1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Daniel Hartmeier
5 * Copyright (c) 2002 - 2008 Henning Brauer
6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * - Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * - Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Effort sponsored in part by the Defense Advanced Research Projects
34 * Agency (DARPA) and Air Force Research Laboratory, Air Force
35 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
36 *
37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $
38 */
39
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_pf.h"
45 #include "opt_sctp.h"
46
47 #include <sys/param.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/gsb_crc32.h>
51 #include <sys/hash.h>
52 #include <sys/interrupt.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/limits.h>
56 #include <sys/mbuf.h>
57 #include <sys/md5.h>
58 #include <sys/random.h>
59 #include <sys/refcount.h>
60 #include <sys/sdt.h>
61 #include <sys/socket.h>
62 #include <sys/sysctl.h>
63 #include <sys/taskqueue.h>
64 #include <sys/ucred.h>
65
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_private.h>
69 #include <net/if_types.h>
70 #include <net/if_vlan_var.h>
71 #include <net/route.h>
72 #include <net/route/nhop.h>
73 #include <net/vnet.h>
74
75 #include <net/pfil.h>
76 #include <net/pfvar.h>
77 #include <net/if_pflog.h>
78 #include <net/if_pfsync.h>
79
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_var.h>
82 #include <netinet/in_fib.h>
83 #include <netinet/ip.h>
84 #include <netinet/ip_fw.h>
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/udp.h>
94 #include <netinet/udp_var.h>
95
96 /* dummynet */
97 #include <netinet/ip_dummynet.h>
98 #include <netinet/ip_fw.h>
99 #include <netpfil/ipfw/dn_heap.h>
100 #include <netpfil/ipfw/ip_fw_private.h>
101 #include <netpfil/ipfw/ip_dn_private.h>
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet6/in6_fib.h>
110 #include <netinet6/scope6_var.h>
111 #endif /* INET6 */
112
113 #include <netinet/sctp_header.h>
114 #include <netinet/sctp_crc32.h>
115
116 #include <machine/in_cksum.h>
117 #include <security/mac/mac_framework.h>
118
119 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
120
121 SDT_PROVIDER_DEFINE(pf);
122 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *",
123 "struct pf_kstate *");
124 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *",
125 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *",
126 "struct pf_kstate *");
127 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *",
128 "struct pfi_kkif *");
129 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *",
130 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
131 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int");
132 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int");
133 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *",
134 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *");
135 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int");
136 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int");
137 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *",
138 "struct pf_krule *", "struct mbuf *", "int");
139 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t",
140 "struct pf_sctp_source *");
141 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t",
142 "struct pf_kstate *", "struct pf_sctp_source *");
143
144 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *",
145 "struct mbuf *");
146 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *");
147 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch,
148 "int", "struct pf_keth_rule *", "char *");
149 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *");
150 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match,
151 "int", "struct pf_keth_rule *");
152 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t");
153
154 /*
155 * Global variables
156 */
157
158 /* state tables */
159 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]);
160 VNET_DEFINE(struct pf_kpalist, pf_pabuf);
161 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active);
162 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active);
163 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive);
164 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive);
165 VNET_DEFINE(struct pf_kstatus, pf_status);
166
167 VNET_DEFINE(u_int32_t, ticket_altqs_active);
168 VNET_DEFINE(u_int32_t, ticket_altqs_inactive);
169 VNET_DEFINE(int, altqs_inactive_open);
170 VNET_DEFINE(u_int32_t, ticket_pabuf);
171
172 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx);
173 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx)
174 VNET_DEFINE(u_char, pf_tcp_secret[16]);
175 #define V_pf_tcp_secret VNET(pf_tcp_secret)
176 VNET_DEFINE(int, pf_tcp_secret_init);
177 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init)
178 VNET_DEFINE(int, pf_tcp_iss_off);
179 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off)
180 VNET_DECLARE(int, pf_vnet_active);
181 #define V_pf_vnet_active VNET(pf_vnet_active)
182
183 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx);
184 #define V_pf_purge_idx VNET(pf_purge_idx)
185
186 #ifdef PF_WANT_32_TO_64_COUNTER
187 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter);
188 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter)
189
190 VNET_DEFINE(struct allrulelist_head, pf_allrulelist);
191 VNET_DEFINE(size_t, pf_allrulecount);
192 VNET_DEFINE(struct pf_krule *, pf_rulemarker);
193 #endif
194
195 struct pf_sctp_endpoint;
196 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint);
197 struct pf_sctp_source {
198 sa_family_t af;
199 struct pf_addr addr;
200 TAILQ_ENTRY(pf_sctp_source) entry;
201 };
202 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source);
203 struct pf_sctp_endpoint
204 {
205 uint32_t v_tag;
206 struct pf_sctp_sources sources;
207 RB_ENTRY(pf_sctp_endpoint) entry;
208 };
209 static int
pf_sctp_endpoint_compare(struct pf_sctp_endpoint * a,struct pf_sctp_endpoint * b)210 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b)
211 {
212 return (a->v_tag - b->v_tag);
213 }
214 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
215 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare);
216 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints);
217 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints)
218 static struct mtx_padalign pf_sctp_endpoints_mtx;
219 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF);
220 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx)
221 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx)
222
223 /*
224 * Queue for pf_intr() sends.
225 */
226 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations");
227 struct pf_send_entry {
228 STAILQ_ENTRY(pf_send_entry) pfse_next;
229 struct mbuf *pfse_m;
230 enum {
231 PFSE_IP,
232 PFSE_IP6,
233 PFSE_ICMP,
234 PFSE_ICMP6,
235 } pfse_type;
236 struct {
237 int type;
238 int code;
239 int mtu;
240 } icmpopts;
241 };
242
243 STAILQ_HEAD(pf_send_head, pf_send_entry);
244 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue);
245 #define V_pf_sendqueue VNET(pf_sendqueue)
246
247 static struct mtx_padalign pf_sendqueue_mtx;
248 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF);
249 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx)
250 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx)
251
252 /*
253 * Queue for pf_overload_task() tasks.
254 */
255 struct pf_overload_entry {
256 SLIST_ENTRY(pf_overload_entry) next;
257 struct pf_addr addr;
258 sa_family_t af;
259 uint8_t dir;
260 struct pf_krule *rule;
261 };
262
263 SLIST_HEAD(pf_overload_head, pf_overload_entry);
264 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue);
265 #define V_pf_overloadqueue VNET(pf_overloadqueue)
266 VNET_DEFINE_STATIC(struct task, pf_overloadtask);
267 #define V_pf_overloadtask VNET(pf_overloadtask)
268
269 static struct mtx_padalign pf_overloadqueue_mtx;
270 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx,
271 "pf overload/flush queue", MTX_DEF);
272 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx)
273 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx)
274
275 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules);
276 struct mtx_padalign pf_unlnkdrules_mtx;
277 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules",
278 MTX_DEF);
279
280 struct sx pf_config_lock;
281 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config");
282
283 struct mtx_padalign pf_table_stats_lock;
284 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats",
285 MTX_DEF);
286
287 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z);
288 #define V_pf_sources_z VNET(pf_sources_z)
289 uma_zone_t pf_mtag_z;
290 VNET_DEFINE(uma_zone_t, pf_state_z);
291 VNET_DEFINE(uma_zone_t, pf_state_key_z);
292 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z);
293
294 VNET_DEFINE(struct unrhdr64, pf_stateid);
295
296 static void pf_src_tree_remove_state(struct pf_kstate *);
297 static void pf_init_threshold(struct pf_threshold *, u_int32_t,
298 u_int32_t);
299 static void pf_add_threshold(struct pf_threshold *);
300 static int pf_check_threshold(struct pf_threshold *);
301
302 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *,
303 u_int16_t *, u_int16_t *, struct pf_addr *,
304 u_int16_t, u_int8_t, sa_family_t);
305 static int pf_modulate_sack(struct pf_pdesc *,
306 struct tcphdr *, struct pf_state_peer *);
307 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *,
308 int *, u_int16_t *, u_int16_t *);
309 static void pf_change_icmp(struct pf_addr *, u_int16_t *,
310 struct pf_addr *, struct pf_addr *, u_int16_t,
311 u_int16_t *, u_int16_t *, u_int16_t *,
312 u_int16_t *, u_int8_t, sa_family_t);
313 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t,
314 sa_family_t, struct pf_krule *, int);
315 static void pf_detach_state(struct pf_kstate *);
316 static int pf_state_key_attach(struct pf_state_key *,
317 struct pf_state_key *, struct pf_kstate *);
318 static void pf_state_key_detach(struct pf_kstate *, int);
319 static int pf_state_key_ctor(void *, int, void *, int);
320 static u_int32_t pf_tcp_iss(struct pf_pdesc *);
321 static __inline void pf_dummynet_flag_remove(struct mbuf *m,
322 struct pf_mtag *pf_mtag);
323 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *,
324 struct pf_krule *, struct mbuf **);
325 static int pf_dummynet_route(struct pf_pdesc *,
326 struct pf_kstate *, struct pf_krule *,
327 struct ifnet *, struct sockaddr *, struct mbuf **);
328 static int pf_test_eth_rule(int, struct pfi_kkif *,
329 struct mbuf **);
330 static int pf_test_rule(struct pf_krule **, struct pf_kstate **,
331 struct pf_pdesc *, struct pf_krule **,
332 struct pf_kruleset **, struct inpcb *);
333 static int pf_create_state(struct pf_krule *, struct pf_krule *,
334 struct pf_krule *, struct pf_pdesc *,
335 struct pf_state_key *, struct pf_state_key *,
336 u_int16_t, u_int16_t, int *,
337 struct pf_kstate **, int, u_int16_t, u_int16_t,
338 struct pf_krule_slist *, struct pf_udp_mapping *);
339 static int pf_state_key_addr_setup(struct pf_pdesc *,
340 struct pf_state_key_cmp *, int);
341 static int pf_tcp_track_full(struct pf_kstate **,
342 struct pf_pdesc *, u_short *, int *);
343 static int pf_tcp_track_sloppy(struct pf_kstate **,
344 struct pf_pdesc *, u_short *);
345 static int pf_test_state_tcp(struct pf_kstate **,
346 struct pf_pdesc *, u_short *);
347 static int pf_test_state_udp(struct pf_kstate **,
348 struct pf_pdesc *);
349 int pf_icmp_state_lookup(struct pf_state_key_cmp *,
350 struct pf_pdesc *, struct pf_kstate **,
351 int, u_int16_t, u_int16_t,
352 int, int *, int, int);
353 static int pf_test_state_icmp(struct pf_kstate **,
354 struct pf_pdesc *, u_short *);
355 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *);
356 static void pf_sctp_multihome_delayed(struct pf_pdesc *,
357 struct pfi_kkif *, struct pf_kstate *, int);
358 static int pf_test_state_sctp(struct pf_kstate **,
359 struct pf_pdesc *, u_short *);
360 static int pf_test_state_other(struct pf_kstate **,
361 struct pf_pdesc *);
362 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
363 int, u_int16_t);
364 static int pf_check_proto_cksum(struct mbuf *, int, int,
365 u_int8_t, sa_family_t);
366 static int pf_walk_option6(struct mbuf *, int, int, uint32_t *,
367 u_short *);
368 static void pf_print_state_parts(struct pf_kstate *,
369 struct pf_state_key *, struct pf_state_key *);
370 static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t,
371 bool, u_int8_t);
372 static struct pf_kstate *pf_find_state(struct pfi_kkif *,
373 const struct pf_state_key_cmp *, u_int);
374 static bool pf_src_connlimit(struct pf_kstate *);
375 static int pf_match_rcvif(struct mbuf *, struct pf_krule *);
376 static void pf_counters_inc(int, struct pf_pdesc *,
377 struct pf_kstate *, struct pf_krule *,
378 struct pf_krule *);
379 static void pf_overload_task(void *v, int pending);
380 static u_short pf_insert_src_node(struct pf_ksrc_node **,
381 struct pf_srchash **, struct pf_krule *,
382 struct pf_addr *, sa_family_t);
383 static u_int pf_purge_expired_states(u_int, int);
384 static void pf_purge_unlinked_rules(void);
385 static int pf_mtag_uminit(void *, int, int);
386 static void pf_mtag_free(struct m_tag *);
387 static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *,
388 int, struct pf_state_key *);
389 #ifdef INET
390 static void pf_route(struct mbuf **, struct pf_krule *,
391 struct ifnet *, struct pf_kstate *,
392 struct pf_pdesc *, struct inpcb *);
393 #endif /* INET */
394 #ifdef INET6
395 static void pf_change_a6(struct pf_addr *, u_int16_t *,
396 struct pf_addr *, u_int8_t);
397 static void pf_route6(struct mbuf **, struct pf_krule *,
398 struct ifnet *, struct pf_kstate *,
399 struct pf_pdesc *, struct inpcb *);
400 #endif /* INET6 */
401 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t);
402
403 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len);
404
405 extern int pf_end_threads;
406 extern struct proc *pf_purge_proc;
407
408 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]);
409
410 enum { PF_ICMP_MULTI_NONE, PF_ICMP_MULTI_LINK };
411
412 #define PACKET_UNDO_NAT(_m, _pd, _off, _s) \
413 do { \
414 struct pf_state_key *nk; \
415 if ((pd->dir) == PF_OUT) \
416 nk = (_s)->key[PF_SK_STACK]; \
417 else \
418 nk = (_s)->key[PF_SK_WIRE]; \
419 pf_packet_rework_nat(_m, _pd, _off, nk); \
420 } while (0)
421
422 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \
423 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED)
424
425 #define STATE_LOOKUP(k, s, pd) \
426 do { \
427 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \
428 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \
429 if ((s) == NULL) \
430 return (PF_DROP); \
431 if (PACKET_LOOPED(pd)) \
432 return (PF_PASS); \
433 } while (0)
434
435 static struct pfi_kkif *
BOUND_IFACE(struct pf_kstate * st,struct pfi_kkif * k)436 BOUND_IFACE(struct pf_kstate *st, struct pfi_kkif *k)
437 {
438 SDT_PROBE2(pf, ip, , bound_iface, st, k);
439
440 /* Floating unless otherwise specified. */
441 if (! (st->rule->rule_flag & PFRULE_IFBOUND))
442 return (V_pfi_all);
443
444 /*
445 * Initially set to all, because we don't know what interface we'll be
446 * sending this out when we create the state.
447 */
448 if (st->rule->rt == PF_REPLYTO)
449 return (V_pfi_all);
450
451 /* Don't overrule the interface for states created on incoming packets. */
452 if (st->direction == PF_IN)
453 return (k);
454
455 /* No route-to, so don't overrule. */
456 if (st->rt != PF_ROUTETO)
457 return (k);
458
459 /* Bind to the route-to interface. */
460 return (st->rt_kif);
461 }
462
463 #define STATE_INC_COUNTERS(s) \
464 do { \
465 struct pf_krule_item *mrm; \
466 counter_u64_add(s->rule->states_cur, 1); \
467 counter_u64_add(s->rule->states_tot, 1); \
468 if (s->anchor != NULL) { \
469 counter_u64_add(s->anchor->states_cur, 1); \
470 counter_u64_add(s->anchor->states_tot, 1); \
471 } \
472 if (s->nat_rule != NULL) { \
473 counter_u64_add(s->nat_rule->states_cur, 1);\
474 counter_u64_add(s->nat_rule->states_tot, 1);\
475 } \
476 SLIST_FOREACH(mrm, &s->match_rules, entry) { \
477 counter_u64_add(mrm->r->states_cur, 1); \
478 counter_u64_add(mrm->r->states_tot, 1); \
479 } \
480 } while (0)
481
482 #define STATE_DEC_COUNTERS(s) \
483 do { \
484 struct pf_krule_item *mrm; \
485 if (s->nat_rule != NULL) \
486 counter_u64_add(s->nat_rule->states_cur, -1);\
487 if (s->anchor != NULL) \
488 counter_u64_add(s->anchor->states_cur, -1); \
489 counter_u64_add(s->rule->states_cur, -1); \
490 SLIST_FOREACH(mrm, &s->match_rules, entry) \
491 counter_u64_add(mrm->r->states_cur, -1); \
492 } while (0)
493
494 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures");
495 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items");
496 VNET_DEFINE(struct pf_keyhash *, pf_keyhash);
497 VNET_DEFINE(struct pf_idhash *, pf_idhash);
498 VNET_DEFINE(struct pf_srchash *, pf_srchash);
499 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash);
500 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping);
501
502 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
503 "pf(4)");
504
505 VNET_DEFINE(u_long, pf_hashmask);
506 VNET_DEFINE(u_long, pf_srchashmask);
507 VNET_DEFINE(u_long, pf_udpendpointhashmask);
508 VNET_DEFINE_STATIC(u_long, pf_hashsize);
509 #define V_pf_hashsize VNET(pf_hashsize)
510 VNET_DEFINE_STATIC(u_long, pf_srchashsize);
511 #define V_pf_srchashsize VNET(pf_srchashsize)
512 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize);
513 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize)
514 u_long pf_ioctl_maxcount = 65535;
515
516 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
517 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable");
518 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
519 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable");
520 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
521 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable");
522 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN,
523 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call");
524
525 VNET_DEFINE(void *, pf_swi_cookie);
526 VNET_DEFINE(struct intr_event *, pf_swi_ie);
527
528 VNET_DEFINE(uint32_t, pf_hashseed);
529 #define V_pf_hashseed VNET(pf_hashseed)
530
531 static void
pf_sctp_checksum(struct mbuf * m,int off)532 pf_sctp_checksum(struct mbuf *m, int off)
533 {
534 uint32_t sum = 0;
535
536 /* Zero out the checksum, to enable recalculation. */
537 m_copyback(m, off + offsetof(struct sctphdr, checksum),
538 sizeof(sum), (caddr_t)&sum);
539
540 sum = sctp_calculate_cksum(m, off);
541
542 m_copyback(m, off + offsetof(struct sctphdr, checksum),
543 sizeof(sum), (caddr_t)&sum);
544 }
545
546 int
pf_addr_cmp(struct pf_addr * a,struct pf_addr * b,sa_family_t af)547 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
548 {
549
550 switch (af) {
551 #ifdef INET
552 case AF_INET:
553 if (a->addr32[0] > b->addr32[0])
554 return (1);
555 if (a->addr32[0] < b->addr32[0])
556 return (-1);
557 break;
558 #endif /* INET */
559 #ifdef INET6
560 case AF_INET6:
561 if (a->addr32[3] > b->addr32[3])
562 return (1);
563 if (a->addr32[3] < b->addr32[3])
564 return (-1);
565 if (a->addr32[2] > b->addr32[2])
566 return (1);
567 if (a->addr32[2] < b->addr32[2])
568 return (-1);
569 if (a->addr32[1] > b->addr32[1])
570 return (1);
571 if (a->addr32[1] < b->addr32[1])
572 return (-1);
573 if (a->addr32[0] > b->addr32[0])
574 return (1);
575 if (a->addr32[0] < b->addr32[0])
576 return (-1);
577 break;
578 #endif /* INET6 */
579 }
580 return (0);
581 }
582
583 static bool
pf_is_loopback(sa_family_t af,struct pf_addr * addr)584 pf_is_loopback(sa_family_t af, struct pf_addr *addr)
585 {
586 switch (af) {
587 #ifdef INET
588 case AF_INET:
589 return IN_LOOPBACK(ntohl(addr->v4.s_addr));
590 #endif
591 case AF_INET6:
592 return IN6_IS_ADDR_LOOPBACK(&addr->v6);
593 default:
594 panic("Unknown af %d", af);
595 }
596 }
597
598 static void
pf_packet_rework_nat(struct mbuf * m,struct pf_pdesc * pd,int off,struct pf_state_key * nk)599 pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off,
600 struct pf_state_key *nk)
601 {
602
603 switch (pd->proto) {
604 case IPPROTO_TCP: {
605 struct tcphdr *th = &pd->hdr.tcp;
606
607 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
608 pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum,
609 &th->th_sum, &nk->addr[pd->sidx],
610 nk->port[pd->sidx], 0, pd->af);
611 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
612 pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum,
613 &th->th_sum, &nk->addr[pd->didx],
614 nk->port[pd->didx], 0, pd->af);
615 m_copyback(m, off, sizeof(*th), (caddr_t)th);
616 break;
617 }
618 case IPPROTO_UDP: {
619 struct udphdr *uh = &pd->hdr.udp;
620
621 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af))
622 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum,
623 &uh->uh_sum, &nk->addr[pd->sidx],
624 nk->port[pd->sidx], 1, pd->af);
625 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af))
626 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum,
627 &uh->uh_sum, &nk->addr[pd->didx],
628 nk->port[pd->didx], 1, pd->af);
629 m_copyback(m, off, sizeof(*uh), (caddr_t)uh);
630 break;
631 }
632 case IPPROTO_SCTP: {
633 struct sctphdr *sh = &pd->hdr.sctp;
634 uint16_t checksum = 0;
635
636 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
637 pf_change_ap(m, pd->src, &sh->src_port, pd->ip_sum,
638 &checksum, &nk->addr[pd->sidx],
639 nk->port[pd->sidx], 1, pd->af);
640 }
641 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
642 pf_change_ap(m, pd->dst, &sh->dest_port, pd->ip_sum,
643 &checksum, &nk->addr[pd->didx],
644 nk->port[pd->didx], 1, pd->af);
645 }
646
647 break;
648 }
649 case IPPROTO_ICMP: {
650 struct icmp *ih = &pd->hdr.icmp;
651
652 if (nk->port[pd->sidx] != ih->icmp_id) {
653 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
654 ih->icmp_cksum, ih->icmp_id,
655 nk->port[pd->sidx], 0);
656 ih->icmp_id = nk->port[pd->sidx];
657 pd->sport = &ih->icmp_id;
658
659 m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih);
660 }
661 /* FALLTHROUGH */
662 }
663 default:
664 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) {
665 switch (pd->af) {
666 case AF_INET:
667 pf_change_a(&pd->src->v4.s_addr,
668 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr,
669 0);
670 break;
671 case AF_INET6:
672 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
673 break;
674 }
675 }
676 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) {
677 switch (pd->af) {
678 case AF_INET:
679 pf_change_a(&pd->dst->v4.s_addr,
680 pd->ip_sum, nk->addr[pd->didx].v4.s_addr,
681 0);
682 break;
683 case AF_INET6:
684 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
685 break;
686 }
687 }
688 break;
689 }
690 }
691
692 static __inline uint32_t
pf_hashkey(const struct pf_state_key * sk)693 pf_hashkey(const struct pf_state_key *sk)
694 {
695 uint32_t h;
696
697 h = murmur3_32_hash32((const uint32_t *)sk,
698 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t),
699 V_pf_hashseed);
700
701 return (h & V_pf_hashmask);
702 }
703
704 __inline uint32_t
pf_hashsrc(struct pf_addr * addr,sa_family_t af)705 pf_hashsrc(struct pf_addr *addr, sa_family_t af)
706 {
707 uint32_t h;
708
709 switch (af) {
710 case AF_INET:
711 h = murmur3_32_hash32((uint32_t *)&addr->v4,
712 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed);
713 break;
714 case AF_INET6:
715 h = murmur3_32_hash32((uint32_t *)&addr->v6,
716 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed);
717 break;
718 }
719
720 return (h & V_pf_srchashmask);
721 }
722
723 static inline uint32_t
pf_hashudpendpoint(struct pf_udp_endpoint * endpoint)724 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint)
725 {
726 uint32_t h;
727
728 h = murmur3_32_hash32((uint32_t *)endpoint,
729 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t),
730 V_pf_hashseed);
731 return (h & V_pf_udpendpointhashmask);
732 }
733
734 #ifdef ALTQ
735 static int
pf_state_hash(struct pf_kstate * s)736 pf_state_hash(struct pf_kstate *s)
737 {
738 u_int32_t hv = (intptr_t)s / sizeof(*s);
739
740 hv ^= crc32(&s->src, sizeof(s->src));
741 hv ^= crc32(&s->dst, sizeof(s->dst));
742 if (hv == 0)
743 hv = 1;
744 return (hv);
745 }
746 #endif
747
748 static __inline void
pf_set_protostate(struct pf_kstate * s,int which,u_int8_t newstate)749 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate)
750 {
751 if (which == PF_PEER_DST || which == PF_PEER_BOTH)
752 s->dst.state = newstate;
753 if (which == PF_PEER_DST)
754 return;
755 if (s->src.state == newstate)
756 return;
757 if (s->creatorid == V_pf_status.hostid &&
758 s->key[PF_SK_STACK] != NULL &&
759 s->key[PF_SK_STACK]->proto == IPPROTO_TCP &&
760 !(TCPS_HAVEESTABLISHED(s->src.state) ||
761 s->src.state == TCPS_CLOSED) &&
762 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED))
763 atomic_add_32(&V_pf_status.states_halfopen, -1);
764
765 s->src.state = newstate;
766 }
767
768 #ifdef INET6
769 void
pf_addrcpy(struct pf_addr * dst,struct pf_addr * src,sa_family_t af)770 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
771 {
772 switch (af) {
773 #ifdef INET
774 case AF_INET:
775 memcpy(&dst->v4, &src->v4, sizeof(dst->v4));
776 break;
777 #endif /* INET */
778 case AF_INET6:
779 memcpy(&dst->v6, &src->v6, sizeof(dst->v6));
780 break;
781 }
782 }
783 #endif /* INET6 */
784
785 static void
pf_init_threshold(struct pf_threshold * threshold,u_int32_t limit,u_int32_t seconds)786 pf_init_threshold(struct pf_threshold *threshold,
787 u_int32_t limit, u_int32_t seconds)
788 {
789 threshold->limit = limit * PF_THRESHOLD_MULT;
790 threshold->seconds = seconds;
791 threshold->count = 0;
792 threshold->last = time_uptime;
793 }
794
795 static void
pf_add_threshold(struct pf_threshold * threshold)796 pf_add_threshold(struct pf_threshold *threshold)
797 {
798 u_int32_t t = time_uptime, diff = t - threshold->last;
799
800 if (diff >= threshold->seconds)
801 threshold->count = 0;
802 else
803 threshold->count -= threshold->count * diff /
804 threshold->seconds;
805 threshold->count += PF_THRESHOLD_MULT;
806 threshold->last = t;
807 }
808
809 static int
pf_check_threshold(struct pf_threshold * threshold)810 pf_check_threshold(struct pf_threshold *threshold)
811 {
812 return (threshold->count > threshold->limit);
813 }
814
815 static bool
pf_src_connlimit(struct pf_kstate * state)816 pf_src_connlimit(struct pf_kstate *state)
817 {
818 struct pf_overload_entry *pfoe;
819 bool limited = false;
820
821 PF_STATE_LOCK_ASSERT(state);
822 PF_SRC_NODE_LOCK(state->src_node);
823
824 state->src_node->conn++;
825 state->src.tcp_est = 1;
826 pf_add_threshold(&state->src_node->conn_rate);
827
828 if (state->rule->max_src_conn &&
829 state->rule->max_src_conn <
830 state->src_node->conn) {
831 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1);
832 limited = true;
833 }
834
835 if (state->rule->max_src_conn_rate.limit &&
836 pf_check_threshold(&state->src_node->conn_rate)) {
837 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1);
838 limited = true;
839 }
840
841 if (!limited)
842 goto done;
843
844 /* Kill this state. */
845 state->timeout = PFTM_PURGE;
846 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED);
847
848 if (state->rule->overload_tbl == NULL)
849 goto done;
850
851 /* Schedule overloading and flushing task. */
852 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT);
853 if (pfoe == NULL)
854 goto done; /* too bad :( */
855
856 bcopy(&state->src_node->addr, &pfoe->addr, sizeof(pfoe->addr));
857 pfoe->af = state->key[PF_SK_WIRE]->af;
858 pfoe->rule = state->rule;
859 pfoe->dir = state->direction;
860 PF_OVERLOADQ_LOCK();
861 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next);
862 PF_OVERLOADQ_UNLOCK();
863 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask);
864
865 done:
866 PF_SRC_NODE_UNLOCK(state->src_node);
867 return (limited);
868 }
869
870 static void
pf_overload_task(void * v,int pending)871 pf_overload_task(void *v, int pending)
872 {
873 struct pf_overload_head queue;
874 struct pfr_addr p;
875 struct pf_overload_entry *pfoe, *pfoe1;
876 uint32_t killed = 0;
877
878 CURVNET_SET((struct vnet *)v);
879
880 PF_OVERLOADQ_LOCK();
881 queue = V_pf_overloadqueue;
882 SLIST_INIT(&V_pf_overloadqueue);
883 PF_OVERLOADQ_UNLOCK();
884
885 bzero(&p, sizeof(p));
886 SLIST_FOREACH(pfoe, &queue, next) {
887 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1);
888 if (V_pf_status.debug >= PF_DEBUG_MISC) {
889 printf("%s: blocking address ", __func__);
890 pf_print_host(&pfoe->addr, 0, pfoe->af);
891 printf("\n");
892 }
893
894 p.pfra_af = pfoe->af;
895 switch (pfoe->af) {
896 #ifdef INET
897 case AF_INET:
898 p.pfra_net = 32;
899 p.pfra_ip4addr = pfoe->addr.v4;
900 break;
901 #endif
902 #ifdef INET6
903 case AF_INET6:
904 p.pfra_net = 128;
905 p.pfra_ip6addr = pfoe->addr.v6;
906 break;
907 #endif
908 }
909
910 PF_RULES_WLOCK();
911 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second);
912 PF_RULES_WUNLOCK();
913 }
914
915 /*
916 * Remove those entries, that don't need flushing.
917 */
918 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
919 if (pfoe->rule->flush == 0) {
920 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next);
921 free(pfoe, M_PFTEMP);
922 } else
923 counter_u64_add(
924 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1);
925
926 /* If nothing to flush, return. */
927 if (SLIST_EMPTY(&queue)) {
928 CURVNET_RESTORE();
929 return;
930 }
931
932 for (int i = 0; i <= V_pf_hashmask; i++) {
933 struct pf_idhash *ih = &V_pf_idhash[i];
934 struct pf_state_key *sk;
935 struct pf_kstate *s;
936
937 PF_HASHROW_LOCK(ih);
938 LIST_FOREACH(s, &ih->states, entry) {
939 sk = s->key[PF_SK_WIRE];
940 SLIST_FOREACH(pfoe, &queue, next)
941 if (sk->af == pfoe->af &&
942 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) ||
943 pfoe->rule == s->rule) &&
944 ((pfoe->dir == PF_OUT &&
945 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) ||
946 (pfoe->dir == PF_IN &&
947 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) {
948 s->timeout = PFTM_PURGE;
949 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
950 killed++;
951 }
952 }
953 PF_HASHROW_UNLOCK(ih);
954 }
955 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1)
956 free(pfoe, M_PFTEMP);
957 if (V_pf_status.debug >= PF_DEBUG_MISC)
958 printf("%s: %u states killed", __func__, killed);
959
960 CURVNET_RESTORE();
961 }
962
963 /*
964 * On node found always returns locked. On not found its configurable.
965 */
966 struct pf_ksrc_node *
pf_find_src_node(struct pf_addr * src,struct pf_krule * rule,sa_family_t af,struct pf_srchash ** sh,bool returnlocked)967 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af,
968 struct pf_srchash **sh, bool returnlocked)
969 {
970 struct pf_ksrc_node *n;
971
972 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
973
974 *sh = &V_pf_srchash[pf_hashsrc(src, af)];
975 PF_HASHROW_LOCK(*sh);
976 LIST_FOREACH(n, &(*sh)->nodes, entry)
977 if (n->rule == rule && n->af == af &&
978 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) ||
979 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0)))
980 break;
981
982 if (n == NULL && !returnlocked)
983 PF_HASHROW_UNLOCK(*sh);
984
985 return (n);
986 }
987
988 bool
pf_src_node_exists(struct pf_ksrc_node ** sn,struct pf_srchash * sh)989 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh)
990 {
991 struct pf_ksrc_node *cur;
992
993 if ((*sn) == NULL)
994 return (false);
995
996 KASSERT(sh != NULL, ("%s: sh is NULL", __func__));
997
998 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1);
999 PF_HASHROW_LOCK(sh);
1000 LIST_FOREACH(cur, &(sh->nodes), entry) {
1001 if (cur == (*sn) &&
1002 cur->expire != 1) /* Ignore nodes being killed */
1003 return (true);
1004 }
1005 PF_HASHROW_UNLOCK(sh);
1006 (*sn) = NULL;
1007 return (false);
1008 }
1009
1010 static void
pf_free_src_node(struct pf_ksrc_node * sn)1011 pf_free_src_node(struct pf_ksrc_node *sn)
1012 {
1013
1014 for (int i = 0; i < 2; i++) {
1015 counter_u64_free(sn->bytes[i]);
1016 counter_u64_free(sn->packets[i]);
1017 }
1018 uma_zfree(V_pf_sources_z, sn);
1019 }
1020
1021 static u_short
pf_insert_src_node(struct pf_ksrc_node ** sn,struct pf_srchash ** sh,struct pf_krule * rule,struct pf_addr * src,sa_family_t af)1022 pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_srchash **sh,
1023 struct pf_krule *rule, struct pf_addr *src, sa_family_t af)
1024 {
1025 u_short reason = 0;
1026
1027 KASSERT((rule->rule_flag & PFRULE_SRCTRACK ||
1028 rule->rpool.opts & PF_POOL_STICKYADDR),
1029 ("%s for non-tracking rule %p", __func__, rule));
1030
1031 /*
1032 * Request the sh to always be locked, as we might insert a new sn.
1033 */
1034 if (*sn == NULL)
1035 *sn = pf_find_src_node(src, rule, af, sh, true);
1036
1037 if (*sn == NULL) {
1038 PF_HASHROW_ASSERT(*sh);
1039
1040 if (rule->max_src_nodes &&
1041 counter_u64_fetch(rule->src_nodes) >= rule->max_src_nodes) {
1042 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1);
1043 reason = PFRES_SRCLIMIT;
1044 goto done;
1045 }
1046
1047 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO);
1048 if ((*sn) == NULL) {
1049 reason = PFRES_MEMORY;
1050 goto done;
1051 }
1052
1053 for (int i = 0; i < 2; i++) {
1054 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT);
1055 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT);
1056
1057 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) {
1058 pf_free_src_node(*sn);
1059 reason = PFRES_MEMORY;
1060 goto done;
1061 }
1062 }
1063
1064 pf_init_threshold(&(*sn)->conn_rate,
1065 rule->max_src_conn_rate.limit,
1066 rule->max_src_conn_rate.seconds);
1067
1068 MPASS((*sn)->lock == NULL);
1069 (*sn)->lock = &(*sh)->lock;
1070
1071 (*sn)->af = af;
1072 (*sn)->rule = rule;
1073 PF_ACPY(&(*sn)->addr, src, af);
1074 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry);
1075 (*sn)->creation = time_uptime;
1076 (*sn)->ruletype = rule->action;
1077 if ((*sn)->rule != NULL)
1078 counter_u64_add((*sn)->rule->src_nodes, 1);
1079 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1);
1080 } else {
1081 if (rule->max_src_states &&
1082 (*sn)->states >= rule->max_src_states) {
1083 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES],
1084 1);
1085 reason = PFRES_SRCLIMIT;
1086 goto done;
1087 }
1088 }
1089 done:
1090 if (reason == 0)
1091 (*sn)->states++;
1092 else
1093 (*sn) = NULL;
1094
1095 PF_HASHROW_UNLOCK(*sh);
1096 return (reason);
1097 }
1098
1099 void
pf_unlink_src_node(struct pf_ksrc_node * src)1100 pf_unlink_src_node(struct pf_ksrc_node *src)
1101 {
1102 PF_SRC_NODE_LOCK_ASSERT(src);
1103
1104 LIST_REMOVE(src, entry);
1105 if (src->rule)
1106 counter_u64_add(src->rule->src_nodes, -1);
1107 }
1108
1109 u_int
pf_free_src_nodes(struct pf_ksrc_node_list * head)1110 pf_free_src_nodes(struct pf_ksrc_node_list *head)
1111 {
1112 struct pf_ksrc_node *sn, *tmp;
1113 u_int count = 0;
1114
1115 LIST_FOREACH_SAFE(sn, head, entry, tmp) {
1116 pf_free_src_node(sn);
1117 count++;
1118 }
1119
1120 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count);
1121
1122 return (count);
1123 }
1124
1125 void
pf_mtag_initialize(void)1126 pf_mtag_initialize(void)
1127 {
1128
1129 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) +
1130 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL,
1131 UMA_ALIGN_PTR, 0);
1132 }
1133
1134 /* Per-vnet data storage structures initialization. */
1135 void
pf_initialize(void)1136 pf_initialize(void)
1137 {
1138 struct pf_keyhash *kh;
1139 struct pf_idhash *ih;
1140 struct pf_srchash *sh;
1141 struct pf_udpendpointhash *uh;
1142 u_int i;
1143
1144 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize))
1145 V_pf_hashsize = PF_HASHSIZ;
1146 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize))
1147 V_pf_srchashsize = PF_SRCHASHSIZ;
1148 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize))
1149 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1150
1151 V_pf_hashseed = arc4random();
1152
1153 /* States and state keys storage. */
1154 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate),
1155 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1156 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z;
1157 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT);
1158 uma_zone_set_warning(V_pf_state_z, "PF states limit reached");
1159
1160 V_pf_state_key_z = uma_zcreate("pf state keys",
1161 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL,
1162 UMA_ALIGN_PTR, 0);
1163
1164 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash),
1165 M_PFHASH, M_NOWAIT | M_ZERO);
1166 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash),
1167 M_PFHASH, M_NOWAIT | M_ZERO);
1168 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) {
1169 printf("pf: Unable to allocate memory for "
1170 "state_hashsize %lu.\n", V_pf_hashsize);
1171
1172 free(V_pf_keyhash, M_PFHASH);
1173 free(V_pf_idhash, M_PFHASH);
1174
1175 V_pf_hashsize = PF_HASHSIZ;
1176 V_pf_keyhash = mallocarray(V_pf_hashsize,
1177 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO);
1178 V_pf_idhash = mallocarray(V_pf_hashsize,
1179 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO);
1180 }
1181
1182 V_pf_hashmask = V_pf_hashsize - 1;
1183 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask;
1184 i++, kh++, ih++) {
1185 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK);
1186 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF);
1187 }
1188
1189 /* Source nodes. */
1190 V_pf_sources_z = uma_zcreate("pf source nodes",
1191 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1192 0);
1193 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z;
1194 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT);
1195 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached");
1196
1197 V_pf_srchash = mallocarray(V_pf_srchashsize,
1198 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO);
1199 if (V_pf_srchash == NULL) {
1200 printf("pf: Unable to allocate memory for "
1201 "source_hashsize %lu.\n", V_pf_srchashsize);
1202
1203 V_pf_srchashsize = PF_SRCHASHSIZ;
1204 V_pf_srchash = mallocarray(V_pf_srchashsize,
1205 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO);
1206 }
1207
1208 V_pf_srchashmask = V_pf_srchashsize - 1;
1209 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++)
1210 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF);
1211
1212
1213 /* UDP endpoint mappings. */
1214 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings",
1215 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL,
1216 UMA_ALIGN_PTR, 0);
1217 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1218 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO);
1219 if (V_pf_udpendpointhash == NULL) {
1220 printf("pf: Unable to allocate memory for "
1221 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize);
1222
1223 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ;
1224 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize,
1225 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO);
1226 }
1227
1228 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1;
1229 for (i = 0, uh = V_pf_udpendpointhash;
1230 i <= V_pf_udpendpointhashmask;
1231 i++, uh++) {
1232 mtx_init(&uh->lock, "pf_udpendpointhash", NULL,
1233 MTX_DEF | MTX_DUPOK);
1234 }
1235
1236 /* ALTQ */
1237 TAILQ_INIT(&V_pf_altqs[0]);
1238 TAILQ_INIT(&V_pf_altqs[1]);
1239 TAILQ_INIT(&V_pf_altqs[2]);
1240 TAILQ_INIT(&V_pf_altqs[3]);
1241 TAILQ_INIT(&V_pf_pabuf);
1242 V_pf_altqs_active = &V_pf_altqs[0];
1243 V_pf_altq_ifs_active = &V_pf_altqs[1];
1244 V_pf_altqs_inactive = &V_pf_altqs[2];
1245 V_pf_altq_ifs_inactive = &V_pf_altqs[3];
1246
1247 /* Send & overload+flush queues. */
1248 STAILQ_INIT(&V_pf_sendqueue);
1249 SLIST_INIT(&V_pf_overloadqueue);
1250 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet);
1251
1252 /* Unlinked, but may be referenced rules. */
1253 TAILQ_INIT(&V_pf_unlinked_rules);
1254 }
1255
1256 void
pf_mtag_cleanup(void)1257 pf_mtag_cleanup(void)
1258 {
1259
1260 uma_zdestroy(pf_mtag_z);
1261 }
1262
1263 void
pf_cleanup(void)1264 pf_cleanup(void)
1265 {
1266 struct pf_keyhash *kh;
1267 struct pf_idhash *ih;
1268 struct pf_srchash *sh;
1269 struct pf_udpendpointhash *uh;
1270 struct pf_send_entry *pfse, *next;
1271 u_int i;
1272
1273 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash;
1274 i <= V_pf_hashmask;
1275 i++, kh++, ih++) {
1276 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty",
1277 __func__));
1278 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty",
1279 __func__));
1280 mtx_destroy(&kh->lock);
1281 mtx_destroy(&ih->lock);
1282 }
1283 free(V_pf_keyhash, M_PFHASH);
1284 free(V_pf_idhash, M_PFHASH);
1285
1286 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
1287 KASSERT(LIST_EMPTY(&sh->nodes),
1288 ("%s: source node hash not empty", __func__));
1289 mtx_destroy(&sh->lock);
1290 }
1291 free(V_pf_srchash, M_PFHASH);
1292
1293 for (i = 0, uh = V_pf_udpendpointhash;
1294 i <= V_pf_udpendpointhashmask;
1295 i++, uh++) {
1296 KASSERT(LIST_EMPTY(&uh->endpoints),
1297 ("%s: udp endpoint hash not empty", __func__));
1298 mtx_destroy(&uh->lock);
1299 }
1300 free(V_pf_udpendpointhash, M_PFHASH);
1301
1302 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) {
1303 m_freem(pfse->pfse_m);
1304 free(pfse, M_PFTEMP);
1305 }
1306 MPASS(RB_EMPTY(&V_pf_sctp_endpoints));
1307
1308 uma_zdestroy(V_pf_sources_z);
1309 uma_zdestroy(V_pf_state_z);
1310 uma_zdestroy(V_pf_state_key_z);
1311 uma_zdestroy(V_pf_udp_mapping_z);
1312 }
1313
1314 static int
pf_mtag_uminit(void * mem,int size,int how)1315 pf_mtag_uminit(void *mem, int size, int how)
1316 {
1317 struct m_tag *t;
1318
1319 t = (struct m_tag *)mem;
1320 t->m_tag_cookie = MTAG_ABI_COMPAT;
1321 t->m_tag_id = PACKET_TAG_PF;
1322 t->m_tag_len = sizeof(struct pf_mtag);
1323 t->m_tag_free = pf_mtag_free;
1324
1325 return (0);
1326 }
1327
1328 static void
pf_mtag_free(struct m_tag * t)1329 pf_mtag_free(struct m_tag *t)
1330 {
1331
1332 uma_zfree(pf_mtag_z, t);
1333 }
1334
1335 struct pf_mtag *
pf_get_mtag(struct mbuf * m)1336 pf_get_mtag(struct mbuf *m)
1337 {
1338 struct m_tag *mtag;
1339
1340 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL)
1341 return ((struct pf_mtag *)(mtag + 1));
1342
1343 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT);
1344 if (mtag == NULL)
1345 return (NULL);
1346 bzero(mtag + 1, sizeof(struct pf_mtag));
1347 m_tag_prepend(m, mtag);
1348
1349 return ((struct pf_mtag *)(mtag + 1));
1350 }
1351
1352 static int
pf_state_key_attach(struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1353 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks,
1354 struct pf_kstate *s)
1355 {
1356 struct pf_keyhash *khs, *khw, *kh;
1357 struct pf_state_key *sk, *cur;
1358 struct pf_kstate *si, *olds = NULL;
1359 int idx;
1360
1361 NET_EPOCH_ASSERT();
1362 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1363 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__));
1364 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__));
1365
1366 /*
1367 * We need to lock hash slots of both keys. To avoid deadlock
1368 * we always lock the slot with lower address first. Unlock order
1369 * isn't important.
