xref: /freebsd/sys/netpfil/pf/pf.c (revision 06a6ec55fbd01a372778870cb5039341bdea9e38)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Daniel Hartmeier
5  * Copyright (c) 2002 - 2008 Henning Brauer
6  * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  *    - Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *    - Redistributions in binary form must reproduce the above
16  *      copyright notice, this list of conditions and the following
17  *      disclaimer in the documentation and/or other materials provided
18  *      with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Effort sponsored in part by the Defense Advanced Research Projects
34  * Agency (DARPA) and Air Force Research Laboratory, Air Force
35  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36  *
37  *	$OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46 
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/sdt.h>
61 #include <sys/socket.h>
62 #include <sys/sysctl.h>
63 #include <sys/taskqueue.h>
64 #include <sys/ucred.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_private.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71 #include <net/route.h>
72 #include <net/route/nhop.h>
73 #include <net/vnet.h>
74 
75 #include <net/pfil.h>
76 #include <net/pfvar.h>
77 #include <net/if_pflog.h>
78 #include <net/if_pfsync.h>
79 
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_var.h>
82 #include <netinet/in_fib.h>
83 #include <netinet/ip.h>
84 #include <netinet/ip_fw.h>
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/udp.h>
94 #include <netinet/udp_var.h>
95 
96 /* dummynet */
97 #include <netinet/ip_dummynet.h>
98 #include <netinet/ip_fw.h>
99 #include <netpfil/ipfw/dn_heap.h>
100 #include <netpfil/ipfw/ip_fw_private.h>
101 #include <netpfil/ipfw/ip_dn_private.h>
102 
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet6/in6_fib.h>
110 #include <netinet6/scope6_var.h>
111 #endif /* INET6 */
112 
113 #include <netinet/sctp_header.h>
114 #include <netinet/sctp_crc32.h>
115 
116 #include <machine/in_cksum.h>
117 #include <security/mac/mac_framework.h>
118 
119 #define	DPFPRINTF(n, x)	if (V_pf_status.debug >= (n)) printf x
120 
121 SDT_PROVIDER_DEFINE(pf);
122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
123     "struct pf_kstate *");
124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
125     "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
126     "struct pf_kstate *");
127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
128     "struct pfi_kkif *");
129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
130     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
134     "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
138     "struct pf_krule *", "struct mbuf *", "int");
139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
140     "struct pf_sctp_source *");
141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
142     "struct pf_kstate *", "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
144     "int", "struct pf_pdesc *", "int");
145 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
146 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
147     "int");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
149     "int");
150 
151 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
152     "struct mbuf *");
153 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
154 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
155     "int", "struct pf_keth_rule *", "char *");
156 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
157 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
158     "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
160 
161 /*
162  * Global variables
163  */
164 
165 /* state tables */
166 VNET_DEFINE(struct pf_altqqueue,	 pf_altqs[4]);
167 VNET_DEFINE(struct pf_kpalist,		 pf_pabuf[3]);
168 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_active);
169 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_active);
170 VNET_DEFINE(struct pf_altqqueue *,	 pf_altqs_inactive);
171 VNET_DEFINE(struct pf_altqqueue *,	 pf_altq_ifs_inactive);
172 VNET_DEFINE(struct pf_kstatus,		 pf_status);
173 
174 VNET_DEFINE(u_int32_t,			 ticket_altqs_active);
175 VNET_DEFINE(u_int32_t,			 ticket_altqs_inactive);
176 VNET_DEFINE(int,			 altqs_inactive_open);
177 VNET_DEFINE(u_int32_t,			 ticket_pabuf);
178 
179 VNET_DEFINE(MD5_CTX,			 pf_tcp_secret_ctx);
180 #define	V_pf_tcp_secret_ctx		 VNET(pf_tcp_secret_ctx)
181 VNET_DEFINE(u_char,			 pf_tcp_secret[16]);
182 #define	V_pf_tcp_secret			 VNET(pf_tcp_secret)
183 VNET_DEFINE(int,			 pf_tcp_secret_init);
184 #define	V_pf_tcp_secret_init		 VNET(pf_tcp_secret_init)
185 VNET_DEFINE(int,			 pf_tcp_iss_off);
186 #define	V_pf_tcp_iss_off		 VNET(pf_tcp_iss_off)
187 VNET_DECLARE(int,			 pf_vnet_active);
188 #define	V_pf_vnet_active		 VNET(pf_vnet_active)
189 
190 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
191 #define V_pf_purge_idx	VNET(pf_purge_idx)
192 
193 #ifdef PF_WANT_32_TO_64_COUNTER
194 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
195 #define	V_pf_counter_periodic_iter	VNET(pf_counter_periodic_iter)
196 
197 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
198 VNET_DEFINE(size_t, pf_allrulecount);
199 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
200 #endif
201 
202 struct pf_sctp_endpoint;
203 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
204 struct pf_sctp_source {
205 	sa_family_t			af;
206 	struct pf_addr			addr;
207 	TAILQ_ENTRY(pf_sctp_source)	entry;
208 };
209 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
210 struct pf_sctp_endpoint
211 {
212 	uint32_t		 v_tag;
213 	struct pf_sctp_sources	 sources;
214 	RB_ENTRY(pf_sctp_endpoint)	entry;
215 };
216 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)217 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
218 {
219 	return (a->v_tag - b->v_tag);
220 }
221 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
222 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
223 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
224 #define V_pf_sctp_endpoints	VNET(pf_sctp_endpoints)
225 static struct mtx_padalign pf_sctp_endpoints_mtx;
226 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
227 #define	PF_SCTP_ENDPOINTS_LOCK()	mtx_lock(&pf_sctp_endpoints_mtx)
228 #define	PF_SCTP_ENDPOINTS_UNLOCK()	mtx_unlock(&pf_sctp_endpoints_mtx)
229 
230 /*
231  * Queue for pf_intr() sends.
232  */
233 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
234 struct pf_send_entry {
235 	STAILQ_ENTRY(pf_send_entry)	pfse_next;
236 	struct mbuf			*pfse_m;
237 	enum {
238 		PFSE_IP,
239 		PFSE_IP6,
240 		PFSE_ICMP,
241 		PFSE_ICMP6,
242 	}				pfse_type;
243 	struct {
244 		int		type;
245 		int		code;
246 		int		mtu;
247 	} icmpopts;
248 };
249 
250 STAILQ_HEAD(pf_send_head, pf_send_entry);
251 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
252 #define	V_pf_sendqueue	VNET(pf_sendqueue)
253 
254 static struct mtx_padalign pf_sendqueue_mtx;
255 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
256 #define	PF_SENDQ_LOCK()		mtx_lock(&pf_sendqueue_mtx)
257 #define	PF_SENDQ_UNLOCK()	mtx_unlock(&pf_sendqueue_mtx)
258 
259 /*
260  * Queue for pf_overload_task() tasks.
261  */
262 struct pf_overload_entry {
263 	SLIST_ENTRY(pf_overload_entry)	next;
264 	struct pf_addr  		addr;
265 	sa_family_t			af;
266 	uint8_t				dir;
267 	struct pf_krule  		*rule;
268 };
269 
270 SLIST_HEAD(pf_overload_head, pf_overload_entry);
271 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
272 #define V_pf_overloadqueue	VNET(pf_overloadqueue)
273 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
274 #define	V_pf_overloadtask	VNET(pf_overloadtask)
275 
276 static struct mtx_padalign pf_overloadqueue_mtx;
277 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
278     "pf overload/flush queue", MTX_DEF);
279 #define	PF_OVERLOADQ_LOCK()	mtx_lock(&pf_overloadqueue_mtx)
280 #define	PF_OVERLOADQ_UNLOCK()	mtx_unlock(&pf_overloadqueue_mtx)
281 
282 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
283 struct mtx_padalign pf_unlnkdrules_mtx;
284 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
285     MTX_DEF);
286 
287 struct sx pf_config_lock;
288 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
289 
290 struct mtx_padalign pf_table_stats_lock;
291 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
292     MTX_DEF);
293 
294 VNET_DEFINE_STATIC(uma_zone_t,	pf_sources_z);
295 #define	V_pf_sources_z	VNET(pf_sources_z)
296 uma_zone_t		pf_mtag_z;
297 VNET_DEFINE(uma_zone_t,	 pf_state_z);
298 VNET_DEFINE(uma_zone_t,	 pf_state_key_z);
299 VNET_DEFINE(uma_zone_t,	 pf_udp_mapping_z);
300 
301 VNET_DEFINE(struct unrhdr64, pf_stateid);
302 
303 static void		 pf_src_tree_remove_state(struct pf_kstate *);
304 static void		 pf_init_threshold(struct pf_threshold *, u_int32_t,
305 			    u_int32_t);
306 static void		 pf_add_threshold(struct pf_threshold *);
307 static int		 pf_check_threshold(struct pf_threshold *);
308 
309 static void		 pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
310 			    u_int16_t *, u_int16_t *, struct pf_addr *,
311 			    u_int16_t, u_int8_t, sa_family_t, sa_family_t);
312 static int		 pf_modulate_sack(struct pf_pdesc *,
313 			    struct tcphdr *, struct pf_state_peer *);
314 int			 pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
315 			    int *, u_int16_t *, u_int16_t *);
316 static void		 pf_change_icmp(struct pf_addr *, u_int16_t *,
317 			    struct pf_addr *, struct pf_addr *, u_int16_t,
318 			    u_int16_t *, u_int16_t *, u_int16_t *,
319 			    u_int16_t *, u_int8_t, sa_family_t);
320 int			 pf_change_icmp_af(struct mbuf *, int,
321 			    struct pf_pdesc *, struct pf_pdesc *,
322 			    struct pf_addr *, struct pf_addr *, sa_family_t,
323 			    sa_family_t);
324 int			 pf_translate_icmp_af(int, void *);
325 static void		 pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
326 			    sa_family_t, struct pf_krule *, int);
327 static void		 pf_detach_state(struct pf_kstate *);
328 static int		 pf_state_key_attach(struct pf_state_key *,
329 			    struct pf_state_key *, struct pf_kstate *);
330 static void		 pf_state_key_detach(struct pf_kstate *, int);
331 static int		 pf_state_key_ctor(void *, int, void *, int);
332 static u_int32_t	 pf_tcp_iss(struct pf_pdesc *);
333 static __inline void	 pf_dummynet_flag_remove(struct mbuf *m,
334 			    struct pf_mtag *pf_mtag);
335 static int		 pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
336 			    struct pf_krule *, struct mbuf **);
337 static int		 pf_dummynet_route(struct pf_pdesc *,
338 			    struct pf_kstate *, struct pf_krule *,
339 			    struct ifnet *, struct sockaddr *, struct mbuf **);
340 static int		 pf_test_eth_rule(int, struct pfi_kkif *,
341 			    struct mbuf **);
342 static int		 pf_test_rule(struct pf_krule **, struct pf_kstate **,
343 			    struct pf_pdesc *, struct pf_krule **,
344 			    struct pf_kruleset **, struct inpcb *);
345 static int		 pf_create_state(struct pf_krule *, struct pf_krule *,
346 			    struct pf_krule *, struct pf_pdesc *,
347 			    struct pf_state_key *, struct pf_state_key *, int *,
348 			    struct pf_kstate **, int, u_int16_t, u_int16_t,
349 			    struct pf_krule_slist *, struct pf_udp_mapping *);
350 static int		 pf_state_key_addr_setup(struct pf_pdesc *,
351 			    struct pf_state_key_cmp *, int);
352 static int		 pf_tcp_track_full(struct pf_kstate **,
353 			    struct pf_pdesc *, u_short *, int *);
354 static int		 pf_tcp_track_sloppy(struct pf_kstate **,
355 			    struct pf_pdesc *, u_short *);
356 static int		 pf_test_state_tcp(struct pf_kstate **,
357 			    struct pf_pdesc *, u_short *);
358 static int		 pf_test_state_udp(struct pf_kstate **,
359 			    struct pf_pdesc *);
360 int			 pf_icmp_state_lookup(struct pf_state_key_cmp *,
361 			    struct pf_pdesc *, struct pf_kstate **,
362 			    int, u_int16_t, u_int16_t,
363 			    int, int *, int, int);
364 static int		 pf_test_state_icmp(struct pf_kstate **,
365 			    struct pf_pdesc *, u_short *);
366 static void		 pf_sctp_multihome_detach_addr(const struct pf_kstate *);
367 static void		 pf_sctp_multihome_delayed(struct pf_pdesc *,
368 			    struct pfi_kkif *, struct pf_kstate *, int);
369 static int		 pf_test_state_sctp(struct pf_kstate **,
370 			    struct pf_pdesc *, u_short *);
371 static int		 pf_test_state_other(struct pf_kstate **,
372 			    struct pf_pdesc *);
373 static u_int16_t	 pf_calc_mss(struct pf_addr *, sa_family_t,
374 				int, u_int16_t);
375 static int		 pf_check_proto_cksum(struct mbuf *, int, int,
376 			    u_int8_t, sa_family_t);
377 static int		 pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
378 			    int, int, u_short *);
379 static int		 pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
380 			    u_short *);
381 static void		 pf_print_state_parts(struct pf_kstate *,
382 			    struct pf_state_key *, struct pf_state_key *);
383 static void		 pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
384 			    bool, u_int8_t);
385 static struct pf_kstate	*pf_find_state(struct pfi_kkif *,
386 			    const struct pf_state_key_cmp *, u_int);
387 static bool		 pf_src_connlimit(struct pf_kstate *);
388 static int		 pf_match_rcvif(struct mbuf *, struct pf_krule *);
389 static void		 pf_counters_inc(int, struct pf_pdesc *,
390 			    struct pf_kstate *, struct pf_krule *,
391 			    struct pf_krule *);
392 static void		 pf_overload_task(void *v, int pending);
393 static u_short		 pf_insert_src_node(struct pf_ksrc_node **,
394 			    struct pf_srchash **, struct pf_krule *,
395 			    struct pf_addr *, sa_family_t, struct pf_addr *,
396 			    struct pfi_kkif *);
397 static u_int		 pf_purge_expired_states(u_int, int);
398 static void		 pf_purge_unlinked_rules(void);
399 static int		 pf_mtag_uminit(void *, int, int);
400 static void		 pf_mtag_free(struct m_tag *);
401 static void		 pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *,
402 			    int, struct pf_state_key *);
403 #ifdef INET
404 static void		 pf_route(struct mbuf **, struct pf_krule *,
405 			    struct ifnet *, struct pf_kstate *,
406 			    struct pf_pdesc *, struct inpcb *);
407 #endif /* INET */
408 #ifdef INET6
409 static void		 pf_change_a6(struct pf_addr *, u_int16_t *,
410 			    struct pf_addr *, u_int8_t);
411 static void		 pf_route6(struct mbuf **, struct pf_krule *,
412 			    struct ifnet *, struct pf_kstate *,
413 			    struct pf_pdesc *, struct inpcb *);
414 #endif /* INET6 */
415 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
416 
417 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
418 
419 extern int pf_end_threads;
420 extern struct proc *pf_purge_proc;
421 
422 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
423 
424 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK };
425 
426 #define	PACKET_UNDO_NAT(_m, _pd, _off, _s)		\
427 	do {								\
428 		struct pf_state_key *nk;				\
429 		if ((pd->dir) == PF_OUT)					\
430 			nk = (_s)->key[PF_SK_STACK];			\
431 		else							\
432 			nk = (_s)->key[PF_SK_WIRE];			\
433 		pf_packet_rework_nat(_m, _pd, _off, nk);		\
434 	} while (0)
435 
436 #define	PACKET_LOOPED(pd)	((pd)->pf_mtag &&			\
437 				 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
438 
439 #define	STATE_LOOKUP(k, s, pd)						\
440 	do {								\
441 		(s) = pf_find_state((pd->kif), (k), (pd->dir));		\
442 		SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s));	\
443 		if ((s) == NULL)					\
444 			return (PF_DROP);				\
445 		if (PACKET_LOOPED(pd))					\
446 			return (PF_PASS);				\
447 	} while (0)
448 
449 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)450 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
451 {
452 	struct pfi_kkif *k = pd->kif;
453 
454 	SDT_PROBE2(pf, ip, , bound_iface, st, k);
455 
456 	/* Floating unless otherwise specified. */
457 	if (! (st->rule->rule_flag & PFRULE_IFBOUND))
458 		return (V_pfi_all);
459 
460 	/*
461 	 * Initially set to all, because we don't know what interface we'll be
462 	 * sending this out when we create the state.
463 	 */
464 	if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf))
465 		return (V_pfi_all);
466 
467 	/*
468 	 * If this state is created based on another state (e.g. SCTP
469 	 * multihome) always set it floating initially. We can't know for sure
470 	 * what interface the actual traffic for this state will come in on.
471 	 */
472 	if (pd->related_rule)
473 		return (V_pfi_all);
474 
475 	/* Don't overrule the interface for states created on incoming packets. */
476 	if (st->direction == PF_IN)
477 		return (k);
478 
479 	/* No route-to, so don't overrule. */
480 	if (st->act.rt != PF_ROUTETO)
481 		return (k);
482 
483 	/* Bind to the route-to interface. */
484 	return (st->act.rt_kif);
485 }
486 
487 #define	STATE_INC_COUNTERS(s)						\
488 	do {								\
489 		struct pf_krule_item *mrm;				\
490 		counter_u64_add(s->rule->states_cur, 1);		\
491 		counter_u64_add(s->rule->states_tot, 1);		\
492 		if (s->anchor != NULL) {				\
493 			counter_u64_add(s->anchor->states_cur, 1);	\
494 			counter_u64_add(s->anchor->states_tot, 1);	\
495 		}							\
496 		if (s->nat_rule != NULL) {				\
497 			counter_u64_add(s->nat_rule->states_cur, 1);\
498 			counter_u64_add(s->nat_rule->states_tot, 1);\
499 		}							\
500 		SLIST_FOREACH(mrm, &s->match_rules, entry) {		\
501 			counter_u64_add(mrm->r->states_cur, 1);		\
502 			counter_u64_add(mrm->r->states_tot, 1);		\
503 		}							\
504 	} while (0)
505 
506 #define	STATE_DEC_COUNTERS(s)						\
507 	do {								\
508 		struct pf_krule_item *mrm;				\
509 		if (s->nat_rule != NULL)				\
510 			counter_u64_add(s->nat_rule->states_cur, -1);\
511 		if (s->anchor != NULL)				\
512 			counter_u64_add(s->anchor->states_cur, -1);	\
513 		counter_u64_add(s->rule->states_cur, -1);		\
514 		SLIST_FOREACH(mrm, &s->match_rules, entry)		\
515 			counter_u64_add(mrm->r->states_cur, -1);	\
516 	} while (0)
517 
518 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
519 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
520 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
521 VNET_DEFINE(struct pf_idhash *, pf_idhash);
522 VNET_DEFINE(struct pf_srchash *, pf_srchash);
523 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
524 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
525 
526 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
527     "pf(4)");
528 
529 VNET_DEFINE(u_long, pf_hashmask);
530 VNET_DEFINE(u_long, pf_srchashmask);
531 VNET_DEFINE(u_long, pf_udpendpointhashmask);
532 VNET_DEFINE_STATIC(u_long, pf_hashsize);
533 #define V_pf_hashsize	VNET(pf_hashsize)
534 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
535 #define V_pf_srchashsize	VNET(pf_srchashsize)
536 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
537 #define V_pf_udpendpointhashsize	VNET(pf_udpendpointhashsize)
538 u_long	pf_ioctl_maxcount = 65535;
539 
540 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
541     &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
542 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
543     &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
544 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
545     &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
546 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
547     &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
548 
549 VNET_DEFINE(void *, pf_swi_cookie);
550 VNET_DEFINE(struct intr_event *, pf_swi_ie);
551 
552 VNET_DEFINE(uint32_t, pf_hashseed);
553 #define	V_pf_hashseed	VNET(pf_hashseed)
554 
555 static void
pf_sctp_checksum(struct mbuf * m,int off)556 pf_sctp_checksum(struct mbuf *m, int off)
557 {
558 	uint32_t sum = 0;
559 
560 	/* Zero out the checksum, to enable recalculation. */
561 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
562 	    sizeof(sum), (caddr_t)&sum);
563 
564 	sum = sctp_calculate_cksum(m, off);
565 
566 	m_copyback(m, off + offsetof(struct sctphdr, checksum),
567 	    sizeof(sum), (caddr_t)&sum);
568 }
569 
570 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)571 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
572 {
573 
574 	switch (af) {
575 #ifdef INET
576 	case AF_INET:
577 		if (a->addr32[0] > b->addr32[0])
578 			return (1);
579 		if (a->addr32[0] < b->addr32[0])
580 			return (-1);
581 		break;
582 #endif /* INET */
583 #ifdef INET6
584 	case AF_INET6:
585 		if (a->addr32[3] > b->addr32[3])
586 			return (1);
587 		if (a->addr32[3] < b->addr32[3])
588 			return (-1);
589 		if (a->addr32[2] > b->addr32[2])
590 			return (1);
591 		if (a->addr32[2] < b->addr32[2])
592 			return (-1);
593 		if (a->addr32[1] > b->addr32[1])
594 			return (1);
595 		if (a->addr32[1] < b->addr32[1])
596 			return (-1);
597 		if (a->addr32[0] > b->addr32[0])
598 			return (1);
599 		if (a->addr32[0] < b->addr32[0])
600 			return (-1);
601 		break;
602 #endif /* INET6 */
603 	}
604 	return (0);
605 }
606 
607 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)608 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
609 {
610 	switch (af) {
611 #ifdef INET
612 	case AF_INET:
613 		return IN_LOOPBACK(ntohl(addr->v4.s_addr));
614 #endif
615 	case AF_INET6:
616 		return IN6_IS_ADDR_LOOPBACK(&addr->v6);
617 	default:
618 		panic("Unknown af %d", af);
619 	}
620 }
621 
622 static void
pf_packet_rework_nat(struct mbuf * m,struct pf_pdesc * pd,int off,struct pf_state_key * nk)623 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off,
624 	struct pf_state_key *nk)
625 {
626 
627 	switch (pd->proto) {
628 	case IPPROTO_TCP: {
629 		struct tcphdr *th = &pd->hdr.tcp;
630 
631 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
632 			pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum,
633 			    &th->th_sum, &nk->addr[pd->sidx],
634 			    nk->port[pd->sidx], 0, pd->af, pd->naf);
635 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
636 			pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum,
637 			    &th->th_sum, &nk->addr[pd->didx],
638 			    nk->port[pd->didx], 0, pd->af, pd->naf);
639 		m_copyback(m, off, sizeof(*th), (caddr_t)th);
640 		break;
641 	}
642 	case IPPROTO_UDP: {
643 		struct udphdr *uh = &pd->hdr.udp;
644 
645 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
646 			pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
647 			    &uh->uh_sum, &nk->addr[pd->sidx],
648 			    nk->port[pd->sidx], 1, pd->af, pd->naf);
649 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
650 			pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
651 			    &uh->uh_sum, &nk->addr[pd->didx],
652 			    nk->port[pd->didx], 1, pd->af, pd->naf);
653 		m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
654 		break;
655 	}
656 	case IPPROTO_SCTP: {
657 		struct sctphdr *sh = &pd->hdr.sctp;
658 		uint16_t checksum = 0;
659 
660 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
661 			pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum,
662 			    &checksum, &nk->addr[pd->sidx],
663 			    nk->port[pd->sidx], 1, pd->af, pd->naf);
664 		}
665 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
666 			pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum,
667 			    &checksum, &nk->addr[pd->didx],
668 			    nk->port[pd->didx], 1, pd->af, pd->naf);
669 		}
670 
671 		break;
672 	}
673 	case IPPROTO_ICMP: {
674 		struct icmp *ih = &pd->hdr.icmp;
675 
676 		if (nk->port[pd->sidx] != ih->icmp_id) {
677 			pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
678 			    ih->icmp_cksum, ih->icmp_id,
679 			    nk->port[pd->sidx], 0);
680 			ih->icmp_id = nk->port[pd->sidx];
681 			pd->sport = &ih->icmp_id;
682 
683 			m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih);
684 		}
685 		/* FALLTHROUGH */
686 	}
687 	default:
688 		if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
689 			switch (pd->af) {
690 			case AF_INET:
691 				pf_change_a(&pd->src->v4.s_addr,
692 				    pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
693 				    0);
694 				break;
695 			case AF_INET6:
696 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
697 				break;
698 			}
699 		}
700 		if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
701 			switch (pd->af) {
702 			case AF_INET:
703 				pf_change_a(&pd->dst->v4.s_addr,
704 				    pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
705 				    0);
706 				break;
707 			case AF_INET6:
708 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
709 				break;
710 			}
711 		}
712 		break;
713 	}
714 }
715 
716 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)717 pf_hashkey(const struct pf_state_key *sk)
718 {
719 	uint32_t h;
720 
721 	h = murmur3_32_hash32((const uint32_t *)sk,
722 	    sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
723 	    V_pf_hashseed);
724 
725 	return (h & V_pf_hashmask);
726 }
727 
728 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)729 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
730 {
731 	uint32_t h;
732 
733 	switch (af) {
734 	case AF_INET:
735 		h = murmur3_32_hash32((uint32_t *)&addr->v4,
736 		    sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
737 		break;
738 	case AF_INET6:
739 		h = murmur3_32_hash32((uint32_t *)&addr->v6,
740 		    sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
741 		break;
742 	}
743 
744 	return (h & V_pf_srchashmask);
745 }
746 
747 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)748 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
749 {
750 	uint32_t h;
751 
752 	h = murmur3_32_hash32((uint32_t *)endpoint,
753 	    sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
754 	    V_pf_hashseed);
755 	return (h & V_pf_udpendpointhashmask);
756 }
757 
758 #ifdef ALTQ
759 static int
pf_state_hash(struct pf_kstate * s)760 pf_state_hash(struct pf_kstate *s)
761 {
762 	u_int32_t hv = (intptr_t)s / sizeof(*s);
763 
764 	hv ^= crc32(&s->src, sizeof(s->src));
765 	hv ^= crc32(&s->dst, sizeof(s->dst));
766 	if (hv == 0)
767 		hv = 1;
768 	return (hv);
769 }
770 #endif
771 
772 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)773 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
774 {
775 	if (which == PF_PEER_DST || which == PF_PEER_BOTH)
776 		s->dst.state = newstate;
777 	if (which == PF_PEER_DST)
778 		return;
779 	if (s->src.state == newstate)
780 		return;
781 	if (s->creatorid == V_pf_status.hostid &&
782 	    s->key[PF_SK_STACK] != NULL &&
783 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
784 	    !(TCPS_HAVEESTABLISHED(s->src.state) ||
785 	    s->src.state == TCPS_CLOSED) &&
786 	    (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
787 		atomic_add_32(&V_pf_status.states_halfopen, -1);
788 
789 	s->src.state = newstate;
790 }
791 
792 #ifdef INET6
793 void
pf_addrcpy(struct pf_addr * dst,const struct pf_addr * src,sa_family_t af)794 pf_addrcpy(struct pf_addr *dst, const struct pf_addr *src, sa_family_t af)
795 {
796 	switch (af) {
797 #ifdef INET
798 	case AF_INET:
799 		memcpy(&dst->v4, &src->v4, sizeof(dst->v4));
800 		break;
801 #endif /* INET */
802 	case AF_INET6:
803 		memcpy(&dst->v6, &src->v6, sizeof(dst->v6));
804 		break;
805 	}
806 }
807 #endif /* INET6 */
808 
809 static void
pf_init_threshold(struct pf_threshold * threshold,u_int32_t limit,u_int32_t seconds)810 pf_init_threshold(struct pf_threshold *threshold,
811     u_int32_t limit, u_int32_t seconds)
812 {
813 	threshold->limit = limit * PF_THRESHOLD_MULT;
814 	threshold->seconds = seconds;
815 	threshold->count = 0;
816 	threshold->last = time_uptime;
817 }
818 
819 static void
pf_add_threshold(struct pf_threshold * threshold)820 pf_add_threshold(struct pf_threshold *threshold)
821 {
822 	u_int32_t t = time_uptime, diff = t - threshold->last;
823 
824 	if (diff >= threshold->seconds)
825 		threshold->count = 0;
826 	else
827 		threshold->count -= threshold->count * diff /
828 		    threshold->seconds;
829 	threshold->count += PF_THRESHOLD_MULT;
830 	threshold->last = t;
831 }
832 
833 static int
pf_check_threshold(struct pf_threshold * threshold)834 pf_check_threshold(struct pf_threshold *threshold)
835 {
836 	return (threshold->count > threshold->limit);
837 }
838 
839 static bool
pf_src_connlimit(struct pf_kstate * state)840 pf_src_connlimit(struct pf_kstate *state)
841 {
842 	struct pf_overload_entry *pfoe;
843 	bool limited = false;
844 
845 	PF_STATE_LOCK_ASSERT(state);
846 	PF_SRC_NODE_LOCK(state->src_node);
847 
848 	state->src_node->conn++;
849 	state->src.tcp_est = 1;
850 	pf_add_threshold(&state->src_node->conn_rate);
851 
852 	if (state->rule->max_src_conn &&
853 	    state->rule->max_src_conn <
854 	    state->src_node->conn) {
855 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
856 		limited = true;
857 	}
858 
859 	if (state->rule->max_src_conn_rate.limit &&
860 	    pf_check_threshold(&state->src_node->conn_rate)) {
861 		counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
862 		limited = true;
863 	}
864 
865 	if (!limited)
866 		goto done;
867 
868 	/* Kill this state. */
869 	state->timeout = PFTM_PURGE;
870 	pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
871 
872 	if (state->rule->overload_tbl == NULL)
873 		goto done;
874 
875 	/* Schedule overloading and flushing task. */
876 	pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
877 	if (pfoe == NULL)
878 		goto done;  /* too bad :( */
879 
880 	bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
881 	pfoe->af = state->key[PF_SK_WIRE]->af;
882 	pfoe->rule = state->rule;
883 	pfoe->dir = state->direction;
884 	PF_OVERLOADQ_LOCK();
885 	SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
886 	PF_OVERLOADQ_UNLOCK();
887 	taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
888 
889 done:
890 	PF_SRC_NODE_UNLOCK(state->src_node);
891 	return (limited);
892 }
893 
894 static void
pf_overload_task(void * v,int pending)895 pf_overload_task(void *v, int pending)
896 {
897 	struct pf_overload_head queue;
898 	struct pfr_addr p;
899 	struct pf_overload_entry *pfoe, *pfoe1;
900 	uint32_t killed = 0;
901 
902 	CURVNET_SET((struct vnet *)v);
903 
904 	PF_OVERLOADQ_LOCK();
905 	queue = V_pf_overloadqueue;
906 	SLIST_INIT(&V_pf_overloadqueue);
907 	PF_OVERLOADQ_UNLOCK();
908 
909 	bzero(&p, sizeof(p));
910 	SLIST_FOREACH(pfoe, &queue, next) {
911 		counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
912 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
913 			printf("%s: blocking address ", __func__);
914 			pf_print_host(&pfoe->addr, 0, pfoe->af);
915 			printf("\n");
916 		}
917 
918 		p.pfra_af = pfoe->af;
919 		switch (pfoe->af) {
920 #ifdef INET
921 		case AF_INET:
922 			p.pfra_net = 32;
923 			p.pfra_ip4addr = pfoe->addr.v4;
924 			break;
925 #endif
926 #ifdef INET6
927 		case AF_INET6:
928 			p.pfra_net = 128;
929 			p.pfra_ip6addr = pfoe->addr.v6;
930 			break;
931 #endif
932 		}
933 
934 		PF_RULES_WLOCK();
935 		pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
936 		PF_RULES_WUNLOCK();
937 	}
938 
939 	/*
940 	 * Remove those entries, that don't need flushing.
941 	 */
942 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
943 		if (pfoe->rule->flush == 0) {
944 			SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
945 			free(pfoe, M_PFTEMP);
946 		} else
947 			counter_u64_add(
948 			    V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
949 
950 	/* If nothing to flush, return. */
951 	if (SLIST_EMPTY(&queue)) {
952 		CURVNET_RESTORE();
953 		return;
954 	}
955 
956 	for (int i = 0; i <= V_pf_hashmask; i++) {
957 		struct pf_idhash *ih = &V_pf_idhash[i];
958 		struct pf_state_key *sk;
959 		struct pf_kstate *s;
960 
961 		PF_HASHROW_LOCK(ih);
962 		LIST_FOREACH(s, &ih->states, entry) {
963 		    sk = s->key[PF_SK_WIRE];
964 		    SLIST_FOREACH(pfoe, &queue, next)
965 			if (sk->af == pfoe->af &&
966 			    ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
967 			    pfoe->rule == s->rule) &&
968 			    ((pfoe->dir == PF_OUT &&
969 			    PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
970 			    (pfoe->dir == PF_IN &&
971 			    PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
972 				s->timeout = PFTM_PURGE;
973 				pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
974 				killed++;
975 			}
976 		}
977 		PF_HASHROW_UNLOCK(ih);
978 	}
979 	SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
980 		free(pfoe, M_PFTEMP);
981 	if (V_pf_status.debug >= PF_DEBUG_MISC)
982 		printf("%s: %u states killed", __func__, killed);
983 
984 	CURVNET_RESTORE();
985 }
986 
987 /*
988  * On node found always returns locked. On not found its configurable.
989  */
990 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,bool returnlocked)991 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
992 	struct pf_srchash **sh, bool returnlocked)
993 {
994 	struct pf_ksrc_node *n;
995 
996 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
997 
998 	*sh = &V_pf_srchash[pf_hashsrc(src, af)];
999 	PF_HASHROW_LOCK(*sh);
1000 	LIST_FOREACH(n, &(*sh)->nodes, entry)
1001 		if (n->rule == rule && n->af == af &&
1002 		    ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
1003 		    (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
1004 			break;
1005 
1006 	if (n == NULL && !returnlocked)
1007 		PF_HASHROW_UNLOCK(*sh);
1008 
1009 	return (n);
1010 }
1011 
1012 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)1013 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
1014 {
1015 	struct pf_ksrc_node	*cur;
1016 
1017 	if ((*sn) == NULL)
1018 		return (false);
1019 
1020 	KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
1021 
1022 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
1023 	PF_HASHROW_LOCK(sh);
1024 	LIST_FOREACH(cur, &(sh->nodes), entry) {
1025 		if (cur == (*sn) &&
1026 		    cur->expire != 1) /* Ignore nodes being killed */
1027 			return (true);
1028 	}
1029 	PF_HASHROW_UNLOCK(sh);
1030 	(*sn) = NULL;
1031 	return (false);
1032 }
1033 
1034 static void
pf_free_src_node(struct pf_ksrc_node * sn)1035 pf_free_src_node(struct pf_ksrc_node *sn)
1036 {
1037 
1038 	for (int i = 0; i < 2; i++) {
1039 		counter_u64_free(sn->bytes[i]);
1040 		counter_u64_free(sn->packets[i]);
1041 	}
1042 	uma_zfree(V_pf_sources_z, sn);
1043 }
1044 
1045 static u_short
pf_insert_src_node(struct pf_ksrc_node ** sn,struct pf_srchash ** sh,struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif)1046 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh,
1047     struct pf_krule *rule, struct pf_addr *src, sa_family_t af,
1048     struct pf_addr *raddr, struct pfi_kkif *rkif)
1049 {
1050 	u_short			 reason = 0;
1051 
1052 	KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
1053 	    rule->rdr.opts & PF_POOL_STICKYADDR),
1054 	    ("%s for non-tracking rule %p", __func__, rule));
1055 
1056 	/*
1057 	 * Request the sh to always be locked, as we might insert a new sn.
1058 	 */
1059 	if (*sn == NULL)
1060 		*sn = pf_find_src_node(src, rule, af, sh, true);
1061 
1062 	if (*sn == NULL) {
1063 		PF_HASHROW_ASSERT(*sh);
1064 
1065 		if (rule->max_src_nodes &&
1066 		    counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) {
1067 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1068 			reason = PFRES_SRCLIMIT;
1069 			goto done;
1070 		}
1071 
1072 		(*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1073 		if ((*sn) == NULL) {
1074 			reason = PFRES_MEMORY;
1075 			goto done;
1076 		}
1077 
1078 		for (int i = 0; i < 2; i++) {
1079 			(*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1080 			(*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1081 
1082 			if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1083 				pf_free_src_node(*sn);
1084 				reason = PFRES_MEMORY;
1085 				goto done;
1086 			}
1087 		}
1088 
1089 		pf_init_threshold(&(*sn)->conn_rate,
1090 		    rule->max_src_conn_rate.limit,
1091 		    rule->max_src_conn_rate.seconds);
1092 
1093 		MPASS((*sn)->lock == NULL);
1094 		(*sn)->lock = &(*sh)->lock;
1095 
1096 		(*sn)->af = af;
1097 		(*sn)->rule = rule;
1098 		PF_ACPY(&(*sn)->addr, src, af);
1099 		PF_ACPY(&(*sn)->raddr, raddr, af);
1100 		(*sn)->rkif = rkif;
1101 		LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1102 		(*sn)->creation = time_uptime;
1103 		(*sn)->ruletype = rule->action;
1104 		if ((*sn)->rule != NULL)
1105 			counter_u64_add((*sn)->rule->src_nodes, 1);
1106 		counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1107 	} else {
1108 		if (rule->max_src_states &&
1109 		    (*sn)->states >= rule->max_src_states) {
1110 			counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1111 			    1);
1112 			reason = PFRES_SRCLIMIT;
1113 			goto done;
1114 		}
1115 	}
1116 done:
1117 	if (reason == 0)
1118 		(*sn)->states++;
1119 	else
1120 		(*sn) = NULL;
1121 
1122 	PF_HASHROW_UNLOCK(*sh);
1123 	return (reason);
1124 }
1125 
1126 void
pf_unlink_src_node(struct pf_ksrc_node * src)1127 pf_unlink_src_node(struct pf_ksrc_node *src)
1128 {
1129 	PF_SRC_NODE_LOCK_ASSERT(src);
1130 
1131 	LIST_REMOVE(src, entry);
1132 	if (src->rule)
1133 		counter_u64_add(src->rule->src_nodes, -1);
1134 }
1135 
1136 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1137 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1138 {
1139 	struct pf_ksrc_node *sn, *tmp;
1140 	u_int count = 0;
1141 
1142 	LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1143 		pf_free_src_node(sn);
1144 		count++;
1145 	}
1146 
1147 	counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1148 
1149 	return (count);
1150 }
1151 
1152 void
pf_mtag_initialize(void)1153 pf_mtag_initialize(void)
1154 {
1155 
1156 	pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1157 	    sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1158 	    UMA_ALIGN_PTR, 0);
1159 }
1160 
1161 /* Per-vnet data storage structures initialization. */
1162 void
pf_initialize(void)1163 pf_initialize(void)
1164 {
1165 	struct pf_keyhash	*kh;
1166 	struct pf_idhash	*ih;
1167 	struct pf_srchash	*sh;
1168 	struct pf_udpendpointhash	*uh;
1169 	u_int i;
1170 
1171 	if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1172 		V_pf_hashsize = PF_HASHSIZ;
1173 	if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1174 		V_pf_srchashsize = PF_SRCHASHSIZ;
1175 	if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1176 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1177 
1178 	V_pf_hashseed = arc4random();
1179 
1180 	/* States and state keys storage. */
1181 	V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1182 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1183 	V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1184 	uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1185 	uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1186 
1187 	V_pf_state_key_z = uma_zcreate("pf state keys",
1188 	    sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1189 	    UMA_ALIGN_PTR, 0);
1190 
1191 	V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1192 	    M_PFHASH, M_NOWAIT | M_ZERO);
1193 	V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1194 	    M_PFHASH, M_NOWAIT | M_ZERO);
1195 	if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1196 		printf("pf: Unable to allocate memory for "
1197 		    "state_hashsize %lu.\n", V_pf_hashsize);
1198 
1199 		free(V_pf_keyhash, M_PFHASH);
1200 		free(V_pf_idhash, M_PFHASH);
1201 
1202 		V_pf_hashsize = PF_HASHSIZ;
1203 		V_pf_keyhash = mallocarray(V_pf_hashsize,
1204 		    sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1205 		V_pf_idhash = mallocarray(V_pf_hashsize,
1206 		    sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1207 	}
1208 
1209 	V_pf_hashmask = V_pf_hashsize - 1;
1210 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1211 	    i++, kh++, ih++) {
1212 		mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1213 		mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1214 	}
1215 
1216 	/* Source nodes. */
1217 	V_pf_sources_z = uma_zcreate("pf source nodes",
1218 	    sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1219 	    0);
1220 	V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1221 	uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1222 	uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1223 
1224 	V_pf_srchash = mallocarray(V_pf_srchashsize,
1225 	    sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1226 	if (V_pf_srchash == NULL) {
1227 		printf("pf: Unable to allocate memory for "
1228 		    "source_hashsize %lu.\n", V_pf_srchashsize);
1229 
1230 		V_pf_srchashsize = PF_SRCHASHSIZ;
1231 		V_pf_srchash = mallocarray(V_pf_srchashsize,
1232 		    sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1233 	}
1234 
1235 	V_pf_srchashmask = V_pf_srchashsize - 1;
1236 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1237 		mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1238 
1239 
1240 	/* UDP endpoint mappings. */
1241 	V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1242 	    sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1243 	    UMA_ALIGN_PTR, 0);
1244 	V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1245 	    sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1246 	if (V_pf_udpendpointhash == NULL) {
1247 		printf("pf: Unable to allocate memory for "
1248 		    "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1249 
1250 		V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1251 		V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1252 		    sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1253 	}
1254 
1255 	V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1256 	for (i = 0, uh = V_pf_udpendpointhash;
1257 	    i <= V_pf_udpendpointhashmask;
1258 	    i++, uh++) {
1259 		mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1260 		    MTX_DEF | MTX_DUPOK);
1261 	}
1262 
1263 	/* ALTQ */
1264 	TAILQ_INIT(&V_pf_altqs[0]);
1265 	TAILQ_INIT(&V_pf_altqs[1]);
1266 	TAILQ_INIT(&V_pf_altqs[2]);
1267 	TAILQ_INIT(&V_pf_altqs[3]);
1268 	TAILQ_INIT(&V_pf_pabuf[0]);
1269 	TAILQ_INIT(&V_pf_pabuf[1]);
1270 	TAILQ_INIT(&V_pf_pabuf[2]);
1271 	V_pf_altqs_active = &V_pf_altqs[0];
1272 	V_pf_altq_ifs_active = &V_pf_altqs[1];
1273 	V_pf_altqs_inactive = &V_pf_altqs[2];
1274 	V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1275 
1276 	/* Send & overload+flush queues. */
1277 	STAILQ_INIT(&V_pf_sendqueue);
1278 	SLIST_INIT(&V_pf_overloadqueue);
1279 	TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1280 
1281 	/* Unlinked, but may be referenced rules. */
1282 	TAILQ_INIT(&V_pf_unlinked_rules);
1283 }
1284 
1285 void
pf_mtag_cleanup(void)1286 pf_mtag_cleanup(void)
1287 {
1288 
1289 	uma_zdestroy(pf_mtag_z);
1290 }
1291 
1292 void
pf_cleanup(void)1293 pf_cleanup(void)
1294 {
1295 	struct pf_keyhash	*kh;
1296 	struct pf_idhash	*ih;
1297 	struct pf_srchash	*sh;
1298 	struct pf_udpendpointhash	*uh;
1299 	struct pf_send_entry	*pfse, *next;
1300 	u_int i;
1301 
1302 	for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1303 	    i <= V_pf_hashmask;
1304 	    i++, kh++, ih++) {
1305 		KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1306 		    __func__));
1307 		KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1308 		    __func__));
1309 		mtx_destroy(&kh->lock);
1310 		mtx_destroy(&ih->lock);
1311 	}
1312 	free(V_pf_keyhash, M_PFHASH);
1313 	free(V_pf_idhash, M_PFHASH);
1314 
1315 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1316 		KASSERT(LIST_EMPTY(&sh->nodes),
1317 		    ("%s: source node hash not empty", __func__));
1318 		mtx_destroy(&sh->lock);
1319 	}
1320 	free(V_pf_srchash, M_PFHASH);
1321 
1322 	for (i = 0, uh = V_pf_udpendpointhash;
1323 	    i <= V_pf_udpendpointhashmask;
1324 	    i++, uh++) {
1325 		KASSERT(LIST_EMPTY(&uh->endpoints),
1326 		    ("%s: udp endpoint hash not empty", __func__));
1327 		mtx_destroy(&uh->lock);
1328 	}
1329 	free(V_pf_udpendpointhash, M_PFHASH);
1330 
1331 	STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1332 		m_freem(pfse->pfse_m);
1333 		free(pfse, M_PFTEMP);
1334 	}
1335 	MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1336 
1337 	uma_zdestroy(V_pf_sources_z);
1338 	uma_zdestroy(V_pf_state_z);
1339 	uma_zdestroy(V_pf_state_key_z);
1340 	uma_zdestroy(V_pf_udp_mapping_z);
1341 }
1342 
1343 static int
pf_mtag_uminit(void * mem,int size,int how)1344 pf_mtag_uminit(void *mem, int size, int how)
1345 {
1346 	struct m_tag *t;
1347 
1348 	t = (struct m_tag *)mem;
1349 	t->m_tag_cookie = MTAG_ABI_COMPAT;
1350 	t->m_tag_id = PACKET_TAG_PF;
1351 	t->m_tag_len = sizeof(struct pf_mtag);
1352 	t->m_tag_free = pf_mtag_free;
1353 
1354 	return (0);
1355 }
1356 
1357 static void
pf_mtag_free(struct m_tag * t)1358 pf_mtag_free(struct m_tag *t)
1359 {
1360 
1361 	uma_zfree(pf_mtag_z, t);
1362 }
1363 
1364 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1365 pf_get_mtag(struct mbuf *m)
1366 {
1367 	struct m_tag *mtag;
1368 
1369 	if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1370 		return ((struct pf_mtag *)(mtag + 1));
1371 
1372 	mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1373 	if (mtag == NULL)
1374 		return (NULL);
1375 	bzero(mtag + 1, sizeof(struct pf_mtag));
1376 	m_tag_prepend(m, mtag);
1377 
1378 	return ((struct pf_mtag *)(mtag + 1));
1379 }
1380 
1381 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1382 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1383     struct pf_kstate *s)
1384 {
1385 	struct pf_keyhash	*khs, *khw, *kh;
1386 	struct pf_state_key	*sk, *cur;
1387 	struct pf_kstate	*si, *olds = NULL;
1388 	int idx;
1389 
1390 	NET_EPOCH_ASSERT();
1391 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1392 	KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1393 	KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1394 
1395 	/*
1396 	 * We need to lock hash slots of both keys. To avoid deadlock
1397 	 * we always lock the slot with lower address first. Unlock order
1398 	 * isn't important.
