1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/sdt.h>
61 #include <sys/socket.h>
62 #include <sys/sysctl.h>
63 #include <sys/taskqueue.h>
64 #include <sys/ucred.h>
65
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_private.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71 #include <net/route.h>
72 #include <net/route/nhop.h>
73 #include <net/vnet.h>
74
75 #include <net/pfil.h>
76 #include <net/pfvar.h>
77 #include <net/if_pflog.h>
78 #include <net/if_pfsync.h>
79
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_var.h>
82 #include <netinet/in_fib.h>
83 #include <netinet/ip.h>
84 #include <netinet/ip_fw.h>
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/udp.h>
94 #include <netinet/udp_var.h>
95
96 /* dummynet */
97 #include <netinet/ip_dummynet.h>
98 #include <netinet/ip_fw.h>
99 #include <netpfil/ipfw/dn_heap.h>
100 #include <netpfil/ipfw/ip_fw_private.h>
101 #include <netpfil/ipfw/ip_dn_private.h>
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet6/in6_fib.h>
110 #include <netinet6/scope6_var.h>
111 #endif /* INET6 */
112
113 #include <netinet/sctp_header.h>
114 #include <netinet/sctp_crc32.h>
115
116 #include <machine/in_cksum.h>
117 #include <security/mac/mac_framework.h>
118
119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
120
121 SDT_PROVIDER_DEFINE(pf);
122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
123 "struct pf_kstate *");
124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
126 "struct pf_kstate *");
127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
128 "struct pfi_kkif *");
129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
138 "struct pf_krule *", "struct mbuf *", "int");
139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
140 "struct pf_sctp_source *");
141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
142 "struct pf_kstate *", "struct pf_sctp_source *");
143 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int",
144 "int", "struct pf_pdesc *", "int");
145 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t");
146 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *",
147 "int");
148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *",
149 "int");
150
151 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
152 "struct mbuf *");
153 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
154 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
155 "int", "struct pf_keth_rule *", "char *");
156 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
157 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
158 "int", "struct pf_keth_rule *");
159 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
160
161 /*
162 * Global variables
163 */
164
165 /* state tables */
166 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
167 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]);
168 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
169 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
170 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
171 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
172 VNET_DEFINE(struct pf_kstatus, pf_status);
173
174 VNET_DEFINE(u_int32_t, ticket_altqs_active);
175 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
176 VNET_DEFINE(int, altqs_inactive_open);
177 VNET_DEFINE(u_int32_t, ticket_pabuf);
178
179 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx);
180 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
181 VNET_DEFINE(u_char, pf_tcp_secret[16]);
182 #define V_pf_tcp_secret VNET(pf_tcp_secret)
183 VNET_DEFINE(int, pf_tcp_secret_init);
184 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
185 VNET_DEFINE(int, pf_tcp_iss_off);
186 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
187 VNET_DECLARE(int, pf_vnet_active);
188 #define V_pf_vnet_active VNET(pf_vnet_active)
189
190 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
191 #define V_pf_purge_idx VNET(pf_purge_idx)
192
193 #ifdef PF_WANT_32_TO_64_COUNTER
194 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
195 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
196
197 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
198 VNET_DEFINE(size_t, pf_allrulecount);
199 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
200 #endif
201
202 struct pf_sctp_endpoint;
203 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
204 struct pf_sctp_source {
205 sa_family_t af;
206 struct pf_addr addr;
207 TAILQ_ENTRY(pf_sctp_source) entry;
208 };
209 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
210 struct pf_sctp_endpoint
211 {
212 uint32_t v_tag;
213 struct pf_sctp_sources sources;
214 RB_ENTRY(pf_sctp_endpoint) entry;
215 };
216 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)217 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
218 {
219 return (a->v_tag - b->v_tag);
220 }
221 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
222 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
223 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
224 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
225 static struct mtx_padalign pf_sctp_endpoints_mtx;
226 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
227 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
228 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
229
230 /*
231 * Queue for pf_intr() sends.
232 */
233 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
234 struct pf_send_entry {
235 STAILQ_ENTRY(pf_send_entry) pfse_next;
236 struct mbuf *pfse_m;
237 enum {
238 PFSE_IP,
239 PFSE_IP6,
240 PFSE_ICMP,
241 PFSE_ICMP6,
242 } pfse_type;
243 struct {
244 int type;
245 int code;
246 int mtu;
247 } icmpopts;
248 };
249
250 STAILQ_HEAD(pf_send_head, pf_send_entry);
251 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
252 #define V_pf_sendqueue VNET(pf_sendqueue)
253
254 static struct mtx_padalign pf_sendqueue_mtx;
255 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
256 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
257 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
258
259 /*
260 * Queue for pf_overload_task() tasks.
261 */
262 struct pf_overload_entry {
263 SLIST_ENTRY(pf_overload_entry) next;
264 struct pf_addr addr;
265 sa_family_t af;
266 uint8_t dir;
267 struct pf_krule *rule;
268 };
269
270 SLIST_HEAD(pf_overload_head, pf_overload_entry);
271 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
272 #define V_pf_overloadqueue VNET(pf_overloadqueue)
273 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
274 #define V_pf_overloadtask VNET(pf_overloadtask)
275
276 static struct mtx_padalign pf_overloadqueue_mtx;
277 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
278 "pf overload/flush queue", MTX_DEF);
279 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
280 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
281
282 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
283 struct mtx_padalign pf_unlnkdrules_mtx;
284 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
285 MTX_DEF);
286
287 struct sx pf_config_lock;
288 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
289
290 struct mtx_padalign pf_table_stats_lock;
291 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
292 MTX_DEF);
293
294 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
295 #define V_pf_sources_z VNET(pf_sources_z)
296 uma_zone_t pf_mtag_z;
297 VNET_DEFINE(uma_zone_t, pf_state_z);
298 VNET_DEFINE(uma_zone_t, pf_state_key_z);
299 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
300
301 VNET_DEFINE(struct unrhdr64, pf_stateid);
302
303 static void pf_src_tree_remove_state(struct pf_kstate *);
304 static void pf_init_threshold(struct pf_threshold *, u_int32_t,
305 u_int32_t);
306 static void pf_add_threshold(struct pf_threshold *);
307 static int pf_check_threshold(struct pf_threshold *);
308
309 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
310 u_int16_t *, u_int16_t *, struct pf_addr *,
311 u_int16_t, u_int8_t, sa_family_t, sa_family_t);
312 static int pf_modulate_sack(struct pf_pdesc *,
313 struct tcphdr *, struct pf_state_peer *);
314 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
315 int *, u_int16_t *, u_int16_t *);
316 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
317 struct pf_addr *, struct pf_addr *, u_int16_t,
318 u_int16_t *, u_int16_t *, u_int16_t *,
319 u_int16_t *, u_int8_t, sa_family_t);
320 int pf_change_icmp_af(struct mbuf *, int,
321 struct pf_pdesc *, struct pf_pdesc *,
322 struct pf_addr *, struct pf_addr *, sa_family_t,
323 sa_family_t);
324 int pf_translate_icmp_af(int, void *);
325 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
326 sa_family_t, struct pf_krule *, int);
327 static void pf_detach_state(struct pf_kstate *);
328 static int pf_state_key_attach(struct pf_state_key *,
329 struct pf_state_key *, struct pf_kstate *);
330 static void pf_state_key_detach(struct pf_kstate *, int);
331 static int pf_state_key_ctor(void *, int, void *, int);
332 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
333 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
334 struct pf_mtag *pf_mtag);
335 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
336 struct pf_krule *, struct mbuf **);
337 static int pf_dummynet_route(struct pf_pdesc *,
338 struct pf_kstate *, struct pf_krule *,
339 struct ifnet *, struct sockaddr *, struct mbuf **);
340 static int pf_test_eth_rule(int, struct pfi_kkif *,
341 struct mbuf **);
342 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
343 struct pf_pdesc *, struct pf_krule **,
344 struct pf_kruleset **, struct inpcb *);
345 static int pf_create_state(struct pf_krule *, struct pf_krule *,
346 struct pf_krule *, struct pf_pdesc *,
347 struct pf_state_key *, struct pf_state_key *, int *,
348 struct pf_kstate **, int, u_int16_t, u_int16_t,
349 struct pf_krule_slist *, struct pf_udp_mapping *);
350 static int pf_state_key_addr_setup(struct pf_pdesc *,
351 struct pf_state_key_cmp *, int);
352 static int pf_tcp_track_full(struct pf_kstate **,
353 struct pf_pdesc *, u_short *, int *);
354 static int pf_tcp_track_sloppy(struct pf_kstate **,
355 struct pf_pdesc *, u_short *);
356 static int pf_test_state_tcp(struct pf_kstate **,
357 struct pf_pdesc *, u_short *);
358 static int pf_test_state_udp(struct pf_kstate **,
359 struct pf_pdesc *);
360 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
361 struct pf_pdesc *, struct pf_kstate **,
362 int, u_int16_t, u_int16_t,
363 int, int *, int, int);
364 static int pf_test_state_icmp(struct pf_kstate **,
365 struct pf_pdesc *, u_short *);
366 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
367 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
368 struct pfi_kkif *, struct pf_kstate *, int);
369 static int pf_test_state_sctp(struct pf_kstate **,
370 struct pf_pdesc *, u_short *);
371 static int pf_test_state_other(struct pf_kstate **,
372 struct pf_pdesc *);
373 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
374 int, u_int16_t);
375 static int pf_check_proto_cksum(struct mbuf *, int, int,
376 u_int8_t, sa_family_t);
377 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *,
378 int, int, u_short *);
379 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *,
380 u_short *);
381 static void pf_print_state_parts(struct pf_kstate *,
382 struct pf_state_key *, struct pf_state_key *);
383 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
384 bool, u_int8_t);
385 static struct pf_kstate *pf_find_state(struct pfi_kkif *,
386 const struct pf_state_key_cmp *, u_int);
387 static bool pf_src_connlimit(struct pf_kstate *);
388 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
389 static void pf_counters_inc(int, struct pf_pdesc *,
390 struct pf_kstate *, struct pf_krule *,
391 struct pf_krule *);
392 static void pf_overload_task(void *v, int pending);
393 static u_short pf_insert_src_node(struct pf_ksrc_node **,
394 struct pf_srchash **, struct pf_krule *,
395 struct pf_addr *, sa_family_t, struct pf_addr *,
396 struct pfi_kkif *);
397 static u_int pf_purge_expired_states(u_int, int);
398 static void pf_purge_unlinked_rules(void);
399 static int pf_mtag_uminit(void *, int, int);
400 static void pf_mtag_free(struct m_tag *);
401 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *,
402 int, struct pf_state_key *);
403 #ifdef INET
404 static void pf_route(struct mbuf **, struct pf_krule *,
405 struct ifnet *, struct pf_kstate *,
406 struct pf_pdesc *, struct inpcb *);
407 #endif /* INET */
408 #ifdef INET6
409 static void pf_change_a6(struct pf_addr *, u_int16_t *,
410 struct pf_addr *, u_int8_t);
411 static void pf_route6(struct mbuf **, struct pf_krule *,
412 struct ifnet *, struct pf_kstate *,
413 struct pf_pdesc *, struct inpcb *);
414 #endif /* INET6 */
415 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
416
417 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
418
419 extern int pf_end_threads;
420 extern struct proc *pf_purge_proc;
421
422 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
423
424 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK };
425
426 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \
427 do { \
428 struct pf_state_key *nk; \
429 if ((pd->dir) == PF_OUT) \
430 nk = (_s)->key[PF_SK_STACK]; \
431 else \
432 nk = (_s)->key[PF_SK_WIRE]; \
433 pf_packet_rework_nat(_m, _pd, _off, nk); \
434 } while (0)
435
436 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
437 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
438
439 #define STATE_LOOKUP(k, s, pd) \
440 do { \
441 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \
442 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \
443 if ((s) == NULL) \
444 return (PF_DROP); \
445 if (PACKET_LOOPED(pd)) \
446 return (PF_PASS); \
447 } while (0)
448
449 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pf_pdesc * pd)450 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd)
451 {
452 struct pfi_kkif *k = pd->kif;
453
454 SDT_PROBE2(pf, ip, , bound_iface, st, k);
455
456 /* Floating unless otherwise specified. */
457 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
458 return (V_pfi_all);
459
460 /*
461 * Initially set to all, because we don't know what interface we'll be
462 * sending this out when we create the state.
463 */
464 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf))
465 return (V_pfi_all);
466
467 /*
468 * If this state is created based on another state (e.g. SCTP
469 * multihome) always set it floating initially. We can't know for sure
470 * what interface the actual traffic for this state will come in on.
471 */
472 if (pd->related_rule)
473 return (V_pfi_all);
474
475 /* Don't overrule the interface for states created on incoming packets. */
476 if (st->direction == PF_IN)
477 return (k);
478
479 /* No route-to, so don't overrule. */
480 if (st->act.rt != PF_ROUTETO)
481 return (k);
482
483 /* Bind to the route-to interface. */
484 return (st->act.rt_kif);
485 }
486
487 #define STATE_INC_COUNTERS(s) \
488 do { \
489 struct pf_krule_item *mrm; \
490 counter_u64_add(s->rule->states_cur, 1); \
491 counter_u64_add(s->rule->states_tot, 1); \
492 if (s->anchor != NULL) { \
493 counter_u64_add(s->anchor->states_cur, 1); \
494 counter_u64_add(s->anchor->states_tot, 1); \
495 } \
496 if (s->nat_rule != NULL) { \
497 counter_u64_add(s->nat_rule->states_cur, 1);\
498 counter_u64_add(s->nat_rule->states_tot, 1);\
499 } \
500 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
501 counter_u64_add(mrm->r->states_cur, 1); \
502 counter_u64_add(mrm->r->states_tot, 1); \
503 } \
504 } while (0)
505
506 #define STATE_DEC_COUNTERS(s) \
507 do { \
508 struct pf_krule_item *mrm; \
509 if (s->nat_rule != NULL) \
510 counter_u64_add(s->nat_rule->states_cur, -1);\
511 if (s->anchor != NULL) \
512 counter_u64_add(s->anchor->states_cur, -1); \
513 counter_u64_add(s->rule->states_cur, -1); \
514 SLIST_FOREACH(mrm, &s->match_rules, entry) \
515 counter_u64_add(mrm->r->states_cur, -1); \
516 } while (0)
517
518 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
519 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
520 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
521 VNET_DEFINE(struct pf_idhash *, pf_idhash);
522 VNET_DEFINE(struct pf_srchash *, pf_srchash);
523 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
524 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
525
526 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
527 "pf(4)");
528
529 VNET_DEFINE(u_long, pf_hashmask);
530 VNET_DEFINE(u_long, pf_srchashmask);
531 VNET_DEFINE(u_long, pf_udpendpointhashmask);
532 VNET_DEFINE_STATIC(u_long, pf_hashsize);
533 #define V_pf_hashsize VNET(pf_hashsize)
534 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
535 #define V_pf_srchashsize VNET(pf_srchashsize)
536 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
537 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
538 u_long pf_ioctl_maxcount = 65535;
539
540 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
541 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
542 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
543 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
544 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
545 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
546 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
547 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
548
549 VNET_DEFINE(void *, pf_swi_cookie);
550 VNET_DEFINE(struct intr_event *, pf_swi_ie);
551
552 VNET_DEFINE(uint32_t, pf_hashseed);
553 #define V_pf_hashseed VNET(pf_hashseed)
554
555 static void
pf_sctp_checksum(struct mbuf * m,int off)556 pf_sctp_checksum(struct mbuf *m, int off)
557 {
558 uint32_t sum = 0;
559
560 /* Zero out the checksum, to enable recalculation. */
561 m_copyback(m, off + offsetof(struct sctphdr, checksum),
562 sizeof(sum), (caddr_t)&sum);
563
564 sum = sctp_calculate_cksum(m, off);
565
566 m_copyback(m, off + offsetof(struct sctphdr, checksum),
567 sizeof(sum), (caddr_t)&sum);
568 }
569
570 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)571 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
572 {
573
574 switch (af) {
575 #ifdef INET
576 case AF_INET:
577 if (a->addr32[0] > b->addr32[0])
578 return (1);
579 if (a->addr32[0] < b->addr32[0])
580 return (-1);
581 break;
582 #endif /* INET */
583 #ifdef INET6
584 case AF_INET6:
585 if (a->addr32[3] > b->addr32[3])
586 return (1);
587 if (a->addr32[3] < b->addr32[3])
588 return (-1);
589 if (a->addr32[2] > b->addr32[2])
590 return (1);
591 if (a->addr32[2] < b->addr32[2])
592 return (-1);
593 if (a->addr32[1] > b->addr32[1])
594 return (1);
595 if (a->addr32[1] < b->addr32[1])
596 return (-1);
597 if (a->addr32[0] > b->addr32[0])
598 return (1);
599 if (a->addr32[0] < b->addr32[0])
600 return (-1);
601 break;
602 #endif /* INET6 */
603 }
604 return (0);
605 }
606
607 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)608 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
609 {
610 switch (af) {
611 #ifdef INET
612 case AF_INET:
613 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
614 #endif
615 case AF_INET6:
616 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
617 default:
618 panic("Unknown af %d", af);
619 }
620 }
621
622 static void
pf_packet_rework_nat(struct mbuf * m,struct pf_pdesc * pd,int off,struct pf_state_key * nk)623 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off,
624 struct pf_state_key *nk)
625 {
626
627 switch (pd->proto) {
628 case IPPROTO_TCP: {
629 struct tcphdr *th = &pd->hdr.tcp;
630
631 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
632 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum,
633 &th->th_sum, &nk->addr[pd->sidx],
634 nk->port[pd->sidx], 0, pd->af, pd->naf);
635 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
636 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum,
637 &th->th_sum, &nk->addr[pd->didx],
638 nk->port[pd->didx], 0, pd->af, pd->naf);
639 m_copyback(m, off, sizeof(*th), (caddr_t)th);
640 break;
641 }
642 case IPPROTO_UDP: {
643 struct udphdr *uh = &pd->hdr.udp;
644
645 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
646 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
647 &uh->uh_sum, &nk->addr[pd->sidx],
648 nk->port[pd->sidx], 1, pd->af, pd->naf);
649 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
650 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
651 &uh->uh_sum, &nk->addr[pd->didx],
652 nk->port[pd->didx], 1, pd->af, pd->naf);
653 m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
654 break;
655 }
656 case IPPROTO_SCTP: {
657 struct sctphdr *sh = &pd->hdr.sctp;
658 uint16_t checksum = 0;
659
660 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
661 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum,
662 &checksum, &nk->addr[pd->sidx],
663 nk->port[pd->sidx], 1, pd->af, pd->naf);
664 }
665 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
666 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum,
667 &checksum, &nk->addr[pd->didx],
668 nk->port[pd->didx], 1, pd->af, pd->naf);
669 }
670
671 break;
672 }
673 case IPPROTO_ICMP: {
674 struct icmp *ih = &pd->hdr.icmp;
675
676 if (nk->port[pd->sidx] != ih->icmp_id) {
677 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
678 ih->icmp_cksum, ih->icmp_id,
679 nk->port[pd->sidx], 0);
680 ih->icmp_id = nk->port[pd->sidx];
681 pd->sport = &ih->icmp_id;
682
683 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih);
684 }
685 /* FALLTHROUGH */
686 }
687 default:
688 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
689 switch (pd->af) {
690 case AF_INET:
691 pf_change_a(&pd->src->v4.s_addr,
692 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
693 0);
694 break;
695 case AF_INET6:
696 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
697 break;
698 }
699 }
700 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
701 switch (pd->af) {
702 case AF_INET:
703 pf_change_a(&pd->dst->v4.s_addr,
704 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
705 0);
706 break;
707 case AF_INET6:
708 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
709 break;
710 }
711 }
712 break;
713 }
714 }
715
716 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)717 pf_hashkey(const struct pf_state_key *sk)
718 {
719 uint32_t h;
720
721 h = murmur3_32_hash32((const uint32_t *)sk,
722 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
723 V_pf_hashseed);
724
725 return (h & V_pf_hashmask);
726 }
727
728 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)729 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
730 {
731 uint32_t h;
732
733 switch (af) {
734 case AF_INET:
735 h = murmur3_32_hash32((uint32_t *)&addr->v4,
736 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
737 break;
738 case AF_INET6:
739 h = murmur3_32_hash32((uint32_t *)&addr->v6,
740 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
741 break;
742 }
743
744 return (h & V_pf_srchashmask);
745 }
746
747 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)748 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
749 {
750 uint32_t h;
751
752 h = murmur3_32_hash32((uint32_t *)endpoint,
753 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
754 V_pf_hashseed);
755 return (h & V_pf_udpendpointhashmask);
756 }
757
758 #ifdef ALTQ
759 static int
pf_state_hash(struct pf_kstate * s)760 pf_state_hash(struct pf_kstate *s)
761 {
762 u_int32_t hv = (intptr_t)s / sizeof(*s);
763
764 hv ^= crc32(&s->src, sizeof(s->src));
765 hv ^= crc32(&s->dst, sizeof(s->dst));
766 if (hv == 0)
767 hv = 1;
768 return (hv);
769 }
770 #endif
771
772 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)773 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
774 {
775 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
776 s->dst.state = newstate;
777 if (which == PF_PEER_DST)
778 return;
779 if (s->src.state == newstate)
780 return;
781 if (s->creatorid == V_pf_status.hostid &&
782 s->key[PF_SK_STACK] != NULL &&
783 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
784 !(TCPS_HAVEESTABLISHED(s->src.state) ||
785 s->src.state == TCPS_CLOSED) &&
786 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
787 atomic_add_32(&V_pf_status.states_halfopen, -1);
788
789 s->src.state = newstate;
790 }
791
792 #ifdef INET6
793 void
pf_addrcpy(struct pf_addr * dst,const struct pf_addr * src,sa_family_t af)794 pf_addrcpy(struct pf_addr *dst, const struct pf_addr *src, sa_family_t af)
795 {
796 switch (af) {
797 #ifdef INET
798 case AF_INET:
799 memcpy(&dst->v4, &src->v4, sizeof(dst->v4));
800 break;
801 #endif /* INET */
802 case AF_INET6:
803 memcpy(&dst->v6, &src->v6, sizeof(dst->v6));
804 break;
805 }
806 }
807 #endif /* INET6 */
808
809 static void
pf_init_threshold(struct pf_threshold * threshold,u_int32_t limit,u_int32_t seconds)810 pf_init_threshold(struct pf_threshold *threshold,
811 u_int32_t limit, u_int32_t seconds)
812 {
813 threshold->limit = limit * PF_THRESHOLD_MULT;
814 threshold->seconds = seconds;
815 threshold->count = 0;
816 threshold->last = time_uptime;
817 }
818
819 static void
pf_add_threshold(struct pf_threshold * threshold)820 pf_add_threshold(struct pf_threshold *threshold)
821 {
822 u_int32_t t = time_uptime, diff = t - threshold->last;
823
824 if (diff >= threshold->seconds)
825 threshold->count = 0;
826 else
827 threshold->count -= threshold->count * diff /
828 threshold->seconds;
829 threshold->count += PF_THRESHOLD_MULT;
830 threshold->last = t;
831 }
832
833 static int
pf_check_threshold(struct pf_threshold * threshold)834 pf_check_threshold(struct pf_threshold *threshold)
835 {
836 return (threshold->count > threshold->limit);
837 }
838
839 static bool
pf_src_connlimit(struct pf_kstate * state)840 pf_src_connlimit(struct pf_kstate *state)
841 {
842 struct pf_overload_entry *pfoe;
843 bool limited = false;
844
845 PF_STATE_LOCK_ASSERT(state);
846 PF_SRC_NODE_LOCK(state->src_node);
847
848 state->src_node->conn++;
849 state->src.tcp_est = 1;
850 pf_add_threshold(&state->src_node->conn_rate);
851
852 if (state->rule->max_src_conn &&
853 state->rule->max_src_conn <
854 state->src_node->conn) {
855 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
856 limited = true;
857 }
858
859 if (state->rule->max_src_conn_rate.limit &&
860 pf_check_threshold(&state->src_node->conn_rate)) {
861 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
862 limited = true;
863 }
864
865 if (!limited)
866 goto done;
867
868 /* Kill this state. */
869 state->timeout = PFTM_PURGE;
870 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
871
872 if (state->rule->overload_tbl == NULL)
873 goto done;
874
875 /* Schedule overloading and flushing task. */
876 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
877 if (pfoe == NULL)
878 goto done; /* too bad :( */
879
880 bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
881 pfoe->af = state->key[PF_SK_WIRE]->af;
882 pfoe->rule = state->rule;
883 pfoe->dir = state->direction;
884 PF_OVERLOADQ_LOCK();
885 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
886 PF_OVERLOADQ_UNLOCK();
887 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
888
889 done:
890 PF_SRC_NODE_UNLOCK(state->src_node);
891 return (limited);
892 }
893
894 static void
pf_overload_task(void * v,int pending)895 pf_overload_task(void *v, int pending)
896 {
897 struct pf_overload_head queue;
898 struct pfr_addr p;
899 struct pf_overload_entry *pfoe, *pfoe1;
900 uint32_t killed = 0;
901
902 CURVNET_SET((struct vnet *)v);
903
904 PF_OVERLOADQ_LOCK();
905 queue = V_pf_overloadqueue;
906 SLIST_INIT(&V_pf_overloadqueue);
907 PF_OVERLOADQ_UNLOCK();
908
909 bzero(&p, sizeof(p));
910 SLIST_FOREACH(pfoe, &queue, next) {
911 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
912 if (V_pf_status.debug >= PF_DEBUG_MISC) {
913 printf("%s: blocking address ", __func__);
914 pf_print_host(&pfoe->addr, 0, pfoe->af);
915 printf("\n");
916 }
917
918 p.pfra_af = pfoe->af;
919 switch (pfoe->af) {
920 #ifdef INET
921 case AF_INET:
922 p.pfra_net = 32;
923 p.pfra_ip4addr = pfoe->addr.v4;
924 break;
925 #endif
926 #ifdef INET6
927 case AF_INET6:
928 p.pfra_net = 128;
929 p.pfra_ip6addr = pfoe->addr.v6;
930 break;
931 #endif
932 }
933
934 PF_RULES_WLOCK();
935 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
936 PF_RULES_WUNLOCK();
937 }
938
939 /*
940 * Remove those entries, that don't need flushing.
941 */
942 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
943 if (pfoe->rule->flush == 0) {
944 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
945 free(pfoe, M_PFTEMP);
946 } else
947 counter_u64_add(
948 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
949
950 /* If nothing to flush, return. */
951 if (SLIST_EMPTY(&queue)) {
952 CURVNET_RESTORE();
953 return;
954 }
955
956 for (int i = 0; i <= V_pf_hashmask; i++) {
957 struct pf_idhash *ih = &V_pf_idhash[i];
958 struct pf_state_key *sk;
959 struct pf_kstate *s;
960
961 PF_HASHROW_LOCK(ih);
962 LIST_FOREACH(s, &ih->states, entry) {
963 sk = s->key[PF_SK_WIRE];
964 SLIST_FOREACH(pfoe, &queue, next)
965 if (sk->af == pfoe->af &&
966 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
967 pfoe->rule == s->rule) &&
968 ((pfoe->dir == PF_OUT &&
969 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
970 (pfoe->dir == PF_IN &&
971 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
972 s->timeout = PFTM_PURGE;
973 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
974 killed++;
975 }
976 }
977 PF_HASHROW_UNLOCK(ih);
978 }
979 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
980 free(pfoe, M_PFTEMP);
981 if (V_pf_status.debug >= PF_DEBUG_MISC)
982 printf("%s: %u states killed", __func__, killed);
983
984 CURVNET_RESTORE();
985 }
986
987 /*
988 * On node found always returns locked. On not found its configurable.
989 */
990 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,bool returnlocked)991 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
992 struct pf_srchash **sh, bool returnlocked)
993 {
994 struct pf_ksrc_node *n;
995
996 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
997
998 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
999 PF_HASHROW_LOCK(*sh);
1000 LIST_FOREACH(n, &(*sh)->nodes, entry)
1001 if (n->rule == rule && n->af == af &&
1002 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
1003 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
1004 break;
1005
1006 if (n == NULL && !returnlocked)
1007 PF_HASHROW_UNLOCK(*sh);
1008
1009 return (n);
1010 }
1011
1012 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)1013 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
1014 {
1015 struct pf_ksrc_node *cur;
1016
1017 if ((*sn) == NULL)
1018 return (false);
1019
1020 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
1021
1022 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
1023 PF_HASHROW_LOCK(sh);
1024 LIST_FOREACH(cur, &(sh->nodes), entry) {
1025 if (cur == (*sn) &&
1026 cur->expire != 1) /* Ignore nodes being killed */
1027 return (true);
1028 }
1029 PF_HASHROW_UNLOCK(sh);
1030 (*sn) = NULL;
1031 return (false);
1032 }
1033
1034 static void
pf_free_src_node(struct pf_ksrc_node * sn)1035 pf_free_src_node(struct pf_ksrc_node *sn)
1036 {
1037
1038 for (int i = 0; i < 2; i++) {
1039 counter_u64_free(sn->bytes[i]);
1040 counter_u64_free(sn->packets[i]);
1041 }
1042 uma_zfree(V_pf_sources_z, sn);
1043 }
1044
1045 static u_short
pf_insert_src_node(struct pf_ksrc_node ** sn,struct pf_srchash ** sh,struct pf_krule * rule,struct pf_addr * src,sa_family_t af,struct pf_addr * raddr,struct pfi_kkif * rkif)1046 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh,
1047 struct pf_krule *rule, struct pf_addr *src, sa_family_t af,
1048 struct pf_addr *raddr, struct pfi_kkif *rkif)
1049 {
1050 u_short reason = 0;
1051
1052 KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
1053 rule->rdr.opts & PF_POOL_STICKYADDR),
1054 ("%s for non-tracking rule %p", __func__, rule));
1055
1056 /*
1057 * Request the sh to always be locked, as we might insert a new sn.
1058 */
1059 if (*sn == NULL)
1060 *sn = pf_find_src_node(src, rule, af, sh, true);
1061
1062 if (*sn == NULL) {
1063 PF_HASHROW_ASSERT(*sh);
1064
1065 if (rule->max_src_nodes &&
1066 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) {
1067 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1068 reason = PFRES_SRCLIMIT;
1069 goto done;
1070 }
1071
1072 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1073 if ((*sn) == NULL) {
1074 reason = PFRES_MEMORY;
1075 goto done;
1076 }
1077
1078 for (int i = 0; i < 2; i++) {
1079 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1080 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1081
1082 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1083 pf_free_src_node(*sn);
1084 reason = PFRES_MEMORY;
1085 goto done;
1086 }
1087 }
1088
1089 pf_init_threshold(&(*sn)->conn_rate,
1090 rule->max_src_conn_rate.limit,
1091 rule->max_src_conn_rate.seconds);
1092
1093 MPASS((*sn)->lock == NULL);
1094 (*sn)->lock = &(*sh)->lock;
1095
1096 (*sn)->af = af;
1097 (*sn)->rule = rule;
1098 PF_ACPY(&(*sn)->addr, src, af);
1099 PF_ACPY(&(*sn)->raddr, raddr, af);
1100 (*sn)->rkif = rkif;
1101 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1102 (*sn)->creation = time_uptime;
1103 (*sn)->ruletype = rule->action;
1104 if ((*sn)->rule != NULL)
1105 counter_u64_add((*sn)->rule->src_nodes, 1);
1106 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1107 } else {
1108 if (rule->max_src_states &&
1109 (*sn)->states >= rule->max_src_states) {
1110 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1111 1);
1112 reason = PFRES_SRCLIMIT;
1113 goto done;
1114 }
1115 }
1116 done:
1117 if (reason == 0)
1118 (*sn)->states++;
1119 else
1120 (*sn) = NULL;
1121
1122 PF_HASHROW_UNLOCK(*sh);
1123 return (reason);
1124 }
1125
1126 void
pf_unlink_src_node(struct pf_ksrc_node * src)1127 pf_unlink_src_node(struct pf_ksrc_node *src)
1128 {
1129 PF_SRC_NODE_LOCK_ASSERT(src);
1130
1131 LIST_REMOVE(src, entry);
1132 if (src->rule)
1133 counter_u64_add(src->rule->src_nodes, -1);
1134 }
1135
1136 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1137 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1138 {
1139 struct pf_ksrc_node *sn, *tmp;
1140 u_int count = 0;
1141
1142 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1143 pf_free_src_node(sn);
1144 count++;
1145 }
1146
1147 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1148
1149 return (count);
1150 }
1151
1152 void
pf_mtag_initialize(void)1153 pf_mtag_initialize(void)
1154 {
1155
1156 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1157 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1158 UMA_ALIGN_PTR, 0);
1159 }
1160
1161 /* Per-vnet data storage structures initialization. */
1162 void
pf_initialize(void)1163 pf_initialize(void)
1164 {
1165 struct pf_keyhash *kh;
1166 struct pf_idhash *ih;
1167 struct pf_srchash *sh;
1168 struct pf_udpendpointhash *uh;
1169 u_int i;
1170
1171 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1172 V_pf_hashsize = PF_HASHSIZ;
1173 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1174 V_pf_srchashsize = PF_SRCHASHSIZ;
1175 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1176 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1177
1178 V_pf_hashseed = arc4random();
1179
1180 /* States and state keys storage. */
1181 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1182 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1183 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1184 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1185 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1186
1187 V_pf_state_key_z = uma_zcreate("pf state keys",
1188 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1189 UMA_ALIGN_PTR, 0);
1190
1191 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1192 M_PFHASH, M_NOWAIT | M_ZERO);
1193 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1194 M_PFHASH, M_NOWAIT | M_ZERO);
1195 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1196 printf("pf: Unable to allocate memory for "
1197 "state_hashsize %lu.\n", V_pf_hashsize);
1198
1199 free(V_pf_keyhash, M_PFHASH);
1200 free(V_pf_idhash, M_PFHASH);
1201
1202 V_pf_hashsize = PF_HASHSIZ;
1203 V_pf_keyhash = mallocarray(V_pf_hashsize,
1204 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1205 V_pf_idhash = mallocarray(V_pf_hashsize,
1206 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1207 }
1208
1209 V_pf_hashmask = V_pf_hashsize - 1;
1210 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1211 i++, kh++, ih++) {
1212 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1213 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1214 }
1215
1216 /* Source nodes. */
1217 V_pf_sources_z = uma_zcreate("pf source nodes",
1218 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1219 0);
1220 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1221 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1222 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1223
1224 V_pf_srchash = mallocarray(V_pf_srchashsize,
1225 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1226 if (V_pf_srchash == NULL) {
1227 printf("pf: Unable to allocate memory for "
1228 "source_hashsize %lu.\n", V_pf_srchashsize);
1229
1230 V_pf_srchashsize = PF_SRCHASHSIZ;
1231 V_pf_srchash = mallocarray(V_pf_srchashsize,
1232 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1233 }
1234
1235 V_pf_srchashmask = V_pf_srchashsize - 1;
1236 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1237 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1238
1239
1240 /* UDP endpoint mappings. */
1241 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1242 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1243 UMA_ALIGN_PTR, 0);
1244 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1245 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1246 if (V_pf_udpendpointhash == NULL) {
1247 printf("pf: Unable to allocate memory for "
1248 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1249
1250 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1251 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1252 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1253 }
1254
1255 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1256 for (i = 0, uh = V_pf_udpendpointhash;
1257 i <= V_pf_udpendpointhashmask;
1258 i++, uh++) {
1259 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1260 MTX_DEF | MTX_DUPOK);
1261 }
1262
1263 /* ALTQ */
1264 TAILQ_INIT(&V_pf_altqs[0]);
1265 TAILQ_INIT(&V_pf_altqs[1]);
1266 TAILQ_INIT(&V_pf_altqs[2]);
1267 TAILQ_INIT(&V_pf_altqs[3]);
1268 TAILQ_INIT(&V_pf_pabuf[0]);
1269 TAILQ_INIT(&V_pf_pabuf[1]);
1270 TAILQ_INIT(&V_pf_pabuf[2]);
1271 V_pf_altqs_active = &V_pf_altqs[0];
1272 V_pf_altq_ifs_active = &V_pf_altqs[1];
1273 V_pf_altqs_inactive = &V_pf_altqs[2];
1274 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1275
1276 /* Send & overload+flush queues. */
1277 STAILQ_INIT(&V_pf_sendqueue);
1278 SLIST_INIT(&V_pf_overloadqueue);
1279 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1280
1281 /* Unlinked, but may be referenced rules. */
1282 TAILQ_INIT(&V_pf_unlinked_rules);
1283 }
1284
1285 void
pf_mtag_cleanup(void)1286 pf_mtag_cleanup(void)
1287 {
1288
1289 uma_zdestroy(pf_mtag_z);
1290 }
1291
1292 void
pf_cleanup(void)1293 pf_cleanup(void)
1294 {
1295 struct pf_keyhash *kh;
1296 struct pf_idhash *ih;
1297 struct pf_srchash *sh;
1298 struct pf_udpendpointhash *uh;
1299 struct pf_send_entry *pfse, *next;
1300 u_int i;
1301
1302 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1303 i <= V_pf_hashmask;
1304 i++, kh++, ih++) {
1305 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1306 __func__));
1307 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1308 __func__));
1309 mtx_destroy(&kh->lock);
1310 mtx_destroy(&ih->lock);
1311 }
1312 free(V_pf_keyhash, M_PFHASH);
1313 free(V_pf_idhash, M_PFHASH);
1314
1315 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1316 KASSERT(LIST_EMPTY(&sh->nodes),
1317 ("%s: source node hash not empty", __func__));
1318 mtx_destroy(&sh->lock);
1319 }
1320 free(V_pf_srchash, M_PFHASH);
1321
1322 for (i = 0, uh = V_pf_udpendpointhash;
1323 i <= V_pf_udpendpointhashmask;
1324 i++, uh++) {
1325 KASSERT(LIST_EMPTY(&uh->endpoints),
1326 ("%s: udp endpoint hash not empty", __func__));
1327 mtx_destroy(&uh->lock);
1328 }
1329 free(V_pf_udpendpointhash, M_PFHASH);
1330
1331 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1332 m_freem(pfse->pfse_m);
1333 free(pfse, M_PFTEMP);
1334 }
1335 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1336
1337 uma_zdestroy(V_pf_sources_z);
1338 uma_zdestroy(V_pf_state_z);
1339 uma_zdestroy(V_pf_state_key_z);
1340 uma_zdestroy(V_pf_udp_mapping_z);
1341 }
1342
1343 static int
pf_mtag_uminit(void * mem,int size,int how)1344 pf_mtag_uminit(void *mem, int size, int how)
1345 {
1346 struct m_tag *t;
1347
1348 t = (struct m_tag *)mem;
1349 t->m_tag_cookie = MTAG_ABI_COMPAT;
1350 t->m_tag_id = PACKET_TAG_PF;
1351 t->m_tag_len = sizeof(struct pf_mtag);
1352 t->m_tag_free = pf_mtag_free;
1353
1354 return (0);
1355 }
1356
1357 static void
pf_mtag_free(struct m_tag * t)1358 pf_mtag_free(struct m_tag *t)
1359 {
1360
1361 uma_zfree(pf_mtag_z, t);
1362 }
1363
1364 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1365 pf_get_mtag(struct mbuf *m)
1366 {
1367 struct m_tag *mtag;
1368
1369 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1370 return ((struct pf_mtag *)(mtag + 1));
1371
1372 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1373 if (mtag == NULL)
1374 return (NULL);
1375 bzero(mtag + 1, sizeof(struct pf_mtag));
1376 m_tag_prepend(m, mtag);
1377
1378 return ((struct pf_mtag *)(mtag + 1));
1379 }
1380
1381 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1382 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1383 struct pf_kstate *s)
1384 {
1385 struct pf_keyhash *khs, *khw, *kh;
1386 struct pf_state_key *sk, *cur;
1387 struct pf_kstate *si, *olds = NULL;
1388 int idx;
1389
1390 NET_EPOCH_ASSERT();
1391 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1392 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1393 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1394
1395 /*
1396 * We need to lock hash slots of both keys. To avoid deadlock
1397 * we always lock the slot with lower address first. Unlock order
1398 * isn't important.
1399 *
1400 * We also need to lock ID hash slot before dropping key
1401 * locks. On success we return with ID hash slot locked.
1402 */
1403
1404 if (skw == sks) {
1405 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1406 PF_HASHROW_LOCK(khs);
1407 } else {
1408 khs = &V_pf_keyhash[pf_hashkey(sks)];
1409 khw = &V_pf_keyhash[pf_hashkey(skw)];
1410 if (khs == khw) {
1411 PF_HASHROW_LOCK(khs);
1412 } else if (khs < khw) {
1413 PF_HASHROW_LOCK(khs);
1414 PF_HASHROW_LOCK(khw);
1415 } else {
1416 PF_HASHROW_LOCK(khw);
1417 PF_HASHROW_LOCK(khs);
1418 }
1419 }
1420
1421 #define KEYS_UNLOCK() do { \
1422 if (khs != khw) { \
1423 PF_HASHROW_UNLOCK(khs); \
1424 PF_HASHROW_UNLOCK(khw); \
1425 } else \
1426 PF_HASHROW_UNLOCK(khs); \
1427 } while (0)
1428
1429 /*
1430 * First run: start with wire key.
1431 */
1432 sk = skw;
1433 kh = khw;
1434 idx = PF_SK_WIRE;
1435
1436 MPASS(s->lock == NULL);
1437 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1438
1439 keyattach:
1440 LIST_FOREACH(cur, &kh->keys, entry)
1441 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1442 break;
1443
1444 if (cur != NULL) {
1445 /* Key exists. Check for same kif, if none, add to key. */
1446 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1447 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1448
1449 PF_HASHROW_LOCK(ih);
1450 if (si->kif == s->kif &&
1451 ((si->key[PF_SK_WIRE]->af == sk->af &&
1452 si->direction == s->direction) ||
1453 (si->key[PF_SK_WIRE]->af !=
1454 si->key[PF_SK_STACK]->af &&
1455 sk->af == si->key[PF_SK_STACK]->af &&
1456 si->direction != s->direction))) {
1457 if (sk->proto == IPPROTO_TCP &&
1458 si->src.state >= TCPS_FIN_WAIT_2 &&
1459 si->dst.state >= TCPS_FIN_WAIT_2) {
1460 /*
1461 * New state matches an old >FIN_WAIT_2
1462 * state. We can't drop key hash locks,
1463 * thus we can't unlink it properly.
1464 *
1465 * As a workaround we drop it into
1466 * TCPS_CLOSED state, schedule purge
1467 * ASAP and push it into the very end
1468 * of the slot TAILQ, so that it won't
1469 * conflict with our new state.
