1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64
65 #include <crypto/sha2/sha512.h>
66
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116
117 #include <netipsec/ah.h>
118
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121
122 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
123
124 SDT_PROVIDER_DEFINE(pf);
125 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
126 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
127 "struct pf_kstate *");
128 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
129 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
130 "struct pf_kstate *");
131 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
132 "struct pfi_kkif *");
133 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
135 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
136 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
137 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
138 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
139 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
140 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
141 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
142 "struct pf_krule *", "struct mbuf *", "int");
143 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
144 "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
146 "struct pf_kstate *", "struct pf_sctp_source *");
147 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
148 "int", "struct pf_pdesc *", "int");
149 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
151 "int");
152 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
153 "int");
154
155 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
156 "struct mbuf *");
157 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
158 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
159 "int", "struct pf_keth_rule *", "char *");
160 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
162 "int", "struct pf_keth_rule *");
163 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
164
165 /*
166 * Global variables
167 */
168
169 /* state tables */
170 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
171 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]);
172 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
173 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
174 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
175 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
176 VNET_DEFINE(struct pf_kstatus, pf_status);
177
178 VNET_DEFINE(u_int32_t, ticket_altqs_active);
179 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
180 VNET_DEFINE(int, altqs_inactive_open);
181 VNET_DEFINE(u_int32_t, ticket_pabuf);
182
183 static const int PF_HDR_LIMIT = 20; /* arbitrary limit */
184
185 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx);
186 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
187 VNET_DEFINE(u_char, pf_tcp_secret[16]);
188 #define V_pf_tcp_secret VNET(pf_tcp_secret)
189 VNET_DEFINE(int, pf_tcp_secret_init);
190 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
191 VNET_DEFINE(int, pf_tcp_iss_off);
192 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
193 VNET_DECLARE(int, pf_vnet_active);
194 #define V_pf_vnet_active VNET(pf_vnet_active)
195
196 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
197 #define V_pf_purge_idx VNET(pf_purge_idx)
198
199 #ifdef PF_WANT_32_TO_64_COUNTER
200 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
201 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
202
203 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
204 VNET_DEFINE(size_t, pf_allrulecount);
205 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
206 #endif
207
208 #define PF_SCTP_MAX_ENDPOINTS 8
209
210 struct pf_sctp_endpoint;
211 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
212 struct pf_sctp_source {
213 sa_family_t af;
214 struct pf_addr addr;
215 TAILQ_ENTRY(pf_sctp_source) entry;
216 };
217 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
218 struct pf_sctp_endpoint
219 {
220 uint32_t v_tag;
221 struct pf_sctp_sources sources;
222 RB_ENTRY(pf_sctp_endpoint) entry;
223 };
224 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)225 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
226 {
227 return (a->v_tag - b->v_tag);
228 }
229 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
231 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
232 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
233 static struct mtx_padalign pf_sctp_endpoints_mtx;
234 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
235 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
236 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
237
238 /*
239 * Queue for pf_intr() sends.
240 */
241 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
242 struct pf_send_entry {
243 STAILQ_ENTRY(pf_send_entry) pfse_next;
244 struct mbuf *pfse_m;
245 enum {
246 PFSE_IP,
247 PFSE_IP6,
248 PFSE_ICMP,
249 PFSE_ICMP6,
250 } pfse_type;
251 struct {
252 int type;
253 int code;
254 int mtu;
255 } icmpopts;
256 };
257
258 STAILQ_HEAD(pf_send_head, pf_send_entry);
259 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
260 #define V_pf_sendqueue VNET(pf_sendqueue)
261
262 static struct mtx_padalign pf_sendqueue_mtx;
263 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
264 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
265 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
266
267 /*
268 * Queue for pf_overload_task() tasks.
269 */
270 struct pf_overload_entry {
271 SLIST_ENTRY(pf_overload_entry) next;
272 struct pf_addr addr;
273 sa_family_t af;
274 uint8_t dir;
275 struct pf_krule *rule;
276 };
277
278 SLIST_HEAD(pf_overload_head, pf_overload_entry);
279 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
280 #define V_pf_overloadqueue VNET(pf_overloadqueue)
281 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
282 #define V_pf_overloadtask VNET(pf_overloadtask)
283
284 static struct mtx_padalign pf_overloadqueue_mtx;
285 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
286 "pf overload/flush queue", MTX_DEF);
287 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
288 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
289
290 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
291 struct mtx_padalign pf_unlnkdrules_mtx;
292 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
293 MTX_DEF);
294
295 struct sx pf_config_lock;
296 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
297
298 struct mtx_padalign pf_table_stats_lock;
299 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
300 MTX_DEF);
301
302 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
303 #define V_pf_sources_z VNET(pf_sources_z)
304 uma_zone_t pf_mtag_z;
305 VNET_DEFINE(uma_zone_t, pf_state_z);
306 VNET_DEFINE(uma_zone_t, pf_state_key_z);
307 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
308
309 VNET_DEFINE(struct unrhdr64, pf_stateid);
310
311 static void pf_src_tree_remove_state(struct pf_kstate *);
312 static int pf_check_threshold(struct pf_kthreshold *);
313
314 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
315 struct pf_addr *, u_int16_t);
316 static int pf_modulate_sack(struct pf_pdesc *,
317 struct tcphdr *, struct pf_state_peer *);
318 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
319 u_int16_t *, u_int16_t *);
320 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
321 struct pf_addr *, struct pf_addr *, u_int16_t,
322 u_int16_t *, u_int16_t *, u_int16_t *,
323 u_int16_t *, u_int8_t, sa_family_t);
324 int pf_change_icmp_af(struct mbuf *, int,
325 struct pf_pdesc *, struct pf_pdesc *,
326 struct pf_addr *, struct pf_addr *, sa_family_t,
327 sa_family_t);
328 int pf_translate_icmp_af(int, void *);
329 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
330 int, sa_family_t, struct pf_krule *, int);
331 static void pf_detach_state(struct pf_kstate *);
332 static int pf_state_key_attach(struct pf_state_key *,
333 struct pf_state_key *, struct pf_kstate *);
334 static void pf_state_key_detach(struct pf_kstate *, int);
335 static int pf_state_key_ctor(void *, int, void *, int);
336 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
337 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
338 struct pf_mtag *pf_mtag);
339 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
340 struct pf_krule *, struct mbuf **);
341 static int pf_dummynet_route(struct pf_pdesc *,
342 struct pf_kstate *, struct pf_krule *,
343 struct ifnet *, const struct sockaddr *, struct mbuf **);
344 static int pf_test_eth_rule(int, struct pfi_kkif *,
345 struct mbuf **);
346 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
347 struct pf_pdesc *, struct pf_krule **,
348 struct pf_kruleset **, u_short *, struct inpcb *);
349 static int pf_create_state(struct pf_krule *,
350 struct pf_test_ctx *,
351 struct pf_kstate **, u_int16_t, u_int16_t);
352 static int pf_state_key_addr_setup(struct pf_pdesc *,
353 struct pf_state_key_cmp *, int);
354 static int pf_tcp_track_full(struct pf_kstate *,
355 struct pf_pdesc *, u_short *, int *,
356 struct pf_state_peer *, struct pf_state_peer *,
357 u_int8_t, u_int8_t);
358 static int pf_tcp_track_sloppy(struct pf_kstate *,
359 struct pf_pdesc *, u_short *,
360 struct pf_state_peer *, struct pf_state_peer *,
361 u_int8_t, u_int8_t);
362 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *,
363 u_short *);
364 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
365 struct pf_pdesc *, struct pf_kstate **,
366 u_int16_t, u_int16_t, int, int *, int, int);
367 static int pf_test_state_icmp(struct pf_kstate **,
368 struct pf_pdesc *, u_short *);
369 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
370 u_short *);
371 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
372 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
373 struct pfi_kkif *, struct pf_kstate *, int);
374 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
375 int, u_int16_t);
376 static int pf_check_proto_cksum(struct mbuf *, int, int,
377 u_int8_t, sa_family_t);
378 static int pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
379 #ifdef INET6
380 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
381 int, int, u_short *);
382 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
383 u_short *);
384 #endif
385 static void pf_print_state_parts(struct pf_kstate *,
386 struct pf_state_key *, struct pf_state_key *);
387 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
388 bool);
389 static struct pf_kstate *pf_find_state(struct pfi_kkif *,
390 const struct pf_state_key_cmp *, u_int);
391 static bool pf_src_connlimit(struct pf_kstate *);
392 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
393 static void pf_counters_inc(int, struct pf_pdesc *,
394 struct pf_kstate *, struct pf_krule *,
395 struct pf_krule *);
396 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *,
397 struct pf_krule *, struct pf_kruleset *,
398 struct pf_krule_slist *);
399 static void pf_overload_task(void *v, int pending);
400 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
401 struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
402 struct pf_addr *, sa_family_t, struct pf_addr *,
403 struct pfi_kkif *, pf_sn_types_t);
404 static u_int pf_purge_expired_states(u_int, int);
405 static void pf_purge_unlinked_rules(void);
406 static int pf_mtag_uminit(void *, int, int);
407 static void pf_mtag_free(struct m_tag *);
408 static void pf_packet_rework_nat(struct pf_pdesc *, int,
409 struct pf_state_key *);
410 #ifdef INET
411 static void pf_route(struct pf_krule *,
412 struct ifnet *, struct pf_kstate *,
413 struct pf_pdesc *, struct inpcb *);
414 #endif /* INET */
415 #ifdef INET6
416 static void pf_change_a6(struct pf_addr *, u_int16_t *,
417 struct pf_addr *, u_int8_t);
418 static void pf_route6(struct pf_krule *,
419 struct ifnet *, struct pf_kstate *,
420 struct pf_pdesc *, struct inpcb *);
421 #endif /* INET6 */
422 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
423
424 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
425
426 extern int pf_end_threads;
427 extern struct proc *pf_purge_proc;
428
429 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
430
431 #define PACKET_UNDO_NAT(_pd, _off, _s) \
432 do { \
433 struct pf_state_key *nk; \
434 if ((pd->dir) == PF_OUT) \
435 nk = (_s)->key[PF_SK_STACK]; \
436 else \
437 nk = (_s)->key[PF_SK_WIRE]; \
438 pf_packet_rework_nat(_pd, _off, nk); \
439 } while (0)
440
441 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
442 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
443
444 #define STATE_LOOKUP(k, s, pd) \
445 do { \
446 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \
447 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \
448 if ((s) == NULL) \
449 return (PF_DROP); \
450 if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) { \
451 if (pf_check_threshold(&(s)->rule->pktrate)) { \
452 s = NULL; \
453 return (PF_DROP); \
454 } \
455 } \
456 if (PACKET_LOOPED(pd)) \
457 return (PF_PASS); \
458 } while (0)
459
460 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)461 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
462 {
463 struct pfi_kkif *k = pd->kif;
464
465 SDT_PROBE2(pf, ip, , bound_iface, st, k);
466
467 /* Floating unless otherwise specified. */
468 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
469 return (V_pfi_all);
470
471 /*
472 * Initially set to all, because we don't know what interface we'll be
473 * sending this out when we create the state.
474 */
475 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
476 return (V_pfi_all);
477
478 /*
479 * If this state is created based on another state (e.g. SCTP
480 * multihome) always set it floating initially. We can't know for sure
481 * what interface the actual traffic for this state will come in on.
482 */
483 if (pd->related_rule)
484 return (V_pfi_all);
485
486 /* Don't overrule the interface for states created on incoming packets. */
487 if (st->direction == PF_IN)
488 return (k);
489
490 /* No route-to, so don't overrule. */
491 if (st->act.rt != PF_ROUTETO)
492 return (k);
493
494 /* Bind to the route-to interface. */
495 return (st->act.rt_kif);
496 }
497
498 #define STATE_INC_COUNTERS(s) \
499 do { \
500 struct pf_krule_item *mrm; \
501 counter_u64_add(s->rule->states_cur, 1); \
502 counter_u64_add(s->rule->states_tot, 1); \
503 if (s->anchor != NULL) { \
504 counter_u64_add(s->anchor->states_cur, 1); \
505 counter_u64_add(s->anchor->states_tot, 1); \
506 } \
507 if (s->nat_rule != NULL) { \
508 counter_u64_add(s->nat_rule->states_cur, 1);\
509 counter_u64_add(s->nat_rule->states_tot, 1);\
510 } \
511 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
512 counter_u64_add(mrm->r->states_cur, 1); \
513 counter_u64_add(mrm->r->states_tot, 1); \
514 } \
515 } while (0)
516
517 #define STATE_DEC_COUNTERS(s) \
518 do { \
519 struct pf_krule_item *mrm; \
520 if (s->nat_rule != NULL) \
521 counter_u64_add(s->nat_rule->states_cur, -1);\
522 if (s->anchor != NULL) \
523 counter_u64_add(s->anchor->states_cur, -1); \
524 counter_u64_add(s->rule->states_cur, -1); \
525 SLIST_FOREACH(mrm, &s->match_rules, entry) \
526 counter_u64_add(mrm->r->states_cur, -1); \
527 } while (0)
528
529 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
530 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
531 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
532 VNET_DEFINE(struct pf_idhash *, pf_idhash);
533 VNET_DEFINE(struct pf_srchash *, pf_srchash);
534 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
535 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
536
537 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
538 "pf(4)");
539
540 VNET_DEFINE(u_long, pf_hashmask);
541 VNET_DEFINE(u_long, pf_srchashmask);
542 VNET_DEFINE(u_long, pf_udpendpointhashmask);
543 VNET_DEFINE_STATIC(u_long, pf_hashsize);
544 #define V_pf_hashsize VNET(pf_hashsize)
545 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
546 #define V_pf_srchashsize VNET(pf_srchashsize)
547 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
548 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
549 u_long pf_ioctl_maxcount = 65535;
550
551 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
552 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
553 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
554 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
555 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
556 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
557 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
558 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
559
560 VNET_DEFINE(void *, pf_swi_cookie);
561 VNET_DEFINE(struct intr_event *, pf_swi_ie);
562
563 VNET_DEFINE(uint32_t, pf_hashseed);
564 #define V_pf_hashseed VNET(pf_hashseed)
565
566 static void
pf_sctp_checksum(struct mbuf * m,int off)567 pf_sctp_checksum(struct mbuf *m, int off)
568 {
569 uint32_t sum = 0;
570
571 /* Zero out the checksum, to enable recalculation. */
572 m_copyback(m, off + offsetof(struct sctphdr, checksum),
573 sizeof(sum), (caddr_t)&sum);
574
575 sum = sctp_calculate_cksum(m, off);
576
577 m_copyback(m, off + offsetof(struct sctphdr, checksum),
578 sizeof(sum), (caddr_t)&sum);
579 }
580
581 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)582 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
583 {
584
585 switch (af) {
586 #ifdef INET
587 case AF_INET:
588 if (a->addr32[0] > b->addr32[0])
589 return (1);
590 if (a->addr32[0] < b->addr32[0])
591 return (-1);
592 break;
593 #endif /* INET */
594 #ifdef INET6
595 case AF_INET6:
596 if (a->addr32[3] > b->addr32[3])
597 return (1);
598 if (a->addr32[3] < b->addr32[3])
599 return (-1);
600 if (a->addr32[2] > b->addr32[2])
601 return (1);
602 if (a->addr32[2] < b->addr32[2])
603 return (-1);
604 if (a->addr32[1] > b->addr32[1])
605 return (1);
606 if (a->addr32[1] < b->addr32[1])
607 return (-1);
608 if (a->addr32[0] > b->addr32[0])
609 return (1);
610 if (a->addr32[0] < b->addr32[0])
611 return (-1);
612 break;
613 #endif /* INET6 */
614 default:
615 unhandled_af(af);
616 }
617 return (0);
618 }
619
620 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)621 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
622 {
623 switch (af) {
624 #ifdef INET
625 case AF_INET:
626 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
627 #endif /* INET */
628 case AF_INET6:
629 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
630 default:
631 unhandled_af(af);
632 }
633 }
634
635 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)636 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
637 {
638
639 switch (pd->proto) {
640 case IPPROTO_TCP: {
641 struct tcphdr *th = &pd->hdr.tcp;
642
643 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
644 pf_change_ap(pd, pd->src, &th->th_sport,
645 &nk->addr[pd->sidx], nk->port[pd->sidx]);
646 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
647 pf_change_ap(pd, pd->dst, &th->th_dport,
648 &nk->addr[pd->didx], nk->port[pd->didx]);
649 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
650 break;
651 }
652 case IPPROTO_UDP: {
653 struct udphdr *uh = &pd->hdr.udp;
654
655 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
656 pf_change_ap(pd, pd->src, &uh->uh_sport,
657 &nk->addr[pd->sidx], nk->port[pd->sidx]);
658 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
659 pf_change_ap(pd, pd->dst, &uh->uh_dport,
660 &nk->addr[pd->didx], nk->port[pd->didx]);
661 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
662 break;
663 }
664 case IPPROTO_SCTP: {
665 struct sctphdr *sh = &pd->hdr.sctp;
666
667 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
668 pf_change_ap(pd, pd->src, &sh->src_port,
669 &nk->addr[pd->sidx], nk->port[pd->sidx]);
670 }
671 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
672 pf_change_ap(pd, pd->dst, &sh->dest_port,
673 &nk->addr[pd->didx], nk->port[pd->didx]);
674 }
675
676 break;
677 }
678 case IPPROTO_ICMP: {
679 struct icmp *ih = &pd->hdr.icmp;
680
681 if (nk->port[pd->sidx] != ih->icmp_id) {
682 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
683 ih->icmp_cksum, ih->icmp_id,
684 nk->port[pd->sidx], 0);
685 ih->icmp_id = nk->port[pd->sidx];
686 pd->sport = &ih->icmp_id;
687
688 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
689 }
690 /* FALLTHROUGH */
691 }
692 default:
693 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
694 switch (pd->af) {
695 case AF_INET:
696 pf_change_a(&pd->src->v4.s_addr,
697 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
698 0);
699 break;
700 case AF_INET6:
701 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
702 break;
703 default:
704 unhandled_af(pd->af);
705 }
706 }
707 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
708 switch (pd->af) {
709 case AF_INET:
710 pf_change_a(&pd->dst->v4.s_addr,
711 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
712 0);
713 break;
714 case AF_INET6:
715 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
716 break;
717 default:
718 unhandled_af(pd->af);
719 }
720 }
721 break;
722 }
723 }
724
725 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)726 pf_hashkey(const struct pf_state_key *sk)
727 {
728 uint32_t h;
729
730 h = murmur3_32_hash32((const uint32_t *)sk,
731 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
732 V_pf_hashseed);
733
734 return (h & V_pf_hashmask);
735 }
736
737 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)738 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
739 {
740 uint32_t h;
741
742 switch (af) {
743 case AF_INET:
744 h = murmur3_32_hash32((uint32_t *)&addr->v4,
745 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
746 break;
747 case AF_INET6:
748 h = murmur3_32_hash32((uint32_t *)&addr->v6,
749 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
750 break;
751 default:
752 unhandled_af(af);
753 }
754
755 return (h & V_pf_srchashmask);
756 }
757
758 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)759 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
760 {
761 uint32_t h;
762
763 h = murmur3_32_hash32((uint32_t *)endpoint,
764 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
765 V_pf_hashseed);
766 return (h & V_pf_udpendpointhashmask);
767 }
768
769 #ifdef ALTQ
770 static int
pf_state_hash(struct pf_kstate * s)771 pf_state_hash(struct pf_kstate *s)
772 {
773 u_int32_t hv = (intptr_t)s / sizeof(*s);
774
775 hv ^= crc32(&s->src, sizeof(s->src));
776 hv ^= crc32(&s->dst, sizeof(s->dst));
777 if (hv == 0)
778 hv = 1;
779 return (hv);
780 }
781 #endif /* ALTQ */
782
783 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)784 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
785 {
786 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
787 s->dst.state = newstate;
788 if (which == PF_PEER_DST)
789 return;
790 if (s->src.state == newstate)
791 return;
792 if (s->creatorid == V_pf_status.hostid &&
793 s->key[PF_SK_STACK] != NULL &&
794 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
795 !(TCPS_HAVEESTABLISHED(s->src.state) ||
796 s->src.state == TCPS_CLOSED) &&
797 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
798 atomic_add_32(&V_pf_status.states_halfopen, -1);
799
800 s->src.state = newstate;
801 }
802
803 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)804 pf_init_threshold(struct pf_kthreshold *threshold,
805 u_int32_t limit, u_int32_t seconds)
806 {
807 threshold->limit = limit;
808 threshold->seconds = seconds;
809 threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
810
811 return (threshold->cr != NULL);
812 }
813
814 static int
pf_check_threshold(struct pf_kthreshold * threshold)815 pf_check_threshold(struct pf_kthreshold *threshold)
816 {
817 return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
818 }
819
820 static bool
pf_src_connlimit(struct pf_kstate * state)821 pf_src_connlimit(struct pf_kstate *state)
822 {
823 struct pf_overload_entry *pfoe;
824 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT];
825 bool limited = false;
826
827 PF_STATE_LOCK_ASSERT(state);
828 PF_SRC_NODE_LOCK(src_node);
829
830 src_node->conn++;
831 state->src.tcp_est = 1;
832
833 if (state->rule->max_src_conn &&
834 state->rule->max_src_conn <
835 src_node->conn) {
836 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
837 limited = true;
838 }
839
840 if (state->rule->max_src_conn_rate.limit &&
841 pf_check_threshold(&src_node->conn_rate)) {
842 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
843 limited = true;
844 }
845
846 if (!limited)
847 goto done;
848
849 /* Kill this state. */
850 state->timeout = PFTM_PURGE;
851 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
852
853 if (state->rule->overload_tbl == NULL)
854 goto done;
855
856 /* Schedule overloading and flushing task. */
857 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
858 if (pfoe == NULL)
859 goto done; /* too bad :( */
860
861 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
862 pfoe->af = state->key[PF_SK_WIRE]->af;
863 pfoe->rule = state->rule;
864 pfoe->dir = state->direction;
865 PF_OVERLOADQ_LOCK();
866 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
867 PF_OVERLOADQ_UNLOCK();
868 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
869
870 done:
871 PF_SRC_NODE_UNLOCK(src_node);
872 return (limited);
873 }
874
875 static void
pf_overload_task(void * v,int pending)876 pf_overload_task(void *v, int pending)
877 {
878 struct pf_overload_head queue;
879 struct pfr_addr p;
880 struct pf_overload_entry *pfoe, *pfoe1;
881 uint32_t killed = 0;
882
883 CURVNET_SET((struct vnet *)v);
884
885 PF_OVERLOADQ_LOCK();
886 queue = V_pf_overloadqueue;
887 SLIST_INIT(&V_pf_overloadqueue);
888 PF_OVERLOADQ_UNLOCK();
889
890 bzero(&p, sizeof(p));
891 SLIST_FOREACH(pfoe, &queue, next) {
892 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
893 if (V_pf_status.debug >= PF_DEBUG_MISC) {
894 printf("%s: blocking address ", __func__);
895 pf_print_host(&pfoe->addr, 0, pfoe->af);
896 printf("\n");
897 }
898
899 p.pfra_af = pfoe->af;
900 switch (pfoe->af) {
901 #ifdef INET
902 case AF_INET:
903 p.pfra_net = 32;
904 p.pfra_ip4addr = pfoe->addr.v4;
905 break;
906 #endif /* INET */
907 #ifdef INET6
908 case AF_INET6:
909 p.pfra_net = 128;
910 p.pfra_ip6addr = pfoe->addr.v6;
911 break;
912 #endif /* INET6 */
913 default:
914 unhandled_af(pfoe->af);
915 }
916
917 PF_RULES_WLOCK();
918 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
919 PF_RULES_WUNLOCK();
920 }
921
922 /*
923 * Remove those entries, that don't need flushing.
924 */
925 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
926 if (pfoe->rule->flush == 0) {
927 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
928 free(pfoe, M_PFTEMP);
929 } else
930 counter_u64_add(
931 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
932
933 /* If nothing to flush, return. */
934 if (SLIST_EMPTY(&queue)) {
935 CURVNET_RESTORE();
936 return;
937 }
938
939 for (int i = 0; i <= V_pf_hashmask; i++) {
940 struct pf_idhash *ih = &V_pf_idhash[i];
941 struct pf_state_key *sk;
942 struct pf_kstate *s;
943
944 PF_HASHROW_LOCK(ih);
945 LIST_FOREACH(s, &ih->states, entry) {
946 sk = s->key[PF_SK_WIRE];
947 SLIST_FOREACH(pfoe, &queue, next)
948 if (sk->af == pfoe->af &&
949 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
950 pfoe->rule == s->rule) &&
951 ((pfoe->dir == PF_OUT &&
952 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
953 (pfoe->dir == PF_IN &&
954 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
955 s->timeout = PFTM_PURGE;
956 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
957 killed++;
958 }
959 }
960 PF_HASHROW_UNLOCK(ih);
961 }
962 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
963 free(pfoe, M_PFTEMP);
964 if (V_pf_status.debug >= PF_DEBUG_MISC)
965 printf("%s: %u states killed", __func__, killed);
966
967 CURVNET_RESTORE();
968 }
969
970 /*
971 * On node found always returns locked. On not found its configurable.
972 */
973 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)974 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
975 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
976 {
977 struct pf_ksrc_node *n;
978
979 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
980
981 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
982 PF_HASHROW_LOCK(*sh);
983 LIST_FOREACH(n, &(*sh)->nodes, entry)
984 if (n->rule == rule && n->af == af && n->type == sn_type &&
985 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
986 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
987 break;
988
989 if (n == NULL && !returnlocked)
990 PF_HASHROW_UNLOCK(*sh);
991
992 return (n);
993 }
994
995 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)996 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
997 {
998 struct pf_ksrc_node *cur;
999
1000 if ((*sn) == NULL)
1001 return (false);
1002
1003 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
1004
1005 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
1006 PF_HASHROW_LOCK(sh);
1007 LIST_FOREACH(cur, &(sh->nodes), entry) {
1008 if (cur == (*sn) &&
1009 cur->expire != 1) /* Ignore nodes being killed */
1010 return (true);
1011 }
1012 PF_HASHROW_UNLOCK(sh);
1013 (*sn) = NULL;
1014 return (false);
1015 }
1016
1017 static void
pf_free_src_node(struct pf_ksrc_node * sn)1018 pf_free_src_node(struct pf_ksrc_node *sn)
1019 {
1020
1021 for (int i = 0; i < 2; i++) {
1022 counter_u64_free(sn->bytes[i]);
1023 counter_u64_free(sn->packets[i]);
1024 }
1025 counter_rate_free(sn->conn_rate.cr);
1026 uma_zfree(V_pf_sources_z, sn);
1027 }
1028
1029 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,pf_sn_types_t sn_type)1030 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1031 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1032 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1033 struct pfi_kkif *rkif, pf_sn_types_t sn_type)
1034 {
1035 u_short reason = 0;
1036 struct pf_krule *r_track = rule;
1037 struct pf_ksrc_node **sn = &(sns[sn_type]);
1038 struct pf_srchash **sh = &(snhs[sn_type]);
1039
1040 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1041 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1042
1043 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1044 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1045
1046 /*
1047 * XXX: There could be a KASSERT for
1048 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1049 * but we'd need to pass pool *only* for this KASSERT.
1050 */
1051
1052 if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1053 !(rule->rule_flag & PFRULE_RULESRCTRACK))
1054 r_track = &V_pf_default_rule;
1055
1056 /*
1057 * Request the sh to always be locked, as we might insert a new sn.
1058 */
1059 if (*sn == NULL)
1060 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1061
1062 if (*sn == NULL) {
1063 PF_HASHROW_ASSERT(*sh);
1064
1065 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1066 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1067 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1068 reason = PFRES_SRCLIMIT;
1069 goto done;
1070 }
1071
1072 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1073 if ((*sn) == NULL) {
1074 reason = PFRES_MEMORY;
1075 goto done;
1076 }
1077
1078 for (int i = 0; i < 2; i++) {
1079 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1080 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1081
1082 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1083 pf_free_src_node(*sn);
1084 reason = PFRES_MEMORY;
1085 goto done;
1086 }
1087 }
1088
1089 if (sn_type == PF_SN_LIMIT)
1090 if (! pf_init_threshold(&(*sn)->conn_rate,
1091 rule->max_src_conn_rate.limit,
1092 rule->max_src_conn_rate.seconds)) {
1093 pf_free_src_node(*sn);
1094 reason = PFRES_MEMORY;
1095 goto done;
1096 }
1097
1098 MPASS((*sn)->lock == NULL);
1099 (*sn)->lock = &(*sh)->lock;
1100
1101 (*sn)->af = af;
1102 (*sn)->rule = r_track;
1103 PF_ACPY(&(*sn)->addr, src, af);
1104 if (raddr != NULL)
1105 PF_ACPY(&(*sn)->raddr, raddr, af);
1106 (*sn)->rkif = rkif;
1107 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1108 (*sn)->creation = time_uptime;
1109 (*sn)->ruletype = rule->action;
1110 (*sn)->type = sn_type;
1111 counter_u64_add(r_track->src_nodes[sn_type], 1);
1112 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1113 } else {
1114 if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1115 (*sn)->states >= rule->max_src_states) {
1116 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1117 1);
1118 reason = PFRES_SRCLIMIT;
1119 goto done;
1120 }
1121 }
1122 done:
1123 if (reason == 0)
1124 (*sn)->states++;
1125 else
1126 (*sn) = NULL;
1127
1128 PF_HASHROW_UNLOCK(*sh);
1129 return (reason);
1130 }
1131
1132 void
pf_unlink_src_node(struct pf_ksrc_node * src)1133 pf_unlink_src_node(struct pf_ksrc_node *src)
1134 {
1135 PF_SRC_NODE_LOCK_ASSERT(src);
1136
1137 LIST_REMOVE(src, entry);
1138 if (src->rule)
1139 counter_u64_add(src->rule->src_nodes[src->type], -1);
1140 }
1141
1142 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1143 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1144 {
1145 struct pf_ksrc_node *sn, *tmp;
1146 u_int count = 0;
1147
1148 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1149 pf_free_src_node(sn);
1150 count++;
1151 }
1152
1153 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1154
1155 return (count);
1156 }
1157
1158 void
pf_mtag_initialize(void)1159 pf_mtag_initialize(void)
1160 {
1161
1162 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1163 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1164 UMA_ALIGN_PTR, 0);
1165 }
1166
1167 /* Per-vnet data storage structures initialization. */
1168 void
pf_initialize(void)1169 pf_initialize(void)
1170 {
1171 struct pf_keyhash *kh;
1172 struct pf_idhash *ih;
1173 struct pf_srchash *sh;
1174 struct pf_udpendpointhash *uh;
1175 u_int i;
1176
1177 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1178 V_pf_hashsize = PF_HASHSIZ;
1179 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1180 V_pf_srchashsize = PF_SRCHASHSIZ;
1181 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1182 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1183
1184 V_pf_hashseed = arc4random();
1185
1186 /* States and state keys storage. */
1187 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1188 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1189 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1190 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1191 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1192
1193 V_pf_state_key_z = uma_zcreate("pf state keys",
1194 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1195 UMA_ALIGN_PTR, 0);
1196
1197 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1198 M_PFHASH, M_NOWAIT | M_ZERO);
1199 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1200 M_PFHASH, M_NOWAIT | M_ZERO);
1201 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1202 printf("pf: Unable to allocate memory for "
1203 "state_hashsize %lu.\n", V_pf_hashsize);
1204
1205 free(V_pf_keyhash, M_PFHASH);
1206 free(V_pf_idhash, M_PFHASH);
1207
1208 V_pf_hashsize = PF_HASHSIZ;
1209 V_pf_keyhash = mallocarray(V_pf_hashsize,
1210 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1211 V_pf_idhash = mallocarray(V_pf_hashsize,
1212 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1213 }
1214
1215 V_pf_hashmask = V_pf_hashsize - 1;
1216 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1217 i++, kh++, ih++) {
1218 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1219 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1220 }
1221
1222 /* Source nodes. */
1223 V_pf_sources_z = uma_zcreate("pf source nodes",
1224 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1225 0);
1226 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1227 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1228 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1229
1230 V_pf_srchash = mallocarray(V_pf_srchashsize,
1231 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1232 if (V_pf_srchash == NULL) {
1233 printf("pf: Unable to allocate memory for "
1234 "source_hashsize %lu.\n", V_pf_srchashsize);
1235
1236 V_pf_srchashsize = PF_SRCHASHSIZ;
1237 V_pf_srchash = mallocarray(V_pf_srchashsize,
1238 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1239 }
1240
1241 V_pf_srchashmask = V_pf_srchashsize - 1;
1242 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1243 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1244
1245
1246 /* UDP endpoint mappings. */
1247 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1248 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1249 UMA_ALIGN_PTR, 0);
1250 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1251 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1252 if (V_pf_udpendpointhash == NULL) {
1253 printf("pf: Unable to allocate memory for "
1254 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1255
1256 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1257 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1258 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1259 }
1260
1261 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1262 for (i = 0, uh = V_pf_udpendpointhash;
1263 i <= V_pf_udpendpointhashmask;
1264 i++, uh++) {
1265 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1266 MTX_DEF | MTX_DUPOK);
1267 }
1268
1269 /* ALTQ */
1270 TAILQ_INIT(&V_pf_altqs[0]);
1271 TAILQ_INIT(&V_pf_altqs[1]);
1272 TAILQ_INIT(&V_pf_altqs[2]);
1273 TAILQ_INIT(&V_pf_altqs[3]);
1274 TAILQ_INIT(&V_pf_pabuf[0]);
1275 TAILQ_INIT(&V_pf_pabuf[1]);
1276 TAILQ_INIT(&V_pf_pabuf[2]);
1277 V_pf_altqs_active = &V_pf_altqs[0];
1278 V_pf_altq_ifs_active = &V_pf_altqs[1];
1279 V_pf_altqs_inactive = &V_pf_altqs[2];
1280 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1281
1282 /* Send & overload+flush queues. */
1283 STAILQ_INIT(&V_pf_sendqueue);
1284 SLIST_INIT(&V_pf_overloadqueue);
1285 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1286
1287 /* Unlinked, but may be referenced rules. */
1288 TAILQ_INIT(&V_pf_unlinked_rules);
1289 }
1290
1291 void
pf_mtag_cleanup(void)1292 pf_mtag_cleanup(void)
1293 {
1294
1295 uma_zdestroy(pf_mtag_z);
1296 }
1297
1298 void
pf_cleanup(void)1299 pf_cleanup(void)
1300 {
1301 struct pf_keyhash *kh;
1302 struct pf_idhash *ih;
1303 struct pf_srchash *sh;
1304 struct pf_udpendpointhash *uh;
1305 struct pf_send_entry *pfse, *next;
1306 u_int i;
1307
1308 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1309 i <= V_pf_hashmask;
1310 i++, kh++, ih++) {
1311 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1312 __func__));
1313 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1314 __func__));
1315 mtx_destroy(&kh->lock);
1316 mtx_destroy(&ih->lock);
1317 }
1318 free(V_pf_keyhash, M_PFHASH);
1319 free(V_pf_idhash, M_PFHASH);
1320
1321 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1322 KASSERT(LIST_EMPTY(&sh->nodes),
1323 ("%s: source node hash not empty", __func__));
1324 mtx_destroy(&sh->lock);
1325 }
1326 free(V_pf_srchash, M_PFHASH);
1327
1328 for (i = 0, uh = V_pf_udpendpointhash;
1329 i <= V_pf_udpendpointhashmask;
1330 i++, uh++) {
1331 KASSERT(LIST_EMPTY(&uh->endpoints),
1332 ("%s: udp endpoint hash not empty", __func__));
1333 mtx_destroy(&uh->lock);
1334 }
1335 free(V_pf_udpendpointhash, M_PFHASH);
1336
1337 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1338 m_freem(pfse->pfse_m);
1339 free(pfse, M_PFTEMP);
1340 }
1341 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1342
1343 uma_zdestroy(V_pf_sources_z);
1344 uma_zdestroy(V_pf_state_z);
1345 uma_zdestroy(V_pf_state_key_z);
1346 uma_zdestroy(V_pf_udp_mapping_z);
1347 }
1348
1349 static int
pf_mtag_uminit(void * mem,int size,int how)1350 pf_mtag_uminit(void *mem, int size, int how)
1351 {
1352 struct m_tag *t;
1353
1354 t = (struct m_tag *)mem;
1355 t->m_tag_cookie = MTAG_ABI_COMPAT;
1356 t->m_tag_id = PACKET_TAG_PF;
1357 t->m_tag_len = sizeof(struct pf_mtag);
1358 t->m_tag_free = pf_mtag_free;
1359
1360 return (0);
1361 }
1362
1363 static void
pf_mtag_free(struct m_tag * t)1364 pf_mtag_free(struct m_tag *t)
1365 {
1366
1367 uma_zfree(pf_mtag_z, t);
1368 }
1369
1370 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1371 pf_get_mtag(struct mbuf *m)
1372 {
1373 struct m_tag *mtag;
1374
1375 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1376 return ((struct pf_mtag *)(mtag + 1));
1377
1378 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1379 if (mtag == NULL)
1380 return (NULL);
1381 bzero(mtag + 1, sizeof(struct pf_mtag));
1382 m_tag_prepend(m, mtag);
1383
1384 return ((struct pf_mtag *)(mtag + 1));
1385 }
1386
1387 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1388 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1389 struct pf_kstate *s)
1390 {
1391 struct pf_keyhash *khs, *khw, *kh;
1392 struct pf_state_key *sk, *cur;
1393 struct pf_kstate *si, *olds = NULL;
1394 int idx;
1395
1396 NET_EPOCH_ASSERT();
1397 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1398 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1399 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1400
1401 /*
1402 * We need to lock hash slots of both keys. To avoid deadlock
1403 * we always lock the slot with lower address first. Unlock order
1404 * isn't important.
1405 *
1406 * We also need to lock ID hash slot before dropping key
1407 * locks. On success we return with ID hash slot locked.
1408 */
1409
1410 if (skw == sks) {
1411 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1412 PF_HASHROW_LOCK(khs);
1413 } else {
1414 khs = &V_pf_keyhash[pf_hashkey(sks)];
1415 khw = &V_pf_keyhash[pf_hashkey(skw)];
1416 if (khs == khw) {
1417 PF_HASHROW_LOCK(khs);
1418 } else if (khs < khw) {
1419 PF_HASHROW_LOCK(khs);
1420 PF_HASHROW_LOCK(khw);
1421 } else {
1422 PF_HASHROW_LOCK(khw);
1423 PF_HASHROW_LOCK(khs);
1424 }
1425 }
1426
1427 #define KEYS_UNLOCK() do { \
1428 if (khs != khw) { \
1429 PF_HASHROW_UNLOCK(khs); \
1430 PF_HASHROW_UNLOCK(khw); \
1431 } else \
1432 PF_HASHROW_UNLOCK(khs); \
1433 } while (0)
1434
1435 /*
1436 * First run: start with wire key.
1437 */
1438 sk = skw;
1439 kh = khw;
1440 idx = PF_SK_WIRE;
1441
1442 MPASS(s->lock == NULL);
1443 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1444
1445 keyattach:
1446 LIST_FOREACH(cur, &kh->keys, entry)
1447 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1448 break;
1449
1450 if (cur != NULL) {
1451 /* Key exists. Check for same kif, if none, add to key. */
1452 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1453 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1454
1455 PF_HASHROW_LOCK(ih);
1456 if (si->kif == s->kif &&
1457 ((si->key[PF_SK_WIRE]->af == sk->af &&
1458 si->direction == s->direction) ||
1459 (si->key[PF_SK_WIRE]->af !=
1460 si->key[PF_SK_STACK]->af &&
1461 sk->af == si->key[PF_SK_STACK]->af &&
1462 si->direction != s->direction))) {
1463 bool reuse = false;
1464
1465 if (sk->proto == IPPROTO_TCP &&
1466 si->src.state >= TCPS_FIN_WAIT_2 &&
1467 si->dst.state >= TCPS_FIN_WAIT_2)
1468 reuse = true;
1469
1470 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1471 printf("pf: %s key attach "
1472 "%s on %s: ",
1473 (idx == PF_SK_WIRE) ?
1474 "wire" : "stack",
1475 reuse ? "reuse" : "failed",
1476 s->kif->pfik_name);
1477 pf_print_state_parts(s,
1478 (idx == PF_SK_WIRE) ?
1479 sk : NULL,
1480 (idx == PF_SK_STACK) ?
1481 sk : NULL);
1482 printf(", existing: ");
1483 pf_print_state_parts(si,
1484 (idx == PF_SK_WIRE) ?
1485 sk : NULL,
1486 (idx == PF_SK_STACK) ?
1487 sk : NULL);
1488 printf("\n");
1489 }
1490
1491 if (reuse) {
1492 /*
1493 * New state matches an old >FIN_WAIT_2
1494 * state. We can't drop key hash locks,
1495 * thus we can't unlink it properly.
1496 *
1497 * As a workaround we drop it into
1498 * TCPS_CLOSED state, schedule purge
1499 * ASAP and push it into the very end
1500 * of the slot TAILQ, so that it won't
1501 * conflict with our new state.
1502 */
1503 pf_set_protostate(si, PF_PEER_BOTH,
1504 TCPS_CLOSED);
1505 si->timeout = PFTM_PURGE;
1506 olds = si;
1507 } else {
1508 s->timeout = PFTM_UNLINKED;
1509 if (idx == PF_SK_STACK)
1510 /*
1511 * Remove the wire key from
1512 * the hash. Other threads
1513 * can't be referencing it
1514 * because we still hold the
1515 * hash lock.
1516 */
1517 pf_state_key_detach(s,
1518 PF_SK_WIRE);
1519 PF_HASHROW_UNLOCK(ih);
1520 KEYS_UNLOCK();
1521 if (idx == PF_SK_WIRE)
1522 /*
1523 * We've not inserted either key.
1524 * Free both.