1399 	 *
1400 	 * We also need to lock ID hash slot before dropping key
1401 	 * locks. On success we return with ID hash slot locked.
1402 	 */
1403 
1404 	if (skw == sks) {
1405 		khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1406 		PF_HASHROW_LOCK(khs);
1407 	} else {
1408 		khs = &V_pf_keyhash[pf_hashkey(sks)];
1409 		khw = &V_pf_keyhash[pf_hashkey(skw)];
1410 		if (khs == khw) {
1411 			PF_HASHROW_LOCK(khs);
1412 		} else if (khs < khw) {
1413 			PF_HASHROW_LOCK(khs);
1414 			PF_HASHROW_LOCK(khw);
1415 		} else {
1416 			PF_HASHROW_LOCK(khw);
1417 			PF_HASHROW_LOCK(khs);
1418 		}
1419 	}
1420 
1421 #define	KEYS_UNLOCK()	do {			\
1422 	if (khs != khw) {			\
1423 		PF_HASHROW_UNLOCK(khs);		\
1424 		PF_HASHROW_UNLOCK(khw);		\
1425 	} else					\
1426 		PF_HASHROW_UNLOCK(khs);		\
1427 } while (0)
1428 
1429 	/*
1430 	 * First run: start with wire key.
1431 	 */
1432 	sk = skw;
1433 	kh = khw;
1434 	idx = PF_SK_WIRE;
1435 
1436 	MPASS(s->lock == NULL);
1437 	s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1438 
1439 keyattach:
1440 	LIST_FOREACH(cur, &kh->keys, entry)
1441 		if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1442 			break;
1443 
1444 	if (cur != NULL) {
1445 		/* Key exists. Check for same kif, if none, add to key. */
1446 		TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1447 			struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1448 
1449 			PF_HASHROW_LOCK(ih);
1450 			if (si->kif == s->kif &&
1451 			    ((si->key[PF_SK_WIRE]->af == sk->af &&
1452 			    si->direction == s->direction) ||
1453 			    (si->key[PF_SK_WIRE]->af !=
1454 			    si->key[PF_SK_STACK]->af &&
1455 			    sk->af == si->key[PF_SK_STACK]->af &&
1456 			    si->direction != s->direction))) {
1457 				if (sk->proto == IPPROTO_TCP &&
1458 				    si->src.state >= TCPS_FIN_WAIT_2 &&
1459 				    si->dst.state >= TCPS_FIN_WAIT_2) {
1460 					/*
1461 					 * New state matches an old >FIN_WAIT_2
1462 					 * state. We can't drop key hash locks,
1463 					 * thus we can't unlink it properly.
1464 					 *
1465 					 * As a workaround we drop it into
1466 					 * TCPS_CLOSED state, schedule purge
1467 					 * ASAP and push it into the very end
1468 					 * of the slot TAILQ, so that it won't
1469 					 * conflict with our new state.
1470 					 */
1471 					pf_set_protostate(si, PF_PEER_BOTH,
1472 					    TCPS_CLOSED);
1473 					si->timeout = PFTM_PURGE;
1474 					olds = si;
1475 				} else {
1476 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1477 						printf("pf: %s key attach "
1478 						    "failed on %s: ",
1479 						    (idx == PF_SK_WIRE) ?
1480 						    "wire" : "stack",
1481 						    s->kif->pfik_name);
1482 						pf_print_state_parts(s,
1483 						    (idx == PF_SK_WIRE) ?
1484 						    sk : NULL,
1485 						    (idx == PF_SK_STACK) ?
1486 						    sk : NULL);
1487 						printf(", existing: ");
1488 						pf_print_state_parts(si,
1489 						    (idx == PF_SK_WIRE) ?
1490 						    sk : NULL,
1491 						    (idx == PF_SK_STACK) ?
1492 						    sk : NULL);
1493 						printf("\n");
1494 					}
1495 					s->timeout = PFTM_UNLINKED;
1496 					PF_HASHROW_UNLOCK(ih);
1497 					KEYS_UNLOCK();
1498 					if (idx == PF_SK_WIRE) {
1499 						uma_zfree(V_pf_state_key_z, skw);
1500 						if (skw != sks)
1501 							uma_zfree(V_pf_state_key_z, sks);
1502 					} else {
1503 						pf_detach_state(s);
1504 					}
1505 					return (EEXIST); /* collision! */
1506 				}
1507 			}
1508 			PF_HASHROW_UNLOCK(ih);
1509 		}
1510 		uma_zfree(V_pf_state_key_z, sk);
1511 		s->key[idx] = cur;
1512 	} else {
1513 		LIST_INSERT_HEAD(&kh->keys, sk, entry);
1514 		s->key[idx] = sk;
1515 	}
1516 
1517 stateattach:
1518 	/* List is sorted, if-bound states before floating. */
1519 	if (s->kif == V_pfi_all)
1520 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1521 	else
1522 		TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1523 
1524 	if (olds) {
1525 		TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1526 		TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1527 		    key_list[idx]);
1528 		olds = NULL;
1529 	}
1530 
1531 	/*
1532 	 * Attach done. See how should we (or should not?)
1533 	 * attach a second key.
1534 	 */
1535 	if (sks == skw) {
1536 		s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1537 		idx = PF_SK_STACK;
1538 		sks = NULL;
1539 		goto stateattach;
1540 	} else if (sks != NULL) {
1541 		/*
1542 		 * Continue attaching with stack key.
1543 		 */
1544 		sk = sks;
1545 		kh = khs;
1546 		idx = PF_SK_STACK;
1547 		sks = NULL;
1548 		goto keyattach;
1549 	}
1550 
1551 	PF_STATE_LOCK(s);
1552 	KEYS_UNLOCK();
1553 
1554 	KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1555 	    ("%s failure", __func__));
1556 
1557 	return (0);
1558 #undef	KEYS_UNLOCK
1559 }
1560 
1561 static void
pf_detach_state(struct pf_kstate * s)1562 pf_detach_state(struct pf_kstate *s)
1563 {
1564 	struct pf_state_key *sks = s->key[PF_SK_STACK];
1565 	struct pf_keyhash *kh;
1566 
1567 	NET_EPOCH_ASSERT();
1568 	MPASS(s->timeout >= PFTM_MAX);
1569 
1570 	pf_sctp_multihome_detach_addr(s);
1571 
1572 	if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1573 		V_pflow_export_state_ptr(s);
1574 
1575 	if (sks != NULL) {
1576 		kh = &V_pf_keyhash[pf_hashkey(sks)];
1577 		PF_HASHROW_LOCK(kh);
1578 		if (s->key[PF_SK_STACK] != NULL)
1579 			pf_state_key_detach(s, PF_SK_STACK);
1580 		/*
1581 		 * If both point to same key, then we are done.
1582 		 */
1583 		if (sks == s->key[PF_SK_WIRE]) {
1584 			pf_state_key_detach(s, PF_SK_WIRE);
1585 			PF_HASHROW_UNLOCK(kh);
1586 			return;
1587 		}
1588 		PF_HASHROW_UNLOCK(kh);
1589 	}
1590 
1591 	if (s->key[PF_SK_WIRE] != NULL) {
1592 		kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1593 		PF_HASHROW_LOCK(kh);
1594 		if (s->key[PF_SK_WIRE] != NULL)
1595 			pf_state_key_detach(s, PF_SK_WIRE);
1596 		PF_HASHROW_UNLOCK(kh);
1597 	}
1598 }
1599 
1600 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1601 pf_state_key_detach(struct pf_kstate *s, int idx)
1602 {
1603 	struct pf_state_key *sk = s->key[idx];
1604 #ifdef INVARIANTS
1605 	struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1606 
1607 	PF_HASHROW_ASSERT(kh);
1608 #endif
1609 	TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1610 	s->key[idx] = NULL;
1611 
1612 	if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1613 		LIST_REMOVE(sk, entry);
1614 		uma_zfree(V_pf_state_key_z, sk);
1615 	}
1616 }
1617 
1618 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1619 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1620 {
1621 	struct pf_state_key *sk = mem;
1622 
1623 	bzero(sk, sizeof(struct pf_state_key_cmp));
1624 	TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1625 	TAILQ_INIT(&sk->states[PF_SK_STACK]);
1626 
1627 	return (0);
1628 }
1629 
1630 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1631 pf_state_key_addr_setup(struct pf_pdesc *pd,
1632     struct pf_state_key_cmp *key, int multi)
1633 {
1634 	struct pf_addr *saddr = pd->src;
1635 	struct pf_addr *daddr = pd->dst;
1636 #ifdef INET6
1637 	struct nd_neighbor_solicit nd;
1638 	struct pf_addr *target;
1639 	u_short action, reason;
1640 
1641 	if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1642 		goto copy;
1643 
1644 	switch (pd->hdr.icmp6.icmp6_type) {
1645 	case ND_NEIGHBOR_SOLICIT:
1646 		if (multi)
1647 			return (-1);
1648 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1649 			return (-1);
1650 		target = (struct pf_addr *)&nd.nd_ns_target;
1651 		daddr = target;
1652 		break;
1653 	case ND_NEIGHBOR_ADVERT:
1654 		if (multi)
1655 			return (-1);
1656 		if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1657 			return (-1);
1658 		target = (struct pf_addr *)&nd.nd_ns_target;
1659 		saddr = target;
1660 		if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1661 			key->addr[pd->didx].addr32[0] = 0;
1662 			key->addr[pd->didx].addr32[1] = 0;
1663 			key->addr[pd->didx].addr32[2] = 0;
1664 			key->addr[pd->didx].addr32[3] = 0;
1665 			daddr = NULL; /* overwritten */
1666 		}
1667 		break;
1668 	default:
1669 		if (multi == PF_ICMP_MULTI_LINK) {
1670 			key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1671 			key->addr[pd->sidx].addr32[1] = 0;
1672 			key->addr[pd->sidx].addr32[2] = 0;
1673 			key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1674 			saddr = NULL; /* overwritten */
1675 		}
1676 	}
1677 copy:
1678 #endif
1679 	if (saddr)
1680 		PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1681 	if (daddr)
1682 		PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1683 
1684 	return (0);
1685 }
1686 
1687 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1688 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1689     struct pf_state_key **sk, struct pf_state_key **nk)
1690 {
1691 	*sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1692 	if (*sk == NULL)
1693 		return (ENOMEM);
1694 
1695 	if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1696 	    0)) {
1697 		uma_zfree(V_pf_state_key_z, *sk);
1698 		*sk = NULL;
1699 		return (ENOMEM);
1700 	}
1701 
1702 	(*sk)->port[pd->sidx] = sport;
1703 	(*sk)->port[pd->didx] = dport;
1704 	(*sk)->proto = pd->proto;
1705 	(*sk)->af = pd->af;
1706 
1707 	*nk = pf_state_key_clone(*sk);
1708 	if (*nk == NULL) {
1709 		uma_zfree(V_pf_state_key_z, *sk);
1710 		*sk = NULL;
1711 		return (ENOMEM);
1712 	}
1713 
1714 	if (pd->af != pd->naf) {
1715 		(*sk)->port[pd->sidx] = pd->osport;
1716 		(*sk)->port[pd->didx] = pd->odport;
1717 
1718 		(*nk)->af = pd->naf;
1719 
1720 		/*
1721 		 * We're overwriting an address here, so potentially there's bits of an IPv6
1722 		 * address left in here. Clear that out first.
1723 		 */
1724 		bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1725 		bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1726 
1727 		PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf);
1728 		PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf);
1729 		(*nk)->port[pd->didx] = pd->nsport;
1730 		(*nk)->port[pd->sidx] = pd->ndport;
1731 		switch (pd->proto) {
1732 		case IPPROTO_ICMP:
1733 			(*nk)->proto = IPPROTO_ICMPV6;
1734 			break;
1735 		case IPPROTO_ICMPV6:
1736 			(*nk)->proto = IPPROTO_ICMP;
1737 			break;
1738 		default:
1739 			(*nk)->proto = pd->proto;
1740 		}
1741 	}
1742 
1743 	return (0);
1744 }
1745 
1746 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1747 pf_state_key_clone(const struct pf_state_key *orig)
1748 {
1749 	struct pf_state_key *sk;
1750 
1751 	sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1752 	if (sk == NULL)
1753 		return (NULL);
1754 
1755 	bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1756 
1757 	return (sk);
1758 }
1759 
1760 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1761 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1762     struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1763 {
1764 	struct pf_idhash *ih;
1765 	struct pf_kstate *cur;
1766 	int error;
1767 
1768 	NET_EPOCH_ASSERT();
1769 
1770 	KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1771 	    ("%s: sks not pristine", __func__));
1772 	KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1773 	    ("%s: skw not pristine", __func__));
1774 	KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1775 
1776 	s->kif = kif;
1777 	s->orig_kif = orig_kif;
1778 
1779 	if (s->id == 0 && s->creatorid == 0) {
1780 		s->id = alloc_unr64(&V_pf_stateid);
1781 		s->id = htobe64(s->id);
1782 		s->creatorid = V_pf_status.hostid;
1783 	}
1784 
1785 	/* Returns with ID locked on success. */
1786 	if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1787 		return (error);
1788 
1789 	ih = &V_pf_idhash[PF_IDHASH(s)];
1790 	PF_HASHROW_ASSERT(ih);
1791 	LIST_FOREACH(cur, &ih->states, entry)
1792 		if (cur->id == s->id && cur->creatorid == s->creatorid)
1793 			break;
1794 
1795 	if (cur != NULL) {
1796 		s->timeout = PFTM_UNLINKED;
1797 		PF_HASHROW_UNLOCK(ih);
1798 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1799 			printf("pf: state ID collision: "
1800 			    "id: %016llx creatorid: %08x\n",
1801 			    (unsigned long long)be64toh(s->id),
1802 			    ntohl(s->creatorid));
1803 		}
1804 		pf_detach_state(s);
1805 		return (EEXIST);
1806 	}
1807 	LIST_INSERT_HEAD(&ih->states, s, entry);
1808 	/* One for keys, one for ID hash. */
1809 	refcount_init(&s->refs, 2);
1810 
1811 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1812 	if (V_pfsync_insert_state_ptr != NULL)
1813 		V_pfsync_insert_state_ptr(s);
1814 
1815 	/* Returns locked. */
1816 	return (0);
1817 }
1818 
1819 /*
1820  * Find state by ID: returns with locked row on success.
1821  */
1822 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1823 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1824 {
1825 	struct pf_idhash *ih;
1826 	struct pf_kstate *s;
1827 
1828 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1829 
1830 	ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))];
1831 
1832 	PF_HASHROW_LOCK(ih);
1833 	LIST_FOREACH(s, &ih->states, entry)
1834 		if (s->id == id && s->creatorid == creatorid)
1835 			break;
1836 
1837 	if (s == NULL)
1838 		PF_HASHROW_UNLOCK(ih);
1839 
1840 	return (s);
1841 }
1842 
1843 /*
1844  * Find state by key.
1845  * Returns with ID hash slot locked on success.
1846  */
1847 static struct pf_kstate *
pf_find_state(struct pfi_kkif * kif,const struct pf_state_key_cmp * key,u_int dir)1848 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1849     u_int dir)
1850 {
1851 	struct pf_keyhash	*kh;
1852 	struct pf_state_key	*sk;
1853 	struct pf_kstate	*s;
1854 	int idx;
1855 
1856 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1857 
1858 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1859 
1860 	PF_HASHROW_LOCK(kh);
1861 	LIST_FOREACH(sk, &kh->keys, entry)
1862 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1863 			break;
1864 	if (sk == NULL) {
1865 		PF_HASHROW_UNLOCK(kh);
1866 		return (NULL);
1867 	}
1868 
1869 	idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1870 
1871 	/* List is sorted, if-bound states before floating ones. */
1872 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1873 		if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1874 			PF_STATE_LOCK(s);
1875 			PF_HASHROW_UNLOCK(kh);
1876 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1877 				/*
1878 				 * State is either being processed by
1879 				 * pf_unlink_state() in an other thread, or
1880 				 * is scheduled for immediate expiry.
1881 				 */
1882 				PF_STATE_UNLOCK(s);
1883 				return (NULL);
1884 			}
1885 			return (s);
1886 		}
1887 
1888 	/* Look through the other list, in case of AF-TO */
1889 	idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1890 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1891 		if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1892 			continue;
1893 		if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1894 			PF_STATE_LOCK(s);
1895 			PF_HASHROW_UNLOCK(kh);
1896 			if (__predict_false(s->timeout >= PFTM_MAX)) {
1897 				/*
1898 				 * State is either being processed by
1899 				 * pf_unlink_state() in an other thread, or
1900 				 * is scheduled for immediate expiry.
1901 				 */
1902 				PF_STATE_UNLOCK(s);
1903 				return (NULL);
1904 			}
1905 			return (s);
1906 		}
1907 	}
1908 
1909 	PF_HASHROW_UNLOCK(kh);
1910 
1911 	return (NULL);
1912 }
1913 
1914 /*
1915  * Returns with ID hash slot locked on success.
1916  */
1917 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1918 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1919 {
1920 	struct pf_keyhash	*kh;
1921 	struct pf_state_key	*sk;
1922 	struct pf_kstate	*s, *ret = NULL;
1923 	int			 idx, inout = 0;
1924 
1925 	if (more != NULL)
1926 		*more = 0;
1927 
1928 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1929 
1930 	kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1931 
1932 	PF_HASHROW_LOCK(kh);
1933 	LIST_FOREACH(sk, &kh->keys, entry)
1934 		if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1935 			break;
1936 	if (sk == NULL) {
1937 		PF_HASHROW_UNLOCK(kh);
1938 		return (NULL);
1939 	}
1940 	switch (dir) {
1941 	case PF_IN:
1942 		idx = PF_SK_WIRE;
1943 		break;
1944 	case PF_OUT:
1945 		idx = PF_SK_STACK;
1946 		break;
1947 	case PF_INOUT:
1948 		idx = PF_SK_WIRE;
1949 		inout = 1;
1950 		break;
1951 	default:
1952 		panic("%s: dir %u", __func__, dir);
1953 	}
1954 second_run:
1955 	TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1956 		if (more == NULL) {
1957 			PF_STATE_LOCK(s);
1958 			PF_HASHROW_UNLOCK(kh);
1959 			return (s);
1960 		}
1961 
1962 		if (ret)
1963 			(*more)++;
1964 		else {
1965 			ret = s;
1966 			PF_STATE_LOCK(s);
1967 		}
1968 	}
1969 	if (inout == 1) {
1970 		inout = 0;
1971 		idx = PF_SK_STACK;
1972 		goto second_run;
1973 	}
1974 	PF_HASHROW_UNLOCK(kh);
1975 
1976 	return (ret);
1977 }
1978 
1979 /*
1980  * FIXME
1981  * This routine is inefficient -- locks the state only to unlock immediately on
1982  * return.
1983  * It is racy -- after the state is unlocked nothing stops other threads from
1984  * removing it.
1985  */
1986 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)1987 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
1988 {
1989 	struct pf_kstate *s;
1990 
1991 	s = pf_find_state_all(key, dir, NULL);
1992 	if (s != NULL) {
1993 		PF_STATE_UNLOCK(s);
1994 		return (true);
1995 	}
1996 	return (false);
1997 }
1998 
1999 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2000 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2001     struct pf_addr *nat_addr, uint16_t nat_port)
2002 {
2003 	struct pf_udp_mapping *mapping;
2004 
2005 	mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2006 	if (mapping == NULL)
2007 		return (NULL);
2008 	PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
2009 	mapping->endpoints[0].port = src_port;
2010 	mapping->endpoints[0].af = af;
2011 	mapping->endpoints[0].mapping = mapping;
2012 	PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
2013 	mapping->endpoints[1].port = nat_port;
2014 	mapping->endpoints[1].af = af;
2015 	mapping->endpoints[1].mapping = mapping;
2016 	refcount_init(&mapping->refs, 1);
2017 	return (mapping);
2018 }
2019 
2020 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2021 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2022 {
2023 	struct pf_udpendpointhash *h0, *h1;
2024 	struct pf_udp_endpoint *endpoint;
2025 	int ret = EEXIST;
2026 
2027 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2028 	h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2029 	if (h0 == h1) {
2030 		PF_HASHROW_LOCK(h0);
2031 	} else if (h0 < h1) {
2032 		PF_HASHROW_LOCK(h0);
2033 		PF_HASHROW_LOCK(h1);
2034 	} else {
2035 		PF_HASHROW_LOCK(h1);
2036 		PF_HASHROW_LOCK(h0);
2037 	}
2038 
2039 	LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2040 		if (bcmp(endpoint, &mapping->endpoints[0],
2041 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2042 			break;
2043 	}
2044 	if (endpoint != NULL)
2045 		goto cleanup;
2046 	LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2047 		if (bcmp(endpoint, &mapping->endpoints[1],
2048 		    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2049 			break;
2050 	}
2051 	if (endpoint != NULL)
2052 		goto cleanup;
2053 	LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2054 	LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2055 	ret = 0;
2056 
2057 cleanup:
2058 	if (h0 != h1) {
2059 		PF_HASHROW_UNLOCK(h0);
2060 		PF_HASHROW_UNLOCK(h1);
2061 	} else {
2062 		PF_HASHROW_UNLOCK(h0);
2063 	}
2064 	return (ret);
2065 }
2066 
2067 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2068 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2069 {
2070 	/* refcount is synchronized on the source endpoint's row lock */
2071 	struct pf_udpendpointhash *h0, *h1;
2072 
2073 	if (mapping == NULL)
2074 		return;
2075 
2076 	h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2077 	PF_HASHROW_LOCK(h0);
2078 	if (refcount_release(&mapping->refs)) {
2079 		LIST_REMOVE(&mapping->endpoints[0], entry);
2080 		PF_HASHROW_UNLOCK(h0);
2081 		h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2082 		PF_HASHROW_LOCK(h1);
2083 		LIST_REMOVE(&mapping->endpoints[1], entry);
2084 		PF_HASHROW_UNLOCK(h1);
2085 
2086 		uma_zfree(V_pf_udp_mapping_z, mapping);
2087 	} else {
2088 			PF_HASHROW_UNLOCK(h0);
2089 	}
2090 }
2091 
2092 
2093 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2094 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2095 {
2096 	struct pf_udpendpointhash *uh;
2097 	struct pf_udp_endpoint *endpoint;
2098 
2099 	uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2100 
2101 	PF_HASHROW_LOCK(uh);
2102 	LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2103 		if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2104 			bcmp(endpoint, &endpoint->mapping->endpoints[0],
2105 			    sizeof(struct pf_udp_endpoint_cmp)) == 0)
2106 			break;
2107 	}
2108 	if (endpoint == NULL) {
2109 		PF_HASHROW_UNLOCK(uh);
2110 		return (NULL);
2111 	}
2112 	refcount_acquire(&endpoint->mapping->refs);
2113 	PF_HASHROW_UNLOCK(uh);
2114 	return (endpoint->mapping);
2115 }
2116 /* END state table stuff */
2117 
2118 static void
pf_send(struct pf_send_entry * pfse)2119 pf_send(struct pf_send_entry *pfse)
2120 {
2121 
2122 	PF_SENDQ_LOCK();
2123 	STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2124 	PF_SENDQ_UNLOCK();
2125 	swi_sched(V_pf_swi_cookie, 0);
2126 }
2127 
2128 static bool
pf_isforlocal(struct mbuf * m,int af)2129 pf_isforlocal(struct mbuf *m, int af)
2130 {
2131 	switch (af) {
2132 #ifdef INET
2133 	case AF_INET: {
2134 		struct ip *ip = mtod(m, struct ip *);
2135 
2136 		return (in_localip(ip->ip_dst));
2137 	}
2138 #endif
2139 #ifdef INET6
2140 	case AF_INET6: {
2141 		struct ip6_hdr *ip6;
2142 		struct in6_ifaddr *ia;
2143 		ip6 = mtod(m, struct ip6_hdr *);
2144 		ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2145 		if (ia == NULL)
2146 			return (false);
2147 		return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2148 	}
2149 #endif
2150 	}
2151 
2152 	return (false);
2153 }
2154 
2155 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,int * multi,u_int16_t * virtual_id,u_int16_t * virtual_type)2156 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2157     int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type)
2158 {
2159 	/*
2160 	 * ICMP types marked with PF_OUT are typically responses to
2161 	 * PF_IN, and will match states in the opposite direction.
2162 	 * PF_IN ICMP types need to match a state with that type.
2163 	 */
2164 	*icmp_dir = PF_OUT;
2165 	*multi = PF_ICMP_MULTI_LINK;
2166 	/* Queries (and responses) */
2167 	switch (pd->af) {
2168 #ifdef INET
2169 	case AF_INET:
2170 		switch (type) {
2171 		case ICMP_ECHO:
2172 			*icmp_dir = PF_IN;
2173 		case ICMP_ECHOREPLY:
2174 			*virtual_type = ICMP_ECHO;
2175 			*virtual_id = pd->hdr.icmp.icmp_id;
2176 			break;
2177 
2178 		case ICMP_TSTAMP:
2179 			*icmp_dir = PF_IN;
2180 		case ICMP_TSTAMPREPLY:
2181 			*virtual_type = ICMP_TSTAMP;
2182 			*virtual_id = pd->hdr.icmp.icmp_id;
2183 			break;
2184 
2185 		case ICMP_IREQ:
2186 			*icmp_dir = PF_IN;
2187 		case ICMP_IREQREPLY:
2188 			*virtual_type = ICMP_IREQ;
2189 			*virtual_id = pd->hdr.icmp.icmp_id;
2190 			break;
2191 
2192 		case ICMP_MASKREQ:
2193 			*icmp_dir = PF_IN;
2194 		case ICMP_MASKREPLY:
2195 			*virtual_type = ICMP_MASKREQ;
2196 			*virtual_id = pd->hdr.icmp.icmp_id;
2197 			break;
2198 
2199 		case ICMP_IPV6_WHEREAREYOU:
2200 			*icmp_dir = PF_IN;
2201 		case ICMP_IPV6_IAMHERE:
2202 			*virtual_type = ICMP_IPV6_WHEREAREYOU;
2203 			*virtual_id = 0; /* Nothing sane to match on! */
2204 			break;
2205 
2206 		case ICMP_MOBILE_REGREQUEST:
2207 			*icmp_dir = PF_IN;
2208 		case ICMP_MOBILE_REGREPLY:
2209 			*virtual_type = ICMP_MOBILE_REGREQUEST;
2210 			*virtual_id = 0; /* Nothing sane to match on! */
2211 			break;
2212 
2213 		case ICMP_ROUTERSOLICIT:
2214 			*icmp_dir = PF_IN;
2215 		case ICMP_ROUTERADVERT:
2216 			*virtual_type = ICMP_ROUTERSOLICIT;
2217 			*virtual_id = 0; /* Nothing sane to match on! */
2218 			break;
2219 
2220 		/* These ICMP types map to other connections */
2221 		case ICMP_UNREACH:
2222 		case ICMP_SOURCEQUENCH:
2223 		case ICMP_REDIRECT:
2224 		case ICMP_TIMXCEED:
2225 		case ICMP_PARAMPROB:
2226 			/* These will not be used, but set them anyway */
2227 			*icmp_dir = PF_IN;
2228 			*virtual_type = type;
2229 			*virtual_id = 0;
2230 			HTONS(*virtual_type);
2231 			return (1);  /* These types match to another state */
2232 
2233 		/*
2234 		 * All remaining ICMP types get their own states,
2235 		 * and will only match in one direction.
2236 		 */
2237 		default:
2238 			*icmp_dir = PF_IN;
2239 			*virtual_type = type;
2240 			*virtual_id = 0;
2241 			break;
2242 		}
2243 		break;
2244 #endif /* INET */
2245 #ifdef INET6
2246 	case AF_INET6:
2247 		switch (type) {
2248 		case ICMP6_ECHO_REQUEST:
2249 			*icmp_dir = PF_IN;
2250 		case ICMP6_ECHO_REPLY:
2251 			*virtual_type = ICMP6_ECHO_REQUEST;
2252 			*virtual_id = pd->hdr.icmp6.icmp6_id;
2253 			break;
2254 
2255 		case MLD_LISTENER_QUERY:
2256 		case MLD_LISTENER_REPORT: {
2257 			/*
2258 			 * Listener Report can be sent by clients
2259 			 * without an associated Listener Query.
2260 			 * In addition to that, when Report is sent as a
2261 			 * reply to a Query its source and destination
2262 			 * address are different.
2263 			 */
2264 			*icmp_dir = PF_IN;
2265 			*virtual_type = MLD_LISTENER_QUERY;
2266 			*virtual_id = 0;
2267 			break;
2268 		}
2269 		case MLD_MTRACE:
2270 			*icmp_dir = PF_IN;
2271 		case MLD_MTRACE_RESP:
2272 			*virtual_type = MLD_MTRACE;
2273 			*virtual_id = 0; /* Nothing sane to match on! */
2274 			break;
2275 
2276 		case ND_NEIGHBOR_SOLICIT:
2277 			*icmp_dir = PF_IN;
2278 		case ND_NEIGHBOR_ADVERT: {
2279 			*virtual_type = ND_NEIGHBOR_SOLICIT;
2280 			*virtual_id = 0;
2281 			break;
2282 		}
2283 
2284 		/*
2285 		 * These ICMP types map to other connections.
2286 		 * ND_REDIRECT can't be in this list because the triggering
2287 		 * packet header is optional.
2288 		 */
2289 		case ICMP6_DST_UNREACH:
2290 		case ICMP6_PACKET_TOO_BIG:
2291 		case ICMP6_TIME_EXCEEDED:
2292 		case ICMP6_PARAM_PROB:
2293 			/* These will not be used, but set them anyway */
2294 			*icmp_dir = PF_IN;
2295 			*virtual_type = type;
2296 			*virtual_id = 0;
2297 			HTONS(*virtual_type);
2298 			return (1);  /* These types match to another state */
2299 		/*
2300 		 * All remaining ICMP6 types get their own states,
2301 		 * and will only match in one direction.
2302 		 */
2303 		default:
2304 			*icmp_dir = PF_IN;
2305 			*virtual_type = type;
2306 			*virtual_id = 0;
2307 			break;
2308 		}
2309 		break;
2310 #endif /* INET6 */
2311 	}
2312 	HTONS(*virtual_type);
2313 	return (0);  /* These types match to their own state */
2314 }
2315 
2316 void
pf_intr(void * v)2317 pf_intr(void *v)
2318 {
2319 	struct epoch_tracker et;
2320 	struct pf_send_head queue;
2321 	struct pf_send_entry *pfse, *next;
2322 
2323 	CURVNET_SET((struct vnet *)v);
2324 
2325 	PF_SENDQ_LOCK();
2326 	queue = V_pf_sendqueue;
2327 	STAILQ_INIT(&V_pf_sendqueue);
2328 	PF_SENDQ_UNLOCK();
2329 
2330 	NET_EPOCH_ENTER(et);
2331 
2332 	STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2333 		switch (pfse->pfse_type) {
2334 #ifdef INET
2335 		case PFSE_IP: {
2336 			if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2337 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2338 				    ("%s: rcvif != loif", __func__));
2339 
2340 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2341 				pfse->pfse_m->m_pkthdr.csum_flags |=
2342 				    CSUM_IP_VALID | CSUM_IP_CHECKED;
2343 				ip_input(pfse->pfse_m);
2344 			} else {
2345 				ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2346 				    NULL);
2347 			}
2348 			break;
2349 		}
2350 		case PFSE_ICMP:
2351 			icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2352 			    pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2353 			break;
2354 #endif /* INET */
2355 #ifdef INET6
2356 		case PFSE_IP6:
2357 			if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2358 				KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2359 				    ("%s: rcvif != loif", __func__));
2360 
2361 				pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2362 				    M_LOOP;
2363 				ip6_input(pfse->pfse_m);
2364 			} else {
2365 				ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2366 				    NULL, NULL);
2367 			}
2368 			break;
2369 		case PFSE_ICMP6:
2370 			icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2371 			    pfse->icmpopts.code, pfse->icmpopts.mtu);
2372 			break;
2373 #endif /* INET6 */
2374 		default:
2375 			panic("%s: unknown type", __func__);
2376 		}
2377 		free(pfse, M_PFTEMP);
2378 	}
2379 	NET_EPOCH_EXIT(et);
2380 	CURVNET_RESTORE();
2381 }
2382 
2383 #define	pf_purge_thread_period	(hz / 10)
2384 
2385 #ifdef PF_WANT_32_TO_64_COUNTER
2386 static void
pf_status_counter_u64_periodic(void)2387 pf_status_counter_u64_periodic(void)
2388 {
2389 
2390 	PF_RULES_RASSERT();
2391 
2392 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2393 		return;
2394 	}
2395 
2396 	for (int i = 0; i < FCNT_MAX; i++) {
2397 		pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2398 	}
2399 }
2400 
2401 static void
pf_kif_counter_u64_periodic(void)2402 pf_kif_counter_u64_periodic(void)
2403 {
2404 	struct pfi_kkif *kif;
2405 	size_t r, run;
2406 
2407 	PF_RULES_RASSERT();
2408 
2409 	if (__predict_false(V_pf_allkifcount == 0)) {
2410 		return;
2411 	}
2412 
2413 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2414 		return;
2415 	}
2416 
2417 	run = V_pf_allkifcount / 10;
2418 	if (run < 5)
2419 		run = 5;
2420 
2421 	for (r = 0; r < run; r++) {
2422 		kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2423 		if (kif == NULL) {
2424 			LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2425 			LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2426 			break;
2427 		}
2428 
2429 		LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2430 		LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2431 
2432 		for (int i = 0; i < 2; i++) {
2433 			for (int j = 0; j < 2; j++) {
2434 				for (int k = 0; k < 2; k++) {
2435 					pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2436 					pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2437 				}
2438 			}
2439 		}
2440 	}
2441 }
2442 
2443 static void
pf_rule_counter_u64_periodic(void)2444 pf_rule_counter_u64_periodic(void)
2445 {
2446 	struct pf_krule *rule;
2447 	size_t r, run;
2448 
2449 	PF_RULES_RASSERT();
2450 
2451 	if (__predict_false(V_pf_allrulecount == 0)) {
2452 		return;
2453 	}
2454 
2455 	if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2456 		return;
2457 	}
2458 
2459 	run = V_pf_allrulecount / 10;
2460 	if (run < 5)
2461 		run = 5;
2462 
2463 	for (r = 0; r < run; r++) {
2464 		rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2465 		if (rule == NULL) {
2466 			LIST_REMOVE(V_pf_rulemarker, allrulelist);
2467 			LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2468 			break;
2469 		}
2470 
2471 		LIST_REMOVE(V_pf_rulemarker, allrulelist);
2472 		LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2473 
2474 		pf_counter_u64_periodic(&rule->evaluations);
2475 		for (int i = 0; i < 2; i++) {
2476 			pf_counter_u64_periodic(&rule->packets[i]);
2477 			pf_counter_u64_periodic(&rule->bytes[i]);
2478 		}
2479 	}
2480 }
2481 
2482 static void
pf_counter_u64_periodic_main(void)2483 pf_counter_u64_periodic_main(void)
2484 {
2485 	PF_RULES_RLOCK_TRACKER;
2486 
2487 	V_pf_counter_periodic_iter++;
2488 
2489 	PF_RULES_RLOCK();
2490 	pf_counter_u64_critical_enter();
2491 	pf_status_counter_u64_periodic();
2492 	pf_kif_counter_u64_periodic();
2493 	pf_rule_counter_u64_periodic();
2494 	pf_counter_u64_critical_exit();
2495 	PF_RULES_RUNLOCK();
2496 }
2497 #else
2498 #define	pf_counter_u64_periodic_main()	do { } while (0)
2499 #endif
2500 
2501 void
pf_purge_thread(void * unused __unused)2502 pf_purge_thread(void *unused __unused)
2503 {
2504 	struct epoch_tracker	 et;
2505 
2506 	VNET_ITERATOR_DECL(vnet_iter);
2507 
2508 	sx_xlock(&pf_end_lock);
2509 	while (pf_end_threads == 0) {
2510 		sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2511 
2512 		VNET_LIST_RLOCK();
2513 		NET_EPOCH_ENTER(et);
2514 		VNET_FOREACH(vnet_iter) {
2515 			CURVNET_SET(vnet_iter);
2516 
2517 			/* Wait until V_pf_default_rule is initialized. */
2518 			if (V_pf_vnet_active == 0) {
2519 				CURVNET_RESTORE();
2520 				continue;
2521 			}
2522 
2523 			pf_counter_u64_periodic_main();
2524 
2525 			/*
2526 			 *  Process 1/interval fraction of the state
2527 			 * table every run.
2528 			 */
2529 			V_pf_purge_idx =
2530 			    pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2531 			    (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2532 
2533 			/*
2534 			 * Purge other expired types every
2535 			 * PFTM_INTERVAL seconds.
2536 			 */
2537 			if (V_pf_purge_idx == 0) {
2538 				/*
2539 				 * Order is important:
2540 				 * - states and src nodes reference rules
2541 				 * - states and rules reference kifs
2542 				 */
2543 				pf_purge_expired_fragments();
2544 				pf_purge_expired_src_nodes();
2545 				pf_purge_unlinked_rules();
2546 				pfi_kkif_purge();
2547 			}
2548 			CURVNET_RESTORE();
2549 		}
2550 		NET_EPOCH_EXIT(et);
2551 		VNET_LIST_RUNLOCK();
2552 	}
2553 
2554 	pf_end_threads++;
2555 	sx_xunlock(&pf_end_lock);
2556 	kproc_exit(0);
2557 }
2558 
2559 void
pf_unload_vnet_purge(void)2560 pf_unload_vnet_purge(void)
2561 {
2562 
2563 	/*
2564 	 * To cleanse up all kifs and rules we need
2565 	 * two runs: first one clears reference flags,
2566 	 * then pf_purge_expired_states() doesn't
2567 	 * raise them, and then second run frees.
2568 	 */
2569 	pf_purge_unlinked_rules();
2570 	pfi_kkif_purge();
2571 
2572 	/*
2573 	 * Now purge everything.
2574 	 */
2575 	pf_purge_expired_states(0, V_pf_hashmask);
2576 	pf_purge_fragments(UINT_MAX);
2577 	pf_purge_expired_src_nodes();
2578 
2579 	/*
2580 	 * Now all kifs & rules should be unreferenced,
2581 	 * thus should be successfully freed.
2582 	 */
2583 	pf_purge_unlinked_rules();
2584 	pfi_kkif_purge();
2585 }
2586 
2587 u_int32_t
pf_state_expires(const struct pf_kstate * state)2588 pf_state_expires(const struct pf_kstate *state)
2589 {
2590 	u_int32_t	timeout;
2591 	u_int32_t	start;
2592 	u_int32_t	end;
2593 	u_int32_t	states;
2594 
2595 	/* handle all PFTM_* > PFTM_MAX here */
2596 	if (state->timeout == PFTM_PURGE)
2597 		return (time_uptime);
2598 	KASSERT(state->timeout != PFTM_UNLINKED,
2599 	    ("pf_state_expires: timeout == PFTM_UNLINKED"));
2600 	KASSERT((state->timeout < PFTM_MAX),
2601 	    ("pf_state_expires: timeout > PFTM_MAX"));
2602 	timeout = state->rule->timeout[state->timeout];
2603 	if (!timeout)
2604 		timeout = V_pf_default_rule.timeout[state->timeout];
2605 	start = state->rule->timeout[PFTM_ADAPTIVE_START];
2606 	if (start && state->rule != &V_pf_default_rule) {
2607 		end = state->rule->timeout[PFTM_ADAPTIVE_END];
2608 		states = counter_u64_fetch(state->rule->states_cur);
2609 	} else {
2610 		start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2611 		end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2612 		states = V_pf_status.states;
2613 	}
2614 	if (end && states > start && start < end) {
2615 		if (states < end) {
2616 			timeout = (u_int64_t)timeout * (end - states) /
2617 			    (end - start);
2618 			return ((state->expire / 1000) + timeout);
2619 		}
2620 		else
2621 			return (time_uptime);
2622 	}
2623 	return ((state->expire / 1000) + timeout);
2624 }
2625 
2626 void
pf_purge_expired_src_nodes(void)2627 pf_purge_expired_src_nodes(void)
2628 {
2629 	struct pf_ksrc_node_list	 freelist;
2630 	struct pf_srchash	*sh;
2631 	struct pf_ksrc_node	*cur, *next;
2632 	int i;
2633 
2634 	LIST_INIT(&freelist);
2635 	for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2636 	    PF_HASHROW_LOCK(sh);
2637 	    LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2638 		if (cur->states == 0 && cur->expire <= time_uptime) {
2639 			pf_unlink_src_node(cur);
2640 			LIST_INSERT_HEAD(&freelist, cur, entry);
2641 		} else if (cur->rule != NULL)
2642 			cur->rule->rule_ref |= PFRULE_REFS;
2643 	    PF_HASHROW_UNLOCK(sh);
2644 	}
2645 
2646 	pf_free_src_nodes(&freelist);
2647 
2648 	V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2649 }
2650 
2651 static void
pf_src_tree_remove_state(struct pf_kstate * s)2652 pf_src_tree_remove_state(struct pf_kstate *s)
2653 {
2654 	struct pf_ksrc_node *sn;
2655 	uint32_t timeout;
2656 
2657 	timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2658 	    s->rule->timeout[PFTM_SRC_NODE] :
2659 	    V_pf_default_rule.timeout[PFTM_SRC_NODE];
2660 
2661 	if (s->src_node != NULL) {
2662 		sn = s->src_node;
2663 		PF_SRC_NODE_LOCK(sn);
2664 		if (s->src.tcp_est)
2665 			--sn->conn;
2666 		if (--sn->states == 0)
2667 			sn->expire = time_uptime + timeout;
2668 		PF_SRC_NODE_UNLOCK(sn);
2669 	}
2670 	if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
2671 		sn = s->nat_src_node;
2672 		PF_SRC_NODE_LOCK(sn);
2673 		if (--sn->states == 0)
2674 			sn->expire = time_uptime + timeout;
2675 		PF_SRC_NODE_UNLOCK(sn);
2676 	}
2677 	s->src_node = s->nat_src_node = NULL;
2678 }
2679 
2680 /*
2681  * Unlink and potentilly free a state. Function may be
2682  * called with ID hash row locked, but always returns
2683  * unlocked, since it needs to go through key hash locking.
2684  */
2685 int
pf_unlink_state(struct pf_kstate * s)2686 pf_unlink_state(struct pf_kstate *s)
2687 {
2688 	struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2689 
2690 	NET_EPOCH_ASSERT();
2691 	PF_HASHROW_ASSERT(ih);
2692 
2693 	if (s->timeout == PFTM_UNLINKED) {
2694 		/*
2695 		 * State is being processed
2696 		 * by pf_unlink_state() in
2697 		 * an other thread.
2698 		 */
2699 		PF_HASHROW_UNLOCK(ih);
2700 		return (0);	/* XXXGL: undefined actually */
2701 	}
2702 
2703 	if (s->src.state == PF_TCPS_PROXY_DST) {
2704 		/* XXX wire key the right one? */
2705 		pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2706 		    &s->key[PF_SK_WIRE]->addr[1],
2707 		    &s->key[PF_SK_WIRE]->addr[0],
2708 		    s->key[PF_SK_WIRE]->port[1],
2709 		    s->key[PF_SK_WIRE]->port[0],
2710 		    s->src.seqhi, s->src.seqlo + 1,
2711 		    TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2712 		    s->act.rtableid);
2713 	}
2714 
2715 	LIST_REMOVE(s, entry);
2716 	pf_src_tree_remove_state(s);
2717 
2718 	if (V_pfsync_delete_state_ptr != NULL)
2719 		V_pfsync_delete_state_ptr(s);
2720 
2721 	STATE_DEC_COUNTERS(s);
2722 
2723 	s->timeout = PFTM_UNLINKED;
2724 
2725 	/* Ensure we remove it from the list of halfopen states, if needed. */
2726 	if (s->key[PF_SK_STACK] != NULL &&
2727 	    s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2728 		pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2729 
2730 	PF_HASHROW_UNLOCK(ih);
2731 
2732 	pf_detach_state(s);
2733 
2734 	pf_udp_mapping_release(s->udp_mapping);
2735 
2736 	/* pf_state_insert() initialises refs to 2 */
2737 	return (pf_release_staten(s, 2));
2738 }
2739 
2740 struct pf_kstate *
pf_alloc_state(int flags)2741 pf_alloc_state(int flags)
2742 {
2743 
2744 	return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2745 }
2746 
2747 void
pf_free_state(struct pf_kstate * cur)2748 pf_free_state(struct pf_kstate *cur)
2749 {
2750 	struct pf_krule_item *ri;
2751 
2752 	KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2753 	KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2754 	    cur->timeout));
2755 
2756 	while ((ri = SLIST_FIRST(&cur->match_rules))) {
2757 		SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2758 		free(ri, M_PF_RULE_ITEM);
2759 	}
2760 
2761 	pf_normalize_tcp_cleanup(cur);
2762 	uma_zfree(V_pf_state_z, cur);
2763 	pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2764 }
2765 
2766 /*
2767  * Called only from pf_purge_thread(), thus serialized.
2768  */
2769 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2770 pf_purge_expired_states(u_int i, int maxcheck)
2771 {
2772 	struct pf_idhash *ih;
2773 	struct pf_kstate *s;
2774 	struct pf_krule_item *mrm;
2775 	size_t count __unused;
2776 
2777 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2778 
2779 	/*
2780 	 * Go through hash and unlink states that expire now.
2781 	 */
2782 	while (maxcheck > 0) {
2783 		count = 0;
2784 		ih = &V_pf_idhash[i];
2785 
2786 		/* only take the lock if we expect to do work */
2787 		if (!LIST_EMPTY(&ih->states)) {
2788 relock:
2789 			PF_HASHROW_LOCK(ih);
2790 			LIST_FOREACH(s, &ih->states, entry) {
2791 				if (pf_state_expires(s) <= time_uptime) {
2792 					V_pf_status.states -=
2793 					    pf_unlink_state(s);
2794 					goto relock;
2795 				}
2796 				s->rule->rule_ref |= PFRULE_REFS;
2797 				if (s->nat_rule != NULL)
2798 					s->nat_rule->rule_ref |= PFRULE_REFS;
2799 				if (s->anchor != NULL)
2800 					s->anchor->rule_ref |= PFRULE_REFS;
2801 				s->kif->pfik_flags |= PFI_IFLAG_REFS;
2802 				SLIST_FOREACH(mrm, &s->match_rules, entry)
2803 					mrm->r->rule_ref |= PFRULE_REFS;
2804 				if (s->act.rt_kif)
2805 					s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2806 				count++;
2807 			}
2808 			PF_HASHROW_UNLOCK(ih);
2809 		}
2810 
2811 		SDT_PROBE2(pf, purge, state, rowcount, i, count);
2812 
2813 		/* Return when we hit end of hash. */
2814 		if (++i > V_pf_hashmask) {
2815 			V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2816 			return (0);
2817 		}
2818 
2819 		maxcheck--;
2820 	}
2821 
2822 	V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2823 
2824 	return (i);
2825 }
2826 
2827 static void
pf_purge_unlinked_rules(void)2828 pf_purge_unlinked_rules(void)
2829 {
2830 	struct pf_krulequeue tmpq;
2831 	struct pf_krule *r, *r1;
2832 
2833 	/*
2834 	 * If we have overloading task pending, then we'd
2835 	 * better skip purging this time. There is a tiny
2836 	 * probability that overloading task references
2837 	 * an already unlinked rule.