1470 */
1471 pf_set_protostate(si, PF_PEER_BOTH,
1472 TCPS_CLOSED);
1473 si->timeout = PFTM_PURGE;
1474 olds = si;
1475 } else {
1476 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1477 printf("pf: %s key attach "
1478 "failed on %s: ",
1479 (idx == PF_SK_WIRE) ?
1480 "wire" : "stack",
1481 s->kif->pfik_name);
1482 pf_print_state_parts(s,
1483 (idx == PF_SK_WIRE) ?
1484 sk : NULL,
1485 (idx == PF_SK_STACK) ?
1486 sk : NULL);
1487 printf(", existing: ");
1488 pf_print_state_parts(si,
1489 (idx == PF_SK_WIRE) ?
1490 sk : NULL,
1491 (idx == PF_SK_STACK) ?
1492 sk : NULL);
1493 printf("\n");
1494 }
1495 s->timeout = PFTM_UNLINKED;
1496 PF_HASHROW_UNLOCK(ih);
1497 KEYS_UNLOCK();
1498 if (idx == PF_SK_WIRE) {
1499 uma_zfree(V_pf_state_key_z, skw);
1500 if (skw != sks)
1501 uma_zfree(V_pf_state_key_z, sks);
1502 } else {
1503 pf_detach_state(s);
1504 }
1505 return (EEXIST); /* collision! */
1506 }
1507 }
1508 PF_HASHROW_UNLOCK(ih);
1509 }
1510 uma_zfree(V_pf_state_key_z, sk);
1511 s->key[idx] = cur;
1512 } else {
1513 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1514 s->key[idx] = sk;
1515 }
1516
1517 stateattach:
1518 /* List is sorted, if-bound states before floating. */
1519 if (s->kif == V_pfi_all)
1520 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1521 else
1522 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1523
1524 if (olds) {
1525 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1526 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1527 key_list[idx]);
1528 olds = NULL;
1529 }
1530
1531 /*
1532 * Attach done. See how should we (or should not?)
1533 * attach a second key.
1534 */
1535 if (sks == skw) {
1536 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1537 idx = PF_SK_STACK;
1538 sks = NULL;
1539 goto stateattach;
1540 } else if (sks != NULL) {
1541 /*
1542 * Continue attaching with stack key.
1543 */
1544 sk = sks;
1545 kh = khs;
1546 idx = PF_SK_STACK;
1547 sks = NULL;
1548 goto keyattach;
1549 }
1550
1551 PF_STATE_LOCK(s);
1552 KEYS_UNLOCK();
1553
1554 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1555 ("%s failure", __func__));
1556
1557 return (0);
1558 #undef KEYS_UNLOCK
1559 }
1560
1561 static void
pf_detach_state(struct pf_kstate * s)1562 pf_detach_state(struct pf_kstate *s)
1563 {
1564 struct pf_state_key *sks = s->key[PF_SK_STACK];
1565 struct pf_keyhash *kh;
1566
1567 NET_EPOCH_ASSERT();
1568 MPASS(s->timeout >= PFTM_MAX);
1569
1570 pf_sctp_multihome_detach_addr(s);
1571
1572 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1573 V_pflow_export_state_ptr(s);
1574
1575 if (sks != NULL) {
1576 kh = &V_pf_keyhash[pf_hashkey(sks)];
1577 PF_HASHROW_LOCK(kh);
1578 if (s->key[PF_SK_STACK] != NULL)
1579 pf_state_key_detach(s, PF_SK_STACK);
1580 /*
1581 * If both point to same key, then we are done.
1582 */
1583 if (sks == s->key[PF_SK_WIRE]) {
1584 pf_state_key_detach(s, PF_SK_WIRE);
1585 PF_HASHROW_UNLOCK(kh);
1586 return;
1587 }
1588 PF_HASHROW_UNLOCK(kh);
1589 }
1590
1591 if (s->key[PF_SK_WIRE] != NULL) {
1592 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1593 PF_HASHROW_LOCK(kh);
1594 if (s->key[PF_SK_WIRE] != NULL)
1595 pf_state_key_detach(s, PF_SK_WIRE);
1596 PF_HASHROW_UNLOCK(kh);
1597 }
1598 }
1599
1600 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1601 pf_state_key_detach(struct pf_kstate *s, int idx)
1602 {
1603 struct pf_state_key *sk = s->key[idx];
1604 #ifdef INVARIANTS
1605 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1606
1607 PF_HASHROW_ASSERT(kh);
1608 #endif
1609 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1610 s->key[idx] = NULL;
1611
1612 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1613 LIST_REMOVE(sk, entry);
1614 uma_zfree(V_pf_state_key_z, sk);
1615 }
1616 }
1617
1618 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1619 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1620 {
1621 struct pf_state_key *sk = mem;
1622
1623 bzero(sk, sizeof(struct pf_state_key_cmp));
1624 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1625 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1626
1627 return (0);
1628 }
1629
1630 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1631 pf_state_key_addr_setup(struct pf_pdesc *pd,
1632 struct pf_state_key_cmp *key, int multi)
1633 {
1634 struct pf_addr *saddr = pd->src;
1635 struct pf_addr *daddr = pd->dst;
1636 #ifdef INET6
1637 struct nd_neighbor_solicit nd;
1638 struct pf_addr *target;
1639 u_short action, reason;
1640
1641 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1642 goto copy;
1643
1644 switch (pd->hdr.icmp6.icmp6_type) {
1645 case ND_NEIGHBOR_SOLICIT:
1646 if (multi)
1647 return (-1);
1648 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1649 return (-1);
1650 target = (struct pf_addr *)&nd.nd_ns_target;
1651 daddr = target;
1652 break;
1653 case ND_NEIGHBOR_ADVERT:
1654 if (multi)
1655 return (-1);
1656 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1657 return (-1);
1658 target = (struct pf_addr *)&nd.nd_ns_target;
1659 saddr = target;
1660 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1661 key->addr[pd->didx].addr32[0] = 0;
1662 key->addr[pd->didx].addr32[1] = 0;
1663 key->addr[pd->didx].addr32[2] = 0;
1664 key->addr[pd->didx].addr32[3] = 0;
1665 daddr = NULL; /* overwritten */
1666 }
1667 break;
1668 default:
1669 if (multi == PF_ICMP_MULTI_LINK) {
1670 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1671 key->addr[pd->sidx].addr32[1] = 0;
1672 key->addr[pd->sidx].addr32[2] = 0;
1673 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1674 saddr = NULL; /* overwritten */
1675 }
1676 }
1677 copy:
1678 #endif
1679 if (saddr)
1680 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1681 if (daddr)
1682 PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1683
1684 return (0);
1685 }
1686
1687 int
pf_state_key_setup(struct pf_pdesc * pd,u_int16_t sport,u_int16_t dport,struct pf_state_key ** sk,struct pf_state_key ** nk)1688 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport,
1689 struct pf_state_key **sk, struct pf_state_key **nk)
1690 {
1691 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1692 if (*sk == NULL)
1693 return (ENOMEM);
1694
1695 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk,
1696 0)) {
1697 uma_zfree(V_pf_state_key_z, *sk);
1698 *sk = NULL;
1699 return (ENOMEM);
1700 }
1701
1702 (*sk)->port[pd->sidx] = sport;
1703 (*sk)->port[pd->didx] = dport;
1704 (*sk)->proto = pd->proto;
1705 (*sk)->af = pd->af;
1706
1707 *nk = pf_state_key_clone(*sk);
1708 if (*nk == NULL) {
1709 uma_zfree(V_pf_state_key_z, *sk);
1710 *sk = NULL;
1711 return (ENOMEM);
1712 }
1713
1714 if (pd->af != pd->naf) {
1715 (*sk)->port[pd->sidx] = pd->osport;
1716 (*sk)->port[pd->didx] = pd->odport;
1717
1718 (*nk)->af = pd->naf;
1719
1720 /*
1721 * We're overwriting an address here, so potentially there's bits of an IPv6
1722 * address left in here. Clear that out first.
1723 */
1724 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0]));
1725 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1]));
1726
1727 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf);
1728 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf);
1729 (*nk)->port[pd->didx] = pd->nsport;
1730 (*nk)->port[pd->sidx] = pd->ndport;
1731 switch (pd->proto) {
1732 case IPPROTO_ICMP:
1733 (*nk)->proto = IPPROTO_ICMPV6;
1734 break;
1735 case IPPROTO_ICMPV6:
1736 (*nk)->proto = IPPROTO_ICMP;
1737 break;
1738 default:
1739 (*nk)->proto = pd->proto;
1740 }
1741 }
1742
1743 return (0);
1744 }
1745
1746 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1747 pf_state_key_clone(const struct pf_state_key *orig)
1748 {
1749 struct pf_state_key *sk;
1750
1751 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1752 if (sk == NULL)
1753 return (NULL);
1754
1755 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1756
1757 return (sk);
1758 }
1759
1760 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1761 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1762 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1763 {
1764 struct pf_idhash *ih;
1765 struct pf_kstate *cur;
1766 int error;
1767
1768 NET_EPOCH_ASSERT();
1769
1770 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1771 ("%s: sks not pristine", __func__));
1772 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1773 ("%s: skw not pristine", __func__));
1774 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1775
1776 s->kif = kif;
1777 s->orig_kif = orig_kif;
1778
1779 if (s->id == 0 && s->creatorid == 0) {
1780 s->id = alloc_unr64(&V_pf_stateid);
1781 s->id = htobe64(s->id);
1782 s->creatorid = V_pf_status.hostid;
1783 }
1784
1785 /* Returns with ID locked on success. */
1786 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1787 return (error);
1788
1789 ih = &V_pf_idhash[PF_IDHASH(s)];
1790 PF_HASHROW_ASSERT(ih);
1791 LIST_FOREACH(cur, &ih->states, entry)
1792 if (cur->id == s->id && cur->creatorid == s->creatorid)
1793 break;
1794
1795 if (cur != NULL) {
1796 s->timeout = PFTM_UNLINKED;
1797 PF_HASHROW_UNLOCK(ih);
1798 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1799 printf("pf: state ID collision: "
1800 "id: %016llx creatorid: %08x\n",
1801 (unsigned long long)be64toh(s->id),
1802 ntohl(s->creatorid));
1803 }
1804 pf_detach_state(s);
1805 return (EEXIST);
1806 }
1807 LIST_INSERT_HEAD(&ih->states, s, entry);
1808 /* One for keys, one for ID hash. */
1809 refcount_init(&s->refs, 2);
1810
1811 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1812 if (V_pfsync_insert_state_ptr != NULL)
1813 V_pfsync_insert_state_ptr(s);
1814
1815 /* Returns locked. */
1816 return (0);
1817 }
1818
1819 /*
1820 * Find state by ID: returns with locked row on success.
1821 */
1822 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1823 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1824 {
1825 struct pf_idhash *ih;
1826 struct pf_kstate *s;
1827
1828 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1829
1830 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))];
1831
1832 PF_HASHROW_LOCK(ih);
1833 LIST_FOREACH(s, &ih->states, entry)
1834 if (s->id == id && s->creatorid == creatorid)
1835 break;
1836
1837 if (s == NULL)
1838 PF_HASHROW_UNLOCK(ih);
1839
1840 return (s);
1841 }
1842
1843 /*
1844 * Find state by key.
1845 * Returns with ID hash slot locked on success.
1846 */
1847 static struct pf_kstate *
pf_find_state(struct pfi_kkif * kif,const struct pf_state_key_cmp * key,u_int dir)1848 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1849 u_int dir)
1850 {
1851 struct pf_keyhash *kh;
1852 struct pf_state_key *sk;
1853 struct pf_kstate *s;
1854 int idx;
1855
1856 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1857
1858 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1859
1860 PF_HASHROW_LOCK(kh);
1861 LIST_FOREACH(sk, &kh->keys, entry)
1862 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1863 break;
1864 if (sk == NULL) {
1865 PF_HASHROW_UNLOCK(kh);
1866 return (NULL);
1867 }
1868
1869 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1870
1871 /* List is sorted, if-bound states before floating ones. */
1872 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1873 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1874 PF_STATE_LOCK(s);
1875 PF_HASHROW_UNLOCK(kh);
1876 if (__predict_false(s->timeout >= PFTM_MAX)) {
1877 /*
1878 * State is either being processed by
1879 * pf_unlink_state() in an other thread, or
1880 * is scheduled for immediate expiry.
1881 */
1882 PF_STATE_UNLOCK(s);
1883 return (NULL);
1884 }
1885 return (s);
1886 }
1887
1888 /* Look through the other list, in case of AF-TO */
1889 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE;
1890 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1891 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af)
1892 continue;
1893 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1894 PF_STATE_LOCK(s);
1895 PF_HASHROW_UNLOCK(kh);
1896 if (__predict_false(s->timeout >= PFTM_MAX)) {
1897 /*
1898 * State is either being processed by
1899 * pf_unlink_state() in an other thread, or
1900 * is scheduled for immediate expiry.
1901 */
1902 PF_STATE_UNLOCK(s);
1903 return (NULL);
1904 }
1905 return (s);
1906 }
1907 }
1908
1909 PF_HASHROW_UNLOCK(kh);
1910
1911 return (NULL);
1912 }
1913
1914 /*
1915 * Returns with ID hash slot locked on success.
1916 */
1917 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1918 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1919 {
1920 struct pf_keyhash *kh;
1921 struct pf_state_key *sk;
1922 struct pf_kstate *s, *ret = NULL;
1923 int idx, inout = 0;
1924
1925 if (more != NULL)
1926 *more = 0;
1927
1928 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1929
1930 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1931
1932 PF_HASHROW_LOCK(kh);
1933 LIST_FOREACH(sk, &kh->keys, entry)
1934 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1935 break;
1936 if (sk == NULL) {
1937 PF_HASHROW_UNLOCK(kh);
1938 return (NULL);
1939 }
1940 switch (dir) {
1941 case PF_IN:
1942 idx = PF_SK_WIRE;
1943 break;
1944 case PF_OUT:
1945 idx = PF_SK_STACK;
1946 break;
1947 case PF_INOUT:
1948 idx = PF_SK_WIRE;
1949 inout = 1;
1950 break;
1951 default:
1952 panic("%s: dir %u", __func__, dir);
1953 }
1954 second_run:
1955 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1956 if (more == NULL) {
1957 PF_STATE_LOCK(s);
1958 PF_HASHROW_UNLOCK(kh);
1959 return (s);
1960 }
1961
1962 if (ret)
1963 (*more)++;
1964 else {
1965 ret = s;
1966 PF_STATE_LOCK(s);
1967 }
1968 }
1969 if (inout == 1) {
1970 inout = 0;
1971 idx = PF_SK_STACK;
1972 goto second_run;
1973 }
1974 PF_HASHROW_UNLOCK(kh);
1975
1976 return (ret);
1977 }
1978
1979 /*
1980 * FIXME
1981 * This routine is inefficient -- locks the state only to unlock immediately on
1982 * return.
1983 * It is racy -- after the state is unlocked nothing stops other threads from
1984 * removing it.
1985 */
1986 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)1987 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
1988 {
1989 struct pf_kstate *s;
1990
1991 s = pf_find_state_all(key, dir, NULL);
1992 if (s != NULL) {
1993 PF_STATE_UNLOCK(s);
1994 return (true);
1995 }
1996 return (false);
1997 }
1998
1999 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)2000 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
2001 struct pf_addr *nat_addr, uint16_t nat_port)
2002 {
2003 struct pf_udp_mapping *mapping;
2004
2005 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
2006 if (mapping == NULL)
2007 return (NULL);
2008 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
2009 mapping->endpoints[0].port = src_port;
2010 mapping->endpoints[0].af = af;
2011 mapping->endpoints[0].mapping = mapping;
2012 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
2013 mapping->endpoints[1].port = nat_port;
2014 mapping->endpoints[1].af = af;
2015 mapping->endpoints[1].mapping = mapping;
2016 refcount_init(&mapping->refs, 1);
2017 return (mapping);
2018 }
2019
2020 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)2021 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
2022 {
2023 struct pf_udpendpointhash *h0, *h1;
2024 struct pf_udp_endpoint *endpoint;
2025 int ret = EEXIST;
2026
2027 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2028 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2029 if (h0 == h1) {
2030 PF_HASHROW_LOCK(h0);
2031 } else if (h0 < h1) {
2032 PF_HASHROW_LOCK(h0);
2033 PF_HASHROW_LOCK(h1);
2034 } else {
2035 PF_HASHROW_LOCK(h1);
2036 PF_HASHROW_LOCK(h0);
2037 }
2038
2039 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
2040 if (bcmp(endpoint, &mapping->endpoints[0],
2041 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2042 break;
2043 }
2044 if (endpoint != NULL)
2045 goto cleanup;
2046 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
2047 if (bcmp(endpoint, &mapping->endpoints[1],
2048 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2049 break;
2050 }
2051 if (endpoint != NULL)
2052 goto cleanup;
2053 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
2054 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
2055 ret = 0;
2056
2057 cleanup:
2058 if (h0 != h1) {
2059 PF_HASHROW_UNLOCK(h0);
2060 PF_HASHROW_UNLOCK(h1);
2061 } else {
2062 PF_HASHROW_UNLOCK(h0);
2063 }
2064 return (ret);
2065 }
2066
2067 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)2068 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
2069 {
2070 /* refcount is synchronized on the source endpoint's row lock */
2071 struct pf_udpendpointhash *h0, *h1;
2072
2073 if (mapping == NULL)
2074 return;
2075
2076 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
2077 PF_HASHROW_LOCK(h0);
2078 if (refcount_release(&mapping->refs)) {
2079 LIST_REMOVE(&mapping->endpoints[0], entry);
2080 PF_HASHROW_UNLOCK(h0);
2081 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
2082 PF_HASHROW_LOCK(h1);
2083 LIST_REMOVE(&mapping->endpoints[1], entry);
2084 PF_HASHROW_UNLOCK(h1);
2085
2086 uma_zfree(V_pf_udp_mapping_z, mapping);
2087 } else {
2088 PF_HASHROW_UNLOCK(h0);
2089 }
2090 }
2091
2092
2093 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2094 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2095 {
2096 struct pf_udpendpointhash *uh;
2097 struct pf_udp_endpoint *endpoint;
2098
2099 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2100
2101 PF_HASHROW_LOCK(uh);
2102 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2103 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2104 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2105 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2106 break;
2107 }
2108 if (endpoint == NULL) {
2109 PF_HASHROW_UNLOCK(uh);
2110 return (NULL);
2111 }
2112 refcount_acquire(&endpoint->mapping->refs);
2113 PF_HASHROW_UNLOCK(uh);
2114 return (endpoint->mapping);
2115 }
2116 /* END state table stuff */
2117
2118 static void
pf_send(struct pf_send_entry * pfse)2119 pf_send(struct pf_send_entry *pfse)
2120 {
2121
2122 PF_SENDQ_LOCK();
2123 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2124 PF_SENDQ_UNLOCK();
2125 swi_sched(V_pf_swi_cookie, 0);
2126 }
2127
2128 static bool
pf_isforlocal(struct mbuf * m,int af)2129 pf_isforlocal(struct mbuf *m, int af)
2130 {
2131 switch (af) {
2132 #ifdef INET
2133 case AF_INET: {
2134 struct ip *ip = mtod(m, struct ip *);
2135
2136 return (in_localip(ip->ip_dst));
2137 }
2138 #endif
2139 #ifdef INET6
2140 case AF_INET6: {
2141 struct ip6_hdr *ip6;
2142 struct in6_ifaddr *ia;
2143 ip6 = mtod(m, struct ip6_hdr *);
2144 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2145 if (ia == NULL)
2146 return (false);
2147 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2148 }
2149 #endif
2150 }
2151
2152 return (false);
2153 }
2154
2155 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,int * multi,u_int16_t * virtual_id,u_int16_t * virtual_type)2156 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2157 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type)
2158 {
2159 /*
2160 * ICMP types marked with PF_OUT are typically responses to
2161 * PF_IN, and will match states in the opposite direction.
2162 * PF_IN ICMP types need to match a state with that type.
2163 */
2164 *icmp_dir = PF_OUT;
2165 *multi = PF_ICMP_MULTI_LINK;
2166 /* Queries (and responses) */
2167 switch (pd->af) {
2168 #ifdef INET
2169 case AF_INET:
2170 switch (type) {
2171 case ICMP_ECHO:
2172 *icmp_dir = PF_IN;
2173 case ICMP_ECHOREPLY:
2174 *virtual_type = ICMP_ECHO;
2175 *virtual_id = pd->hdr.icmp.icmp_id;
2176 break;
2177
2178 case ICMP_TSTAMP:
2179 *icmp_dir = PF_IN;
2180 case ICMP_TSTAMPREPLY:
2181 *virtual_type = ICMP_TSTAMP;
2182 *virtual_id = pd->hdr.icmp.icmp_id;
2183 break;
2184
2185 case ICMP_IREQ:
2186 *icmp_dir = PF_IN;
2187 case ICMP_IREQREPLY:
2188 *virtual_type = ICMP_IREQ;
2189 *virtual_id = pd->hdr.icmp.icmp_id;
2190 break;
2191
2192 case ICMP_MASKREQ:
2193 *icmp_dir = PF_IN;
2194 case ICMP_MASKREPLY:
2195 *virtual_type = ICMP_MASKREQ;
2196 *virtual_id = pd->hdr.icmp.icmp_id;
2197 break;
2198
2199 case ICMP_IPV6_WHEREAREYOU:
2200 *icmp_dir = PF_IN;
2201 case ICMP_IPV6_IAMHERE:
2202 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2203 *virtual_id = 0; /* Nothing sane to match on! */
2204 break;
2205
2206 case ICMP_MOBILE_REGREQUEST:
2207 *icmp_dir = PF_IN;
2208 case ICMP_MOBILE_REGREPLY:
2209 *virtual_type = ICMP_MOBILE_REGREQUEST;
2210 *virtual_id = 0; /* Nothing sane to match on! */
2211 break;
2212
2213 case ICMP_ROUTERSOLICIT:
2214 *icmp_dir = PF_IN;
2215 case ICMP_ROUTERADVERT:
2216 *virtual_type = ICMP_ROUTERSOLICIT;
2217 *virtual_id = 0; /* Nothing sane to match on! */
2218 break;
2219
2220 /* These ICMP types map to other connections */
2221 case ICMP_UNREACH:
2222 case ICMP_SOURCEQUENCH:
2223 case ICMP_REDIRECT:
2224 case ICMP_TIMXCEED:
2225 case ICMP_PARAMPROB:
2226 /* These will not be used, but set them anyway */
2227 *icmp_dir = PF_IN;
2228 *virtual_type = type;
2229 *virtual_id = 0;
2230 HTONS(*virtual_type);
2231 return (1); /* These types match to another state */
2232
2233 /*
2234 * All remaining ICMP types get their own states,
2235 * and will only match in one direction.
2236 */
2237 default:
2238 *icmp_dir = PF_IN;
2239 *virtual_type = type;
2240 *virtual_id = 0;
2241 break;
2242 }
2243 break;
2244 #endif /* INET */
2245 #ifdef INET6
2246 case AF_INET6:
2247 switch (type) {
2248 case ICMP6_ECHO_REQUEST:
2249 *icmp_dir = PF_IN;
2250 case ICMP6_ECHO_REPLY:
2251 *virtual_type = ICMP6_ECHO_REQUEST;
2252 *virtual_id = pd->hdr.icmp6.icmp6_id;
2253 break;
2254
2255 case MLD_LISTENER_QUERY:
2256 case MLD_LISTENER_REPORT: {
2257 /*
2258 * Listener Report can be sent by clients
2259 * without an associated Listener Query.
2260 * In addition to that, when Report is sent as a
2261 * reply to a Query its source and destination
2262 * address are different.
2263 */
2264 *icmp_dir = PF_IN;
2265 *virtual_type = MLD_LISTENER_QUERY;
2266 *virtual_id = 0;
2267 break;
2268 }
2269 case MLD_MTRACE:
2270 *icmp_dir = PF_IN;
2271 case MLD_MTRACE_RESP:
2272 *virtual_type = MLD_MTRACE;
2273 *virtual_id = 0; /* Nothing sane to match on! */
2274 break;
2275
2276 case ND_NEIGHBOR_SOLICIT:
2277 *icmp_dir = PF_IN;
2278 case ND_NEIGHBOR_ADVERT: {
2279 *virtual_type = ND_NEIGHBOR_SOLICIT;
2280 *virtual_id = 0;
2281 break;
2282 }
2283
2284 /*
2285 * These ICMP types map to other connections.
2286 * ND_REDIRECT can't be in this list because the triggering
2287 * packet header is optional.
2288 */
2289 case ICMP6_DST_UNREACH:
2290 case ICMP6_PACKET_TOO_BIG:
2291 case ICMP6_TIME_EXCEEDED:
2292 case ICMP6_PARAM_PROB:
2293 /* These will not be used, but set them anyway */
2294 *icmp_dir = PF_IN;
2295 *virtual_type = type;
2296 *virtual_id = 0;
2297 HTONS(*virtual_type);
2298 return (1); /* These types match to another state */
2299 /*
2300 * All remaining ICMP6 types get their own states,
2301 * and will only match in one direction.
2302 */
2303 default:
2304 *icmp_dir = PF_IN;
2305 *virtual_type = type;
2306 *virtual_id = 0;
2307 break;
2308 }
2309 break;
2310 #endif /* INET6 */
2311 }
2312 HTONS(*virtual_type);
2313 return (0); /* These types match to their own state */
2314 }
2315
2316 void
pf_intr(void * v)2317 pf_intr(void *v)
2318 {
2319 struct epoch_tracker et;
2320 struct pf_send_head queue;
2321 struct pf_send_entry *pfse, *next;
2322
2323 CURVNET_SET((struct vnet *)v);
2324
2325 PF_SENDQ_LOCK();
2326 queue = V_pf_sendqueue;
2327 STAILQ_INIT(&V_pf_sendqueue);
2328 PF_SENDQ_UNLOCK();
2329
2330 NET_EPOCH_ENTER(et);
2331
2332 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2333 switch (pfse->pfse_type) {
2334 #ifdef INET
2335 case PFSE_IP: {
2336 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2337 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2338 ("%s: rcvif != loif", __func__));
2339
2340 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2341 pfse->pfse_m->m_pkthdr.csum_flags |=
2342 CSUM_IP_VALID | CSUM_IP_CHECKED;
2343 ip_input(pfse->pfse_m);
2344 } else {
2345 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2346 NULL);
2347 }
2348 break;
2349 }
2350 case PFSE_ICMP:
2351 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2352 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2353 break;
2354 #endif /* INET */
2355 #ifdef INET6
2356 case PFSE_IP6:
2357 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2358 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2359 ("%s: rcvif != loif", __func__));
2360
2361 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2362 M_LOOP;
2363 ip6_input(pfse->pfse_m);
2364 } else {
2365 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2366 NULL, NULL);
2367 }
2368 break;
2369 case PFSE_ICMP6:
2370 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2371 pfse->icmpopts.code, pfse->icmpopts.mtu);
2372 break;
2373 #endif /* INET6 */
2374 default:
2375 panic("%s: unknown type", __func__);
2376 }
2377 free(pfse, M_PFTEMP);
2378 }
2379 NET_EPOCH_EXIT(et);
2380 CURVNET_RESTORE();
2381 }
2382
2383 #define pf_purge_thread_period (hz / 10)
2384
2385 #ifdef PF_WANT_32_TO_64_COUNTER
2386 static void
pf_status_counter_u64_periodic(void)2387 pf_status_counter_u64_periodic(void)
2388 {
2389
2390 PF_RULES_RASSERT();
2391
2392 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2393 return;
2394 }
2395
2396 for (int i = 0; i < FCNT_MAX; i++) {
2397 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2398 }
2399 }
2400
2401 static void
pf_kif_counter_u64_periodic(void)2402 pf_kif_counter_u64_periodic(void)
2403 {
2404 struct pfi_kkif *kif;
2405 size_t r, run;
2406
2407 PF_RULES_RASSERT();
2408
2409 if (__predict_false(V_pf_allkifcount == 0)) {
2410 return;
2411 }
2412
2413 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2414 return;
2415 }
2416
2417 run = V_pf_allkifcount / 10;
2418 if (run < 5)
2419 run = 5;
2420
2421 for (r = 0; r < run; r++) {
2422 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2423 if (kif == NULL) {
2424 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2425 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2426 break;
2427 }
2428
2429 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2430 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2431
2432 for (int i = 0; i < 2; i++) {
2433 for (int j = 0; j < 2; j++) {
2434 for (int k = 0; k < 2; k++) {
2435 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2436 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2437 }
2438 }
2439 }
2440 }
2441 }
2442
2443 static void
pf_rule_counter_u64_periodic(void)2444 pf_rule_counter_u64_periodic(void)
2445 {
2446 struct pf_krule *rule;
2447 size_t r, run;
2448
2449 PF_RULES_RASSERT();
2450
2451 if (__predict_false(V_pf_allrulecount == 0)) {
2452 return;
2453 }
2454
2455 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2456 return;
2457 }
2458
2459 run = V_pf_allrulecount / 10;
2460 if (run < 5)
2461 run = 5;
2462
2463 for (r = 0; r < run; r++) {
2464 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2465 if (rule == NULL) {
2466 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2467 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2468 break;
2469 }
2470
2471 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2472 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2473
2474 pf_counter_u64_periodic(&rule->evaluations);
2475 for (int i = 0; i < 2; i++) {
2476 pf_counter_u64_periodic(&rule->packets[i]);
2477 pf_counter_u64_periodic(&rule->bytes[i]);
2478 }
2479 }
2480 }
2481
2482 static void
pf_counter_u64_periodic_main(void)2483 pf_counter_u64_periodic_main(void)
2484 {
2485 PF_RULES_RLOCK_TRACKER;
2486
2487 V_pf_counter_periodic_iter++;
2488
2489 PF_RULES_RLOCK();
2490 pf_counter_u64_critical_enter();
2491 pf_status_counter_u64_periodic();
2492 pf_kif_counter_u64_periodic();
2493 pf_rule_counter_u64_periodic();
2494 pf_counter_u64_critical_exit();
2495 PF_RULES_RUNLOCK();
2496 }
2497 #else
2498 #define pf_counter_u64_periodic_main() do { } while (0)
2499 #endif
2500
2501 void
pf_purge_thread(void * unused __unused)2502 pf_purge_thread(void *unused __unused)
2503 {
2504 struct epoch_tracker et;
2505
2506 VNET_ITERATOR_DECL(vnet_iter);
2507
2508 sx_xlock(&pf_end_lock);
2509 while (pf_end_threads == 0) {
2510 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2511
2512 VNET_LIST_RLOCK();
2513 NET_EPOCH_ENTER(et);
2514 VNET_FOREACH(vnet_iter) {
2515 CURVNET_SET(vnet_iter);
2516
2517 /* Wait until V_pf_default_rule is initialized. */
2518 if (V_pf_vnet_active == 0) {
2519 CURVNET_RESTORE();
2520 continue;
2521 }
2522
2523 pf_counter_u64_periodic_main();
2524
2525 /*
2526 * Process 1/interval fraction of the state
2527 * table every run.
2528 */
2529 V_pf_purge_idx =
2530 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2531 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2532
2533 /*
2534 * Purge other expired types every
2535 * PFTM_INTERVAL seconds.
2536 */
2537 if (V_pf_purge_idx == 0) {
2538 /*
2539 * Order is important:
2540 * - states and src nodes reference rules
2541 * - states and rules reference kifs
2542 */
2543 pf_purge_expired_fragments();
2544 pf_purge_expired_src_nodes();
2545 pf_purge_unlinked_rules();
2546 pfi_kkif_purge();
2547 }
2548 CURVNET_RESTORE();
2549 }
2550 NET_EPOCH_EXIT(et);
2551 VNET_LIST_RUNLOCK();
2552 }
2553
2554 pf_end_threads++;
2555 sx_xunlock(&pf_end_lock);
2556 kproc_exit(0);
2557 }
2558
2559 void
pf_unload_vnet_purge(void)2560 pf_unload_vnet_purge(void)
2561 {
2562
2563 /*
2564 * To cleanse up all kifs and rules we need
2565 * two runs: first one clears reference flags,
2566 * then pf_purge_expired_states() doesn't
2567 * raise them, and then second run frees.
2568 */
2569 pf_purge_unlinked_rules();
2570 pfi_kkif_purge();
2571
2572 /*
2573 * Now purge everything.
2574 */
2575 pf_purge_expired_states(0, V_pf_hashmask);
2576 pf_purge_fragments(UINT_MAX);
2577 pf_purge_expired_src_nodes();
2578
2579 /*
2580 * Now all kifs & rules should be unreferenced,
2581 * thus should be successfully freed.
2582 */
2583 pf_purge_unlinked_rules();
2584 pfi_kkif_purge();
2585 }
2586
2587 u_int32_t
pf_state_expires(const struct pf_kstate * state)2588 pf_state_expires(const struct pf_kstate *state)
2589 {
2590 u_int32_t timeout;
2591 u_int32_t start;
2592 u_int32_t end;
2593 u_int32_t states;
2594
2595 /* handle all PFTM_* > PFTM_MAX here */
2596 if (state->timeout == PFTM_PURGE)
2597 return (time_uptime);
2598 KASSERT(state->timeout != PFTM_UNLINKED,
2599 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2600 KASSERT((state->timeout < PFTM_MAX),
2601 ("pf_state_expires: timeout > PFTM_MAX"));
2602 timeout = state->rule->timeout[state->timeout];
2603 if (!timeout)
2604 timeout = V_pf_default_rule.timeout[state->timeout];
2605 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2606 if (start && state->rule != &V_pf_default_rule) {
2607 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2608 states = counter_u64_fetch(state->rule->states_cur);
2609 } else {
2610 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2611 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2612 states = V_pf_status.states;
2613 }
2614 if (end && states > start && start < end) {
2615 if (states < end) {
2616 timeout = (u_int64_t)timeout * (end - states) /
2617 (end - start);
2618 return ((state->expire / 1000) + timeout);
2619 }
2620 else
2621 return (time_uptime);
2622 }
2623 return ((state->expire / 1000) + timeout);
2624 }
2625
2626 void
pf_purge_expired_src_nodes(void)2627 pf_purge_expired_src_nodes(void)
2628 {
2629 struct pf_ksrc_node_list freelist;
2630 struct pf_srchash *sh;
2631 struct pf_ksrc_node *cur, *next;
2632 int i;
2633
2634 LIST_INIT(&freelist);
2635 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2636 PF_HASHROW_LOCK(sh);
2637 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2638 if (cur->states == 0 && cur->expire <= time_uptime) {
2639 pf_unlink_src_node(cur);
2640 LIST_INSERT_HEAD(&freelist, cur, entry);
2641 } else if (cur->rule != NULL)
2642 cur->rule->rule_ref |= PFRULE_REFS;
2643 PF_HASHROW_UNLOCK(sh);
2644 }
2645
2646 pf_free_src_nodes(&freelist);
2647
2648 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2649 }
2650
2651 static void
pf_src_tree_remove_state(struct pf_kstate * s)2652 pf_src_tree_remove_state(struct pf_kstate *s)
2653 {
2654 struct pf_ksrc_node *sn;
2655 uint32_t timeout;
2656
2657 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2658 s->rule->timeout[PFTM_SRC_NODE] :
2659 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2660
2661 if (s->src_node != NULL) {
2662 sn = s->src_node;
2663 PF_SRC_NODE_LOCK(sn);
2664 if (s->src.tcp_est)
2665 --sn->conn;
2666 if (--sn->states == 0)
2667 sn->expire = time_uptime + timeout;
2668 PF_SRC_NODE_UNLOCK(sn);
2669 }
2670 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
2671 sn = s->nat_src_node;
2672 PF_SRC_NODE_LOCK(sn);
2673 if (--sn->states == 0)
2674 sn->expire = time_uptime + timeout;
2675 PF_SRC_NODE_UNLOCK(sn);
2676 }
2677 s->src_node = s->nat_src_node = NULL;
2678 }
2679
2680 /*
2681 * Unlink and potentilly free a state. Function may be
2682 * called with ID hash row locked, but always returns
2683 * unlocked, since it needs to go through key hash locking.
2684 */
2685 int
pf_unlink_state(struct pf_kstate * s)2686 pf_unlink_state(struct pf_kstate *s)
2687 {
2688 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2689
2690 NET_EPOCH_ASSERT();
2691 PF_HASHROW_ASSERT(ih);
2692
2693 if (s->timeout == PFTM_UNLINKED) {
2694 /*
2695 * State is being processed
2696 * by pf_unlink_state() in
2697 * an other thread.
2698 */
2699 PF_HASHROW_UNLOCK(ih);
2700 return (0); /* XXXGL: undefined actually */
2701 }
2702
2703 if (s->src.state == PF_TCPS_PROXY_DST) {
2704 /* XXX wire key the right one? */
2705 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2706 &s->key[PF_SK_WIRE]->addr[1],
2707 &s->key[PF_SK_WIRE]->addr[0],
2708 s->key[PF_SK_WIRE]->port[1],
2709 s->key[PF_SK_WIRE]->port[0],
2710 s->src.seqhi, s->src.seqlo + 1,
2711 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2712 s->act.rtableid);
2713 }
2714
2715 LIST_REMOVE(s, entry);
2716 pf_src_tree_remove_state(s);
2717
2718 if (V_pfsync_delete_state_ptr != NULL)
2719 V_pfsync_delete_state_ptr(s);
2720
2721 STATE_DEC_COUNTERS(s);
2722
2723 s->timeout = PFTM_UNLINKED;
2724
2725 /* Ensure we remove it from the list of halfopen states, if needed. */
2726 if (s->key[PF_SK_STACK] != NULL &&
2727 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2728 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2729
2730 PF_HASHROW_UNLOCK(ih);
2731
2732 pf_detach_state(s);
2733
2734 pf_udp_mapping_release(s->udp_mapping);
2735
2736 /* pf_state_insert() initialises refs to 2 */
2737 return (pf_release_staten(s, 2));
2738 }
2739
2740 struct pf_kstate *
pf_alloc_state(int flags)2741 pf_alloc_state(int flags)
2742 {
2743
2744 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2745 }
2746
2747 void
pf_free_state(struct pf_kstate * cur)2748 pf_free_state(struct pf_kstate *cur)
2749 {
2750 struct pf_krule_item *ri;
2751
2752 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2753 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2754 cur->timeout));
2755
2756 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2757 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2758 free(ri, M_PF_RULE_ITEM);
2759 }
2760
2761 pf_normalize_tcp_cleanup(cur);
2762 uma_zfree(V_pf_state_z, cur);
2763 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2764 }
2765
2766 /*
2767 * Called only from pf_purge_thread(), thus serialized.
2768 */
2769 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2770 pf_purge_expired_states(u_int i, int maxcheck)
2771 {
2772 struct pf_idhash *ih;
2773 struct pf_kstate *s;
2774 struct pf_krule_item *mrm;
2775 size_t count __unused;
2776
2777 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2778
2779 /*
2780 * Go through hash and unlink states that expire now.
2781 */
2782 while (maxcheck > 0) {
2783 count = 0;
2784 ih = &V_pf_idhash[i];
2785
2786 /* only take the lock if we expect to do work */
2787 if (!LIST_EMPTY(&ih->states)) {
2788 relock:
2789 PF_HASHROW_LOCK(ih);
2790 LIST_FOREACH(s, &ih->states, entry) {
2791 if (pf_state_expires(s) <= time_uptime) {
2792 V_pf_status.states -=
2793 pf_unlink_state(s);
2794 goto relock;
2795 }
2796 s->rule->rule_ref |= PFRULE_REFS;
2797 if (s->nat_rule != NULL)
2798 s->nat_rule->rule_ref |= PFRULE_REFS;
2799 if (s->anchor != NULL)
2800 s->anchor->rule_ref |= PFRULE_REFS;
2801 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2802 SLIST_FOREACH(mrm, &s->match_rules, entry)
2803 mrm->r->rule_ref |= PFRULE_REFS;
2804 if (s->act.rt_kif)
2805 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2806 count++;
2807 }
2808 PF_HASHROW_UNLOCK(ih);
2809 }
2810
2811 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2812
2813 /* Return when we hit end of hash. */
2814 if (++i > V_pf_hashmask) {
2815 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2816 return (0);
2817 }
2818
2819 maxcheck--;
2820 }
2821
2822 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2823
2824 return (i);
2825 }
2826
2827 static void
pf_purge_unlinked_rules(void)2828 pf_purge_unlinked_rules(void)
2829 {
2830 struct pf_krulequeue tmpq;
2831 struct pf_krule *r, *r1;
2832
2833 /*
2834 * If we have overloading task pending, then we'd
2835 * better skip purging this time. There is a tiny
2836 * probability that overloading task references
2837 * an already unlinked rule.
2838 */
2839 PF_OVERLOADQ_LOCK();
2840 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2841 PF_OVERLOADQ_UNLOCK();
2842 return;
2843 }
2844 PF_OVERLOADQ_UNLOCK();
2845
2846 /*
2847 * Do naive mark-and-sweep garbage collecting of old rules.
2848 * Reference flag is raised by pf_purge_expired_states()
2849 * and pf_purge_expired_src_nodes().
2850 *
2851 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2852 * use a temporary queue.
