xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision 5d28f4cab8d5919aba1365e885a91a96c0655b59)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_pf.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/refcount.h>
42 #include <sys/socket.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/vnet.h>
47 #include <net/pfvar.h>
48 #include <net/if_pflog.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/ip.h>
52 #include <netinet/ip_var.h>
53 #include <netinet6/in6_var.h>
54 #include <netinet6/nd6.h>
55 #include <netinet6/ip6_var.h>
56 #include <netinet6/scope6_var.h>
57 #include <netinet/tcp.h>
58 #include <netinet/tcp_fsm.h>
59 #include <netinet/tcp_seq.h>
60 #include <netinet/sctp_constants.h>
61 #include <netinet/sctp_header.h>
62 
63 #ifdef INET6
64 #include <netinet/ip6.h>
65 #endif /* INET6 */
66 
67 struct pf_frent {
68 	TAILQ_ENTRY(pf_frent)	fr_next;
69 	struct mbuf	*fe_m;
70 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
71 					   ipv6, extension, fragment header */
72 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
73 	uint16_t	fe_len;		/* fragment length */
74 	uint16_t	fe_off;		/* fragment offset */
75 	uint16_t	fe_mff;		/* more fragment flag */
76 };
77 
78 struct pf_fragment_cmp {
79 	struct pf_addr	frc_src;
80 	struct pf_addr	frc_dst;
81 	uint32_t	frc_id;
82 	sa_family_t	frc_af;
83 	uint8_t		frc_proto;
84 };
85 
86 struct pf_fragment {
87 	struct pf_fragment_cmp	fr_key;
88 #define fr_src	fr_key.frc_src
89 #define fr_dst	fr_key.frc_dst
90 #define fr_id	fr_key.frc_id
91 #define fr_af	fr_key.frc_af
92 #define fr_proto	fr_key.frc_proto
93 
94 	/* pointers to queue element */
95 	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
96 	/* count entries between pointers */
97 	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
98 	RB_ENTRY(pf_fragment) fr_entry;
99 	TAILQ_ENTRY(pf_fragment) frag_next;
100 	uint32_t	fr_timeout;
101 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
102 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
103 	u_int16_t	fr_holes;	/* number of holes in the queue */
104 };
105 
106 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
107 #define V_pf_frag_mtx		VNET(pf_frag_mtx)
108 #define PF_FRAG_LOCK()		mtx_lock(&V_pf_frag_mtx)
109 #define PF_FRAG_UNLOCK()	mtx_unlock(&V_pf_frag_mtx)
110 #define PF_FRAG_ASSERT()	mtx_assert(&V_pf_frag_mtx, MA_OWNED)
111 
112 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
113 
114 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
115 #define	V_pf_frent_z	VNET(pf_frent_z)
116 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
117 #define	V_pf_frag_z	VNET(pf_frag_z)
118 
119 TAILQ_HEAD(pf_fragqueue, pf_fragment);
120 TAILQ_HEAD(pf_cachequeue, pf_fragment);
121 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
122 #define	V_pf_fragqueue			VNET(pf_fragqueue)
123 RB_HEAD(pf_frag_tree, pf_fragment);
124 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
125 #define	V_pf_frag_tree			VNET(pf_frag_tree)
126 static int		 pf_frag_compare(struct pf_fragment *,
127 			    struct pf_fragment *);
128 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
129 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
130 
131 static void	pf_flush_fragments(void);
132 static void	pf_free_fragment(struct pf_fragment *);
133 
134 static struct pf_frent *pf_create_fragment(u_short *);
135 static int	pf_frent_holes(struct pf_frent *frent);
136 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
137 		    struct pf_frag_tree *tree);
138 static inline int	pf_frent_index(struct pf_frent *);
139 static int	pf_frent_insert(struct pf_fragment *,
140 			    struct pf_frent *, struct pf_frent *);
141 void			pf_frent_remove(struct pf_fragment *,
142 			    struct pf_frent *);
143 struct pf_frent		*pf_frent_previous(struct pf_fragment *,
144 			    struct pf_frent *);
145 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
146 		    struct pf_frent *, u_short *);
147 static struct mbuf *pf_join_fragment(struct pf_fragment *);
148 #ifdef INET
149 static int	pf_reassemble(struct mbuf **, int, u_short *);
150 #endif	/* INET */
151 #ifdef INET6
152 static int	pf_reassemble6(struct mbuf **,
153 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
154 #endif	/* INET6 */
155 
156 #define	DPFPRINTF(x) do {				\
157 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
158 		printf("%s: ", __func__);		\
159 		printf x ;				\
160 	}						\
161 } while(0)
162 
163 #ifdef INET
164 static void
165 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
166 {
167 
168 	key->frc_src.v4 = ip->ip_src;
169 	key->frc_dst.v4 = ip->ip_dst;
170 	key->frc_af = AF_INET;
171 	key->frc_proto = ip->ip_p;
172 	key->frc_id = ip->ip_id;
173 }
174 #endif	/* INET */
175 
176 void
177 pf_normalize_init(void)
178 {
179 
180 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
181 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
182 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
183 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
184 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
185 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
186 	    UMA_ALIGN_PTR, 0);
187 
188 	mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
189 
190 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
191 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
192 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
193 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
194 
195 	TAILQ_INIT(&V_pf_fragqueue);
196 }
197 
198 void
199 pf_normalize_cleanup(void)
200 {
201 
202 	uma_zdestroy(V_pf_state_scrub_z);
203 	uma_zdestroy(V_pf_frent_z);
204 	uma_zdestroy(V_pf_frag_z);
205 
206 	mtx_destroy(&V_pf_frag_mtx);
207 }
208 
209 static int
210 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
211 {
212 	int	diff;
213 
214 	if ((diff = a->fr_id - b->fr_id) != 0)
215 		return (diff);
216 	if ((diff = a->fr_proto - b->fr_proto) != 0)
217 		return (diff);
218 	if ((diff = a->fr_af - b->fr_af) != 0)
219 		return (diff);
220 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
221 		return (diff);
222 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
223 		return (diff);
224 	return (0);
225 }
226 
227 void
228 pf_purge_expired_fragments(void)
229 {
230 	u_int32_t	expire = time_uptime -
231 			    V_pf_default_rule.timeout[PFTM_FRAG];
232 
233 	pf_purge_fragments(expire);
234 }
235 
236 void
237 pf_purge_fragments(uint32_t expire)
238 {
239 	struct pf_fragment	*frag;
240 
241 	PF_FRAG_LOCK();
242 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
243 		if (frag->fr_timeout > expire)
244 			break;
245 
246 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
247 		pf_free_fragment(frag);
248 	}
249 
250 	PF_FRAG_UNLOCK();
251 }
252 
253 /*
254  * Try to flush old fragments to make space for new ones
255  */
256 static void
257 pf_flush_fragments(void)
258 {
259 	struct pf_fragment	*frag;
260 	int			 goal;
261 
262 	PF_FRAG_ASSERT();
263 
264 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
265 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
266 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
267 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
268 		if (frag)
269 			pf_free_fragment(frag);
270 		else
271 			break;
272 	}
273 }
274 
275 /*
276  * Remove a fragment from the fragment queue, free its fragment entries,
277  * and free the fragment itself.
278  */
279 static void
280 pf_free_fragment(struct pf_fragment *frag)
281 {
282 	struct pf_frent		*frent;
283 
284 	PF_FRAG_ASSERT();
285 
286 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
287 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
288 
289 	/* Free all fragment entries */
290 	while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) {
291 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
292 
293 		m_freem(frent->fe_m);
294 		uma_zfree(V_pf_frent_z, frent);
295 	}
296 
297 	uma_zfree(V_pf_frag_z, frag);
298 }
299 
300 static struct pf_fragment *
301 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
302 {
303 	struct pf_fragment	*frag;
304 
305 	PF_FRAG_ASSERT();
306 
307 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
308 	if (frag != NULL) {
309 		/* XXX Are we sure we want to update the timeout? */
310 		frag->fr_timeout = time_uptime;
311 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
312 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
313 	}
314 
315 	return (frag);
316 }
317 
318 /* Removes a fragment from the fragment queue and frees the fragment */
319 static void
320 pf_remove_fragment(struct pf_fragment *frag)
321 {
322 
323 	PF_FRAG_ASSERT();
324 	KASSERT(frag, ("frag != NULL"));
325 
326 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
327 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
328 	uma_zfree(V_pf_frag_z, frag);
329 }
330 
331 static struct pf_frent *
332 pf_create_fragment(u_short *reason)
333 {
334 	struct pf_frent *frent;
335 
336 	PF_FRAG_ASSERT();
337 
338 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
339 	if (frent == NULL) {
340 		pf_flush_fragments();
341 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
342 		if (frent == NULL) {
343 			REASON_SET(reason, PFRES_MEMORY);
344 			return (NULL);
345 		}
346 	}
347 
348 	return (frent);
349 }
350 
351 /*
352  * Calculate the additional holes that were created in the fragment
353  * queue by inserting this fragment.  A fragment in the middle
354  * creates one more hole by splitting.  For each connected side,
355  * it loses one hole.
356  * Fragment entry must be in the queue when calling this function.
