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
8935 if (s != NULL) {
8936 PF_STATE_UNLOCK(s);
8937 }
8938 if (ifp == oifp) {
8939 /* When the 2nd interface is not skipped */
8940 return;
8941 } else {
8942 m0 = pd->m;
8943 pd->m = NULL;
8944 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8945 goto bad;
8946 }
8947 } else {
8948 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
8949 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
8950 if (s)
8951 PF_STATE_UNLOCK(s);
8952 return;
8953 }
8954 }
8955 } else {
8956 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
8957 if (pd->af == pd->naf) {
8958 pf_dummynet(pd, s, r, &pd->m);
8959 if (s)
8960 PF_STATE_UNLOCK(s);
8961 return;
8962 } else {
8963 if (r_dir == PF_IN) {
8964 skip_test = true;
8965 }
8966 }
8967 }
8968
8969 /*
8970 * If we're actually doing route-to and af-to and are in the
8971 * reply direction.
8972 */
8973 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
8974 pd->af != pd->naf) {
8975 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
8976 /* Un-set ifp so we do a plain route lookup. */
8977 ifp = NULL;
8978 }
8979 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
8980 /* Un-set ifp so we do a plain route lookup. */
8981 ifp = NULL;
8982 }
8983 }
8984 m0 = pd->m;
8985 }
8986
8987 ip = mtod(m0, struct ip *);
8988
8989 bzero(&ro, sizeof(ro));
8990 dst = (struct sockaddr_in *)&ro.ro_dst;
8991 dst->sin_family = AF_INET;
8992 dst->sin_len = sizeof(struct sockaddr_in);
8993 dst->sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
8994
8995 if (pd->dir == PF_IN) {
8996 if (ip->ip_ttl <= IPTTLDEC) {
8997 if (r->rt != PF_DUPTO)
8998 pf_send_icmp(m0, ICMP_TIMXCEED,
8999 ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
9000 pd->act.rtableid);
9001 goto bad_locked;
9002 }
9003 ip->ip_ttl -= IPTTLDEC;
9004 }
9005
9006 if (s != NULL) {
9007 if (ifp == NULL && (pd->af != pd->naf)) {
9008 /* We're in the AFTO case. Do a route lookup. */
9009 const struct nhop_object *nh;
9010 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
9011 if (nh) {
9012 ifp = nh->nh_ifp;
9013
9014 /* Use the gateway if needed. */
9015 if (nh->nh_flags & NHF_GATEWAY) {
9016 gw = &nh->gw_sa;
9017 ro.ro_flags |= RT_HAS_GW;
9018 } else {
9019 dst->sin_addr = ip->ip_dst;
9020 }
9021
9022 /*
9023 * Bind to the correct interface if we're
9024 * if-bound. We don't know which interface
9025 * that will be until here, so we've inserted
9026 * the state on V_pf_all. Fix that now.
9027 */
9028 if (s->kif == V_pfi_all && ifp != NULL &&
9029 r->rule_flag & PFRULE_IFBOUND)
9030 s->kif = ifp->if_pf_kif;
9031 }
9032 }
9033
9034 if (r->rule_flag & PFRULE_IFBOUND &&
9035 pd->act.rt == PF_REPLYTO &&
9036 s->kif == V_pfi_all) {
9037 s->kif = pd->act.rt_kif;
9038 s->orig_kif = oifp->if_pf_kif;
9039 }
9040
9041 PF_STATE_UNLOCK(s);
9042 }
9043
9044 if (ifp == NULL) {
9045 m0 = pd->m;
9046 pd->m = NULL;
9047 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9048 goto bad;
9049 }
9050
9051 if (pd->dir == PF_IN && !skip_test) {
9052 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9053 &pd->act) != PF_PASS) {
9054 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9055 goto bad;
9056 } else if (m0 == NULL) {
9057 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9058 goto done;
9059 }
9060 if (m0->m_len < sizeof(struct ip)) {
9061 DPFPRINTF(PF_DEBUG_URGENT,
9062 ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
9063 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9064 goto bad;
9065 }
9066 ip = mtod(m0, struct ip *);
9067 }
9068
9069 if (ifp->if_flags & IFF_LOOPBACK)
9070 m0->m_flags |= M_SKIP_FIREWALL;
9071
9072 ip_len = ntohs(ip->ip_len);
9073 ip_off = ntohs(ip->ip_off);
9074
9075 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
9076 m0->m_pkthdr.csum_flags |= CSUM_IP;
9077 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9078 in_delayed_cksum(m0);
9079 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9080 }
9081 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9082 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9083 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9084 }
9085
9086 if (pd->dir == PF_IN) {
9087 /*
9088 * Make sure dummynet gets the correct direction, in case it needs to
9089 * re-inject later.
9090 */
9091 pd->dir = PF_OUT;
9092
9093 /*
9094 * The following processing is actually the rest of the inbound processing, even
9095 * though we've marked it as outbound (so we don't look through dummynet) and it
9096 * happens after the outbound processing (pf_test(PF_OUT) above).
9097 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9098 * conclusion about what direction it's processing, and we can't fix it or it
9099 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9100 * decision will pick the right pipe, and everything will mostly work as expected.
9101 */
9102 tmp = pd->act.dnrpipe;
9103 pd->act.dnrpipe = pd->act.dnpipe;
9104 pd->act.dnpipe = tmp;
9105 }
9106
9107 /*
9108 * If small enough for interface, or the interface will take
9109 * care of the fragmentation for us, we can just send directly.
9110 */
9111 if (ip_len <= ifp->if_mtu ||
9112 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9113 ip->ip_sum = 0;
9114 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9115 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9116 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9117 }
9118 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
9119
9120 md = m0;
9121 error = pf_dummynet_route(pd, s, r, ifp, gw, &md);
9122 if (md != NULL) {
9123 error = (*ifp->if_output)(ifp, md, gw, &ro);
9124 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9125 }
9126 goto done;
9127 }
9128
9129 /* Balk when DF bit is set or the interface didn't support TSO. */
9130 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9131 error = EMSGSIZE;
9132 KMOD_IPSTAT_INC(ips_cantfrag);
9133 if (pd->act.rt != PF_DUPTO) {
9134 if (s && s->nat_rule != NULL) {
9135 MPASS(m0 == pd->m);
9136 PACKET_UNDO_NAT(pd,
9137 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9138 s);
9139 }
9140
9141 pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
9142 ifp->if_mtu, pd->af, r, pd->act.rtableid);
9143 }
9144 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9145 goto bad;
9146 }
9147
9148 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9149 if (error) {
9150 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9151 goto bad;
9152 }
9153
9154 for (; m0; m0 = m1) {
9155 m1 = m0->m_nextpkt;
9156 m0->m_nextpkt = NULL;
9157 if (error == 0) {
9158 m_clrprotoflags(m0);
9159 md = m0;
9160 pd->pf_mtag = pf_find_mtag(md);
9161 error = pf_dummynet_route(pd, s, r, ifp,
9162 gw, &md);
9163 if (md != NULL) {
9164 error = (*ifp->if_output)(ifp, md, gw, &ro);
9165 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9166 }
9167 } else
9168 m_freem(m0);
9169 }
9170
9171 if (error == 0)
9172 KMOD_IPSTAT_INC(ips_fragmented);
9173
9174 done:
9175 if (pd->act.rt != PF_DUPTO)
9176 pd->m = NULL;
9177 return;
9178
9179 bad_locked:
9180 if (s)
9181 PF_STATE_UNLOCK(s);
9182 bad:
9183 m_freem(m0);
9184 goto done;
9185 }
9186 #endif /* INET */
9187
9188 #ifdef INET6
9189 static void
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9190 pf_route6(struct pf_krule *r, struct ifnet *oifp,
9191 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9192 {
9193 struct mbuf *m0, *md;
9194 struct m_tag *mtag;
9195 struct sockaddr_in6 dst;
9196 struct ip6_hdr *ip6;
9197 struct ifnet *ifp = NULL;
9198 int r_dir;
9199 bool skip_test = false;
9200
9201 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9202
9203 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
9204
9205 if (s) {
9206 r_dir = s->direction;
9207 } else {
9208 r_dir = r->direction;
9209 }
9210
9211 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9212 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9213 __func__));
9214
9215 if ((pd->pf_mtag == NULL &&
9216 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9217 pd->pf_mtag->routed++ > 3) {
9218 m0 = pd->m;
9219 pd->m = NULL;
9220 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9221 goto bad_locked;
9222 }
9223
9224 if (pd->act.rt_kif != NULL)
9225 ifp = pd->act.rt_kif->pfik_ifp;
9226
9227 if (pd->act.rt == PF_DUPTO) {
9228 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9229 if (s != NULL) {
9230 PF_STATE_UNLOCK(s);
9231 }
9232 if (ifp == oifp) {
9233 /* When the 2nd interface is not skipped */
9234 return;
9235 } else {
9236 m0 = pd->m;
9237 pd->m = NULL;
9238 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9239 goto bad;
9240 }
9241 } else {
9242 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9243 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9244 if (s)
9245 PF_STATE_UNLOCK(s);
9246 return;
9247 }
9248 }
9249 } else {
9250 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9251 if (pd->af == pd->naf) {
9252 pf_dummynet(pd, s, r, &pd->m);
9253 if (s)
9254 PF_STATE_UNLOCK(s);
9255 return;
9256 } else {
9257 if (r_dir == PF_IN) {
9258 skip_test = true;
9259 }
9260 }
9261 }
9262
9263 /*
9264 * If we're actually doing route-to and af-to and are in the
9265 * reply direction.