1525 */
1526 uma_zfree(V_pf_state_key_z, skw);
1527 if (skw != sks)
1528 uma_zfree(
1529 V_pf_state_key_z,
1530 sks);
1531 return (EEXIST); /* collision! */
1532 }
1533 }
1534 PF_HASHROW_UNLOCK(ih);
1535 }
1536 uma_zfree(V_pf_state_key_z, sk);
1537 s->key[idx] = cur;
1538 } else {
1539 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1540 s->key[idx] = sk;
1541 }
1542
1543 stateattach:
1544 /* List is sorted, if-bound states before floating. */
1545 if (s->kif == V_pfi_all)
1546 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1547 else
1548 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1549
1550 if (olds) {
1551 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1552 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1553 key_list[idx]);
1554 olds = NULL;
1555 }
1556
1557 /*
1558 * Attach done. See how should we (or should not?)
1559 * attach a second key.
1560 */
1561 if (sks == skw) {
1562 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1563 idx = PF_SK_STACK;
1564 sks = NULL;
1565 goto stateattach;
1566 } else if (sks != NULL) {
1567 /*
1568 * Continue attaching with stack key.
1569 */
1570 sk = sks;
1571 kh = khs;
1572 idx = PF_SK_STACK;
1573 sks = NULL;
1574 goto keyattach;
1575 }
1576
1577 PF_STATE_LOCK(s);
1578 KEYS_UNLOCK();
1579
1580 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1581 ("%s failure", __func__));
1582
1583 return (0);
1584 #undef KEYS_UNLOCK
1585 }
1586
1587 static void
pf_detach_state(struct pf_kstate * s)1588 pf_detach_state(struct pf_kstate *s)
1589 {
1590 struct pf_state_key *sks = s->key[PF_SK_STACK];
1591 struct pf_keyhash *kh;
1592
1593 NET_EPOCH_ASSERT();
1594 MPASS(s->timeout >= PFTM_MAX);
1595
1596 pf_sctp_multihome_detach_addr(s);
1597
1598 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1599 V_pflow_export_state_ptr(s);
1600
1601 if (sks != NULL) {
1602 kh = &V_pf_keyhash[pf_hashkey(sks)];
1603 PF_HASHROW_LOCK(kh);
1604 if (s->key[PF_SK_STACK] != NULL)
1605 pf_state_key_detach(s, PF_SK_STACK);
1606 /*
1607 * If both point to same key, then we are done.
1608 */
1609 if (sks == s->key[PF_SK_WIRE]) {
1610 pf_state_key_detach(s, PF_SK_WIRE);
1611 PF_HASHROW_UNLOCK(kh);
1612 return;
1613 }
1614 PF_HASHROW_UNLOCK(kh);
1615 }
1616
1617 if (s->key[PF_SK_WIRE] != NULL) {
1618 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1619 PF_HASHROW_LOCK(kh);
1620 if (s->key[PF_SK_WIRE] != NULL)
1621 pf_state_key_detach(s, PF_SK_WIRE);
1622 PF_HASHROW_UNLOCK(kh);
1623 }
1624 }
1625
1626 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1627 pf_state_key_detach(struct pf_kstate *s, int idx)
1628 {
1629 struct pf_state_key *sk = s->key[idx];
1630 #ifdef INVARIANTS
1631 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1632
1633 PF_HASHROW_ASSERT(kh);
1634 #endif /* INVARIANTS */
1635 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1636 s->key[idx] = NULL;
1637
1638 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1639 LIST_REMOVE(sk, entry);
1640 uma_zfree(V_pf_state_key_z, sk);
1641 }
1642 }
1643
1644 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1645 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1646 {
1647 struct pf_state_key *sk = mem;
1648
1649 bzero(sk, sizeof(struct pf_state_key_cmp));
1650 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1651 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1652
1653 return (0);
1654 }
1655
1656 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1657 pf_state_key_addr_setup(struct pf_pdesc *pd,
1658 struct pf_state_key_cmp *key, int multi)
1659 {
1660 struct pf_addr *saddr = pd->src;
1661 struct pf_addr *daddr = pd->dst;
1662 #ifdef INET6
1663 struct nd_neighbor_solicit nd;
1664 struct pf_addr *target;
1665 u_short action, reason;
1666
1667 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1668 goto copy;
1669
1670 switch (pd->hdr.icmp6.icmp6_type) {
1671 case ND_NEIGHBOR_SOLICIT:
1672 if (multi)
1673 return (-1);
1674 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1675 return (-1);
1676 target = (struct pf_addr *)&nd.nd_ns_target;
1677 daddr = target;
1678 break;
1679 case ND_NEIGHBOR_ADVERT:
1680 if (multi)
1681 return (-1);
1682 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1683 return (-1);
1684 target = (struct pf_addr *)&nd.nd_ns_target;
1685 saddr = target;
1686 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1687 key->addr[pd->didx].addr32[0] = 0;
1688 key->addr[pd->didx].addr32[1] = 0;
1689 key->addr[pd->didx].addr32[2] = 0;
1690 key->addr[pd->didx].addr32[3] = 0;
1691 daddr = NULL; /* overwritten */
1692 }
1693 break;
1694 default:
1695 if (multi) {
1696 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1697 key->addr[pd->sidx].addr32[1] = 0;
1698 key->addr[pd->sidx].addr32[2] = 0;
1699 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1700 saddr = NULL; /* overwritten */
1701 }
1702 }
1703 copy:
1704 #endif /* INET6 */
1705 if (saddr)
1706 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1707 if (daddr)
1708 PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1709
1710 return (0);
1711 }
1712
1713 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1714 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1715 struct pf_state_key **sk, struct pf_state_key **nk)
1716 {
1717 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1718 if (*sk == NULL)
1719 return (ENOMEM);
1720
1721 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1722 0)) {
1723 uma_zfree(V_pf_state_key_z, *sk);
1724 *sk = NULL;
1725 return (ENOMEM);
1726 }
1727
1728 (*sk)->port[pd->sidx] = sport;
1729 (*sk)->port[pd->didx] = dport;
1730 (*sk)->proto = pd->proto;
1731 (*sk)->af = pd->af;
1732
1733 *nk = pf_state_key_clone(*sk);
1734 if (*nk == NULL) {
1735 uma_zfree(V_pf_state_key_z, *sk);
1736 *sk = NULL;
1737 return (ENOMEM);
1738 }
1739
1740 if (pd->af != pd->naf) {
1741 (*sk)->port[pd->sidx] = pd->osport;
1742 (*sk)->port[pd->didx] = pd->odport;
1743
1744 (*nk)->af = pd->naf;
1745
1746 /*
1747 * We're overwriting an address here, so potentially there's bits of an IPv6
1748 * address left in here. Clear that out first.
1749 */
1750 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1751 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1752 if (pd->dir == PF_IN) {
1753 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf);
1754 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf);
1755 (*nk)->port[pd->didx] = pd->nsport;
1756 (*nk)->port[pd->sidx] = pd->ndport;
1757 } else {
1758 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->nsaddr, pd->naf);
1759 PF_ACPY(&(*nk)->addr[pd->didx], &pd->ndaddr, pd->naf);
1760 (*nk)->port[pd->sidx] = pd->nsport;
1761 (*nk)->port[pd->didx] = pd->ndport;
1762 }
1763
1764 switch (pd->proto) {
1765 case IPPROTO_ICMP:
1766 (*nk)->proto = IPPROTO_ICMPV6;
1767 break;
1768 case IPPROTO_ICMPV6:
1769 (*nk)->proto = IPPROTO_ICMP;
1770 break;
1771 default:
1772 (*nk)->proto = pd->proto;
1773 }
1774 }
1775
1776 return (0);
1777 }
1778
1779 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1780 pf_state_key_clone(const struct pf_state_key *orig)
1781 {
1782 struct pf_state_key *sk;
1783
1784 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1785 if (sk == NULL)
1786 return (NULL);
1787
1788 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1789
1790 return (sk);
1791 }
1792
1793 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1794 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1795 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1796 {
1797 struct pf_idhash *ih;
1798 struct pf_kstate *cur;
1799 int error;
1800
1801 NET_EPOCH_ASSERT();
1802
1803 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1804 ("%s: sks not pristine", __func__));
1805 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1806 ("%s: skw not pristine", __func__));
1807 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1808
1809 s->kif = kif;
1810 s->orig_kif = orig_kif;
1811
1812 if (s->id == 0 && s->creatorid == 0) {
1813 s->id = alloc_unr64(&V_pf_stateid);
1814 s->id = htobe64(s->id);
1815 s->creatorid = V_pf_status.hostid;
1816 }
1817
1818 /* Returns with ID locked on success. */
1819 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1820 return (error);
1821 skw = sks = NULL;
1822
1823 ih = &V_pf_idhash[PF_IDHASH(s)];
1824 PF_HASHROW_ASSERT(ih);
1825 LIST_FOREACH(cur, &ih->states, entry)
1826 if (cur->id == s->id && cur->creatorid == s->creatorid)
1827 break;
1828
1829 if (cur != NULL) {
1830 s->timeout = PFTM_UNLINKED;
1831 PF_HASHROW_UNLOCK(ih);
1832 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1833 printf("pf: state ID collision: "
1834 "id: %016llx creatorid: %08x\n",
1835 (unsigned long long)be64toh(s->id),
1836 ntohl(s->creatorid));
1837 }
1838 pf_detach_state(s);
1839 return (EEXIST);
1840 }
1841 LIST_INSERT_HEAD(&ih->states, s, entry);
1842 /* One for keys, one for ID hash. */
1843 refcount_init(&s->refs, 2);
1844
1845 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1846 if (V_pfsync_insert_state_ptr != NULL)
1847 V_pfsync_insert_state_ptr(s);
1848
1849 /* Returns locked. */
1850 return (0);
1851 }
1852
1853 /*
1854 * Find state by ID: returns with locked row on success.
1855 */
1856 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1857 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1858 {
1859 struct pf_idhash *ih;
1860 struct pf_kstate *s;
1861
1862 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1863
1864 ih = &V_pf_idhash[PF_IDHASHID(id)];
1865
1866 PF_HASHROW_LOCK(ih);
1867 LIST_FOREACH(s, &ih->states, entry)
1868 if (s->id == id && s->creatorid == creatorid)
1869 break;
1870
1871 if (s == NULL)
1872 PF_HASHROW_UNLOCK(ih);
1873
1874 return (s);
1875 }
1876
1877 /*
1878 * Find state by key.
1879 * Returns with ID hash slot locked on success.
1880 */
1881 static struct pf_kstate *
pf_find_state(struct pfi_kkif * kif,const struct pf_state_key_cmp * key,u_int dir)1882 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1883 u_int dir)
1884 {
1885 struct pf_keyhash *kh;
1886 struct pf_state_key *sk;
1887 struct pf_kstate *s;
1888 int idx;
1889
1890 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1891
1892 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1893
1894 PF_HASHROW_LOCK(kh);
1895 LIST_FOREACH(sk, &kh->keys, entry)
1896 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1897 break;
1898 if (sk == NULL) {
1899 PF_HASHROW_UNLOCK(kh);
1900 return (NULL);
1901 }
1902
1903 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1904
1905 /* List is sorted, if-bound states before floating ones. */
1906 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1907 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1908 PF_STATE_LOCK(s);
1909 PF_HASHROW_UNLOCK(kh);
1910 if (__predict_false(s->timeout >= PFTM_MAX)) {
1911 /*
1912 * State is either being processed by
1913 * pf_remove_state() in an other thread, or
1914 * is scheduled for immediate expiry.
1915 */
1916 PF_STATE_UNLOCK(s);
1917 return (NULL);
1918 }
1919 return (s);
1920 }
1921
1922 /* Look through the other list, in case of AF-TO */
1923 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1924 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1925 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1926 continue;
1927 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1928 PF_STATE_LOCK(s);
1929 PF_HASHROW_UNLOCK(kh);
1930 if (__predict_false(s->timeout >= PFTM_MAX)) {
1931 /*
1932 * State is either being processed by
1933 * pf_remove_state() in an other thread, or
1934 * is scheduled for immediate expiry.
1935 */
1936 PF_STATE_UNLOCK(s);
1937 return (NULL);
1938 }
1939 return (s);
1940 }
1941 }
1942
1943 PF_HASHROW_UNLOCK(kh);
1944
1945 return (NULL);
1946 }
1947
1948 /*
1949 * Returns with ID hash slot locked on success.
1950 */
1951 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1952 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1953 {
1954 struct pf_keyhash *kh;
1955 struct pf_state_key *sk;
1956 struct pf_kstate *s, *ret = NULL;
1957 int idx, inout = 0;
1958
1959 if (more != NULL)
1960 *more = 0;
1961
1962 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1963
1964 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1965
1966 PF_HASHROW_LOCK(kh);
1967 LIST_FOREACH(sk, &kh->keys, entry)
1968 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1969 break;
1970 if (sk == NULL) {
1971 PF_HASHROW_UNLOCK(kh);
1972 return (NULL);
1973 }
1974 switch (dir) {
1975 case PF_IN:
1976 idx = PF_SK_WIRE;
1977 break;
1978 case PF_OUT:
1979 idx = PF_SK_STACK;
1980 break;
1981 case PF_INOUT:
1982 idx = PF_SK_WIRE;
1983 inout = 1;
1984 break;
1985 default:
1986 panic("%s: dir %u", __func__, dir);
1987 }
1988 second_run:
1989 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1990 if (more == NULL) {
1991 PF_STATE_LOCK(s);
1992 PF_HASHROW_UNLOCK(kh);
1993 return (s);
1994 }
1995
1996 if (ret)
1997 (*more)++;
1998 else {
1999 ret = s;
2000 PF_STATE_LOCK(s);
2001 }
2002 }
2003 if (inout == 1) {
2004 inout = 0;
2005 idx = PF_SK_STACK;
2006 goto second_run;
2007 }
2008 PF_HASHROW_UNLOCK(kh);
2009
2010 return (ret);
2011 }
2012
2013 /*
2014 * FIXME
2015 * This routine is inefficient -- locks the state only to unlock immediately on
2016 * return.
2017 * It is racy -- after the state is unlocked nothing stops other threads from
2018 * removing it.
2019 */
2020 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2021 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2022 {
2023 struct pf_kstate *s;
2024
2025 s = pf_find_state_all(key, dir, NULL);
2026 if (s != NULL) {
2027 PF_STATE_UNLOCK(s);
2028 return (true);
2029 }
2030 return (false);
2031 }
2032
2033 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2034 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2035 struct pf_addr *nat_addr, uint16_t nat_port)
2036 {
2037 struct pf_udp_mapping *mapping;
2038
2039 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2040 if (mapping == NULL)
2041 return (NULL);
2042 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
2043 mapping->endpoints[0].port = src_port;
2044 mapping->endpoints[0].af = af;
2045 mapping->endpoints[0].mapping = mapping;
2046 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
2047 mapping->endpoints[1].port = nat_port;
2048 mapping->endpoints[1].af = af;
2049 mapping->endpoints[1].mapping = mapping;
2050 refcount_init(&mapping->refs, 1);
2051 return (mapping);
2052 }
2053
2054 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2055 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2056 {
2057 struct pf_udpendpointhash *h0, *h1;
2058 struct pf_udp_endpoint *endpoint;
2059 int ret = EEXIST;
2060
2061 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2062 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2063 if (h0 == h1) {
2064 PF_HASHROW_LOCK(h0);
2065 } else if (h0 < h1) {
2066 PF_HASHROW_LOCK(h0);
2067 PF_HASHROW_LOCK(h1);
2068 } else {
2069 PF_HASHROW_LOCK(h1);
2070 PF_HASHROW_LOCK(h0);
2071 }
2072
2073 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2074 if (bcmp(endpoint, &mapping->endpoints[0],
2075 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2076 break;
2077 }
2078 if (endpoint != NULL)
2079 goto cleanup;
2080 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2081 if (bcmp(endpoint, &mapping->endpoints[1],
2082 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2083 break;
2084 }
2085 if (endpoint != NULL)
2086 goto cleanup;
2087 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2088 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2089 ret = 0;
2090
2091 cleanup:
2092 if (h0 != h1) {
2093 PF_HASHROW_UNLOCK(h0);
2094 PF_HASHROW_UNLOCK(h1);
2095 } else {
2096 PF_HASHROW_UNLOCK(h0);
2097 }
2098 return (ret);
2099 }
2100
2101 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2102 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2103 {
2104 /* refcount is synchronized on the source endpoint's row lock */
2105 struct pf_udpendpointhash *h0, *h1;
2106
2107 if (mapping == NULL)
2108 return;
2109
2110 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2111 PF_HASHROW_LOCK(h0);
2112 if (refcount_release(&mapping->refs)) {
2113 LIST_REMOVE(&mapping->endpoints[0], entry);
2114 PF_HASHROW_UNLOCK(h0);
2115 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2116 PF_HASHROW_LOCK(h1);
2117 LIST_REMOVE(&mapping->endpoints[1], entry);
2118 PF_HASHROW_UNLOCK(h1);
2119
2120 uma_zfree(V_pf_udp_mapping_z, mapping);
2121 } else {
2122 PF_HASHROW_UNLOCK(h0);
2123 }
2124 }
2125
2126
2127 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2128 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2129 {
2130 struct pf_udpendpointhash *uh;
2131 struct pf_udp_endpoint *endpoint;
2132
2133 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2134
2135 PF_HASHROW_LOCK(uh);
2136 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2137 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2138 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2139 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2140 break;
2141 }
2142 if (endpoint == NULL) {
2143 PF_HASHROW_UNLOCK(uh);
2144 return (NULL);
2145 }
2146 refcount_acquire(&endpoint->mapping->refs);
2147 PF_HASHROW_UNLOCK(uh);
2148 return (endpoint->mapping);
2149 }
2150 /* END state table stuff */
2151
2152 static void
pf_send(struct pf_send_entry * pfse)2153 pf_send(struct pf_send_entry *pfse)
2154 {
2155
2156 PF_SENDQ_LOCK();
2157 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2158 PF_SENDQ_UNLOCK();
2159 swi_sched(V_pf_swi_cookie, 0);
2160 }
2161
2162 static bool
pf_isforlocal(struct mbuf * m,int af)2163 pf_isforlocal(struct mbuf *m, int af)
2164 {
2165 switch (af) {
2166 #ifdef INET
2167 case AF_INET: {
2168 struct ip *ip = mtod(m, struct ip *);
2169
2170 return (in_localip(ip->ip_dst));
2171 }
2172 #endif /* INET */
2173 #ifdef INET6
2174 case AF_INET6: {
2175 struct ip6_hdr *ip6;
2176 struct in6_ifaddr *ia;
2177 ip6 = mtod(m, struct ip6_hdr *);
2178 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2179 if (ia == NULL)
2180 return (false);
2181 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2182 }
2183 #endif /* INET6 */
2184 default:
2185 unhandled_af(af);
2186 }
2187
2188 return (false);
2189 }
2190
2191 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2192 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2193 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2194 {
2195 /*
2196 * ICMP types marked with PF_OUT are typically responses to
2197 * PF_IN, and will match states in the opposite direction.
2198 * PF_IN ICMP types need to match a state with that type.
2199 */
2200 *icmp_dir = PF_OUT;
2201
2202 /* Queries (and responses) */
2203 switch (pd->af) {
2204 #ifdef INET
2205 case AF_INET:
2206 switch (type) {
2207 case ICMP_ECHO:
2208 *icmp_dir = PF_IN;
2209 /* FALLTHROUGH */
2210 case ICMP_ECHOREPLY:
2211 *virtual_type = ICMP_ECHO;
2212 *virtual_id = pd->hdr.icmp.icmp_id;
2213 break;
2214
2215 case ICMP_TSTAMP:
2216 *icmp_dir = PF_IN;
2217 /* FALLTHROUGH */
2218 case ICMP_TSTAMPREPLY:
2219 *virtual_type = ICMP_TSTAMP;
2220 *virtual_id = pd->hdr.icmp.icmp_id;
2221 break;
2222
2223 case ICMP_IREQ:
2224 *icmp_dir = PF_IN;
2225 /* FALLTHROUGH */
2226 case ICMP_IREQREPLY:
2227 *virtual_type = ICMP_IREQ;
2228 *virtual_id = pd->hdr.icmp.icmp_id;
2229 break;
2230
2231 case ICMP_MASKREQ:
2232 *icmp_dir = PF_IN;
2233 /* FALLTHROUGH */
2234 case ICMP_MASKREPLY:
2235 *virtual_type = ICMP_MASKREQ;
2236 *virtual_id = pd->hdr.icmp.icmp_id;
2237 break;
2238
2239 case ICMP_IPV6_WHEREAREYOU:
2240 *icmp_dir = PF_IN;
2241 /* FALLTHROUGH */
2242 case ICMP_IPV6_IAMHERE:
2243 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2244 *virtual_id = 0; /* Nothing sane to match on! */
2245 break;
2246
2247 case ICMP_MOBILE_REGREQUEST:
2248 *icmp_dir = PF_IN;
2249 /* FALLTHROUGH */
2250 case ICMP_MOBILE_REGREPLY:
2251 *virtual_type = ICMP_MOBILE_REGREQUEST;
2252 *virtual_id = 0; /* Nothing sane to match on! */
2253 break;
2254
2255 case ICMP_ROUTERSOLICIT:
2256 *icmp_dir = PF_IN;
2257 /* FALLTHROUGH */
2258 case ICMP_ROUTERADVERT:
2259 *virtual_type = ICMP_ROUTERSOLICIT;
2260 *virtual_id = 0; /* Nothing sane to match on! */
2261 break;
2262
2263 /* These ICMP types map to other connections */
2264 case ICMP_UNREACH:
2265 case ICMP_SOURCEQUENCH:
2266 case ICMP_REDIRECT:
2267 case ICMP_TIMXCEED:
2268 case ICMP_PARAMPROB:
2269 /* These will not be used, but set them anyway */
2270 *icmp_dir = PF_IN;
2271 *virtual_type = type;
2272 *virtual_id = 0;
2273 *virtual_type = htons(*virtual_type);
2274 return (1); /* These types match to another state */
2275
2276 /*
2277 * All remaining ICMP types get their own states,
2278 * and will only match in one direction.
2279 */
2280 default:
2281 *icmp_dir = PF_IN;
2282 *virtual_type = type;
2283 *virtual_id = 0;
2284 break;
2285 }
2286 break;
2287 #endif /* INET */
2288 #ifdef INET6
2289 case AF_INET6:
2290 switch (type) {
2291 case ICMP6_ECHO_REQUEST:
2292 *icmp_dir = PF_IN;
2293 /* FALLTHROUGH */
2294 case ICMP6_ECHO_REPLY:
2295 *virtual_type = ICMP6_ECHO_REQUEST;
2296 *virtual_id = pd->hdr.icmp6.icmp6_id;
2297 break;
2298
2299 case MLD_LISTENER_QUERY:
2300 case MLD_LISTENER_REPORT: {
2301 /*
2302 * Listener Report can be sent by clients
2303 * without an associated Listener Query.
2304 * In addition to that, when Report is sent as a
2305 * reply to a Query its source and destination
2306 * address are different.
2307 */
2308 *icmp_dir = PF_IN;
2309 *virtual_type = MLD_LISTENER_QUERY;
2310 *virtual_id = 0;
2311 break;
2312 }
2313 case MLD_MTRACE:
2314 *icmp_dir = PF_IN;
2315 /* FALLTHROUGH */
2316 case MLD_MTRACE_RESP:
2317 *virtual_type = MLD_MTRACE;
2318 *virtual_id = 0; /* Nothing sane to match on! */
2319 break;
2320
2321 case ND_NEIGHBOR_SOLICIT:
2322 *icmp_dir = PF_IN;
2323 /* FALLTHROUGH */
2324 case ND_NEIGHBOR_ADVERT: {
2325 *virtual_type = ND_NEIGHBOR_SOLICIT;
2326 *virtual_id = 0;
2327 break;
2328 }
2329
2330 /*
2331 * These ICMP types map to other connections.
2332 * ND_REDIRECT can't be in this list because the triggering
2333 * packet header is optional.
2334 */
2335 case ICMP6_DST_UNREACH:
2336 case ICMP6_PACKET_TOO_BIG:
2337 case ICMP6_TIME_EXCEEDED:
2338 case ICMP6_PARAM_PROB:
2339 /* These will not be used, but set them anyway */
2340 *icmp_dir = PF_IN;
2341 *virtual_type = type;
2342 *virtual_id = 0;
2343 *virtual_type = htons(*virtual_type);
2344 return (1); /* These types match to another state */
2345 /*
2346 * All remaining ICMP6 types get their own states,
2347 * and will only match in one direction.
2348 */
2349 default:
2350 *icmp_dir = PF_IN;
2351 *virtual_type = type;
2352 *virtual_id = 0;
2353 break;
2354 }
2355 break;
2356 #endif /* INET6 */
2357 default:
2358 unhandled_af(pd->af);
2359 }
2360 *virtual_type = htons(*virtual_type);
2361 return (0); /* These types match to their own state */
2362 }
2363
2364 void
pf_intr(void * v)2365 pf_intr(void *v)
2366 {
2367 struct epoch_tracker et;
2368 struct pf_send_head queue;
2369 struct pf_send_entry *pfse, *next;
2370
2371 CURVNET_SET((struct vnet *)v);
2372
2373 PF_SENDQ_LOCK();
2374 queue = V_pf_sendqueue;
2375 STAILQ_INIT(&V_pf_sendqueue);
2376 PF_SENDQ_UNLOCK();
2377
2378 NET_EPOCH_ENTER(et);
2379
2380 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2381 switch (pfse->pfse_type) {
2382 #ifdef INET
2383 case PFSE_IP: {
2384 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2385 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2386 ("%s: rcvif != loif", __func__));
2387
2388 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2389 pfse->pfse_m->m_pkthdr.csum_flags |=
2390 CSUM_IP_VALID | CSUM_IP_CHECKED |
2391 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2392 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2393 ip_input(pfse->pfse_m);
2394 } else {
2395 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2396 NULL);
2397 }
2398 break;
2399 }
2400 case PFSE_ICMP:
2401 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2402 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2403 break;
2404 #endif /* INET */
2405 #ifdef INET6
2406 case PFSE_IP6:
2407 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2408 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2409 ("%s: rcvif != loif", __func__));
2410
2411 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2412 M_LOOP;
2413 pfse->pfse_m->m_pkthdr.csum_flags |=
2414 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2415 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2416 ip6_input(pfse->pfse_m);
2417 } else {
2418 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2419 NULL, NULL);
2420 }
2421 break;
2422 case PFSE_ICMP6:
2423 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2424 pfse->icmpopts.code, pfse->icmpopts.mtu);
2425 break;
2426 #endif /* INET6 */
2427 default:
2428 panic("%s: unknown type", __func__);
2429 }
2430 free(pfse, M_PFTEMP);
2431 }
2432 NET_EPOCH_EXIT(et);
2433 CURVNET_RESTORE();
2434 }
2435
2436 #define pf_purge_thread_period (hz / 10)
2437
2438 #ifdef PF_WANT_32_TO_64_COUNTER
2439 static void
pf_status_counter_u64_periodic(void)2440 pf_status_counter_u64_periodic(void)
2441 {
2442
2443 PF_RULES_RASSERT();
2444
2445 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2446 return;
2447 }
2448
2449 for (int i = 0; i < FCNT_MAX; i++) {
2450 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2451 }
2452 }
2453
2454 static void
pf_kif_counter_u64_periodic(void)2455 pf_kif_counter_u64_periodic(void)
2456 {
2457 struct pfi_kkif *kif;
2458 size_t r, run;
2459
2460 PF_RULES_RASSERT();
2461
2462 if (__predict_false(V_pf_allkifcount == 0)) {
2463 return;
2464 }
2465
2466 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2467 return;
2468 }
2469
2470 run = V_pf_allkifcount / 10;
2471 if (run < 5)
2472 run = 5;
2473
2474 for (r = 0; r < run; r++) {
2475 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2476 if (kif == NULL) {
2477 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2478 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2479 break;
2480 }
2481
2482 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2483 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2484
2485 for (int i = 0; i < 2; i++) {
2486 for (int j = 0; j < 2; j++) {
2487 for (int k = 0; k < 2; k++) {
2488 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2489 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2490 }
2491 }
2492 }
2493 }
2494 }
2495
2496 static void
pf_rule_counter_u64_periodic(void)2497 pf_rule_counter_u64_periodic(void)
2498 {
2499 struct pf_krule *rule;
2500 size_t r, run;
2501
2502 PF_RULES_RASSERT();
2503
2504 if (__predict_false(V_pf_allrulecount == 0)) {
2505 return;
2506 }
2507
2508 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2509 return;
2510 }
2511
2512 run = V_pf_allrulecount / 10;
2513 if (run < 5)
2514 run = 5;
2515
2516 for (r = 0; r < run; r++) {
2517 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2518 if (rule == NULL) {
2519 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2520 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2521 break;
2522 }
2523
2524 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2525 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2526
2527 pf_counter_u64_periodic(&rule->evaluations);
2528 for (int i = 0; i < 2; i++) {
2529 pf_counter_u64_periodic(&rule->packets[i]);
2530 pf_counter_u64_periodic(&rule->bytes[i]);
2531 }
2532 }
2533 }
2534
2535 static void
pf_counter_u64_periodic_main(void)2536 pf_counter_u64_periodic_main(void)
2537 {
2538 PF_RULES_RLOCK_TRACKER;
2539
2540 V_pf_counter_periodic_iter++;
2541
2542 PF_RULES_RLOCK();
2543 pf_counter_u64_critical_enter();
2544 pf_status_counter_u64_periodic();
2545 pf_kif_counter_u64_periodic();
2546 pf_rule_counter_u64_periodic();
2547 pf_counter_u64_critical_exit();
2548 PF_RULES_RUNLOCK();
2549 }
2550 #else
2551 #define pf_counter_u64_periodic_main() do { } while (0)
2552 #endif
2553
2554 void
pf_purge_thread(void * unused __unused)2555 pf_purge_thread(void *unused __unused)
2556 {
2557 struct epoch_tracker et;
2558
2559 VNET_ITERATOR_DECL(vnet_iter);
2560
2561 sx_xlock(&pf_end_lock);
2562 while (pf_end_threads == 0) {
2563 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2564
2565 VNET_LIST_RLOCK();
2566 NET_EPOCH_ENTER(et);
2567 VNET_FOREACH(vnet_iter) {
2568 CURVNET_SET(vnet_iter);
2569
2570 /* Wait until V_pf_default_rule is initialized. */
2571 if (V_pf_vnet_active == 0) {
2572 CURVNET_RESTORE();
2573 continue;
2574 }
2575
2576 pf_counter_u64_periodic_main();
2577
2578 /*
2579 * Process 1/interval fraction of the state
2580 * table every run.
2581 */
2582 V_pf_purge_idx =
2583 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2584 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2585
2586 /*
2587 * Purge other expired types every
2588 * PFTM_INTERVAL seconds.
2589 */
2590 if (V_pf_purge_idx == 0) {
2591 /*
2592 * Order is important:
2593 * - states and src nodes reference rules
2594 * - states and rules reference kifs
2595 */
2596 pf_purge_expired_fragments();
2597 pf_purge_expired_src_nodes();
2598 pf_purge_unlinked_rules();
2599 pfi_kkif_purge();
2600 }
2601 CURVNET_RESTORE();
2602 }
2603 NET_EPOCH_EXIT(et);
2604 VNET_LIST_RUNLOCK();
2605 }
2606
2607 pf_end_threads++;
2608 sx_xunlock(&pf_end_lock);
2609 kproc_exit(0);
2610 }
2611
2612 void
pf_unload_vnet_purge(void)2613 pf_unload_vnet_purge(void)
2614 {
2615
2616 /*
2617 * To cleanse up all kifs and rules we need
2618 * two runs: first one clears reference flags,
2619 * then pf_purge_expired_states() doesn't
2620 * raise them, and then second run frees.
2621 */
2622 pf_purge_unlinked_rules();
2623 pfi_kkif_purge();
2624
2625 /*
2626 * Now purge everything.
2627 */
2628 pf_purge_expired_states(0, V_pf_hashmask);
2629 pf_purge_fragments(UINT_MAX);
2630 pf_purge_expired_src_nodes();
2631
2632 /*
2633 * Now all kifs & rules should be unreferenced,
2634 * thus should be successfully freed.
2635 */
2636 pf_purge_unlinked_rules();
2637 pfi_kkif_purge();
2638 }
2639
2640 u_int32_t
pf_state_expires(const struct pf_kstate * state)2641 pf_state_expires(const struct pf_kstate *state)
2642 {
2643 u_int32_t timeout;
2644 u_int32_t start;
2645 u_int32_t end;
2646 u_int32_t states;
2647
2648 /* handle all PFTM_* > PFTM_MAX here */
2649 if (state->timeout == PFTM_PURGE)
2650 return (time_uptime);
2651 KASSERT(state->timeout != PFTM_UNLINKED,
2652 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2653 KASSERT((state->timeout < PFTM_MAX),
2654 ("pf_state_expires: timeout > PFTM_MAX"));
2655 timeout = state->rule->timeout[state->timeout];
2656 if (!timeout)
2657 timeout = V_pf_default_rule.timeout[state->timeout];
2658 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2659 if (start && state->rule != &V_pf_default_rule) {
2660 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2661 states = counter_u64_fetch(state->rule->states_cur);
2662 } else {
2663 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2664 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2665 states = V_pf_status.states;
2666 }
2667 if (end && states > start && start < end) {
2668 if (states < end) {
2669 timeout = (u_int64_t)timeout * (end - states) /
2670 (end - start);
2671 return ((state->expire / 1000) + timeout);
2672 }
2673 else
2674 return (time_uptime);
2675 }
2676 return ((state->expire / 1000) + timeout);
2677 }
2678
2679 void
pf_purge_expired_src_nodes(void)2680 pf_purge_expired_src_nodes(void)
2681 {
2682 struct pf_ksrc_node_list freelist;
2683 struct pf_srchash *sh;
2684 struct pf_ksrc_node *cur, *next;
2685 int i;
2686
2687 LIST_INIT(&freelist);
2688 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2689 PF_HASHROW_LOCK(sh);
2690 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2691 if (cur->states == 0 && cur->expire <= time_uptime) {
2692 pf_unlink_src_node(cur);
2693 LIST_INSERT_HEAD(&freelist, cur, entry);
2694 } else if (cur->rule != NULL)
2695 cur->rule->rule_ref |= PFRULE_REFS;
2696 PF_HASHROW_UNLOCK(sh);
2697 }
2698
2699 pf_free_src_nodes(&freelist);
2700
2701 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2702 }
2703
2704 static void
pf_src_tree_remove_state(struct pf_kstate * s)2705 pf_src_tree_remove_state(struct pf_kstate *s)
2706 {
2707 uint32_t timeout;
2708
2709 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2710 s->rule->timeout[PFTM_SRC_NODE] :
2711 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2712
2713 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2714 if (s->sns[sn_type] == NULL)
2715 continue;
2716 PF_SRC_NODE_LOCK(s->sns[sn_type]);
2717 if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2718 --(s->sns[sn_type]->conn);
2719 if (--(s->sns[sn_type]->states) == 0)
2720 s->sns[sn_type]->expire = time_uptime + timeout;
2721 PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2722 s->sns[sn_type] = NULL;
2723 }
2724
2725 }
2726
2727 /*
2728 * Unlink and potentilly free a state. Function may be
2729 * called with ID hash row locked, but always returns
2730 * unlocked, since it needs to go through key hash locking.
2731 */
2732 int
pf_remove_state(struct pf_kstate * s)2733 pf_remove_state(struct pf_kstate *s)
2734 {
2735 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2736
2737 NET_EPOCH_ASSERT();
2738 PF_HASHROW_ASSERT(ih);
2739
2740 if (s->timeout == PFTM_UNLINKED) {
2741 /*
2742 * State is being processed
2743 * by pf_remove_state() in
2744 * an other thread.
2745 */
2746 PF_HASHROW_UNLOCK(ih);
2747 return (0); /* XXXGL: undefined actually */
2748 }
2749
2750 if (s->src.state == PF_TCPS_PROXY_DST) {
2751 /* XXX wire key the right one? */
2752 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2753 &s->key[PF_SK_WIRE]->addr[1],
2754 &s->key[PF_SK_WIRE]->addr[0],
2755 s->key[PF_SK_WIRE]->port[1],
2756 s->key[PF_SK_WIRE]->port[0],
2757 s->src.seqhi, s->src.seqlo + 1,
2758 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2759 s->act.rtableid);
2760 }
2761
2762 LIST_REMOVE(s, entry);
2763 pf_src_tree_remove_state(s);
2764
2765 if (V_pfsync_delete_state_ptr != NULL)
2766 V_pfsync_delete_state_ptr(s);
2767
2768 STATE_DEC_COUNTERS(s);
2769
2770 s->timeout = PFTM_UNLINKED;
2771
2772 /* Ensure we remove it from the list of halfopen states, if needed. */
2773 if (s->key[PF_SK_STACK] != NULL &&
2774 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2775 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2776
2777 PF_HASHROW_UNLOCK(ih);
2778
2779 pf_detach_state(s);
2780
2781 pf_udp_mapping_release(s->udp_mapping);
2782
2783 /* pf_state_insert() initialises refs to 2 */
2784 return (pf_release_staten(s, 2));
2785 }
2786
2787 struct pf_kstate *
pf_alloc_state(int flags)2788 pf_alloc_state(int flags)
2789 {
2790
2791 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2792 }
2793
2794 void
pf_free_state(struct pf_kstate * cur)2795 pf_free_state(struct pf_kstate *cur)
2796 {
2797 struct pf_krule_item *ri;
2798
2799 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2800 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2801 cur->timeout));
2802
2803 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2804 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2805 free(ri, M_PF_RULE_ITEM);
2806 }
2807
2808 pf_normalize_tcp_cleanup(cur);
2809 uma_zfree(V_pf_state_z, cur);
2810 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2811 }
2812
2813 /*
2814 * Called only from pf_purge_thread(), thus serialized.
2815 */
2816 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2817 pf_purge_expired_states(u_int i, int maxcheck)
2818 {
2819 struct pf_idhash *ih;
2820 struct pf_kstate *s;
2821 struct pf_krule_item *mrm;
2822 size_t count __unused;
2823
2824 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2825
2826 /*
2827 * Go through hash and unlink states that expire now.
2828 */
2829 while (maxcheck > 0) {
2830 count = 0;
2831 ih = &V_pf_idhash[i];
2832
2833 /* only take the lock if we expect to do work */
2834 if (!LIST_EMPTY(&ih->states)) {
2835 relock:
2836 PF_HASHROW_LOCK(ih);
2837 LIST_FOREACH(s, &ih->states, entry) {
2838 if (pf_state_expires(s) <= time_uptime) {
2839 V_pf_status.states -=
2840 pf_remove_state(s);
2841 goto relock;
2842 }
2843 s->rule->rule_ref |= PFRULE_REFS;
2844 if (s->nat_rule != NULL)
2845 s->nat_rule->rule_ref |= PFRULE_REFS;
2846 if (s->anchor != NULL)
2847 s->anchor->rule_ref |= PFRULE_REFS;
2848 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2849 SLIST_FOREACH(mrm, &s->match_rules, entry)
2850 mrm->r->rule_ref |= PFRULE_REFS;
2851 if (s->act.rt_kif)
2852 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2853 count++;
2854 }
2855 PF_HASHROW_UNLOCK(ih);
2856 }
2857
2858 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2859
2860 /* Return when we hit end of hash. */
2861 if (++i > V_pf_hashmask) {
2862 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2863 return (0);
2864 }
2865
2866 maxcheck--;
2867 }
2868
2869 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2870
2871 return (i);
2872 }
2873
2874 static void
pf_purge_unlinked_rules(void)2875 pf_purge_unlinked_rules(void)
2876 {
2877 struct pf_krulequeue tmpq;
2878 struct pf_krule *r, *r1;
2879
2880 /*
2881 * If we have overloading task pending, then we'd
2882 * better skip purging this time. There is a tiny
2883 * probability that overloading task references
2884 * an already unlinked rule.
2885 */
2886 PF_OVERLOADQ_LOCK();
2887 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2888 PF_OVERLOADQ_UNLOCK();
2889 return;
2890 }
2891 PF_OVERLOADQ_UNLOCK();
2892
2893 /*
2894 * Do naive mark-and-sweep garbage collecting of old rules.
2895 * Reference flag is raised by pf_purge_expired_states()
2896 * and pf_purge_expired_src_nodes().
2897 *
2898 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2899 * use a temporary queue.