2838 	 */
2839 	PF_OVERLOADQ_LOCK();
2840 	if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2841 		PF_OVERLOADQ_UNLOCK();
2842 		return;
2843 	}
2844 	PF_OVERLOADQ_UNLOCK();
2845 
2846 	/*
2847 	 * Do naive mark-and-sweep garbage collecting of old rules.
2848 	 * Reference flag is raised by pf_purge_expired_states()
2849 	 * and pf_purge_expired_src_nodes().
2850 	 *
2851 	 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2852 	 * use a temporary queue.
2853 	 */
2854 	TAILQ_INIT(&tmpq);
2855 	PF_UNLNKDRULES_LOCK();
2856 	TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2857 		if (!(r->rule_ref & PFRULE_REFS)) {
2858 			TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2859 			TAILQ_INSERT_TAIL(&tmpq, r, entries);
2860 		} else
2861 			r->rule_ref &= ~PFRULE_REFS;
2862 	}
2863 	PF_UNLNKDRULES_UNLOCK();
2864 
2865 	if (!TAILQ_EMPTY(&tmpq)) {
2866 		PF_CONFIG_LOCK();
2867 		PF_RULES_WLOCK();
2868 		TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2869 			TAILQ_REMOVE(&tmpq, r, entries);
2870 			pf_free_rule(r);
2871 		}
2872 		PF_RULES_WUNLOCK();
2873 		PF_CONFIG_UNLOCK();
2874 	}
2875 }
2876 
2877 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2878 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2879 {
2880 	switch (af) {
2881 #ifdef INET
2882 	case AF_INET: {
2883 		u_int32_t a = ntohl(addr->addr32[0]);
2884 		printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2885 		    (a>>8)&255, a&255);
2886 		if (p) {
2887 			p = ntohs(p);
2888 			printf(":%u", p);
2889 		}
2890 		break;
2891 	}
2892 #endif /* INET */
2893 #ifdef INET6
2894 	case AF_INET6: {
2895 		u_int16_t b;
2896 		u_int8_t i, curstart, curend, maxstart, maxend;
2897 		curstart = curend = maxstart = maxend = 255;
2898 		for (i = 0; i < 8; i++) {
2899 			if (!addr->addr16[i]) {
2900 				if (curstart == 255)
2901 					curstart = i;
2902 				curend = i;
2903 			} else {
2904 				if ((curend - curstart) >
2905 				    (maxend - maxstart)) {
2906 					maxstart = curstart;
2907 					maxend = curend;
2908 				}
2909 				curstart = curend = 255;
2910 			}
2911 		}
2912 		if ((curend - curstart) >
2913 		    (maxend - maxstart)) {
2914 			maxstart = curstart;
2915 			maxend = curend;
2916 		}
2917 		for (i = 0; i < 8; i++) {
2918 			if (i >= maxstart && i <= maxend) {
2919 				if (i == 0)
2920 					printf(":");
2921 				if (i == maxend)
2922 					printf(":");
2923 			} else {
2924 				b = ntohs(addr->addr16[i]);
2925 				printf("%x", b);
2926 				if (i < 7)
2927 					printf(":");
2928 			}
2929 		}
2930 		if (p) {
2931 			p = ntohs(p);
2932 			printf("[%u]", p);
2933 		}
2934 		break;
2935 	}
2936 #endif /* INET6 */
2937 	}
2938 }
2939 
2940 void
pf_print_state(struct pf_kstate * s)2941 pf_print_state(struct pf_kstate *s)
2942 {
2943 	pf_print_state_parts(s, NULL, NULL);
2944 }
2945 
2946 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)2947 pf_print_state_parts(struct pf_kstate *s,
2948     struct pf_state_key *skwp, struct pf_state_key *sksp)
2949 {
2950 	struct pf_state_key *skw, *sks;
2951 	u_int8_t proto, dir;
2952 
2953 	/* Do our best to fill these, but they're skipped if NULL */
2954 	skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
2955 	sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
2956 	proto = skw ? skw->proto : (sks ? sks->proto : 0);
2957 	dir = s ? s->direction : 0;
2958 
2959 	switch (proto) {
2960 	case IPPROTO_IPV4:
2961 		printf("IPv4");
2962 		break;
2963 	case IPPROTO_IPV6:
2964 		printf("IPv6");
2965 		break;
2966 	case IPPROTO_TCP:
2967 		printf("TCP");
2968 		break;
2969 	case IPPROTO_UDP:
2970 		printf("UDP");
2971 		break;
2972 	case IPPROTO_ICMP:
2973 		printf("ICMP");
2974 		break;
2975 	case IPPROTO_ICMPV6:
2976 		printf("ICMPv6");
2977 		break;
2978 	default:
2979 		printf("%u", proto);
2980 		break;
2981 	}
2982 	switch (dir) {
2983 	case PF_IN:
2984 		printf(" in");
2985 		break;
2986 	case PF_OUT:
2987 		printf(" out");
2988 		break;
2989 	}
2990 	if (skw) {
2991 		printf(" wire: ");
2992 		pf_print_host(&skw->addr[0], skw->port[0], skw->af);
2993 		printf(" ");
2994 		pf_print_host(&skw->addr[1], skw->port[1], skw->af);
2995 	}
2996 	if (sks) {
2997 		printf(" stack: ");
2998 		if (sks != skw) {
2999 			pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3000 			printf(" ");
3001 			pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3002 		} else
3003 			printf("-");
3004 	}
3005 	if (s) {
3006 		if (proto == IPPROTO_TCP) {
3007 			printf(" [lo=%u high=%u win=%u modulator=%u",
3008 			    s->src.seqlo, s->src.seqhi,
3009 			    s->src.max_win, s->src.seqdiff);
3010 			if (s->src.wscale && s->dst.wscale)
3011 				printf(" wscale=%u",
3012 				    s->src.wscale & PF_WSCALE_MASK);
3013 			printf("]");
3014 			printf(" [lo=%u high=%u win=%u modulator=%u",
3015 			    s->dst.seqlo, s->dst.seqhi,
3016 			    s->dst.max_win, s->dst.seqdiff);
3017 			if (s->src.wscale && s->dst.wscale)
3018 				printf(" wscale=%u",
3019 				s->dst.wscale & PF_WSCALE_MASK);
3020 			printf("]");
3021 		}
3022 		printf(" %u:%u", s->src.state, s->dst.state);
3023 		if (s->rule)
3024 			printf(" @%d", s->rule->nr);
3025 	}
3026 }
3027 
3028 void
pf_print_flags(uint16_t f)3029 pf_print_flags(uint16_t f)
3030 {
3031 	if (f)
3032 		printf(" ");
3033 	if (f & TH_FIN)
3034 		printf("F");
3035 	if (f & TH_SYN)
3036 		printf("S");
3037 	if (f & TH_RST)
3038 		printf("R");
3039 	if (f & TH_PUSH)
3040 		printf("P");
3041 	if (f & TH_ACK)
3042 		printf("A");
3043 	if (f & TH_URG)
3044 		printf("U");
3045 	if (f & TH_ECE)
3046 		printf("E");
3047 	if (f & TH_CWR)
3048 		printf("W");
3049 	if (f & TH_AE)
3050 		printf("e");
3051 }
3052 
3053 #define	PF_SET_SKIP_STEPS(i)					\
3054 	do {							\
3055 		while (head[i] != cur) {			\
3056 			head[i]->skip[i] = cur;			\
3057 			head[i] = TAILQ_NEXT(head[i], entries);	\
3058 		}						\
3059 	} while (0)
3060 
3061 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3062 pf_calc_skip_steps(struct pf_krulequeue *rules)
3063 {
3064 	struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3065 	int i;
3066 
3067 	cur = TAILQ_FIRST(rules);
3068 	prev = cur;
3069 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3070 		head[i] = cur;
3071 	while (cur != NULL) {
3072 		if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3073 			PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3074 		if (cur->direction != prev->direction)
3075 			PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3076 		if (cur->af != prev->af)
3077 			PF_SET_SKIP_STEPS(PF_SKIP_AF);
3078 		if (cur->proto != prev->proto)
3079 			PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3080 		if (cur->src.neg != prev->src.neg ||
3081 		    pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3082 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3083 		if (cur->dst.neg != prev->dst.neg ||
3084 		    pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3085 			PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3086 		if (cur->src.port[0] != prev->src.port[0] ||
3087 		    cur->src.port[1] != prev->src.port[1] ||
3088 		    cur->src.port_op != prev->src.port_op)
3089 			PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3090 		if (cur->dst.port[0] != prev->dst.port[0] ||
3091 		    cur->dst.port[1] != prev->dst.port[1] ||
3092 		    cur->dst.port_op != prev->dst.port_op)
3093 			PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3094 
3095 		prev = cur;
3096 		cur = TAILQ_NEXT(cur, entries);
3097 	}
3098 	for (i = 0; i < PF_SKIP_COUNT; ++i)
3099 		PF_SET_SKIP_STEPS(i);
3100 }
3101 
3102 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3103 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3104 {
3105 	if (aw1->type != aw2->type)
3106 		return (1);
3107 	switch (aw1->type) {
3108 	case PF_ADDR_ADDRMASK:
3109 	case PF_ADDR_RANGE:
3110 		if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3111 			return (1);
3112 		if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3113 			return (1);
3114 		return (0);
3115 	case PF_ADDR_DYNIFTL:
3116 		return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3117 	case PF_ADDR_NONE:
3118 	case PF_ADDR_NOROUTE:
3119 	case PF_ADDR_URPFFAILED:
3120 		return (0);
3121 	case PF_ADDR_TABLE:
3122 		return (aw1->p.tbl != aw2->p.tbl);
3123 	default:
3124 		printf("invalid address type: %d\n", aw1->type);
3125 		return (1);
3126 	}
3127 }
3128 
3129 /**
3130  * Checksum updates are a little complicated because the checksum in the TCP/UDP
3131  * header isn't always a full checksum. In some cases (i.e. output) it's a
3132  * pseudo-header checksum, which is a partial checksum over src/dst IP
3133  * addresses, protocol number and length.
3134  *
3135  * That means we have the following cases:
3136  *  * Input or forwarding: we don't have TSO, the checksum fields are full
3137  *  	checksums, we need to update the checksum whenever we change anything.
3138  *  * Output (i.e. the checksum is a pseudo-header checksum):
3139  *  	x The field being updated is src/dst address or affects the length of
3140  *  	the packet. We need to update the pseudo-header checksum (note that this
3141  *  	checksum is not ones' complement).
3142  *  	x Some other field is being modified (e.g. src/dst port numbers): We
3143  *  	don't have to update anything.
3144  **/
3145 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3146 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3147 {
3148 	u_int32_t x;
3149 
3150 	x = cksum + old - new;
3151 	x = (x + (x >> 16)) & 0xffff;
3152 
3153 	/* optimise: eliminate a branch when not udp */
3154 	if (udp && cksum == 0x0000)
3155 		return cksum;
3156 	if (udp && x == 0x0000)
3157 		x = 0xffff;
3158 
3159 	return (u_int16_t)(x);
3160 }
3161 
3162 static void
pf_patch_8(struct mbuf * m,u_int16_t * cksum,u_int8_t * f,u_int8_t v,bool hi,u_int8_t udp)3163 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
3164     u_int8_t udp)
3165 {
3166 	u_int16_t old = htons(hi ? (*f << 8) : *f);
3167 	u_int16_t new = htons(hi ? ( v << 8) :  v);
3168 
3169 	if (*f == v)
3170 		return;
3171 
3172 	*f = v;
3173 
3174 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3175 		return;
3176 
3177 	*cksum = pf_cksum_fixup(*cksum, old, new, udp);
3178 }
3179 
3180 void
pf_patch_16_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int16_t v,bool hi,u_int8_t udp)3181 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
3182     bool hi, u_int8_t udp)
3183 {
3184 	u_int8_t *fb = (u_int8_t *)f;
3185 	u_int8_t *vb = (u_int8_t *)&v;
3186 
3187 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3188 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3189 }
3190 
3191 void
pf_patch_32_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int32_t v,bool hi,u_int8_t udp)3192 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
3193     bool hi, u_int8_t udp)
3194 {
3195 	u_int8_t *fb = (u_int8_t *)f;
3196 	u_int8_t *vb = (u_int8_t *)&v;
3197 
3198 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3199 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3200 	pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3201 	pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3202 }
3203 
3204 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3205 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3206         u_int16_t new, u_int8_t udp)
3207 {
3208 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3209 		return (cksum);
3210 
3211 	return (pf_cksum_fixup(cksum, old, new, udp));
3212 }
3213 
3214 static void
pf_change_ap(struct mbuf * m,struct pf_addr * a,u_int16_t * p,u_int16_t * ic,u_int16_t * pc,struct pf_addr * an,u_int16_t pn,u_int8_t u,sa_family_t af,sa_family_t naf)3215 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
3216         u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
3217         sa_family_t af, sa_family_t naf)
3218 {
3219 	struct pf_addr	ao;
3220 	u_int16_t	po = *p;
3221 
3222 	PF_ACPY(&ao, a, af);
3223 	if (af == naf)
3224 		PF_ACPY(a, an, af);
3225 
3226 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3227 		*pc = ~*pc;
3228 
3229 	*p = pn;
3230 
3231 	switch (af) {
3232 #ifdef INET
3233 	case AF_INET:
3234 		switch (naf) {
3235 		case AF_INET:
3236 			*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3237 			    ao.addr16[0], an->addr16[0], 0),
3238 			    ao.addr16[1], an->addr16[1], 0);
3239 			*p = pn;
3240 
3241 			*pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
3242 			    ao.addr16[0], an->addr16[0], u),
3243 			    ao.addr16[1], an->addr16[1], u);
3244 
3245 			*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3246 			break;
3247 #ifdef INET6
3248 		case AF_INET6:
3249 			*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3250 			   pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3251 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
3252 			    ao.addr16[0], an->addr16[0], u),
3253 			    ao.addr16[1], an->addr16[1], u),
3254 			    0,            an->addr16[2], u),
3255 			    0,            an->addr16[3], u),
3256 			    0,            an->addr16[4], u),
3257 			    0,            an->addr16[5], u),
3258 			    0,            an->addr16[6], u),
3259 			    0,            an->addr16[7], u),
3260 			    po, pn, u);
3261 
3262 			/* XXXKP TODO *ic checksum? */
3263 			break;
3264 #endif /* INET6 */
3265 		}
3266 		break;
3267 #endif /* INET */
3268 #ifdef INET6
3269 	case AF_INET6:
3270 		switch (naf) {
3271 #ifdef INET
3272 		case AF_INET:
3273 			*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3274 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3275 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
3276 			    ao.addr16[0], an->addr16[0], u),
3277 			    ao.addr16[1], an->addr16[1], u),
3278 			    ao.addr16[2], 0,             u),
3279 			    ao.addr16[3], 0,             u),
3280 			    ao.addr16[4], 0,             u),
3281 			    ao.addr16[5], 0,             u),
3282 			    ao.addr16[6], 0,             u),
3283 			    ao.addr16[7], 0,             u),
3284 			    po, pn, u);
3285 
3286 			/* XXXKP TODO *ic checksum? */
3287 			break;
3288 #endif /* INET */
3289 		case AF_INET6:
3290 			*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3291 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3292 			    pf_cksum_fixup(pf_cksum_fixup(*pc,
3293 			    ao.addr16[0], an->addr16[0], u),
3294 			    ao.addr16[1], an->addr16[1], u),
3295 			    ao.addr16[2], an->addr16[2], u),
3296 			    ao.addr16[3], an->addr16[3], u),
3297 			    ao.addr16[4], an->addr16[4], u),
3298 			    ao.addr16[5], an->addr16[5], u),
3299 			    ao.addr16[6], an->addr16[6], u),
3300 			    ao.addr16[7], an->addr16[7], u);
3301 
3302 			*pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3303 			break;
3304 		}
3305 		break;
3306 #endif /* INET6 */
3307 	}
3308 
3309 	if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3310 	    CSUM_DELAY_DATA_IPV6)) {
3311 		*pc = ~*pc;
3312 		if (! *pc)
3313 			*pc = 0xffff;
3314 	}
3315 }
3316 
3317 /* Changes a u_int32_t.  Uses a void * so there are no align restrictions */
3318 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3319 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3320 {
3321 	u_int32_t	ao;
3322 
3323 	memcpy(&ao, a, sizeof(ao));
3324 	memcpy(a, &an, sizeof(u_int32_t));
3325 	*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3326 	    ao % 65536, an % 65536, u);
3327 }
3328 
3329 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3330 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3331 {
3332 	u_int32_t	ao;
3333 
3334 	memcpy(&ao, a, sizeof(ao));
3335 	memcpy(a, &an, sizeof(u_int32_t));
3336 
3337 	*c = pf_proto_cksum_fixup(m,
3338 	    pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3339 	    ao % 65536, an % 65536, udp);
3340 }
3341 
3342 #ifdef INET6
3343 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3344 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3345 {
3346 	struct pf_addr	ao;
3347 
3348 	PF_ACPY(&ao, a, AF_INET6);
3349 	PF_ACPY(a, an, AF_INET6);
3350 
3351 	*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3352 	    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3353 	    pf_cksum_fixup(pf_cksum_fixup(*c,
3354 	    ao.addr16[0], an->addr16[0], u),
3355 	    ao.addr16[1], an->addr16[1], u),
3356 	    ao.addr16[2], an->addr16[2], u),
3357 	    ao.addr16[3], an->addr16[3], u),
3358 	    ao.addr16[4], an->addr16[4], u),
3359 	    ao.addr16[5], an->addr16[5], u),
3360 	    ao.addr16[6], an->addr16[6], u),
3361 	    ao.addr16[7], an->addr16[7], u);
3362 }
3363 #endif /* INET6 */
3364 
3365 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3366 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3367     struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3368     u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3369 {
3370 	struct pf_addr	oia, ooa;
3371 
3372 	PF_ACPY(&oia, ia, af);
3373 	if (oa)
3374 		PF_ACPY(&ooa, oa, af);
3375 
3376 	/* Change inner protocol port, fix inner protocol checksum. */
3377 	if (ip != NULL) {
3378 		u_int16_t	oip = *ip;
3379 		u_int32_t	opc;
3380 
3381 		if (pc != NULL)
3382 			opc = *pc;
3383 		*ip = np;
3384 		if (pc != NULL)
3385 			*pc = pf_cksum_fixup(*pc, oip, *ip, u);
3386 		*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3387 		if (pc != NULL)
3388 			*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3389 	}
3390 	/* Change inner ip address, fix inner ip and icmp checksums. */
3391 	PF_ACPY(ia, na, af);
3392 	switch (af) {
3393 #ifdef INET
3394 	case AF_INET: {
3395 		u_int32_t	 oh2c = *h2c;
3396 
3397 		*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3398 		    oia.addr16[0], ia->addr16[0], 0),
3399 		    oia.addr16[1], ia->addr16[1], 0);
3400 		*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3401 		    oia.addr16[0], ia->addr16[0], 0),
3402 		    oia.addr16[1], ia->addr16[1], 0);
3403 		*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3404 		break;
3405 	}
3406 #endif /* INET */
3407 #ifdef INET6
3408 	case AF_INET6:
3409 		*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3410 		    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3411 		    pf_cksum_fixup(pf_cksum_fixup(*ic,
3412 		    oia.addr16[0], ia->addr16[0], u),
3413 		    oia.addr16[1], ia->addr16[1], u),
3414 		    oia.addr16[2], ia->addr16[2], u),
3415 		    oia.addr16[3], ia->addr16[3], u),
3416 		    oia.addr16[4], ia->addr16[4], u),
3417 		    oia.addr16[5], ia->addr16[5], u),
3418 		    oia.addr16[6], ia->addr16[6], u),
3419 		    oia.addr16[7], ia->addr16[7], u);
3420 		break;
3421 #endif /* INET6 */
3422 	}
3423 	/* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3424 	if (oa) {
3425 		PF_ACPY(oa, na, af);
3426 		switch (af) {
3427 #ifdef INET
3428 		case AF_INET:
3429 			*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3430 			    ooa.addr16[0], oa->addr16[0], 0),
3431 			    ooa.addr16[1], oa->addr16[1], 0);
3432 			break;
3433 #endif /* INET */
3434 #ifdef INET6
3435 		case AF_INET6:
3436 			*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3437 			    pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3438 			    pf_cksum_fixup(pf_cksum_fixup(*ic,
3439 			    ooa.addr16[0], oa->addr16[0], u),
3440 			    ooa.addr16[1], oa->addr16[1], u),
3441 			    ooa.addr16[2], oa->addr16[2], u),
3442 			    ooa.addr16[3], oa->addr16[3], u),
3443 			    ooa.addr16[4], oa->addr16[4], u),
3444 			    ooa.addr16[5], oa->addr16[5], u),
3445 			    ooa.addr16[6], oa->addr16[6], u),
3446 			    ooa.addr16[7], oa->addr16[7], u);
3447 			break;
3448 #endif /* INET6 */
3449 		}
3450 	}
3451 }
3452 
3453 int
pf_translate_af(struct pf_pdesc * pd)3454 pf_translate_af(struct pf_pdesc *pd)
3455 {
3456 #if defined(INET) && defined(INET6)
3457 	struct mbuf		*mp;
3458 	struct ip		*ip4;
3459 	struct ip6_hdr		*ip6;
3460 	struct icmp6_hdr	*icmp;
3461 	struct m_tag		*mtag;
3462 	struct pf_fragment_tag	*ftag;
3463 	int			 hlen;
3464 
3465 	hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3466 
3467 	/* trim the old header */
3468 	m_adj(pd->m, pd->off);
3469 
3470 	/* prepend a new one */
3471 	M_PREPEND(pd->m, hlen, M_NOWAIT);
3472 	if (pd->m == NULL)
3473 		return (-1);
3474 
3475 	switch (pd->naf) {
3476 	case AF_INET:
3477 		ip4 = mtod(pd->m, struct ip *);
3478 		bzero(ip4, hlen);
3479 		ip4->ip_v = IPVERSION;
3480 		ip4->ip_hl = hlen >> 2;
3481 		ip4->ip_tos = pd->tos;
3482 		ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3483 		ip_fillid(ip4);
3484 		ip4->ip_ttl = pd->ttl;
3485 		ip4->ip_p = pd->proto;
3486 		ip4->ip_src = pd->nsaddr.v4;
3487 		ip4->ip_dst = pd->ndaddr.v4;
3488 		pd->src = (struct pf_addr *)&ip4->ip_src;
3489 		pd->dst = (struct pf_addr *)&ip4->ip_dst;
3490 		pd->off = sizeof(struct ip);
3491 		break;
3492 	case AF_INET6:
3493 		ip6 = mtod(pd->m, struct ip6_hdr *);
3494 		bzero(ip6, hlen);
3495 		ip6->ip6_vfc = IPV6_VERSION;
3496 		ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3497 		ip6->ip6_plen = htons(pd->tot_len - pd->off);
3498 		ip6->ip6_nxt = pd->proto;
3499 		if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3500 			ip6->ip6_hlim = IPV6_DEFHLIM;
3501 		else
3502 			ip6->ip6_hlim = pd->ttl;
3503 		ip6->ip6_src = pd->nsaddr.v6;
3504 		ip6->ip6_dst = pd->ndaddr.v6;
3505 		pd->src = (struct pf_addr *)&ip6->ip6_src;
3506 		pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3507 		pd->off = sizeof(struct ip6_hdr);
3508 
3509 		/*
3510 		 * If we're dealing with a reassembled packet we need to adjust
3511 		 * the header length from the IPv4 header size to IPv6 header
3512 		 * size.
3513 		 */
3514 		mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3515 		if (mtag) {
3516 			ftag = (struct pf_fragment_tag *)(mtag + 1);
3517 			ftag->ft_hdrlen = sizeof(*ip6);
3518 			ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3519 			    sizeof(struct ip) + sizeof(struct ip6_frag);
3520 		}
3521 		break;
3522 	default:
3523 		return (-1);
3524 	}
3525 
3526 	/* recalculate icmp/icmp6 checksums */
3527 	if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3528 		int off;
3529 		if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3530 		    NULL) {
3531 			pd->m = NULL;
3532 			return (-1);
3533 		}
3534 		icmp = (struct icmp6_hdr *)(mp->m_data + off);
3535 		icmp->icmp6_cksum = 0;
3536 		icmp->icmp6_cksum = pd->naf == AF_INET ?
3537 		    in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3538 		    in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3539 			ntohs(ip6->ip6_plen));
3540 	}
3541 #endif /* INET && INET6 */
3542 
3543 	return (0);
3544 }
3545 
3546 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3547 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3548     struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3549     sa_family_t af, sa_family_t naf)
3550 {
3551 #if defined(INET) && defined(INET6)
3552 	struct mbuf	*n = NULL;
3553 	struct ip	*ip4;
3554 	struct ip6_hdr	*ip6;
3555 	int		 hlen, olen, mlen;
3556 
3557 	if (af == naf || (af != AF_INET && af != AF_INET6) ||
3558 	    (naf != AF_INET && naf != AF_INET6))
3559 		return (-1);
3560 
3561 	/* split the mbuf chain on the inner ip/ip6 header boundary */
3562 	if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3563 		return (-1);
3564 
3565 	/* old header */
3566 	olen = pd2->off - off;
3567 	/* new header */
3568 	hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3569 	/* data lenght */
3570 	mlen = m->m_pkthdr.len - pd2->off;
3571 
3572 	/* trim old header */
3573 	m_adj(n, olen);
3574 
3575 	/* prepend a new one */
3576 	M_PREPEND(n, hlen, M_NOWAIT);
3577 	if (n == NULL)
3578 		return (-1);
3579 
3580 	/* translate inner ip/ip6 header */
3581 	switch (naf) {
3582 	case AF_INET:
3583 		ip4 = mtod(n, struct ip *);
3584 		bzero(ip4, sizeof(*ip4));
3585 		ip4->ip_v = IPVERSION;
3586 		ip4->ip_hl = sizeof(*ip4) >> 2;
3587 		ip4->ip_len = htons(sizeof(*ip4) + mlen);
3588 		ip_fillid(ip4);
3589 		ip4->ip_off = htons(IP_DF);
3590 		ip4->ip_ttl = pd2->ttl;
3591 		if (pd2->proto == IPPROTO_ICMPV6)
3592 			ip4->ip_p = IPPROTO_ICMP;
3593 		else
3594 			ip4->ip_p = pd2->proto;
3595 		ip4->ip_src = src->v4;
3596 		ip4->ip_dst = dst->v4;
3597 		ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3598 		break;
3599 	case AF_INET6:
3600 		ip6 = mtod(n, struct ip6_hdr *);
3601 		bzero(ip6, sizeof(*ip6));
3602 		ip6->ip6_vfc = IPV6_VERSION;
3603 		ip6->ip6_plen = htons(mlen);
3604 		if (pd2->proto == IPPROTO_ICMP)
3605 			ip6->ip6_nxt = IPPROTO_ICMPV6;
3606 		else
3607 			ip6->ip6_nxt = pd2->proto;
3608 		if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3609 			ip6->ip6_hlim = IPV6_DEFHLIM;
3610 		else
3611 			ip6->ip6_hlim = pd2->ttl;
3612 		ip6->ip6_src = src->v6;
3613 		ip6->ip6_dst = dst->v6;
3614 		break;
3615 	}
3616 
3617 	/* adjust payload offset and total packet length */
3618 	pd2->off += hlen - olen;
3619 	pd->tot_len += hlen - olen;
3620 
3621 	/* merge modified inner packet with the original header */
3622 	mlen = n->m_pkthdr.len;
3623 	m_cat(m, n);
3624 	m->m_pkthdr.len += mlen;
3625 #endif /* INET && INET6 */
3626 
3627 	return (0);
3628 }
3629 
3630 #define PTR_IP(field)	(offsetof(struct ip, field))
3631 #define PTR_IP6(field)	(offsetof(struct ip6_hdr, field))
3632 
3633 int
pf_translate_icmp_af(int af,void * arg)3634 pf_translate_icmp_af(int af, void *arg)
3635 {
3636 #if defined(INET) && defined(INET6)
3637 	struct icmp		*icmp4;
3638 	struct icmp6_hdr	*icmp6;
3639 	u_int32_t		 mtu;
3640 	int32_t			 ptr = -1;
3641 	u_int8_t		 type;
3642 	u_int8_t		 code;
3643 
3644 	switch (af) {
3645 	case AF_INET:
3646 		icmp6 = arg;
3647 		type = icmp6->icmp6_type;
3648 		code = icmp6->icmp6_code;
3649 		mtu = ntohl(icmp6->icmp6_mtu);
3650 
3651 		switch (type) {
3652 		case ICMP6_ECHO_REQUEST:
3653 			type = ICMP_ECHO;
3654 			break;
3655 		case ICMP6_ECHO_REPLY:
3656 			type = ICMP_ECHOREPLY;
3657 			break;
3658 		case ICMP6_DST_UNREACH:
3659 			type = ICMP_UNREACH;
3660 			switch (code) {
3661 			case ICMP6_DST_UNREACH_NOROUTE:
3662 			case ICMP6_DST_UNREACH_BEYONDSCOPE:
3663 			case ICMP6_DST_UNREACH_ADDR:
3664 				code = ICMP_UNREACH_HOST;
3665 				break;
3666 			case ICMP6_DST_UNREACH_ADMIN:
3667 				code = ICMP_UNREACH_HOST_PROHIB;
3668 				break;
3669 			case ICMP6_DST_UNREACH_NOPORT:
3670 				code = ICMP_UNREACH_PORT;
3671 				break;
3672 			default:
3673 				return (-1);
3674 			}
3675 			break;
3676 		case ICMP6_PACKET_TOO_BIG:
3677 			type = ICMP_UNREACH;
3678 			code = ICMP_UNREACH_NEEDFRAG;
3679 			mtu -= 20;
3680 			break;
3681 		case ICMP6_TIME_EXCEEDED:
3682 			type = ICMP_TIMXCEED;
3683 			break;
3684 		case ICMP6_PARAM_PROB:
3685 			switch (code) {
3686 			case ICMP6_PARAMPROB_HEADER:
3687 				type = ICMP_PARAMPROB;
3688 				code = ICMP_PARAMPROB_ERRATPTR;
3689 				ptr = ntohl(icmp6->icmp6_pptr);
3690 
3691 				if (ptr == PTR_IP6(ip6_vfc))
3692 					; /* preserve */
3693 				else if (ptr == PTR_IP6(ip6_vfc) + 1)
3694 					ptr = PTR_IP(ip_tos);
3695 				else if (ptr == PTR_IP6(ip6_plen) ||
3696 				    ptr == PTR_IP6(ip6_plen) + 1)
3697 					ptr = PTR_IP(ip_len);
3698 				else if (ptr == PTR_IP6(ip6_nxt))
3699 					ptr = PTR_IP(ip_p);
3700 				else if (ptr == PTR_IP6(ip6_hlim))
3701 					ptr = PTR_IP(ip_ttl);
3702 				else if (ptr >= PTR_IP6(ip6_src) &&
3703 				    ptr < PTR_IP6(ip6_dst))
3704 					ptr = PTR_IP(ip_src);
3705 				else if (ptr >= PTR_IP6(ip6_dst) &&
3706 				    ptr < sizeof(struct ip6_hdr))
3707 					ptr = PTR_IP(ip_dst);
3708 				else {
3709 					return (-1);
3710 				}
3711 				break;
3712 			case ICMP6_PARAMPROB_NEXTHEADER:
3713 				type = ICMP_UNREACH;
3714 				code = ICMP_UNREACH_PROTOCOL;
3715 				break;
3716 			default:
3717 				return (-1);
3718 			}
3719 			break;
3720 		default:
3721 			return (-1);
3722 		}
3723 		if (icmp6->icmp6_type != type) {
3724 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3725 			    icmp6->icmp6_type, type, 0);
3726 			icmp6->icmp6_type = type;
3727 		}
3728 		if (icmp6->icmp6_code != code) {
3729 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3730 			    icmp6->icmp6_code, code, 0);
3731 			icmp6->icmp6_code = code;
3732 		}
3733 		if (icmp6->icmp6_mtu != htonl(mtu)) {
3734 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3735 			    htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3736 			/* aligns well with a icmpv4 nextmtu */
3737 			icmp6->icmp6_mtu = htonl(mtu);
3738 		}
3739 		if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3740 			icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3741 			    htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3742 			/* icmpv4 pptr is a one most significant byte */
3743 			icmp6->icmp6_pptr = htonl(ptr << 24);
3744 		}
3745 		break;
3746 	case AF_INET6:
3747 		icmp4 = arg;
3748 		type = icmp4->icmp_type;
3749 		code = icmp4->icmp_code;
3750 		mtu = ntohs(icmp4->icmp_nextmtu);
3751 
3752 		switch (type) {
3753 		case ICMP_ECHO:
3754 			type = ICMP6_ECHO_REQUEST;
3755 			break;
3756 		case ICMP_ECHOREPLY:
3757 			type = ICMP6_ECHO_REPLY;
3758 			break;
3759 		case ICMP_UNREACH:
3760 			type = ICMP6_DST_UNREACH;
3761 			switch (code) {
3762 			case ICMP_UNREACH_NET:
3763 			case ICMP_UNREACH_HOST:
3764 			case ICMP_UNREACH_NET_UNKNOWN:
3765 			case ICMP_UNREACH_HOST_UNKNOWN:
3766 			case ICMP_UNREACH_ISOLATED:
3767 			case ICMP_UNREACH_TOSNET:
3768 			case ICMP_UNREACH_TOSHOST:
3769 				code = ICMP6_DST_UNREACH_NOROUTE;
3770 				break;
3771 			case ICMP_UNREACH_PORT:
3772 				code = ICMP6_DST_UNREACH_NOPORT;
3773 				break;
3774 			case ICMP_UNREACH_NET_PROHIB:
3775 			case ICMP_UNREACH_HOST_PROHIB:
3776 			case ICMP_UNREACH_FILTER_PROHIB:
3777 			case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3778 				code = ICMP6_DST_UNREACH_ADMIN;
3779 				break;
3780 			case ICMP_UNREACH_PROTOCOL:
3781 				type = ICMP6_PARAM_PROB;
3782 				code = ICMP6_PARAMPROB_NEXTHEADER;
3783 				ptr = offsetof(struct ip6_hdr, ip6_nxt);
3784 				break;
3785 			case ICMP_UNREACH_NEEDFRAG:
3786 				type = ICMP6_PACKET_TOO_BIG;
3787 				code = 0;
3788 				mtu += 20;
3789 				break;
3790 			default:
3791 				return (-1);
3792 			}
3793 			break;
3794 		case ICMP_TIMXCEED:
3795 			type = ICMP6_TIME_EXCEEDED;
3796 			break;
3797 		case ICMP_PARAMPROB:
3798 			type = ICMP6_PARAM_PROB;
3799 			switch (code) {
3800 			case ICMP_PARAMPROB_ERRATPTR:
3801 				code = ICMP6_PARAMPROB_HEADER;
3802 				break;
3803 			case ICMP_PARAMPROB_LENGTH:
3804 				code = ICMP6_PARAMPROB_HEADER;
3805 				break;
3806 			default:
3807 				return (-1);
3808 			}
3809 
3810 			ptr = icmp4->icmp_pptr;
3811 			if (ptr == 0 || ptr == PTR_IP(ip_tos))
3812 				; /* preserve */
3813 			else if (ptr == PTR_IP(ip_len) ||
3814 			    ptr == PTR_IP(ip_len) + 1)
3815 				ptr = PTR_IP6(ip6_plen);
3816 			else if (ptr == PTR_IP(ip_ttl))
3817 				ptr = PTR_IP6(ip6_hlim);
3818 			else if (ptr == PTR_IP(ip_p))
3819 				ptr = PTR_IP6(ip6_nxt);
3820 			else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3821 				ptr = PTR_IP6(ip6_src);
3822 			else if (ptr >= PTR_IP(ip_dst) &&
3823 			    ptr < sizeof(struct ip))
3824 				ptr = PTR_IP6(ip6_dst);
3825 			else {
3826 				return (-1);
3827 			}
3828 			break;
3829 		default:
3830 			return (-1);
3831 		}
3832 		if (icmp4->icmp_type != type) {
3833 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3834 			    icmp4->icmp_type, type, 0);
3835 			icmp4->icmp_type = type;
3836 		}
3837 		if (icmp4->icmp_code != code) {
3838 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3839 			    icmp4->icmp_code, code, 0);
3840 			icmp4->icmp_code = code;
3841 		}
3842 		if (icmp4->icmp_nextmtu != htons(mtu)) {
3843 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3844 			    icmp4->icmp_nextmtu, htons(mtu), 0);
3845 			icmp4->icmp_nextmtu = htons(mtu);
3846 		}
3847 		if (ptr >= 0 && icmp4->icmp_void != ptr) {
3848 			icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3849 			    htons(icmp4->icmp_pptr), htons(ptr), 0);
3850 			icmp4->icmp_void = htonl(ptr);
3851 		}
3852 		break;
3853 	}
3854 #endif /* INET && INET6 */
3855 
3856 	return (0);
3857 }
3858 
3859 /*
3860  * Need to modulate the sequence numbers in the TCP SACK option
3861  * (credits to Krzysztof Pfaff for report and patch)
3862  */
3863 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3864 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3865     struct pf_state_peer *dst)
3866 {
3867 	int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
3868 	u_int8_t opts[TCP_MAXOLEN], *opt = opts;
3869 	int copyback = 0, i, olen;
3870 	struct sackblk sack;
3871 
3872 #define	TCPOLEN_SACKLEN	(TCPOLEN_SACK + 2)
3873 	if (hlen < TCPOLEN_SACKLEN ||
3874 	    !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
3875 		return 0;
3876 
3877 	while (hlen >= TCPOLEN_SACKLEN) {
3878 		size_t startoff = opt - opts;
3879 		olen = opt[1];
3880 		switch (*opt) {
3881 		case TCPOPT_EOL:	/* FALLTHROUGH */
3882 		case TCPOPT_NOP:
3883 			opt++;
3884 			hlen--;
3885 			break;
3886 		case TCPOPT_SACK:
3887 			if (olen > hlen)
3888 				olen = hlen;
3889 			if (olen >= TCPOLEN_SACKLEN) {
3890 				for (i = 2; i + TCPOLEN_SACK <= olen;
3891 				    i += TCPOLEN_SACK) {
3892 					memcpy(&sack, &opt[i], sizeof(sack));
3893 					pf_patch_32_unaligned(pd->m,
3894 					    &th->th_sum, &sack.start,
3895 					    htonl(ntohl(sack.start) - dst->seqdiff),
3896 					    PF_ALGNMNT(startoff),
3897 					    0);
3898 					pf_patch_32_unaligned(pd->m, &th->th_sum,
3899 					    &sack.end,
3900 					    htonl(ntohl(sack.end) - dst->seqdiff),
3901 					    PF_ALGNMNT(startoff),
3902 					    0);
3903 					memcpy(&opt[i], &sack, sizeof(sack));
3904 				}
3905 				copyback = 1;
3906 			}
3907 			/* FALLTHROUGH */
3908 		default:
3909 			if (olen < 2)
3910 				olen = 2;
3911 			hlen -= olen;
3912 			opt += olen;
3913 		}
3914 	}
3915 
3916 	if (copyback)
3917 		m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts);
3918 	return (copyback);
3919 }
3920 
3921 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)3922 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3923     const struct pf_addr *saddr, const struct pf_addr *daddr,
3924     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3925     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3926     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3927 {
3928 	struct mbuf	*m;
3929 	int		 len, tlen;
3930 #ifdef INET
3931 	struct ip	*h = NULL;
3932 #endif /* INET */
3933 #ifdef INET6
3934 	struct ip6_hdr	*h6 = NULL;
3935 #endif /* INET6 */
3936 	struct tcphdr	*th;
3937 	char		*opt;
3938 	struct pf_mtag  *pf_mtag;
3939 
3940 	len = 0;
3941 	th = NULL;
3942 
3943 	/* maximum segment size tcp option */
3944 	tlen = sizeof(struct tcphdr);
3945 	if (mss)
3946 		tlen += 4;
3947 
3948 	switch (af) {
3949 #ifdef INET
3950 	case AF_INET:
3951 		len = sizeof(struct ip) + tlen;
3952 		break;
3953 #endif /* INET */
3954 #ifdef INET6
3955 	case AF_INET6:
3956 		len = sizeof(struct ip6_hdr) + tlen;
3957 		break;
3958 #endif /* INET6 */
3959 	}
3960 
3961 	m = m_gethdr(M_NOWAIT, MT_DATA);
3962 	if (m == NULL)
3963 		return (NULL);
3964 
3965 #ifdef MAC
3966 	mac_netinet_firewall_send(m);
3967 #endif
3968 	if ((pf_mtag = pf_get_mtag(m)) == NULL) {
3969 		m_freem(m);
3970 		return (NULL);
3971 	}
3972 	m->m_flags |= mbuf_flags;
3973 	pf_mtag->tag = mtag_tag;
3974 	pf_mtag->flags = mtag_flags;
3975 
3976 	if (rtableid >= 0)
3977 		M_SETFIB(m, rtableid);
3978 
3979 #ifdef ALTQ
3980 	if (r != NULL && r->qid) {
3981 		pf_mtag->qid = r->qid;
3982 
3983 		/* add hints for ecn */
3984 		pf_mtag->hdr = mtod(m, struct ip *);
3985 	}
3986 #endif /* ALTQ */
3987 	m->m_data += max_linkhdr;
3988 	m->m_pkthdr.len = m->m_len = len;
3989 	/* The rest of the stack assumes a rcvif, so provide one.
3990 	 * This is a locally generated packet, so .. close enough. */
3991 	m->m_pkthdr.rcvif = V_loif;
3992 	bzero(m->m_data, len);
3993 	switch (af) {
3994 #ifdef INET
3995 	case AF_INET:
3996 		h = mtod(m, struct ip *);
3997 
3998 		/* IP header fields included in the TCP checksum */
3999 		h->ip_p = IPPROTO_TCP;
4000 		h->ip_len = htons(tlen);
4001 		h->ip_src.s_addr = saddr->v4.s_addr;
4002 		h->ip_dst.s_addr = daddr->v4.s_addr;
4003 
4004 		th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4005 		break;
4006 #endif /* INET */
4007 #ifdef INET6
4008 	case AF_INET6:
4009 		h6 = mtod(m, struct ip6_hdr *);
4010 
4011 		/* IP header fields included in the TCP checksum */
4012 		h6->ip6_nxt = IPPROTO_TCP;
4013 		h6->ip6_plen = htons(tlen);
4014 		memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4015 		memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4016 
4017 		th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4018 		break;
4019 #endif /* INET6 */
4020 	}
4021 
4022 	/* TCP header */
4023 	th->th_sport = sport;
4024 	th->th_dport = dport;
4025 	th->th_seq = htonl(seq);
4026 	th->th_ack = htonl(ack);
4027 	th->th_off = tlen >> 2;
4028 	tcp_set_flags(th, tcp_flags);
4029 	th->th_win = htons(win);
4030 
4031 	if (mss) {
4032 		opt = (char *)(th + 1);
4033 		opt[0] = TCPOPT_MAXSEG;
4034 		opt[1] = 4;
4035 		HTONS(mss);
4036 		bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
4037 	}
4038 
4039 	switch (af) {
4040 #ifdef INET
4041 	case AF_INET:
4042 		/* TCP checksum */
4043 		th->th_sum = in_cksum(m, len);
4044 
4045 		/* Finish the IP header */
4046 		h->ip_v = 4;
4047 		h->ip_hl = sizeof(*h) >> 2;
4048 		h->ip_tos = IPTOS_LOWDELAY;
4049 		h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4050 		h->ip_len = htons(len);
4051 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4052 		h->ip_sum = 0;
4053 		break;
4054 #endif /* INET */
4055 #ifdef INET6
4056 	case AF_INET6:
4057 		/* TCP checksum */
4058 		th->th_sum = in6_cksum(m, IPPROTO_TCP,
4059 		    sizeof(struct ip6_hdr), tlen);
4060 
4061 		h6->ip6_vfc |= IPV6_VERSION;
4062 		h6->ip6_hlim = IPV6_DEFHLIM;
4063 		break;
4064 #endif /* INET6 */
4065 	}
4066 
4067 	return (m);
4068 }
4069 
4070 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4071 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4072     uint8_t ttl, int rtableid)
4073 {
4074 	struct mbuf		*m;
4075 #ifdef INET
4076 	struct ip		*h = NULL;
4077 #endif /* INET */
4078 #ifdef INET6
4079 	struct ip6_hdr		*h6 = NULL;
4080 #endif /* INET6 */
4081 	struct sctphdr		*hdr;
4082 	struct sctp_chunkhdr	*chunk;
4083 	struct pf_send_entry	*pfse;
4084 	int			 off = 0;
4085 
4086 	MPASS(af == pd->af);
4087 
4088 	m = m_gethdr(M_NOWAIT, MT_DATA);
4089 	if (m == NULL)
4090 		return;
4091 
4092 	m->m_data += max_linkhdr;
4093 	m->m_flags |= M_SKIP_FIREWALL;
4094 	/* The rest of the stack assumes a rcvif, so provide one.