357  */
358 static int
359 pf_frent_holes(struct pf_frent *frent)
360 {
361 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
362 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
363 	int holes = 1;
364 
365 	if (prev == NULL) {
366 		if (frent->fe_off == 0)
367 			holes--;
368 	} else {
369 		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
370 		if (frent->fe_off == prev->fe_off + prev->fe_len)
371 			holes--;
372 	}
373 	if (next == NULL) {
374 		if (!frent->fe_mff)
375 			holes--;
376 	} else {
377 		KASSERT(frent->fe_mff, ("frent->fe_mff"));
378 		if (next->fe_off == frent->fe_off + frent->fe_len)
379 			holes--;
380 	}
381 	return holes;
382 }
383 
384 static inline int
385 pf_frent_index(struct pf_frent *frent)
386 {
387 	/*
388 	 * We have an array of 16 entry points to the queue.  A full size
389 	 * 65535 octet IP packet can have 8192 fragments.  So the queue
390 	 * traversal length is at most 512 and at most 16 entry points are
391 	 * checked.  We need 128 additional bytes on a 64 bit architecture.
392 	 */
393 	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
394 	    16 - 1);
395 	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
396 
397 	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
398 }
399 
400 static int
401 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
402     struct pf_frent *prev)
403 {
404 	int index;
405 
406 	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
407 
408 	/*
409 	 * A packet has at most 65536 octets.  With 16 entry points, each one
410 	 * spawns 4096 octets.  We limit these to 64 fragments each, which
411 	 * means on average every fragment must have at least 64 octets.
412 	 */
413 	index = pf_frent_index(frent);
414 	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
415 		return ENOBUFS;
416 	frag->fr_entries[index]++;
417 
418 	if (prev == NULL) {
419 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
420 	} else {
421 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
422 		    ("overlapping fragment"));
423 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
424 	}
425 
426 	if (frag->fr_firstoff[index] == NULL) {
427 		KASSERT(prev == NULL || pf_frent_index(prev) < index,
428 		    ("prev == NULL || pf_frent_index(pref) < index"));
429 		frag->fr_firstoff[index] = frent;
430 	} else {
431 		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
432 			KASSERT(prev == NULL || pf_frent_index(prev) < index,
433 			    ("prev == NULL || pf_frent_index(pref) < index"));
434 			frag->fr_firstoff[index] = frent;
435 		} else {
436 			KASSERT(prev != NULL, ("prev != NULL"));
437 			KASSERT(pf_frent_index(prev) == index,
438 			    ("pf_frent_index(prev) == index"));
439 		}
440 	}
441 
442 	frag->fr_holes += pf_frent_holes(frent);
443 
444 	return 0;
445 }
446 
447 void
448 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
449 {
450 #ifdef INVARIANTS
451 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
452 #endif
453 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
454 	int index;
455 
456 	frag->fr_holes -= pf_frent_holes(frent);
457 
458 	index = pf_frent_index(frent);
459 	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
460 	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
461 		if (next == NULL) {
462 			frag->fr_firstoff[index] = NULL;
463 		} else {
464 			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
465 			    ("overlapping fragment"));
466 			if (pf_frent_index(next) == index) {
467 				frag->fr_firstoff[index] = next;
468 			} else {
469 				frag->fr_firstoff[index] = NULL;
470 			}
471 		}
472 	} else {
473 		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
474 		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
475 		KASSERT(prev != NULL, ("prev != NULL"));
476 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
477 		    ("overlapping fragment"));
478 		KASSERT(pf_frent_index(prev) == index,
479 		    ("pf_frent_index(prev) == index"));
480 	}
481 
482 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
483 
484 	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
485 	frag->fr_entries[index]--;
486 }
487 
488 struct pf_frent *
489 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
490 {
491 	struct pf_frent *prev, *next;
492 	int index;
493 
494 	/*
495 	 * If there are no fragments after frag, take the final one.  Assume
496 	 * that the global queue is not empty.
497 	 */
498 	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
499 	KASSERT(prev != NULL, ("prev != NULL"));
500 	if (prev->fe_off <= frent->fe_off)
501 		return prev;
502 	/*
503 	 * We want to find a fragment entry that is before frag, but still
504 	 * close to it.  Find the first fragment entry that is in the same
505 	 * entry point or in the first entry point after that.  As we have
506 	 * already checked that there are entries behind frag, this will
507 	 * succeed.
508 	 */
509 	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
510 	    index++) {
511 		prev = frag->fr_firstoff[index];
512 		if (prev != NULL)
513 			break;
514 	}
515 	KASSERT(prev != NULL, ("prev != NULL"));
516 	/*
517 	 * In prev we may have a fragment from the same entry point that is
518 	 * before frent, or one that is just one position behind frent.
519 	 * In the latter case, we go back one step and have the predecessor.
520 	 * There may be none if the new fragment will be the first one.
521 	 */
522 	if (prev->fe_off > frent->fe_off) {
523 		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
524 		if (prev == NULL)
525 			return NULL;
526 		KASSERT(prev->fe_off <= frent->fe_off,
527 		    ("prev->fe_off <= frent->fe_off"));
528 		return prev;
529 	}
530 	/*
531 	 * In prev is the first fragment of the entry point.  The offset
532 	 * of frag is behind it.  Find the closest previous fragment.
533 	 */
534 	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
535 	    next = TAILQ_NEXT(next, fr_next)) {
536 		if (next->fe_off > frent->fe_off)
537 			break;
538 		prev = next;
539 	}
540 	return prev;
541 }
542 
543 static struct pf_fragment *
544 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
545     u_short *reason)
546 {
547 	struct pf_frent		*after, *next, *prev;
548 	struct pf_fragment	*frag;
549 	uint16_t		total;
550 	int			old_index, new_index;
551 
552 	PF_FRAG_ASSERT();
553 
554 	/* No empty fragments. */
555 	if (frent->fe_len == 0) {
556 		DPFPRINTF(("bad fragment: len 0\n"));
557 		goto bad_fragment;
558 	}
559 
560 	/* All fragments are 8 byte aligned. */
561 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
562 		DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
563 		goto bad_fragment;
564 	}
565 
566 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
567 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
568 		DPFPRINTF(("bad fragment: max packet %d\n",
569 		    frent->fe_off + frent->fe_len));
570 		goto bad_fragment;
571 	}
572 
573 	DPFPRINTF((key->frc_af == AF_INET ?
574 	    "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
575 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
576 
577 	/* Fully buffer all of the fragments in this fragment queue. */
578 	frag = pf_find_fragment(key, &V_pf_frag_tree);
579 
580 	/* Create a new reassembly queue for this packet. */
581 	if (frag == NULL) {
582 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
583 		if (frag == NULL) {
584 			pf_flush_fragments();
585 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
586 			if (frag == NULL) {
587 				REASON_SET(reason, PFRES_MEMORY);
588 				goto drop_fragment;
589 			}
590 		}
591 
592 		*(struct pf_fragment_cmp *)frag = *key;
593 		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
594 		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
595 		frag->fr_timeout = time_uptime;
596 		TAILQ_INIT(&frag->fr_queue);
597 		frag->fr_maxlen = frent->fe_len;
598 		frag->fr_holes = 1;
599 
600 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
601 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
602 
603 		/* We do not have a previous fragment, cannot fail. */
604 		pf_frent_insert(frag, frent, NULL);
605 
606 		return (frag);
607 	}
608 
609 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
610 
611 	/* Remember maximum fragment len for refragmentation. */
612 	if (frent->fe_len > frag->fr_maxlen)
613 		frag->fr_maxlen = frent->fe_len;
614 
615 	/* Maximum data we have seen already. */
616 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
617 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
618 
619 	/* Non terminal fragments must have more fragments flag. */
620 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
621 		goto bad_fragment;
622 
623 	/* Check if we saw the last fragment already. */
624 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
625 		if (frent->fe_off + frent->fe_len > total ||
626 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
627 			goto bad_fragment;
628 	} else {
629 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
630 			goto bad_fragment;
631 	}
632 
633 	/* Find neighbors for newly inserted fragment */
634 	prev = pf_frent_previous(frag, frent);
635 	if (prev == NULL) {
636 		after = TAILQ_FIRST(&frag->fr_queue);
637 		KASSERT(after != NULL, ("after != NULL"));
638 	} else {
639 		after = TAILQ_NEXT(prev, fr_next);
640 	}
641 
642 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
643 		uint16_t precut;
644 
645 		if (frag->fr_af == AF_INET6)
646 			goto free_fragment;
647 
648 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
649 		if (precut >= frent->fe_len) {
650 			DPFPRINTF(("new frag overlapped\n"));
651 			goto drop_fragment;
652 		}
653 		DPFPRINTF(("frag head overlap %d\n", precut));
654 		m_adj(frent->fe_m, precut);
655 		frent->fe_off += precut;
656 		frent->fe_len -= precut;
657 	}
658 
659 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
660 	    after = next) {
661 		uint16_t aftercut;
662 
663 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
664 		DPFPRINTF(("adjust overlap %d\n", aftercut));
665 		if (aftercut < after->fe_len) {
666 			m_adj(after->fe_m, aftercut);
667 			old_index = pf_frent_index(after);
668 			after->fe_off += aftercut;
669 			after->fe_len -= aftercut;
670 			new_index = pf_frent_index(after);
671 			if (old_index != new_index) {
672 				DPFPRINTF(("frag index %d, new %d\n",
673 				    old_index, new_index));
674 				/* Fragment switched queue as fe_off changed */
675 				after->fe_off -= aftercut;
676 				after->fe_len += aftercut;
677 				/* Remove restored fragment from old queue */
678 				pf_frent_remove(frag, after);
679 				after->fe_off += aftercut;
680 				after->fe_len -= aftercut;
681 				/* Insert into correct queue */
682 				if (pf_frent_insert(frag, after, prev)) {
683 					DPFPRINTF(
684 					    ("fragment requeue limit exceeded\n"));
685 					m_freem(after->fe_m);
686 					uma_zfree(V_pf_frent_z, after);
687 					/* There is not way to recover */
688 					goto bad_fragment;
689 				}
690 			}
691 			break;
692 		}
693 
694 		/* This fragment is completely overlapped, lose it. */
695 		DPFPRINTF(("old frag overlapped\n"));
696 		next = TAILQ_NEXT(after, fr_next);
697 		pf_frent_remove(frag, after);
698 		m_freem(after->fe_m);
699 		uma_zfree(V_pf_frent_z, after);
700 	}
701 
702 	/* If part of the queue gets too long, there is not way to recover. */
703 	if (pf_frent_insert(frag, frent, prev)) {
704 		DPFPRINTF(("fragment queue limit exceeded\n"));
705 		goto bad_fragment;
706 	}
707 
708 	return (frag);
709 
710 free_fragment:
711 	/*
712 	 * RFC 5722, Errata 3089:  When reassembling an IPv6 datagram, if one
713 	 * or more its constituent fragments is determined to be an overlapping
714 	 * fragment, the entire datagram (and any constituent fragments) MUST
715 	 * be silently discarded.
