xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision 435e9214478cdc120fff555e51e6b334dbc64857)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_pf.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/refcount.h>
42 #include <sys/socket.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_private.h>
47 #include <net/vnet.h>
48 #include <net/pfvar.h>
49 #include <net/if_pflog.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet6/in6_var.h>
55 #include <netinet6/nd6.h>
56 #include <netinet6/ip6_var.h>
57 #include <netinet6/scope6_var.h>
58 #include <netinet/tcp.h>
59 #include <netinet/tcp_fsm.h>
60 #include <netinet/tcp_seq.h>
61 #include <netinet/sctp_constants.h>
62 #include <netinet/sctp_header.h>
63 
64 #ifdef INET6
65 #include <netinet/ip6.h>
66 #endif /* INET6 */
67 
68 struct pf_frent {
69 	TAILQ_ENTRY(pf_frent)	fr_next;
70 	struct mbuf	*fe_m;
71 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
72 					   ipv6, extension, fragment header */
73 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
74 	uint16_t	fe_len;		/* fragment length */
75 	uint16_t	fe_off;		/* fragment offset */
76 	uint16_t	fe_mff;		/* more fragment flag */
77 };
78 
79 struct pf_fragment_cmp {
80 	struct pf_addr	frc_src;
81 	struct pf_addr	frc_dst;
82 	uint32_t	frc_id;
83 	sa_family_t	frc_af;
84 	uint8_t		frc_proto;
85 };
86 
87 struct pf_fragment {
88 	struct pf_fragment_cmp	fr_key;
89 #define fr_src	fr_key.frc_src
90 #define fr_dst	fr_key.frc_dst
91 #define fr_id	fr_key.frc_id
92 #define fr_af	fr_key.frc_af
93 #define fr_proto	fr_key.frc_proto
94 
95 	/* pointers to queue element */
96 	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
97 	/* count entries between pointers */
98 	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
99 	RB_ENTRY(pf_fragment) fr_entry;
100 	TAILQ_ENTRY(pf_fragment) frag_next;
101 	uint32_t	fr_timeout;
102 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
103 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
104 	u_int16_t	fr_holes;	/* number of holes in the queue */
105 };
106 
107 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
108 #define V_pf_frag_mtx		VNET(pf_frag_mtx)
109 #define PF_FRAG_LOCK()		mtx_lock(&V_pf_frag_mtx)
110 #define PF_FRAG_UNLOCK()	mtx_unlock(&V_pf_frag_mtx)
111 #define PF_FRAG_ASSERT()	mtx_assert(&V_pf_frag_mtx, MA_OWNED)
112 
113 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
114 
115 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
116 #define	V_pf_frent_z	VNET(pf_frent_z)
117 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
118 #define	V_pf_frag_z	VNET(pf_frag_z)
119 
120 TAILQ_HEAD(pf_fragqueue, pf_fragment);
121 TAILQ_HEAD(pf_cachequeue, pf_fragment);
122 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
123 #define	V_pf_fragqueue			VNET(pf_fragqueue)
124 RB_HEAD(pf_frag_tree, pf_fragment);
125 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
126 #define	V_pf_frag_tree			VNET(pf_frag_tree)
127 static int		 pf_frag_compare(struct pf_fragment *,
128 			    struct pf_fragment *);
129 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
130 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
131 
132 static void	pf_flush_fragments(void);
133 static void	pf_free_fragment(struct pf_fragment *);
134 
135 static struct pf_frent *pf_create_fragment(u_short *);
136 static int	pf_frent_holes(struct pf_frent *frent);
137 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
138 		    struct pf_frag_tree *tree);
139 static inline int	pf_frent_index(struct pf_frent *);
140 static int	pf_frent_insert(struct pf_fragment *,
141 			    struct pf_frent *, struct pf_frent *);
142 void			pf_frent_remove(struct pf_fragment *,
143 			    struct pf_frent *);
144 struct pf_frent		*pf_frent_previous(struct pf_fragment *,
145 			    struct pf_frent *);
146 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
147 		    struct pf_frent *, u_short *);
148 static struct mbuf *pf_join_fragment(struct pf_fragment *);
149 #ifdef INET
150 static int	pf_reassemble(struct mbuf **, int, u_short *);
151 #endif	/* INET */
152 #ifdef INET6
153 static int	pf_reassemble6(struct mbuf **,
154 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
155 #endif	/* INET6 */
156 
157 #define	DPFPRINTF(x) do {				\
158 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
159 		printf("%s: ", __func__);		\
160 		printf x ;				\
161 	}						\
162 } while(0)
163 
164 #ifdef INET
165 static void
pf_ip2key(struct ip * ip,int dir,struct pf_fragment_cmp * key)166 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
167 {
168 
169 	key->frc_src.v4 = ip->ip_src;
170 	key->frc_dst.v4 = ip->ip_dst;
171 	key->frc_af = AF_INET;
172 	key->frc_proto = ip->ip_p;
173 	key->frc_id = ip->ip_id;
174 }
175 #endif	/* INET */
176 
177 void
pf_normalize_init(void)178 pf_normalize_init(void)
179 {
180 
181 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
182 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
183 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
184 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
185 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
186 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
187 	    UMA_ALIGN_PTR, 0);
188 
189 	mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
190 
191 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
192 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
193 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
194 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
195 
196 	TAILQ_INIT(&V_pf_fragqueue);
197 }
198 
199 void
pf_normalize_cleanup(void)200 pf_normalize_cleanup(void)
201 {
202 
203 	uma_zdestroy(V_pf_state_scrub_z);
204 	uma_zdestroy(V_pf_frent_z);
205 	uma_zdestroy(V_pf_frag_z);
206 
207 	mtx_destroy(&V_pf_frag_mtx);
208 }
209 
210 static int
pf_frag_compare(struct pf_fragment * a,struct pf_fragment * b)211 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
212 {
213 	int	diff;
214 
215 	if ((diff = a->fr_id - b->fr_id) != 0)
216 		return (diff);
217 	if ((diff = a->fr_proto - b->fr_proto) != 0)
218 		return (diff);
219 	if ((diff = a->fr_af - b->fr_af) != 0)
220 		return (diff);
221 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
222 		return (diff);
223 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
224 		return (diff);
225 	return (0);
226 }
227 
228 void
pf_purge_expired_fragments(void)229 pf_purge_expired_fragments(void)
230 {
231 	u_int32_t	expire = time_uptime -
232 			    V_pf_default_rule.timeout[PFTM_FRAG];
233 
234 	pf_purge_fragments(expire);
235 }
236 
237 void
pf_purge_fragments(uint32_t expire)238 pf_purge_fragments(uint32_t expire)
239 {
240 	struct pf_fragment	*frag;
241 
242 	PF_FRAG_LOCK();
243 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
244 		if (frag->fr_timeout > expire)
245 			break;
246 
247 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
248 		pf_free_fragment(frag);
249 	}
250 
251 	PF_FRAG_UNLOCK();
252 }
253 
254 /*
255  * Try to flush old fragments to make space for new ones
256  */
257 static void
pf_flush_fragments(void)258 pf_flush_fragments(void)
259 {
260 	struct pf_fragment	*frag;
261 	int			 goal;
262 
263 	PF_FRAG_ASSERT();
264 
265 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
266 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
267 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
268 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
269 		if (frag)
270 			pf_free_fragment(frag);
271 		else
272 			break;
273 	}
274 }
275 
276 /*
277  * Remove a fragment from the fragment queue, free its fragment entries,
278  * and free the fragment itself.
279  */
280 static void
pf_free_fragment(struct pf_fragment * frag)281 pf_free_fragment(struct pf_fragment *frag)
282 {
283 	struct pf_frent		*frent;
284 
285 	PF_FRAG_ASSERT();
286 
287 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
288 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
289 
290 	/* Free all fragment entries */
291 	while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) {
292 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
293 
294 		m_freem(frent->fe_m);
295 		uma_zfree(V_pf_frent_z, frent);
296 	}
297 
298 	uma_zfree(V_pf_frag_z, frag);
299 }
300 
301 static struct pf_fragment *
pf_find_fragment(struct pf_fragment_cmp * key,struct pf_frag_tree * tree)302 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
303 {
304 	struct pf_fragment	*frag;
305 
306 	PF_FRAG_ASSERT();
307 
308 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
309 	if (frag != NULL) {
310 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
311 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
312 	}
313 
314 	return (frag);
315 }
316 
317 static struct pf_frent *
pf_create_fragment(u_short * reason)318 pf_create_fragment(u_short *reason)
319 {
320 	struct pf_frent *frent;
321 
322 	PF_FRAG_ASSERT();
323 
324 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
325 	if (frent == NULL) {
326 		pf_flush_fragments();
327 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
328 		if (frent == NULL) {
329 			REASON_SET(reason, PFRES_MEMORY);
330 			return (NULL);
331 		}
332 	}
333 
334 	return (frent);
335 }
336 
337 /*
338  * Calculate the additional holes that were created in the fragment
339  * queue by inserting this fragment.  A fragment in the middle
340  * creates one more hole by splitting.  For each connected side,
341  * it loses one hole.
342  * Fragment entry must be in the queue when calling this function.
343  */
344 static int
pf_frent_holes(struct pf_frent * frent)345 pf_frent_holes(struct pf_frent *frent)
346 {
347 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
348 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
349 	int holes = 1;
350 
351 	if (prev == NULL) {
352 		if (frent->fe_off == 0)
353 			holes--;
354 	} else {
355 		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
356 		if (frent->fe_off == prev->fe_off + prev->fe_len)
357 			holes--;
358 	}
359 	if (next == NULL) {
360 		if (!frent->fe_mff)
361 			holes--;
362 	} else {
363 		KASSERT(frent->fe_mff, ("frent->fe_mff"));
364 		if (next->fe_off == frent->fe_off + frent->fe_len)
365 			holes--;
366 	}
367 	return holes;
368 }
369 
370 static inline int
pf_frent_index(struct pf_frent * frent)371 pf_frent_index(struct pf_frent *frent)
372 {
373 	/*
374 	 * We have an array of 16 entry points to the queue.  A full size
375 	 * 65535 octet IP packet can have 8192 fragments.  So the queue
376 	 * traversal length is at most 512 and at most 16 entry points are
377 	 * checked.  We need 128 additional bytes on a 64 bit architecture.
