xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision 9ca3286264006d196eeb4a284ca837ca84207a3d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_pf.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/refcount.h>
42 #include <sys/socket.h>
43 
44 #include <net/if.h>
45 #include <net/vnet.h>
46 #include <net/pfvar.h>
47 #include <net/if_pflog.h>
48 
49 #include <netinet/in.h>
50 #include <netinet/ip.h>
51 #include <netinet/ip_var.h>
52 #include <netinet6/ip6_var.h>
53 #include <netinet6/scope6_var.h>
54 #include <netinet/tcp.h>
55 #include <netinet/tcp_fsm.h>
56 #include <netinet/tcp_seq.h>
57 #include <netinet/sctp_constants.h>
58 #include <netinet/sctp_header.h>
59 
60 #ifdef INET6
61 #include <netinet/ip6.h>
62 #endif /* INET6 */
63 
64 struct pf_frent {
65 	TAILQ_ENTRY(pf_frent)	fr_next;
66 	struct mbuf	*fe_m;
67 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
68 					   ipv6, extension, fragment header */
69 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
70 	uint16_t	fe_len;		/* fragment length */
71 	uint16_t	fe_off;		/* fragment offset */
72 	uint16_t	fe_mff;		/* more fragment flag */
73 };
74 
75 struct pf_fragment_cmp {
76 	struct pf_addr	frc_src;
77 	struct pf_addr	frc_dst;
78 	uint32_t	frc_id;
79 	sa_family_t	frc_af;
80 	uint8_t		frc_proto;
81 };
82 
83 struct pf_fragment {
84 	struct pf_fragment_cmp	fr_key;
85 #define fr_src	fr_key.frc_src
86 #define fr_dst	fr_key.frc_dst
87 #define fr_id	fr_key.frc_id
88 #define fr_af	fr_key.frc_af
89 #define fr_proto	fr_key.frc_proto
90 
91 	/* pointers to queue element */
92 	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
93 	/* count entries between pointers */
94 	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
95 	RB_ENTRY(pf_fragment) fr_entry;
96 	TAILQ_ENTRY(pf_fragment) frag_next;
97 	uint32_t	fr_timeout;
98 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
99 	u_int16_t	fr_holes;	/* number of holes in the queue */
100 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
101 };
102 
103 struct pf_fragment_tag {
104 	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
105 	uint16_t	ft_extoff;	/* last extension header offset or 0 */
106 	uint16_t	ft_maxlen;	/* maximum fragment payload length */
107 	uint32_t	ft_id;		/* fragment id */
108 };
109 
110 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
111 #define V_pf_frag_mtx		VNET(pf_frag_mtx)
112 #define PF_FRAG_LOCK()		mtx_lock(&V_pf_frag_mtx)
113 #define PF_FRAG_UNLOCK()	mtx_unlock(&V_pf_frag_mtx)
114 #define PF_FRAG_ASSERT()	mtx_assert(&V_pf_frag_mtx, MA_OWNED)
115 
116 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
117 
118 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
119 #define	V_pf_frent_z	VNET(pf_frent_z)
120 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
121 #define	V_pf_frag_z	VNET(pf_frag_z)
122 
123 TAILQ_HEAD(pf_fragqueue, pf_fragment);
124 TAILQ_HEAD(pf_cachequeue, pf_fragment);
125 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
126 #define	V_pf_fragqueue			VNET(pf_fragqueue)
127 RB_HEAD(pf_frag_tree, pf_fragment);
128 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
129 #define	V_pf_frag_tree			VNET(pf_frag_tree)
130 static int		 pf_frag_compare(struct pf_fragment *,
131 			    struct pf_fragment *);
132 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
133 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
134 
135 static void	pf_flush_fragments(void);
136 static void	pf_free_fragment(struct pf_fragment *);
137 static void	pf_remove_fragment(struct pf_fragment *);
138 
139 static struct pf_frent *pf_create_fragment(u_short *);
140 static int	pf_frent_holes(struct pf_frent *frent);
141 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
142 		    struct pf_frag_tree *tree);
143 static inline int	pf_frent_index(struct pf_frent *);
144 static int	pf_frent_insert(struct pf_fragment *,
145 			    struct pf_frent *, struct pf_frent *);
146 void			pf_frent_remove(struct pf_fragment *,
147 			    struct pf_frent *);
148 struct pf_frent		*pf_frent_previous(struct pf_fragment *,
149 			    struct pf_frent *);
150 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
151 		    struct pf_frent *, u_short *);
152 static struct mbuf *pf_join_fragment(struct pf_fragment *);
153 #ifdef INET
154 static int	pf_reassemble(struct mbuf **, int, u_short *);
155 #endif	/* INET */
156 #ifdef INET6
157 static int	pf_reassemble6(struct mbuf **,
158 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
159 #endif	/* INET6 */
160 
161 #define	DPFPRINTF(x) do {				\
162 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
163 		printf("%s: ", __func__);		\
164 		printf x ;				\
165 	}						\
166 } while(0)
167 
168 #ifdef INET
169 static void
pf_ip2key(struct ip * ip,int dir,struct pf_fragment_cmp * key)170 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
171 {
172 
173 	key->frc_src.v4 = ip->ip_src;
174 	key->frc_dst.v4 = ip->ip_dst;
175 	key->frc_af = AF_INET;
176 	key->frc_proto = ip->ip_p;
177 	key->frc_id = ip->ip_id;
178 }
179 #endif	/* INET */
180 
181 void
pf_normalize_init(void)182 pf_normalize_init(void)
183 {
184 
185 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
186 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
187 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
188 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
189 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
190 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
191 	    UMA_ALIGN_PTR, 0);
192 
193 	mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
194 
195 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
196 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
197 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
198 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
199 
200 	TAILQ_INIT(&V_pf_fragqueue);
201 }
202 
203 void
pf_normalize_cleanup(void)204 pf_normalize_cleanup(void)
205 {
206 
207 	uma_zdestroy(V_pf_state_scrub_z);
208 	uma_zdestroy(V_pf_frent_z);
209 	uma_zdestroy(V_pf_frag_z);
210 
211 	mtx_destroy(&V_pf_frag_mtx);
212 }
213 
214 static int
pf_frag_compare(struct pf_fragment * a,struct pf_fragment * b)215 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
216 {
217 	int	diff;
218 
219 	if ((diff = a->fr_id - b->fr_id) != 0)
220 		return (diff);
221 	if ((diff = a->fr_proto - b->fr_proto) != 0)
222 		return (diff);
223 	if ((diff = a->fr_af - b->fr_af) != 0)
224 		return (diff);
225 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
226 		return (diff);
227 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
228 		return (diff);
229 	return (0);
230 }
231 
232 void
pf_purge_expired_fragments(void)233 pf_purge_expired_fragments(void)
234 {
235 	u_int32_t	expire = time_uptime -
236 			    V_pf_default_rule.timeout[PFTM_FRAG];
237 
238 	pf_purge_fragments(expire);
239 }
240 
241 void
pf_purge_fragments(uint32_t expire)242 pf_purge_fragments(uint32_t expire)
243 {
244 	struct pf_fragment	*frag;
245 
246 	PF_FRAG_LOCK();
247 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
248 		if (frag->fr_timeout > expire)
249 			break;
250 
251 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
252 		pf_free_fragment(frag);
253 	}
254 
255 	PF_FRAG_UNLOCK();
256 }
257 
258 /*
259  * Try to flush old fragments to make space for new ones
260  */
261 static void
pf_flush_fragments(void)262 pf_flush_fragments(void)
263 {
264 	struct pf_fragment	*frag;
265 	int			 goal;
266 
267 	PF_FRAG_ASSERT();
268 
269 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
270 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
271 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
272 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
273 		if (frag)
274 			pf_free_fragment(frag);
275 		else
276 			break;
277 	}
278 }
279 
280 /* Frees the fragments and all associated entries */
281 static void
pf_free_fragment(struct pf_fragment * frag)282 pf_free_fragment(struct pf_fragment *frag)
283 {
284 	struct pf_frent		*frent;
285 
286 	PF_FRAG_ASSERT();
287 
288 	/* Free all fragments */
289 	for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
290 	    frent = TAILQ_FIRST(&frag->fr_queue)) {
291 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
292 
293 		m_freem(frent->fe_m);
294 		uma_zfree(V_pf_frent_z, frent);
295 	}
296 
297 	pf_remove_fragment(frag);
298 }
299 
300 static struct pf_fragment *
pf_find_fragment(struct pf_fragment_cmp * key,struct pf_frag_tree * tree)301 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
302 {
303 	struct pf_fragment	*frag;
304 
305 	PF_FRAG_ASSERT();
306 
307 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
308 	if (frag != NULL) {
309 		/* XXX Are we sure we want to update the timeout? */
310 		frag->fr_timeout = time_uptime;
311 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
312 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
313 	}
314 
315 	return (frag);
316 }
317 
318 /* Removes a fragment from the fragment queue and frees the fragment */
319 static void
pf_remove_fragment(struct pf_fragment * frag)320 pf_remove_fragment(struct pf_fragment *frag)
321 {
322 
323 	PF_FRAG_ASSERT();
324 	KASSERT(frag, ("frag != NULL"));
325 
326 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
327 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
328 	uma_zfree(V_pf_frag_z, frag);
329 }
330 
331 static struct pf_frent *
pf_create_fragment(u_short * reason)332 pf_create_fragment(u_short *reason)
333 {
334 	struct pf_frent *frent;
335 
336 	PF_FRAG_ASSERT();
337 
338 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
339 	if (frent == NULL) {
340 		pf_flush_fragments();
341 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
342 		if (frent == NULL) {
343 			REASON_SET(reason, PFRES_MEMORY);
344 			return (NULL);
345 		}
346 	}
347 
348 	return (frent);
349 }
350 
351 /*
352  * Calculate the additional holes that were created in the fragment
353  * queue by inserting this fragment.  A fragment in the middle
354  * creates one more hole by splitting.  For each connected side,
355  * it loses one hole.