716 	 */
717 	DPFPRINTF(("flush overlapping fragments\n"));
718 	pf_free_fragment(frag);
719 
720 bad_fragment:
721 	REASON_SET(reason, PFRES_FRAG);
722 drop_fragment:
723 	uma_zfree(V_pf_frent_z, frent);
724 	return (NULL);
725 }
726 
727 static struct mbuf *
728 pf_join_fragment(struct pf_fragment *frag)
729 {
730 	struct mbuf *m, *m2;
731 	struct pf_frent	*frent;
732 
733 	frent = TAILQ_FIRST(&frag->fr_queue);
734 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
735 
736 	m = frent->fe_m;
737 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
738 	uma_zfree(V_pf_frent_z, frent);
739 	while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) {
740 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
741 
742 		m2 = frent->fe_m;
743 		/* Strip off ip header. */
744 		m_adj(m2, frent->fe_hdrlen);
745 		/* Strip off any trailing bytes. */
746 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
747 
748 		uma_zfree(V_pf_frent_z, frent);
749 		m_cat(m, m2);
750 	}
751 
752 	/* Remove from fragment queue. */
753 	pf_free_fragment(frag);
754 
755 	return (m);
756 }
757 
758 #ifdef INET
759 static int
760 pf_reassemble(struct mbuf **m0, int dir, u_short *reason)
761 {
762 	struct mbuf		*m = *m0;
763 	struct ip		*ip = mtod(m, struct ip *);
764 	struct pf_frent		*frent;
765 	struct pf_fragment	*frag;
766 	struct m_tag		*mtag;
767 	struct pf_fragment_tag	*ftag;
768 	struct pf_fragment_cmp	key;
769 	uint16_t		total, hdrlen;
770 	uint32_t		 frag_id;
771 	uint16_t		 maxlen;
772 
773 	/* Get an entry for the fragment queue */
774 	if ((frent = pf_create_fragment(reason)) == NULL)
775 		return (PF_DROP);
776 
777 	frent->fe_m = m;
778 	frent->fe_hdrlen = ip->ip_hl << 2;
779 	frent->fe_extoff = 0;
780 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
781 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
782 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
783 
784 	pf_ip2key(ip, dir, &key);
785 
786 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
787 		return (PF_DROP);
788 
789 	/* The mbuf is part of the fragment entry, no direct free or access */
790 	m = *m0 = NULL;
791 
792 	if (frag->fr_holes) {
793 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
794 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
795 	}
796 
797 	/* We have all the data */
798 	frent = TAILQ_FIRST(&frag->fr_queue);
799 	KASSERT(frent != NULL, ("frent != NULL"));
800 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
801 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
802 	hdrlen = frent->fe_hdrlen;
803 
804 	maxlen = frag->fr_maxlen;
805 	frag_id = frag->fr_id;
806 	m = *m0 = pf_join_fragment(frag);
807 	frag = NULL;
808 
809 	if (m->m_flags & M_PKTHDR) {
810 		int plen = 0;
811 		for (m = *m0; m; m = m->m_next)
812 			plen += m->m_len;
813 		m = *m0;
814 		m->m_pkthdr.len = plen;
815 	}
816 
817 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
818 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) {
819 		REASON_SET(reason, PFRES_SHORT);
820 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
821 		return (PF_DROP);
822 	}
823 	ftag = (struct pf_fragment_tag *)(mtag + 1);
824 	ftag->ft_hdrlen = hdrlen;
825 	ftag->ft_extoff = 0;
826 	ftag->ft_maxlen = maxlen;
827 	ftag->ft_id = frag_id;
828 	m_tag_prepend(m, mtag);
829 
830 	ip = mtod(m, struct ip *);
831 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
832 	    htons(hdrlen + total), 0);
833 	ip->ip_len = htons(hdrlen + total);
834 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
835 	    ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
836 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
837 
838 	if (hdrlen + total > IP_MAXPACKET) {
839 		DPFPRINTF(("drop: too big: %d\n", total));
840 		ip->ip_len = 0;
841 		REASON_SET(reason, PFRES_SHORT);
842 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
843 		return (PF_DROP);
844 	}
845 
846 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
847 	return (PF_PASS);
848 }
849 #endif	/* INET */
850 
851 #ifdef INET6
852 static int
853 pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr,
854     uint16_t hdrlen, uint16_t extoff, u_short *reason)
855 {
856 	struct mbuf		*m = *m0;
857 	struct ip6_hdr		*ip6 = mtod(m, struct ip6_hdr *);
858 	struct pf_frent		*frent;
859 	struct pf_fragment	*frag;
860 	struct pf_fragment_cmp	 key;
861 	struct m_tag		*mtag;
862 	struct pf_fragment_tag	*ftag;
863 	int			 off;
864 	uint32_t		 frag_id;
865 	uint16_t		 total, maxlen;
866 	uint8_t			 proto;
867 
868 	PF_FRAG_LOCK();
869 
870 	/* Get an entry for the fragment queue. */
871 	if ((frent = pf_create_fragment(reason)) == NULL) {
872 		PF_FRAG_UNLOCK();
873 		return (PF_DROP);
874 	}
875 
876 	frent->fe_m = m;
877 	frent->fe_hdrlen = hdrlen;
878 	frent->fe_extoff = extoff;
879 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
880 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
881 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
882 
883 	key.frc_src.v6 = ip6->ip6_src;
884 	key.frc_dst.v6 = ip6->ip6_dst;
885 	key.frc_af = AF_INET6;
886 	/* Only the first fragment's protocol is relevant. */
887 	key.frc_proto = 0;
888 	key.frc_id = fraghdr->ip6f_ident;
889 
890 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
891 		PF_FRAG_UNLOCK();
892 		return (PF_DROP);
893 	}
894 
895 	/* The mbuf is part of the fragment entry, no direct free or access. */
896 	m = *m0 = NULL;
897 
898 	if (frag->fr_holes) {
899 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
900 		    frag->fr_holes));
901 		PF_FRAG_UNLOCK();
902 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
903 	}
904 
905 	/* We have all the data. */
906 	frent = TAILQ_FIRST(&frag->fr_queue);
907 	KASSERT(frent != NULL, ("frent != NULL"));
908 	extoff = frent->fe_extoff;
909 	maxlen = frag->fr_maxlen;
910 	frag_id = frag->fr_id;
911 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
912 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
913 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
914 
915 	m = *m0 = pf_join_fragment(frag);
916 	frag = NULL;
917 
918 	PF_FRAG_UNLOCK();
919 
920 	/* Take protocol from first fragment header. */
921 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
922 	KASSERT(m, ("%s: short mbuf chain", __func__));
923 	proto = *(mtod(m, uint8_t *) + off);
924 	m = *m0;
925 
926 	/* Delete frag6 header */
927 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
928 		goto fail;
929 
930 	if (m->m_flags & M_PKTHDR) {
931 		int plen = 0;
932 		for (m = *m0; m; m = m->m_next)
933 			plen += m->m_len;
934 		m = *m0;
935 		m->m_pkthdr.len = plen;
936 	}
937 
938 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
939 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL)
940 		goto fail;
941 	ftag = (struct pf_fragment_tag *)(mtag + 1);
942 	ftag->ft_hdrlen = hdrlen;
943 	ftag->ft_extoff = extoff;
944 	ftag->ft_maxlen = maxlen;
945 	ftag->ft_id = frag_id;
946 	m_tag_prepend(m, mtag);
947 
948 	ip6 = mtod(m, struct ip6_hdr *);
949 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
950 	if (extoff) {
951 		/* Write protocol into next field of last extension header. */
952 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
953 		    &off);
954 		KASSERT(m, ("%s: short mbuf chain", __func__));
955 		*(mtod(m, char *) + off) = proto;
956 		m = *m0;
957 	} else
958 		ip6->ip6_nxt = proto;
959 
960 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
961 		DPFPRINTF(("drop: too big: %d\n", total));
962 		ip6->ip6_plen = 0;
963 		REASON_SET(reason, PFRES_SHORT);
964 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
965 		return (PF_DROP);
966 	}
967 
968 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
969 	return (PF_PASS);
970 
971 fail:
972 	REASON_SET(reason, PFRES_MEMORY);
973 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
974 	return (PF_DROP);
975 }
976 #endif	/* INET6 */
977 
978 #ifdef INET6
979 int
980 pf_max_frag_size(struct mbuf *m)
981 {
982 	struct m_tag *tag;
983 	struct pf_fragment_tag *ftag;
984 
985 	tag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL);
986 	if (tag == NULL)
987 		return (m->m_pkthdr.len);
988 
989 	ftag = (struct pf_fragment_tag *)(tag + 1);
990 
991 	return (ftag->ft_maxlen);
992 }
993 
994 int
995 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag,
996     struct ifnet *rt, bool forward)
997 {
998 	struct mbuf		*m = *m0, *t;
999 	struct ip6_hdr		*hdr;
1000 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
1001 	struct pf_pdesc		 pd;
1002 	uint32_t		 frag_id;
1003 	uint16_t		 hdrlen, extoff, maxlen;
1004 	uint8_t			 proto;
1005 	int			 error, action;
1006 
1007 	hdrlen = ftag->ft_hdrlen;
1008 	extoff = ftag->ft_extoff;
1009 	maxlen = ftag->ft_maxlen;
1010 	frag_id = ftag->ft_id;
1011 	m_tag_delete(m, mtag);
1012 	mtag = NULL;
1013 	ftag = NULL;
1014 
1015 	if (extoff) {
1016 		int off;
1017 
1018 		/* Use protocol from next field of last extension header */
1019 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
1020 		    &off);
1021 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
1022 		proto = *(mtod(m, uint8_t *) + off);
1023 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
1024 		m = *m0;
1025 	} else {
1026 		hdr = mtod(m, struct ip6_hdr *);
1027 		proto = hdr->ip6_nxt;
1028 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
1029 	}
1030 
1031 	/* In case of link-local traffic we'll need a scope set. */
1032 	hdr = mtod(m, struct ip6_hdr *);
1033 
1034 	in6_setscope(&hdr->ip6_src, ifp, NULL);
1035 	in6_setscope(&hdr->ip6_dst, ifp, NULL);
1036 
1037 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
1038 	 * fragmentation wrong. */
1039 	maxlen = maxlen & ~7;
1040 
1041 	/*
1042 	 * Maxlen may be less than 8 if there was only a single
1043 	 * fragment.  As it was fragmented before, add a fragment
1044 	 * header also for a single fragment.  If total or maxlen
1045 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
1046 	 * we drop the packet.
