xref: /linux/kernel/events/core.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 
60 #include "internal.h"
61 
62 #include <asm/irq_regs.h>
63 
64 typedef int (*remote_function_f)(void *);
65 
66 struct remote_function_call {
67 	struct task_struct	*p;
68 	remote_function_f	func;
69 	void			*info;
70 	int			ret;
71 };
72 
remote_function(void * data)73 static void remote_function(void *data)
74 {
75 	struct remote_function_call *tfc = data;
76 	struct task_struct *p = tfc->p;
77 
78 	if (p) {
79 		/* -EAGAIN */
80 		if (task_cpu(p) != smp_processor_id())
81 			return;
82 
83 		/*
84 		 * Now that we're on right CPU with IRQs disabled, we can test
85 		 * if we hit the right task without races.
86 		 */
87 
88 		tfc->ret = -ESRCH; /* No such (running) process */
89 		if (p != current)
90 			return;
91 	}
92 
93 	tfc->ret = tfc->func(tfc->info);
94 }
95 
96 /**
97  * task_function_call - call a function on the cpu on which a task runs
98  * @p:		the task to evaluate
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func when the task is currently running. This might
103  * be on the current CPU, which just calls the function directly.  This will
104  * retry due to any failures in smp_call_function_single(), such as if the
105  * task_cpu() goes offline concurrently.
106  *
107  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108  */
109 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)110 task_function_call(struct task_struct *p, remote_function_f func, void *info)
111 {
112 	struct remote_function_call data = {
113 		.p	= p,
114 		.func	= func,
115 		.info	= info,
116 		.ret	= -EAGAIN,
117 	};
118 	int ret;
119 
120 	for (;;) {
121 		ret = smp_call_function_single(task_cpu(p), remote_function,
122 					       &data, 1);
123 		if (!ret)
124 			ret = data.ret;
125 
126 		if (ret != -EAGAIN)
127 			break;
128 
129 		cond_resched();
130 	}
131 
132 	return ret;
133 }
134 
135 /**
136  * cpu_function_call - call a function on the cpu
137  * @cpu:	target cpu to queue this function
138  * @func:	the function to be called
139  * @info:	the function call argument
140  *
141  * Calls the function @func on the remote cpu.
142  *
143  * returns: @func return value or -ENXIO when the cpu is offline
144  */
cpu_function_call(int cpu,remote_function_f func,void * info)145 static int cpu_function_call(int cpu, remote_function_f func, void *info)
146 {
147 	struct remote_function_call data = {
148 		.p	= NULL,
149 		.func	= func,
150 		.info	= info,
151 		.ret	= -ENXIO, /* No such CPU */
152 	};
153 
154 	smp_call_function_single(cpu, remote_function, &data, 1);
155 
156 	return data.ret;
157 }
158 
159 enum event_type_t {
160 	EVENT_FLEXIBLE	= 0x01,
161 	EVENT_PINNED	= 0x02,
162 	EVENT_TIME	= 0x04,
163 	EVENT_FROZEN	= 0x08,
164 	/* see ctx_resched() for details */
165 	EVENT_CPU	= 0x10,
166 	EVENT_CGROUP	= 0x20,
167 
168 	/* compound helpers */
169 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
170 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
171 };
172 
__perf_ctx_lock(struct perf_event_context * ctx)173 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
174 {
175 	raw_spin_lock(&ctx->lock);
176 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
177 }
178 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
180 			  struct perf_event_context *ctx)
181 {
182 	__perf_ctx_lock(&cpuctx->ctx);
183 	if (ctx)
184 		__perf_ctx_lock(ctx);
185 }
186 
__perf_ctx_unlock(struct perf_event_context * ctx)187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
188 {
189 	/*
190 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
191 	 * after ctx_sched_out() by clearing is_active.
192 	 */
193 	if (ctx->is_active & EVENT_FROZEN) {
194 		if (!(ctx->is_active & EVENT_ALL))
195 			ctx->is_active = 0;
196 		else
197 			ctx->is_active &= ~EVENT_FROZEN;
198 	}
199 	raw_spin_unlock(&ctx->lock);
200 }
201 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
203 			    struct perf_event_context *ctx)
204 {
205 	if (ctx)
206 		__perf_ctx_unlock(ctx);
207 	__perf_ctx_unlock(&cpuctx->ctx);
208 }
209 
210 #define TASK_TOMBSTONE ((void *)-1L)
211 
is_kernel_event(struct perf_event * event)212 static bool is_kernel_event(struct perf_event *event)
213 {
214 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
215 }
216 
217 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
218 
perf_cpu_task_ctx(void)219 struct perf_event_context *perf_cpu_task_ctx(void)
220 {
221 	lockdep_assert_irqs_disabled();
222 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
223 }
224 
225 /*
226  * On task ctx scheduling...
227  *
228  * When !ctx->nr_events a task context will not be scheduled. This means
229  * we can disable the scheduler hooks (for performance) without leaving
230  * pending task ctx state.
231  *
232  * This however results in two special cases:
233  *
234  *  - removing the last event from a task ctx; this is relatively straight
235  *    forward and is done in __perf_remove_from_context.
236  *
237  *  - adding the first event to a task ctx; this is tricky because we cannot
238  *    rely on ctx->is_active and therefore cannot use event_function_call().
239  *    See perf_install_in_context().
240  *
241  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
242  */
243 
244 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
245 			struct perf_event_context *, void *);
246 
247 struct event_function_struct {
248 	struct perf_event *event;
249 	event_f func;
250 	void *data;
251 };
252 
event_function(void * info)253 static int event_function(void *info)
254 {
255 	struct event_function_struct *efs = info;
256 	struct perf_event *event = efs->event;
257 	struct perf_event_context *ctx = event->ctx;
258 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
259 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
260 	int ret = 0;
261 
262 	lockdep_assert_irqs_disabled();
263 
264 	perf_ctx_lock(cpuctx, task_ctx);
265 	/*
266 	 * Since we do the IPI call without holding ctx->lock things can have
267 	 * changed, double check we hit the task we set out to hit.
268 	 */
269 	if (ctx->task) {
270 		if (ctx->task != current) {
271 			ret = -ESRCH;
272 			goto unlock;
273 		}
274 
275 		/*
276 		 * We only use event_function_call() on established contexts,
277 		 * and event_function() is only ever called when active (or
278 		 * rather, we'll have bailed in task_function_call() or the
279 		 * above ctx->task != current test), therefore we must have
280 		 * ctx->is_active here.
281 		 */
282 		WARN_ON_ONCE(!ctx->is_active);
283 		/*
284 		 * And since we have ctx->is_active, cpuctx->task_ctx must
285 		 * match.
286 		 */
287 		WARN_ON_ONCE(task_ctx != ctx);
288 	} else {
289 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
290 	}
291 
292 	efs->func(event, cpuctx, ctx, efs->data);
293 unlock:
294 	perf_ctx_unlock(cpuctx, task_ctx);
295 
296 	return ret;
297 }
298 
event_function_call(struct perf_event * event,event_f func,void * data)299 static void event_function_call(struct perf_event *event, event_f func, void *data)
300 {
301 	struct perf_event_context *ctx = event->ctx;
302 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
303 	struct perf_cpu_context *cpuctx;
304 	struct event_function_struct efs = {
305 		.event = event,
306 		.func = func,
307 		.data = data,
308 	};
309 
310 	if (!event->parent) {
311 		/*
312 		 * If this is a !child event, we must hold ctx::mutex to
313 		 * stabilize the event->ctx relation. See
314 		 * perf_event_ctx_lock().
315 		 */
316 		lockdep_assert_held(&ctx->mutex);
317 	}
318 
319 	if (!task) {
320 		cpu_function_call(event->cpu, event_function, &efs);
321 		return;
322 	}
323 
324 	if (task == TASK_TOMBSTONE)
325 		return;
326 
327 again:
328 	if (!task_function_call(task, event_function, &efs))
329 		return;
330 
331 	local_irq_disable();
332 	cpuctx = this_cpu_ptr(&perf_cpu_context);
333 	perf_ctx_lock(cpuctx, ctx);
334 	/*
335 	 * Reload the task pointer, it might have been changed by
336 	 * a concurrent perf_event_context_sched_out().
337 	 */
338 	task = ctx->task;
339 	if (task == TASK_TOMBSTONE)
340 		goto unlock;
341 	if (ctx->is_active) {
342 		perf_ctx_unlock(cpuctx, ctx);
343 		local_irq_enable();
344 		goto again;
345 	}
346 	func(event, NULL, ctx, data);
347 unlock:
348 	perf_ctx_unlock(cpuctx, ctx);
349 	local_irq_enable();
350 }
351 
352 /*
353  * Similar to event_function_call() + event_function(), but hard assumes IRQs
354  * are already disabled and we're on the right CPU.
355  */
event_function_local(struct perf_event * event,event_f func,void * data)356 static void event_function_local(struct perf_event *event, event_f func, void *data)
357 {
358 	struct perf_event_context *ctx = event->ctx;
359 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
360 	struct task_struct *task = READ_ONCE(ctx->task);
361 	struct perf_event_context *task_ctx = NULL;
362 
363 	lockdep_assert_irqs_disabled();
364 
365 	if (task) {
366 		if (task == TASK_TOMBSTONE)
367 			return;
368 
369 		task_ctx = ctx;
370 	}
371 
372 	perf_ctx_lock(cpuctx, task_ctx);
373 
374 	task = ctx->task;
375 	if (task == TASK_TOMBSTONE)
376 		goto unlock;
377 
378 	if (task) {
379 		/*
380 		 * We must be either inactive or active and the right task,
381 		 * otherwise we're screwed, since we cannot IPI to somewhere
382 		 * else.
383 		 */
384 		if (ctx->is_active) {
385 			if (WARN_ON_ONCE(task != current))
386 				goto unlock;
387 
388 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
389 				goto unlock;
390 		}
391 	} else {
392 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
393 	}
394 
395 	func(event, cpuctx, ctx, data);
396 unlock:
397 	perf_ctx_unlock(cpuctx, task_ctx);
398 }
399 
400 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
401 		       PERF_FLAG_FD_OUTPUT  |\
402 		       PERF_FLAG_PID_CGROUP |\
403 		       PERF_FLAG_FD_CLOEXEC)
404 
405 /*
406  * branch priv levels that need permission checks
407  */
408 #define PERF_SAMPLE_BRANCH_PERM_PLM \
409 	(PERF_SAMPLE_BRANCH_KERNEL |\
410 	 PERF_SAMPLE_BRANCH_HV)
411 
412 /*
413  * perf_sched_events : >0 events exist
414  */
415 
416 static void perf_sched_delayed(struct work_struct *work);
417 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
418 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
419 static DEFINE_MUTEX(perf_sched_mutex);
420 static atomic_t perf_sched_count;
421 
422 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
423 
424 static atomic_t nr_mmap_events __read_mostly;
425 static atomic_t nr_comm_events __read_mostly;
426 static atomic_t nr_namespaces_events __read_mostly;
427 static atomic_t nr_task_events __read_mostly;
428 static atomic_t nr_freq_events __read_mostly;
429 static atomic_t nr_switch_events __read_mostly;
430 static atomic_t nr_ksymbol_events __read_mostly;
431 static atomic_t nr_bpf_events __read_mostly;
432 static atomic_t nr_cgroup_events __read_mostly;
433 static atomic_t nr_text_poke_events __read_mostly;
434 static atomic_t nr_build_id_events __read_mostly;
435 
436 static LIST_HEAD(pmus);
437 static DEFINE_MUTEX(pmus_lock);
438 static struct srcu_struct pmus_srcu;
439 static cpumask_var_t perf_online_mask;
440 static cpumask_var_t perf_online_core_mask;
441 static cpumask_var_t perf_online_die_mask;
442 static cpumask_var_t perf_online_cluster_mask;
443 static cpumask_var_t perf_online_pkg_mask;
444 static cpumask_var_t perf_online_sys_mask;
445 static struct kmem_cache *perf_event_cache;
446 
447 /*
448  * perf event paranoia level:
449  *  -1 - not paranoid at all
450  *   0 - disallow raw tracepoint access for unpriv
451  *   1 - disallow cpu events for unpriv
452  *   2 - disallow kernel profiling for unpriv
453  */
454 int sysctl_perf_event_paranoid __read_mostly = 2;
455 
456 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
457 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
458 
459 /*
460  * max perf event sample rate
461  */
462 #define DEFAULT_MAX_SAMPLE_RATE		100000
463 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
464 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
465 
466 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
467 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468 
469 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
470 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
471 
472 static int perf_sample_allowed_ns __read_mostly =
473 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
474 
update_perf_cpu_limits(void)475 static void update_perf_cpu_limits(void)
476 {
477 	u64 tmp = perf_sample_period_ns;
478 
479 	tmp *= sysctl_perf_cpu_time_max_percent;
480 	tmp = div_u64(tmp, 100);
481 	if (!tmp)
482 		tmp = 1;
483 
484 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
485 }
486 
487 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
488 
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)489 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
490 				       void *buffer, size_t *lenp, loff_t *ppos)
491 {
492 	int ret;
493 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
494 	/*
495 	 * If throttling is disabled don't allow the write:
496 	 */
497 	if (write && (perf_cpu == 100 || perf_cpu == 0))
498 		return -EINVAL;
499 
500 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
501 	if (ret || !write)
502 		return ret;
503 
504 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
505 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
506 	update_perf_cpu_limits();
507 
508 	return 0;
509 }
510 
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)511 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 static const struct ctl_table events_core_sysctl_table[] = {
532 	/*
533 	 * User-space relies on this file as a feature check for
534 	 * perf_events being enabled. It's an ABI, do not remove!
535 	 */
536 	{
537 		.procname	= "perf_event_paranoid",
538 		.data		= &sysctl_perf_event_paranoid,
539 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
540 		.mode		= 0644,
541 		.proc_handler	= proc_dointvec,
542 	},
543 	{
544 		.procname	= "perf_event_mlock_kb",
545 		.data		= &sysctl_perf_event_mlock,
546 		.maxlen		= sizeof(sysctl_perf_event_mlock),
547 		.mode		= 0644,
548 		.proc_handler	= proc_dointvec,
549 	},
550 	{
551 		.procname	= "perf_event_max_sample_rate",
552 		.data		= &sysctl_perf_event_sample_rate,
553 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
554 		.mode		= 0644,
555 		.proc_handler	= perf_event_max_sample_rate_handler,
556 		.extra1		= SYSCTL_ONE,
557 	},
558 	{
559 		.procname	= "perf_cpu_time_max_percent",
560 		.data		= &sysctl_perf_cpu_time_max_percent,
561 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
562 		.mode		= 0644,
563 		.proc_handler	= perf_cpu_time_max_percent_handler,
564 		.extra1		= SYSCTL_ZERO,
565 		.extra2		= SYSCTL_ONE_HUNDRED,
566 	},
567 };
568 
init_events_core_sysctls(void)569 static int __init init_events_core_sysctls(void)
570 {
571 	register_sysctl_init("kernel", events_core_sysctl_table);
572 	return 0;
573 }
574 core_initcall(init_events_core_sysctls);
575 
576 
577 /*
578  * perf samples are done in some very critical code paths (NMIs).
579  * If they take too much CPU time, the system can lock up and not
580  * get any real work done.  This will drop the sample rate when
581  * we detect that events are taking too long.
582  */
583 #define NR_ACCUMULATED_SAMPLES 128
584 static DEFINE_PER_CPU(u64, running_sample_length);
585 
586 static u64 __report_avg;
587 static u64 __report_allowed;
588 
perf_duration_warn(struct irq_work * w)589 static void perf_duration_warn(struct irq_work *w)
590 {
591 	printk_ratelimited(KERN_INFO
592 		"perf: interrupt took too long (%lld > %lld), lowering "
593 		"kernel.perf_event_max_sample_rate to %d\n",
594 		__report_avg, __report_allowed,
595 		sysctl_perf_event_sample_rate);
596 }
597 
598 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
599 
perf_sample_event_took(u64 sample_len_ns)600 void perf_sample_event_took(u64 sample_len_ns)
601 {
602 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
603 	u64 running_len;
604 	u64 avg_len;
605 	u32 max;
606 
607 	if (max_len == 0)
608 		return;
609 
610 	/* Decay the counter by 1 average sample. */
611 	running_len = __this_cpu_read(running_sample_length);
612 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
613 	running_len += sample_len_ns;
614 	__this_cpu_write(running_sample_length, running_len);
615 
616 	/*
617 	 * Note: this will be biased artificially low until we have
618 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
619 	 * from having to maintain a count.
620 	 */
621 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
622 	if (avg_len <= max_len)
623 		return;
624 
625 	__report_avg = avg_len;
626 	__report_allowed = max_len;
627 
628 	/*
629 	 * Compute a throttle threshold 25% below the current duration.
630 	 */
631 	avg_len += avg_len / 4;
632 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
633 	if (avg_len < max)
634 		max /= (u32)avg_len;
635 	else
636 		max = 1;
637 
638 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
639 	WRITE_ONCE(max_samples_per_tick, max);
640 
641 	sysctl_perf_event_sample_rate = max * HZ;
642 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
643 
644 	if (!irq_work_queue(&perf_duration_work)) {
645 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
646 			     "kernel.perf_event_max_sample_rate to %d\n",
647 			     __report_avg, __report_allowed,
648 			     sysctl_perf_event_sample_rate);
649 	}
650 }
651 
652 static atomic64_t perf_event_id;
653 
654 static void update_context_time(struct perf_event_context *ctx);
655 static u64 perf_event_time(struct perf_event *event);
656 
perf_event_print_debug(void)657 void __weak perf_event_print_debug(void)	{ }
658 
perf_clock(void)659 static inline u64 perf_clock(void)
660 {
661 	return local_clock();
662 }
663 
perf_event_clock(struct perf_event * event)664 static inline u64 perf_event_clock(struct perf_event *event)
665 {
666 	return event->clock();
667 }
668 
669 /*
670  * State based event timekeeping...
671  *
672  * The basic idea is to use event->state to determine which (if any) time
673  * fields to increment with the current delta. This means we only need to
674  * update timestamps when we change state or when they are explicitly requested
675  * (read).
676  *
677  * Event groups make things a little more complicated, but not terribly so. The
678  * rules for a group are that if the group leader is OFF the entire group is
679  * OFF, irrespective of what the group member states are. This results in
680  * __perf_effective_state().
681  *
682  * A further ramification is that when a group leader flips between OFF and
683  * !OFF, we need to update all group member times.
684  *
685  *
686  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
687  * need to make sure the relevant context time is updated before we try and
688  * update our timestamps.
689  */
690 
691 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)692 __perf_effective_state(struct perf_event *event)
693 {
694 	struct perf_event *leader = event->group_leader;
695 
696 	if (leader->state <= PERF_EVENT_STATE_OFF)
697 		return leader->state;
698 
699 	return event->state;
700 }
701 
702 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)703 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
704 {
705 	enum perf_event_state state = __perf_effective_state(event);
706 	u64 delta = now - event->tstamp;
707 
708 	*enabled = event->total_time_enabled;
709 	if (state >= PERF_EVENT_STATE_INACTIVE)
710 		*enabled += delta;
711 
712 	*running = event->total_time_running;
713 	if (state >= PERF_EVENT_STATE_ACTIVE)
714 		*running += delta;
715 }
716 
perf_event_update_time(struct perf_event * event)717 static void perf_event_update_time(struct perf_event *event)
718 {
719 	u64 now = perf_event_time(event);
720 
721 	__perf_update_times(event, now, &event->total_time_enabled,
722 					&event->total_time_running);
723 	event->tstamp = now;
724 }
725 
perf_event_update_sibling_time(struct perf_event * leader)726 static void perf_event_update_sibling_time(struct perf_event *leader)
727 {
728 	struct perf_event *sibling;
729 
730 	for_each_sibling_event(sibling, leader)
731 		perf_event_update_time(sibling);
732 }
733 
734 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)735 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
736 {
737 	if (event->state == state)
738 		return;
739 
740 	perf_event_update_time(event);
741 	/*
742 	 * If a group leader gets enabled/disabled all its siblings
743 	 * are affected too.
744 	 */
745 	if ((event->state < 0) ^ (state < 0))
746 		perf_event_update_sibling_time(event);
747 
748 	WRITE_ONCE(event->state, state);
749 }
750 
751 /*
752  * UP store-release, load-acquire
753  */
754 
755 #define __store_release(ptr, val)					\
756 do {									\
757 	barrier();							\
758 	WRITE_ONCE(*(ptr), (val));					\
759 } while (0)
760 
761 #define __load_acquire(ptr)						\
762 ({									\
763 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
764 	barrier();							\
765 	___p;								\
766 })
767 
768 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
769 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
770 		if (_cgroup && !_epc->nr_cgroups)			\
771 			continue;					\
772 		else if (_pmu && _epc->pmu != _pmu)			\
773 			continue;					\
774 		else
775 
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)776 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
777 {
778 	struct perf_event_pmu_context *pmu_ctx;
779 
780 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
781 		perf_pmu_disable(pmu_ctx->pmu);
782 }
783 
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)784 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
785 {
786 	struct perf_event_pmu_context *pmu_ctx;
787 
788 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
789 		perf_pmu_enable(pmu_ctx->pmu);
790 }
791 
792 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
793 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
794 
795 #ifdef CONFIG_CGROUP_PERF
796 
797 static inline bool
perf_cgroup_match(struct perf_event * event)798 perf_cgroup_match(struct perf_event *event)
799 {
800 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
801 
802 	/* @event doesn't care about cgroup */
803 	if (!event->cgrp)
804 		return true;
805 
806 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
807 	if (!cpuctx->cgrp)
808 		return false;
809 
810 	/*
811 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
812 	 * also enabled for all its descendant cgroups.  If @cpuctx's
813 	 * cgroup is a descendant of @event's (the test covers identity
814 	 * case), it's a match.
815 	 */
816 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
817 				    event->cgrp->css.cgroup);
818 }
819 
perf_detach_cgroup(struct perf_event * event)820 static inline void perf_detach_cgroup(struct perf_event *event)
821 {
822 	css_put(&event->cgrp->css);
823 	event->cgrp = NULL;
824 }
825 
is_cgroup_event(struct perf_event * event)826 static inline int is_cgroup_event(struct perf_event *event)
827 {
828 	return event->cgrp != NULL;
829 }
830 
perf_cgroup_event_time(struct perf_event * event)831 static inline u64 perf_cgroup_event_time(struct perf_event *event)
832 {
833 	struct perf_cgroup_info *t;
834 
835 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
836 	return t->time;
837 }
838 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)839 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
840 {
841 	struct perf_cgroup_info *t;
842 
843 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
844 	if (!__load_acquire(&t->active))
845 		return t->time;
846 	now += READ_ONCE(t->timeoffset);
847 	return now;
848 }
849 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)850 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
851 {
852 	if (adv)
853 		info->time += now - info->timestamp;
854 	info->timestamp = now;
855 	/*
856 	 * see update_context_time()
857 	 */
858 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
859 }
860 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)861 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
862 {
863 	struct perf_cgroup *cgrp = cpuctx->cgrp;
864 	struct cgroup_subsys_state *css;
865 	struct perf_cgroup_info *info;
866 
867 	if (cgrp) {
868 		u64 now = perf_clock();
869 
870 		for (css = &cgrp->css; css; css = css->parent) {
871 			cgrp = container_of(css, struct perf_cgroup, css);
872 			info = this_cpu_ptr(cgrp->info);
873 
874 			__update_cgrp_time(info, now, true);
875 			if (final)
876 				__store_release(&info->active, 0);
877 		}
878 	}
879 }
880 
update_cgrp_time_from_event(struct perf_event * event)881 static inline void update_cgrp_time_from_event(struct perf_event *event)
882 {
883 	struct perf_cgroup_info *info;
884 
885 	/*
886 	 * ensure we access cgroup data only when needed and
887 	 * when we know the cgroup is pinned (css_get)
888 	 */
889 	if (!is_cgroup_event(event))
890 		return;
891 
892 	info = this_cpu_ptr(event->cgrp->info);
893 	/*
894 	 * Do not update time when cgroup is not active
895 	 */
896 	if (info->active)
897 		__update_cgrp_time(info, perf_clock(), true);
898 }
899 
900 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)901 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
902 {
903 	struct perf_event_context *ctx = &cpuctx->ctx;
904 	struct perf_cgroup *cgrp = cpuctx->cgrp;
905 	struct perf_cgroup_info *info;
906 	struct cgroup_subsys_state *css;
907 
908 	/*
909 	 * ctx->lock held by caller
910 	 * ensure we do not access cgroup data
911 	 * unless we have the cgroup pinned (css_get)
912 	 */
913 	if (!cgrp)
914 		return;
915 
916 	WARN_ON_ONCE(!ctx->nr_cgroups);
917 
918 	for (css = &cgrp->css; css; css = css->parent) {
919 		cgrp = container_of(css, struct perf_cgroup, css);
920 		info = this_cpu_ptr(cgrp->info);
921 		__update_cgrp_time(info, ctx->timestamp, false);
922 		__store_release(&info->active, 1);
923 	}
924 }
925 
926 /*
927  * reschedule events based on the cgroup constraint of task.
928  */
perf_cgroup_switch(struct task_struct * task)929 static void perf_cgroup_switch(struct task_struct *task)
930 {
931 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
932 	struct perf_cgroup *cgrp;
933 
934 	/*
935 	 * cpuctx->cgrp is set when the first cgroup event enabled,
936 	 * and is cleared when the last cgroup event disabled.
937 	 */
938 	if (READ_ONCE(cpuctx->cgrp) == NULL)
939 		return;
940 
941 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
942 
943 	cgrp = perf_cgroup_from_task(task, NULL);
944 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
945 		return;
946 
947 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
948 	perf_ctx_disable(&cpuctx->ctx, true);
949 
950 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
951 	/*
952 	 * must not be done before ctxswout due
953 	 * to update_cgrp_time_from_cpuctx() in
954 	 * ctx_sched_out()
955 	 */
956 	cpuctx->cgrp = cgrp;
957 	/*
958 	 * set cgrp before ctxsw in to allow
959 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
960 	 * to not have to pass task around
961 	 */
962 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
963 
964 	perf_ctx_enable(&cpuctx->ctx, true);
965 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
966 }
967 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)968 static int perf_cgroup_ensure_storage(struct perf_event *event,
969 				struct cgroup_subsys_state *css)
970 {
971 	struct perf_cpu_context *cpuctx;
972 	struct perf_event **storage;
973 	int cpu, heap_size, ret = 0;
974 
975 	/*
976 	 * Allow storage to have sufficient space for an iterator for each
977 	 * possibly nested cgroup plus an iterator for events with no cgroup.
978 	 */
979 	for (heap_size = 1; css; css = css->parent)
980 		heap_size++;
981 
982 	for_each_possible_cpu(cpu) {
983 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
984 		if (heap_size <= cpuctx->heap_size)
985 			continue;
986 
987 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
988 				       GFP_KERNEL, cpu_to_node(cpu));
989 		if (!storage) {
990 			ret = -ENOMEM;
991 			break;
992 		}
993 
994 		raw_spin_lock_irq(&cpuctx->ctx.lock);
995 		if (cpuctx->heap_size < heap_size) {
996 			swap(cpuctx->heap, storage);
997 			if (storage == cpuctx->heap_default)
998 				storage = NULL;
999 			cpuctx->heap_size = heap_size;
1000 		}
1001 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1002 
1003 		kfree(storage);
1004 	}
1005 
1006 	return ret;
1007 }
1008 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1009 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1010 				      struct perf_event_attr *attr,
1011 				      struct perf_event *group_leader)
1012 {
1013 	struct perf_cgroup *cgrp;
1014 	struct cgroup_subsys_state *css;
1015 	CLASS(fd, f)(fd);
1016 	int ret = 0;
1017 
1018 	if (fd_empty(f))
1019 		return -EBADF;
1020 
1021 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1022 					 &perf_event_cgrp_subsys);
1023 	if (IS_ERR(css))
1024 		return PTR_ERR(css);
1025 
1026 	ret = perf_cgroup_ensure_storage(event, css);
1027 	if (ret)
1028 		return ret;
1029 
1030 	cgrp = container_of(css, struct perf_cgroup, css);
1031 	event->cgrp = cgrp;
1032 
1033 	/*
1034 	 * all events in a group must monitor
1035 	 * the same cgroup because a task belongs
1036 	 * to only one perf cgroup at a time
1037 	 */
1038 	if (group_leader && group_leader->cgrp != cgrp) {
1039 		perf_detach_cgroup(event);
1040 		ret = -EINVAL;
1041 	}
1042 	return ret;
1043 }
1044 
1045 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1046 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1047 {
1048 	struct perf_cpu_context *cpuctx;
1049 
1050 	if (!is_cgroup_event(event))
1051 		return;
1052 
1053 	event->pmu_ctx->nr_cgroups++;
1054 
1055 	/*
1056 	 * Because cgroup events are always per-cpu events,
1057 	 * @ctx == &cpuctx->ctx.
1058 	 */
1059 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1060 
1061 	if (ctx->nr_cgroups++)
1062 		return;
1063 
1064 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1065 }
1066 
1067 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 	struct perf_cpu_context *cpuctx;
1071 
1072 	if (!is_cgroup_event(event))
1073 		return;
1074 
1075 	event->pmu_ctx->nr_cgroups--;
1076 
1077 	/*
1078 	 * Because cgroup events are always per-cpu events,
1079 	 * @ctx == &cpuctx->ctx.
1080 	 */
1081 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1082 
1083 	if (--ctx->nr_cgroups)
1084 		return;
1085 
1086 	cpuctx->cgrp = NULL;
1087 }
1088 
1089 #else /* !CONFIG_CGROUP_PERF */
1090 
1091 static inline bool
perf_cgroup_match(struct perf_event * event)1092 perf_cgroup_match(struct perf_event *event)
1093 {
1094 	return true;
1095 }
1096 
perf_detach_cgroup(struct perf_event * event)1097 static inline void perf_detach_cgroup(struct perf_event *event)
1098 {}
1099 
is_cgroup_event(struct perf_event * event)1100 static inline int is_cgroup_event(struct perf_event *event)
1101 {
1102 	return 0;
1103 }
1104 
update_cgrp_time_from_event(struct perf_event * event)1105 static inline void update_cgrp_time_from_event(struct perf_event *event)
1106 {
1107 }
1108 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1109 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1110 						bool final)
1111 {
1112 }
1113 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1114 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1115 				      struct perf_event_attr *attr,
1116 				      struct perf_event *group_leader)
1117 {
1118 	return -EINVAL;
1119 }
1120 
1121 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1122 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1123 {
1124 }
1125 
perf_cgroup_event_time(struct perf_event * event)1126 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1127 {
1128 	return 0;
1129 }
1130 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1131 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1132 {
1133 	return 0;
1134 }
1135 
1136 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1137 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1138 {
1139 }
1140 
1141 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1142 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
perf_cgroup_switch(struct task_struct * task)1146 static void perf_cgroup_switch(struct task_struct *task)
1147 {
1148 }
1149 #endif
1150 
1151 /*
1152  * set default to be dependent on timer tick just
1153  * like original code
1154  */
1155 #define PERF_CPU_HRTIMER (1000 / HZ)
1156 /*
1157  * function must be called with interrupts disabled
1158  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1159 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1160 {
1161 	struct perf_cpu_pmu_context *cpc;
1162 	bool rotations;
1163 
1164 	lockdep_assert_irqs_disabled();
1165 
1166 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1167 	rotations = perf_rotate_context(cpc);
1168 
1169 	raw_spin_lock(&cpc->hrtimer_lock);
1170 	if (rotations)
1171 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1172 	else
1173 		cpc->hrtimer_active = 0;
1174 	raw_spin_unlock(&cpc->hrtimer_lock);
1175 
1176 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1177 }
1178 
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1179 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1180 {
1181 	struct hrtimer *timer = &cpc->hrtimer;
1182 	struct pmu *pmu = cpc->epc.pmu;
1183 	u64 interval;
1184 
1185 	/*
1186 	 * check default is sane, if not set then force to
1187 	 * default interval (1/tick)
1188 	 */
1189 	interval = pmu->hrtimer_interval_ms;
1190 	if (interval < 1)
1191 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1192 
1193 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1194 
1195 	raw_spin_lock_init(&cpc->hrtimer_lock);
1196 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1197 		      HRTIMER_MODE_ABS_PINNED_HARD);
1198 }
1199 
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1200 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1201 {
1202 	struct hrtimer *timer = &cpc->hrtimer;
1203 	unsigned long flags;
1204 
1205 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1206 	if (!cpc->hrtimer_active) {
1207 		cpc->hrtimer_active = 1;
1208 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1209 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1210 	}
1211 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1212 
1213 	return 0;
1214 }
1215 
perf_mux_hrtimer_restart_ipi(void * arg)1216 static int perf_mux_hrtimer_restart_ipi(void *arg)
1217 {
1218 	return perf_mux_hrtimer_restart(arg);
1219 }
1220 
this_cpc(struct pmu * pmu)1221 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1222 {
1223 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1224 }
1225 
perf_pmu_disable(struct pmu * pmu)1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228 	int *count = &this_cpc(pmu)->pmu_disable_count;
1229 	if (!(*count)++)
1230 		pmu->pmu_disable(pmu);
1231 }
1232 
perf_pmu_enable(struct pmu * pmu)1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235 	int *count = &this_cpc(pmu)->pmu_disable_count;
1236 	if (!--(*count))
1237 		pmu->pmu_enable(pmu);
1238 }
1239 
perf_assert_pmu_disabled(struct pmu * pmu)1240 static void perf_assert_pmu_disabled(struct pmu *pmu)
1241 {
1242 	int *count = &this_cpc(pmu)->pmu_disable_count;
1243 	WARN_ON_ONCE(*count == 0);
1244 }
1245 
perf_pmu_read(struct perf_event * event)1246 static inline void perf_pmu_read(struct perf_event *event)
1247 {
1248 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1249 		event->pmu->read(event);
1250 }
1251 
get_ctx(struct perf_event_context * ctx)1252 static void get_ctx(struct perf_event_context *ctx)
1253 {
1254 	refcount_inc(&ctx->refcount);
1255 }
1256 
free_ctx(struct rcu_head * head)1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	kfree(ctx);
1263 }
1264 
put_ctx(struct perf_event_context * ctx)1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267 	if (refcount_dec_and_test(&ctx->refcount)) {
1268 		if (ctx->parent_ctx)
1269 			put_ctx(ctx->parent_ctx);
1270 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271 			put_task_struct(ctx->task);
1272 		call_rcu(&ctx->rcu_head, free_ctx);
1273 	}
1274 }
1275 
1276 /*
1277  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278  * perf_pmu_migrate_context() we need some magic.