1370 *
1371 * We also need to lock ID hash slot before dropping key
1372 * locks. On success we return with ID hash slot locked.
1373 */
1374
1375 if (skw == sks) {
1376 khs = khw = &V_pf_keyhash[pf_hashkey(skw)];
1377 PF_HASHROW_LOCK(khs);
1378 } else {
1379 khs = &V_pf_keyhash[pf_hashkey(sks)];
1380 khw = &V_pf_keyhash[pf_hashkey(skw)];
1381 if (khs == khw) {
1382 PF_HASHROW_LOCK(khs);
1383 } else if (khs < khw) {
1384 PF_HASHROW_LOCK(khs);
1385 PF_HASHROW_LOCK(khw);
1386 } else {
1387 PF_HASHROW_LOCK(khw);
1388 PF_HASHROW_LOCK(khs);
1389 }
1390 }
1391
1392 #define KEYS_UNLOCK() do { \
1393 if (khs != khw) { \
1394 PF_HASHROW_UNLOCK(khs); \
1395 PF_HASHROW_UNLOCK(khw); \
1396 } else \
1397 PF_HASHROW_UNLOCK(khs); \
1398 } while (0)
1399
1400 /*
1401 * First run: start with wire key.
1402 */
1403 sk = skw;
1404 kh = khw;
1405 idx = PF_SK_WIRE;
1406
1407 MPASS(s->lock == NULL);
1408 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock;
1409
1410 keyattach:
1411 LIST_FOREACH(cur, &kh->keys, entry)
1412 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0)
1413 break;
1414
1415 if (cur != NULL) {
1416 /* Key exists. Check for same kif, if none, add to key. */
1417 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) {
1418 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)];
1419
1420 PF_HASHROW_LOCK(ih);
1421 if (si->kif == s->kif &&
1422 si->direction == s->direction) {
1423 if (sk->proto == IPPROTO_TCP &&
1424 si->src.state >= TCPS_FIN_WAIT_2 &&
1425 si->dst.state >= TCPS_FIN_WAIT_2) {
1426 /*
1427 * New state matches an old >FIN_WAIT_2
1428 * state. We can't drop key hash locks,
1429 * thus we can't unlink it properly.
1430 *
1431 * As a workaround we drop it into
1432 * TCPS_CLOSED state, schedule purge
1433 * ASAP and push it into the very end
1434 * of the slot TAILQ, so that it won't
1435 * conflict with our new state.
1436 */
1437 pf_set_protostate(si, PF_PEER_BOTH,
1438 TCPS_CLOSED);
1439 si->timeout = PFTM_PURGE;
1440 olds = si;
1441 } else {
1442 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1443 printf("pf: %s key attach "
1444 "failed on %s: ",
1445 (idx == PF_SK_WIRE) ?
1446 "wire" : "stack",
1447 s->kif->pfik_name);
1448 pf_print_state_parts(s,
1449 (idx == PF_SK_WIRE) ?
1450 sk : NULL,
1451 (idx == PF_SK_STACK) ?
1452 sk : NULL);
1453 printf(", existing: ");
1454 pf_print_state_parts(si,
1455 (idx == PF_SK_WIRE) ?
1456 sk : NULL,
1457 (idx == PF_SK_STACK) ?
1458 sk : NULL);
1459 printf("\n");
1460 }
1461 s->timeout = PFTM_UNLINKED;
1462 PF_HASHROW_UNLOCK(ih);
1463 KEYS_UNLOCK();
1464 uma_zfree(V_pf_state_key_z, skw);
1465 if (skw != sks)
1466 uma_zfree(V_pf_state_key_z, sks);
1467 if (idx == PF_SK_STACK)
1468 pf_detach_state(s);
1469 return (EEXIST); /* collision! */
1470 }
1471 }
1472 PF_HASHROW_UNLOCK(ih);
1473 }
1474 uma_zfree(V_pf_state_key_z, sk);
1475 s->key[idx] = cur;
1476 } else {
1477 LIST_INSERT_HEAD(&kh->keys, sk, entry);
1478 s->key[idx] = sk;
1479 }
1480
1481 stateattach:
1482 /* List is sorted, if-bound states before floating. */
1483 if (s->kif == V_pfi_all)
1484 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]);
1485 else
1486 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]);
1487
1488 if (olds) {
1489 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]);
1490 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds,
1491 key_list[idx]);
1492 olds = NULL;
1493 }
1494
1495 /*
1496 * Attach done. See how should we (or should not?)
1497 * attach a second key.
1498 */
1499 if (sks == skw) {
1500 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE];
1501 idx = PF_SK_STACK;
1502 sks = NULL;
1503 goto stateattach;
1504 } else if (sks != NULL) {
1505 /*
1506 * Continue attaching with stack key.
1507 */
1508 sk = sks;
1509 kh = khs;
1510 idx = PF_SK_STACK;
1511 sks = NULL;
1512 goto keyattach;
1513 }
1514
1515 PF_STATE_LOCK(s);
1516 KEYS_UNLOCK();
1517
1518 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL,
1519 ("%s failure", __func__));
1520
1521 return (0);
1522 #undef KEYS_UNLOCK
1523 }
1524
1525 static void
pf_detach_state(struct pf_kstate * s)1526 pf_detach_state(struct pf_kstate *s)
1527 {
1528 struct pf_state_key *sks = s->key[PF_SK_STACK];
1529 struct pf_keyhash *kh;
1530
1531 NET_EPOCH_ASSERT();
1532 MPASS(s->timeout >= PFTM_MAX);
1533
1534 pf_sctp_multihome_detach_addr(s);
1535
1536 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr)
1537 V_pflow_export_state_ptr(s);
1538
1539 if (sks != NULL) {
1540 kh = &V_pf_keyhash[pf_hashkey(sks)];
1541 PF_HASHROW_LOCK(kh);
1542 if (s->key[PF_SK_STACK] != NULL)
1543 pf_state_key_detach(s, PF_SK_STACK);
1544 /*
1545 * If both point to same key, then we are done.
1546 */
1547 if (sks == s->key[PF_SK_WIRE]) {
1548 pf_state_key_detach(s, PF_SK_WIRE);
1549 PF_HASHROW_UNLOCK(kh);
1550 return;
1551 }
1552 PF_HASHROW_UNLOCK(kh);
1553 }
1554
1555 if (s->key[PF_SK_WIRE] != NULL) {
1556 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])];
1557 PF_HASHROW_LOCK(kh);
1558 if (s->key[PF_SK_WIRE] != NULL)
1559 pf_state_key_detach(s, PF_SK_WIRE);
1560 PF_HASHROW_UNLOCK(kh);
1561 }
1562 }
1563
1564 static void
pf_state_key_detach(struct pf_kstate * s,int idx)1565 pf_state_key_detach(struct pf_kstate *s, int idx)
1566 {
1567 struct pf_state_key *sk = s->key[idx];
1568 #ifdef INVARIANTS
1569 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)];
1570
1571 PF_HASHROW_ASSERT(kh);
1572 #endif
1573 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]);
1574 s->key[idx] = NULL;
1575
1576 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) {
1577 LIST_REMOVE(sk, entry);
1578 uma_zfree(V_pf_state_key_z, sk);
1579 }
1580 }
1581
1582 static int
pf_state_key_ctor(void * mem,int size,void * arg,int flags)1583 pf_state_key_ctor(void *mem, int size, void *arg, int flags)
1584 {
1585 struct pf_state_key *sk = mem;
1586
1587 bzero(sk, sizeof(struct pf_state_key_cmp));
1588 TAILQ_INIT(&sk->states[PF_SK_WIRE]);
1589 TAILQ_INIT(&sk->states[PF_SK_STACK]);
1590
1591 return (0);
1592 }
1593
1594 static int
pf_state_key_addr_setup(struct pf_pdesc * pd,struct pf_state_key_cmp * key,int multi)1595 pf_state_key_addr_setup(struct pf_pdesc *pd,
1596 struct pf_state_key_cmp *key, int multi)
1597 {
1598 struct pf_addr *saddr = pd->src;
1599 struct pf_addr *daddr = pd->dst;
1600 #ifdef INET6
1601 struct nd_neighbor_solicit nd;
1602 struct pf_addr *target;
1603 u_short action, reason;
1604
1605 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6)
1606 goto copy;
1607
1608 switch (pd->hdr.icmp6.icmp6_type) {
1609 case ND_NEIGHBOR_SOLICIT:
1610 if (multi)
1611 return (-1);
1612 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1613 return (-1);
1614 target = (struct pf_addr *)&nd.nd_ns_target;
1615 daddr = target;
1616 break;
1617 case ND_NEIGHBOR_ADVERT:
1618 if (multi)
1619 return (-1);
1620 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af))
1621 return (-1);
1622 target = (struct pf_addr *)&nd.nd_ns_target;
1623 saddr = target;
1624 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) {
1625 key->addr[pd->didx].addr32[0] = 0;
1626 key->addr[pd->didx].addr32[1] = 0;
1627 key->addr[pd->didx].addr32[2] = 0;
1628 key->addr[pd->didx].addr32[3] = 0;
1629 daddr = NULL; /* overwritten */
1630 }
1631 break;
1632 default:
1633 if (multi == PF_ICMP_MULTI_LINK) {
1634 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL;
1635 key->addr[pd->sidx].addr32[1] = 0;
1636 key->addr[pd->sidx].addr32[2] = 0;
1637 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE;
1638 saddr = NULL; /* overwritten */
1639 }
1640 }
1641 copy:
1642 #endif
1643 if (saddr)
1644 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af);
1645 if (daddr)
1646 PF_ACPY(&key->addr[pd->didx], daddr, pd->af);
1647
1648 return (0);
1649 }
1650
1651 struct pf_state_key *
pf_state_key_setup(struct pf_pdesc * pd,struct pf_addr * saddr,struct pf_addr * daddr,u_int16_t sport,u_int16_t dport)1652 pf_state_key_setup(struct pf_pdesc *pd,
1653 struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport,
1654 u_int16_t dport)
1655 {
1656 struct pf_state_key *sk;
1657
1658 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1659 if (sk == NULL)
1660 return (NULL);
1661
1662 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)sk,
1663 0)) {
1664 uma_zfree(V_pf_state_key_z, sk);
1665 return (NULL);
1666 }
1667
1668 sk->port[pd->sidx] = sport;
1669 sk->port[pd->didx] = dport;
1670 sk->proto = pd->proto;
1671 sk->af = pd->af;
1672
1673 return (sk);
1674 }
1675
1676 struct pf_state_key *
pf_state_key_clone(const struct pf_state_key * orig)1677 pf_state_key_clone(const struct pf_state_key *orig)
1678 {
1679 struct pf_state_key *sk;
1680
1681 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT);
1682 if (sk == NULL)
1683 return (NULL);
1684
1685 bcopy(orig, sk, sizeof(struct pf_state_key_cmp));
1686
1687 return (sk);
1688 }
1689
1690 int
pf_state_insert(struct pfi_kkif * kif,struct pfi_kkif * orig_kif,struct pf_state_key * skw,struct pf_state_key * sks,struct pf_kstate * s)1691 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif,
1692 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s)
1693 {
1694 struct pf_idhash *ih;
1695 struct pf_kstate *cur;
1696 int error;
1697
1698 NET_EPOCH_ASSERT();
1699
1700 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]),
1701 ("%s: sks not pristine", __func__));
1702 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]),
1703 ("%s: skw not pristine", __func__));
1704 KASSERT(s->refs == 0, ("%s: state not pristine", __func__));
1705
1706 s->kif = kif;
1707 s->orig_kif = orig_kif;
1708
1709 if (s->id == 0 && s->creatorid == 0) {
1710 s->id = alloc_unr64(&V_pf_stateid);
1711 s->id = htobe64(s->id);
1712 s->creatorid = V_pf_status.hostid;
1713 }
1714
1715 /* Returns with ID locked on success. */
1716 if ((error = pf_state_key_attach(skw, sks, s)) != 0)
1717 return (error);
1718
1719 ih = &V_pf_idhash[PF_IDHASH(s)];
1720 PF_HASHROW_ASSERT(ih);
1721 LIST_FOREACH(cur, &ih->states, entry)
1722 if (cur->id == s->id && cur->creatorid == s->creatorid)
1723 break;
1724
1725 if (cur != NULL) {
1726 s->timeout = PFTM_UNLINKED;
1727 PF_HASHROW_UNLOCK(ih);
1728 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1729 printf("pf: state ID collision: "
1730 "id: %016llx creatorid: %08x\n",
1731 (unsigned long long)be64toh(s->id),
1732 ntohl(s->creatorid));
1733 }
1734 pf_detach_state(s);
1735 return (EEXIST);
1736 }
1737 LIST_INSERT_HEAD(&ih->states, s, entry);
1738 /* One for keys, one for ID hash. */
1739 refcount_init(&s->refs, 2);
1740
1741 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1);
1742 if (V_pfsync_insert_state_ptr != NULL)
1743 V_pfsync_insert_state_ptr(s);
1744
1745 /* Returns locked. */
1746 return (0);
1747 }
1748
1749 /*
1750 * Find state by ID: returns with locked row on success.
1751 */
1752 struct pf_kstate *
pf_find_state_byid(uint64_t id,uint32_t creatorid)1753 pf_find_state_byid(uint64_t id, uint32_t creatorid)
1754 {
1755 struct pf_idhash *ih;
1756 struct pf_kstate *s;
1757
1758 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1759
1760 ih = &V_pf_idhash[(be64toh(id) % (V_pf_hashmask + 1))];
1761
1762 PF_HASHROW_LOCK(ih);
1763 LIST_FOREACH(s, &ih->states, entry)
1764 if (s->id == id && s->creatorid == creatorid)
1765 break;
1766
1767 if (s == NULL)
1768 PF_HASHROW_UNLOCK(ih);
1769
1770 return (s);
1771 }
1772
1773 /*
1774 * Find state by key.
1775 * Returns with ID hash slot locked on success.
1776 */
1777 static struct pf_kstate *
pf_find_state(struct pfi_kkif * kif,const struct pf_state_key_cmp * key,u_int dir)1778 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key,
1779 u_int dir)
1780 {
1781 struct pf_keyhash *kh;
1782 struct pf_state_key *sk;
1783 struct pf_kstate *s;
1784 int idx;
1785
1786 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1787
1788 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1789
1790 PF_HASHROW_LOCK(kh);
1791 LIST_FOREACH(sk, &kh->keys, entry)
1792 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1793 break;
1794 if (sk == NULL) {
1795 PF_HASHROW_UNLOCK(kh);
1796 return (NULL);
1797 }
1798
1799 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK);
1800
1801 /* List is sorted, if-bound states before floating ones. */
1802 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx])
1803 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) {
1804 PF_STATE_LOCK(s);
1805 PF_HASHROW_UNLOCK(kh);
1806 if (__predict_false(s->timeout >= PFTM_MAX)) {
1807 /*
1808 * State is either being processed by
1809 * pf_unlink_state() in an other thread, or
1810 * is scheduled for immediate expiry.
1811 */
1812 PF_STATE_UNLOCK(s);
1813 return (NULL);
1814 }
1815 return (s);
1816 }
1817 PF_HASHROW_UNLOCK(kh);
1818
1819 return (NULL);
1820 }
1821
1822 /*
1823 * Returns with ID hash slot locked on success.
1824 */
1825 struct pf_kstate *
pf_find_state_all(const struct pf_state_key_cmp * key,u_int dir,int * more)1826 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more)
1827 {
1828 struct pf_keyhash *kh;
1829 struct pf_state_key *sk;
1830 struct pf_kstate *s, *ret = NULL;
1831 int idx, inout = 0;
1832
1833 if (more != NULL)
1834 *more = 0;
1835
1836 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1);
1837
1838 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)];
1839
1840 PF_HASHROW_LOCK(kh);
1841 LIST_FOREACH(sk, &kh->keys, entry)
1842 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0)
1843 break;
1844 if (sk == NULL) {
1845 PF_HASHROW_UNLOCK(kh);
1846 return (NULL);
1847 }
1848 switch (dir) {
1849 case PF_IN:
1850 idx = PF_SK_WIRE;
1851 break;
1852 case PF_OUT:
1853 idx = PF_SK_STACK;
1854 break;
1855 case PF_INOUT:
1856 idx = PF_SK_WIRE;
1857 inout = 1;
1858 break;
1859 default:
1860 panic("%s: dir %u", __func__, dir);
1861 }
1862 second_run:
1863 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) {
1864 if (more == NULL) {
1865 PF_STATE_LOCK(s);
1866 PF_HASHROW_UNLOCK(kh);
1867 return (s);
1868 }
1869
1870 if (ret)
1871 (*more)++;
1872 else {
1873 ret = s;
1874 PF_STATE_LOCK(s);
1875 }
1876 }
1877 if (inout == 1) {
1878 inout = 0;
1879 idx = PF_SK_STACK;
1880 goto second_run;
1881 }
1882 PF_HASHROW_UNLOCK(kh);
1883
1884 return (ret);
1885 }
1886
1887 /*
1888 * FIXME
1889 * This routine is inefficient -- locks the state only to unlock immediately on
1890 * return.
1891 * It is racy -- after the state is unlocked nothing stops other threads from
1892 * removing it.
1893 */
1894 bool
pf_find_state_all_exists(const struct pf_state_key_cmp * key,u_int dir)1895 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir)
1896 {
1897 struct pf_kstate *s;
1898
1899 s = pf_find_state_all(key, dir, NULL);
1900 if (s != NULL) {
1901 PF_STATE_UNLOCK(s);
1902 return (true);
1903 }
1904 return (false);
1905 }
1906
1907 struct pf_udp_mapping *
pf_udp_mapping_create(sa_family_t af,struct pf_addr * src_addr,uint16_t src_port,struct pf_addr * nat_addr,uint16_t nat_port)1908 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port,
1909 struct pf_addr *nat_addr, uint16_t nat_port)
1910 {
1911 struct pf_udp_mapping *mapping;
1912
1913 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO);
1914 if (mapping == NULL)
1915 return (NULL);
1916 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af);
1917 mapping->endpoints[0].port = src_port;
1918 mapping->endpoints[0].af = af;
1919 mapping->endpoints[0].mapping = mapping;
1920 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af);
1921 mapping->endpoints[1].port = nat_port;
1922 mapping->endpoints[1].af = af;
1923 mapping->endpoints[1].mapping = mapping;
1924 refcount_init(&mapping->refs, 1);
1925 return (mapping);
1926 }
1927
1928 int
pf_udp_mapping_insert(struct pf_udp_mapping * mapping)1929 pf_udp_mapping_insert(struct pf_udp_mapping *mapping)
1930 {
1931 struct pf_udpendpointhash *h0, *h1;
1932 struct pf_udp_endpoint *endpoint;
1933 int ret = EEXIST;
1934
1935 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
1936 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
1937 if (h0 == h1) {
1938 PF_HASHROW_LOCK(h0);
1939 } else if (h0 < h1) {
1940 PF_HASHROW_LOCK(h0);
1941 PF_HASHROW_LOCK(h1);
1942 } else {
1943 PF_HASHROW_LOCK(h1);
1944 PF_HASHROW_LOCK(h0);
1945 }
1946
1947 LIST_FOREACH(endpoint, &h0->endpoints, entry) {
1948 if (bcmp(endpoint, &mapping->endpoints[0],
1949 sizeof(struct pf_udp_endpoint_cmp)) == 0)
1950 break;
1951 }
1952 if (endpoint != NULL)
1953 goto cleanup;
1954 LIST_FOREACH(endpoint, &h1->endpoints, entry) {
1955 if (bcmp(endpoint, &mapping->endpoints[1],
1956 sizeof(struct pf_udp_endpoint_cmp)) == 0)
1957 break;
1958 }
1959 if (endpoint != NULL)
1960 goto cleanup;
1961 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry);
1962 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry);
1963 ret = 0;
1964
1965 cleanup:
1966 if (h0 != h1) {
1967 PF_HASHROW_UNLOCK(h0);
1968 PF_HASHROW_UNLOCK(h1);
1969 } else {
1970 PF_HASHROW_UNLOCK(h0);
1971 }
1972 return (ret);
1973 }
1974
1975 void
pf_udp_mapping_release(struct pf_udp_mapping * mapping)1976 pf_udp_mapping_release(struct pf_udp_mapping *mapping)
1977 {
1978 /* refcount is synchronized on the source endpoint's row lock */
1979 struct pf_udpendpointhash *h0, *h1;
1980
1981 if (mapping == NULL)
1982 return;
1983
1984 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])];
1985 PF_HASHROW_LOCK(h0);
1986 if (refcount_release(&mapping->refs)) {
1987 LIST_REMOVE(&mapping->endpoints[0], entry);
1988 PF_HASHROW_UNLOCK(h0);
1989 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])];
1990 PF_HASHROW_LOCK(h1);
1991 LIST_REMOVE(&mapping->endpoints[1], entry);
1992 PF_HASHROW_UNLOCK(h1);
1993
1994 uma_zfree(V_pf_udp_mapping_z, mapping);
1995 } else {
1996 PF_HASHROW_UNLOCK(h0);
1997 }
1998 }
1999
2000
2001 struct pf_udp_mapping *
pf_udp_mapping_find(struct pf_udp_endpoint_cmp * key)2002 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key)
2003 {
2004 struct pf_udpendpointhash *uh;
2005 struct pf_udp_endpoint *endpoint;
2006
2007 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)];
2008
2009 PF_HASHROW_LOCK(uh);
2010 LIST_FOREACH(endpoint, &uh->endpoints, entry) {
2011 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 &&
2012 bcmp(endpoint, &endpoint->mapping->endpoints[0],
2013 sizeof(struct pf_udp_endpoint_cmp)) == 0)
2014 break;
2015 }
2016 if (endpoint == NULL) {
2017 PF_HASHROW_UNLOCK(uh);
2018 return (NULL);
2019 }
2020 refcount_acquire(&endpoint->mapping->refs);
2021 PF_HASHROW_UNLOCK(uh);
2022 return (endpoint->mapping);
2023 }
2024 /* END state table stuff */
2025
2026 static void
pf_send(struct pf_send_entry * pfse)2027 pf_send(struct pf_send_entry *pfse)
2028 {
2029
2030 PF_SENDQ_LOCK();
2031 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next);
2032 PF_SENDQ_UNLOCK();
2033 swi_sched(V_pf_swi_cookie, 0);
2034 }
2035
2036 static bool
pf_isforlocal(struct mbuf * m,int af)2037 pf_isforlocal(struct mbuf *m, int af)
2038 {
2039 switch (af) {
2040 #ifdef INET
2041 case AF_INET: {
2042 struct ip *ip = mtod(m, struct ip *);
2043
2044 return (in_localip(ip->ip_dst));
2045 }
2046 #endif
2047 #ifdef INET6
2048 case AF_INET6: {
2049 struct ip6_hdr *ip6;
2050 struct in6_ifaddr *ia;
2051 ip6 = mtod(m, struct ip6_hdr *);
2052 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
2053 if (ia == NULL)
2054 return (false);
2055 return (! (ia->ia6_flags & IN6_IFF_NOTREADY));
2056 }
2057 #endif
2058 }
2059
2060 return (false);
2061 }
2062
2063 int
pf_icmp_mapping(struct pf_pdesc * pd,u_int8_t type,int * icmp_dir,int * multi,u_int16_t * virtual_id,u_int16_t * virtual_type)2064 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type,
2065 int *icmp_dir, int *multi, u_int16_t *virtual_id, u_int16_t *virtual_type)
2066 {
2067 /*
2068 * ICMP types marked with PF_OUT are typically responses to
2069 * PF_IN, and will match states in the opposite direction.
2070 * PF_IN ICMP types need to match a state with that type.
2071 */
2072 *icmp_dir = PF_OUT;
2073 *multi = PF_ICMP_MULTI_LINK;
2074 /* Queries (and responses) */
2075 switch (pd->af) {
2076 #ifdef INET
2077 case AF_INET:
2078 switch (type) {
2079 case ICMP_ECHO:
2080 *icmp_dir = PF_IN;
2081 case ICMP_ECHOREPLY:
2082 *virtual_type = ICMP_ECHO;
2083 *virtual_id = pd->hdr.icmp.icmp_id;
2084 break;
2085
2086 case ICMP_TSTAMP:
2087 *icmp_dir = PF_IN;
2088 case ICMP_TSTAMPREPLY:
2089 *virtual_type = ICMP_TSTAMP;
2090 *virtual_id = pd->hdr.icmp.icmp_id;
2091 break;
2092
2093 case ICMP_IREQ:
2094 *icmp_dir = PF_IN;
2095 case ICMP_IREQREPLY:
2096 *virtual_type = ICMP_IREQ;
2097 *virtual_id = pd->hdr.icmp.icmp_id;
2098 break;
2099
2100 case ICMP_MASKREQ:
2101 *icmp_dir = PF_IN;
2102 case ICMP_MASKREPLY:
2103 *virtual_type = ICMP_MASKREQ;
2104 *virtual_id = pd->hdr.icmp.icmp_id;
2105 break;
2106
2107 case ICMP_IPV6_WHEREAREYOU:
2108 *icmp_dir = PF_IN;
2109 case ICMP_IPV6_IAMHERE:
2110 *virtual_type = ICMP_IPV6_WHEREAREYOU;
2111 *virtual_id = 0; /* Nothing sane to match on! */
2112 break;
2113
2114 case ICMP_MOBILE_REGREQUEST:
2115 *icmp_dir = PF_IN;
2116 case ICMP_MOBILE_REGREPLY:
2117 *virtual_type = ICMP_MOBILE_REGREQUEST;
2118 *virtual_id = 0; /* Nothing sane to match on! */
2119 break;
2120
2121 case ICMP_ROUTERSOLICIT:
2122 *icmp_dir = PF_IN;
2123 case ICMP_ROUTERADVERT:
2124 *virtual_type = ICMP_ROUTERSOLICIT;
2125 *virtual_id = 0; /* Nothing sane to match on! */
2126 break;
2127
2128 /* These ICMP types map to other connections */
2129 case ICMP_UNREACH:
2130 case ICMP_SOURCEQUENCH:
2131 case ICMP_REDIRECT:
2132 case ICMP_TIMXCEED:
2133 case ICMP_PARAMPROB:
2134 /* These will not be used, but set them anyway */
2135 *icmp_dir = PF_IN;
2136 *virtual_type = type;
2137 *virtual_id = 0;
2138 HTONS(*virtual_type);
2139 return (1); /* These types match to another state */
2140
2141 /*
2142 * All remaining ICMP types get their own states,
2143 * and will only match in one direction.
2144 */
2145 default:
2146 *icmp_dir = PF_IN;
2147 *virtual_type = type;
2148 *virtual_id = 0;
2149 break;
2150 }
2151 break;
2152 #endif /* INET */
2153 #ifdef INET6
2154 case AF_INET6:
2155 switch (type) {
2156 case ICMP6_ECHO_REQUEST:
2157 *icmp_dir = PF_IN;
2158 case ICMP6_ECHO_REPLY:
2159 *virtual_type = ICMP6_ECHO_REQUEST;
2160 *virtual_id = pd->hdr.icmp6.icmp6_id;
2161 break;
2162
2163 case MLD_LISTENER_QUERY:
2164 case MLD_LISTENER_REPORT: {
2165 /*
2166 * Listener Report can be sent by clients
2167 * without an associated Listener Query.
2168 * In addition to that, when Report is sent as a
2169 * reply to a Query its source and destination
2170 * address are different.
2171 */
2172 *icmp_dir = PF_IN;
2173 *virtual_type = MLD_LISTENER_QUERY;
2174 *virtual_id = 0;
2175 break;
2176 }
2177 case MLD_MTRACE:
2178 *icmp_dir = PF_IN;
2179 case MLD_MTRACE_RESP:
2180 *virtual_type = MLD_MTRACE;
2181 *virtual_id = 0; /* Nothing sane to match on! */
2182 break;
2183
2184 case ND_NEIGHBOR_SOLICIT:
2185 *icmp_dir = PF_IN;
2186 case ND_NEIGHBOR_ADVERT: {
2187 *virtual_type = ND_NEIGHBOR_SOLICIT;
2188 *virtual_id = 0;
2189 break;
2190 }
2191
2192 /*
2193 * These ICMP types map to other connections.
2194 * ND_REDIRECT can't be in this list because the triggering
2195 * packet header is optional.
2196 */
2197 case ICMP6_DST_UNREACH:
2198 case ICMP6_PACKET_TOO_BIG:
2199 case ICMP6_TIME_EXCEEDED:
2200 case ICMP6_PARAM_PROB:
2201 /* These will not be used, but set them anyway */
2202 *icmp_dir = PF_IN;
2203 *virtual_type = type;
2204 *virtual_id = 0;
2205 HTONS(*virtual_type);
2206 return (1); /* These types match to another state */
2207 /*
2208 * All remaining ICMP6 types get their own states,
2209 * and will only match in one direction.
2210 */
2211 default:
2212 *icmp_dir = PF_IN;
2213 *virtual_type = type;
2214 *virtual_id = 0;
2215 break;
2216 }
2217 break;
2218 #endif /* INET6 */
2219 }
2220 HTONS(*virtual_type);
2221 return (0); /* These types match to their own state */
2222 }
2223
2224 void
pf_intr(void * v)2225 pf_intr(void *v)
2226 {
2227 struct epoch_tracker et;
2228 struct pf_send_head queue;
2229 struct pf_send_entry *pfse, *next;
2230
2231 CURVNET_SET((struct vnet *)v);
2232
2233 PF_SENDQ_LOCK();
2234 queue = V_pf_sendqueue;
2235 STAILQ_INIT(&V_pf_sendqueue);
2236 PF_SENDQ_UNLOCK();
2237
2238 NET_EPOCH_ENTER(et);
2239
2240 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) {
2241 switch (pfse->pfse_type) {
2242 #ifdef INET
2243 case PFSE_IP: {
2244 if (pf_isforlocal(pfse->pfse_m, AF_INET)) {
2245 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2246 ("%s: rcvif != loif", __func__));
2247
2248 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL;
2249 pfse->pfse_m->m_pkthdr.csum_flags |=
2250 CSUM_IP_VALID | CSUM_IP_CHECKED;
2251 ip_input(pfse->pfse_m);
2252 } else {
2253 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2254 NULL);
2255 }
2256 break;
2257 }
2258 case PFSE_ICMP:
2259 icmp_error(pfse->pfse_m, pfse->icmpopts.type,
2260 pfse->icmpopts.code, 0, pfse->icmpopts.mtu);
2261 break;
2262 #endif /* INET */
2263 #ifdef INET6
2264 case PFSE_IP6:
2265 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) {
2266 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif,
2267 ("%s: rcvif != loif", __func__));
2268
2269 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL |
2270 M_LOOP;
2271 ip6_input(pfse->pfse_m);
2272 } else {
2273 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL,
2274 NULL, NULL);
2275 }
2276 break;
2277 case PFSE_ICMP6:
2278 icmp6_error(pfse->pfse_m, pfse->icmpopts.type,
2279 pfse->icmpopts.code, pfse->icmpopts.mtu);
2280 break;
2281 #endif /* INET6 */
2282 default:
2283 panic("%s: unknown type", __func__);
2284 }
2285 free(pfse, M_PFTEMP);
2286 }
2287 NET_EPOCH_EXIT(et);
2288 CURVNET_RESTORE();
2289 }
2290
2291 #define pf_purge_thread_period (hz / 10)
2292
2293 #ifdef PF_WANT_32_TO_64_COUNTER
2294 static void
pf_status_counter_u64_periodic(void)2295 pf_status_counter_u64_periodic(void)
2296 {
2297
2298 PF_RULES_RASSERT();
2299
2300 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) {
2301 return;
2302 }
2303
2304 for (int i = 0; i < FCNT_MAX; i++) {
2305 pf_counter_u64_periodic(&V_pf_status.fcounters[i]);
2306 }
2307 }
2308
2309 static void
pf_kif_counter_u64_periodic(void)2310 pf_kif_counter_u64_periodic(void)
2311 {
2312 struct pfi_kkif *kif;
2313 size_t r, run;
2314
2315 PF_RULES_RASSERT();
2316
2317 if (__predict_false(V_pf_allkifcount == 0)) {
2318 return;
2319 }
2320
2321 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2322 return;
2323 }
2324
2325 run = V_pf_allkifcount / 10;
2326 if (run < 5)
2327 run = 5;
2328
2329 for (r = 0; r < run; r++) {
2330 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist);
2331 if (kif == NULL) {
2332 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2333 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist);
2334 break;
2335 }
2336
2337 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist);
2338 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist);
2339
2340 for (int i = 0; i < 2; i++) {
2341 for (int j = 0; j < 2; j++) {
2342 for (int k = 0; k < 2; k++) {
2343 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]);
2344 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]);
2345 }
2346 }
2347 }
2348 }
2349 }
2350
2351 static void
pf_rule_counter_u64_periodic(void)2352 pf_rule_counter_u64_periodic(void)
2353 {
2354 struct pf_krule *rule;
2355 size_t r, run;
2356
2357 PF_RULES_RASSERT();
2358
2359 if (__predict_false(V_pf_allrulecount == 0)) {
2360 return;
2361 }
2362
2363 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) {
2364 return;
2365 }
2366
2367 run = V_pf_allrulecount / 10;
2368 if (run < 5)
2369 run = 5;
2370
2371 for (r = 0; r < run; r++) {
2372 rule = LIST_NEXT(V_pf_rulemarker, allrulelist);
2373 if (rule == NULL) {
2374 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2375 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist);
2376 break;
2377 }
2378
2379 LIST_REMOVE(V_pf_rulemarker, allrulelist);
2380 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist);
2381
2382 pf_counter_u64_periodic(&rule->evaluations);
2383 for (int i = 0; i < 2; i++) {
2384 pf_counter_u64_periodic(&rule->packets[i]);
2385 pf_counter_u64_periodic(&rule->bytes[i]);
2386 }
2387 }
2388 }
2389
2390 static void
pf_counter_u64_periodic_main(void)2391 pf_counter_u64_periodic_main(void)
2392 {
2393 PF_RULES_RLOCK_TRACKER;
2394
2395 V_pf_counter_periodic_iter++;
2396
2397 PF_RULES_RLOCK();
2398 pf_counter_u64_critical_enter();
2399 pf_status_counter_u64_periodic();
2400 pf_kif_counter_u64_periodic();
2401 pf_rule_counter_u64_periodic();
2402 pf_counter_u64_critical_exit();
2403 PF_RULES_RUNLOCK();
2404 }
2405 #else
2406 #define pf_counter_u64_periodic_main() do { } while (0)
2407 #endif
2408
2409 void
pf_purge_thread(void * unused __unused)2410 pf_purge_thread(void *unused __unused)
2411 {
2412 struct epoch_tracker et;
2413
2414 VNET_ITERATOR_DECL(vnet_iter);
2415
2416 sx_xlock(&pf_end_lock);
2417 while (pf_end_threads == 0) {
2418 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period);
2419
2420 VNET_LIST_RLOCK();
2421 NET_EPOCH_ENTER(et);
2422 VNET_FOREACH(vnet_iter) {
2423 CURVNET_SET(vnet_iter);
2424
2425 /* Wait until V_pf_default_rule is initialized. */
2426 if (V_pf_vnet_active == 0) {
2427 CURVNET_RESTORE();
2428 continue;
2429 }
2430
2431 pf_counter_u64_periodic_main();
2432
2433 /*
2434 * Process 1/interval fraction of the state
2435 * table every run.
2436 */
2437 V_pf_purge_idx =
2438 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask /
2439 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10));
2440
2441 /*
2442 * Purge other expired types every
2443 * PFTM_INTERVAL seconds.
2444 */
2445 if (V_pf_purge_idx == 0) {
2446 /*
2447 * Order is important:
2448 * - states and src nodes reference rules
2449 * - states and rules reference kifs
2450 */
2451 pf_purge_expired_fragments();
2452 pf_purge_expired_src_nodes();
2453 pf_purge_unlinked_rules();
2454 pfi_kkif_purge();
2455 }
2456 CURVNET_RESTORE();
2457 }
2458 NET_EPOCH_EXIT(et);
2459 VNET_LIST_RUNLOCK();
2460 }
2461
2462 pf_end_threads++;
2463 sx_xunlock(&pf_end_lock);
2464 kproc_exit(0);
2465 }
2466
2467 void
pf_unload_vnet_purge(void)2468 pf_unload_vnet_purge(void)
2469 {
2470
2471 /*
2472 * To cleanse up all kifs and rules we need
2473 * two runs: first one clears reference flags,
2474 * then pf_purge_expired_states() doesn't
2475 * raise them, and then second run frees.
2476 */
2477 pf_purge_unlinked_rules();
2478 pfi_kkif_purge();
2479
2480 /*
2481 * Now purge everything.
2482 */
2483 pf_purge_expired_states(0, V_pf_hashmask);
2484 pf_purge_fragments(UINT_MAX);
2485 pf_purge_expired_src_nodes();
2486
2487 /*
2488 * Now all kifs & rules should be unreferenced,
2489 * thus should be successfully freed.