2853 */
2854 TAILQ_INIT(&tmpq);
2855 PF_UNLNKDRULES_LOCK();
2856 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2857 if (!(r->rule_ref & PFRULE_REFS)) {
2858 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2859 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2860 } else
2861 r->rule_ref &= ~PFRULE_REFS;
2862 }
2863 PF_UNLNKDRULES_UNLOCK();
2864
2865 if (!TAILQ_EMPTY(&tmpq)) {
2866 PF_CONFIG_LOCK();
2867 PF_RULES_WLOCK();
2868 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2869 TAILQ_REMOVE(&tmpq, r, entries);
2870 pf_free_rule(r);
2871 }
2872 PF_RULES_WUNLOCK();
2873 PF_CONFIG_UNLOCK();
2874 }
2875 }
2876
2877 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2878 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2879 {
2880 switch (af) {
2881 #ifdef INET
2882 case AF_INET: {
2883 u_int32_t a = ntohl(addr->addr32[0]);
2884 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2885 (a>>8)&255, a&255);
2886 if (p) {
2887 p = ntohs(p);
2888 printf(":%u", p);
2889 }
2890 break;
2891 }
2892 #endif /* INET */
2893 #ifdef INET6
2894 case AF_INET6: {
2895 u_int16_t b;
2896 u_int8_t i, curstart, curend, maxstart, maxend;
2897 curstart = curend = maxstart = maxend = 255;
2898 for (i = 0; i < 8; i++) {
2899 if (!addr->addr16[i]) {
2900 if (curstart == 255)
2901 curstart = i;
2902 curend = i;
2903 } else {
2904 if ((curend - curstart) >
2905 (maxend - maxstart)) {
2906 maxstart = curstart;
2907 maxend = curend;
2908 }
2909 curstart = curend = 255;
2910 }
2911 }
2912 if ((curend - curstart) >
2913 (maxend - maxstart)) {
2914 maxstart = curstart;
2915 maxend = curend;
2916 }
2917 for (i = 0; i < 8; i++) {
2918 if (i >= maxstart && i <= maxend) {
2919 if (i == 0)
2920 printf(":");
2921 if (i == maxend)
2922 printf(":");
2923 } else {
2924 b = ntohs(addr->addr16[i]);
2925 printf("%x", b);
2926 if (i < 7)
2927 printf(":");
2928 }
2929 }
2930 if (p) {
2931 p = ntohs(p);
2932 printf("[%u]", p);
2933 }
2934 break;
2935 }
2936 #endif /* INET6 */
2937 }
2938 }
2939
2940 void
pf_print_state(struct pf_kstate * s)2941 pf_print_state(struct pf_kstate *s)
2942 {
2943 pf_print_state_parts(s, NULL, NULL);
2944 }
2945
2946 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)2947 pf_print_state_parts(struct pf_kstate *s,
2948 struct pf_state_key *skwp, struct pf_state_key *sksp)
2949 {
2950 struct pf_state_key *skw, *sks;
2951 u_int8_t proto, dir;
2952
2953 /* Do our best to fill these, but they're skipped if NULL */
2954 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
2955 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
2956 proto = skw ? skw->proto : (sks ? sks->proto : 0);
2957 dir = s ? s->direction : 0;
2958
2959 switch (proto) {
2960 case IPPROTO_IPV4:
2961 printf("IPv4");
2962 break;
2963 case IPPROTO_IPV6:
2964 printf("IPv6");
2965 break;
2966 case IPPROTO_TCP:
2967 printf("TCP");
2968 break;
2969 case IPPROTO_UDP:
2970 printf("UDP");
2971 break;
2972 case IPPROTO_ICMP:
2973 printf("ICMP");
2974 break;
2975 case IPPROTO_ICMPV6:
2976 printf("ICMPv6");
2977 break;
2978 default:
2979 printf("%u", proto);
2980 break;
2981 }
2982 switch (dir) {
2983 case PF_IN:
2984 printf(" in");
2985 break;
2986 case PF_OUT:
2987 printf(" out");
2988 break;
2989 }
2990 if (skw) {
2991 printf(" wire: ");
2992 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
2993 printf(" ");
2994 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
2995 }
2996 if (sks) {
2997 printf(" stack: ");
2998 if (sks != skw) {
2999 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
3000 printf(" ");
3001 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
3002 } else
3003 printf("-");
3004 }
3005 if (s) {
3006 if (proto == IPPROTO_TCP) {
3007 printf(" [lo=%u high=%u win=%u modulator=%u",
3008 s->src.seqlo, s->src.seqhi,
3009 s->src.max_win, s->src.seqdiff);
3010 if (s->src.wscale && s->dst.wscale)
3011 printf(" wscale=%u",
3012 s->src.wscale & PF_WSCALE_MASK);
3013 printf("]");
3014 printf(" [lo=%u high=%u win=%u modulator=%u",
3015 s->dst.seqlo, s->dst.seqhi,
3016 s->dst.max_win, s->dst.seqdiff);
3017 if (s->src.wscale && s->dst.wscale)
3018 printf(" wscale=%u",
3019 s->dst.wscale & PF_WSCALE_MASK);
3020 printf("]");
3021 }
3022 printf(" %u:%u", s->src.state, s->dst.state);
3023 if (s->rule)
3024 printf(" @%d", s->rule->nr);
3025 }
3026 }
3027
3028 void
pf_print_flags(uint16_t f)3029 pf_print_flags(uint16_t f)
3030 {
3031 if (f)
3032 printf(" ");
3033 if (f & TH_FIN)
3034 printf("F");
3035 if (f & TH_SYN)
3036 printf("S");
3037 if (f & TH_RST)
3038 printf("R");
3039 if (f & TH_PUSH)
3040 printf("P");
3041 if (f & TH_ACK)
3042 printf("A");
3043 if (f & TH_URG)
3044 printf("U");
3045 if (f & TH_ECE)
3046 printf("E");
3047 if (f & TH_CWR)
3048 printf("W");
3049 if (f & TH_AE)
3050 printf("e");
3051 }
3052
3053 #define PF_SET_SKIP_STEPS(i) \
3054 do { \
3055 while (head[i] != cur) { \
3056 head[i]->skip[i] = cur; \
3057 head[i] = TAILQ_NEXT(head[i], entries); \
3058 } \
3059 } while (0)
3060
3061 void
pf_calc_skip_steps(struct pf_krulequeue * rules)3062 pf_calc_skip_steps(struct pf_krulequeue *rules)
3063 {
3064 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
3065 int i;
3066
3067 cur = TAILQ_FIRST(rules);
3068 prev = cur;
3069 for (i = 0; i < PF_SKIP_COUNT; ++i)
3070 head[i] = cur;
3071 while (cur != NULL) {
3072 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
3073 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
3074 if (cur->direction != prev->direction)
3075 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
3076 if (cur->af != prev->af)
3077 PF_SET_SKIP_STEPS(PF_SKIP_AF);
3078 if (cur->proto != prev->proto)
3079 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
3080 if (cur->src.neg != prev->src.neg ||
3081 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
3082 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
3083 if (cur->dst.neg != prev->dst.neg ||
3084 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
3085 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
3086 if (cur->src.port[0] != prev->src.port[0] ||
3087 cur->src.port[1] != prev->src.port[1] ||
3088 cur->src.port_op != prev->src.port_op)
3089 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
3090 if (cur->dst.port[0] != prev->dst.port[0] ||
3091 cur->dst.port[1] != prev->dst.port[1] ||
3092 cur->dst.port_op != prev->dst.port_op)
3093 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3094
3095 prev = cur;
3096 cur = TAILQ_NEXT(cur, entries);
3097 }
3098 for (i = 0; i < PF_SKIP_COUNT; ++i)
3099 PF_SET_SKIP_STEPS(i);
3100 }
3101
3102 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3103 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3104 {
3105 if (aw1->type != aw2->type)
3106 return (1);
3107 switch (aw1->type) {
3108 case PF_ADDR_ADDRMASK:
3109 case PF_ADDR_RANGE:
3110 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3111 return (1);
3112 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3113 return (1);
3114 return (0);
3115 case PF_ADDR_DYNIFTL:
3116 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3117 case PF_ADDR_NONE:
3118 case PF_ADDR_NOROUTE:
3119 case PF_ADDR_URPFFAILED:
3120 return (0);
3121 case PF_ADDR_TABLE:
3122 return (aw1->p.tbl != aw2->p.tbl);
3123 default:
3124 printf("invalid address type: %d\n", aw1->type);
3125 return (1);
3126 }
3127 }
3128
3129 /**
3130 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3131 * header isn't always a full checksum. In some cases (i.e. output) it's a
3132 * pseudo-header checksum, which is a partial checksum over src/dst IP
3133 * addresses, protocol number and length.
3134 *
3135 * That means we have the following cases:
3136 * * Input or forwarding: we don't have TSO, the checksum fields are full
3137 * checksums, we need to update the checksum whenever we change anything.
3138 * * Output (i.e. the checksum is a pseudo-header checksum):
3139 * x The field being updated is src/dst address or affects the length of
3140 * the packet. We need to update the pseudo-header checksum (note that this
3141 * checksum is not ones' complement).
3142 * x Some other field is being modified (e.g. src/dst port numbers): We
3143 * don't have to update anything.
3144 **/
3145 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3146 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3147 {
3148 u_int32_t x;
3149
3150 x = cksum + old - new;
3151 x = (x + (x >> 16)) & 0xffff;
3152
3153 /* optimise: eliminate a branch when not udp */
3154 if (udp && cksum == 0x0000)
3155 return cksum;
3156 if (udp && x == 0x0000)
3157 x = 0xffff;
3158
3159 return (u_int16_t)(x);
3160 }
3161
3162 static void
pf_patch_8(struct mbuf * m,u_int16_t * cksum,u_int8_t * f,u_int8_t v,bool hi,u_int8_t udp)3163 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
3164 u_int8_t udp)
3165 {
3166 u_int16_t old = htons(hi ? (*f << 8) : *f);
3167 u_int16_t new = htons(hi ? ( v << 8) : v);
3168
3169 if (*f == v)
3170 return;
3171
3172 *f = v;
3173
3174 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3175 return;
3176
3177 *cksum = pf_cksum_fixup(*cksum, old, new, udp);
3178 }
3179
3180 void
pf_patch_16_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int16_t v,bool hi,u_int8_t udp)3181 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
3182 bool hi, u_int8_t udp)
3183 {
3184 u_int8_t *fb = (u_int8_t *)f;
3185 u_int8_t *vb = (u_int8_t *)&v;
3186
3187 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3188 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3189 }
3190
3191 void
pf_patch_32_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int32_t v,bool hi,u_int8_t udp)3192 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
3193 bool hi, u_int8_t udp)
3194 {
3195 u_int8_t *fb = (u_int8_t *)f;
3196 u_int8_t *vb = (u_int8_t *)&v;
3197
3198 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3199 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3200 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3201 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3202 }
3203
3204 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3205 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3206 u_int16_t new, u_int8_t udp)
3207 {
3208 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3209 return (cksum);
3210
3211 return (pf_cksum_fixup(cksum, old, new, udp));
3212 }
3213
3214 static void
pf_change_ap(struct mbuf * m,struct pf_addr * a,u_int16_t * p,u_int16_t * ic,u_int16_t * pc,struct pf_addr * an,u_int16_t pn,u_int8_t u,sa_family_t af,sa_family_t naf)3215 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
3216 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
3217 sa_family_t af, sa_family_t naf)
3218 {
3219 struct pf_addr ao;
3220 u_int16_t po = *p;
3221
3222 PF_ACPY(&ao, a, af);
3223 if (af == naf)
3224 PF_ACPY(a, an, af);
3225
3226 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3227 *pc = ~*pc;
3228
3229 *p = pn;
3230
3231 switch (af) {
3232 #ifdef INET
3233 case AF_INET:
3234 switch (naf) {
3235 case AF_INET:
3236 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3237 ao.addr16[0], an->addr16[0], 0),
3238 ao.addr16[1], an->addr16[1], 0);
3239 *p = pn;
3240
3241 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
3242 ao.addr16[0], an->addr16[0], u),
3243 ao.addr16[1], an->addr16[1], u);
3244
3245 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3246 break;
3247 #ifdef INET6
3248 case AF_INET6:
3249 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3250 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3251 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
3252 ao.addr16[0], an->addr16[0], u),
3253 ao.addr16[1], an->addr16[1], u),
3254 0, an->addr16[2], u),
3255 0, an->addr16[3], u),
3256 0, an->addr16[4], u),
3257 0, an->addr16[5], u),
3258 0, an->addr16[6], u),
3259 0, an->addr16[7], u),
3260 po, pn, u);
3261
3262 /* XXXKP TODO *ic checksum? */
3263 break;
3264 #endif /* INET6 */
3265 }
3266 break;
3267 #endif /* INET */
3268 #ifdef INET6
3269 case AF_INET6:
3270 switch (naf) {
3271 #ifdef INET
3272 case AF_INET:
3273 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3274 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3275 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
3276 ao.addr16[0], an->addr16[0], u),
3277 ao.addr16[1], an->addr16[1], u),
3278 ao.addr16[2], 0, u),
3279 ao.addr16[3], 0, u),
3280 ao.addr16[4], 0, u),
3281 ao.addr16[5], 0, u),
3282 ao.addr16[6], 0, u),
3283 ao.addr16[7], 0, u),
3284 po, pn, u);
3285
3286 /* XXXKP TODO *ic checksum? */
3287 break;
3288 #endif /* INET */
3289 case AF_INET6:
3290 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3291 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3292 pf_cksum_fixup(pf_cksum_fixup(*pc,
3293 ao.addr16[0], an->addr16[0], u),
3294 ao.addr16[1], an->addr16[1], u),
3295 ao.addr16[2], an->addr16[2], u),
3296 ao.addr16[3], an->addr16[3], u),
3297 ao.addr16[4], an->addr16[4], u),
3298 ao.addr16[5], an->addr16[5], u),
3299 ao.addr16[6], an->addr16[6], u),
3300 ao.addr16[7], an->addr16[7], u);
3301
3302 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3303 break;
3304 }
3305 break;
3306 #endif /* INET6 */
3307 }
3308
3309 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3310 CSUM_DELAY_DATA_IPV6)) {
3311 *pc = ~*pc;
3312 if (! *pc)
3313 *pc = 0xffff;
3314 }
3315 }
3316
3317 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3318 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3319 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3320 {
3321 u_int32_t ao;
3322
3323 memcpy(&ao, a, sizeof(ao));
3324 memcpy(a, &an, sizeof(u_int32_t));
3325 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3326 ao % 65536, an % 65536, u);
3327 }
3328
3329 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3330 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3331 {
3332 u_int32_t ao;
3333
3334 memcpy(&ao, a, sizeof(ao));
3335 memcpy(a, &an, sizeof(u_int32_t));
3336
3337 *c = pf_proto_cksum_fixup(m,
3338 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3339 ao % 65536, an % 65536, udp);
3340 }
3341
3342 #ifdef INET6
3343 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3344 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3345 {
3346 struct pf_addr ao;
3347
3348 PF_ACPY(&ao, a, AF_INET6);
3349 PF_ACPY(a, an, AF_INET6);
3350
3351 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3352 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3353 pf_cksum_fixup(pf_cksum_fixup(*c,
3354 ao.addr16[0], an->addr16[0], u),
3355 ao.addr16[1], an->addr16[1], u),
3356 ao.addr16[2], an->addr16[2], u),
3357 ao.addr16[3], an->addr16[3], u),
3358 ao.addr16[4], an->addr16[4], u),
3359 ao.addr16[5], an->addr16[5], u),
3360 ao.addr16[6], an->addr16[6], u),
3361 ao.addr16[7], an->addr16[7], u);
3362 }
3363 #endif /* INET6 */
3364
3365 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3366 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3367 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3368 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3369 {
3370 struct pf_addr oia, ooa;
3371
3372 PF_ACPY(&oia, ia, af);
3373 if (oa)
3374 PF_ACPY(&ooa, oa, af);
3375
3376 /* Change inner protocol port, fix inner protocol checksum. */
3377 if (ip != NULL) {
3378 u_int16_t oip = *ip;
3379 u_int32_t opc;
3380
3381 if (pc != NULL)
3382 opc = *pc;
3383 *ip = np;
3384 if (pc != NULL)
3385 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3386 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3387 if (pc != NULL)
3388 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3389 }
3390 /* Change inner ip address, fix inner ip and icmp checksums. */
3391 PF_ACPY(ia, na, af);
3392 switch (af) {
3393 #ifdef INET
3394 case AF_INET: {
3395 u_int32_t oh2c = *h2c;
3396
3397 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3398 oia.addr16[0], ia->addr16[0], 0),
3399 oia.addr16[1], ia->addr16[1], 0);
3400 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3401 oia.addr16[0], ia->addr16[0], 0),
3402 oia.addr16[1], ia->addr16[1], 0);
3403 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3404 break;
3405 }
3406 #endif /* INET */
3407 #ifdef INET6
3408 case AF_INET6:
3409 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3410 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3411 pf_cksum_fixup(pf_cksum_fixup(*ic,
3412 oia.addr16[0], ia->addr16[0], u),
3413 oia.addr16[1], ia->addr16[1], u),
3414 oia.addr16[2], ia->addr16[2], u),
3415 oia.addr16[3], ia->addr16[3], u),
3416 oia.addr16[4], ia->addr16[4], u),
3417 oia.addr16[5], ia->addr16[5], u),
3418 oia.addr16[6], ia->addr16[6], u),
3419 oia.addr16[7], ia->addr16[7], u);
3420 break;
3421 #endif /* INET6 */
3422 }
3423 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3424 if (oa) {
3425 PF_ACPY(oa, na, af);
3426 switch (af) {
3427 #ifdef INET
3428 case AF_INET:
3429 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3430 ooa.addr16[0], oa->addr16[0], 0),
3431 ooa.addr16[1], oa->addr16[1], 0);
3432 break;
3433 #endif /* INET */
3434 #ifdef INET6
3435 case AF_INET6:
3436 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3437 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3438 pf_cksum_fixup(pf_cksum_fixup(*ic,
3439 ooa.addr16[0], oa->addr16[0], u),
3440 ooa.addr16[1], oa->addr16[1], u),
3441 ooa.addr16[2], oa->addr16[2], u),
3442 ooa.addr16[3], oa->addr16[3], u),
3443 ooa.addr16[4], oa->addr16[4], u),
3444 ooa.addr16[5], oa->addr16[5], u),
3445 ooa.addr16[6], oa->addr16[6], u),
3446 ooa.addr16[7], oa->addr16[7], u);
3447 break;
3448 #endif /* INET6 */
3449 }
3450 }
3451 }
3452
3453 int
pf_translate_af(struct pf_pdesc * pd)3454 pf_translate_af(struct pf_pdesc *pd)
3455 {
3456 #if defined(INET) && defined(INET6)
3457 struct mbuf *mp;
3458 struct ip *ip4;
3459 struct ip6_hdr *ip6;
3460 struct icmp6_hdr *icmp;
3461 struct m_tag *mtag;
3462 struct pf_fragment_tag *ftag;
3463 int hlen;
3464
3465 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3466
3467 /* trim the old header */
3468 m_adj(pd->m, pd->off);
3469
3470 /* prepend a new one */
3471 M_PREPEND(pd->m, hlen, M_NOWAIT);
3472 if (pd->m == NULL)
3473 return (-1);
3474
3475 switch (pd->naf) {
3476 case AF_INET:
3477 ip4 = mtod(pd->m, struct ip *);
3478 bzero(ip4, hlen);
3479 ip4->ip_v = IPVERSION;
3480 ip4->ip_hl = hlen >> 2;
3481 ip4->ip_tos = pd->tos;
3482 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off));
3483 ip_fillid(ip4);
3484 ip4->ip_ttl = pd->ttl;
3485 ip4->ip_p = pd->proto;
3486 ip4->ip_src = pd->nsaddr.v4;
3487 ip4->ip_dst = pd->ndaddr.v4;
3488 pd->src = (struct pf_addr *)&ip4->ip_src;
3489 pd->dst = (struct pf_addr *)&ip4->ip_dst;
3490 pd->off = sizeof(struct ip);
3491 break;
3492 case AF_INET6:
3493 ip6 = mtod(pd->m, struct ip6_hdr *);
3494 bzero(ip6, hlen);
3495 ip6->ip6_vfc = IPV6_VERSION;
3496 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20);
3497 ip6->ip6_plen = htons(pd->tot_len - pd->off);
3498 ip6->ip6_nxt = pd->proto;
3499 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM)
3500 ip6->ip6_hlim = IPV6_DEFHLIM;
3501 else
3502 ip6->ip6_hlim = pd->ttl;
3503 ip6->ip6_src = pd->nsaddr.v6;
3504 ip6->ip6_dst = pd->ndaddr.v6;
3505 pd->src = (struct pf_addr *)&ip6->ip6_src;
3506 pd->dst = (struct pf_addr *)&ip6->ip6_dst;
3507 pd->off = sizeof(struct ip6_hdr);
3508
3509 /*
3510 * If we're dealing with a reassembled packet we need to adjust
3511 * the header length from the IPv4 header size to IPv6 header
3512 * size.
3513 */
3514 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL);
3515 if (mtag) {
3516 ftag = (struct pf_fragment_tag *)(mtag + 1);
3517 ftag->ft_hdrlen = sizeof(*ip6);
3518 ftag->ft_maxlen -= sizeof(struct ip6_hdr) -
3519 sizeof(struct ip) + sizeof(struct ip6_frag);
3520 }
3521 break;
3522 default:
3523 return (-1);
3524 }
3525
3526 /* recalculate icmp/icmp6 checksums */
3527 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) {
3528 int off;
3529 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) ==
3530 NULL) {
3531 pd->m = NULL;
3532 return (-1);
3533 }
3534 icmp = (struct icmp6_hdr *)(mp->m_data + off);
3535 icmp->icmp6_cksum = 0;
3536 icmp->icmp6_cksum = pd->naf == AF_INET ?
3537 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) :
3538 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen,
3539 ntohs(ip6->ip6_plen));
3540 }
3541 #endif /* INET && INET6 */
3542
3543 return (0);
3544 }
3545
3546 int
pf_change_icmp_af(struct mbuf * m,int off,struct pf_pdesc * pd,struct pf_pdesc * pd2,struct pf_addr * src,struct pf_addr * dst,sa_family_t af,sa_family_t naf)3547 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd,
3548 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst,
3549 sa_family_t af, sa_family_t naf)
3550 {
3551 #if defined(INET) && defined(INET6)
3552 struct mbuf *n = NULL;
3553 struct ip *ip4;
3554 struct ip6_hdr *ip6;
3555 int hlen, olen, mlen;
3556
3557 if (af == naf || (af != AF_INET && af != AF_INET6) ||
3558 (naf != AF_INET && naf != AF_INET6))
3559 return (-1);
3560
3561 /* split the mbuf chain on the inner ip/ip6 header boundary */
3562 if ((n = m_split(m, off, M_NOWAIT)) == NULL)
3563 return (-1);
3564
3565 /* old header */
3566 olen = pd2->off - off;
3567 /* new header */
3568 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
3569
3570 /* trim old header */
3571 m_adj(n, olen);
3572
3573 /* prepend a new one */
3574 M_PREPEND(n, hlen, M_NOWAIT);
3575 if (n == NULL)
3576 return (-1);
3577
3578 /* translate inner ip/ip6 header */
3579 switch (naf) {
3580 case AF_INET:
3581 ip4 = mtod(n, struct ip *);
3582 bzero(ip4, sizeof(*ip4));
3583 ip4->ip_v = IPVERSION;
3584 ip4->ip_hl = sizeof(*ip4) >> 2;
3585 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
3586 ip_fillid(ip4);
3587 ip4->ip_off = htons(IP_DF);
3588 ip4->ip_ttl = pd2->ttl;
3589 if (pd2->proto == IPPROTO_ICMPV6)
3590 ip4->ip_p = IPPROTO_ICMP;
3591 else
3592 ip4->ip_p = pd2->proto;
3593 ip4->ip_src = src->v4;
3594 ip4->ip_dst = dst->v4;
3595 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2);
3596 break;
3597 case AF_INET6:
3598 ip6 = mtod(n, struct ip6_hdr *);
3599 bzero(ip6, sizeof(*ip6));
3600 ip6->ip6_vfc = IPV6_VERSION;
3601 ip6->ip6_plen = htons(pd2->tot_len - olen);
3602 if (pd2->proto == IPPROTO_ICMP)
3603 ip6->ip6_nxt = IPPROTO_ICMPV6;
3604 else
3605 ip6->ip6_nxt = pd2->proto;
3606 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM)
3607 ip6->ip6_hlim = IPV6_DEFHLIM;
3608 else
3609 ip6->ip6_hlim = pd2->ttl;
3610 ip6->ip6_src = src->v6;
3611 ip6->ip6_dst = dst->v6;
3612 break;
3613 }
3614
3615 /* adjust payload offset and total packet length */
3616 pd2->off += hlen - olen;
3617 pd->tot_len += hlen - olen;
3618
3619 /* merge modified inner packet with the original header */
3620 mlen = n->m_pkthdr.len;
3621 m_cat(m, n);
3622 m->m_pkthdr.len += mlen;
3623 #endif /* INET && INET6 */
3624
3625 return (0);
3626 }
3627
3628 #define PTR_IP(field) (offsetof(struct ip, field))
3629 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field))
3630
3631 int
pf_translate_icmp_af(int af,void * arg)3632 pf_translate_icmp_af(int af, void *arg)
3633 {
3634 #if defined(INET) && defined(INET6)
3635 struct icmp *icmp4;
3636 struct icmp6_hdr *icmp6;
3637 u_int32_t mtu;
3638 int32_t ptr = -1;
3639 u_int8_t type;
3640 u_int8_t code;
3641
3642 switch (af) {
3643 case AF_INET:
3644 icmp6 = arg;
3645 type = icmp6->icmp6_type;
3646 code = icmp6->icmp6_code;
3647 mtu = ntohl(icmp6->icmp6_mtu);
3648
3649 switch (type) {
3650 case ICMP6_ECHO_REQUEST:
3651 type = ICMP_ECHO;
3652 break;
3653 case ICMP6_ECHO_REPLY:
3654 type = ICMP_ECHOREPLY;
3655 break;
3656 case ICMP6_DST_UNREACH:
3657 type = ICMP_UNREACH;
3658 switch (code) {
3659 case ICMP6_DST_UNREACH_NOROUTE:
3660 case ICMP6_DST_UNREACH_BEYONDSCOPE:
3661 case ICMP6_DST_UNREACH_ADDR:
3662 code = ICMP_UNREACH_HOST;
3663 break;
3664 case ICMP6_DST_UNREACH_ADMIN:
3665 code = ICMP_UNREACH_HOST_PROHIB;
3666 break;
3667 case ICMP6_DST_UNREACH_NOPORT:
3668 code = ICMP_UNREACH_PORT;
3669 break;
3670 default:
3671 return (-1);
3672 }
3673 break;
3674 case ICMP6_PACKET_TOO_BIG:
3675 type = ICMP_UNREACH;
3676 code = ICMP_UNREACH_NEEDFRAG;
3677 mtu -= 20;
3678 break;
3679 case ICMP6_TIME_EXCEEDED:
3680 type = ICMP_TIMXCEED;
3681 break;
3682 case ICMP6_PARAM_PROB:
3683 switch (code) {
3684 case ICMP6_PARAMPROB_HEADER:
3685 type = ICMP_PARAMPROB;
3686 code = ICMP_PARAMPROB_ERRATPTR;
3687 ptr = ntohl(icmp6->icmp6_pptr);
3688
3689 if (ptr == PTR_IP6(ip6_vfc))
3690 ; /* preserve */
3691 else if (ptr == PTR_IP6(ip6_vfc) + 1)
3692 ptr = PTR_IP(ip_tos);
3693 else if (ptr == PTR_IP6(ip6_plen) ||
3694 ptr == PTR_IP6(ip6_plen) + 1)
3695 ptr = PTR_IP(ip_len);
3696 else if (ptr == PTR_IP6(ip6_nxt))
3697 ptr = PTR_IP(ip_p);
3698 else if (ptr == PTR_IP6(ip6_hlim))
3699 ptr = PTR_IP(ip_ttl);
3700 else if (ptr >= PTR_IP6(ip6_src) &&
3701 ptr < PTR_IP6(ip6_dst))
3702 ptr = PTR_IP(ip_src);
3703 else if (ptr >= PTR_IP6(ip6_dst) &&
3704 ptr < sizeof(struct ip6_hdr))
3705 ptr = PTR_IP(ip_dst);
3706 else {
3707 return (-1);
3708 }
3709 break;
3710 case ICMP6_PARAMPROB_NEXTHEADER:
3711 type = ICMP_UNREACH;
3712 code = ICMP_UNREACH_PROTOCOL;
3713 break;
3714 default:
3715 return (-1);
3716 }
3717 break;
3718 default:
3719 return (-1);
3720 }
3721 if (icmp6->icmp6_type != type) {
3722 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3723 icmp6->icmp6_type, type, 0);
3724 icmp6->icmp6_type = type;
3725 }
3726 if (icmp6->icmp6_code != code) {
3727 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3728 icmp6->icmp6_code, code, 0);
3729 icmp6->icmp6_code = code;
3730 }
3731 if (icmp6->icmp6_mtu != htonl(mtu)) {
3732 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3733 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0);
3734 /* aligns well with a icmpv4 nextmtu */
3735 icmp6->icmp6_mtu = htonl(mtu);
3736 }
3737 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) {
3738 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum,
3739 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0);
3740 /* icmpv4 pptr is a one most significant byte */
3741 icmp6->icmp6_pptr = htonl(ptr << 24);
3742 }
3743 break;
3744 case AF_INET6:
3745 icmp4 = arg;
3746 type = icmp4->icmp_type;
3747 code = icmp4->icmp_code;
3748 mtu = ntohs(icmp4->icmp_nextmtu);
3749
3750 switch (type) {
3751 case ICMP_ECHO:
3752 type = ICMP6_ECHO_REQUEST;
3753 break;
3754 case ICMP_ECHOREPLY:
3755 type = ICMP6_ECHO_REPLY;
3756 break;
3757 case ICMP_UNREACH:
3758 type = ICMP6_DST_UNREACH;
3759 switch (code) {
3760 case ICMP_UNREACH_NET:
3761 case ICMP_UNREACH_HOST:
3762 case ICMP_UNREACH_NET_UNKNOWN:
3763 case ICMP_UNREACH_HOST_UNKNOWN:
3764 case ICMP_UNREACH_ISOLATED:
3765 case ICMP_UNREACH_TOSNET:
3766 case ICMP_UNREACH_TOSHOST:
3767 code = ICMP6_DST_UNREACH_NOROUTE;
3768 break;
3769 case ICMP_UNREACH_PORT:
3770 code = ICMP6_DST_UNREACH_NOPORT;
3771 break;
3772 case ICMP_UNREACH_NET_PROHIB:
3773 case ICMP_UNREACH_HOST_PROHIB:
3774 case ICMP_UNREACH_FILTER_PROHIB:
3775 case ICMP_UNREACH_PRECEDENCE_CUTOFF:
3776 code = ICMP6_DST_UNREACH_ADMIN;
3777 break;
3778 case ICMP_UNREACH_PROTOCOL:
3779 type = ICMP6_PARAM_PROB;
3780 code = ICMP6_PARAMPROB_NEXTHEADER;
3781 ptr = offsetof(struct ip6_hdr, ip6_nxt);
3782 break;
3783 case ICMP_UNREACH_NEEDFRAG:
3784 type = ICMP6_PACKET_TOO_BIG;
3785 code = 0;
3786 mtu += 20;
3787 break;
3788 default:
3789 return (-1);
3790 }
3791 break;
3792 case ICMP_TIMXCEED:
3793 type = ICMP6_TIME_EXCEEDED;
3794 break;
3795 case ICMP_PARAMPROB:
3796 type = ICMP6_PARAM_PROB;
3797 switch (code) {
3798 case ICMP_PARAMPROB_ERRATPTR:
3799 code = ICMP6_PARAMPROB_HEADER;
3800 break;
3801 case ICMP_PARAMPROB_LENGTH:
3802 code = ICMP6_PARAMPROB_HEADER;
3803 break;
3804 default:
3805 return (-1);
3806 }
3807
3808 ptr = icmp4->icmp_pptr;
3809 if (ptr == 0 || ptr == PTR_IP(ip_tos))
3810 ; /* preserve */
3811 else if (ptr == PTR_IP(ip_len) ||
3812 ptr == PTR_IP(ip_len) + 1)
3813 ptr = PTR_IP6(ip6_plen);
3814 else if (ptr == PTR_IP(ip_ttl))
3815 ptr = PTR_IP6(ip6_hlim);
3816 else if (ptr == PTR_IP(ip_p))
3817 ptr = PTR_IP6(ip6_nxt);
3818 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst))
3819 ptr = PTR_IP6(ip6_src);
3820 else if (ptr >= PTR_IP(ip_dst) &&
3821 ptr < sizeof(struct ip))
3822 ptr = PTR_IP6(ip6_dst);
3823 else {
3824 return (-1);
3825 }
3826 break;
3827 default:
3828 return (-1);
3829 }
3830 if (icmp4->icmp_type != type) {
3831 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3832 icmp4->icmp_type, type, 0);
3833 icmp4->icmp_type = type;
3834 }
3835 if (icmp4->icmp_code != code) {
3836 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3837 icmp4->icmp_code, code, 0);
3838 icmp4->icmp_code = code;
3839 }
3840 if (icmp4->icmp_nextmtu != htons(mtu)) {
3841 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3842 icmp4->icmp_nextmtu, htons(mtu), 0);
3843 icmp4->icmp_nextmtu = htons(mtu);
3844 }
3845 if (ptr >= 0 && icmp4->icmp_void != ptr) {
3846 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum,
3847 htons(icmp4->icmp_pptr), htons(ptr), 0);
3848 icmp4->icmp_void = htonl(ptr);
3849 }
3850 break;
3851 }
3852 #endif /* INET && INET6 */
3853
3854 return (0);
3855 }
3856
3857 /*
3858 * Need to modulate the sequence numbers in the TCP SACK option
3859 * (credits to Krzysztof Pfaff for report and patch)
3860 */
3861 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3862 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3863 struct pf_state_peer *dst)
3864 {
3865 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
3866 u_int8_t opts[TCP_MAXOLEN], *opt = opts;
3867 int copyback = 0, i, olen;
3868 struct sackblk sack;
3869
3870 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2)
3871 if (hlen < TCPOLEN_SACKLEN ||
3872 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
3873 return 0;
3874
3875 while (hlen >= TCPOLEN_SACKLEN) {
3876 size_t startoff = opt - opts;
3877 olen = opt[1];
3878 switch (*opt) {
3879 case TCPOPT_EOL: /* FALLTHROUGH */
3880 case TCPOPT_NOP:
3881 opt++;
3882 hlen--;
3883 break;
3884 case TCPOPT_SACK:
3885 if (olen > hlen)
3886 olen = hlen;
3887 if (olen >= TCPOLEN_SACKLEN) {
3888 for (i = 2; i + TCPOLEN_SACK <= olen;
3889 i += TCPOLEN_SACK) {
3890 memcpy(&sack, &opt[i], sizeof(sack));
3891 pf_patch_32_unaligned(pd->m,
3892 &th->th_sum, &sack.start,
3893 htonl(ntohl(sack.start) - dst->seqdiff),
3894 PF_ALGNMNT(startoff),
3895 0);
3896 pf_patch_32_unaligned(pd->m, &th->th_sum,
3897 &sack.end,
3898 htonl(ntohl(sack.end) - dst->seqdiff),
3899 PF_ALGNMNT(startoff),
3900 0);
3901 memcpy(&opt[i], &sack, sizeof(sack));
3902 }
3903 copyback = 1;
3904 }
3905 /* FALLTHROUGH */
3906 default:
3907 if (olen < 2)
3908 olen = 2;
3909 hlen -= olen;
3910 opt += olen;
3911 }
3912 }
3913
3914 if (copyback)
3915 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts);
3916 return (copyback);
3917 }
3918
3919 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)3920 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3921 const struct pf_addr *saddr, const struct pf_addr *daddr,
3922 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3923 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3924 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3925 {
3926 struct mbuf *m;
3927 int len, tlen;
3928 #ifdef INET
3929 struct ip *h = NULL;
3930 #endif /* INET */
3931 #ifdef INET6
3932 struct ip6_hdr *h6 = NULL;
3933 #endif /* INET6 */
3934 struct tcphdr *th;
3935 char *opt;
3936 struct pf_mtag *pf_mtag;
3937
3938 len = 0;
3939 th = NULL;
3940
3941 /* maximum segment size tcp option */
3942 tlen = sizeof(struct tcphdr);
3943 if (mss)
3944 tlen += 4;
3945
3946 switch (af) {
3947 #ifdef INET
3948 case AF_INET:
3949 len = sizeof(struct ip) + tlen;
3950 break;
3951 #endif /* INET */
3952 #ifdef INET6
3953 case AF_INET6:
3954 len = sizeof(struct ip6_hdr) + tlen;
3955 break;
3956 #endif /* INET6 */
3957 }
3958
3959 m = m_gethdr(M_NOWAIT, MT_DATA);
3960 if (m == NULL)
3961 return (NULL);
3962
3963 #ifdef MAC
3964 mac_netinet_firewall_send(m);
3965 #endif
3966 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
3967 m_freem(m);
3968 return (NULL);
3969 }
3970 m->m_flags |= mbuf_flags;
3971 pf_mtag->tag = mtag_tag;
3972 pf_mtag->flags = mtag_flags;
3973
3974 if (rtableid >= 0)
3975 M_SETFIB(m, rtableid);
3976
3977 #ifdef ALTQ
3978 if (r != NULL && r->qid) {
3979 pf_mtag->qid = r->qid;
3980
3981 /* add hints for ecn */
3982 pf_mtag->hdr = mtod(m, struct ip *);
3983 }
3984 #endif /* ALTQ */
3985 m->m_data += max_linkhdr;
3986 m->m_pkthdr.len = m->m_len = len;
3987 /* The rest of the stack assumes a rcvif, so provide one.
3988 * This is a locally generated packet, so .. close enough. */
3989 m->m_pkthdr.rcvif = V_loif;
3990 bzero(m->m_data, len);
3991 switch (af) {
3992 #ifdef INET
3993 case AF_INET:
3994 h = mtod(m, struct ip *);
3995
3996 /* IP header fields included in the TCP checksum */
3997 h->ip_p = IPPROTO_TCP;
3998 h->ip_len = htons(tlen);
3999 h->ip_src.s_addr = saddr->v4.s_addr;
4000 h->ip_dst.s_addr = daddr->v4.s_addr;
4001
4002 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
4003 break;
4004 #endif /* INET */
4005 #ifdef INET6
4006 case AF_INET6:
4007 h6 = mtod(m, struct ip6_hdr *);
4008
4009 /* IP header fields included in the TCP checksum */
4010 h6->ip6_nxt = IPPROTO_TCP;
4011 h6->ip6_plen = htons(tlen);
4012 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
4013 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
4014
4015 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
4016 break;
4017 #endif /* INET6 */
4018 }
4019
4020 /* TCP header */
4021 th->th_sport = sport;
4022 th->th_dport = dport;
4023 th->th_seq = htonl(seq);
4024 th->th_ack = htonl(ack);
4025 th->th_off = tlen >> 2;
4026 tcp_set_flags(th, tcp_flags);
4027 th->th_win = htons(win);
4028
4029 if (mss) {
4030 opt = (char *)(th + 1);
4031 opt[0] = TCPOPT_MAXSEG;
4032 opt[1] = 4;
4033 HTONS(mss);
4034 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
4035 }
4036
4037 switch (af) {
4038 #ifdef INET
4039 case AF_INET:
4040 /* TCP checksum */
4041 th->th_sum = in_cksum(m, len);
4042
4043 /* Finish the IP header */
4044 h->ip_v = 4;
4045 h->ip_hl = sizeof(*h) >> 2;
4046 h->ip_tos = IPTOS_LOWDELAY;
4047 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
4048 h->ip_len = htons(len);
4049 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4050 h->ip_sum = 0;
4051 break;
4052 #endif /* INET */
4053 #ifdef INET6
4054 case AF_INET6:
4055 /* TCP checksum */
4056 th->th_sum = in6_cksum(m, IPPROTO_TCP,
4057 sizeof(struct ip6_hdr), tlen);
4058
4059 h6->ip6_vfc |= IPV6_VERSION;
4060 h6->ip6_hlim = IPV6_DEFHLIM;
4061 break;
4062 #endif /* INET6 */
4063 }
4064
4065 return (m);
4066 }
4067
4068 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)4069 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
4070 uint8_t ttl, int rtableid)
4071 {
4072 struct mbuf *m;
4073 #ifdef INET
4074 struct ip *h = NULL;
4075 #endif /* INET */
4076 #ifdef INET6
4077 struct ip6_hdr *h6 = NULL;
4078 #endif /* INET6 */
4079 struct sctphdr *hdr;
4080 struct sctp_chunkhdr *chunk;
4081 struct pf_send_entry *pfse;
4082 int off = 0;
4083
4084 MPASS(af == pd->af);
4085
4086 m = m_gethdr(M_NOWAIT, MT_DATA);
4087 if (m == NULL)
4088 return;
4089
4090 m->m_data += max_linkhdr;
4091 m->m_flags |= M_SKIP_FIREWALL;
4092 /* The rest of the stack assumes a rcvif, so provide one.