9266 */
9267 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9268 pd->af != pd->naf) {
9269 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9270 /* Un-set ifp so we do a plain route lookup. */
9271 ifp = NULL;
9272 }
9273 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9274 /* Un-set ifp so we do a plain route lookup. */
9275 ifp = NULL;
9276 }
9277 }
9278 m0 = pd->m;
9279 }
9280
9281 ip6 = mtod(m0, struct ip6_hdr *);
9282
9283 bzero(&dst, sizeof(dst));
9284 dst.sin6_family = AF_INET6;
9285 dst.sin6_len = sizeof(dst);
9286 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6);
9287
9288 if (pd->dir == PF_IN) {
9289 if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
9290 if (r->rt != PF_DUPTO)
9291 pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
9292 ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
9293 pd->act.rtableid);
9294 goto bad_locked;
9295 }
9296 ip6->ip6_hlim -= IPV6_HLIMDEC;
9297 }
9298
9299 if (s != NULL) {
9300 if (ifp == NULL && (pd->af != pd->naf)) {
9301 const struct nhop_object *nh;
9302 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
9303 if (nh) {
9304 ifp = nh->nh_ifp;
9305
9306 /* Use the gateway if needed. */
9307 if (nh->nh_flags & NHF_GATEWAY)
9308 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9309 sizeof(dst.sin6_addr));
9310 else
9311 dst.sin6_addr = ip6->ip6_dst;
9312
9313 /*
9314 * Bind to the correct interface if we're
9315 * if-bound. We don't know which interface
9316 * that will be until here, so we've inserted
9317 * the state on V_pf_all. Fix that now.
9318 */
9319 if (s->kif == V_pfi_all && ifp != NULL &&
9320 r->rule_flag & PFRULE_IFBOUND)
9321 s->kif = ifp->if_pf_kif;
9322 }
9323 }
9324
9325 if (r->rule_flag & PFRULE_IFBOUND &&
9326 pd->act.rt == PF_REPLYTO &&
9327 s->kif == V_pfi_all) {
9328 s->kif = pd->act.rt_kif;
9329 s->orig_kif = oifp->if_pf_kif;
9330 }
9331
9332 PF_STATE_UNLOCK(s);
9333 }
9334
9335 if (pd->af != pd->naf) {
9336 struct udphdr *uh = &pd->hdr.udp;
9337
9338 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9339 uh->uh_sum = in6_cksum_pseudo(ip6,
9340 ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9341 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9342 }
9343 }
9344
9345 if (ifp == NULL) {
9346 m0 = pd->m;
9347 pd->m = NULL;
9348 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9349 goto bad;
9350 }
9351
9352 if (pd->dir == PF_IN && !skip_test) {
9353 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9354 ifp, &m0, inp, &pd->act) != PF_PASS) {
9355 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9356 goto bad;
9357 } else if (m0 == NULL) {
9358 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9359 goto done;
9360 }
9361 if (m0->m_len < sizeof(struct ip6_hdr)) {
9362 DPFPRINTF(PF_DEBUG_URGENT,
9363 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
9364 __func__));
9365 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9366 goto bad;
9367 }
9368 ip6 = mtod(m0, struct ip6_hdr *);
9369 }
9370
9371 if (ifp->if_flags & IFF_LOOPBACK)
9372 m0->m_flags |= M_SKIP_FIREWALL;
9373
9374 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9375 ~ifp->if_hwassist) {
9376 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9377 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9378 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9379 }
9380
9381 if (pd->dir == PF_IN) {
9382 uint16_t tmp;
9383 /*
9384 * Make sure dummynet gets the correct direction, in case it needs to
9385 * re-inject later.
9386 */
9387 pd->dir = PF_OUT;
9388
9389 /*
9390 * The following processing is actually the rest of the inbound processing, even
9391 * though we've marked it as outbound (so we don't look through dummynet) and it
9392 * happens after the outbound processing (pf_test(PF_OUT) above).
9393 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9394 * conclusion about what direction it's processing, and we can't fix it or it
9395 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9396 * decision will pick the right pipe, and everything will mostly work as expected.
9397 */
9398 tmp = pd->act.dnrpipe;
9399 pd->act.dnrpipe = pd->act.dnpipe;
9400 pd->act.dnpipe = tmp;
9401 }
9402
9403 /*
9404 * If the packet is too large for the outgoing interface,
9405 * send back an icmp6 error.
9406 */
9407 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9408 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9409 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9410 if (mtag != NULL) {
9411 int ret __sdt_used;
9412 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9413 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9414 goto done;
9415 }
9416
9417 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9418 md = m0;
9419 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9420 if (md != NULL) {
9421 int ret __sdt_used;
9422 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9423 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9424 }
9425 }
9426 else {
9427 in6_ifstat_inc(ifp, ifs6_in_toobig);
9428 if (pd->act.rt != PF_DUPTO) {
9429 if (s && s->nat_rule != NULL) {
9430 MPASS(m0 == pd->m);
9431 PACKET_UNDO_NAT(pd,
9432 ((caddr_t)ip6 - m0->m_data) +
9433 sizeof(struct ip6_hdr), s);
9434 }
9435
9436 if (r->rt != PF_DUPTO)
9437 pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
9438 ifp->if_mtu, pd->af, r, pd->act.rtableid);
9439 }
9440 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9441 goto bad;
9442 }
9443
9444 done:
9445 if (pd->act.rt != PF_DUPTO)
9446 pd->m = NULL;
9447 return;
9448
9449 bad_locked:
9450 if (s)
9451 PF_STATE_UNLOCK(s);
9452 bad:
9453 m_freem(m0);
9454 goto done;
9455 }
9456 #endif /* INET6 */
9457
9458 /*
9459 * FreeBSD supports cksum offloads for the following drivers.
9460 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9461 *
9462 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9463 * network driver performed cksum including pseudo header, need to verify
9464 * csum_data
9465 * CSUM_DATA_VALID :
9466 * network driver performed cksum, needs to additional pseudo header
9467 * cksum computation with partial csum_data(i.e. lack of H/W support for
9468 * pseudo header, for instance sk(4) and possibly gem(4))
9469 *
9470 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9471 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9472 * TCP/UDP layer.
9473 * Also, set csum_data to 0xffff to force cksum validation.
