1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/random.h>
58 #include <sys/refcount.h>
59 #include <sys/sdt.h>
60 #include <sys/socket.h>
61 #include <sys/sysctl.h>
62 #include <sys/taskqueue.h>
63 #include <sys/ucred.h>
64
65 #include <crypto/sha2/sha512.h>
66
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/if_private.h>
70 #include <net/if_types.h>
71 #include <net/if_vlan_var.h>
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75
76 #include <net/pfil.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #include <net/if_pfsync.h>
80
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_var.h>
83 #include <netinet/in_fib.h>
84 #include <netinet/ip.h>
85 #include <netinet/ip_fw.h>
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96
97 /* dummynet */
98 #include <netinet/ip_dummynet.h>
99 #include <netinet/ip_fw.h>
100 #include <netpfil/ipfw/dn_heap.h>
101 #include <netpfil/ipfw/ip_fw_private.h>
102 #include <netpfil/ipfw/ip_dn_private.h>
103
104 #ifdef INET6
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet6/in6_fib.h>
111 #include <netinet6/scope6_var.h>
112 #endif /* INET6 */
113
114 #include <netinet/sctp_header.h>
115 #include <netinet/sctp_crc32.h>
116
117 #include <netipsec/ah.h>
118
119 #include <machine/in_cksum.h>
120 #include <security/mac/mac_framework.h>
121
122 SDT_PROVIDER_DEFINE(pf);
123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int");
124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
125 "struct pf_kstate *");
126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
128 "struct pf_kstate *");
129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
130 "struct pfi_kkif *");
131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
132 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
136 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
140 "struct pf_krule *", "struct mbuf *", "int");
141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
142 "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
144 "struct pf_kstate *", "struct pf_sctp_source *");
145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
146 "int", "struct pf_pdesc *", "int");
147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
149 "int");
150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
151 "int");
152
153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
154 "struct mbuf *");
155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
157 "int", "struct pf_keth_rule *", "char *");
158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
160 "int", "struct pf_keth_rule *");
161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
162 SDT_PROBE_DEFINE2(pf, , log, log, "int", "const char *");
163
164 /*
165 * Global variables
166 */
167
168 /* state tables */
169 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
170 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]);
171 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
172 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
173 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
174 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
175 VNET_DEFINE(struct pf_kstatus, pf_status);
176
177 VNET_DEFINE(u_int32_t, ticket_altqs_active);
178 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
179 VNET_DEFINE(int, altqs_inactive_open);
180 VNET_DEFINE(u_int32_t, ticket_pabuf);
181
182 static const int PF_HDR_LIMIT = 20; /* arbitrary limit */
183
184 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx);
185 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
186 VNET_DEFINE(u_char, pf_tcp_secret[16]);
187 #define V_pf_tcp_secret VNET(pf_tcp_secret)
188 VNET_DEFINE(int, pf_tcp_secret_init);
189 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
190 VNET_DEFINE(int, pf_tcp_iss_off);
191 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
192 VNET_DECLARE(int, pf_vnet_active);
193 #define V_pf_vnet_active VNET(pf_vnet_active)
194
195 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
196 #define V_pf_purge_idx VNET(pf_purge_idx)
197
198 #ifdef PF_WANT_32_TO_64_COUNTER
199 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
200 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
201
202 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
203 VNET_DEFINE(size_t, pf_allrulecount);
204 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
205 #endif
206
207 #define PF_SCTP_MAX_ENDPOINTS 8
208
209 struct pf_sctp_endpoint;
210 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
211 struct pf_sctp_source {
212 sa_family_t af;
213 struct pf_addr addr;
214 TAILQ_ENTRY(pf_sctp_source) entry;
215 };
216 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
217 struct pf_sctp_endpoint
218 {
219 uint32_t v_tag;
220 struct pf_sctp_sources sources;
221 RB_ENTRY(pf_sctp_endpoint) entry;
222 };
223 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)224 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
225 {
226 return (a->v_tag - b->v_tag);
227 }
228 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
229 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
230 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
231 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
232 static struct mtx_padalign pf_sctp_endpoints_mtx;
233 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
234 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
235 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
236
237 /*
238 * Queue for pf_intr() sends.
239 */
240 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
241 struct pf_send_entry {
242 STAILQ_ENTRY(pf_send_entry) pfse_next;
243 struct mbuf *pfse_m;
244 enum {
245 PFSE_IP,
246 PFSE_IP6,
247 PFSE_ICMP,
248 PFSE_ICMP6,
249 } pfse_type;
250 struct {
251 int type;
252 int code;
253 int mtu;
254 } icmpopts;
255 };
256
257 STAILQ_HEAD(pf_send_head, pf_send_entry);
258 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
259 #define V_pf_sendqueue VNET(pf_sendqueue)
260
261 static struct mtx_padalign pf_sendqueue_mtx;
262 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
263 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
264 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
265
266 /*
267 * Queue for pf_overload_task() tasks.
268 */
269 struct pf_overload_entry {
270 SLIST_ENTRY(pf_overload_entry) next;
271 struct pf_addr addr;
272 sa_family_t af;
273 uint8_t dir;
274 struct pf_krule *rule;
275 };
276
277 SLIST_HEAD(pf_overload_head, pf_overload_entry);
278 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
279 #define V_pf_overloadqueue VNET(pf_overloadqueue)
280 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
281 #define V_pf_overloadtask VNET(pf_overloadtask)
282
283 static struct mtx_padalign pf_overloadqueue_mtx;
284 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
285 "pf overload/flush queue", MTX_DEF);
286 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
287 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
288
289 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
290 struct mtx_padalign pf_unlnkdrules_mtx;
291 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
292 MTX_DEF);
293
294 struct sx pf_config_lock;
295 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
296
297 struct mtx_padalign pf_table_stats_lock;
298 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
299 MTX_DEF);
300
301 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
302 #define V_pf_sources_z VNET(pf_sources_z)
303 uma_zone_t pf_mtag_z;
304 VNET_DEFINE(uma_zone_t, pf_state_z);
305 VNET_DEFINE(uma_zone_t, pf_state_key_z);
306 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
307
308 VNET_DEFINE(struct unrhdr64, pf_stateid);
309
310 static void pf_src_tree_remove_state(struct pf_kstate *);
311 static int pf_check_threshold(struct pf_kthreshold *);
312
313 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *,
314 struct pf_addr *, u_int16_t);
315 static int pf_modulate_sack(struct pf_pdesc *,
316 struct tcphdr *, struct pf_state_peer *);
317 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
318 u_int16_t *, u_int16_t *);
319 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
320 struct pf_addr *, struct pf_addr *, u_int16_t,
321 u_int16_t *, u_int16_t *, u_int16_t *,
322 u_int16_t *, u_int8_t, sa_family_t);
323 int pf_change_icmp_af(struct mbuf *, int,
324 struct pf_pdesc *, struct pf_pdesc *,
325 struct pf_addr *, struct pf_addr *, sa_family_t,
326 sa_family_t);
327 int pf_translate_icmp_af(int, void *);
328 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
329 int, sa_family_t, struct pf_krule *, int);
330 static void pf_detach_state(struct pf_kstate *);
331 static int pf_state_key_attach(struct pf_state_key *,
332 struct pf_state_key *, struct pf_kstate *);
333 static void pf_state_key_detach(struct pf_kstate *, int);
334 static int pf_state_key_ctor(void *, int, void *, int);
335 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
336 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
337 struct pf_mtag *pf_mtag);
338 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
339 struct pf_krule *, struct mbuf **);
340 static int pf_dummynet_route(struct pf_pdesc *,
341 struct pf_kstate *, struct pf_krule *,
342 struct ifnet *, const struct sockaddr *, struct mbuf **);
343 static int pf_test_eth_rule(int, struct pfi_kkif *,
344 struct mbuf **);
345 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
346 struct pf_pdesc *, struct pf_krule **,
347 struct pf_kruleset **, u_short *, struct inpcb *);
348 static int pf_create_state(struct pf_krule *,
349 struct pf_test_ctx *,
350 struct pf_kstate **, u_int16_t, u_int16_t);
351 static int pf_state_key_addr_setup(struct pf_pdesc *,
352 struct pf_state_key_cmp *, int);
353 static int pf_tcp_track_full(struct pf_kstate *,
354 struct pf_pdesc *, u_short *, int *,
355 struct pf_state_peer *, struct pf_state_peer *,
356 u_int8_t, u_int8_t);
357 static int pf_tcp_track_sloppy(struct pf_kstate *,
358 struct pf_pdesc *, u_short *,
359 struct pf_state_peer *, struct pf_state_peer *,
360 u_int8_t, u_int8_t);
361 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *,
362 u_short *);
363 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
364 struct pf_pdesc *, struct pf_kstate **,
365 u_int16_t, u_int16_t, int, int *, int, int);
366 static int pf_test_state_icmp(struct pf_kstate **,
367 struct pf_pdesc *, u_short *);
368 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *,
369 u_short *);
370 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
371 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
372 struct pfi_kkif *, struct pf_kstate *, int);
373 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
374 int, u_int16_t);
375 static int pf_check_proto_cksum(struct mbuf *, int, int,
376 u_int8_t, sa_family_t);
377 static int pf_walk_option(struct pf_pdesc *, struct ip *,
378 int, int, u_short *);
379 static int pf_walk_header(struct pf_pdesc *, struct ip *, u_short *);
380 #ifdef INET6
381 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
382 int, int, u_short *);
383 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
384 u_short *);
385 #endif
386 static void pf_print_state_parts(struct pf_kstate *,
387 struct pf_state_key *, struct pf_state_key *);
388 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t,
389 bool);
390 static int pf_find_state(struct pf_pdesc *,
391 const struct pf_state_key_cmp *, struct pf_kstate **);
392 static bool pf_src_connlimit(struct pf_kstate *);
393 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
394 static void pf_counters_inc(int, struct pf_pdesc *,
395 struct pf_kstate *, struct pf_krule *,
396 struct pf_krule *);
397 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *,
398 struct pf_krule *, struct pf_kruleset *,
399 struct pf_krule_slist *);
400 static void pf_overload_task(void *v, int pending);
401 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX],
402 struct pf_srchash *[PF_SN_MAX], struct pf_krule *,
403 struct pf_addr *, sa_family_t, struct pf_addr *,
404 struct pfi_kkif *, sa_family_t, pf_sn_types_t);
405 static u_int pf_purge_expired_states(u_int, int);
406 static void pf_purge_unlinked_rules(void);
407 static int pf_mtag_uminit(void *, int, int);
408 static void pf_mtag_free(struct m_tag *);
409 static void pf_packet_rework_nat(struct pf_pdesc *, int,
410 struct pf_state_key *);
411 #ifdef INET
412 static int pf_route(struct pf_krule *,
413 struct ifnet *, struct pf_kstate *,
414 struct pf_pdesc *, struct inpcb *);
415 #endif /* INET */
416 #ifdef INET6
417 static void pf_change_a6(struct pf_addr *, u_int16_t *,
418 struct pf_addr *, u_int8_t);
419 static int pf_route6(struct pf_krule *,
420 struct ifnet *, struct pf_kstate *,
421 struct pf_pdesc *, struct inpcb *);
422 #endif /* INET6 */
423 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
424
425 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
426
427 extern int pf_end_threads;
428 extern struct proc *pf_purge_proc;
429
430 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
431
432 #define PACKET_UNDO_NAT(_pd, _off, _s) \
433 do { \
434 struct pf_state_key *nk; \
435 if ((pd->dir) == PF_OUT) \
436 nk = (_s)->key[PF_SK_STACK]; \
437 else \
438 nk = (_s)->key[PF_SK_WIRE]; \
439 pf_packet_rework_nat(_pd, _off, nk); \
440 } while (0)
441
442 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
443 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
444
445 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)446 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
447 {
448 struct pfi_kkif *k = pd->kif;
449
450 SDT_PROBE2(pf, ip, , bound_iface, st, k);
451
452 /* Floating unless otherwise specified. */
453 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
454 return (V_pfi_all);
455
456 /*
457 * Initially set to all, because we don't know what interface we'll be
458 * sending this out when we create the state.
459 */
460 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN))
461 return (V_pfi_all);
462
463 /*
464 * If this state is created based on another state (e.g. SCTP
465 * multihome) always set it floating initially. We can't know for sure
466 * what interface the actual traffic for this state will come in on.
467 */
468 if (pd->related_rule)
469 return (V_pfi_all);
470
471 /* Don't overrule the interface for states created on incoming packets. */
472 if (st->direction == PF_IN)
473 return (k);
474
475 /* No route-to, so don't overrule. */
476 if (st->act.rt != PF_ROUTETO)
477 return (k);
478
479 /* Bind to the route-to interface. */
480 return (st->act.rt_kif);
481 }
482
483 #define STATE_INC_COUNTERS(s) \
484 do { \
485 struct pf_krule_item *mrm; \
486 counter_u64_add(s->rule->states_cur, 1); \
487 counter_u64_add(s->rule->states_tot, 1); \
488 if (s->anchor != NULL) { \
489 counter_u64_add(s->anchor->states_cur, 1); \
490 counter_u64_add(s->anchor->states_tot, 1); \
491 } \
492 if (s->nat_rule != NULL) { \
493 counter_u64_add(s->nat_rule->states_cur, 1);\
494 counter_u64_add(s->nat_rule->states_tot, 1);\
495 } \
496 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
497 counter_u64_add(mrm->r->states_cur, 1); \
498 counter_u64_add(mrm->r->states_tot, 1); \
499 } \
500 } while (0)
501
502 #define STATE_DEC_COUNTERS(s) \
503 do { \
504 struct pf_krule_item *mrm; \
505 if (s->nat_rule != NULL) \
506 counter_u64_add(s->nat_rule->states_cur, -1);\
507 if (s->anchor != NULL) \
508 counter_u64_add(s->anchor->states_cur, -1); \
509 counter_u64_add(s->rule->states_cur, -1); \
510 SLIST_FOREACH(mrm, &s->match_rules, entry) \
511 counter_u64_add(mrm->r->states_cur, -1); \
512 } while (0)
513
514 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
515 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
516 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
517 VNET_DEFINE(struct pf_idhash *, pf_idhash);
518 VNET_DEFINE(struct pf_srchash *, pf_srchash);
519 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
520 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
521
522 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
523 "pf(4)");
524
525 VNET_DEFINE(u_long, pf_hashmask);
526 VNET_DEFINE(u_long, pf_srchashmask);
527 VNET_DEFINE(u_long, pf_udpendpointhashmask);
528 VNET_DEFINE_STATIC(u_long, pf_hashsize);
529 #define V_pf_hashsize VNET(pf_hashsize)
530 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
531 #define V_pf_srchashsize VNET(pf_srchashsize)
532 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
533 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
534 u_long pf_ioctl_maxcount = 65535;
535
536 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
537 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
538 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
539 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
540 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
541 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
542 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
543 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
544
545 VNET_DEFINE(void *, pf_swi_cookie);
546 VNET_DEFINE(struct intr_event *, pf_swi_ie);
547
548 VNET_DEFINE(uint32_t, pf_hashseed);
549 #define V_pf_hashseed VNET(pf_hashseed)
550
551 static void
pf_sctp_checksum(struct mbuf * m,int off)552 pf_sctp_checksum(struct mbuf *m, int off)
553 {
554 uint32_t sum = 0;
555
556 /* Zero out the checksum, to enable recalculation. */
557 m_copyback(m, off + offsetof(struct sctphdr, checksum),
558 sizeof(sum), (caddr_t)&sum);
559
560 sum = sctp_calculate_cksum(m, off);
561
562 m_copyback(m, off + offsetof(struct sctphdr, checksum),
563 sizeof(sum), (caddr_t)&sum);
564 }
565
566 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)567 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
568 {
569
570 switch (af) {
571 #ifdef INET
572 case AF_INET:
573 if (a->addr32[0] > b->addr32[0])
574 return (1);
575 if (a->addr32[0] < b->addr32[0])
576 return (-1);
577 break;
578 #endif /* INET */
579 #ifdef INET6
580 case AF_INET6:
581 if (a->addr32[3] > b->addr32[3])
582 return (1);
583 if (a->addr32[3] < b->addr32[3])
584 return (-1);
585 if (a->addr32[2] > b->addr32[2])
586 return (1);
587 if (a->addr32[2] < b->addr32[2])
588 return (-1);
589 if (a->addr32[1] > b->addr32[1])
590 return (1);
591 if (a->addr32[1] < b->addr32[1])
592 return (-1);
593 if (a->addr32[0] > b->addr32[0])
594 return (1);
595 if (a->addr32[0] < b->addr32[0])
596 return (-1);
597 break;
598 #endif /* INET6 */
599 default:
600 unhandled_af(af);
601 }
602 return (0);
603 }
604
605 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)606 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
607 {
608 switch (af) {
609 #ifdef INET
610 case AF_INET:
611 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
612 #endif /* INET */
613 case AF_INET6:
614 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
615 default:
616 unhandled_af(af);
617 }
618 }
619
620 static void
pf_packet_rework_nat(struct pf_pdesc * pd,int off,struct pf_state_key * nk)621 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk)
622 {
623
624 switch (pd->virtual_proto) {
625 case IPPROTO_TCP: {
626 struct tcphdr *th = &pd->hdr.tcp;
627
628 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
629 pf_change_ap(pd, pd->src, &th->th_sport,
630 &nk->addr[pd->sidx], nk->port[pd->sidx]);
631 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
632 pf_change_ap(pd, pd->dst, &th->th_dport,
633 &nk->addr[pd->didx], nk->port[pd->didx]);
634 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th);
635 break;
636 }
637 case IPPROTO_UDP: {
638 struct udphdr *uh = &pd->hdr.udp;
639
640 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
641 pf_change_ap(pd, pd->src, &uh->uh_sport,
642 &nk->addr[pd->sidx], nk->port[pd->sidx]);
643 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
644 pf_change_ap(pd, pd->dst, &uh->uh_dport,
645 &nk->addr[pd->didx], nk->port[pd->didx]);
646 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh);
647 break;
648 }
649 case IPPROTO_SCTP: {
650 struct sctphdr *sh = &pd->hdr.sctp;
651
652 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
653 pf_change_ap(pd, pd->src, &sh->src_port,
654 &nk->addr[pd->sidx], nk->port[pd->sidx]);
655 }
656 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
657 pf_change_ap(pd, pd->dst, &sh->dest_port,
658 &nk->addr[pd->didx], nk->port[pd->didx]);
659 }
660
661 break;
662 }
663 case IPPROTO_ICMP: {
664 struct icmp *ih = &pd->hdr.icmp;
665
666 if (nk->port[pd->sidx] != ih->icmp_id) {
667 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
668 ih->icmp_cksum, ih->icmp_id,
669 nk->port[pd->sidx], 0);
670 ih->icmp_id = nk->port[pd->sidx];
671 pd->sport = &ih->icmp_id;
672
673 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih);
674 }
675 /* FALLTHROUGH */
676 }
677 default:
678 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
679 switch (pd->af) {
680 case AF_INET:
681 pf_change_a(&pd->src->v4.s_addr,
682 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
683 0);
684 break;
685 case AF_INET6:
686 pf_addrcpy(pd->src, &nk->addr[pd->sidx],
687 pd->af);
688 break;
689 default:
690 unhandled_af(pd->af);
691 }
692 }
693 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
694 switch (pd->af) {
695 case AF_INET:
696 pf_change_a(&pd->dst->v4.s_addr,
697 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
698 0);
699 break;
700 case AF_INET6:
701 pf_addrcpy(pd->dst, &nk->addr[pd->didx],
702 pd->af);
703 break;
704 default:
705 unhandled_af(pd->af);
706 }
707 }
708 break;
709 }
710 }
711
712 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)713 pf_hashkey(const struct pf_state_key *sk)
714 {
715 uint32_t h;
716
717 h = murmur3_32_hash32((const uint32_t *)sk,
718 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
719 V_pf_hashseed);
720
721 return (h & V_pf_hashmask);
722 }
723
724 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)725 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
726 {
727 uint32_t h;
728
729 switch (af) {
730 case AF_INET:
731 h = murmur3_32_hash32((uint32_t *)&addr->v4,
732 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
733 break;
734 case AF_INET6:
735 h = murmur3_32_hash32((uint32_t *)&addr->v6,
736 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
737 break;
738 default:
739 unhandled_af(af);
740 }
741
742 return (h & V_pf_srchashmask);
743 }
744
745 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)746 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
747 {
748 uint32_t h;
749
750 h = murmur3_32_hash32((uint32_t *)endpoint,
751 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
752 V_pf_hashseed);
753 return (h & V_pf_udpendpointhashmask);
754 }
755
756 #ifdef ALTQ
757 static int
pf_state_hash(struct pf_kstate * s)758 pf_state_hash(struct pf_kstate *s)
759 {
760 u_int32_t hv = (intptr_t)s / sizeof(*s);
761
762 hv ^= crc32(&s->src, sizeof(s->src));
763 hv ^= crc32(&s->dst, sizeof(s->dst));
764 if (hv == 0)
765 hv = 1;
766 return (hv);
767 }
768 #endif /* ALTQ */
769
770 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)771 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
772 {
773 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
774 s->dst.state = newstate;
775 if (which == PF_PEER_DST)
776 return;
777 if (s->src.state == newstate)
778 return;
779 if (s->creatorid == V_pf_status.hostid &&
780 s->key[PF_SK_STACK] != NULL &&
781 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
782 !(TCPS_HAVEESTABLISHED(s->src.state) ||
783 s->src.state == TCPS_CLOSED) &&
784 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
785 atomic_add_32(&V_pf_status.states_halfopen, -1);
786
787 s->src.state = newstate;
788 }
789
790 bool
pf_init_threshold(struct pf_kthreshold * threshold,u_int32_t limit,u_int32_t seconds)791 pf_init_threshold(struct pf_kthreshold *threshold,
792 u_int32_t limit, u_int32_t seconds)
793 {
794 threshold->limit = limit;
795 threshold->seconds = seconds;
796 threshold->cr = counter_rate_alloc(M_NOWAIT, seconds);
797
798 return (threshold->cr != NULL);
799 }
800
801 static int
pf_check_threshold(struct pf_kthreshold * threshold)802 pf_check_threshold(struct pf_kthreshold *threshold)
803 {
804 return (counter_ratecheck(threshold->cr, threshold->limit) < 0);
805 }
806
807 static bool
pf_src_connlimit(struct pf_kstate * state)808 pf_src_connlimit(struct pf_kstate *state)
809 {
810 struct pf_overload_entry *pfoe;
811 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT];
812 bool limited = false;
813
814 PF_STATE_LOCK_ASSERT(state);
815 PF_SRC_NODE_LOCK(src_node);
816
817 src_node->conn++;
818 state->src.tcp_est = 1;
819
820 if (state->rule->max_src_conn &&
821 state->rule->max_src_conn <
822 src_node->conn) {
823 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
824 limited = true;
825 }
826
827 if (state->rule->max_src_conn_rate.limit &&
828 pf_check_threshold(&src_node->conn_rate)) {
829 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
830 limited = true;
831 }
832
833 if (!limited)
834 goto done;
835
836 /* Kill this state. */
837 state->timeout = PFTM_PURGE;
838 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
839
840 if (state->rule->overload_tbl == NULL)
841 goto done;
842
843 /* Schedule overloading and flushing task. */
844 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
845 if (pfoe == NULL)
846 goto done; /* too bad :( */
847
848 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
849 pfoe->af = state->key[PF_SK_WIRE]->af;
850 pfoe->rule = state->rule;
851 pfoe->dir = state->direction;
852 PF_OVERLOADQ_LOCK();
853 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
854 PF_OVERLOADQ_UNLOCK();
855 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
856
857 done:
858 PF_SRC_NODE_UNLOCK(src_node);
859 return (limited);
860 }
861
862 static void
pf_overload_task(void * v,int pending)863 pf_overload_task(void *v, int pending)
864 {
865 struct pf_overload_head queue;
866 struct pfr_addr p;
867 struct pf_overload_entry *pfoe, *pfoe1;
868 uint32_t killed = 0;
869
870 CURVNET_SET((struct vnet *)v);
871
872 PF_OVERLOADQ_LOCK();
873 queue = V_pf_overloadqueue;
874 SLIST_INIT(&V_pf_overloadqueue);
875 PF_OVERLOADQ_UNLOCK();
876
877 bzero(&p, sizeof(p));
878 SLIST_FOREACH(pfoe, &queue, next) {
879 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
880 if (V_pf_status.debug >= PF_DEBUG_MISC) {
881 printf("%s: blocking address ", __func__);
882 pf_print_host(&pfoe->addr, 0, pfoe->af);
883 printf("\n");
884 }
885
886 p.pfra_af = pfoe->af;
887 switch (pfoe->af) {
888 #ifdef INET
889 case AF_INET:
890 p.pfra_net = 32;
891 p.pfra_ip4addr = pfoe->addr.v4;
892 break;
893 #endif /* INET */
894 #ifdef INET6
895 case AF_INET6:
896 p.pfra_net = 128;
897 p.pfra_ip6addr = pfoe->addr.v6;
898 break;
899 #endif /* INET6 */
900 default:
901 unhandled_af(pfoe->af);
902 }
903
904 PF_RULES_WLOCK();
905 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
906 PF_RULES_WUNLOCK();
907 }
908
909 /*
910 * Remove those entries, that don't need flushing.
911 */
912 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
913 if (pfoe->rule->flush == 0) {
914 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
915 free(pfoe, M_PFTEMP);
916 } else
917 counter_u64_add(
918 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
919
920 /* If nothing to flush, return. */
921 if (SLIST_EMPTY(&queue)) {
922 CURVNET_RESTORE();
923 return;
924 }
925
926 for (int i = 0; i <= V_pf_hashmask; i++) {
927 struct pf_idhash *ih = &V_pf_idhash[i];
928 struct pf_state_key *sk;
929 struct pf_kstate *s;
930
931 PF_HASHROW_LOCK(ih);
932 LIST_FOREACH(s, &ih->states, entry) {
933 sk = s->key[PF_SK_WIRE];
934 SLIST_FOREACH(pfoe, &queue, next)
935 if (sk->af == pfoe->af &&
936 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
937 pfoe->rule == s->rule) &&
938 ((pfoe->dir == PF_OUT &&
939 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
940 (pfoe->dir == PF_IN &&
941 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
942 s->timeout = PFTM_PURGE;
943 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
944 killed++;
945 }
946 }
947 PF_HASHROW_UNLOCK(ih);
948 }
949 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
950 free(pfoe, M_PFTEMP);
951 if (V_pf_status.debug >= PF_DEBUG_MISC)
952 printf("%s: %u states killed", __func__, killed);
953
954 CURVNET_RESTORE();
955 }
956
957 /*
958 * On node found always returns locked. On not found its configurable.
959 */
960 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,pf_sn_types_t sn_type,bool returnlocked)961 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
962 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked)
963 {
964 struct pf_ksrc_node *n;
965
966 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
967
968 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
969 PF_HASHROW_LOCK(*sh);
970 LIST_FOREACH(n, &(*sh)->nodes, entry)
971 if (n->rule == rule && n->af == af && n->type == sn_type &&
972 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
973 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
974 break;
975
976 if (n == NULL && !returnlocked)
977 PF_HASHROW_UNLOCK(*sh);
978
979 return (n);
980 }
981
982 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)983 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
984 {
985 struct pf_ksrc_node *cur;
986
987 if ((*sn) == NULL)
988 return (false);
989
990 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
991
992 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
993 PF_HASHROW_LOCK(sh);
994 LIST_FOREACH(cur, &(sh->nodes), entry) {
995 if (cur == (*sn) &&
996 cur->expire != 1) /* Ignore nodes being killed */
997 return (true);
998 }
999 PF_HASHROW_UNLOCK(sh);
1000 (*sn) = NULL;
1001 return (false);
1002 }
1003
1004 static void
pf_free_src_node(struct pf_ksrc_node * sn)1005 pf_free_src_node(struct pf_ksrc_node *sn)
1006 {
1007
1008 for (int i = 0; i < 2; i++) {
1009 counter_u64_free(sn->bytes[i]);
1010 counter_u64_free(sn->packets[i]);
1011 }
1012 counter_rate_free(sn->conn_rate.cr);
1013 uma_zfree(V_pf_sources_z, sn);
1014 }
1015
1016 static u_short
pf_insert_src_node(struct pf_ksrc_node * sns[PF_SN_MAX],struct pf_srchash * snhs[PF_SN_MAX],struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif,sa_family_t raf,pf_sn_types_t sn_type)1017 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX],
1018 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule,
1019 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr,
1020 struct pfi_kkif *rkif, sa_family_t raf, pf_sn_types_t sn_type)
1021 {
1022 u_short reason = 0;
1023 struct pf_krule *r_track = rule;
1024 struct pf_ksrc_node **sn = &(sns[sn_type]);
1025 struct pf_srchash **sh = &(snhs[sn_type]);
1026
1027 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL),
1028 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__));
1029
1030 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK),
1031 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__));
1032
1033 /*
1034 * XXX: There could be a KASSERT for
1035 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR)
1036 * but we'd need to pass pool *only* for this KASSERT.
1037 */
1038
1039 if ( (rule->rule_flag & PFRULE_SRCTRACK) &&
1040 !(rule->rule_flag & PFRULE_RULESRCTRACK))
1041 r_track = &V_pf_default_rule;
1042
1043 /*
1044 * Request the sh to always be locked, as we might insert a new sn.
1045 */
1046 if (*sn == NULL)
1047 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true);
1048
1049 if (*sn == NULL) {
1050 PF_HASHROW_ASSERT(*sh);
1051
1052 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes &&
1053 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) {
1054 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1055 reason = PFRES_SRCLIMIT;
1056 goto done;
1057 }
1058
1059 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1060 if ((*sn) == NULL) {
1061 reason = PFRES_MEMORY;
1062 goto done;
1063 }
1064
1065 for (int i = 0; i < 2; i++) {
1066 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1067 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1068
1069 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1070 pf_free_src_node(*sn);
1071 reason = PFRES_MEMORY;
1072 goto done;
1073 }
1074 }
1075
1076 if (sn_type == PF_SN_LIMIT)
1077 if (! pf_init_threshold(&(*sn)->conn_rate,
1078 rule->max_src_conn_rate.limit,
1079 rule->max_src_conn_rate.seconds)) {
1080 pf_free_src_node(*sn);
1081 reason = PFRES_MEMORY;
1082 goto done;
1083 }
1084
1085 MPASS((*sn)->lock == NULL);
1086 (*sn)->lock = &(*sh)->lock;
1087
1088 (*sn)->af = af;
1089 (*sn)->rule = r_track;
1090 pf_addrcpy(&(*sn)->addr, src, af);
1091 if (raddr != NULL)
1092 pf_addrcpy(&(*sn)->raddr, raddr, raf);
1093 (*sn)->rkif = rkif;
1094 (*sn)->raf = raf;
1095 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1096 (*sn)->creation = time_uptime;
1097 (*sn)->ruletype = rule->action;
1098 (*sn)->type = sn_type;
1099 counter_u64_add(r_track->src_nodes[sn_type], 1);
1100 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1101 } else {
1102 if (sn_type == PF_SN_LIMIT && rule->max_src_states &&
1103 (*sn)->states >= rule->max_src_states) {
1104 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1105 1);
1106 reason = PFRES_SRCLIMIT;
1107 goto done;
1108 }
1109 }
1110 done:
1111 if (reason == 0)
1112 (*sn)->states++;
1113 else
1114 (*sn) = NULL;
1115
1116 PF_HASHROW_UNLOCK(*sh);
1117 return (reason);
1118 }
1119
1120 void
pf_unlink_src_node(struct pf_ksrc_node * src)1121 pf_unlink_src_node(struct pf_ksrc_node *src)
1122 {
1123 PF_SRC_NODE_LOCK_ASSERT(src);
1124
1125 LIST_REMOVE(src, entry);
1126 if (src->rule)
1127 counter_u64_add(src->rule->src_nodes[src->type], -1);
1128 }
1129
1130 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1131 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1132 {
1133 struct pf_ksrc_node *sn, *tmp;
1134 u_int count = 0;
1135
1136 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1137 pf_free_src_node(sn);
1138 count++;
1139 }
1140
1141 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1142
1143 return (count);
1144 }
1145
1146 void
pf_mtag_initialize(void)1147 pf_mtag_initialize(void)
1148 {
1149
1150 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1151 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1152 UMA_ALIGN_PTR, 0);
1153 }
1154
1155 /* Per-vnet data storage structures initialization. */
1156 void
pf_initialize(void)1157 pf_initialize(void)
1158 {
1159 struct pf_keyhash *kh;
1160 struct pf_idhash *ih;
1161 struct pf_srchash *sh;
1162 struct pf_udpendpointhash *uh;
1163 u_int i;
1164
1165 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1166 V_pf_hashsize = PF_HASHSIZ;
1167 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1168 V_pf_srchashsize = PF_SRCHASHSIZ;
1169 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1170 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1171
1172 V_pf_hashseed = arc4random();
1173
1174 /* States and state keys storage. */
1175 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1176 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1177 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1178 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1179 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1180
1181 V_pf_state_key_z = uma_zcreate("pf state keys",
1182 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1183 UMA_ALIGN_PTR, 0);
1184
1185 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1186 M_PFHASH, M_NOWAIT | M_ZERO);
1187 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1188 M_PFHASH, M_NOWAIT | M_ZERO);
1189 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1190 printf("pf: Unable to allocate memory for "
1191 "state_hashsize %lu.\n", V_pf_hashsize);
1192
1193 free(V_pf_keyhash, M_PFHASH);
1194 free(V_pf_idhash, M_PFHASH);
1195
1196 V_pf_hashsize = PF_HASHSIZ;
1197 V_pf_keyhash = mallocarray(V_pf_hashsize,
1198 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1199 V_pf_idhash = mallocarray(V_pf_hashsize,
1200 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1201 }
1202
1203 V_pf_hashmask = V_pf_hashsize - 1;
1204 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1205 i++, kh++, ih++) {
1206 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1207 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1208 }
1209
1210 /* Source nodes. */
1211 V_pf_sources_z = uma_zcreate("pf source nodes",
1212 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1213 0);
1214 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1215 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1216 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1217
1218 V_pf_srchash = mallocarray(V_pf_srchashsize,
1219 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1220 if (V_pf_srchash == NULL) {
1221 printf("pf: Unable to allocate memory for "
1222 "source_hashsize %lu.\n", V_pf_srchashsize);
1223
1224 V_pf_srchashsize = PF_SRCHASHSIZ;
1225 V_pf_srchash = mallocarray(V_pf_srchashsize,
1226 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1227 }
1228
1229 V_pf_srchashmask = V_pf_srchashsize - 1;
1230 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1231 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1232
1233
1234 /* UDP endpoint mappings. */
1235 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1236 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1237 UMA_ALIGN_PTR, 0);
1238 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1239 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1240 if (V_pf_udpendpointhash == NULL) {
1241 printf("pf: Unable to allocate memory for "
1242 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1243
1244 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1245 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1246 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1247 }
1248
1249 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1250 for (i = 0, uh = V_pf_udpendpointhash;
1251 i <= V_pf_udpendpointhashmask;
1252 i++, uh++) {
1253 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1254 MTX_DEF | MTX_DUPOK);
1255 }
1256
1257 /* Anchors */
1258 V_pf_anchor_z = uma_zcreate("pf anchors",
1259 sizeof(struct pf_kanchor), NULL, NULL, NULL, NULL,
1260 UMA_ALIGN_PTR, 0);
1261 V_pf_limits[PF_LIMIT_ANCHORS].zone = V_pf_anchor_z;
1262 uma_zone_set_max(V_pf_anchor_z, PF_ANCHOR_HIWAT);
1263 uma_zone_set_warning(V_pf_anchor_z, "PF anchor limit reached");
1264
1265 V_pf_eth_anchor_z = uma_zcreate("pf Ethernet anchors",
1266 sizeof(struct pf_keth_anchor), NULL, NULL, NULL, NULL,
1267 UMA_ALIGN_PTR, 0);
1268 V_pf_limits[PF_LIMIT_ETH_ANCHORS].zone = V_pf_eth_anchor_z;
1269 uma_zone_set_max(V_pf_eth_anchor_z, PF_ANCHOR_HIWAT);
1270 uma_zone_set_warning(V_pf_eth_anchor_z, "PF Ethernet anchor limit reached");
1271
1272 /* ALTQ */
1273 TAILQ_INIT(&V_pf_altqs[0]);
1274 TAILQ_INIT(&V_pf_altqs[1]);
1275 TAILQ_INIT(&V_pf_altqs[2]);
1276 TAILQ_INIT(&V_pf_altqs[3]);
1277 TAILQ_INIT(&V_pf_pabuf[0]);
1278 TAILQ_INIT(&V_pf_pabuf[1]);
1279 TAILQ_INIT(&V_pf_pabuf[2]);
1280 V_pf_altqs_active = &V_pf_altqs[0];
1281 V_pf_altq_ifs_active = &V_pf_altqs[1];
1282 V_pf_altqs_inactive = &V_pf_altqs[2];
1283 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1284
1285 /* Send & overload+flush queues. */
1286 STAILQ_INIT(&V_pf_sendqueue);
1287 SLIST_INIT(&V_pf_overloadqueue);
1288 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1289
1290 /* Unlinked, but may be referenced rules. */
1291 TAILQ_INIT(&V_pf_unlinked_rules);
1292 }
1293
1294 void
pf_mtag_cleanup(void)1295 pf_mtag_cleanup(void)
1296 {
1297
1298 uma_zdestroy(pf_mtag_z);
1299 }
1300
1301 void
pf_cleanup(void)1302 pf_cleanup(void)
1303 {
1304 struct pf_keyhash *kh;
1305 struct pf_idhash *ih;
1306 struct pf_srchash *sh;
1307 struct pf_udpendpointhash *uh;
1308 struct pf_send_entry *pfse, *next;
1309 u_int i;
1310
1311 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1312 i <= V_pf_hashmask;
1313 i++, kh++, ih++) {
1314 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1315 __func__));
1316 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1317 __func__));
1318 mtx_destroy(&kh->lock);
1319 mtx_destroy(&ih->lock);
1320 }
1321 free(V_pf_keyhash, M_PFHASH);
1322 free(V_pf_idhash, M_PFHASH);
1323
1324 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1325 KASSERT(LIST_EMPTY(&sh->nodes),
1326 ("%s: source node hash not empty", __func__));
1327 mtx_destroy(&sh->lock);
1328 }
1329 free(V_pf_srchash, M_PFHASH);
1330
1331 for (i = 0, uh = V_pf_udpendpointhash;
1332 i <= V_pf_udpendpointhashmask;
1333 i++, uh++) {
1334 KASSERT(LIST_EMPTY(&uh->endpoints),
1335 ("%s: udp endpoint hash not empty", __func__));
1336 mtx_destroy(&uh->lock);
1337 }
1338 free(V_pf_udpendpointhash, M_PFHASH);
1339
1340 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1341 m_freem(pfse->pfse_m);
1342 free(pfse, M_PFTEMP);
1343 }
1344 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1345
1346 uma_zdestroy(V_pf_sources_z);
1347 uma_zdestroy(V_pf_state_z);
1348 uma_zdestroy(V_pf_state_key_z);
1349 uma_zdestroy(V_pf_udp_mapping_z);
1350 uma_zdestroy(V_pf_anchor_z);
1351 uma_zdestroy(V_pf_eth_anchor_z);
1352 }
1353
1354 static int
pf_mtag_uminit(void * mem,int size,int how)1355 pf_mtag_uminit(void *mem, int size, int how)
1356 {
1357 struct m_tag *t;
1358
1359 t = (struct m_tag *)mem;
1360 t->m_tag_cookie = MTAG_ABI_COMPAT;
1361 t->m_tag_id = PACKET_TAG_PF;
1362 t->m_tag_len = sizeof(struct pf_mtag);
1363 t->m_tag_free = pf_mtag_free;
1364
1365 return (0);
1366 }
1367
1368 static void
pf_mtag_free(struct m_tag * t)1369 pf_mtag_free(struct m_tag *t)
1370 {
1371
1372 uma_zfree(pf_mtag_z, t);
1373 }
1374
1375 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1376 pf_get_mtag(struct mbuf *m)
1377 {
1378 struct m_tag *mtag;
1379
1380 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1381 return ((struct pf_mtag *)(mtag + 1));
1382
1383 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1384 if (mtag == NULL)
1385 return (NULL);
1386 bzero(mtag + 1, sizeof(struct pf_mtag));
1387 m_tag_prepend(m, mtag);
1388
1389 return ((struct pf_mtag *)(mtag + 1));
1390 }
1391
1392 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1393 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1394 struct pf_kstate *s)
1395 {
1396 struct pf_keyhash *khs, *khw, *kh;
1397 struct pf_state_key *sk, *cur;
1398 struct pf_kstate *si, *olds = NULL;
1399 int idx;
1400
1401 NET_EPOCH_ASSERT();
1402 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1403 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1404 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1405
1406 /*
1407 * We need to lock hash slots of both keys. To avoid deadlock
1408 * we always lock the slot with lower address first. Unlock order
1409 * isn't important.
1410 *
1411 * We also need to lock ID hash slot before dropping key
1412 * locks. On success we return with ID hash slot locked.
1413 */
1414
1415 if (skw == sks) {
1416 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1417 PF_HASHROW_LOCK(khs);
1418 } else {
1419 khs = &V_pf_keyhash[pf_hashkey(sks)];
1420 khw = &V_pf_keyhash[pf_hashkey(skw)];
1421 if (khs == khw) {
1422 PF_HASHROW_LOCK(khs);
1423 } else if (khs < khw) {
1424 PF_HASHROW_LOCK(khs);
1425 PF_HASHROW_LOCK(khw);
1426 } else {
1427 PF_HASHROW_LOCK(khw);
1428 PF_HASHROW_LOCK(khs);
1429 }
1430 }
1431
1432 #define KEYS_UNLOCK() do { \
1433 if (khs != khw) { \
1434 PF_HASHROW_UNLOCK(khs); \
1435 PF_HASHROW_UNLOCK(khw); \
1436 } else \
1437 PF_HASHROW_UNLOCK(khs); \
1438 } while (0)
1439
1440 /*
1441 * First run: start with wire key.
1442 */
1443 sk = skw;
1444 kh = khw;
1445 idx = PF_SK_WIRE;
1446
1447 MPASS(s->lock == NULL);
1448 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1449
1450 keyattach:
1451 LIST_FOREACH(cur, &kh->keys, entry)
1452 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1453 break;
1454
1455 if (cur != NULL) {
1456 /* Key exists. Check for same kif, if none, add to key. */
1457 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1458 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1459
1460 PF_HASHROW_LOCK(ih);
1461 if (si->kif == s->kif &&
1462 ((si->key[PF_SK_WIRE]->af == sk->af &&
1463 si->direction == s->direction) ||
1464 (si->key[PF_SK_WIRE]->af !=
1465 si->key[PF_SK_STACK]->af &&
1466 sk->af == si->key[PF_SK_STACK]->af &&
1467 si->direction != s->direction))) {
1468 bool reuse = false;
1469
1470 if (sk->proto == IPPROTO_TCP &&
1471 si->src.state >= TCPS_FIN_WAIT_2 &&
1472 si->dst.state >= TCPS_FIN_WAIT_2)
1473 reuse = true;
1474
1475 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1476 printf("pf: %s key attach "
1477 "%s on %s: ",
1478 (idx == PF_SK_WIRE) ?
1479 "wire" : "stack",
1480 reuse ? "reuse" : "failed",
1481 s->kif->pfik_name);
1482 pf_print_state_parts(s,
1483 (idx == PF_SK_WIRE) ?
1484 sk : NULL,
1485 (idx == PF_SK_STACK) ?
1486 sk : NULL);
1487 printf(", existing: ");
1488 pf_print_state_parts(si,
1489 (idx == PF_SK_WIRE) ?
1490 sk : NULL,
1491 (idx == PF_SK_STACK) ?
1492 sk : NULL);
1493 printf("\n");
1494 }
1495
1496 if (reuse) {
1497 /*
1498 * New state matches an old >FIN_WAIT_2
1499 * state. We can't drop key hash locks,
1500 * thus we can't unlink it properly.
1501 *
1502 * As a workaround we drop it into
1503 * TCPS_CLOSED state, schedule purge
1504 * ASAP and push it into the very end
1505 * of the slot TAILQ, so that it won't
1506 * conflict with our new state.
1507 */
1508 pf_set_protostate(si, PF_PEER_BOTH,
1509 TCPS_CLOSED);
1510 si->timeout = PFTM_PURGE;
1511 olds = si;
1512 } else {
1513 s->timeout = PFTM_UNLINKED;
1514 if (idx == PF_SK_STACK)
1515 /*
1516 * Remove the wire key from
1517 * the hash. Other threads
1518 * can't be referencing it
1519 * because we still hold the
1520 * hash lock.
1521 */
1522 pf_state_key_detach(s,
1523 PF_SK_WIRE);
1524 PF_HASHROW_UNLOCK(ih);
1525 KEYS_UNLOCK();
1526 if (idx == PF_SK_WIRE)
1527 /*
1528 * We've not inserted either key.
1529 * Free both.