2900 */
2901 TAILQ_INIT(&tmpq);
2902 PF_UNLNKDRULES_LOCK();
2903 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2904 if (!(r->rule_ref & PFRULE_REFS)) {
2905 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2906 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2907 } else
2908 r->rule_ref &= ~PFRULE_REFS;
2909 }
2910 PF_UNLNKDRULES_UNLOCK();
2911
2912 if (!TAILQ_EMPTY(&tmpq)) {
2913 PF_CONFIG_LOCK();
2914 PF_RULES_WLOCK();
2915 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2916 TAILQ_REMOVE(&tmpq, r, entries);
2917 pf_free_rule(r);
2918 }
2919 PF_RULES_WUNLOCK();
2920 PF_CONFIG_UNLOCK();
2921 }
2922 }
2923
2924 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2925 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2926 {
2927 switch (af) {
2928 #ifdef INET
2929 case AF_INET: {
2930 u_int32_t a = ntohl(addr->addr32[0]);
2931 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2932 (a>>8)&255, a&255);
2933 if (p) {
2934 p = ntohs(p);
2935 printf(":%u", p);
2936 }
2937 break;
2938 }
2939 #endif /* INET */
2940 #ifdef INET6
2941 case AF_INET6: {
2942 u_int16_t b;
2943 u_int8_t i, curstart, curend, maxstart, maxend;
2944 curstart = curend = maxstart = maxend = 255;
2945 for (i = 0; i < 8; i++) {
2946 if (!addr->addr16[i]) {
2947 if (curstart == 255)
2948 curstart = i;
2949 curend = i;
2950 } else {
2951 if ((curend - curstart) >
2952 (maxend - maxstart)) {
2953 maxstart = curstart;
2954 maxend = curend;
2955 }
2956 curstart = curend = 255;
2957 }
2958 }
2959 if ((curend - curstart) >
2960 (maxend - maxstart)) {
2961 maxstart = curstart;
2962 maxend = curend;
2963 }
2964 for (i = 0; i < 8; i++) {
2965 if (i >= maxstart && i <= maxend) {
2966 if (i == 0)
2967 printf(":");
2968 if (i == maxend)
2969 printf(":");
2970 } else {
2971 b = ntohs(addr->addr16[i]);
2972 printf("%x", b);
2973 if (i < 7)
2974 printf(":");
2975 }
2976 }
2977 if (p) {
2978 p = ntohs(p);
2979 printf("[%u]", p);
2980 }
2981 break;
2982 }
2983 #endif /* INET6 */
2984 default:
2985 unhandled_af(af);
2986 }
2987 }
2988
2989 void
pf_print_state(struct pf_kstate * s)2990 pf_print_state(struct pf_kstate *s)
2991 {
2992 pf_print_state_parts(s, NULL, NULL);
2993 }
2994
2995 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)2996 pf_print_state_parts(struct pf_kstate *s,
2997 struct pf_state_key *skwp, struct pf_state_key *sksp)
2998 {
2999 struct pf_state_key *skw, *sks;
3000 u_int8_t proto, dir;
3001
3002 /* Do our best to fill these, but they're skipped if NULL */
3003 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3004 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3005 proto = skw ? skw->proto : (sks ? sks->proto : 0);
3006 dir = s ? s->direction : 0;
3007
3008 switch (proto) {
3009 case IPPROTO_IPV4:
3010 printf("IPv4");
3011 break;
3012 case IPPROTO_IPV6:
3013 printf("IPv6");
3014 break;
3015 case IPPROTO_TCP:
3016 printf("TCP");
3017 break;
3018 case IPPROTO_UDP:
3019 printf("UDP");
3020 break;
3021 case IPPROTO_ICMP:
3022 printf("ICMP");
3023 break;
3024 case IPPROTO_ICMPV6:
3025 printf("ICMPv6");
3026 break;
3027 default:
3028 printf("%u", proto);
3029 break;
3030 }
3031 switch (dir) {
3032 case PF_IN:
3033 printf(" in");
3034 break;
3035 case PF_OUT:
3036 printf(" out");
3037 break;
3038 }
3039 if (skw) {
3040 printf(" wire: ");
3041 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3042 printf(" ");
3043 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3044 }
3045 if (sks) {
3046 printf(" stack: ");
3047 if (sks != skw) {
3048 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3049 printf(" ");
3050 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3051 } else
3052 printf("-");
3053 }
3054 if (s) {
3055 if (proto == IPPROTO_TCP) {
3056 printf(" [lo=%u high=%u win=%u modulator=%u",
3057 s->src.seqlo, s->src.seqhi,
3058 s->src.max_win, s->src.seqdiff);
3059 if (s->src.wscale && s->dst.wscale)
3060 printf(" wscale=%u",
3061 s->src.wscale & PF_WSCALE_MASK);
3062 printf("]");
3063 printf(" [lo=%u high=%u win=%u modulator=%u",
3064 s->dst.seqlo, s->dst.seqhi,
3065 s->dst.max_win, s->dst.seqdiff);
3066 if (s->src.wscale && s->dst.wscale)
3067 printf(" wscale=%u",
3068 s->dst.wscale & PF_WSCALE_MASK);
3069 printf("]");
3070 }
3071 printf(" %u:%u", s->src.state, s->dst.state);
3072 if (s->rule)
3073 printf(" @%d", s->rule->nr);
3074 }
3075 }
3076
3077 void
pf_print_flags(uint16_t f)3078 pf_print_flags(uint16_t f)
3079 {
3080 if (f)
3081 printf(" ");
3082 if (f & TH_FIN)
3083 printf("F");
3084 if (f & TH_SYN)
3085 printf("S");
3086 if (f & TH_RST)
3087 printf("R");
3088 if (f & TH_PUSH)
3089 printf("P");
3090 if (f & TH_ACK)
3091 printf("A");
3092 if (f & TH_URG)
3093 printf("U");
3094 if (f & TH_ECE)
3095 printf("E");
3096 if (f & TH_CWR)
3097 printf("W");
3098 if (f & TH_AE)
3099 printf("e");
3100 }
3101
3102 #define PF_SET_SKIP_STEPS(i) \
3103 do { \
3104 while (head[i] != cur) { \
3105 head[i]->skip[i] = cur; \
3106 head[i] = TAILQ_NEXT(head[i], entries); \
3107 } \
3108 } while (0)
3109
3110 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3111 pf_calc_skip_steps(struct pf_krulequeue *rules)
3112 {
3113 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3114 int i;
3115
3116 cur = TAILQ_FIRST(rules);
3117 prev = cur;
3118 for (i = 0; i < PF_SKIP_COUNT; ++i)
3119 head[i] = cur;
3120 while (cur != NULL) {
3121 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3122 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3123 if (cur->direction != prev->direction)
3124 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3125 if (cur->af != prev->af)
3126 PF_SET_SKIP_STEPS(PF_SKIP_AF);
3127 if (cur->proto != prev->proto)
3128 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3129 if (cur->src.neg != prev->src.neg ||
3130 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3131 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3132 if (cur->dst.neg != prev->dst.neg ||
3133 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3134 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3135 if (cur->src.port[0] != prev->src.port[0] ||
3136 cur->src.port[1] != prev->src.port[1] ||
3137 cur->src.port_op != prev->src.port_op)
3138 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3139 if (cur->dst.port[0] != prev->dst.port[0] ||
3140 cur->dst.port[1] != prev->dst.port[1] ||
3141 cur->dst.port_op != prev->dst.port_op)
3142 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3143
3144 prev = cur;
3145 cur = TAILQ_NEXT(cur, entries);
3146 }
3147 for (i = 0; i < PF_SKIP_COUNT; ++i)
3148 PF_SET_SKIP_STEPS(i);
3149 }
3150
3151 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3152 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3153 {
3154 if (aw1->type != aw2->type)
3155 return (1);
3156 switch (aw1->type) {
3157 case PF_ADDR_ADDRMASK:
3158 case PF_ADDR_RANGE:
3159 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3160 return (1);
3161 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3162 return (1);
3163 return (0);
3164 case PF_ADDR_DYNIFTL:
3165 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3166 case PF_ADDR_NONE:
3167 case PF_ADDR_NOROUTE:
3168 case PF_ADDR_URPFFAILED:
3169 return (0);
3170 case PF_ADDR_TABLE:
3171 return (aw1->p.tbl != aw2->p.tbl);
3172 default:
3173 printf("invalid address type: %d\n", aw1->type);
3174 return (1);
3175 }
3176 }
3177
3178 /**
3179 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3180 * header isn't always a full checksum. In some cases (i.e. output) it's a
3181 * pseudo-header checksum, which is a partial checksum over src/dst IP
3182 * addresses, protocol number and length.
3183 *
3184 * That means we have the following cases:
3185 * * Input or forwarding: we don't have TSO, the checksum fields are full
3186 * checksums, we need to update the checksum whenever we change anything.
3187 * * Output (i.e. the checksum is a pseudo-header checksum):
3188 * x The field being updated is src/dst address or affects the length of
3189 * the packet. We need to update the pseudo-header checksum (note that this
3190 * checksum is not ones' complement).
3191 * x Some other field is being modified (e.g. src/dst port numbers): We
3192 * don't have to update anything.
3193 **/
3194 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3195 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3196 {
3197 u_int32_t x;
3198
3199 x = cksum + old - new;
3200 x = (x + (x >> 16)) & 0xffff;
3201
3202 /* optimise: eliminate a branch when not udp */
3203 if (udp && cksum == 0x0000)
3204 return cksum;
3205 if (udp && x == 0x0000)
3206 x = 0xffff;
3207
3208 return (u_int16_t)(x);
3209 }
3210
3211 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3212 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3213 {
3214 int rewrite = 0;
3215
3216 if (*f != v) {
3217 uint16_t old = htons(hi ? (*f << 8) : *f);
3218 uint16_t new = htons(hi ? ( v << 8) : v);
3219
3220 *f = v;
3221
3222 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3223 CSUM_DELAY_DATA_IPV6)))
3224 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3225 pd->proto == IPPROTO_UDP);
3226
3227 rewrite = 1;
3228 }
3229
3230 return (rewrite);
3231 }
3232
3233 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3234 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3235 {
3236 int rewrite = 0;
3237 u_int8_t *fb = (u_int8_t *)f;
3238 u_int8_t *vb = (u_int8_t *)&v;
3239
3240 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3241 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3242
3243 return (rewrite);
3244 }
3245
3246 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3247 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3248 {
3249 int rewrite = 0;
3250 u_int8_t *fb = (u_int8_t *)f;
3251 u_int8_t *vb = (u_int8_t *)&v;
3252
3253 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3254 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3255 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3256 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3257
3258 return (rewrite);
3259 }
3260
3261 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3262 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3263 u_int16_t new, u_int8_t udp)
3264 {
3265 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3266 return (cksum);
3267
3268 return (pf_cksum_fixup(cksum, old, new, udp));
3269 }
3270
3271 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3272 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3273 struct pf_addr *an, u_int16_t pn)
3274 {
3275 struct pf_addr ao;
3276 u_int16_t po;
3277 uint8_t u = pd->virtual_proto == IPPROTO_UDP;
3278
3279 MPASS(pd->pcksum);
3280 if (pd->af == AF_INET) {
3281 MPASS(pd->ip_sum);
3282 }
3283
3284 PF_ACPY(&ao, a, pd->af);
3285 if (pd->af == pd->naf)
3286 PF_ACPY(a, an, pd->af);
3287
3288 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3289 *pd->pcksum = ~*pd->pcksum;
3290
3291 if (p == NULL) /* no port -> done. no cksum to worry about. */
3292 return;
3293 po = *p;
3294 *p = pn;
3295
3296 switch (pd->af) {
3297 #ifdef INET
3298 case AF_INET:
3299 switch (pd->naf) {
3300 case AF_INET:
3301 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3302 ao.addr16[0], an->addr16[0], 0),
3303 ao.addr16[1], an->addr16[1], 0);
3304 *p = pn;
3305
3306 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3307 ao.addr16[0], an->addr16[0], u),
3308 ao.addr16[1], an->addr16[1], u);
3309
3310 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3311 break;
3312 #ifdef INET6
3313 case AF_INET6:
3314 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3315 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3316 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3317 ao.addr16[0], an->addr16[0], u),
3318 ao.addr16[1], an->addr16[1], u),
3319 0, an->addr16[2], u),
3320 0, an->addr16[3], u),
3321 0, an->addr16[4], u),
3322 0, an->addr16[5], u),
3323 0, an->addr16[6], u),
3324 0, an->addr16[7], u),
3325 po, pn, u);
3326 break;
3327 #endif /* INET6 */
3328 default:
3329 unhandled_af(pd->naf);
3330 }
3331 break;
3332 #endif /* INET */
3333 #ifdef INET6
3334 case AF_INET6:
3335 switch (pd->naf) {
3336 #ifdef INET
3337 case AF_INET:
3338 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3339 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3340 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3341 ao.addr16[0], an->addr16[0], u),
3342 ao.addr16[1], an->addr16[1], u),
3343 ao.addr16[2], 0, u),
3344 ao.addr16[3], 0, u),
3345 ao.addr16[4], 0, u),
3346 ao.addr16[5], 0, u),
3347 ao.addr16[6], 0, u),
3348 ao.addr16[7], 0, u),
3349 po, pn, u);
3350 break;
3351 #endif /* INET */
3352 case AF_INET6:
3353 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3354 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3355 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3356 ao.addr16[0], an->addr16[0], u),
3357 ao.addr16[1], an->addr16[1], u),
3358 ao.addr16[2], an->addr16[2], u),
3359 ao.addr16[3], an->addr16[3], u),
3360 ao.addr16[4], an->addr16[4], u),
3361 ao.addr16[5], an->addr16[5], u),
3362 ao.addr16[6], an->addr16[6], u),
3363 ao.addr16[7], an->addr16[7], u);
3364
3365 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3366 break;
3367 default:
3368 unhandled_af(pd->naf);
3369 }
3370 break;
3371 #endif /* INET6 */
3372 default:
3373 unhandled_af(pd->af);
3374 }
3375
3376 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3377 CSUM_DELAY_DATA_IPV6)) {
3378 *pd->pcksum = ~*pd->pcksum;
3379 if (! *pd->pcksum)
3380 *pd->pcksum = 0xffff;
3381 }
3382 }
3383
3384 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3385 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3386 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3387 {
3388 u_int32_t ao;
3389
3390 memcpy(&ao, a, sizeof(ao));
3391 memcpy(a, &an, sizeof(u_int32_t));
3392 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3393 ao % 65536, an % 65536, u);
3394 }
3395
3396 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3397 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3398 {
3399 u_int32_t ao;
3400
3401 memcpy(&ao, a, sizeof(ao));
3402 memcpy(a, &an, sizeof(u_int32_t));
3403
3404 *c = pf_proto_cksum_fixup(m,
3405 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3406 ao % 65536, an % 65536, udp);
3407 }
3408
3409 #ifdef INET6
3410 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3411 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3412 {
3413 struct pf_addr ao;
3414
3415 PF_ACPY(&ao, a, AF_INET6);
3416 PF_ACPY(a, an, AF_INET6);
3417
3418 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3419 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3420 pf_cksum_fixup(pf_cksum_fixup(*c,
3421 ao.addr16[0], an->addr16[0], u),
3422 ao.addr16[1], an->addr16[1], u),
3423 ao.addr16[2], an->addr16[2], u),
3424 ao.addr16[3], an->addr16[3], u),
3425 ao.addr16[4], an->addr16[4], u),
3426 ao.addr16[5], an->addr16[5], u),
3427 ao.addr16[6], an->addr16[6], u),
3428 ao.addr16[7], an->addr16[7], u);
3429 }
3430 #endif /* INET6 */
3431
3432 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3433 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3434 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3435 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3436 {
3437 struct pf_addr oia, ooa;
3438
3439 PF_ACPY(&oia, ia, af);
3440 if (oa)
3441 PF_ACPY(&ooa, oa, af);
3442
3443 /* Change inner protocol port, fix inner protocol checksum. */
3444 if (ip != NULL) {
3445 u_int16_t oip = *ip;
3446 u_int32_t opc;
3447
3448 if (pc != NULL)
3449 opc = *pc;
3450 *ip = np;
3451 if (pc != NULL)
3452 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3453 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3454 if (pc != NULL)
3455 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3456 }
3457 /* Change inner ip address, fix inner ip and icmp checksums. */
3458 PF_ACPY(ia, na, af);
3459 switch (af) {
3460 #ifdef INET
3461 case AF_INET: {
3462 u_int32_t oh2c = *h2c;
3463
3464 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3465 oia.addr16[0], ia->addr16[0], 0),
3466 oia.addr16[1], ia->addr16[1], 0);
3467 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3468 oia.addr16[0], ia->addr16[0], 0),
3469 oia.addr16[1], ia->addr16[1], 0);
3470 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3471 break;
3472 }
3473 #endif /* INET */
3474 #ifdef INET6
3475 case AF_INET6:
3476 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3477 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3478 pf_cksum_fixup(pf_cksum_fixup(*ic,
3479 oia.addr16[0], ia->addr16[0], u),
3480 oia.addr16[1], ia->addr16[1], u),
3481 oia.addr16[2], ia->addr16[2], u),
3482 oia.addr16[3], ia->addr16[3], u),
3483 oia.addr16[4], ia->addr16[4], u),
3484 oia.addr16[5], ia->addr16[5], u),
3485 oia.addr16[6], ia->addr16[6], u),
3486 oia.addr16[7], ia->addr16[7], u);
3487 break;
3488 #endif /* INET6 */
3489 }
3490 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3491 if (oa) {
3492 PF_ACPY(oa, na, af);
3493 switch (af) {
3494 #ifdef INET
3495 case AF_INET:
3496 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3497 ooa.addr16[0], oa->addr16[0], 0),
3498 ooa.addr16[1], oa->addr16[1], 0);
3499 break;
3500 #endif /* INET */
3501 #ifdef INET6
3502 case AF_INET6:
3503 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3504 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3505 pf_cksum_fixup(pf_cksum_fixup(*ic,
3506 ooa.addr16[0], oa->addr16[0], u),
3507 ooa.addr16[1], oa->addr16[1], u),
3508 ooa.addr16[2], oa->addr16[2], u),
3509 ooa.addr16[3], oa->addr16[3], u),
3510 ooa.addr16[4], oa->addr16[4], u),
3511 ooa.addr16[5], oa->addr16[5], u),
3512 ooa.addr16[6], oa->addr16[6], u),
3513 ooa.addr16[7], oa->addr16[7], u);
3514 break;
3515 #endif /* INET6 */
3516 }
3517 }
3518 }
3519
3520 int
pf_translate_af(struct pf_pdesc * pd)3521 pf_translate_af(struct pf_pdesc *pd)
3522 {
3523 #if defined(INET) && defined(INET6)
3524 struct mbuf *mp;
3525 struct ip *ip4;
3526 struct ip6_hdr *ip6;
3527 struct icmp6_hdr *icmp;
3528 struct m_tag *mtag;
3529 struct pf_fragment_tag *ftag;
3530 int hlen;
3531
3532 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3533
3534 /* trim the old header */
3535 m_adj(pd->m, pd->off);
3536
3537 /* prepend a new one */
3538 M_PREPEND(pd->m, hlen, M_NOWAIT);
3539 if (pd->m == NULL)
3540 return (-1);
3541
3542 switch (pd->naf) {
3543 case AF_INET:
3544 ip4 = mtod(pd->m, struct ip *);
3545 bzero(ip4, hlen);
3546 ip4->ip_v = IPVERSION;
3547 ip4->ip_hl = hlen >> 2;
3548 ip4->ip_tos = pd->tos;
3549 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3550 ip_fillid(ip4, V_ip_random_id);
3551 ip4->ip_ttl = pd->ttl;
3552 ip4->ip_p = pd->proto;
3553 ip4->ip_src = pd->nsaddr.v4;
3554 ip4->ip_dst = pd->ndaddr.v4;
3555 pd->src = (struct pf_addr *)&ip4->ip_src;
3556 pd->dst = (struct pf_addr *)&ip4->ip_dst;
3557 pd->off = sizeof(struct ip);
3558 break;
3559 case AF_INET6:
3560 ip6 = mtod(pd->m, struct ip6_hdr *);
3561 bzero(ip6, hlen);
3562 ip6->ip6_vfc = IPV6_VERSION;
3563 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3564 ip6->ip6_plen = htons(pd->tot_len - pd->off);
3565 ip6->ip6_nxt = pd->proto;
3566 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3567 ip6->ip6_hlim = IPV6_DEFHLIM;
3568 else
3569 ip6->ip6_hlim = pd->ttl;
3570 ip6->ip6_src = pd->nsaddr.v6;
3571 ip6->ip6_dst = pd->ndaddr.v6;
3572 pd->src = (struct pf_addr *)&ip6->ip6_src;
3573 pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3574 pd->off = sizeof(struct ip6_hdr);
3575
3576 /*
3577 * If we're dealing with a reassembled packet we need to adjust
3578 * the header length from the IPv4 header size to IPv6 header
3579 * size.
3580 */
3581 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3582 if (mtag) {
3583 ftag = (struct pf_fragment_tag *)(mtag + 1);
3584 ftag->ft_hdrlen = sizeof(*ip6);
3585 ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3586 sizeof(struct ip) + sizeof(struct ip6_frag);
3587 }
3588 break;
3589 default:
3590 return (-1);
3591 }
3592
3593 /* recalculate icmp/icmp6 checksums */
3594 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3595 int off;
3596 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3597 NULL) {
3598 pd->m = NULL;
3599 return (-1);
3600 }
3601 icmp = (struct icmp6_hdr *)(mp->m_data + off);
3602 icmp->icmp6_cksum = 0;
3603 icmp->icmp6_cksum = pd->naf == AF_INET ?
3604 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3605 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3606 ntohs(ip6->ip6_plen));
3607 }
3608 #endif /* INET && INET6 */
3609
3610 return (0);
3611 }
3612
3613 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3614 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3615 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3616 sa_family_t af, sa_family_t naf)
3617 {
3618 #if defined(INET) && defined(INET6)
3619 struct mbuf *n = NULL;
3620 struct ip *ip4;
3621 struct ip6_hdr *ip6;
3622 int hlen, olen, mlen;
3623
3624 if (af == naf || (af != AF_INET && af != AF_INET6) ||
3625 (naf != AF_INET && naf != AF_INET6))
3626 return (-1);
3627
3628 /* split the mbuf chain on the inner ip/ip6 header boundary */
3629 if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3630 return (-1);
3631
3632 /* old header */
3633 olen = pd2->off - off;
3634 /* new header */
3635 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3636
3637 /* trim old header */
3638 m_adj(n, olen);
3639
3640 /* prepend a new one */
3641 M_PREPEND(n, hlen, M_NOWAIT);
3642 if (n == NULL)
3643 return (-1);
3644
3645 /* translate inner ip/ip6 header */
3646 switch (naf) {
3647 case AF_INET:
3648 ip4 = mtod(n, struct ip *);
3649 bzero(ip4, sizeof(*ip4));
3650 ip4->ip_v = IPVERSION;
3651 ip4->ip_hl = sizeof(*ip4) >> 2;
3652 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3653 ip_fillid(ip4, V_ip_random_id);
3654 ip4->ip_off = htons(IP_DF);
3655 ip4->ip_ttl = pd2->ttl;
3656 if (pd2->proto == IPPROTO_ICMPV6)
3657 ip4->ip_p = IPPROTO_ICMP;
3658 else
3659 ip4->ip_p = pd2->proto;
3660 ip4->ip_src = src->v4;
3661 ip4->ip_dst = dst->v4;
3662 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3663 break;
3664 case AF_INET6:
3665 ip6 = mtod(n, struct ip6_hdr *);
3666 bzero(ip6, sizeof(*ip6));
3667 ip6->ip6_vfc = IPV6_VERSION;
3668 ip6->ip6_plen = htons(pd2->tot_len - olen);
3669 if (pd2->proto == IPPROTO_ICMP)
3670 ip6->ip6_nxt = IPPROTO_ICMPV6;
3671 else
3672 ip6->ip6_nxt = pd2->proto;
3673 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3674 ip6->ip6_hlim = IPV6_DEFHLIM;
3675 else
3676 ip6->ip6_hlim = pd2->ttl;
3677 ip6->ip6_src = src->v6;
3678 ip6->ip6_dst = dst->v6;
3679 break;
3680 default:
3681 unhandled_af(naf);
3682 }
3683
3684 /* adjust payload offset and total packet length */
3685 pd2->off += hlen - olen;
3686 pd->tot_len += hlen - olen;
3687
3688 /* merge modified inner packet with the original header */
3689 mlen = n->m_pkthdr.len;
3690 m_cat(m, n);
3691 m->m_pkthdr.len += mlen;
3692 #endif /* INET && INET6 */
3693
3694 return (0);
3695 }
3696
3697 #define PTR_IP(field) (offsetof(struct ip, field))
3698 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field))
3699
3700 int
pf_translate_icmp_af(int af,void * arg)3701 pf_translate_icmp_af(int af, void *arg)
3702 {
3703 #if defined(INET) && defined(INET6)
3704 struct icmp *icmp4;
3705 struct icmp6_hdr *icmp6;
3706 u_int32_t mtu;
3707 int32_t ptr = -1;
3708 u_int8_t type;
3709 u_int8_t code;
3710
3711 switch (af) {
3712 case AF_INET:
3713 icmp6 = arg;
3714 type = icmp6->icmp6_type;
3715 code = icmp6->icmp6_code;
3716 mtu = ntohl(icmp6->icmp6_mtu);
3717
3718 switch (type) {
3719 case ICMP6_ECHO_REQUEST:
3720 type = ICMP_ECHO;
3721 break;
3722 case ICMP6_ECHO_REPLY:
3723 type = ICMP_ECHOREPLY;
3724 break;
3725 case ICMP6_DST_UNREACH:
3726 type = ICMP_UNREACH;
3727 switch (code) {
3728 case ICMP6_DST_UNREACH_NOROUTE:
3729 case ICMP6_DST_UNREACH_BEYONDSCOPE:
3730 case ICMP6_DST_UNREACH_ADDR:
3731 code = ICMP_UNREACH_HOST;
3732 break;
3733 case ICMP6_DST_UNREACH_ADMIN:
3734 code = ICMP_UNREACH_HOST_PROHIB;
3735 break;
3736 case ICMP6_DST_UNREACH_NOPORT:
3737 code = ICMP_UNREACH_PORT;
3738 break;
3739 default:
3740 return (-1);
3741 }
3742 break;
3743 case ICMP6_PACKET_TOO_BIG:
3744 type = ICMP_UNREACH;
3745 code = ICMP_UNREACH_NEEDFRAG;
3746 mtu -= 20;
3747 break;
3748 case ICMP6_TIME_EXCEEDED:
3749 type = ICMP_TIMXCEED;
3750 break;
3751 case ICMP6_PARAM_PROB:
3752 switch (code) {
3753 case ICMP6_PARAMPROB_HEADER:
3754 type = ICMP_PARAMPROB;
3755 code = ICMP_PARAMPROB_ERRATPTR;
3756 ptr = ntohl(icmp6->icmp6_pptr);
3757
3758 if (ptr == PTR_IP6(ip6_vfc))
3759 ; /* preserve */
3760 else if (ptr == PTR_IP6(ip6_vfc) + 1)
3761 ptr = PTR_IP(ip_tos);
3762 else if (ptr == PTR_IP6(ip6_plen) ||
3763 ptr == PTR_IP6(ip6_plen) + 1)
3764 ptr = PTR_IP(ip_len);
3765 else if (ptr == PTR_IP6(ip6_nxt))
3766 ptr = PTR_IP(ip_p);
3767 else if (ptr == PTR_IP6(ip6_hlim))
3768 ptr = PTR_IP(ip_ttl);
3769 else if (ptr >= PTR_IP6(ip6_src) &&
3770 ptr < PTR_IP6(ip6_dst))
3771 ptr = PTR_IP(ip_src);
3772 else if (ptr >= PTR_IP6(ip6_dst) &&
3773 ptr < sizeof(struct ip6_hdr))
3774 ptr = PTR_IP(ip_dst);
3775 else {
3776 return (-1);
3777 }
3778 break;
3779 case ICMP6_PARAMPROB_NEXTHEADER:
3780 type = ICMP_UNREACH;
3781 code = ICMP_UNREACH_PROTOCOL;
3782 break;
3783 default:
3784 return (-1);
3785 }
3786 break;
3787 default:
3788 return (-1);
3789 }
3790 if (icmp6->icmp6_type != type) {
3791 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3792 icmp6->icmp6_type, type, 0);
3793 icmp6->icmp6_type = type;
3794 }
3795 if (icmp6->icmp6_code != code) {
3796 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3797 icmp6->icmp6_code, code, 0);
3798 icmp6->icmp6_code = code;
3799 }
3800 if (icmp6->icmp6_mtu != htonl(mtu)) {
3801 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3802 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3803 /* aligns well with a icmpv4 nextmtu */
3804 icmp6->icmp6_mtu = htonl(mtu);
3805 }
3806 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3807 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3808 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3809 /* icmpv4 pptr is a one most significant byte */
3810 icmp6->icmp6_pptr = htonl(ptr << 24);
3811 }
3812 break;
3813 case AF_INET6:
3814 icmp4 = arg;
3815 type = icmp4->icmp_type;
3816 code = icmp4->icmp_code;
3817 mtu = ntohs(icmp4->icmp_nextmtu);
3818
3819 switch (type) {
3820 case ICMP_ECHO:
3821 type = ICMP6_ECHO_REQUEST;
3822 break;
3823 case ICMP_ECHOREPLY:
3824 type = ICMP6_ECHO_REPLY;
3825 break;
3826 case ICMP_UNREACH:
3827 type = ICMP6_DST_UNREACH;
3828 switch (code) {
3829 case ICMP_UNREACH_NET:
3830 case ICMP_UNREACH_HOST:
3831 case ICMP_UNREACH_NET_UNKNOWN:
3832 case ICMP_UNREACH_HOST_UNKNOWN:
3833 case ICMP_UNREACH_ISOLATED:
3834 case ICMP_UNREACH_TOSNET:
3835 case ICMP_UNREACH_TOSHOST:
3836 code = ICMP6_DST_UNREACH_NOROUTE;
3837 break;
3838 case ICMP_UNREACH_PORT:
3839 code = ICMP6_DST_UNREACH_NOPORT;
3840 break;
3841 case ICMP_UNREACH_NET_PROHIB:
3842 case ICMP_UNREACH_HOST_PROHIB:
3843 case ICMP_UNREACH_FILTER_PROHIB:
3844 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3845 code = ICMP6_DST_UNREACH_ADMIN;
3846 break;
3847 case ICMP_UNREACH_PROTOCOL:
3848 type = ICMP6_PARAM_PROB;
3849 code = ICMP6_PARAMPROB_NEXTHEADER;
3850 ptr = offsetof(struct ip6_hdr, ip6_nxt);
3851 break;
3852 case ICMP_UNREACH_NEEDFRAG:
3853 type = ICMP6_PACKET_TOO_BIG;
3854 code = 0;
3855 mtu += 20;
3856 break;
3857 default:
3858 return (-1);
3859 }
3860 break;
3861 case ICMP_TIMXCEED:
3862 type = ICMP6_TIME_EXCEEDED;
3863 break;
3864 case ICMP_PARAMPROB:
3865 type = ICMP6_PARAM_PROB;
3866 switch (code) {
3867 case ICMP_PARAMPROB_ERRATPTR:
3868 code = ICMP6_PARAMPROB_HEADER;
3869 break;
3870 case ICMP_PARAMPROB_LENGTH:
3871 code = ICMP6_PARAMPROB_HEADER;
3872 break;
3873 default:
3874 return (-1);
3875 }
3876
3877 ptr = icmp4->icmp_pptr;
3878 if (ptr == 0 || ptr == PTR_IP(ip_tos))
3879 ; /* preserve */
3880 else if (ptr == PTR_IP(ip_len) ||
3881 ptr == PTR_IP(ip_len) + 1)
3882 ptr = PTR_IP6(ip6_plen);
3883 else if (ptr == PTR_IP(ip_ttl))
3884 ptr = PTR_IP6(ip6_hlim);
3885 else if (ptr == PTR_IP(ip_p))
3886 ptr = PTR_IP6(ip6_nxt);
3887 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3888 ptr = PTR_IP6(ip6_src);
3889 else if (ptr >= PTR_IP(ip_dst) &&
3890 ptr < sizeof(struct ip))
3891 ptr = PTR_IP6(ip6_dst);
3892 else {
3893 return (-1);
3894 }
3895 break;
3896 default:
3897 return (-1);
3898 }
3899 if (icmp4->icmp_type != type) {
3900 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3901 icmp4->icmp_type, type, 0);
3902 icmp4->icmp_type = type;
3903 }
3904 if (icmp4->icmp_code != code) {
3905 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3906 icmp4->icmp_code, code, 0);
3907 icmp4->icmp_code = code;
3908 }
3909 if (icmp4->icmp_nextmtu != htons(mtu)) {
3910 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3911 icmp4->icmp_nextmtu, htons(mtu), 0);
3912 icmp4->icmp_nextmtu = htons(mtu);
3913 }
3914 if (ptr >= 0 && icmp4->icmp_void != ptr) {
3915 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3916 htons(icmp4->icmp_pptr), htons(ptr), 0);
3917 icmp4->icmp_void = htonl(ptr);
3918 }
3919 break;
3920 default:
3921 unhandled_af(af);
3922 }
3923 #endif /* INET && INET6 */
3924
3925 return (0);
3926 }
3927
3928 /*
3929 * Need to modulate the sequence numbers in the TCP SACK option
3930 * (credits to Krzysztof Pfaff for report and patch)
3931 */
3932 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3933 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3934 struct pf_state_peer *dst)
3935 {
3936 struct sackblk sack;
3937 int copyback = 0, i;
3938 int olen, optsoff;
3939 uint8_t opts[MAX_TCPOPTLEN], *opt, *eoh;
3940
3941 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
3942 optsoff = pd->off + sizeof(struct tcphdr);
3943 #define TCPOLEN_MINSACK (TCPOLEN_SACK + 2)
3944 if (olen < TCPOLEN_MINSACK ||
3945 !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af))
3946 return (0);
3947
3948 eoh = opts + olen;
3949 opt = opts;
3950 while ((opt = pf_find_tcpopt(opt, opts, olen,
3951 TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
3952 {
3953 size_t safelen = MIN(opt[1], (eoh - opt));
3954 for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
3955 size_t startoff = (opt + i) - opts;
3956 memcpy(&sack, &opt[i], sizeof(sack));
3957 pf_patch_32(pd, &sack.start,
3958 htonl(ntohl(sack.start) - dst->seqdiff),
3959 PF_ALGNMNT(startoff));
3960 pf_patch_32(pd, &sack.end,
3961 htonl(ntohl(sack.end) - dst->seqdiff),
3962 PF_ALGNMNT(startoff + sizeof(sack.start)));
3963 memcpy(&opt[i], &sack, sizeof(sack));
3964 }
3965 copyback = 1;
3966 opt += opt[1];
3967 }
3968
3969 if (copyback)
3970 m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
3971
3972 return (copyback);
3973 }
3974
3975 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid)3976 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3977 const struct pf_addr *saddr, const struct pf_addr *daddr,
3978 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3979 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3980 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
3981 int rtableid)
3982 {
3983 struct mbuf *m;
3984 int len, tlen;
3985 #ifdef INET
3986 struct ip *h = NULL;
3987 #endif /* INET */
3988 #ifdef INET6
3989 struct ip6_hdr *h6 = NULL;
3990 #endif /* INET6 */
3991 struct tcphdr *th;
3992 char *opt;
3993 struct pf_mtag *pf_mtag;
3994
3995 len = 0;
3996 th = NULL;
3997
3998 /* maximum segment size tcp option */
3999 tlen = sizeof(struct tcphdr);
4000 if (mss)
4001 tlen += 4;
4002 if (sack)
4003 tlen += 2;
4004
4005 switch (af) {
4006 #ifdef INET
4007 case AF_INET:
4008 len = sizeof(struct ip) + tlen;
4009 break;
4010 #endif /* INET */
4011 #ifdef INET6
4012 case AF_INET6:
4013 len = sizeof(struct ip6_hdr) + tlen;
4014 break;
4015 #endif /* INET6 */
4016 default:
4017 unhandled_af(af);
4018 }
4019
4020 m = m_gethdr(M_NOWAIT, MT_DATA);
4021 if (m == NULL)
4022 return (NULL);
4023
4024 #ifdef MAC
4025 mac_netinet_firewall_send(m);
4026 #endif
4027 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4028 m_freem(m);
4029 return (NULL);
4030 }
4031 m->m_flags |= mbuf_flags;
4032 pf_mtag->tag = mtag_tag;
4033 pf_mtag->flags = mtag_flags;
4034
4035 if (rtableid >= 0)
4036 M_SETFIB(m, rtableid);
4037
4038 #ifdef ALTQ
4039 if (r != NULL && r->qid) {
4040 pf_mtag->qid = r->qid;
4041
4042 /* add hints for ecn */
4043 pf_mtag->hdr = mtod(m, struct ip *);
4044 }
4045 #endif /* ALTQ */
4046 m->m_data += max_linkhdr;
4047 m->m_pkthdr.len = m->m_len = len;
4048 /* The rest of the stack assumes a rcvif, so provide one.
4049 * This is a locally generated packet, so .. close enough. */
4050 m->m_pkthdr.rcvif = V_loif;
4051 bzero(m->m_data, len);
4052 switch (af) {
4053 #ifdef INET
4054 case AF_INET:
4055 m->m_pkthdr.csum_flags |= CSUM_TCP;
4056 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4057
4058 h = mtod(m, struct ip *);
4059
4060 h->ip_p = IPPROTO_TCP;
4061 h->ip_len = htons(tlen);
4062 h->ip_v = 4;
4063 h->ip_hl = sizeof(*h) >> 2;
4064 h->ip_tos = IPTOS_LOWDELAY;
4065 h->ip_len = htons(len);
4066 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4067 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4068 h->ip_sum = 0;
4069 h->ip_src.s_addr = saddr->v4.s_addr;
4070 h->ip_dst.s_addr = daddr->v4.s_addr;
4071
4072 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4073 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4074 htons(len - sizeof(struct ip) + IPPROTO_TCP));
4075 break;
4076 #endif /* INET */
4077 #ifdef INET6
4078 case AF_INET6:
4079 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4080 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4081
4082 h6 = mtod(m, struct ip6_hdr *);
4083
4084 /* IP header fields included in the TCP checksum */
4085 h6->ip6_nxt = IPPROTO_TCP;
4086 h6->ip6_plen = htons(tlen);
4087 h6->ip6_vfc |= IPV6_VERSION;
4088 h6->ip6_hlim = V_ip6_defhlim;
4089 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4090 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4091
4092 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4093 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4094 IPPROTO_TCP, 0);
4095 break;
4096 #endif /* INET6 */
4097 }
4098
4099 /* TCP header */
4100 th->th_sport = sport;
4101 th->th_dport = dport;
4102 th->th_seq = htonl(seq);
4103 th->th_ack = htonl(ack);
4104 th->th_off = tlen >> 2;
4105 tcp_set_flags(th, tcp_flags);
4106 th->th_win = htons(win);
4107
4108 opt = (char *)(th + 1);
4109 if (mss) {
4110 opt = (char *)(th + 1);
4111 opt[0] = TCPOPT_MAXSEG;
4112 opt[1] = 4;
4113 mss = htons(mss);
4114 memcpy((opt + 2), &mss, 2);
4115 opt += 4;
4116 }
4117 if (sack) {
4118 opt[0] = TCPOPT_SACK_PERMITTED;
4119 opt[1] = 2;
4120 opt += 2;
4121 }
4122
4123 return (m);
4124 }
4125
4126 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4127 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4128 uint8_t ttl, int rtableid)
4129 {
4130 struct mbuf *m;
4131 #ifdef INET
4132 struct ip *h = NULL;
4133 #endif /* INET */
4134 #ifdef INET6
4135 struct ip6_hdr *h6 = NULL;
4136 #endif /* INET6 */
4137 struct sctphdr *hdr;
4138 struct sctp_chunkhdr *chunk;
4139 struct pf_send_entry *pfse;
4140 int off = 0;
4141
4142 MPASS(af == pd->af);
4143
4144 m = m_gethdr(M_NOWAIT, MT_DATA);
4145 if (m == NULL)
4146 return;
4147
4148 m->m_data += max_linkhdr;
4149 m->m_flags |= M_SKIP_FIREWALL;
4150 /* The rest of the stack assumes a rcvif, so provide one.