1279  *
1280  * Those places that change perf_event::ctx will hold both
1281  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282  *
1283  * Lock ordering is by mutex address. There are two other sites where
1284  * perf_event_context::mutex nests and those are:
1285  *
1286  *  - perf_event_exit_task_context()	[ child , 0 ]
1287  *      perf_event_exit_event()
1288  *        put_event()			[ parent, 1 ]
1289  *
1290  *  - perf_event_init_context()		[ parent, 0 ]
1291  *      inherit_task_group()
1292  *        inherit_group()
1293  *          inherit_event()
1294  *            perf_event_alloc()
1295  *              perf_init_event()
1296  *                perf_try_init_event()	[ child , 1 ]
1297  *
1298  * While it appears there is an obvious deadlock here -- the parent and child
1299  * nesting levels are inverted between the two. This is in fact safe because
1300  * life-time rules separate them. That is an exiting task cannot fork, and a
1301  * spawning task cannot (yet) exit.
1302  *
1303  * But remember that these are parent<->child context relations, and
1304  * migration does not affect children, therefore these two orderings should not
1305  * interact.
1306  *
1307  * The change in perf_event::ctx does not affect children (as claimed above)
1308  * because the sys_perf_event_open() case will install a new event and break
1309  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310  * concerned with cpuctx and that doesn't have children.
1311  *
1312  * The places that change perf_event::ctx will issue:
1313  *
1314  *   perf_remove_from_context();
1315  *   synchronize_rcu();
1316  *   perf_install_in_context();
1317  *
1318  * to affect the change. The remove_from_context() + synchronize_rcu() should
1319  * quiesce the event, after which we can install it in the new location. This
1320  * means that only external vectors (perf_fops, prctl) can perturb the event
1321  * while in transit. Therefore all such accessors should also acquire
1322  * perf_event_context::mutex to serialize against this.
1323  *
1324  * However; because event->ctx can change while we're waiting to acquire
1325  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326  * function.
1327  *
1328  * Lock order:
1329  *    exec_update_lock
1330  *	task_struct::perf_event_mutex
1331  *	  perf_event_context::mutex
1332  *	    perf_event::child_mutex;
1333  *	      perf_event_context::lock
1334  *	    mmap_lock
1335  *	      perf_event::mmap_mutex
1336  *	        perf_buffer::aux_mutex
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
perf_event_pid(struct perf_event * event,struct task_struct * p)1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
perf_event_tid(struct perf_event * event,struct task_struct * p)1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
primary_event_id(struct perf_event * event)1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1447 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1503 perf_pin_task_context(struct task_struct *task)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
perf_unpin_context(struct perf_event_context * ctx)1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
__update_context_time(struct perf_event_context * ctx,bool adv)1528 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	lockdep_assert_held(&ctx->lock);
1533 
1534 	if (adv)
1535 		ctx->time += now - ctx->timestamp;
1536 	ctx->timestamp = now;
1537 
1538 	/*
1539 	 * The above: time' = time + (now - timestamp), can be re-arranged
1540 	 * into: time` = now + (time - timestamp), which gives a single value
1541 	 * offset to compute future time without locks on.
1542 	 *
1543 	 * See perf_event_time_now(), which can be used from NMI context where
1544 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1545 	 * both the above values in a consistent manner.
1546 	 */
1547 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1548 }
1549 
update_context_time(struct perf_event_context * ctx)1550 static void update_context_time(struct perf_event_context *ctx)
1551 {
1552 	__update_context_time(ctx, true);
1553 }
1554 
perf_event_time(struct perf_event * event)1555 static u64 perf_event_time(struct perf_event *event)
1556 {
1557 	struct perf_event_context *ctx = event->ctx;
1558 
1559 	if (unlikely(!ctx))
1560 		return 0;
1561 
1562 	if (is_cgroup_event(event))
1563 		return perf_cgroup_event_time(event);
1564 
1565 	return ctx->time;
1566 }
1567 
perf_event_time_now(struct perf_event * event,u64 now)1568 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1569 {
1570 	struct perf_event_context *ctx = event->ctx;
1571 
1572 	if (unlikely(!ctx))
1573 		return 0;
1574 
1575 	if (is_cgroup_event(event))
1576 		return perf_cgroup_event_time_now(event, now);
1577 
1578 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1579 		return ctx->time;
1580 
1581 	now += READ_ONCE(ctx->timeoffset);
1582 	return now;
1583 }
1584 
get_event_type(struct perf_event * event)1585 static enum event_type_t get_event_type(struct perf_event *event)
1586 {
1587 	struct perf_event_context *ctx = event->ctx;
1588 	enum event_type_t event_type;
1589 
1590 	lockdep_assert_held(&ctx->lock);
1591 
1592 	/*
1593 	 * It's 'group type', really, because if our group leader is
1594 	 * pinned, so are we.
1595 	 */
1596 	if (event->group_leader != event)
1597 		event = event->group_leader;
1598 
1599 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1600 	if (!ctx->task)
1601 		event_type |= EVENT_CPU;
1602 
1603 	return event_type;
1604 }
1605 
1606 /*
1607  * Helper function to initialize event group nodes.
1608  */
init_event_group(struct perf_event * event)1609 static void init_event_group(struct perf_event *event)
1610 {
1611 	RB_CLEAR_NODE(&event->group_node);
1612 	event->group_index = 0;
1613 }
1614 
1615 /*
1616  * Extract pinned or flexible groups from the context
1617  * based on event attrs bits.
1618  */
1619 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1620 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1621 {
1622 	if (event->attr.pinned)
1623 		return &ctx->pinned_groups;
1624 	else
1625 		return &ctx->flexible_groups;
1626 }
1627 
1628 /*
1629  * Helper function to initializes perf_event_group trees.
1630  */
perf_event_groups_init(struct perf_event_groups * groups)1631 static void perf_event_groups_init(struct perf_event_groups *groups)
1632 {
1633 	groups->tree = RB_ROOT;
1634 	groups->index = 0;
1635 }
1636 
event_cgroup(const struct perf_event * event)1637 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1638 {
1639 	struct cgroup *cgroup = NULL;
1640 
1641 #ifdef CONFIG_CGROUP_PERF
1642 	if (event->cgrp)
1643 		cgroup = event->cgrp->css.cgroup;
1644 #endif
1645 
1646 	return cgroup;
1647 }
1648 
1649 /*
1650  * Compare function for event groups;
1651  *
1652  * Implements complex key that first sorts by CPU and then by virtual index
1653  * which provides ordering when rotating groups for the same CPU.
1654  */
1655 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1656 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1657 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1658 		      const struct perf_event *right)
1659 {
1660 	if (left_cpu < right->cpu)
1661 		return -1;
1662 	if (left_cpu > right->cpu)
1663 		return 1;
1664 
1665 	if (left_pmu) {
1666 		if (left_pmu < right->pmu_ctx->pmu)
1667 			return -1;
1668 		if (left_pmu > right->pmu_ctx->pmu)
1669 			return 1;
1670 	}
1671 
1672 #ifdef CONFIG_CGROUP_PERF
1673 	{
1674 		const struct cgroup *right_cgroup = event_cgroup(right);
1675 
1676 		if (left_cgroup != right_cgroup) {
1677 			if (!left_cgroup) {
1678 				/*
1679 				 * Left has no cgroup but right does, no
1680 				 * cgroups come first.
1681 				 */
1682 				return -1;
1683 			}
1684 			if (!right_cgroup) {
1685 				/*
1686 				 * Right has no cgroup but left does, no
1687 				 * cgroups come first.
1688 				 */
1689 				return 1;
1690 			}
1691 			/* Two dissimilar cgroups, order by id. */
1692 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1693 				return -1;
1694 
1695 			return 1;
1696 		}
1697 	}
1698 #endif
1699 
1700 	if (left_group_index < right->group_index)
1701 		return -1;
1702 	if (left_group_index > right->group_index)
1703 		return 1;
1704 
1705 	return 0;
1706 }
1707 
1708 #define __node_2_pe(node) \
1709 	rb_entry((node), struct perf_event, group_node)
1710 
__group_less(struct rb_node * a,const struct rb_node * b)1711 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1712 {
1713 	struct perf_event *e = __node_2_pe(a);
1714 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1715 				     e->group_index, __node_2_pe(b)) < 0;
1716 }
1717 
1718 struct __group_key {
1719 	int cpu;
1720 	struct pmu *pmu;
1721 	struct cgroup *cgroup;
1722 };
1723 
__group_cmp(const void * key,const struct rb_node * node)1724 static inline int __group_cmp(const void *key, const struct rb_node *node)
1725 {
1726 	const struct __group_key *a = key;
1727 	const struct perf_event *b = __node_2_pe(node);
1728 
1729 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1730 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1731 }
1732 
1733 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1734 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1735 {
1736 	const struct __group_key *a = key;
1737 	const struct perf_event *b = __node_2_pe(node);
1738 
1739 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1740 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1741 				     b->group_index, b);
1742 }
1743 
1744 /*
1745  * Insert @event into @groups' tree; using
1746  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1747  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1748  */
1749 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1750 perf_event_groups_insert(struct perf_event_groups *groups,
1751 			 struct perf_event *event)
1752 {
1753 	event->group_index = ++groups->index;
1754 
1755 	rb_add(&event->group_node, &groups->tree, __group_less);
1756 }
1757 
1758 /*
1759  * Helper function to insert event into the pinned or flexible groups.
1760  */
1761 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1762 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1763 {
1764 	struct perf_event_groups *groups;
1765 
1766 	groups = get_event_groups(event, ctx);
1767 	perf_event_groups_insert(groups, event);
1768 }
1769 
1770 /*
1771  * Delete a group from a tree.
1772  */
1773 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1774 perf_event_groups_delete(struct perf_event_groups *groups,
1775 			 struct perf_event *event)
1776 {
1777 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1778 		     RB_EMPTY_ROOT(&groups->tree));
1779 
1780 	rb_erase(&event->group_node, &groups->tree);
1781 	init_event_group(event);
1782 }
1783 
1784 /*
1785  * Helper function to delete event from its groups.
1786  */
1787 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1788 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1789 {
1790 	struct perf_event_groups *groups;
1791 
1792 	groups = get_event_groups(event, ctx);
1793 	perf_event_groups_delete(groups, event);
1794 }
1795 
1796 /*
1797  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1798  */
1799 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1800 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1801 			struct pmu *pmu, struct cgroup *cgrp)
1802 {
1803 	struct __group_key key = {
1804 		.cpu = cpu,
1805 		.pmu = pmu,
1806 		.cgroup = cgrp,
1807 	};
1808 	struct rb_node *node;
1809 
1810 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1811 	if (node)
1812 		return __node_2_pe(node);
1813 
1814 	return NULL;
1815 }
1816 
1817 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1818 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1819 {
1820 	struct __group_key key = {
1821 		.cpu = event->cpu,
1822 		.pmu = pmu,
1823 		.cgroup = event_cgroup(event),
1824 	};
1825 	struct rb_node *next;
1826 
1827 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1828 	if (next)
1829 		return __node_2_pe(next);
1830 
1831 	return NULL;
1832 }
1833 
1834 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1835 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1836 	     event; event = perf_event_groups_next(event, pmu))
1837 
1838 /*
1839  * Iterate through the whole groups tree.
1840  */
1841 #define perf_event_groups_for_each(event, groups)			\
1842 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1843 				typeof(*event), group_node); event;	\
1844 		event = rb_entry_safe(rb_next(&event->group_node),	\
1845 				typeof(*event), group_node))
1846 
1847 /*
1848  * Does the event attribute request inherit with PERF_SAMPLE_READ
1849  */
has_inherit_and_sample_read(struct perf_event_attr * attr)1850 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1851 {
1852 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1853 }
1854 
1855 /*
1856  * Add an event from the lists for its context.
1857  * Must be called with ctx->mutex and ctx->lock held.
1858  */
1859 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1860 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1861 {
1862 	lockdep_assert_held(&ctx->lock);
1863 
1864 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1865 	event->attach_state |= PERF_ATTACH_CONTEXT;
1866 
1867 	event->tstamp = perf_event_time(event);
1868 
1869 	/*
1870 	 * If we're a stand alone event or group leader, we go to the context
1871 	 * list, group events are kept attached to the group so that
1872 	 * perf_group_detach can, at all times, locate all siblings.
1873 	 */
1874 	if (event->group_leader == event) {
1875 		event->group_caps = event->event_caps;
1876 		add_event_to_groups(event, ctx);
1877 	}
1878 
1879 	list_add_rcu(&event->event_entry, &ctx->event_list);
1880 	ctx->nr_events++;
1881 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1882 		ctx->nr_user++;
1883 	if (event->attr.inherit_stat)
1884 		ctx->nr_stat++;
1885 	if (has_inherit_and_sample_read(&event->attr))
1886 		local_inc(&ctx->nr_no_switch_fast);
1887 
1888 	if (event->state > PERF_EVENT_STATE_OFF)
1889 		perf_cgroup_event_enable(event, ctx);
1890 
1891 	ctx->generation++;
1892 	event->pmu_ctx->nr_events++;
1893 }
1894 
1895 /*
1896  * Initialize event state based on the perf_event_attr::disabled.
1897  */
perf_event__state_init(struct perf_event * event)1898 static inline void perf_event__state_init(struct perf_event *event)
1899 {
1900 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1901 					      PERF_EVENT_STATE_INACTIVE;
1902 }
1903 
__perf_event_read_size(u64 read_format,int nr_siblings)1904 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1905 {
1906 	int entry = sizeof(u64); /* value */
1907 	int size = 0;
1908 	int nr = 1;
1909 
1910 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1911 		size += sizeof(u64);
1912 
1913 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1914 		size += sizeof(u64);
1915 
1916 	if (read_format & PERF_FORMAT_ID)
1917 		entry += sizeof(u64);
1918 
1919 	if (read_format & PERF_FORMAT_LOST)
1920 		entry += sizeof(u64);
1921 
1922 	if (read_format & PERF_FORMAT_GROUP) {
1923 		nr += nr_siblings;
1924 		size += sizeof(u64);
1925 	}
1926 
1927 	/*
1928 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1929 	 * adding more siblings, this will never overflow.
1930 	 */
1931 	return size + nr * entry;
1932 }
1933 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1934 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1935 {
1936 	struct perf_sample_data *data;
1937 	u16 size = 0;
1938 
1939 	if (sample_type & PERF_SAMPLE_IP)
1940 		size += sizeof(data->ip);
1941 
1942 	if (sample_type & PERF_SAMPLE_ADDR)
1943 		size += sizeof(data->addr);
1944 
1945 	if (sample_type & PERF_SAMPLE_PERIOD)
1946 		size += sizeof(data->period);
1947 
1948 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1949 		size += sizeof(data->weight.full);
1950 
1951 	if (sample_type & PERF_SAMPLE_READ)
1952 		size += event->read_size;
1953 
1954 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1955 		size += sizeof(data->data_src.val);
1956 
1957 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1958 		size += sizeof(data->txn);
1959 
1960 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1961 		size += sizeof(data->phys_addr);
1962 
1963 	if (sample_type & PERF_SAMPLE_CGROUP)
1964 		size += sizeof(data->cgroup);
1965 
1966 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1967 		size += sizeof(data->data_page_size);
1968 
1969 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1970 		size += sizeof(data->code_page_size);
1971 
1972 	event->header_size = size;
1973 }
1974 
1975 /*
1976  * Called at perf_event creation and when events are attached/detached from a
1977  * group.
1978  */
perf_event__header_size(struct perf_event * event)1979 static void perf_event__header_size(struct perf_event *event)
1980 {
1981 	event->read_size =
1982 		__perf_event_read_size(event->attr.read_format,
1983 				       event->group_leader->nr_siblings);
1984 	__perf_event_header_size(event, event->attr.sample_type);
1985 }
1986 
perf_event__id_header_size(struct perf_event * event)1987 static void perf_event__id_header_size(struct perf_event *event)
1988 {
1989 	struct perf_sample_data *data;
1990 	u64 sample_type = event->attr.sample_type;
1991 	u16 size = 0;
1992 
1993 	if (sample_type & PERF_SAMPLE_TID)
1994 		size += sizeof(data->tid_entry);
1995 
1996 	if (sample_type & PERF_SAMPLE_TIME)
1997 		size += sizeof(data->time);
1998 
1999 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2000 		size += sizeof(data->id);
2001 
2002 	if (sample_type & PERF_SAMPLE_ID)
2003 		size += sizeof(data->id);
2004 
2005 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2006 		size += sizeof(data->stream_id);
2007 
2008 	if (sample_type & PERF_SAMPLE_CPU)
2009 		size += sizeof(data->cpu_entry);
2010 
2011 	event->id_header_size = size;
2012 }
2013 
2014 /*
2015  * Check that adding an event to the group does not result in anybody
2016  * overflowing the 64k event limit imposed by the output buffer.
2017  *
2018  * Specifically, check that the read_size for the event does not exceed 16k,
2019  * read_size being the one term that grows with groups size. Since read_size
2020  * depends on per-event read_format, also (re)check the existing events.
2021  *
2022  * This leaves 48k for the constant size fields and things like callchains,
2023  * branch stacks and register sets.
2024  */
perf_event_validate_size(struct perf_event * event)2025 static bool perf_event_validate_size(struct perf_event *event)
2026 {
2027 	struct perf_event *sibling, *group_leader = event->group_leader;
2028 
2029 	if (__perf_event_read_size(event->attr.read_format,
2030 				   group_leader->nr_siblings + 1) > 16*1024)
2031 		return false;
2032 
2033 	if (__perf_event_read_size(group_leader->attr.read_format,
2034 				   group_leader->nr_siblings + 1) > 16*1024)
2035 		return false;
2036 
2037 	/*
2038 	 * When creating a new group leader, group_leader->ctx is initialized
2039 	 * after the size has been validated, but we cannot safely use
2040 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2041 	 * leader cannot have any siblings yet, so we can safely skip checking
2042 	 * the non-existent siblings.
2043 	 */
2044 	if (event == group_leader)
2045 		return true;
2046 
2047 	for_each_sibling_event(sibling, group_leader) {
2048 		if (__perf_event_read_size(sibling->attr.read_format,
2049 					   group_leader->nr_siblings + 1) > 16*1024)
2050 			return false;
2051 	}
2052 
2053 	return true;
2054 }
2055 
perf_group_attach(struct perf_event * event)2056 static void perf_group_attach(struct perf_event *event)
2057 {
2058 	struct perf_event *group_leader = event->group_leader, *pos;
2059 
2060 	lockdep_assert_held(&event->ctx->lock);
2061 
2062 	/*
2063 	 * We can have double attach due to group movement (move_group) in
2064 	 * perf_event_open().
2065 	 */
2066 	if (event->attach_state & PERF_ATTACH_GROUP)
2067 		return;
2068 
2069 	event->attach_state |= PERF_ATTACH_GROUP;
2070 
2071 	if (group_leader == event)
2072 		return;
2073 
2074 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2075 
2076 	group_leader->group_caps &= event->event_caps;
2077 
2078 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2079 	group_leader->nr_siblings++;
2080 	group_leader->group_generation++;
2081 
2082 	perf_event__header_size(group_leader);
2083 
2084 	for_each_sibling_event(pos, group_leader)
2085 		perf_event__header_size(pos);
2086 }
2087 
2088 /*
2089  * Remove an event from the lists for its context.
2090  * Must be called with ctx->mutex and ctx->lock held.
2091  */
2092 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2093 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2094 {
2095 	WARN_ON_ONCE(event->ctx != ctx);
2096 	lockdep_assert_held(&ctx->lock);
2097 
2098 	/*
2099 	 * We can have double detach due to exit/hot-unplug + close.
2100 	 */
2101 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2102 		return;
2103 
2104 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2105 
2106 	ctx->nr_events--;
2107 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2108 		ctx->nr_user--;
2109 	if (event->attr.inherit_stat)
2110 		ctx->nr_stat--;
2111 	if (has_inherit_and_sample_read(&event->attr))
2112 		local_dec(&ctx->nr_no_switch_fast);
2113 
2114 	list_del_rcu(&event->event_entry);
2115 
2116 	if (event->group_leader == event)
2117 		del_event_from_groups(event, ctx);
2118 
2119 	/*
2120 	 * If event was in error state, then keep it
2121 	 * that way, otherwise bogus counts will be
2122 	 * returned on read(). The only way to get out
2123 	 * of error state is by explicit re-enabling
2124 	 * of the event
2125 	 */
2126 	if (event->state > PERF_EVENT_STATE_OFF) {
2127 		perf_cgroup_event_disable(event, ctx);
2128 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2129 	}
2130 
2131 	ctx->generation++;
2132 	event->pmu_ctx->nr_events--;
2133 }
2134 
2135 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2136 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2137 {
2138 	if (!has_aux(aux_event))
2139 		return 0;
2140 
2141 	if (!event->pmu->aux_output_match)
2142 		return 0;
2143 
2144 	return event->pmu->aux_output_match(aux_event);
2145 }
2146 
2147 static void put_event(struct perf_event *event);
2148 static void event_sched_out(struct perf_event *event,
2149 			    struct perf_event_context *ctx);
2150 
perf_put_aux_event(struct perf_event * event)2151 static void perf_put_aux_event(struct perf_event *event)
2152 {
2153 	struct perf_event_context *ctx = event->ctx;
2154 	struct perf_event *iter;
2155 
2156 	/*
2157 	 * If event uses aux_event tear down the link
2158 	 */
2159 	if (event->aux_event) {
2160 		iter = event->aux_event;
2161 		event->aux_event = NULL;
2162 		put_event(iter);
2163 		return;
2164 	}
2165 
2166 	/*
2167 	 * If the event is an aux_event, tear down all links to
2168 	 * it from other events.
2169 	 */
2170 	for_each_sibling_event(iter, event->group_leader) {
2171 		if (iter->aux_event != event)
2172 			continue;
2173 
2174 		iter->aux_event = NULL;
2175 		put_event(event);
2176 
2177 		/*
2178 		 * If it's ACTIVE, schedule it out and put it into ERROR
2179 		 * state so that we don't try to schedule it again. Note
2180 		 * that perf_event_enable() will clear the ERROR status.
2181 		 */
2182 		event_sched_out(iter, ctx);
2183 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2184 	}
2185 }
2186 
perf_need_aux_event(struct perf_event * event)2187 static bool perf_need_aux_event(struct perf_event *event)
2188 {
2189 	return event->attr.aux_output || has_aux_action(event);
2190 }
2191 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2192 static int perf_get_aux_event(struct perf_event *event,
2193 			      struct perf_event *group_leader)
2194 {
2195 	/*
2196 	 * Our group leader must be an aux event if we want to be
2197 	 * an aux_output. This way, the aux event will precede its
2198 	 * aux_output events in the group, and therefore will always
2199 	 * schedule first.
2200 	 */
2201 	if (!group_leader)
2202 		return 0;
2203 
2204 	/*
2205 	 * aux_output and aux_sample_size are mutually exclusive.
2206 	 */
2207 	if (event->attr.aux_output && event->attr.aux_sample_size)
2208 		return 0;
2209 
2210 	if (event->attr.aux_output &&
2211 	    !perf_aux_output_match(event, group_leader))
2212 		return 0;
2213 
2214 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2215 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2216 		return 0;
2217 
2218 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2219 		return 0;
2220 
2221 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2222 		return 0;
2223 
2224 	/*
2225 	 * Link aux_outputs to their aux event; this is undone in
2226 	 * perf_group_detach() by perf_put_aux_event(). When the
2227 	 * group in torn down, the aux_output events loose their
2228 	 * link to the aux_event and can't schedule any more.
2229 	 */
2230 	event->aux_event = group_leader;
2231 
2232 	return 1;
2233 }
2234 
get_event_list(struct perf_event * event)2235 static inline struct list_head *get_event_list(struct perf_event *event)
2236 {
2237 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2238 				    &event->pmu_ctx->flexible_active;
2239 }
2240 
2241 /*
2242  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2243  * cannot exist on their own, schedule them out and move them into the ERROR
2244  * state. Also see _perf_event_enable(), it will not be able to recover
2245  * this ERROR state.
2246  */
perf_remove_sibling_event(struct perf_event * event)2247 static inline void perf_remove_sibling_event(struct perf_event *event)
2248 {
2249 	event_sched_out(event, event->ctx);
2250 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2251 }
2252 
perf_group_detach(struct perf_event * event)2253 static void perf_group_detach(struct perf_event *event)
2254 {
2255 	struct perf_event *leader = event->group_leader;
2256 	struct perf_event *sibling, *tmp;
2257 	struct perf_event_context *ctx = event->ctx;
2258 
2259 	lockdep_assert_held(&ctx->lock);
2260 
2261 	/*
2262 	 * We can have double detach due to exit/hot-unplug + close.
2263 	 */
2264 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2265 		return;
2266 
2267 	event->attach_state &= ~PERF_ATTACH_GROUP;
2268 
2269 	perf_put_aux_event(event);
2270 
2271 	/*
2272 	 * If this is a sibling, remove it from its group.
2273 	 */
2274 	if (leader != event) {
2275 		list_del_init(&event->sibling_list);
2276 		event->group_leader->nr_siblings--;
2277 		event->group_leader->group_generation++;
2278 		goto out;
2279 	}
2280 
2281 	/*
2282 	 * If this was a group event with sibling events then
2283 	 * upgrade the siblings to singleton events by adding them
2284 	 * to whatever list we are on.
2285 	 */
2286 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2287 
2288 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2289 			perf_remove_sibling_event(sibling);
2290 
2291 		sibling->group_leader = sibling;
2292 		list_del_init(&sibling->sibling_list);
2293 
2294 		/* Inherit group flags from the previous leader */
2295 		sibling->group_caps = event->group_caps;
2296 
2297 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2298 			add_event_to_groups(sibling, event->ctx);
2299 
2300 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2301 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2302 		}
2303 
2304 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2305 	}
2306 
2307 out:
2308 	for_each_sibling_event(tmp, leader)
2309 		perf_event__header_size(tmp);
2310 
2311 	perf_event__header_size(leader);
2312 }
2313 
2314 static void sync_child_event(struct perf_event *child_event);
2315 
perf_child_detach(struct perf_event * event)2316 static void perf_child_detach(struct perf_event *event)
2317 {
2318 	struct perf_event *parent_event = event->parent;
2319 
2320 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2321 		return;
2322 
2323 	event->attach_state &= ~PERF_ATTACH_CHILD;
2324 
2325 	if (WARN_ON_ONCE(!parent_event))
2326 		return;
2327 
2328 	lockdep_assert_held(&parent_event->child_mutex);
2329 
2330 	sync_child_event(event);
2331 	list_del_init(&event->child_list);
2332 }
2333 
is_orphaned_event(struct perf_event * event)2334 static bool is_orphaned_event(struct perf_event *event)
2335 {
2336 	return event->state == PERF_EVENT_STATE_DEAD;
2337 }
2338 
2339 static inline int
event_filter_match(struct perf_event * event)2340 event_filter_match(struct perf_event *event)
2341 {
2342 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2343 	       perf_cgroup_match(event);
2344 }
2345 
2346 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2347 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2348 {
2349 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2350 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2351 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2352 
2353 	// XXX cpc serialization, probably per-cpu IRQ disabled
2354 
2355 	WARN_ON_ONCE(event->ctx != ctx);
2356 	lockdep_assert_held(&ctx->lock);
2357 
2358 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2359 		return;
2360 
2361 	/*
2362 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2363 	 * we can schedule events _OUT_ individually through things like
2364 	 * __perf_remove_from_context().
2365 	 */
2366 	list_del_init(&event->active_list);
2367 
2368 	perf_pmu_disable(event->pmu);
2369 
2370 	event->pmu->del(event, 0);
2371 	event->oncpu = -1;
2372 
2373 	if (event->pending_disable) {
2374 		event->pending_disable = 0;
2375 		perf_cgroup_event_disable(event, ctx);
2376 		state = PERF_EVENT_STATE_OFF;
2377 	}
2378 
2379 	perf_event_set_state(event, state);
2380 
2381 	if (!is_software_event(event))
2382 		cpc->active_oncpu--;
2383 	if (event->attr.freq && event->attr.sample_freq) {
2384 		ctx->nr_freq--;
2385 		epc->nr_freq--;
2386 	}
2387 	if (event->attr.exclusive || !cpc->active_oncpu)
2388 		cpc->exclusive = 0;
2389 
2390 	perf_pmu_enable(event->pmu);
2391 }
2392 
2393 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2394 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2395 {
2396 	struct perf_event *event;
2397 
2398 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2399 		return;
2400 
2401 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2402 
2403 	event_sched_out(group_event, ctx);
2404 
2405 	/*
2406 	 * Schedule out siblings (if any):
2407 	 */
2408 	for_each_sibling_event(event, group_event)
2409 		event_sched_out(event, ctx);
2410 }
2411 
2412 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2413 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2414 {
2415 	if (ctx->is_active & EVENT_TIME) {
2416 		if (ctx->is_active & EVENT_FROZEN)
2417 			return;
2418 		update_context_time(ctx);
2419 		update_cgrp_time_from_cpuctx(cpuctx, final);
2420 	}
2421 }
2422 
2423 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2424 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2425 {
2426 	__ctx_time_update(cpuctx, ctx, false);
2427 }
2428 
2429 /*
2430  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2431  */
2432 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2433 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2434 {
2435 	ctx_time_update(cpuctx, ctx);
2436 	if (ctx->is_active & EVENT_TIME)
2437 		ctx->is_active |= EVENT_FROZEN;
2438 }
2439 
2440 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2441 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2442 {
2443 	if (ctx->is_active & EVENT_TIME) {
2444 		if (ctx->is_active & EVENT_FROZEN)
2445 			return;
2446 		update_context_time(ctx);
2447 		update_cgrp_time_from_event(event);
2448 	}
2449 }
2450 
2451 #define DETACH_GROUP	0x01UL
2452 #define DETACH_CHILD	0x02UL
2453 #define DETACH_DEAD	0x04UL
2454 
2455 /*
2456  * Cross CPU call to remove a performance event
2457  *
2458  * We disable the event on the hardware level first. After that we
2459  * remove it from the context list.
2460  */
2461 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2462 __perf_remove_from_context(struct perf_event *event,
2463 			   struct perf_cpu_context *cpuctx,
2464 			   struct perf_event_context *ctx,
2465 			   void *info)
2466 {
2467 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2468 	unsigned long flags = (unsigned long)info;
2469 
2470 	ctx_time_update(cpuctx, ctx);
2471 
2472 	/*
2473 	 * Ensure event_sched_out() switches to OFF, at the very least
2474 	 * this avoids raising perf_pending_task() at this time.
2475 	 */
2476 	if (flags & DETACH_DEAD)
2477 		event->pending_disable = 1;
2478 	event_sched_out(event, ctx);
2479 	if (flags & DETACH_GROUP)
2480 		perf_group_detach(event);
2481 	if (flags & DETACH_CHILD)
2482 		perf_child_detach(event);
2483 	list_del_event(event, ctx);
2484 	if (flags & DETACH_DEAD)
2485 		event->state = PERF_EVENT_STATE_DEAD;
2486 
2487 	if (!pmu_ctx->nr_events) {
2488 		pmu_ctx->rotate_necessary = 0;
2489 
2490 		if (ctx->task && ctx->is_active) {
2491 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2492 
2493 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2494 			cpc->task_epc = NULL;
2495 		}
2496 	}
2497 
2498 	if (!ctx->nr_events && ctx->is_active) {
2499 		if (ctx == &cpuctx->ctx)
2500 			update_cgrp_time_from_cpuctx(cpuctx, true);
2501 
2502 		ctx->is_active = 0;
2503 		if (ctx->task) {
2504 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2505 			cpuctx->task_ctx = NULL;
2506 		}
2507 	}
2508 }
2509 
2510 /*
2511  * Remove the event from a task's (or a CPU's) list of events.
2512  *
2513  * If event->ctx is a cloned context, callers must make sure that
2514  * every task struct that event->ctx->task could possibly point to
2515  * remains valid.  This is OK when called from perf_release since
2516  * that only calls us on the top-level context, which can't be a clone.
2517  * When called from perf_event_exit_task, it's OK because the
2518  * context has been detached from its task.
2519  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2520 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2521 {
2522 	struct perf_event_context *ctx = event->ctx;
2523 
2524 	lockdep_assert_held(&ctx->mutex);
2525 
2526 	/*
2527 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2528 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2529 	 * event_function_call() user.
2530 	 */
2531 	raw_spin_lock_irq(&ctx->lock);
2532 	if (!ctx->is_active) {
2533 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2534 					   ctx, (void *)flags);
2535 		raw_spin_unlock_irq(&ctx->lock);
2536 		return;
2537 	}
2538 	raw_spin_unlock_irq(&ctx->lock);
2539 
2540 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2541 }
2542 
2543 /*
2544  * Cross CPU call to disable a performance event
2545  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2546 static void __perf_event_disable(struct perf_event *event,
2547 				 struct perf_cpu_context *cpuctx,
2548 				 struct perf_event_context *ctx,
2549 				 void *info)
2550 {
2551 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2552 		return;
2553 
2554 	perf_pmu_disable(event->pmu_ctx->pmu);
2555 	ctx_time_update_event(ctx, event);
2556 
2557 	if (event == event->group_leader)
2558 		group_sched_out(event, ctx);
2559 	else
2560 		event_sched_out(event, ctx);
2561 
2562 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2563 	perf_cgroup_event_disable(event, ctx);
2564 
2565 	perf_pmu_enable(event->pmu_ctx->pmu);
2566 }
2567 
2568 /*
2569  * Disable an event.
2570  *
2571  * If event->ctx is a cloned context, callers must make sure that
2572  * every task struct that event->ctx->task could possibly point to
2573  * remains valid.  This condition is satisfied when called through
2574  * perf_event_for_each_child or perf_event_for_each because they
2575  * hold the top-level event's child_mutex, so any descendant that
2576  * goes to exit will block in perf_event_exit_event().
2577  *
2578  * When called from perf_pending_disable it's OK because event->ctx
2579  * is the current context on this CPU and preemption is disabled,
2580  * hence we can't get into perf_event_task_sched_out for this context.
2581  */
_perf_event_disable(struct perf_event * event)2582 static void _perf_event_disable(struct perf_event *event)
2583 {
2584 	struct perf_event_context *ctx = event->ctx;
2585 
2586 	raw_spin_lock_irq(&ctx->lock);
2587 	if (event->state <= PERF_EVENT_STATE_OFF) {
2588 		raw_spin_unlock_irq(&ctx->lock);
2589 		return;
2590 	}
2591 	raw_spin_unlock_irq(&ctx->lock);
2592 
2593 	event_function_call(event, __perf_event_disable, NULL);
2594 }
2595 
perf_event_disable_local(struct perf_event * event)2596 void perf_event_disable_local(struct perf_event *event)
2597 {
2598 	event_function_local(event, __perf_event_disable, NULL);
2599 }
2600 
2601 /*
2602  * Strictly speaking kernel users cannot create groups and therefore this
2603  * interface does not need the perf_event_ctx_lock() magic.