1047 	 */
1048 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
1049 	m = (*m0)->m_nextpkt;
1050 	(*m0)->m_nextpkt = NULL;
1051 	if (error == 0) {
1052 		/* The first mbuf contains the unfragmented packet. */
1053 		m_freem(*m0);
1054 		*m0 = NULL;
1055 		action = PF_PASS;
1056 	} else {
1057 		/* Drop expects an mbuf to free. */
1058 		DPFPRINTF(("refragment error %d\n", error));
1059 		action = PF_DROP;
1060 	}
1061 	for (; m; m = t) {
1062 		t = m->m_nextpkt;
1063 		m->m_nextpkt = NULL;
1064 		m->m_flags |= M_SKIP_FIREWALL;
1065 		memset(&pd, 0, sizeof(pd));
1066 		pd.pf_mtag = pf_find_mtag(m);
1067 		if (error != 0) {
1068 			m_freem(m);
1069 			continue;
1070 		}
1071 		if (rt != NULL) {
1072 			struct sockaddr_in6	dst;
1073 			hdr = mtod(m, struct ip6_hdr *);
1074 
1075 			bzero(&dst, sizeof(dst));
1076 			dst.sin6_family = AF_INET6;
1077 			dst.sin6_len = sizeof(dst);
1078 			dst.sin6_addr = hdr->ip6_dst;
1079 
1080 			nd6_output_ifp(rt, rt, m, &dst, NULL);
1081 		} else if (forward) {
1082 			MPASS(m->m_pkthdr.rcvif != NULL);
1083 			ip6_forward(m, 0);
1084 		} else {
1085 			(void)ip6_output(m, NULL, NULL, 0, NULL, NULL,
1086 			    NULL);
1087 		}
1088 	}
1089 
1090 	return (action);
1091 }
1092 #endif /* INET6 */
1093 
1094 #ifdef INET
1095 int
1096 pf_normalize_ip(u_short *reason, struct pf_pdesc *pd)
1097 {
1098 	struct pf_krule		*r;
1099 	struct ip		*h = mtod(pd->m, struct ip *);
1100 	int			 mff = (ntohs(h->ip_off) & IP_MF);
1101 	int			 hlen = h->ip_hl << 2;
1102 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1103 	u_int16_t		 max;
1104 	int			 ip_len;
1105 	int			 tag = -1;
1106 	int			 verdict;
1107 	bool			 scrub_compat;
1108 
1109 	PF_RULES_RASSERT();
1110 
1111 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1112 	/*
1113 	 * Check if there are any scrub rules, matching or not.
1114 	 * Lack of scrub rules means:
1115 	 *  - enforced packet normalization operation just like in OpenBSD
1116 	 *  - fragment reassembly depends on V_pf_status.reass
1117 	 * With scrub rules:
1118 	 *  - packet normalization is performed if there is a matching scrub rule
1119 	 *  - fragment reassembly is performed if the matching rule has no
1120 	 *    PFRULE_FRAGMENT_NOREASS flag
1121 	 */
1122 	scrub_compat = (r != NULL);
1123 	while (r != NULL) {
1124 		pf_counter_u64_add(&r->evaluations, 1);
1125 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1126 			r = r->skip[PF_SKIP_IFP];
1127 		else if (r->direction && r->direction != pd->dir)
1128 			r = r->skip[PF_SKIP_DIR];
1129 		else if (r->af && r->af != AF_INET)
1130 			r = r->skip[PF_SKIP_AF];
1131 		else if (r->proto && r->proto != h->ip_p)
1132 			r = r->skip[PF_SKIP_PROTO];
1133 		else if (PF_MISMATCHAW(&r->src.addr,
1134 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1135 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1136 			r = r->skip[PF_SKIP_SRC_ADDR];
1137 		else if (PF_MISMATCHAW(&r->dst.addr,
1138 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1139 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1140 			r = r->skip[PF_SKIP_DST_ADDR];
1141 		else if (r->match_tag && !pf_match_tag(pd->m, r, &tag,
1142 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1143 			r = TAILQ_NEXT(r, entries);
1144 		else
1145 			break;
1146 	}
1147 
1148 	if (scrub_compat) {
1149 		/* With scrub rules present IPv4 normalization happens only
1150 		 * if one of rules has matched and it's not a "no scrub" rule */
1151 		if (r == NULL || r->action == PF_NOSCRUB)
1152 			return (PF_PASS);
1153 
1154 		pf_counter_u64_critical_enter();
1155 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1156 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1157 		pf_counter_u64_critical_exit();
1158 		pf_rule_to_actions(r, &pd->act);
1159 	}
1160 
1161 	/* Check for illegal packets */
1162 	if (hlen < (int)sizeof(struct ip)) {
1163 		REASON_SET(reason, PFRES_NORM);
1164 		goto drop;
1165 	}
1166 
1167 	if (hlen > ntohs(h->ip_len)) {
1168 		REASON_SET(reason, PFRES_NORM);
1169 		goto drop;
1170 	}
1171 
1172 	/* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */
1173 	if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) ||
1174 	    (r != NULL && r->rule_flag & PFRULE_NODF)) &&
1175 	    (h->ip_off & htons(IP_DF))
1176 	) {
1177 		u_int16_t ip_off = h->ip_off;
1178 
1179 		h->ip_off &= htons(~IP_DF);
1180 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1181 	}
1182 
1183 	/* We will need other tests here */
1184 	if (!fragoff && !mff)
1185 		goto no_fragment;
1186 
1187 	/* We're dealing with a fragment now. Don't allow fragments
1188 	 * with IP_DF to enter the cache. If the flag was cleared by
1189 	 * no-df above, fine. Otherwise drop it.
1190 	 */
1191 	if (h->ip_off & htons(IP_DF)) {
1192 		DPFPRINTF(("IP_DF\n"));
1193 		goto bad;
1194 	}
1195 
1196 	ip_len = ntohs(h->ip_len) - hlen;
1197 
1198 	/* All fragments are 8 byte aligned */
1199 	if (mff && (ip_len & 0x7)) {
1200 		DPFPRINTF(("mff and %d\n", ip_len));
1201 		goto bad;
1202 	}
1203 
1204 	/* Respect maximum length */
1205 	if (fragoff + ip_len > IP_MAXPACKET) {
1206 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1207 		goto bad;
1208 	}
1209 
1210 	if ((!scrub_compat && V_pf_status.reass) ||
1211 	    (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS))
1212 	) {
1213 		max = fragoff + ip_len;
1214 
1215 		/* Fully buffer all of the fragments
1216 		 * Might return a completely reassembled mbuf, or NULL */
1217 		PF_FRAG_LOCK();
1218 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1219 		verdict = pf_reassemble(&pd->m, pd->dir, reason);
1220 		PF_FRAG_UNLOCK();
1221 
1222 		if (verdict != PF_PASS)
1223 			return (PF_DROP);
1224 
1225 		if (pd->m == NULL)
1226 			return (PF_DROP);
1227 
1228 		h = mtod(pd->m, struct ip *);
1229 		pd->tot_len = htons(h->ip_len);
1230 
1231  no_fragment:
1232 		/* At this point, only IP_DF is allowed in ip_off */
1233 		if (h->ip_off & ~htons(IP_DF)) {
1234 			u_int16_t ip_off = h->ip_off;
1235 
1236 			h->ip_off &= htons(IP_DF);
1237 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1238 		}
1239 	}
1240 
1241 	return (PF_PASS);
1242 
1243  bad:
1244 	DPFPRINTF(("dropping bad fragment\n"));
1245 	REASON_SET(reason, PFRES_FRAG);
1246  drop:
1247 	if (r != NULL && r->log)
1248 		PFLOG_PACKET(PF_DROP, *reason, r, NULL, NULL, pd, 1);
1249 
1250 	return (PF_DROP);
1251 }
1252 #endif
1253 
1254 #ifdef INET6
1255 int
1256 pf_normalize_ip6(int off, u_short *reason,
1257     struct pf_pdesc *pd)
1258 {
1259 	struct pf_krule		*r;
1260 	struct ip6_hdr		*h;
1261 	struct ip6_frag		 frag;
1262 	bool			 scrub_compat;
1263 
1264 	PF_RULES_RASSERT();
1265 
1266 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1267 	/*
1268 	 * Check if there are any scrub rules, matching or not.