4093 * This is a locally generated packet, so .. close enough. */
4094 m->m_pkthdr.rcvif = V_loif;
4095
4096 /* IPv4|6 header */
4097 switch (af) {
4098 #ifdef INET
4099 case AF_INET:
4100 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
4101
4102 h = mtod(m, struct ip *);
4103
4104 /* IP header fields included in the TCP checksum */
4105
4106 h->ip_p = IPPROTO_SCTP;
4107 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
4108 h->ip_ttl = ttl ? ttl : V_ip_defttl;
4109 h->ip_src = pd->dst->v4;
4110 h->ip_dst = pd->src->v4;
4111
4112 off += sizeof(struct ip);
4113 break;
4114 #endif /* INET */
4115 #ifdef INET6
4116 case AF_INET6:
4117 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
4118
4119 h6 = mtod(m, struct ip6_hdr *);
4120
4121 /* IP header fields included in the TCP checksum */
4122 h6->ip6_vfc |= IPV6_VERSION;
4123 h6->ip6_nxt = IPPROTO_SCTP;
4124 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
4125 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
4126 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
4127 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
4128
4129 off += sizeof(struct ip6_hdr);
4130 break;
4131 #endif /* INET6 */
4132 }
4133
4134 /* SCTP header */
4135 hdr = mtodo(m, off);
4136
4137 hdr->src_port = pd->hdr.sctp.dest_port;
4138 hdr->dest_port = pd->hdr.sctp.src_port;
4139 hdr->v_tag = pd->sctp_initiate_tag;
4140 hdr->checksum = 0;
4141
4142 /* Abort chunk. */
4143 off += sizeof(struct sctphdr);
4144 chunk = mtodo(m, off);
4145
4146 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
4147 chunk->chunk_length = htons(sizeof(*chunk));
4148
4149 /* SCTP checksum */
4150 off += sizeof(*chunk);
4151 m->m_pkthdr.len = m->m_len = off;
4152
4153 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
4154
4155 if (rtableid >= 0)
4156 M_SETFIB(m, rtableid);
4157
4158 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4159 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4160 if (pfse == NULL) {
4161 m_freem(m);
4162 return;
4163 }
4164
4165 switch (af) {
4166 #ifdef INET
4167 case AF_INET:
4168 pfse->pfse_type = PFSE_IP;
4169 break;
4170 #endif /* INET */
4171 #ifdef INET6
4172 case AF_INET6:
4173 pfse->pfse_type = PFSE_IP6;
4174 break;
4175 #endif /* INET6 */
4176 }
4177
4178 pfse->pfse_m = m;
4179 pf_send(pfse);
4180 }
4181
4182 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)4183 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
4184 const struct pf_addr *saddr, const struct pf_addr *daddr,
4185 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
4186 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
4187 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
4188 {
4189 struct pf_send_entry *pfse;
4190 struct mbuf *m;
4191
4192 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
4193 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid);
4194 if (m == NULL)
4195 return;
4196
4197 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4198 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4199 if (pfse == NULL) {
4200 m_freem(m);
4201 return;
4202 }
4203
4204 switch (af) {
4205 #ifdef INET
4206 case AF_INET:
4207 pfse->pfse_type = PFSE_IP;
4208 break;
4209 #endif /* INET */
4210 #ifdef INET6
4211 case AF_INET6:
4212 pfse->pfse_type = PFSE_IP6;
4213 break;
4214 #endif /* INET6 */
4215 }
4216
4217 pfse->pfse_m = m;
4218 pf_send(pfse);
4219 }
4220
4221 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct pf_state_key * sk,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)4222 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
4223 struct pf_state_key *sk, struct tcphdr *th,
4224 u_int16_t bproto_sum, u_int16_t bip_sum,
4225 u_short *reason, int rtableid)
4226 {
4227 struct pf_addr * const saddr = pd->src;
4228 struct pf_addr * const daddr = pd->dst;
4229
4230 /* undo NAT changes, if they have taken place */
4231 if (nr != NULL) {
4232 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af);
4233 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af);
4234 if (pd->sport)
4235 *pd->sport = sk->port[pd->sidx];
4236 if (pd->dport)
4237 *pd->dport = sk->port[pd->didx];
4238 if (pd->ip_sum)
4239 *pd->ip_sum = bip_sum;
4240 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
4241 }
4242 if (pd->proto == IPPROTO_TCP &&
4243 ((r->rule_flag & PFRULE_RETURNRST) ||
4244 (r->rule_flag & PFRULE_RETURN)) &&
4245 !(tcp_get_flags(th) & TH_RST)) {
4246 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
4247
4248 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
4249 IPPROTO_TCP, pd->af))
4250 REASON_SET(reason, PFRES_PROTCKSUM);
4251 else {
4252 if (tcp_get_flags(th) & TH_SYN)
4253 ack++;
4254 if (tcp_get_flags(th) & TH_FIN)
4255 ack++;
4256 pf_send_tcp(r, pd->af, pd->dst,
4257 pd->src, th->th_dport, th->th_sport,
4258 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
4259 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
4260 }
4261 } else if (pd->proto == IPPROTO_SCTP &&
4262 (r->rule_flag & PFRULE_RETURN)) {
4263 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
4264 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
4265 r->return_icmp)
4266 pf_send_icmp(pd->m, r->return_icmp >> 8,
4267 r->return_icmp & 255, pd->af, r, rtableid);
4268 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
4269 r->return_icmp6)
4270 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
4271 r->return_icmp6 & 255, pd->af, r, rtableid);
4272 }
4273
4274 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)4275 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
4276 {
4277 struct m_tag *mtag;
4278 u_int8_t mpcp;
4279
4280 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
4281 if (mtag == NULL)
4282 return (0);
4283
4284 if (prio == PF_PRIO_ZERO)
4285 prio = 0;
4286
4287 mpcp = *(uint8_t *)(mtag + 1);
4288
4289 return (mpcp == prio);
4290 }
4291
4292 static int
pf_icmp_to_bandlim(uint8_t type)4293 pf_icmp_to_bandlim(uint8_t type)
4294 {
4295 switch (type) {
4296 case ICMP_ECHO:
4297 case ICMP_ECHOREPLY:
4298 return (BANDLIM_ICMP_ECHO);
4299 case ICMP_TSTAMP:
4300 case ICMP_TSTAMPREPLY:
4301 return (BANDLIM_ICMP_TSTAMP);
4302 case ICMP_UNREACH:
4303 default:
4304 return (BANDLIM_ICMP_UNREACH);
4305 }
4306 }
4307
4308 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,sa_family_t af,struct pf_krule * r,int rtableid)4309 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
4310 struct pf_krule *r, int rtableid)
4311 {
4312 struct pf_send_entry *pfse;
4313 struct mbuf *m0;
4314 struct pf_mtag *pf_mtag;
4315
4316 /* ICMP packet rate limitation. */
4317 switch (af) {
4318 #ifdef INET6
4319 case AF_INET6:
4320 if (icmp6_ratelimit(NULL, type, code))
4321 return;
4322 break;
4323 #endif
4324 #ifdef INET
4325 case AF_INET:
4326 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
4327 return;
4328 break;
4329 #endif
4330 }
4331
4332 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
4333 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
4334 if (pfse == NULL)
4335 return;
4336
4337 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
4338 free(pfse, M_PFTEMP);
4339 return;
4340 }
4341
4342 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
4343 free(pfse, M_PFTEMP);
4344 return;
4345 }
4346 /* XXX: revisit */
4347 m0->m_flags |= M_SKIP_FIREWALL;
4348
4349 if (rtableid >= 0)
4350 M_SETFIB(m0, rtableid);
4351
4352 #ifdef ALTQ
4353 if (r->qid) {
4354 pf_mtag->qid = r->qid;
4355 /* add hints for ecn */
4356 pf_mtag->hdr = mtod(m0, struct ip *);
4357 }
4358 #endif /* ALTQ */
4359
4360 switch (af) {
4361 #ifdef INET
4362 case AF_INET:
4363 pfse->pfse_type = PFSE_ICMP;
4364 break;
4365 #endif /* INET */
4366 #ifdef INET6
4367 case AF_INET6:
4368 pfse->pfse_type = PFSE_ICMP6;
4369 break;
4370 #endif /* INET6 */
4371 }
4372 pfse->pfse_m = m0;
4373 pfse->icmpopts.type = type;
4374 pfse->icmpopts.code = code;
4375 pf_send(pfse);
4376 }
4377
4378 /*
4379 * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
4380 * If n is 0, they match if they are equal. If n is != 0, they match if they
4381 * are different.
4382 */
4383 int
pf_match_addr(u_int8_t n,const struct pf_addr * a,const struct pf_addr * m,const struct pf_addr * b,sa_family_t af)4384 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m,
4385 const struct pf_addr *b, sa_family_t af)
4386 {
4387 int match = 0;
4388
4389 switch (af) {
4390 #ifdef INET
4391 case AF_INET:
4392 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
4393 match++;
4394 break;
4395 #endif /* INET */
4396 #ifdef INET6
4397 case AF_INET6:
4398 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
4399 match++;
4400 break;
4401 #endif /* INET6 */
4402 }
4403 if (match) {
4404 if (n)
4405 return (0);
4406 else
4407 return (1);
4408 } else {
4409 if (n)
4410 return (1);
4411 else
4412 return (0);
4413 }
4414 }
4415
4416 /*
4417 * Return 1 if b <= a <= e, otherwise return 0.
4418 */
4419 int
pf_match_addr_range(const struct pf_addr * b,const struct pf_addr * e,const struct pf_addr * a,sa_family_t af)4420 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e,
4421 const struct pf_addr *a, sa_family_t af)
4422 {
4423 switch (af) {
4424 #ifdef INET
4425 case AF_INET:
4426 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
4427 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
4428 return (0);
4429 break;
4430 #endif /* INET */
4431 #ifdef INET6
4432 case AF_INET6: {
4433 int i;
4434
4435 /* check a >= b */
4436 for (i = 0; i < 4; ++i)
4437 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
4438 break;
4439 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
4440 return (0);
4441 /* check a <= e */
4442 for (i = 0; i < 4; ++i)
4443 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
4444 break;
4445 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
4446 return (0);
4447 break;
4448 }
4449 #endif /* INET6 */
4450 }
4451 return (1);
4452 }
4453
4454 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)4455 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
4456 {
4457 switch (op) {
4458 case PF_OP_IRG:
4459 return ((p > a1) && (p < a2));
4460 case PF_OP_XRG:
4461 return ((p < a1) || (p > a2));
4462 case PF_OP_RRG:
4463 return ((p >= a1) && (p <= a2));
4464 case PF_OP_EQ:
4465 return (p == a1);
4466 case PF_OP_NE:
4467 return (p != a1);
4468 case PF_OP_LT:
4469 return (p < a1);
4470 case PF_OP_LE:
4471 return (p <= a1);
4472 case PF_OP_GT:
4473 return (p > a1);
4474 case PF_OP_GE:
4475 return (p >= a1);
4476 }
4477 return (0); /* never reached */
4478 }
4479
4480 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)4481 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
4482 {
4483 NTOHS(a1);
4484 NTOHS(a2);
4485 NTOHS(p);
4486 return (pf_match(op, a1, a2, p));
4487 }
4488
4489 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)4490 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
4491 {
4492 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4493 return (0);
4494 return (pf_match(op, a1, a2, u));
4495 }
4496
4497 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)4498 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
4499 {
4500 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
4501 return (0);
4502 return (pf_match(op, a1, a2, g));
4503 }
4504
4505 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)4506 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
4507 {
4508 if (*tag == -1)
4509 *tag = mtag;
4510
4511 return ((!r->match_tag_not && r->match_tag == *tag) ||
4512 (r->match_tag_not && r->match_tag != *tag));
4513 }
4514
4515 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)4516 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
4517 {
4518 struct ifnet *ifp = m->m_pkthdr.rcvif;
4519 struct pfi_kkif *kif;
4520
4521 if (ifp == NULL)
4522 return (0);
4523
4524 kif = (struct pfi_kkif *)ifp->if_pf_kif;
4525
4526 if (kif == NULL) {
4527 DPFPRINTF(PF_DEBUG_URGENT,
4528 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr,
4529 r->rcv_ifname));
4530 return (0);
4531 }
4532
4533 return (pfi_kkif_match(r->rcv_kif, kif));
4534 }
4535
4536 int
pf_tag_packet(struct pf_pdesc * pd,int tag)4537 pf_tag_packet(struct pf_pdesc *pd, int tag)
4538 {
4539
4540 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4541
4542 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4543 return (ENOMEM);
4544
4545 pd->pf_mtag->tag = tag;
4546
4547 return (0);
4548 }
4549
4550 #define PF_ANCHOR_STACKSIZE 32
4551 struct pf_kanchor_stackframe {
4552 struct pf_kruleset *rs;
4553 struct pf_krule *r; /* XXX: + match bit */
4554 struct pf_kanchor *child;
4555 };
4556
4557 /*
4558 * XXX: We rely on malloc(9) returning pointer aligned addresses.
4559 */
4560 #define PF_ANCHORSTACK_MATCH 0x00000001
4561 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4562
4563 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4564 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4565 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4566 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4567 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4568 } while (0)
4569
4570 void
pf_step_into_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4571 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4572 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4573 int *match)
4574 {
4575 struct pf_kanchor_stackframe *f;
4576
4577 PF_RULES_RASSERT();
4578
4579 if (match)
4580 *match = 0;
4581 if (*depth >= PF_ANCHOR_STACKSIZE) {
4582 printf("%s: anchor stack overflow on %s\n",
4583 __func__, (*r)->anchor->name);
4584 *r = TAILQ_NEXT(*r, entries);
4585 return;
4586 } else if (*depth == 0 && a != NULL)
4587 *a = *r;
4588 f = stack + (*depth)++;
4589 f->rs = *rs;
4590 f->r = *r;
4591 if ((*r)->anchor_wildcard) {
4592 struct pf_kanchor_node *parent = &(*r)->anchor->children;
4593
4594 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
4595 *r = NULL;
4596 return;
4597 }
4598 *rs = &f->child->ruleset;
4599 } else {
4600 f->child = NULL;
4601 *rs = &(*r)->anchor->ruleset;
4602 }
4603 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4604 }
4605
4606 int
pf_step_out_of_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4607 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4608 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4609 int *match)
4610 {
4611 struct pf_kanchor_stackframe *f;
4612 struct pf_krule *fr;
4613 int quick = 0;
4614
4615 PF_RULES_RASSERT();
4616
4617 do {
4618 if (*depth <= 0)
4619 break;
4620 f = stack + *depth - 1;
4621 fr = PF_ANCHOR_RULE(f);
4622 if (f->child != NULL) {
4623 /*
4624 * This block traverses through
4625 * a wildcard anchor.
4626 */
4627 if (match != NULL && *match) {
4628 /*
4629 * If any of "*" matched, then
4630 * "foo/ *" matched, mark frame
4631 * appropriately.
4632 */
4633 PF_ANCHOR_SET_MATCH(f);
4634 *match = 0;
4635 }
4636 f->child = RB_NEXT(pf_kanchor_node,
4637 &fr->anchor->children, f->child);
4638 if (f->child != NULL) {
4639 *rs = &f->child->ruleset;
4640 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4641 if (*r == NULL)
4642 continue;
4643 else
4644 break;
4645 }
4646 }
4647 (*depth)--;
4648 if (*depth == 0 && a != NULL)
4649 *a = NULL;
4650 *rs = f->rs;
4651 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
4652 quick = fr->quick;
4653 *r = TAILQ_NEXT(fr, entries);
4654 } while (*r == NULL);
4655
4656 return (quick);
4657 }
4658
4659 struct pf_keth_anchor_stackframe {
4660 struct pf_keth_ruleset *rs;
4661 struct pf_keth_rule *r; /* XXX: + match bit */
4662 struct pf_keth_anchor *child;
4663 };
4664
4665 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4666 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4667 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4668 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4669 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4670 } while (0)
4671
4672 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4673 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4674 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4675 struct pf_keth_rule **a, int *match)
4676 {
4677 struct pf_keth_anchor_stackframe *f;
4678
4679 NET_EPOCH_ASSERT();
4680
4681 if (match)
4682 *match = 0;
4683 if (*depth >= PF_ANCHOR_STACKSIZE) {
4684 printf("%s: anchor stack overflow on %s\n",
4685 __func__, (*r)->anchor->name);
4686 *r = TAILQ_NEXT(*r, entries);
4687 return;
4688 } else if (*depth == 0 && a != NULL)
4689 *a = *r;
4690 f = stack + (*depth)++;
4691 f->rs = *rs;
4692 f->r = *r;
4693 if ((*r)->anchor_wildcard) {
4694 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4695
4696 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4697 *r = NULL;
4698 return;
4699 }
4700 *rs = &f->child->ruleset;
4701 } else {
4702 f->child = NULL;
4703 *rs = &(*r)->anchor->ruleset;
4704 }
4705 *r = TAILQ_FIRST((*rs)->active.rules);
4706 }
4707
4708 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4709 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4710 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4711 struct pf_keth_rule **a, int *match)
4712 {
4713 struct pf_keth_anchor_stackframe *f;
4714 struct pf_keth_rule *fr;
4715 int quick = 0;
4716
4717 NET_EPOCH_ASSERT();
4718
4719 do {
4720 if (*depth <= 0)
4721 break;
4722 f = stack + *depth - 1;
4723 fr = PF_ETH_ANCHOR_RULE(f);
4724 if (f->child != NULL) {
4725 /*
4726 * This block traverses through
4727 * a wildcard anchor.
4728 */
4729 if (match != NULL && *match) {
4730 /*
4731 * If any of "*" matched, then
4732 * "foo/ *" matched, mark frame
4733 * appropriately.
4734 */
4735 PF_ETH_ANCHOR_SET_MATCH(f);
4736 *match = 0;
4737 }
4738 f->child = RB_NEXT(pf_keth_anchor_node,
4739 &fr->anchor->children, f->child);
4740 if (f->child != NULL) {
4741 *rs = &f->child->ruleset;
4742 *r = TAILQ_FIRST((*rs)->active.rules);
4743 if (*r == NULL)
4744 continue;
4745 else
4746 break;
4747 }
4748 }
4749 (*depth)--;
4750 if (*depth == 0 && a != NULL)
4751 *a = NULL;
4752 *rs = f->rs;
4753 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4754 quick = fr->quick;
4755 *r = TAILQ_NEXT(fr, entries);
4756 } while (*r == NULL);
4757
4758 return (quick);
4759 }
4760
4761 #ifdef INET6
4762 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4763 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4764 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4765 {
4766 switch (af) {
4767 #ifdef INET
4768 case AF_INET:
4769 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4770 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4771 break;
4772 #endif /* INET */
4773 case AF_INET6:
4774 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4775 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4776 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4777 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4778 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4779 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4780 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4781 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4782 break;
4783 }
4784 }
4785
4786 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4787 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4788 {
4789 switch (af) {
4790 #ifdef INET
4791 case AF_INET:
4792 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4793 break;
4794 #endif /* INET */
4795 case AF_INET6:
4796 if (addr->addr32[3] == 0xffffffff) {
4797 addr->addr32[3] = 0;
4798 if (addr->addr32[2] == 0xffffffff) {
4799 addr->addr32[2] = 0;
4800 if (addr->addr32[1] == 0xffffffff) {
4801 addr->addr32[1] = 0;
4802 addr->addr32[0] =
4803 htonl(ntohl(addr->addr32[0]) + 1);
4804 } else
4805 addr->addr32[1] =
4806 htonl(ntohl(addr->addr32[1]) + 1);
4807 } else
4808 addr->addr32[2] =
4809 htonl(ntohl(addr->addr32[2]) + 1);
4810 } else
4811 addr->addr32[3] =
4812 htonl(ntohl(addr->addr32[3]) + 1);
4813 break;
4814 }
4815 }
4816 #endif /* INET6 */
4817
4818 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4819 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4820 {
4821 /*
4822 * Modern rules use the same flags in rules as they do in states.
4823 */
4824 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4825 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4826
4827 /*
4828 * Old-style scrub rules have different flags which need to be translated.
4829 */
4830 if (r->rule_flag & PFRULE_RANDOMID)
4831 a->flags |= PFSTATE_RANDOMID;
4832 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4833 a->flags |= PFSTATE_SETTOS;
4834 a->set_tos = r->set_tos;
4835 }
4836
4837 if (r->qid)
4838 a->qid = r->qid;
4839 if (r->pqid)
4840 a->pqid = r->pqid;
4841 if (r->rtableid >= 0)
4842 a->rtableid = r->rtableid;
4843 a->log |= r->log;
4844 if (r->min_ttl)
4845 a->min_ttl = r->min_ttl;
4846 if (r->max_mss)
4847 a->max_mss = r->max_mss;
4848 if (r->dnpipe)
4849 a->dnpipe = r->dnpipe;
4850 if (r->dnrpipe)
4851 a->dnrpipe = r->dnrpipe;
4852 if (r->dnpipe || r->dnrpipe) {
4853 if (r->free_flags & PFRULE_DN_IS_PIPE)
4854 a->flags |= PFSTATE_DN_IS_PIPE;
4855 else
4856 a->flags &= ~PFSTATE_DN_IS_PIPE;
4857 }
4858 if (r->scrub_flags & PFSTATE_SETPRIO) {
4859 a->set_prio[0] = r->set_prio[0];
4860 a->set_prio[1] = r->set_prio[1];
4861 }
4862 }
4863
4864 int
pf_socket_lookup(struct pf_pdesc * pd)4865 pf_socket_lookup(struct pf_pdesc *pd)
4866 {
4867 struct pf_addr *saddr, *daddr;
4868 u_int16_t sport, dport;
4869 struct inpcbinfo *pi;
4870 struct inpcb *inp;
4871
4872 pd->lookup.uid = UID_MAX;
4873 pd->lookup.gid = GID_MAX;
4874
4875 switch (pd->proto) {
4876 case IPPROTO_TCP:
4877 sport = pd->hdr.tcp.th_sport;
4878 dport = pd->hdr.tcp.th_dport;
4879 pi = &V_tcbinfo;
4880 break;
4881 case IPPROTO_UDP:
4882 sport = pd->hdr.udp.uh_sport;
4883 dport = pd->hdr.udp.uh_dport;
4884 pi = &V_udbinfo;
4885 break;
4886 default:
4887 return (-1);
4888 }
4889 if (pd->dir == PF_IN) {
4890 saddr = pd->src;
4891 daddr = pd->dst;
4892 } else {
4893 u_int16_t p;
4894
4895 p = sport;
4896 sport = dport;
4897 dport = p;
4898 saddr = pd->dst;
4899 daddr = pd->src;
4900 }
4901 switch (pd->af) {
4902 #ifdef INET
4903 case AF_INET:
4904 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4905 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4906 if (inp == NULL) {
4907 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4908 daddr->v4, dport, INPLOOKUP_WILDCARD |
4909 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4910 if (inp == NULL)
4911 return (-1);
4912 }
4913 break;
4914 #endif /* INET */
4915 #ifdef INET6
4916 case AF_INET6:
4917 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4918 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4919 if (inp == NULL) {
4920 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4921 &daddr->v6, dport, INPLOOKUP_WILDCARD |
4922 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4923 if (inp == NULL)
4924 return (-1);
4925 }
4926 break;
4927 #endif /* INET6 */
4928 }
4929 INP_RLOCK_ASSERT(inp);
4930 pd->lookup.uid = inp->inp_cred->cr_uid;
4931 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4932 INP_RUNLOCK(inp);
4933
4934 return (1);
4935 }
4936
4937 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)4938 pf_get_wscale(struct pf_pdesc *pd)
4939 {
4940 struct tcphdr *th = &pd->hdr.tcp;
4941 int hlen;
4942 u_int8_t hdr[60];
4943 u_int8_t *opt, optlen;
4944 u_int8_t wscale = 0;
4945
4946 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4947 if (hlen <= sizeof(struct tcphdr))
4948 return (0);
4949 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4950 return (0);
4951 opt = hdr + sizeof(struct tcphdr);
4952 hlen -= sizeof(struct tcphdr);
4953 while (hlen >= 3) {
4954 switch (*opt) {
4955 case TCPOPT_EOL:
4956 case TCPOPT_NOP:
4957 ++opt;
4958 --hlen;
4959 break;
4960 case TCPOPT_WINDOW:
4961 wscale = opt[2];
4962 if (wscale > TCP_MAX_WINSHIFT)
4963 wscale = TCP_MAX_WINSHIFT;
4964 wscale |= PF_WSCALE_FLAG;
4965 /* FALLTHROUGH */
4966 default:
4967 optlen = opt[1];
4968 if (optlen < 2)
4969 optlen = 2;
4970 hlen -= optlen;
4971 opt += optlen;
4972 break;
4973 }
4974 }
4975 return (wscale);
4976 }
4977
4978 u_int16_t
pf_get_mss(struct pf_pdesc * pd)4979 pf_get_mss(struct pf_pdesc *pd)
4980 {
4981 struct tcphdr *th = &pd->hdr.tcp;
4982 int hlen;
4983 u_int8_t hdr[60];
4984 u_int8_t *opt, optlen;
4985 u_int16_t mss = V_tcp_mssdflt;
4986
4987 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4988 if (hlen <= sizeof(struct tcphdr))
4989 return (0);
4990 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4991 return (0);
4992 opt = hdr + sizeof(struct tcphdr);
4993 hlen -= sizeof(struct tcphdr);
4994 while (hlen >= TCPOLEN_MAXSEG) {
4995 switch (*opt) {
4996 case TCPOPT_EOL:
4997 case TCPOPT_NOP:
4998 ++opt;
4999 --hlen;
5000 break;
5001 case TCPOPT_MAXSEG:
5002 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
5003 NTOHS(mss);
5004 /* FALLTHROUGH */
5005 default:
5006 optlen = opt[1];
5007 if (optlen < 2)
5008 optlen = 2;
5009 hlen -= optlen;
5010 opt += optlen;
5011 break;
5012 }
5013 }
5014 return (mss);
5015 }
5016
5017 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)5018 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
5019 {
5020 struct nhop_object *nh;
5021 #ifdef INET6
5022 struct in6_addr dst6;
5023 uint32_t scopeid;
5024 #endif /* INET6 */
5025 int hlen = 0;
5026 uint16_t mss = 0;
5027
5028 NET_EPOCH_ASSERT();
5029
5030 switch (af) {
5031 #ifdef INET
5032 case AF_INET:
5033 hlen = sizeof(struct ip);
5034 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
5035 if (nh != NULL)
5036 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5037 break;
5038 #endif /* INET */
5039 #ifdef INET6
5040 case AF_INET6:
5041 hlen = sizeof(struct ip6_hdr);
5042 in6_splitscope(&addr->v6, &dst6, &scopeid);
5043 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
5044 if (nh != NULL)
5045 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
5046 break;
5047 #endif /* INET6 */
5048 }
5049
5050 mss = max(V_tcp_mssdflt, mss);
5051 mss = min(mss, offer);
5052 mss = max(mss, 64); /* sanity - at least max opt space */
5053 return (mss);
5054 }
5055
5056 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)5057 pf_tcp_iss(struct pf_pdesc *pd)
5058 {
5059 MD5_CTX ctx;
5060 u_int32_t digest[4];
5061
5062 if (V_pf_tcp_secret_init == 0) {
5063 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
5064 MD5Init(&V_pf_tcp_secret_ctx);
5065 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
5066 sizeof(V_pf_tcp_secret));
5067 V_pf_tcp_secret_init = 1;
5068 }
5069
5070 ctx = V_pf_tcp_secret_ctx;
5071
5072 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
5073 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
5074 switch (pd->af) {
5075 case AF_INET6:
5076 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
5077 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
5078 break;
5079 case AF_INET:
5080 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
5081 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
5082 break;
5083 }
5084 MD5Final((u_char *)digest, &ctx);
5085 V_pf_tcp_iss_off += 4096;
5086 #define ISN_RANDOM_INCREMENT (4096 - 1)
5087 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
5088 V_pf_tcp_iss_off);
5089 #undef ISN_RANDOM_INCREMENT
5090 }
5091
5092 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)5093 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
5094 {
5095 bool match = true;
5096
5097 /* Always matches if not set */
5098 if (! r->isset)
5099 return (!r->neg);
5100
5101 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
5102 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
5103 match = false;
5104 break;
5105 }
5106 }
5107
5108 return (match ^ r->neg);
5109 }
5110
5111 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)5112 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
5113 {
5114 if (*tag == -1)
5115 *tag = mtag;
5116
5117 return ((!r->match_tag_not && r->match_tag == *tag) ||
5118 (r->match_tag_not && r->match_tag != *tag));
5119 }
5120
5121 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)5122 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
5123 {
5124 /* If we don't have the interface drop the packet. */
5125 if (ifp == NULL) {
5126 m_freem(m);
5127 return;
5128 }
5129
5130 switch (ifp->if_type) {
5131 case IFT_ETHER:
5132 case IFT_XETHER:
5133 case IFT_L2VLAN:
5134 case IFT_BRIDGE:
5135 case IFT_IEEE8023ADLAG:
5136 break;
5137 default:
5138 m_freem(m);
5139 return;
5140 }
5141
5142 ifp->if_transmit(ifp, m);
5143 }
5144
5145 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)5146 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
5147 {
5148 #ifdef INET
5149 struct ip ip;
5150 #endif
5151 #ifdef INET6
5152 struct ip6_hdr ip6;
5153 #endif
5154 struct mbuf *m = *m0;
5155 struct ether_header *e;
5156 struct pf_keth_rule *r, *rm, *a = NULL;
5157 struct pf_keth_ruleset *ruleset = NULL;
5158 struct pf_mtag *mtag;
5159 struct pf_keth_ruleq *rules;
5160 struct pf_addr *src = NULL, *dst = NULL;
5161 struct pfi_kkif *bridge_to;
5162 sa_family_t af = 0;
5163 uint16_t proto;
5164 int asd = 0, match = 0;
5165 int tag = -1;
5166 uint8_t action;
5167 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
5168
5169 MPASS(kif->pfik_ifp->if_vnet == curvnet);
5170 NET_EPOCH_ASSERT();
5171
5172 PF_RULES_RLOCK_TRACKER;
5173
5174 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
5175
5176 mtag = pf_find_mtag(m);
5177 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
5178 /* Dummynet re-injects packets after they've
5179 * completed their delay. We've already
5180 * processed them, so pass unconditionally. */
5181
5182 /* But only once. We may see the packet multiple times (e.g.
5183 * PFIL_IN/PFIL_OUT). */
5184 pf_dummynet_flag_remove(m, mtag);
5185
5186 return (PF_PASS);
5187 }
5188
5189 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
5190 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
5191 DPFPRINTF(PF_DEBUG_URGENT,
5192 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)"
5193 ", pullup failed\n"));
5194 return (PF_DROP);
5195 }
5196 e = mtod(m, struct ether_header *);
5197 proto = ntohs(e->ether_type);
5198
5199 switch (proto) {
5200 #ifdef INET
5201 case ETHERTYPE_IP: {
5202 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5203 sizeof(ip)))
5204 return (PF_DROP);
5205
5206 af = AF_INET;
5207 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
5208 (caddr_t)&ip);
5209 src = (struct pf_addr *)&ip.ip_src;
5210 dst = (struct pf_addr *)&ip.ip_dst;
5211 break;
5212 }
5213 #endif /* INET */
5214 #ifdef INET6
5215 case ETHERTYPE_IPV6: {
5216 if (m_length(m, NULL) < (sizeof(struct ether_header) +
5217 sizeof(ip6)))
5218 return (PF_DROP);
5219
5220 af = AF_INET6;
5221 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
5222 (caddr_t)&ip6);
5223 src = (struct pf_addr *)&ip6.ip6_src;
5224 dst = (struct pf_addr *)&ip6.ip6_dst;
5225 break;
5226 }
5227 #endif /* INET6 */
5228 }
5229
5230 PF_RULES_RLOCK();
5231
5232 ruleset = V_pf_keth;
5233 rules = atomic_load_ptr(&ruleset->active.rules);
5234 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) {
5235 counter_u64_add(r->evaluations, 1);
5236 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
5237
5238 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
5239 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5240 "kif");
5241 r = r->skip[PFE_SKIP_IFP].ptr;
5242 }
5243 else if (r->direction && r->direction != dir) {
5244 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5245 "dir");
5246 r = r->skip[PFE_SKIP_DIR].ptr;
5247 }
5248 else if (r->proto && r->proto != proto) {
5249 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5250 "proto");
5251 r = r->skip[PFE_SKIP_PROTO].ptr;
5252 }
5253 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
5254 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5255 "src");
5256 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
5257 }
5258 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
5259 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5260 "dst");
5261 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
5262 }
5263 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
5264 r->ipsrc.neg, kif, M_GETFIB(m))) {
5265 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5266 "ip_src");
5267 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
5268 }
5269 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
5270 r->ipdst.neg, kif, M_GETFIB(m))) {
5271 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5272 "ip_dst");
5273 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
5274 }
5275 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
5276 mtag ? mtag->tag : 0)) {
5277 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
5278 "match_tag");
5279 r = TAILQ_NEXT(r, entries);
5280 }
5281 else {
5282 if (r->tag)
5283 tag = r->tag;
5284 if (r->anchor == NULL) {
5285 /* Rule matches */
5286 rm = r;
5287
5288 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
5289
5290 if (r->quick)
5291 break;
5292
5293 r = TAILQ_NEXT(r, entries);
5294 } else {
5295 pf_step_into_keth_anchor(anchor_stack, &asd,
5296 &ruleset, &r, &a, &match);
5297 }
5298 }
5299 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
5300 &ruleset, &r, &a, &match))
5301 break;
5302 }
5303
5304 r = rm;
5305
5306 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
5307
5308 /* Default to pass. */
5309 if (r == NULL) {
5310 PF_RULES_RUNLOCK();
5311 return (PF_PASS);
5312 }
5313
5314 /* Execute action. */
5315 counter_u64_add(r->packets[dir == PF_OUT], 1);
5316 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
5317 pf_update_timestamp(r);
5318
5319 /* Shortcut. Don't tag if we're just going to drop anyway. */
5320 if (r->action == PF_DROP) {
5321 PF_RULES_RUNLOCK();
5322 return (PF_DROP);
5323 }
5324
5325 if (tag > 0) {
5326 if (mtag == NULL)
5327 mtag = pf_get_mtag(m);
5328 if (mtag == NULL) {
5329 PF_RULES_RUNLOCK();
5330 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5331 return (PF_DROP);
5332 }
5333 mtag->tag = tag;
5334 }
5335
5336 if (r->qid != 0) {
5337 if (mtag == NULL)
5338 mtag = pf_get_mtag(m);
5339 if (mtag == NULL) {
5340 PF_RULES_RUNLOCK();
5341 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5342 return (PF_DROP);
5343 }
5344 mtag->qid = r->qid;
5345 }
5346
5347 action = r->action;
5348 bridge_to = r->bridge_to;
5349
5350 /* Dummynet */
5351 if (r->dnpipe) {
5352 struct ip_fw_args dnflow;
5353
5354 /* Drop packet if dummynet is not loaded. */
5355 if (ip_dn_io_ptr == NULL) {
5356 PF_RULES_RUNLOCK();
5357 m_freem(m);
5358 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5359 return (PF_DROP);
5360 }
5361 if (mtag == NULL)
5362 mtag = pf_get_mtag(m);
5363 if (mtag == NULL) {
5364 PF_RULES_RUNLOCK();
5365 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
5366 return (PF_DROP);
5367 }
5368
5369 bzero(&dnflow, sizeof(dnflow));
5370
5371 /* We don't have port numbers here, so we set 0. That means
5372 * that we'll be somewhat limited in distinguishing flows (i.e.
5373 * only based on IP addresses, not based on port numbers), but
5374 * it's better than nothing. */
5375 dnflow.f_id.dst_port = 0;
5376 dnflow.f_id.src_port = 0;
5377 dnflow.f_id.proto = 0;
5378
5379 dnflow.rule.info = r->dnpipe;
5380 dnflow.rule.info |= IPFW_IS_DUMMYNET;
5381 if (r->dnflags & PFRULE_DN_IS_PIPE)
5382 dnflow.rule.info |= IPFW_IS_PIPE;
5383
5384 dnflow.f_id.extra = dnflow.rule.info;
5385
5386 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
5387 dnflow.flags |= IPFW_ARGS_ETHER;
5388 dnflow.ifp = kif->pfik_ifp;
5389
5390 switch (af) {
5391 case AF_INET:
5392 dnflow.f_id.addr_type = 4;
5393 dnflow.f_id.src_ip = src->v4.s_addr;
5394 dnflow.f_id.dst_ip = dst->v4.s_addr;
5395 break;
5396 case AF_INET6:
5397 dnflow.flags |= IPFW_ARGS_IP6;
5398 dnflow.f_id.addr_type = 6;
5399 dnflow.f_id.src_ip6 = src->v6;
5400 dnflow.f_id.dst_ip6 = dst->v6;
5401 break;
5402 }
5403
5404 PF_RULES_RUNLOCK();
5405
5406 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
5407 ip_dn_io_ptr(m0, &dnflow);
5408 if (*m0 != NULL)
5409 pf_dummynet_flag_remove(m, mtag);
5410 } else {
5411 PF_RULES_RUNLOCK();
5412 }
5413
5414 if (action == PF_PASS && bridge_to) {
5415 pf_bridge_to(bridge_to->pfik_ifp, *m0);
5416 *m0 = NULL; /* We've eaten the packet. */
5417 }
5418
5419 return (action);
5420 }
5421
5422 #define PF_TEST_ATTRIB(t, a)\
5423 do { \
5424 if (t) { \
5425 r = a; \
5426 goto nextrule; \
5427 } \
5428 } while (0)
5429
5430 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,struct inpcb * inp)5431 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
5432 struct pf_pdesc *pd, struct pf_krule **am,
5433 struct pf_kruleset **rsm, struct inpcb *inp)
5434 {
5435 struct pf_krule *nr = NULL;
5436 struct pf_krule *r, *a = NULL;
5437 struct pf_kruleset *ruleset = NULL;
5438 struct pf_krule_slist match_rules;
5439 struct pf_krule_item *ri;
5440 struct tcphdr *th = &pd->hdr.tcp;
5441 struct pf_state_key *sk = NULL, *nk = NULL;
5442 u_short reason, transerror;
5443 int rewrite = 0;
5444 int tag = -1;
5445 int asd = 0;
5446 int match = 0;
5447 int state_icmp = 0, icmp_dir, multi;
5448 u_int16_t virtual_type, virtual_id;
5449 u_int16_t bproto_sum = 0, bip_sum = 0;
5450 u_int8_t icmptype = 0, icmpcode = 0;
5451 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
5452 struct pf_udp_mapping *udp_mapping = NULL;
5453
5454 PF_RULES_RASSERT();
5455
5456 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5457 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5458
5459 SLIST_INIT(&match_rules);
5460
5461 if (inp != NULL) {
5462 INP_LOCK_ASSERT(inp);
5463 pd->lookup.uid = inp->inp_cred->cr_uid;
5464 pd->lookup.gid = inp->inp_cred->cr_groups[0];
5465 pd->lookup.done = 1;
5466 }
5467
5468 switch (pd->virtual_proto) {
5469 case IPPROTO_TCP:
5470 pd->nsport = th->th_sport;
5471 pd->ndport = th->th_dport;
5472 break;
5473 case IPPROTO_UDP:
5474 pd->nsport = pd->hdr.udp.uh_sport;
5475 pd->ndport = pd->hdr.udp.uh_dport;
5476 break;
5477 case IPPROTO_SCTP:
5478 pd->nsport = pd->hdr.sctp.src_port;
5479 pd->ndport = pd->hdr.sctp.dest_port;
5480 break;
5481 #ifdef INET
5482 case IPPROTO_ICMP:
5483 MPASS(pd->af == AF_INET);
5484 icmptype = pd->hdr.icmp.icmp_type;
5485 icmpcode = pd->hdr.icmp.icmp_code;
5486 state_icmp = pf_icmp_mapping(pd, icmptype,
5487 &icmp_dir, &multi, &virtual_id, &virtual_type);
5488 if (icmp_dir == PF_IN) {
5489 pd->nsport = virtual_id;
5490 pd->ndport = virtual_type;
5491 } else {
5492 pd->nsport = virtual_type;
5493 pd->ndport = virtual_id;
5494 }
5495 break;
5496 #endif /* INET */
5497 #ifdef INET6
5498 case IPPROTO_ICMPV6:
5499 MPASS(pd->af == AF_INET6);
5500 icmptype = pd->hdr.icmp6.icmp6_type;
5501 icmpcode = pd->hdr.icmp6.icmp6_code;
5502 state_icmp = pf_icmp_mapping(pd, icmptype,
5503 &icmp_dir, &multi, &virtual_id, &virtual_type);
5504 if (icmp_dir == PF_IN) {
5505 pd->nsport = virtual_id;
5506 pd->ndport = virtual_type;
5507 } else {
5508 pd->nsport = virtual_type;
5509 pd->ndport = virtual_id;
5510 }
5511
5512 break;
5513 #endif /* INET6 */
5514 default:
5515 pd->nsport = pd->ndport = 0;
5516 break;
5517 }
5518 pd->osport = pd->nsport;
5519 pd->odport = pd->ndport;
5520
5521 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
5522
5523 /* check packet for BINAT/NAT/RDR */
5524 transerror = pf_get_translation(pd, pd->off, &sk, &nk, anchor_stack,
5525 &nr, &udp_mapping);
5526 switch (transerror) {
5527 default:
5528 /* A translation error occurred. */
5529 REASON_SET(&reason, transerror);
5530 goto cleanup;
5531 case PFRES_MAX:
5532 /* No match. */
5533 break;
5534 case PFRES_MATCH:
5535 KASSERT(sk != NULL, ("%s: null sk", __func__));
5536 KASSERT(nk != NULL, ("%s: null nk", __func__));
5537
5538 if (nr->log) {
5539 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a,
5540 ruleset, pd, 1);
5541 }
5542
5543 if (pd->ip_sum)
5544 bip_sum = *pd->ip_sum;
5545
5546 switch (pd->proto) {
5547 case IPPROTO_TCP:
5548 bproto_sum = th->th_sum;
5549
5550 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5551 nk->port[pd->sidx] != pd->nsport) {
5552 pf_change_ap(pd->m, pd->src, &th->th_sport,
5553 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
5554 nk->port[pd->sidx], 0, pd->af, pd->naf);
5555 pd->sport = &th->th_sport;
5556 pd->nsport = th->th_sport;
5557 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5558 }
5559
5560 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5561 nk->port[pd->didx] != pd->ndport) {
5562 pf_change_ap(pd->m, pd->dst, &th->th_dport,
5563 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
5564 nk->port[pd->didx], 0, pd->af, pd->naf);
5565 pd->dport = &th->th_dport;
5566 pd->ndport = th->th_dport;
5567 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5568 }
5569 rewrite++;
5570 break;
5571 case IPPROTO_UDP:
5572 bproto_sum = pd->hdr.udp.uh_sum;
5573
5574 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5575 nk->port[pd->sidx] != pd->nsport) {
5576 pf_change_ap(pd->m, pd->src,
5577 &pd->hdr.udp.uh_sport,
5578 pd->ip_sum, &pd->hdr.udp.uh_sum,
5579 &nk->addr[pd->sidx],
5580 nk->port[pd->sidx], 1, pd->af, pd->naf);
5581 pd->sport = &pd->hdr.udp.uh_sport;
5582 pd->nsport = pd->hdr.udp.uh_sport;
5583 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5584 }
5585
5586 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5587 nk->port[pd->didx] != pd->ndport) {
5588 pf_change_ap(pd->m, pd->dst,
5589 &pd->hdr.udp.uh_dport,
5590 pd->ip_sum, &pd->hdr.udp.uh_sum,
5591 &nk->addr[pd->didx],
5592 nk->port[pd->didx], 1, pd->af, pd->naf);
5593 pd->dport = &pd->hdr.udp.uh_dport;
5594 pd->ndport = pd->hdr.udp.uh_dport;
5595 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5596 }
5597 rewrite++;
5598 break;
5599 case IPPROTO_SCTP: {
5600 uint16_t checksum = 0;
5601
5602 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) ||
5603 nk->port[pd->sidx] != pd->nsport) {
5604 pf_change_ap(pd->m, pd->src,
5605 &pd->hdr.sctp.src_port, pd->ip_sum, &checksum,
5606 &nk->addr[pd->sidx],
5607 nk->port[pd->sidx], 1, pd->af, pd->naf);
5608 pd->sport = &pd->hdr.sctp.src_port;
5609 pd->nsport = pd->hdr.sctp.src_port;
5610 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5611 }
5612 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) ||
5613 nk->port[pd->didx] != pd->ndport) {
5614 pf_change_ap(pd->m, pd->dst,
5615 &pd->hdr.sctp.dest_port, pd->ip_sum, &checksum,
5616 &nk->addr[pd->didx],
5617 nk->port[pd->didx], 1, pd->af, pd->naf);
5618 pd->dport = &pd->hdr.sctp.dest_port;
5619 pd->ndport = pd->hdr.sctp.dest_port;
5620 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5621 }
5622 break;
5623 }
5624 #ifdef INET
5625 case IPPROTO_ICMP:
5626 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) {
5627 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum,
5628 nk->addr[pd->sidx].v4.s_addr, 0);
5629 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5630 }
5631
5632 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) {
5633 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum,
5634 nk->addr[pd->didx].v4.s_addr, 0);
5635 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5636 }
5637
5638 if (virtual_type == htons(ICMP_ECHO) &&
5639 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
5640 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
5641 pd->hdr.icmp.icmp_cksum, pd->nsport,
5642 nk->port[pd->sidx], 0);
5643 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
5644 pd->sport = &pd->hdr.icmp.icmp_id;
5645 }
5646 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5647 break;
5648 #endif /* INET */
5649 #ifdef INET6
5650 case IPPROTO_ICMPV6:
5651 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) {
5652 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum,
5653 &nk->addr[pd->sidx], 0);
5654 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5655 }
5656
5657 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) {
5658 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum,
5659 &nk->addr[pd->didx], 0);
5660 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5661 }
5662 rewrite++;
5663 break;
5664 #endif /* INET */
5665 default:
5666 switch (pd->af) {
5667 #ifdef INET
5668 case AF_INET:
5669 if (PF_ANEQ(&pd->nsaddr,
5670 &nk->addr[pd->sidx], AF_INET)) {
5671 pf_change_a(&pd->src->v4.s_addr,
5672 pd->ip_sum,
5673 nk->addr[pd->sidx].v4.s_addr, 0);
5674 PF_ACPY(&pd->nsaddr, pd->src, pd->af);
5675 }
5676
5677 if (PF_ANEQ(&pd->ndaddr,
5678 &nk->addr[pd->didx], AF_INET)) {
5679 pf_change_a(&pd->dst->v4.s_addr,
5680 pd->ip_sum,
5681 nk->addr[pd->didx].v4.s_addr, 0);
5682 PF_ACPY(&pd->ndaddr, pd->dst, pd->af);
5683 }
5684 break;
5685 #endif /* INET */
5686 #ifdef INET6
5687 case AF_INET6:
5688 if (PF_ANEQ(&pd->nsaddr,
5689 &nk->addr[pd->sidx], AF_INET6)) {
5690 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af);
5691 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
5692 }
5693
5694 if (PF_ANEQ(&pd->ndaddr,
5695 &nk->addr[pd->didx], AF_INET6)) {
5696 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af);
5697 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
5698 }
5699 break;
5700 #endif /* INET */
5701 }
5702 break;
5703 }
5704 if (nr->natpass)
5705 r = NULL;
5706 }
5707
5708 while (r != NULL) {
5709 if (pd->related_rule) {
5710 *rm = pd->related_rule;
5711 break;
5712 }
5713 pf_counter_u64_add(&r->evaluations, 1);
5714 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5715 r->skip[PF_SKIP_IFP]);
5716 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5717 r->skip[PF_SKIP_DIR]);
5718 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5719 r->skip[PF_SKIP_AF]);
5720 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5721 r->skip[PF_SKIP_PROTO]);
5722 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf,
5723 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5724 r->skip[PF_SKIP_SRC_ADDR]);
5725 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af,
5726 r->dst.neg, NULL, M_GETFIB(pd->m)),
5727 r->skip[PF_SKIP_DST_ADDR]);
5728 switch (pd->virtual_proto) {
5729 case PF_VPROTO_FRAGMENT:
5730 /* tcp/udp only. port_op always 0 in other cases */
5731 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5732 TAILQ_NEXT(r, entries));
5733 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5734 TAILQ_NEXT(r, entries));
5735 /* icmp only. type/code always 0 in other cases */
5736 PF_TEST_ATTRIB((r->type || r->code),
5737 TAILQ_NEXT(r, entries));
5738 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5739 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5740 TAILQ_NEXT(r, entries));
5741 break;
5742
5743 case IPPROTO_TCP:
5744 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags,
5745 TAILQ_NEXT(r, entries));
5746 /* FALLTHROUGH */
5747 case IPPROTO_SCTP:
5748 case IPPROTO_UDP:
5749 /* tcp/udp only. port_op always 0 in other cases */
5750 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5751 r->src.port[0], r->src.port[1], pd->nsport),
5752 r->skip[PF_SKIP_SRC_PORT]);
5753 /* tcp/udp only. port_op always 0 in other cases */
5754 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5755 r->dst.port[0], r->dst.port[1], pd->ndport),
5756 r->skip[PF_SKIP_DST_PORT]);
5757 /* tcp/udp only. uid.op always 0 in other cases */
5758 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5759 pf_socket_lookup(pd), 1)) &&
5760 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5761 pd->lookup.uid),
5762 TAILQ_NEXT(r, entries));
5763 /* tcp/udp only. gid.op always 0 in other cases */
5764 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5765 pf_socket_lookup(pd), 1)) &&
5766 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5767 pd->lookup.gid),
5768 TAILQ_NEXT(r, entries));
5769 break;
5770
5771 case IPPROTO_ICMP:
5772 case IPPROTO_ICMPV6:
5773 /* icmp only. type always 0 in other cases */
5774 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1,
5775 TAILQ_NEXT(r, entries));
5776 /* icmp only. type always 0 in other cases */
5777 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1,
5778 TAILQ_NEXT(r, entries));
5779 break;
5780
5781 default:
5782 break;
5783 }
5784 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5785 TAILQ_NEXT(r, entries));
5786 PF_TEST_ATTRIB(r->prio &&
5787 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5788 TAILQ_NEXT(r, entries));
5789 PF_TEST_ATTRIB(r->prob &&
5790 r->prob <= arc4random(),
5791 TAILQ_NEXT(r, entries));
5792 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag,
5793 pd->pf_mtag ? pd->pf_mtag->tag : 0),
5794 TAILQ_NEXT(r, entries));
5795 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r),
5796 TAILQ_NEXT(r, entries));
5797 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5798 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5799 TAILQ_NEXT(r, entries));
5800 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5801 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5802 pf_osfp_fingerprint(pd, th),
5803 r->os_fingerprint)),
5804 TAILQ_NEXT(r, entries));
5805 /* FALLTHROUGH */
5806 if (r->tag)
5807 tag = r->tag;
5808 if (r->anchor == NULL) {
5809 if (r->action == PF_MATCH) {
5810 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5811 if (ri == NULL) {
5812 REASON_SET(&reason, PFRES_MEMORY);
5813 goto cleanup;
5814 }
5815 ri->r = r;
5816 SLIST_INSERT_HEAD(&match_rules, ri, entry);
5817 pf_counter_u64_critical_enter();
5818 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5819 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5820 pf_counter_u64_critical_exit();
5821 pf_rule_to_actions(r, &pd->act);
5822 if (r->rule_flag & PFRULE_AFTO)
5823 pd->naf = r->naf;
5824 if (pd->af != pd->naf) {
5825 if (pf_get_transaddr_af(r, pd) == -1) {
5826 REASON_SET(&reason, PFRES_MEMORY);
5827 goto cleanup;
5828 }
5829 }
5830 if (r->log || pd->act.log & PF_LOG_MATCHES)
5831 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5832 a, ruleset, pd, 1);
5833 } else {
5834 match = 1;
5835 *rm = r;
5836 *am = a;
5837 *rsm = ruleset;
5838 if (pd->act.log & PF_LOG_MATCHES)
5839 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5840 a, ruleset, pd, 1);
5841 }
5842 if ((*rm)->quick)
5843 break;
5844 r = TAILQ_NEXT(r, entries);
5845 } else
5846 pf_step_into_anchor(anchor_stack, &asd,
5847 &ruleset, PF_RULESET_FILTER, &r, &a,
5848 &match);
5849 nextrule:
5850 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
5851 &ruleset, PF_RULESET_FILTER, &r, &a, &match))
5852 break;
5853 }
5854 r = *rm;
5855 a = *am;
5856 ruleset = *rsm;
5857
5858 REASON_SET(&reason, PFRES_MATCH);
5859
5860 /* apply actions for last matching pass/block rule */
5861 pf_rule_to_actions(r, &pd->act);
5862 if (r->rule_flag & PFRULE_AFTO)
5863 pd->naf = r->naf;
5864 if (pd->af != pd->naf) {
5865 if (pf_get_transaddr_af(r, pd) == -1) {
5866 REASON_SET(&reason, PFRES_MEMORY);
5867 goto cleanup;
5868 }
5869 }
5870
5871 if (r->log || pd->act.log & PF_LOG_MATCHES) {
5872 if (rewrite)
5873 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5874 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1);
5875 }
5876
5877 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5878 (r->action == PF_DROP) &&
5879 ((r->rule_flag & PFRULE_RETURNRST) ||
5880 (r->rule_flag & PFRULE_RETURNICMP) ||
5881 (r->rule_flag & PFRULE_RETURN))) {
5882 pf_return(r, nr, pd, sk, th, bproto_sum,
5883 bip_sum, &reason, r->rtableid);
5884 }
5885
5886 if (r->action == PF_DROP)
5887 goto cleanup;
5888
5889 if (tag > 0 && pf_tag_packet(pd, tag)) {
5890 REASON_SET(&reason, PFRES_MEMORY);
5891 goto cleanup;
5892 }
5893 if (pd->act.rtableid >= 0)
5894 M_SETFIB(pd->m, pd->act.rtableid);
5895
5896 if (r->rt) {
5897 struct pf_ksrc_node *sn = NULL;
5898 struct pf_srchash *snh = NULL;
5899 struct pf_kpool *pool = &r->route;
5900
5901 /* Backwards compatibility. */
5902 if (TAILQ_EMPTY(&pool->list))
5903 pool = &r->rdr;
5904
5905 /*
5906 * Set act.rt here instead of in pf_rule_to_actions() because
5907 * it is applied only from the last pass rule.