9474 */
9475 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9476 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9477 {
9478 u_int16_t sum = 0;
9479 int hw_assist = 0;
9480 struct ip *ip;
9481
9482 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9483 return (1);
9484 if (m->m_pkthdr.len < off + len)
9485 return (1);
9486
9487 switch (p) {
9488 case IPPROTO_TCP:
9489 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9490 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9491 sum = m->m_pkthdr.csum_data;
9492 } else {
9493 ip = mtod(m, struct ip *);
9494 sum = in_pseudo(ip->ip_src.s_addr,
9495 ip->ip_dst.s_addr, htonl((u_short)len +
9496 m->m_pkthdr.csum_data + IPPROTO_TCP));
9497 }
9498 sum ^= 0xffff;
9499 ++hw_assist;
9500 }
9501 break;
9502 case IPPROTO_UDP:
9503 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9504 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9505 sum = m->m_pkthdr.csum_data;
9506 } else {
9507 ip = mtod(m, struct ip *);
9508 sum = in_pseudo(ip->ip_src.s_addr,
9509 ip->ip_dst.s_addr, htonl((u_short)len +
9510 m->m_pkthdr.csum_data + IPPROTO_UDP));
9511 }
9512 sum ^= 0xffff;
9513 ++hw_assist;
9514 }
9515 break;
9516 case IPPROTO_ICMP:
9517 #ifdef INET6
9518 case IPPROTO_ICMPV6:
9519 #endif /* INET6 */
9520 break;
9521 default:
9522 return (1);
9523 }
9524
9525 if (!hw_assist) {
9526 switch (af) {
9527 case AF_INET:
9528 if (m->m_len < sizeof(struct ip))
9529 return (1);
9530 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9531 break;
9532 #ifdef INET6
9533 case AF_INET6:
9534 if (m->m_len < sizeof(struct ip6_hdr))
9535 return (1);
9536 sum = in6_cksum(m, p, off, len);
9537 break;
9538 #endif /* INET6 */
9539 }
9540 }
9541 if (sum) {
9542 switch (p) {
9543 case IPPROTO_TCP:
9544 {
9545 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9546 break;
9547 }
9548 case IPPROTO_UDP:
9549 {
9550 KMOD_UDPSTAT_INC(udps_badsum);
9551 break;
9552 }
9553 #ifdef INET
9554 case IPPROTO_ICMP:
9555 {
9556 KMOD_ICMPSTAT_INC(icps_checksum);
9557 break;
9558 }
9559 #endif
9560 #ifdef INET6
9561 case IPPROTO_ICMPV6:
9562 {
9563 KMOD_ICMP6STAT_INC(icp6s_checksum);
9564 break;
9565 }
9566 #endif /* INET6 */
9567 }
9568 return (1);
9569 } else {
9570 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9571 m->m_pkthdr.csum_flags |=
9572 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9573 m->m_pkthdr.csum_data = 0xffff;
9574 }
9575 }
9576 return (0);
9577 }
9578
9579 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9580 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9581 const struct pf_kstate *s, struct ip_fw_args *dnflow)
9582 {
9583 int dndir = r->direction;
9584
9585 if (s && dndir == PF_INOUT) {
9586 dndir = s->direction;
9587 } else if (dndir == PF_INOUT) {
9588 /* Assume primary direction. Happens when we've set dnpipe in
9589 * the ethernet level code. */
9590 dndir = pd->dir;
9591 }
9592
9593 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9594 return (false);
9595
9596 memset(dnflow, 0, sizeof(*dnflow));
9597
9598 if (pd->dport != NULL)
9599 dnflow->f_id.dst_port = ntohs(*pd->dport);
9600 if (pd->sport != NULL)
9601 dnflow->f_id.src_port = ntohs(*pd->sport);
9602
9603 if (pd->dir == PF_IN)
9604 dnflow->flags |= IPFW_ARGS_IN;
9605 else
9606 dnflow->flags |= IPFW_ARGS_OUT;
9607
9608 if (pd->dir != dndir && pd->act.dnrpipe) {
9609 dnflow->rule.info = pd->act.dnrpipe;
9610 }
9611 else if (pd->dir == dndir && pd->act.dnpipe) {
9612 dnflow->rule.info = pd->act.dnpipe;
9613 }
9614 else {
9615 return (false);
9616 }
9617
9618 dnflow->rule.info |= IPFW_IS_DUMMYNET;
9619 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9620 dnflow->rule.info |= IPFW_IS_PIPE;
9621
9622 dnflow->f_id.proto = pd->proto;
9623 dnflow->f_id.extra = dnflow->rule.info;
9624 switch (pd->naf) {
9625 case AF_INET:
9626 dnflow->f_id.addr_type = 4;
9627 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9628 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9629 break;
9630 case AF_INET6:
9631 dnflow->flags |= IPFW_ARGS_IP6;
9632 dnflow->f_id.addr_type = 6;
9633 dnflow->f_id.src_ip6 = pd->src->v6;
9634 dnflow->f_id.dst_ip6 = pd->dst->v6;
9635 break;
9636 }
9637
9638 return (true);
9639 }
9640
9641 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9642 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9643 struct inpcb *inp)
9644 {
9645 struct pfi_kkif *kif;
9646 struct mbuf *m = *m0;
9647
9648 M_ASSERTPKTHDR(m);
9649 MPASS(ifp->if_vnet == curvnet);
9650 NET_EPOCH_ASSERT();
9651
9652 if (!V_pf_status.running)
9653 return (PF_PASS);
9654
9655 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9656
9657 if (kif == NULL) {
9658 DPFPRINTF(PF_DEBUG_URGENT,
9659 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
9660 return (PF_DROP);
9661 }
9662 if (kif->pfik_flags & PFI_IFLAG_SKIP)
9663 return (PF_PASS);
9664
9665 if (m->m_flags & M_SKIP_FIREWALL)
9666 return (PF_PASS);
9667
9668 if (__predict_false(! M_WRITABLE(*m0))) {
9669 m = *m0 = m_unshare(*m0, M_NOWAIT);
9670 if (*m0 == NULL)
9671 return (PF_DROP);
9672 }
9673
9674 /* Stateless! */
9675 return (pf_test_eth_rule(dir, kif, m0));
9676 }
9677
9678 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9679 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9680 {
9681 struct m_tag *mtag;
9682
9683 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9684
9685 /* dummynet adds this tag, but pf does not need it,
9686 * and keeping it creates unexpected behavior,
9687 * e.g. in case of divert(4) usage right after dummynet. */
9688 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9689 if (mtag != NULL)
9690 m_tag_delete(m, mtag);
9691 }
9692
9693 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9694 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9695 struct pf_krule *r, struct mbuf **m0)
9696 {
9697 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9698 }
9699
9700 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9701 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9702 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9703 struct mbuf **m0)
9704 {
9705 struct ip_fw_args dnflow;
9706
9707 NET_EPOCH_ASSERT();
9708
9709 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9710 return (0);
9711
9712 if (ip_dn_io_ptr == NULL) {
9713 m_freem(*m0);
9714 *m0 = NULL;
9715 return (ENOMEM);
9716 }
9717
9718 if (pd->pf_mtag == NULL &&
9719 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9720 m_freem(*m0);
9721 *m0 = NULL;
9722 return (ENOMEM);
9723 }
9724
9725 if (ifp != NULL) {
9726 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9727
9728 pd->pf_mtag->if_index = ifp->if_index;
9729 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9730
9731 MPASS(sa != NULL);
9732
9733 switch (sa->sa_family) {
9734 case AF_INET:
9735 memcpy(&pd->pf_mtag->dst, sa,
9736 sizeof(struct sockaddr_in));
9737 break;
9738 case AF_INET6:
9739 memcpy(&pd->pf_mtag->dst, sa,
9740 sizeof(struct sockaddr_in6));
9741 break;
9742 }
9743 }
9744
9745 if (s != NULL && s->nat_rule != NULL &&
9746 s->nat_rule->action == PF_RDR &&
9747 (
9748 #ifdef INET
9749 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9750 #endif /* INET */
9751 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9752 /*
9753 * If we're redirecting to loopback mark this packet
9754 * as being local. Otherwise it might get dropped
9755 * if dummynet re-injects.