378 	 */
379 	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
380 	    16 - 1);
381 	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
382 
383 	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
384 }
385 
386 static int
pf_frent_insert(struct pf_fragment * frag,struct pf_frent * frent,struct pf_frent * prev)387 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
388     struct pf_frent *prev)
389 {
390 	int index;
391 
392 	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
393 
394 	/*
395 	 * A packet has at most 65536 octets.  With 16 entry points, each one
396 	 * spawns 4096 octets.  We limit these to 64 fragments each, which
397 	 * means on average every fragment must have at least 64 octets.
398 	 */
399 	index = pf_frent_index(frent);
400 	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
401 		return ENOBUFS;
402 	frag->fr_entries[index]++;
403 
404 	if (prev == NULL) {
405 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
406 	} else {
407 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
408 		    ("overlapping fragment"));
409 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
410 	}
411 
412 	if (frag->fr_firstoff[index] == NULL) {
413 		KASSERT(prev == NULL || pf_frent_index(prev) < index,
414 		    ("prev == NULL || pf_frent_index(pref) < index"));
415 		frag->fr_firstoff[index] = frent;
416 	} else {
417 		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
418 			KASSERT(prev == NULL || pf_frent_index(prev) < index,
419 			    ("prev == NULL || pf_frent_index(pref) < index"));
420 			frag->fr_firstoff[index] = frent;
421 		} else {
422 			KASSERT(prev != NULL, ("prev != NULL"));
423 			KASSERT(pf_frent_index(prev) == index,
424 			    ("pf_frent_index(prev) == index"));
425 		}
426 	}
427 
428 	frag->fr_holes += pf_frent_holes(frent);
429 
430 	return 0;
431 }
432 
433 void
pf_frent_remove(struct pf_fragment * frag,struct pf_frent * frent)434 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
435 {
436 #ifdef INVARIANTS
437 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
438 #endif /* INVARIANTS */
439 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
440 	int index;
441 
442 	frag->fr_holes -= pf_frent_holes(frent);
443 
444 	index = pf_frent_index(frent);
445 	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
446 	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
447 		if (next == NULL) {
448 			frag->fr_firstoff[index] = NULL;
449 		} else {
450 			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
451 			    ("overlapping fragment"));
452 			if (pf_frent_index(next) == index) {
453 				frag->fr_firstoff[index] = next;
454 			} else {
455 				frag->fr_firstoff[index] = NULL;
456 			}
457 		}
458 	} else {
459 		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
460 		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
461 		KASSERT(prev != NULL, ("prev != NULL"));
462 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
463 		    ("overlapping fragment"));
464 		KASSERT(pf_frent_index(prev) == index,
465 		    ("pf_frent_index(prev) == index"));
466 	}
467 
468 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
469 
470 	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
471 	frag->fr_entries[index]--;
472 }
473 
474 struct pf_frent *
pf_frent_previous(struct pf_fragment * frag,struct pf_frent * frent)475 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
476 {
477 	struct pf_frent *prev, *next;
478 	int index;
479 
480 	/*
481 	 * If there are no fragments after frag, take the final one.  Assume
482 	 * that the global queue is not empty.
483 	 */
484 	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
485 	KASSERT(prev != NULL, ("prev != NULL"));
486 	if (prev->fe_off <= frent->fe_off)
487 		return prev;
488 	/*
489 	 * We want to find a fragment entry that is before frag, but still
490 	 * close to it.  Find the first fragment entry that is in the same
491 	 * entry point or in the first entry point after that.  As we have
492 	 * already checked that there are entries behind frag, this will
493 	 * succeed.
494 	 */
495 	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
496 	    index++) {
497 		prev = frag->fr_firstoff[index];
498 		if (prev != NULL)
499 			break;
500 	}
501 	KASSERT(prev != NULL, ("prev != NULL"));
502 	/*
503 	 * In prev we may have a fragment from the same entry point that is
504 	 * before frent, or one that is just one position behind frent.
505 	 * In the latter case, we go back one step and have the predecessor.
506 	 * There may be none if the new fragment will be the first one.
507 	 */
508 	if (prev->fe_off > frent->fe_off) {
509 		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
510 		if (prev == NULL)
511 			return NULL;
512 		KASSERT(prev->fe_off <= frent->fe_off,
513 		    ("prev->fe_off <= frent->fe_off"));
514 		return prev;
515 	}
516 	/*
517 	 * In prev is the first fragment of the entry point.  The offset
518 	 * of frag is behind it.  Find the closest previous fragment.
519 	 */
520 	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
521 	    next = TAILQ_NEXT(next, fr_next)) {
522 		if (next->fe_off > frent->fe_off)
523 			break;
524 		prev = next;
525 	}
526 	return prev;
527 }
528 
529 static struct pf_fragment *
pf_fillup_fragment(struct pf_fragment_cmp * key,struct pf_frent * frent,u_short * reason)530 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
531     u_short *reason)
532 {
533 	struct pf_frent		*after, *next, *prev;
534 	struct pf_fragment	*frag;
535 	uint16_t		total;
536 
537 	PF_FRAG_ASSERT();
538 
539 	/* No empty fragments. */
540 	if (frent->fe_len == 0) {
541 		DPFPRINTF(("bad fragment: len 0\n"));
542 		goto bad_fragment;
543 	}
544 
545 	/* All fragments are 8 byte aligned. */
546 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
547 		DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
548 		goto bad_fragment;
549 	}
550 
551 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
552 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
553 		DPFPRINTF(("bad fragment: max packet %d\n",
554 		    frent->fe_off + frent->fe_len));
555 		goto bad_fragment;
556 	}
557 
558 	DPFPRINTF((key->frc_af == AF_INET ?
559 	    "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
560 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
561 
562 	/* Fully buffer all of the fragments in this fragment queue. */
563 	frag = pf_find_fragment(key, &V_pf_frag_tree);
564 
565 	/* Create a new reassembly queue for this packet. */
566 	if (frag == NULL) {
567 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
568 		if (frag == NULL) {
569 			pf_flush_fragments();
570 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
571 			if (frag == NULL) {
572 				REASON_SET(reason, PFRES_MEMORY);
573 				goto drop_fragment;
574 			}
575 		}
576 
577 		*(struct pf_fragment_cmp *)frag = *key;
578 		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
579 		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
580 		frag->fr_timeout = time_uptime;
581 		TAILQ_INIT(&frag->fr_queue);
582 		frag->fr_maxlen = frent->fe_len;
583 		frag->fr_holes = 1;
584 
585 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
586 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
587 
588 		/* We do not have a previous fragment, cannot fail. */
589 		pf_frent_insert(frag, frent, NULL);
590 
591 		return (frag);
592 	}
593 
594 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
595 
596 	/* Remember maximum fragment len for refragmentation. */
597 	if (frent->fe_len > frag->fr_maxlen)
598 		frag->fr_maxlen = frent->fe_len;
599 
600 	/* Maximum data we have seen already. */
601 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
602 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
603 
604 	/* Non terminal fragments must have more fragments flag. */
605 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
606 		goto bad_fragment;
607 
608 	/* Check if we saw the last fragment already. */
609 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
610 		if (frent->fe_off + frent->fe_len > total ||
611 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
612 			goto bad_fragment;
613 	} else {
614 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
615 			goto bad_fragment;
616 	}
617 
618 	/* Find neighbors for newly inserted fragment */
619 	prev = pf_frent_previous(frag, frent);
620 	if (prev == NULL) {
621 		after = TAILQ_FIRST(&frag->fr_queue);
622 		KASSERT(after != NULL, ("after != NULL"));
623 	} else {
624 		after = TAILQ_NEXT(prev, fr_next);
625 	}
626 
627 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
628 		uint16_t precut;
629 
630 		if (frag->fr_af == AF_INET6)
631 			goto free_fragment;
632 
633 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
634 		if (precut >= frent->fe_len) {
635 			DPFPRINTF(("new frag overlapped\n"));
636 			goto drop_fragment;
637 		}
638 		DPFPRINTF(("frag head overlap %d\n", precut));
639 		m_adj(frent->fe_m, precut);
640 		frent->fe_off += precut;
641 		frent->fe_len -= precut;
642 	}
643 
644 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
645 	    after = next) {
646 		uint16_t aftercut;
647 
648 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
649 		if (aftercut < after->fe_len) {
650 			DPFPRINTF(("frag tail overlap %d", aftercut));
651 			m_adj(after->fe_m, aftercut);
652 			/* Fragment may switch queue as fe_off changes */
653 			pf_frent_remove(frag, after);
654 			after->fe_off += aftercut;
655 			after->fe_len -= aftercut;
656 			/* Insert into correct queue */
657 			if (pf_frent_insert(frag, after, prev)) {
658 				DPFPRINTF(("fragment requeue limit exceeded"));
659 				m_freem(after->fe_m);
660 				uma_zfree(V_pf_frent_z, after);
661 				/* There is not way to recover */
662 				goto free_fragment;
663 			}
664 			break;
665 		}
666 
667 		/* This fragment is completely overlapped, lose it. */
668 		DPFPRINTF(("old frag overlapped\n"));
669 		next = TAILQ_NEXT(after, fr_next);
670 		pf_frent_remove(frag, after);
671 		m_freem(after->fe_m);
672 		uma_zfree(V_pf_frent_z, after);
673 	}
674 
675 	/* If part of the queue gets too long, there is not way to recover. */
676 	if (pf_frent_insert(frag, frent, prev)) {
677 		DPFPRINTF(("fragment queue limit exceeded\n"));
678 		goto bad_fragment;
679 	}
680 
681 	return (frag);
682 
683 free_fragment:
684 	/*
685 	 * RFC 5722, Errata 3089:  When reassembling an IPv6 datagram, if one
686 	 * or more its constituent fragments is determined to be an overlapping
687 	 * fragment, the entire datagram (and any constituent fragments) MUST
688 	 * be silently discarded.