4095 	 * This is a locally generated packet, so .. close enough. */
4096 	m->m_pkthdr.rcvif = V_loif;
4097 
4098 	/* IPv4|6 header */
4099 	switch (af) {
4100 #ifdef INET
4101 	case AF_INET:
4102 		bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4103 
4104 		h = mtod(m, struct ip *);
4105 
4106 		/* IP header fields included in the TCP checksum */
4107 
4108 		h->ip_p = IPPROTO_SCTP;
4109 		h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4110 		h->ip_ttl = ttl ? ttl : V_ip_defttl;
4111 		h->ip_src = pd->dst->v4;
4112 		h->ip_dst = pd->src->v4;
4113 
4114 		off += sizeof(struct ip);
4115 		break;
4116 #endif /* INET */
4117 #ifdef INET6
4118 	case AF_INET6:
4119 		bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4120 
4121 		h6 = mtod(m, struct ip6_hdr *);
4122 
4123 		/* IP header fields included in the TCP checksum */
4124 		h6->ip6_vfc |= IPV6_VERSION;
4125 		h6->ip6_nxt = IPPROTO_SCTP;
4126 		h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4127 		h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4128 		memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4129 		memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4130 
4131 		off += sizeof(struct ip6_hdr);
4132 		break;
4133 #endif /* INET6 */
4134 	}
4135 
4136 	/* SCTP header */
4137 	hdr = mtodo(m, off);
4138 
4139 	hdr->src_port = pd->hdr.sctp.dest_port;
4140 	hdr->dest_port = pd->hdr.sctp.src_port;
4141 	hdr->v_tag = pd->sctp_initiate_tag;
4142 	hdr->checksum = 0;
4143 
4144 	/* Abort chunk. */
4145 	off += sizeof(struct sctphdr);
4146 	chunk = mtodo(m, off);
4147 
4148 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4149 	chunk->chunk_length = htons(sizeof(*chunk));
4150 
4151 	/* SCTP checksum */
4152 	off += sizeof(*chunk);
4153 	m->m_pkthdr.len = m->m_len = off;
4154 
4155 	pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4156 
4157 	if (rtableid >= 0)
4158 		M_SETFIB(m, rtableid);
4159 
4160 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4161 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4162 	if (pfse == NULL) {
4163 		m_freem(m);
4164 		return;
4165 	}
4166 
4167 	switch (af) {
4168 #ifdef INET
4169 	case AF_INET:
4170 		pfse->pfse_type = PFSE_IP;
4171 		break;
4172 #endif /* INET */
4173 #ifdef INET6
4174 	case AF_INET6:
4175 		pfse->pfse_type = PFSE_IP6;
4176 		break;
4177 #endif /* INET6 */
4178 	}
4179 
4180 	pfse->pfse_m = m;
4181 	pf_send(pfse);
4182 }
4183 
4184 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4185 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4186     const struct pf_addr *saddr, const struct pf_addr *daddr,
4187     u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4188     u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4189     int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4190 {
4191 	struct pf_send_entry *pfse;
4192 	struct mbuf	*m;
4193 
4194 	m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4195 	    win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid);
4196 	if (m == NULL)
4197 		return;
4198 
4199 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4200 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4201 	if (pfse == NULL) {
4202 		m_freem(m);
4203 		return;
4204 	}
4205 
4206 	switch (af) {
4207 #ifdef INET
4208 	case AF_INET:
4209 		pfse->pfse_type = PFSE_IP;
4210 		break;
4211 #endif /* INET */
4212 #ifdef INET6
4213 	case AF_INET6:
4214 		pfse->pfse_type = PFSE_IP6;
4215 		break;
4216 #endif /* INET6 */
4217 	}
4218 
4219 	pfse->pfse_m = m;
4220 	pf_send(pfse);
4221 }
4222 
4223 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct pf_state_key * sk,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4224 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4225     struct pf_state_key *sk, struct tcphdr *th,
4226     u_int16_t bproto_sum, u_int16_t bip_sum,
4227     u_short *reason, int rtableid)
4228 {
4229 	struct pf_addr	* const saddr = pd->src;
4230 	struct pf_addr	* const daddr = pd->dst;
4231 
4232 	/* undo NAT changes, if they have taken place */
4233 	if (nr != NULL) {
4234 		PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af);
4235 		PF_ACPY(daddr, &sk->addr[pd->didx], pd->af);
4236 		if (pd->sport)
4237 			*pd->sport = sk->port[pd->sidx];
4238 		if (pd->dport)
4239 			*pd->dport = sk->port[pd->didx];
4240 		if (pd->ip_sum)
4241 			*pd->ip_sum = bip_sum;
4242 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4243 	}
4244 	if (pd->proto == IPPROTO_TCP &&
4245 	    ((r->rule_flag & PFRULE_RETURNRST) ||
4246 	    (r->rule_flag & PFRULE_RETURN)) &&
4247 	    !(tcp_get_flags(th) & TH_RST)) {
4248 		u_int32_t	 ack = ntohl(th->th_seq) + pd->p_len;
4249 
4250 		if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4251 		    IPPROTO_TCP, pd->af))
4252 			REASON_SET(reason, PFRES_PROTCKSUM);
4253 		else {
4254 			if (tcp_get_flags(th) & TH_SYN)
4255 				ack++;
4256 			if (tcp_get_flags(th) & TH_FIN)
4257 				ack++;
4258 			pf_send_tcp(r, pd->af, pd->dst,
4259 				pd->src, th->th_dport, th->th_sport,
4260 				ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4261 				r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4262 		}
4263 	} else if (pd->proto == IPPROTO_SCTP &&
4264 	    (r->rule_flag & PFRULE_RETURN)) {
4265 		pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4266 	} else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4267 		r->return_icmp)
4268 		pf_send_icmp(pd->m, r->return_icmp >> 8,
4269 			r->return_icmp & 255, pd->af, r, rtableid);
4270 	else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4271 		r->return_icmp6)
4272 		pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4273 			r->return_icmp6 & 255, pd->af, r, rtableid);
4274 }
4275 
4276 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4277 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4278 {
4279 	struct m_tag *mtag;
4280 	u_int8_t mpcp;
4281 
4282 	mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4283 	if (mtag == NULL)
4284 		return (0);
4285 
4286 	if (prio == PF_PRIO_ZERO)
4287 		prio = 0;
4288 
4289 	mpcp = *(uint8_t *)(mtag + 1);
4290 
4291 	return (mpcp == prio);
4292 }
4293 
4294 static int
pf_icmp_to_bandlim(uint8_t type)4295 pf_icmp_to_bandlim(uint8_t type)
4296 {
4297 	switch (type) {
4298 		case ICMP_ECHO:
4299 		case ICMP_ECHOREPLY:
4300 			return (BANDLIM_ICMP_ECHO);
4301 		case ICMP_TSTAMP:
4302 		case ICMP_TSTAMPREPLY:
4303 			return (BANDLIM_ICMP_TSTAMP);
4304 		case ICMP_UNREACH:
4305 		default:
4306 			return (BANDLIM_ICMP_UNREACH);
4307 	}
4308 }
4309 
4310 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,sa_family_t af,struct pf_krule * r,int rtableid)4311 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
4312     struct pf_krule *r, int rtableid)
4313 {
4314 	struct pf_send_entry *pfse;
4315 	struct mbuf *m0;
4316 	struct pf_mtag *pf_mtag;
4317 
4318 	/* ICMP packet rate limitation. */
4319 	switch (af) {
4320 #ifdef INET6
4321 	case AF_INET6:
4322 		if (icmp6_ratelimit(NULL, type, code))
4323 			return;
4324 		break;
4325 #endif
4326 #ifdef INET
4327 	case AF_INET:
4328 		if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4329 			return;
4330 		break;
4331 #endif
4332 	}
4333 
4334 	/* Allocate outgoing queue entry, mbuf and mbuf tag. */
4335 	pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4336 	if (pfse == NULL)
4337 		return;
4338 
4339 	if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4340 		free(pfse, M_PFTEMP);
4341 		return;
4342 	}
4343 
4344 	if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4345 		free(pfse, M_PFTEMP);
4346 		return;
4347 	}
4348 	/* XXX: revisit */
4349 	m0->m_flags |= M_SKIP_FIREWALL;
4350 
4351 	if (rtableid >= 0)
4352 		M_SETFIB(m0, rtableid);
4353 
4354 #ifdef ALTQ
4355 	if (r->qid) {
4356 		pf_mtag->qid = r->qid;
4357 		/* add hints for ecn */
4358 		pf_mtag->hdr = mtod(m0, struct ip *);
4359 	}
4360 #endif /* ALTQ */
4361 
4362 	switch (af) {
4363 #ifdef INET
4364 	case AF_INET:
4365 		pfse->pfse_type = PFSE_ICMP;
4366 		break;
4367 #endif /* INET */
4368 #ifdef INET6
4369 	case AF_INET6:
4370 		pfse->pfse_type = PFSE_ICMP6;
4371 		break;
4372 #endif /* INET6 */
4373 	}
4374 	pfse->pfse_m = m0;
4375 	pfse->icmpopts.type = type;
4376 	pfse->icmpopts.code = code;
4377 	pf_send(pfse);
4378 }
4379 
4380 /*
4381  * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
4382  * If n is 0, they match if they are equal. If n is != 0, they match if they
4383  * are different.
4384  */
4385 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4386 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4387     const struct pf_addr *b, sa_family_t af)
4388 {
4389 	int	match = 0;
4390 
4391 	switch (af) {
4392 #ifdef INET
4393 	case AF_INET:
4394 		if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4395 			match++;
4396 		break;
4397 #endif /* INET */
4398 #ifdef INET6
4399 	case AF_INET6:
4400 		if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4401 			match++;
4402 		break;
4403 #endif /* INET6 */
4404 	}
4405 	if (match) {
4406 		if (n)
4407 			return (0);
4408 		else
4409 			return (1);
4410 	} else {
4411 		if (n)
4412 			return (1);
4413 		else
4414 			return (0);
4415 	}
4416 }
4417 
4418 /*
4419  * Return 1 if b <= a <= e, otherwise return 0.
4420  */
4421 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4422 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4423     const struct pf_addr *a, sa_family_t af)
4424 {
4425 	switch (af) {
4426 #ifdef INET
4427 	case AF_INET:
4428 		if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4429 		    (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4430 			return (0);
4431 		break;
4432 #endif /* INET */
4433 #ifdef INET6
4434 	case AF_INET6: {
4435 		int	i;
4436 
4437 		/* check a >= b */
4438 		for (i = 0; i < 4; ++i)
4439 			if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4440 				break;
4441 			else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4442 				return (0);
4443 		/* check a <= e */
4444 		for (i = 0; i < 4; ++i)
4445 			if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4446 				break;
4447 			else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4448 				return (0);
4449 		break;
4450 	}
4451 #endif /* INET6 */
4452 	}
4453 	return (1);
4454 }
4455 
4456 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4457 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4458 {
4459 	switch (op) {
4460 	case PF_OP_IRG:
4461 		return ((p > a1) && (p < a2));
4462 	case PF_OP_XRG:
4463 		return ((p < a1) || (p > a2));
4464 	case PF_OP_RRG:
4465 		return ((p >= a1) && (p <= a2));
4466 	case PF_OP_EQ:
4467 		return (p == a1);
4468 	case PF_OP_NE:
4469 		return (p != a1);
4470 	case PF_OP_LT:
4471 		return (p < a1);
4472 	case PF_OP_LE:
4473 		return (p <= a1);
4474 	case PF_OP_GT:
4475 		return (p > a1);
4476 	case PF_OP_GE:
4477 		return (p >= a1);
4478 	}
4479 	return (0); /* never reached */
4480 }
4481 
4482 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4483 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4484 {
4485 	NTOHS(a1);
4486 	NTOHS(a2);
4487 	NTOHS(p);
4488 	return (pf_match(op, a1, a2, p));
4489 }
4490 
4491 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4492 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4493 {
4494 	if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4495 		return (0);
4496 	return (pf_match(op, a1, a2, u));
4497 }
4498 
4499 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4500 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4501 {
4502 	if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4503 		return (0);
4504 	return (pf_match(op, a1, a2, g));
4505 }
4506 
4507 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4508 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4509 {
4510 	if (*tag == -1)
4511 		*tag = mtag;
4512 
4513 	return ((!r->match_tag_not && r->match_tag == *tag) ||
4514 	    (r->match_tag_not && r->match_tag != *tag));
4515 }
4516 
4517 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4518 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4519 {
4520 	struct ifnet *ifp = m->m_pkthdr.rcvif;
4521 	struct pfi_kkif *kif;
4522 
4523 	if (ifp == NULL)
4524 		return (0);
4525 
4526 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
4527 
4528 	if (kif == NULL) {
4529 		DPFPRINTF(PF_DEBUG_URGENT,
4530 		    ("pf_test_via: kif == NULL, @%d via %s\n", r->nr,
4531 			r->rcv_ifname));
4532 		return (0);
4533 	}
4534 
4535 	return (pfi_kkif_match(r->rcv_kif, kif));
4536 }
4537 
4538 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4539 pf_tag_packet(struct pf_pdesc *pd, int tag)
4540 {
4541 
4542 	KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4543 
4544 	if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4545 		return (ENOMEM);
4546 
4547 	pd->pf_mtag->tag = tag;
4548 
4549 	return (0);
4550 }
4551 
4552 #define	PF_ANCHOR_STACKSIZE	32
4553 struct pf_kanchor_stackframe {
4554 	struct pf_kruleset	*rs;
4555 	struct pf_krule		*r;	/* XXX: + match bit */
4556 	struct pf_kanchor	*child;
4557 };
4558 
4559 /*
4560  * XXX: We rely on malloc(9) returning pointer aligned addresses.
4561  */
4562 #define	PF_ANCHORSTACK_MATCH	0x00000001
4563 #define	PF_ANCHORSTACK_MASK	(PF_ANCHORSTACK_MATCH)
4564 
4565 #define	PF_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4566 #define	PF_ANCHOR_RULE(f)	(struct pf_krule *)			\
4567 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4568 #define	PF_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 			\
4569 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4570 } while (0)
4571 
4572 void
pf_step_into_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4573 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4574     struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4575     int *match)
4576 {
4577 	struct pf_kanchor_stackframe	*f;
4578 
4579 	PF_RULES_RASSERT();
4580 
4581 	if (match)
4582 		*match = 0;
4583 	if (*depth >= PF_ANCHOR_STACKSIZE) {
4584 		printf("%s: anchor stack overflow on %s\n",
4585 		    __func__, (*r)->anchor->name);
4586 		*r = TAILQ_NEXT(*r, entries);
4587 		return;
4588 	} else if (*depth == 0 && a != NULL)
4589 		*a = *r;
4590 	f = stack + (*depth)++;
4591 	f->rs = *rs;
4592 	f->r = *r;
4593 	if ((*r)->anchor_wildcard) {
4594 		struct pf_kanchor_node *parent = &(*r)->anchor->children;
4595 
4596 		if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
4597 			*r = NULL;
4598 			return;
4599 		}
4600 		*rs = &f->child->ruleset;
4601 	} else {
4602 		f->child = NULL;
4603 		*rs = &(*r)->anchor->ruleset;
4604 	}
4605 	*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4606 }
4607 
4608 int
pf_step_out_of_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4609 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4610     struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4611     int *match)
4612 {
4613 	struct pf_kanchor_stackframe	*f;
4614 	struct pf_krule *fr;
4615 	int quick = 0;
4616 
4617 	PF_RULES_RASSERT();
4618 
4619 	do {
4620 		if (*depth <= 0)
4621 			break;
4622 		f = stack + *depth - 1;
4623 		fr = PF_ANCHOR_RULE(f);
4624 		if (f->child != NULL) {
4625 			/*
4626 			 * This block traverses through
4627 			 * a wildcard anchor.
4628 			 */
4629 			if (match != NULL && *match) {
4630 				/*
4631 				 * If any of "*" matched, then
4632 				 * "foo/ *" matched, mark frame
4633 				 * appropriately.
4634 				 */
4635 				PF_ANCHOR_SET_MATCH(f);
4636 				*match = 0;
4637 			}
4638 			f->child = RB_NEXT(pf_kanchor_node,
4639 			    &fr->anchor->children, f->child);
4640 			if (f->child != NULL) {
4641 				*rs = &f->child->ruleset;
4642 				*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4643 				if (*r == NULL)
4644 					continue;
4645 				else
4646 					break;
4647 			}
4648 		}
4649 		(*depth)--;
4650 		if (*depth == 0 && a != NULL)
4651 			*a = NULL;
4652 		*rs = f->rs;
4653 		if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
4654 			quick = fr->quick;
4655 		*r = TAILQ_NEXT(fr, entries);
4656 	} while (*r == NULL);
4657 
4658 	return (quick);
4659 }
4660 
4661 struct pf_keth_anchor_stackframe {
4662 	struct pf_keth_ruleset	*rs;
4663 	struct pf_keth_rule	*r;	/* XXX: + match bit */
4664 	struct pf_keth_anchor	*child;
4665 };
4666 
4667 #define	PF_ETH_ANCHOR_MATCH(f)	((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4668 #define	PF_ETH_ANCHOR_RULE(f)	(struct pf_keth_rule *)			\
4669 				((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4670 #define	PF_ETH_ANCHOR_SET_MATCH(f)	do { (f)->r = (void *) 		\
4671 				((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH);  \
4672 } while (0)
4673 
4674 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4675 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4676     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4677     struct pf_keth_rule **a, int *match)
4678 {
4679 	struct pf_keth_anchor_stackframe	*f;
4680 
4681 	NET_EPOCH_ASSERT();
4682 
4683 	if (match)
4684 		*match = 0;
4685 	if (*depth >= PF_ANCHOR_STACKSIZE) {
4686 		printf("%s: anchor stack overflow on %s\n",
4687 		    __func__, (*r)->anchor->name);
4688 		*r = TAILQ_NEXT(*r, entries);
4689 		return;
4690 	} else if (*depth == 0 && a != NULL)
4691 		*a = *r;
4692 	f = stack + (*depth)++;
4693 	f->rs = *rs;
4694 	f->r = *r;
4695 	if ((*r)->anchor_wildcard) {
4696 		struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4697 
4698 		if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4699 			*r = NULL;
4700 			return;
4701 		}
4702 		*rs = &f->child->ruleset;
4703 	} else {
4704 		f->child = NULL;
4705 		*rs = &(*r)->anchor->ruleset;
4706 	}
4707 	*r = TAILQ_FIRST((*rs)->active.rules);
4708 }
4709 
4710 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4711 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4712     struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4713     struct pf_keth_rule **a, int *match)
4714 {
4715 	struct pf_keth_anchor_stackframe	*f;
4716 	struct pf_keth_rule *fr;
4717 	int quick = 0;
4718 
4719 	NET_EPOCH_ASSERT();
4720 
4721 	do {
4722 		if (*depth <= 0)
4723 			break;
4724 		f = stack + *depth - 1;
4725 		fr = PF_ETH_ANCHOR_RULE(f);
4726 		if (f->child != NULL) {
4727 			/*
4728 			 * This block traverses through
4729 			 * a wildcard anchor.
4730 			 */
4731 			if (match != NULL && *match) {
4732 				/*
4733 				 * If any of "*" matched, then
4734 				 * "foo/ *" matched, mark frame
4735 				 * appropriately.
4736 				 */
4737 				PF_ETH_ANCHOR_SET_MATCH(f);
4738 				*match = 0;
4739 			}
4740 			f->child = RB_NEXT(pf_keth_anchor_node,
4741 			    &fr->anchor->children, f->child);
4742 			if (f->child != NULL) {
4743 				*rs = &f->child->ruleset;
4744 				*r = TAILQ_FIRST((*rs)->active.rules);
4745 				if (*r == NULL)
4746 					continue;
4747 				else
4748 					break;
4749 			}
4750 		}
4751 		(*depth)--;
4752 		if (*depth == 0 && a != NULL)
4753 			*a = NULL;
4754 		*rs = f->rs;
4755 		if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4756 			quick = fr->quick;
4757 		*r = TAILQ_NEXT(fr, entries);
4758 	} while (*r == NULL);
4759 
4760 	return (quick);
4761 }
4762 
4763 #ifdef INET6
4764 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4765 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4766     struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4767 {
4768 	switch (af) {
4769 #ifdef INET
4770 	case AF_INET:
4771 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4772 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4773 		break;
4774 #endif /* INET */
4775 	case AF_INET6:
4776 		naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4777 		((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4778 		naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4779 		((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4780 		naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4781 		((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4782 		naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4783 		((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4784 		break;
4785 	}
4786 }
4787 
4788 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4789 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4790 {
4791 	switch (af) {
4792 #ifdef INET
4793 	case AF_INET:
4794 		addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4795 		break;
4796 #endif /* INET */
4797 	case AF_INET6:
4798 		if (addr->addr32[3] == 0xffffffff) {
4799 			addr->addr32[3] = 0;
4800 			if (addr->addr32[2] == 0xffffffff) {
4801 				addr->addr32[2] = 0;
4802 				if (addr->addr32[1] == 0xffffffff) {
4803 					addr->addr32[1] = 0;
4804 					addr->addr32[0] =
4805 					    htonl(ntohl(addr->addr32[0]) + 1);
4806 				} else
4807 					addr->addr32[1] =
4808 					    htonl(ntohl(addr->addr32[1]) + 1);
4809 			} else
4810 				addr->addr32[2] =
4811 				    htonl(ntohl(addr->addr32[2]) + 1);
4812 		} else
4813 			addr->addr32[3] =
4814 			    htonl(ntohl(addr->addr32[3]) + 1);
4815 		break;
4816 	}
4817 }
4818 #endif /* INET6 */
4819 
4820 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4821 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4822 {
4823 	/*
4824 	 * Modern rules use the same flags in rules as they do in states.
4825 	 */
4826 	a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4827 	    PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4828 
4829 	/*
4830 	 * Old-style scrub rules have different flags which need to be translated.
4831 	 */
4832 	if (r->rule_flag & PFRULE_RANDOMID)
4833 		a->flags |= PFSTATE_RANDOMID;
4834 	if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4835 		a->flags |= PFSTATE_SETTOS;
4836 		a->set_tos = r->set_tos;
4837 	}
4838 
4839 	if (r->qid)
4840 		a->qid = r->qid;
4841 	if (r->pqid)
4842 		a->pqid = r->pqid;
4843 	if (r->rtableid >= 0)
4844 		a->rtableid = r->rtableid;
4845 	a->log |= r->log;
4846 	if (r->min_ttl)
4847 		a->min_ttl = r->min_ttl;
4848 	if (r->max_mss)
4849 		a->max_mss = r->max_mss;
4850 	if (r->dnpipe)
4851 		a->dnpipe = r->dnpipe;
4852 	if (r->dnrpipe)
4853 		a->dnrpipe = r->dnrpipe;
4854 	if (r->dnpipe || r->dnrpipe) {
4855 		if (r->free_flags & PFRULE_DN_IS_PIPE)
4856 			a->flags |= PFSTATE_DN_IS_PIPE;
4857 		else
4858 			a->flags &= ~PFSTATE_DN_IS_PIPE;
4859 	}
4860 	if (r->scrub_flags & PFSTATE_SETPRIO) {
4861 		a->set_prio[0] = r->set_prio[0];
4862 		a->set_prio[1] = r->set_prio[1];
4863 	}
4864 }
4865 
4866 int
pf_socket_lookup(struct pf_pdesc * pd)4867 pf_socket_lookup(struct pf_pdesc *pd)
4868 {
4869 	struct pf_addr		*saddr, *daddr;
4870 	u_int16_t		 sport, dport;
4871 	struct inpcbinfo	*pi;
4872 	struct inpcb		*inp;
4873 
4874 	pd->lookup.uid = UID_MAX;
4875 	pd->lookup.gid = GID_MAX;
4876 
4877 	switch (pd->proto) {
4878 	case IPPROTO_TCP:
4879 		sport = pd->hdr.tcp.th_sport;
4880 		dport = pd->hdr.tcp.th_dport;
4881 		pi = &V_tcbinfo;
4882 		break;
4883 	case IPPROTO_UDP:
4884 		sport = pd->hdr.udp.uh_sport;
4885 		dport = pd->hdr.udp.uh_dport;
4886 		pi = &V_udbinfo;
4887 		break;
4888 	default:
4889 		return (-1);
4890 	}
4891 	if (pd->dir == PF_IN) {
4892 		saddr = pd->src;
4893 		daddr = pd->dst;
4894 	} else {
4895 		u_int16_t	p;
4896 
4897 		p = sport;
4898 		sport = dport;
4899 		dport = p;
4900 		saddr = pd->dst;
4901 		daddr = pd->src;
4902 	}
4903 	switch (pd->af) {
4904 #ifdef INET
4905 	case AF_INET:
4906 		inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4907 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4908 		if (inp == NULL) {
4909 			inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4910 			   daddr->v4, dport, INPLOOKUP_WILDCARD |
4911 			   INPLOOKUP_RLOCKPCB, NULL, pd->m);
4912 			if (inp == NULL)
4913 				return (-1);
4914 		}
4915 		break;
4916 #endif /* INET */
4917 #ifdef INET6
4918 	case AF_INET6:
4919 		inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4920 		    dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4921 		if (inp == NULL) {
4922 			inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4923 			    &daddr->v6, dport, INPLOOKUP_WILDCARD |
4924 			    INPLOOKUP_RLOCKPCB, NULL, pd->m);
4925 			if (inp == NULL)
4926 				return (-1);
4927 		}
4928 		break;
4929 #endif /* INET6 */
4930 	}
4931 	INP_RLOCK_ASSERT(inp);
4932 	pd->lookup.uid = inp->inp_cred->cr_uid;
4933 	pd->lookup.gid = inp->inp_cred->cr_groups[0];
4934 	INP_RUNLOCK(inp);
4935 
4936 	return (1);
4937 }
4938 
4939 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)4940 pf_get_wscale(struct pf_pdesc *pd)
4941 {
4942 	struct tcphdr	*th = &pd->hdr.tcp;
4943 	int		 hlen;
4944 	u_int8_t	 hdr[60];
4945 	u_int8_t	*opt, optlen;
4946 	u_int8_t	 wscale = 0;
4947 
4948 	hlen = th->th_off << 2;		/* hlen <= sizeof(hdr) */
4949 	if (hlen <= sizeof(struct tcphdr))
4950 		return (0);
4951 	if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4952 		return (0);
4953 	opt = hdr + sizeof(struct tcphdr);
4954 	hlen -= sizeof(struct tcphdr);
4955 	while (hlen >= 3) {
4956 		switch (*opt) {
4957 		case TCPOPT_EOL:
4958 		case TCPOPT_NOP:
4959 			++opt;
4960 			--hlen;
4961 			break;
4962 		case TCPOPT_WINDOW:
4963 			wscale = opt[2];
4964 			if (wscale > TCP_MAX_WINSHIFT)
4965 				wscale = TCP_MAX_WINSHIFT;
4966 			wscale |= PF_WSCALE_FLAG;
4967 			/* FALLTHROUGH */
4968 		default:
4969 			optlen = opt[1];
4970 			if (optlen < 2)
4971 				optlen = 2;
4972 			hlen -= optlen;
4973 			opt += optlen;
4974 			break;
4975 		}
4976 	}
4977 	return (wscale);
4978 }
4979 
4980 u_int16_t
pf_get_mss(struct pf_pdesc * pd)4981 pf_get_mss(struct pf_pdesc *pd)
4982 {
4983 	struct tcphdr	*th = &pd->hdr.tcp;
4984 	int		 hlen;
4985 	u_int8_t	 hdr[60];
4986 	u_int8_t	*opt, optlen;
4987 	u_int16_t	 mss = V_tcp_mssdflt;
4988 
4989 	hlen = th->th_off << 2;	/* hlen <= sizeof(hdr) */
4990 	if (hlen <= sizeof(struct tcphdr))
4991 		return (0);
4992 	if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4993 		return (0);
4994 	opt = hdr + sizeof(struct tcphdr);
4995 	hlen -= sizeof(struct tcphdr);
4996 	while (hlen >= TCPOLEN_MAXSEG) {
4997 		switch (*opt) {
4998 		case TCPOPT_EOL:
4999 		case TCPOPT_NOP:
5000 			++opt;
5001 			--hlen;
5002 			break;
5003 		case TCPOPT_MAXSEG:
5004 			bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
5005 			NTOHS(mss);
5006 			/* FALLTHROUGH */
5007 		default:
5008 			optlen = opt[1];
5009 			if (optlen < 2)
5010 				optlen = 2;
5011 			hlen -= optlen;
5012 			opt += optlen;
5013 			break;
5014 		}
5015 	}
5016 	return (mss);
5017 }
5018 
5019 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5020 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5021 {
5022 	struct nhop_object *nh;
5023 #ifdef INET6
5024 	struct in6_addr		dst6;
5025 	uint32_t		scopeid;
5026 #endif /* INET6 */
5027 	int			 hlen = 0;
5028 	uint16_t		 mss = 0;
5029 
5030 	NET_EPOCH_ASSERT();
5031 
5032 	switch (af) {
5033 #ifdef INET
5034 	case AF_INET:
5035 		hlen = sizeof(struct ip);
5036 		nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5037 		if (nh != NULL)
5038 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5039 		break;
5040 #endif /* INET */
5041 #ifdef INET6
5042 	case AF_INET6:
5043 		hlen = sizeof(struct ip6_hdr);
5044 		in6_splitscope(&addr->v6, &dst6, &scopeid);
5045 		nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5046 		if (nh != NULL)
5047 			mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5048 		break;
5049 #endif /* INET6 */
5050 	}
5051 
5052 	mss = max(V_tcp_mssdflt, mss);
5053 	mss = min(mss, offer);
5054 	mss = max(mss, 64);		/* sanity - at least max opt space */
5055 	return (mss);
5056 }
5057 
5058 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5059 pf_tcp_iss(struct pf_pdesc *pd)
5060 {
5061 	MD5_CTX ctx;
5062 	u_int32_t digest[4];
5063 
5064 	if (V_pf_tcp_secret_init == 0) {
5065 		arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5066 		MD5Init(&V_pf_tcp_secret_ctx);
5067 		MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5068 		    sizeof(V_pf_tcp_secret));
5069 		V_pf_tcp_secret_init = 1;
5070 	}
5071 
5072 	ctx = V_pf_tcp_secret_ctx;
5073 
5074 	MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
5075 	MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
5076 	switch (pd->af) {
5077 	case AF_INET6:
5078 		MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
5079 		MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
5080 		break;
5081 	case AF_INET:
5082 		MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
5083 		MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
5084 		break;
5085 	}
5086 	MD5Final((u_char *)digest, &ctx);
5087 	V_pf_tcp_iss_off += 4096;
5088 #define	ISN_RANDOM_INCREMENT (4096 - 1)
5089 	return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5090 	    V_pf_tcp_iss_off);
5091 #undef	ISN_RANDOM_INCREMENT
5092 }
5093 
5094 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5095 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5096 {
5097 	bool match = true;
5098 
5099 	/* Always matches if not set */
5100 	if (! r->isset)
5101 		return (!r->neg);
5102 
5103 	for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5104 		if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5105 			match = false;
5106 			break;
5107 		}
5108 	}
5109 
5110 	return (match ^ r->neg);
5111 }
5112 
5113 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5114 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5115 {
5116 	if (*tag == -1)
5117 		*tag = mtag;
5118 
5119 	return ((!r->match_tag_not && r->match_tag == *tag) ||
5120 	    (r->match_tag_not && r->match_tag != *tag));
5121 }
5122 
5123 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5124 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5125 {
5126 	/* If we don't have the interface drop the packet. */
5127 	if (ifp == NULL) {
5128 		m_freem(m);
5129 		return;
5130 	}
5131 
5132 	switch (ifp->if_type) {
5133 	case IFT_ETHER:
5134 	case IFT_XETHER:
5135 	case IFT_L2VLAN:
5136 	case IFT_BRIDGE:
5137 	case IFT_IEEE8023ADLAG:
5138 		break;
5139 	default:
5140 		m_freem(m);
5141 		return;
5142 	}
5143 
5144 	ifp->if_transmit(ifp, m);
5145 }
5146 
5147 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5148 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5149 {
5150 #ifdef INET
5151 	struct ip ip;
5152 #endif
5153 #ifdef INET6
5154 	struct ip6_hdr ip6;
5155 #endif
5156 	struct mbuf *m = *m0;
5157 	struct ether_header *e;
5158 	struct pf_keth_rule *r, *rm, *a = NULL;
5159 	struct pf_keth_ruleset *ruleset = NULL;
5160 	struct pf_mtag *mtag;
5161 	struct pf_keth_ruleq *rules;
5162 	struct pf_addr *src = NULL, *dst = NULL;
5163 	struct pfi_kkif *bridge_to;
5164 	sa_family_t af = 0;
5165 	uint16_t proto;
5166 	int asd = 0, match = 0;
5167 	int tag = -1;
5168 	uint8_t action;
5169 	struct pf_keth_anchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
5170 
5171 	MPASS(kif->pfik_ifp->if_vnet == curvnet);
5172 	NET_EPOCH_ASSERT();
5173 
5174 	PF_RULES_RLOCK_TRACKER;
5175 
5176 	SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5177 
5178 	mtag = pf_find_mtag(m);
5179 	if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5180 		/* Dummynet re-injects packets after they've
5181 		 * completed their delay. We've already
5182 		 * processed them, so pass unconditionally. */
5183 
5184 		/* But only once. We may see the packet multiple times (e.g.
5185 		 * PFIL_IN/PFIL_OUT). */
5186 		pf_dummynet_flag_remove(m, mtag);
5187 
5188 		return (PF_PASS);
5189 	}
5190 
5191 	ruleset = V_pf_keth;
5192 	rules = ck_pr_load_ptr(&ruleset->active.rules);
5193 	r = TAILQ_FIRST(rules);
5194 	rm = NULL;
5195 
5196 	if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5197 	    (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5198 		DPFPRINTF(PF_DEBUG_URGENT,
5199 		    ("pf_test_eth_rule: m_len < sizeof(struct ether_header)"
5200 		     ", pullup failed\n"));
5201 		return (PF_DROP);
5202 	}
5203 	e = mtod(m, struct ether_header *);
5204 	proto = ntohs(e->ether_type);
5205 
5206 	switch (proto) {
5207 #ifdef INET
5208 	case ETHERTYPE_IP: {
5209 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5210 		    sizeof(ip)))
5211 			return (PF_DROP);
5212 
5213 		af = AF_INET;
5214 		m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5215 		    (caddr_t)&ip);
5216 		src = (struct pf_addr *)&ip.ip_src;
5217 		dst = (struct pf_addr *)&ip.ip_dst;
5218 		break;
5219 	}
5220 #endif /* INET */
5221 #ifdef INET6
5222 	case ETHERTYPE_IPV6: {
5223 		if (m_length(m, NULL) < (sizeof(struct ether_header) +
5224 		    sizeof(ip6)))
5225 			return (PF_DROP);
5226 
5227 		af = AF_INET6;
5228 		m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5229 		    (caddr_t)&ip6);
5230 		src = (struct pf_addr *)&ip6.ip6_src;
5231 		dst = (struct pf_addr *)&ip6.ip6_dst;
5232 		break;
5233 	}
5234 #endif /* INET6 */
5235 	}
5236 
5237 	PF_RULES_RLOCK();
5238 
5239 	while (r != NULL) {
5240 		counter_u64_add(r->evaluations, 1);
5241 		SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5242 
5243 		if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5244 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5245 			    "kif");
5246 			r = r->skip[PFE_SKIP_IFP].ptr;
5247 		}
5248 		else if (r->direction && r->direction != dir) {
5249 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5250 			    "dir");
5251 			r = r->skip[PFE_SKIP_DIR].ptr;
5252 		}
5253 		else if (r->proto && r->proto != proto) {
5254 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5255 			    "proto");
5256 			r = r->skip[PFE_SKIP_PROTO].ptr;
5257 		}
5258 		else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5259 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5260 			    "src");
5261 			r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5262 		}
5263 		else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5264 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5265 			    "dst");
5266 			r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5267 		}
5268 		else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5269 		    r->ipsrc.neg, kif, M_GETFIB(m))) {
5270 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5271 			    "ip_src");
5272 			r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5273 		}
5274 		else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5275 		    r->ipdst.neg, kif, M_GETFIB(m))) {
5276 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5277 			    "ip_dst");
5278 			r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5279 		}
5280 		else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5281 		    mtag ? mtag->tag : 0)) {
5282 			SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5283 			    "match_tag");
5284 			r = TAILQ_NEXT(r, entries);
5285 		}
5286 		else {
5287 			if (r->tag)
5288 				tag = r->tag;
5289 			if (r->anchor == NULL) {
5290 				/* Rule matches */
5291 				rm = r;
5292 
5293 				SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5294 
5295 				if (r->quick)
5296 					break;
5297 
5298 				r = TAILQ_NEXT(r, entries);
5299 			} else {
5300 				pf_step_into_keth_anchor(anchor_stack, &asd,
5301 				    &ruleset, &r, &a, &match);
5302 			}
5303 		}
5304 		if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5305 		    &ruleset, &r, &a, &match))
5306 			break;
5307 	}
5308 
5309 	r = rm;
5310 
5311 	SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5312 
5313 	/* Default to pass. */
5314 	if (r == NULL) {
5315 		PF_RULES_RUNLOCK();
5316 		return (PF_PASS);
5317 	}
5318 
5319 	/* Execute action. */
5320 	counter_u64_add(r->packets[dir == PF_OUT], 1);
5321 	counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5322 	pf_update_timestamp(r);
5323 
5324 	/* Shortcut. Don't tag if we're just going to drop anyway. */
5325 	if (r->action == PF_DROP) {
5326 		PF_RULES_RUNLOCK();
5327 		return (PF_DROP);
5328 	}
5329 
5330 	if (tag > 0) {
5331 		if (mtag == NULL)
5332 			mtag = pf_get_mtag(m);
5333 		if (mtag == NULL) {
5334 			PF_RULES_RUNLOCK();
5335 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5336 			return (PF_DROP);
5337 		}
5338 		mtag->tag = tag;
5339 	}
5340 
5341 	if (r->qid != 0) {
5342 		if (mtag == NULL)
5343 			mtag = pf_get_mtag(m);
5344 		if (mtag == NULL) {
5345 			PF_RULES_RUNLOCK();
5346 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5347 			return (PF_DROP);
5348 		}
5349 		mtag->qid = r->qid;
5350 	}
5351 
5352 	action = r->action;
5353 	bridge_to = r->bridge_to;
5354 
5355 	/* Dummynet */
5356 	if (r->dnpipe) {
5357 		struct ip_fw_args dnflow;
5358 
5359 		/* Drop packet if dummynet is not loaded. */
5360 		if (ip_dn_io_ptr == NULL) {
5361 			PF_RULES_RUNLOCK();
5362 			m_freem(m);
5363 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5364 			return (PF_DROP);
5365 		}
5366 		if (mtag == NULL)
5367 			mtag = pf_get_mtag(m);
5368 		if (mtag == NULL) {
5369 			PF_RULES_RUNLOCK();
5370 			counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5371 			return (PF_DROP);
5372 		}
5373 
5374 		bzero(&dnflow, sizeof(dnflow));
5375 
5376 		/* We don't have port numbers here, so we set 0.  That means
5377 		 * that we'll be somewhat limited in distinguishing flows (i.e.