356  * Fragment entry must be in the queue when calling this function.
357  */
358 static int
pf_frent_holes(struct pf_frent * frent)359 pf_frent_holes(struct pf_frent *frent)
360 {
361 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
362 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
363 	int holes = 1;
364 
365 	if (prev == NULL) {
366 		if (frent->fe_off == 0)
367 			holes--;
368 	} else {
369 		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
370 		if (frent->fe_off == prev->fe_off + prev->fe_len)
371 			holes--;
372 	}
373 	if (next == NULL) {
374 		if (!frent->fe_mff)
375 			holes--;
376 	} else {
377 		KASSERT(frent->fe_mff, ("frent->fe_mff"));
378 		if (next->fe_off == frent->fe_off + frent->fe_len)
379 			holes--;
380 	}
381 	return holes;
382 }
383 
384 static inline int
pf_frent_index(struct pf_frent * frent)385 pf_frent_index(struct pf_frent *frent)
386 {
387 	/*
388 	 * We have an array of 16 entry points to the queue.  A full size
389 	 * 65535 octet IP packet can have 8192 fragments.  So the queue
390 	 * traversal length is at most 512 and at most 16 entry points are
391 	 * checked.  We need 128 additional bytes on a 64 bit architecture.
392 	 */
393 	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
394 	    16 - 1);
395 	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
396 
397 	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
398 }
399 
400 static int
pf_frent_insert(struct pf_fragment * frag,struct pf_frent * frent,struct pf_frent * prev)401 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
402     struct pf_frent *prev)
403 {
404 	int index;
405 
406 	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
407 
408 	/*
409 	 * A packet has at most 65536 octets.  With 16 entry points, each one
410 	 * spawns 4096 octets.  We limit these to 64 fragments each, which
411 	 * means on average every fragment must have at least 64 octets.
412 	 */
413 	index = pf_frent_index(frent);
414 	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
415 		return ENOBUFS;
416 	frag->fr_entries[index]++;
417 
418 	if (prev == NULL) {
419 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
420 	} else {
421 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
422 		    ("overlapping fragment"));
423 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
424 	}
425 
426 	if (frag->fr_firstoff[index] == NULL) {
427 		KASSERT(prev == NULL || pf_frent_index(prev) < index,
428 		    ("prev == NULL || pf_frent_index(pref) < index"));
429 		frag->fr_firstoff[index] = frent;
430 	} else {
431 		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
432 			KASSERT(prev == NULL || pf_frent_index(prev) < index,
433 			    ("prev == NULL || pf_frent_index(pref) < index"));
434 			frag->fr_firstoff[index] = frent;
435 		} else {
436 			KASSERT(prev != NULL, ("prev != NULL"));
437 			KASSERT(pf_frent_index(prev) == index,
438 			    ("pf_frent_index(prev) == index"));
439 		}
440 	}
441 
442 	frag->fr_holes += pf_frent_holes(frent);
443 
444 	return 0;
445 }
446 
447 void
pf_frent_remove(struct pf_fragment * frag,struct pf_frent * frent)448 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
449 {
450 #ifdef INVARIANTS
451 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
452 #endif
453 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
454 	int index;
455 
456 	frag->fr_holes -= pf_frent_holes(frent);
457 
458 	index = pf_frent_index(frent);
459 	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
460 	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
461 		if (next == NULL) {
462 			frag->fr_firstoff[index] = NULL;
463 		} else {
464 			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
465 			    ("overlapping fragment"));
466 			if (pf_frent_index(next) == index) {
467 				frag->fr_firstoff[index] = next;
468 			} else {
469 				frag->fr_firstoff[index] = NULL;
470 			}
471 		}
472 	} else {
473 		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
474 		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
475 		KASSERT(prev != NULL, ("prev != NULL"));
476 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
477 		    ("overlapping fragment"));
478 		KASSERT(pf_frent_index(prev) == index,
479 		    ("pf_frent_index(prev) == index"));
480 	}
481 
482 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
483 
484 	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
485 	frag->fr_entries[index]--;
486 }
487 
488 struct pf_frent *
pf_frent_previous(struct pf_fragment * frag,struct pf_frent * frent)489 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
490 {
491 	struct pf_frent *prev, *next;
492 	int index;
493 
494 	/*
495 	 * If there are no fragments after frag, take the final one.  Assume
496 	 * that the global queue is not empty.
497 	 */
498 	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
499 	KASSERT(prev != NULL, ("prev != NULL"));
500 	if (prev->fe_off <= frent->fe_off)
501 		return prev;
502 	/*
503 	 * We want to find a fragment entry that is before frag, but still
504 	 * close to it.  Find the first fragment entry that is in the same
505 	 * entry point or in the first entry point after that.  As we have
506 	 * already checked that there are entries behind frag, this will
507 	 * succeed.
508 	 */
509 	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
510 	    index++) {
511 		prev = frag->fr_firstoff[index];
512 		if (prev != NULL)
513 			break;
514 	}
515 	KASSERT(prev != NULL, ("prev != NULL"));
516 	/*
517 	 * In prev we may have a fragment from the same entry point that is
518 	 * before frent, or one that is just one position behind frent.
519 	 * In the latter case, we go back one step and have the predecessor.
520 	 * There may be none if the new fragment will be the first one.
521 	 */
522 	if (prev->fe_off > frent->fe_off) {
523 		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
524 		if (prev == NULL)
525 			return NULL;
526 		KASSERT(prev->fe_off <= frent->fe_off,
527 		    ("prev->fe_off <= frent->fe_off"));
528 		return prev;
529 	}
530 	/*
531 	 * In prev is the first fragment of the entry point.  The offset
532 	 * of frag is behind it.  Find the closest previous fragment.
533 	 */
534 	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
535 	    next = TAILQ_NEXT(next, fr_next)) {
536 		if (next->fe_off > frent->fe_off)
537 			break;
538 		prev = next;
539 	}
540 	return prev;
541 }
542 
543 static struct pf_fragment *
pf_fillup_fragment(struct pf_fragment_cmp * key,struct pf_frent * frent,u_short * reason)544 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
545     u_short *reason)
546 {
547 	struct pf_frent		*after, *next, *prev;
548 	struct pf_fragment	*frag;
549 	uint16_t		total;
550 	int			old_index, new_index;
551 
552 	PF_FRAG_ASSERT();
553 
554 	/* No empty fragments. */
555 	if (frent->fe_len == 0) {
556 		DPFPRINTF(("bad fragment: len 0\n"));
557 		goto bad_fragment;
558 	}
559 
560 	/* All fragments are 8 byte aligned. */
561 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
562 		DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
563 		goto bad_fragment;
564 	}
565 
566 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
567 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
568 		DPFPRINTF(("bad fragment: max packet %d\n",
569 		    frent->fe_off + frent->fe_len));
570 		goto bad_fragment;
