xref: /freebsd/sys/netpfil/pf/pf.c (revision b93394a38bc41f8afceaf0c03ed5d8b8b5a9aefb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46 
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64 
65 #include <crypto/sha2/sha512.h>
66 
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75 
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80 
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103 
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113 
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116 
117 #include <netipsec/ah.h>
118 
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121 
122 SDT_PROVIDER_DEFINE(pf);
123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
125     "struct pf_kstate *");
126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
127     "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
128     "struct pf_kstate *");
129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
130     "struct pfi_kkif *");
131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
132     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
136     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
140     "struct pf_krule *", "struct mbuf *", "int");
141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
142     "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
144     "struct pf_kstate *", "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
146     "int", "struct pf_pdesc *", "int");
147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
149     "int");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
151     "int");
152 
153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
154     "struct mbuf *");
155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
157     "int", "struct pf_keth_rule *", "char *");
158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
160     "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
162 SDT_PROBE_DEFINE2(pf, , log, log, "int", "const char *");
163 
164 /*
165  * Global variables
166  */
167 
168 /* state tables */
169 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[4]);
170 VNET_DEFINE(struct pf_kpalist,		 pf_pabuf[3]);
171 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
172 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_active);
173 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
174 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_inactive);
175 VNET_DEFINE(struct pf_kstatus,		 pf_status);
176 
177 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
178 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
179 VNET_DEFINE(int,			 altqs_inactive_open);
180 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
181 
182 static const int			 PF_HDR_LIMIT = 20;	/* arbitrary limit */
183 
184 VNET_DEFINE(SHA512_CTX,			 pf_tcp_secret_ctx);
185 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
186 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
187 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
188 VNET_DEFINE(int,			 pf_tcp_secret_init);
189 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
190 VNET_DEFINE(int,			 pf_tcp_iss_off);
191 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
192 VNET_DECLARE(int,			 pf_vnet_active);
193 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
194 
195 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
196 #define V_pf_purge_idx	VNET(pf_purge_idx)
197 
198 #ifdef PF_WANT_32_TO_64_COUNTER
199 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
200 #define	V_pf_counter_periodic_iter	VNET(pf_counter_periodic_iter)
201 
202 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
203 VNET_DEFINE(size_t, pf_allrulecount);
204 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
205 #endif
206 
207 #define PF_SCTP_MAX_ENDPOINTS		8
208 
209 struct pf_sctp_endpoint;
210 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
211 struct pf_sctp_source {
212 	sa_family_t			af;
213 	struct pf_addr			addr;
214 	TAILQ_ENTRY(pf_sctp_source)	entry;
215 };
216 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
217 struct pf_sctp_endpoint
218 {
219 	uint32_t		 v_tag;
220 	struct pf_sctp_sources	 sources;
221 	RB_ENTRY(pf_sctp_endpoint)	entry;
222 };
223 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)224 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
225 {
226 	return (a->v_tag - b->v_tag);
227 }
228 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
229 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
231 #define V_pf_sctp_endpoints	VNET(pf_sctp_endpoints)
232 static struct mtx_padalign pf_sctp_endpoints_mtx;
233 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
234 #define	PF_SCTP_ENDPOINTS_LOCK()	mtx_lock(&pf_sctp_endpoints_mtx)
235 #define	PF_SCTP_ENDPOINTS_UNLOCK()	mtx_unlock(&pf_sctp_endpoints_mtx)
236 
237 /*
238  * Queue for pf_intr() sends.
239  */
240 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
241 struct pf_send_entry {
242 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
243 	struct mbuf			*pfse_m;
244 	enum {
245 		PFSE_IP,
246 		PFSE_IP6,
247 		PFSE_ICMP,
248 		PFSE_ICMP6,
249 	}				pfse_type;
250 	struct {
251 		int		type;
252 		int		code;
253 		int		mtu;
254 	} icmpopts;
255 };
256 
257 STAILQ_HEAD(pf_send_head, pf_send_entry);
258 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
259 #define	V_pf_sendqueue	VNET(pf_sendqueue)
260 
261 static struct mtx_padalign pf_sendqueue_mtx;
262 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
263 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
264 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
265 
266 /*
267  * Queue for pf_overload_task() tasks.
268  */
269 struct pf_overload_entry {
270 	SLIST_ENTRY(pf_overload_entry)	next;
271 	struct pf_addr  		addr;
272 	sa_family_t			af;
273 	uint8_t				dir;
274 	struct pf_krule  		*rule;
275 };
276 
277 SLIST_HEAD(pf_overload_head, pf_overload_entry);
278 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
279 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
280 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
281 #define	V_pf_overloadtask	VNET(pf_overloadtask)
282 
283 static struct mtx_padalign pf_overloadqueue_mtx;
284 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
285     "pf overload/flush queue", MTX_DEF);
286 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
287 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
288 
289 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
290 struct mtx_padalign pf_unlnkdrules_mtx;
291 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
292     MTX_DEF);
293 
294 struct sx pf_config_lock;
295 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
296 
297 struct mtx_padalign pf_table_stats_lock;
298 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
299     MTX_DEF);
300 
301 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
302 #define	V_pf_sources_z	VNET(pf_sources_z)
303 uma_zone_t		pf_mtag_z;
304 VNET_DEFINE(uma_zone_t,	 pf_state_z);
305 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
306 VNET_DEFINE(uma_zone_t,	 pf_udp_mapping_z);
307 
308 VNET_DEFINE(struct unrhdr64, pf_stateid);
309 
310 static void		 pf_src_tree_remove_state(struct pf_kstate *);
311 static int		 pf_check_threshold(struct pf_kthreshold *);
312 
313 static void		 pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
314 			    struct pf_addr *, u_int16_t);
315 static int		 pf_modulate_sack(struct pf_pdesc *,
316 			    struct tcphdr *, struct pf_state_peer *);
317 int			 pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
318 			    u_int16_t *, u_int16_t *);
319 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
320 			    struct pf_addr *, struct pf_addr *, u_int16_t,
321 			    u_int16_t *, u_int16_t *, u_int16_t *,
322 			    u_int16_t *, u_int8_t, sa_family_t);
323 int			 pf_change_icmp_af(struct mbuf *, int,
324 			    struct pf_pdesc *, struct pf_pdesc *,
325 			    struct pf_addr *, struct pf_addr *, sa_family_t,
326 			    sa_family_t);
327 int			 pf_translate_icmp_af(int, void *);
328 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
329 			    int, sa_family_t, struct pf_krule *, int);
330 static void		 pf_detach_state(struct pf_kstate *);
331 static int		 pf_state_key_attach(struct pf_state_key *,
332 			    struct pf_state_key *, struct pf_kstate *);
333 static void		 pf_state_key_detach(struct pf_kstate *, int);
334 static int		 pf_state_key_ctor(void *, int, void *, int);
335 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
336 static __inline void	 pf_dummynet_flag_remove(struct mbuf *m,
337 			    struct pf_mtag *pf_mtag);
338 static int		 pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
339 			    struct pf_krule *, struct mbuf **);
340 static int		 pf_dummynet_route(struct pf_pdesc *,
341 			    struct pf_kstate *, struct pf_krule *,
342 			    struct ifnet *, const struct sockaddr *, struct mbuf **);
343 static int		 pf_test_eth_rule(int, struct pfi_kkif *,
344 			    struct mbuf **);
345 static int		 pf_test_rule(struct pf_krule **, struct pf_kstate **,
346 			    struct pf_pdesc *, struct pf_krule **,
347 			    struct pf_kruleset **, u_short *, struct inpcb *,
348 			    struct pf_krule_slist *);
349 static int		 pf_create_state(struct pf_krule *,
350 			    struct pf_test_ctx *,
351 			    struct pf_kstate **, u_int16_t, u_int16_t,
352 			    struct pf_krule_slist *match_rules);
353 static int		 pf_state_key_addr_setup(struct pf_pdesc *,
354 			    struct pf_state_key_cmp *, int);
355 static int		 pf_tcp_track_full(struct pf_kstate *,
356 			    struct pf_pdesc *, u_short *, int *,
357 			    struct pf_state_peer *, struct pf_state_peer *,
358 			    u_int8_t, u_int8_t);
359 static int		 pf_tcp_track_sloppy(struct pf_kstate *,
360 			    struct pf_pdesc *, u_short *,
361 			    struct pf_state_peer *, struct pf_state_peer *,
362 			    u_int8_t, u_int8_t);
363 static int		 pf_test_state(struct pf_kstate **, struct pf_pdesc *,
364 			    u_short *);
365 int			 pf_icmp_state_lookup(struct pf_state_key_cmp *,
366 			    struct pf_pdesc *, struct pf_kstate **,
367 			    u_int16_t, u_int16_t, int, int *, int, int);
368 static int		 pf_test_state_icmp(struct pf_kstate **,
369 			    struct pf_pdesc *, u_short *);
370 static int		 pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
371 			    u_short *);
372 static void		 pf_sctp_multihome_detach_addr(const struct pf_kstate *);
373 static void		 pf_sctp_multihome_delayed(struct pf_pdesc *,
374 			    struct pfi_kkif *, struct pf_kstate *, int);
375 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
376 				int, u_int16_t);
377 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
378 			    u_int8_t, sa_family_t);
379 static int		 pf_walk_option(struct pf_pdesc *, struct ip *,
380 			    int, int, u_short *);
381 static int		 pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
382 #ifdef INET6
383 static int		 pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
384 			    int, int, u_short *);
385 static int		 pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
386 			    u_short *);
387 #endif
388 static void		 pf_print_state_parts(struct pf_kstate *,
389 			    struct pf_state_key *, struct pf_state_key *);
390 static int		 pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
391 			    bool);
392 static int		 pf_find_state(struct pf_pdesc *,
393 			    const struct pf_state_key_cmp *, struct pf_kstate **);
394 static bool		 pf_src_connlimit(struct pf_kstate *);
395 static int		 pf_match_rcvif(struct mbuf *, struct pf_krule *);
396 static void		 pf_counters_inc(int, struct pf_pdesc *,
397 			    struct pf_kstate *, struct pf_krule *,
398 			    struct pf_krule *, struct pf_krule_slist *);
399 static void		 pf_log_matches(struct pf_pdesc *, struct pf_krule *,
400 			    struct pf_krule *, struct pf_kruleset *,
401 			    struct pf_krule_slist *);
402 static void		 pf_overload_task(void *v, int pending);
403 static u_short		 pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
404 			    struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
405 			    struct pf_addr *, sa_family_t, struct pf_addr *,
406 			    struct pfi_kkif *, sa_family_t, pf_sn_types_t);
407 static u_int		 pf_purge_expired_states(u_int, int);
408 static void		 pf_purge_unlinked_rules(void);
409 static int		 pf_mtag_uminit(void *, int, int);
410 static void		 pf_mtag_free(struct m_tag *);
411 static void		 pf_packet_rework_nat(struct pf_pdesc *, int,
412 			    struct pf_state_key *);
413 #ifdef INET
414 static int		 pf_route(struct pf_krule *,
415 			    struct ifnet *, struct pf_kstate *,
416 			    struct pf_pdesc *, struct inpcb *);
417 #endif /* INET */
418 #ifdef INET6
419 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
420 			    struct pf_addr *, u_int8_t);
421 static int		 pf_route6(struct pf_krule *,
422 			    struct ifnet *, struct pf_kstate *,
423 			    struct pf_pdesc *, struct inpcb *);
424 #endif /* INET6 */
425 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
426 
427 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
428 
429 extern int pf_end_threads;
430 extern struct proc *pf_purge_proc;
431 
432 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
433 
434 #define	PACKET_UNDO_NAT(_pd, _off, _s)					\
435 	do {								\
436 		struct pf_state_key *nk;				\
437 		if ((pd->dir) == PF_OUT)				\
438 			nk = (_s)->key[PF_SK_STACK];			\
439 		else							\
440 			nk = (_s)->key[PF_SK_WIRE];			\
441 		pf_packet_rework_nat(_pd, _off, nk);		\
442 	} while (0)
443 
444 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
445 				 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
446 
447 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)448 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
449 {
450 	struct pfi_kkif *k = pd->kif;
451 
452 	SDT_PROBE2(pf, ip, , bound_iface, st, k);
453 
454 	/* Floating unless otherwise specified. */
455 	if (! (st->rule->rule_flag & PFRULE_IFBOUND))
456 		return (V_pfi_all);
457 
458 	/*
459 	 * Initially set to all, because we don't know what interface we'll be
460 	 * sending this out when we create the state.
461 	 */
462 	if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
463 		return (V_pfi_all);
464 
465 	/*
466 	 * If this state is created based on another state (e.g. SCTP
467 	 * multihome) always set it floating initially. We can't know for sure
468 	 * what interface the actual traffic for this state will come in on.
469 	 */
470 	if (pd->related_rule)
471 		return (V_pfi_all);
472 
473 	/* Don't overrule the interface for states created on incoming packets. */
474 	if (st->direction == PF_IN)
475 		return (k);
476 
477 	/* No route-to, so don't overrule. */
478 	if (st->act.rt != PF_ROUTETO)
479 		return (k);
480 
481 	/* Bind to the route-to interface. */
482 	return (st->act.rt_kif);
483 }
484 
485 #define	STATE_INC_COUNTERS(s)						\
486 	do {								\
487 		struct pf_krule_item *mrm;				\
488 		counter_u64_add(s->rule->states_cur, 1);		\
489 		counter_u64_add(s->rule->states_tot, 1);		\
490 		if (s->anchor != NULL) {				\
491 			counter_u64_add(s->anchor->states_cur, 1);	\
492 			counter_u64_add(s->anchor->states_tot, 1);	\
493 		}							\
494 		if (s->nat_rule != NULL && s->nat_rule != s->rule) {	\
495 			counter_u64_add(s->nat_rule->states_cur, 1);	\
496 			counter_u64_add(s->nat_rule->states_tot, 1);	\
497 		}							\
498 		SLIST_FOREACH(mrm, &s->match_rules, entry) {		\
499 			if (s->nat_rule != mrm->r) {			\
500 				counter_u64_add(mrm->r->states_cur, 1);	\
501 				counter_u64_add(mrm->r->states_tot, 1);	\
502 			}						\
503 		}							\
504 	} while (0)
505 
506 #define	STATE_DEC_COUNTERS(s)						\
507 	do {								\
508 		struct pf_krule_item *mrm;				\
509 		counter_u64_add(s->rule->states_cur, -1);		\
510 		if (s->anchor != NULL)					\
511 			counter_u64_add(s->anchor->states_cur, -1);	\
512 		if (s->nat_rule != NULL && s->nat_rule != s->rule)	\
513 			counter_u64_add(s->nat_rule->states_cur, -1);	\
514 		SLIST_FOREACH(mrm, &s->match_rules, entry)		\
515 			if (s->nat_rule != mrm->r) {			\
516 				counter_u64_add(mrm->r->states_cur, -1);\
517 			}						\
518 	} while (0)
519 
520 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
521 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
522 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
523 VNET_DEFINE(struct pf_idhash *, pf_idhash);
524 VNET_DEFINE(struct pf_srchash *, pf_srchash);
525 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
526 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
527 
528 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
529     "pf(4)");
530 
531 VNET_DEFINE(u_long, pf_hashmask);
532 VNET_DEFINE(u_long, pf_srchashmask);
533 VNET_DEFINE(u_long, pf_udpendpointhashmask);
534 VNET_DEFINE_STATIC(u_long, pf_hashsize);
535 #define V_pf_hashsize	VNET(pf_hashsize)
536 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
537 #define V_pf_srchashsize	VNET(pf_srchashsize)
538 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
539 #define V_pf_udpendpointhashsize	VNET(pf_udpendpointhashsize)
540 u_long	pf_ioctl_maxcount = 65535;
541 
542 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
543     &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
544 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
545     &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
546 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
547     &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
548 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
549     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
550 
551 VNET_DEFINE(void *, pf_swi_cookie);
552 VNET_DEFINE(struct intr_event *, pf_swi_ie);
553 
554 VNET_DEFINE(uint32_t, pf_hashseed);
555 #define	V_pf_hashseed	VNET(pf_hashseed)
556 
557 static void
pf_sctp_checksum(struct mbuf * m,int off)558 pf_sctp_checksum(struct mbuf *m, int off)
559 {
560 	uint32_t sum = 0;
561 
562 	/* Zero out the checksum, to enable recalculation. */
563 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
564 	    sizeof(sum), (caddr_t)&sum);
565 
566 	sum = sctp_calculate_cksum(m, off);
567 
568 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
569 	    sizeof(sum), (caddr_t)&sum);
570 }
571 
572 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)573 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
574 {
575 
576 	switch (af) {
577 #ifdef INET
578 	case AF_INET:
579 		if (a->addr32[0] > b->addr32[0])
580 			return (1);
581 		if (a->addr32[0] < b->addr32[0])
582 			return (-1);
583 		break;
584 #endif /* INET */
585 #ifdef INET6
586 	case AF_INET6:
587 		if (a->addr32[3] > b->addr32[3])
588 			return (1);
589 		if (a->addr32[3] < b->addr32[3])
590 			return (-1);
591 		if (a->addr32[2] > b->addr32[2])
592 			return (1);
593 		if (a->addr32[2] < b->addr32[2])
594 			return (-1);
595 		if (a->addr32[1] > b->addr32[1])
596 			return (1);
597 		if (a->addr32[1] < b->addr32[1])
598 			return (-1);
599 		if (a->addr32[0] > b->addr32[0])
600 			return (1);
601 		if (a->addr32[0] < b->addr32[0])
602 			return (-1);
603 		break;
604 #endif /* INET6 */
605 	default:
606 		unhandled_af(af);
607 	}
608 	return (0);
609 }
610 
611 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)612 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
613 {
614 	switch (af) {
615 #ifdef INET
616 	case AF_INET:
617 		return IN_LOOPBACK(ntohl(addr->v4.s_addr));
618 #endif /* INET */
619 	case AF_INET6:
620 		return IN6_IS_ADDR_LOOPBACK(&addr->v6);
621 	default:
622 		unhandled_af(af);
623 	}
624 }
625 
626 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)627 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
628 {
629 
630 	switch (pd->virtual_proto) {
631 	case IPPROTO_TCP: {
632 		struct tcphdr *th = &pd->hdr.tcp;
633 
634 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
635 			pf_change_ap(pd, pd->src, &th->th_sport,
636 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
637 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
638 			pf_change_ap(pd, pd->dst, &th->th_dport,
639 			    &nk->addr[pd->didx], nk->port[pd->didx]);
640 		m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
641 		break;
642 	}
643 	case IPPROTO_UDP: {
644 		struct udphdr *uh = &pd->hdr.udp;
645 
646 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
647 			pf_change_ap(pd, pd->src, &uh->uh_sport,
648 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
649 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
650 			pf_change_ap(pd, pd->dst, &uh->uh_dport,
651 			    &nk->addr[pd->didx], nk->port[pd->didx]);
652 		m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
653 		break;
654 	}
655 	case IPPROTO_SCTP: {
656 		struct sctphdr *sh = &pd->hdr.sctp;
657 
658 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
659 			pf_change_ap(pd, pd->src, &sh->src_port,
660 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
661 		}
662 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
663 			pf_change_ap(pd, pd->dst, &sh->dest_port,
664 			    &nk->addr[pd->didx], nk->port[pd->didx]);
665 		}
666 
667 		break;
668 	}
669 	case IPPROTO_ICMP: {
670 		struct icmp *ih = &pd->hdr.icmp;
671 
672 		if (nk->port[pd->sidx] != ih->icmp_id) {
673 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
674 			    ih->icmp_cksum, ih->icmp_id,
675 			    nk->port[pd->sidx], 0);
676 			ih->icmp_id = nk->port[pd->sidx];
677 			pd->sport = &ih->icmp_id;
678 
679 			m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
680 		}
681 		/* FALLTHROUGH */
682 	}
683 	default:
684 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
685 			switch (pd->af) {
686 			case AF_INET:
687 				pf_change_a(&pd->src->v4.s_addr,
688 				    pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
689 				    0);
690 				break;
691 			case AF_INET6:
692 				pf_addrcpy(pd->src, &nk->addr[pd->sidx],
693 				    pd->af);
694 				break;
695 			default:
696 				unhandled_af(pd->af);
697 			}
698 		}
699 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
700 			switch (pd->af) {
701 			case AF_INET:
702 				pf_change_a(&pd->dst->v4.s_addr,
703 				    pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
704 				    0);
705 				break;
706 			case AF_INET6:
707 				pf_addrcpy(pd->dst, &nk->addr[pd->didx],
708 				    pd->af);
709 				break;
710 			default:
711 				unhandled_af(pd->af);
712 			}
713 		}
714 		break;
715 	}
716 }
717 
718 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)719 pf_hashkey(const struct pf_state_key *sk)
720 {
721 	uint32_t h;
722 
723 	h = murmur3_32_hash32((const uint32_t *)sk,
724 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
725 	    V_pf_hashseed);
726 
727 	return (h & V_pf_hashmask);
728 }
729 
730 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)731 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
732 {
733 	uint32_t h;
734 
735 	switch (af) {
736 	case AF_INET:
737 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
738 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
739 		break;
740 	case AF_INET6:
741 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
742 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
743 		break;
744 	default:
745 		unhandled_af(af);
746 	}
747 
748 	return (h & V_pf_srchashmask);
749 }
750 
751 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)752 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
753 {
754 	uint32_t h;
755 
756 	h = murmur3_32_hash32((uint32_t *)endpoint,
757 	    sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
758 	    V_pf_hashseed);
759 	return (h & V_pf_udpendpointhashmask);
760 }
761 
762 #ifdef ALTQ
763 static int
pf_state_hash(struct pf_kstate * s)764 pf_state_hash(struct pf_kstate *s)
765 {
766 	u_int32_t hv = (intptr_t)s / sizeof(*s);
767 
768 	hv ^= crc32(&s->src, sizeof(s->src));
769 	hv ^= crc32(&s->dst, sizeof(s->dst));
770 	if (hv == 0)
771 		hv = 1;
772 	return (hv);
773 }
774 #endif /* ALTQ */
775 
776 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)777 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
778 {
779 	if (which == PF_PEER_DST || which == PF_PEER_BOTH)
780 		s->dst.state = newstate;
781 	if (which == PF_PEER_DST)
782 		return;
783 	if (s->src.state == newstate)
784 		return;
785 	if (s->creatorid == V_pf_status.hostid &&
786 	    s->key[PF_SK_STACK] != NULL &&
787 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
788 	    !(TCPS_HAVEESTABLISHED(s->src.state) ||
789 	    s->src.state == TCPS_CLOSED) &&
790 	    (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
791 		atomic_add_32(&V_pf_status.states_halfopen, -1);
792 
793 	s->src.state = newstate;
794 }
795 
796 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)797 pf_init_threshold(struct pf_kthreshold *threshold,
798     u_int32_t limit, u_int32_t seconds)
799 {
800 	threshold->limit = limit;
801 	threshold->seconds = seconds;
802 	threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
803 
804 	return (threshold->cr != NULL);
805 }
806 
807 static int
pf_check_threshold(struct pf_kthreshold * threshold)808 pf_check_threshold(struct pf_kthreshold *threshold)
809 {
810 	return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
811 }
812 
813 static bool
pf_src_connlimit(struct pf_kstate * state)814 pf_src_connlimit(struct pf_kstate *state)
815 {
816 	struct pf_overload_entry	*pfoe;
817 	struct pf_ksrc_node		*src_node = state->sns[PF_SN_LIMIT];
818 	bool				 limited = false;
819 
820 	PF_STATE_LOCK_ASSERT(state);
821 	PF_SRC_NODE_LOCK(src_node);
822 
823 	src_node->conn++;
824 	state->src.tcp_est = 1;
825 
826 	if (state->rule->max_src_conn &&
827 	    state->rule->max_src_conn <
828 	    src_node->conn) {
829 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
830 		limited = true;
831 	}
832 
833 	if (state->rule->max_src_conn_rate.limit &&
834 	    pf_check_threshold(&src_node->conn_rate)) {
835 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
836 		limited = true;
837 	}
838 
839 	if (!limited)
840 		goto done;
841 
842 	/* Kill this state. */
843 	state->timeout = PFTM_PURGE;
844 	pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
845 
846 	if (state->rule->overload_tbl == NULL)
847 		goto done;
848 
849 	/* Schedule overloading and flushing task. */
850 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
851 	if (pfoe == NULL)
852 		goto done;  /* too bad :( */
853 
854 	bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
855 	pfoe->af = state->key[PF_SK_WIRE]->af;
856 	pfoe->rule = state->rule;
857 	pfoe->dir = state->direction;
858 	PF_OVERLOADQ_LOCK();
859 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
860 	PF_OVERLOADQ_UNLOCK();
861 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
862 
863 done:
864 	PF_SRC_NODE_UNLOCK(src_node);
865 	return (limited);
866 }
867 
868 static void
pf_overload_task(void * v,int pending)869 pf_overload_task(void *v, int pending)
870 {
871 	struct pf_overload_head queue;
872 	struct pfr_addr p;
873 	struct pf_overload_entry *pfoe, *pfoe1;
874 	uint32_t killed = 0;
875 
876 	CURVNET_SET((struct vnet *)v);
877 
878 	PF_OVERLOADQ_LOCK();
879 	queue = V_pf_overloadqueue;
880 	SLIST_INIT(&V_pf_overloadqueue);
881 	PF_OVERLOADQ_UNLOCK();
882 
883 	bzero(&p, sizeof(p));
884 	SLIST_FOREACH(pfoe, &queue, next) {
885 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
886 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
887 			printf("%s: blocking address ", __func__);
888 			pf_print_host(&pfoe->addr, 0, pfoe->af);
889 			printf("\n");
890 		}
891 
892 		p.pfra_af = pfoe->af;
893 		switch (pfoe->af) {
894 #ifdef INET
895 		case AF_INET:
896 			p.pfra_net = 32;
897 			p.pfra_ip4addr = pfoe->addr.v4;
898 			break;
899 #endif /* INET */
900 #ifdef INET6
901 		case AF_INET6:
902 			p.pfra_net = 128;
903 			p.pfra_ip6addr = pfoe->addr.v6;
904 			break;
905 #endif /* INET6 */
906 		default:
907 			unhandled_af(pfoe->af);
908 		}
909 
910 		PF_RULES_WLOCK();
911 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
912 		PF_RULES_WUNLOCK();
913 	}
914 
915 	/*
916 	 * Remove those entries, that don't need flushing.
917 	 */
918 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
919 		if (pfoe->rule->flush == 0) {
920 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
921 			free(pfoe, M_PFTEMP);
922 		} else
923 			counter_u64_add(
924 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
925 
926 	/* If nothing to flush, return. */
927 	if (SLIST_EMPTY(&queue)) {
928 		CURVNET_RESTORE();
929 		return;
930 	}
931 
932 	for (int i = 0; i <= V_pf_hashmask; i++) {
933 		struct pf_idhash *ih = &V_pf_idhash[i];
934 		struct pf_state_key *sk;
935 		struct pf_kstate *s;
936 
937 		PF_HASHROW_LOCK(ih);
938 		LIST_FOREACH(s, &ih->states, entry) {
939 		    sk = s->key[PF_SK_WIRE];
940 		    SLIST_FOREACH(pfoe, &queue, next)
941 			if (sk->af == pfoe->af &&
942 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
943 			    pfoe->rule == s->rule) &&
944 			    ((pfoe->dir == PF_OUT &&
945 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
946 			    (pfoe->dir == PF_IN &&
947 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
948 				s->timeout = PFTM_PURGE;
949 				pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
950 				killed++;
951 			}
952 		}
953 		PF_HASHROW_UNLOCK(ih);
954 	}
955 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
956 		free(pfoe, M_PFTEMP);
957 	if (V_pf_status.debug >= PF_DEBUG_MISC)
958 		printf("%s: %u states killed", __func__, killed);
959 
960 	CURVNET_RESTORE();
961 }
962 
963 /*
964  * On node found always returns locked. On not found its configurable.
965  */
966 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)967 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
968     struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
969 {
970 	struct pf_ksrc_node *n;
971 
972 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
973 
974 	*sh = &V_pf_srchash[pf_hashsrc(src, af)];
975 	PF_HASHROW_LOCK(*sh);
976 	LIST_FOREACH(n, &(*sh)->nodes, entry)
977 		if (n->rule == rule && n->af == af && n->type == sn_type &&
978 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
979 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
980 			break;
981 
982 	if (n == NULL && !returnlocked)
983 		PF_HASHROW_UNLOCK(*sh);
984 
985 	return (n);
986 }
987 
988 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)989 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
990 {
991 	struct pf_ksrc_node	*cur;
992 
993 	if ((*sn) == NULL)
994 		return (false);
995 
996 	KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
997 
998 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
999 	PF_HASHROW_LOCK(sh);
1000 	LIST_FOREACH(cur, &(sh->nodes), entry) {
1001 		if (cur == (*sn) &&
1002 		    cur->expire != 1) /* Ignore nodes being killed */
1003 			return (true);
1004 	}
1005 	PF_HASHROW_UNLOCK(sh);
1006 	(*sn) = NULL;
1007 	return (false);
1008 }
1009 
1010 static void
pf_free_src_node(struct pf_ksrc_node * sn)1011 pf_free_src_node(struct pf_ksrc_node *sn)
1012 {
1013 
1014 	for (int i = 0; i < 2; i++) {
1015 		counter_u64_free(sn->bytes[i]);
1016 		counter_u64_free(sn->packets[i]);
1017 	}
1018 	counter_rate_free(sn->conn_rate.cr);
1019 	uma_zfree(V_pf_sources_z, sn);
1020 }
1021 
1022 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,sa_family_t raf,pf_sn_types_t sn_type)1023 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1024     struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1025     struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1026     struct pfi_kkif *rkif, sa_family_t raf, pf_sn_types_t sn_type)
1027 {
1028 	u_short			 reason = 0;
1029 	struct pf_krule		*r_track = rule;
1030 	struct pf_ksrc_node	**sn = &(sns[sn_type]);
1031 	struct pf_srchash	**sh = &(snhs[sn_type]);
1032 
1033 	KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1034 	    ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1035 
1036 	KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1037 	    ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1038 
1039 	/*
1040 	 * XXX: There could be a KASSERT for
1041 	 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1042 	 * but we'd need to pass pool *only* for this KASSERT.
1043 	 */
1044 
1045 	if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1046 	    !(rule->rule_flag & PFRULE_RULESRCTRACK))
1047 		r_track = &V_pf_default_rule;
1048 
1049 	/*
1050 	 * Request the sh to always be locked, as we might insert a new sn.
1051 	 */
1052 	if (*sn == NULL)
1053 		*sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1054 
1055 	if (*sn == NULL) {
1056 		PF_HASHROW_ASSERT(*sh);
1057 
1058 		if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1059 		    counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1060 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1061 			reason = PFRES_SRCLIMIT;
1062 			goto done;
1063 		}
1064 
1065 		(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1066 		if ((*sn) == NULL) {
1067 			reason = PFRES_MEMORY;
1068 			goto done;
1069 		}
1070 
1071 		for (int i = 0; i < 2; i++) {
1072 			(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1073 			(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1074 
1075 			if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1076 				pf_free_src_node(*sn);
1077 				reason = PFRES_MEMORY;
1078 				goto done;
1079 			}
1080 		}
1081 
1082 		if (sn_type == PF_SN_LIMIT)
1083 			if (! pf_init_threshold(&(*sn)->conn_rate,
1084 			    rule->max_src_conn_rate.limit,
1085 			    rule->max_src_conn_rate.seconds)) {
1086 				pf_free_src_node(*sn);
1087 				reason = PFRES_MEMORY;
1088 				goto done;
1089 			}
1090 
1091 		MPASS((*sn)->lock == NULL);
1092 		(*sn)->lock = &(*sh)->lock;
1093 
1094 		(*sn)->af = af;
1095 		(*sn)->rule = r_track;
1096 		pf_addrcpy(&(*sn)->addr, src, af);
1097 		if (raddr != NULL)
1098 			pf_addrcpy(&(*sn)->raddr, raddr, raf);
1099 		(*sn)->rkif = rkif;
1100 		(*sn)->raf = raf;
1101 		LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1102 		(*sn)->creation = time_uptime;
1103 		(*sn)->ruletype = rule->action;
1104 		(*sn)->type = sn_type;
1105 		counter_u64_add(r_track->src_nodes[sn_type], 1);
1106 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1107 	} else {
1108 		if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1109 		    (*sn)->states >= rule->max_src_states) {
1110 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1111 			    1);
1112 			reason = PFRES_SRCLIMIT;
1113 			goto done;
1114 		}
1115 	}
1116 done:
1117 	if (reason == 0)
1118 		(*sn)->states++;
1119 	else
1120 		(*sn) = NULL;
1121 
1122 	PF_HASHROW_UNLOCK(*sh);
1123 	return (reason);
1124 }
1125 
1126 void
pf_unlink_src_node(struct pf_ksrc_node * src)1127 pf_unlink_src_node(struct pf_ksrc_node *src)
1128 {
1129 	PF_SRC_NODE_LOCK_ASSERT(src);
1130 
1131 	LIST_REMOVE(src, entry);
1132 	if (src->rule)
1133 		counter_u64_add(src->rule->src_nodes[src->type], -1);
1134 }
1135 
1136 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1137 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1138 {
1139 	struct pf_ksrc_node *sn, *tmp;
1140 	u_int count = 0;
1141 
1142 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1143 		pf_free_src_node(sn);
1144 		count++;
1145 	}
1146 
1147 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1148 
1149 	return (count);
1150 }
1151 
1152 void
pf_mtag_initialize(void)1153 pf_mtag_initialize(void)
1154 {
1155 
1156 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1157 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1158 	    UMA_ALIGN_PTR, 0);
1159 }
1160 
1161 /* Per-vnet data storage structures initialization. */
1162 void
pf_initialize(void)1163 pf_initialize(void)
1164 {
1165 	struct pf_keyhash	*kh;
1166 	struct pf_idhash	*ih;
1167 	struct pf_srchash	*sh;
1168 	struct pf_udpendpointhash	*uh;
1169 	u_int i;
1170 
1171 	if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1172 		V_pf_hashsize = PF_HASHSIZ;
1173 	if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1174 		V_pf_srchashsize = PF_SRCHASHSIZ;
1175 	if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1176 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1177 
1178 	V_pf_hashseed = arc4random();
1179 
1180 	/* States and state keys storage. */
1181 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1182 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1183 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1184 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1185 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1186 
1187 	V_pf_state_key_z = uma_zcreate("pf state keys",
1188 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1189 	    UMA_ALIGN_PTR, 0);
1190 
1191 	V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1192 	    M_PFHASH, M_NOWAIT | M_ZERO);
1193 	V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1194 	    M_PFHASH, M_NOWAIT | M_ZERO);
1195 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1196 		printf("pf: Unable to allocate memory for "
1197 		    "state_hashsize %lu.\n", V_pf_hashsize);
1198 
1199 		free(V_pf_keyhash, M_PFHASH);
1200 		free(V_pf_idhash, M_PFHASH);
1201 
1202 		V_pf_hashsize = PF_HASHSIZ;
1203 		V_pf_keyhash = mallocarray(V_pf_hashsize,
1204 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1205 		V_pf_idhash = mallocarray(V_pf_hashsize,
1206 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1207 	}
1208 
1209 	V_pf_hashmask = V_pf_hashsize - 1;
1210 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1211 	    i++, kh++, ih++) {
1212 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1213 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1214 	}
1215 
1216 	/* Source nodes. */
1217 	V_pf_sources_z = uma_zcreate("pf source nodes",
1218 	    sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1219 	    0);
1220 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1221 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1222 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1223 
1224 	V_pf_srchash = mallocarray(V_pf_srchashsize,
1225 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1226 	if (V_pf_srchash == NULL) {
1227 		printf("pf: Unable to allocate memory for "
1228 		    "source_hashsize %lu.\n", V_pf_srchashsize);
1229 
1230 		V_pf_srchashsize = PF_SRCHASHSIZ;
1231 		V_pf_srchash = mallocarray(V_pf_srchashsize,
1232 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1233 	}
1234 
1235 	V_pf_srchashmask = V_pf_srchashsize - 1;
1236 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1237 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1238 
1239 
1240 	/* UDP endpoint mappings. */
1241 	V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1242 	    sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1243 	    UMA_ALIGN_PTR, 0);
1244 	V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1245 	    sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1246 	if (V_pf_udpendpointhash == NULL) {
1247 		printf("pf: Unable to allocate memory for "
1248 		    "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1249 
1250 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1251 		V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1252 		    sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1253 	}
1254 
1255 	V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1256 	for (i = 0, uh = V_pf_udpendpointhash;
1257 	    i <= V_pf_udpendpointhashmask;
1258 	    i++, uh++) {
1259 		mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1260 		    MTX_DEF | MTX_DUPOK);
1261 	}
1262 
1263 	/* Anchors */
1264 	V_pf_anchor_z = uma_zcreate("pf anchors",
1265 	    sizeof(struct pf_kanchor), NULL, NULL, NULL, NULL,
1266 	    UMA_ALIGN_PTR, 0);
1267 	V_pf_limits[PF_LIMIT_ANCHORS].zone = V_pf_anchor_z;
1268 	uma_zone_set_max(V_pf_anchor_z, PF_ANCHOR_HIWAT);
1269 	uma_zone_set_warning(V_pf_anchor_z, "PF anchor limit reached");
1270 
1271 	V_pf_eth_anchor_z = uma_zcreate("pf Ethernet anchors",
1272 	    sizeof(struct pf_keth_anchor), NULL, NULL, NULL, NULL,
1273 	    UMA_ALIGN_PTR, 0);
1274 	V_pf_limits[PF_LIMIT_ETH_ANCHORS].zone = V_pf_eth_anchor_z;
1275 	uma_zone_set_max(V_pf_eth_anchor_z, PF_ANCHOR_HIWAT);
1276 	uma_zone_set_warning(V_pf_eth_anchor_z, "PF Ethernet anchor limit reached");
1277 
1278 	/* ALTQ */
1279 	TAILQ_INIT(&V_pf_altqs[0]);
1280 	TAILQ_INIT(&V_pf_altqs[1]);
1281 	TAILQ_INIT(&V_pf_altqs[2]);
1282 	TAILQ_INIT(&V_pf_altqs[3]);
1283 	TAILQ_INIT(&V_pf_pabuf[0]);
1284 	TAILQ_INIT(&V_pf_pabuf[1]);
1285 	TAILQ_INIT(&V_pf_pabuf[2]);
1286 	V_pf_altqs_active = &V_pf_altqs[0];
1287 	V_pf_altq_ifs_active = &V_pf_altqs[1];
1288 	V_pf_altqs_inactive = &V_pf_altqs[2];
1289 	V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1290 
1291 	/* Send & overload+flush queues. */
1292 	STAILQ_INIT(&V_pf_sendqueue);
1293 	SLIST_INIT(&V_pf_overloadqueue);
1294 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1295 
1296 	/* Unlinked, but may be referenced rules. */
1297 	TAILQ_INIT(&V_pf_unlinked_rules);
1298 }
1299 
1300 void
pf_mtag_cleanup(void)1301 pf_mtag_cleanup(void)
1302 {
1303 
1304 	uma_zdestroy(pf_mtag_z);
1305 }
1306 
1307 void
pf_cleanup(void)1308 pf_cleanup(void)
1309 {
1310 	struct pf_keyhash	*kh;
1311 	struct pf_idhash	*ih;
1312 	struct pf_srchash	*sh;
1313 	struct pf_udpendpointhash	*uh;
1314 	struct pf_send_entry	*pfse, *next;
1315 	u_int i;
1316 
1317 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1318 	    i <= V_pf_hashmask;
1319 	    i++, kh++, ih++) {
1320 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1321 		    __func__));
1322 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1323 		    __func__));
1324 		mtx_destroy(&kh->lock);
1325 		mtx_destroy(&ih->lock);
1326 	}
1327 	free(V_pf_keyhash, M_PFHASH);
1328 	free(V_pf_idhash, M_PFHASH);
1329 
1330 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1331 		KASSERT(LIST_EMPTY(&sh->nodes),
1332 		    ("%s: source node hash not empty", __func__));
1333 		mtx_destroy(&sh->lock);
1334 	}
1335 	free(V_pf_srchash, M_PFHASH);
1336 
1337 	for (i = 0, uh = V_pf_udpendpointhash;
1338 	    i <= V_pf_udpendpointhashmask;
1339 	    i++, uh++) {
1340 		KASSERT(LIST_EMPTY(&uh->endpoints),
1341 		    ("%s: udp endpoint hash not empty", __func__));
1342 		mtx_destroy(&uh->lock);
1343 	}
1344 	free(V_pf_udpendpointhash, M_PFHASH);
1345 
1346 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1347 		m_freem(pfse->pfse_m);
1348 		free(pfse, M_PFTEMP);
1349 	}
1350 	MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1351 
1352 	uma_zdestroy(V_pf_sources_z);
1353 	uma_zdestroy(V_pf_state_z);
1354 	uma_zdestroy(V_pf_state_key_z);
1355 	uma_zdestroy(V_pf_udp_mapping_z);
1356 	uma_zdestroy(V_pf_anchor_z);
1357 	uma_zdestroy(V_pf_eth_anchor_z);
1358 }
1359 
1360 static int
pf_mtag_uminit(void * mem,int size,int how)1361 pf_mtag_uminit(void *mem, int size, int how)
1362 {
1363 	struct m_tag *t;
1364 
1365 	t = (struct m_tag *)mem;
1366 	t->m_tag_cookie = MTAG_ABI_COMPAT;
1367 	t->m_tag_id = PACKET_TAG_PF;
1368 	t->m_tag_len = sizeof(struct pf_mtag);
1369 	t->m_tag_free = pf_mtag_free;
1370 
1371 	return (0);
1372 }
1373 
1374 static void
pf_mtag_free(struct m_tag * t)1375 pf_mtag_free(struct m_tag *t)
1376 {
1377 
1378 	uma_zfree(pf_mtag_z, t);
1379 }
1380 
1381 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1382 pf_get_mtag(struct mbuf *m)
1383 {
1384 	struct m_tag *mtag;
1385 
1386 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1387 		return ((struct pf_mtag *)(mtag + 1));
1388 
1389 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1390 	if (mtag == NULL)
1391 		return (NULL);
1392 	bzero(mtag + 1, sizeof(struct pf_mtag));
1393 	m_tag_prepend(m, mtag);
1394 
1395 	return ((struct pf_mtag *)(mtag + 1));
1396 }
1397 
1398 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1399 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1400     struct pf_kstate *s)
1401 {
1402 	struct pf_keyhash	*khs, *khw, *kh;
1403 	struct pf_state_key	*sk, *cur;
1404 	struct pf_kstate	*si, *olds = NULL;
1405 	int idx;
1406 
1407 	NET_EPOCH_ASSERT();
1408 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1409 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1410 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1411 
1412 	/*
1413 	 * We need to lock hash slots of both keys. To avoid deadlock
1414 	 * we always lock the slot with lower address first. Unlock order
1415 	 * isn't important.
1416 	 *
1417 	 * We also need to lock ID hash slot before dropping key
1418 	 * locks. On success we return with ID hash slot locked.
1419 	 */
1420 
1421 	if (skw == sks) {
1422 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1423 		PF_HASHROW_LOCK(khs);
1424 	} else {
1425 		khs = &V_pf_keyhash[pf_hashkey(sks)];
1426 		khw = &V_pf_keyhash[pf_hashkey(skw)];
1427 		if (khs == khw) {
1428 			PF_HASHROW_LOCK(khs);
1429 		} else if (khs < khw) {
1430 			PF_HASHROW_LOCK(khs);
1431 			PF_HASHROW_LOCK(khw);
1432 		} else {
1433 			PF_HASHROW_LOCK(khw);
1434 			PF_HASHROW_LOCK(khs);
1435 		}
1436 	}
1437 
1438 #define	KEYS_UNLOCK()	do {			\
1439 	if (khs != khw) {			\
1440 		PF_HASHROW_UNLOCK(khs);		\
1441 		PF_HASHROW_UNLOCK(khw);		\
1442 	} else					\
1443 		PF_HASHROW_UNLOCK(khs);		\
1444 } while (0)
1445 
1446 	/*
1447 	 * First run: start with wire key.
1448 	 */
1449 	sk = skw;
1450 	kh = khw;
1451 	idx = PF_SK_WIRE;
1452 
1453 	MPASS(s->lock == NULL);
1454 	s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1455 
1456 keyattach:
1457 	LIST_FOREACH(cur, &kh->keys, entry)
1458 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1459 			break;
1460 
1461 	if (cur != NULL) {
1462 		/* Key exists. Check for same kif, if none, add to key. */
1463 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1464 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1465 
1466 			PF_HASHROW_LOCK(ih);
1467 			if (si->kif == s->kif &&
1468 			    ((si->key[PF_SK_WIRE]->af == sk->af &&
1469 			    si->direction == s->direction) ||
1470 			    (si->key[PF_SK_WIRE]->af !=
1471 			    si->key[PF_SK_STACK]->af &&
1472 			    sk->af == si->key[PF_SK_STACK]->af &&
1473 			    si->direction != s->direction))) {
1474 				bool reuse = false;
1475 
1476 				if (sk->proto == IPPROTO_TCP &&
1477 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1478 				    si->dst.state >= TCPS_FIN_WAIT_2)
1479 					reuse = true;
1480 
1481 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
1482 					printf("pf: %s key attach "
1483 					    "%s on %s: ",
1484 					    (idx == PF_SK_WIRE) ?
1485 					    "wire" : "stack",
1486 					    reuse ? "reuse" : "failed",
1487 					    s->kif->pfik_name);
1488 					pf_print_state_parts(s,
1489 					    (idx == PF_SK_WIRE) ?
1490 					    sk : NULL,
1491 					    (idx == PF_SK_STACK) ?
1492 					    sk : NULL);
1493 					printf(", existing: ");
1494 					pf_print_state_parts(si,
1495 					    (idx == PF_SK_WIRE) ?
1496 					    sk : NULL,
1497 					    (idx == PF_SK_STACK) ?
1498 					    sk : NULL);
1499 					printf("\n");
1500 				}
1501 
1502 				if (reuse) {
1503 					/*
1504 					 * New state matches an old >FIN_WAIT_2
1505 					 * state. We can't drop key hash locks,
1506 					 * thus we can't unlink it properly.
1507 					 *
1508 					 * As a workaround we drop it into
1509 					 * TCPS_CLOSED state, schedule purge
1510 					 * ASAP and push it into the very end
1511 					 * of the slot TAILQ, so that it won't
1512 					 * conflict with our new state.
1513 					 */
1514 					pf_set_protostate(si, PF_PEER_BOTH,
1515 					    TCPS_CLOSED);
1516 					si->timeout = PFTM_PURGE;
1517 					olds = si;
1518 				} else {
1519 					s->timeout = PFTM_UNLINKED;
1520 					if (idx == PF_SK_STACK)
1521 						/*
1522 						 * Remove the wire key from
1523 						 * the hash. Other threads
1524 						 * can't be referencing it
1525 						 * because we still hold the
1526 						 * hash lock.
1527 						 */
1528 						pf_state_key_detach(s,
1529 						    PF_SK_WIRE);
1530 					PF_HASHROW_UNLOCK(ih);
1531 					KEYS_UNLOCK();
1532 					if (idx == PF_SK_WIRE)
1533 						/*
1534 						 * We've not inserted either key.
1535 						 * Free both.
1536 						 */
1537 						uma_zfree(V_pf_state_key_z, skw);
1538 					if (skw != sks)
1539 						uma_zfree(
1540 						    V_pf_state_key_z,
1541 						    sks);
1542 					return (EEXIST); /* collision! */
1543 				}
1544 			}
1545 			PF_HASHROW_UNLOCK(ih);
1546 		}
1547 		uma_zfree(V_pf_state_key_z, sk);
1548 		s->key[idx] = cur;
1549 	} else {
1550 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1551 		s->key[idx] = sk;
1552 	}
1553 
1554 stateattach:
1555 	/* List is sorted, if-bound states before floating. */
1556 	if (s->kif == V_pfi_all)
1557 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1558 	else
1559 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1560 
1561 	if (olds) {
1562 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1563 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1564 		    key_list[idx]);
1565 		olds = NULL;
1566 	}
1567 
1568 	/*
1569 	 * Attach done. See how should we (or should not?)
1570 	 * attach a second key.
1571 	 */
1572 	if (sks == skw) {
1573 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1574 		idx = PF_SK_STACK;
1575 		sks = NULL;
1576 		goto stateattach;
1577 	} else if (sks != NULL) {
1578 		/*
1579 		 * Continue attaching with stack key.