1530 */
1531 uma_zfree(V_pf_state_key_z, skw);
1532 if (skw != sks)
1533 uma_zfree(
1534 V_pf_state_key_z,
1535 sks);
1536 return (EEXIST); /* collision! */
1537 }
1538 }
1539 PF_HASHROW_UNLOCK(ih);
1540 }
1541 uma_zfree(V_pf_state_key_z, sk);
1542 s->key[idx] = cur;
1543 } else {
1544 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1545 s->key[idx] = sk;
1546 }
1547
1548 stateattach:
1549 /* List is sorted, if-bound states before floating. */
1550 if (s->kif == V_pfi_all)
1551 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1552 else
1553 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1554
1555 if (olds) {
1556 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1557 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1558 key_list[idx]);
1559 olds = NULL;
1560 }
1561
1562 /*
1563 * Attach done. See how should we (or should not?)
1564 * attach a second key.
1565 */
1566 if (sks == skw) {
1567 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1568 idx = PF_SK_STACK;
1569 sks = NULL;
1570 goto stateattach;
1571 } else if (sks != NULL) {
1572 /*
1573 * Continue attaching with stack key.
1574 */
1575 sk = sks;
1576 kh = khs;
1577 idx = PF_SK_STACK;
1578 sks = NULL;
1579 goto keyattach;
1580 }
1581
1582 PF_STATE_LOCK(s);
1583 KEYS_UNLOCK();
1584
1585 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1586 ("%s failure", __func__));
1587
1588 return (0);
1589 #undef KEYS_UNLOCK
1590 }
1591
1592 static void
pf_detach_state(struct pf_kstate * s)1593 pf_detach_state(struct pf_kstate *s)
1594 {
1595 struct pf_state_key *sks = s->key[PF_SK_STACK];
1596 struct pf_keyhash *kh;
1597
1598 NET_EPOCH_ASSERT();
1599 MPASS(s->timeout >= PFTM_MAX);
1600
1601 pf_sctp_multihome_detach_addr(s);
1602
1603 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1604 V_pflow_export_state_ptr(s);
1605
1606 if (sks != NULL) {
1607 kh = &V_pf_keyhash[pf_hashkey(sks)];
1608 PF_HASHROW_LOCK(kh);
1609 if (s->key[PF_SK_STACK] != NULL)
1610 pf_state_key_detach(s, PF_SK_STACK);
1611 /*
1612 * If both point to same key, then we are done.
1613 */
1614 if (sks == s->key[PF_SK_WIRE]) {
1615 pf_state_key_detach(s, PF_SK_WIRE);
1616 PF_HASHROW_UNLOCK(kh);
1617 return;
1618 }
1619 PF_HASHROW_UNLOCK(kh);
1620 }
1621
1622 if (s->key[PF_SK_WIRE] != NULL) {
1623 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1624 PF_HASHROW_LOCK(kh);
1625 if (s->key[PF_SK_WIRE] != NULL)
1626 pf_state_key_detach(s, PF_SK_WIRE);
1627 PF_HASHROW_UNLOCK(kh);
1628 }
1629 }
1630
1631 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1632 pf_state_key_detach(struct pf_kstate *s, int idx)
1633 {
1634 struct pf_state_key *sk = s->key[idx];
1635 #ifdef INVARIANTS
1636 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1637
1638 PF_HASHROW_ASSERT(kh);
1639 #endif /* INVARIANTS */
1640 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1641 s->key[idx] = NULL;
1642
1643 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1644 LIST_REMOVE(sk, entry);
1645 uma_zfree(V_pf_state_key_z, sk);
1646 }
1647 }
1648
1649 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1650 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1651 {
1652 struct pf_state_key *sk = mem;
1653
1654 bzero(sk, sizeof(struct pf_state_key_cmp));
1655 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1656 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1657
1658 return (0);
1659 }
1660
1661 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1662 pf_state_key_addr_setup(struct pf_pdesc *pd,
1663 struct pf_state_key_cmp *key, int multi)
1664 {
1665 struct pf_addr *saddr = pd->src;
1666 struct pf_addr *daddr = pd->dst;
1667 #ifdef INET6
1668 struct nd_neighbor_solicit nd;
1669 struct pf_addr *target;
1670 u_short action, reason;
1671
1672 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1673 goto copy;
1674
1675 switch (pd->hdr.icmp6.icmp6_type) {
1676 case ND_NEIGHBOR_SOLICIT:
1677 if (multi)
1678 return (-1);
1679 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1680 return (-1);
1681 target = (struct pf_addr *)&nd.nd_ns_target;
1682 daddr = target;
1683 break;
1684 case ND_NEIGHBOR_ADVERT:
1685 if (multi)
1686 return (-1);
1687 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1688 return (-1);
1689 target = (struct pf_addr *)&nd.nd_ns_target;
1690 saddr = target;
1691 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1692 key->addr[pd->didx].addr32[0] = 0;
1693 key->addr[pd->didx].addr32[1] = 0;
1694 key->addr[pd->didx].addr32[2] = 0;
1695 key->addr[pd->didx].addr32[3] = 0;
1696 daddr = NULL; /* overwritten */
1697 }
1698 break;
1699 default:
1700 if (multi) {
1701 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1702 key->addr[pd->sidx].addr32[1] = 0;
1703 key->addr[pd->sidx].addr32[2] = 0;
1704 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1705 saddr = NULL; /* overwritten */
1706 }
1707 }
1708 copy:
1709 #endif /* INET6 */
1710 if (saddr)
1711 pf_addrcpy(&key->addr[pd->sidx], saddr, pd->af);
1712 if (daddr)
1713 pf_addrcpy(&key->addr[pd->didx], daddr, pd->af);
1714
1715 return (0);
1716 }
1717
1718 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1719 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1720 struct pf_state_key **sk, struct pf_state_key **nk)
1721 {
1722 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1723 if (*sk == NULL)
1724 return (ENOMEM);
1725
1726 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1727 0)) {
1728 uma_zfree(V_pf_state_key_z, *sk);
1729 *sk = NULL;
1730 return (ENOMEM);
1731 }
1732
1733 (*sk)->port[pd->sidx] = sport;
1734 (*sk)->port[pd->didx] = dport;
1735 (*sk)->proto = pd->proto;
1736 (*sk)->af = pd->af;
1737
1738 *nk = pf_state_key_clone(*sk);
1739 if (*nk == NULL) {
1740 uma_zfree(V_pf_state_key_z, *sk);
1741 *sk = NULL;
1742 return (ENOMEM);
1743 }
1744
1745 if (pd->af != pd->naf) {
1746 (*sk)->port[pd->sidx] = pd->osport;
1747 (*sk)->port[pd->didx] = pd->odport;
1748
1749 (*nk)->af = pd->naf;
1750
1751 /*
1752 * We're overwriting an address here, so potentially there's bits of an IPv6
1753 * address left in here. Clear that out first.
1754 */
1755 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1756 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1757 if (pd->dir == PF_IN) {
1758 pf_addrcpy(&(*nk)->addr[pd->didx], &pd->nsaddr,
1759 pd->naf);
1760 pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->ndaddr,
1761 pd->naf);
1762 (*nk)->port[pd->didx] = pd->nsport;
1763 (*nk)->port[pd->sidx] = pd->ndport;
1764 } else {
1765 pf_addrcpy(&(*nk)->addr[pd->sidx], &pd->nsaddr,
1766 pd->naf);
1767 pf_addrcpy(&(*nk)->addr[pd->didx], &pd->ndaddr,
1768 pd->naf);
1769 (*nk)->port[pd->sidx] = pd->nsport;
1770 (*nk)->port[pd->didx] = pd->ndport;
1771 }
1772
1773 switch (pd->proto) {
1774 case IPPROTO_ICMP:
1775 (*nk)->proto = IPPROTO_ICMPV6;
1776 break;
1777 case IPPROTO_ICMPV6:
1778 (*nk)->proto = IPPROTO_ICMP;
1779 break;
1780 default:
1781 (*nk)->proto = pd->proto;
1782 }
1783 }
1784
1785 return (0);
1786 }
1787
1788 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1789 pf_state_key_clone(const struct pf_state_key *orig)
1790 {
1791 struct pf_state_key *sk;
1792
1793 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1794 if (sk == NULL)
1795 return (NULL);
1796
1797 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1798
1799 return (sk);
1800 }
1801
1802 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1803 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1804 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1805 {
1806 struct pf_idhash *ih;
1807 struct pf_kstate *cur;
1808 int error;
1809
1810 NET_EPOCH_ASSERT();
1811
1812 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1813 ("%s: sks not pristine", __func__));
1814 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1815 ("%s: skw not pristine", __func__));
1816 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1817
1818 s->kif = kif;
1819 s->orig_kif = orig_kif;
1820
1821 if (s->id == 0 && s->creatorid == 0) {
1822 s->id = alloc_unr64(&V_pf_stateid);
1823 s->id = htobe64(s->id);
1824 s->creatorid = V_pf_status.hostid;
1825 }
1826
1827 /* Returns with ID locked on success. */
1828 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1829 return (error);
1830 skw = sks = NULL;
1831
1832 ih = &V_pf_idhash[PF_IDHASH(s)];
1833 PF_HASHROW_ASSERT(ih);
1834 LIST_FOREACH(cur, &ih->states, entry)
1835 if (cur->id == s->id && cur->creatorid == s->creatorid)
1836 break;
1837
1838 if (cur != NULL) {
1839 s->timeout = PFTM_UNLINKED;
1840 PF_HASHROW_UNLOCK(ih);
1841 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1842 printf("pf: state ID collision: "
1843 "id: %016llx creatorid: %08x\n",
1844 (unsigned long long)be64toh(s->id),
1845 ntohl(s->creatorid));
1846 }
1847 pf_detach_state(s);
1848 return (EEXIST);
1849 }
1850 LIST_INSERT_HEAD(&ih->states, s, entry);
1851 /* One for keys, one for ID hash. */
1852 refcount_init(&s->refs, 2);
1853
1854 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1855 if (V_pfsync_insert_state_ptr != NULL)
1856 V_pfsync_insert_state_ptr(s);
1857
1858 /* Returns locked. */
1859 return (0);
1860 }
1861
1862 /*
1863 * Find state by ID: returns with locked row on success.
1864 */
1865 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1866 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1867 {
1868 struct pf_idhash *ih;
1869 struct pf_kstate *s;
1870
1871 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1872
1873 ih = &V_pf_idhash[PF_IDHASHID(id)];
1874
1875 PF_HASHROW_LOCK(ih);
1876 LIST_FOREACH(s, &ih->states, entry)
1877 if (s->id == id && s->creatorid == creatorid)
1878 break;
1879
1880 if (s == NULL)
1881 PF_HASHROW_UNLOCK(ih);
1882
1883 return (s);
1884 }
1885
1886 /*
1887 * Find state by key.
1888 * Returns with ID hash slot locked on success.
1889 */
1890 static int
pf_find_state(struct pf_pdesc * pd,const struct pf_state_key_cmp * key,struct pf_kstate ** state)1891 pf_find_state(struct pf_pdesc *pd, const struct pf_state_key_cmp *key,
1892 struct pf_kstate **state)
1893 {
1894 struct pf_keyhash *kh;
1895 struct pf_state_key *sk;
1896 struct pf_kstate *s;
1897 int idx;
1898
1899 *state = NULL;
1900
1901 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1902
1903 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1904
1905 PF_HASHROW_LOCK(kh);
1906 LIST_FOREACH(sk, &kh->keys, entry)
1907 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1908 break;
1909 if (sk == NULL) {
1910 PF_HASHROW_UNLOCK(kh);
1911 return (PF_DROP);
1912 }
1913
1914 idx = (pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1915
1916 /* List is sorted, if-bound states before floating ones. */
1917 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1918 if (s->kif == V_pfi_all || s->kif == pd->kif ||
1919 s->orig_kif == pd->kif) {
1920 PF_STATE_LOCK(s);
1921 PF_HASHROW_UNLOCK(kh);
1922 if (__predict_false(s->timeout >= PFTM_MAX)) {
1923 /*
1924 * State is either being processed by
1925 * pf_remove_state() in an other thread, or
1926 * is scheduled for immediate expiry.
1927 */
1928 PF_STATE_UNLOCK(s);
1929 SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1930 key, (pd->dir), pd, *state);
1931 return (PF_DROP);
1932 }
1933 goto out;
1934 }
1935
1936 /* Look through the other list, in case of AF-TO */
1937 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1938 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1939 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1940 continue;
1941 if (s->kif == V_pfi_all || s->kif == pd->kif ||
1942 s->orig_kif == pd->kif) {
1943 PF_STATE_LOCK(s);
1944 PF_HASHROW_UNLOCK(kh);
1945 if (__predict_false(s->timeout >= PFTM_MAX)) {
1946 /*
1947 * State is either being processed by
1948 * pf_remove_state() in an other thread, or
1949 * is scheduled for immediate expiry.
1950 */
1951 PF_STATE_UNLOCK(s);
1952 SDT_PROBE5(pf, ip, state, lookup, pd->kif,
1953 key, (pd->dir), pd, NULL);
1954 return (PF_DROP);
1955 }
1956 goto out;
1957 }
1958 }
1959
1960 PF_HASHROW_UNLOCK(kh);
1961
1962 out:
1963 SDT_PROBE5(pf, ip, state, lookup, pd->kif, key, (pd->dir), pd, *state);
1964
1965 if (s == NULL || s->timeout == PFTM_PURGE) {
1966 if (s)
1967 PF_STATE_UNLOCK(s);
1968 return (PF_DROP);
1969 }
1970
1971 if ((s)->rule->pktrate.limit && pd->dir == (s)->direction) {
1972 if (pf_check_threshold(&(s)->rule->pktrate)) {
1973 PF_STATE_UNLOCK(s);
1974 return (PF_DROP);
1975 }
1976 }
1977 if (PACKET_LOOPED(pd)) {
1978 PF_STATE_UNLOCK(s);
1979 return (PF_PASS);
1980 }
1981
1982 *state = s;
1983
1984 return (PF_MATCH);
1985 }
1986
1987 /*
1988 * Returns with ID hash slot locked on success.
1989 */
1990 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1991 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1992 {
1993 struct pf_keyhash *kh;
1994 struct pf_state_key *sk;
1995 struct pf_kstate *s, *ret = NULL;
1996 int idx, inout = 0;
1997
1998 if (more != NULL)
1999 *more = 0;
2000
2001 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
2002
2003 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
2004
2005 PF_HASHROW_LOCK(kh);
2006 LIST_FOREACH(sk, &kh->keys, entry)
2007 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
2008 break;
2009 if (sk == NULL) {
2010 PF_HASHROW_UNLOCK(kh);
2011 return (NULL);
2012 }
2013 switch (dir) {
2014 case PF_IN:
2015 idx = PF_SK_WIRE;
2016 break;
2017 case PF_OUT:
2018 idx = PF_SK_STACK;
2019 break;
2020 case PF_INOUT:
2021 idx = PF_SK_WIRE;
2022 inout = 1;
2023 break;
2024 default:
2025 panic("%s: dir %u", __func__, dir);
2026 }
2027 second_run:
2028 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
2029 if (more == NULL) {
2030 PF_STATE_LOCK(s);
2031 PF_HASHROW_UNLOCK(kh);
2032 return (s);
2033 }
2034
2035 if (ret)
2036 (*more)++;
2037 else {
2038 ret = s;
2039 PF_STATE_LOCK(s);
2040 }
2041 }
2042 if (inout == 1) {
2043 inout = 0;
2044 idx = PF_SK_STACK;
2045 goto second_run;
2046 }
2047 PF_HASHROW_UNLOCK(kh);
2048
2049 return (ret);
2050 }
2051
2052 /*
2053 * FIXME
2054 * This routine is inefficient -- locks the state only to unlock immediately on
2055 * return.
2056 * It is racy -- after the state is unlocked nothing stops other threads from
2057 * removing it.
2058 */
2059 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)2060 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
2061 {
2062 struct pf_kstate *s;
2063
2064 s = pf_find_state_all(key, dir, NULL);
2065 if (s != NULL) {
2066 PF_STATE_UNLOCK(s);
2067 return (true);
2068 }
2069 return (false);
2070 }
2071
2072 void
pf_state_peer_hton(const struct pf_state_peer * s,struct pf_state_peer_export * d)2073 pf_state_peer_hton(const struct pf_state_peer *s, struct pf_state_peer_export *d)
2074 {
2075 d->seqlo = htonl(s->seqlo);
2076 d->seqhi = htonl(s->seqhi);
2077 d->seqdiff = htonl(s->seqdiff);
2078 d->max_win = htons(s->max_win);
2079 d->mss = htons(s->mss);
2080 d->state = s->state;
2081 d->wscale = s->wscale;
2082 if (s->scrub) {
2083 d->scrub.pfss_flags = htons(
2084 s->scrub->pfss_flags & PFSS_TIMESTAMP);
2085 d->scrub.pfss_ttl = (s)->scrub->pfss_ttl;
2086 d->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);
2087 d->scrub.scrub_flag = PF_SCRUB_FLAG_VALID;
2088 }
2089 }
2090
2091 void
pf_state_peer_ntoh(const struct pf_state_peer_export * s,struct pf_state_peer * d)2092 pf_state_peer_ntoh(const struct pf_state_peer_export *s, struct pf_state_peer *d)
2093 {
2094 d->seqlo = ntohl(s->seqlo);
2095 d->seqhi = ntohl(s->seqhi);
2096 d->seqdiff = ntohl(s->seqdiff);
2097 d->max_win = ntohs(s->max_win);
2098 d->mss = ntohs(s->mss);
2099 d->state = s->state;
2100 d->wscale = s->wscale;
2101 if (s->scrub.scrub_flag == PF_SCRUB_FLAG_VALID &&
2102 d->scrub != NULL) {
2103 d->scrub->pfss_flags = ntohs(s->scrub.pfss_flags) &
2104 PFSS_TIMESTAMP;
2105 d->scrub->pfss_ttl = s->scrub.pfss_ttl;
2106 d->scrub->pfss_ts_mod = ntohl(s->scrub.pfss_ts_mod);
2107 }
2108 }
2109
2110 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2111 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2112 struct pf_addr *nat_addr, uint16_t nat_port)
2113 {
2114 struct pf_udp_mapping *mapping;
2115
2116 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2117 if (mapping == NULL)
2118 return (NULL);
2119 pf_addrcpy(&mapping->endpoints[0].addr, src_addr, af);
2120 mapping->endpoints[0].port = src_port;
2121 mapping->endpoints[0].af = af;
2122 mapping->endpoints[0].mapping = mapping;
2123 pf_addrcpy(&mapping->endpoints[1].addr, nat_addr, af);
2124 mapping->endpoints[1].port = nat_port;
2125 mapping->endpoints[1].af = af;
2126 mapping->endpoints[1].mapping = mapping;
2127 refcount_init(&mapping->refs, 1);
2128 return (mapping);
2129 }
2130
2131 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2132 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2133 {
2134 struct pf_udpendpointhash *h0, *h1;
2135 struct pf_udp_endpoint *endpoint;
2136 int ret = EEXIST;
2137
2138 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2139 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2140 if (h0 == h1) {
2141 PF_HASHROW_LOCK(h0);
2142 } else if (h0 < h1) {
2143 PF_HASHROW_LOCK(h0);
2144 PF_HASHROW_LOCK(h1);
2145 } else {
2146 PF_HASHROW_LOCK(h1);
2147 PF_HASHROW_LOCK(h0);
2148 }
2149
2150 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2151 if (bcmp(endpoint, &mapping->endpoints[0],
2152 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2153 break;
2154 }
2155 if (endpoint != NULL)
2156 goto cleanup;
2157 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2158 if (bcmp(endpoint, &mapping->endpoints[1],
2159 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2160 break;
2161 }
2162 if (endpoint != NULL)
2163 goto cleanup;
2164 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2165 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2166 ret = 0;
2167
2168 cleanup:
2169 if (h0 != h1) {
2170 PF_HASHROW_UNLOCK(h0);
2171 PF_HASHROW_UNLOCK(h1);
2172 } else {
2173 PF_HASHROW_UNLOCK(h0);
2174 }
2175 return (ret);
2176 }
2177
2178 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2179 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2180 {
2181 /* refcount is synchronized on the source endpoint's row lock */
2182 struct pf_udpendpointhash *h0, *h1;
2183
2184 if (mapping == NULL)
2185 return;
2186
2187 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2188 PF_HASHROW_LOCK(h0);
2189 if (refcount_release(&mapping->refs)) {
2190 LIST_REMOVE(&mapping->endpoints[0], entry);
2191 PF_HASHROW_UNLOCK(h0);
2192 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2193 PF_HASHROW_LOCK(h1);
2194 LIST_REMOVE(&mapping->endpoints[1], entry);
2195 PF_HASHROW_UNLOCK(h1);
2196
2197 uma_zfree(V_pf_udp_mapping_z, mapping);
2198 } else {
2199 PF_HASHROW_UNLOCK(h0);
2200 }
2201 }
2202
2203
2204 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2205 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2206 {
2207 struct pf_udpendpointhash *uh;
2208 struct pf_udp_endpoint *endpoint;
2209
2210 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2211
2212 PF_HASHROW_LOCK(uh);
2213 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2214 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2215 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2216 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2217 break;
2218 }
2219 if (endpoint == NULL) {
2220 PF_HASHROW_UNLOCK(uh);
2221 return (NULL);
2222 }
2223 refcount_acquire(&endpoint->mapping->refs);
2224 PF_HASHROW_UNLOCK(uh);
2225 return (endpoint->mapping);
2226 }
2227 /* END state table stuff */
2228
2229 static void
pf_send(struct pf_send_entry * pfse)2230 pf_send(struct pf_send_entry *pfse)
2231 {
2232
2233 PF_SENDQ_LOCK();
2234 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2235 PF_SENDQ_UNLOCK();
2236 swi_sched(V_pf_swi_cookie, 0);
2237 }
2238
2239 static bool
pf_isforlocal(struct mbuf * m,int af)2240 pf_isforlocal(struct mbuf *m, int af)
2241 {
2242 switch (af) {
2243 #ifdef INET
2244 case AF_INET: {
2245 struct ip *ip = mtod(m, struct ip *);
2246
2247 return (in_localip(ip->ip_dst));
2248 }
2249 #endif /* INET */
2250 #ifdef INET6
2251 case AF_INET6: {
2252 struct ip6_hdr *ip6;
2253 struct in6_ifaddr *ia;
2254 ip6 = mtod(m, struct ip6_hdr *);
2255 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2256 if (ia == NULL)
2257 return (false);
2258 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2259 }
2260 #endif /* INET6 */
2261 default:
2262 unhandled_af(af);
2263 }
2264
2265 return (false);
2266 }
2267
2268 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,u_int16_t * virtual_id,u_int16_t * virtual_type)2269 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2270 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type)
2271 {
2272 /*
2273 * ICMP types marked with PF_OUT are typically responses to
2274 * PF_IN, and will match states in the opposite direction.
2275 * PF_IN ICMP types need to match a state with that type.
2276 */
2277 *icmp_dir = PF_OUT;
2278
2279 /* Queries (and responses) */
2280 switch (pd->af) {
2281 #ifdef INET
2282 case AF_INET:
2283 switch (type) {
2284 case ICMP_ECHO:
2285 *icmp_dir = PF_IN;
2286 /* FALLTHROUGH */
2287 case ICMP_ECHOREPLY:
2288 *virtual_type = ICMP_ECHO;
2289 *virtual_id = pd->hdr.icmp.icmp_id;
2290 break;
2291
2292 case ICMP_TSTAMP:
2293 *icmp_dir = PF_IN;
2294 /* FALLTHROUGH */
2295 case ICMP_TSTAMPREPLY:
2296 *virtual_type = ICMP_TSTAMP;
2297 *virtual_id = pd->hdr.icmp.icmp_id;
2298 break;
2299
2300 case ICMP_IREQ:
2301 *icmp_dir = PF_IN;
2302 /* FALLTHROUGH */
2303 case ICMP_IREQREPLY:
2304 *virtual_type = ICMP_IREQ;
2305 *virtual_id = pd->hdr.icmp.icmp_id;
2306 break;
2307
2308 case ICMP_MASKREQ:
2309 *icmp_dir = PF_IN;
2310 /* FALLTHROUGH */
2311 case ICMP_MASKREPLY:
2312 *virtual_type = ICMP_MASKREQ;
2313 *virtual_id = pd->hdr.icmp.icmp_id;
2314 break;
2315
2316 case ICMP_IPV6_WHEREAREYOU:
2317 *icmp_dir = PF_IN;
2318 /* FALLTHROUGH */
2319 case ICMP_IPV6_IAMHERE:
2320 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2321 *virtual_id = 0; /* Nothing sane to match on! */
2322 break;
2323
2324 case ICMP_MOBILE_REGREQUEST:
2325 *icmp_dir = PF_IN;
2326 /* FALLTHROUGH */
2327 case ICMP_MOBILE_REGREPLY:
2328 *virtual_type = ICMP_MOBILE_REGREQUEST;
2329 *virtual_id = 0; /* Nothing sane to match on! */
2330 break;
2331
2332 case ICMP_ROUTERSOLICIT:
2333 *icmp_dir = PF_IN;
2334 /* FALLTHROUGH */
2335 case ICMP_ROUTERADVERT:
2336 *virtual_type = ICMP_ROUTERSOLICIT;
2337 *virtual_id = 0; /* Nothing sane to match on! */
2338 break;
2339
2340 /* These ICMP types map to other connections */
2341 case ICMP_UNREACH:
2342 case ICMP_SOURCEQUENCH:
2343 case ICMP_REDIRECT:
2344 case ICMP_TIMXCEED:
2345 case ICMP_PARAMPROB:
2346 /* These will not be used, but set them anyway */
2347 *icmp_dir = PF_IN;
2348 *virtual_type = type;
2349 *virtual_id = 0;
2350 *virtual_type = htons(*virtual_type);
2351 return (1); /* These types match to another state */
2352
2353 /*
2354 * All remaining ICMP types get their own states,
2355 * and will only match in one direction.
2356 */
2357 default:
2358 *icmp_dir = PF_IN;
2359 *virtual_type = type;
2360 *virtual_id = 0;
2361 break;
2362 }
2363 break;
2364 #endif /* INET */
2365 #ifdef INET6
2366 case AF_INET6:
2367 switch (type) {
2368 case ICMP6_ECHO_REQUEST:
2369 *icmp_dir = PF_IN;
2370 /* FALLTHROUGH */
2371 case ICMP6_ECHO_REPLY:
2372 *virtual_type = ICMP6_ECHO_REQUEST;
2373 *virtual_id = pd->hdr.icmp6.icmp6_id;
2374 break;
2375
2376 case MLD_LISTENER_QUERY:
2377 case MLD_LISTENER_REPORT: {
2378 /*
2379 * Listener Report can be sent by clients
2380 * without an associated Listener Query.
2381 * In addition to that, when Report is sent as a
2382 * reply to a Query its source and destination
2383 * address are different.
2384 */
2385 *icmp_dir = PF_IN;
2386 *virtual_type = MLD_LISTENER_QUERY;
2387 *virtual_id = 0;
2388 break;
2389 }
2390 case MLD_MTRACE:
2391 *icmp_dir = PF_IN;
2392 /* FALLTHROUGH */
2393 case MLD_MTRACE_RESP:
2394 *virtual_type = MLD_MTRACE;
2395 *virtual_id = 0; /* Nothing sane to match on! */
2396 break;
2397
2398 case ND_NEIGHBOR_SOLICIT:
2399 *icmp_dir = PF_IN;
2400 /* FALLTHROUGH */
2401 case ND_NEIGHBOR_ADVERT: {
2402 *virtual_type = ND_NEIGHBOR_SOLICIT;
2403 *virtual_id = 0;
2404 break;
2405 }
2406
2407 /*
2408 * These ICMP types map to other connections.
2409 * ND_REDIRECT can't be in this list because the triggering
2410 * packet header is optional.
2411 */
2412 case ICMP6_DST_UNREACH:
2413 case ICMP6_PACKET_TOO_BIG:
2414 case ICMP6_TIME_EXCEEDED:
2415 case ICMP6_PARAM_PROB:
2416 /* These will not be used, but set them anyway */
2417 *icmp_dir = PF_IN;
2418 *virtual_type = type;
2419 *virtual_id = 0;
2420 *virtual_type = htons(*virtual_type);
2421 return (1); /* These types match to another state */
2422 /*
2423 * All remaining ICMP6 types get their own states,
2424 * and will only match in one direction.
2425 */
2426 default:
2427 *icmp_dir = PF_IN;
2428 *virtual_type = type;
2429 *virtual_id = 0;
2430 break;
2431 }
2432 break;
2433 #endif /* INET6 */
2434 default:
2435 unhandled_af(pd->af);
2436 }
2437 *virtual_type = htons(*virtual_type);
2438 return (0); /* These types match to their own state */
2439 }
2440
2441 void
pf_intr(void * v)2442 pf_intr(void *v)
2443 {
2444 struct epoch_tracker et;
2445 struct pf_send_head queue;
2446 struct pf_send_entry *pfse, *next;
2447
2448 CURVNET_SET((struct vnet *)v);
2449
2450 PF_SENDQ_LOCK();
2451 queue = V_pf_sendqueue;
2452 STAILQ_INIT(&V_pf_sendqueue);
2453 PF_SENDQ_UNLOCK();
2454
2455 NET_EPOCH_ENTER(et);
2456
2457 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2458 switch (pfse->pfse_type) {
2459 #ifdef INET
2460 case PFSE_IP: {
2461 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2462 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2463 ("%s: rcvif != loif", __func__));
2464
2465 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2466 pfse->pfse_m->m_pkthdr.csum_flags |=
2467 CSUM_IP_VALID | CSUM_IP_CHECKED |
2468 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2469 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2470 ip_input(pfse->pfse_m);
2471 } else {
2472 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2473 NULL);
2474 }
2475 break;
2476 }
2477 case PFSE_ICMP:
2478 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2479 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2480 break;
2481 #endif /* INET */
2482 #ifdef INET6
2483 case PFSE_IP6:
2484 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2485 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2486 ("%s: rcvif != loif", __func__));
2487
2488 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2489 M_LOOP;
2490 pfse->pfse_m->m_pkthdr.csum_flags |=
2491 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2492 pfse->pfse_m->m_pkthdr.csum_data = 0xffff;
2493 ip6_input(pfse->pfse_m);
2494 } else {
2495 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2496 NULL, NULL);
2497 }
2498 break;
2499 case PFSE_ICMP6:
2500 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2501 pfse->icmpopts.code, pfse->icmpopts.mtu);
2502 break;
2503 #endif /* INET6 */
2504 default:
2505 panic("%s: unknown type", __func__);
2506 }
2507 free(pfse, M_PFTEMP);
2508 }
2509 NET_EPOCH_EXIT(et);
2510 CURVNET_RESTORE();
2511 }
2512
2513 #define pf_purge_thread_period (hz / 10)
2514
2515 #ifdef PF_WANT_32_TO_64_COUNTER
2516 static void
pf_status_counter_u64_periodic(void)2517 pf_status_counter_u64_periodic(void)
2518 {
2519
2520 PF_RULES_RASSERT();
2521
2522 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2523 return;
2524 }
2525
2526 for (int i = 0; i < FCNT_MAX; i++) {
2527 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2528 }
2529 }
2530
2531 static void
pf_kif_counter_u64_periodic(void)2532 pf_kif_counter_u64_periodic(void)
2533 {
2534 struct pfi_kkif *kif;
2535 size_t r, run;
2536
2537 PF_RULES_RASSERT();
2538
2539 if (__predict_false(V_pf_allkifcount == 0)) {
2540 return;
2541 }
2542
2543 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2544 return;
2545 }
2546
2547 run = V_pf_allkifcount / 10;
2548 if (run < 5)
2549 run = 5;
2550
2551 for (r = 0; r < run; r++) {
2552 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2553 if (kif == NULL) {
2554 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2555 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2556 break;
2557 }
2558
2559 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2560 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2561
2562 for (int i = 0; i < 2; i++) {
2563 for (int j = 0; j < 2; j++) {
2564 for (int k = 0; k < 2; k++) {
2565 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2566 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2567 }
2568 }
2569 }
2570 }
2571 }
2572
2573 static void
pf_rule_counter_u64_periodic(void)2574 pf_rule_counter_u64_periodic(void)
2575 {
2576 struct pf_krule *rule;
2577 size_t r, run;
2578
2579 PF_RULES_RASSERT();
2580
2581 if (__predict_false(V_pf_allrulecount == 0)) {
2582 return;
2583 }
2584
2585 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2586 return;
2587 }
2588
2589 run = V_pf_allrulecount / 10;
2590 if (run < 5)
2591 run = 5;
2592
2593 for (r = 0; r < run; r++) {
2594 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2595 if (rule == NULL) {
2596 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2597 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2598 break;
2599 }
2600
2601 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2602 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2603
2604 pf_counter_u64_periodic(&rule->evaluations);
2605 for (int i = 0; i < 2; i++) {
2606 pf_counter_u64_periodic(&rule->packets[i]);
2607 pf_counter_u64_periodic(&rule->bytes[i]);
2608 }
2609 }
2610 }
2611
2612 static void
pf_counter_u64_periodic_main(void)2613 pf_counter_u64_periodic_main(void)
2614 {
2615 PF_RULES_RLOCK_TRACKER;
2616
2617 V_pf_counter_periodic_iter++;
2618
2619 PF_RULES_RLOCK();
2620 pf_counter_u64_critical_enter();
2621 pf_status_counter_u64_periodic();
2622 pf_kif_counter_u64_periodic();
2623 pf_rule_counter_u64_periodic();
2624 pf_counter_u64_critical_exit();
2625 PF_RULES_RUNLOCK();
2626 }
2627 #else
2628 #define pf_counter_u64_periodic_main() do { } while (0)
2629 #endif
2630
2631 void
pf_purge_thread(void * unused __unused)2632 pf_purge_thread(void *unused __unused)
2633 {
2634 struct epoch_tracker et;
2635
2636 VNET_ITERATOR_DECL(vnet_iter);
2637
2638 sx_xlock(&pf_end_lock);
2639 while (pf_end_threads == 0) {
2640 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2641
2642 VNET_LIST_RLOCK();
2643 NET_EPOCH_ENTER(et);
2644 VNET_FOREACH(vnet_iter) {
2645 CURVNET_SET(vnet_iter);
2646
2647 /* Wait until V_pf_default_rule is initialized. */
2648 if (V_pf_vnet_active == 0) {
2649 CURVNET_RESTORE();
2650 continue;
2651 }
2652
2653 pf_counter_u64_periodic_main();
2654
2655 /*
2656 * Process 1/interval fraction of the state
2657 * table every run.
2658 */
2659 V_pf_purge_idx =
2660 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2661 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2662
2663 /*
2664 * Purge other expired types every
2665 * PFTM_INTERVAL seconds.
2666 */
2667 if (V_pf_purge_idx == 0) {
2668 /*
2669 * Order is important:
2670 * - states and src nodes reference rules
2671 * - states and rules reference kifs
2672 */
2673 pf_purge_expired_fragments();
2674 pf_purge_expired_src_nodes();
2675 pf_purge_unlinked_rules();
2676 pfi_kkif_purge();
2677 }
2678 CURVNET_RESTORE();
2679 }
2680 NET_EPOCH_EXIT(et);
2681 VNET_LIST_RUNLOCK();
2682 }
2683
2684 pf_end_threads++;
2685 sx_xunlock(&pf_end_lock);
2686 kproc_exit(0);
2687 }
2688
2689 void
pf_unload_vnet_purge(void)2690 pf_unload_vnet_purge(void)
2691 {
2692
2693 /*
2694 * To cleanse up all kifs and rules we need
2695 * two runs: first one clears reference flags,
2696 * then pf_purge_expired_states() doesn't
2697 * raise them, and then second run frees.
2698 */
2699 pf_purge_unlinked_rules();
2700 pfi_kkif_purge();
2701
2702 /*
2703 * Now purge everything.
2704 */
2705 pf_purge_expired_states(0, V_pf_hashmask);
2706 pf_purge_fragments(UINT_MAX);
2707 pf_purge_expired_src_nodes();
2708
2709 /*
2710 * Now all kifs & rules should be unreferenced,
2711 * thus should be successfully freed.
2712 */
2713 pf_purge_unlinked_rules();
2714 pfi_kkif_purge();
2715 }
2716
2717 u_int32_t
pf_state_expires(const struct pf_kstate * state)2718 pf_state_expires(const struct pf_kstate *state)
2719 {
2720 u_int32_t timeout;
2721 u_int32_t start;
2722 u_int32_t end;
2723 u_int32_t states;
2724
2725 /* handle all PFTM_* > PFTM_MAX here */
2726 if (state->timeout == PFTM_PURGE)
2727 return (time_uptime);
2728 KASSERT(state->timeout != PFTM_UNLINKED,
2729 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2730 KASSERT((state->timeout < PFTM_MAX),
2731 ("pf_state_expires: timeout > PFTM_MAX"));
2732 timeout = state->rule->timeout[state->timeout];
2733 if (!timeout)
2734 timeout = V_pf_default_rule.timeout[state->timeout];
2735 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2736 if (start && state->rule != &V_pf_default_rule) {
2737 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2738 states = counter_u64_fetch(state->rule->states_cur);
2739 } else {
2740 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2741 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2742 states = V_pf_status.states;
2743 }
2744 if (end && states > start && start < end) {
2745 if (states < end) {
2746 timeout = (u_int64_t)timeout * (end - states) /
2747 (end - start);
2748 return ((state->expire / 1000) + timeout);
2749 }
2750 else
2751 return (time_uptime);
2752 }
2753 return ((state->expire / 1000) + timeout);
2754 }
2755
2756 void
pf_purge_expired_src_nodes(void)2757 pf_purge_expired_src_nodes(void)
2758 {
2759 struct pf_ksrc_node_list freelist;
2760 struct pf_srchash *sh;
2761 struct pf_ksrc_node *cur, *next;
2762 int i;
2763
2764 LIST_INIT(&freelist);
2765 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2766 PF_HASHROW_LOCK(sh);
2767 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2768 if (cur->states == 0 && cur->expire <= time_uptime) {
2769 pf_unlink_src_node(cur);
2770 LIST_INSERT_HEAD(&freelist, cur, entry);
2771 } else if (cur->rule != NULL)
2772 cur->rule->rule_ref |= PFRULE_REFS;
2773 PF_HASHROW_UNLOCK(sh);
2774 }
2775
2776 pf_free_src_nodes(&freelist);
2777
2778 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2779 }
2780
2781 static void
pf_src_tree_remove_state(struct pf_kstate * s)2782 pf_src_tree_remove_state(struct pf_kstate *s)
2783 {
2784 uint32_t timeout;
2785
2786 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2787 s->rule->timeout[PFTM_SRC_NODE] :
2788 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2789
2790 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
2791 if (s->sns[sn_type] == NULL)
2792 continue;
2793 PF_SRC_NODE_LOCK(s->sns[sn_type]);
2794 if (sn_type == PF_SN_LIMIT && s->src.tcp_est)
2795 --(s->sns[sn_type]->conn);
2796 if (--(s->sns[sn_type]->states) == 0)
2797 s->sns[sn_type]->expire = time_uptime + timeout;
2798 PF_SRC_NODE_UNLOCK(s->sns[sn_type]);
2799 s->sns[sn_type] = NULL;
2800 }
2801
2802 }
2803
2804 /*
2805 * Unlink and potentilly free a state. Function may be
2806 * called with ID hash row locked, but always returns
2807 * unlocked, since it needs to go through key hash locking.
2808 */
2809 int
pf_remove_state(struct pf_kstate * s)2810 pf_remove_state(struct pf_kstate *s)
2811 {
2812 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2813
2814 NET_EPOCH_ASSERT();
2815 PF_HASHROW_ASSERT(ih);
2816
2817 if (s->timeout == PFTM_UNLINKED) {
2818 /*
2819 * State is being processed
2820 * by pf_remove_state() in
2821 * an other thread.
2822 */
2823 PF_HASHROW_UNLOCK(ih);
2824 return (0); /* XXXGL: undefined actually */
2825 }
2826
2827 if (s->src.state == PF_TCPS_PROXY_DST) {
2828 /* XXX wire key the right one? */
2829 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2830 &s->key[PF_SK_WIRE]->addr[1],
2831 &s->key[PF_SK_WIRE]->addr[0],
2832 s->key[PF_SK_WIRE]->port[1],
2833 s->key[PF_SK_WIRE]->port[0],
2834 s->src.seqhi, s->src.seqlo + 1,
2835 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2836 s->act.rtableid);
2837 }
2838
2839 LIST_REMOVE(s, entry);
2840 pf_src_tree_remove_state(s);
2841
2842 if (V_pfsync_delete_state_ptr != NULL)
2843 V_pfsync_delete_state_ptr(s);
2844
2845 STATE_DEC_COUNTERS(s);
2846
2847 s->timeout = PFTM_UNLINKED;
2848
2849 /* Ensure we remove it from the list of halfopen states, if needed. */
2850 if (s->key[PF_SK_STACK] != NULL &&
2851 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2852 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2853
2854 PF_HASHROW_UNLOCK(ih);
2855
2856 pf_detach_state(s);
2857
2858 pf_udp_mapping_release(s->udp_mapping);
2859
2860 /* pf_state_insert() initialises refs to 2 */
2861 return (pf_release_staten(s, 2));
2862 }
2863
2864 struct pf_kstate *
pf_alloc_state(int flags)2865 pf_alloc_state(int flags)
2866 {
2867
2868 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2869 }
2870
2871 void
pf_free_state(struct pf_kstate * cur)2872 pf_free_state(struct pf_kstate *cur)
2873 {
2874 struct pf_krule_item *ri;
2875
2876 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2877 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2878 cur->timeout));
2879
2880 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2881 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2882 free(ri, M_PF_RULE_ITEM);
2883 }
2884
2885 pf_normalize_tcp_cleanup(cur);
2886 uma_zfree(V_pf_state_z, cur);
2887 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2888 }
2889
2890 /*
2891 * Called only from pf_purge_thread(), thus serialized.
2892 */
2893 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2894 pf_purge_expired_states(u_int i, int maxcheck)
2895 {
2896 struct pf_idhash *ih;
2897 struct pf_kstate *s;
2898 struct pf_krule_item *mrm;
2899 size_t count __unused;
2900
2901 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2902
2903 /*
2904 * Go through hash and unlink states that expire now.
2905 */
2906 while (maxcheck > 0) {
2907 count = 0;
2908 ih = &V_pf_idhash[i];
2909
2910 /* only take the lock if we expect to do work */
2911 if (!LIST_EMPTY(&ih->states)) {
2912 relock:
2913 PF_HASHROW_LOCK(ih);
2914 LIST_FOREACH(s, &ih->states, entry) {
2915 if (pf_state_expires(s) <= time_uptime) {
2916 V_pf_status.states -=
2917 pf_remove_state(s);
2918 goto relock;
2919 }
2920 s->rule->rule_ref |= PFRULE_REFS;
2921 if (s->nat_rule != NULL)
2922 s->nat_rule->rule_ref |= PFRULE_REFS;
2923 if (s->anchor != NULL)
2924 s->anchor->rule_ref |= PFRULE_REFS;
2925 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2926 SLIST_FOREACH(mrm, &s->match_rules, entry)
2927 mrm->r->rule_ref |= PFRULE_REFS;
2928 if (s->act.rt_kif)
2929 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2930 count++;
2931 }
2932 PF_HASHROW_UNLOCK(ih);
2933 }
2934
2935 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2936
2937 /* Return when we hit end of hash. */
2938 if (++i > V_pf_hashmask) {
2939 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2940 return (0);
2941 }
2942
2943 maxcheck--;
2944 }
2945
2946 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2947
2948 return (i);
2949 }
2950
2951 static void
pf_purge_unlinked_rules(void)2952 pf_purge_unlinked_rules(void)
2953 {
2954 struct pf_krulequeue tmpq;
2955 struct pf_krule *r, *r1;
2956
2957 /*
2958 * If we have overloading task pending, then we'd
2959 * better skip purging this time. There is a tiny
2960 * probability that overloading task references
2961 * an already unlinked rule.
2962 */
2963 PF_OVERLOADQ_LOCK();
2964 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2965 PF_OVERLOADQ_UNLOCK();
2966 return;
2967 }
2968 PF_OVERLOADQ_UNLOCK();
2969
2970 /*
2971 * Do naive mark-and-sweep garbage collecting of old rules.
2972 * Reference flag is raised by pf_purge_expired_states()
2973 * and pf_purge_expired_src_nodes().
2974 *
2975 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2976 * use a temporary queue.