1269 	 * Lack of scrub rules means:
1270 	 *  - enforced packet normalization operation just like in OpenBSD
1271 	 * With scrub rules:
1272 	 *  - packet normalization is performed if there is a matching scrub rule
1273 	 * XXX: Fragment reassembly always performed for IPv6!
1274 	 */
1275 	scrub_compat = (r != NULL);
1276 	while (r != NULL) {
1277 		pf_counter_u64_add(&r->evaluations, 1);
1278 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1279 			r = r->skip[PF_SKIP_IFP];
1280 		else if (r->direction && r->direction != pd->dir)
1281 			r = r->skip[PF_SKIP_DIR];
1282 		else if (r->af && r->af != AF_INET6)
1283 			r = r->skip[PF_SKIP_AF];
1284 		else if (r->proto && r->proto != pd->proto)
1285 			r = r->skip[PF_SKIP_PROTO];
1286 		else if (PF_MISMATCHAW(&r->src.addr,
1287 		    (struct pf_addr *)&pd->src, AF_INET6,
1288 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1289 			r = r->skip[PF_SKIP_SRC_ADDR];
1290 		else if (PF_MISMATCHAW(&r->dst.addr,
1291 		    (struct pf_addr *)&pd->dst, AF_INET6,
1292 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1293 			r = r->skip[PF_SKIP_DST_ADDR];
1294 		else
1295 			break;
1296 	}
1297 
1298 	if (scrub_compat) {
1299 		/* With scrub rules present IPv6 normalization happens only
1300 		 * if one of rules has matched and it's not a "no scrub" rule */
1301 		if (r == NULL || r->action == PF_NOSCRUB)
1302 			return (PF_PASS);
1303 
1304 		pf_counter_u64_critical_enter();
1305 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1306 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1307 		pf_counter_u64_critical_exit();
1308 		pf_rule_to_actions(r, &pd->act);
1309 	}
1310 
1311 	if (!pf_pull_hdr(pd->m, off, &frag, sizeof(frag), NULL, reason, AF_INET6))
1312 		return (PF_DROP);
1313 
1314 	/* Offset now points to data portion. */
1315 	off += sizeof(frag);
1316 
1317 	if (pd->virtual_proto == PF_VPROTO_FRAGMENT) {
1318 		/* Returns PF_DROP or *m0 is NULL or completely reassembled
1319 		 * mbuf. */
1320 		if (pf_reassemble6(&pd->m, &frag, off, pd->extoff, reason) != PF_PASS)
1321 			return (PF_DROP);
1322 		if (pd->m == NULL)
1323 			return (PF_DROP);
1324 		h = mtod(pd->m, struct ip6_hdr *);
1325 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
1326 	}
1327 
1328 	return (PF_PASS);
1329 }
1330 #endif /* INET6 */
1331 
1332 int
1333 pf_normalize_tcp(struct pf_pdesc *pd)
1334 {
1335 	struct pf_krule	*r, *rm = NULL;
1336 	struct tcphdr	*th = &pd->hdr.tcp;
1337 	int		 rewrite = 0;
1338 	u_short		 reason;
1339 	u_int16_t	 flags;
1340 	sa_family_t	 af = pd->af;
1341 	int		 srs;
1342 
1343 	PF_RULES_RASSERT();
1344 
1345 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1346 	/* Check if there any scrub rules. Lack of scrub rules means enforced
1347 	 * packet normalization operation just like in OpenBSD. */
1348 	srs = (r != NULL);
1349 	while (r != NULL) {
1350 		pf_counter_u64_add(&r->evaluations, 1);
1351 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1352 			r = r->skip[PF_SKIP_IFP];
1353 		else if (r->direction && r->direction != pd->dir)
1354 			r = r->skip[PF_SKIP_DIR];
1355 		else if (r->af && r->af != af)
1356 			r = r->skip[PF_SKIP_AF];
1357 		else if (r->proto && r->proto != pd->proto)
1358 			r = r->skip[PF_SKIP_PROTO];
1359 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1360 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1361 			r = r->skip[PF_SKIP_SRC_ADDR];
1362 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1363 			    r->src.port[0], r->src.port[1], th->th_sport))
1364 			r = r->skip[PF_SKIP_SRC_PORT];
1365 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1366 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1367 			r = r->skip[PF_SKIP_DST_ADDR];
1368 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1369 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1370 			r = r->skip[PF_SKIP_DST_PORT];
1371 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1372 			    pf_osfp_fingerprint(pd, th),
1373 			    r->os_fingerprint))
1374 			r = TAILQ_NEXT(r, entries);
1375 		else {
1376 			rm = r;
1377 			break;
1378 		}
1379 	}
1380 
1381 	if (srs) {
1382 		/* With scrub rules present TCP normalization happens only
1383 		 * if one of rules has matched and it's not a "no scrub" rule */
1384 		if (rm == NULL || rm->action == PF_NOSCRUB)
1385 			return (PF_PASS);
1386 
1387 		pf_counter_u64_critical_enter();
1388 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1389 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1390 		pf_counter_u64_critical_exit();
1391 		pf_rule_to_actions(rm, &pd->act);
1392 	}
1393 
1394 	if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1395 		pd->flags |= PFDESC_TCP_NORM;
1396 
1397 	flags = tcp_get_flags(th);
1398 	if (flags & TH_SYN) {
1399 		/* Illegal packet */
1400 		if (flags & TH_RST)
1401 			goto tcp_drop;
1402 
1403 		if (flags & TH_FIN)
1404 			goto tcp_drop;
1405 	} else {
1406 		/* Illegal packet */
1407 		if (!(flags & (TH_ACK|TH_RST)))
1408 			goto tcp_drop;
1409 	}
1410 
1411 	if (!(flags & TH_ACK)) {
1412 		/* These flags are only valid if ACK is set */
1413 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1414 			goto tcp_drop;
1415 	}
1416 
1417 	/* Check for illegal header length */
1418 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1419 		goto tcp_drop;
1420 
1421 	/* If flags changed, or reserved data set, then adjust */
1422 	if (flags != tcp_get_flags(th) ||
1423 	    (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) {
1424 		u_int16_t	ov, nv;
1425 
1426 		ov = *(u_int16_t *)(&th->th_ack + 1);
1427 		flags &= ~(TH_RES1 | TH_RES2 | TH_RES3);
1428 		tcp_set_flags(th, flags);
1429 		nv = *(u_int16_t *)(&th->th_ack + 1);
1430 
1431 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, ov, nv, 0);
1432 		rewrite = 1;
1433 	}
1434 
1435 	/* Remove urgent pointer, if TH_URG is not set */
1436 	if (!(flags & TH_URG) && th->th_urp) {
1437 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, th->th_urp,
1438 		    0, 0);
1439 		th->th_urp = 0;
1440 		rewrite = 1;
1441 	}
1442 
1443 	/* copy back packet headers if we sanitized */
1444 	if (rewrite)
1445 		m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1446 
1447 	return (PF_PASS);
1448 
1449  tcp_drop:
1450 	REASON_SET(&reason, PFRES_NORM);
1451 	if (rm != NULL && r->log)
1452 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 1);
1453 	return (PF_DROP);
1454 }
1455 
1456 int
1457 pf_normalize_tcp_init(struct pf_pdesc *pd, struct tcphdr *th,
1458     struct pf_state_peer *src, struct pf_state_peer *dst)
1459 {
1460 	u_int32_t tsval, tsecr;
1461 	u_int8_t hdr[60];
1462 	u_int8_t *opt;
1463 
1464 	KASSERT((src->scrub == NULL),
1465 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1466 
1467 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1468 	if (src->scrub == NULL)
1469 		return (1);
1470 
1471 	switch (pd->af) {
1472 #ifdef INET
1473 	case AF_INET: {
1474 		struct ip *h = mtod(pd->m, struct ip *);
1475 		src->scrub->pfss_ttl = h->ip_ttl;
1476 		break;
1477 	}
1478 #endif /* INET */
1479 #ifdef INET6
1480 	case AF_INET6: {
1481 		struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1482 		src->scrub->pfss_ttl = h->ip6_hlim;
1483 		break;
1484 	}
1485 #endif /* INET6 */
1486 	}
1487 
1488 	/*
1489 	 * All normalizations below are only begun if we see the start of
1490 	 * the connections.  They must all set an enabled bit in pfss_flags
1491 	 */
1492 	if ((tcp_get_flags(th) & TH_SYN) == 0)
1493 		return (0);
1494 
1495 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1496 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1497 		/* Diddle with TCP options */
1498 		int hlen;
1499 		opt = hdr + sizeof(struct tcphdr);
1500 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1501 		while (hlen >= TCPOLEN_TIMESTAMP) {
1502 			switch (*opt) {
1503 			case TCPOPT_EOL:	/* FALLTHROUGH */
1504 			case TCPOPT_NOP:
1505 				opt++;
1506 				hlen--;
1507 				break;
1508 			case TCPOPT_TIMESTAMP:
1509 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1510 					src->scrub->pfss_flags |=
1511 					    PFSS_TIMESTAMP;
1512 					src->scrub->pfss_ts_mod =
1513 					    htonl(arc4random());
1514 
1515 					/* note PFSS_PAWS not set yet */
1516 					memcpy(&tsval, &opt[2],
1517 					    sizeof(u_int32_t));
1518 					memcpy(&tsecr, &opt[6],
1519 					    sizeof(u_int32_t));
1520 					src->scrub->pfss_tsval0 = ntohl(tsval);
1521 					src->scrub->pfss_tsval = ntohl(tsval);
1522 					src->scrub->pfss_tsecr = ntohl(tsecr);
1523 					getmicrouptime(&src->scrub->pfss_last);
1524 				}
1525 				/* FALLTHROUGH */
1526 			default:
1527 				hlen -= MAX(opt[1], 2);
1528 				opt += MAX(opt[1], 2);
1529 				break;
1530 			}
1531 		}
1532 	}
1533 
1534 	return (0);
1535 }
1536 
1537 void
1538 pf_normalize_tcp_cleanup(struct pf_kstate *state)
1539 {
1540 	/* XXX Note: this also cleans up SCTP. */
1541 	uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1542 	uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1543 
1544 	/* Someday... flush the TCP segment reassembly descriptors. */
1545 }
1546 int
1547 pf_normalize_sctp_init(struct pf_pdesc *pd, struct pf_state_peer *src,
1548     struct pf_state_peer *dst)
1549 {
1550 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1551 	if (src->scrub == NULL)
1552 		return (1);
1553 
1554 	dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1555 	if (dst->scrub == NULL) {
1556 		uma_zfree(V_pf_state_scrub_z, src);
1557 		return (1);
1558 	}
1559 
1560 	dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
1561 
1562 	return (0);
1563 }
1564 
1565 int
1566 pf_normalize_tcp_stateful(struct pf_pdesc *pd,
1567     u_short *reason, struct tcphdr *th, struct pf_kstate *state,
1568     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1569 {
1570 	struct timeval uptime;
1571 	u_int32_t tsval, tsecr;
1572 	u_int tsval_from_last;
1573 	u_int8_t hdr[60];
1574 	u_int8_t *opt;
1575 	int copyback = 0;
1576 	int got_ts = 0;
1577 	size_t startoff;
1578 
1579 	KASSERT((src->scrub || dst->scrub),
1580 	    ("%s: src->scrub && dst->scrub!", __func__));
1581 
1582 	/*
1583 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1584 	 * technique to evade an intrusion detection system and confuse
1585 	 * firewall state code.