689 	 */
690 	DPFPRINTF(("flush overlapping fragments\n"));
691 	pf_free_fragment(frag);
692 
693 bad_fragment:
694 	REASON_SET(reason, PFRES_FRAG);
695 drop_fragment:
696 	uma_zfree(V_pf_frent_z, frent);
697 	return (NULL);
698 }
699 
700 static struct mbuf *
pf_join_fragment(struct pf_fragment * frag)701 pf_join_fragment(struct pf_fragment *frag)
702 {
703 	struct mbuf *m, *m2;
704 	struct pf_frent	*frent;
705 
706 	frent = TAILQ_FIRST(&frag->fr_queue);
707 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
708 
709 	m = frent->fe_m;
710 	if ((frent->fe_hdrlen + frent->fe_len) < m->m_pkthdr.len)
711 		m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
712 	uma_zfree(V_pf_frent_z, frent);
713 	while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) {
714 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
715 
716 		m2 = frent->fe_m;
717 		/* Strip off ip header. */
718 		m_adj(m2, frent->fe_hdrlen);
719 		/* Strip off any trailing bytes. */
720 		if (frent->fe_len < m2->m_pkthdr.len)
721 			m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
722 
723 		uma_zfree(V_pf_frent_z, frent);
724 		m_cat(m, m2);
725 	}
726 
727 	/* Remove from fragment queue. */
728 	pf_free_fragment(frag);
729 
730 	return (m);
731 }
732 
733 #ifdef INET
734 static int
pf_reassemble(struct mbuf ** m0,int dir,u_short * reason)735 pf_reassemble(struct mbuf **m0, int dir, u_short *reason)
736 {
737 	struct mbuf		*m = *m0;
738 	struct ip		*ip = mtod(m, struct ip *);
739 	struct pf_frent		*frent;
740 	struct pf_fragment	*frag;
741 	struct m_tag		*mtag;
742 	struct pf_fragment_tag	*ftag;
743 	struct pf_fragment_cmp	key;
744 	uint16_t		total, hdrlen;
745 	uint32_t		 frag_id;
746 	uint16_t		 maxlen;
747 
748 	/* Get an entry for the fragment queue */
749 	if ((frent = pf_create_fragment(reason)) == NULL)
750 		return (PF_DROP);
751 
752 	frent->fe_m = m;
753 	frent->fe_hdrlen = ip->ip_hl << 2;
754 	frent->fe_extoff = 0;
755 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
756 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
757 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
758 
759 	pf_ip2key(ip, dir, &key);
760 
761 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
762 		return (PF_DROP);
763 
764 	/* The mbuf is part of the fragment entry, no direct free or access */
765 	m = *m0 = NULL;
766 
767 	if (frag->fr_holes) {
768 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
769 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
770 	}
771 
772 	/* We have all the data */
773 	frent = TAILQ_FIRST(&frag->fr_queue);
774 	KASSERT(frent != NULL, ("frent != NULL"));
775 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
776 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
777 	hdrlen = frent->fe_hdrlen;
778 
779 	maxlen = frag->fr_maxlen;
780 	frag_id = frag->fr_id;
781 	m = *m0 = pf_join_fragment(frag);
782 	frag = NULL;
783 
784 	if (m->m_flags & M_PKTHDR) {
785 		int plen = 0;
786 		for (m = *m0; m; m = m->m_next)
787 			plen += m->m_len;
788 		m = *m0;
789 		m->m_pkthdr.len = plen;
790 	}
791 
792 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
793 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) {
794 		REASON_SET(reason, PFRES_SHORT);
795 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
796 		return (PF_DROP);
797 	}
798 	ftag = (struct pf_fragment_tag *)(mtag + 1);
799 	ftag->ft_hdrlen = hdrlen;
800 	ftag->ft_extoff = 0;
801 	ftag->ft_maxlen = maxlen;
802 	ftag->ft_id = frag_id;
803 	m_tag_prepend(m, mtag);
804 
805 	ip = mtod(m, struct ip *);
806 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
807 	    htons(hdrlen + total), 0);
808 	ip->ip_len = htons(hdrlen + total);
809 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
810 	    ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
811 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
812 
813 	if (hdrlen + total > IP_MAXPACKET) {
814 		DPFPRINTF(("drop: too big: %d\n", total));
815 		ip->ip_len = 0;
816 		REASON_SET(reason, PFRES_SHORT);
817 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
818 		return (PF_DROP);
819 	}
820 
821 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
822 	return (PF_PASS);
823 }
824 #endif	/* INET */
825 
826 #ifdef INET6
827 static int
pf_reassemble6(struct mbuf ** m0,struct ip6_frag * fraghdr,uint16_t hdrlen,uint16_t extoff,u_short * reason)828 pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr,
829     uint16_t hdrlen, uint16_t extoff, u_short *reason)
830 {
831 	struct mbuf		*m = *m0;
832 	struct ip6_hdr		*ip6 = mtod(m, struct ip6_hdr *);
833 	struct pf_frent		*frent;
834 	struct pf_fragment	*frag;
835 	struct pf_fragment_cmp	 key;
836 	struct m_tag		*mtag;
837 	struct pf_fragment_tag	*ftag;
838 	int			 off;
839 	uint32_t		 frag_id;
840 	uint16_t		 total, maxlen;
841 	uint8_t			 proto;
842 
843 	PF_FRAG_LOCK();
844 
845 	/* Get an entry for the fragment queue. */
846 	if ((frent = pf_create_fragment(reason)) == NULL) {
847 		PF_FRAG_UNLOCK();
848 		return (PF_DROP);
849 	}
850 
851 	frent->fe_m = m;
852 	frent->fe_hdrlen = hdrlen;
853 	frent->fe_extoff = extoff;
854 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
855 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
856 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
857 
858 	key.frc_src.v6 = ip6->ip6_src;
859 	key.frc_dst.v6 = ip6->ip6_dst;
860 	key.frc_af = AF_INET6;
861 	/* Only the first fragment's protocol is relevant. */
862 	key.frc_proto = 0;
863 	key.frc_id = fraghdr->ip6f_ident;
864 
865 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
866 		PF_FRAG_UNLOCK();
867 		return (PF_DROP);
868 	}
869 
870 	/* The mbuf is part of the fragment entry, no direct free or access. */
871 	m = *m0 = NULL;
872 
873 	if (frag->fr_holes) {
874 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
875 		    frag->fr_holes));
876 		PF_FRAG_UNLOCK();
877 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
878 	}
879 
880 	/* We have all the data. */
881 	frent = TAILQ_FIRST(&frag->fr_queue);
882 	KASSERT(frent != NULL, ("frent != NULL"));
883 	extoff = frent->fe_extoff;
884 	maxlen = frag->fr_maxlen;
885 	frag_id = frag->fr_id;
886 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
887 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
888 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
889 
890 	m = *m0 = pf_join_fragment(frag);
891 	frag = NULL;
892 
893 	PF_FRAG_UNLOCK();
894 
895 	/* Take protocol from first fragment header. */
896 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
897 	KASSERT(m, ("%s: short mbuf chain", __func__));
898 	proto = *(mtod(m, uint8_t *) + off);
899 	m = *m0;
900 
901 	/* Delete frag6 header */
902 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
903 		goto fail;
904 
905 	if (m->m_flags & M_PKTHDR) {
906 		int plen = 0;
907 		for (m = *m0; m; m = m->m_next)
908 			plen += m->m_len;
909 		m = *m0;
910 		m->m_pkthdr.len = plen;
911 	}
912 
913 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
914 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL)
915 		goto fail;
916 	ftag = (struct pf_fragment_tag *)(mtag + 1);
917 	ftag->ft_hdrlen = hdrlen;
918 	ftag->ft_extoff = extoff;
919 	ftag->ft_maxlen = maxlen;
920 	ftag->ft_id = frag_id;
921 	m_tag_prepend(m, mtag);
922 
923 	ip6 = mtod(m, struct ip6_hdr *);
924 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
925 	if (extoff) {
926 		/* Write protocol into next field of last extension header. */
927 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
928 		    &off);
929 		KASSERT(m, ("%s: short mbuf chain", __func__));
930 		*(mtod(m, char *) + off) = proto;
931 		m = *m0;
932 	} else
933 		ip6->ip6_nxt = proto;
934 
935 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
936 		DPFPRINTF(("drop: too big: %d\n", total));
937 		ip6->ip6_plen = 0;
938 		REASON_SET(reason, PFRES_SHORT);
939 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
940 		return (PF_DROP);
941 	}
942 
943 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
944 	return (PF_PASS);
945 
946 fail:
947 	REASON_SET(reason, PFRES_MEMORY);
948 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
949 	return (PF_DROP);
950 }
951 #endif	/* INET6 */
952 
953 #ifdef INET6
954 int
pf_max_frag_size(struct mbuf * m)955 pf_max_frag_size(struct mbuf *m)
956 {
957 	struct m_tag *tag;
958 	struct pf_fragment_tag *ftag;
959 
960 	tag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL);
961 	if (tag == NULL)
962 		return (m->m_pkthdr.len);
963 
964 	ftag = (struct pf_fragment_tag *)(tag + 1);
965 
966 	return (ftag->ft_maxlen);
967 }
968 
969 int
pf_refragment6(struct ifnet * ifp,struct mbuf ** m0,struct m_tag * mtag,struct ifnet * rt,bool forward)970 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag,
971     struct ifnet *rt, bool forward)
972 {
973 	struct mbuf		*m = *m0, *t;
974 	struct ip6_hdr		*hdr;
975 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
976 	struct pf_pdesc		 pd;
977 	uint32_t		 frag_id;
978 	uint16_t		 hdrlen, extoff, maxlen;
979 	uint8_t			 proto;
980 	int			 error, action;
981 
982 	hdrlen = ftag->ft_hdrlen;
983 	extoff = ftag->ft_extoff;
984 	maxlen = ftag->ft_maxlen;
985 	frag_id = ftag->ft_id;
986 	m_tag_delete(m, mtag);
987 	mtag = NULL;
988 	ftag = NULL;
989 
990 	if (extoff) {
991 		int off;
992 
993 		/* Use protocol from next field of last extension header */
994 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
995 		    &off);
996 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
997 		proto = *(mtod(m, uint8_t *) + off);
998 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
999 		m = *m0;
1000 	} else {
1001 		hdr = mtod(m, struct ip6_hdr *);
1002 		proto = hdr->ip6_nxt;
1003 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
1004 	}
1005 
1006 	/* In case of link-local traffic we'll need a scope set. */
1007 	hdr = mtod(m, struct ip6_hdr *);
1008 
1009 	in6_setscope(&hdr->ip6_src, ifp, NULL);
1010 	in6_setscope(&hdr->ip6_dst, ifp, NULL);
1011 
1012 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
1013 	 * fragmentation wrong. */
1014 	maxlen = maxlen & ~7;
1015 
1016 	/*
1017 	 * Maxlen may be less than 8 if there was only a single
1018 	 * fragment.  As it was fragmented before, add a fragment
1019 	 * header also for a single fragment.  If total or maxlen
1020 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
1021 	 * we drop the packet.