2977 */
2978 TAILQ_INIT(&tmpq);
2979 PF_UNLNKDRULES_LOCK();
2980 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2981 if (!(r->rule_ref & PFRULE_REFS)) {
2982 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2983 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2984 } else
2985 r->rule_ref &= ~PFRULE_REFS;
2986 }
2987 PF_UNLNKDRULES_UNLOCK();
2988
2989 if (!TAILQ_EMPTY(&tmpq)) {
2990 PF_CONFIG_LOCK();
2991 PF_RULES_WLOCK();
2992 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2993 TAILQ_REMOVE(&tmpq, r, entries);
2994 pf_free_rule(r);
2995 }
2996 PF_RULES_WUNLOCK();
2997 PF_CONFIG_UNLOCK();
2998 }
2999 }
3000
3001 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)3002 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
3003 {
3004 switch (af) {
3005 #ifdef INET
3006 case AF_INET: {
3007 u_int32_t a = ntohl(addr->addr32[0]);
3008 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
3009 (a>>8)&255, a&255);
3010 if (p) {
3011 p = ntohs(p);
3012 printf(":%u", p);
3013 }
3014 break;
3015 }
3016 #endif /* INET */
3017 #ifdef INET6
3018 case AF_INET6: {
3019 u_int16_t b;
3020 u_int8_t i, curstart, curend, maxstart, maxend;
3021 curstart = curend = maxstart = maxend = 255;
3022 for (i = 0; i < 8; i++) {
3023 if (!addr->addr16[i]) {
3024 if (curstart == 255)
3025 curstart = i;
3026 curend = i;
3027 } else {
3028 if ((curend - curstart) >
3029 (maxend - maxstart)) {
3030 maxstart = curstart;
3031 maxend = curend;
3032 }
3033 curstart = curend = 255;
3034 }
3035 }
3036 if ((curend - curstart) >
3037 (maxend - maxstart)) {
3038 maxstart = curstart;
3039 maxend = curend;
3040 }
3041 for (i = 0; i < 8; i++) {
3042 if (i >= maxstart && i <= maxend) {
3043 if (i == 0)
3044 printf(":");
3045 if (i == maxend)
3046 printf(":");
3047 } else {
3048 b = ntohs(addr->addr16[i]);
3049 printf("%x", b);
3050 if (i < 7)
3051 printf(":");
3052 }
3053 }
3054 if (p) {
3055 p = ntohs(p);
3056 printf("[%u]", p);
3057 }
3058 break;
3059 }
3060 #endif /* INET6 */
3061 default:
3062 unhandled_af(af);
3063 }
3064 }
3065
3066 void
pf_print_state(struct pf_kstate * s)3067 pf_print_state(struct pf_kstate *s)
3068 {
3069 pf_print_state_parts(s, NULL, NULL);
3070 }
3071
3072 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)3073 pf_print_state_parts(struct pf_kstate *s,
3074 struct pf_state_key *skwp, struct pf_state_key *sksp)
3075 {
3076 struct pf_state_key *skw, *sks;
3077 u_int8_t proto, dir;
3078
3079 /* Do our best to fill these, but they're skipped if NULL */
3080 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
3081 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
3082 proto = skw ? skw->proto : (sks ? sks->proto : 0);
3083 dir = s ? s->direction : 0;
3084
3085 switch (proto) {
3086 case IPPROTO_IPV4:
3087 printf("IPv4");
3088 break;
3089 case IPPROTO_IPV6:
3090 printf("IPv6");
3091 break;
3092 case IPPROTO_TCP:
3093 printf("TCP");
3094 break;
3095 case IPPROTO_UDP:
3096 printf("UDP");
3097 break;
3098 case IPPROTO_ICMP:
3099 printf("ICMP");
3100 break;
3101 case IPPROTO_ICMPV6:
3102 printf("ICMPv6");
3103 break;
3104 default:
3105 printf("%u", proto);
3106 break;
3107 }
3108 switch (dir) {
3109 case PF_IN:
3110 printf(" in");
3111 break;
3112 case PF_OUT:
3113 printf(" out");
3114 break;
3115 }
3116 if (skw) {
3117 printf(" wire: ");
3118 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
3119 printf(" ");
3120 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
3121 }
3122 if (sks) {
3123 printf(" stack: ");
3124 if (sks != skw) {
3125 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3126 printf(" ");
3127 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3128 } else
3129 printf("-");
3130 }
3131 if (s) {
3132 if (proto == IPPROTO_TCP) {
3133 printf(" [lo=%u high=%u win=%u modulator=%u",
3134 s->src.seqlo, s->src.seqhi,
3135 s->src.max_win, s->src.seqdiff);
3136 if (s->src.wscale && s->dst.wscale)
3137 printf(" wscale=%u",
3138 s->src.wscale & PF_WSCALE_MASK);
3139 printf("]");
3140 printf(" [lo=%u high=%u win=%u modulator=%u",
3141 s->dst.seqlo, s->dst.seqhi,
3142 s->dst.max_win, s->dst.seqdiff);
3143 if (s->src.wscale && s->dst.wscale)
3144 printf(" wscale=%u",
3145 s->dst.wscale & PF_WSCALE_MASK);
3146 printf("]");
3147 }
3148 printf(" %u:%u", s->src.state, s->dst.state);
3149 if (s->rule)
3150 printf(" @%d", s->rule->nr);
3151 }
3152 }
3153
3154 void
pf_print_flags(uint16_t f)3155 pf_print_flags(uint16_t f)
3156 {
3157 if (f)
3158 printf(" ");
3159 if (f & TH_FIN)
3160 printf("F");
3161 if (f & TH_SYN)
3162 printf("S");
3163 if (f & TH_RST)
3164 printf("R");
3165 if (f & TH_PUSH)
3166 printf("P");
3167 if (f & TH_ACK)
3168 printf("A");
3169 if (f & TH_URG)
3170 printf("U");
3171 if (f & TH_ECE)
3172 printf("E");
3173 if (f & TH_CWR)
3174 printf("W");
3175 if (f & TH_AE)
3176 printf("e");
3177 }
3178
3179 #define PF_SET_SKIP_STEPS(i) \
3180 do { \
3181 while (head[i] != cur) { \
3182 head[i]->skip[i] = cur; \
3183 head[i] = TAILQ_NEXT(head[i], entries); \
3184 } \
3185 } while (0)
3186
3187 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3188 pf_calc_skip_steps(struct pf_krulequeue *rules)
3189 {
3190 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3191 int i;
3192
3193 cur = TAILQ_FIRST(rules);
3194 prev = cur;
3195 for (i = 0; i < PF_SKIP_COUNT; ++i)
3196 head[i] = cur;
3197 while (cur != NULL) {
3198 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3199 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3200 if (cur->direction != prev->direction)
3201 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3202 if (cur->af != prev->af)
3203 PF_SET_SKIP_STEPS(PF_SKIP_AF);
3204 if (cur->proto != prev->proto)
3205 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3206 if (cur->src.neg != prev->src.neg ||
3207 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3208 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3209 if (cur->dst.neg != prev->dst.neg ||
3210 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3211 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3212 if (cur->src.port[0] != prev->src.port[0] ||
3213 cur->src.port[1] != prev->src.port[1] ||
3214 cur->src.port_op != prev->src.port_op)
3215 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3216 if (cur->dst.port[0] != prev->dst.port[0] ||
3217 cur->dst.port[1] != prev->dst.port[1] ||
3218 cur->dst.port_op != prev->dst.port_op)
3219 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3220
3221 prev = cur;
3222 cur = TAILQ_NEXT(cur, entries);
3223 }
3224 for (i = 0; i < PF_SKIP_COUNT; ++i)
3225 PF_SET_SKIP_STEPS(i);
3226 }
3227
3228 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3229 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3230 {
3231 if (aw1->type != aw2->type)
3232 return (1);
3233 switch (aw1->type) {
3234 case PF_ADDR_ADDRMASK:
3235 case PF_ADDR_RANGE:
3236 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3237 return (1);
3238 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3239 return (1);
3240 return (0);
3241 case PF_ADDR_DYNIFTL:
3242 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3243 case PF_ADDR_NONE:
3244 case PF_ADDR_NOROUTE:
3245 case PF_ADDR_URPFFAILED:
3246 return (0);
3247 case PF_ADDR_TABLE:
3248 return (aw1->p.tbl != aw2->p.tbl);
3249 default:
3250 printf("invalid address type: %d\n", aw1->type);
3251 return (1);
3252 }
3253 }
3254
3255 /**
3256 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3257 * header isn't always a full checksum. In some cases (i.e. output) it's a
3258 * pseudo-header checksum, which is a partial checksum over src/dst IP
3259 * addresses, protocol number and length.
3260 *
3261 * That means we have the following cases:
3262 * * Input or forwarding: we don't have TSO, the checksum fields are full
3263 * checksums, we need to update the checksum whenever we change anything.
3264 * * Output (i.e. the checksum is a pseudo-header checksum):
3265 * x The field being updated is src/dst address or affects the length of
3266 * the packet. We need to update the pseudo-header checksum (note that this
3267 * checksum is not ones' complement).
3268 * x Some other field is being modified (e.g. src/dst port numbers): We
3269 * don't have to update anything.
3270 **/
3271 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3272 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3273 {
3274 u_int32_t x;
3275
3276 x = cksum + old - new;
3277 x = (x + (x >> 16)) & 0xffff;
3278
3279 /* optimise: eliminate a branch when not udp */
3280 if (udp && cksum == 0x0000)
3281 return cksum;
3282 if (udp && x == 0x0000)
3283 x = 0xffff;
3284
3285 return (u_int16_t)(x);
3286 }
3287
3288 static int
pf_patch_8(struct pf_pdesc * pd,u_int8_t * f,u_int8_t v,bool hi)3289 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi)
3290 {
3291 int rewrite = 0;
3292
3293 if (*f != v) {
3294 uint16_t old = htons(hi ? (*f << 8) : *f);
3295 uint16_t new = htons(hi ? ( v << 8) : v);
3296
3297 *f = v;
3298
3299 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3300 CSUM_DELAY_DATA_IPV6)))
3301 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new,
3302 pd->proto == IPPROTO_UDP);
3303
3304 rewrite = 1;
3305 }
3306
3307 return (rewrite);
3308 }
3309
3310 int
pf_patch_16(struct pf_pdesc * pd,void * f,u_int16_t v,bool hi)3311 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi)
3312 {
3313 int rewrite = 0;
3314 u_int8_t *fb = (u_int8_t *)f;
3315 u_int8_t *vb = (u_int8_t *)&v;
3316
3317 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3318 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3319
3320 return (rewrite);
3321 }
3322
3323 int
pf_patch_32(struct pf_pdesc * pd,void * f,u_int32_t v,bool hi)3324 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi)
3325 {
3326 int rewrite = 0;
3327 u_int8_t *fb = (u_int8_t *)f;
3328 u_int8_t *vb = (u_int8_t *)&v;
3329
3330 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3331 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3332 rewrite += pf_patch_8(pd, fb++, *vb++, hi);
3333 rewrite += pf_patch_8(pd, fb++, *vb++, !hi);
3334
3335 return (rewrite);
3336 }
3337
3338 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3339 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3340 u_int16_t new, u_int8_t udp)
3341 {
3342 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3343 return (cksum);
3344
3345 return (pf_cksum_fixup(cksum, old, new, udp));
3346 }
3347
3348 static void
pf_change_ap(struct pf_pdesc * pd,struct pf_addr * a,u_int16_t * p,struct pf_addr * an,u_int16_t pn)3349 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p,
3350 struct pf_addr *an, u_int16_t pn)
3351 {
3352 struct pf_addr ao;
3353 u_int16_t po;
3354 uint8_t u = pd->virtual_proto == IPPROTO_UDP;
3355
3356 MPASS(pd->pcksum);
3357 if (pd->af == AF_INET) {
3358 MPASS(pd->ip_sum);
3359 }
3360
3361 pf_addrcpy(&ao, a, pd->af);
3362 if (pd->af == pd->naf)
3363 pf_addrcpy(a, an, pd->af);
3364
3365 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3366 *pd->pcksum = ~*pd->pcksum;
3367
3368 if (p == NULL) /* no port -> done. no cksum to worry about. */
3369 return;
3370 po = *p;
3371 *p = pn;
3372
3373 switch (pd->af) {
3374 #ifdef INET
3375 case AF_INET:
3376 switch (pd->naf) {
3377 case AF_INET:
3378 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum,
3379 ao.addr16[0], an->addr16[0], 0),
3380 ao.addr16[1], an->addr16[1], 0);
3381 *p = pn;
3382
3383 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3384 ao.addr16[0], an->addr16[0], u),
3385 ao.addr16[1], an->addr16[1], u);
3386
3387 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3388 break;
3389 #ifdef INET6
3390 case AF_INET6:
3391 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3392 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3393 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3394 ao.addr16[0], an->addr16[0], u),
3395 ao.addr16[1], an->addr16[1], u),
3396 0, an->addr16[2], u),
3397 0, an->addr16[3], u),
3398 0, an->addr16[4], u),
3399 0, an->addr16[5], u),
3400 0, an->addr16[6], u),
3401 0, an->addr16[7], u),
3402 po, pn, u);
3403 break;
3404 #endif /* INET6 */
3405 default:
3406 unhandled_af(pd->naf);
3407 }
3408 break;
3409 #endif /* INET */
3410 #ifdef INET6
3411 case AF_INET6:
3412 switch (pd->naf) {
3413 #ifdef INET
3414 case AF_INET:
3415 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3416 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3417 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3418 ao.addr16[0], an->addr16[0], u),
3419 ao.addr16[1], an->addr16[1], u),
3420 ao.addr16[2], 0, u),
3421 ao.addr16[3], 0, u),
3422 ao.addr16[4], 0, u),
3423 ao.addr16[5], 0, u),
3424 ao.addr16[6], 0, u),
3425 ao.addr16[7], 0, u),
3426 po, pn, u);
3427 break;
3428 #endif /* INET */
3429 case AF_INET6:
3430 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3431 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3432 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum,
3433 ao.addr16[0], an->addr16[0], u),
3434 ao.addr16[1], an->addr16[1], u),
3435 ao.addr16[2], an->addr16[2], u),
3436 ao.addr16[3], an->addr16[3], u),
3437 ao.addr16[4], an->addr16[4], u),
3438 ao.addr16[5], an->addr16[5], u),
3439 ao.addr16[6], an->addr16[6], u),
3440 ao.addr16[7], an->addr16[7], u);
3441
3442 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u);
3443 break;
3444 default:
3445 unhandled_af(pd->naf);
3446 }
3447 break;
3448 #endif /* INET6 */
3449 default:
3450 unhandled_af(pd->af);
3451 }
3452
3453 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3454 CSUM_DELAY_DATA_IPV6)) {
3455 *pd->pcksum = ~*pd->pcksum;
3456 if (! *pd->pcksum)
3457 *pd->pcksum = 0xffff;
3458 }
3459 }
3460
3461 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3462 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3463 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3464 {
3465 u_int32_t ao;
3466
3467 memcpy(&ao, a, sizeof(ao));
3468 memcpy(a, &an, sizeof(u_int32_t));
3469 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3470 ao % 65536, an % 65536, u);
3471 }
3472
3473 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3474 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3475 {
3476 u_int32_t ao;
3477
3478 memcpy(&ao, a, sizeof(ao));
3479 memcpy(a, &an, sizeof(u_int32_t));
3480
3481 *c = pf_proto_cksum_fixup(m,
3482 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3483 ao % 65536, an % 65536, udp);
3484 }
3485
3486 #ifdef INET6
3487 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3488 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3489 {
3490 struct pf_addr ao;
3491
3492 pf_addrcpy(&ao, a, AF_INET6);
3493 pf_addrcpy(a, an, AF_INET6);
3494
3495 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3496 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3497 pf_cksum_fixup(pf_cksum_fixup(*c,
3498 ao.addr16[0], an->addr16[0], u),
3499 ao.addr16[1], an->addr16[1], u),
3500 ao.addr16[2], an->addr16[2], u),
3501 ao.addr16[3], an->addr16[3], u),
3502 ao.addr16[4], an->addr16[4], u),
3503 ao.addr16[5], an->addr16[5], u),
3504 ao.addr16[6], an->addr16[6], u),
3505 ao.addr16[7], an->addr16[7], u);
3506 }
3507 #endif /* INET6 */
3508
3509 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3510 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3511 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3512 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3513 {
3514 struct pf_addr oia, ooa;
3515
3516 pf_addrcpy(&oia, ia, af);
3517 if (oa)
3518 pf_addrcpy(&ooa, oa, af);
3519
3520 /* Change inner protocol port, fix inner protocol checksum. */
3521 if (ip != NULL) {
3522 u_int16_t oip = *ip;
3523 u_int32_t opc;
3524
3525 if (pc != NULL)
3526 opc = *pc;
3527 *ip = np;
3528 if (pc != NULL)
3529 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3530 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3531 if (pc != NULL)
3532 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3533 }
3534 /* Change inner ip address, fix inner ip and icmp checksums. */
3535 pf_addrcpy(ia, na, af);
3536 switch (af) {
3537 #ifdef INET
3538 case AF_INET: {
3539 u_int32_t oh2c = *h2c;
3540
3541 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3542 oia.addr16[0], ia->addr16[0], 0),
3543 oia.addr16[1], ia->addr16[1], 0);
3544 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3545 oia.addr16[0], ia->addr16[0], 0),
3546 oia.addr16[1], ia->addr16[1], 0);
3547 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3548 break;
3549 }
3550 #endif /* INET */
3551 #ifdef INET6
3552 case AF_INET6:
3553 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3554 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3555 pf_cksum_fixup(pf_cksum_fixup(*ic,
3556 oia.addr16[0], ia->addr16[0], u),
3557 oia.addr16[1], ia->addr16[1], u),
3558 oia.addr16[2], ia->addr16[2], u),
3559 oia.addr16[3], ia->addr16[3], u),
3560 oia.addr16[4], ia->addr16[4], u),
3561 oia.addr16[5], ia->addr16[5], u),
3562 oia.addr16[6], ia->addr16[6], u),
3563 oia.addr16[7], ia->addr16[7], u);
3564 break;
3565 #endif /* INET6 */
3566 }
3567 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3568 if (oa) {
3569 pf_addrcpy(oa, na, af);
3570 switch (af) {
3571 #ifdef INET
3572 case AF_INET:
3573 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3574 ooa.addr16[0], oa->addr16[0], 0),
3575 ooa.addr16[1], oa->addr16[1], 0);
3576 break;
3577 #endif /* INET */
3578 #ifdef INET6
3579 case AF_INET6:
3580 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3581 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3582 pf_cksum_fixup(pf_cksum_fixup(*ic,
3583 ooa.addr16[0], oa->addr16[0], u),
3584 ooa.addr16[1], oa->addr16[1], u),
3585 ooa.addr16[2], oa->addr16[2], u),
3586 ooa.addr16[3], oa->addr16[3], u),
3587 ooa.addr16[4], oa->addr16[4], u),
3588 ooa.addr16[5], oa->addr16[5], u),
3589 ooa.addr16[6], oa->addr16[6], u),
3590 ooa.addr16[7], oa->addr16[7], u);
3591 break;
3592 #endif /* INET6 */
3593 }
3594 }
3595 }
3596
3597 int
pf_translate_af(struct pf_pdesc * pd)3598 pf_translate_af(struct pf_pdesc *pd)
3599 {
3600 #if defined(INET) && defined(INET6)
3601 struct mbuf *mp;
3602 struct ip *ip4;
3603 struct ip6_hdr *ip6;
3604 struct icmp6_hdr *icmp;
3605 struct m_tag *mtag;
3606 struct pf_fragment_tag *ftag;
3607 int hlen;
3608
3609 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3610
3611 /* trim the old header */
3612 m_adj(pd->m, pd->off);
3613
3614 /* prepend a new one */
3615 M_PREPEND(pd->m, hlen, M_NOWAIT);
3616 if (pd->m == NULL)
3617 return (-1);
3618
3619 switch (pd->naf) {
3620 case AF_INET:
3621 ip4 = mtod(pd->m, struct ip *);
3622 bzero(ip4, hlen);
3623 ip4->ip_v = IPVERSION;
3624 ip4->ip_hl = hlen >> 2;
3625 ip4->ip_tos = pd->tos;
3626 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3627 ip_fillid(ip4, V_ip_random_id);
3628 ip4->ip_ttl = pd->ttl;
3629 ip4->ip_p = pd->proto;
3630 ip4->ip_src = pd->nsaddr.v4;
3631 ip4->ip_dst = pd->ndaddr.v4;
3632 pd->src = (struct pf_addr *)&ip4->ip_src;
3633 pd->dst = (struct pf_addr *)&ip4->ip_dst;
3634 pd->off = sizeof(struct ip);
3635 break;
3636 case AF_INET6:
3637 ip6 = mtod(pd->m, struct ip6_hdr *);
3638 bzero(ip6, hlen);
3639 ip6->ip6_vfc = IPV6_VERSION;
3640 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3641 ip6->ip6_plen = htons(pd->tot_len - pd->off);
3642 ip6->ip6_nxt = pd->proto;
3643 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3644 ip6->ip6_hlim = IPV6_DEFHLIM;
3645 else
3646 ip6->ip6_hlim = pd->ttl;
3647 ip6->ip6_src = pd->nsaddr.v6;
3648 ip6->ip6_dst = pd->ndaddr.v6;
3649 pd->src = (struct pf_addr *)&ip6->ip6_src;
3650 pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3651 pd->off = sizeof(struct ip6_hdr);
3652
3653 /*
3654 * If we're dealing with a reassembled packet we need to adjust
3655 * the header length from the IPv4 header size to IPv6 header
3656 * size.
3657 */
3658 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3659 if (mtag) {
3660 ftag = (struct pf_fragment_tag *)(mtag + 1);
3661 ftag->ft_hdrlen = sizeof(*ip6);
3662 ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3663 sizeof(struct ip) + sizeof(struct ip6_frag);
3664 }
3665 break;
3666 default:
3667 return (-1);
3668 }
3669
3670 /* recalculate icmp/icmp6 checksums */
3671 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3672 int off;
3673 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3674 NULL) {
3675 pd->m = NULL;
3676 return (-1);
3677 }
3678 icmp = (struct icmp6_hdr *)(mp->m_data + off);
3679 icmp->icmp6_cksum = 0;
3680 icmp->icmp6_cksum = pd->naf == AF_INET ?
3681 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3682 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3683 ntohs(ip6->ip6_plen));
3684 }
3685 #endif /* INET && INET6 */
3686
3687 return (0);
3688 }
3689
3690 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3691 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3692 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3693 sa_family_t af, sa_family_t naf)
3694 {
3695 #if defined(INET) && defined(INET6)
3696 struct mbuf *n = NULL;
3697 struct ip *ip4;
3698 struct ip6_hdr *ip6;
3699 int hlen, olen, mlen;
3700
3701 if (af == naf || (af != AF_INET && af != AF_INET6) ||
3702 (naf != AF_INET && naf != AF_INET6))
3703 return (-1);
3704
3705 /* split the mbuf chain on the inner ip/ip6 header boundary */
3706 if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3707 return (-1);
3708
3709 /* old header */
3710 olen = pd2->off - off;
3711 /* new header */
3712 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3713
3714 /* trim old header */
3715 m_adj(n, olen);
3716
3717 /* prepend a new one */
3718 M_PREPEND(n, hlen, M_NOWAIT);
3719 if (n == NULL)
3720 return (-1);
3721
3722 /* translate inner ip/ip6 header */
3723 switch (naf) {
3724 case AF_INET:
3725 ip4 = mtod(n, struct ip *);
3726 bzero(ip4, sizeof(*ip4));
3727 ip4->ip_v = IPVERSION;
3728 ip4->ip_hl = sizeof(*ip4) >> 2;
3729 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3730 ip_fillid(ip4, V_ip_random_id);
3731 ip4->ip_off = htons(IP_DF);
3732 ip4->ip_ttl = pd2->ttl;
3733 if (pd2->proto == IPPROTO_ICMPV6)
3734 ip4->ip_p = IPPROTO_ICMP;
3735 else
3736 ip4->ip_p = pd2->proto;
3737 ip4->ip_src = src->v4;
3738 ip4->ip_dst = dst->v4;
3739 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3740 break;
3741 case AF_INET6:
3742 ip6 = mtod(n, struct ip6_hdr *);
3743 bzero(ip6, sizeof(*ip6));
3744 ip6->ip6_vfc = IPV6_VERSION;
3745 ip6->ip6_plen = htons(pd2->tot_len - olen);
3746 if (pd2->proto == IPPROTO_ICMP)
3747 ip6->ip6_nxt = IPPROTO_ICMPV6;
3748 else
3749 ip6->ip6_nxt = pd2->proto;
3750 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3751 ip6->ip6_hlim = IPV6_DEFHLIM;
3752 else
3753 ip6->ip6_hlim = pd2->ttl;
3754 ip6->ip6_src = src->v6;
3755 ip6->ip6_dst = dst->v6;
3756 break;
3757 default:
3758 unhandled_af(naf);
3759 }
3760
3761 /* adjust payload offset and total packet length */
3762 pd2->off += hlen - olen;
3763 pd->tot_len += hlen - olen;
3764
3765 /* merge modified inner packet with the original header */
3766 mlen = n->m_pkthdr.len;
3767 m_cat(m, n);
3768 m->m_pkthdr.len += mlen;
3769 #endif /* INET && INET6 */
3770
3771 return (0);
3772 }
3773
3774 #define PTR_IP(field) (offsetof(struct ip, field))
3775 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field))
3776
3777 int
pf_translate_icmp_af(int af,void * arg)3778 pf_translate_icmp_af(int af, void *arg)
3779 {
3780 #if defined(INET) && defined(INET6)
3781 struct icmp *icmp4;
3782 struct icmp6_hdr *icmp6;
3783 u_int32_t mtu;
3784 int32_t ptr = -1;
3785 u_int8_t type;
3786 u_int8_t code;
3787
3788 switch (af) {
3789 case AF_INET:
3790 icmp6 = arg;
3791 type = icmp6->icmp6_type;
3792 code = icmp6->icmp6_code;
3793 mtu = ntohl(icmp6->icmp6_mtu);
3794
3795 switch (type) {
3796 case ICMP6_ECHO_REQUEST:
3797 type = ICMP_ECHO;
3798 break;
3799 case ICMP6_ECHO_REPLY:
3800 type = ICMP_ECHOREPLY;
3801 break;
3802 case ICMP6_DST_UNREACH:
3803 type = ICMP_UNREACH;
3804 switch (code) {
3805 case ICMP6_DST_UNREACH_NOROUTE:
3806 case ICMP6_DST_UNREACH_BEYONDSCOPE:
3807 case ICMP6_DST_UNREACH_ADDR:
3808 code = ICMP_UNREACH_HOST;
3809 break;
3810 case ICMP6_DST_UNREACH_ADMIN:
3811 code = ICMP_UNREACH_HOST_PROHIB;
3812 break;
3813 case ICMP6_DST_UNREACH_NOPORT:
3814 code = ICMP_UNREACH_PORT;
3815 break;
3816 default:
3817 return (-1);
3818 }
3819 break;
3820 case ICMP6_PACKET_TOO_BIG:
3821 type = ICMP_UNREACH;
3822 code = ICMP_UNREACH_NEEDFRAG;
3823 mtu -= 20;
3824 break;
3825 case ICMP6_TIME_EXCEEDED:
3826 type = ICMP_TIMXCEED;
3827 break;
3828 case ICMP6_PARAM_PROB:
3829 switch (code) {
3830 case ICMP6_PARAMPROB_HEADER:
3831 type = ICMP_PARAMPROB;
3832 code = ICMP_PARAMPROB_ERRATPTR;
3833 ptr = ntohl(icmp6->icmp6_pptr);
3834
3835 if (ptr == PTR_IP6(ip6_vfc))
3836 ; /* preserve */
3837 else if (ptr == PTR_IP6(ip6_vfc) + 1)
3838 ptr = PTR_IP(ip_tos);
3839 else if (ptr == PTR_IP6(ip6_plen) ||
3840 ptr == PTR_IP6(ip6_plen) + 1)
3841 ptr = PTR_IP(ip_len);
3842 else if (ptr == PTR_IP6(ip6_nxt))
3843 ptr = PTR_IP(ip_p);
3844 else if (ptr == PTR_IP6(ip6_hlim))
3845 ptr = PTR_IP(ip_ttl);
3846 else if (ptr >= PTR_IP6(ip6_src) &&
3847 ptr < PTR_IP6(ip6_dst))
3848 ptr = PTR_IP(ip_src);
3849 else if (ptr >= PTR_IP6(ip6_dst) &&
3850 ptr < sizeof(struct ip6_hdr))
3851 ptr = PTR_IP(ip_dst);
3852 else {
3853 return (-1);
3854 }
3855 break;
3856 case ICMP6_PARAMPROB_NEXTHEADER:
3857 type = ICMP_UNREACH;
3858 code = ICMP_UNREACH_PROTOCOL;
3859 break;
3860 default:
3861 return (-1);
3862 }
3863 break;
3864 default:
3865 return (-1);
3866 }
3867 if (icmp6->icmp6_type != type) {
3868 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3869 icmp6->icmp6_type, type, 0);
3870 icmp6->icmp6_type = type;
3871 }
3872 if (icmp6->icmp6_code != code) {
3873 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3874 icmp6->icmp6_code, code, 0);
3875 icmp6->icmp6_code = code;
3876 }
3877 if (icmp6->icmp6_mtu != htonl(mtu)) {
3878 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3879 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3880 /* aligns well with a icmpv4 nextmtu */
3881 icmp6->icmp6_mtu = htonl(mtu);
3882 }
3883 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3884 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3885 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3886 /* icmpv4 pptr is a one most significant byte */
3887 icmp6->icmp6_pptr = htonl(ptr << 24);
3888 }
3889 break;
3890 case AF_INET6:
3891 icmp4 = arg;
3892 type = icmp4->icmp_type;
3893 code = icmp4->icmp_code;
3894 mtu = ntohs(icmp4->icmp_nextmtu);
3895
3896 switch (type) {
3897 case ICMP_ECHO:
3898 type = ICMP6_ECHO_REQUEST;
3899 break;
3900 case ICMP_ECHOREPLY:
3901 type = ICMP6_ECHO_REPLY;
3902 break;
3903 case ICMP_UNREACH:
3904 type = ICMP6_DST_UNREACH;
3905 switch (code) {
3906 case ICMP_UNREACH_NET:
3907 case ICMP_UNREACH_HOST:
3908 case ICMP_UNREACH_NET_UNKNOWN:
3909 case ICMP_UNREACH_HOST_UNKNOWN:
3910 case ICMP_UNREACH_ISOLATED:
3911 case ICMP_UNREACH_TOSNET:
3912 case ICMP_UNREACH_TOSHOST:
3913 code = ICMP6_DST_UNREACH_NOROUTE;
3914 break;
3915 case ICMP_UNREACH_PORT:
3916 code = ICMP6_DST_UNREACH_NOPORT;
3917 break;
3918 case ICMP_UNREACH_NET_PROHIB:
3919 case ICMP_UNREACH_HOST_PROHIB:
3920 case ICMP_UNREACH_FILTER_PROHIB:
3921 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3922 code = ICMP6_DST_UNREACH_ADMIN;
3923 break;
3924 case ICMP_UNREACH_PROTOCOL:
3925 type = ICMP6_PARAM_PROB;
3926 code = ICMP6_PARAMPROB_NEXTHEADER;
3927 ptr = offsetof(struct ip6_hdr, ip6_nxt);
3928 break;
3929 case ICMP_UNREACH_NEEDFRAG:
3930 type = ICMP6_PACKET_TOO_BIG;
3931 code = 0;
3932 mtu += 20;
3933 break;
3934 default:
3935 return (-1);
3936 }
3937 break;
3938 case ICMP_TIMXCEED:
3939 type = ICMP6_TIME_EXCEEDED;
3940 break;
3941 case ICMP_PARAMPROB:
3942 type = ICMP6_PARAM_PROB;
3943 switch (code) {
3944 case ICMP_PARAMPROB_ERRATPTR:
3945 code = ICMP6_PARAMPROB_HEADER;
3946 break;
3947 case ICMP_PARAMPROB_LENGTH:
3948 code = ICMP6_PARAMPROB_HEADER;
3949 break;
3950 default:
3951 return (-1);
3952 }
3953
3954 ptr = icmp4->icmp_pptr;
3955 if (ptr == 0 || ptr == PTR_IP(ip_tos))
3956 ; /* preserve */
3957 else if (ptr == PTR_IP(ip_len) ||
3958 ptr == PTR_IP(ip_len) + 1)
3959 ptr = PTR_IP6(ip6_plen);
3960 else if (ptr == PTR_IP(ip_ttl))
3961 ptr = PTR_IP6(ip6_hlim);
3962 else if (ptr == PTR_IP(ip_p))
3963 ptr = PTR_IP6(ip6_nxt);
3964 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3965 ptr = PTR_IP6(ip6_src);
3966 else if (ptr >= PTR_IP(ip_dst) &&
3967 ptr < sizeof(struct ip))
3968 ptr = PTR_IP6(ip6_dst);
3969 else {
3970 return (-1);
3971 }
3972 break;
3973 default:
3974 return (-1);
3975 }
3976 if (icmp4->icmp_type != type) {
3977 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3978 icmp4->icmp_type, type, 0);
3979 icmp4->icmp_type = type;
3980 }
3981 if (icmp4->icmp_code != code) {
3982 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3983 icmp4->icmp_code, code, 0);
3984 icmp4->icmp_code = code;
3985 }
3986 if (icmp4->icmp_nextmtu != htons(mtu)) {
3987 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3988 icmp4->icmp_nextmtu, htons(mtu), 0);
3989 icmp4->icmp_nextmtu = htons(mtu);
3990 }
3991 if (ptr >= 0 && icmp4->icmp_void != ptr) {
3992 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3993 htons(icmp4->icmp_pptr), htons(ptr), 0);
3994 icmp4->icmp_void = htonl(ptr);
3995 }
3996 break;
3997 default:
3998 unhandled_af(af);
3999 }
4000 #endif /* INET && INET6 */
4001
4002 return (0);
4003 }
4004
4005 /*
4006 * Need to modulate the sequence numbers in the TCP SACK option
4007 * (credits to Krzysztof Pfaff for report and patch)
4008 */
4009 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)4010 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
4011 struct pf_state_peer *dst)
4012 {
4013 struct sackblk sack;
4014 int copyback = 0, i;
4015 int olen, optsoff;
4016 uint8_t opts[MAX_TCPOPTLEN], *opt, *eoh;
4017
4018 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
4019 optsoff = pd->off + sizeof(struct tcphdr);
4020 #define TCPOLEN_MINSACK (TCPOLEN_SACK + 2)
4021 if (olen < TCPOLEN_MINSACK ||
4022 !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af))
4023 return (0);
4024
4025 eoh = opts + olen;
4026 opt = opts;
4027 while ((opt = pf_find_tcpopt(opt, opts, olen,
4028 TCPOPT_SACK, TCPOLEN_MINSACK)) != NULL)
4029 {
4030 size_t safelen = MIN(opt[1], (eoh - opt));
4031 for (i = 2; i + TCPOLEN_SACK <= safelen; i += TCPOLEN_SACK) {
4032 size_t startoff = (opt + i) - opts;
4033 memcpy(&sack, &opt[i], sizeof(sack));
4034 pf_patch_32(pd, &sack.start,
4035 htonl(ntohl(sack.start) - dst->seqdiff),
4036 PF_ALGNMNT(startoff));
4037 pf_patch_32(pd, &sack.end,
4038 htonl(ntohl(sack.end) - dst->seqdiff),
4039 PF_ALGNMNT(startoff + sizeof(sack.start)));
4040 memcpy(&opt[i], &sack, sizeof(sack));
4041 }
4042 copyback = 1;
4043 opt += opt[1];
4044 }
4045
4046 if (copyback)
4047 m_copyback(pd->m, optsoff, olen, (caddr_t)opts);
4048
4049 return (copyback);
4050 }
4051
4052 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,u_int sack,int rtableid)4053 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
4054 const struct pf_addr *saddr, const struct pf_addr *daddr,
4055 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4056 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4057 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack,
4058 int rtableid)
4059 {
4060 struct mbuf *m;
4061 int len, tlen;
4062 #ifdef INET
4063 struct ip *h = NULL;
4064 #endif /* INET */
4065 #ifdef INET6
4066 struct ip6_hdr *h6 = NULL;
4067 #endif /* INET6 */
4068 struct tcphdr *th;
4069 char *opt;
4070 struct pf_mtag *pf_mtag;
4071
4072 len = 0;
4073 th = NULL;
4074
4075 /* maximum segment size tcp option */
4076 tlen = sizeof(struct tcphdr);
4077 if (mss)
4078 tlen += 4;
4079 if (sack)
4080 tlen += 2;
4081
4082 switch (af) {
4083 #ifdef INET
4084 case AF_INET:
4085 len = sizeof(struct ip) + tlen;
4086 break;
4087 #endif /* INET */
4088 #ifdef INET6
4089 case AF_INET6:
4090 len = sizeof(struct ip6_hdr) + tlen;
4091 break;
4092 #endif /* INET6 */
4093 default:
4094 unhandled_af(af);
4095 }
4096
4097 m = m_gethdr(M_NOWAIT, MT_DATA);
4098 if (m == NULL)
4099 return (NULL);
4100
4101 #ifdef MAC
4102 mac_netinet_firewall_send(m);
4103 #endif
4104 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
4105 m_freem(m);
4106 return (NULL);
4107 }
4108 m->m_flags |= mbuf_flags;
4109 pf_mtag->tag = mtag_tag;
4110 pf_mtag->flags = mtag_flags;
4111
4112 if (rtableid >= 0)
4113 M_SETFIB(m, rtableid);
4114
4115 #ifdef ALTQ
4116 if (r != NULL && r->qid) {
4117 pf_mtag->qid = r->qid;
4118
4119 /* add hints for ecn */
4120 pf_mtag->hdr = mtod(m, struct ip *);
4121 }
4122 #endif /* ALTQ */
4123 m->m_data += max_linkhdr;
4124 m->m_pkthdr.len = m->m_len = len;
4125 /* The rest of the stack assumes a rcvif, so provide one.
4126 * This is a locally generated packet, so .. close enough. */
4127 m->m_pkthdr.rcvif = V_loif;
4128 bzero(m->m_data, len);
4129 switch (af) {
4130 #ifdef INET
4131 case AF_INET:
4132 m->m_pkthdr.csum_flags |= CSUM_TCP;
4133 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4134
4135 h = mtod(m, struct ip *);
4136
4137 h->ip_p = IPPROTO_TCP;
4138 h->ip_len = htons(tlen);
4139 h->ip_v = 4;
4140 h->ip_hl = sizeof(*h) >> 2;
4141 h->ip_tos = IPTOS_LOWDELAY;
4142 h->ip_len = htons(len);
4143 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4144 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4145 h->ip_sum = 0;
4146 h->ip_src.s_addr = saddr->v4.s_addr;
4147 h->ip_dst.s_addr = daddr->v4.s_addr;
4148
4149 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4150 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr,
4151 htons(len - sizeof(struct ip) + IPPROTO_TCP));
4152 break;
4153 #endif /* INET */
4154 #ifdef INET6
4155 case AF_INET6:
4156 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6;
4157 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
4158
4159 h6 = mtod(m, struct ip6_hdr *);
4160
4161 /* IP header fields included in the TCP checksum */
4162 h6->ip6_nxt = IPPROTO_TCP;
4163 h6->ip6_plen = htons(tlen);
4164 h6->ip6_vfc |= IPV6_VERSION;
4165 h6->ip6_hlim = V_ip6_defhlim;
4166 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4167 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4168
4169 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4170 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr),
4171 IPPROTO_TCP, 0);
4172 break;
4173 #endif /* INET6 */
4174 }
4175
4176 /* TCP header */
4177 th->th_sport = sport;
4178 th->th_dport = dport;
4179 th->th_seq = htonl(seq);
4180 th->th_ack = htonl(ack);
4181 th->th_off = tlen >> 2;
4182 tcp_set_flags(th, tcp_flags);
4183 th->th_win = htons(win);
4184
4185 opt = (char *)(th + 1);
4186 if (mss) {
4187 opt = (char *)(th + 1);
4188 opt[0] = TCPOPT_MAXSEG;
4189 opt[1] = 4;
4190 mss = htons(mss);
4191 memcpy((opt + 2), &mss, 2);
4192 opt += 4;
4193 }
4194 if (sack) {
4195 opt[0] = TCPOPT_SACK_PERMITTED;
4196 opt[1] = 2;
4197 opt += 2;
4198 }
4199
4200 return (m);
4201 }
4202
4203 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4204 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4205 uint8_t ttl, int rtableid)
4206 {
4207 struct mbuf *m;
4208 #ifdef INET
4209 struct ip *h = NULL;
4210 #endif /* INET */
4211 #ifdef INET6
4212 struct ip6_hdr *h6 = NULL;
4213 #endif /* INET6 */
4214 struct sctphdr *hdr;
4215 struct sctp_chunkhdr *chunk;
4216 struct pf_send_entry *pfse;
4217 int off = 0;
4218
4219 MPASS(af == pd->af);
4220
4221 m = m_gethdr(M_NOWAIT, MT_DATA);
4222 if (m == NULL)
4223 return;
4224
4225 m->m_data += max_linkhdr;
4226 m->m_flags |= M_SKIP_FIREWALL;
4227 /* The rest of the stack assumes a rcvif, so provide one.
4228 * This is a locally generated packet, so .. close enough. */
4229 m->m_pkthdr.rcvif = V_loif;
4230
4231 /* IPv4|6 header */
4232 switch (af) {
4233 #ifdef INET
4234 case AF_INET:
4235 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4236
4237 h = mtod(m, struct ip *);
4238
4239 /* IP header fields included in the TCP checksum */
4240
4241 h->ip_p = IPPROTO_SCTP;
4242 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4243 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4244 h->ip_src = pd->dst->v4;
4245 h->ip_dst = pd->src->v4;
4246
4247 off += sizeof(struct ip);
4248 break;
4249 #endif /* INET */
4250 #ifdef INET6
4251 case AF_INET6:
4252 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4253
4254 h6 = mtod(m, struct ip6_hdr *);
4255
4256 /* IP header fields included in the TCP checksum */
4257 h6->ip6_vfc |= IPV6_VERSION;
4258 h6->ip6_nxt = IPPROTO_SCTP;
4259 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4260 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4261 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4262 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4263
4264 off += sizeof(struct ip6_hdr);
4265 break;
4266 #endif /* INET6 */
4267 default:
4268 unhandled_af(af);
4269 }
4270
4271 /* SCTP header */
4272 hdr = mtodo(m, off);
4273
4274 hdr->src_port = pd->hdr.sctp.dest_port;
4275 hdr->dest_port = pd->hdr.sctp.src_port;
4276 hdr->v_tag = pd->sctp_initiate_tag;
4277 hdr->checksum = 0;
4278
4279 /* Abort chunk. */
4280 off += sizeof(struct sctphdr);
4281 chunk = mtodo(m, off);
4282
4283 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4284 chunk->chunk_length = htons(sizeof(*chunk));
4285
4286 /* SCTP checksum */
4287 off += sizeof(*chunk);
4288 m->m_pkthdr.len = m->m_len = off;
4289
4290 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4291
4292 if (rtableid >= 0)
4293 M_SETFIB(m, rtableid);
4294
4295 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4296 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4297 if (pfse == NULL) {
4298 m_freem(m);
4299 return;
4300 }
4301
4302 switch (af) {
4303 #ifdef INET
4304 case AF_INET:
4305 pfse->pfse_type = PFSE_IP;
4306 break;
4307 #endif /* INET */
4308 #ifdef INET6
4309 case AF_INET6:
4310 pfse->pfse_type = PFSE_IP6;
4311 break;
4312 #endif /* INET6 */
4313 }
4314
4315 pfse->pfse_m = m;
4316 pf_send(pfse);
4317 }
4318
4319 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4320 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4321 const struct pf_addr *saddr, const struct pf_addr *daddr,
4322 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4323 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4324 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4325 {
4326 struct pf_send_entry *pfse;
4327 struct mbuf *m;
4328
4329 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4330 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid);
4331 if (m == NULL)
4332 return;
4333
4334 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4335 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4336 if (pfse == NULL) {
4337 m_freem(m);
4338 return;
4339 }
4340
4341 switch (af) {
4342 #ifdef INET
4343 case AF_INET:
4344 pfse->pfse_type = PFSE_IP;
4345 break;
4346 #endif /* INET */
4347 #ifdef INET6
4348 case AF_INET6:
4349 pfse->pfse_type = PFSE_IP6;
4350 break;
4351 #endif /* INET6 */
4352 default:
4353 unhandled_af(af);
4354 }
4355
4356 pfse->pfse_m = m;
4357 pf_send(pfse);
4358 }
4359
4360 static void
pf_undo_nat(struct pf_krule * nr,struct pf_pdesc * pd,uint16_t bip_sum)4361 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum)
4362 {
4363 /* undo NAT changes, if they have taken place */
4364 if (nr != NULL) {
4365 pf_addrcpy(pd->src, &pd->osrc, pd->af);
4366 pf_addrcpy(pd->dst, &pd->odst, pd->af);
4367 if (pd->sport)
4368 *pd->sport = pd->osport;
4369 if (pd->dport)
4370 *pd->dport = pd->odport;
4371 if (pd->ip_sum)
4372 *pd->ip_sum = bip_sum;
4373 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4374 }
4375 }
4376
4377 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4378 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4379 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum,
4380 u_short *reason, int rtableid)
4381 {
4382 pf_undo_nat(nr, pd, bip_sum);
4383
4384 if (pd->proto == IPPROTO_TCP &&
4385 ((r->rule_flag & PFRULE_RETURNRST) ||
4386 (r->rule_flag & PFRULE_RETURN)) &&
4387 !(tcp_get_flags(th) & TH_RST)) {
4388 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
4389
4390 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4391 IPPROTO_TCP, pd->af))
4392 REASON_SET(reason, PFRES_PROTCKSUM);
4393 else {
4394 if (tcp_get_flags(th) & TH_SYN)
4395 ack++;
4396 if (tcp_get_flags(th) & TH_FIN)
4397 ack++;
4398 pf_send_tcp(r, pd->af, pd->dst,
4399 pd->src, th->th_dport, th->th_sport,
4400 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4401 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4402 }
4403 } else if (pd->proto == IPPROTO_SCTP &&
4404 (r->rule_flag & PFRULE_RETURN)) {
4405 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4406 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4407 r->return_icmp)
4408 pf_send_icmp(pd->m, r->return_icmp >> 8,
4409 r->return_icmp & 255, 0, pd->af, r, rtableid);
4410 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4411 r->return_icmp6)
4412 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4413 r->return_icmp6 & 255, 0, pd->af, r, rtableid);
4414 }
4415
4416 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4417 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4418 {
4419 struct m_tag *mtag;
4420 u_int8_t mpcp;
4421
4422 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4423 if (mtag == NULL)
4424 return (0);
4425
4426 if (prio == PF_PRIO_ZERO)
4427 prio = 0;
4428
4429 mpcp = *(uint8_t *)(mtag + 1);
4430
4431 return (mpcp == prio);
4432 }
4433
4434 static int
pf_icmp_to_bandlim(uint8_t type)4435 pf_icmp_to_bandlim(uint8_t type)
4436 {
4437 switch (type) {
4438 case ICMP_ECHO:
4439 case ICMP_ECHOREPLY:
4440 return (BANDLIM_ICMP_ECHO);
4441 case ICMP_TSTAMP:
4442 case ICMP_TSTAMPREPLY:
4443 return (BANDLIM_ICMP_TSTAMP);
4444 case ICMP_UNREACH:
4445 default:
4446 return (BANDLIM_ICMP_UNREACH);
4447 }
4448 }
4449
4450 static void
pf_send_challenge_ack(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_state_peer * src,struct pf_state_peer * dst)4451 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s,
4452 struct pf_state_peer *src, struct pf_state_peer *dst)
4453 {
4454 /*
4455 * We are sending challenge ACK as a response to SYN packet, which
4456 * matches existing state (modulo TCP window check). Therefore packet
4457 * must be sent on behalf of destination.