9756 */
9757 (*m0)->m_pkthdr.rcvif = V_loif;
9758 }
9759
9760 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9761 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9762 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9763 ip_dn_io_ptr(m0, &dnflow);
9764 if (*m0 != NULL) {
9765 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9766 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9767 }
9768 }
9769
9770 return (0);
9771 }
9772
9773 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)9774 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
9775 {
9776 struct ah ext;
9777 u_int32_t hlen, end;
9778 int hdr_cnt;
9779
9780 hlen = h->ip_hl << 2;
9781 if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
9782 REASON_SET(reason, PFRES_SHORT);
9783 return (PF_DROP);
9784 }
9785 if (hlen != sizeof(struct ip))
9786 pd->badopts++;
9787 end = pd->off + ntohs(h->ip_len);
9788 pd->off += hlen;
9789 pd->proto = h->ip_p;
9790 /* stop walking over non initial fragments */
9791 if ((h->ip_off & htons(IP_OFFMASK)) != 0)
9792 return (PF_PASS);
9793 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
9794 switch (pd->proto) {
9795 case IPPROTO_AH:
9796 /* fragments may be short */
9797 if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
9798 end < pd->off + sizeof(ext))
9799 return (PF_PASS);
9800 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9801 NULL, reason, AF_INET)) {
9802 DPFPRINTF(PF_DEBUG_MISC, ("IP short exthdr"));
9803 return (PF_DROP);
9804 }
9805 pd->off += (ext.ah_len + 2) * 4;
9806 pd->proto = ext.ah_nxt;
9807 break;
9808 default:
9809 return (PF_PASS);
9810 }
9811 }
9812 DPFPRINTF(PF_DEBUG_MISC, ("IPv4 nested authentication header limit"));
9813 REASON_SET(reason, PFRES_IPOPTIONS);
9814 return (PF_DROP);
9815 }
9816
9817 #ifdef INET6
9818 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)9819 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
9820 u_short *reason)
9821 {
9822 struct ip6_opt opt;
9823 struct ip6_opt_jumbo jumbo;
9824
9825 while (off < end) {
9826 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
9827 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) {
9828 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
9829 return (PF_DROP);
9830 }
9831 if (opt.ip6o_type == IP6OPT_PAD1) {
9832 off++;
9833 continue;
9834 }
9835 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL,
9836 reason, AF_INET6)) {
9837 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
9838 return (PF_DROP);
9839 }
9840 if (off + sizeof(opt) + opt.ip6o_len > end) {
9841 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
9842 REASON_SET(reason, PFRES_IPOPTIONS);
9843 return (PF_DROP);
9844 }
9845 switch (opt.ip6o_type) {
9846 case IP6OPT_JUMBO:
9847 if (pd->jumbolen != 0) {
9848 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
9849 REASON_SET(reason, PFRES_IPOPTIONS);
9850 return (PF_DROP);
9851 }
9852 if (ntohs(h->ip6_plen) != 0) {
9853 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
9854 REASON_SET(reason, PFRES_IPOPTIONS);
9855 return (PF_DROP);
9856 }
9857 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL,
9858 reason, AF_INET6)) {
9859 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
9860 return (PF_DROP);
9861 }
9862 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
9863 sizeof(pd->jumbolen));
9864 pd->jumbolen = ntohl(pd->jumbolen);
9865 if (pd->jumbolen < IPV6_MAXPACKET) {
9866 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
9867 REASON_SET(reason, PFRES_IPOPTIONS);
9868 return (PF_DROP);
9869 }
9870 break;
9871 default:
9872 break;
9873 }
9874 off += sizeof(opt) + opt.ip6o_len;
9875 }
9876
9877 return (PF_PASS);
9878 }
9879
9880 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)9881 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
9882 {
9883 struct ip6_frag frag;
9884 struct ip6_ext ext;
9885 struct ip6_rthdr rthdr;
9886 uint32_t end;
9887 int hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
9888
9889 pd->off += sizeof(struct ip6_hdr);
9890 end = pd->off + ntohs(h->ip6_plen);
9891 pd->fragoff = pd->extoff = pd->jumbolen = 0;
9892 pd->proto = h->ip6_nxt;
9893 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
9894 switch (pd->proto) {
9895 case IPPROTO_ROUTING:
9896 case IPPROTO_HOPOPTS:
9897 case IPPROTO_DSTOPTS:
9898 pd->badopts++;
9899 break;
9900 }
9901 switch (pd->proto) {
9902 case IPPROTO_FRAGMENT:
9903 if (fraghdr_cnt++) {
9904 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
9905 REASON_SET(reason, PFRES_FRAG);
9906 return (PF_DROP);
9907 }
9908 /* jumbo payload packets cannot be fragmented */
9909 if (pd->jumbolen != 0) {
9910 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
9911 REASON_SET(reason, PFRES_FRAG);
9912 return (PF_DROP);
9913 }
9914 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
9915 NULL, reason, AF_INET6)) {
9916 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
9917 return (PF_DROP);
9918 }
9919 /* stop walking over non initial fragments */
9920 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
9921 pd->fragoff = pd->off;
9922 return (PF_PASS);
9923 }
9924 /* RFC6946: reassemble only non atomic fragments */
9925 if (frag.ip6f_offlg & IP6F_MORE_FRAG)
9926 pd->fragoff = pd->off;
9927 pd->off += sizeof(frag);
9928 pd->proto = frag.ip6f_nxt;
9929 break;
9930 case IPPROTO_ROUTING:
9931 if (rthdr_cnt++) {
9932 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
9933 REASON_SET(reason, PFRES_IPOPTIONS);
9934 return (PF_DROP);
9935 }
9936 /* fragments may be short */
9937 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
9938 pd->off = pd->fragoff;
9939 pd->proto = IPPROTO_FRAGMENT;
9940 return (PF_PASS);
9941 }
9942 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
9943 NULL, reason, AF_INET6)) {
9944 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
9945 return (PF_DROP);
9946 }
9947 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
9948 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
9949 REASON_SET(reason, PFRES_IPOPTIONS);
9950 return (PF_DROP);
9951 }
9952 /* FALLTHROUGH */
9953 case IPPROTO_HOPOPTS:
9954 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */
9955 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
9956 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 hopopts not first"));
9957 REASON_SET(reason, PFRES_IPOPTIONS);
9958 return (PF_DROP);
9959 }
9960 /* FALLTHROUGH */
9961 case IPPROTO_AH:
9962 case IPPROTO_DSTOPTS:
9963 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9964 NULL, reason, AF_INET6)) {
9965 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
9966 return (PF_DROP);
9967 }
9968 /* fragments may be short */
9969 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
9970 pd->off = pd->fragoff;
9971 pd->proto = IPPROTO_FRAGMENT;
9972 return (PF_PASS);
9973 }
9974 /* reassembly needs the ext header before the frag */
9975 if (pd->fragoff == 0)
9976 pd->extoff = pd->off;
9977 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) {
9978 if (pf_walk_option6(pd, h,
9979 pd->off + sizeof(ext),
9980 pd->off + (ext.ip6e_len + 1) * 8, reason)
9981 != PF_PASS)
9982 return (PF_DROP);
9983 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
9984 DPFPRINTF(PF_DEBUG_MISC,
9985 ("IPv6 missing jumbo"));
9986 REASON_SET(reason, PFRES_IPOPTIONS);
9987 return (PF_DROP);
9988 }
9989 }
9990 if (pd->proto == IPPROTO_AH)
9991 pd->off += (ext.ip6e_len + 2) * 4;
9992 else
9993 pd->off += (ext.ip6e_len + 1) * 8;
9994 pd->proto = ext.ip6e_nxt;
9995 break;
9996 case IPPROTO_TCP:
9997 case IPPROTO_UDP:
9998 case IPPROTO_SCTP:
9999 case IPPROTO_ICMPV6:
10000 /* fragments may be short, ignore inner header then */
10001 if (pd->fragoff != 0 && end < pd->off +
10002 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
10003 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
10004 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
10005 sizeof(struct icmp6_hdr))) {
10006 pd->off = pd->fragoff;
10007 pd->proto = IPPROTO_FRAGMENT;
10008 }
10009 /* FALLTHROUGH */
10010 default:
10011 return (PF_PASS);
10012 }
10013 }
10014 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 nested extension header limit"));
10015 REASON_SET(reason, PFRES_IPOPTIONS);
10016 return (PF_DROP);
10017 }
10018 #endif /* INET6 */
10019
10020 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)10021 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
10022 {
10023 memset(pd, 0, sizeof(*pd));
10024 pd->pf_mtag = pf_find_mtag(m);
10025 pd->m = m;
10026 }
10027
10028 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)10029 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
10030 u_short *action, u_short *reason, struct pfi_kkif *kif,
10031 struct pf_rule_actions *default_actions)
10032 {
10033 pd->dir = dir;
10034 pd->kif = kif;
10035 pd->m = *m0;
10036 pd->sidx = (dir == PF_IN) ? 0 : 1;
10037 pd->didx = (dir == PF_IN) ? 1 : 0;
10038 pd->af = pd->naf = af;
10039
10040 TAILQ_INIT(&pd->sctp_multihome_jobs);
10041 if (default_actions != NULL)
10042 memcpy(&pd->act, default_actions, sizeof(pd->act));
10043
10044 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
10045 pd->act.dnpipe = pd->pf_mtag->dnpipe;
10046 pd->act.flags = pd->pf_mtag->dnflags;
10047 }
10048
10049 switch (af) {
10050 #ifdef INET
10051 case AF_INET: {
10052 struct ip *h;
10053
10054 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
10055 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
10056 DPFPRINTF(PF_DEBUG_URGENT,
10057 ("%s: m_len < sizeof(struct ip), pullup failed\n",
10058 __func__));
10059 *action = PF_DROP;
10060 REASON_SET(reason, PFRES_SHORT);
10061 return (-1);
10062 }
10063
10064 if (pf_normalize_ip(reason, pd) != PF_PASS) {
10065 /* We do IP header normalization and packet reassembly here */
10066 *m0 = pd->m;
10067 *action = PF_DROP;
10068 return (-1);
10069 }
10070 *m0 = pd->m;
10071
10072 h = mtod(pd->m, struct ip *);
10073 if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
10074 *action = PF_DROP;
10075 REASON_SET(reason, PFRES_SHORT);
10076 return (-1);
10077 }
10078
10079 if (pf_walk_header(pd, h, reason) != PF_PASS) {
10080 *action = PF_DROP;
10081 return (-1);
10082 }
10083
10084 pd->src = (struct pf_addr *)&h->ip_src;
10085 pd->dst = (struct pf_addr *)&h->ip_dst;
10086 PF_ACPY(&pd->osrc, pd->src, af);
10087 PF_ACPY(&pd->odst, pd->dst, af);
10088 pd->ip_sum = &h->ip_sum;
10089 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
10090 pd->ttl = h->ip_ttl;
10091 pd->tot_len = ntohs(h->ip_len);
10092 pd->act.rtableid = -1;
10093 pd->df = h->ip_off & htons(IP_DF);
10094 pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
10095 PF_VPROTO_FRAGMENT : pd->proto;
10096
10097 break;
10098 }
10099 #endif /* INET */
10100 #ifdef INET6
10101 case AF_INET6: {
10102 struct ip6_hdr *h;
10103
10104 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10105 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10106 DPFPRINTF(PF_DEBUG_URGENT,
10107 ("%s: m_len < sizeof(struct ip6_hdr)"
10108 ", pullup failed\n", __func__));
10109 *action = PF_DROP;
10110 REASON_SET(reason, PFRES_SHORT);
10111 return (-1);
10112 }
10113
10114 h = mtod(pd->m, struct ip6_hdr *);
10115
10116 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10117 *action = PF_DROP;
10118 return (-1);
10119 }
10120
10121 h = mtod(pd->m, struct ip6_hdr *);
10122 pd->src = (struct pf_addr *)&h->ip6_src;
10123 pd->dst = (struct pf_addr *)&h->ip6_dst;
10124 PF_ACPY(&pd->osrc, pd->src, af);
10125 PF_ACPY(&pd->odst, pd->dst, af);
10126 pd->ip_sum = NULL;
10127 pd->tos = IPV6_DSCP(h);
10128 pd->ttl = h->ip6_hlim;
10129 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10130 pd->act.rtableid = -1;
10131
10132 pd->virtual_proto = (pd->fragoff != 0) ?
10133 PF_VPROTO_FRAGMENT : pd->proto;
10134
10135 /*
10136 * we do not support jumbogram. if we keep going, zero ip6_plen
10137 * will do something bad, so drop the packet for now.
10138 */
10139 if (htons(h->ip6_plen) == 0) {
10140 *action = PF_DROP;
10141 return (-1);
10142 }
10143
10144 /* We do IP header normalization and packet reassembly here */
10145 if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10146 PF_PASS) {
10147 *m0 = pd->m;
10148 *action = PF_DROP;
10149 return (-1);
10150 }
10151 *m0 = pd->m;
10152 if (pd->m == NULL) {
10153 /* packet sits in reassembly queue, no error */
10154 *action = PF_PASS;
10155 return (-1);
10156 }
10157
10158 /* Update pointers into the packet. */
10159 h = mtod(pd->m, struct ip6_hdr *);
10160 pd->src = (struct pf_addr *)&h->ip6_src;
10161 pd->dst = (struct pf_addr *)&h->ip6_dst;
10162
10163 pd->off = 0;
10164
10165 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10166 *action = PF_DROP;
10167 return (-1);
10168 }
10169
10170 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10171 /*
10172 * Reassembly may have changed the next protocol from
10173 * fragment to something else, so update.
10174 */
10175 pd->virtual_proto = pd->proto;
10176 MPASS(pd->fragoff == 0);
10177 }
10178
10179 if (pd->fragoff != 0)
10180 pd->virtual_proto = PF_VPROTO_FRAGMENT;
10181
10182 break;
10183 }
10184 #endif /* INET6 */
10185 default:
10186 panic("pf_setup_pdesc called with illegal af %u", af);
10187 }
10188
10189 switch (pd->virtual_proto) {
10190 case IPPROTO_TCP: {
10191 struct tcphdr *th = &pd->hdr.tcp;
10192
10193 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
10194 reason, af)) {
10195 *action = PF_DROP;
10196 REASON_SET(reason, PFRES_SHORT);
10197 return (-1);
10198 }
10199 pd->hdrlen = sizeof(*th);
10200 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10201 pd->sport = &th->th_sport;
10202 pd->dport = &th->th_dport;
10203 pd->pcksum = &th->th_sum;
10204 break;
10205 }
10206 case IPPROTO_UDP: {
10207 struct udphdr *uh = &pd->hdr.udp;
10208
10209 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10210 reason, af)) {
10211 *action = PF_DROP;
10212 REASON_SET(reason, PFRES_SHORT);
10213 return (-1);
10214 }
10215 pd->hdrlen = sizeof(*uh);
10216 if (uh->uh_dport == 0 ||
10217 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10218 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10219 *action = PF_DROP;
10220 REASON_SET(reason, PFRES_SHORT);
10221 return (-1);
10222 }
10223 pd->sport = &uh->uh_sport;
10224 pd->dport = &uh->uh_dport;
10225 pd->pcksum = &uh->uh_sum;
10226 break;
10227 }
10228 case IPPROTO_SCTP: {
10229 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10230 action, reason, af)) {
10231 *action = PF_DROP;
10232 REASON_SET(reason, PFRES_SHORT);
10233 return (-1);
10234 }
10235 pd->hdrlen = sizeof(pd->hdr.sctp);
10236 pd->p_len = pd->tot_len - pd->off;
10237
10238 pd->sport = &pd->hdr.sctp.src_port;
10239 pd->dport = &pd->hdr.sctp.dest_port;
10240 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10241 *action = PF_DROP;
10242 REASON_SET(reason, PFRES_SHORT);
10243 return (-1);
10244 }
10245 if (pf_scan_sctp(pd) != PF_PASS) {
10246 *action = PF_DROP;
10247 REASON_SET(reason, PFRES_SHORT);
10248 return (-1);
10249 }
10250 /*
10251 * Placeholder. The SCTP checksum is 32-bits, but
10252 * pf_test_state() expects to update a 16-bit checksum.