1580 		 */
1581 		sk = sks;
1582 		kh = khs;
1583 		idx = PF_SK_STACK;
1584 		sks = NULL;
1585 		goto keyattach;
1586 	}
1587 
1588 	PF_STATE_LOCK(s);
1589 	KEYS_UNLOCK();
1590 
1591 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1592 	    ("%s failure", __func__));
1593 
1594 	return (0);
1595 #undef	KEYS_UNLOCK
1596 }
1597 
1598 static void
pf_detach_state(struct pf_kstate * s)1599 pf_detach_state(struct pf_kstate *s)
1600 {
1601 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1602 	struct pf_keyhash *kh;
1603 
1604 	NET_EPOCH_ASSERT();
1605 	MPASS(s->timeout >= PFTM_MAX);
1606 
1607 	pf_sctp_multihome_detach_addr(s);
1608 
1609 	if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1610 		V_pflow_export_state_ptr(s);
1611 
1612 	if (sks != NULL) {
1613 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1614 		PF_HASHROW_LOCK(kh);
1615 		if (s->key[PF_SK_STACK] != NULL)
1616 			pf_state_key_detach(s, PF_SK_STACK);
1617 		/*
1618 		 * If both point to same key, then we are done.
1619 		 */
1620 		if (sks == s->key[PF_SK_WIRE]) {
1621 			pf_state_key_detach(s, PF_SK_WIRE);
1622 			PF_HASHROW_UNLOCK(kh);
1623 			return;
1624 		}
1625 		PF_HASHROW_UNLOCK(kh);
1626 	}
1627 
1628 	if (s->key[PF_SK_WIRE] != NULL) {
1629 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1630 		PF_HASHROW_LOCK(kh);
1631 		if (s->key[PF_SK_WIRE] != NULL)
1632 			pf_state_key_detach(s, PF_SK_WIRE);
1633 		PF_HASHROW_UNLOCK(kh);
1634 	}
1635 }
1636 
1637 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1638 pf_state_key_detach(struct pf_kstate *s, int idx)
1639 {
1640 	struct pf_state_key *sk = s->key[idx];
1641 #ifdef INVARIANTS
1642 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1643 
1644 	PF_HASHROW_ASSERT(kh);
1645 #endif /* INVARIANTS */
1646 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1647 	s->key[idx] = NULL;
1648 
1649 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1650 		LIST_REMOVE(sk, entry);
1651 		uma_zfree(V_pf_state_key_z, sk);
1652 	}
1653 }
1654 
1655 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1656 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1657 {
1658 	struct pf_state_key *sk = mem;
1659 
1660 	bzero(sk, sizeof(struct pf_state_key_cmp));
1661 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1662 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1663 
1664 	return (0);
1665 }
1666 
1667 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1668 pf_state_key_addr_setup(struct pf_pdesc *pd,
1669     struct pf_state_key_cmp *key, int multi)
1670 {
1671 	struct pf_addr *saddr = pd->src;
1672 	struct pf_addr *daddr = pd->dst;
1673 #ifdef INET6
1674 	struct nd_neighbor_solicit nd;
1675 	struct pf_addr *target;
1676 
1677 	if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1678 		goto copy;
1679 
1680 	switch (pd->hdr.icmp6.icmp6_type) {
1681 	case ND_NEIGHBOR_SOLICIT:
1682 		if (multi)
1683 			return (-1);
1684 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1685 		    pd->af))
1686 			return (-1);
1687 		target = (struct pf_addr *)&nd.nd_ns_target;
1688 		daddr = target;
1689 		break;
1690 	case ND_NEIGHBOR_ADVERT:
1691 		if (multi)
1692 			return (-1);
1693 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), NULL,
1694 		    pd->af))
1695 			return (-1);
1696 		target = (struct pf_addr *)&nd.nd_ns_target;
1697 		saddr = target;
1698 		if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1699 			key->addr[pd->didx].addr32[0] = 0;
1700 			key->addr[pd->didx].addr32[1] = 0;
1701 			key->addr[pd->didx].addr32[2] = 0;
1702 			key->addr[pd->didx].addr32[3] = 0;
1703 			daddr = NULL; /* overwritten */
1704 		}
1705 		break;
1706 	default:
1707 		if (multi) {
1708 			key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1709 			key->addr[pd->sidx].addr32[1] = 0;
1710 			key->addr[pd->sidx].addr32[2] = 0;
1711 			key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1712 			saddr = NULL; /* overwritten */
1713 		}
1714 	}
1715 copy:
1716 #endif /* INET6 */
1717 	if (saddr)
1718 		pf_addrcpy(&key->addr[pd->sidx], saddr, pd->af);
1719 	if (daddr)
1720 		pf_addrcpy(&key->addr[pd->didx], daddr, pd->af);
1721 
1722 	return (0);
1723 }
1724 
1725 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1726 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1727     struct pf_state_key **sk, struct pf_state_key **nk)
1728 {
1729 	*sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1730 	if (*sk == NULL)
1731 		return (ENOMEM);
1732 
1733 	if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1734 	    0)) {
1735 		uma_zfree(V_pf_state_key_z, *sk);
1736 		*sk = NULL;
1737 		return (ENOMEM);
1738 	}
1739 
1740 	(*sk)->port[pd->sidx] = sport;
1741 	(*sk)->port[pd->didx] = dport;
1742 	(*sk)->proto = pd->proto;
1743 	(*sk)->af = pd->af;
1744 
1745 	*nk = pf_state_key_clone(*sk);
1746 	if (*nk == NULL) {
1747 		uma_zfree(V_pf_state_key_z, *sk);
1748 		*sk = NULL;
1749 		return (ENOMEM);
1750 	}
1751 
1752 	if (pd->af != pd->naf) {
1753 		(*sk)->port[pd->sidx] = pd->osport;
1754 		(*sk)->port[pd->didx] = pd->odport;
1755 
1756 		(*nk)->af = pd->naf;
1757 
1758 		/*
1759 		 * We're overwriting an address here, so potentially there's bits of an IPv6
1760 		 * address left in here. Clear that out first.
1761 		 */
1762 		bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1763 		bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1764 		if (pd->dir == PF_IN) {
1765 			pf_addrcpy(&(*nk)->addr[pd->didx], &pd->nsaddr,
1766 			    pd->naf);
1767 			pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->ndaddr,
1768 			    pd->naf);
1769 			(*nk)->port[pd->didx] = pd->nsport;
1770 			(*nk)->port[pd->sidx] = pd->ndport;
1771 		} else {
1772 			pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->nsaddr,
1773 			    pd->naf);
1774 			pf_addrcpy(&(*nk)->addr[pd->didx], &pd->ndaddr,
1775 			    pd->naf);
1776 			(*nk)->port[pd->sidx] = pd->nsport;
1777 			(*nk)->port[pd->didx] = pd->ndport;
1778 		}
1779 
1780 		switch (pd->proto) {
1781 		case IPPROTO_ICMP:
1782 			(*nk)->proto = IPPROTO_ICMPV6;
1783 			break;
1784 		case IPPROTO_ICMPV6:
1785 			(*nk)->proto = IPPROTO_ICMP;
1786 			break;
1787 		default:
1788 			(*nk)->proto = pd->proto;
1789 		}
1790 	}
1791 
1792 	return (0);
1793 }
1794 
1795 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1796 pf_state_key_clone(const struct pf_state_key *orig)
1797 {
1798 	struct pf_state_key *sk;
1799 
1800 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1801 	if (sk == NULL)
1802 		return (NULL);
1803 
1804 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1805 
1806 	return (sk);
1807 }
1808 
1809 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1810 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1811     struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1812 {
1813 	struct pf_idhash *ih;
1814 	struct pf_kstate *cur;
1815 	int error;
1816 
1817 	NET_EPOCH_ASSERT();
1818 
1819 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1820 	    ("%s: sks not pristine", __func__));
1821 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1822 	    ("%s: skw not pristine", __func__));
1823 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1824 
1825 	s->kif = kif;
1826 	s->orig_kif = orig_kif;
1827 
1828 	if (s->id == 0 && s->creatorid == 0) {
1829 		s->id = alloc_unr64(&V_pf_stateid);
1830 		s->id = htobe64(s->id);
1831 		s->creatorid = V_pf_status.hostid;
1832 	}
1833 
1834 	/* Returns with ID locked on success. */
1835 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1836 		return (error);
1837 	skw = sks = NULL;
1838 
1839 	ih = &V_pf_idhash[PF_IDHASH(s)];
1840 	PF_HASHROW_ASSERT(ih);
1841 	LIST_FOREACH(cur, &ih->states, entry)
1842 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1843 			break;
1844 
1845 	if (cur != NULL) {
1846 		s->timeout = PFTM_UNLINKED;
1847 		PF_HASHROW_UNLOCK(ih);
1848 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1849 			printf("pf: state ID collision: "
1850 			    "id: %016llx creatorid: %08x\n",
1851 			    (unsigned long long)be64toh(s->id),
1852 			    ntohl(s->creatorid));
1853 		}
1854 		pf_detach_state(s);
1855 		return (EEXIST);
1856 	}
1857 	LIST_INSERT_HEAD(&ih->states, s, entry);
1858 	/* One for keys, one for ID hash. */
1859 	refcount_init(&s->refs, 2);
1860 
1861 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1862 	if (V_pfsync_insert_state_ptr != NULL)
1863 		V_pfsync_insert_state_ptr(s);
1864 
1865 	/* Returns locked. */
1866 	return (0);
1867 }
1868 
1869 /*
1870  * Find state by ID: returns with locked row on success.
1871  */
1872 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1873 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1874 {
1875 	struct pf_idhash *ih;
1876 	struct pf_kstate *s;
1877 
1878 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1879 
1880 	ih = &V_pf_idhash[PF_IDHASHID(id)];
1881 
1882 	PF_HASHROW_LOCK(ih);
1883 	LIST_FOREACH(s, &ih->states, entry)
1884 		if (s->id == id && s->creatorid == creatorid)
1885 			break;
1886 
1887 	if (s == NULL)
1888 		PF_HASHROW_UNLOCK(ih);
1889 
1890 	return (s);
1891 }
1892 
1893 /*
1894  * Find state by key.
1895  * Returns with ID hash slot locked on success.
1896  */
1897 static int
pf_find_state(struct pf_pdesc * pd,const struct pf_state_key_cmp * key,struct pf_kstate ** state)1898 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key,
1899     struct pf_kstate **state)
1900 {
1901 	struct pf_keyhash	*kh;
1902 	struct pf_state_key	*sk;
1903 	struct pf_kstate	*s;
1904 	int idx;
1905 
1906 	*state = NULL;
1907 
1908 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1909 
1910 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1911 
1912 	PF_HASHROW_LOCK(kh);
1913 	LIST_FOREACH(sk, &kh->keys, entry)
1914 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1915 			break;
1916 	if (sk == NULL) {
1917 		PF_HASHROW_UNLOCK(kh);
1918 		return (PF_DROP);
1919 	}
1920 
1921 	idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1922 
1923 	/* List is sorted, if-bound states before floating ones. */
1924 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1925 		if (s->kif == V_pfi_all || s->kif == pd->kif ||
1926 		    s->orig_kif == pd->kif) {
1927 			PF_STATE_LOCK(s);
1928 			PF_HASHROW_UNLOCK(kh);
1929 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1930 				/*
1931 				 * State is either being processed by
1932 				 * pf_remove_state() in an other thread, or
1933 				 * is scheduled for immediate expiry.
1934 				 */
1935 				PF_STATE_UNLOCK(s);
1936 				SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1937 				    key, (pd->dir), pd, *state);
1938 				return (PF_DROP);
1939 			}
1940 			goto out;
1941 		}
1942 
1943 	/* Look through the other list, in case of AF-TO */
1944 	idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1945 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1946 		if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1947 			continue;
1948 		if (s->kif == V_pfi_all || s->kif == pd->kif ||
1949 		    s->orig_kif == pd->kif) {
1950 			PF_STATE_LOCK(s);
1951 			PF_HASHROW_UNLOCK(kh);
1952 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1953 				/*
1954 				 * State is either being processed by
1955 				 * pf_remove_state() in an other thread, or
1956 				 * is scheduled for immediate expiry.
1957 				 */
1958 				PF_STATE_UNLOCK(s);
1959 				SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1960 				    key, (pd->dir), pd, NULL);
1961 				return (PF_DROP);
1962 			}
1963 			goto out;
1964 		}
1965 	}
1966 
1967 	PF_HASHROW_UNLOCK(kh);
1968 
1969 out:
1970 	SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state);
1971 
1972 	if (s == NULL || s->timeout == PFTM_PURGE) {
1973 		if (s)
1974 			PF_STATE_UNLOCK(s);
1975 		return (PF_DROP);
1976 	}
1977 
1978 	if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) {
1979 		if (pf_check_threshold(&(s)->rule->pktrate)) {
1980 			PF_STATE_UNLOCK(s);
1981 			return (PF_DROP);
1982 		}
1983 	}
1984 	if (PACKET_LOOPED(pd)) {
1985 		PF_STATE_UNLOCK(s);
1986 		return (PF_PASS);
1987 	}
1988 
1989 	*state = s;
1990 
1991 	return (PF_MATCH);
1992 }
1993 
1994 /*
1995  * Returns with ID hash slot locked on success.
1996  */
1997 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1998 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1999 {
2000 	struct pf_keyhash	*kh;
2001 	struct pf_state_key	*sk;
2002 	struct pf_kstate	*s, *ret = NULL;
2003 	int			 idx, inout = 0;
2004 
2005 	if (more != NULL)
2006 		*more = 0;
2007 
2008 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
2009 
2010 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
2011 
2012 	PF_HASHROW_LOCK(kh);
2013 	LIST_FOREACH(sk, &kh->keys, entry)
2014 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
2015 			break;
2016 	if (sk == NULL) {
2017 		PF_HASHROW_UNLOCK(kh);
2018 		return (NULL);
2019 	}
2020 	switch (dir) {
2021 	case PF_IN:
2022 		idx = PF_SK_WIRE;
2023 		break;
2024 	case PF_OUT:
2025 		idx = PF_SK_STACK;
2026 		break;
2027 	case PF_INOUT:
2028 		idx = PF_SK_WIRE;
2029 		inout = 1;
2030 		break;
2031 	default:
2032 		panic("%s: dir %u", __func__, dir);
2033 	}
2034 second_run:
2035 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2036 		if (more == NULL) {
2037 			PF_STATE_LOCK(s);
2038 			PF_HASHROW_UNLOCK(kh);
2039 			return (s);
2040 		}
2041 
2042 		if (ret)
2043 			(*more)++;
2044 		else {
2045 			ret = s;
2046 			PF_STATE_LOCK(s);
2047 		}
2048 	}
2049 	if (inout == 1) {
2050 		inout = 0;
2051 		idx = PF_SK_STACK;
2052 		goto second_run;
2053 	}
2054 	PF_HASHROW_UNLOCK(kh);
2055 
2056 	return (ret);
2057 }
2058 
2059 /*
2060  * FIXME
2061  * This routine is inefficient -- locks the state only to unlock immediately on
2062  * return.
2063  * It is racy -- after the state is unlocked nothing stops other threads from
2064  * removing it.
2065  */
2066 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2067 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2068 {
2069 	struct pf_kstate *s;
2070 
2071 	s = pf_find_state_all(key, dir, NULL);
2072 	if (s != NULL) {
2073 		PF_STATE_UNLOCK(s);
2074 		return (true);
2075 	}
2076 	return (false);
2077 }
2078 
2079 void
pf_state_peer_hton(const struct pf_state_peer * s,struct pf_state_peer_export * d)2080 pf_state_peer_hton(const struct pf_state_peer *s, struct pf_state_peer_export *d)
2081 {
2082 	d->seqlo = htonl(s->seqlo);
2083 	d->seqhi = htonl(s->seqhi);
2084 	d->seqdiff = htonl(s->seqdiff);
2085 	d->max_win = htons(s->max_win);
2086 	d->mss = htons(s->mss);
2087 	d->state = s->state;
2088 	d->wscale = s->wscale;
2089 	if (s->scrub) {
2090 		d->scrub.pfss_flags = htons(
2091 		    s->scrub->pfss_flags & PFSS_TIMESTAMP);
2092 		d->scrub.pfss_ttl = (s)->scrub->pfss_ttl;
2093 		d->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);
2094 		d->scrub.scrub_flag = PF_SCRUB_FLAG_VALID;
2095 	}
2096 }
2097 
2098 void
pf_state_peer_ntoh(const struct pf_state_peer_export * s,struct pf_state_peer * d)2099 pf_state_peer_ntoh(const struct pf_state_peer_export *s, struct pf_state_peer *d)
2100 {
2101 	d->seqlo = ntohl(s->seqlo);
2102 	d->seqhi = ntohl(s->seqhi);
2103 	d->seqdiff = ntohl(s->seqdiff);
2104 	d->max_win = ntohs(s->max_win);
2105 	d->mss = ntohs(s->mss);
2106 	d->state = s->state;
2107 	d->wscale = s->wscale;
2108 	if (s->scrub.scrub_flag == PF_SCRUB_FLAG_VALID &&
2109 	    d->scrub != NULL) {
2110 		d->scrub->pfss_flags = ntohs(s->scrub.pfss_flags) &
2111 		    PFSS_TIMESTAMP;
2112 		d->scrub->pfss_ttl = s->scrub.pfss_ttl;
2113 		d->scrub->pfss_ts_mod = ntohl(s->scrub.pfss_ts_mod);
2114 	}
2115 }
2116 
2117 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2118 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2119     struct pf_addr *nat_addr, uint16_t nat_port)
2120 {
2121 	struct pf_udp_mapping *mapping;
2122 
2123 	mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2124 	if (mapping == NULL)
2125 		return (NULL);
2126 	pf_addrcpy(&mapping->endpoints[0].addr, src_addr, af);
2127 	mapping->endpoints[0].port = src_port;
2128 	mapping->endpoints[0].af = af;
2129 	mapping->endpoints[0].mapping = mapping;
2130 	pf_addrcpy(&mapping->endpoints[1].addr, nat_addr, af);
2131 	mapping->endpoints[1].port = nat_port;
2132 	mapping->endpoints[1].af = af;
2133 	mapping->endpoints[1].mapping = mapping;
2134 	refcount_init(&mapping->refs, 1);
2135 	return (mapping);
2136 }
2137 
2138 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2139 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2140 {
2141 	struct pf_udpendpointhash *h0, *h1;
2142 	struct pf_udp_endpoint *endpoint;
2143 	int ret = EEXIST;
2144 
2145 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2146 	h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2147 	if (h0 == h1) {
2148 		PF_HASHROW_LOCK(h0);
2149 	} else if (h0 < h1) {
2150 		PF_HASHROW_LOCK(h0);
2151 		PF_HASHROW_LOCK(h1);
2152 	} else {
2153 		PF_HASHROW_LOCK(h1);
2154 		PF_HASHROW_LOCK(h0);
2155 	}
2156 
2157 	LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2158 		if (bcmp(endpoint, &mapping->endpoints[0],
2159 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2160 			break;
2161 	}
2162 	if (endpoint != NULL)
2163 		goto cleanup;
2164 	LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2165 		if (bcmp(endpoint, &mapping->endpoints[1],
2166 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2167 			break;
2168 	}
2169 	if (endpoint != NULL)
2170 		goto cleanup;
2171 	LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2172 	LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2173 	ret = 0;
2174 
2175 cleanup:
2176 	if (h0 != h1) {
2177 		PF_HASHROW_UNLOCK(h0);
2178 		PF_HASHROW_UNLOCK(h1);
2179 	} else {
2180 		PF_HASHROW_UNLOCK(h0);
2181 	}
2182 	return (ret);
2183 }
2184 
2185 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2186 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2187 {
2188 	/* refcount is synchronized on the source endpoint's row lock */
2189 	struct pf_udpendpointhash *h0, *h1;
2190 
2191 	if (mapping == NULL)
2192 		return;
2193 
2194 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2195 	PF_HASHROW_LOCK(h0);
2196 	if (refcount_release(&mapping->refs)) {
2197 		LIST_REMOVE(&mapping->endpoints[0], entry);
2198 		PF_HASHROW_UNLOCK(h0);
2199 		h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2200 		PF_HASHROW_LOCK(h1);
2201 		LIST_REMOVE(&mapping->endpoints[1], entry);
2202 		PF_HASHROW_UNLOCK(h1);
2203 
2204 		uma_zfree(V_pf_udp_mapping_z, mapping);
2205 	} else {
2206 			PF_HASHROW_UNLOCK(h0);
2207 	}
2208 }
2209 
2210 
2211 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2212 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2213 {
2214 	struct pf_udpendpointhash *uh;
2215 	struct pf_udp_endpoint *endpoint;
2216 
2217 	uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2218 
2219 	PF_HASHROW_LOCK(uh);
2220 	LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2221 		if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2222 			bcmp(endpoint, &endpoint->mapping->endpoints[0],
2223 			    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2224 			break;
2225 	}
2226 	if (endpoint == NULL) {
2227 		PF_HASHROW_UNLOCK(uh);
2228 		return (NULL);
2229 	}
2230 	refcount_acquire(&endpoint->mapping->refs);
2231 	PF_HASHROW_UNLOCK(uh);
2232 	return (endpoint->mapping);
2233 }
2234 /* END state table stuff */
2235 
2236 static void
pf_send(struct pf_send_entry * pfse)2237 pf_send(struct pf_send_entry *pfse)
2238 {
2239 
2240 	PF_SENDQ_LOCK();
2241 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2242 	PF_SENDQ_UNLOCK();
2243 	swi_sched(V_pf_swi_cookie, 0);
2244 }
2245 
2246 static bool
pf_isforlocal(struct mbuf * m,int af)2247 pf_isforlocal(struct mbuf *m, int af)
2248 {
2249 	switch (af) {
2250 #ifdef INET
2251 	case AF_INET: {
2252 		struct ip *ip = mtod(m, struct ip *);
2253 
2254 		return (in_localip(ip->ip_dst));
2255 	}
2256 #endif /* INET */
2257 #ifdef INET6
2258 	case AF_INET6: {
2259 		struct ip6_hdr *ip6;
2260 		struct in6_ifaddr *ia;
2261 		ip6 = mtod(m, struct ip6_hdr *);
2262 		ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2263 		if (ia == NULL)
2264 			return (false);
2265 		return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2266 	}
2267 #endif /* INET6 */
2268 	default:
2269 		unhandled_af(af);
2270 	}
2271 
2272 	return (false);
2273 }
2274 
2275 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2276 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2277     int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2278 {
2279 	/*
2280 	 * ICMP types marked with PF_OUT are typically responses to
2281 	 * PF_IN, and will match states in the opposite direction.
2282 	 * PF_IN ICMP types need to match a state with that type.
2283 	 */
2284 	*icmp_dir = PF_OUT;
2285 
2286 	/* Queries (and responses) */
2287 	switch (pd->af) {
2288 #ifdef INET
2289 	case AF_INET:
2290 		switch (type) {
2291 		case ICMP_ECHO:
2292 			*icmp_dir = PF_IN;
2293 			/* FALLTHROUGH */
2294 		case ICMP_ECHOREPLY:
2295 			*virtual_type = ICMP_ECHO;
2296 			*virtual_id = pd->hdr.icmp.icmp_id;
2297 			break;
2298 
2299 		case ICMP_TSTAMP:
2300 			*icmp_dir = PF_IN;
2301 			/* FALLTHROUGH */
2302 		case ICMP_TSTAMPREPLY:
2303 			*virtual_type = ICMP_TSTAMP;
2304 			*virtual_id = pd->hdr.icmp.icmp_id;
2305 			break;
2306 
2307 		case ICMP_IREQ:
2308 			*icmp_dir = PF_IN;
2309 			/* FALLTHROUGH */
2310 		case ICMP_IREQREPLY:
2311 			*virtual_type = ICMP_IREQ;
2312 			*virtual_id = pd->hdr.icmp.icmp_id;
2313 			break;
2314 
2315 		case ICMP_MASKREQ:
2316 			*icmp_dir = PF_IN;
2317 			/* FALLTHROUGH */
2318 		case ICMP_MASKREPLY:
2319 			*virtual_type = ICMP_MASKREQ;
2320 			*virtual_id = pd->hdr.icmp.icmp_id;
2321 			break;
2322 
2323 		case ICMP_IPV6_WHEREAREYOU:
2324 			*icmp_dir = PF_IN;
2325 			/* FALLTHROUGH */
2326 		case ICMP_IPV6_IAMHERE:
2327 			*virtual_type = ICMP_IPV6_WHEREAREYOU;
2328 			*virtual_id = 0; /* Nothing sane to match on! */
2329 			break;
2330 
2331 		case ICMP_MOBILE_REGREQUEST:
2332 			*icmp_dir = PF_IN;
2333 			/* FALLTHROUGH */
2334 		case ICMP_MOBILE_REGREPLY:
2335 			*virtual_type = ICMP_MOBILE_REGREQUEST;
2336 			*virtual_id = 0; /* Nothing sane to match on! */
2337 			break;
2338 
2339 		case ICMP_ROUTERSOLICIT:
2340 			*icmp_dir = PF_IN;
2341 			/* FALLTHROUGH */
2342 		case ICMP_ROUTERADVERT:
2343 			*virtual_type = ICMP_ROUTERSOLICIT;
2344 			*virtual_id = 0; /* Nothing sane to match on! */
2345 			break;
2346 
2347 		/* These ICMP types map to other connections */
2348 		case ICMP_UNREACH:
2349 		case ICMP_SOURCEQUENCH:
2350 		case ICMP_REDIRECT:
2351 		case ICMP_TIMXCEED:
2352 		case ICMP_PARAMPROB:
2353 			/* These will not be used, but set them anyway */
2354 			*icmp_dir = PF_IN;
2355 			*virtual_type = type;
2356 			*virtual_id = 0;
2357 			*virtual_type = htons(*virtual_type);
2358 			return (1);  /* These types match to another state */
2359 
2360 		/*
2361 		 * All remaining ICMP types get their own states,
2362 		 * and will only match in one direction.
2363 		 */
2364 		default:
2365 			*icmp_dir = PF_IN;
2366 			*virtual_type = type;
2367 			*virtual_id = 0;
2368 			break;
2369 		}
2370 		break;
2371 #endif /* INET */
2372 #ifdef INET6
2373 	case AF_INET6:
2374 		switch (type) {
2375 		case ICMP6_ECHO_REQUEST:
2376 			*icmp_dir = PF_IN;
2377 			/* FALLTHROUGH */
2378 		case ICMP6_ECHO_REPLY:
2379 			*virtual_type = ICMP6_ECHO_REQUEST;
2380 			*virtual_id = pd->hdr.icmp6.icmp6_id;
2381 			break;
2382 
2383 		case MLD_LISTENER_QUERY:
2384 		case MLD_LISTENER_REPORT: {
2385 			/*
2386 			 * Listener Report can be sent by clients
2387 			 * without an associated Listener Query.
2388 			 * In addition to that, when Report is sent as a
2389 			 * reply to a Query its source and destination
2390 			 * address are different.
2391 			 */
2392 			*icmp_dir = PF_IN;
2393 			*virtual_type = MLD_LISTENER_QUERY;
2394 			*virtual_id = 0;
2395 			break;
2396 		}
2397 		case MLD_MTRACE:
2398 			*icmp_dir = PF_IN;
2399 			/* FALLTHROUGH */
2400 		case MLD_MTRACE_RESP:
2401 			*virtual_type = MLD_MTRACE;
2402 			*virtual_id = 0; /* Nothing sane to match on! */
2403 			break;
2404 
2405 		case ND_NEIGHBOR_SOLICIT:
2406 			*icmp_dir = PF_IN;
2407 			/* FALLTHROUGH */
2408 		case ND_NEIGHBOR_ADVERT: {
2409 			*virtual_type = ND_NEIGHBOR_SOLICIT;
2410 			*virtual_id = 0;
2411 			break;
2412 		}
2413 
2414 		/*
2415 		 * These ICMP types map to other connections.
2416 		 * ND_REDIRECT can't be in this list because the triggering
2417 		 * packet header is optional.
2418 		 */
2419 		case ICMP6_DST_UNREACH:
2420 		case ICMP6_PACKET_TOO_BIG:
2421 		case ICMP6_TIME_EXCEEDED:
2422 		case ICMP6_PARAM_PROB:
2423 			/* These will not be used, but set them anyway */
2424 			*icmp_dir = PF_IN;
2425 			*virtual_type = type;
2426 			*virtual_id = 0;
2427 			*virtual_type = htons(*virtual_type);
2428 			return (1);  /* These types match to another state */
2429 		/*
2430 		 * All remaining ICMP6 types get their own states,
2431 		 * and will only match in one direction.
2432 		 */
2433 		default:
2434 			*icmp_dir = PF_IN;
2435 			*virtual_type = type;
2436 			*virtual_id = 0;
2437 			break;
2438 		}
2439 		break;
2440 #endif /* INET6 */
2441 	default:
2442 		unhandled_af(pd->af);
2443 	}
2444 	*virtual_type = htons(*virtual_type);
2445 	return (0);  /* These types match to their own state */
2446 }
2447 
2448 void
pf_intr(void * v)2449 pf_intr(void *v)
2450 {
2451 	struct epoch_tracker et;
2452 	struct pf_send_head queue;
2453 	struct pf_send_entry *pfse, *next;
2454 
2455 	CURVNET_SET((struct vnet *)v);
2456 
2457 	PF_SENDQ_LOCK();
2458 	queue = V_pf_sendqueue;
2459 	STAILQ_INIT(&V_pf_sendqueue);
2460 	PF_SENDQ_UNLOCK();
2461 
2462 	NET_EPOCH_ENTER(et);
2463 
2464 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2465 		switch (pfse->pfse_type) {
2466 #ifdef INET
2467 		case PFSE_IP: {
2468 			if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2469 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2470 				    ("%s: rcvif != loif", __func__));
2471 
2472 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2473 				pfse->pfse_m->m_pkthdr.csum_flags |=
2474 				    CSUM_IP_VALID | CSUM_IP_CHECKED |
2475 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2476 				pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2477 				ip_input(pfse->pfse_m);
2478 			} else {
2479 				ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2480 				    NULL);
2481 			}
2482 			break;
2483 		}
2484 		case PFSE_ICMP:
2485 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2486 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2487 			break;
2488 #endif /* INET */
2489 #ifdef INET6
2490 		case PFSE_IP6:
2491 			if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2492 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2493 				    ("%s: rcvif != loif", __func__));
2494 
2495 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2496 				    M_LOOP;
2497 				pfse->pfse_m->m_pkthdr.csum_flags |=
2498 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2499 				pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2500 				ip6_input(pfse->pfse_m);
2501 			} else {
2502 				ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2503 				    NULL, NULL);
2504 			}
2505 			break;
2506 		case PFSE_ICMP6:
2507 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2508 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
2509 			break;
2510 #endif /* INET6 */
2511 		default:
2512 			panic("%s: unknown type", __func__);
2513 		}
2514 		free(pfse, M_PFTEMP);
2515 	}
2516 	NET_EPOCH_EXIT(et);
2517 	CURVNET_RESTORE();
2518 }
2519 
2520 #define	pf_purge_thread_period	(hz / 10)
2521 
2522 #ifdef PF_WANT_32_TO_64_COUNTER
2523 static void
pf_status_counter_u64_periodic(void)2524 pf_status_counter_u64_periodic(void)
2525 {
2526 
2527 	PF_RULES_RASSERT();
2528 
2529 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2530 		return;
2531 	}
2532 
2533 	for (int i = 0; i < FCNT_MAX; i++) {
2534 		pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2535 	}
2536 }
2537 
2538 static void
pf_kif_counter_u64_periodic(void)2539 pf_kif_counter_u64_periodic(void)
2540 {
2541 	struct pfi_kkif *kif;
2542 	size_t r, run;
2543 
2544 	PF_RULES_RASSERT();
2545 
2546 	if (__predict_false(V_pf_allkifcount == 0)) {
2547 		return;
2548 	}
2549 
2550 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2551 		return;
2552 	}
2553 
2554 	run = V_pf_allkifcount / 10;
2555 	if (run < 5)
2556 		run = 5;
2557 
2558 	for (r = 0; r < run; r++) {
2559 		kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2560 		if (kif == NULL) {
2561 			LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2562 			LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2563 			break;
2564 		}
2565 
2566 		LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2567 		LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2568 
2569 		for (int i = 0; i < 2; i++) {
2570 			for (int j = 0; j < 2; j++) {
2571 				for (int k = 0; k < 2; k++) {
2572 					pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2573 					pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2574 				}
2575 			}
2576 		}
2577 	}
2578 }
2579 
2580 static void
pf_rule_counter_u64_periodic(void)2581 pf_rule_counter_u64_periodic(void)
2582 {
2583 	struct pf_krule *rule;
2584 	size_t r, run;
2585 
2586 	PF_RULES_RASSERT();
2587 
2588 	if (__predict_false(V_pf_allrulecount == 0)) {
2589 		return;
2590 	}
2591 
2592 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2593 		return;
2594 	}
2595 
2596 	run = V_pf_allrulecount / 10;
2597 	if (run < 5)
2598 		run = 5;
2599 
2600 	for (r = 0; r < run; r++) {
2601 		rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2602 		if (rule == NULL) {
2603 			LIST_REMOVE(V_pf_rulemarker, allrulelist);
2604 			LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2605 			break;
2606 		}
2607 
2608 		LIST_REMOVE(V_pf_rulemarker, allrulelist);
2609 		LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2610 
2611 		pf_counter_u64_periodic(&rule->evaluations);
2612 		for (int i = 0; i < 2; i++) {
2613 			pf_counter_u64_periodic(&rule->packets[i]);
2614 			pf_counter_u64_periodic(&rule->bytes[i]);
2615 		}
2616 	}
2617 }
2618 
2619 static void
pf_counter_u64_periodic_main(void)2620 pf_counter_u64_periodic_main(void)
2621 {
2622 	PF_RULES_RLOCK_TRACKER;
2623 
2624 	V_pf_counter_periodic_iter++;
2625 
2626 	PF_RULES_RLOCK();
2627 	pf_counter_u64_critical_enter();
2628 	pf_status_counter_u64_periodic();
2629 	pf_kif_counter_u64_periodic();
2630 	pf_rule_counter_u64_periodic();
2631 	pf_counter_u64_critical_exit();
2632 	PF_RULES_RUNLOCK();
2633 }
2634 #else
2635 #define	pf_counter_u64_periodic_main()	do { } while (0)
2636 #endif
2637 
2638 void
pf_purge_thread(void * unused __unused)2639 pf_purge_thread(void *unused __unused)
2640 {
2641 	struct epoch_tracker	 et;
2642 
2643 	VNET_ITERATOR_DECL(vnet_iter);
2644 
2645 	sx_xlock(&pf_end_lock);
2646 	while (pf_end_threads == 0) {
2647 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2648 
2649 		VNET_LIST_RLOCK();
2650 		NET_EPOCH_ENTER(et);
2651 		VNET_FOREACH(vnet_iter) {
2652 			CURVNET_SET(vnet_iter);
2653 
2654 			/* Wait until V_pf_default_rule is initialized. */
2655 			if (V_pf_vnet_active == 0) {
2656 				CURVNET_RESTORE();
2657 				continue;
2658 			}
2659 
2660 			pf_counter_u64_periodic_main();
2661 
2662 			/*
2663 			 *  Process 1/interval fraction of the state
2664 			 * table every run.
2665 			 */
2666 			V_pf_purge_idx =
2667 			    pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2668 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2669 
2670 			/*
2671 			 * Purge other expired types every
2672 			 * PFTM_INTERVAL seconds.
2673 			 */
2674 			if (V_pf_purge_idx == 0) {
2675 				/*
2676 				 * Order is important:
2677 				 * - states and src nodes reference rules
2678 				 * - states and rules reference kifs
2679 				 */
2680 				pf_purge_expired_fragments();
2681 				pf_purge_expired_src_nodes();
2682 				pf_purge_unlinked_rules();
2683 				pfi_kkif_purge();
2684 			}
2685 			CURVNET_RESTORE();
2686 		}
2687 		NET_EPOCH_EXIT(et);
2688 		VNET_LIST_RUNLOCK();
2689 	}
2690 
2691 	pf_end_threads++;
2692 	sx_xunlock(&pf_end_lock);
2693 	kproc_exit(0);
2694 }
2695 
2696 void
pf_unload_vnet_purge(void)2697 pf_unload_vnet_purge(void)
2698 {
2699 
2700 	/*
2701 	 * To cleanse up all kifs and rules we need
2702 	 * two runs: first one clears reference flags,
2703 	 * then pf_purge_expired_states() doesn't
2704 	 * raise them, and then second run frees.
2705 	 */
2706 	pf_purge_unlinked_rules();
2707 	pfi_kkif_purge();
2708 
2709 	/*
2710 	 * Now purge everything.
2711 	 */
2712 	pf_purge_expired_states(0, V_pf_hashmask);
2713 	pf_purge_fragments(UINT_MAX);
2714 	pf_purge_expired_src_nodes();
2715 
2716 	/*
2717 	 * Now all kifs & rules should be unreferenced,
2718 	 * thus should be successfully freed.
2719 	 */
2720 	pf_purge_unlinked_rules();
2721 	pfi_kkif_purge();
2722 }
2723 
2724 u_int32_t
pf_state_expires(const struct pf_kstate * state)2725 pf_state_expires(const struct pf_kstate *state)
2726 {
2727 	u_int32_t	timeout;
2728 	u_int32_t	start;
2729 	u_int32_t	end;
2730 	u_int32_t	states;
2731 
2732 	/* handle all PFTM_* > PFTM_MAX here */
2733 	if (state->timeout == PFTM_PURGE)
2734 		return (time_uptime);
2735 	KASSERT(state->timeout != PFTM_UNLINKED,
2736 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
2737 	KASSERT((state->timeout < PFTM_MAX),
2738 	    ("pf_state_expires: timeout > PFTM_MAX"));
2739 	timeout = state->rule->timeout[state->timeout];
2740 	if (!timeout)
2741 		timeout = V_pf_default_rule.timeout[state->timeout];
2742 	start = state->rule->timeout[PFTM_ADAPTIVE_START];
2743 	if (start && state->rule != &V_pf_default_rule) {
2744 		end = state->rule->timeout[PFTM_ADAPTIVE_END];
2745 		states = counter_u64_fetch(state->rule->states_cur);
2746 	} else {
2747 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2748 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2749 		states = V_pf_status.states;
2750 	}
2751 	if (end && states > start && start < end) {
2752 		if (states < end) {
2753 			timeout = (u_int64_t)timeout * (end - states) /
2754 			    (end - start);
2755 			return ((state->expire / 1000) + timeout);
2756 		}
2757 		else
2758 			return (time_uptime);
2759 	}
2760 	return ((state->expire / 1000) + timeout);
2761 }
2762 
2763 void
pf_purge_expired_src_nodes(void)2764 pf_purge_expired_src_nodes(void)
2765 {
2766 	struct pf_ksrc_node_list	 freelist;
2767 	struct pf_srchash	*sh;
2768 	struct pf_ksrc_node	*cur, *next;
2769 	int i;
2770 
2771 	LIST_INIT(&freelist);
2772 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2773 	    PF_HASHROW_LOCK(sh);
2774 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2775 		if (cur->states == 0 && cur->expire <= time_uptime) {
2776 			pf_unlink_src_node(cur);
2777 			LIST_INSERT_HEAD(&freelist, cur, entry);
2778 		} else if (cur->rule != NULL)
2779 			cur->rule->rule_ref |= PFRULE_REFS;
2780 	    PF_HASHROW_UNLOCK(sh);
2781 	}
2782 
2783 	pf_free_src_nodes(&freelist);
2784 
2785 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2786 }
2787 
2788 static void
pf_src_tree_remove_state(struct pf_kstate * s)2789 pf_src_tree_remove_state(struct pf_kstate *s)
2790 {
2791 	uint32_t timeout;
2792 
2793 	timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2794 	    s->rule->timeout[PFTM_SRC_NODE] :
2795 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
2796 
2797 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2798 		if (s->sns[sn_type] == NULL)
2799 			continue;
2800 		PF_SRC_NODE_LOCK(s->sns[sn_type]);
2801 		if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2802 			--(s->sns[sn_type]->conn);
2803 		if (--(s->sns[sn_type]->states) == 0)
2804 			s->sns[sn_type]->expire = time_uptime + timeout;
2805 		PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2806 		s->sns[sn_type] = NULL;
2807 	}
2808 
2809 }
2810 
2811 /*
2812  * Unlink and potentilly free a state. Function may be
2813  * called with ID hash row locked, but always returns
2814  * unlocked, since it needs to go through key hash locking.
2815  */
2816 int
pf_remove_state(struct pf_kstate * s)2817 pf_remove_state(struct pf_kstate *s)
2818 {
2819 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2820 
2821 	NET_EPOCH_ASSERT();
2822 	PF_HASHROW_ASSERT(ih);
2823 
2824 	if (s->timeout == PFTM_UNLINKED) {
2825 		/*
2826 		 * State is being processed
2827 		 * by pf_remove_state() in
2828 		 * an other thread.
2829 		 */
2830 		PF_HASHROW_UNLOCK(ih);
2831 		return (0);	/* XXXGL: undefined actually */
2832 	}
2833 
2834 	if (s->src.state == PF_TCPS_PROXY_DST) {
2835 		/* XXX wire key the right one? */
2836 		pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2837 		    &s->key[PF_SK_WIRE]->addr[1],
2838 		    &s->key[PF_SK_WIRE]->addr[0],
2839 		    s->key[PF_SK_WIRE]->port[1],
2840 		    s->key[PF_SK_WIRE]->port[0],
2841 		    s->src.seqhi, s->src.seqlo + 1,
2842 		    TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2843 		    s->act.rtableid, NULL);
2844 	}
2845 
2846 	LIST_REMOVE(s, entry);
2847 	pf_src_tree_remove_state(s);
2848 
2849 	if (V_pfsync_delete_state_ptr != NULL)
2850 		V_pfsync_delete_state_ptr(s);
2851 
2852 	STATE_DEC_COUNTERS(s);
2853 
2854 	s->timeout = PFTM_UNLINKED;
2855 
2856 	/* Ensure we remove it from the list of halfopen states, if needed. */
2857 	if (s->key[PF_SK_STACK] != NULL &&
2858 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2859 		pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2860 
2861 	PF_HASHROW_UNLOCK(ih);
2862 
2863 	pf_detach_state(s);
2864 
2865 	pf_udp_mapping_release(s->udp_mapping);
2866 
2867 	/* pf_state_insert() initialises refs to 2 */
2868 	return (pf_release_staten(s, 2));
2869 }
2870 
2871 struct pf_kstate *
pf_alloc_state(int flags)2872 pf_alloc_state(int flags)
2873 {
2874 
2875 	return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2876 }
2877 
2878 static __inline void
pf_free_match_rules(struct pf_krule_slist * match_rules)2879 pf_free_match_rules(struct pf_krule_slist *match_rules) {
2880 	struct pf_krule_item	*ri;
2881 
2882 	while ((ri = SLIST_FIRST(match_rules))) {
2883 		SLIST_REMOVE_HEAD(match_rules, entry);
2884 		free(ri, M_PF_RULE_ITEM);
2885 	}
2886 }
2887 
2888 void
pf_free_state(struct pf_kstate * cur)2889 pf_free_state(struct pf_kstate *cur)
2890 {
2891 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2892 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2893 	    cur->timeout));
2894 
2895 	pf_free_match_rules(&(cur->match_rules));
2896 	pf_normalize_tcp_cleanup(cur);
2897 	uma_zfree(V_pf_state_z, cur);
2898 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2899 }
2900 
2901 /*
2902  * Called only from pf_purge_thread(), thus serialized.
2903  */
2904 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2905 pf_purge_expired_states(u_int i, int maxcheck)
2906 {
2907 	struct pf_idhash *ih;
2908 	struct pf_kstate *s;
2909 	struct pf_krule_item *mrm;
2910 	size_t count __unused;
2911 
2912 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2913 
2914 	/*
2915 	 * Go through hash and unlink states that expire now.
2916 	 */
2917 	while (maxcheck > 0) {
2918 		count = 0;
2919 		ih = &V_pf_idhash[i];
2920 
2921 		/* only take the lock if we expect to do work */
2922 		if (!LIST_EMPTY(&ih->states)) {
2923 relock:
2924 			PF_HASHROW_LOCK(ih);
2925 			LIST_FOREACH(s, &ih->states, entry) {
2926 				if (pf_state_expires(s) <= time_uptime) {
2927 					V_pf_status.states -=
2928 					    pf_remove_state(s);
2929 					goto relock;
2930 				}
2931 				s->rule->rule_ref |= PFRULE_REFS;
2932 				if (s->nat_rule != NULL)
2933 					s->nat_rule->rule_ref |= PFRULE_REFS;
2934 				if (s->anchor != NULL)
2935 					s->anchor->rule_ref |= PFRULE_REFS;
2936 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
2937 				SLIST_FOREACH(mrm, &s->match_rules, entry)
2938 					mrm->r->rule_ref |= PFRULE_REFS;
2939 				if (s->act.rt_kif)
2940 					s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2941 				count++;
2942 			}
2943 			PF_HASHROW_UNLOCK(ih);
2944 		}
2945 
2946 		SDT_PROBE2(pf, purge, state, rowcount, i, count);
2947 
2948 		/* Return when we hit end of hash. */
2949 		if (++i > V_pf_hashmask) {
2950 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2951 			return (0);
2952 		}
2953 
2954 		maxcheck--;
2955 	}
2956 
2957 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2958 
2959 	return (i);
2960 }
2961 
2962 static void
pf_purge_unlinked_rules(void)2963 pf_purge_unlinked_rules(void)
2964 {
2965 	struct pf_krulequeue tmpq;
2966 	struct pf_krule *r, *r1;
2967 
2968 	/*
2969 	 * If we have overloading task pending, then we'd
2970 	 * better skip purging this time. There is a tiny
2971 	 * probability that overloading task references
2972 	 * an already unlinked rule.
2973 	 */
2974 	PF_OVERLOADQ_LOCK();
2975 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2976 		PF_OVERLOADQ_UNLOCK();
2977 		return;
2978 	}
2979 	PF_OVERLOADQ_UNLOCK();
2980 
2981 	/*
2982 	 * Do naive mark-and-sweep garbage collecting of old rules.
2983 	 * Reference flag is raised by pf_purge_expired_states()
2984 	 * and pf_purge_expired_src_nodes().
2985 	 *
2986 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2987 	 * use a temporary queue.