1586 	 */
1587 	switch (pd->af) {
1588 #ifdef INET
1589 	case AF_INET: {
1590 		if (src->scrub) {
1591 			struct ip *h = mtod(pd->m, struct ip *);
1592 			if (h->ip_ttl > src->scrub->pfss_ttl)
1593 				src->scrub->pfss_ttl = h->ip_ttl;
1594 			h->ip_ttl = src->scrub->pfss_ttl;
1595 		}
1596 		break;
1597 	}
1598 #endif /* INET */
1599 #ifdef INET6
1600 	case AF_INET6: {
1601 		if (src->scrub) {
1602 			struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1603 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1604 				src->scrub->pfss_ttl = h->ip6_hlim;
1605 			h->ip6_hlim = src->scrub->pfss_ttl;
1606 		}
1607 		break;
1608 	}
1609 #endif /* INET6 */
1610 	}
1611 
1612 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1613 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1614 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1615 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1616 		/* Diddle with TCP options */
1617 		int hlen;
1618 		opt = hdr + sizeof(struct tcphdr);
1619 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1620 		while (hlen >= TCPOLEN_TIMESTAMP) {
1621 			startoff = opt - (hdr + sizeof(struct tcphdr));
1622 			switch (*opt) {
1623 			case TCPOPT_EOL:	/* FALLTHROUGH */
1624 			case TCPOPT_NOP:
1625 				opt++;
1626 				hlen--;
1627 				break;
1628 			case TCPOPT_TIMESTAMP:
1629 				/* Modulate the timestamps.  Can be used for
1630 				 * NAT detection, OS uptime determination or
1631 				 * reboot detection.
1632 				 */
1633 
1634 				if (got_ts) {
1635 					/* Huh?  Multiple timestamps!? */
1636 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1637 						DPFPRINTF(("multiple TS??\n"));
1638 						pf_print_state(state);
1639 						printf("\n");
1640 					}
1641 					REASON_SET(reason, PFRES_TS);
1642 					return (PF_DROP);
1643 				}
1644 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1645 					memcpy(&tsval, &opt[2],
1646 					    sizeof(u_int32_t));
1647 					if (tsval && src->scrub &&
1648 					    (src->scrub->pfss_flags &
1649 					    PFSS_TIMESTAMP)) {
1650 						tsval = ntohl(tsval);
1651 						pf_patch_32_unaligned(pd->m,
1652 						    &th->th_sum,
1653 						    &opt[2],
1654 						    htonl(tsval +
1655 						    src->scrub->pfss_ts_mod),
1656 						    PF_ALGNMNT(startoff),
1657 						    0);
1658 						copyback = 1;
1659 					}
1660 
1661 					/* Modulate TS reply iff valid (!0) */
1662 					memcpy(&tsecr, &opt[6],
1663 					    sizeof(u_int32_t));
1664 					if (tsecr && dst->scrub &&
1665 					    (dst->scrub->pfss_flags &
1666 					    PFSS_TIMESTAMP)) {
1667 						tsecr = ntohl(tsecr)
1668 						    - dst->scrub->pfss_ts_mod;
1669 						pf_patch_32_unaligned(pd->m,
1670 						    &th->th_sum,
1671 						    &opt[6],
1672 						    htonl(tsecr),
1673 						    PF_ALGNMNT(startoff),
1674 						    0);
1675 						copyback = 1;
1676 					}
1677 					got_ts = 1;
1678 				}
1679 				/* FALLTHROUGH */
1680 			default:
1681 				hlen -= MAX(opt[1], 2);
1682 				opt += MAX(opt[1], 2);
1683 				break;
1684 			}
1685 		}
1686 		if (copyback) {
1687 			/* Copyback the options, caller copys back header */
1688 			*writeback = 1;
1689 			m_copyback(pd->m, pd->off + sizeof(struct tcphdr),
1690 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1691 			    sizeof(struct tcphdr));
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Must invalidate PAWS checks on connections idle for too long.
1697 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1698 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1699 	 * TS echo check only works for the first 12 days of a connection
1700 	 * when the TS has exhausted half its 32bit space
1701 	 */
1702 #define TS_MAX_IDLE	(24*24*60*60)
1703 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1704 
1705 	getmicrouptime(&uptime);
1706 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1707 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1708 	    time_uptime - (state->creation / 1000) > TS_MAX_CONN))  {
1709 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1710 			DPFPRINTF(("src idled out of PAWS\n"));
1711 			pf_print_state(state);
1712 			printf("\n");
1713 		}
1714 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1715 		    | PFSS_PAWS_IDLED;
1716 	}
1717 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1718 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1719 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1720 			DPFPRINTF(("dst idled out of PAWS\n"));
1721 			pf_print_state(state);
1722 			printf("\n");
1723 		}
1724 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1725 		    | PFSS_PAWS_IDLED;
1726 	}
1727 
1728 	if (got_ts && src->scrub && dst->scrub &&
1729 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1730 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1731 		/* Validate that the timestamps are "in-window".
1732 		 * RFC1323 describes TCP Timestamp options that allow
1733 		 * measurement of RTT (round trip time) and PAWS
1734 		 * (protection against wrapped sequence numbers).  PAWS
1735 		 * gives us a set of rules for rejecting packets on
1736 		 * long fat pipes (packets that were somehow delayed
1737 		 * in transit longer than the time it took to send the
1738 		 * full TCP sequence space of 4Gb).  We can use these
1739 		 * rules and infer a few others that will let us treat
1740 		 * the 32bit timestamp and the 32bit echoed timestamp
1741 		 * as sequence numbers to prevent a blind attacker from
1742 		 * inserting packets into a connection.
1743 		 *
1744 		 * RFC1323 tells us:
1745 		 *  - The timestamp on this packet must be greater than
1746 		 *    or equal to the last value echoed by the other
1747 		 *    endpoint.  The RFC says those will be discarded
1748 		 *    since it is a dup that has already been acked.
1749 		 *    This gives us a lowerbound on the timestamp.
1750 		 *        timestamp >= other last echoed timestamp
1751 		 *  - The timestamp will be less than or equal to
1752 		 *    the last timestamp plus the time between the
1753 		 *    last packet and now.  The RFC defines the max
1754 		 *    clock rate as 1ms.  We will allow clocks to be
1755 		 *    up to 10% fast and will allow a total difference
1756 		 *    or 30 seconds due to a route change.  And this
1757 		 *    gives us an upperbound on the timestamp.
1758 		 *        timestamp <= last timestamp + max ticks
1759 		 *    We have to be careful here.  Windows will send an
1760 		 *    initial timestamp of zero and then initialize it
1761 		 *    to a random value after the 3whs; presumably to
1762 		 *    avoid a DoS by having to call an expensive RNG
1763 		 *    during a SYN flood.  Proof MS has at least one
1764 		 *    good security geek.