1022 	 */
1023 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
1024 	m = (*m0)->m_nextpkt;
1025 	(*m0)->m_nextpkt = NULL;
1026 	if (error == 0) {
1027 		/* The first mbuf contains the unfragmented packet. */
1028 		m_freem(*m0);
1029 		*m0 = NULL;
1030 		action = PF_PASS;
1031 	} else {
1032 		/* Drop expects an mbuf to free. */
1033 		DPFPRINTF(("refragment error %d\n", error));
1034 		action = PF_DROP;
1035 	}
1036 	for (; m; m = t) {
1037 		t = m->m_nextpkt;
1038 		m->m_nextpkt = NULL;
1039 		m->m_flags |= M_SKIP_FIREWALL;
1040 		memset(&pd, 0, sizeof(pd));
1041 		pd.pf_mtag = pf_find_mtag(m);
1042 		if (error != 0) {
1043 			m_freem(m);
1044 			continue;
1045 		}
1046 		if (rt != NULL) {
1047 			struct sockaddr_in6	dst;
1048 			hdr = mtod(m, struct ip6_hdr *);
1049 
1050 			bzero(&dst, sizeof(dst));
1051 			dst.sin6_family = AF_INET6;
1052 			dst.sin6_len = sizeof(dst);
1053 			dst.sin6_addr = hdr->ip6_dst;
1054 
1055 			if (m->m_pkthdr.len <= if_getmtu(ifp)) {
1056 				nd6_output_ifp(rt, rt, m, &dst, NULL);
1057 			} else {
1058 				in6_ifstat_inc(ifp, ifs6_in_toobig);
1059 				icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0,
1060 				    if_getmtu(ifp));
1061 			}
1062 		} else if (forward) {
1063 			MPASS(m->m_pkthdr.rcvif != NULL);
1064 			ip6_forward(m, 0);
1065 		} else {
1066 			(void)ip6_output(m, NULL, NULL, 0, NULL, NULL,
1067 			    NULL);
1068 		}
1069 	}
1070 
1071 	return (action);
1072 }
1073 #endif /* INET6 */
1074 
1075 #ifdef INET
1076 int
pf_normalize_ip(u_short * reason,struct pf_pdesc * pd)1077 pf_normalize_ip(u_short *reason, struct pf_pdesc *pd)
1078 {
1079 	struct pf_krule		*r;
1080 	struct ip		*h = mtod(pd->m, struct ip *);
1081 	int			 mff = (ntohs(h->ip_off) & IP_MF);
1082 	int			 hlen = h->ip_hl << 2;
1083 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1084 	u_int16_t		 max;
1085 	int			 ip_len;
1086 	int			 tag = -1;
1087 	int			 verdict;
1088 	bool			 scrub_compat;
1089 
1090 	PF_RULES_RASSERT();
1091 
1092 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1093 	/*
1094 	 * Check if there are any scrub rules, matching or not.
1095 	 * Lack of scrub rules means:
1096 	 *  - enforced packet normalization operation just like in OpenBSD
1097 	 *  - fragment reassembly depends on V_pf_status.reass
1098 	 * With scrub rules:
1099 	 *  - packet normalization is performed if there is a matching scrub rule
1100 	 *  - fragment reassembly is performed if the matching rule has no
1101 	 *    PFRULE_FRAGMENT_NOREASS flag
1102 	 */
1103 	scrub_compat = (r != NULL);
1104 	while (r != NULL) {
1105 		pf_counter_u64_add(&r->evaluations, 1);
1106 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1107 			r = r->skip[PF_SKIP_IFP];
1108 		else if (r->direction && r->direction != pd->dir)
1109 			r = r->skip[PF_SKIP_DIR];
1110 		else if (r->af && r->af != AF_INET)
1111 			r = r->skip[PF_SKIP_AF];
1112 		else if (r->proto && r->proto != h->ip_p)
1113 			r = r->skip[PF_SKIP_PROTO];
1114 		else if (PF_MISMATCHAW(&r->src.addr,
1115 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1116 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1117 			r = r->skip[PF_SKIP_SRC_ADDR];
1118 		else if (PF_MISMATCHAW(&r->dst.addr,
1119 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1120 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1121 			r = r->skip[PF_SKIP_DST_ADDR];
1122 		else if (r->match_tag && !pf_match_tag(pd->m, r, &tag,
1123 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1124 			r = TAILQ_NEXT(r, entries);
1125 		else
1126 			break;
1127 	}
1128 
1129 	if (scrub_compat) {
1130 		/* With scrub rules present IPv4 normalization happens only
1131 		 * if one of rules has matched and it's not a "no scrub" rule */
1132 		if (r == NULL || r->action == PF_NOSCRUB)
1133 			return (PF_PASS);
1134 
1135 		pf_counter_u64_critical_enter();
1136 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1137 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1138 		pf_counter_u64_critical_exit();
1139 		pf_rule_to_actions(r, &pd->act);
1140 	}
1141 
1142 	/* Check for illegal packets */
1143 	if (hlen < (int)sizeof(struct ip)) {
1144 		REASON_SET(reason, PFRES_NORM);
1145 		goto drop;
1146 	}
1147 
1148 	if (hlen > ntohs(h->ip_len)) {
1149 		REASON_SET(reason, PFRES_NORM);
1150 		goto drop;
1151 	}
1152 
1153 	/* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */
1154 	if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) ||
1155 	    (r != NULL && r->rule_flag & PFRULE_NODF)) &&
1156 	    (h->ip_off & htons(IP_DF))
1157 	) {
1158 		u_int16_t ip_off = h->ip_off;
1159 
1160 		h->ip_off &= htons(~IP_DF);
1161 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1162 	}
1163 
1164 	/* We will need other tests here */
1165 	if (!fragoff && !mff)
1166 		goto no_fragment;
1167 
1168 	/* We're dealing with a fragment now. Don't allow fragments
1169 	 * with IP_DF to enter the cache. If the flag was cleared by
1170 	 * no-df above, fine. Otherwise drop it.
1171 	 */
1172 	if (h->ip_off & htons(IP_DF)) {
1173 		DPFPRINTF(("IP_DF\n"));
1174 		goto bad;
1175 	}
1176 
1177 	ip_len = ntohs(h->ip_len) - hlen;
1178 
1179 	/* All fragments are 8 byte aligned */
1180 	if (mff && (ip_len & 0x7)) {
1181 		DPFPRINTF(("mff and %d\n", ip_len));
1182 		goto bad;
1183 	}
1184 
1185 	/* Respect maximum length */
1186 	if (fragoff + ip_len > IP_MAXPACKET) {
1187 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1188 		goto bad;
1189 	}
1190 
1191 	if ((!scrub_compat && V_pf_status.reass) ||
1192 	    (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS))
1193 	) {
1194 		max = fragoff + ip_len;
1195 
1196 		/* Fully buffer all of the fragments
1197 		 * Might return a completely reassembled mbuf, or NULL */
1198 		PF_FRAG_LOCK();
1199 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1200 		verdict = pf_reassemble(&pd->m, pd->dir, reason);
1201 		PF_FRAG_UNLOCK();
1202 
1203 		if (verdict != PF_PASS)
1204 			return (PF_DROP);
1205 
1206 		if (pd->m == NULL)
1207 			return (PF_DROP);
1208 
1209 		h = mtod(pd->m, struct ip *);
1210 		pd->tot_len = htons(h->ip_len);
1211 
1212  no_fragment:
1213 		/* At this point, only IP_DF is allowed in ip_off */
1214 		if (h->ip_off & ~htons(IP_DF)) {
1215 			u_int16_t ip_off = h->ip_off;
1216 
1217 			h->ip_off &= htons(IP_DF);
1218 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1219 		}
1220 	}
1221 
1222 	return (PF_PASS);
1223 
1224  bad:
1225 	DPFPRINTF(("dropping bad fragment\n"));
1226 	REASON_SET(reason, PFRES_FRAG);
1227  drop:
1228 	if (r != NULL && r->log)
1229 		PFLOG_PACKET(PF_DROP, *reason, r, NULL, NULL, pd, 1, NULL);
1230 
1231 	return (PF_DROP);
1232 }
1233 #endif
1234 
1235 #ifdef INET6
1236 int
pf_normalize_ip6(int off,u_short * reason,struct pf_pdesc * pd)1237 pf_normalize_ip6(int off, u_short *reason,
1238     struct pf_pdesc *pd)
1239 {
1240 	struct pf_krule		*r;
1241 	struct ip6_hdr		*h;
1242 	struct ip6_frag		 frag;
1243 	bool			 scrub_compat;
1244 
1245 	PF_RULES_RASSERT();
1246 
1247 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1248 	/*
1249 	 * Check if there are any scrub rules, matching or not.