2604  */
perf_event_disable(struct perf_event * event)2605 void perf_event_disable(struct perf_event *event)
2606 {
2607 	struct perf_event_context *ctx;
2608 
2609 	ctx = perf_event_ctx_lock(event);
2610 	_perf_event_disable(event);
2611 	perf_event_ctx_unlock(event, ctx);
2612 }
2613 EXPORT_SYMBOL_GPL(perf_event_disable);
2614 
perf_event_disable_inatomic(struct perf_event * event)2615 void perf_event_disable_inatomic(struct perf_event *event)
2616 {
2617 	event->pending_disable = 1;
2618 	irq_work_queue(&event->pending_disable_irq);
2619 }
2620 
2621 #define MAX_INTERRUPTS (~0ULL)
2622 
2623 static void perf_log_throttle(struct perf_event *event, int enable);
2624 static void perf_log_itrace_start(struct perf_event *event);
2625 
2626 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2627 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2628 {
2629 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2630 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2631 	int ret = 0;
2632 
2633 	WARN_ON_ONCE(event->ctx != ctx);
2634 
2635 	lockdep_assert_held(&ctx->lock);
2636 
2637 	if (event->state <= PERF_EVENT_STATE_OFF)
2638 		return 0;
2639 
2640 	WRITE_ONCE(event->oncpu, smp_processor_id());
2641 	/*
2642 	 * Order event::oncpu write to happen before the ACTIVE state is
2643 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2644 	 * ->oncpu if it sees ACTIVE.
2645 	 */
2646 	smp_wmb();
2647 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2648 
2649 	/*
2650 	 * Unthrottle events, since we scheduled we might have missed several
2651 	 * ticks already, also for a heavily scheduling task there is little
2652 	 * guarantee it'll get a tick in a timely manner.
2653 	 */
2654 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2655 		perf_log_throttle(event, 1);
2656 		event->hw.interrupts = 0;
2657 	}
2658 
2659 	perf_pmu_disable(event->pmu);
2660 
2661 	perf_log_itrace_start(event);
2662 
2663 	if (event->pmu->add(event, PERF_EF_START)) {
2664 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2665 		event->oncpu = -1;
2666 		ret = -EAGAIN;
2667 		goto out;
2668 	}
2669 
2670 	if (!is_software_event(event))
2671 		cpc->active_oncpu++;
2672 	if (event->attr.freq && event->attr.sample_freq) {
2673 		ctx->nr_freq++;
2674 		epc->nr_freq++;
2675 	}
2676 	if (event->attr.exclusive)
2677 		cpc->exclusive = 1;
2678 
2679 out:
2680 	perf_pmu_enable(event->pmu);
2681 
2682 	return ret;
2683 }
2684 
2685 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2686 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2687 {
2688 	struct perf_event *event, *partial_group = NULL;
2689 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2690 
2691 	if (group_event->state == PERF_EVENT_STATE_OFF)
2692 		return 0;
2693 
2694 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2695 
2696 	if (event_sched_in(group_event, ctx))
2697 		goto error;
2698 
2699 	/*
2700 	 * Schedule in siblings as one group (if any):
2701 	 */
2702 	for_each_sibling_event(event, group_event) {
2703 		if (event_sched_in(event, ctx)) {
2704 			partial_group = event;
2705 			goto group_error;
2706 		}
2707 	}
2708 
2709 	if (!pmu->commit_txn(pmu))
2710 		return 0;
2711 
2712 group_error:
2713 	/*
2714 	 * Groups can be scheduled in as one unit only, so undo any
2715 	 * partial group before returning:
2716 	 * The events up to the failed event are scheduled out normally.
2717 	 */
2718 	for_each_sibling_event(event, group_event) {
2719 		if (event == partial_group)
2720 			break;
2721 
2722 		event_sched_out(event, ctx);
2723 	}
2724 	event_sched_out(group_event, ctx);
2725 
2726 error:
2727 	pmu->cancel_txn(pmu);
2728 	return -EAGAIN;
2729 }
2730 
2731 /*
2732  * Work out whether we can put this event group on the CPU now.
2733  */
group_can_go_on(struct perf_event * event,int can_add_hw)2734 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2735 {
2736 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2737 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2738 
2739 	/*
2740 	 * Groups consisting entirely of software events can always go on.
2741 	 */
2742 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2743 		return 1;
2744 	/*
2745 	 * If an exclusive group is already on, no other hardware
2746 	 * events can go on.
2747 	 */
2748 	if (cpc->exclusive)
2749 		return 0;
2750 	/*
2751 	 * If this group is exclusive and there are already
2752 	 * events on the CPU, it can't go on.
2753 	 */
2754 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2755 		return 0;
2756 	/*
2757 	 * Otherwise, try to add it if all previous groups were able
2758 	 * to go on.
2759 	 */
2760 	return can_add_hw;
2761 }
2762 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2763 static void add_event_to_ctx(struct perf_event *event,
2764 			       struct perf_event_context *ctx)
2765 {
2766 	list_add_event(event, ctx);
2767 	perf_group_attach(event);
2768 }
2769 
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2770 static void task_ctx_sched_out(struct perf_event_context *ctx,
2771 			       struct pmu *pmu,
2772 			       enum event_type_t event_type)
2773 {
2774 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2775 
2776 	if (!cpuctx->task_ctx)
2777 		return;
2778 
2779 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2780 		return;
2781 
2782 	ctx_sched_out(ctx, pmu, event_type);
2783 }
2784 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2785 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2786 				struct perf_event_context *ctx,
2787 				struct pmu *pmu)
2788 {
2789 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2790 	if (ctx)
2791 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2792 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2793 	if (ctx)
2794 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2795 }
2796 
2797 /*
2798  * We want to maintain the following priority of scheduling:
2799  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2800  *  - task pinned (EVENT_PINNED)
2801  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2802  *  - task flexible (EVENT_FLEXIBLE).
2803  *
2804  * In order to avoid unscheduling and scheduling back in everything every
2805  * time an event is added, only do it for the groups of equal priority and
2806  * below.
2807  *
2808  * This can be called after a batch operation on task events, in which case
2809  * event_type is a bit mask of the types of events involved. For CPU events,
2810  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2811  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2812 static void ctx_resched(struct perf_cpu_context *cpuctx,
2813 			struct perf_event_context *task_ctx,
2814 			struct pmu *pmu, enum event_type_t event_type)
2815 {
2816 	bool cpu_event = !!(event_type & EVENT_CPU);
2817 	struct perf_event_pmu_context *epc;
2818 
2819 	/*
2820 	 * If pinned groups are involved, flexible groups also need to be
2821 	 * scheduled out.
2822 	 */
2823 	if (event_type & EVENT_PINNED)
2824 		event_type |= EVENT_FLEXIBLE;
2825 
2826 	event_type &= EVENT_ALL;
2827 
2828 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2829 		perf_pmu_disable(epc->pmu);
2830 
2831 	if (task_ctx) {
2832 		for_each_epc(epc, task_ctx, pmu, false)
2833 			perf_pmu_disable(epc->pmu);
2834 
2835 		task_ctx_sched_out(task_ctx, pmu, event_type);
2836 	}
2837 
2838 	/*
2839 	 * Decide which cpu ctx groups to schedule out based on the types
2840 	 * of events that caused rescheduling:
2841 	 *  - EVENT_CPU: schedule out corresponding groups;
2842 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2843 	 *  - otherwise, do nothing more.
2844 	 */
2845 	if (cpu_event)
2846 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2847 	else if (event_type & EVENT_PINNED)
2848 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2849 
2850 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2851 
2852 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2853 		perf_pmu_enable(epc->pmu);
2854 
2855 	if (task_ctx) {
2856 		for_each_epc(epc, task_ctx, pmu, false)
2857 			perf_pmu_enable(epc->pmu);
2858 	}
2859 }
2860 
perf_pmu_resched(struct pmu * pmu)2861 void perf_pmu_resched(struct pmu *pmu)
2862 {
2863 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2864 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2865 
2866 	perf_ctx_lock(cpuctx, task_ctx);
2867 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2868 	perf_ctx_unlock(cpuctx, task_ctx);
2869 }
2870 
2871 /*
2872  * Cross CPU call to install and enable a performance event
2873  *
2874  * Very similar to remote_function() + event_function() but cannot assume that
2875  * things like ctx->is_active and cpuctx->task_ctx are set.
2876  */
__perf_install_in_context(void * info)2877 static int  __perf_install_in_context(void *info)
2878 {
2879 	struct perf_event *event = info;
2880 	struct perf_event_context *ctx = event->ctx;
2881 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2882 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2883 	bool reprogram = true;
2884 	int ret = 0;
2885 
2886 	raw_spin_lock(&cpuctx->ctx.lock);
2887 	if (ctx->task) {
2888 		raw_spin_lock(&ctx->lock);
2889 		task_ctx = ctx;
2890 
2891 		reprogram = (ctx->task == current);
2892 
2893 		/*
2894 		 * If the task is running, it must be running on this CPU,
2895 		 * otherwise we cannot reprogram things.
2896 		 *
2897 		 * If its not running, we don't care, ctx->lock will
2898 		 * serialize against it becoming runnable.
2899 		 */
2900 		if (task_curr(ctx->task) && !reprogram) {
2901 			ret = -ESRCH;
2902 			goto unlock;
2903 		}
2904 
2905 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2906 	} else if (task_ctx) {
2907 		raw_spin_lock(&task_ctx->lock);
2908 	}
2909 
2910 #ifdef CONFIG_CGROUP_PERF
2911 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2912 		/*
2913 		 * If the current cgroup doesn't match the event's
2914 		 * cgroup, we should not try to schedule it.
2915 		 */
2916 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2917 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2918 					event->cgrp->css.cgroup);
2919 	}
2920 #endif
2921 
2922 	if (reprogram) {
2923 		ctx_time_freeze(cpuctx, ctx);
2924 		add_event_to_ctx(event, ctx);
2925 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2926 			    get_event_type(event));
2927 	} else {
2928 		add_event_to_ctx(event, ctx);
2929 	}
2930 
2931 unlock:
2932 	perf_ctx_unlock(cpuctx, task_ctx);
2933 
2934 	return ret;
2935 }
2936 
2937 static bool exclusive_event_installable(struct perf_event *event,
2938 					struct perf_event_context *ctx);
2939 
2940 /*
2941  * Attach a performance event to a context.
2942  *
2943  * Very similar to event_function_call, see comment there.
2944  */
2945 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2946 perf_install_in_context(struct perf_event_context *ctx,
2947 			struct perf_event *event,
2948 			int cpu)
2949 {
2950 	struct task_struct *task = READ_ONCE(ctx->task);
2951 
2952 	lockdep_assert_held(&ctx->mutex);
2953 
2954 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2955 
2956 	if (event->cpu != -1)
2957 		WARN_ON_ONCE(event->cpu != cpu);
2958 
2959 	/*
2960 	 * Ensures that if we can observe event->ctx, both the event and ctx
2961 	 * will be 'complete'. See perf_iterate_sb_cpu().
2962 	 */
2963 	smp_store_release(&event->ctx, ctx);
2964 
2965 	/*
2966 	 * perf_event_attr::disabled events will not run and can be initialized
2967 	 * without IPI. Except when this is the first event for the context, in
2968 	 * that case we need the magic of the IPI to set ctx->is_active.
2969 	 *
2970 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2971 	 * event will issue the IPI and reprogram the hardware.
2972 	 */
2973 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2974 	    ctx->nr_events && !is_cgroup_event(event)) {
2975 		raw_spin_lock_irq(&ctx->lock);
2976 		if (ctx->task == TASK_TOMBSTONE) {
2977 			raw_spin_unlock_irq(&ctx->lock);
2978 			return;
2979 		}
2980 		add_event_to_ctx(event, ctx);
2981 		raw_spin_unlock_irq(&ctx->lock);
2982 		return;
2983 	}
2984 
2985 	if (!task) {
2986 		cpu_function_call(cpu, __perf_install_in_context, event);
2987 		return;
2988 	}
2989 
2990 	/*
2991 	 * Should not happen, we validate the ctx is still alive before calling.
2992 	 */
2993 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2994 		return;
2995 
2996 	/*
2997 	 * Installing events is tricky because we cannot rely on ctx->is_active
2998 	 * to be set in case this is the nr_events 0 -> 1 transition.
2999 	 *
3000 	 * Instead we use task_curr(), which tells us if the task is running.
3001 	 * However, since we use task_curr() outside of rq::lock, we can race
3002 	 * against the actual state. This means the result can be wrong.
3003 	 *
3004 	 * If we get a false positive, we retry, this is harmless.
3005 	 *
3006 	 * If we get a false negative, things are complicated. If we are after
3007 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3008 	 * value must be correct. If we're before, it doesn't matter since
3009 	 * perf_event_context_sched_in() will program the counter.
3010 	 *
3011 	 * However, this hinges on the remote context switch having observed
3012 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3013 	 * ctx::lock in perf_event_context_sched_in().
3014 	 *
3015 	 * We do this by task_function_call(), if the IPI fails to hit the task
3016 	 * we know any future context switch of task must see the
3017 	 * perf_event_ctpx[] store.
3018 	 */
3019 
3020 	/*
3021 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3022 	 * task_cpu() load, such that if the IPI then does not find the task
3023 	 * running, a future context switch of that task must observe the
3024 	 * store.
3025 	 */
3026 	smp_mb();
3027 again:
3028 	if (!task_function_call(task, __perf_install_in_context, event))
3029 		return;
3030 
3031 	raw_spin_lock_irq(&ctx->lock);
3032 	task = ctx->task;
3033 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3034 		/*
3035 		 * Cannot happen because we already checked above (which also
3036 		 * cannot happen), and we hold ctx->mutex, which serializes us
3037 		 * against perf_event_exit_task_context().
3038 		 */
3039 		raw_spin_unlock_irq(&ctx->lock);
3040 		return;
3041 	}
3042 	/*
3043 	 * If the task is not running, ctx->lock will avoid it becoming so,
3044 	 * thus we can safely install the event.
3045 	 */
3046 	if (task_curr(task)) {
3047 		raw_spin_unlock_irq(&ctx->lock);
3048 		goto again;
3049 	}
3050 	add_event_to_ctx(event, ctx);
3051 	raw_spin_unlock_irq(&ctx->lock);
3052 }
3053 
3054 /*
3055  * Cross CPU call to enable a performance event
3056  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3057 static void __perf_event_enable(struct perf_event *event,
3058 				struct perf_cpu_context *cpuctx,
3059 				struct perf_event_context *ctx,
3060 				void *info)
3061 {
3062 	struct perf_event *leader = event->group_leader;
3063 	struct perf_event_context *task_ctx;
3064 
3065 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066 	    event->state <= PERF_EVENT_STATE_ERROR)
3067 		return;
3068 
3069 	ctx_time_freeze(cpuctx, ctx);
3070 
3071 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3072 	perf_cgroup_event_enable(event, ctx);
3073 
3074 	if (!ctx->is_active)
3075 		return;
3076 
3077 	if (!event_filter_match(event))
3078 		return;
3079 
3080 	/*
3081 	 * If the event is in a group and isn't the group leader,
3082 	 * then don't put it on unless the group is on.
3083 	 */
3084 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3085 		return;
3086 
3087 	task_ctx = cpuctx->task_ctx;
3088 	if (ctx->task)
3089 		WARN_ON_ONCE(task_ctx != ctx);
3090 
3091 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3092 }
3093 
3094 /*
3095  * Enable an event.
3096  *
3097  * If event->ctx is a cloned context, callers must make sure that
3098  * every task struct that event->ctx->task could possibly point to
3099  * remains valid.  This condition is satisfied when called through
3100  * perf_event_for_each_child or perf_event_for_each as described
3101  * for perf_event_disable.
3102  */
_perf_event_enable(struct perf_event * event)3103 static void _perf_event_enable(struct perf_event *event)
3104 {
3105 	struct perf_event_context *ctx = event->ctx;
3106 
3107 	raw_spin_lock_irq(&ctx->lock);
3108 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3109 	    event->state <  PERF_EVENT_STATE_ERROR) {
3110 out:
3111 		raw_spin_unlock_irq(&ctx->lock);
3112 		return;
3113 	}
3114 
3115 	/*
3116 	 * If the event is in error state, clear that first.
3117 	 *
3118 	 * That way, if we see the event in error state below, we know that it
3119 	 * has gone back into error state, as distinct from the task having
3120 	 * been scheduled away before the cross-call arrived.
3121 	 */
3122 	if (event->state == PERF_EVENT_STATE_ERROR) {
3123 		/*
3124 		 * Detached SIBLING events cannot leave ERROR state.
3125 		 */
3126 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3127 		    event->group_leader == event)
3128 			goto out;
3129 
3130 		event->state = PERF_EVENT_STATE_OFF;
3131 	}
3132 	raw_spin_unlock_irq(&ctx->lock);
3133 
3134 	event_function_call(event, __perf_event_enable, NULL);
3135 }
3136 
3137 /*
3138  * See perf_event_disable();
3139  */
perf_event_enable(struct perf_event * event)3140 void perf_event_enable(struct perf_event *event)
3141 {
3142 	struct perf_event_context *ctx;
3143 
3144 	ctx = perf_event_ctx_lock(event);
3145 	_perf_event_enable(event);
3146 	perf_event_ctx_unlock(event, ctx);
3147 }
3148 EXPORT_SYMBOL_GPL(perf_event_enable);
3149 
3150 struct stop_event_data {
3151 	struct perf_event	*event;
3152 	unsigned int		restart;
3153 };
3154 
__perf_event_stop(void * info)3155 static int __perf_event_stop(void *info)
3156 {
3157 	struct stop_event_data *sd = info;
3158 	struct perf_event *event = sd->event;
3159 
3160 	/* if it's already INACTIVE, do nothing */
3161 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3162 		return 0;
3163 
3164 	/* matches smp_wmb() in event_sched_in() */
3165 	smp_rmb();
3166 
3167 	/*
3168 	 * There is a window with interrupts enabled before we get here,
3169 	 * so we need to check again lest we try to stop another CPU's event.
3170 	 */
3171 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3172 		return -EAGAIN;
3173 
3174 	event->pmu->stop(event, PERF_EF_UPDATE);
3175 
3176 	/*
3177 	 * May race with the actual stop (through perf_pmu_output_stop()),
3178 	 * but it is only used for events with AUX ring buffer, and such
3179 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3180 	 * see comments in perf_aux_output_begin().
3181 	 *
3182 	 * Since this is happening on an event-local CPU, no trace is lost
3183 	 * while restarting.
3184 	 */
3185 	if (sd->restart)
3186 		event->pmu->start(event, 0);
3187 
3188 	return 0;
3189 }
3190 
perf_event_stop(struct perf_event * event,int restart)3191 static int perf_event_stop(struct perf_event *event, int restart)
3192 {
3193 	struct stop_event_data sd = {
3194 		.event		= event,
3195 		.restart	= restart,
3196 	};
3197 	int ret = 0;
3198 
3199 	do {
3200 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3201 			return 0;
3202 
3203 		/* matches smp_wmb() in event_sched_in() */
3204 		smp_rmb();
3205 
3206 		/*
3207 		 * We only want to restart ACTIVE events, so if the event goes
3208 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3209 		 * fall through with ret==-ENXIO.
3210 		 */
3211 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3212 					__perf_event_stop, &sd);
3213 	} while (ret == -EAGAIN);
3214 
3215 	return ret;
3216 }
3217 
3218 /*
3219  * In order to contain the amount of racy and tricky in the address filter
3220  * configuration management, it is a two part process:
3221  *
3222  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3223  *      we update the addresses of corresponding vmas in
3224  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3225  * (p2) when an event is scheduled in (pmu::add), it calls
3226  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3227  *      if the generation has changed since the previous call.
3228  *
3229  * If (p1) happens while the event is active, we restart it to force (p2).
3230  *
3231  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3232  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3233  *     ioctl;
3234  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3235  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3236  *     for reading;
3237  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3238  *     of exec.
3239  */
perf_event_addr_filters_sync(struct perf_event * event)3240 void perf_event_addr_filters_sync(struct perf_event *event)
3241 {
3242 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3243 
3244 	if (!has_addr_filter(event))
3245 		return;
3246 
3247 	raw_spin_lock(&ifh->lock);
3248 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3249 		event->pmu->addr_filters_sync(event);
3250 		event->hw.addr_filters_gen = event->addr_filters_gen;
3251 	}
3252 	raw_spin_unlock(&ifh->lock);
3253 }
3254 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3255 
_perf_event_refresh(struct perf_event * event,int refresh)3256 static int _perf_event_refresh(struct perf_event *event, int refresh)
3257 {
3258 	/*
3259 	 * not supported on inherited events
3260 	 */
3261 	if (event->attr.inherit || !is_sampling_event(event))
3262 		return -EINVAL;
3263 
3264 	atomic_add(refresh, &event->event_limit);
3265 	_perf_event_enable(event);
3266 
3267 	return 0;
3268 }
3269 
3270 /*
3271  * See perf_event_disable()
3272  */
perf_event_refresh(struct perf_event * event,int refresh)3273 int perf_event_refresh(struct perf_event *event, int refresh)
3274 {
3275 	struct perf_event_context *ctx;
3276 	int ret;
3277 
3278 	ctx = perf_event_ctx_lock(event);
3279 	ret = _perf_event_refresh(event, refresh);
3280 	perf_event_ctx_unlock(event, ctx);
3281 
3282 	return ret;
3283 }
3284 EXPORT_SYMBOL_GPL(perf_event_refresh);
3285 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3286 static int perf_event_modify_breakpoint(struct perf_event *bp,
3287 					 struct perf_event_attr *attr)
3288 {
3289 	int err;
3290 
3291 	_perf_event_disable(bp);
3292 
3293 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3294 
3295 	if (!bp->attr.disabled)
3296 		_perf_event_enable(bp);
3297 
3298 	return err;
3299 }
3300 
3301 /*
3302  * Copy event-type-independent attributes that may be modified.
3303  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3304 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3305 					const struct perf_event_attr *from)
3306 {
3307 	to->sig_data = from->sig_data;
3308 }
3309 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3310 static int perf_event_modify_attr(struct perf_event *event,
3311 				  struct perf_event_attr *attr)
3312 {
3313 	int (*func)(struct perf_event *, struct perf_event_attr *);
3314 	struct perf_event *child;
3315 	int err;
3316 
3317 	if (event->attr.type != attr->type)
3318 		return -EINVAL;
3319 
3320 	switch (event->attr.type) {
3321 	case PERF_TYPE_BREAKPOINT:
3322 		func = perf_event_modify_breakpoint;
3323 		break;
3324 	default:
3325 		/* Place holder for future additions. */
3326 		return -EOPNOTSUPP;
3327 	}
3328 
3329 	WARN_ON_ONCE(event->ctx->parent_ctx);
3330 
3331 	mutex_lock(&event->child_mutex);
3332 	/*
3333 	 * Event-type-independent attributes must be copied before event-type
3334 	 * modification, which will validate that final attributes match the
3335 	 * source attributes after all relevant attributes have been copied.
3336 	 */
3337 	perf_event_modify_copy_attr(&event->attr, attr);
3338 	err = func(event, attr);
3339 	if (err)
3340 		goto out;
3341 	list_for_each_entry(child, &event->child_list, child_list) {
3342 		perf_event_modify_copy_attr(&child->attr, attr);
3343 		err = func(child, attr);
3344 		if (err)
3345 			goto out;
3346 	}
3347 out:
3348 	mutex_unlock(&event->child_mutex);
3349 	return err;
3350 }
3351 
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3352 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3353 				enum event_type_t event_type)
3354 {
3355 	struct perf_event_context *ctx = pmu_ctx->ctx;
3356 	struct perf_event *event, *tmp;
3357 	struct pmu *pmu = pmu_ctx->pmu;
3358 
3359 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3360 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3361 
3362 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3363 		cpc->task_epc = NULL;
3364 	}
3365 
3366 	if (!(event_type & EVENT_ALL))
3367 		return;
3368 
3369 	perf_pmu_disable(pmu);
3370 	if (event_type & EVENT_PINNED) {
3371 		list_for_each_entry_safe(event, tmp,
3372 					 &pmu_ctx->pinned_active,
3373 					 active_list)
3374 			group_sched_out(event, ctx);
3375 	}
3376 
3377 	if (event_type & EVENT_FLEXIBLE) {
3378 		list_for_each_entry_safe(event, tmp,
3379 					 &pmu_ctx->flexible_active,
3380 					 active_list)
3381 			group_sched_out(event, ctx);
3382 		/*
3383 		 * Since we cleared EVENT_FLEXIBLE, also clear
3384 		 * rotate_necessary, is will be reset by
3385 		 * ctx_flexible_sched_in() when needed.
3386 		 */
3387 		pmu_ctx->rotate_necessary = 0;
3388 	}
3389 	perf_pmu_enable(pmu);
3390 }
3391 
3392 /*
3393  * Be very careful with the @pmu argument since this will change ctx state.
3394  * The @pmu argument works for ctx_resched(), because that is symmetric in
3395  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3396  *
3397  * However, if you were to be asymmetrical, you could end up with messed up
3398  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3399  * be active.
3400  */
3401 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3402 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3403 {
3404 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3405 	struct perf_event_pmu_context *pmu_ctx;
3406 	int is_active = ctx->is_active;
3407 	bool cgroup = event_type & EVENT_CGROUP;
3408 
3409 	event_type &= ~EVENT_CGROUP;
3410 
3411 	lockdep_assert_held(&ctx->lock);
3412 
3413 	if (likely(!ctx->nr_events)) {
3414 		/*
3415 		 * See __perf_remove_from_context().
3416 		 */
3417 		WARN_ON_ONCE(ctx->is_active);
3418 		if (ctx->task)
3419 			WARN_ON_ONCE(cpuctx->task_ctx);
3420 		return;
3421 	}
3422 
3423 	/*
3424 	 * Always update time if it was set; not only when it changes.
3425 	 * Otherwise we can 'forget' to update time for any but the last
3426 	 * context we sched out. For example:
3427 	 *
3428 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3429 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3430 	 *
3431 	 * would only update time for the pinned events.
3432 	 */
3433 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3434 
3435 	/*
3436 	 * CPU-release for the below ->is_active store,
3437 	 * see __load_acquire() in perf_event_time_now()
3438 	 */
3439 	barrier();
3440 	ctx->is_active &= ~event_type;
3441 
3442 	if (!(ctx->is_active & EVENT_ALL)) {
3443 		/*
3444 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3445 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3446 		 */
3447 		if (ctx->is_active & EVENT_FROZEN)
3448 			ctx->is_active &= EVENT_TIME_FROZEN;
3449 		else
3450 			ctx->is_active = 0;
3451 	}
3452 
3453 	if (ctx->task) {
3454 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3455 		if (!(ctx->is_active & EVENT_ALL))
3456 			cpuctx->task_ctx = NULL;
3457 	}
3458 
3459 	is_active ^= ctx->is_active; /* changed bits */
3460 
3461 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3462 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3463 }
3464 
3465 /*
3466  * Test whether two contexts are equivalent, i.e. whether they have both been
3467  * cloned from the same version of the same context.
3468  *
3469  * Equivalence is measured using a generation number in the context that is
3470  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3471  * and list_del_event().
3472  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3473 static int context_equiv(struct perf_event_context *ctx1,
3474 			 struct perf_event_context *ctx2)
3475 {
3476 	lockdep_assert_held(&ctx1->lock);
3477 	lockdep_assert_held(&ctx2->lock);
3478 
3479 	/* Pinning disables the swap optimization */
3480 	if (ctx1->pin_count || ctx2->pin_count)
3481 		return 0;
3482 
3483 	/* If ctx1 is the parent of ctx2 */
3484 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3485 		return 1;
3486 
3487 	/* If ctx2 is the parent of ctx1 */
3488 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3489 		return 1;
3490 
3491 	/*
3492 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3493 	 * hierarchy, see perf_event_init_context().
3494 	 */
3495 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3496 			ctx1->parent_gen == ctx2->parent_gen)
3497 		return 1;
3498 
3499 	/* Unmatched */
3500 	return 0;
3501 }
3502 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3503 static void __perf_event_sync_stat(struct perf_event *event,
3504 				     struct perf_event *next_event)
3505 {
3506 	u64 value;
3507 
3508 	if (!event->attr.inherit_stat)
3509 		return;
3510 
3511 	/*
3512 	 * Update the event value, we cannot use perf_event_read()
3513 	 * because we're in the middle of a context switch and have IRQs
3514 	 * disabled, which upsets smp_call_function_single(), however
3515 	 * we know the event must be on the current CPU, therefore we
3516 	 * don't need to use it.
3517 	 */
3518 	perf_pmu_read(event);
3519 
3520 	perf_event_update_time(event);
3521 
3522 	/*
3523 	 * In order to keep per-task stats reliable we need to flip the event
3524 	 * values when we flip the contexts.
3525 	 */
3526 	value = local64_read(&next_event->count);
3527 	value = local64_xchg(&event->count, value);
3528 	local64_set(&next_event->count, value);
3529 
3530 	swap(event->total_time_enabled, next_event->total_time_enabled);
3531 	swap(event->total_time_running, next_event->total_time_running);
3532 
3533 	/*
3534 	 * Since we swizzled the values, update the user visible data too.
3535 	 */
3536 	perf_event_update_userpage(event);
3537 	perf_event_update_userpage(next_event);
3538 }
3539 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3540 static void perf_event_sync_stat(struct perf_event_context *ctx,
3541 				   struct perf_event_context *next_ctx)
3542 {
3543 	struct perf_event *event, *next_event;
3544 
3545 	if (!ctx->nr_stat)
3546 		return;
3547 
3548 	update_context_time(ctx);
3549 
3550 	event = list_first_entry(&ctx->event_list,
3551 				   struct perf_event, event_entry);
3552 
3553 	next_event = list_first_entry(&next_ctx->event_list,
3554 					struct perf_event, event_entry);
3555 
3556 	while (&event->event_entry != &ctx->event_list &&
3557 	       &next_event->event_entry != &next_ctx->event_list) {
3558 
3559 		__perf_event_sync_stat(event, next_event);
3560 
3561 		event = list_next_entry(event, event_entry);
3562 		next_event = list_next_entry(next_event, event_entry);
3563 	}
3564 }
3565 
perf_ctx_sched_task_cb(struct perf_event_context * ctx,struct task_struct * task,bool sched_in)3566 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3567 				   struct task_struct *task, bool sched_in)
3568 {
3569 	struct perf_event_pmu_context *pmu_ctx;
3570 	struct perf_cpu_pmu_context *cpc;
3571 
3572 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3573 		cpc = this_cpc(pmu_ctx->pmu);
3574 
3575 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3576 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3577 	}
3578 }
3579 
3580 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3581 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3582 {
3583 	struct perf_event_context *ctx = task->perf_event_ctxp;
3584 	struct perf_event_context *next_ctx;
3585 	struct perf_event_context *parent, *next_parent;
3586 	int do_switch = 1;
3587 
3588 	if (likely(!ctx))
3589 		return;
3590 
3591 	rcu_read_lock();
3592 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3593 	if (!next_ctx)
3594 		goto unlock;
3595 
3596 	parent = rcu_dereference(ctx->parent_ctx);
3597 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3598 
3599 	/* If neither context have a parent context; they cannot be clones. */
3600 	if (!parent && !next_parent)
3601 		goto unlock;
3602 
3603 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3604 		/*
3605 		 * Looks like the two contexts are clones, so we might be
3606 		 * able to optimize the context switch.  We lock both
3607 		 * contexts and check that they are clones under the
3608 		 * lock (including re-checking that neither has been
3609 		 * uncloned in the meantime).  It doesn't matter which
3610 		 * order we take the locks because no other cpu could
3611 		 * be trying to lock both of these tasks.
3612 		 */
3613 		raw_spin_lock(&ctx->lock);
3614 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3615 		if (context_equiv(ctx, next_ctx)) {
3616 
3617 			perf_ctx_disable(ctx, false);
3618 
3619 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3620 			if (local_read(&ctx->nr_no_switch_fast) ||
3621 			    local_read(&next_ctx->nr_no_switch_fast)) {
3622 				/*
3623 				 * Must not swap out ctx when there's pending
3624 				 * events that rely on the ctx->task relation.
3625 				 *
3626 				 * Likewise, when a context contains inherit +
3627 				 * SAMPLE_READ events they should be switched
3628 				 * out using the slow path so that they are
3629 				 * treated as if they were distinct contexts.
3630 				 */
3631 				raw_spin_unlock(&next_ctx->lock);
3632 				rcu_read_unlock();
3633 				goto inside_switch;
3634 			}
3635 
3636 			WRITE_ONCE(ctx->task, next);
3637 			WRITE_ONCE(next_ctx->task, task);
3638 
3639 			perf_ctx_sched_task_cb(ctx, task, false);
3640 
3641 			perf_ctx_enable(ctx, false);
3642 
3643 			/*
3644 			 * RCU_INIT_POINTER here is safe because we've not
3645 			 * modified the ctx and the above modification of
3646 			 * ctx->task is immaterial since this value is
3647 			 * always verified under ctx->lock which we're now
3648 			 * holding.
3649 			 */
3650 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3651 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3652 
3653 			do_switch = 0;
3654 
3655 			perf_event_sync_stat(ctx, next_ctx);
3656 		}
3657 		raw_spin_unlock(&next_ctx->lock);
3658 		raw_spin_unlock(&ctx->lock);
3659 	}
3660 unlock:
3661 	rcu_read_unlock();
3662 
3663 	if (do_switch) {
3664 		raw_spin_lock(&ctx->lock);
3665 		perf_ctx_disable(ctx, false);
3666 
3667 inside_switch:
3668 		perf_ctx_sched_task_cb(ctx, task, false);
3669 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3670 
3671 		perf_ctx_enable(ctx, false);
3672 		raw_spin_unlock(&ctx->lock);
3673 	}
3674 }
3675 
3676 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3677 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3678 
perf_sched_cb_dec(struct pmu * pmu)3679 void perf_sched_cb_dec(struct pmu *pmu)
3680 {
3681 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3682 
3683 	this_cpu_dec(perf_sched_cb_usages);
3684 	barrier();
3685 
3686 	if (!--cpc->sched_cb_usage)
3687 		list_del(&cpc->sched_cb_entry);
3688 }
3689 
3690 
perf_sched_cb_inc(struct pmu * pmu)3691 void perf_sched_cb_inc(struct pmu *pmu)
3692 {
3693 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3694 
3695 	if (!cpc->sched_cb_usage++)
3696 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3697 
3698 	barrier();
3699 	this_cpu_inc(perf_sched_cb_usages);
3700 }
3701 
3702 /*
3703  * This function provides the context switch callback to the lower code
3704  * layer. It is invoked ONLY when the context switch callback is enabled.
3705  *
3706  * This callback is relevant even to per-cpu events; for example multi event
3707  * PEBS requires this to provide PID/TID information. This requires we flush
3708  * all queued PEBS records before we context switch to a new task.