4151 * This is a locally generated packet, so .. close enough. */
4152 m->m_pkthdr.rcvif = V_loif;
4153
4154 /* IPv4|6 header */
4155 switch (af) {
4156 #ifdef INET
4157 case AF_INET:
4158 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4159
4160 h = mtod(m, struct ip *);
4161
4162 /* IP header fields included in the TCP checksum */
4163
4164 h->ip_p = IPPROTO_SCTP;
4165 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4166 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4167 h->ip_src = pd->dst->v4;
4168 h->ip_dst = pd->src->v4;
4169
4170 off += sizeof(struct ip);
4171 break;
4172 #endif /* INET */
4173 #ifdef INET6
4174 case AF_INET6:
4175 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4176
4177 h6 = mtod(m, struct ip6_hdr *);
4178
4179 /* IP header fields included in the TCP checksum */
4180 h6->ip6_vfc |= IPV6_VERSION;
4181 h6->ip6_nxt = IPPROTO_SCTP;
4182 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4183 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4184 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4185 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4186
4187 off += sizeof(struct ip6_hdr);
4188 break;
4189 #endif /* INET6 */
4190 default:
4191 unhandled_af(af);
4192 }
4193
4194 /* SCTP header */
4195 hdr = mtodo(m, off);
4196
4197 hdr->src_port = pd->hdr.sctp.dest_port;
4198 hdr->dest_port = pd->hdr.sctp.src_port;
4199 hdr->v_tag = pd->sctp_initiate_tag;
4200 hdr->checksum = 0;
4201
4202 /* Abort chunk. */
4203 off += sizeof(struct sctphdr);
4204 chunk = mtodo(m, off);
4205
4206 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4207 chunk->chunk_length = htons(sizeof(*chunk));
4208
4209 /* SCTP checksum */
4210 off += sizeof(*chunk);
4211 m->m_pkthdr.len = m->m_len = off;
4212
4213 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4214
4215 if (rtableid >= 0)
4216 M_SETFIB(m, rtableid);
4217
4218 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4219 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4220 if (pfse == NULL) {
4221 m_freem(m);
4222 return;
4223 }
4224
4225 switch (af) {
4226 #ifdef INET
4227 case AF_INET:
4228 pfse->pfse_type = PFSE_IP;
4229 break;
4230 #endif /* INET */
4231 #ifdef INET6
4232 case AF_INET6:
4233 pfse->pfse_type = PFSE_IP6;
4234 break;
4235 #endif /* INET6 */
4236 }
4237
4238 pfse->pfse_m = m;
4239 pf_send(pfse);
4240 }
4241
4242 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4243 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4244 const struct pf_addr *saddr, const struct pf_addr *daddr,
4245 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4246 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4247 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4248 {
4249 struct pf_send_entry *pfse;
4250 struct mbuf *m;
4251
4252 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4253 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid);
4254 if (m == NULL)
4255 return;
4256
4257 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4258 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4259 if (pfse == NULL) {
4260 m_freem(m);
4261 return;
4262 }
4263
4264 switch (af) {
4265 #ifdef INET
4266 case AF_INET:
4267 pfse->pfse_type = PFSE_IP;
4268 break;
4269 #endif /* INET */
4270 #ifdef INET6
4271 case AF_INET6:
4272 pfse->pfse_type = PFSE_IP6;
4273 break;
4274 #endif /* INET6 */
4275 default:
4276 unhandled_af(af);
4277 }
4278
4279 pfse->pfse_m = m;
4280 pf_send(pfse);
4281 }
4282
4283 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4284 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4285 {
4286 /* undo NAT changes, if they have taken place */
4287 if (nr != NULL) {
4288 PF_ACPY(pd->src, &pd->osrc, pd->af);
4289 PF_ACPY(pd->dst, &pd->odst, pd->af);
4290 if (pd->sport)
4291 *pd->sport = pd->osport;
4292 if (pd->dport)
4293 *pd->dport = pd->odport;
4294 if (pd->ip_sum)
4295 *pd->ip_sum = bip_sum;
4296 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4297 }
4298 }
4299
4300 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4301 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4302 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4303 u_short *reason, int rtableid)
4304 {
4305 pf_undo_nat(nr, pd, bip_sum);
4306
4307 if (pd->proto == IPPROTO_TCP &&
4308 ((r->rule_flag & PFRULE_RETURNRST) ||
4309 (r->rule_flag & PFRULE_RETURN)) &&
4310 !(tcp_get_flags(th) & TH_RST)) {
4311 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
4312
4313 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4314 IPPROTO_TCP, pd->af))
4315 REASON_SET(reason, PFRES_PROTCKSUM);
4316 else {
4317 if (tcp_get_flags(th) & TH_SYN)
4318 ack++;
4319 if (tcp_get_flags(th) & TH_FIN)
4320 ack++;
4321 pf_send_tcp(r, pd->af, pd->dst,
4322 pd->src, th->th_dport, th->th_sport,
4323 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4324 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4325 }
4326 } else if (pd->proto == IPPROTO_SCTP &&
4327 (r->rule_flag & PFRULE_RETURN)) {
4328 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4329 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4330 r->return_icmp)
4331 pf_send_icmp(pd->m, r->return_icmp >> 8,
4332 r->return_icmp & 255, 0, pd->af, r, rtableid);
4333 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4334 r->return_icmp6)
4335 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4336 r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4337 }
4338
4339 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4340 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4341 {
4342 struct m_tag *mtag;
4343 u_int8_t mpcp;
4344
4345 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4346 if (mtag == NULL)
4347 return (0);
4348
4349 if (prio == PF_PRIO_ZERO)
4350 prio = 0;
4351
4352 mpcp = *(uint8_t *)(mtag + 1);
4353
4354 return (mpcp == prio);
4355 }
4356
4357 static int
pf_icmp_to_bandlim(uint8_t type)4358 pf_icmp_to_bandlim(uint8_t type)
4359 {
4360 switch (type) {
4361 case ICMP_ECHO:
4362 case ICMP_ECHOREPLY:
4363 return (BANDLIM_ICMP_ECHO);
4364 case ICMP_TSTAMP:
4365 case ICMP_TSTAMPREPLY:
4366 return (BANDLIM_ICMP_TSTAMP);
4367 case ICMP_UNREACH:
4368 default:
4369 return (BANDLIM_ICMP_UNREACH);
4370 }
4371 }
4372
4373 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst)4374 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4375 struct pf_state_peer *src, struct pf_state_peer *dst)
4376 {
4377 /*
4378 * We are sending challenge ACK as a response to SYN packet, which
4379 * matches existing state (modulo TCP window check). Therefore packet
4380 * must be sent on behalf of destination.
4381 *
4382 * We expect sender to remain either silent, or send RST packet
4383 * so both, firewall and remote peer, can purge dead state from
4384 * memory.
4385 */
4386 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4387 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4388 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4389 s->rule->rtableid);
4390 }
4391
4392 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4393 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4394 sa_family_t af, struct pf_krule *r, int rtableid)
4395 {
4396 struct pf_send_entry *pfse;
4397 struct mbuf *m0;
4398 struct pf_mtag *pf_mtag;
4399
4400 /* ICMP packet rate limitation. */
4401 switch (af) {
4402 #ifdef INET6
4403 case AF_INET6:
4404 if (icmp6_ratelimit(NULL, type, code))
4405 return;
4406 break;
4407 #endif /* INET6 */
4408 #ifdef INET
4409 case AF_INET:
4410 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4411 return;
4412 break;
4413 #endif /* INET */
4414 }
4415
4416 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4417 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4418 if (pfse == NULL)
4419 return;
4420
4421 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4422 free(pfse, M_PFTEMP);
4423 return;
4424 }
4425
4426 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4427 free(pfse, M_PFTEMP);
4428 return;
4429 }
4430 /* XXX: revisit */
4431 m0->m_flags |= M_SKIP_FIREWALL;
4432
4433 if (rtableid >= 0)
4434 M_SETFIB(m0, rtableid);
4435
4436 #ifdef ALTQ
4437 if (r->qid) {
4438 pf_mtag->qid = r->qid;
4439 /* add hints for ecn */
4440 pf_mtag->hdr = mtod(m0, struct ip *);
4441 }
4442 #endif /* ALTQ */
4443
4444 switch (af) {
4445 #ifdef INET
4446 case AF_INET:
4447 pfse->pfse_type = PFSE_ICMP;
4448 break;
4449 #endif /* INET */
4450 #ifdef INET6
4451 case AF_INET6:
4452 pfse->pfse_type = PFSE_ICMP6;
4453 break;
4454 #endif /* INET6 */
4455 }
4456 pfse->pfse_m = m0;
4457 pfse->icmpopts.type = type;
4458 pfse->icmpopts.code = code;
4459 pfse->icmpopts.mtu = mtu;
4460 pf_send(pfse);
4461 }
4462
4463 /*
4464 * Return ((n = 0) == (a = b [with mask m]))
4465 * Note: n != 0 => returns (a != b [with mask m])
4466 */
4467 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4468 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4469 const struct pf_addr *b, sa_family_t af)
4470 {
4471 switch (af) {
4472 #ifdef INET
4473 case AF_INET:
4474 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4475 return (n == 0);
4476 break;
4477 #endif /* INET */
4478 #ifdef INET6
4479 case AF_INET6:
4480 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4481 return (n == 0);
4482 break;
4483 #endif /* INET6 */
4484 }
4485
4486 return (n != 0);
4487 }
4488
4489 /*
4490 * Return 1 if b <= a <= e, otherwise return 0.
4491 */
4492 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4493 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4494 const struct pf_addr *a, sa_family_t af)
4495 {
4496 switch (af) {
4497 #ifdef INET
4498 case AF_INET:
4499 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4500 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4501 return (0);
4502 break;
4503 #endif /* INET */
4504 #ifdef INET6
4505 case AF_INET6: {
4506 int i;
4507
4508 /* check a >= b */
4509 for (i = 0; i < 4; ++i)
4510 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4511 break;
4512 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4513 return (0);
4514 /* check a <= e */
4515 for (i = 0; i < 4; ++i)
4516 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4517 break;
4518 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4519 return (0);
4520 break;
4521 }
4522 #endif /* INET6 */
4523 }
4524 return (1);
4525 }
4526
4527 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4528 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4529 {
4530 switch (op) {
4531 case PF_OP_IRG:
4532 return ((p > a1) && (p < a2));
4533 case PF_OP_XRG:
4534 return ((p < a1) || (p > a2));
4535 case PF_OP_RRG:
4536 return ((p >= a1) && (p <= a2));
4537 case PF_OP_EQ:
4538 return (p == a1);
4539 case PF_OP_NE:
4540 return (p != a1);
4541 case PF_OP_LT:
4542 return (p < a1);
4543 case PF_OP_LE:
4544 return (p <= a1);
4545 case PF_OP_GT:
4546 return (p > a1);
4547 case PF_OP_GE:
4548 return (p >= a1);
4549 }
4550 return (0); /* never reached */
4551 }
4552
4553 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4554 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4555 {
4556 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4557 }
4558
4559 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4560 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4561 {
4562 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4563 return (0);
4564 return (pf_match(op, a1, a2, u));
4565 }
4566
4567 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4568 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4569 {
4570 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4571 return (0);
4572 return (pf_match(op, a1, a2, g));
4573 }
4574
4575 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4576 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4577 {
4578 if (*tag == -1)
4579 *tag = mtag;
4580
4581 return ((!r->match_tag_not && r->match_tag == *tag) ||
4582 (r->match_tag_not && r->match_tag != *tag));
4583 }
4584
4585 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4586 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4587 {
4588 struct ifnet *ifp = m->m_pkthdr.rcvif;
4589 struct pfi_kkif *kif;
4590
4591 if (ifp == NULL)
4592 return (0);
4593
4594 kif = (struct pfi_kkif *)ifp->if_pf_kif;
4595
4596 if (kif == NULL) {
4597 DPFPRINTF(PF_DEBUG_URGENT,
4598 ("%s: kif == NULL, @%d via %s\n", __func__, r->nr,
4599 r->rcv_ifname));
4600 return (0);
4601 }
4602
4603 return (pfi_kkif_match(r->rcv_kif, kif));
4604 }
4605
4606 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4607 pf_tag_packet(struct pf_pdesc *pd, int tag)
4608 {
4609
4610 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4611
4612 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4613 return (ENOMEM);
4614
4615 pd->pf_mtag->tag = tag;
4616
4617 return (0);
4618 }
4619
4620 /*
4621 * XXX: We rely on malloc(9) returning pointer aligned addresses.
4622 */
4623 #define PF_ANCHORSTACK_MATCH 0x00000001
4624 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4625
4626 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4627 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4628 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4629 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4630 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4631 } while (0)
4632
4633 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r)4634 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r)
4635 {
4636 enum pf_test_status rv;
4637
4638 PF_RULES_RASSERT();
4639
4640 if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
4641 printf("%s: anchor stack overflow on %s\n",
4642 __func__, r->anchor->name);
4643 return (PF_TEST_FAIL);
4644 }
4645
4646 ctx->depth++;
4647
4648 if (r->anchor_wildcard) {
4649 struct pf_kanchor *child;
4650 rv = PF_TEST_OK;
4651 RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
4652 rv = pf_match_rule(ctx, &child->ruleset);
4653 if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
4654 /*
4655 * we either hit a rule with quick action
4656 * (more likely), or hit some runtime
4657 * error (e.g. pool_get() failure).
4658 */
4659 break;
4660 }
4661 }
4662 } else {
4663 rv = pf_match_rule(ctx, &r->anchor->ruleset);
4664 }
4665
4666 ctx->depth--;
4667
4668 return (rv);
4669 }
4670
4671 struct pf_keth_anchor_stackframe {
4672 struct pf_keth_ruleset *rs;
4673 struct pf_keth_rule *r; /* XXX: + match bit */
4674 struct pf_keth_anchor *child;
4675 };
4676
4677 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4678 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4679 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4680 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4681 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4682 } while (0)
4683
4684 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4685 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4686 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4687 struct pf_keth_rule **a, int *match)
4688 {
4689 struct pf_keth_anchor_stackframe *f;
4690
4691 NET_EPOCH_ASSERT();
4692
4693 if (match)
4694 *match = 0;
4695 if (*depth >= PF_ANCHOR_STACK_MAX) {
4696 printf("%s: anchor stack overflow on %s\n",
4697 __func__, (*r)->anchor->name);
4698 *r = TAILQ_NEXT(*r, entries);
4699 return;
4700 } else if (*depth == 0 && a != NULL)
4701 *a = *r;
4702 f = stack + (*depth)++;
4703 f->rs = *rs;
4704 f->r = *r;
4705 if ((*r)->anchor_wildcard) {
4706 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4707
4708 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4709 *r = NULL;
4710 return;
4711 }
4712 *rs = &f->child->ruleset;
4713 } else {
4714 f->child = NULL;
4715 *rs = &(*r)->anchor->ruleset;
4716 }
4717 *r = TAILQ_FIRST((*rs)->active.rules);
4718 }
4719
4720 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4721 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4722 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4723 struct pf_keth_rule **a, int *match)
4724 {
4725 struct pf_keth_anchor_stackframe *f;
4726 struct pf_keth_rule *fr;
4727 int quick = 0;
4728
4729 NET_EPOCH_ASSERT();
4730
4731 do {
4732 if (*depth <= 0)
4733 break;
4734 f = stack + *depth - 1;
4735 fr = PF_ETH_ANCHOR_RULE(f);
4736 if (f->child != NULL) {
4737 /*
4738 * This block traverses through
4739 * a wildcard anchor.
4740 */
4741 if (match != NULL && *match) {
4742 /*
4743 * If any of "*" matched, then
4744 * "foo/ *" matched, mark frame
4745 * appropriately.
4746 */
4747 PF_ETH_ANCHOR_SET_MATCH(f);
4748 *match = 0;
4749 }
4750 f->child = RB_NEXT(pf_keth_anchor_node,
4751 &fr->anchor->children, f->child);
4752 if (f->child != NULL) {
4753 *rs = &f->child->ruleset;
4754 *r = TAILQ_FIRST((*rs)->active.rules);
4755 if (*r == NULL)
4756 continue;
4757 else
4758 break;
4759 }
4760 }
4761 (*depth)--;
4762 if (*depth == 0 && a != NULL)
4763 *a = NULL;
4764 *rs = f->rs;
4765 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4766 quick = fr->quick;
4767 *r = TAILQ_NEXT(fr, entries);
4768 } while (*r == NULL);
4769
4770 return (quick);
4771 }
4772
4773 #ifdef INET6
4774 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4775 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4776 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4777 {
4778 switch (af) {
4779 #ifdef INET
4780 case AF_INET:
4781 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4782 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4783 break;
4784 #endif /* INET */
4785 case AF_INET6:
4786 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4787 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4788 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4789 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4790 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4791 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4792 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4793 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4794 break;
4795 }
4796 }
4797
4798 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4799 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4800 {
4801 switch (af) {
4802 #ifdef INET
4803 case AF_INET:
4804 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4805 break;
4806 #endif /* INET */
4807 case AF_INET6:
4808 if (addr->addr32[3] == 0xffffffff) {
4809 addr->addr32[3] = 0;
4810 if (addr->addr32[2] == 0xffffffff) {
4811 addr->addr32[2] = 0;
4812 if (addr->addr32[1] == 0xffffffff) {
4813 addr->addr32[1] = 0;
4814 addr->addr32[0] =
4815 htonl(ntohl(addr->addr32[0]) + 1);
4816 } else
4817 addr->addr32[1] =
4818 htonl(ntohl(addr->addr32[1]) + 1);
4819 } else
4820 addr->addr32[2] =
4821 htonl(ntohl(addr->addr32[2]) + 1);
4822 } else
4823 addr->addr32[3] =
4824 htonl(ntohl(addr->addr32[3]) + 1);
4825 break;
4826 }
4827 }
4828 #endif /* INET6 */
4829
4830 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4831 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4832 {
4833 /*
4834 * Modern rules use the same flags in rules as they do in states.
4835 */
4836 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4837 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4838
4839 /*
4840 * Old-style scrub rules have different flags which need to be translated.
4841 */
4842 if (r->rule_flag & PFRULE_RANDOMID)
4843 a->flags |= PFSTATE_RANDOMID;
4844 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4845 a->flags |= PFSTATE_SETTOS;
4846 a->set_tos = r->set_tos;
4847 }
4848
4849 if (r->qid)
4850 a->qid = r->qid;
4851 if (r->pqid)
4852 a->pqid = r->pqid;
4853 if (r->rtableid >= 0)
4854 a->rtableid = r->rtableid;
4855 a->log |= r->log;
4856 if (r->min_ttl)
4857 a->min_ttl = r->min_ttl;
4858 if (r->max_mss)
4859 a->max_mss = r->max_mss;
4860 if (r->dnpipe)
4861 a->dnpipe = r->dnpipe;
4862 if (r->dnrpipe)
4863 a->dnrpipe = r->dnrpipe;
4864 if (r->dnpipe || r->dnrpipe) {
4865 if (r->free_flags & PFRULE_DN_IS_PIPE)
4866 a->flags |= PFSTATE_DN_IS_PIPE;
4867 else
4868 a->flags &= ~PFSTATE_DN_IS_PIPE;
4869 }
4870 if (r->scrub_flags & PFSTATE_SETPRIO) {
4871 a->set_prio[0] = r->set_prio[0];
4872 a->set_prio[1] = r->set_prio[1];
4873 }
4874 if (r->allow_opts)
4875 a->allow_opts = r->allow_opts;
4876 if (r->max_pkt_size)
4877 a->max_pkt_size = r->max_pkt_size;
4878 }
4879
4880 int
pf_socket_lookup(struct pf_pdesc * pd)4881 pf_socket_lookup(struct pf_pdesc *pd)
4882 {
4883 struct pf_addr *saddr, *daddr;
4884 u_int16_t sport, dport;
4885 struct inpcbinfo *pi;
4886 struct inpcb *inp;
4887
4888 pd->lookup.uid = UID_MAX;
4889 pd->lookup.gid = GID_MAX;
4890
4891 switch (pd->proto) {
4892 case IPPROTO_TCP:
4893 sport = pd->hdr.tcp.th_sport;
4894 dport = pd->hdr.tcp.th_dport;
4895 pi = &V_tcbinfo;
4896 break;
4897 case IPPROTO_UDP:
4898 sport = pd->hdr.udp.uh_sport;
4899 dport = pd->hdr.udp.uh_dport;
4900 pi = &V_udbinfo;
4901 break;
4902 default:
4903 return (-1);
4904 }
4905 if (pd->dir == PF_IN) {
4906 saddr = pd->src;
4907 daddr = pd->dst;
4908 } else {
4909 u_int16_t p;
4910
4911 p = sport;
4912 sport = dport;
4913 dport = p;
4914 saddr = pd->dst;
4915 daddr = pd->src;
4916 }
4917 switch (pd->af) {
4918 #ifdef INET
4919 case AF_INET:
4920 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4921 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4922 if (inp == NULL) {
4923 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4924 daddr->v4, dport, INPLOOKUP_WILDCARD |
4925 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4926 if (inp == NULL)
4927 return (-1);
4928 }
4929 break;
4930 #endif /* INET */
4931 #ifdef INET6
4932 case AF_INET6:
4933 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4934 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4935 if (inp == NULL) {
4936 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4937 &daddr->v6, dport, INPLOOKUP_WILDCARD |
4938 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4939 if (inp == NULL)
4940 return (-1);
4941 }
4942 break;
4943 #endif /* INET6 */
4944 default:
4945 unhandled_af(pd->af);
4946 }
4947 INP_RLOCK_ASSERT(inp);
4948 pd->lookup.uid = inp->inp_cred->cr_uid;
4949 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4950 INP_RUNLOCK(inp);
4951
4952 return (1);
4953 }
4954
4955 /* post: r => (r[0] == type /\ r[1] >= min_typelen >= 2 "validity"
4956 * /\ (eoh - r) >= min_typelen >= 2 "safety" )
4957 *
4958 * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
4959 */
4960 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)4961 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
4962 u_int8_t min_typelen)
4963 {
4964 uint8_t *eoh = opts + hlen;
4965
4966 if (min_typelen < 2)
4967 return (NULL);
4968
4969 while ((eoh - opt) >= min_typelen) {
4970 switch (*opt) {
4971 case TCPOPT_EOL:
4972 /* FALLTHROUGH - Workaround the failure of some
4973 systems to NOP-pad their bzero'd option buffers,
4974 producing spurious EOLs */
4975 case TCPOPT_NOP:
4976 opt++;
4977 continue;
4978 default:
4979 if (opt[0] == type &&
4980 opt[1] >= min_typelen)
4981 return (opt);
4982 }
4983
4984 opt += MAX(opt[1], 2); /* evade infinite loops */
4985 }
4986
4987 return (NULL);
4988 }
4989
4990 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)4991 pf_get_wscale(struct pf_pdesc *pd)
4992 {
4993 int olen;
4994 uint8_t opts[MAX_TCPOPTLEN], *opt;
4995 uint8_t wscale = 0;
4996
4997 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
4998 if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
4999 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5000 return (0);
5001
5002 opt = opts;
5003 while ((opt = pf_find_tcpopt(opt, opts, olen,
5004 TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5005 wscale = opt[2];
5006 wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5007 wscale |= PF_WSCALE_FLAG;
5008
5009 opt += opt[1];
5010 }
5011
5012 return (wscale);
5013 }
5014
5015 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5016 pf_get_mss(struct pf_pdesc *pd)
5017 {
5018 int olen;
5019 uint8_t opts[MAX_TCPOPTLEN], *opt;
5020 u_int16_t mss = V_tcp_mssdflt;
5021
5022 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5023 if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5024 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5025 return (0);
5026
5027 opt = opts;
5028 while ((opt = pf_find_tcpopt(opt, opts, olen,
5029 TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5030 memcpy(&mss, (opt + 2), 2);
5031 mss = ntohs(mss);
5032 opt += opt[1];
5033 }
5034
5035 return (mss);
5036 }
5037
5038 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5039 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5040 {
5041 struct nhop_object *nh;
5042 #ifdef INET6
5043 struct in6_addr dst6;
5044 uint32_t scopeid;
5045 #endif /* INET6 */
5046 int hlen = 0;
5047 uint16_t mss = 0;
5048
5049 NET_EPOCH_ASSERT();
5050
5051 switch (af) {
5052 #ifdef INET
5053 case AF_INET:
5054 hlen = sizeof(struct ip);
5055 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5056 if (nh != NULL)
5057 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5058 break;
5059 #endif /* INET */
5060 #ifdef INET6
5061 case AF_INET6:
5062 hlen = sizeof(struct ip6_hdr);
5063 in6_splitscope(&addr->v6, &dst6, &scopeid);
5064 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5065 if (nh != NULL)
5066 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5067 break;
5068 #endif /* INET6 */
5069 }
5070
5071 mss = max(V_tcp_mssdflt, mss);
5072 mss = min(mss, offer);
5073 mss = max(mss, 64); /* sanity - at least max opt space */
5074 return (mss);
5075 }
5076
5077 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5078 pf_tcp_iss(struct pf_pdesc *pd)
5079 {
5080 SHA512_CTX ctx;
5081 union {
5082 uint8_t bytes[SHA512_DIGEST_LENGTH];
5083 uint32_t words[1];
5084 } digest;
5085
5086 if (V_pf_tcp_secret_init == 0) {
5087 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5088 SHA512_Init(&V_pf_tcp_secret_ctx);
5089 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5090 sizeof(V_pf_tcp_secret));
5091 V_pf_tcp_secret_init = 1;
5092 }
5093
5094 ctx = V_pf_tcp_secret_ctx;
5095
5096 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5097 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5098 switch (pd->af) {
5099 case AF_INET6:
5100 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5101 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5102 break;
5103 case AF_INET:
5104 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5105 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5106 break;
5107 }
5108 SHA512_Final(digest.bytes, &ctx);
5109 V_pf_tcp_iss_off += 4096;
5110 #define ISN_RANDOM_INCREMENT (4096 - 1)
5111 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5112 V_pf_tcp_iss_off);
5113 #undef ISN_RANDOM_INCREMENT
5114 }
5115
5116 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5117 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5118 {
5119 bool match = true;
5120
5121 /* Always matches if not set */
5122 if (! r->isset)
5123 return (!r->neg);
5124
5125 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5126 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5127 match = false;
5128 break;
5129 }
5130 }
5131
5132 return (match ^ r->neg);
5133 }
5134
5135 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5136 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5137 {
5138 if (*tag == -1)
5139 *tag = mtag;
5140
5141 return ((!r->match_tag_not && r->match_tag == *tag) ||
5142 (r->match_tag_not && r->match_tag != *tag));
5143 }
5144
5145 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5146 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5147 {
5148 /* If we don't have the interface drop the packet. */
5149 if (ifp == NULL) {
5150 m_freem(m);
5151 return;
5152 }
5153
5154 switch (ifp->if_type) {
5155 case IFT_ETHER:
5156 case IFT_XETHER:
5157 case IFT_L2VLAN:
5158 case IFT_BRIDGE:
5159 case IFT_IEEE8023ADLAG:
5160 break;
5161 default:
5162 m_freem(m);
5163 return;
5164 }
5165
5166 ifp->if_transmit(ifp, m);
5167 }
5168
5169 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5170 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5171 {
5172 #ifdef INET
5173 struct ip ip;
5174 #endif /* INET */
5175 #ifdef INET6
5176 struct ip6_hdr ip6;
5177 #endif /* INET6 */
5178 struct mbuf *m = *m0;
5179 struct ether_header *e;
5180 struct pf_keth_rule *r, *rm, *a = NULL;
5181 struct pf_keth_ruleset *ruleset = NULL;
5182 struct pf_mtag *mtag;
5183 struct pf_keth_ruleq *rules;
5184 struct pf_addr *src = NULL, *dst = NULL;
5185 struct pfi_kkif *bridge_to;
5186 sa_family_t af = 0;
5187 uint16_t proto;
5188 int asd = 0, match = 0;
5189 int tag = -1;
5190 uint8_t action;
5191 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACK_MAX];
5192
5193 MPASS(kif->pfik_ifp->if_vnet == curvnet);
5194 NET_EPOCH_ASSERT();
5195
5196 PF_RULES_RLOCK_TRACKER;
5197
5198 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5199
5200 mtag = pf_find_mtag(m);
5201 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5202 /* Dummynet re-injects packets after they've
5203 * completed their delay. We've already
5204 * processed them, so pass unconditionally. */
5205
5206 /* But only once. We may see the packet multiple times (e.g.
5207 * PFIL_IN/PFIL_OUT). */
5208 pf_dummynet_flag_remove(m, mtag);
5209
5210 return (PF_PASS);
5211 }
5212
5213 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5214 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5215 DPFPRINTF(PF_DEBUG_URGENT,
5216 ("%s: m_len < sizeof(struct ether_header)"
5217 ", pullup failed\n", __func__));
5218 return (PF_DROP);
5219 }
5220 e = mtod(m, struct ether_header *);
5221 proto = ntohs(e->ether_type);
5222
5223 switch (proto) {
5224 #ifdef INET
5225 case ETHERTYPE_IP: {
5226 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5227 sizeof(ip)))
5228 return (PF_DROP);
5229
5230 af = AF_INET;
5231 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5232 (caddr_t)&ip);
5233 src = (struct pf_addr *)&ip.ip_src;
5234 dst = (struct pf_addr *)&ip.ip_dst;
5235 break;
5236 }
5237 #endif /* INET */
5238 #ifdef INET6
5239 case ETHERTYPE_IPV6: {
5240 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5241 sizeof(ip6)))
5242 return (PF_DROP);
5243
5244 af = AF_INET6;
5245 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5246 (caddr_t)&ip6);
5247 src = (struct pf_addr *)&ip6.ip6_src;
5248 dst = (struct pf_addr *)&ip6.ip6_dst;
5249 break;
5250 }
5251 #endif /* INET6 */
5252 }
5253
5254 PF_RULES_RLOCK();
5255
5256 ruleset = V_pf_keth;
5257 rules = atomic_load_ptr(&ruleset->active.rules);
5258 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5259 counter_u64_add(r->evaluations, 1);
5260 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5261
5262 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5263 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5264 "kif");
5265 r = r->skip[PFE_SKIP_IFP].ptr;
5266 }
5267 else if (r->direction && r->direction != dir) {
5268 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5269 "dir");
5270 r = r->skip[PFE_SKIP_DIR].ptr;
5271 }
5272 else if (r->proto && r->proto != proto) {
5273 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5274 "proto");
5275 r = r->skip[PFE_SKIP_PROTO].ptr;
5276 }
5277 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5278 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5279 "src");
5280 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5281 }
5282 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5283 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5284 "dst");
5285 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5286 }
5287 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5288 r->ipsrc.neg, kif, M_GETFIB(m))) {
5289 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5290 "ip_src");
5291 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5292 }
5293 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5294 r->ipdst.neg, kif, M_GETFIB(m))) {
5295 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5296 "ip_dst");
5297 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5298 }
5299 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5300 mtag ? mtag->tag : 0)) {
5301 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5302 "match_tag");
5303 r = TAILQ_NEXT(r, entries);
5304 }
5305 else {
5306 if (r->tag)
5307 tag = r->tag;
5308 if (r->anchor == NULL) {
5309 /* Rule matches */
5310 rm = r;
5311
5312 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5313
5314 if (r->quick)
5315 break;
5316
5317 r = TAILQ_NEXT(r, entries);
5318 } else {
5319 pf_step_into_keth_anchor(anchor_stack, &asd,
5320 &ruleset, &r, &a, &match);
5321 }
5322 }
5323 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5324 &ruleset, &r, &a, &match))
5325 break;
5326 }
5327
5328 r = rm;
5329
5330 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5331
5332 /* Default to pass. */
5333 if (r == NULL) {
5334 PF_RULES_RUNLOCK();
5335 return (PF_PASS);
5336 }
5337
5338 /* Execute action. */
5339 counter_u64_add(r->packets[dir == PF_OUT], 1);
5340 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5341 pf_update_timestamp(r);
5342
5343 /* Shortcut. Don't tag if we're just going to drop anyway. */
5344 if (r->action == PF_DROP) {
5345 PF_RULES_RUNLOCK();
5346 return (PF_DROP);
5347 }
5348
5349 if (tag > 0) {
5350 if (mtag == NULL)
5351 mtag = pf_get_mtag(m);
5352 if (mtag == NULL) {
5353 PF_RULES_RUNLOCK();
5354 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5355 return (PF_DROP);
5356 }
5357 mtag->tag = tag;
5358 }
5359
5360 if (r->qid != 0) {
5361 if (mtag == NULL)
5362 mtag = pf_get_mtag(m);
5363 if (mtag == NULL) {
5364 PF_RULES_RUNLOCK();
5365 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5366 return (PF_DROP);
5367 }
5368 mtag->qid = r->qid;
5369 }
5370
5371 action = r->action;
5372 bridge_to = r->bridge_to;
5373
5374 /* Dummynet */
5375 if (r->dnpipe) {
5376 struct ip_fw_args dnflow;
5377
5378 /* Drop packet if dummynet is not loaded. */
5379 if (ip_dn_io_ptr == NULL) {
5380 PF_RULES_RUNLOCK();
5381 m_freem(m);
5382 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5383 return (PF_DROP);
5384 }
5385 if (mtag == NULL)
5386 mtag = pf_get_mtag(m);
5387 if (mtag == NULL) {
5388 PF_RULES_RUNLOCK();
5389 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5390 return (PF_DROP);
5391 }
5392
5393 bzero(&dnflow, sizeof(dnflow));
5394
5395 /* We don't have port numbers here, so we set 0. That means
5396 * that we'll be somewhat limited in distinguishing flows (i.e.
5397 * only based on IP addresses, not based on port numbers), but
5398 * it's better than nothing. */
5399 dnflow.f_id.dst_port = 0;
5400 dnflow.f_id.src_port = 0;
5401 dnflow.f_id.proto = 0;
5402
5403 dnflow.rule.info = r->dnpipe;
5404 dnflow.rule.info |= IPFW_IS_DUMMYNET;
5405 if (r->dnflags & PFRULE_DN_IS_PIPE)
5406 dnflow.rule.info |= IPFW_IS_PIPE;
5407
5408 dnflow.f_id.extra = dnflow.rule.info;
5409
5410 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5411 dnflow.flags |= IPFW_ARGS_ETHER;
5412 dnflow.ifp = kif->pfik_ifp;
5413
5414 switch (af) {
5415 case AF_INET:
5416 dnflow.f_id.addr_type = 4;
5417 dnflow.f_id.src_ip = src->v4.s_addr;
5418 dnflow.f_id.dst_ip = dst->v4.s_addr;
5419 break;
5420 case AF_INET6:
5421 dnflow.flags |= IPFW_ARGS_IP6;
5422 dnflow.f_id.addr_type = 6;
5423 dnflow.f_id.src_ip6 = src->v6;
5424 dnflow.f_id.dst_ip6 = dst->v6;
5425 break;
5426 }
5427
5428 PF_RULES_RUNLOCK();
5429
5430 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5431 ip_dn_io_ptr(m0, &dnflow);
5432 if (*m0 != NULL)
5433 pf_dummynet_flag_remove(m, mtag);
5434 } else {
5435 PF_RULES_RUNLOCK();
5436 }
5437
5438 if (action == PF_PASS && bridge_to) {
5439 pf_bridge_to(bridge_to->pfik_ifp, *m0);
5440 *m0 = NULL; /* We've eaten the packet. */
5441 }
5442
5443 return (action);
5444 }
5445
5446 #define PF_TEST_ATTRIB(t, a) \
5447 if (t) { \
5448 r = a; \
5449 continue; \
5450 } else do { \
5451 } while (0)
5452
5453 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5454 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5455 {
5456 struct pf_pdesc *pd = ctx->pd;
5457 u_short transerror;
5458 u_int8_t nat_action;
5459
5460 if (r->rule_flag & PFRULE_AFTO) {
5461 /* Don't translate if there was an old style NAT rule */
5462 if (ctx->nr != NULL)
5463 return (PFRES_TRANSLATE);
5464
5465 /* pass af-to rules, unsupported on match rules */
5466 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5467 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5468 ctx->nat_pool = &(r->nat);
5469 ctx->nr = r;
5470 pd->naf = r->naf;
5471 if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5472 return (PFRES_TRANSLATE);
5473 }
5474 return (PFRES_MATCH);
5475 } else if (r->rdr.cur || r->nat.cur) {
5476 /* Don't translate if there was an old style NAT rule */
5477 if (ctx->nr != NULL)
5478 return (PFRES_TRANSLATE);
5479
5480 /* match/pass nat-to/rdr-to rules */
5481 ctx->nr = r;
5482 if (r->nat.cur) {
5483 nat_action = PF_NAT;
5484 ctx->nat_pool = &(r->nat);
5485 } else {
5486 nat_action = PF_RDR;
5487 ctx->nat_pool = &(r->rdr);
5488 }
5489
5490 transerror = pf_get_transaddr(ctx, ctx->nr,
5491 nat_action, ctx->nat_pool);
5492 if (transerror == PFRES_MATCH) {
5493 ctx->rewrite += pf_translate_compat(ctx);
5494 return(PFRES_MATCH);
5495 }
5496 return (transerror);
5497 }
5498
5499 return (PFRES_MAX);
5500 }
5501
5502 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset)5503 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset)
5504 {
5505 struct pf_krule_item *ri;
5506 struct pf_krule *r;
5507 struct pf_krule *save_a;
5508 struct pf_kruleset *save_aruleset;
5509 struct pf_pdesc *pd = ctx->pd;
5510 u_short transerror;
5511
5512 r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5513 while (r != NULL) {
5514 if (ctx->pd->related_rule) {
5515 *ctx->rm = ctx->pd->related_rule;
5516 break;
5517 }
5518 pf_counter_u64_add(&r->evaluations, 1);
5519 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5520 r->skip[PF_SKIP_IFP]);
5521 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5522 r->skip[PF_SKIP_DIR]);
5523 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5524 r->skip[PF_SKIP_AF]);
5525 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5526 r->skip[PF_SKIP_PROTO]);
5527 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5528 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5529 r->skip[PF_SKIP_SRC_ADDR]);
5530 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5531 r->dst.neg, NULL, M_GETFIB(pd->m)),
5532 r->skip[PF_SKIP_DST_ADDR]);
5533 switch (pd->virtual_proto) {
5534 case PF_VPROTO_FRAGMENT:
5535 /* tcp/udp only. port_op always 0 in other cases */
5536 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5537 TAILQ_NEXT(r, entries));
5538 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5539 TAILQ_NEXT(r, entries));
5540 /* icmp only. type/code always 0 in other cases */
5541 PF_TEST_ATTRIB((r->type || r->code),
5542 TAILQ_NEXT(r, entries));
5543 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5544 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5545 TAILQ_NEXT(r, entries));
5546 break;
5547
5548 case IPPROTO_TCP:
5549 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
5550 != r->flags,
5551 TAILQ_NEXT(r, entries));
5552 /* FALLTHROUGH */
5553 case IPPROTO_SCTP:
5554 case IPPROTO_UDP:
5555 /* tcp/udp only. port_op always 0 in other cases */
5556 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5557 r->src.port[0], r->src.port[1], pd->nsport),
5558 r->skip[PF_SKIP_SRC_PORT]);
5559 /* tcp/udp only. port_op always 0 in other cases */
5560 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5561 r->dst.port[0], r->dst.port[1], pd->ndport),
5562 r->skip[PF_SKIP_DST_PORT]);
5563 /* tcp/udp only. uid.op always 0 in other cases */
5564 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5565 pf_socket_lookup(pd), 1)) &&
5566 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5567 pd->lookup.uid),
5568 TAILQ_NEXT(r, entries));
5569 /* tcp/udp only. gid.op always 0 in other cases */
5570 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5571 pf_socket_lookup(pd), 1)) &&
5572 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5573 pd->lookup.gid),
5574 TAILQ_NEXT(r, entries));
5575 break;
5576
5577 case IPPROTO_ICMP:
5578 case IPPROTO_ICMPV6:
5579 /* icmp only. type always 0 in other cases */
5580 PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
5581 TAILQ_NEXT(r, entries));
5582 /* icmp only. type always 0 in other cases */
5583 PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
5584 TAILQ_NEXT(r, entries));
5585 break;
5586
5587 default:
5588 break;
5589 }
5590 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5591 TAILQ_NEXT(r, entries));
5592 PF_TEST_ATTRIB(r->prio &&
5593 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5594 TAILQ_NEXT(r, entries));
5595 PF_TEST_ATTRIB(r->prob &&
5596 r->prob <= arc4random(),
5597 TAILQ_NEXT(r, entries));
5598 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
5599 &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
5600 TAILQ_NEXT(r, entries));
5601 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5602 r->rcvifnot),
5603 TAILQ_NEXT(r, entries));
5604 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5605 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5606 TAILQ_NEXT(r, entries));
5607 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5608 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5609 pf_osfp_fingerprint(pd, ctx->th),
5610 r->os_fingerprint)),
5611 TAILQ_NEXT(r, entries));
5612 /* must be last! */
5613 if (r->pktrate.limit) {
5614 PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
5615 TAILQ_NEXT(r, entries));
5616 }
5617 /* FALLTHROUGH */
5618 if (r->tag)
5619 ctx->tag = r->tag;
5620 if (r->anchor == NULL) {
5621 if (r->action == PF_MATCH) {
5622 /*
5623 * Apply translations before increasing counters,
5624 * in case it fails.
5625 */
5626 transerror = pf_rule_apply_nat(ctx, r);
5627 switch (transerror) {
5628 case PFRES_MATCH:
5629 /* Translation action found in rule and applied successfully */
5630 case PFRES_MAX:
5631 /* No translation action found in rule */
5632 break;
5633 default:
5634 /* Translation action found in rule but failed to apply */
5635 REASON_SET(&ctx->reason, transerror);
5636 return (PF_TEST_FAIL);
5637 }
5638 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5639 if (ri == NULL) {
5640 REASON_SET(&ctx->reason, PFRES_MEMORY);
5641 return (PF_TEST_FAIL);
5642 }
5643 ri->r = r;
5644 SLIST_INSERT_HEAD(&ctx->rules, ri, entry);
5645 pf_counter_u64_critical_enter();
5646 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5647 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5648 pf_counter_u64_critical_exit();
5649 pf_rule_to_actions(r, &pd->act);
5650 if (r->log)
5651 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5652 ctx->a, ruleset, pd, 1, NULL);
5653 } else {
5654 /*
5655 * found matching r
5656 */
5657 *ctx->rm = r;
5658 /*
5659 * anchor, with ruleset, where r belongs to
5660 */
5661 *ctx->am = ctx->a;
5662 /*
5663 * ruleset where r belongs to
5664 */
5665 *ctx->rsm = ruleset;
5666 /*
5667 * ruleset, where anchor belongs to.
5668 */
5669 ctx->arsm = ctx->aruleset;
5670 }
5671 if (pd->act.log & PF_LOG_MATCHES)
5672 pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules);
5673 if (r->quick) {
5674 ctx->test_status = PF_TEST_QUICK;
5675 break;
5676 }
5677 } else {
5678 save_a = ctx->a;
5679 save_aruleset = ctx->aruleset;
5680
5681 ctx->a = r; /* remember anchor */
5682 ctx->aruleset = ruleset; /* and its ruleset */
5683 if (ctx->a->quick)
5684 ctx->test_status = PF_TEST_QUICK;
5685 /*
5686 * Note: we don't need to restore if we are not going
5687 * to continue with ruleset evaluation.