5378 		 * only based on IP addresses, not based on port numbers), but
5379 		 * it's better than nothing. */
5380 		dnflow.f_id.dst_port = 0;
5381 		dnflow.f_id.src_port = 0;
5382 		dnflow.f_id.proto = 0;
5383 
5384 		dnflow.rule.info = r->dnpipe;
5385 		dnflow.rule.info |= IPFW_IS_DUMMYNET;
5386 		if (r->dnflags & PFRULE_DN_IS_PIPE)
5387 			dnflow.rule.info |= IPFW_IS_PIPE;
5388 
5389 		dnflow.f_id.extra = dnflow.rule.info;
5390 
5391 		dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5392 		dnflow.flags |= IPFW_ARGS_ETHER;
5393 		dnflow.ifp = kif->pfik_ifp;
5394 
5395 		switch (af) {
5396 		case AF_INET:
5397 			dnflow.f_id.addr_type = 4;
5398 			dnflow.f_id.src_ip = src->v4.s_addr;
5399 			dnflow.f_id.dst_ip = dst->v4.s_addr;
5400 			break;
5401 		case AF_INET6:
5402 			dnflow.flags |= IPFW_ARGS_IP6;
5403 			dnflow.f_id.addr_type = 6;
5404 			dnflow.f_id.src_ip6 = src->v6;
5405 			dnflow.f_id.dst_ip6 = dst->v6;
5406 			break;
5407 		}
5408 
5409 		PF_RULES_RUNLOCK();
5410 
5411 		mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5412 		ip_dn_io_ptr(m0, &dnflow);
5413 		if (*m0 != NULL)
5414 			pf_dummynet_flag_remove(m, mtag);
5415 	} else {
5416 		PF_RULES_RUNLOCK();
5417 	}
5418 
5419 	if (action == PF_PASS && bridge_to) {
5420 		pf_bridge_to(bridge_to->pfik_ifp, *m0);
5421 		*m0 = NULL; /* We've eaten the packet. */
5422 	}
5423 
5424 	return (action);
5425 }
5426 
5427 #define PF_TEST_ATTRIB(t, a)\
5428 	do {				\
5429 		if (t) {		\
5430 			r = a;		\
5431 			goto nextrule;	\
5432 		}			\
5433 	} while (0)
5434 
5435 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,struct inpcb * inp)5436 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5437     struct pf_pdesc *pd, struct pf_krule **am,
5438     struct pf_kruleset **rsm, struct inpcb *inp)
5439 {
5440 	struct pf_krule		*nr = NULL;
5441 	struct pf_krule		*r, *a = NULL;
5442 	struct pf_kruleset	*ruleset = NULL;
5443 	struct pf_krule_slist	 match_rules;
5444 	struct pf_krule_item	*ri;
5445 	struct tcphdr		*th = &pd->hdr.tcp;
5446 	struct pf_state_key	*sk = NULL, *nk = NULL;
5447 	u_short			 reason, transerror;
5448 	int			 rewrite = 0;
5449 	int			 tag = -1;
5450 	int			 asd = 0;
5451 	int			 match = 0;
5452 	int			 state_icmp = 0, icmp_dir, multi;
5453 	u_int16_t		 virtual_type, virtual_id;
5454 	u_int16_t		 bproto_sum = 0, bip_sum = 0;
5455 	u_int8_t		 icmptype = 0, icmpcode = 0;
5456 	struct pf_kanchor_stackframe	anchor_stack[PF_ANCHOR_STACKSIZE];
5457 	struct pf_udp_mapping	*udp_mapping = NULL;
5458 
5459 	PF_RULES_RASSERT();
5460 
5461 	PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5462 	PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5463 
5464 	SLIST_INIT(&match_rules);
5465 
5466 	if (inp != NULL) {
5467 		INP_LOCK_ASSERT(inp);
5468 		pd->lookup.uid = inp->inp_cred->cr_uid;
5469 		pd->lookup.gid = inp->inp_cred->cr_groups[0];
5470 		pd->lookup.done = 1;
5471 	}
5472 
5473 	switch (pd->virtual_proto) {
5474 	case IPPROTO_TCP:
5475 		pd->nsport = th->th_sport;
5476 		pd->ndport = th->th_dport;
5477 		break;
5478 	case IPPROTO_UDP:
5479 		pd->nsport = pd->hdr.udp.uh_sport;
5480 		pd->ndport = pd->hdr.udp.uh_dport;
5481 		break;
5482 	case IPPROTO_SCTP:
5483 		pd->nsport = pd->hdr.sctp.src_port;
5484 		pd->ndport = pd->hdr.sctp.dest_port;
5485 		break;
5486 #ifdef INET
5487 	case IPPROTO_ICMP:
5488 		MPASS(pd->af == AF_INET);
5489 		icmptype = pd->hdr.icmp.icmp_type;
5490 		icmpcode = pd->hdr.icmp.icmp_code;
5491 		state_icmp = pf_icmp_mapping(pd, icmptype,
5492 		    &icmp_dir, &multi, &virtual_id, &virtual_type);
5493 		if (icmp_dir == PF_IN) {
5494 			pd->nsport = virtual_id;
5495 			pd->ndport = virtual_type;
5496 		} else {
5497 			pd->nsport = virtual_type;
5498 			pd->ndport = virtual_id;
5499 		}
5500 		break;
5501 #endif /* INET */
5502 #ifdef INET6
5503 	case IPPROTO_ICMPV6:
5504 		MPASS(pd->af == AF_INET6);
5505 		icmptype = pd->hdr.icmp6.icmp6_type;
5506 		icmpcode = pd->hdr.icmp6.icmp6_code;
5507 		state_icmp = pf_icmp_mapping(pd, icmptype,
5508 		    &icmp_dir, &multi, &virtual_id, &virtual_type);
5509 		if (icmp_dir == PF_IN) {
5510 			pd->nsport = virtual_id;
5511 			pd->ndport = virtual_type;
5512 		} else {
5513 			pd->nsport = virtual_type;
5514 			pd->ndport = virtual_id;
5515 		}
5516 
5517 		break;
5518 #endif /* INET6 */
5519 	default:
5520 		pd->nsport = pd->ndport = 0;
5521 		break;
5522 	}
5523 	pd->osport = pd->nsport;
5524 	pd->odport = pd->ndport;
5525 
5526 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
5527 
5528 	/* check packet for BINAT/NAT/RDR */
5529 	transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack,
5530 	    &nr, &udp_mapping);
5531 	switch (transerror) {
5532 	default:
5533 		/* A translation error occurred. */
5534 		REASON_SET(&reason, transerror);
5535 		goto cleanup;
5536 	case PFRES_MAX:
5537 		/* No match. */
5538 		break;
5539 	case PFRES_MATCH:
5540 		KASSERT(sk != NULL, ("%s: null sk", __func__));
5541 		KASSERT(nk != NULL, ("%s: null nk", __func__));
5542 
5543 		if (nr->log) {
5544 			PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a,
5545 			    ruleset, pd, 1);
5546 		}
5547 
5548 		if (pd->ip_sum)
5549 			bip_sum = *pd->ip_sum;
5550 
5551 		switch (pd->proto) {
5552 		case IPPROTO_TCP:
5553 			bproto_sum = th->th_sum;
5554 
5555 			if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5556 			    nk->port[pd->sidx] != pd->nsport) {
5557 				pf_change_ap(pd->m, pd->src, &th->th_sport,
5558 				    pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
5559 				    nk->port[pd->sidx], 0, pd->af, pd->naf);
5560 				pd->sport = &th->th_sport;
5561 				pd->nsport = th->th_sport;
5562 				PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5563 			}
5564 
5565 			if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5566 			    nk->port[pd->didx] != pd->ndport) {
5567 				pf_change_ap(pd->m, pd->dst, &th->th_dport,
5568 				    pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
5569 				    nk->port[pd->didx], 0, pd->af, pd->naf);
5570 				pd->dport = &th->th_dport;
5571 				pd->ndport = th->th_dport;
5572 				PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5573 			}
5574 			rewrite++;
5575 			break;
5576 		case IPPROTO_UDP:
5577 			bproto_sum = pd->hdr.udp.uh_sum;
5578 
5579 			if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5580 			    nk->port[pd->sidx] != pd->nsport) {
5581 				pf_change_ap(pd->m, pd->src,
5582 				    &pd->hdr.udp.uh_sport,
5583 				    pd->ip_sum, &pd->hdr.udp.uh_sum,
5584 				    &nk->addr[pd->sidx],
5585 				    nk->port[pd->sidx], 1, pd->af, pd->naf);
5586 				pd->sport = &pd->hdr.udp.uh_sport;
5587 				pd->nsport = pd->hdr.udp.uh_sport;
5588 				PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5589 			}
5590 
5591 			if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5592 			    nk->port[pd->didx] != pd->ndport) {
5593 				pf_change_ap(pd->m, pd->dst,
5594 				    &pd->hdr.udp.uh_dport,
5595 				    pd->ip_sum, &pd->hdr.udp.uh_sum,
5596 				    &nk->addr[pd->didx],
5597 				    nk->port[pd->didx], 1, pd->af, pd->naf);
5598 				pd->dport = &pd->hdr.udp.uh_dport;
5599 				pd->ndport = pd->hdr.udp.uh_dport;
5600 				PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5601 			}
5602 			rewrite++;
5603 			break;
5604 		case IPPROTO_SCTP: {
5605 			uint16_t checksum = 0;
5606 
5607 			if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5608 			    nk->port[pd->sidx] != pd->nsport) {
5609 				pf_change_ap(pd->m, pd->src,
5610 				    &pd->hdr.sctp.src_port, pd->ip_sum, &checksum,
5611 				    &nk->addr[pd->sidx],
5612 				    nk->port[pd->sidx], 1, pd->af, pd->naf);
5613 				pd->sport = &pd->hdr.sctp.src_port;
5614 				pd->nsport = pd->hdr.sctp.src_port;
5615 				PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5616 			}
5617 			if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5618 			    nk->port[pd->didx] != pd->ndport) {
5619 				pf_change_ap(pd->m, pd->dst,
5620 				    &pd->hdr.sctp.dest_port, pd->ip_sum, &checksum,
5621 				    &nk->addr[pd->didx],
5622 				    nk->port[pd->didx], 1, pd->af, pd->naf);
5623 				pd->dport = &pd->hdr.sctp.dest_port;
5624 				pd->ndport = pd->hdr.sctp.dest_port;
5625 				PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5626 			}
5627 			break;
5628 		}
5629 #ifdef INET
5630 		case IPPROTO_ICMP:
5631 			if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
5632 				pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
5633 				    nk->addr[pd->sidx].v4.s_addr, 0);
5634 				PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5635 			}
5636 
5637 			if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
5638 				pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
5639 				    nk->addr[pd->didx].v4.s_addr, 0);
5640 				PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5641 			}
5642 
5643 			if (virtual_type == htons(ICMP_ECHO) &&
5644 			     nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
5645 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
5646 				    pd->hdr.icmp.icmp_cksum, pd->nsport,
5647 				    nk->port[pd->sidx], 0);
5648 				pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
5649 				pd->sport = &pd->hdr.icmp.icmp_id;
5650 			}
5651 			m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5652 			break;
5653 #endif /* INET */
5654 #ifdef INET6
5655 		case IPPROTO_ICMPV6:
5656 			if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
5657 				pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
5658 				    &nk->addr[pd->sidx], 0);
5659 				PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5660 			}
5661 
5662 			if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
5663 				pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
5664 				    &nk->addr[pd->didx], 0);
5665 				PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5666 			}
5667 			rewrite++;
5668 			break;
5669 #endif /* INET */
5670 		default:
5671 			switch (pd->af) {
5672 #ifdef INET
5673 			case AF_INET:
5674 				if (PF_ANEQ(&pd->nsaddr,
5675 				    &nk->addr[pd->sidx], AF_INET)) {
5676 					pf_change_a(&pd->src->v4.s_addr,
5677 					    pd->ip_sum,
5678 					    nk->addr[pd->sidx].v4.s_addr, 0);
5679 					PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5680 				}
5681 
5682 				if (PF_ANEQ(&pd->ndaddr,
5683 				    &nk->addr[pd->didx], AF_INET)) {
5684 					pf_change_a(&pd->dst->v4.s_addr,
5685 					    pd->ip_sum,
5686 					    nk->addr[pd->didx].v4.s_addr, 0);
5687 					PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5688 				}
5689 				break;
5690 #endif /* INET */
5691 #ifdef INET6
5692 			case AF_INET6:
5693 				if (PF_ANEQ(&pd->nsaddr,
5694 				    &nk->addr[pd->sidx], AF_INET6)) {
5695 					PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af);
5696 					PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
5697 				}
5698 
5699 				if (PF_ANEQ(&pd->ndaddr,
5700 				    &nk->addr[pd->didx], AF_INET6)) {
5701 					PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af);
5702 					PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
5703 				}
5704 				break;
5705 #endif /* INET */
5706 			}
5707 			break;
5708 		}
5709 		if (nr->natpass)
5710 			r = NULL;
5711 	}
5712 
5713 	while (r != NULL) {
5714 		if (pd->related_rule) {
5715 			*rm = pd->related_rule;
5716 			break;
5717 		}
5718 		pf_counter_u64_add(&r->evaluations, 1);
5719 		PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5720 			r->skip[PF_SKIP_IFP]);
5721 		PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5722 			r->skip[PF_SKIP_DIR]);
5723 		PF_TEST_ATTRIB(r->af && r->af != pd->af,
5724 			r->skip[PF_SKIP_AF]);
5725 		PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5726 			r->skip[PF_SKIP_PROTO]);
5727 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5728 		    r->src.neg, pd->kif, M_GETFIB(pd->m)),
5729 			r->skip[PF_SKIP_SRC_ADDR]);
5730 		PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5731 		    r->dst.neg, NULL, M_GETFIB(pd->m)),
5732 			r->skip[PF_SKIP_DST_ADDR]);
5733 		switch (pd->virtual_proto) {
5734 		case PF_VPROTO_FRAGMENT:
5735 			/* tcp/udp only. port_op always 0 in other cases */
5736 			PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5737 				TAILQ_NEXT(r, entries));
5738 			PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5739 				TAILQ_NEXT(r, entries));
5740 			/* icmp only. type/code always 0 in other cases */
5741 			PF_TEST_ATTRIB((r->type || r->code),
5742 				TAILQ_NEXT(r, entries));
5743 			/* tcp/udp only. {uid|gid}.op always 0 in other cases */
5744 			PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5745 				TAILQ_NEXT(r, entries));
5746 			break;
5747 
5748 		case IPPROTO_TCP:
5749 			PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags,
5750 				TAILQ_NEXT(r, entries));
5751 			/* FALLTHROUGH */
5752 		case IPPROTO_SCTP:
5753 		case IPPROTO_UDP:
5754 			/* tcp/udp only. port_op always 0 in other cases */
5755 			PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5756 			    r->src.port[0], r->src.port[1], pd->nsport),
5757 				r->skip[PF_SKIP_SRC_PORT]);
5758 			/* tcp/udp only. port_op always 0 in other cases */
5759 			PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5760 			    r->dst.port[0], r->dst.port[1], pd->ndport),
5761 				r->skip[PF_SKIP_DST_PORT]);
5762 			/* tcp/udp only. uid.op always 0 in other cases */
5763 			PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5764 			    pf_socket_lookup(pd), 1)) &&
5765 			    !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5766 			    pd->lookup.uid),
5767 				TAILQ_NEXT(r, entries));
5768 			/* tcp/udp only. gid.op always 0 in other cases */
5769 			PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5770 			    pf_socket_lookup(pd), 1)) &&
5771 			    !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5772 			    pd->lookup.gid),
5773 				TAILQ_NEXT(r, entries));
5774 			break;
5775 
5776 		case IPPROTO_ICMP:
5777 		case IPPROTO_ICMPV6:
5778 			/* icmp only. type always 0 in other cases */
5779 			PF_TEST_ATTRIB(r->type && r->type != icmptype + 1,
5780 				TAILQ_NEXT(r, entries));
5781 			/* icmp only. type always 0 in other cases */
5782 			PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1,
5783 				TAILQ_NEXT(r, entries));
5784 			break;
5785 
5786 		default:
5787 			break;
5788 		}
5789 		PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5790 			TAILQ_NEXT(r, entries));
5791 		PF_TEST_ATTRIB(r->prio &&
5792 		    !pf_match_ieee8021q_pcp(r->prio, pd->m),
5793 			TAILQ_NEXT(r, entries));
5794 		PF_TEST_ATTRIB(r->prob &&
5795 		    r->prob <= arc4random(),
5796 			TAILQ_NEXT(r, entries));
5797 		PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag,
5798 		    pd->pf_mtag ? pd->pf_mtag->tag : 0),
5799 			TAILQ_NEXT(r, entries));
5800 		PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r),
5801 			TAILQ_NEXT(r, entries));
5802 		PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5803 		    pd->virtual_proto != PF_VPROTO_FRAGMENT),
5804 			TAILQ_NEXT(r, entries));
5805 		PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5806 		    (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5807 		    pf_osfp_fingerprint(pd, th),
5808 		    r->os_fingerprint)),
5809 			TAILQ_NEXT(r, entries));
5810 		/* FALLTHROUGH */
5811 		if (r->tag)
5812 			tag = r->tag;
5813 		if (r->anchor == NULL) {
5814 			if (r->action == PF_MATCH) {
5815 				ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5816 				if (ri == NULL) {
5817 					REASON_SET(&reason, PFRES_MEMORY);
5818 					goto cleanup;
5819 				}
5820 				ri->r = r;
5821 				SLIST_INSERT_HEAD(&match_rules, ri, entry);
5822 				pf_counter_u64_critical_enter();
5823 				pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5824 				pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5825 				pf_counter_u64_critical_exit();
5826 				pf_rule_to_actions(r, &pd->act);
5827 				if (r->rule_flag & PFRULE_AFTO)
5828 					pd->naf = r->naf;
5829 				if (pd->af != pd->naf) {
5830 					if (pf_get_transaddr_af(r, pd) == -1) {
5831 						REASON_SET(&reason, PFRES_MEMORY);
5832 						goto cleanup;
5833 					}
5834 				}
5835 				if (r->log || pd->act.log & PF_LOG_MATCHES)
5836 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5837 					    a, ruleset, pd, 1);
5838 			} else {
5839 				match = 1;
5840 				*rm = r;
5841 				*am = a;
5842 				*rsm = ruleset;
5843 				if (pd->act.log & PF_LOG_MATCHES)
5844 					PFLOG_PACKET(r->action, PFRES_MATCH, r,
5845 					    a, ruleset, pd, 1);
5846 			}
5847 			if ((*rm)->quick)
5848 				break;
5849 			r = TAILQ_NEXT(r, entries);
5850 		} else
5851 			pf_step_into_anchor(anchor_stack, &asd,
5852 			    &ruleset, PF_RULESET_FILTER, &r, &a,
5853 			    &match);
5854 nextrule:
5855 		if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
5856 		    &ruleset, PF_RULESET_FILTER, &r, &a, &match))
5857 			break;
5858 	}
5859 	r = *rm;
5860 	a = *am;
5861 	ruleset = *rsm;
5862 
5863 	REASON_SET(&reason, PFRES_MATCH);
5864 
5865 	/* apply actions for last matching pass/block rule */
5866 	pf_rule_to_actions(r, &pd->act);
5867 	if (r->rule_flag & PFRULE_AFTO)
5868 		pd->naf = r->naf;
5869 	if (pd->af != pd->naf) {
5870 		if (pf_get_transaddr_af(r, pd) == -1) {
5871 			REASON_SET(&reason, PFRES_MEMORY);
5872 			goto cleanup;
5873 		}
5874 	}
5875 
5876 	if (r->log || pd->act.log & PF_LOG_MATCHES) {
5877 		if (rewrite)
5878 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5879 		PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1);
5880 	}
5881 
5882 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5883 	   (r->action == PF_DROP) &&
5884 	    ((r->rule_flag & PFRULE_RETURNRST) ||
5885 	    (r->rule_flag & PFRULE_RETURNICMP) ||
5886 	    (r->rule_flag & PFRULE_RETURN))) {
5887 		pf_return(r, nr, pd, sk, th, bproto_sum,
5888 		    bip_sum, &reason, r->rtableid);
5889 	}
5890 
5891 	if (r->action == PF_DROP)
5892 		goto cleanup;
5893 
5894 	if (tag > 0 && pf_tag_packet(pd, tag)) {
5895 		REASON_SET(&reason, PFRES_MEMORY);
5896 		goto cleanup;
5897 	}
5898 	if (pd->act.rtableid >= 0)
5899 		M_SETFIB(pd->m, pd->act.rtableid);
5900 
5901 	if (r->rt) {
5902 		struct pf_ksrc_node	*sn = NULL;
5903 		struct pf_srchash	*snh = NULL;
5904 		struct pf_kpool		*pool = &r->route;
5905 
5906 		/* Backwards compatibility. */
5907 		if (TAILQ_EMPTY(&pool->list))
5908 			pool = &r->rdr;
5909 
5910 		/*
5911 		 * Set act.rt here instead of in pf_rule_to_actions() because
5912 		 * it is applied only from the last pass rule.
5913 		 */
5914 		pd->act.rt = r->rt;
5915 		/* Don't use REASON_SET, pf_map_addr increases the reason counters */
5916 		reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr,
5917 		    &pd->act.rt_kif, NULL, &sn, &snh, pool);
5918 		if (reason != 0)
5919 			goto cleanup;
5920 	}
5921 
5922 	if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5923 	   (!state_icmp && (r->keep_state || nr != NULL ||
5924 	    (pd->flags & PFDESC_TCP_NORM)))) {
5925 		int action;
5926 		bool nat64;
5927 
5928 		action = pf_create_state(r, nr, a, pd, nk, sk,
5929 		    &rewrite, sm, tag, bproto_sum, bip_sum,
5930 		    &match_rules, udp_mapping);
5931 		if (action != PF_PASS) {
5932 			pf_udp_mapping_release(udp_mapping);
5933 			pd->act.log |= PF_LOG_FORCE;
5934 			if (action == PF_DROP &&
5935 			    (r->rule_flag & PFRULE_RETURN))
5936 				pf_return(r, nr, pd, sk, th,
5937 				    bproto_sum, bip_sum, &reason,
5938 				    pd->act.rtableid);
5939 			return (action);
5940 		}
5941 
5942 		nat64 = pd->af != pd->naf;
5943 		if (nat64) {
5944 			struct pf_state_key	*_sk;
5945 			int			 ret;
5946 
5947 			if (sk == NULL)
5948 				sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
5949 			if (nk == NULL)
5950 				nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
5951 			if (pd->dir == PF_IN)
5952 				_sk = sk;
5953 			else
5954 				_sk = nk;
5955 
5956 			ret = pf_translate(pd,
5957 			    &_sk->addr[pd->didx],
5958 			    _sk->port[pd->didx],
5959 			    &_sk->addr[pd->sidx],
5960 			    _sk->port[pd->sidx],
5961 			    virtual_type, icmp_dir);
5962 			if (ret < 0)
5963 				goto cleanup;
5964 
5965 			rewrite += ret;
5966 		}
5967 	} else {
5968 		while ((ri = SLIST_FIRST(&match_rules))) {
5969 			SLIST_REMOVE_HEAD(&match_rules, entry);
5970 			free(ri, M_PF_RULE_ITEM);
5971 		}
5972 
5973 		uma_zfree(V_pf_state_key_z, sk);
5974 		uma_zfree(V_pf_state_key_z, nk);
5975 		pf_udp_mapping_release(udp_mapping);
5976 	}
5977 
5978 	/* copy back packet headers if we performed NAT operations */
5979 	if (rewrite)
5980 		m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5981 
5982 	if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5983 	    pd->dir == PF_OUT &&
5984 	    V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m))
5985 		/*
5986 		 * We want the state created, but we dont
5987 		 * want to send this in case a partner
5988 		 * firewall has to know about it to allow
5989 		 * replies through it.
5990 		 */
5991 		return (PF_DEFER);
5992 
5993 	if (rewrite && sk != NULL && nk != NULL && sk->af != nk->af) {
5994 		return (PF_AFRT);
5995 	} else
5996 		return (PF_PASS);
5997 
5998 cleanup:
5999 	while ((ri = SLIST_FIRST(&match_rules))) {
6000 		SLIST_REMOVE_HEAD(&match_rules, entry);
6001 		free(ri, M_PF_RULE_ITEM);
6002 	}
6003 
6004 	uma_zfree(V_pf_state_key_z, sk);
6005 	uma_zfree(V_pf_state_key_z, nk);
6006 	pf_udp_mapping_release(udp_mapping);
6007 
6008 	return (PF_DROP);
6009 }
6010 
6011 static int
pf_create_state(struct pf_krule * r,struct pf_krule * nr,struct pf_krule * a,struct pf_pdesc * pd,struct pf_state_key * nk,struct pf_state_key * sk,int * rewrite,struct pf_kstate ** sm,int tag,u_int16_t bproto_sum,u_int16_t bip_sum,struct pf_krule_slist * match_rules,struct pf_udp_mapping * udp_mapping)6012 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
6013     struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk,
6014     int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum,
6015     u_int16_t bip_sum, struct pf_krule_slist *match_rules,
6016     struct pf_udp_mapping *udp_mapping)
6017 {
6018 	struct pf_kstate	*s = NULL;
6019 	struct pf_ksrc_node	*sn = NULL;
6020 	struct pf_srchash	*snh = NULL;
6021 	struct pf_ksrc_node	*nsn = NULL;
6022 	struct pf_srchash	*nsnh = NULL;
6023 	struct tcphdr		*th = &pd->hdr.tcp;
6024 	u_int16_t		 mss = V_tcp_mssdflt;
6025 	u_short			 reason, sn_reason;
6026 	struct pf_krule_item	*ri;
6027 
6028 	/* check maximums */
6029 	if (r->max_states &&
6030 	    (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6031 		counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6032 		REASON_SET(&reason, PFRES_MAXSTATES);
6033 		goto csfailed;
6034 	}
6035 	/* src node for filter rule */
6036 	if ((r->rule_flag & PFRULE_SRCTRACK ||
6037 	    r->rdr.opts & PF_POOL_STICKYADDR) &&
6038 	    (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af,
6039 	    &pd->act.rt_addr, pd->act.rt_kif)) != 0) {
6040 		REASON_SET(&reason, sn_reason);
6041 		goto csfailed;
6042 	}
6043 	/* src node for translation rule */
6044 	if (nr != NULL && (nr->rdr.opts & PF_POOL_STICKYADDR) &&
6045 	    (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx],
6046 	    pd->af, &nk->addr[1], NULL)) != 0 ) {
6047 		REASON_SET(&reason, sn_reason);
6048 		goto csfailed;
6049 	}
6050 	s = pf_alloc_state(M_NOWAIT);
6051 	if (s == NULL) {
6052 		REASON_SET(&reason, PFRES_MEMORY);
6053 		goto csfailed;
6054 	}
6055 	s->rule = r;
6056 	s->nat_rule = nr;
6057 	s->anchor = a;
6058 	bcopy(match_rules, &s->match_rules, sizeof(s->match_rules));
6059 	memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6060 
6061 	STATE_INC_COUNTERS(s);
6062 	if (r->allow_opts)
6063 		s->state_flags |= PFSTATE_ALLOWOPTS;
6064 	if (r->rule_flag & PFRULE_STATESLOPPY)
6065 		s->state_flags |= PFSTATE_SLOPPY;
6066 	if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6067 		s->state_flags |= PFSTATE_SCRUB_TCP;
6068 	if ((r->rule_flag & PFRULE_PFLOW) ||
6069 	    (nr != NULL && nr->rule_flag & PFRULE_PFLOW))
6070 		s->state_flags |= PFSTATE_PFLOW;
6071 
6072 	s->act.log = pd->act.log & PF_LOG_ALL;
6073 	s->sync_state = PFSYNC_S_NONE;
6074 	s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6075 
6076 	if (nr != NULL)
6077 		s->act.log |= nr->log & PF_LOG_ALL;
6078 	switch (pd->proto) {
6079 	case IPPROTO_TCP:
6080 		s->src.seqlo = ntohl(th->th_seq);
6081 		s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6082 		if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6083 		    r->keep_state == PF_STATE_MODULATE) {
6084 			/* Generate sequence number modulator */
6085 			if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6086 			    0)
6087 				s->src.seqdiff = 1;
6088 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6089 			    htonl(s->src.seqlo + s->src.seqdiff), 0);
6090 			*rewrite = 1;
6091 		} else
6092 			s->src.seqdiff = 0;
6093 		if (tcp_get_flags(th) & TH_SYN) {
6094 			s->src.seqhi++;
6095 			s->src.wscale = pf_get_wscale(pd);
6096 		}
6097 		s->src.max_win = MAX(ntohs(th->th_win), 1);
6098 		if (s->src.wscale & PF_WSCALE_MASK) {
6099 			/* Remove scale factor from initial window */
6100 			int win = s->src.max_win;
6101 			win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6102 			s->src.max_win = (win - 1) >>
6103 			    (s->src.wscale & PF_WSCALE_MASK);
6104 		}
6105 		if (tcp_get_flags(th) & TH_FIN)
6106 			s->src.seqhi++;
6107 		s->dst.seqhi = 1;
6108 		s->dst.max_win = 1;
6109 		pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6110 		pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6111 		s->timeout = PFTM_TCP_FIRST_PACKET;
6112 		atomic_add_32(&V_pf_status.states_halfopen, 1);
6113 		break;
6114 	case IPPROTO_UDP:
6115 		pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6116 		pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6117 		s->timeout = PFTM_UDP_FIRST_PACKET;
6118 		break;
6119 	case IPPROTO_SCTP:
6120 		pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6121 		pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6122 		s->timeout = PFTM_SCTP_FIRST_PACKET;
6123 		break;
6124 	case IPPROTO_ICMP:
6125 #ifdef INET6
6126 	case IPPROTO_ICMPV6:
6127 #endif
6128 		s->timeout = PFTM_ICMP_FIRST_PACKET;
6129 		break;
6130 	default:
6131 		pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6132 		pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6133 		s->timeout = PFTM_OTHER_FIRST_PACKET;
6134 	}
6135 
6136 	s->creation = s->expire = pf_get_uptime();
6137 
6138 	if (pd->proto == IPPROTO_TCP) {
6139 		if (s->state_flags & PFSTATE_SCRUB_TCP &&
6140 		    pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) {
6141 			REASON_SET(&reason, PFRES_MEMORY);
6142 			goto csfailed;
6143 		}
6144 		if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6145 		    pf_normalize_tcp_stateful(pd, &reason, th, s,
6146 		    &s->src, &s->dst, rewrite)) {
6147 			/* This really shouldn't happen!!! */
6148 			DPFPRINTF(PF_DEBUG_URGENT,
6149 			    ("pf_normalize_tcp_stateful failed on first "
6150 			     "pkt\n"));
6151 			goto csfailed;
6152 		}
6153 	} else if (pd->proto == IPPROTO_SCTP) {
6154 		if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6155 			goto csfailed;
6156 		if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6157 			goto csfailed;
6158 	}
6159 	s->direction = pd->dir;
6160 
6161 	/*
6162 	 * sk/nk could already been setup by pf_get_translation().
6163 	 */
6164 	if (nr == NULL) {
6165 		KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
6166 		    __func__, nr, sk, nk));
6167 		MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6168 		MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6169 		if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) {
6170 			goto csfailed;
6171 		}
6172 	} else
6173 		KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
6174 		    __func__, nr, sk, nk));
6175 
6176 	/* Swap sk/nk for PF_OUT. */
6177 	if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6178 	    (pd->dir == PF_IN) ? sk : nk,
6179 	    (pd->dir == PF_IN) ? nk : sk, s)) {
6180 		REASON_SET(&reason, PFRES_STATEINS);
6181 		goto drop;
6182 	} else
6183 		*sm = s;
6184 
6185 	/*
6186 	 * Lock order is important: first state, then source node.
6187 	 */
6188 	if (pf_src_node_exists(&sn, snh)) {
6189 		s->src_node = sn;
6190 		PF_HASHROW_UNLOCK(snh);
6191 	}
6192 	if (pf_src_node_exists(&nsn, nsnh)) {
6193 		s->nat_src_node = nsn;
6194 		PF_HASHROW_UNLOCK(nsnh);
6195 	}
6196 
6197 	if (tag > 0)
6198 		s->tag = tag;
6199 	if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6200 	    TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
6201 		pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6202 		/* undo NAT changes, if they have taken place */
6203 		if (nr != NULL) {
6204 			struct pf_state_key *skt = s->key[PF_SK_WIRE];
6205 			if (pd->dir == PF_OUT)
6206 				skt = s->key[PF_SK_STACK];
6207 			PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
6208 			PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
6209 			if (pd->sport)
6210 				*pd->sport = skt->port[pd->sidx];
6211 			if (pd->dport)
6212 				*pd->dport = skt->port[pd->didx];
6213 			if (pd->ip_sum)
6214 				*pd->ip_sum = bip_sum;
6215 			m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6216 		}
6217 		s->src.seqhi = htonl(arc4random());
6218 		/* Find mss option */
6219 		int rtid = M_GETFIB(pd->m);
6220 		mss = pf_get_mss(pd);
6221 		mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6222 		mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6223 		s->src.mss = mss;
6224 		pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6225 		    th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6226 		    TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6227 		    pd->act.rtableid);
6228 		REASON_SET(&reason, PFRES_SYNPROXY);
6229 		return (PF_SYNPROXY_DROP);
6230 	}
6231 
6232 	s->udp_mapping = udp_mapping;
6233 
6234 	return (PF_PASS);
6235 
6236 csfailed:
6237 	while ((ri = SLIST_FIRST(match_rules))) {
6238 		SLIST_REMOVE_HEAD(match_rules, entry);
6239 		free(ri, M_PF_RULE_ITEM);
6240 	}
6241 
6242 	uma_zfree(V_pf_state_key_z, sk);
6243 	uma_zfree(V_pf_state_key_z, nk);
6244 
6245 	if (pf_src_node_exists(&sn, snh)) {
6246 		if (--sn->states == 0 && sn->expire == 0) {
6247 			pf_unlink_src_node(sn);
6248 			pf_free_src_node(sn);
6249 			counter_u64_add(
6250 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6251 		}
6252 		PF_HASHROW_UNLOCK(snh);
6253 	}
6254 
6255 	if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) {
6256 		if (--nsn->states == 0 && nsn->expire == 0) {
6257 			pf_unlink_src_node(nsn);
6258 			pf_free_src_node(nsn);
6259 			counter_u64_add(
6260 			    V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6261 		}
6262 		PF_HASHROW_UNLOCK(nsnh);
6263 	}
6264 
6265 drop:
6266 	if (s != NULL) {
6267 		pf_src_tree_remove_state(s);
6268 		s->timeout = PFTM_UNLINKED;
6269 		STATE_DEC_COUNTERS(s);
6270 		pf_free_state(s);
6271 	}
6272 
6273 	return (PF_DROP);
6274 }
6275 
6276 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6277 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6278     struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6279     int icmp_dir)
6280 {
6281 	/*
6282 	 * pf_translate() implements OpenBSD's "new" NAT approach.
6283 	 * We don't follow it, because it involves a breaking syntax change
6284 	 * (removing nat/rdr rules, moving it into regular pf rules.)
6285 	 * It also moves NAT processing to be done after normal rules evaluation
6286 	 * whereas in FreeBSD that's done before rules processing.
6287 	 *
6288 	 * We adopt the function only for nat64, and keep other NAT processing
6289 	 * before rules processing.
6290 	 */
6291 	int	rewrite = 0;
6292 	int	afto = pd->af != pd->naf;
6293 
6294 	MPASS(afto);
6295 
6296 	switch (pd->proto) {
6297 	case IPPROTO_TCP:
6298 		if (afto || *pd->sport != sport) {
6299 			pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.tcp.th_sum,
6300 			    saddr, sport, 0, pd->af, pd->naf);
6301 			rewrite = 1;
6302 		}
6303 		if (afto || *pd->dport != dport) {
6304 			pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.tcp.th_sum,
6305 			    daddr, dport, 0, pd->af, pd->naf);
6306 			rewrite = 1;
6307 		}
6308 		break;
6309 
6310 	case IPPROTO_UDP:
6311 		if (afto || *pd->sport != sport) {
6312 			pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.udp.uh_sum,
6313 			    saddr, sport, 1, pd->af, pd->naf);
6314 			rewrite = 1;
6315 		}
6316 		if (afto || *pd->dport != dport) {
6317 			pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.udp.uh_sum,
6318 			    daddr, dport, 1, pd->af, pd->naf);
6319 			rewrite = 1;
6320 		}
6321 		break;
6322 
6323 	case IPPROTO_SCTP: {
6324 		uint16_t checksum = 0;
6325 		if (afto || *pd->sport != sport) {
6326 			pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &checksum,
6327 			    saddr, sport, 1, pd->af, pd->naf);
6328 			rewrite = 1;
6329 		}
6330 		if (afto || *pd->dport != dport) {
6331 			pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &checksum,
6332 			    daddr, dport, 1, pd->af, pd->naf);
6333 			rewrite = 1;
6334 		}
6335 		break;
6336 	}
6337 
6338 #ifdef INET
6339 	case IPPROTO_ICMP:
6340 		/* pf_translate() is also used when logging invalid packets */
6341 		if (pd->af != AF_INET)
6342 			return (0);
6343 
6344 		if (afto) {
6345 			if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6346 				return (-1);
6347 			pd->proto = IPPROTO_ICMPV6;
6348 			rewrite = 1;
6349 		}
6350 		if (virtual_type == htons(ICMP_ECHO)) {
6351 			u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6352 
6353 			if (icmpid != pd->hdr.icmp.icmp_id) {
6354 				pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6355 				    pd->hdr.icmp.icmp_cksum,
6356 				    pd->hdr.icmp.icmp_id, icmpid, 0);
6357 				pd->hdr.icmp.icmp_id = icmpid;
6358 				/* XXX TODO copyback. */
6359 				rewrite = 1;
6360 			}
6361 		}
6362 		break;
6363 #endif /* INET */
6364 
6365 #ifdef INET6
6366 	case IPPROTO_ICMPV6:
6367 		/* pf_translate() is also used when logging invalid packets */
6368 		if (pd->af != AF_INET6)
6369 			return (0);
6370 
6371 		if (afto) {
6372 			/* ip_sum will be recalculated in pf_translate_af */
6373 			if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6374 				return (0);
6375 			pd->proto = IPPROTO_ICMP;
6376 			rewrite = 1;
6377 		}
6378 		break;
6379 #endif /* INET6 */
6380 
6381 	default:
6382 		break;
6383 	}
6384 
6385 	return (rewrite);
6386 }
6387 
6388 static int
pf_tcp_track_full(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason,int * copyback)6389 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd,
6390     u_short *reason, int *copyback)
6391 {
6392 	struct tcphdr		*th = &pd->hdr.tcp;
6393 	struct pf_state_peer	*src, *dst;
6394 	u_int16_t		 win = ntohs(th->th_win);
6395 	u_int32_t		 ack, end, data_end, seq, orig_seq;
6396 	u_int8_t		 sws, dws, psrc, pdst;
6397 	int			 ackskew;
6398 
6399 	if (pd->dir == (*state)->direction) {
6400 		if (PF_REVERSED_KEY((*state)->key, pd->af)) {
6401 			src = &(*state)->dst;
6402 			dst = &(*state)->src;
6403 		} else {
6404 			src = &(*state)->src;
6405 			dst = &(*state)->dst;
6406 		}
6407 		psrc = PF_PEER_SRC;
6408 		pdst = PF_PEER_DST;
6409 	} else {
6410 		if (PF_REVERSED_KEY((*state)->key, pd->af)) {
6411 			src = &(*state)->src;
6412 			dst = &(*state)->dst;
6413 		} else {
6414 			src = &(*state)->dst;
6415 			dst = &(*state)->src;
6416 		}
6417 		psrc = PF_PEER_DST;
6418 		pdst = PF_PEER_SRC;
6419 	}
6420 
6421 	if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6422 		sws = src->wscale & PF_WSCALE_MASK;
6423 		dws = dst->wscale & PF_WSCALE_MASK;
6424 	} else
6425 		sws = dws = 0;
6426 
6427 	/*
6428 	 * Sequence tracking algorithm from Guido van Rooij's paper:
6429 	 *   http://www.madison-gurkha.com/publications/tcp_filtering/
6430 	 *	tcp_filtering.ps
6431 	 */
6432 
6433 	orig_seq = seq = ntohl(th->th_seq);
6434 	if (src->seqlo == 0) {
6435 		/* First packet from this end. Set its state */
6436 
6437 		if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6438 		    src->scrub == NULL) {
6439 			if (pf_normalize_tcp_init(pd, th, src, dst)) {
6440 				REASON_SET(reason, PFRES_MEMORY);
6441 				return (PF_DROP);
6442 			}
6443 		}
6444 
6445 		/* Deferred generation of sequence number modulator */
6446 		if (dst->seqdiff && !src->seqdiff) {
6447 			/* use random iss for the TCP server */
6448 			while ((src->seqdiff = arc4random() - seq) == 0)
6449 				;
6450 			ack = ntohl(th->th_ack) - dst->seqdiff;
6451 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6452 			    src->seqdiff), 0);
6453 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6454 			*copyback = 1;
6455 		} else {
6456 			ack = ntohl(th->th_ack);
6457 		}
6458 
6459 		end = seq + pd->p_len;
6460 		if (tcp_get_flags(th) & TH_SYN) {
6461 			end++;
6462 			if (dst->wscale & PF_WSCALE_FLAG) {
6463 				src->wscale = pf_get_wscale(pd);
6464 				if (src->wscale & PF_WSCALE_FLAG) {
6465 					/* Remove scale factor from initial
6466 					 * window */
6467 					sws = src->wscale & PF_WSCALE_MASK;
6468 					win = ((u_int32_t)win + (1 << sws) - 1)
6469 					    >> sws;
6470 					dws = dst->wscale & PF_WSCALE_MASK;
6471 				} else {
6472 					/* fixup other window */
6473 					dst->max_win = MIN(TCP_MAXWIN,
6474 					    (u_int32_t)dst->max_win <<
6475 					    (dst->wscale & PF_WSCALE_MASK));
6476 					/* in case of a retrans SYN|ACK */
6477 					dst->wscale = 0;
6478 				}
6479 			}
6480 		}
6481 		data_end = end;
6482 		if (tcp_get_flags(th) & TH_FIN)
6483 			end++;
6484 
6485 		src->seqlo = seq;
6486 		if (src->state < TCPS_SYN_SENT)
6487 			pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6488 
6489 		/*
6490 		 * May need to slide the window (seqhi may have been set by
6491 		 * the crappy stack check or if we picked up the connection
6492 		 * after establishment)
6493 		 */
6494 		if (src->seqhi == 1 ||
6495 		    SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6496 			src->seqhi = end + MAX(1, dst->max_win << dws);
6497 		if (win > src->max_win)
6498 			src->max_win = win;
6499 
6500 	} else {
6501 		ack = ntohl(th->th_ack) - dst->seqdiff;
6502 		if (src->seqdiff) {
6503 			/* Modulate sequence numbers */
6504 			pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6505 			    src->seqdiff), 0);
6506 			pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6507 			*copyback = 1;
6508 		}
6509 		end = seq + pd->p_len;
6510 		if (tcp_get_flags(th) & TH_SYN)
6511 			end++;
6512 		data_end = end;
6513 		if (tcp_get_flags(th) & TH_FIN)
6514 			end++;
6515 	}
6516 
6517 	if ((tcp_get_flags(th) & TH_ACK) == 0) {
6518 		/* Let it pass through the ack skew check */
6519 		ack = dst->seqlo;
6520 	} else if ((ack == 0 &&
6521 	    (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6522 	    /* broken tcp stacks do not set ack */
6523 	    (dst->state < TCPS_SYN_SENT)) {
6524 		/*
6525 		 * Many stacks (ours included) will set the ACK number in an
6526 		 * FIN|ACK if the SYN times out -- no sequence to ACK.
6527 		 */
6528 		ack = dst->seqlo;
6529 	}
6530 
6531 	if (seq == end) {
6532 		/* Ease sequencing restrictions on no data packets */
6533 		seq = src->seqlo;
6534 		data_end = end = seq;
6535 	}
6536 
6537 	ackskew = dst->seqlo - ack;
6538 
6539 	/*
6540 	 * Need to demodulate the sequence numbers in any TCP SACK options
6541 	 * (Selective ACK). We could optionally validate the SACK values
6542 	 * against the current ACK window, either forwards or backwards, but
6543 	 * I'm not confident that SACK has been implemented properly
6544 	 * everywhere. It wouldn't surprise me if several stacks accidentally
6545 	 * SACK too far backwards of previously ACKed data. There really aren't
6546 	 * any security implications of bad SACKing unless the target stack
6547 	 * doesn't validate the option length correctly. Someone trying to
6548 	 * spoof into a TCP connection won't bother blindly sending SACK
6549 	 * options anyway.
6550 	 */
6551 	if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6552 		if (pf_modulate_sack(pd, th, dst))
6553 			*copyback = 1;
6554 	}
6555 
6556 #define	MAXACKWINDOW (0xffff + 1500)	/* 1500 is an arbitrary fudge factor */
6557 	if (SEQ_GEQ(src->seqhi, data_end) &&
6558 	    /* Last octet inside other's window space */
6559 	    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6560 	    /* Retrans: not more than one window back */
6561 	    (ackskew >= -MAXACKWINDOW) &&
6562 	    /* Acking not more than one reassembled fragment backwards */
6563 	    (ackskew <= (MAXACKWINDOW << sws)) &&
6564 	    /* Acking not more than one window forward */
6565 	    ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6566 	    (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6567 	    /* Require an exact/+1 sequence match on resets when possible */
6568 
6569 		if (dst->scrub || src->scrub) {
6570 			if (pf_normalize_tcp_stateful(pd, reason, th,
6571 			    *state, src, dst, copyback))
6572 				return (PF_DROP);
6573 		}
6574 
6575 		/* update max window */
6576 		if (src->max_win < win)
6577 			src->max_win = win;
6578 		/* synchronize sequencing */
6579 		if (SEQ_GT(end, src->seqlo))
6580 			src->seqlo = end;
6581 		/* slide the window of what the other end can send */
6582 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6583 			dst->seqhi = ack + MAX((win << sws), 1);
6584 
6585 		/* update states */
6586 		if (tcp_get_flags(th) & TH_SYN)
6587 			if (src->state < TCPS_SYN_SENT)
6588 				pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6589 		if (tcp_get_flags(th) & TH_FIN)
6590 			if (src->state < TCPS_CLOSING)
6591 				pf_set_protostate(*state, psrc, TCPS_CLOSING);
6592 		if (tcp_get_flags(th) & TH_ACK) {
6593 			if (dst->state == TCPS_SYN_SENT) {
6594 				pf_set_protostate(*state, pdst,
6595 				    TCPS_ESTABLISHED);
6596 				if (src->state == TCPS_ESTABLISHED &&
6597 				    (*state)->src_node != NULL &&
6598 				    pf_src_connlimit(*state)) {
6599 					REASON_SET(reason, PFRES_SRCLIMIT);
6600 					return (PF_DROP);
6601 				}
6602 			} else if (dst->state == TCPS_CLOSING)
6603 				pf_set_protostate(*state, pdst,
6604 				    TCPS_FIN_WAIT_2);
6605 		}
6606 		if (tcp_get_flags(th) & TH_RST)
6607 			pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6608 
6609 		/* update expire time */
6610 		(*state)->expire = pf_get_uptime();
6611 		if (src->state >= TCPS_FIN_WAIT_2 &&
6612 		    dst->state >= TCPS_FIN_WAIT_2)
6613 			(*state)->timeout = PFTM_TCP_CLOSED;
6614 		else if (src->state >= TCPS_CLOSING &&
6615 		    dst->state >= TCPS_CLOSING)
6616 			(*state)->timeout = PFTM_TCP_FIN_WAIT;
6617 		else if (src->state < TCPS_ESTABLISHED ||
6618 		    dst->state < TCPS_ESTABLISHED)
6619 			(*state)->timeout = PFTM_TCP_OPENING;
6620 		else if (src->state >= TCPS_CLOSING ||
6621 		    dst->state >= TCPS_CLOSING)
6622 			(*state)->timeout = PFTM_TCP_CLOSING;
6623 		else
6624 			(*state)->timeout = PFTM_TCP_ESTABLISHED;
6625 
6626 		/* Fall through to PASS packet */
6627 
6628 	} else if ((dst->state < TCPS_SYN_SENT ||
6629 		dst->state >= TCPS_FIN_WAIT_2 ||
6630 		src->state >= TCPS_FIN_WAIT_2) &&
6631 	    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6632 	    /* Within a window forward of the originating packet */
6633 	    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6634 	    /* Within a window backward of the originating packet */
6635 
6636 		/*
6637 		 * This currently handles three situations:
6638 		 *  1) Stupid stacks will shotgun SYNs before their peer
6639 		 *     replies.
6640 		 *  2) When PF catches an already established stream (the
6641 		 *     firewall rebooted, the state table was flushed, routes
6642 		 *     changed...)
6643 		 *  3) Packets get funky immediately after the connection
6644 		 *     closes (this should catch Solaris spurious ACK|FINs
6645 		 *     that web servers like to spew after a close)
6646 		 *
6647 		 * This must be a little more careful than the above code
6648 		 * since packet floods will also be caught here. We don't
6649 		 * update the TTL here to mitigate the damage of a packet
6650 		 * flood and so the same code can handle awkward establishment
6651 		 * and a loosened connection close.
6652 		 * In the establishment case, a correct peer response will
6653 		 * validate the connection, go through the normal state code
6654 		 * and keep updating the state TTL.
6655 		 */
6656 
6657 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6658 			printf("pf: loose state match: ");
6659 			pf_print_state(*state);
6660 			pf_print_flags(tcp_get_flags(th));
6661 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6662 			    "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6663 			    pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
6664 			    (unsigned long long)(*state)->packets[1],
6665 			    pd->dir == PF_IN ? "in" : "out",
6666 			    pd->dir == (*state)->direction ? "fwd" : "rev");
6667 		}
6668 
6669 		if (dst->scrub || src->scrub) {
6670 			if (pf_normalize_tcp_stateful(pd, reason, th,
6671 			    *state, src, dst, copyback))
6672 				return (PF_DROP);
6673 		}
6674 
6675 		/* update max window */
6676 		if (src->max_win < win)
6677 			src->max_win = win;
6678 		/* synchronize sequencing */
6679 		if (SEQ_GT(end, src->seqlo))
6680 			src->seqlo = end;
6681 		/* slide the window of what the other end can send */
6682 		if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6683 			dst->seqhi = ack + MAX((win << sws), 1);
6684 
6685 		/*
6686 		 * Cannot set dst->seqhi here since this could be a shotgunned
6687 		 * SYN and not an already established connection.
6688 		 */
6689 
6690 		if (tcp_get_flags(th) & TH_FIN)
6691 			if (src->state < TCPS_CLOSING)
6692 				pf_set_protostate(*state, psrc, TCPS_CLOSING);
6693 		if (tcp_get_flags(th) & TH_RST)
6694 			pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6695 
6696 		/* Fall through to PASS packet */
6697 
6698 	} else {
6699 		if ((*state)->dst.state == TCPS_SYN_SENT &&
6700 		    (*state)->src.state == TCPS_SYN_SENT) {
6701 			/* Send RST for state mismatches during handshake */
6702 			if (!(tcp_get_flags(th) & TH_RST))
6703 				pf_send_tcp((*state)->rule, pd->af,
6704 				    pd->dst, pd->src, th->th_dport,
6705 				    th->th_sport, ntohl(th->th_ack), 0,
6706 				    TH_RST, 0, 0,
6707 				    (*state)->rule->return_ttl, M_SKIP_FIREWALL,
6708 				    0, 0, (*state)->act.rtableid);
6709 			src->seqlo = 0;
6710 			src->seqhi = 1;
6711 			src->max_win = 1;
6712 		} else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6713 			printf("pf: BAD state: ");
6714 			pf_print_state(*state);
6715 			pf_print_flags(tcp_get_flags(th));
6716 			printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6717 			    "pkts=%llu:%llu dir=%s,%s\n",
6718 			    seq, orig_seq, ack, pd->p_len, ackskew,
6719 			    (unsigned long long)(*state)->packets[0],
6720 			    (unsigned long long)(*state)->packets[1],
6721 			    pd->dir == PF_IN ? "in" : "out",
6722 			    pd->dir == (*state)->direction ? "fwd" : "rev");
6723 			printf("pf: State failure on: %c %c %c %c | %c %c\n",
6724 			    SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6725 			    SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6726 			    ' ': '2',
6727 			    (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6728 			    (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6729 			    SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6730 			    SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6731 		}
6732 		REASON_SET(reason, PFRES_BADSTATE);
6733 		return (PF_DROP);
6734 	}
6735 
6736 	return (PF_PASS);
6737 }
6738 
6739 static int
pf_tcp_track_sloppy(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6740 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
6741 {
6742 	struct tcphdr		*th = &pd->hdr.tcp;
6743 	struct pf_state_peer	*src, *dst;
6744 	u_int8_t		 psrc, pdst;
6745 
6746 	if (pd->dir == (*state)->direction) {
6747 		src = &(*state)->src;
6748 		dst = &(*state)->dst;
6749 		psrc = PF_PEER_SRC;
6750 		pdst = PF_PEER_DST;
6751 	} else {
6752 		src = &(*state)->dst;
6753 		dst = &(*state)->src;
6754 		psrc = PF_PEER_DST;
6755 		pdst = PF_PEER_SRC;
6756 	}
6757 
6758 	if (tcp_get_flags(th) & TH_SYN)
6759 		if (src->state < TCPS_SYN_SENT)
6760 			pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6761 	if (tcp_get_flags(th) & TH_FIN)
6762 		if (src->state < TCPS_CLOSING)
6763 			pf_set_protostate(*state, psrc, TCPS_CLOSING);
6764 	if (tcp_get_flags(th) & TH_ACK) {
6765 		if (dst->state == TCPS_SYN_SENT) {
6766 			pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
6767 			if (src->state == TCPS_ESTABLISHED &&
6768 			    (*state)->src_node != NULL &&
6769 			    pf_src_connlimit(*state)) {
6770 				REASON_SET(reason, PFRES_SRCLIMIT);
6771 				return (PF_DROP);
6772 			}
6773 		} else if (dst->state == TCPS_CLOSING) {
6774 			pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
6775 		} else if (src->state == TCPS_SYN_SENT &&
6776 		    dst->state < TCPS_SYN_SENT) {
6777 			/*
6778 			 * Handle a special sloppy case where we only see one
6779 			 * half of the connection. If there is a ACK after
6780 			 * the initial SYN without ever seeing a packet from
6781 			 * the destination, set the connection to established.