3709  */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,struct task_struct * task,bool sched_in)3710 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3711 				  struct task_struct *task, bool sched_in)
3712 {
3713 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3714 	struct pmu *pmu;
3715 
3716 	pmu = cpc->epc.pmu;
3717 
3718 	/* software PMUs will not have sched_task */
3719 	if (WARN_ON_ONCE(!pmu->sched_task))
3720 		return;
3721 
3722 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3723 	perf_pmu_disable(pmu);
3724 
3725 	pmu->sched_task(cpc->task_epc, task, sched_in);
3726 
3727 	perf_pmu_enable(pmu);
3728 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3729 }
3730 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3731 static void perf_pmu_sched_task(struct task_struct *prev,
3732 				struct task_struct *next,
3733 				bool sched_in)
3734 {
3735 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3736 	struct perf_cpu_pmu_context *cpc;
3737 
3738 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3739 	if (prev == next || cpuctx->task_ctx)
3740 		return;
3741 
3742 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3743 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3744 }
3745 
3746 static void perf_event_switch(struct task_struct *task,
3747 			      struct task_struct *next_prev, bool sched_in);
3748 
3749 /*
3750  * Called from scheduler to remove the events of the current task,
3751  * with interrupts disabled.
3752  *
3753  * We stop each event and update the event value in event->count.
3754  *
3755  * This does not protect us against NMI, but disable()
3756  * sets the disabled bit in the control field of event _before_
3757  * accessing the event control register. If a NMI hits, then it will
3758  * not restart the event.
3759  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3760 void __perf_event_task_sched_out(struct task_struct *task,
3761 				 struct task_struct *next)
3762 {
3763 	if (__this_cpu_read(perf_sched_cb_usages))
3764 		perf_pmu_sched_task(task, next, false);
3765 
3766 	if (atomic_read(&nr_switch_events))
3767 		perf_event_switch(task, next, false);
3768 
3769 	perf_event_context_sched_out(task, next);
3770 
3771 	/*
3772 	 * if cgroup events exist on this CPU, then we need
3773 	 * to check if we have to switch out PMU state.
3774 	 * cgroup event are system-wide mode only
3775 	 */
3776 	perf_cgroup_switch(next);
3777 }
3778 
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3779 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3780 {
3781 	const struct perf_event *le = *(const struct perf_event **)l;
3782 	const struct perf_event *re = *(const struct perf_event **)r;
3783 
3784 	return le->group_index < re->group_index;
3785 }
3786 
3787 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3788 
3789 static const struct min_heap_callbacks perf_min_heap = {
3790 	.less = perf_less_group_idx,
3791 	.swp = NULL,
3792 };
3793 
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3794 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3795 {
3796 	struct perf_event **itrs = heap->data;
3797 
3798 	if (event) {
3799 		itrs[heap->nr] = event;
3800 		heap->nr++;
3801 	}
3802 }
3803 
__link_epc(struct perf_event_pmu_context * pmu_ctx)3804 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3805 {
3806 	struct perf_cpu_pmu_context *cpc;
3807 
3808 	if (!pmu_ctx->ctx->task)
3809 		return;
3810 
3811 	cpc = this_cpc(pmu_ctx->pmu);
3812 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3813 	cpc->task_epc = pmu_ctx;
3814 }
3815 
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3816 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3817 				struct perf_event_groups *groups, int cpu,
3818 				struct pmu *pmu,
3819 				int (*func)(struct perf_event *, void *),
3820 				void *data)
3821 {
3822 #ifdef CONFIG_CGROUP_PERF
3823 	struct cgroup_subsys_state *css = NULL;
3824 #endif
3825 	struct perf_cpu_context *cpuctx = NULL;
3826 	/* Space for per CPU and/or any CPU event iterators. */
3827 	struct perf_event *itrs[2];
3828 	struct perf_event_min_heap event_heap;
3829 	struct perf_event **evt;
3830 	int ret;
3831 
3832 	if (pmu->filter && pmu->filter(pmu, cpu))
3833 		return 0;
3834 
3835 	if (!ctx->task) {
3836 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3837 		event_heap = (struct perf_event_min_heap){
3838 			.data = cpuctx->heap,
3839 			.nr = 0,
3840 			.size = cpuctx->heap_size,
3841 		};
3842 
3843 		lockdep_assert_held(&cpuctx->ctx.lock);
3844 
3845 #ifdef CONFIG_CGROUP_PERF
3846 		if (cpuctx->cgrp)
3847 			css = &cpuctx->cgrp->css;
3848 #endif
3849 	} else {
3850 		event_heap = (struct perf_event_min_heap){
3851 			.data = itrs,
3852 			.nr = 0,
3853 			.size = ARRAY_SIZE(itrs),
3854 		};
3855 		/* Events not within a CPU context may be on any CPU. */
3856 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3857 	}
3858 	evt = event_heap.data;
3859 
3860 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3861 
3862 #ifdef CONFIG_CGROUP_PERF
3863 	for (; css; css = css->parent)
3864 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3865 #endif
3866 
3867 	if (event_heap.nr) {
3868 		__link_epc((*evt)->pmu_ctx);
3869 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3870 	}
3871 
3872 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3873 
3874 	while (event_heap.nr) {
3875 		ret = func(*evt, data);
3876 		if (ret)
3877 			return ret;
3878 
3879 		*evt = perf_event_groups_next(*evt, pmu);
3880 		if (*evt)
3881 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3882 		else
3883 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3884 	}
3885 
3886 	return 0;
3887 }
3888 
3889 /*
3890  * Because the userpage is strictly per-event (there is no concept of context,
3891  * so there cannot be a context indirection), every userpage must be updated
3892  * when context time starts :-(
3893  *
3894  * IOW, we must not miss EVENT_TIME edges.
3895  */
event_update_userpage(struct perf_event * event)3896 static inline bool event_update_userpage(struct perf_event *event)
3897 {
3898 	if (likely(!atomic_read(&event->mmap_count)))
3899 		return false;
3900 
3901 	perf_event_update_time(event);
3902 	perf_event_update_userpage(event);
3903 
3904 	return true;
3905 }
3906 
group_update_userpage(struct perf_event * group_event)3907 static inline void group_update_userpage(struct perf_event *group_event)
3908 {
3909 	struct perf_event *event;
3910 
3911 	if (!event_update_userpage(group_event))
3912 		return;
3913 
3914 	for_each_sibling_event(event, group_event)
3915 		event_update_userpage(event);
3916 }
3917 
merge_sched_in(struct perf_event * event,void * data)3918 static int merge_sched_in(struct perf_event *event, void *data)
3919 {
3920 	struct perf_event_context *ctx = event->ctx;
3921 	int *can_add_hw = data;
3922 
3923 	if (event->state <= PERF_EVENT_STATE_OFF)
3924 		return 0;
3925 
3926 	if (!event_filter_match(event))
3927 		return 0;
3928 
3929 	if (group_can_go_on(event, *can_add_hw)) {
3930 		if (!group_sched_in(event, ctx))
3931 			list_add_tail(&event->active_list, get_event_list(event));
3932 	}
3933 
3934 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3935 		*can_add_hw = 0;
3936 		if (event->attr.pinned) {
3937 			perf_cgroup_event_disable(event, ctx);
3938 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3939 
3940 			if (*perf_event_fasync(event))
3941 				event->pending_kill = POLL_HUP;
3942 
3943 			perf_event_wakeup(event);
3944 		} else {
3945 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
3946 
3947 			event->pmu_ctx->rotate_necessary = 1;
3948 			perf_mux_hrtimer_restart(cpc);
3949 			group_update_userpage(event);
3950 		}
3951 	}
3952 
3953 	return 0;
3954 }
3955 
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3956 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3957 				struct perf_event_groups *groups,
3958 				struct pmu *pmu)
3959 {
3960 	int can_add_hw = 1;
3961 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3962 			   merge_sched_in, &can_add_hw);
3963 }
3964 
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3965 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3966 			       enum event_type_t event_type)
3967 {
3968 	struct perf_event_context *ctx = pmu_ctx->ctx;
3969 
3970 	if (event_type & EVENT_PINNED)
3971 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3972 	if (event_type & EVENT_FLEXIBLE)
3973 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3974 }
3975 
3976 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3977 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3978 {
3979 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3980 	struct perf_event_pmu_context *pmu_ctx;
3981 	int is_active = ctx->is_active;
3982 	bool cgroup = event_type & EVENT_CGROUP;
3983 
3984 	event_type &= ~EVENT_CGROUP;
3985 
3986 	lockdep_assert_held(&ctx->lock);
3987 
3988 	if (likely(!ctx->nr_events))
3989 		return;
3990 
3991 	if (!(is_active & EVENT_TIME)) {
3992 		/* start ctx time */
3993 		__update_context_time(ctx, false);
3994 		perf_cgroup_set_timestamp(cpuctx);
3995 		/*
3996 		 * CPU-release for the below ->is_active store,
3997 		 * see __load_acquire() in perf_event_time_now()
3998 		 */
3999 		barrier();
4000 	}
4001 
4002 	ctx->is_active |= (event_type | EVENT_TIME);
4003 	if (ctx->task) {
4004 		if (!(is_active & EVENT_ALL))
4005 			cpuctx->task_ctx = ctx;
4006 		else
4007 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4008 	}
4009 
4010 	is_active ^= ctx->is_active; /* changed bits */
4011 
4012 	/*
4013 	 * First go through the list and put on any pinned groups
4014 	 * in order to give them the best chance of going on.
4015 	 */
4016 	if (is_active & EVENT_PINNED) {
4017 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4018 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4019 	}
4020 
4021 	/* Then walk through the lower prio flexible groups */
4022 	if (is_active & EVENT_FLEXIBLE) {
4023 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4024 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4025 	}
4026 }
4027 
perf_event_context_sched_in(struct task_struct * task)4028 static void perf_event_context_sched_in(struct task_struct *task)
4029 {
4030 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4031 	struct perf_event_context *ctx;
4032 
4033 	rcu_read_lock();
4034 	ctx = rcu_dereference(task->perf_event_ctxp);
4035 	if (!ctx)
4036 		goto rcu_unlock;
4037 
4038 	if (cpuctx->task_ctx == ctx) {
4039 		perf_ctx_lock(cpuctx, ctx);
4040 		perf_ctx_disable(ctx, false);
4041 
4042 		perf_ctx_sched_task_cb(ctx, task, true);
4043 
4044 		perf_ctx_enable(ctx, false);
4045 		perf_ctx_unlock(cpuctx, ctx);
4046 		goto rcu_unlock;
4047 	}
4048 
4049 	perf_ctx_lock(cpuctx, ctx);
4050 	/*
4051 	 * We must check ctx->nr_events while holding ctx->lock, such
4052 	 * that we serialize against perf_install_in_context().
4053 	 */
4054 	if (!ctx->nr_events)
4055 		goto unlock;
4056 
4057 	perf_ctx_disable(ctx, false);
4058 	/*
4059 	 * We want to keep the following priority order:
4060 	 * cpu pinned (that don't need to move), task pinned,
4061 	 * cpu flexible, task flexible.
4062 	 *
4063 	 * However, if task's ctx is not carrying any pinned
4064 	 * events, no need to flip the cpuctx's events around.
4065 	 */
4066 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4067 		perf_ctx_disable(&cpuctx->ctx, false);
4068 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4069 	}
4070 
4071 	perf_event_sched_in(cpuctx, ctx, NULL);
4072 
4073 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4074 
4075 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4076 		perf_ctx_enable(&cpuctx->ctx, false);
4077 
4078 	perf_ctx_enable(ctx, false);
4079 
4080 unlock:
4081 	perf_ctx_unlock(cpuctx, ctx);
4082 rcu_unlock:
4083 	rcu_read_unlock();
4084 }
4085 
4086 /*
4087  * Called from scheduler to add the events of the current task
4088  * with interrupts disabled.
4089  *
4090  * We restore the event value and then enable it.
4091  *
4092  * This does not protect us against NMI, but enable()
4093  * sets the enabled bit in the control field of event _before_
4094  * accessing the event control register. If a NMI hits, then it will
4095  * keep the event running.
4096  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4097 void __perf_event_task_sched_in(struct task_struct *prev,
4098 				struct task_struct *task)
4099 {
4100 	perf_event_context_sched_in(task);
4101 
4102 	if (atomic_read(&nr_switch_events))
4103 		perf_event_switch(task, prev, true);
4104 
4105 	if (__this_cpu_read(perf_sched_cb_usages))
4106 		perf_pmu_sched_task(prev, task, true);
4107 }
4108 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4109 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4110 {
4111 	u64 frequency = event->attr.sample_freq;
4112 	u64 sec = NSEC_PER_SEC;
4113 	u64 divisor, dividend;
4114 
4115 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4116 
4117 	count_fls = fls64(count);
4118 	nsec_fls = fls64(nsec);
4119 	frequency_fls = fls64(frequency);
4120 	sec_fls = 30;
4121 
4122 	/*
4123 	 * We got @count in @nsec, with a target of sample_freq HZ
4124 	 * the target period becomes:
4125 	 *
4126 	 *             @count * 10^9
4127 	 * period = -------------------
4128 	 *          @nsec * sample_freq
4129 	 *
4130 	 */
4131 
4132 	/*
4133 	 * Reduce accuracy by one bit such that @a and @b converge
4134 	 * to a similar magnitude.
4135 	 */
4136 #define REDUCE_FLS(a, b)		\
4137 do {					\
4138 	if (a##_fls > b##_fls) {	\
4139 		a >>= 1;		\
4140 		a##_fls--;		\
4141 	} else {			\
4142 		b >>= 1;		\
4143 		b##_fls--;		\
4144 	}				\
4145 } while (0)
4146 
4147 	/*
4148 	 * Reduce accuracy until either term fits in a u64, then proceed with
4149 	 * the other, so that finally we can do a u64/u64 division.
4150 	 */
4151 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4152 		REDUCE_FLS(nsec, frequency);
4153 		REDUCE_FLS(sec, count);
4154 	}
4155 
4156 	if (count_fls + sec_fls > 64) {
4157 		divisor = nsec * frequency;
4158 
4159 		while (count_fls + sec_fls > 64) {
4160 			REDUCE_FLS(count, sec);
4161 			divisor >>= 1;
4162 		}
4163 
4164 		dividend = count * sec;
4165 	} else {
4166 		dividend = count * sec;
4167 
4168 		while (nsec_fls + frequency_fls > 64) {
4169 			REDUCE_FLS(nsec, frequency);
4170 			dividend >>= 1;
4171 		}
4172 
4173 		divisor = nsec * frequency;
4174 	}
4175 
4176 	if (!divisor)
4177 		return dividend;
4178 
4179 	return div64_u64(dividend, divisor);
4180 }
4181 
4182 static DEFINE_PER_CPU(int, perf_throttled_count);
4183 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4184 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4185 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4186 {
4187 	struct hw_perf_event *hwc = &event->hw;
4188 	s64 period, sample_period;
4189 	s64 delta;
4190 
4191 	period = perf_calculate_period(event, nsec, count);
4192 
4193 	delta = (s64)(period - hwc->sample_period);
4194 	if (delta >= 0)
4195 		delta += 7;
4196 	else
4197 		delta -= 7;
4198 	delta /= 8; /* low pass filter */
4199 
4200 	sample_period = hwc->sample_period + delta;
4201 
4202 	if (!sample_period)
4203 		sample_period = 1;
4204 
4205 	hwc->sample_period = sample_period;
4206 
4207 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4208 		if (disable)
4209 			event->pmu->stop(event, PERF_EF_UPDATE);
4210 
4211 		local64_set(&hwc->period_left, 0);
4212 
4213 		if (disable)
4214 			event->pmu->start(event, PERF_EF_RELOAD);
4215 	}
4216 }
4217 
perf_adjust_freq_unthr_events(struct list_head * event_list)4218 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4219 {
4220 	struct perf_event *event;
4221 	struct hw_perf_event *hwc;
4222 	u64 now, period = TICK_NSEC;
4223 	s64 delta;
4224 
4225 	list_for_each_entry(event, event_list, active_list) {
4226 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4227 			continue;
4228 
4229 		// XXX use visit thingy to avoid the -1,cpu match
4230 		if (!event_filter_match(event))
4231 			continue;
4232 
4233 		hwc = &event->hw;
4234 
4235 		if (hwc->interrupts == MAX_INTERRUPTS) {
4236 			hwc->interrupts = 0;
4237 			perf_log_throttle(event, 1);
4238 			if (!event->attr.freq || !event->attr.sample_freq)
4239 				event->pmu->start(event, 0);
4240 		}
4241 
4242 		if (!event->attr.freq || !event->attr.sample_freq)
4243 			continue;
4244 
4245 		/*
4246 		 * stop the event and update event->count
4247 		 */
4248 		event->pmu->stop(event, PERF_EF_UPDATE);
4249 
4250 		now = local64_read(&event->count);
4251 		delta = now - hwc->freq_count_stamp;
4252 		hwc->freq_count_stamp = now;
4253 
4254 		/*
4255 		 * restart the event
4256 		 * reload only if value has changed
4257 		 * we have stopped the event so tell that
4258 		 * to perf_adjust_period() to avoid stopping it
4259 		 * twice.
4260 		 */
4261 		if (delta > 0)
4262 			perf_adjust_period(event, period, delta, false);
4263 
4264 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4265 	}
4266 }
4267 
4268 /*
4269  * combine freq adjustment with unthrottling to avoid two passes over the
4270  * events. At the same time, make sure, having freq events does not change
4271  * the rate of unthrottling as that would introduce bias.
4272  */
4273 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4274 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4275 {
4276 	struct perf_event_pmu_context *pmu_ctx;
4277 
4278 	/*
4279 	 * only need to iterate over all events iff:
4280 	 * - context have events in frequency mode (needs freq adjust)
4281 	 * - there are events to unthrottle on this cpu
4282 	 */
4283 	if (!(ctx->nr_freq || unthrottle))
4284 		return;
4285 
4286 	raw_spin_lock(&ctx->lock);
4287 
4288 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4289 		if (!(pmu_ctx->nr_freq || unthrottle))
4290 			continue;
4291 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4292 			continue;
4293 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4294 			continue;
4295 
4296 		perf_pmu_disable(pmu_ctx->pmu);
4297 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4298 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4299 		perf_pmu_enable(pmu_ctx->pmu);
4300 	}
4301 
4302 	raw_spin_unlock(&ctx->lock);
4303 }
4304 
4305 /*
4306  * Move @event to the tail of the @ctx's elegible events.
4307  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4308 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4309 {
4310 	/*
4311 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4312 	 * disabled by the inheritance code.
4313 	 */
4314 	if (ctx->rotate_disable)
4315 		return;
4316 
4317 	perf_event_groups_delete(&ctx->flexible_groups, event);
4318 	perf_event_groups_insert(&ctx->flexible_groups, event);
4319 }
4320 
4321 /* pick an event from the flexible_groups to rotate */
4322 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4323 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4324 {
4325 	struct perf_event *event;
4326 	struct rb_node *node;
4327 	struct rb_root *tree;
4328 	struct __group_key key = {
4329 		.pmu = pmu_ctx->pmu,
4330 	};
4331 
4332 	/* pick the first active flexible event */
4333 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4334 					 struct perf_event, active_list);
4335 	if (event)
4336 		goto out;
4337 
4338 	/* if no active flexible event, pick the first event */
4339 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4340 
4341 	if (!pmu_ctx->ctx->task) {
4342 		key.cpu = smp_processor_id();
4343 
4344 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4345 		if (node)
4346 			event = __node_2_pe(node);
4347 		goto out;
4348 	}
4349 
4350 	key.cpu = -1;
4351 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4352 	if (node) {
4353 		event = __node_2_pe(node);
4354 		goto out;
4355 	}
4356 
4357 	key.cpu = smp_processor_id();
4358 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4359 	if (node)
4360 		event = __node_2_pe(node);
4361 
4362 out:
4363 	/*
4364 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4365 	 * finds there are unschedulable events, it will set it again.
4366 	 */
4367 	pmu_ctx->rotate_necessary = 0;
4368 
4369 	return event;
4370 }
4371 
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4372 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4373 {
4374 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4375 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4376 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4377 	int cpu_rotate, task_rotate;
4378 	struct pmu *pmu;
4379 
4380 	/*
4381 	 * Since we run this from IRQ context, nobody can install new
4382 	 * events, thus the event count values are stable.
4383 	 */
4384 
4385 	cpu_epc = &cpc->epc;
4386 	pmu = cpu_epc->pmu;
4387 	task_epc = cpc->task_epc;
4388 
4389 	cpu_rotate = cpu_epc->rotate_necessary;
4390 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4391 
4392 	if (!(cpu_rotate || task_rotate))
4393 		return false;
4394 
4395 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4396 	perf_pmu_disable(pmu);
4397 
4398 	if (task_rotate)
4399 		task_event = ctx_event_to_rotate(task_epc);
4400 	if (cpu_rotate)
4401 		cpu_event = ctx_event_to_rotate(cpu_epc);
4402 
4403 	/*
4404 	 * As per the order given at ctx_resched() first 'pop' task flexible
4405 	 * and then, if needed CPU flexible.
4406 	 */
4407 	if (task_event || (task_epc && cpu_event)) {
4408 		update_context_time(task_epc->ctx);
4409 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4410 	}
4411 
4412 	if (cpu_event) {
4413 		update_context_time(&cpuctx->ctx);
4414 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4415 		rotate_ctx(&cpuctx->ctx, cpu_event);
4416 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4417 	}
4418 
4419 	if (task_event)
4420 		rotate_ctx(task_epc->ctx, task_event);
4421 
4422 	if (task_event || (task_epc && cpu_event))
4423 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4424 
4425 	perf_pmu_enable(pmu);
4426 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4427 
4428 	return true;
4429 }
4430 
perf_event_task_tick(void)4431 void perf_event_task_tick(void)
4432 {
4433 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4434 	struct perf_event_context *ctx;
4435 	int throttled;
4436 
4437 	lockdep_assert_irqs_disabled();
4438 
4439 	__this_cpu_inc(perf_throttled_seq);
4440 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4441 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4442 
4443 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4444 
4445 	rcu_read_lock();
4446 	ctx = rcu_dereference(current->perf_event_ctxp);
4447 	if (ctx)
4448 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4449 	rcu_read_unlock();
4450 }
4451 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4452 static int event_enable_on_exec(struct perf_event *event,
4453 				struct perf_event_context *ctx)
4454 {
4455 	if (!event->attr.enable_on_exec)
4456 		return 0;
4457 
4458 	event->attr.enable_on_exec = 0;
4459 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4460 		return 0;
4461 
4462 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4463 
4464 	return 1;
4465 }
4466 
4467 /*
4468  * Enable all of a task's events that have been marked enable-on-exec.
4469  * This expects task == current.
4470  */
perf_event_enable_on_exec(struct perf_event_context * ctx)4471 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4472 {
4473 	struct perf_event_context *clone_ctx = NULL;
4474 	enum event_type_t event_type = 0;
4475 	struct perf_cpu_context *cpuctx;
4476 	struct perf_event *event;
4477 	unsigned long flags;
4478 	int enabled = 0;
4479 
4480 	local_irq_save(flags);
4481 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4482 		goto out;
4483 
4484 	if (!ctx->nr_events)
4485 		goto out;
4486 
4487 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4488 	perf_ctx_lock(cpuctx, ctx);
4489 	ctx_time_freeze(cpuctx, ctx);
4490 
4491 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4492 		enabled |= event_enable_on_exec(event, ctx);
4493 		event_type |= get_event_type(event);
4494 	}
4495 
4496 	/*
4497 	 * Unclone and reschedule this context if we enabled any event.
4498 	 */
4499 	if (enabled) {
4500 		clone_ctx = unclone_ctx(ctx);
4501 		ctx_resched(cpuctx, ctx, NULL, event_type);
4502 	}
4503 	perf_ctx_unlock(cpuctx, ctx);
4504 
4505 out:
4506 	local_irq_restore(flags);
4507 
4508 	if (clone_ctx)
4509 		put_ctx(clone_ctx);
4510 }
4511 
4512 static void perf_remove_from_owner(struct perf_event *event);
4513 static void perf_event_exit_event(struct perf_event *event,
4514 				  struct perf_event_context *ctx);
4515 
4516 /*
4517  * Removes all events from the current task that have been marked
4518  * remove-on-exec, and feeds their values back to parent events.
4519  */
perf_event_remove_on_exec(struct perf_event_context * ctx)4520 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4521 {
4522 	struct perf_event_context *clone_ctx = NULL;
4523 	struct perf_event *event, *next;
4524 	unsigned long flags;
4525 	bool modified = false;
4526 
4527 	mutex_lock(&ctx->mutex);
4528 
4529 	if (WARN_ON_ONCE(ctx->task != current))
4530 		goto unlock;
4531 
4532 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4533 		if (!event->attr.remove_on_exec)
4534 			continue;
4535 
4536 		if (!is_kernel_event(event))
4537 			perf_remove_from_owner(event);
4538 
4539 		modified = true;
4540 
4541 		perf_event_exit_event(event, ctx);
4542 	}
4543 
4544 	raw_spin_lock_irqsave(&ctx->lock, flags);
4545 	if (modified)
4546 		clone_ctx = unclone_ctx(ctx);
4547 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4548 
4549 unlock:
4550 	mutex_unlock(&ctx->mutex);
4551 
4552 	if (clone_ctx)
4553 		put_ctx(clone_ctx);
4554 }
4555 
4556 struct perf_read_data {
4557 	struct perf_event *event;
4558 	bool group;
4559 	int ret;
4560 };
4561 
4562 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4563 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4564 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4565 {
4566 	int local_cpu = smp_processor_id();
4567 	u16 local_pkg, event_pkg;
4568 
4569 	if ((unsigned)event_cpu >= nr_cpu_ids)
4570 		return event_cpu;
4571 
4572 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4573 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4574 
4575 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4576 			return local_cpu;
4577 	}
4578 
4579 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4580 		event_pkg = topology_physical_package_id(event_cpu);
4581 		local_pkg = topology_physical_package_id(local_cpu);
4582 
4583 		if (event_pkg == local_pkg)
4584 			return local_cpu;
4585 	}
4586 
4587 	return event_cpu;
4588 }
4589 
4590 /*
4591  * Cross CPU call to read the hardware event
4592  */
__perf_event_read(void * info)4593 static void __perf_event_read(void *info)
4594 {
4595 	struct perf_read_data *data = info;
4596 	struct perf_event *sub, *event = data->event;
4597 	struct perf_event_context *ctx = event->ctx;
4598 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4599 	struct pmu *pmu = event->pmu;
4600 
4601 	/*
4602 	 * If this is a task context, we need to check whether it is
4603 	 * the current task context of this cpu.  If not it has been
4604 	 * scheduled out before the smp call arrived.  In that case
4605 	 * event->count would have been updated to a recent sample
4606 	 * when the event was scheduled out.
4607 	 */
4608 	if (ctx->task && cpuctx->task_ctx != ctx)
4609 		return;
4610 
4611 	raw_spin_lock(&ctx->lock);
4612 	ctx_time_update_event(ctx, event);
4613 
4614 	perf_event_update_time(event);
4615 	if (data->group)
4616 		perf_event_update_sibling_time(event);
4617 
4618 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4619 		goto unlock;
4620 
4621 	if (!data->group) {
4622 		pmu->read(event);
4623 		data->ret = 0;
4624 		goto unlock;
4625 	}
4626 
4627 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4628 
4629 	pmu->read(event);
4630 
4631 	for_each_sibling_event(sub, event)
4632 		perf_pmu_read(sub);
4633 
4634 	data->ret = pmu->commit_txn(pmu);
4635 
4636 unlock:
4637 	raw_spin_unlock(&ctx->lock);
4638 }
4639 
perf_event_count(struct perf_event * event,bool self)4640 static inline u64 perf_event_count(struct perf_event *event, bool self)
4641 {
4642 	if (self)
4643 		return local64_read(&event->count);
4644 
4645 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4646 }
4647 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4648 static void calc_timer_values(struct perf_event *event,
4649 				u64 *now,
4650 				u64 *enabled,
4651 				u64 *running)
4652 {
4653 	u64 ctx_time;
4654 
4655 	*now = perf_clock();
4656 	ctx_time = perf_event_time_now(event, *now);
4657 	__perf_update_times(event, ctx_time, enabled, running);
4658 }
4659 
4660 /*
4661  * NMI-safe method to read a local event, that is an event that
4662  * is:
4663  *   - either for the current task, or for this CPU
4664  *   - does not have inherit set, for inherited task events
4665  *     will not be local and we cannot read them atomically
4666  *   - must not have a pmu::count method
4667  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4668 int perf_event_read_local(struct perf_event *event, u64 *value,
4669 			  u64 *enabled, u64 *running)
4670 {
4671 	unsigned long flags;
4672 	int event_oncpu;
4673 	int event_cpu;
4674 	int ret = 0;
4675 
4676 	/*
4677 	 * Disabling interrupts avoids all counter scheduling (context
4678 	 * switches, timer based rotation and IPIs).
4679 	 */
4680 	local_irq_save(flags);
4681 
4682 	/*
4683 	 * It must not be an event with inherit set, we cannot read
4684 	 * all child counters from atomic context.
4685 	 */
4686 	if (event->attr.inherit) {
4687 		ret = -EOPNOTSUPP;
4688 		goto out;
4689 	}
4690 
4691 	/* If this is a per-task event, it must be for current */
4692 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4693 	    event->hw.target != current) {
4694 		ret = -EINVAL;
4695 		goto out;
4696 	}
4697 
4698 	/*
4699 	 * Get the event CPU numbers, and adjust them to local if the event is
4700 	 * a per-package event that can be read locally
4701 	 */
4702 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4703 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4704 
4705 	/* If this is a per-CPU event, it must be for this CPU */
4706 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4707 	    event_cpu != smp_processor_id()) {
4708 		ret = -EINVAL;
4709 		goto out;
4710 	}
4711 
4712 	/* If this is a pinned event it must be running on this CPU */
4713 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4714 		ret = -EBUSY;
4715 		goto out;
4716 	}
4717 
4718 	/*
4719 	 * If the event is currently on this CPU, its either a per-task event,
4720 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4721 	 * oncpu == -1).
4722 	 */
4723 	if (event_oncpu == smp_processor_id())
4724 		event->pmu->read(event);
4725 
4726 	*value = local64_read(&event->count);
4727 	if (enabled || running) {
4728 		u64 __enabled, __running, __now;
4729 
4730 		calc_timer_values(event, &__now, &__enabled, &__running);
4731 		if (enabled)
4732 			*enabled = __enabled;
4733 		if (running)
4734 			*running = __running;
4735 	}
4736 out:
4737 	local_irq_restore(flags);
4738 
4739 	return ret;
4740 }
4741 
perf_event_read(struct perf_event * event,bool group)4742 static int perf_event_read(struct perf_event *event, bool group)
4743 {
4744 	enum perf_event_state state = READ_ONCE(event->state);
4745 	int event_cpu, ret = 0;
4746 
4747 	/*
4748 	 * If event is enabled and currently active on a CPU, update the
4749 	 * value in the event structure:
4750 	 */
4751 again:
4752 	if (state == PERF_EVENT_STATE_ACTIVE) {
4753 		struct perf_read_data data;
4754 
4755 		/*
4756 		 * Orders the ->state and ->oncpu loads such that if we see
4757 		 * ACTIVE we must also see the right ->oncpu.
4758 		 *
4759 		 * Matches the smp_wmb() from event_sched_in().
4760 		 */
4761 		smp_rmb();
4762 
4763 		event_cpu = READ_ONCE(event->oncpu);
4764 		if ((unsigned)event_cpu >= nr_cpu_ids)
4765 			return 0;
4766 
4767 		data = (struct perf_read_data){
4768 			.event = event,
4769 			.group = group,
4770 			.ret = 0,
4771 		};
4772 
4773 		preempt_disable();
4774 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4775 
4776 		/*
4777 		 * Purposely ignore the smp_call_function_single() return
4778 		 * value.
4779 		 *
4780 		 * If event_cpu isn't a valid CPU it means the event got
4781 		 * scheduled out and that will have updated the event count.
4782 		 *
4783 		 * Therefore, either way, we'll have an up-to-date event count
4784 		 * after this.
4785 		 */
4786 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4787 		preempt_enable();
4788 		ret = data.ret;
4789 
4790 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4791 		struct perf_event_context *ctx = event->ctx;
4792 		unsigned long flags;
4793 
4794 		raw_spin_lock_irqsave(&ctx->lock, flags);
4795 		state = event->state;
4796 		if (state != PERF_EVENT_STATE_INACTIVE) {
4797 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4798 			goto again;
4799 		}
4800 
4801 		/*
4802 		 * May read while context is not active (e.g., thread is
4803 		 * blocked), in that case we cannot update context time
4804 		 */
4805 		ctx_time_update_event(ctx, event);
4806 
4807 		perf_event_update_time(event);
4808 		if (group)
4809 			perf_event_update_sibling_time(event);
4810 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4811 	}
4812 
4813 	return ret;
4814 }
4815 
4816 /*
4817  * Initialize the perf_event context in a task_struct:
4818  */
__perf_event_init_context(struct perf_event_context * ctx)4819 static void __perf_event_init_context(struct perf_event_context *ctx)
4820 {
4821 	raw_spin_lock_init(&ctx->lock);
4822 	mutex_init(&ctx->mutex);
4823 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4824 	perf_event_groups_init(&ctx->pinned_groups);
4825 	perf_event_groups_init(&ctx->flexible_groups);
4826 	INIT_LIST_HEAD(&ctx->event_list);
4827 	refcount_set(&ctx->refcount, 1);
4828 }
4829 
4830 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4831 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4832 {
4833 	epc->pmu = pmu;
4834 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4835 	INIT_LIST_HEAD(&epc->pinned_active);
4836 	INIT_LIST_HEAD(&epc->flexible_active);
4837 	atomic_set(&epc->refcount, 1);
4838 }
4839 
4840 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4841 alloc_perf_context(struct task_struct *task)
4842 {
4843 	struct perf_event_context *ctx;
4844 
4845 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4846 	if (!ctx)
4847 		return NULL;
4848 
4849 	__perf_event_init_context(ctx);
4850 	if (task)
4851 		ctx->task = get_task_struct(task);
4852 
4853 	return ctx;
4854 }
4855 
4856 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4857 find_lively_task_by_vpid(pid_t vpid)
4858 {
4859 	struct task_struct *task;
4860 
4861 	rcu_read_lock();
4862 	if (!vpid)
4863 		task = current;
4864 	else
4865 		task = find_task_by_vpid(vpid);
4866 	if (task)
4867 		get_task_struct(task);
4868 	rcu_read_unlock();
4869 
4870 	if (!task)
4871 		return ERR_PTR(-ESRCH);
4872 
4873 	return task;
4874 }
4875 
4876 /*
4877  * Returns a matching context with refcount and pincount.