4458 *
4459 * We expect sender to remain either silent, or send RST packet
4460 * so both, firewall and remote peer, can purge dead state from
4461 * memory.
4462 */
4463 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src,
4464 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo,
4465 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0,
4466 s->rule->rtableid);
4467 }
4468
4469 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,int mtu,sa_family_t af,struct pf_krule * r,int rtableid)4470 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, int mtu,
4471 sa_family_t af, struct pf_krule *r, int rtableid)
4472 {
4473 struct pf_send_entry *pfse;
4474 struct mbuf *m0;
4475 struct pf_mtag *pf_mtag;
4476
4477 /* ICMP packet rate limitation. */
4478 switch (af) {
4479 #ifdef INET6
4480 case AF_INET6:
4481 if (icmp6_ratelimit(NULL, type, code))
4482 return;
4483 break;
4484 #endif /* INET6 */
4485 #ifdef INET
4486 case AF_INET:
4487 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4488 return;
4489 break;
4490 #endif /* INET */
4491 }
4492
4493 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4494 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4495 if (pfse == NULL)
4496 return;
4497
4498 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4499 free(pfse, M_PFTEMP);
4500 return;
4501 }
4502
4503 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4504 free(pfse, M_PFTEMP);
4505 return;
4506 }
4507 /* XXX: revisit */
4508 m0->m_flags |= M_SKIP_FIREWALL;
4509
4510 if (rtableid >= 0)
4511 M_SETFIB(m0, rtableid);
4512
4513 #ifdef ALTQ
4514 if (r->qid) {
4515 pf_mtag->qid = r->qid;
4516 /* add hints for ecn */
4517 pf_mtag->hdr = mtod(m0, struct ip *);
4518 }
4519 #endif /* ALTQ */
4520
4521 switch (af) {
4522 #ifdef INET
4523 case AF_INET:
4524 pfse->pfse_type = PFSE_ICMP;
4525 break;
4526 #endif /* INET */
4527 #ifdef INET6
4528 case AF_INET6:
4529 pfse->pfse_type = PFSE_ICMP6;
4530 break;
4531 #endif /* INET6 */
4532 }
4533 pfse->pfse_m = m0;
4534 pfse->icmpopts.type = type;
4535 pfse->icmpopts.code = code;
4536 pfse->icmpopts.mtu = mtu;
4537 pf_send(pfse);
4538 }
4539
4540 /*
4541 * Return ((n = 0) == (a = b [with mask m]))
4542 * Note: n != 0 => returns (a != b [with mask m])
4543 */
4544 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4545 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4546 const struct pf_addr *b, sa_family_t af)
4547 {
4548 switch (af) {
4549 #ifdef INET
4550 case AF_INET:
4551 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4552 return (n == 0);
4553 break;
4554 #endif /* INET */
4555 #ifdef INET6
4556 case AF_INET6:
4557 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4558 return (n == 0);
4559 break;
4560 #endif /* INET6 */
4561 }
4562
4563 return (n != 0);
4564 }
4565
4566 /*
4567 * Return 1 if b <= a <= e, otherwise return 0.
4568 */
4569 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4570 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4571 const struct pf_addr *a, sa_family_t af)
4572 {
4573 switch (af) {
4574 #ifdef INET
4575 case AF_INET:
4576 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4577 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4578 return (0);
4579 break;
4580 #endif /* INET */
4581 #ifdef INET6
4582 case AF_INET6: {
4583 int i;
4584
4585 /* check a >= b */
4586 for (i = 0; i < 4; ++i)
4587 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4588 break;
4589 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4590 return (0);
4591 /* check a <= e */
4592 for (i = 0; i < 4; ++i)
4593 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4594 break;
4595 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4596 return (0);
4597 break;
4598 }
4599 #endif /* INET6 */
4600 }
4601 return (1);
4602 }
4603
4604 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4605 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4606 {
4607 switch (op) {
4608 case PF_OP_IRG:
4609 return ((p > a1) && (p < a2));
4610 case PF_OP_XRG:
4611 return ((p < a1) || (p > a2));
4612 case PF_OP_RRG:
4613 return ((p >= a1) && (p <= a2));
4614 case PF_OP_EQ:
4615 return (p == a1);
4616 case PF_OP_NE:
4617 return (p != a1);
4618 case PF_OP_LT:
4619 return (p < a1);
4620 case PF_OP_LE:
4621 return (p <= a1);
4622 case PF_OP_GT:
4623 return (p > a1);
4624 case PF_OP_GE:
4625 return (p >= a1);
4626 }
4627 return (0); /* never reached */
4628 }
4629
4630 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4631 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4632 {
4633 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p)));
4634 }
4635
4636 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4637 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4638 {
4639 if (u == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4640 return (0);
4641 return (pf_match(op, a1, a2, u));
4642 }
4643
4644 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4645 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4646 {
4647 if (g == -1 && op != PF_OP_EQ && op != PF_OP_NE)
4648 return (0);
4649 return (pf_match(op, a1, a2, g));
4650 }
4651
4652 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4653 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4654 {
4655 if (*tag == -1)
4656 *tag = mtag;
4657
4658 return ((!r->match_tag_not && r->match_tag == *tag) ||
4659 (r->match_tag_not && r->match_tag != *tag));
4660 }
4661
4662 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4663 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4664 {
4665 struct ifnet *ifp = m->m_pkthdr.rcvif;
4666 struct pfi_kkif *kif;
4667
4668 if (ifp == NULL)
4669 return (0);
4670
4671 kif = (struct pfi_kkif *)ifp->if_pf_kif;
4672
4673 if (kif == NULL) {
4674 DPFPRINTF(PF_DEBUG_URGENT,
4675 "%s: kif == NULL, @%d via %s", __func__, r->nr,
4676 r->rcv_ifname);
4677 return (0);
4678 }
4679
4680 return (pfi_kkif_match(r->rcv_kif, kif));
4681 }
4682
4683 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4684 pf_tag_packet(struct pf_pdesc *pd, int tag)
4685 {
4686
4687 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4688
4689 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4690 return (ENOMEM);
4691
4692 pd->pf_mtag->tag = tag;
4693
4694 return (0);
4695 }
4696
4697 /*
4698 * XXX: We rely on malloc(9) returning pointer aligned addresses.
4699 */
4700 #define PF_ANCHORSTACK_MATCH 0x00000001
4701 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4702
4703 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4704 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4705 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4706 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4707 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4708 } while (0)
4709
4710 enum pf_test_status
pf_step_into_anchor(struct pf_test_ctx * ctx,struct pf_krule * r)4711 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r)
4712 {
4713 enum pf_test_status rv;
4714
4715 PF_RULES_RASSERT();
4716
4717 if (ctx->depth >= PF_ANCHOR_STACK_MAX) {
4718 printf("%s: anchor stack overflow on %s\n",
4719 __func__, r->anchor->name);
4720 return (PF_TEST_FAIL);
4721 }
4722
4723 ctx->depth++;
4724
4725 if (r->anchor_wildcard) {
4726 struct pf_kanchor *child;
4727 rv = PF_TEST_OK;
4728 RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) {
4729 rv = pf_match_rule(ctx, &child->ruleset);
4730 if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) {
4731 /*
4732 * we either hit a rule with quick action
4733 * (more likely), or hit some runtime
4734 * error (e.g. pool_get() failure).
4735 */
4736 break;
4737 }
4738 }
4739 } else {
4740 rv = pf_match_rule(ctx, &r->anchor->ruleset);
4741 /*
4742 * Unless errors occured, stop iff any rule matched
4743 * within quick anchors.
4744 */
4745 if (rv != PF_TEST_FAIL && r->quick == PF_TEST_QUICK &&
4746 *ctx->am == r)
4747 rv = PF_TEST_QUICK;
4748 }
4749
4750 ctx->depth--;
4751
4752 return (rv);
4753 }
4754
4755 struct pf_keth_anchor_stackframe {
4756 struct pf_keth_ruleset *rs;
4757 struct pf_keth_rule *r; /* XXX: + match bit */
4758 struct pf_keth_anchor *child;
4759 };
4760
4761 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4762 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4763 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4764 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4765 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4766 } while (0)
4767
4768 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4769 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4770 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4771 struct pf_keth_rule **a, int *match)
4772 {
4773 struct pf_keth_anchor_stackframe *f;
4774
4775 NET_EPOCH_ASSERT();
4776
4777 if (match)
4778 *match = 0;
4779 if (*depth >= PF_ANCHOR_STACK_MAX) {
4780 printf("%s: anchor stack overflow on %s\n",
4781 __func__, (*r)->anchor->name);
4782 *r = TAILQ_NEXT(*r, entries);
4783 return;
4784 } else if (*depth == 0 && a != NULL)
4785 *a = *r;
4786 f = stack + (*depth)++;
4787 f->rs = *rs;
4788 f->r = *r;
4789 if ((*r)->anchor_wildcard) {
4790 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4791
4792 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4793 *r = NULL;
4794 return;
4795 }
4796 *rs = &f->child->ruleset;
4797 } else {
4798 f->child = NULL;
4799 *rs = &(*r)->anchor->ruleset;
4800 }
4801 *r = TAILQ_FIRST((*rs)->active.rules);
4802 }
4803
4804 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4805 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4806 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4807 struct pf_keth_rule **a, int *match)
4808 {
4809 struct pf_keth_anchor_stackframe *f;
4810 struct pf_keth_rule *fr;
4811 int quick = 0;
4812
4813 NET_EPOCH_ASSERT();
4814
4815 do {
4816 if (*depth <= 0)
4817 break;
4818 f = stack + *depth - 1;
4819 fr = PF_ETH_ANCHOR_RULE(f);
4820 if (f->child != NULL) {
4821 /*
4822 * This block traverses through
4823 * a wildcard anchor.
4824 */
4825 if (match != NULL && *match) {
4826 /*
4827 * If any of "*" matched, then
4828 * "foo/ *" matched, mark frame
4829 * appropriately.
4830 */
4831 PF_ETH_ANCHOR_SET_MATCH(f);
4832 *match = 0;
4833 }
4834 f->child = RB_NEXT(pf_keth_anchor_node,
4835 &fr->anchor->children, f->child);
4836 if (f->child != NULL) {
4837 *rs = &f->child->ruleset;
4838 *r = TAILQ_FIRST((*rs)->active.rules);
4839 if (*r == NULL)
4840 continue;
4841 else
4842 break;
4843 }
4844 }
4845 (*depth)--;
4846 if (*depth == 0 && a != NULL)
4847 *a = NULL;
4848 *rs = f->rs;
4849 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4850 quick = fr->quick;
4851 *r = TAILQ_NEXT(fr, entries);
4852 } while (*r == NULL);
4853
4854 return (quick);
4855 }
4856
4857 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4858 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4859 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4860 {
4861 switch (af) {
4862 #ifdef INET
4863 case AF_INET:
4864 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4865 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4866 break;
4867 #endif /* INET */
4868 #ifdef INET6
4869 case AF_INET6:
4870 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4871 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4872 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4873 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4874 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4875 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4876 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4877 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4878 break;
4879 #endif /* INET6 */
4880 }
4881 }
4882
4883 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4884 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4885 {
4886 switch (af) {
4887 #ifdef INET
4888 case AF_INET:
4889 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4890 break;
4891 #endif /* INET */
4892 #ifdef INET6
4893 case AF_INET6:
4894 if (addr->addr32[3] == 0xffffffff) {
4895 addr->addr32[3] = 0;
4896 if (addr->addr32[2] == 0xffffffff) {
4897 addr->addr32[2] = 0;
4898 if (addr->addr32[1] == 0xffffffff) {
4899 addr->addr32[1] = 0;
4900 addr->addr32[0] =
4901 htonl(ntohl(addr->addr32[0]) + 1);
4902 } else
4903 addr->addr32[1] =
4904 htonl(ntohl(addr->addr32[1]) + 1);
4905 } else
4906 addr->addr32[2] =
4907 htonl(ntohl(addr->addr32[2]) + 1);
4908 } else
4909 addr->addr32[3] =
4910 htonl(ntohl(addr->addr32[3]) + 1);
4911 break;
4912 #endif /* INET6 */
4913 }
4914 }
4915
4916 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4917 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4918 {
4919 /*
4920 * Modern rules use the same flags in rules as they do in states.
4921 */
4922 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4923 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4924
4925 /*
4926 * Old-style scrub rules have different flags which need to be translated.
4927 */
4928 if (r->rule_flag & PFRULE_RANDOMID)
4929 a->flags |= PFSTATE_RANDOMID;
4930 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4931 a->flags |= PFSTATE_SETTOS;
4932 a->set_tos = r->set_tos;
4933 }
4934
4935 if (r->qid)
4936 a->qid = r->qid;
4937 if (r->pqid)
4938 a->pqid = r->pqid;
4939 if (r->rtableid >= 0)
4940 a->rtableid = r->rtableid;
4941 a->log |= r->log;
4942 if (r->min_ttl)
4943 a->min_ttl = r->min_ttl;
4944 if (r->max_mss)
4945 a->max_mss = r->max_mss;
4946 if (r->dnpipe)
4947 a->dnpipe = r->dnpipe;
4948 if (r->dnrpipe)
4949 a->dnrpipe = r->dnrpipe;
4950 if (r->dnpipe || r->dnrpipe) {
4951 if (r->free_flags & PFRULE_DN_IS_PIPE)
4952 a->flags |= PFSTATE_DN_IS_PIPE;
4953 else
4954 a->flags &= ~PFSTATE_DN_IS_PIPE;
4955 }
4956 if (r->scrub_flags & PFSTATE_SETPRIO) {
4957 a->set_prio[0] = r->set_prio[0];
4958 a->set_prio[1] = r->set_prio[1];
4959 }
4960 if (r->allow_opts)
4961 a->allow_opts = r->allow_opts;
4962 if (r->max_pkt_size)
4963 a->max_pkt_size = r->max_pkt_size;
4964 }
4965
4966 int
pf_socket_lookup(struct pf_pdesc * pd)4967 pf_socket_lookup(struct pf_pdesc *pd)
4968 {
4969 struct pf_addr *saddr, *daddr;
4970 u_int16_t sport, dport;
4971 struct inpcbinfo *pi;
4972 struct inpcb *inp;
4973
4974 pd->lookup.uid = -1;
4975 pd->lookup.gid = -1;
4976
4977 switch (pd->proto) {
4978 case IPPROTO_TCP:
4979 sport = pd->hdr.tcp.th_sport;
4980 dport = pd->hdr.tcp.th_dport;
4981 pi = &V_tcbinfo;
4982 break;
4983 case IPPROTO_UDP:
4984 sport = pd->hdr.udp.uh_sport;
4985 dport = pd->hdr.udp.uh_dport;
4986 pi = &V_udbinfo;
4987 break;
4988 default:
4989 return (-1);
4990 }
4991 if (pd->dir == PF_IN) {
4992 saddr = pd->src;
4993 daddr = pd->dst;
4994 } else {
4995 u_int16_t p;
4996
4997 p = sport;
4998 sport = dport;
4999 dport = p;
5000 saddr = pd->dst;
5001 daddr = pd->src;
5002 }
5003 switch (pd->af) {
5004 #ifdef INET
5005 case AF_INET:
5006 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
5007 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5008 if (inp == NULL) {
5009 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
5010 daddr->v4, dport, INPLOOKUP_WILDCARD |
5011 INPLOOKUP_RLOCKPCB, NULL, pd->m);
5012 if (inp == NULL)
5013 return (-1);
5014 }
5015 break;
5016 #endif /* INET */
5017 #ifdef INET6
5018 case AF_INET6:
5019 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
5020 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
5021 if (inp == NULL) {
5022 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
5023 &daddr->v6, dport, INPLOOKUP_WILDCARD |
5024 INPLOOKUP_RLOCKPCB, NULL, pd->m);
5025 if (inp == NULL)
5026 return (-1);
5027 }
5028 break;
5029 #endif /* INET6 */
5030 default:
5031 unhandled_af(pd->af);
5032 }
5033 INP_RLOCK_ASSERT(inp);
5034 pd->lookup.uid = inp->inp_cred->cr_uid;
5035 pd->lookup.gid = inp->inp_cred->cr_gid;
5036 INP_RUNLOCK(inp);
5037
5038 return (1);
5039 }
5040
5041 /* post: r => (r[0] == type /\ r[1] >= min_typelen >= 2 "validity"
5042 * /\ (eoh - r) >= min_typelen >= 2 "safety" )
5043 *
5044 * warning: r + r[1] may exceed opts bounds for r[1] > min_typelen
5045 */
5046 uint8_t*
pf_find_tcpopt(u_int8_t * opt,u_int8_t * opts,size_t hlen,u_int8_t type,u_int8_t min_typelen)5047 pf_find_tcpopt(u_int8_t *opt, u_int8_t *opts, size_t hlen, u_int8_t type,
5048 u_int8_t min_typelen)
5049 {
5050 uint8_t *eoh = opts + hlen;
5051
5052 if (min_typelen < 2)
5053 return (NULL);
5054
5055 while ((eoh - opt) >= min_typelen) {
5056 switch (*opt) {
5057 case TCPOPT_EOL:
5058 /* FALLTHROUGH - Workaround the failure of some
5059 systems to NOP-pad their bzero'd option buffers,
5060 producing spurious EOLs */
5061 case TCPOPT_NOP:
5062 opt++;
5063 continue;
5064 default:
5065 if (opt[0] == type &&
5066 opt[1] >= min_typelen)
5067 return (opt);
5068 }
5069
5070 opt += MAX(opt[1], 2); /* evade infinite loops */
5071 }
5072
5073 return (NULL);
5074 }
5075
5076 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)5077 pf_get_wscale(struct pf_pdesc *pd)
5078 {
5079 int olen;
5080 uint8_t opts[MAX_TCPOPTLEN], *opt;
5081 uint8_t wscale = 0;
5082
5083 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5084 if (olen < TCPOLEN_WINDOW || !pf_pull_hdr(pd->m,
5085 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5086 return (0);
5087
5088 opt = opts;
5089 while ((opt = pf_find_tcpopt(opt, opts, olen,
5090 TCPOPT_WINDOW, TCPOLEN_WINDOW)) != NULL) {
5091 wscale = opt[2];
5092 wscale = MIN(wscale, TCP_MAX_WINSHIFT);
5093 wscale |= PF_WSCALE_FLAG;
5094
5095 opt += opt[1];
5096 }
5097
5098 return (wscale);
5099 }
5100
5101 u_int16_t
pf_get_mss(struct pf_pdesc * pd)5102 pf_get_mss(struct pf_pdesc *pd)
5103 {
5104 int olen;
5105 uint8_t opts[MAX_TCPOPTLEN], *opt;
5106 u_int16_t mss = V_tcp_mssdflt;
5107
5108 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr);
5109 if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m,
5110 pd->off + sizeof(struct tcphdr), opts, olen, NULL, NULL, pd->af))
5111 return (0);
5112
5113 opt = opts;
5114 while ((opt = pf_find_tcpopt(opt, opts, olen,
5115 TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) {
5116 memcpy(&mss, (opt + 2), 2);
5117 mss = ntohs(mss);
5118 opt += opt[1];
5119 }
5120
5121 return (mss);
5122 }
5123
5124 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5125 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5126 {
5127 struct nhop_object *nh;
5128 #ifdef INET6
5129 struct in6_addr dst6;
5130 uint32_t scopeid;
5131 #endif /* INET6 */
5132 int hlen = 0;
5133 uint16_t mss = 0;
5134
5135 NET_EPOCH_ASSERT();
5136
5137 switch (af) {
5138 #ifdef INET
5139 case AF_INET:
5140 hlen = sizeof(struct ip);
5141 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5142 if (nh != NULL)
5143 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5144 break;
5145 #endif /* INET */
5146 #ifdef INET6
5147 case AF_INET6:
5148 hlen = sizeof(struct ip6_hdr);
5149 in6_splitscope(&addr->v6, &dst6, &scopeid);
5150 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5151 if (nh != NULL)
5152 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5153 break;
5154 #endif /* INET6 */
5155 }
5156
5157 mss = max(V_tcp_mssdflt, mss);
5158 mss = min(mss, offer);
5159 mss = max(mss, 64); /* sanity - at least max opt space */
5160 return (mss);
5161 }
5162
5163 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5164 pf_tcp_iss(struct pf_pdesc *pd)
5165 {
5166 SHA512_CTX ctx;
5167 union {
5168 uint8_t bytes[SHA512_DIGEST_LENGTH];
5169 uint32_t words[1];
5170 } digest;
5171
5172 if (V_pf_tcp_secret_init == 0) {
5173 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5174 SHA512_Init(&V_pf_tcp_secret_ctx);
5175 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5176 sizeof(V_pf_tcp_secret));
5177 V_pf_tcp_secret_init = 1;
5178 }
5179
5180 ctx = V_pf_tcp_secret_ctx;
5181
5182 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short));
5183 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short));
5184 switch (pd->af) {
5185 case AF_INET6:
5186 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr));
5187 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr));
5188 break;
5189 case AF_INET:
5190 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr));
5191 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr));
5192 break;
5193 }
5194 SHA512_Final(digest.bytes, &ctx);
5195 V_pf_tcp_iss_off += 4096;
5196 #define ISN_RANDOM_INCREMENT (4096 - 1)
5197 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5198 V_pf_tcp_iss_off);
5199 #undef ISN_RANDOM_INCREMENT
5200 }
5201
5202 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5203 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5204 {
5205 bool match = true;
5206
5207 /* Always matches if not set */
5208 if (! r->isset)
5209 return (!r->neg);
5210
5211 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5212 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5213 match = false;
5214 break;
5215 }
5216 }
5217
5218 return (match ^ r->neg);
5219 }
5220
5221 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5222 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5223 {
5224 if (*tag == -1)
5225 *tag = mtag;
5226
5227 return ((!r->match_tag_not && r->match_tag == *tag) ||
5228 (r->match_tag_not && r->match_tag != *tag));
5229 }
5230
5231 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5232 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5233 {
5234 /* If we don't have the interface drop the packet. */
5235 if (ifp == NULL) {
5236 m_freem(m);
5237 return;
5238 }
5239
5240 switch (ifp->if_type) {
5241 case IFT_ETHER:
5242 case IFT_XETHER:
5243 case IFT_L2VLAN:
5244 case IFT_BRIDGE:
5245 case IFT_IEEE8023ADLAG:
5246 break;
5247 default:
5248 m_freem(m);
5249 return;
5250 }
5251
5252 ifp->if_transmit(ifp, m);
5253 }
5254
5255 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5256 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5257 {
5258 #ifdef INET
5259 struct ip ip;
5260 #endif /* INET */
5261 #ifdef INET6
5262 struct ip6_hdr ip6;
5263 #endif /* INET6 */
5264 struct mbuf *m = *m0;
5265 struct ether_header *e;
5266 struct pf_keth_rule *r, *rm, *a = NULL;
5267 struct pf_keth_ruleset *ruleset = NULL;
5268 struct pf_mtag *mtag;
5269 struct pf_keth_ruleq *rules;
5270 struct pf_addr *src = NULL, *dst = NULL;
5271 struct pfi_kkif *bridge_to;
5272 sa_family_t af = 0;
5273 uint16_t proto;
5274 int asd = 0, match = 0;
5275 int tag = -1;
5276 uint8_t action;
5277 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACK_MAX];
5278
5279 MPASS(kif->pfik_ifp->if_vnet == curvnet);
5280 NET_EPOCH_ASSERT();
5281
5282 PF_RULES_RLOCK_TRACKER;
5283
5284 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5285
5286 mtag = pf_find_mtag(m);
5287 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5288 /* Dummynet re-injects packets after they've
5289 * completed their delay. We've already
5290 * processed them, so pass unconditionally. */
5291
5292 /* But only once. We may see the packet multiple times (e.g.
5293 * PFIL_IN/PFIL_OUT). */
5294 pf_dummynet_flag_remove(m, mtag);
5295
5296 return (PF_PASS);
5297 }
5298
5299 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5300 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5301 DPFPRINTF(PF_DEBUG_URGENT,
5302 "%s: m_len < sizeof(struct ether_header)"
5303 ", pullup failed", __func__);
5304 return (PF_DROP);
5305 }
5306 e = mtod(m, struct ether_header *);
5307 proto = ntohs(e->ether_type);
5308
5309 switch (proto) {
5310 #ifdef INET
5311 case ETHERTYPE_IP: {
5312 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5313 sizeof(ip)))
5314 return (PF_DROP);
5315
5316 af = AF_INET;
5317 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5318 (caddr_t)&ip);
5319 src = (struct pf_addr *)&ip.ip_src;
5320 dst = (struct pf_addr *)&ip.ip_dst;
5321 break;
5322 }
5323 #endif /* INET */
5324 #ifdef INET6
5325 case ETHERTYPE_IPV6: {
5326 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5327 sizeof(ip6)))
5328 return (PF_DROP);
5329
5330 af = AF_INET6;
5331 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5332 (caddr_t)&ip6);
5333 src = (struct pf_addr *)&ip6.ip6_src;
5334 dst = (struct pf_addr *)&ip6.ip6_dst;
5335 break;
5336 }
5337 #endif /* INET6 */
5338 }
5339
5340 PF_RULES_RLOCK();
5341
5342 ruleset = V_pf_keth;
5343 rules = atomic_load_ptr(&ruleset->active.rules);
5344 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5345 counter_u64_add(r->evaluations, 1);
5346 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5347
5348 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5349 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5350 "kif");
5351 r = r->skip[PFE_SKIP_IFP].ptr;
5352 }
5353 else if (r->direction && r->direction != dir) {
5354 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5355 "dir");
5356 r = r->skip[PFE_SKIP_DIR].ptr;
5357 }
5358 else if (r->proto && r->proto != proto) {
5359 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5360 "proto");
5361 r = r->skip[PFE_SKIP_PROTO].ptr;
5362 }
5363 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5364 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5365 "src");
5366 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5367 }
5368 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5369 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5370 "dst");
5371 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5372 }
5373 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5374 r->ipsrc.neg, kif, M_GETFIB(m))) {
5375 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5376 "ip_src");
5377 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5378 }
5379 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5380 r->ipdst.neg, kif, M_GETFIB(m))) {
5381 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5382 "ip_dst");
5383 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5384 }
5385 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5386 mtag ? mtag->tag : 0)) {
5387 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5388 "match_tag");
5389 r = TAILQ_NEXT(r, entries);
5390 }
5391 else {
5392 if (r->tag)
5393 tag = r->tag;
5394 if (r->anchor == NULL) {
5395 /* Rule matches */
5396 rm = r;
5397
5398 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5399
5400 if (r->quick)
5401 break;
5402
5403 r = TAILQ_NEXT(r, entries);
5404 } else {
5405 pf_step_into_keth_anchor(anchor_stack, &asd,
5406 &ruleset, &r, &a, &match);
5407 }
5408 }
5409 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5410 &ruleset, &r, &a, &match))
5411 break;
5412 }
5413
5414 r = rm;
5415
5416 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5417
5418 /* Default to pass. */
5419 if (r == NULL) {
5420 PF_RULES_RUNLOCK();
5421 return (PF_PASS);
5422 }
5423
5424 /* Execute action. */
5425 counter_u64_add(r->packets[dir == PF_OUT], 1);
5426 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5427 pf_update_timestamp(r);
5428
5429 /* Shortcut. Don't tag if we're just going to drop anyway. */
5430 if (r->action == PF_DROP) {
5431 PF_RULES_RUNLOCK();
5432 return (PF_DROP);
5433 }
5434
5435 if (tag > 0) {
5436 if (mtag == NULL)
5437 mtag = pf_get_mtag(m);
5438 if (mtag == NULL) {
5439 PF_RULES_RUNLOCK();
5440 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5441 return (PF_DROP);
5442 }
5443 mtag->tag = tag;
5444 }
5445
5446 if (r->qid != 0) {
5447 if (mtag == NULL)
5448 mtag = pf_get_mtag(m);
5449 if (mtag == NULL) {
5450 PF_RULES_RUNLOCK();
5451 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5452 return (PF_DROP);
5453 }
5454 mtag->qid = r->qid;
5455 }
5456
5457 action = r->action;
5458 bridge_to = r->bridge_to;
5459
5460 /* Dummynet */
5461 if (r->dnpipe) {
5462 struct ip_fw_args dnflow;
5463
5464 /* Drop packet if dummynet is not loaded. */
5465 if (ip_dn_io_ptr == NULL) {
5466 PF_RULES_RUNLOCK();
5467 m_freem(m);
5468 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5469 return (PF_DROP);
5470 }
5471 if (mtag == NULL)
5472 mtag = pf_get_mtag(m);
5473 if (mtag == NULL) {
5474 PF_RULES_RUNLOCK();
5475 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5476 return (PF_DROP);
5477 }
5478
5479 bzero(&dnflow, sizeof(dnflow));
5480
5481 /* We don't have port numbers here, so we set 0. That means
5482 * that we'll be somewhat limited in distinguishing flows (i.e.
5483 * only based on IP addresses, not based on port numbers), but
5484 * it's better than nothing. */
5485 dnflow.f_id.dst_port = 0;
5486 dnflow.f_id.src_port = 0;
5487 dnflow.f_id.proto = 0;
5488
5489 dnflow.rule.info = r->dnpipe;
5490 dnflow.rule.info |= IPFW_IS_DUMMYNET;
5491 if (r->dnflags & PFRULE_DN_IS_PIPE)
5492 dnflow.rule.info |= IPFW_IS_PIPE;
5493
5494 dnflow.f_id.extra = dnflow.rule.info;
5495
5496 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5497 dnflow.flags |= IPFW_ARGS_ETHER;
5498 dnflow.ifp = kif->pfik_ifp;
5499
5500 switch (af) {
5501 case AF_INET:
5502 dnflow.f_id.addr_type = 4;
5503 dnflow.f_id.src_ip = src->v4.s_addr;
5504 dnflow.f_id.dst_ip = dst->v4.s_addr;
5505 break;
5506 case AF_INET6:
5507 dnflow.flags |= IPFW_ARGS_IP6;
5508 dnflow.f_id.addr_type = 6;
5509 dnflow.f_id.src_ip6 = src->v6;
5510 dnflow.f_id.dst_ip6 = dst->v6;
5511 break;
5512 }
5513
5514 PF_RULES_RUNLOCK();
5515
5516 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5517 ip_dn_io_ptr(m0, &dnflow);
5518 if (*m0 != NULL)
5519 pf_dummynet_flag_remove(m, mtag);
5520 } else {
5521 PF_RULES_RUNLOCK();
5522 }
5523
5524 if (action == PF_PASS && bridge_to) {
5525 pf_bridge_to(bridge_to->pfik_ifp, *m0);
5526 *m0 = NULL; /* We've eaten the packet. */
5527 }
5528
5529 return (action);
5530 }
5531
5532 #define PF_TEST_ATTRIB(t, a) \
5533 if (t) { \
5534 r = a; \
5535 continue; \
5536 } else do { \
5537 } while (0)
5538
5539 static __inline u_short
pf_rule_apply_nat(struct pf_test_ctx * ctx,struct pf_krule * r)5540 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r)
5541 {
5542 struct pf_pdesc *pd = ctx->pd;
5543 u_short transerror;
5544 u_int8_t nat_action;
5545
5546 if (r->rule_flag & PFRULE_AFTO) {
5547 /* Don't translate if there was an old style NAT rule */
5548 if (ctx->nr != NULL)
5549 return (PFRES_TRANSLATE);
5550
5551 /* pass af-to rules, unsupported on match rules */
5552 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__));
5553 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */
5554 ctx->nat_pool = &(r->nat);
5555 ctx->nr = r;
5556 pd->naf = r->naf;
5557 if (pf_get_transaddr_af(ctx->nr, pd) == -1) {
5558 return (PFRES_TRANSLATE);
5559 }
5560 return (PFRES_MATCH);
5561 } else if (r->rdr.cur || r->nat.cur) {
5562 /* Don't translate if there was an old style NAT rule */
5563 if (ctx->nr != NULL)
5564 return (PFRES_TRANSLATE);
5565
5566 /* match/pass nat-to/rdr-to rules */
5567 ctx->nr = r;
5568 if (r->nat.cur) {
5569 nat_action = PF_NAT;
5570 ctx->nat_pool = &(r->nat);
5571 } else {
5572 nat_action = PF_RDR;
5573 ctx->nat_pool = &(r->rdr);
5574 }
5575
5576 transerror = pf_get_transaddr(ctx, ctx->nr,
5577 nat_action, ctx->nat_pool);
5578 if (transerror == PFRES_MATCH) {
5579 ctx->rewrite += pf_translate_compat(ctx);
5580 return(PFRES_MATCH);
5581 }
5582 return (transerror);
5583 }
5584
5585 return (PFRES_MAX);
5586 }
5587
5588 enum pf_test_status
pf_match_rule(struct pf_test_ctx * ctx,struct pf_kruleset * ruleset)5589 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset)
5590 {
5591 struct pf_krule_item *ri;
5592 struct pf_krule *r;
5593 struct pf_krule *save_a;
5594 struct pf_kruleset *save_aruleset;
5595 struct pf_pdesc *pd = ctx->pd;
5596 u_short transerror;
5597
5598 r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr);
5599 while (r != NULL) {
5600 if (ctx->pd->related_rule) {
5601 *ctx->rm = ctx->pd->related_rule;
5602 break;
5603 }
5604 pf_counter_u64_add(&r->evaluations, 1);
5605 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5606 r->skip[PF_SKIP_IFP]);
5607 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5608 r->skip[PF_SKIP_DIR]);
5609 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5610 r->skip[PF_SKIP_AF]);
5611 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5612 r->skip[PF_SKIP_PROTO]);
5613 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5614 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5615 r->skip[PF_SKIP_SRC_ADDR]);
5616 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5617 r->dst.neg, NULL, M_GETFIB(pd->m)),
5618 r->skip[PF_SKIP_DST_ADDR]);
5619 switch (pd->virtual_proto) {
5620 case PF_VPROTO_FRAGMENT:
5621 /* tcp/udp only. port_op always 0 in other cases */
5622 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5623 TAILQ_NEXT(r, entries));
5624 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5625 TAILQ_NEXT(r, entries));
5626 /* icmp only. type/code always 0 in other cases */
5627 PF_TEST_ATTRIB((r->type || r->code),
5628 TAILQ_NEXT(r, entries));
5629 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5630 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5631 TAILQ_NEXT(r, entries));
5632 break;
5633
5634 case IPPROTO_TCP:
5635 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th))
5636 != r->flags,
5637 TAILQ_NEXT(r, entries));
5638 /* FALLTHROUGH */
5639 case IPPROTO_SCTP:
5640 case IPPROTO_UDP:
5641 /* tcp/udp only. port_op always 0 in other cases */
5642 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5643 r->src.port[0], r->src.port[1], pd->nsport),
5644 r->skip[PF_SKIP_SRC_PORT]);
5645 /* tcp/udp only. port_op always 0 in other cases */
5646 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5647 r->dst.port[0], r->dst.port[1], pd->ndport),
5648 r->skip[PF_SKIP_DST_PORT]);
5649 /* tcp/udp only. uid.op always 0 in other cases */
5650 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5651 pf_socket_lookup(pd), 1)) &&
5652 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5653 pd->lookup.uid),
5654 TAILQ_NEXT(r, entries));
5655 /* tcp/udp only. gid.op always 0 in other cases */
5656 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5657 pf_socket_lookup(pd), 1)) &&
5658 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5659 pd->lookup.gid),
5660 TAILQ_NEXT(r, entries));
5661 break;
5662
5663 case IPPROTO_ICMP:
5664 case IPPROTO_ICMPV6:
5665 /* icmp only. type always 0 in other cases */
5666 PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1,
5667 TAILQ_NEXT(r, entries));
5668 /* icmp only. type always 0 in other cases */
5669 PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1,
5670 TAILQ_NEXT(r, entries));
5671 break;
5672
5673 default:
5674 break;
5675 }
5676 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5677 TAILQ_NEXT(r, entries));
5678 PF_TEST_ATTRIB(r->prio &&
5679 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5680 TAILQ_NEXT(r, entries));
5681 PF_TEST_ATTRIB(r->prob &&
5682 r->prob <= arc4random(),
5683 TAILQ_NEXT(r, entries));
5684 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r,
5685 &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0),
5686 TAILQ_NEXT(r, entries));
5687 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) ==
5688 r->rcvifnot),
5689 TAILQ_NEXT(r, entries));
5690 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5691 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5692 TAILQ_NEXT(r, entries));
5693 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5694 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5695 pf_osfp_fingerprint(pd, ctx->th),
5696 r->os_fingerprint)),
5697 TAILQ_NEXT(r, entries));
5698 /* must be last! */
5699 if (r->pktrate.limit) {
5700 PF_TEST_ATTRIB((pf_check_threshold(&r->pktrate)),
5701 TAILQ_NEXT(r, entries));
5702 }
5703 /* FALLTHROUGH */
5704 if (r->tag)
5705 ctx->tag = r->tag;
5706 if (r->anchor == NULL) {
5707 if (r->action == PF_MATCH) {
5708 /*
5709 * Apply translations before increasing counters,
5710 * in case it fails.
5711 */
5712 transerror = pf_rule_apply_nat(ctx, r);
5713 switch (transerror) {
5714 case PFRES_MATCH:
5715 /* Translation action found in rule and applied successfully */
5716 case PFRES_MAX:
5717 /* No translation action found in rule */
5718 break;
5719 default:
5720 /* Translation action found in rule but failed to apply */
5721 REASON_SET(&ctx->reason, transerror);
5722 return (PF_TEST_FAIL);
5723 }
5724 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5725 if (ri == NULL) {
5726 REASON_SET(&ctx->reason, PFRES_MEMORY);
5727 return (PF_TEST_FAIL);
5728 }
5729 ri->r = r;
5730 SLIST_INSERT_HEAD(&ctx->rules, ri, entry);
5731 pf_counter_u64_critical_enter();
5732 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5733 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5734 pf_counter_u64_critical_exit();
5735 pf_rule_to_actions(r, &pd->act);
5736 if (r->log)
5737 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5738 ctx->a, ruleset, pd, 1, NULL);
5739 } else {
5740 /*
5741 * found matching r
5742 */
5743 *ctx->rm = r;
5744 /*
5745 * anchor, with ruleset, where r belongs to
5746 */
5747 *ctx->am = ctx->a;
5748 /*
5749 * ruleset where r belongs to
5750 */
5751 *ctx->rsm = ruleset;
5752 /*
5753 * ruleset, where anchor belongs to.
5754 */
5755 ctx->arsm = ctx->aruleset;
5756 }
5757 if (pd->act.log & PF_LOG_MATCHES)
5758 pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules);
5759 if (r->quick) {
5760 ctx->test_status = PF_TEST_QUICK;
5761 break;
5762 }
5763 } else {
5764 save_a = ctx->a;
5765 save_aruleset = ctx->aruleset;
5766
5767 ctx->a = r; /* remember anchor */
5768 ctx->aruleset = ruleset; /* and its ruleset */
5769 if (ctx->a->quick)
5770 ctx->test_status = PF_TEST_QUICK;
5771 /*
5772 * Note: we don't need to restore if we are not going
5773 * to continue with ruleset evaluation.
5774 */
5775 if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) {
5776 break;
5777 }
5778 ctx->a = save_a;
5779 ctx->aruleset = save_aruleset;
5780 }
5781 r = TAILQ_NEXT(r, entries);
5782 }
5783
5784 return (ctx->test_status);
5785 }
5786
5787 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,u_short * reason,struct inpcb * inp)5788 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5789 struct pf_pdesc *pd, struct pf_krule **am,
5790 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp)
5791 {
5792 struct pf_krule *r = NULL;
5793 struct pf_kruleset *ruleset = NULL;
5794 struct pf_krule_item *ri;
5795 struct pf_test_ctx ctx;
5796 u_short transerror;
5797 int action = PF_PASS;
5798 u_int16_t bproto_sum = 0, bip_sum = 0;
5799 enum pf_test_status rv;
5800
5801 PF_RULES_RASSERT();
5802
5803 bzero(&ctx, sizeof(ctx));
5804 ctx.tag = -1;
5805 ctx.pd = pd;
5806 ctx.rm = rm;
5807 ctx.am = am;
5808 ctx.rsm = rsm;
5809 ctx.th = &pd->hdr.tcp;
5810 ctx.reason = *reason;
5811 SLIST_INIT(&ctx.rules);
5812
5813 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
5814 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
5815
5816 if (inp != NULL) {
5817 INP_LOCK_ASSERT(inp);
5818 pd->lookup.uid = inp->inp_cred->cr_uid;
5819 pd->lookup.gid = inp->inp_cred->cr_gid;
5820 pd->lookup.done = 1;
5821 }
5822
5823 if (pd->ip_sum)
5824 bip_sum = *pd->ip_sum;
5825
5826 switch (pd->virtual_proto) {
5827 case IPPROTO_TCP:
5828 bproto_sum = ctx.th->th_sum;
5829 pd->nsport = ctx.th->th_sport;
5830 pd->ndport = ctx.th->th_dport;
5831 break;
5832 case IPPROTO_UDP:
5833 bproto_sum = pd->hdr.udp.uh_sum;
5834 pd->nsport = pd->hdr.udp.uh_sport;
5835 pd->ndport = pd->hdr.udp.uh_dport;
5836 break;
5837 case IPPROTO_SCTP:
5838 pd->nsport = pd->hdr.sctp.src_port;
5839 pd->ndport = pd->hdr.sctp.dest_port;
5840 break;
5841 #ifdef INET
5842 case IPPROTO_ICMP:
5843 MPASS(pd->af == AF_INET);
5844 ctx.icmptype = pd->hdr.icmp.icmp_type;
5845 ctx.icmpcode = pd->hdr.icmp.icmp_code;
5846 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5847 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5848 if (ctx.icmp_dir == PF_IN) {
5849 pd->nsport = ctx.virtual_id;
5850 pd->ndport = ctx.virtual_type;
5851 } else {
5852 pd->nsport = ctx.virtual_type;
5853 pd->ndport = ctx.virtual_id;
5854 }
5855 break;
5856 #endif /* INET */
5857 #ifdef INET6
5858 case IPPROTO_ICMPV6:
5859 MPASS(pd->af == AF_INET6);
5860 ctx.icmptype = pd->hdr.icmp6.icmp6_type;
5861 ctx.icmpcode = pd->hdr.icmp6.icmp6_code;
5862 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype,
5863 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type);
5864 if (ctx.icmp_dir == PF_IN) {
5865 pd->nsport = ctx.virtual_id;
5866 pd->ndport = ctx.virtual_type;
5867 } else {
5868 pd->nsport = ctx.virtual_type;
5869 pd->ndport = ctx.virtual_id;
5870 }
5871
5872 break;
5873 #endif /* INET6 */
5874 default:
5875 pd->nsport = pd->ndport = 0;
5876 break;
5877 }
5878 pd->osport = pd->nsport;
5879 pd->odport = pd->ndport;
5880
5881 /* check packet for BINAT/NAT/RDR */
5882 transerror = pf_get_translation(&ctx);
5883 switch (transerror) {
5884 default:
5885 /* A translation error occurred. */
5886 REASON_SET(&ctx.reason, transerror);
5887 goto cleanup;
5888 case PFRES_MAX:
5889 /* No match. */
5890 break;
5891 case PFRES_MATCH:
5892 KASSERT(ctx.sk != NULL, ("%s: null sk", __func__));
5893 KASSERT(ctx.nk != NULL, ("%s: null nk", __func__));
5894 if (ctx.nr->log) {
5895 PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a,
5896 ruleset, pd, 1, NULL);
5897 }
5898
5899 ctx.rewrite += pf_translate_compat(&ctx);
5900 ctx.nat_pool = &(ctx.nr->rdr);
5901 }
5902
5903 ruleset = &pf_main_ruleset;
5904 rv = pf_match_rule(&ctx, ruleset);
5905 if (rv == PF_TEST_FAIL) {
5906 /*
5907 * Reason has been set in pf_match_rule() already.