10253 * Provide a dummy value which we'll subsequently ignore.
10254 */
10255 pd->pcksum = &pd->sctp_dummy_sum;
10256 break;
10257 }
10258 case IPPROTO_ICMP: {
10259 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10260 action, reason, af)) {
10261 *action = PF_DROP;
10262 REASON_SET(reason, PFRES_SHORT);
10263 return (-1);
10264 }
10265 pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10266 pd->hdrlen = ICMP_MINLEN;
10267 break;
10268 }
10269 #ifdef INET6
10270 case IPPROTO_ICMPV6: {
10271 size_t icmp_hlen = sizeof(struct icmp6_hdr);
10272
10273 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10274 action, reason, af)) {
10275 *action = PF_DROP;
10276 REASON_SET(reason, PFRES_SHORT);
10277 return (-1);
10278 }
10279 /* ICMP headers we look further into to match state */
10280 switch (pd->hdr.icmp6.icmp6_type) {
10281 case MLD_LISTENER_QUERY:
10282 case MLD_LISTENER_REPORT:
10283 icmp_hlen = sizeof(struct mld_hdr);
10284 break;
10285 case ND_NEIGHBOR_SOLICIT:
10286 case ND_NEIGHBOR_ADVERT:
10287 icmp_hlen = sizeof(struct nd_neighbor_solicit);
10288 /* FALLTHROUGH */
10289 case ND_ROUTER_SOLICIT:
10290 case ND_ROUTER_ADVERT:
10291 case ND_REDIRECT:
10292 if (pd->ttl != 255) {
10293 REASON_SET(reason, PFRES_NORM);
10294 return (PF_DROP);
10295 }
10296 break;
10297 }
10298 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10299 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10300 action, reason, af)) {
10301 *action = PF_DROP;
10302 REASON_SET(reason, PFRES_SHORT);
10303 return (-1);
10304 }
10305 pd->hdrlen = icmp_hlen;
10306 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
10307 break;
10308 }
10309 #endif /* INET6 */
10310 }
10311
10312 if (pd->sport)
10313 pd->osport = pd->nsport = *pd->sport;
10314 if (pd->dport)
10315 pd->odport = pd->ndport = *pd->dport;
10316
10317 return (0);
10318 }
10319
10320 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10321 pf_counters_inc(int action, struct pf_pdesc *pd,
10322 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10323 {
10324 struct pf_krule *tr;
10325 int dir = pd->dir;
10326 int dirndx;
10327
10328 pf_counter_u64_critical_enter();
10329 pf_counter_u64_add_protected(
10330 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10331 pd->tot_len);
10332 pf_counter_u64_add_protected(
10333 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10334 1);
10335
10336 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10337 dirndx = (dir == PF_OUT);
10338 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10339 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10340 pf_update_timestamp(r);
10341
10342 if (a != NULL) {
10343 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10344 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10345 }
10346 if (s != NULL) {
10347 struct pf_krule_item *ri;
10348
10349 if (s->nat_rule != NULL) {
10350 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10351 1);
10352 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10353 pd->tot_len);
10354 }
10355 /*
10356 * Source nodes are accessed unlocked here.
10357 * But since we are operating with stateful tracking
10358 * and the state is locked, those SNs could not have
10359 * been freed.
10360 */
10361 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10362 if (s->sns[sn_type] != NULL) {
10363 counter_u64_add(
10364 s->sns[sn_type]->packets[dirndx],
10365 1);
10366 counter_u64_add(
10367 s->sns[sn_type]->bytes[dirndx],
10368 pd->tot_len);
10369 }
10370 }
10371 dirndx = (dir == s->direction) ? 0 : 1;
10372 s->packets[dirndx]++;
10373 s->bytes[dirndx] += pd->tot_len;
10374
10375 SLIST_FOREACH(ri, &s->match_rules, entry) {
10376 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10377 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10378
10379 if (ri->r->src.addr.type == PF_ADDR_TABLE)
10380 pfr_update_stats(ri->r->src.addr.p.tbl,
10381 (s == NULL) ? pd->src :
10382 &s->key[(s->direction == PF_IN)]->
10383 addr[(s->direction == PF_OUT)],
10384 pd->af, pd->tot_len, dir == PF_OUT,
10385 r->action == PF_PASS, ri->r->src.neg);
10386 if (ri->r->dst.addr.type == PF_ADDR_TABLE)
10387 pfr_update_stats(ri->r->dst.addr.p.tbl,
10388 (s == NULL) ? pd->dst :
10389 &s->key[(s->direction == PF_IN)]->
10390 addr[(s->direction == PF_IN)],
10391 pd->af, pd->tot_len, dir == PF_OUT,
10392 r->action == PF_PASS, ri->r->dst.neg);
10393 }
10394 }
10395
10396 tr = r;
10397 if (s != NULL && s->nat_rule != NULL &&
10398 r == &V_pf_default_rule)
10399 tr = s->nat_rule;
10400
10401 if (tr->src.addr.type == PF_ADDR_TABLE)
10402 pfr_update_stats(tr->src.addr.p.tbl,
10403 (s == NULL) ? pd->src :
10404 &s->key[(s->direction == PF_IN)]->
10405 addr[(s->direction == PF_OUT)],
10406 pd->af, pd->tot_len, dir == PF_OUT,
10407 r->action == PF_PASS, tr->src.neg);
10408 if (tr->dst.addr.type == PF_ADDR_TABLE)
10409 pfr_update_stats(tr->dst.addr.p.tbl,
10410 (s == NULL) ? pd->dst :
10411 &s->key[(s->direction == PF_IN)]->
10412 addr[(s->direction == PF_IN)],
10413 pd->af, pd->tot_len, dir == PF_OUT,
10414 r->action == PF_PASS, tr->dst.neg);
10415 }
10416 pf_counter_u64_critical_exit();
10417 }
10418 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * matchrules)10419 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10420 struct pf_krule *am, struct pf_kruleset *ruleset,
10421 struct pf_krule_slist *matchrules)
10422 {
10423 struct pf_krule_item *ri;
10424
10425 /* if this is the log(matches) rule, packet has been logged already */
10426 if (rm->log & PF_LOG_MATCHES)
10427 return;
10428
10429 SLIST_FOREACH(ri, matchrules, entry)
10430 if (ri->r->log & PF_LOG_MATCHES)
10431 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10432 ruleset, pd, 1, ri->r);
10433 }
10434
10435 #if defined(INET) || defined(INET6)
10436 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10437 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10438 struct inpcb *inp, struct pf_rule_actions *default_actions)
10439 {
10440 struct pfi_kkif *kif;
10441 u_short action, reason = 0;
10442 struct m_tag *mtag;
10443 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
10444 struct pf_kstate *s = NULL;
10445 struct pf_kruleset *ruleset = NULL;
10446 struct pf_pdesc pd;
10447 int use_2nd_queue = 0;
10448 uint16_t tag;
10449
10450 PF_RULES_RLOCK_TRACKER;
10451 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10452 M_ASSERTPKTHDR(*m0);
10453
10454 if (!V_pf_status.running)
10455 return (PF_PASS);
10456
10457 PF_RULES_RLOCK();
10458
10459 kif = (struct pfi_kkif *)ifp->if_pf_kif;
10460
10461 if (__predict_false(kif == NULL)) {
10462 DPFPRINTF(PF_DEBUG_URGENT,
10463 ("%s: kif == NULL, if_xname %s\n",
10464 __func__, ifp->if_xname));
10465 PF_RULES_RUNLOCK();
10466 return (PF_DROP);
10467 }
10468 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10469 PF_RULES_RUNLOCK();
10470 return (PF_PASS);
10471 }
10472
10473 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10474 PF_RULES_RUNLOCK();
10475 return (PF_PASS);
10476 }
10477
10478 if (__predict_false(! M_WRITABLE(*m0))) {
10479 *m0 = m_unshare(*m0, M_NOWAIT);
10480 if (*m0 == NULL) {
10481 PF_RULES_RUNLOCK();
10482 return (PF_DROP);
10483 }
10484 }
10485
10486 pf_init_pdesc(&pd, *m0);
10487
10488 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10489 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10490
10491 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10492 pd.pf_mtag->if_idxgen);
10493 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10494 PF_RULES_RUNLOCK();
10495 m_freem(*m0);
10496 *m0 = NULL;
10497 return (PF_PASS);
10498 }
10499 PF_RULES_RUNLOCK();
10500 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10501 *m0 = NULL;
10502 return (PF_PASS);
10503 }
10504
10505 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10506 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10507 /* Dummynet re-injects packets after they've
10508 * completed their delay. We've already
10509 * processed them, so pass unconditionally. */
10510
10511 /* But only once. We may see the packet multiple times (e.g.