4878  */
4879 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4880 find_get_context(struct task_struct *task, struct perf_event *event)
4881 {
4882 	struct perf_event_context *ctx, *clone_ctx = NULL;
4883 	struct perf_cpu_context *cpuctx;
4884 	unsigned long flags;
4885 	int err;
4886 
4887 	if (!task) {
4888 		/* Must be root to operate on a CPU event: */
4889 		err = perf_allow_cpu();
4890 		if (err)
4891 			return ERR_PTR(err);
4892 
4893 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4894 		ctx = &cpuctx->ctx;
4895 		get_ctx(ctx);
4896 		raw_spin_lock_irqsave(&ctx->lock, flags);
4897 		++ctx->pin_count;
4898 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4899 
4900 		return ctx;
4901 	}
4902 
4903 	err = -EINVAL;
4904 retry:
4905 	ctx = perf_lock_task_context(task, &flags);
4906 	if (ctx) {
4907 		clone_ctx = unclone_ctx(ctx);
4908 		++ctx->pin_count;
4909 
4910 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4911 
4912 		if (clone_ctx)
4913 			put_ctx(clone_ctx);
4914 	} else {
4915 		ctx = alloc_perf_context(task);
4916 		err = -ENOMEM;
4917 		if (!ctx)
4918 			goto errout;
4919 
4920 		err = 0;
4921 		mutex_lock(&task->perf_event_mutex);
4922 		/*
4923 		 * If it has already passed perf_event_exit_task().
4924 		 * we must see PF_EXITING, it takes this mutex too.
4925 		 */
4926 		if (task->flags & PF_EXITING)
4927 			err = -ESRCH;
4928 		else if (task->perf_event_ctxp)
4929 			err = -EAGAIN;
4930 		else {
4931 			get_ctx(ctx);
4932 			++ctx->pin_count;
4933 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4934 		}
4935 		mutex_unlock(&task->perf_event_mutex);
4936 
4937 		if (unlikely(err)) {
4938 			put_ctx(ctx);
4939 
4940 			if (err == -EAGAIN)
4941 				goto retry;
4942 			goto errout;
4943 		}
4944 	}
4945 
4946 	return ctx;
4947 
4948 errout:
4949 	return ERR_PTR(err);
4950 }
4951 
4952 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4953 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4954 		     struct perf_event *event)
4955 {
4956 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4957 
4958 	if (!ctx->task) {
4959 		/*
4960 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4961 		 * relies on the fact that find_get_pmu_context() cannot fail
4962 		 * for CPU contexts.
4963 		 */
4964 		struct perf_cpu_pmu_context *cpc;
4965 
4966 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4967 		epc = &cpc->epc;
4968 		raw_spin_lock_irq(&ctx->lock);
4969 		if (!epc->ctx) {
4970 			/*
4971 			 * One extra reference for the pmu; see perf_pmu_free().
4972 			 */
4973 			atomic_set(&epc->refcount, 2);
4974 			epc->embedded = 1;
4975 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4976 			epc->ctx = ctx;
4977 		} else {
4978 			WARN_ON_ONCE(epc->ctx != ctx);
4979 			atomic_inc(&epc->refcount);
4980 		}
4981 		raw_spin_unlock_irq(&ctx->lock);
4982 		return epc;
4983 	}
4984 
4985 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4986 	if (!new)
4987 		return ERR_PTR(-ENOMEM);
4988 
4989 	__perf_init_event_pmu_context(new, pmu);
4990 
4991 	/*
4992 	 * XXX
4993 	 *
4994 	 * lockdep_assert_held(&ctx->mutex);
4995 	 *
4996 	 * can't because perf_event_init_task() doesn't actually hold the
4997 	 * child_ctx->mutex.
4998 	 */
4999 
5000 	raw_spin_lock_irq(&ctx->lock);
5001 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5002 		if (epc->pmu == pmu) {
5003 			WARN_ON_ONCE(epc->ctx != ctx);
5004 			atomic_inc(&epc->refcount);
5005 			goto found_epc;
5006 		}
5007 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5008 		if (!pos && epc->pmu->type > pmu->type)
5009 			pos = epc;
5010 	}
5011 
5012 	epc = new;
5013 	new = NULL;
5014 
5015 	if (!pos)
5016 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5017 	else
5018 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5019 
5020 	epc->ctx = ctx;
5021 
5022 found_epc:
5023 	raw_spin_unlock_irq(&ctx->lock);
5024 	kfree(new);
5025 
5026 	return epc;
5027 }
5028 
get_pmu_ctx(struct perf_event_pmu_context * epc)5029 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5030 {
5031 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5032 }
5033 
free_cpc_rcu(struct rcu_head * head)5034 static void free_cpc_rcu(struct rcu_head *head)
5035 {
5036 	struct perf_cpu_pmu_context *cpc =
5037 		container_of(head, typeof(*cpc), epc.rcu_head);
5038 
5039 	kfree(cpc);
5040 }
5041 
free_epc_rcu(struct rcu_head * head)5042 static void free_epc_rcu(struct rcu_head *head)
5043 {
5044 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5045 
5046 	kfree(epc);
5047 }
5048 
put_pmu_ctx(struct perf_event_pmu_context * epc)5049 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5050 {
5051 	struct perf_event_context *ctx = epc->ctx;
5052 	unsigned long flags;
5053 
5054 	/*
5055 	 * XXX
5056 	 *
5057 	 * lockdep_assert_held(&ctx->mutex);
5058 	 *
5059 	 * can't because of the call-site in _free_event()/put_event()
5060 	 * which isn't always called under ctx->mutex.
5061 	 */
5062 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5063 		return;
5064 
5065 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5066 
5067 	list_del_init(&epc->pmu_ctx_entry);
5068 	epc->ctx = NULL;
5069 
5070 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5071 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5072 
5073 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5074 
5075 	if (epc->embedded) {
5076 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5077 		return;
5078 	}
5079 
5080 	call_rcu(&epc->rcu_head, free_epc_rcu);
5081 }
5082 
5083 static void perf_event_free_filter(struct perf_event *event);
5084 
free_event_rcu(struct rcu_head * head)5085 static void free_event_rcu(struct rcu_head *head)
5086 {
5087 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5088 
5089 	if (event->ns)
5090 		put_pid_ns(event->ns);
5091 	perf_event_free_filter(event);
5092 	kmem_cache_free(perf_event_cache, event);
5093 }
5094 
5095 static void ring_buffer_attach(struct perf_event *event,
5096 			       struct perf_buffer *rb);
5097 
detach_sb_event(struct perf_event * event)5098 static void detach_sb_event(struct perf_event *event)
5099 {
5100 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5101 
5102 	raw_spin_lock(&pel->lock);
5103 	list_del_rcu(&event->sb_list);
5104 	raw_spin_unlock(&pel->lock);
5105 }
5106 
is_sb_event(struct perf_event * event)5107 static bool is_sb_event(struct perf_event *event)
5108 {
5109 	struct perf_event_attr *attr = &event->attr;
5110 
5111 	if (event->parent)
5112 		return false;
5113 
5114 	if (event->attach_state & PERF_ATTACH_TASK)
5115 		return false;
5116 
5117 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5118 	    attr->comm || attr->comm_exec ||
5119 	    attr->task || attr->ksymbol ||
5120 	    attr->context_switch || attr->text_poke ||
5121 	    attr->bpf_event)
5122 		return true;
5123 	return false;
5124 }
5125 
unaccount_pmu_sb_event(struct perf_event * event)5126 static void unaccount_pmu_sb_event(struct perf_event *event)
5127 {
5128 	if (is_sb_event(event))
5129 		detach_sb_event(event);
5130 }
5131 
5132 #ifdef CONFIG_NO_HZ_FULL
5133 static DEFINE_SPINLOCK(nr_freq_lock);
5134 #endif
5135 
unaccount_freq_event_nohz(void)5136 static void unaccount_freq_event_nohz(void)
5137 {
5138 #ifdef CONFIG_NO_HZ_FULL
5139 	spin_lock(&nr_freq_lock);
5140 	if (atomic_dec_and_test(&nr_freq_events))
5141 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5142 	spin_unlock(&nr_freq_lock);
5143 #endif
5144 }
5145 
unaccount_freq_event(void)5146 static void unaccount_freq_event(void)
5147 {
5148 	if (tick_nohz_full_enabled())
5149 		unaccount_freq_event_nohz();
5150 	else
5151 		atomic_dec(&nr_freq_events);
5152 }
5153 
5154 
5155 static struct perf_ctx_data *
alloc_perf_ctx_data(struct kmem_cache * ctx_cache,bool global)5156 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5157 {
5158 	struct perf_ctx_data *cd;
5159 
5160 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5161 	if (!cd)
5162 		return NULL;
5163 
5164 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5165 	if (!cd->data) {
5166 		kfree(cd);
5167 		return NULL;
5168 	}
5169 
5170 	cd->global = global;
5171 	cd->ctx_cache = ctx_cache;
5172 	refcount_set(&cd->refcount, 1);
5173 
5174 	return cd;
5175 }
5176 
free_perf_ctx_data(struct perf_ctx_data * cd)5177 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5178 {
5179 	kmem_cache_free(cd->ctx_cache, cd->data);
5180 	kfree(cd);
5181 }
5182 
__free_perf_ctx_data_rcu(struct rcu_head * rcu_head)5183 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5184 {
5185 	struct perf_ctx_data *cd;
5186 
5187 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5188 	free_perf_ctx_data(cd);
5189 }
5190 
perf_free_ctx_data_rcu(struct perf_ctx_data * cd)5191 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5192 {
5193 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5194 }
5195 
5196 static int
attach_task_ctx_data(struct task_struct * task,struct kmem_cache * ctx_cache,bool global)5197 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5198 		     bool global)
5199 {
5200 	struct perf_ctx_data *cd, *old = NULL;
5201 
5202 	cd = alloc_perf_ctx_data(ctx_cache, global);
5203 	if (!cd)
5204 		return -ENOMEM;
5205 
5206 	for (;;) {
5207 		if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5208 			if (old)
5209 				perf_free_ctx_data_rcu(old);
5210 			return 0;
5211 		}
5212 
5213 		if (!old) {
5214 			/*
5215 			 * After seeing a dead @old, we raced with
5216 			 * removal and lost, try again to install @cd.
5217 			 */
5218 			continue;
5219 		}
5220 
5221 		if (refcount_inc_not_zero(&old->refcount)) {
5222 			free_perf_ctx_data(cd); /* unused */
5223 			return 0;
5224 		}
5225 
5226 		/*
5227 		 * @old is a dead object, refcount==0 is stable, try and
5228 		 * replace it with @cd.
5229 		 */
5230 	}
5231 	return 0;
5232 }
5233 
5234 static void __detach_global_ctx_data(void);
5235 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5236 static refcount_t global_ctx_data_ref;
5237 
5238 static int
attach_global_ctx_data(struct kmem_cache * ctx_cache)5239 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5240 {
5241 	struct task_struct *g, *p;
5242 	struct perf_ctx_data *cd;
5243 	int ret;
5244 
5245 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5246 		return 0;
5247 
5248 	guard(percpu_write)(&global_ctx_data_rwsem);
5249 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5250 		return 0;
5251 again:
5252 	/* Allocate everything */
5253 	scoped_guard (rcu) {
5254 		for_each_process_thread(g, p) {
5255 			cd = rcu_dereference(p->perf_ctx_data);
5256 			if (cd && !cd->global) {
5257 				cd->global = 1;
5258 				if (!refcount_inc_not_zero(&cd->refcount))
5259 					cd = NULL;
5260 			}
5261 			if (!cd) {
5262 				get_task_struct(p);
5263 				goto alloc;
5264 			}
5265 		}
5266 	}
5267 
5268 	refcount_set(&global_ctx_data_ref, 1);
5269 
5270 	return 0;
5271 alloc:
5272 	ret = attach_task_ctx_data(p, ctx_cache, true);
5273 	put_task_struct(p);
5274 	if (ret) {
5275 		__detach_global_ctx_data();
5276 		return ret;
5277 	}
5278 	goto again;
5279 }
5280 
5281 static int
attach_perf_ctx_data(struct perf_event * event)5282 attach_perf_ctx_data(struct perf_event *event)
5283 {
5284 	struct task_struct *task = event->hw.target;
5285 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5286 	int ret;
5287 
5288 	if (!ctx_cache)
5289 		return -ENOMEM;
5290 
5291 	if (task)
5292 		return attach_task_ctx_data(task, ctx_cache, false);
5293 
5294 	ret = attach_global_ctx_data(ctx_cache);
5295 	if (ret)
5296 		return ret;
5297 
5298 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5299 	return 0;
5300 }
5301 
5302 static void
detach_task_ctx_data(struct task_struct * p)5303 detach_task_ctx_data(struct task_struct *p)
5304 {
5305 	struct perf_ctx_data *cd;
5306 
5307 	scoped_guard (rcu) {
5308 		cd = rcu_dereference(p->perf_ctx_data);
5309 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5310 			return;
5311 	}
5312 
5313 	/*
5314 	 * The old ctx_data may be lost because of the race.
5315 	 * Nothing is required to do for the case.
5316 	 * See attach_task_ctx_data().
5317 	 */
5318 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5319 		perf_free_ctx_data_rcu(cd);
5320 }
5321 
__detach_global_ctx_data(void)5322 static void __detach_global_ctx_data(void)
5323 {
5324 	struct task_struct *g, *p;
5325 	struct perf_ctx_data *cd;
5326 
5327 again:
5328 	scoped_guard (rcu) {
5329 		for_each_process_thread(g, p) {
5330 			cd = rcu_dereference(p->perf_ctx_data);
5331 			if (!cd || !cd->global)
5332 				continue;
5333 			cd->global = 0;
5334 			get_task_struct(p);
5335 			goto detach;
5336 		}
5337 	}
5338 	return;
5339 detach:
5340 	detach_task_ctx_data(p);
5341 	put_task_struct(p);
5342 	goto again;
5343 }
5344 
detach_global_ctx_data(void)5345 static void detach_global_ctx_data(void)
5346 {
5347 	if (refcount_dec_not_one(&global_ctx_data_ref))
5348 		return;
5349 
5350 	guard(percpu_write)(&global_ctx_data_rwsem);
5351 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5352 		return;
5353 
5354 	/* remove everything */
5355 	__detach_global_ctx_data();
5356 }
5357 
detach_perf_ctx_data(struct perf_event * event)5358 static void detach_perf_ctx_data(struct perf_event *event)
5359 {
5360 	struct task_struct *task = event->hw.target;
5361 
5362 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5363 
5364 	if (task)
5365 		return detach_task_ctx_data(task);
5366 
5367 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5368 		detach_global_ctx_data();
5369 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5370 	}
5371 }
5372 
unaccount_event(struct perf_event * event)5373 static void unaccount_event(struct perf_event *event)
5374 {
5375 	bool dec = false;
5376 
5377 	if (event->parent)
5378 		return;
5379 
5380 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5381 		dec = true;
5382 	if (event->attr.mmap || event->attr.mmap_data)
5383 		atomic_dec(&nr_mmap_events);
5384 	if (event->attr.build_id)
5385 		atomic_dec(&nr_build_id_events);
5386 	if (event->attr.comm)
5387 		atomic_dec(&nr_comm_events);
5388 	if (event->attr.namespaces)
5389 		atomic_dec(&nr_namespaces_events);
5390 	if (event->attr.cgroup)
5391 		atomic_dec(&nr_cgroup_events);
5392 	if (event->attr.task)
5393 		atomic_dec(&nr_task_events);
5394 	if (event->attr.freq)
5395 		unaccount_freq_event();
5396 	if (event->attr.context_switch) {
5397 		dec = true;
5398 		atomic_dec(&nr_switch_events);
5399 	}
5400 	if (is_cgroup_event(event))
5401 		dec = true;
5402 	if (has_branch_stack(event))
5403 		dec = true;
5404 	if (event->attr.ksymbol)
5405 		atomic_dec(&nr_ksymbol_events);
5406 	if (event->attr.bpf_event)
5407 		atomic_dec(&nr_bpf_events);
5408 	if (event->attr.text_poke)
5409 		atomic_dec(&nr_text_poke_events);
5410 
5411 	if (dec) {
5412 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5413 			schedule_delayed_work(&perf_sched_work, HZ);
5414 	}
5415 
5416 	unaccount_pmu_sb_event(event);
5417 }
5418 
perf_sched_delayed(struct work_struct * work)5419 static void perf_sched_delayed(struct work_struct *work)
5420 {
5421 	mutex_lock(&perf_sched_mutex);
5422 	if (atomic_dec_and_test(&perf_sched_count))
5423 		static_branch_disable(&perf_sched_events);
5424 	mutex_unlock(&perf_sched_mutex);
5425 }
5426 
5427 /*
5428  * The following implement mutual exclusion of events on "exclusive" pmus
5429  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5430  * at a time, so we disallow creating events that might conflict, namely:
5431  *
5432  *  1) cpu-wide events in the presence of per-task events,
5433  *  2) per-task events in the presence of cpu-wide events,
5434  *  3) two matching events on the same perf_event_context.
5435  *
5436  * The former two cases are handled in the allocation path (perf_event_alloc(),
5437  * _free_event()), the latter -- before the first perf_install_in_context().
5438  */
exclusive_event_init(struct perf_event * event)5439 static int exclusive_event_init(struct perf_event *event)
5440 {
5441 	struct pmu *pmu = event->pmu;
5442 
5443 	if (!is_exclusive_pmu(pmu))
5444 		return 0;
5445 
5446 	/*
5447 	 * Prevent co-existence of per-task and cpu-wide events on the
5448 	 * same exclusive pmu.
5449 	 *
5450 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5451 	 * events on this "exclusive" pmu, positive means there are
5452 	 * per-task events.
5453 	 *
5454 	 * Since this is called in perf_event_alloc() path, event::ctx
5455 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5456 	 * to mean "per-task event", because unlike other attach states it
5457 	 * never gets cleared.
5458 	 */
5459 	if (event->attach_state & PERF_ATTACH_TASK) {
5460 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5461 			return -EBUSY;
5462 	} else {
5463 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5464 			return -EBUSY;
5465 	}
5466 
5467 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5468 
5469 	return 0;
5470 }
5471 
exclusive_event_destroy(struct perf_event * event)5472 static void exclusive_event_destroy(struct perf_event *event)
5473 {
5474 	struct pmu *pmu = event->pmu;
5475 
5476 	/* see comment in exclusive_event_init() */
5477 	if (event->attach_state & PERF_ATTACH_TASK)
5478 		atomic_dec(&pmu->exclusive_cnt);
5479 	else
5480 		atomic_inc(&pmu->exclusive_cnt);
5481 
5482 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5483 }
5484 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5485 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5486 {
5487 	if ((e1->pmu == e2->pmu) &&
5488 	    (e1->cpu == e2->cpu ||
5489 	     e1->cpu == -1 ||
5490 	     e2->cpu == -1))
5491 		return true;
5492 	return false;
5493 }
5494 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5495 static bool exclusive_event_installable(struct perf_event *event,
5496 					struct perf_event_context *ctx)
5497 {
5498 	struct perf_event *iter_event;
5499 	struct pmu *pmu = event->pmu;
5500 
5501 	lockdep_assert_held(&ctx->mutex);
5502 
5503 	if (!is_exclusive_pmu(pmu))
5504 		return true;
5505 
5506 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5507 		if (exclusive_event_match(iter_event, event))
5508 			return false;
5509 	}
5510 
5511 	return true;
5512 }
5513 
5514 static void perf_free_addr_filters(struct perf_event *event);
5515 
perf_pending_task_sync(struct perf_event * event)5516 static void perf_pending_task_sync(struct perf_event *event)
5517 {
5518 	struct callback_head *head = &event->pending_task;
5519 
5520 	if (!event->pending_work)
5521 		return;
5522 	/*
5523 	 * If the task is queued to the current task's queue, we
5524 	 * obviously can't wait for it to complete. Simply cancel it.
5525 	 */
5526 	if (task_work_cancel(current, head)) {
5527 		event->pending_work = 0;
5528 		local_dec(&event->ctx->nr_no_switch_fast);
5529 		return;
5530 	}
5531 
5532 	/*
5533 	 * All accesses related to the event are within the same RCU section in
5534 	 * perf_pending_task(). The RCU grace period before the event is freed
5535 	 * will make sure all those accesses are complete by then.
5536 	 */
5537 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5538 }
5539 
5540 /* vs perf_event_alloc() error */
__free_event(struct perf_event * event)5541 static void __free_event(struct perf_event *event)
5542 {
5543 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5544 		put_callchain_buffers();
5545 
5546 	kfree(event->addr_filter_ranges);
5547 
5548 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5549 		exclusive_event_destroy(event);
5550 
5551 	if (is_cgroup_event(event))
5552 		perf_detach_cgroup(event);
5553 
5554 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5555 		detach_perf_ctx_data(event);
5556 
5557 	if (event->destroy)
5558 		event->destroy(event);
5559 
5560 	/*
5561 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5562 	 * hw.target.
5563 	 */
5564 	if (event->hw.target)
5565 		put_task_struct(event->hw.target);
5566 
5567 	if (event->pmu_ctx) {
5568 		/*
5569 		 * put_pmu_ctx() needs an event->ctx reference, because of
5570 		 * epc->ctx.
5571 		 */
5572 		WARN_ON_ONCE(!event->ctx);
5573 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5574 		put_pmu_ctx(event->pmu_ctx);
5575 	}
5576 
5577 	/*
5578 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5579 	 * particular all task references must be cleaned up.
5580 	 */
5581 	if (event->ctx)
5582 		put_ctx(event->ctx);
5583 
5584 	if (event->pmu)
5585 		module_put(event->pmu->module);
5586 
5587 	call_rcu(&event->rcu_head, free_event_rcu);
5588 }
5589 
DEFINE_FREE(__free_event,struct perf_event *,if (_T)__free_event (_T))5590 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5591 
5592 /* vs perf_event_alloc() success */
5593 static void _free_event(struct perf_event *event)
5594 {
5595 	irq_work_sync(&event->pending_irq);
5596 	irq_work_sync(&event->pending_disable_irq);
5597 	perf_pending_task_sync(event);
5598 
5599 	unaccount_event(event);
5600 
5601 	security_perf_event_free(event);
5602 
5603 	if (event->rb) {
5604 		/*
5605 		 * Can happen when we close an event with re-directed output.
5606 		 *
5607 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5608 		 * over us; possibly making our ring_buffer_put() the last.
5609 		 */
5610 		mutex_lock(&event->mmap_mutex);
5611 		ring_buffer_attach(event, NULL);
5612 		mutex_unlock(&event->mmap_mutex);
5613 	}
5614 
5615 	perf_event_free_bpf_prog(event);
5616 	perf_free_addr_filters(event);
5617 
5618 	__free_event(event);
5619 }
5620 
5621 /*
5622  * Used to free events which have a known refcount of 1, such as in error paths
5623  * where the event isn't exposed yet and inherited events.
5624  */
free_event(struct perf_event * event)5625 static void free_event(struct perf_event *event)
5626 {
5627 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5628 				"unexpected event refcount: %ld; ptr=%p\n",
5629 				atomic_long_read(&event->refcount), event)) {
5630 		/* leak to avoid use-after-free */
5631 		return;
5632 	}
5633 
5634 	_free_event(event);
5635 }
5636 
5637 /*
5638  * Remove user event from the owner task.
5639  */
perf_remove_from_owner(struct perf_event * event)5640 static void perf_remove_from_owner(struct perf_event *event)
5641 {
5642 	struct task_struct *owner;
5643 
5644 	rcu_read_lock();
5645 	/*
5646 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5647 	 * observe !owner it means the list deletion is complete and we can
5648 	 * indeed free this event, otherwise we need to serialize on
5649 	 * owner->perf_event_mutex.
5650 	 */
5651 	owner = READ_ONCE(event->owner);
5652 	if (owner) {
5653 		/*
5654 		 * Since delayed_put_task_struct() also drops the last
5655 		 * task reference we can safely take a new reference
5656 		 * while holding the rcu_read_lock().
5657 		 */
5658 		get_task_struct(owner);
5659 	}
5660 	rcu_read_unlock();
5661 
5662 	if (owner) {
5663 		/*
5664 		 * If we're here through perf_event_exit_task() we're already
5665 		 * holding ctx->mutex which would be an inversion wrt. the
5666 		 * normal lock order.
5667 		 *
5668 		 * However we can safely take this lock because its the child
5669 		 * ctx->mutex.
5670 		 */
5671 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5672 
5673 		/*
5674 		 * We have to re-check the event->owner field, if it is cleared
5675 		 * we raced with perf_event_exit_task(), acquiring the mutex
5676 		 * ensured they're done, and we can proceed with freeing the
5677 		 * event.
5678 		 */
5679 		if (event->owner) {
5680 			list_del_init(&event->owner_entry);
5681 			smp_store_release(&event->owner, NULL);
5682 		}
5683 		mutex_unlock(&owner->perf_event_mutex);
5684 		put_task_struct(owner);
5685 	}
5686 }
5687 
put_event(struct perf_event * event)5688 static void put_event(struct perf_event *event)
5689 {
5690 	if (!atomic_long_dec_and_test(&event->refcount))
5691 		return;
5692 
5693 	_free_event(event);
5694 }
5695 
5696 /*
5697  * Kill an event dead; while event:refcount will preserve the event
5698  * object, it will not preserve its functionality. Once the last 'user'
5699  * gives up the object, we'll destroy the thing.
5700  */
perf_event_release_kernel(struct perf_event * event)5701 int perf_event_release_kernel(struct perf_event *event)
5702 {
5703 	struct perf_event_context *ctx = event->ctx;
5704 	struct perf_event *child, *tmp;
5705 	LIST_HEAD(free_list);
5706 
5707 	/*
5708 	 * If we got here through err_alloc: free_event(event); we will not
5709 	 * have attached to a context yet.
5710 	 */
5711 	if (!ctx) {
5712 		WARN_ON_ONCE(event->attach_state &
5713 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5714 		goto no_ctx;
5715 	}
5716 
5717 	if (!is_kernel_event(event))
5718 		perf_remove_from_owner(event);
5719 
5720 	ctx = perf_event_ctx_lock(event);
5721 	WARN_ON_ONCE(ctx->parent_ctx);
5722 
5723 	/*
5724 	 * Mark this event as STATE_DEAD, there is no external reference to it
5725 	 * anymore.
5726 	 *
5727 	 * Anybody acquiring event->child_mutex after the below loop _must_
5728 	 * also see this, most importantly inherit_event() which will avoid
5729 	 * placing more children on the list.
5730 	 *
5731 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5732 	 * child events.
5733 	 */
5734 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5735 
5736 	perf_event_ctx_unlock(event, ctx);
5737 
5738 again:
5739 	mutex_lock(&event->child_mutex);
5740 	list_for_each_entry(child, &event->child_list, child_list) {
5741 		void *var = NULL;
5742 
5743 		/*
5744 		 * Cannot change, child events are not migrated, see the
5745 		 * comment with perf_event_ctx_lock_nested().
5746 		 */
5747 		ctx = READ_ONCE(child->ctx);
5748 		/*
5749 		 * Since child_mutex nests inside ctx::mutex, we must jump
5750 		 * through hoops. We start by grabbing a reference on the ctx.
5751 		 *
5752 		 * Since the event cannot get freed while we hold the
5753 		 * child_mutex, the context must also exist and have a !0
5754 		 * reference count.
5755 		 */
5756 		get_ctx(ctx);
5757 
5758 		/*
5759 		 * Now that we have a ctx ref, we can drop child_mutex, and
5760 		 * acquire ctx::mutex without fear of it going away. Then we
5761 		 * can re-acquire child_mutex.
5762 		 */
5763 		mutex_unlock(&event->child_mutex);
5764 		mutex_lock(&ctx->mutex);
5765 		mutex_lock(&event->child_mutex);
5766 
5767 		/*
5768 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5769 		 * state, if child is still the first entry, it didn't get freed
5770 		 * and we can continue doing so.
5771 		 */
5772 		tmp = list_first_entry_or_null(&event->child_list,
5773 					       struct perf_event, child_list);
5774 		if (tmp == child) {
5775 			perf_remove_from_context(child, DETACH_GROUP);
5776 			list_move(&child->child_list, &free_list);
5777 			/*
5778 			 * This matches the refcount bump in inherit_event();
5779 			 * this can't be the last reference.
5780 			 */
5781 			put_event(event);
5782 		} else {
5783 			var = &ctx->refcount;
5784 		}
5785 
5786 		mutex_unlock(&event->child_mutex);
5787 		mutex_unlock(&ctx->mutex);
5788 		put_ctx(ctx);
5789 
5790 		if (var) {
5791 			/*
5792 			 * If perf_event_free_task() has deleted all events from the
5793 			 * ctx while the child_mutex got released above, make sure to
5794 			 * notify about the preceding put_ctx().
5795 			 */
5796 			smp_mb(); /* pairs with wait_var_event() */
5797 			wake_up_var(var);
5798 		}
5799 		goto again;
5800 	}
5801 	mutex_unlock(&event->child_mutex);
5802 
5803 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5804 		void *var = &child->ctx->refcount;
5805 
5806 		list_del(&child->child_list);
5807 		free_event(child);
5808 
5809 		/*
5810 		 * Wake any perf_event_free_task() waiting for this event to be
5811 		 * freed.
5812 		 */
5813 		smp_mb(); /* pairs with wait_var_event() */
5814 		wake_up_var(var);
5815 	}
5816 
5817 no_ctx:
5818 	put_event(event); /* Must be the 'last' reference */
5819 	return 0;
5820 }
5821 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5822 
5823 /*
5824  * Called when the last reference to the file is gone.
5825  */
perf_release(struct inode * inode,struct file * file)5826 static int perf_release(struct inode *inode, struct file *file)
5827 {
5828 	perf_event_release_kernel(file->private_data);
5829 	return 0;
5830 }
5831 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5832 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5833 {
5834 	struct perf_event *child;
5835 	u64 total = 0;
5836 
5837 	*enabled = 0;
5838 	*running = 0;
5839 
5840 	mutex_lock(&event->child_mutex);
5841 
5842 	(void)perf_event_read(event, false);
5843 	total += perf_event_count(event, false);
5844 
5845 	*enabled += event->total_time_enabled +
5846 			atomic64_read(&event->child_total_time_enabled);
5847 	*running += event->total_time_running +
5848 			atomic64_read(&event->child_total_time_running);
5849 
5850 	list_for_each_entry(child, &event->child_list, child_list) {
5851 		(void)perf_event_read(child, false);
5852 		total += perf_event_count(child, false);
5853 		*enabled += child->total_time_enabled;
5854 		*running += child->total_time_running;
5855 	}
5856 	mutex_unlock(&event->child_mutex);
5857 
5858 	return total;
5859 }
5860 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5861 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5862 {
5863 	struct perf_event_context *ctx;
5864 	u64 count;
5865 
5866 	ctx = perf_event_ctx_lock(event);
5867 	count = __perf_event_read_value(event, enabled, running);
5868 	perf_event_ctx_unlock(event, ctx);
5869 
5870 	return count;
5871 }
5872 EXPORT_SYMBOL_GPL(perf_event_read_value);
5873 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5874 static int __perf_read_group_add(struct perf_event *leader,
5875 					u64 read_format, u64 *values)
5876 {
5877 	struct perf_event_context *ctx = leader->ctx;
5878 	struct perf_event *sub, *parent;
5879 	unsigned long flags;
5880 	int n = 1; /* skip @nr */
5881 	int ret;
5882 
5883 	ret = perf_event_read(leader, true);
5884 	if (ret)
5885 		return ret;
5886 
5887 	raw_spin_lock_irqsave(&ctx->lock, flags);
5888 	/*
5889 	 * Verify the grouping between the parent and child (inherited)
5890 	 * events is still in tact.
5891 	 *
5892 	 * Specifically:
5893 	 *  - leader->ctx->lock pins leader->sibling_list
5894 	 *  - parent->child_mutex pins parent->child_list
5895 	 *  - parent->ctx->mutex pins parent->sibling_list
5896 	 *
5897 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5898 	 * ctx->mutex), group destruction is not atomic between children, also
5899 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5900 	 * group.
5901 	 *
5902 	 * Therefore it is possible to have parent and child groups in a
5903 	 * different configuration and summing over such a beast makes no sense
5904 	 * what so ever.
5905 	 *
5906 	 * Reject this.
5907 	 */
5908 	parent = leader->parent;
5909 	if (parent &&
5910 	    (parent->group_generation != leader->group_generation ||
5911 	     parent->nr_siblings != leader->nr_siblings)) {
5912 		ret = -ECHILD;
5913 		goto unlock;
5914 	}
5915 
5916 	/*
5917 	 * Since we co-schedule groups, {enabled,running} times of siblings
5918 	 * will be identical to those of the leader, so we only publish one
5919 	 * set.
5920 	 */
5921 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5922 		values[n++] += leader->total_time_enabled +
5923 			atomic64_read(&leader->child_total_time_enabled);
5924 	}
5925 
5926 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5927 		values[n++] += leader->total_time_running +
5928 			atomic64_read(&leader->child_total_time_running);
5929 	}
5930 
5931 	/*
5932 	 * Write {count,id} tuples for every sibling.
5933 	 */
5934 	values[n++] += perf_event_count(leader, false);
5935 	if (read_format & PERF_FORMAT_ID)
5936 		values[n++] = primary_event_id(leader);
5937 	if (read_format & PERF_FORMAT_LOST)
5938 		values[n++] = atomic64_read(&leader->lost_samples);
5939 
5940 	for_each_sibling_event(sub, leader) {
5941 		values[n++] += perf_event_count(sub, false);
5942 		if (read_format & PERF_FORMAT_ID)
5943 			values[n++] = primary_event_id(sub);
5944 		if (read_format & PERF_FORMAT_LOST)
5945 			values[n++] = atomic64_read(&sub->lost_samples);
5946 	}
5947 
5948 unlock:
5949 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5950 	return ret;
5951 }
5952 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5953 static int perf_read_group(struct perf_event *event,
5954 				   u64 read_format, char __user *buf)
5955 {
5956 	struct perf_event *leader = event->group_leader, *child;
5957 	struct perf_event_context *ctx = leader->ctx;
5958 	int ret;
5959 	u64 *values;
5960 
5961 	lockdep_assert_held(&ctx->mutex);
5962 
5963 	values = kzalloc(event->read_size, GFP_KERNEL);
5964 	if (!values)
5965 		return -ENOMEM;
5966 
5967 	values[0] = 1 + leader->nr_siblings;
5968 
5969 	mutex_lock(&leader->child_mutex);
5970 
5971 	ret = __perf_read_group_add(leader, read_format, values);
5972 	if (ret)
5973 		goto unlock;
5974 
5975 	list_for_each_entry(child, &leader->child_list, child_list) {
5976 		ret = __perf_read_group_add(child, read_format, values);
5977 		if (ret)
5978 			goto unlock;
5979 	}
5980 
5981 	mutex_unlock(&leader->child_mutex);
5982 
5983 	ret = event->read_size;
5984 	if (copy_to_user(buf, values, event->read_size))
5985 		ret = -EFAULT;
5986 	goto out;
5987 
5988 unlock:
5989 	mutex_unlock(&leader->child_mutex);
5990 out:
5991 	kfree(values);
5992 	return ret;
5993 }
5994 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5995 static int perf_read_one(struct perf_event *event,
5996 				 u64 read_format, char __user *buf)
5997 {
5998 	u64 enabled, running;
5999 	u64 values[5];
6000 	int n = 0;
6001 
6002 	values[n++] = __perf_event_read_value(event, &enabled, &running);
6003 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6004 		values[n++] = enabled;
6005 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6006 		values[n++] = running;
6007 	if (read_format & PERF_FORMAT_ID)
6008 		values[n++] = primary_event_id(event);
6009 	if (read_format & PERF_FORMAT_LOST)
6010 		values[n++] = atomic64_read(&event->lost_samples);
6011 
6012 	if (copy_to_user(buf, values, n * sizeof(u64)))
6013 		return -EFAULT;
6014 
6015 	return n * sizeof(u64);
6016 }
6017 
is_event_hup(struct perf_event * event)6018 static bool is_event_hup(struct perf_event *event)
6019 {
6020 	bool no_children;
6021 
6022 	if (event->state > PERF_EVENT_STATE_EXIT)
6023 		return false;
6024 
6025 	mutex_lock(&event->child_mutex);
6026 	no_children = list_empty(&event->child_list);
6027 	mutex_unlock(&event->child_mutex);
6028 	return no_children;
6029 }
6030 
6031 /*
6032  * Read the performance event - simple non blocking version for now
6033  */
6034 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)6035 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6036 {
6037 	u64 read_format = event->attr.read_format;
6038 	int ret;
6039 
6040 	/*
6041 	 * Return end-of-file for a read on an event that is in
6042 	 * error state (i.e. because it was pinned but it couldn't be
6043 	 * scheduled on to the CPU at some point).