2490 */
2491 pf_purge_unlinked_rules();
2492 pfi_kkif_purge();
2493 }
2494
2495 u_int32_t
pf_state_expires(const struct pf_kstate * state)2496 pf_state_expires(const struct pf_kstate *state)
2497 {
2498 u_int32_t timeout;
2499 u_int32_t start;
2500 u_int32_t end;
2501 u_int32_t states;
2502
2503 /* handle all PFTM_* > PFTM_MAX here */
2504 if (state->timeout == PFTM_PURGE)
2505 return (time_uptime);
2506 KASSERT(state->timeout != PFTM_UNLINKED,
2507 ("pf_state_expires: timeout == PFTM_UNLINKED"));
2508 KASSERT((state->timeout < PFTM_MAX),
2509 ("pf_state_expires: timeout > PFTM_MAX"));
2510 timeout = state->rule->timeout[state->timeout];
2511 if (!timeout)
2512 timeout = V_pf_default_rule.timeout[state->timeout];
2513 start = state->rule->timeout[PFTM_ADAPTIVE_START];
2514 if (start && state->rule != &V_pf_default_rule) {
2515 end = state->rule->timeout[PFTM_ADAPTIVE_END];
2516 states = counter_u64_fetch(state->rule->states_cur);
2517 } else {
2518 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START];
2519 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END];
2520 states = V_pf_status.states;
2521 }
2522 if (end && states > start && start < end) {
2523 if (states < end) {
2524 timeout = (u_int64_t)timeout * (end - states) /
2525 (end - start);
2526 return ((state->expire / 1000) + timeout);
2527 }
2528 else
2529 return (time_uptime);
2530 }
2531 return ((state->expire / 1000) + timeout);
2532 }
2533
2534 void
pf_purge_expired_src_nodes(void)2535 pf_purge_expired_src_nodes(void)
2536 {
2537 struct pf_ksrc_node_list freelist;
2538 struct pf_srchash *sh;
2539 struct pf_ksrc_node *cur, *next;
2540 int i;
2541
2542 LIST_INIT(&freelist);
2543 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) {
2544 PF_HASHROW_LOCK(sh);
2545 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next)
2546 if (cur->states == 0 && cur->expire <= time_uptime) {
2547 pf_unlink_src_node(cur);
2548 LIST_INSERT_HEAD(&freelist, cur, entry);
2549 } else if (cur->rule != NULL)
2550 cur->rule->rule_ref |= PFRULE_REFS;
2551 PF_HASHROW_UNLOCK(sh);
2552 }
2553
2554 pf_free_src_nodes(&freelist);
2555
2556 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z);
2557 }
2558
2559 static void
pf_src_tree_remove_state(struct pf_kstate * s)2560 pf_src_tree_remove_state(struct pf_kstate *s)
2561 {
2562 struct pf_ksrc_node *sn;
2563 uint32_t timeout;
2564
2565 timeout = s->rule->timeout[PFTM_SRC_NODE] ?
2566 s->rule->timeout[PFTM_SRC_NODE] :
2567 V_pf_default_rule.timeout[PFTM_SRC_NODE];
2568
2569 if (s->src_node != NULL) {
2570 sn = s->src_node;
2571 PF_SRC_NODE_LOCK(sn);
2572 if (s->src.tcp_est)
2573 --sn->conn;
2574 if (--sn->states == 0)
2575 sn->expire = time_uptime + timeout;
2576 PF_SRC_NODE_UNLOCK(sn);
2577 }
2578 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
2579 sn = s->nat_src_node;
2580 PF_SRC_NODE_LOCK(sn);
2581 if (--sn->states == 0)
2582 sn->expire = time_uptime + timeout;
2583 PF_SRC_NODE_UNLOCK(sn);
2584 }
2585 s->src_node = s->nat_src_node = NULL;
2586 }
2587
2588 /*
2589 * Unlink and potentilly free a state. Function may be
2590 * called with ID hash row locked, but always returns
2591 * unlocked, since it needs to go through key hash locking.
2592 */
2593 int
pf_unlink_state(struct pf_kstate * s)2594 pf_unlink_state(struct pf_kstate *s)
2595 {
2596 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)];
2597
2598 NET_EPOCH_ASSERT();
2599 PF_HASHROW_ASSERT(ih);
2600
2601 if (s->timeout == PFTM_UNLINKED) {
2602 /*
2603 * State is being processed
2604 * by pf_unlink_state() in
2605 * an other thread.
2606 */
2607 PF_HASHROW_UNLOCK(ih);
2608 return (0); /* XXXGL: undefined actually */
2609 }
2610
2611 if (s->src.state == PF_TCPS_PROXY_DST) {
2612 /* XXX wire key the right one? */
2613 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af,
2614 &s->key[PF_SK_WIRE]->addr[1],
2615 &s->key[PF_SK_WIRE]->addr[0],
2616 s->key[PF_SK_WIRE]->port[1],
2617 s->key[PF_SK_WIRE]->port[0],
2618 s->src.seqhi, s->src.seqlo + 1,
2619 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0,
2620 s->act.rtableid);
2621 }
2622
2623 LIST_REMOVE(s, entry);
2624 pf_src_tree_remove_state(s);
2625
2626 if (V_pfsync_delete_state_ptr != NULL)
2627 V_pfsync_delete_state_ptr(s);
2628
2629 STATE_DEC_COUNTERS(s);
2630
2631 s->timeout = PFTM_UNLINKED;
2632
2633 /* Ensure we remove it from the list of halfopen states, if needed. */
2634 if (s->key[PF_SK_STACK] != NULL &&
2635 s->key[PF_SK_STACK]->proto == IPPROTO_TCP)
2636 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED);
2637
2638 PF_HASHROW_UNLOCK(ih);
2639
2640 pf_detach_state(s);
2641
2642 pf_udp_mapping_release(s->udp_mapping);
2643
2644 /* pf_state_insert() initialises refs to 2 */
2645 return (pf_release_staten(s, 2));
2646 }
2647
2648 struct pf_kstate *
pf_alloc_state(int flags)2649 pf_alloc_state(int flags)
2650 {
2651
2652 return (uma_zalloc(V_pf_state_z, flags | M_ZERO));
2653 }
2654
2655 void
pf_free_state(struct pf_kstate * cur)2656 pf_free_state(struct pf_kstate *cur)
2657 {
2658 struct pf_krule_item *ri;
2659
2660 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur));
2661 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__,
2662 cur->timeout));
2663
2664 while ((ri = SLIST_FIRST(&cur->match_rules))) {
2665 SLIST_REMOVE_HEAD(&cur->match_rules, entry);
2666 free(ri, M_PF_RULE_ITEM);
2667 }
2668
2669 pf_normalize_tcp_cleanup(cur);
2670 uma_zfree(V_pf_state_z, cur);
2671 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1);
2672 }
2673
2674 /*
2675 * Called only from pf_purge_thread(), thus serialized.
2676 */
2677 static u_int
pf_purge_expired_states(u_int i,int maxcheck)2678 pf_purge_expired_states(u_int i, int maxcheck)
2679 {
2680 struct pf_idhash *ih;
2681 struct pf_kstate *s;
2682 struct pf_krule_item *mrm;
2683 size_t count __unused;
2684
2685 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2686
2687 /*
2688 * Go through hash and unlink states that expire now.
2689 */
2690 while (maxcheck > 0) {
2691 count = 0;
2692 ih = &V_pf_idhash[i];
2693
2694 /* only take the lock if we expect to do work */
2695 if (!LIST_EMPTY(&ih->states)) {
2696 relock:
2697 PF_HASHROW_LOCK(ih);
2698 LIST_FOREACH(s, &ih->states, entry) {
2699 if (pf_state_expires(s) <= time_uptime) {
2700 V_pf_status.states -=
2701 pf_unlink_state(s);
2702 goto relock;
2703 }
2704 s->rule->rule_ref |= PFRULE_REFS;
2705 if (s->nat_rule != NULL)
2706 s->nat_rule->rule_ref |= PFRULE_REFS;
2707 if (s->anchor != NULL)
2708 s->anchor->rule_ref |= PFRULE_REFS;
2709 s->kif->pfik_flags |= PFI_IFLAG_REFS;
2710 SLIST_FOREACH(mrm, &s->match_rules, entry)
2711 mrm->r->rule_ref |= PFRULE_REFS;
2712 if (s->rt_kif)
2713 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS;
2714 count++;
2715 }
2716 PF_HASHROW_UNLOCK(ih);
2717 }
2718
2719 SDT_PROBE2(pf, purge, state, rowcount, i, count);
2720
2721 /* Return when we hit end of hash. */
2722 if (++i > V_pf_hashmask) {
2723 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2724 return (0);
2725 }
2726
2727 maxcheck--;
2728 }
2729
2730 V_pf_status.states = uma_zone_get_cur(V_pf_state_z);
2731
2732 return (i);
2733 }
2734
2735 static void
pf_purge_unlinked_rules(void)2736 pf_purge_unlinked_rules(void)
2737 {
2738 struct pf_krulequeue tmpq;
2739 struct pf_krule *r, *r1;
2740
2741 /*
2742 * If we have overloading task pending, then we'd
2743 * better skip purging this time. There is a tiny
2744 * probability that overloading task references
2745 * an already unlinked rule.
2746 */
2747 PF_OVERLOADQ_LOCK();
2748 if (!SLIST_EMPTY(&V_pf_overloadqueue)) {
2749 PF_OVERLOADQ_UNLOCK();
2750 return;
2751 }
2752 PF_OVERLOADQ_UNLOCK();
2753
2754 /*
2755 * Do naive mark-and-sweep garbage collecting of old rules.
2756 * Reference flag is raised by pf_purge_expired_states()
2757 * and pf_purge_expired_src_nodes().
2758 *
2759 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK,
2760 * use a temporary queue.
2761 */
2762 TAILQ_INIT(&tmpq);
2763 PF_UNLNKDRULES_LOCK();
2764 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) {
2765 if (!(r->rule_ref & PFRULE_REFS)) {
2766 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries);
2767 TAILQ_INSERT_TAIL(&tmpq, r, entries);
2768 } else
2769 r->rule_ref &= ~PFRULE_REFS;
2770 }
2771 PF_UNLNKDRULES_UNLOCK();
2772
2773 if (!TAILQ_EMPTY(&tmpq)) {
2774 PF_CONFIG_LOCK();
2775 PF_RULES_WLOCK();
2776 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) {
2777 TAILQ_REMOVE(&tmpq, r, entries);
2778 pf_free_rule(r);
2779 }
2780 PF_RULES_WUNLOCK();
2781 PF_CONFIG_UNLOCK();
2782 }
2783 }
2784
2785 void
pf_print_host(struct pf_addr * addr,u_int16_t p,sa_family_t af)2786 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
2787 {
2788 switch (af) {
2789 #ifdef INET
2790 case AF_INET: {
2791 u_int32_t a = ntohl(addr->addr32[0]);
2792 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255,
2793 (a>>8)&255, a&255);
2794 if (p) {
2795 p = ntohs(p);
2796 printf(":%u", p);
2797 }
2798 break;
2799 }
2800 #endif /* INET */
2801 #ifdef INET6
2802 case AF_INET6: {
2803 u_int16_t b;
2804 u_int8_t i, curstart, curend, maxstart, maxend;
2805 curstart = curend = maxstart = maxend = 255;
2806 for (i = 0; i < 8; i++) {
2807 if (!addr->addr16[i]) {
2808 if (curstart == 255)
2809 curstart = i;
2810 curend = i;
2811 } else {
2812 if ((curend - curstart) >
2813 (maxend - maxstart)) {
2814 maxstart = curstart;
2815 maxend = curend;
2816 }
2817 curstart = curend = 255;
2818 }
2819 }
2820 if ((curend - curstart) >
2821 (maxend - maxstart)) {
2822 maxstart = curstart;
2823 maxend = curend;
2824 }
2825 for (i = 0; i < 8; i++) {
2826 if (i >= maxstart && i <= maxend) {
2827 if (i == 0)
2828 printf(":");
2829 if (i == maxend)
2830 printf(":");
2831 } else {
2832 b = ntohs(addr->addr16[i]);
2833 printf("%x", b);
2834 if (i < 7)
2835 printf(":");
2836 }
2837 }
2838 if (p) {
2839 p = ntohs(p);
2840 printf("[%u]", p);
2841 }
2842 break;
2843 }
2844 #endif /* INET6 */
2845 }
2846 }
2847
2848 void
pf_print_state(struct pf_kstate * s)2849 pf_print_state(struct pf_kstate *s)
2850 {
2851 pf_print_state_parts(s, NULL, NULL);
2852 }
2853
2854 static void
pf_print_state_parts(struct pf_kstate * s,struct pf_state_key * skwp,struct pf_state_key * sksp)2855 pf_print_state_parts(struct pf_kstate *s,
2856 struct pf_state_key *skwp, struct pf_state_key *sksp)
2857 {
2858 struct pf_state_key *skw, *sks;
2859 u_int8_t proto, dir;
2860
2861 /* Do our best to fill these, but they're skipped if NULL */
2862 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL);
2863 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL);
2864 proto = skw ? skw->proto : (sks ? sks->proto : 0);
2865 dir = s ? s->direction : 0;
2866
2867 switch (proto) {
2868 case IPPROTO_IPV4:
2869 printf("IPv4");
2870 break;
2871 case IPPROTO_IPV6:
2872 printf("IPv6");
2873 break;
2874 case IPPROTO_TCP:
2875 printf("TCP");
2876 break;
2877 case IPPROTO_UDP:
2878 printf("UDP");
2879 break;
2880 case IPPROTO_ICMP:
2881 printf("ICMP");
2882 break;
2883 case IPPROTO_ICMPV6:
2884 printf("ICMPv6");
2885 break;
2886 default:
2887 printf("%u", proto);
2888 break;
2889 }
2890 switch (dir) {
2891 case PF_IN:
2892 printf(" in");
2893 break;
2894 case PF_OUT:
2895 printf(" out");
2896 break;
2897 }
2898 if (skw) {
2899 printf(" wire: ");
2900 pf_print_host(&skw->addr[0], skw->port[0], skw->af);
2901 printf(" ");
2902 pf_print_host(&skw->addr[1], skw->port[1], skw->af);
2903 }
2904 if (sks) {
2905 printf(" stack: ");
2906 if (sks != skw) {
2907 pf_print_host(&sks->addr[0], sks->port[0], sks->af);
2908 printf(" ");
2909 pf_print_host(&sks->addr[1], sks->port[1], sks->af);
2910 } else
2911 printf("-");
2912 }
2913 if (s) {
2914 if (proto == IPPROTO_TCP) {
2915 printf(" [lo=%u high=%u win=%u modulator=%u",
2916 s->src.seqlo, s->src.seqhi,
2917 s->src.max_win, s->src.seqdiff);
2918 if (s->src.wscale && s->dst.wscale)
2919 printf(" wscale=%u",
2920 s->src.wscale & PF_WSCALE_MASK);
2921 printf("]");
2922 printf(" [lo=%u high=%u win=%u modulator=%u",
2923 s->dst.seqlo, s->dst.seqhi,
2924 s->dst.max_win, s->dst.seqdiff);
2925 if (s->src.wscale && s->dst.wscale)
2926 printf(" wscale=%u",
2927 s->dst.wscale & PF_WSCALE_MASK);
2928 printf("]");
2929 }
2930 printf(" %u:%u", s->src.state, s->dst.state);
2931 if (s->rule)
2932 printf(" @%d", s->rule->nr);
2933 }
2934 }
2935
2936 void
pf_print_flags(uint16_t f)2937 pf_print_flags(uint16_t f)
2938 {
2939 if (f)
2940 printf(" ");
2941 if (f & TH_FIN)
2942 printf("F");
2943 if (f & TH_SYN)
2944 printf("S");
2945 if (f & TH_RST)
2946 printf("R");
2947 if (f & TH_PUSH)
2948 printf("P");
2949 if (f & TH_ACK)
2950 printf("A");
2951 if (f & TH_URG)
2952 printf("U");
2953 if (f & TH_ECE)
2954 printf("E");
2955 if (f & TH_CWR)
2956 printf("W");
2957 if (f & TH_AE)
2958 printf("e");
2959 }
2960
2961 #define PF_SET_SKIP_STEPS(i) \
2962 do { \
2963 while (head[i] != cur) { \
2964 head[i]->skip[i] = cur; \
2965 head[i] = TAILQ_NEXT(head[i], entries); \
2966 } \
2967 } while (0)
2968
2969 void
pf_calc_skip_steps(struct pf_krulequeue * rules)2970 pf_calc_skip_steps(struct pf_krulequeue *rules)
2971 {
2972 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT];
2973 int i;
2974
2975 cur = TAILQ_FIRST(rules);
2976 prev = cur;
2977 for (i = 0; i < PF_SKIP_COUNT; ++i)
2978 head[i] = cur;
2979 while (cur != NULL) {
2980 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot)
2981 PF_SET_SKIP_STEPS(PF_SKIP_IFP);
2982 if (cur->direction != prev->direction)
2983 PF_SET_SKIP_STEPS(PF_SKIP_DIR);
2984 if (cur->af != prev->af)
2985 PF_SET_SKIP_STEPS(PF_SKIP_AF);
2986 if (cur->proto != prev->proto)
2987 PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
2988 if (cur->src.neg != prev->src.neg ||
2989 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr))
2990 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
2991 if (cur->dst.neg != prev->dst.neg ||
2992 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr))
2993 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
2994 if (cur->src.port[0] != prev->src.port[0] ||
2995 cur->src.port[1] != prev->src.port[1] ||
2996 cur->src.port_op != prev->src.port_op)
2997 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
2998 if (cur->dst.port[0] != prev->dst.port[0] ||
2999 cur->dst.port[1] != prev->dst.port[1] ||
3000 cur->dst.port_op != prev->dst.port_op)
3001 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
3002
3003 prev = cur;
3004 cur = TAILQ_NEXT(cur, entries);
3005 }
3006 for (i = 0; i < PF_SKIP_COUNT; ++i)
3007 PF_SET_SKIP_STEPS(i);
3008 }
3009
3010 int
pf_addr_wrap_neq(struct pf_addr_wrap * aw1,struct pf_addr_wrap * aw2)3011 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
3012 {
3013 if (aw1->type != aw2->type)
3014 return (1);
3015 switch (aw1->type) {
3016 case PF_ADDR_ADDRMASK:
3017 case PF_ADDR_RANGE:
3018 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6))
3019 return (1);
3020 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6))
3021 return (1);
3022 return (0);
3023 case PF_ADDR_DYNIFTL:
3024 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt);
3025 case PF_ADDR_NOROUTE:
3026 case PF_ADDR_URPFFAILED:
3027 return (0);
3028 case PF_ADDR_TABLE:
3029 return (aw1->p.tbl != aw2->p.tbl);
3030 default:
3031 printf("invalid address type: %d\n", aw1->type);
3032 return (1);
3033 }
3034 }
3035
3036 /**
3037 * Checksum updates are a little complicated because the checksum in the TCP/UDP
3038 * header isn't always a full checksum. In some cases (i.e. output) it's a
3039 * pseudo-header checksum, which is a partial checksum over src/dst IP
3040 * addresses, protocol number and length.
3041 *
3042 * That means we have the following cases:
3043 * * Input or forwarding: we don't have TSO, the checksum fields are full
3044 * checksums, we need to update the checksum whenever we change anything.
3045 * * Output (i.e. the checksum is a pseudo-header checksum):
3046 * x The field being updated is src/dst address or affects the length of
3047 * the packet. We need to update the pseudo-header checksum (note that this
3048 * checksum is not ones' complement).
3049 * x Some other field is being modified (e.g. src/dst port numbers): We
3050 * don't have to update anything.
3051 **/
3052 u_int16_t
pf_cksum_fixup(u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3053 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
3054 {
3055 u_int32_t x;
3056
3057 x = cksum + old - new;
3058 x = (x + (x >> 16)) & 0xffff;
3059
3060 /* optimise: eliminate a branch when not udp */
3061 if (udp && cksum == 0x0000)
3062 return cksum;
3063 if (udp && x == 0x0000)
3064 x = 0xffff;
3065
3066 return (u_int16_t)(x);
3067 }
3068
3069 static void
pf_patch_8(struct mbuf * m,u_int16_t * cksum,u_int8_t * f,u_int8_t v,bool hi,u_int8_t udp)3070 pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi,
3071 u_int8_t udp)
3072 {
3073 u_int16_t old = htons(hi ? (*f << 8) : *f);
3074 u_int16_t new = htons(hi ? ( v << 8) : v);
3075
3076 if (*f == v)
3077 return;
3078
3079 *f = v;
3080
3081 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3082 return;
3083
3084 *cksum = pf_cksum_fixup(*cksum, old, new, udp);
3085 }
3086
3087 void
pf_patch_16_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int16_t v,bool hi,u_int8_t udp)3088 pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v,
3089 bool hi, u_int8_t udp)
3090 {
3091 u_int8_t *fb = (u_int8_t *)f;
3092 u_int8_t *vb = (u_int8_t *)&v;
3093
3094 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3095 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3096 }
3097
3098 void
pf_patch_32_unaligned(struct mbuf * m,u_int16_t * cksum,void * f,u_int32_t v,bool hi,u_int8_t udp)3099 pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v,
3100 bool hi, u_int8_t udp)
3101 {
3102 u_int8_t *fb = (u_int8_t *)f;
3103 u_int8_t *vb = (u_int8_t *)&v;
3104
3105 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3106 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3107 pf_patch_8(m, cksum, fb++, *vb++, hi, udp);
3108 pf_patch_8(m, cksum, fb++, *vb++, !hi, udp);
3109 }
3110
3111 u_int16_t
pf_proto_cksum_fixup(struct mbuf * m,u_int16_t cksum,u_int16_t old,u_int16_t new,u_int8_t udp)3112 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old,
3113 u_int16_t new, u_int8_t udp)
3114 {
3115 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3116 return (cksum);
3117
3118 return (pf_cksum_fixup(cksum, old, new, udp));
3119 }
3120
3121 static void
pf_change_ap(struct mbuf * m,struct pf_addr * a,u_int16_t * p,u_int16_t * ic,u_int16_t * pc,struct pf_addr * an,u_int16_t pn,u_int8_t u,sa_family_t af)3122 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic,
3123 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u,
3124 sa_family_t af)
3125 {
3126 struct pf_addr ao;
3127 u_int16_t po = *p;
3128
3129 PF_ACPY(&ao, a, af);
3130 PF_ACPY(a, an, af);
3131
3132 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6))
3133 *pc = ~*pc;
3134
3135 *p = pn;
3136
3137 switch (af) {
3138 #ifdef INET
3139 case AF_INET:
3140 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3141 ao.addr16[0], an->addr16[0], 0),
3142 ao.addr16[1], an->addr16[1], 0);
3143 *p = pn;
3144
3145 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc,
3146 ao.addr16[0], an->addr16[0], u),
3147 ao.addr16[1], an->addr16[1], u);
3148
3149 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3150 break;
3151 #endif /* INET */
3152 #ifdef INET6
3153 case AF_INET6:
3154 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3155 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3156 pf_cksum_fixup(pf_cksum_fixup(*pc,
3157 ao.addr16[0], an->addr16[0], u),
3158 ao.addr16[1], an->addr16[1], u),
3159 ao.addr16[2], an->addr16[2], u),
3160 ao.addr16[3], an->addr16[3], u),
3161 ao.addr16[4], an->addr16[4], u),
3162 ao.addr16[5], an->addr16[5], u),
3163 ao.addr16[6], an->addr16[6], u),
3164 ao.addr16[7], an->addr16[7], u);
3165
3166 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u);
3167 break;
3168 #endif /* INET6 */
3169 }
3170
3171 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA |
3172 CSUM_DELAY_DATA_IPV6)) {
3173 *pc = ~*pc;
3174 if (! *pc)
3175 *pc = 0xffff;
3176 }
3177 }
3178
3179 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */
3180 void
pf_change_a(void * a,u_int16_t * c,u_int32_t an,u_int8_t u)3181 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
3182 {
3183 u_int32_t ao;
3184
3185 memcpy(&ao, a, sizeof(ao));
3186 memcpy(a, &an, sizeof(u_int32_t));
3187 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
3188 ao % 65536, an % 65536, u);
3189 }
3190
3191 void
pf_change_proto_a(struct mbuf * m,void * a,u_int16_t * c,u_int32_t an,u_int8_t udp)3192 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp)
3193 {
3194 u_int32_t ao;
3195
3196 memcpy(&ao, a, sizeof(ao));
3197 memcpy(a, &an, sizeof(u_int32_t));
3198
3199 *c = pf_proto_cksum_fixup(m,
3200 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp),
3201 ao % 65536, an % 65536, udp);
3202 }
3203
3204 #ifdef INET6
3205 static void
pf_change_a6(struct pf_addr * a,u_int16_t * c,struct pf_addr * an,u_int8_t u)3206 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
3207 {
3208 struct pf_addr ao;
3209
3210 PF_ACPY(&ao, a, AF_INET6);
3211 PF_ACPY(a, an, AF_INET6);
3212
3213 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3214 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3215 pf_cksum_fixup(pf_cksum_fixup(*c,
3216 ao.addr16[0], an->addr16[0], u),
3217 ao.addr16[1], an->addr16[1], u),
3218 ao.addr16[2], an->addr16[2], u),
3219 ao.addr16[3], an->addr16[3], u),
3220 ao.addr16[4], an->addr16[4], u),
3221 ao.addr16[5], an->addr16[5], u),
3222 ao.addr16[6], an->addr16[6], u),
3223 ao.addr16[7], an->addr16[7], u);
3224 }
3225 #endif /* INET6 */
3226
3227 static void
pf_change_icmp(struct pf_addr * ia,u_int16_t * ip,struct pf_addr * oa,struct pf_addr * na,u_int16_t np,u_int16_t * pc,u_int16_t * h2c,u_int16_t * ic,u_int16_t * hc,u_int8_t u,sa_family_t af)3228 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
3229 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
3230 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
3231 {
3232 struct pf_addr oia, ooa;
3233
3234 PF_ACPY(&oia, ia, af);
3235 if (oa)
3236 PF_ACPY(&ooa, oa, af);
3237
3238 /* Change inner protocol port, fix inner protocol checksum. */
3239 if (ip != NULL) {
3240 u_int16_t oip = *ip;
3241 u_int32_t opc;
3242
3243 if (pc != NULL)
3244 opc = *pc;
3245 *ip = np;
3246 if (pc != NULL)
3247 *pc = pf_cksum_fixup(*pc, oip, *ip, u);
3248 *ic = pf_cksum_fixup(*ic, oip, *ip, 0);
3249 if (pc != NULL)
3250 *ic = pf_cksum_fixup(*ic, opc, *pc, 0);
3251 }
3252 /* Change inner ip address, fix inner ip and icmp checksums. */
3253 PF_ACPY(ia, na, af);
3254 switch (af) {
3255 #ifdef INET
3256 case AF_INET: {
3257 u_int32_t oh2c = *h2c;
3258
3259 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
3260 oia.addr16[0], ia->addr16[0], 0),
3261 oia.addr16[1], ia->addr16[1], 0);
3262 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
3263 oia.addr16[0], ia->addr16[0], 0),
3264 oia.addr16[1], ia->addr16[1], 0);
3265 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
3266 break;
3267 }
3268 #endif /* INET */
3269 #ifdef INET6
3270 case AF_INET6:
3271 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3272 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3273 pf_cksum_fixup(pf_cksum_fixup(*ic,
3274 oia.addr16[0], ia->addr16[0], u),
3275 oia.addr16[1], ia->addr16[1], u),
3276 oia.addr16[2], ia->addr16[2], u),
3277 oia.addr16[3], ia->addr16[3], u),
3278 oia.addr16[4], ia->addr16[4], u),
3279 oia.addr16[5], ia->addr16[5], u),
3280 oia.addr16[6], ia->addr16[6], u),
3281 oia.addr16[7], ia->addr16[7], u);
3282 break;
3283 #endif /* INET6 */
3284 }
3285 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */
3286 if (oa) {
3287 PF_ACPY(oa, na, af);
3288 switch (af) {
3289 #ifdef INET
3290 case AF_INET:
3291 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
3292 ooa.addr16[0], oa->addr16[0], 0),
3293 ooa.addr16[1], oa->addr16[1], 0);
3294 break;
3295 #endif /* INET */
3296 #ifdef INET6
3297 case AF_INET6:
3298 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3299 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
3300 pf_cksum_fixup(pf_cksum_fixup(*ic,
3301 ooa.addr16[0], oa->addr16[0], u),
3302 ooa.addr16[1], oa->addr16[1], u),
3303 ooa.addr16[2], oa->addr16[2], u),
3304 ooa.addr16[3], oa->addr16[3], u),
3305 ooa.addr16[4], oa->addr16[4], u),
3306 ooa.addr16[5], oa->addr16[5], u),
3307 ooa.addr16[6], oa->addr16[6], u),
3308 ooa.addr16[7], oa->addr16[7], u);
3309 break;
3310 #endif /* INET6 */
3311 }
3312 }
3313 }
3314
3315 /*
3316 * Need to modulate the sequence numbers in the TCP SACK option
3317 * (credits to Krzysztof Pfaff for report and patch)
3318 */
3319 static int
pf_modulate_sack(struct pf_pdesc * pd,struct tcphdr * th,struct pf_state_peer * dst)3320 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th,
3321 struct pf_state_peer *dst)
3322 {
3323 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
3324 u_int8_t opts[TCP_MAXOLEN], *opt = opts;
3325 int copyback = 0, i, olen;
3326 struct sackblk sack;
3327
3328 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2)
3329 if (hlen < TCPOLEN_SACKLEN ||
3330 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af))
3331 return 0;
3332
3333 while (hlen >= TCPOLEN_SACKLEN) {
3334 size_t startoff = opt - opts;
3335 olen = opt[1];
3336 switch (*opt) {
3337 case TCPOPT_EOL: /* FALLTHROUGH */
3338 case TCPOPT_NOP:
3339 opt++;
3340 hlen--;
3341 break;
3342 case TCPOPT_SACK:
3343 if (olen > hlen)
3344 olen = hlen;
3345 if (olen >= TCPOLEN_SACKLEN) {
3346 for (i = 2; i + TCPOLEN_SACK <= olen;
3347 i += TCPOLEN_SACK) {
3348 memcpy(&sack, &opt[i], sizeof(sack));
3349 pf_patch_32_unaligned(pd->m,
3350 &th->th_sum, &sack.start,
3351 htonl(ntohl(sack.start) - dst->seqdiff),
3352 PF_ALGNMNT(startoff),
3353 0);
3354 pf_patch_32_unaligned(pd->m, &th->th_sum,
3355 &sack.end,
3356 htonl(ntohl(sack.end) - dst->seqdiff),
3357 PF_ALGNMNT(startoff),
3358 0);
3359 memcpy(&opt[i], &sack, sizeof(sack));
3360 }
3361 copyback = 1;
3362 }
3363 /* FALLTHROUGH */
3364 default:
3365 if (olen < 2)
3366 olen = 2;
3367 hlen -= olen;
3368 opt += olen;
3369 }
3370 }
3371
3372 if (copyback)
3373 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts);
3374 return (copyback);
3375 }
3376
3377 struct mbuf *
pf_build_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)3378 pf_build_tcp(const struct pf_krule *r, sa_family_t af,
3379 const struct pf_addr *saddr, const struct pf_addr *daddr,
3380 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3381 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3382 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3383 {
3384 struct mbuf *m;
3385 int len, tlen;
3386 #ifdef INET
3387 struct ip *h = NULL;
3388 #endif /* INET */
3389 #ifdef INET6
3390 struct ip6_hdr *h6 = NULL;
3391 #endif /* INET6 */
3392 struct tcphdr *th;
3393 char *opt;
3394 struct pf_mtag *pf_mtag;
3395
3396 len = 0;
3397 th = NULL;
3398
3399 /* maximum segment size tcp option */
3400 tlen = sizeof(struct tcphdr);
3401 if (mss)
3402 tlen += 4;
3403
3404 switch (af) {
3405 #ifdef INET
3406 case AF_INET:
3407 len = sizeof(struct ip) + tlen;
3408 break;
3409 #endif /* INET */
3410 #ifdef INET6
3411 case AF_INET6:
3412 len = sizeof(struct ip6_hdr) + tlen;
3413 break;
3414 #endif /* INET6 */
3415 }
3416
3417 m = m_gethdr(M_NOWAIT, MT_DATA);
3418 if (m == NULL)
3419 return (NULL);
3420
3421 #ifdef MAC
3422 mac_netinet_firewall_send(m);
3423 #endif
3424 if ((pf_mtag = pf_get_mtag(m)) == NULL) {
3425 m_freem(m);
3426 return (NULL);
3427 }
3428 m->m_flags |= mbuf_flags;
3429 pf_mtag->tag = mtag_tag;
3430 pf_mtag->flags = mtag_flags;
3431
3432 if (rtableid >= 0)
3433 M_SETFIB(m, rtableid);
3434
3435 #ifdef ALTQ
3436 if (r != NULL && r->qid) {
3437 pf_mtag->qid = r->qid;
3438
3439 /* add hints for ecn */
3440 pf_mtag->hdr = mtod(m, struct ip *);
3441 }
3442 #endif /* ALTQ */
3443 m->m_data += max_linkhdr;
3444 m->m_pkthdr.len = m->m_len = len;
3445 /* The rest of the stack assumes a rcvif, so provide one.
3446 * This is a locally generated packet, so .. close enough. */
3447 m->m_pkthdr.rcvif = V_loif;
3448 bzero(m->m_data, len);
3449 switch (af) {
3450 #ifdef INET
3451 case AF_INET:
3452 h = mtod(m, struct ip *);
3453
3454 /* IP header fields included in the TCP checksum */
3455 h->ip_p = IPPROTO_TCP;
3456 h->ip_len = htons(tlen);
3457 h->ip_src.s_addr = saddr->v4.s_addr;
3458 h->ip_dst.s_addr = daddr->v4.s_addr;
3459
3460 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip));
3461 break;
3462 #endif /* INET */
3463 #ifdef INET6
3464 case AF_INET6:
3465 h6 = mtod(m, struct ip6_hdr *);
3466
3467 /* IP header fields included in the TCP checksum */
3468 h6->ip6_nxt = IPPROTO_TCP;
3469 h6->ip6_plen = htons(tlen);
3470 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr));
3471 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr));
3472
3473 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr));
3474 break;
3475 #endif /* INET6 */
3476 }
3477
3478 /* TCP header */
3479 th->th_sport = sport;
3480 th->th_dport = dport;
3481 th->th_seq = htonl(seq);
3482 th->th_ack = htonl(ack);
3483 th->th_off = tlen >> 2;
3484 tcp_set_flags(th, tcp_flags);
3485 th->th_win = htons(win);
3486
3487 if (mss) {
3488 opt = (char *)(th + 1);
3489 opt[0] = TCPOPT_MAXSEG;
3490 opt[1] = 4;
3491 HTONS(mss);
3492 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
3493 }
3494
3495 switch (af) {
3496 #ifdef INET
3497 case AF_INET:
3498 /* TCP checksum */
3499 th->th_sum = in_cksum(m, len);
3500
3501 /* Finish the IP header */
3502 h->ip_v = 4;
3503 h->ip_hl = sizeof(*h) >> 2;
3504 h->ip_tos = IPTOS_LOWDELAY;
3505 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0);
3506 h->ip_len = htons(len);
3507 h->ip_ttl = ttl ? ttl : V_ip_defttl;
3508 h->ip_sum = 0;
3509 break;
3510 #endif /* INET */
3511 #ifdef INET6
3512 case AF_INET6:
3513 /* TCP checksum */
3514 th->th_sum = in6_cksum(m, IPPROTO_TCP,
3515 sizeof(struct ip6_hdr), tlen);
3516
3517 h6->ip6_vfc |= IPV6_VERSION;
3518 h6->ip6_hlim = IPV6_DEFHLIM;
3519 break;
3520 #endif /* INET6 */
3521 }
3522
3523 return (m);
3524 }
3525
3526 static void
pf_send_sctp_abort(sa_family_t af,struct pf_pdesc * pd,uint8_t ttl,int rtableid)3527 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd,
3528 uint8_t ttl, int rtableid)
3529 {
3530 struct mbuf *m;
3531 #ifdef INET
3532 struct ip *h = NULL;
3533 #endif /* INET */
3534 #ifdef INET6
3535 struct ip6_hdr *h6 = NULL;
3536 #endif /* INET6 */
3537 struct sctphdr *hdr;
3538 struct sctp_chunkhdr *chunk;
3539 struct pf_send_entry *pfse;
3540 int off = 0;
3541
3542 MPASS(af == pd->af);
3543
3544 m = m_gethdr(M_NOWAIT, MT_DATA);
3545 if (m == NULL)
3546 return;
3547
3548 m->m_data += max_linkhdr;
3549 m->m_flags |= M_SKIP_FIREWALL;
3550 /* The rest of the stack assumes a rcvif, so provide one.
3551 * This is a locally generated packet, so .. close enough. */
3552 m->m_pkthdr.rcvif = V_loif;
3553
3554 /* IPv4|6 header */
3555 switch (af) {
3556 #ifdef INET
3557 case AF_INET:
3558 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk));
3559
3560 h = mtod(m, struct ip *);
3561
3562 /* IP header fields included in the TCP checksum */
3563
3564 h->ip_p = IPPROTO_SCTP;
3565 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk));
3566 h->ip_ttl = ttl ? ttl : V_ip_defttl;
3567 h->ip_src = pd->dst->v4;
3568 h->ip_dst = pd->src->v4;
3569
3570 off += sizeof(struct ip);
3571 break;
3572 #endif /* INET */
3573 #ifdef INET6
3574 case AF_INET6:
3575 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk));
3576
3577 h6 = mtod(m, struct ip6_hdr *);
3578
3579 /* IP header fields included in the TCP checksum */
3580 h6->ip6_vfc |= IPV6_VERSION;
3581 h6->ip6_nxt = IPPROTO_SCTP;
3582 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk));
3583 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim;
3584 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr));
3585 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr));
3586
3587 off += sizeof(struct ip6_hdr);
3588 break;
3589 #endif /* INET6 */
3590 }
3591
3592 /* SCTP header */
3593 hdr = mtodo(m, off);
3594
3595 hdr->src_port = pd->hdr.sctp.dest_port;
3596 hdr->dest_port = pd->hdr.sctp.src_port;
3597 hdr->v_tag = pd->sctp_initiate_tag;
3598 hdr->checksum = 0;
3599
3600 /* Abort chunk. */
3601 off += sizeof(struct sctphdr);
3602 chunk = mtodo(m, off);
3603
3604 chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
3605 chunk->chunk_length = htons(sizeof(*chunk));
3606
3607 /* SCTP checksum */
3608 off += sizeof(*chunk);
3609 m->m_pkthdr.len = m->m_len = off;
3610
3611 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk));
3612
3613 if (rtableid >= 0)
3614 M_SETFIB(m, rtableid);
3615
3616 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
3617 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3618 if (pfse == NULL) {
3619 m_freem(m);
3620 return;
3621 }
3622
3623 switch (af) {
3624 #ifdef INET
3625 case AF_INET:
3626 pfse->pfse_type = PFSE_IP;
3627 break;
3628 #endif /* INET */
3629 #ifdef INET6
3630 case AF_INET6:
3631 pfse->pfse_type = PFSE_IP6;
3632 break;
3633 #endif /* INET6 */
3634 }
3635
3636 pfse->pfse_m = m;
3637 pf_send(pfse);
3638 }
3639
3640 void
pf_send_tcp(const struct pf_krule * r,sa_family_t af,const struct pf_addr * saddr,const struct pf_addr * daddr,u_int16_t sport,u_int16_t dport,u_int32_t seq,u_int32_t ack,u_int8_t tcp_flags,u_int16_t win,u_int16_t mss,u_int8_t ttl,int mbuf_flags,u_int16_t mtag_tag,u_int16_t mtag_flags,int rtableid)3641 pf_send_tcp(const struct pf_krule *r, sa_family_t af,
3642 const struct pf_addr *saddr, const struct pf_addr *daddr,
3643 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
3644 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl,
3645 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid)
3646 {
3647 struct pf_send_entry *pfse;
3648 struct mbuf *m;
3649
3650 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags,
3651 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, rtableid);
3652 if (m == NULL)
3653 return;
3654
3655 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
3656 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3657 if (pfse == NULL) {
3658 m_freem(m);
3659 return;
3660 }
3661
3662 switch (af) {
3663 #ifdef INET
3664 case AF_INET:
3665 pfse->pfse_type = PFSE_IP;
3666 break;
3667 #endif /* INET */
3668 #ifdef INET6
3669 case AF_INET6:
3670 pfse->pfse_type = PFSE_IP6;
3671 break;
3672 #endif /* INET6 */
3673 }
3674
3675 pfse->pfse_m = m;
3676 pf_send(pfse);
3677 }
3678
3679 static void
pf_return(struct pf_krule * r,struct pf_krule * nr,struct pf_pdesc * pd,struct pf_state_key * sk,struct tcphdr * th,u_int16_t bproto_sum,u_int16_t bip_sum,u_short * reason,int rtableid)3680 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd,
3681 struct pf_state_key *sk, struct tcphdr *th,
3682 u_int16_t bproto_sum, u_int16_t bip_sum,
3683 u_short *reason, int rtableid)
3684 {
3685 struct pf_addr * const saddr = pd->src;
3686 struct pf_addr * const daddr = pd->dst;
3687
3688 /* undo NAT changes, if they have taken place */
3689 if (nr != NULL) {
3690 PF_ACPY(saddr, &sk->addr[pd->sidx], pd->af);
3691 PF_ACPY(daddr, &sk->addr[pd->didx], pd->af);
3692 if (pd->sport)
3693 *pd->sport = sk->port[pd->sidx];
3694 if (pd->dport)
3695 *pd->dport = sk->port[pd->didx];
3696 if (pd->proto_sum)
3697 *pd->proto_sum = bproto_sum;
3698 if (pd->ip_sum)
3699 *pd->ip_sum = bip_sum;
3700 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
3701 }
3702 if (pd->proto == IPPROTO_TCP &&
3703 ((r->rule_flag & PFRULE_RETURNRST) ||
3704 (r->rule_flag & PFRULE_RETURN)) &&
3705 !(tcp_get_flags(th) & TH_RST)) {
3706 u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
3707
3708 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off,
3709 IPPROTO_TCP, pd->af))
3710 REASON_SET(reason, PFRES_PROTCKSUM);
3711 else {
3712 if (tcp_get_flags(th) & TH_SYN)
3713 ack++;
3714 if (tcp_get_flags(th) & TH_FIN)
3715 ack++;
3716 pf_send_tcp(r, pd->af, pd->dst,
3717 pd->src, th->th_dport, th->th_sport,
3718 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0,
3719 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid);
3720 }
3721 } else if (pd->proto == IPPROTO_SCTP &&
3722 (r->rule_flag & PFRULE_RETURN)) {
3723 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid);
3724 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
3725 r->return_icmp)
3726 pf_send_icmp(pd->m, r->return_icmp >> 8,
3727 r->return_icmp & 255, pd->af, r, rtableid);
3728 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 &&
3729 r->return_icmp6)
3730 pf_send_icmp(pd->m, r->return_icmp6 >> 8,
3731 r->return_icmp6 & 255, pd->af, r, rtableid);
3732 }
3733
3734 static int
pf_match_ieee8021q_pcp(u_int8_t prio,struct mbuf * m)3735 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m)
3736 {
3737 struct m_tag *mtag;
3738 u_int8_t mpcp;
3739
3740 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
3741 if (mtag == NULL)
3742 return (0);
3743
3744 if (prio == PF_PRIO_ZERO)
3745 prio = 0;
3746
3747 mpcp = *(uint8_t *)(mtag + 1);
3748
3749 return (mpcp == prio);
3750 }
3751
3752 static int
pf_icmp_to_bandlim(uint8_t type)3753 pf_icmp_to_bandlim(uint8_t type)
3754 {
3755 switch (type) {
3756 case ICMP_ECHO:
3757 case ICMP_ECHOREPLY:
3758 return (BANDLIM_ICMP_ECHO);
3759 case ICMP_TSTAMP:
3760 case ICMP_TSTAMPREPLY:
3761 return (BANDLIM_ICMP_TSTAMP);
3762 case ICMP_UNREACH:
3763 default:
3764 return (BANDLIM_ICMP_UNREACH);
3765 }
3766 }
3767
3768 static void
pf_send_icmp(struct mbuf * m,u_int8_t type,u_int8_t code,sa_family_t af,struct pf_krule * r,int rtableid)3769 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af,
3770 struct pf_krule *r, int rtableid)
3771 {
3772 struct pf_send_entry *pfse;
3773 struct mbuf *m0;
3774 struct pf_mtag *pf_mtag;
3775
3776 /* ICMP packet rate limitation. */
3777 switch (af) {
3778 #ifdef INET6
3779 case AF_INET6:
3780 if (icmp6_ratelimit(NULL, type, code))
3781 return;
3782 break;
3783 #endif
3784 #ifdef INET
3785 case AF_INET:
3786 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0)
3787 return;
3788 break;
3789 #endif
3790 }
3791
3792 /* Allocate outgoing queue entry, mbuf and mbuf tag. */
3793 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT);
3794 if (pfse == NULL)
3795 return;
3796
3797 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) {
3798 free(pfse, M_PFTEMP);
3799 return;
3800 }
3801
3802 if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
3803 free(pfse, M_PFTEMP);
3804 return;
3805 }
3806 /* XXX: revisit */
3807 m0->m_flags |= M_SKIP_FIREWALL;
3808
3809 if (rtableid >= 0)
3810 M_SETFIB(m0, rtableid);
3811
3812 #ifdef ALTQ
3813 if (r->qid) {
3814 pf_mtag->qid = r->qid;
3815 /* add hints for ecn */
3816 pf_mtag->hdr = mtod(m0, struct ip *);
3817 }
3818 #endif /* ALTQ */
3819
3820 switch (af) {
3821 #ifdef INET
3822 case AF_INET:
3823 pfse->pfse_type = PFSE_ICMP;
3824 break;
3825 #endif /* INET */
3826 #ifdef INET6
3827 case AF_INET6:
3828 pfse->pfse_type = PFSE_ICMP6;
3829 break;
3830 #endif /* INET6 */
3831 }
3832 pfse->pfse_m = m0;
3833 pfse->icmpopts.type = type;
3834 pfse->icmpopts.code = code;
3835 pf_send(pfse);
3836 }
3837
3838 /*
3839 * Return 1 if the addresses a and b match (with mask m), otherwise return 0.