5908 */
5909 goto cleanup;
5910 }
5911
5912 r = *ctx.rm; /* matching rule */
5913 ctx.a = *ctx.am; /* rule that defines an anchor containing 'r' */
5914 ruleset = *ctx.rsm; /* ruleset of the anchor defined by the rule 'a' */
5915 ctx.aruleset = ctx.arsm; /* ruleset of the 'a' rule itself */
5916
5917 REASON_SET(&ctx.reason, PFRES_MATCH);
5918
5919 /* apply actions for last matching pass/block rule */
5920 pf_rule_to_actions(r, &pd->act);
5921 transerror = pf_rule_apply_nat(&ctx, r);
5922 switch (transerror) {
5923 case PFRES_MATCH:
5924 /* Translation action found in rule and applied successfully */
5925 case PFRES_MAX:
5926 /* No translation action found in rule */
5927 break;
5928 default:
5929 /* Translation action found in rule but failed to apply */
5930 REASON_SET(&ctx.reason, transerror);
5931 goto cleanup;
5932 }
5933
5934 if (r->log) {
5935 if (ctx.rewrite)
5936 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5937 PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL);
5938 }
5939 if (pd->act.log & PF_LOG_MATCHES)
5940 pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules);
5941 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5942 (r->action == PF_DROP) &&
5943 ((r->rule_flag & PFRULE_RETURNRST) ||
5944 (r->rule_flag & PFRULE_RETURNICMP) ||
5945 (r->rule_flag & PFRULE_RETURN))) {
5946 pf_return(r, ctx.nr, pd, ctx.th, bproto_sum,
5947 bip_sum, &ctx.reason, r->rtableid);
5948 }
5949
5950 if (r->action == PF_DROP)
5951 goto cleanup;
5952
5953 if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) {
5954 REASON_SET(&ctx.reason, PFRES_MEMORY);
5955 goto cleanup;
5956 }
5957 if (pd->act.rtableid >= 0)
5958 M_SETFIB(pd->m, pd->act.rtableid);
5959
5960 if (r->rt) {
5961 /*
5962 * Set act.rt here instead of in pf_rule_to_actions() because
5963 * it is applied only from the last pass rule. For rules
5964 * with the prefer-ipv6-nexthop option act.rt_af is a hint
5965 * about AF of the forwarded packet and might be changed.
5966 */
5967 pd->act.rt = r->rt;
5968 if (r->rt == PF_REPLYTO)
5969 pd->act.rt_af = pd->af;
5970 else
5971 pd->act.rt_af = pd->naf;
5972 if ((transerror = pf_map_addr_sn(pd->af, r, pd->src,
5973 &pd->act.rt_addr, &pd->act.rt_af, &pd->act.rt_kif, NULL,
5974 &(r->route), PF_SN_ROUTE)) != PFRES_MATCH) {
5975 REASON_SET(&ctx.reason, transerror);
5976 goto cleanup;
5977 }
5978 }
5979
5980 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5981 (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL ||
5982 (pd->flags & PFDESC_TCP_NORM)))) {
5983 bool nat64;
5984
5985 action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum);
5986 ctx.sk = ctx.nk = NULL;
5987 if (action != PF_PASS) {
5988 pf_udp_mapping_release(ctx.udp_mapping);
5989 if (r->log || (ctx.nr != NULL && ctx.nr->log) ||
5990 ctx.reason == PFRES_MEMORY)
5991 pd->act.log |= PF_LOG_FORCE;
5992 if (action == PF_DROP &&
5993 (r->rule_flag & PFRULE_RETURN))
5994 pf_return(r, ctx.nr, pd, ctx.th,
5995 bproto_sum, bip_sum, &ctx.reason,
5996 pd->act.rtableid);
5997 *reason = ctx.reason;
5998 return (action);
5999 }
6000
6001 nat64 = pd->af != pd->naf;
6002 if (nat64) {
6003 int ret;
6004
6005 if (ctx.sk == NULL)
6006 ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
6007 if (ctx.nk == NULL)
6008 ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
6009
6010 if (pd->dir == PF_IN) {
6011 ret = pf_translate(pd, &ctx.sk->addr[pd->didx],
6012 ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx],
6013 ctx.sk->port[pd->sidx], ctx.virtual_type,
6014 ctx.icmp_dir);
6015 } else {
6016 ret = pf_translate(pd, &ctx.sk->addr[pd->sidx],
6017 ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx],
6018 ctx.sk->port[pd->didx], ctx.virtual_type,
6019 ctx.icmp_dir);
6020 }
6021
6022 if (ret < 0)
6023 goto cleanup;
6024
6025 ctx.rewrite += ret;
6026
6027 if (ctx.rewrite && ctx.sk->af != ctx.nk->af)
6028 action = PF_AFRT;
6029 }
6030 } else {
6031 while ((ri = SLIST_FIRST(&ctx.rules))) {
6032 SLIST_REMOVE_HEAD(&ctx.rules, entry);
6033 free(ri, M_PF_RULE_ITEM);
6034 }
6035
6036 uma_zfree(V_pf_state_key_z, ctx.sk);
6037 uma_zfree(V_pf_state_key_z, ctx.nk);
6038 ctx.sk = ctx.nk = NULL;
6039 pf_udp_mapping_release(ctx.udp_mapping);
6040 }
6041
6042 /* copy back packet headers if we performed NAT operations */
6043 if (ctx.rewrite)
6044 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6045
6046 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
6047 pd->dir == PF_OUT &&
6048 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) {
6049 /*
6050 * We want the state created, but we dont
6051 * want to send this in case a partner
6052 * firewall has to know about it to allow
6053 * replies through it.
6054 */
6055 *reason = ctx.reason;
6056 return (PF_DEFER);
6057 }
6058
6059 *reason = ctx.reason;
6060 return (action);
6061
6062 cleanup:
6063 while ((ri = SLIST_FIRST(&ctx.rules))) {
6064 SLIST_REMOVE_HEAD(&ctx.rules, entry);
6065 free(ri, M_PF_RULE_ITEM);
6066 }
6067
6068 uma_zfree(V_pf_state_key_z, ctx.sk);
6069 uma_zfree(V_pf_state_key_z, ctx.nk);
6070 pf_udp_mapping_release(ctx.udp_mapping);
6071 *reason = ctx.reason;
6072
6073 return (PF_DROP);
6074 }
6075
6076 static int
pf_create_state(struct pf_krule * r,struct pf_test_ctx * ctx,struct pf_kstate ** sm,u_int16_t bproto_sum,u_int16_t bip_sum)6077 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx,
6078 struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum)
6079 {
6080 struct pf_pdesc *pd = ctx->pd;
6081 struct pf_kstate *s = NULL;
6082 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL };
6083 /*
6084 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same
6085 * but for PF_SN_NAT it is different. Don't try optimizing it,
6086 * just store all 3 hashes.
6087 */
6088 struct pf_srchash *snhs[PF_SN_MAX] = { NULL };
6089 struct tcphdr *th = &pd->hdr.tcp;
6090 u_int16_t mss = V_tcp_mssdflt;
6091 u_short sn_reason;
6092 struct pf_krule_item *ri;
6093
6094 /* check maximums */
6095 if (r->max_states &&
6096 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6097 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6098 REASON_SET(&ctx->reason, PFRES_MAXSTATES);
6099 goto csfailed;
6100 }
6101 /* src node for limits */
6102 if ((r->rule_flag & PFRULE_SRCTRACK) &&
6103 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af,
6104 NULL, NULL, pd->af, PF_SN_LIMIT)) != 0) {
6105 REASON_SET(&ctx->reason, sn_reason);
6106 goto csfailed;
6107 }
6108 /* src node for route-to rule */
6109 if (r->rt) {
6110 if ((r->route.opts & PF_POOL_STICKYADDR) &&
6111 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src,
6112 pd->af, &pd->act.rt_addr, pd->act.rt_kif, pd->act.rt_af,
6113 PF_SN_ROUTE)) != 0) {
6114 REASON_SET(&ctx->reason, sn_reason);
6115 goto csfailed;
6116 }
6117 }
6118 /* src node for translation rule */
6119 if (ctx->nr != NULL) {
6120 KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__));
6121 /*
6122 * The NAT addresses are chosen during ruleset parsing.
6123 * The new afto code stores post-nat addresses in nsaddr.
6124 * The old nat code (also used for new nat-to rules) creates
6125 * state keys and stores addresses in them.
6126 */
6127 if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) &&
6128 (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr,
6129 ctx->sk ? &(ctx->sk->addr[pd->sidx]) : pd->src, pd->af,
6130 ctx->nk ? &(ctx->nk->addr[1]) : &(pd->nsaddr), NULL,
6131 pd->naf, PF_SN_NAT)) != 0 ) {
6132 REASON_SET(&ctx->reason, sn_reason);
6133 goto csfailed;
6134 }
6135 }
6136 s = pf_alloc_state(M_NOWAIT);
6137 if (s == NULL) {
6138 REASON_SET(&ctx->reason, PFRES_MEMORY);
6139 goto csfailed;
6140 }
6141 s->rule = r;
6142 s->nat_rule = ctx->nr;
6143 s->anchor = ctx->a;
6144 memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules));
6145 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6146
6147 if (pd->act.allow_opts)
6148 s->state_flags |= PFSTATE_ALLOWOPTS;
6149 if (r->rule_flag & PFRULE_STATESLOPPY)
6150 s->state_flags |= PFSTATE_SLOPPY;
6151 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6152 s->state_flags |= PFSTATE_SCRUB_TCP;
6153 if ((r->rule_flag & PFRULE_PFLOW) ||
6154 (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW))
6155 s->state_flags |= PFSTATE_PFLOW;
6156
6157 s->act.log = pd->act.log & PF_LOG_ALL;
6158 s->sync_state = PFSYNC_S_NONE;
6159 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6160
6161 if (ctx->nr != NULL)
6162 s->act.log |= ctx->nr->log & PF_LOG_ALL;
6163 switch (pd->proto) {
6164 case IPPROTO_TCP:
6165 s->src.seqlo = ntohl(th->th_seq);
6166 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6167 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6168 r->keep_state == PF_STATE_MODULATE) {
6169 /* Generate sequence number modulator */
6170 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6171 0)
6172 s->src.seqdiff = 1;
6173 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6174 htonl(s->src.seqlo + s->src.seqdiff), 0);
6175 ctx->rewrite = 1;
6176 } else
6177 s->src.seqdiff = 0;
6178 if (tcp_get_flags(th) & TH_SYN) {
6179 s->src.seqhi++;
6180 s->src.wscale = pf_get_wscale(pd);
6181 }
6182 s->src.max_win = MAX(ntohs(th->th_win), 1);
6183 if (s->src.wscale & PF_WSCALE_MASK) {
6184 /* Remove scale factor from initial window */
6185 int win = s->src.max_win;
6186 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6187 s->src.max_win = (win - 1) >>
6188 (s->src.wscale & PF_WSCALE_MASK);
6189 }
6190 if (tcp_get_flags(th) & TH_FIN)
6191 s->src.seqhi++;
6192 s->dst.seqhi = 1;
6193 s->dst.max_win = 1;
6194 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6195 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6196 s->timeout = PFTM_TCP_FIRST_PACKET;
6197 atomic_add_32(&V_pf_status.states_halfopen, 1);
6198 break;
6199 case IPPROTO_UDP:
6200 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6201 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6202 s->timeout = PFTM_UDP_FIRST_PACKET;
6203 break;
6204 case IPPROTO_SCTP:
6205 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6206 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6207 s->timeout = PFTM_SCTP_FIRST_PACKET;
6208 break;
6209 case IPPROTO_ICMP:
6210 #ifdef INET6
6211 case IPPROTO_ICMPV6:
6212 #endif /* INET6 */
6213 s->timeout = PFTM_ICMP_FIRST_PACKET;
6214 break;
6215 default:
6216 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6217 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6218 s->timeout = PFTM_OTHER_FIRST_PACKET;
6219 }
6220
6221 s->creation = s->expire = pf_get_uptime();
6222
6223 if (pd->proto == IPPROTO_TCP) {
6224 if (s->state_flags & PFSTATE_SCRUB_TCP &&
6225 pf_normalize_tcp_init(pd, th, &s->src)) {
6226 REASON_SET(&ctx->reason, PFRES_MEMORY);
6227 goto csfailed;
6228 }
6229 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6230 pf_normalize_tcp_stateful(pd, &ctx->reason, th, s,
6231 &s->src, &s->dst, &ctx->rewrite)) {
6232 /* This really shouldn't happen!!! */
6233 DPFPRINTF(PF_DEBUG_URGENT,
6234 "%s: tcp normalize failed on first "
6235 "pkt", __func__);
6236 goto csfailed;
6237 }
6238 } else if (pd->proto == IPPROTO_SCTP) {
6239 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6240 goto csfailed;
6241 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6242 goto csfailed;
6243 }
6244 s->direction = pd->dir;
6245
6246 /*
6247 * sk/nk could already been setup by pf_get_translation().
6248 */
6249 if (ctx->sk == NULL && ctx->nk == NULL) {
6250 MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6251 MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6252 if (pf_state_key_setup(pd, pd->nsport, pd->ndport,
6253 &ctx->sk, &ctx->nk)) {
6254 goto csfailed;
6255 }
6256 } else
6257 KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p",
6258 __func__, ctx->nr, ctx->sk, ctx->nk));
6259
6260 /* Swap sk/nk for PF_OUT. */
6261 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6262 (pd->dir == PF_IN) ? ctx->sk : ctx->nk,
6263 (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) {
6264 REASON_SET(&ctx->reason, PFRES_STATEINS);
6265 goto drop;
6266 } else
6267 *sm = s;
6268 ctx->sk = ctx->nk = NULL;
6269
6270 STATE_INC_COUNTERS(s);
6271
6272 /*
6273 * Lock order is important: first state, then source node.
6274 */
6275 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6276 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6277 s->sns[sn_type] = sns[sn_type];
6278 PF_HASHROW_UNLOCK(snhs[sn_type]);
6279 }
6280 }
6281
6282 if (ctx->tag > 0)
6283 s->tag = ctx->tag;
6284 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6285 TH_SYN && r->keep_state == PF_STATE_SYNPROXY && pd->dir == PF_IN) {
6286 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6287 pf_undo_nat(ctx->nr, pd, bip_sum);
6288 s->src.seqhi = arc4random();
6289 /* Find mss option */
6290 int rtid = M_GETFIB(pd->m);
6291 mss = pf_get_mss(pd);
6292 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6293 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6294 s->src.mss = mss;
6295 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6296 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6297 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6298 pd->act.rtableid);
6299 REASON_SET(&ctx->reason, PFRES_SYNPROXY);
6300 return (PF_SYNPROXY_DROP);
6301 }
6302
6303 s->udp_mapping = ctx->udp_mapping;
6304
6305 return (PF_PASS);
6306
6307 csfailed:
6308 while ((ri = SLIST_FIRST(&ctx->rules))) {
6309 SLIST_REMOVE_HEAD(&ctx->rules, entry);
6310 free(ri, M_PF_RULE_ITEM);
6311 }
6312
6313 uma_zfree(V_pf_state_key_z, ctx->sk);
6314 uma_zfree(V_pf_state_key_z, ctx->nk);
6315
6316 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
6317 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) {
6318 if (--sns[sn_type]->states == 0 &&
6319 sns[sn_type]->expire == 0) {
6320 pf_unlink_src_node(sns[sn_type]);
6321 pf_free_src_node(sns[sn_type]);
6322 counter_u64_add(
6323 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6324 }
6325 PF_HASHROW_UNLOCK(snhs[sn_type]);
6326 }
6327 }
6328
6329 drop:
6330 if (s != NULL) {
6331 pf_src_tree_remove_state(s);
6332 s->timeout = PFTM_UNLINKED;
6333 pf_free_state(s);
6334 }
6335
6336 return (PF_DROP);
6337 }
6338
6339 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6340 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6341 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6342 int icmp_dir)
6343 {
6344 /*
6345 * pf_translate() implements OpenBSD's "new" NAT approach.
6346 * We don't follow it, because it involves a breaking syntax change
6347 * (removing nat/rdr rules, moving it into regular pf rules.)
6348 * It also moves NAT processing to be done after normal rules evaluation
6349 * whereas in FreeBSD that's done before rules processing.
6350 *
6351 * We adopt the function only for nat64, and keep other NAT processing
6352 * before rules processing.
6353 */
6354 int rewrite = 0;
6355 int afto = pd->af != pd->naf;
6356
6357 MPASS(afto);
6358
6359 switch (pd->proto) {
6360 case IPPROTO_TCP:
6361 case IPPROTO_UDP:
6362 case IPPROTO_SCTP:
6363 if (afto || *pd->sport != sport) {
6364 pf_change_ap(pd, pd->src, pd->sport,
6365 saddr, sport);
6366 rewrite = 1;
6367 }
6368 if (afto || *pd->dport != dport) {
6369 pf_change_ap(pd, pd->dst, pd->dport,
6370 daddr, dport);
6371 rewrite = 1;
6372 }
6373 break;
6374
6375 #ifdef INET
6376 case IPPROTO_ICMP:
6377 /* pf_translate() is also used when logging invalid packets */
6378 if (pd->af != AF_INET)
6379 return (0);
6380
6381 if (afto) {
6382 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6383 return (-1);
6384 pd->proto = IPPROTO_ICMPV6;
6385 rewrite = 1;
6386 }
6387 if (virtual_type == htons(ICMP_ECHO)) {
6388 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6389
6390 if (icmpid != pd->hdr.icmp.icmp_id) {
6391 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6392 pd->hdr.icmp.icmp_cksum,
6393 pd->hdr.icmp.icmp_id, icmpid, 0);
6394 pd->hdr.icmp.icmp_id = icmpid;
6395 /* XXX TODO copyback. */
6396 rewrite = 1;
6397 }
6398 }
6399 break;
6400 #endif /* INET */
6401
6402 #ifdef INET6
6403 case IPPROTO_ICMPV6:
6404 /* pf_translate() is also used when logging invalid packets */
6405 if (pd->af != AF_INET6)
6406 return (0);
6407
6408 if (afto) {
6409 /* ip_sum will be recalculated in pf_translate_af */
6410 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6411 return (0);
6412 pd->proto = IPPROTO_ICMP;
6413 rewrite = 1;
6414 }
6415 break;
6416 #endif /* INET6 */
6417
6418 default:
6419 break;
6420 }
6421
6422 return (rewrite);
6423 }
6424
6425 int
pf_translate_compat(struct pf_test_ctx * ctx)6426 pf_translate_compat(struct pf_test_ctx *ctx)
6427 {
6428 struct pf_pdesc *pd = ctx->pd;
6429 struct pf_state_key *nk = ctx->nk;
6430 struct tcphdr *th = &pd->hdr.tcp;
6431 int rewrite = 0;
6432
6433 KASSERT(ctx->sk != NULL, ("%s: null sk", __func__));
6434 KASSERT(ctx->nk != NULL, ("%s: null nk", __func__));
6435
6436 switch (pd->virtual_proto) {
6437 case IPPROTO_TCP:
6438 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6439 nk->port[pd->sidx] != pd->nsport) {
6440 pf_change_ap(pd, pd->src, &th->th_sport,
6441 &nk->addr[pd->sidx], nk->port[pd->sidx]);
6442 pd->sport = &th->th_sport;
6443 pd->nsport = th->th_sport;
6444 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6445 }
6446
6447 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6448 nk->port[pd->didx] != pd->ndport) {
6449 pf_change_ap(pd, pd->dst, &th->th_dport,
6450 &nk->addr[pd->didx], nk->port[pd->didx]);
6451 pd->dport = &th->th_dport;
6452 pd->ndport = th->th_dport;
6453 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6454 }
6455 rewrite++;
6456 break;
6457 case IPPROTO_UDP:
6458 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6459 nk->port[pd->sidx] != pd->nsport) {
6460 pf_change_ap(pd, pd->src,
6461 &pd->hdr.udp.uh_sport,
6462 &nk->addr[pd->sidx],
6463 nk->port[pd->sidx]);
6464 pd->sport = &pd->hdr.udp.uh_sport;
6465 pd->nsport = pd->hdr.udp.uh_sport;
6466 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6467 }
6468
6469 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6470 nk->port[pd->didx] != pd->ndport) {
6471 pf_change_ap(pd, pd->dst,
6472 &pd->hdr.udp.uh_dport,
6473 &nk->addr[pd->didx],
6474 nk->port[pd->didx]);
6475 pd->dport = &pd->hdr.udp.uh_dport;
6476 pd->ndport = pd->hdr.udp.uh_dport;
6477 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6478 }
6479 rewrite++;
6480 break;
6481 case IPPROTO_SCTP: {
6482 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
6483 nk->port[pd->sidx] != pd->nsport) {
6484 pf_change_ap(pd, pd->src,
6485 &pd->hdr.sctp.src_port,
6486 &nk->addr[pd->sidx],
6487 nk->port[pd->sidx]);
6488 pd->sport = &pd->hdr.sctp.src_port;
6489 pd->nsport = pd->hdr.sctp.src_port;
6490 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6491 }
6492 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
6493 nk->port[pd->didx] != pd->ndport) {
6494 pf_change_ap(pd, pd->dst,
6495 &pd->hdr.sctp.dest_port,
6496 &nk->addr[pd->didx],
6497 nk->port[pd->didx]);
6498 pd->dport = &pd->hdr.sctp.dest_port;
6499 pd->ndport = pd->hdr.sctp.dest_port;
6500 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6501 }
6502 break;
6503 }
6504 #ifdef INET
6505 case IPPROTO_ICMP:
6506 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
6507 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
6508 nk->addr[pd->sidx].v4.s_addr, 0);
6509 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6510 }
6511
6512 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
6513 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
6514 nk->addr[pd->didx].v4.s_addr, 0);
6515 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6516 }
6517
6518 if (ctx->virtual_type == htons(ICMP_ECHO) &&
6519 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
6520 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6521 pd->hdr.icmp.icmp_cksum, pd->nsport,
6522 nk->port[pd->sidx], 0);
6523 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
6524 pd->sport = &pd->hdr.icmp.icmp_id;
6525 }
6526 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
6527 break;
6528 #endif /* INET */
6529 #ifdef INET6
6530 case IPPROTO_ICMPV6:
6531 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
6532 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
6533 &nk->addr[pd->sidx], 0);
6534 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6535 }
6536
6537 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
6538 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
6539 &nk->addr[pd->didx], 0);
6540 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6541 }
6542 rewrite++;
6543 break;
6544 #endif /* INET */
6545 default:
6546 switch (pd->af) {
6547 #ifdef INET
6548 case AF_INET:
6549 if (PF_ANEQ(&pd->nsaddr,
6550 &nk->addr[pd->sidx], AF_INET)) {
6551 pf_change_a(&pd->src->v4.s_addr,
6552 pd->ip_sum,
6553 nk->addr[pd->sidx].v4.s_addr, 0);
6554 pf_addrcpy(&pd->nsaddr, pd->src, pd->af);
6555 }
6556
6557 if (PF_ANEQ(&pd->ndaddr,
6558 &nk->addr[pd->didx], AF_INET)) {
6559 pf_change_a(&pd->dst->v4.s_addr,
6560 pd->ip_sum,
6561 nk->addr[pd->didx].v4.s_addr, 0);
6562 pf_addrcpy(&pd->ndaddr, pd->dst, pd->af);
6563 }
6564 break;
6565 #endif /* INET */
6566 #ifdef INET6
6567 case AF_INET6:
6568 if (PF_ANEQ(&pd->nsaddr,
6569 &nk->addr[pd->sidx], AF_INET6)) {
6570 pf_addrcpy(&pd->nsaddr, &nk->addr[pd->sidx],
6571 pd->af);
6572 pf_addrcpy(pd->src, &nk->addr[pd->sidx], pd->af);
6573 }
6574
6575 if (PF_ANEQ(&pd->ndaddr,
6576 &nk->addr[pd->didx], AF_INET6)) {
6577 pf_addrcpy(&pd->ndaddr, &nk->addr[pd->didx],
6578 pd->af);
6579 pf_addrcpy(pd->dst, &nk->addr[pd->didx],
6580 pd->af);
6581 }
6582 break;
6583 #endif /* INET6 */
6584 }
6585 break;
6586 }
6587 return (rewrite);
6588 }
6589
6590 static int
pf_tcp_track_full(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,int * copyback,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6591 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd,
6592 u_short *reason, int *copyback, struct pf_state_peer *src,
6593 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst)
6594 {
6595 struct tcphdr *th = &pd->hdr.tcp;
6596 u_int16_t win = ntohs(th->th_win);
6597 u_int32_t ack, end, data_end, seq, orig_seq;
6598 u_int8_t sws, dws;
6599 int ackskew;
6600
6601 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6602 sws = src->wscale & PF_WSCALE_MASK;
6603 dws = dst->wscale & PF_WSCALE_MASK;
6604 } else
6605 sws = dws = 0;
6606
6607 /*
6608 * Sequence tracking algorithm from Guido van Rooij's paper:
6609 * http://www.madison-gurkha.com/publications/tcp_filtering/
6610 * tcp_filtering.ps
6611 */
6612
6613 orig_seq = seq = ntohl(th->th_seq);
6614 if (src->seqlo == 0) {
6615 /* First packet from this end. Set its state */
6616
6617 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6618 src->scrub == NULL) {
6619 if (pf_normalize_tcp_init(pd, th, src)) {
6620 REASON_SET(reason, PFRES_MEMORY);
6621 return (PF_DROP);
6622 }
6623 }
6624
6625 /* Deferred generation of sequence number modulator */
6626 if (dst->seqdiff && !src->seqdiff) {
6627 /* use random iss for the TCP server */
6628 while ((src->seqdiff = arc4random() - seq) == 0)
6629 ;
6630 ack = ntohl(th->th_ack) - dst->seqdiff;
6631 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6632 src->seqdiff), 0);
6633 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6634 *copyback = 1;
6635 } else {
6636 ack = ntohl(th->th_ack);
6637 }
6638
6639 end = seq + pd->p_len;
6640 if (tcp_get_flags(th) & TH_SYN) {
6641 end++;
6642 if (dst->wscale & PF_WSCALE_FLAG) {
6643 src->wscale = pf_get_wscale(pd);
6644 if (src->wscale & PF_WSCALE_FLAG) {
6645 /* Remove scale factor from initial
6646 * window */
6647 sws = src->wscale & PF_WSCALE_MASK;
6648 win = ((u_int32_t)win + (1 << sws) - 1)
6649 >> sws;
6650 dws = dst->wscale & PF_WSCALE_MASK;
6651 } else {
6652 /* fixup other window */
6653 dst->max_win = MIN(TCP_MAXWIN,
6654 (u_int32_t)dst->max_win <<
6655 (dst->wscale & PF_WSCALE_MASK));
6656 /* in case of a retrans SYN|ACK */
6657 dst->wscale = 0;
6658 }
6659 }
6660 }
6661 data_end = end;
6662 if (tcp_get_flags(th) & TH_FIN)
6663 end++;
6664
6665 src->seqlo = seq;
6666 if (src->state < TCPS_SYN_SENT)
6667 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6668
6669 /*
6670 * May need to slide the window (seqhi may have been set by
6671 * the crappy stack check or if we picked up the connection
6672 * after establishment)
6673 */
6674 if (src->seqhi == 1 ||
6675 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6676 src->seqhi = end + MAX(1, dst->max_win << dws);
6677 if (win > src->max_win)
6678 src->max_win = win;
6679
6680 } else {
6681 ack = ntohl(th->th_ack) - dst->seqdiff;
6682 if (src->seqdiff) {
6683 /* Modulate sequence numbers */
6684 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6685 src->seqdiff), 0);
6686 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6687 *copyback = 1;
6688 }
6689 end = seq + pd->p_len;
6690 if (tcp_get_flags(th) & TH_SYN)
6691 end++;
6692 data_end = end;
6693 if (tcp_get_flags(th) & TH_FIN)
6694 end++;
6695 }
6696
6697 if ((tcp_get_flags(th) & TH_ACK) == 0) {
6698 /* Let it pass through the ack skew check */
6699 ack = dst->seqlo;
6700 } else if ((ack == 0 &&
6701 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6702 /* broken tcp stacks do not set ack */
6703 (dst->state < TCPS_SYN_SENT)) {
6704 /*
6705 * Many stacks (ours included) will set the ACK number in an
6706 * FIN|ACK if the SYN times out -- no sequence to ACK.
6707 */
6708 ack = dst->seqlo;
6709 }
6710
6711 if (seq == end) {
6712 /* Ease sequencing restrictions on no data packets */
6713 seq = src->seqlo;
6714 data_end = end = seq;
6715 }
6716
6717 ackskew = dst->seqlo - ack;
6718
6719 /*
6720 * Need to demodulate the sequence numbers in any TCP SACK options
6721 * (Selective ACK). We could optionally validate the SACK values
6722 * against the current ACK window, either forwards or backwards, but
6723 * I'm not confident that SACK has been implemented properly
6724 * everywhere. It wouldn't surprise me if several stacks accidentally
6725 * SACK too far backwards of previously ACKed data. There really aren't
6726 * any security implications of bad SACKing unless the target stack
6727 * doesn't validate the option length correctly. Someone trying to
6728 * spoof into a TCP connection won't bother blindly sending SACK
6729 * options anyway.
6730 */
6731 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6732 if (pf_modulate_sack(pd, th, dst))
6733 *copyback = 1;
6734 }
6735
6736 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
6737 if (SEQ_GEQ(src->seqhi, data_end) &&
6738 /* Last octet inside other's window space */
6739 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6740 /* Retrans: not more than one window back */
6741 (ackskew >= -MAXACKWINDOW) &&
6742 /* Acking not more than one reassembled fragment backwards */
6743 (ackskew <= (MAXACKWINDOW << sws)) &&
6744 /* Acking not more than one window forward */
6745 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6746 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6747 /* Require an exact/+1 sequence match on resets when possible */
6748
6749 if (dst->scrub || src->scrub) {
6750 if (pf_normalize_tcp_stateful(pd, reason, th,
6751 state, src, dst, copyback))
6752 return (PF_DROP);
6753 }
6754
6755 /* update max window */
6756 if (src->max_win < win)
6757 src->max_win = win;
6758 /* synchronize sequencing */
6759 if (SEQ_GT(end, src->seqlo))
6760 src->seqlo = end;
6761 /* slide the window of what the other end can send */
6762 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6763 dst->seqhi = ack + MAX((win << sws), 1);
6764
6765 /* update states */
6766 if (tcp_get_flags(th) & TH_SYN)
6767 if (src->state < TCPS_SYN_SENT)
6768 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6769 if (tcp_get_flags(th) & TH_FIN)
6770 if (src->state < TCPS_CLOSING)
6771 pf_set_protostate(state, psrc, TCPS_CLOSING);
6772 if (tcp_get_flags(th) & TH_ACK) {
6773 if (dst->state == TCPS_SYN_SENT) {
6774 pf_set_protostate(state, pdst,
6775 TCPS_ESTABLISHED);
6776 if (src->state == TCPS_ESTABLISHED &&
6777 state->sns[PF_SN_LIMIT] != NULL &&
6778 pf_src_connlimit(state)) {
6779 REASON_SET(reason, PFRES_SRCLIMIT);
6780 return (PF_DROP);
6781 }
6782 } else if (dst->state == TCPS_CLOSING)
6783 pf_set_protostate(state, pdst,
6784 TCPS_FIN_WAIT_2);
6785 }
6786 if (tcp_get_flags(th) & TH_RST)
6787 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6788
6789 /* update expire time */
6790 state->expire = pf_get_uptime();
6791 if (src->state >= TCPS_FIN_WAIT_2 &&
6792 dst->state >= TCPS_FIN_WAIT_2)
6793 state->timeout = PFTM_TCP_CLOSED;
6794 else if (src->state >= TCPS_CLOSING &&
6795 dst->state >= TCPS_CLOSING)
6796 state->timeout = PFTM_TCP_FIN_WAIT;
6797 else if (src->state < TCPS_ESTABLISHED ||
6798 dst->state < TCPS_ESTABLISHED)
6799 state->timeout = PFTM_TCP_OPENING;
6800 else if (src->state >= TCPS_CLOSING ||
6801 dst->state >= TCPS_CLOSING)
6802 state->timeout = PFTM_TCP_CLOSING;
6803 else
6804 state->timeout = PFTM_TCP_ESTABLISHED;
6805
6806 /* Fall through to PASS packet */
6807
6808 } else if ((dst->state < TCPS_SYN_SENT ||
6809 dst->state >= TCPS_FIN_WAIT_2 ||
6810 src->state >= TCPS_FIN_WAIT_2) &&
6811 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6812 /* Within a window forward of the originating packet */
6813 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6814 /* Within a window backward of the originating packet */
6815
6816 /*
6817 * This currently handles three situations:
6818 * 1) Stupid stacks will shotgun SYNs before their peer
6819 * replies.
6820 * 2) When PF catches an already established stream (the
6821 * firewall rebooted, the state table was flushed, routes
6822 * changed...)
6823 * 3) Packets get funky immediately after the connection
6824 * closes (this should catch Solaris spurious ACK|FINs
6825 * that web servers like to spew after a close)
6826 *
6827 * This must be a little more careful than the above code
6828 * since packet floods will also be caught here. We don't
6829 * update the TTL here to mitigate the damage of a packet
6830 * flood and so the same code can handle awkward establishment
6831 * and a loosened connection close.
6832 * In the establishment case, a correct peer response will
6833 * validate the connection, go through the normal state code
6834 * and keep updating the state TTL.
6835 */
6836
6837 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6838 printf("pf: loose state match: ");
6839 pf_print_state(state);
6840 pf_print_flags(tcp_get_flags(th));
6841 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6842 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6843 pd->p_len, ackskew, (unsigned long long)state->packets[0],
6844 (unsigned long long)state->packets[1],
6845 pd->dir == PF_IN ? "in" : "out",
6846 pd->dir == state->direction ? "fwd" : "rev");
6847 }
6848
6849 if (dst->scrub || src->scrub) {
6850 if (pf_normalize_tcp_stateful(pd, reason, th,
6851 state, src, dst, copyback))
6852 return (PF_DROP);
6853 }
6854
6855 /* update max window */
6856 if (src->max_win < win)
6857 src->max_win = win;
6858 /* synchronize sequencing */
6859 if (SEQ_GT(end, src->seqlo))
6860 src->seqlo = end;
6861 /* slide the window of what the other end can send */
6862 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6863 dst->seqhi = ack + MAX((win << sws), 1);
6864
6865 /*
6866 * Cannot set dst->seqhi here since this could be a shotgunned
6867 * SYN and not an already established connection.
6868 */
6869
6870 if (tcp_get_flags(th) & TH_FIN)
6871 if (src->state < TCPS_CLOSING)
6872 pf_set_protostate(state, psrc, TCPS_CLOSING);
6873 if (tcp_get_flags(th) & TH_RST)
6874 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6875
6876 /* Fall through to PASS packet */
6877
6878 } else {
6879 if (state->dst.state == TCPS_SYN_SENT &&
6880 state->src.state == TCPS_SYN_SENT) {
6881 /* Send RST for state mismatches during handshake */
6882 if (!(tcp_get_flags(th) & TH_RST))
6883 pf_send_tcp(state->rule, pd->af,
6884 pd->dst, pd->src, th->th_dport,
6885 th->th_sport, ntohl(th->th_ack), 0,
6886 TH_RST, 0, 0,
6887 state->rule->return_ttl, M_SKIP_FIREWALL,
6888 0, 0, state->act.rtableid);
6889 src->seqlo = 0;
6890 src->seqhi = 1;
6891 src->max_win = 1;
6892 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6893 printf("pf: BAD state: ");
6894 pf_print_state(state);
6895 pf_print_flags(tcp_get_flags(th));
6896 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6897 "pkts=%llu:%llu dir=%s,%s\n",
6898 seq, orig_seq, ack, pd->p_len, ackskew,
6899 (unsigned long long)state->packets[0],
6900 (unsigned long long)state->packets[1],
6901 pd->dir == PF_IN ? "in" : "out",
6902 pd->dir == state->direction ? "fwd" : "rev");
6903 printf("pf: State failure on: %c %c %c %c | %c %c\n",
6904 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6905 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6906 ' ': '2',
6907 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6908 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6909 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6910 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6911 }
6912 REASON_SET(reason, PFRES_BADSTATE);
6913 return (PF_DROP);
6914 }
6915
6916 return (PF_PASS);
6917 }
6918
6919 static int
pf_tcp_track_sloppy(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason,struct pf_state_peer * src,struct pf_state_peer * dst,u_int8_t psrc,u_int8_t pdst)6920 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd,
6921 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst,
6922 u_int8_t psrc, u_int8_t pdst)
6923 {
6924 struct tcphdr *th = &pd->hdr.tcp;
6925
6926 if (tcp_get_flags(th) & TH_SYN)
6927 if (src->state < TCPS_SYN_SENT)
6928 pf_set_protostate(state, psrc, TCPS_SYN_SENT);
6929 if (tcp_get_flags(th) & TH_FIN)
6930 if (src->state < TCPS_CLOSING)
6931 pf_set_protostate(state, psrc, TCPS_CLOSING);
6932 if (tcp_get_flags(th) & TH_ACK) {
6933 if (dst->state == TCPS_SYN_SENT) {
6934 pf_set_protostate(state, pdst, TCPS_ESTABLISHED);
6935 if (src->state == TCPS_ESTABLISHED &&
6936 state->sns[PF_SN_LIMIT] != NULL &&
6937 pf_src_connlimit(state)) {
6938 REASON_SET(reason, PFRES_SRCLIMIT);
6939 return (PF_DROP);
6940 }
6941 } else if (dst->state == TCPS_CLOSING) {
6942 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2);
6943 } else if (src->state == TCPS_SYN_SENT &&
6944 dst->state < TCPS_SYN_SENT) {
6945 /*
6946 * Handle a special sloppy case where we only see one
6947 * half of the connection. If there is a ACK after
6948 * the initial SYN without ever seeing a packet from
6949 * the destination, set the connection to established.
6950 */
6951 pf_set_protostate(state, PF_PEER_BOTH,
6952 TCPS_ESTABLISHED);
6953 dst->state = src->state = TCPS_ESTABLISHED;
6954 if (state->sns[PF_SN_LIMIT] != NULL &&
6955 pf_src_connlimit(state)) {
6956 REASON_SET(reason, PFRES_SRCLIMIT);
6957 return (PF_DROP);
6958 }
6959 } else if (src->state == TCPS_CLOSING &&
6960 dst->state == TCPS_ESTABLISHED &&
6961 dst->seqlo == 0) {
6962 /*
6963 * Handle the closing of half connections where we
6964 * don't see the full bidirectional FIN/ACK+ACK
6965 * handshake.
6966 */
6967 pf_set_protostate(state, pdst, TCPS_CLOSING);
6968 }
6969 }
6970 if (tcp_get_flags(th) & TH_RST)
6971 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6972
6973 /* update expire time */
6974 state->expire = pf_get_uptime();
6975 if (src->state >= TCPS_FIN_WAIT_2 &&
6976 dst->state >= TCPS_FIN_WAIT_2)
6977 state->timeout = PFTM_TCP_CLOSED;
6978 else if (src->state >= TCPS_CLOSING &&
6979 dst->state >= TCPS_CLOSING)
6980 state->timeout = PFTM_TCP_FIN_WAIT;
6981 else if (src->state < TCPS_ESTABLISHED ||
6982 dst->state < TCPS_ESTABLISHED)
6983 state->timeout = PFTM_TCP_OPENING;
6984 else if (src->state >= TCPS_CLOSING ||
6985 dst->state >= TCPS_CLOSING)
6986 state->timeout = PFTM_TCP_CLOSING;
6987 else
6988 state->timeout = PFTM_TCP_ESTABLISHED;
6989
6990 return (PF_PASS);
6991 }
6992
6993 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate * state,u_short * reason)6994 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason)
6995 {
6996 struct pf_state_key *sk = state->key[pd->didx];
6997 struct tcphdr *th = &pd->hdr.tcp;
6998
6999 if (state->src.state == PF_TCPS_PROXY_SRC) {
7000 if (pd->dir != state->direction) {
7001 REASON_SET(reason, PFRES_SYNPROXY);
7002 return (PF_SYNPROXY_DROP);
7003 }
7004 if (tcp_get_flags(th) & TH_SYN) {
7005 if (ntohl(th->th_seq) != state->src.seqlo) {
7006 REASON_SET(reason, PFRES_SYNPROXY);
7007 return (PF_DROP);
7008 }
7009 pf_send_tcp(state->rule, pd->af, pd->dst,
7010 pd->src, th->th_dport, th->th_sport,
7011 state->src.seqhi, ntohl(th->th_seq) + 1,
7012 TH_SYN|TH_ACK, 0, state->src.mss, 0,
7013 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
7014 REASON_SET(reason, PFRES_SYNPROXY);
7015 return (PF_SYNPROXY_DROP);
7016 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
7017 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7018 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7019 REASON_SET(reason, PFRES_SYNPROXY);
7020 return (PF_DROP);
7021 } else if (state->sns[PF_SN_LIMIT] != NULL &&
7022 pf_src_connlimit(state)) {
7023 REASON_SET(reason, PFRES_SRCLIMIT);
7024 return (PF_DROP);
7025 } else
7026 pf_set_protostate(state, PF_PEER_SRC,
7027 PF_TCPS_PROXY_DST);
7028 }
7029 if (state->src.state == PF_TCPS_PROXY_DST) {
7030 if (pd->dir == state->direction) {
7031 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
7032 (ntohl(th->th_ack) != state->src.seqhi + 1) ||
7033 (ntohl(th->th_seq) != state->src.seqlo + 1)) {
7034 REASON_SET(reason, PFRES_SYNPROXY);
7035 return (PF_DROP);
7036 }
7037 state->src.max_win = MAX(ntohs(th->th_win), 1);
7038 if (state->dst.seqhi == 1)
7039 state->dst.seqhi = arc4random();
7040 pf_send_tcp(state->rule, pd->af,
7041 &sk->addr[pd->sidx], &sk->addr[pd->didx],
7042 sk->port[pd->sidx], sk->port[pd->didx],
7043 state->dst.seqhi, 0, TH_SYN, 0,
7044 state->src.mss, 0,
7045 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
7046 state->tag, 0, state->act.rtableid);
7047 REASON_SET(reason, PFRES_SYNPROXY);
7048 return (PF_SYNPROXY_DROP);
7049 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
7050 (TH_SYN|TH_ACK)) ||
7051 (ntohl(th->th_ack) != state->dst.seqhi + 1)) {
7052 REASON_SET(reason, PFRES_SYNPROXY);
7053 return (PF_DROP);
7054 } else {
7055 state->dst.max_win = MAX(ntohs(th->th_win), 1);
7056 state->dst.seqlo = ntohl(th->th_seq);
7057 pf_send_tcp(state->rule, pd->af, pd->dst,
7058 pd->src, th->th_dport, th->th_sport,
7059 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
7060 TH_ACK, state->src.max_win, 0, 0, 0,
7061 state->tag, 0, state->act.rtableid);
7062 pf_send_tcp(state->rule, pd->af,
7063 &sk->addr[pd->sidx], &sk->addr[pd->didx],
7064 sk->port[pd->sidx], sk->port[pd->didx],
7065 state->src.seqhi + 1, state->src.seqlo + 1,
7066 TH_ACK, state->dst.max_win, 0, 0,
7067 M_SKIP_FIREWALL, 0, 0, state->act.rtableid);
7068 state->src.seqdiff = state->dst.seqhi -
7069 state->src.seqlo;
7070 state->dst.seqdiff = state->src.seqhi -
7071 state->dst.seqlo;
7072 state->src.seqhi = state->src.seqlo +
7073 state->dst.max_win;
7074 state->dst.seqhi = state->dst.seqlo +
7075 state->src.max_win;
7076 state->src.wscale = state->dst.wscale = 0;
7077 pf_set_protostate(state, PF_PEER_BOTH,
7078 TCPS_ESTABLISHED);
7079 REASON_SET(reason, PFRES_SYNPROXY);
7080 return (PF_SYNPROXY_DROP);
7081 }
7082 }
7083
7084 return (PF_PASS);
7085 }
7086
7087 static int
pf_test_state(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7088 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
7089 {
7090 struct pf_state_key_cmp key;
7091 int copyback = 0;
7092 struct pf_state_peer *src, *dst;
7093 uint8_t psrc, pdst;
7094 int action;
7095
7096 bzero(&key, sizeof(key));
7097 key.af = pd->af;
7098 key.proto = pd->virtual_proto;
7099 pf_addrcpy(&key.addr[pd->sidx], pd->src, key.af);
7100 pf_addrcpy(&key.addr[pd->didx], pd->dst, key.af);
7101 key.port[pd->sidx] = pd->osport;
7102 key.port[pd->didx] = pd->odport;
7103
7104 action = pf_find_state(pd, &key, state);
7105 if (action != PF_MATCH)
7106 return (action);
7107
7108 action = PF_PASS;
7109 if (pd->dir == (*state)->direction) {
7110 if (PF_REVERSED_KEY(*state, pd->af)) {
7111 src = &(*state)->dst;
7112 dst = &(*state)->src;
7113 psrc = PF_PEER_DST;
7114 pdst = PF_PEER_SRC;
7115 } else {
7116 src = &(*state)->src;
7117 dst = &(*state)->dst;
7118 psrc = PF_PEER_SRC;
7119 pdst = PF_PEER_DST;
7120 }
7121 } else {
7122 if (PF_REVERSED_KEY(*state, pd->af)) {
7123 src = &(*state)->src;
7124 dst = &(*state)->dst;
7125 psrc = PF_PEER_SRC;
7126 pdst = PF_PEER_DST;
7127 } else {
7128 src = &(*state)->dst;
7129 dst = &(*state)->src;
7130 psrc = PF_PEER_DST;
7131 pdst = PF_PEER_SRC;
7132 }
7133 }
7134
7135 switch (pd->virtual_proto) {
7136 case IPPROTO_TCP: {
7137 struct tcphdr *th = &pd->hdr.tcp;
7138
7139 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS)
7140 return (action);
7141 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) ||
7142 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK &&
7143 pf_syncookie_check(pd) && pd->dir == PF_IN)) {
7144 if ((*state)->src.state >= TCPS_FIN_WAIT_2 &&
7145 (*state)->dst.state >= TCPS_FIN_WAIT_2) {
7146 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7147 printf("pf: state reuse ");
7148 pf_print_state(*state);
7149 pf_print_flags(tcp_get_flags(th));
7150 printf("\n");
7151 }
7152 /* XXX make sure it's the same direction ?? */
7153 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
7154 pf_remove_state(*state);
7155 *state = NULL;
7156 return (PF_DROP);
7157 } else if ((*state)->src.state >= TCPS_ESTABLISHED &&
7158 (*state)->dst.state >= TCPS_ESTABLISHED) {
7159 /*
7160 * SYN matches existing state???