1765 		 *
1766 		 *  - The TCP timestamp option must also echo the other
1767 		 *    endpoints timestamp.  The timestamp echoed is the
1768 		 *    one carried on the earliest unacknowledged segment
1769 		 *    on the left edge of the sequence window.  The RFC
1770 		 *    states that the host will reject any echoed
1771 		 *    timestamps that were larger than any ever sent.
1772 		 *    This gives us an upperbound on the TS echo.
1773 		 *        tescr <= largest_tsval
1774 		 *  - The lowerbound on the TS echo is a little more
1775 		 *    tricky to determine.  The other endpoint's echoed
1776 		 *    values will not decrease.  But there may be
1777 		 *    network conditions that re-order packets and
1778 		 *    cause our view of them to decrease.  For now the
1779 		 *    only lowerbound we can safely determine is that
1780 		 *    the TS echo will never be less than the original
1781 		 *    TS.  XXX There is probably a better lowerbound.
1782 		 *    Remove TS_MAX_CONN with better lowerbound check.
1783 		 *        tescr >= other original TS
1784 		 *
1785 		 * It is also important to note that the fastest
1786 		 * timestamp clock of 1ms will wrap its 32bit space in
1787 		 * 24 days.  So we just disable TS checking after 24
1788 		 * days of idle time.  We actually must use a 12d
1789 		 * connection limit until we can come up with a better
1790 		 * lowerbound to the TS echo check.
1791 		 */
1792 		struct timeval delta_ts;
1793 		int ts_fudge;
1794 
1795 		/*
1796 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1797 		 * a host's timestamp.  This can happen if the previous
1798 		 * packet got delayed in transit for much longer than
1799 		 * this packet.
1800 		 */
1801 		if ((ts_fudge = state->rule->timeout[PFTM_TS_DIFF]) == 0)
1802 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1803 
1804 		/* Calculate max ticks since the last timestamp */
1805 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1806 #define TS_MICROSECS	1000000		/* microseconds per second */
1807 		delta_ts = uptime;
1808 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1809 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1810 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1811 
1812 		if ((src->state >= TCPS_ESTABLISHED &&
1813 		    dst->state >= TCPS_ESTABLISHED) &&
1814 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1815 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1816 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1817 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1818 			/* Bad RFC1323 implementation or an insertion attack.
1819 			 *
1820 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1821 			 *   after the FIN,FIN|ACK,ACK closing that carries
1822 			 *   an old timestamp.
1823 			 */
1824 
1825 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1826 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1827 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1828 			    tsval_from_last) ? '1' : ' ',
1829 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1830 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1831 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1832 			    "idle: %jus %lums\n",
1833 			    tsval, tsecr, tsval_from_last,
1834 			    (uintmax_t)delta_ts.tv_sec,
1835 			    delta_ts.tv_usec / 1000));
1836 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1837 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1838 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1839 			    "\n", dst->scrub->pfss_tsval,
1840 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1841 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1842 				pf_print_state(state);
1843 				pf_print_flags(tcp_get_flags(th));
1844 				printf("\n");
1845 			}
1846 			REASON_SET(reason, PFRES_TS);
1847 			return (PF_DROP);
1848 		}
1849 
1850 		/* XXX I'd really like to require tsecr but it's optional */
1851 
1852 	} else if (!got_ts && (tcp_get_flags(th) & TH_RST) == 0 &&
1853 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1854 	    || pd->p_len > 0 || (tcp_get_flags(th) & TH_SYN)) &&
1855 	    src->scrub && dst->scrub &&
1856 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1857 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1858 		/* Didn't send a timestamp.  Timestamps aren't really useful
1859 		 * when:
1860 		 *  - connection opening or closing (often not even sent).
1861 		 *    but we must not let an attacker to put a FIN on a
1862 		 *    data packet to sneak it through our ESTABLISHED check.
1863 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1864 		 *  - on an empty ACK.  The TS will not be echoed so it will
1865 		 *    probably not help keep the RTT calculation in sync and
1866 		 *    there isn't as much danger when the sequence numbers
1867 		 *    got wrapped.  So some stacks don't include TS on empty
1868 		 *    ACKs :-(
1869 		 *
1870 		 * To minimize the disruption to mostly RFC1323 conformant
1871 		 * stacks, we will only require timestamps on data packets.
1872 		 *
1873 		 * And what do ya know, we cannot require timestamps on data
1874 		 * packets.  There appear to be devices that do legitimate
1875 		 * TCP connection hijacking.  There are HTTP devices that allow
1876 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1877 		 * If the intermediate device has the HTTP response cache, it
1878 		 * will spoof the response but not bother timestamping its
1879 		 * packets.  So we can look for the presence of a timestamp in
1880 		 * the first data packet and if there, require it in all future
1881 		 * packets.
1882 		 */
1883 
1884 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1885 			/*
1886 			 * Hey!  Someone tried to sneak a packet in.  Or the
1887 			 * stack changed its RFC1323 behavior?!?!
1888 			 */
1889 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1890 				DPFPRINTF(("Did not receive expected RFC1323 "
1891 				    "timestamp\n"));
1892 				pf_print_state(state);
1893 				pf_print_flags(tcp_get_flags(th));
1894 				printf("\n");
1895 			}
1896 			REASON_SET(reason, PFRES_TS);
1897 			return (PF_DROP);
1898 		}
1899 	}
1900 
1901 	/*
1902 	 * We will note if a host sends his data packets with or without
1903 	 * timestamps.  And require all data packets to contain a timestamp
1904 	 * if the first does.  PAWS implicitly requires that all data packets be
1905 	 * timestamped.  But I think there are middle-man devices that hijack
1906 	 * TCP streams immediately after the 3whs and don't timestamp their
1907 	 * packets (seen in a WWW accelerator or cache).
1908 	 */
1909 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1910 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1911 		if (got_ts)
1912 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1913 		else {
1914 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1915 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1916 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1917 				/* Don't warn if other host rejected RFC1323 */
1918 				DPFPRINTF(("Broken RFC1323 stack did not "
1919 				    "timestamp data packet. Disabled PAWS "
1920 				    "security.\n"));
1921 				pf_print_state(state);
1922 				pf_print_flags(tcp_get_flags(th));
1923 				printf("\n");
1924 			}
1925 		}
1926 	}
1927 
1928 	/*
1929 	 * Update PAWS values
1930 	 */
1931 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1932 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1933 		getmicrouptime(&src->scrub->pfss_last);
1934 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1935 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1936 			src->scrub->pfss_tsval = tsval;
1937 
1938 		if (tsecr) {
1939 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1940 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1941 				src->scrub->pfss_tsecr = tsecr;
1942 
1943 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1944 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1945 			    src->scrub->pfss_tsval0 == 0)) {
1946 				/* tsval0 MUST be the lowest timestamp */
1947 				src->scrub->pfss_tsval0 = tsval;
1948 			}
1949 
1950 			/* Only fully initialized after a TS gets echoed */
1951 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1952 				src->scrub->pfss_flags |= PFSS_PAWS;
1953 		}
1954 	}
1955 
1956 	/* I have a dream....  TCP segment reassembly.... */
1957 	return (0);
1958 }
1959 
1960 int
1961 pf_normalize_mss(struct pf_pdesc *pd)
1962 {
1963 	struct tcphdr	*th = &pd->hdr.tcp;
1964 	u_int16_t	*mss;
1965 	int		 thoff;
1966 	int		 opt, cnt, optlen = 0;
1967 	u_char		 opts[TCP_MAXOLEN];
1968 	u_char		*optp = opts;
1969 	size_t		 startoff;
1970 
1971 	thoff = th->th_off << 2;
1972 	cnt = thoff - sizeof(struct tcphdr);
1973 
1974 	if (cnt > 0 && !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, cnt,
1975 	    NULL, NULL, pd->af))
1976 		return (0);
1977 
1978 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1979 		startoff = optp - opts;
1980 		opt = optp[0];
1981 		if (opt == TCPOPT_EOL)
1982 			break;
1983 		if (opt == TCPOPT_NOP)
1984 			optlen = 1;
1985 		else {
1986 			if (cnt < 2)
1987 				break;
1988 			optlen = optp[1];
1989 			if (optlen < 2 || optlen > cnt)
1990 				break;
1991 		}
1992 		switch (opt) {
1993 		case TCPOPT_MAXSEG:
1994 			mss = (u_int16_t *)(optp + 2);
1995 			if ((ntohs(*mss)) > pd->act.max_mss) {
1996 				pf_patch_16_unaligned(pd->m,
1997 				    &th->th_sum,
1998 				    mss, htons(pd->act.max_mss),
1999 				    PF_ALGNMNT(startoff),
2000 				    0);
2001 				m_copyback(pd->m, pd->off + sizeof(*th),
2002 				    thoff - sizeof(*th), opts);
2003 				m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
2004 			}
2005 			break;
2006 		default:
2007 			break;
2008 		}
2009 	}
2010 
2011 	return (0);
2012 }
2013 
2014 int
2015 pf_scan_sctp(struct pf_pdesc *pd)
2016 {
2017 	struct sctp_chunkhdr ch = { };
2018 	int chunk_off = sizeof(struct sctphdr);
2019 	int chunk_start;
2020 	int ret;
2021 
2022 	while (pd->off + chunk_off < pd->tot_len) {
2023 		if (!pf_pull_hdr(pd->m, pd->off + chunk_off, &ch, sizeof(ch), NULL,
2024 		    NULL, pd->af))
2025 			return (PF_DROP);
2026 
2027 		/* Length includes the header, this must be at least 4. */
2028 		if (ntohs(ch.chunk_length) < 4)
2029 			return (PF_DROP);
2030 
2031 		chunk_start = chunk_off;
2032 		chunk_off += roundup(ntohs(ch.chunk_length), 4);
2033 
2034 		switch (ch.chunk_type) {
2035 		case SCTP_INITIATION:
2036 		case SCTP_INITIATION_ACK: {
2037 			struct sctp_init_chunk init;
2038 
2039 			if (!pf_pull_hdr(pd->m, pd->off + chunk_start, &init,
2040 			    sizeof(init), NULL, NULL, pd->af))
2041 				return (PF_DROP);
2042 
2043 			/*
2044 			 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have
2045 			 * any value except 0."