571 	}
572 
573 	DPFPRINTF((key->frc_af == AF_INET ?
574 	    "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
575 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
576 
577 	/* Fully buffer all of the fragments in this fragment queue. */
578 	frag = pf_find_fragment(key, &V_pf_frag_tree);
579 
580 	/* Create a new reassembly queue for this packet. */
581 	if (frag == NULL) {
582 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
583 		if (frag == NULL) {
584 			pf_flush_fragments();
585 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
586 			if (frag == NULL) {
587 				REASON_SET(reason, PFRES_MEMORY);
588 				goto drop_fragment;
589 			}
590 		}
591 
592 		*(struct pf_fragment_cmp *)frag = *key;
593 		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
594 		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
595 		frag->fr_timeout = time_uptime;
596 		frag->fr_maxlen = frent->fe_len;
597 		frag->fr_holes = 1;
598 		TAILQ_INIT(&frag->fr_queue);
599 
600 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
601 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
602 
603 		/* We do not have a previous fragment, cannot fail. */
604 		pf_frent_insert(frag, frent, NULL);
605 
606 		return (frag);
607 	}
608 
609 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
610 
611 	/* Remember maximum fragment len for refragmentation. */
612 	if (frent->fe_len > frag->fr_maxlen)
613 		frag->fr_maxlen = frent->fe_len;
614 
615 	/* Maximum data we have seen already. */
616 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
617 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
618 
619 	/* Non terminal fragments must have more fragments flag. */
620 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
621 		goto bad_fragment;
622 
623 	/* Check if we saw the last fragment already. */
624 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
625 		if (frent->fe_off + frent->fe_len > total ||
626 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
627 			goto bad_fragment;
628 	} else {
629 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
630 			goto bad_fragment;
631 	}
632 
633 	/* Find neighbors for newly inserted fragment */
634 	prev = pf_frent_previous(frag, frent);
635 	if (prev == NULL) {
636 		after = TAILQ_FIRST(&frag->fr_queue);
637 		KASSERT(after != NULL, ("after != NULL"));
638 	} else {
639 		after = TAILQ_NEXT(prev, fr_next);
640 	}
641 
642 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
643 		uint16_t precut;
644 
645 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
646 		if (precut >= frent->fe_len)
647 			goto bad_fragment;
648 		DPFPRINTF(("overlap -%d\n", precut));
649 		m_adj(frent->fe_m, precut);
650 		frent->fe_off += precut;
651 		frent->fe_len -= precut;
652 	}
653 
654 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
655 	    after = next) {
656 		uint16_t aftercut;
657 
658 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
659 		DPFPRINTF(("adjust overlap %d\n", aftercut));
660 		if (aftercut < after->fe_len) {
661 			m_adj(after->fe_m, aftercut);
662 			old_index = pf_frent_index(after);
663 			after->fe_off += aftercut;
664 			after->fe_len -= aftercut;
665 			new_index = pf_frent_index(after);
666 			if (old_index != new_index) {
667 				DPFPRINTF(("frag index %d, new %d",
668 				    old_index, new_index));
669 				/* Fragment switched queue as fe_off changed */
670 				after->fe_off -= aftercut;
671 				after->fe_len += aftercut;
672 				/* Remove restored fragment from old queue */
673 				pf_frent_remove(frag, after);
674 				after->fe_off += aftercut;
675 				after->fe_len -= aftercut;
676 				/* Insert into correct queue */
677 				if (pf_frent_insert(frag, after, prev)) {
678 					DPFPRINTF(
679 					    ("fragment requeue limit exceeded"));
680 					m_freem(after->fe_m);
681 					uma_zfree(V_pf_frent_z, after);
682 					/* There is not way to recover */
683 					goto bad_fragment;
684 				}
685 			}
686 			break;
687 		}
688 
689 		/* This fragment is completely overlapped, lose it. */
690 		next = TAILQ_NEXT(after, fr_next);
691 		pf_frent_remove(frag, after);
692 		m_freem(after->fe_m);
693 		uma_zfree(V_pf_frent_z, after);
694 	}
695 
696 	/* If part of the queue gets too long, there is not way to recover. */
697 	if (pf_frent_insert(frag, frent, prev)) {
698 		DPFPRINTF(("fragment queue limit exceeded\n"));
699 		goto bad_fragment;
700 	}
701 
702 	return (frag);
703 
704 bad_fragment:
705 	REASON_SET(reason, PFRES_FRAG);
706 drop_fragment:
707 	uma_zfree(V_pf_frent_z, frent);
708 	return (NULL);
709 }
710 
711 static struct mbuf *
pf_join_fragment(struct pf_fragment * frag)712 pf_join_fragment(struct pf_fragment *frag)
713 {
714 	struct mbuf *m, *m2;
715 	struct pf_frent	*frent, *next;
716 
717 	frent = TAILQ_FIRST(&frag->fr_queue);
718 	next = TAILQ_NEXT(frent, fr_next);
719 
720 	m = frent->fe_m;
721 	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
722 	uma_zfree(V_pf_frent_z, frent);
723 	for (frent = next; frent != NULL; frent = next) {
724 		next = TAILQ_NEXT(frent, fr_next);
725 
726 		m2 = frent->fe_m;
727 		/* Strip off ip header. */
728 		m_adj(m2, frent->fe_hdrlen);
729 		/* Strip off any trailing bytes. */
730 		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
731 
732 		uma_zfree(V_pf_frent_z, frent);
733 		m_cat(m, m2);
734 	}
735 
736 	/* Remove from fragment queue. */
737 	pf_remove_fragment(frag);
738 
739 	return (m);
740 }
741 
742 #ifdef INET
743 static int
pf_reassemble(struct mbuf ** m0,int dir,u_short * reason)744 pf_reassemble(struct mbuf **m0, int dir, u_short *reason)
745 {
746 	struct mbuf		*m = *m0;
747 	struct ip		*ip = mtod(m, struct ip *);
748 	struct pf_frent		*frent;
749 	struct pf_fragment	*frag;
750 	struct pf_fragment_cmp	key;
751 	uint16_t		total, hdrlen;
752 
753 	/* Get an entry for the fragment queue */
754 	if ((frent = pf_create_fragment(reason)) == NULL)
755 		return (PF_DROP);
756 
757 	frent->fe_m = m;
758 	frent->fe_hdrlen = ip->ip_hl << 2;
759 	frent->fe_extoff = 0;
760 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
761 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
762 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
763 
764 	pf_ip2key(ip, dir, &key);
765 
766 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
767 		return (PF_DROP);
768 
769 	/* The mbuf is part of the fragment entry, no direct free or access */
770 	m = *m0 = NULL;
771 
772 	if (frag->fr_holes) {
773 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
774 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
775 	}
776 
777 	/* We have all the data */
778 	frent = TAILQ_FIRST(&frag->fr_queue);
779 	KASSERT(frent != NULL, ("frent != NULL"));
780 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
781 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
782 	hdrlen = frent->fe_hdrlen;
783 
784 	m = *m0 = pf_join_fragment(frag);
785 	frag = NULL;
786 
787 	if (m->m_flags & M_PKTHDR) {
788 		int plen = 0;
789 		for (m = *m0; m; m = m->m_next)
790 			plen += m->m_len;
791 		m = *m0;
792 		m->m_pkthdr.len = plen;
793 	}
794 
795 	ip = mtod(m, struct ip *);
796 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
797 	    htons(hdrlen + total), 0);
798 	ip->ip_len = htons(hdrlen + total);
799 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
800 	    ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
801 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
802 
803 	if (hdrlen + total > IP_MAXPACKET) {
804 		DPFPRINTF(("drop: too big: %d\n", total));
805 		ip->ip_len = 0;
806 		REASON_SET(reason, PFRES_SHORT);
807 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
808 		return (PF_DROP);
809 	}
810 
811 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
812 	return (PF_PASS);
813 }
814 #endif	/* INET */
815 
816 #ifdef INET6
817 static int
pf_reassemble6(struct mbuf ** m0,struct ip6_frag * fraghdr,uint16_t hdrlen,uint16_t extoff,u_short * reason)818 pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr,
819     uint16_t hdrlen, uint16_t extoff, u_short *reason)
820 {
821 	struct mbuf		*m = *m0;
822 	struct ip6_hdr		*ip6 = mtod(m, struct ip6_hdr *);
823 	struct pf_frent		*frent;
824 	struct pf_fragment	*frag;
825 	struct pf_fragment_cmp	 key;
826 	struct m_tag		*mtag;
827 	struct pf_fragment_tag	*ftag;
828 	int			 off;
829 	uint32_t		 frag_id;
830 	uint16_t		 total, maxlen;
831 	uint8_t			 proto;
832 
833 	PF_FRAG_LOCK();
834 
835 	/* Get an entry for the fragment queue. */
836 	if ((frent = pf_create_fragment(reason)) == NULL) {
837 		PF_FRAG_UNLOCK();
838 		return (PF_DROP);
839 	}
840 
841 	frent->fe_m = m;
842 	frent->fe_hdrlen = hdrlen;
843 	frent->fe_extoff = extoff;
844 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
845 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
846 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
847 
848 	key.frc_src.v6 = ip6->ip6_src;
849 	key.frc_dst.v6 = ip6->ip6_dst;
850 	key.frc_af = AF_INET6;
851 	/* Only the first fragment's protocol is relevant. */
852 	key.frc_proto = 0;
853 	key.frc_id = fraghdr->ip6f_ident;
854 
855 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
856 		PF_FRAG_UNLOCK();
857 		return (PF_DROP);
858 	}
859 
860 	/* The mbuf is part of the fragment entry, no direct free or access. */
861 	m = *m0 = NULL;
862 
863 	if (frag->fr_holes) {
864 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
865 		    frag->fr_holes));
866 		PF_FRAG_UNLOCK();
867 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
868 	}
869 
870 	/* We have all the data. */
871 	frent = TAILQ_FIRST(&frag->fr_queue);
872 	KASSERT(frent != NULL, ("frent != NULL"));
873 	extoff = frent->fe_extoff;
874 	maxlen = frag->fr_maxlen;
875 	frag_id = frag->fr_id;
876 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
877 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
878 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
879 
880 	m = *m0 = pf_join_fragment(frag);
881 	frag = NULL;
882 
883 	PF_FRAG_UNLOCK();
884 
885 	/* Take protocol from first fragment header. */
886 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
887 	KASSERT(m, ("%s: short mbuf chain", __func__));
888 	proto = *(mtod(m, uint8_t *) + off);
889 	m = *m0;
890 
891 	/* Delete frag6 header */
892 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
893 		goto fail;
894 
895 	if (m->m_flags & M_PKTHDR) {
896 		int plen = 0;
897 		for (m = *m0; m; m = m->m_next)
898 			plen += m->m_len;
899 		m = *m0;
900 		m->m_pkthdr.len = plen;
901 	}
902 
903 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
904 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL)
905 		goto fail;
906 	ftag = (struct pf_fragment_tag *)(mtag + 1);
907 	ftag->ft_hdrlen = hdrlen;
908 	ftag->ft_extoff = extoff;
909 	ftag->ft_maxlen = maxlen;
910 	ftag->ft_id = frag_id;
911 	m_tag_prepend(m, mtag);
912 
913 	ip6 = mtod(m, struct ip6_hdr *);
914 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
915 	if (extoff) {
916 		/* Write protocol into next field of last extension header. */
917 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
918 		    &off);
919 		KASSERT(m, ("%s: short mbuf chain", __func__));
920 		*(mtod(m, char *) + off) = proto;
921 		m = *m0;
922 	} else
923 		ip6->ip6_nxt = proto;
924 
925 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
926 		DPFPRINTF(("drop: too big: %d\n", total));
927 		ip6->ip6_plen = 0;
928 		REASON_SET(reason, PFRES_SHORT);
929 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
930 		return (PF_DROP);
931 	}
932 
933 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
934 	return (PF_PASS);
935 
936 fail:
937 	REASON_SET(reason, PFRES_MEMORY);
938 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
939 	return (PF_DROP);
940 }
941 #endif	/* INET6 */
942 
943 #ifdef INET6
944 int
pf_max_frag_size(struct mbuf * m)945 pf_max_frag_size(struct mbuf *m)
946 {
947 	struct m_tag *tag;
948 	struct pf_fragment_tag *ftag;
949 
950 	tag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL);
951 	if (tag == NULL)
952 		return (m->m_pkthdr.len);
953 
954 	ftag = (struct pf_fragment_tag *)(tag + 1);
955 
956 	return (ftag->ft_maxlen);
957 }
958 
959 int
pf_refragment6(struct ifnet * ifp,struct mbuf ** m0,struct m_tag * mtag,bool forward)960 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag,
961     bool forward)
962 {
963 	struct mbuf		*m = *m0, *t;
964 	struct ip6_hdr		*hdr;
965 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
966 	struct pf_pdesc		 pd;
967 	uint32_t		 frag_id;
968 	uint16_t		 hdrlen, extoff, maxlen;
969 	uint8_t			 proto;
970 	int			 error, action;
971 
972 	hdrlen = ftag->ft_hdrlen;
973 	extoff = ftag->ft_extoff;
974 	maxlen = ftag->ft_maxlen;
975 	frag_id = ftag->ft_id;
976 	m_tag_delete(m, mtag);
977 	mtag = NULL;
978 	ftag = NULL;
979 
980 	if (extoff) {
981 		int off;
982 
983 		/* Use protocol from next field of last extension header */
984 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
985 		    &off);
986 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
987 		proto = *(mtod(m, uint8_t *) + off);
988 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
989 		m = *m0;
990 	} else {
991 		hdr = mtod(m, struct ip6_hdr *);
992 		proto = hdr->ip6_nxt;
993 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
994 	}
995 
996 	/* In case of link-local traffic we'll need a scope set. */
997 	hdr = mtod(m, struct ip6_hdr *);
998 
999 	in6_setscope(&hdr->ip6_src, ifp, NULL);
1000 	in6_setscope(&hdr->ip6_dst, ifp, NULL);
1001 
1002 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
1003 	 * fragmentation wrong. */
1004 	maxlen = maxlen & ~7;
1005 
1006 	/*
1007 	 * Maxlen may be less than 8 if there was only a single
1008 	 * fragment.  As it was fragmented before, add a fragment
1009 	 * header also for a single fragment.  If total or maxlen
1010 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
1011 	 * we drop the packet.