7161 * Typically happens when sender boots up after
7162 * sudden panic. Certain protocols (NFSv3) are
7163 * always using same port numbers. Challenge
7164 * ACK enables all parties (firewall and peers)
7165 * to get in sync again.
7166 */
7167 pf_send_challenge_ack(pd, *state, src, dst);
7168 return (PF_DROP);
7169 }
7170 }
7171 if ((*state)->state_flags & PFSTATE_SLOPPY) {
7172 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst,
7173 psrc, pdst) == PF_DROP)
7174 return (PF_DROP);
7175 } else {
7176 int ret;
7177
7178 ret = pf_tcp_track_full(*state, pd, reason,
7179 ©back, src, dst, psrc, pdst);
7180 if (ret == PF_DROP)
7181 return (PF_DROP);
7182 }
7183 break;
7184 }
7185 case IPPROTO_UDP:
7186 /* update states */
7187 if (src->state < PFUDPS_SINGLE)
7188 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7189 if (dst->state == PFUDPS_SINGLE)
7190 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7191
7192 /* update expire time */
7193 (*state)->expire = pf_get_uptime();
7194 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7195 (*state)->timeout = PFTM_UDP_MULTIPLE;
7196 else
7197 (*state)->timeout = PFTM_UDP_SINGLE;
7198 break;
7199 case IPPROTO_SCTP:
7200 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7201 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7202 pd->sctp_flags & PFDESC_SCTP_INIT) {
7203 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7204 pf_remove_state(*state);
7205 *state = NULL;
7206 return (PF_DROP);
7207 }
7208
7209 if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7210 return (PF_DROP);
7211
7212 /* Track state. */
7213 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7214 if (src->state < SCTP_COOKIE_WAIT) {
7215 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7216 (*state)->timeout = PFTM_SCTP_OPENING;
7217 }
7218 }
7219 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7220 MPASS(dst->scrub != NULL);
7221 if (dst->scrub->pfss_v_tag == 0)
7222 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7223 }
7224
7225 /*
7226 * Bind to the correct interface if we're if-bound. For multihomed
7227 * extra associations we don't know which interface that will be until
7228 * here, so we've inserted the state on V_pf_all. Fix that now.
7229 */
7230 if ((*state)->kif == V_pfi_all &&
7231 (*state)->rule->rule_flag & PFRULE_IFBOUND)
7232 (*state)->kif = pd->kif;
7233
7234 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7235 if (src->state < SCTP_ESTABLISHED) {
7236 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7237 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
7238 }
7239 }
7240 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7241 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7242 if (src->state < SCTP_SHUTDOWN_PENDING) {
7243 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7244 (*state)->timeout = PFTM_SCTP_CLOSING;
7245 }
7246 }
7247 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7248 pf_set_protostate(*state, psrc, SCTP_CLOSED);
7249 (*state)->timeout = PFTM_SCTP_CLOSED;
7250 }
7251
7252 (*state)->expire = pf_get_uptime();
7253 break;
7254 default:
7255 /* update states */
7256 if (src->state < PFOTHERS_SINGLE)
7257 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7258 if (dst->state == PFOTHERS_SINGLE)
7259 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7260
7261 /* update expire time */
7262 (*state)->expire = pf_get_uptime();
7263 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7264 (*state)->timeout = PFTM_OTHER_MULTIPLE;
7265 else
7266 (*state)->timeout = PFTM_OTHER_SINGLE;
7267 break;
7268 }
7269
7270 /* translate source/destination address, if necessary */
7271 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7272 struct pf_state_key *nk;
7273 int afto, sidx, didx;
7274
7275 if (PF_REVERSED_KEY(*state, pd->af))
7276 nk = (*state)->key[pd->sidx];
7277 else
7278 nk = (*state)->key[pd->didx];
7279
7280 afto = pd->af != nk->af;
7281
7282 if (afto && (*state)->direction == PF_IN) {
7283 sidx = pd->didx;
7284 didx = pd->sidx;
7285 } else {
7286 sidx = pd->sidx;
7287 didx = pd->didx;
7288 }
7289
7290 if (afto) {
7291 pf_addrcpy(&pd->nsaddr, &nk->addr[sidx], nk->af);
7292 pf_addrcpy(&pd->ndaddr, &nk->addr[didx], nk->af);
7293 pd->naf = nk->af;
7294 action = PF_AFRT;
7295 }
7296
7297 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7298 nk->port[sidx] != pd->osport)
7299 pf_change_ap(pd, pd->src, pd->sport,
7300 &nk->addr[sidx], nk->port[sidx]);
7301
7302 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7303 nk->port[didx] != pd->odport)
7304 pf_change_ap(pd, pd->dst, pd->dport,
7305 &nk->addr[didx], nk->port[didx]);
7306
7307 copyback = 1;
7308 }
7309
7310 if (copyback && pd->hdrlen > 0)
7311 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
7312
7313 return (action);
7314 }
7315
7316 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7317 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7318 u_short *reason)
7319 {
7320 struct pf_state_peer *src;
7321 if (pd->dir == state->direction) {
7322 if (PF_REVERSED_KEY(state, pd->af))
7323 src = &state->dst;
7324 else
7325 src = &state->src;
7326 } else {
7327 if (PF_REVERSED_KEY(state, pd->af))
7328 src = &state->src;
7329 else
7330 src = &state->dst;
7331 }
7332
7333 if (src->scrub != NULL) {
7334 if (src->scrub->pfss_v_tag == 0)
7335 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7336 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7337 return (PF_DROP);
7338 }
7339
7340 return (PF_PASS);
7341 }
7342
7343 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7344 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7345 {
7346 struct pf_sctp_endpoint key;
7347 struct pf_sctp_endpoint *ep;
7348 struct pf_state_key *sks = s->key[PF_SK_STACK];
7349 struct pf_sctp_source *i, *tmp;
7350
7351 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7352 return;
7353
7354 PF_SCTP_ENDPOINTS_LOCK();
7355
7356 key.v_tag = s->dst.scrub->pfss_v_tag;
7357 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7358 if (ep != NULL) {
7359 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7360 if (pf_addr_cmp(&i->addr,
7361 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7362 s->key[PF_SK_WIRE]->af) == 0) {
7363 SDT_PROBE3(pf, sctp, multihome, remove,
7364 key.v_tag, s, i);
7365 TAILQ_REMOVE(&ep->sources, i, entry);
7366 free(i, M_PFTEMP);
7367 break;
7368 }
7369 }
7370
7371 if (TAILQ_EMPTY(&ep->sources)) {
7372 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7373 free(ep, M_PFTEMP);
7374 }
7375 }
7376
7377 /* Other direction. */
7378 key.v_tag = s->src.scrub->pfss_v_tag;
7379 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7380 if (ep != NULL) {
7381 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7382 if (pf_addr_cmp(&i->addr,
7383 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7384 s->key[PF_SK_WIRE]->af) == 0) {
7385 SDT_PROBE3(pf, sctp, multihome, remove,
7386 key.v_tag, s, i);
7387 TAILQ_REMOVE(&ep->sources, i, entry);
7388 free(i, M_PFTEMP);
7389 break;
7390 }
7391 }
7392
7393 if (TAILQ_EMPTY(&ep->sources)) {
7394 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7395 free(ep, M_PFTEMP);
7396 }
7397 }
7398
7399 PF_SCTP_ENDPOINTS_UNLOCK();
7400 }
7401
7402 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7403 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7404 {
7405 struct pf_sctp_endpoint key = {
7406 .v_tag = v_tag,
7407 };
7408 struct pf_sctp_source *i;
7409 struct pf_sctp_endpoint *ep;
7410 int count;
7411
7412 PF_SCTP_ENDPOINTS_LOCK();
7413
7414 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7415 if (ep == NULL) {
7416 ep = malloc(sizeof(struct pf_sctp_endpoint),
7417 M_PFTEMP, M_NOWAIT);
7418 if (ep == NULL) {
7419 PF_SCTP_ENDPOINTS_UNLOCK();
7420 return;
7421 }
7422
7423 ep->v_tag = v_tag;
7424 TAILQ_INIT(&ep->sources);
7425 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7426 }
7427
7428 /* Avoid inserting duplicates. */
7429 count = 0;
7430 TAILQ_FOREACH(i, &ep->sources, entry) {
7431 count++;
7432 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7433 PF_SCTP_ENDPOINTS_UNLOCK();
7434 return;
7435 }
7436 }
7437
7438 /* Limit the number of addresses per endpoint. */
7439 if (count >= PF_SCTP_MAX_ENDPOINTS) {
7440 PF_SCTP_ENDPOINTS_UNLOCK();
7441 return;
7442 }
7443
7444 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7445 if (i == NULL) {
7446 PF_SCTP_ENDPOINTS_UNLOCK();
7447 return;
7448 }
7449
7450 i->af = pd->af;
7451 memcpy(&i->addr, a, sizeof(*a));
7452 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7453 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7454
7455 PF_SCTP_ENDPOINTS_UNLOCK();
7456 }
7457
7458 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7459 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7460 struct pf_kstate *s, int action)
7461 {
7462 struct pf_sctp_multihome_job *j, *tmp;
7463 struct pf_sctp_source *i;
7464 int ret;
7465 struct pf_kstate *sm = NULL;
7466 struct pf_krule *ra = NULL;
7467 struct pf_krule *r = &V_pf_default_rule;
7468 struct pf_kruleset *rs = NULL;
7469 u_short reason;
7470 bool do_extra = true;
7471
7472 PF_RULES_RLOCK_TRACKER;
7473
7474 again:
7475 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7476 if (s == NULL || action != PF_PASS)
7477 goto free;
7478
7479 /* Confirm we don't recurse here. */
7480 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7481
7482 switch (j->op) {
7483 case SCTP_ADD_IP_ADDRESS: {
7484 uint32_t v_tag = pd->sctp_initiate_tag;
7485
7486 if (v_tag == 0) {
7487 if (s->direction == pd->dir)
7488 v_tag = s->src.scrub->pfss_v_tag;
7489 else
7490 v_tag = s->dst.scrub->pfss_v_tag;
7491 }
7492
7493 /*
7494 * Avoid duplicating states. We'll already have
7495 * created a state based on the source address of
7496 * the packet, but SCTP endpoints may also list this
7497 * address again in the INIT(_ACK) parameters.
7498 */
7499 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7500 break;
7501 }
7502
7503 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7504 PF_RULES_RLOCK();
7505 sm = NULL;
7506 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7507 j->pd.related_rule = s->rule;
7508 }
7509 ret = pf_test_rule(&r, &sm,
7510 &j->pd, &ra, &rs, &reason, NULL);
7511 PF_RULES_RUNLOCK();
7512 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7513 if (ret != PF_DROP && sm != NULL) {
7514 /* Inherit v_tag values. */
7515 if (sm->direction == s->direction) {
7516 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7517 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7518 } else {
7519 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7520 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7521 }
7522 PF_STATE_UNLOCK(sm);
7523 } else {
7524 /* If we try duplicate inserts? */
7525 break;
7526 }
7527
7528 /* Only add the address if we've actually allowed the state. */
7529 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7530
7531 if (! do_extra) {
7532 break;
7533 }
7534 /*
7535 * We need to do this for each of our source addresses.
7536 * Find those based on the verification tag.
7537 */
7538 struct pf_sctp_endpoint key = {
7539 .v_tag = pd->hdr.sctp.v_tag,
7540 };
7541 struct pf_sctp_endpoint *ep;
7542
7543 PF_SCTP_ENDPOINTS_LOCK();
7544 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7545 if (ep == NULL) {
7546 PF_SCTP_ENDPOINTS_UNLOCK();
7547 break;
7548 }
7549 MPASS(ep != NULL);
7550
7551 TAILQ_FOREACH(i, &ep->sources, entry) {
7552 struct pf_sctp_multihome_job *nj;
7553
7554 /* SCTP can intermingle IPv4 and IPv6. */
7555 if (i->af != pd->af)
7556 continue;
7557
7558 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7559 if (! nj) {
7560 continue;
7561 }
7562 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7563 memcpy(&nj->src, &j->src, sizeof(nj->src));
7564 nj->pd.src = &nj->src;
7565 // New destination address!
7566 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7567 nj->pd.dst = &nj->dst;
7568 nj->pd.m = j->pd.m;
7569 nj->op = j->op;
7570
7571 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7572 }
7573 PF_SCTP_ENDPOINTS_UNLOCK();
7574
7575 break;
7576 }
7577 case SCTP_DEL_IP_ADDRESS: {
7578 struct pf_state_key_cmp key;
7579 uint8_t psrc;
7580 int action;
7581
7582 bzero(&key, sizeof(key));
7583 key.af = j->pd.af;
7584 key.proto = IPPROTO_SCTP;
7585 if (j->pd.dir == PF_IN) { /* wire side, straight */
7586 pf_addrcpy(&key.addr[0], j->pd.src, key.af);
7587 pf_addrcpy(&key.addr[1], j->pd.dst, key.af);
7588 key.port[0] = j->pd.hdr.sctp.src_port;
7589 key.port[1] = j->pd.hdr.sctp.dest_port;
7590 } else { /* stack side, reverse */
7591 pf_addrcpy(&key.addr[1], j->pd.src, key.af);
7592 pf_addrcpy(&key.addr[0], j->pd.dst, key.af);
7593 key.port[1] = j->pd.hdr.sctp.src_port;
7594 key.port[0] = j->pd.hdr.sctp.dest_port;
7595 }
7596
7597 action = pf_find_state(&j->pd, &key, &sm);
7598 if (action == PF_MATCH) {
7599 PF_STATE_LOCK_ASSERT(sm);
7600 if (j->pd.dir == sm->direction) {
7601 psrc = PF_PEER_SRC;
7602 } else {
7603 psrc = PF_PEER_DST;
7604 }
7605 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7606 sm->timeout = PFTM_SCTP_CLOSING;
7607 PF_STATE_UNLOCK(sm);
7608 }
7609 break;
7610 default:
7611 panic("Unknown op %#x", j->op);
7612 }
7613 }
7614
7615 free:
7616 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7617 free(j, M_PFTEMP);
7618 }
7619
7620 /* We may have inserted extra work while processing the list. */
7621 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7622 do_extra = false;
7623 goto again;
7624 }
7625 }
7626
7627 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7628 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7629 {
7630 int off = 0;
7631 struct pf_sctp_multihome_job *job;
7632
7633 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7634
7635 while (off < len) {
7636 struct sctp_paramhdr h;
7637
7638 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7639 pd->af))
7640 return (PF_DROP);
7641
7642 /* Parameters are at least 4 bytes. */
7643 if (ntohs(h.param_length) < 4)
7644 return (PF_DROP);
7645
7646 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7647 ntohs(h.param_length));
7648
7649 switch (ntohs(h.param_type)) {
7650 case SCTP_IPV4_ADDRESS: {
7651 struct in_addr t;
7652
7653 if (ntohs(h.param_length) !=
7654 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7655 return (PF_DROP);
7656
7657 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7658 NULL, NULL, pd->af))
7659 return (PF_DROP);
7660
7661 if (in_nullhost(t))
7662 t.s_addr = pd->src->v4.s_addr;
7663
7664 /*
7665 * We hold the state lock (idhash) here, which means
7666 * that we can't acquire the keyhash, or we'll get a
7667 * LOR (and potentially double-lock things too). We also
7668 * can't release the state lock here, so instead we'll
7669 * enqueue this for async handling.
7670 * There's a relatively small race here, in that a
7671 * packet using the new addresses could arrive already,
7672 * but that's just though luck for it.
7673 */
7674 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7675 if (! job)
7676 return (PF_DROP);
7677
7678 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7679
7680 memcpy(&job->pd, pd, sizeof(*pd));
7681
7682 // New source address!
7683 memcpy(&job->src, &t, sizeof(t));
7684 job->pd.src = &job->src;
7685 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7686 job->pd.dst = &job->dst;
7687 job->pd.m = pd->m;
7688 job->op = op;
7689
7690 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7691 break;
7692 }
7693 #ifdef INET6
7694 case SCTP_IPV6_ADDRESS: {
7695 struct in6_addr t;
7696
7697 if (ntohs(h.param_length) !=
7698 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7699 return (PF_DROP);
7700
7701 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7702 NULL, NULL, pd->af))
7703 return (PF_DROP);
7704 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7705 break;
7706 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7707 memcpy(&t, &pd->src->v6, sizeof(t));
7708
7709 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7710 if (! job)
7711 return (PF_DROP);
7712
7713 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7714
7715 memcpy(&job->pd, pd, sizeof(*pd));
7716 memcpy(&job->src, &t, sizeof(t));
7717 job->pd.src = &job->src;
7718 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7719 job->pd.dst = &job->dst;
7720 job->pd.m = pd->m;
7721 job->op = op;
7722
7723 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7724 break;
7725 }
7726 #endif /* INET6 */
7727 case SCTP_ADD_IP_ADDRESS: {
7728 int ret;
7729 struct sctp_asconf_paramhdr ah;
7730
7731 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7732 NULL, NULL, pd->af))
7733 return (PF_DROP);
7734
7735 ret = pf_multihome_scan(start + off + sizeof(ah),
7736 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7737 SCTP_ADD_IP_ADDRESS);
7738 if (ret != PF_PASS)
7739 return (ret);
7740 break;
7741 }
7742 case SCTP_DEL_IP_ADDRESS: {
7743 int ret;
7744 struct sctp_asconf_paramhdr ah;
7745
7746 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7747 NULL, NULL, pd->af))
7748 return (PF_DROP);
7749 ret = pf_multihome_scan(start + off + sizeof(ah),
7750 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7751 SCTP_DEL_IP_ADDRESS);
7752 if (ret != PF_PASS)
7753 return (ret);
7754 break;
7755 }
7756 default:
7757 break;
7758 }
7759
7760 off += roundup(ntohs(h.param_length), 4);
7761 }
7762
7763 return (PF_PASS);
7764 }
7765
7766 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7767 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7768 {
7769 start += sizeof(struct sctp_init_chunk);
7770 len -= sizeof(struct sctp_init_chunk);
7771
7772 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7773 }
7774
7775 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7776 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7777 {
7778 start += sizeof(struct sctp_asconf_chunk);
7779 len -= sizeof(struct sctp_asconf_chunk);
7780
7781 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7782 }
7783
7784 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7785 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7786 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir,
7787 int *iidx, int multi, int inner)
7788 {
7789 int action, direction = pd->dir;
7790
7791 key->af = pd->af;
7792 key->proto = pd->proto;
7793 if (icmp_dir == PF_IN) {
7794 *iidx = pd->sidx;
7795 key->port[pd->sidx] = icmpid;
7796 key->port[pd->didx] = type;
7797 } else {
7798 *iidx = pd->didx;
7799 key->port[pd->sidx] = type;
7800 key->port[pd->didx] = icmpid;
7801 }
7802 if (pf_state_key_addr_setup(pd, key, multi))
7803 return (PF_DROP);
7804
7805 action = pf_find_state(pd, key, state);
7806 if (action != PF_MATCH)
7807 return (action);
7808
7809 if ((*state)->state_flags & PFSTATE_SLOPPY)
7810 return (-1);
7811
7812 /* Is this ICMP message flowing in right direction? */
7813 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7814 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7815 PF_IN : PF_OUT;
7816 else
7817 direction = (*state)->direction;
7818 if ((*state)->rule->type &&
7819 (((!inner && direction == pd->dir) ||
7820 (inner && direction != pd->dir)) ?
7821 PF_IN : PF_OUT) != icmp_dir) {
7822 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7823 printf("pf: icmp type %d in wrong direction (%d): ",
7824 ntohs(type), icmp_dir);
7825 pf_print_state(*state);
7826 printf("\n");
7827 }
7828 PF_STATE_UNLOCK(*state);
7829 *state = NULL;
7830 return (PF_DROP);
7831 }
7832 return (-1);
7833 }
7834
7835 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7836 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7837 u_short *reason)
7838 {
7839 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
7840 u_int16_t *icmpsum, virtual_id, virtual_type;
7841 u_int8_t icmptype, icmpcode;
7842 int icmp_dir, iidx, ret;
7843 struct pf_state_key_cmp key;
7844 #ifdef INET
7845 u_int16_t icmpid;
7846 #endif /* INET*/
7847
7848 MPASS(*state == NULL);
7849
7850 bzero(&key, sizeof(key));
7851 switch (pd->proto) {
7852 #ifdef INET
7853 case IPPROTO_ICMP:
7854 icmptype = pd->hdr.icmp.icmp_type;
7855 icmpcode = pd->hdr.icmp.icmp_code;
7856 icmpid = pd->hdr.icmp.icmp_id;
7857 icmpsum = &pd->hdr.icmp.icmp_cksum;
7858 break;
7859 #endif /* INET */
7860 #ifdef INET6
7861 case IPPROTO_ICMPV6:
7862 icmptype = pd->hdr.icmp6.icmp6_type;
7863 icmpcode = pd->hdr.icmp6.icmp6_code;
7864 #ifdef INET
7865 icmpid = pd->hdr.icmp6.icmp6_id;
7866 #endif /* INET */
7867 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7868 break;
7869 #endif /* INET6 */
7870 default:
7871 panic("unhandled proto %d", pd->proto);
7872 }
7873
7874 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id,
7875 &virtual_type) == 0) {
7876 /*
7877 * ICMP query/reply message not related to a TCP/UDP/SCTP
7878 * packet. Search for an ICMP state.
7879 */
7880 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id,
7881 virtual_type, icmp_dir, &iidx, 0, 0);
7882 /* IPv6? try matching a multicast address */
7883 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) {
7884 MPASS(*state == NULL);
7885 ret = pf_icmp_state_lookup(&key, pd, state,
7886 virtual_id, virtual_type,
7887 icmp_dir, &iidx, 1, 0);
7888 }
7889 if (ret >= 0) {
7890 MPASS(*state == NULL);
7891 return (ret);
7892 }
7893
7894 (*state)->expire = pf_get_uptime();
7895 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7896
7897 /* translate source/destination address, if necessary */
7898 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7899 struct pf_state_key *nk;
7900 int afto, sidx, didx;
7901
7902 if (PF_REVERSED_KEY(*state, pd->af))
7903 nk = (*state)->key[pd->sidx];
7904 else
7905 nk = (*state)->key[pd->didx];
7906
7907 afto = pd->af != nk->af;
7908
7909 if (afto && (*state)->direction == PF_IN) {
7910 sidx = pd->didx;
7911 didx = pd->sidx;
7912 iidx = !iidx;
7913 } else {
7914 sidx = pd->sidx;
7915 didx = pd->didx;
7916 }
7917
7918 switch (pd->af) {
7919 #ifdef INET
7920 case AF_INET:
7921 #ifdef INET6
7922 if (afto) {
7923 if (pf_translate_icmp_af(AF_INET6,
7924 &pd->hdr.icmp))
7925 return (PF_DROP);
7926 pd->proto = IPPROTO_ICMPV6;
7927 }
7928 #endif /* INET6 */
7929 if (!afto &&
7930 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7931 pf_change_a(&saddr->v4.s_addr,
7932 pd->ip_sum,
7933 nk->addr[sidx].v4.s_addr,
7934 0);
7935
7936 if (!afto && PF_ANEQ(pd->dst,
7937 &nk->addr[didx], AF_INET))
7938 pf_change_a(&daddr->v4.s_addr,
7939 pd->ip_sum,
7940 nk->addr[didx].v4.s_addr, 0);
7941
7942 if (nk->port[iidx] !=
7943 pd->hdr.icmp.icmp_id) {
7944 pd->hdr.icmp.icmp_cksum =
7945 pf_cksum_fixup(
7946 pd->hdr.icmp.icmp_cksum, icmpid,
7947 nk->port[iidx], 0);
7948 pd->hdr.icmp.icmp_id =
7949 nk->port[iidx];
7950 }
7951
7952 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7953 (caddr_t )&pd->hdr.icmp);
7954 break;
7955 #endif /* INET */
7956 #ifdef INET6
7957 case AF_INET6:
7958 #ifdef INET
7959 if (afto) {
7960 if (pf_translate_icmp_af(AF_INET,
7961 &pd->hdr.icmp6))
7962 return (PF_DROP);
7963 pd->proto = IPPROTO_ICMP;
7964 }
7965 #endif /* INET */
7966 if (!afto &&
7967 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7968 pf_change_a6(saddr,
7969 &pd->hdr.icmp6.icmp6_cksum,
7970 &nk->addr[sidx], 0);
7971
7972 if (!afto && PF_ANEQ(pd->dst,
7973 &nk->addr[didx], AF_INET6))
7974 pf_change_a6(daddr,
7975 &pd->hdr.icmp6.icmp6_cksum,
7976 &nk->addr[didx], 0);
7977
7978 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7979 pd->hdr.icmp6.icmp6_id =
7980 nk->port[iidx];
7981
7982 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7983 (caddr_t )&pd->hdr.icmp6);
7984 break;
7985 #endif /* INET6 */
7986 }
7987 if (afto) {
7988 pf_addrcpy(&pd->nsaddr, &nk->addr[sidx],
7989 nk->af);
7990 pf_addrcpy(&pd->ndaddr, &nk->addr[didx],
7991 nk->af);
7992 pd->naf = nk->af;
7993 return (PF_AFRT);
7994 }
7995 }
7996 return (PF_PASS);
7997
7998 } else {
7999 /*
8000 * ICMP error message in response to a TCP/UDP packet.
8001 * Extract the inner TCP/UDP header and search for that state.
8002 */
8003
8004 struct pf_pdesc pd2;
8005 bzero(&pd2, sizeof pd2);
8006 #ifdef INET
8007 struct ip h2;
8008 #endif /* INET */
8009 #ifdef INET6
8010 struct ip6_hdr h2_6;
8011 #endif /* INET6 */
8012 int ipoff2 = 0;
8013
8014 pd2.af = pd->af;
8015 pd2.dir = pd->dir;
8016 /* Payload packet is from the opposite direction. */
8017 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
8018 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
8019 pd2.m = pd->m;
8020 pd2.pf_mtag = pd->pf_mtag;
8021 pd2.kif = pd->kif;
8022 switch (pd->af) {
8023 #ifdef INET
8024 case AF_INET:
8025 /* offset of h2 in mbuf chain */
8026 ipoff2 = pd->off + ICMP_MINLEN;
8027
8028 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
8029 NULL, reason, pd2.af)) {
8030 DPFPRINTF(PF_DEBUG_MISC,
8031 "pf: ICMP error message too short "
8032 "(ip)");
8033 return (PF_DROP);
8034 }
8035 /*
8036 * ICMP error messages don't refer to non-first
8037 * fragments
8038 */
8039 if (h2.ip_off & htons(IP_OFFMASK)) {
8040 REASON_SET(reason, PFRES_FRAG);
8041 return (PF_DROP);
8042 }
8043
8044 /* offset of protocol header that follows h2 */
8045 pd2.off = ipoff2;
8046 if (pf_walk_header(&pd2, &h2, reason) != PF_PASS)
8047 return (PF_DROP);
8048
8049 pd2.tot_len = ntohs(h2.ip_len);
8050 pd2.src = (struct pf_addr *)&h2.ip_src;
8051 pd2.dst = (struct pf_addr *)&h2.ip_dst;
8052 pd2.ip_sum = &h2.ip_sum;
8053 break;
8054 #endif /* INET */
8055 #ifdef INET6
8056 case AF_INET6:
8057 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
8058
8059 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
8060 NULL, reason, pd2.af)) {
8061 DPFPRINTF(PF_DEBUG_MISC,
8062 "pf: ICMP error message too short "
8063 "(ip6)");
8064 return (PF_DROP);
8065 }
8066 pd2.off = ipoff2;
8067 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
8068 return (PF_DROP);
8069
8070 pd2.tot_len = ntohs(h2_6.ip6_plen) +
8071 sizeof(struct ip6_hdr);
8072 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
8073 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
8074 pd2.ip_sum = NULL;
8075 break;
8076 #endif /* INET6 */
8077 default:
8078 unhandled_af(pd->af);
8079 }
8080
8081 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
8082 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8083 printf("pf: BAD ICMP %d:%d outer dst: ",
8084 icmptype, icmpcode);
8085 pf_print_host(pd->src, 0, pd->af);
8086 printf(" -> ");
8087 pf_print_host(pd->dst, 0, pd->af);
8088 printf(" inner src: ");
8089 pf_print_host(pd2.src, 0, pd2.af);
8090 printf(" -> ");
8091 pf_print_host(pd2.dst, 0, pd2.af);
8092 printf("\n");
8093 }
8094 REASON_SET(reason, PFRES_BADSTATE);
8095 return (PF_DROP);
8096 }
8097
8098 switch (pd2.proto) {
8099 case IPPROTO_TCP: {
8100 struct tcphdr *th = &pd2.hdr.tcp;
8101 u_int32_t seq;
8102 struct pf_state_peer *src, *dst;
8103 u_int8_t dws;
8104 int copyback = 0;
8105 int action;
8106
8107 /*
8108 * Only the first 8 bytes of the TCP header can be
8109 * expected. Don't access any TCP header fields after
8110 * th_seq, an ackskew test is not possible.
8111 */
8112 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason,
8113 pd2.af)) {
8114 DPFPRINTF(PF_DEBUG_MISC,
8115 "pf: ICMP error message too short "
8116 "(tcp)");
8117 return (PF_DROP);
8118 }
8119 pd2.pcksum = &pd2.hdr.tcp.th_sum;
8120
8121 key.af = pd2.af;
8122 key.proto = IPPROTO_TCP;
8123 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8124 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8125 key.port[pd2.sidx] = th->th_sport;
8126 key.port[pd2.didx] = th->th_dport;
8127
8128 action = pf_find_state(&pd2, &key, state);
8129 if (action != PF_MATCH)
8130 return (action);
8131
8132 if (pd->dir == (*state)->direction) {
8133 if (PF_REVERSED_KEY(*state, pd->af)) {
8134 src = &(*state)->src;
8135 dst = &(*state)->dst;
8136 } else {
8137 src = &(*state)->dst;
8138 dst = &(*state)->src;
8139 }
8140 } else {
8141 if (PF_REVERSED_KEY(*state, pd->af)) {
8142 src = &(*state)->dst;
8143 dst = &(*state)->src;
8144 } else {
8145 src = &(*state)->src;
8146 dst = &(*state)->dst;
8147 }
8148 }
8149
8150 if (src->wscale && dst->wscale)
8151 dws = dst->wscale & PF_WSCALE_MASK;
8152 else
8153 dws = 0;
8154
8155 /* Demodulate sequence number */
8156 seq = ntohl(th->th_seq) - src->seqdiff;
8157 if (src->seqdiff) {
8158 pf_change_a(&th->th_seq, icmpsum,
8159 htonl(seq), 0);
8160 copyback = 1;
8161 }
8162
8163 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8164 (!SEQ_GEQ(src->seqhi, seq) ||
8165 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8166 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8167 printf("pf: BAD ICMP %d:%d ",
8168 icmptype, icmpcode);
8169 pf_print_host(pd->src, 0, pd->af);
8170 printf(" -> ");
8171 pf_print_host(pd->dst, 0, pd->af);
8172 printf(" state: ");
8173 pf_print_state(*state);
8174 printf(" seq=%u\n", seq);
8175 }
8176 REASON_SET(reason, PFRES_BADSTATE);
8177 return (PF_DROP);
8178 } else {
8179 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8180 printf("pf: OK ICMP %d:%d ",
8181 icmptype, icmpcode);
8182 pf_print_host(pd->src, 0, pd->af);
8183 printf(" -> ");
8184 pf_print_host(pd->dst, 0, pd->af);
8185 printf(" state: ");
8186 pf_print_state(*state);
8187 printf(" seq=%u\n", seq);
8188 }
8189 }
8190
8191 /* translate source/destination address, if necessary */
8192 if ((*state)->key[PF_SK_WIRE] !=
8193 (*state)->key[PF_SK_STACK]) {
8194
8195 struct pf_state_key *nk;
8196
8197 if (PF_REVERSED_KEY(*state, pd->af))
8198 nk = (*state)->key[pd->sidx];
8199 else
8200 nk = (*state)->key[pd->didx];
8201
8202 #if defined(INET) && defined(INET6)
8203 int afto, sidx, didx;
8204
8205 afto = pd->af != nk->af;
8206
8207 if (afto && (*state)->direction == PF_IN) {
8208 sidx = pd2.didx;
8209 didx = pd2.sidx;
8210 } else {
8211 sidx = pd2.sidx;
8212 didx = pd2.didx;
8213 }
8214
8215 if (afto) {
8216 if (pf_translate_icmp_af(nk->af,
8217 &pd->hdr.icmp))
8218 return (PF_DROP);
8219 m_copyback(pd->m, pd->off,
8220 sizeof(struct icmp6_hdr),
8221 (c_caddr_t)&pd->hdr.icmp6);
8222 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8223 &pd2, &nk->addr[sidx],
8224 &nk->addr[didx], pd->af,
8225 nk->af))
8226 return (PF_DROP);
8227 pf_addrcpy(&pd->nsaddr,
8228 &nk->addr[pd2.sidx], nk->af);
8229 pf_addrcpy(&pd->ndaddr,
8230 &nk->addr[pd2.didx], nk->af);
8231 if (nk->af == AF_INET) {
8232 pd->proto = IPPROTO_ICMP;
8233 } else {
8234 pd->proto = IPPROTO_ICMPV6;
8235 /*
8236 * IPv4 becomes IPv6 so we must
8237 * copy IPv4 src addr to least
8238 * 32bits in IPv6 address to
8239 * keep traceroute/icmp
8240 * working.
8241 */
8242 pd->nsaddr.addr32[3] =
8243 pd->src->addr32[0];
8244 }
8245 pd->naf = pd2.naf = nk->af;
8246 pf_change_ap(&pd2, pd2.src, &th->th_sport,
8247 &nk->addr[pd2.sidx], nk->port[sidx]);
8248 pf_change_ap(&pd2, pd2.dst, &th->th_dport,
8249 &nk->addr[pd2.didx], nk->port[didx]);
8250 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th);
8251 return (PF_AFRT);
8252 }
8253 #endif /* INET && INET6 */
8254
8255 if (PF_ANEQ(pd2.src,
8256 &nk->addr[pd2.sidx], pd2.af) ||
8257 nk->port[pd2.sidx] != th->th_sport)
8258 pf_change_icmp(pd2.src, &th->th_sport,
8259 daddr, &nk->addr[pd2.sidx],
8260 nk->port[pd2.sidx], NULL,
8261 pd2.ip_sum, icmpsum,
8262 pd->ip_sum, 0, pd2.af);
8263
8264 if (PF_ANEQ(pd2.dst,
8265 &nk->addr[pd2.didx], pd2.af) ||
8266 nk->port[pd2.didx] != th->th_dport)
8267 pf_change_icmp(pd2.dst, &th->th_dport,
8268 saddr, &nk->addr[pd2.didx],
8269 nk->port[pd2.didx], NULL,
8270 pd2.ip_sum, icmpsum,
8271 pd->ip_sum, 0, pd2.af);
8272 copyback = 1;
8273 }
8274
8275 if (copyback) {
8276 switch (pd2.af) {
8277 #ifdef INET
8278 case AF_INET:
8279 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8280 (caddr_t )&pd->hdr.icmp);
8281 m_copyback(pd->m, ipoff2, sizeof(h2),
8282 (caddr_t )&h2);
8283 break;
8284 #endif /* INET */
8285 #ifdef INET6
8286 case AF_INET6:
8287 m_copyback(pd->m, pd->off,
8288 sizeof(struct icmp6_hdr),
8289 (caddr_t )&pd->hdr.icmp6);
8290 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8291 (caddr_t )&h2_6);
8292 break;
8293 #endif /* INET6 */
8294 default:
8295 unhandled_af(pd->af);
8296 }
8297 m_copyback(pd->m, pd2.off, 8, (caddr_t)th);
8298 }
8299
8300 return (PF_PASS);
8301 break;
8302 }
8303 case IPPROTO_UDP: {
8304 struct udphdr *uh = &pd2.hdr.udp;
8305 int action;
8306
8307 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh),
8308 NULL, reason, pd2.af)) {
8309 DPFPRINTF(PF_DEBUG_MISC,
8310 "pf: ICMP error message too short "
8311 "(udp)");
8312 return (PF_DROP);
8313 }
8314 pd2.pcksum = &pd2.hdr.udp.uh_sum;
8315
8316 key.af = pd2.af;
8317 key.proto = IPPROTO_UDP;
8318 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8319 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8320 key.port[pd2.sidx] = uh->uh_sport;
8321 key.port[pd2.didx] = uh->uh_dport;
8322
8323 action = pf_find_state(&pd2, &key, state);
8324 if (action != PF_MATCH)
8325 return (action);
8326
8327 /* translate source/destination address, if necessary */
8328 if ((*state)->key[PF_SK_WIRE] !=
8329 (*state)->key[PF_SK_STACK]) {
8330 struct pf_state_key *nk;
8331
8332 if (PF_REVERSED_KEY(*state, pd->af))
8333 nk = (*state)->key[pd->sidx];
8334 else
8335 nk = (*state)->key[pd->didx];
8336
8337 #if defined(INET) && defined(INET6)
8338 int afto, sidx, didx;
8339
8340 afto = pd->af != nk->af;
8341
8342 if (afto && (*state)->direction == PF_IN) {
8343 sidx = pd2.didx;
8344 didx = pd2.sidx;
8345 } else {
8346 sidx = pd2.sidx;
8347 didx = pd2.didx;
8348 }
8349
8350 if (afto) {
8351 if (pf_translate_icmp_af(nk->af,
8352 &pd->hdr.icmp))
8353 return (PF_DROP);
8354 m_copyback(pd->m, pd->off,
8355 sizeof(struct icmp6_hdr),
8356 (c_caddr_t)&pd->hdr.icmp6);
8357 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8358 &pd2, &nk->addr[sidx],
8359 &nk->addr[didx], pd->af,
8360 nk->af))
8361 return (PF_DROP);
8362 pf_addrcpy(&pd->nsaddr,
8363 &nk->addr[pd2.sidx], nk->af);
8364 pf_addrcpy(&pd->ndaddr,
8365 &nk->addr[pd2.didx], nk->af);
8366 if (nk->af == AF_INET) {
8367 pd->proto = IPPROTO_ICMP;
8368 } else {
8369 pd->proto = IPPROTO_ICMPV6;
8370 /*
8371 * IPv4 becomes IPv6 so we must
8372 * copy IPv4 src addr to least
8373 * 32bits in IPv6 address to
8374 * keep traceroute/icmp
8375 * working.
8376 */
8377 pd->nsaddr.addr32[3] =
8378 pd->src->addr32[0];
8379 }
8380 pd->naf = pd2.naf = nk->af;
8381 pf_change_ap(&pd2, pd2.src, &uh->uh_sport,
8382 &nk->addr[pd2.sidx], nk->port[sidx]);
8383 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport,
8384 &nk->addr[pd2.didx], nk->port[didx]);
8385 m_copyback(pd2.m, pd2.off, sizeof(*uh),
8386 (c_caddr_t)uh);
8387 return (PF_AFRT);
8388 }
8389 #endif /* INET && INET6 */
8390
8391 if (PF_ANEQ(pd2.src,
8392 &nk->addr[pd2.sidx], pd2.af) ||
8393 nk->port[pd2.sidx] != uh->uh_sport)
8394 pf_change_icmp(pd2.src, &uh->uh_sport,
8395 daddr, &nk->addr[pd2.sidx],
8396 nk->port[pd2.sidx], &uh->uh_sum,
8397 pd2.ip_sum, icmpsum,
8398 pd->ip_sum, 1, pd2.af);
8399
8400 if (PF_ANEQ(pd2.dst,
8401 &nk->addr[pd2.didx], pd2.af) ||
8402 nk->port[pd2.didx] != uh->uh_dport)
8403 pf_change_icmp(pd2.dst, &uh->uh_dport,
8404 saddr, &nk->addr[pd2.didx],
8405 nk->port[pd2.didx], &uh->uh_sum,
8406 pd2.ip_sum, icmpsum,
8407 pd->ip_sum, 1, pd2.af);
8408
8409 switch (pd2.af) {
8410 #ifdef INET
8411 case AF_INET:
8412 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8413 (caddr_t )&pd->hdr.icmp);
8414 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8415 break;
8416 #endif /* INET */
8417 #ifdef INET6
8418 case AF_INET6:
8419 m_copyback(pd->m, pd->off,
8420 sizeof(struct icmp6_hdr),
8421 (caddr_t )&pd->hdr.icmp6);
8422 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8423 (caddr_t )&h2_6);
8424 break;
8425 #endif /* INET6 */
8426 }
8427 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh);
8428 }
8429 return (PF_PASS);
8430 break;
8431 }
8432 #ifdef INET
8433 case IPPROTO_SCTP: {
8434 struct sctphdr *sh = &pd2.hdr.sctp;
8435 struct pf_state_peer *src;
8436 int copyback = 0;
8437 int action;
8438
8439 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason,
8440 pd2.af)) {
8441 DPFPRINTF(PF_DEBUG_MISC,
8442 "pf: ICMP error message too short "
8443 "(sctp)");
8444 return (PF_DROP);
8445 }
8446 pd2.pcksum = &pd2.sctp_dummy_sum;
8447
8448 key.af = pd2.af;
8449 key.proto = IPPROTO_SCTP;
8450 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8451 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8452 key.port[pd2.sidx] = sh->src_port;
8453 key.port[pd2.didx] = sh->dest_port;
8454
8455 action = pf_find_state(&pd2, &key, state);
8456 if (action != PF_MATCH)
8457 return (action);
8458
8459 if (pd->dir == (*state)->direction) {
8460 if (PF_REVERSED_KEY(*state, pd->af))
8461 src = &(*state)->src;
8462 else
8463 src = &(*state)->dst;
8464 } else {
8465 if (PF_REVERSED_KEY(*state, pd->af))
8466 src = &(*state)->dst;
8467 else
8468 src = &(*state)->src;
8469 }
8470
8471 if (src->scrub->pfss_v_tag != sh->v_tag) {
8472 DPFPRINTF(PF_DEBUG_MISC,
8473 "pf: ICMP error message has incorrect "
8474 "SCTP v_tag");
8475 return (PF_DROP);
8476 }
8477
8478 /* translate source/destination address, if necessary */
8479 if ((*state)->key[PF_SK_WIRE] !=
8480 (*state)->key[PF_SK_STACK]) {
8481
8482 struct pf_state_key *nk;
8483
8484 if (PF_REVERSED_KEY(*state, pd->af))
8485 nk = (*state)->key[pd->sidx];
8486 else
8487 nk = (*state)->key[pd->didx];
8488
8489 #if defined(INET) && defined(INET6)
8490 int afto, sidx, didx;
8491
8492 afto = pd->af != nk->af;
8493
8494 if (afto && (*state)->direction == PF_IN) {
8495 sidx = pd2.didx;
8496 didx = pd2.sidx;
8497 } else {
8498 sidx = pd2.sidx;
8499 didx = pd2.didx;
8500 }
8501
8502 if (afto) {
8503 if (pf_translate_icmp_af(nk->af,
8504 &pd->hdr.icmp))
8505 return (PF_DROP);
8506 m_copyback(pd->m, pd->off,
8507 sizeof(struct icmp6_hdr),
8508 (c_caddr_t)&pd->hdr.icmp6);
8509 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8510 &pd2, &nk->addr[sidx],
8511 &nk->addr[didx], pd->af,
8512 nk->af))
8513 return (PF_DROP);
8514 sh->src_port = nk->port[sidx];
8515 sh->dest_port = nk->port[didx];
8516 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh);
8517 pf_addrcpy(&pd->nsaddr,
8518 &nk->addr[pd2.sidx], nk->af);
8519 pf_addrcpy(&pd->ndaddr,
8520 &nk->addr[pd2.didx], nk->af);
8521 if (nk->af == AF_INET) {
8522 pd->proto = IPPROTO_ICMP;
8523 } else {
8524 pd->proto = IPPROTO_ICMPV6;
8525 /*
8526 * IPv4 becomes IPv6 so we must
8527 * copy IPv4 src addr to least
8528 * 32bits in IPv6 address to
8529 * keep traceroute/icmp
8530 * working.