1250 	 * Lack of scrub rules means:
1251 	 *  - enforced packet normalization operation just like in OpenBSD
1252 	 * With scrub rules:
1253 	 *  - packet normalization is performed if there is a matching scrub rule
1254 	 * XXX: Fragment reassembly always performed for IPv6!
1255 	 */
1256 	scrub_compat = (r != NULL);
1257 	while (r != NULL) {
1258 		pf_counter_u64_add(&r->evaluations, 1);
1259 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1260 			r = r->skip[PF_SKIP_IFP];
1261 		else if (r->direction && r->direction != pd->dir)
1262 			r = r->skip[PF_SKIP_DIR];
1263 		else if (r->af && r->af != AF_INET6)
1264 			r = r->skip[PF_SKIP_AF];
1265 		else if (r->proto && r->proto != pd->proto)
1266 			r = r->skip[PF_SKIP_PROTO];
1267 		else if (PF_MISMATCHAW(&r->src.addr,
1268 		    (struct pf_addr *)&pd->src, AF_INET6,
1269 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1270 			r = r->skip[PF_SKIP_SRC_ADDR];
1271 		else if (PF_MISMATCHAW(&r->dst.addr,
1272 		    (struct pf_addr *)&pd->dst, AF_INET6,
1273 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1274 			r = r->skip[PF_SKIP_DST_ADDR];
1275 		else
1276 			break;
1277 	}
1278 
1279 	if (scrub_compat) {
1280 		/* With scrub rules present IPv6 normalization happens only
1281 		 * if one of rules has matched and it's not a "no scrub" rule */
1282 		if (r == NULL || r->action == PF_NOSCRUB)
1283 			return (PF_PASS);
1284 
1285 		pf_counter_u64_critical_enter();
1286 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1287 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1288 		pf_counter_u64_critical_exit();
1289 		pf_rule_to_actions(r, &pd->act);
1290 	}
1291 
1292 	if (!pf_pull_hdr(pd->m, off, &frag, sizeof(frag), NULL, reason, AF_INET6))
1293 		return (PF_DROP);
1294 
1295 	/* Offset now points to data portion. */
1296 	off += sizeof(frag);
1297 
1298 	if (pd->virtual_proto == PF_VPROTO_FRAGMENT) {
1299 		/* Returns PF_DROP or *m0 is NULL or completely reassembled
1300 		 * mbuf. */
1301 		if (pf_reassemble6(&pd->m, &frag, off, pd->extoff, reason) != PF_PASS)
1302 			return (PF_DROP);
1303 		if (pd->m == NULL)
1304 			return (PF_DROP);
1305 		h = mtod(pd->m, struct ip6_hdr *);
1306 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
1307 	}
1308 
1309 	return (PF_PASS);
1310 }
1311 #endif /* INET6 */
1312 
1313 int
pf_normalize_tcp(struct pf_pdesc * pd)1314 pf_normalize_tcp(struct pf_pdesc *pd)
1315 {
1316 	struct pf_krule	*r, *rm = NULL;
1317 	struct tcphdr	*th = &pd->hdr.tcp;
1318 	int		 rewrite = 0;
1319 	u_short		 reason;
1320 	u_int16_t	 flags;
1321 	sa_family_t	 af = pd->af;
1322 	int		 srs;
1323 
1324 	PF_RULES_RASSERT();
1325 
1326 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1327 	/* Check if there any scrub rules. Lack of scrub rules means enforced
1328 	 * packet normalization operation just like in OpenBSD. */
1329 	srs = (r != NULL);
1330 	while (r != NULL) {
1331 		pf_counter_u64_add(&r->evaluations, 1);
1332 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1333 			r = r->skip[PF_SKIP_IFP];
1334 		else if (r->direction && r->direction != pd->dir)
1335 			r = r->skip[PF_SKIP_DIR];
1336 		else if (r->af && r->af != af)
1337 			r = r->skip[PF_SKIP_AF];
1338 		else if (r->proto && r->proto != pd->proto)
1339 			r = r->skip[PF_SKIP_PROTO];
1340 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1341 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1342 			r = r->skip[PF_SKIP_SRC_ADDR];
1343 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1344 			    r->src.port[0], r->src.port[1], th->th_sport))
1345 			r = r->skip[PF_SKIP_SRC_PORT];
1346 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1347 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1348 			r = r->skip[PF_SKIP_DST_ADDR];
1349 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1350 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1351 			r = r->skip[PF_SKIP_DST_PORT];
1352 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1353 			    pf_osfp_fingerprint(pd, th),
1354 			    r->os_fingerprint))
1355 			r = TAILQ_NEXT(r, entries);
1356 		else {
1357 			rm = r;
1358 			break;
1359 		}
1360 	}
1361 
1362 	if (srs) {
1363 		/* With scrub rules present TCP normalization happens only
1364 		 * if one of rules has matched and it's not a "no scrub" rule */
1365 		if (rm == NULL || rm->action == PF_NOSCRUB)
1366 			return (PF_PASS);
1367 
1368 		pf_counter_u64_critical_enter();
1369 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1370 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1371 		pf_counter_u64_critical_exit();
1372 		pf_rule_to_actions(rm, &pd->act);
1373 	}
1374 
1375 	if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1376 		pd->flags |= PFDESC_TCP_NORM;
1377 
1378 	flags = tcp_get_flags(th);
1379 	if (flags & TH_SYN) {
1380 		/* Illegal packet */
1381 		if (flags & TH_RST)
1382 			goto tcp_drop;
1383 
1384 		if (flags & TH_FIN)
1385 			goto tcp_drop;
1386 	} else {
1387 		/* Illegal packet */
1388 		if (!(flags & (TH_ACK|TH_RST)))
1389 			goto tcp_drop;
1390 	}
1391 
1392 	if (!(flags & TH_ACK)) {
1393 		/* These flags are only valid if ACK is set */
1394 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1395 			goto tcp_drop;
1396 	}
1397 
1398 	/* Check for illegal header length */
1399 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1400 		goto tcp_drop;
1401 
1402 	/* If flags changed, or reserved data set, then adjust */
1403 	if (flags != tcp_get_flags(th) ||
1404 	    (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) {
1405 		u_int16_t	ov, nv;
1406 
1407 		ov = *(u_int16_t *)(&th->th_ack + 1);
1408 		flags &= ~(TH_RES1 | TH_RES2 | TH_RES3);
1409 		tcp_set_flags(th, flags);
1410 		nv = *(u_int16_t *)(&th->th_ack + 1);
1411 
1412 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, ov, nv, 0);
1413 		rewrite = 1;
1414 	}
1415 
1416 	/* Remove urgent pointer, if TH_URG is not set */
1417 	if (!(flags & TH_URG) && th->th_urp) {
1418 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, th->th_urp,
1419 		    0, 0);
1420 		th->th_urp = 0;
1421 		rewrite = 1;
1422 	}
1423 
1424 	/* copy back packet headers if we sanitized */
1425 	if (rewrite)
1426 		m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1427 
1428 	return (PF_PASS);
1429 
1430  tcp_drop:
1431 	REASON_SET(&reason, PFRES_NORM);
1432 	if (rm != NULL && r->log)
1433 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 1, NULL);
1434 	return (PF_DROP);
1435 }
1436 
1437 int
pf_normalize_tcp_init(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * src)1438 pf_normalize_tcp_init(struct pf_pdesc *pd, struct tcphdr *th,
1439     struct pf_state_peer *src)
1440 {
1441 	u_int32_t tsval, tsecr;
1442 	u_int8_t hdr[60];
1443 	u_int8_t *opt;
1444 
1445 	KASSERT((src->scrub == NULL),
1446 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1447 
1448 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1449 	if (src->scrub == NULL)
1450 		return (1);
1451 
1452 	switch (pd->af) {
1453 #ifdef INET
1454 	case AF_INET: {
1455 		struct ip *h = mtod(pd->m, struct ip *);
1456 		src->scrub->pfss_ttl = h->ip_ttl;
1457 		break;
1458 	}
1459 #endif /* INET */
1460 #ifdef INET6
1461 	case AF_INET6: {
1462 		struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1463 		src->scrub->pfss_ttl = h->ip6_hlim;
1464 		break;
1465 	}
1466 #endif /* INET6 */
1467 	default:
1468 		unhandled_af(pd->af);
1469 	}
1470 
1471 	/*
1472 	 * All normalizations below are only begun if we see the start of
1473 	 * the connections.  They must all set an enabled bit in pfss_flags
1474 	 */
1475 	if ((tcp_get_flags(th) & TH_SYN) == 0)
1476 		return (0);
1477 
1478 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1479 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1480 		/* Diddle with TCP options */
1481 		int hlen;
1482 		opt = hdr + sizeof(struct tcphdr);
1483 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1484 		while (hlen >= TCPOLEN_TIMESTAMP) {
1485 			switch (*opt) {
1486 			case TCPOPT_EOL:	/* FALLTHROUGH */
1487 			case TCPOPT_NOP:
1488 				opt++;
1489 				hlen--;
1490 				break;
1491 			case TCPOPT_TIMESTAMP:
1492 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1493 					src->scrub->pfss_flags |=
1494 					    PFSS_TIMESTAMP;
1495 					src->scrub->pfss_ts_mod =
1496 					    arc4random();
1497 
1498 					/* note PFSS_PAWS not set yet */
1499 					memcpy(&tsval, &opt[2],
1500 					    sizeof(u_int32_t));
1501 					memcpy(&tsecr, &opt[6],
1502 					    sizeof(u_int32_t));
1503 					src->scrub->pfss_tsval0 = ntohl(tsval);
1504 					src->scrub->pfss_tsval = ntohl(tsval);
1505 					src->scrub->pfss_tsecr = ntohl(tsecr);
1506 					getmicrouptime(&src->scrub->pfss_last);