5688 */
5689 if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) {
5690 break;
5691 }
5692 ctx->a = save_a;
5693 ctx->aruleset = save_aruleset;
5694 }
5695 r = TAILQ_NEXT(r, entries);
5696 }
5697
5698 return (ctx->test_status);
5699 }
5700
5701 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp)5702 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5703 struct pf_pdesc *pd, struct pf_krule **am,
5704 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp)
5705 {
5706 struct pf_krule *r = NULL;
5707 struct pf_kruleset *ruleset = NULL;
5708 struct pf_krule_item *ri;
5709 struct pf_test_ctx ctx;
5710 u_short transerror;
5711 int action = PF_PASS;
5712 u_int16_t bproto_sum = 0, bip_sum = 0;
5713 enum pf_test_status rv;
5714
5715 PF_RULES_RASSERT();
5716
5717 bzero(&ctx, sizeof(ctx));
5718 ctx.tag = -1;
5719 ctx.pd = pd;
5720 ctx.rm = rm;
5721 ctx.am = am;
5722 ctx.rsm = rsm;
5723 ctx.th = &pd->hdr.tcp;
5724 ctx.reason = *reason;
5725 SLIST_INIT(&ctx.rules);
5726
5727 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5728 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5729
5730 if (inp != NULL) {
5731 INP_LOCK_ASSERT(inp);
5732 pd->lookup.uid = inp->inp_cred->cr_uid;
5733 pd->lookup.gid = inp->inp_cred->cr_groups[0];
5734 pd->lookup.done = 1;
5735 }
5736
5737 if (pd->ip_sum)
5738 bip_sum = *pd->ip_sum;
5739
5740 switch (pd->virtual_proto) {
5741 case IPPROTO_TCP:
5742 bproto_sum = ctx.th->th_sum;
5743 pd->nsport = ctx.th->th_sport;
5744 pd->ndport = ctx.th->th_dport;
5745 break;
5746 case IPPROTO_UDP:
5747 bproto_sum = pd->hdr.udp.uh_sum;
5748 pd->nsport = pd->hdr.udp.uh_sport;
5749 pd->ndport = pd->hdr.udp.uh_dport;
5750 break;
5751 case IPPROTO_SCTP:
5752 pd->nsport = pd->hdr.sctp.src_port;
5753 pd->ndport = pd->hdr.sctp.dest_port;
5754 break;
5755 #ifdef INET
5756 case IPPROTO_ICMP:
5757 MPASS(pd->af == AF_INET);
5758 ctx.icmptype = pd->hdr.icmp.icmp_type;
5759 ctx.icmpcode = pd->hdr.icmp.icmp_code;
5760 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5761 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5762 if (ctx.icmp_dir == PF_IN) {
5763 pd->nsport = ctx.virtual_id;
5764 pd->ndport = ctx.virtual_type;
5765 } else {
5766 pd->nsport = ctx.virtual_type;
5767 pd->ndport = ctx.virtual_id;
5768 }
5769 break;
5770 #endif /* INET */
5771 #ifdef INET6
5772 case IPPROTO_ICMPV6:
5773 MPASS(pd->af == AF_INET6);
5774 ctx.icmptype = pd->hdr.icmp6.icmp6_type;
5775 ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
5776 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5777 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5778 if (ctx.icmp_dir == PF_IN) {
5779 pd->nsport = ctx.virtual_id;
5780 pd->ndport = ctx.virtual_type;
5781 } else {
5782 pd->nsport = ctx.virtual_type;
5783 pd->ndport = ctx.virtual_id;
5784 }
5785
5786 break;
5787 #endif /* INET6 */
5788 default:
5789 pd->nsport = pd->ndport = 0;
5790 break;
5791 }
5792 pd->osport = pd->nsport;
5793 pd->odport = pd->ndport;
5794
5795 /* check packet for BINAT/NAT/RDR */
5796 transerror = pf_get_translation(&ctx);
5797 switch (transerror) {
5798 default:
5799 /* A translation error occurred. */
5800 REASON_SET(&ctx.reason, transerror);
5801 goto cleanup;
5802 case PFRES_MAX:
5803 /* No match. */
5804 break;
5805 case PFRES_MATCH:
5806 KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
5807 KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
5808 if (ctx.nr->log) {
5809 PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
5810 ruleset, pd, 1, NULL);
5811 }
5812
5813 ctx.rewrite += pf_translate_compat(&ctx);
5814 ctx.nat_pool = &(ctx.nr->rdr);
5815 }
5816
5817 ruleset = &pf_main_ruleset;
5818 rv = pf_match_rule(&ctx, ruleset);
5819 if (rv == PF_TEST_FAIL) {
5820 /*
5821 * Reason has been set in pf_match_rule() already.
5822 */
5823 goto cleanup;
5824 }
5825
5826 r = *ctx.rm; /* matching rule */
5827 ctx.a = *ctx.am; /* rule that defines an anchor containing 'r' */
5828 ruleset = *ctx.rsm; /* ruleset of the anchor defined by the rule 'a' */
5829 ctx.aruleset = ctx.arsm; /* ruleset of the 'a' rule itself */
5830
5831 REASON_SET(&ctx.reason, PFRES_MATCH);
5832
5833 /* apply actions for last matching pass/block rule */
5834 pf_rule_to_actions(r, &pd->act);
5835 transerror = pf_rule_apply_nat(&ctx, r);
5836 switch (transerror) {
5837 case PFRES_MATCH:
5838 /* Translation action found in rule and applied successfully */
5839 case PFRES_MAX:
5840 /* No translation action found in rule */
5841 break;
5842 default:
5843 /* Translation action found in rule but failed to apply */
5844 REASON_SET(&ctx.reason, transerror);
5845 goto cleanup;
5846 }
5847
5848 if (r->log) {
5849 if (ctx.rewrite)
5850 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5851 PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
5852 }
5853 if (pd->act.log & PF_LOG_MATCHES)
5854 pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules);
5855 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5856 (r->action == PF_DROP) &&
5857 ((r->rule_flag & PFRULE_RETURNRST) ||
5858 (r->rule_flag & PFRULE_RETURNICMP) ||
5859 (r->rule_flag & PFRULE_RETURN))) {
5860 pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
5861 bip_sum, &ctx.reason, r->rtableid);
5862 }
5863
5864 if (r->action == PF_DROP)
5865 goto cleanup;
5866
5867 if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
5868 REASON_SET(&ctx.reason, PFRES_MEMORY);
5869 goto cleanup;
5870 }
5871 if (pd->act.rtableid >= 0)
5872 M_SETFIB(pd->m, pd->act.rtableid);
5873
5874 if (r->rt) {
5875 struct pf_ksrc_node *sn = NULL;
5876 struct pf_srchash *snh = NULL;
5877 /*
5878 * Set act.rt here instead of in pf_rule_to_actions() because
5879 * it is applied only from the last pass rule.
5880 */
5881 pd->act.rt = r->rt;
5882 /* Don't use REASON_SET, pf_map_addr increases the reason counters */
5883 ctx.reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr,
5884 &pd->act.rt_kif, NULL, &sn, &snh, &(r->route), PF_SN_ROUTE);
5885 if (ctx.reason != 0)
5886 goto cleanup;
5887 }
5888
5889 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5890 (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
5891 (pd->flags & PFDESC_TCP_NORM)))) {
5892 bool nat64;
5893
5894 action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum);
5895 ctx.sk = ctx.nk = NULL;
5896 if (action != PF_PASS) {
5897 pf_udp_mapping_release(ctx.udp_mapping);
5898 if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
5899 ctx.reason == PFRES_MEMORY)
5900 pd->act.log |= PF_LOG_FORCE;
5901 if (action == PF_DROP &&
5902 (r->rule_flag & PFRULE_RETURN))
5903 pf_return(r, ctx.nr, pd, ctx.th,
5904 bproto_sum, bip_sum, &ctx.reason,
5905 pd->act.rtableid);
5906 *reason = ctx.reason;
5907 return (action);
5908 }
5909
5910 nat64 = pd->af != pd->naf;
5911 if (nat64) {
5912 int ret;
5913
5914 if (ctx.sk == NULL)
5915 ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
5916 if (ctx.nk == NULL)
5917 ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
5918
5919 if (pd->dir == PF_IN) {
5920 ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
5921 ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
5922 ctx.sk->port[pd->sidx], ctx.virtual_type,
5923 ctx.icmp_dir);
5924 } else {
5925 ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
5926 ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
5927 ctx.sk->port[pd->didx], ctx.virtual_type,
5928 ctx.icmp_dir);
5929 }
5930
5931 if (ret < 0)
5932 goto cleanup;
5933
5934 ctx.rewrite += ret;
5935
5936 if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
5937 action = PF_AFRT;
5938 }
5939 } else {
5940 while ((ri = SLIST_FIRST(&ctx.rules))) {
5941 SLIST_REMOVE_HEAD(&ctx.rules, entry);
5942 free(ri, M_PF_RULE_ITEM);
5943 }
5944
5945 uma_zfree(V_pf_state_key_z, ctx.sk);
5946 uma_zfree(V_pf_state_key_z, ctx.nk);
5947 ctx.sk = ctx.nk = NULL;
5948 pf_udp_mapping_release(ctx.udp_mapping);
5949 }
5950
5951 /* copy back packet headers if we performed NAT operations */
5952 if (ctx.rewrite)
5953 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5954
5955 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5956 pd->dir == PF_OUT &&
5957 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
5958 /*
5959 * We want the state created, but we dont
5960 * want to send this in case a partner
5961 * firewall has to know about it to allow
5962 * replies through it.
5963 */
5964 *reason = ctx.reason;
5965 return (PF_DEFER);
5966 }
5967
5968 *reason = ctx.reason;
5969 return (action);
5970
5971 cleanup:
5972 while ((ri = SLIST_FIRST(&ctx.rules))) {
5973 SLIST_REMOVE_HEAD(&ctx.rules, entry);
5974 free(ri, M_PF_RULE_ITEM);
5975 }
5976
5977 uma_zfree(V_pf_state_key_z, ctx.sk);
5978 uma_zfree(V_pf_state_key_z, ctx.nk);
5979 pf_udp_mapping_release(ctx.udp_mapping);
5980 *reason = ctx.reason;
5981
5982 return (PF_DROP);
5983 }
5984
5985 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum)5986 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
5987 struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum)
5988 {
5989 struct pf_pdesc *pd = ctx->pd;
5990 struct pf_kstate *s = NULL;
5991 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL };
5992 /*
5993 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
5994 * but for PF_SN_NAT it is different. Don't try optimizing it,
5995 * just store all 3 hashes.
5996 */
5997 struct pf_srchash *snhs[PF_SN_MAX] = { NULL };
5998 struct tcphdr *th = &pd->hdr.tcp;
5999 u_int16_t mss = V_tcp_mssdflt;
6000 u_short sn_reason;
6001 struct pf_krule_item *ri;
6002
6003 /* check maximums */
6004 if (r->max_states &&
6005 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6006 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6007 REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6008 goto csfailed;
6009 }
6010 /* src node for limits */
6011 if ((r->rule_flag & PFRULE_SRCTRACK) &&
6012 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6013 NULL, NULL, PF_SN_LIMIT)) != 0) {
6014 REASON_SET(&ctx->reason, sn_reason);
6015 goto csfailed;
6016 }
6017 /* src node for route-to rule */
6018 if (r->rt) {
6019 if ((r->route.opts & PF_POOL_STICKYADDR) &&
6020 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6021 pd->af, &pd->act.rt_addr, pd->act.rt_kif,
6022 PF_SN_ROUTE)) != 0) {
6023 REASON_SET(&ctx->reason, sn_reason);
6024 goto csfailed;
6025 }
6026 }
6027 /* src node for translation rule */
6028 if (ctx->nr != NULL) {
6029 KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6030 if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6031 (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6032 &ctx->sk->addr[pd->sidx], pd->af, &ctx->nk->addr[1], NULL,
6033 PF_SN_NAT)) != 0 ) {
6034 REASON_SET(&ctx->reason, sn_reason);
6035 goto csfailed;
6036 }
6037 }
6038 s = pf_alloc_state(M_NOWAIT);
6039 if (s == NULL) {
6040 REASON_SET(&ctx->reason, PFRES_MEMORY);
6041 goto csfailed;
6042 }
6043 s->rule = r;
6044 s->nat_rule = ctx->nr;
6045 s->anchor = ctx->a;
6046 memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules));
6047 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6048
6049 if (pd->act.allow_opts)
6050 s->state_flags |= PFSTATE_ALLOWOPTS;
6051 if (r->rule_flag & PFRULE_STATESLOPPY)
6052 s->state_flags |= PFSTATE_SLOPPY;
6053 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6054 s->state_flags |= PFSTATE_SCRUB_TCP;
6055 if ((r->rule_flag & PFRULE_PFLOW) ||
6056 (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6057 s->state_flags |= PFSTATE_PFLOW;
6058
6059 s->act.log = pd->act.log & PF_LOG_ALL;
6060 s->sync_state = PFSYNC_S_NONE;
6061 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6062
6063 if (ctx->nr != NULL)
6064 s->act.log |= ctx->nr->log & PF_LOG_ALL;
6065 switch (pd->proto) {
6066 case IPPROTO_TCP:
6067 s->src.seqlo = ntohl(th->th_seq);
6068 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6069 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6070 r->keep_state == PF_STATE_MODULATE) {
6071 /* Generate sequence number modulator */
6072 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6073 0)
6074 s->src.seqdiff = 1;
6075 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6076 htonl(s->src.seqlo + s->src.seqdiff), 0);
6077 ctx->rewrite = 1;
6078 } else
6079 s->src.seqdiff = 0;
6080 if (tcp_get_flags(th) & TH_SYN) {
6081 s->src.seqhi++;
6082 s->src.wscale = pf_get_wscale(pd);
6083 }
6084 s->src.max_win = MAX(ntohs(th->th_win), 1);
6085 if (s->src.wscale & PF_WSCALE_MASK) {
6086 /* Remove scale factor from initial window */
6087 int win = s->src.max_win;
6088 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6089 s->src.max_win = (win - 1) >>
6090 (s->src.wscale & PF_WSCALE_MASK);
6091 }
6092 if (tcp_get_flags(th) & TH_FIN)
6093 s->src.seqhi++;
6094 s->dst.seqhi = 1;
6095 s->dst.max_win = 1;
6096 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6097 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6098 s->timeout = PFTM_TCP_FIRST_PACKET;
6099 atomic_add_32(&V_pf_status.states_halfopen, 1);
6100 break;
6101 case IPPROTO_UDP:
6102 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6103 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6104 s->timeout = PFTM_UDP_FIRST_PACKET;
6105 break;
6106 case IPPROTO_SCTP:
6107 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6108 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6109 s->timeout = PFTM_SCTP_FIRST_PACKET;
6110 break;
6111 case IPPROTO_ICMP:
6112 #ifdef INET6
6113 case IPPROTO_ICMPV6:
6114 #endif /* INET6 */
6115 s->timeout = PFTM_ICMP_FIRST_PACKET;
6116 break;
6117 default:
6118 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6119 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6120 s->timeout = PFTM_OTHER_FIRST_PACKET;
6121 }
6122
6123 s->creation = s->expire = pf_get_uptime();
6124
6125 if (pd->proto == IPPROTO_TCP) {
6126 if (s->state_flags & PFSTATE_SCRUB_TCP &&
6127 pf_normalize_tcp_init(pd, th, &s->src)) {
6128 REASON_SET(&ctx->reason, PFRES_MEMORY);
6129 goto csfailed;
6130 }
6131 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6132 pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6133 &s->src, &s->dst, &ctx->rewrite)) {
6134 /* This really shouldn't happen!!! */
6135 DPFPRINTF(PF_DEBUG_URGENT,
6136 ("%s: tcp normalize failed on first "
6137 "pkt\n", __func__));
6138 goto csfailed;
6139 }
6140 } else if (pd->proto == IPPROTO_SCTP) {
6141 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6142 goto csfailed;
6143 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6144 goto csfailed;
6145 }
6146 s->direction = pd->dir;
6147
6148 /*
6149 * sk/nk could already been setup by pf_get_translation().
6150 */
6151 if (ctx->sk == NULL && ctx->nk == NULL) {
6152 MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6153 MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6154 if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6155 &ctx->sk, &ctx->nk)) {
6156 goto csfailed;
6157 }
6158 } else
6159 KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6160 __func__, ctx->nr, ctx->sk, ctx->nk));
6161
6162 /* Swap sk/nk for PF_OUT. */
6163 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6164 (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6165 (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6166 REASON_SET(&ctx->reason, PFRES_STATEINS);
6167 goto drop;
6168 } else
6169 *sm = s;
6170 ctx->sk = ctx->nk = NULL;
6171
6172 STATE_INC_COUNTERS(s);
6173
6174 /*
6175 * Lock order is important: first state, then source node.
6176 */
6177 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6178 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6179 s->sns[sn_type] = sns[sn_type];
6180 PF_HASHROW_UNLOCK(snhs[sn_type]);
6181 }
6182 }
6183
6184 if (ctx->tag > 0)
6185 s->tag = ctx->tag;
6186 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6187 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
6188 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6189 pf_undo_nat(ctx->nr, pd, bip_sum);
6190 s->src.seqhi = arc4random();
6191 /* Find mss option */
6192 int rtid = M_GETFIB(pd->m);
6193 mss = pf_get_mss(pd);
6194 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6195 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6196 s->src.mss = mss;
6197 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6198 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6199 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6200 pd->act.rtableid);
6201 REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6202 return (PF_SYNPROXY_DROP);
6203 }
6204
6205 s->udp_mapping = ctx->udp_mapping;
6206
6207 return (PF_PASS);
6208
6209 csfailed:
6210 while ((ri = SLIST_FIRST(&ctx->rules))) {
6211 SLIST_REMOVE_HEAD(&ctx->rules, entry);
6212 free(ri, M_PF_RULE_ITEM);
6213 }
6214
6215 uma_zfree(V_pf_state_key_z, ctx->sk);
6216 uma_zfree(V_pf_state_key_z, ctx->nk);
6217
6218 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6219 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6220 if (--sns[sn_type]->states == 0 &&
6221 sns[sn_type]->expire == 0) {
6222 pf_unlink_src_node(sns[sn_type]);
6223 pf_free_src_node(sns[sn_type]);
6224 counter_u64_add(
6225 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6226 }
6227 PF_HASHROW_UNLOCK(snhs[sn_type]);
6228 }
6229 }
6230
6231 drop:
6232 if (s != NULL) {
6233 pf_src_tree_remove_state(s);
6234 s->timeout = PFTM_UNLINKED;
6235 pf_free_state(s);
6236 }
6237
6238 return (PF_DROP);
6239 }
6240
6241 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6242 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6243 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6244 int icmp_dir)
6245 {
6246 /*
6247 * pf_translate() implements OpenBSD's "new" NAT approach.
6248 * We don't follow it, because it involves a breaking syntax change
6249 * (removing nat/rdr rules, moving it into regular pf rules.)
6250 * It also moves NAT processing to be done after normal rules evaluation
6251 * whereas in FreeBSD that's done before rules processing.
6252 *
6253 * We adopt the function only for nat64, and keep other NAT processing
6254 * before rules processing.
6255 */
6256 int rewrite = 0;
6257 int afto = pd->af != pd->naf;
6258
6259 MPASS(afto);
6260
6261 switch (pd->proto) {
6262 case IPPROTO_TCP:
6263 case IPPROTO_UDP:
6264 case IPPROTO_SCTP:
6265 if (afto || *pd->sport != sport) {
6266 pf_change_ap(pd, pd->src, pd->sport,
6267 saddr, sport);
6268 rewrite = 1;
6269 }
6270 if (afto || *pd->dport != dport) {
6271 pf_change_ap(pd, pd->dst, pd->dport,
6272 daddr, dport);
6273 rewrite = 1;
6274 }
6275 break;
6276
6277 #ifdef INET
6278 case IPPROTO_ICMP:
6279 /* pf_translate() is also used when logging invalid packets */
6280 if (pd->af != AF_INET)
6281 return (0);
6282
6283 if (afto) {
6284 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6285 return (-1);
6286 pd->proto = IPPROTO_ICMPV6;
6287 rewrite = 1;
6288 }
6289 if (virtual_type == htons(ICMP_ECHO)) {
6290 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6291
6292 if (icmpid != pd->hdr.icmp.icmp_id) {
6293 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6294 pd->hdr.icmp.icmp_cksum,
6295 pd->hdr.icmp.icmp_id, icmpid, 0);
6296 pd->hdr.icmp.icmp_id = icmpid;
6297 /* XXX TODO copyback. */
6298 rewrite = 1;
6299 }
6300 }
6301 break;
6302 #endif /* INET */
6303
6304 #ifdef INET6
6305 case IPPROTO_ICMPV6:
6306 /* pf_translate() is also used when logging invalid packets */
6307 if (pd->af != AF_INET6)
6308 return (0);
6309
6310 if (afto) {
6311 /* ip_sum will be recalculated in pf_translate_af */
6312 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6313 return (0);
6314 pd->proto = IPPROTO_ICMP;
6315 rewrite = 1;
6316 }
6317 break;
6318 #endif /* INET6 */
6319
6320 default:
6321 break;
6322 }
6323
6324 return (rewrite);
6325 }
6326
6327 int
pf_translate_compat(struct pf_test_ctx * ctx)6328 pf_translate_compat(struct pf_test_ctx *ctx)
6329 {
6330 struct pf_pdesc *pd = ctx->pd;
6331 struct pf_state_key *nk = ctx->nk;
6332 struct tcphdr *th = &pd->hdr.tcp;
6333 int rewrite = 0;
6334
6335 KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
6336 KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
6337
6338 switch (pd->proto) {
6339 case IPPROTO_TCP:
6340 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6341 nk->port[pd->sidx] != pd->nsport) {
6342 pf_change_ap(pd, pd->src, &th->th_sport,
6343 &nk->addr[pd->sidx], nk->port[pd->sidx]);
6344 pd->sport = &th->th_sport;
6345 pd->nsport = th->th_sport;
6346 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6347 }
6348
6349 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6350 nk->port[pd->didx] != pd->ndport) {
6351 pf_change_ap(pd, pd->dst, &th->th_dport,
6352 &nk->addr[pd->didx], nk->port[pd->didx]);
6353 pd->dport = &th->th_dport;
6354 pd->ndport = th->th_dport;
6355 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6356 }
6357 rewrite++;
6358 break;
6359 case IPPROTO_UDP:
6360 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6361 nk->port[pd->sidx] != pd->nsport) {
6362 pf_change_ap(pd, pd->src,
6363 &pd->hdr.udp.uh_sport,
6364 &nk->addr[pd->sidx],
6365 nk->port[pd->sidx]);
6366 pd->sport = &pd->hdr.udp.uh_sport;
6367 pd->nsport = pd->hdr.udp.uh_sport;
6368 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6369 }
6370
6371 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6372 nk->port[pd->didx] != pd->ndport) {
6373 pf_change_ap(pd, pd->dst,
6374 &pd->hdr.udp.uh_dport,
6375 &nk->addr[pd->didx],
6376 nk->port[pd->didx]);
6377 pd->dport = &pd->hdr.udp.uh_dport;
6378 pd->ndport = pd->hdr.udp.uh_dport;
6379 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6380 }
6381 rewrite++;
6382 break;
6383 case IPPROTO_SCTP: {
6384 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6385 nk->port[pd->sidx] != pd->nsport) {
6386 pf_change_ap(pd, pd->src,
6387 &pd->hdr.sctp.src_port,
6388 &nk->addr[pd->sidx],
6389 nk->port[pd->sidx]);
6390 pd->sport = &pd->hdr.sctp.src_port;
6391 pd->nsport = pd->hdr.sctp.src_port;
6392 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6393 }
6394 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6395 nk->port[pd->didx] != pd->ndport) {
6396 pf_change_ap(pd, pd->dst,
6397 &pd->hdr.sctp.dest_port,
6398 &nk->addr[pd->didx],
6399 nk->port[pd->didx]);
6400 pd->dport = &pd->hdr.sctp.dest_port;
6401 pd->ndport = pd->hdr.sctp.dest_port;
6402 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6403 }
6404 break;
6405 }
6406 #ifdef INET
6407 case IPPROTO_ICMP:
6408 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
6409 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
6410 nk->addr[pd->sidx].v4.s_addr, 0);
6411 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6412 }
6413
6414 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
6415 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
6416 nk->addr[pd->didx].v4.s_addr, 0);
6417 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6418 }
6419
6420 if (ctx->virtual_type == htons(ICMP_ECHO) &&
6421 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
6422 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6423 pd->hdr.icmp.icmp_cksum, pd->nsport,
6424 nk->port[pd->sidx], 0);
6425 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
6426 pd->sport = &pd->hdr.icmp.icmp_id;
6427 }
6428 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
6429 break;
6430 #endif /* INET */
6431 #ifdef INET6
6432 case IPPROTO_ICMPV6:
6433 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
6434 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
6435 &nk->addr[pd->sidx], 0);
6436 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6437 }
6438
6439 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
6440 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
6441 &nk->addr[pd->didx], 0);
6442 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6443 }
6444 rewrite++;
6445 break;
6446 #endif /* INET */
6447 default:
6448 switch (pd->af) {
6449 #ifdef INET
6450 case AF_INET:
6451 if (PF_ANEQ(&pd->nsaddr,
6452 &nk->addr[pd->sidx], AF_INET)) {
6453 pf_change_a(&pd->src->v4.s_addr,
6454 pd->ip_sum,
6455 nk->addr[pd->sidx].v4.s_addr, 0);
6456 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
6457 }
6458
6459 if (PF_ANEQ(&pd->ndaddr,
6460 &nk->addr[pd->didx], AF_INET)) {
6461 pf_change_a(&pd->dst->v4.s_addr,
6462 pd->ip_sum,
6463 nk->addr[pd->didx].v4.s_addr, 0);
6464 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
6465 }
6466 break;
6467 #endif /* INET */
6468 #ifdef INET6
6469 case AF_INET6:
6470 if (PF_ANEQ(&pd->nsaddr,
6471 &nk->addr[pd->sidx], AF_INET6)) {
6472 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af);
6473 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
6474 }
6475
6476 if (PF_ANEQ(&pd->ndaddr,
6477 &nk->addr[pd->didx], AF_INET6)) {
6478 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af);
6479 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
6480 }
6481 break;
6482 #endif /* INET6 */
6483 }
6484 break;
6485 }
6486 return (rewrite);
6487 }
6488
6489 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6490 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6491 u_short *reason, int *copyback, struct pf_state_peer *src,
6492 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6493 {
6494 struct tcphdr *th = &pd->hdr.tcp;
6495 u_int16_t win = ntohs(th->th_win);
6496 u_int32_t ack, end, data_end, seq, orig_seq;
6497 u_int8_t sws, dws;
6498 int ackskew;
6499
6500 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6501 sws = src->wscale & PF_WSCALE_MASK;
6502 dws = dst->wscale & PF_WSCALE_MASK;
6503 } else
6504 sws = dws = 0;
6505
6506 /*
6507 * Sequence tracking algorithm from Guido van Rooij's paper:
6508 * http://www.madison-gurkha.com/publications/tcp_filtering/
6509 * tcp_filtering.ps
6510 */
6511
6512 orig_seq = seq = ntohl(th->th_seq);
6513 if (src->seqlo == 0) {
6514 /* First packet from this end. Set its state */
6515
6516 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6517 src->scrub == NULL) {
6518 if (pf_normalize_tcp_init(pd, th, src)) {
6519 REASON_SET(reason, PFRES_MEMORY);
6520 return (PF_DROP);
6521 }
6522 }
6523
6524 /* Deferred generation of sequence number modulator */
6525 if (dst->seqdiff && !src->seqdiff) {
6526 /* use random iss for the TCP server */
6527 while ((src->seqdiff = arc4random() - seq) == 0)
6528 ;
6529 ack = ntohl(th->th_ack) - dst->seqdiff;
6530 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6531 src->seqdiff), 0);
6532 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6533 *copyback = 1;
6534 } else {
6535 ack = ntohl(th->th_ack);
6536 }
6537
6538 end = seq + pd->p_len;
6539 if (tcp_get_flags(th) & TH_SYN) {
6540 end++;
6541 if (dst->wscale & PF_WSCALE_FLAG) {
6542 src->wscale = pf_get_wscale(pd);
6543 if (src->wscale & PF_WSCALE_FLAG) {
6544 /* Remove scale factor from initial
6545 * window */
6546 sws = src->wscale & PF_WSCALE_MASK;
6547 win = ((u_int32_t)win + (1 << sws) - 1)
6548 >> sws;
6549 dws = dst->wscale & PF_WSCALE_MASK;
6550 } else {
6551 /* fixup other window */
6552 dst->max_win = MIN(TCP_MAXWIN,
6553 (u_int32_t)dst->max_win <<
6554 (dst->wscale & PF_WSCALE_MASK));
6555 /* in case of a retrans SYN|ACK */
6556 dst->wscale = 0;
6557 }
6558 }
6559 }
6560 data_end = end;
6561 if (tcp_get_flags(th) & TH_FIN)
6562 end++;
6563
6564 src->seqlo = seq;
6565 if (src->state < TCPS_SYN_SENT)
6566 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6567
6568 /*
6569 * May need to slide the window (seqhi may have been set by
6570 * the crappy stack check or if we picked up the connection
6571 * after establishment)
6572 */
6573 if (src->seqhi == 1 ||
6574 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6575 src->seqhi = end + MAX(1, dst->max_win << dws);
6576 if (win > src->max_win)
6577 src->max_win = win;
6578
6579 } else {
6580 ack = ntohl(th->th_ack) - dst->seqdiff;
6581 if (src->seqdiff) {
6582 /* Modulate sequence numbers */
6583 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6584 src->seqdiff), 0);
6585 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6586 *copyback = 1;
6587 }
6588 end = seq + pd->p_len;
6589 if (tcp_get_flags(th) & TH_SYN)
6590 end++;
6591 data_end = end;
6592 if (tcp_get_flags(th) & TH_FIN)
6593 end++;
6594 }
6595
6596 if ((tcp_get_flags(th) & TH_ACK) == 0) {
6597 /* Let it pass through the ack skew check */
6598 ack = dst->seqlo;
6599 } else if ((ack == 0 &&
6600 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6601 /* broken tcp stacks do not set ack */
6602 (dst->state < TCPS_SYN_SENT)) {
6603 /*
6604 * Many stacks (ours included) will set the ACK number in an
6605 * FIN|ACK if the SYN times out -- no sequence to ACK.
6606 */
6607 ack = dst->seqlo;
6608 }
6609
6610 if (seq == end) {
6611 /* Ease sequencing restrictions on no data packets */
6612 seq = src->seqlo;
6613 data_end = end = seq;
6614 }
6615
6616 ackskew = dst->seqlo - ack;
6617
6618 /*
6619 * Need to demodulate the sequence numbers in any TCP SACK options
6620 * (Selective ACK). We could optionally validate the SACK values
6621 * against the current ACK window, either forwards or backwards, but
6622 * I'm not confident that SACK has been implemented properly
6623 * everywhere. It wouldn't surprise me if several stacks accidentally
6624 * SACK too far backwards of previously ACKed data. There really aren't
6625 * any security implications of bad SACKing unless the target stack
6626 * doesn't validate the option length correctly. Someone trying to
6627 * spoof into a TCP connection won't bother blindly sending SACK
6628 * options anyway.
6629 */
6630 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6631 if (pf_modulate_sack(pd, th, dst))
6632 *copyback = 1;
6633 }
6634
6635 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
6636 if (SEQ_GEQ(src->seqhi, data_end) &&
6637 /* Last octet inside other's window space */
6638 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6639 /* Retrans: not more than one window back */
6640 (ackskew >= -MAXACKWINDOW) &&
6641 /* Acking not more than one reassembled fragment backwards */
6642 (ackskew <= (MAXACKWINDOW << sws)) &&
6643 /* Acking not more than one window forward */
6644 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6645 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6646 /* Require an exact/+1 sequence match on resets when possible */
6647
6648 if (dst->scrub || src->scrub) {
6649 if (pf_normalize_tcp_stateful(pd, reason, th,
6650 state, src, dst, copyback))
6651 return (PF_DROP);
6652 }
6653
6654 /* update max window */
6655 if (src->max_win < win)
6656 src->max_win = win;
6657 /* synchronize sequencing */
6658 if (SEQ_GT(end, src->seqlo))
6659 src->seqlo = end;
6660 /* slide the window of what the other end can send */
6661 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6662 dst->seqhi = ack + MAX((win << sws), 1);
6663
6664 /* update states */
6665 if (tcp_get_flags(th) & TH_SYN)
6666 if (src->state < TCPS_SYN_SENT)
6667 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6668 if (tcp_get_flags(th) & TH_FIN)
6669 if (src->state < TCPS_CLOSING)
6670 pf_set_protostate(state, psrc, TCPS_CLOSING);
6671 if (tcp_get_flags(th) & TH_ACK) {
6672 if (dst->state == TCPS_SYN_SENT) {
6673 pf_set_protostate(state, pdst,
6674 TCPS_ESTABLISHED);
6675 if (src->state == TCPS_ESTABLISHED &&
6676 state->sns[PF_SN_LIMIT] != NULL &&
6677 pf_src_connlimit(state)) {
6678 REASON_SET(reason, PFRES_SRCLIMIT);
6679 return (PF_DROP);
6680 }
6681 } else if (dst->state == TCPS_CLOSING)
6682 pf_set_protostate(state, pdst,
6683 TCPS_FIN_WAIT_2);
6684 }
6685 if (tcp_get_flags(th) & TH_RST)
6686 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6687
6688 /* update expire time */
6689 state->expire = pf_get_uptime();
6690 if (src->state >= TCPS_FIN_WAIT_2 &&
6691 dst->state >= TCPS_FIN_WAIT_2)
6692 state->timeout = PFTM_TCP_CLOSED;
6693 else if (src->state >= TCPS_CLOSING &&
6694 dst->state >= TCPS_CLOSING)
6695 state->timeout = PFTM_TCP_FIN_WAIT;
6696 else if (src->state < TCPS_ESTABLISHED ||
6697 dst->state < TCPS_ESTABLISHED)
6698 state->timeout = PFTM_TCP_OPENING;
6699 else if (src->state >= TCPS_CLOSING ||
6700 dst->state >= TCPS_CLOSING)
6701 state->timeout = PFTM_TCP_CLOSING;
6702 else
6703 state->timeout = PFTM_TCP_ESTABLISHED;
6704
6705 /* Fall through to PASS packet */
6706
6707 } else if ((dst->state < TCPS_SYN_SENT ||
6708 dst->state >= TCPS_FIN_WAIT_2 ||
6709 src->state >= TCPS_FIN_WAIT_2) &&
6710 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6711 /* Within a window forward of the originating packet */
6712 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6713 /* Within a window backward of the originating packet */
6714
6715 /*
6716 * This currently handles three situations:
6717 * 1) Stupid stacks will shotgun SYNs before their peer
6718 * replies.
6719 * 2) When PF catches an already established stream (the
6720 * firewall rebooted, the state table was flushed, routes
6721 * changed...)
6722 * 3) Packets get funky immediately after the connection
6723 * closes (this should catch Solaris spurious ACK|FINs
6724 * that web servers like to spew after a close)
6725 *
6726 * This must be a little more careful than the above code
6727 * since packet floods will also be caught here. We don't
6728 * update the TTL here to mitigate the damage of a packet
6729 * flood and so the same code can handle awkward establishment
6730 * and a loosened connection close.
6731 * In the establishment case, a correct peer response will
6732 * validate the connection, go through the normal state code
6733 * and keep updating the state TTL.
6734 */
6735
6736 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6737 printf("pf: loose state match: ");
6738 pf_print_state(state);
6739 pf_print_flags(tcp_get_flags(th));
6740 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6741 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6742 pd->p_len, ackskew, (unsigned long long)state->packets[0],
6743 (unsigned long long)state->packets[1],
6744 pd->dir == PF_IN ? "in" : "out",
6745 pd->dir == state->direction ? "fwd" : "rev");
6746 }
6747
6748 if (dst->scrub || src->scrub) {
6749 if (pf_normalize_tcp_stateful(pd, reason, th,
6750 state, src, dst, copyback))
6751 return (PF_DROP);
6752 }
6753
6754 /* update max window */
6755 if (src->max_win < win)
6756 src->max_win = win;
6757 /* synchronize sequencing */
6758 if (SEQ_GT(end, src->seqlo))
6759 src->seqlo = end;
6760 /* slide the window of what the other end can send */
6761 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6762 dst->seqhi = ack + MAX((win << sws), 1);
6763
6764 /*
6765 * Cannot set dst->seqhi here since this could be a shotgunned
6766 * SYN and not an already established connection.
6767 */
6768
6769 if (tcp_get_flags(th) & TH_FIN)
6770 if (src->state < TCPS_CLOSING)
6771 pf_set_protostate(state, psrc, TCPS_CLOSING);
6772 if (tcp_get_flags(th) & TH_RST)
6773 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6774
6775 /* Fall through to PASS packet */
6776
6777 } else {
6778 if (state->dst.state == TCPS_SYN_SENT &&
6779 state->src.state == TCPS_SYN_SENT) {
6780 /* Send RST for state mismatches during handshake */
6781 if (!(tcp_get_flags(th) & TH_RST))
6782 pf_send_tcp(state->rule, pd->af,
6783 pd->dst, pd->src, th->th_dport,
6784 th->th_sport, ntohl(th->th_ack), 0,
6785 TH_RST, 0, 0,
6786 state->rule->return_ttl, M_SKIP_FIREWALL,
6787 0, 0, state->act.rtableid);
6788 src->seqlo = 0;
6789 src->seqhi = 1;
6790 src->max_win = 1;
6791 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6792 printf("pf: BAD state: ");
6793 pf_print_state(state);
6794 pf_print_flags(tcp_get_flags(th));
6795 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6796 "pkts=%llu:%llu dir=%s,%s\n",
6797 seq, orig_seq, ack, pd->p_len, ackskew,
6798 (unsigned long long)state->packets[0],
6799 (unsigned long long)state->packets[1],
6800 pd->dir == PF_IN ? "in" : "out",
6801 pd->dir == state->direction ? "fwd" : "rev");
6802 printf("pf: State failure on: %c %c %c %c | %c %c\n",
6803 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6804 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6805 ' ': '2',
6806 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6807 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6808 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6809 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6810 }
6811 REASON_SET(reason, PFRES_BADSTATE);
6812 return (PF_DROP);
6813 }
6814
6815 return (PF_PASS);
6816 }
6817
6818 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6819 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6820 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6821 u_int8_t psrc, u_int8_t pdst)
6822 {
6823 struct tcphdr *th = &pd->hdr.tcp;
6824
6825 if (tcp_get_flags(th) & TH_SYN)
6826 if (src->state < TCPS_SYN_SENT)
6827 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6828 if (tcp_get_flags(th) & TH_FIN)
6829 if (src->state < TCPS_CLOSING)
6830 pf_set_protostate(state, psrc, TCPS_CLOSING);
6831 if (tcp_get_flags(th) & TH_ACK) {
6832 if (dst->state == TCPS_SYN_SENT) {
6833 pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
6834 if (src->state == TCPS_ESTABLISHED &&
6835 state->sns[PF_SN_LIMIT] != NULL &&
6836 pf_src_connlimit(state)) {
6837 REASON_SET(reason, PFRES_SRCLIMIT);
6838 return (PF_DROP);
6839 }
6840 } else if (dst->state == TCPS_CLOSING) {
6841 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
6842 } else if (src->state == TCPS_SYN_SENT &&
6843 dst->state < TCPS_SYN_SENT) {
6844 /*
6845 * Handle a special sloppy case where we only see one
6846 * half of the connection. If there is a ACK after
6847 * the initial SYN without ever seeing a packet from
6848 * the destination, set the connection to established.
6849 */
6850 pf_set_protostate(state, PF_PEER_BOTH,
6851 TCPS_ESTABLISHED);
6852 dst->state = src->state = TCPS_ESTABLISHED;
6853 if (state->sns[PF_SN_LIMIT] != NULL &&
6854 pf_src_connlimit(state)) {
6855 REASON_SET(reason, PFRES_SRCLIMIT);
6856 return (PF_DROP);
6857 }
6858 } else if (src->state == TCPS_CLOSING &&
6859 dst->state == TCPS_ESTABLISHED &&
6860 dst->seqlo == 0) {
6861 /*
6862 * Handle the closing of half connections where we
6863 * don't see the full bidirectional FIN/ACK+ACK
6864 * handshake.