8531 */
8532 pd->nsaddr.addr32[3] =
8533 pd->src->addr32[0];
8534 }
8535 pd->naf = nk->af;
8536 return (PF_AFRT);
8537 }
8538 #endif /* INET && INET6 */
8539
8540 if (PF_ANEQ(pd2.src,
8541 &nk->addr[pd2.sidx], pd2.af) ||
8542 nk->port[pd2.sidx] != sh->src_port)
8543 pf_change_icmp(pd2.src, &sh->src_port,
8544 daddr, &nk->addr[pd2.sidx],
8545 nk->port[pd2.sidx], NULL,
8546 pd2.ip_sum, icmpsum,
8547 pd->ip_sum, 0, pd2.af);
8548
8549 if (PF_ANEQ(pd2.dst,
8550 &nk->addr[pd2.didx], pd2.af) ||
8551 nk->port[pd2.didx] != sh->dest_port)
8552 pf_change_icmp(pd2.dst, &sh->dest_port,
8553 saddr, &nk->addr[pd2.didx],
8554 nk->port[pd2.didx], NULL,
8555 pd2.ip_sum, icmpsum,
8556 pd->ip_sum, 0, pd2.af);
8557 copyback = 1;
8558 }
8559
8560 if (copyback) {
8561 switch (pd2.af) {
8562 #ifdef INET
8563 case AF_INET:
8564 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8565 (caddr_t )&pd->hdr.icmp);
8566 m_copyback(pd->m, ipoff2, sizeof(h2),
8567 (caddr_t )&h2);
8568 break;
8569 #endif /* INET */
8570 #ifdef INET6
8571 case AF_INET6:
8572 m_copyback(pd->m, pd->off,
8573 sizeof(struct icmp6_hdr),
8574 (caddr_t )&pd->hdr.icmp6);
8575 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8576 (caddr_t )&h2_6);
8577 break;
8578 #endif /* INET6 */
8579 }
8580 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh);
8581 }
8582
8583 return (PF_PASS);
8584 break;
8585 }
8586 case IPPROTO_ICMP: {
8587 struct icmp *iih = &pd2.hdr.icmp;
8588
8589 if (pd2.af != AF_INET) {
8590 REASON_SET(reason, PFRES_NORM);
8591 return (PF_DROP);
8592 }
8593
8594 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8595 NULL, reason, pd2.af)) {
8596 DPFPRINTF(PF_DEBUG_MISC,
8597 "pf: ICMP error message too short i"
8598 "(icmp)");
8599 return (PF_DROP);
8600 }
8601 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum;
8602
8603 icmpid = iih->icmp_id;
8604 pf_icmp_mapping(&pd2, iih->icmp_type,
8605 &icmp_dir, &virtual_id, &virtual_type);
8606
8607 ret = pf_icmp_state_lookup(&key, &pd2, state,
8608 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8609 if (ret >= 0) {
8610 MPASS(*state == NULL);
8611 return (ret);
8612 }
8613
8614 /* translate source/destination address, if necessary */
8615 if ((*state)->key[PF_SK_WIRE] !=
8616 (*state)->key[PF_SK_STACK]) {
8617 struct pf_state_key *nk;
8618
8619 if (PF_REVERSED_KEY(*state, pd->af))
8620 nk = (*state)->key[pd->sidx];
8621 else
8622 nk = (*state)->key[pd->didx];
8623
8624 #if defined(INET) && defined(INET6)
8625 int afto, sidx, didx;
8626
8627 afto = pd->af != nk->af;
8628
8629 if (afto && (*state)->direction == PF_IN) {
8630 sidx = pd2.didx;
8631 didx = pd2.sidx;
8632 iidx = !iidx;
8633 } else {
8634 sidx = pd2.sidx;
8635 didx = pd2.didx;
8636 }
8637
8638 if (afto) {
8639 if (nk->af != AF_INET6)
8640 return (PF_DROP);
8641 if (pf_translate_icmp_af(nk->af,
8642 &pd->hdr.icmp))
8643 return (PF_DROP);
8644 m_copyback(pd->m, pd->off,
8645 sizeof(struct icmp6_hdr),
8646 (c_caddr_t)&pd->hdr.icmp6);
8647 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8648 &pd2, &nk->addr[sidx],
8649 &nk->addr[didx], pd->af,
8650 nk->af))
8651 return (PF_DROP);
8652 pd->proto = IPPROTO_ICMPV6;
8653 if (pf_translate_icmp_af(nk->af, iih))
8654 return (PF_DROP);
8655 if (virtual_type == htons(ICMP_ECHO) &&
8656 nk->port[iidx] != iih->icmp_id)
8657 iih->icmp_id = nk->port[iidx];
8658 m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8659 (c_caddr_t)iih);
8660 pf_addrcpy(&pd->nsaddr,
8661 &nk->addr[pd2.sidx], nk->af);
8662 pf_addrcpy(&pd->ndaddr,
8663 &nk->addr[pd2.didx], nk->af);
8664 /*
8665 * IPv4 becomes IPv6 so we must copy
8666 * IPv4 src addr to least 32bits in
8667 * IPv6 address to keep traceroute
8668 * working.
8669 */
8670 pd->nsaddr.addr32[3] =
8671 pd->src->addr32[0];
8672 pd->naf = nk->af;
8673 return (PF_AFRT);
8674 }
8675 #endif /* INET && INET6 */
8676
8677 if (PF_ANEQ(pd2.src,
8678 &nk->addr[pd2.sidx], pd2.af) ||
8679 (virtual_type == htons(ICMP_ECHO) &&
8680 nk->port[iidx] != iih->icmp_id))
8681 pf_change_icmp(pd2.src,
8682 (virtual_type == htons(ICMP_ECHO)) ?
8683 &iih->icmp_id : NULL,
8684 daddr, &nk->addr[pd2.sidx],
8685 (virtual_type == htons(ICMP_ECHO)) ?
8686 nk->port[iidx] : 0, NULL,
8687 pd2.ip_sum, icmpsum,
8688 pd->ip_sum, 0, AF_INET);
8689
8690 if (PF_ANEQ(pd2.dst,
8691 &nk->addr[pd2.didx], pd2.af))
8692 pf_change_icmp(pd2.dst, NULL, NULL,
8693 &nk->addr[pd2.didx], 0, NULL,
8694 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8695 AF_INET);
8696
8697 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8698 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8699 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8700 }
8701 return (PF_PASS);
8702 break;
8703 }
8704 #endif /* INET */
8705 #ifdef INET6
8706 case IPPROTO_ICMPV6: {
8707 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
8708
8709 if (pd2.af != AF_INET6) {
8710 REASON_SET(reason, PFRES_NORM);
8711 return (PF_DROP);
8712 }
8713
8714 if (!pf_pull_hdr(pd->m, pd2.off, iih,
8715 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8716 DPFPRINTF(PF_DEBUG_MISC,
8717 "pf: ICMP error message too short "
8718 "(icmp6)");
8719 return (PF_DROP);
8720 }
8721 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum;
8722
8723 pf_icmp_mapping(&pd2, iih->icmp6_type,
8724 &icmp_dir, &virtual_id, &virtual_type);
8725
8726 ret = pf_icmp_state_lookup(&key, &pd2, state,
8727 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1);
8728 /* IPv6? try matching a multicast address */
8729 if (ret == PF_DROP && pd2.af == AF_INET6 &&
8730 icmp_dir == PF_OUT) {
8731 MPASS(*state == NULL);
8732 ret = pf_icmp_state_lookup(&key, &pd2,
8733 state, virtual_id, virtual_type,
8734 icmp_dir, &iidx, 1, 1);
8735 }
8736 if (ret >= 0) {
8737 MPASS(*state == NULL);
8738 return (ret);
8739 }
8740
8741 /* translate source/destination address, if necessary */
8742 if ((*state)->key[PF_SK_WIRE] !=
8743 (*state)->key[PF_SK_STACK]) {
8744 struct pf_state_key *nk;
8745
8746 if (PF_REVERSED_KEY(*state, pd->af))
8747 nk = (*state)->key[pd->sidx];
8748 else
8749 nk = (*state)->key[pd->didx];
8750
8751 #if defined(INET) && defined(INET6)
8752 int afto, sidx, didx;
8753
8754 afto = pd->af != nk->af;
8755
8756 if (afto && (*state)->direction == PF_IN) {
8757 sidx = pd2.didx;
8758 didx = pd2.sidx;
8759 iidx = !iidx;
8760 } else {
8761 sidx = pd2.sidx;
8762 didx = pd2.didx;
8763 }
8764
8765 if (afto) {
8766 if (nk->af != AF_INET)
8767 return (PF_DROP);
8768 if (pf_translate_icmp_af(nk->af,
8769 &pd->hdr.icmp))
8770 return (PF_DROP);
8771 m_copyback(pd->m, pd->off,
8772 sizeof(struct icmp6_hdr),
8773 (c_caddr_t)&pd->hdr.icmp6);
8774 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8775 &pd2, &nk->addr[sidx],
8776 &nk->addr[didx], pd->af,
8777 nk->af))
8778 return (PF_DROP);
8779 pd->proto = IPPROTO_ICMP;
8780 if (pf_translate_icmp_af(nk->af, iih))
8781 return (PF_DROP);
8782 if (virtual_type ==
8783 htons(ICMP6_ECHO_REQUEST) &&
8784 nk->port[iidx] != iih->icmp6_id)
8785 iih->icmp6_id = nk->port[iidx];
8786 m_copyback(pd2.m, pd2.off,
8787 sizeof(struct icmp6_hdr), (c_caddr_t)iih);
8788 pf_addrcpy(&pd->nsaddr,
8789 &nk->addr[pd2.sidx], nk->af);
8790 pf_addrcpy(&pd->ndaddr,
8791 &nk->addr[pd2.didx], nk->af);
8792 pd->naf = nk->af;
8793 return (PF_AFRT);
8794 }
8795 #endif /* INET && INET6 */
8796
8797 if (PF_ANEQ(pd2.src,
8798 &nk->addr[pd2.sidx], pd2.af) ||
8799 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8800 nk->port[pd2.sidx] != iih->icmp6_id))
8801 pf_change_icmp(pd2.src,
8802 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8803 ? &iih->icmp6_id : NULL,
8804 daddr, &nk->addr[pd2.sidx],
8805 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8806 ? nk->port[iidx] : 0, NULL,
8807 pd2.ip_sum, icmpsum,
8808 pd->ip_sum, 0, AF_INET6);
8809
8810 if (PF_ANEQ(pd2.dst,
8811 &nk->addr[pd2.didx], pd2.af))
8812 pf_change_icmp(pd2.dst, NULL, NULL,
8813 &nk->addr[pd2.didx], 0, NULL,
8814 pd2.ip_sum, icmpsum,
8815 pd->ip_sum, 0, AF_INET6);
8816
8817 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8818 (caddr_t)&pd->hdr.icmp6);
8819 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8820 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8821 (caddr_t)iih);
8822 }
8823 return (PF_PASS);
8824 break;
8825 }
8826 #endif /* INET6 */
8827 default: {
8828 int action;
8829
8830 key.af = pd2.af;
8831 key.proto = pd2.proto;
8832 pf_addrcpy(&key.addr[pd2.sidx], pd2.src, key.af);
8833 pf_addrcpy(&key.addr[pd2.didx], pd2.dst, key.af);
8834 key.port[0] = key.port[1] = 0;
8835
8836 action = pf_find_state(&pd2, &key, state);
8837 if (action != PF_MATCH)
8838 return (action);
8839
8840 /* translate source/destination address, if necessary */
8841 if ((*state)->key[PF_SK_WIRE] !=
8842 (*state)->key[PF_SK_STACK]) {
8843 struct pf_state_key *nk =
8844 (*state)->key[pd->didx];
8845
8846 if (PF_ANEQ(pd2.src,
8847 &nk->addr[pd2.sidx], pd2.af))
8848 pf_change_icmp(pd2.src, NULL, daddr,
8849 &nk->addr[pd2.sidx], 0, NULL,
8850 pd2.ip_sum, icmpsum,
8851 pd->ip_sum, 0, pd2.af);
8852
8853 if (PF_ANEQ(pd2.dst,
8854 &nk->addr[pd2.didx], pd2.af))
8855 pf_change_icmp(pd2.dst, NULL, saddr,
8856 &nk->addr[pd2.didx], 0, NULL,
8857 pd2.ip_sum, icmpsum,
8858 pd->ip_sum, 0, pd2.af);
8859
8860 switch (pd2.af) {
8861 #ifdef INET
8862 case AF_INET:
8863 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8864 (caddr_t)&pd->hdr.icmp);
8865 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8866 break;
8867 #endif /* INET */
8868 #ifdef INET6
8869 case AF_INET6:
8870 m_copyback(pd->m, pd->off,
8871 sizeof(struct icmp6_hdr),
8872 (caddr_t )&pd->hdr.icmp6);
8873 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8874 (caddr_t )&h2_6);
8875 break;
8876 #endif /* INET6 */
8877 }
8878 }
8879 return (PF_PASS);
8880 break;
8881 }
8882 }
8883 }
8884 }
8885
8886 /*
8887 * ipoff and off are measured from the start of the mbuf chain.
8888 * h must be at "ipoff" on the mbuf chain.
8889 */
8890 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8891 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8892 u_short *actionp, u_short *reasonp, sa_family_t af)
8893 {
8894 int iplen = 0;
8895 switch (af) {
8896 #ifdef INET
8897 case AF_INET: {
8898 const struct ip *h = mtod(m, struct ip *);
8899 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8900
8901 if (fragoff) {
8902 if (fragoff >= len)
8903 ACTION_SET(actionp, PF_PASS);
8904 else {
8905 ACTION_SET(actionp, PF_DROP);
8906 REASON_SET(reasonp, PFRES_FRAG);
8907 }
8908 return (NULL);
8909 }
8910 iplen = ntohs(h->ip_len);
8911 break;
8912 }
8913 #endif /* INET */
8914 #ifdef INET6
8915 case AF_INET6: {
8916 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8917
8918 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8919 break;
8920 }
8921 #endif /* INET6 */
8922 }
8923 if (m->m_pkthdr.len < off + len || iplen < off + len) {
8924 ACTION_SET(actionp, PF_DROP);
8925 REASON_SET(reasonp, PFRES_SHORT);
8926 return (NULL);
8927 }
8928 m_copydata(m, off, len, p);
8929 return (p);
8930 }
8931
8932 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8933 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8934 int rtableid)
8935 {
8936 struct ifnet *ifp;
8937
8938 /*
8939 * Skip check for addresses with embedded interface scope,
8940 * as they would always match anyway.
8941 */
8942 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8943 return (1);
8944
8945 if (af != AF_INET && af != AF_INET6)
8946 return (0);
8947
8948 if (kif == V_pfi_all)
8949 return (1);
8950
8951 /* Skip checks for ipsec interfaces */
8952 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8953 return (1);
8954
8955 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8956
8957 switch (af) {
8958 #ifdef INET6
8959 case AF_INET6:
8960 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8961 ifp));
8962 #endif /* INET6 */
8963 #ifdef INET
8964 case AF_INET:
8965 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8966 ifp));
8967 #endif /* INET */
8968 }
8969
8970 return (0);
8971 }
8972
8973 #ifdef INET
8974 static int
pf_route(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8975 pf_route(struct pf_krule *r, struct ifnet *oifp,
8976 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8977 {
8978 struct mbuf *m0, *m1, *md;
8979 struct route_in6 ro;
8980 union sockaddr_union rt_gw;
8981 const union sockaddr_union *gw = (const union sockaddr_union *)&ro.ro_dst;
8982 union sockaddr_union *dst;
8983 struct ip *ip;
8984 struct ifnet *ifp = NULL;
8985 int error = 0;
8986 uint16_t ip_len, ip_off;
8987 uint16_t tmp;
8988 int r_dir;
8989 bool skip_test = false;
8990 int action = PF_PASS;
8991
8992 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
8993
8994 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp);
8995
8996 if (s) {
8997 r_dir = s->direction;
8998 } else {
8999 r_dir = r->direction;
9000 }
9001
9002 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9003 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9004 __func__));
9005
9006 if ((pd->pf_mtag == NULL &&
9007 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9008 pd->pf_mtag->routed++ > 3) {
9009 m0 = pd->m;
9010 pd->m = NULL;
9011 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9012 action = PF_DROP;
9013 goto bad_locked;
9014 }
9015
9016 if (pd->act.rt_kif != NULL)
9017 ifp = pd->act.rt_kif->pfik_ifp;
9018
9019 if (pd->act.rt == PF_DUPTO) {
9020 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9021 if (s != NULL) {
9022 PF_STATE_UNLOCK(s);
9023 }
9024 if (ifp == oifp) {
9025 /* When the 2nd interface is not skipped */
9026 return (action);
9027 } else {
9028 m0 = pd->m;
9029 pd->m = NULL;
9030 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9031 action = PF_DROP;
9032 goto bad;
9033 }
9034 } else {
9035 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9036 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9037 if (s)
9038 PF_STATE_UNLOCK(s);
9039 return (action);
9040 }
9041 }
9042 } else {
9043 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9044 if (pd->af == pd->naf) {
9045 pf_dummynet(pd, s, r, &pd->m);
9046 if (s)
9047 PF_STATE_UNLOCK(s);
9048 return (action);
9049 } else {
9050 if (r_dir == PF_IN) {
9051 skip_test = true;
9052 }
9053 }
9054 }
9055
9056 /*
9057 * If we're actually doing route-to and af-to and are in the
9058 * reply direction.
9059 */
9060 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9061 pd->af != pd->naf) {
9062 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
9063 /* Un-set ifp so we do a plain route lookup. */
9064 ifp = NULL;
9065 }
9066 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
9067 /* Un-set ifp so we do a plain route lookup. */
9068 ifp = NULL;
9069 }
9070 }
9071 m0 = pd->m;
9072 }
9073
9074 ip = mtod(m0, struct ip *);
9075
9076 bzero(&ro, sizeof(ro));
9077 dst = (union sockaddr_union *)&ro.ro_dst;
9078 dst->sin.sin_family = AF_INET;
9079 dst->sin.sin_len = sizeof(struct sockaddr_in);
9080 dst->sin.sin_addr = ip->ip_dst;
9081 if (ifp) { /* Only needed in forward direction and route-to */
9082 bzero(&rt_gw, sizeof(rt_gw));
9083 ro.ro_flags |= RT_HAS_GW;
9084 gw = &rt_gw;
9085 switch (pd->act.rt_af) {
9086 #ifdef INET
9087 case AF_INET:
9088 rt_gw.sin.sin_family = AF_INET;
9089 rt_gw.sin.sin_len = sizeof(struct sockaddr_in);
9090 rt_gw.sin.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
9091 break;
9092 #endif /* INET */
9093 #ifdef INET6
9094 case AF_INET6:
9095 rt_gw.sin6.sin6_family = AF_INET6;
9096 rt_gw.sin6.sin6_len = sizeof(struct sockaddr_in6);
9097 pf_addrcpy((struct pf_addr *)&rt_gw.sin6.sin6_addr,
9098 &pd->act.rt_addr, AF_INET6);
9099 break;
9100 #endif /* INET6 */
9101 default:
9102 /* Normal af-to without route-to */
9103 break;
9104 }
9105 }
9106
9107 if (pd->dir == PF_IN) {
9108 if (ip->ip_ttl <= IPTTLDEC) {
9109 if (r->rt != PF_DUPTO)
9110 pf_send_icmp(m0, ICMP_TIMXCEED,
9111 ICMP_TIMXCEED_INTRANS, 0, pd->af, r,
9112 pd->act.rtableid);
9113 action = PF_DROP;
9114 goto bad_locked;
9115 }
9116 ip->ip_ttl -= IPTTLDEC;
9117 }
9118
9119 if (s != NULL) {
9120 if (ifp == NULL && (pd->af != pd->naf)) {
9121 /* We're in the AFTO case. Do a route lookup. */
9122 const struct nhop_object *nh;
9123 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0);
9124 if (nh) {
9125 ifp = nh->nh_ifp;
9126
9127 /* Use the gateway if needed. */
9128 if (nh->nh_flags & NHF_GATEWAY) {
9129 gw = (const union sockaddr_union *)&nh->gw_sa;
9130 ro.ro_flags |= RT_HAS_GW;
9131 } else {
9132 dst->sin.sin_addr = ip->ip_dst;
9133 }
9134
9135 /*
9136 * Bind to the correct interface if we're
9137 * if-bound. We don't know which interface
9138 * that will be until here, so we've inserted
9139 * the state on V_pf_all. Fix that now.
9140 */
9141 if (s->kif == V_pfi_all && ifp != NULL &&
9142 r->rule_flag & PFRULE_IFBOUND)
9143 s->kif = ifp->if_pf_kif;
9144 }
9145 }
9146
9147 if (r->rule_flag & PFRULE_IFBOUND &&
9148 pd->act.rt == PF_REPLYTO &&
9149 s->kif == V_pfi_all) {
9150 s->kif = pd->act.rt_kif;
9151 s->orig_kif = oifp->if_pf_kif;
9152 }
9153
9154 PF_STATE_UNLOCK(s);
9155 }
9156
9157 /* It must have been either set from rt_af or from fib4_lookup */
9158 KASSERT(gw->sin.sin_family != 0, ("%s: gw address family undetermined", __func__));
9159
9160 if (ifp == NULL) {
9161 m0 = pd->m;
9162 pd->m = NULL;
9163 action = PF_DROP;
9164 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9165 goto bad;
9166 }
9167
9168 if (r->rt == PF_DUPTO)
9169 skip_test = true;
9170
9171 if (pd->dir == PF_IN && !skip_test) {
9172 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9173 &pd->act) != PF_PASS) {
9174 action = PF_DROP;
9175 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9176 goto bad;
9177 } else if (m0 == NULL) {
9178 action = PF_DROP;
9179 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9180 goto done;
9181 }
9182 if (m0->m_len < sizeof(struct ip)) {
9183 DPFPRINTF(PF_DEBUG_URGENT,
9184 "%s: m0->m_len < sizeof(struct ip)", __func__);
9185 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9186 action = PF_DROP;
9187 goto bad;
9188 }
9189 ip = mtod(m0, struct ip *);
9190 }
9191
9192 if (ifp->if_flags & IFF_LOOPBACK)
9193 m0->m_flags |= M_SKIP_FIREWALL;
9194
9195 ip_len = ntohs(ip->ip_len);
9196 ip_off = ntohs(ip->ip_off);
9197
9198 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
9199 m0->m_pkthdr.csum_flags |= CSUM_IP;
9200 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9201 in_delayed_cksum(m0);
9202 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9203 }
9204 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9205 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9206 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9207 }
9208
9209 if (pd->dir == PF_IN) {
9210 /*
9211 * Make sure dummynet gets the correct direction, in case it needs to
9212 * re-inject later.
9213 */
9214 pd->dir = PF_OUT;
9215
9216 /*
9217 * The following processing is actually the rest of the inbound processing, even
9218 * though we've marked it as outbound (so we don't look through dummynet) and it
9219 * happens after the outbound processing (pf_test(PF_OUT) above).
9220 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9221 * conclusion about what direction it's processing, and we can't fix it or it
9222 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9223 * decision will pick the right pipe, and everything will mostly work as expected.
9224 */
9225 tmp = pd->act.dnrpipe;
9226 pd->act.dnrpipe = pd->act.dnpipe;
9227 pd->act.dnpipe = tmp;
9228 }
9229
9230 /*
9231 * If small enough for interface, or the interface will take
9232 * care of the fragmentation for us, we can just send directly.
9233 */
9234 if (ip_len <= ifp->if_mtu ||
9235 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9236 ip->ip_sum = 0;
9237 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9238 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9239 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9240 }
9241 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
9242
9243 md = m0;
9244 error = pf_dummynet_route(pd, s, r, ifp,
9245 (const struct sockaddr *)gw, &md);
9246 if (md != NULL) {
9247 error = (*ifp->if_output)(ifp, md,
9248 (const struct sockaddr *)gw, (struct route *)&ro);
9249 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9250 }
9251 goto done;
9252 }
9253
9254 /* Balk when DF bit is set or the interface didn't support TSO. */
9255 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9256 error = EMSGSIZE;
9257 KMOD_IPSTAT_INC(ips_cantfrag);
9258 if (pd->act.rt != PF_DUPTO) {
9259 if (s && s->nat_rule != NULL) {
9260 MPASS(m0 == pd->m);
9261 PACKET_UNDO_NAT(pd,
9262 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9263 s);
9264 }
9265
9266 pf_send_icmp(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
9267 ifp->if_mtu, pd->af, r, pd->act.rtableid);
9268 }
9269 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9270 action = PF_DROP;
9271 goto bad;
9272 }
9273
9274 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9275 if (error) {
9276 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9277 action = PF_DROP;
9278 goto bad;
9279 }
9280
9281 for (; m0; m0 = m1) {
9282 m1 = m0->m_nextpkt;
9283 m0->m_nextpkt = NULL;
9284 if (error == 0) {
9285 m_clrprotoflags(m0);
9286 md = m0;
9287 pd->pf_mtag = pf_find_mtag(md);
9288 error = pf_dummynet_route(pd, s, r, ifp,
9289 (const struct sockaddr *)gw, &md);
9290 if (md != NULL) {
9291 error = (*ifp->if_output)(ifp, md,
9292 (const struct sockaddr *)gw,
9293 (struct route *)&ro);
9294 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9295 }
9296 } else
9297 m_freem(m0);
9298 }
9299
9300 if (error == 0)
9301 KMOD_IPSTAT_INC(ips_fragmented);
9302
9303 done:
9304 if (pd->act.rt != PF_DUPTO)
9305 pd->m = NULL;
9306 else
9307 action = PF_PASS;
9308 return (action);
9309
9310 bad_locked:
9311 if (s)
9312 PF_STATE_UNLOCK(s);
9313 bad:
9314 m_freem(m0);
9315 goto done;
9316 }
9317 #endif /* INET */
9318
9319 #ifdef INET6
9320 static int
pf_route6(struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9321 pf_route6(struct pf_krule *r, struct ifnet *oifp,
9322 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9323 {
9324 struct mbuf *m0, *md;
9325 struct m_tag *mtag;
9326 struct sockaddr_in6 dst;
9327 struct ip6_hdr *ip6;
9328 struct ifnet *ifp = NULL;
9329 int r_dir;
9330 bool skip_test = false;
9331 int action = PF_PASS;
9332
9333 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__));
9334
9335 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp);
9336
9337 if (s) {
9338 r_dir = s->direction;
9339 } else {
9340 r_dir = r->direction;
9341 }
9342
9343 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9344 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9345 __func__));
9346
9347 if ((pd->pf_mtag == NULL &&
9348 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) ||
9349 pd->pf_mtag->routed++ > 3) {
9350 m0 = pd->m;
9351 pd->m = NULL;
9352 action = PF_DROP;
9353 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9354 goto bad_locked;
9355 }
9356
9357 if (pd->act.rt_kif != NULL)
9358 ifp = pd->act.rt_kif->pfik_ifp;
9359
9360 if (pd->act.rt == PF_DUPTO) {
9361 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9362 if (s != NULL) {
9363 PF_STATE_UNLOCK(s);
9364 }
9365 if (ifp == oifp) {
9366 /* When the 2nd interface is not skipped */
9367 return (action);
9368 } else {
9369 m0 = pd->m;
9370 pd->m = NULL;
9371 action = PF_DROP;
9372 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9373 goto bad;
9374 }
9375 } else {
9376 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9377 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) {
9378 if (s)
9379 PF_STATE_UNLOCK(s);
9380 return (action);
9381 }
9382 }
9383 } else {
9384 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9385 if (pd->af == pd->naf) {
9386 pf_dummynet(pd, s, r, &pd->m);
9387 if (s)
9388 PF_STATE_UNLOCK(s);
9389 return (action);
9390 } else {
9391 if (r_dir == PF_IN) {
9392 skip_test = true;
9393 }
9394 }
9395 }
9396
9397 /*
9398 * If we're actually doing route-to and af-to and are in the
9399 * reply direction.
9400 */
9401 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9402 pd->af != pd->naf) {
9403 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9404 /* Un-set ifp so we do a plain route lookup. */
9405 ifp = NULL;
9406 }
9407 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9408 /* Un-set ifp so we do a plain route lookup. */
9409 ifp = NULL;
9410 }
9411 }
9412 m0 = pd->m;
9413 }
9414
9415 ip6 = mtod(m0, struct ip6_hdr *);
9416
9417 bzero(&dst, sizeof(dst));
9418 dst.sin6_family = AF_INET6;
9419 dst.sin6_len = sizeof(dst);
9420 pf_addrcpy((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr,
9421 AF_INET6);
9422
9423 if (pd->dir == PF_IN) {
9424 if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
9425 if (r->rt != PF_DUPTO)
9426 pf_send_icmp(m0, ICMP6_TIME_EXCEEDED,
9427 ICMP6_TIME_EXCEED_TRANSIT, 0, pd->af, r,
9428 pd->act.rtableid);
9429 action = PF_DROP;
9430 goto bad_locked;
9431 }
9432 ip6->ip6_hlim -= IPV6_HLIMDEC;
9433 }
9434
9435 if (s != NULL) {
9436 if (ifp == NULL && (pd->af != pd->naf)) {
9437 const struct nhop_object *nh;
9438 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0);
9439 if (nh) {
9440 ifp = nh->nh_ifp;
9441
9442 /* Use the gateway if needed. */
9443 if (nh->nh_flags & NHF_GATEWAY)
9444 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9445 sizeof(dst.sin6_addr));
9446 else
9447 dst.sin6_addr = ip6->ip6_dst;
9448
9449 /*
9450 * Bind to the correct interface if we're
9451 * if-bound. We don't know which interface
9452 * that will be until here, so we've inserted
9453 * the state on V_pf_all. Fix that now.
9454 */
9455 if (s->kif == V_pfi_all && ifp != NULL &&
9456 r->rule_flag & PFRULE_IFBOUND)
9457 s->kif = ifp->if_pf_kif;
9458 }
9459 }
9460
9461 if (r->rule_flag & PFRULE_IFBOUND &&
9462 pd->act.rt == PF_REPLYTO &&
9463 s->kif == V_pfi_all) {
9464 s->kif = pd->act.rt_kif;
9465 s->orig_kif = oifp->if_pf_kif;
9466 }
9467
9468 PF_STATE_UNLOCK(s);
9469 }
9470
9471 if (pd->af != pd->naf) {
9472 struct udphdr *uh = &pd->hdr.udp;
9473
9474 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9475 uh->uh_sum = in6_cksum_pseudo(ip6,
9476 ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9477 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9478 }
9479 }
9480
9481 if (ifp == NULL) {
9482 m0 = pd->m;
9483 pd->m = NULL;
9484 action = PF_DROP;
9485 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9486 goto bad;
9487 }
9488
9489 if (r->rt == PF_DUPTO)
9490 skip_test = true;
9491
9492 if (pd->dir == PF_IN && !skip_test) {
9493 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9494 ifp, &m0, inp, &pd->act) != PF_PASS) {
9495 action = PF_DROP;
9496 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9497 goto bad;
9498 } else if (m0 == NULL) {
9499 action = PF_DROP;
9500 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9501 goto done;
9502 }
9503 if (m0->m_len < sizeof(struct ip6_hdr)) {
9504 DPFPRINTF(PF_DEBUG_URGENT,
9505 "%s: m0->m_len < sizeof(struct ip6_hdr)",
9506 __func__);
9507 action = PF_DROP;
9508 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9509 goto bad;
9510 }
9511 ip6 = mtod(m0, struct ip6_hdr *);
9512 }
9513
9514 if (ifp->if_flags & IFF_LOOPBACK)
9515 m0->m_flags |= M_SKIP_FIREWALL;
9516
9517 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9518 ~ifp->if_hwassist) {
9519 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9520 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9521 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9522 }
9523
9524 if (pd->dir == PF_IN) {
9525 uint16_t tmp;
9526 /*
9527 * Make sure dummynet gets the correct direction, in case it needs to
9528 * re-inject later.
9529 */
9530 pd->dir = PF_OUT;
9531
9532 /*
9533 * The following processing is actually the rest of the inbound processing, even
9534 * though we've marked it as outbound (so we don't look through dummynet) and it
9535 * happens after the outbound processing (pf_test(PF_OUT) above).
9536 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9537 * conclusion about what direction it's processing, and we can't fix it or it
9538 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9539 * decision will pick the right pipe, and everything will mostly work as expected.
9540 */
9541 tmp = pd->act.dnrpipe;
9542 pd->act.dnrpipe = pd->act.dnpipe;
9543 pd->act.dnpipe = tmp;
9544 }
9545
9546 /*
9547 * If the packet is too large for the outgoing interface,
9548 * send back an icmp6 error.
9549 */
9550 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9551 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9552 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9553 if (mtag != NULL) {
9554 int ret __sdt_used;
9555 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9556 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9557 goto done;
9558 }
9559
9560 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9561 md = m0;
9562 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9563 if (md != NULL) {
9564 int ret __sdt_used;
9565 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9566 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9567 }
9568 }
9569 else {
9570 in6_ifstat_inc(ifp, ifs6_in_toobig);
9571 if (pd->act.rt != PF_DUPTO) {
9572 if (s && s->nat_rule != NULL) {
9573 MPASS(m0 == pd->m);
9574 PACKET_UNDO_NAT(pd,
9575 ((caddr_t)ip6 - m0->m_data) +
9576 sizeof(struct ip6_hdr), s);
9577 }
9578
9579 if (r->rt != PF_DUPTO)
9580 pf_send_icmp(m0, ICMP6_PACKET_TOO_BIG, 0,
9581 ifp->if_mtu, pd->af, r, pd->act.rtableid);
9582 }
9583 action = PF_DROP;
9584 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9585 goto bad;
9586 }
9587
9588 done:
9589 if (pd->act.rt != PF_DUPTO)
9590 pd->m = NULL;
9591 else
9592 action = PF_PASS;
9593 return (action);
9594
9595 bad_locked:
9596 if (s)
9597 PF_STATE_UNLOCK(s);
9598 bad:
9599 m_freem(m0);
9600 goto done;
9601 }
9602 #endif /* INET6 */
9603
9604 /*
9605 * FreeBSD supports cksum offloads for the following drivers.
9606 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9607 *
9608 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9609 * network driver performed cksum including pseudo header, need to verify
9610 * csum_data
9611 * CSUM_DATA_VALID :
9612 * network driver performed cksum, needs to additional pseudo header
9613 * cksum computation with partial csum_data(i.e. lack of H/W support for
9614 * pseudo header, for instance sk(4) and possibly gem(4))
9615 *
9616 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9617 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9618 * TCP/UDP layer.
9619 * Also, set csum_data to 0xffff to force cksum validation.
9620 */
9621 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9622 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9623 {
9624 u_int16_t sum = 0;
9625 int hw_assist = 0;
9626 struct ip *ip;
9627
9628 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9629 return (1);
9630 if (m->m_pkthdr.len < off + len)
9631 return (1);
9632
9633 switch (p) {
9634 case IPPROTO_TCP:
9635 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9636 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9637 sum = m->m_pkthdr.csum_data;
9638 } else {
9639 ip = mtod(m, struct ip *);
9640 sum = in_pseudo(ip->ip_src.s_addr,
9641 ip->ip_dst.s_addr, htonl((u_short)len +
9642 m->m_pkthdr.csum_data + IPPROTO_TCP));
9643 }
9644 sum ^= 0xffff;
9645 ++hw_assist;
9646 }
9647 break;
9648 case IPPROTO_UDP:
9649 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9650 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9651 sum = m->m_pkthdr.csum_data;
9652 } else {
9653 ip = mtod(m, struct ip *);
9654 sum = in_pseudo(ip->ip_src.s_addr,
9655 ip->ip_dst.s_addr, htonl((u_short)len +
9656 m->m_pkthdr.csum_data + IPPROTO_UDP));
9657 }
9658 sum ^= 0xffff;
9659 ++hw_assist;
9660 }
9661 break;
9662 case IPPROTO_ICMP:
9663 #ifdef INET6
9664 case IPPROTO_ICMPV6:
9665 #endif /* INET6 */
9666 break;
9667 default:
9668 return (1);
9669 }
9670
9671 if (!hw_assist) {
9672 switch (af) {
9673 case AF_INET:
9674 if (m->m_len < sizeof(struct ip))
9675 return (1);
9676 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len);
9677 break;
9678 #ifdef INET6
9679 case AF_INET6:
9680 if (m->m_len < sizeof(struct ip6_hdr))
9681 return (1);
9682 sum = in6_cksum(m, p, off, len);
9683 break;
9684 #endif /* INET6 */
9685 }
9686 }
9687 if (sum) {
9688 switch (p) {
9689 case IPPROTO_TCP:
9690 {
9691 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9692 break;
9693 }
9694 case IPPROTO_UDP:
9695 {
9696 KMOD_UDPSTAT_INC(udps_badsum);
9697 break;
9698 }
9699 #ifdef INET
9700 case IPPROTO_ICMP:
9701 {
9702 KMOD_ICMPSTAT_INC(icps_checksum);
9703 break;
9704 }
9705 #endif
9706 #ifdef INET6
9707 case IPPROTO_ICMPV6:
9708 {
9709 KMOD_ICMP6STAT_INC(icp6s_checksum);
9710 break;
9711 }
9712 #endif /* INET6 */
9713 }
9714 return (1);
9715 } else {
9716 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9717 m->m_pkthdr.csum_flags |=
9718 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9719 m->m_pkthdr.csum_data = 0xffff;
9720 }
9721 }
9722 return (0);
9723 }
9724
9725 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9726 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9727 const struct pf_kstate *s, struct ip_fw_args *dnflow)
9728 {
9729 int dndir = r->direction;
9730
9731 if (s && dndir == PF_INOUT) {
9732 dndir = s->direction;
9733 } else if (dndir == PF_INOUT) {
9734 /* Assume primary direction. Happens when we've set dnpipe in
9735 * the ethernet level code. */
9736 dndir = pd->dir;
9737 }
9738
9739 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9740 return (false);
9741
9742 memset(dnflow, 0, sizeof(*dnflow));
9743
9744 if (pd->dport != NULL)
9745 dnflow->f_id.dst_port = ntohs(*pd->dport);
9746 if (pd->sport != NULL)
9747 dnflow->f_id.src_port = ntohs(*pd->sport);
9748
9749 if (pd->dir == PF_IN)
9750 dnflow->flags |= IPFW_ARGS_IN;
9751 else
9752 dnflow->flags |= IPFW_ARGS_OUT;
9753
9754 if (pd->dir != dndir && pd->act.dnrpipe) {
9755 dnflow->rule.info = pd->act.dnrpipe;
9756 }
9757 else if (pd->dir == dndir && pd->act.dnpipe) {
9758 dnflow->rule.info = pd->act.dnpipe;
9759 }
9760 else {
9761 return (false);
9762 }
9763
9764 dnflow->rule.info |= IPFW_IS_DUMMYNET;
9765 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9766 dnflow->rule.info |= IPFW_IS_PIPE;
9767
9768 dnflow->f_id.proto = pd->proto;
9769 dnflow->f_id.extra = dnflow->rule.info;
9770 switch (pd->naf) {
9771 case AF_INET:
9772 dnflow->f_id.addr_type = 4;
9773 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9774 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9775 break;
9776 case AF_INET6:
9777 dnflow->flags |= IPFW_ARGS_IP6;
9778 dnflow->f_id.addr_type = 6;
9779 dnflow->f_id.src_ip6 = pd->src->v6;
9780 dnflow->f_id.dst_ip6 = pd->dst->v6;
9781 break;
9782 }
9783
9784 return (true);
9785 }
9786
9787 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9788 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9789 struct inpcb *inp)
9790 {
9791 struct pfi_kkif *kif;
9792 struct mbuf *m = *m0;
9793
9794 M_ASSERTPKTHDR(m);
9795 MPASS(ifp->if_vnet == curvnet);
9796 NET_EPOCH_ASSERT();
9797
9798 if (!V_pf_status.running)
9799 return (PF_PASS);
9800
9801 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9802
9803 if (kif == NULL) {
9804 DPFPRINTF(PF_DEBUG_URGENT,
9805 "%s: kif == NULL, if_xname %s", __func__, ifp->if_xname);
9806 return (PF_DROP);
9807 }
9808 if (kif->pfik_flags & PFI_IFLAG_SKIP)
9809 return (PF_PASS);
9810
9811 if (m->m_flags & M_SKIP_FIREWALL)
9812 return (PF_PASS);
9813
9814 if (__predict_false(! M_WRITABLE(*m0))) {
9815 m = *m0 = m_unshare(*m0, M_NOWAIT);
9816 if (*m0 == NULL)
9817 return (PF_DROP);
9818 }
9819
9820 /* Stateless! */
9821 return (pf_test_eth_rule(dir, kif, m0));
9822 }
9823
9824 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9825 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9826 {
9827 struct m_tag *mtag;
9828
9829 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9830
9831 /* dummynet adds this tag, but pf does not need it,
9832 * and keeping it creates unexpected behavior,
9833 * e.g. in case of divert(4) usage right after dummynet. */
9834 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9835 if (mtag != NULL)
9836 m_tag_delete(m, mtag);
9837 }
9838
9839 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9840 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9841 struct pf_krule *r, struct mbuf **m0)
9842 {
9843 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9844 }
9845
9846 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,const struct sockaddr * sa,struct mbuf ** m0)9847 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9848 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa,
9849 struct mbuf **m0)
9850 {
9851 struct ip_fw_args dnflow;
9852
9853 NET_EPOCH_ASSERT();
9854
9855 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9856 return (0);
9857
9858 if (ip_dn_io_ptr == NULL) {
9859 m_freem(*m0);
9860 *m0 = NULL;
9861 return (ENOMEM);
9862 }
9863
9864 if (pd->pf_mtag == NULL &&
9865 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9866 m_freem(*m0);
9867 *m0 = NULL;
9868 return (ENOMEM);
9869 }
9870
9871 if (ifp != NULL) {
9872 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9873
9874 pd->pf_mtag->if_index = ifp->if_index;
9875 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9876
9877 MPASS(sa != NULL);
9878
9879 switch (sa->sa_family) {
9880 case AF_INET:
9881 memcpy(&pd->pf_mtag->dst, sa,
9882 sizeof(struct sockaddr_in));
9883 break;
9884 case AF_INET6:
9885 memcpy(&pd->pf_mtag->dst, sa,
9886 sizeof(struct sockaddr_in6));
9887 break;
9888 }
9889 }
9890
9891 if (s != NULL && s->nat_rule != NULL &&
9892 s->nat_rule->action == PF_RDR &&
9893 (
9894 #ifdef INET
9895 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9896 #endif /* INET */
9897 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9898 /*
9899 * If we're redirecting to loopback mark this packet
9900 * as being local. Otherwise it might get dropped
9901 * if dummynet re-injects.