1012 	 */
1013 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
1014 	m = (*m0)->m_nextpkt;
1015 	(*m0)->m_nextpkt = NULL;
1016 	if (error == 0) {
1017 		/* The first mbuf contains the unfragmented packet. */
1018 		m_freem(*m0);
1019 		*m0 = NULL;
1020 		action = PF_PASS;
1021 	} else {
1022 		/* Drop expects an mbuf to free. */
1023 		DPFPRINTF(("refragment error %d\n", error));
1024 		action = PF_DROP;
1025 	}
1026 	for (; m; m = t) {
1027 		t = m->m_nextpkt;
1028 		m->m_nextpkt = NULL;
1029 		m->m_flags |= M_SKIP_FIREWALL;
1030 		memset(&pd, 0, sizeof(pd));
1031 		pd.pf_mtag = pf_find_mtag(m);
1032 		if (error == 0)
1033 			if (forward) {
1034 				MPASS(m->m_pkthdr.rcvif != NULL);
1035 				ip6_forward(m, 0);
1036 			} else {
1037 				(void)ip6_output(m, NULL, NULL, 0, NULL, NULL,
1038 				    NULL);
1039 			}
1040 		else
1041 			m_freem(m);
1042 	}
1043 
1044 	return (action);
1045 }
1046 #endif /* INET6 */
1047 
1048 #ifdef INET
1049 int
pf_normalize_ip(struct mbuf ** m0,u_short * reason,struct pf_pdesc * pd)1050 pf_normalize_ip(struct mbuf **m0, u_short *reason,
1051     struct pf_pdesc *pd)
1052 {
1053 	struct pf_krule		*r;
1054 	struct ip		*h = mtod(*m0, struct ip *);
1055 	int			 mff = (ntohs(h->ip_off) & IP_MF);
1056 	int			 hlen = h->ip_hl << 2;
1057 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1058 	u_int16_t		 max;
1059 	int			 ip_len;
1060 	int			 tag = -1;
1061 	int			 verdict;
1062 	bool			 scrub_compat;
1063 
1064 	PF_RULES_RASSERT();
1065 
1066 	MPASS(pd->m == *m0);
1067 
1068 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1069 	/*
1070 	 * Check if there are any scrub rules, matching or not.
1071 	 * Lack of scrub rules means:
1072 	 *  - enforced packet normalization operation just like in OpenBSD
1073 	 *  - fragment reassembly depends on V_pf_status.reass
1074 	 * With scrub rules:
1075 	 *  - packet normalization is performed if there is a matching scrub rule
1076 	 *  - fragment reassembly is performed if the matching rule has no
1077 	 *    PFRULE_FRAGMENT_NOREASS flag
1078 	 */
1079 	scrub_compat = (r != NULL);
1080 	while (r != NULL) {
1081 		pf_counter_u64_add(&r->evaluations, 1);
1082 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1083 			r = r->skip[PF_SKIP_IFP];
1084 		else if (r->direction && r->direction != pd->dir)
1085 			r = r->skip[PF_SKIP_DIR];
1086 		else if (r->af && r->af != AF_INET)
1087 			r = r->skip[PF_SKIP_AF];
1088 		else if (r->proto && r->proto != h->ip_p)
1089 			r = r->skip[PF_SKIP_PROTO];
1090 		else if (PF_MISMATCHAW(&r->src.addr,
1091 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1092 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1093 			r = r->skip[PF_SKIP_SRC_ADDR];
1094 		else if (PF_MISMATCHAW(&r->dst.addr,
1095 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1096 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1097 			r = r->skip[PF_SKIP_DST_ADDR];
1098 		else if (r->match_tag && !pf_match_tag(pd->m, r, &tag,
1099 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1100 			r = TAILQ_NEXT(r, entries);
1101 		else
1102 			break;
1103 	}
1104 
1105 	if (scrub_compat) {
1106 		/* With scrub rules present IPv4 normalization happens only
1107 		 * if one of rules has matched and it's not a "no scrub" rule */
1108 		if (r == NULL || r->action == PF_NOSCRUB)
1109 			return (PF_PASS);
1110 
1111 		pf_counter_u64_critical_enter();
1112 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1113 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1114 		pf_counter_u64_critical_exit();
1115 		pf_rule_to_actions(r, &pd->act);
1116 	}
1117 
1118 	/* Check for illegal packets */
1119 	if (hlen < (int)sizeof(struct ip)) {
1120 		REASON_SET(reason, PFRES_NORM);
1121 		goto drop;
1122 	}
1123 
1124 	if (hlen > ntohs(h->ip_len)) {
1125 		REASON_SET(reason, PFRES_NORM);
1126 		goto drop;
1127 	}
1128 
1129 	/* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */
1130 	if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) ||
1131 	    (r != NULL && r->rule_flag & PFRULE_NODF)) &&
1132 	    (h->ip_off & htons(IP_DF))
1133 	) {
1134 		u_int16_t ip_off = h->ip_off;
1135 
1136 		h->ip_off &= htons(~IP_DF);
1137 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1138 	}
1139 
1140 	/* We will need other tests here */
1141 	if (!fragoff && !mff)
1142 		goto no_fragment;
1143 
1144 	/* We're dealing with a fragment now. Don't allow fragments
1145 	 * with IP_DF to enter the cache. If the flag was cleared by
1146 	 * no-df above, fine. Otherwise drop it.
1147 	 */
1148 	if (h->ip_off & htons(IP_DF)) {
1149 		DPFPRINTF(("IP_DF\n"));
1150 		goto bad;
1151 	}
1152 
1153 	ip_len = ntohs(h->ip_len) - hlen;
1154 
1155 	/* All fragments are 8 byte aligned */
1156 	if (mff && (ip_len & 0x7)) {
1157 		DPFPRINTF(("mff and %d\n", ip_len));
1158 		goto bad;
1159 	}
1160 
1161 	/* Respect maximum length */
1162 	if (fragoff + ip_len > IP_MAXPACKET) {
1163 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1164 		goto bad;
1165 	}
1166 
1167 	if ((!scrub_compat && V_pf_status.reass) ||
1168 	    (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS))
1169 	) {
1170 		max = fragoff + ip_len;
1171 
1172 		/* Fully buffer all of the fragments
1173 		 * Might return a completely reassembled mbuf, or NULL */
1174 		PF_FRAG_LOCK();
1175 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1176 		verdict = pf_reassemble(m0, pd->dir, reason);
1177 		PF_FRAG_UNLOCK();
1178 
1179 		if (verdict != PF_PASS)
1180 			return (PF_DROP);
1181 
1182 		pd->m = *m0;
1183 		if (pd->m == NULL)
1184 			return (PF_DROP);
1185 
1186 		h = mtod(pd->m, struct ip *);
1187 
1188  no_fragment:
1189 		/* At this point, only IP_DF is allowed in ip_off */
1190 		if (h->ip_off & ~htons(IP_DF)) {
1191 			u_int16_t ip_off = h->ip_off;
1192 
1193 			h->ip_off &= htons(IP_DF);
1194 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1195 		}
1196 	}
1197 
1198 	return (PF_PASS);
1199 
1200  bad:
1201 	DPFPRINTF(("dropping bad fragment\n"));
1202 	REASON_SET(reason, PFRES_FRAG);
1203  drop:
1204 	if (r != NULL && r->log)
1205 		PFLOG_PACKET(PF_DROP, *reason, r, NULL, NULL, pd, 1);
1206 
1207 	return (PF_DROP);
1208 }
1209 #endif
1210 
1211 #ifdef INET6
1212 int
pf_normalize_ip6(struct mbuf ** m0,int off,u_short * reason,struct pf_pdesc * pd)1213 pf_normalize_ip6(struct mbuf **m0, int off, u_short *reason,
1214     struct pf_pdesc *pd)
1215 {
1216 	struct pf_krule		*r;
1217 	struct ip6_frag		 frag;
1218 	bool			 scrub_compat;
1219 
1220 	PF_RULES_RASSERT();
1221 
1222 	pd->m = *m0;
1223 
1224 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1225 	/*
1226 	 * Check if there are any scrub rules, matching or not.