6865 */
6866 pf_set_protostate(state, pdst, TCPS_CLOSING);
6867 }
6868 }
6869 if (tcp_get_flags(th) & TH_RST)
6870 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6871
6872 /* update expire time */
6873 state->expire = pf_get_uptime();
6874 if (src->state >= TCPS_FIN_WAIT_2 &&
6875 dst->state >= TCPS_FIN_WAIT_2)
6876 state->timeout = PFTM_TCP_CLOSED;
6877 else if (src->state >= TCPS_CLOSING &&
6878 dst->state >= TCPS_CLOSING)
6879 state->timeout = PFTM_TCP_FIN_WAIT;
6880 else if (src->state < TCPS_ESTABLISHED ||
6881 dst->state < TCPS_ESTABLISHED)
6882 state->timeout = PFTM_TCP_OPENING;
6883 else if (src->state >= TCPS_CLOSING ||
6884 dst->state >= TCPS_CLOSING)
6885 state->timeout = PFTM_TCP_CLOSING;
6886 else
6887 state->timeout = PFTM_TCP_ESTABLISHED;
6888
6889 return (PF_PASS);
6890 }
6891
6892 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)6893 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
6894 {
6895 struct pf_state_key *sk = state->key[pd->didx];
6896 struct tcphdr *th = &pd->hdr.tcp;
6897
6898 if (state->src.state == PF_TCPS_PROXY_SRC) {
6899 if (pd->dir != state->direction) {
6900 REASON_SET(reason, PFRES_SYNPROXY);
6901 return (PF_SYNPROXY_DROP);
6902 }
6903 if (tcp_get_flags(th) & TH_SYN) {
6904 if (ntohl(th->th_seq) != state->src.seqlo) {
6905 REASON_SET(reason, PFRES_SYNPROXY);
6906 return (PF_DROP);
6907 }
6908 pf_send_tcp(state->rule, pd->af, pd->dst,
6909 pd->src, th->th_dport, th->th_sport,
6910 state->src.seqhi, ntohl(th->th_seq) + 1,
6911 TH_SYN|TH_ACK, 0, state->src.mss, 0,
6912 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
6913 REASON_SET(reason, PFRES_SYNPROXY);
6914 return (PF_SYNPROXY_DROP);
6915 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6916 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
6917 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
6918 REASON_SET(reason, PFRES_SYNPROXY);
6919 return (PF_DROP);
6920 } else if (state->sns[PF_SN_LIMIT] != NULL &&
6921 pf_src_connlimit(state)) {
6922 REASON_SET(reason, PFRES_SRCLIMIT);
6923 return (PF_DROP);
6924 } else
6925 pf_set_protostate(state, PF_PEER_SRC,
6926 PF_TCPS_PROXY_DST);
6927 }
6928 if (state->src.state == PF_TCPS_PROXY_DST) {
6929 if (pd->dir == state->direction) {
6930 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
6931 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
6932 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
6933 REASON_SET(reason, PFRES_SYNPROXY);
6934 return (PF_DROP);
6935 }
6936 state->src.max_win = MAX(ntohs(th->th_win), 1);
6937 if (state->dst.seqhi == 1)
6938 state->dst.seqhi = arc4random();
6939 pf_send_tcp(state->rule, pd->af,
6940 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6941 sk->port[pd->sidx], sk->port[pd->didx],
6942 state->dst.seqhi, 0, TH_SYN, 0,
6943 state->src.mss, 0,
6944 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6945 state->tag, 0, state->act.rtableid);
6946 REASON_SET(reason, PFRES_SYNPROXY);
6947 return (PF_SYNPROXY_DROP);
6948 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
6949 (TH_SYN|TH_ACK)) ||
6950 (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
6951 REASON_SET(reason, PFRES_SYNPROXY);
6952 return (PF_DROP);
6953 } else {
6954 state->dst.max_win = MAX(ntohs(th->th_win), 1);
6955 state->dst.seqlo = ntohl(th->th_seq);
6956 pf_send_tcp(state->rule, pd->af, pd->dst,
6957 pd->src, th->th_dport, th->th_sport,
6958 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6959 TH_ACK, state->src.max_win, 0, 0, 0,
6960 state->tag, 0, state->act.rtableid);
6961 pf_send_tcp(state->rule, pd->af,
6962 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6963 sk->port[pd->sidx], sk->port[pd->didx],
6964 state->src.seqhi + 1, state->src.seqlo + 1,
6965 TH_ACK, state->dst.max_win, 0, 0,
6966 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
6967 state->src.seqdiff = state->dst.seqhi -
6968 state->src.seqlo;
6969 state->dst.seqdiff = state->src.seqhi -
6970 state->dst.seqlo;
6971 state->src.seqhi = state->src.seqlo +
6972 state->dst.max_win;
6973 state->dst.seqhi = state->dst.seqlo +
6974 state->src.max_win;
6975 state->src.wscale = state->dst.wscale = 0;
6976 pf_set_protostate(state, PF_PEER_BOTH,
6977 TCPS_ESTABLISHED);
6978 REASON_SET(reason, PFRES_SYNPROXY);
6979 return (PF_SYNPROXY_DROP);
6980 }
6981 }
6982
6983 return (PF_PASS);
6984 }
6985
6986 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6987 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
6988 {
6989 struct pf_state_key_cmp key;
6990 int copyback = 0;
6991 struct pf_state_peer *src, *dst;
6992 uint8_t psrc, pdst;
6993 int action = PF_PASS;
6994
6995 bzero(&key, sizeof(key));
6996 key.af = pd->af;
6997 key.proto = pd->virtual_proto;
6998 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
6999 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
7000 key.port[pd->sidx] = pd->osport;
7001 key.port[pd->didx] = pd->odport;
7002
7003 STATE_LOOKUP(&key, *state, pd);
7004
7005 if (pd->dir == (*state)->direction) {
7006 if (PF_REVERSED_KEY(*state, pd->af)) {
7007 src = &(*state)->dst;
7008 dst = &(*state)->src;
7009 psrc = PF_PEER_DST;
7010 pdst = PF_PEER_SRC;
7011 } else {
7012 src = &(*state)->src;
7013 dst = &(*state)->dst;
7014 psrc = PF_PEER_SRC;
7015 pdst = PF_PEER_DST;
7016 }
7017 } else {
7018 if (PF_REVERSED_KEY(*state, pd->af)) {
7019 src = &(*state)->src;
7020 dst = &(*state)->dst;
7021 psrc = PF_PEER_SRC;
7022 pdst = PF_PEER_DST;
7023 } else {
7024 src = &(*state)->dst;
7025 dst = &(*state)->src;
7026 psrc = PF_PEER_DST;
7027 pdst = PF_PEER_SRC;
7028 }
7029 }
7030
7031 switch (pd->virtual_proto) {
7032 case IPPROTO_TCP: {
7033 struct tcphdr *th = &pd->hdr.tcp;
7034
7035 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7036 return (action);
7037 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7038 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7039 pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7040 if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7041 (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7042 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7043 printf("pf: state reuse ");
7044 pf_print_state(*state);
7045 pf_print_flags(tcp_get_flags(th));
7046 printf("\n");
7047 }
7048 /* XXX make sure it's the same direction ?? */
7049 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7050 pf_remove_state(*state);
7051 *state = NULL;
7052 return (PF_DROP);
7053 } else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7054 (*state)->dst.state >= TCPS_ESTABLISHED) {
7055 /*
7056 * SYN matches existing state???
7057 * Typically happens when sender boots up after
7058 * sudden panic. Certain protocols (NFSv3) are
7059 * always using same port numbers. Challenge
7060 * ACK enables all parties (firewall and peers)
7061 * to get in sync again.
7062 */
7063 pf_send_challenge_ack(pd, *state, src, dst);
7064 return (PF_DROP);
7065 }
7066 }
7067 if ((*state)->state_flags & PFSTATE_SLOPPY) {
7068 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7069 psrc, pdst) == PF_DROP)
7070 return (PF_DROP);
7071 } else {
7072 int ret;
7073
7074 ret = pf_tcp_track_full(*state, pd, reason,
7075 ©back, src, dst, psrc, pdst);
7076 if (ret == PF_DROP)
7077 return (PF_DROP);
7078 }
7079 break;
7080 }
7081 case IPPROTO_UDP:
7082 /* update states */
7083 if (src->state < PFUDPS_SINGLE)
7084 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7085 if (dst->state == PFUDPS_SINGLE)
7086 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7087
7088 /* update expire time */
7089 (*state)->expire = pf_get_uptime();
7090 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7091 (*state)->timeout = PFTM_UDP_MULTIPLE;
7092 else
7093 (*state)->timeout = PFTM_UDP_SINGLE;
7094 break;
7095 case IPPROTO_SCTP:
7096 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7097 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7098 pd->sctp_flags & PFDESC_SCTP_INIT) {
7099 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7100 pf_remove_state(*state);
7101 *state = NULL;
7102 return (PF_DROP);
7103 }
7104
7105 if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7106 return (PF_DROP);
7107
7108 /* Track state. */
7109 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7110 if (src->state < SCTP_COOKIE_WAIT) {
7111 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7112 (*state)->timeout = PFTM_SCTP_OPENING;
7113 }
7114 }
7115 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7116 MPASS(dst->scrub != NULL);
7117 if (dst->scrub->pfss_v_tag == 0)
7118 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7119 }
7120
7121 /*
7122 * Bind to the correct interface if we're if-bound. For multihomed
7123 * extra associations we don't know which interface that will be until
7124 * here, so we've inserted the state on V_pf_all. Fix that now.
7125 */
7126 if ((*state)->kif == V_pfi_all &&
7127 (*state)->rule->rule_flag & PFRULE_IFBOUND)
7128 (*state)->kif = pd->kif;
7129
7130 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7131 if (src->state < SCTP_ESTABLISHED) {
7132 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7133 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
7134 }
7135 }
7136 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7137 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7138 if (src->state < SCTP_SHUTDOWN_PENDING) {
7139 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7140 (*state)->timeout = PFTM_SCTP_CLOSING;
7141 }
7142 }
7143 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7144 pf_set_protostate(*state, psrc, SCTP_CLOSED);
7145 (*state)->timeout = PFTM_SCTP_CLOSED;
7146 }
7147
7148 (*state)->expire = pf_get_uptime();
7149 break;
7150 default:
7151 /* update states */
7152 if (src->state < PFOTHERS_SINGLE)
7153 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7154 if (dst->state == PFOTHERS_SINGLE)
7155 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7156
7157 /* update expire time */
7158 (*state)->expire = pf_get_uptime();
7159 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7160 (*state)->timeout = PFTM_OTHER_MULTIPLE;
7161 else
7162 (*state)->timeout = PFTM_OTHER_SINGLE;
7163 break;
7164 }
7165
7166 /* translate source/destination address, if necessary */
7167 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7168 struct pf_state_key *nk;
7169 int afto, sidx, didx;
7170
7171 if (PF_REVERSED_KEY(*state, pd->af))
7172 nk = (*state)->key[pd->sidx];
7173 else
7174 nk = (*state)->key[pd->didx];
7175
7176 afto = pd->af != nk->af;
7177
7178 if (afto && (*state)->direction == PF_IN) {
7179 sidx = pd->didx;
7180 didx = pd->sidx;
7181 } else {
7182 sidx = pd->sidx;
7183 didx = pd->didx;
7184 }
7185
7186 if (afto) {
7187 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7188 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7189 pd->naf = nk->af;
7190 action = PF_AFRT;
7191 }
7192
7193 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7194 nk->port[sidx] != pd->osport)
7195 pf_change_ap(pd, pd->src, pd->sport,
7196 &nk->addr[sidx], nk->port[sidx]);
7197
7198 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7199 nk->port[didx] != pd->odport)
7200 pf_change_ap(pd, pd->dst, pd->dport,
7201 &nk->addr[didx], nk->port[didx]);
7202
7203 copyback = 1;
7204 }
7205
7206 if (copyback && pd->hdrlen > 0)
7207 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7208
7209 return (action);
7210 }
7211
7212 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7213 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7214 u_short *reason)
7215 {
7216 struct pf_state_peer *src;
7217 if (pd->dir == state->direction) {
7218 if (PF_REVERSED_KEY(state, pd->af))
7219 src = &state->dst;
7220 else
7221 src = &state->src;
7222 } else {
7223 if (PF_REVERSED_KEY(state, pd->af))
7224 src = &state->src;
7225 else
7226 src = &state->dst;
7227 }
7228
7229 if (src->scrub != NULL) {
7230 if (src->scrub->pfss_v_tag == 0)
7231 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7232 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7233 return (PF_DROP);
7234 }
7235
7236 return (PF_PASS);
7237 }
7238
7239 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7240 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7241 {
7242 struct pf_sctp_endpoint key;
7243 struct pf_sctp_endpoint *ep;
7244 struct pf_state_key *sks = s->key[PF_SK_STACK];
7245 struct pf_sctp_source *i, *tmp;
7246
7247 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7248 return;
7249
7250 PF_SCTP_ENDPOINTS_LOCK();
7251
7252 key.v_tag = s->dst.scrub->pfss_v_tag;
7253 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7254 if (ep != NULL) {
7255 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7256 if (pf_addr_cmp(&i->addr,
7257 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7258 s->key[PF_SK_WIRE]->af) == 0) {
7259 SDT_PROBE3(pf, sctp, multihome, remove,
7260 key.v_tag, s, i);
7261 TAILQ_REMOVE(&ep->sources, i, entry);
7262 free(i, M_PFTEMP);
7263 break;
7264 }
7265 }
7266
7267 if (TAILQ_EMPTY(&ep->sources)) {
7268 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7269 free(ep, M_PFTEMP);
7270 }
7271 }
7272
7273 /* Other direction. */
7274 key.v_tag = s->src.scrub->pfss_v_tag;
7275 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7276 if (ep != NULL) {
7277 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7278 if (pf_addr_cmp(&i->addr,
7279 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7280 s->key[PF_SK_WIRE]->af) == 0) {
7281 SDT_PROBE3(pf, sctp, multihome, remove,
7282 key.v_tag, s, i);
7283 TAILQ_REMOVE(&ep->sources, i, entry);
7284 free(i, M_PFTEMP);
7285 break;
7286 }
7287 }
7288
7289 if (TAILQ_EMPTY(&ep->sources)) {
7290 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7291 free(ep, M_PFTEMP);
7292 }
7293 }
7294
7295 PF_SCTP_ENDPOINTS_UNLOCK();
7296 }
7297
7298 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7299 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7300 {
7301 struct pf_sctp_endpoint key = {
7302 .v_tag = v_tag,
7303 };
7304 struct pf_sctp_source *i;
7305 struct pf_sctp_endpoint *ep;
7306 int count;
7307
7308 PF_SCTP_ENDPOINTS_LOCK();
7309
7310 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7311 if (ep == NULL) {
7312 ep = malloc(sizeof(struct pf_sctp_endpoint),
7313 M_PFTEMP, M_NOWAIT);
7314 if (ep == NULL) {
7315 PF_SCTP_ENDPOINTS_UNLOCK();
7316 return;
7317 }
7318
7319 ep->v_tag = v_tag;
7320 TAILQ_INIT(&ep->sources);
7321 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7322 }
7323
7324 /* Avoid inserting duplicates. */
7325 count = 0;
7326 TAILQ_FOREACH(i, &ep->sources, entry) {
7327 count++;
7328 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7329 PF_SCTP_ENDPOINTS_UNLOCK();
7330 return;
7331 }
7332 }
7333
7334 /* Limit the number of addresses per endpoint. */
7335 if (count >= PF_SCTP_MAX_ENDPOINTS) {
7336 PF_SCTP_ENDPOINTS_UNLOCK();
7337 return;
7338 }
7339
7340 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7341 if (i == NULL) {
7342 PF_SCTP_ENDPOINTS_UNLOCK();
7343 return;
7344 }
7345
7346 i->af = pd->af;
7347 memcpy(&i->addr, a, sizeof(*a));
7348 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7349 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7350
7351 PF_SCTP_ENDPOINTS_UNLOCK();
7352 }
7353
7354 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7355 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7356 struct pf_kstate *s, int action)
7357 {
7358 struct pf_sctp_multihome_job *j, *tmp;
7359 struct pf_sctp_source *i;
7360 int ret __unused;
7361 struct pf_kstate *sm = NULL;
7362 struct pf_krule *ra = NULL;
7363 struct pf_krule *r = &V_pf_default_rule;
7364 struct pf_kruleset *rs = NULL;
7365 u_short reason;
7366 bool do_extra = true;
7367
7368 PF_RULES_RLOCK_TRACKER;
7369
7370 again:
7371 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7372 if (s == NULL || action != PF_PASS)
7373 goto free;
7374
7375 /* Confirm we don't recurse here. */
7376 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7377
7378 switch (j->op) {
7379 case SCTP_ADD_IP_ADDRESS: {
7380 uint32_t v_tag = pd->sctp_initiate_tag;
7381
7382 if (v_tag == 0) {
7383 if (s->direction == pd->dir)
7384 v_tag = s->src.scrub->pfss_v_tag;
7385 else
7386 v_tag = s->dst.scrub->pfss_v_tag;
7387 }
7388
7389 /*
7390 * Avoid duplicating states. We'll already have
7391 * created a state based on the source address of
7392 * the packet, but SCTP endpoints may also list this
7393 * address again in the INIT(_ACK) parameters.
7394 */
7395 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7396 break;
7397 }
7398
7399 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7400 PF_RULES_RLOCK();
7401 sm = NULL;
7402 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7403 j->pd.related_rule = s->rule;
7404 }
7405 ret = pf_test_rule(&r, &sm,
7406 &j->pd, &ra, &rs, &reason, NULL);
7407 PF_RULES_RUNLOCK();
7408 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7409 if (ret != PF_DROP && sm != NULL) {
7410 /* Inherit v_tag values. */
7411 if (sm->direction == s->direction) {
7412 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7413 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7414 } else {
7415 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7416 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7417 }
7418 PF_STATE_UNLOCK(sm);
7419 } else {
7420 /* If we try duplicate inserts? */
7421 break;
7422 }
7423
7424 /* Only add the address if we've actually allowed the state. */
7425 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7426
7427 if (! do_extra) {
7428 break;
7429 }
7430 /*
7431 * We need to do this for each of our source addresses.
7432 * Find those based on the verification tag.
7433 */
7434 struct pf_sctp_endpoint key = {
7435 .v_tag = pd->hdr.sctp.v_tag,
7436 };
7437 struct pf_sctp_endpoint *ep;
7438
7439 PF_SCTP_ENDPOINTS_LOCK();
7440 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7441 if (ep == NULL) {
7442 PF_SCTP_ENDPOINTS_UNLOCK();
7443 break;
7444 }
7445 MPASS(ep != NULL);
7446
7447 TAILQ_FOREACH(i, &ep->sources, entry) {
7448 struct pf_sctp_multihome_job *nj;
7449
7450 /* SCTP can intermingle IPv4 and IPv6. */
7451 if (i->af != pd->af)
7452 continue;
7453
7454 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7455 if (! nj) {
7456 continue;
7457 }
7458 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7459 memcpy(&nj->src, &j->src, sizeof(nj->src));
7460 nj->pd.src = &nj->src;
7461 // New destination address!
7462 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7463 nj->pd.dst = &nj->dst;
7464 nj->pd.m = j->pd.m;
7465 nj->op = j->op;
7466
7467 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7468 }
7469 PF_SCTP_ENDPOINTS_UNLOCK();
7470
7471 break;
7472 }
7473 case SCTP_DEL_IP_ADDRESS: {
7474 struct pf_state_key_cmp key;
7475 uint8_t psrc;
7476
7477 bzero(&key, sizeof(key));
7478 key.af = j->pd.af;
7479 key.proto = IPPROTO_SCTP;
7480 if (j->pd.dir == PF_IN) { /* wire side, straight */
7481 PF_ACPY(&key.addr[0], j->pd.src, key.af);
7482 PF_ACPY(&key.addr[1], j->pd.dst, key.af);
7483 key.port[0] = j->pd.hdr.sctp.src_port;
7484 key.port[1] = j->pd.hdr.sctp.dest_port;
7485 } else { /* stack side, reverse */
7486 PF_ACPY(&key.addr[1], j->pd.src, key.af);
7487 PF_ACPY(&key.addr[0], j->pd.dst, key.af);
7488 key.port[1] = j->pd.hdr.sctp.src_port;
7489 key.port[0] = j->pd.hdr.sctp.dest_port;
7490 }
7491
7492 sm = pf_find_state(kif, &key, j->pd.dir);
7493 if (sm != NULL) {
7494 PF_STATE_LOCK_ASSERT(sm);
7495 if (j->pd.dir == sm->direction) {
7496 psrc = PF_PEER_SRC;
7497 } else {
7498 psrc = PF_PEER_DST;
7499 }
7500 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7501 sm->timeout = PFTM_SCTP_CLOSING;
7502 PF_STATE_UNLOCK(sm);
7503 }
7504 break;
7505 default:
7506 panic("Unknown op %#x", j->op);
7507 }
7508 }
7509
7510 free:
7511 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7512 free(j, M_PFTEMP);
7513 }
7514
7515 /* We may have inserted extra work while processing the list. */
7516 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7517 do_extra = false;
7518 goto again;
7519 }
7520 }
7521
7522 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7523 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7524 {
7525 int off = 0;
7526 struct pf_sctp_multihome_job *job;
7527
7528 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7529
7530 while (off < len) {
7531 struct sctp_paramhdr h;
7532
7533 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7534 pd->af))
7535 return (PF_DROP);
7536
7537 /* Parameters are at least 4 bytes. */
7538 if (ntohs(h.param_length) < 4)
7539 return (PF_DROP);
7540
7541 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7542 ntohs(h.param_length));
7543
7544 switch (ntohs(h.param_type)) {
7545 case SCTP_IPV4_ADDRESS: {
7546 struct in_addr t;
7547
7548 if (ntohs(h.param_length) !=
7549 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7550 return (PF_DROP);
7551
7552 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7553 NULL, NULL, pd->af))
7554 return (PF_DROP);
7555
7556 if (in_nullhost(t))
7557 t.s_addr = pd->src->v4.s_addr;
7558
7559 /*
7560 * We hold the state lock (idhash) here, which means
7561 * that we can't acquire the keyhash, or we'll get a
7562 * LOR (and potentially double-lock things too). We also
7563 * can't release the state lock here, so instead we'll
7564 * enqueue this for async handling.
7565 * There's a relatively small race here, in that a
7566 * packet using the new addresses could arrive already,
7567 * but that's just though luck for it.
7568 */
7569 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7570 if (! job)
7571 return (PF_DROP);
7572
7573 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7574
7575 memcpy(&job->pd, pd, sizeof(*pd));
7576
7577 // New source address!
7578 memcpy(&job->src, &t, sizeof(t));
7579 job->pd.src = &job->src;
7580 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7581 job->pd.dst = &job->dst;
7582 job->pd.m = pd->m;
7583 job->op = op;
7584
7585 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7586 break;
7587 }
7588 #ifdef INET6
7589 case SCTP_IPV6_ADDRESS: {
7590 struct in6_addr t;
7591
7592 if (ntohs(h.param_length) !=
7593 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7594 return (PF_DROP);
7595
7596 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7597 NULL, NULL, pd->af))
7598 return (PF_DROP);
7599 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7600 break;
7601 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7602 memcpy(&t, &pd->src->v6, sizeof(t));
7603
7604 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7605 if (! job)
7606 return (PF_DROP);
7607
7608 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7609
7610 memcpy(&job->pd, pd, sizeof(*pd));
7611 memcpy(&job->src, &t, sizeof(t));
7612 job->pd.src = &job->src;
7613 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7614 job->pd.dst = &job->dst;
7615 job->pd.m = pd->m;
7616 job->op = op;
7617
7618 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7619 break;
7620 }
7621 #endif /* INET6 */
7622 case SCTP_ADD_IP_ADDRESS: {
7623 int ret;
7624 struct sctp_asconf_paramhdr ah;
7625
7626 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7627 NULL, NULL, pd->af))
7628 return (PF_DROP);
7629
7630 ret = pf_multihome_scan(start + off + sizeof(ah),
7631 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7632 SCTP_ADD_IP_ADDRESS);
7633 if (ret != PF_PASS)
7634 return (ret);
7635 break;
7636 }
7637 case SCTP_DEL_IP_ADDRESS: {
7638 int ret;
7639 struct sctp_asconf_paramhdr ah;
7640
7641 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7642 NULL, NULL, pd->af))
7643 return (PF_DROP);
7644 ret = pf_multihome_scan(start + off + sizeof(ah),
7645 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7646 SCTP_DEL_IP_ADDRESS);
7647 if (ret != PF_PASS)
7648 return (ret);
7649 break;
7650 }
7651 default:
7652 break;
7653 }
7654
7655 off += roundup(ntohs(h.param_length), 4);
7656 }
7657
7658 return (PF_PASS);
7659 }
7660
7661 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7662 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7663 {
7664 start += sizeof(struct sctp_init_chunk);
7665 len -= sizeof(struct sctp_init_chunk);
7666
7667 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7668 }
7669
7670 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7671 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7672 {
7673 start += sizeof(struct sctp_asconf_chunk);
7674 len -= sizeof(struct sctp_asconf_chunk);
7675
7676 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7677 }
7678
7679 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7680 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7681 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7682 int *iidx, int multi, int inner)
7683 {
7684 int direction = pd->dir;
7685
7686 key->af = pd->af;
7687 key->proto = pd->proto;
7688 if (icmp_dir == PF_IN) {
7689 *iidx = pd->sidx;
7690 key->port[pd->sidx] = icmpid;
7691 key->port[pd->didx] = type;
7692 } else {
7693 *iidx = pd->didx;
7694 key->port[pd->sidx] = type;
7695 key->port[pd->didx] = icmpid;
7696 }
7697 if (pf_state_key_addr_setup(pd, key, multi))
7698 return (PF_DROP);
7699
7700 STATE_LOOKUP(key, *state, pd);
7701
7702 if ((*state)->state_flags & PFSTATE_SLOPPY)
7703 return (-1);
7704
7705 /* Is this ICMP message flowing in right direction? */
7706 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7707 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7708 PF_IN : PF_OUT;
7709 else
7710 direction = (*state)->direction;
7711 if ((*state)->rule->type &&
7712 (((!inner && direction == pd->dir) ||
7713 (inner && direction != pd->dir)) ?
7714 PF_IN : PF_OUT) != icmp_dir) {
7715 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7716 printf("pf: icmp type %d in wrong direction (%d): ",
7717 ntohs(type), icmp_dir);
7718 pf_print_state(*state);
7719 printf("\n");
7720 }
7721 PF_STATE_UNLOCK(*state);
7722 *state = NULL;
7723 return (PF_DROP);
7724 }
7725 return (-1);
7726 }
7727
7728 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7729 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7730 u_short *reason)
7731 {
7732 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
7733 u_int16_t *icmpsum, virtual_id, virtual_type;
7734 u_int8_t icmptype, icmpcode;
7735 int icmp_dir, iidx, ret;
7736 struct pf_state_key_cmp key;
7737 #ifdef INET
7738 u_int16_t icmpid;
7739 #endif /* INET*/
7740
7741 MPASS(*state == NULL);
7742
7743 bzero(&key, sizeof(key));
7744 switch (pd->proto) {
7745 #ifdef INET
7746 case IPPROTO_ICMP:
7747 icmptype = pd->hdr.icmp.icmp_type;
7748 icmpcode = pd->hdr.icmp.icmp_code;
7749 icmpid = pd->hdr.icmp.icmp_id;
7750 icmpsum = &pd->hdr.icmp.icmp_cksum;
7751 break;
7752 #endif /* INET */
7753 #ifdef INET6
7754 case IPPROTO_ICMPV6:
7755 icmptype = pd->hdr.icmp6.icmp6_type;
7756 icmpcode = pd->hdr.icmp6.icmp6_code;
7757 #ifdef INET
7758 icmpid = pd->hdr.icmp6.icmp6_id;
7759 #endif /* INET */
7760 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7761 break;
7762 #endif /* INET6 */
7763 default:
7764 panic("unhandled proto %d", pd->proto);
7765 }
7766
7767 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7768 &virtual_type) == 0) {
7769 /*
7770 * ICMP query/reply message not related to a TCP/UDP/SCTP
7771 * packet. Search for an ICMP state.
7772 */
7773 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7774 virtual_type, icmp_dir, &iidx, 0, 0);
7775 /* IPv6? try matching a multicast address */
7776 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7777 MPASS(*state == NULL);
7778 ret = pf_icmp_state_lookup(&key, pd, state,
7779 virtual_id, virtual_type,
7780 icmp_dir, &iidx, 1, 0);
7781 }
7782 if (ret >= 0) {
7783 MPASS(*state == NULL);
7784 return (ret);
7785 }
7786
7787 (*state)->expire = pf_get_uptime();
7788 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7789
7790 /* translate source/destination address, if necessary */
7791 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7792 struct pf_state_key *nk;
7793 int afto, sidx, didx;
7794
7795 if (PF_REVERSED_KEY(*state, pd->af))
7796 nk = (*state)->key[pd->sidx];
7797 else
7798 nk = (*state)->key[pd->didx];
7799
7800 afto = pd->af != nk->af;
7801
7802 if (afto && (*state)->direction == PF_IN) {
7803 sidx = pd->didx;
7804 didx = pd->sidx;
7805 iidx = !iidx;
7806 } else {
7807 sidx = pd->sidx;
7808 didx = pd->didx;
7809 }
7810
7811 switch (pd->af) {
7812 #ifdef INET
7813 case AF_INET:
7814 #ifdef INET6
7815 if (afto) {
7816 if (pf_translate_icmp_af(AF_INET6,
7817 &pd->hdr.icmp))
7818 return (PF_DROP);
7819 pd->proto = IPPROTO_ICMPV6;
7820 }
7821 #endif /* INET6 */
7822 if (!afto &&
7823 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7824 pf_change_a(&saddr->v4.s_addr,
7825 pd->ip_sum,
7826 nk->addr[sidx].v4.s_addr,
7827 0);
7828
7829 if (!afto && PF_ANEQ(pd->dst,
7830 &nk->addr[didx], AF_INET))
7831 pf_change_a(&daddr->v4.s_addr,
7832 pd->ip_sum,
7833 nk->addr[didx].v4.s_addr, 0);
7834
7835 if (nk->port[iidx] !=
7836 pd->hdr.icmp.icmp_id) {
7837 pd->hdr.icmp.icmp_cksum =
7838 pf_cksum_fixup(
7839 pd->hdr.icmp.icmp_cksum, icmpid,
7840 nk->port[iidx], 0);
7841 pd->hdr.icmp.icmp_id =
7842 nk->port[iidx];
7843 }
7844
7845 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7846 (caddr_t )&pd->hdr.icmp);
7847 break;
7848 #endif /* INET */
7849 #ifdef INET6
7850 case AF_INET6:
7851 #ifdef INET
7852 if (afto) {
7853 if (pf_translate_icmp_af(AF_INET,
7854 &pd->hdr.icmp6))
7855 return (PF_DROP);
7856 pd->proto = IPPROTO_ICMP;
7857 }
7858 #endif /* INET */
7859 if (!afto &&
7860 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7861 pf_change_a6(saddr,
7862 &pd->hdr.icmp6.icmp6_cksum,
7863 &nk->addr[sidx], 0);
7864
7865 if (!afto && PF_ANEQ(pd->dst,
7866 &nk->addr[didx], AF_INET6))
7867 pf_change_a6(daddr,
7868 &pd->hdr.icmp6.icmp6_cksum,
7869 &nk->addr[didx], 0);
7870
7871 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7872 pd->hdr.icmp6.icmp6_id =
7873 nk->port[iidx];
7874
7875 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7876 (caddr_t )&pd->hdr.icmp6);
7877 break;
7878 #endif /* INET6 */
7879 }
7880 if (afto) {
7881 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7882 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7883 pd->naf = nk->af;
7884 return (PF_AFRT);
7885 }
7886 }
7887 return (PF_PASS);
7888
7889 } else {
7890 /*
7891 * ICMP error message in response to a TCP/UDP packet.
7892 * Extract the inner TCP/UDP header and search for that state.
7893 */
7894
7895 struct pf_pdesc pd2;
7896 bzero(&pd2, sizeof pd2);
7897 #ifdef INET
7898 struct ip h2;
7899 #endif /* INET */
7900 #ifdef INET6
7901 struct ip6_hdr h2_6;
7902 #endif /* INET6 */
7903 int ipoff2 = 0;
7904
7905 pd2.af = pd->af;
7906 pd2.dir = pd->dir;
7907 /* Payload packet is from the opposite direction. */
7908 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7909 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7910 pd2.m = pd->m;
7911 pd2.kif = pd->kif;
7912 switch (pd->af) {
7913 #ifdef INET
7914 case AF_INET:
7915 /* offset of h2 in mbuf chain */
7916 ipoff2 = pd->off + ICMP_MINLEN;
7917
7918 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7919 NULL, reason, pd2.af)) {
7920 DPFPRINTF(PF_DEBUG_MISC,
7921 ("pf: ICMP error message too short "
7922 "(ip)\n"));
7923 return (PF_DROP);
7924 }
7925 /*
7926 * ICMP error messages don't refer to non-first
7927 * fragments
7928 */
7929 if (h2.ip_off & htons(IP_OFFMASK)) {
7930 REASON_SET(reason, PFRES_FRAG);
7931 return (PF_DROP);
7932 }
7933
7934 /* offset of protocol header that follows h2 */
7935 pd2.off = ipoff2;
7936 if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
7937 return (PF_DROP);
7938
7939 pd2.tot_len = ntohs(h2.ip_len);
7940 pd2.src = (struct pf_addr *)&h2.ip_src;
7941 pd2.dst = (struct pf_addr *)&h2.ip_dst;
7942 pd2.ip_sum = &h2.ip_sum;
7943 break;
7944 #endif /* INET */
7945 #ifdef INET6
7946 case AF_INET6:
7947 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7948
7949 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7950 NULL, reason, pd2.af)) {
7951 DPFPRINTF(PF_DEBUG_MISC,
7952 ("pf: ICMP error message too short "
7953 "(ip6)\n"));
7954 return (PF_DROP);
7955 }
7956 pd2.off = ipoff2;
7957 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
7958 return (PF_DROP);
7959
7960 pd2.tot_len = ntohs(h2_6.ip6_plen) +
7961 sizeof(struct ip6_hdr);
7962 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7963 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7964 pd2.ip_sum = NULL;
7965 break;
7966 #endif /* INET6 */
7967 default:
7968 unhandled_af(pd->af);
7969 }
7970
7971 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7972 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7973 printf("pf: BAD ICMP %d:%d outer dst: ",
7974 icmptype, icmpcode);
7975 pf_print_host(pd->src, 0, pd->af);
7976 printf(" -> ");
7977 pf_print_host(pd->dst, 0, pd->af);
7978 printf(" inner src: ");
7979 pf_print_host(pd2.src, 0, pd2.af);
7980 printf(" -> ");
7981 pf_print_host(pd2.dst, 0, pd2.af);
7982 printf("\n");
7983 }
7984 REASON_SET(reason, PFRES_BADSTATE);
7985 return (PF_DROP);
7986 }
7987
7988 switch (pd2.proto) {
7989 case IPPROTO_TCP: {
7990 struct tcphdr *th = &pd2.hdr.tcp;
7991 u_int32_t seq;
7992 struct pf_state_peer *src, *dst;
7993 u_int8_t dws;
7994 int copyback = 0;
7995
7996 /*
7997 * Only the first 8 bytes of the TCP header can be
7998 * expected. Don't access any TCP header fields after
7999 * th_seq, an ackskew test is not possible.
8000 */
8001 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason,
8002 pd2.af)) {
8003 DPFPRINTF(PF_DEBUG_MISC,
8004 ("pf: ICMP error message too short "
8005 "(tcp)\n"));
8006 return (PF_DROP);
8007 }
8008 pd2.pcksum = &pd2.hdr.tcp.th_sum;
8009
8010 key.af = pd2.af;
8011 key.proto = IPPROTO_TCP;
8012 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8013 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8014 key.port[pd2.sidx] = th->th_sport;
8015 key.port[pd2.didx] = th->th_dport;
8016
8017 STATE_LOOKUP(&key, *state, pd);
8018
8019 if (pd->dir == (*state)->direction) {
8020 if (PF_REVERSED_KEY(*state, pd->af)) {
8021 src = &(*state)->src;
8022 dst = &(*state)->dst;
8023 } else {
8024 src = &(*state)->dst;
8025 dst = &(*state)->src;
8026 }
8027 } else {
8028 if (PF_REVERSED_KEY(*state, pd->af)) {
8029 src = &(*state)->dst;
8030 dst = &(*state)->src;
8031 } else {
8032 src = &(*state)->src;
8033 dst = &(*state)->dst;
8034 }
8035 }
8036
8037 if (src->wscale && dst->wscale)
8038 dws = dst->wscale & PF_WSCALE_MASK;
8039 else
8040 dws = 0;
8041
8042 /* Demodulate sequence number */
8043 seq = ntohl(th->th_seq) - src->seqdiff;
8044 if (src->seqdiff) {
8045 pf_change_a(&th->th_seq, icmpsum,
8046 htonl(seq), 0);
8047 copyback = 1;
8048 }
8049
8050 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8051 (!SEQ_GEQ(src->seqhi, seq) ||
8052 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8053 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8054 printf("pf: BAD ICMP %d:%d ",
8055 icmptype, icmpcode);
8056 pf_print_host(pd->src, 0, pd->af);
8057 printf(" -> ");
8058 pf_print_host(pd->dst, 0, pd->af);
8059 printf(" state: ");
8060 pf_print_state(*state);
8061 printf(" seq=%u\n", seq);
8062 }
8063 REASON_SET(reason, PFRES_BADSTATE);
8064 return (PF_DROP);
8065 } else {
8066 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8067 printf("pf: OK ICMP %d:%d ",
8068 icmptype, icmpcode);
8069 pf_print_host(pd->src, 0, pd->af);
8070 printf(" -> ");
8071 pf_print_host(pd->dst, 0, pd->af);
8072 printf(" state: ");
8073 pf_print_state(*state);
8074 printf(" seq=%u\n", seq);
8075 }
8076 }
8077
8078 /* translate source/destination address, if necessary */
8079 if ((*state)->key[PF_SK_WIRE] !=
8080 (*state)->key[PF_SK_STACK]) {
8081
8082 struct pf_state_key *nk;
8083
8084 if (PF_REVERSED_KEY(*state, pd->af))
8085 nk = (*state)->key[pd->sidx];
8086 else
8087 nk = (*state)->key[pd->didx];
8088
8089 #if defined(INET) && defined(INET6)
8090 int afto, sidx, didx;
8091
8092 afto = pd->af != nk->af;
8093
8094 if (afto && (*state)->direction == PF_IN) {
8095 sidx = pd2.didx;
8096 didx = pd2.sidx;
8097 } else {
8098 sidx = pd2.sidx;
8099 didx = pd2.didx;
8100 }
8101
8102 if (afto) {
8103 if (pf_translate_icmp_af(nk->af,
8104 &pd->hdr.icmp))
8105 return (PF_DROP);
8106 m_copyback(pd->m, pd->off,
8107 sizeof(struct icmp6_hdr),
8108 (c_caddr_t)&pd->hdr.icmp6);
8109 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8110 &pd2, &nk->addr[sidx],
8111 &nk->addr[didx], pd->af,
8112 nk->af))
8113 return (PF_DROP);
8114 PF_ACPY(&pd->nsaddr, &nk->addr[pd2.sidx],
8115 nk->af);
8116 PF_ACPY(&pd->ndaddr,
8117 &nk->addr[pd2.didx], nk->af);
8118 if (nk->af == AF_INET) {
8119 pd->proto = IPPROTO_ICMP;
8120 } else {
8121 pd->proto = IPPROTO_ICMPV6;
8122 /*
8123 * IPv4 becomes IPv6 so we must
8124 * copy IPv4 src addr to least
8125 * 32bits in IPv6 address to
8126 * keep traceroute/icmp
8127 * working.
8128 */
8129 pd->nsaddr.addr32[3] =
8130 pd->src->addr32[0];
8131 }
8132 pd->naf = pd2.naf = nk->af;
8133 pf_change_ap(&pd2, pd2.src, &th->th_sport,
8134 &nk->addr[pd2.sidx], nk->port[sidx]);
8135 pf_change_ap(&pd2, pd2.dst, &th->th_dport,
8136 &nk->addr[pd2.didx], nk->port[didx]);
8137 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
8138 return (PF_AFRT);
8139 }
8140 #endif /* INET && INET6 */
8141
8142 if (PF_ANEQ(pd2.src,
8143 &nk->addr[pd2.sidx], pd2.af) ||
8144 nk->port[pd2.sidx] != th->th_sport)
8145 pf_change_icmp(pd2.src, &th->th_sport,
8146 daddr, &nk->addr[pd2.sidx],
8147 nk->port[pd2.sidx], NULL,
8148 pd2.ip_sum, icmpsum,
8149 pd->ip_sum, 0, pd2.af);
8150
8151 if (PF_ANEQ(pd2.dst,
8152 &nk->addr[pd2.didx], pd2.af) ||
8153 nk->port[pd2.didx] != th->th_dport)
8154 pf_change_icmp(pd2.dst, &th->th_dport,
8155 saddr, &nk->addr[pd2.didx],
8156 nk->port[pd2.didx], NULL,
8157 pd2.ip_sum, icmpsum,
8158 pd->ip_sum, 0, pd2.af);
8159 copyback = 1;
8160 }
8161
8162 if (copyback) {
8163 switch (pd2.af) {
8164 #ifdef INET
8165 case AF_INET:
8166 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8167 (caddr_t )&pd->hdr.icmp);
8168 m_copyback(pd->m, ipoff2, sizeof(h2),
8169 (caddr_t )&h2);
8170 break;
8171 #endif /* INET */
8172 #ifdef INET6
8173 case AF_INET6:
8174 m_copyback(pd->m, pd->off,
8175 sizeof(struct icmp6_hdr),
8176 (caddr_t )&pd->hdr.icmp6);
8177 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8178 (caddr_t )&h2_6);
8179 break;
8180 #endif /* INET6 */
8181 default:
8182 unhandled_af(pd->af);
8183 }
8184 m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
8185 }
8186
8187 return (PF_PASS);
8188 break;
8189 }
8190 case IPPROTO_UDP: {
8191 struct udphdr *uh = &pd2.hdr.udp;
8192
8193 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
8194 NULL, reason, pd2.af)) {
8195 DPFPRINTF(PF_DEBUG_MISC,
8196 ("pf: ICMP error message too short "
8197 "(udp)\n"));
8198 return (PF_DROP);
8199 }
8200 pd2.pcksum = &pd2.hdr.udp.uh_sum;
8201
8202 key.af = pd2.af;
8203 key.proto = IPPROTO_UDP;
8204 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8205 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8206 key.port[pd2.sidx] = uh->uh_sport;
8207 key.port[pd2.didx] = uh->uh_dport;
8208
8209 STATE_LOOKUP(&key, *state, pd);
8210
8211 /* translate source/destination address, if necessary */
8212 if ((*state)->key[PF_SK_WIRE] !=
8213 (*state)->key[PF_SK_STACK]) {
8214 struct pf_state_key *nk;
8215
8216 if (PF_REVERSED_KEY(*state, pd->af))
8217 nk = (*state)->key[pd->sidx];
8218 else
8219 nk = (*state)->key[pd->didx];
8220
8221 #if defined(INET) && defined(INET6)
8222 int afto, sidx, didx;
8223
8224 afto = pd->af != nk->af;
8225
8226 if (afto && (*state)->direction == PF_IN) {
8227 sidx = pd2.didx;
8228 didx = pd2.sidx;
8229 } else {
8230 sidx = pd2.sidx;
8231 didx = pd2.didx;
8232 }
8233
8234 if (afto) {
8235 if (pf_translate_icmp_af(nk->af,
8236 &pd->hdr.icmp))
8237 return (PF_DROP);
8238 m_copyback(pd->m, pd->off,
8239 sizeof(struct icmp6_hdr),
8240 (c_caddr_t)&pd->hdr.icmp6);
8241 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8242 &pd2, &nk->addr[sidx],
8243 &nk->addr[didx], pd->af,
8244 nk->af))
8245 return (PF_DROP);
8246 PF_ACPY(&pd->nsaddr,
8247 &nk->addr[pd2.sidx], nk->af);
8248 PF_ACPY(&pd->ndaddr,
8249 &nk->addr[pd2.didx], nk->af);
8250 if (nk->af == AF_INET) {
8251 pd->proto = IPPROTO_ICMP;
8252 } else {
8253 pd->proto = IPPROTO_ICMPV6;
8254 /*
8255 * IPv4 becomes IPv6 so we must
8256 * copy IPv4 src addr to least
8257 * 32bits in IPv6 address to
8258 * keep traceroute/icmp
8259 * working.