6782 			 */
6783 			pf_set_protostate(*state, PF_PEER_BOTH,
6784 			    TCPS_ESTABLISHED);
6785 			dst->state = src->state = TCPS_ESTABLISHED;
6786 			if ((*state)->src_node != NULL &&
6787 			    pf_src_connlimit(*state)) {
6788 				REASON_SET(reason, PFRES_SRCLIMIT);
6789 				return (PF_DROP);
6790 			}
6791 		} else if (src->state == TCPS_CLOSING &&
6792 		    dst->state == TCPS_ESTABLISHED &&
6793 		    dst->seqlo == 0) {
6794 			/*
6795 			 * Handle the closing of half connections where we
6796 			 * don't see the full bidirectional FIN/ACK+ACK
6797 			 * handshake.
6798 			 */
6799 			pf_set_protostate(*state, pdst, TCPS_CLOSING);
6800 		}
6801 	}
6802 	if (tcp_get_flags(th) & TH_RST)
6803 		pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6804 
6805 	/* update expire time */
6806 	(*state)->expire = pf_get_uptime();
6807 	if (src->state >= TCPS_FIN_WAIT_2 &&
6808 	    dst->state >= TCPS_FIN_WAIT_2)
6809 		(*state)->timeout = PFTM_TCP_CLOSED;
6810 	else if (src->state >= TCPS_CLOSING &&
6811 	    dst->state >= TCPS_CLOSING)
6812 		(*state)->timeout = PFTM_TCP_FIN_WAIT;
6813 	else if (src->state < TCPS_ESTABLISHED ||
6814 	    dst->state < TCPS_ESTABLISHED)
6815 		(*state)->timeout = PFTM_TCP_OPENING;
6816 	else if (src->state >= TCPS_CLOSING ||
6817 	    dst->state >= TCPS_CLOSING)
6818 		(*state)->timeout = PFTM_TCP_CLOSING;
6819 	else
6820 		(*state)->timeout = PFTM_TCP_ESTABLISHED;
6821 
6822 	return (PF_PASS);
6823 }
6824 
6825 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate ** state,u_short * reason)6826 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
6827 {
6828 	struct pf_state_key	*sk = (*state)->key[pd->didx];
6829 	struct tcphdr		*th = &pd->hdr.tcp;
6830 
6831 	if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
6832 		if (pd->dir != (*state)->direction) {
6833 			REASON_SET(reason, PFRES_SYNPROXY);
6834 			return (PF_SYNPROXY_DROP);
6835 		}
6836 		if (tcp_get_flags(th) & TH_SYN) {
6837 			if (ntohl(th->th_seq) != (*state)->src.seqlo) {
6838 				REASON_SET(reason, PFRES_SYNPROXY);
6839 				return (PF_DROP);
6840 			}
6841 			pf_send_tcp((*state)->rule, pd->af, pd->dst,
6842 			    pd->src, th->th_dport, th->th_sport,
6843 			    (*state)->src.seqhi, ntohl(th->th_seq) + 1,
6844 			    TH_SYN|TH_ACK, 0, (*state)->src.mss, 0,
6845 			    M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6846 			REASON_SET(reason, PFRES_SYNPROXY);
6847 			return (PF_SYNPROXY_DROP);
6848 		} else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6849 		    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6850 		    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6851 			REASON_SET(reason, PFRES_SYNPROXY);
6852 			return (PF_DROP);
6853 		} else if ((*state)->src_node != NULL &&
6854 		    pf_src_connlimit(*state)) {
6855 			REASON_SET(reason, PFRES_SRCLIMIT);
6856 			return (PF_DROP);
6857 		} else
6858 			pf_set_protostate(*state, PF_PEER_SRC,
6859 			    PF_TCPS_PROXY_DST);
6860 	}
6861 	if ((*state)->src.state == PF_TCPS_PROXY_DST) {
6862 		if (pd->dir == (*state)->direction) {
6863 			if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
6864 			    (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6865 			    (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6866 				REASON_SET(reason, PFRES_SYNPROXY);
6867 				return (PF_DROP);
6868 			}
6869 			(*state)->src.max_win = MAX(ntohs(th->th_win), 1);
6870 			if ((*state)->dst.seqhi == 1)
6871 				(*state)->dst.seqhi = htonl(arc4random());
6872 			pf_send_tcp((*state)->rule, pd->af,
6873 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
6874 			    sk->port[pd->sidx], sk->port[pd->didx],
6875 			    (*state)->dst.seqhi, 0, TH_SYN, 0,
6876 			    (*state)->src.mss, 0,
6877 			    (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6878 			    (*state)->tag, 0, (*state)->act.rtableid);
6879 			REASON_SET(reason, PFRES_SYNPROXY);
6880 			return (PF_SYNPROXY_DROP);
6881 		} else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
6882 		    (TH_SYN|TH_ACK)) ||
6883 		    (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
6884 			REASON_SET(reason, PFRES_SYNPROXY);
6885 			return (PF_DROP);
6886 		} else {
6887 			(*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
6888 			(*state)->dst.seqlo = ntohl(th->th_seq);
6889 			pf_send_tcp((*state)->rule, pd->af, pd->dst,
6890 			    pd->src, th->th_dport, th->th_sport,
6891 			    ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6892 			    TH_ACK, (*state)->src.max_win, 0, 0, 0,
6893 			    (*state)->tag, 0, (*state)->act.rtableid);
6894 			pf_send_tcp((*state)->rule, pd->af,
6895 			    &sk->addr[pd->sidx], &sk->addr[pd->didx],
6896 			    sk->port[pd->sidx], sk->port[pd->didx],
6897 			    (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
6898 			    TH_ACK, (*state)->dst.max_win, 0, 0,
6899 			    M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6900 			(*state)->src.seqdiff = (*state)->dst.seqhi -
6901 			    (*state)->src.seqlo;
6902 			(*state)->dst.seqdiff = (*state)->src.seqhi -
6903 			    (*state)->dst.seqlo;
6904 			(*state)->src.seqhi = (*state)->src.seqlo +
6905 			    (*state)->dst.max_win;
6906 			(*state)->dst.seqhi = (*state)->dst.seqlo +
6907 			    (*state)->src.max_win;
6908 			(*state)->src.wscale = (*state)->dst.wscale = 0;
6909 			pf_set_protostate(*state, PF_PEER_BOTH,
6910 			    TCPS_ESTABLISHED);
6911 			REASON_SET(reason, PFRES_SYNPROXY);
6912 			return (PF_SYNPROXY_DROP);
6913 		}
6914 	}
6915 
6916 	return (PF_PASS);
6917 }
6918 
6919 static int
pf_test_state_tcp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6920 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd,
6921     u_short *reason)
6922 {
6923 	struct pf_state_key_cmp	 key;
6924 	struct tcphdr		*th = &pd->hdr.tcp;
6925 	int			 copyback = 0;
6926 	int			 action = PF_PASS;
6927 	struct pf_state_peer	*src, *dst;
6928 
6929 	bzero(&key, sizeof(key));
6930 	key.af = pd->af;
6931 	key.proto = IPPROTO_TCP;
6932 	PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
6933 	PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
6934 	key.port[pd->sidx] = th->th_sport;
6935 	key.port[pd->didx] = th->th_dport;
6936 
6937 	STATE_LOOKUP(&key, *state, pd);
6938 
6939 	if (pd->dir == (*state)->direction) {
6940 		src = &(*state)->src;
6941 		dst = &(*state)->dst;
6942 	} else {
6943 		src = &(*state)->dst;
6944 		dst = &(*state)->src;
6945 	}
6946 
6947 	if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
6948 		return (action);
6949 
6950 	if (dst->state >= TCPS_FIN_WAIT_2 &&
6951 	    src->state >= TCPS_FIN_WAIT_2 &&
6952 	    (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) ||
6953 	    ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK &&
6954 	    pf_syncookie_check(pd) && pd->dir == PF_IN))) {
6955 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
6956 			printf("pf: state reuse ");
6957 			pf_print_state(*state);
6958 			pf_print_flags(tcp_get_flags(th));
6959 			printf("\n");
6960 		}
6961 		/* XXX make sure it's the same direction ?? */
6962 		pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
6963 		pf_unlink_state(*state);
6964 		*state = NULL;
6965 		return (PF_DROP);
6966 	}
6967 
6968 	if ((*state)->state_flags & PFSTATE_SLOPPY) {
6969 		if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
6970 			return (PF_DROP);
6971 	} else {
6972 		int	 ret;
6973 
6974 		ret = pf_tcp_track_full(state, pd, reason,
6975 		    &copyback);
6976 		if (ret == PF_DROP)
6977 			return (PF_DROP);
6978 	}
6979 
6980 	/* translate source/destination address, if necessary */
6981 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6982 		struct pf_state_key	*nk;
6983 		int			 afto, sidx, didx;
6984 
6985 		if (PF_REVERSED_KEY((*state)->key, pd->af))
6986 			nk = (*state)->key[pd->sidx];
6987 		else
6988 			nk = (*state)->key[pd->didx];
6989 
6990 		afto = pd->af != nk->af;
6991 		sidx = afto ? pd->didx : pd->sidx;
6992 		didx = afto ? pd->sidx : pd->didx;
6993 
6994 		if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
6995 		    nk->port[sidx] != th->th_sport)
6996 			pf_change_ap(pd->m, pd->src, &th->th_sport,
6997 			    pd->ip_sum, &th->th_sum, &nk->addr[sidx],
6998 			    nk->port[sidx], 0, pd->af, nk->af);
6999 
7000 		if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7001 		    nk->port[didx] != th->th_dport)
7002 			pf_change_ap(pd->m, pd->dst, &th->th_dport,
7003 			    pd->ip_sum, &th->th_sum, &nk->addr[didx],
7004 			    nk->port[didx], 0, pd->af, nk->af);
7005 
7006 		if (afto) {
7007 			PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7008 			PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7009 			pd->naf = nk->af;
7010 			action = PF_AFRT;
7011 		}
7012 
7013 		copyback = 1;
7014 	}
7015 
7016 	/* Copyback sequence modulation or stateful scrub changes if needed */
7017 	if (copyback)
7018 		m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
7019 
7020 	return (action);
7021 }
7022 
7023 static int
pf_test_state_udp(struct pf_kstate ** state,struct pf_pdesc * pd)7024 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd)
7025 {
7026 	struct pf_state_peer	*src, *dst;
7027 	struct pf_state_key_cmp	 key;
7028 	struct udphdr		*uh = &pd->hdr.udp;
7029 	uint8_t			 psrc, pdst;
7030 	int			 action = PF_PASS;
7031 
7032 	bzero(&key, sizeof(key));
7033 	key.af = pd->af;
7034 	key.proto = IPPROTO_UDP;
7035 	PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
7036 	PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
7037 	key.port[pd->sidx] = uh->uh_sport;
7038 	key.port[pd->didx] = uh->uh_dport;
7039 
7040 	STATE_LOOKUP(&key, *state, pd);
7041 
7042 	if (pd->dir == (*state)->direction) {
7043 		src = &(*state)->src;
7044 		dst = &(*state)->dst;
7045 		psrc = PF_PEER_SRC;
7046 		pdst = PF_PEER_DST;
7047 	} else {
7048 		src = &(*state)->dst;
7049 		dst = &(*state)->src;
7050 		psrc = PF_PEER_DST;
7051 		pdst = PF_PEER_SRC;
7052 	}
7053 
7054 	/* update states */
7055 	if (src->state < PFUDPS_SINGLE)
7056 		pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7057 	if (dst->state == PFUDPS_SINGLE)
7058 		pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7059 
7060 	/* update expire time */
7061 	(*state)->expire = pf_get_uptime();
7062 	if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7063 		(*state)->timeout = PFTM_UDP_MULTIPLE;
7064 	else
7065 		(*state)->timeout = PFTM_UDP_SINGLE;
7066 
7067 	/* translate source/destination address, if necessary */
7068 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7069 		struct pf_state_key	*nk;
7070 		int			 afto, sidx, didx;
7071 
7072 		if (PF_REVERSED_KEY((*state)->key, pd->af))
7073 			nk = (*state)->key[pd->sidx];
7074 		else
7075 			nk = (*state)->key[pd->didx];
7076 
7077 		afto = pd->af != nk->af;
7078 		sidx = afto ? pd->didx : pd->sidx;
7079 		didx = afto ? pd->sidx : pd->didx;
7080 
7081 		if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7082 		    nk->port[sidx] != uh->uh_sport)
7083 			pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum,
7084 			    &uh->uh_sum, &nk->addr[pd->sidx],
7085 			    nk->port[sidx], 1, pd->af, nk->af);
7086 
7087 		if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7088 		    nk->port[didx] != uh->uh_dport)
7089 			pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum,
7090 			    &uh->uh_sum, &nk->addr[pd->didx],
7091 			    nk->port[didx], 1, pd->af, nk->af);
7092 
7093 		if (afto) {
7094 			PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7095 			PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7096 			pd->naf = nk->af;
7097 			action = PF_AFRT;
7098 		}
7099 
7100 		m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh);
7101 	}
7102 
7103 	return (action);
7104 }
7105 
7106 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7107 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7108     u_short *reason)
7109 {
7110 	struct pf_state_peer	*src;
7111 	if (pd->dir == state->direction) {
7112 		if (PF_REVERSED_KEY(state->key, pd->af))
7113 			src = &state->dst;
7114 		else
7115 			src = &state->src;
7116 	} else {
7117 		if (PF_REVERSED_KEY(state->key, pd->af))
7118 			src = &state->src;
7119 		else
7120 			src = &state->dst;
7121 	}
7122 
7123 	if (src->scrub != NULL) {
7124 		if (src->scrub->pfss_v_tag == 0)
7125 			src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7126 		else  if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7127 			return (PF_DROP);
7128 	}
7129 
7130 	return (PF_PASS);
7131 }
7132 
7133 static int
pf_test_state_sctp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7134 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd,
7135     u_short *reason)
7136 {
7137 	struct pf_state_key_cmp	 key;
7138 	struct pf_state_peer	*src, *dst;
7139 	struct sctphdr		*sh = &pd->hdr.sctp;
7140 	u_int8_t		 psrc; //, pdst;
7141 
7142 	bzero(&key, sizeof(key));
7143 	key.af = pd->af;
7144 	key.proto = IPPROTO_SCTP;
7145 	PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
7146 	PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
7147 	key.port[pd->sidx] = sh->src_port;
7148 	key.port[pd->didx] = sh->dest_port;
7149 
7150 	STATE_LOOKUP(&key, *state, pd);
7151 
7152 	if (pd->dir == (*state)->direction) {
7153 		src = &(*state)->src;
7154 		dst = &(*state)->dst;
7155 		psrc = PF_PEER_SRC;
7156 	} else {
7157 		src = &(*state)->dst;
7158 		dst = &(*state)->src;
7159 		psrc = PF_PEER_DST;
7160 	}
7161 
7162 	if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7163 	    (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7164 	    pd->sctp_flags & PFDESC_SCTP_INIT) {
7165 		pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7166 		pf_unlink_state(*state);
7167 		*state = NULL;
7168 		return (PF_DROP);
7169 	}
7170 
7171 	if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7172 		return (PF_DROP);
7173 
7174 	/* Track state. */
7175 	if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7176 		if (src->state < SCTP_COOKIE_WAIT) {
7177 			pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7178 			(*state)->timeout = PFTM_SCTP_OPENING;
7179 		}
7180 	}
7181 	if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7182 		MPASS(dst->scrub != NULL);
7183 		if (dst->scrub->pfss_v_tag == 0)
7184 			dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7185 	}
7186 
7187 	/*
7188 	 * Bind to the correct interface if we're if-bound. For multihomed
7189 	 * extra associations we don't know which interface that will be until
7190 	 * here, so we've inserted the state on V_pf_all. Fix that now.
7191 	 */
7192 	if ((*state)->kif == V_pfi_all &&
7193 	    (*state)->rule->rule_flag & PFRULE_IFBOUND)
7194 		(*state)->kif = pd->kif;
7195 
7196 	if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7197 		if (src->state < SCTP_ESTABLISHED) {
7198 			pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7199 			(*state)->timeout = PFTM_SCTP_ESTABLISHED;
7200 		}
7201 	}
7202 	if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7203 	    PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7204 		if (src->state < SCTP_SHUTDOWN_PENDING) {
7205 			pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7206 			(*state)->timeout = PFTM_SCTP_CLOSING;
7207 		}
7208 	}
7209 	if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7210 		pf_set_protostate(*state, psrc, SCTP_CLOSED);
7211 		(*state)->timeout = PFTM_SCTP_CLOSED;
7212 	}
7213 
7214 	(*state)->expire = pf_get_uptime();
7215 
7216 	/* translate source/destination address, if necessary */
7217 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7218 		uint16_t checksum = 0;
7219 		struct pf_state_key	*nk;
7220 		int			 afto, sidx, didx;
7221 
7222 		if (PF_REVERSED_KEY((*state)->key, pd->af))
7223 			nk = (*state)->key[pd->sidx];
7224 		else
7225 			nk = (*state)->key[pd->didx];
7226 
7227 		afto = pd->af != nk->af;
7228 		sidx = afto ? pd->didx : pd->sidx;
7229 		didx = afto ? pd->sidx : pd->didx;
7230 
7231 		if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7232 		    nk->port[sidx] != pd->hdr.sctp.src_port) {
7233 			pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port,
7234 			    pd->ip_sum, &checksum, &nk->addr[sidx],
7235 			    nk->port[sidx], 1, pd->af, pd->naf);
7236 		}
7237 
7238 		if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7239 		    nk->port[didx] != pd->hdr.sctp.dest_port) {
7240 			pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port,
7241 			    pd->ip_sum, &checksum, &nk->addr[didx],
7242 			    nk->port[didx], 1, pd->af, pd->naf);
7243 		}
7244 
7245 		if (afto) {
7246 			PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7247 			PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7248 			pd->naf = nk->af;
7249 			return (PF_AFRT);
7250 		}
7251 	}
7252 
7253 	return (PF_PASS);
7254 }
7255 
7256 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7257 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7258 {
7259 	struct pf_sctp_endpoint key;
7260 	struct pf_sctp_endpoint *ep;
7261 	struct pf_state_key *sks = s->key[PF_SK_STACK];
7262 	struct pf_sctp_source *i, *tmp;
7263 
7264 	if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7265 		return;
7266 
7267 	PF_SCTP_ENDPOINTS_LOCK();
7268 
7269 	key.v_tag = s->dst.scrub->pfss_v_tag;
7270 	ep  = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7271 	if (ep != NULL) {
7272 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7273 			if (pf_addr_cmp(&i->addr,
7274 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7275 			    s->key[PF_SK_WIRE]->af) == 0) {
7276 				SDT_PROBE3(pf, sctp, multihome, remove,
7277 				    key.v_tag, s, i);
7278 				TAILQ_REMOVE(&ep->sources, i, entry);
7279 				free(i, M_PFTEMP);
7280 				break;
7281 			}
7282 		}
7283 
7284 		if (TAILQ_EMPTY(&ep->sources)) {
7285 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7286 			free(ep, M_PFTEMP);
7287 		}
7288 	}
7289 
7290 	/* Other direction. */
7291 	key.v_tag = s->src.scrub->pfss_v_tag;
7292 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7293 	if (ep != NULL) {
7294 		TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7295 			if (pf_addr_cmp(&i->addr,
7296 			    &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7297 			    s->key[PF_SK_WIRE]->af) == 0) {
7298 				SDT_PROBE3(pf, sctp, multihome, remove,
7299 				    key.v_tag, s, i);
7300 				TAILQ_REMOVE(&ep->sources, i, entry);
7301 				free(i, M_PFTEMP);
7302 				break;
7303 			}
7304 		}
7305 
7306 		if (TAILQ_EMPTY(&ep->sources)) {
7307 			RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7308 			free(ep, M_PFTEMP);
7309 		}
7310 	}
7311 
7312 	PF_SCTP_ENDPOINTS_UNLOCK();
7313 }
7314 
7315 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7316 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7317 {
7318 	struct pf_sctp_endpoint key = {
7319 		.v_tag = v_tag,
7320 	};
7321 	struct pf_sctp_source *i;
7322 	struct pf_sctp_endpoint *ep;
7323 
7324 	PF_SCTP_ENDPOINTS_LOCK();
7325 
7326 	ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7327 	if (ep == NULL) {
7328 		ep = malloc(sizeof(struct pf_sctp_endpoint),
7329 		    M_PFTEMP, M_NOWAIT);
7330 		if (ep == NULL) {
7331 			PF_SCTP_ENDPOINTS_UNLOCK();
7332 			return;
7333 		}
7334 
7335 		ep->v_tag = v_tag;
7336 		TAILQ_INIT(&ep->sources);
7337 		RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7338 	}
7339 
7340 	/* Avoid inserting duplicates. */
7341 	TAILQ_FOREACH(i, &ep->sources, entry) {
7342 		if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7343 			PF_SCTP_ENDPOINTS_UNLOCK();
7344 			return;
7345 		}
7346 	}
7347 
7348 	i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7349 	if (i == NULL) {
7350 		PF_SCTP_ENDPOINTS_UNLOCK();
7351 		return;
7352 	}
7353 
7354 	i->af = pd->af;
7355 	memcpy(&i->addr, a, sizeof(*a));
7356 	TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7357 	SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7358 
7359 	PF_SCTP_ENDPOINTS_UNLOCK();
7360 }
7361 
7362 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7363 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7364     struct pf_kstate *s, int action)
7365 {
7366 	struct pf_sctp_multihome_job	*j, *tmp;
7367 	struct pf_sctp_source		*i;
7368 	int			 ret __unused;
7369 	struct pf_kstate	*sm = NULL;
7370 	struct pf_krule		*ra = NULL;
7371 	struct pf_krule		*r = &V_pf_default_rule;
7372 	struct pf_kruleset	*rs = NULL;
7373 	bool do_extra = true;
7374 
7375 	PF_RULES_RLOCK_TRACKER;
7376 
7377 again:
7378 	TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7379 		if (s == NULL || action != PF_PASS)
7380 			goto free;
7381 
7382 		/* Confirm we don't recurse here. */
7383 		MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7384 
7385 		switch (j->op) {
7386 		case  SCTP_ADD_IP_ADDRESS: {
7387 			uint32_t v_tag = pd->sctp_initiate_tag;
7388 
7389 			if (v_tag == 0) {
7390 				if (s->direction == pd->dir)
7391 					v_tag = s->src.scrub->pfss_v_tag;
7392 				else
7393 					v_tag = s->dst.scrub->pfss_v_tag;
7394 			}
7395 
7396 			/*
7397 			 * Avoid duplicating states. We'll already have
7398 			 * created a state based on the source address of
7399 			 * the packet, but SCTP endpoints may also list this
7400 			 * address again in the INIT(_ACK) parameters.
7401 			 */
7402 			if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7403 				break;
7404 			}
7405 
7406 			j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7407 			PF_RULES_RLOCK();
7408 			sm = NULL;
7409 			if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7410 				j->pd.related_rule = s->rule;
7411 			}
7412 			ret = pf_test_rule(&r, &sm,
7413 			    &j->pd, &ra, &rs, NULL);
7414 			PF_RULES_RUNLOCK();
7415 			SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7416 			if (ret != PF_DROP && sm != NULL) {
7417 				/* Inherit v_tag values. */
7418 				if (sm->direction == s->direction) {
7419 					sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7420 					sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7421 				} else {
7422 					sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7423 					sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7424 				}
7425 				PF_STATE_UNLOCK(sm);
7426 			} else {
7427 				/* If we try duplicate inserts? */
7428 				break;
7429 			}
7430 
7431 			/* Only add the address if we've actually allowed the state. */
7432 			pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7433 
7434 			if (! do_extra) {
7435 				break;
7436 			}
7437 			/*
7438 			 * We need to do this for each of our source addresses.
7439 			 * Find those based on the verification tag.
7440 			 */
7441 			struct pf_sctp_endpoint key = {
7442 				.v_tag = pd->hdr.sctp.v_tag,
7443 			};
7444 			struct pf_sctp_endpoint *ep;
7445 
7446 			PF_SCTP_ENDPOINTS_LOCK();
7447 			ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7448 			if (ep == NULL) {
7449 				PF_SCTP_ENDPOINTS_UNLOCK();
7450 				break;
7451 			}
7452 			MPASS(ep != NULL);
7453 
7454 			TAILQ_FOREACH(i, &ep->sources, entry) {
7455 				struct pf_sctp_multihome_job *nj;
7456 
7457 				/* SCTP can intermingle IPv4 and IPv6. */
7458 				if (i->af != pd->af)
7459 					continue;
7460 
7461 				nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7462 				if (! nj) {
7463 					continue;
7464 				}
7465 				memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7466 				memcpy(&nj->src, &j->src, sizeof(nj->src));
7467 				nj->pd.src = &nj->src;
7468 				// New destination address!
7469 				memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7470 				nj->pd.dst = &nj->dst;
7471 				nj->pd.m = j->pd.m;
7472 				nj->op = j->op;
7473 
7474 				TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7475 			}
7476 			PF_SCTP_ENDPOINTS_UNLOCK();
7477 
7478 			break;
7479 		}
7480 		case SCTP_DEL_IP_ADDRESS: {
7481 			struct pf_state_key_cmp key;
7482 			uint8_t psrc;
7483 
7484 			bzero(&key, sizeof(key));
7485 			key.af = j->pd.af;
7486 			key.proto = IPPROTO_SCTP;
7487 			if (j->pd.dir == PF_IN)	{	/* wire side, straight */
7488 				PF_ACPY(&key.addr[0], j->pd.src, key.af);
7489 				PF_ACPY(&key.addr[1], j->pd.dst, key.af);
7490 				key.port[0] = j->pd.hdr.sctp.src_port;
7491 				key.port[1] = j->pd.hdr.sctp.dest_port;
7492 			} else {			/* stack side, reverse */
7493 				PF_ACPY(&key.addr[1], j->pd.src, key.af);
7494 				PF_ACPY(&key.addr[0], j->pd.dst, key.af);
7495 				key.port[1] = j->pd.hdr.sctp.src_port;
7496 				key.port[0] = j->pd.hdr.sctp.dest_port;
7497 			}
7498 
7499 			sm = pf_find_state(kif, &key, j->pd.dir);
7500 			if (sm != NULL) {
7501 				PF_STATE_LOCK_ASSERT(sm);
7502 				if (j->pd.dir == sm->direction) {
7503 					psrc = PF_PEER_SRC;
7504 				} else {
7505 					psrc = PF_PEER_DST;
7506 				}
7507 				pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7508 				sm->timeout = PFTM_SCTP_CLOSING;
7509 				PF_STATE_UNLOCK(sm);
7510 			}
7511 			break;
7512 		default:
7513 			panic("Unknown op %#x", j->op);
7514 		}
7515 	}
7516 
7517 	free:
7518 		TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7519 		free(j, M_PFTEMP);
7520 	}
7521 
7522 	/* We may have inserted extra work while processing the list. */
7523 	if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7524 		do_extra = false;
7525 		goto again;
7526 	}
7527 }
7528 
7529 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7530 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7531 {
7532 	int			 off = 0;
7533 	struct pf_sctp_multihome_job	*job;
7534 
7535 	SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7536 
7537 	while (off < len) {
7538 		struct sctp_paramhdr h;
7539 
7540 		if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7541 		    pd->af))
7542 			return (PF_DROP);
7543 
7544 		/* Parameters are at least 4 bytes. */
7545 		if (ntohs(h.param_length) < 4)
7546 			return (PF_DROP);
7547 
7548 		SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7549 		    ntohs(h.param_length));
7550 
7551 		switch (ntohs(h.param_type)) {
7552 		case  SCTP_IPV4_ADDRESS: {
7553 			struct in_addr t;
7554 
7555 			if (ntohs(h.param_length) !=
7556 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7557 				return (PF_DROP);
7558 
7559 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7560 			    NULL, NULL, pd->af))
7561 				return (PF_DROP);
7562 
7563 			if (in_nullhost(t))
7564 				t.s_addr = pd->src->v4.s_addr;
7565 
7566 			/*
7567 			 * We hold the state lock (idhash) here, which means
7568 			 * that we can't acquire the keyhash, or we'll get a
7569 			 * LOR (and potentially double-lock things too). We also
7570 			 * can't release the state lock here, so instead we'll
7571 			 * enqueue this for async handling.
7572 			 * There's a relatively small race here, in that a
7573 			 * packet using the new addresses could arrive already,
7574 			 * but that's just though luck for it.
7575 			 */
7576 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7577 			if (! job)
7578 				return (PF_DROP);
7579 
7580 			SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7581 
7582 			memcpy(&job->pd, pd, sizeof(*pd));
7583 
7584 			// New source address!
7585 			memcpy(&job->src, &t, sizeof(t));
7586 			job->pd.src = &job->src;
7587 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7588 			job->pd.dst = &job->dst;
7589 			job->pd.m = pd->m;
7590 			job->op = op;
7591 
7592 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7593 			break;
7594 		}
7595 #ifdef INET6
7596 		case SCTP_IPV6_ADDRESS: {
7597 			struct in6_addr t;
7598 
7599 			if (ntohs(h.param_length) !=
7600 			    (sizeof(struct sctp_paramhdr) + sizeof(t)))
7601 				return (PF_DROP);
7602 
7603 			if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7604 			    NULL, NULL, pd->af))
7605 				return (PF_DROP);
7606 			if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7607 				break;
7608 			if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7609 				memcpy(&t, &pd->src->v6, sizeof(t));
7610 
7611 			job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7612 			if (! job)
7613 				return (PF_DROP);
7614 
7615 			SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7616 
7617 			memcpy(&job->pd, pd, sizeof(*pd));
7618 			memcpy(&job->src, &t, sizeof(t));
7619 			job->pd.src = &job->src;
7620 			memcpy(&job->dst, pd->dst, sizeof(job->dst));
7621 			job->pd.dst = &job->dst;
7622 			job->pd.m = pd->m;
7623 			job->op = op;
7624 
7625 			TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7626 			break;
7627 		}
7628 #endif
7629 		case SCTP_ADD_IP_ADDRESS: {
7630 			int ret;
7631 			struct sctp_asconf_paramhdr ah;
7632 
7633 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7634 			    NULL, NULL, pd->af))
7635 				return (PF_DROP);
7636 
7637 			ret = pf_multihome_scan(start + off + sizeof(ah),
7638 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7639 			    SCTP_ADD_IP_ADDRESS);
7640 			if (ret != PF_PASS)
7641 				return (ret);
7642 			break;
7643 		}
7644 		case SCTP_DEL_IP_ADDRESS: {
7645 			int ret;
7646 			struct sctp_asconf_paramhdr ah;
7647 
7648 			if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7649 			    NULL, NULL, pd->af))
7650 				return (PF_DROP);
7651 			ret = pf_multihome_scan(start + off + sizeof(ah),
7652 			    ntohs(ah.ph.param_length) - sizeof(ah), pd,
7653 			    SCTP_DEL_IP_ADDRESS);
7654 			if (ret != PF_PASS)
7655 				return (ret);
7656 			break;
7657 		}
7658 		default:
7659 			break;
7660 		}
7661 
7662 		off += roundup(ntohs(h.param_length), 4);
7663 	}
7664 
7665 	return (PF_PASS);
7666 }
7667 
7668 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7669 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7670 {
7671 	start += sizeof(struct sctp_init_chunk);
7672 	len -= sizeof(struct sctp_init_chunk);
7673 
7674 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7675 }
7676 
7677 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7678 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7679 {
7680 	start += sizeof(struct sctp_asconf_chunk);
7681 	len -= sizeof(struct sctp_asconf_chunk);
7682 
7683 	return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7684 }
7685 
7686 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,int direction,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7687 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7688     struct pf_kstate **state, int direction,
7689     u_int16_t icmpid, u_int16_t type, int icmp_dir,
7690     int *iidx, int multi, int inner)
7691 {
7692 	key->af = pd->af;
7693 	key->proto = pd->proto;
7694 	if (icmp_dir == PF_IN) {
7695 		*iidx = pd->sidx;
7696 		key->port[pd->sidx] = icmpid;
7697 		key->port[pd->didx] = type;
7698 	} else {
7699 		*iidx = pd->didx;
7700 		key->port[pd->sidx] = type;
7701 		key->port[pd->didx] = icmpid;
7702 	}
7703 	if (pf_state_key_addr_setup(pd, key, multi))
7704 		return (PF_DROP);
7705 
7706 	STATE_LOOKUP(key, *state, pd);
7707 
7708 	if ((*state)->state_flags & PFSTATE_SLOPPY)
7709 		return (-1);
7710 
7711 	/* Is this ICMP message flowing in right direction? */
7712 	if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7713 		direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7714 		    PF_IN : PF_OUT;
7715 	else
7716 		direction = (*state)->direction;
7717 	if ((*state)->rule->type &&
7718 	    (((!inner && direction == pd->dir) ||
7719 	    (inner && direction != pd->dir)) ?
7720 	    PF_IN : PF_OUT) != icmp_dir) {
7721 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
7722 			printf("pf: icmp type %d in wrong direction (%d): ",
7723 			    ntohs(type), icmp_dir);
7724 			pf_print_state(*state);
7725 			printf("\n");
7726 		}
7727 		PF_STATE_UNLOCK(*state);
7728 		*state = NULL;
7729 		return (PF_DROP);
7730 	}
7731 	return (-1);
7732 }
7733 
7734 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7735 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7736     u_short *reason)
7737 {
7738 	struct pf_addr  *saddr = pd->src, *daddr = pd->dst;
7739 	u_int16_t	*icmpsum, virtual_id, virtual_type;
7740 	u_int8_t	 icmptype, icmpcode;
7741 	int		 icmp_dir, iidx, ret, multi;
7742 	struct pf_state_key_cmp key;
7743 #ifdef INET
7744 	u_int16_t	 icmpid;
7745 #endif
7746 
7747 	MPASS(*state == NULL);
7748 
7749 	bzero(&key, sizeof(key));
7750 	switch (pd->proto) {
7751 #ifdef INET
7752 	case IPPROTO_ICMP:
7753 		icmptype = pd->hdr.icmp.icmp_type;
7754 		icmpcode = pd->hdr.icmp.icmp_code;
7755 		icmpid = pd->hdr.icmp.icmp_id;
7756 		icmpsum = &pd->hdr.icmp.icmp_cksum;
7757 		break;
7758 #endif /* INET */
7759 #ifdef INET6
7760 	case IPPROTO_ICMPV6:
7761 		icmptype = pd->hdr.icmp6.icmp6_type;
7762 		icmpcode = pd->hdr.icmp6.icmp6_code;
7763 #ifdef INET
7764 		icmpid = pd->hdr.icmp6.icmp6_id;
7765 #endif
7766 		icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7767 		break;
7768 #endif /* INET6 */
7769 	}
7770 
7771 	if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi,
7772 	    &virtual_id, &virtual_type) == 0) {
7773 		/*
7774 		 * ICMP query/reply message not related to a TCP/UDP/SCTP
7775 		 * packet. Search for an ICMP state.
7776 		 */
7777 		ret = pf_icmp_state_lookup(&key, pd, state, pd->dir,
7778 		    virtual_id, virtual_type, icmp_dir, &iidx,
7779 		    PF_ICMP_MULTI_NONE, 0);
7780 		if (ret >= 0) {
7781 			MPASS(*state == NULL);
7782 			if (ret == PF_DROP && pd->af == AF_INET6 &&
7783 			    icmp_dir == PF_OUT) {
7784 				ret = pf_icmp_state_lookup(&key, pd, state,
7785 				    pd->dir, virtual_id, virtual_type,
7786 				    icmp_dir, &iidx, multi, 0);
7787 				if (ret >= 0) {
7788 					MPASS(*state == NULL);
7789 					return (ret);
7790 				}
7791 			} else
7792 				return (ret);
7793 		}
7794 
7795 		(*state)->expire = pf_get_uptime();
7796 		(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7797 
7798 		/* translate source/destination address, if necessary */
7799 		if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7800 			struct pf_state_key	*nk;
7801 			int			 afto, sidx, didx;
7802 
7803 			if (PF_REVERSED_KEY((*state)->key, pd->af))
7804 				nk = (*state)->key[pd->sidx];
7805 			else
7806 				nk = (*state)->key[pd->didx];
7807 
7808 			afto = pd->af != nk->af;
7809 			sidx = afto ? pd->didx : pd->sidx;
7810 			didx = afto ? pd->sidx : pd->didx;
7811 			iidx = afto ? !iidx : iidx;
7812 
7813 			switch (pd->af) {
7814 #ifdef INET
7815 			case AF_INET:
7816 #ifdef INET6
7817 				if (afto) {
7818 					if (pf_translate_icmp_af(AF_INET6,
7819 					    &pd->hdr.icmp))
7820 						return (PF_DROP);
7821 					pd->proto = IPPROTO_ICMPV6;
7822 				}
7823 #endif
7824 				if (!afto &&
7825 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7826 					pf_change_a(&saddr->v4.s_addr,
7827 					    pd->ip_sum,
7828 					    nk->addr[sidx].v4.s_addr,
7829 					    0);
7830 
7831 				if (!afto && PF_ANEQ(pd->dst,
7832 				    &nk->addr[didx], AF_INET))
7833 					pf_change_a(&daddr->v4.s_addr,
7834 					    pd->ip_sum,
7835 					    nk->addr[didx].v4.s_addr, 0);
7836 
7837 				if (nk->port[iidx] !=
7838 				    pd->hdr.icmp.icmp_id) {
7839 					pd->hdr.icmp.icmp_cksum =
7840 					    pf_cksum_fixup(
7841 					    pd->hdr.icmp.icmp_cksum, icmpid,
7842 					    nk->port[iidx], 0);
7843 					pd->hdr.icmp.icmp_id =
7844 					    nk->port[iidx];
7845 				}
7846 
7847 				m_copyback(pd->m, pd->off, ICMP_MINLEN,
7848 				    (caddr_t )&pd->hdr.icmp);
7849 				break;
7850 #endif /* INET */
7851 #ifdef INET6
7852 			case AF_INET6:
7853 #ifdef INET
7854 				if (afto) {
7855 					if (pf_translate_icmp_af(AF_INET,
7856 					    &pd->hdr.icmp6))
7857 						return (PF_DROP);
7858 					pd->proto = IPPROTO_ICMP;
7859 				}
7860 #endif
7861 				if (!afto &&
7862 				    PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7863 					pf_change_a6(saddr,
7864 					    &pd->hdr.icmp6.icmp6_cksum,
7865 					    &nk->addr[sidx], 0);
7866 
7867 				if (!afto && PF_ANEQ(pd->dst,
7868 				    &nk->addr[didx], AF_INET6))
7869 					pf_change_a6(daddr,
7870 					    &pd->hdr.icmp6.icmp6_cksum,
7871 					    &nk->addr[didx], 0);
7872 
7873 				if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7874 					pd->hdr.icmp6.icmp6_id =
7875 					    nk->port[iidx];
7876 
7877 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7878 				    (caddr_t )&pd->hdr.icmp6);
7879 				break;
7880 #endif /* INET6 */
7881 			}
7882 			if (afto) {
7883 				PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7884 				PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7885 				pd->naf = nk->af;
7886 				return (PF_AFRT);
7887 			}
7888 		}
7889 		return (PF_PASS);
7890 
7891 	} else {
7892 		/*
7893 		 * ICMP error message in response to a TCP/UDP packet.
7894 		 * Extract the inner TCP/UDP header and search for that state.
7895 		 */
7896 
7897 		struct pf_pdesc	pd2;
7898 		bzero(&pd2, sizeof pd2);
7899 #ifdef INET
7900 		struct ip	h2;
7901 #endif /* INET */
7902 #ifdef INET6
7903 		struct ip6_hdr	h2_6;
7904 #endif /* INET6 */
7905 		int		ipoff2 = 0;
7906 
7907 		pd2.af = pd->af;
7908 		pd2.dir = pd->dir;
7909 		/* Payload packet is from the opposite direction. */
7910 		pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7911 		pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7912 		pd2.m = pd->m;
7913 		switch (pd->af) {
7914 #ifdef INET
7915 		case AF_INET:
7916 			/* offset of h2 in mbuf chain */
7917 			ipoff2 = pd->off + ICMP_MINLEN;
7918 
7919 			if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7920 			    NULL, reason, pd2.af)) {
7921 				DPFPRINTF(PF_DEBUG_MISC,
7922 				    ("pf: ICMP error message too short "
7923 				    "(ip)\n"));
7924 				return (PF_DROP);
7925 			}
7926 			/*
7927 			 * ICMP error messages don't refer to non-first
7928 			 * fragments
7929 			 */
7930 			if (h2.ip_off & htons(IP_OFFMASK)) {
7931 				REASON_SET(reason, PFRES_FRAG);
7932 				return (PF_DROP);
7933 			}
7934 
7935 			/* offset of protocol header that follows h2 */
7936 			pd2.off = ipoff2 + (h2.ip_hl << 2);
7937 
7938 			pd2.proto = h2.ip_p;
7939 			pd2.src = (struct pf_addr *)&h2.ip_src;
7940 			pd2.dst = (struct pf_addr *)&h2.ip_dst;
7941 			pd2.ip_sum = &h2.ip_sum;
7942 			break;
7943 #endif /* INET */
7944 #ifdef INET6
7945 		case AF_INET6:
7946 			ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7947 
7948 			if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7949 			    NULL, reason, pd2.af)) {
7950 				DPFPRINTF(PF_DEBUG_MISC,
7951 				    ("pf: ICMP error message too short "
7952 				    "(ip6)\n"));
7953 				return (PF_DROP);
7954 			}
7955 			pd2.off = ipoff2;
7956 			if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
7957 				return (PF_DROP);
7958 
7959 			pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7960 			pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7961 			pd2.ip_sum = NULL;
7962 			break;
7963 #endif /* INET6 */
7964 		}
7965 
7966 		if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7967 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
7968 				printf("pf: BAD ICMP %d:%d outer dst: ",
7969 				    icmptype, icmpcode);
7970 				pf_print_host(pd->src, 0, pd->af);
7971 				printf(" -> ");
7972 				pf_print_host(pd->dst, 0, pd->af);
7973 				printf(" inner src: ");
7974 				pf_print_host(pd2.src, 0, pd2.af);
7975 				printf(" -> ");
7976 				pf_print_host(pd2.dst, 0, pd2.af);
7977 				printf("\n");
7978 			}
7979 			REASON_SET(reason, PFRES_BADSTATE);
7980 			return (PF_DROP);
7981 		}
7982 
7983 		switch (pd2.proto) {
7984 		case IPPROTO_TCP: {
7985 			struct tcphdr		 th;
7986 			u_int32_t		 seq;
7987 			struct pf_state_peer	*src, *dst;
7988 			u_int8_t		 dws;
7989 			int			 copyback = 0;
7990 
7991 			/*
7992 			 * Only the first 8 bytes of the TCP header can be
7993 			 * expected. Don't access any TCP header fields after
7994 			 * th_seq, an ackskew test is not possible.