1227 	 * Lack of scrub rules means:
1228 	 *  - enforced packet normalization operation just like in OpenBSD
1229 	 * With scrub rules:
1230 	 *  - packet normalization is performed if there is a matching scrub rule
1231 	 * XXX: Fragment reassembly always performed for IPv6!
1232 	 */
1233 	scrub_compat = (r != NULL);
1234 	while (r != NULL) {
1235 		pf_counter_u64_add(&r->evaluations, 1);
1236 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1237 			r = r->skip[PF_SKIP_IFP];
1238 		else if (r->direction && r->direction != pd->dir)
1239 			r = r->skip[PF_SKIP_DIR];
1240 		else if (r->af && r->af != AF_INET6)
1241 			r = r->skip[PF_SKIP_AF];
1242 		else if (r->proto && r->proto != pd->proto)
1243 			r = r->skip[PF_SKIP_PROTO];
1244 		else if (PF_MISMATCHAW(&r->src.addr,
1245 		    (struct pf_addr *)&pd->src, AF_INET6,
1246 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1247 			r = r->skip[PF_SKIP_SRC_ADDR];
1248 		else if (PF_MISMATCHAW(&r->dst.addr,
1249 		    (struct pf_addr *)&pd->dst, AF_INET6,
1250 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1251 			r = r->skip[PF_SKIP_DST_ADDR];
1252 		else
1253 			break;
1254 	}
1255 
1256 	if (scrub_compat) {
1257 		/* With scrub rules present IPv6 normalization happens only
1258 		 * if one of rules has matched and it's not a "no scrub" rule */
1259 		if (r == NULL || r->action == PF_NOSCRUB)
1260 			return (PF_PASS);
1261 
1262 		pf_counter_u64_critical_enter();
1263 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1264 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1265 		pf_counter_u64_critical_exit();
1266 		pf_rule_to_actions(r, &pd->act);
1267 	}
1268 
1269 	if (!pf_pull_hdr(pd->m, off, &frag, sizeof(frag), NULL, reason, AF_INET6))
1270 		return (PF_DROP);
1271 
1272 	/* Offset now points to data portion. */
1273 	off += sizeof(frag);
1274 
1275 	if (pd->virtual_proto == PF_VPROTO_FRAGMENT) {
1276 		/* Returns PF_DROP or *m0 is NULL or completely reassembled
1277 		 * mbuf. */
1278 		if (pf_reassemble6(m0, &frag, off, pd->extoff, reason) != PF_PASS)
1279 			return (PF_DROP);
1280 		pd->m = *m0;
1281 		if (pd->m == NULL)
1282 			return (PF_DROP);
1283 	}
1284 
1285 	return (PF_PASS);
1286 }
1287 #endif /* INET6 */
1288 
1289 int
pf_normalize_tcp(struct pf_pdesc * pd)1290 pf_normalize_tcp(struct pf_pdesc *pd)
1291 {
1292 	struct pf_krule	*r, *rm = NULL;
1293 	struct tcphdr	*th = &pd->hdr.tcp;
1294 	int		 rewrite = 0;
1295 	u_short		 reason;
1296 	u_int16_t	 flags;
1297 	sa_family_t	 af = pd->af;
1298 	int		 srs;
1299 
1300 	PF_RULES_RASSERT();
1301 
1302 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1303 	/* Check if there any scrub rules. Lack of scrub rules means enforced
1304 	 * packet normalization operation just like in OpenBSD. */
1305 	srs = (r != NULL);
1306 	while (r != NULL) {
1307 		pf_counter_u64_add(&r->evaluations, 1);
1308 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1309 			r = r->skip[PF_SKIP_IFP];
1310 		else if (r->direction && r->direction != pd->dir)
1311 			r = r->skip[PF_SKIP_DIR];
1312 		else if (r->af && r->af != af)
1313 			r = r->skip[PF_SKIP_AF];
1314 		else if (r->proto && r->proto != pd->proto)
1315 			r = r->skip[PF_SKIP_PROTO];
1316 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1317 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1318 			r = r->skip[PF_SKIP_SRC_ADDR];
1319 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1320 			    r->src.port[0], r->src.port[1], th->th_sport))
1321 			r = r->skip[PF_SKIP_SRC_PORT];
1322 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1323 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1324 			r = r->skip[PF_SKIP_DST_ADDR];
1325 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1326 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1327 			r = r->skip[PF_SKIP_DST_PORT];
1328 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1329 			    pf_osfp_fingerprint(pd, th),
1330 			    r->os_fingerprint))
1331 			r = TAILQ_NEXT(r, entries);
1332 		else {
1333 			rm = r;
1334 			break;
1335 		}
1336 	}
1337 
1338 	if (srs) {
1339 		/* With scrub rules present TCP normalization happens only
1340 		 * if one of rules has matched and it's not a "no scrub" rule */
1341 		if (rm == NULL || rm->action == PF_NOSCRUB)
1342 			return (PF_PASS);
1343 
1344 		pf_counter_u64_critical_enter();
1345 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1346 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1347 		pf_counter_u64_critical_exit();
1348 		pf_rule_to_actions(rm, &pd->act);
1349 	}
1350 
1351 	if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1352 		pd->flags |= PFDESC_TCP_NORM;
1353 
1354 	flags = tcp_get_flags(th);
1355 	if (flags & TH_SYN) {
1356 		/* Illegal packet */
1357 		if (flags & TH_RST)
1358 			goto tcp_drop;
1359 
1360 		if (flags & TH_FIN)
1361 			goto tcp_drop;
1362 	} else {
1363 		/* Illegal packet */
1364 		if (!(flags & (TH_ACK|TH_RST)))
1365 			goto tcp_drop;
1366 	}
1367 
1368 	if (!(flags & TH_ACK)) {
1369 		/* These flags are only valid if ACK is set */
1370 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1371 			goto tcp_drop;
1372 	}
1373 
1374 	/* Check for illegal header length */
1375 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1376 		goto tcp_drop;
1377 
1378 	/* If flags changed, or reserved data set, then adjust */
1379 	if (flags != tcp_get_flags(th) ||
1380 	    (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) {
1381 		u_int16_t	ov, nv;
1382 
1383 		ov = *(u_int16_t *)(&th->th_ack + 1);
1384 		flags &= ~(TH_RES1 | TH_RES2 | TH_RES3);
1385 		tcp_set_flags(th, flags);
1386 		nv = *(u_int16_t *)(&th->th_ack + 1);
1387 
1388 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, ov, nv, 0);
1389 		rewrite = 1;
1390 	}
1391 
1392 	/* Remove urgent pointer, if TH_URG is not set */
1393 	if (!(flags & TH_URG) && th->th_urp) {
1394 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, th->th_urp,
1395 		    0, 0);
1396 		th->th_urp = 0;
1397 		rewrite = 1;
1398 	}
1399 
1400 	/* copy back packet headers if we sanitized */
1401 	if (rewrite)
1402 		m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1403 
1404 	return (PF_PASS);
1405 
1406  tcp_drop:
1407 	REASON_SET(&reason, PFRES_NORM);
1408 	if (rm != NULL && r->log)
1409 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 1);
1410 	return (PF_DROP);
1411 }
1412 
1413 int
pf_normalize_tcp_init(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * src,struct pf_state_peer * dst)1414 pf_normalize_tcp_init(struct pf_pdesc *pd, struct tcphdr *th,
1415     struct pf_state_peer *src, struct pf_state_peer *dst)
1416 {
1417 	u_int32_t tsval, tsecr;
1418 	u_int8_t hdr[60];
1419 	u_int8_t *opt;
1420 
1421 	KASSERT((src->scrub == NULL),
1422 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1423 
1424 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1425 	if (src->scrub == NULL)
1426 		return (1);
1427 
1428 	switch (pd->af) {
1429 #ifdef INET
1430 	case AF_INET: {
1431 		struct ip *h = mtod(pd->m, struct ip *);
1432 		src->scrub->pfss_ttl = h->ip_ttl;
1433 		break;
1434 	}
1435 #endif /* INET */
1436 #ifdef INET6
1437 	case AF_INET6: {
1438 		struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1439 		src->scrub->pfss_ttl = h->ip6_hlim;
1440 		break;
1441 	}
1442 #endif /* INET6 */
1443 	}
1444 
1445 	/*
1446 	 * All normalizations below are only begun if we see the start of
1447 	 * the connections.  They must all set an enabled bit in pfss_flags
1448 	 */
1449 	if ((th->th_flags & TH_SYN) == 0)
1450 		return (0);
1451 
1452 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1453 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1454 		/* Diddle with TCP options */
1455 		int hlen;
1456 		opt = hdr + sizeof(struct tcphdr);
1457 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1458 		while (hlen >= TCPOLEN_TIMESTAMP) {
1459 			switch (*opt) {
1460 			case TCPOPT_EOL:	/* FALLTHROUGH */
1461 			case TCPOPT_NOP:
1462 				opt++;
1463 				hlen--;
1464 				break;
1465 			case TCPOPT_TIMESTAMP:
1466 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1467 					src->scrub->pfss_flags |=
1468 					    PFSS_TIMESTAMP;
1469 					src->scrub->pfss_ts_mod =
1470 					    htonl(arc4random());
1471 
1472 					/* note PFSS_PAWS not set yet */
1473 					memcpy(&tsval, &opt[2],
1474 					    sizeof(u_int32_t));
1475 					memcpy(&tsecr, &opt[6],
1476 					    sizeof(u_int32_t));
1477 					src->scrub->pfss_tsval0 = ntohl(tsval);