5908 */
5909 pd->act.rt = r->rt;
5910 /* Don't use REASON_SET, pf_map_addr increases the reason counters */
5911 reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr,
5912 &pd->act.rt_kif, NULL, &sn, &snh, pool);
5913 if (reason != 0)
5914 goto cleanup;
5915 }
5916
5917 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5918 (!state_icmp && (r->keep_state || nr != NULL ||
5919 (pd->flags & PFDESC_TCP_NORM)))) {
5920 int action;
5921 bool nat64;
5922
5923 action = pf_create_state(r, nr, a, pd, nk, sk,
5924 &rewrite, sm, tag, bproto_sum, bip_sum,
5925 &match_rules, udp_mapping);
5926 if (action != PF_PASS) {
5927 pf_udp_mapping_release(udp_mapping);
5928 pd->act.log |= PF_LOG_FORCE;
5929 if (action == PF_DROP &&
5930 (r->rule_flag & PFRULE_RETURN))
5931 pf_return(r, nr, pd, sk, th,
5932 bproto_sum, bip_sum, &reason,
5933 pd->act.rtableid);
5934 return (action);
5935 }
5936
5937 nat64 = pd->af != pd->naf;
5938 if (nat64) {
5939 struct pf_state_key *_sk;
5940 int ret;
5941
5942 if (sk == NULL)
5943 sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE];
5944 if (nk == NULL)
5945 nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK];
5946 if (pd->dir == PF_IN)
5947 _sk = sk;
5948 else
5949 _sk = nk;
5950
5951 ret = pf_translate(pd,
5952 &_sk->addr[pd->didx],
5953 _sk->port[pd->didx],
5954 &_sk->addr[pd->sidx],
5955 _sk->port[pd->sidx],
5956 virtual_type, icmp_dir);
5957 if (ret < 0)
5958 goto cleanup;
5959
5960 rewrite += ret;
5961 }
5962 } else {
5963 while ((ri = SLIST_FIRST(&match_rules))) {
5964 SLIST_REMOVE_HEAD(&match_rules, entry);
5965 free(ri, M_PF_RULE_ITEM);
5966 }
5967
5968 uma_zfree(V_pf_state_key_z, sk);
5969 uma_zfree(V_pf_state_key_z, nk);
5970 pf_udp_mapping_release(udp_mapping);
5971 }
5972
5973 /* copy back packet headers if we performed NAT operations */
5974 if (rewrite)
5975 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5976
5977 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5978 pd->dir == PF_OUT &&
5979 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m))
5980 /*
5981 * We want the state created, but we dont
5982 * want to send this in case a partner
5983 * firewall has to know about it to allow
5984 * replies through it.
5985 */
5986 return (PF_DEFER);
5987
5988 if (rewrite && sk != NULL && nk != NULL && sk->af != nk->af) {
5989 return (PF_AFRT);
5990 } else
5991 return (PF_PASS);
5992
5993 cleanup:
5994 while ((ri = SLIST_FIRST(&match_rules))) {
5995 SLIST_REMOVE_HEAD(&match_rules, entry);
5996 free(ri, M_PF_RULE_ITEM);
5997 }
5998
5999 uma_zfree(V_pf_state_key_z, sk);
6000 uma_zfree(V_pf_state_key_z, nk);
6001 pf_udp_mapping_release(udp_mapping);
6002
6003 return (PF_DROP);
6004 }
6005
6006 static int
pf_create_state(struct pf_krule * r,struct pf_krule * nr,struct pf_krule * a,struct pf_pdesc * pd,struct pf_state_key * nk,struct pf_state_key * sk,int * rewrite,struct pf_kstate ** sm,int tag,u_int16_t bproto_sum,u_int16_t bip_sum,struct pf_krule_slist * match_rules,struct pf_udp_mapping * udp_mapping)6007 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
6008 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk,
6009 int *rewrite, struct pf_kstate **sm, int tag, u_int16_t bproto_sum,
6010 u_int16_t bip_sum, struct pf_krule_slist *match_rules,
6011 struct pf_udp_mapping *udp_mapping)
6012 {
6013 struct pf_kstate *s = NULL;
6014 struct pf_ksrc_node *sn = NULL;
6015 struct pf_srchash *snh = NULL;
6016 struct pf_ksrc_node *nsn = NULL;
6017 struct pf_srchash *nsnh = NULL;
6018 struct tcphdr *th = &pd->hdr.tcp;
6019 u_int16_t mss = V_tcp_mssdflt;
6020 u_short reason, sn_reason;
6021 struct pf_krule_item *ri;
6022
6023 /* check maximums */
6024 if (r->max_states &&
6025 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
6026 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
6027 REASON_SET(&reason, PFRES_MAXSTATES);
6028 goto csfailed;
6029 }
6030 /* src node for filter rule */
6031 if ((r->rule_flag & PFRULE_SRCTRACK ||
6032 r->rdr.opts & PF_POOL_STICKYADDR) &&
6033 (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af,
6034 &pd->act.rt_addr, pd->act.rt_kif)) != 0) {
6035 REASON_SET(&reason, sn_reason);
6036 goto csfailed;
6037 }
6038 /* src node for translation rule */
6039 if (nr != NULL && (nr->rdr.opts & PF_POOL_STICKYADDR) &&
6040 (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx],
6041 pd->af, &nk->addr[1], NULL)) != 0 ) {
6042 REASON_SET(&reason, sn_reason);
6043 goto csfailed;
6044 }
6045 s = pf_alloc_state(M_NOWAIT);
6046 if (s == NULL) {
6047 REASON_SET(&reason, PFRES_MEMORY);
6048 goto csfailed;
6049 }
6050 s->rule = r;
6051 s->nat_rule = nr;
6052 s->anchor = a;
6053 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules));
6054 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
6055
6056 STATE_INC_COUNTERS(s);
6057 if (r->allow_opts)
6058 s->state_flags |= PFSTATE_ALLOWOPTS;
6059 if (r->rule_flag & PFRULE_STATESLOPPY)
6060 s->state_flags |= PFSTATE_SLOPPY;
6061 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
6062 s->state_flags |= PFSTATE_SCRUB_TCP;
6063 if ((r->rule_flag & PFRULE_PFLOW) ||
6064 (nr != NULL && nr->rule_flag & PFRULE_PFLOW))
6065 s->state_flags |= PFSTATE_PFLOW;
6066
6067 s->act.log = pd->act.log & PF_LOG_ALL;
6068 s->sync_state = PFSYNC_S_NONE;
6069 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
6070
6071 if (nr != NULL)
6072 s->act.log |= nr->log & PF_LOG_ALL;
6073 switch (pd->proto) {
6074 case IPPROTO_TCP:
6075 s->src.seqlo = ntohl(th->th_seq);
6076 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
6077 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
6078 r->keep_state == PF_STATE_MODULATE) {
6079 /* Generate sequence number modulator */
6080 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
6081 0)
6082 s->src.seqdiff = 1;
6083 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
6084 htonl(s->src.seqlo + s->src.seqdiff), 0);
6085 *rewrite = 1;
6086 } else
6087 s->src.seqdiff = 0;
6088 if (tcp_get_flags(th) & TH_SYN) {
6089 s->src.seqhi++;
6090 s->src.wscale = pf_get_wscale(pd);
6091 }
6092 s->src.max_win = MAX(ntohs(th->th_win), 1);
6093 if (s->src.wscale & PF_WSCALE_MASK) {
6094 /* Remove scale factor from initial window */
6095 int win = s->src.max_win;
6096 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
6097 s->src.max_win = (win - 1) >>
6098 (s->src.wscale & PF_WSCALE_MASK);
6099 }
6100 if (tcp_get_flags(th) & TH_FIN)
6101 s->src.seqhi++;
6102 s->dst.seqhi = 1;
6103 s->dst.max_win = 1;
6104 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
6105 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
6106 s->timeout = PFTM_TCP_FIRST_PACKET;
6107 atomic_add_32(&V_pf_status.states_halfopen, 1);
6108 break;
6109 case IPPROTO_UDP:
6110 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
6111 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
6112 s->timeout = PFTM_UDP_FIRST_PACKET;
6113 break;
6114 case IPPROTO_SCTP:
6115 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
6116 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
6117 s->timeout = PFTM_SCTP_FIRST_PACKET;
6118 break;
6119 case IPPROTO_ICMP:
6120 #ifdef INET6
6121 case IPPROTO_ICMPV6:
6122 #endif
6123 s->timeout = PFTM_ICMP_FIRST_PACKET;
6124 break;
6125 default:
6126 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
6127 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
6128 s->timeout = PFTM_OTHER_FIRST_PACKET;
6129 }
6130
6131 s->creation = s->expire = pf_get_uptime();
6132
6133 if (pd->proto == IPPROTO_TCP) {
6134 if (s->state_flags & PFSTATE_SCRUB_TCP &&
6135 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) {
6136 REASON_SET(&reason, PFRES_MEMORY);
6137 goto csfailed;
6138 }
6139 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
6140 pf_normalize_tcp_stateful(pd, &reason, th, s,
6141 &s->src, &s->dst, rewrite)) {
6142 /* This really shouldn't happen!!! */
6143 DPFPRINTF(PF_DEBUG_URGENT,
6144 ("pf_normalize_tcp_stateful failed on first "
6145 "pkt\n"));
6146 goto csfailed;
6147 }
6148 } else if (pd->proto == IPPROTO_SCTP) {
6149 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
6150 goto csfailed;
6151 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
6152 goto csfailed;
6153 }
6154 s->direction = pd->dir;
6155
6156 /*
6157 * sk/nk could already been setup by pf_get_translation().
6158 */
6159 if (nr == NULL) {
6160 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
6161 __func__, nr, sk, nk));
6162 MPASS(pd->sport == NULL || (pd->osport == *pd->sport));
6163 MPASS(pd->dport == NULL || (pd->odport == *pd->dport));
6164 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, &sk, &nk)) {
6165 goto csfailed;
6166 }
6167 } else
6168 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
6169 __func__, nr, sk, nk));
6170
6171 /* Swap sk/nk for PF_OUT. */
6172 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif,
6173 (pd->dir == PF_IN) ? sk : nk,
6174 (pd->dir == PF_IN) ? nk : sk, s)) {
6175 REASON_SET(&reason, PFRES_STATEINS);
6176 goto drop;
6177 } else
6178 *sm = s;
6179
6180 /*
6181 * Lock order is important: first state, then source node.
6182 */
6183 if (pf_src_node_exists(&sn, snh)) {
6184 s->src_node = sn;
6185 PF_HASHROW_UNLOCK(snh);
6186 }
6187 if (pf_src_node_exists(&nsn, nsnh)) {
6188 s->nat_src_node = nsn;
6189 PF_HASHROW_UNLOCK(nsnh);
6190 }
6191
6192 if (tag > 0)
6193 s->tag = tag;
6194 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
6195 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
6196 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
6197 /* undo NAT changes, if they have taken place */
6198 if (nr != NULL) {
6199 struct pf_state_key *skt = s->key[PF_SK_WIRE];
6200 if (pd->dir == PF_OUT)
6201 skt = s->key[PF_SK_STACK];
6202 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
6203 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
6204 if (pd->sport)
6205 *pd->sport = skt->port[pd->sidx];
6206 if (pd->dport)
6207 *pd->dport = skt->port[pd->didx];
6208 if (pd->ip_sum)
6209 *pd->ip_sum = bip_sum;
6210 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
6211 }
6212 s->src.seqhi = htonl(arc4random());
6213 /* Find mss option */
6214 int rtid = M_GETFIB(pd->m);
6215 mss = pf_get_mss(pd);
6216 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
6217 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
6218 s->src.mss = mss;
6219 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
6220 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
6221 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
6222 pd->act.rtableid);
6223 REASON_SET(&reason, PFRES_SYNPROXY);
6224 return (PF_SYNPROXY_DROP);
6225 }
6226
6227 s->udp_mapping = udp_mapping;
6228
6229 return (PF_PASS);
6230
6231 csfailed:
6232 while ((ri = SLIST_FIRST(match_rules))) {
6233 SLIST_REMOVE_HEAD(match_rules, entry);
6234 free(ri, M_PF_RULE_ITEM);
6235 }
6236
6237 uma_zfree(V_pf_state_key_z, sk);
6238 uma_zfree(V_pf_state_key_z, nk);
6239
6240 if (pf_src_node_exists(&sn, snh)) {
6241 if (--sn->states == 0 && sn->expire == 0) {
6242 pf_unlink_src_node(sn);
6243 pf_free_src_node(sn);
6244 counter_u64_add(
6245 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6246 }
6247 PF_HASHROW_UNLOCK(snh);
6248 }
6249
6250 if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) {
6251 if (--nsn->states == 0 && nsn->expire == 0) {
6252 pf_unlink_src_node(nsn);
6253 pf_free_src_node(nsn);
6254 counter_u64_add(
6255 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
6256 }
6257 PF_HASHROW_UNLOCK(nsnh);
6258 }
6259
6260 drop:
6261 if (s != NULL) {
6262 pf_src_tree_remove_state(s);
6263 s->timeout = PFTM_UNLINKED;
6264 STATE_DEC_COUNTERS(s);
6265 pf_free_state(s);
6266 }
6267
6268 return (PF_DROP);
6269 }
6270
6271 int
pf_translate(struct pf_pdesc * pd,struct pf_addr * saddr,u_int16_t sport,struct pf_addr * daddr,u_int16_t dport,u_int16_t virtual_type,int icmp_dir)6272 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport,
6273 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type,
6274 int icmp_dir)
6275 {
6276 /*
6277 * pf_translate() implements OpenBSD's "new" NAT approach.
6278 * We don't follow it, because it involves a breaking syntax change
6279 * (removing nat/rdr rules, moving it into regular pf rules.)
6280 * It also moves NAT processing to be done after normal rules evaluation
6281 * whereas in FreeBSD that's done before rules processing.
6282 *
6283 * We adopt the function only for nat64, and keep other NAT processing
6284 * before rules processing.
6285 */
6286 int rewrite = 0;
6287 int afto = pd->af != pd->naf;
6288
6289 MPASS(afto);
6290
6291 switch (pd->proto) {
6292 case IPPROTO_TCP:
6293 if (afto || *pd->sport != sport) {
6294 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.tcp.th_sum,
6295 saddr, sport, 0, pd->af, pd->naf);
6296 rewrite = 1;
6297 }
6298 if (afto || *pd->dport != dport) {
6299 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.tcp.th_sum,
6300 daddr, dport, 0, pd->af, pd->naf);
6301 rewrite = 1;
6302 }
6303 break;
6304
6305 case IPPROTO_UDP:
6306 if (afto || *pd->sport != sport) {
6307 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &pd->hdr.udp.uh_sum,
6308 saddr, sport, 1, pd->af, pd->naf);
6309 rewrite = 1;
6310 }
6311 if (afto || *pd->dport != dport) {
6312 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &pd->hdr.udp.uh_sum,
6313 daddr, dport, 1, pd->af, pd->naf);
6314 rewrite = 1;
6315 }
6316 break;
6317
6318 case IPPROTO_SCTP: {
6319 uint16_t checksum = 0;
6320 if (afto || *pd->sport != sport) {
6321 pf_change_ap(pd->m, pd->src, pd->sport, pd->ip_sum, &checksum,
6322 saddr, sport, 1, pd->af, pd->naf);
6323 rewrite = 1;
6324 }
6325 if (afto || *pd->dport != dport) {
6326 pf_change_ap(pd->m, pd->dst, pd->dport, pd->ip_sum, &checksum,
6327 daddr, dport, 1, pd->af, pd->naf);
6328 rewrite = 1;
6329 }
6330 break;
6331 }
6332
6333 #ifdef INET
6334 case IPPROTO_ICMP:
6335 /* pf_translate() is also used when logging invalid packets */
6336 if (pd->af != AF_INET)
6337 return (0);
6338
6339 if (afto) {
6340 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp))
6341 return (-1);
6342 pd->proto = IPPROTO_ICMPV6;
6343 rewrite = 1;
6344 }
6345 if (virtual_type == htons(ICMP_ECHO)) {
6346 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport;
6347
6348 if (icmpid != pd->hdr.icmp.icmp_id) {
6349 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
6350 pd->hdr.icmp.icmp_cksum,
6351 pd->hdr.icmp.icmp_id, icmpid, 0);
6352 pd->hdr.icmp.icmp_id = icmpid;
6353 /* XXX TODO copyback. */
6354 rewrite = 1;
6355 }
6356 }
6357 break;
6358 #endif /* INET */
6359
6360 #ifdef INET6
6361 case IPPROTO_ICMPV6:
6362 /* pf_translate() is also used when logging invalid packets */
6363 if (pd->af != AF_INET6)
6364 return (0);
6365
6366 if (afto) {
6367 /* ip_sum will be recalculated in pf_translate_af */
6368 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6))
6369 return (0);
6370 pd->proto = IPPROTO_ICMP;
6371 rewrite = 1;
6372 }
6373 break;
6374 #endif /* INET6 */
6375
6376 default:
6377 break;
6378 }
6379
6380 return (rewrite);
6381 }
6382
6383 static int
pf_tcp_track_full(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason,int * copyback)6384 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd,
6385 u_short *reason, int *copyback)
6386 {
6387 struct tcphdr *th = &pd->hdr.tcp;
6388 struct pf_state_peer *src, *dst;
6389 u_int16_t win = ntohs(th->th_win);
6390 u_int32_t ack, end, data_end, seq, orig_seq;
6391 u_int8_t sws, dws, psrc, pdst;
6392 int ackskew;
6393
6394 if (pd->dir == (*state)->direction) {
6395 if (PF_REVERSED_KEY((*state)->key, pd->af)) {
6396 src = &(*state)->dst;
6397 dst = &(*state)->src;
6398 } else {
6399 src = &(*state)->src;
6400 dst = &(*state)->dst;
6401 }
6402 psrc = PF_PEER_SRC;
6403 pdst = PF_PEER_DST;
6404 } else {
6405 if (PF_REVERSED_KEY((*state)->key, pd->af)) {
6406 src = &(*state)->src;
6407 dst = &(*state)->dst;
6408 } else {
6409 src = &(*state)->dst;
6410 dst = &(*state)->src;
6411 }
6412 psrc = PF_PEER_DST;
6413 pdst = PF_PEER_SRC;
6414 }
6415
6416 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
6417 sws = src->wscale & PF_WSCALE_MASK;
6418 dws = dst->wscale & PF_WSCALE_MASK;
6419 } else
6420 sws = dws = 0;
6421
6422 /*
6423 * Sequence tracking algorithm from Guido van Rooij's paper:
6424 * http://www.madison-gurkha.com/publications/tcp_filtering/
6425 * tcp_filtering.ps
6426 */
6427
6428 orig_seq = seq = ntohl(th->th_seq);
6429 if (src->seqlo == 0) {
6430 /* First packet from this end. Set its state */
6431
6432 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
6433 src->scrub == NULL) {
6434 if (pf_normalize_tcp_init(pd, th, src, dst)) {
6435 REASON_SET(reason, PFRES_MEMORY);
6436 return (PF_DROP);
6437 }
6438 }
6439
6440 /* Deferred generation of sequence number modulator */
6441 if (dst->seqdiff && !src->seqdiff) {
6442 /* use random iss for the TCP server */
6443 while ((src->seqdiff = arc4random() - seq) == 0)
6444 ;
6445 ack = ntohl(th->th_ack) - dst->seqdiff;
6446 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6447 src->seqdiff), 0);
6448 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6449 *copyback = 1;
6450 } else {
6451 ack = ntohl(th->th_ack);
6452 }
6453
6454 end = seq + pd->p_len;
6455 if (tcp_get_flags(th) & TH_SYN) {
6456 end++;
6457 if (dst->wscale & PF_WSCALE_FLAG) {
6458 src->wscale = pf_get_wscale(pd);
6459 if (src->wscale & PF_WSCALE_FLAG) {
6460 /* Remove scale factor from initial
6461 * window */
6462 sws = src->wscale & PF_WSCALE_MASK;
6463 win = ((u_int32_t)win + (1 << sws) - 1)
6464 >> sws;
6465 dws = dst->wscale & PF_WSCALE_MASK;
6466 } else {
6467 /* fixup other window */
6468 dst->max_win = MIN(TCP_MAXWIN,
6469 (u_int32_t)dst->max_win <<
6470 (dst->wscale & PF_WSCALE_MASK));
6471 /* in case of a retrans SYN|ACK */
6472 dst->wscale = 0;
6473 }
6474 }
6475 }
6476 data_end = end;
6477 if (tcp_get_flags(th) & TH_FIN)
6478 end++;
6479
6480 src->seqlo = seq;
6481 if (src->state < TCPS_SYN_SENT)
6482 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6483
6484 /*
6485 * May need to slide the window (seqhi may have been set by
6486 * the crappy stack check or if we picked up the connection
6487 * after establishment)
6488 */
6489 if (src->seqhi == 1 ||
6490 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
6491 src->seqhi = end + MAX(1, dst->max_win << dws);
6492 if (win > src->max_win)
6493 src->max_win = win;
6494
6495 } else {
6496 ack = ntohl(th->th_ack) - dst->seqdiff;
6497 if (src->seqdiff) {
6498 /* Modulate sequence numbers */
6499 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
6500 src->seqdiff), 0);
6501 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
6502 *copyback = 1;
6503 }
6504 end = seq + pd->p_len;
6505 if (tcp_get_flags(th) & TH_SYN)
6506 end++;
6507 data_end = end;
6508 if (tcp_get_flags(th) & TH_FIN)
6509 end++;
6510 }
6511
6512 if ((tcp_get_flags(th) & TH_ACK) == 0) {
6513 /* Let it pass through the ack skew check */
6514 ack = dst->seqlo;
6515 } else if ((ack == 0 &&
6516 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
6517 /* broken tcp stacks do not set ack */
6518 (dst->state < TCPS_SYN_SENT)) {
6519 /*
6520 * Many stacks (ours included) will set the ACK number in an
6521 * FIN|ACK if the SYN times out -- no sequence to ACK.
6522 */
6523 ack = dst->seqlo;
6524 }
6525
6526 if (seq == end) {
6527 /* Ease sequencing restrictions on no data packets */
6528 seq = src->seqlo;
6529 data_end = end = seq;
6530 }
6531
6532 ackskew = dst->seqlo - ack;
6533
6534 /*
6535 * Need to demodulate the sequence numbers in any TCP SACK options
6536 * (Selective ACK). We could optionally validate the SACK values
6537 * against the current ACK window, either forwards or backwards, but
6538 * I'm not confident that SACK has been implemented properly
6539 * everywhere. It wouldn't surprise me if several stacks accidentally
6540 * SACK too far backwards of previously ACKed data. There really aren't
6541 * any security implications of bad SACKing unless the target stack
6542 * doesn't validate the option length correctly. Someone trying to
6543 * spoof into a TCP connection won't bother blindly sending SACK
6544 * options anyway.
6545 */
6546 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
6547 if (pf_modulate_sack(pd, th, dst))
6548 *copyback = 1;
6549 }
6550
6551 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
6552 if (SEQ_GEQ(src->seqhi, data_end) &&
6553 /* Last octet inside other's window space */
6554 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
6555 /* Retrans: not more than one window back */
6556 (ackskew >= -MAXACKWINDOW) &&
6557 /* Acking not more than one reassembled fragment backwards */
6558 (ackskew <= (MAXACKWINDOW << sws)) &&
6559 /* Acking not more than one window forward */
6560 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
6561 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
6562 /* Require an exact/+1 sequence match on resets when possible */
6563
6564 if (dst->scrub || src->scrub) {
6565 if (pf_normalize_tcp_stateful(pd, reason, th,
6566 *state, src, dst, copyback))
6567 return (PF_DROP);
6568 }
6569
6570 /* update max window */
6571 if (src->max_win < win)
6572 src->max_win = win;
6573 /* synchronize sequencing */
6574 if (SEQ_GT(end, src->seqlo))
6575 src->seqlo = end;
6576 /* slide the window of what the other end can send */
6577 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6578 dst->seqhi = ack + MAX((win << sws), 1);
6579
6580 /* update states */
6581 if (tcp_get_flags(th) & TH_SYN)
6582 if (src->state < TCPS_SYN_SENT)
6583 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6584 if (tcp_get_flags(th) & TH_FIN)
6585 if (src->state < TCPS_CLOSING)
6586 pf_set_protostate(*state, psrc, TCPS_CLOSING);
6587 if (tcp_get_flags(th) & TH_ACK) {
6588 if (dst->state == TCPS_SYN_SENT) {
6589 pf_set_protostate(*state, pdst,
6590 TCPS_ESTABLISHED);
6591 if (src->state == TCPS_ESTABLISHED &&
6592 (*state)->src_node != NULL &&
6593 pf_src_connlimit(*state)) {
6594 REASON_SET(reason, PFRES_SRCLIMIT);
6595 return (PF_DROP);
6596 }
6597 } else if (dst->state == TCPS_CLOSING)
6598 pf_set_protostate(*state, pdst,
6599 TCPS_FIN_WAIT_2);
6600 }
6601 if (tcp_get_flags(th) & TH_RST)
6602 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6603
6604 /* update expire time */
6605 (*state)->expire = pf_get_uptime();
6606 if (src->state >= TCPS_FIN_WAIT_2 &&
6607 dst->state >= TCPS_FIN_WAIT_2)
6608 (*state)->timeout = PFTM_TCP_CLOSED;
6609 else if (src->state >= TCPS_CLOSING &&
6610 dst->state >= TCPS_CLOSING)
6611 (*state)->timeout = PFTM_TCP_FIN_WAIT;
6612 else if (src->state < TCPS_ESTABLISHED ||
6613 dst->state < TCPS_ESTABLISHED)
6614 (*state)->timeout = PFTM_TCP_OPENING;
6615 else if (src->state >= TCPS_CLOSING ||
6616 dst->state >= TCPS_CLOSING)
6617 (*state)->timeout = PFTM_TCP_CLOSING;
6618 else
6619 (*state)->timeout = PFTM_TCP_ESTABLISHED;
6620
6621 /* Fall through to PASS packet */
6622
6623 } else if ((dst->state < TCPS_SYN_SENT ||
6624 dst->state >= TCPS_FIN_WAIT_2 ||
6625 src->state >= TCPS_FIN_WAIT_2) &&
6626 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
6627 /* Within a window forward of the originating packet */
6628 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
6629 /* Within a window backward of the originating packet */
6630
6631 /*
6632 * This currently handles three situations:
6633 * 1) Stupid stacks will shotgun SYNs before their peer
6634 * replies.
6635 * 2) When PF catches an already established stream (the
6636 * firewall rebooted, the state table was flushed, routes
6637 * changed...)
6638 * 3) Packets get funky immediately after the connection
6639 * closes (this should catch Solaris spurious ACK|FINs
6640 * that web servers like to spew after a close)
6641 *
6642 * This must be a little more careful than the above code
6643 * since packet floods will also be caught here. We don't
6644 * update the TTL here to mitigate the damage of a packet
6645 * flood and so the same code can handle awkward establishment
6646 * and a loosened connection close.
6647 * In the establishment case, a correct peer response will
6648 * validate the connection, go through the normal state code
6649 * and keep updating the state TTL.
6650 */
6651
6652 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6653 printf("pf: loose state match: ");
6654 pf_print_state(*state);
6655 pf_print_flags(tcp_get_flags(th));
6656 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6657 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
6658 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
6659 (unsigned long long)(*state)->packets[1],
6660 pd->dir == PF_IN ? "in" : "out",
6661 pd->dir == (*state)->direction ? "fwd" : "rev");
6662 }
6663
6664 if (dst->scrub || src->scrub) {
6665 if (pf_normalize_tcp_stateful(pd, reason, th,
6666 *state, src, dst, copyback))
6667 return (PF_DROP);
6668 }
6669
6670 /* update max window */
6671 if (src->max_win < win)
6672 src->max_win = win;
6673 /* synchronize sequencing */
6674 if (SEQ_GT(end, src->seqlo))
6675 src->seqlo = end;
6676 /* slide the window of what the other end can send */
6677 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
6678 dst->seqhi = ack + MAX((win << sws), 1);
6679
6680 /*
6681 * Cannot set dst->seqhi here since this could be a shotgunned
6682 * SYN and not an already established connection.
6683 */
6684
6685 if (tcp_get_flags(th) & TH_FIN)
6686 if (src->state < TCPS_CLOSING)
6687 pf_set_protostate(*state, psrc, TCPS_CLOSING);
6688 if (tcp_get_flags(th) & TH_RST)
6689 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6690
6691 /* Fall through to PASS packet */
6692
6693 } else {
6694 if ((*state)->dst.state == TCPS_SYN_SENT &&
6695 (*state)->src.state == TCPS_SYN_SENT) {
6696 /* Send RST for state mismatches during handshake */
6697 if (!(tcp_get_flags(th) & TH_RST))
6698 pf_send_tcp((*state)->rule, pd->af,
6699 pd->dst, pd->src, th->th_dport,
6700 th->th_sport, ntohl(th->th_ack), 0,
6701 TH_RST, 0, 0,
6702 (*state)->rule->return_ttl, M_SKIP_FIREWALL,
6703 0, 0, (*state)->act.rtableid);
6704 src->seqlo = 0;
6705 src->seqhi = 1;
6706 src->max_win = 1;
6707 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
6708 printf("pf: BAD state: ");
6709 pf_print_state(*state);
6710 pf_print_flags(tcp_get_flags(th));
6711 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
6712 "pkts=%llu:%llu dir=%s,%s\n",
6713 seq, orig_seq, ack, pd->p_len, ackskew,
6714 (unsigned long long)(*state)->packets[0],
6715 (unsigned long long)(*state)->packets[1],
6716 pd->dir == PF_IN ? "in" : "out",
6717 pd->dir == (*state)->direction ? "fwd" : "rev");
6718 printf("pf: State failure on: %c %c %c %c | %c %c\n",
6719 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
6720 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
6721 ' ': '2',
6722 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
6723 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
6724 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
6725 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
6726 }
6727 REASON_SET(reason, PFRES_BADSTATE);
6728 return (PF_DROP);
6729 }
6730
6731 return (PF_PASS);
6732 }
6733
6734 static int
pf_tcp_track_sloppy(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6735 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
6736 {
6737 struct tcphdr *th = &pd->hdr.tcp;
6738 struct pf_state_peer *src, *dst;
6739 u_int8_t psrc, pdst;
6740
6741 if (pd->dir == (*state)->direction) {
6742 src = &(*state)->src;
6743 dst = &(*state)->dst;
6744 psrc = PF_PEER_SRC;
6745 pdst = PF_PEER_DST;
6746 } else {
6747 src = &(*state)->dst;
6748 dst = &(*state)->src;
6749 psrc = PF_PEER_DST;
6750 pdst = PF_PEER_SRC;
6751 }
6752
6753 if (tcp_get_flags(th) & TH_SYN)
6754 if (src->state < TCPS_SYN_SENT)
6755 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6756 if (tcp_get_flags(th) & TH_FIN)
6757 if (src->state < TCPS_CLOSING)
6758 pf_set_protostate(*state, psrc, TCPS_CLOSING);
6759 if (tcp_get_flags(th) & TH_ACK) {
6760 if (dst->state == TCPS_SYN_SENT) {
6761 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
6762 if (src->state == TCPS_ESTABLISHED &&
6763 (*state)->src_node != NULL &&
6764 pf_src_connlimit(*state)) {
6765 REASON_SET(reason, PFRES_SRCLIMIT);
6766 return (PF_DROP);
6767 }
6768 } else if (dst->state == TCPS_CLOSING) {
6769 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
6770 } else if (src->state == TCPS_SYN_SENT &&
6771 dst->state < TCPS_SYN_SENT) {
6772 /*
6773 * Handle a special sloppy case where we only see one
6774 * half of the connection. If there is a ACK after
6775 * the initial SYN without ever seeing a packet from
6776 * the destination, set the connection to established.
6777 */
6778 pf_set_protostate(*state, PF_PEER_BOTH,
6779 TCPS_ESTABLISHED);
6780 dst->state = src->state = TCPS_ESTABLISHED;
6781 if ((*state)->src_node != NULL &&
6782 pf_src_connlimit(*state)) {
6783 REASON_SET(reason, PFRES_SRCLIMIT);
6784 return (PF_DROP);
6785 }
6786 } else if (src->state == TCPS_CLOSING &&
6787 dst->state == TCPS_ESTABLISHED &&
6788 dst->seqlo == 0) {
6789 /*
6790 * Handle the closing of half connections where we
6791 * don't see the full bidirectional FIN/ACK+ACK
6792 * handshake.