9902 */
9903 (*m0)->m_pkthdr.rcvif = V_loif;
9904 }
9905
9906 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9907 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9908 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9909 ip_dn_io_ptr(m0, &dnflow);
9910 if (*m0 != NULL) {
9911 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9912 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9913 }
9914 }
9915
9916 return (0);
9917 }
9918
9919 static int
pf_walk_option(struct pf_pdesc * pd,struct ip * h,int off,int end,u_short * reason)9920 pf_walk_option(struct pf_pdesc *pd, struct ip *h, int off, int end,
9921 u_short *reason)
9922 {
9923 uint8_t type, length, opts[15 * 4 - sizeof(struct ip)];
9924
9925 /* IP header in payload of ICMP packet may be too short */
9926 if (pd->m->m_pkthdr.len < end) {
9927 DPFPRINTF(PF_DEBUG_MISC, "IP option too short");
9928 REASON_SET(reason, PFRES_SHORT);
9929 return (PF_DROP);
9930 }
9931
9932 MPASS(end - off <= sizeof(opts));
9933 m_copydata(pd->m, off, end - off, opts);
9934 end -= off;
9935 off = 0;
9936
9937 while (off < end) {
9938 type = opts[off];
9939 if (type == IPOPT_EOL)
9940 break;
9941 if (type == IPOPT_NOP) {
9942 off++;
9943 continue;
9944 }
9945 if (off + 2 > end) {
9946 DPFPRINTF(PF_DEBUG_MISC, "IP length opt");
9947 REASON_SET(reason, PFRES_IPOPTIONS);
9948 return (PF_DROP);
9949 }
9950 length = opts[off + 1];
9951 if (length < 2) {
9952 DPFPRINTF(PF_DEBUG_MISC, "IP short opt");
9953 REASON_SET(reason, PFRES_IPOPTIONS);
9954 return (PF_DROP);
9955 }
9956 if (off + length > end) {
9957 DPFPRINTF(PF_DEBUG_MISC, "IP long opt");
9958 REASON_SET(reason, PFRES_IPOPTIONS);
9959 return (PF_DROP);
9960 }
9961 switch (type) {
9962 case IPOPT_RA:
9963 pd->badopts |= PF_OPT_ROUTER_ALERT;
9964 break;
9965 default:
9966 pd->badopts |= PF_OPT_OTHER;
9967 break;
9968 }
9969 off += length;
9970 }
9971
9972 return (PF_PASS);
9973 }
9974
9975 static int
pf_walk_header(struct pf_pdesc * pd,struct ip * h,u_short * reason)9976 pf_walk_header(struct pf_pdesc *pd, struct ip *h, u_short *reason)
9977 {
9978 struct ah ext;
9979 u_int32_t hlen, end;
9980 int hdr_cnt;
9981
9982 hlen = h->ip_hl << 2;
9983 if (hlen < sizeof(struct ip) || hlen > ntohs(h->ip_len)) {
9984 REASON_SET(reason, PFRES_SHORT);
9985 return (PF_DROP);
9986 }
9987 if (hlen != sizeof(struct ip)) {
9988 if (pf_walk_option(pd, h, pd->off + sizeof(struct ip),
9989 pd->off + hlen, reason) != PF_PASS)
9990 return (PF_DROP);
9991 /* header options which contain only padding is fishy */
9992 if (pd->badopts == 0)
9993 pd->badopts |= PF_OPT_OTHER;
9994 }
9995 end = pd->off + ntohs(h->ip_len);
9996 pd->off += hlen;
9997 pd->proto = h->ip_p;
9998 /* IGMP packets have router alert options, allow them */
9999 if (pd->proto == IPPROTO_IGMP) {
10000 /* According to RFC 1112 ttl must be set to 1. */
10001 if ((h->ip_ttl != 1) ||
10002 !IN_MULTICAST(ntohl(h->ip_dst.s_addr))) {
10003 DPFPRINTF(PF_DEBUG_MISC, "Invalid IGMP");
10004 REASON_SET(reason, PFRES_IPOPTIONS);
10005 return (PF_DROP);
10006 }
10007 pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10008 }
10009 /* stop walking over non initial fragments */
10010 if ((h->ip_off & htons(IP_OFFMASK)) != 0)
10011 return (PF_PASS);
10012 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10013 switch (pd->proto) {
10014 case IPPROTO_AH:
10015 /* fragments may be short */
10016 if ((h->ip_off & htons(IP_MF | IP_OFFMASK)) != 0 &&
10017 end < pd->off + sizeof(ext))
10018 return (PF_PASS);
10019 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10020 NULL, reason, AF_INET)) {
10021 DPFPRINTF(PF_DEBUG_MISC, "IP short exthdr");
10022 return (PF_DROP);
10023 }
10024 pd->off += (ext.ah_len + 2) * 4;
10025 pd->proto = ext.ah_nxt;
10026 break;
10027 default:
10028 return (PF_PASS);
10029 }
10030 }
10031 DPFPRINTF(PF_DEBUG_MISC, "IPv4 nested authentication header limit");
10032 REASON_SET(reason, PFRES_IPOPTIONS);
10033 return (PF_DROP);
10034 }
10035
10036 #ifdef INET6
10037 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)10038 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
10039 u_short *reason)
10040 {
10041 struct ip6_opt opt;
10042 struct ip6_opt_jumbo jumbo;
10043
10044 while (off < end) {
10045 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
10046 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) {
10047 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt type");
10048 return (PF_DROP);
10049 }
10050 if (opt.ip6o_type == IP6OPT_PAD1) {
10051 off++;
10052 continue;
10053 }
10054 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL,
10055 reason, AF_INET6)) {
10056 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short opt");
10057 return (PF_DROP);
10058 }
10059 if (off + sizeof(opt) + opt.ip6o_len > end) {
10060 DPFPRINTF(PF_DEBUG_MISC, "IPv6 long opt");
10061 REASON_SET(reason, PFRES_IPOPTIONS);
10062 return (PF_DROP);
10063 }
10064 switch (opt.ip6o_type) {
10065 case IP6OPT_PADN:
10066 break;
10067 case IP6OPT_JUMBO:
10068 pd->badopts |= PF_OPT_JUMBO;
10069 if (pd->jumbolen != 0) {
10070 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple jumbo");
10071 REASON_SET(reason, PFRES_IPOPTIONS);
10072 return (PF_DROP);
10073 }
10074 if (ntohs(h->ip6_plen) != 0) {
10075 DPFPRINTF(PF_DEBUG_MISC, "IPv6 bad jumbo plen");
10076 REASON_SET(reason, PFRES_IPOPTIONS);
10077 return (PF_DROP);
10078 }
10079 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL,
10080 reason, AF_INET6)) {
10081 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbo");
10082 return (PF_DROP);
10083 }
10084 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
10085 sizeof(pd->jumbolen));
10086 pd->jumbolen = ntohl(pd->jumbolen);
10087 if (pd->jumbolen < IPV6_MAXPACKET) {
10088 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short jumbolen");
10089 REASON_SET(reason, PFRES_IPOPTIONS);
10090 return (PF_DROP);
10091 }
10092 break;
10093 case IP6OPT_ROUTER_ALERT:
10094 pd->badopts |= PF_OPT_ROUTER_ALERT;
10095 break;
10096 default:
10097 pd->badopts |= PF_OPT_OTHER;
10098 break;
10099 }
10100 off += sizeof(opt) + opt.ip6o_len;
10101 }
10102
10103 return (PF_PASS);
10104 }
10105
10106 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)10107 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
10108 {
10109 struct ip6_frag frag;
10110 struct ip6_ext ext;
10111 struct icmp6_hdr icmp6;
10112 struct ip6_rthdr rthdr;
10113 uint32_t end;
10114 int hdr_cnt, fraghdr_cnt = 0, rthdr_cnt = 0;
10115
10116 pd->off += sizeof(struct ip6_hdr);
10117 end = pd->off + ntohs(h->ip6_plen);
10118 pd->fragoff = pd->extoff = pd->jumbolen = 0;
10119 pd->proto = h->ip6_nxt;
10120 for (hdr_cnt = 0; hdr_cnt < PF_HDR_LIMIT; hdr_cnt++) {
10121 switch (pd->proto) {
10122 case IPPROTO_ROUTING:
10123 case IPPROTO_DSTOPTS:
10124 pd->badopts |= PF_OPT_OTHER;
10125 break;
10126 case IPPROTO_HOPOPTS:
10127 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10128 NULL, reason, AF_INET6)) {
10129 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10130 return (PF_DROP);
10131 }
10132 if (pf_walk_option6(pd, h, pd->off + sizeof(ext),
10133 pd->off + (ext.ip6e_len + 1) * 8,
10134 reason) != PF_PASS)
10135 return (PF_DROP);
10136 /* option header which contains only padding is fishy */
10137 if (pd->badopts == 0)
10138 pd->badopts |= PF_OPT_OTHER;
10139 break;
10140 }
10141 switch (pd->proto) {
10142 case IPPROTO_FRAGMENT:
10143 if (fraghdr_cnt++) {
10144 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple fragment");
10145 REASON_SET(reason, PFRES_FRAG);
10146 return (PF_DROP);
10147 }
10148 /* jumbo payload packets cannot be fragmented */
10149 if (pd->jumbolen != 0) {
10150 DPFPRINTF(PF_DEBUG_MISC, "IPv6 fragmented jumbo");
10151 REASON_SET(reason, PFRES_FRAG);
10152 return (PF_DROP);
10153 }
10154 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
10155 NULL, reason, AF_INET6)) {
10156 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short fragment");
10157 return (PF_DROP);
10158 }
10159 /* stop walking over non initial fragments */
10160 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) {
10161 pd->fragoff = pd->off;
10162 return (PF_PASS);
10163 }
10164 /* RFC6946: reassemble only non atomic fragments */
10165 if (frag.ip6f_offlg & IP6F_MORE_FRAG)
10166 pd->fragoff = pd->off;
10167 pd->off += sizeof(frag);
10168 pd->proto = frag.ip6f_nxt;
10169 break;
10170 case IPPROTO_ROUTING:
10171 if (rthdr_cnt++) {
10172 DPFPRINTF(PF_DEBUG_MISC, "IPv6 multiple rthdr");
10173 REASON_SET(reason, PFRES_IPOPTIONS);
10174 return (PF_DROP);
10175 }
10176 /* fragments may be short */
10177 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
10178 pd->off = pd->fragoff;
10179 pd->proto = IPPROTO_FRAGMENT;
10180 return (PF_PASS);
10181 }
10182 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
10183 NULL, reason, AF_INET6)) {
10184 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short rthdr");
10185 return (PF_DROP);
10186 }
10187 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
10188 DPFPRINTF(PF_DEBUG_MISC, "IPv6 rthdr0");
10189 REASON_SET(reason, PFRES_IPOPTIONS);
10190 return (PF_DROP);
10191 }
10192 /* FALLTHROUGH */
10193 case IPPROTO_HOPOPTS:
10194 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */
10195 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 0) {
10196 DPFPRINTF(PF_DEBUG_MISC, "IPv6 hopopts not first");
10197 REASON_SET(reason, PFRES_IPOPTIONS);
10198 return (PF_DROP);
10199 }
10200 /* FALLTHROUGH */
10201 case IPPROTO_AH:
10202 case IPPROTO_DSTOPTS:
10203 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
10204 NULL, reason, AF_INET6)) {
10205 DPFPRINTF(PF_DEBUG_MISC, "IPv6 short exthdr");
10206 return (PF_DROP);
10207 }
10208 /* fragments may be short */
10209 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
10210 pd->off = pd->fragoff;
10211 pd->proto = IPPROTO_FRAGMENT;
10212 return (PF_PASS);
10213 }
10214 /* reassembly needs the ext header before the frag */
10215 if (pd->fragoff == 0)
10216 pd->extoff = pd->off;
10217 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0 &&
10218 ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
10219 DPFPRINTF(PF_DEBUG_MISC, "IPv6 missing jumbo");
10220 REASON_SET(reason, PFRES_IPOPTIONS);
10221 return (PF_DROP);
10222 }
10223 if (pd->proto == IPPROTO_AH)
10224 pd->off += (ext.ip6e_len + 2) * 4;
10225 else
10226 pd->off += (ext.ip6e_len + 1) * 8;
10227 pd->proto = ext.ip6e_nxt;
10228 break;
10229 case IPPROTO_ICMPV6:
10230 /* fragments may be short, ignore inner header then */
10231 if (pd->fragoff != 0 && end < pd->off + sizeof(icmp6)) {
10232 pd->off = pd->fragoff;
10233 pd->proto = IPPROTO_FRAGMENT;
10234 return (PF_PASS);
10235 }
10236 if (!pf_pull_hdr(pd->m, pd->off, &icmp6, sizeof(icmp6),
10237 NULL, reason, AF_INET6)) {
10238 DPFPRINTF(PF_DEBUG_MISC,
10239 "IPv6 short icmp6hdr");
10240 return (PF_DROP);
10241 }
10242 /* ICMP multicast packets have router alert options */
10243 switch (icmp6.icmp6_type) {
10244 case MLD_LISTENER_QUERY:
10245 case MLD_LISTENER_REPORT:
10246 case MLD_LISTENER_DONE:
10247 case MLDV2_LISTENER_REPORT:
10248 /*
10249 * According to RFC 2710 all MLD messages are
10250 * sent with hop-limit (ttl) set to 1, and link
10251 * local source address. If either one is
10252 * missing then MLD message is invalid and
10253 * should be discarded.
10254 */
10255 if ((h->ip6_hlim != 1) ||
10256 !IN6_IS_ADDR_LINKLOCAL(&h->ip6_src)) {
10257 DPFPRINTF(PF_DEBUG_MISC, "Invalid MLD");
10258 REASON_SET(reason, PFRES_IPOPTIONS);
10259 return (PF_DROP);
10260 }
10261 pd->badopts &= ~PF_OPT_ROUTER_ALERT;
10262 break;
10263 }
10264 return (PF_PASS);
10265 case IPPROTO_TCP:
10266 case IPPROTO_UDP:
10267 case IPPROTO_SCTP:
10268 /* fragments may be short, ignore inner header then */
10269 if (pd->fragoff != 0 && end < pd->off +
10270 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
10271 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
10272 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
10273 sizeof(struct icmp6_hdr))) {
10274 pd->off = pd->fragoff;
10275 pd->proto = IPPROTO_FRAGMENT;
10276 }
10277 /* FALLTHROUGH */
10278 default:
10279 return (PF_PASS);
10280 }
10281 }
10282 DPFPRINTF(PF_DEBUG_MISC, "IPv6 nested extension header limit");
10283 REASON_SET(reason, PFRES_IPOPTIONS);
10284 return (PF_DROP);
10285 }
10286 #endif /* INET6 */
10287
10288 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)10289 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
10290 {
10291 memset(pd, 0, sizeof(*pd));
10292 pd->pf_mtag = pf_find_mtag(m);
10293 pd->m = m;
10294 }
10295
10296 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)10297 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
10298 u_short *action, u_short *reason, struct pfi_kkif *kif,
10299 struct pf_rule_actions *default_actions)
10300 {
10301 pd->dir = dir;
10302 pd->kif = kif;
10303 pd->m = *m0;
10304 pd->sidx = (dir == PF_IN) ? 0 : 1;
10305 pd->didx = (dir == PF_IN) ? 1 : 0;
10306 pd->af = pd->naf = af;
10307
10308 PF_RULES_ASSERT();
10309
10310 TAILQ_INIT(&pd->sctp_multihome_jobs);
10311 if (default_actions != NULL)
10312 memcpy(&pd->act, default_actions, sizeof(pd->act));
10313
10314 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
10315 pd->act.dnpipe = pd->pf_mtag->dnpipe;
10316 pd->act.flags = pd->pf_mtag->dnflags;
10317 }
10318
10319 switch (af) {
10320 #ifdef INET
10321 case AF_INET: {
10322 struct ip *h;
10323
10324 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
10325 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
10326 DPFPRINTF(PF_DEBUG_URGENT,
10327 "%s: m_len < sizeof(struct ip), pullup failed",
10328 __func__);
10329 *action = PF_DROP;
10330 REASON_SET(reason, PFRES_SHORT);
10331 return (-1);
10332 }
10333
10334 h = mtod(pd->m, struct ip *);
10335 if (pd->m->m_pkthdr.len < ntohs(h->ip_len)) {
10336 *action = PF_DROP;
10337 REASON_SET(reason, PFRES_SHORT);
10338 return (-1);
10339 }
10340
10341 if (pf_normalize_ip(reason, pd) != PF_PASS) {
10342 /* We do IP header normalization and packet reassembly here */
10343 *m0 = pd->m;
10344 *action = PF_DROP;
10345 return (-1);
10346 }
10347 *m0 = pd->m;
10348 h = mtod(pd->m, struct ip *);
10349
10350 if (pf_walk_header(pd, h, reason) != PF_PASS) {
10351 *action = PF_DROP;
10352 return (-1);
10353 }
10354
10355 pd->src = (struct pf_addr *)&h->ip_src;
10356 pd->dst = (struct pf_addr *)&h->ip_dst;
10357 pf_addrcpy(&pd->osrc, pd->src, af);
10358 pf_addrcpy(&pd->odst, pd->dst, af);
10359 pd->ip_sum = &h->ip_sum;
10360 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
10361 pd->ttl = h->ip_ttl;
10362 pd->tot_len = ntohs(h->ip_len);
10363 pd->act.rtableid = -1;
10364 pd->df = h->ip_off & htons(IP_DF);
10365 pd->virtual_proto = (h->ip_off & htons(IP_MF | IP_OFFMASK)) ?
10366 PF_VPROTO_FRAGMENT : pd->proto;
10367
10368 break;
10369 }
10370 #endif /* INET */
10371 #ifdef INET6
10372 case AF_INET6: {
10373 struct ip6_hdr *h;
10374
10375 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10376 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10377 DPFPRINTF(PF_DEBUG_URGENT,
10378 "%s: m_len < sizeof(struct ip6_hdr)"
10379 ", pullup failed", __func__);
10380 *action = PF_DROP;
10381 REASON_SET(reason, PFRES_SHORT);
10382 return (-1);
10383 }
10384
10385 h = mtod(pd->m, struct ip6_hdr *);
10386 if (pd->m->m_pkthdr.len <
10387 sizeof(struct ip6_hdr) + ntohs(h->ip6_plen)) {
10388 *action = PF_DROP;
10389 REASON_SET(reason, PFRES_SHORT);
10390 return (-1);
10391 }
10392
10393 /*
10394 * we do not support jumbogram. if we keep going, zero ip6_plen
10395 * will do something bad, so drop the packet for now.
10396 */
10397 if (htons(h->ip6_plen) == 0) {
10398 *action = PF_DROP;
10399 return (-1);
10400 }
10401
10402 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10403 *action = PF_DROP;
10404 return (-1);
10405 }
10406
10407 h = mtod(pd->m, struct ip6_hdr *);
10408 pd->src = (struct pf_addr *)&h->ip6_src;
10409 pd->dst = (struct pf_addr *)&h->ip6_dst;
10410 pf_addrcpy(&pd->osrc, pd->src, af);
10411 pf_addrcpy(&pd->odst, pd->dst, af);
10412 pd->ip_sum = NULL;
10413 pd->tos = IPV6_DSCP(h);
10414 pd->ttl = h->ip6_hlim;
10415 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10416 pd->act.rtableid = -1;
10417
10418 pd->virtual_proto = (pd->fragoff != 0) ?
10419 PF_VPROTO_FRAGMENT : pd->proto;
10420
10421 /* We do IP header normalization and packet reassembly here */
10422 if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10423 PF_PASS) {
10424 *m0 = pd->m;
10425 *action = PF_DROP;
10426 return (-1);
10427 }
10428 *m0 = pd->m;
10429 if (pd->m == NULL) {
10430 /* packet sits in reassembly queue, no error */
10431 *action = PF_PASS;
10432 return (-1);
10433 }
10434
10435 /* Update pointers into the packet. */
10436 h = mtod(pd->m, struct ip6_hdr *);
10437 pd->src = (struct pf_addr *)&h->ip6_src;
10438 pd->dst = (struct pf_addr *)&h->ip6_dst;
10439
10440 pd->off = 0;
10441
10442 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10443 *action = PF_DROP;
10444 return (-1);
10445 }
10446
10447 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10448 /*
10449 * Reassembly may have changed the next protocol from
10450 * fragment to something else, so update.
10451 */
10452 pd->virtual_proto = pd->proto;
10453 MPASS(pd->fragoff == 0);
10454 }
10455
10456 if (pd->fragoff != 0)
10457 pd->virtual_proto = PF_VPROTO_FRAGMENT;
10458
10459 break;
10460 }
10461 #endif /* INET6 */
10462 default:
10463 panic("pf_setup_pdesc called with illegal af %u", af);
10464 }
10465
10466 switch (pd->virtual_proto) {
10467 case IPPROTO_TCP: {
10468 struct tcphdr *th = &pd->hdr.tcp;
10469
10470 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
10471 reason, af)) {
10472 *action = PF_DROP;
10473 REASON_SET(reason, PFRES_SHORT);
10474 return (-1);
10475 }
10476 pd->hdrlen = sizeof(*th);
10477 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10478 pd->sport = &th->th_sport;
10479 pd->dport = &th->th_dport;
10480 pd->pcksum = &th->th_sum;
10481 break;
10482 }
10483 case IPPROTO_UDP: {
10484 struct udphdr *uh = &pd->hdr.udp;
10485
10486 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10487 reason, af)) {
10488 *action = PF_DROP;
10489 REASON_SET(reason, PFRES_SHORT);
10490 return (-1);
10491 }
10492 pd->hdrlen = sizeof(*uh);
10493 if (uh->uh_dport == 0 ||
10494 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10495 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10496 *action = PF_DROP;
10497 REASON_SET(reason, PFRES_SHORT);
10498 return (-1);
10499 }
10500 pd->sport = &uh->uh_sport;
10501 pd->dport = &uh->uh_dport;
10502 pd->pcksum = &uh->uh_sum;
10503 break;
10504 }
10505 case IPPROTO_SCTP: {
10506 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10507 action, reason, af)) {
10508 *action = PF_DROP;
10509 REASON_SET(reason, PFRES_SHORT);
10510 return (-1);
10511 }
10512 pd->hdrlen = sizeof(pd->hdr.sctp);
10513 pd->p_len = pd->tot_len - pd->off;
10514
10515 pd->sport = &pd->hdr.sctp.src_port;
10516 pd->dport = &pd->hdr.sctp.dest_port;
10517 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10518 *action = PF_DROP;
10519 REASON_SET(reason, PFRES_SHORT);
10520 return (-1);
10521 }
10522 if (pf_scan_sctp(pd) != PF_PASS) {
10523 *action = PF_DROP;
10524 REASON_SET(reason, PFRES_SHORT);
10525 return (-1);
10526 }
10527 /*
10528 * Placeholder. The SCTP checksum is 32-bits, but
10529 * pf_test_state() expects to update a 16-bit checksum.
10530 * Provide a dummy value which we'll subsequently ignore.
10531 */
10532 pd->pcksum = &pd->sctp_dummy_sum;
10533 break;
10534 }
10535 case IPPROTO_ICMP: {
10536 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10537 action, reason, af)) {
10538 *action = PF_DROP;
10539 REASON_SET(reason, PFRES_SHORT);
10540 return (-1);
10541 }
10542 pd->pcksum = &pd->hdr.icmp.icmp_cksum;
10543 pd->hdrlen = ICMP_MINLEN;
10544 break;
10545 }
10546 #ifdef INET6
10547 case IPPROTO_ICMPV6: {
10548 size_t icmp_hlen = sizeof(struct icmp6_hdr);
10549
10550 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10551 action, reason, af)) {
10552 *action = PF_DROP;
10553 REASON_SET(reason, PFRES_SHORT);
10554 return (-1);
10555 }
10556 /* ICMP headers we look further into to match state */
10557 switch (pd->hdr.icmp6.icmp6_type) {
10558 case MLD_LISTENER_QUERY:
10559 case MLD_LISTENER_REPORT:
10560 icmp_hlen = sizeof(struct mld_hdr);
10561 break;
10562 case ND_NEIGHBOR_SOLICIT:
10563 case ND_NEIGHBOR_ADVERT:
10564 icmp_hlen = sizeof(struct nd_neighbor_solicit);
10565 /* FALLTHROUGH */
10566 case ND_ROUTER_SOLICIT:
10567 case ND_ROUTER_ADVERT:
10568 case ND_REDIRECT:
10569 if (pd->ttl != 255) {
10570 REASON_SET(reason, PFRES_NORM);
10571 return (PF_DROP);
10572 }
10573 break;
10574 }
10575 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10576 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10577 action, reason, af)) {
10578 *action = PF_DROP;
10579 REASON_SET(reason, PFRES_SHORT);
10580 return (-1);
10581 }
10582 pd->hdrlen = icmp_hlen;
10583 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum;
10584 break;
10585 }
10586 #endif /* INET6 */
10587 }
10588
10589 if (pd->sport)
10590 pd->osport = pd->nsport = *pd->sport;
10591 if (pd->dport)
10592 pd->odport = pd->ndport = *pd->dport;
10593
10594 return (0);
10595 }
10596
10597 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10598 pf_counters_inc(int action, struct pf_pdesc *pd,
10599 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10600 {
10601 struct pf_krule *tr;
10602 int dir = pd->dir;
10603 int dirndx;
10604
10605 pf_counter_u64_critical_enter();
10606 pf_counter_u64_add_protected(
10607 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10608 pd->tot_len);
10609 pf_counter_u64_add_protected(
10610 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10611 1);
10612
10613 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10614 dirndx = (dir == PF_OUT);
10615 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10616 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10617 pf_update_timestamp(r);
10618
10619 if (a != NULL) {
10620 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10621 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10622 }
10623 if (s != NULL) {
10624 struct pf_krule_item *ri;
10625
10626 if (s->nat_rule != NULL) {
10627 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10628 1);
10629 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10630 pd->tot_len);
10631 }
10632 /*
10633 * Source nodes are accessed unlocked here.
10634 * But since we are operating with stateful tracking
10635 * and the state is locked, those SNs could not have
10636 * been freed.
10637 */
10638 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) {
10639 if (s->sns[sn_type] != NULL) {
10640 counter_u64_add(
10641 s->sns[sn_type]->packets[dirndx],
10642 1);
10643 counter_u64_add(
10644 s->sns[sn_type]->bytes[dirndx],
10645 pd->tot_len);
10646 }
10647 }
10648 dirndx = (dir == s->direction) ? 0 : 1;
10649 s->packets[dirndx]++;
10650 s->bytes[dirndx] += pd->tot_len;
10651
10652 SLIST_FOREACH(ri, &s->match_rules, entry) {
10653 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10654 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10655
10656 if (ri->r->src.addr.type == PF_ADDR_TABLE)
10657 pfr_update_stats(ri->r->src.addr.p.tbl,
10658 (s == NULL) ? pd->src :
10659 &s->key[(s->direction == PF_IN)]->
10660 addr[(s->direction == PF_OUT)],
10661 pd->af, pd->tot_len, dir == PF_OUT,
10662 r->action == PF_PASS, ri->r->src.neg);
10663 if (ri->r->dst.addr.type == PF_ADDR_TABLE)
10664 pfr_update_stats(ri->r->dst.addr.p.tbl,
10665 (s == NULL) ? pd->dst :
10666 &s->key[(s->direction == PF_IN)]->
10667 addr[(s->direction == PF_IN)],
10668 pd->af, pd->tot_len, dir == PF_OUT,
10669 r->action == PF_PASS, ri->r->dst.neg);
10670 }
10671 }
10672
10673 tr = r;
10674 if (s != NULL && s->nat_rule != NULL &&
10675 r == &V_pf_default_rule)
10676 tr = s->nat_rule;
10677
10678 if (tr->src.addr.type == PF_ADDR_TABLE)
10679 pfr_update_stats(tr->src.addr.p.tbl,
10680 (s == NULL) ? pd->src :
10681 &s->key[(s->direction == PF_IN)]->
10682 addr[(s->direction == PF_OUT)],
10683 pd->af, pd->tot_len, dir == PF_OUT,
10684 r->action == PF_PASS, tr->src.neg);
10685 if (tr->dst.addr.type == PF_ADDR_TABLE)
10686 pfr_update_stats(tr->dst.addr.p.tbl,
10687 (s == NULL) ? pd->dst :
10688 &s->key[(s->direction == PF_IN)]->
10689 addr[(s->direction == PF_IN)],
10690 pd->af, pd->tot_len, dir == PF_OUT,
10691 r->action == PF_PASS, tr->dst.neg);
10692 }
10693 pf_counter_u64_critical_exit();
10694 }
10695 static void
pf_log_matches(struct pf_pdesc * pd,struct pf_krule * rm,struct pf_krule * am,struct pf_kruleset * ruleset,struct pf_krule_slist * matchrules)10696 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm,
10697 struct pf_krule *am, struct pf_kruleset *ruleset,
10698 struct pf_krule_slist *matchrules)
10699 {
10700 struct pf_krule_item *ri;
10701
10702 /* if this is the log(matches) rule, packet has been logged already */
10703 if (rm->log & PF_LOG_MATCHES)
10704 return;
10705
10706 SLIST_FOREACH(ri, matchrules, entry)
10707 if (ri->r->log & PF_LOG_MATCHES)
10708 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am,
10709 ruleset, pd, 1, ri->r);
10710 }
10711
10712 #if defined(INET) || defined(INET6)
10713 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10714 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10715 struct inpcb *inp, struct pf_rule_actions *default_actions)
10716 {
10717 struct pfi_kkif *kif;
10718 u_short action, reason = 0;
10719 struct m_tag *mtag;
10720 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
10721 struct pf_kstate *s = NULL;
10722 struct pf_kruleset *ruleset = NULL;
10723 struct pf_pdesc pd;
10724 int use_2nd_queue = 0;
10725 uint16_t tag;
10726
10727 PF_RULES_RLOCK_TRACKER;
10728 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10729 M_ASSERTPKTHDR(*m0);
10730 NET_EPOCH_ASSERT();
10731
10732 if (!V_pf_status.running)
10733 return (PF_PASS);
10734
10735 kif = (struct pfi_kkif *)ifp->if_pf_kif;
10736
10737 if (__predict_false(kif == NULL)) {
10738 DPFPRINTF(PF_DEBUG_URGENT,
10739 "%s: kif == NULL, if_xname %s",
10740 __func__, ifp->if_xname);
10741 return (PF_DROP);
10742 }
10743 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10744 return (PF_PASS);
10745 }
10746
10747 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10748 return (PF_PASS);
10749 }
10750
10751 if (__predict_false(! M_WRITABLE(*m0))) {
10752 *m0 = m_unshare(*m0, M_NOWAIT);
10753 if (*m0 == NULL) {
10754 return (PF_DROP);
10755 }
10756 }
10757
10758 pf_init_pdesc(&pd, *m0);
10759
10760 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10761 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10762
10763 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10764 pd.pf_mtag->if_idxgen);
10765 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10766 m_freem(*m0);
10767 *m0 = NULL;
10768 return (PF_PASS);
10769 }
10770 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10771 *m0 = NULL;
10772 return (PF_PASS);
10773 }
10774
10775 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10776 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10777 /* Dummynet re-injects packets after they've
10778 * completed their delay. We've already
10779 * processed them, so pass unconditionally. */
10780
10781 /* But only once. We may see the packet multiple times (e.g.
10782 * PFIL_IN/PFIL_OUT). */
10783 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10784
10785 return (PF_PASS);
10786 }
10787
10788 PF_RULES_RLOCK();
10789
10790 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10791 kif, default_actions) == -1) {
10792 if (action != PF_PASS)
10793 pd.act.log |= PF_LOG_FORCE;
10794 goto done;
10795 }
10796
10797 #ifdef INET
10798 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
10799 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
10800 PF_RULES_RUNLOCK();
10801 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10802 0, ifp->if_mtu);
10803 *m0 = NULL;
10804 return (PF_DROP);
10805 }
10806 #endif /* INET */
10807 #ifdef INET6
10808 /*
10809 * If we end up changing IP addresses (e.g. binat) the stack may get
10810 * confused and fail to send the icmp6 packet too big error. Just send
10811 * it here, before we do any NAT.
10812 */
10813 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10814 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10815 PF_RULES_RUNLOCK();
10816 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10817 *m0 = NULL;
10818 return (PF_DROP);
10819 }
10820 #endif /* INET6 */
10821
10822 if (__predict_false(ip_divert_ptr != NULL) &&
10823 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10824 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10825 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10826 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10827 if (pd.pf_mtag == NULL &&
10828 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10829 action = PF_DROP;
10830 goto done;
10831 }
10832 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10833 }
10834 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10835 pd.m->m_flags |= M_FASTFWD_OURS;
10836 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10837 }
10838 m_tag_delete(pd.m, mtag);
10839
10840 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10841 if (mtag != NULL)
10842 m_tag_delete(pd.m, mtag);
10843 }
10844
10845 switch (pd.virtual_proto) {
10846 case PF_VPROTO_FRAGMENT:
10847 /*
10848 * handle fragments that aren't reassembled by
10849 * normalization
10850 */
10851 if (kif == NULL || r == NULL) /* pflog */
10852 action = PF_DROP;
10853 else
10854 action = pf_test_rule(&r, &s, &pd, &a,
10855 &ruleset, &reason, inp);
10856 if (action != PF_PASS)
10857 REASON_SET(&reason, PFRES_FRAG);
10858 break;
10859
10860 case IPPROTO_TCP: {
10861 /* Respond to SYN with a syncookie. */
10862 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10863 pd.dir == PF_IN && pf_synflood_check(&pd)) {
10864 pf_syncookie_send(&pd);
10865 action = PF_DROP;
10866 break;
10867 }
10868
10869 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10870 use_2nd_queue = 1;
10871 action = pf_normalize_tcp(&pd);
10872 if (action == PF_DROP)
10873 break;
10874 action = pf_test_state(&s, &pd, &reason);
10875 if (action == PF_PASS || action == PF_AFRT) {
10876 if (V_pfsync_update_state_ptr != NULL)
10877 V_pfsync_update_state_ptr(s);
10878 r = s->rule;
10879 a = s->anchor;
10880 } else if (s == NULL) {
10881 /* Validate remote SYN|ACK, re-create original SYN if
10882 * valid. */
10883 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10884 TH_ACK && pf_syncookie_validate(&pd) &&
10885 pd.dir == PF_IN) {
10886 struct mbuf *msyn;
10887
10888 msyn = pf_syncookie_recreate_syn(&pd);
10889 if (msyn == NULL) {
10890 action = PF_DROP;
10891 break;
10892 }
10893
10894 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10895 &pd.act);
10896 m_freem(msyn);
10897 if (action != PF_PASS)
10898 break;
10899
10900 action = pf_test_state(&s, &pd, &reason);
10901 if (action != PF_PASS || s == NULL) {
10902 action = PF_DROP;
10903 break;
10904 }
10905
10906 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10907 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10908 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10909 action = pf_synproxy(&pd, s, &reason);
10910 break;
10911 } else {
10912 action = pf_test_rule(&r, &s, &pd,
10913 &a, &ruleset, &reason, inp);
10914 }
10915 }
10916 break;
10917 }
10918
10919 case IPPROTO_SCTP:
10920 action = pf_normalize_sctp(&pd);
10921 if (action == PF_DROP)
10922 break;
10923 /* fallthrough */
10924 case IPPROTO_UDP:
10925 default:
10926 action = pf_test_state(&s, &pd, &reason);
10927 if (action == PF_PASS || action == PF_AFRT) {
10928 if (V_pfsync_update_state_ptr != NULL)
10929 V_pfsync_update_state_ptr(s);
10930 r = s->rule;
10931 a = s->anchor;
10932 } else if (s == NULL) {
10933 action = pf_test_rule(&r, &s,
10934 &pd, &a, &ruleset, &reason, inp);
10935 }
10936 break;
10937
10938 case IPPROTO_ICMP:
10939 case IPPROTO_ICMPV6: {
10940 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10941 action = PF_DROP;
10942 REASON_SET(&reason, PFRES_NORM);
10943 DPFPRINTF(PF_DEBUG_MISC,
10944 "dropping IPv6 packet with ICMPv4 payload");
10945 break;
10946 }
10947 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10948 action = PF_DROP;
10949 REASON_SET(&reason, PFRES_NORM);
10950 DPFPRINTF(PF_DEBUG_MISC,
10951 "pf: dropping IPv4 packet with ICMPv6 payload");
10952 break;
10953 }
10954 action = pf_test_state_icmp(&s, &pd, &reason);
10955 if (action == PF_PASS || action == PF_AFRT) {
10956 if (V_pfsync_update_state_ptr != NULL)
10957 V_pfsync_update_state_ptr(s);
10958 r = s->rule;
10959 a = s->anchor;
10960 } else if (s == NULL)
10961 action = pf_test_rule(&r, &s, &pd,
10962 &a, &ruleset, &reason, inp);
10963 break;
10964 }
10965
10966 }
10967
10968 done:
10969 PF_RULES_RUNLOCK();
10970
10971 if (pd.m == NULL)
10972 goto eat_pkt;
10973
10974 if (s)
10975 memcpy(&pd.act, &s->act, sizeof(s->act));
10976
10977 if (action == PF_PASS && pd.badopts != 0 && !pd.act.allow_opts) {
10978 action = PF_DROP;
10979 REASON_SET(&reason, PFRES_IPOPTIONS);
10980 pd.act.log = PF_LOG_FORCE;
10981 DPFPRINTF(PF_DEBUG_MISC,
10982 "pf: dropping packet with dangerous headers");
10983 }
10984
10985 if (pd.act.max_pkt_size && pd.act.max_pkt_size &&
10986 pd.tot_len > pd.act.max_pkt_size) {
10987 action = PF_DROP;
10988 REASON_SET(&reason, PFRES_NORM);
10989 pd.act.log = PF_LOG_FORCE;
10990 DPFPRINTF(PF_DEBUG_MISC,
10991 "pf: dropping overly long packet");
10992 }
10993
10994 if (s) {
10995 uint8_t log = pd.act.log;
10996 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
10997 pd.act.log |= log;
10998 tag = s->tag;
10999 } else {
11000 tag = r->tag;
11001 }
11002
11003 if (tag > 0 && pf_tag_packet(&pd, tag)) {
11004 action = PF_DROP;
11005 REASON_SET(&reason, PFRES_MEMORY);
11006 }
11007
11008 pf_scrub(&pd);
11009 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
11010 pf_normalize_mss(&pd);
11011
11012 if (pd.act.rtableid >= 0)
11013 M_SETFIB(pd.m, pd.act.rtableid);
11014
11015 if (pd.act.flags & PFSTATE_SETPRIO) {
11016 if (pd.tos & IPTOS_LOWDELAY)
11017 use_2nd_queue = 1;
11018 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
11019 action = PF_DROP;
11020 REASON_SET(&reason, PFRES_MEMORY);
11021 pd.act.log = PF_LOG_FORCE;
11022 DPFPRINTF(PF_DEBUG_MISC,
11023 "pf: failed to allocate 802.1q mtag");
11024 }
11025 }
11026
11027 #ifdef ALTQ
11028 if (action == PF_PASS && pd.act.qid) {
11029 if (pd.pf_mtag == NULL &&
11030 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11031 action = PF_DROP;
11032 REASON_SET(&reason, PFRES_MEMORY);
11033 } else {
11034 if (s != NULL)
11035 pd.pf_mtag->qid_hash = pf_state_hash(s);
11036 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
11037 pd.pf_mtag->qid = pd.act.pqid;
11038 else
11039 pd.pf_mtag->qid = pd.act.qid;
11040 /* Add hints for ecn. */
11041 pd.pf_mtag->hdr = mtod(pd.m, void *);
11042 }
11043 }
11044 #endif /* ALTQ */
11045
11046 /*
11047 * connections redirected to loopback should not match sockets
11048 * bound specifically to loopback due to security implications,
11049 * see tcp_input() and in_pcblookup_listen().
11050 */
11051 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
11052 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
11053 (s->nat_rule->action == PF_RDR ||
11054 s->nat_rule->action == PF_BINAT) &&
11055 pf_is_loopback(af, pd.dst))
11056 pd.m->m_flags |= M_SKIP_FIREWALL;
11057
11058 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
11059 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
11060 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
11061 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
11062 if (mtag != NULL) {
11063 ((struct pf_divert_mtag *)(mtag+1))->port =
11064 ntohs(r->divert.port);
11065 ((struct pf_divert_mtag *)(mtag+1))->idir =
11066 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
11067 PF_DIVERT_MTAG_DIR_OUT;
11068
11069 if (s)
11070 PF_STATE_UNLOCK(s);
11071
11072 m_tag_prepend(pd.m, mtag);
11073 if (pd.m->m_flags & M_FASTFWD_OURS) {
11074 if (pd.pf_mtag == NULL &&
11075 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
11076 action = PF_DROP;
11077 REASON_SET(&reason, PFRES_MEMORY);
11078 pd.act.log = PF_LOG_FORCE;
11079 DPFPRINTF(PF_DEBUG_MISC,
11080 "pf: failed to allocate tag");
11081 } else {
11082 pd.pf_mtag->flags |=
11083 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
11084 pd.m->m_flags &= ~M_FASTFWD_OURS;
11085 }
11086 }
11087 ip_divert_ptr(*m0, dir == PF_IN);
11088 *m0 = NULL;
11089
11090 return (action);
11091 } else {
11092 /* XXX: ipfw has the same behaviour! */
11093 action = PF_DROP;
11094 REASON_SET(&reason, PFRES_MEMORY);
11095 pd.act.log = PF_LOG_FORCE;
11096 DPFPRINTF(PF_DEBUG_MISC,
11097 "pf: failed to allocate divert tag");
11098 }
11099 }
11100 /* XXX: Anybody working on it?! */
11101 if (af == AF_INET6 && r->divert.port)
11102 printf("pf: divert(9) is not supported for IPv6\n");
11103
11104 /* this flag will need revising if the pkt is forwarded */
11105 if (pd.pf_mtag)
11106 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
11107
11108 if (pd.act.log) {
11109 struct pf_krule *lr;
11110 struct pf_krule_item *ri;
11111
11112 if (s != NULL && s->nat_rule != NULL &&
11113 s->nat_rule->log & PF_LOG_ALL)
11114 lr = s->nat_rule;
11115 else
11116 lr = r;
11117
11118 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
11119 PFLOG_PACKET(action, reason, lr, a,
11120 ruleset, &pd, (s == NULL), NULL);
11121 if (s) {
11122 SLIST_FOREACH(ri, &s->match_rules, entry)
11123 if (ri->r->log & PF_LOG_ALL)
11124 PFLOG_PACKET(action,
11125 reason, ri->r, a, ruleset, &pd, 0, NULL);
11126 }
11127 }
11128
11129 pf_counters_inc(action, &pd, s, r, a);
11130
11131 switch (action) {
11132 case PF_SYNPROXY_DROP:
11133 m_freem(*m0);
11134 case PF_DEFER:
11135 *m0 = NULL;
11136 action = PF_PASS;
11137 break;
11138 case PF_DROP:
11139 m_freem(*m0);
11140 *m0 = NULL;
11141 break;
11142 case PF_AFRT:
11143 if (pf_translate_af(&pd)) {
11144 *m0 = pd.m;
11145 action = PF_DROP;
11146 break;
11147 }
11148 #ifdef INET
11149 if (pd.naf == AF_INET) {
11150 action = pf_route(r, kif->pfik_ifp, s, &pd,
11151 inp);
11152 }
11153 #endif /* INET */
11154 #ifdef INET6
11155 if (pd.naf == AF_INET6) {
11156 action = pf_route6(r, kif->pfik_ifp, s, &pd,
11157 inp);
11158 }
11159 #endif /* INET6 */
11160 *m0 = pd.m;
11161 goto out;
11162 break;
11163 default:
11164 if (pd.act.rt) {
11165 switch (af) {
11166 #ifdef INET
11167 case AF_INET:
11168 /* pf_route() returns unlocked. */
11169 action = pf_route(r, kif->pfik_ifp, s, &pd,
11170 inp);
11171 break;
11172 #endif /* INET */
11173 #ifdef INET6
11174 case AF_INET6:
11175 /* pf_route6() returns unlocked. */
11176 action = pf_route6(r, kif->pfik_ifp, s, &pd,
11177 inp);
11178 break;
11179 #endif /* INET6 */
11180 }
11181 *m0 = pd.m;
11182 goto out;
11183 }
11184 if (pf_dummynet(&pd, s, r, m0) != 0) {
11185 action = PF_DROP;
11186 REASON_SET(&reason, PFRES_MEMORY);
11187 }
11188 break;
11189 }
11190
11191 eat_pkt:
11192 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
11193
11194 if (s && action != PF_DROP) {
11195 if (!s->if_index_in && dir == PF_IN)
11196 s->if_index_in = ifp->if_index;
11197 else if (!s->if_index_out && dir == PF_OUT)
11198 s->if_index_out = ifp->if_index;
11199 }
11200
11201 if (s)
11202 PF_STATE_UNLOCK(s);
11203
11204 out:
11205 #ifdef INET6
11206 /* If reassembled packet passed, create new fragments. */
11207 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
11208 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
11209 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
11210 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
11211 #endif /* INET6 */
11212
11213 pf_sctp_multihome_delayed(&pd, kif, s, action);
11214
11215 return (action);
11216 }
11217 #endif /* INET || INET6 */
11218