3840 * If n is 0, they match if they are equal. If n is != 0, they match if they
3841 * are different.
3842 */
3843 int
pf_match_addr(u_int8_t n,struct pf_addr * a,struct pf_addr * m,struct pf_addr * b,sa_family_t af)3844 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
3845 struct pf_addr *b, sa_family_t af)
3846 {
3847 int match = 0;
3848
3849 switch (af) {
3850 #ifdef INET
3851 case AF_INET:
3852 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4))
3853 match++;
3854 break;
3855 #endif /* INET */
3856 #ifdef INET6
3857 case AF_INET6:
3858 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6))
3859 match++;
3860 break;
3861 #endif /* INET6 */
3862 }
3863 if (match) {
3864 if (n)
3865 return (0);
3866 else
3867 return (1);
3868 } else {
3869 if (n)
3870 return (1);
3871 else
3872 return (0);
3873 }
3874 }
3875
3876 /*
3877 * Return 1 if b <= a <= e, otherwise return 0.
3878 */
3879 int
pf_match_addr_range(struct pf_addr * b,struct pf_addr * e,struct pf_addr * a,sa_family_t af)3880 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
3881 struct pf_addr *a, sa_family_t af)
3882 {
3883 switch (af) {
3884 #ifdef INET
3885 case AF_INET:
3886 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) ||
3887 (ntohl(a->addr32[0]) > ntohl(e->addr32[0])))
3888 return (0);
3889 break;
3890 #endif /* INET */
3891 #ifdef INET6
3892 case AF_INET6: {
3893 int i;
3894
3895 /* check a >= b */
3896 for (i = 0; i < 4; ++i)
3897 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i]))
3898 break;
3899 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i]))
3900 return (0);
3901 /* check a <= e */
3902 for (i = 0; i < 4; ++i)
3903 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i]))
3904 break;
3905 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i]))
3906 return (0);
3907 break;
3908 }
3909 #endif /* INET6 */
3910 }
3911 return (1);
3912 }
3913
3914 static int
pf_match(u_int8_t op,u_int32_t a1,u_int32_t a2,u_int32_t p)3915 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
3916 {
3917 switch (op) {
3918 case PF_OP_IRG:
3919 return ((p > a1) && (p < a2));
3920 case PF_OP_XRG:
3921 return ((p < a1) || (p > a2));
3922 case PF_OP_RRG:
3923 return ((p >= a1) && (p <= a2));
3924 case PF_OP_EQ:
3925 return (p == a1);
3926 case PF_OP_NE:
3927 return (p != a1);
3928 case PF_OP_LT:
3929 return (p < a1);
3930 case PF_OP_LE:
3931 return (p <= a1);
3932 case PF_OP_GT:
3933 return (p > a1);
3934 case PF_OP_GE:
3935 return (p >= a1);
3936 }
3937 return (0); /* never reached */
3938 }
3939
3940 int
pf_match_port(u_int8_t op,u_int16_t a1,u_int16_t a2,u_int16_t p)3941 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
3942 {
3943 NTOHS(a1);
3944 NTOHS(a2);
3945 NTOHS(p);
3946 return (pf_match(op, a1, a2, p));
3947 }
3948
3949 static int
pf_match_uid(u_int8_t op,uid_t a1,uid_t a2,uid_t u)3950 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
3951 {
3952 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3953 return (0);
3954 return (pf_match(op, a1, a2, u));
3955 }
3956
3957 static int
pf_match_gid(u_int8_t op,gid_t a1,gid_t a2,gid_t g)3958 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
3959 {
3960 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE)
3961 return (0);
3962 return (pf_match(op, a1, a2, g));
3963 }
3964
3965 int
pf_match_tag(struct mbuf * m,struct pf_krule * r,int * tag,int mtag)3966 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag)
3967 {
3968 if (*tag == -1)
3969 *tag = mtag;
3970
3971 return ((!r->match_tag_not && r->match_tag == *tag) ||
3972 (r->match_tag_not && r->match_tag != *tag));
3973 }
3974
3975 static int
pf_match_rcvif(struct mbuf * m,struct pf_krule * r)3976 pf_match_rcvif(struct mbuf *m, struct pf_krule *r)
3977 {
3978 struct ifnet *ifp = m->m_pkthdr.rcvif;
3979 struct pfi_kkif *kif;
3980
3981 if (ifp == NULL)
3982 return (0);
3983
3984 kif = (struct pfi_kkif *)ifp->if_pf_kif;
3985
3986 if (kif == NULL) {
3987 DPFPRINTF(PF_DEBUG_URGENT,
3988 ("pf_test_via: kif == NULL, @%d via %s\n", r->nr,
3989 r->rcv_ifname));
3990 return (0);
3991 }
3992
3993 return (pfi_kkif_match(r->rcv_kif, kif));
3994 }
3995
3996 int
pf_tag_packet(struct pf_pdesc * pd,int tag)3997 pf_tag_packet(struct pf_pdesc *pd, int tag)
3998 {
3999
4000 KASSERT(tag > 0, ("%s: tag %d", __func__, tag));
4001
4002 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL))
4003 return (ENOMEM);
4004
4005 pd->pf_mtag->tag = tag;
4006
4007 return (0);
4008 }
4009
4010 #define PF_ANCHOR_STACKSIZE 32
4011 struct pf_kanchor_stackframe {
4012 struct pf_kruleset *rs;
4013 struct pf_krule *r; /* XXX: + match bit */
4014 struct pf_kanchor *child;
4015 };
4016
4017 /*
4018 * XXX: We rely on malloc(9) returning pointer aligned addresses.
4019 */
4020 #define PF_ANCHORSTACK_MATCH 0x00000001
4021 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH)
4022
4023 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4024 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \
4025 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4026 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4027 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4028 } while (0)
4029
4030 void
pf_step_into_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4031 pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4032 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4033 int *match)
4034 {
4035 struct pf_kanchor_stackframe *f;
4036
4037 PF_RULES_RASSERT();
4038
4039 if (match)
4040 *match = 0;
4041 if (*depth >= PF_ANCHOR_STACKSIZE) {
4042 printf("%s: anchor stack overflow on %s\n",
4043 __func__, (*r)->anchor->name);
4044 *r = TAILQ_NEXT(*r, entries);
4045 return;
4046 } else if (*depth == 0 && a != NULL)
4047 *a = *r;
4048 f = stack + (*depth)++;
4049 f->rs = *rs;
4050 f->r = *r;
4051 if ((*r)->anchor_wildcard) {
4052 struct pf_kanchor_node *parent = &(*r)->anchor->children;
4053
4054 if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) {
4055 *r = NULL;
4056 return;
4057 }
4058 *rs = &f->child->ruleset;
4059 } else {
4060 f->child = NULL;
4061 *rs = &(*r)->anchor->ruleset;
4062 }
4063 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4064 }
4065
4066 int
pf_step_out_of_anchor(struct pf_kanchor_stackframe * stack,int * depth,struct pf_kruleset ** rs,int n,struct pf_krule ** r,struct pf_krule ** a,int * match)4067 pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth,
4068 struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a,
4069 int *match)
4070 {
4071 struct pf_kanchor_stackframe *f;
4072 struct pf_krule *fr;
4073 int quick = 0;
4074
4075 PF_RULES_RASSERT();
4076
4077 do {
4078 if (*depth <= 0)
4079 break;
4080 f = stack + *depth - 1;
4081 fr = PF_ANCHOR_RULE(f);
4082 if (f->child != NULL) {
4083 /*
4084 * This block traverses through
4085 * a wildcard anchor.
4086 */
4087 if (match != NULL && *match) {
4088 /*
4089 * If any of "*" matched, then
4090 * "foo/ *" matched, mark frame
4091 * appropriately.
4092 */
4093 PF_ANCHOR_SET_MATCH(f);
4094 *match = 0;
4095 }
4096 f->child = RB_NEXT(pf_kanchor_node,
4097 &fr->anchor->children, f->child);
4098 if (f->child != NULL) {
4099 *rs = &f->child->ruleset;
4100 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
4101 if (*r == NULL)
4102 continue;
4103 else
4104 break;
4105 }
4106 }
4107 (*depth)--;
4108 if (*depth == 0 && a != NULL)
4109 *a = NULL;
4110 *rs = f->rs;
4111 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match))
4112 quick = fr->quick;
4113 *r = TAILQ_NEXT(fr, entries);
4114 } while (*r == NULL);
4115
4116 return (quick);
4117 }
4118
4119 struct pf_keth_anchor_stackframe {
4120 struct pf_keth_ruleset *rs;
4121 struct pf_keth_rule *r; /* XXX: + match bit */
4122 struct pf_keth_anchor *child;
4123 };
4124
4125 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH)
4126 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \
4127 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK)
4128 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \
4129 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \
4130 } while (0)
4131
4132 void
pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4133 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4134 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4135 struct pf_keth_rule **a, int *match)
4136 {
4137 struct pf_keth_anchor_stackframe *f;
4138
4139 NET_EPOCH_ASSERT();
4140
4141 if (match)
4142 *match = 0;
4143 if (*depth >= PF_ANCHOR_STACKSIZE) {
4144 printf("%s: anchor stack overflow on %s\n",
4145 __func__, (*r)->anchor->name);
4146 *r = TAILQ_NEXT(*r, entries);
4147 return;
4148 } else if (*depth == 0 && a != NULL)
4149 *a = *r;
4150 f = stack + (*depth)++;
4151 f->rs = *rs;
4152 f->r = *r;
4153 if ((*r)->anchor_wildcard) {
4154 struct pf_keth_anchor_node *parent = &(*r)->anchor->children;
4155
4156 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) {
4157 *r = NULL;
4158 return;
4159 }
4160 *rs = &f->child->ruleset;
4161 } else {
4162 f->child = NULL;
4163 *rs = &(*r)->anchor->ruleset;
4164 }
4165 *r = TAILQ_FIRST((*rs)->active.rules);
4166 }
4167
4168 int
pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe * stack,int * depth,struct pf_keth_ruleset ** rs,struct pf_keth_rule ** r,struct pf_keth_rule ** a,int * match)4169 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth,
4170 struct pf_keth_ruleset **rs, struct pf_keth_rule **r,
4171 struct pf_keth_rule **a, int *match)
4172 {
4173 struct pf_keth_anchor_stackframe *f;
4174 struct pf_keth_rule *fr;
4175 int quick = 0;
4176
4177 NET_EPOCH_ASSERT();
4178
4179 do {
4180 if (*depth <= 0)
4181 break;
4182 f = stack + *depth - 1;
4183 fr = PF_ETH_ANCHOR_RULE(f);
4184 if (f->child != NULL) {
4185 /*
4186 * This block traverses through
4187 * a wildcard anchor.
4188 */
4189 if (match != NULL && *match) {
4190 /*
4191 * If any of "*" matched, then
4192 * "foo/ *" matched, mark frame
4193 * appropriately.
4194 */
4195 PF_ETH_ANCHOR_SET_MATCH(f);
4196 *match = 0;
4197 }
4198 f->child = RB_NEXT(pf_keth_anchor_node,
4199 &fr->anchor->children, f->child);
4200 if (f->child != NULL) {
4201 *rs = &f->child->ruleset;
4202 *r = TAILQ_FIRST((*rs)->active.rules);
4203 if (*r == NULL)
4204 continue;
4205 else
4206 break;
4207 }
4208 }
4209 (*depth)--;
4210 if (*depth == 0 && a != NULL)
4211 *a = NULL;
4212 *rs = f->rs;
4213 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match))
4214 quick = fr->quick;
4215 *r = TAILQ_NEXT(fr, entries);
4216 } while (*r == NULL);
4217
4218 return (quick);
4219 }
4220
4221 #ifdef INET6
4222 void
pf_poolmask(struct pf_addr * naddr,struct pf_addr * raddr,struct pf_addr * rmask,struct pf_addr * saddr,sa_family_t af)4223 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
4224 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
4225 {
4226 switch (af) {
4227 #ifdef INET
4228 case AF_INET:
4229 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4230 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4231 break;
4232 #endif /* INET */
4233 case AF_INET6:
4234 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
4235 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]);
4236 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
4237 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]);
4238 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
4239 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]);
4240 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
4241 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]);
4242 break;
4243 }
4244 }
4245
4246 void
pf_addr_inc(struct pf_addr * addr,sa_family_t af)4247 pf_addr_inc(struct pf_addr *addr, sa_family_t af)
4248 {
4249 switch (af) {
4250 #ifdef INET
4251 case AF_INET:
4252 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
4253 break;
4254 #endif /* INET */
4255 case AF_INET6:
4256 if (addr->addr32[3] == 0xffffffff) {
4257 addr->addr32[3] = 0;
4258 if (addr->addr32[2] == 0xffffffff) {
4259 addr->addr32[2] = 0;
4260 if (addr->addr32[1] == 0xffffffff) {
4261 addr->addr32[1] = 0;
4262 addr->addr32[0] =
4263 htonl(ntohl(addr->addr32[0]) + 1);
4264 } else
4265 addr->addr32[1] =
4266 htonl(ntohl(addr->addr32[1]) + 1);
4267 } else
4268 addr->addr32[2] =
4269 htonl(ntohl(addr->addr32[2]) + 1);
4270 } else
4271 addr->addr32[3] =
4272 htonl(ntohl(addr->addr32[3]) + 1);
4273 break;
4274 }
4275 }
4276 #endif /* INET6 */
4277
4278 void
pf_rule_to_actions(struct pf_krule * r,struct pf_rule_actions * a)4279 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a)
4280 {
4281 /*
4282 * Modern rules use the same flags in rules as they do in states.
4283 */
4284 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID|
4285 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO));
4286
4287 /*
4288 * Old-style scrub rules have different flags which need to be translated.
4289 */
4290 if (r->rule_flag & PFRULE_RANDOMID)
4291 a->flags |= PFSTATE_RANDOMID;
4292 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) {
4293 a->flags |= PFSTATE_SETTOS;
4294 a->set_tos = r->set_tos;
4295 }
4296
4297 if (r->qid)
4298 a->qid = r->qid;
4299 if (r->pqid)
4300 a->pqid = r->pqid;
4301 if (r->rtableid >= 0)
4302 a->rtableid = r->rtableid;
4303 a->log |= r->log;
4304 if (r->min_ttl)
4305 a->min_ttl = r->min_ttl;
4306 if (r->max_mss)
4307 a->max_mss = r->max_mss;
4308 if (r->dnpipe)
4309 a->dnpipe = r->dnpipe;
4310 if (r->dnrpipe)
4311 a->dnrpipe = r->dnrpipe;
4312 if (r->dnpipe || r->dnrpipe) {
4313 if (r->free_flags & PFRULE_DN_IS_PIPE)
4314 a->flags |= PFSTATE_DN_IS_PIPE;
4315 else
4316 a->flags &= ~PFSTATE_DN_IS_PIPE;
4317 }
4318 if (r->scrub_flags & PFSTATE_SETPRIO) {
4319 a->set_prio[0] = r->set_prio[0];
4320 a->set_prio[1] = r->set_prio[1];
4321 }
4322 }
4323
4324 int
pf_socket_lookup(struct pf_pdesc * pd)4325 pf_socket_lookup(struct pf_pdesc *pd)
4326 {
4327 struct pf_addr *saddr, *daddr;
4328 u_int16_t sport, dport;
4329 struct inpcbinfo *pi;
4330 struct inpcb *inp;
4331
4332 pd->lookup.uid = UID_MAX;
4333 pd->lookup.gid = GID_MAX;
4334
4335 switch (pd->proto) {
4336 case IPPROTO_TCP:
4337 sport = pd->hdr.tcp.th_sport;
4338 dport = pd->hdr.tcp.th_dport;
4339 pi = &V_tcbinfo;
4340 break;
4341 case IPPROTO_UDP:
4342 sport = pd->hdr.udp.uh_sport;
4343 dport = pd->hdr.udp.uh_dport;
4344 pi = &V_udbinfo;
4345 break;
4346 default:
4347 return (-1);
4348 }
4349 if (pd->dir == PF_IN) {
4350 saddr = pd->src;
4351 daddr = pd->dst;
4352 } else {
4353 u_int16_t p;
4354
4355 p = sport;
4356 sport = dport;
4357 dport = p;
4358 saddr = pd->dst;
4359 daddr = pd->src;
4360 }
4361 switch (pd->af) {
4362 #ifdef INET
4363 case AF_INET:
4364 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4,
4365 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4366 if (inp == NULL) {
4367 inp = in_pcblookup_mbuf(pi, saddr->v4, sport,
4368 daddr->v4, dport, INPLOOKUP_WILDCARD |
4369 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4370 if (inp == NULL)
4371 return (-1);
4372 }
4373 break;
4374 #endif /* INET */
4375 #ifdef INET6
4376 case AF_INET6:
4377 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6,
4378 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m);
4379 if (inp == NULL) {
4380 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport,
4381 &daddr->v6, dport, INPLOOKUP_WILDCARD |
4382 INPLOOKUP_RLOCKPCB, NULL, pd->m);
4383 if (inp == NULL)
4384 return (-1);
4385 }
4386 break;
4387 #endif /* INET6 */
4388 }
4389 INP_RLOCK_ASSERT(inp);
4390 pd->lookup.uid = inp->inp_cred->cr_uid;
4391 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4392 INP_RUNLOCK(inp);
4393
4394 return (1);
4395 }
4396
4397 u_int8_t
pf_get_wscale(struct pf_pdesc * pd)4398 pf_get_wscale(struct pf_pdesc *pd)
4399 {
4400 struct tcphdr *th = &pd->hdr.tcp;
4401 int hlen;
4402 u_int8_t hdr[60];
4403 u_int8_t *opt, optlen;
4404 u_int8_t wscale = 0;
4405
4406 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4407 if (hlen <= sizeof(struct tcphdr))
4408 return (0);
4409 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4410 return (0);
4411 opt = hdr + sizeof(struct tcphdr);
4412 hlen -= sizeof(struct tcphdr);
4413 while (hlen >= 3) {
4414 switch (*opt) {
4415 case TCPOPT_EOL:
4416 case TCPOPT_NOP:
4417 ++opt;
4418 --hlen;
4419 break;
4420 case TCPOPT_WINDOW:
4421 wscale = opt[2];
4422 if (wscale > TCP_MAX_WINSHIFT)
4423 wscale = TCP_MAX_WINSHIFT;
4424 wscale |= PF_WSCALE_FLAG;
4425 /* FALLTHROUGH */
4426 default:
4427 optlen = opt[1];
4428 if (optlen < 2)
4429 optlen = 2;
4430 hlen -= optlen;
4431 opt += optlen;
4432 break;
4433 }
4434 }
4435 return (wscale);
4436 }
4437
4438 u_int16_t
pf_get_mss(struct pf_pdesc * pd)4439 pf_get_mss(struct pf_pdesc *pd)
4440 {
4441 struct tcphdr *th = &pd->hdr.tcp;
4442 int hlen;
4443 u_int8_t hdr[60];
4444 u_int8_t *opt, optlen;
4445 u_int16_t mss = V_tcp_mssdflt;
4446
4447 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */
4448 if (hlen <= sizeof(struct tcphdr))
4449 return (0);
4450 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af))
4451 return (0);
4452 opt = hdr + sizeof(struct tcphdr);
4453 hlen -= sizeof(struct tcphdr);
4454 while (hlen >= TCPOLEN_MAXSEG) {
4455 switch (*opt) {
4456 case TCPOPT_EOL:
4457 case TCPOPT_NOP:
4458 ++opt;
4459 --hlen;
4460 break;
4461 case TCPOPT_MAXSEG:
4462 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
4463 NTOHS(mss);
4464 /* FALLTHROUGH */
4465 default:
4466 optlen = opt[1];
4467 if (optlen < 2)
4468 optlen = 2;
4469 hlen -= optlen;
4470 opt += optlen;
4471 break;
4472 }
4473 }
4474 return (mss);
4475 }
4476
4477 static u_int16_t
pf_calc_mss(struct pf_addr * addr,sa_family_t af,int rtableid,u_int16_t offer)4478 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer)
4479 {
4480 struct nhop_object *nh;
4481 #ifdef INET6
4482 struct in6_addr dst6;
4483 uint32_t scopeid;
4484 #endif /* INET6 */
4485 int hlen = 0;
4486 uint16_t mss = 0;
4487
4488 NET_EPOCH_ASSERT();
4489
4490 switch (af) {
4491 #ifdef INET
4492 case AF_INET:
4493 hlen = sizeof(struct ip);
4494 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0);
4495 if (nh != NULL)
4496 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
4497 break;
4498 #endif /* INET */
4499 #ifdef INET6
4500 case AF_INET6:
4501 hlen = sizeof(struct ip6_hdr);
4502 in6_splitscope(&addr->v6, &dst6, &scopeid);
4503 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0);
4504 if (nh != NULL)
4505 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr);
4506 break;
4507 #endif /* INET6 */
4508 }
4509
4510 mss = max(V_tcp_mssdflt, mss);
4511 mss = min(mss, offer);
4512 mss = max(mss, 64); /* sanity - at least max opt space */
4513 return (mss);
4514 }
4515
4516 static u_int32_t
pf_tcp_iss(struct pf_pdesc * pd)4517 pf_tcp_iss(struct pf_pdesc *pd)
4518 {
4519 MD5_CTX ctx;
4520 u_int32_t digest[4];
4521
4522 if (V_pf_tcp_secret_init == 0) {
4523 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret));
4524 MD5Init(&V_pf_tcp_secret_ctx);
4525 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret,
4526 sizeof(V_pf_tcp_secret));
4527 V_pf_tcp_secret_init = 1;
4528 }
4529
4530 ctx = V_pf_tcp_secret_ctx;
4531
4532 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short));
4533 MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short));
4534 switch (pd->af) {
4535 case AF_INET6:
4536 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr));
4537 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr));
4538 break;
4539 case AF_INET:
4540 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr));
4541 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr));
4542 break;
4543 }
4544 MD5Final((u_char *)digest, &ctx);
4545 V_pf_tcp_iss_off += 4096;
4546 #define ISN_RANDOM_INCREMENT (4096 - 1)
4547 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) +
4548 V_pf_tcp_iss_off);
4549 #undef ISN_RANDOM_INCREMENT
4550 }
4551
4552 static bool
pf_match_eth_addr(const uint8_t * a,const struct pf_keth_rule_addr * r)4553 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r)
4554 {
4555 bool match = true;
4556
4557 /* Always matches if not set */
4558 if (! r->isset)
4559 return (!r->neg);
4560
4561 for (int i = 0; i < ETHER_ADDR_LEN; i++) {
4562 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) {
4563 match = false;
4564 break;
4565 }
4566 }
4567
4568 return (match ^ r->neg);
4569 }
4570
4571 static int
pf_match_eth_tag(struct mbuf * m,struct pf_keth_rule * r,int * tag,int mtag)4572 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag)
4573 {
4574 if (*tag == -1)
4575 *tag = mtag;
4576
4577 return ((!r->match_tag_not && r->match_tag == *tag) ||
4578 (r->match_tag_not && r->match_tag != *tag));
4579 }
4580
4581 static void
pf_bridge_to(struct ifnet * ifp,struct mbuf * m)4582 pf_bridge_to(struct ifnet *ifp, struct mbuf *m)
4583 {
4584 /* If we don't have the interface drop the packet. */
4585 if (ifp == NULL) {
4586 m_freem(m);
4587 return;
4588 }
4589
4590 switch (ifp->if_type) {
4591 case IFT_ETHER:
4592 case IFT_XETHER:
4593 case IFT_L2VLAN:
4594 case IFT_BRIDGE:
4595 case IFT_IEEE8023ADLAG:
4596 break;
4597 default:
4598 m_freem(m);
4599 return;
4600 }
4601
4602 ifp->if_transmit(ifp, m);
4603 }
4604
4605 static int
pf_test_eth_rule(int dir,struct pfi_kkif * kif,struct mbuf ** m0)4606 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0)
4607 {
4608 #ifdef INET
4609 struct ip ip;
4610 #endif
4611 #ifdef INET6
4612 struct ip6_hdr ip6;
4613 #endif
4614 struct mbuf *m = *m0;
4615 struct ether_header *e;
4616 struct pf_keth_rule *r, *rm, *a = NULL;
4617 struct pf_keth_ruleset *ruleset = NULL;
4618 struct pf_mtag *mtag;
4619 struct pf_keth_ruleq *rules;
4620 struct pf_addr *src = NULL, *dst = NULL;
4621 struct pfi_kkif *bridge_to;
4622 sa_family_t af = 0;
4623 uint16_t proto;
4624 int asd = 0, match = 0;
4625 int tag = -1;
4626 uint8_t action;
4627 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
4628
4629 MPASS(kif->pfik_ifp->if_vnet == curvnet);
4630 NET_EPOCH_ASSERT();
4631
4632 PF_RULES_RLOCK_TRACKER;
4633
4634 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m);
4635
4636 mtag = pf_find_mtag(m);
4637 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
4638 /* Dummynet re-injects packets after they've
4639 * completed their delay. We've already
4640 * processed them, so pass unconditionally. */
4641
4642 /* But only once. We may see the packet multiple times (e.g.
4643 * PFIL_IN/PFIL_OUT). */
4644 pf_dummynet_flag_remove(m, mtag);
4645
4646 return (PF_PASS);
4647 }
4648
4649 ruleset = V_pf_keth;
4650 rules = ck_pr_load_ptr(&ruleset->active.rules);
4651 r = TAILQ_FIRST(rules);
4652 rm = NULL;
4653
4654 if (__predict_false(m->m_len < sizeof(struct ether_header)) &&
4655 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) {
4656 DPFPRINTF(PF_DEBUG_URGENT,
4657 ("pf_test_eth_rule: m_len < sizeof(struct ether_header)"
4658 ", pullup failed\n"));
4659 return (PF_DROP);
4660 }
4661 e = mtod(m, struct ether_header *);
4662 proto = ntohs(e->ether_type);
4663
4664 switch (proto) {
4665 #ifdef INET
4666 case ETHERTYPE_IP: {
4667 if (m_length(m, NULL) < (sizeof(struct ether_header) +
4668 sizeof(ip)))
4669 return (PF_DROP);
4670
4671 af = AF_INET;
4672 m_copydata(m, sizeof(struct ether_header), sizeof(ip),
4673 (caddr_t)&ip);
4674 src = (struct pf_addr *)&ip.ip_src;
4675 dst = (struct pf_addr *)&ip.ip_dst;
4676 break;
4677 }
4678 #endif /* INET */
4679 #ifdef INET6
4680 case ETHERTYPE_IPV6: {
4681 if (m_length(m, NULL) < (sizeof(struct ether_header) +
4682 sizeof(ip6)))
4683 return (PF_DROP);
4684
4685 af = AF_INET6;
4686 m_copydata(m, sizeof(struct ether_header), sizeof(ip6),
4687 (caddr_t)&ip6);
4688 src = (struct pf_addr *)&ip6.ip6_src;
4689 dst = (struct pf_addr *)&ip6.ip6_dst;
4690 break;
4691 }
4692 #endif /* INET6 */
4693 }
4694
4695 PF_RULES_RLOCK();
4696
4697 while (r != NULL) {
4698 counter_u64_add(r->evaluations, 1);
4699 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r);
4700
4701 if (pfi_kkif_match(r->kif, kif) == r->ifnot) {
4702 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4703 "kif");
4704 r = r->skip[PFE_SKIP_IFP].ptr;
4705 }
4706 else if (r->direction && r->direction != dir) {
4707 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4708 "dir");
4709 r = r->skip[PFE_SKIP_DIR].ptr;
4710 }
4711 else if (r->proto && r->proto != proto) {
4712 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4713 "proto");
4714 r = r->skip[PFE_SKIP_PROTO].ptr;
4715 }
4716 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) {
4717 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4718 "src");
4719 r = r->skip[PFE_SKIP_SRC_ADDR].ptr;
4720 }
4721 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) {
4722 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4723 "dst");
4724 r = r->skip[PFE_SKIP_DST_ADDR].ptr;
4725 }
4726 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af,
4727 r->ipsrc.neg, kif, M_GETFIB(m))) {
4728 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4729 "ip_src");
4730 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr;
4731 }
4732 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af,
4733 r->ipdst.neg, kif, M_GETFIB(m))) {
4734 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4735 "ip_dst");
4736 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr;
4737 }
4738 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag,
4739 mtag ? mtag->tag : 0)) {
4740 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r,
4741 "match_tag");
4742 r = TAILQ_NEXT(r, entries);
4743 }
4744 else {
4745 if (r->tag)
4746 tag = r->tag;
4747 if (r->anchor == NULL) {
4748 /* Rule matches */
4749 rm = r;
4750
4751 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r);
4752
4753 if (r->quick)
4754 break;
4755
4756 r = TAILQ_NEXT(r, entries);
4757 } else {
4758 pf_step_into_keth_anchor(anchor_stack, &asd,
4759 &ruleset, &r, &a, &match);
4760 }
4761 }
4762 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd,
4763 &ruleset, &r, &a, &match))
4764 break;
4765 }
4766
4767 r = rm;
4768
4769 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r);
4770
4771 /* Default to pass. */
4772 if (r == NULL) {
4773 PF_RULES_RUNLOCK();
4774 return (PF_PASS);
4775 }
4776
4777 /* Execute action. */
4778 counter_u64_add(r->packets[dir == PF_OUT], 1);
4779 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL));
4780 pf_update_timestamp(r);
4781
4782 /* Shortcut. Don't tag if we're just going to drop anyway. */
4783 if (r->action == PF_DROP) {
4784 PF_RULES_RUNLOCK();
4785 return (PF_DROP);
4786 }
4787
4788 if (tag > 0) {
4789 if (mtag == NULL)
4790 mtag = pf_get_mtag(m);
4791 if (mtag == NULL) {
4792 PF_RULES_RUNLOCK();
4793 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4794 return (PF_DROP);
4795 }
4796 mtag->tag = tag;
4797 }
4798
4799 if (r->qid != 0) {
4800 if (mtag == NULL)
4801 mtag = pf_get_mtag(m);
4802 if (mtag == NULL) {
4803 PF_RULES_RUNLOCK();
4804 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4805 return (PF_DROP);
4806 }
4807 mtag->qid = r->qid;
4808 }
4809
4810 action = r->action;
4811 bridge_to = r->bridge_to;
4812
4813 /* Dummynet */
4814 if (r->dnpipe) {
4815 struct ip_fw_args dnflow;
4816
4817 /* Drop packet if dummynet is not loaded. */
4818 if (ip_dn_io_ptr == NULL) {
4819 PF_RULES_RUNLOCK();
4820 m_freem(m);
4821 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4822 return (PF_DROP);
4823 }
4824 if (mtag == NULL)
4825 mtag = pf_get_mtag(m);
4826 if (mtag == NULL) {
4827 PF_RULES_RUNLOCK();
4828 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1);
4829 return (PF_DROP);
4830 }
4831
4832 bzero(&dnflow, sizeof(dnflow));
4833
4834 /* We don't have port numbers here, so we set 0. That means
4835 * that we'll be somewhat limited in distinguishing flows (i.e.