1507 				}
1508 				/* FALLTHROUGH */
1509 			default:
1510 				hlen -= MAX(opt[1], 2);
1511 				opt += MAX(opt[1], 2);
1512 				break;
1513 			}
1514 		}
1515 	}
1516 
1517 	return (0);
1518 }
1519 
1520 void
pf_normalize_tcp_cleanup(struct pf_kstate * state)1521 pf_normalize_tcp_cleanup(struct pf_kstate *state)
1522 {
1523 	/* XXX Note: this also cleans up SCTP. */
1524 	uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1525 	uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1526 
1527 	/* Someday... flush the TCP segment reassembly descriptors. */
1528 }
1529 int
pf_normalize_sctp_init(struct pf_pdesc * pd,struct pf_state_peer * src,struct pf_state_peer * dst)1530 pf_normalize_sctp_init(struct pf_pdesc *pd, struct pf_state_peer *src,
1531     struct pf_state_peer *dst)
1532 {
1533 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1534 	if (src->scrub == NULL)
1535 		return (1);
1536 
1537 	dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1538 	if (dst->scrub == NULL) {
1539 		uma_zfree(V_pf_state_scrub_z, src);
1540 		return (1);
1541 	}
1542 
1543 	dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
1544 
1545 	return (0);
1546 }
1547 
1548 int
pf_normalize_tcp_stateful(struct pf_pdesc * pd,u_short * reason,struct tcphdr * th,struct pf_kstate * state,struct pf_state_peer * src,struct pf_state_peer * dst,int * writeback)1549 pf_normalize_tcp_stateful(struct pf_pdesc *pd,
1550     u_short *reason, struct tcphdr *th, struct pf_kstate *state,
1551     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1552 {
1553 	struct timeval uptime;
1554 	u_int32_t tsval, tsecr;
1555 	u_int tsval_from_last;
1556 	u_int8_t hdr[60];
1557 	u_int8_t *opt;
1558 	int copyback = 0;
1559 	int got_ts = 0;
1560 	size_t startoff;
1561 
1562 	KASSERT((src->scrub || dst->scrub),
1563 	    ("%s: src->scrub && dst->scrub!", __func__));
1564 
1565 	/*
1566 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1567 	 * technique to evade an intrusion detection system and confuse
1568 	 * firewall state code.
1569 	 */
1570 	switch (pd->af) {
1571 #ifdef INET
1572 	case AF_INET: {
1573 		if (src->scrub) {
1574 			struct ip *h = mtod(pd->m, struct ip *);
1575 			if (h->ip_ttl > src->scrub->pfss_ttl)
1576 				src->scrub->pfss_ttl = h->ip_ttl;
1577 			h->ip_ttl = src->scrub->pfss_ttl;
1578 		}
1579 		break;
1580 	}
1581 #endif /* INET */
1582 #ifdef INET6
1583 	case AF_INET6: {
1584 		if (src->scrub) {
1585 			struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1586 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1587 				src->scrub->pfss_ttl = h->ip6_hlim;
1588 			h->ip6_hlim = src->scrub->pfss_ttl;
1589 		}
1590 		break;
1591 	}
1592 #endif /* INET6 */
1593 	default:
1594 		unhandled_af(pd->af);
1595 	}
1596 
1597 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1598 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1599 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1600 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1601 		/* Diddle with TCP options */
1602 		int hlen;
1603 		opt = hdr + sizeof(struct tcphdr);
1604 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1605 		while (hlen >= TCPOLEN_TIMESTAMP) {
1606 			startoff = opt - (hdr + sizeof(struct tcphdr));
1607 			switch (*opt) {
1608 			case TCPOPT_EOL:	/* FALLTHROUGH */
1609 			case TCPOPT_NOP:
1610 				opt++;
1611 				hlen--;
1612 				break;
1613 			case TCPOPT_TIMESTAMP:
1614 				/* Modulate the timestamps.  Can be used for
1615 				 * NAT detection, OS uptime determination or
1616 				 * reboot detection.
1617 				 */
1618 
1619 				if (got_ts) {
1620 					/* Huh?  Multiple timestamps!? */
1621 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1622 						DPFPRINTF(("multiple TS??\n"));
1623 						pf_print_state(state);
1624 						printf("\n");
1625 					}
1626 					REASON_SET(reason, PFRES_TS);
1627 					return (PF_DROP);
1628 				}
1629 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1630 					memcpy(&tsval, &opt[2],
1631 					    sizeof(u_int32_t));
1632 					if (tsval && src->scrub &&
1633 					    (src->scrub->pfss_flags &
1634 					    PFSS_TIMESTAMP)) {
1635 						tsval = ntohl(tsval);
1636 						pf_patch_32(pd,
1637 						    &opt[2],
1638 						    htonl(tsval +
1639 						    src->scrub->pfss_ts_mod),
1640 						    PF_ALGNMNT(startoff));
1641 						copyback = 1;
1642 					}
1643 
1644 					/* Modulate TS reply iff valid (!0) */
1645 					memcpy(&tsecr, &opt[6],
1646 					    sizeof(u_int32_t));
1647 					if (tsecr && dst->scrub &&
1648 					    (dst->scrub->pfss_flags &
1649 					    PFSS_TIMESTAMP)) {
1650 						tsecr = ntohl(tsecr)
1651 						    - dst->scrub->pfss_ts_mod;
1652 						pf_patch_32(pd,
1653 						    &opt[6],
1654 						    htonl(tsecr),
1655 						    PF_ALGNMNT(startoff));
1656 						copyback = 1;
1657 					}
1658 					got_ts = 1;
1659 				}
1660 				/* FALLTHROUGH */
1661 			default:
1662 				hlen -= MAX(opt[1], 2);
1663 				opt += MAX(opt[1], 2);
1664 				break;
1665 			}
1666 		}
1667 		if (copyback) {
1668 			/* Copyback the options, caller copys back header */
1669 			*writeback = 1;
1670 			m_copyback(pd->m, pd->off + sizeof(struct tcphdr),
1671 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1672 			    sizeof(struct tcphdr));
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * Must invalidate PAWS checks on connections idle for too long.
1678 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1679 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1680 	 * TS echo check only works for the first 12 days of a connection
1681 	 * when the TS has exhausted half its 32bit space
1682 	 */
1683 #define TS_MAX_IDLE	(24*24*60*60)
1684 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1685 
1686 	getmicrouptime(&uptime);
1687 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1688 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1689 	    time_uptime - (state->creation / 1000) > TS_MAX_CONN))  {
1690 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1691 			DPFPRINTF(("src idled out of PAWS\n"));
1692 			pf_print_state(state);
1693 			printf("\n");
1694 		}
1695 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1696 		    | PFSS_PAWS_IDLED;
1697 	}
1698 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1699 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1700 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1701 			DPFPRINTF(("dst idled out of PAWS\n"));
1702 			pf_print_state(state);
1703 			printf("\n");
1704 		}
1705 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1706 		    | PFSS_PAWS_IDLED;
1707 	}
1708 
1709 	if (got_ts && src->scrub && dst->scrub &&
1710 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1711 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1712 		/* Validate that the timestamps are "in-window".
1713 		 * RFC1323 describes TCP Timestamp options that allow
1714 		 * measurement of RTT (round trip time) and PAWS
1715 		 * (protection against wrapped sequence numbers).  PAWS
1716 		 * gives us a set of rules for rejecting packets on
1717 		 * long fat pipes (packets that were somehow delayed
1718 		 * in transit longer than the time it took to send the
1719 		 * full TCP sequence space of 4Gb).  We can use these
1720 		 * rules and infer a few others that will let us treat
1721 		 * the 32bit timestamp and the 32bit echoed timestamp
1722 		 * as sequence numbers to prevent a blind attacker from
1723 		 * inserting packets into a connection.
1724 		 *
1725 		 * RFC1323 tells us:
1726 		 *  - The timestamp on this packet must be greater than
1727 		 *    or equal to the last value echoed by the other
1728 		 *    endpoint.  The RFC says those will be discarded
1729 		 *    since it is a dup that has already been acked.
1730 		 *    This gives us a lowerbound on the timestamp.
1731 		 *        timestamp >= other last echoed timestamp
1732 		 *  - The timestamp will be less than or equal to
1733 		 *    the last timestamp plus the time between the
1734 		 *    last packet and now.  The RFC defines the max
1735 		 *    clock rate as 1ms.  We will allow clocks to be
1736 		 *    up to 10% fast and will allow a total difference
1737 		 *    or 30 seconds due to a route change.  And this
1738 		 *    gives us an upperbound on the timestamp.
1739 		 *        timestamp <= last timestamp + max ticks
1740 		 *    We have to be careful here.  Windows will send an
1741 		 *    initial timestamp of zero and then initialize it
1742 		 *    to a random value after the 3whs; presumably to
1743 		 *    avoid a DoS by having to call an expensive RNG
1744 		 *    during a SYN flood.  Proof MS has at least one
1745 		 *    good security geek.