6793 */
6794 pf_set_protostate(*state, pdst, TCPS_CLOSING);
6795 }
6796 }
6797 if (tcp_get_flags(th) & TH_RST)
6798 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6799
6800 /* update expire time */
6801 (*state)->expire = pf_get_uptime();
6802 if (src->state >= TCPS_FIN_WAIT_2 &&
6803 dst->state >= TCPS_FIN_WAIT_2)
6804 (*state)->timeout = PFTM_TCP_CLOSED;
6805 else if (src->state >= TCPS_CLOSING &&
6806 dst->state >= TCPS_CLOSING)
6807 (*state)->timeout = PFTM_TCP_FIN_WAIT;
6808 else if (src->state < TCPS_ESTABLISHED ||
6809 dst->state < TCPS_ESTABLISHED)
6810 (*state)->timeout = PFTM_TCP_OPENING;
6811 else if (src->state >= TCPS_CLOSING ||
6812 dst->state >= TCPS_CLOSING)
6813 (*state)->timeout = PFTM_TCP_CLOSING;
6814 else
6815 (*state)->timeout = PFTM_TCP_ESTABLISHED;
6816
6817 return (PF_PASS);
6818 }
6819
6820 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate ** state,u_short * reason)6821 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
6822 {
6823 struct pf_state_key *sk = (*state)->key[pd->didx];
6824 struct tcphdr *th = &pd->hdr.tcp;
6825
6826 if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
6827 if (pd->dir != (*state)->direction) {
6828 REASON_SET(reason, PFRES_SYNPROXY);
6829 return (PF_SYNPROXY_DROP);
6830 }
6831 if (tcp_get_flags(th) & TH_SYN) {
6832 if (ntohl(th->th_seq) != (*state)->src.seqlo) {
6833 REASON_SET(reason, PFRES_SYNPROXY);
6834 return (PF_DROP);
6835 }
6836 pf_send_tcp((*state)->rule, pd->af, pd->dst,
6837 pd->src, th->th_dport, th->th_sport,
6838 (*state)->src.seqhi, ntohl(th->th_seq) + 1,
6839 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0,
6840 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6841 REASON_SET(reason, PFRES_SYNPROXY);
6842 return (PF_SYNPROXY_DROP);
6843 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6844 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6845 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6846 REASON_SET(reason, PFRES_SYNPROXY);
6847 return (PF_DROP);
6848 } else if ((*state)->src_node != NULL &&
6849 pf_src_connlimit(*state)) {
6850 REASON_SET(reason, PFRES_SRCLIMIT);
6851 return (PF_DROP);
6852 } else
6853 pf_set_protostate(*state, PF_PEER_SRC,
6854 PF_TCPS_PROXY_DST);
6855 }
6856 if ((*state)->src.state == PF_TCPS_PROXY_DST) {
6857 if (pd->dir == (*state)->direction) {
6858 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
6859 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6860 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6861 REASON_SET(reason, PFRES_SYNPROXY);
6862 return (PF_DROP);
6863 }
6864 (*state)->src.max_win = MAX(ntohs(th->th_win), 1);
6865 if ((*state)->dst.seqhi == 1)
6866 (*state)->dst.seqhi = htonl(arc4random());
6867 pf_send_tcp((*state)->rule, pd->af,
6868 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6869 sk->port[pd->sidx], sk->port[pd->didx],
6870 (*state)->dst.seqhi, 0, TH_SYN, 0,
6871 (*state)->src.mss, 0,
6872 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6873 (*state)->tag, 0, (*state)->act.rtableid);
6874 REASON_SET(reason, PFRES_SYNPROXY);
6875 return (PF_SYNPROXY_DROP);
6876 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
6877 (TH_SYN|TH_ACK)) ||
6878 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
6879 REASON_SET(reason, PFRES_SYNPROXY);
6880 return (PF_DROP);
6881 } else {
6882 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
6883 (*state)->dst.seqlo = ntohl(th->th_seq);
6884 pf_send_tcp((*state)->rule, pd->af, pd->dst,
6885 pd->src, th->th_dport, th->th_sport,
6886 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6887 TH_ACK, (*state)->src.max_win, 0, 0, 0,
6888 (*state)->tag, 0, (*state)->act.rtableid);
6889 pf_send_tcp((*state)->rule, pd->af,
6890 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6891 sk->port[pd->sidx], sk->port[pd->didx],
6892 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
6893 TH_ACK, (*state)->dst.max_win, 0, 0,
6894 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6895 (*state)->src.seqdiff = (*state)->dst.seqhi -
6896 (*state)->src.seqlo;
6897 (*state)->dst.seqdiff = (*state)->src.seqhi -
6898 (*state)->dst.seqlo;
6899 (*state)->src.seqhi = (*state)->src.seqlo +
6900 (*state)->dst.max_win;
6901 (*state)->dst.seqhi = (*state)->dst.seqlo +
6902 (*state)->src.max_win;
6903 (*state)->src.wscale = (*state)->dst.wscale = 0;
6904 pf_set_protostate(*state, PF_PEER_BOTH,
6905 TCPS_ESTABLISHED);
6906 REASON_SET(reason, PFRES_SYNPROXY);
6907 return (PF_SYNPROXY_DROP);
6908 }
6909 }
6910
6911 return (PF_PASS);
6912 }
6913
6914 static int
pf_test_state_tcp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6915 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd,
6916 u_short *reason)
6917 {
6918 struct pf_state_key_cmp key;
6919 struct tcphdr *th = &pd->hdr.tcp;
6920 int copyback = 0;
6921 int action = PF_PASS;
6922 struct pf_state_peer *src, *dst;
6923
6924 bzero(&key, sizeof(key));
6925 key.af = pd->af;
6926 key.proto = IPPROTO_TCP;
6927 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
6928 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
6929 key.port[pd->sidx] = th->th_sport;
6930 key.port[pd->didx] = th->th_dport;
6931
6932 STATE_LOOKUP(&key, *state, pd);
6933
6934 if (pd->dir == (*state)->direction) {
6935 src = &(*state)->src;
6936 dst = &(*state)->dst;
6937 } else {
6938 src = &(*state)->dst;
6939 dst = &(*state)->src;
6940 }
6941
6942 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
6943 return (action);
6944
6945 if (dst->state >= TCPS_FIN_WAIT_2 &&
6946 src->state >= TCPS_FIN_WAIT_2 &&
6947 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) ||
6948 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK &&
6949 pf_syncookie_check(pd) && pd->dir == PF_IN))) {
6950 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6951 printf("pf: state reuse ");
6952 pf_print_state(*state);
6953 pf_print_flags(tcp_get_flags(th));
6954 printf("\n");
6955 }
6956 /* XXX make sure it's the same direction ?? */
6957 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
6958 pf_unlink_state(*state);
6959 *state = NULL;
6960 return (PF_DROP);
6961 }
6962
6963 if ((*state)->state_flags & PFSTATE_SLOPPY) {
6964 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
6965 return (PF_DROP);
6966 } else {
6967 int ret;
6968
6969 ret = pf_tcp_track_full(state, pd, reason,
6970 ©back);
6971 if (ret == PF_DROP)
6972 return (PF_DROP);
6973 }
6974
6975 /* translate source/destination address, if necessary */
6976 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6977 struct pf_state_key *nk;
6978 int afto, sidx, didx;
6979
6980 if (PF_REVERSED_KEY((*state)->key, pd->af))
6981 nk = (*state)->key[pd->sidx];
6982 else
6983 nk = (*state)->key[pd->didx];
6984
6985 afto = pd->af != nk->af;
6986 sidx = afto ? pd->didx : pd->sidx;
6987 didx = afto ? pd->sidx : pd->didx;
6988
6989 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
6990 nk->port[sidx] != th->th_sport)
6991 pf_change_ap(pd->m, pd->src, &th->th_sport,
6992 pd->ip_sum, &th->th_sum, &nk->addr[sidx],
6993 nk->port[sidx], 0, pd->af, nk->af);
6994
6995 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
6996 nk->port[didx] != th->th_dport)
6997 pf_change_ap(pd->m, pd->dst, &th->th_dport,
6998 pd->ip_sum, &th->th_sum, &nk->addr[didx],
6999 nk->port[didx], 0, pd->af, nk->af);
7000
7001 if (afto) {
7002 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7003 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7004 pd->naf = nk->af;
7005 action = PF_AFRT;
7006 }
7007
7008 copyback = 1;
7009 }
7010
7011 /* Copyback sequence modulation or stateful scrub changes if needed */
7012 if (copyback)
7013 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
7014
7015 return (action);
7016 }
7017
7018 static int
pf_test_state_udp(struct pf_kstate ** state,struct pf_pdesc * pd)7019 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd)
7020 {
7021 struct pf_state_peer *src, *dst;
7022 struct pf_state_key_cmp key;
7023 struct udphdr *uh = &pd->hdr.udp;
7024 uint8_t psrc, pdst;
7025 int action = PF_PASS;
7026
7027 bzero(&key, sizeof(key));
7028 key.af = pd->af;
7029 key.proto = IPPROTO_UDP;
7030 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
7031 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
7032 key.port[pd->sidx] = uh->uh_sport;
7033 key.port[pd->didx] = uh->uh_dport;
7034
7035 STATE_LOOKUP(&key, *state, pd);
7036
7037 if (pd->dir == (*state)->direction) {
7038 src = &(*state)->src;
7039 dst = &(*state)->dst;
7040 psrc = PF_PEER_SRC;
7041 pdst = PF_PEER_DST;
7042 } else {
7043 src = &(*state)->dst;
7044 dst = &(*state)->src;
7045 psrc = PF_PEER_DST;
7046 pdst = PF_PEER_SRC;
7047 }
7048
7049 /* update states */
7050 if (src->state < PFUDPS_SINGLE)
7051 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
7052 if (dst->state == PFUDPS_SINGLE)
7053 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
7054
7055 /* update expire time */
7056 (*state)->expire = pf_get_uptime();
7057 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
7058 (*state)->timeout = PFTM_UDP_MULTIPLE;
7059 else
7060 (*state)->timeout = PFTM_UDP_SINGLE;
7061
7062 /* translate source/destination address, if necessary */
7063 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7064 struct pf_state_key *nk;
7065 int afto, sidx, didx;
7066
7067 if (PF_REVERSED_KEY((*state)->key, pd->af))
7068 nk = (*state)->key[pd->sidx];
7069 else
7070 nk = (*state)->key[pd->didx];
7071
7072 afto = pd->af != nk->af;
7073 sidx = afto ? pd->didx : pd->sidx;
7074 didx = afto ? pd->sidx : pd->didx;
7075
7076 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7077 nk->port[sidx] != uh->uh_sport)
7078 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum,
7079 &uh->uh_sum, &nk->addr[pd->sidx],
7080 nk->port[sidx], 1, pd->af, nk->af);
7081
7082 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7083 nk->port[didx] != uh->uh_dport)
7084 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum,
7085 &uh->uh_sum, &nk->addr[pd->didx],
7086 nk->port[didx], 1, pd->af, nk->af);
7087
7088 if (afto) {
7089 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7090 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7091 pd->naf = nk->af;
7092 action = PF_AFRT;
7093 }
7094
7095 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh);
7096 }
7097
7098 return (action);
7099 }
7100
7101 static int
pf_sctp_track(struct pf_kstate * state,struct pf_pdesc * pd,u_short * reason)7102 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd,
7103 u_short *reason)
7104 {
7105 struct pf_state_peer *src;
7106 if (pd->dir == state->direction) {
7107 if (PF_REVERSED_KEY(state->key, pd->af))
7108 src = &state->dst;
7109 else
7110 src = &state->src;
7111 } else {
7112 if (PF_REVERSED_KEY(state->key, pd->af))
7113 src = &state->src;
7114 else
7115 src = &state->dst;
7116 }
7117
7118 if (src->scrub != NULL) {
7119 if (src->scrub->pfss_v_tag == 0)
7120 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
7121 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
7122 return (PF_DROP);
7123 }
7124
7125 return (PF_PASS);
7126 }
7127
7128 static int
pf_test_state_sctp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7129 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd,
7130 u_short *reason)
7131 {
7132 struct pf_state_key_cmp key;
7133 struct pf_state_peer *src, *dst;
7134 struct sctphdr *sh = &pd->hdr.sctp;
7135 u_int8_t psrc; //, pdst;
7136
7137 bzero(&key, sizeof(key));
7138 key.af = pd->af;
7139 key.proto = IPPROTO_SCTP;
7140 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
7141 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
7142 key.port[pd->sidx] = sh->src_port;
7143 key.port[pd->didx] = sh->dest_port;
7144
7145 STATE_LOOKUP(&key, *state, pd);
7146
7147 if (pd->dir == (*state)->direction) {
7148 src = &(*state)->src;
7149 dst = &(*state)->dst;
7150 psrc = PF_PEER_SRC;
7151 } else {
7152 src = &(*state)->dst;
7153 dst = &(*state)->src;
7154 psrc = PF_PEER_DST;
7155 }
7156
7157 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
7158 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
7159 pd->sctp_flags & PFDESC_SCTP_INIT) {
7160 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
7161 pf_unlink_state(*state);
7162 *state = NULL;
7163 return (PF_DROP);
7164 }
7165
7166 if (pf_sctp_track(*state, pd, reason) != PF_PASS)
7167 return (PF_DROP);
7168
7169 /* Track state. */
7170 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
7171 if (src->state < SCTP_COOKIE_WAIT) {
7172 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
7173 (*state)->timeout = PFTM_SCTP_OPENING;
7174 }
7175 }
7176 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
7177 MPASS(dst->scrub != NULL);
7178 if (dst->scrub->pfss_v_tag == 0)
7179 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
7180 }
7181
7182 /*
7183 * Bind to the correct interface if we're if-bound. For multihomed
7184 * extra associations we don't know which interface that will be until
7185 * here, so we've inserted the state on V_pf_all. Fix that now.
7186 */
7187 if ((*state)->kif == V_pfi_all &&
7188 (*state)->rule->rule_flag & PFRULE_IFBOUND)
7189 (*state)->kif = pd->kif;
7190
7191 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
7192 if (src->state < SCTP_ESTABLISHED) {
7193 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
7194 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
7195 }
7196 }
7197 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN |
7198 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
7199 if (src->state < SCTP_SHUTDOWN_PENDING) {
7200 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
7201 (*state)->timeout = PFTM_SCTP_CLOSING;
7202 }
7203 }
7204 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) {
7205 pf_set_protostate(*state, psrc, SCTP_CLOSED);
7206 (*state)->timeout = PFTM_SCTP_CLOSED;
7207 }
7208
7209 (*state)->expire = pf_get_uptime();
7210
7211 /* translate source/destination address, if necessary */
7212 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7213 uint16_t checksum = 0;
7214 struct pf_state_key *nk;
7215 int afto, sidx, didx;
7216
7217 if (PF_REVERSED_KEY((*state)->key, pd->af))
7218 nk = (*state)->key[pd->sidx];
7219 else
7220 nk = (*state)->key[pd->didx];
7221
7222 afto = pd->af != nk->af;
7223 sidx = afto ? pd->didx : pd->sidx;
7224 didx = afto ? pd->sidx : pd->didx;
7225
7226 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) ||
7227 nk->port[sidx] != pd->hdr.sctp.src_port) {
7228 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port,
7229 pd->ip_sum, &checksum, &nk->addr[sidx],
7230 nk->port[sidx], 1, pd->af, pd->naf);
7231 }
7232
7233 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) ||
7234 nk->port[didx] != pd->hdr.sctp.dest_port) {
7235 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port,
7236 pd->ip_sum, &checksum, &nk->addr[didx],
7237 nk->port[didx], 1, pd->af, pd->naf);
7238 }
7239
7240 if (afto) {
7241 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7242 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7243 pd->naf = nk->af;
7244 return (PF_AFRT);
7245 }
7246 }
7247
7248 return (PF_PASS);
7249 }
7250
7251 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)7252 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
7253 {
7254 struct pf_sctp_endpoint key;
7255 struct pf_sctp_endpoint *ep;
7256 struct pf_state_key *sks = s->key[PF_SK_STACK];
7257 struct pf_sctp_source *i, *tmp;
7258
7259 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
7260 return;
7261
7262 PF_SCTP_ENDPOINTS_LOCK();
7263
7264 key.v_tag = s->dst.scrub->pfss_v_tag;
7265 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7266 if (ep != NULL) {
7267 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7268 if (pf_addr_cmp(&i->addr,
7269 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
7270 s->key[PF_SK_WIRE]->af) == 0) {
7271 SDT_PROBE3(pf, sctp, multihome, remove,
7272 key.v_tag, s, i);
7273 TAILQ_REMOVE(&ep->sources, i, entry);
7274 free(i, M_PFTEMP);
7275 break;
7276 }
7277 }
7278
7279 if (TAILQ_EMPTY(&ep->sources)) {
7280 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7281 free(ep, M_PFTEMP);
7282 }
7283 }
7284
7285 /* Other direction. */
7286 key.v_tag = s->src.scrub->pfss_v_tag;
7287 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7288 if (ep != NULL) {
7289 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
7290 if (pf_addr_cmp(&i->addr,
7291 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
7292 s->key[PF_SK_WIRE]->af) == 0) {
7293 SDT_PROBE3(pf, sctp, multihome, remove,
7294 key.v_tag, s, i);
7295 TAILQ_REMOVE(&ep->sources, i, entry);
7296 free(i, M_PFTEMP);
7297 break;
7298 }
7299 }
7300
7301 if (TAILQ_EMPTY(&ep->sources)) {
7302 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7303 free(ep, M_PFTEMP);
7304 }
7305 }
7306
7307 PF_SCTP_ENDPOINTS_UNLOCK();
7308 }
7309
7310 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)7311 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
7312 {
7313 struct pf_sctp_endpoint key = {
7314 .v_tag = v_tag,
7315 };
7316 struct pf_sctp_source *i;
7317 struct pf_sctp_endpoint *ep;
7318
7319 PF_SCTP_ENDPOINTS_LOCK();
7320
7321 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7322 if (ep == NULL) {
7323 ep = malloc(sizeof(struct pf_sctp_endpoint),
7324 M_PFTEMP, M_NOWAIT);
7325 if (ep == NULL) {
7326 PF_SCTP_ENDPOINTS_UNLOCK();
7327 return;
7328 }
7329
7330 ep->v_tag = v_tag;
7331 TAILQ_INIT(&ep->sources);
7332 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
7333 }
7334
7335 /* Avoid inserting duplicates. */
7336 TAILQ_FOREACH(i, &ep->sources, entry) {
7337 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
7338 PF_SCTP_ENDPOINTS_UNLOCK();
7339 return;
7340 }
7341 }
7342
7343 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
7344 if (i == NULL) {
7345 PF_SCTP_ENDPOINTS_UNLOCK();
7346 return;
7347 }
7348
7349 i->af = pd->af;
7350 memcpy(&i->addr, a, sizeof(*a));
7351 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
7352 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
7353
7354 PF_SCTP_ENDPOINTS_UNLOCK();
7355 }
7356
7357 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)7358 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
7359 struct pf_kstate *s, int action)
7360 {
7361 struct pf_sctp_multihome_job *j, *tmp;
7362 struct pf_sctp_source *i;
7363 int ret __unused;
7364 struct pf_kstate *sm = NULL;
7365 struct pf_krule *ra = NULL;
7366 struct pf_krule *r = &V_pf_default_rule;
7367 struct pf_kruleset *rs = NULL;
7368 bool do_extra = true;
7369
7370 PF_RULES_RLOCK_TRACKER;
7371
7372 again:
7373 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
7374 if (s == NULL || action != PF_PASS)
7375 goto free;
7376
7377 /* Confirm we don't recurse here. */
7378 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
7379
7380 switch (j->op) {
7381 case SCTP_ADD_IP_ADDRESS: {
7382 uint32_t v_tag = pd->sctp_initiate_tag;
7383
7384 if (v_tag == 0) {
7385 if (s->direction == pd->dir)
7386 v_tag = s->src.scrub->pfss_v_tag;
7387 else
7388 v_tag = s->dst.scrub->pfss_v_tag;
7389 }
7390
7391 /*
7392 * Avoid duplicating states. We'll already have
7393 * created a state based on the source address of
7394 * the packet, but SCTP endpoints may also list this
7395 * address again in the INIT(_ACK) parameters.
7396 */
7397 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
7398 break;
7399 }
7400
7401 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
7402 PF_RULES_RLOCK();
7403 sm = NULL;
7404 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) {
7405 j->pd.related_rule = s->rule;
7406 }
7407 ret = pf_test_rule(&r, &sm,
7408 &j->pd, &ra, &rs, NULL);
7409 PF_RULES_RUNLOCK();
7410 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
7411 if (ret != PF_DROP && sm != NULL) {
7412 /* Inherit v_tag values. */
7413 if (sm->direction == s->direction) {
7414 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7415 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7416 } else {
7417 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
7418 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
7419 }
7420 PF_STATE_UNLOCK(sm);
7421 } else {
7422 /* If we try duplicate inserts? */
7423 break;
7424 }
7425
7426 /* Only add the address if we've actually allowed the state. */
7427 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
7428
7429 if (! do_extra) {
7430 break;
7431 }
7432 /*
7433 * We need to do this for each of our source addresses.
7434 * Find those based on the verification tag.
7435 */
7436 struct pf_sctp_endpoint key = {
7437 .v_tag = pd->hdr.sctp.v_tag,
7438 };
7439 struct pf_sctp_endpoint *ep;
7440
7441 PF_SCTP_ENDPOINTS_LOCK();
7442 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
7443 if (ep == NULL) {
7444 PF_SCTP_ENDPOINTS_UNLOCK();
7445 break;
7446 }
7447 MPASS(ep != NULL);
7448
7449 TAILQ_FOREACH(i, &ep->sources, entry) {
7450 struct pf_sctp_multihome_job *nj;
7451
7452 /* SCTP can intermingle IPv4 and IPv6. */
7453 if (i->af != pd->af)
7454 continue;
7455
7456 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
7457 if (! nj) {
7458 continue;
7459 }
7460 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
7461 memcpy(&nj->src, &j->src, sizeof(nj->src));
7462 nj->pd.src = &nj->src;
7463 // New destination address!
7464 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
7465 nj->pd.dst = &nj->dst;
7466 nj->pd.m = j->pd.m;
7467 nj->op = j->op;
7468
7469 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
7470 }
7471 PF_SCTP_ENDPOINTS_UNLOCK();
7472
7473 break;
7474 }
7475 case SCTP_DEL_IP_ADDRESS: {
7476 struct pf_state_key_cmp key;
7477 uint8_t psrc;
7478
7479 bzero(&key, sizeof(key));
7480 key.af = j->pd.af;
7481 key.proto = IPPROTO_SCTP;
7482 if (j->pd.dir == PF_IN) { /* wire side, straight */
7483 PF_ACPY(&key.addr[0], j->pd.src, key.af);
7484 PF_ACPY(&key.addr[1], j->pd.dst, key.af);
7485 key.port[0] = j->pd.hdr.sctp.src_port;
7486 key.port[1] = j->pd.hdr.sctp.dest_port;
7487 } else { /* stack side, reverse */
7488 PF_ACPY(&key.addr[1], j->pd.src, key.af);
7489 PF_ACPY(&key.addr[0], j->pd.dst, key.af);
7490 key.port[1] = j->pd.hdr.sctp.src_port;
7491 key.port[0] = j->pd.hdr.sctp.dest_port;
7492 }
7493
7494 sm = pf_find_state(kif, &key, j->pd.dir);
7495 if (sm != NULL) {
7496 PF_STATE_LOCK_ASSERT(sm);
7497 if (j->pd.dir == sm->direction) {
7498 psrc = PF_PEER_SRC;
7499 } else {
7500 psrc = PF_PEER_DST;
7501 }
7502 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
7503 sm->timeout = PFTM_SCTP_CLOSING;
7504 PF_STATE_UNLOCK(sm);
7505 }
7506 break;
7507 default:
7508 panic("Unknown op %#x", j->op);
7509 }
7510 }
7511
7512 free:
7513 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
7514 free(j, M_PFTEMP);
7515 }
7516
7517 /* We may have inserted extra work while processing the list. */
7518 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
7519 do_extra = false;
7520 goto again;
7521 }
7522 }
7523
7524 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)7525 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
7526 {
7527 int off = 0;
7528 struct pf_sctp_multihome_job *job;
7529
7530 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op);
7531
7532 while (off < len) {
7533 struct sctp_paramhdr h;
7534
7535 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
7536 pd->af))
7537 return (PF_DROP);
7538
7539 /* Parameters are at least 4 bytes. */
7540 if (ntohs(h.param_length) < 4)
7541 return (PF_DROP);
7542
7543 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type),
7544 ntohs(h.param_length));
7545
7546 switch (ntohs(h.param_type)) {
7547 case SCTP_IPV4_ADDRESS: {
7548 struct in_addr t;
7549
7550 if (ntohs(h.param_length) !=
7551 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7552 return (PF_DROP);
7553
7554 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7555 NULL, NULL, pd->af))
7556 return (PF_DROP);
7557
7558 if (in_nullhost(t))
7559 t.s_addr = pd->src->v4.s_addr;
7560
7561 /*
7562 * We hold the state lock (idhash) here, which means
7563 * that we can't acquire the keyhash, or we'll get a
7564 * LOR (and potentially double-lock things too). We also
7565 * can't release the state lock here, so instead we'll
7566 * enqueue this for async handling.
7567 * There's a relatively small race here, in that a
7568 * packet using the new addresses could arrive already,
7569 * but that's just though luck for it.
7570 */
7571 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7572 if (! job)
7573 return (PF_DROP);
7574
7575 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op);
7576
7577 memcpy(&job->pd, pd, sizeof(*pd));
7578
7579 // New source address!
7580 memcpy(&job->src, &t, sizeof(t));
7581 job->pd.src = &job->src;
7582 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7583 job->pd.dst = &job->dst;
7584 job->pd.m = pd->m;
7585 job->op = op;
7586
7587 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7588 break;
7589 }
7590 #ifdef INET6
7591 case SCTP_IPV6_ADDRESS: {
7592 struct in6_addr t;
7593
7594 if (ntohs(h.param_length) !=
7595 (sizeof(struct sctp_paramhdr) + sizeof(t)))
7596 return (PF_DROP);
7597
7598 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
7599 NULL, NULL, pd->af))
7600 return (PF_DROP);
7601 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
7602 break;
7603 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
7604 memcpy(&t, &pd->src->v6, sizeof(t));
7605
7606 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
7607 if (! job)
7608 return (PF_DROP);
7609
7610 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op);
7611
7612 memcpy(&job->pd, pd, sizeof(*pd));
7613 memcpy(&job->src, &t, sizeof(t));
7614 job->pd.src = &job->src;
7615 memcpy(&job->dst, pd->dst, sizeof(job->dst));
7616 job->pd.dst = &job->dst;
7617 job->pd.m = pd->m;
7618 job->op = op;
7619
7620 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
7621 break;
7622 }
7623 #endif
7624 case SCTP_ADD_IP_ADDRESS: {
7625 int ret;
7626 struct sctp_asconf_paramhdr ah;
7627
7628 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7629 NULL, NULL, pd->af))
7630 return (PF_DROP);
7631
7632 ret = pf_multihome_scan(start + off + sizeof(ah),
7633 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7634 SCTP_ADD_IP_ADDRESS);
7635 if (ret != PF_PASS)
7636 return (ret);
7637 break;
7638 }
7639 case SCTP_DEL_IP_ADDRESS: {
7640 int ret;
7641 struct sctp_asconf_paramhdr ah;
7642
7643 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
7644 NULL, NULL, pd->af))
7645 return (PF_DROP);
7646 ret = pf_multihome_scan(start + off + sizeof(ah),
7647 ntohs(ah.ph.param_length) - sizeof(ah), pd,
7648 SCTP_DEL_IP_ADDRESS);
7649 if (ret != PF_PASS)
7650 return (ret);
7651 break;
7652 }
7653 default:
7654 break;
7655 }
7656
7657 off += roundup(ntohs(h.param_length), 4);
7658 }
7659
7660 return (PF_PASS);
7661 }
7662
7663 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)7664 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
7665 {
7666 start += sizeof(struct sctp_init_chunk);
7667 len -= sizeof(struct sctp_init_chunk);
7668
7669 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7670 }
7671
7672 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)7673 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
7674 {
7675 start += sizeof(struct sctp_asconf_chunk);
7676 len -= sizeof(struct sctp_asconf_chunk);
7677
7678 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
7679 }
7680
7681 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,int direction,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)7682 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
7683 struct pf_kstate **state, int direction,
7684 u_int16_t icmpid, u_int16_t type, int icmp_dir,
7685 int *iidx, int multi, int inner)
7686 {
7687 key->af = pd->af;
7688 key->proto = pd->proto;
7689 if (icmp_dir == PF_IN) {
7690 *iidx = pd->sidx;
7691 key->port[pd->sidx] = icmpid;
7692 key->port[pd->didx] = type;
7693 } else {
7694 *iidx = pd->didx;
7695 key->port[pd->sidx] = type;
7696 key->port[pd->didx] = icmpid;
7697 }
7698 if (pf_state_key_addr_setup(pd, key, multi))
7699 return (PF_DROP);
7700
7701 STATE_LOOKUP(key, *state, pd);
7702
7703 if ((*state)->state_flags & PFSTATE_SLOPPY)
7704 return (-1);
7705
7706 /* Is this ICMP message flowing in right direction? */
7707 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af)
7708 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ?
7709 PF_IN : PF_OUT;
7710 else
7711 direction = (*state)->direction;
7712 if ((*state)->rule->type &&
7713 (((!inner && direction == pd->dir) ||
7714 (inner && direction != pd->dir)) ?
7715 PF_IN : PF_OUT) != icmp_dir) {
7716 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7717 printf("pf: icmp type %d in wrong direction (%d): ",
7718 ntohs(type), icmp_dir);
7719 pf_print_state(*state);
7720 printf("\n");
7721 }
7722 PF_STATE_UNLOCK(*state);
7723 *state = NULL;
7724 return (PF_DROP);
7725 }
7726 return (-1);
7727 }
7728
7729 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)7730 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
7731 u_short *reason)
7732 {
7733 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
7734 u_int16_t *icmpsum, virtual_id, virtual_type;
7735 u_int8_t icmptype, icmpcode;
7736 int icmp_dir, iidx, ret, multi;
7737 struct pf_state_key_cmp key;
7738 #ifdef INET
7739 u_int16_t icmpid;
7740 #endif
7741
7742 MPASS(*state == NULL);
7743
7744 bzero(&key, sizeof(key));
7745 switch (pd->proto) {
7746 #ifdef INET
7747 case IPPROTO_ICMP:
7748 icmptype = pd->hdr.icmp.icmp_type;
7749 icmpcode = pd->hdr.icmp.icmp_code;
7750 icmpid = pd->hdr.icmp.icmp_id;
7751 icmpsum = &pd->hdr.icmp.icmp_cksum;
7752 break;
7753 #endif /* INET */
7754 #ifdef INET6
7755 case IPPROTO_ICMPV6:
7756 icmptype = pd->hdr.icmp6.icmp6_type;
7757 icmpcode = pd->hdr.icmp6.icmp6_code;
7758 #ifdef INET
7759 icmpid = pd->hdr.icmp6.icmp6_id;
7760 #endif
7761 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
7762 break;
7763 #endif /* INET6 */
7764 }
7765
7766 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi,
7767 &virtual_id, &virtual_type) == 0) {
7768 /*
7769 * ICMP query/reply message not related to a TCP/UDP/SCTP
7770 * packet. Search for an ICMP state.
7771 */
7772 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir,
7773 virtual_id, virtual_type, icmp_dir, &iidx,
7774 PF_ICMP_MULTI_NONE, 0);
7775 if (ret >= 0) {
7776 MPASS(*state == NULL);
7777 if (ret == PF_DROP && pd->af == AF_INET6 &&
7778 icmp_dir == PF_OUT) {
7779 ret = pf_icmp_state_lookup(&key, pd, state,
7780 pd->dir, virtual_id, virtual_type,
7781 icmp_dir, &iidx, multi, 0);
7782 if (ret >= 0) {
7783 MPASS(*state == NULL);
7784 return (ret);
7785 }
7786 } else
7787 return (ret);
7788 }
7789
7790 (*state)->expire = pf_get_uptime();
7791 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
7792
7793 /* translate source/destination address, if necessary */
7794 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7795 struct pf_state_key *nk;
7796 int afto, sidx, didx;
7797
7798 if (PF_REVERSED_KEY((*state)->key, pd->af))
7799 nk = (*state)->key[pd->sidx];
7800 else
7801 nk = (*state)->key[pd->didx];
7802
7803 afto = pd->af != nk->af;
7804 sidx = afto ? pd->didx : pd->sidx;
7805 didx = afto ? pd->sidx : pd->didx;
7806 iidx = afto ? !iidx : iidx;
7807
7808 switch (pd->af) {
7809 #ifdef INET
7810 case AF_INET:
7811 #ifdef INET6
7812 if (afto) {
7813 if (pf_translate_icmp_af(AF_INET6,
7814 &pd->hdr.icmp))
7815 return (PF_DROP);
7816 pd->proto = IPPROTO_ICMPV6;
7817 }
7818 #endif
7819 if (!afto &&
7820 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET))
7821 pf_change_a(&saddr->v4.s_addr,
7822 pd->ip_sum,
7823 nk->addr[sidx].v4.s_addr,
7824 0);
7825
7826 if (!afto && PF_ANEQ(pd->dst,
7827 &nk->addr[didx], AF_INET))
7828 pf_change_a(&daddr->v4.s_addr,
7829 pd->ip_sum,
7830 nk->addr[didx].v4.s_addr, 0);
7831
7832 if (nk->port[iidx] !=
7833 pd->hdr.icmp.icmp_id) {
7834 pd->hdr.icmp.icmp_cksum =
7835 pf_cksum_fixup(
7836 pd->hdr.icmp.icmp_cksum, icmpid,
7837 nk->port[iidx], 0);
7838 pd->hdr.icmp.icmp_id =
7839 nk->port[iidx];
7840 }
7841
7842 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7843 (caddr_t )&pd->hdr.icmp);
7844 break;
7845 #endif /* INET */
7846 #ifdef INET6
7847 case AF_INET6:
7848 #ifdef INET
7849 if (afto) {
7850 if (pf_translate_icmp_af(AF_INET,
7851 &pd->hdr.icmp6))
7852 return (PF_DROP);
7853 pd->proto = IPPROTO_ICMP;
7854 }
7855 #endif
7856 if (!afto &&
7857 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6))
7858 pf_change_a6(saddr,
7859 &pd->hdr.icmp6.icmp6_cksum,
7860 &nk->addr[sidx], 0);
7861
7862 if (!afto && PF_ANEQ(pd->dst,
7863 &nk->addr[didx], AF_INET6))
7864 pf_change_a6(daddr,
7865 &pd->hdr.icmp6.icmp6_cksum,
7866 &nk->addr[didx], 0);
7867
7868 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id)
7869 pd->hdr.icmp6.icmp6_id =
7870 nk->port[iidx];
7871
7872 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7873 (caddr_t )&pd->hdr.icmp6);
7874 break;
7875 #endif /* INET6 */
7876 }
7877 if (afto) {
7878 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af);
7879 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af);
7880 pd->naf = nk->af;
7881 return (PF_AFRT);
7882 }
7883 }
7884 return (PF_PASS);
7885
7886 } else {
7887 /*
7888 * ICMP error message in response to a TCP/UDP packet.
7889 * Extract the inner TCP/UDP header and search for that state.
7890 */
7891
7892 struct pf_pdesc pd2;
7893 bzero(&pd2, sizeof pd2);
7894 #ifdef INET
7895 struct ip h2;
7896 #endif /* INET */
7897 #ifdef INET6
7898 struct ip6_hdr h2_6;
7899 #endif /* INET6 */
7900 int ipoff2 = 0;
7901
7902 pd2.af = pd->af;
7903 pd2.dir = pd->dir;
7904 /* Payload packet is from the opposite direction. */
7905 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7906 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7907 pd2.m = pd->m;
7908 switch (pd->af) {
7909 #ifdef INET
7910 case AF_INET:
7911 /* offset of h2 in mbuf chain */
7912 ipoff2 = pd->off + ICMP_MINLEN;
7913
7914 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7915 NULL, reason, pd2.af)) {
7916 DPFPRINTF(PF_DEBUG_MISC,
7917 ("pf: ICMP error message too short "
7918 "(ip)\n"));
7919 return (PF_DROP);
7920 }
7921 /*
7922 * ICMP error messages don't refer to non-first
7923 * fragments
7924 */
7925 if (h2.ip_off & htons(IP_OFFMASK)) {
7926 REASON_SET(reason, PFRES_FRAG);
7927 return (PF_DROP);
7928 }
7929
7930 /* offset of protocol header that follows h2 */
7931 pd2.off = ipoff2 + (h2.ip_hl << 2);
7932
7933 pd2.proto = h2.ip_p;
7934 pd2.tot_len = ntohs(h2.ip_len);
7935 pd2.src = (struct pf_addr *)&h2.ip_src;
7936 pd2.dst = (struct pf_addr *)&h2.ip_dst;
7937 pd2.ip_sum = &h2.ip_sum;
7938 break;
7939 #endif /* INET */
7940 #ifdef INET6
7941 case AF_INET6:
7942 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7943
7944 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7945 NULL, reason, pd2.af)) {
7946 DPFPRINTF(PF_DEBUG_MISC,
7947 ("pf: ICMP error message too short "
7948 "(ip6)\n"));
7949 return (PF_DROP);
7950 }
7951 pd2.off = ipoff2;
7952 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS)
7953 return (PF_DROP);
7954
7955 pd2.tot_len = ntohs(h2_6.ip6_plen) +
7956 sizeof(struct ip6_hdr);
7957 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7958 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7959 pd2.ip_sum = NULL;
7960 break;
7961 #endif /* INET6 */
7962 }
7963
7964 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7965 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7966 printf("pf: BAD ICMP %d:%d outer dst: ",
7967 icmptype, icmpcode);
7968 pf_print_host(pd->src, 0, pd->af);
7969 printf(" -> ");
7970 pf_print_host(pd->dst, 0, pd->af);
7971 printf(" inner src: ");
7972 pf_print_host(pd2.src, 0, pd2.af);
7973 printf(" -> ");
7974 pf_print_host(pd2.dst, 0, pd2.af);
7975 printf("\n");
7976 }
7977 REASON_SET(reason, PFRES_BADSTATE);
7978 return (PF_DROP);
7979 }
7980
7981 switch (pd2.proto) {
7982 case IPPROTO_TCP: {
7983 struct tcphdr th;
7984 u_int32_t seq;
7985 struct pf_state_peer *src, *dst;
7986 u_int8_t dws;
7987 int copyback = 0;
7988
7989 /*
7990 * Only the first 8 bytes of the TCP header can be
7991 * expected. Don't access any TCP header fields after
7992 * th_seq, an ackskew test is not possible.