4836 * only based on IP addresses, not based on port numbers), but
4837 * it's better than nothing. */
4838 dnflow.f_id.dst_port = 0;
4839 dnflow.f_id.src_port = 0;
4840 dnflow.f_id.proto = 0;
4841
4842 dnflow.rule.info = r->dnpipe;
4843 dnflow.rule.info |= IPFW_IS_DUMMYNET;
4844 if (r->dnflags & PFRULE_DN_IS_PIPE)
4845 dnflow.rule.info |= IPFW_IS_PIPE;
4846
4847 dnflow.f_id.extra = dnflow.rule.info;
4848
4849 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT;
4850 dnflow.flags |= IPFW_ARGS_ETHER;
4851 dnflow.ifp = kif->pfik_ifp;
4852
4853 switch (af) {
4854 case AF_INET:
4855 dnflow.f_id.addr_type = 4;
4856 dnflow.f_id.src_ip = src->v4.s_addr;
4857 dnflow.f_id.dst_ip = dst->v4.s_addr;
4858 break;
4859 case AF_INET6:
4860 dnflow.flags |= IPFW_ARGS_IP6;
4861 dnflow.f_id.addr_type = 6;
4862 dnflow.f_id.src_ip6 = src->v6;
4863 dnflow.f_id.dst_ip6 = dst->v6;
4864 break;
4865 }
4866
4867 PF_RULES_RUNLOCK();
4868
4869 mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
4870 ip_dn_io_ptr(m0, &dnflow);
4871 if (*m0 != NULL)
4872 pf_dummynet_flag_remove(m, mtag);
4873 } else {
4874 PF_RULES_RUNLOCK();
4875 }
4876
4877 if (action == PF_PASS && bridge_to) {
4878 pf_bridge_to(bridge_to->pfik_ifp, *m0);
4879 *m0 = NULL; /* We've eaten the packet. */
4880 }
4881
4882 return (action);
4883 }
4884
4885 #define PF_TEST_ATTRIB(t, a)\
4886 do { \
4887 if (t) { \
4888 r = a; \
4889 goto nextrule; \
4890 } \
4891 } while (0)
4892
4893 static int
pf_test_rule(struct pf_krule ** rm,struct pf_kstate ** sm,struct pf_pdesc * pd,struct pf_krule ** am,struct pf_kruleset ** rsm,struct inpcb * inp)4894 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm,
4895 struct pf_pdesc *pd, struct pf_krule **am,
4896 struct pf_kruleset **rsm, struct inpcb *inp)
4897 {
4898 struct pf_krule *nr = NULL;
4899 struct pf_addr * const saddr = pd->src;
4900 struct pf_addr * const daddr = pd->dst;
4901 struct pf_krule *r, *a = NULL;
4902 struct pf_kruleset *ruleset = NULL;
4903 struct pf_krule_slist match_rules;
4904 struct pf_krule_item *ri;
4905 struct tcphdr *th = &pd->hdr.tcp;
4906 struct pf_state_key *sk = NULL, *nk = NULL;
4907 u_short reason, transerror;
4908 int rewrite = 0;
4909 int tag = -1;
4910 int asd = 0;
4911 int match = 0;
4912 int state_icmp = 0, icmp_dir, multi;
4913 u_int16_t sport = 0, dport = 0, virtual_type, virtual_id;
4914 u_int16_t bproto_sum = 0, bip_sum = 0;
4915 u_int8_t icmptype = 0, icmpcode = 0;
4916 struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE];
4917 struct pf_udp_mapping *udp_mapping = NULL;
4918
4919 PF_RULES_RASSERT();
4920
4921 SLIST_INIT(&match_rules);
4922
4923 if (inp != NULL) {
4924 INP_LOCK_ASSERT(inp);
4925 pd->lookup.uid = inp->inp_cred->cr_uid;
4926 pd->lookup.gid = inp->inp_cred->cr_groups[0];
4927 pd->lookup.done = 1;
4928 }
4929
4930 switch (pd->virtual_proto) {
4931 case IPPROTO_TCP:
4932 sport = th->th_sport;
4933 dport = th->th_dport;
4934 break;
4935 case IPPROTO_UDP:
4936 sport = pd->hdr.udp.uh_sport;
4937 dport = pd->hdr.udp.uh_dport;
4938 break;
4939 case IPPROTO_SCTP:
4940 sport = pd->hdr.sctp.src_port;
4941 dport = pd->hdr.sctp.dest_port;
4942 break;
4943 #ifdef INET
4944 case IPPROTO_ICMP:
4945 MPASS(pd->af == AF_INET);
4946 icmptype = pd->hdr.icmp.icmp_type;
4947 icmpcode = pd->hdr.icmp.icmp_code;
4948 state_icmp = pf_icmp_mapping(pd, icmptype,
4949 &icmp_dir, &multi, &virtual_id, &virtual_type);
4950 if (icmp_dir == PF_IN) {
4951 sport = virtual_id;
4952 dport = virtual_type;
4953 } else {
4954 sport = virtual_type;
4955 dport = virtual_id;
4956 }
4957 break;
4958 #endif /* INET */
4959 #ifdef INET6
4960 case IPPROTO_ICMPV6:
4961 MPASS(pd->af == AF_INET6);
4962 icmptype = pd->hdr.icmp6.icmp6_type;
4963 icmpcode = pd->hdr.icmp6.icmp6_code;
4964 state_icmp = pf_icmp_mapping(pd, icmptype,
4965 &icmp_dir, &multi, &virtual_id, &virtual_type);
4966 if (icmp_dir == PF_IN) {
4967 sport = virtual_id;
4968 dport = virtual_type;
4969 } else {
4970 sport = virtual_type;
4971 dport = virtual_id;
4972 }
4973
4974 break;
4975 #endif /* INET6 */
4976 default:
4977 sport = dport = 0;
4978 break;
4979 }
4980
4981 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
4982
4983 /* check packet for BINAT/NAT/RDR */
4984 transerror = pf_get_translation(pd, pd->off, &sk, &nk, saddr, daddr,
4985 sport, dport, anchor_stack, &nr, &udp_mapping);
4986 switch (transerror) {
4987 default:
4988 /* A translation error occurred. */
4989 REASON_SET(&reason, transerror);
4990 goto cleanup;
4991 case PFRES_MAX:
4992 /* No match. */
4993 break;
4994 case PFRES_MATCH:
4995 KASSERT(sk != NULL, ("%s: null sk", __func__));
4996 KASSERT(nk != NULL, ("%s: null nk", __func__));
4997
4998 if (nr->log) {
4999 PFLOG_PACKET(PF_PASS, PFRES_MATCH, nr, a,
5000 ruleset, pd, 1);
5001 }
5002
5003 if (pd->ip_sum)
5004 bip_sum = *pd->ip_sum;
5005
5006 switch (pd->proto) {
5007 case IPPROTO_TCP:
5008 bproto_sum = th->th_sum;
5009 pd->proto_sum = &th->th_sum;
5010
5011 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5012 nk->port[pd->sidx] != sport) {
5013 pf_change_ap(pd->m, saddr, &th->th_sport, pd->ip_sum,
5014 &th->th_sum, &nk->addr[pd->sidx],
5015 nk->port[pd->sidx], 0, pd->af);
5016 pd->sport = &th->th_sport;
5017 sport = th->th_sport;
5018 }
5019
5020 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5021 nk->port[pd->didx] != dport) {
5022 pf_change_ap(pd->m, daddr, &th->th_dport, pd->ip_sum,
5023 &th->th_sum, &nk->addr[pd->didx],
5024 nk->port[pd->didx], 0, pd->af);
5025 dport = th->th_dport;
5026 pd->dport = &th->th_dport;
5027 }
5028 rewrite++;
5029 break;
5030 case IPPROTO_UDP:
5031 bproto_sum = pd->hdr.udp.uh_sum;
5032 pd->proto_sum = &pd->hdr.udp.uh_sum;
5033
5034 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5035 nk->port[pd->sidx] != sport) {
5036 pf_change_ap(pd->m, saddr, &pd->hdr.udp.uh_sport,
5037 pd->ip_sum, &pd->hdr.udp.uh_sum,
5038 &nk->addr[pd->sidx],
5039 nk->port[pd->sidx], 1, pd->af);
5040 sport = pd->hdr.udp.uh_sport;
5041 pd->sport = &pd->hdr.udp.uh_sport;
5042 }
5043
5044 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5045 nk->port[pd->didx] != dport) {
5046 pf_change_ap(pd->m, daddr, &pd->hdr.udp.uh_dport,
5047 pd->ip_sum, &pd->hdr.udp.uh_sum,
5048 &nk->addr[pd->didx],
5049 nk->port[pd->didx], 1, pd->af);
5050 dport = pd->hdr.udp.uh_dport;
5051 pd->dport = &pd->hdr.udp.uh_dport;
5052 }
5053 rewrite++;
5054 break;
5055 case IPPROTO_SCTP: {
5056 uint16_t checksum = 0;
5057
5058 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], pd->af) ||
5059 nk->port[pd->sidx] != sport) {
5060 pf_change_ap(pd->m, saddr, &pd->hdr.sctp.src_port,
5061 pd->ip_sum, &checksum,
5062 &nk->addr[pd->sidx],
5063 nk->port[pd->sidx], 1, pd->af);
5064 }
5065 if (PF_ANEQ(daddr, &nk->addr[pd->didx], pd->af) ||
5066 nk->port[pd->didx] != dport) {
5067 pf_change_ap(pd->m, daddr, &pd->hdr.sctp.dest_port,
5068 pd->ip_sum, &checksum,
5069 &nk->addr[pd->didx],
5070 nk->port[pd->didx], 1, pd->af);
5071 }
5072 break;
5073 }
5074 #ifdef INET
5075 case IPPROTO_ICMP:
5076 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET))
5077 pf_change_a(&saddr->v4.s_addr, pd->ip_sum,
5078 nk->addr[pd->sidx].v4.s_addr, 0);
5079
5080 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET))
5081 pf_change_a(&daddr->v4.s_addr, pd->ip_sum,
5082 nk->addr[pd->didx].v4.s_addr, 0);
5083
5084 if (virtual_type == htons(ICMP_ECHO) &&
5085 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) {
5086 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup(
5087 pd->hdr.icmp.icmp_cksum, sport,
5088 nk->port[pd->sidx], 0);
5089 pd->hdr.icmp.icmp_id = nk->port[pd->sidx];
5090 pd->sport = &pd->hdr.icmp.icmp_id;
5091 }
5092 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
5093 break;
5094 #endif /* INET */
5095 #ifdef INET6
5096 case IPPROTO_ICMPV6:
5097 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6))
5098 pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum,
5099 &nk->addr[pd->sidx], 0);
5100
5101 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6))
5102 pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum,
5103 &nk->addr[pd->didx], 0);
5104 rewrite++;
5105 break;
5106 #endif /* INET */
5107 default:
5108 switch (pd->af) {
5109 #ifdef INET
5110 case AF_INET:
5111 if (PF_ANEQ(saddr,
5112 &nk->addr[pd->sidx], AF_INET))
5113 pf_change_a(&saddr->v4.s_addr,
5114 pd->ip_sum,
5115 nk->addr[pd->sidx].v4.s_addr, 0);
5116
5117 if (PF_ANEQ(daddr,
5118 &nk->addr[pd->didx], AF_INET))
5119 pf_change_a(&daddr->v4.s_addr,
5120 pd->ip_sum,
5121 nk->addr[pd->didx].v4.s_addr, 0);
5122 break;
5123 #endif /* INET */
5124 #ifdef INET6
5125 case AF_INET6:
5126 if (PF_ANEQ(saddr,
5127 &nk->addr[pd->sidx], AF_INET6))
5128 PF_ACPY(saddr, &nk->addr[pd->sidx], pd->af);
5129
5130 if (PF_ANEQ(daddr,
5131 &nk->addr[pd->didx], AF_INET6))
5132 PF_ACPY(daddr, &nk->addr[pd->didx], pd->af);
5133 break;
5134 #endif /* INET */
5135 }
5136 break;
5137 }
5138 if (nr->natpass)
5139 r = NULL;
5140 }
5141
5142 while (r != NULL) {
5143 pf_counter_u64_add(&r->evaluations, 1);
5144 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot,
5145 r->skip[PF_SKIP_IFP]);
5146 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir,
5147 r->skip[PF_SKIP_DIR]);
5148 PF_TEST_ATTRIB(r->af && r->af != pd->af,
5149 r->skip[PF_SKIP_AF]);
5150 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto,
5151 r->skip[PF_SKIP_PROTO]);
5152 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, saddr, pd->af,
5153 r->src.neg, pd->kif, M_GETFIB(pd->m)),
5154 r->skip[PF_SKIP_SRC_ADDR]);
5155 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, daddr, pd->af,
5156 r->dst.neg, NULL, M_GETFIB(pd->m)),
5157 r->skip[PF_SKIP_DST_ADDR]);
5158 switch (pd->virtual_proto) {
5159 case PF_VPROTO_FRAGMENT:
5160 /* tcp/udp only. port_op always 0 in other cases */
5161 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op),
5162 TAILQ_NEXT(r, entries));
5163 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset),
5164 TAILQ_NEXT(r, entries));
5165 /* icmp only. type/code always 0 in other cases */
5166 PF_TEST_ATTRIB((r->type || r->code),
5167 TAILQ_NEXT(r, entries));
5168 /* tcp/udp only. {uid|gid}.op always 0 in other cases */
5169 PF_TEST_ATTRIB((r->gid.op || r->uid.op),
5170 TAILQ_NEXT(r, entries));
5171 break;
5172
5173 case IPPROTO_TCP:
5174 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(th)) != r->flags,
5175 TAILQ_NEXT(r, entries));
5176 /* FALLTHROUGH */
5177 case IPPROTO_SCTP:
5178 case IPPROTO_UDP:
5179 /* tcp/udp only. port_op always 0 in other cases */
5180 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op,
5181 r->src.port[0], r->src.port[1], sport),
5182 r->skip[PF_SKIP_SRC_PORT]);
5183 /* tcp/udp only. port_op always 0 in other cases */
5184 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op,
5185 r->dst.port[0], r->dst.port[1], dport),
5186 r->skip[PF_SKIP_DST_PORT]);
5187 /* tcp/udp only. uid.op always 0 in other cases */
5188 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done =
5189 pf_socket_lookup(pd), 1)) &&
5190 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
5191 pd->lookup.uid),
5192 TAILQ_NEXT(r, entries));
5193 /* tcp/udp only. gid.op always 0 in other cases */
5194 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done =
5195 pf_socket_lookup(pd), 1)) &&
5196 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
5197 pd->lookup.gid),
5198 TAILQ_NEXT(r, entries));
5199 break;
5200
5201 case IPPROTO_ICMP:
5202 case IPPROTO_ICMPV6:
5203 /* icmp only. type always 0 in other cases */
5204 PF_TEST_ATTRIB(r->type && r->type != icmptype + 1,
5205 TAILQ_NEXT(r, entries));
5206 /* icmp only. type always 0 in other cases */
5207 PF_TEST_ATTRIB(r->code && r->code != icmpcode + 1,
5208 TAILQ_NEXT(r, entries));
5209 break;
5210
5211 default:
5212 break;
5213 }
5214 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos),
5215 TAILQ_NEXT(r, entries));
5216 PF_TEST_ATTRIB(r->prio &&
5217 !pf_match_ieee8021q_pcp(r->prio, pd->m),
5218 TAILQ_NEXT(r, entries));
5219 PF_TEST_ATTRIB(r->prob &&
5220 r->prob <= arc4random(),
5221 TAILQ_NEXT(r, entries));
5222 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, &tag,
5223 pd->pf_mtag ? pd->pf_mtag->tag : 0),
5224 TAILQ_NEXT(r, entries));
5225 PF_TEST_ATTRIB(r->rcv_kif && !pf_match_rcvif(pd->m, r),
5226 TAILQ_NEXT(r, entries));
5227 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT &&
5228 pd->virtual_proto != PF_VPROTO_FRAGMENT),
5229 TAILQ_NEXT(r, entries));
5230 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY &&
5231 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match(
5232 pf_osfp_fingerprint(pd, th),
5233 r->os_fingerprint)),
5234 TAILQ_NEXT(r, entries));
5235 /* FALLTHROUGH */
5236 if (r->tag)
5237 tag = r->tag;
5238 if (r->anchor == NULL) {
5239 if (r->action == PF_MATCH) {
5240 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO);
5241 if (ri == NULL) {
5242 REASON_SET(&reason, PFRES_MEMORY);
5243 goto cleanup;
5244 }
5245 ri->r = r;
5246 SLIST_INSERT_HEAD(&match_rules, ri, entry);
5247 pf_counter_u64_critical_enter();
5248 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
5249 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
5250 pf_counter_u64_critical_exit();
5251 pf_rule_to_actions(r, &pd->act);
5252 if (r->log || pd->act.log & PF_LOG_MATCHES)
5253 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5254 a, ruleset, pd, 1);
5255 } else {
5256 match = 1;
5257 *rm = r;
5258 *am = a;
5259 *rsm = ruleset;
5260 if (pd->act.log & PF_LOG_MATCHES)
5261 PFLOG_PACKET(r->action, PFRES_MATCH, r,
5262 a, ruleset, pd, 1);
5263 }
5264 if ((*rm)->quick)
5265 break;
5266 r = TAILQ_NEXT(r, entries);
5267 } else
5268 pf_step_into_anchor(anchor_stack, &asd,
5269 &ruleset, PF_RULESET_FILTER, &r, &a,
5270 &match);
5271 nextrule:
5272 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd,
5273 &ruleset, PF_RULESET_FILTER, &r, &a, &match))
5274 break;
5275 }
5276 r = *rm;
5277 a = *am;
5278 ruleset = *rsm;
5279
5280 REASON_SET(&reason, PFRES_MATCH);
5281
5282 /* apply actions for last matching pass/block rule */
5283 pf_rule_to_actions(r, &pd->act);
5284
5285 if (r->log || pd->act.log & PF_LOG_MATCHES) {
5286 if (rewrite)
5287 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5288 PFLOG_PACKET(r->action, reason, r, a, ruleset, pd, 1);
5289 }
5290
5291 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5292 (r->action == PF_DROP) &&
5293 ((r->rule_flag & PFRULE_RETURNRST) ||
5294 (r->rule_flag & PFRULE_RETURNICMP) ||
5295 (r->rule_flag & PFRULE_RETURN))) {
5296 pf_return(r, nr, pd, sk, th, bproto_sum,
5297 bip_sum, &reason, r->rtableid);
5298 }
5299
5300 if (r->action == PF_DROP)
5301 goto cleanup;
5302
5303 if (tag > 0 && pf_tag_packet(pd, tag)) {
5304 REASON_SET(&reason, PFRES_MEMORY);
5305 goto cleanup;
5306 }
5307 if (pd->act.rtableid >= 0)
5308 M_SETFIB(pd->m, pd->act.rtableid);
5309
5310 if (pd->virtual_proto != PF_VPROTO_FRAGMENT &&
5311 (!state_icmp && (r->keep_state || nr != NULL ||
5312 (pd->flags & PFDESC_TCP_NORM)))) {
5313 int action;
5314 action = pf_create_state(r, nr, a, pd, nk, sk,
5315 sport, dport, &rewrite, sm, tag, bproto_sum, bip_sum,
5316 &match_rules, udp_mapping);
5317 if (action != PF_PASS) {
5318 pf_udp_mapping_release(udp_mapping);
5319 if (action == PF_DROP &&
5320 (r->rule_flag & PFRULE_RETURN))
5321 pf_return(r, nr, pd, sk, th,
5322 bproto_sum, bip_sum, &reason,
5323 pd->act.rtableid);
5324 return (action);
5325 }
5326 } else {
5327 while ((ri = SLIST_FIRST(&match_rules))) {
5328 SLIST_REMOVE_HEAD(&match_rules, entry);
5329 free(ri, M_PF_RULE_ITEM);
5330 }
5331
5332 uma_zfree(V_pf_state_key_z, sk);
5333 uma_zfree(V_pf_state_key_z, nk);
5334 pf_udp_mapping_release(udp_mapping);
5335 }
5336
5337 /* copy back packet headers if we performed NAT operations */
5338 if (rewrite)
5339 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5340
5341 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) &&
5342 pd->dir == PF_OUT &&
5343 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m))
5344 /*
5345 * We want the state created, but we dont
5346 * want to send this in case a partner
5347 * firewall has to know about it to allow
5348 * replies through it.
5349 */
5350 return (PF_DEFER);
5351
5352 return (PF_PASS);
5353
5354 cleanup:
5355 while ((ri = SLIST_FIRST(&match_rules))) {
5356 SLIST_REMOVE_HEAD(&match_rules, entry);
5357 free(ri, M_PF_RULE_ITEM);
5358 }
5359
5360 uma_zfree(V_pf_state_key_z, sk);
5361 uma_zfree(V_pf_state_key_z, nk);
5362 pf_udp_mapping_release(udp_mapping);
5363
5364 return (PF_DROP);
5365 }
5366
5367 static int
pf_create_state(struct pf_krule * r,struct pf_krule * nr,struct pf_krule * a,struct pf_pdesc * pd,struct pf_state_key * nk,struct pf_state_key * sk,u_int16_t sport,u_int16_t dport,int * rewrite,struct pf_kstate ** sm,int tag,u_int16_t bproto_sum,u_int16_t bip_sum,struct pf_krule_slist * match_rules,struct pf_udp_mapping * udp_mapping)5368 pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a,
5369 struct pf_pdesc *pd, struct pf_state_key *nk, struct pf_state_key *sk,
5370 u_int16_t sport, u_int16_t dport, int *rewrite, struct pf_kstate **sm,
5371 int tag, u_int16_t bproto_sum, u_int16_t bip_sum,
5372 struct pf_krule_slist *match_rules, struct pf_udp_mapping *udp_mapping)
5373 {
5374 struct pf_kstate *s = NULL;
5375 struct pf_ksrc_node *sn = NULL;
5376 struct pf_srchash *snh = NULL;
5377 struct pf_ksrc_node *nsn = NULL;
5378 struct pf_srchash *nsnh = NULL;
5379 struct tcphdr *th = &pd->hdr.tcp;
5380 u_int16_t mss = V_tcp_mssdflt;
5381 u_short reason, sn_reason;
5382 struct pf_krule_item *ri;
5383
5384 /* check maximums */
5385 if (r->max_states &&
5386 (counter_u64_fetch(r->states_cur) >= r->max_states)) {
5387 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1);
5388 REASON_SET(&reason, PFRES_MAXSTATES);
5389 goto csfailed;
5390 }
5391 /* src node for filter rule */
5392 if ((r->rule_flag & PFRULE_SRCTRACK ||
5393 r->rpool.opts & PF_POOL_STICKYADDR) &&
5394 (sn_reason = pf_insert_src_node(&sn, &snh, r, pd->src, pd->af)) != 0) {
5395 REASON_SET(&reason, sn_reason);
5396 goto csfailed;
5397 }
5398 /* src node for translation rule */
5399 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
5400 (sn_reason = pf_insert_src_node(&nsn, &nsnh, nr, &sk->addr[pd->sidx],
5401 pd->af)) != 0 ) {
5402 REASON_SET(&reason, sn_reason);
5403 goto csfailed;
5404 }
5405 s = pf_alloc_state(M_NOWAIT);
5406 if (s == NULL) {
5407 REASON_SET(&reason, PFRES_MEMORY);
5408 goto csfailed;
5409 }
5410 s->rule = r;
5411 s->nat_rule = nr;
5412 s->anchor = a;
5413 bcopy(match_rules, &s->match_rules, sizeof(s->match_rules));
5414 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions));
5415
5416 STATE_INC_COUNTERS(s);
5417 if (r->allow_opts)
5418 s->state_flags |= PFSTATE_ALLOWOPTS;
5419 if (r->rule_flag & PFRULE_STATESLOPPY)
5420 s->state_flags |= PFSTATE_SLOPPY;
5421 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */
5422 s->state_flags |= PFSTATE_SCRUB_TCP;
5423 if ((r->rule_flag & PFRULE_PFLOW) ||
5424 (nr != NULL && nr->rule_flag & PFRULE_PFLOW))
5425 s->state_flags |= PFSTATE_PFLOW;
5426
5427 s->act.log = pd->act.log & PF_LOG_ALL;
5428 s->sync_state = PFSYNC_S_NONE;
5429 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */
5430
5431 if (nr != NULL)
5432 s->act.log |= nr->log & PF_LOG_ALL;
5433 switch (pd->proto) {
5434 case IPPROTO_TCP:
5435 s->src.seqlo = ntohl(th->th_seq);
5436 s->src.seqhi = s->src.seqlo + pd->p_len + 1;
5437 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN &&
5438 r->keep_state == PF_STATE_MODULATE) {
5439 /* Generate sequence number modulator */
5440 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) ==
5441 0)
5442 s->src.seqdiff = 1;
5443 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum,
5444 htonl(s->src.seqlo + s->src.seqdiff), 0);
5445 *rewrite = 1;
5446 } else
5447 s->src.seqdiff = 0;
5448 if (tcp_get_flags(th) & TH_SYN) {
5449 s->src.seqhi++;
5450 s->src.wscale = pf_get_wscale(pd);
5451 }
5452 s->src.max_win = MAX(ntohs(th->th_win), 1);
5453 if (s->src.wscale & PF_WSCALE_MASK) {
5454 /* Remove scale factor from initial window */
5455 int win = s->src.max_win;
5456 win += 1 << (s->src.wscale & PF_WSCALE_MASK);
5457 s->src.max_win = (win - 1) >>
5458 (s->src.wscale & PF_WSCALE_MASK);
5459 }
5460 if (tcp_get_flags(th) & TH_FIN)
5461 s->src.seqhi++;
5462 s->dst.seqhi = 1;
5463 s->dst.max_win = 1;
5464 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT);
5465 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED);
5466 s->timeout = PFTM_TCP_FIRST_PACKET;
5467 atomic_add_32(&V_pf_status.states_halfopen, 1);
5468 break;
5469 case IPPROTO_UDP:
5470 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE);
5471 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC);
5472 s->timeout = PFTM_UDP_FIRST_PACKET;
5473 break;
5474 case IPPROTO_SCTP:
5475 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT);
5476 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED);
5477 s->timeout = PFTM_SCTP_FIRST_PACKET;
5478 break;
5479 case IPPROTO_ICMP:
5480 #ifdef INET6
5481 case IPPROTO_ICMPV6:
5482 #endif
5483 s->timeout = PFTM_ICMP_FIRST_PACKET;
5484 break;
5485 default:
5486 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE);
5487 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC);
5488 s->timeout = PFTM_OTHER_FIRST_PACKET;
5489 }
5490
5491 if (r->rt) {
5492 /* pf_map_addr increases the reason counters */
5493 if ((reason = pf_map_addr_sn(pd->af, r, pd->src, &s->rt_addr,
5494 &s->rt_kif, NULL, &sn, &snh)) != 0)
5495 goto csfailed;
5496 s->rt = r->rt;
5497 }
5498
5499 s->creation = s->expire = pf_get_uptime();
5500
5501 if (pd->proto == IPPROTO_TCP) {
5502 if (s->state_flags & PFSTATE_SCRUB_TCP &&
5503 pf_normalize_tcp_init(pd, th, &s->src, &s->dst)) {
5504 REASON_SET(&reason, PFRES_MEMORY);
5505 goto csfailed;
5506 }
5507 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub &&
5508 pf_normalize_tcp_stateful(pd, &reason, th, s,
5509 &s->src, &s->dst, rewrite)) {
5510 /* This really shouldn't happen!!! */
5511 DPFPRINTF(PF_DEBUG_URGENT,
5512 ("pf_normalize_tcp_stateful failed on first "
5513 "pkt\n"));
5514 goto csfailed;
5515 }
5516 } else if (pd->proto == IPPROTO_SCTP) {
5517 if (pf_normalize_sctp_init(pd, &s->src, &s->dst))
5518 goto csfailed;
5519 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP)))
5520 goto csfailed;
5521 }
5522 s->direction = pd->dir;
5523
5524 /*
5525 * sk/nk could already been setup by pf_get_translation().
5526 */
5527 if (nr == NULL) {
5528 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p",
5529 __func__, nr, sk, nk));
5530 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport);
5531 if (sk == NULL)
5532 goto csfailed;
5533 nk = sk;
5534 } else
5535 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p",
5536 __func__, nr, sk, nk));
5537
5538 /* Swap sk/nk for PF_OUT. */
5539 if (pf_state_insert(BOUND_IFACE(s, pd->kif), pd->kif,
5540 (pd->dir == PF_IN) ? sk : nk,
5541 (pd->dir == PF_IN) ? nk : sk, s)) {
5542 REASON_SET(&reason, PFRES_STATEINS);
5543 goto drop;
5544 } else
5545 *sm = s;
5546
5547 /*
5548 * Lock order is important: first state, then source node.
5549 */
5550 if (pf_src_node_exists(&sn, snh)) {
5551 s->src_node = sn;
5552 PF_HASHROW_UNLOCK(snh);
5553 }
5554 if (pf_src_node_exists(&nsn, nsnh)) {
5555 /* XXX We only modify one side for now. */
5556 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af);
5557 s->nat_src_node = nsn;
5558 PF_HASHROW_UNLOCK(nsnh);
5559 }
5560
5561 if (tag > 0)
5562 s->tag = tag;
5563 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) ==
5564 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) {
5565 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC);
5566 /* undo NAT changes, if they have taken place */
5567 if (nr != NULL) {
5568 struct pf_state_key *skt = s->key[PF_SK_WIRE];
5569 if (pd->dir == PF_OUT)
5570 skt = s->key[PF_SK_STACK];
5571 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af);
5572 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af);
5573 if (pd->sport)
5574 *pd->sport = skt->port[pd->sidx];
5575 if (pd->dport)
5576 *pd->dport = skt->port[pd->didx];
5577 if (pd->proto_sum)
5578 *pd->proto_sum = bproto_sum;
5579 if (pd->ip_sum)
5580 *pd->ip_sum = bip_sum;
5581 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any);
5582 }
5583 s->src.seqhi = htonl(arc4random());
5584 /* Find mss option */
5585 int rtid = M_GETFIB(pd->m);
5586 mss = pf_get_mss(pd);
5587 mss = pf_calc_mss(pd->src, pd->af, rtid, mss);
5588 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss);
5589 s->src.mss = mss;
5590 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport,
5591 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
5592 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0,
5593 pd->act.rtableid);
5594 REASON_SET(&reason, PFRES_SYNPROXY);
5595 return (PF_SYNPROXY_DROP);
5596 }
5597
5598 s->udp_mapping = udp_mapping;
5599
5600 return (PF_PASS);
5601
5602 csfailed:
5603 while ((ri = SLIST_FIRST(match_rules))) {
5604 SLIST_REMOVE_HEAD(match_rules, entry);
5605 free(ri, M_PF_RULE_ITEM);
5606 }
5607
5608 uma_zfree(V_pf_state_key_z, sk);
5609 uma_zfree(V_pf_state_key_z, nk);
5610
5611 if (pf_src_node_exists(&sn, snh)) {
5612 if (--sn->states == 0 && sn->expire == 0) {
5613 pf_unlink_src_node(sn);
5614 pf_free_src_node(sn);
5615 counter_u64_add(
5616 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
5617 }
5618 PF_HASHROW_UNLOCK(snh);
5619 }
5620
5621 if (sn != nsn && pf_src_node_exists(&nsn, nsnh)) {
5622 if (--nsn->states == 0 && nsn->expire == 0) {
5623 pf_unlink_src_node(nsn);
5624 pf_free_src_node(nsn);
5625 counter_u64_add(
5626 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1);
5627 }
5628 PF_HASHROW_UNLOCK(nsnh);
5629 }
5630
5631 drop:
5632 if (s != NULL) {
5633 pf_src_tree_remove_state(s);
5634 s->timeout = PFTM_UNLINKED;
5635 STATE_DEC_COUNTERS(s);
5636 pf_free_state(s);
5637 }
5638
5639 return (PF_DROP);
5640 }
5641
5642 static int
pf_tcp_track_full(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason,int * copyback)5643 pf_tcp_track_full(struct pf_kstate **state, struct pf_pdesc *pd,
5644 u_short *reason, int *copyback)
5645 {
5646 struct tcphdr *th = &pd->hdr.tcp;
5647 struct pf_state_peer *src, *dst;
5648 u_int16_t win = ntohs(th->th_win);
5649 u_int32_t ack, end, data_end, seq, orig_seq;
5650 u_int8_t sws, dws, psrc, pdst;
5651 int ackskew;
5652
5653 if (pd->dir == (*state)->direction) {
5654 src = &(*state)->src;
5655 dst = &(*state)->dst;
5656 psrc = PF_PEER_SRC;
5657 pdst = PF_PEER_DST;
5658 } else {
5659 src = &(*state)->dst;
5660 dst = &(*state)->src;
5661 psrc = PF_PEER_DST;
5662 pdst = PF_PEER_SRC;
5663 }
5664
5665 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) {
5666 sws = src->wscale & PF_WSCALE_MASK;
5667 dws = dst->wscale & PF_WSCALE_MASK;
5668 } else
5669 sws = dws = 0;
5670
5671 /*
5672 * Sequence tracking algorithm from Guido van Rooij's paper:
5673 * http://www.madison-gurkha.com/publications/tcp_filtering/
5674 * tcp_filtering.ps
5675 */
5676
5677 orig_seq = seq = ntohl(th->th_seq);
5678 if (src->seqlo == 0) {
5679 /* First packet from this end. Set its state */
5680
5681 if (((*state)->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) &&
5682 src->scrub == NULL) {
5683 if (pf_normalize_tcp_init(pd, th, src, dst)) {
5684 REASON_SET(reason, PFRES_MEMORY);
5685 return (PF_DROP);
5686 }
5687 }
5688
5689 /* Deferred generation of sequence number modulator */
5690 if (dst->seqdiff && !src->seqdiff) {
5691 /* use random iss for the TCP server */
5692 while ((src->seqdiff = arc4random() - seq) == 0)
5693 ;
5694 ack = ntohl(th->th_ack) - dst->seqdiff;
5695 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
5696 src->seqdiff), 0);
5697 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
5698 *copyback = 1;
5699 } else {
5700 ack = ntohl(th->th_ack);
5701 }
5702
5703 end = seq + pd->p_len;
5704 if (tcp_get_flags(th) & TH_SYN) {
5705 end++;
5706 if (dst->wscale & PF_WSCALE_FLAG) {
5707 src->wscale = pf_get_wscale(pd);
5708 if (src->wscale & PF_WSCALE_FLAG) {
5709 /* Remove scale factor from initial
5710 * window */
5711 sws = src->wscale & PF_WSCALE_MASK;
5712 win = ((u_int32_t)win + (1 << sws) - 1)
5713 >> sws;
5714 dws = dst->wscale & PF_WSCALE_MASK;
5715 } else {
5716 /* fixup other window */
5717 dst->max_win = MIN(TCP_MAXWIN,
5718 (u_int32_t)dst->max_win <<
5719 (dst->wscale & PF_WSCALE_MASK));
5720 /* in case of a retrans SYN|ACK */
5721 dst->wscale = 0;
5722 }
5723 }
5724 }
5725 data_end = end;
5726 if (tcp_get_flags(th) & TH_FIN)
5727 end++;
5728
5729 src->seqlo = seq;
5730 if (src->state < TCPS_SYN_SENT)
5731 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5732
5733 /*
5734 * May need to slide the window (seqhi may have been set by
5735 * the crappy stack check or if we picked up the connection
5736 * after establishment)
5737 */
5738 if (src->seqhi == 1 ||
5739 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi))
5740 src->seqhi = end + MAX(1, dst->max_win << dws);
5741 if (win > src->max_win)
5742 src->max_win = win;
5743
5744 } else {
5745 ack = ntohl(th->th_ack) - dst->seqdiff;
5746 if (src->seqdiff) {
5747 /* Modulate sequence numbers */
5748 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq +
5749 src->seqdiff), 0);
5750 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0);
5751 *copyback = 1;
5752 }
5753 end = seq + pd->p_len;
5754 if (tcp_get_flags(th) & TH_SYN)
5755 end++;
5756 data_end = end;
5757 if (tcp_get_flags(th) & TH_FIN)
5758 end++;
5759 }
5760
5761 if ((tcp_get_flags(th) & TH_ACK) == 0) {
5762 /* Let it pass through the ack skew check */
5763 ack = dst->seqlo;
5764 } else if ((ack == 0 &&
5765 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) ||
5766 /* broken tcp stacks do not set ack */
5767 (dst->state < TCPS_SYN_SENT)) {
5768 /*
5769 * Many stacks (ours included) will set the ACK number in an
5770 * FIN|ACK if the SYN times out -- no sequence to ACK.
5771 */
5772 ack = dst->seqlo;
5773 }
5774
5775 if (seq == end) {
5776 /* Ease sequencing restrictions on no data packets */
5777 seq = src->seqlo;
5778 data_end = end = seq;
5779 }
5780
5781 ackskew = dst->seqlo - ack;
5782
5783 /*
5784 * Need to demodulate the sequence numbers in any TCP SACK options
5785 * (Selective ACK). We could optionally validate the SACK values
5786 * against the current ACK window, either forwards or backwards, but
5787 * I'm not confident that SACK has been implemented properly
5788 * everywhere. It wouldn't surprise me if several stacks accidentally
5789 * SACK too far backwards of previously ACKed data. There really aren't
5790 * any security implications of bad SACKing unless the target stack
5791 * doesn't validate the option length correctly. Someone trying to
5792 * spoof into a TCP connection won't bother blindly sending SACK
5793 * options anyway.
5794 */
5795 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) {
5796 if (pf_modulate_sack(pd, th, dst))
5797 *copyback = 1;
5798 }
5799
5800 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
5801 if (SEQ_GEQ(src->seqhi, data_end) &&
5802 /* Last octet inside other's window space */
5803 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) &&
5804 /* Retrans: not more than one window back */
5805 (ackskew >= -MAXACKWINDOW) &&
5806 /* Acking not more than one reassembled fragment backwards */
5807 (ackskew <= (MAXACKWINDOW << sws)) &&
5808 /* Acking not more than one window forward */
5809 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo ||
5810 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) {
5811 /* Require an exact/+1 sequence match on resets when possible */
5812
5813 if (dst->scrub || src->scrub) {
5814 if (pf_normalize_tcp_stateful(pd, reason, th,
5815 *state, src, dst, copyback))
5816 return (PF_DROP);
5817 }
5818
5819 /* update max window */
5820 if (src->max_win < win)
5821 src->max_win = win;
5822 /* synchronize sequencing */
5823 if (SEQ_GT(end, src->seqlo))
5824 src->seqlo = end;
5825 /* slide the window of what the other end can send */
5826 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
5827 dst->seqhi = ack + MAX((win << sws), 1);
5828
5829 /* update states */
5830 if (tcp_get_flags(th) & TH_SYN)
5831 if (src->state < TCPS_SYN_SENT)
5832 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
5833 if (tcp_get_flags(th) & TH_FIN)
5834 if (src->state < TCPS_CLOSING)
5835 pf_set_protostate(*state, psrc, TCPS_CLOSING);
5836 if (tcp_get_flags(th) & TH_ACK) {
5837 if (dst->state == TCPS_SYN_SENT) {
5838 pf_set_protostate(*state, pdst,
5839 TCPS_ESTABLISHED);
5840 if (src->state == TCPS_ESTABLISHED &&
5841 (*state)->src_node != NULL &&
5842 pf_src_connlimit(*state)) {
5843 REASON_SET(reason, PFRES_SRCLIMIT);
5844 return (PF_DROP);
5845 }
5846 } else if (dst->state == TCPS_CLOSING)
5847 pf_set_protostate(*state, pdst,
5848 TCPS_FIN_WAIT_2);
5849 }
5850 if (tcp_get_flags(th) & TH_RST)
5851 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
5852
5853 /* update expire time */
5854 (*state)->expire = pf_get_uptime();
5855 if (src->state >= TCPS_FIN_WAIT_2 &&
5856 dst->state >= TCPS_FIN_WAIT_2)
5857 (*state)->timeout = PFTM_TCP_CLOSED;
5858 else if (src->state >= TCPS_CLOSING &&
5859 dst->state >= TCPS_CLOSING)
5860 (*state)->timeout = PFTM_TCP_FIN_WAIT;
5861 else if (src->state < TCPS_ESTABLISHED ||
5862 dst->state < TCPS_ESTABLISHED)
5863 (*state)->timeout = PFTM_TCP_OPENING;
5864 else if (src->state >= TCPS_CLOSING ||
5865 dst->state >= TCPS_CLOSING)
5866 (*state)->timeout = PFTM_TCP_CLOSING;
5867 else
5868 (*state)->timeout = PFTM_TCP_ESTABLISHED;
5869
5870 /* Fall through to PASS packet */
5871
5872 } else if ((dst->state < TCPS_SYN_SENT ||
5873 dst->state >= TCPS_FIN_WAIT_2 ||
5874 src->state >= TCPS_FIN_WAIT_2) &&
5875 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) &&
5876 /* Within a window forward of the originating packet */
5877 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
5878 /* Within a window backward of the originating packet */
5879
5880 /*
5881 * This currently handles three situations:
5882 * 1) Stupid stacks will shotgun SYNs before their peer
5883 * replies.
5884 * 2) When PF catches an already established stream (the
5885 * firewall rebooted, the state table was flushed, routes
5886 * changed...)
5887 * 3) Packets get funky immediately after the connection
5888 * closes (this should catch Solaris spurious ACK|FINs
5889 * that web servers like to spew after a close)
5890 *
5891 * This must be a little more careful than the above code
5892 * since packet floods will also be caught here. We don't
5893 * update the TTL here to mitigate the damage of a packet
5894 * flood and so the same code can handle awkward establishment
5895 * and a loosened connection close.
5896 * In the establishment case, a correct peer response will
5897 * validate the connection, go through the normal state code
5898 * and keep updating the state TTL.
5899 */
5900
5901 if (V_pf_status.debug >= PF_DEBUG_MISC) {
5902 printf("pf: loose state match: ");
5903 pf_print_state(*state);
5904 pf_print_flags(tcp_get_flags(th));
5905 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
5906 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
5907 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0],
5908 (unsigned long long)(*state)->packets[1],
5909 pd->dir == PF_IN ? "in" : "out",
5910 pd->dir == (*state)->direction ? "fwd" : "rev");
5911 }
5912
5913 if (dst->scrub || src->scrub) {
5914 if (pf_normalize_tcp_stateful(pd, reason, th,
5915 *state, src, dst, copyback))
5916 return (PF_DROP);
5917 }
5918
5919 /* update max window */
5920 if (src->max_win < win)
5921 src->max_win = win;
5922 /* synchronize sequencing */
5923 if (SEQ_GT(end, src->seqlo))
5924 src->seqlo = end;
5925 /* slide the window of what the other end can send */
5926 if (SEQ_GEQ(ack + (win << sws), dst->seqhi))
5927 dst->seqhi = ack + MAX((win << sws), 1);
5928
5929 /*
5930 * Cannot set dst->seqhi here since this could be a shotgunned
5931 * SYN and not an already established connection.
5932 */
5933
5934 if (tcp_get_flags(th) & TH_FIN)
5935 if (src->state < TCPS_CLOSING)
5936 pf_set_protostate(*state, psrc, TCPS_CLOSING);
5937 if (tcp_get_flags(th) & TH_RST)
5938 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
5939
5940 /* Fall through to PASS packet */
5941
5942 } else {
5943 if ((*state)->dst.state == TCPS_SYN_SENT &&
5944 (*state)->src.state == TCPS_SYN_SENT) {
5945 /* Send RST for state mismatches during handshake */
5946 if (!(tcp_get_flags(th) & TH_RST))
5947 pf_send_tcp((*state)->rule, pd->af,
5948 pd->dst, pd->src, th->th_dport,
5949 th->th_sport, ntohl(th->th_ack), 0,
5950 TH_RST, 0, 0,
5951 (*state)->rule->return_ttl, M_SKIP_FIREWALL,
5952 0, 0, (*state)->act.rtableid);
5953 src->seqlo = 0;
5954 src->seqhi = 1;
5955 src->max_win = 1;
5956 } else if (V_pf_status.debug >= PF_DEBUG_MISC) {
5957 printf("pf: BAD state: ");
5958 pf_print_state(*state);
5959 pf_print_flags(tcp_get_flags(th));
5960 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
5961 "pkts=%llu:%llu dir=%s,%s\n",
5962 seq, orig_seq, ack, pd->p_len, ackskew,
5963 (unsigned long long)(*state)->packets[0],
5964 (unsigned long long)(*state)->packets[1],
5965 pd->dir == PF_IN ? "in" : "out",
5966 pd->dir == (*state)->direction ? "fwd" : "rev");
5967 printf("pf: State failure on: %c %c %c %c | %c %c\n",
5968 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1',
5969 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ?
5970 ' ': '2',
5971 (ackskew >= -MAXACKWINDOW) ? ' ' : '3',
5972 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
5973 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5',
5974 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
5975 }
5976 REASON_SET(reason, PFRES_BADSTATE);
5977 return (PF_DROP);
5978 }
5979
5980 return (PF_PASS);
5981 }
5982
5983 static int
pf_tcp_track_sloppy(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)5984 pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason)
5985 {
5986 struct tcphdr *th = &pd->hdr.tcp;
5987 struct pf_state_peer *src, *dst;
5988 u_int8_t psrc, pdst;
5989
5990 if (pd->dir == (*state)->direction) {
5991 src = &(*state)->src;
5992 dst = &(*state)->dst;
5993 psrc = PF_PEER_SRC;
5994 pdst = PF_PEER_DST;
5995 } else {
5996 src = &(*state)->dst;
5997 dst = &(*state)->src;
5998 psrc = PF_PEER_DST;
5999 pdst = PF_PEER_SRC;
6000 }
6001
6002 if (tcp_get_flags(th) & TH_SYN)
6003 if (src->state < TCPS_SYN_SENT)
6004 pf_set_protostate(*state, psrc, TCPS_SYN_SENT);
6005 if (tcp_get_flags(th) & TH_FIN)
6006 if (src->state < TCPS_CLOSING)
6007 pf_set_protostate(*state, psrc, TCPS_CLOSING);
6008 if (tcp_get_flags(th) & TH_ACK) {
6009 if (dst->state == TCPS_SYN_SENT) {
6010 pf_set_protostate(*state, pdst, TCPS_ESTABLISHED);
6011 if (src->state == TCPS_ESTABLISHED &&
6012 (*state)->src_node != NULL &&
6013 pf_src_connlimit(*state)) {
6014 REASON_SET(reason, PFRES_SRCLIMIT);
6015 return (PF_DROP);
6016 }
6017 } else if (dst->state == TCPS_CLOSING) {
6018 pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2);
6019 } else if (src->state == TCPS_SYN_SENT &&
6020 dst->state < TCPS_SYN_SENT) {
6021 /*
6022 * Handle a special sloppy case where we only see one
6023 * half of the connection. If there is a ACK after
6024 * the initial SYN without ever seeing a packet from
6025 * the destination, set the connection to established.