1746 		 *
1747 		 *  - The TCP timestamp option must also echo the other
1748 		 *    endpoints timestamp.  The timestamp echoed is the
1749 		 *    one carried on the earliest unacknowledged segment
1750 		 *    on the left edge of the sequence window.  The RFC
1751 		 *    states that the host will reject any echoed
1752 		 *    timestamps that were larger than any ever sent.
1753 		 *    This gives us an upperbound on the TS echo.
1754 		 *        tescr <= largest_tsval
1755 		 *  - The lowerbound on the TS echo is a little more
1756 		 *    tricky to determine.  The other endpoint's echoed
1757 		 *    values will not decrease.  But there may be
1758 		 *    network conditions that re-order packets and
1759 		 *    cause our view of them to decrease.  For now the
1760 		 *    only lowerbound we can safely determine is that
1761 		 *    the TS echo will never be less than the original
1762 		 *    TS.  XXX There is probably a better lowerbound.
1763 		 *    Remove TS_MAX_CONN with better lowerbound check.
1764 		 *        tescr >= other original TS
1765 		 *
1766 		 * It is also important to note that the fastest
1767 		 * timestamp clock of 1ms will wrap its 32bit space in
1768 		 * 24 days.  So we just disable TS checking after 24
1769 		 * days of idle time.  We actually must use a 12d
1770 		 * connection limit until we can come up with a better
1771 		 * lowerbound to the TS echo check.
1772 		 */
1773 		struct timeval delta_ts;
1774 		int ts_fudge;
1775 
1776 		/*
1777 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1778 		 * a host's timestamp.  This can happen if the previous
1779 		 * packet got delayed in transit for much longer than
1780 		 * this packet.
1781 		 */
1782 		if ((ts_fudge = state->rule->timeout[PFTM_TS_DIFF]) == 0)
1783 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1784 
1785 		/* Calculate max ticks since the last timestamp */
1786 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1787 #define TS_MICROSECS	1000000		/* microseconds per second */
1788 		delta_ts = uptime;
1789 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1790 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1791 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1792 
1793 		if ((src->state >= TCPS_ESTABLISHED &&
1794 		    dst->state >= TCPS_ESTABLISHED) &&
1795 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1796 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1797 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1798 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1799 			/* Bad RFC1323 implementation or an insertion attack.
1800 			 *
1801 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1802 			 *   after the FIN,FIN|ACK,ACK closing that carries
1803 			 *   an old timestamp.
1804 			 */
1805 
1806 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1807 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1808 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1809 			    tsval_from_last) ? '1' : ' ',
1810 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1811 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1812 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1813 			    "idle: %jus %lums\n",
1814 			    tsval, tsecr, tsval_from_last,
1815 			    (uintmax_t)delta_ts.tv_sec,
1816 			    delta_ts.tv_usec / 1000));
1817 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1818 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1819 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1820 			    "\n", dst->scrub->pfss_tsval,
1821 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1822 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1823 				pf_print_state(state);
1824 				pf_print_flags(tcp_get_flags(th));
1825 				printf("\n");
1826 			}
1827 			REASON_SET(reason, PFRES_TS);
1828 			return (PF_DROP);
1829 		}
1830 
1831 		/* XXX I'd really like to require tsecr but it's optional */
1832 
1833 	} else if (!got_ts && (tcp_get_flags(th) & TH_RST) == 0 &&
1834 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1835 	    || pd->p_len > 0 || (tcp_get_flags(th) & TH_SYN)) &&
1836 	    src->scrub && dst->scrub &&
1837 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1838 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1839 		/* Didn't send a timestamp.  Timestamps aren't really useful
1840 		 * when:
1841 		 *  - connection opening or closing (often not even sent).
1842 		 *    but we must not let an attacker to put a FIN on a
1843 		 *    data packet to sneak it through our ESTABLISHED check.
1844 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1845 		 *  - on an empty ACK.  The TS will not be echoed so it will
1846 		 *    probably not help keep the RTT calculation in sync and
1847 		 *    there isn't as much danger when the sequence numbers
1848 		 *    got wrapped.  So some stacks don't include TS on empty
1849 		 *    ACKs :-(
1850 		 *
1851 		 * To minimize the disruption to mostly RFC1323 conformant
1852 		 * stacks, we will only require timestamps on data packets.
1853 		 *
1854 		 * And what do ya know, we cannot require timestamps on data
1855 		 * packets.  There appear to be devices that do legitimate
1856 		 * TCP connection hijacking.  There are HTTP devices that allow
1857 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1858 		 * If the intermediate device has the HTTP response cache, it
1859 		 * will spoof the response but not bother timestamping its
1860 		 * packets.  So we can look for the presence of a timestamp in
1861 		 * the first data packet and if there, require it in all future
1862 		 * packets.
1863 		 */
1864 
1865 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1866 			/*
1867 			 * Hey!  Someone tried to sneak a packet in.  Or the
1868 			 * stack changed its RFC1323 behavior?!?!
1869 			 */
1870 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1871 				DPFPRINTF(("Did not receive expected RFC1323 "
1872 				    "timestamp\n"));
1873 				pf_print_state(state);
1874 				pf_print_flags(tcp_get_flags(th));
1875 				printf("\n");
1876 			}
1877 			REASON_SET(reason, PFRES_TS);
1878 			return (PF_DROP);
1879 		}
1880 	}
1881 
1882 	/*
1883 	 * We will note if a host sends his data packets with or without
1884 	 * timestamps.  And require all data packets to contain a timestamp
1885 	 * if the first does.  PAWS implicitly requires that all data packets be
1886 	 * timestamped.  But I think there are middle-man devices that hijack
1887 	 * TCP streams immediately after the 3whs and don't timestamp their
1888 	 * packets (seen in a WWW accelerator or cache).
1889 	 */
1890 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1891 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1892 		if (got_ts)
1893 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1894 		else {
1895 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1896 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1897 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1898 				/* Don't warn if other host rejected RFC1323 */
1899 				DPFPRINTF(("Broken RFC1323 stack did not "
1900 				    "timestamp data packet. Disabled PAWS "
1901 				    "security.\n"));
1902 				pf_print_state(state);
1903 				pf_print_flags(tcp_get_flags(th));
1904 				printf("\n");
1905 			}
1906 		}
1907 	}
1908 
1909 	/*
1910 	 * Update PAWS values
1911 	 */
1912 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1913 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1914 		getmicrouptime(&src->scrub->pfss_last);
1915 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1916 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1917 			src->scrub->pfss_tsval = tsval;
1918 
1919 		if (tsecr) {
1920 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1921 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1922 				src->scrub->pfss_tsecr = tsecr;
1923 
1924 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1925 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1926 			    src->scrub->pfss_tsval0 == 0)) {
1927 				/* tsval0 MUST be the lowest timestamp */
1928 				src->scrub->pfss_tsval0 = tsval;
1929 			}
1930 
1931 			/* Only fully initialized after a TS gets echoed */
1932 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1933 				src->scrub->pfss_flags |= PFSS_PAWS;
1934 		}
1935 	}
1936 
1937 	/* I have a dream....  TCP segment reassembly.... */
1938 	return (0);
1939 }
1940 
1941 int
pf_normalize_mss(struct pf_pdesc * pd)1942 pf_normalize_mss(struct pf_pdesc *pd)
1943 {
1944 	struct tcphdr	*th = &pd->hdr.tcp;
1945 	u_int16_t	*mss;
1946 	int		 thoff;
1947 	int		 opt, cnt, optlen = 0;
1948 	u_char		 opts[TCP_MAXOLEN];
1949 	u_char		*optp = opts;
1950 	size_t		 startoff;
1951 
1952 	thoff = th->th_off << 2;
1953 	cnt = thoff - sizeof(struct tcphdr);
1954 
1955 	if (cnt <= 0 || cnt > MAX_TCPOPTLEN || !pf_pull_hdr(pd->m,
1956 	    pd->off + sizeof(*th), opts, cnt, NULL, NULL, pd->af))
1957 		return (0);
1958 
1959 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1960 		startoff = optp - opts;
1961 		opt = optp[0];
1962 		if (opt == TCPOPT_EOL)
1963 			break;
1964 		if (opt == TCPOPT_NOP)
1965 			optlen = 1;
1966 		else {
1967 			if (cnt < 2)
1968 				break;
1969 			optlen = optp[1];
1970 			if (optlen < 2 || optlen > cnt)
1971 				break;
1972 		}
1973 		switch (opt) {
1974 		case TCPOPT_MAXSEG:
1975 			mss = (u_int16_t *)(optp + 2);
1976 			if ((ntohs(*mss)) > pd->act.max_mss) {
1977 				pf_patch_16(pd,
1978 				    mss, htons(pd->act.max_mss),
1979 				    PF_ALGNMNT(startoff));
1980 				m_copyback(pd->m, pd->off + sizeof(*th),
1981 				    thoff - sizeof(*th), opts);
1982 				m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1983 			}
1984 			break;
1985 		default:
1986 			break;
1987 		}
1988 	}
1989 
1990 	return (0);
1991 }
1992 
1993 int
pf_scan_sctp(struct pf_pdesc * pd)1994 pf_scan_sctp(struct pf_pdesc *pd)
1995 {
1996 	struct sctp_chunkhdr ch = { };
1997 	int chunk_off = sizeof(struct sctphdr);
1998 	int chunk_start;
1999 	int ret;
2000 
2001 	while (pd->off + chunk_off < pd->tot_len) {
2002 		if (!pf_pull_hdr(pd->m, pd->off + chunk_off, &ch, sizeof(ch), NULL,
2003 		    NULL, pd->af))
2004 			return (PF_DROP);
2005 
2006 		/* Length includes the header, this must be at least 4. */
2007 		if (ntohs(ch.chunk_length) < 4)
2008 			return (PF_DROP);
2009 
2010 		chunk_start = chunk_off;
2011 		chunk_off += roundup(ntohs(ch.chunk_length), 4);
2012 
2013 		switch (ch.chunk_type) {
2014 		case SCTP_INITIATION:
2015 		case SCTP_INITIATION_ACK: {
2016 			struct sctp_init_chunk init;
2017 
2018 			if (!pf_pull_hdr(pd->m, pd->off + chunk_start, &init,
2019 			    sizeof(init), NULL, NULL, pd->af))
2020 				return (PF_DROP);
2021 
2022 			/*
2023 			 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have
2024 			 * any value except 0."