7993 */
7994 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason,
7995 pd2.af)) {
7996 DPFPRINTF(PF_DEBUG_MISC,
7997 ("pf: ICMP error message too short "
7998 "(tcp)\n"));
7999 return (PF_DROP);
8000 }
8001
8002 key.af = pd2.af;
8003 key.proto = IPPROTO_TCP;
8004 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8005 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8006 key.port[pd2.sidx] = th.th_sport;
8007 key.port[pd2.didx] = th.th_dport;
8008
8009 STATE_LOOKUP(&key, *state, pd);
8010
8011 if (pd->dir == (*state)->direction) {
8012 if (PF_REVERSED_KEY((*state)->key, pd->af)) {
8013 src = &(*state)->src;
8014 dst = &(*state)->dst;
8015 } else {
8016 src = &(*state)->dst;
8017 dst = &(*state)->src;
8018 }
8019 } else {
8020 if (PF_REVERSED_KEY((*state)->key, pd->af)) {
8021 src = &(*state)->dst;
8022 dst = &(*state)->src;
8023 } else {
8024 src = &(*state)->src;
8025 dst = &(*state)->dst;
8026 }
8027 }
8028
8029 if (src->wscale && dst->wscale)
8030 dws = dst->wscale & PF_WSCALE_MASK;
8031 else
8032 dws = 0;
8033
8034 /* Demodulate sequence number */
8035 seq = ntohl(th.th_seq) - src->seqdiff;
8036 if (src->seqdiff) {
8037 pf_change_a(&th.th_seq, icmpsum,
8038 htonl(seq), 0);
8039 copyback = 1;
8040 }
8041
8042 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
8043 (!SEQ_GEQ(src->seqhi, seq) ||
8044 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
8045 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8046 printf("pf: BAD ICMP %d:%d ",
8047 icmptype, icmpcode);
8048 pf_print_host(pd->src, 0, pd->af);
8049 printf(" -> ");
8050 pf_print_host(pd->dst, 0, pd->af);
8051 printf(" state: ");
8052 pf_print_state(*state);
8053 printf(" seq=%u\n", seq);
8054 }
8055 REASON_SET(reason, PFRES_BADSTATE);
8056 return (PF_DROP);
8057 } else {
8058 if (V_pf_status.debug >= PF_DEBUG_MISC) {
8059 printf("pf: OK ICMP %d:%d ",
8060 icmptype, icmpcode);
8061 pf_print_host(pd->src, 0, pd->af);
8062 printf(" -> ");
8063 pf_print_host(pd->dst, 0, pd->af);
8064 printf(" state: ");
8065 pf_print_state(*state);
8066 printf(" seq=%u\n", seq);
8067 }
8068 }
8069
8070 /* translate source/destination address, if necessary */
8071 if ((*state)->key[PF_SK_WIRE] !=
8072 (*state)->key[PF_SK_STACK]) {
8073
8074 struct pf_state_key *nk;
8075
8076 if (PF_REVERSED_KEY((*state)->key, pd->af))
8077 nk = (*state)->key[pd->sidx];
8078 else
8079 nk = (*state)->key[pd->didx];
8080
8081 #if defined(INET) && defined(INET6)
8082 int afto, sidx, didx;
8083
8084 afto = pd->af != nk->af;
8085 sidx = afto ? pd2.didx : pd2.sidx;
8086 didx = afto ? pd2.sidx : pd2.didx;
8087
8088 if (afto) {
8089 if (pf_translate_icmp_af(nk->af,
8090 &pd->hdr.icmp))
8091 return (PF_DROP);
8092 m_copyback(pd->m, pd->off,
8093 sizeof(struct icmp6_hdr),
8094 (c_caddr_t)&pd->hdr.icmp6);
8095 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8096 &pd2, &nk->addr[sidx],
8097 &nk->addr[didx], pd->af,
8098 nk->af))
8099 return (PF_DROP);
8100 if (nk->af == AF_INET)
8101 pd->proto = IPPROTO_ICMP;
8102 else
8103 pd->proto = IPPROTO_ICMPV6;
8104 th.th_sport = nk->port[sidx];
8105 th.th_dport = nk->port[didx];
8106 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)&th);
8107 PF_ACPY(pd->src,
8108 &nk->addr[pd2.sidx], nk->af);
8109 PF_ACPY(pd->dst,
8110 &nk->addr[pd2.didx], nk->af);
8111 pd->naf = nk->af;
8112 return (PF_AFRT);
8113 }
8114 #endif
8115
8116 if (PF_ANEQ(pd2.src,
8117 &nk->addr[pd2.sidx], pd2.af) ||
8118 nk->port[pd2.sidx] != th.th_sport)
8119 pf_change_icmp(pd2.src, &th.th_sport,
8120 daddr, &nk->addr[pd2.sidx],
8121 nk->port[pd2.sidx], NULL,
8122 pd2.ip_sum, icmpsum,
8123 pd->ip_sum, 0, pd2.af);
8124
8125 if (PF_ANEQ(pd2.dst,
8126 &nk->addr[pd2.didx], pd2.af) ||
8127 nk->port[pd2.didx] != th.th_dport)
8128 pf_change_icmp(pd2.dst, &th.th_dport,
8129 saddr, &nk->addr[pd2.didx],
8130 nk->port[pd2.didx], NULL,
8131 pd2.ip_sum, icmpsum,
8132 pd->ip_sum, 0, pd2.af);
8133 copyback = 1;
8134 }
8135
8136 if (copyback) {
8137 switch (pd2.af) {
8138 #ifdef INET
8139 case AF_INET:
8140 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8141 (caddr_t )&pd->hdr.icmp);
8142 m_copyback(pd->m, ipoff2, sizeof(h2),
8143 (caddr_t )&h2);
8144 break;
8145 #endif /* INET */
8146 #ifdef INET6
8147 case AF_INET6:
8148 m_copyback(pd->m, pd->off,
8149 sizeof(struct icmp6_hdr),
8150 (caddr_t )&pd->hdr.icmp6);
8151 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8152 (caddr_t )&h2_6);
8153 break;
8154 #endif /* INET6 */
8155 }
8156 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th);
8157 }
8158
8159 return (PF_PASS);
8160 break;
8161 }
8162 case IPPROTO_UDP: {
8163 struct udphdr uh;
8164
8165 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh),
8166 NULL, reason, pd2.af)) {
8167 DPFPRINTF(PF_DEBUG_MISC,
8168 ("pf: ICMP error message too short "
8169 "(udp)\n"));
8170 return (PF_DROP);
8171 }
8172
8173 key.af = pd2.af;
8174 key.proto = IPPROTO_UDP;
8175 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8176 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8177 key.port[pd2.sidx] = uh.uh_sport;
8178 key.port[pd2.didx] = uh.uh_dport;
8179
8180 STATE_LOOKUP(&key, *state, pd);
8181
8182 /* translate source/destination address, if necessary */
8183 if ((*state)->key[PF_SK_WIRE] !=
8184 (*state)->key[PF_SK_STACK]) {
8185 struct pf_state_key *nk;
8186
8187 if (PF_REVERSED_KEY((*state)->key, pd->af))
8188 nk = (*state)->key[pd->sidx];
8189 else
8190 nk = (*state)->key[pd->didx];
8191
8192 #if defined(INET) && defined(INET6)
8193 int afto, sidx, didx;
8194
8195 afto = pd->af != nk->af;
8196 sidx = afto ? pd2.didx : pd2.sidx;
8197 didx = afto ? pd2.sidx : pd2.didx;
8198
8199 if (afto) {
8200 if (pf_translate_icmp_af(nk->af,
8201 &pd->hdr.icmp))
8202 return (PF_DROP);
8203 m_copyback(pd->m, pd->off,
8204 sizeof(struct icmp6_hdr),
8205 (c_caddr_t)&pd->hdr.icmp6);
8206 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8207 &pd2, &nk->addr[sidx],
8208 &nk->addr[didx], pd->af,
8209 nk->af))
8210 return (PF_DROP);
8211 if (nk->af == AF_INET)
8212 pd->proto = IPPROTO_ICMP;
8213 else
8214 pd->proto = IPPROTO_ICMPV6;
8215 pf_change_ap(pd->m, pd2.src, &uh.uh_sport,
8216 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.sidx],
8217 nk->port[sidx], 1, pd->af, nk->af);
8218 pf_change_ap(pd->m, pd2.dst, &uh.uh_dport,
8219 pd->ip_sum, &uh.uh_sum, &nk->addr[pd2.didx],
8220 nk->port[didx], 1, pd->af, nk->af);
8221 m_copyback(pd2.m, pd2.off, sizeof(uh),
8222 (c_caddr_t)&uh);
8223 PF_ACPY(&pd->nsaddr,
8224 &nk->addr[pd2.sidx], nk->af);
8225 PF_ACPY(&pd->ndaddr,
8226 &nk->addr[pd2.didx], nk->af);
8227 pd->naf = nk->af;
8228 return (PF_AFRT);
8229 }
8230 #endif
8231
8232 if (PF_ANEQ(pd2.src,
8233 &nk->addr[pd2.sidx], pd2.af) ||
8234 nk->port[pd2.sidx] != uh.uh_sport)
8235 pf_change_icmp(pd2.src, &uh.uh_sport,
8236 daddr, &nk->addr[pd2.sidx],
8237 nk->port[pd2.sidx], &uh.uh_sum,
8238 pd2.ip_sum, icmpsum,
8239 pd->ip_sum, 1, pd2.af);
8240
8241 if (PF_ANEQ(pd2.dst,
8242 &nk->addr[pd2.didx], pd2.af) ||
8243 nk->port[pd2.didx] != uh.uh_dport)
8244 pf_change_icmp(pd2.dst, &uh.uh_dport,
8245 saddr, &nk->addr[pd2.didx],
8246 nk->port[pd2.didx], &uh.uh_sum,
8247 pd2.ip_sum, icmpsum,
8248 pd->ip_sum, 1, pd2.af);
8249
8250 switch (pd2.af) {
8251 #ifdef INET
8252 case AF_INET:
8253 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8254 (caddr_t )&pd->hdr.icmp);
8255 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8256 break;
8257 #endif /* INET */
8258 #ifdef INET6
8259 case AF_INET6:
8260 m_copyback(pd->m, pd->off,
8261 sizeof(struct icmp6_hdr),
8262 (caddr_t )&pd->hdr.icmp6);
8263 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8264 (caddr_t )&h2_6);
8265 break;
8266 #endif /* INET6 */
8267 }
8268 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh);
8269 }
8270 return (PF_PASS);
8271 break;
8272 }
8273 #ifdef INET
8274 case IPPROTO_SCTP: {
8275 struct sctphdr sh;
8276 struct pf_state_peer *src;
8277 int copyback = 0;
8278
8279 if (! pf_pull_hdr(pd->m, pd2.off, &sh, sizeof(sh), NULL, reason,
8280 pd2.af)) {
8281 DPFPRINTF(PF_DEBUG_MISC,
8282 ("pf: ICMP error message too short "
8283 "(sctp)\n"));
8284 return (PF_DROP);
8285 }
8286
8287 key.af = pd2.af;
8288 key.proto = IPPROTO_SCTP;
8289 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8290 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8291 key.port[pd2.sidx] = sh.src_port;
8292 key.port[pd2.didx] = sh.dest_port;
8293
8294 STATE_LOOKUP(&key, *state, pd);
8295
8296 if (pd->dir == (*state)->direction) {
8297 if (PF_REVERSED_KEY((*state)->key, pd->af))
8298 src = &(*state)->src;
8299 else
8300 src = &(*state)->dst;
8301 } else {
8302 if (PF_REVERSED_KEY((*state)->key, pd->af))
8303 src = &(*state)->dst;
8304 else
8305 src = &(*state)->src;
8306 }
8307
8308 if (src->scrub->pfss_v_tag != sh.v_tag) {
8309 DPFPRINTF(PF_DEBUG_MISC,
8310 ("pf: ICMP error message has incorrect "
8311 "SCTP v_tag\n"));
8312 return (PF_DROP);
8313 }
8314
8315 /* translate source/destination address, if necessary */
8316 if ((*state)->key[PF_SK_WIRE] !=
8317 (*state)->key[PF_SK_STACK]) {
8318
8319 struct pf_state_key *nk;
8320
8321 if (PF_REVERSED_KEY((*state)->key, pd->af))
8322 nk = (*state)->key[pd->sidx];
8323 else
8324 nk = (*state)->key[pd->didx];
8325
8326 #if defined(INET) && defined(INET6)
8327 int afto, sidx, didx;
8328
8329 afto = pd->af != nk->af;
8330 sidx = afto ? pd2.didx : pd2.sidx;
8331 didx = afto ? pd2.sidx : pd2.didx;
8332
8333 if (afto) {
8334 if (pf_translate_icmp_af(nk->af,
8335 &pd->hdr.icmp))
8336 return (PF_DROP);
8337 m_copyback(pd->m, pd->off,
8338 sizeof(struct icmp6_hdr),
8339 (c_caddr_t)&pd->hdr.icmp6);
8340 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8341 &pd2, &nk->addr[sidx],
8342 &nk->addr[didx], pd->af,
8343 nk->af))
8344 return (PF_DROP);
8345 if (nk->af == AF_INET)
8346 pd->proto = IPPROTO_ICMP;
8347 else
8348 pd->proto = IPPROTO_ICMPV6;
8349 sh.src_port = nk->port[sidx];
8350 sh.dest_port = nk->port[didx];
8351 m_copyback(pd2.m, pd2.off, sizeof(sh), (c_caddr_t)&sh);
8352 PF_ACPY(pd->src,
8353 &nk->addr[pd2.sidx], nk->af);
8354 PF_ACPY(pd->dst,
8355 &nk->addr[pd2.didx], nk->af);
8356 pd->naf = nk->af;
8357 return (PF_AFRT);
8358 }
8359 #endif
8360
8361 if (PF_ANEQ(pd2.src,
8362 &nk->addr[pd2.sidx], pd2.af) ||
8363 nk->port[pd2.sidx] != sh.src_port)
8364 pf_change_icmp(pd2.src, &sh.src_port,
8365 daddr, &nk->addr[pd2.sidx],
8366 nk->port[pd2.sidx], NULL,
8367 pd2.ip_sum, icmpsum,
8368 pd->ip_sum, 0, pd2.af);
8369
8370 if (PF_ANEQ(pd2.dst,
8371 &nk->addr[pd2.didx], pd2.af) ||
8372 nk->port[pd2.didx] != sh.dest_port)
8373 pf_change_icmp(pd2.dst, &sh.dest_port,
8374 saddr, &nk->addr[pd2.didx],
8375 nk->port[pd2.didx], NULL,
8376 pd2.ip_sum, icmpsum,
8377 pd->ip_sum, 0, pd2.af);
8378 copyback = 1;
8379 }
8380
8381 if (copyback) {
8382 switch (pd2.af) {
8383 #ifdef INET
8384 case AF_INET:
8385 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8386 (caddr_t )&pd->hdr.icmp);
8387 m_copyback(pd->m, ipoff2, sizeof(h2),
8388 (caddr_t )&h2);
8389 break;
8390 #endif /* INET */
8391 #ifdef INET6
8392 case AF_INET6:
8393 m_copyback(pd->m, pd->off,
8394 sizeof(struct icmp6_hdr),
8395 (caddr_t )&pd->hdr.icmp6);
8396 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8397 (caddr_t )&h2_6);
8398 break;
8399 #endif /* INET6 */
8400 }
8401 m_copyback(pd->m, pd2.off, sizeof(sh), (caddr_t)&sh);
8402 }
8403
8404 return (PF_PASS);
8405 break;
8406 }
8407 case IPPROTO_ICMP: {
8408 struct icmp *iih = &pd2.hdr.icmp;
8409
8410 if (pd2.af != AF_INET) {
8411 REASON_SET(reason, PFRES_NORM);
8412 return (PF_DROP);
8413 }
8414
8415 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
8416 NULL, reason, pd2.af)) {
8417 DPFPRINTF(PF_DEBUG_MISC,
8418 ("pf: ICMP error message too short i"
8419 "(icmp)\n"));
8420 return (PF_DROP);
8421 }
8422
8423 icmpid = iih->icmp_id;
8424 pf_icmp_mapping(&pd2, iih->icmp_type,
8425 &icmp_dir, &multi, &virtual_id, &virtual_type);
8426
8427 ret = pf_icmp_state_lookup(&key, &pd2, state,
8428 pd2.dir, virtual_id, virtual_type,
8429 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
8430 if (ret >= 0) {
8431 MPASS(*state == NULL);
8432 return (ret);
8433 }
8434
8435 /* translate source/destination address, if necessary */
8436 if ((*state)->key[PF_SK_WIRE] !=
8437 (*state)->key[PF_SK_STACK]) {
8438 struct pf_state_key *nk;
8439
8440 if (PF_REVERSED_KEY((*state)->key, pd->af))
8441 nk = (*state)->key[pd->sidx];
8442 else
8443 nk = (*state)->key[pd->didx];
8444
8445 #if defined(INET) && defined(INET6)
8446 int afto, sidx, didx;
8447
8448 afto = pd->af != nk->af;
8449 sidx = afto ? pd2.didx : pd2.sidx;
8450 didx = afto ? pd2.sidx : pd2.didx;
8451 iidx = afto ? !iidx : iidx;
8452
8453 if (afto) {
8454 if (nk->af != AF_INET6)
8455 return (PF_DROP);
8456 if (pf_translate_icmp_af(nk->af,
8457 &pd->hdr.icmp))
8458 return (PF_DROP);
8459 m_copyback(pd->m, pd->off,
8460 sizeof(struct icmp6_hdr),
8461 (c_caddr_t)&pd->hdr.icmp6);
8462 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8463 &pd2, &nk->addr[sidx],
8464 &nk->addr[didx], pd->af,
8465 nk->af))
8466 return (PF_DROP);
8467 pd->proto = IPPROTO_ICMPV6;
8468 if (pf_translate_icmp_af(nk->af, &iih))
8469 return (PF_DROP);
8470 if (virtual_type == htons(ICMP_ECHO) &&
8471 nk->port[iidx] != iih->icmp_id)
8472 iih->icmp_id = nk->port[iidx];
8473 m_copyback(pd2.m, pd2.off, ICMP_MINLEN,
8474 (c_caddr_t)&iih);
8475 PF_ACPY(&pd->nsaddr,
8476 &nk->addr[pd2.sidx], nk->af);
8477 PF_ACPY(&pd->ndaddr,
8478 &nk->addr[pd2.didx], nk->af);
8479 pd->naf = nk->af;
8480 return (PF_AFRT);
8481 }
8482 #endif
8483
8484 if (PF_ANEQ(pd2.src,
8485 &nk->addr[pd2.sidx], pd2.af) ||
8486 (virtual_type == htons(ICMP_ECHO) &&
8487 nk->port[iidx] != iih->icmp_id))
8488 pf_change_icmp(pd2.src,
8489 (virtual_type == htons(ICMP_ECHO)) ?
8490 &iih->icmp_id : NULL,
8491 daddr, &nk->addr[pd2.sidx],
8492 (virtual_type == htons(ICMP_ECHO)) ?
8493 nk->port[iidx] : 0, NULL,
8494 pd2.ip_sum, icmpsum,
8495 pd->ip_sum, 0, AF_INET);
8496
8497 if (PF_ANEQ(pd2.dst,
8498 &nk->addr[pd2.didx], pd2.af))
8499 pf_change_icmp(pd2.dst, NULL, NULL,
8500 &nk->addr[pd2.didx], 0, NULL,
8501 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
8502 AF_INET);
8503
8504 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
8505 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8506 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
8507 }
8508 return (PF_PASS);
8509 break;
8510 }
8511 #endif /* INET */
8512 #ifdef INET6
8513 case IPPROTO_ICMPV6: {
8514 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
8515
8516 if (pd2.af != AF_INET6) {
8517 REASON_SET(reason, PFRES_NORM);
8518 return (PF_DROP);
8519 }
8520
8521 if (!pf_pull_hdr(pd->m, pd2.off, iih,
8522 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
8523 DPFPRINTF(PF_DEBUG_MISC,
8524 ("pf: ICMP error message too short "
8525 "(icmp6)\n"));
8526 return (PF_DROP);
8527 }
8528
8529 pf_icmp_mapping(&pd2, iih->icmp6_type,
8530 &icmp_dir, &multi, &virtual_id, &virtual_type);
8531
8532 ret = pf_icmp_state_lookup(&key, &pd2, state,
8533 pd->dir, virtual_id, virtual_type,
8534 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
8535 if (ret >= 0) {
8536 MPASS(*state == NULL);
8537 if (ret == PF_DROP && pd2.af == AF_INET6 &&
8538 icmp_dir == PF_OUT) {
8539 ret = pf_icmp_state_lookup(&key, &pd2,
8540 state, pd->dir,
8541 virtual_id, virtual_type,
8542 icmp_dir, &iidx, multi, 1);
8543 if (ret >= 0) {
8544 MPASS(*state == NULL);
8545 return (ret);
8546 }
8547 } else
8548 return (ret);
8549 }
8550
8551 /* translate source/destination address, if necessary */
8552 if ((*state)->key[PF_SK_WIRE] !=
8553 (*state)->key[PF_SK_STACK]) {
8554 struct pf_state_key *nk;
8555
8556 if (PF_REVERSED_KEY((*state)->key, pd->af))
8557 nk = (*state)->key[pd->sidx];
8558 else
8559 nk = (*state)->key[pd->didx];
8560
8561 #if defined(INET) && defined(INET6)
8562 int afto, sidx, didx;
8563
8564 afto = pd->af != nk->af;
8565 sidx = afto ? pd2.didx : pd2.sidx;
8566 didx = afto ? pd2.sidx : pd2.didx;
8567 iidx = afto ? !iidx : iidx;
8568
8569 if (afto) {
8570 if (nk->af != AF_INET)
8571 return (PF_DROP);
8572 if (pf_translate_icmp_af(nk->af,
8573 &pd->hdr.icmp))
8574 return (PF_DROP);
8575 m_copyback(pd->m, pd->off,
8576 sizeof(struct icmp6_hdr),
8577 (c_caddr_t)&pd->hdr.icmp6);
8578 if (pf_change_icmp_af(pd->m, ipoff2, pd,
8579 &pd2, &nk->addr[sidx],
8580 &nk->addr[didx], pd->af,
8581 nk->af))
8582 return (PF_DROP);
8583 pd->proto = IPPROTO_ICMP;
8584 if (pf_translate_icmp_af(nk->af, &iih))
8585 return (PF_DROP);
8586 if (virtual_type ==
8587 htons(ICMP6_ECHO_REQUEST) &&
8588 nk->port[iidx] != iih->icmp6_id)
8589 iih->icmp6_id = nk->port[iidx];
8590 m_copyback(pd2.m, pd2.off,
8591 sizeof(struct icmp6_hdr), (c_caddr_t)&iih);
8592 PF_ACPY(&pd->nsaddr,
8593 &nk->addr[pd2.sidx], nk->af);
8594 PF_ACPY(&pd->ndaddr,
8595 &nk->addr[pd2.didx], nk->af);
8596 pd->naf = nk->af;
8597 return (PF_AFRT);
8598 }
8599 #endif
8600
8601 if (PF_ANEQ(pd2.src,
8602 &nk->addr[pd2.sidx], pd2.af) ||
8603 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
8604 nk->port[pd2.sidx] != iih->icmp6_id))
8605 pf_change_icmp(pd2.src,
8606 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8607 ? &iih->icmp6_id : NULL,
8608 daddr, &nk->addr[pd2.sidx],
8609 (virtual_type == htons(ICMP6_ECHO_REQUEST))
8610 ? nk->port[iidx] : 0, NULL,
8611 pd2.ip_sum, icmpsum,
8612 pd->ip_sum, 0, AF_INET6);
8613
8614 if (PF_ANEQ(pd2.dst,
8615 &nk->addr[pd2.didx], pd2.af))
8616 pf_change_icmp(pd2.dst, NULL, NULL,
8617 &nk->addr[pd2.didx], 0, NULL,
8618 pd2.ip_sum, icmpsum,
8619 pd->ip_sum, 0, AF_INET6);
8620
8621 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
8622 (caddr_t)&pd->hdr.icmp6);
8623 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
8624 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
8625 (caddr_t)iih);
8626 }
8627 return (PF_PASS);
8628 break;
8629 }
8630 #endif /* INET6 */
8631 default: {
8632 key.af = pd2.af;
8633 key.proto = pd2.proto;
8634 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
8635 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
8636 key.port[0] = key.port[1] = 0;
8637
8638 STATE_LOOKUP(&key, *state, pd);
8639
8640 /* translate source/destination address, if necessary */
8641 if ((*state)->key[PF_SK_WIRE] !=
8642 (*state)->key[PF_SK_STACK]) {
8643 struct pf_state_key *nk =
8644 (*state)->key[pd->didx];
8645
8646 if (PF_ANEQ(pd2.src,
8647 &nk->addr[pd2.sidx], pd2.af))
8648 pf_change_icmp(pd2.src, NULL, daddr,
8649 &nk->addr[pd2.sidx], 0, NULL,
8650 pd2.ip_sum, icmpsum,
8651 pd->ip_sum, 0, pd2.af);
8652
8653 if (PF_ANEQ(pd2.dst,
8654 &nk->addr[pd2.didx], pd2.af))
8655 pf_change_icmp(pd2.dst, NULL, saddr,
8656 &nk->addr[pd2.didx], 0, NULL,
8657 pd2.ip_sum, icmpsum,
8658 pd->ip_sum, 0, pd2.af);
8659
8660 switch (pd2.af) {
8661 #ifdef INET
8662 case AF_INET:
8663 m_copyback(pd->m, pd->off, ICMP_MINLEN,
8664 (caddr_t)&pd->hdr.icmp);
8665 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
8666 break;
8667 #endif /* INET */
8668 #ifdef INET6
8669 case AF_INET6:
8670 m_copyback(pd->m, pd->off,
8671 sizeof(struct icmp6_hdr),
8672 (caddr_t )&pd->hdr.icmp6);
8673 m_copyback(pd->m, ipoff2, sizeof(h2_6),
8674 (caddr_t )&h2_6);
8675 break;
8676 #endif /* INET6 */
8677 }
8678 }
8679 return (PF_PASS);
8680 break;
8681 }
8682 }
8683 }
8684 }
8685
8686 static int
pf_test_state_other(struct pf_kstate ** state,struct pf_pdesc * pd)8687 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd)
8688 {
8689 struct pf_state_peer *src, *dst;
8690 struct pf_state_key_cmp key;
8691 uint8_t psrc, pdst;
8692 int action = PF_PASS;
8693
8694 bzero(&key, sizeof(key));
8695 key.af = pd->af;
8696 key.proto = pd->proto;
8697 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af);
8698 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af);
8699 key.port[0] = key.port[1] = 0;
8700
8701 STATE_LOOKUP(&key, *state, pd);
8702
8703 if (pd->dir == (*state)->direction) {
8704 src = &(*state)->src;
8705 dst = &(*state)->dst;
8706 psrc = PF_PEER_SRC;
8707 pdst = PF_PEER_DST;
8708 } else {
8709 src = &(*state)->dst;
8710 dst = &(*state)->src;
8711 psrc = PF_PEER_DST;
8712 pdst = PF_PEER_SRC;
8713 }
8714
8715 /* update states */
8716 if (src->state < PFOTHERS_SINGLE)
8717 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
8718 if (dst->state == PFOTHERS_SINGLE)
8719 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
8720
8721 /* update expire time */
8722 (*state)->expire = pf_get_uptime();
8723 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
8724 (*state)->timeout = PFTM_OTHER_MULTIPLE;
8725 else
8726 (*state)->timeout = PFTM_OTHER_SINGLE;
8727
8728 /* translate source/destination address, if necessary */
8729 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
8730 struct pf_state_key *nk;
8731 int afto;
8732
8733 if (PF_REVERSED_KEY((*state)->key, pd->af))
8734 nk = (*state)->key[pd->sidx];
8735 else
8736 nk = (*state)->key[pd->didx];
8737
8738 KASSERT(nk, ("%s: nk is null", __func__));
8739 KASSERT(pd, ("%s: pd is null", __func__));
8740 KASSERT(pd->src, ("%s: pd->src is null", __func__));
8741 KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
8742
8743 afto = pd->af != nk->af;
8744
8745 switch (pd->af) {
8746 #ifdef INET
8747 case AF_INET:
8748 if (!afto &&
8749 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
8750 pf_change_a(&pd->src->v4.s_addr,
8751 pd->ip_sum,
8752 nk->addr[pd->sidx].v4.s_addr,
8753 0);
8754
8755 if (!afto &&
8756 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
8757 pf_change_a(&pd->dst->v4.s_addr,
8758 pd->ip_sum,
8759 nk->addr[pd->didx].v4.s_addr,
8760 0);
8761
8762 break;
8763 #endif /* INET */
8764 #ifdef INET6
8765 case AF_INET6:
8766 if (!afto &&
8767 PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6))
8768 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
8769
8770 if (!afto &&
8771 PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6))
8772 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
8773 #endif /* INET6 */
8774 }
8775 if (afto) {
8776 PF_ACPY(&pd->nsaddr,
8777 &nk->addr[afto ? pd->didx : pd->sidx], nk->af);
8778 PF_ACPY(&pd->ndaddr,
8779 &nk->addr[afto ? pd->sidx : pd->didx], nk->af);
8780 pd->naf = nk->af;
8781 action = PF_AFRT;
8782 }
8783 }
8784 return (action);
8785 }
8786
8787 /*
8788 * ipoff and off are measured from the start of the mbuf chain.
8789 * h must be at "ipoff" on the mbuf chain.
8790 */
8791 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)8792 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
8793 u_short *actionp, u_short *reasonp, sa_family_t af)
8794 {
8795 switch (af) {
8796 #ifdef INET
8797 case AF_INET: {
8798 const struct ip *h = mtod(m, struct ip *);
8799 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
8800
8801 if (fragoff) {
8802 if (fragoff >= len)
8803 ACTION_SET(actionp, PF_PASS);
8804 else {
8805 ACTION_SET(actionp, PF_DROP);
8806 REASON_SET(reasonp, PFRES_FRAG);
8807 }
8808 return (NULL);
8809 }
8810 if (m->m_pkthdr.len < off + len ||
8811 ntohs(h->ip_len) < off + len) {
8812 ACTION_SET(actionp, PF_DROP);
8813 REASON_SET(reasonp, PFRES_SHORT);
8814 return (NULL);
8815 }
8816 break;
8817 }
8818 #endif /* INET */
8819 #ifdef INET6
8820 case AF_INET6: {
8821 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8822
8823 if (m->m_pkthdr.len < off + len ||
8824 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
8825 (unsigned)(off + len)) {
8826 ACTION_SET(actionp, PF_DROP);
8827 REASON_SET(reasonp, PFRES_SHORT);
8828 return (NULL);
8829 }
8830 break;
8831 }
8832 #endif /* INET6 */
8833 }
8834 m_copydata(m, off, len, p);
8835 return (p);
8836 }
8837
8838 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)8839 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
8840 int rtableid)
8841 {
8842 struct ifnet *ifp;
8843
8844 /*
8845 * Skip check for addresses with embedded interface scope,
8846 * as they would always match anyway.
8847 */
8848 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
8849 return (1);
8850
8851 if (af != AF_INET && af != AF_INET6)
8852 return (0);
8853
8854 if (kif == V_pfi_all)
8855 return (1);
8856
8857 /* Skip checks for ipsec interfaces */
8858 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
8859 return (1);
8860
8861 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
8862
8863 switch (af) {
8864 #ifdef INET6
8865 case AF_INET6:
8866 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
8867 ifp));
8868 #endif
8869 #ifdef INET
8870 case AF_INET:
8871 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
8872 ifp));
8873 #endif
8874 }
8875
8876 return (0);
8877 }
8878
8879 #ifdef INET
8880 static void
pf_route(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)8881 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
8882 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
8883 {
8884 struct mbuf *m0, *m1, *md;
8885 struct sockaddr_in dst;
8886 struct ip *ip;
8887 struct ifnet *ifp = NULL;
8888 int error = 0;
8889 uint16_t ip_len, ip_off;
8890 uint16_t tmp;
8891 int r_dir;
8892 bool skip_test = false;
8893
8894 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
8895
8896 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp);
8897
8898 if (s) {
8899 r_dir = s->direction;
8900 } else {
8901 r_dir = r->direction;
8902 }
8903
8904 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
8905 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
8906 __func__));
8907
8908 if ((pd->pf_mtag == NULL &&
8909 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
8910 pd->pf_mtag->routed++ > 3) {
8911 m0 = *m;
8912 *m = NULL;
8913 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8914 goto bad_locked;
8915 }
8916
8917 if (pd->act.rt_kif != NULL)
8918 ifp = pd->act.rt_kif->pfik_ifp;
8919
8920 if (pd->act.rt == PF_DUPTO) {
8921 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
8922 if (s != NULL) {
8923 PF_STATE_UNLOCK(s);
8924 }
8925 if (ifp == oifp) {
8926 /* When the 2nd interface is not skipped */
8927 return;
8928 } else {
8929 m0 = *m;
8930 *m = NULL;
8931 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
8932 goto bad;
8933 }
8934 } else {
8935 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
8936 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
8937 if (s)
8938 PF_STATE_UNLOCK(s);
8939 return;
8940 }
8941 }
8942 } else {
8943 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
8944 if (pd->af == pd->naf) {
8945 pf_dummynet(pd, s, r, m);
8946 if (s)
8947 PF_STATE_UNLOCK(s);
8948 return;
8949 } else {
8950 skip_test = true;
8951 }
8952 }
8953
8954 /*
8955 * If we're actually doing route-to and af-to and are in the
8956 * reply direction.
8957 */
8958 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
8959 pd->af != pd->naf) {
8960 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) {
8961 /* Un-set ifp so we do a plain route lookup. */
8962 ifp = NULL;
8963 }
8964 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) {
8965 /* Un-set ifp so we do a plain route lookup. */
8966 ifp = NULL;
8967 }
8968 }
8969 m0 = *m;
8970 }
8971
8972 ip = mtod(m0, struct ip *);
8973
8974 bzero(&dst, sizeof(dst));
8975 dst.sin_family = AF_INET;
8976 dst.sin_len = sizeof(dst);
8977 dst.sin_addr = ip->ip_dst;
8978 dst.sin_addr.s_addr = pd->act.rt_addr.v4.s_addr;
8979
8980 if (s != NULL){
8981 if (ifp == NULL && (pd->af != pd->naf)) {
8982 /* We're in the AFTO case. Do a route lookup. */
8983 const struct nhop_object *nh;
8984 nh = fib4_lookup(M_GETFIB(*m), ip->ip_dst, 0, NHR_NONE, 0);
8985 if (nh) {
8986 ifp = nh->nh_ifp;
8987
8988 /* Use the gateway if needed. */
8989 if (nh->nh_flags & NHF_GATEWAY)
8990 dst.sin_addr = nh->gw4_sa.sin_addr;
8991 else
8992 dst.sin_addr = ip->ip_dst;
8993
8994 /*
8995 * Bind to the correct interface if we're
8996 * if-bound. We don't know which interface
8997 * that will be until here, so we've inserted
8998 * the state on V_pf_all. Fix that now.
8999 */
9000 if (s->kif == V_pfi_all && ifp != NULL &&
9001 r->rule_flag & PFRULE_IFBOUND)
9002 s->kif = ifp->if_pf_kif;
9003 }
9004 }
9005
9006 if (r->rule_flag & PFRULE_IFBOUND &&
9007 pd->act.rt == PF_REPLYTO &&
9008 s->kif == V_pfi_all) {
9009 s->kif = pd->act.rt_kif;
9010 s->orig_kif = oifp->if_pf_kif;
9011 }
9012
9013 PF_STATE_UNLOCK(s);
9014 }
9015
9016 if (ifp == NULL) {
9017 m0 = *m;
9018 *m = NULL;
9019 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9020 goto bad;
9021 }
9022
9023 if (pd->dir == PF_IN && !skip_test) {
9024 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
9025 &pd->act) != PF_PASS) {
9026 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9027 goto bad;
9028 } else if (m0 == NULL) {
9029 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9030 goto done;
9031 }
9032 if (m0->m_len < sizeof(struct ip)) {
9033 DPFPRINTF(PF_DEBUG_URGENT,
9034 ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
9035 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9036 goto bad;
9037 }
9038 ip = mtod(m0, struct ip *);
9039 }
9040
9041 if (ifp->if_flags & IFF_LOOPBACK)
9042 m0->m_flags |= M_SKIP_FIREWALL;
9043
9044 ip_len = ntohs(ip->ip_len);
9045 ip_off = ntohs(ip->ip_off);
9046
9047 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
9048 m0->m_pkthdr.csum_flags |= CSUM_IP;
9049 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
9050 in_delayed_cksum(m0);
9051 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
9052 }
9053 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
9054 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
9055 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
9056 }
9057
9058 if (pd->dir == PF_IN) {
9059 /*
9060 * Make sure dummynet gets the correct direction, in case it needs to
9061 * re-inject later.
9062 */
9063 pd->dir = PF_OUT;
9064
9065 /*
9066 * The following processing is actually the rest of the inbound processing, even
9067 * though we've marked it as outbound (so we don't look through dummynet) and it
9068 * happens after the outbound processing (pf_test(PF_OUT) above).
9069 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9070 * conclusion about what direction it's processing, and we can't fix it or it
9071 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9072 * decision will pick the right pipe, and everything will mostly work as expected.
9073 */
9074 tmp = pd->act.dnrpipe;
9075 pd->act.dnrpipe = pd->act.dnpipe;
9076 pd->act.dnpipe = tmp;
9077 }
9078
9079 /*
9080 * If small enough for interface, or the interface will take
9081 * care of the fragmentation for us, we can just send directly.
9082 */
9083 if (ip_len <= ifp->if_mtu ||
9084 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
9085 ip->ip_sum = 0;
9086 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
9087 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
9088 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
9089 }
9090 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
9091
9092 md = m0;
9093 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9094 if (md != NULL) {
9095 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL);
9096 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9097 }
9098 goto done;
9099 }
9100
9101 /* Balk when DF bit is set or the interface didn't support TSO. */
9102 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
9103 error = EMSGSIZE;
9104 KMOD_IPSTAT_INC(ips_cantfrag);
9105 if (pd->act.rt != PF_DUPTO) {
9106 if (s && s->nat_rule != NULL)
9107 PACKET_UNDO_NAT(m0, pd,
9108 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
9109 s);
9110
9111 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
9112 ifp->if_mtu);
9113 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9114 goto done;
9115 } else {
9116 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9117 goto bad;
9118 }
9119 }
9120
9121 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
9122 if (error) {
9123 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
9124 goto bad;
9125 }
9126
9127 for (; m0; m0 = m1) {
9128 m1 = m0->m_nextpkt;
9129 m0->m_nextpkt = NULL;
9130 if (error == 0) {
9131 m_clrprotoflags(m0);
9132 md = m0;
9133 pd->pf_mtag = pf_find_mtag(md);
9134 error = pf_dummynet_route(pd, s, r, ifp,
9135 sintosa(&dst), &md);
9136 if (md != NULL) {
9137 error = (*ifp->if_output)(ifp, md,
9138 sintosa(&dst), NULL);
9139 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
9140 }
9141 } else
9142 m_freem(m0);
9143 }
9144
9145 if (error == 0)
9146 KMOD_IPSTAT_INC(ips_fragmented);
9147
9148 done:
9149 if (pd->act.rt != PF_DUPTO)
9150 *m = NULL;
9151 return;
9152
9153 bad_locked:
9154 if (s)
9155 PF_STATE_UNLOCK(s);
9156 bad:
9157 m_freem(m0);
9158 goto done;
9159 }
9160 #endif /* INET */
9161
9162 #ifdef INET6
9163 static void
pf_route6(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)9164 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
9165 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
9166 {
9167 struct mbuf *m0, *md;
9168 struct m_tag *mtag;
9169 struct sockaddr_in6 dst;
9170 struct ip6_hdr *ip6;
9171 struct ifnet *ifp = NULL;
9172 int r_dir;
9173 bool skip_test = false;
9174
9175 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
9176
9177 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp);
9178
9179 if (s) {
9180 r_dir = s->direction;
9181 } else {
9182 r_dir = r->direction;
9183 }
9184
9185 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
9186 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
9187 __func__));
9188
9189 if ((pd->pf_mtag == NULL &&
9190 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
9191 pd->pf_mtag->routed++ > 3) {
9192 m0 = *m;
9193 *m = NULL;
9194 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9195 goto bad_locked;
9196 }
9197
9198 if (pd->act.rt_kif != NULL)
9199 ifp = pd->act.rt_kif->pfik_ifp;
9200
9201 if (pd->act.rt == PF_DUPTO) {
9202 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
9203 if (s != NULL) {
9204 PF_STATE_UNLOCK(s);
9205 }
9206 if (ifp == oifp) {
9207 /* When the 2nd interface is not skipped */
9208 return;
9209 } else {
9210 m0 = *m;
9211 *m = NULL;
9212 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9213 goto bad;
9214 }
9215 } else {
9216 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
9217 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
9218 if (s)
9219 PF_STATE_UNLOCK(s);
9220 return;
9221 }
9222 }
9223 } else {
9224 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) {
9225 if (pd->af == pd->naf) {
9226 pf_dummynet(pd, s, r, m);
9227 if (s)
9228 PF_STATE_UNLOCK(s);
9229 return;
9230 } else {
9231 skip_test = true;
9232 }
9233 }
9234
9235 /*
9236 * If we're actually doing route-to and af-to and are in the
9237 * reply direction.
9238 */
9239 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp &&
9240 pd->af != pd->naf) {
9241 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) {
9242 /* Un-set ifp so we do a plain route lookup. */
9243 ifp = NULL;
9244 }
9245 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) {
9246 /* Un-set ifp so we do a plain route lookup. */
9247 ifp = NULL;
9248 }
9249 }
9250 m0 = *m;
9251 }
9252
9253 ip6 = mtod(m0, struct ip6_hdr *);
9254
9255 bzero(&dst, sizeof(dst));
9256 dst.sin6_family = AF_INET6;
9257 dst.sin6_len = sizeof(dst);
9258 dst.sin6_addr = ip6->ip6_dst;
9259 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6);
9260
9261 if (s != NULL) {
9262 if (ifp == NULL && (pd->af != pd->naf)) {
9263 const struct nhop_object *nh;
9264 nh = fib6_lookup(M_GETFIB(*m), &ip6->ip6_dst, 0, NHR_NONE, 0);
9265 if (nh) {
9266 ifp = nh->nh_ifp;
9267
9268 /* Use the gateway if needed. */
9269 if (nh->nh_flags & NHF_GATEWAY)
9270 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr,
9271 sizeof(dst.sin6_addr));
9272 else
9273 dst.sin6_addr = ip6->ip6_dst;
9274
9275 /*
9276 * Bind to the correct interface if we're
9277 * if-bound. We don't know which interface
9278 * that will be until here, so we've inserted
9279 * the state on V_pf_all. Fix that now.
9280 */
9281 if (s->kif == V_pfi_all && ifp != NULL &&
9282 r->rule_flag & PFRULE_IFBOUND)
9283 s->kif = ifp->if_pf_kif;
9284 }
9285 }
9286
9287 if (r->rule_flag & PFRULE_IFBOUND &&
9288 pd->act.rt == PF_REPLYTO &&
9289 s->kif == V_pfi_all) {
9290 s->kif = pd->act.rt_kif;
9291 s->orig_kif = oifp->if_pf_kif;
9292 }
9293
9294 PF_STATE_UNLOCK(s);
9295 }
9296
9297 if (pd->af != pd->naf) {
9298 struct udphdr *uh = &pd->hdr.udp;
9299
9300 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) {
9301 uh->uh_sum = in6_cksum_pseudo(ip6,
9302 ntohs(uh->uh_ulen), IPPROTO_UDP, 0);
9303 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any);
9304 }
9305 }
9306
9307 if (ifp == NULL) {
9308 m0 = *m;
9309 *m = NULL;
9310 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9311 goto bad;
9312 }
9313
9314 if (pd->dir == PF_IN && !skip_test) {
9315 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
9316 ifp, &m0, inp, &pd->act) != PF_PASS) {
9317 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9318 goto bad;
9319 } else if (m0 == NULL) {
9320 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9321 goto done;
9322 }
9323 if (m0->m_len < sizeof(struct ip6_hdr)) {
9324 DPFPRINTF(PF_DEBUG_URGENT,
9325 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
9326 __func__));
9327 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9328 goto bad;
9329 }
9330 ip6 = mtod(m0, struct ip6_hdr *);
9331 }
9332
9333 if (ifp->if_flags & IFF_LOOPBACK)
9334 m0->m_flags |= M_SKIP_FIREWALL;
9335
9336 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
9337 ~ifp->if_hwassist) {
9338 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
9339 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
9340 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
9341 }
9342
9343 if (pd->dir == PF_IN) {
9344 uint16_t tmp;
9345 /*
9346 * Make sure dummynet gets the correct direction, in case it needs to
9347 * re-inject later.
9348 */
9349 pd->dir = PF_OUT;
9350
9351 /*
9352 * The following processing is actually the rest of the inbound processing, even
9353 * though we've marked it as outbound (so we don't look through dummynet) and it
9354 * happens after the outbound processing (pf_test(PF_OUT) above).
9355 * Swap the dummynet pipe numbers, because it's going to come to the wrong
9356 * conclusion about what direction it's processing, and we can't fix it or it
9357 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
9358 * decision will pick the right pipe, and everything will mostly work as expected.
9359 */
9360 tmp = pd->act.dnrpipe;
9361 pd->act.dnrpipe = pd->act.dnpipe;
9362 pd->act.dnpipe = tmp;
9363 }
9364
9365 /*
9366 * If the packet is too large for the outgoing interface,
9367 * send back an icmp6 error.
9368 */
9369 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
9370 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
9371 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
9372 if (mtag != NULL) {
9373 int ret __sdt_used;
9374 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
9375 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9376 goto done;
9377 }
9378
9379 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
9380 md = m0;
9381 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
9382 if (md != NULL) {
9383 int ret __sdt_used;
9384 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
9385 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
9386 }
9387 }
9388 else {
9389 in6_ifstat_inc(ifp, ifs6_in_toobig);
9390 if (pd->act.rt != PF_DUPTO) {
9391 if (s && s->nat_rule != NULL)
9392 PACKET_UNDO_NAT(m0, pd,
9393 ((caddr_t)ip6 - m0->m_data) +
9394 sizeof(struct ip6_hdr), s);
9395
9396 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
9397 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9398 } else {
9399 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
9400 goto bad;
9401 }
9402 }
9403
9404 done:
9405 if (pd->act.rt != PF_DUPTO)
9406 *m = NULL;
9407 return;
9408
9409 bad_locked:
9410 if (s)
9411 PF_STATE_UNLOCK(s);
9412 bad:
9413 m_freem(m0);
9414 goto done;
9415 }
9416 #endif /* INET6 */
9417
9418 /*
9419 * FreeBSD supports cksum offloads for the following drivers.
9420 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
9421 *
9422 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
9423 * network driver performed cksum including pseudo header, need to verify
9424 * csum_data
9425 * CSUM_DATA_VALID :
9426 * network driver performed cksum, needs to additional pseudo header
9427 * cksum computation with partial csum_data(i.e. lack of H/W support for
9428 * pseudo header, for instance sk(4) and possibly gem(4))
9429 *
9430 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
9431 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
9432 * TCP/UDP layer.
9433 * Also, set csum_data to 0xffff to force cksum validation.