6044 	 */
6045 	if (event->state == PERF_EVENT_STATE_ERROR)
6046 		return 0;
6047 
6048 	if (count < event->read_size)
6049 		return -ENOSPC;
6050 
6051 	WARN_ON_ONCE(event->ctx->parent_ctx);
6052 	if (read_format & PERF_FORMAT_GROUP)
6053 		ret = perf_read_group(event, read_format, buf);
6054 	else
6055 		ret = perf_read_one(event, read_format, buf);
6056 
6057 	return ret;
6058 }
6059 
6060 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)6061 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6062 {
6063 	struct perf_event *event = file->private_data;
6064 	struct perf_event_context *ctx;
6065 	int ret;
6066 
6067 	ret = security_perf_event_read(event);
6068 	if (ret)
6069 		return ret;
6070 
6071 	ctx = perf_event_ctx_lock(event);
6072 	ret = __perf_read(event, buf, count);
6073 	perf_event_ctx_unlock(event, ctx);
6074 
6075 	return ret;
6076 }
6077 
perf_poll(struct file * file,poll_table * wait)6078 static __poll_t perf_poll(struct file *file, poll_table *wait)
6079 {
6080 	struct perf_event *event = file->private_data;
6081 	struct perf_buffer *rb;
6082 	__poll_t events = EPOLLHUP;
6083 
6084 	poll_wait(file, &event->waitq, wait);
6085 
6086 	if (is_event_hup(event))
6087 		return events;
6088 
6089 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6090 		     event->attr.pinned))
6091 		return events;
6092 
6093 	/*
6094 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6095 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6096 	 */
6097 	mutex_lock(&event->mmap_mutex);
6098 	rb = event->rb;
6099 	if (rb)
6100 		events = atomic_xchg(&rb->poll, 0);
6101 	mutex_unlock(&event->mmap_mutex);
6102 	return events;
6103 }
6104 
_perf_event_reset(struct perf_event * event)6105 static void _perf_event_reset(struct perf_event *event)
6106 {
6107 	(void)perf_event_read(event, false);
6108 	local64_set(&event->count, 0);
6109 	perf_event_update_userpage(event);
6110 }
6111 
6112 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)6113 u64 perf_event_pause(struct perf_event *event, bool reset)
6114 {
6115 	struct perf_event_context *ctx;
6116 	u64 count;
6117 
6118 	ctx = perf_event_ctx_lock(event);
6119 	WARN_ON_ONCE(event->attr.inherit);
6120 	_perf_event_disable(event);
6121 	count = local64_read(&event->count);
6122 	if (reset)
6123 		local64_set(&event->count, 0);
6124 	perf_event_ctx_unlock(event, ctx);
6125 
6126 	return count;
6127 }
6128 EXPORT_SYMBOL_GPL(perf_event_pause);
6129 
6130 /*
6131  * Holding the top-level event's child_mutex means that any
6132  * descendant process that has inherited this event will block
6133  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6134  * task existence requirements of perf_event_enable/disable.
6135  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))6136 static void perf_event_for_each_child(struct perf_event *event,
6137 					void (*func)(struct perf_event *))
6138 {
6139 	struct perf_event *child;
6140 
6141 	WARN_ON_ONCE(event->ctx->parent_ctx);
6142 
6143 	mutex_lock(&event->child_mutex);
6144 	func(event);
6145 	list_for_each_entry(child, &event->child_list, child_list)
6146 		func(child);
6147 	mutex_unlock(&event->child_mutex);
6148 }
6149 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))6150 static void perf_event_for_each(struct perf_event *event,
6151 				  void (*func)(struct perf_event *))
6152 {
6153 	struct perf_event_context *ctx = event->ctx;
6154 	struct perf_event *sibling;
6155 
6156 	lockdep_assert_held(&ctx->mutex);
6157 
6158 	event = event->group_leader;
6159 
6160 	perf_event_for_each_child(event, func);
6161 	for_each_sibling_event(sibling, event)
6162 		perf_event_for_each_child(sibling, func);
6163 }
6164 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)6165 static void __perf_event_period(struct perf_event *event,
6166 				struct perf_cpu_context *cpuctx,
6167 				struct perf_event_context *ctx,
6168 				void *info)
6169 {
6170 	u64 value = *((u64 *)info);
6171 	bool active;
6172 
6173 	if (event->attr.freq) {
6174 		event->attr.sample_freq = value;
6175 	} else {
6176 		event->attr.sample_period = value;
6177 		event->hw.sample_period = value;
6178 	}
6179 
6180 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6181 	if (active) {
6182 		perf_pmu_disable(event->pmu);
6183 		/*
6184 		 * We could be throttled; unthrottle now to avoid the tick
6185 		 * trying to unthrottle while we already re-started the event.
6186 		 */
6187 		if (event->hw.interrupts == MAX_INTERRUPTS) {
6188 			event->hw.interrupts = 0;
6189 			perf_log_throttle(event, 1);
6190 		}
6191 		event->pmu->stop(event, PERF_EF_UPDATE);
6192 	}
6193 
6194 	local64_set(&event->hw.period_left, 0);
6195 
6196 	if (active) {
6197 		event->pmu->start(event, PERF_EF_RELOAD);
6198 		perf_pmu_enable(event->pmu);
6199 	}
6200 }
6201 
perf_event_check_period(struct perf_event * event,u64 value)6202 static int perf_event_check_period(struct perf_event *event, u64 value)
6203 {
6204 	return event->pmu->check_period(event, value);
6205 }
6206 
_perf_event_period(struct perf_event * event,u64 value)6207 static int _perf_event_period(struct perf_event *event, u64 value)
6208 {
6209 	if (!is_sampling_event(event))
6210 		return -EINVAL;
6211 
6212 	if (!value)
6213 		return -EINVAL;
6214 
6215 	if (event->attr.freq) {
6216 		if (value > sysctl_perf_event_sample_rate)
6217 			return -EINVAL;
6218 	} else {
6219 		if (perf_event_check_period(event, value))
6220 			return -EINVAL;
6221 		if (value & (1ULL << 63))
6222 			return -EINVAL;
6223 	}
6224 
6225 	event_function_call(event, __perf_event_period, &value);
6226 
6227 	return 0;
6228 }
6229 
perf_event_period(struct perf_event * event,u64 value)6230 int perf_event_period(struct perf_event *event, u64 value)
6231 {
6232 	struct perf_event_context *ctx;
6233 	int ret;
6234 
6235 	ctx = perf_event_ctx_lock(event);
6236 	ret = _perf_event_period(event, value);
6237 	perf_event_ctx_unlock(event, ctx);
6238 
6239 	return ret;
6240 }
6241 EXPORT_SYMBOL_GPL(perf_event_period);
6242 
6243 static const struct file_operations perf_fops;
6244 
is_perf_file(struct fd f)6245 static inline bool is_perf_file(struct fd f)
6246 {
6247 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6248 }
6249 
6250 static int perf_event_set_output(struct perf_event *event,
6251 				 struct perf_event *output_event);
6252 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6253 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6254 			  struct perf_event_attr *attr);
6255 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6256 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6257 {
6258 	void (*func)(struct perf_event *);
6259 	u32 flags = arg;
6260 
6261 	switch (cmd) {
6262 	case PERF_EVENT_IOC_ENABLE:
6263 		func = _perf_event_enable;
6264 		break;
6265 	case PERF_EVENT_IOC_DISABLE:
6266 		func = _perf_event_disable;
6267 		break;
6268 	case PERF_EVENT_IOC_RESET:
6269 		func = _perf_event_reset;
6270 		break;
6271 
6272 	case PERF_EVENT_IOC_REFRESH:
6273 		return _perf_event_refresh(event, arg);
6274 
6275 	case PERF_EVENT_IOC_PERIOD:
6276 	{
6277 		u64 value;
6278 
6279 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6280 			return -EFAULT;
6281 
6282 		return _perf_event_period(event, value);
6283 	}
6284 	case PERF_EVENT_IOC_ID:
6285 	{
6286 		u64 id = primary_event_id(event);
6287 
6288 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6289 			return -EFAULT;
6290 		return 0;
6291 	}
6292 
6293 	case PERF_EVENT_IOC_SET_OUTPUT:
6294 	{
6295 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6296 		struct perf_event *output_event = NULL;
6297 		if (arg != -1) {
6298 			if (!is_perf_file(output))
6299 				return -EBADF;
6300 			output_event = fd_file(output)->private_data;
6301 		}
6302 		return perf_event_set_output(event, output_event);
6303 	}
6304 
6305 	case PERF_EVENT_IOC_SET_FILTER:
6306 		return perf_event_set_filter(event, (void __user *)arg);
6307 
6308 	case PERF_EVENT_IOC_SET_BPF:
6309 	{
6310 		struct bpf_prog *prog;
6311 		int err;
6312 
6313 		prog = bpf_prog_get(arg);
6314 		if (IS_ERR(prog))
6315 			return PTR_ERR(prog);
6316 
6317 		err = perf_event_set_bpf_prog(event, prog, 0);
6318 		if (err) {
6319 			bpf_prog_put(prog);
6320 			return err;
6321 		}
6322 
6323 		return 0;
6324 	}
6325 
6326 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6327 		struct perf_buffer *rb;
6328 
6329 		rcu_read_lock();
6330 		rb = rcu_dereference(event->rb);
6331 		if (!rb || !rb->nr_pages) {
6332 			rcu_read_unlock();
6333 			return -EINVAL;
6334 		}
6335 		rb_toggle_paused(rb, !!arg);
6336 		rcu_read_unlock();
6337 		return 0;
6338 	}
6339 
6340 	case PERF_EVENT_IOC_QUERY_BPF:
6341 		return perf_event_query_prog_array(event, (void __user *)arg);
6342 
6343 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6344 		struct perf_event_attr new_attr;
6345 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6346 					 &new_attr);
6347 
6348 		if (err)
6349 			return err;
6350 
6351 		return perf_event_modify_attr(event,  &new_attr);
6352 	}
6353 	default:
6354 		return -ENOTTY;
6355 	}
6356 
6357 	if (flags & PERF_IOC_FLAG_GROUP)
6358 		perf_event_for_each(event, func);
6359 	else
6360 		perf_event_for_each_child(event, func);
6361 
6362 	return 0;
6363 }
6364 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6365 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6366 {
6367 	struct perf_event *event = file->private_data;
6368 	struct perf_event_context *ctx;
6369 	long ret;
6370 
6371 	/* Treat ioctl like writes as it is likely a mutating operation. */
6372 	ret = security_perf_event_write(event);
6373 	if (ret)
6374 		return ret;
6375 
6376 	ctx = perf_event_ctx_lock(event);
6377 	ret = _perf_ioctl(event, cmd, arg);
6378 	perf_event_ctx_unlock(event, ctx);
6379 
6380 	return ret;
6381 }
6382 
6383 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6384 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6385 				unsigned long arg)
6386 {
6387 	switch (_IOC_NR(cmd)) {
6388 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6389 	case _IOC_NR(PERF_EVENT_IOC_ID):
6390 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6391 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6392 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6393 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6394 			cmd &= ~IOCSIZE_MASK;
6395 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6396 		}
6397 		break;
6398 	}
6399 	return perf_ioctl(file, cmd, arg);
6400 }
6401 #else
6402 # define perf_compat_ioctl NULL
6403 #endif
6404 
perf_event_task_enable(void)6405 int perf_event_task_enable(void)
6406 {
6407 	struct perf_event_context *ctx;
6408 	struct perf_event *event;
6409 
6410 	mutex_lock(&current->perf_event_mutex);
6411 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6412 		ctx = perf_event_ctx_lock(event);
6413 		perf_event_for_each_child(event, _perf_event_enable);
6414 		perf_event_ctx_unlock(event, ctx);
6415 	}
6416 	mutex_unlock(&current->perf_event_mutex);
6417 
6418 	return 0;
6419 }
6420 
perf_event_task_disable(void)6421 int perf_event_task_disable(void)
6422 {
6423 	struct perf_event_context *ctx;
6424 	struct perf_event *event;
6425 
6426 	mutex_lock(&current->perf_event_mutex);
6427 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6428 		ctx = perf_event_ctx_lock(event);
6429 		perf_event_for_each_child(event, _perf_event_disable);
6430 		perf_event_ctx_unlock(event, ctx);
6431 	}
6432 	mutex_unlock(&current->perf_event_mutex);
6433 
6434 	return 0;
6435 }
6436 
perf_event_index(struct perf_event * event)6437 static int perf_event_index(struct perf_event *event)
6438 {
6439 	if (event->hw.state & PERF_HES_STOPPED)
6440 		return 0;
6441 
6442 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6443 		return 0;
6444 
6445 	return event->pmu->event_idx(event);
6446 }
6447 
perf_event_init_userpage(struct perf_event * event)6448 static void perf_event_init_userpage(struct perf_event *event)
6449 {
6450 	struct perf_event_mmap_page *userpg;
6451 	struct perf_buffer *rb;
6452 
6453 	rcu_read_lock();
6454 	rb = rcu_dereference(event->rb);
6455 	if (!rb)
6456 		goto unlock;
6457 
6458 	userpg = rb->user_page;
6459 
6460 	/* Allow new userspace to detect that bit 0 is deprecated */
6461 	userpg->cap_bit0_is_deprecated = 1;
6462 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6463 	userpg->data_offset = PAGE_SIZE;
6464 	userpg->data_size = perf_data_size(rb);
6465 
6466 unlock:
6467 	rcu_read_unlock();
6468 }
6469 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6470 void __weak arch_perf_update_userpage(
6471 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6472 {
6473 }
6474 
6475 /*
6476  * Callers need to ensure there can be no nesting of this function, otherwise
6477  * the seqlock logic goes bad. We can not serialize this because the arch
6478  * code calls this from NMI context.
6479  */
perf_event_update_userpage(struct perf_event * event)6480 void perf_event_update_userpage(struct perf_event *event)
6481 {
6482 	struct perf_event_mmap_page *userpg;
6483 	struct perf_buffer *rb;
6484 	u64 enabled, running, now;
6485 
6486 	rcu_read_lock();
6487 	rb = rcu_dereference(event->rb);
6488 	if (!rb)
6489 		goto unlock;
6490 
6491 	/*
6492 	 * compute total_time_enabled, total_time_running
6493 	 * based on snapshot values taken when the event
6494 	 * was last scheduled in.
6495 	 *
6496 	 * we cannot simply called update_context_time()
6497 	 * because of locking issue as we can be called in
6498 	 * NMI context
6499 	 */
6500 	calc_timer_values(event, &now, &enabled, &running);
6501 
6502 	userpg = rb->user_page;
6503 	/*
6504 	 * Disable preemption to guarantee consistent time stamps are stored to
6505 	 * the user page.
6506 	 */
6507 	preempt_disable();
6508 	++userpg->lock;
6509 	barrier();
6510 	userpg->index = perf_event_index(event);
6511 	userpg->offset = perf_event_count(event, false);
6512 	if (userpg->index)
6513 		userpg->offset -= local64_read(&event->hw.prev_count);
6514 
6515 	userpg->time_enabled = enabled +
6516 			atomic64_read(&event->child_total_time_enabled);
6517 
6518 	userpg->time_running = running +
6519 			atomic64_read(&event->child_total_time_running);
6520 
6521 	arch_perf_update_userpage(event, userpg, now);
6522 
6523 	barrier();
6524 	++userpg->lock;
6525 	preempt_enable();
6526 unlock:
6527 	rcu_read_unlock();
6528 }
6529 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6530 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6531 static void ring_buffer_attach(struct perf_event *event,
6532 			       struct perf_buffer *rb)
6533 {
6534 	struct perf_buffer *old_rb = NULL;
6535 	unsigned long flags;
6536 
6537 	WARN_ON_ONCE(event->parent);
6538 
6539 	if (event->rb) {
6540 		/*
6541 		 * Should be impossible, we set this when removing
6542 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6543 		 */
6544 		WARN_ON_ONCE(event->rcu_pending);
6545 
6546 		old_rb = event->rb;
6547 		spin_lock_irqsave(&old_rb->event_lock, flags);
6548 		list_del_rcu(&event->rb_entry);
6549 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6550 
6551 		event->rcu_batches = get_state_synchronize_rcu();
6552 		event->rcu_pending = 1;
6553 	}
6554 
6555 	if (rb) {
6556 		if (event->rcu_pending) {
6557 			cond_synchronize_rcu(event->rcu_batches);
6558 			event->rcu_pending = 0;
6559 		}
6560 
6561 		spin_lock_irqsave(&rb->event_lock, flags);
6562 		list_add_rcu(&event->rb_entry, &rb->event_list);
6563 		spin_unlock_irqrestore(&rb->event_lock, flags);
6564 	}
6565 
6566 	/*
6567 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6568 	 * before swizzling the event::rb pointer; if it's getting
6569 	 * unmapped, its aux_mmap_count will be 0 and it won't
6570 	 * restart. See the comment in __perf_pmu_output_stop().
6571 	 *
6572 	 * Data will inevitably be lost when set_output is done in
6573 	 * mid-air, but then again, whoever does it like this is
6574 	 * not in for the data anyway.
6575 	 */
6576 	if (has_aux(event))
6577 		perf_event_stop(event, 0);
6578 
6579 	rcu_assign_pointer(event->rb, rb);
6580 
6581 	if (old_rb) {
6582 		ring_buffer_put(old_rb);
6583 		/*
6584 		 * Since we detached before setting the new rb, so that we
6585 		 * could attach the new rb, we could have missed a wakeup.
6586 		 * Provide it now.
6587 		 */
6588 		wake_up_all(&event->waitq);
6589 	}
6590 }
6591 
ring_buffer_wakeup(struct perf_event * event)6592 static void ring_buffer_wakeup(struct perf_event *event)
6593 {
6594 	struct perf_buffer *rb;
6595 
6596 	if (event->parent)
6597 		event = event->parent;
6598 
6599 	rcu_read_lock();
6600 	rb = rcu_dereference(event->rb);
6601 	if (rb) {
6602 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6603 			wake_up_all(&event->waitq);
6604 	}
6605 	rcu_read_unlock();
6606 }
6607 
ring_buffer_get(struct perf_event * event)6608 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6609 {
6610 	struct perf_buffer *rb;
6611 
6612 	if (event->parent)
6613 		event = event->parent;
6614 
6615 	rcu_read_lock();
6616 	rb = rcu_dereference(event->rb);
6617 	if (rb) {
6618 		if (!refcount_inc_not_zero(&rb->refcount))
6619 			rb = NULL;
6620 	}
6621 	rcu_read_unlock();
6622 
6623 	return rb;
6624 }
6625 
ring_buffer_put(struct perf_buffer * rb)6626 void ring_buffer_put(struct perf_buffer *rb)
6627 {
6628 	if (!refcount_dec_and_test(&rb->refcount))
6629 		return;
6630 
6631 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6632 
6633 	call_rcu(&rb->rcu_head, rb_free_rcu);
6634 }
6635 
perf_mmap_open(struct vm_area_struct * vma)6636 static void perf_mmap_open(struct vm_area_struct *vma)
6637 {
6638 	struct perf_event *event = vma->vm_file->private_data;
6639 
6640 	atomic_inc(&event->mmap_count);
6641 	atomic_inc(&event->rb->mmap_count);
6642 
6643 	if (vma->vm_pgoff)
6644 		atomic_inc(&event->rb->aux_mmap_count);
6645 
6646 	if (event->pmu->event_mapped)
6647 		event->pmu->event_mapped(event, vma->vm_mm);
6648 }
6649 
6650 static void perf_pmu_output_stop(struct perf_event *event);
6651 
6652 /*
6653  * A buffer can be mmap()ed multiple times; either directly through the same
6654  * event, or through other events by use of perf_event_set_output().
6655  *
6656  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6657  * the buffer here, where we still have a VM context. This means we need
6658  * to detach all events redirecting to us.
6659  */
perf_mmap_close(struct vm_area_struct * vma)6660 static void perf_mmap_close(struct vm_area_struct *vma)
6661 {
6662 	struct perf_event *event = vma->vm_file->private_data;
6663 	struct perf_buffer *rb = ring_buffer_get(event);
6664 	struct user_struct *mmap_user = rb->mmap_user;
6665 	int mmap_locked = rb->mmap_locked;
6666 	unsigned long size = perf_data_size(rb);
6667 	bool detach_rest = false;
6668 
6669 	if (event->pmu->event_unmapped)
6670 		event->pmu->event_unmapped(event, vma->vm_mm);
6671 
6672 	/*
6673 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6674 	 * to avoid complications.
6675 	 */
6676 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6677 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6678 		/*
6679 		 * Stop all AUX events that are writing to this buffer,
6680 		 * so that we can free its AUX pages and corresponding PMU
6681 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6682 		 * they won't start any more (see perf_aux_output_begin()).
6683 		 */
6684 		perf_pmu_output_stop(event);
6685 
6686 		/* now it's safe to free the pages */
6687 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6688 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6689 
6690 		/* this has to be the last one */
6691 		rb_free_aux(rb);
6692 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6693 
6694 		mutex_unlock(&rb->aux_mutex);
6695 	}
6696 
6697 	if (atomic_dec_and_test(&rb->mmap_count))
6698 		detach_rest = true;
6699 
6700 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6701 		goto out_put;
6702 
6703 	ring_buffer_attach(event, NULL);
6704 	mutex_unlock(&event->mmap_mutex);
6705 
6706 	/* If there's still other mmap()s of this buffer, we're done. */
6707 	if (!detach_rest)
6708 		goto out_put;
6709 
6710 	/*
6711 	 * No other mmap()s, detach from all other events that might redirect
6712 	 * into the now unreachable buffer. Somewhat complicated by the
6713 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6714 	 */
6715 again:
6716 	rcu_read_lock();
6717 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6718 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6719 			/*
6720 			 * This event is en-route to free_event() which will
6721 			 * detach it and remove it from the list.
6722 			 */
6723 			continue;
6724 		}
6725 		rcu_read_unlock();
6726 
6727 		mutex_lock(&event->mmap_mutex);
6728 		/*
6729 		 * Check we didn't race with perf_event_set_output() which can
6730 		 * swizzle the rb from under us while we were waiting to
6731 		 * acquire mmap_mutex.
6732 		 *
6733 		 * If we find a different rb; ignore this event, a next
6734 		 * iteration will no longer find it on the list. We have to
6735 		 * still restart the iteration to make sure we're not now
6736 		 * iterating the wrong list.
6737 		 */
6738 		if (event->rb == rb)
6739 			ring_buffer_attach(event, NULL);
6740 
6741 		mutex_unlock(&event->mmap_mutex);
6742 		put_event(event);
6743 
6744 		/*
6745 		 * Restart the iteration; either we're on the wrong list or
6746 		 * destroyed its integrity by doing a deletion.
6747 		 */
6748 		goto again;
6749 	}
6750 	rcu_read_unlock();
6751 
6752 	/*
6753 	 * It could be there's still a few 0-ref events on the list; they'll
6754 	 * get cleaned up by free_event() -- they'll also still have their
6755 	 * ref on the rb and will free it whenever they are done with it.
6756 	 *
6757 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6758 	 * undo the VM accounting.
6759 	 */
6760 
6761 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6762 			&mmap_user->locked_vm);
6763 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6764 	free_uid(mmap_user);
6765 
6766 out_put:
6767 	ring_buffer_put(rb); /* could be last */
6768 }
6769 
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6770 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6771 {
6772 	/* The first page is the user control page, others are read-only. */
6773 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6774 }
6775 
6776 static const struct vm_operations_struct perf_mmap_vmops = {
6777 	.open		= perf_mmap_open,
6778 	.close		= perf_mmap_close, /* non mergeable */
6779 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6780 };
6781 
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6782 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6783 {
6784 	unsigned long nr_pages = vma_pages(vma);
6785 	int err = 0;
6786 	unsigned long pagenum;
6787 
6788 	/*
6789 	 * We map this as a VM_PFNMAP VMA.
6790 	 *
6791 	 * This is not ideal as this is designed broadly for mappings of PFNs
6792 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6793 	 * !pfn_valid(pfn).
6794 	 *
6795 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6796 	 * which would more ideally be mapped using vm_insert_page() or a
6797 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6798 	 *
6799 	 * However this won't work here, because:
6800 	 *
6801 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6802 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6803 	 *    indicate that this should be mapped CoW in order that the
6804 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6805 	 *    rest R/O as desired.
6806 	 *
6807 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6808 	 *    vm_normal_page() returning a struct page * pointer, which means
6809 	 *    vm_ops->page_mkwrite() will be invoked rather than
6810 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6811 	 *    to work around retry logic in the fault handler, however this
6812 	 *    field is no longer allowed to be used within struct page.
6813 	 *
6814 	 * 3. Having a struct page * made available in the fault logic also
6815 	 *    means that the page gets put on the rmap and becomes
6816 	 *    inappropriately accessible and subject to map and ref counting.
6817 	 *
6818 	 * Ideally we would have a mechanism that could explicitly express our
6819 	 * desires, but this is not currently the case, so we instead use
6820 	 * VM_PFNMAP.
6821 	 *
6822 	 * We manage the lifetime of these mappings with internal refcounts (see
6823 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6824 	 * this mapping is maintained correctly.
6825 	 */
6826 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6827 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6828 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6829 
6830 		if (page == NULL) {
6831 			err = -EINVAL;
6832 			break;
6833 		}
6834 
6835 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6836 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6837 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6838 		if (err)
6839 			break;
6840 	}
6841 
6842 #ifdef CONFIG_MMU
6843 	/* Clear any partial mappings on error. */
6844 	if (err)
6845 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6846 #endif
6847 
6848 	return err;
6849 }
6850 
perf_mmap(struct file * file,struct vm_area_struct * vma)6851 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6852 {
6853 	struct perf_event *event = file->private_data;
6854 	unsigned long user_locked, user_lock_limit;
6855 	struct user_struct *user = current_user();
6856 	struct mutex *aux_mutex = NULL;
6857 	struct perf_buffer *rb = NULL;
6858 	unsigned long locked, lock_limit;
6859 	unsigned long vma_size;
6860 	unsigned long nr_pages;
6861 	long user_extra = 0, extra = 0;
6862 	int ret, flags = 0;
6863 
6864 	/*
6865 	 * Don't allow mmap() of inherited per-task counters. This would
6866 	 * create a performance issue due to all children writing to the
6867 	 * same rb.
6868 	 */
6869 	if (event->cpu == -1 && event->attr.inherit)
6870 		return -EINVAL;
6871 
6872 	if (!(vma->vm_flags & VM_SHARED))
6873 		return -EINVAL;
6874 
6875 	ret = security_perf_event_read(event);
6876 	if (ret)
6877 		return ret;
6878 
6879 	vma_size = vma->vm_end - vma->vm_start;
6880 	nr_pages = vma_size / PAGE_SIZE;
6881 
6882 	if (nr_pages > INT_MAX)
6883 		return -ENOMEM;
6884 
6885 	if (vma_size != PAGE_SIZE * nr_pages)
6886 		return -EINVAL;
6887 
6888 	user_extra = nr_pages;
6889 
6890 	mutex_lock(&event->mmap_mutex);
6891 	ret = -EINVAL;
6892 
6893 	if (vma->vm_pgoff == 0) {
6894 		nr_pages -= 1;
6895 
6896 		/*
6897 		 * If we have rb pages ensure they're a power-of-two number, so we
6898 		 * can do bitmasks instead of modulo.
6899 		 */
6900 		if (nr_pages != 0 && !is_power_of_2(nr_pages))
6901 			goto unlock;
6902 
6903 		WARN_ON_ONCE(event->ctx->parent_ctx);
6904 
6905 		if (event->rb) {
6906 			if (data_page_nr(event->rb) != nr_pages)
6907 				goto unlock;
6908 
6909 			if (atomic_inc_not_zero(&event->rb->mmap_count)) {
6910 				/*
6911 				 * Success -- managed to mmap() the same buffer
6912 				 * multiple times.
6913 				 */
6914 				ret = 0;
6915 				/* We need the rb to map pages. */
6916 				rb = event->rb;
6917 				goto unlock;
6918 			}
6919 
6920 			/*
6921 			 * Raced against perf_mmap_close()'s
6922 			 * atomic_dec_and_mutex_lock() remove the
6923 			 * event and continue as if !event->rb
6924 			 */
6925 			ring_buffer_attach(event, NULL);
6926 		}
6927 
6928 	} else {
6929 		/*
6930 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6931 		 * mapped, all subsequent mappings should have the same size
6932 		 * and offset. Must be above the normal perf buffer.
6933 		 */
6934 		u64 aux_offset, aux_size;
6935 
6936 		rb = event->rb;
6937 		if (!rb)
6938 			goto aux_unlock;
6939 
6940 		aux_mutex = &rb->aux_mutex;
6941 		mutex_lock(aux_mutex);
6942 
6943 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6944 		aux_size = READ_ONCE(rb->user_page->aux_size);
6945 
6946 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6947 			goto aux_unlock;
6948 
6949 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6950 			goto aux_unlock;
6951 
6952 		/* already mapped with a different offset */
6953 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6954 			goto aux_unlock;
6955 
6956 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6957 			goto aux_unlock;
6958 
6959 		/* already mapped with a different size */
6960 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6961 			goto aux_unlock;
6962 
6963 		if (!is_power_of_2(nr_pages))
6964 			goto aux_unlock;
6965 
6966 		if (!atomic_inc_not_zero(&rb->mmap_count))
6967 			goto aux_unlock;
6968 
6969 		if (rb_has_aux(rb)) {
6970 			atomic_inc(&rb->aux_mmap_count);
6971 			ret = 0;
6972 			goto unlock;
6973 		}
6974 
6975 		atomic_set(&rb->aux_mmap_count, 1);
6976 	}
6977 
6978 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6979 
6980 	/*
6981 	 * Increase the limit linearly with more CPUs:
6982 	 */
6983 	user_lock_limit *= num_online_cpus();
6984 
6985 	user_locked = atomic_long_read(&user->locked_vm);
6986 
6987 	/*
6988 	 * sysctl_perf_event_mlock may have changed, so that
6989 	 *     user->locked_vm > user_lock_limit
6990 	 */
6991 	if (user_locked > user_lock_limit)
6992 		user_locked = user_lock_limit;
6993 	user_locked += user_extra;
6994 
6995 	if (user_locked > user_lock_limit) {
6996 		/*
6997 		 * charge locked_vm until it hits user_lock_limit;
6998 		 * charge the rest from pinned_vm
6999 		 */
7000 		extra = user_locked - user_lock_limit;
7001 		user_extra -= extra;
7002 	}
7003 
7004 	lock_limit = rlimit(RLIMIT_MEMLOCK);
7005 	lock_limit >>= PAGE_SHIFT;
7006 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7007 
7008 	if ((locked > lock_limit) && perf_is_paranoid() &&
7009 		!capable(CAP_IPC_LOCK)) {
7010 		ret = -EPERM;
7011 		goto unlock;
7012 	}
7013 
7014 	WARN_ON(!rb && event->rb);
7015 
7016 	if (vma->vm_flags & VM_WRITE)
7017 		flags |= RING_BUFFER_WRITABLE;
7018 
7019 	if (!rb) {
7020 		rb = rb_alloc(nr_pages,
7021 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7022 			      event->cpu, flags);
7023 
7024 		if (!rb) {
7025 			ret = -ENOMEM;
7026 			goto unlock;
7027 		}
7028 
7029 		atomic_set(&rb->mmap_count, 1);
7030 		rb->mmap_user = get_current_user();
7031 		rb->mmap_locked = extra;
7032 
7033 		ring_buffer_attach(event, rb);
7034 
7035 		perf_event_update_time(event);
7036 		perf_event_init_userpage(event);
7037 		perf_event_update_userpage(event);
7038 	} else {
7039 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7040 				   event->attr.aux_watermark, flags);
7041 		if (!ret)
7042 			rb->aux_mmap_locked = extra;
7043 	}
7044 
7045 	ret = 0;
7046 
7047 unlock:
7048 	if (!ret) {
7049 		atomic_long_add(user_extra, &user->locked_vm);
7050 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
7051 
7052 		atomic_inc(&event->mmap_count);
7053 	} else if (rb) {
7054 		atomic_dec(&rb->mmap_count);
7055 	}
7056 aux_unlock:
7057 	if (aux_mutex)
7058 		mutex_unlock(aux_mutex);
7059 	mutex_unlock(&event->mmap_mutex);
7060 
7061 	/*
7062 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7063 	 * vma.
7064 	 */
7065 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7066 	vma->vm_ops = &perf_mmap_vmops;
7067 
7068 	if (!ret)
7069 		ret = map_range(rb, vma);
7070 
7071 	if (!ret && event->pmu->event_mapped)
7072 		event->pmu->event_mapped(event, vma->vm_mm);
7073 
7074 	return ret;
7075 }
7076 
perf_fasync(int fd,struct file * filp,int on)7077 static int perf_fasync(int fd, struct file *filp, int on)
7078 {
7079 	struct inode *inode = file_inode(filp);
7080 	struct perf_event *event = filp->private_data;
7081 	int retval;
7082 
7083 	inode_lock(inode);
7084 	retval = fasync_helper(fd, filp, on, &event->fasync);
7085 	inode_unlock(inode);
7086 
7087 	if (retval < 0)
7088 		return retval;
7089 
7090 	return 0;
7091 }
7092 
7093 static const struct file_operations perf_fops = {
7094 	.release		= perf_release,
7095 	.read			= perf_read,
7096 	.poll			= perf_poll,
7097 	.unlocked_ioctl		= perf_ioctl,
7098 	.compat_ioctl		= perf_compat_ioctl,
7099 	.mmap			= perf_mmap,
7100 	.fasync			= perf_fasync,
7101 };
7102 
7103 /*
7104  * Perf event wakeup
7105  *
7106  * If there's data, ensure we set the poll() state and publish everything
7107  * to user-space before waking everybody up.