7995 			 */
7996 			if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason,
7997 			    pd2.af)) {
7998 				DPFPRINTF(PF_DEBUG_MISC,
7999 				    ("pf: ICMP error message too short "
8000 				    "(tcp)\n"));
8001 				return (PF_DROP);
8002 			}
8003 
8004 			key.af = pd2.af;
8005 			key.proto = IPPROTO_TCP;
8006 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8007 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8008 			key.port[pd2.sidx] = th.th_sport;
8009 			key.port[pd2.didx] = th.th_dport;
8010 
8011 			STATE_LOOKUP(&key, *state, pd);
8012 
8013 			if (pd->dir == (*state)->direction) {
8014 				if (PF_REVERSED_KEY((*state)->key, pd->af)) {
8015 					src = &(*state)->src;
8016 					dst = &(*state)->dst;
8017 				} else {
8018 					src = &(*state)->dst;
8019 					dst = &(*state)->src;
8020 				}
8021 			} else {
8022 				if (PF_REVERSED_KEY((*state)->key, pd->af)) {
8023 					src = &(*state)->dst;
8024 					dst = &(*state)->src;
8025 				} else {
8026 					src = &(*state)->src;
8027 					dst = &(*state)->dst;
8028 				}
8029 			}
8030 
8031 			if (src->wscale && dst->wscale)
8032 				dws = dst->wscale & PF_WSCALE_MASK;
8033 			else
8034 				dws = 0;
8035 
8036 			/* Demodulate sequence number */
8037 			seq = ntohl(th.th_seq) - src->seqdiff;
8038 			if (src->seqdiff) {
8039 				pf_change_a(&th.th_seq, icmpsum,
8040 				    htonl(seq), 0);
8041 				copyback = 1;
8042 			}
8043 
8044 			if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8045 			    (!SEQ_GEQ(src->seqhi, seq) ||
8046 			    !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8047 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8048 					printf("pf: BAD ICMP %d:%d ",
8049 					    icmptype, icmpcode);
8050 					pf_print_host(pd->src, 0, pd->af);
8051 					printf(" -> ");
8052 					pf_print_host(pd->dst, 0, pd->af);
8053 					printf(" state: ");
8054 					pf_print_state(*state);
8055 					printf(" seq=%u\n", seq);
8056 				}
8057 				REASON_SET(reason, PFRES_BADSTATE);
8058 				return (PF_DROP);
8059 			} else {
8060 				if (V_pf_status.debug >= PF_DEBUG_MISC) {
8061 					printf("pf: OK ICMP %d:%d ",
8062 					    icmptype, icmpcode);
8063 					pf_print_host(pd->src, 0, pd->af);
8064 					printf(" -> ");
8065 					pf_print_host(pd->dst, 0, pd->af);
8066 					printf(" state: ");
8067 					pf_print_state(*state);
8068 					printf(" seq=%u\n", seq);
8069 				}
8070 			}
8071 
8072 			/* translate source/destination address, if necessary */
8073 			if ((*state)->key[PF_SK_WIRE] !=
8074 			    (*state)->key[PF_SK_STACK]) {
8075 
8076 				struct pf_state_key	*nk;
8077 
8078 				if (PF_REVERSED_KEY((*state)->key, pd->af))
8079 					nk = (*state)->key[pd->sidx];
8080 				else
8081 					nk = (*state)->key[pd->didx];
8082 
8083 #if defined(INET) && defined(INET6)
8084 				int	 afto, sidx, didx;
8085 
8086 				afto = pd->af != nk->af;
8087 				sidx = afto ? pd2.didx : pd2.sidx;
8088 				didx = afto ? pd2.sidx : pd2.didx;
8089 
8090 				if (afto) {
8091 					if (pf_translate_icmp_af(nk->af,
8092 					    &pd->hdr.icmp))
8093 						return (PF_DROP);
8094 					m_copyback(pd->m, pd->off,
8095 					    sizeof(struct icmp6_hdr),
8096 					    (c_caddr_t)&pd->hdr.icmp6);
8097 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8098 					    &pd2, &nk->addr[sidx],
8099 					    &nk->addr[didx], pd->af,
8100 					    nk->af))
8101 						return (PF_DROP);
8102 					if (nk->af == AF_INET)
8103 						pd->proto = IPPROTO_ICMP;
8104 					else
8105 						pd->proto = IPPROTO_ICMPV6;
8106 					th.th_sport = nk->port[sidx];
8107 					th.th_dport = nk->port[didx];
8108 					m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)&th);
8109 					PF_ACPY(pd->src,
8110 					    &nk->addr[pd2.sidx], nk->af);
8111 					PF_ACPY(pd->dst,
8112 					    &nk->addr[pd2.didx], nk->af);
8113 					pd->naf = nk->af;
8114 					return (PF_AFRT);
8115 				}
8116 #endif
8117 
8118 				if (PF_ANEQ(pd2.src,
8119 				    &nk->addr[pd2.sidx], pd2.af) ||
8120 				    nk->port[pd2.sidx] != th.th_sport)
8121 					pf_change_icmp(pd2.src, &th.th_sport,
8122 					    daddr, &nk->addr[pd2.sidx],
8123 					    nk->port[pd2.sidx], NULL,
8124 					    pd2.ip_sum, icmpsum,
8125 					    pd->ip_sum, 0, pd2.af);
8126 
8127 				if (PF_ANEQ(pd2.dst,
8128 				    &nk->addr[pd2.didx], pd2.af) ||
8129 				    nk->port[pd2.didx] != th.th_dport)
8130 					pf_change_icmp(pd2.dst, &th.th_dport,
8131 					    saddr, &nk->addr[pd2.didx],
8132 					    nk->port[pd2.didx], NULL,
8133 					    pd2.ip_sum, icmpsum,
8134 					    pd->ip_sum, 0, pd2.af);
8135 				copyback = 1;
8136 			}
8137 
8138 			if (copyback) {
8139 				switch (pd2.af) {
8140 #ifdef INET
8141 				case AF_INET:
8142 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8143 					    (caddr_t )&pd->hdr.icmp);
8144 					m_copyback(pd->m, ipoff2, sizeof(h2),
8145 					    (caddr_t )&h2);
8146 					break;
8147 #endif /* INET */
8148 #ifdef INET6
8149 				case AF_INET6:
8150 					m_copyback(pd->m, pd->off,
8151 					    sizeof(struct icmp6_hdr),
8152 					    (caddr_t )&pd->hdr.icmp6);
8153 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8154 					    (caddr_t )&h2_6);
8155 					break;
8156 #endif /* INET6 */
8157 				}
8158 				m_copyback(pd->m, pd2.off, 8, (caddr_t)&th);
8159 			}
8160 
8161 			return (PF_PASS);
8162 			break;
8163 		}
8164 		case IPPROTO_UDP: {
8165 			struct udphdr		uh;
8166 
8167 			if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh),
8168 			    NULL, reason, pd2.af)) {
8169 				DPFPRINTF(PF_DEBUG_MISC,
8170 				    ("pf: ICMP error message too short "
8171 				    "(udp)\n"));
8172 				return (PF_DROP);
8173 			}
8174 
8175 			key.af = pd2.af;
8176 			key.proto = IPPROTO_UDP;
8177 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8178 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8179 			key.port[pd2.sidx] = uh.uh_sport;
8180 			key.port[pd2.didx] = uh.uh_dport;
8181 
8182 			STATE_LOOKUP(&key, *state, pd);
8183 
8184 			/* translate source/destination address, if necessary */
8185 			if ((*state)->key[PF_SK_WIRE] !=
8186 			    (*state)->key[PF_SK_STACK]) {
8187 				struct pf_state_key	*nk;
8188 
8189 				if (PF_REVERSED_KEY((*state)->key, pd->af))
8190 					nk = (*state)->key[pd->sidx];
8191 				else
8192 					nk = (*state)->key[pd->didx];
8193 
8194 #if defined(INET) && defined(INET6)
8195 				int	 afto, sidx, didx;
8196 
8197 				afto = pd->af != nk->af;
8198 				sidx = afto ? pd2.didx : pd2.sidx;
8199 				didx = afto ? pd2.sidx : pd2.didx;
8200 
8201 				if (afto) {
8202 					if (pf_translate_icmp_af(nk->af,
8203 					    &pd->hdr.icmp))
8204 						return (PF_DROP);
8205 					m_copyback(pd->m, pd->off,
8206 					    sizeof(struct icmp6_hdr),
8207 					    (c_caddr_t)&pd->hdr.icmp6);
8208 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8209 					    &pd2, &nk->addr[sidx],
8210 					    &nk->addr[didx], pd->af,
8211 					    nk->af))
8212 						return (PF_DROP);
8213 					if (nk->af == AF_INET)
8214 						pd->proto = IPPROTO_ICMP;
8215 					else
8216 						pd->proto = IPPROTO_ICMPV6;
8217 					pf_change_ap(pd->m, pd2.src, &uh.uh_sport,
8218 					    pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.sidx],
8219 					    nk->port[sidx], 1, pd->af, nk->af);
8220 					pf_change_ap(pd->m, pd2.dst, &uh.uh_dport,
8221 					    pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.didx],
8222 					    nk->port[didx], 1, pd->af, nk->af);
8223 					m_copyback(pd2.m, pd2.off, sizeof(uh),
8224 					    (c_caddr_t)&uh);
8225 					PF_ACPY(&pd->nsaddr,
8226 					    &nk->addr[pd2.sidx], nk->af);
8227 					PF_ACPY(&pd->ndaddr,
8228 					    &nk->addr[pd2.didx], nk->af);
8229 					pd->naf = nk->af;
8230 					return (PF_AFRT);
8231 				}
8232 #endif
8233 
8234 				if (PF_ANEQ(pd2.src,
8235 				    &nk->addr[pd2.sidx], pd2.af) ||
8236 				    nk->port[pd2.sidx] != uh.uh_sport)
8237 					pf_change_icmp(pd2.src, &uh.uh_sport,
8238 					    daddr, &nk->addr[pd2.sidx],
8239 					    nk->port[pd2.sidx], &uh.uh_sum,
8240 					    pd2.ip_sum, icmpsum,
8241 					    pd->ip_sum, 1, pd2.af);
8242 
8243 				if (PF_ANEQ(pd2.dst,
8244 				    &nk->addr[pd2.didx], pd2.af) ||
8245 				    nk->port[pd2.didx] != uh.uh_dport)
8246 					pf_change_icmp(pd2.dst, &uh.uh_dport,
8247 					    saddr, &nk->addr[pd2.didx],
8248 					    nk->port[pd2.didx], &uh.uh_sum,
8249 					    pd2.ip_sum, icmpsum,
8250 					    pd->ip_sum, 1, pd2.af);
8251 
8252 				switch (pd2.af) {
8253 #ifdef INET
8254 				case AF_INET:
8255 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8256 					    (caddr_t )&pd->hdr.icmp);
8257 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8258 					break;
8259 #endif /* INET */
8260 #ifdef INET6
8261 				case AF_INET6:
8262 					m_copyback(pd->m, pd->off,
8263 					    sizeof(struct icmp6_hdr),
8264 					    (caddr_t )&pd->hdr.icmp6);
8265 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8266 					    (caddr_t )&h2_6);
8267 					break;
8268 #endif /* INET6 */
8269 				}
8270 				m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh);
8271 			}
8272 			return (PF_PASS);
8273 			break;
8274 		}
8275 #ifdef INET
8276 		case IPPROTO_SCTP: {
8277 			struct sctphdr		sh;
8278 			struct pf_state_peer	*src;
8279 			int			 copyback = 0;
8280 
8281 			if (! pf_pull_hdr(pd->m, pd2.off, &sh, sizeof(sh), NULL, reason,
8282 			    pd2.af)) {
8283 				DPFPRINTF(PF_DEBUG_MISC,
8284 				    ("pf: ICMP error message too short "
8285 				    "(sctp)\n"));
8286 				return (PF_DROP);
8287 			}
8288 
8289 			key.af = pd2.af;
8290 			key.proto = IPPROTO_SCTP;
8291 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8292 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8293 			key.port[pd2.sidx] = sh.src_port;
8294 			key.port[pd2.didx] = sh.dest_port;
8295 
8296 			STATE_LOOKUP(&key, *state, pd);
8297 
8298 			if (pd->dir == (*state)->direction) {
8299 				if (PF_REVERSED_KEY((*state)->key, pd->af))
8300 					src = &(*state)->src;
8301 				else
8302 					src = &(*state)->dst;
8303 			} else {
8304 				if (PF_REVERSED_KEY((*state)->key, pd->af))
8305 					src = &(*state)->dst;
8306 				else
8307 					src = &(*state)->src;
8308 			}
8309 
8310 			if (src->scrub->pfss_v_tag != sh.v_tag) {
8311 				DPFPRINTF(PF_DEBUG_MISC,
8312 				    ("pf: ICMP error message has incorrect "
8313 				    "SCTP v_tag\n"));
8314 				return (PF_DROP);
8315 			}
8316 
8317 			/* translate source/destination address, if necessary */
8318 			if ((*state)->key[PF_SK_WIRE] !=
8319 			    (*state)->key[PF_SK_STACK]) {
8320 
8321 				struct pf_state_key	*nk;
8322 
8323 				if (PF_REVERSED_KEY((*state)->key, pd->af))
8324 					nk = (*state)->key[pd->sidx];
8325 				else
8326 					nk = (*state)->key[pd->didx];
8327 
8328 #if defined(INET) && defined(INET6)
8329 				int	 afto, sidx, didx;
8330 
8331 				afto = pd->af != nk->af;
8332 				sidx = afto ? pd2.didx : pd2.sidx;
8333 				didx = afto ? pd2.sidx : pd2.didx;
8334 
8335 				if (afto) {
8336 					if (pf_translate_icmp_af(nk->af,
8337 					    &pd->hdr.icmp))
8338 						return (PF_DROP);
8339 					m_copyback(pd->m, pd->off,
8340 					    sizeof(struct icmp6_hdr),
8341 					    (c_caddr_t)&pd->hdr.icmp6);
8342 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8343 					    &pd2, &nk->addr[sidx],
8344 					    &nk->addr[didx], pd->af,
8345 					    nk->af))
8346 						return (PF_DROP);
8347 					if (nk->af == AF_INET)
8348 						pd->proto = IPPROTO_ICMP;
8349 					else
8350 						pd->proto = IPPROTO_ICMPV6;
8351 					sh.src_port = nk->port[sidx];
8352 					sh.dest_port = nk->port[didx];
8353 					m_copyback(pd2.m, pd2.off, sizeof(sh), (c_caddr_t)&sh);
8354 					PF_ACPY(pd->src,
8355 					    &nk->addr[pd2.sidx], nk->af);
8356 					PF_ACPY(pd->dst,
8357 					    &nk->addr[pd2.didx], nk->af);
8358 					pd->naf = nk->af;
8359 					return (PF_AFRT);
8360 				}
8361 #endif
8362 
8363 				if (PF_ANEQ(pd2.src,
8364 				    &nk->addr[pd2.sidx], pd2.af) ||
8365 				    nk->port[pd2.sidx] != sh.src_port)
8366 					pf_change_icmp(pd2.src, &sh.src_port,
8367 					    daddr, &nk->addr[pd2.sidx],
8368 					    nk->port[pd2.sidx], NULL,
8369 					    pd2.ip_sum, icmpsum,
8370 					    pd->ip_sum, 0, pd2.af);
8371 
8372 				if (PF_ANEQ(pd2.dst,
8373 				    &nk->addr[pd2.didx], pd2.af) ||
8374 				    nk->port[pd2.didx] != sh.dest_port)
8375 					pf_change_icmp(pd2.dst, &sh.dest_port,
8376 					    saddr, &nk->addr[pd2.didx],
8377 					    nk->port[pd2.didx], NULL,
8378 					    pd2.ip_sum, icmpsum,
8379 					    pd->ip_sum, 0, pd2.af);
8380 				copyback = 1;
8381 			}
8382 
8383 			if (copyback) {
8384 				switch (pd2.af) {
8385 #ifdef INET
8386 				case AF_INET:
8387 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8388 					    (caddr_t )&pd->hdr.icmp);
8389 					m_copyback(pd->m, ipoff2, sizeof(h2),
8390 					    (caddr_t )&h2);
8391 					break;
8392 #endif /* INET */
8393 #ifdef INET6
8394 				case AF_INET6:
8395 					m_copyback(pd->m, pd->off,
8396 					    sizeof(struct icmp6_hdr),
8397 					    (caddr_t )&pd->hdr.icmp6);
8398 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8399 					    (caddr_t )&h2_6);
8400 					break;
8401 #endif /* INET6 */
8402 				}
8403 				m_copyback(pd->m, pd2.off, sizeof(sh), (caddr_t)&sh);
8404 			}
8405 
8406 			return (PF_PASS);
8407 			break;
8408 		}
8409 		case IPPROTO_ICMP: {
8410 			struct icmp	*iih = &pd2.hdr.icmp;
8411 
8412 			if (pd2.af != AF_INET) {
8413 				REASON_SET(reason, PFRES_NORM);
8414 				return (PF_DROP);
8415 			}
8416 
8417 			if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8418 			    NULL, reason, pd2.af)) {
8419 				DPFPRINTF(PF_DEBUG_MISC,
8420 				    ("pf: ICMP error message too short i"
8421 				    "(icmp)\n"));
8422 				return (PF_DROP);
8423 			}
8424 
8425 			icmpid = iih->icmp_id;
8426 			pf_icmp_mapping(&pd2, iih->icmp_type,
8427 			    &icmp_dir, &multi, &virtual_id, &virtual_type);
8428 
8429 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8430 			    pd2.dir, virtual_id, virtual_type,
8431 			    icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
8432 			if (ret >= 0) {
8433 				MPASS(*state == NULL);
8434 				return (ret);
8435 			}
8436 
8437 			/* translate source/destination address, if necessary */
8438 			if ((*state)->key[PF_SK_WIRE] !=
8439 			    (*state)->key[PF_SK_STACK]) {
8440 				struct pf_state_key	*nk;
8441 
8442 				if (PF_REVERSED_KEY((*state)->key, pd->af))
8443 					nk = (*state)->key[pd->sidx];
8444 				else
8445 					nk = (*state)->key[pd->didx];
8446 
8447 #if defined(INET) && defined(INET6)
8448 				int	 afto, sidx, didx;
8449 
8450 				afto = pd->af != nk->af;
8451 				sidx = afto ? pd2.didx : pd2.sidx;
8452 				didx = afto ? pd2.sidx : pd2.didx;
8453 				iidx = afto ? !iidx : iidx;
8454 
8455 				if (afto) {
8456 					if (nk->af != AF_INET6)
8457 						return (PF_DROP);
8458 					if (pf_translate_icmp_af(nk->af,
8459 					    &pd->hdr.icmp))
8460 						return (PF_DROP);
8461 					m_copyback(pd->m, pd->off,
8462 					    sizeof(struct icmp6_hdr),
8463 					    (c_caddr_t)&pd->hdr.icmp6);
8464 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8465 					    &pd2, &nk->addr[sidx],
8466 					    &nk->addr[didx], pd->af,
8467 					    nk->af))
8468 						return (PF_DROP);
8469 					pd->proto = IPPROTO_ICMPV6;
8470 					if (pf_translate_icmp_af(nk->af, &iih))
8471 						return (PF_DROP);
8472 					if (virtual_type == htons(ICMP_ECHO) &&
8473 					    nk->port[iidx] != iih->icmp_id)
8474 						iih->icmp_id = nk->port[iidx];
8475 					m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8476 					    (c_caddr_t)&iih);
8477 					PF_ACPY(&pd->nsaddr,
8478 					    &nk->addr[pd2.sidx], nk->af);
8479 					PF_ACPY(&pd->ndaddr,
8480 					    &nk->addr[pd2.didx], nk->af);
8481 					pd->naf = nk->af;
8482 					return (PF_AFRT);
8483 				}
8484 #endif
8485 
8486 				if (PF_ANEQ(pd2.src,
8487 				    &nk->addr[pd2.sidx], pd2.af) ||
8488 				    (virtual_type == htons(ICMP_ECHO) &&
8489 				    nk->port[iidx] != iih->icmp_id))
8490 					pf_change_icmp(pd2.src,
8491 					    (virtual_type == htons(ICMP_ECHO)) ?
8492 					    &iih->icmp_id : NULL,
8493 					    daddr, &nk->addr[pd2.sidx],
8494 					    (virtual_type == htons(ICMP_ECHO)) ?
8495 					    nk->port[iidx] : 0, NULL,
8496 					    pd2.ip_sum, icmpsum,
8497 					    pd->ip_sum, 0, AF_INET);
8498 
8499 				if (PF_ANEQ(pd2.dst,
8500 				    &nk->addr[pd2.didx], pd2.af))
8501 					pf_change_icmp(pd2.dst, NULL, NULL,
8502 					    &nk->addr[pd2.didx], 0, NULL,
8503 					    pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8504 					    AF_INET);
8505 
8506 				m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8507 				m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8508 				m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8509 			}
8510 			return (PF_PASS);
8511 			break;
8512 		}
8513 #endif /* INET */
8514 #ifdef INET6
8515 		case IPPROTO_ICMPV6: {
8516 			struct icmp6_hdr	*iih = &pd2.hdr.icmp6;
8517 
8518 			if (pd2.af != AF_INET6) {
8519 				REASON_SET(reason, PFRES_NORM);
8520 				return (PF_DROP);
8521 			}
8522 
8523 			if (!pf_pull_hdr(pd->m, pd2.off, iih,
8524 			    sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8525 				DPFPRINTF(PF_DEBUG_MISC,
8526 				    ("pf: ICMP error message too short "
8527 				    "(icmp6)\n"));
8528 				return (PF_DROP);
8529 			}
8530 
8531 			pf_icmp_mapping(&pd2, iih->icmp6_type,
8532 			    &icmp_dir, &multi, &virtual_id, &virtual_type);
8533 
8534 			ret = pf_icmp_state_lookup(&key, &pd2, state,
8535 			    pd->dir, virtual_id, virtual_type,
8536 			    icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
8537 			if (ret >= 0) {
8538 				MPASS(*state == NULL);
8539 				if (ret == PF_DROP && pd2.af == AF_INET6 &&
8540 				    icmp_dir == PF_OUT) {
8541 					ret = pf_icmp_state_lookup(&key, &pd2,
8542 					    state, pd->dir,
8543 					    virtual_id, virtual_type,
8544 					    icmp_dir, &iidx, multi, 1);
8545 					if (ret >= 0) {
8546 						MPASS(*state == NULL);
8547 						return (ret);
8548 					}
8549 				} else
8550 					return (ret);
8551 			}
8552 
8553 			/* translate source/destination address, if necessary */
8554 			if ((*state)->key[PF_SK_WIRE] !=
8555 			    (*state)->key[PF_SK_STACK]) {
8556 				struct pf_state_key	*nk;
8557 
8558 				if (PF_REVERSED_KEY((*state)->key, pd->af))
8559 					nk = (*state)->key[pd->sidx];
8560 				else
8561 					nk = (*state)->key[pd->didx];
8562 
8563 #if defined(INET) && defined(INET6)
8564 				int	 afto, sidx, didx;
8565 
8566 				afto = pd->af != nk->af;
8567 				sidx = afto ? pd2.didx : pd2.sidx;
8568 				didx = afto ? pd2.sidx : pd2.didx;
8569 				iidx = afto ? !iidx : iidx;
8570 
8571 				if (afto) {
8572 					if (nk->af != AF_INET)
8573 						return (PF_DROP);
8574 					if (pf_translate_icmp_af(nk->af,
8575 					    &pd->hdr.icmp))
8576 						return (PF_DROP);
8577 					m_copyback(pd->m, pd->off,
8578 					    sizeof(struct icmp6_hdr),
8579 					    (c_caddr_t)&pd->hdr.icmp6);
8580 					if (pf_change_icmp_af(pd->m, ipoff2, pd,
8581 					    &pd2, &nk->addr[sidx],
8582 					    &nk->addr[didx], pd->af,
8583 					    nk->af))
8584 						return (PF_DROP);
8585 					pd->proto = IPPROTO_ICMP;
8586 					if (pf_translate_icmp_af(nk->af, &iih))
8587 						return (PF_DROP);
8588 					if (virtual_type ==
8589 					    htons(ICMP6_ECHO_REQUEST) &&
8590 					    nk->port[iidx] != iih->icmp6_id)
8591 						iih->icmp6_id = nk->port[iidx];
8592 					m_copyback(pd2.m, pd2.off,
8593 					    sizeof(struct icmp6_hdr), (c_caddr_t)&iih);
8594 					PF_ACPY(&pd->nsaddr,
8595 					    &nk->addr[pd2.sidx], nk->af);
8596 					PF_ACPY(&pd->ndaddr,
8597 					    &nk->addr[pd2.didx], nk->af);
8598 					pd->naf = nk->af;
8599 					return (PF_AFRT);
8600 				}
8601 #endif
8602 
8603 				if (PF_ANEQ(pd2.src,
8604 				    &nk->addr[pd2.sidx], pd2.af) ||
8605 				    ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8606 				    nk->port[pd2.sidx] != iih->icmp6_id))
8607 					pf_change_icmp(pd2.src,
8608 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8609 					    ? &iih->icmp6_id : NULL,
8610 					    daddr, &nk->addr[pd2.sidx],
8611 					    (virtual_type == htons(ICMP6_ECHO_REQUEST))
8612 					    ? nk->port[iidx] : 0, NULL,
8613 					    pd2.ip_sum, icmpsum,
8614 					    pd->ip_sum, 0, AF_INET6);
8615 
8616 				if (PF_ANEQ(pd2.dst,
8617 				    &nk->addr[pd2.didx], pd2.af))
8618 					pf_change_icmp(pd2.dst, NULL, NULL,
8619 					    &nk->addr[pd2.didx], 0, NULL,
8620 					    pd2.ip_sum, icmpsum,
8621 					    pd->ip_sum, 0, AF_INET6);
8622 
8623 				m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8624 				    (caddr_t)&pd->hdr.icmp6);
8625 				m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8626 				m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8627 				    (caddr_t)iih);
8628 			}
8629 			return (PF_PASS);
8630 			break;
8631 		}
8632 #endif /* INET6 */
8633 		default: {
8634 			key.af = pd2.af;
8635 			key.proto = pd2.proto;
8636 			PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8637 			PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8638 			key.port[0] = key.port[1] = 0;
8639 
8640 			STATE_LOOKUP(&key, *state, pd);
8641 
8642 			/* translate source/destination address, if necessary */
8643 			if ((*state)->key[PF_SK_WIRE] !=
8644 			    (*state)->key[PF_SK_STACK]) {
8645 				struct pf_state_key *nk =
8646 				    (*state)->key[pd->didx];
8647 
8648 				if (PF_ANEQ(pd2.src,
8649 				    &nk->addr[pd2.sidx], pd2.af))
8650 					pf_change_icmp(pd2.src, NULL, daddr,
8651 					    &nk->addr[pd2.sidx], 0, NULL,
8652 					    pd2.ip_sum, icmpsum,
8653 					    pd->ip_sum, 0, pd2.af);
8654 
8655 				if (PF_ANEQ(pd2.dst,
8656 				    &nk->addr[pd2.didx], pd2.af))
8657 					pf_change_icmp(pd2.dst, NULL, saddr,
8658 					    &nk->addr[pd2.didx], 0, NULL,
8659 					    pd2.ip_sum, icmpsum,
8660 					    pd->ip_sum, 0, pd2.af);
8661 
8662 				switch (pd2.af) {
8663 #ifdef INET
8664 				case AF_INET:
8665 					m_copyback(pd->m, pd->off, ICMP_MINLEN,
8666 					    (caddr_t)&pd->hdr.icmp);
8667 					m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8668 					break;
8669 #endif /* INET */
8670 #ifdef INET6
8671 				case AF_INET6:
8672 					m_copyback(pd->m, pd->off,
8673 					    sizeof(struct icmp6_hdr),
8674 					    (caddr_t )&pd->hdr.icmp6);
8675 					m_copyback(pd->m, ipoff2, sizeof(h2_6),
8676 					    (caddr_t )&h2_6);
8677 					break;
8678 #endif /* INET6 */
8679 				}
8680 			}
8681 			return (PF_PASS);
8682 			break;
8683 		}
8684 		}
8685 	}
8686 }
8687 
8688 static int
pf_test_state_other(struct pf_kstate ** state,struct pf_pdesc * pd)8689 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd)
8690 {
8691 	struct pf_state_peer	*src, *dst;
8692 	struct pf_state_key_cmp	 key;
8693 	uint8_t			 psrc, pdst;
8694 	int			 action = PF_PASS;
8695 
8696 	bzero(&key, sizeof(key));
8697 	key.af = pd->af;
8698 	key.proto = pd->proto;
8699 	PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
8700 	PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
8701 	key.port[0] = key.port[1] = 0;
8702 
8703 	STATE_LOOKUP(&key, *state, pd);
8704 
8705 	if (pd->dir == (*state)->direction) {
8706 		src = &(*state)->src;
8707 		dst = &(*state)->dst;
8708 		psrc = PF_PEER_SRC;
8709 		pdst = PF_PEER_DST;
8710 	} else {
8711 		src = &(*state)->dst;
8712 		dst = &(*state)->src;
8713 		psrc = PF_PEER_DST;
8714 		pdst = PF_PEER_SRC;
8715 	}
8716 
8717 	/* update states */
8718 	if (src->state < PFOTHERS_SINGLE)
8719 		pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
8720 	if (dst->state == PFOTHERS_SINGLE)
8721 		pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
8722 
8723 	/* update expire time */
8724 	(*state)->expire = pf_get_uptime();
8725 	if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
8726 		(*state)->timeout = PFTM_OTHER_MULTIPLE;
8727 	else
8728 		(*state)->timeout = PFTM_OTHER_SINGLE;
8729 
8730 	/* translate source/destination address, if necessary */
8731 	if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
8732 		struct pf_state_key	*nk;
8733 		int			 afto;
8734 
8735 		if (PF_REVERSED_KEY((*state)->key, pd->af))
8736 			nk = (*state)->key[pd->sidx];
8737 		else
8738 			nk = (*state)->key[pd->didx];
8739 
8740 		KASSERT(nk, ("%s: nk is null", __func__));
8741 		KASSERT(pd, ("%s: pd is null", __func__));
8742 		KASSERT(pd->src, ("%s: pd->src is null", __func__));
8743 		KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
8744 
8745 		afto = pd->af != nk->af;
8746 
8747 		switch (pd->af) {
8748 #ifdef INET
8749 		case AF_INET:
8750 			if (!afto &&
8751 			    PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
8752 				pf_change_a(&pd->src->v4.s_addr,
8753 				    pd->ip_sum,
8754 				    nk->addr[pd->sidx].v4.s_addr,
8755 				    0);
8756 
8757 			if (!afto &&
8758 			    PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
8759 				pf_change_a(&pd->dst->v4.s_addr,
8760 				    pd->ip_sum,
8761 				    nk->addr[pd->didx].v4.s_addr,
8762 				    0);
8763 
8764 			break;
8765 #endif /* INET */
8766 #ifdef INET6
8767 		case AF_INET6:
8768 			if (!afto &&
8769 			    PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6))
8770 				PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
8771 
8772 			if (!afto &&
8773 			    PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6))
8774 				PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
8775 #endif /* INET6 */
8776 		}
8777 		if (afto) {
8778 			PF_ACPY(&pd->nsaddr,
8779 			    &nk->addr[afto ? pd->didx : pd->sidx], nk->af);
8780 			PF_ACPY(&pd->ndaddr,
8781 			    &nk->addr[afto ? pd->sidx : pd->didx], nk->af);
8782 			pd->naf = nk->af;
8783 			action = PF_AFRT;
8784 		}
8785 	}
8786 	return (action);
8787 }
8788 
8789 /*
8790  * ipoff and off are measured from the start of the mbuf chain.
8791  * h must be at "ipoff" on the mbuf chain.
8792  */
8793 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8794 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8795     u_short *actionp, u_short *reasonp, sa_family_t af)
8796 {
8797 	switch (af) {
8798 #ifdef INET
8799 	case AF_INET: {
8800 		const struct ip	*h = mtod(m, struct ip *);
8801 		u_int16_t	 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8802 
8803 		if (fragoff) {
8804 			if (fragoff >= len)
8805 				ACTION_SET(actionp, PF_PASS);
8806 			else {
8807 				ACTION_SET(actionp, PF_DROP);
8808 				REASON_SET(reasonp, PFRES_FRAG);
8809 			}
8810 			return (NULL);
8811 		}
8812 		if (m->m_pkthdr.len < off + len ||
8813 		    ntohs(h->ip_len) < off + len) {
8814 			ACTION_SET(actionp, PF_DROP);
8815 			REASON_SET(reasonp, PFRES_SHORT);
8816 			return (NULL);
8817 		}
8818 		break;
8819 	}
8820 #endif /* INET */
8821 #ifdef INET6
8822 	case AF_INET6: {
8823 		const struct ip6_hdr	*h = mtod(m, struct ip6_hdr *);
8824 
8825 		if (m->m_pkthdr.len < off + len ||
8826 		    (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
8827 		    (unsigned)(off + len)) {
8828 			ACTION_SET(actionp, PF_DROP);
8829 			REASON_SET(reasonp, PFRES_SHORT);
8830 			return (NULL);
8831 		}
8832 		break;
8833 	}
8834 #endif /* INET6 */
8835 	}
8836 	m_copydata(m, off, len, p);
8837 	return (p);
8838 }
8839 
8840 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8841 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8842     int rtableid)
8843 {
8844 	struct ifnet		*ifp;
8845 
8846 	/*
8847 	 * Skip check for addresses with embedded interface scope,
8848 	 * as they would always match anyway.
8849 	 */
8850 	if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8851 		return (1);
8852 
8853 	if (af != AF_INET && af != AF_INET6)
8854 		return (0);
8855 
8856 	if (kif == V_pfi_all)
8857 		return (1);
8858 
8859 	/* Skip checks for ipsec interfaces */
8860 	if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8861 		return (1);
8862 
8863 	ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8864 
8865 	switch (af) {
8866 #ifdef INET6
8867 	case AF_INET6:
8868 		return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8869 		    ifp));
8870 #endif
8871 #ifdef INET
8872 	case AF_INET:
8873 		return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8874 		    ifp));
8875 #endif
8876 	}
8877 
8878 	return (0);
8879 }
8880 
8881 #ifdef INET
8882 static void
pf_route(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8883 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
8884     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8885 {
8886 	struct mbuf		*m0, *m1, *md;
8887 	struct sockaddr_in	dst;
8888 	struct ip		*ip;
8889 	struct ifnet		*ifp = NULL;
8890 	int			 error = 0;
8891 	uint16_t		 ip_len, ip_off;
8892 	uint16_t		 tmp;
8893 	int			 r_dir;
8894 	bool			 skip_test = false;
8895 
8896 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
8897 
8898 	SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp);
8899 
8900 	if (s) {
8901 		r_dir = s->direction;
8902 	} else {
8903 		r_dir = r->direction;
8904 	}
8905 
8906 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
8907 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
8908 	    __func__));
8909 
8910 	if ((pd->pf_mtag == NULL &&
8911 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
8912 	    pd->pf_mtag->routed++ > 3) {
8913 		m0 = *m;
8914 		*m = NULL;
8915 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8916 		goto bad_locked;
8917 	}
8918 
8919 	if (pd->act.rt_kif != NULL)
8920 		ifp = pd->act.rt_kif->pfik_ifp;
8921 
8922 	if (pd->act.rt == PF_DUPTO) {
8923 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
8924 			if (s != NULL) {
8925 				PF_STATE_UNLOCK(s);
8926 			}
8927 			if (ifp == oifp) {
8928 				/* When the 2nd interface is not skipped */
8929 				return;
8930 			} else {
8931 				m0 = *m;
8932 				*m = NULL;
8933 				SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8934 				goto bad;
8935 			}
8936 		} else {
8937 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
8938 			if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
8939 				if (s)
8940 					PF_STATE_UNLOCK(s);
8941 				return;
8942 			}
8943 		}
8944 	} else {
8945 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
8946 			if (pd->af == pd->naf) {
8947 				pf_dummynet(pd, s, r, m);
8948 				if (s)
8949 					PF_STATE_UNLOCK(s);
8950 				return;
8951 			} else {
8952 				skip_test = true;
8953 			}
8954 		}
8955 
8956 		/*
8957 		 * If we're actually doing route-to and af-to and are in the
8958 		 * reply direction.
8959 		 */
8960 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
8961 		    pd->af != pd->naf) {
8962 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
8963 				/* Un-set ifp so we do a plain route lookup. */
8964 				ifp = NULL;
8965 			}
8966 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
8967 				/* Un-set ifp so we do a plain route lookup. */
8968 				ifp = NULL;
8969 			}
8970 		}
8971 		m0 = *m;
8972 	}
8973 
8974 	ip = mtod(m0, struct ip *);
8975 
8976 	bzero(&dst, sizeof(dst));
8977 	dst.sin_family = AF_INET;
8978 	dst.sin_len = sizeof(dst);
8979 	dst.sin_addr = ip->ip_dst;
8980 	dst.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
8981 
8982 	if (s != NULL){
8983 		if (ifp == NULL && (pd->af != pd->naf)) {
8984 			/* We're in the AFTO case. Do a route lookup. */
8985 			const struct nhop_object *nh;
8986 			nh = fib4_lookup(M_GETFIB(*m), ip->ip_dst, 0, NHR_NONE, 0);
8987 			if (nh) {
8988 				ifp = nh->nh_ifp;
8989 
8990 				/* Use the gateway if needed. */
8991 				if (nh->nh_flags & NHF_GATEWAY)
8992 					dst.sin_addr = nh->gw4_sa.sin_addr;
8993 				else
8994 					dst.sin_addr = ip->ip_dst;
8995 
8996 				/*
8997 				 * Bind to the correct interface if we're
8998 				 * if-bound. We don't know which interface
8999 				 * that will be until here, so we've inserted
9000 				 * the state on V_pf_all. Fix that now.
9001 				 */
9002 				if (s->kif == V_pfi_all && ifp != NULL &&
9003 				    r->rule_flag & PFRULE_IFBOUND)
9004 					s->kif = ifp->if_pf_kif;
9005 			}
9006 		}
9007 
9008 		if (r->rule_flag & PFRULE_IFBOUND &&
9009 		    pd->act.rt == PF_REPLYTO &&
9010 		    s->kif == V_pfi_all) {
9011 			s->kif = pd->act.rt_kif;
9012 			s->orig_kif = oifp->if_pf_kif;
9013 		}
9014 
9015 		PF_STATE_UNLOCK(s);
9016 	}
9017 
9018 	if (ifp == NULL) {
9019 		m0 = *m;
9020 		*m = NULL;
9021 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9022 		goto bad;
9023 	}
9024 
9025 	if (pd->dir == PF_IN && !skip_test) {
9026 		if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9027 		    &pd->act) != PF_PASS) {
9028 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9029 			goto bad;
9030 		} else if (m0 == NULL) {
9031 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9032 			goto done;
9033 		}
9034 		if (m0->m_len < sizeof(struct ip)) {
9035 			DPFPRINTF(PF_DEBUG_URGENT,
9036 			    ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
9037 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9038 			goto bad;
9039 		}
9040 		ip = mtod(m0, struct ip *);
9041 	}
9042 
9043 	if (ifp->if_flags & IFF_LOOPBACK)
9044 		m0->m_flags |= M_SKIP_FIREWALL;
9045 
9046 	ip_len = ntohs(ip->ip_len);
9047 	ip_off = ntohs(ip->ip_off);
9048 
9049 	/* Copied from FreeBSD 10.0-CURRENT ip_output. */
9050 	m0->m_pkthdr.csum_flags |= CSUM_IP;
9051 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9052 		in_delayed_cksum(m0);
9053 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9054 	}
9055 	if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9056 		pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9057 		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9058 	}
9059 
9060 	if (pd->dir == PF_IN) {
9061 		/*
9062 		 * Make sure dummynet gets the correct direction, in case it needs to
9063 		 * re-inject later.
9064 		 */
9065 		pd->dir = PF_OUT;
9066 
9067 		/*
9068 		 * The following processing is actually the rest of the inbound processing, even
9069 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9070 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9071 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9072 		 * conclusion about what direction it's processing, and we can't fix it or it
9073 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9074 		 * decision will pick the right pipe, and everything will mostly work as expected.
9075 		 */
9076 		tmp = pd->act.dnrpipe;
9077 		pd->act.dnrpipe = pd->act.dnpipe;
9078 		pd->act.dnpipe = tmp;
9079 	}
9080 
9081 	/*
9082 	 * If small enough for interface, or the interface will take
9083 	 * care of the fragmentation for us, we can just send directly.
9084 	 */
9085 	if (ip_len <= ifp->if_mtu ||
9086 	    (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9087 		ip->ip_sum = 0;
9088 		if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9089 			ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9090 			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9091 		}
9092 		m_clrprotoflags(m0);	/* Avoid confusing lower layers. */
9093 
9094 		md = m0;
9095 		error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9096 		if (md != NULL) {
9097 			error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL);
9098 			SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9099 		}
9100 		goto done;
9101 	}
9102 
9103 	/* Balk when DF bit is set or the interface didn't support TSO. */
9104 	if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9105 		error = EMSGSIZE;
9106 		KMOD_IPSTAT_INC(ips_cantfrag);
9107 		if (pd->act.rt != PF_DUPTO) {
9108 			if (s && s->nat_rule != NULL)
9109 				PACKET_UNDO_NAT(m0, pd,
9110 				    (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9111 				    s);
9112 
9113 			icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
9114 			    ifp->if_mtu);
9115 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9116 			goto done;
9117 		} else {
9118 			SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9119 			goto bad;
9120 		}
9121 	}
9122 
9123 	error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9124 	if (error) {
9125 		SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9126 		goto bad;
9127 	}
9128 
9129 	for (; m0; m0 = m1) {
9130 		m1 = m0->m_nextpkt;
9131 		m0->m_nextpkt = NULL;
9132 		if (error == 0) {
9133 			m_clrprotoflags(m0);
9134 			md = m0;
9135 			pd->pf_mtag = pf_find_mtag(md);
9136 			error = pf_dummynet_route(pd, s, r, ifp,
9137 			    sintosa(&dst), &md);
9138 			if (md != NULL) {
9139 				error = (*ifp->if_output)(ifp, md,
9140 				    sintosa(&dst), NULL);
9141 				SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9142 			}
9143 		} else
9144 			m_freem(m0);
9145 	}
9146 
9147 	if (error == 0)
9148 		KMOD_IPSTAT_INC(ips_fragmented);
9149 
9150 done:
9151 	if (pd->act.rt != PF_DUPTO)
9152 		*m = NULL;
9153 	return;
9154 
9155 bad_locked:
9156 	if (s)
9157 		PF_STATE_UNLOCK(s);
9158 bad:
9159 	m_freem(m0);
9160 	goto done;
9161 }
9162 #endif /* INET */
9163 
9164 #ifdef INET6
9165 static void
pf_route6(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9166 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
9167     struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9168 {
9169 	struct mbuf		*m0, *md;
9170 	struct m_tag		*mtag;
9171 	struct sockaddr_in6	dst;
9172 	struct ip6_hdr		*ip6;
9173 	struct ifnet		*ifp = NULL;
9174 	int			 r_dir;
9175 	bool			 skip_test = false;
9176 
9177 	KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
9178 
9179 	SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp);
9180 
9181 	if (s) {
9182 		r_dir = s->direction;
9183 	} else {
9184 		r_dir = r->direction;
9185 	}
9186 
9187 	KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9188 	    r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9189 	    __func__));
9190 
9191 	if ((pd->pf_mtag == NULL &&
9192 	    ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
9193 	    pd->pf_mtag->routed++ > 3) {
9194 		m0 = *m;
9195 		*m = NULL;
9196 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9197 		goto bad_locked;
9198 	}
9199 
9200 	if (pd->act.rt_kif != NULL)
9201 		ifp = pd->act.rt_kif->pfik_ifp;
9202 
9203 	if (pd->act.rt == PF_DUPTO) {
9204 		if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9205 			if (s != NULL) {
9206 				PF_STATE_UNLOCK(s);
9207 			}
9208 			if (ifp == oifp) {
9209 				/* When the 2nd interface is not skipped */
9210 				return;
9211 			} else {
9212 				m0 = *m;
9213 				*m = NULL;
9214 				SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9215 				goto bad;
9216 			}
9217 		} else {
9218 			pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9219 			if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
9220 				if (s)
9221 					PF_STATE_UNLOCK(s);
9222 				return;
9223 			}
9224 		}
9225 	} else {
9226 		if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9227 			if (pd->af == pd->naf) {
9228 				pf_dummynet(pd, s, r, m);
9229 				if (s)
9230 					PF_STATE_UNLOCK(s);
9231 				return;
9232 			} else {
9233 				skip_test = true;
9234 			}
9235 		}
9236 
9237 		/*
9238 		 * If we're actually doing route-to and af-to and are in the
9239 		 * reply direction.
9240 		 */
9241 		if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9242 		    pd->af != pd->naf) {
9243 			if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9244 				/* Un-set ifp so we do a plain route lookup. */
9245 				ifp = NULL;
9246 			}
9247 			if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9248 				/* Un-set ifp so we do a plain route lookup. */
9249 				ifp = NULL;
9250 			}
9251 		}
9252 		m0 = *m;
9253 	}
9254 
9255 	ip6 = mtod(m0, struct ip6_hdr *);
9256 
9257 	bzero(&dst, sizeof(dst));
9258 	dst.sin6_family = AF_INET6;
9259 	dst.sin6_len = sizeof(dst);
9260 	dst.sin6_addr = ip6->ip6_dst;
9261 	PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6);
9262 
9263 	if (s != NULL) {
9264 		if (ifp == NULL && (pd->af != pd->naf)) {
9265 			const struct nhop_object *nh;
9266 			nh = fib6_lookup(M_GETFIB(*m), &ip6->ip6_dst, 0, NHR_NONE, 0);
9267 			if (nh) {
9268 				ifp = nh->nh_ifp;
9269 
9270 				/* Use the gateway if needed. */
9271 				if (nh->nh_flags & NHF_GATEWAY)
9272 					bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9273 					    sizeof(dst.sin6_addr));
9274 				else
9275 					dst.sin6_addr = ip6->ip6_dst;
9276 
9277 				/*
9278 				 * Bind to the correct interface if we're
9279 				 * if-bound. We don't know which interface
9280 				 * that will be until here, so we've inserted
9281 				 * the state on V_pf_all. Fix that now.
9282 				 */
9283 				if (s->kif == V_pfi_all && ifp != NULL &&
9284 				    r->rule_flag & PFRULE_IFBOUND)
9285 					s->kif = ifp->if_pf_kif;
9286 			}
9287 		}
9288 
9289 		if (r->rule_flag & PFRULE_IFBOUND &&
9290 		    pd->act.rt == PF_REPLYTO &&
9291 		    s->kif == V_pfi_all) {
9292 			s->kif = pd->act.rt_kif;
9293 			s->orig_kif = oifp->if_pf_kif;
9294 		}
9295 
9296 		PF_STATE_UNLOCK(s);
9297 	}
9298 
9299 	if (pd->af != pd->naf) {
9300 		struct udphdr *uh = &pd->hdr.udp;
9301 
9302 		if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9303 			uh->uh_sum = in6_cksum_pseudo(ip6,
9304 			    ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9305 			m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9306 		}
9307 	}
9308 
9309 	if (ifp == NULL) {
9310 		m0 = *m;
9311 		*m = NULL;
9312 		SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9313 		goto bad;
9314 	}
9315 
9316 	if (pd->dir == PF_IN && !skip_test) {
9317 		if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9318 		    ifp, &m0, inp, &pd->act) != PF_PASS) {
9319 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9320 			goto bad;
9321 		} else if (m0 == NULL) {
9322 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9323 			goto done;
9324 		}
9325 		if (m0->m_len < sizeof(struct ip6_hdr)) {
9326 			DPFPRINTF(PF_DEBUG_URGENT,
9327 			    ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
9328 			    __func__));
9329 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9330 			goto bad;
9331 		}
9332 		ip6 = mtod(m0, struct ip6_hdr *);
9333 	}
9334 
9335 	if (ifp->if_flags & IFF_LOOPBACK)
9336 		m0->m_flags |= M_SKIP_FIREWALL;
9337 
9338 	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9339 	    ~ifp->if_hwassist) {
9340 		uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9341 		in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9342 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9343 	}
9344 
9345 	if (pd->dir == PF_IN) {
9346 		uint16_t	 tmp;
9347 		/*
9348 		 * Make sure dummynet gets the correct direction, in case it needs to
9349 		 * re-inject later.
9350 		 */
9351 		pd->dir = PF_OUT;
9352 
9353 		/*
9354 		 * The following processing is actually the rest of the inbound processing, even
9355 		 * though we've marked it as outbound (so we don't look through dummynet) and it
9356 		 * happens after the outbound processing (pf_test(PF_OUT) above).
9357 		 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9358 		 * conclusion about what direction it's processing, and we can't fix it or it
9359 		 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9360 		 * decision will pick the right pipe, and everything will mostly work as expected.
9361 		 */
9362 		tmp = pd->act.dnrpipe;
9363 		pd->act.dnrpipe = pd->act.dnpipe;
9364 		pd->act.dnpipe = tmp;
9365 	}
9366 
9367 	/*
9368 	 * If the packet is too large for the outgoing interface,
9369 	 * send back an icmp6 error.