6026 */
6027 pf_set_protostate(*state, PF_PEER_BOTH,
6028 TCPS_ESTABLISHED);
6029 dst->state = src->state = TCPS_ESTABLISHED;
6030 if ((*state)->src_node != NULL &&
6031 pf_src_connlimit(*state)) {
6032 REASON_SET(reason, PFRES_SRCLIMIT);
6033 return (PF_DROP);
6034 }
6035 } else if (src->state == TCPS_CLOSING &&
6036 dst->state == TCPS_ESTABLISHED &&
6037 dst->seqlo == 0) {
6038 /*
6039 * Handle the closing of half connections where we
6040 * don't see the full bidirectional FIN/ACK+ACK
6041 * handshake.
6042 */
6043 pf_set_protostate(*state, pdst, TCPS_CLOSING);
6044 }
6045 }
6046 if (tcp_get_flags(th) & TH_RST)
6047 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT);
6048
6049 /* update expire time */
6050 (*state)->expire = pf_get_uptime();
6051 if (src->state >= TCPS_FIN_WAIT_2 &&
6052 dst->state >= TCPS_FIN_WAIT_2)
6053 (*state)->timeout = PFTM_TCP_CLOSED;
6054 else if (src->state >= TCPS_CLOSING &&
6055 dst->state >= TCPS_CLOSING)
6056 (*state)->timeout = PFTM_TCP_FIN_WAIT;
6057 else if (src->state < TCPS_ESTABLISHED ||
6058 dst->state < TCPS_ESTABLISHED)
6059 (*state)->timeout = PFTM_TCP_OPENING;
6060 else if (src->state >= TCPS_CLOSING ||
6061 dst->state >= TCPS_CLOSING)
6062 (*state)->timeout = PFTM_TCP_CLOSING;
6063 else
6064 (*state)->timeout = PFTM_TCP_ESTABLISHED;
6065
6066 return (PF_PASS);
6067 }
6068
6069 static int
pf_synproxy(struct pf_pdesc * pd,struct pf_kstate ** state,u_short * reason)6070 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason)
6071 {
6072 struct pf_state_key *sk = (*state)->key[pd->didx];
6073 struct tcphdr *th = &pd->hdr.tcp;
6074
6075 if ((*state)->src.state == PF_TCPS_PROXY_SRC) {
6076 if (pd->dir != (*state)->direction) {
6077 REASON_SET(reason, PFRES_SYNPROXY);
6078 return (PF_SYNPROXY_DROP);
6079 }
6080 if (tcp_get_flags(th) & TH_SYN) {
6081 if (ntohl(th->th_seq) != (*state)->src.seqlo) {
6082 REASON_SET(reason, PFRES_SYNPROXY);
6083 return (PF_DROP);
6084 }
6085 pf_send_tcp((*state)->rule, pd->af, pd->dst,
6086 pd->src, th->th_dport, th->th_sport,
6087 (*state)->src.seqhi, ntohl(th->th_seq) + 1,
6088 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0,
6089 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6090 REASON_SET(reason, PFRES_SYNPROXY);
6091 return (PF_SYNPROXY_DROP);
6092 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK ||
6093 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6094 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6095 REASON_SET(reason, PFRES_SYNPROXY);
6096 return (PF_DROP);
6097 } else if ((*state)->src_node != NULL &&
6098 pf_src_connlimit(*state)) {
6099 REASON_SET(reason, PFRES_SRCLIMIT);
6100 return (PF_DROP);
6101 } else
6102 pf_set_protostate(*state, PF_PEER_SRC,
6103 PF_TCPS_PROXY_DST);
6104 }
6105 if ((*state)->src.state == PF_TCPS_PROXY_DST) {
6106 if (pd->dir == (*state)->direction) {
6107 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) ||
6108 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) ||
6109 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) {
6110 REASON_SET(reason, PFRES_SYNPROXY);
6111 return (PF_DROP);
6112 }
6113 (*state)->src.max_win = MAX(ntohs(th->th_win), 1);
6114 if ((*state)->dst.seqhi == 1)
6115 (*state)->dst.seqhi = htonl(arc4random());
6116 pf_send_tcp((*state)->rule, pd->af,
6117 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6118 sk->port[pd->sidx], sk->port[pd->didx],
6119 (*state)->dst.seqhi, 0, TH_SYN, 0,
6120 (*state)->src.mss, 0,
6121 (*state)->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0,
6122 (*state)->tag, 0, (*state)->act.rtableid);
6123 REASON_SET(reason, PFRES_SYNPROXY);
6124 return (PF_SYNPROXY_DROP);
6125 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) !=
6126 (TH_SYN|TH_ACK)) ||
6127 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) {
6128 REASON_SET(reason, PFRES_SYNPROXY);
6129 return (PF_DROP);
6130 } else {
6131 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1);
6132 (*state)->dst.seqlo = ntohl(th->th_seq);
6133 pf_send_tcp((*state)->rule, pd->af, pd->dst,
6134 pd->src, th->th_dport, th->th_sport,
6135 ntohl(th->th_ack), ntohl(th->th_seq) + 1,
6136 TH_ACK, (*state)->src.max_win, 0, 0, 0,
6137 (*state)->tag, 0, (*state)->act.rtableid);
6138 pf_send_tcp((*state)->rule, pd->af,
6139 &sk->addr[pd->sidx], &sk->addr[pd->didx],
6140 sk->port[pd->sidx], sk->port[pd->didx],
6141 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1,
6142 TH_ACK, (*state)->dst.max_win, 0, 0,
6143 M_SKIP_FIREWALL, 0, 0, (*state)->act.rtableid);
6144 (*state)->src.seqdiff = (*state)->dst.seqhi -
6145 (*state)->src.seqlo;
6146 (*state)->dst.seqdiff = (*state)->src.seqhi -
6147 (*state)->dst.seqlo;
6148 (*state)->src.seqhi = (*state)->src.seqlo +
6149 (*state)->dst.max_win;
6150 (*state)->dst.seqhi = (*state)->dst.seqlo +
6151 (*state)->src.max_win;
6152 (*state)->src.wscale = (*state)->dst.wscale = 0;
6153 pf_set_protostate(*state, PF_PEER_BOTH,
6154 TCPS_ESTABLISHED);
6155 REASON_SET(reason, PFRES_SYNPROXY);
6156 return (PF_SYNPROXY_DROP);
6157 }
6158 }
6159
6160 return (PF_PASS);
6161 }
6162
6163 static int
pf_test_state_tcp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6164 pf_test_state_tcp(struct pf_kstate **state, struct pf_pdesc *pd,
6165 u_short *reason)
6166 {
6167 struct pf_state_key_cmp key;
6168 struct tcphdr *th = &pd->hdr.tcp;
6169 int copyback = 0;
6170 int action;
6171 struct pf_state_peer *src, *dst;
6172
6173 bzero(&key, sizeof(key));
6174 key.af = pd->af;
6175 key.proto = IPPROTO_TCP;
6176 if (pd->dir == PF_IN) { /* wire side, straight */
6177 PF_ACPY(&key.addr[0], pd->src, key.af);
6178 PF_ACPY(&key.addr[1], pd->dst, key.af);
6179 key.port[0] = th->th_sport;
6180 key.port[1] = th->th_dport;
6181 } else { /* stack side, reverse */
6182 PF_ACPY(&key.addr[1], pd->src, key.af);
6183 PF_ACPY(&key.addr[0], pd->dst, key.af);
6184 key.port[1] = th->th_sport;
6185 key.port[0] = th->th_dport;
6186 }
6187
6188 STATE_LOOKUP(&key, *state, pd);
6189
6190 if (pd->dir == (*state)->direction) {
6191 src = &(*state)->src;
6192 dst = &(*state)->dst;
6193 } else {
6194 src = &(*state)->dst;
6195 dst = &(*state)->src;
6196 }
6197
6198 if ((action = pf_synproxy(pd, state, reason)) != PF_PASS)
6199 return (action);
6200
6201 if (dst->state >= TCPS_FIN_WAIT_2 &&
6202 src->state >= TCPS_FIN_WAIT_2 &&
6203 (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN) ||
6204 ((tcp_get_flags(th) & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK &&
6205 pf_syncookie_check(pd) && pd->dir == PF_IN))) {
6206 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6207 printf("pf: state reuse ");
6208 pf_print_state(*state);
6209 pf_print_flags(tcp_get_flags(th));
6210 printf("\n");
6211 }
6212 /* XXX make sure it's the same direction ?? */
6213 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED);
6214 pf_unlink_state(*state);
6215 *state = NULL;
6216 return (PF_DROP);
6217 }
6218
6219 if ((*state)->state_flags & PFSTATE_SLOPPY) {
6220 if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP)
6221 return (PF_DROP);
6222 } else {
6223 if (pf_tcp_track_full(state, pd, reason,
6224 ©back) == PF_DROP)
6225 return (PF_DROP);
6226 }
6227
6228 /* translate source/destination address, if necessary */
6229 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6230 struct pf_state_key *nk = (*state)->key[pd->didx];
6231
6232 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6233 nk->port[pd->sidx] != th->th_sport)
6234 pf_change_ap(pd->m, pd->src, &th->th_sport,
6235 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx],
6236 nk->port[pd->sidx], 0, pd->af);
6237
6238 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6239 nk->port[pd->didx] != th->th_dport)
6240 pf_change_ap(pd->m, pd->dst, &th->th_dport,
6241 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx],
6242 nk->port[pd->didx], 0, pd->af);
6243 copyback = 1;
6244 }
6245
6246 /* Copyback sequence modulation or stateful scrub changes if needed */
6247 if (copyback)
6248 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
6249
6250 return (PF_PASS);
6251 }
6252
6253 static int
pf_test_state_udp(struct pf_kstate ** state,struct pf_pdesc * pd)6254 pf_test_state_udp(struct pf_kstate **state, struct pf_pdesc *pd)
6255 {
6256 struct pf_state_peer *src, *dst;
6257 struct pf_state_key_cmp key;
6258 struct udphdr *uh = &pd->hdr.udp;
6259 uint8_t psrc, pdst;
6260
6261 bzero(&key, sizeof(key));
6262 key.af = pd->af;
6263 key.proto = IPPROTO_UDP;
6264 if (pd->dir == PF_IN) { /* wire side, straight */
6265 PF_ACPY(&key.addr[0], pd->src, key.af);
6266 PF_ACPY(&key.addr[1], pd->dst, key.af);
6267 key.port[0] = uh->uh_sport;
6268 key.port[1] = uh->uh_dport;
6269 } else { /* stack side, reverse */
6270 PF_ACPY(&key.addr[1], pd->src, key.af);
6271 PF_ACPY(&key.addr[0], pd->dst, key.af);
6272 key.port[1] = uh->uh_sport;
6273 key.port[0] = uh->uh_dport;
6274 }
6275
6276 STATE_LOOKUP(&key, *state, pd);
6277
6278 if (pd->dir == (*state)->direction) {
6279 src = &(*state)->src;
6280 dst = &(*state)->dst;
6281 psrc = PF_PEER_SRC;
6282 pdst = PF_PEER_DST;
6283 } else {
6284 src = &(*state)->dst;
6285 dst = &(*state)->src;
6286 psrc = PF_PEER_DST;
6287 pdst = PF_PEER_SRC;
6288 }
6289
6290 /* update states */
6291 if (src->state < PFUDPS_SINGLE)
6292 pf_set_protostate(*state, psrc, PFUDPS_SINGLE);
6293 if (dst->state == PFUDPS_SINGLE)
6294 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE);
6295
6296 /* update expire time */
6297 (*state)->expire = pf_get_uptime();
6298 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE)
6299 (*state)->timeout = PFTM_UDP_MULTIPLE;
6300 else
6301 (*state)->timeout = PFTM_UDP_SINGLE;
6302
6303 /* translate source/destination address, if necessary */
6304 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6305 struct pf_state_key *nk = (*state)->key[pd->didx];
6306
6307 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6308 nk->port[pd->sidx] != uh->uh_sport)
6309 pf_change_ap(pd->m, pd->src, &uh->uh_sport, pd->ip_sum,
6310 &uh->uh_sum, &nk->addr[pd->sidx],
6311 nk->port[pd->sidx], 1, pd->af);
6312
6313 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6314 nk->port[pd->didx] != uh->uh_dport)
6315 pf_change_ap(pd->m, pd->dst, &uh->uh_dport, pd->ip_sum,
6316 &uh->uh_sum, &nk->addr[pd->didx],
6317 nk->port[pd->didx], 1, pd->af);
6318 m_copyback(pd->m, pd->off, sizeof(*uh), (caddr_t)uh);
6319 }
6320
6321 return (PF_PASS);
6322 }
6323
6324 static int
pf_test_state_sctp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6325 pf_test_state_sctp(struct pf_kstate **state, struct pf_pdesc *pd,
6326 u_short *reason)
6327 {
6328 struct pf_state_key_cmp key;
6329 struct pf_state_peer *src, *dst;
6330 struct sctphdr *sh = &pd->hdr.sctp;
6331 u_int8_t psrc; //, pdst;
6332
6333 bzero(&key, sizeof(key));
6334 key.af = pd->af;
6335 key.proto = IPPROTO_SCTP;
6336 if (pd->dir == PF_IN) { /* wire side, straight */
6337 PF_ACPY(&key.addr[0], pd->src, key.af);
6338 PF_ACPY(&key.addr[1], pd->dst, key.af);
6339 key.port[0] = sh->src_port;
6340 key.port[1] = sh->dest_port;
6341 } else { /* stack side, reverse */
6342 PF_ACPY(&key.addr[1], pd->src, key.af);
6343 PF_ACPY(&key.addr[0], pd->dst, key.af);
6344 key.port[1] = sh->src_port;
6345 key.port[0] = sh->dest_port;
6346 }
6347
6348 STATE_LOOKUP(&key, *state, pd);
6349
6350 if (pd->dir == (*state)->direction) {
6351 src = &(*state)->src;
6352 dst = &(*state)->dst;
6353 psrc = PF_PEER_SRC;
6354 } else {
6355 src = &(*state)->dst;
6356 dst = &(*state)->src;
6357 psrc = PF_PEER_DST;
6358 }
6359
6360 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) &&
6361 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) &&
6362 pd->sctp_flags & PFDESC_SCTP_INIT) {
6363 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED);
6364 pf_unlink_state(*state);
6365 *state = NULL;
6366 return (PF_DROP);
6367 }
6368
6369 /* Track state. */
6370 if (pd->sctp_flags & PFDESC_SCTP_INIT) {
6371 if (src->state < SCTP_COOKIE_WAIT) {
6372 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT);
6373 (*state)->timeout = PFTM_SCTP_OPENING;
6374 }
6375 }
6376 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) {
6377 MPASS(dst->scrub != NULL);
6378 if (dst->scrub->pfss_v_tag == 0)
6379 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
6380 }
6381
6382 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) {
6383 if (src->state < SCTP_ESTABLISHED) {
6384 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED);
6385 (*state)->timeout = PFTM_SCTP_ESTABLISHED;
6386 }
6387 }
6388 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | PFDESC_SCTP_ABORT |
6389 PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
6390 if (src->state < SCTP_SHUTDOWN_PENDING) {
6391 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING);
6392 (*state)->timeout = PFTM_SCTP_CLOSING;
6393 }
6394 }
6395 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE)) {
6396 pf_set_protostate(*state, psrc, SCTP_CLOSED);
6397 (*state)->timeout = PFTM_SCTP_CLOSED;
6398 }
6399
6400 if (src->scrub != NULL) {
6401 if (src->scrub->pfss_v_tag == 0) {
6402 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag;
6403 } else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag)
6404 return (PF_DROP);
6405 }
6406
6407 (*state)->expire = pf_get_uptime();
6408
6409 /* translate source/destination address, if necessary */
6410 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6411 uint16_t checksum = 0;
6412 struct pf_state_key *nk = (*state)->key[pd->didx];
6413
6414 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) ||
6415 nk->port[pd->sidx] != pd->hdr.sctp.src_port) {
6416 pf_change_ap(pd->m, pd->src, &pd->hdr.sctp.src_port,
6417 pd->ip_sum, &checksum, &nk->addr[pd->sidx],
6418 nk->port[pd->sidx], 1, pd->af);
6419 }
6420
6421 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) ||
6422 nk->port[pd->didx] != pd->hdr.sctp.dest_port) {
6423 pf_change_ap(pd->m, pd->dst, &pd->hdr.sctp.dest_port,
6424 pd->ip_sum, &checksum, &nk->addr[pd->didx],
6425 nk->port[pd->didx], 1, pd->af);
6426 }
6427 }
6428
6429 return (PF_PASS);
6430 }
6431
6432 static void
pf_sctp_multihome_detach_addr(const struct pf_kstate * s)6433 pf_sctp_multihome_detach_addr(const struct pf_kstate *s)
6434 {
6435 struct pf_sctp_endpoint key;
6436 struct pf_sctp_endpoint *ep;
6437 struct pf_state_key *sks = s->key[PF_SK_STACK];
6438 struct pf_sctp_source *i, *tmp;
6439
6440 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL)
6441 return;
6442
6443 PF_SCTP_ENDPOINTS_LOCK();
6444
6445 key.v_tag = s->dst.scrub->pfss_v_tag;
6446 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6447 if (ep != NULL) {
6448 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
6449 if (pf_addr_cmp(&i->addr,
6450 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT],
6451 s->key[PF_SK_WIRE]->af) == 0) {
6452 SDT_PROBE3(pf, sctp, multihome, remove,
6453 key.v_tag, s, i);
6454 TAILQ_REMOVE(&ep->sources, i, entry);
6455 free(i, M_PFTEMP);
6456 break;
6457 }
6458 }
6459
6460 if (TAILQ_EMPTY(&ep->sources)) {
6461 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6462 free(ep, M_PFTEMP);
6463 }
6464 }
6465
6466 /* Other direction. */
6467 key.v_tag = s->src.scrub->pfss_v_tag;
6468 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6469 if (ep != NULL) {
6470 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) {
6471 if (pf_addr_cmp(&i->addr,
6472 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN],
6473 s->key[PF_SK_WIRE]->af) == 0) {
6474 SDT_PROBE3(pf, sctp, multihome, remove,
6475 key.v_tag, s, i);
6476 TAILQ_REMOVE(&ep->sources, i, entry);
6477 free(i, M_PFTEMP);
6478 break;
6479 }
6480 }
6481
6482 if (TAILQ_EMPTY(&ep->sources)) {
6483 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6484 free(ep, M_PFTEMP);
6485 }
6486 }
6487
6488 PF_SCTP_ENDPOINTS_UNLOCK();
6489 }
6490
6491 static void
pf_sctp_multihome_add_addr(struct pf_pdesc * pd,struct pf_addr * a,uint32_t v_tag)6492 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag)
6493 {
6494 struct pf_sctp_endpoint key = {
6495 .v_tag = v_tag,
6496 };
6497 struct pf_sctp_source *i;
6498 struct pf_sctp_endpoint *ep;
6499
6500 PF_SCTP_ENDPOINTS_LOCK();
6501
6502 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6503 if (ep == NULL) {
6504 ep = malloc(sizeof(struct pf_sctp_endpoint),
6505 M_PFTEMP, M_NOWAIT);
6506 if (ep == NULL) {
6507 PF_SCTP_ENDPOINTS_UNLOCK();
6508 return;
6509 }
6510
6511 ep->v_tag = v_tag;
6512 TAILQ_INIT(&ep->sources);
6513 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep);
6514 }
6515
6516 /* Avoid inserting duplicates. */
6517 TAILQ_FOREACH(i, &ep->sources, entry) {
6518 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) {
6519 PF_SCTP_ENDPOINTS_UNLOCK();
6520 return;
6521 }
6522 }
6523
6524 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT);
6525 if (i == NULL) {
6526 PF_SCTP_ENDPOINTS_UNLOCK();
6527 return;
6528 }
6529
6530 i->af = pd->af;
6531 memcpy(&i->addr, a, sizeof(*a));
6532 TAILQ_INSERT_TAIL(&ep->sources, i, entry);
6533 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i);
6534
6535 PF_SCTP_ENDPOINTS_UNLOCK();
6536 }
6537
6538 static void
pf_sctp_multihome_delayed(struct pf_pdesc * pd,struct pfi_kkif * kif,struct pf_kstate * s,int action)6539 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif,
6540 struct pf_kstate *s, int action)
6541 {
6542 struct pf_sctp_multihome_job *j, *tmp;
6543 struct pf_sctp_source *i;
6544 int ret __unused;
6545 struct pf_kstate *sm = NULL;
6546 struct pf_krule *ra = NULL;
6547 struct pf_krule *r = &V_pf_default_rule;
6548 struct pf_kruleset *rs = NULL;
6549 bool do_extra = true;
6550
6551 PF_RULES_RLOCK_TRACKER;
6552
6553 again:
6554 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) {
6555 if (s == NULL || action != PF_PASS)
6556 goto free;
6557
6558 /* Confirm we don't recurse here. */
6559 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP));
6560
6561 switch (j->op) {
6562 case SCTP_ADD_IP_ADDRESS: {
6563 uint32_t v_tag = pd->sctp_initiate_tag;
6564
6565 if (v_tag == 0) {
6566 if (s->direction == pd->dir)
6567 v_tag = s->src.scrub->pfss_v_tag;
6568 else
6569 v_tag = s->dst.scrub->pfss_v_tag;
6570 }
6571
6572 /*
6573 * Avoid duplicating states. We'll already have
6574 * created a state based on the source address of
6575 * the packet, but SCTP endpoints may also list this
6576 * address again in the INIT(_ACK) parameters.
6577 */
6578 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) {
6579 break;
6580 }
6581
6582 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP;
6583 PF_RULES_RLOCK();
6584 sm = NULL;
6585 /*
6586 * New connections need to be floating, because
6587 * we cannot know what interfaces it will use.
6588 * That's why we pass V_pfi_all rather than kif.
6589 */
6590 j->pd.kif = V_pfi_all;
6591 ret = pf_test_rule(&r, &sm,
6592 &j->pd, &ra, &rs, NULL);
6593 PF_RULES_RUNLOCK();
6594 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret);
6595 if (ret != PF_DROP && sm != NULL) {
6596 /* Inherit v_tag values. */
6597 if (sm->direction == s->direction) {
6598 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
6599 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
6600 } else {
6601 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag;
6602 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag;
6603 }
6604 PF_STATE_UNLOCK(sm);
6605 } else {
6606 /* If we try duplicate inserts? */
6607 break;
6608 }
6609
6610 /* Only add the address if we've actually allowed the state. */
6611 pf_sctp_multihome_add_addr(pd, &j->src, v_tag);
6612
6613 if (! do_extra) {
6614 break;
6615 }
6616 /*
6617 * We need to do this for each of our source addresses.
6618 * Find those based on the verification tag.
6619 */
6620 struct pf_sctp_endpoint key = {
6621 .v_tag = pd->hdr.sctp.v_tag,
6622 };
6623 struct pf_sctp_endpoint *ep;
6624
6625 PF_SCTP_ENDPOINTS_LOCK();
6626 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key);
6627 if (ep == NULL) {
6628 PF_SCTP_ENDPOINTS_UNLOCK();
6629 break;
6630 }
6631 MPASS(ep != NULL);
6632
6633 TAILQ_FOREACH(i, &ep->sources, entry) {
6634 struct pf_sctp_multihome_job *nj;
6635
6636 /* SCTP can intermingle IPv4 and IPv6. */
6637 if (i->af != pd->af)
6638 continue;
6639
6640 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO);
6641 if (! nj) {
6642 continue;
6643 }
6644 memcpy(&nj->pd, &j->pd, sizeof(j->pd));
6645 memcpy(&nj->src, &j->src, sizeof(nj->src));
6646 nj->pd.src = &nj->src;
6647 // New destination address!
6648 memcpy(&nj->dst, &i->addr, sizeof(nj->dst));
6649 nj->pd.dst = &nj->dst;
6650 nj->pd.m = j->pd.m;
6651 nj->op = j->op;
6652
6653 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next);
6654 }
6655 PF_SCTP_ENDPOINTS_UNLOCK();
6656
6657 break;
6658 }
6659 case SCTP_DEL_IP_ADDRESS: {
6660 struct pf_state_key_cmp key;
6661 uint8_t psrc;
6662
6663 bzero(&key, sizeof(key));
6664 key.af = j->pd.af;
6665 key.proto = IPPROTO_SCTP;
6666 if (j->pd.dir == PF_IN) { /* wire side, straight */
6667 PF_ACPY(&key.addr[0], j->pd.src, key.af);
6668 PF_ACPY(&key.addr[1], j->pd.dst, key.af);
6669 key.port[0] = j->pd.hdr.sctp.src_port;
6670 key.port[1] = j->pd.hdr.sctp.dest_port;
6671 } else { /* stack side, reverse */
6672 PF_ACPY(&key.addr[1], j->pd.src, key.af);
6673 PF_ACPY(&key.addr[0], j->pd.dst, key.af);
6674 key.port[1] = j->pd.hdr.sctp.src_port;
6675 key.port[0] = j->pd.hdr.sctp.dest_port;
6676 }
6677
6678 sm = pf_find_state(kif, &key, j->pd.dir);
6679 if (sm != NULL) {
6680 PF_STATE_LOCK_ASSERT(sm);
6681 if (j->pd.dir == sm->direction) {
6682 psrc = PF_PEER_SRC;
6683 } else {
6684 psrc = PF_PEER_DST;
6685 }
6686 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING);
6687 sm->timeout = PFTM_SCTP_CLOSING;
6688 PF_STATE_UNLOCK(sm);
6689 }
6690 break;
6691 default:
6692 panic("Unknown op %#x", j->op);
6693 }
6694 }
6695
6696 free:
6697 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next);
6698 free(j, M_PFTEMP);
6699 }
6700
6701 /* We may have inserted extra work while processing the list. */
6702 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) {
6703 do_extra = false;
6704 goto again;
6705 }
6706 }
6707
6708 static int
pf_multihome_scan(int start,int len,struct pf_pdesc * pd,int op)6709 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op)
6710 {
6711 int off = 0;
6712 struct pf_sctp_multihome_job *job;
6713
6714 while (off < len) {
6715 struct sctp_paramhdr h;
6716
6717 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL,
6718 pd->af))
6719 return (PF_DROP);
6720
6721 /* Parameters are at least 4 bytes. */
6722 if (ntohs(h.param_length) < 4)
6723 return (PF_DROP);
6724
6725 switch (ntohs(h.param_type)) {
6726 case SCTP_IPV4_ADDRESS: {
6727 struct in_addr t;
6728
6729 if (ntohs(h.param_length) !=
6730 (sizeof(struct sctp_paramhdr) + sizeof(t)))
6731 return (PF_DROP);
6732
6733 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
6734 NULL, NULL, pd->af))
6735 return (PF_DROP);
6736
6737 if (in_nullhost(t))
6738 t.s_addr = pd->src->v4.s_addr;
6739
6740 /*
6741 * We hold the state lock (idhash) here, which means
6742 * that we can't acquire the keyhash, or we'll get a
6743 * LOR (and potentially double-lock things too). We also
6744 * can't release the state lock here, so instead we'll
6745 * enqueue this for async handling.
6746 * There's a relatively small race here, in that a
6747 * packet using the new addresses could arrive already,
6748 * but that's just though luck for it.
6749 */
6750 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
6751 if (! job)
6752 return (PF_DROP);
6753
6754 memcpy(&job->pd, pd, sizeof(*pd));
6755
6756 // New source address!
6757 memcpy(&job->src, &t, sizeof(t));
6758 job->pd.src = &job->src;
6759 memcpy(&job->dst, pd->dst, sizeof(job->dst));
6760 job->pd.dst = &job->dst;
6761 job->pd.m = pd->m;
6762 job->op = op;
6763
6764 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
6765 break;
6766 }
6767 #ifdef INET6
6768 case SCTP_IPV6_ADDRESS: {
6769 struct in6_addr t;
6770
6771 if (ntohs(h.param_length) !=
6772 (sizeof(struct sctp_paramhdr) + sizeof(t)))
6773 return (PF_DROP);
6774
6775 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t),
6776 NULL, NULL, pd->af))
6777 return (PF_DROP);
6778 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0)
6779 break;
6780 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0)
6781 memcpy(&t, &pd->src->v6, sizeof(t));
6782
6783 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO);
6784 if (! job)
6785 return (PF_DROP);
6786
6787 memcpy(&job->pd, pd, sizeof(*pd));
6788 memcpy(&job->src, &t, sizeof(t));
6789 job->pd.src = &job->src;
6790 memcpy(&job->dst, pd->dst, sizeof(job->dst));
6791 job->pd.dst = &job->dst;
6792 job->pd.m = pd->m;
6793 job->op = op;
6794
6795 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next);
6796 break;
6797 }
6798 #endif
6799 case SCTP_ADD_IP_ADDRESS: {
6800 int ret;
6801 struct sctp_asconf_paramhdr ah;
6802
6803 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
6804 NULL, NULL, pd->af))
6805 return (PF_DROP);
6806
6807 ret = pf_multihome_scan(start + off + sizeof(ah),
6808 ntohs(ah.ph.param_length) - sizeof(ah), pd,
6809 SCTP_ADD_IP_ADDRESS);
6810 if (ret != PF_PASS)
6811 return (ret);
6812 break;
6813 }
6814 case SCTP_DEL_IP_ADDRESS: {
6815 int ret;
6816 struct sctp_asconf_paramhdr ah;
6817
6818 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah),
6819 NULL, NULL, pd->af))
6820 return (PF_DROP);
6821 ret = pf_multihome_scan(start + off + sizeof(ah),
6822 ntohs(ah.ph.param_length) - sizeof(ah), pd,
6823 SCTP_DEL_IP_ADDRESS);
6824 if (ret != PF_PASS)
6825 return (ret);
6826 break;
6827 }
6828 default:
6829 break;
6830 }
6831
6832 off += roundup(ntohs(h.param_length), 4);
6833 }
6834
6835 return (PF_PASS);
6836 }
6837 int
pf_multihome_scan_init(int start,int len,struct pf_pdesc * pd)6838 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd)
6839 {
6840 start += sizeof(struct sctp_init_chunk);
6841 len -= sizeof(struct sctp_init_chunk);
6842
6843 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
6844 }
6845
6846 int
pf_multihome_scan_asconf(int start,int len,struct pf_pdesc * pd)6847 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd)
6848 {
6849 start += sizeof(struct sctp_asconf_chunk);
6850 len -= sizeof(struct sctp_asconf_chunk);
6851
6852 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS));
6853 }
6854
6855 int
pf_icmp_state_lookup(struct pf_state_key_cmp * key,struct pf_pdesc * pd,struct pf_kstate ** state,int direction,u_int16_t icmpid,u_int16_t type,int icmp_dir,int * iidx,int multi,int inner)6856 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd,
6857 struct pf_kstate **state, int direction,
6858 u_int16_t icmpid, u_int16_t type, int icmp_dir,
6859 int *iidx, int multi, int inner)
6860 {
6861 key->af = pd->af;
6862 key->proto = pd->proto;
6863 if (icmp_dir == PF_IN) {
6864 *iidx = pd->sidx;
6865 key->port[pd->sidx] = icmpid;
6866 key->port[pd->didx] = type;
6867 } else {
6868 *iidx = pd->didx;
6869 key->port[pd->sidx] = type;
6870 key->port[pd->didx] = icmpid;
6871 }
6872 if (pf_state_key_addr_setup(pd, key, multi))
6873 return (PF_DROP);
6874
6875 STATE_LOOKUP(key, *state, pd);
6876
6877 if ((*state)->state_flags & PFSTATE_SLOPPY)
6878 return (-1);
6879
6880 /* Is this ICMP message flowing in right direction? */
6881 if ((*state)->rule->type &&
6882 (((!inner && (*state)->direction == direction) ||
6883 (inner && (*state)->direction != direction)) ?
6884 PF_IN : PF_OUT) != icmp_dir) {
6885 if (V_pf_status.debug >= PF_DEBUG_MISC) {
6886 printf("pf: icmp type %d in wrong direction (%d): ",
6887 ntohs(type), icmp_dir);
6888 pf_print_state(*state);
6889 printf("\n");
6890 }
6891 PF_STATE_UNLOCK(*state);
6892 *state = NULL;
6893 return (PF_DROP);
6894 }
6895 return (-1);
6896 }
6897
6898 static int
pf_test_state_icmp(struct pf_kstate ** state,struct pf_pdesc * pd,u_short * reason)6899 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd,
6900 u_short *reason)
6901 {
6902 struct pf_addr *saddr = pd->src, *daddr = pd->dst;
6903 u_int16_t *icmpsum, virtual_id, virtual_type;
6904 u_int8_t icmptype, icmpcode;
6905 int icmp_dir, iidx, ret, multi;
6906 struct pf_state_key_cmp key;
6907 #ifdef INET
6908 u_int16_t icmpid;
6909 #endif
6910
6911 MPASS(*state == NULL);
6912
6913 bzero(&key, sizeof(key));
6914 switch (pd->proto) {
6915 #ifdef INET
6916 case IPPROTO_ICMP:
6917 icmptype = pd->hdr.icmp.icmp_type;
6918 icmpcode = pd->hdr.icmp.icmp_code;
6919 icmpid = pd->hdr.icmp.icmp_id;
6920 icmpsum = &pd->hdr.icmp.icmp_cksum;
6921 break;
6922 #endif /* INET */
6923 #ifdef INET6
6924 case IPPROTO_ICMPV6:
6925 icmptype = pd->hdr.icmp6.icmp6_type;
6926 icmpcode = pd->hdr.icmp6.icmp6_code;
6927 #ifdef INET
6928 icmpid = pd->hdr.icmp6.icmp6_id;
6929 #endif
6930 icmpsum = &pd->hdr.icmp6.icmp6_cksum;
6931 break;
6932 #endif /* INET6 */
6933 }
6934
6935 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &multi,
6936 &virtual_id, &virtual_type) == 0) {
6937 /*
6938 * ICMP query/reply message not related to a TCP/UDP packet.
6939 * Search for an ICMP state.
6940 */
6941 ret = pf_icmp_state_lookup(&key, pd, state, pd->dir,
6942 virtual_id, virtual_type, icmp_dir, &iidx,
6943 PF_ICMP_MULTI_NONE, 0);
6944 if (ret >= 0) {
6945 MPASS(*state == NULL);
6946 if (ret == PF_DROP && pd->af == AF_INET6 &&
6947 icmp_dir == PF_OUT) {
6948 ret = pf_icmp_state_lookup(&key, pd, state,
6949 pd->dir, virtual_id, virtual_type,
6950 icmp_dir, &iidx, multi, 0);
6951 if (ret >= 0) {
6952 MPASS(*state == NULL);
6953 return (ret);
6954 }
6955 } else
6956 return (ret);
6957 }
6958
6959 (*state)->expire = pf_get_uptime();
6960 (*state)->timeout = PFTM_ICMP_ERROR_REPLY;
6961
6962 /* translate source/destination address, if necessary */
6963 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
6964 struct pf_state_key *nk = (*state)->key[pd->didx];
6965
6966 switch (pd->af) {
6967 #ifdef INET
6968 case AF_INET:
6969 if (PF_ANEQ(pd->src,
6970 &nk->addr[pd->sidx], AF_INET))
6971 pf_change_a(&saddr->v4.s_addr,
6972 pd->ip_sum,
6973 nk->addr[pd->sidx].v4.s_addr, 0);
6974
6975 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx],
6976 AF_INET))
6977 pf_change_a(&daddr->v4.s_addr,
6978 pd->ip_sum,
6979 nk->addr[pd->didx].v4.s_addr, 0);
6980
6981 if (nk->port[iidx] !=
6982 pd->hdr.icmp.icmp_id) {
6983 pd->hdr.icmp.icmp_cksum =
6984 pf_cksum_fixup(
6985 pd->hdr.icmp.icmp_cksum, icmpid,
6986 nk->port[iidx], 0);
6987 pd->hdr.icmp.icmp_id =
6988 nk->port[iidx];
6989 }
6990
6991 m_copyback(pd->m, pd->off, ICMP_MINLEN,
6992 (caddr_t )&pd->hdr.icmp);
6993 break;
6994 #endif /* INET */
6995 #ifdef INET6
6996 case AF_INET6:
6997 if (PF_ANEQ(pd->src,
6998 &nk->addr[pd->sidx], AF_INET6))
6999 pf_change_a6(saddr,
7000 &pd->hdr.icmp6.icmp6_cksum,
7001 &nk->addr[pd->sidx], 0);
7002
7003 if (PF_ANEQ(pd->dst,
7004 &nk->addr[pd->didx], AF_INET6))
7005 pf_change_a6(daddr,
7006 &pd->hdr.icmp6.icmp6_cksum,
7007 &nk->addr[pd->didx], 0);
7008
7009 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7010 (caddr_t )&pd->hdr.icmp6);
7011 break;
7012 #endif /* INET6 */
7013 }
7014 }
7015 return (PF_PASS);
7016
7017 } else {
7018 /*
7019 * ICMP error message in response to a TCP/UDP packet.
7020 * Extract the inner TCP/UDP header and search for that state.
7021 */
7022
7023 struct pf_pdesc pd2;
7024 bzero(&pd2, sizeof pd2);
7025 #ifdef INET
7026 struct ip h2;
7027 #endif /* INET */
7028 #ifdef INET6
7029 struct ip6_hdr h2_6;
7030 int fragoff2, extoff2;
7031 u_int32_t jumbolen;
7032 #endif /* INET6 */
7033 int ipoff2 = 0;
7034
7035 pd2.af = pd->af;
7036 pd2.dir = pd->dir;
7037 /* Payload packet is from the opposite direction. */
7038 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0;
7039 pd2.didx = (pd->dir == PF_IN) ? 0 : 1;
7040 pd2.m = pd->m;
7041 switch (pd->af) {
7042 #ifdef INET
7043 case AF_INET:
7044 /* offset of h2 in mbuf chain */
7045 ipoff2 = pd->off + ICMP_MINLEN;
7046
7047 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2),
7048 NULL, reason, pd2.af)) {
7049 DPFPRINTF(PF_DEBUG_MISC,
7050 ("pf: ICMP error message too short "
7051 "(ip)\n"));
7052 return (PF_DROP);
7053 }
7054 /*
7055 * ICMP error messages don't refer to non-first
7056 * fragments
7057 */
7058 if (h2.ip_off & htons(IP_OFFMASK)) {
7059 REASON_SET(reason, PFRES_FRAG);
7060 return (PF_DROP);
7061 }
7062
7063 /* offset of protocol header that follows h2 */
7064 pd2.off = ipoff2 + (h2.ip_hl << 2);
7065
7066 pd2.proto = h2.ip_p;
7067 pd2.src = (struct pf_addr *)&h2.ip_src;
7068 pd2.dst = (struct pf_addr *)&h2.ip_dst;
7069 pd2.ip_sum = &h2.ip_sum;
7070 break;
7071 #endif /* INET */
7072 #ifdef INET6
7073 case AF_INET6:
7074 ipoff2 = pd->off + sizeof(struct icmp6_hdr);
7075
7076 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6),
7077 NULL, reason, pd2.af)) {
7078 DPFPRINTF(PF_DEBUG_MISC,
7079 ("pf: ICMP error message too short "
7080 "(ip6)\n"));
7081 return (PF_DROP);
7082 }
7083 pd2.off = ipoff2;
7084 if (pf_walk_header6(pd->m, &h2_6, &pd2.off, &extoff2,
7085 &fragoff2, &pd2.proto, &jumbolen,
7086 reason) != PF_PASS)
7087 return (PF_DROP);
7088
7089 pd2.src = (struct pf_addr *)&h2_6.ip6_src;
7090 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst;
7091 pd2.ip_sum = NULL;
7092 break;
7093 #endif /* INET6 */
7094 }
7095
7096 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) {
7097 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7098 printf("pf: BAD ICMP %d:%d outer dst: ",
7099 icmptype, icmpcode);
7100 pf_print_host(pd->src, 0, pd->af);
7101 printf(" -> ");
7102 pf_print_host(pd->dst, 0, pd->af);
7103 printf(" inner src: ");
7104 pf_print_host(pd2.src, 0, pd2.af);
7105 printf(" -> ");
7106 pf_print_host(pd2.dst, 0, pd2.af);
7107 printf("\n");
7108 }
7109 REASON_SET(reason, PFRES_BADSTATE);
7110 return (PF_DROP);
7111 }
7112
7113 switch (pd2.proto) {
7114 case IPPROTO_TCP: {
7115 struct tcphdr th;
7116 u_int32_t seq;
7117 struct pf_state_peer *src, *dst;
7118 u_int8_t dws;
7119 int copyback = 0;
7120
7121 /*
7122 * Only the first 8 bytes of the TCP header can be
7123 * expected. Don't access any TCP header fields after
7124 * th_seq, an ackskew test is not possible.