8260 */
8261 pd->nsaddr.addr32[3] =
8262 pd->src->addr32[0];
8263 }
8264 pd->naf = pd2.naf = nk->af;
8265 pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
8266 &nk->addr[pd2.sidx], nk->port[sidx]);
8267 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
8268 &nk->addr[pd2.didx], nk->port[didx]);
8269 m_copyback(pd2.m, pd2.off, sizeof(*uh),
8270 (c_caddr_t)uh);
8271 return (PF_AFRT);
8272 }
8273 #endif /* INET && INET6 */
8274
8275 if (PF_ANEQ(pd2.src,
8276 &nk->addr[pd2.sidx], pd2.af) ||
8277 nk->port[pd2.sidx] != uh->uh_sport)
8278 pf_change_icmp(pd2.src, &uh->uh_sport,
8279 daddr, &nk->addr[pd2.sidx],
8280 nk->port[pd2.sidx], &uh->uh_sum,
8281 pd2.ip_sum, icmpsum,
8282 pd->ip_sum, 1, pd2.af);
8283
8284 if (PF_ANEQ(pd2.dst,
8285 &nk->addr[pd2.didx], pd2.af) ||
8286 nk->port[pd2.didx] != uh->uh_dport)
8287 pf_change_icmp(pd2.dst, &uh->uh_dport,
8288 saddr, &nk->addr[pd2.didx],
8289 nk->port[pd2.didx], &uh->uh_sum,
8290 pd2.ip_sum, icmpsum,
8291 pd->ip_sum, 1, pd2.af);
8292
8293 switch (pd2.af) {
8294 #ifdef INET
8295 case AF_INET:
8296 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8297 (caddr_t )&pd->hdr.icmp);
8298 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8299 break;
8300 #endif /* INET */
8301 #ifdef INET6
8302 case AF_INET6:
8303 m_copyback(pd->m, pd->off,
8304 sizeof(struct icmp6_hdr),
8305 (caddr_t )&pd->hdr.icmp6);
8306 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8307 (caddr_t )&h2_6);
8308 break;
8309 #endif /* INET6 */
8310 }
8311 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
8312 }
8313 return (PF_PASS);
8314 break;
8315 }
8316 #ifdef INET
8317 case IPPROTO_SCTP: {
8318 struct sctphdr *sh = &pd2.hdr.sctp;
8319 struct pf_state_peer *src;
8320 int copyback = 0;
8321
8322 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason,
8323 pd2.af)) {
8324 DPFPRINTF(PF_DEBUG_MISC,
8325 ("pf: ICMP error message too short "
8326 "(sctp)\n"));
8327 return (PF_DROP);
8328 }
8329 pd2.pcksum = &pd2.sctp_dummy_sum;
8330
8331 key.af = pd2.af;
8332 key.proto = IPPROTO_SCTP;
8333 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8334 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8335 key.port[pd2.sidx] = sh->src_port;
8336 key.port[pd2.didx] = sh->dest_port;
8337
8338 STATE_LOOKUP(&key, *state, pd);
8339
8340 if (pd->dir == (*state)->direction) {
8341 if (PF_REVERSED_KEY(*state, pd->af))
8342 src = &(*state)->src;
8343 else
8344 src = &(*state)->dst;
8345 } else {
8346 if (PF_REVERSED_KEY(*state, pd->af))
8347 src = &(*state)->dst;
8348 else
8349 src = &(*state)->src;
8350 }
8351
8352 if (src->scrub->pfss_v_tag != sh->v_tag) {
8353 DPFPRINTF(PF_DEBUG_MISC,
8354 ("pf: ICMP error message has incorrect "
8355 "SCTP v_tag\n"));
8356 return (PF_DROP);
8357 }
8358
8359 /* translate source/destination address, if necessary */
8360 if ((*state)->key[PF_SK_WIRE] !=
8361 (*state)->key[PF_SK_STACK]) {
8362
8363 struct pf_state_key *nk;
8364
8365 if (PF_REVERSED_KEY(*state, pd->af))
8366 nk = (*state)->key[pd->sidx];
8367 else
8368 nk = (*state)->key[pd->didx];
8369
8370 #if defined(INET) && defined(INET6)
8371 int afto, sidx, didx;
8372
8373 afto = pd->af != nk->af;
8374
8375 if (afto && (*state)->direction == PF_IN) {
8376 sidx = pd2.didx;
8377 didx = pd2.sidx;
8378 } else {
8379 sidx = pd2.sidx;
8380 didx = pd2.didx;
8381 }
8382
8383 if (afto) {
8384 if (pf_translate_icmp_af(nk->af,
8385 &pd->hdr.icmp))
8386 return (PF_DROP);
8387 m_copyback(pd->m, pd->off,
8388 sizeof(struct icmp6_hdr),
8389 (c_caddr_t)&pd->hdr.icmp6);
8390 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8391 &pd2, &nk->addr[sidx],
8392 &nk->addr[didx], pd->af,
8393 nk->af))
8394 return (PF_DROP);
8395 sh->src_port = nk->port[sidx];
8396 sh->dest_port = nk->port[didx];
8397 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
8398 PF_ACPY(&pd->nsaddr,
8399 &nk->addr[pd2.sidx], nk->af);
8400 PF_ACPY(&pd->ndaddr,
8401 &nk->addr[pd2.didx], nk->af);
8402 if (nk->af == AF_INET) {
8403 pd->proto = IPPROTO_ICMP;
8404 } else {
8405 pd->proto = IPPROTO_ICMPV6;
8406 /*
8407 * IPv4 becomes IPv6 so we must
8408 * copy IPv4 src addr to least
8409 * 32bits in IPv6 address to
8410 * keep traceroute/icmp
8411 * working.
8412 */
8413 pd->nsaddr.addr32[3] =
8414 pd->src->addr32[0];
8415 }
8416 pd->naf = nk->af;
8417 return (PF_AFRT);
8418 }
8419 #endif /* INET && INET6 */
8420
8421 if (PF_ANEQ(pd2.src,
8422 &nk->addr[pd2.sidx], pd2.af) ||
8423 nk->port[pd2.sidx] != sh->src_port)
8424 pf_change_icmp(pd2.src, &sh->src_port,
8425 daddr, &nk->addr[pd2.sidx],
8426 nk->port[pd2.sidx], NULL,
8427 pd2.ip_sum, icmpsum,
8428 pd->ip_sum, 0, pd2.af);
8429
8430 if (PF_ANEQ(pd2.dst,
8431 &nk->addr[pd2.didx], pd2.af) ||
8432 nk->port[pd2.didx] != sh->dest_port)
8433 pf_change_icmp(pd2.dst, &sh->dest_port,
8434 saddr, &nk->addr[pd2.didx],
8435 nk->port[pd2.didx], NULL,
8436 pd2.ip_sum, icmpsum,
8437 pd->ip_sum, 0, pd2.af);
8438 copyback = 1;
8439 }
8440
8441 if (copyback) {
8442 switch (pd2.af) {
8443 #ifdef INET
8444 case AF_INET:
8445 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8446 (caddr_t )&pd->hdr.icmp);
8447 m_copyback(pd->m, ipoff2, sizeof(h2),
8448 (caddr_t )&h2);
8449 break;
8450 #endif /* INET */
8451 #ifdef INET6
8452 case AF_INET6:
8453 m_copyback(pd->m, pd->off,
8454 sizeof(struct icmp6_hdr),
8455 (caddr_t )&pd->hdr.icmp6);
8456 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8457 (caddr_t )&h2_6);
8458 break;
8459 #endif /* INET6 */
8460 }
8461 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
8462 }
8463
8464 return (PF_PASS);
8465 break;
8466 }
8467 case IPPROTO_ICMP: {
8468 struct icmp *iih = &pd2.hdr.icmp;
8469
8470 if (pd2.af != AF_INET) {
8471 REASON_SET(reason, PFRES_NORM);
8472 return (PF_DROP);
8473 }
8474
8475 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8476 NULL, reason, pd2.af)) {
8477 DPFPRINTF(PF_DEBUG_MISC,
8478 ("pf: ICMP error message too short i"
8479 "(icmp)\n"));
8480 return (PF_DROP);
8481 }
8482 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
8483
8484 icmpid = iih->icmp_id;
8485 pf_icmp_mapping(&pd2, iih->icmp_type,
8486 &icmp_dir, &virtual_id, &virtual_type);
8487
8488 ret = pf_icmp_state_lookup(&key, &pd2, state,
8489 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8490 if (ret >= 0) {
8491 MPASS(*state == NULL);
8492 return (ret);
8493 }
8494
8495 /* translate source/destination address, if necessary */
8496 if ((*state)->key[PF_SK_WIRE] !=
8497 (*state)->key[PF_SK_STACK]) {
8498 struct pf_state_key *nk;
8499
8500 if (PF_REVERSED_KEY(*state, pd->af))
8501 nk = (*state)->key[pd->sidx];
8502 else
8503 nk = (*state)->key[pd->didx];
8504
8505 #if defined(INET) && defined(INET6)
8506 int afto, sidx, didx;
8507
8508 afto = pd->af != nk->af;
8509
8510 if (afto && (*state)->direction == PF_IN) {
8511 sidx = pd2.didx;
8512 didx = pd2.sidx;
8513 iidx = !iidx;
8514 } else {
8515 sidx = pd2.sidx;
8516 didx = pd2.didx;
8517 }
8518
8519 if (afto) {
8520 if (nk->af != AF_INET6)
8521 return (PF_DROP);
8522 if (pf_translate_icmp_af(nk->af,
8523 &pd->hdr.icmp))
8524 return (PF_DROP);
8525 m_copyback(pd->m, pd->off,
8526 sizeof(struct icmp6_hdr),
8527 (c_caddr_t)&pd->hdr.icmp6);
8528 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8529 &pd2, &nk->addr[sidx],
8530 &nk->addr[didx], pd->af,
8531 nk->af))
8532 return (PF_DROP);
8533 pd->proto = IPPROTO_ICMPV6;
8534 if (pf_translate_icmp_af(nk->af, iih))
8535 return (PF_DROP);
8536 if (virtual_type == htons(ICMP_ECHO) &&
8537 nk->port[iidx] != iih->icmp_id)
8538 iih->icmp_id = nk->port[iidx];
8539 m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8540 (c_caddr_t)iih);
8541 PF_ACPY(&pd->nsaddr,
8542 &nk->addr[pd2.sidx], nk->af);
8543 PF_ACPY(&pd->ndaddr,
8544 &nk->addr[pd2.didx], nk->af);
8545 /*
8546 * IPv4 becomes IPv6 so we must copy
8547 * IPv4 src addr to least 32bits in
8548 * IPv6 address to keep traceroute
8549 * working.
8550 */
8551 pd->nsaddr.addr32[3] =
8552 pd->src->addr32[0];
8553 pd->naf = nk->af;
8554 return (PF_AFRT);
8555 }
8556 #endif /* INET && INET6 */
8557
8558 if (PF_ANEQ(pd2.src,
8559 &nk->addr[pd2.sidx], pd2.af) ||
8560 (virtual_type == htons(ICMP_ECHO) &&
8561 nk->port[iidx] != iih->icmp_id))
8562 pf_change_icmp(pd2.src,
8563 (virtual_type == htons(ICMP_ECHO)) ?
8564 &iih->icmp_id : NULL,
8565 daddr, &nk->addr[pd2.sidx],
8566 (virtual_type == htons(ICMP_ECHO)) ?
8567 nk->port[iidx] : 0, NULL,
8568 pd2.ip_sum, icmpsum,
8569 pd->ip_sum, 0, AF_INET);
8570
8571 if (PF_ANEQ(pd2.dst,
8572 &nk->addr[pd2.didx], pd2.af))
8573 pf_change_icmp(pd2.dst, NULL, NULL,
8574 &nk->addr[pd2.didx], 0, NULL,
8575 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8576 AF_INET);
8577
8578 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8579 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8580 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8581 }
8582 return (PF_PASS);
8583 break;
8584 }
8585 #endif /* INET */
8586 #ifdef INET6
8587 case IPPROTO_ICMPV6: {
8588 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
8589
8590 if (pd2.af != AF_INET6) {
8591 REASON_SET(reason, PFRES_NORM);
8592 return (PF_DROP);
8593 }
8594
8595 if (!pf_pull_hdr(pd->m, pd2.off, iih,
8596 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8597 DPFPRINTF(PF_DEBUG_MISC,
8598 ("pf: ICMP error message too short "
8599 "(icmp6)\n"));
8600 return (PF_DROP);
8601 }
8602 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
8603
8604 pf_icmp_mapping(&pd2, iih->icmp6_type,
8605 &icmp_dir, &virtual_id, &virtual_type);
8606
8607 ret = pf_icmp_state_lookup(&key, &pd2, state,
8608 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8609 /* IPv6? try matching a multicast address */
8610 if (ret == PF_DROP && pd2.af == AF_INET6 &&
8611 icmp_dir == PF_OUT) {
8612 MPASS(*state == NULL);
8613 ret = pf_icmp_state_lookup(&key, &pd2,
8614 state, virtual_id, virtual_type,
8615 icmp_dir, &iidx, 1, 1);
8616 }
8617 if (ret >= 0) {
8618 MPASS(*state == NULL);
8619 return (ret);
8620 }
8621
8622 /* translate source/destination address, if necessary */
8623 if ((*state)->key[PF_SK_WIRE] !=
8624 (*state)->key[PF_SK_STACK]) {
8625 struct pf_state_key *nk;
8626
8627 if (PF_REVERSED_KEY(*state, pd->af))
8628 nk = (*state)->key[pd->sidx];
8629 else
8630 nk = (*state)->key[pd->didx];
8631
8632 #if defined(INET) && defined(INET6)
8633 int afto, sidx, didx;
8634
8635 afto = pd->af != nk->af;
8636
8637 if (afto && (*state)->direction == PF_IN) {
8638 sidx = pd2.didx;
8639 didx = pd2.sidx;
8640 iidx = !iidx;
8641 } else {
8642 sidx = pd2.sidx;
8643 didx = pd2.didx;
8644 }
8645
8646 if (afto) {
8647 if (nk->af != AF_INET)
8648 return (PF_DROP);
8649 if (pf_translate_icmp_af(nk->af,
8650 &pd->hdr.icmp))
8651 return (PF_DROP);
8652 m_copyback(pd->m, pd->off,
8653 sizeof(struct icmp6_hdr),
8654 (c_caddr_t)&pd->hdr.icmp6);
8655 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8656 &pd2, &nk->addr[sidx],
8657 &nk->addr[didx], pd->af,
8658 nk->af))
8659 return (PF_DROP);
8660 pd->proto = IPPROTO_ICMP;
8661 if (pf_translate_icmp_af(nk->af, iih))
8662 return (PF_DROP);
8663 if (virtual_type ==
8664 htons(ICMP6_ECHO_REQUEST) &&
8665 nk->port[iidx] != iih->icmp6_id)
8666 iih->icmp6_id = nk->port[iidx];
8667 m_copyback(pd2.m, pd2.off,
8668 sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8669 PF_ACPY(&pd->nsaddr,
8670 &nk->addr[pd2.sidx], nk->af);
8671 PF_ACPY(&pd->ndaddr,
8672 &nk->addr[pd2.didx], nk->af);
8673 pd->naf = nk->af;
8674 return (PF_AFRT);
8675 }
8676 #endif /* INET && INET6 */
8677
8678 if (PF_ANEQ(pd2.src,
8679 &nk->addr[pd2.sidx], pd2.af) ||
8680 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8681 nk->port[pd2.sidx] != iih->icmp6_id))
8682 pf_change_icmp(pd2.src,
8683 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8684 ? &iih->icmp6_id : NULL,
8685 daddr, &nk->addr[pd2.sidx],
8686 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8687 ? nk->port[iidx] : 0, NULL,
8688 pd2.ip_sum, icmpsum,
8689 pd->ip_sum, 0, AF_INET6);
8690
8691 if (PF_ANEQ(pd2.dst,
8692 &nk->addr[pd2.didx], pd2.af))
8693 pf_change_icmp(pd2.dst, NULL, NULL,
8694 &nk->addr[pd2.didx], 0, NULL,
8695 pd2.ip_sum, icmpsum,
8696 pd->ip_sum, 0, AF_INET6);
8697
8698 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8699 (caddr_t)&pd->hdr.icmp6);
8700 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8701 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8702 (caddr_t)iih);
8703 }
8704 return (PF_PASS);
8705 break;
8706 }
8707 #endif /* INET6 */
8708 default: {
8709 key.af = pd2.af;
8710 key.proto = pd2.proto;
8711 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8712 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8713 key.port[0] = key.port[1] = 0;
8714
8715 STATE_LOOKUP(&key, *state, pd);
8716
8717 /* translate source/destination address, if necessary */
8718 if ((*state)->key[PF_SK_WIRE] !=
8719 (*state)->key[PF_SK_STACK]) {
8720 struct pf_state_key *nk =
8721 (*state)->key[pd->didx];
8722
8723 if (PF_ANEQ(pd2.src,
8724 &nk->addr[pd2.sidx], pd2.af))
8725 pf_change_icmp(pd2.src, NULL, daddr,
8726 &nk->addr[pd2.sidx], 0, NULL,
8727 pd2.ip_sum, icmpsum,
8728 pd->ip_sum, 0, pd2.af);
8729
8730 if (PF_ANEQ(pd2.dst,
8731 &nk->addr[pd2.didx], pd2.af))
8732 pf_change_icmp(pd2.dst, NULL, saddr,
8733 &nk->addr[pd2.didx], 0, NULL,
8734 pd2.ip_sum, icmpsum,
8735 pd->ip_sum, 0, pd2.af);
8736
8737 switch (pd2.af) {
8738 #ifdef INET
8739 case AF_INET:
8740 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8741 (caddr_t)&pd->hdr.icmp);
8742 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8743 break;
8744 #endif /* INET */
8745 #ifdef INET6
8746 case AF_INET6:
8747 m_copyback(pd->m, pd->off,
8748 sizeof(struct icmp6_hdr),
8749 (caddr_t )&pd->hdr.icmp6);
8750 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8751 (caddr_t )&h2_6);
8752 break;
8753 #endif /* INET6 */
8754 }
8755 }
8756 return (PF_PASS);
8757 break;
8758 }
8759 }
8760 }
8761 }
8762
8763 /*
8764 * ipoff and off are measured from the start of the mbuf chain.
8765 * h must be at "ipoff" on the mbuf chain.
8766 */
8767 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8768 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8769 u_short *actionp, u_short *reasonp, sa_family_t af)
8770 {
8771 int iplen = 0;
8772 switch (af) {
8773 #ifdef INET
8774 case AF_INET: {
8775 const struct ip *h = mtod(m, struct ip *);
8776 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8777
8778 if (fragoff) {
8779 if (fragoff >= len)
8780 ACTION_SET(actionp, PF_PASS);
8781 else {
8782 ACTION_SET(actionp, PF_DROP);
8783 REASON_SET(reasonp, PFRES_FRAG);
8784 }
8785 return (NULL);
8786 }
8787 iplen = ntohs(h->ip_len);
8788 break;
8789 }
8790 #endif /* INET */
8791 #ifdef INET6
8792 case AF_INET6: {
8793 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8794
8795 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8796 break;
8797 }
8798 #endif /* INET6 */
8799 }
8800 if (m->m_pkthdr.len < off + len || iplen < off + len) {
8801 ACTION_SET(actionp, PF_DROP);
8802 REASON_SET(reasonp, PFRES_SHORT);
8803 return (NULL);
8804 }
8805 m_copydata(m, off, len, p);
8806 return (p);
8807 }
8808
8809 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8810 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8811 int rtableid)
8812 {
8813 struct ifnet *ifp;
8814
8815 /*
8816 * Skip check for addresses with embedded interface scope,
8817 * as they would always match anyway.
8818 */
8819 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8820 return (1);
8821
8822 if (af != AF_INET && af != AF_INET6)
8823 return (0);
8824
8825 if (kif == V_pfi_all)
8826 return (1);
8827
8828 /* Skip checks for ipsec interfaces */
8829 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8830 return (1);
8831
8832 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8833
8834 switch (af) {
8835 #ifdef INET6
8836 case AF_INET6:
8837 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8838 ifp));
8839 #endif /* INET6 */
8840 #ifdef INET
8841 case AF_INET:
8842 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8843 ifp));
8844 #endif /* INET */
8845 }
8846
8847 return (0);
8848 }
8849
8850 #ifdef INET
8851 static void
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8852 pf_route(struct pf_krule *r, struct ifnet *oifp,
8853 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8854 {
8855 struct mbuf *m0, *m1, *md;
8856 struct route ro;
8857 const struct sockaddr *gw = &ro.ro_dst;
8858 struct sockaddr_in *dst;
8859 struct ip *ip;
8860 struct ifnet *ifp = NULL;
8861 int error = 0;
8862 uint16_t ip_len, ip_off;
8863 uint16_t tmp;
8864 int r_dir;
8865 bool skip_test = false;
8866
8867 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
8868
8869 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
8870
8871 if (s) {
8872 r_dir = s->direction;
8873 } else {
8874 r_dir = r->direction;
8875 }
8876
8877 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
8878 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
8879 __func__));
8880
8881 if ((pd->pf_mtag == NULL &&
8882 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
8883 pd->pf_mtag->routed++ > 3) {
8884 m0 = pd->m;
8885 pd->m = NULL;
8886 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8887 goto bad_locked;
8888 }
8889
8890 if (pd->act.rt_kif != NULL)
8891 ifp = pd->act.rt_kif->pfik_ifp;
8892
8893 if (pd->act.rt == PF_DUPTO) {
8894 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
8895 if (s != NULL) {
8896 PF_STATE_UNLOCK(s);
8897 }
8898 if (ifp == oifp) {
8899 /* When the 2nd interface is not skipped */
8900 return;
8901 } else {
8902 m0 = pd->m;
8903 pd->m = NULL;
8904 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8905 goto bad;
8906 }
8907 } else {
8908 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
8909 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
8910 if (s)
8911 PF_STATE_UNLOCK(s);
8912 return;
8913 }
8914 }
8915 } else {
8916 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
8917 if (pd->af == pd->naf) {
8918 pf_dummynet(pd, s, r, &pd->m);
8919 if (s)
8920 PF_STATE_UNLOCK(s);
8921 return;
8922 } else {
8923 if (r_dir == PF_IN) {
8924 skip_test = true;
8925 }
8926 }
8927 }
8928
8929 /*
8930 * If we're actually doing route-to and af-to and are in the
8931 * reply direction.
8932 */
8933 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
8934 pd->af != pd->naf) {
8935 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
8936 /* Un-set ifp so we do a plain route lookup. */
8937 ifp = NULL;
8938 }
8939 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
8940 /* Un-set ifp so we do a plain route lookup. */
8941 ifp = NULL;
8942 }
8943 }
8944 m0 = pd->m;
8945 }
8946
8947 ip = mtod(m0, struct ip *);
8948
8949 bzero(&ro, sizeof(ro));
8950 dst = (struct sockaddr_in *)&ro.ro_dst;
8951 dst->sin_family = AF_INET;
8952 dst->sin_len = sizeof(struct sockaddr_in);
8953 dst->sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
8954
8955 if (pd->dir == PF_IN) {
8956 if (ip->ip_ttl <= IPTTLDEC) {
8957 if (r->rt != PF_DUPTO)
8958 pf_send_icmp(m0, ICMP_TIMXCEED,
8959 ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
8960 pd->act.rtableid);
8961 goto bad_locked;
8962 }
8963 ip->ip_ttl -= IPTTLDEC;
8964 }
8965
8966 if (s != NULL) {
8967 if (ifp == NULL && (pd->af != pd->naf)) {
8968 /* We're in the AFTO case. Do a route lookup. */
8969 const struct nhop_object *nh;
8970 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
8971 if (nh) {
8972 ifp = nh->nh_ifp;
8973
8974 /* Use the gateway if needed. */
8975 if (nh->nh_flags & NHF_GATEWAY) {
8976 gw = &nh->gw_sa;
8977 ro.ro_flags |= RT_HAS_GW;
8978 } else {
8979 dst->sin_addr = ip->ip_dst;
8980 }
8981
8982 /*
8983 * Bind to the correct interface if we're
8984 * if-bound. We don't know which interface
8985 * that will be until here, so we've inserted
8986 * the state on V_pf_all. Fix that now.
8987 */
8988 if (s->kif == V_pfi_all && ifp != NULL &&
8989 r->rule_flag & PFRULE_IFBOUND)
8990 s->kif = ifp->if_pf_kif;
8991 }
8992 }
8993
8994 if (r->rule_flag & PFRULE_IFBOUND &&
8995 pd->act.rt == PF_REPLYTO &&
8996 s->kif == V_pfi_all) {
8997 s->kif = pd->act.rt_kif;
8998 s->orig_kif = oifp->if_pf_kif;
8999 }
9000
9001 PF_STATE_UNLOCK(s);
9002 }
9003
9004 if (ifp == NULL) {
9005 m0 = pd->m;
9006 pd->m = NULL;
9007 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9008 goto bad;
9009 }
9010
9011 if (pd->dir == PF_IN && !skip_test) {
9012 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9013 &pd->act) != PF_PASS) {
9014 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9015 goto bad;
9016 } else if (m0 == NULL) {
9017 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9018 goto done;
9019 }
9020 if (m0->m_len < sizeof(struct ip)) {
9021 DPFPRINTF(PF_DEBUG_URGENT,
9022 ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
9023 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9024 goto bad;
9025 }
9026 ip = mtod(m0, struct ip *);
9027 }
9028
9029 if (ifp->if_flags & IFF_LOOPBACK)
9030 m0->m_flags |= M_SKIP_FIREWALL;
9031
9032 ip_len = ntohs(ip->ip_len);
9033 ip_off = ntohs(ip->ip_off);
9034
9035 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
9036 m0->m_pkthdr.csum_flags |= CSUM_IP;
9037 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9038 in_delayed_cksum(m0);
9039 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9040 }
9041 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9042 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9043 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9044 }
9045
9046 if (pd->dir == PF_IN) {
9047 /*
9048 * Make sure dummynet gets the correct direction, in case it needs to
9049 * re-inject later.
9050 */
9051 pd->dir = PF_OUT;
9052
9053 /*
9054 * The following processing is actually the rest of the inbound processing, even
9055 * though we've marked it as outbound (so we don't look through dummynet) and it
9056 * happens after the outbound processing (pf_test(PF_OUT) above).
9057 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9058 * conclusion about what direction it's processing, and we can't fix it or it
9059 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9060 * decision will pick the right pipe, and everything will mostly work as expected.
9061 */
9062 tmp = pd->act.dnrpipe;
9063 pd->act.dnrpipe = pd->act.dnpipe;
9064 pd->act.dnpipe = tmp;
9065 }
9066
9067 /*
9068 * If small enough for interface, or the interface will take
9069 * care of the fragmentation for us, we can just send directly.
9070 */
9071 if (ip_len <= ifp->if_mtu ||
9072 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9073 ip->ip_sum = 0;
9074 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9075 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9076 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9077 }
9078 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
9079
9080 md = m0;
9081 error = pf_dummynet_route(pd, s, r, ifp, gw, &md);
9082 if (md != NULL) {
9083 error = (*ifp->if_output)(ifp, md, gw, &ro);
9084 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9085 }
9086 goto done;
9087 }
9088
9089 /* Balk when DF bit is set or the interface didn't support TSO. */
9090 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9091 error = EMSGSIZE;
9092 KMOD_IPSTAT_INC(ips_cantfrag);
9093 if (pd->act.rt != PF_DUPTO) {
9094 if (s && s->nat_rule != NULL) {
9095 MPASS(m0 == pd->m);
9096 PACKET_UNDO_NAT(pd,
9097 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9098 s);
9099 }
9100
9101 pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
9102 ifp->if_mtu, pd->af, r, pd->act.rtableid);
9103 }
9104 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9105 goto bad;
9106 }
9107
9108 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9109 if (error) {
9110 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9111 goto bad;
9112 }
9113
9114 for (; m0; m0 = m1) {
9115 m1 = m0->m_nextpkt;
9116 m0->m_nextpkt = NULL;
9117 if (error == 0) {
9118 m_clrprotoflags(m0);
9119 md = m0;
9120 pd->pf_mtag = pf_find_mtag(md);
9121 error = pf_dummynet_route(pd, s, r, ifp,
9122 gw, &md);
9123 if (md != NULL) {
9124 error = (*ifp->if_output)(ifp, md, gw, &ro);
9125 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9126 }
9127 } else
9128 m_freem(m0);
9129 }
9130
9131 if (error == 0)
9132 KMOD_IPSTAT_INC(ips_fragmented);
9133
9134 done:
9135 if (pd->act.rt != PF_DUPTO)
9136 pd->m = NULL;
9137 return;
9138
9139 bad_locked:
9140 if (s)
9141 PF_STATE_UNLOCK(s);
9142 bad:
9143 m_freem(m0);
9144 goto done;
9145 }
9146 #endif /* INET */
9147
9148 #ifdef INET6
9149 static void
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9150 pf_route6(struct pf_krule *r, struct ifnet *oifp,
9151 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9152 {
9153 struct mbuf *m0, *md;
9154 struct m_tag *mtag;
9155 struct sockaddr_in6 dst;
9156 struct ip6_hdr *ip6;
9157 struct ifnet *ifp = NULL;
9158 int r_dir;
9159 bool skip_test = false;
9160
9161 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9162
9163 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
9164
9165 if (s) {
9166 r_dir = s->direction;
9167 } else {
9168 r_dir = r->direction;
9169 }
9170
9171 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9172 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9173 __func__));
9174
9175 if ((pd->pf_mtag == NULL &&
9176 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9177 pd->pf_mtag->routed++ > 3) {
9178 m0 = pd->m;
9179 pd->m = NULL;
9180 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9181 goto bad_locked;
9182 }
9183
9184 if (pd->act.rt_kif != NULL)
9185 ifp = pd->act.rt_kif->pfik_ifp;
9186
9187 if (pd->act.rt == PF_DUPTO) {
9188 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9189 if (s != NULL) {
9190 PF_STATE_UNLOCK(s);
9191 }
9192 if (ifp == oifp) {
9193 /* When the 2nd interface is not skipped */
9194 return;
9195 } else {
9196 m0 = pd->m;
9197 pd->m = NULL;
9198 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9199 goto bad;
9200 }
9201 } else {
9202 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9203 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9204 if (s)
9205 PF_STATE_UNLOCK(s);
9206 return;
9207 }
9208 }
9209 } else {
9210 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9211 if (pd->af == pd->naf) {
9212 pf_dummynet(pd, s, r, &pd->m);
9213 if (s)
9214 PF_STATE_UNLOCK(s);
9215 return;
9216 } else {
9217 if (r_dir == PF_IN) {
9218 skip_test = true;
9219 }
9220 }
9221 }
9222
9223 /*
9224 * If we're actually doing route-to and af-to and are in the
9225 * reply direction.
9226 */
9227 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9228 pd->af != pd->naf) {
9229 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9230 /* Un-set ifp so we do a plain route lookup. */
9231 ifp = NULL;
9232 }
9233 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9234 /* Un-set ifp so we do a plain route lookup. */
9235 ifp = NULL;
9236 }
9237 }
9238 m0 = pd->m;
9239 }
9240
9241 ip6 = mtod(m0, struct ip6_hdr *);
9242
9243 bzero(&dst, sizeof(dst));
9244 dst.sin6_family = AF_INET6;
9245 dst.sin6_len = sizeof(dst);
9246 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6);
9247
9248 if (pd->dir == PF_IN) {
9249 if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
9250 if (r->rt != PF_DUPTO)
9251 pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
9252 ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
9253 pd->act.rtableid);
9254 goto bad_locked;
9255 }
9256 ip6->ip6_hlim -= IPV6_HLIMDEC;
9257 }
9258
9259 if (s != NULL) {
9260 if (ifp == NULL && (pd->af != pd->naf)) {
9261 const struct nhop_object *nh;
9262 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
9263 if (nh) {
9264 ifp = nh->nh_ifp;
9265
9266 /* Use the gateway if needed. */
9267 if (nh->nh_flags & NHF_GATEWAY)
9268 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9269 sizeof(dst.sin6_addr));
9270 else
9271 dst.sin6_addr = ip6->ip6_dst;
9272
9273 /*
9274 * Bind to the correct interface if we're
9275 * if-bound. We don't know which interface
9276 * that will be until here, so we've inserted
9277 * the state on V_pf_all. Fix that now.
9278 */
9279 if (s->kif == V_pfi_all && ifp != NULL &&
9280 r->rule_flag & PFRULE_IFBOUND)
9281 s->kif = ifp->if_pf_kif;
9282 }
9283 }
9284
9285 if (r->rule_flag & PFRULE_IFBOUND &&
9286 pd->act.rt == PF_REPLYTO &&
9287 s->kif == V_pfi_all) {
9288 s->kif = pd->act.rt_kif;
9289 s->orig_kif = oifp->if_pf_kif;
9290 }
9291
9292 PF_STATE_UNLOCK(s);
9293 }
9294
9295 if (pd->af != pd->naf) {
9296 struct udphdr *uh = &pd->hdr.udp;
9297
9298 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9299 uh->uh_sum = in6_cksum_pseudo(ip6,
9300 ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9301 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9302 }
9303 }
9304
9305 if (ifp == NULL) {
9306 m0 = pd->m;
9307 pd->m = NULL;
9308 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9309 goto bad;
9310 }
9311
9312 if (pd->dir == PF_IN && !skip_test) {
9313 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9314 ifp, &m0, inp, &pd->act) != PF_PASS) {
9315 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9316 goto bad;
9317 } else if (m0 == NULL) {
9318 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9319 goto done;
9320 }
9321 if (m0->m_len < sizeof(struct ip6_hdr)) {
9322 DPFPRINTF(PF_DEBUG_URGENT,
9323 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
9324 __func__));
9325 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9326 goto bad;
9327 }
9328 ip6 = mtod(m0, struct ip6_hdr *);
9329 }
9330
9331 if (ifp->if_flags & IFF_LOOPBACK)
9332 m0->m_flags |= M_SKIP_FIREWALL;
9333
9334 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9335 ~ifp->if_hwassist) {
9336 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9337 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9338 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9339 }
9340
9341 if (pd->dir == PF_IN) {
9342 uint16_t tmp;
9343 /*
9344 * Make sure dummynet gets the correct direction, in case it needs to
9345 * re-inject later.
9346 */
9347 pd->dir = PF_OUT;
9348
9349 /*
9350 * The following processing is actually the rest of the inbound processing, even
9351 * though we've marked it as outbound (so we don't look through dummynet) and it
9352 * happens after the outbound processing (pf_test(PF_OUT) above).
9353 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9354 * conclusion about what direction it's processing, and we can't fix it or it
9355 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9356 * decision will pick the right pipe, and everything will mostly work as expected.
9357 */
9358 tmp = pd->act.dnrpipe;
9359 pd->act.dnrpipe = pd->act.dnpipe;
9360 pd->act.dnpipe = tmp;
9361 }
9362
9363 /*
9364 * If the packet is too large for the outgoing interface,
9365 * send back an icmp6 error.
9366 */
9367 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9368 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9369 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9370 if (mtag != NULL) {
9371 int ret __sdt_used;
9372 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9373 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9374 goto done;
9375 }
9376
9377 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9378 md = m0;
9379 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9380 if (md != NULL) {
9381 int ret __sdt_used;
9382 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9383 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9384 }
9385 }
9386 else {
9387 in6_ifstat_inc(ifp, ifs6_in_toobig);
9388 if (pd->act.rt != PF_DUPTO) {
9389 if (s && s->nat_rule != NULL) {
9390 MPASS(m0 == pd->m);
9391 PACKET_UNDO_NAT(pd,
9392 ((caddr_t)ip6 - m0->m_data) +
9393 sizeof(struct ip6_hdr), s);
9394 }
9395
9396 if (r->rt != PF_DUPTO)
9397 pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
9398 ifp->if_mtu, pd->af, r, pd->act.rtableid);
9399 }
9400 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9401 goto bad;
9402 }
9403
9404 done:
9405 if (pd->act.rt != PF_DUPTO)
9406 pd->m = NULL;
9407 return;
9408
9409 bad_locked:
9410 if (s)
9411 PF_STATE_UNLOCK(s);
9412 bad:
9413 m_freem(m0);
9414 goto done;
9415 }
9416 #endif /* INET6 */
9417
9418 /*
9419 * FreeBSD supports cksum offloads for the following drivers.
9420 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9421 *
9422 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9423 * network driver performed cksum including pseudo header, need to verify
9424 * csum_data
9425 * CSUM_DATA_VALID :
9426 * network driver performed cksum, needs to additional pseudo header
9427 * cksum computation with partial csum_data(i.e. lack of H/W support for
9428 * pseudo header, for instance sk(4) and possibly gem(4))
9429 *
9430 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9431 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9432 * TCP/UDP layer.
9433 * Also, set csum_data to 0xffff to force cksum validation.
9434 */
9435 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9436 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9437 {
9438 u_int16_t sum = 0;
9439 int hw_assist = 0;
9440 struct ip *ip;
9441
9442 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9443 return (1);
9444 if (m->m_pkthdr.len < off + len)
9445 return (1);
9446
9447 switch (p) {
9448 case IPPROTO_TCP:
9449 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9450 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9451 sum = m->m_pkthdr.csum_data;
9452 } else {
9453 ip = mtod(m, struct ip *);
9454 sum = in_pseudo(ip->ip_src.s_addr,
9455 ip->ip_dst.s_addr, htonl((u_short)len +
9456 m->m_pkthdr.csum_data + IPPROTO_TCP));
9457 }
9458 sum ^= 0xffff;
9459 ++hw_assist;
9460 }
9461 break;
9462 case IPPROTO_UDP:
9463 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9464 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9465 sum = m->m_pkthdr.csum_data;
9466 } else {
9467 ip = mtod(m, struct ip *);
9468 sum = in_pseudo(ip->ip_src.s_addr,
9469 ip->ip_dst.s_addr, htonl((u_short)len +
9470 m->m_pkthdr.csum_data + IPPROTO_UDP));
9471 }
9472 sum ^= 0xffff;
9473 ++hw_assist;
9474 }
9475 break;
9476 case IPPROTO_ICMP:
9477 #ifdef INET6
9478 case IPPROTO_ICMPV6:
9479 #endif /* INET6 */
9480 break;
9481 default:
9482 return (1);
9483 }
9484
9485 if (!hw_assist) {
9486 switch (af) {
9487 case AF_INET:
9488 if (m->m_len < sizeof(struct ip))
9489 return (1);
9490 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9491 break;
9492 #ifdef INET6
9493 case AF_INET6:
9494 if (m->m_len < sizeof(struct ip6_hdr))
9495 return (1);
9496 sum = in6_cksum(m, p, off, len);
9497 break;
9498 #endif /* INET6 */
9499 }
9500 }
9501 if (sum) {
9502 switch (p) {
9503 case IPPROTO_TCP:
9504 {
9505 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9506 break;
9507 }
9508 case IPPROTO_UDP:
9509 {
9510 KMOD_UDPSTAT_INC(udps_badsum);
9511 break;
9512 }
9513 #ifdef INET
9514 case IPPROTO_ICMP:
9515 {
9516 KMOD_ICMPSTAT_INC(icps_checksum);
9517 break;
9518 }
9519 #endif
9520 #ifdef INET6
9521 case IPPROTO_ICMPV6:
9522 {
9523 KMOD_ICMP6STAT_INC(icp6s_checksum);
9524 break;
9525 }
9526 #endif /* INET6 */
9527 }
9528 return (1);
9529 } else {
9530 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9531 m->m_pkthdr.csum_flags |=
9532 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9533 m->m_pkthdr.csum_data = 0xffff;
9534 }
9535 }
9536 return (0);
9537 }
9538
9539 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9540 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9541 const struct pf_kstate *s, struct ip_fw_args *dnflow)
9542 {
9543 int dndir = r->direction;
9544
9545 if (s && dndir == PF_INOUT) {
9546 dndir = s->direction;
9547 } else if (dndir == PF_INOUT) {
9548 /* Assume primary direction. Happens when we've set dnpipe in
9549 * the ethernet level code. */
9550 dndir = pd->dir;
9551 }
9552
9553 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9554 return (false);
9555
9556 memset(dnflow, 0, sizeof(*dnflow));
9557
9558 if (pd->dport != NULL)
9559 dnflow->f_id.dst_port = ntohs(*pd->dport);
9560 if (pd->sport != NULL)
9561 dnflow->f_id.src_port = ntohs(*pd->sport);
9562
9563 if (pd->dir == PF_IN)
9564 dnflow->flags |= IPFW_ARGS_IN;
9565 else
9566 dnflow->flags |= IPFW_ARGS_OUT;
9567
9568 if (pd->dir != dndir && pd->act.dnrpipe) {
9569 dnflow->rule.info = pd->act.dnrpipe;
9570 }
9571 else if (pd->dir == dndir && pd->act.dnpipe) {
9572 dnflow->rule.info = pd->act.dnpipe;
9573 }
9574 else {
9575 return (false);
9576 }
9577
9578 dnflow->rule.info |= IPFW_IS_DUMMYNET;
9579 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9580 dnflow->rule.info |= IPFW_IS_PIPE;
9581
9582 dnflow->f_id.proto = pd->proto;
9583 dnflow->f_id.extra = dnflow->rule.info;
9584 switch (pd->naf) {
9585 case AF_INET:
9586 dnflow->f_id.addr_type = 4;
9587 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9588 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9589 break;
9590 case AF_INET6:
9591 dnflow->flags |= IPFW_ARGS_IP6;
9592 dnflow->f_id.addr_type = 6;
9593 dnflow->f_id.src_ip6 = pd->src->v6;
9594 dnflow->f_id.dst_ip6 = pd->dst->v6;
9595 break;
9596 }
9597
9598 return (true);
9599 }
9600
9601 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9602 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9603 struct inpcb *inp)
9604 {
9605 struct pfi_kkif *kif;
9606 struct mbuf *m = *m0;
9607
9608 M_ASSERTPKTHDR(m);
9609 MPASS(ifp->if_vnet == curvnet);
9610 NET_EPOCH_ASSERT();
9611
9612 if (!V_pf_status.running)
9613 return (PF_PASS);
9614
9615 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9616
9617 if (kif == NULL) {
9618 DPFPRINTF(PF_DEBUG_URGENT,
9619 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
9620 return (PF_DROP);
9621 }
9622 if (kif->pfik_flags & PFI_IFLAG_SKIP)
9623 return (PF_PASS);
9624
9625 if (m->m_flags & M_SKIP_FIREWALL)
9626 return (PF_PASS);
9627
9628 if (__predict_false(! M_WRITABLE(*m0))) {
9629 m = *m0 = m_unshare(*m0, M_NOWAIT);
9630 if (*m0 == NULL)
9631 return (PF_DROP);
9632 }
9633
9634 /* Stateless! */
9635 return (pf_test_eth_rule(dir, kif, m0));
9636 }
9637
9638 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9639 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9640 {
9641 struct m_tag *mtag;
9642
9643 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9644
9645 /* dummynet adds this tag, but pf does not need it,
9646 * and keeping it creates unexpected behavior,
9647 * e.g. in case of divert(4) usage right after dummynet. */
9648 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9649 if (mtag != NULL)
9650 m_tag_delete(m, mtag);
9651 }
9652
9653 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9654 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9655 struct pf_krule *r, struct mbuf **m0)
9656 {
9657 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9658 }
9659
9660 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9661 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9662 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9663 struct mbuf **m0)
9664 {
9665 struct ip_fw_args dnflow;
9666
9667 NET_EPOCH_ASSERT();
9668
9669 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9670 return (0);
9671
9672 if (ip_dn_io_ptr == NULL) {
9673 m_freem(*m0);
9674 *m0 = NULL;
9675 return (ENOMEM);
9676 }
9677
9678 if (pd->pf_mtag == NULL &&
9679 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9680 m_freem(*m0);
9681 *m0 = NULL;
9682 return (ENOMEM);
9683 }
9684
9685 if (ifp != NULL) {
9686 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9687
9688 pd->pf_mtag->if_index = ifp->if_index;
9689 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9690
9691 MPASS(sa != NULL);
9692
9693 switch (sa->sa_family) {
9694 case AF_INET:
9695 memcpy(&pd->pf_mtag->dst, sa,
9696 sizeof(struct sockaddr_in));
9697 break;
9698 case AF_INET6:
9699 memcpy(&pd->pf_mtag->dst, sa,
9700 sizeof(struct sockaddr_in6));
9701 break;
9702 }
9703 }
9704
9705 if (s != NULL && s->nat_rule != NULL &&
9706 s->nat_rule->action == PF_RDR &&
9707 (
9708 #ifdef INET
9709 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9710 #endif /* INET */
9711 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9712 /*
9713 * If we're redirecting to loopback mark this packet
9714 * as being local. Otherwise it might get dropped
9715 * if dummynet re-injects.