2025 			 */
2026 			if (init.init.initiate_tag == 0)
2027 				return (PF_DROP);
2028 			if (init.init.num_inbound_streams == 0)
2029 				return (PF_DROP);
2030 			if (init.init.num_outbound_streams == 0)
2031 				return (PF_DROP);
2032 			if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND)
2033 				return (PF_DROP);
2034 
2035 			/*
2036 			 * RFC 9260, Section 3.1, INIT chunks MUST have zero
2037 			 * verification tag.
2038 			 */
2039 			if (ch.chunk_type == SCTP_INITIATION &&
2040 			    pd->hdr.sctp.v_tag != 0)
2041 				return (PF_DROP);
2042 
2043 			pd->sctp_initiate_tag = init.init.initiate_tag;
2044 
2045 			if (ch.chunk_type == SCTP_INITIATION)
2046 				pd->sctp_flags |= PFDESC_SCTP_INIT;
2047 			else
2048 				pd->sctp_flags |= PFDESC_SCTP_INIT_ACK;
2049 
2050 			ret = pf_multihome_scan_init(pd->off + chunk_start,
2051 			    ntohs(init.ch.chunk_length), pd);
2052 			if (ret != PF_PASS)
2053 				return (ret);
2054 
2055 			break;
2056 		}
2057 		case SCTP_ABORT_ASSOCIATION:
2058 			pd->sctp_flags |= PFDESC_SCTP_ABORT;
2059 			break;
2060 		case SCTP_SHUTDOWN:
2061 		case SCTP_SHUTDOWN_ACK:
2062 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN;
2063 			break;
2064 		case SCTP_SHUTDOWN_COMPLETE:
2065 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE;
2066 			break;
2067 		case SCTP_COOKIE_ECHO:
2068 			pd->sctp_flags |= PFDESC_SCTP_COOKIE;
2069 			break;
2070 		case SCTP_COOKIE_ACK:
2071 			pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK;
2072 			break;
2073 		case SCTP_DATA:
2074 			pd->sctp_flags |= PFDESC_SCTP_DATA;
2075 			break;
2076 		case SCTP_HEARTBEAT_REQUEST:
2077 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT;
2078 			break;
2079 		case SCTP_HEARTBEAT_ACK:
2080 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK;
2081 			break;
2082 		case SCTP_ASCONF:
2083 			pd->sctp_flags |= PFDESC_SCTP_ASCONF;
2084 
2085 			ret = pf_multihome_scan_asconf(pd->off + chunk_start,
2086 			    ntohs(ch.chunk_length), pd);
2087 			if (ret != PF_PASS)
2088 				return (ret);
2089 			break;
2090 		default:
2091 			pd->sctp_flags |= PFDESC_SCTP_OTHER;
2092 			break;
2093 		}
2094 	}
2095 
2096 	/* Validate chunk lengths vs. packet length. */
2097 	if (pd->off + chunk_off != pd->tot_len)
2098 		return (PF_DROP);
2099 
2100 	/*
2101 	 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only
2102 	 * one in a packet.
2103 	 */
2104 	if ((pd->sctp_flags & PFDESC_SCTP_INIT) &&
2105 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT))
2106 		return (PF_DROP);
2107 	if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) &&
2108 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK))
2109 		return (PF_DROP);
2110 	if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) &&
2111 	    (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE))
2112 		return (PF_DROP);
2113 	if ((pd->sctp_flags & PFDESC_SCTP_ABORT) &&
2114 	    (pd->sctp_flags & PFDESC_SCTP_DATA)) {
2115 		/*
2116 		 * RFC4960 3.3.7: DATA chunks MUST NOT be
2117 		 * bundled with ABORT.
2118 		 */
2119 		return (PF_DROP);
2120 	}
2121 
2122 	return (PF_PASS);
2123 }
2124 
2125 int
pf_normalize_sctp(struct pf_pdesc * pd)2126 pf_normalize_sctp(struct pf_pdesc *pd)
2127 {
2128 	struct pf_krule	*r, *rm = NULL;
2129 	struct sctphdr	*sh = &pd->hdr.sctp;
2130 	u_short		 reason;
2131 	sa_family_t	 af = pd->af;
2132 	int		 srs;
2133 
2134 	PF_RULES_RASSERT();
2135 
2136 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
2137 	/* Check if there any scrub rules. Lack of scrub rules means enforced
2138 	 * packet normalization operation just like in OpenBSD. */
2139 	srs = (r != NULL);
2140 	while (r != NULL) {
2141 		pf_counter_u64_add(&r->evaluations, 1);
2142 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
2143 			r = r->skip[PF_SKIP_IFP];
2144 		else if (r->direction && r->direction != pd->dir)
2145 			r = r->skip[PF_SKIP_DIR];
2146 		else if (r->af && r->af != af)
2147 			r = r->skip[PF_SKIP_AF];
2148 		else if (r->proto && r->proto != pd->proto)
2149 			r = r->skip[PF_SKIP_PROTO];
2150 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
2151 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
2152 			r = r->skip[PF_SKIP_SRC_ADDR];
2153 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
2154 			    r->src.port[0], r->src.port[1], sh->src_port))
2155 			r = r->skip[PF_SKIP_SRC_PORT];
2156 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
2157 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
2158 			r = r->skip[PF_SKIP_DST_ADDR];
2159 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
2160 			    r->dst.port[0], r->dst.port[1], sh->dest_port))
2161 			r = r->skip[PF_SKIP_DST_PORT];
2162 		else {
2163 			rm = r;
2164 			break;
2165 		}
2166 	}
2167 
2168 	if (srs) {
2169 		/* With scrub rules present SCTP normalization happens only
2170 		 * if one of rules has matched and it's not a "no scrub" rule */
2171 		if (rm == NULL || rm->action == PF_NOSCRUB)
2172 			return (PF_PASS);
2173 
2174 		pf_counter_u64_critical_enter();
2175 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
2176 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
2177 		pf_counter_u64_critical_exit();
2178 	}
2179 
2180 	/* Verify we're a multiple of 4 bytes long */
2181 	if ((pd->tot_len - pd->off - sizeof(struct sctphdr)) % 4)
2182 		goto sctp_drop;
2183 
2184 	/* INIT chunk needs to be the only chunk */
2185 	if (pd->sctp_flags & PFDESC_SCTP_INIT)
2186 		if (pd->sctp_flags & ~PFDESC_SCTP_INIT)
2187 			goto sctp_drop;
2188 
2189 	return (PF_PASS);
2190 
2191 sctp_drop:
2192 	REASON_SET(&reason, PFRES_NORM);
2193 	if (rm != NULL && r->log)
2194 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd,
2195 		    1, NULL);
2196 
2197 	return (PF_DROP);
2198 }
2199 
2200 #if defined(INET) || defined(INET6)
2201 void
pf_scrub(struct pf_pdesc * pd)2202 pf_scrub(struct pf_pdesc *pd)
2203 {
2204 
2205 	struct ip		*h = mtod(pd->m, struct ip *);
2206 #ifdef INET6
2207 	struct ip6_hdr		*h6 = mtod(pd->m, struct ip6_hdr *);
2208 #endif /* INET6 */
2209 
2210 	/* Clear IP_DF if no-df was requested */
2211 	if (pd->af == AF_INET && pd->act.flags & PFSTATE_NODF &&
2212 	    h->ip_off & htons(IP_DF))
2213 	{
2214 		u_int16_t ip_off = h->ip_off;
2215 
2216 		h->ip_off &= htons(~IP_DF);
2217 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2218 	}
2219 
2220 	/* Enforce a minimum ttl, may cause endless packet loops */
2221 	if (pd->af == AF_INET && pd->act.min_ttl &&
2222 	    h->ip_ttl < pd->act.min_ttl) {
2223 		u_int16_t ip_ttl = h->ip_ttl;
2224 
2225 		h->ip_ttl = pd->act.min_ttl;
2226 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2227 	}
2228 #ifdef INET6
2229 	/* Enforce a minimum ttl, may cause endless packet loops */
2230 	if (pd->af == AF_INET6 && pd->act.min_ttl &&
2231 	    h6->ip6_hlim < pd->act.min_ttl)
2232 		h6->ip6_hlim = pd->act.min_ttl;
2233 #endif /* INET6 */
2234 	/* Enforce tos */
2235 	if (pd->act.flags & PFSTATE_SETTOS) {
2236 		switch (pd->af) {
2237 		case AF_INET: {
2238 			u_int16_t	ov, nv;
2239 
2240 			ov = *(u_int16_t *)h;
2241 			h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK);
2242 			nv = *(u_int16_t *)h;
2243 
2244 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2245 			break;
2246 		}
2247 #ifdef INET6
2248 		case AF_INET6:
2249 			h6->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
2250 			h6->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h6)) << 20);
2251 			break;
2252 #endif /* INET6 */
2253 		}
2254 	}
2255 
2256 	/* random-id, but not for fragments */
2257 #ifdef INET
2258 	if (pd->af == AF_INET &&
2259 	    pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2260 		uint16_t ip_id = h->ip_id;
2261 
2262 		ip_fillid(h, V_ip_random_id);
2263 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2264 	}
2265 #endif /* INET */
2266 }
2267 #endif /* INET || INET6 */
2268