7125 */
7126 if (!pf_pull_hdr(pd->m, pd2.off, &th, 8, NULL, reason,
7127 pd2.af)) {
7128 DPFPRINTF(PF_DEBUG_MISC,
7129 ("pf: ICMP error message too short "
7130 "(tcp)\n"));
7131 return (PF_DROP);
7132 }
7133
7134 key.af = pd2.af;
7135 key.proto = IPPROTO_TCP;
7136 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7137 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7138 key.port[pd2.sidx] = th.th_sport;
7139 key.port[pd2.didx] = th.th_dport;
7140
7141 STATE_LOOKUP(&key, *state, pd);
7142
7143 if (pd->dir == (*state)->direction) {
7144 src = &(*state)->dst;
7145 dst = &(*state)->src;
7146 } else {
7147 src = &(*state)->src;
7148 dst = &(*state)->dst;
7149 }
7150
7151 if (src->wscale && dst->wscale)
7152 dws = dst->wscale & PF_WSCALE_MASK;
7153 else
7154 dws = 0;
7155
7156 /* Demodulate sequence number */
7157 seq = ntohl(th.th_seq) - src->seqdiff;
7158 if (src->seqdiff) {
7159 pf_change_a(&th.th_seq, icmpsum,
7160 htonl(seq), 0);
7161 copyback = 1;
7162 }
7163
7164 if (!((*state)->state_flags & PFSTATE_SLOPPY) &&
7165 (!SEQ_GEQ(src->seqhi, seq) ||
7166 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) {
7167 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7168 printf("pf: BAD ICMP %d:%d ",
7169 icmptype, icmpcode);
7170 pf_print_host(pd->src, 0, pd->af);
7171 printf(" -> ");
7172 pf_print_host(pd->dst, 0, pd->af);
7173 printf(" state: ");
7174 pf_print_state(*state);
7175 printf(" seq=%u\n", seq);
7176 }
7177 REASON_SET(reason, PFRES_BADSTATE);
7178 return (PF_DROP);
7179 } else {
7180 if (V_pf_status.debug >= PF_DEBUG_MISC) {
7181 printf("pf: OK ICMP %d:%d ",
7182 icmptype, icmpcode);
7183 pf_print_host(pd->src, 0, pd->af);
7184 printf(" -> ");
7185 pf_print_host(pd->dst, 0, pd->af);
7186 printf(" state: ");
7187 pf_print_state(*state);
7188 printf(" seq=%u\n", seq);
7189 }
7190 }
7191
7192 /* translate source/destination address, if necessary */
7193 if ((*state)->key[PF_SK_WIRE] !=
7194 (*state)->key[PF_SK_STACK]) {
7195 struct pf_state_key *nk =
7196 (*state)->key[pd->didx];
7197
7198 if (PF_ANEQ(pd2.src,
7199 &nk->addr[pd2.sidx], pd2.af) ||
7200 nk->port[pd2.sidx] != th.th_sport)
7201 pf_change_icmp(pd2.src, &th.th_sport,
7202 daddr, &nk->addr[pd2.sidx],
7203 nk->port[pd2.sidx], NULL,
7204 pd2.ip_sum, icmpsum,
7205 pd->ip_sum, 0, pd2.af);
7206
7207 if (PF_ANEQ(pd2.dst,
7208 &nk->addr[pd2.didx], pd2.af) ||
7209 nk->port[pd2.didx] != th.th_dport)
7210 pf_change_icmp(pd2.dst, &th.th_dport,
7211 saddr, &nk->addr[pd2.didx],
7212 nk->port[pd2.didx], NULL,
7213 pd2.ip_sum, icmpsum,
7214 pd->ip_sum, 0, pd2.af);
7215 copyback = 1;
7216 }
7217
7218 if (copyback) {
7219 switch (pd2.af) {
7220 #ifdef INET
7221 case AF_INET:
7222 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7223 (caddr_t )&pd->hdr.icmp);
7224 m_copyback(pd->m, ipoff2, sizeof(h2),
7225 (caddr_t )&h2);
7226 break;
7227 #endif /* INET */
7228 #ifdef INET6
7229 case AF_INET6:
7230 m_copyback(pd->m, pd->off,
7231 sizeof(struct icmp6_hdr),
7232 (caddr_t )&pd->hdr.icmp6);
7233 m_copyback(pd->m, ipoff2, sizeof(h2_6),
7234 (caddr_t )&h2_6);
7235 break;
7236 #endif /* INET6 */
7237 }
7238 m_copyback(pd->m, pd2.off, 8, (caddr_t)&th);
7239 }
7240
7241 return (PF_PASS);
7242 break;
7243 }
7244 case IPPROTO_UDP: {
7245 struct udphdr uh;
7246
7247 if (!pf_pull_hdr(pd->m, pd2.off, &uh, sizeof(uh),
7248 NULL, reason, pd2.af)) {
7249 DPFPRINTF(PF_DEBUG_MISC,
7250 ("pf: ICMP error message too short "
7251 "(udp)\n"));
7252 return (PF_DROP);
7253 }
7254
7255 key.af = pd2.af;
7256 key.proto = IPPROTO_UDP;
7257 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7258 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7259 key.port[pd2.sidx] = uh.uh_sport;
7260 key.port[pd2.didx] = uh.uh_dport;
7261
7262 STATE_LOOKUP(&key, *state, pd);
7263
7264 /* translate source/destination address, if necessary */
7265 if ((*state)->key[PF_SK_WIRE] !=
7266 (*state)->key[PF_SK_STACK]) {
7267 struct pf_state_key *nk =
7268 (*state)->key[pd->didx];
7269
7270 if (PF_ANEQ(pd2.src,
7271 &nk->addr[pd2.sidx], pd2.af) ||
7272 nk->port[pd2.sidx] != uh.uh_sport)
7273 pf_change_icmp(pd2.src, &uh.uh_sport,
7274 daddr, &nk->addr[pd2.sidx],
7275 nk->port[pd2.sidx], &uh.uh_sum,
7276 pd2.ip_sum, icmpsum,
7277 pd->ip_sum, 1, pd2.af);
7278
7279 if (PF_ANEQ(pd2.dst,
7280 &nk->addr[pd2.didx], pd2.af) ||
7281 nk->port[pd2.didx] != uh.uh_dport)
7282 pf_change_icmp(pd2.dst, &uh.uh_dport,
7283 saddr, &nk->addr[pd2.didx],
7284 nk->port[pd2.didx], &uh.uh_sum,
7285 pd2.ip_sum, icmpsum,
7286 pd->ip_sum, 1, pd2.af);
7287
7288 switch (pd2.af) {
7289 #ifdef INET
7290 case AF_INET:
7291 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7292 (caddr_t )&pd->hdr.icmp);
7293 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7294 break;
7295 #endif /* INET */
7296 #ifdef INET6
7297 case AF_INET6:
7298 m_copyback(pd->m, pd->off,
7299 sizeof(struct icmp6_hdr),
7300 (caddr_t )&pd->hdr.icmp6);
7301 m_copyback(pd->m, ipoff2, sizeof(h2_6),
7302 (caddr_t )&h2_6);
7303 break;
7304 #endif /* INET6 */
7305 }
7306 m_copyback(pd->m, pd2.off, sizeof(uh), (caddr_t)&uh);
7307 }
7308 return (PF_PASS);
7309 break;
7310 }
7311 #ifdef INET
7312 case IPPROTO_ICMP: {
7313 struct icmp *iih = &pd2.hdr.icmp;
7314
7315 if (pd2.af != AF_INET) {
7316 REASON_SET(reason, PFRES_NORM);
7317 return (PF_DROP);
7318 }
7319
7320 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN,
7321 NULL, reason, pd2.af)) {
7322 DPFPRINTF(PF_DEBUG_MISC,
7323 ("pf: ICMP error message too short i"
7324 "(icmp)\n"));
7325 return (PF_DROP);
7326 }
7327
7328 icmpid = iih->icmp_id;
7329 pf_icmp_mapping(&pd2, iih->icmp_type,
7330 &icmp_dir, &multi, &virtual_id, &virtual_type);
7331
7332 ret = pf_icmp_state_lookup(&key, &pd2, state,
7333 pd2.dir, virtual_id, virtual_type,
7334 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
7335 if (ret >= 0) {
7336 MPASS(*state == NULL);
7337 return (ret);
7338 }
7339
7340 /* translate source/destination address, if necessary */
7341 if ((*state)->key[PF_SK_WIRE] !=
7342 (*state)->key[PF_SK_STACK]) {
7343 struct pf_state_key *nk =
7344 (*state)->key[pd->didx];
7345
7346 if (PF_ANEQ(pd2.src,
7347 &nk->addr[pd2.sidx], pd2.af) ||
7348 (virtual_type == htons(ICMP_ECHO) &&
7349 nk->port[iidx] != iih->icmp_id))
7350 pf_change_icmp(pd2.src,
7351 (virtual_type == htons(ICMP_ECHO)) ?
7352 &iih->icmp_id : NULL,
7353 daddr, &nk->addr[pd2.sidx],
7354 (virtual_type == htons(ICMP_ECHO)) ?
7355 nk->port[iidx] : 0, NULL,
7356 pd2.ip_sum, icmpsum,
7357 pd->ip_sum, 0, AF_INET);
7358
7359 if (PF_ANEQ(pd2.dst,
7360 &nk->addr[pd2.didx], pd2.af))
7361 pf_change_icmp(pd2.dst, NULL, NULL,
7362 &nk->addr[pd2.didx], 0, NULL,
7363 pd2.ip_sum, icmpsum, pd->ip_sum, 0,
7364 AF_INET);
7365
7366 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp);
7367 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7368 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih);
7369 }
7370 return (PF_PASS);
7371 break;
7372 }
7373 #endif /* INET */
7374 #ifdef INET6
7375 case IPPROTO_ICMPV6: {
7376 struct icmp6_hdr *iih = &pd2.hdr.icmp6;
7377
7378 if (pd2.af != AF_INET6) {
7379 REASON_SET(reason, PFRES_NORM);
7380 return (PF_DROP);
7381 }
7382
7383 if (!pf_pull_hdr(pd->m, pd2.off, iih,
7384 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
7385 DPFPRINTF(PF_DEBUG_MISC,
7386 ("pf: ICMP error message too short "
7387 "(icmp6)\n"));
7388 return (PF_DROP);
7389 }
7390
7391 pf_icmp_mapping(&pd2, iih->icmp6_type,
7392 &icmp_dir, &multi, &virtual_id, &virtual_type);
7393
7394 ret = pf_icmp_state_lookup(&key, &pd2, state,
7395 pd->dir, virtual_id, virtual_type,
7396 icmp_dir, &iidx, PF_ICMP_MULTI_NONE, 1);
7397 if (ret >= 0) {
7398 MPASS(*state == NULL);
7399 if (ret == PF_DROP && pd2.af == AF_INET6 &&
7400 icmp_dir == PF_OUT) {
7401 ret = pf_icmp_state_lookup(&key, &pd2,
7402 state, pd->dir,
7403 virtual_id, virtual_type,
7404 icmp_dir, &iidx, multi, 1);
7405 if (ret >= 0) {
7406 MPASS(*state == NULL);
7407 return (ret);
7408 }
7409 } else
7410 return (ret);
7411 }
7412
7413 /* translate source/destination address, if necessary */
7414 if ((*state)->key[PF_SK_WIRE] !=
7415 (*state)->key[PF_SK_STACK]) {
7416 struct pf_state_key *nk =
7417 (*state)->key[pd->didx];
7418
7419 if (PF_ANEQ(pd2.src,
7420 &nk->addr[pd2.sidx], pd2.af) ||
7421 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) &&
7422 nk->port[pd2.sidx] != iih->icmp6_id))
7423 pf_change_icmp(pd2.src,
7424 (virtual_type == htons(ICMP6_ECHO_REQUEST))
7425 ? &iih->icmp6_id : NULL,
7426 daddr, &nk->addr[pd2.sidx],
7427 (virtual_type == htons(ICMP6_ECHO_REQUEST))
7428 ? nk->port[iidx] : 0, NULL,
7429 pd2.ip_sum, icmpsum,
7430 pd->ip_sum, 0, AF_INET6);
7431
7432 if (PF_ANEQ(pd2.dst,
7433 &nk->addr[pd2.didx], pd2.af))
7434 pf_change_icmp(pd2.dst, NULL, NULL,
7435 &nk->addr[pd2.didx], 0, NULL,
7436 pd2.ip_sum, icmpsum,
7437 pd->ip_sum, 0, AF_INET6);
7438
7439 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr),
7440 (caddr_t)&pd->hdr.icmp6);
7441 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6);
7442 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr),
7443 (caddr_t)iih);
7444 }
7445 return (PF_PASS);
7446 break;
7447 }
7448 #endif /* INET6 */
7449 default: {
7450 key.af = pd2.af;
7451 key.proto = pd2.proto;
7452 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af);
7453 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af);
7454 key.port[0] = key.port[1] = 0;
7455
7456 STATE_LOOKUP(&key, *state, pd);
7457
7458 /* translate source/destination address, if necessary */
7459 if ((*state)->key[PF_SK_WIRE] !=
7460 (*state)->key[PF_SK_STACK]) {
7461 struct pf_state_key *nk =
7462 (*state)->key[pd->didx];
7463
7464 if (PF_ANEQ(pd2.src,
7465 &nk->addr[pd2.sidx], pd2.af))
7466 pf_change_icmp(pd2.src, NULL, daddr,
7467 &nk->addr[pd2.sidx], 0, NULL,
7468 pd2.ip_sum, icmpsum,
7469 pd->ip_sum, 0, pd2.af);
7470
7471 if (PF_ANEQ(pd2.dst,
7472 &nk->addr[pd2.didx], pd2.af))
7473 pf_change_icmp(pd2.dst, NULL, saddr,
7474 &nk->addr[pd2.didx], 0, NULL,
7475 pd2.ip_sum, icmpsum,
7476 pd->ip_sum, 0, pd2.af);
7477
7478 switch (pd2.af) {
7479 #ifdef INET
7480 case AF_INET:
7481 m_copyback(pd->m, pd->off, ICMP_MINLEN,
7482 (caddr_t)&pd->hdr.icmp);
7483 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2);
7484 break;
7485 #endif /* INET */
7486 #ifdef INET6
7487 case AF_INET6:
7488 m_copyback(pd->m, pd->off,
7489 sizeof(struct icmp6_hdr),
7490 (caddr_t )&pd->hdr.icmp6);
7491 m_copyback(pd->m, ipoff2, sizeof(h2_6),
7492 (caddr_t )&h2_6);
7493 break;
7494 #endif /* INET6 */
7495 }
7496 }
7497 return (PF_PASS);
7498 break;
7499 }
7500 }
7501 }
7502 }
7503
7504 static int
pf_test_state_other(struct pf_kstate ** state,struct pf_pdesc * pd)7505 pf_test_state_other(struct pf_kstate **state, struct pf_pdesc *pd)
7506 {
7507 struct pf_state_peer *src, *dst;
7508 struct pf_state_key_cmp key;
7509 uint8_t psrc, pdst;
7510
7511 bzero(&key, sizeof(key));
7512 key.af = pd->af;
7513 key.proto = pd->proto;
7514 if (pd->dir == PF_IN) {
7515 PF_ACPY(&key.addr[0], pd->src, key.af);
7516 PF_ACPY(&key.addr[1], pd->dst, key.af);
7517 key.port[0] = key.port[1] = 0;
7518 } else {
7519 PF_ACPY(&key.addr[1], pd->src, key.af);
7520 PF_ACPY(&key.addr[0], pd->dst, key.af);
7521 key.port[1] = key.port[0] = 0;
7522 }
7523
7524 STATE_LOOKUP(&key, *state, pd);
7525
7526 if (pd->dir == (*state)->direction) {
7527 src = &(*state)->src;
7528 dst = &(*state)->dst;
7529 psrc = PF_PEER_SRC;
7530 pdst = PF_PEER_DST;
7531 } else {
7532 src = &(*state)->dst;
7533 dst = &(*state)->src;
7534 psrc = PF_PEER_DST;
7535 pdst = PF_PEER_SRC;
7536 }
7537
7538 /* update states */
7539 if (src->state < PFOTHERS_SINGLE)
7540 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE);
7541 if (dst->state == PFOTHERS_SINGLE)
7542 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE);
7543
7544 /* update expire time */
7545 (*state)->expire = pf_get_uptime();
7546 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE)
7547 (*state)->timeout = PFTM_OTHER_MULTIPLE;
7548 else
7549 (*state)->timeout = PFTM_OTHER_SINGLE;
7550
7551 /* translate source/destination address, if necessary */
7552 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) {
7553 struct pf_state_key *nk = (*state)->key[pd->didx];
7554
7555 KASSERT(nk, ("%s: nk is null", __func__));
7556 KASSERT(pd, ("%s: pd is null", __func__));
7557 KASSERT(pd->src, ("%s: pd->src is null", __func__));
7558 KASSERT(pd->dst, ("%s: pd->dst is null", __func__));
7559 switch (pd->af) {
7560 #ifdef INET
7561 case AF_INET:
7562 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET))
7563 pf_change_a(&pd->src->v4.s_addr,
7564 pd->ip_sum,
7565 nk->addr[pd->sidx].v4.s_addr,
7566 0);
7567
7568 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET))
7569 pf_change_a(&pd->dst->v4.s_addr,
7570 pd->ip_sum,
7571 nk->addr[pd->didx].v4.s_addr,
7572 0);
7573
7574 break;
7575 #endif /* INET */
7576 #ifdef INET6
7577 case AF_INET6:
7578 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6))
7579 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af);
7580
7581 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6))
7582 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af);
7583 #endif /* INET6 */
7584 }
7585 }
7586 return (PF_PASS);
7587 }
7588
7589 /*
7590 * ipoff and off are measured from the start of the mbuf chain.
7591 * h must be at "ipoff" on the mbuf chain.
7592 */
7593 void *
pf_pull_hdr(const struct mbuf * m,int off,void * p,int len,u_short * actionp,u_short * reasonp,sa_family_t af)7594 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len,
7595 u_short *actionp, u_short *reasonp, sa_family_t af)
7596 {
7597 switch (af) {
7598 #ifdef INET
7599 case AF_INET: {
7600 const struct ip *h = mtod(m, struct ip *);
7601 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
7602
7603 if (fragoff) {
7604 if (fragoff >= len)
7605 ACTION_SET(actionp, PF_PASS);
7606 else {
7607 ACTION_SET(actionp, PF_DROP);
7608 REASON_SET(reasonp, PFRES_FRAG);
7609 }
7610 return (NULL);
7611 }
7612 if (m->m_pkthdr.len < off + len ||
7613 ntohs(h->ip_len) < off + len) {
7614 ACTION_SET(actionp, PF_DROP);
7615 REASON_SET(reasonp, PFRES_SHORT);
7616 return (NULL);
7617 }
7618 break;
7619 }
7620 #endif /* INET */
7621 #ifdef INET6
7622 case AF_INET6: {
7623 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
7624
7625 if (m->m_pkthdr.len < off + len ||
7626 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
7627 (unsigned)(off + len)) {
7628 ACTION_SET(actionp, PF_DROP);
7629 REASON_SET(reasonp, PFRES_SHORT);
7630 return (NULL);
7631 }
7632 break;
7633 }
7634 #endif /* INET6 */
7635 }
7636 m_copydata(m, off, len, p);
7637 return (p);
7638 }
7639
7640 int
pf_routable(struct pf_addr * addr,sa_family_t af,struct pfi_kkif * kif,int rtableid)7641 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif,
7642 int rtableid)
7643 {
7644 struct ifnet *ifp;
7645
7646 /*
7647 * Skip check for addresses with embedded interface scope,
7648 * as they would always match anyway.
7649 */
7650 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6))
7651 return (1);
7652
7653 if (af != AF_INET && af != AF_INET6)
7654 return (0);
7655
7656 if (kif == V_pfi_all)
7657 return (1);
7658
7659 /* Skip checks for ipsec interfaces */
7660 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC)
7661 return (1);
7662
7663 ifp = (kif != NULL) ? kif->pfik_ifp : NULL;
7664
7665 switch (af) {
7666 #ifdef INET6
7667 case AF_INET6:
7668 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE,
7669 ifp));
7670 #endif
7671 #ifdef INET
7672 case AF_INET:
7673 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE,
7674 ifp));
7675 #endif
7676 }
7677
7678 return (0);
7679 }
7680
7681 #ifdef INET
7682 static void
pf_route(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)7683 pf_route(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
7684 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
7685 {
7686 struct mbuf *m0, *m1, *md;
7687 struct sockaddr_in dst;
7688 struct ip *ip;
7689 struct pfi_kkif *nkif = NULL;
7690 struct ifnet *ifp = NULL;
7691 struct pf_addr naddr;
7692 int error = 0;
7693 uint16_t ip_len, ip_off;
7694 uint16_t tmp;
7695 int r_rt, r_dir;
7696
7697 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
7698
7699 SDT_PROBE4(pf, ip, route_to, entry, *m, pd, s, oifp);
7700
7701 if (s) {
7702 r_rt = s->rt;
7703 r_dir = s->direction;
7704 } else {
7705 r_rt = r->rt;
7706 r_dir = r->direction;
7707 }
7708
7709 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
7710 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
7711 __func__));
7712
7713 if ((pd->pf_mtag == NULL &&
7714 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
7715 pd->pf_mtag->routed++ > 3) {
7716 m0 = *m;
7717 *m = NULL;
7718 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7719 goto bad_locked;
7720 }
7721
7722 if (r_rt == PF_DUPTO) {
7723 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
7724 if (s == NULL) {
7725 ifp = r->rpool.cur->kif ?
7726 r->rpool.cur->kif->pfik_ifp : NULL;
7727 } else {
7728 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7729 /* If pfsync'd */
7730 if (ifp == NULL && r->rpool.cur != NULL)
7731 ifp = r->rpool.cur->kif ?
7732 r->rpool.cur->kif->pfik_ifp : NULL;
7733 PF_STATE_UNLOCK(s);
7734 }
7735 if (ifp == oifp) {
7736 /* When the 2nd interface is not skipped */
7737 return;
7738 } else {
7739 m0 = *m;
7740 *m = NULL;
7741 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7742 goto bad;
7743 }
7744 } else {
7745 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
7746 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
7747 if (s)
7748 PF_STATE_UNLOCK(s);
7749 return;
7750 }
7751 }
7752 } else {
7753 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) {
7754 pf_dummynet(pd, s, r, m);
7755 if (s)
7756 PF_STATE_UNLOCK(s);
7757 return;
7758 }
7759 m0 = *m;
7760 }
7761
7762 ip = mtod(m0, struct ip *);
7763
7764 bzero(&dst, sizeof(dst));
7765 dst.sin_family = AF_INET;
7766 dst.sin_len = sizeof(dst);
7767 dst.sin_addr = ip->ip_dst;
7768
7769 bzero(&naddr, sizeof(naddr));
7770
7771 if (s == NULL) {
7772 if (TAILQ_EMPTY(&r->rpool.list)) {
7773 DPFPRINTF(PF_DEBUG_URGENT,
7774 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
7775 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7776 goto bad_locked;
7777 }
7778 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
7779 &naddr, &nkif, NULL);
7780 if (!PF_AZERO(&naddr, AF_INET))
7781 dst.sin_addr.s_addr = naddr.v4.s_addr;
7782 ifp = nkif ? nkif->pfik_ifp : NULL;
7783 } else {
7784 struct pfi_kkif *kif;
7785
7786 if (!PF_AZERO(&s->rt_addr, AF_INET))
7787 dst.sin_addr.s_addr =
7788 s->rt_addr.v4.s_addr;
7789 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7790 kif = s->rt_kif;
7791 /* If pfsync'd */
7792 if (ifp == NULL && r->rpool.cur != NULL) {
7793 ifp = r->rpool.cur->kif ?
7794 r->rpool.cur->kif->pfik_ifp : NULL;
7795 kif = r->rpool.cur->kif;
7796 }
7797 if (ifp != NULL && kif != NULL &&
7798 r->rule_flag & PFRULE_IFBOUND &&
7799 r->rt == PF_REPLYTO &&
7800 s->kif == V_pfi_all) {
7801 s->kif = kif;
7802 s->orig_kif = oifp->if_pf_kif;
7803 }
7804
7805 PF_STATE_UNLOCK(s);
7806 }
7807
7808 if (ifp == NULL) {
7809 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7810 goto bad;
7811 }
7812
7813 if (pd->dir == PF_IN) {
7814 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp,
7815 &pd->act) != PF_PASS) {
7816 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7817 goto bad;
7818 } else if (m0 == NULL) {
7819 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7820 goto done;
7821 }
7822 if (m0->m_len < sizeof(struct ip)) {
7823 DPFPRINTF(PF_DEBUG_URGENT,
7824 ("%s: m0->m_len < sizeof(struct ip)\n", __func__));
7825 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7826 goto bad;
7827 }
7828 ip = mtod(m0, struct ip *);
7829 }
7830
7831 if (ifp->if_flags & IFF_LOOPBACK)
7832 m0->m_flags |= M_SKIP_FIREWALL;
7833
7834 ip_len = ntohs(ip->ip_len);
7835 ip_off = ntohs(ip->ip_off);
7836
7837 /* Copied from FreeBSD 10.0-CURRENT ip_output. */
7838 m0->m_pkthdr.csum_flags |= CSUM_IP;
7839 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
7840 in_delayed_cksum(m0);
7841 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
7842 }
7843 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
7844 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2));
7845 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
7846 }
7847
7848 if (pd->dir == PF_IN) {
7849 /*
7850 * Make sure dummynet gets the correct direction, in case it needs to
7851 * re-inject later.
7852 */
7853 pd->dir = PF_OUT;
7854
7855 /*
7856 * The following processing is actually the rest of the inbound processing, even
7857 * though we've marked it as outbound (so we don't look through dummynet) and it
7858 * happens after the outbound processing (pf_test(PF_OUT) above).
7859 * Swap the dummynet pipe numbers, because it's going to come to the wrong
7860 * conclusion about what direction it's processing, and we can't fix it or it
7861 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect
7862 * decision will pick the right pipe, and everything will mostly work as expected.
7863 */
7864 tmp = pd->act.dnrpipe;
7865 pd->act.dnrpipe = pd->act.dnpipe;
7866 pd->act.dnpipe = tmp;
7867 }
7868
7869 /*
7870 * If small enough for interface, or the interface will take
7871 * care of the fragmentation for us, we can just send directly.
7872 */
7873 if (ip_len <= ifp->if_mtu ||
7874 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
7875 ip->ip_sum = 0;
7876 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
7877 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
7878 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
7879 }
7880 m_clrprotoflags(m0); /* Avoid confusing lower layers. */
7881
7882 md = m0;
7883 error = pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
7884 if (md != NULL) {
7885 error = (*ifp->if_output)(ifp, md, sintosa(&dst), NULL);
7886 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
7887 }
7888 goto done;
7889 }
7890
7891 /* Balk when DF bit is set or the interface didn't support TSO. */
7892 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
7893 error = EMSGSIZE;
7894 KMOD_IPSTAT_INC(ips_cantfrag);
7895 if (r_rt != PF_DUPTO) {
7896 if (s && s->nat_rule != NULL)
7897 PACKET_UNDO_NAT(m0, pd,
7898 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK),
7899 s);
7900
7901 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
7902 ifp->if_mtu);
7903 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7904 goto done;
7905 } else {
7906 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7907 goto bad;
7908 }
7909 }
7910
7911 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist);
7912 if (error) {
7913 SDT_PROBE1(pf, ip, route_to, drop, __LINE__);
7914 goto bad;
7915 }
7916
7917 for (; m0; m0 = m1) {
7918 m1 = m0->m_nextpkt;
7919 m0->m_nextpkt = NULL;
7920 if (error == 0) {
7921 m_clrprotoflags(m0);
7922 md = m0;
7923 pd->pf_mtag = pf_find_mtag(md);
7924 error = pf_dummynet_route(pd, s, r, ifp,
7925 sintosa(&dst), &md);
7926 if (md != NULL) {
7927 error = (*ifp->if_output)(ifp, md,
7928 sintosa(&dst), NULL);
7929 SDT_PROBE2(pf, ip, route_to, output, ifp, error);
7930 }
7931 } else
7932 m_freem(m0);
7933 }
7934
7935 if (error == 0)
7936 KMOD_IPSTAT_INC(ips_fragmented);
7937
7938 done:
7939 if (r_rt != PF_DUPTO)
7940 *m = NULL;
7941 return;
7942
7943 bad_locked:
7944 if (s)
7945 PF_STATE_UNLOCK(s);
7946 bad:
7947 m_freem(m0);
7948 goto done;
7949 }
7950 #endif /* INET */
7951
7952 #ifdef INET6
7953 static void
pf_route6(struct mbuf ** m,struct pf_krule * r,struct ifnet * oifp,struct pf_kstate * s,struct pf_pdesc * pd,struct inpcb * inp)7954 pf_route6(struct mbuf **m, struct pf_krule *r, struct ifnet *oifp,
7955 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp)
7956 {
7957 struct mbuf *m0, *md;
7958 struct m_tag *mtag;
7959 struct sockaddr_in6 dst;
7960 struct ip6_hdr *ip6;
7961 struct pfi_kkif *nkif = NULL;
7962 struct ifnet *ifp = NULL;
7963 struct pf_addr naddr;
7964 int r_rt, r_dir;
7965
7966 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__));
7967
7968 SDT_PROBE4(pf, ip6, route_to, entry, *m, pd, s, oifp);
7969
7970 if (s) {
7971 r_rt = s->rt;
7972 r_dir = s->direction;
7973 } else {
7974 r_rt = r->rt;
7975 r_dir = r->direction;
7976 }
7977
7978 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT ||
7979 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction",
7980 __func__));
7981
7982 if ((pd->pf_mtag == NULL &&
7983 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) ||
7984 pd->pf_mtag->routed++ > 3) {
7985 m0 = *m;
7986 *m = NULL;
7987 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
7988 goto bad_locked;
7989 }
7990
7991 if (r_rt == PF_DUPTO) {
7992 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) {
7993 if (s == NULL) {
7994 ifp = r->rpool.cur->kif ?
7995 r->rpool.cur->kif->pfik_ifp : NULL;
7996 } else {
7997 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
7998 /* If pfsync'd */
7999 if (ifp == NULL && r->rpool.cur != NULL)
8000 ifp = r->rpool.cur->kif ?
8001 r->rpool.cur->kif->pfik_ifp : NULL;
8002 PF_STATE_UNLOCK(s);
8003 }
8004 if (ifp == oifp) {
8005 /* When the 2nd interface is not skipped */
8006 return;
8007 } else {
8008 m0 = *m;
8009 *m = NULL;
8010 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8011 goto bad;
8012 }
8013 } else {
8014 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED;
8015 if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) {
8016 if (s)
8017 PF_STATE_UNLOCK(s);
8018 return;
8019 }
8020 }
8021 } else {
8022 if ((r_rt == PF_REPLYTO) == (r_dir == pd->dir)) {
8023 pf_dummynet(pd, s, r, m);
8024 if (s)
8025 PF_STATE_UNLOCK(s);
8026 return;
8027 }
8028 m0 = *m;
8029 }
8030
8031 ip6 = mtod(m0, struct ip6_hdr *);
8032
8033 bzero(&dst, sizeof(dst));
8034 dst.sin6_family = AF_INET6;
8035 dst.sin6_len = sizeof(dst);
8036 dst.sin6_addr = ip6->ip6_dst;
8037
8038 bzero(&naddr, sizeof(naddr));
8039
8040 if (s == NULL) {
8041 if (TAILQ_EMPTY(&r->rpool.list)) {
8042 DPFPRINTF(PF_DEBUG_URGENT,
8043 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__));
8044 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8045 goto bad_locked;
8046 }
8047 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src,
8048 &naddr, &nkif, NULL);
8049 if (!PF_AZERO(&naddr, AF_INET6))
8050 PF_ACPY((struct pf_addr *)&dst.sin6_addr,
8051 &naddr, AF_INET6);
8052 ifp = nkif ? nkif->pfik_ifp : NULL;
8053 } else {
8054 struct pfi_kkif *kif;
8055
8056 if (!PF_AZERO(&s->rt_addr, AF_INET6))
8057 PF_ACPY((struct pf_addr *)&dst.sin6_addr,
8058 &s->rt_addr, AF_INET6);
8059 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
8060 kif = s->rt_kif;
8061 /* If pfsync'd */
8062 if (ifp == NULL && r->rpool.cur != NULL) {
8063 ifp = r->rpool.cur->kif ?
8064 r->rpool.cur->kif->pfik_ifp : NULL;
8065 kif = r->rpool.cur->kif;
8066 }
8067 if (ifp != NULL && kif != NULL &&
8068 r->rule_flag & PFRULE_IFBOUND &&
8069 r->rt == PF_REPLYTO &&
8070 s->kif == V_pfi_all) {
8071 s->kif = kif;
8072 s->orig_kif = oifp->if_pf_kif;
8073 }
8074 }
8075
8076 if (s)
8077 PF_STATE_UNLOCK(s);
8078
8079 if (ifp == NULL) {
8080 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8081 goto bad;
8082 }
8083
8084 if (pd->dir == PF_IN) {
8085 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT,
8086 ifp, &m0, inp, &pd->act) != PF_PASS) {
8087 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8088 goto bad;
8089 } else if (m0 == NULL) {
8090 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8091 goto done;
8092 }
8093 if (m0->m_len < sizeof(struct ip6_hdr)) {
8094 DPFPRINTF(PF_DEBUG_URGENT,
8095 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n",
8096 __func__));
8097 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8098 goto bad;
8099 }
8100 ip6 = mtod(m0, struct ip6_hdr *);
8101 }
8102
8103 if (ifp->if_flags & IFF_LOOPBACK)
8104 m0->m_flags |= M_SKIP_FIREWALL;
8105
8106 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 &
8107 ~ifp->if_hwassist) {
8108 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6);
8109 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr));
8110 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
8111 }
8112
8113 /*
8114 * If the packet is too large for the outgoing interface,
8115 * send back an icmp6 error.
8116 */
8117 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr))
8118 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
8119 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL);
8120 if (mtag != NULL) {
8121 int ret __sdt_used;
8122 ret = pf_refragment6(ifp, &m0, mtag, ifp, true);
8123 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
8124 goto done;
8125 }
8126
8127 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) {
8128 md = m0;
8129 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md);
8130 if (md != NULL) {
8131 int ret __sdt_used;
8132 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL);
8133 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret);
8134 }
8135 }
8136 else {
8137 in6_ifstat_inc(ifp, ifs6_in_toobig);
8138 if (r_rt != PF_DUPTO) {
8139 if (s && s->nat_rule != NULL)
8140 PACKET_UNDO_NAT(m0, pd,
8141 ((caddr_t)ip6 - m0->m_data) +
8142 sizeof(struct ip6_hdr), s);
8143
8144 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
8145 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8146 } else {
8147 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__);
8148 goto bad;
8149 }
8150 }
8151
8152 done:
8153 if (r_rt != PF_DUPTO)
8154 *m = NULL;
8155 return;
8156
8157 bad_locked:
8158 if (s)
8159 PF_STATE_UNLOCK(s);
8160 bad:
8161 m_freem(m0);
8162 goto done;
8163 }
8164 #endif /* INET6 */
8165
8166 /*
8167 * FreeBSD supports cksum offloads for the following drivers.
8168 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4)
8169 *
8170 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR :
8171 * network driver performed cksum including pseudo header, need to verify
8172 * csum_data
8173 * CSUM_DATA_VALID :
8174 * network driver performed cksum, needs to additional pseudo header
8175 * cksum computation with partial csum_data(i.e. lack of H/W support for
8176 * pseudo header, for instance sk(4) and possibly gem(4))
8177 *
8178 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and
8179 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper
8180 * TCP/UDP layer.
8181 * Also, set csum_data to 0xffff to force cksum validation.
8182 */
8183 static int
pf_check_proto_cksum(struct mbuf * m,int off,int len,u_int8_t p,sa_family_t af)8184 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af)
8185 {
8186 u_int16_t sum = 0;
8187 int hw_assist = 0;
8188 struct ip *ip;
8189
8190 if (off < sizeof(struct ip) || len < sizeof(struct udphdr))
8191 return (1);
8192 if (m->m_pkthdr.len < off + len)
8193 return (1);
8194
8195 switch (p) {
8196 case IPPROTO_TCP:
8197 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
8198 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
8199 sum = m->m_pkthdr.csum_data;
8200 } else {
8201 ip = mtod(m, struct ip *);
8202 sum = in_pseudo(ip->ip_src.s_addr,
8203 ip->ip_dst.s_addr, htonl((u_short)len +
8204 m->m_pkthdr.csum_data + IPPROTO_TCP));
8205 }
8206 sum ^= 0xffff;
8207 ++hw_assist;
8208 }
8209 break;
8210 case IPPROTO_UDP:
8211 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
8212 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
8213 sum = m->m_pkthdr.csum_data;
8214 } else {
8215 ip = mtod(m, struct ip *);
8216 sum = in_pseudo(ip->ip_src.s_addr,
8217 ip->ip_dst.s_addr, htonl((u_short)len +
8218 m->m_pkthdr.csum_data + IPPROTO_UDP));
8219 }
8220 sum ^= 0xffff;
8221 ++hw_assist;
8222 }
8223 break;
8224 case IPPROTO_ICMP:
8225 #ifdef INET6
8226 case IPPROTO_ICMPV6:
8227 #endif /* INET6 */
8228 break;
8229 default:
8230 return (1);
8231 }
8232
8233 if (!hw_assist) {
8234 switch (af) {
8235 case AF_INET:
8236 if (p == IPPROTO_ICMP) {
8237 if (m->m_len < off)
8238 return (1);
8239 m->m_data += off;
8240 m->m_len -= off;
8241 sum = in_cksum(m, len);
8242 m->m_data -= off;
8243 m->m_len += off;
8244 } else {
8245 if (m->m_len < sizeof(struct ip))
8246 return (1);
8247 sum = in4_cksum(m, p, off, len);
8248 }
8249 break;
8250 #ifdef INET6
8251 case AF_INET6:
8252 if (m->m_len < sizeof(struct ip6_hdr))
8253 return (1);
8254 sum = in6_cksum(m, p, off, len);
8255 break;
8256 #endif /* INET6 */
8257 }
8258 }
8259 if (sum) {
8260 switch (p) {
8261 case IPPROTO_TCP:
8262 {
8263 KMOD_TCPSTAT_INC(tcps_rcvbadsum);
8264 break;
8265 }
8266 case IPPROTO_UDP:
8267 {
8268 KMOD_UDPSTAT_INC(udps_badsum);
8269 break;
8270 }
8271 #ifdef INET
8272 case IPPROTO_ICMP:
8273 {
8274 KMOD_ICMPSTAT_INC(icps_checksum);
8275 break;
8276 }
8277 #endif
8278 #ifdef INET6
8279 case IPPROTO_ICMPV6:
8280 {
8281 KMOD_ICMP6STAT_INC(icp6s_checksum);
8282 break;
8283 }
8284 #endif /* INET6 */
8285 }
8286 return (1);
8287 } else {
8288 if (p == IPPROTO_TCP || p == IPPROTO_UDP) {
8289 m->m_pkthdr.csum_flags |=
8290 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
8291 m->m_pkthdr.csum_data = 0xffff;
8292 }
8293 }
8294 return (0);
8295 }
8296
8297 static bool
pf_pdesc_to_dnflow(const struct pf_pdesc * pd,const struct pf_krule * r,const struct pf_kstate * s,struct ip_fw_args * dnflow)8298 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r,
8299 const struct pf_kstate *s, struct ip_fw_args *dnflow)
8300 {
8301 int dndir = r->direction;
8302
8303 if (s && dndir == PF_INOUT) {
8304 dndir = s->direction;
8305 } else if (dndir == PF_INOUT) {
8306 /* Assume primary direction. Happens when we've set dnpipe in
8307 * the ethernet level code. */
8308 dndir = pd->dir;
8309 }
8310
8311 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED)
8312 return (false);
8313
8314 memset(dnflow, 0, sizeof(*dnflow));
8315
8316 if (pd->dport != NULL)
8317 dnflow->f_id.dst_port = ntohs(*pd->dport);
8318 if (pd->sport != NULL)
8319 dnflow->f_id.src_port = ntohs(*pd->sport);
8320
8321 if (pd->dir == PF_IN)
8322 dnflow->flags |= IPFW_ARGS_IN;
8323 else
8324 dnflow->flags |= IPFW_ARGS_OUT;
8325
8326 if (pd->dir != dndir && pd->act.dnrpipe) {
8327 dnflow->rule.info = pd->act.dnrpipe;
8328 }
8329 else if (pd->dir == dndir && pd->act.dnpipe) {
8330 dnflow->rule.info = pd->act.dnpipe;
8331 }
8332 else {
8333 return (false);
8334 }
8335
8336 dnflow->rule.info |= IPFW_IS_DUMMYNET;
8337 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE)
8338 dnflow->rule.info |= IPFW_IS_PIPE;
8339
8340 dnflow->f_id.proto = pd->proto;
8341 dnflow->f_id.extra = dnflow->rule.info;
8342 switch (pd->af) {
8343 case AF_INET:
8344 dnflow->f_id.addr_type = 4;
8345 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr);
8346 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr);
8347 break;
8348 case AF_INET6:
8349 dnflow->flags |= IPFW_ARGS_IP6;
8350 dnflow->f_id.addr_type = 6;
8351 dnflow->f_id.src_ip6 = pd->src->v6;
8352 dnflow->f_id.dst_ip6 = pd->dst->v6;
8353 break;
8354 }
8355
8356 return (true);
8357 }
8358
8359 int
pf_test_eth(int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp)8360 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
8361 struct inpcb *inp)
8362 {
8363 struct pfi_kkif *kif;
8364 struct mbuf *m = *m0;
8365
8366 M_ASSERTPKTHDR(m);
8367 MPASS(ifp->if_vnet == curvnet);
8368 NET_EPOCH_ASSERT();
8369
8370 if (!V_pf_status.running)
8371 return (PF_PASS);
8372
8373 kif = (struct pfi_kkif *)ifp->if_pf_kif;
8374
8375 if (kif == NULL) {
8376 DPFPRINTF(PF_DEBUG_URGENT,
8377 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname));
8378 return (PF_DROP);
8379 }
8380 if (kif->pfik_flags & PFI_IFLAG_SKIP)
8381 return (PF_PASS);
8382
8383 if (m->m_flags & M_SKIP_FIREWALL)
8384 return (PF_PASS);
8385
8386 if (__predict_false(! M_WRITABLE(*m0))) {
8387 m = *m0 = m_unshare(*m0, M_NOWAIT);
8388 if (*m0 == NULL)
8389 return (PF_DROP);
8390 }
8391
8392 /* Stateless! */
8393 return (pf_test_eth_rule(dir, kif, m0));
8394 }
8395
8396 static __inline void
pf_dummynet_flag_remove(struct mbuf * m,struct pf_mtag * pf_mtag)8397 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag)
8398 {
8399 struct m_tag *mtag;
8400
8401 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET;
8402
8403 /* dummynet adds this tag, but pf does not need it,
8404 * and keeping it creates unexpected behavior,
8405 * e.g. in case of divert(4) usage right after dummynet. */
8406 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL);
8407 if (mtag != NULL)
8408 m_tag_delete(m, mtag);
8409 }
8410
8411 static int
pf_dummynet(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct mbuf ** m0)8412 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s,
8413 struct pf_krule *r, struct mbuf **m0)
8414 {
8415 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0));
8416 }
8417
8418 static int
pf_dummynet_route(struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct ifnet * ifp,struct sockaddr * sa,struct mbuf ** m0)8419 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s,
8420 struct pf_krule *r, struct ifnet *ifp, struct sockaddr *sa,
8421 struct mbuf **m0)
8422 {
8423 struct ip_fw_args dnflow;
8424
8425 NET_EPOCH_ASSERT();
8426
8427 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0)
8428 return (0);
8429
8430 if (ip_dn_io_ptr == NULL) {
8431 m_freem(*m0);
8432 *m0 = NULL;
8433 return (ENOMEM);
8434 }
8435
8436 if (pd->pf_mtag == NULL &&
8437 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) {
8438 m_freem(*m0);
8439 *m0 = NULL;
8440 return (ENOMEM);
8441 }
8442
8443 if (ifp != NULL) {
8444 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO;
8445
8446 pd->pf_mtag->if_index = ifp->if_index;
8447 pd->pf_mtag->if_idxgen = ifp->if_idxgen;
8448
8449 MPASS(sa != NULL);
8450
8451 switch (pd->af) {
8452 case AF_INET:
8453 memcpy(&pd->pf_mtag->dst, sa,
8454 sizeof(struct sockaddr_in));
8455 break;
8456 case AF_INET6:
8457 memcpy(&pd->pf_mtag->dst, sa,
8458 sizeof(struct sockaddr_in6));
8459 break;
8460 }
8461 }
8462
8463 if (s != NULL && s->nat_rule != NULL &&
8464 s->nat_rule->action == PF_RDR &&
8465 (
8466 #ifdef INET
8467 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) ||
8468 #endif
8469 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) {
8470 /*
8471 * If we're redirecting to loopback mark this packet
8472 * as being local. Otherwise it might get dropped
8473 * if dummynet re-injects.