2046 			 */
2047 			if (init.init.initiate_tag == 0)
2048 				return (PF_DROP);
2049 			if (init.init.num_inbound_streams == 0)
2050 				return (PF_DROP);
2051 			if (init.init.num_outbound_streams == 0)
2052 				return (PF_DROP);
2053 			if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND)
2054 				return (PF_DROP);
2055 
2056 			/*
2057 			 * RFC 9260, Section 3.1, INIT chunks MUST have zero
2058 			 * verification tag.
2059 			 */
2060 			if (ch.chunk_type == SCTP_INITIATION &&
2061 			    pd->hdr.sctp.v_tag != 0)
2062 				return (PF_DROP);
2063 
2064 			pd->sctp_initiate_tag = init.init.initiate_tag;
2065 
2066 			if (ch.chunk_type == SCTP_INITIATION)
2067 				pd->sctp_flags |= PFDESC_SCTP_INIT;
2068 			else
2069 				pd->sctp_flags |= PFDESC_SCTP_INIT_ACK;
2070 
2071 			ret = pf_multihome_scan_init(pd->off + chunk_start,
2072 			    ntohs(init.ch.chunk_length), pd);
2073 			if (ret != PF_PASS)
2074 				return (ret);
2075 
2076 			break;
2077 		}
2078 		case SCTP_ABORT_ASSOCIATION:
2079 			pd->sctp_flags |= PFDESC_SCTP_ABORT;
2080 			break;
2081 		case SCTP_SHUTDOWN:
2082 		case SCTP_SHUTDOWN_ACK:
2083 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN;
2084 			break;
2085 		case SCTP_SHUTDOWN_COMPLETE:
2086 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE;
2087 			break;
2088 		case SCTP_COOKIE_ECHO:
2089 			pd->sctp_flags |= PFDESC_SCTP_COOKIE;
2090 			break;
2091 		case SCTP_COOKIE_ACK:
2092 			pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK;
2093 			break;
2094 		case SCTP_DATA:
2095 			pd->sctp_flags |= PFDESC_SCTP_DATA;
2096 			break;
2097 		case SCTP_HEARTBEAT_REQUEST:
2098 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT;
2099 			break;
2100 		case SCTP_HEARTBEAT_ACK:
2101 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK;
2102 			break;
2103 		case SCTP_ASCONF:
2104 			pd->sctp_flags |= PFDESC_SCTP_ASCONF;
2105 
2106 			ret = pf_multihome_scan_asconf(pd->off + chunk_start,
2107 			    ntohs(ch.chunk_length), pd);
2108 			if (ret != PF_PASS)
2109 				return (ret);
2110 			break;
2111 		default:
2112 			pd->sctp_flags |= PFDESC_SCTP_OTHER;
2113 			break;
2114 		}
2115 	}
2116 
2117 	/* Validate chunk lengths vs. packet length. */
2118 	if (pd->off + chunk_off != pd->tot_len)
2119 		return (PF_DROP);
2120 
2121 	/*
2122 	 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only
2123 	 * one in a packet.
2124 	 */
2125 	if ((pd->sctp_flags & PFDESC_SCTP_INIT) &&
2126 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT))
2127 		return (PF_DROP);
2128 	if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) &&
2129 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK))
2130 		return (PF_DROP);
2131 	if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) &&
2132 	    (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE))
2133 		return (PF_DROP);
2134 	if ((pd->sctp_flags & PFDESC_SCTP_ABORT) &&
2135 	    (pd->sctp_flags & PFDESC_SCTP_DATA)) {
2136 		/*
2137 		 * RFC4960 3.3.7: DATA chunks MUST NOT be
2138 		 * bundled with ABORT.
2139 		 */
2140 		return (PF_DROP);
2141 	}
2142 
2143 	return (PF_PASS);
2144 }
2145 
2146 int
2147 pf_normalize_sctp(struct pf_pdesc *pd)
2148 {
2149 	struct pf_krule	*r, *rm = NULL;
2150 	struct sctphdr	*sh = &pd->hdr.sctp;
2151 	u_short		 reason;
2152 	sa_family_t	 af = pd->af;
2153 	int		 srs;
2154 
2155 	PF_RULES_RASSERT();
2156 
2157 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
2158 	/* Check if there any scrub rules. Lack of scrub rules means enforced
2159 	 * packet normalization operation just like in OpenBSD. */
2160 	srs = (r != NULL);
2161 	while (r != NULL) {
2162 		pf_counter_u64_add(&r->evaluations, 1);
2163 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
2164 			r = r->skip[PF_SKIP_IFP];
2165 		else if (r->direction && r->direction != pd->dir)
2166 			r = r->skip[PF_SKIP_DIR];
2167 		else if (r->af && r->af != af)
2168 			r = r->skip[PF_SKIP_AF];
2169 		else if (r->proto && r->proto != pd->proto)
2170 			r = r->skip[PF_SKIP_PROTO];
2171 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
2172 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
2173 			r = r->skip[PF_SKIP_SRC_ADDR];
2174 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
2175 			    r->src.port[0], r->src.port[1], sh->src_port))
2176 			r = r->skip[PF_SKIP_SRC_PORT];
2177 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
2178 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
2179 			r = r->skip[PF_SKIP_DST_ADDR];
2180 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
2181 			    r->dst.port[0], r->dst.port[1], sh->dest_port))
2182 			r = r->skip[PF_SKIP_DST_PORT];
2183 		else {
2184 			rm = r;
2185 			break;
2186 		}
2187 	}
2188 
2189 	if (srs) {
2190 		/* With scrub rules present SCTP normalization happens only
2191 		 * if one of rules has matched and it's not a "no scrub" rule */
2192 		if (rm == NULL || rm->action == PF_NOSCRUB)
2193 			return (PF_PASS);
2194 
2195 		pf_counter_u64_critical_enter();
2196 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
2197 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
2198 		pf_counter_u64_critical_exit();
2199 	}
2200 
2201 	/* Verify we're a multiple of 4 bytes long */
2202 	if ((pd->tot_len - pd->off - sizeof(struct sctphdr)) % 4)
2203 		goto sctp_drop;
2204 
2205 	/* INIT chunk needs to be the only chunk */
2206 	if (pd->sctp_flags & PFDESC_SCTP_INIT)
2207 		if (pd->sctp_flags & ~PFDESC_SCTP_INIT)
2208 			goto sctp_drop;
2209 
2210 	return (PF_PASS);
2211 
2212 sctp_drop:
2213 	REASON_SET(&reason, PFRES_NORM);
2214 	if (rm != NULL && r->log)
2215 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd,
2216 		    1);
2217 
2218 	return (PF_DROP);
2219 }
2220 
2221 #if defined(INET) || defined(INET6)
2222 void
2223 pf_scrub(struct pf_pdesc *pd)
2224 {
2225 
2226 	struct ip		*h = mtod(pd->m, struct ip *);
2227 #ifdef INET6
2228 	struct ip6_hdr		*h6 = mtod(pd->m, struct ip6_hdr *);
2229 #endif
2230 
2231 	/* Clear IP_DF if no-df was requested */
2232 	if (pd->af == AF_INET && pd->act.flags & PFSTATE_NODF &&
2233 	    h->ip_off & htons(IP_DF))
2234 	{
2235 		u_int16_t ip_off = h->ip_off;
2236 
2237 		h->ip_off &= htons(~IP_DF);
2238 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2239 	}
2240 
2241 	/* Enforce a minimum ttl, may cause endless packet loops */
2242 	if (pd->af == AF_INET && pd->act.min_ttl &&
2243 	    h->ip_ttl < pd->act.min_ttl) {
2244 		u_int16_t ip_ttl = h->ip_ttl;
2245 
2246 		h->ip_ttl = pd->act.min_ttl;
2247 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2248 	}
2249 #ifdef INET6
2250 	/* Enforce a minimum ttl, may cause endless packet loops */
2251 	if (pd->af == AF_INET6 && pd->act.min_ttl &&
2252 	    h6->ip6_hlim < pd->act.min_ttl)
2253 		h6->ip6_hlim = pd->act.min_ttl;
2254 #endif
2255 	/* Enforce tos */
2256 	if (pd->act.flags & PFSTATE_SETTOS) {
2257 		switch (pd->af) {
2258 		case AF_INET: {
2259 			u_int16_t	ov, nv;
2260 
2261 			ov = *(u_int16_t *)h;
2262 			h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK);
2263 			nv = *(u_int16_t *)h;
2264 
2265 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2266 			break;
2267 		}
2268 #ifdef INET6
2269 		case AF_INET6:
2270 			h6->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
2271 			h6->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h6)) << 20);
2272 			break;
2273 #endif
2274 		}
2275 	}
2276 
2277 	/* random-id, but not for fragments */
2278 #ifdef INET
2279 	if (pd->af == AF_INET &&
2280 	    pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2281 		uint16_t ip_id = h->ip_id;
2282 
2283 		ip_fillid(h);
2284 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2285 	}
2286 #endif
2287 }
2288 #endif
2289