1478 					src->scrub->pfss_tsval = ntohl(tsval);
1479 					src->scrub->pfss_tsecr = ntohl(tsecr);
1480 					getmicrouptime(&src->scrub->pfss_last);
1481 				}
1482 				/* FALLTHROUGH */
1483 			default:
1484 				hlen -= MAX(opt[1], 2);
1485 				opt += MAX(opt[1], 2);
1486 				break;
1487 			}
1488 		}
1489 	}
1490 
1491 	return (0);
1492 }
1493 
1494 void
pf_normalize_tcp_cleanup(struct pf_kstate * state)1495 pf_normalize_tcp_cleanup(struct pf_kstate *state)
1496 {
1497 	/* XXX Note: this also cleans up SCTP. */
1498 	uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1499 	uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1500 
1501 	/* Someday... flush the TCP segment reassembly descriptors. */
1502 }
1503 int
pf_normalize_sctp_init(struct pf_pdesc * pd,struct pf_state_peer * src,struct pf_state_peer * dst)1504 pf_normalize_sctp_init(struct pf_pdesc *pd, struct pf_state_peer *src,
1505     struct pf_state_peer *dst)
1506 {
1507 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1508 	if (src->scrub == NULL)
1509 		return (1);
1510 
1511 	dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1512 	if (dst->scrub == NULL) {
1513 		uma_zfree(V_pf_state_scrub_z, src);
1514 		return (1);
1515 	}
1516 
1517 	dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
1518 
1519 	return (0);
1520 }
1521 
1522 int
pf_normalize_tcp_stateful(struct pf_pdesc * pd,u_short * reason,struct tcphdr * th,struct pf_kstate * state,struct pf_state_peer * src,struct pf_state_peer * dst,int * writeback)1523 pf_normalize_tcp_stateful(struct pf_pdesc *pd,
1524     u_short *reason, struct tcphdr *th, struct pf_kstate *state,
1525     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1526 {
1527 	struct timeval uptime;
1528 	u_int32_t tsval, tsecr;
1529 	u_int tsval_from_last;
1530 	u_int8_t hdr[60];
1531 	u_int8_t *opt;
1532 	int copyback = 0;
1533 	int got_ts = 0;
1534 	size_t startoff;
1535 
1536 	KASSERT((src->scrub || dst->scrub),
1537 	    ("%s: src->scrub && dst->scrub!", __func__));
1538 
1539 	/*
1540 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1541 	 * technique to evade an intrusion detection system and confuse
1542 	 * firewall state code.
1543 	 */
1544 	switch (pd->af) {
1545 #ifdef INET
1546 	case AF_INET: {
1547 		if (src->scrub) {
1548 			struct ip *h = mtod(pd->m, struct ip *);
1549 			if (h->ip_ttl > src->scrub->pfss_ttl)
1550 				src->scrub->pfss_ttl = h->ip_ttl;
1551 			h->ip_ttl = src->scrub->pfss_ttl;
1552 		}
1553 		break;
1554 	}
1555 #endif /* INET */
1556 #ifdef INET6
1557 	case AF_INET6: {
1558 		if (src->scrub) {
1559 			struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1560 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1561 				src->scrub->pfss_ttl = h->ip6_hlim;
1562 			h->ip6_hlim = src->scrub->pfss_ttl;
1563 		}
1564 		break;
1565 	}
1566 #endif /* INET6 */
1567 	}
1568 
1569 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1570 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1571 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1572 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1573 		/* Diddle with TCP options */
1574 		int hlen;
1575 		opt = hdr + sizeof(struct tcphdr);
1576 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1577 		while (hlen >= TCPOLEN_TIMESTAMP) {
1578 			startoff = opt - (hdr + sizeof(struct tcphdr));
1579 			switch (*opt) {
1580 			case TCPOPT_EOL:	/* FALLTHROUGH */
1581 			case TCPOPT_NOP:
1582 				opt++;
1583 				hlen--;
1584 				break;
1585 			case TCPOPT_TIMESTAMP:
1586 				/* Modulate the timestamps.  Can be used for
1587 				 * NAT detection, OS uptime determination or
1588 				 * reboot detection.
1589 				 */
1590 
1591 				if (got_ts) {
1592 					/* Huh?  Multiple timestamps!? */
1593 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1594 						DPFPRINTF(("multiple TS??\n"));
1595 						pf_print_state(state);
1596 						printf("\n");
1597 					}
1598 					REASON_SET(reason, PFRES_TS);
1599 					return (PF_DROP);
1600 				}
1601 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1602 					memcpy(&tsval, &opt[2],
1603 					    sizeof(u_int32_t));
1604 					if (tsval && src->scrub &&
1605 					    (src->scrub->pfss_flags &
1606 					    PFSS_TIMESTAMP)) {
1607 						tsval = ntohl(tsval);
1608 						pf_patch_32_unaligned(pd->m,
1609 						    &th->th_sum,
1610 						    &opt[2],
1611 						    htonl(tsval +
1612 						    src->scrub->pfss_ts_mod),
1613 						    PF_ALGNMNT(startoff),
1614 						    0);
1615 						copyback = 1;
1616 					}
1617 
1618 					/* Modulate TS reply iff valid (!0) */
1619 					memcpy(&tsecr, &opt[6],
1620 					    sizeof(u_int32_t));
1621 					if (tsecr && dst->scrub &&
1622 					    (dst->scrub->pfss_flags &
1623 					    PFSS_TIMESTAMP)) {
1624 						tsecr = ntohl(tsecr)
1625 						    - dst->scrub->pfss_ts_mod;
1626 						pf_patch_32_unaligned(pd->m,
1627 						    &th->th_sum,
1628 						    &opt[6],
1629 						    htonl(tsecr),
1630 						    PF_ALGNMNT(startoff),
1631 						    0);
1632 						copyback = 1;
1633 					}
1634 					got_ts = 1;
1635 				}
1636 				/* FALLTHROUGH */
1637 			default:
1638 				hlen -= MAX(opt[1], 2);
1639 				opt += MAX(opt[1], 2);
1640 				break;
1641 			}
1642 		}
1643 		if (copyback) {
1644 			/* Copyback the options, caller copys back header */
1645 			*writeback = 1;
1646 			m_copyback(pd->m, pd->off + sizeof(struct tcphdr),
1647 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1648 			    sizeof(struct tcphdr));
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * Must invalidate PAWS checks on connections idle for too long.
1654 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1655 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1656 	 * TS echo check only works for the first 12 days of a connection
1657 	 * when the TS has exhausted half its 32bit space
1658 	 */
1659 #define TS_MAX_IDLE	(24*24*60*60)
1660 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1661 
1662 	getmicrouptime(&uptime);
1663 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1664 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1665 	    time_uptime - (state->creation / 1000) > TS_MAX_CONN))  {
1666 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1667 			DPFPRINTF(("src idled out of PAWS\n"));
1668 			pf_print_state(state);
1669 			printf("\n");
1670 		}
1671 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1672 		    | PFSS_PAWS_IDLED;
1673 	}
1674 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1675 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1676 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1677 			DPFPRINTF(("dst idled out of PAWS\n"));
1678 			pf_print_state(state);
1679 			printf("\n");
1680 		}
1681 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1682 		    | PFSS_PAWS_IDLED;
1683 	}
1684 
1685 	if (got_ts && src->scrub && dst->scrub &&
1686 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1687 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1688 		/* Validate that the timestamps are "in-window".
1689 		 * RFC1323 describes TCP Timestamp options that allow
1690 		 * measurement of RTT (round trip time) and PAWS
1691 		 * (protection against wrapped sequence numbers).  PAWS
1692 		 * gives us a set of rules for rejecting packets on
1693 		 * long fat pipes (packets that were somehow delayed
1694 		 * in transit longer than the time it took to send the
1695 		 * full TCP sequence space of 4Gb).  We can use these
1696 		 * rules and infer a few others that will let us treat
1697 		 * the 32bit timestamp and the 32bit echoed timestamp
1698 		 * as sequence numbers to prevent a blind attacker from
1699 		 * inserting packets into a connection.
1700 		 *
1701 		 * RFC1323 tells us:
1702 		 *  - The timestamp on this packet must be greater than
1703 		 *    or equal to the last value echoed by the other
1704 		 *    endpoint.  The RFC says those will be discarded
1705 		 *    since it is a dup that has already been acked.
1706 		 *    This gives us a lowerbound on the timestamp.
1707 		 *        timestamp >= other last echoed timestamp
1708 		 *  - The timestamp will be less than or equal to
1709 		 *    the last timestamp plus the time between the
1710 		 *    last packet and now.  The RFC defines the max
1711 		 *    clock rate as 1ms.  We will allow clocks to be
1712 		 *    up to 10% fast and will allow a total difference
1713 		 *    or 30 seconds due to a route change.  And this
1714 		 *    gives us an upperbound on the timestamp.