8474 */
8475 (*m0)->m_pkthdr.rcvif = V_loif;
8476 }
8477
8478 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) {
8479 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET;
8480 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED;
8481 ip_dn_io_ptr(m0, &dnflow);
8482 if (*m0 != NULL) {
8483 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
8484 pf_dummynet_flag_remove(*m0, pd->pf_mtag);
8485 }
8486 }
8487
8488 return (0);
8489 }
8490
8491 #ifdef INET6
8492 static int
pf_walk_option6(struct mbuf * m,int off,int end,uint32_t * jumbolen,u_short * reason)8493 pf_walk_option6(struct mbuf *m, int off, int end, uint32_t *jumbolen,
8494 u_short *reason)
8495 {
8496 struct ip6_opt opt;
8497 struct ip6_opt_jumbo jumbo;
8498 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
8499
8500 while (off < end) {
8501 if (!pf_pull_hdr(m, off, &opt.ip6o_type, sizeof(opt.ip6o_type),
8502 NULL, reason, AF_INET6)) {
8503 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type"));
8504 return (PF_DROP);
8505 }
8506 if (opt.ip6o_type == IP6OPT_PAD1) {
8507 off++;
8508 continue;
8509 }
8510 if (!pf_pull_hdr(m, off, &opt, sizeof(opt), NULL, reason,
8511 AF_INET6)) {
8512 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt"));
8513 return (PF_DROP);
8514 }
8515 if (off + sizeof(opt) + opt.ip6o_len > end) {
8516 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt"));
8517 REASON_SET(reason, PFRES_IPOPTIONS);
8518 return (PF_DROP);
8519 }
8520 switch (opt.ip6o_type) {
8521 case IP6OPT_JUMBO:
8522 if (*jumbolen != 0) {
8523 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo"));
8524 REASON_SET(reason, PFRES_IPOPTIONS);
8525 return (PF_DROP);
8526 }
8527 if (ntohs(h->ip6_plen) != 0) {
8528 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen"));
8529 REASON_SET(reason, PFRES_IPOPTIONS);
8530 return (PF_DROP);
8531 }
8532 if (!pf_pull_hdr(m, off, &jumbo, sizeof(jumbo), NULL,
8533 reason, AF_INET6)) {
8534 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo"));
8535 return (PF_DROP);
8536 }
8537 memcpy(jumbolen, jumbo.ip6oj_jumbo_len,
8538 sizeof(*jumbolen));
8539 *jumbolen = ntohl(*jumbolen);
8540 if (*jumbolen < IPV6_MAXPACKET) {
8541 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen"));
8542 REASON_SET(reason, PFRES_IPOPTIONS);
8543 return (PF_DROP);
8544 }
8545 break;
8546 default:
8547 break;
8548 }
8549 off += sizeof(opt) + opt.ip6o_len;
8550 }
8551
8552 return (PF_PASS);
8553 }
8554
8555 int
pf_walk_header6(struct mbuf * m,struct ip6_hdr * h,int * off,int * extoff,int * fragoff,uint8_t * nxt,uint32_t * jumbolen,u_short * reason)8556 pf_walk_header6(struct mbuf *m, struct ip6_hdr *h, int *off, int *extoff,
8557 int *fragoff, uint8_t *nxt, uint32_t *jumbolen, u_short *reason)
8558 {
8559 struct ip6_frag frag;
8560 struct ip6_ext ext;
8561 struct ip6_rthdr rthdr;
8562 int rthdr_cnt = 0;
8563
8564 *off += sizeof(struct ip6_hdr);
8565 *extoff = *fragoff = 0;
8566 *nxt = h->ip6_nxt;
8567 *jumbolen = 0;
8568 for (;;) {
8569 switch (*nxt) {
8570 case IPPROTO_FRAGMENT:
8571 if (*fragoff != 0) {
8572 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment"));
8573 REASON_SET(reason, PFRES_FRAG);
8574 return (PF_DROP);
8575 }
8576 /* jumbo payload packets cannot be fragmented */
8577 if (*jumbolen != 0) {
8578 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo"));
8579 REASON_SET(reason, PFRES_FRAG);
8580 return (PF_DROP);
8581 }
8582 if (!pf_pull_hdr(m, *off, &frag, sizeof(frag), NULL,
8583 reason, AF_INET6)) {
8584 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment"));
8585 return (PF_DROP);
8586 }
8587 *fragoff = *off;
8588 /* stop walking over non initial fragments */
8589 if ((frag.ip6f_offlg & IP6F_OFF_MASK) != 0)
8590 return (PF_PASS);
8591 *off += sizeof(frag);
8592 *nxt = frag.ip6f_nxt;
8593 break;
8594 case IPPROTO_ROUTING:
8595 if (rthdr_cnt++) {
8596 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr"));
8597 REASON_SET(reason, PFRES_IPOPTIONS);
8598 return (PF_DROP);
8599 }
8600 if (!pf_pull_hdr(m, *off, &rthdr, sizeof(rthdr), NULL,
8601 reason, AF_INET6)) {
8602 /* fragments may be short */
8603 if (*fragoff != 0) {
8604 *off = *fragoff;
8605 *nxt = IPPROTO_FRAGMENT;
8606 return (PF_PASS);
8607 }
8608 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr"));
8609 return (PF_DROP);
8610 }
8611 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) {
8612 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0"));
8613 REASON_SET(reason, PFRES_IPOPTIONS);
8614 return (PF_DROP);
8615 }
8616 /* FALLTHROUGH */
8617 case IPPROTO_AH:
8618 case IPPROTO_HOPOPTS:
8619 case IPPROTO_DSTOPTS:
8620 if (!pf_pull_hdr(m, *off, &ext, sizeof(ext), NULL,
8621 reason, AF_INET6)) {
8622 /* fragments may be short */
8623 if (*fragoff != 0) {
8624 *off = *fragoff;
8625 *nxt = IPPROTO_FRAGMENT;
8626 return (PF_PASS);
8627 }
8628 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr"));
8629 return (PF_DROP);
8630 }
8631 /* reassembly needs the ext header before the frag */
8632 if (*fragoff == 0)
8633 *extoff = *off;
8634 if (*nxt == IPPROTO_HOPOPTS && *fragoff == 0) {
8635 if (pf_walk_option6(m, *off + sizeof(ext),
8636 *off + (ext.ip6e_len + 1) * 8, jumbolen,
8637 reason) != PF_PASS)
8638 return (PF_DROP);
8639 if (ntohs(h->ip6_plen) == 0 && *jumbolen != 0) {
8640 DPFPRINTF(PF_DEBUG_MISC,
8641 ("IPv6 missing jumbo"));
8642 REASON_SET(reason, PFRES_IPOPTIONS);
8643 return (PF_DROP);
8644 }
8645 }
8646 if (*nxt == IPPROTO_AH)
8647 *off += (ext.ip6e_len + 2) * 4;
8648 else
8649 *off += (ext.ip6e_len + 1) * 8;
8650 *nxt = ext.ip6e_nxt;
8651 break;
8652 case IPPROTO_TCP:
8653 case IPPROTO_UDP:
8654 case IPPROTO_SCTP:
8655 case IPPROTO_ICMPV6:
8656 /* fragments may be short, ignore inner header then */
8657 if (*fragoff != 0 && ntohs(h->ip6_plen) < *off +
8658 (*nxt == IPPROTO_TCP ? sizeof(struct tcphdr) :
8659 *nxt == IPPROTO_UDP ? sizeof(struct udphdr) :
8660 *nxt == IPPROTO_SCTP ? sizeof(struct sctphdr) :
8661 sizeof(struct icmp6_hdr))) {
8662 *off = *fragoff;
8663 *nxt = IPPROTO_FRAGMENT;
8664 }
8665 /* FALLTHROUGH */
8666 default:
8667 return (PF_PASS);
8668 }
8669 }
8670 }
8671 #endif
8672
8673 static void
pf_init_pdesc(struct pf_pdesc * pd,struct mbuf * m)8674 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m)
8675 {
8676 memset(pd, 0, sizeof(*pd));
8677 pd->pf_mtag = pf_find_mtag(m);
8678 pd->m = m;
8679 }
8680
8681 static int
pf_setup_pdesc(sa_family_t af,int dir,struct pf_pdesc * pd,struct mbuf ** m0,u_short * action,u_short * reason,struct pfi_kkif * kif,struct pf_rule_actions * default_actions)8682 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0,
8683 u_short *action, u_short *reason, struct pfi_kkif *kif,
8684 struct pf_rule_actions *default_actions)
8685 {
8686 pd->af = af;
8687 pd->dir = dir;
8688 pd->kif = kif;
8689 pd->m = *m0;
8690 pd->sidx = (dir == PF_IN) ? 0 : 1;
8691 pd->didx = (dir == PF_IN) ? 1 : 0;
8692
8693 TAILQ_INIT(&pd->sctp_multihome_jobs);
8694 if (default_actions != NULL)
8695 memcpy(&pd->act, default_actions, sizeof(pd->act));
8696
8697 if (pd->pf_mtag && pd->pf_mtag->dnpipe) {
8698 pd->act.dnpipe = pd->pf_mtag->dnpipe;
8699 pd->act.flags = pd->pf_mtag->dnflags;
8700 }
8701
8702 switch (af) {
8703 #ifdef INET
8704 case AF_INET: {
8705 struct ip *h;
8706
8707 if (__predict_false((*m0)->m_len < sizeof(struct ip)) &&
8708 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) {
8709 DPFPRINTF(PF_DEBUG_URGENT,
8710 ("pf_test: m_len < sizeof(struct ip), pullup failed\n"));
8711 *action = PF_DROP;
8712 REASON_SET(reason, PFRES_SHORT);
8713 return (-1);
8714 }
8715
8716 if (pf_normalize_ip(m0, reason, pd) != PF_PASS) {
8717 /* We do IP header normalization and packet reassembly here */
8718 *action = PF_DROP;
8719 return (-1);
8720 }
8721 pd->m = *m0;
8722
8723 h = mtod(pd->m, struct ip *);
8724 pd->off = h->ip_hl << 2;
8725 if (pd->off < (int)sizeof(*h)) {
8726 *action = PF_DROP;
8727 REASON_SET(reason, PFRES_SHORT);
8728 return (-1);
8729 }
8730 pd->src = (struct pf_addr *)&h->ip_src;
8731 pd->dst = (struct pf_addr *)&h->ip_dst;
8732 pd->ip_sum = &h->ip_sum;
8733 pd->proto_sum = NULL;
8734 pd->virtual_proto = pd->proto = h->ip_p;
8735 pd->tos = h->ip_tos;
8736 pd->ttl = h->ip_ttl;
8737 pd->tot_len = ntohs(h->ip_len);
8738 pd->act.rtableid = -1;
8739
8740 if (h->ip_hl > 5) /* has options */
8741 pd->badopts++;
8742
8743 if (h->ip_off & htons(IP_MF | IP_OFFMASK))
8744 pd->virtual_proto = PF_VPROTO_FRAGMENT;
8745
8746 break;
8747 }
8748 #endif
8749 #ifdef INET6
8750 case AF_INET6: {
8751 struct ip6_hdr *h;
8752 int fragoff;
8753 uint32_t jumbolen;
8754 uint8_t nxt;
8755
8756 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) &&
8757 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) {
8758 DPFPRINTF(PF_DEBUG_URGENT,
8759 ("pf_test6: m_len < sizeof(struct ip6_hdr)"
8760 ", pullup failed\n"));
8761 *action = PF_DROP;
8762 REASON_SET(reason, PFRES_SHORT);
8763 return (-1);
8764 }
8765
8766 h = mtod(pd->m, struct ip6_hdr *);
8767 pd->off = 0;
8768 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
8769 &jumbolen, reason) != PF_PASS) {
8770 *action = PF_DROP;
8771 return (-1);
8772 }
8773
8774 h = mtod(pd->m, struct ip6_hdr *);
8775 pd->src = (struct pf_addr *)&h->ip6_src;
8776 pd->dst = (struct pf_addr *)&h->ip6_dst;
8777 pd->ip_sum = NULL;
8778 pd->proto_sum = NULL;
8779 pd->tos = IPV6_DSCP(h);
8780 pd->ttl = h->ip6_hlim;
8781 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
8782 pd->virtual_proto = pd->proto = h->ip6_nxt;
8783 pd->act.rtableid = -1;
8784
8785 if (fragoff != 0)
8786 pd->virtual_proto = PF_VPROTO_FRAGMENT;
8787
8788 /*
8789 * we do not support jumbogram. if we keep going, zero ip6_plen
8790 * will do something bad, so drop the packet for now.
8791 */
8792 if (htons(h->ip6_plen) == 0) {
8793 *action = PF_DROP;
8794 return (-1);
8795 }
8796
8797 /* We do IP header normalization and packet reassembly here */
8798 if (pf_normalize_ip6(m0, fragoff, reason, pd) !=
8799 PF_PASS) {
8800 *action = PF_DROP;
8801 return (-1);
8802 }
8803 pd->m = *m0;
8804 if (pd->m == NULL) {
8805 /* packet sits in reassembly queue, no error */
8806 *action = PF_PASS;
8807 return (-1);
8808 }
8809
8810 /* Update pointers into the packet. */
8811 h = mtod(pd->m, struct ip6_hdr *);
8812 pd->src = (struct pf_addr *)&h->ip6_src;
8813 pd->dst = (struct pf_addr *)&h->ip6_dst;
8814
8815 /*
8816 * Reassembly may have changed the next protocol from fragment
8817 * to something else, so update.
8818 */
8819 pd->virtual_proto = pd->proto = h->ip6_nxt;
8820 pd->off = 0;
8821
8822 if (pf_walk_header6(pd->m, h, &pd->off, &pd->extoff, &fragoff, &nxt,
8823 &jumbolen, reason) != PF_PASS) {
8824 *action = PF_DROP;
8825 return (-1);
8826 }
8827
8828 if (fragoff != 0)
8829 pd->virtual_proto = PF_VPROTO_FRAGMENT;
8830
8831 break;
8832 }
8833 #endif
8834 default:
8835 panic("pf_setup_pdesc called with illegal af %u", af);
8836 }
8837
8838 switch (pd->virtual_proto) {
8839 case IPPROTO_TCP: {
8840 struct tcphdr *th = &pd->hdr.tcp;
8841
8842 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action,
8843 reason, af)) {
8844 *action = PF_DROP;
8845 REASON_SET(reason, PFRES_SHORT);
8846 return (-1);
8847 }
8848 pd->hdrlen = sizeof(*th);
8849 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2);
8850 pd->sport = &th->th_sport;
8851 pd->dport = &th->th_dport;
8852 break;
8853 }
8854 case IPPROTO_UDP: {
8855 struct udphdr *uh = &pd->hdr.udp;
8856
8857 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action,
8858 reason, af)) {
8859 *action = PF_DROP;
8860 REASON_SET(reason, PFRES_SHORT);
8861 return (-1);
8862 }
8863 pd->hdrlen = sizeof(*uh);
8864 if (uh->uh_dport == 0 ||
8865 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off ||
8866 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) {
8867 *action = PF_DROP;
8868 REASON_SET(reason, PFRES_SHORT);
8869 return (-1);
8870 }
8871 pd->sport = &uh->uh_sport;
8872 pd->dport = &uh->uh_dport;
8873 break;
8874 }
8875 case IPPROTO_SCTP: {
8876 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp),
8877 action, reason, af)) {
8878 *action = PF_DROP;
8879 REASON_SET(reason, PFRES_SHORT);
8880 return (-1);
8881 }
8882 pd->hdrlen = sizeof(pd->hdr.sctp);
8883 pd->p_len = pd->tot_len - pd->off;
8884
8885 pd->sport = &pd->hdr.sctp.src_port;
8886 pd->dport = &pd->hdr.sctp.dest_port;
8887 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) {
8888 *action = PF_DROP;
8889 REASON_SET(reason, PFRES_SHORT);
8890 return (-1);
8891 }
8892 if (pf_scan_sctp(pd) != PF_PASS) {
8893 *action = PF_DROP;
8894 REASON_SET(reason, PFRES_SHORT);
8895 return (-1);
8896 }
8897 break;
8898 }
8899 case IPPROTO_ICMP: {
8900 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN,
8901 action, reason, af)) {
8902 *action = PF_DROP;
8903 REASON_SET(reason, PFRES_SHORT);
8904 return (-1);
8905 }
8906 pd->hdrlen = ICMP_MINLEN;
8907 break;
8908 }
8909 #ifdef INET6
8910 case IPPROTO_ICMPV6: {
8911 size_t icmp_hlen = sizeof(struct icmp6_hdr);
8912
8913 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
8914 action, reason, af)) {
8915 *action = PF_DROP;
8916 REASON_SET(reason, PFRES_SHORT);
8917 return (-1);
8918 }
8919 /* ICMP headers we look further into to match state */
8920 switch (pd->hdr.icmp6.icmp6_type) {
8921 case MLD_LISTENER_QUERY:
8922 case MLD_LISTENER_REPORT:
8923 icmp_hlen = sizeof(struct mld_hdr);
8924 break;
8925 case ND_NEIGHBOR_SOLICIT:
8926 case ND_NEIGHBOR_ADVERT:
8927 icmp_hlen = sizeof(struct nd_neighbor_solicit);
8928 break;
8929 }
8930 if (icmp_hlen > sizeof(struct icmp6_hdr) &&
8931 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen,
8932 action, reason, af)) {
8933 *action = PF_DROP;
8934 REASON_SET(reason, PFRES_SHORT);
8935 return (-1);
8936 }
8937 pd->hdrlen = icmp_hlen;
8938 break;
8939 }
8940 #endif
8941 }
8942 return (0);
8943 }
8944
8945 static void
pf_counters_inc(int action,struct pf_pdesc * pd,struct pf_kstate * s,struct pf_krule * r,struct pf_krule * a)8946 pf_counters_inc(int action, struct pf_pdesc *pd,
8947 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a)
8948 {
8949 struct pf_krule *tr;
8950 int dir = pd->dir;
8951 int dirndx;
8952
8953 pf_counter_u64_critical_enter();
8954 pf_counter_u64_add_protected(
8955 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
8956 pd->tot_len);
8957 pf_counter_u64_add_protected(
8958 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS],
8959 1);
8960
8961 if (action == PF_PASS || r->action == PF_DROP) {
8962 dirndx = (dir == PF_OUT);
8963 pf_counter_u64_add_protected(&r->packets[dirndx], 1);
8964 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len);
8965 pf_update_timestamp(r);
8966
8967 if (a != NULL) {
8968 pf_counter_u64_add_protected(&a->packets[dirndx], 1);
8969 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len);
8970 }
8971 if (s != NULL) {
8972 struct pf_krule_item *ri;
8973
8974 if (s->nat_rule != NULL) {
8975 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx],
8976 1);
8977 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx],
8978 pd->tot_len);
8979 }
8980 if (s->src_node != NULL) {
8981 counter_u64_add(s->src_node->packets[dirndx],
8982 1);
8983 counter_u64_add(s->src_node->bytes[dirndx],
8984 pd->tot_len);
8985 }
8986 if (s->nat_src_node != NULL) {
8987 counter_u64_add(s->nat_src_node->packets[dirndx],
8988 1);
8989 counter_u64_add(s->nat_src_node->bytes[dirndx],
8990 pd->tot_len);
8991 }
8992 dirndx = (dir == s->direction) ? 0 : 1;
8993 s->packets[dirndx]++;
8994 s->bytes[dirndx] += pd->tot_len;
8995
8996 SLIST_FOREACH(ri, &s->match_rules, entry) {
8997 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1);
8998 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len);
8999 }
9000 }
9001
9002 tr = r;
9003 if (s != NULL && s->nat_rule != NULL &&
9004 r == &V_pf_default_rule)
9005 tr = s->nat_rule;
9006
9007 if (tr->src.addr.type == PF_ADDR_TABLE)
9008 pfr_update_stats(tr->src.addr.p.tbl,
9009 (s == NULL) ? pd->src :
9010 &s->key[(s->direction == PF_IN)]->
9011 addr[(s->direction == PF_OUT)],
9012 pd->af, pd->tot_len, dir == PF_OUT,
9013 r->action == PF_PASS, tr->src.neg);
9014 if (tr->dst.addr.type == PF_ADDR_TABLE)
9015 pfr_update_stats(tr->dst.addr.p.tbl,
9016 (s == NULL) ? pd->dst :
9017 &s->key[(s->direction == PF_IN)]->
9018 addr[(s->direction == PF_IN)],
9019 pd->af, pd->tot_len, dir == PF_OUT,
9020 r->action == PF_PASS, tr->dst.neg);
9021 }
9022 pf_counter_u64_critical_exit();
9023 }
9024
9025 #if defined(INET) || defined(INET6)
9026 int
pf_test(sa_family_t af,int dir,int pflags,struct ifnet * ifp,struct mbuf ** m0,struct inpcb * inp,struct pf_rule_actions * default_actions)9027 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0,
9028 struct inpcb *inp, struct pf_rule_actions *default_actions)
9029 {
9030 struct pfi_kkif *kif;
9031 u_short action, reason = 0;
9032 struct m_tag *mtag;
9033 struct pf_krule *a = NULL, *r = &V_pf_default_rule;
9034 struct pf_kstate *s = NULL;
9035 struct pf_kruleset *ruleset = NULL;
9036 struct pf_pdesc pd;
9037 int use_2nd_queue = 0;
9038 uint16_t tag;
9039 uint8_t rt;
9040
9041 PF_RULES_RLOCK_TRACKER;
9042 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir));
9043 M_ASSERTPKTHDR(*m0);
9044
9045 if (!V_pf_status.running)
9046 return (PF_PASS);
9047
9048 PF_RULES_RLOCK();
9049
9050 kif = (struct pfi_kkif *)ifp->if_pf_kif;
9051
9052 if (__predict_false(kif == NULL)) {
9053 DPFPRINTF(PF_DEBUG_URGENT,
9054 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname));
9055 PF_RULES_RUNLOCK();
9056 return (PF_DROP);
9057 }
9058 if (kif->pfik_flags & PFI_IFLAG_SKIP) {
9059 PF_RULES_RUNLOCK();
9060 return (PF_PASS);
9061 }
9062
9063 if ((*m0)->m_flags & M_SKIP_FIREWALL) {
9064 PF_RULES_RUNLOCK();
9065 return (PF_PASS);
9066 }
9067
9068 #ifdef INET6
9069 /*
9070 * If we end up changing IP addresses (e.g. binat) the stack may get
9071 * confused and fail to send the icmp6 packet too big error. Just send
9072 * it here, before we do any NAT.
9073 */
9074 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD &&
9075 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) {
9076 PF_RULES_RUNLOCK();
9077 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp));
9078 *m0 = NULL;
9079 return (PF_DROP);
9080 }
9081 #endif
9082
9083 if (__predict_false(! M_WRITABLE(*m0))) {
9084 *m0 = m_unshare(*m0, M_NOWAIT);
9085 if (*m0 == NULL) {
9086 PF_RULES_RUNLOCK();
9087 return (PF_DROP);
9088 }
9089 }
9090
9091 pf_init_pdesc(&pd, *m0);
9092
9093 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) {
9094 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO;
9095
9096 ifp = ifnet_byindexgen(pd.pf_mtag->if_index,
9097 pd.pf_mtag->if_idxgen);
9098 if (ifp == NULL || ifp->if_flags & IFF_DYING) {
9099 PF_RULES_RUNLOCK();
9100 m_freem(*m0);
9101 *m0 = NULL;
9102 return (PF_PASS);
9103 }
9104 PF_RULES_RUNLOCK();
9105 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL);
9106 *m0 = NULL;
9107 return (PF_PASS);
9108 }
9109
9110 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL &&
9111 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) {
9112 /* Dummynet re-injects packets after they've
9113 * completed their delay. We've already
9114 * processed them, so pass unconditionally. */
9115
9116 /* But only once. We may see the packet multiple times (e.g.
9117 * PFIL_IN/PFIL_OUT). */
9118 pf_dummynet_flag_remove(pd.m, pd.pf_mtag);
9119 PF_RULES_RUNLOCK();
9120
9121 return (PF_PASS);
9122 }
9123
9124 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason,
9125 kif, default_actions) == -1) {
9126 if (action != PF_PASS)
9127 pd.act.log |= PF_LOG_FORCE;
9128 goto done;
9129 }
9130
9131 if (__predict_false(ip_divert_ptr != NULL) &&
9132 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) {
9133 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1);
9134 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) ||
9135 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) {
9136 if (pd.pf_mtag == NULL &&
9137 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9138 action = PF_DROP;
9139 goto done;
9140 }
9141 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED;
9142 }
9143 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) {
9144 pd.m->m_flags |= M_FASTFWD_OURS;
9145 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
9146 }
9147 m_tag_delete(pd.m, mtag);
9148
9149 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL);
9150 if (mtag != NULL)
9151 m_tag_delete(pd.m, mtag);
9152 }
9153
9154 switch (pd.virtual_proto) {
9155 case PF_VPROTO_FRAGMENT:
9156 /*
9157 * handle fragments that aren't reassembled by
9158 * normalization
9159 */
9160 if (kif == NULL || r == NULL) /* pflog */
9161 action = PF_DROP;
9162 else
9163 action = pf_test_rule(&r, &s, &pd, &a,
9164 &ruleset, inp);
9165 if (action != PF_PASS)
9166 REASON_SET(&reason, PFRES_FRAG);
9167 break;
9168
9169 case IPPROTO_TCP: {
9170 /* Respond to SYN with a syncookie. */
9171 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN &&
9172 pd.dir == PF_IN && pf_synflood_check(&pd)) {
9173 pf_syncookie_send(&pd);
9174 action = PF_DROP;
9175 break;
9176 }
9177
9178 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0)
9179 use_2nd_queue = 1;
9180 action = pf_normalize_tcp(&pd);
9181 if (action == PF_DROP)
9182 goto done;
9183 action = pf_test_state_tcp(&s, &pd, &reason);
9184 if (action == PF_PASS) {
9185 if (V_pfsync_update_state_ptr != NULL)
9186 V_pfsync_update_state_ptr(s);
9187 r = s->rule;
9188 a = s->anchor;
9189 } else if (s == NULL) {
9190 /* Validate remote SYN|ACK, re-create original SYN if
9191 * valid. */
9192 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) ==
9193 TH_ACK && pf_syncookie_validate(&pd) &&
9194 pd.dir == PF_IN) {
9195 struct mbuf *msyn;
9196
9197 msyn = pf_syncookie_recreate_syn(&pd);
9198 if (msyn == NULL) {
9199 action = PF_DROP;
9200 break;
9201 }
9202
9203 action = pf_test(af, dir, pflags, ifp, &msyn, inp,
9204 &pd.act);
9205 m_freem(msyn);
9206 if (action != PF_PASS)
9207 break;
9208
9209 action = pf_test_state_tcp(&s, &pd, &reason);
9210 if (action != PF_PASS || s == NULL) {
9211 action = PF_DROP;
9212 break;
9213 }
9214
9215 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1;
9216 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1;
9217 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST);
9218 action = pf_synproxy(&pd, &s, &reason);
9219 break;
9220 } else {
9221 action = pf_test_rule(&r, &s, &pd,
9222 &a, &ruleset, inp);
9223 }
9224 }
9225 break;
9226 }
9227
9228 case IPPROTO_UDP: {
9229 action = pf_test_state_udp(&s, &pd);
9230 if (action == PF_PASS) {
9231 if (V_pfsync_update_state_ptr != NULL)
9232 V_pfsync_update_state_ptr(s);
9233 r = s->rule;
9234 a = s->anchor;
9235 } else if (s == NULL)
9236 action = pf_test_rule(&r, &s, &pd,
9237 &a, &ruleset, inp);
9238 break;
9239 }
9240
9241 case IPPROTO_SCTP: {
9242 action = pf_normalize_sctp(&pd);
9243 if (action == PF_DROP)
9244 goto done;
9245 action = pf_test_state_sctp(&s, &pd, &reason);
9246 if (action == PF_PASS) {
9247 if (V_pfsync_update_state_ptr != NULL)
9248 V_pfsync_update_state_ptr(s);
9249 r = s->rule;
9250 a = s->anchor;
9251 } else if (s == NULL) {
9252 action = pf_test_rule(&r, &s,
9253 &pd, &a, &ruleset, inp);
9254 }
9255 break;
9256 }
9257
9258 case IPPROTO_ICMP: {
9259 if (af != AF_INET) {
9260 action = PF_DROP;
9261 REASON_SET(&reason, PFRES_NORM);
9262 DPFPRINTF(PF_DEBUG_MISC,
9263 ("dropping IPv6 packet with ICMPv4 payload"));
9264 goto done;
9265 }
9266 action = pf_test_state_icmp(&s, &pd, &reason);
9267 if (action == PF_PASS) {
9268 if (V_pfsync_update_state_ptr != NULL)
9269 V_pfsync_update_state_ptr(s);
9270 r = s->rule;
9271 a = s->anchor;
9272 } else if (s == NULL)
9273 action = pf_test_rule(&r, &s, &pd,
9274 &a, &ruleset, inp);
9275 break;
9276 }
9277
9278 case IPPROTO_ICMPV6: {
9279 if (af != AF_INET6) {
9280 action = PF_DROP;
9281 REASON_SET(&reason, PFRES_NORM);
9282 DPFPRINTF(PF_DEBUG_MISC,
9283 ("pf: dropping IPv4 packet with ICMPv6 payload\n"));
9284 goto done;
9285 }
9286 action = pf_test_state_icmp(&s, &pd, &reason);
9287 if (action == PF_PASS) {
9288 if (V_pfsync_update_state_ptr != NULL)
9289 V_pfsync_update_state_ptr(s);
9290 r = s->rule;
9291 a = s->anchor;
9292 } else if (s == NULL)
9293 action = pf_test_rule(&r, &s, &pd,
9294 &a, &ruleset, inp);
9295 break;
9296 }
9297
9298 default:
9299 action = pf_test_state_other(&s, &pd);
9300 if (action == PF_PASS) {
9301 if (V_pfsync_update_state_ptr != NULL)
9302 V_pfsync_update_state_ptr(s);
9303 r = s->rule;
9304 a = s->anchor;
9305 } else if (s == NULL)
9306 action = pf_test_rule(&r, &s, &pd,
9307 &a, &ruleset, inp);
9308 break;
9309 }
9310
9311 done:
9312 PF_RULES_RUNLOCK();
9313
9314 if (pd.m == NULL)
9315 goto eat_pkt;
9316
9317 if (action == PF_PASS && pd.badopts &&
9318 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) {
9319 action = PF_DROP;
9320 REASON_SET(&reason, PFRES_IPOPTIONS);
9321 pd.act.log = PF_LOG_FORCE;
9322 DPFPRINTF(PF_DEBUG_MISC,
9323 ("pf: dropping packet with dangerous headers\n"));
9324 }
9325
9326 if (s) {
9327 uint8_t log = pd.act.log;
9328 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions));
9329 pd.act.log |= log;
9330 tag = s->tag;
9331 rt = s->rt;
9332 } else {
9333 tag = r->tag;
9334 rt = r->rt;
9335 }
9336
9337 if (tag > 0 && pf_tag_packet(&pd, tag)) {
9338 action = PF_DROP;
9339 REASON_SET(&reason, PFRES_MEMORY);
9340 }
9341
9342 pf_scrub(&pd);
9343 if (pd.proto == IPPROTO_TCP && pd.act.max_mss)
9344 pf_normalize_mss(&pd);
9345
9346 if (pd.act.rtableid >= 0)
9347 M_SETFIB(pd.m, pd.act.rtableid);
9348
9349 if (pd.act.flags & PFSTATE_SETPRIO) {
9350 if (pd.tos & IPTOS_LOWDELAY)
9351 use_2nd_queue = 1;
9352 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) {
9353 action = PF_DROP;
9354 REASON_SET(&reason, PFRES_MEMORY);
9355 pd.act.log = PF_LOG_FORCE;
9356 DPFPRINTF(PF_DEBUG_MISC,
9357 ("pf: failed to allocate 802.1q mtag\n"));
9358 }
9359 }
9360
9361 #ifdef ALTQ
9362 if (action == PF_PASS && pd.act.qid) {
9363 if (pd.pf_mtag == NULL &&
9364 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9365 action = PF_DROP;
9366 REASON_SET(&reason, PFRES_MEMORY);
9367 } else {
9368 if (s != NULL)
9369 pd.pf_mtag->qid_hash = pf_state_hash(s);
9370 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY))
9371 pd.pf_mtag->qid = pd.act.pqid;
9372 else
9373 pd.pf_mtag->qid = pd.act.qid;
9374 /* Add hints for ecn. */
9375 pd.pf_mtag->hdr = mtod(pd.m, void *);
9376 }
9377 }
9378 #endif /* ALTQ */
9379
9380 /*
9381 * connections redirected to loopback should not match sockets
9382 * bound specifically to loopback due to security implications,
9383 * see tcp_input() and in_pcblookup_listen().
9384 */
9385 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP ||
9386 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL &&
9387 (s->nat_rule->action == PF_RDR ||
9388 s->nat_rule->action == PF_BINAT) &&
9389 pf_is_loopback(af, pd.dst))
9390 pd.m->m_flags |= M_SKIP_FIREWALL;
9391
9392 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) &&
9393 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) {
9394 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0,
9395 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO);
9396 if (mtag != NULL) {
9397 ((struct pf_divert_mtag *)(mtag+1))->port =
9398 ntohs(r->divert.port);
9399 ((struct pf_divert_mtag *)(mtag+1))->idir =
9400 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN :
9401 PF_DIVERT_MTAG_DIR_OUT;
9402
9403 if (s)
9404 PF_STATE_UNLOCK(s);
9405
9406 m_tag_prepend(pd.m, mtag);
9407 if (pd.m->m_flags & M_FASTFWD_OURS) {
9408 if (pd.pf_mtag == NULL &&
9409 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) {
9410 action = PF_DROP;
9411 REASON_SET(&reason, PFRES_MEMORY);
9412 pd.act.log = PF_LOG_FORCE;
9413 DPFPRINTF(PF_DEBUG_MISC,
9414 ("pf: failed to allocate tag\n"));
9415 } else {
9416 pd.pf_mtag->flags |=
9417 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT;
9418 pd.m->m_flags &= ~M_FASTFWD_OURS;
9419 }
9420 }
9421 ip_divert_ptr(*m0, dir == PF_IN);
9422 *m0 = NULL;
9423
9424 return (action);
9425 } else {
9426 /* XXX: ipfw has the same behaviour! */
9427 action = PF_DROP;
9428 REASON_SET(&reason, PFRES_MEMORY);
9429 pd.act.log = PF_LOG_FORCE;
9430 DPFPRINTF(PF_DEBUG_MISC,
9431 ("pf: failed to allocate divert tag\n"));
9432 }
9433 }
9434 /* XXX: Anybody working on it?! */
9435 if (af == AF_INET6 && r->divert.port)
9436 printf("pf: divert(9) is not supported for IPv6\n");
9437
9438 /* this flag will need revising if the pkt is forwarded */
9439 if (pd.pf_mtag)
9440 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED;
9441
9442 if (pd.act.log) {
9443 struct pf_krule *lr;
9444 struct pf_krule_item *ri;
9445
9446 if (s != NULL && s->nat_rule != NULL &&
9447 s->nat_rule->log & PF_LOG_ALL)
9448 lr = s->nat_rule;
9449 else
9450 lr = r;
9451
9452 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL)
9453 PFLOG_PACKET(action, reason, lr, a,
9454 ruleset, &pd, (s == NULL));
9455 if (s) {
9456 SLIST_FOREACH(ri, &s->match_rules, entry)
9457 if (ri->r->log & PF_LOG_ALL)
9458 PFLOG_PACKET(action,
9459 reason, ri->r, a, ruleset, &pd, 0);
9460 }
9461 }
9462
9463 pf_counters_inc(action, &pd, s, r, a);
9464
9465 switch (action) {
9466 case PF_SYNPROXY_DROP:
9467 m_freem(*m0);
9468 case PF_DEFER:
9469 *m0 = NULL;
9470 action = PF_PASS;
9471 break;
9472 case PF_DROP:
9473 m_freem(*m0);
9474 *m0 = NULL;
9475 break;
9476 default:
9477 if (rt) {
9478 switch (af) {
9479 #ifdef INET
9480 case AF_INET:
9481 /* pf_route() returns unlocked. */
9482 pf_route(m0, r, kif->pfik_ifp, s, &pd, inp);
9483 break;
9484 #endif
9485 #ifdef INET6
9486 case AF_INET6:
9487 /* pf_route6() returns unlocked. */
9488 pf_route6(m0, r, kif->pfik_ifp, s, &pd, inp);
9489 break;
9490 #endif
9491 }
9492 goto out;
9493 }
9494 if (pf_dummynet(&pd, s, r, m0) != 0) {
9495 action = PF_DROP;
9496 REASON_SET(&reason, PFRES_MEMORY);
9497 }
9498 break;
9499 }
9500
9501 eat_pkt:
9502 SDT_PROBE4(pf, ip, test, done, action, reason, r, s);
9503
9504 if (s && action != PF_DROP) {
9505 if (!s->if_index_in && dir == PF_IN)
9506 s->if_index_in = ifp->if_index;
9507 else if (!s->if_index_out && dir == PF_OUT)
9508 s->if_index_out = ifp->if_index;
9509 }
9510
9511 if (s)
9512 PF_STATE_UNLOCK(s);
9513
9514 out:
9515 #ifdef INET6
9516 /* If reassembled packet passed, create new fragments. */
9517 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT &&
9518 (! (pflags & PF_PFIL_NOREFRAGMENT)) &&
9519 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL)
9520 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD);
9521 #endif
9522
9523 pf_sctp_multihome_delayed(&pd, kif, s, action);
9524
9525 return (action);
9526 }
9527 #endif /* INET || INET6 */
9528