7108  */
7109 
perf_event_wakeup(struct perf_event * event)7110 void perf_event_wakeup(struct perf_event *event)
7111 {
7112 	ring_buffer_wakeup(event);
7113 
7114 	if (event->pending_kill) {
7115 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7116 		event->pending_kill = 0;
7117 	}
7118 }
7119 
perf_sigtrap(struct perf_event * event)7120 static void perf_sigtrap(struct perf_event *event)
7121 {
7122 	/*
7123 	 * We'd expect this to only occur if the irq_work is delayed and either
7124 	 * ctx->task or current has changed in the meantime. This can be the
7125 	 * case on architectures that do not implement arch_irq_work_raise().
7126 	 */
7127 	if (WARN_ON_ONCE(event->ctx->task != current))
7128 		return;
7129 
7130 	/*
7131 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7132 	 * task exiting.
7133 	 */
7134 	if (current->flags & PF_EXITING)
7135 		return;
7136 
7137 	send_sig_perf((void __user *)event->pending_addr,
7138 		      event->orig_type, event->attr.sig_data);
7139 }
7140 
7141 /*
7142  * Deliver the pending work in-event-context or follow the context.
7143  */
__perf_pending_disable(struct perf_event * event)7144 static void __perf_pending_disable(struct perf_event *event)
7145 {
7146 	int cpu = READ_ONCE(event->oncpu);
7147 
7148 	/*
7149 	 * If the event isn't running; we done. event_sched_out() will have
7150 	 * taken care of things.
7151 	 */
7152 	if (cpu < 0)
7153 		return;
7154 
7155 	/*
7156 	 * Yay, we hit home and are in the context of the event.
7157 	 */
7158 	if (cpu == smp_processor_id()) {
7159 		if (event->pending_disable) {
7160 			event->pending_disable = 0;
7161 			perf_event_disable_local(event);
7162 		}
7163 		return;
7164 	}
7165 
7166 	/*
7167 	 *  CPU-A			CPU-B
7168 	 *
7169 	 *  perf_event_disable_inatomic()
7170 	 *    @pending_disable = CPU-A;
7171 	 *    irq_work_queue();
7172 	 *
7173 	 *  sched-out
7174 	 *    @pending_disable = -1;
7175 	 *
7176 	 *				sched-in
7177 	 *				perf_event_disable_inatomic()
7178 	 *				  @pending_disable = CPU-B;
7179 	 *				  irq_work_queue(); // FAILS
7180 	 *
7181 	 *  irq_work_run()
7182 	 *    perf_pending_disable()
7183 	 *
7184 	 * But the event runs on CPU-B and wants disabling there.
7185 	 */
7186 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7187 }
7188 
perf_pending_disable(struct irq_work * entry)7189 static void perf_pending_disable(struct irq_work *entry)
7190 {
7191 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7192 	int rctx;
7193 
7194 	/*
7195 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7196 	 * and we won't recurse 'further'.
7197 	 */
7198 	rctx = perf_swevent_get_recursion_context();
7199 	__perf_pending_disable(event);
7200 	if (rctx >= 0)
7201 		perf_swevent_put_recursion_context(rctx);
7202 }
7203 
perf_pending_irq(struct irq_work * entry)7204 static void perf_pending_irq(struct irq_work *entry)
7205 {
7206 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7207 	int rctx;
7208 
7209 	/*
7210 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7211 	 * and we won't recurse 'further'.
7212 	 */
7213 	rctx = perf_swevent_get_recursion_context();
7214 
7215 	/*
7216 	 * The wakeup isn't bound to the context of the event -- it can happen
7217 	 * irrespective of where the event is.
7218 	 */
7219 	if (event->pending_wakeup) {
7220 		event->pending_wakeup = 0;
7221 		perf_event_wakeup(event);
7222 	}
7223 
7224 	if (rctx >= 0)
7225 		perf_swevent_put_recursion_context(rctx);
7226 }
7227 
perf_pending_task(struct callback_head * head)7228 static void perf_pending_task(struct callback_head *head)
7229 {
7230 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7231 	int rctx;
7232 
7233 	/*
7234 	 * All accesses to the event must belong to the same implicit RCU read-side
7235 	 * critical section as the ->pending_work reset. See comment in
7236 	 * perf_pending_task_sync().
7237 	 */
7238 	rcu_read_lock();
7239 	/*
7240 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7241 	 * and we won't recurse 'further'.
7242 	 */
7243 	rctx = perf_swevent_get_recursion_context();
7244 
7245 	if (event->pending_work) {
7246 		event->pending_work = 0;
7247 		perf_sigtrap(event);
7248 		local_dec(&event->ctx->nr_no_switch_fast);
7249 		rcuwait_wake_up(&event->pending_work_wait);
7250 	}
7251 	rcu_read_unlock();
7252 
7253 	if (rctx >= 0)
7254 		perf_swevent_put_recursion_context(rctx);
7255 }
7256 
7257 #ifdef CONFIG_GUEST_PERF_EVENTS
7258 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7259 
7260 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7261 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7262 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7263 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7264 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7265 {
7266 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7267 		return;
7268 
7269 	rcu_assign_pointer(perf_guest_cbs, cbs);
7270 	static_call_update(__perf_guest_state, cbs->state);
7271 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7272 
7273 	/* Implementing ->handle_intel_pt_intr is optional. */
7274 	if (cbs->handle_intel_pt_intr)
7275 		static_call_update(__perf_guest_handle_intel_pt_intr,
7276 				   cbs->handle_intel_pt_intr);
7277 }
7278 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7279 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7280 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7281 {
7282 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7283 		return;
7284 
7285 	rcu_assign_pointer(perf_guest_cbs, NULL);
7286 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7287 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7288 	static_call_update(__perf_guest_handle_intel_pt_intr,
7289 			   (void *)&__static_call_return0);
7290 	synchronize_rcu();
7291 }
7292 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7293 #endif
7294 
should_sample_guest(struct perf_event * event)7295 static bool should_sample_guest(struct perf_event *event)
7296 {
7297 	return !event->attr.exclude_guest && perf_guest_state();
7298 }
7299 
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7300 unsigned long perf_misc_flags(struct perf_event *event,
7301 			      struct pt_regs *regs)
7302 {
7303 	if (should_sample_guest(event))
7304 		return perf_arch_guest_misc_flags(regs);
7305 
7306 	return perf_arch_misc_flags(regs);
7307 }
7308 
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7309 unsigned long perf_instruction_pointer(struct perf_event *event,
7310 				       struct pt_regs *regs)
7311 {
7312 	if (should_sample_guest(event))
7313 		return perf_guest_get_ip();
7314 
7315 	return perf_arch_instruction_pointer(regs);
7316 }
7317 
7318 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7319 perf_output_sample_regs(struct perf_output_handle *handle,
7320 			struct pt_regs *regs, u64 mask)
7321 {
7322 	int bit;
7323 	DECLARE_BITMAP(_mask, 64);
7324 
7325 	bitmap_from_u64(_mask, mask);
7326 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7327 		u64 val;
7328 
7329 		val = perf_reg_value(regs, bit);
7330 		perf_output_put(handle, val);
7331 	}
7332 }
7333 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7334 static void perf_sample_regs_user(struct perf_regs *regs_user,
7335 				  struct pt_regs *regs)
7336 {
7337 	if (user_mode(regs)) {
7338 		regs_user->abi = perf_reg_abi(current);
7339 		regs_user->regs = regs;
7340 	} else if (!(current->flags & PF_KTHREAD)) {
7341 		perf_get_regs_user(regs_user, regs);
7342 	} else {
7343 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7344 		regs_user->regs = NULL;
7345 	}
7346 }
7347 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7348 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7349 				  struct pt_regs *regs)
7350 {
7351 	regs_intr->regs = regs;
7352 	regs_intr->abi  = perf_reg_abi(current);
7353 }
7354 
7355 
7356 /*
7357  * Get remaining task size from user stack pointer.
7358  *
7359  * It'd be better to take stack vma map and limit this more
7360  * precisely, but there's no way to get it safely under interrupt,
7361  * so using TASK_SIZE as limit.
7362  */
perf_ustack_task_size(struct pt_regs * regs)7363 static u64 perf_ustack_task_size(struct pt_regs *regs)
7364 {
7365 	unsigned long addr = perf_user_stack_pointer(regs);
7366 
7367 	if (!addr || addr >= TASK_SIZE)
7368 		return 0;
7369 
7370 	return TASK_SIZE - addr;
7371 }
7372 
7373 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7374 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7375 			struct pt_regs *regs)
7376 {
7377 	u64 task_size;
7378 
7379 	/* No regs, no stack pointer, no dump. */
7380 	if (!regs)
7381 		return 0;
7382 
7383 	/*
7384 	 * Check if we fit in with the requested stack size into the:
7385 	 * - TASK_SIZE
7386 	 *   If we don't, we limit the size to the TASK_SIZE.
7387 	 *
7388 	 * - remaining sample size
7389 	 *   If we don't, we customize the stack size to
7390 	 *   fit in to the remaining sample size.
7391 	 */
7392 
7393 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7394 	stack_size = min(stack_size, (u16) task_size);
7395 
7396 	/* Current header size plus static size and dynamic size. */
7397 	header_size += 2 * sizeof(u64);
7398 
7399 	/* Do we fit in with the current stack dump size? */
7400 	if ((u16) (header_size + stack_size) < header_size) {
7401 		/*
7402 		 * If we overflow the maximum size for the sample,
7403 		 * we customize the stack dump size to fit in.
7404 		 */
7405 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7406 		stack_size = round_up(stack_size, sizeof(u64));
7407 	}
7408 
7409 	return stack_size;
7410 }
7411 
7412 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7413 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7414 			  struct pt_regs *regs)
7415 {
7416 	/* Case of a kernel thread, nothing to dump */
7417 	if (!regs) {
7418 		u64 size = 0;
7419 		perf_output_put(handle, size);
7420 	} else {
7421 		unsigned long sp;
7422 		unsigned int rem;
7423 		u64 dyn_size;
7424 
7425 		/*
7426 		 * We dump:
7427 		 * static size
7428 		 *   - the size requested by user or the best one we can fit
7429 		 *     in to the sample max size
7430 		 * data
7431 		 *   - user stack dump data
7432 		 * dynamic size
7433 		 *   - the actual dumped size
7434 		 */
7435 
7436 		/* Static size. */
7437 		perf_output_put(handle, dump_size);
7438 
7439 		/* Data. */
7440 		sp = perf_user_stack_pointer(regs);
7441 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7442 		dyn_size = dump_size - rem;
7443 
7444 		perf_output_skip(handle, rem);
7445 
7446 		/* Dynamic size. */
7447 		perf_output_put(handle, dyn_size);
7448 	}
7449 }
7450 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7451 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7452 					  struct perf_sample_data *data,
7453 					  size_t size)
7454 {
7455 	struct perf_event *sampler = event->aux_event;
7456 	struct perf_buffer *rb;
7457 
7458 	data->aux_size = 0;
7459 
7460 	if (!sampler)
7461 		goto out;
7462 
7463 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7464 		goto out;
7465 
7466 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7467 		goto out;
7468 
7469 	rb = ring_buffer_get(sampler);
7470 	if (!rb)
7471 		goto out;
7472 
7473 	/*
7474 	 * If this is an NMI hit inside sampling code, don't take
7475 	 * the sample. See also perf_aux_sample_output().
7476 	 */
7477 	if (READ_ONCE(rb->aux_in_sampling)) {
7478 		data->aux_size = 0;
7479 	} else {
7480 		size = min_t(size_t, size, perf_aux_size(rb));
7481 		data->aux_size = ALIGN(size, sizeof(u64));
7482 	}
7483 	ring_buffer_put(rb);
7484 
7485 out:
7486 	return data->aux_size;
7487 }
7488 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7489 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7490                                  struct perf_event *event,
7491                                  struct perf_output_handle *handle,
7492                                  unsigned long size)
7493 {
7494 	unsigned long flags;
7495 	long ret;
7496 
7497 	/*
7498 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7499 	 * paths. If we start calling them in NMI context, they may race with
7500 	 * the IRQ ones, that is, for example, re-starting an event that's just
7501 	 * been stopped, which is why we're using a separate callback that
7502 	 * doesn't change the event state.
7503 	 *
7504 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7505 	 */
7506 	local_irq_save(flags);
7507 	/*
7508 	 * Guard against NMI hits inside the critical section;
7509 	 * see also perf_prepare_sample_aux().
7510 	 */
7511 	WRITE_ONCE(rb->aux_in_sampling, 1);
7512 	barrier();
7513 
7514 	ret = event->pmu->snapshot_aux(event, handle, size);
7515 
7516 	barrier();
7517 	WRITE_ONCE(rb->aux_in_sampling, 0);
7518 	local_irq_restore(flags);
7519 
7520 	return ret;
7521 }
7522 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7523 static void perf_aux_sample_output(struct perf_event *event,
7524 				   struct perf_output_handle *handle,
7525 				   struct perf_sample_data *data)
7526 {
7527 	struct perf_event *sampler = event->aux_event;
7528 	struct perf_buffer *rb;
7529 	unsigned long pad;
7530 	long size;
7531 
7532 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7533 		return;
7534 
7535 	rb = ring_buffer_get(sampler);
7536 	if (!rb)
7537 		return;
7538 
7539 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7540 
7541 	/*
7542 	 * An error here means that perf_output_copy() failed (returned a
7543 	 * non-zero surplus that it didn't copy), which in its current
7544 	 * enlightened implementation is not possible. If that changes, we'd
7545 	 * like to know.
7546 	 */
7547 	if (WARN_ON_ONCE(size < 0))
7548 		goto out_put;
7549 
7550 	/*
7551 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7552 	 * perf_prepare_sample_aux(), so should not be more than that.
7553 	 */
7554 	pad = data->aux_size - size;
7555 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7556 		pad = 8;
7557 
7558 	if (pad) {
7559 		u64 zero = 0;
7560 		perf_output_copy(handle, &zero, pad);
7561 	}
7562 
7563 out_put:
7564 	ring_buffer_put(rb);
7565 }
7566 
7567 /*
7568  * A set of common sample data types saved even for non-sample records
7569  * when event->attr.sample_id_all is set.
7570  */
7571 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7572 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7573 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7574 
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7575 static void __perf_event_header__init_id(struct perf_sample_data *data,
7576 					 struct perf_event *event,
7577 					 u64 sample_type)
7578 {
7579 	data->type = event->attr.sample_type;
7580 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7581 
7582 	if (sample_type & PERF_SAMPLE_TID) {
7583 		/* namespace issues */
7584 		data->tid_entry.pid = perf_event_pid(event, current);
7585 		data->tid_entry.tid = perf_event_tid(event, current);
7586 	}
7587 
7588 	if (sample_type & PERF_SAMPLE_TIME)
7589 		data->time = perf_event_clock(event);
7590 
7591 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7592 		data->id = primary_event_id(event);
7593 
7594 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7595 		data->stream_id = event->id;
7596 
7597 	if (sample_type & PERF_SAMPLE_CPU) {
7598 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7599 		data->cpu_entry.reserved = 0;
7600 	}
7601 }
7602 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7603 void perf_event_header__init_id(struct perf_event_header *header,
7604 				struct perf_sample_data *data,
7605 				struct perf_event *event)
7606 {
7607 	if (event->attr.sample_id_all) {
7608 		header->size += event->id_header_size;
7609 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7610 	}
7611 }
7612 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7613 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7614 					   struct perf_sample_data *data)
7615 {
7616 	u64 sample_type = data->type;
7617 
7618 	if (sample_type & PERF_SAMPLE_TID)
7619 		perf_output_put(handle, data->tid_entry);
7620 
7621 	if (sample_type & PERF_SAMPLE_TIME)
7622 		perf_output_put(handle, data->time);
7623 
7624 	if (sample_type & PERF_SAMPLE_ID)
7625 		perf_output_put(handle, data->id);
7626 
7627 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7628 		perf_output_put(handle, data->stream_id);
7629 
7630 	if (sample_type & PERF_SAMPLE_CPU)
7631 		perf_output_put(handle, data->cpu_entry);
7632 
7633 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7634 		perf_output_put(handle, data->id);
7635 }
7636 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7637 void perf_event__output_id_sample(struct perf_event *event,
7638 				  struct perf_output_handle *handle,
7639 				  struct perf_sample_data *sample)
7640 {
7641 	if (event->attr.sample_id_all)
7642 		__perf_event__output_id_sample(handle, sample);
7643 }
7644 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7645 static void perf_output_read_one(struct perf_output_handle *handle,
7646 				 struct perf_event *event,
7647 				 u64 enabled, u64 running)
7648 {
7649 	u64 read_format = event->attr.read_format;
7650 	u64 values[5];
7651 	int n = 0;
7652 
7653 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7654 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7655 		values[n++] = enabled +
7656 			atomic64_read(&event->child_total_time_enabled);
7657 	}
7658 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7659 		values[n++] = running +
7660 			atomic64_read(&event->child_total_time_running);
7661 	}
7662 	if (read_format & PERF_FORMAT_ID)
7663 		values[n++] = primary_event_id(event);
7664 	if (read_format & PERF_FORMAT_LOST)
7665 		values[n++] = atomic64_read(&event->lost_samples);
7666 
7667 	__output_copy(handle, values, n * sizeof(u64));
7668 }
7669 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7670 static void perf_output_read_group(struct perf_output_handle *handle,
7671 				   struct perf_event *event,
7672 				   u64 enabled, u64 running)
7673 {
7674 	struct perf_event *leader = event->group_leader, *sub;
7675 	u64 read_format = event->attr.read_format;
7676 	unsigned long flags;
7677 	u64 values[6];
7678 	int n = 0;
7679 	bool self = has_inherit_and_sample_read(&event->attr);
7680 
7681 	/*
7682 	 * Disabling interrupts avoids all counter scheduling
7683 	 * (context switches, timer based rotation and IPIs).
7684 	 */
7685 	local_irq_save(flags);
7686 
7687 	values[n++] = 1 + leader->nr_siblings;
7688 
7689 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7690 		values[n++] = enabled;
7691 
7692 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7693 		values[n++] = running;
7694 
7695 	if ((leader != event) && !handle->skip_read)
7696 		perf_pmu_read(leader);
7697 
7698 	values[n++] = perf_event_count(leader, self);
7699 	if (read_format & PERF_FORMAT_ID)
7700 		values[n++] = primary_event_id(leader);
7701 	if (read_format & PERF_FORMAT_LOST)
7702 		values[n++] = atomic64_read(&leader->lost_samples);
7703 
7704 	__output_copy(handle, values, n * sizeof(u64));
7705 
7706 	for_each_sibling_event(sub, leader) {
7707 		n = 0;
7708 
7709 		if ((sub != event) && !handle->skip_read)
7710 			perf_pmu_read(sub);
7711 
7712 		values[n++] = perf_event_count(sub, self);
7713 		if (read_format & PERF_FORMAT_ID)
7714 			values[n++] = primary_event_id(sub);
7715 		if (read_format & PERF_FORMAT_LOST)
7716 			values[n++] = atomic64_read(&sub->lost_samples);
7717 
7718 		__output_copy(handle, values, n * sizeof(u64));
7719 	}
7720 
7721 	local_irq_restore(flags);
7722 }
7723 
7724 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7725 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7726 
7727 /*
7728  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7729  *
7730  * The problem is that its both hard and excessively expensive to iterate the
7731  * child list, not to mention that its impossible to IPI the children running
7732  * on another CPU, from interrupt/NMI context.
7733  *
7734  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7735  * counts rather than attempting to accumulate some value across all children on
7736  * all cores.
7737  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7738 static void perf_output_read(struct perf_output_handle *handle,
7739 			     struct perf_event *event)
7740 {
7741 	u64 enabled = 0, running = 0, now;
7742 	u64 read_format = event->attr.read_format;
7743 
7744 	/*
7745 	 * compute total_time_enabled, total_time_running
7746 	 * based on snapshot values taken when the event
7747 	 * was last scheduled in.
7748 	 *
7749 	 * we cannot simply called update_context_time()
7750 	 * because of locking issue as we are called in
7751 	 * NMI context
7752 	 */
7753 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7754 		calc_timer_values(event, &now, &enabled, &running);
7755 
7756 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7757 		perf_output_read_group(handle, event, enabled, running);
7758 	else
7759 		perf_output_read_one(handle, event, enabled, running);
7760 }
7761 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7762 void perf_output_sample(struct perf_output_handle *handle,
7763 			struct perf_event_header *header,
7764 			struct perf_sample_data *data,
7765 			struct perf_event *event)
7766 {
7767 	u64 sample_type = data->type;
7768 
7769 	if (data->sample_flags & PERF_SAMPLE_READ)
7770 		handle->skip_read = 1;
7771 
7772 	perf_output_put(handle, *header);
7773 
7774 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7775 		perf_output_put(handle, data->id);
7776 
7777 	if (sample_type & PERF_SAMPLE_IP)
7778 		perf_output_put(handle, data->ip);
7779 
7780 	if (sample_type & PERF_SAMPLE_TID)
7781 		perf_output_put(handle, data->tid_entry);
7782 
7783 	if (sample_type & PERF_SAMPLE_TIME)
7784 		perf_output_put(handle, data->time);
7785 
7786 	if (sample_type & PERF_SAMPLE_ADDR)
7787 		perf_output_put(handle, data->addr);
7788 
7789 	if (sample_type & PERF_SAMPLE_ID)
7790 		perf_output_put(handle, data->id);
7791 
7792 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7793 		perf_output_put(handle, data->stream_id);
7794 
7795 	if (sample_type & PERF_SAMPLE_CPU)
7796 		perf_output_put(handle, data->cpu_entry);
7797 
7798 	if (sample_type & PERF_SAMPLE_PERIOD)
7799 		perf_output_put(handle, data->period);
7800 
7801 	if (sample_type & PERF_SAMPLE_READ)
7802 		perf_output_read(handle, event);
7803 
7804 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7805 		int size = 1;
7806 
7807 		size += data->callchain->nr;
7808 		size *= sizeof(u64);
7809 		__output_copy(handle, data->callchain, size);
7810 	}
7811 
7812 	if (sample_type & PERF_SAMPLE_RAW) {
7813 		struct perf_raw_record *raw = data->raw;
7814 
7815 		if (raw) {
7816 			struct perf_raw_frag *frag = &raw->frag;
7817 
7818 			perf_output_put(handle, raw->size);
7819 			do {
7820 				if (frag->copy) {
7821 					__output_custom(handle, frag->copy,
7822 							frag->data, frag->size);
7823 				} else {
7824 					__output_copy(handle, frag->data,
7825 						      frag->size);
7826 				}
7827 				if (perf_raw_frag_last(frag))
7828 					break;
7829 				frag = frag->next;
7830 			} while (1);
7831 			if (frag->pad)
7832 				__output_skip(handle, NULL, frag->pad);
7833 		} else {
7834 			struct {
7835 				u32	size;
7836 				u32	data;
7837 			} raw = {
7838 				.size = sizeof(u32),
7839 				.data = 0,
7840 			};
7841 			perf_output_put(handle, raw);
7842 		}
7843 	}
7844 
7845 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7846 		if (data->br_stack) {
7847 			size_t size;
7848 
7849 			size = data->br_stack->nr
7850 			     * sizeof(struct perf_branch_entry);
7851 
7852 			perf_output_put(handle, data->br_stack->nr);
7853 			if (branch_sample_hw_index(event))
7854 				perf_output_put(handle, data->br_stack->hw_idx);
7855 			perf_output_copy(handle, data->br_stack->entries, size);
7856 			/*
7857 			 * Add the extension space which is appended
7858 			 * right after the struct perf_branch_stack.
7859 			 */
7860 			if (data->br_stack_cntr) {
7861 				size = data->br_stack->nr * sizeof(u64);
7862 				perf_output_copy(handle, data->br_stack_cntr, size);
7863 			}
7864 		} else {
7865 			/*
7866 			 * we always store at least the value of nr
7867 			 */
7868 			u64 nr = 0;
7869 			perf_output_put(handle, nr);
7870 		}
7871 	}
7872 
7873 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7874 		u64 abi = data->regs_user.abi;
7875 
7876 		/*
7877 		 * If there are no regs to dump, notice it through
7878 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7879 		 */
7880 		perf_output_put(handle, abi);
7881 
7882 		if (abi) {
7883 			u64 mask = event->attr.sample_regs_user;
7884 			perf_output_sample_regs(handle,
7885 						data->regs_user.regs,
7886 						mask);
7887 		}
7888 	}
7889 
7890 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7891 		perf_output_sample_ustack(handle,
7892 					  data->stack_user_size,
7893 					  data->regs_user.regs);
7894 	}
7895 
7896 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7897 		perf_output_put(handle, data->weight.full);
7898 
7899 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7900 		perf_output_put(handle, data->data_src.val);
7901 
7902 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7903 		perf_output_put(handle, data->txn);
7904 
7905 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7906 		u64 abi = data->regs_intr.abi;
7907 		/*
7908 		 * If there are no regs to dump, notice it through
7909 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7910 		 */
7911 		perf_output_put(handle, abi);
7912 
7913 		if (abi) {
7914 			u64 mask = event->attr.sample_regs_intr;
7915 
7916 			perf_output_sample_regs(handle,
7917 						data->regs_intr.regs,
7918 						mask);
7919 		}
7920 	}
7921 
7922 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7923 		perf_output_put(handle, data->phys_addr);
7924 
7925 	if (sample_type & PERF_SAMPLE_CGROUP)
7926 		perf_output_put(handle, data->cgroup);
7927 
7928 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7929 		perf_output_put(handle, data->data_page_size);
7930 
7931 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7932 		perf_output_put(handle, data->code_page_size);
7933 
7934 	if (sample_type & PERF_SAMPLE_AUX) {
7935 		perf_output_put(handle, data->aux_size);
7936 
7937 		if (data->aux_size)
7938 			perf_aux_sample_output(event, handle, data);
7939 	}
7940 
7941 	if (!event->attr.watermark) {
7942 		int wakeup_events = event->attr.wakeup_events;
7943 
7944 		if (wakeup_events) {
7945 			struct perf_buffer *rb = handle->rb;
7946 			int events = local_inc_return(&rb->events);
7947 
7948 			if (events >= wakeup_events) {
7949 				local_sub(wakeup_events, &rb->events);
7950 				local_inc(&rb->wakeup);
7951 			}
7952 		}
7953 	}
7954 }
7955 
perf_virt_to_phys(u64 virt)7956 static u64 perf_virt_to_phys(u64 virt)
7957 {
7958 	u64 phys_addr = 0;
7959 
7960 	if (!virt)
7961 		return 0;
7962 
7963 	if (virt >= TASK_SIZE) {
7964 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7965 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7966 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7967 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7968 	} else {
7969 		/*
7970 		 * Walking the pages tables for user address.
7971 		 * Interrupts are disabled, so it prevents any tear down
7972 		 * of the page tables.
7973 		 * Try IRQ-safe get_user_page_fast_only first.
7974 		 * If failed, leave phys_addr as 0.
7975 		 */
7976 		if (current->mm != NULL) {
7977 			struct page *p;
7978 
7979 			pagefault_disable();
7980 			if (get_user_page_fast_only(virt, 0, &p)) {
7981 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7982 				put_page(p);
7983 			}
7984 			pagefault_enable();
7985 		}
7986 	}
7987 
7988 	return phys_addr;
7989 }
7990 
7991 /*
7992  * Return the pagetable size of a given virtual address.
7993  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7994 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7995 {
7996 	u64 size = 0;
7997 
7998 #ifdef CONFIG_HAVE_GUP_FAST
7999 	pgd_t *pgdp, pgd;
8000 	p4d_t *p4dp, p4d;
8001 	pud_t *pudp, pud;
8002 	pmd_t *pmdp, pmd;
8003 	pte_t *ptep, pte;
8004 
8005 	pgdp = pgd_offset(mm, addr);
8006 	pgd = READ_ONCE(*pgdp);
8007 	if (pgd_none(pgd))
8008 		return 0;
8009 
8010 	if (pgd_leaf(pgd))
8011 		return pgd_leaf_size(pgd);
8012 
8013 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8014 	p4d = READ_ONCE(*p4dp);
8015 	if (!p4d_present(p4d))
8016 		return 0;
8017 
8018 	if (p4d_leaf(p4d))
8019 		return p4d_leaf_size(p4d);
8020 
8021 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8022 	pud = READ_ONCE(*pudp);
8023 	if (!pud_present(pud))
8024 		return 0;
8025 
8026 	if (pud_leaf(pud))
8027 		return pud_leaf_size(pud);
8028 
8029 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8030 again:
8031 	pmd = pmdp_get_lockless(pmdp);
8032 	if (!pmd_present(pmd))
8033 		return 0;
8034 
8035 	if (pmd_leaf(pmd))
8036 		return pmd_leaf_size(pmd);
8037 
8038 	ptep = pte_offset_map(&pmd, addr);
8039 	if (!ptep)
8040 		goto again;
8041 
8042 	pte = ptep_get_lockless(ptep);
8043 	if (pte_present(pte))
8044 		size = __pte_leaf_size(pmd, pte);
8045 	pte_unmap(ptep);
8046 #endif /* CONFIG_HAVE_GUP_FAST */
8047 
8048 	return size;
8049 }
8050 
perf_get_page_size(unsigned long addr)8051 static u64 perf_get_page_size(unsigned long addr)
8052 {
8053 	struct mm_struct *mm;
8054 	unsigned long flags;
8055 	u64 size;
8056 
8057 	if (!addr)
8058 		return 0;
8059 
8060 	/*
8061 	 * Software page-table walkers must disable IRQs,
8062 	 * which prevents any tear down of the page tables.
8063 	 */
8064 	local_irq_save(flags);
8065 
8066 	mm = current->mm;
8067 	if (!mm) {
8068 		/*
8069 		 * For kernel threads and the like, use init_mm so that
8070 		 * we can find kernel memory.
8071 		 */
8072 		mm = &init_mm;
8073 	}
8074 
8075 	size = perf_get_pgtable_size(mm, addr);
8076 
8077 	local_irq_restore(flags);
8078 
8079 	return size;
8080 }
8081 
8082 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8083 
8084 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)8085 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8086 {
8087 	bool kernel = !event->attr.exclude_callchain_kernel;
8088 	bool user   = !event->attr.exclude_callchain_user;
8089 	/* Disallow cross-task user callchains. */
8090 	bool crosstask = event->ctx->task && event->ctx->task != current;
8091 	const u32 max_stack = event->attr.sample_max_stack;
8092 	struct perf_callchain_entry *callchain;
8093 
8094 	if (!kernel && !user)
8095 		return &__empty_callchain;
8096 
8097 	callchain = get_perf_callchain(regs, 0, kernel, user,
8098 				       max_stack, crosstask, true);
8099 	return callchain ?: &__empty_callchain;
8100 }
8101 
__cond_set(u64 flags,u64 s,u64 d)8102 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8103 {
8104 	return d * !!(flags & s);
8105 }
8106 
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8107 void perf_prepare_sample(struct perf_sample_data *data,
8108 			 struct perf_event *event,
8109 			 struct pt_regs *regs)
8110 {
8111 	u64 sample_type = event->attr.sample_type;
8112 	u64 filtered_sample_type;
8113 
8114 	/*
8115 	 * Add the sample flags that are dependent to others.  And clear the
8116 	 * sample flags that have already been done by the PMU driver.
8117 	 */
8118 	filtered_sample_type = sample_type;
8119 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8120 					   PERF_SAMPLE_IP);
8121 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8122 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8123 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8124 					   PERF_SAMPLE_REGS_USER);
8125 	filtered_sample_type &= ~data->sample_flags;
8126 
8127 	if (filtered_sample_type == 0) {
8128 		/* Make sure it has the correct data->type for output */
8129 		data->type = event->attr.sample_type;
8130 		return;
8131 	}
8132 
8133 	__perf_event_header__init_id(data, event, filtered_sample_type);
8134 
8135 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8136 		data->ip = perf_instruction_pointer(event, regs);
8137 		data->sample_flags |= PERF_SAMPLE_IP;
8138 	}
8139 
8140 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8141 		perf_sample_save_callchain(data, event, regs);
8142 
8143 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8144 		data->raw = NULL;
8145 		data->dyn_size += sizeof(u64);
8146 		data->sample_flags |= PERF_SAMPLE_RAW;
8147 	}
8148 
8149 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8150 		data->br_stack = NULL;
8151 		data->dyn_size += sizeof(u64);
8152 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8153 	}
8154 
8155 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8156 		perf_sample_regs_user(&data->regs_user, regs);
8157 
8158 	/*
8159 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8160 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8161 	 * the dyn_size if it's not requested by users.
8162 	 */
8163 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8164 		/* regs dump ABI info */
8165 		int size = sizeof(u64);
8166 
8167 		if (data->regs_user.regs) {
8168 			u64 mask = event->attr.sample_regs_user;
8169 			size += hweight64(mask) * sizeof(u64);
8170 		}
8171 
8172 		data->dyn_size += size;
8173 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8174 	}
8175 
8176 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8177 		/*
8178 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8179 		 * processed as the last one or have additional check added
8180 		 * in case new sample type is added, because we could eat
8181 		 * up the rest of the sample size.
8182 		 */
8183 		u16 stack_size = event->attr.sample_stack_user;
8184 		u16 header_size = perf_sample_data_size(data, event);
8185 		u16 size = sizeof(u64);
8186 
8187 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8188 						     data->regs_user.regs);
8189 
8190 		/*
8191 		 * If there is something to dump, add space for the dump
8192 		 * itself and for the field that tells the dynamic size,
8193 		 * which is how many have been actually dumped.
8194 		 */
8195 		if (stack_size)
8196 			size += sizeof(u64) + stack_size;
8197 
8198 		data->stack_user_size = stack_size;
8199 		data->dyn_size += size;
8200 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8201 	}
8202 
8203 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8204 		data->weight.full = 0;
8205 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8206 	}
8207 
8208 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8209 		data->data_src.val = PERF_MEM_NA;
8210 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8211 	}
8212 
8213 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8214 		data->txn = 0;
8215 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8216 	}
8217 
8218 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8219 		data->addr = 0;
8220 		data->sample_flags |= PERF_SAMPLE_ADDR;
8221 	}
8222 
8223 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8224 		/* regs dump ABI info */
8225 		int size = sizeof(u64);
8226 
8227 		perf_sample_regs_intr(&data->regs_intr, regs);
8228 
8229 		if (data->regs_intr.regs) {
8230 			u64 mask = event->attr.sample_regs_intr;
8231 
8232 			size += hweight64(mask) * sizeof(u64);
8233 		}
8234 
8235 		data->dyn_size += size;
8236 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8237 	}
8238 
8239 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8240 		data->phys_addr = perf_virt_to_phys(data->addr);
8241 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8242 	}
8243 
8244 #ifdef CONFIG_CGROUP_PERF
8245 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8246 		struct cgroup *cgrp;
8247 
8248 		/* protected by RCU */
8249 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8250 		data->cgroup = cgroup_id(cgrp);
8251 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8252 	}
8253 #endif
8254 
8255 	/*
8256 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8257 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8258 	 * but the value will not dump to the userspace.