1715 		 *        timestamp <= last timestamp + max ticks
1716 		 *    We have to be careful here.  Windows will send an
1717 		 *    initial timestamp of zero and then initialize it
1718 		 *    to a random value after the 3whs; presumably to
1719 		 *    avoid a DoS by having to call an expensive RNG
1720 		 *    during a SYN flood.  Proof MS has at least one
1721 		 *    good security geek.
1722 		 *
1723 		 *  - The TCP timestamp option must also echo the other
1724 		 *    endpoints timestamp.  The timestamp echoed is the
1725 		 *    one carried on the earliest unacknowledged segment
1726 		 *    on the left edge of the sequence window.  The RFC
1727 		 *    states that the host will reject any echoed
1728 		 *    timestamps that were larger than any ever sent.
1729 		 *    This gives us an upperbound on the TS echo.
1730 		 *        tescr <= largest_tsval
1731 		 *  - The lowerbound on the TS echo is a little more
1732 		 *    tricky to determine.  The other endpoint's echoed
1733 		 *    values will not decrease.  But there may be
1734 		 *    network conditions that re-order packets and
1735 		 *    cause our view of them to decrease.  For now the
1736 		 *    only lowerbound we can safely determine is that
1737 		 *    the TS echo will never be less than the original
1738 		 *    TS.  XXX There is probably a better lowerbound.
1739 		 *    Remove TS_MAX_CONN with better lowerbound check.
1740 		 *        tescr >= other original TS
1741 		 *
1742 		 * It is also important to note that the fastest
1743 		 * timestamp clock of 1ms will wrap its 32bit space in
1744 		 * 24 days.  So we just disable TS checking after 24
1745 		 * days of idle time.  We actually must use a 12d
1746 		 * connection limit until we can come up with a better
1747 		 * lowerbound to the TS echo check.
1748 		 */
1749 		struct timeval delta_ts;
1750 		int ts_fudge;
1751 
1752 		/*
1753 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1754 		 * a host's timestamp.  This can happen if the previous
1755 		 * packet got delayed in transit for much longer than
1756 		 * this packet.
1757 		 */
1758 		if ((ts_fudge = state->rule->timeout[PFTM_TS_DIFF]) == 0)
1759 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1760 
1761 		/* Calculate max ticks since the last timestamp */
1762 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1763 #define TS_MICROSECS	1000000		/* microseconds per second */
1764 		delta_ts = uptime;
1765 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1766 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1767 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1768 
1769 		if ((src->state >= TCPS_ESTABLISHED &&
1770 		    dst->state >= TCPS_ESTABLISHED) &&
1771 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1772 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1773 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1774 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1775 			/* Bad RFC1323 implementation or an insertion attack.
1776 			 *
1777 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1778 			 *   after the FIN,FIN|ACK,ACK closing that carries
1779 			 *   an old timestamp.
1780 			 */
1781 
1782 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1783 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1784 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1785 			    tsval_from_last) ? '1' : ' ',
1786 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1787 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1788 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1789 			    "idle: %jus %lums\n",
1790 			    tsval, tsecr, tsval_from_last,
1791 			    (uintmax_t)delta_ts.tv_sec,
1792 			    delta_ts.tv_usec / 1000));
1793 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1794 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1795 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1796 			    "\n", dst->scrub->pfss_tsval,
1797 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1798 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1799 				pf_print_state(state);
1800 				pf_print_flags(th->th_flags);
1801 				printf("\n");
1802 			}
1803 			REASON_SET(reason, PFRES_TS);
1804 			return (PF_DROP);
1805 		}
1806 
1807 		/* XXX I'd really like to require tsecr but it's optional */
1808 
1809 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1810 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1811 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1812 	    src->scrub && dst->scrub &&
1813 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1814 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1815 		/* Didn't send a timestamp.  Timestamps aren't really useful
1816 		 * when:
1817 		 *  - connection opening or closing (often not even sent).
1818 		 *    but we must not let an attacker to put a FIN on a
1819 		 *    data packet to sneak it through our ESTABLISHED check.
1820 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1821 		 *  - on an empty ACK.  The TS will not be echoed so it will
1822 		 *    probably not help keep the RTT calculation in sync and
1823 		 *    there isn't as much danger when the sequence numbers
1824 		 *    got wrapped.  So some stacks don't include TS on empty
1825 		 *    ACKs :-(
1826 		 *
1827 		 * To minimize the disruption to mostly RFC1323 conformant
1828 		 * stacks, we will only require timestamps on data packets.
1829 		 *
1830 		 * And what do ya know, we cannot require timestamps on data
1831 		 * packets.  There appear to be devices that do legitimate
1832 		 * TCP connection hijacking.  There are HTTP devices that allow
1833 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1834 		 * If the intermediate device has the HTTP response cache, it
1835 		 * will spoof the response but not bother timestamping its
1836 		 * packets.  So we can look for the presence of a timestamp in
1837 		 * the first data packet and if there, require it in all future
1838 		 * packets.
1839 		 */
1840 
1841 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1842 			/*
1843 			 * Hey!  Someone tried to sneak a packet in.  Or the
1844 			 * stack changed its RFC1323 behavior?!?!
1845 			 */
1846 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1847 				DPFPRINTF(("Did not receive expected RFC1323 "
1848 				    "timestamp\n"));
1849 				pf_print_state(state);
1850 				pf_print_flags(th->th_flags);
1851 				printf("\n");
1852 			}
1853 			REASON_SET(reason, PFRES_TS);
1854 			return (PF_DROP);
1855 		}
1856 	}
1857 
1858 	/*
1859 	 * We will note if a host sends his data packets with or without
1860 	 * timestamps.  And require all data packets to contain a timestamp
1861 	 * if the first does.  PAWS implicitly requires that all data packets be
1862 	 * timestamped.  But I think there are middle-man devices that hijack
1863 	 * TCP streams immediately after the 3whs and don't timestamp their
1864 	 * packets (seen in a WWW accelerator or cache).
1865 	 */
1866 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1867 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1868 		if (got_ts)
1869 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1870 		else {
1871 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1872 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1873 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1874 				/* Don't warn if other host rejected RFC1323 */
1875 				DPFPRINTF(("Broken RFC1323 stack did not "
1876 				    "timestamp data packet. Disabled PAWS "
1877 				    "security.\n"));
1878 				pf_print_state(state);
1879 				pf_print_flags(th->th_flags);
1880 				printf("\n");
1881 			}
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * Update PAWS values
1887 	 */
1888 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1889 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1890 		getmicrouptime(&src->scrub->pfss_last);
1891 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1892 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1893 			src->scrub->pfss_tsval = tsval;
1894 
1895 		if (tsecr) {
1896 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1897 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1898 				src->scrub->pfss_tsecr = tsecr;
1899 
1900 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1901 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1902 			    src->scrub->pfss_tsval0 == 0)) {
1903 				/* tsval0 MUST be the lowest timestamp */
1904 				src->scrub->pfss_tsval0 = tsval;
1905 			}
1906 
1907 			/* Only fully initialized after a TS gets echoed */
1908 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1909 				src->scrub->pfss_flags |= PFSS_PAWS;
1910 		}
1911 	}
1912 
1913 	/* I have a dream....  TCP segment reassembly.... */
1914 	return (0);
1915 }
1916 
1917 int
pf_normalize_mss(struct pf_pdesc * pd)1918 pf_normalize_mss(struct pf_pdesc *pd)
1919 {
1920 	struct tcphdr	*th = &pd->hdr.tcp;
1921 	u_int16_t	*mss;
1922 	int		 thoff;
1923 	int		 opt, cnt, optlen = 0;
1924 	u_char		 opts[TCP_MAXOLEN];
1925 	u_char		*optp = opts;
1926 	size_t		 startoff;
1927 
1928 	thoff = th->th_off << 2;
1929 	cnt = thoff - sizeof(struct tcphdr);
1930 
1931 	if (cnt > 0 && !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, cnt,
1932 	    NULL, NULL, pd->af))
1933 		return (0);
1934 
1935 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1936 		startoff = optp - opts;
1937 		opt = optp[0];
1938 		if (opt == TCPOPT_EOL)
1939 			break;
1940 		if (opt == TCPOPT_NOP)
1941 			optlen = 1;
1942 		else {
1943 			if (cnt < 2)
1944 				break;
1945 			optlen = optp[1];
1946 			if (optlen < 2 || optlen > cnt)
1947 				break;
1948 		}
1949 		switch (opt) {
1950 		case TCPOPT_MAXSEG:
1951 			mss = (u_int16_t *)(optp + 2);
1952 			if ((ntohs(*mss)) > pd->act.max_mss) {
1953 				pf_patch_16_unaligned(pd->m,
1954 				    &th->th_sum,
1955 				    mss, htons(pd->act.max_mss),
1956 				    PF_ALGNMNT(startoff),
1957 				    0);
1958 				m_copyback(pd->m, pd->off + sizeof(*th),
1959 				    thoff - sizeof(*th), opts);
1960 				m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1961 			}
1962 			break;
1963 		default:
1964 			break;
1965 		}
1966 	}
1967 
1968 	return (0);
1969 }
1970 
1971 int
pf_scan_sctp(struct pf_pdesc * pd)1972 pf_scan_sctp(struct pf_pdesc *pd)
1973 {
1974 	struct sctp_chunkhdr ch = { };
1975 	int chunk_off = sizeof(struct sctphdr);
1976 	int chunk_start;
1977 	int ret;
1978 
1979 	while (pd->off + chunk_off < pd->tot_len) {
1980 		if (!pf_pull_hdr(pd->m, pd->off + chunk_off, &ch, sizeof(ch), NULL,
1981 		    NULL, pd->af))
1982 			return (PF_DROP);
1983 
1984 		/* Length includes the header, this must be at least 4. */
1985 		if (ntohs(ch.chunk_length) < 4)
1986 			return (PF_DROP);
1987 
1988 		chunk_start = chunk_off;
1989 		chunk_off += roundup(ntohs(ch.chunk_length), 4);
1990 
1991 		switch (ch.chunk_type) {
1992 		case SCTP_INITIATION:
1993 		case SCTP_INITIATION_ACK: {
1994 			struct sctp_init_chunk init;
1995 
1996 			if (!pf_pull_hdr(pd->m, pd->off + chunk_start, &init,
1997 			    sizeof(init), NULL, NULL, pd->af))
1998 				return (PF_DROP);
1999 
2000 			/*
2001 			 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have
2002 			 * any value except 0."