2988 	 */
2989 	TAILQ_INIT(&tmpq);
2990 	PF_UNLNKDRULES_LOCK();
2991 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2992 		if (!(r->rule_ref & PFRULE_REFS)) {
2993 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2994 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
2995 		} else
2996 			r->rule_ref &= ~PFRULE_REFS;
2997 	}
2998 	PF_UNLNKDRULES_UNLOCK();
2999 
3000 	if (!TAILQ_EMPTY(&tmpq)) {
3001 		PF_CONFIG_LOCK();
3002 		PF_RULES_WLOCK();
3003 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
3004 			TAILQ_REMOVE(&tmpq, r, entries);
3005 			pf_free_rule(r);
3006 		}
3007 		PF_RULES_WUNLOCK();
3008 		PF_CONFIG_UNLOCK();
3009 	}
3010 }
3011 
3012 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)3013 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
3014 {
3015 	switch (af) {
3016 #ifdef INET
3017 	case AF_INET: {
3018 		u_int32_t a = ntohl(addr->addr32[0]);
3019 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
3020 		    (a>>8)&255, a&255);
3021 		if (p) {
3022 			p = ntohs(p);
3023 			printf(":%u", p);
3024 		}
3025 		break;
3026 	}
3027 #endif /* INET */
3028 #ifdef INET6
3029 	case AF_INET6: {
3030 		u_int16_t b;
3031 		u_int8_t i, curstart, curend, maxstart, maxend;
3032 		curstart = curend = maxstart = maxend = 255;
3033 		for (i = 0; i < 8; i++) {
3034 			if (!addr->addr16[i]) {
3035 				if (curstart == 255)
3036 					curstart = i;
3037 				curend = i;
3038 			} else {
3039 				if ((curend - curstart) >
3040 				    (maxend - maxstart)) {
3041 					maxstart = curstart;
3042 					maxend = curend;
3043 				}
3044 				curstart = curend = 255;
3045 			}
3046 		}
3047 		if ((curend - curstart) >
3048 		    (maxend - maxstart)) {
3049 			maxstart = curstart;
3050 			maxend = curend;
3051 		}
3052 		for (i = 0; i < 8; i++) {
3053 			if (i >= maxstart && i <= maxend) {
3054 				if (i == 0)
3055 					printf(":");
3056 				if (i == maxend)
3057 					printf(":");
3058 			} else {
3059 				b = ntohs(addr->addr16[i]);
3060 				printf("%x", b);
3061 				if (i < 7)
3062 					printf(":");
3063 			}
3064 		}
3065 		if (p) {
3066 			p = ntohs(p);
3067 			printf("[%u]", p);
3068 		}
3069 		break;
3070 	}
3071 #endif /* INET6 */
3072 	default:
3073 		unhandled_af(af);
3074 	}
3075 }
3076 
3077 void
pf_print_state(struct pf_kstate * s)3078 pf_print_state(struct pf_kstate *s)
3079 {
3080 	pf_print_state_parts(s, NULL, NULL);
3081 }
3082 
3083 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)3084 pf_print_state_parts(struct pf_kstate *s,
3085     struct pf_state_key *skwp, struct pf_state_key *sksp)
3086 {
3087 	struct pf_state_key *skw, *sks;
3088 	u_int8_t proto, dir;
3089 
3090 	/* Do our best to fill these, but they're skipped if NULL */
3091 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3092 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3093 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
3094 	dir = s ? s->direction : 0;
3095 
3096 	switch (proto) {
3097 	case IPPROTO_IPV4:
3098 		printf("IPv4");
3099 		break;
3100 	case IPPROTO_IPV6:
3101 		printf("IPv6");
3102 		break;
3103 	case IPPROTO_TCP:
3104 		printf("TCP");
3105 		break;
3106 	case IPPROTO_UDP:
3107 		printf("UDP");
3108 		break;
3109 	case IPPROTO_ICMP:
3110 		printf("ICMP");
3111 		break;
3112 	case IPPROTO_ICMPV6:
3113 		printf("ICMPv6");
3114 		break;
3115 	default:
3116 		printf("%u", proto);
3117 		break;
3118 	}
3119 	switch (dir) {
3120 	case PF_IN:
3121 		printf(" in");
3122 		break;
3123 	case PF_OUT:
3124 		printf(" out");
3125 		break;
3126 	}
3127 	if (skw) {
3128 		printf(" wire: ");
3129 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3130 		printf(" ");
3131 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3132 	}
3133 	if (sks) {
3134 		printf(" stack: ");
3135 		if (sks != skw) {
3136 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3137 			printf(" ");
3138 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3139 		} else
3140 			printf("-");
3141 	}
3142 	if (s) {
3143 		if (proto == IPPROTO_TCP) {
3144 			printf(" [lo=%u high=%u win=%u modulator=%u",
3145 			    s->src.seqlo, s->src.seqhi,
3146 			    s->src.max_win, s->src.seqdiff);
3147 			if (s->src.wscale && s->dst.wscale)
3148 				printf(" wscale=%u",
3149 				    s->src.wscale & PF_WSCALE_MASK);
3150 			printf("]");
3151 			printf(" [lo=%u high=%u win=%u modulator=%u",
3152 			    s->dst.seqlo, s->dst.seqhi,
3153 			    s->dst.max_win, s->dst.seqdiff);
3154 			if (s->src.wscale && s->dst.wscale)
3155 				printf(" wscale=%u",
3156 				s->dst.wscale & PF_WSCALE_MASK);
3157 			printf("]");
3158 		}
3159 		printf(" %u:%u", s->src.state, s->dst.state);
3160 		if (s->rule)
3161 			printf(" @%d", s->rule->nr);
3162 	}
3163 }
3164 
3165 void
pf_print_flags(uint16_t f)3166 pf_print_flags(uint16_t f)
3167 {
3168 	if (f)
3169 		printf(" ");
3170 	if (f & TH_FIN)
3171 		printf("F");
3172 	if (f & TH_SYN)
3173 		printf("S");
3174 	if (f & TH_RST)
3175 		printf("R");
3176 	if (f & TH_PUSH)
3177 		printf("P");
3178 	if (f & TH_ACK)
3179 		printf("A");
3180 	if (f & TH_URG)
3181 		printf("U");
3182 	if (f & TH_ECE)
3183 		printf("E");
3184 	if (f & TH_CWR)
3185 		printf("W");
3186 	if (f & TH_AE)
3187 		printf("e");
3188 }
3189 
3190 #define	PF_SET_SKIP_STEPS(i)					\
3191 	do {							\
3192 		while (head[i] != cur) {			\
3193 			head[i]->skip[i] = cur;			\
3194 			head[i] = TAILQ_NEXT(head[i], entries);	\
3195 		}						\
3196 	} while (0)
3197 
3198 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3199 pf_calc_skip_steps(struct pf_krulequeue *rules)
3200 {
3201 	struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3202 	int i;
3203 
3204 	cur = TAILQ_FIRST(rules);
3205 	prev = cur;
3206 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3207 		head[i] = cur;
3208 	while (cur != NULL) {
3209 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3210 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3211 		if (cur->direction != prev->direction)
3212 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3213 		if (cur->af != prev->af)
3214 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
3215 		if (cur->proto != prev->proto)
3216 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3217 		if (cur->src.neg != prev->src.neg ||
3218 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3219 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3220 		if (cur->dst.neg != prev->dst.neg ||
3221 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3222 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3223 		if (cur->src.port[0] != prev->src.port[0] ||
3224 		    cur->src.port[1] != prev->src.port[1] ||
3225 		    cur->src.port_op != prev->src.port_op)
3226 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3227 		if (cur->dst.port[0] != prev->dst.port[0] ||
3228 		    cur->dst.port[1] != prev->dst.port[1] ||
3229 		    cur->dst.port_op != prev->dst.port_op)
3230 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3231 
3232 		prev = cur;
3233 		cur = TAILQ_NEXT(cur, entries);
3234 	}
3235 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3236 		PF_SET_SKIP_STEPS(i);
3237 }
3238 
3239 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3240 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3241 {
3242 	if (aw1->type != aw2->type)
3243 		return (1);
3244 	switch (aw1->type) {
3245 	case PF_ADDR_ADDRMASK:
3246 	case PF_ADDR_RANGE:
3247 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3248 			return (1);
3249 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3250 			return (1);
3251 		return (0);
3252 	case PF_ADDR_DYNIFTL:
3253 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3254 	case PF_ADDR_NONE:
3255 	case PF_ADDR_NOROUTE:
3256 	case PF_ADDR_URPFFAILED:
3257 		return (0);
3258 	case PF_ADDR_TABLE:
3259 		return (aw1->p.tbl != aw2->p.tbl);
3260 	default:
3261 		printf("invalid address type: %d\n", aw1->type);
3262 		return (1);
3263 	}
3264 }
3265 
3266 /**
3267  * Checksum updates are a little complicated because the checksum in the TCP/UDP
3268  * header isn't always a full checksum. In some cases (i.e. output) it's a
3269  * pseudo-header checksum, which is a partial checksum over src/dst IP
3270  * addresses, protocol number and length.
3271  *
3272  * That means we have the following cases:
3273  *  * Input or forwarding: we don't have TSO, the checksum fields are full
3274  *  	checksums, we need to update the checksum whenever we change anything.
3275  *  * Output (i.e. the checksum is a pseudo-header checksum):
3276  *  	x The field being updated is src/dst address or affects the length of
3277  *  	the packet. We need to update the pseudo-header checksum (note that this
3278  *  	checksum is not ones' complement).
3279  *  	x Some other field is being modified (e.g. src/dst port numbers): We
3280  *  	don't have to update anything.
3281  **/
3282 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3283 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3284 {
3285 	u_int32_t x;
3286 
3287 	x = cksum + old - new;
3288 	x = (x + (x >> 16)) & 0xffff;
3289 
3290 	/* optimise: eliminate a branch when not udp */
3291 	if (udp && cksum == 0x0000)
3292 		return cksum;
3293 	if (udp && x == 0x0000)
3294 		x = 0xffff;
3295 
3296 	return (u_int16_t)(x);
3297 }
3298 
3299 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3300 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3301 {
3302 	int	 rewrite = 0;
3303 
3304 	if (*f != v) {
3305 		uint16_t old = htons(hi ? (*f << 8) : *f);
3306 		uint16_t new = htons(hi ? ( v << 8) :  v);
3307 
3308 		*f = v;
3309 
3310 		if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3311 		    CSUM_DELAY_DATA_IPV6)))
3312 			*pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3313 			    pd->proto == IPPROTO_UDP);
3314 
3315 		rewrite = 1;
3316 	}
3317 
3318 	return (rewrite);
3319 }
3320 
3321 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3322 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3323 {
3324 	int rewrite = 0;
3325 	u_int8_t *fb = (u_int8_t *)f;
3326 	u_int8_t *vb = (u_int8_t *)&v;
3327 
3328 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3329 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3330 
3331 	return (rewrite);
3332 }
3333 
3334 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3335 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3336 {
3337 	int rewrite = 0;
3338 	u_int8_t *fb = (u_int8_t *)f;
3339 	u_int8_t *vb = (u_int8_t *)&v;
3340 
3341 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3342 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3343 	rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3344 	rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3345 
3346 	return (rewrite);
3347 }
3348 
3349 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3350 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3351         u_int16_t new, u_int8_t udp)
3352 {
3353 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3354 		return (cksum);
3355 
3356 	return (pf_cksum_fixup(cksum, old, new, udp));
3357 }
3358 
3359 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3360 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3361         struct pf_addr *an, u_int16_t pn)
3362 {
3363 	struct pf_addr	ao;
3364 	u_int16_t	po;
3365 	uint8_t		u = pd->virtual_proto == IPPROTO_UDP;
3366 
3367 	MPASS(pd->pcksum != NULL);
3368 	if (pd->af == AF_INET) {
3369 		MPASS(pd->ip_sum);
3370 	}
3371 
3372 	pf_addrcpy(&ao, a, pd->af);
3373 	if (pd->af == pd->naf)
3374 		pf_addrcpy(a, an, pd->af);
3375 
3376 	if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3377 		*pd->pcksum = ~*pd->pcksum;
3378 
3379 	if (p == NULL)  /* no port -> done. no cksum to worry about. */
3380 		return;
3381 	po = *p;
3382 	*p = pn;
3383 
3384 	switch (pd->af) {
3385 #ifdef INET
3386 	case AF_INET:
3387 		switch (pd->naf) {
3388 		case AF_INET:
3389 			*pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3390 			    ao.addr16[0], an->addr16[0], 0),
3391 			    ao.addr16[1], an->addr16[1], 0);
3392 			*p = pn;
3393 
3394 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3395 			    ao.addr16[0], an->addr16[0], u),
3396 			    ao.addr16[1], an->addr16[1], u);
3397 
3398 			*pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3399 			break;
3400 #ifdef INET6
3401 		case AF_INET6:
3402 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3403 			   pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3404 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3405 			    ao.addr16[0], an->addr16[0], u),
3406 			    ao.addr16[1], an->addr16[1], u),
3407 			    0,            an->addr16[2], u),
3408 			    0,            an->addr16[3], u),
3409 			    0,            an->addr16[4], u),
3410 			    0,            an->addr16[5], u),
3411 			    0,            an->addr16[6], u),
3412 			    0,            an->addr16[7], u),
3413 			    po, pn, u);
3414 			break;
3415 #endif /* INET6 */
3416 		default:
3417 			unhandled_af(pd->naf);
3418 		}
3419 		break;
3420 #endif /* INET */
3421 #ifdef INET6
3422 	case AF_INET6:
3423 		switch (pd->naf) {
3424 #ifdef INET
3425 		case AF_INET:
3426 			*pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3427 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3428 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3429 			    ao.addr16[0], an->addr16[0], u),
3430 			    ao.addr16[1], an->addr16[1], u),
3431 			    ao.addr16[2], 0,             u),
3432 			    ao.addr16[3], 0,             u),
3433 			    ao.addr16[4], 0,             u),
3434 			    ao.addr16[5], 0,             u),
3435 			    ao.addr16[6], 0,             u),
3436 			    ao.addr16[7], 0,             u),
3437 			    po, pn, u);
3438 			break;
3439 #endif /* INET */
3440 		case AF_INET6:
3441 			*pd->pcksum  = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3442 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3443 			    pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3444 			    ao.addr16[0], an->addr16[0], u),
3445 			    ao.addr16[1], an->addr16[1], u),
3446 			    ao.addr16[2], an->addr16[2], u),
3447 			    ao.addr16[3], an->addr16[3], u),
3448 			    ao.addr16[4], an->addr16[4], u),
3449 			    ao.addr16[5], an->addr16[5], u),
3450 			    ao.addr16[6], an->addr16[6], u),
3451 			    ao.addr16[7], an->addr16[7], u);
3452 
3453 			*pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3454 			break;
3455 		default:
3456 			unhandled_af(pd->naf);
3457 		}
3458 		break;
3459 #endif /* INET6 */
3460 	default:
3461 		unhandled_af(pd->af);
3462 	}
3463 
3464 	if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3465 	    CSUM_DELAY_DATA_IPV6)) {
3466 		*pd->pcksum = ~*pd->pcksum;
3467 		if (! *pd->pcksum)
3468 			*pd->pcksum = 0xffff;
3469 	}
3470 }
3471 
3472 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
3473 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3474 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3475 {
3476 	u_int32_t	ao;
3477 
3478 	memcpy(&ao, a, sizeof(ao));
3479 	memcpy(a, &an, sizeof(u_int32_t));
3480 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3481 	    ao % 65536, an % 65536, u);
3482 }
3483 
3484 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3485 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3486 {
3487 	u_int32_t	ao;
3488 
3489 	memcpy(&ao, a, sizeof(ao));
3490 	memcpy(a, &an, sizeof(u_int32_t));
3491 
3492 	*c = pf_proto_cksum_fixup(m,
3493 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3494 	    ao % 65536, an % 65536, udp);
3495 }
3496 
3497 #ifdef INET6
3498 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3499 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3500 {
3501 	struct pf_addr	ao;
3502 
3503 	pf_addrcpy(&ao, a, AF_INET6);
3504 	pf_addrcpy(a, an, AF_INET6);
3505 
3506 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3507 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3508 	    pf_cksum_fixup(pf_cksum_fixup(*c,
3509 	    ao.addr16[0], an->addr16[0], u),
3510 	    ao.addr16[1], an->addr16[1], u),
3511 	    ao.addr16[2], an->addr16[2], u),
3512 	    ao.addr16[3], an->addr16[3], u),
3513 	    ao.addr16[4], an->addr16[4], u),
3514 	    ao.addr16[5], an->addr16[5], u),
3515 	    ao.addr16[6], an->addr16[6], u),
3516 	    ao.addr16[7], an->addr16[7], u);
3517 }
3518 #endif /* INET6 */
3519 
3520 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3521 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3522     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3523     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3524 {
3525 	struct pf_addr	oia, ooa;
3526 
3527 	pf_addrcpy(&oia, ia, af);
3528 	if (oa)
3529 		pf_addrcpy(&ooa, oa, af);
3530 
3531 	/* Change inner protocol port, fix inner protocol checksum. */
3532 	if (ip != NULL) {
3533 		u_int16_t	oip = *ip;
3534 		u_int32_t	opc;
3535 
3536 		if (pc != NULL)
3537 			opc = *pc;
3538 		*ip = np;
3539 		if (pc != NULL)
3540 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
3541 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3542 		if (pc != NULL)
3543 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3544 	}
3545 	/* Change inner ip address, fix inner ip and icmp checksums. */
3546 	pf_addrcpy(ia, na, af);
3547 	switch (af) {
3548 #ifdef INET
3549 	case AF_INET: {
3550 		u_int32_t	 oh2c = *h2c;
3551 
3552 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3553 		    oia.addr16[0], ia->addr16[0], 0),
3554 		    oia.addr16[1], ia->addr16[1], 0);
3555 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3556 		    oia.addr16[0], ia->addr16[0], 0),
3557 		    oia.addr16[1], ia->addr16[1], 0);
3558 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3559 		break;
3560 	}
3561 #endif /* INET */
3562 #ifdef INET6
3563 	case AF_INET6:
3564 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3565 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3566 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
3567 		    oia.addr16[0], ia->addr16[0], u),
3568 		    oia.addr16[1], ia->addr16[1], u),
3569 		    oia.addr16[2], ia->addr16[2], u),
3570 		    oia.addr16[3], ia->addr16[3], u),
3571 		    oia.addr16[4], ia->addr16[4], u),
3572 		    oia.addr16[5], ia->addr16[5], u),
3573 		    oia.addr16[6], ia->addr16[6], u),
3574 		    oia.addr16[7], ia->addr16[7], u);
3575 		break;
3576 #endif /* INET6 */
3577 	}
3578 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3579 	if (oa) {
3580 		pf_addrcpy(oa, na, af);
3581 		switch (af) {
3582 #ifdef INET
3583 		case AF_INET:
3584 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3585 			    ooa.addr16[0], oa->addr16[0], 0),
3586 			    ooa.addr16[1], oa->addr16[1], 0);
3587 			break;
3588 #endif /* INET */
3589 #ifdef INET6
3590 		case AF_INET6:
3591 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3592 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3593 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
3594 			    ooa.addr16[0], oa->addr16[0], u),
3595 			    ooa.addr16[1], oa->addr16[1], u),
3596 			    ooa.addr16[2], oa->addr16[2], u),
3597 			    ooa.addr16[3], oa->addr16[3], u),
3598 			    ooa.addr16[4], oa->addr16[4], u),
3599 			    ooa.addr16[5], oa->addr16[5], u),
3600 			    ooa.addr16[6], oa->addr16[6], u),
3601 			    ooa.addr16[7], oa->addr16[7], u);
3602 			break;
3603 #endif /* INET6 */
3604 		}
3605 	}
3606 }
3607 
3608 int
pf_translate_af(struct pf_pdesc * pd)3609 pf_translate_af(struct pf_pdesc *pd)
3610 {
3611 #if defined(INET) && defined(INET6)
3612 	struct mbuf		*mp;
3613 	struct ip		*ip4;
3614 	struct ip6_hdr		*ip6;
3615 	struct icmp6_hdr	*icmp;
3616 	struct m_tag		*mtag;
3617 	struct pf_fragment_tag	*ftag;
3618 	int			 hlen;
3619 
3620 	hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3621 
3622 	/* trim the old header */
3623 	m_adj(pd->m, pd->off);
3624 
3625 	/* prepend a new one */
3626 	M_PREPEND(pd->m, hlen, M_NOWAIT);
3627 	if (pd->m == NULL)
3628 		return (-1);
3629 
3630 	switch (pd->naf) {
3631 	case AF_INET:
3632 		ip4 = mtod(pd->m, struct ip *);
3633 		bzero(ip4, hlen);
3634 		ip4->ip_v = IPVERSION;
3635 		ip4->ip_hl = hlen >> 2;
3636 		ip4->ip_tos = pd->tos;
3637 		ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3638 		ip_fillid(ip4, V_ip_random_id);
3639 		ip4->ip_ttl = pd->ttl;
3640 		ip4->ip_p = pd->proto;
3641 		ip4->ip_src = pd->nsaddr.v4;
3642 		ip4->ip_dst = pd->ndaddr.v4;
3643 		pd->src = (struct pf_addr *)&ip4->ip_src;
3644 		pd->dst = (struct pf_addr *)&ip4->ip_dst;
3645 		pd->off = sizeof(struct ip);
3646 		if (pd->m->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
3647 			pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP_IPV6;
3648 			pd->m->m_pkthdr.csum_flags |= CSUM_TCP;
3649 		}
3650 		if (pd->m->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
3651 			pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP_IPV6;
3652 			pd->m->m_pkthdr.csum_flags |= CSUM_UDP;
3653 		}
3654 		if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
3655 			pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
3656 			pd->m->m_pkthdr.csum_flags |= CSUM_SCTP;
3657 		}
3658 		break;
3659 	case AF_INET6:
3660 		ip6 = mtod(pd->m, struct ip6_hdr *);
3661 		bzero(ip6, hlen);
3662 		ip6->ip6_vfc = IPV6_VERSION;
3663 		ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3664 		ip6->ip6_plen = htons(pd->tot_len - pd->off);
3665 		ip6->ip6_nxt = pd->proto;
3666 		if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3667 			ip6->ip6_hlim = IPV6_DEFHLIM;
3668 		else
3669 			ip6->ip6_hlim = pd->ttl;
3670 		ip6->ip6_src = pd->nsaddr.v6;
3671 		ip6->ip6_dst = pd->ndaddr.v6;
3672 		pd->src = (struct pf_addr *)&ip6->ip6_src;
3673 		pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3674 		pd->off = sizeof(struct ip6_hdr);
3675 		if (pd->m->m_pkthdr.csum_flags & CSUM_TCP) {
3676 			pd->m->m_pkthdr.csum_flags &= ~CSUM_TCP;
3677 			pd->m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
3678 		}
3679 		if (pd->m->m_pkthdr.csum_flags & CSUM_UDP) {
3680 			pd->m->m_pkthdr.csum_flags &= ~CSUM_UDP;
3681 			pd->m->m_pkthdr.csum_flags |= CSUM_UDP_IPV6;
3682 		}
3683 		if (pd->m->m_pkthdr.csum_flags & CSUM_SCTP) {
3684 			pd->m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
3685 			pd->m->m_pkthdr.csum_flags |= CSUM_SCTP_IPV6;
3686 		}
3687 
3688 		/*
3689 		 * If we're dealing with a reassembled packet we need to adjust
3690 		 * the header length from the IPv4 header size to IPv6 header
3691 		 * size.
3692 		 */
3693 		mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3694 		if (mtag) {
3695 			ftag = (struct pf_fragment_tag *)(mtag + 1);
3696 			ftag->ft_hdrlen = sizeof(*ip6);
3697 			ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3698 			    sizeof(struct ip) + sizeof(struct ip6_frag);
3699 		}
3700 		break;
3701 	default:
3702 		return (-1);
3703 	}
3704 
3705 	/* recalculate icmp/icmp6 checksums */
3706 	if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3707 		int off;
3708 		if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3709 		    NULL) {
3710 			pd->m = NULL;
3711 			return (-1);
3712 		}
3713 		icmp = (struct icmp6_hdr *)(mp->m_data + off);
3714 		icmp->icmp6_cksum = 0;
3715 		icmp->icmp6_cksum = pd->naf == AF_INET ?
3716 		    in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3717 		    in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3718 			ntohs(ip6->ip6_plen));
3719 	}
3720 #endif /* INET && INET6 */
3721 
3722 	return (0);
3723 }
3724 
3725 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3726 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3727     struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3728     sa_family_t af, sa_family_t naf)
3729 {
3730 #if defined(INET) && defined(INET6)
3731 	struct mbuf	*n = NULL;
3732 	struct ip	*ip4;
3733 	struct ip6_hdr	*ip6;
3734 	int		 hlen, olen, mlen;
3735 
3736 	if (af == naf || (af != AF_INET && af != AF_INET6) ||
3737 	    (naf != AF_INET && naf != AF_INET6))
3738 		return (-1);
3739 
3740 	/* split the mbuf chain on the inner ip/ip6 header boundary */
3741 	if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3742 		return (-1);
3743 
3744 	/* old header */
3745 	olen = pd2->off - off;
3746 	/* new header */
3747 	hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3748 
3749 	/* trim old header */
3750 	m_adj(n, olen);
3751 
3752 	/* prepend a new one */
3753 	M_PREPEND(n, hlen, M_NOWAIT);
3754 	if (n == NULL)
3755 		return (-1);
3756 
3757 	/* translate inner ip/ip6 header */
3758 	switch (naf) {
3759 	case AF_INET:
3760 		ip4 = mtod(n, struct ip *);
3761 		bzero(ip4, sizeof(*ip4));
3762 		ip4->ip_v = IPVERSION;
3763 		ip4->ip_hl = sizeof(*ip4) >> 2;
3764 		ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3765 		ip_fillid(ip4, V_ip_random_id);
3766 		ip4->ip_off = htons(IP_DF);
3767 		ip4->ip_ttl = pd2->ttl;
3768 		if (pd2->proto == IPPROTO_ICMPV6)
3769 			ip4->ip_p = IPPROTO_ICMP;
3770 		else
3771 			ip4->ip_p = pd2->proto;
3772 		ip4->ip_src = src->v4;
3773 		ip4->ip_dst = dst->v4;
3774 		ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3775 		break;
3776 	case AF_INET6:
3777 		ip6 = mtod(n, struct ip6_hdr *);
3778 		bzero(ip6, sizeof(*ip6));
3779 		ip6->ip6_vfc = IPV6_VERSION;
3780 		ip6->ip6_plen = htons(pd2->tot_len - olen);
3781 		if (pd2->proto == IPPROTO_ICMP)
3782 			ip6->ip6_nxt = IPPROTO_ICMPV6;
3783 		else
3784 			ip6->ip6_nxt = pd2->proto;
3785 		if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3786 			ip6->ip6_hlim = IPV6_DEFHLIM;
3787 		else
3788 			ip6->ip6_hlim = pd2->ttl;
3789 		ip6->ip6_src = src->v6;
3790 		ip6->ip6_dst = dst->v6;
3791 		break;
3792 	default:
3793 		unhandled_af(naf);
3794 	}
3795 
3796 	/* adjust payload offset and total packet length */
3797 	pd2->off += hlen - olen;
3798 	pd->tot_len += hlen - olen;
3799 
3800 	/* merge modified inner packet with the original header */
3801 	mlen = n->m_pkthdr.len;
3802 	m_cat(m, n);
3803 	m->m_pkthdr.len += mlen;
3804 #endif /* INET && INET6 */
3805 
3806 	return (0);
3807 }
3808 
3809 #define PTR_IP(field)	(offsetof(struct ip, field))
3810 #define PTR_IP6(field)	(offsetof(struct ip6_hdr, field))
3811 
3812 int
pf_translate_icmp_af(int af,void * arg)3813 pf_translate_icmp_af(int af, void *arg)
3814 {
3815 #if defined(INET) && defined(INET6)
3816 	struct icmp		*icmp4;
3817 	struct icmp6_hdr	*icmp6;
3818 	u_int32_t		 mtu;
3819 	int32_t			 ptr = -1;
3820 	u_int8_t		 type;
3821 	u_int8_t		 code;
3822 
3823 	switch (af) {
3824 	case AF_INET:
3825 		icmp6 = arg;
3826 		type = icmp6->icmp6_type;
3827 		code = icmp6->icmp6_code;
3828 		mtu = ntohl(icmp6->icmp6_mtu);
3829 
3830 		switch (type) {
3831 		case ICMP6_ECHO_REQUEST:
3832 			type = ICMP_ECHO;
3833 			break;
3834 		case ICMP6_ECHO_REPLY:
3835 			type = ICMP_ECHOREPLY;
3836 			break;
3837 		case ICMP6_DST_UNREACH:
3838 			type = ICMP_UNREACH;
3839 			switch (code) {
3840 			case ICMP6_DST_UNREACH_NOROUTE:
3841 			case ICMP6_DST_UNREACH_BEYONDSCOPE:
3842 			case ICMP6_DST_UNREACH_ADDR:
3843 				code = ICMP_UNREACH_HOST;
3844 				break;
3845 			case ICMP6_DST_UNREACH_ADMIN:
3846 				code = ICMP_UNREACH_HOST_PROHIB;
3847 				break;
3848 			case ICMP6_DST_UNREACH_NOPORT:
3849 				code = ICMP_UNREACH_PORT;
3850 				break;
3851 			default:
3852 				return (-1);
3853 			}
3854 			break;
3855 		case ICMP6_PACKET_TOO_BIG:
3856 			type = ICMP_UNREACH;
3857 			code = ICMP_UNREACH_NEEDFRAG;
3858 			mtu -= 20;
3859 			break;
3860 		case ICMP6_TIME_EXCEEDED:
3861 			type = ICMP_TIMXCEED;
3862 			break;
3863 		case ICMP6_PARAM_PROB:
3864 			switch (code) {
3865 			case ICMP6_PARAMPROB_HEADER:
3866 				type = ICMP_PARAMPROB;
3867 				code = ICMP_PARAMPROB_ERRATPTR;
3868 				ptr = ntohl(icmp6->icmp6_pptr);
3869 
3870 				if (ptr == PTR_IP6(ip6_vfc))
3871 					; /* preserve */
3872 				else if (ptr == PTR_IP6(ip6_vfc) + 1)
3873 					ptr = PTR_IP(ip_tos);
3874 				else if (ptr == PTR_IP6(ip6_plen) ||
3875 				    ptr == PTR_IP6(ip6_plen) + 1)
3876 					ptr = PTR_IP(ip_len);
3877 				else if (ptr == PTR_IP6(ip6_nxt))
3878 					ptr = PTR_IP(ip_p);
3879 				else if (ptr == PTR_IP6(ip6_hlim))
3880 					ptr = PTR_IP(ip_ttl);
3881 				else if (ptr >= PTR_IP6(ip6_src) &&
3882 				    ptr < PTR_IP6(ip6_dst))
3883 					ptr = PTR_IP(ip_src);
3884 				else if (ptr >= PTR_IP6(ip6_dst) &&
3885 				    ptr < sizeof(struct ip6_hdr))
3886 					ptr = PTR_IP(ip_dst);
3887 				else {
3888 					return (-1);
3889 				}
3890 				break;
3891 			case ICMP6_PARAMPROB_NEXTHEADER:
3892 				type = ICMP_UNREACH;
3893 				code = ICMP_UNREACH_PROTOCOL;
3894 				break;
3895 			default:
3896 				return (-1);
3897 			}
3898 			break;
3899 		default:
3900 			return (-1);
3901 		}
3902 		if (icmp6->icmp6_type != type) {
3903 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3904 			    icmp6->icmp6_type, type, 0);
3905 			icmp6->icmp6_type = type;
3906 		}
3907 		if (icmp6->icmp6_code != code) {
3908 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3909 			    icmp6->icmp6_code, code, 0);
3910 			icmp6->icmp6_code = code;
3911 		}
3912 		if (icmp6->icmp6_mtu != htonl(mtu)) {
3913 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3914 			    htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3915 			/* aligns well with a icmpv4 nextmtu */
3916 			icmp6->icmp6_mtu = htonl(mtu);
3917 		}
3918 		if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3919 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3920 			    htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3921 			/* icmpv4 pptr is a one most significant byte */
3922 			icmp6->icmp6_pptr = htonl(ptr << 24);
3923 		}
3924 		break;
3925 	case AF_INET6:
3926 		icmp4 = arg;
3927 		type = icmp4->icmp_type;
3928 		code = icmp4->icmp_code;
3929 		mtu = ntohs(icmp4->icmp_nextmtu);
3930 
3931 		switch (type) {
3932 		case ICMP_ECHO:
3933 			type = ICMP6_ECHO_REQUEST;
3934 			break;
3935 		case ICMP_ECHOREPLY:
3936 			type = ICMP6_ECHO_REPLY;
3937 			break;
3938 		case ICMP_UNREACH:
3939 			type = ICMP6_DST_UNREACH;
3940 			switch (code) {
3941 			case ICMP_UNREACH_NET:
3942 			case ICMP_UNREACH_HOST:
3943 			case ICMP_UNREACH_NET_UNKNOWN:
3944 			case ICMP_UNREACH_HOST_UNKNOWN:
3945 			case ICMP_UNREACH_ISOLATED:
3946 			case ICMP_UNREACH_TOSNET:
3947 			case ICMP_UNREACH_TOSHOST:
3948 				code = ICMP6_DST_UNREACH_NOROUTE;
3949 				break;
3950 			case ICMP_UNREACH_PORT:
3951 				code = ICMP6_DST_UNREACH_NOPORT;
3952 				break;
3953 			case ICMP_UNREACH_NET_PROHIB:
3954 			case ICMP_UNREACH_HOST_PROHIB:
3955 			case ICMP_UNREACH_FILTER_PROHIB:
3956 			case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3957 				code = ICMP6_DST_UNREACH_ADMIN;
3958 				break;
3959 			case ICMP_UNREACH_PROTOCOL:
3960 				type = ICMP6_PARAM_PROB;
3961 				code = ICMP6_PARAMPROB_NEXTHEADER;
3962 				ptr = offsetof(struct ip6_hdr, ip6_nxt);
3963 				break;
3964 			case ICMP_UNREACH_NEEDFRAG:
3965 				type = ICMP6_PACKET_TOO_BIG;
3966 				code = 0;
3967 				mtu += 20;
3968 				break;
3969 			default:
3970 				return (-1);
3971 			}
3972 			break;
3973 		case ICMP_TIMXCEED:
3974 			type = ICMP6_TIME_EXCEEDED;
3975 			break;
3976 		case ICMP_PARAMPROB:
3977 			type = ICMP6_PARAM_PROB;
3978 			switch (code) {
3979 			case ICMP_PARAMPROB_ERRATPTR:
3980 				code = ICMP6_PARAMPROB_HEADER;
3981 				break;
3982 			case ICMP_PARAMPROB_LENGTH:
3983 				code = ICMP6_PARAMPROB_HEADER;
3984 				break;
3985 			default:
3986 				return (-1);
3987 			}
3988 
3989 			ptr = icmp4->icmp_pptr;
3990 			if (ptr == 0 || ptr == PTR_IP(ip_tos))
3991 				; /* preserve */
3992 			else if (ptr == PTR_IP(ip_len) ||
3993 			    ptr == PTR_IP(ip_len) + 1)
3994 				ptr = PTR_IP6(ip6_plen);
3995 			else if (ptr == PTR_IP(ip_ttl))
3996 				ptr = PTR_IP6(ip6_hlim);
3997 			else if (ptr == PTR_IP(ip_p))
3998 				ptr = PTR_IP6(ip6_nxt);
3999 			else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
4000 				ptr = PTR_IP6(ip6_src);
4001 			else if (ptr >= PTR_IP(ip_dst) &&
4002 			    ptr < sizeof(struct ip))
4003 				ptr = PTR_IP6(ip6_dst);
4004 			else {
4005 				return (-1);
4006 			}
4007 			break;
4008 		default:
4009 			return (-1);
4010 		}
4011 		if (icmp4->icmp_type != type) {
4012 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4013 			    icmp4->icmp_type, type, 0);
4014 			icmp4->icmp_type = type;
4015 		}
4016 		if (icmp4->icmp_code != code) {
4017 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4018 			    icmp4->icmp_code, code, 0);
4019 			icmp4->icmp_code = code;
4020 		}
4021 		if (icmp4->icmp_nextmtu != htons(mtu)) {
4022 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4023 			    icmp4->icmp_nextmtu, htons(mtu), 0);
4024 			icmp4->icmp_nextmtu = htons(mtu);
4025 		}
4026 		if (ptr >= 0 && icmp4->icmp_void != ptr) {
4027 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
4028 			    htons(icmp4->icmp_pptr), htons(ptr), 0);
4029 			icmp4->icmp_void = htonl(ptr);
4030 		}
4031 		break;
4032 	default:
4033 		unhandled_af(af);
4034 	}
4035 #endif /* INET && INET6 */
4036 
4037 	return (0);
4038 }
4039 
4040 /*
4041  * Need to modulate the sequence numbers in the TCP SACK option
4042  * (credits to Krzysztof Pfaff for report and patch)
4043  */
4044 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)4045 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
4046     struct pf_state_peer *dst)
4047 {
4048 	struct sackblk	 sack;
4049 	int		 copyback = 0, i;
4050 	int		 olen, optsoff;
4051 	uint8_t		 opts[MAX_TCPOPTLEN], *opt, *eoh;
4052 
4053 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
4054 	optsoff = pd->off + sizeof(struct tcphdr);
4055 #define	TCPOLEN_MINSACK	(TCPOLEN_SACK + 2)
4056 	if (olen < TCPOLEN_MINSACK ||
4057 	    !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, pd->af))
4058 		return (0);
4059 
4060 	eoh = opts + olen;
4061 	opt = opts;
4062 	while ((opt = pf_find_tcpopt(opt, opts, olen,
4063 	    TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
4064 	{
4065 		size_t safelen = MIN(opt[1], (eoh - opt));
4066 		for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
4067 			size_t startoff = (opt + i) - opts;
4068 			memcpy(&sack, &opt[i], sizeof(sack));
4069 			pf_patch_32(pd, &sack.start,
4070 			    htonl(ntohl(sack.start) - dst->seqdiff),
4071 			    PF_ALGNMNT(startoff));
4072 			pf_patch_32(pd, &sack.end,
4073 			    htonl(ntohl(sack.end) - dst->seqdiff),
4074 			    PF_ALGNMNT(startoff + sizeof(sack.start)));
4075 			memcpy(&opt[i], &sack, sizeof(sack));
4076 		}
4077 		copyback = 1;
4078 		opt += opt[1];
4079 	}
4080 
4081 	if (copyback)
4082 		m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
4083 
4084 	return (copyback);
4085 }
4086 
4087 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid,u_short * reason)4088 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
4089     const struct pf_addr *saddr, const struct pf_addr *daddr,
4090     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4091     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4092     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
4093     int rtableid, u_short *reason)
4094 {
4095 	struct mbuf	*m;
4096 	int		 len, tlen;
4097 #ifdef INET
4098 	struct ip	*h = NULL;
4099 #endif /* INET */
4100 #ifdef INET6
4101 	struct ip6_hdr	*h6 = NULL;
4102 #endif /* INET6 */
4103 	struct tcphdr	*th;
4104 	char		*opt;
4105 	struct pf_mtag  *pf_mtag;
4106 
4107 	len = 0;
4108 	th = NULL;
4109 
4110 	/* maximum segment size tcp option */
4111 	tlen = sizeof(struct tcphdr);
4112 	if (mss)
4113 		tlen += 4;
4114 	if (sack)
4115 		tlen += 2;
4116 
4117 	switch (af) {
4118 #ifdef INET
4119 	case AF_INET:
4120 		len = sizeof(struct ip) + tlen;
4121 		break;
4122 #endif /* INET */
4123 #ifdef INET6
4124 	case AF_INET6:
4125 		len = sizeof(struct ip6_hdr) + tlen;
4126 		break;
4127 #endif /* INET6 */
4128 	default:
4129 		unhandled_af(af);
4130 	}
4131 
4132 	m = m_gethdr(M_NOWAIT, MT_DATA);
4133 	if (m == NULL) {
4134 		REASON_SET(reason, PFRES_MEMORY);
4135 		return (NULL);
4136 	}
4137 
4138 #ifdef MAC
4139 	mac_netinet_firewall_send(m);
4140 #endif
4141 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4142 		REASON_SET(reason, PFRES_MEMORY);
4143 		m_freem(m);
4144 		return (NULL);
4145 	}
4146 	m->m_flags |= mbuf_flags;
4147 	pf_mtag->tag = mtag_tag;
4148 	pf_mtag->flags = mtag_flags;
4149 
4150 	if (rtableid >= 0)
4151 		M_SETFIB(m, rtableid);
4152 
4153 #ifdef ALTQ
4154 	if (r != NULL && r->qid) {
4155 		pf_mtag->qid = r->qid;
4156 
4157 		/* add hints for ecn */
4158 		pf_mtag->hdr = mtod(m, struct ip *);
4159 	}
4160 #endif /* ALTQ */
4161 	m->m_data += max_linkhdr;
4162 	m->m_pkthdr.len = m->m_len = len;
4163 	/* The rest of the stack assumes a rcvif, so provide one.
4164 	 * This is a locally generated packet, so .. close enough. */
4165 	m->m_pkthdr.rcvif = V_loif;
4166 	bzero(m->m_data, len);
4167 	switch (af) {
4168 #ifdef INET
4169 	case AF_INET:
4170 		m->m_pkthdr.csum_flags |= CSUM_TCP;
4171 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4172 
4173 		h = mtod(m, struct ip *);
4174 
4175 		h->ip_p = IPPROTO_TCP;
4176 		h->ip_len = htons(tlen);
4177 		h->ip_v = 4;
4178 		h->ip_hl = sizeof(*h) >> 2;
4179 		h->ip_tos = IPTOS_LOWDELAY;
4180 		h->ip_len = htons(len);
4181 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4182 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4183 		h->ip_sum = 0;
4184 		h->ip_src.s_addr = saddr->v4.s_addr;
4185 		h->ip_dst.s_addr = daddr->v4.s_addr;
4186 
4187 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4188 		th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4189 		    htons(len - sizeof(struct ip) + IPPROTO_TCP));
4190 		break;
4191 #endif /* INET */
4192 #ifdef INET6
4193 	case AF_INET6:
4194 		m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4195 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4196 
4197 		h6 = mtod(m, struct ip6_hdr *);
4198 
4199 		/* IP header fields included in the TCP checksum */
4200 		h6->ip6_nxt = IPPROTO_TCP;
4201 		h6->ip6_plen = htons(tlen);
4202 		h6->ip6_vfc |= IPV6_VERSION;
4203 		h6->ip6_hlim = V_ip6_defhlim;
4204 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4205 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4206 
4207 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4208 		th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4209 		    IPPROTO_TCP, 0);
4210 		break;
4211 #endif /* INET6 */
4212 	}
4213 
4214 	/* TCP header */
4215 	th->th_sport = sport;
4216 	th->th_dport = dport;
4217 	th->th_seq = htonl(seq);
4218 	th->th_ack = htonl(ack);
4219 	th->th_off = tlen >> 2;
4220 	tcp_set_flags(th, tcp_flags);
4221 	th->th_win = htons(win);
4222 
4223 	opt = (char *)(th + 1);
4224 	if (mss) {
4225 		opt = (char *)(th + 1);
4226 		opt[0] = TCPOPT_MAXSEG;
4227 		opt[1] = 4;
4228 		mss = htons(mss);
4229 		memcpy((opt + 2), &mss, 2);
4230 		opt += 4;
4231 	}
4232 	if (sack) {
4233 		opt[0] = TCPOPT_SACK_PERMITTED;
4234 		opt[1] = 2;
4235 		opt += 2;
4236 	}
4237 
4238 	return (m);
4239 }
4240 
4241 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4242 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4243     uint8_t ttl, int rtableid)
4244 {
4245 	struct mbuf		*m;
4246 #ifdef INET
4247 	struct ip		*h = NULL;
4248 #endif /* INET */
4249 #ifdef INET6
4250 	struct ip6_hdr		*h6 = NULL;
4251 #endif /* INET6 */
4252 	struct sctphdr		*hdr;
4253 	struct sctp_chunkhdr	*chunk;
4254 	struct pf_send_entry	*pfse;
4255 	int			 off = 0;
4256 
4257 	MPASS(af == pd->af);
4258 
4259 	m = m_gethdr(M_NOWAIT, MT_DATA);
4260 	if (m == NULL)
4261 		return;
4262 
4263 	m->m_data += max_linkhdr;
4264 	m->m_flags |= M_SKIP_FIREWALL;
4265 	/* The rest of the stack assumes a rcvif, so provide one.
4266 	 * This is a locally generated packet, so .. close enough. */
4267 	m->m_pkthdr.rcvif = V_loif;
4268 
4269 	/* IPv4|6 header */
4270 	switch (af) {
4271 #ifdef INET
4272 	case AF_INET:
4273 		bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4274 
4275 		h = mtod(m, struct ip *);
4276 
4277 		/* IP header fields included in the TCP checksum */
4278 
4279 		h->ip_p = IPPROTO_SCTP;
4280 		h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4281 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4282 		h->ip_src = pd->dst->v4;
4283 		h->ip_dst = pd->src->v4;
4284 
4285 		off += sizeof(struct ip);
4286 		break;
4287 #endif /* INET */
4288 #ifdef INET6
4289 	case AF_INET6:
4290 		bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4291 
4292 		h6 = mtod(m, struct ip6_hdr *);
4293 
4294 		/* IP header fields included in the TCP checksum */
4295 		h6->ip6_vfc |= IPV6_VERSION;
4296 		h6->ip6_nxt = IPPROTO_SCTP;
4297 		h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4298 		h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4299 		memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4300 		memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4301 
4302 		off += sizeof(struct ip6_hdr);
4303 		break;
4304 #endif /* INET6 */
4305 	default:
4306 		unhandled_af(af);
4307 	}
4308 
4309 	/* SCTP header */
4310 	hdr = mtodo(m, off);
4311 
4312 	hdr->src_port = pd->hdr.sctp.dest_port;
4313 	hdr->dest_port = pd->hdr.sctp.src_port;
4314 	hdr->v_tag = pd->sctp_initiate_tag;
4315 	hdr->checksum = 0;
4316 
4317 	/* Abort chunk. */
4318 	off += sizeof(struct sctphdr);
4319 	chunk = mtodo(m, off);
4320 
4321 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4322 	chunk->chunk_length = htons(sizeof(*chunk));
4323 
4324 	/* SCTP checksum */
4325 	off += sizeof(*chunk);
4326 	m->m_pkthdr.len = m->m_len = off;
4327 
4328 	pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4329 
4330 	if (rtableid >= 0)
4331 		M_SETFIB(m, rtableid);
4332 
4333 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4334 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4335 	if (pfse == NULL) {
4336 		m_freem(m);
4337 		return;
4338 	}
4339 
4340 	switch (af) {
4341 #ifdef INET
4342 	case AF_INET:
4343 		pfse->pfse_type = PFSE_IP;
4344 		break;
4345 #endif /* INET */
4346 #ifdef INET6
4347 	case AF_INET6:
4348 		pfse->pfse_type = PFSE_IP6;
4349 		break;
4350 #endif /* INET6 */
4351 	}
4352 
4353 	pfse->pfse_m = m;
4354 	pf_send(pfse);
4355 }
4356 
4357 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid,u_short * reason)4358 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4359     const struct pf_addr *saddr, const struct pf_addr *daddr,
4360     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4361     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4362     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid,
4363     u_short *reason)
4364 {
4365 	struct pf_send_entry *pfse;
4366 	struct mbuf	*m;
4367 
4368 	m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4369 	    win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid, reason);
4370 	if (m == NULL)
4371 		return;
4372 
4373 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4374 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4375 	if (pfse == NULL) {
4376 		m_freem(m);
4377 		REASON_SET(reason, PFRES_MEMORY);
4378 		return;
4379 	}
4380 
4381 	switch (af) {
4382 #ifdef INET
4383 	case AF_INET:
4384 		pfse->pfse_type = PFSE_IP;
4385 		break;
4386 #endif /* INET */
4387 #ifdef INET6
4388 	case AF_INET6:
4389 		pfse->pfse_type = PFSE_IP6;
4390 		break;
4391 #endif /* INET6 */
4392 	default:
4393 		unhandled_af(af);
4394 	}
4395 
4396 	pfse->pfse_m = m;
4397 	pf_send(pfse);
4398 }
4399 
4400 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4401 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4402 {
4403 	/* undo NAT changes, if they have taken place */
4404 	if (nr != NULL) {
4405 		pf_addrcpy(pd->src, &pd->osrc, pd->af);
4406 		pf_addrcpy(pd->dst, &pd->odst, pd->af);
4407 		if (pd->sport)
4408 			*pd->sport = pd->osport;
4409 		if (pd->dport)
4410 			*pd->dport = pd->odport;
4411 		if (pd->ip_sum)
4412 			*pd->ip_sum = bip_sum;
4413 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4414 	}
4415 }
4416 
4417 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4418 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4419     struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4420     u_short *reason, int rtableid)
4421 {
4422 	pf_undo_nat(nr, pd, bip_sum);
4423 
4424 	if (pd->proto == IPPROTO_TCP &&
4425 	    ((r->rule_flag & PFRULE_RETURNRST) ||
4426 	    (r->rule_flag & PFRULE_RETURN)) &&
4427 	    !(tcp_get_flags(th) & TH_RST)) {
4428 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
4429 
4430 		if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4431 		    IPPROTO_TCP, pd->af))
4432 			REASON_SET(reason, PFRES_PROTCKSUM);
4433 		else {
4434 			if (tcp_get_flags(th) & TH_SYN)
4435 				ack++;
4436 			if (tcp_get_flags(th) & TH_FIN)
4437 				ack++;
4438 			pf_send_tcp(r, pd->af, pd->dst,
4439 			    pd->src, th->th_dport, th->th_sport,
4440 			    ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4441 			    r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid,
4442 			    reason);
4443 		}
4444 	} else if (pd->proto == IPPROTO_SCTP &&
4445 	    (r->rule_flag & PFRULE_RETURN)) {
4446 		pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4447 	} else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4448 		r->return_icmp)
4449 		pf_send_icmp(pd->m, r->return_icmp >> 8,
4450 			r->return_icmp & 255, 0, pd->af, r, rtableid);
4451 	else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4452 		r->return_icmp6)
4453 		pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4454 			r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4455 }
4456 
4457 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4458 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4459 {
4460 	struct m_tag *mtag;
4461 	u_int8_t mpcp;
4462 
4463 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4464 	if (mtag == NULL)
4465 		return (0);
4466 
4467 	if (prio == PF_PRIO_ZERO)
4468 		prio = 0;
4469 
4470 	mpcp = *(uint8_t *)(mtag + 1);
4471 
4472 	return (mpcp == prio);
4473 }
4474 
4475 static int
pf_icmp_to_bandlim(uint8_t type)4476 pf_icmp_to_bandlim(uint8_t type)
4477 {
4478 	switch (type) {
4479 		case ICMP_ECHO:
4480 		case ICMP_ECHOREPLY:
4481 			return (BANDLIM_ICMP_ECHO);
4482 		case ICMP_TSTAMP:
4483 		case ICMP_TSTAMPREPLY:
4484 			return (BANDLIM_ICMP_TSTAMP);
4485 		case ICMP_UNREACH:
4486 		default:
4487 			return (BANDLIM_ICMP_UNREACH);
4488 	}
4489 }
4490 
4491 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst,u_short * reason)4492 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4493     struct pf_state_peer *src, struct pf_state_peer *dst,
4494     u_short *reason)
4495 {
4496 	/*
4497 	 * We are sending challenge ACK as a response to SYN packet, which
4498 	 * matches existing state (modulo TCP window check). Therefore packet
4499 	 * must be sent on behalf of destination.