9370 	 */
9371 	if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9372 		dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9373 	mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9374 	if (mtag != NULL) {
9375 		int ret __sdt_used;
9376 		ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9377 		SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9378 		goto done;
9379 	}
9380 
9381 	if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9382 		md = m0;
9383 		pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9384 		if (md != NULL) {
9385 			int ret __sdt_used;
9386 			ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9387 			SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9388 		}
9389 	}
9390 	else {
9391 		in6_ifstat_inc(ifp, ifs6_in_toobig);
9392 		if (pd->act.rt != PF_DUPTO) {
9393 			if (s && s->nat_rule != NULL)
9394 				PACKET_UNDO_NAT(m0, pd,
9395 				    ((caddr_t)ip6 - m0->m_data) +
9396 				    sizeof(struct ip6_hdr), s);
9397 
9398 			icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
9399 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9400 		} else {
9401 			SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9402 			goto bad;
9403 		}
9404 	}
9405 
9406 done:
9407 	if (pd->act.rt != PF_DUPTO)
9408 		*m = NULL;
9409 	return;
9410 
9411 bad_locked:
9412 	if (s)
9413 		PF_STATE_UNLOCK(s);
9414 bad:
9415 	m_freem(m0);
9416 	goto done;
9417 }
9418 #endif /* INET6 */
9419 
9420 /*
9421  * FreeBSD supports cksum offloads for the following drivers.
9422  *  em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9423  *
9424  * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9425  *  network driver performed cksum including pseudo header, need to verify
9426  *   csum_data
9427  * CSUM_DATA_VALID :
9428  *  network driver performed cksum, needs to additional pseudo header
9429  *  cksum computation with partial csum_data(i.e. lack of H/W support for
9430  *  pseudo header, for instance sk(4) and possibly gem(4))
9431  *
9432  * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9433  * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9434  * TCP/UDP layer.
9435  * Also, set csum_data to 0xffff to force cksum validation.
9436  */
9437 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9438 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9439 {
9440 	u_int16_t sum = 0;
9441 	int hw_assist = 0;
9442 	struct ip *ip;
9443 
9444 	if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9445 		return (1);
9446 	if (m->m_pkthdr.len < off + len)
9447 		return (1);
9448 
9449 	switch (p) {
9450 	case IPPROTO_TCP:
9451 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9452 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9453 				sum = m->m_pkthdr.csum_data;
9454 			} else {
9455 				ip = mtod(m, struct ip *);
9456 				sum = in_pseudo(ip->ip_src.s_addr,
9457 				ip->ip_dst.s_addr, htonl((u_short)len +
9458 				m->m_pkthdr.csum_data + IPPROTO_TCP));
9459 			}
9460 			sum ^= 0xffff;
9461 			++hw_assist;
9462 		}
9463 		break;
9464 	case IPPROTO_UDP:
9465 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9466 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9467 				sum = m->m_pkthdr.csum_data;
9468 			} else {
9469 				ip = mtod(m, struct ip *);
9470 				sum = in_pseudo(ip->ip_src.s_addr,
9471 				ip->ip_dst.s_addr, htonl((u_short)len +
9472 				m->m_pkthdr.csum_data + IPPROTO_UDP));
9473 			}
9474 			sum ^= 0xffff;
9475 			++hw_assist;
9476 		}
9477 		break;
9478 	case IPPROTO_ICMP:
9479 #ifdef INET6
9480 	case IPPROTO_ICMPV6:
9481 #endif /* INET6 */
9482 		break;
9483 	default:
9484 		return (1);
9485 	}
9486 
9487 	if (!hw_assist) {
9488 		switch (af) {
9489 		case AF_INET:
9490 			if (p == IPPROTO_ICMP) {
9491 				if (m->m_len < off)
9492 					return (1);
9493 				m->m_data += off;
9494 				m->m_len -= off;
9495 				sum = in_cksum(m, len);
9496 				m->m_data -= off;
9497 				m->m_len += off;
9498 			} else {
9499 				if (m->m_len < sizeof(struct ip))
9500 					return (1);
9501 				sum = in4_cksum(m, p, off, len);
9502 			}
9503 			break;
9504 #ifdef INET6
9505 		case AF_INET6:
9506 			if (m->m_len < sizeof(struct ip6_hdr))
9507 				return (1);
9508 			sum = in6_cksum(m, p, off, len);
9509 			break;
9510 #endif /* INET6 */
9511 		}
9512 	}
9513 	if (sum) {
9514 		switch (p) {
9515 		case IPPROTO_TCP:
9516 		    {
9517 			KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9518 			break;
9519 		    }
9520 		case IPPROTO_UDP:
9521 		    {
9522 			KMOD_UDPSTAT_INC(udps_badsum);
9523 			break;
9524 		    }
9525 #ifdef INET
9526 		case IPPROTO_ICMP:
9527 		    {
9528 			KMOD_ICMPSTAT_INC(icps_checksum);
9529 			break;
9530 		    }
9531 #endif
9532 #ifdef INET6
9533 		case IPPROTO_ICMPV6:
9534 		    {
9535 			KMOD_ICMP6STAT_INC(icp6s_checksum);
9536 			break;
9537 		    }
9538 #endif /* INET6 */
9539 		}
9540 		return (1);
9541 	} else {
9542 		if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9543 			m->m_pkthdr.csum_flags |=
9544 			    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9545 			m->m_pkthdr.csum_data = 0xffff;
9546 		}
9547 	}
9548 	return (0);
9549 }
9550 
9551 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9552 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9553     const struct pf_kstate *s, struct ip_fw_args *dnflow)
9554 {
9555 	int dndir = r->direction;
9556 
9557 	if (s && dndir == PF_INOUT) {
9558 		dndir = s->direction;
9559 	} else if (dndir == PF_INOUT) {
9560 		/* Assume primary direction. Happens when we've set dnpipe in
9561 		 * the ethernet level code. */
9562 		dndir = pd->dir;
9563 	}
9564 
9565 	if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9566 		return (false);
9567 
9568 	memset(dnflow, 0, sizeof(*dnflow));
9569 
9570 	if (pd->dport != NULL)
9571 		dnflow->f_id.dst_port = ntohs(*pd->dport);
9572 	if (pd->sport != NULL)
9573 		dnflow->f_id.src_port = ntohs(*pd->sport);
9574 
9575 	if (pd->dir == PF_IN)
9576 		dnflow->flags |= IPFW_ARGS_IN;
9577 	else
9578 		dnflow->flags |= IPFW_ARGS_OUT;
9579 
9580 	if (pd->dir != dndir && pd->act.dnrpipe) {
9581 		dnflow->rule.info = pd->act.dnrpipe;
9582 	}
9583 	else if (pd->dir == dndir && pd->act.dnpipe) {
9584 		dnflow->rule.info = pd->act.dnpipe;
9585 	}
9586 	else {
9587 		return (false);
9588 	}
9589 
9590 	dnflow->rule.info |= IPFW_IS_DUMMYNET;
9591 	if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9592 		dnflow->rule.info |= IPFW_IS_PIPE;
9593 
9594 	dnflow->f_id.proto = pd->proto;
9595 	dnflow->f_id.extra = dnflow->rule.info;
9596 	switch (pd->naf) {
9597 	case AF_INET:
9598 		dnflow->f_id.addr_type = 4;
9599 		dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9600 		dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9601 		break;
9602 	case AF_INET6:
9603 		dnflow->flags |= IPFW_ARGS_IP6;
9604 		dnflow->f_id.addr_type = 6;
9605 		dnflow->f_id.src_ip6 = pd->src->v6;
9606 		dnflow->f_id.dst_ip6 = pd->dst->v6;
9607 		break;
9608 	}
9609 
9610 	return (true);
9611 }
9612 
9613 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9614 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9615     struct inpcb *inp)
9616 {
9617 	struct pfi_kkif		*kif;
9618 	struct mbuf		*m = *m0;
9619 
9620 	M_ASSERTPKTHDR(m);
9621 	MPASS(ifp->if_vnet == curvnet);
9622 	NET_EPOCH_ASSERT();
9623 
9624 	if (!V_pf_status.running)
9625 		return (PF_PASS);
9626 
9627 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
9628 
9629 	if (kif == NULL) {
9630 		DPFPRINTF(PF_DEBUG_URGENT,
9631 		    ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
9632 		return (PF_DROP);
9633 	}
9634 	if (kif->pfik_flags & PFI_IFLAG_SKIP)
9635 		return (PF_PASS);
9636 
9637 	if (m->m_flags & M_SKIP_FIREWALL)
9638 		return (PF_PASS);
9639 
9640 	if (__predict_false(! M_WRITABLE(*m0))) {
9641 		m = *m0 = m_unshare(*m0, M_NOWAIT);
9642 		if (*m0 == NULL)
9643 			return (PF_DROP);
9644 	}
9645 
9646 	/* Stateless! */
9647 	return (pf_test_eth_rule(dir, kif, m0));
9648 }
9649 
9650 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9651 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9652 {
9653 	struct m_tag *mtag;
9654 
9655 	pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9656 
9657 	/* dummynet adds this tag, but pf does not need it,
9658 	 * and keeping it creates unexpected behavior,
9659 	 * e.g. in case of divert(4) usage right after dummynet. */
9660 	mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9661 	if (mtag != NULL)
9662 		m_tag_delete(m, mtag);
9663 }
9664 
9665 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9666 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9667     struct pf_krule *r, struct mbuf **m0)
9668 {
9669 	return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9670 }
9671 
9672 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,struct sockaddr * sa,struct mbuf ** m0)9673 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9674     struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa,
9675     struct mbuf **m0)
9676 {
9677 	struct ip_fw_args dnflow;
9678 
9679 	NET_EPOCH_ASSERT();
9680 
9681 	if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9682 		return (0);
9683 
9684 	if (ip_dn_io_ptr == NULL) {
9685 		m_freem(*m0);
9686 		*m0 = NULL;
9687 		return (ENOMEM);
9688 	}
9689 
9690 	if (pd->pf_mtag == NULL &&
9691 	    ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9692 		m_freem(*m0);
9693 		*m0 = NULL;
9694 		return (ENOMEM);
9695 	}
9696 
9697 	if (ifp != NULL) {
9698 		pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9699 
9700 		pd->pf_mtag->if_index = ifp->if_index;
9701 		pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9702 
9703 		MPASS(sa != NULL);
9704 
9705 		switch (pd->naf) {
9706 		case AF_INET:
9707 			memcpy(&pd->pf_mtag->dst, sa,
9708 			    sizeof(struct sockaddr_in));
9709 			break;
9710 		case AF_INET6:
9711 			memcpy(&pd->pf_mtag->dst, sa,
9712 			    sizeof(struct sockaddr_in6));
9713 			break;
9714 		}
9715 	}
9716 
9717 	if (s != NULL && s->nat_rule != NULL &&
9718 	    s->nat_rule->action == PF_RDR &&
9719 	    (
9720 #ifdef INET
9721 	    (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9722 #endif
9723 	    (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9724 		/*
9725 		 * If we're redirecting to loopback mark this packet
9726 		 * as being local. Otherwise it might get dropped
9727 		 * if dummynet re-injects.
9728 		 */
9729 		(*m0)->m_pkthdr.rcvif = V_loif;
9730 	}
9731 
9732 	if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9733 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9734 		pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9735 		ip_dn_io_ptr(m0, &dnflow);
9736 		if (*m0 != NULL) {
9737 			pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9738 			pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9739 		}
9740 	}
9741 
9742 	return (0);
9743 }
9744 
9745 #ifdef INET6
9746 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)9747 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
9748     u_short *reason)
9749 {
9750 	struct ip6_opt		 opt;
9751 	struct ip6_opt_jumbo	 jumbo;
9752 
9753 	while (off < end) {
9754 		if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
9755 		    sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) {
9756 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
9757 			return (PF_DROP);
9758 		}
9759 		if (opt.ip6o_type == IP6OPT_PAD1) {
9760 			off++;
9761 			continue;
9762 		}
9763 		if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL,
9764 		    reason, AF_INET6)) {
9765 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
9766 			return (PF_DROP);
9767 		}
9768 		if (off + sizeof(opt) + opt.ip6o_len > end) {
9769 			DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
9770 			REASON_SET(reason, PFRES_IPOPTIONS);
9771 			return (PF_DROP);
9772 		}
9773 		switch (opt.ip6o_type) {
9774 		case IP6OPT_JUMBO:
9775 			if (pd->jumbolen != 0) {
9776 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
9777 				REASON_SET(reason, PFRES_IPOPTIONS);
9778 				return (PF_DROP);
9779 			}
9780 			if (ntohs(h->ip6_plen) != 0) {
9781 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
9782 				REASON_SET(reason, PFRES_IPOPTIONS);
9783 				return (PF_DROP);
9784 			}
9785 			if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL,
9786 				reason, AF_INET6)) {
9787 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
9788 				return (PF_DROP);
9789 			}
9790 			memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
9791 			    sizeof(pd->jumbolen));
9792 			pd->jumbolen = ntohl(pd->jumbolen);
9793 			if (pd->jumbolen < IPV6_MAXPACKET) {
9794 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
9795 				REASON_SET(reason, PFRES_IPOPTIONS);
9796 				return (PF_DROP);
9797 			}
9798 			break;
9799 		default:
9800 			break;
9801 		}
9802 		off += sizeof(opt) + opt.ip6o_len;
9803 	}
9804 
9805 	return (PF_PASS);
9806 }
9807 
9808 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)9809 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
9810 {
9811 	struct ip6_frag		 frag;
9812 	struct ip6_ext		 ext;
9813 	struct ip6_rthdr	 rthdr;
9814 	uint32_t		 end;
9815 	int			 rthdr_cnt = 0;
9816 
9817 	pd->off += sizeof(struct ip6_hdr);
9818 	end = pd->off + ntohs(h->ip6_plen);
9819 	pd->fragoff = pd->extoff = pd->jumbolen = 0;
9820 	pd->proto = h->ip6_nxt;
9821 	for (;;) {
9822 		switch (pd->proto) {
9823 		case IPPROTO_FRAGMENT:
9824 			if (pd->fragoff != 0) {
9825 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
9826 				REASON_SET(reason, PFRES_FRAG);
9827 				return (PF_DROP);
9828 			}
9829 			/* jumbo payload packets cannot be fragmented */
9830 			if (pd->jumbolen != 0) {
9831 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
9832 				REASON_SET(reason, PFRES_FRAG);
9833 				return (PF_DROP);
9834 			}
9835 			if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
9836 			    NULL, reason, AF_INET6)) {
9837 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
9838 				return (PF_DROP);
9839 			}
9840 			pd->fragoff = pd->off;
9841 			/* stop walking over non initial fragments */
9842 			if (htons((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0)
9843 				return (PF_PASS);
9844 			pd->off += sizeof(frag);
9845 			pd->proto = frag.ip6f_nxt;
9846 			break;
9847 		case IPPROTO_ROUTING:
9848 			if (rthdr_cnt++) {
9849 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
9850 				REASON_SET(reason, PFRES_IPOPTIONS);
9851 				return (PF_DROP);
9852 			}
9853 			/* fragments may be short */
9854 			if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
9855 				pd->off = pd->fragoff;
9856 				pd->proto = IPPROTO_FRAGMENT;
9857 				return (PF_PASS);
9858 			}
9859 			if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
9860 			    NULL, reason, AF_INET6)) {
9861 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
9862 				return (PF_DROP);
9863 			}
9864 			if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
9865 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
9866 				REASON_SET(reason, PFRES_IPOPTIONS);
9867 				return (PF_DROP);
9868 			}
9869 			/* FALLTHROUGH */
9870 		case IPPROTO_AH:
9871 		case IPPROTO_HOPOPTS:
9872 		case IPPROTO_DSTOPTS:
9873 			if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9874 			    NULL, reason, AF_INET6)) {
9875 				DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
9876 				return (PF_DROP);
9877 			}
9878 			/* fragments may be short */
9879 			if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
9880 				pd->off = pd->fragoff;
9881 				pd->proto = IPPROTO_FRAGMENT;
9882 				return (PF_PASS);
9883 			}
9884 			/* reassembly needs the ext header before the frag */
9885 			if (pd->fragoff == 0)
9886 				pd->extoff = pd->off;
9887 			if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) {
9888 				if (pf_walk_option6(pd, h,
9889 				    pd->off + sizeof(ext),
9890 				    pd->off + (ext.ip6e_len + 1) * 8, reason)
9891 				    != PF_PASS)
9892 					return (PF_DROP);
9893 				if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
9894 					DPFPRINTF(PF_DEBUG_MISC,
9895 					    ("IPv6 missing jumbo"));
9896 					REASON_SET(reason, PFRES_IPOPTIONS);
9897 					return (PF_DROP);
9898 				}
9899 			}
9900 			if (pd->proto == IPPROTO_AH)
9901 				pd->off += (ext.ip6e_len + 2) * 4;
9902 			else
9903 				pd->off += (ext.ip6e_len + 1) * 8;
9904 			pd->proto = ext.ip6e_nxt;
9905 			break;
9906 		case IPPROTO_TCP:
9907 		case IPPROTO_UDP:
9908 		case IPPROTO_SCTP:
9909 		case IPPROTO_ICMPV6:
9910 			/* fragments may be short, ignore inner header then */
9911 			if (pd->fragoff != 0 && end < pd->off +
9912 			    (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
9913 			    pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
9914 			    pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
9915 			    sizeof(struct icmp6_hdr))) {
9916 				pd->off = pd->fragoff;
9917 				pd->proto = IPPROTO_FRAGMENT;
9918 			}
9919 			/* FALLTHROUGH */
9920 		default:
9921 			return (PF_PASS);
9922 		}
9923 	}
9924 }
9925 #endif
9926 
9927 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)9928 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
9929 {
9930 	memset(pd, 0, sizeof(*pd));
9931 	pd->pf_mtag = pf_find_mtag(m);
9932 	pd->m = m;
9933 }
9934 
9935 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)9936 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
9937     u_short *action, u_short *reason, struct pfi_kkif *kif,
9938     struct pf_rule_actions *default_actions)
9939 {
9940 	pd->dir = dir;
9941 	pd->kif = kif;
9942 	pd->m = *m0;
9943 	pd->sidx = (dir == PF_IN) ? 0 : 1;
9944 	pd->didx = (dir == PF_IN) ? 1 : 0;
9945 	pd->af = pd->naf = af;
9946 
9947 	TAILQ_INIT(&pd->sctp_multihome_jobs);
9948 	if (default_actions != NULL)
9949 		memcpy(&pd->act, default_actions, sizeof(pd->act));
9950 
9951 	if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
9952 		pd->act.dnpipe = pd->pf_mtag->dnpipe;
9953 		pd->act.flags = pd->pf_mtag->dnflags;
9954 	}
9955 
9956 	switch (af) {
9957 #ifdef INET
9958 	case AF_INET: {
9959 		struct ip *h;
9960 
9961 		if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
9962 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
9963 			DPFPRINTF(PF_DEBUG_URGENT,
9964 			    ("pf_test: m_len < sizeof(struct ip), pullup failed\n"));
9965 			*action = PF_DROP;
9966 			REASON_SET(reason, PFRES_SHORT);
9967 			return (-1);
9968 		}
9969 
9970 		if (pf_normalize_ip(reason, pd) != PF_PASS) {
9971 			/* We do IP header normalization and packet reassembly here */
9972 			*m0 = pd->m;
9973 			*action = PF_DROP;
9974 			return (-1);
9975 		}
9976 		*m0 = pd->m;
9977 
9978 		h = mtod(pd->m, struct ip *);
9979 		pd->off = h->ip_hl << 2;
9980 		if (pd->off < (int)sizeof(*h)) {
9981 			*action = PF_DROP;
9982 			REASON_SET(reason, PFRES_SHORT);
9983 			return (-1);
9984 		}
9985 		pd->src = (struct pf_addr *)&h->ip_src;
9986 		pd->dst = (struct pf_addr *)&h->ip_dst;
9987 		pd->ip_sum = &h->ip_sum;
9988 		pd->virtual_proto = pd->proto = h->ip_p;
9989 		pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
9990 		pd->ttl = h->ip_ttl;
9991 		pd->tot_len = ntohs(h->ip_len);
9992 		pd->act.rtableid = -1;
9993 
9994 		if (h->ip_hl > 5)	/* has options */
9995 			pd->badopts++;
9996 
9997 		if (h->ip_off & htons(IP_MF | IP_OFFMASK))
9998 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
9999 
10000 		break;
10001 	}
10002 #endif
10003 #ifdef INET6
10004 	case AF_INET6: {
10005 		struct ip6_hdr *h;
10006 
10007 		if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10008 		    (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10009 			DPFPRINTF(PF_DEBUG_URGENT,
10010 			    ("pf_test6: m_len < sizeof(struct ip6_hdr)"
10011 			     ", pullup failed\n"));
10012 			*action = PF_DROP;
10013 			REASON_SET(reason, PFRES_SHORT);
10014 			return (-1);
10015 		}
10016 
10017 		h = mtod(pd->m, struct ip6_hdr *);
10018 		pd->off = 0;
10019 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10020 			*action = PF_DROP;
10021 			return (-1);
10022 		}
10023 
10024 		h = mtod(pd->m, struct ip6_hdr *);
10025 		pd->src = (struct pf_addr *)&h->ip6_src;
10026 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10027 		pd->ip_sum = NULL;
10028 		pd->tos = IPV6_DSCP(h);
10029 		pd->ttl = h->ip6_hlim;
10030 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10031 		pd->virtual_proto = pd->proto = h->ip6_nxt;
10032 		pd->act.rtableid = -1;
10033 
10034 		if (pd->fragoff != 0)
10035 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
10036 
10037 		/*
10038 		 * we do not support jumbogram.  if we keep going, zero ip6_plen
10039 		 * will do something bad, so drop the packet for now.
10040 		 */
10041 		if (htons(h->ip6_plen) == 0) {
10042 			*action = PF_DROP;
10043 			return (-1);
10044 		}
10045 
10046 		/* We do IP header normalization and packet reassembly here */
10047 		if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10048 		    PF_PASS) {
10049 			*m0 = pd->m;
10050 			*action = PF_DROP;
10051 			return (-1);
10052 		}
10053 		*m0 = pd->m;
10054 		if (pd->m == NULL) {
10055 			/* packet sits in reassembly queue, no error */
10056 			*action = PF_PASS;
10057 			return (-1);
10058 		}
10059 
10060 		/* Update pointers into the packet. */
10061 		h = mtod(pd->m, struct ip6_hdr *);
10062 		pd->src = (struct pf_addr *)&h->ip6_src;
10063 		pd->dst = (struct pf_addr *)&h->ip6_dst;
10064 
10065 		pd->off = 0;
10066 
10067 		if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10068 			*action = PF_DROP;
10069 			return (-1);
10070 		}
10071 
10072 		if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10073 			/*
10074 			 * Reassembly may have changed the next protocol from
10075 			 * fragment to something else, so update.
10076 			 */
10077 			pd->virtual_proto = pd->proto;
10078 			MPASS(pd->fragoff == 0);
10079 		}
10080 
10081 		if (pd->fragoff != 0)
10082 			pd->virtual_proto = PF_VPROTO_FRAGMENT;
10083 
10084 		break;
10085 	}
10086 #endif
10087 	default:
10088 		panic("pf_setup_pdesc called with illegal af %u", af);
10089 	}
10090 
10091 	switch (pd->virtual_proto) {
10092 	case IPPROTO_TCP: {
10093 		struct tcphdr *th = &pd->hdr.tcp;
10094 
10095 		if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
10096 			reason, af)) {
10097 			*action = PF_DROP;
10098 			REASON_SET(reason, PFRES_SHORT);
10099 			return (-1);
10100 		}
10101 		pd->hdrlen = sizeof(*th);
10102 		pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10103 		pd->sport = &th->th_sport;
10104 		pd->dport = &th->th_dport;
10105 		break;
10106 	}
10107 	case IPPROTO_UDP: {
10108 		struct udphdr *uh = &pd->hdr.udp;
10109 
10110 		if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10111 			reason, af)) {
10112 			*action = PF_DROP;
10113 			REASON_SET(reason, PFRES_SHORT);
10114 			return (-1);
10115 		}
10116 		pd->hdrlen = sizeof(*uh);
10117 		if (uh->uh_dport == 0 ||
10118 		    ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10119 		    ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10120 			*action = PF_DROP;
10121 			REASON_SET(reason, PFRES_SHORT);
10122 			return (-1);
10123 		}
10124 		pd->sport = &uh->uh_sport;
10125 		pd->dport = &uh->uh_dport;
10126 		break;
10127 	}
10128 	case IPPROTO_SCTP: {
10129 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10130 		    action, reason, af)) {
10131 			*action = PF_DROP;
10132 			REASON_SET(reason, PFRES_SHORT);
10133 			return (-1);
10134 		}
10135 		pd->hdrlen = sizeof(pd->hdr.sctp);
10136 		pd->p_len = pd->tot_len - pd->off;
10137 
10138 		pd->sport = &pd->hdr.sctp.src_port;
10139 		pd->dport = &pd->hdr.sctp.dest_port;
10140 		if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10141 			*action = PF_DROP;
10142 			REASON_SET(reason, PFRES_SHORT);
10143 			return (-1);
10144 		}
10145 		if (pf_scan_sctp(pd) != PF_PASS) {
10146 			*action = PF_DROP;
10147 			REASON_SET(reason, PFRES_SHORT);
10148 			return (-1);
10149 		}
10150 		break;
10151 	}
10152 	case IPPROTO_ICMP: {
10153 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10154 			action, reason, af)) {
10155 			*action = PF_DROP;
10156 			REASON_SET(reason, PFRES_SHORT);
10157 			return (-1);
10158 		}
10159 		pd->hdrlen = ICMP_MINLEN;
10160 		break;
10161 	}
10162 #ifdef INET6
10163 	case IPPROTO_ICMPV6: {
10164 		size_t icmp_hlen = sizeof(struct icmp6_hdr);
10165 
10166 		if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10167 			action, reason, af)) {
10168 			*action = PF_DROP;
10169 			REASON_SET(reason, PFRES_SHORT);
10170 			return (-1);
10171 		}
10172 		/* ICMP headers we look further into to match state */
10173 		switch (pd->hdr.icmp6.icmp6_type) {
10174 		case MLD_LISTENER_QUERY:
10175 		case MLD_LISTENER_REPORT:
10176 			icmp_hlen = sizeof(struct mld_hdr);
10177 			break;
10178 		case ND_NEIGHBOR_SOLICIT:
10179 		case ND_NEIGHBOR_ADVERT:
10180 			icmp_hlen = sizeof(struct nd_neighbor_solicit);
10181 			break;
10182 		}
10183 		if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10184 		    !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10185 			action, reason, af)) {
10186 			*action = PF_DROP;
10187 			REASON_SET(reason, PFRES_SHORT);
10188 			return (-1);
10189 		}
10190 		pd->hdrlen = icmp_hlen;
10191 		break;
10192 	}
10193 #endif
10194 	}
10195 	return (0);
10196 }
10197 
10198 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10199 pf_counters_inc(int action, struct pf_pdesc *pd,
10200     struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10201 {
10202 	struct pf_krule		*tr;
10203 	int			 dir = pd->dir;
10204 	int			 dirndx;
10205 
10206 	pf_counter_u64_critical_enter();
10207 	pf_counter_u64_add_protected(
10208 	    &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10209 	    pd->tot_len);
10210 	pf_counter_u64_add_protected(
10211 	    &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10212 	    1);
10213 
10214 	if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10215 		dirndx = (dir == PF_OUT);
10216 		pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10217 		pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10218 		pf_update_timestamp(r);
10219 
10220 		if (a != NULL) {
10221 			pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10222 			pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10223 		}
10224 		if (s != NULL) {
10225 			struct pf_krule_item	*ri;
10226 
10227 			if (s->nat_rule != NULL) {
10228 				pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10229 				    1);
10230 				pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10231 				    pd->tot_len);
10232 			}
10233 			if (s->src_node != NULL) {
10234 				counter_u64_add(s->src_node->packets[dirndx],
10235 				    1);
10236 				counter_u64_add(s->src_node->bytes[dirndx],
10237 				    pd->tot_len);
10238 			}
10239 			if (s->nat_src_node != NULL) {
10240 				counter_u64_add(s->nat_src_node->packets[dirndx],
10241 				    1);
10242 				counter_u64_add(s->nat_src_node->bytes[dirndx],
10243 				    pd->tot_len);
10244 			}
10245 			dirndx = (dir == s->direction) ? 0 : 1;
10246 			s->packets[dirndx]++;
10247 			s->bytes[dirndx] += pd->tot_len;
10248 
10249 			SLIST_FOREACH(ri, &s->match_rules, entry) {
10250 				pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10251 				pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10252 			}
10253 		}
10254 
10255 		tr = r;
10256 		if (s != NULL && s->nat_rule != NULL &&
10257 		    r == &V_pf_default_rule)
10258 			tr = s->nat_rule;
10259 
10260 		if (tr->src.addr.type == PF_ADDR_TABLE)
10261 			pfr_update_stats(tr->src.addr.p.tbl,
10262 			    (s == NULL) ? pd->src :
10263 			    &s->key[(s->direction == PF_IN)]->
10264 				addr[(s->direction == PF_OUT)],
10265 			    pd->af, pd->tot_len, dir == PF_OUT,
10266 			    r->action == PF_PASS, tr->src.neg);
10267 		if (tr->dst.addr.type == PF_ADDR_TABLE)
10268 			pfr_update_stats(tr->dst.addr.p.tbl,
10269 			    (s == NULL) ? pd->dst :
10270 			    &s->key[(s->direction == PF_IN)]->
10271 				addr[(s->direction == PF_IN)],
10272 			    pd->af, pd->tot_len, dir == PF_OUT,
10273 			    r->action == PF_PASS, tr->dst.neg);
10274 	}
10275 	pf_counter_u64_critical_exit();
10276 }
10277 
10278 #if defined(INET) || defined(INET6)
10279 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10280 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10281     struct inpcb *inp, struct pf_rule_actions *default_actions)
10282 {
10283 	struct pfi_kkif		*kif;
10284 	u_short			 action, reason = 0;
10285 	struct m_tag		*mtag;
10286 	struct pf_krule		*a = NULL, *r = &V_pf_default_rule;
10287 	struct pf_kstate	*s = NULL;
10288 	struct pf_kruleset	*ruleset = NULL;
10289 	struct pf_pdesc		 pd;
10290 	int			 use_2nd_queue = 0;
10291 	uint16_t		 tag;
10292 
10293 	PF_RULES_RLOCK_TRACKER;
10294 	KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10295 	M_ASSERTPKTHDR(*m0);
10296 
10297 	if (!V_pf_status.running)
10298 		return (PF_PASS);
10299 
10300 	PF_RULES_RLOCK();
10301 
10302 	kif = (struct pfi_kkif *)ifp->if_pf_kif;
10303 
10304 	if (__predict_false(kif == NULL)) {
10305 		DPFPRINTF(PF_DEBUG_URGENT,
10306 		    ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
10307 		PF_RULES_RUNLOCK();
10308 		return (PF_DROP);
10309 	}
10310 	if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10311 		PF_RULES_RUNLOCK();
10312 		return (PF_PASS);
10313 	}
10314 
10315 	if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10316 		PF_RULES_RUNLOCK();
10317 		return (PF_PASS);
10318 	}
10319 
10320 #ifdef INET6
10321 	/*
10322 	 * If we end up changing IP addresses (e.g. binat) the stack may get
10323 	 * confused and fail to send the icmp6 packet too big error. Just send
10324 	 * it here, before we do any NAT.
10325 	 */
10326 	if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10327 	    IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10328 		PF_RULES_RUNLOCK();
10329 		icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10330 		*m0 = NULL;
10331 		return (PF_DROP);
10332 	}
10333 #endif
10334 
10335 	if (__predict_false(! M_WRITABLE(*m0))) {
10336 		*m0 = m_unshare(*m0, M_NOWAIT);
10337 		if (*m0 == NULL) {
10338 			PF_RULES_RUNLOCK();
10339 			return (PF_DROP);
10340 		}
10341 	}
10342 
10343 	pf_init_pdesc(&pd, *m0);
10344 
10345 	if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10346 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10347 
10348 		ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10349 		    pd.pf_mtag->if_idxgen);
10350 		if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10351 			PF_RULES_RUNLOCK();
10352 			m_freem(*m0);
10353 			*m0 = NULL;
10354 			return (PF_PASS);
10355 		}
10356 		PF_RULES_RUNLOCK();
10357 		(ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10358 		*m0 = NULL;
10359 		return (PF_PASS);
10360 	}
10361 
10362 	if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10363 	    pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10364 		/* Dummynet re-injects packets after they've
10365 		 * completed their delay. We've already
10366 		 * processed them, so pass unconditionally. */
10367 
10368 		/* But only once. We may see the packet multiple times (e.g.
10369 		 * PFIL_IN/PFIL_OUT). */
10370 		pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10371 		PF_RULES_RUNLOCK();
10372 
10373 		return (PF_PASS);
10374 	}
10375 
10376 	if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10377 		kif, default_actions) == -1) {
10378 		if (action != PF_PASS)
10379 			pd.act.log |= PF_LOG_FORCE;
10380 		goto done;
10381 	}
10382 
10383 	if (__predict_false(ip_divert_ptr != NULL) &&
10384 	    ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10385 		struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10386 		if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10387 		    (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10388 			if (pd.pf_mtag == NULL &&
10389 			    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10390 				action = PF_DROP;
10391 				goto done;
10392 			}
10393 			pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10394 		}
10395 		if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10396 			pd.m->m_flags |= M_FASTFWD_OURS;
10397 			pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10398 		}
10399 		m_tag_delete(pd.m, mtag);
10400 
10401 		mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10402 		if (mtag != NULL)
10403 			m_tag_delete(pd.m, mtag);
10404 	}
10405 
10406 	switch (pd.virtual_proto) {
10407 	case PF_VPROTO_FRAGMENT:
10408 		/*
10409 		 * handle fragments that aren't reassembled by
10410 		 * normalization
10411 		 */
10412 		if (kif == NULL || r == NULL) /* pflog */
10413 			action = PF_DROP;
10414 		else
10415 			action = pf_test_rule(&r, &s, &pd, &a,
10416 			    &ruleset, inp);
10417 		if (action != PF_PASS)
10418 			REASON_SET(&reason, PFRES_FRAG);
10419 		break;
10420 
10421 	case IPPROTO_TCP: {
10422 		/* Respond to SYN with a syncookie. */
10423 		if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10424 		    pd.dir == PF_IN && pf_synflood_check(&pd)) {
10425 			pf_syncookie_send(&pd);
10426 			action = PF_DROP;
10427 			break;
10428 		}
10429 
10430 		if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10431 			use_2nd_queue = 1;
10432 		action = pf_normalize_tcp(&pd);
10433 		if (action == PF_DROP)
10434 			goto done;
10435 		action = pf_test_state_tcp(&s, &pd, &reason);
10436 		if (action == PF_PASS || action == PF_AFRT) {
10437 			if (V_pfsync_update_state_ptr != NULL)
10438 				V_pfsync_update_state_ptr(s);
10439 			r = s->rule;
10440 			a = s->anchor;
10441 		} else if (s == NULL) {
10442 			/* Validate remote SYN|ACK, re-create original SYN if
10443 			 * valid. */
10444 			if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10445 			    TH_ACK && pf_syncookie_validate(&pd) &&
10446 			    pd.dir == PF_IN) {
10447 				struct mbuf *msyn;
10448 
10449 				msyn = pf_syncookie_recreate_syn(&pd);
10450 				if (msyn == NULL) {
10451 					action = PF_DROP;
10452 					break;
10453 				}
10454 
10455 				action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10456 				    &pd.act);
10457 				m_freem(msyn);
10458 				if (action != PF_PASS)
10459 					break;
10460 
10461 				action = pf_test_state_tcp(&s, &pd, &reason);
10462 				if (action != PF_PASS || s == NULL) {
10463 					action = PF_DROP;
10464 					break;
10465 				}
10466 
10467 				s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10468 				s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10469 				pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10470 				action = pf_synproxy(&pd, &s, &reason);
10471 				break;
10472 			} else {
10473 				action = pf_test_rule(&r, &s, &pd,
10474 				    &a, &ruleset, inp);
10475 			}
10476 		}
10477 		break;
10478 	}
10479 
10480 	case IPPROTO_UDP: {
10481 		action = pf_test_state_udp(&s, &pd);
10482 		if (action == PF_PASS || action == PF_AFRT) {
10483 			if (V_pfsync_update_state_ptr != NULL)
10484 				V_pfsync_update_state_ptr(s);
10485 			r = s->rule;
10486 			a = s->anchor;
10487 		} else if (s == NULL)
10488 			action = pf_test_rule(&r, &s, &pd,
10489 			    &a, &ruleset, inp);
10490 		break;
10491 	}
10492 
10493 	case IPPROTO_SCTP: {
10494 		action = pf_normalize_sctp(&pd);
10495 		if (action == PF_DROP)
10496 			goto done;
10497 		action = pf_test_state_sctp(&s, &pd, &reason);
10498 		if (action == PF_PASS || action == PF_AFRT) {
10499 			if (V_pfsync_update_state_ptr != NULL)
10500 				V_pfsync_update_state_ptr(s);
10501 			r = s->rule;
10502 			a = s->anchor;
10503 		} else if (s == NULL) {
10504 			action = pf_test_rule(&r, &s,
10505 			    &pd, &a, &ruleset, inp);
10506 		}
10507 		break;
10508 	}
10509 
10510 	case IPPROTO_ICMP:
10511 	case IPPROTO_ICMPV6: {
10512 		if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10513 			action = PF_DROP;
10514 			REASON_SET(&reason, PFRES_NORM);
10515 			DPFPRINTF(PF_DEBUG_MISC,
10516 			    ("dropping IPv6 packet with ICMPv4 payload"));
10517 			goto done;
10518 		}
10519 		if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10520 			action = PF_DROP;
10521 			REASON_SET(&reason, PFRES_NORM);
10522 			DPFPRINTF(PF_DEBUG_MISC,
10523 			    ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
10524 			goto done;
10525 		}
10526 		action = pf_test_state_icmp(&s, &pd, &reason);
10527 		if (action == PF_PASS || action == PF_AFRT) {
10528 			if (V_pfsync_update_state_ptr != NULL)
10529 				V_pfsync_update_state_ptr(s);
10530 			r = s->rule;
10531 			a = s->anchor;
10532 		} else if (s == NULL)
10533 			action = pf_test_rule(&r, &s, &pd,
10534 			    &a, &ruleset, inp);
10535 		break;
10536 	}
10537 
10538 	default:
10539 		action = pf_test_state_other(&s, &pd);
10540 		if (action == PF_PASS || action == PF_AFRT) {
10541 			if (V_pfsync_update_state_ptr != NULL)
10542 				V_pfsync_update_state_ptr(s);
10543 			r = s->rule;
10544 			a = s->anchor;
10545 		} else if (s == NULL)
10546 			action = pf_test_rule(&r, &s, &pd,
10547 			    &a, &ruleset, inp);
10548 		break;
10549 	}
10550 
10551 done:
10552 	PF_RULES_RUNLOCK();
10553 
10554 	if (pd.m == NULL)
10555 		goto eat_pkt;
10556 
10557 	if (action == PF_PASS && pd.badopts &&
10558 	    !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
10559 		action = PF_DROP;
10560 		REASON_SET(&reason, PFRES_IPOPTIONS);
10561 		pd.act.log = PF_LOG_FORCE;
10562 		DPFPRINTF(PF_DEBUG_MISC,
10563 		    ("pf: dropping packet with dangerous headers\n"));
10564 	}
10565 
10566 	if (s) {
10567 		uint8_t log = pd.act.log;
10568 		memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
10569 		pd.act.log |= log;
10570 		tag = s->tag;
10571 	} else {
10572 		tag = r->tag;
10573 	}
10574 
10575 	if (tag > 0 && pf_tag_packet(&pd, tag)) {
10576 		action = PF_DROP;
10577 		REASON_SET(&reason, PFRES_MEMORY);
10578 	}
10579 
10580 	pf_scrub(&pd);
10581 	if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
10582 		pf_normalize_mss(&pd);
10583 
10584 	if (pd.act.rtableid >= 0)
10585 		M_SETFIB(pd.m, pd.act.rtableid);
10586 
10587 	if (pd.act.flags & PFSTATE_SETPRIO) {
10588 		if (pd.tos & IPTOS_LOWDELAY)
10589 			use_2nd_queue = 1;
10590 		if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
10591 			action = PF_DROP;
10592 			REASON_SET(&reason, PFRES_MEMORY);
10593 			pd.act.log = PF_LOG_FORCE;
10594 			DPFPRINTF(PF_DEBUG_MISC,
10595 			    ("pf: failed to allocate 802.1q mtag\n"));
10596 		}
10597 	}
10598 
10599 #ifdef ALTQ
10600 	if (action == PF_PASS && pd.act.qid) {
10601 		if (pd.pf_mtag == NULL &&
10602 		    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10603 			action = PF_DROP;
10604 			REASON_SET(&reason, PFRES_MEMORY);
10605 		} else {
10606 			if (s != NULL)
10607 				pd.pf_mtag->qid_hash = pf_state_hash(s);
10608 			if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
10609 				pd.pf_mtag->qid = pd.act.pqid;
10610 			else
10611 				pd.pf_mtag->qid = pd.act.qid;
10612 			/* Add hints for ecn. */
10613 			pd.pf_mtag->hdr = mtod(pd.m, void *);
10614 		}
10615 	}
10616 #endif /* ALTQ */
10617 
10618 	/*
10619 	 * connections redirected to loopback should not match sockets
10620 	 * bound specifically to loopback due to security implications,
10621 	 * see tcp_input() and in_pcblookup_listen().
10622 	 */
10623 	if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
10624 	    pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
10625 	    (s->nat_rule->action == PF_RDR ||
10626 	    s->nat_rule->action == PF_BINAT) &&
10627 	    pf_is_loopback(af, pd.dst))
10628 		pd.m->m_flags |= M_SKIP_FIREWALL;
10629 
10630 	if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
10631 	    action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
10632 		mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
10633 		    sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
10634 		if (mtag != NULL) {
10635 			((struct pf_divert_mtag *)(mtag+1))->port =
10636 			    ntohs(r->divert.port);
10637 			((struct pf_divert_mtag *)(mtag+1))->idir =
10638 			    (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
10639 			    PF_DIVERT_MTAG_DIR_OUT;
10640 
10641 			if (s)
10642 				PF_STATE_UNLOCK(s);
10643 
10644 			m_tag_prepend(pd.m, mtag);
10645 			if (pd.m->m_flags & M_FASTFWD_OURS) {
10646 				if (pd.pf_mtag == NULL &&
10647 				    ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10648 					action = PF_DROP;
10649 					REASON_SET(&reason, PFRES_MEMORY);
10650 					pd.act.log = PF_LOG_FORCE;
10651 					DPFPRINTF(PF_DEBUG_MISC,
10652 					    ("pf: failed to allocate tag\n"));
10653 				} else {
10654 					pd.pf_mtag->flags |=
10655 					    PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10656 					pd.m->m_flags &= ~M_FASTFWD_OURS;
10657 				}
10658 			}
10659 			ip_divert_ptr(*m0, dir == PF_IN);
10660 			*m0 = NULL;
10661 
10662 			return (action);
10663 		} else {
10664 			/* XXX: ipfw has the same behaviour! */
10665 			action = PF_DROP;
10666 			REASON_SET(&reason, PFRES_MEMORY);
10667 			pd.act.log = PF_LOG_FORCE;
10668 			DPFPRINTF(PF_DEBUG_MISC,
10669 			    ("pf: failed to allocate divert tag\n"));
10670 		}
10671 	}
10672 	/* XXX: Anybody working on it?! */
10673 	if (af == AF_INET6 && r->divert.port)
10674 		printf("pf: divert(9) is not supported for IPv6\n");
10675 
10676 	/* this flag will need revising if the pkt is forwarded */
10677 	if (pd.pf_mtag)
10678 		pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
10679 
10680 	if (pd.act.log) {
10681 		struct pf_krule		*lr;
10682 		struct pf_krule_item	*ri;
10683 
10684 		if (s != NULL && s->nat_rule != NULL &&
10685 		    s->nat_rule->log & PF_LOG_ALL)
10686 			lr = s->nat_rule;
10687 		else
10688 			lr = r;
10689 
10690 		if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
10691 			PFLOG_PACKET(action, reason, lr, a,
10692 			    ruleset, &pd, (s == NULL));
10693 		if (s) {
10694 			SLIST_FOREACH(ri, &s->match_rules, entry)
10695 				if (ri->r->log & PF_LOG_ALL)
10696 					PFLOG_PACKET(action,
10697 					    reason, ri->r, a, ruleset, &pd, 0);
10698 		}
10699 	}
10700 
10701 	pf_counters_inc(action, &pd, s, r, a);
10702 
10703 	switch (action) {
10704 	case PF_SYNPROXY_DROP:
10705 		m_freem(*m0);
10706 	case PF_DEFER:
10707 		*m0 = NULL;
10708 		action = PF_PASS;
10709 		break;
10710 	case PF_DROP:
10711 		m_freem(*m0);
10712 		*m0 = NULL;
10713 		break;
10714 	case PF_AFRT:
10715 		if (pf_translate_af(&pd)) {
10716 			if (!pd.m)
10717 				*m0 = NULL;
10718 			action = PF_DROP;
10719 			break;
10720 		}
10721 		*m0 = pd.m; /* pf_translate_af may change pd.m */
10722 #ifdef INET
10723 		if (pd.naf == AF_INET)
10724 			pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
10725 #endif
10726 #ifdef INET6
10727 		if (pd.naf == AF_INET6)
10728 			pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
10729 #endif
10730 		*m0 = NULL;
10731 		action = PF_PASS;
10732 		goto out;
10733 		break;
10734 	default:
10735 		if (pd.act.rt) {
10736 			switch (af) {
10737 #ifdef INET
10738 			case AF_INET:
10739 				/* pf_route() returns unlocked. */
10740 				pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
10741 				break;
10742 #endif
10743 #ifdef INET6
10744 			case AF_INET6:
10745 				/* pf_route6() returns unlocked. */
10746 				pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
10747 				break;
10748 #endif
10749 			}
10750 			goto out;
10751 		}
10752 		if (pf_dummynet(&pd, s, r, m0) != 0) {
10753 			action = PF_DROP;
10754 			REASON_SET(&reason, PFRES_MEMORY);
10755 		}
10756 		break;
10757 	}
10758 
10759 eat_pkt:
10760 	SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
10761 
10762 	if (s && action != PF_DROP) {
10763 		if (!s->if_index_in && dir == PF_IN)
10764 			s->if_index_in = ifp->if_index;
10765 		else if (!s->if_index_out && dir == PF_OUT)
10766 			s->if_index_out = ifp->if_index;
10767 	}
10768 
10769 	if (s)
10770 		PF_STATE_UNLOCK(s);
10771 
10772 out:
10773 #ifdef INET6
10774 	/* If reassembled packet passed, create new fragments. */
10775 	if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
10776 	    (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
10777 	    (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
10778 		action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
10779 #endif
10780 
10781 	pf_sctp_multihome_delayed(&pd, kif, s, action);
10782 
10783 	return (action);
10784 }
10785 #endif /* INET || INET6 */
10786