2003 			 */
2004 			if (init.init.initiate_tag == 0)
2005 				return (PF_DROP);
2006 			if (init.init.num_inbound_streams == 0)
2007 				return (PF_DROP);
2008 			if (init.init.num_outbound_streams == 0)
2009 				return (PF_DROP);
2010 			if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND)
2011 				return (PF_DROP);
2012 
2013 			/*
2014 			 * RFC 9260, Section 3.1, INIT chunks MUST have zero
2015 			 * verification tag.
2016 			 */
2017 			if (ch.chunk_type == SCTP_INITIATION &&
2018 			    pd->hdr.sctp.v_tag != 0)
2019 				return (PF_DROP);
2020 
2021 			pd->sctp_initiate_tag = init.init.initiate_tag;
2022 
2023 			if (ch.chunk_type == SCTP_INITIATION)
2024 				pd->sctp_flags |= PFDESC_SCTP_INIT;
2025 			else
2026 				pd->sctp_flags |= PFDESC_SCTP_INIT_ACK;
2027 
2028 			ret = pf_multihome_scan_init(pd->off + chunk_start,
2029 			    ntohs(init.ch.chunk_length), pd);
2030 			if (ret != PF_PASS)
2031 				return (ret);
2032 
2033 			break;
2034 		}
2035 		case SCTP_ABORT_ASSOCIATION:
2036 			pd->sctp_flags |= PFDESC_SCTP_ABORT;
2037 			break;
2038 		case SCTP_SHUTDOWN:
2039 		case SCTP_SHUTDOWN_ACK:
2040 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN;
2041 			break;
2042 		case SCTP_SHUTDOWN_COMPLETE:
2043 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE;
2044 			break;
2045 		case SCTP_COOKIE_ECHO:
2046 			pd->sctp_flags |= PFDESC_SCTP_COOKIE;
2047 			break;
2048 		case SCTP_COOKIE_ACK:
2049 			pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK;
2050 			break;
2051 		case SCTP_DATA:
2052 			pd->sctp_flags |= PFDESC_SCTP_DATA;
2053 			break;
2054 		case SCTP_HEARTBEAT_REQUEST:
2055 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT;
2056 			break;
2057 		case SCTP_HEARTBEAT_ACK:
2058 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK;
2059 			break;
2060 		case SCTP_ASCONF:
2061 			pd->sctp_flags |= PFDESC_SCTP_ASCONF;
2062 
2063 			ret = pf_multihome_scan_asconf(pd->off + chunk_start,
2064 			    ntohs(ch.chunk_length), pd);
2065 			if (ret != PF_PASS)
2066 				return (ret);
2067 			break;
2068 		default:
2069 			pd->sctp_flags |= PFDESC_SCTP_OTHER;
2070 			break;
2071 		}
2072 	}
2073 
2074 	/* Validate chunk lengths vs. packet length. */
2075 	if (pd->off + chunk_off != pd->tot_len)
2076 		return (PF_DROP);
2077 
2078 	/*
2079 	 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only
2080 	 * one in a packet.
2081 	 */
2082 	if ((pd->sctp_flags & PFDESC_SCTP_INIT) &&
2083 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT))
2084 		return (PF_DROP);
2085 	if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) &&
2086 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK))
2087 		return (PF_DROP);
2088 	if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) &&
2089 	    (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE))
2090 		return (PF_DROP);
2091 
2092 	return (PF_PASS);
2093 }
2094 
2095 int
pf_normalize_sctp(struct pf_pdesc * pd)2096 pf_normalize_sctp(struct pf_pdesc *pd)
2097 {
2098 	struct pf_krule	*r, *rm = NULL;
2099 	struct sctphdr	*sh = &pd->hdr.sctp;
2100 	u_short		 reason;
2101 	sa_family_t	 af = pd->af;
2102 	int		 srs;
2103 
2104 	PF_RULES_RASSERT();
2105 
2106 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
2107 	/* Check if there any scrub rules. Lack of scrub rules means enforced
2108 	 * packet normalization operation just like in OpenBSD. */
2109 	srs = (r != NULL);
2110 	while (r != NULL) {
2111 		pf_counter_u64_add(&r->evaluations, 1);
2112 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
2113 			r = r->skip[PF_SKIP_IFP];
2114 		else if (r->direction && r->direction != pd->dir)
2115 			r = r->skip[PF_SKIP_DIR];
2116 		else if (r->af && r->af != af)
2117 			r = r->skip[PF_SKIP_AF];
2118 		else if (r->proto && r->proto != pd->proto)
2119 			r = r->skip[PF_SKIP_PROTO];
2120 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
2121 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
2122 			r = r->skip[PF_SKIP_SRC_ADDR];
2123 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
2124 			    r->src.port[0], r->src.port[1], sh->src_port))
2125 			r = r->skip[PF_SKIP_SRC_PORT];
2126 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
2127 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
2128 			r = r->skip[PF_SKIP_DST_ADDR];
2129 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
2130 			    r->dst.port[0], r->dst.port[1], sh->dest_port))
2131 			r = r->skip[PF_SKIP_DST_PORT];
2132 		else {
2133 			rm = r;
2134 			break;
2135 		}
2136 	}
2137 
2138 	if (srs) {
2139 		/* With scrub rules present SCTP normalization happens only
2140 		 * if one of rules has matched and it's not a "no scrub" rule */
2141 		if (rm == NULL || rm->action == PF_NOSCRUB)
2142 			return (PF_PASS);
2143 
2144 		pf_counter_u64_critical_enter();
2145 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
2146 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
2147 		pf_counter_u64_critical_exit();
2148 	}
2149 
2150 	/* Verify we're a multiple of 4 bytes long */
2151 	if ((pd->tot_len - pd->off - sizeof(struct sctphdr)) % 4)
2152 		goto sctp_drop;
2153 
2154 	/* INIT chunk needs to be the only chunk */
2155 	if (pd->sctp_flags & PFDESC_SCTP_INIT)
2156 		if (pd->sctp_flags & ~PFDESC_SCTP_INIT)
2157 			goto sctp_drop;
2158 
2159 	return (PF_PASS);
2160 
2161 sctp_drop:
2162 	REASON_SET(&reason, PFRES_NORM);
2163 	if (rm != NULL && r->log)
2164 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd,
2165 		    1);
2166 
2167 	return (PF_DROP);
2168 }
2169 
2170 #if defined(INET) || defined(INET6)
2171 void
pf_scrub(struct pf_pdesc * pd)2172 pf_scrub(struct pf_pdesc *pd)
2173 {
2174 
2175 	struct ip		*h = mtod(pd->m, struct ip *);
2176 #ifdef INET6
2177 	struct ip6_hdr		*h6 = mtod(pd->m, struct ip6_hdr *);
2178 #endif
2179 
2180 	/* Clear IP_DF if no-df was requested */
2181 	if (pd->af == AF_INET && pd->act.flags & PFSTATE_NODF &&
2182 	    h->ip_off & htons(IP_DF))
2183 	{
2184 		u_int16_t ip_off = h->ip_off;
2185 
2186 		h->ip_off &= htons(~IP_DF);
2187 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2188 	}
2189 
2190 	/* Enforce a minimum ttl, may cause endless packet loops */
2191 	if (pd->af == AF_INET && pd->act.min_ttl &&
2192 	    h->ip_ttl < pd->act.min_ttl) {
2193 		u_int16_t ip_ttl = h->ip_ttl;
2194 
2195 		h->ip_ttl = pd->act.min_ttl;
2196 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2197 	}
2198 #ifdef INET6
2199 	/* Enforce a minimum ttl, may cause endless packet loops */
2200 	if (pd->af == AF_INET6 && pd->act.min_ttl &&
2201 	    h6->ip6_hlim < pd->act.min_ttl)
2202 		h6->ip6_hlim = pd->act.min_ttl;
2203 #endif
2204 	/* Enforce tos */
2205 	if (pd->act.flags & PFSTATE_SETTOS) {
2206 		switch (pd->af) {
2207 		case AF_INET: {
2208 			u_int16_t	ov, nv;
2209 
2210 			ov = *(u_int16_t *)h;
2211 			h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK);
2212 			nv = *(u_int16_t *)h;
2213 
2214 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2215 			break;
2216 		}
2217 #ifdef INET6
2218 		case AF_INET6:
2219 			h6->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
2220 			h6->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h6)) << 20);
2221 			break;
2222 #endif
2223 		}
2224 	}
2225 
2226 	/* random-id, but not for fragments */
2227 #ifdef INET
2228 	if (pd->af == AF_INET &&
2229 	    pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2230 		uint16_t ip_id = h->ip_id;
2231 
2232 		ip_fillid(h);
2233 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2234 	}
2235 #endif
2236 }
2237 #endif
2238