4500 	 *
4501 	 * We expect sender to remain either silent, or send RST packet
4502 	 * so both, firewall and remote peer, can purge dead state from
4503 	 * memory.
4504 	 */
4505 	pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4506 	    pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4507 	    src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4508 	    s->rule->rtableid, reason);
4509 }
4510 
4511 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4512 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4513     sa_family_t af, struct pf_krule *r, int rtableid)
4514 {
4515 	struct pf_send_entry *pfse;
4516 	struct mbuf *m0;
4517 	struct pf_mtag *pf_mtag;
4518 
4519 	/* ICMP packet rate limitation. */
4520 	switch (af) {
4521 #ifdef INET6
4522 	case AF_INET6:
4523 		if (icmp6_ratelimit(NULL, type, code))
4524 			return;
4525 		break;
4526 #endif /* INET6 */
4527 #ifdef INET
4528 	case AF_INET:
4529 		if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4530 			return;
4531 		break;
4532 #endif /* INET */
4533 	}
4534 
4535 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4536 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4537 	if (pfse == NULL)
4538 		return;
4539 
4540 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4541 		free(pfse, M_PFTEMP);
4542 		return;
4543 	}
4544 
4545 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4546 		free(pfse, M_PFTEMP);
4547 		return;
4548 	}
4549 	/* XXX: revisit */
4550 	m0->m_flags |= M_SKIP_FIREWALL;
4551 
4552 	if (rtableid >= 0)
4553 		M_SETFIB(m0, rtableid);
4554 
4555 #ifdef ALTQ
4556 	if (r->qid) {
4557 		pf_mtag->qid = r->qid;
4558 		/* add hints for ecn */
4559 		pf_mtag->hdr = mtod(m0, struct ip *);
4560 	}
4561 #endif /* ALTQ */
4562 
4563 	switch (af) {
4564 #ifdef INET
4565 	case AF_INET:
4566 		pfse->pfse_type = PFSE_ICMP;
4567 		break;
4568 #endif /* INET */
4569 #ifdef INET6
4570 	case AF_INET6:
4571 		pfse->pfse_type = PFSE_ICMP6;
4572 		break;
4573 #endif /* INET6 */
4574 	}
4575 	pfse->pfse_m = m0;
4576 	pfse->icmpopts.type = type;
4577 	pfse->icmpopts.code = code;
4578 	pfse->icmpopts.mtu = mtu;
4579 	pf_send(pfse);
4580 }
4581 
4582 /*
4583  * Return ((n = 0) == (a = b [with mask m]))
4584  * Note: n != 0 => returns (a != b [with mask m])
4585  */
4586 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4587 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4588     const struct pf_addr *b, sa_family_t af)
4589 {
4590 	switch (af) {
4591 #ifdef INET
4592 	case AF_INET:
4593 		if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4594 			return (n == 0);
4595 		break;
4596 #endif /* INET */
4597 #ifdef INET6
4598 	case AF_INET6:
4599 		if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4600 			return (n == 0);
4601 		break;
4602 #endif /* INET6 */
4603 	}
4604 
4605 	return (n != 0);
4606 }
4607 
4608 /*
4609  * Return 1 if b <= a <= e, otherwise return 0.
4610  */
4611 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4612 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4613     const struct pf_addr *a, sa_family_t af)
4614 {
4615 	switch (af) {
4616 #ifdef INET
4617 	case AF_INET:
4618 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4619 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4620 			return (0);
4621 		break;
4622 #endif /* INET */
4623 #ifdef INET6
4624 	case AF_INET6: {
4625 		int	i;
4626 
4627 		/* check a >= b */
4628 		for (i = 0; i < 4; ++i)
4629 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4630 				break;
4631 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4632 				return (0);
4633 		/* check a <= e */
4634 		for (i = 0; i < 4; ++i)
4635 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4636 				break;
4637 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4638 				return (0);
4639 		break;
4640 	}
4641 #endif /* INET6 */
4642 	}
4643 	return (1);
4644 }
4645 
4646 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4647 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4648 {
4649 	switch (op) {
4650 	case PF_OP_IRG:
4651 		return ((p > a1) && (p < a2));
4652 	case PF_OP_XRG:
4653 		return ((p < a1) || (p > a2));
4654 	case PF_OP_RRG:
4655 		return ((p >= a1) && (p <= a2));
4656 	case PF_OP_EQ:
4657 		return (p == a1);
4658 	case PF_OP_NE:
4659 		return (p != a1);
4660 	case PF_OP_LT:
4661 		return (p < a1);
4662 	case PF_OP_LE:
4663 		return (p <= a1);
4664 	case PF_OP_GT:
4665 		return (p > a1);
4666 	case PF_OP_GE:
4667 		return (p >= a1);
4668 	}
4669 	return (0); /* never reached */
4670 }
4671 
4672 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4673 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4674 {
4675 	return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4676 }
4677 
4678 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4679 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4680 {
4681 	if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4682 		return (0);
4683 	return (pf_match(op, a1, a2, u));
4684 }
4685 
4686 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4687 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4688 {
4689 	if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4690 		return (0);
4691 	return (pf_match(op, a1, a2, g));
4692 }
4693 
4694 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4695 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4696 {
4697 	if (*tag == -1)
4698 		*tag = mtag;
4699 
4700 	return ((!r->match_tag_not && r->match_tag == *tag) ||
4701 	    (r->match_tag_not && r->match_tag != *tag));
4702 }
4703 
4704 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4705 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4706 {
4707 	struct ifnet *ifp = m->m_pkthdr.rcvif;
4708 	struct pfi_kkif *kif;
4709 
4710 	if (ifp == NULL)
4711 		return (0);
4712 
4713 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
4714 
4715 	if (kif == NULL) {
4716 		DPFPRINTF(PF_DEBUG_URGENT,
4717 		    "%s: kif == NULL, @%d via %s", __func__, r->nr,
4718 			r->rcv_ifname);
4719 		return (0);
4720 	}
4721 
4722 	return (pfi_kkif_match(r->rcv_kif, kif));
4723 }
4724 
4725 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4726 pf_tag_packet(struct pf_pdesc *pd, int tag)
4727 {
4728 
4729 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4730 
4731 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4732 		return (ENOMEM);
4733 
4734 	pd->pf_mtag->tag = tag;
4735 
4736 	return (0);
4737 }
4738 
4739 /*
4740  * XXX: We rely on malloc(9) returning pointer aligned addresses.
4741  */
4742 #define	PF_ANCHORSTACK_MATCH	0x00000001
4743 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
4744 
4745 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4746 #define	PF_ANCHOR_RULE(f)	(struct pf_krule *)			\
4747 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4748 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
4749 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4750 } while (0)
4751 
4752 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r,struct pf_krule_slist * match_rules)4753 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r,
4754     struct pf_krule_slist *match_rules)
4755 {
4756 	enum pf_test_status	rv;
4757 
4758 	PF_RULES_RASSERT();
4759 
4760 	if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
4761 		printf("%s: anchor stack overflow on %s\n",
4762 		    __func__, r->anchor->name);
4763 		return (PF_TEST_FAIL);
4764 	}
4765 
4766 	ctx->depth++;
4767 
4768 	if (r->anchor_wildcard) {
4769 		struct pf_kanchor *child;
4770 		rv = PF_TEST_OK;
4771 		RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
4772 			rv = pf_match_rule(ctx, &child->ruleset, match_rules);
4773 			if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
4774 				/*
4775 				 * we either hit a rule with quick action
4776 				 * (more likely), or hit some runtime
4777 				 * error (e.g. pool_get() failure).
4778 				 */
4779 				break;
4780 			}
4781 		}
4782 	} else {
4783 		rv = pf_match_rule(ctx, &r->anchor->ruleset, match_rules);
4784 		/*
4785 		 * Unless errors occured, stop iff any rule matched
4786 		 * within quick anchors.
4787 		 */
4788 		if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK &&
4789 		    *ctx->am == r)
4790 			rv = PF_TEST_QUICK;
4791 	}
4792 
4793 	ctx->depth--;
4794 
4795 	return (rv);
4796 }
4797 
4798 struct pf_keth_anchor_stackframe {
4799 	struct pf_keth_ruleset	*rs;
4800 	struct pf_keth_rule	*r;	/* XXX: + match bit */
4801 	struct pf_keth_anchor	*child;
4802 };
4803 
4804 #define	PF_ETH_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4805 #define	PF_ETH_ANCHOR_RULE(f)	(struct pf_keth_rule *)			\
4806 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4807 #define	PF_ETH_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 		\
4808 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4809 } while (0)
4810 
4811 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4812 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4813     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4814     struct pf_keth_rule **a, int *match)
4815 {
4816 	struct pf_keth_anchor_stackframe	*f;
4817 
4818 	NET_EPOCH_ASSERT();
4819 
4820 	if (match)
4821 		*match = 0;
4822 	if (*depth >= PF_ANCHOR_STACK_MAX) {
4823 		printf("%s: anchor stack overflow on %s\n",
4824 		    __func__, (*r)->anchor->name);
4825 		*r = TAILQ_NEXT(*r, entries);
4826 		return;
4827 	} else if (*depth == 0 && a != NULL)
4828 		*a = *r;
4829 	f = stack + (*depth)++;
4830 	f->rs = *rs;
4831 	f->r = *r;
4832 	if ((*r)->anchor_wildcard) {
4833 		struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4834 
4835 		if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4836 			*r = NULL;
4837 			return;
4838 		}
4839 		*rs = &f->child->ruleset;
4840 	} else {
4841 		f->child = NULL;
4842 		*rs = &(*r)->anchor->ruleset;
4843 	}
4844 	*r = TAILQ_FIRST((*rs)->active.rules);
4845 }
4846 
4847 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4848 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4849     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4850     struct pf_keth_rule **a, int *match)
4851 {
4852 	struct pf_keth_anchor_stackframe	*f;
4853 	struct pf_keth_rule *fr;
4854 	int quick = 0;
4855 
4856 	NET_EPOCH_ASSERT();
4857 
4858 	do {
4859 		if (*depth <= 0)
4860 			break;
4861 		f = stack + *depth - 1;
4862 		fr = PF_ETH_ANCHOR_RULE(f);
4863 		if (f->child != NULL) {
4864 			/*
4865 			 * This block traverses through
4866 			 * a wildcard anchor.
4867 			 */
4868 			if (match != NULL && *match) {
4869 				/*
4870 				 * If any of "*" matched, then
4871 				 * "foo/ *" matched, mark frame
4872 				 * appropriately.
4873 				 */
4874 				PF_ETH_ANCHOR_SET_MATCH(f);
4875 				*match = 0;
4876 			}
4877 			f->child = RB_NEXT(pf_keth_anchor_node,
4878 			    &fr->anchor->children, f->child);
4879 			if (f->child != NULL) {
4880 				*rs = &f->child->ruleset;
4881 				*r = TAILQ_FIRST((*rs)->active.rules);
4882 				if (*r == NULL)
4883 					continue;
4884 				else
4885 					break;
4886 			}
4887 		}
4888 		(*depth)--;
4889 		if (*depth == 0 && a != NULL)
4890 			*a = NULL;
4891 		*rs = f->rs;
4892 		if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4893 			quick = fr->quick;
4894 		*r = TAILQ_NEXT(fr, entries);
4895 	} while (*r == NULL);
4896 
4897 	return (quick);
4898 }
4899 
4900 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4901 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4902     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4903 {
4904 	switch (af) {
4905 #ifdef INET
4906 	case AF_INET:
4907 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4908 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4909 		break;
4910 #endif /* INET */
4911 #ifdef INET6
4912 	case AF_INET6:
4913 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4914 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4915 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4916 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4917 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4918 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4919 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4920 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4921 		break;
4922 #endif /* INET6 */
4923 	}
4924 }
4925 
4926 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4927 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4928 {
4929 	switch (af) {
4930 #ifdef INET
4931 	case AF_INET:
4932 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4933 		break;
4934 #endif /* INET */
4935 #ifdef INET6
4936 	case AF_INET6:
4937 		if (addr->addr32[3] == 0xffffffff) {
4938 			addr->addr32[3] = 0;
4939 			if (addr->addr32[2] == 0xffffffff) {
4940 				addr->addr32[2] = 0;
4941 				if (addr->addr32[1] == 0xffffffff) {
4942 					addr->addr32[1] = 0;
4943 					addr->addr32[0] =
4944 					    htonl(ntohl(addr->addr32[0]) + 1);
4945 				} else
4946 					addr->addr32[1] =
4947 					    htonl(ntohl(addr->addr32[1]) + 1);
4948 			} else
4949 				addr->addr32[2] =
4950 				    htonl(ntohl(addr->addr32[2]) + 1);
4951 		} else
4952 			addr->addr32[3] =
4953 			    htonl(ntohl(addr->addr32[3]) + 1);
4954 		break;
4955 #endif /* INET6 */
4956 	}
4957 }
4958 
4959 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4960 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4961 {
4962 	/*
4963 	 * Modern rules use the same flags in rules as they do in states.
4964 	 */
4965 	a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4966 	    PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4967 
4968 	/*
4969 	 * Old-style scrub rules have different flags which need to be translated.
4970 	 */
4971 	if (r->rule_flag & PFRULE_RANDOMID)
4972 		a->flags |= PFSTATE_RANDOMID;
4973 	if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4974 		a->flags |= PFSTATE_SETTOS;
4975 		a->set_tos = r->set_tos;
4976 	}
4977 
4978 	if (r->qid)
4979 		a->qid = r->qid;
4980 	if (r->pqid)
4981 		a->pqid = r->pqid;
4982 	if (r->rtableid >= 0)
4983 		a->rtableid = r->rtableid;
4984 	a->log |= r->log;
4985 	if (r->min_ttl)
4986 		a->min_ttl = r->min_ttl;
4987 	if (r->max_mss)
4988 		a->max_mss = r->max_mss;
4989 	if (r->dnpipe)
4990 		a->dnpipe = r->dnpipe;
4991 	if (r->dnrpipe)
4992 		a->dnrpipe = r->dnrpipe;
4993 	if (r->dnpipe || r->dnrpipe) {
4994 		if (r->free_flags & PFRULE_DN_IS_PIPE)
4995 			a->flags |= PFSTATE_DN_IS_PIPE;
4996 		else
4997 			a->flags &= ~PFSTATE_DN_IS_PIPE;
4998 	}
4999 	if (r->scrub_flags & PFSTATE_SETPRIO) {
5000 		a->set_prio[0] = r->set_prio[0];
5001 		a->set_prio[1] = r->set_prio[1];
5002 	}
5003 	if (r->allow_opts)
5004 		a->allow_opts = r->allow_opts;
5005 	if (r->max_pkt_size)
5006 		a->max_pkt_size = r->max_pkt_size;
5007 }
5008 
5009 int
pf_socket_lookup(struct pf_pdesc * pd)5010 pf_socket_lookup(struct pf_pdesc *pd)
5011 {
5012 	struct pf_addr		*saddr, *daddr;
5013 	u_int16_t		 sport, dport;
5014 	struct inpcbinfo	*pi;
5015 	struct inpcb		*inp;
5016 
5017 	pd->lookup.uid = -1;
5018 	pd->lookup.gid = -1;
5019 
5020 	switch (pd->proto) {
5021 	case IPPROTO_TCP:
5022 		sport = pd->hdr.tcp.th_sport;
5023 		dport = pd->hdr.tcp.th_dport;
5024 		pi = &V_tcbinfo;
5025 		break;
5026 	case IPPROTO_UDP:
5027 		sport = pd->hdr.udp.uh_sport;
5028 		dport = pd->hdr.udp.uh_dport;
5029 		pi = &V_udbinfo;
5030 		break;
5031 	default:
5032 		return (-1);
5033 	}
5034 	if (pd->dir == PF_IN) {
5035 		saddr = pd->src;
5036 		daddr = pd->dst;
5037 	} else {
5038 		u_int16_t	p;
5039 
5040 		p = sport;
5041 		sport = dport;
5042 		dport = p;
5043 		saddr = pd->dst;
5044 		daddr = pd->src;
5045 	}
5046 	switch (pd->af) {
5047 #ifdef INET
5048 	case AF_INET:
5049 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
5050 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5051 		if (inp == NULL) {
5052 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
5053 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
5054 			   INPLOOKUP_RLOCKPCB, NULL, pd->m);
5055 			if (inp == NULL)
5056 				return (-1);
5057 		}
5058 		break;
5059 #endif /* INET */
5060 #ifdef INET6
5061 	case AF_INET6:
5062 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
5063 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5064 		if (inp == NULL) {
5065 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
5066 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
5067 			    INPLOOKUP_RLOCKPCB, NULL, pd->m);
5068 			if (inp == NULL)
5069 				return (-1);
5070 		}
5071 		break;
5072 #endif /* INET6 */
5073 	default:
5074 		unhandled_af(pd->af);
5075 	}
5076 	INP_RLOCK_ASSERT(inp);
5077 	pd->lookup.uid = inp->inp_cred->cr_uid;
5078 	pd->lookup.gid = inp->inp_cred->cr_gid;
5079 	INP_RUNLOCK(inp);
5080 
5081 	return (1);
5082 }
5083 
5084 /* post: r  => (r[0] == type /\ r[1] >= min_typelen >= 2  "validity"
5085  *                      /\ (eoh - r) >= min_typelen >= 2  "safety"  )
5086  *
5087  * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
5088  */
5089 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)5090 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
5091     u_int8_t min_typelen)
5092 {
5093 	uint8_t	*eoh = opts + hlen;
5094 
5095 	if (min_typelen < 2)
5096 		return (NULL);
5097 
5098 	while ((eoh - opt) >= min_typelen) {
5099 		switch (*opt) {
5100 		case TCPOPT_EOL:
5101 			/* FALLTHROUGH - Workaround the failure of some
5102 			 systems to NOP-pad their bzero'd option buffers,
5103 			 producing spurious EOLs */
5104 		case TCPOPT_NOP:
5105 			opt++;
5106 			continue;
5107 		default:
5108 		if (opt[0] == type &&
5109 			    opt[1] >= min_typelen)
5110 			return (opt);
5111 		}
5112 
5113 		opt += MAX(opt[1], 2); /* evade infinite loops */
5114 	}
5115 
5116 	return (NULL);
5117 }
5118 
5119 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)5120 pf_get_wscale(struct pf_pdesc *pd)
5121 {
5122 	int	 olen;
5123 	uint8_t	 opts[MAX_TCPOPTLEN], *opt;
5124 	uint8_t	 wscale = 0;
5125 
5126 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5127 	if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
5128 	    pd->off + sizeof(struct tcphdr), opts, olen, NULL, pd->af))
5129 		return (0);
5130 
5131 	opt = opts;
5132 	while ((opt = pf_find_tcpopt(opt, opts, olen,
5133 		    TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5134 		wscale = opt[2];
5135 		wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5136 		wscale |= PF_WSCALE_FLAG;
5137 
5138 		opt += opt[1];
5139 	}
5140 
5141 	return (wscale);
5142 }
5143 
5144 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5145 pf_get_mss(struct pf_pdesc *pd)
5146 {
5147 	int		 olen;
5148 	uint8_t		 opts[MAX_TCPOPTLEN], *opt;
5149 	u_int16_t	 mss = V_tcp_mssdflt;
5150 
5151 	olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5152 	if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5153 	    pd->off + sizeof(struct tcphdr), opts, olen, NULL, pd->af))
5154 		return (0);
5155 
5156 	opt = opts;
5157 	while ((opt = pf_find_tcpopt(opt, opts, olen,
5158 	    TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5159 		memcpy(&mss, (opt + 2), 2);
5160 		mss = ntohs(mss);
5161 		opt += opt[1];
5162 	}
5163 
5164 	return (mss);
5165 }
5166 
5167 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5168 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5169 {
5170 	struct nhop_object *nh;
5171 #ifdef INET6
5172 	struct in6_addr		dst6;
5173 	uint32_t		scopeid;
5174 #endif /* INET6 */
5175 	int			 hlen = 0;
5176 	uint16_t		 mss = 0;
5177 
5178 	NET_EPOCH_ASSERT();
5179 
5180 	switch (af) {
5181 #ifdef INET
5182 	case AF_INET:
5183 		hlen = sizeof(struct ip);
5184 		nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5185 		if (nh != NULL)
5186 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5187 		break;
5188 #endif /* INET */
5189 #ifdef INET6
5190 	case AF_INET6:
5191 		hlen = sizeof(struct ip6_hdr);
5192 		in6_splitscope(&addr->v6, &dst6, &scopeid);
5193 		nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5194 		if (nh != NULL)
5195 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5196 		break;
5197 #endif /* INET6 */
5198 	}
5199 
5200 	mss = max(V_tcp_mssdflt, mss);
5201 	mss = min(mss, offer);
5202 	mss = max(mss, 64);		/* sanity - at least max opt space */
5203 	return (mss);
5204 }
5205 
5206 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5207 pf_tcp_iss(struct pf_pdesc *pd)
5208 {
5209 	SHA512_CTX ctx;
5210 	union {
5211 		uint8_t bytes[SHA512_DIGEST_LENGTH];
5212 		uint32_t words[1];
5213 	} digest;
5214 
5215 	if (V_pf_tcp_secret_init == 0) {
5216 		arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5217 		SHA512_Init(&V_pf_tcp_secret_ctx);
5218 		SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5219 		    sizeof(V_pf_tcp_secret));
5220 		V_pf_tcp_secret_init = 1;
5221 	}
5222 
5223 	ctx = V_pf_tcp_secret_ctx;
5224 
5225 	SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5226 	SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5227 	switch (pd->af) {
5228 	case AF_INET6:
5229 		SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5230 		SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5231 		break;
5232 	case AF_INET:
5233 		SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5234 		SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5235 		break;
5236 	}
5237 	SHA512_Final(digest.bytes, &ctx);
5238 	V_pf_tcp_iss_off += 4096;
5239 #define	ISN_RANDOM_INCREMENT (4096 - 1)
5240 	return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5241 	    V_pf_tcp_iss_off);
5242 #undef	ISN_RANDOM_INCREMENT
5243 }
5244 
5245 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5246 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5247 {
5248 	bool match = true;
5249 
5250 	/* Always matches if not set */
5251 	if (! r->isset)
5252 		return (!r->neg);
5253 
5254 	for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5255 		if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5256 			match = false;
5257 			break;
5258 		}
5259 	}
5260 
5261 	return (match ^ r->neg);
5262 }
5263 
5264 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5265 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5266 {
5267 	if (*tag == -1)
5268 		*tag = mtag;
5269 
5270 	return ((!r->match_tag_not && r->match_tag == *tag) ||
5271 	    (r->match_tag_not && r->match_tag != *tag));
5272 }
5273 
5274 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5275 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5276 {
5277 	/* If we don't have the interface drop the packet. */
5278 	if (ifp == NULL) {
5279 		m_freem(m);
5280 		return;
5281 	}
5282 
5283 	switch (ifp->if_type) {
5284 	case IFT_ETHER:
5285 	case IFT_XETHER:
5286 	case IFT_L2VLAN:
5287 	case IFT_BRIDGE:
5288 	case IFT_IEEE8023ADLAG:
5289 		break;
5290 	default:
5291 		m_freem(m);
5292 		return;
5293 	}
5294 
5295 	ifp->if_transmit(ifp, m);
5296 }
5297 
5298 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5299 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5300 {
5301 #ifdef INET
5302 	struct ip ip;
5303 #endif /* INET */
5304 #ifdef INET6
5305 	struct ip6_hdr ip6;
5306 #endif /* INET6 */
5307 	struct mbuf *m = *m0;
5308 	struct ether_header *e;
5309 	struct pf_keth_rule *r, *rm, *a = NULL;
5310 	struct pf_keth_ruleset *ruleset = NULL;
5311 	struct pf_mtag *mtag;
5312 	struct pf_keth_ruleq *rules;
5313 	struct pf_addr *src = NULL, *dst = NULL;
5314 	struct pfi_kkif *bridge_to;
5315 	sa_family_t af = 0;
5316 	uint16_t proto;
5317 	int asd = 0, match = 0;
5318 	int tag = -1;
5319 	uint8_t action;
5320 	struct pf_keth_anchor_stackframe	anchor_stack[PF_ANCHOR_STACK_MAX];
5321 
5322 	MPASS(kif->pfik_ifp->if_vnet == curvnet);
5323 	NET_EPOCH_ASSERT();
5324 
5325 	PF_RULES_RLOCK_TRACKER;
5326 
5327 	SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5328 
5329 	mtag = pf_find_mtag(m);
5330 	if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5331 		/* Dummynet re-injects packets after they've
5332 		 * completed their delay. We've already
5333 		 * processed them, so pass unconditionally. */
5334 
5335 		/* But only once. We may see the packet multiple times (e.g.
5336 		 * PFIL_IN/PFIL_OUT). */
5337 		pf_dummynet_flag_remove(m, mtag);
5338 
5339 		return (PF_PASS);
5340 	}
5341 
5342 	if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5343 	    (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5344 		DPFPRINTF(PF_DEBUG_URGENT,
5345 		    "%s: m_len < sizeof(struct ether_header)"
5346 		     ", pullup failed", __func__);
5347 		return (PF_DROP);
5348 	}
5349 	e = mtod(m, struct ether_header *);
5350 	proto = ntohs(e->ether_type);
5351 
5352 	switch (proto) {
5353 #ifdef INET
5354 	case ETHERTYPE_IP: {
5355 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5356 		    sizeof(ip)))
5357 			return (PF_DROP);
5358 
5359 		af = AF_INET;
5360 		m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5361 		    (caddr_t)&ip);
5362 		src = (struct pf_addr *)&ip.ip_src;
5363 		dst = (struct pf_addr *)&ip.ip_dst;
5364 		break;
5365 	}
5366 #endif /* INET */
5367 #ifdef INET6
5368 	case ETHERTYPE_IPV6: {
5369 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5370 		    sizeof(ip6)))
5371 			return (PF_DROP);
5372 
5373 		af = AF_INET6;
5374 		m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5375 		    (caddr_t)&ip6);
5376 		src = (struct pf_addr *)&ip6.ip6_src;
5377 		dst = (struct pf_addr *)&ip6.ip6_dst;
5378 		break;
5379 	}
5380 #endif /* INET6 */
5381 	}
5382 
5383 	PF_RULES_RLOCK();
5384 
5385 	ruleset = V_pf_keth;
5386 	rules = atomic_load_ptr(&ruleset->active.rules);
5387 	for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5388 		counter_u64_add(r->evaluations, 1);
5389 		SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5390 
5391 		if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5392 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5393 			    "kif");
5394 			r = r->skip[PFE_SKIP_IFP].ptr;
5395 		}
5396 		else if (r->direction && r->direction != dir) {
5397 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5398 			    "dir");
5399 			r = r->skip[PFE_SKIP_DIR].ptr;
5400 		}
5401 		else if (r->proto && r->proto != proto) {
5402 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5403 			    "proto");
5404 			r = r->skip[PFE_SKIP_PROTO].ptr;
5405 		}
5406 		else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5407 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5408 			    "src");
5409 			r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5410 		}
5411 		else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5412 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5413 			    "dst");
5414 			r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5415 		}
5416 		else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5417 		    r->ipsrc.neg, kif, M_GETFIB(m))) {
5418 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5419 			    "ip_src");
5420 			r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5421 		}
5422 		else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5423 		    r->ipdst.neg, kif, M_GETFIB(m))) {
5424 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5425 			    "ip_dst");
5426 			r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5427 		}
5428 		else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5429 		    mtag ? mtag->tag : 0)) {
5430 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5431 			    "match_tag");
5432 			r = TAILQ_NEXT(r, entries);
5433 		}
5434 		else {
5435 			if (r->tag)
5436 				tag = r->tag;
5437 			if (r->anchor == NULL) {
5438 				/* Rule matches */
5439 				rm = r;
5440 
5441 				SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5442 
5443 				if (r->quick)
5444 					break;
5445 
5446 				r = TAILQ_NEXT(r, entries);
5447 			} else {
5448 				pf_step_into_keth_anchor(anchor_stack, &asd,
5449 				    &ruleset, &r, &a, &match);
5450 			}
5451 		}
5452 		if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5453 		    &ruleset, &r, &a, &match))
5454 			break;
5455 	}
5456 
5457 	r = rm;
5458 
5459 	SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5460 
5461 	/* Default to pass. */
5462 	if (r == NULL) {
5463 		PF_RULES_RUNLOCK();
5464 		return (PF_PASS);
5465 	}
5466 
5467 	/* Execute action. */
5468 	counter_u64_add(r->packets[dir == PF_OUT], 1);
5469 	counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5470 	pf_update_timestamp(r);
5471 
5472 	/* Shortcut. Don't tag if we're just going to drop anyway. */
5473 	if (r->action == PF_DROP) {
5474 		PF_RULES_RUNLOCK();
5475 		return (PF_DROP);
5476 	}
5477 
5478 	if (tag > 0) {
5479 		if (mtag == NULL)
5480 			mtag = pf_get_mtag(m);
5481 		if (mtag == NULL) {
5482 			PF_RULES_RUNLOCK();
5483 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5484 			return (PF_DROP);
5485 		}
5486 		mtag->tag = tag;
5487 	}
5488 
5489 	if (r->qid != 0) {
5490 		if (mtag == NULL)
5491 			mtag = pf_get_mtag(m);
5492 		if (mtag == NULL) {
5493 			PF_RULES_RUNLOCK();
5494 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5495 			return (PF_DROP);
5496 		}
5497 		mtag->qid = r->qid;
5498 	}
5499 
5500 	action = r->action;
5501 	bridge_to = r->bridge_to;
5502 
5503 	/* Dummynet */
5504 	if (r->dnpipe) {
5505 		struct ip_fw_args dnflow;
5506 
5507 		/* Drop packet if dummynet is not loaded. */
5508 		if (ip_dn_io_ptr == NULL) {
5509 			PF_RULES_RUNLOCK();
5510 			m_freem(m);
5511 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5512 			return (PF_DROP);
5513 		}
5514 		if (mtag == NULL)
5515 			mtag = pf_get_mtag(m);
5516 		if (mtag == NULL) {
5517 			PF_RULES_RUNLOCK();
5518 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5519 			return (PF_DROP);
5520 		}
5521 
5522 		bzero(&dnflow, sizeof(dnflow));
5523 
5524 		/* We don't have port numbers here, so we set 0.  That means
5525 		 * that we'll be somewhat limited in distinguishing flows (i.e.
5526 		 * only based on IP addresses, not based on port numbers), but
5527 		 * it's better than nothing. */
5528 		dnflow.f_id.dst_port = 0;
5529 		dnflow.f_id.src_port = 0;
5530 		dnflow.f_id.proto = 0;
5531 
5532 		dnflow.rule.info = r->dnpipe;
5533 		dnflow.rule.info |= IPFW_IS_DUMMYNET;
5534 		if (r->dnflags & PFRULE_DN_IS_PIPE)
5535 			dnflow.rule.info |= IPFW_IS_PIPE;
5536 
5537 		dnflow.f_id.extra = dnflow.rule.info;
5538 
5539 		dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5540 		dnflow.flags |= IPFW_ARGS_ETHER;
5541 		dnflow.ifp = kif->pfik_ifp;
5542 
5543 		switch (af) {
5544 		case AF_INET:
5545 			dnflow.f_id.addr_type = 4;
5546 			dnflow.f_id.src_ip = src->v4.s_addr;
5547 			dnflow.f_id.dst_ip = dst->v4.s_addr;
5548 			break;
5549 		case AF_INET6:
5550 			dnflow.flags |= IPFW_ARGS_IP6;
5551 			dnflow.f_id.addr_type = 6;
5552 			dnflow.f_id.src_ip6 = src->v6;
5553 			dnflow.f_id.dst_ip6 = dst->v6;
5554 			break;
5555 		}
5556 
5557 		PF_RULES_RUNLOCK();
5558 
5559 		mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5560 		ip_dn_io_ptr(m0, &dnflow);
5561 		if (*m0 != NULL)
5562 			pf_dummynet_flag_remove(m, mtag);
5563 	} else {
5564 		PF_RULES_RUNLOCK();
5565 	}
5566 
5567 	if (action == PF_PASS && bridge_to) {
5568 		pf_bridge_to(bridge_to->pfik_ifp, *m0);
5569 		*m0 = NULL; /* We've eaten the packet. */
5570 	}
5571 
5572 	return (action);
5573 }
5574 
5575 #define PF_TEST_ATTRIB(t, a)		\
5576 	if (t) {			\
5577 		r = a;			\
5578 		continue;		\
5579 	} else do {			\
5580 	} while (0)
5581 
5582 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5583 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5584 {
5585 	struct pf_pdesc	*pd = ctx->pd;
5586 	u_short		 transerror;
5587 	u_int8_t	 nat_action;
5588 
5589 	if (r->rule_flag & PFRULE_AFTO) {
5590 		/* Don't translate if there was an old style NAT rule */
5591 		if (ctx->nr != NULL)
5592 			return (PFRES_TRANSLATE);
5593 
5594 		/* pass af-to rules, unsupported on match rules */
5595 		KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5596 		/* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5597 		ctx->nat_pool = &(r->nat);
5598 		ctx->nr = r;
5599 		pd->naf = r->naf;
5600 		if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5601 			return (PFRES_TRANSLATE);
5602 		}
5603 		return (PFRES_MATCH);
5604 	} else if (r->rdr.cur || r->nat.cur) {
5605 		/* Don't translate if there was an old style NAT rule */
5606 		if (ctx->nr != NULL)
5607 			return (PFRES_TRANSLATE);
5608 
5609 		/* match/pass nat-to/rdr-to rules */
5610 		ctx->nr = r;
5611 		if (r->nat.cur) {
5612 			nat_action = PF_NAT;
5613 			ctx->nat_pool = &(r->nat);
5614 		} else {
5615 			nat_action = PF_RDR;
5616 			ctx->nat_pool = &(r->rdr);
5617 		}
5618 
5619 		transerror = pf_get_transaddr(ctx, ctx->nr,
5620 		    nat_action, ctx->nat_pool);
5621 		if (transerror == PFRES_MATCH) {
5622 			ctx->rewrite += pf_translate_compat(ctx);
5623 			return(PFRES_MATCH);
5624 		}
5625 		return (transerror);
5626 	}
5627 
5628 	return (PFRES_MAX);
5629 }
5630 
5631 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset,struct pf_krule_slist * match_rules)5632 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset,
5633     struct pf_krule_slist *match_rules)
5634 {
5635 	struct pf_krule_item	*ri, *rt;
5636 	struct pf_krule		*r;
5637 	struct pf_krule		*save_a;
5638 	struct pf_kruleset	*save_aruleset;
5639 	struct pf_pdesc		*pd = ctx->pd;
5640 	u_short			 transerror;
5641 
5642 	r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5643 	while (r != NULL) {
5644 		if (ctx->pd->related_rule) {
5645 			*ctx->rm = ctx->pd->related_rule;
5646 			break;
5647 		}
5648 		PF_TEST_ATTRIB(r->rule_flag & PFRULE_EXPIRED,
5649 		    TAILQ_NEXT(r, entries));
5650 		/* Don't count expired rule evaluations. */
5651 		pf_counter_u64_add(&r->evaluations, 1);
5652 		PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5653 			r->skip[PF_SKIP_IFP]);
5654 		PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5655 			r->skip[PF_SKIP_DIR]);
5656 		PF_TEST_ATTRIB(r->af && r->af != pd->af,
5657 			r->skip[PF_SKIP_AF]);
5658 		PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5659 			r->skip[PF_SKIP_PROTO]);
5660 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5661 		    r->src.neg, pd->kif, M_GETFIB(pd->m)),
5662 			r->skip[PF_SKIP_SRC_ADDR]);
5663 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5664 		    r->dst.neg, NULL, M_GETFIB(pd->m)),
5665 			r->skip[PF_SKIP_DST_ADDR]);
5666 		switch (pd->virtual_proto) {
5667 		case PF_VPROTO_FRAGMENT:
5668 			/* tcp/udp only. port_op always 0 in other cases */
5669 			PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5670 				TAILQ_NEXT(r, entries));
5671 			PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5672 				TAILQ_NEXT(r, entries));
5673 			/* icmp only. type/code always 0 in other cases */
5674 			PF_TEST_ATTRIB((r->type || r->code),
5675 				TAILQ_NEXT(r, entries));
5676 			/* tcp/udp only. {uid|gid}.op always 0 in other cases */
5677 			PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5678 				TAILQ_NEXT(r, entries));
5679 			break;
5680 
5681 		case IPPROTO_TCP:
5682 			PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
5683 			    != r->flags,
5684 				TAILQ_NEXT(r, entries));
5685 			/* FALLTHROUGH */
5686 		case IPPROTO_SCTP:
5687 		case IPPROTO_UDP:
5688 			/* tcp/udp only. port_op always 0 in other cases */
5689 			PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5690 			    r->src.port[0], r->src.port[1], pd->nsport),
5691 				r->skip[PF_SKIP_SRC_PORT]);
5692 			/* tcp/udp only. port_op always 0 in other cases */
5693 			PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5694 			    r->dst.port[0], r->dst.port[1], pd->ndport),
5695 				r->skip[PF_SKIP_DST_PORT]);
5696 			/* tcp/udp only. uid.op always 0 in other cases */
5697 			PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5698 			    pf_socket_lookup(pd), 1)) &&
5699 			    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5700 			    pd->lookup.uid),
5701 				TAILQ_NEXT(r, entries));
5702 			/* tcp/udp only. gid.op always 0 in other cases */
5703 			PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5704 			    pf_socket_lookup(pd), 1)) &&
5705 			    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5706 			    pd->lookup.gid),
5707 				TAILQ_NEXT(r, entries));
5708 			break;
5709 
5710 		case IPPROTO_ICMP:
5711 		case IPPROTO_ICMPV6:
5712 			/* icmp only. type always 0 in other cases */
5713 			PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
5714 				TAILQ_NEXT(r, entries));
5715 			/* icmp only. type always 0 in other cases */
5716 			PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
5717 				TAILQ_NEXT(r, entries));
5718 			break;
5719 
5720 		default:
5721 			break;
5722 		}
5723 		PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5724 			TAILQ_NEXT(r, entries));
5725 		PF_TEST_ATTRIB(r->prio &&
5726 		    !pf_match_ieee8021q_pcp(r->prio, pd->m),
5727 			TAILQ_NEXT(r, entries));
5728 		PF_TEST_ATTRIB(r->prob &&
5729 		    r->prob <= arc4random(),
5730 			TAILQ_NEXT(r, entries));
5731 		PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
5732 		    &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
5733 			TAILQ_NEXT(r, entries));
5734 		PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5735 		   r->rcvifnot),
5736 			TAILQ_NEXT(r, entries));
5737 		PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5738 		    pd->virtual_proto != PF_VPROTO_FRAGMENT),
5739 			TAILQ_NEXT(r, entries));
5740 		PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5741 		    (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5742 		    pf_osfp_fingerprint(pd, ctx->th),
5743 		    r->os_fingerprint)),
5744 			TAILQ_NEXT(r, entries));
5745 		/* must be last! */
5746 		if (r->pktrate.limit) {
5747 			PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
5748 			    TAILQ_NEXT(r, entries));
5749 		}
5750 		/* FALLTHROUGH */
5751 		if (r->tag)
5752 			ctx->tag = r->tag;
5753 		if (r->anchor == NULL) {
5754 
5755 			if (r->rule_flag & PFRULE_ONCE) {
5756 				uint32_t	rule_flag;
5757 
5758 				rule_flag = r->rule_flag;
5759 				if ((rule_flag & PFRULE_EXPIRED) == 0 &&
5760 				    atomic_cmpset_int(&r->rule_flag, rule_flag,
5761 				    rule_flag | PFRULE_EXPIRED)) {
5762 					r->exptime = time_uptime;
5763 				} else {
5764 					r = TAILQ_NEXT(r, entries);
5765 					continue;
5766 				}
5767 			}
5768 
5769 			if (r->action == PF_MATCH) {
5770 				/*
5771 				 * Apply translations before increasing counters,
5772 				 * in case it fails.
5773 				 */
5774 				transerror = pf_rule_apply_nat(ctx, r);
5775 				switch (transerror) {
5776 				case PFRES_MATCH:
5777 					/* Translation action found in rule and applied successfully */
5778 				case PFRES_MAX:
5779 					/* No translation action found in rule */
5780 					break;
5781 				default:
5782 					/* Translation action found in rule but failed to apply */
5783 					REASON_SET(&ctx->reason, transerror);
5784 					return (PF_TEST_FAIL);
5785 				}
5786 				ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5787 				if (ri == NULL) {
5788 					REASON_SET(&ctx->reason, PFRES_MEMORY);
5789 					return (PF_TEST_FAIL);
5790 				}
5791 				ri->r = r;
5792 
5793 				if (SLIST_EMPTY(match_rules)) {
5794 					SLIST_INSERT_HEAD(match_rules, ri, entry);
5795 				} else {
5796 					SLIST_INSERT_AFTER(rt, ri, entry);
5797 				}
5798 				rt = ri;
5799 
5800 				pf_rule_to_actions(r, &pd->act);
5801 				if (r->log)
5802 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5803 					    ctx->a, ruleset, pd, 1, NULL);
5804 			} else {
5805 				/*
5806 				 * found matching r
5807 				 */
5808 				*ctx->rm = r;
5809 				/*
5810 				 * anchor, with ruleset, where r belongs to
5811 				 */
5812 				*ctx->am = ctx->a;
5813 				/*
5814 				 * ruleset where r belongs to
5815 				 */
5816 				*ctx->rsm = ruleset;
5817 				/*
5818 				 * ruleset, where anchor belongs to.
5819 				 */
5820 				ctx->arsm = ctx->aruleset;
5821 			}
5822 			if (pd->act.log & PF_LOG_MATCHES)
5823 				pf_log_matches(pd, r, ctx->a, ruleset, match_rules);
5824 			if (r->quick) {
5825 				ctx->test_status = PF_TEST_QUICK;
5826 				break;
5827 			}
5828 		} else {
5829 			save_a = ctx->a;
5830 			save_aruleset = ctx->aruleset;
5831 
5832 			ctx->a = r;			/* remember anchor */
5833 			ctx->aruleset = ruleset;	/* and its ruleset */
5834 			if (ctx->a->quick)
5835 				ctx->test_status = PF_TEST_QUICK;
5836 			/*
5837 			 * Note: we don't need to restore if we are not going
5838 			 * to continue with ruleset evaluation.
5839 			 */
5840 			if (pf_step_into_anchor(ctx, r, match_rules) != PF_TEST_OK) {
5841 				break;
5842 			}
5843 			ctx->a = save_a;
5844 			ctx->aruleset = save_aruleset;
5845 		}
5846 		r = TAILQ_NEXT(r, entries);
5847 	}
5848 
5849 
5850 	return (ctx->test_status);
5851 }
5852 
5853 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp,struct pf_krule_slist * match_rules)5854 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5855     struct pf_pdesc *pd, struct pf_krule **am,
5856     struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp,
5857     struct pf_krule_slist *match_rules)
5858 {
5859 	struct pf_krule		*r = NULL;
5860 	struct pf_kruleset	*ruleset = NULL;
5861 	struct pf_test_ctx	 ctx;
5862 	u_short			 transerror;
5863 	int			 action = PF_PASS;
5864 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
5865 	enum pf_test_status	 rv;
5866 
5867 	PF_RULES_RASSERT();
5868 
5869 	bzero(&ctx, sizeof(ctx));
5870 	ctx.tag = -1;
5871 	ctx.pd = pd;
5872 	ctx.rm = rm;
5873 	ctx.am = am;
5874 	ctx.rsm = rsm;
5875 	ctx.th = &pd->hdr.tcp;
5876 	ctx.reason = *reason;
5877 
5878 	pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
5879 	pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
5880 
5881 	if (inp != NULL) {
5882 		INP_LOCK_ASSERT(inp);
5883 		pd->lookup.uid = inp->inp_cred->cr_uid;
5884 		pd->lookup.gid = inp->inp_cred->cr_gid;
5885 		pd->lookup.done = 1;
5886 	}
5887 
5888 	if (pd->ip_sum)
5889 		bip_sum = *pd->ip_sum;
5890 
5891 	switch (pd->virtual_proto) {
5892 	case IPPROTO_TCP:
5893 		bproto_sum = ctx.th->th_sum;
5894 		pd->nsport = ctx.th->th_sport;
5895 		pd->ndport = ctx.th->th_dport;
5896 		break;
5897 	case IPPROTO_UDP:
5898 		bproto_sum = pd->hdr.udp.uh_sum;
5899 		pd->nsport = pd->hdr.udp.uh_sport;
5900 		pd->ndport = pd->hdr.udp.uh_dport;
5901 		break;
5902 	case IPPROTO_SCTP:
5903 		pd->nsport = pd->hdr.sctp.src_port;
5904 		pd->ndport = pd->hdr.sctp.dest_port;
5905 		break;
5906 #ifdef INET
5907 	case IPPROTO_ICMP:
5908 		MPASS(pd->af == AF_INET);
5909 		ctx.icmptype = pd->hdr.icmp.icmp_type;
5910 		ctx.icmpcode = pd->hdr.icmp.icmp_code;
5911 		ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5912 		    &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5913 		if (ctx.icmp_dir == PF_IN) {
5914 			pd->nsport = ctx.virtual_id;
5915 			pd->ndport = ctx.virtual_type;
5916 		} else {
5917 			pd->nsport = ctx.virtual_type;
5918 			pd->ndport = ctx.virtual_id;
5919 		}
5920 		break;
5921 #endif /* INET */
5922 #ifdef INET6
5923 	case IPPROTO_ICMPV6:
5924 		MPASS(pd->af == AF_INET6);
5925 		ctx.icmptype = pd->hdr.icmp6.icmp6_type;
5926 		ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
5927 		ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5928 		    &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5929 		if (ctx.icmp_dir == PF_IN) {
5930 			pd->nsport = ctx.virtual_id;
5931 			pd->ndport = ctx.virtual_type;
5932 		} else {
5933 			pd->nsport = ctx.virtual_type;
5934 			pd->ndport = ctx.virtual_id;
5935 		}
5936 
5937 		break;
5938 #endif /* INET6 */
5939 	default:
5940 		pd->nsport = pd->ndport = 0;
5941 		break;
5942 	}
5943 	pd->osport = pd->nsport;
5944 	pd->odport = pd->ndport;
5945 
5946 	/* check packet for BINAT/NAT/RDR */
5947 	transerror = pf_get_translation(&ctx);
5948 	switch (transerror) {
5949 	default:
5950 		/* A translation error occurred. */
5951 		REASON_SET(&ctx.reason, transerror);
5952 		goto cleanup;
5953 	case PFRES_MAX:
5954 		/* No match. */
5955 		break;
5956 	case PFRES_MATCH:
5957 		KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
5958 		KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
5959 		if (ctx.nr->log) {
5960 			PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
5961 			    ruleset, pd, 1, NULL);
5962 		}
5963 
5964 		ctx.rewrite += pf_translate_compat(&ctx);
5965 		ctx.nat_pool = &(ctx.nr->rdr);
5966 	}
5967 
5968 	if (ctx.nr && ctx.nr->natpass) {
5969 		r = ctx.nr;
5970 		ruleset = *ctx.rsm;
5971 	} else {
5972 		ruleset = &pf_main_ruleset;
5973 		rv = pf_match_rule(&ctx, ruleset, match_rules);
5974 		if (rv == PF_TEST_FAIL) {
5975 			/*
5976 			 * Reason has been set in pf_match_rule() already.