10512 * PFIL_IN/PFIL_OUT). */
10513 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10514 PF_RULES_RUNLOCK();
10515
10516 return (PF_PASS);
10517 }
10518
10519 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10520 kif, default_actions) == -1) {
10521 if (action != PF_PASS)
10522 pd.act.log |= PF_LOG_FORCE;
10523 goto done;
10524 }
10525
10526 #ifdef INET
10527 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
10528 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
10529 PF_RULES_RUNLOCK();
10530 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10531 0, ifp->if_mtu);
10532 *m0 = NULL;
10533 return (PF_DROP);
10534 }
10535 #endif /* INET */
10536 #ifdef INET6
10537 /*
10538 * If we end up changing IP addresses (e.g. binat) the stack may get
10539 * confused and fail to send the icmp6 packet too big error. Just send
10540 * it here, before we do any NAT.
10541 */
10542 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10543 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10544 PF_RULES_RUNLOCK();
10545 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10546 *m0 = NULL;
10547 return (PF_DROP);
10548 }
10549 #endif /* INET6 */
10550
10551 if (__predict_false(ip_divert_ptr != NULL) &&
10552 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10553 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10554 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10555 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10556 if (pd.pf_mtag == NULL &&
10557 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10558 action = PF_DROP;
10559 goto done;
10560 }
10561 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10562 }
10563 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10564 pd.m->m_flags |= M_FASTFWD_OURS;
10565 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10566 }
10567 m_tag_delete(pd.m, mtag);
10568
10569 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10570 if (mtag != NULL)
10571 m_tag_delete(pd.m, mtag);
10572 }
10573
10574 switch (pd.virtual_proto) {
10575 case PF_VPROTO_FRAGMENT:
10576 /*
10577 * handle fragments that aren't reassembled by
10578 * normalization
10579 */
10580 if (kif == NULL || r == NULL) /* pflog */
10581 action = PF_DROP;
10582 else
10583 action = pf_test_rule(&r, &s, &pd, &a,
10584 &ruleset, &reason, inp);
10585 if (action != PF_PASS)
10586 REASON_SET(&reason, PFRES_FRAG);
10587 break;
10588
10589 case IPPROTO_TCP: {
10590 /* Respond to SYN with a syncookie. */
10591 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10592 pd.dir == PF_IN && pf_synflood_check(&pd)) {
10593 pf_syncookie_send(&pd);
10594 action = PF_DROP;
10595 break;
10596 }
10597
10598 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10599 use_2nd_queue = 1;
10600 action = pf_normalize_tcp(&pd);
10601 if (action == PF_DROP)
10602 break;
10603 action = pf_test_state(&s, &pd, &reason);
10604 if (action == PF_PASS || action == PF_AFRT) {
10605 if (V_pfsync_update_state_ptr != NULL)
10606 V_pfsync_update_state_ptr(s);
10607 r = s->rule;
10608 a = s->anchor;
10609 } else if (s == NULL) {
10610 /* Validate remote SYN|ACK, re-create original SYN if
10611 * valid. */
10612 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10613 TH_ACK && pf_syncookie_validate(&pd) &&
10614 pd.dir == PF_IN) {
10615 struct mbuf *msyn;
10616
10617 msyn = pf_syncookie_recreate_syn(&pd);
10618 if (msyn == NULL) {
10619 action = PF_DROP;
10620 break;
10621 }
10622
10623 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10624 &pd.act);
10625 m_freem(msyn);
10626 if (action != PF_PASS)
10627 break;
10628
10629 action = pf_test_state(&s, &pd, &reason);
10630 if (action != PF_PASS || s == NULL) {
10631 action = PF_DROP;
10632 break;
10633 }
10634
10635 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10636 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10637 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10638 action = pf_synproxy(&pd, s, &reason);
10639 break;
10640 } else {
10641 action = pf_test_rule(&r, &s, &pd,
10642 &a, &ruleset, &reason, inp);
10643 }
10644 }
10645 break;
10646 }
10647
10648 case IPPROTO_SCTP:
10649 action = pf_normalize_sctp(&pd);
10650 if (action == PF_DROP)
10651 break;
10652 /* fallthrough */
10653 case IPPROTO_UDP:
10654 default:
10655 action = pf_test_state(&s, &pd, &reason);
10656 if (action == PF_PASS || action == PF_AFRT) {
10657 if (V_pfsync_update_state_ptr != NULL)
10658 V_pfsync_update_state_ptr(s);
10659 r = s->rule;
10660 a = s->anchor;
10661 } else if (s == NULL) {
10662 action = pf_test_rule(&r, &s,
10663 &pd, &a, &ruleset, &reason, inp);
10664 }
10665 break;
10666
10667 case IPPROTO_ICMP:
10668 case IPPROTO_ICMPV6: {
10669 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10670 action = PF_DROP;
10671 REASON_SET(&reason, PFRES_NORM);
10672 DPFPRINTF(PF_DEBUG_MISC,
10673 ("dropping IPv6 packet with ICMPv4 payload"));
10674 break;
10675 }
10676 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10677 action = PF_DROP;
10678 REASON_SET(&reason, PFRES_NORM);
10679 DPFPRINTF(PF_DEBUG_MISC,
10680 ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
10681 break;
10682 }
10683 action = pf_test_state_icmp(&s, &pd, &reason);
10684 if (action == PF_PASS || action == PF_AFRT) {
10685 if (V_pfsync_update_state_ptr != NULL)
10686 V_pfsync_update_state_ptr(s);
10687 r = s->rule;
10688 a = s->anchor;
10689 } else if (s == NULL)
10690 action = pf_test_rule(&r, &s, &pd,
10691 &a, &ruleset, &reason, inp);
10692 break;
10693 }
10694
10695 }
10696
10697 done:
10698 PF_RULES_RUNLOCK();
10699
10700 if (pd.m == NULL)
10701 goto eat_pkt;
10702
10703 if (s)
10704 memcpy(&pd.act, &s->act, sizeof(s->act));
10705
10706 if (action == PF_PASS && pd.badopts && !pd.act.allow_opts) {
10707 action = PF_DROP;
10708 REASON_SET(&reason, PFRES_IPOPTIONS);
10709 pd.act.log = PF_LOG_FORCE;
10710 DPFPRINTF(PF_DEBUG_MISC,
10711 ("pf: dropping packet with dangerous headers\n"));
10712 }
10713
10714 if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
10715 pd.tot_len > pd.act.max_pkt_size) {
10716 action = PF_DROP;
10717 REASON_SET(&reason, PFRES_NORM);
10718 pd.act.log = PF_LOG_FORCE;
10719 DPFPRINTF(PF_DEBUG_MISC,
10720 ("pf: dropping overly long packet\n"));
10721 }
10722
10723 if (s) {
10724 uint8_t log = pd.act.log;
10725 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
10726 pd.act.log |= log;
10727 tag = s->tag;
10728 } else {
10729 tag = r->tag;
10730 }
10731
10732 if (tag > 0 && pf_tag_packet(&pd, tag)) {
10733 action = PF_DROP;
10734 REASON_SET(&reason, PFRES_MEMORY);
10735 }
10736
10737 pf_scrub(&pd);
10738 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
10739 pf_normalize_mss(&pd);
10740
10741 if (pd.act.rtableid >= 0)
10742 M_SETFIB(pd.m, pd.act.rtableid);
10743
10744 if (pd.act.flags & PFSTATE_SETPRIO) {
10745 if (pd.tos & IPTOS_LOWDELAY)
10746 use_2nd_queue = 1;
10747 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
10748 action = PF_DROP;
10749 REASON_SET(&reason, PFRES_MEMORY);
10750 pd.act.log = PF_LOG_FORCE;
10751 DPFPRINTF(PF_DEBUG_MISC,
10752 ("pf: failed to allocate 802.1q mtag\n"));
10753 }
10754 }
10755
10756 #ifdef ALTQ
10757 if (action == PF_PASS && pd.act.qid) {
10758 if (pd.pf_mtag == NULL &&
10759 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10760 action = PF_DROP;
10761 REASON_SET(&reason, PFRES_MEMORY);
10762 } else {
10763 if (s != NULL)
10764 pd.pf_mtag->qid_hash = pf_state_hash(s);
10765 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
10766 pd.pf_mtag->qid = pd.act.pqid;
10767 else
10768 pd.pf_mtag->qid = pd.act.qid;
10769 /* Add hints for ecn. */
10770 pd.pf_mtag->hdr = mtod(pd.m, void *);
10771 }
10772 }
10773 #endif /* ALTQ */
10774
10775 /*
10776 * connections redirected to loopback should not match sockets
10777 * bound specifically to loopback due to security implications,
10778 * see tcp_input() and in_pcblookup_listen().