9716 */
9717 (*m0)->m_pkthdr.rcvif = V_loif;
9718 }
9719
9720 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9721 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9722 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9723 ip_dn_io_ptr(m0, &dnflow);
9724 if (*m0 != NULL) {
9725 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9726 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9727 }
9728 }
9729
9730 return (0);
9731 }
9732
9733 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)9734 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
9735 {
9736 struct ah ext;
9737 u_int32_t hlen, end;
9738 int hdr_cnt;
9739
9740 hlen = h->ip_hl << 2;
9741 if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
9742 REASON_SET(reason, PFRES_SHORT);
9743 return (PF_DROP);
9744 }
9745 if (hlen != sizeof(struct ip))
9746 pd->badopts++;
9747 end = pd->off + ntohs(h->ip_len);
9748 pd->off += hlen;
9749 pd->proto = h->ip_p;
9750 /* stop walking over non initial fragments */
9751 if ((h->ip_off & htons(IP_OFFMASK)) != 0)
9752 return (PF_PASS);
9753 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
9754 switch (pd->proto) {
9755 case IPPROTO_AH:
9756 /* fragments may be short */
9757 if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
9758 end < pd->off + sizeof(ext))
9759 return (PF_PASS);
9760 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9761 NULL, reason, AF_INET)) {
9762 DPFPRINTF(PF_DEBUG_MISC, ("IP short exthdr"));
9763 return (PF_DROP);
9764 }
9765 pd->off += (ext.ah_len + 2) * 4;
9766 pd->proto = ext.ah_nxt;
9767 break;
9768 default:
9769 return (PF_PASS);
9770 }
9771 }
9772 DPFPRINTF(PF_DEBUG_MISC, ("IPv4 nested authentication header limit"));
9773 REASON_SET(reason, PFRES_IPOPTIONS);
9774 return (PF_DROP);
9775 }
9776
9777 #ifdef INET6
9778 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)9779 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
9780 u_short *reason)
9781 {
9782 struct ip6_opt opt;
9783 struct ip6_opt_jumbo jumbo;
9784
9785 while (off < end) {
9786 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
9787 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) {
9788 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
9789 return (PF_DROP);
9790 }
9791 if (opt.ip6o_type == IP6OPT_PAD1) {
9792 off++;
9793 continue;
9794 }
9795 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL,
9796 reason, AF_INET6)) {
9797 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
9798 return (PF_DROP);
9799 }
9800 if (off + sizeof(opt) + opt.ip6o_len > end) {
9801 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
9802 REASON_SET(reason, PFRES_IPOPTIONS);
9803 return (PF_DROP);
9804 }
9805 switch (opt.ip6o_type) {
9806 case IP6OPT_JUMBO:
9807 if (pd->jumbolen != 0) {
9808 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
9809 REASON_SET(reason, PFRES_IPOPTIONS);
9810 return (PF_DROP);
9811 }
9812 if (ntohs(h->ip6_plen) != 0) {
9813 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
9814 REASON_SET(reason, PFRES_IPOPTIONS);
9815 return (PF_DROP);
9816 }
9817 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL,
9818 reason, AF_INET6)) {
9819 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
9820 return (PF_DROP);
9821 }
9822 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
9823 sizeof(pd->jumbolen));
9824 pd->jumbolen = ntohl(pd->jumbolen);
9825 if (pd->jumbolen < IPV6_MAXPACKET) {
9826 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
9827 REASON_SET(reason, PFRES_IPOPTIONS);
9828 return (PF_DROP);
9829 }
9830 break;
9831 default:
9832 break;
9833 }
9834 off += sizeof(opt) + opt.ip6o_len;
9835 }
9836
9837 return (PF_PASS);
9838 }
9839
9840 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)9841 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
9842 {
9843 struct ip6_frag frag;
9844 struct ip6_ext ext;
9845 struct ip6_rthdr rthdr;
9846 uint32_t end;
9847 int hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
9848
9849 pd->off += sizeof(struct ip6_hdr);
9850 end = pd->off + ntohs(h->ip6_plen);
9851 pd->fragoff = pd->extoff = pd->jumbolen = 0;
9852 pd->proto = h->ip6_nxt;
9853 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
9854 switch (pd->proto) {
9855 case IPPROTO_ROUTING:
9856 case IPPROTO_HOPOPTS:
9857 case IPPROTO_DSTOPTS:
9858 pd->badopts++;
9859 break;
9860 }
9861 switch (pd->proto) {
9862 case IPPROTO_FRAGMENT:
9863 if (fraghdr_cnt++) {
9864 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
9865 REASON_SET(reason, PFRES_FRAG);
9866 return (PF_DROP);
9867 }
9868 /* jumbo payload packets cannot be fragmented */
9869 if (pd->jumbolen != 0) {
9870 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
9871 REASON_SET(reason, PFRES_FRAG);
9872 return (PF_DROP);
9873 }
9874 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
9875 NULL, reason, AF_INET6)) {
9876 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
9877 return (PF_DROP);
9878 }
9879 /* stop walking over non initial fragments */
9880 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
9881 pd->fragoff = pd->off;
9882 return (PF_PASS);
9883 }
9884 /* RFC6946: reassemble only non atomic fragments */
9885 if (frag.ip6f_offlg & IP6F_MORE_FRAG)
9886 pd->fragoff = pd->off;
9887 pd->off += sizeof(frag);
9888 pd->proto = frag.ip6f_nxt;
9889 break;
9890 case IPPROTO_ROUTING:
9891 if (rthdr_cnt++) {
9892 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
9893 REASON_SET(reason, PFRES_IPOPTIONS);
9894 return (PF_DROP);
9895 }
9896 /* fragments may be short */
9897 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
9898 pd->off = pd->fragoff;
9899 pd->proto = IPPROTO_FRAGMENT;
9900 return (PF_PASS);
9901 }
9902 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
9903 NULL, reason, AF_INET6)) {
9904 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
9905 return (PF_DROP);
9906 }
9907 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
9908 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
9909 REASON_SET(reason, PFRES_IPOPTIONS);
9910 return (PF_DROP);
9911 }
9912 /* FALLTHROUGH */
9913 case IPPROTO_HOPOPTS:
9914 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */
9915 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
9916 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 hopopts not first"));
9917 REASON_SET(reason, PFRES_IPOPTIONS);
9918 return (PF_DROP);
9919 }
9920 /* FALLTHROUGH */
9921 case IPPROTO_AH:
9922 case IPPROTO_DSTOPTS:
9923 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9924 NULL, reason, AF_INET6)) {
9925 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
9926 return (PF_DROP);
9927 }
9928 /* fragments may be short */
9929 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
9930 pd->off = pd->fragoff;
9931 pd->proto = IPPROTO_FRAGMENT;
9932 return (PF_PASS);
9933 }
9934 /* reassembly needs the ext header before the frag */
9935 if (pd->fragoff == 0)
9936 pd->extoff = pd->off;
9937 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) {
9938 if (pf_walk_option6(pd, h,
9939 pd->off + sizeof(ext),
9940 pd->off + (ext.ip6e_len + 1) * 8, reason)
9941 != PF_PASS)
9942 return (PF_DROP);
9943 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
9944 DPFPRINTF(PF_DEBUG_MISC,
9945 ("IPv6 missing jumbo"));
9946 REASON_SET(reason, PFRES_IPOPTIONS);
9947 return (PF_DROP);
9948 }
9949 }
9950 if (pd->proto == IPPROTO_AH)
9951 pd->off += (ext.ip6e_len + 2) * 4;
9952 else
9953 pd->off += (ext.ip6e_len + 1) * 8;
9954 pd->proto = ext.ip6e_nxt;
9955 break;
9956 case IPPROTO_TCP:
9957 case IPPROTO_UDP:
9958 case IPPROTO_SCTP:
9959 case IPPROTO_ICMPV6:
9960 /* fragments may be short, ignore inner header then */
9961 if (pd->fragoff != 0 && end < pd->off +
9962 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
9963 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
9964 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
9965 sizeof(struct icmp6_hdr))) {
9966 pd->off = pd->fragoff;
9967 pd->proto = IPPROTO_FRAGMENT;
9968 }
9969 /* FALLTHROUGH */
9970 default:
9971 return (PF_PASS);
9972 }
9973 }
9974 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 nested extension header limit"));
9975 REASON_SET(reason, PFRES_IPOPTIONS);
9976 return (PF_DROP);
9977 }
9978 #endif /* INET6 */
9979
9980 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)9981 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
9982 {
9983 memset(pd, 0, sizeof(*pd));
9984 pd->pf_mtag = pf_find_mtag(m);
9985 pd->m = m;
9986 }
9987
9988 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)9989 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
9990 u_short *action, u_short *reason, struct pfi_kkif *kif,
9991 struct pf_rule_actions *default_actions)
9992 {
9993 pd->dir = dir;
9994 pd->kif = kif;
9995 pd->m = *m0;
9996 pd->sidx = (dir == PF_IN) ? 0 : 1;
9997 pd->didx = (dir == PF_IN) ? 1 : 0;
9998 pd->af = pd->naf = af;
9999
10000 TAILQ_INIT(&pd->sctp_multihome_jobs);
10001 if (default_actions != NULL)
10002 memcpy(&pd->act, default_actions, sizeof(pd->act));
10003
10004 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
10005 pd->act.dnpipe = pd->pf_mtag->dnpipe;
10006 pd->act.flags = pd->pf_mtag->dnflags;
10007 }
10008
10009 switch (af) {
10010 #ifdef INET
10011 case AF_INET: {
10012 struct ip *h;
10013
10014 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
10015 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
10016 DPFPRINTF(PF_DEBUG_URGENT,
10017 ("%s: m_len < sizeof(struct ip), pullup failed\n",
10018 __func__));
10019 *action = PF_DROP;
10020 REASON_SET(reason, PFRES_SHORT);
10021 return (-1);
10022 }
10023
10024 if (pf_normalize_ip(reason, pd) != PF_PASS) {
10025 /* We do IP header normalization and packet reassembly here */
10026 *m0 = pd->m;
10027 *action = PF_DROP;
10028 return (-1);
10029 }
10030 *m0 = pd->m;
10031
10032 h = mtod(pd->m, struct ip *);
10033 if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
10034 *action = PF_DROP;
10035 REASON_SET(reason, PFRES_SHORT);
10036 return (-1);
10037 }
10038
10039 if (pf_walk_header(pd, h, reason) != PF_PASS) {
10040 *action = PF_DROP;
10041 return (-1);
10042 }
10043
10044 pd->src = (struct pf_addr *)&h->ip_src;
10045 pd->dst = (struct pf_addr *)&h->ip_dst;
10046 PF_ACPY(&pd->osrc, pd->src, af);
10047 PF_ACPY(&pd->odst, pd->dst, af);
10048 pd->ip_sum = &h->ip_sum;
10049 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
10050 pd->ttl = h->ip_ttl;
10051 pd->tot_len = ntohs(h->ip_len);
10052 pd->act.rtableid = -1;
10053 pd->df = h->ip_off & htons(IP_DF);
10054 pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
10055 PF_VPROTO_FRAGMENT : pd->proto;
10056
10057 break;
10058 }
10059 #endif /* INET */
10060 #ifdef INET6
10061 case AF_INET6: {
10062 struct ip6_hdr *h;
10063
10064 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10065 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10066 DPFPRINTF(PF_DEBUG_URGENT,
10067 ("%s: m_len < sizeof(struct ip6_hdr)"
10068 ", pullup failed\n", __func__));
10069 *action = PF_DROP;
10070 REASON_SET(reason, PFRES_SHORT);
10071 return (-1);
10072 }
10073
10074 h = mtod(pd->m, struct ip6_hdr *);
10075
10076 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10077 *action = PF_DROP;
10078 return (-1);
10079 }
10080
10081 h = mtod(pd->m, struct ip6_hdr *);
10082 pd->src = (struct pf_addr *)&h->ip6_src;
10083 pd->dst = (struct pf_addr *)&h->ip6_dst;
10084 PF_ACPY(&pd->osrc, pd->src, af);
10085 PF_ACPY(&pd->odst, pd->dst, af);
10086 pd->ip_sum = NULL;
10087 pd->tos = IPV6_DSCP(h);
10088 pd->ttl = h->ip6_hlim;
10089 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10090 pd->act.rtableid = -1;
10091
10092 pd->virtual_proto = (pd->fragoff != 0) ?
10093 PF_VPROTO_FRAGMENT : pd->proto;
10094
10095 /*
10096 * we do not support jumbogram. if we keep going, zero ip6_plen
10097 * will do something bad, so drop the packet for now.
10098 */
10099 if (htons(h->ip6_plen) == 0) {
10100 *action = PF_DROP;
10101 return (-1);
10102 }
10103
10104 /* We do IP header normalization and packet reassembly here */
10105 if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10106 PF_PASS) {
10107 *m0 = pd->m;
10108 *action = PF_DROP;
10109 return (-1);
10110 }
10111 *m0 = pd->m;
10112 if (pd->m == NULL) {
10113 /* packet sits in reassembly queue, no error */
10114 *action = PF_PASS;
10115 return (-1);
10116 }
10117
10118 /* Update pointers into the packet. */
10119 h = mtod(pd->m, struct ip6_hdr *);
10120 pd->src = (struct pf_addr *)&h->ip6_src;
10121 pd->dst = (struct pf_addr *)&h->ip6_dst;
10122
10123 pd->off = 0;
10124
10125 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10126 *action = PF_DROP;
10127 return (-1);
10128 }
10129
10130 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10131 /*
10132 * Reassembly may have changed the next protocol from
10133 * fragment to something else, so update.
10134 */
10135 pd->virtual_proto = pd->proto;
10136 MPASS(pd->fragoff == 0);
10137 }
10138
10139 if (pd->fragoff != 0)
10140 pd->virtual_proto = PF_VPROTO_FRAGMENT;
10141
10142 break;
10143 }
10144 #endif /* INET6 */
10145 default:
10146 panic("pf_setup_pdesc called with illegal af %u", af);
10147 }
10148
10149 switch (pd->virtual_proto) {
10150 case IPPROTO_TCP: {
10151 struct tcphdr *th = &pd->hdr.tcp;
10152
10153 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
10154 reason, af)) {
10155 *action = PF_DROP;
10156 REASON_SET(reason, PFRES_SHORT);
10157 return (-1);
10158 }
10159 pd->hdrlen = sizeof(*th);
10160 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10161 pd->sport = &th->th_sport;
10162 pd->dport = &th->th_dport;
10163 pd->pcksum = &th->th_sum;
10164 break;
10165 }
10166 case IPPROTO_UDP: {
10167 struct udphdr *uh = &pd->hdr.udp;
10168
10169 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10170 reason, af)) {
10171 *action = PF_DROP;
10172 REASON_SET(reason, PFRES_SHORT);
10173 return (-1);
10174 }
10175 pd->hdrlen = sizeof(*uh);
10176 if (uh->uh_dport == 0 ||
10177 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10178 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10179 *action = PF_DROP;
10180 REASON_SET(reason, PFRES_SHORT);
10181 return (-1);
10182 }
10183 pd->sport = &uh->uh_sport;
10184 pd->dport = &uh->uh_dport;
10185 pd->pcksum = &uh->uh_sum;
10186 break;
10187 }
10188 case IPPROTO_SCTP: {
10189 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10190 action, reason, af)) {
10191 *action = PF_DROP;
10192 REASON_SET(reason, PFRES_SHORT);
10193 return (-1);
10194 }
10195 pd->hdrlen = sizeof(pd->hdr.sctp);
10196 pd->p_len = pd->tot_len - pd->off;
10197
10198 pd->sport = &pd->hdr.sctp.src_port;
10199 pd->dport = &pd->hdr.sctp.dest_port;
10200 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10201 *action = PF_DROP;
10202 REASON_SET(reason, PFRES_SHORT);
10203 return (-1);
10204 }
10205 if (pf_scan_sctp(pd) != PF_PASS) {
10206 *action = PF_DROP;
10207 REASON_SET(reason, PFRES_SHORT);
10208 return (-1);
10209 }
10210 /*
10211 * Placeholder. The SCTP checksum is 32-bits, but
10212 * pf_test_state() expects to update a 16-bit checksum.
10213 * Provide a dummy value which we'll subsequently ignore.
10214 */
10215 pd->pcksum = &pd->sctp_dummy_sum;
10216 break;
10217 }
10218 case IPPROTO_ICMP: {
10219 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10220 action, reason, af)) {
10221 *action = PF_DROP;
10222 REASON_SET(reason, PFRES_SHORT);
10223 return (-1);
10224 }
10225 pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10226 pd->hdrlen = ICMP_MINLEN;
10227 break;
10228 }
10229 #ifdef INET6
10230 case IPPROTO_ICMPV6: {
10231 size_t icmp_hlen = sizeof(struct icmp6_hdr);
10232
10233 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10234 action, reason, af)) {
10235 *action = PF_DROP;
10236 REASON_SET(reason, PFRES_SHORT);
10237 return (-1);
10238 }
10239 /* ICMP headers we look further into to match state */
10240 switch (pd->hdr.icmp6.icmp6_type) {
10241 case MLD_LISTENER_QUERY:
10242 case MLD_LISTENER_REPORT:
10243 icmp_hlen = sizeof(struct mld_hdr);
10244 break;
10245 case ND_NEIGHBOR_SOLICIT:
10246 case ND_NEIGHBOR_ADVERT:
10247 icmp_hlen = sizeof(struct nd_neighbor_solicit);
10248 /* FALLTHROUGH */
10249 case ND_ROUTER_SOLICIT:
10250 case ND_ROUTER_ADVERT:
10251 case ND_REDIRECT:
10252 if (pd->ttl != 255) {
10253 REASON_SET(reason, PFRES_NORM);
10254 return (PF_DROP);
10255 }
10256 break;
10257 }
10258 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10259 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10260 action, reason, af)) {
10261 *action = PF_DROP;
10262 REASON_SET(reason, PFRES_SHORT);
10263 return (-1);
10264 }
10265 pd->hdrlen = icmp_hlen;
10266 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
10267 break;
10268 }
10269 #endif /* INET6 */
10270 }
10271
10272 if (pd->sport)
10273 pd->osport = pd->nsport = *pd->sport;
10274 if (pd->dport)
10275 pd->odport = pd->ndport = *pd->dport;
10276
10277 return (0);
10278 }
10279
10280 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10281 pf_counters_inc(int action, struct pf_pdesc *pd,
10282 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10283 {
10284 struct pf_krule *tr;
10285 int dir = pd->dir;
10286 int dirndx;
10287
10288 pf_counter_u64_critical_enter();
10289 pf_counter_u64_add_protected(
10290 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10291 pd->tot_len);
10292 pf_counter_u64_add_protected(
10293 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10294 1);
10295
10296 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10297 dirndx = (dir == PF_OUT);
10298 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10299 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10300 pf_update_timestamp(r);
10301
10302 if (a != NULL) {
10303 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10304 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10305 }
10306 if (s != NULL) {
10307 struct pf_krule_item *ri;
10308
10309 if (s->nat_rule != NULL) {
10310 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10311 1);
10312 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10313 pd->tot_len);
10314 }
10315 /*
10316 * Source nodes are accessed unlocked here.
10317 * But since we are operating with stateful tracking
10318 * and the state is locked, those SNs could not have
10319 * been freed.
10320 */
10321 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10322 if (s->sns[sn_type] != NULL) {
10323 counter_u64_add(
10324 s->sns[sn_type]->packets[dirndx],
10325 1);
10326 counter_u64_add(
10327 s->sns[sn_type]->bytes[dirndx],
10328 pd->tot_len);
10329 }
10330 }
10331 dirndx = (dir == s->direction) ? 0 : 1;
10332 s->packets[dirndx]++;
10333 s->bytes[dirndx] += pd->tot_len;
10334
10335 SLIST_FOREACH(ri, &s->match_rules, entry) {
10336 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10337 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10338
10339 if (ri->r->src.addr.type == PF_ADDR_TABLE)
10340 pfr_update_stats(ri->r->src.addr.p.tbl,
10341 (s == NULL) ? pd->src :
10342 &s->key[(s->direction == PF_IN)]->
10343 addr[(s->direction == PF_OUT)],
10344 pd->af, pd->tot_len, dir == PF_OUT,
10345 r->action == PF_PASS, ri->r->src.neg);
10346 if (ri->r->dst.addr.type == PF_ADDR_TABLE)
10347 pfr_update_stats(ri->r->dst.addr.p.tbl,
10348 (s == NULL) ? pd->dst :
10349 &s->key[(s->direction == PF_IN)]->
10350 addr[(s->direction == PF_IN)],
10351 pd->af, pd->tot_len, dir == PF_OUT,
10352 r->action == PF_PASS, ri->r->dst.neg);
10353 }
10354 }
10355
10356 tr = r;
10357 if (s != NULL && s->nat_rule != NULL &&
10358 r == &V_pf_default_rule)
10359 tr = s->nat_rule;
10360
10361 if (tr->src.addr.type == PF_ADDR_TABLE)
10362 pfr_update_stats(tr->src.addr.p.tbl,
10363 (s == NULL) ? pd->src :
10364 &s->key[(s->direction == PF_IN)]->
10365 addr[(s->direction == PF_OUT)],
10366 pd->af, pd->tot_len, dir == PF_OUT,
10367 r->action == PF_PASS, tr->src.neg);
10368 if (tr->dst.addr.type == PF_ADDR_TABLE)
10369 pfr_update_stats(tr->dst.addr.p.tbl,
10370 (s == NULL) ? pd->dst :
10371 &s->key[(s->direction == PF_IN)]->
10372 addr[(s->direction == PF_IN)],
10373 pd->af, pd->tot_len, dir == PF_OUT,
10374 r->action == PF_PASS, tr->dst.neg);
10375 }
10376 pf_counter_u64_critical_exit();
10377 }
10378 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * matchrules)10379 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10380 struct pf_krule *am, struct pf_kruleset *ruleset,
10381 struct pf_krule_slist *matchrules)
10382 {
10383 struct pf_krule_item *ri;
10384
10385 /* if this is the log(matches) rule, packet has been logged already */
10386 if (rm->log & PF_LOG_MATCHES)
10387 return;
10388
10389 SLIST_FOREACH(ri, matchrules, entry)
10390 if (ri->r->log & PF_LOG_MATCHES)
10391 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10392 ruleset, pd, 1, ri->r);
10393 }
10394
10395 #if defined(INET) || defined(INET6)
10396 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10397 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10398 struct inpcb *inp, struct pf_rule_actions *default_actions)
10399 {
10400 struct pfi_kkif *kif;
10401 u_short action, reason = 0;
10402 struct m_tag *mtag;
10403 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
10404 struct pf_kstate *s = NULL;
10405 struct pf_kruleset *ruleset = NULL;
10406 struct pf_pdesc pd;
10407 int use_2nd_queue = 0;
10408 uint16_t tag;
10409
10410 PF_RULES_RLOCK_TRACKER;
10411 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10412 M_ASSERTPKTHDR(*m0);
10413
10414 if (!V_pf_status.running)
10415 return (PF_PASS);
10416
10417 PF_RULES_RLOCK();
10418
10419 kif = (struct pfi_kkif *)ifp->if_pf_kif;
10420
10421 if (__predict_false(kif == NULL)) {
10422 DPFPRINTF(PF_DEBUG_URGENT,
10423 ("%s: kif == NULL, if_xname %s\n",
10424 __func__, ifp->if_xname));
10425 PF_RULES_RUNLOCK();
10426 return (PF_DROP);
10427 }
10428 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10429 PF_RULES_RUNLOCK();
10430 return (PF_PASS);
10431 }
10432
10433 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10434 PF_RULES_RUNLOCK();
10435 return (PF_PASS);
10436 }
10437
10438 if (__predict_false(! M_WRITABLE(*m0))) {
10439 *m0 = m_unshare(*m0, M_NOWAIT);
10440 if (*m0 == NULL) {
10441 PF_RULES_RUNLOCK();
10442 return (PF_DROP);
10443 }
10444 }
10445
10446 pf_init_pdesc(&pd, *m0);
10447
10448 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10449 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10450
10451 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10452 pd.pf_mtag->if_idxgen);
10453 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10454 PF_RULES_RUNLOCK();
10455 m_freem(*m0);
10456 *m0 = NULL;
10457 return (PF_PASS);
10458 }
10459 PF_RULES_RUNLOCK();
10460 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10461 *m0 = NULL;
10462 return (PF_PASS);
10463 }
10464
10465 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10466 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10467 /* Dummynet re-injects packets after they've
10468 * completed their delay. We've already
10469 * processed them, so pass unconditionally. */
10470
10471 /* But only once. We may see the packet multiple times (e.g.
10472 * PFIL_IN/PFIL_OUT). */
10473 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10474 PF_RULES_RUNLOCK();
10475
10476 return (PF_PASS);
10477 }
10478
10479 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10480 kif, default_actions) == -1) {
10481 if (action != PF_PASS)
10482 pd.act.log |= PF_LOG_FORCE;
10483 goto done;
10484 }
10485
10486 #ifdef INET
10487 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
10488 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
10489 PF_RULES_RUNLOCK();
10490 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10491 0, ifp->if_mtu);
10492 *m0 = NULL;
10493 return (PF_DROP);
10494 }
10495 #endif /* INET */
10496 #ifdef INET6
10497 /*
10498 * If we end up changing IP addresses (e.g. binat) the stack may get
10499 * confused and fail to send the icmp6 packet too big error. Just send
10500 * it here, before we do any NAT.
10501 */
10502 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10503 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10504 PF_RULES_RUNLOCK();
10505 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10506 *m0 = NULL;
10507 return (PF_DROP);
10508 }
10509 #endif /* INET6 */
10510
10511 if (__predict_false(ip_divert_ptr != NULL) &&
10512 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10513 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10514 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10515 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10516 if (pd.pf_mtag == NULL &&
10517 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10518 action = PF_DROP;
10519 goto done;
10520 }
10521 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10522 }
10523 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10524 pd.m->m_flags |= M_FASTFWD_OURS;
10525 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10526 }
10527 m_tag_delete(pd.m, mtag);
10528
10529 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10530 if (mtag != NULL)
10531 m_tag_delete(pd.m, mtag);
10532 }
10533
10534 switch (pd.virtual_proto) {
10535 case PF_VPROTO_FRAGMENT:
10536 /*
10537 * handle fragments that aren't reassembled by
10538 * normalization
10539 */
10540 if (kif == NULL || r == NULL) /* pflog */
10541 action = PF_DROP;
10542 else
10543 action = pf_test_rule(&r, &s, &pd, &a,
10544 &ruleset, &reason, inp);
10545 if (action != PF_PASS)
10546 REASON_SET(&reason, PFRES_FRAG);
10547 break;
10548
10549 case IPPROTO_TCP: {
10550 /* Respond to SYN with a syncookie. */
10551 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10552 pd.dir == PF_IN && pf_synflood_check(&pd)) {
10553 pf_syncookie_send(&pd);
10554 action = PF_DROP;
10555 break;
10556 }
10557
10558 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10559 use_2nd_queue = 1;
10560 action = pf_normalize_tcp(&pd);
10561 if (action == PF_DROP)
10562 goto done;
10563 action = pf_test_state(&s, &pd, &reason);
10564 if (action == PF_PASS || action == PF_AFRT) {
10565 if (V_pfsync_update_state_ptr != NULL)
10566 V_pfsync_update_state_ptr(s);
10567 r = s->rule;
10568 a = s->anchor;
10569 } else if (s == NULL) {
10570 /* Validate remote SYN|ACK, re-create original SYN if
10571 * valid. */
10572 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10573 TH_ACK && pf_syncookie_validate(&pd) &&
10574 pd.dir == PF_IN) {
10575 struct mbuf *msyn;
10576
10577 msyn = pf_syncookie_recreate_syn(&pd);
10578 if (msyn == NULL) {
10579 action = PF_DROP;
10580 break;
10581 }
10582
10583 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10584 &pd.act);
10585 m_freem(msyn);
10586 if (action != PF_PASS)
10587 break;
10588
10589 action = pf_test_state(&s, &pd, &reason);
10590 if (action != PF_PASS || s == NULL) {
10591 action = PF_DROP;
10592 break;
10593 }
10594
10595 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10596 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10597 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10598 action = pf_synproxy(&pd, s, &reason);
10599 break;
10600 } else {
10601 action = pf_test_rule(&r, &s, &pd,
10602 &a, &ruleset, &reason, inp);
10603 }
10604 }
10605 break;
10606 }
10607
10608 case IPPROTO_SCTP:
10609 action = pf_normalize_sctp(&pd);
10610 if (action == PF_DROP)
10611 goto done;
10612 /* fallthrough */
10613 case IPPROTO_UDP:
10614 default:
10615 action = pf_test_state(&s, &pd, &reason);
10616 if (action == PF_PASS || action == PF_AFRT) {
10617 if (V_pfsync_update_state_ptr != NULL)
10618 V_pfsync_update_state_ptr(s);
10619 r = s->rule;
10620 a = s->anchor;
10621 } else if (s == NULL) {
10622 action = pf_test_rule(&r, &s,
10623 &pd, &a, &ruleset, &reason, inp);
10624 }
10625 break;
10626
10627 case IPPROTO_ICMP:
10628 case IPPROTO_ICMPV6: {
10629 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10630 action = PF_DROP;
10631 REASON_SET(&reason, PFRES_NORM);
10632 DPFPRINTF(PF_DEBUG_MISC,
10633 ("dropping IPv6 packet with ICMPv4 payload"));
10634 goto done;
10635 }
10636 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10637 action = PF_DROP;
10638 REASON_SET(&reason, PFRES_NORM);
10639 DPFPRINTF(PF_DEBUG_MISC,
10640 ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
10641 goto done;
10642 }
10643 action = pf_test_state_icmp(&s, &pd, &reason);
10644 if (action == PF_PASS || action == PF_AFRT) {
10645 if (V_pfsync_update_state_ptr != NULL)
10646 V_pfsync_update_state_ptr(s);
10647 r = s->rule;
10648 a = s->anchor;
10649 } else if (s == NULL)
10650 action = pf_test_rule(&r, &s, &pd,
10651 &a, &ruleset, &reason, inp);
10652 break;
10653 }
10654
10655 }
10656
10657 done:
10658 PF_RULES_RUNLOCK();
10659
10660 if (pd.m == NULL)
10661 goto eat_pkt;
10662
10663 if (s)
10664 memcpy(&pd.act, &s->act, sizeof(s->act));
10665
10666 if (action == PF_PASS && pd.badopts && !pd.act.allow_opts) {
10667 action = PF_DROP;
10668 REASON_SET(&reason, PFRES_IPOPTIONS);
10669 pd.act.log = PF_LOG_FORCE;
10670 DPFPRINTF(PF_DEBUG_MISC,
10671 ("pf: dropping packet with dangerous headers\n"));
10672 }
10673
10674 if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
10675 pd.tot_len > pd.act.max_pkt_size) {
10676 action = PF_DROP;
10677 REASON_SET(&reason, PFRES_NORM);
10678 pd.act.log = PF_LOG_FORCE;
10679 DPFPRINTF(PF_DEBUG_MISC,
10680 ("pf: dropping overly long packet\n"));
10681 }
10682
10683 if (s) {
10684 uint8_t log = pd.act.log;
10685 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
10686 pd.act.log |= log;
10687 tag = s->tag;
10688 } else {
10689 tag = r->tag;
10690 }
10691
10692 if (tag > 0 && pf_tag_packet(&pd, tag)) {
10693 action = PF_DROP;
10694 REASON_SET(&reason, PFRES_MEMORY);
10695 }
10696
10697 pf_scrub(&pd);
10698 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
10699 pf_normalize_mss(&pd);
10700
10701 if (pd.act.rtableid >= 0)
10702 M_SETFIB(pd.m, pd.act.rtableid);
10703
10704 if (pd.act.flags & PFSTATE_SETPRIO) {
10705 if (pd.tos & IPTOS_LOWDELAY)
10706 use_2nd_queue = 1;
10707 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
10708 action = PF_DROP;
10709 REASON_SET(&reason, PFRES_MEMORY);
10710 pd.act.log = PF_LOG_FORCE;
10711 DPFPRINTF(PF_DEBUG_MISC,
10712 ("pf: failed to allocate 802.1q mtag\n"));
10713 }
10714 }
10715
10716 #ifdef ALTQ
10717 if (action == PF_PASS && pd.act.qid) {
10718 if (pd.pf_mtag == NULL &&
10719 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10720 action = PF_DROP;
10721 REASON_SET(&reason, PFRES_MEMORY);
10722 } else {
10723 if (s != NULL)
10724 pd.pf_mtag->qid_hash = pf_state_hash(s);
10725 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
10726 pd.pf_mtag->qid = pd.act.pqid;
10727 else
10728 pd.pf_mtag->qid = pd.act.qid;
10729 /* Add hints for ecn. */
10730 pd.pf_mtag->hdr = mtod(pd.m, void *);
10731 }
10732 }
10733 #endif /* ALTQ */
10734
10735 /*
10736 * connections redirected to loopback should not match sockets
10737 * bound specifically to loopback due to security implications,
10738 * see tcp_input() and in_pcblookup_listen().
10739 */
10740 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
10741 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
10742 (s->nat_rule->action == PF_RDR ||
10743 s->nat_rule->action == PF_BINAT) &&
10744 pf_is_loopback(af, pd.dst))
10745 pd.m->m_flags |= M_SKIP_FIREWALL;
10746
10747 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
10748 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
10749 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
10750 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
10751 if (mtag != NULL) {
10752 ((struct pf_divert_mtag *)(mtag+1))->port =
10753 ntohs(r->divert.port);
10754 ((struct pf_divert_mtag *)(mtag+1))->idir =
10755 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
10756 PF_DIVERT_MTAG_DIR_OUT;
10757
10758 if (s)
10759 PF_STATE_UNLOCK(s);
10760
10761 m_tag_prepend(pd.m, mtag);
10762 if (pd.m->m_flags & M_FASTFWD_OURS) {
10763 if (pd.pf_mtag == NULL &&
10764 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10765 action = PF_DROP;
10766 REASON_SET(&reason, PFRES_MEMORY);
10767 pd.act.log = PF_LOG_FORCE;
10768 DPFPRINTF(PF_DEBUG_MISC,
10769 ("pf: failed to allocate tag\n"));
10770 } else {
10771 pd.pf_mtag->flags |=
10772 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10773 pd.m->m_flags &= ~M_FASTFWD_OURS;
10774 }
10775 }
10776 ip_divert_ptr(*m0, dir == PF_IN);
10777 *m0 = NULL;
10778
10779 return (action);
10780 } else {
10781 /* XXX: ipfw has the same behaviour! */
10782 action = PF_DROP;
10783 REASON_SET(&reason, PFRES_MEMORY);
10784 pd.act.log = PF_LOG_FORCE;
10785 DPFPRINTF(PF_DEBUG_MISC,
10786 ("pf: failed to allocate divert tag\n"));
10787 }
10788 }
10789 /* XXX: Anybody working on it?! */
10790 if (af == AF_INET6 && r->divert.port)
10791 printf("pf: divert(9) is not supported for IPv6\n");
10792
10793 /* this flag will need revising if the pkt is forwarded */
10794 if (pd.pf_mtag)
10795 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
10796
10797 if (pd.act.log) {
10798 struct pf_krule *lr;
10799 struct pf_krule_item *ri;
10800
10801 if (s != NULL && s->nat_rule != NULL &&
10802 s->nat_rule->log & PF_LOG_ALL)
10803 lr = s->nat_rule;
10804 else
10805 lr = r;
10806
10807 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
10808 PFLOG_PACKET(action, reason, lr, a,
10809 ruleset, &pd, (s == NULL), NULL);
10810 if (s) {
10811 SLIST_FOREACH(ri, &s->match_rules, entry)
10812 if (ri->r->log & PF_LOG_ALL)
10813 PFLOG_PACKET(action,
10814 reason, ri->r, a, ruleset, &pd, 0, NULL);
10815 }
10816 }
10817
10818 pf_counters_inc(action, &pd, s, r, a);
10819
10820 switch (action) {
10821 case PF_SYNPROXY_DROP:
10822 m_freem(*m0);
10823 case PF_DEFER:
10824 *m0 = NULL;
10825 action = PF_PASS;
10826 break;
10827 case PF_DROP:
10828 m_freem(*m0);
10829 *m0 = NULL;
10830 break;
10831 case PF_AFRT:
10832 if (pf_translate_af(&pd)) {
10833 *m0 = pd.m;
10834 action = PF_DROP;
10835 break;
10836 }
10837 #ifdef INET
10838 if (pd.naf == AF_INET)
10839 pf_route(r, kif->pfik_ifp, s, &pd, inp);
10840 #endif /* INET */
10841 #ifdef INET6
10842 if (pd.naf == AF_INET6)
10843 pf_route6(r, kif->pfik_ifp, s, &pd, inp);
10844 #endif /* INET6 */
10845 *m0 = pd.m;
10846 action = PF_PASS;
10847 goto out;
10848 break;
10849 default:
10850 if (pd.act.rt) {
10851 switch (af) {
10852 #ifdef INET
10853 case AF_INET:
10854 /* pf_route() returns unlocked. */
10855 pf_route(r, kif->pfik_ifp, s, &pd, inp);
10856 break;
10857 #endif /* INET */
10858 #ifdef INET6
10859 case AF_INET6:
10860 /* pf_route6() returns unlocked. */
10861 pf_route6(r, kif->pfik_ifp, s, &pd, inp);
10862 break;
10863 #endif /* INET6 */
10864 }
10865 *m0 = pd.m;
10866 goto out;
10867 }
10868 if (pf_dummynet(&pd, s, r, m0) != 0) {
10869 action = PF_DROP;
10870 REASON_SET(&reason, PFRES_MEMORY);
10871 }
10872 break;
10873 }
10874
10875 eat_pkt:
10876 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
10877
10878 if (s && action != PF_DROP) {
10879 if (!s->if_index_in && dir == PF_IN)
10880 s->if_index_in = ifp->if_index;
10881 else if (!s->if_index_out && dir == PF_OUT)
10882 s->if_index_out = ifp->if_index;
10883 }
10884
10885 if (s)
10886 PF_STATE_UNLOCK(s);
10887
10888 out:
10889 #ifdef INET6
10890 /* If reassembled packet passed, create new fragments. */
10891 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
10892 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
10893 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
10894 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
10895 #endif /* INET6 */
10896
10897 pf_sctp_multihome_delayed(&pd, kif, s, action);
10898
10899 return (action);
10900 }
10901 #endif /* INET || INET6 */
10902