5977 			 */
5978 			goto cleanup;
5979 		}
5980 
5981 		r = *ctx.rm;			/* matching rule */
5982 		ctx.a = *ctx.am;		/* rule that defines an anchor containing 'r' */
5983 		ruleset = *ctx.rsm;		/* ruleset of the anchor defined by the rule 'a' */
5984 		ctx.aruleset = ctx.arsm;	/* ruleset of the 'a' rule itself */
5985 
5986 		/* apply actions for last matching pass/block rule */
5987 		pf_rule_to_actions(r, &pd->act);
5988 		transerror = pf_rule_apply_nat(&ctx, r);
5989 		switch (transerror) {
5990 		case PFRES_MATCH:
5991 			/* Translation action found in rule and applied successfully */
5992 		case PFRES_MAX:
5993 			/* No translation action found in rule */
5994 			break;
5995 		default:
5996 			/* Translation action found in rule but failed to apply */
5997 			REASON_SET(&ctx.reason, transerror);
5998 			goto cleanup;
5999 		}
6000 	}
6001 
6002 	REASON_SET(&ctx.reason, PFRES_MATCH);
6003 
6004 	if (r->log) {
6005 		if (ctx.rewrite)
6006 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6007 		PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
6008 	}
6009 	if (pd->act.log & PF_LOG_MATCHES)
6010 		pf_log_matches(pd, r, ctx.a, ruleset, match_rules);
6011 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
6012 	   (r->action == PF_DROP) &&
6013 	    ((r->rule_flag & PFRULE_RETURNRST) ||
6014 	    (r->rule_flag & PFRULE_RETURNICMP) ||
6015 	    (r->rule_flag & PFRULE_RETURN))) {
6016 		pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
6017 		    bip_sum, &ctx.reason, r->rtableid);
6018 	}
6019 
6020 	if (r->action == PF_DROP)
6021 		goto cleanup;
6022 
6023 	if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
6024 		REASON_SET(&ctx.reason, PFRES_MEMORY);
6025 		goto cleanup;
6026 	}
6027 	if (pd->act.rtableid >= 0)
6028 		M_SETFIB(pd->m, pd->act.rtableid);
6029 
6030 	if (r->rt) {
6031 		/*
6032 		 * Set act.rt here instead of in pf_rule_to_actions() because
6033 		 * it is applied only from the last pass rule. For rules
6034 		 * with the prefer-ipv6-nexthop option act.rt_af is a hint
6035 		 * about AF of the forwarded packet and might be changed.
6036 		 */
6037 		pd->act.rt = r->rt;
6038 		if (r->rt == PF_REPLYTO)
6039 			pd->act.rt_af = pd->af;
6040 		else
6041 			pd->act.rt_af = pd->naf;
6042 		if ((transerror = pf_map_addr_sn(pd->af, r, pd->src,
6043 		    &pd->act.rt_addr, &pd->act.rt_af, &pd->act.rt_kif, NULL,
6044 		    &(r->route), PF_SN_ROUTE)) != PFRES_MATCH) {
6045 			REASON_SET(&ctx.reason, transerror);
6046 			goto cleanup;
6047 		}
6048 	}
6049 
6050 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
6051 	   (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
6052 	    (pd->flags & PFDESC_TCP_NORM)))) {
6053 		bool nat64;
6054 
6055 		action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum,
6056 		    match_rules);
6057 		ctx.sk = ctx.nk = NULL;
6058 		if (action != PF_PASS) {
6059 			pf_udp_mapping_release(ctx.udp_mapping);
6060 			if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
6061 			    ctx.reason == PFRES_MEMORY)
6062 				pd->act.log |= PF_LOG_FORCE;
6063 			if (action == PF_DROP &&
6064 			    (r->rule_flag & PFRULE_RETURN))
6065 				pf_return(r, ctx.nr, pd, ctx.th,
6066 				    bproto_sum, bip_sum, &ctx.reason,
6067 				    pd->act.rtableid);
6068 			*reason = ctx.reason;
6069 			return (action);
6070 		}
6071 
6072 		nat64 = pd->af != pd->naf;
6073 		if (nat64) {
6074 			int			 ret;
6075 
6076 			if (ctx.sk == NULL)
6077 				ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
6078 			if (ctx.nk == NULL)
6079 				ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
6080 
6081 			if (pd->dir == PF_IN) {
6082 				ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
6083 				    ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
6084 				    ctx.sk->port[pd->sidx], ctx.virtual_type,
6085 				    ctx.icmp_dir);
6086 			} else {
6087 				ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
6088 				    ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
6089 				    ctx.sk->port[pd->didx], ctx.virtual_type,
6090 				    ctx.icmp_dir);
6091 			}
6092 
6093 			if (ret < 0)
6094 				goto cleanup;
6095 
6096 			ctx.rewrite += ret;
6097 
6098 			if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
6099 				action = PF_AFRT;
6100 		}
6101 	} else {
6102 		uma_zfree(V_pf_state_key_z, ctx.sk);
6103 		uma_zfree(V_pf_state_key_z, ctx.nk);
6104 		ctx.sk = ctx.nk = NULL;
6105 		pf_udp_mapping_release(ctx.udp_mapping);
6106 	}
6107 
6108 	/* copy back packet headers if we performed NAT operations */
6109 	if (ctx.rewrite)
6110 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6111 
6112 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
6113 	    pd->dir == PF_OUT &&
6114 	    V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
6115 		/*
6116 		 * We want the state created, but we dont
6117 		 * want to send this in case a partner
6118 		 * firewall has to know about it to allow
6119 		 * replies through it.
6120 		 */
6121 		*reason = ctx.reason;
6122 		return (PF_DEFER);
6123 	}
6124 
6125 	*reason = ctx.reason;
6126 	return (action);
6127 
6128 cleanup:
6129 	uma_zfree(V_pf_state_key_z, ctx.sk);
6130 	uma_zfree(V_pf_state_key_z, ctx.nk);
6131 	pf_udp_mapping_release(ctx.udp_mapping);
6132 	*reason = ctx.reason;
6133 
6134 	return (PF_DROP);
6135 }
6136 
6137 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum,struct pf_krule_slist * match_rules)6138 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
6139     struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum,
6140     struct pf_krule_slist *match_rules)
6141 {
6142 	struct pf_pdesc		*pd = ctx->pd;
6143 	struct pf_kstate	*s = NULL;
6144 	struct pf_ksrc_node	*sns[PF_SN_MAX] = { NULL };
6145 	/*
6146 	 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6147 	 *        but for PF_SN_NAT it is different. Don't try optimizing it,
6148 	 *        just store all 3 hashes.
6149 	 */
6150 	struct pf_srchash	*snhs[PF_SN_MAX] = { NULL };
6151 	struct tcphdr		*th = &pd->hdr.tcp;
6152 	u_int16_t		 mss = V_tcp_mssdflt;
6153 	u_short			 sn_reason;
6154 
6155 	/* check maximums */
6156 	if (r->max_states &&
6157 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6158 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6159 		REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6160 		goto csfailed;
6161 	}
6162 	/* src node for limits */
6163 	if ((r->rule_flag & PFRULE_SRCTRACK) &&
6164 	    (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6165 	    NULL, NULL, pd->af, PF_SN_LIMIT)) != 0) {
6166 		REASON_SET(&ctx->reason, sn_reason);
6167 		goto csfailed;
6168 	}
6169 	/* src node for route-to rule */
6170 	if (r->rt) {
6171 		if ((r->route.opts & PF_POOL_STICKYADDR) &&
6172 		    (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6173 		    pd->af, &pd->act.rt_addr, pd->act.rt_kif, pd->act.rt_af,
6174 		    PF_SN_ROUTE)) != 0) {
6175 			REASON_SET(&ctx->reason, sn_reason);
6176 			goto csfailed;
6177 		}
6178 	}
6179 	/* src node for translation rule */
6180 	if (ctx->nr != NULL) {
6181 		KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6182 		/*
6183 		 * The NAT addresses are chosen during ruleset parsing.
6184 		 * The new afto code stores post-nat addresses in nsaddr.
6185 		 * The old nat code (also used for new nat-to rules) creates
6186 		 * state keys and stores addresses in them.
6187 		 */
6188 		if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6189 		    (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6190 		    ctx->sk ? &(ctx->sk->addr[pd->sidx]) : pd->src, pd->af,
6191 		    ctx->nk ? &(ctx->nk->addr[1]) : &(pd->nsaddr), NULL,
6192 		    pd->naf, PF_SN_NAT)) != 0 ) {
6193 			REASON_SET(&ctx->reason, sn_reason);
6194 			goto csfailed;
6195 		}
6196 	}
6197 	s = pf_alloc_state(M_NOWAIT);
6198 	if (s == NULL) {
6199 		REASON_SET(&ctx->reason, PFRES_MEMORY);
6200 		goto csfailed;
6201 	}
6202 	s->rule = r;
6203 	s->nat_rule = ctx->nr;
6204 	s->anchor = ctx->a;
6205 	s->match_rules = *match_rules;
6206 	memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6207 
6208 	if (pd->act.allow_opts)
6209 		s->state_flags |= PFSTATE_ALLOWOPTS;
6210 	if (r->rule_flag & PFRULE_STATESLOPPY)
6211 		s->state_flags |= PFSTATE_SLOPPY;
6212 	if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6213 		s->state_flags |= PFSTATE_SCRUB_TCP;
6214 	if ((r->rule_flag & PFRULE_PFLOW) ||
6215 	    (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6216 		s->state_flags |= PFSTATE_PFLOW;
6217 
6218 	s->act.log = pd->act.log & PF_LOG_ALL;
6219 	s->sync_state = PFSYNC_S_NONE;
6220 	s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6221 
6222 	if (ctx->nr != NULL)
6223 		s->act.log |= ctx->nr->log & PF_LOG_ALL;
6224 	switch (pd->proto) {
6225 	case IPPROTO_TCP:
6226 		s->src.seqlo = ntohl(th->th_seq);
6227 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6228 		if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6229 		    r->keep_state == PF_STATE_MODULATE) {
6230 			/* Generate sequence number modulator */
6231 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6232 			    0)
6233 				s->src.seqdiff = 1;
6234 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6235 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
6236 			ctx->rewrite = 1;
6237 		} else
6238 			s->src.seqdiff = 0;
6239 		if (tcp_get_flags(th) & TH_SYN) {
6240 			s->src.seqhi++;
6241 			s->src.wscale = pf_get_wscale(pd);
6242 		}
6243 		s->src.max_win = MAX(ntohs(th->th_win), 1);
6244 		if (s->src.wscale & PF_WSCALE_MASK) {
6245 			/* Remove scale factor from initial window */
6246 			int win = s->src.max_win;
6247 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6248 			s->src.max_win = (win - 1) >>
6249 			    (s->src.wscale & PF_WSCALE_MASK);
6250 		}
6251 		if (tcp_get_flags(th) & TH_FIN)
6252 			s->src.seqhi++;
6253 		s->dst.seqhi = 1;
6254 		s->dst.max_win = 1;
6255 		pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6256 		pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6257 		s->timeout = PFTM_TCP_FIRST_PACKET;
6258 		atomic_add_32(&V_pf_status.states_halfopen, 1);
6259 		break;
6260 	case IPPROTO_UDP:
6261 		pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6262 		pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6263 		s->timeout = PFTM_UDP_FIRST_PACKET;
6264 		break;
6265 	case IPPROTO_SCTP:
6266 		pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6267 		pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6268 		s->timeout = PFTM_SCTP_FIRST_PACKET;
6269 		break;
6270 	case IPPROTO_ICMP:
6271 #ifdef INET6
6272 	case IPPROTO_ICMPV6:
6273 #endif /* INET6 */
6274 		s->timeout = PFTM_ICMP_FIRST_PACKET;
6275 		break;
6276 	default:
6277 		pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6278 		pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6279 		s->timeout = PFTM_OTHER_FIRST_PACKET;
6280 	}
6281 
6282 	s->creation = s->expire = pf_get_uptime();
6283 
6284 	if (pd->proto == IPPROTO_TCP) {
6285 		if (s->state_flags & PFSTATE_SCRUB_TCP &&
6286 		    pf_normalize_tcp_init(pd, th, &s->src)) {
6287 			REASON_SET(&ctx->reason, PFRES_MEMORY);
6288 			goto csfailed;
6289 		}
6290 		if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6291 		    pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6292 		    &s->src, &s->dst, &ctx->rewrite)) {
6293 			/* This really shouldn't happen!!! */
6294 			DPFPRINTF(PF_DEBUG_URGENT,
6295 			    "%s: tcp normalize failed on first "
6296 			     "pkt", __func__);
6297 			goto csfailed;
6298 		}
6299 	} else if (pd->proto == IPPROTO_SCTP) {
6300 		if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6301 			goto csfailed;
6302 		if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6303 			goto csfailed;
6304 	}
6305 	s->direction = pd->dir;
6306 
6307 	/*
6308 	 * sk/nk could already been setup by pf_get_translation().
6309 	 */
6310 	if (ctx->sk == NULL && ctx->nk == NULL) {
6311 		MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6312 		MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6313 		if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6314 		    &ctx->sk, &ctx->nk)) {
6315 			goto csfailed;
6316 		}
6317 	} else
6318 		KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6319 		    __func__, ctx->nr, ctx->sk, ctx->nk));
6320 
6321 	/* Swap sk/nk for PF_OUT. */
6322 	if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6323 	    (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6324 	    (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6325 		REASON_SET(&ctx->reason, PFRES_STATEINS);
6326 		goto drop;
6327 	} else
6328 		*sm = s;
6329 	ctx->sk = ctx->nk = NULL;
6330 
6331 	STATE_INC_COUNTERS(s);
6332 
6333 	/*
6334 	 * Lock order is important: first state, then source node.
6335 	 */
6336 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6337 		if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6338 			s->sns[sn_type] = sns[sn_type];
6339 			PF_HASHROW_UNLOCK(snhs[sn_type]);
6340 		}
6341 	}
6342 
6343 	if (ctx->tag > 0)
6344 		s->tag = ctx->tag;
6345 	if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6346 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) {
6347 		pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6348 		pf_undo_nat(ctx->nr, pd, bip_sum);
6349 		s->src.seqhi = arc4random();
6350 		/* Find mss option */
6351 		int rtid = M_GETFIB(pd->m);
6352 		mss = pf_get_mss(pd);
6353 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6354 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6355 		s->src.mss = mss;
6356 		pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6357 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6358 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6359 		    pd->act.rtableid, &ctx->reason);
6360 		REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6361 		return (PF_SYNPROXY_DROP);
6362 	}
6363 
6364 	s->udp_mapping = ctx->udp_mapping;
6365 
6366 	return (PF_PASS);
6367 
6368 csfailed:
6369 	uma_zfree(V_pf_state_key_z, ctx->sk);
6370 	uma_zfree(V_pf_state_key_z, ctx->nk);
6371 
6372 	for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6373 		if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6374 			if (--sns[sn_type]->states == 0 &&
6375 			    sns[sn_type]->expire == 0) {
6376 				pf_unlink_src_node(sns[sn_type]);
6377 				pf_free_src_node(sns[sn_type]);
6378 				counter_u64_add(
6379 				    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6380 			}
6381 			PF_HASHROW_UNLOCK(snhs[sn_type]);
6382 		}
6383 	}
6384 
6385 drop:
6386 	if (s != NULL) {
6387 		pf_src_tree_remove_state(s);
6388 		s->timeout = PFTM_UNLINKED;
6389 		pf_free_state(s);
6390 	}
6391 
6392 	return (PF_DROP);
6393 }
6394 
6395 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6396 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6397     struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6398     int icmp_dir)
6399 {
6400 	/*
6401 	 * pf_translate() implements OpenBSD's "new" NAT approach.
6402 	 * We don't follow it, because it involves a breaking syntax change
6403 	 * (removing nat/rdr rules, moving it into regular pf rules.)
6404 	 * It also moves NAT processing to be done after normal rules evaluation
6405 	 * whereas in FreeBSD that's done before rules processing.
6406 	 *
6407 	 * We adopt the function only for nat64, and keep other NAT processing
6408 	 * before rules processing.
6409 	 */
6410 	int	rewrite = 0;
6411 	int	afto = pd->af != pd->naf;
6412 
6413 	MPASS(afto);
6414 
6415 	switch (pd->proto) {
6416 	case IPPROTO_TCP:
6417 	case IPPROTO_UDP:
6418 	case IPPROTO_SCTP:
6419 		if (afto || *pd->sport != sport) {
6420 			pf_change_ap(pd, pd->src, pd->sport,
6421 			    saddr, sport);
6422 			rewrite = 1;
6423 		}
6424 		if (afto || *pd->dport != dport) {
6425 			pf_change_ap(pd, pd->dst, pd->dport,
6426 			    daddr, dport);
6427 			rewrite = 1;
6428 		}
6429 		break;
6430 
6431 #ifdef INET
6432 	case IPPROTO_ICMP:
6433 		/* pf_translate() is also used when logging invalid packets */
6434 		if (pd->af != AF_INET)
6435 			return (0);
6436 
6437 		if (afto) {
6438 			if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6439 				return (-1);
6440 			pd->proto = IPPROTO_ICMPV6;
6441 			rewrite = 1;
6442 		}
6443 		if (virtual_type == htons(ICMP_ECHO)) {
6444 			u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6445 
6446 			if (icmpid != pd->hdr.icmp.icmp_id) {
6447 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6448 				    pd->hdr.icmp.icmp_cksum,
6449 				    pd->hdr.icmp.icmp_id, icmpid, 0);
6450 				pd->hdr.icmp.icmp_id = icmpid;
6451 				/* XXX TODO copyback. */
6452 				rewrite = 1;
6453 			}
6454 		}
6455 		break;
6456 #endif /* INET */
6457 
6458 #ifdef INET6
6459 	case IPPROTO_ICMPV6:
6460 		/* pf_translate() is also used when logging invalid packets */
6461 		if (pd->af != AF_INET6)
6462 			return (0);
6463 
6464 		if (afto) {
6465 			/* ip_sum will be recalculated in pf_translate_af */
6466 			if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6467 				return (0);
6468 			pd->proto = IPPROTO_ICMP;
6469 			rewrite = 1;
6470 		}
6471 		break;
6472 #endif /* INET6 */
6473 
6474 	default:
6475 		break;
6476 	}
6477 
6478 	return (rewrite);
6479 }
6480 
6481 int
pf_translate_compat(struct pf_test_ctx * ctx)6482 pf_translate_compat(struct pf_test_ctx *ctx)
6483 {
6484 	struct pf_pdesc		*pd = ctx->pd;
6485 	struct pf_state_key	*nk = ctx->nk;
6486 	struct tcphdr		*th = &pd->hdr.tcp;
6487 	int 			 rewrite = 0;
6488 
6489 	KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
6490 	KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
6491 
6492 	switch (pd->virtual_proto) {
6493 	case IPPROTO_TCP:
6494 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6495 		    nk->port[pd->sidx] != pd->nsport) {
6496 			pf_change_ap(pd, pd->src, &th->th_sport,
6497 			    &nk->addr[pd->sidx], nk->port[pd->sidx]);
6498 			pd->sport = &th->th_sport;
6499 			pd->nsport = th->th_sport;
6500 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6501 		}
6502 
6503 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6504 		    nk->port[pd->didx] != pd->ndport) {
6505 			pf_change_ap(pd, pd->dst, &th->th_dport,
6506 			    &nk->addr[pd->didx], nk->port[pd->didx]);
6507 			pd->dport = &th->th_dport;
6508 			pd->ndport = th->th_dport;
6509 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6510 		}
6511 		rewrite++;
6512 		break;
6513 	case IPPROTO_UDP:
6514 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6515 		    nk->port[pd->sidx] != pd->nsport) {
6516 			pf_change_ap(pd, pd->src,
6517 			    &pd->hdr.udp.uh_sport,
6518 			    &nk->addr[pd->sidx],
6519 			    nk->port[pd->sidx]);
6520 			pd->sport = &pd->hdr.udp.uh_sport;
6521 			pd->nsport = pd->hdr.udp.uh_sport;
6522 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6523 		}
6524 
6525 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6526 		    nk->port[pd->didx] != pd->ndport) {
6527 			pf_change_ap(pd, pd->dst,
6528 			    &pd->hdr.udp.uh_dport,
6529 			    &nk->addr[pd->didx],
6530 			    nk->port[pd->didx]);
6531 			pd->dport = &pd->hdr.udp.uh_dport;
6532 			pd->ndport = pd->hdr.udp.uh_dport;
6533 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6534 		}
6535 		rewrite++;
6536 		break;
6537 	case IPPROTO_SCTP: {
6538 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6539 		    nk->port[pd->sidx] != pd->nsport) {
6540 			pf_change_ap(pd, pd->src,
6541 			    &pd->hdr.sctp.src_port,
6542 			    &nk->addr[pd->sidx],
6543 			    nk->port[pd->sidx]);
6544 			pd->sport = &pd->hdr.sctp.src_port;
6545 			pd->nsport = pd->hdr.sctp.src_port;
6546 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6547 		}
6548 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6549 		    nk->port[pd->didx] != pd->ndport) {
6550 			pf_change_ap(pd, pd->dst,
6551 			    &pd->hdr.sctp.dest_port,
6552 			    &nk->addr[pd->didx],
6553 			    nk->port[pd->didx]);
6554 			pd->dport = &pd->hdr.sctp.dest_port;
6555 			pd->ndport = pd->hdr.sctp.dest_port;
6556 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6557 		}
6558 		break;
6559 	}
6560 #ifdef INET
6561 	case IPPROTO_ICMP:
6562 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
6563 			pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
6564 			    nk->addr[pd->sidx].v4.s_addr, 0);
6565 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6566 		}
6567 
6568 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
6569 			pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
6570 			    nk->addr[pd->didx].v4.s_addr, 0);
6571 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6572 		}
6573 
6574 		if (ctx->virtual_type == htons(ICMP_ECHO) &&
6575 		    nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
6576 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6577 			    pd->hdr.icmp.icmp_cksum, pd->nsport,
6578 			    nk->port[pd->sidx], 0);
6579 			pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
6580 			pd->sport = &pd->hdr.icmp.icmp_id;
6581 		}
6582 		m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
6583 		break;
6584 #endif /* INET */
6585 #ifdef INET6
6586 	case IPPROTO_ICMPV6:
6587 		if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
6588 			pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
6589 			    &nk->addr[pd->sidx], 0);
6590 			pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6591 		}
6592 
6593 		if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
6594 			pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
6595 			    &nk->addr[pd->didx], 0);
6596 			pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6597 		}
6598 		rewrite++;
6599 		break;
6600 #endif /* INET */
6601 	default:
6602 		switch (pd->af) {
6603 #ifdef INET
6604 		case AF_INET:
6605 			if (PF_ANEQ(&pd->nsaddr,
6606 				&nk->addr[pd->sidx], AF_INET)) {
6607 				pf_change_a(&pd->src->v4.s_addr,
6608 				    pd->ip_sum,
6609 				    nk->addr[pd->sidx].v4.s_addr, 0);
6610 				pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6611 			}
6612 
6613 			if (PF_ANEQ(&pd->ndaddr,
6614 				&nk->addr[pd->didx], AF_INET)) {
6615 				pf_change_a(&pd->dst->v4.s_addr,
6616 				    pd->ip_sum,
6617 				    nk->addr[pd->didx].v4.s_addr, 0);
6618 				pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6619 			}
6620 			break;
6621 #endif /* INET */
6622 #ifdef INET6
6623 		case AF_INET6:
6624 			if (PF_ANEQ(&pd->nsaddr,
6625 				&nk->addr[pd->sidx], AF_INET6)) {
6626 				pf_addrcpy(&pd->nsaddr, &nk->addr[pd->sidx],
6627 				    pd->af);
6628 				pf_addrcpy(pd->src, &nk->addr[pd->sidx], pd->af);
6629 			}
6630 
6631 			if (PF_ANEQ(&pd->ndaddr,
6632 				&nk->addr[pd->didx], AF_INET6)) {
6633 				pf_addrcpy(&pd->ndaddr, &nk->addr[pd->didx],
6634 				    pd->af);
6635 				pf_addrcpy(pd->dst, &nk->addr[pd->didx],
6636 				    pd->af);
6637 			}
6638 			break;
6639 #endif /* INET6 */
6640 		}
6641 		break;
6642 	}
6643 	return (rewrite);
6644 }
6645 
6646 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6647 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6648     u_short *reason, int *copyback, struct pf_state_peer *src,
6649     struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6650 {
6651 	struct tcphdr		*th = &pd->hdr.tcp;
6652 	u_int16_t		 win = ntohs(th->th_win);
6653 	u_int32_t		 ack, end, data_end, seq, orig_seq;
6654 	u_int8_t		 sws, dws;
6655 	int			 ackskew;
6656 
6657 	if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6658 		sws = src->wscale & PF_WSCALE_MASK;
6659 		dws = dst->wscale & PF_WSCALE_MASK;
6660 	} else
6661 		sws = dws = 0;
6662 
6663 	/*
6664 	 * Sequence tracking algorithm from Guido van Rooij's paper:
6665 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
6666 	 *	tcp_filtering.ps
6667 	 */
6668 
6669 	orig_seq = seq = ntohl(th->th_seq);
6670 	if (src->seqlo == 0) {
6671 		/* First packet from this end. Set its state */
6672 
6673 		if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6674 		    src->scrub == NULL) {
6675 			if (pf_normalize_tcp_init(pd, th, src)) {
6676 				REASON_SET(reason, PFRES_MEMORY);
6677 				return (PF_DROP);
6678 			}
6679 		}
6680 
6681 		/* Deferred generation of sequence number modulator */
6682 		if (dst->seqdiff && !src->seqdiff) {
6683 			/* use random iss for the TCP server */
6684 			while ((src->seqdiff = arc4random() - seq) == 0)
6685 				;
6686 			ack = ntohl(th->th_ack) - dst->seqdiff;
6687 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6688 			    src->seqdiff), 0);
6689 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6690 			*copyback = 1;
6691 		} else {
6692 			ack = ntohl(th->th_ack);
6693 		}
6694 
6695 		end = seq + pd->p_len;
6696 		if (tcp_get_flags(th) & TH_SYN) {
6697 			end++;
6698 			if (dst->wscale & PF_WSCALE_FLAG) {
6699 				src->wscale = pf_get_wscale(pd);
6700 				if (src->wscale & PF_WSCALE_FLAG) {
6701 					/* Remove scale factor from initial
6702 					 * window */
6703 					sws = src->wscale & PF_WSCALE_MASK;
6704 					win = ((u_int32_t)win + (1 << sws) - 1)
6705 					    >> sws;
6706 					dws = dst->wscale & PF_WSCALE_MASK;
6707 				} else {
6708 					/* fixup other window */
6709 					dst->max_win = MIN(TCP_MAXWIN,
6710 					    (u_int32_t)dst->max_win <<
6711 					    (dst->wscale & PF_WSCALE_MASK));
6712 					/* in case of a retrans SYN|ACK */
6713 					dst->wscale = 0;
6714 				}
6715 			}
6716 		}
6717 		data_end = end;
6718 		if (tcp_get_flags(th) & TH_FIN)
6719 			end++;
6720 
6721 		src->seqlo = seq;
6722 		if (src->state < TCPS_SYN_SENT)
6723 			pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6724 
6725 		/*
6726 		 * May need to slide the window (seqhi may have been set by
6727 		 * the crappy stack check or if we picked up the connection
6728 		 * after establishment)
6729 		 */
6730 		if (src->seqhi == 1 ||
6731 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6732 			src->seqhi = end + MAX(1, dst->max_win << dws);
6733 		if (win > src->max_win)
6734 			src->max_win = win;
6735 
6736 	} else {
6737 		ack = ntohl(th->th_ack) - dst->seqdiff;
6738 		if (src->seqdiff) {
6739 			/* Modulate sequence numbers */
6740 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6741 			    src->seqdiff), 0);
6742 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6743 			*copyback = 1;
6744 		}
6745 		end = seq + pd->p_len;
6746 		if (tcp_get_flags(th) & TH_SYN)
6747 			end++;
6748 		data_end = end;
6749 		if (tcp_get_flags(th) & TH_FIN)
6750 			end++;
6751 	}
6752 
6753 	if ((tcp_get_flags(th) & TH_ACK) == 0) {
6754 		/* Let it pass through the ack skew check */
6755 		ack = dst->seqlo;
6756 	} else if ((ack == 0 &&
6757 	    (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6758 	    /* broken tcp stacks do not set ack */
6759 	    (dst->state < TCPS_SYN_SENT)) {
6760 		/*
6761 		 * Many stacks (ours included) will set the ACK number in an
6762 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
6763 		 */
6764 		ack = dst->seqlo;
6765 	}
6766 
6767 	if (seq == end) {
6768 		/* Ease sequencing restrictions on no data packets */
6769 		seq = src->seqlo;
6770 		data_end = end = seq;
6771 	}
6772 
6773 	ackskew = dst->seqlo - ack;
6774 
6775 	/*
6776 	 * Need to demodulate the sequence numbers in any TCP SACK options
6777 	 * (Selective ACK). We could optionally validate the SACK values
6778 	 * against the current ACK window, either forwards or backwards, but
6779 	 * I'm not confident that SACK has been implemented properly
6780 	 * everywhere. It wouldn't surprise me if several stacks accidentally
6781 	 * SACK too far backwards of previously ACKed data. There really aren't
6782 	 * any security implications of bad SACKing unless the target stack
6783 	 * doesn't validate the option length correctly. Someone trying to
6784 	 * spoof into a TCP connection won't bother blindly sending SACK
6785 	 * options anyway.
6786 	 */
6787 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6788 		if (pf_modulate_sack(pd, th, dst))
6789 			*copyback = 1;
6790 	}
6791 
6792 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
6793 	if (SEQ_GEQ(src->seqhi, data_end) &&
6794 	    /* Last octet inside other's window space */
6795 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6796 	    /* Retrans: not more than one window back */
6797 	    (ackskew >= -MAXACKWINDOW) &&
6798 	    /* Acking not more than one reassembled fragment backwards */
6799 	    (ackskew <= (MAXACKWINDOW << sws)) &&
6800 	    /* Acking not more than one window forward */
6801 	    ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6802 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
6803 	    /* Require an exact/+1 sequence match on resets when possible */
6804 	    (SEQ_GEQ(orig_seq, src->seqlo - (dst->max_win << dws)) &&
6805 	    SEQ_LEQ(orig_seq, src->seqlo + 1) && ackskew == 0 &&
6806 	    (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)))) {
6807 		/* Allow resets to match sequence window if ack is perfect match */
6808 
6809 		if (dst->scrub || src->scrub) {
6810 			if (pf_normalize_tcp_stateful(pd, reason, th,
6811 			    state, src, dst, copyback))
6812 				return (PF_DROP);
6813 		}
6814 
6815 		/* update max window */
6816 		if (src->max_win < win)
6817 			src->max_win = win;
6818 		/* synchronize sequencing */
6819 		if (SEQ_GT(end, src->seqlo))
6820 			src->seqlo = end;
6821 		/* slide the window of what the other end can send */
6822 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6823 			dst->seqhi = ack + MAX((win << sws), 1);
6824 
6825 		/* update states */
6826 		if (tcp_get_flags(th) & TH_SYN)
6827 			if (src->state < TCPS_SYN_SENT)
6828 				pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6829 		if (tcp_get_flags(th) & TH_FIN)
6830 			if (src->state < TCPS_CLOSING)
6831 				pf_set_protostate(state, psrc, TCPS_CLOSING);
6832 		if (tcp_get_flags(th) & TH_ACK) {
6833 			if (dst->state == TCPS_SYN_SENT) {
6834 				pf_set_protostate(state, pdst,
6835 				    TCPS_ESTABLISHED);
6836 				if (src->state == TCPS_ESTABLISHED &&
6837 				    state->sns[PF_SN_LIMIT] != NULL &&
6838 				    pf_src_connlimit(state)) {
6839 					REASON_SET(reason, PFRES_SRCLIMIT);
6840 					return (PF_DROP);
6841 				}
6842 			} else if (dst->state == TCPS_CLOSING)
6843 				pf_set_protostate(state, pdst,
6844 				    TCPS_FIN_WAIT_2);
6845 		}
6846 		if (tcp_get_flags(th) & TH_RST)
6847 			pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6848 
6849 		/* update expire time */
6850 		state->expire = pf_get_uptime();
6851 		if (src->state >= TCPS_FIN_WAIT_2 &&
6852 		    dst->state >= TCPS_FIN_WAIT_2)
6853 			state->timeout = PFTM_TCP_CLOSED;
6854 		else if (src->state >= TCPS_CLOSING &&
6855 		    dst->state >= TCPS_CLOSING)
6856 			state->timeout = PFTM_TCP_FIN_WAIT;
6857 		else if (src->state < TCPS_ESTABLISHED ||
6858 		    dst->state < TCPS_ESTABLISHED)
6859 			state->timeout = PFTM_TCP_OPENING;
6860 		else if (src->state >= TCPS_CLOSING ||
6861 		    dst->state >= TCPS_CLOSING)
6862 			state->timeout = PFTM_TCP_CLOSING;
6863 		else
6864 			state->timeout = PFTM_TCP_ESTABLISHED;
6865 
6866 		/* Fall through to PASS packet */
6867 
6868 	} else if ((dst->state < TCPS_SYN_SENT ||
6869 		dst->state >= TCPS_FIN_WAIT_2 ||
6870 		src->state >= TCPS_FIN_WAIT_2) &&
6871 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6872 	    /* Within a window forward of the originating packet */
6873 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6874 	    /* Within a window backward of the originating packet */
6875 
6876 		/*
6877 		 * This currently handles three situations:
6878 		 *  1) Stupid stacks will shotgun SYNs before their peer
6879 		 *     replies.
6880 		 *  2) When PF catches an already established stream (the
6881 		 *     firewall rebooted, the state table was flushed, routes
6882 		 *     changed...)
6883 		 *  3) Packets get funky immediately after the connection
6884 		 *     closes (this should catch Solaris spurious ACK|FINs
6885 		 *     that web servers like to spew after a close)
6886 		 *
6887 		 * This must be a little more careful than the above code
6888 		 * since packet floods will also be caught here. We don't
6889 		 * update the TTL here to mitigate the damage of a packet
6890 		 * flood and so the same code can handle awkward establishment
6891 		 * and a loosened connection close.
6892 		 * In the establishment case, a correct peer response will
6893 		 * validate the connection, go through the normal state code
6894 		 * and keep updating the state TTL.
6895 		 */
6896 
6897 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6898 			printf("pf: loose state match: ");
6899 			pf_print_state(state);
6900 			pf_print_flags(tcp_get_flags(th));
6901 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6902 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6903 			    pd->p_len, ackskew, (unsigned long long)state->packets[0],
6904 			    (unsigned long long)state->packets[1],
6905 			    pd->dir == PF_IN ? "in" : "out",
6906 			    pd->dir == state->direction ? "fwd" : "rev");
6907 		}
6908 
6909 		if (dst->scrub || src->scrub) {
6910 			if (pf_normalize_tcp_stateful(pd, reason, th,
6911 			    state, src, dst, copyback))
6912 				return (PF_DROP);
6913 		}
6914 
6915 		/* update max window */
6916 		if (src->max_win < win)
6917 			src->max_win = win;
6918 		/* synchronize sequencing */
6919 		if (SEQ_GT(end, src->seqlo))
6920 			src->seqlo = end;
6921 		/* slide the window of what the other end can send */
6922 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6923 			dst->seqhi = ack + MAX((win << sws), 1);
6924 
6925 		/*
6926 		 * Cannot set dst->seqhi here since this could be a shotgunned
6927 		 * SYN and not an already established connection.
6928 		 */
6929 
6930 		if (tcp_get_flags(th) & TH_FIN)
6931 			if (src->state < TCPS_CLOSING)
6932 				pf_set_protostate(state, psrc, TCPS_CLOSING);
6933 		if (tcp_get_flags(th) & TH_RST)
6934 			pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6935 
6936 		/* Fall through to PASS packet */
6937 
6938 	} else {
6939 		if (state->dst.state == TCPS_SYN_SENT &&
6940 		    state->src.state == TCPS_SYN_SENT) {
6941 			/* Send RST for state mismatches during handshake */
6942 			if (!(tcp_get_flags(th) & TH_RST))
6943 				pf_send_tcp(state->rule, pd->af,
6944 				    pd->dst, pd->src, th->th_dport,
6945 				    th->th_sport, ntohl(th->th_ack), 0,
6946 				    TH_RST, 0, 0,
6947 				    state->rule->return_ttl, M_SKIP_FIREWALL,
6948 				    0, 0, state->act.rtableid, reason);
6949 			src->seqlo = 0;
6950 			src->seqhi = 1;
6951 			src->max_win = 1;
6952 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6953 			printf("pf: BAD state: ");
6954 			pf_print_state(state);
6955 			pf_print_flags(tcp_get_flags(th));
6956 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6957 			    "pkts=%llu:%llu dir=%s,%s\n",
6958 			    seq, orig_seq, ack, pd->p_len, ackskew,
6959 			    (unsigned long long)state->packets[0],
6960 			    (unsigned long long)state->packets[1],
6961 			    pd->dir == PF_IN ? "in" : "out",
6962 			    pd->dir == state->direction ? "fwd" : "rev");
6963 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
6964 			    SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6965 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6966 			    ' ': '2',
6967 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6968 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6969 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6970 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6971 		}
6972 		REASON_SET(reason, PFRES_BADSTATE);
6973 		return (PF_DROP);
6974 	}
6975 
6976 	return (PF_PASS);
6977 }
6978 
6979 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6980 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6981     u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6982     u_int8_t psrc, u_int8_t pdst)
6983 {
6984 	struct tcphdr		*th = &pd->hdr.tcp;
6985 
6986 	if (tcp_get_flags(th) & TH_SYN)
6987 		if (src->state < TCPS_SYN_SENT)
6988 			pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6989 	if (tcp_get_flags(th) & TH_FIN)
6990 		if (src->state < TCPS_CLOSING)
6991 			pf_set_protostate(state, psrc, TCPS_CLOSING);
6992 	if (tcp_get_flags(th) & TH_ACK) {
6993 		if (dst->state == TCPS_SYN_SENT) {
6994 			pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
6995 			if (src->state == TCPS_ESTABLISHED &&
6996 			    state->sns[PF_SN_LIMIT] != NULL &&
6997 			    pf_src_connlimit(state)) {
6998 				REASON_SET(reason, PFRES_SRCLIMIT);
6999 				return (PF_DROP);
7000 			}
7001 		} else if (dst->state == TCPS_CLOSING) {
7002 			pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
7003 		} else if (src->state == TCPS_SYN_SENT &&
7004 		    dst->state < TCPS_SYN_SENT) {
7005 			/*
7006 			 * Handle a special sloppy case where we only see one
7007 			 * half of the connection. If there is a ACK after
7008 			 * the initial SYN without ever seeing a packet from
7009 			 * the destination, set the connection to established.
7010 			 */
7011 			pf_set_protostate(state, PF_PEER_BOTH,
7012 			    TCPS_ESTABLISHED);
7013 			dst->state = src->state = TCPS_ESTABLISHED;
7014 			if (state->sns[PF_SN_LIMIT] != NULL &&
7015 			    pf_src_connlimit(state)) {
7016 				REASON_SET(reason, PFRES_SRCLIMIT);
7017 				return (PF_DROP);
7018 			}
7019 		} else if (src->state == TCPS_CLOSING &&
7020 		    dst->state == TCPS_ESTABLISHED &&
7021 		    dst->seqlo == 0) {
7022 			/*
7023 			 * Handle the closing of half connections where we
7024 			 * don't see the full bidirectional FIN/ACK+ACK
7025 			 * handshake.
7026 			 */
7027 			pf_set_protostate(state, pdst, TCPS_CLOSING);
7028 		}
7029 	}
7030 	if (tcp_get_flags(th) & TH_RST)
7031 		pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
7032 
7033 	/* update expire time */
7034 	state->expire = pf_get_uptime();
7035 	if (src->state >= TCPS_FIN_WAIT_2 &&
7036 	    dst->state >= TCPS_FIN_WAIT_2)
7037 		state->timeout = PFTM_TCP_CLOSED;
7038 	else if (src->state >= TCPS_CLOSING &&
7039 	    dst->state >= TCPS_CLOSING)
7040 		state->timeout = PFTM_TCP_FIN_WAIT;
7041 	else if (src->state < TCPS_ESTABLISHED ||
7042 	    dst->state < TCPS_ESTABLISHED)
7043 		state->timeout = PFTM_TCP_OPENING;
7044 	else if (src->state >= TCPS_CLOSING ||
7045 	    dst->state >= TCPS_CLOSING)
7046 		state->timeout = PFTM_TCP_CLOSING;
7047 	else
7048 		state->timeout = PFTM_TCP_ESTABLISHED;
7049 
7050 	return (PF_PASS);
7051 }
7052 
7053 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)7054 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
7055 {
7056 	struct pf_state_key	*sk = state->key[pd->didx];
7057 	struct tcphdr		*th = &pd->hdr.tcp;
7058 
7059 	if (state->src.state == PF_TCPS_PROXY_SRC) {
7060 		if (pd->dir != state->direction) {
7061 			REASON_SET(reason, PFRES_SYNPROXY);
7062 			return (PF_SYNPROXY_DROP);
7063 		}
7064 		if (tcp_get_flags(th) & TH_SYN) {
7065 			if (ntohl(th->th_seq) != state->src.seqlo) {
7066 				REASON_SET(reason, PFRES_SYNPROXY);
7067 				return (PF_DROP);
7068 			}
7069 			pf_send_tcp(state->rule, pd->af, pd->dst,
7070 			    pd->src, th->th_dport, th->th_sport,
7071 			    state->src.seqhi, ntohl(th->th_seq) + 1,
7072 			    TH_SYN|TH_ACK, 0, state->src.mss, 0,
7073 			    M_SKIP_FIREWALL, 0, 0, state->act.rtableid,
7074 			    reason);
7075 			REASON_SET(reason, PFRES_SYNPROXY);
7076 			return (PF_SYNPROXY_DROP);
7077 		} else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
7078 		    (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7079 		    (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7080 			REASON_SET(reason, PFRES_SYNPROXY);
7081 			return (PF_DROP);
7082 		} else if (state->sns[PF_SN_LIMIT] != NULL &&
7083 		    pf_src_connlimit(state)) {
7084 			REASON_SET(reason, PFRES_SRCLIMIT);
7085 			return (PF_DROP);
7086 		} else
7087 			pf_set_protostate(state, PF_PEER_SRC,
7088 			    PF_TCPS_PROXY_DST);
7089 	}
7090 	if (state->src.state == PF_TCPS_PROXY_DST) {
7091 		if (pd->dir == state->direction) {
7092 			if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
7093 			    (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7094 			    (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7095 				REASON_SET(reason, PFRES_SYNPROXY);
7096 				return (PF_DROP);
7097 			}
7098 			state->src.max_win = MAX(ntohs(th->th_win), 1);
7099 			if (state->dst.seqhi == 1)
7100 				state->dst.seqhi = arc4random();
7101 			pf_send_tcp(state->rule, pd->af,
7102 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
7103 			    sk->port[pd->sidx], sk->port[pd->didx],
7104 			    state->dst.seqhi, 0, TH_SYN, 0,
7105 			    state->src.mss, 0,
7106 			    state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
7107 			    state->tag, 0, state->act.rtableid,
7108 			    reason);
7109 			REASON_SET(reason, PFRES_SYNPROXY);
7110 			return (PF_SYNPROXY_DROP);
7111 		} else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
7112 		    (TH_SYN|TH_ACK)) ||
7113 		    (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
7114 			REASON_SET(reason, PFRES_SYNPROXY);
7115 			return (PF_DROP);
7116 		} else {
7117 			state->dst.max_win = MAX(ntohs(th->th_win), 1);
7118 			state->dst.seqlo = ntohl(th->th_seq);
7119 			pf_send_tcp(state->rule, pd->af, pd->dst,
7120 			    pd->src, th->th_dport, th->th_sport,
7121 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
7122 			    TH_ACK, state->src.max_win, 0, 0, 0,
7123 			    state->tag, 0, state->act.rtableid,
7124 			    reason);
7125 			pf_send_tcp(state->rule, pd->af,
7126 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
7127 			    sk->port[pd->sidx], sk->port[pd->didx],
7128 			    state->src.seqhi + 1, state->src.seqlo + 1,
7129 			    TH_ACK, state->dst.max_win, 0, 0,
7130 			    M_SKIP_FIREWALL, 0, 0, state->act.rtableid,
7131 			    reason);
7132 			state->src.seqdiff = state->dst.seqhi -
7133 			    state->src.seqlo;
7134 			state->dst.seqdiff = state->src.seqhi -
7135 			    state->dst.seqlo;
7136 			state->src.seqhi = state->src.seqlo +
7137 			    state->dst.max_win;
7138 			state->dst.seqhi = state->dst.seqlo +
7139 			    state->src.max_win;
7140 			state->src.wscale = state->dst.wscale = 0;
7141 			pf_set_protostate(state, PF_PEER_BOTH,
7142 			    TCPS_ESTABLISHED);
7143 			REASON_SET(reason, PFRES_SYNPROXY);
7144 			return (PF_SYNPROXY_DROP);
7145 		}
7146 	}
7147 
7148 	return (PF_PASS);
7149 }
7150 
7151 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7152 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
7153 {
7154 	struct pf_state_key_cmp	 key;
7155 	int			 copyback = 0;
7156 	struct pf_state_peer	*src, *dst;
7157 	uint8_t			 psrc, pdst;
7158 	int			 action;
7159 
7160 	bzero(&key, sizeof(key));
7161 	key.af = pd->af;
7162 	key.proto = pd->virtual_proto;
7163 	pf_addrcpy(&key.addr[pd->sidx], pd->src, key.af);
7164 	pf_addrcpy(&key.addr[pd->didx], pd->dst, key.af);
7165 	key.port[pd->sidx] = pd->osport;
7166 	key.port[pd->didx] = pd->odport;
7167 
7168 	action = pf_find_state(pd, &key, state);
7169 	if (action != PF_MATCH)
7170 		return (action);
7171 
7172 	action = PF_PASS;
7173 	if (pd->dir == (*state)->direction) {
7174 		if (PF_REVERSED_KEY(*state, pd->af)) {
7175 			src = &(*state)->dst;
7176 			dst = &(*state)->src;
7177 			psrc = PF_PEER_DST;
7178 			pdst = PF_PEER_SRC;
7179 		} else {
7180 			src = &(*state)->src;
7181 			dst = &(*state)->dst;
7182 			psrc = PF_PEER_SRC;
7183 			pdst = PF_PEER_DST;
7184 		}
7185 	} else {
7186 		if (PF_REVERSED_KEY(*state, pd->af)) {
7187 			src = &(*state)->src;
7188 			dst = &(*state)->dst;
7189 			psrc = PF_PEER_SRC;
7190 			pdst = PF_PEER_DST;
7191 		} else {
7192 			src = &(*state)->dst;
7193 			dst = &(*state)->src;
7194 			psrc = PF_PEER_DST;
7195 			pdst = PF_PEER_SRC;
7196 		}
7197 	}
7198 
7199 	switch (pd->virtual_proto) {
7200 	case IPPROTO_TCP: {
7201 		struct tcphdr		*th = &pd->hdr.tcp;
7202 
7203 		if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7204 			return (action);
7205 		if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7206 		    ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7207 		    pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7208 			if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7209 			    (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7210 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
7211 					printf("pf: state reuse ");
7212 					pf_print_state(*state);
7213 					pf_print_flags(tcp_get_flags(th));
7214 					printf("\n");
7215 				}
7216 				/* XXX make sure it's the same direction ?? */
7217 				pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7218 				pf_remove_state(*state);
7219 				*state = NULL;
7220 				return (PF_DROP);
7221 			} else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7222 			    (*state)->dst.state >= TCPS_ESTABLISHED) {
7223 				/*
7224 				 * SYN matches existing state???
7225 				 * Typically happens when sender boots up after
7226 				 * sudden panic. Certain protocols (NFSv3) are
7227 				 * always using same port numbers. Challenge
7228 				 * ACK enables all parties (firewall and peers)
7229 				 * to get in sync again.
7230 				 */
7231 				pf_send_challenge_ack(pd, *state, src, dst, reason);
7232 				return (PF_DROP);
7233 			}
7234 		}
7235 		if ((*state)->state_flags & PFSTATE_SLOPPY) {
7236 			if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7237 			    psrc, pdst) == PF_DROP)
7238 				return (PF_DROP);
7239 		} else {
7240 			int	 ret;
7241 
7242 			ret = pf_tcp_track_full(*state, pd, reason,
7243 			    &copyback, src, dst, psrc, pdst);
7244 			if (ret == PF_DROP)
7245 				return (PF_DROP);
7246 		}
7247 		break;
7248 	}
7249 	case IPPROTO_UDP:
7250 		/* update states */
7251 		if (src->state < PFUDPS_SINGLE)
7252 			pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7253 		if (dst->state == PFUDPS_SINGLE)
7254 			pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7255 
7256 		/* update expire time */
7257 		(*state)->expire = pf_get_uptime();
7258 		if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7259 			(*state)->timeout = PFTM_UDP_MULTIPLE;
7260 		else
7261 			(*state)->timeout = PFTM_UDP_SINGLE;
7262 		break;
7263 	case IPPROTO_SCTP:
7264 		if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7265 		    (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7266 		    pd->sctp_flags & PFDESC_SCTP_INIT) {
7267 			pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7268 			pf_remove_state(*state);
7269 			*state = NULL;
7270 			return (PF_DROP);
7271 		}
7272 
7273 		if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7274 			return (PF_DROP);
7275 
7276 		/* Track state. */
7277 		if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7278 			if (src->state < SCTP_COOKIE_WAIT) {
7279 				pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7280 				(*state)->timeout = PFTM_SCTP_OPENING;
7281 			}
7282 		}
7283 		if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7284 			MPASS(dst->scrub != NULL);
7285 			if (dst->scrub->pfss_v_tag == 0)
7286 				dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7287 		}
7288 
7289 		/*
7290 		 * Bind to the correct interface if we're if-bound. For multihomed
7291 		 * extra associations we don't know which interface that will be until
7292 		 * here, so we've inserted the state on V_pf_all. Fix that now.