10779 */
10780 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
10781 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
10782 (s->nat_rule->action == PF_RDR ||
10783 s->nat_rule->action == PF_BINAT) &&
10784 pf_is_loopback(af, pd.dst))
10785 pd.m->m_flags |= M_SKIP_FIREWALL;
10786
10787 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
10788 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
10789 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
10790 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
10791 if (mtag != NULL) {
10792 ((struct pf_divert_mtag *)(mtag+1))->port =
10793 ntohs(r->divert.port);
10794 ((struct pf_divert_mtag *)(mtag+1))->idir =
10795 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
10796 PF_DIVERT_MTAG_DIR_OUT;
10797
10798 if (s)
10799 PF_STATE_UNLOCK(s);
10800
10801 m_tag_prepend(pd.m, mtag);
10802 if (pd.m->m_flags & M_FASTFWD_OURS) {
10803 if (pd.pf_mtag == NULL &&
10804 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10805 action = PF_DROP;
10806 REASON_SET(&reason, PFRES_MEMORY);
10807 pd.act.log = PF_LOG_FORCE;
10808 DPFPRINTF(PF_DEBUG_MISC,
10809 ("pf: failed to allocate tag\n"));
10810 } else {
10811 pd.pf_mtag->flags |=
10812 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10813 pd.m->m_flags &= ~M_FASTFWD_OURS;
10814 }
10815 }
10816 ip_divert_ptr(*m0, dir == PF_IN);
10817 *m0 = NULL;
10818
10819 return (action);
10820 } else {
10821 /* XXX: ipfw has the same behaviour! */
10822 action = PF_DROP;
10823 REASON_SET(&reason, PFRES_MEMORY);
10824 pd.act.log = PF_LOG_FORCE;
10825 DPFPRINTF(PF_DEBUG_MISC,
10826 ("pf: failed to allocate divert tag\n"));
10827 }
10828 }
10829 /* XXX: Anybody working on it?! */
10830 if (af == AF_INET6 && r->divert.port)
10831 printf("pf: divert(9) is not supported for IPv6\n");
10832
10833 /* this flag will need revising if the pkt is forwarded */
10834 if (pd.pf_mtag)
10835 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
10836
10837 if (pd.act.log) {
10838 struct pf_krule *lr;
10839 struct pf_krule_item *ri;
10840
10841 if (s != NULL && s->nat_rule != NULL &&
10842 s->nat_rule->log & PF_LOG_ALL)
10843 lr = s->nat_rule;
10844 else
10845 lr = r;
10846
10847 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
10848 PFLOG_PACKET(action, reason, lr, a,
10849 ruleset, &pd, (s == NULL), NULL);
10850 if (s) {
10851 SLIST_FOREACH(ri, &s->match_rules, entry)
10852 if (ri->r->log & PF_LOG_ALL)
10853 PFLOG_PACKET(action,
10854 reason, ri->r, a, ruleset, &pd, 0, NULL);
10855 }
10856 }
10857
10858 pf_counters_inc(action, &pd, s, r, a);
10859
10860 switch (action) {
10861 case PF_SYNPROXY_DROP:
10862 m_freem(*m0);
10863 case PF_DEFER:
10864 *m0 = NULL;
10865 action = PF_PASS;
10866 break;
10867 case PF_DROP:
10868 m_freem(*m0);
10869 *m0 = NULL;
10870 break;
10871 case PF_AFRT:
10872 if (pf_translate_af(&pd)) {
10873 *m0 = pd.m;
10874 action = PF_DROP;
10875 break;
10876 }
10877 #ifdef INET
10878 if (pd.naf == AF_INET)
10879 pf_route(r, kif->pfik_ifp, s, &pd, inp);
10880 #endif /* INET */
10881 #ifdef INET6
10882 if (pd.naf == AF_INET6)
10883 pf_route6(r, kif->pfik_ifp, s, &pd, inp);
10884 #endif /* INET6 */
10885 *m0 = pd.m;
10886 action = PF_PASS;
10887 goto out;
10888 break;
10889 default:
10890 if (pd.act.rt) {
10891 switch (af) {
10892 #ifdef INET
10893 case AF_INET:
10894 /* pf_route() returns unlocked. */
10895 pf_route(r, kif->pfik_ifp, s, &pd, inp);
10896 break;
10897 #endif /* INET */
10898 #ifdef INET6
10899 case AF_INET6:
10900 /* pf_route6() returns unlocked. */
10901 pf_route6(r, kif->pfik_ifp, s, &pd, inp);
10902 break;
10903 #endif /* INET6 */
10904 }
10905 *m0 = pd.m;
10906 goto out;
10907 }
10908 if (pf_dummynet(&pd, s, r, m0) != 0) {
10909 action = PF_DROP;
10910 REASON_SET(&reason, PFRES_MEMORY);
10911 }
10912 break;
10913 }
10914
10915 eat_pkt:
10916 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
10917
10918 if (s && action != PF_DROP) {
10919 if (!s->if_index_in && dir == PF_IN)
10920 s->if_index_in = ifp->if_index;
10921 else if (!s->if_index_out && dir == PF_OUT)
10922 s->if_index_out = ifp->if_index;
10923 }
10924
10925 if (s)
10926 PF_STATE_UNLOCK(s);
10927
10928 out:
10929 #ifdef INET6
10930 /* If reassembled packet passed, create new fragments. */
10931 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
10932 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
10933 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
10934 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
10935 #endif /* INET6 */
10936
10937 pf_sctp_multihome_delayed(&pd, kif, s, action);
10938
10939 return (action);
10940 }
10941 #endif /* INET || INET6 */
10942