9434 */
9435 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)9436 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
9437 {
9438 u_int16_t sum = 0;
9439 int hw_assist = 0;
9440 struct ip *ip;
9441
9442 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
9443 return (1);
9444 if (m->m_pkthdr.len < off + len)
9445 return (1);
9446
9447 switch (p) {
9448 case IPPROTO_TCP:
9449 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9450 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9451 sum = m->m_pkthdr.csum_data;
9452 } else {
9453 ip = mtod(m, struct ip *);
9454 sum = in_pseudo(ip->ip_src.s_addr,
9455 ip->ip_dst.s_addr, htonl((u_short)len +
9456 m->m_pkthdr.csum_data + IPPROTO_TCP));
9457 }
9458 sum ^= 0xffff;
9459 ++hw_assist;
9460 }
9461 break;
9462 case IPPROTO_UDP:
9463 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
9464 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
9465 sum = m->m_pkthdr.csum_data;
9466 } else {
9467 ip = mtod(m, struct ip *);
9468 sum = in_pseudo(ip->ip_src.s_addr,
9469 ip->ip_dst.s_addr, htonl((u_short)len +
9470 m->m_pkthdr.csum_data + IPPROTO_UDP));
9471 }
9472 sum ^= 0xffff;
9473 ++hw_assist;
9474 }
9475 break;
9476 case IPPROTO_ICMP:
9477 #ifdef INET6
9478 case IPPROTO_ICMPV6:
9479 #endif /* INET6 */
9480 break;
9481 default:
9482 return (1);
9483 }
9484
9485 if (!hw_assist) {
9486 switch (af) {
9487 case AF_INET:
9488 if (p == IPPROTO_ICMP) {
9489 if (m->m_len < off)
9490 return (1);
9491 m->m_data += off;
9492 m->m_len -= off;
9493 sum = in_cksum(m, len);
9494 m->m_data -= off;
9495 m->m_len += off;
9496 } else {
9497 if (m->m_len < sizeof(struct ip))
9498 return (1);
9499 sum = in4_cksum(m, p, off, len);
9500 }
9501 break;
9502 #ifdef INET6
9503 case AF_INET6:
9504 if (m->m_len < sizeof(struct ip6_hdr))
9505 return (1);
9506 sum = in6_cksum(m, p, off, len);
9507 break;
9508 #endif /* INET6 */
9509 }
9510 }
9511 if (sum) {
9512 switch (p) {
9513 case IPPROTO_TCP:
9514 {
9515 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
9516 break;
9517 }
9518 case IPPROTO_UDP:
9519 {
9520 KMOD_UDPSTAT_INC(udps_badsum);
9521 break;
9522 }
9523 #ifdef INET
9524 case IPPROTO_ICMP:
9525 {
9526 KMOD_ICMPSTAT_INC(icps_checksum);
9527 break;
9528 }
9529 #endif
9530 #ifdef INET6
9531 case IPPROTO_ICMPV6:
9532 {
9533 KMOD_ICMP6STAT_INC(icp6s_checksum);
9534 break;
9535 }
9536 #endif /* INET6 */
9537 }
9538 return (1);
9539 } else {
9540 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
9541 m->m_pkthdr.csum_flags |=
9542 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
9543 m->m_pkthdr.csum_data = 0xffff;
9544 }
9545 }
9546 return (0);
9547 }
9548
9549 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)9550 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
9551 const struct pf_kstate *s, struct ip_fw_args *dnflow)
9552 {
9553 int dndir = r->direction;
9554
9555 if (s && dndir == PF_INOUT) {
9556 dndir = s->direction;
9557 } else if (dndir == PF_INOUT) {
9558 /* Assume primary direction. Happens when we've set dnpipe in
9559 * the ethernet level code. */
9560 dndir = pd->dir;
9561 }
9562
9563 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
9564 return (false);
9565
9566 memset(dnflow, 0, sizeof(*dnflow));
9567
9568 if (pd->dport != NULL)
9569 dnflow->f_id.dst_port = ntohs(*pd->dport);
9570 if (pd->sport != NULL)
9571 dnflow->f_id.src_port = ntohs(*pd->sport);
9572
9573 if (pd->dir == PF_IN)
9574 dnflow->flags |= IPFW_ARGS_IN;
9575 else
9576 dnflow->flags |= IPFW_ARGS_OUT;
9577
9578 if (pd->dir != dndir && pd->act.dnrpipe) {
9579 dnflow->rule.info = pd->act.dnrpipe;
9580 }
9581 else if (pd->dir == dndir && pd->act.dnpipe) {
9582 dnflow->rule.info = pd->act.dnpipe;
9583 }
9584 else {
9585 return (false);
9586 }
9587
9588 dnflow->rule.info |= IPFW_IS_DUMMYNET;
9589 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
9590 dnflow->rule.info |= IPFW_IS_PIPE;
9591
9592 dnflow->f_id.proto = pd->proto;
9593 dnflow->f_id.extra = dnflow->rule.info;
9594 switch (pd->naf) {
9595 case AF_INET:
9596 dnflow->f_id.addr_type = 4;
9597 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
9598 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
9599 break;
9600 case AF_INET6:
9601 dnflow->flags |= IPFW_ARGS_IP6;
9602 dnflow->f_id.addr_type = 6;
9603 dnflow->f_id.src_ip6 = pd->src->v6;
9604 dnflow->f_id.dst_ip6 = pd->dst->v6;
9605 break;
9606 }
9607
9608 return (true);
9609 }
9610
9611 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)9612 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9613 struct inpcb *inp)
9614 {
9615 struct pfi_kkif *kif;
9616 struct mbuf *m = *m0;
9617
9618 M_ASSERTPKTHDR(m);
9619 MPASS(ifp->if_vnet == curvnet);
9620 NET_EPOCH_ASSERT();
9621
9622 if (!V_pf_status.running)
9623 return (PF_PASS);
9624
9625 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9626
9627 if (kif == NULL) {
9628 DPFPRINTF(PF_DEBUG_URGENT,
9629 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
9630 return (PF_DROP);
9631 }
9632 if (kif->pfik_flags & PFI_IFLAG_SKIP)
9633 return (PF_PASS);
9634
9635 if (m->m_flags & M_SKIP_FIREWALL)
9636 return (PF_PASS);
9637
9638 if (__predict_false(! M_WRITABLE(*m0))) {
9639 m = *m0 = m_unshare(*m0, M_NOWAIT);
9640 if (*m0 == NULL)
9641 return (PF_DROP);
9642 }
9643
9644 /* Stateless! */
9645 return (pf_test_eth_rule(dir, kif, m0));
9646 }
9647
9648 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)9649 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
9650 {
9651 struct m_tag *mtag;
9652
9653 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
9654
9655 /* dummynet adds this tag, but pf does not need it,
9656 * and keeping it creates unexpected behavior,
9657 * e.g. in case of divert(4) usage right after dummynet. */
9658 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
9659 if (mtag != NULL)
9660 m_tag_delete(m, mtag);
9661 }
9662
9663 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)9664 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
9665 struct pf_krule *r, struct mbuf **m0)
9666 {
9667 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
9668 }
9669
9670 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,struct sockaddr * sa,struct mbuf ** m0)9671 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
9672 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa,
9673 struct mbuf **m0)
9674 {
9675 struct ip_fw_args dnflow;
9676
9677 NET_EPOCH_ASSERT();
9678
9679 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
9680 return (0);
9681
9682 if (ip_dn_io_ptr == NULL) {
9683 m_freem(*m0);
9684 *m0 = NULL;
9685 return (ENOMEM);
9686 }
9687
9688 if (pd->pf_mtag == NULL &&
9689 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
9690 m_freem(*m0);
9691 *m0 = NULL;
9692 return (ENOMEM);
9693 }
9694
9695 if (ifp != NULL) {
9696 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
9697
9698 pd->pf_mtag->if_index = ifp->if_index;
9699 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
9700
9701 MPASS(sa != NULL);
9702
9703 switch (pd->naf) {
9704 case AF_INET:
9705 memcpy(&pd->pf_mtag->dst, sa,
9706 sizeof(struct sockaddr_in));
9707 break;
9708 case AF_INET6:
9709 memcpy(&pd->pf_mtag->dst, sa,
9710 sizeof(struct sockaddr_in6));
9711 break;
9712 }
9713 }
9714
9715 if (s != NULL && s->nat_rule != NULL &&
9716 s->nat_rule->action == PF_RDR &&
9717 (
9718 #ifdef INET
9719 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
9720 #endif
9721 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
9722 /*
9723 * If we're redirecting to loopback mark this packet
9724 * as being local. Otherwise it might get dropped
9725 * if dummynet re-injects.
9726 */
9727 (*m0)->m_pkthdr.rcvif = V_loif;
9728 }
9729
9730 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
9731 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
9732 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
9733 ip_dn_io_ptr(m0, &dnflow);
9734 if (*m0 != NULL) {
9735 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9736 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
9737 }
9738 }
9739
9740 return (0);
9741 }
9742
9743 #ifdef INET6
9744 static int
pf_walk_option6(struct pf_pdesc * pd,struct ip6_hdr * h,int off,int end,u_short * reason)9745 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end,
9746 u_short *reason)
9747 {
9748 struct ip6_opt opt;
9749 struct ip6_opt_jumbo jumbo;
9750
9751 while (off < end) {
9752 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type,
9753 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) {
9754 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
9755 return (PF_DROP);
9756 }
9757 if (opt.ip6o_type == IP6OPT_PAD1) {
9758 off++;
9759 continue;
9760 }
9761 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL,
9762 reason, AF_INET6)) {
9763 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
9764 return (PF_DROP);
9765 }
9766 if (off + sizeof(opt) + opt.ip6o_len > end) {
9767 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
9768 REASON_SET(reason, PFRES_IPOPTIONS);
9769 return (PF_DROP);
9770 }
9771 switch (opt.ip6o_type) {
9772 case IP6OPT_JUMBO:
9773 if (pd->jumbolen != 0) {
9774 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
9775 REASON_SET(reason, PFRES_IPOPTIONS);
9776 return (PF_DROP);
9777 }
9778 if (ntohs(h->ip6_plen) != 0) {
9779 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
9780 REASON_SET(reason, PFRES_IPOPTIONS);
9781 return (PF_DROP);
9782 }
9783 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL,
9784 reason, AF_INET6)) {
9785 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
9786 return (PF_DROP);
9787 }
9788 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len,
9789 sizeof(pd->jumbolen));
9790 pd->jumbolen = ntohl(pd->jumbolen);
9791 if (pd->jumbolen < IPV6_MAXPACKET) {
9792 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
9793 REASON_SET(reason, PFRES_IPOPTIONS);
9794 return (PF_DROP);
9795 }
9796 break;
9797 default:
9798 break;
9799 }
9800 off += sizeof(opt) + opt.ip6o_len;
9801 }
9802
9803 return (PF_PASS);
9804 }
9805
9806 int
pf_walk_header6(struct pf_pdesc * pd,struct ip6_hdr * h,u_short * reason)9807 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason)
9808 {
9809 struct ip6_frag frag;
9810 struct ip6_ext ext;
9811 struct ip6_rthdr rthdr;
9812 uint32_t end;
9813 int rthdr_cnt = 0;
9814
9815 pd->off += sizeof(struct ip6_hdr);
9816 end = pd->off + ntohs(h->ip6_plen);
9817 pd->fragoff = pd->extoff = pd->jumbolen = 0;
9818 pd->proto = h->ip6_nxt;
9819 for (;;) {
9820 switch (pd->proto) {
9821 case IPPROTO_FRAGMENT:
9822 if (pd->fragoff != 0) {
9823 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
9824 REASON_SET(reason, PFRES_FRAG);
9825 return (PF_DROP);
9826 }
9827 /* jumbo payload packets cannot be fragmented */
9828 if (pd->jumbolen != 0) {
9829 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
9830 REASON_SET(reason, PFRES_FRAG);
9831 return (PF_DROP);
9832 }
9833 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag),
9834 NULL, reason, AF_INET6)) {
9835 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
9836 return (PF_DROP);
9837 }
9838 pd->fragoff = pd->off;
9839 /* stop walking over non initial fragments */
9840 if (htons((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0)
9841 return (PF_PASS);
9842 pd->off += sizeof(frag);
9843 pd->proto = frag.ip6f_nxt;
9844 break;
9845 case IPPROTO_ROUTING:
9846 if (rthdr_cnt++) {
9847 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
9848 REASON_SET(reason, PFRES_IPOPTIONS);
9849 return (PF_DROP);
9850 }
9851 /* fragments may be short */
9852 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) {
9853 pd->off = pd->fragoff;
9854 pd->proto = IPPROTO_FRAGMENT;
9855 return (PF_PASS);
9856 }
9857 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr),
9858 NULL, reason, AF_INET6)) {
9859 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
9860 return (PF_DROP);
9861 }
9862 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
9863 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
9864 REASON_SET(reason, PFRES_IPOPTIONS);
9865 return (PF_DROP);
9866 }
9867 /* FALLTHROUGH */
9868 case IPPROTO_AH:
9869 case IPPROTO_HOPOPTS:
9870 case IPPROTO_DSTOPTS:
9871 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext),
9872 NULL, reason, AF_INET6)) {
9873 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
9874 return (PF_DROP);
9875 }
9876 /* fragments may be short */
9877 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) {
9878 pd->off = pd->fragoff;
9879 pd->proto = IPPROTO_FRAGMENT;
9880 return (PF_PASS);
9881 }
9882 /* reassembly needs the ext header before the frag */
9883 if (pd->fragoff == 0)
9884 pd->extoff = pd->off;
9885 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) {
9886 if (pf_walk_option6(pd, h,
9887 pd->off + sizeof(ext),
9888 pd->off + (ext.ip6e_len + 1) * 8, reason)
9889 != PF_PASS)
9890 return (PF_DROP);
9891 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) {
9892 DPFPRINTF(PF_DEBUG_MISC,
9893 ("IPv6 missing jumbo"));
9894 REASON_SET(reason, PFRES_IPOPTIONS);
9895 return (PF_DROP);
9896 }
9897 }
9898 if (pd->proto == IPPROTO_AH)
9899 pd->off += (ext.ip6e_len + 2) * 4;
9900 else
9901 pd->off += (ext.ip6e_len + 1) * 8;
9902 pd->proto = ext.ip6e_nxt;
9903 break;
9904 case IPPROTO_TCP:
9905 case IPPROTO_UDP:
9906 case IPPROTO_SCTP:
9907 case IPPROTO_ICMPV6:
9908 /* fragments may be short, ignore inner header then */
9909 if (pd->fragoff != 0 && end < pd->off +
9910 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) :
9911 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) :
9912 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) :
9913 sizeof(struct icmp6_hdr))) {
9914 pd->off = pd->fragoff;
9915 pd->proto = IPPROTO_FRAGMENT;
9916 }
9917 /* FALLTHROUGH */
9918 default:
9919 return (PF_PASS);
9920 }
9921 }
9922 }
9923 #endif
9924
9925 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)9926 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
9927 {
9928 memset(pd, 0, sizeof(*pd));
9929 pd->pf_mtag = pf_find_mtag(m);
9930 pd->m = m;
9931 }
9932
9933 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)9934 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
9935 u_short *action, u_short *reason, struct pfi_kkif *kif,
9936 struct pf_rule_actions *default_actions)
9937 {
9938 pd->dir = dir;
9939 pd->kif = kif;
9940 pd->m = *m0;
9941 pd->sidx = (dir == PF_IN) ? 0 : 1;
9942 pd->didx = (dir == PF_IN) ? 1 : 0;
9943 pd->af = pd->naf = af;
9944
9945 TAILQ_INIT(&pd->sctp_multihome_jobs);
9946 if (default_actions != NULL)
9947 memcpy(&pd->act, default_actions, sizeof(pd->act));
9948
9949 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
9950 pd->act.dnpipe = pd->pf_mtag->dnpipe;
9951 pd->act.flags = pd->pf_mtag->dnflags;
9952 }
9953
9954 switch (af) {
9955 #ifdef INET
9956 case AF_INET: {
9957 struct ip *h;
9958
9959 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
9960 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
9961 DPFPRINTF(PF_DEBUG_URGENT,
9962 ("pf_test: m_len < sizeof(struct ip), pullup failed\n"));
9963 *action = PF_DROP;
9964 REASON_SET(reason, PFRES_SHORT);
9965 return (-1);
9966 }
9967
9968 if (pf_normalize_ip(reason, pd) != PF_PASS) {
9969 /* We do IP header normalization and packet reassembly here */
9970 *m0 = pd->m;
9971 *action = PF_DROP;
9972 return (-1);
9973 }
9974 *m0 = pd->m;
9975
9976 h = mtod(pd->m, struct ip *);
9977 pd->off = h->ip_hl << 2;
9978 if (pd->off < (int)sizeof(*h)) {
9979 *action = PF_DROP;
9980 REASON_SET(reason, PFRES_SHORT);
9981 return (-1);
9982 }
9983 pd->src = (struct pf_addr *)&h->ip_src;
9984 pd->dst = (struct pf_addr *)&h->ip_dst;
9985 pd->ip_sum = &h->ip_sum;
9986 pd->virtual_proto = pd->proto = h->ip_p;
9987 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK;
9988 pd->ttl = h->ip_ttl;
9989 pd->tot_len = ntohs(h->ip_len);
9990 pd->act.rtableid = -1;
9991 pd->df = h->ip_off & htons(IP_DF);
9992
9993 if (h->ip_hl > 5) /* has options */
9994 pd->badopts++;
9995
9996 if (h->ip_off & htons(IP_MF | IP_OFFMASK))
9997 pd->virtual_proto = PF_VPROTO_FRAGMENT;
9998
9999 break;
10000 }
10001 #endif
10002 #ifdef INET6
10003 case AF_INET6: {
10004 struct ip6_hdr *h;
10005
10006 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
10007 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
10008 DPFPRINTF(PF_DEBUG_URGENT,
10009 ("pf_test6: m_len < sizeof(struct ip6_hdr)"
10010 ", pullup failed\n"));
10011 *action = PF_DROP;
10012 REASON_SET(reason, PFRES_SHORT);
10013 return (-1);
10014 }
10015
10016 h = mtod(pd->m, struct ip6_hdr *);
10017 pd->off = 0;
10018 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10019 *action = PF_DROP;
10020 return (-1);
10021 }
10022
10023 h = mtod(pd->m, struct ip6_hdr *);
10024 pd->src = (struct pf_addr *)&h->ip6_src;
10025 pd->dst = (struct pf_addr *)&h->ip6_dst;
10026 pd->ip_sum = NULL;
10027 pd->tos = IPV6_DSCP(h);
10028 pd->ttl = h->ip6_hlim;
10029 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
10030 pd->virtual_proto = pd->proto = h->ip6_nxt;
10031 pd->act.rtableid = -1;
10032
10033 if (pd->fragoff != 0)
10034 pd->virtual_proto = PF_VPROTO_FRAGMENT;
10035
10036 /*
10037 * we do not support jumbogram. if we keep going, zero ip6_plen
10038 * will do something bad, so drop the packet for now.
10039 */
10040 if (htons(h->ip6_plen) == 0) {
10041 *action = PF_DROP;
10042 return (-1);
10043 }
10044
10045 /* We do IP header normalization and packet reassembly here */
10046 if (pf_normalize_ip6(pd->fragoff, reason, pd) !=
10047 PF_PASS) {
10048 *m0 = pd->m;
10049 *action = PF_DROP;
10050 return (-1);
10051 }
10052 *m0 = pd->m;
10053 if (pd->m == NULL) {
10054 /* packet sits in reassembly queue, no error */
10055 *action = PF_PASS;
10056 return (-1);
10057 }
10058
10059 /* Update pointers into the packet. */
10060 h = mtod(pd->m, struct ip6_hdr *);
10061 pd->src = (struct pf_addr *)&h->ip6_src;
10062 pd->dst = (struct pf_addr *)&h->ip6_dst;
10063
10064 pd->off = 0;
10065
10066 if (pf_walk_header6(pd, h, reason) != PF_PASS) {
10067 *action = PF_DROP;
10068 return (-1);
10069 }
10070
10071 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) {
10072 /*
10073 * Reassembly may have changed the next protocol from
10074 * fragment to something else, so update.
10075 */
10076 pd->virtual_proto = pd->proto;
10077 MPASS(pd->fragoff == 0);
10078 }
10079
10080 if (pd->fragoff != 0)
10081 pd->virtual_proto = PF_VPROTO_FRAGMENT;
10082
10083 break;
10084 }
10085 #endif
10086 default:
10087 panic("pf_setup_pdesc called with illegal af %u", af);
10088 }
10089
10090 switch (pd->virtual_proto) {
10091 case IPPROTO_TCP: {
10092 struct tcphdr *th = &pd->hdr.tcp;
10093
10094 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
10095 reason, af)) {
10096 *action = PF_DROP;
10097 REASON_SET(reason, PFRES_SHORT);
10098 return (-1);
10099 }
10100 pd->hdrlen = sizeof(*th);
10101 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
10102 pd->sport = &th->th_sport;
10103 pd->dport = &th->th_dport;
10104 break;
10105 }
10106 case IPPROTO_UDP: {
10107 struct udphdr *uh = &pd->hdr.udp;
10108
10109 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
10110 reason, af)) {
10111 *action = PF_DROP;
10112 REASON_SET(reason, PFRES_SHORT);
10113 return (-1);
10114 }
10115 pd->hdrlen = sizeof(*uh);
10116 if (uh->uh_dport == 0 ||
10117 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
10118 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
10119 *action = PF_DROP;
10120 REASON_SET(reason, PFRES_SHORT);
10121 return (-1);
10122 }
10123 pd->sport = &uh->uh_sport;
10124 pd->dport = &uh->uh_dport;
10125 break;
10126 }
10127 case IPPROTO_SCTP: {
10128 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
10129 action, reason, af)) {
10130 *action = PF_DROP;
10131 REASON_SET(reason, PFRES_SHORT);
10132 return (-1);
10133 }
10134 pd->hdrlen = sizeof(pd->hdr.sctp);
10135 pd->p_len = pd->tot_len - pd->off;
10136
10137 pd->sport = &pd->hdr.sctp.src_port;
10138 pd->dport = &pd->hdr.sctp.dest_port;
10139 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
10140 *action = PF_DROP;
10141 REASON_SET(reason, PFRES_SHORT);
10142 return (-1);
10143 }
10144 if (pf_scan_sctp(pd) != PF_PASS) {
10145 *action = PF_DROP;
10146 REASON_SET(reason, PFRES_SHORT);
10147 return (-1);
10148 }
10149 break;
10150 }
10151 case IPPROTO_ICMP: {
10152 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
10153 action, reason, af)) {
10154 *action = PF_DROP;
10155 REASON_SET(reason, PFRES_SHORT);
10156 return (-1);
10157 }
10158 pd->hdrlen = ICMP_MINLEN;
10159 break;
10160 }
10161 #ifdef INET6
10162 case IPPROTO_ICMPV6: {
10163 size_t icmp_hlen = sizeof(struct icmp6_hdr);
10164
10165 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10166 action, reason, af)) {
10167 *action = PF_DROP;
10168 REASON_SET(reason, PFRES_SHORT);
10169 return (-1);
10170 }
10171 /* ICMP headers we look further into to match state */
10172 switch (pd->hdr.icmp6.icmp6_type) {
10173 case MLD_LISTENER_QUERY:
10174 case MLD_LISTENER_REPORT:
10175 icmp_hlen = sizeof(struct mld_hdr);
10176 break;
10177 case ND_NEIGHBOR_SOLICIT:
10178 case ND_NEIGHBOR_ADVERT:
10179 icmp_hlen = sizeof(struct nd_neighbor_solicit);
10180 break;
10181 }
10182 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
10183 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
10184 action, reason, af)) {
10185 *action = PF_DROP;
10186 REASON_SET(reason, PFRES_SHORT);
10187 return (-1);
10188 }
10189 pd->hdrlen = icmp_hlen;
10190 break;
10191 }
10192 #endif
10193 }
10194 return (0);
10195 }
10196
10197 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)10198 pf_counters_inc(int action, struct pf_pdesc *pd,
10199 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
10200 {
10201 struct pf_krule *tr;
10202 int dir = pd->dir;
10203 int dirndx;
10204
10205 pf_counter_u64_critical_enter();
10206 pf_counter_u64_add_protected(
10207 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10208 pd->tot_len);
10209 pf_counter_u64_add_protected(
10210 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
10211 1);
10212
10213 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) {
10214 dirndx = (dir == PF_OUT);
10215 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
10216 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
10217 pf_update_timestamp(r);
10218
10219 if (a != NULL) {
10220 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
10221 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
10222 }
10223 if (s != NULL) {
10224 struct pf_krule_item *ri;
10225
10226 if (s->nat_rule != NULL) {
10227 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
10228 1);
10229 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
10230 pd->tot_len);
10231 }
10232 if (s->src_node != NULL) {
10233 counter_u64_add(s->src_node->packets[dirndx],
10234 1);
10235 counter_u64_add(s->src_node->bytes[dirndx],
10236 pd->tot_len);
10237 }
10238 if (s->nat_src_node != NULL) {
10239 counter_u64_add(s->nat_src_node->packets[dirndx],
10240 1);
10241 counter_u64_add(s->nat_src_node->bytes[dirndx],
10242 pd->tot_len);
10243 }
10244 dirndx = (dir == s->direction) ? 0 : 1;
10245 s->packets[dirndx]++;
10246 s->bytes[dirndx] += pd->tot_len;
10247
10248 SLIST_FOREACH(ri, &s->match_rules, entry) {
10249 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
10250 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
10251 }
10252 }
10253
10254 tr = r;
10255 if (s != NULL && s->nat_rule != NULL &&
10256 r == &V_pf_default_rule)
10257 tr = s->nat_rule;
10258
10259 if (tr->src.addr.type == PF_ADDR_TABLE)
10260 pfr_update_stats(tr->src.addr.p.tbl,
10261 (s == NULL) ? pd->src :
10262 &s->key[(s->direction == PF_IN)]->
10263 addr[(s->direction == PF_OUT)],
10264 pd->af, pd->tot_len, dir == PF_OUT,
10265 r->action == PF_PASS, tr->src.neg);
10266 if (tr->dst.addr.type == PF_ADDR_TABLE)
10267 pfr_update_stats(tr->dst.addr.p.tbl,
10268 (s == NULL) ? pd->dst :
10269 &s->key[(s->direction == PF_IN)]->
10270 addr[(s->direction == PF_IN)],
10271 pd->af, pd->tot_len, dir == PF_OUT,
10272 r->action == PF_PASS, tr->dst.neg);
10273 }
10274 pf_counter_u64_critical_exit();
10275 }
10276
10277 #if defined(INET) || defined(INET6)
10278 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)10279 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
10280 struct inpcb *inp, struct pf_rule_actions *default_actions)
10281 {
10282 struct pfi_kkif *kif;
10283 u_short action, reason = 0;
10284 struct m_tag *mtag;
10285 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
10286 struct pf_kstate *s = NULL;
10287 struct pf_kruleset *ruleset = NULL;
10288 struct pf_pdesc pd;
10289 int use_2nd_queue = 0;
10290 uint16_t tag;
10291
10292 PF_RULES_RLOCK_TRACKER;
10293 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
10294 M_ASSERTPKTHDR(*m0);
10295
10296 if (!V_pf_status.running)
10297 return (PF_PASS);
10298
10299 PF_RULES_RLOCK();
10300
10301 kif = (struct pfi_kkif *)ifp->if_pf_kif;
10302
10303 if (__predict_false(kif == NULL)) {
10304 DPFPRINTF(PF_DEBUG_URGENT,
10305 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
10306 PF_RULES_RUNLOCK();
10307 return (PF_DROP);
10308 }
10309 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
10310 PF_RULES_RUNLOCK();
10311 return (PF_PASS);
10312 }
10313
10314 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
10315 PF_RULES_RUNLOCK();
10316 return (PF_PASS);
10317 }
10318
10319 if (__predict_false(! M_WRITABLE(*m0))) {
10320 *m0 = m_unshare(*m0, M_NOWAIT);
10321 if (*m0 == NULL) {
10322 PF_RULES_RUNLOCK();
10323 return (PF_DROP);
10324 }
10325 }
10326
10327 pf_init_pdesc(&pd, *m0);
10328
10329 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
10330 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
10331
10332 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
10333 pd.pf_mtag->if_idxgen);
10334 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
10335 PF_RULES_RUNLOCK();
10336 m_freem(*m0);
10337 *m0 = NULL;
10338 return (PF_PASS);
10339 }
10340 PF_RULES_RUNLOCK();
10341 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
10342 *m0 = NULL;
10343 return (PF_PASS);
10344 }
10345
10346 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
10347 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
10348 /* Dummynet re-injects packets after they've
10349 * completed their delay. We've already
10350 * processed them, so pass unconditionally. */
10351
10352 /* But only once. We may see the packet multiple times (e.g.
10353 * PFIL_IN/PFIL_OUT). */
10354 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
10355 PF_RULES_RUNLOCK();
10356
10357 return (PF_PASS);
10358 }
10359
10360 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
10361 kif, default_actions) == -1) {
10362 if (action != PF_PASS)
10363 pd.act.log |= PF_LOG_FORCE;
10364 goto done;
10365 }
10366
10367 #ifdef INET
10368 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD &&
10369 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) {
10370 PF_RULES_RUNLOCK();
10371 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
10372 0, ifp->if_mtu);
10373 *m0 = NULL;
10374 return (PF_DROP);
10375 }
10376 #endif
10377 #ifdef INET6
10378 /*
10379 * If we end up changing IP addresses (e.g. binat) the stack may get
10380 * confused and fail to send the icmp6 packet too big error. Just send
10381 * it here, before we do any NAT.
10382 */
10383 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
10384 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
10385 PF_RULES_RUNLOCK();
10386 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
10387 *m0 = NULL;
10388 return (PF_DROP);
10389 }
10390 #endif
10391
10392 if (__predict_false(ip_divert_ptr != NULL) &&
10393 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
10394 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
10395 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
10396 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
10397 if (pd.pf_mtag == NULL &&
10398 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10399 action = PF_DROP;
10400 goto done;
10401 }
10402 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
10403 }
10404 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
10405 pd.m->m_flags |= M_FASTFWD_OURS;
10406 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10407 }
10408 m_tag_delete(pd.m, mtag);
10409
10410 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
10411 if (mtag != NULL)
10412 m_tag_delete(pd.m, mtag);
10413 }
10414
10415 switch (pd.virtual_proto) {
10416 case PF_VPROTO_FRAGMENT:
10417 /*
10418 * handle fragments that aren't reassembled by
10419 * normalization
10420 */
10421 if (kif == NULL || r == NULL) /* pflog */
10422 action = PF_DROP;
10423 else
10424 action = pf_test_rule(&r, &s, &pd, &a,
10425 &ruleset, inp);
10426 if (action != PF_PASS)
10427 REASON_SET(&reason, PFRES_FRAG);
10428 break;
10429
10430 case IPPROTO_TCP: {
10431 /* Respond to SYN with a syncookie. */
10432 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
10433 pd.dir == PF_IN && pf_synflood_check(&pd)) {
10434 pf_syncookie_send(&pd);
10435 action = PF_DROP;
10436 break;
10437 }
10438
10439 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
10440 use_2nd_queue = 1;
10441 action = pf_normalize_tcp(&pd);
10442 if (action == PF_DROP)
10443 goto done;
10444 action = pf_test_state_tcp(&s, &pd, &reason);
10445 if (action == PF_PASS || action == PF_AFRT) {
10446 if (V_pfsync_update_state_ptr != NULL)
10447 V_pfsync_update_state_ptr(s);
10448 r = s->rule;
10449 a = s->anchor;
10450 } else if (s == NULL) {
10451 /* Validate remote SYN|ACK, re-create original SYN if
10452 * valid. */
10453 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
10454 TH_ACK && pf_syncookie_validate(&pd) &&
10455 pd.dir == PF_IN) {
10456 struct mbuf *msyn;
10457
10458 msyn = pf_syncookie_recreate_syn(&pd);
10459 if (msyn == NULL) {
10460 action = PF_DROP;
10461 break;
10462 }
10463
10464 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
10465 &pd.act);
10466 m_freem(msyn);
10467 if (action != PF_PASS)
10468 break;
10469
10470 action = pf_test_state_tcp(&s, &pd, &reason);
10471 if (action != PF_PASS || s == NULL) {
10472 action = PF_DROP;
10473 break;
10474 }
10475
10476 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
10477 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
10478 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
10479 action = pf_synproxy(&pd, &s, &reason);
10480 break;
10481 } else {
10482 action = pf_test_rule(&r, &s, &pd,
10483 &a, &ruleset, inp);
10484 }
10485 }
10486 break;
10487 }
10488
10489 case IPPROTO_UDP: {
10490 action = pf_test_state_udp(&s, &pd);
10491 if (action == PF_PASS || action == PF_AFRT) {
10492 if (V_pfsync_update_state_ptr != NULL)
10493 V_pfsync_update_state_ptr(s);
10494 r = s->rule;
10495 a = s->anchor;
10496 } else if (s == NULL)
10497 action = pf_test_rule(&r, &s, &pd,
10498 &a, &ruleset, inp);
10499 break;
10500 }
10501
10502 case IPPROTO_SCTP: {
10503 action = pf_normalize_sctp(&pd);
10504 if (action == PF_DROP)
10505 goto done;
10506 action = pf_test_state_sctp(&s, &pd, &reason);
10507 if (action == PF_PASS || action == PF_AFRT) {
10508 if (V_pfsync_update_state_ptr != NULL)
10509 V_pfsync_update_state_ptr(s);
10510 r = s->rule;
10511 a = s->anchor;
10512 } else if (s == NULL) {
10513 action = pf_test_rule(&r, &s,
10514 &pd, &a, &ruleset, inp);
10515 }
10516 break;
10517 }
10518
10519 case IPPROTO_ICMP:
10520 case IPPROTO_ICMPV6: {
10521 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) {
10522 action = PF_DROP;
10523 REASON_SET(&reason, PFRES_NORM);
10524 DPFPRINTF(PF_DEBUG_MISC,
10525 ("dropping IPv6 packet with ICMPv4 payload"));
10526 goto done;
10527 }
10528 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) {
10529 action = PF_DROP;
10530 REASON_SET(&reason, PFRES_NORM);
10531 DPFPRINTF(PF_DEBUG_MISC,
10532 ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
10533 goto done;
10534 }
10535 action = pf_test_state_icmp(&s, &pd, &reason);
10536 if (action == PF_PASS || action == PF_AFRT) {
10537 if (V_pfsync_update_state_ptr != NULL)
10538 V_pfsync_update_state_ptr(s);
10539 r = s->rule;
10540 a = s->anchor;
10541 } else if (s == NULL)
10542 action = pf_test_rule(&r, &s, &pd,
10543 &a, &ruleset, inp);
10544 break;
10545 }
10546
10547 default:
10548 action = pf_test_state_other(&s, &pd);
10549 if (action == PF_PASS || action == PF_AFRT) {
10550 if (V_pfsync_update_state_ptr != NULL)
10551 V_pfsync_update_state_ptr(s);
10552 r = s->rule;
10553 a = s->anchor;
10554 } else if (s == NULL)
10555 action = pf_test_rule(&r, &s, &pd,
10556 &a, &ruleset, inp);
10557 break;
10558 }
10559
10560 done:
10561 PF_RULES_RUNLOCK();
10562
10563 if (pd.m == NULL)
10564 goto eat_pkt;
10565
10566 if (action == PF_PASS && pd.badopts &&
10567 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
10568 action = PF_DROP;
10569 REASON_SET(&reason, PFRES_IPOPTIONS);
10570 pd.act.log = PF_LOG_FORCE;
10571 DPFPRINTF(PF_DEBUG_MISC,
10572 ("pf: dropping packet with dangerous headers\n"));
10573 }
10574
10575 if (s) {
10576 uint8_t log = pd.act.log;
10577 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
10578 pd.act.log |= log;
10579 tag = s->tag;
10580 } else {
10581 tag = r->tag;
10582 }
10583
10584 if (tag > 0 && pf_tag_packet(&pd, tag)) {
10585 action = PF_DROP;
10586 REASON_SET(&reason, PFRES_MEMORY);
10587 }
10588
10589 pf_scrub(&pd);
10590 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
10591 pf_normalize_mss(&pd);
10592
10593 if (pd.act.rtableid >= 0)
10594 M_SETFIB(pd.m, pd.act.rtableid);
10595
10596 if (pd.act.flags & PFSTATE_SETPRIO) {
10597 if (pd.tos & IPTOS_LOWDELAY)
10598 use_2nd_queue = 1;
10599 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
10600 action = PF_DROP;
10601 REASON_SET(&reason, PFRES_MEMORY);
10602 pd.act.log = PF_LOG_FORCE;
10603 DPFPRINTF(PF_DEBUG_MISC,
10604 ("pf: failed to allocate 802.1q mtag\n"));
10605 }
10606 }
10607
10608 #ifdef ALTQ
10609 if (action == PF_PASS && pd.act.qid) {
10610 if (pd.pf_mtag == NULL &&
10611 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10612 action = PF_DROP;
10613 REASON_SET(&reason, PFRES_MEMORY);
10614 } else {
10615 if (s != NULL)
10616 pd.pf_mtag->qid_hash = pf_state_hash(s);
10617 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
10618 pd.pf_mtag->qid = pd.act.pqid;
10619 else
10620 pd.pf_mtag->qid = pd.act.qid;
10621 /* Add hints for ecn. */
10622 pd.pf_mtag->hdr = mtod(pd.m, void *);
10623 }
10624 }
10625 #endif /* ALTQ */
10626
10627 /*
10628 * connections redirected to loopback should not match sockets
10629 * bound specifically to loopback due to security implications,
10630 * see tcp_input() and in_pcblookup_listen().
10631 */
10632 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
10633 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
10634 (s->nat_rule->action == PF_RDR ||
10635 s->nat_rule->action == PF_BINAT) &&
10636 pf_is_loopback(af, pd.dst))
10637 pd.m->m_flags |= M_SKIP_FIREWALL;
10638
10639 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
10640 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
10641 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
10642 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
10643 if (mtag != NULL) {
10644 ((struct pf_divert_mtag *)(mtag+1))->port =
10645 ntohs(r->divert.port);
10646 ((struct pf_divert_mtag *)(mtag+1))->idir =
10647 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
10648 PF_DIVERT_MTAG_DIR_OUT;
10649
10650 if (s)
10651 PF_STATE_UNLOCK(s);
10652
10653 m_tag_prepend(pd.m, mtag);
10654 if (pd.m->m_flags & M_FASTFWD_OURS) {
10655 if (pd.pf_mtag == NULL &&
10656 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
10657 action = PF_DROP;
10658 REASON_SET(&reason, PFRES_MEMORY);
10659 pd.act.log = PF_LOG_FORCE;
10660 DPFPRINTF(PF_DEBUG_MISC,
10661 ("pf: failed to allocate tag\n"));
10662 } else {
10663 pd.pf_mtag->flags |=
10664 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
10665 pd.m->m_flags &= ~M_FASTFWD_OURS;
10666 }
10667 }
10668 ip_divert_ptr(*m0, dir == PF_IN);
10669 *m0 = NULL;
10670
10671 return (action);
10672 } else {
10673 /* XXX: ipfw has the same behaviour! */
10674 action = PF_DROP;
10675 REASON_SET(&reason, PFRES_MEMORY);
10676 pd.act.log = PF_LOG_FORCE;
10677 DPFPRINTF(PF_DEBUG_MISC,
10678 ("pf: failed to allocate divert tag\n"));
10679 }
10680 }
10681 /* XXX: Anybody working on it?! */
10682 if (af == AF_INET6 && r->divert.port)
10683 printf("pf: divert(9) is not supported for IPv6\n");
10684
10685 /* this flag will need revising if the pkt is forwarded */
10686 if (pd.pf_mtag)
10687 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
10688
10689 if (pd.act.log) {
10690 struct pf_krule *lr;
10691 struct pf_krule_item *ri;
10692
10693 if (s != NULL && s->nat_rule != NULL &&
10694 s->nat_rule->log & PF_LOG_ALL)
10695 lr = s->nat_rule;
10696 else
10697 lr = r;
10698
10699 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
10700 PFLOG_PACKET(action, reason, lr, a,
10701 ruleset, &pd, (s == NULL));
10702 if (s) {
10703 SLIST_FOREACH(ri, &s->match_rules, entry)
10704 if (ri->r->log & PF_LOG_ALL)
10705 PFLOG_PACKET(action,
10706 reason, ri->r, a, ruleset, &pd, 0);
10707 }
10708 }
10709
10710 pf_counters_inc(action, &pd, s, r, a);
10711
10712 switch (action) {
10713 case PF_SYNPROXY_DROP:
10714 m_freem(*m0);
10715 case PF_DEFER:
10716 *m0 = NULL;
10717 action = PF_PASS;
10718 break;
10719 case PF_DROP:
10720 m_freem(*m0);
10721 *m0 = NULL;
10722 break;
10723 case PF_AFRT:
10724 if (pf_translate_af(&pd)) {
10725 if (!pd.m)
10726 *m0 = NULL;
10727 action = PF_DROP;
10728 break;
10729 }
10730 *m0 = pd.m; /* pf_translate_af may change pd.m */
10731 #ifdef INET
10732 if (pd.naf == AF_INET)
10733 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
10734 #endif
10735 #ifdef INET6
10736 if (pd.naf == AF_INET6)
10737 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
10738 #endif
10739 *m0 = NULL;
10740 action = PF_PASS;
10741 goto out;
10742 break;
10743 default:
10744 if (pd.act.rt) {
10745 switch (af) {
10746 #ifdef INET
10747 case AF_INET:
10748 /* pf_route() returns unlocked. */
10749 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
10750 break;
10751 #endif
10752 #ifdef INET6
10753 case AF_INET6:
10754 /* pf_route6() returns unlocked. */
10755 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
10756 break;
10757 #endif
10758 }
10759 goto out;
10760 }
10761 if (pf_dummynet(&pd, s, r, m0) != 0) {
10762 action = PF_DROP;
10763 REASON_SET(&reason, PFRES_MEMORY);
10764 }
10765 break;
10766 }
10767
10768 eat_pkt:
10769 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
10770
10771 if (s && action != PF_DROP) {
10772 if (!s->if_index_in && dir == PF_IN)
10773 s->if_index_in = ifp->if_index;
10774 else if (!s->if_index_out && dir == PF_OUT)
10775 s->if_index_out = ifp->if_index;
10776 }
10777
10778 if (s)
10779 PF_STATE_UNLOCK(s);
10780
10781 out:
10782 #ifdef INET6
10783 /* If reassembled packet passed, create new fragments. */
10784 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
10785 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
10786 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
10787 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
10788 #endif
10789
10790 pf_sctp_multihome_delayed(&pd, kif, s, action);
10791
10792 return (action);
10793 }
10794 #endif /* INET || INET6 */
10795