7293 		 */
7294 		if ((*state)->kif == V_pfi_all &&
7295 		    (*state)->rule->rule_flag & PFRULE_IFBOUND)
7296 			(*state)->kif = pd->kif;
7297 
7298 		if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7299 			if (src->state < SCTP_ESTABLISHED) {
7300 				pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7301 				(*state)->timeout = PFTM_SCTP_ESTABLISHED;
7302 			}
7303 		}
7304 		if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7305 		    PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7306 			if (src->state < SCTP_SHUTDOWN_PENDING) {
7307 				pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7308 				(*state)->timeout = PFTM_SCTP_CLOSING;
7309 			}
7310 		}
7311 		if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7312 			pf_set_protostate(*state, psrc, SCTP_CLOSED);
7313 			(*state)->timeout = PFTM_SCTP_CLOSED;
7314 		}
7315 
7316 		(*state)->expire = pf_get_uptime();
7317 		break;
7318 	default:
7319 		/* update states */
7320 		if (src->state < PFOTHERS_SINGLE)
7321 			pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7322 		if (dst->state == PFOTHERS_SINGLE)
7323 			pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7324 
7325 		/* update expire time */
7326 		(*state)->expire = pf_get_uptime();
7327 		if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7328 			(*state)->timeout = PFTM_OTHER_MULTIPLE;
7329 		else
7330 			(*state)->timeout = PFTM_OTHER_SINGLE;
7331 		break;
7332 	}
7333 
7334 	/* translate source/destination address, if necessary */
7335 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7336 		struct pf_state_key	*nk;
7337 		int			 afto, sidx, didx;
7338 
7339 		if (PF_REVERSED_KEY(*state, pd->af))
7340 			nk = (*state)->key[pd->sidx];
7341 		else
7342 			nk = (*state)->key[pd->didx];
7343 
7344 		afto = pd->af != nk->af;
7345 
7346 		if (afto && (*state)->direction == PF_IN) {
7347 			sidx = pd->didx;
7348 			didx = pd->sidx;
7349 		} else {
7350 			sidx = pd->sidx;
7351 			didx = pd->didx;
7352 		}
7353 
7354 		if (afto) {
7355 			pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], nk->af);
7356 			pf_addrcpy(&pd->ndaddr, &nk->addr[didx], nk->af);
7357 			pd->naf = nk->af;
7358 			action = PF_AFRT;
7359 		}
7360 
7361 		if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7362 		    nk->port[sidx] != pd->osport)
7363 			pf_change_ap(pd, pd->src, pd->sport,
7364 			    &nk->addr[sidx], nk->port[sidx]);
7365 
7366 		if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7367 		    nk->port[didx] != pd->odport)
7368 			pf_change_ap(pd, pd->dst, pd->dport,
7369 			    &nk->addr[didx], nk->port[didx]);
7370 
7371 		copyback = 1;
7372 	}
7373 
7374 	if (copyback && pd->hdrlen > 0)
7375 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7376 
7377 	return (action);
7378 }
7379 
7380 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7381 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7382     u_short *reason)
7383 {
7384 	struct pf_state_peer	*src;
7385 	if (pd->dir == state->direction) {
7386 		if (PF_REVERSED_KEY(state, pd->af))
7387 			src = &state->dst;
7388 		else
7389 			src = &state->src;
7390 	} else {
7391 		if (PF_REVERSED_KEY(state, pd->af))
7392 			src = &state->src;
7393 		else
7394 			src = &state->dst;
7395 	}
7396 
7397 	if (src->scrub != NULL) {
7398 		if (src->scrub->pfss_v_tag == 0)
7399 			src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7400 		else  if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7401 			return (PF_DROP);
7402 	}
7403 
7404 	return (PF_PASS);
7405 }
7406 
7407 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7408 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7409 {
7410 	struct pf_sctp_endpoint key;
7411 	struct pf_sctp_endpoint *ep;
7412 	struct pf_state_key *sks = s->key[PF_SK_STACK];
7413 	struct pf_sctp_source *i, *tmp;
7414 
7415 	if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7416 		return;
7417 
7418 	PF_SCTP_ENDPOINTS_LOCK();
7419 
7420 	key.v_tag = s->dst.scrub->pfss_v_tag;
7421 	ep  = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7422 	if (ep != NULL) {
7423 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7424 			if (pf_addr_cmp(&i->addr,
7425 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7426 			    s->key[PF_SK_WIRE]->af) == 0) {
7427 				SDT_PROBE3(pf, sctp, multihome, remove,
7428 				    key.v_tag, s, i);
7429 				TAILQ_REMOVE(&ep->sources, i, entry);
7430 				free(i, M_PFTEMP);
7431 				break;
7432 			}
7433 		}
7434 
7435 		if (TAILQ_EMPTY(&ep->sources)) {
7436 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7437 			free(ep, M_PFTEMP);
7438 		}
7439 	}
7440 
7441 	/* Other direction. */
7442 	key.v_tag = s->src.scrub->pfss_v_tag;
7443 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7444 	if (ep != NULL) {
7445 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7446 			if (pf_addr_cmp(&i->addr,
7447 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7448 			    s->key[PF_SK_WIRE]->af) == 0) {
7449 				SDT_PROBE3(pf, sctp, multihome, remove,
7450 				    key.v_tag, s, i);
7451 				TAILQ_REMOVE(&ep->sources, i, entry);
7452 				free(i, M_PFTEMP);
7453 				break;
7454 			}
7455 		}
7456 
7457 		if (TAILQ_EMPTY(&ep->sources)) {
7458 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7459 			free(ep, M_PFTEMP);
7460 		}
7461 	}
7462 
7463 	PF_SCTP_ENDPOINTS_UNLOCK();
7464 }
7465 
7466 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7467 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7468 {
7469 	struct pf_sctp_endpoint key = {
7470 		.v_tag = v_tag,
7471 	};
7472 	struct pf_sctp_source *i;
7473 	struct pf_sctp_endpoint *ep;
7474 	int count;
7475 
7476 	PF_SCTP_ENDPOINTS_LOCK();
7477 
7478 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7479 	if (ep == NULL) {
7480 		ep = malloc(sizeof(struct pf_sctp_endpoint),
7481 		    M_PFTEMP, M_NOWAIT);
7482 		if (ep == NULL) {
7483 			PF_SCTP_ENDPOINTS_UNLOCK();
7484 			return;
7485 		}
7486 
7487 		ep->v_tag = v_tag;
7488 		TAILQ_INIT(&ep->sources);
7489 		RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7490 	}
7491 
7492 	/* Avoid inserting duplicates. */
7493 	count = 0;
7494 	TAILQ_FOREACH(i, &ep->sources, entry) {
7495 		count++;
7496 		if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7497 			PF_SCTP_ENDPOINTS_UNLOCK();
7498 			return;
7499 		}
7500 	}
7501 
7502 	/* Limit the number of addresses per endpoint. */
7503 	if (count >= PF_SCTP_MAX_ENDPOINTS) {
7504 		PF_SCTP_ENDPOINTS_UNLOCK();
7505 		return;
7506 	}
7507 
7508 	i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7509 	if (i == NULL) {
7510 		PF_SCTP_ENDPOINTS_UNLOCK();
7511 		return;
7512 	}
7513 
7514 	i->af = pd->af;
7515 	memcpy(&i->addr, a, sizeof(*a));
7516 	TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7517 	SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7518 
7519 	PF_SCTP_ENDPOINTS_UNLOCK();
7520 }
7521 
7522 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7523 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7524     struct pf_kstate *s, int action)
7525 {
7526 	struct pf_krule_slist		 match_rules;
7527 	struct pf_sctp_multihome_job	*j, *tmp;
7528 	struct pf_sctp_source		*i;
7529 	int			 ret;
7530 	struct pf_kstate	*sm = NULL;
7531 	struct pf_krule		*ra = NULL;
7532 	struct pf_krule		*r = &V_pf_default_rule;
7533 	struct pf_kruleset	*rs = NULL;
7534 	u_short			 reason;
7535 	bool do_extra = true;
7536 
7537 	PF_RULES_RLOCK_TRACKER;
7538 
7539 again:
7540 	TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7541 		if (s == NULL || action != PF_PASS)
7542 			goto free;
7543 
7544 		/* Confirm we don't recurse here. */
7545 		MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7546 
7547 		switch (j->op) {
7548 		case  SCTP_ADD_IP_ADDRESS: {
7549 			uint32_t v_tag = pd->sctp_initiate_tag;
7550 
7551 			if (v_tag == 0) {
7552 				if (s->direction == pd->dir)
7553 					v_tag = s->src.scrub->pfss_v_tag;
7554 				else
7555 					v_tag = s->dst.scrub->pfss_v_tag;
7556 			}
7557 
7558 			/*
7559 			 * Avoid duplicating states. We'll already have
7560 			 * created a state based on the source address of
7561 			 * the packet, but SCTP endpoints may also list this
7562 			 * address again in the INIT(_ACK) parameters.
7563 			 */
7564 			if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7565 				break;
7566 			}
7567 
7568 			j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7569 			PF_RULES_RLOCK();
7570 			sm = NULL;
7571 			if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7572 				j->pd.related_rule = s->rule;
7573 			}
7574 			SLIST_INIT(&match_rules);
7575 			ret = pf_test_rule(&r, &sm,
7576 			    &j->pd, &ra, &rs, &reason, NULL, &match_rules);
7577 			/*
7578 			 * Nothing to do about match rules, the processed
7579 			 * packet has already increased the counters.
7580 			 */
7581 			pf_free_match_rules(&match_rules);
7582 			PF_RULES_RUNLOCK();
7583 			SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7584 			if (ret != PF_DROP && sm != NULL) {
7585 				/* Inherit v_tag values. */
7586 				if (sm->direction == s->direction) {
7587 					sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7588 					sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7589 				} else {
7590 					sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7591 					sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7592 				}
7593 				PF_STATE_UNLOCK(sm);
7594 			} else {
7595 				/* If we try duplicate inserts? */
7596 				break;
7597 			}
7598 
7599 			/* Only add the address if we've actually allowed the state. */
7600 			pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7601 
7602 			if (! do_extra) {
7603 				break;
7604 			}
7605 			/*
7606 			 * We need to do this for each of our source addresses.
7607 			 * Find those based on the verification tag.
7608 			 */
7609 			struct pf_sctp_endpoint key = {
7610 				.v_tag = pd->hdr.sctp.v_tag,
7611 			};
7612 			struct pf_sctp_endpoint *ep;
7613 
7614 			PF_SCTP_ENDPOINTS_LOCK();
7615 			ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7616 			if (ep == NULL) {
7617 				PF_SCTP_ENDPOINTS_UNLOCK();
7618 				break;
7619 			}
7620 			MPASS(ep != NULL);
7621 
7622 			TAILQ_FOREACH(i, &ep->sources, entry) {
7623 				struct pf_sctp_multihome_job *nj;
7624 
7625 				/* SCTP can intermingle IPv4 and IPv6. */
7626 				if (i->af != pd->af)
7627 					continue;
7628 
7629 				nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7630 				if (! nj) {
7631 					continue;
7632 				}
7633 				memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7634 				memcpy(&nj->src, &j->src, sizeof(nj->src));
7635 				nj->pd.src = &nj->src;
7636 				// New destination address!
7637 				memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7638 				nj->pd.dst = &nj->dst;
7639 				nj->pd.m = j->pd.m;
7640 				nj->op = j->op;
7641 
7642 				MPASS(nj->pd.pcksum);
7643 				TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7644 			}
7645 			PF_SCTP_ENDPOINTS_UNLOCK();
7646 
7647 			break;
7648 		}
7649 		case SCTP_DEL_IP_ADDRESS: {
7650 			struct pf_state_key_cmp key;
7651 			uint8_t psrc;
7652 			int action;
7653 
7654 			bzero(&key, sizeof(key));
7655 			key.af = j->pd.af;
7656 			key.proto = IPPROTO_SCTP;
7657 			if (j->pd.dir == PF_IN)	{	/* wire side, straight */
7658 				pf_addrcpy(&key.addr[0], j->pd.src, key.af);
7659 				pf_addrcpy(&key.addr[1], j->pd.dst, key.af);
7660 				key.port[0] = j->pd.hdr.sctp.src_port;
7661 				key.port[1] = j->pd.hdr.sctp.dest_port;
7662 			} else {			/* stack side, reverse */
7663 				pf_addrcpy(&key.addr[1], j->pd.src, key.af);
7664 				pf_addrcpy(&key.addr[0], j->pd.dst, key.af);
7665 				key.port[1] = j->pd.hdr.sctp.src_port;
7666 				key.port[0] = j->pd.hdr.sctp.dest_port;
7667 			}
7668 
7669 			action = pf_find_state(&j->pd, &key, &sm);
7670 			if (action == PF_MATCH) {
7671 				PF_STATE_LOCK_ASSERT(sm);
7672 				if (j->pd.dir == sm->direction) {
7673 					psrc = PF_PEER_SRC;
7674 				} else {
7675 					psrc = PF_PEER_DST;
7676 				}
7677 				pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7678 				sm->timeout = PFTM_SCTP_CLOSING;
7679 				PF_STATE_UNLOCK(sm);
7680 			}
7681 			break;
7682 		default:
7683 			panic("Unknown op %#x", j->op);
7684 		}
7685 	}
7686 
7687 	free:
7688 		TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7689 		free(j, M_PFTEMP);
7690 	}
7691 
7692 	/* We may have inserted extra work while processing the list. */
7693 	if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7694 		do_extra = false;
7695 		goto again;
7696 	}
7697 }
7698 
7699 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7700 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7701 {
7702 	int			 off = 0;
7703 	struct pf_sctp_multihome_job	*job;
7704 
7705 	SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7706 
7707 	while (off < len) {
7708 		struct sctp_paramhdr h;
7709 
7710 		if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL,
7711 		    pd->af))
7712 			return (PF_DROP);
7713 
7714 		/* Parameters are at least 4 bytes. */
7715 		if (ntohs(h.param_length) < 4)
7716 			return (PF_DROP);
7717 
7718 		SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7719 		    ntohs(h.param_length));
7720 
7721 		switch (ntohs(h.param_type)) {
7722 		case  SCTP_IPV4_ADDRESS: {
7723 			struct in_addr t;
7724 
7725 			if (ntohs(h.param_length) !=
7726 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7727 				return (PF_DROP);
7728 
7729 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7730 			    NULL, pd->af))
7731 				return (PF_DROP);
7732 
7733 			if (in_nullhost(t))
7734 				t.s_addr = pd->src->v4.s_addr;
7735 
7736 			/*
7737 			 * We hold the state lock (idhash) here, which means
7738 			 * that we can't acquire the keyhash, or we'll get a
7739 			 * LOR (and potentially double-lock things too). We also
7740 			 * can't release the state lock here, so instead we'll
7741 			 * enqueue this for async handling.
7742 			 * There's a relatively small race here, in that a
7743 			 * packet using the new addresses could arrive already,
7744 			 * but that's just though luck for it.
7745 			 */
7746 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7747 			if (! job)
7748 				return (PF_DROP);
7749 
7750 			SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7751 
7752 			memcpy(&job->pd, pd, sizeof(*pd));
7753 
7754 			// New source address!
7755 			memcpy(&job->src, &t, sizeof(t));
7756 			job->pd.src = &job->src;
7757 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7758 			job->pd.dst = &job->dst;
7759 			job->pd.m = pd->m;
7760 			job->op = op;
7761 
7762 			MPASS(job->pd.pcksum);
7763 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7764 			break;
7765 		}
7766 #ifdef INET6
7767 		case SCTP_IPV6_ADDRESS: {
7768 			struct in6_addr t;
7769 
7770 			if (ntohs(h.param_length) !=
7771 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7772 				return (PF_DROP);
7773 
7774 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7775 			    NULL, pd->af))
7776 				return (PF_DROP);
7777 			if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7778 				break;
7779 			if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7780 				memcpy(&t, &pd->src->v6, sizeof(t));
7781 
7782 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7783 			if (! job)
7784 				return (PF_DROP);
7785 
7786 			SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7787 
7788 			memcpy(&job->pd, pd, sizeof(*pd));
7789 			memcpy(&job->src, &t, sizeof(t));
7790 			job->pd.src = &job->src;
7791 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7792 			job->pd.dst = &job->dst;
7793 			job->pd.m = pd->m;
7794 			job->op = op;
7795 
7796 			MPASS(job->pd.pcksum);
7797 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7798 			break;
7799 		}
7800 #endif /* INET6 */
7801 		case SCTP_ADD_IP_ADDRESS: {
7802 			int ret;
7803 			struct sctp_asconf_paramhdr ah;
7804 
7805 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7806 			    NULL, pd->af))
7807 				return (PF_DROP);
7808 
7809 			ret = pf_multihome_scan(start + off + sizeof(ah),
7810 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7811 			    SCTP_ADD_IP_ADDRESS);
7812 			if (ret != PF_PASS)
7813 				return (ret);
7814 			break;
7815 		}
7816 		case SCTP_DEL_IP_ADDRESS: {
7817 			int ret;
7818 			struct sctp_asconf_paramhdr ah;
7819 
7820 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7821 			    NULL, pd->af))
7822 				return (PF_DROP);
7823 			ret = pf_multihome_scan(start + off + sizeof(ah),
7824 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7825 			    SCTP_DEL_IP_ADDRESS);
7826 			if (ret != PF_PASS)
7827 				return (ret);
7828 			break;
7829 		}
7830 		default:
7831 			break;
7832 		}
7833 
7834 		off += roundup(ntohs(h.param_length), 4);
7835 	}
7836 
7837 	return (PF_PASS);
7838 }
7839 
7840 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7841 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7842 {
7843 	start += sizeof(struct sctp_init_chunk);
7844 	len -= sizeof(struct sctp_init_chunk);
7845 
7846 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7847 }
7848 
7849 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7850 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7851 {
7852 	start += sizeof(struct sctp_asconf_chunk);
7853 	len -= sizeof(struct sctp_asconf_chunk);
7854 
7855 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7856 }
7857 
7858 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7859 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7860     struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7861     int *iidx, int multi, int inner)
7862 {
7863 	int	 action, direction = pd->dir;
7864 
7865 	key->af = pd->af;
7866 	key->proto = pd->proto;
7867 	if (icmp_dir == PF_IN) {
7868 		*iidx = pd->sidx;
7869 		key->port[pd->sidx] = icmpid;
7870 		key->port[pd->didx] = type;
7871 	} else {
7872 		*iidx = pd->didx;
7873 		key->port[pd->sidx] = type;
7874 		key->port[pd->didx] = icmpid;
7875 	}
7876 	if (pf_state_key_addr_setup(pd, key, multi))
7877 		return (PF_DROP);
7878 
7879 	action = pf_find_state(pd, key, state);
7880 	if (action != PF_MATCH)
7881 		return (action);
7882 
7883 	if ((*state)->state_flags & PFSTATE_SLOPPY)
7884 		return (-1);
7885 
7886 	/* Is this ICMP message flowing in right direction? */
7887 	if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7888 		direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7889 		    PF_IN : PF_OUT;
7890 	else
7891 		direction = (*state)->direction;
7892 	if ((*state)->rule->type &&
7893 	    (((!inner && direction == pd->dir) ||
7894 	    (inner && direction != pd->dir)) ?
7895 	    PF_IN : PF_OUT) != icmp_dir) {
7896 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
7897 			printf("pf: icmp type %d in wrong direction (%d): ",
7898 			    ntohs(type), icmp_dir);
7899 			pf_print_state(*state);
7900 			printf("\n");
7901 		}
7902 		PF_STATE_UNLOCK(*state);
7903 		*state = NULL;
7904 		return (PF_DROP);
7905 	}
7906 	return (-1);
7907 }
7908 
7909 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7910 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7911     u_short *reason)
7912 {
7913 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
7914 	u_int16_t	*icmpsum, virtual_id, virtual_type;
7915 	u_int8_t	 icmptype, icmpcode;
7916 	int		 icmp_dir, iidx, ret;
7917 	struct pf_state_key_cmp key;
7918 #ifdef INET
7919 	u_int16_t	 icmpid;
7920 #endif /* INET*/
7921 
7922 	MPASS(*state == NULL);
7923 
7924 	bzero(&key, sizeof(key));
7925 	switch (pd->proto) {
7926 #ifdef INET
7927 	case IPPROTO_ICMP:
7928 		icmptype = pd->hdr.icmp.icmp_type;
7929 		icmpcode = pd->hdr.icmp.icmp_code;
7930 		icmpid = pd->hdr.icmp.icmp_id;
7931 		icmpsum = &pd->hdr.icmp.icmp_cksum;
7932 		break;
7933 #endif /* INET */
7934 #ifdef INET6
7935 	case IPPROTO_ICMPV6:
7936 		icmptype = pd->hdr.icmp6.icmp6_type;
7937 		icmpcode = pd->hdr.icmp6.icmp6_code;
7938 #ifdef INET
7939 		icmpid = pd->hdr.icmp6.icmp6_id;
7940 #endif /* INET */
7941 		icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7942 		break;
7943 #endif /* INET6 */
7944 	default:
7945 		panic("unhandled proto %d", pd->proto);
7946 	}
7947 
7948 	if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7949 	    &virtual_type) == 0) {
7950 		/*
7951 		 * ICMP query/reply message not related to a TCP/UDP/SCTP
7952 		 * packet. Search for an ICMP state.
7953 		 */
7954 		ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7955 		    virtual_type, icmp_dir, &iidx, 0, 0);
7956 		/* IPv6? try matching a multicast address */
7957 		if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7958 			MPASS(*state == NULL);
7959 			ret = pf_icmp_state_lookup(&key, pd, state,
7960 			    virtual_id, virtual_type,
7961 			    icmp_dir, &iidx, 1, 0);
7962 		}
7963 		if (ret >= 0) {
7964 			MPASS(*state == NULL);
7965 			return (ret);
7966 		}
7967 
7968 		(*state)->expire = pf_get_uptime();
7969 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7970 
7971 		/* translate source/destination address, if necessary */
7972 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7973 			struct pf_state_key	*nk;
7974 			int			 afto, sidx, didx;
7975 
7976 			if (PF_REVERSED_KEY(*state, pd->af))
7977 				nk = (*state)->key[pd->sidx];
7978 			else
7979 				nk = (*state)->key[pd->didx];
7980 
7981 			afto = pd->af != nk->af;
7982 
7983 			if (afto && (*state)->direction == PF_IN) {
7984 				sidx = pd->didx;
7985 				didx = pd->sidx;
7986 				iidx = !iidx;
7987 			} else {
7988 				sidx = pd->sidx;
7989 				didx = pd->didx;
7990 			}
7991 
7992 			switch (pd->af) {
7993 #ifdef INET
7994 			case AF_INET:
7995 #ifdef INET6
7996 				if (afto) {
7997 					if (pf_translate_icmp_af(AF_INET6,
7998 					    &pd->hdr.icmp))
7999 						return (PF_DROP);
8000 					pd->proto = IPPROTO_ICMPV6;
8001 				}
8002 #endif /* INET6 */
8003 				if (!afto &&
8004 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
8005 					pf_change_a(&saddr->v4.s_addr,
8006 					    pd->ip_sum,
8007 					    nk->addr[sidx].v4.s_addr,
8008 					    0);
8009 
8010 				if (!afto && PF_ANEQ(pd->dst,
8011 				    &nk->addr[didx], AF_INET))
8012 					pf_change_a(&daddr->v4.s_addr,
8013 					    pd->ip_sum,
8014 					    nk->addr[didx].v4.s_addr, 0);
8015 
8016 				if (nk->port[iidx] !=
8017 				    pd->hdr.icmp.icmp_id) {
8018 					pd->hdr.icmp.icmp_cksum =
8019 					    pf_cksum_fixup(
8020 					    pd->hdr.icmp.icmp_cksum, icmpid,
8021 					    nk->port[iidx], 0);
8022 					pd->hdr.icmp.icmp_id =
8023 					    nk->port[iidx];
8024 				}
8025 
8026 				m_copyback(pd->m, pd->off, ICMP_MINLEN,
8027 				    (caddr_t )&pd->hdr.icmp);
8028 				break;
8029 #endif /* INET */
8030 #ifdef INET6
8031 			case AF_INET6:
8032 #ifdef INET
8033 				if (afto) {
8034 					if (pf_translate_icmp_af(AF_INET,
8035 					    &pd->hdr.icmp6))
8036 						return (PF_DROP);
8037 					pd->proto = IPPROTO_ICMP;
8038 				}
8039 #endif /* INET */
8040 				if (!afto &&
8041 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
8042 					pf_change_a6(saddr,
8043 					    &pd->hdr.icmp6.icmp6_cksum,
8044 					    &nk->addr[sidx], 0);
8045 
8046 				if (!afto && PF_ANEQ(pd->dst,
8047 				    &nk->addr[didx], AF_INET6))
8048 					pf_change_a6(daddr,
8049 					    &pd->hdr.icmp6.icmp6_cksum,
8050 					    &nk->addr[didx], 0);
8051 
8052 				if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
8053 					pd->hdr.icmp6.icmp6_id =
8054 					    nk->port[iidx];
8055 
8056 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8057 				    (caddr_t )&pd->hdr.icmp6);
8058 				break;
8059 #endif /* INET6 */
8060 			}
8061 			if (afto) {
8062 				pf_addrcpy(&pd->nsaddr, &nk->addr[sidx],
8063 				    nk->af);
8064 				pf_addrcpy(&pd->ndaddr, &nk->addr[didx],
8065 				    nk->af);
8066 				pd->naf = nk->af;
8067 				return (PF_AFRT);
8068 			}
8069 		}
8070 		return (PF_PASS);
8071 
8072 	} else {
8073 		/*
8074 		 * ICMP error message in response to a TCP/UDP packet.
8075 		 * Extract the inner TCP/UDP header and search for that state.
8076 		 */
8077 
8078 		struct pf_pdesc	pd2;
8079 		bzero(&pd2, sizeof pd2);
8080 #ifdef INET
8081 		struct ip	h2;
8082 #endif /* INET */
8083 #ifdef INET6
8084 		struct ip6_hdr	h2_6;
8085 #endif /* INET6 */
8086 		int		ipoff2 = 0;
8087 
8088 		pd2.af = pd->af;
8089 		pd2.dir = pd->dir;
8090 		/* Payload packet is from the opposite direction. */
8091 		pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
8092 		pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
8093 		pd2.m = pd->m;
8094 		pd2.pf_mtag = pd->pf_mtag;
8095 		pd2.kif = pd->kif;
8096 		switch (pd->af) {
8097 #ifdef INET
8098 		case AF_INET:
8099 			/* offset of h2 in mbuf chain */
8100 			ipoff2 = pd->off + ICMP_MINLEN;
8101 
8102 			if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
8103 			    reason, pd2.af)) {
8104 				DPFPRINTF(PF_DEBUG_MISC,
8105 				    "pf: ICMP error message too short "
8106 				    "(ip)");
8107 				return (PF_DROP);
8108 			}
8109 			/*
8110 			 * ICMP error messages don't refer to non-first
8111 			 * fragments
8112 			 */
8113 			if (h2.ip_off & htons(IP_OFFMASK)) {
8114 				REASON_SET(reason, PFRES_FRAG);
8115 				return (PF_DROP);
8116 			}
8117 
8118 			/* offset of protocol header that follows h2 */
8119 			pd2.off = ipoff2;
8120 			if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
8121 				return (PF_DROP);
8122 
8123 			pd2.tot_len = ntohs(h2.ip_len);
8124 			pd2.ttl = h2.ip_ttl;
8125 			pd2.src = (struct pf_addr *)&h2.ip_src;
8126 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
8127 			pd2.ip_sum = &h2.ip_sum;
8128 			break;
8129 #endif /* INET */
8130 #ifdef INET6
8131 		case AF_INET6:
8132 			ipoff2 = pd->off + sizeof(struct icmp6_hdr);
8133 
8134 			if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
8135 			    reason, pd2.af)) {
8136 				DPFPRINTF(PF_DEBUG_MISC,
8137 				    "pf: ICMP error message too short "
8138 				    "(ip6)");
8139 				return (PF_DROP);
8140 			}
8141 			pd2.off = ipoff2;
8142 			if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
8143 				return (PF_DROP);
8144 
8145 			pd2.tot_len = ntohs(h2_6.ip6_plen) +
8146 			    sizeof(struct ip6_hdr);
8147 			pd2.ttl = h2_6.ip6_hlim;
8148 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
8149 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
8150 			pd2.ip_sum = NULL;
8151 			break;
8152 #endif /* INET6 */
8153 		default:
8154 			unhandled_af(pd->af);
8155 		}
8156 
8157 		if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
8158 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
8159 				printf("pf: BAD ICMP %d:%d outer dst: ",
8160 				    icmptype, icmpcode);
8161 				pf_print_host(pd->src, 0, pd->af);
8162 				printf(" -> ");
8163 				pf_print_host(pd->dst, 0, pd->af);
8164 				printf(" inner src: ");
8165 				pf_print_host(pd2.src, 0, pd2.af);
8166 				printf(" -> ");
8167 				pf_print_host(pd2.dst, 0, pd2.af);
8168 				printf("\n");
8169 			}
8170 			REASON_SET(reason, PFRES_BADSTATE);
8171 			return (PF_DROP);
8172 		}
8173 
8174 		switch (pd2.proto) {
8175 		case IPPROTO_TCP: {
8176 			struct tcphdr		*th = &pd2.hdr.tcp;
8177 			u_int32_t		 seq;
8178 			struct pf_state_peer	*src, *dst;
8179 			u_int8_t		 dws;
8180 			int			 copyback = 0;
8181 			int			 action;
8182 
8183 			/*
8184 			 * Only the first 8 bytes of the TCP header can be
8185 			 * expected. Don't access any TCP header fields after
8186 			 * th_seq, an ackskew test is not possible.
8187 			 */
8188 			if (!pf_pull_hdr(pd->m, pd2.off, th, 8, reason,
8189 			    pd2.af)) {
8190 				DPFPRINTF(PF_DEBUG_MISC,
8191 				    "pf: ICMP error message too short "
8192 				    "(tcp)");
8193 				return (PF_DROP);
8194 			}
8195 			pd2.pcksum = &pd2.hdr.tcp.th_sum;
8196 
8197 			key.af = pd2.af;
8198 			key.proto = IPPROTO_TCP;
8199 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8200 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8201 			key.port[pd2.sidx] = th->th_sport;
8202 			key.port[pd2.didx] = th->th_dport;
8203 
8204 			action = pf_find_state(&pd2, &key, state);
8205 			if (action != PF_MATCH)
8206 				return (action);
8207 
8208 			if (pd->dir == (*state)->direction) {
8209 				if (PF_REVERSED_KEY(*state, pd->af)) {
8210 					src = &(*state)->src;
8211 					dst = &(*state)->dst;
8212 				} else {
8213 					src = &(*state)->dst;
8214 					dst = &(*state)->src;
8215 				}
8216 			} else {
8217 				if (PF_REVERSED_KEY(*state, pd->af)) {
8218 					src = &(*state)->dst;
8219 					dst = &(*state)->src;
8220 				} else {
8221 					src = &(*state)->src;
8222 					dst = &(*state)->dst;
8223 				}
8224 			}
8225 
8226 			if (src->wscale && dst->wscale)
8227 				dws = dst->wscale & PF_WSCALE_MASK;
8228 			else
8229 				dws = 0;
8230 
8231 			/* Demodulate sequence number */
8232 			seq = ntohl(th->th_seq) - src->seqdiff;
8233 			if (src->seqdiff) {
8234 				pf_change_a(&th->th_seq, icmpsum,
8235 				    htonl(seq), 0);
8236 				copyback = 1;
8237 			}
8238 
8239 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8240 			    (!SEQ_GEQ(src->seqhi, seq) ||
8241 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8242 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8243 					printf("pf: BAD ICMP %d:%d ",
8244 					    icmptype, icmpcode);
8245 					pf_print_host(pd->src, 0, pd->af);
8246 					printf(" -> ");
8247 					pf_print_host(pd->dst, 0, pd->af);
8248 					printf(" state: ");
8249 					pf_print_state(*state);
8250 					printf(" seq=%u\n", seq);
8251 				}
8252 				REASON_SET(reason, PFRES_BADSTATE);
8253 				return (PF_DROP);
8254 			} else {
8255 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8256 					printf("pf: OK ICMP %d:%d ",
8257 					    icmptype, icmpcode);
8258 					pf_print_host(pd->src, 0, pd->af);
8259 					printf(" -> ");
8260 					pf_print_host(pd->dst, 0, pd->af);
8261 					printf(" state: ");
8262 					pf_print_state(*state);
8263 					printf(" seq=%u\n", seq);
8264 				}
8265 			}
8266 
8267 			/* translate source/destination address, if necessary */
8268 			if ((*state)->key[PF_SK_WIRE] !=
8269 			    (*state)->key[PF_SK_STACK]) {
8270 
8271 				struct pf_state_key	*nk;
8272 
8273 				if (PF_REVERSED_KEY(*state, pd->af))
8274 					nk = (*state)->key[pd->sidx];
8275 				else
8276 					nk = (*state)->key[pd->didx];
8277 
8278 #if defined(INET) && defined(INET6)
8279 				int		 afto, sidx, didx;
8280 
8281 				afto = pd->af != nk->af;
8282 
8283 				if (afto && (*state)->direction == PF_IN) {
8284 					sidx = pd2.didx;
8285 					didx = pd2.sidx;
8286 				} else {
8287 					sidx = pd2.sidx;
8288 					didx = pd2.didx;
8289 				}
8290 
8291 				if (afto) {
8292 					if (pf_translate_icmp_af(nk->af,
8293 					    &pd->hdr.icmp))
8294 						return (PF_DROP);
8295 					m_copyback(pd->m, pd->off,
8296 					    sizeof(struct icmp6_hdr),
8297 					    (c_caddr_t)&pd->hdr.icmp6);
8298 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8299 					    &pd2, &nk->addr[sidx],
8300 					    &nk->addr[didx], pd->af,
8301 					    nk->af))
8302 						return (PF_DROP);
8303 					pf_addrcpy(&pd->nsaddr,
8304 					    &nk->addr[pd2.sidx], nk->af);
8305 					pf_addrcpy(&pd->ndaddr,
8306 					    &nk->addr[pd2.didx], nk->af);
8307 					if (nk->af == AF_INET) {
8308 						pd->proto = IPPROTO_ICMP;
8309 					} else {
8310 						pd->proto = IPPROTO_ICMPV6;
8311 						/*
8312 						 * IPv4 becomes IPv6 so we must
8313 						 * copy IPv4 src addr to least
8314 						 * 32bits in IPv6 address to
8315 						 * keep traceroute/icmp
8316 						 * working.
8317 						 */
8318 						pd->nsaddr.addr32[3] =
8319 						    pd->src->addr32[0];
8320 					}
8321 					pd->naf = pd2.naf = nk->af;
8322 					pf_change_ap(&pd2, pd2.src, &th->th_sport,
8323 					    &nk->addr[pd2.sidx], nk->port[sidx]);
8324 					pf_change_ap(&pd2, pd2.dst, &th->th_dport,
8325 					    &nk->addr[pd2.didx], nk->port[didx]);
8326 					m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
8327 					return (PF_AFRT);
8328 				}
8329 #endif /* INET && INET6 */
8330 
8331 				if (PF_ANEQ(pd2.src,
8332 				    &nk->addr[pd2.sidx], pd2.af) ||
8333 				    nk->port[pd2.sidx] != th->th_sport)
8334 					pf_change_icmp(pd2.src, &th->th_sport,
8335 					    daddr, &nk->addr[pd2.sidx],
8336 					    nk->port[pd2.sidx], NULL,
8337 					    pd2.ip_sum, icmpsum,
8338 					    pd->ip_sum, 0, pd2.af);
8339 
8340 				if (PF_ANEQ(pd2.dst,
8341 				    &nk->addr[pd2.didx], pd2.af) ||
8342 				    nk->port[pd2.didx] != th->th_dport)
8343 					pf_change_icmp(pd2.dst, &th->th_dport,
8344 					    saddr, &nk->addr[pd2.didx],
8345 					    nk->port[pd2.didx], NULL,
8346 					    pd2.ip_sum, icmpsum,
8347 					    pd->ip_sum, 0, pd2.af);
8348 				copyback = 1;
8349 			}
8350 
8351 			if (copyback) {
8352 				switch (pd2.af) {
8353 #ifdef INET
8354 				case AF_INET:
8355 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8356 					    (caddr_t )&pd->hdr.icmp);
8357 					m_copyback(pd->m, ipoff2, sizeof(h2),
8358 					    (caddr_t )&h2);
8359 					break;
8360 #endif /* INET */
8361 #ifdef INET6
8362 				case AF_INET6:
8363 					m_copyback(pd->m, pd->off,
8364 					    sizeof(struct icmp6_hdr),
8365 					    (caddr_t )&pd->hdr.icmp6);
8366 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8367 					    (caddr_t )&h2_6);
8368 					break;
8369 #endif /* INET6 */
8370 				default:
8371 					unhandled_af(pd->af);
8372 				}
8373 				m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
8374 			}
8375 
8376 			return (PF_PASS);
8377 			break;
8378 		}
8379 		case IPPROTO_UDP: {
8380 			struct udphdr		*uh = &pd2.hdr.udp;
8381 			int			 action;
8382 
8383 			if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
8384 			    reason, pd2.af)) {
8385 				DPFPRINTF(PF_DEBUG_MISC,
8386 				    "pf: ICMP error message too short "
8387 				    "(udp)");
8388 				return (PF_DROP);
8389 			}
8390 			pd2.pcksum = &pd2.hdr.udp.uh_sum;
8391 
8392 			key.af = pd2.af;
8393 			key.proto = IPPROTO_UDP;
8394 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8395 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8396 			key.port[pd2.sidx] = uh->uh_sport;
8397 			key.port[pd2.didx] = uh->uh_dport;
8398 
8399 			action = pf_find_state(&pd2, &key, state);
8400 			if (action != PF_MATCH)
8401 				return (action);
8402 
8403 			/* translate source/destination address, if necessary */
8404 			if ((*state)->key[PF_SK_WIRE] !=
8405 			    (*state)->key[PF_SK_STACK]) {
8406 				struct pf_state_key	*nk;
8407 
8408 				if (PF_REVERSED_KEY(*state, pd->af))
8409 					nk = (*state)->key[pd->sidx];
8410 				else
8411 					nk = (*state)->key[pd->didx];
8412 
8413 #if defined(INET) && defined(INET6)
8414 				int	 afto, sidx, didx;
8415 
8416 				afto = pd->af != nk->af;
8417 
8418 				if (afto && (*state)->direction == PF_IN) {
8419 					sidx = pd2.didx;
8420 					didx = pd2.sidx;
8421 				} else {
8422 					sidx = pd2.sidx;
8423 					didx = pd2.didx;
8424 				}
8425 
8426 				if (afto) {
8427 					if (pf_translate_icmp_af(nk->af,
8428 					    &pd->hdr.icmp))
8429 						return (PF_DROP);
8430 					m_copyback(pd->m, pd->off,
8431 					    sizeof(struct icmp6_hdr),
8432 					    (c_caddr_t)&pd->hdr.icmp6);
8433 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8434 					    &pd2, &nk->addr[sidx],
8435 					    &nk->addr[didx], pd->af,
8436 					    nk->af))
8437 						return (PF_DROP);
8438 					pf_addrcpy(&pd->nsaddr,
8439 					    &nk->addr[pd2.sidx], nk->af);
8440 					pf_addrcpy(&pd->ndaddr,
8441 					    &nk->addr[pd2.didx], nk->af);
8442 					if (nk->af == AF_INET) {
8443 						pd->proto = IPPROTO_ICMP;
8444 					} else {
8445 						pd->proto = IPPROTO_ICMPV6;
8446 						/*
8447 						 * IPv4 becomes IPv6 so we must
8448 						 * copy IPv4 src addr to least
8449 						 * 32bits in IPv6 address to
8450 						 * keep traceroute/icmp
8451 						 * working.
8452 						 */
8453 						pd->nsaddr.addr32[3] =
8454 						    pd->src->addr32[0];
8455 					}
8456 					pd->naf = pd2.naf = nk->af;
8457 					pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
8458 					    &nk->addr[pd2.sidx], nk->port[sidx]);
8459 					pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
8460 					    &nk->addr[pd2.didx], nk->port[didx]);
8461 					m_copyback(pd2.m, pd2.off, sizeof(*uh),
8462 					    (c_caddr_t)uh);
8463 					return (PF_AFRT);
8464 				}
8465 #endif /* INET && INET6 */
8466 
8467 				if (PF_ANEQ(pd2.src,
8468 				    &nk->addr[pd2.sidx], pd2.af) ||
8469 				    nk->port[pd2.sidx] != uh->uh_sport)
8470 					pf_change_icmp(pd2.src, &uh->uh_sport,
8471 					    daddr, &nk->addr[pd2.sidx],
8472 					    nk->port[pd2.sidx], &uh->uh_sum,
8473 					    pd2.ip_sum, icmpsum,
8474 					    pd->ip_sum, 1, pd2.af);
8475 
8476 				if (PF_ANEQ(pd2.dst,
8477 				    &nk->addr[pd2.didx], pd2.af) ||
8478 				    nk->port[pd2.didx] != uh->uh_dport)
8479 					pf_change_icmp(pd2.dst, &uh->uh_dport,
8480 					    saddr, &nk->addr[pd2.didx],
8481 					    nk->port[pd2.didx], &uh->uh_sum,
8482 					    pd2.ip_sum, icmpsum,
8483 					    pd->ip_sum, 1, pd2.af);
8484 
8485 				switch (pd2.af) {
8486 #ifdef INET
8487 				case AF_INET:
8488 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8489 					    (caddr_t )&pd->hdr.icmp);
8490 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8491 					break;
8492 #endif /* INET */
8493 #ifdef INET6
8494 				case AF_INET6:
8495 					m_copyback(pd->m, pd->off,
8496 					    sizeof(struct icmp6_hdr),
8497 					    (caddr_t )&pd->hdr.icmp6);
8498 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8499 					    (caddr_t )&h2_6);
8500 					break;
8501 #endif /* INET6 */
8502 				}
8503 				m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
8504 			}
8505 			return (PF_PASS);
8506 			break;
8507 		}
8508 #ifdef INET
8509 		case IPPROTO_SCTP: {
8510 			struct sctphdr		*sh = &pd2.hdr.sctp;
8511 			struct pf_state_peer	*src;
8512 			int			 copyback = 0;
8513 			int			 action;
8514 
8515 			if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), reason,
8516 			    pd2.af)) {
8517 				DPFPRINTF(PF_DEBUG_MISC,
8518 				    "pf: ICMP error message too short "
8519 				    "(sctp)");
8520 				return (PF_DROP);
8521 			}
8522 			pd2.pcksum = &pd2.sctp_dummy_sum;
8523 
8524 			key.af = pd2.af;
8525 			key.proto = IPPROTO_SCTP;
8526 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8527 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8528 			key.port[pd2.sidx] = sh->src_port;
8529 			key.port[pd2.didx] = sh->dest_port;
8530 
8531 			action = pf_find_state(&pd2, &key, state);
8532 			if (action != PF_MATCH)
8533 				return (action);
8534 
8535 			if (pd->dir == (*state)->direction) {
8536 				if (PF_REVERSED_KEY(*state, pd->af))
8537 					src = &(*state)->src;
8538 				else
8539 					src = &(*state)->dst;
8540 			} else {
8541 				if (PF_REVERSED_KEY(*state, pd->af))
8542 					src = &(*state)->dst;
8543 				else
8544 					src = &(*state)->src;
8545 			}
8546 
8547 			if (src->scrub->pfss_v_tag != sh->v_tag) {
8548 				DPFPRINTF(PF_DEBUG_MISC,
8549 				    "pf: ICMP error message has incorrect "
8550 				    "SCTP v_tag");
8551 				return (PF_DROP);
8552 			}
8553 
8554 			/* translate source/destination address, if necessary */
8555 			if ((*state)->key[PF_SK_WIRE] !=
8556 			    (*state)->key[PF_SK_STACK]) {
8557 
8558 				struct pf_state_key	*nk;
8559 
8560 				if (PF_REVERSED_KEY(*state, pd->af))
8561 					nk = (*state)->key[pd->sidx];
8562 				else
8563 					nk = (*state)->key[pd->didx];
8564 
8565 #if defined(INET) && defined(INET6)
8566 				int	 afto, sidx, didx;
8567 
8568 				afto = pd->af != nk->af;
8569 
8570 				if (afto && (*state)->direction == PF_IN) {
8571 					sidx = pd2.didx;
8572 					didx = pd2.sidx;
8573 				} else {
8574 					sidx = pd2.sidx;
8575 					didx = pd2.didx;
8576 				}
8577 
8578 				if (afto) {
8579 					if (pf_translate_icmp_af(nk->af,
8580 					    &pd->hdr.icmp))
8581 						return (PF_DROP);
8582 					m_copyback(pd->m, pd->off,
8583 					    sizeof(struct icmp6_hdr),
8584 					    (c_caddr_t)&pd->hdr.icmp6);
8585 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8586 					    &pd2, &nk->addr[sidx],
8587 					    &nk->addr[didx], pd->af,
8588 					    nk->af))
8589 						return (PF_DROP);
8590 					sh->src_port = nk->port[sidx];
8591 					sh->dest_port = nk->port[didx];
8592 					m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
8593 					pf_addrcpy(&pd->nsaddr,
8594 					    &nk->addr[pd2.sidx], nk->af);
8595 					pf_addrcpy(&pd->ndaddr,
8596 					    &nk->addr[pd2.didx], nk->af);
8597 					if (nk->af == AF_INET) {
8598 						pd->proto = IPPROTO_ICMP;
8599 					} else {
8600 						pd->proto = IPPROTO_ICMPV6;
8601 						/*
8602 						 * IPv4 becomes IPv6 so we must
8603 						 * copy IPv4 src addr to least
8604 						 * 32bits in IPv6 address to
8605 						 * keep traceroute/icmp
8606 						 * working.
8607 						 */
8608 						pd->nsaddr.addr32[3] =
8609 						    pd->src->addr32[0];
8610 					}
8611 					pd->naf = nk->af;
8612 					return (PF_AFRT);
8613 				}
8614 #endif /* INET && INET6 */
8615 
8616 				if (PF_ANEQ(pd2.src,
8617 				    &nk->addr[pd2.sidx], pd2.af) ||
8618 				    nk->port[pd2.sidx] != sh->src_port)
8619 					pf_change_icmp(pd2.src, &sh->src_port,
8620 					    daddr, &nk->addr[pd2.sidx],
8621 					    nk->port[pd2.sidx], NULL,
8622 					    pd2.ip_sum, icmpsum,
8623 					    pd->ip_sum, 0, pd2.af);
8624 
8625 				if (PF_ANEQ(pd2.dst,
8626 				    &nk->addr[pd2.didx], pd2.af) ||
8627 				    nk->port[pd2.didx] != sh->dest_port)
8628 					pf_change_icmp(pd2.dst, &sh->dest_port,
8629 					    saddr, &nk->addr[pd2.didx],
8630 					    nk->port[pd2.didx], NULL,
8631 					    pd2.ip_sum, icmpsum,
8632 					    pd->ip_sum, 0, pd2.af);
8633 				copyback = 1;
8634 			}
8635 
8636 			if (copyback) {
8637 				switch (pd2.af) {
8638 #ifdef INET
8639 				case AF_INET:
8640 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8641 					    (caddr_t )&pd->hdr.icmp);
8642 					m_copyback(pd->m, ipoff2, sizeof(h2),
8643 					    (caddr_t )&h2);
8644 					break;
8645 #endif /* INET */
8646 #ifdef INET6
8647 				case AF_INET6:
8648 					m_copyback(pd->m, pd->off,
8649 					    sizeof(struct icmp6_hdr),
8650 					    (caddr_t )&pd->hdr.icmp6);
8651 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8652 					    (caddr_t )&h2_6);
8653 					break;
8654 #endif /* INET6 */
8655 				}
8656 				m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
8657 			}
8658 
8659 			return (PF_PASS);
8660 			break;
8661 		}
8662 		case IPPROTO_ICMP: {
8663 			struct icmp	*iih = &pd2.hdr.icmp;
8664 
8665 			if (pd2.af != AF_INET) {
8666 				REASON_SET(reason, PFRES_NORM);
8667 				return (PF_DROP);
8668 			}
8669 
8670 			if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8671 			    reason, pd2.af)) {
8672 				DPFPRINTF(PF_DEBUG_MISC,
8673 				    "pf: ICMP error message too short i"
8674 				    "(icmp)");
8675 				return (PF_DROP);
8676 			}
8677 			pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
8678 
8679 			icmpid = iih->icmp_id;
8680 			pf_icmp_mapping(&pd2, iih->icmp_type,
8681 			    &icmp_dir, &virtual_id, &virtual_type);
8682 
8683 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8684 			    virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8685 			if (ret >= 0) {
8686 				MPASS(*state == NULL);
8687 				return (ret);
8688 			}
8689 
8690 			/* translate source/destination address, if necessary */
8691 			if ((*state)->key[PF_SK_WIRE] !=
8692 			    (*state)->key[PF_SK_STACK]) {
8693 				struct pf_state_key	*nk;
8694 
8695 				if (PF_REVERSED_KEY(*state, pd->af))
8696 					nk = (*state)->key[pd->sidx];
8697 				else
8698 					nk = (*state)->key[pd->didx];
8699 
8700 #if defined(INET) && defined(INET6)
8701 				int	 afto, sidx, didx;
8702 
8703 				afto = pd->af != nk->af;
8704 
8705 				if (afto && (*state)->direction == PF_IN) {
8706 					sidx = pd2.didx;
8707 					didx = pd2.sidx;
8708 					iidx = !iidx;
8709 				} else {
8710 					sidx = pd2.sidx;
8711 					didx = pd2.didx;
8712 				}
8713 
8714 				if (afto) {
8715 					if (nk->af != AF_INET6)
8716 						return (PF_DROP);
8717 					if (pf_translate_icmp_af(nk->af,
8718 					    &pd->hdr.icmp))
8719 						return (PF_DROP);
8720 					m_copyback(pd->m, pd->off,
8721 					    sizeof(struct icmp6_hdr),
8722 					    (c_caddr_t)&pd->hdr.icmp6);
8723 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8724 					    &pd2, &nk->addr[sidx],
8725 					    &nk->addr[didx], pd->af,
8726 					    nk->af))
8727 						return (PF_DROP);
8728 					pd->proto = IPPROTO_ICMPV6;
8729 					if (pf_translate_icmp_af(nk->af, iih))
8730 						return (PF_DROP);
8731 					if (virtual_type == htons(ICMP_ECHO) &&
8732 					    nk->port[iidx] != iih->icmp_id)
8733 						iih->icmp_id = nk->port[iidx];
8734 					m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8735 					    (c_caddr_t)iih);
8736 					pf_addrcpy(&pd->nsaddr,
8737 					    &nk->addr[pd2.sidx], nk->af);
8738 					pf_addrcpy(&pd->ndaddr,
8739 					    &nk->addr[pd2.didx], nk->af);
8740 					/*
8741 					 * IPv4 becomes IPv6 so we must copy
8742 					 * IPv4 src addr to least 32bits in
8743 					 * IPv6 address to keep traceroute
8744 					 * working.
8745 					 */
8746 					pd->nsaddr.addr32[3] =
8747 					    pd->src->addr32[0];
8748 					pd->naf = nk->af;
8749 					return (PF_AFRT);
8750 				}
8751 #endif /* INET && INET6 */
8752 
8753 				if (PF_ANEQ(pd2.src,
8754 				    &nk->addr[pd2.sidx], pd2.af) ||
8755 				    (virtual_type == htons(ICMP_ECHO) &&
8756 				    nk->port[iidx] != iih->icmp_id))
8757 					pf_change_icmp(pd2.src,
8758 					    (virtual_type == htons(ICMP_ECHO)) ?
8759 					    &iih->icmp_id : NULL,
8760 					    daddr, &nk->addr[pd2.sidx],
8761 					    (virtual_type == htons(ICMP_ECHO)) ?
8762 					    nk->port[iidx] : 0, NULL,
8763 					    pd2.ip_sum, icmpsum,
8764 					    pd->ip_sum, 0, AF_INET);
8765 
8766 				if (PF_ANEQ(pd2.dst,
8767 				    &nk->addr[pd2.didx], pd2.af))
8768 					pf_change_icmp(pd2.dst, NULL, NULL,
8769 					    &nk->addr[pd2.didx], 0, NULL,
8770 					    pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8771 					    AF_INET);
8772 
8773 				m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8774 				m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8775 				m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8776 			}
8777 			return (PF_PASS);
8778 			break;
8779 		}
8780 #endif /* INET */
8781 #ifdef INET6
8782 		case IPPROTO_ICMPV6: {
8783 			struct icmp6_hdr	*iih = &pd2.hdr.icmp6;
8784 
8785 			if (pd2.af != AF_INET6) {
8786 				REASON_SET(reason, PFRES_NORM);
8787 				return (PF_DROP);
8788 			}
8789 
8790 			if (!pf_pull_hdr(pd->m, pd2.off, iih,
8791 			    sizeof(struct icmp6_hdr), reason, pd2.af)) {
8792 				DPFPRINTF(PF_DEBUG_MISC,
8793 				    "pf: ICMP error message too short "
8794 				    "(icmp6)");
8795 				return (PF_DROP);
8796 			}
8797 			pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
8798 
8799 			pf_icmp_mapping(&pd2, iih->icmp6_type,
8800 			    &icmp_dir, &virtual_id, &virtual_type);
8801 
8802 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8803 			    virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8804 			/* IPv6? try matching a multicast address */
8805 			if (ret == PF_DROP && pd2.af == AF_INET6 &&
8806 			    icmp_dir == PF_OUT) {
8807 				MPASS(*state == NULL);
8808 				ret = pf_icmp_state_lookup(&key, &pd2,
8809 				    state, virtual_id, virtual_type,
8810 				    icmp_dir, &iidx, 1, 1);
8811 			}
8812 			if (ret >= 0) {
8813 				MPASS(*state == NULL);
8814 				return (ret);
8815 			}
8816 
8817 			/* translate source/destination address, if necessary */
8818 			if ((*state)->key[PF_SK_WIRE] !=
8819 			    (*state)->key[PF_SK_STACK]) {
8820 				struct pf_state_key	*nk;
8821 
8822 				if (PF_REVERSED_KEY(*state, pd->af))
8823 					nk = (*state)->key[pd->sidx];
8824 				else
8825 					nk = (*state)->key[pd->didx];
8826 
8827 #if defined(INET) && defined(INET6)
8828 				int	 afto, sidx, didx;
8829 
8830 				afto = pd->af != nk->af;
8831 
8832 				if (afto && (*state)->direction == PF_IN) {
8833 					sidx = pd2.didx;
8834 					didx = pd2.sidx;
8835 					iidx = !iidx;
8836 				} else {
8837 					sidx = pd2.sidx;
8838 					didx = pd2.didx;
8839 				}
8840 
8841 				if (afto) {
8842 					if (nk->af != AF_INET)
8843 						return (PF_DROP);
8844 					if (pf_translate_icmp_af(nk->af,
8845 					    &pd->hdr.icmp))
8846 						return (PF_DROP);
8847 					m_copyback(pd->m, pd->off,
8848 					    sizeof(struct icmp6_hdr),
8849 					    (c_caddr_t)&pd->hdr.icmp6);
8850 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8851 					    &pd2, &nk->addr[sidx],
8852 					    &nk->addr[didx], pd->af,
8853 					    nk->af))
8854 						return (PF_DROP);
8855 					pd->proto = IPPROTO_ICMP;
8856 					if (pf_translate_icmp_af(nk->af, iih))
8857 						return (PF_DROP);
8858 					if (virtual_type ==
8859 					    htons(ICMP6_ECHO_REQUEST) &&
8860 					    nk->port[iidx] != iih->icmp6_id)
8861 						iih->icmp6_id = nk->port[iidx];
8862 					m_copyback(pd2.m, pd2.off,
8863 					    sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8864 					pf_addrcpy(&pd->nsaddr,
8865 					    &nk->addr[pd2.sidx], nk->af);
8866 					pf_addrcpy(&pd->ndaddr,
8867 					    &nk->addr[pd2.didx], nk->af);
8868 					pd->naf = nk->af;
8869 					return (PF_AFRT);
8870 				}
8871 #endif /* INET && INET6 */
8872 
8873 				if (PF_ANEQ(pd2.src,
8874 				    &nk->addr[pd2.sidx], pd2.af) ||
8875 				    ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8876 				    nk->port[pd2.sidx] != iih->icmp6_id))
8877 					pf_change_icmp(pd2.src,
8878 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8879 					    ? &iih->icmp6_id : NULL,
8880 					    daddr, &nk->addr[pd2.sidx],
8881 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8882 					    ? nk->port[iidx] : 0, NULL,
8883 					    pd2.ip_sum, icmpsum,
8884 					    pd->ip_sum, 0, AF_INET6);
8885 
8886 				if (PF_ANEQ(pd2.dst,
8887 				    &nk->addr[pd2.didx], pd2.af))
8888 					pf_change_icmp(pd2.dst, NULL, NULL,
8889 					    &nk->addr[pd2.didx], 0, NULL,
8890 					    pd2.ip_sum, icmpsum,
8891 					    pd->ip_sum, 0, AF_INET6);
8892 
8893 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8894 				    (caddr_t)&pd->hdr.icmp6);
8895 				m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8896 				m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8897 				    (caddr_t)iih);
8898 			}
8899 			return (PF_PASS);
8900 			break;
8901 		}
8902 #endif /* INET6 */
8903 		default: {
8904 			int	action;
8905 
8906 			/*
8907 			 * Placeholder value, so future calls to pf_change_ap()
8908 			 * don't try to update a NULL checksum pointer.
8909 			 */
8910 			pd->pcksum = &pd->sctp_dummy_sum;
8911 			key.af = pd2.af;
8912 			key.proto = pd2.proto;
8913 			pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8914 			pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8915 			key.port[0] = key.port[1] = 0;
8916 
8917 			action = pf_find_state(&pd2, &key, state);
8918 			if (action != PF_MATCH)
8919 				return (action);
8920 
8921 			/* translate source/destination address, if necessary */
8922 			if ((*state)->key[PF_SK_WIRE] !=
8923 			    (*state)->key[PF_SK_STACK]) {
8924 				struct pf_state_key *nk =
8925 				    (*state)->key[pd->didx];
8926 
8927 				if (PF_ANEQ(pd2.src,
8928 				    &nk->addr[pd2.sidx], pd2.af))
8929 					pf_change_icmp(pd2.src, NULL, daddr,
8930 					    &nk->addr[pd2.sidx], 0, NULL,
8931 					    pd2.ip_sum, icmpsum,
8932 					    pd->ip_sum, 0, pd2.af);
8933 
8934 				if (PF_ANEQ(pd2.dst,
8935 				    &nk->addr[pd2.didx], pd2.af))
8936 					pf_change_icmp(pd2.dst, NULL, saddr,
8937 					    &nk->addr[pd2.didx], 0, NULL,
8938 					    pd2.ip_sum, icmpsum,
8939 					    pd->ip_sum, 0, pd2.af);
8940 
8941 				switch (pd2.af) {
8942 #ifdef INET
8943 				case AF_INET:
8944 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8945 					    (caddr_t)&pd->hdr.icmp);
8946 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8947 					break;
8948 #endif /* INET */
8949 #ifdef INET6
8950 				case AF_INET6:
8951 					m_copyback(pd->m, pd->off,
8952 					    sizeof(struct icmp6_hdr),
8953 					    (caddr_t )&pd->hdr.icmp6);
8954 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8955 					    (caddr_t )&h2_6);
8956 					break;
8957 #endif /* INET6 */
8958 				}
8959 			}
8960 			return (PF_PASS);
8961 			break;
8962 		}
8963 		}
8964 	}
8965 }
8966 
8967 /*
8968  * ipoff and off are measured from the start of the mbuf chain.
8969  * h must be at "ipoff" on the mbuf chain.
8970  */
8971 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * reasonp,sa_family_t af)8972 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8973     u_short *reasonp, sa_family_t af)
8974 {
8975 	int iplen = 0;
8976 	switch (af) {
8977 #ifdef INET
8978 	case AF_INET: {
8979 		const struct ip	*h = mtod(m, struct ip *);
8980 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8981 
8982 		if (fragoff) {
8983 			REASON_SET(reasonp, PFRES_FRAG);
8984 			return (NULL);
8985 		}
8986 		iplen = ntohs(h->ip_len);
8987 		break;
8988 	}
8989 #endif /* INET */
8990 #ifdef INET6
8991 	case AF_INET6: {
8992 		const struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
8993 
8994 		iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8995 		break;
8996 	}
8997 #endif /* INET6 */
8998 	}
8999 	if (m->m_pkthdr.len < off + len || iplen < off + len) {
9000 		REASON_SET(reasonp, PFRES_SHORT);
9001 		return (NULL);
9002 	}
9003 	m_copydata(m, off, len, p);
9004 	return (p);
9005 }
9006 
9007 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)9008 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
9009     int rtableid)
9010 {
9011 	struct ifnet		*ifp;
9012 
9013 	/*
9014 	 * Skip check for addresses with embedded interface scope,
9015 	 * as they would always match anyway.
9016 	 */
9017 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
9018 		return (1);
9019 
9020 	if (af != AF_INET && af != AF_INET6)
9021 		return (0);
9022 
9023 	if (kif == V_pfi_all)
9024 		return (1);
9025 
9026 	/* Skip checks for ipsec interfaces */
9027 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
9028 		return (1);
9029 
9030 	ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
9031 
9032 	switch (af) {
9033 #ifdef INET6
9034 	case AF_INET6:
9035 		return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
9036 		    ifp));
9037 #endif /* INET6 */
9038 #ifdef INET
9039 	case AF_INET:
9040 		return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
9041 		    ifp));
9042 #endif /* INET */
9043 	}
9044 
9045 	return (0);
9046 }
9047 
9048 #ifdef INET
9049 static int
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9050 pf_route(struct pf_krule *r, struct ifnet *oifp,
9051     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9052 {
9053 	struct mbuf		*m0, *m1, *md;
9054 	struct route_in6	 ro;
9055 	union sockaddr_union	 rt_gw;
9056 	const union sockaddr_union	*gw = (const union sockaddr_union *)&ro.ro_dst;
9057 	union sockaddr_union	*dst;
9058 	struct ip		*ip;
9059 	struct ifnet		*ifp = NULL;
9060 	int			 error = 0;
9061 	uint16_t		 ip_len, ip_off;
9062 	uint16_t		 tmp;
9063 	int			 r_dir;
9064 	bool			 skip_test = false;
9065 	int			 action = PF_PASS;
9066 
9067 	KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9068 
9069 	SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
9070 
9071 	if (s) {
9072 		r_dir = s->direction;
9073 	} else {
9074 		r_dir = r->direction;
9075 	}
9076 
9077 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9078 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9079 	    __func__));
9080 
9081 	if ((pd->pf_mtag == NULL &&
9082 	    ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9083 	    pd->pf_mtag->routed++ > 3) {
9084 		m0 = pd->m;
9085 		pd->m = NULL;
9086 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9087 		action = PF_DROP;
9088 		goto bad_locked;
9089 	}
9090 
9091 	if (pd->act.rt_kif != NULL)
9092 		ifp = pd->act.rt_kif->pfik_ifp;
9093 
9094 	if (pd->act.rt == PF_DUPTO) {
9095 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9096 			if (s != NULL) {
9097 				PF_STATE_UNLOCK(s);
9098 			}
9099 			if (ifp == oifp) {
9100 				/* When the 2nd interface is not skipped */
9101 				return (action);
9102 			} else {
9103 				m0 = pd->m;
9104 				pd->m = NULL;
9105 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9106 				action = PF_DROP;
9107 				goto bad;
9108 			}
9109 		} else {
9110 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9111 			if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9112 				if (s)
9113 					PF_STATE_UNLOCK(s);
9114 				return (action);
9115 			}
9116 		}
9117 	} else {
9118 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9119 			if (pd->af == pd->naf) {
9120 				pf_dummynet(pd, s, r, &pd->m);
9121 				if (s)
9122 					PF_STATE_UNLOCK(s);
9123 				return (action);
9124 			} else {
9125 				if (r_dir == PF_IN) {
9126 					skip_test = true;
9127 				}
9128 			}
9129 		}
9130 
9131 		/*
9132 		 * If we're actually doing route-to and af-to and are in the
9133 		 * reply direction.
9134 		 */
9135 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9136 		    pd->af != pd->naf) {
9137 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
9138 				/* Un-set ifp so we do a plain route lookup. */
9139 				ifp = NULL;
9140 			}
9141 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
9142 				/* Un-set ifp so we do a plain route lookup. */
9143 				ifp = NULL;
9144 			}
9145 		}
9146 		m0 = pd->m;
9147 	}
9148 
9149 	ip = mtod(m0, struct ip *);
9150 
9151 	bzero(&ro, sizeof(ro));
9152 	dst = (union sockaddr_union *)&ro.ro_dst;
9153 	dst->sin.sin_family = AF_INET;
9154 	dst->sin.sin_len = sizeof(struct sockaddr_in);
9155 	dst->sin.sin_addr = ip->ip_dst;
9156 	if (ifp) { /* Only needed in forward direction and route-to */
9157 		bzero(&rt_gw, sizeof(rt_gw));
9158 		ro.ro_flags |= RT_HAS_GW;
9159 		gw = &rt_gw;
9160 		switch (pd->act.rt_af) {
9161 #ifdef INET
9162 		case AF_INET:
9163 			rt_gw.sin.sin_family = AF_INET;
9164 			rt_gw.sin.sin_len = sizeof(struct sockaddr_in);
9165 			rt_gw.sin.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
9166 			break;
9167 #endif /* INET */
9168 #ifdef INET6
9169 		case AF_INET6:
9170 			rt_gw.sin6.sin6_family = AF_INET6;
9171 			rt_gw.sin6.sin6_len = sizeof(struct sockaddr_in6);
9172 			pf_addrcpy((struct pf_addr *)&rt_gw.sin6.sin6_addr,
9173 			    &pd->act.rt_addr, AF_INET6);
9174 			break;
9175 #endif /* INET6 */
9176 		default:
9177 			/* Normal af-to without route-to */
9178 			break;
9179 		}
9180 	}
9181 
9182 	if (pd->dir == PF_IN) {
9183 		if (ip->ip_ttl <= IPTTLDEC) {
9184 			if (r->rt != PF_DUPTO)
9185 				pf_send_icmp(m0, ICMP_TIMXCEED,
9186 				    ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
9187 				    pd->act.rtableid);
9188 			action = PF_DROP;
9189 			goto bad_locked;
9190 		}
9191 		ip->ip_ttl -= IPTTLDEC;
9192 	}
9193 
9194 	if (s != NULL) {
9195 		if (ifp == NULL && (pd->af != pd->naf)) {
9196 			/* We're in the AFTO case. Do a route lookup. */
9197 			const struct nhop_object *nh;
9198 			nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
9199 			if (nh) {
9200 				ifp = nh->nh_ifp;
9201 
9202 				/* Use the gateway if needed. */
9203 				if (nh->nh_flags & NHF_GATEWAY) {
9204 					gw = (const union sockaddr_union *)&nh->gw_sa;
9205 					ro.ro_flags |= RT_HAS_GW;
9206 				} else {
9207 					dst->sin.sin_addr = ip->ip_dst;
9208 				}
9209 			}
9210 		}
9211 		PF_STATE_UNLOCK(s);
9212 	}
9213 
9214 	/* It must have been either set from rt_af or from fib4_lookup */
9215 	KASSERT(gw->sin.sin_family != 0, ("%s: gw address family undetermined", __func__));
9216 
9217 	if (ifp == NULL) {
9218 		m0 = pd->m;
9219 		pd->m = NULL;
9220 		action = PF_DROP;
9221 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9222 		goto bad;
9223 	}
9224 
9225 	/*
9226 	 * Bind to the correct interface if we're if-bound. We don't know which
9227 	 * interface that will be until here, so we've inserted the state
9228 	 * on V_pf_all. Fix that now.
9229 	 */
9230 	if (s != NULL && s->kif == V_pfi_all && r->rule_flag & PFRULE_IFBOUND) {
9231 		/* Verify that we're here because of BOUND_IFACE */
9232 		MPASS(r->rt == PF_REPLYTO || (pd->af != pd->naf && s->direction == PF_IN));
9233 		s->kif = ifp->if_pf_kif;
9234 		if (pd->act.rt == PF_REPLYTO) {
9235 			s->orig_kif = oifp->if_pf_kif;
9236 		}
9237 	}
9238 
9239 	if (r->rt == PF_DUPTO || (pd->af != pd->naf && s->direction == PF_IN))
9240 		skip_test = true;
9241 
9242 	if (pd->dir == PF_IN) {
9243 		if (skip_test) {
9244 			struct pfi_kkif *out_kif = (struct pfi_kkif *)ifp->if_pf_kif;
9245 			MPASS(s != NULL);
9246 			pf_counter_u64_critical_enter();
9247 			pf_counter_u64_add_protected(
9248 			    &out_kif->pfik_bytes[pd->naf == AF_INET6][1]
9249 			    [action != PF_PASS && action != PF_AFRT], pd->tot_len);
9250 			pf_counter_u64_add_protected(
9251 			    &out_kif->pfik_packets[pd->naf == AF_INET6][1]
9252 			    [action != PF_PASS && action != PF_AFRT], 1);
9253 			pf_counter_u64_critical_exit();
9254 		} else {
9255 			if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9256 			    &pd->act) != PF_PASS) {
9257 				action = PF_DROP;
9258 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9259 				goto bad;
9260 			} else if (m0 == NULL) {
9261 				action = PF_DROP;
9262 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9263 				goto done;
9264 			}
9265 			if (m0->m_len < sizeof(struct ip)) {
9266 				DPFPRINTF(PF_DEBUG_URGENT,
9267 				    "%s: m0->m_len < sizeof(struct ip)", __func__);
9268 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9269 				action = PF_DROP;
9270 				goto bad;
9271 			}
9272 			ip = mtod(m0, struct ip *);
9273 		}
9274 	}
9275 
9276 	if (ifp->if_flags & IFF_LOOPBACK)
9277 		m0->m_flags |= M_SKIP_FIREWALL;
9278 
9279 	ip_len = ntohs(ip->ip_len);
9280 	ip_off = ntohs(ip->ip_off);
9281 
9282 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
9283 	m0->m_pkthdr.csum_flags |= CSUM_IP;
9284 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9285 		in_delayed_cksum(m0);
9286 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9287 	}
9288 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9289 		pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9290 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9291 	}
9292 
9293 	if (pd->dir == PF_IN) {
9294 		/*
9295 		 * Make sure dummynet gets the correct direction, in case it needs to
9296 		 * re-inject later.
9297 		 */
9298 		pd->dir = PF_OUT;
9299 
9300 		/*
9301 		 * The following processing is actually the rest of the inbound processing, even
9302 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9303 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9304 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9305 		 * conclusion about what direction it's processing, and we can't fix it or it
9306 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9307 		 * decision will pick the right pipe, and everything will mostly work as expected.
9308 		 */
9309 		tmp = pd->act.dnrpipe;
9310 		pd->act.dnrpipe = pd->act.dnpipe;
9311 		pd->act.dnpipe = tmp;
9312 	}
9313 
9314 	/*
9315 	 * If small enough for interface, or the interface will take
9316 	 * care of the fragmentation for us, we can just send directly.
9317 	 */
9318 	if (ip_len <= ifp->if_mtu ||
9319 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9320 		ip->ip_sum = 0;
9321 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9322 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9323 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9324 		}
9325 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
9326 
9327 		md = m0;
9328 		error = pf_dummynet_route(pd, s, r, ifp,
9329 		    (const struct sockaddr *)gw, &md);
9330 		if (md != NULL) {
9331 			error = (*ifp->if_output)(ifp, md,
9332 			    (const struct sockaddr *)gw, (struct route *)&ro);
9333 			SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9334 		}
9335 		goto done;
9336 	}
9337 
9338 	/* Balk when DF bit is set or the interface didn't support TSO. */
9339 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9340 		error = EMSGSIZE;
9341 		KMOD_IPSTAT_INC(ips_cantfrag);
9342 		if (pd->act.rt != PF_DUPTO) {
9343 			if (s && s->nat_rule != NULL) {
9344 				MPASS(m0 == pd->m);
9345 				PACKET_UNDO_NAT(pd,
9346 				    (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9347 				    s);
9348 			}
9349 
9350 			pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
9351 			   ifp->if_mtu, pd->af, r, pd->act.rtableid);
9352 		}
9353 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9354 		action = PF_DROP;
9355 		goto bad;
9356 	}
9357 
9358 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9359 	if (error) {
9360 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9361 		action = PF_DROP;
9362 		goto bad;
9363 	}
9364 
9365 	for (; m0; m0 = m1) {
9366 		m1 = m0->m_nextpkt;
9367 		m0->m_nextpkt = NULL;
9368 		if (error == 0) {
9369 			m_clrprotoflags(m0);
9370 			md = m0;
9371 			pd->pf_mtag = pf_find_mtag(md);
9372 			error = pf_dummynet_route(pd, s, r, ifp,
9373 			    (const struct sockaddr *)gw, &md);
9374 			if (md != NULL) {
9375 				error = (*ifp->if_output)(ifp, md,
9376 				    (const struct sockaddr *)gw,
9377 				    (struct route *)&ro);
9378 				SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9379 			}
9380 		} else
9381 			m_freem(m0);
9382 	}
9383 
9384 	if (error == 0)
9385 		KMOD_IPSTAT_INC(ips_fragmented);
9386 
9387 done:
9388 	if (pd->act.rt != PF_DUPTO)
9389 		pd->m = NULL;
9390 	else
9391 		action = PF_PASS;
9392 	return (action);
9393 
9394 bad_locked:
9395 	if (s)
9396 		PF_STATE_UNLOCK(s);
9397 bad:
9398 	m_freem(m0);
9399 	goto done;
9400 }
9401 #endif /* INET */
9402 
9403 #ifdef INET6
9404 static int
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9405 pf_route6(struct pf_krule *r, struct ifnet *oifp,
9406     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9407 {
9408 	struct mbuf		*m0, *md;
9409 	struct m_tag		*mtag;
9410 	struct sockaddr_in6	dst;
9411 	struct ip6_hdr		*ip6;
9412 	struct ifnet		*ifp = NULL;
9413 	int			 r_dir;
9414 	bool			 skip_test = false;
9415 	int			 action = PF_PASS;
9416 
9417 	KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9418 
9419 	SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
9420 
9421 	if (s) {
9422 		r_dir = s->direction;
9423 	} else {
9424 		r_dir = r->direction;
9425 	}
9426 
9427 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9428 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9429 	    __func__));
9430 
9431 	if ((pd->pf_mtag == NULL &&
9432 	    ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9433 	    pd->pf_mtag->routed++ > 3) {
9434 		m0 = pd->m;
9435 		pd->m = NULL;
9436 		action = PF_DROP;
9437 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9438 		goto bad_locked;
9439 	}
9440 
9441 	if (pd->act.rt_kif != NULL)
9442 		ifp = pd->act.rt_kif->pfik_ifp;
9443 
9444 	if (pd->act.rt == PF_DUPTO) {
9445 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9446 			if (s != NULL) {
9447 				PF_STATE_UNLOCK(s);
9448 			}
9449 			if (ifp == oifp) {
9450 				/* When the 2nd interface is not skipped */
9451 				return (action);
9452 			} else {
9453 				m0 = pd->m;
9454 				pd->m = NULL;
9455 				action = PF_DROP;
9456 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9457 				goto bad;
9458 			}
9459 		} else {
9460 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9461 			if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9462 				if (s)
9463 					PF_STATE_UNLOCK(s);
9464 				return (action);
9465 			}
9466 		}
9467 	} else {
9468 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9469 			if (pd->af == pd->naf) {
9470 				pf_dummynet(pd, s, r, &pd->m);
9471 				if (s)
9472 					PF_STATE_UNLOCK(s);
9473 				return (action);
9474 			} else {
9475 				if (r_dir == PF_IN) {
9476 					skip_test = true;
9477 				}
9478 			}
9479 		}
9480 
9481 		/*
9482 		 * If we're actually doing route-to and af-to and are in the
9483 		 * reply direction.
9484 		 */
9485 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9486 		    pd->af != pd->naf) {
9487 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9488 				/* Un-set ifp so we do a plain route lookup. */
9489 				ifp = NULL;
9490 			}
9491 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9492 				/* Un-set ifp so we do a plain route lookup. */
9493 				ifp = NULL;
9494 			}
9495 		}
9496 		m0 = pd->m;
9497 	}
9498 
9499 	ip6 = mtod(m0, struct ip6_hdr *);
9500 
9501 	bzero(&dst, sizeof(dst));
9502 	dst.sin6_family = AF_INET6;
9503 	dst.sin6_len = sizeof(dst);
9504 	pf_addrcpy((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr,
9505 	    AF_INET6);
9506 
9507 	if (pd->dir == PF_IN) {
9508 		if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
9509 			if (r->rt != PF_DUPTO)
9510 				pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
9511 				    ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
9512 				    pd->act.rtableid);
9513 			action = PF_DROP;
9514 			goto bad_locked;
9515 		}
9516 		ip6->ip6_hlim -= IPV6_HLIMDEC;
9517 	}
9518 
9519 	if (s != NULL) {
9520 		if (ifp == NULL && (pd->af != pd->naf)) {
9521 			const struct nhop_object *nh;
9522 			nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
9523 			if (nh) {
9524 				ifp = nh->nh_ifp;
9525 
9526 				/* Use the gateway if needed. */
9527 				if (nh->nh_flags & NHF_GATEWAY)
9528 					bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9529 					    sizeof(dst.sin6_addr));
9530 				else
9531 					dst.sin6_addr = ip6->ip6_dst;
9532 			}
9533 		}
9534 		PF_STATE_UNLOCK(s);
9535 	}
9536 
9537 	if (pd->af != pd->naf) {
9538 		struct udphdr *uh = &pd->hdr.udp;
9539 
9540 		if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9541 			uh->uh_sum = in6_cksum_pseudo(ip6,
9542 			    ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9543 			m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9544 		}
9545 	}
9546 
9547 	if (ifp == NULL) {
9548 		m0 = pd->m;
9549 		pd->m = NULL;
9550 		action = PF_DROP;
9551 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9552 		goto bad;
9553 	}
9554 
9555 	/*
9556 	 * Bind to the correct interface if we're if-bound. We don't know which
9557 	 * interface that will be until here, so we've inserted the state
9558 	 * on V_pf_all. Fix that now.
9559 	 */
9560 	if (s != NULL && s->kif == V_pfi_all && r->rule_flag & PFRULE_IFBOUND) {
9561 		/* Verify that we're here because of BOUND_IFACE */
9562 		MPASS(r->rt == PF_REPLYTO || (pd->af != pd->naf && s->direction == PF_IN));
9563 		s->kif = ifp->if_pf_kif;
9564 		if (pd->act.rt == PF_REPLYTO) {
9565 			s->orig_kif = oifp->if_pf_kif;
9566 		}
9567 	}
9568 
9569 	if (r->rt == PF_DUPTO || (pd->af != pd->naf && s->direction == PF_IN))
9570 		skip_test = true;
9571 
9572 	if (pd->dir == PF_IN) {
9573 		if (skip_test) {
9574 			struct pfi_kkif *out_kif = (struct pfi_kkif *)ifp->if_pf_kif;
9575 			MPASS(s != NULL);
9576 			pf_counter_u64_critical_enter();
9577 			pf_counter_u64_add_protected(
9578 			    &out_kif->pfik_bytes[pd->naf == AF_INET6][1]
9579 			    [action != PF_PASS && action != PF_AFRT], pd->tot_len);
9580 			pf_counter_u64_add_protected(
9581 			    &out_kif->pfik_packets[pd->naf == AF_INET6][1]
9582 			    [action != PF_PASS && action != PF_AFRT], 1);
9583 			pf_counter_u64_critical_exit();
9584 		} else {
9585 			if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9586 			    ifp, &m0, inp, &pd->act) != PF_PASS) {
9587 				action = PF_DROP;
9588 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9589 				goto bad;
9590 			} else if (m0 == NULL) {
9591 				action = PF_DROP;
9592 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9593 				goto done;
9594 			}
9595 			if (m0->m_len < sizeof(struct ip6_hdr)) {
9596 				DPFPRINTF(PF_DEBUG_URGENT,
9597 				    "%s: m0->m_len < sizeof(struct ip6_hdr)",
9598 				    __func__);
9599 				action = PF_DROP;
9600 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9601 				goto bad;
9602 			}
9603 			ip6 = mtod(m0, struct ip6_hdr *);
9604 		}
9605 	}
9606 
9607 	if (ifp->if_flags & IFF_LOOPBACK)
9608 		m0->m_flags |= M_SKIP_FIREWALL;
9609 
9610 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9611 	    ~ifp->if_hwassist) {
9612 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9613 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9614 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9615 	}
9616 
9617 	if (pd->dir == PF_IN) {
9618 		uint16_t	 tmp;
9619 		/*
9620 		 * Make sure dummynet gets the correct direction, in case it needs to
9621 		 * re-inject later.
9622 		 */
9623 		pd->dir = PF_OUT;
9624 
9625 		/*
9626 		 * The following processing is actually the rest of the inbound processing, even
9627 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9628 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9629 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9630 		 * conclusion about what direction it's processing, and we can't fix it or it
9631 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9632 		 * decision will pick the right pipe, and everything will mostly work as expected.
9633 		 */
9634 		tmp = pd->act.dnrpipe;
9635 		pd->act.dnrpipe = pd->act.dnpipe;
9636 		pd->act.dnpipe = tmp;
9637 	}
9638 
9639 	/*
9640 	 * If the packet is too large for the outgoing interface,
9641 	 * send back an icmp6 error.
9642 	 */
9643 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9644 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9645 	mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9646 	if (mtag != NULL) {
9647 		int ret __sdt_used;
9648 		ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9649 		SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9650 		goto done;
9651 	}
9652 
9653 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9654 		md = m0;
9655 		pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9656 		if (md != NULL) {
9657 			int ret __sdt_used;
9658 			ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9659 			SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9660 		}
9661 	}
9662 	else {
9663 		in6_ifstat_inc(ifp, ifs6_in_toobig);
9664 		if (pd->act.rt != PF_DUPTO) {
9665 			if (s && s->nat_rule != NULL) {
9666 				MPASS(m0 == pd->m);
9667 				PACKET_UNDO_NAT(pd,
9668 				    ((caddr_t)ip6 - m0->m_data) +
9669 				    sizeof(struct ip6_hdr), s);
9670 			}
9671 
9672 			if (r->rt != PF_DUPTO)
9673 				pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
9674 				    ifp->if_mtu, pd->af, r, pd->act.rtableid);
9675 		}
9676 		action = PF_DROP;
9677 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9678 		goto bad;
9679 	}
9680 
9681 done:
9682 	if (pd->act.rt != PF_DUPTO)
9683 		pd->m = NULL;
9684 	else
9685 		action = PF_PASS;
9686 	return (action);
9687 
9688 bad_locked:
9689 	if (s)
9690 		PF_STATE_UNLOCK(s);
9691 bad:
9692 	m_freem(m0);
9693 	goto done;
9694 }
9695 #endif /* INET6 */
9696 
9697 /*
9698  * FreeBSD supports cksum offloads for the following drivers.
9699  *  em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9700  *
9701  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9702  *  network driver performed cksum including pseudo header, need to verify
9703  *   csum_data
9704  * CSUM_DATA_VALID :
9705  *  network driver performed cksum, needs to additional pseudo header
9706  *  cksum computation with partial csum_data(i.e. lack of H/W support for
9707  *  pseudo header, for instance sk(4) and possibly gem(4))
9708  *
9709  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9710  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9711  * TCP/UDP layer.
9712  * Also, set csum_data to 0xffff to force cksum validation.
9713  */
9714 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9715 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9716 {
9717 	u_int16_t sum = 0;
9718 	int hw_assist = 0;
9719 	struct ip *ip;
9720 
9721 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9722 		return (1);
9723 	if (m->m_pkthdr.len < off + len)
9724 		return (1);
9725 
9726 	switch (p) {
9727 	case IPPROTO_TCP:
9728 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9729 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9730 				sum = m->m_pkthdr.csum_data;
9731 			} else {
9732 				ip = mtod(m, struct ip *);
9733 				sum = in_pseudo(ip->ip_src.s_addr,
9734 				ip->ip_dst.s_addr, htonl((u_short)len +
9735 				m->m_pkthdr.csum_data + IPPROTO_TCP));
9736 			}
9737 			sum ^= 0xffff;
9738 			++hw_assist;
9739 		}
9740 		break;
9741 	case IPPROTO_UDP:
9742 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9743 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9744 				sum = m->m_pkthdr.csum_data;
9745 			} else {
9746 				ip = mtod(m, struct ip *);
9747 				sum = in_pseudo(ip->ip_src.s_addr,
9748 				ip->ip_dst.s_addr, htonl((u_short)len +
9749 				m->m_pkthdr.csum_data + IPPROTO_UDP));
9750 			}
9751 			sum ^= 0xffff;
9752 			++hw_assist;
9753 		}
9754 		break;
9755 	case IPPROTO_ICMP:
9756 #ifdef INET6
9757 	case IPPROTO_ICMPV6:
9758 #endif /* INET6 */
9759 		break;
9760 	default:
9761 		return (1);
9762 	}
9763 
9764 	if (!hw_assist) {
9765 		switch (af) {
9766 		case AF_INET:
9767 			if (m->m_len < sizeof(struct ip))
9768 				return (1);
9769 			sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9770 			break;
9771 #ifdef INET6
9772 		case AF_INET6:
9773 			if (m->m_len < sizeof(struct ip6_hdr))
9774 				return (1);
9775 			sum = in6_cksum(m, p, off, len);
9776 			break;
9777 #endif /* INET6 */
9778 		}
9779 	}
9780 	if (sum) {
9781 		switch (p) {
9782 		case IPPROTO_TCP:
9783 		    {
9784 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9785 			break;
9786 		    }
9787 		case IPPROTO_UDP:
9788 		    {
9789 			KMOD_UDPSTAT_INC(udps_badsum);
9790 			break;
9791 		    }
9792 #ifdef INET
9793 		case IPPROTO_ICMP:
9794 		    {
9795 			KMOD_ICMPSTAT_INC(icps_checksum);
9796 			break;
9797 		    }
9798 #endif
9799 #ifdef INET6
9800 		case IPPROTO_ICMPV6:
9801 		    {
9802 			KMOD_ICMP6STAT_INC(icp6s_checksum);
9803 			break;
9804 		    }
9805 #endif /* INET6 */
9806 		}
9807 		return (1);
9808 	} else {
9809 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9810 			m->m_pkthdr.csum_flags |=
9811 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9812 			m->m_pkthdr.csum_data = 0xffff;
9813 		}
9814 	}
9815 	return (0);
9816 }
9817 
9818 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9819 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9820     const struct pf_kstate *s, struct ip_fw_args *dnflow)
9821 {
9822 	int dndir = r->direction;
9823 	sa_family_t af  = pd->naf;
9824 
9825 	if (s && dndir == PF_INOUT) {
9826 		dndir = s->direction;
9827 	} else if (dndir == PF_INOUT) {
9828 		/* Assume primary direction. Happens when we've set dnpipe in
9829 		 * the ethernet level code. */
9830 		dndir = pd->dir;
9831 	}
9832 
9833 	if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9834 		return (false);
9835 
9836 	memset(dnflow, 0, sizeof(*dnflow));
9837 
9838 	if (pd->dport != NULL)
9839 		dnflow->f_id.dst_port = ntohs(*pd->dport);
9840 	if (pd->sport != NULL)
9841 		dnflow->f_id.src_port = ntohs(*pd->sport);
9842 
9843 	if (pd->dir == PF_IN)
9844 		dnflow->flags |= IPFW_ARGS_IN;
9845 	else
9846 		dnflow->flags |= IPFW_ARGS_OUT;
9847 
9848 	if (pd->dir != dndir && pd->act.dnrpipe) {
9849 		dnflow->rule.info = pd->act.dnrpipe;
9850 	}
9851 	else if (pd->dir == dndir && pd->act.dnpipe) {
9852 		dnflow->rule.info = pd->act.dnpipe;
9853 	}
9854 	else {
9855 		return (false);
9856 	}
9857 
9858 	dnflow->rule.info |= IPFW_IS_DUMMYNET;
9859 	if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9860 		dnflow->rule.info |= IPFW_IS_PIPE;
9861 
9862 	dnflow->f_id.proto = pd->proto;
9863 	dnflow->f_id.extra = dnflow->rule.info;
9864 	if (s)
9865 		af = s->key[PF_SK_STACK]->af;
9866 
9867 	switch (af) {
9868 	case AF_INET:
9869 		dnflow->f_id.addr_type = 4;
9870 		if (s) {
9871 			dnflow->f_id.src_ip = htonl(
9872 			    s->key[PF_SK_STACK]->addr[pd->sidx].v4.s_addr);
9873 			dnflow->f_id.dst_ip = htonl(
9874 			    s->key[PF_SK_STACK]->addr[pd->didx].v4.s_addr);
9875 		} else {
9876 			dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9877 			dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9878 		}
9879 		break;
9880 	case AF_INET6:
9881 		dnflow->f_id.addr_type = 6;
9882 
9883 		if (s) {
9884 			dnflow->f_id.src_ip6 =
9885 			    s->key[PF_SK_STACK]->addr[pd->sidx].v6;
9886 			dnflow->f_id.dst_ip6 =
9887 			    s->key[PF_SK_STACK]->addr[pd->didx].v6;
9888 		} else {
9889 			dnflow->f_id.src_ip6 = pd->src->v6;
9890 			dnflow->f_id.dst_ip6 = pd->dst->v6;
9891 		}
9892 		break;
9893 	}
9894 
9895 	/*
9896 	 * Separate this out, because while we pass the pre-NAT addresses to
9897 	 * dummynet we want the post-nat address family in case of nat64.
9898 	 * Dummynet may call ip_output/ip6_output itself, and we need it to
9899 	 * call the correct one.
9900 	 */
9901 	if (pd->naf == AF_INET6)
9902 		dnflow->flags |= IPFW_ARGS_IP6;
9903 
9904 	return (true);
9905 }
9906 
9907 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9908 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9909     struct inpcb *inp)
9910 {
9911 	struct pfi_kkif		*kif;
9912 	struct mbuf		*m = *m0;
9913 
9914 	M_ASSERTPKTHDR(m);
9915 	MPASS(ifp->if_vnet == curvnet);
9916 	NET_EPOCH_ASSERT();
9917 
9918 	if (!V_pf_status.running)
9919 		return (PF_PASS);
9920 
9921 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
9922 
9923 	if (kif == NULL) {
9924 		DPFPRINTF(PF_DEBUG_URGENT,
9925 		    "%s: kif == NULL, if_xname %s", __func__, ifp->if_xname);
9926 		return (PF_DROP);
9927 	}
9928 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
9929 		return (PF_PASS);
9930 
9931 	if (m->m_flags & M_SKIP_FIREWALL)
9932 		return (PF_PASS);
9933 
9934 	if (__predict_false(! M_WRITABLE(*m0))) {
9935 		m = *m0 = m_unshare(*m0, M_NOWAIT);
9936 		if (*m0 == NULL)
9937 			return (PF_DROP);
9938 	}
9939 
9940 	/* Stateless! */
9941 	return (pf_test_eth_rule(dir, kif, m0));
9942 }
9943 
9944 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9945 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9946 {
9947 	struct m_tag *mtag;
9948 
9949 	pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9950 
9951 	/* dummynet adds this tag, but pf does not need it,
9952 	 * and keeping it creates unexpected behavior,
9953 	 * e.g. in case of divert(4) usage right after dummynet. */
9954 	mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9955 	if (mtag != NULL)
9956 		m_tag_delete(m, mtag);
9957 }
9958 
9959 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9960 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9961     struct pf_krule *r, struct mbuf **m0)
9962 {
9963 	return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9964 }
9965 
9966 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9967 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9968     struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9969     struct mbuf **m0)
9970 {
9971 	struct ip_fw_args dnflow;
9972 
9973 	NET_EPOCH_ASSERT();
9974 
9975 	if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9976 		return (0);
9977 
9978 	if (ip_dn_io_ptr == NULL) {
9979 		m_freem(*m0);
9980 		*m0 = NULL;
9981 		return (ENOMEM);
9982 	}
9983 
9984 	if (pd->pf_mtag == NULL &&
9985 	    ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9986 		m_freem(*m0);
9987 		*m0 = NULL;
9988 		return (ENOMEM);
9989 	}
9990 
9991 	if (ifp != NULL) {
9992 		pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9993 
9994 		pd->pf_mtag->if_index = ifp->if_index;
9995 		pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9996 
9997 		MPASS(sa != NULL);
9998 
9999 		switch (sa->sa_family) {
10000 		case AF_INET:
10001 			memcpy(&pd->pf_mtag->dst, sa,
10002 			    sizeof(struct sockaddr_in));
10003 			break;
10004 		case AF_INET6:
10005 			memcpy(&pd->pf_mtag->dst, sa,
10006 			    sizeof(struct sockaddr_in6));
10007 			break;
10008 		}
10009 	}
10010 
10011 	if (s != NULL && s->nat_rule != NULL &&
10012 	    s->nat_rule->action == PF_RDR &&
10013 	    (
10014 #ifdef INET
10015 	    (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
10016 #endif /* INET */
10017 	    (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
10018 		/*
10019 		 * If we're redirecting to loopback mark this packet
10020 		 * as being local. Otherwise it might get dropped
10021 		 * if dummynet re-injects.
10022 		 */
10023 		(*m0)->m_pkthdr.rcvif = V_loif;
10024 	}
10025 
10026 	if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
10027 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
10028 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
10029 		ip_dn_io_ptr(m0, &dnflow);
10030 		if (*m0 != NULL) {
10031 			pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10032 			pf_dummynet_flag_remove(*m0, pd->pf_mtag);
10033 		}
10034 	}
10035 
10036 	return (0);
10037 }
10038 
10039 static int
pf_walk_option(struct pf_pdesc * pd,struct ip * h,int off,int end,u_short * reason)10040 pf_walk_option(struct pf_pdesc *pd, struct ip *h, int off, int end,
10041     u_short *reason)
10042 {
10043 	uint8_t type, length, opts[15 * 4 - sizeof(struct ip)];
10044 
10045 	/* IP header in payload of ICMP packet may be too short */
10046 	if (pd->m->m_pkthdr.len < end) {
10047 		DPFPRINTF(PF_DEBUG_MISC, "IP option too short");
10048 		REASON_SET(reason, PFRES_SHORT);
10049 		return (PF_DROP);
10050 	}
10051 
10052 	MPASS(end - off <= sizeof(opts));
10053 	m_copydata(pd->m, off, end - off, opts);
10054 	end -= off;
10055 	off = 0;
10056 
10057 	while (off < end) {
10058 		type = opts[off];
10059 		if (type == IPOPT_EOL)
10060 			break;
10061 		if (type == IPOPT_NOP) {
10062 			off++;
10063 			continue;
10064 		}
10065 		if (off + 2 > end) {
10066 			DPFPRINTF(PF_DEBUG_MISC, "IP length opt");
10067 			REASON_SET(reason, PFRES_IPOPTIONS);
10068 			return (PF_DROP);
10069 		}
10070 		length = opts[off + 1];
10071 		if (length < 2) {
10072 			DPFPRINTF(PF_DEBUG_MISC, "IP short opt");
10073 			REASON_SET(reason, PFRES_IPOPTIONS);
10074 			return (PF_DROP);
10075 		}
10076 		if (off + length > end) {
10077 			DPFPRINTF(PF_DEBUG_MISC, "IP long opt");
10078 			REASON_SET(reason, PFRES_IPOPTIONS);
10079 			return (PF_DROP);
10080 		}
10081 		switch (type) {
10082 		case IPOPT_RA:
10083 			pd->badopts |= PF_OPT_ROUTER_ALERT;
10084 			break;
10085 		default:
10086 			pd->badopts |= PF_OPT_OTHER;
10087 			break;
10088 		}
10089 		off += length;
10090 	}
10091 
10092 	return (PF_PASS);
10093 }
10094 
10095 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)10096 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
10097 {
10098 	struct ah	 ext;
10099 	u_int32_t	 hlen, end;
10100 	int		 hdr_cnt;
10101 
10102 	hlen = h->ip_hl << 2;
10103 	if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
10104 		REASON_SET(reason, PFRES_SHORT);
10105 		return (PF_DROP);
10106 	}
10107 	if (hlen != sizeof(struct ip)) {
10108 		if (pf_walk_option(pd, h, pd->off + sizeof(struct ip),
10109 		    pd->off + hlen, reason) != PF_PASS)
10110 			return (PF_DROP);
10111 		/* header options which contain only padding is fishy */
10112 		if (pd->badopts == 0)
10113 			pd->badopts |= PF_OPT_OTHER;
10114 	}
10115 	end = pd->off + ntohs(h->ip_len);
10116 	pd->off += hlen;
10117 	pd->proto = h->ip_p;
10118 	/* IGMP packets have router alert options, allow them */
10119 	if (pd->proto == IPPROTO_IGMP) {
10120 		/*
10121 		 * According to RFC 1112 ttl must be set to 1 in all IGMP
10122 		 * packets sent to 224.0.0.1
10123 		 */
10124 		if ((h->ip_ttl != 1) &&
10125 		    (h->ip_dst.s_addr == INADDR_ALLHOSTS_GROUP)) {
10126 			DPFPRINTF(PF_DEBUG_MISC, "Invalid IGMP");
10127 			REASON_SET(reason, PFRES_IPOPTIONS);
10128 			return (PF_DROP);
10129 		}
10130 		pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10131 	}
10132 	/* stop walking over non initial fragments */
10133 	if ((h->ip_off & htons(IP_OFFMASK)) != 0)
10134 		return (PF_PASS);
10135 	for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10136 		switch (pd->proto) {
10137 		case IPPROTO_AH:
10138 			/* fragments may be short */
10139 			if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
10140 			    end < pd->off + sizeof(ext))
10141 				return (PF_PASS);
10142 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10143 				reason, AF_INET)) {
10144 				DPFPRINTF(PF_DEBUG_MISC, "IP short exthdr");
10145 				return (PF_DROP);
10146 			}
10147 			pd->off += (ext.ah_len + 2) * 4;
10148 			pd->proto = ext.ah_nxt;
10149 			break;
10150 		default:
10151 			return (PF_PASS);
10152 		}
10153 	}
10154 	DPFPRINTF(PF_DEBUG_MISC, "IPv4 nested authentication header limit");
10155 	REASON_SET(reason, PFRES_IPOPTIONS);
10156 	return (PF_DROP);
10157 }
10158 
10159 #ifdef INET6
10160 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)10161 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
10162     u_short *reason)
10163 {
10164 	struct ip6_opt		 opt;
10165 	struct ip6_opt_jumbo	 jumbo;
10166 
10167 	while (off < end) {
10168 		if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
10169 		    sizeof(opt.ip6o_type), reason, AF_INET6)) {
10170 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt type");
10171 			return (PF_DROP);
10172 		}
10173 		if (opt.ip6o_type == IP6OPT_PAD1) {
10174 			off++;
10175 			continue;
10176 		}
10177 		if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt),
10178 		    reason, AF_INET6)) {
10179 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt");
10180 			return (PF_DROP);
10181 		}
10182 		if (off + sizeof(opt) + opt.ip6o_len > end) {
10183 			DPFPRINTF(PF_DEBUG_MISC, "IPv6 long opt");
10184 			REASON_SET(reason, PFRES_IPOPTIONS);
10185 			return (PF_DROP);
10186 		}
10187 		switch (opt.ip6o_type) {
10188 		case IP6OPT_PADN:
10189 			break;
10190 		case IP6OPT_JUMBO:
10191 			pd->badopts |= PF_OPT_JUMBO;
10192 			if (pd->jumbolen != 0) {
10193 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple jumbo");
10194 				REASON_SET(reason, PFRES_IPOPTIONS);
10195 				return (PF_DROP);
10196 			}
10197 			if (ntohs(h->ip6_plen) != 0) {
10198 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 bad jumbo plen");
10199 				REASON_SET(reason, PFRES_IPOPTIONS);
10200 				return (PF_DROP);
10201 			}
10202 			if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo),
10203 				reason, AF_INET6)) {
10204 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbo");
10205 				return (PF_DROP);
10206 			}
10207 			memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
10208 			    sizeof(pd->jumbolen));
10209 			pd->jumbolen = ntohl(pd->jumbolen);
10210 			if (pd->jumbolen < IPV6_MAXPACKET) {
10211 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbolen");
10212 				REASON_SET(reason, PFRES_IPOPTIONS);
10213 				return (PF_DROP);
10214 			}
10215 			break;
10216 		case IP6OPT_ROUTER_ALERT:
10217 			pd->badopts |= PF_OPT_ROUTER_ALERT;
10218 			break;
10219 		default:
10220 			pd->badopts |= PF_OPT_OTHER;
10221 			break;
10222 		}
10223 		off += sizeof(opt) + opt.ip6o_len;
10224 	}
10225 
10226 	return (PF_PASS);
10227 }
10228 
10229 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)10230 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
10231 {
10232 	struct ip6_frag		 frag;
10233 	struct ip6_ext		 ext;
10234 	struct icmp6_hdr	 icmp6;
10235 	struct ip6_rthdr	 rthdr;
10236 	uint32_t		 end;
10237 	int			 hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
10238 
10239 	pd->off += sizeof(struct ip6_hdr);
10240 	end = pd->off + ntohs(h->ip6_plen);
10241 	pd->fragoff = pd->extoff = pd->jumbolen = 0;
10242 	pd->proto = h->ip6_nxt;
10243 	for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10244 		switch (pd->proto) {
10245 		case IPPROTO_ROUTING:
10246 		case IPPROTO_DSTOPTS:
10247 			pd->badopts |= PF_OPT_OTHER;
10248 			break;
10249 		case IPPROTO_HOPOPTS:
10250 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10251 			    reason, AF_INET6)) {
10252 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10253 				return (PF_DROP);
10254 			}
10255 			if (pf_walk_option6(pd, h, pd->off + sizeof(ext),
10256 				pd->off + (ext.ip6e_len + 1) * 8,
10257 				reason) != PF_PASS)
10258 				return (PF_DROP);
10259 			/* option header which contains only padding is fishy */
10260 			if (pd->badopts == 0)
10261 				pd->badopts |= PF_OPT_OTHER;
10262 			break;
10263 		}
10264 		switch (pd->proto) {
10265 		case IPPROTO_FRAGMENT:
10266 			if (fraghdr_cnt++) {
10267 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple fragment");
10268 				REASON_SET(reason, PFRES_FRAG);
10269 				return (PF_DROP);
10270 			}
10271 			/* jumbo payload packets cannot be fragmented */
10272 			if (pd->jumbolen != 0) {
10273 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 fragmented jumbo");
10274 				REASON_SET(reason, PFRES_FRAG);
10275 				return (PF_DROP);
10276 			}
10277 			if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
10278 			    reason, AF_INET6)) {
10279 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short fragment");
10280 				return (PF_DROP);
10281 			}
10282 			/* stop walking over non initial fragments */
10283 			if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
10284 				pd->fragoff = pd->off;
10285 				return (PF_PASS);
10286 			}
10287 			/* RFC6946:  reassemble only non atomic fragments */
10288 			if (frag.ip6f_offlg & IP6F_MORE_FRAG)
10289 				pd->fragoff = pd->off;
10290 			pd->off += sizeof(frag);
10291 			pd->proto = frag.ip6f_nxt;
10292 			break;
10293 		case IPPROTO_ROUTING:
10294 			if (rthdr_cnt++) {
10295 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple rthdr");
10296 				REASON_SET(reason, PFRES_IPOPTIONS);
10297 				return (PF_DROP);
10298 			}
10299 			/* fragments may be short */
10300 			if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
10301 				pd->off = pd->fragoff;
10302 				pd->proto = IPPROTO_FRAGMENT;
10303 				return (PF_PASS);
10304 			}
10305 			if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
10306 			    reason, AF_INET6)) {
10307 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short rthdr");
10308 				return (PF_DROP);
10309 			}
10310 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
10311 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 rthdr0");
10312 				REASON_SET(reason, PFRES_IPOPTIONS);
10313 				return (PF_DROP);
10314 			}
10315 			/* FALLTHROUGH */
10316 		case IPPROTO_HOPOPTS:
10317 			/* RFC2460 4.1:  Hop-by-Hop only after IPv6 header */
10318 			if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
10319 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 hopopts not first");
10320 				REASON_SET(reason, PFRES_IPOPTIONS);
10321 				return (PF_DROP);
10322 			}
10323 			/* FALLTHROUGH */
10324 		case IPPROTO_AH:
10325 		case IPPROTO_DSTOPTS:
10326 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10327 			    reason, AF_INET6)) {
10328 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10329 				return (PF_DROP);
10330 			}
10331 			/* fragments may be short */
10332 			if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
10333 				pd->off = pd->fragoff;
10334 				pd->proto = IPPROTO_FRAGMENT;
10335 				return (PF_PASS);
10336 			}
10337 			/* reassembly needs the ext header before the frag */
10338 			if (pd->fragoff == 0)
10339 				pd->extoff = pd->off;
10340 			if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0 &&
10341 			    ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
10342 				DPFPRINTF(PF_DEBUG_MISC, "IPv6 missing jumbo");
10343 				REASON_SET(reason, PFRES_IPOPTIONS);
10344 				return (PF_DROP);
10345 			}
10346 			if (pd->proto == IPPROTO_AH)
10347 				pd->off += (ext.ip6e_len + 2) * 4;
10348 			else
10349 				pd->off += (ext.ip6e_len + 1) * 8;
10350 			pd->proto = ext.ip6e_nxt;
10351 			break;
10352 		case IPPROTO_ICMPV6:
10353 			/* fragments may be short, ignore inner header then */
10354 			if (pd->fragoff != 0 && end < pd->off + sizeof(icmp6)) {
10355 				pd->off = pd->fragoff;
10356 				pd->proto = IPPROTO_FRAGMENT;
10357 				return (PF_PASS);
10358 			}
10359 			if (!pf_pull_hdr(pd->m, pd->off, &icmp6, sizeof(icmp6),
10360 				reason, AF_INET6)) {
10361 				DPFPRINTF(PF_DEBUG_MISC,
10362 				    "IPv6 short icmp6hdr");
10363 				return (PF_DROP);
10364 			}
10365 			/* ICMP multicast packets have router alert options */
10366 			switch (icmp6.icmp6_type) {
10367 			case MLD_LISTENER_QUERY:
10368 			case MLD_LISTENER_REPORT:
10369 			case MLD_LISTENER_DONE:
10370 			case MLDV2_LISTENER_REPORT:
10371 				/*
10372 				 * According to RFC 2710 all MLD messages are
10373 				 * sent with hop-limit (ttl) set to 1, and link
10374 				 * local source address.  If either one is
10375 				 * missing then MLD message is invalid and
10376 				 * should be discarded.
10377 				 */
10378 				if ((h->ip6_hlim != 1) ||
10379 				    !IN6_IS_ADDR_LINKLOCAL(&h->ip6_src)) {
10380 					DPFPRINTF(PF_DEBUG_MISC, "Invalid MLD");
10381 					REASON_SET(reason, PFRES_IPOPTIONS);
10382 					return (PF_DROP);
10383 				}
10384 				pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10385 				break;
10386 			}
10387 			return (PF_PASS);
10388 		case IPPROTO_TCP:
10389 		case IPPROTO_UDP:
10390 		case IPPROTO_SCTP:
10391 			/* fragments may be short, ignore inner header then */
10392 			if (pd->fragoff != 0 && end < pd->off +
10393 			    (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
10394 			    pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
10395 			    pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
10396 			    sizeof(struct icmp6_hdr))) {
10397 				pd->off = pd->fragoff;
10398 				pd->proto = IPPROTO_FRAGMENT;
10399 			}
10400 			/* FALLTHROUGH */
10401 		default:
10402 			return (PF_PASS);
10403 		}
10404 	}
10405 	DPFPRINTF(PF_DEBUG_MISC, "IPv6 nested extension header limit");
10406 	REASON_SET(reason, PFRES_IPOPTIONS);
10407 	return (PF_DROP);
10408 }
10409 #endif /* INET6 */
10410 
10411 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)10412 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
10413 {
10414 	memset(pd, 0, sizeof(*pd));
10415 	pd->pf_mtag = pf_find_mtag(m);
10416 	pd->m = m;
10417 }
10418 
10419 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)10420 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
10421     u_short *action, u_short *reason, struct pfi_kkif *kif,
10422     struct pf_rule_actions *default_actions)
10423 {
10424 	pd->dir = dir;
10425 	pd->kif = kif;
10426 	pd->m = *m0;
10427 	pd->sidx = (dir == PF_IN) ? 0 : 1;
10428 	pd->didx = (dir == PF_IN) ? 1 : 0;
10429 	pd->af = pd->naf = af;
10430 
10431 	PF_RULES_ASSERT();
10432 
10433 	TAILQ_INIT(&pd->sctp_multihome_jobs);
10434 	if (default_actions != NULL)
10435 		memcpy(&pd->act, default_actions, sizeof(pd->act));
10436 
10437 	if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
10438 		pd->act.dnpipe = pd->pf_mtag->dnpipe;
10439 		pd->act.flags = pd->pf_mtag->dnflags;
10440 	}
10441 
10442 	switch (af) {
10443 #ifdef INET
10444 	case AF_INET: {
10445 		struct ip *h;
10446 
10447 		if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
10448 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
10449 			DPFPRINTF(PF_DEBUG_URGENT,
10450 			    "%s: m_len < sizeof(struct ip), pullup failed",
10451 			    __func__);
10452 			*action = PF_DROP;
10453 			REASON_SET(reason, PFRES_SHORT);
10454 			return (PF_DROP);
10455 		}
10456 
10457 		h = mtod(pd->m, struct ip *);
10458 		if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
10459 			*action = PF_DROP;
10460 			REASON_SET(reason, PFRES_SHORT);
10461 			return (PF_DROP);
10462 		}
10463 
10464 		if (pf_normalize_ip(reason, pd) != PF_PASS) {
10465 			/* We do IP header normalization and packet reassembly here */
10466 			*m0 = pd->m;
10467 			*action = PF_DROP;
10468 			return (PF_DROP);
10469 		}
10470 		*m0 = pd->m;
10471 		h = mtod(pd->m, struct ip *);
10472 
10473 		if (pf_walk_header(pd, h, reason) != PF_PASS) {
10474 			*action = PF_DROP;
10475 			return (PF_DROP);
10476 		}
10477 
10478 		pd->src = (struct pf_addr *)&h->ip_src;
10479 		pd->dst = (struct pf_addr *)&h->ip_dst;
10480 		pf_addrcpy(&pd->osrc, pd->src, af);
10481 		pf_addrcpy(&pd->odst, pd->dst, af);
10482 		pd->ip_sum = &h->ip_sum;
10483 		pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
10484 		pd->ttl = h->ip_ttl;
10485 		pd->tot_len = ntohs(h->ip_len);
10486 		pd->act.rtableid = -1;
10487 		pd->df = h->ip_off & htons(IP_DF);
10488 		pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
10489 		    PF_VPROTO_FRAGMENT : pd->proto;
10490 
10491 		break;
10492 	}
10493 #endif /* INET */
10494 #ifdef INET6
10495 	case AF_INET6: {
10496 		struct ip6_hdr *h;
10497 
10498 		if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10499 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10500 			DPFPRINTF(PF_DEBUG_URGENT,
10501 			    "%s: m_len < sizeof(struct ip6_hdr)"
10502 			     ", pullup failed", __func__);
10503 			*action = PF_DROP;
10504 			REASON_SET(reason, PFRES_SHORT);
10505 			return (PF_DROP);
10506 		}
10507 
10508 		h = mtod(pd->m, struct ip6_hdr *);
10509 		if (pd->m->m_pkthdr.len <
10510 		    sizeof(struct ip6_hdr) + ntohs(h->ip6_plen)) {
10511 			*action = PF_DROP;
10512 			REASON_SET(reason, PFRES_SHORT);
10513 			return (PF_DROP);
10514 		}
10515 
10516 		/*
10517 		 * we do not support jumbogram.  if we keep going, zero ip6_plen
10518 		 * will do something bad, so drop the packet for now.
10519 		 */
10520 		if (htons(h->ip6_plen) == 0) {
10521 			*action = PF_DROP;
10522 			return (PF_DROP);
10523 		}
10524 
10525 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10526 			*action = PF_DROP;
10527 			return (PF_DROP);
10528 		}
10529 
10530 		h = mtod(pd->m, struct ip6_hdr *);
10531 		pd->src = (struct pf_addr *)&h->ip6_src;
10532 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10533 		pf_addrcpy(&pd->osrc, pd->src, af);
10534 		pf_addrcpy(&pd->odst, pd->dst, af);
10535 		pd->ip_sum = NULL;
10536 		pd->tos = IPV6_DSCP(h);
10537 		pd->ttl = h->ip6_hlim;
10538 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10539 		pd->act.rtableid = -1;
10540 
10541 		pd->virtual_proto = (pd->fragoff != 0) ?
10542 		    PF_VPROTO_FRAGMENT : pd->proto;
10543 
10544 		/* We do IP header normalization and packet reassembly here */
10545 		if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10546 		    PF_PASS) {
10547 			*m0 = pd->m;
10548 			*action = PF_DROP;
10549 			return (PF_DROP);
10550 		}
10551 		*m0 = pd->m;
10552 		if (pd->m == NULL) {
10553 			/* packet sits in reassembly queue, no error */
10554 			*action = PF_PASS;
10555 			return (PF_DROP);
10556 		}
10557 
10558 		/* Update pointers into the packet. */
10559 		h = mtod(pd->m, struct ip6_hdr *);
10560 		pd->src = (struct pf_addr *)&h->ip6_src;
10561 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10562 
10563 		pd->off = 0;
10564 
10565 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10566 			*action = PF_DROP;
10567 			return (PF_DROP);
10568 		}
10569 
10570 		if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10571 			/*
10572 			 * Reassembly may have changed the next protocol from
10573 			 * fragment to something else, so update.
10574 			 */
10575 			pd->virtual_proto = pd->proto;
10576 			MPASS(pd->fragoff == 0);
10577 		}
10578 
10579 		if (pd->fragoff != 0)
10580 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
10581 
10582 		break;
10583 	}
10584 #endif /* INET6 */
10585 	default:
10586 		panic("pf_setup_pdesc called with illegal af %u", af);
10587 	}
10588 
10589 	switch (pd->virtual_proto) {
10590 	case IPPROTO_TCP: {
10591 		struct tcphdr *th = &pd->hdr.tcp;
10592 
10593 		if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th),
10594 			reason, af)) {
10595 			*action = PF_DROP;
10596 			REASON_SET(reason, PFRES_SHORT);
10597 			return (PF_DROP);
10598 		}
10599 		pd->hdrlen = sizeof(*th);
10600 		pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10601 		pd->sport = &th->th_sport;
10602 		pd->dport = &th->th_dport;
10603 		pd->pcksum = &th->th_sum;
10604 		break;
10605 	}
10606 	case IPPROTO_UDP: {
10607 		struct udphdr *uh = &pd->hdr.udp;
10608 
10609 		if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh),
10610 			reason, af)) {
10611 			*action = PF_DROP;
10612 			REASON_SET(reason, PFRES_SHORT);
10613 			return (PF_DROP);
10614 		}
10615 		pd->hdrlen = sizeof(*uh);
10616 		if (uh->uh_dport == 0 ||
10617 		    ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10618 		    ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10619 			*action = PF_DROP;
10620 			REASON_SET(reason, PFRES_SHORT);
10621 			return (PF_DROP);
10622 		}
10623 		pd->sport = &uh->uh_sport;
10624 		pd->dport = &uh->uh_dport;
10625 		pd->pcksum = &uh->uh_sum;
10626 		break;
10627 	}
10628 	case IPPROTO_SCTP: {
10629 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10630 		    reason, af)) {
10631 			*action = PF_DROP;
10632 			REASON_SET(reason, PFRES_SHORT);
10633 			return (PF_DROP);
10634 		}
10635 		pd->hdrlen = sizeof(pd->hdr.sctp);
10636 		pd->p_len = pd->tot_len - pd->off;
10637 
10638 		pd->sport = &pd->hdr.sctp.src_port;
10639 		pd->dport = &pd->hdr.sctp.dest_port;
10640 		if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10641 			*action = PF_DROP;
10642 			REASON_SET(reason, PFRES_SHORT);
10643 			return (PF_DROP);
10644 		}
10645 
10646 		/*
10647 		 * Placeholder. The SCTP checksum is 32-bits, but
10648 		 * pf_test_state() expects to update a 16-bit checksum.
10649 		 * Provide a dummy value which we'll subsequently ignore.
10650 		 * Do this before pf_scan_sctp() so any jobs we enqueue
10651 		 * have a pcksum set.
10652 		 */
10653 		pd->pcksum = &pd->sctp_dummy_sum;
10654 
10655 		if (pf_scan_sctp(pd) != PF_PASS) {
10656 			*action = PF_DROP;
10657 			REASON_SET(reason, PFRES_SHORT);
10658 			return (PF_DROP);
10659 		}
10660 		break;
10661 	}
10662 	case IPPROTO_ICMP: {
10663 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10664 			reason, af)) {
10665 			*action = PF_DROP;
10666 			REASON_SET(reason, PFRES_SHORT);
10667 			return (PF_DROP);
10668 		}
10669 		pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10670 		pd->hdrlen = ICMP_MINLEN;
10671 		break;
10672 	}
10673 #ifdef INET6
10674 	case IPPROTO_ICMPV6: {
10675 		size_t icmp_hlen = sizeof(struct icmp6_hdr);
10676 
10677 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10678 			reason, af)) {
10679 			*action = PF_DROP;
10680 			REASON_SET(reason, PFRES_SHORT);
10681 			return (PF_DROP);
10682 		}
10683 		/* ICMP headers we look further into to match state */
10684 		switch (pd->hdr.icmp6.icmp6_type) {
10685 		case MLD_LISTENER_QUERY:
10686 		case MLD_LISTENER_REPORT:
10687 			icmp_hlen = sizeof(struct mld_hdr);
10688 			break;
10689 		case ND_NEIGHBOR_SOLICIT:
10690 		case ND_NEIGHBOR_ADVERT:
10691 			icmp_hlen = sizeof(struct nd_neighbor_solicit);
10692 			/* FALLTHROUGH */
10693 		case ND_ROUTER_SOLICIT:
10694 		case ND_ROUTER_ADVERT:
10695 		case ND_REDIRECT:
10696 			if (pd->ttl != 255) {
10697 				REASON_SET(reason, PFRES_NORM);
10698 				return (PF_DROP);
10699 			}
10700 			break;
10701 		}
10702 		if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10703 		    !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10704 			reason, af)) {
10705 			*action = PF_DROP;
10706 			REASON_SET(reason, PFRES_SHORT);
10707 			return (PF_DROP);
10708 		}
10709 		pd->hdrlen = icmp_hlen;
10710 		pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
10711 		break;
10712 	}
10713 #endif /* INET6 */
10714 	default:
10715 		/*
10716 		 * Placeholder value, so future calls to pf_change_ap() don't
10717 		 * try to update a NULL checksum pointer.
10718 		*/
10719 		pd->pcksum = &pd->sctp_dummy_sum;
10720 		break;
10721 	}
10722 
10723 	if (pd->sport)
10724 		pd->osport = pd->nsport = *pd->sport;
10725 	if (pd->dport)
10726 		pd->odport = pd->ndport = *pd->dport;
10727 
10728 	MPASS(pd->pcksum != NULL);
10729 
10730 	return (PF_PASS);
10731 }
10732 
10733 static __inline void
pf_rule_counters_inc(struct pf_pdesc * pd,struct pf_krule * r,int dir_out,int op_pass,sa_family_t af,struct pf_addr * src_host,struct pf_addr * dst_host)10734 pf_rule_counters_inc(struct pf_pdesc *pd, struct pf_krule *r, int dir_out,
10735     int op_pass, sa_family_t af, struct pf_addr *src_host,
10736     struct pf_addr *dst_host)
10737 {
10738 	pf_counter_u64_add_protected(&(r->packets[dir_out]), 1);
10739 	pf_counter_u64_add_protected(&(r->bytes[dir_out]), pd->tot_len);
10740 	pf_update_timestamp(r);
10741 
10742 	if (r->src.addr.type == PF_ADDR_TABLE)
10743 		pfr_update_stats(r->src.addr.p.tbl, src_host, af,
10744 		    pd->tot_len, dir_out, op_pass, r->src.neg);
10745 	if (r->dst.addr.type == PF_ADDR_TABLE)
10746 		pfr_update_stats(r->dst.addr.p.tbl, dst_host, af,
10747 		    pd->tot_len, dir_out, op_pass, r->dst.neg);
10748 }
10749 
10750 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a,struct pf_krule_slist * match_rules)10751 pf_counters_inc(int action, struct pf_pdesc *pd, struct pf_kstate *s,
10752     struct pf_krule *r, struct pf_krule *a, struct pf_krule_slist *match_rules)
10753 {
10754 	struct pf_krule_slist	*mr = match_rules;
10755 	struct pf_krule_item	*ri;
10756 	struct pf_krule		*nr = NULL;
10757 	struct pf_addr		*src_host = pd->src;
10758 	struct pf_addr		*dst_host = pd->dst;
10759 	struct pf_state_key	*key;
10760 	int			 dir_out = (pd->dir == PF_OUT);
10761 	int			 op_r_pass = (r->action == PF_PASS);
10762 	int			 op_pass = (action == PF_PASS || action == PF_AFRT);
10763 	int			 s_dir_in, s_dir_out, s_dir_rev;
10764 	sa_family_t		 af = pd->af;
10765 
10766 	pf_counter_u64_critical_enter();
10767 
10768 	/*
10769 	 * Set AF for interface counters, it will be later overwritten for
10770 	 * rule and state counters with value from proper state key.
10771 	 */
10772 	if (action == PF_AFRT) {
10773 		MPASS(s != NULL);
10774 		if (s->direction == PF_OUT && dir_out)
10775 			af = pd->naf;
10776 	}
10777 
10778 	pf_counter_u64_add_protected(
10779 	    &pd->kif->pfik_bytes[af == AF_INET6][dir_out][!op_pass],
10780 	    pd->tot_len);
10781 	pf_counter_u64_add_protected(
10782 	    &pd->kif->pfik_packets[af == AF_INET6][dir_out][!op_pass],
10783 	    1);
10784 
10785 	/* If the rule has failed to apply, don't increase its counters */
10786 	if (!(op_pass || r->action == PF_DROP)) {
10787 		pf_counter_u64_critical_exit();
10788 		return;
10789 	}
10790 
10791 	if (s != NULL) {
10792 		PF_STATE_LOCK_ASSERT(s);
10793 		mr = &(s->match_rules);
10794 
10795 		/*
10796 		 * For af-to on the inbound direction we can determine
10797 		 * the direction of passing packet only by checking direction
10798 		 * of AF translation. The af-to in "in" direction covers both
10799 		 * the inbound and the outbound side of state tracking,
10800 		 * so pd->dir is always PF_IN. We set dir_out and s_dir_rev
10801 		 * in a way to count packets as if the state was outbound,
10802 		 * because pfctl -ss shows the state with "->", as if it was
10803 		 * oubound.
10804 		 */
10805 		if (action == PF_AFRT && s->direction == PF_IN) {
10806 			dir_out = (pd->naf == s->rule->naf);
10807 			s_dir_in = 1;
10808 			s_dir_out = 0;
10809 			s_dir_rev = (pd->naf == s->rule->af);
10810 		} else {
10811 			dir_out = (pd->dir == PF_OUT);
10812 			s_dir_in = (s->direction == PF_IN);
10813 			s_dir_out = (s->direction == PF_OUT);
10814 			s_dir_rev = (pd->dir != s->direction);
10815 		}
10816 
10817 		/* pd->tot_len is a problematic with af-to rules. Sure, we can
10818 		 * agree that it's the post-af-to packet length that was
10819 		 * forwarded through a state, but what about tables which match
10820 		 * on pre-af-to addresses? We don't have access the the original
10821 		 * packet length anymore.
10822 		 */
10823 		s->packets[s_dir_rev]++;
10824 		s->bytes[s_dir_rev] += pd->tot_len;
10825 
10826 		/*
10827 		 * Source nodes are accessed unlocked here. But since we are
10828 		 * operating with stateful tracking and the state is locked,
10829 		 * those SNs could not have been freed.
10830 		 */
10831 		for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10832 			if (s->sns[sn_type] != NULL) {
10833 				counter_u64_add(
10834 				    s->sns[sn_type]->packets[dir_out],
10835 				    1);
10836 				counter_u64_add(
10837 				    s->sns[sn_type]->bytes[dir_out],
10838 				    pd->tot_len);
10839 			}
10840 		}
10841 
10842 		/* Start with pre-NAT addresses */
10843 		key = s->key[(s->direction == PF_OUT)];
10844 		src_host = &(key->addr[s_dir_out]);
10845 		dst_host = &(key->addr[s_dir_in]);
10846 		af = key->af;
10847 		if (s->nat_rule) {
10848 			/* Old-style NAT rules */
10849 			if (s->nat_rule->action == PF_NAT ||
10850 			    s->nat_rule->action == PF_RDR ||
10851 			    s->nat_rule->action == PF_BINAT) {
10852 				nr = s->nat_rule;
10853 				pf_rule_counters_inc(pd, s->nat_rule, dir_out,
10854 				    op_r_pass, af, src_host, dst_host);
10855 				/* Use post-NAT addresses from now on */
10856 				key = s->key[s_dir_in];
10857 				src_host = &(key->addr[s_dir_out]);
10858 				dst_host = &(key->addr[s_dir_in]);
10859 				af = key->af;
10860 			}
10861 		}
10862 	}
10863 
10864 	SLIST_FOREACH(ri, mr, entry) {
10865 		pf_rule_counters_inc(pd, ri->r, dir_out, op_r_pass, af,
10866 		    src_host, dst_host);
10867 		if (s && s->nat_rule == ri->r) {
10868 			/* Use post-NAT addresses after a match NAT rule */
10869 			key = s->key[s_dir_in];
10870 			src_host = &(key->addr[s_dir_out]);
10871 			dst_host = &(key->addr[s_dir_in]);
10872 			af = key->af;
10873 		}
10874 	}
10875 
10876 	if (s == NULL) {
10877 		pf_free_match_rules(mr);
10878 	}
10879 
10880 	if (a != NULL) {
10881 		pf_rule_counters_inc(pd, a, dir_out, op_r_pass, af,
10882 		    src_host, dst_host);
10883 	}
10884 
10885 	if (r != nr) {
10886 		pf_rule_counters_inc(pd, r, dir_out, op_r_pass, af,
10887 		    src_host, dst_host);
10888 	}
10889 
10890 	pf_counter_u64_critical_exit();
10891 }
10892 
10893 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * match_rules)10894 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10895     struct pf_krule *am, struct pf_kruleset *ruleset,
10896     struct pf_krule_slist *match_rules)
10897 {
10898 	struct pf_krule_item	*ri;
10899 
10900 	/* if this is the log(matches) rule, packet has been logged already */
10901 	if (rm->log & PF_LOG_MATCHES)
10902 		return;
10903 
10904 	SLIST_FOREACH(ri, match_rules, entry)
10905 		if (ri->r->log & PF_LOG_MATCHES)
10906 			PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10907 			    ruleset, pd, 1, ri->r);
10908 }
10909 
10910 #if defined(INET) || defined(INET6)
10911 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10912 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10913     struct inpcb *inp, struct pf_rule_actions *default_actions)
10914 {
10915 	struct pfi_kkif		*kif;
10916 	u_short			 action, reason = 0;
10917 	struct m_tag		*mtag;
10918 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule;
10919 	struct pf_kstate	*s = NULL;
10920 	struct pf_kruleset	*ruleset = NULL;
10921 	struct pf_krule_item	*ri;
10922 	struct pf_krule_slist	 match_rules;
10923 	struct pf_pdesc		 pd;
10924 	int			 use_2nd_queue = 0;
10925 	uint16_t		 tag;
10926 
10927 	PF_RULES_RLOCK_TRACKER;
10928 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10929 	M_ASSERTPKTHDR(*m0);
10930 	NET_EPOCH_ASSERT();
10931 
10932 	if (!V_pf_status.running)
10933 		return (PF_PASS);
10934 
10935 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
10936 
10937 	if (__predict_false(kif == NULL)) {
10938 		DPFPRINTF(PF_DEBUG_URGENT,
10939 		    "%s: kif == NULL, if_xname %s",
10940 		    __func__, ifp->if_xname);
10941 		return (PF_DROP);
10942 	}
10943 	if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10944 		return (PF_PASS);
10945 	}
10946 
10947 	if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10948 		return (PF_PASS);
10949 	}
10950 
10951 	if (__predict_false(! M_WRITABLE(*m0))) {
10952 		*m0 = m_unshare(*m0, M_NOWAIT);
10953 		if (*m0 == NULL) {
10954 			return (PF_DROP);
10955 		}
10956 	}
10957 
10958 	pf_init_pdesc(&pd, *m0);
10959 	SLIST_INIT(&match_rules);
10960 
10961 	if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10962 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10963 
10964 		ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10965 		    pd.pf_mtag->if_idxgen);
10966 		if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10967 			m_freem(*m0);
10968 			*m0 = NULL;
10969 			return (PF_PASS);
10970 		}
10971 		(ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10972 		*m0 = NULL;
10973 		return (PF_PASS);
10974 	}
10975 
10976 	if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10977 	    pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10978 		/* Dummynet re-injects packets after they've
10979 		 * completed their delay. We've already
10980 		 * processed them, so pass unconditionally. */
10981 
10982 		/* But only once. We may see the packet multiple times (e.g.
10983 		 * PFIL_IN/PFIL_OUT). */
10984 		pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10985 
10986 		return (PF_PASS);
10987 	}
10988 
10989 	PF_RULES_RLOCK();
10990 
10991 	if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10992 		kif, default_actions) != PF_PASS) {
10993 		if (action != PF_PASS)
10994 			pd.act.log |= PF_LOG_FORCE;
10995 		goto done;
10996 	}
10997 
10998 #ifdef INET
10999 	if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
11000 	    pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
11001 		PF_RULES_RUNLOCK();
11002 		icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
11003 			0, ifp->if_mtu);
11004 		*m0 = NULL;
11005 		return (PF_DROP);
11006 	}
11007 #endif /* INET */
11008 #ifdef INET6
11009 	/*
11010 	 * If we end up changing IP addresses (e.g. binat) the stack may get
11011 	 * confused and fail to send the icmp6 packet too big error. Just send
11012 	 * it here, before we do any NAT.
11013 	 */
11014 	if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
11015 	    IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
11016 		PF_RULES_RUNLOCK();
11017 		icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
11018 		*m0 = NULL;
11019 		return (PF_DROP);
11020 	}
11021 #endif /* INET6 */
11022 
11023 	if (__predict_false(ip_divert_ptr != NULL) &&
11024 	    ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
11025 		struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
11026 		if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
11027 		    (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
11028 			if (pd.pf_mtag == NULL &&
11029 			    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11030 				action = PF_DROP;
11031 				goto done;
11032 			}
11033 			pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
11034 		}
11035 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
11036 			pd.m->m_flags |= M_FASTFWD_OURS;
11037 			pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11038 		}
11039 		m_tag_delete(pd.m, mtag);
11040 
11041 		mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
11042 		if (mtag != NULL)
11043 			m_tag_delete(pd.m, mtag);
11044 	}
11045 
11046 	switch (pd.virtual_proto) {
11047 	case PF_VPROTO_FRAGMENT:
11048 		/*
11049 		 * handle fragments that aren't reassembled by
11050 		 * normalization
11051 		 */
11052 		if (kif == NULL || r == NULL) /* pflog */
11053 			action = PF_DROP;
11054 		else
11055 			action = pf_test_rule(&r, &s, &pd, &a,
11056 			    &ruleset, &reason, inp, &match_rules);
11057 		if (action != PF_PASS)
11058 			REASON_SET(&reason, PFRES_FRAG);
11059 		break;
11060 
11061 	case IPPROTO_TCP: {
11062 		/* Respond to SYN with a syncookie. */
11063 		if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
11064 		    pd.dir == PF_IN && pf_synflood_check(&pd)) {
11065 			pf_syncookie_send(&pd, &reason);
11066 			action = PF_DROP;
11067 			break;
11068 		}
11069 
11070 		if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
11071 			use_2nd_queue = 1;
11072 		action = pf_normalize_tcp(&pd);
11073 		if (action == PF_DROP)
11074 			break;
11075 		action = pf_test_state(&s, &pd, &reason);
11076 		if (action == PF_PASS || action == PF_AFRT) {
11077 			if (V_pfsync_update_state_ptr != NULL)
11078 				V_pfsync_update_state_ptr(s);
11079 			r = s->rule;
11080 			a = s->anchor;
11081 		} else if (s == NULL) {
11082 			/* Validate remote SYN|ACK, re-create original SYN if
11083 			 * valid. */
11084 			if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
11085 			    TH_ACK && pf_syncookie_validate(&pd) &&
11086 			    pd.dir == PF_IN) {
11087 				struct mbuf *msyn;
11088 
11089 				msyn = pf_syncookie_recreate_syn(&pd, &reason);
11090 				if (msyn == NULL) {
11091 					action = PF_DROP;
11092 					break;
11093 				}
11094 
11095 				action = pf_test(af, dir, pflags, ifp, &msyn, inp,
11096 				    &pd.act);
11097 				m_freem(msyn);
11098 				if (action != PF_PASS)
11099 					break;
11100 
11101 				action = pf_test_state(&s, &pd, &reason);
11102 				if (action != PF_PASS || s == NULL) {
11103 					action = PF_DROP;
11104 					break;
11105 				}
11106 
11107 				s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
11108 				s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
11109 				pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
11110 				action = pf_synproxy(&pd, s, &reason);
11111 				break;
11112 			} else {
11113 				action = pf_test_rule(&r, &s, &pd,
11114 				    &a, &ruleset, &reason, inp, &match_rules);
11115 			}
11116 		}
11117 		break;
11118 	}
11119 
11120 	case IPPROTO_SCTP:
11121 		action = pf_normalize_sctp(&pd);
11122 		if (action == PF_DROP)
11123 			break;
11124 		/* fallthrough */
11125 	case IPPROTO_UDP:
11126 	default:
11127 		action = pf_test_state(&s, &pd, &reason);
11128 		if (action == PF_PASS || action == PF_AFRT) {
11129 			if (V_pfsync_update_state_ptr != NULL)
11130 				V_pfsync_update_state_ptr(s);
11131 			r = s->rule;
11132 			a = s->anchor;
11133 		} else if (s == NULL) {
11134 			action = pf_test_rule(&r, &s,
11135 			    &pd, &a, &ruleset, &reason, inp, &match_rules);
11136 		}
11137 		break;
11138 
11139 	case IPPROTO_ICMP:
11140 	case IPPROTO_ICMPV6: {
11141 		if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
11142 			action = PF_DROP;
11143 			REASON_SET(&reason, PFRES_NORM);
11144 			DPFPRINTF(PF_DEBUG_MISC,
11145 			    "dropping IPv6 packet with ICMPv4 payload");
11146 			break;
11147 		}
11148 		if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
11149 			action = PF_DROP;
11150 			REASON_SET(&reason, PFRES_NORM);
11151 			DPFPRINTF(PF_DEBUG_MISC,
11152 			    "pf: dropping IPv4 packet with ICMPv6 payload");
11153 			break;
11154 		}
11155 		action = pf_test_state_icmp(&s, &pd, &reason);
11156 		if (action == PF_PASS || action == PF_AFRT) {
11157 			if (V_pfsync_update_state_ptr != NULL)
11158 				V_pfsync_update_state_ptr(s);
11159 			r = s->rule;
11160 			a = s->anchor;
11161 		} else if (s == NULL)
11162 			action = pf_test_rule(&r, &s, &pd,
11163 			    &a, &ruleset, &reason, inp, &match_rules);
11164 		break;
11165 	}
11166 
11167 	}
11168 
11169 done:
11170 	PF_RULES_RUNLOCK();
11171 
11172 	/* if packet sits in reassembly queue, return without error */
11173 	if (pd.m == NULL) {
11174 		pf_free_match_rules(&match_rules);
11175 		goto eat_pkt;
11176 	}
11177 
11178 	if (s)
11179 		memcpy(&pd.act, &s->act, sizeof(s->act));
11180 
11181 	if (action == PF_PASS && pd.badopts != 0 && !pd.act.allow_opts) {
11182 		action = PF_DROP;
11183 		REASON_SET(&reason, PFRES_IPOPTIONS);
11184 		pd.act.log = PF_LOG_FORCE;
11185 		DPFPRINTF(PF_DEBUG_MISC,
11186 		    "pf: dropping packet with dangerous headers");
11187 	}
11188 
11189 	if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
11190 	    pd.tot_len > pd.act.max_pkt_size) {
11191 		action = PF_DROP;
11192 		REASON_SET(&reason, PFRES_NORM);
11193 		pd.act.log = PF_LOG_FORCE;
11194 		DPFPRINTF(PF_DEBUG_MISC,
11195 		    "pf: dropping overly long packet");
11196 	}
11197 
11198 	if (s) {
11199 		uint8_t log = pd.act.log;
11200 		memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
11201 		pd.act.log |= log;
11202 		tag = s->tag;
11203 	} else {
11204 		tag = r->tag;
11205 	}
11206 
11207 	if (tag > 0 && pf_tag_packet(&pd, tag)) {
11208 		action = PF_DROP;
11209 		REASON_SET(&reason, PFRES_MEMORY);
11210 	}
11211 
11212 	pf_scrub(&pd);
11213 	if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
11214 		pf_normalize_mss(&pd);
11215 
11216 	if (pd.act.rtableid >= 0)
11217 		M_SETFIB(pd.m, pd.act.rtableid);
11218 
11219 	if (pd.act.flags & PFSTATE_SETPRIO) {
11220 		if (pd.tos & IPTOS_LOWDELAY)
11221 			use_2nd_queue = 1;
11222 		if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
11223 			action = PF_DROP;
11224 			REASON_SET(&reason, PFRES_MEMORY);
11225 			pd.act.log = PF_LOG_FORCE;
11226 			DPFPRINTF(PF_DEBUG_MISC,
11227 			    "pf: failed to allocate 802.1q mtag");
11228 		}
11229 	}
11230 
11231 #ifdef ALTQ
11232 	if (action == PF_PASS && pd.act.qid) {
11233 		if (pd.pf_mtag == NULL &&
11234 		    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11235 			action = PF_DROP;
11236 			REASON_SET(&reason, PFRES_MEMORY);
11237 		} else {
11238 			if (s != NULL)
11239 				pd.pf_mtag->qid_hash = pf_state_hash(s);
11240 			if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
11241 				pd.pf_mtag->qid = pd.act.pqid;
11242 			else
11243 				pd.pf_mtag->qid = pd.act.qid;
11244 			/* Add hints for ecn. */
11245 			pd.pf_mtag->hdr = mtod(pd.m, void *);
11246 		}
11247 	}
11248 #endif /* ALTQ */
11249 
11250 	/*
11251 	 * connections redirected to loopback should not match sockets
11252 	 * bound specifically to loopback due to security implications,
11253 	 * see tcp_input() and in_pcblookup_listen().
11254 	 */
11255 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
11256 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
11257 	    (s->nat_rule->action == PF_RDR ||
11258 	    s->nat_rule->action == PF_BINAT) &&
11259 	    pf_is_loopback(af, pd.dst))
11260 		pd.m->m_flags |= M_SKIP_FIREWALL;
11261 
11262 	if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
11263 	    action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
11264 		mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
11265 		    sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
11266 		if (mtag != NULL) {
11267 			((struct pf_divert_mtag *)(mtag+1))->port =
11268 			    ntohs(r->divert.port);
11269 			((struct pf_divert_mtag *)(mtag+1))->idir =
11270 			    (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
11271 			    PF_DIVERT_MTAG_DIR_OUT;
11272 
11273 			pf_counters_inc(action, &pd, s, r, a, &match_rules);
11274 
11275 			if (s)
11276 				PF_STATE_UNLOCK(s);
11277 
11278 			m_tag_prepend(pd.m, mtag);
11279 			if (pd.m->m_flags & M_FASTFWD_OURS) {
11280 				if (pd.pf_mtag == NULL &&
11281 				    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11282 					action = PF_DROP;
11283 					REASON_SET(&reason, PFRES_MEMORY);
11284 					pd.act.log = PF_LOG_FORCE;
11285 					DPFPRINTF(PF_DEBUG_MISC,
11286 					    "pf: failed to allocate tag");
11287 				} else {
11288 					pd.pf_mtag->flags |=
11289 					    PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11290 					pd.m->m_flags &= ~M_FASTFWD_OURS;
11291 				}
11292 			}
11293 			ip_divert_ptr(*m0, dir == PF_IN);
11294 			*m0 = NULL;
11295 
11296 			return (action);
11297 		} else {
11298 			/* XXX: ipfw has the same behaviour! */
11299 			action = PF_DROP;
11300 			REASON_SET(&reason, PFRES_MEMORY);
11301 			pd.act.log = PF_LOG_FORCE;
11302 			DPFPRINTF(PF_DEBUG_MISC,
11303 			    "pf: failed to allocate divert tag");
11304 		}
11305 	}
11306 	/* XXX: Anybody working on it?! */
11307 	if (af == AF_INET6 && r->divert.port)
11308 		printf("pf: divert(9) is not supported for IPv6\n");
11309 
11310 	/* this flag will need revising if the pkt is forwarded */
11311 	if (pd.pf_mtag)
11312 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
11313 
11314 	if (pd.act.log) {
11315 		struct pf_krule		*lr;
11316 
11317 		if (s != NULL && s->nat_rule != NULL &&
11318 		    s->nat_rule->log & PF_LOG_ALL)
11319 			lr = s->nat_rule;
11320 		else
11321 			lr = r;
11322 
11323 		if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
11324 			PFLOG_PACKET(action, reason, lr, a,
11325 			    ruleset, &pd, (s == NULL), NULL);
11326 		if (s) {
11327 			SLIST_FOREACH(ri, &s->match_rules, entry)
11328 				if (ri->r->log & PF_LOG_ALL)
11329 					PFLOG_PACKET(action,
11330 					    reason, ri->r, a, ruleset, &pd, 0, NULL);
11331 		}
11332 	}
11333 
11334 	pf_counters_inc(action, &pd, s, r, a, &match_rules);
11335 
11336 	switch (action) {
11337 	case PF_SYNPROXY_DROP:
11338 		m_freem(*m0);
11339 	case PF_DEFER:
11340 		*m0 = NULL;
11341 		action = PF_PASS;
11342 		break;
11343 	case PF_DROP:
11344 		m_freem(*m0);
11345 		*m0 = NULL;
11346 		break;
11347 	case PF_AFRT:
11348 		if (pf_translate_af(&pd)) {
11349 			*m0 = pd.m;
11350 			action = PF_DROP;
11351 			break;
11352 		}
11353 #ifdef INET
11354 		if (pd.naf == AF_INET) {
11355 			action = pf_route(r, kif->pfik_ifp, s, &pd,
11356 			    inp);
11357 		}
11358 #endif /* INET */
11359 #ifdef INET6
11360 		if (pd.naf == AF_INET6) {
11361 			action = pf_route6(r, kif->pfik_ifp, s, &pd,
11362 			    inp);
11363 }
11364 #endif /* INET6 */
11365 		*m0 = pd.m;
11366 		goto out;
11367 		break;
11368 	default:
11369 		if (pd.act.rt) {
11370 			switch (af) {
11371 #ifdef INET
11372 			case AF_INET:
11373 				/* pf_route() returns unlocked. */
11374 				action = pf_route(r, kif->pfik_ifp, s, &pd,
11375 				    inp);
11376 				break;
11377 #endif /* INET */
11378 #ifdef INET6
11379 			case AF_INET6:
11380 				/* pf_route6() returns unlocked. */
11381 				action = pf_route6(r, kif->pfik_ifp, s, &pd,
11382 				    inp);
11383 				break;
11384 #endif /* INET6 */
11385 			}
11386 			*m0 = pd.m;
11387 			goto out;
11388 		}
11389 		if (pf_dummynet(&pd, s, r, m0) != 0) {
11390 			action = PF_DROP;
11391 			REASON_SET(&reason, PFRES_MEMORY);
11392 		}
11393 		break;
11394 	}
11395 
11396 eat_pkt:
11397 	SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
11398 
11399 	if (s && action != PF_DROP) {
11400 		if (!s->if_index_in && dir == PF_IN)
11401 			s->if_index_in = ifp->if_index;
11402 		else if (!s->if_index_out && dir == PF_OUT)
11403 			s->if_index_out = ifp->if_index;
11404 	}
11405 
11406 	if (s)
11407 		PF_STATE_UNLOCK(s);
11408 
11409 out:
11410 #ifdef INET6
11411 	/* If reassembled packet passed, create new fragments. */
11412 	if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
11413 	    (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
11414 	    (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
11415 		action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
11416 #endif /* INET6 */
11417 
11418 	pf_sctp_multihome_delayed(&pd, kif, s, action);
11419 
11420 	return (action);
11421 }
11422 #endif /* INET || INET6 */
11423