8259 	 */
8260 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8261 		data->data_page_size = perf_get_page_size(data->addr);
8262 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8263 	}
8264 
8265 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8266 		data->code_page_size = perf_get_page_size(data->ip);
8267 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8268 	}
8269 
8270 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8271 		u64 size;
8272 		u16 header_size = perf_sample_data_size(data, event);
8273 
8274 		header_size += sizeof(u64); /* size */
8275 
8276 		/*
8277 		 * Given the 16bit nature of header::size, an AUX sample can
8278 		 * easily overflow it, what with all the preceding sample bits.
8279 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8280 		 * per sample in total (rounded down to 8 byte boundary).
8281 		 */
8282 		size = min_t(size_t, U16_MAX - header_size,
8283 			     event->attr.aux_sample_size);
8284 		size = rounddown(size, 8);
8285 		size = perf_prepare_sample_aux(event, data, size);
8286 
8287 		WARN_ON_ONCE(size + header_size > U16_MAX);
8288 		data->dyn_size += size + sizeof(u64); /* size above */
8289 		data->sample_flags |= PERF_SAMPLE_AUX;
8290 	}
8291 }
8292 
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8293 void perf_prepare_header(struct perf_event_header *header,
8294 			 struct perf_sample_data *data,
8295 			 struct perf_event *event,
8296 			 struct pt_regs *regs)
8297 {
8298 	header->type = PERF_RECORD_SAMPLE;
8299 	header->size = perf_sample_data_size(data, event);
8300 	header->misc = perf_misc_flags(event, regs);
8301 
8302 	/*
8303 	 * If you're adding more sample types here, you likely need to do
8304 	 * something about the overflowing header::size, like repurpose the
8305 	 * lowest 3 bits of size, which should be always zero at the moment.
8306 	 * This raises a more important question, do we really need 512k sized
8307 	 * samples and why, so good argumentation is in order for whatever you
8308 	 * do here next.
8309 	 */
8310 	WARN_ON_ONCE(header->size & 7);
8311 }
8312 
__perf_event_aux_pause(struct perf_event * event,bool pause)8313 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8314 {
8315 	if (pause) {
8316 		if (!event->hw.aux_paused) {
8317 			event->hw.aux_paused = 1;
8318 			event->pmu->stop(event, PERF_EF_PAUSE);
8319 		}
8320 	} else {
8321 		if (event->hw.aux_paused) {
8322 			event->hw.aux_paused = 0;
8323 			event->pmu->start(event, PERF_EF_RESUME);
8324 		}
8325 	}
8326 }
8327 
perf_event_aux_pause(struct perf_event * event,bool pause)8328 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8329 {
8330 	struct perf_buffer *rb;
8331 
8332 	if (WARN_ON_ONCE(!event))
8333 		return;
8334 
8335 	rb = ring_buffer_get(event);
8336 	if (!rb)
8337 		return;
8338 
8339 	scoped_guard (irqsave) {
8340 		/*
8341 		 * Guard against self-recursion here. Another event could trip
8342 		 * this same from NMI context.
8343 		 */
8344 		if (READ_ONCE(rb->aux_in_pause_resume))
8345 			break;
8346 
8347 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8348 		barrier();
8349 		__perf_event_aux_pause(event, pause);
8350 		barrier();
8351 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8352 	}
8353 	ring_buffer_put(rb);
8354 }
8355 
8356 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8357 __perf_event_output(struct perf_event *event,
8358 		    struct perf_sample_data *data,
8359 		    struct pt_regs *regs,
8360 		    int (*output_begin)(struct perf_output_handle *,
8361 					struct perf_sample_data *,
8362 					struct perf_event *,
8363 					unsigned int))
8364 {
8365 	struct perf_output_handle handle;
8366 	struct perf_event_header header;
8367 	int err;
8368 
8369 	/* protect the callchain buffers */
8370 	rcu_read_lock();
8371 
8372 	perf_prepare_sample(data, event, regs);
8373 	perf_prepare_header(&header, data, event, regs);
8374 
8375 	err = output_begin(&handle, data, event, header.size);
8376 	if (err)
8377 		goto exit;
8378 
8379 	perf_output_sample(&handle, &header, data, event);
8380 
8381 	perf_output_end(&handle);
8382 
8383 exit:
8384 	rcu_read_unlock();
8385 	return err;
8386 }
8387 
8388 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8389 perf_event_output_forward(struct perf_event *event,
8390 			 struct perf_sample_data *data,
8391 			 struct pt_regs *regs)
8392 {
8393 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8394 }
8395 
8396 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8397 perf_event_output_backward(struct perf_event *event,
8398 			   struct perf_sample_data *data,
8399 			   struct pt_regs *regs)
8400 {
8401 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8402 }
8403 
8404 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8405 perf_event_output(struct perf_event *event,
8406 		  struct perf_sample_data *data,
8407 		  struct pt_regs *regs)
8408 {
8409 	return __perf_event_output(event, data, regs, perf_output_begin);
8410 }
8411 
8412 /*
8413  * read event_id
8414  */
8415 
8416 struct perf_read_event {
8417 	struct perf_event_header	header;
8418 
8419 	u32				pid;
8420 	u32				tid;
8421 };
8422 
8423 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8424 perf_event_read_event(struct perf_event *event,
8425 			struct task_struct *task)
8426 {
8427 	struct perf_output_handle handle;
8428 	struct perf_sample_data sample;
8429 	struct perf_read_event read_event = {
8430 		.header = {
8431 			.type = PERF_RECORD_READ,
8432 			.misc = 0,
8433 			.size = sizeof(read_event) + event->read_size,
8434 		},
8435 		.pid = perf_event_pid(event, task),
8436 		.tid = perf_event_tid(event, task),
8437 	};
8438 	int ret;
8439 
8440 	perf_event_header__init_id(&read_event.header, &sample, event);
8441 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8442 	if (ret)
8443 		return;
8444 
8445 	perf_output_put(&handle, read_event);
8446 	perf_output_read(&handle, event);
8447 	perf_event__output_id_sample(event, &handle, &sample);
8448 
8449 	perf_output_end(&handle);
8450 }
8451 
8452 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8453 
8454 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8455 perf_iterate_ctx(struct perf_event_context *ctx,
8456 		   perf_iterate_f output,
8457 		   void *data, bool all)
8458 {
8459 	struct perf_event *event;
8460 
8461 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8462 		if (!all) {
8463 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8464 				continue;
8465 			if (!event_filter_match(event))
8466 				continue;
8467 		}
8468 
8469 		output(event, data);
8470 	}
8471 }
8472 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8473 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8474 {
8475 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8476 	struct perf_event *event;
8477 
8478 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8479 		/*
8480 		 * Skip events that are not fully formed yet; ensure that
8481 		 * if we observe event->ctx, both event and ctx will be
8482 		 * complete enough. See perf_install_in_context().
8483 		 */
8484 		if (!smp_load_acquire(&event->ctx))
8485 			continue;
8486 
8487 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8488 			continue;
8489 		if (!event_filter_match(event))
8490 			continue;
8491 		output(event, data);
8492 	}
8493 }
8494 
8495 /*
8496  * Iterate all events that need to receive side-band events.
8497  *
8498  * For new callers; ensure that account_pmu_sb_event() includes
8499  * your event, otherwise it might not get delivered.
8500  */
8501 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8502 perf_iterate_sb(perf_iterate_f output, void *data,
8503 	       struct perf_event_context *task_ctx)
8504 {
8505 	struct perf_event_context *ctx;
8506 
8507 	rcu_read_lock();
8508 	preempt_disable();
8509 
8510 	/*
8511 	 * If we have task_ctx != NULL we only notify the task context itself.
8512 	 * The task_ctx is set only for EXIT events before releasing task
8513 	 * context.
8514 	 */
8515 	if (task_ctx) {
8516 		perf_iterate_ctx(task_ctx, output, data, false);
8517 		goto done;
8518 	}
8519 
8520 	perf_iterate_sb_cpu(output, data);
8521 
8522 	ctx = rcu_dereference(current->perf_event_ctxp);
8523 	if (ctx)
8524 		perf_iterate_ctx(ctx, output, data, false);
8525 done:
8526 	preempt_enable();
8527 	rcu_read_unlock();
8528 }
8529 
8530 /*
8531  * Clear all file-based filters at exec, they'll have to be
8532  * re-instated when/if these objects are mmapped again.
8533  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8534 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8535 {
8536 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8537 	struct perf_addr_filter *filter;
8538 	unsigned int restart = 0, count = 0;
8539 	unsigned long flags;
8540 
8541 	if (!has_addr_filter(event))
8542 		return;
8543 
8544 	raw_spin_lock_irqsave(&ifh->lock, flags);
8545 	list_for_each_entry(filter, &ifh->list, entry) {
8546 		if (filter->path.dentry) {
8547 			event->addr_filter_ranges[count].start = 0;
8548 			event->addr_filter_ranges[count].size = 0;
8549 			restart++;
8550 		}
8551 
8552 		count++;
8553 	}
8554 
8555 	if (restart)
8556 		event->addr_filters_gen++;
8557 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8558 
8559 	if (restart)
8560 		perf_event_stop(event, 1);
8561 }
8562 
perf_event_exec(void)8563 void perf_event_exec(void)
8564 {
8565 	struct perf_event_context *ctx;
8566 
8567 	ctx = perf_pin_task_context(current);
8568 	if (!ctx)
8569 		return;
8570 
8571 	perf_event_enable_on_exec(ctx);
8572 	perf_event_remove_on_exec(ctx);
8573 	scoped_guard(rcu)
8574 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8575 
8576 	perf_unpin_context(ctx);
8577 	put_ctx(ctx);
8578 }
8579 
8580 struct remote_output {
8581 	struct perf_buffer	*rb;
8582 	int			err;
8583 };
8584 
__perf_event_output_stop(struct perf_event * event,void * data)8585 static void __perf_event_output_stop(struct perf_event *event, void *data)
8586 {
8587 	struct perf_event *parent = event->parent;
8588 	struct remote_output *ro = data;
8589 	struct perf_buffer *rb = ro->rb;
8590 	struct stop_event_data sd = {
8591 		.event	= event,
8592 	};
8593 
8594 	if (!has_aux(event))
8595 		return;
8596 
8597 	if (!parent)
8598 		parent = event;
8599 
8600 	/*
8601 	 * In case of inheritance, it will be the parent that links to the
8602 	 * ring-buffer, but it will be the child that's actually using it.
8603 	 *
8604 	 * We are using event::rb to determine if the event should be stopped,
8605 	 * however this may race with ring_buffer_attach() (through set_output),
8606 	 * which will make us skip the event that actually needs to be stopped.
8607 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8608 	 * its rb pointer.
8609 	 */
8610 	if (rcu_dereference(parent->rb) == rb)
8611 		ro->err = __perf_event_stop(&sd);
8612 }
8613 
__perf_pmu_output_stop(void * info)8614 static int __perf_pmu_output_stop(void *info)
8615 {
8616 	struct perf_event *event = info;
8617 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8618 	struct remote_output ro = {
8619 		.rb	= event->rb,
8620 	};
8621 
8622 	rcu_read_lock();
8623 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8624 	if (cpuctx->task_ctx)
8625 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8626 				   &ro, false);
8627 	rcu_read_unlock();
8628 
8629 	return ro.err;
8630 }
8631 
perf_pmu_output_stop(struct perf_event * event)8632 static void perf_pmu_output_stop(struct perf_event *event)
8633 {
8634 	struct perf_event *iter;
8635 	int err, cpu;
8636 
8637 restart:
8638 	rcu_read_lock();
8639 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8640 		/*
8641 		 * For per-CPU events, we need to make sure that neither they
8642 		 * nor their children are running; for cpu==-1 events it's
8643 		 * sufficient to stop the event itself if it's active, since
8644 		 * it can't have children.
8645 		 */
8646 		cpu = iter->cpu;
8647 		if (cpu == -1)
8648 			cpu = READ_ONCE(iter->oncpu);
8649 
8650 		if (cpu == -1)
8651 			continue;
8652 
8653 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8654 		if (err == -EAGAIN) {
8655 			rcu_read_unlock();
8656 			goto restart;
8657 		}
8658 	}
8659 	rcu_read_unlock();
8660 }
8661 
8662 /*
8663  * task tracking -- fork/exit
8664  *
8665  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8666  */
8667 
8668 struct perf_task_event {
8669 	struct task_struct		*task;
8670 	struct perf_event_context	*task_ctx;
8671 
8672 	struct {
8673 		struct perf_event_header	header;
8674 
8675 		u32				pid;
8676 		u32				ppid;
8677 		u32				tid;
8678 		u32				ptid;
8679 		u64				time;
8680 	} event_id;
8681 };
8682 
perf_event_task_match(struct perf_event * event)8683 static int perf_event_task_match(struct perf_event *event)
8684 {
8685 	return event->attr.comm  || event->attr.mmap ||
8686 	       event->attr.mmap2 || event->attr.mmap_data ||
8687 	       event->attr.task;
8688 }
8689 
perf_event_task_output(struct perf_event * event,void * data)8690 static void perf_event_task_output(struct perf_event *event,
8691 				   void *data)
8692 {
8693 	struct perf_task_event *task_event = data;
8694 	struct perf_output_handle handle;
8695 	struct perf_sample_data	sample;
8696 	struct task_struct *task = task_event->task;
8697 	int ret, size = task_event->event_id.header.size;
8698 
8699 	if (!perf_event_task_match(event))
8700 		return;
8701 
8702 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8703 
8704 	ret = perf_output_begin(&handle, &sample, event,
8705 				task_event->event_id.header.size);
8706 	if (ret)
8707 		goto out;
8708 
8709 	task_event->event_id.pid = perf_event_pid(event, task);
8710 	task_event->event_id.tid = perf_event_tid(event, task);
8711 
8712 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8713 		task_event->event_id.ppid = perf_event_pid(event,
8714 							task->real_parent);
8715 		task_event->event_id.ptid = perf_event_pid(event,
8716 							task->real_parent);
8717 	} else {  /* PERF_RECORD_FORK */
8718 		task_event->event_id.ppid = perf_event_pid(event, current);
8719 		task_event->event_id.ptid = perf_event_tid(event, current);
8720 	}
8721 
8722 	task_event->event_id.time = perf_event_clock(event);
8723 
8724 	perf_output_put(&handle, task_event->event_id);
8725 
8726 	perf_event__output_id_sample(event, &handle, &sample);
8727 
8728 	perf_output_end(&handle);
8729 out:
8730 	task_event->event_id.header.size = size;
8731 }
8732 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8733 static void perf_event_task(struct task_struct *task,
8734 			      struct perf_event_context *task_ctx,
8735 			      int new)
8736 {
8737 	struct perf_task_event task_event;
8738 
8739 	if (!atomic_read(&nr_comm_events) &&
8740 	    !atomic_read(&nr_mmap_events) &&
8741 	    !atomic_read(&nr_task_events))
8742 		return;
8743 
8744 	task_event = (struct perf_task_event){
8745 		.task	  = task,
8746 		.task_ctx = task_ctx,
8747 		.event_id    = {
8748 			.header = {
8749 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8750 				.misc = 0,
8751 				.size = sizeof(task_event.event_id),
8752 			},
8753 			/* .pid  */
8754 			/* .ppid */
8755 			/* .tid  */
8756 			/* .ptid */
8757 			/* .time */
8758 		},
8759 	};
8760 
8761 	perf_iterate_sb(perf_event_task_output,
8762 		       &task_event,
8763 		       task_ctx);
8764 }
8765 
8766 /*
8767  * Allocate data for a new task when profiling system-wide
8768  * events which require PMU specific data
8769  */
8770 static void
perf_event_alloc_task_data(struct task_struct * child,struct task_struct * parent)8771 perf_event_alloc_task_data(struct task_struct *child,
8772 			   struct task_struct *parent)
8773 {
8774 	struct kmem_cache *ctx_cache = NULL;
8775 	struct perf_ctx_data *cd;
8776 
8777 	if (!refcount_read(&global_ctx_data_ref))
8778 		return;
8779 
8780 	scoped_guard (rcu) {
8781 		cd = rcu_dereference(parent->perf_ctx_data);
8782 		if (cd)
8783 			ctx_cache = cd->ctx_cache;
8784 	}
8785 
8786 	if (!ctx_cache)
8787 		return;
8788 
8789 	guard(percpu_read)(&global_ctx_data_rwsem);
8790 	scoped_guard (rcu) {
8791 		cd = rcu_dereference(child->perf_ctx_data);
8792 		if (!cd) {
8793 			/*
8794 			 * A system-wide event may be unaccount,
8795 			 * when attaching the perf_ctx_data.
8796 			 */
8797 			if (!refcount_read(&global_ctx_data_ref))
8798 				return;
8799 			goto attach;
8800 		}
8801 
8802 		if (!cd->global) {
8803 			cd->global = 1;
8804 			refcount_inc(&cd->refcount);
8805 		}
8806 	}
8807 
8808 	return;
8809 attach:
8810 	attach_task_ctx_data(child, ctx_cache, true);
8811 }
8812 
perf_event_fork(struct task_struct * task)8813 void perf_event_fork(struct task_struct *task)
8814 {
8815 	perf_event_task(task, NULL, 1);
8816 	perf_event_namespaces(task);
8817 	perf_event_alloc_task_data(task, current);
8818 }
8819 
8820 /*
8821  * comm tracking
8822  */
8823 
8824 struct perf_comm_event {
8825 	struct task_struct	*task;
8826 	char			*comm;
8827 	int			comm_size;
8828 
8829 	struct {
8830 		struct perf_event_header	header;
8831 
8832 		u32				pid;
8833 		u32				tid;
8834 	} event_id;
8835 };
8836 
perf_event_comm_match(struct perf_event * event)8837 static int perf_event_comm_match(struct perf_event *event)
8838 {
8839 	return event->attr.comm;
8840 }
8841 
perf_event_comm_output(struct perf_event * event,void * data)8842 static void perf_event_comm_output(struct perf_event *event,
8843 				   void *data)
8844 {
8845 	struct perf_comm_event *comm_event = data;
8846 	struct perf_output_handle handle;
8847 	struct perf_sample_data sample;
8848 	int size = comm_event->event_id.header.size;
8849 	int ret;
8850 
8851 	if (!perf_event_comm_match(event))
8852 		return;
8853 
8854 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8855 	ret = perf_output_begin(&handle, &sample, event,
8856 				comm_event->event_id.header.size);
8857 
8858 	if (ret)
8859 		goto out;
8860 
8861 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8862 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8863 
8864 	perf_output_put(&handle, comm_event->event_id);
8865 	__output_copy(&handle, comm_event->comm,
8866 				   comm_event->comm_size);
8867 
8868 	perf_event__output_id_sample(event, &handle, &sample);
8869 
8870 	perf_output_end(&handle);
8871 out:
8872 	comm_event->event_id.header.size = size;
8873 }
8874 
perf_event_comm_event(struct perf_comm_event * comm_event)8875 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8876 {
8877 	char comm[TASK_COMM_LEN];
8878 	unsigned int size;
8879 
8880 	memset(comm, 0, sizeof(comm));
8881 	strscpy(comm, comm_event->task->comm);
8882 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8883 
8884 	comm_event->comm = comm;
8885 	comm_event->comm_size = size;
8886 
8887 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8888 
8889 	perf_iterate_sb(perf_event_comm_output,
8890 		       comm_event,
8891 		       NULL);
8892 }
8893 
perf_event_comm(struct task_struct * task,bool exec)8894 void perf_event_comm(struct task_struct *task, bool exec)
8895 {
8896 	struct perf_comm_event comm_event;
8897 
8898 	if (!atomic_read(&nr_comm_events))
8899 		return;
8900 
8901 	comm_event = (struct perf_comm_event){
8902 		.task	= task,
8903 		/* .comm      */
8904 		/* .comm_size */
8905 		.event_id  = {
8906 			.header = {
8907 				.type = PERF_RECORD_COMM,
8908 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8909 				/* .size */
8910 			},
8911 			/* .pid */
8912 			/* .tid */
8913 		},
8914 	};
8915 
8916 	perf_event_comm_event(&comm_event);
8917 }
8918 
8919 /*
8920  * namespaces tracking
8921  */
8922 
8923 struct perf_namespaces_event {
8924 	struct task_struct		*task;
8925 
8926 	struct {
8927 		struct perf_event_header	header;
8928 
8929 		u32				pid;
8930 		u32				tid;
8931 		u64				nr_namespaces;
8932 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8933 	} event_id;
8934 };
8935 
perf_event_namespaces_match(struct perf_event * event)8936 static int perf_event_namespaces_match(struct perf_event *event)
8937 {
8938 	return event->attr.namespaces;
8939 }
8940 
perf_event_namespaces_output(struct perf_event * event,void * data)8941 static void perf_event_namespaces_output(struct perf_event *event,
8942 					 void *data)
8943 {
8944 	struct perf_namespaces_event *namespaces_event = data;
8945 	struct perf_output_handle handle;
8946 	struct perf_sample_data sample;
8947 	u16 header_size = namespaces_event->event_id.header.size;
8948 	int ret;
8949 
8950 	if (!perf_event_namespaces_match(event))
8951 		return;
8952 
8953 	perf_event_header__init_id(&namespaces_event->event_id.header,
8954 				   &sample, event);
8955 	ret = perf_output_begin(&handle, &sample, event,
8956 				namespaces_event->event_id.header.size);
8957 	if (ret)
8958 		goto out;
8959 
8960 	namespaces_event->event_id.pid = perf_event_pid(event,
8961 							namespaces_event->task);
8962 	namespaces_event->event_id.tid = perf_event_tid(event,
8963 							namespaces_event->task);
8964 
8965 	perf_output_put(&handle, namespaces_event->event_id);
8966 
8967 	perf_event__output_id_sample(event, &handle, &sample);
8968 
8969 	perf_output_end(&handle);
8970 out:
8971 	namespaces_event->event_id.header.size = header_size;
8972 }
8973 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8974 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8975 				   struct task_struct *task,
8976 				   const struct proc_ns_operations *ns_ops)
8977 {
8978 	struct path ns_path;
8979 	struct inode *ns_inode;
8980 	int error;
8981 
8982 	error = ns_get_path(&ns_path, task, ns_ops);
8983 	if (!error) {
8984 		ns_inode = ns_path.dentry->d_inode;
8985 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8986 		ns_link_info->ino = ns_inode->i_ino;
8987 		path_put(&ns_path);
8988 	}
8989 }
8990 
perf_event_namespaces(struct task_struct * task)8991 void perf_event_namespaces(struct task_struct *task)
8992 {
8993 	struct perf_namespaces_event namespaces_event;
8994 	struct perf_ns_link_info *ns_link_info;
8995 
8996 	if (!atomic_read(&nr_namespaces_events))
8997 		return;
8998 
8999 	namespaces_event = (struct perf_namespaces_event){
9000 		.task	= task,
9001 		.event_id  = {
9002 			.header = {
9003 				.type = PERF_RECORD_NAMESPACES,
9004 				.misc = 0,
9005 				.size = sizeof(namespaces_event.event_id),
9006 			},
9007 			/* .pid */
9008 			/* .tid */
9009 			.nr_namespaces = NR_NAMESPACES,
9010 			/* .link_info[NR_NAMESPACES] */
9011 		},
9012 	};
9013 
9014 	ns_link_info = namespaces_event.event_id.link_info;
9015 
9016 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9017 			       task, &mntns_operations);
9018 
9019 #ifdef CONFIG_USER_NS
9020 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9021 			       task, &userns_operations);
9022 #endif
9023 #ifdef CONFIG_NET_NS
9024 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9025 			       task, &netns_operations);
9026 #endif
9027 #ifdef CONFIG_UTS_NS
9028 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9029 			       task, &utsns_operations);
9030 #endif
9031 #ifdef CONFIG_IPC_NS
9032 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9033 			       task, &ipcns_operations);
9034 #endif
9035 #ifdef CONFIG_PID_NS
9036 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9037 			       task, &pidns_operations);
9038 #endif
9039 #ifdef CONFIG_CGROUPS
9040 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9041 			       task, &cgroupns_operations);
9042 #endif
9043 
9044 	perf_iterate_sb(perf_event_namespaces_output,
9045 			&namespaces_event,
9046 			NULL);
9047 }
9048 
9049 /*
9050  * cgroup tracking
9051  */
9052 #ifdef CONFIG_CGROUP_PERF
9053 
9054 struct perf_cgroup_event {
9055 	char				*path;
9056 	int				path_size;
9057 	struct {
9058 		struct perf_event_header	header;
9059 		u64				id;
9060 		char				path[];
9061 	} event_id;
9062 };
9063 
perf_event_cgroup_match(struct perf_event * event)9064 static int perf_event_cgroup_match(struct perf_event *event)
9065 {
9066 	return event->attr.cgroup;
9067 }
9068 
perf_event_cgroup_output(struct perf_event * event,void * data)9069 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9070 {
9071 	struct perf_cgroup_event *cgroup_event = data;
9072 	struct perf_output_handle handle;
9073 	struct perf_sample_data sample;
9074 	u16 header_size = cgroup_event->event_id.header.size;
9075 	int ret;
9076 
9077 	if (!perf_event_cgroup_match(event))
9078 		return;
9079 
9080 	perf_event_header__init_id(&cgroup_event->event_id.header,
9081 				   &sample, event);
9082 	ret = perf_output_begin(&handle, &sample, event,
9083 				cgroup_event->event_id.header.size);
9084 	if (ret)
9085 		goto out;
9086 
9087 	perf_output_put(&handle, cgroup_event->event_id);
9088 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9089 
9090 	perf_event__output_id_sample(event, &handle, &sample);
9091 
9092 	perf_output_end(&handle);
9093 out:
9094 	cgroup_event->event_id.header.size = header_size;
9095 }
9096 
perf_event_cgroup(struct cgroup * cgrp)9097 static void perf_event_cgroup(struct cgroup *cgrp)
9098 {
9099 	struct perf_cgroup_event cgroup_event;
9100 	char path_enomem[16] = "//enomem";
9101 	char *pathname;
9102 	size_t size;
9103 
9104 	if (!atomic_read(&nr_cgroup_events))
9105 		return;
9106 
9107 	cgroup_event = (struct perf_cgroup_event){
9108 		.event_id  = {
9109 			.header = {
9110 				.type = PERF_RECORD_CGROUP,
9111 				.misc = 0,
9112 				.size = sizeof(cgroup_event.event_id),
9113 			},
9114 			.id = cgroup_id(cgrp),
9115 		},
9116 	};
9117 
9118 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9119 	if (pathname == NULL) {
9120 		cgroup_event.path = path_enomem;
9121 	} else {
9122 		/* just to be sure to have enough space for alignment */
9123 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9124 		cgroup_event.path = pathname;
9125 	}
9126 
9127 	/*
9128 	 * Since our buffer works in 8 byte units we need to align our string
9129 	 * size to a multiple of 8. However, we must guarantee the tail end is
9130 	 * zero'd out to avoid leaking random bits to userspace.
9131 	 */
9132 	size = strlen(cgroup_event.path) + 1;
9133 	while (!IS_ALIGNED(size, sizeof(u64)))
9134 		cgroup_event.path[size++] = '\0';
9135 
9136 	cgroup_event.event_id.header.size += size;
9137 	cgroup_event.path_size = size;
9138 
9139 	perf_iterate_sb(perf_event_cgroup_output,
9140 			&cgroup_event,
9141 			NULL);
9142 
9143 	kfree(pathname);
9144 }
9145 
9146 #endif
9147 
9148 /*
9149  * mmap tracking
9150  */
9151 
9152 struct perf_mmap_event {
9153 	struct vm_area_struct	*vma;
9154 
9155 	const char		*file_name;
9156 	int			file_size;
9157 	int			maj, min;
9158 	u64			ino;
9159 	u64			ino_generation;
9160 	u32			prot, flags;
9161 	u8			build_id[BUILD_ID_SIZE_MAX];
9162 	u32			build_id_size;
9163 
9164 	struct {
9165 		struct perf_event_header	header;
9166 
9167 		u32				pid;
9168 		u32				tid;
9169 		u64				start;
9170 		u64				len;
9171 		u64				pgoff;
9172 	} event_id;
9173 };
9174 
perf_event_mmap_match(struct perf_event * event,void * data)9175 static int perf_event_mmap_match(struct perf_event *event,
9176 				 void *data)
9177 {
9178 	struct perf_mmap_event *mmap_event = data;
9179 	struct vm_area_struct *vma = mmap_event->vma;
9180 	int executable = vma->vm_flags & VM_EXEC;
9181 
9182 	return (!executable && event->attr.mmap_data) ||
9183 	       (executable && (event->attr.mmap || event->attr.mmap2));
9184 }
9185 
perf_event_mmap_output(struct perf_event * event,void * data)9186 static void perf_event_mmap_output(struct perf_event *event,
9187 				   void *data)
9188 {
9189 	struct perf_mmap_event *mmap_event = data;
9190 	struct perf_output_handle handle;
9191 	struct perf_sample_data sample;
9192 	int size = mmap_event->event_id.header.size;
9193 	u32 type = mmap_event->event_id.header.type;
9194 	bool use_build_id;
9195 	int ret;
9196 
9197 	if (!perf_event_mmap_match(event, data))
9198 		return;
9199 
9200 	if (event->attr.mmap2) {
9201 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9202 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9203 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9204 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9205 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9206 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9207 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9208 	}
9209 
9210 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9211 	ret = perf_output_begin(&handle, &sample, event,
9212 				mmap_event->event_id.header.size);
9213 	if (ret)
9214 		goto out;
9215 
9216 	mmap_event->event_id.pid = perf_event_pid(event, current);
9217 	mmap_event->event_id.tid = perf_event_tid(event, current);
9218 
9219 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9220 
9221 	if (event->attr.mmap2 && use_build_id)
9222 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9223 
9224 	perf_output_put(&handle, mmap_event->event_id);
9225 
9226 	if (event->attr.mmap2) {
9227 		if (use_build_id) {
9228 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9229 
9230 			__output_copy(&handle, size, 4);
9231 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9232 		} else {
9233 			perf_output_put(&handle, mmap_event->maj);
9234 			perf_output_put(&handle, mmap_event->min);
9235 			perf_output_put(&handle, mmap_event->ino);
9236 			perf_output_put(&handle, mmap_event->ino_generation);
9237 		}
9238 		perf_output_put(&handle, mmap_event->prot);
9239 		perf_output_put(&handle, mmap_event->flags);
9240 	}
9241 
9242 	__output_copy(&handle, mmap_event->file_name,
9243 				   mmap_event->file_size);
9244 
9245 	perf_event__output_id_sample(event, &handle, &sample);
9246 
9247 	perf_output_end(&handle);
9248 out:
9249 	mmap_event->event_id.header.size = size;
9250 	mmap_event->event_id.header.type = type;
9251 }
9252 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)9253 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9254 {
9255 	struct vm_area_struct *vma = mmap_event->vma;
9256 	struct file *file = vma->vm_file;
9257 	int maj = 0, min = 0;
9258 	u64 ino = 0, gen = 0;
9259 	u32 prot = 0, flags = 0;
9260 	unsigned int size;
9261 	char tmp[16];
9262 	char *buf = NULL;
9263 	char *name = NULL;
9264 
9265 	if (vma->vm_flags & VM_READ)
9266 		prot |= PROT_READ;
9267 	if (vma->vm_flags & VM_WRITE)
9268 		prot |= PROT_WRITE;
9269 	if (vma->vm_flags & VM_EXEC)
9270 		prot |= PROT_EXEC;
9271 
9272 	if (vma->vm_flags & VM_MAYSHARE)
9273 		flags = MAP_SHARED;
9274 	else
9275 		flags = MAP_PRIVATE;
9276 
9277 	if (vma->vm_flags & VM_LOCKED)
9278 		flags |= MAP_LOCKED;
9279 	if (is_vm_hugetlb_page(vma))
9280 		flags |= MAP_HUGETLB;
9281 
9282 	if (file) {
9283 		struct inode *inode;
9284 		dev_t dev;
9285 
9286 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9287 		if (!buf) {
9288 			name = "//enomem";
9289 			goto cpy_name;
9290 		}
9291 		/*
9292 		 * d_path() works from the end of the rb backwards, so we
9293 		 * need to add enough zero bytes after the string to handle
9294 		 * the 64bit alignment we do later.
9295 		 */
9296 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9297 		if (IS_ERR(name)) {
9298 			name = "//toolong";
9299 			goto cpy_name;
9300 		}
9301 		inode = file_inode(vma->vm_file);
9302 		dev = inode->i_sb->s_dev;
9303 		ino = inode->i_ino;
9304 		gen = inode->i_generation;
9305 		maj = MAJOR(dev);
9306 		min = MINOR(dev);
9307 
9308 		goto got_name;
9309 	} else {
9310 		if (vma->vm_ops && vma->vm_ops->name)
9311 			name = (char *) vma->vm_ops->name(vma);
9312 		if (!name)
9313 			name = (char *)arch_vma_name(vma);
9314 		if (!name) {
9315 			if (vma_is_initial_heap(vma))
9316 				name = "[heap]";
9317 			else if (vma_is_initial_stack(vma))
9318 				name = "[stack]";
9319 			else
9320 				name = "//anon";
9321 		}
9322 	}
9323 
9324 cpy_name:
9325 	strscpy(tmp, name);
9326 	name = tmp;
9327 got_name:
9328 	/*
9329 	 * Since our buffer works in 8 byte units we need to align our string
9330 	 * size to a multiple of 8. However, we must guarantee the tail end is
9331 	 * zero'd out to avoid leaking random bits to userspace.
9332 	 */
9333 	size = strlen(name)+1;
9334 	while (!IS_ALIGNED(size, sizeof(u64)))
9335 		name[size++] = '\0';
9336 
9337 	mmap_event->file_name = name;
9338 	mmap_event->file_size = size;
9339 	mmap_event->maj = maj;
9340 	mmap_event->min = min;
9341 	mmap_event->ino = ino;
9342 	mmap_event->ino_generation = gen;
9343 	mmap_event->prot = prot;
9344 	mmap_event->flags = flags;
9345 
9346 	if (!(vma->vm_flags & VM_EXEC))
9347 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9348 
9349 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9350 
9351 	if (atomic_read(&nr_build_id_events))
9352 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9353 
9354 	perf_iterate_sb(perf_event_mmap_output,
9355 		       mmap_event,
9356 		       NULL);
9357 
9358 	kfree(buf);
9359 }
9360 
9361 /*
9362  * Check whether inode and address range match filter criteria.
9363  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9364 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9365 				     struct file *file, unsigned long offset,
9366 				     unsigned long size)
9367 {
9368 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9369 	if (!filter->path.dentry)
9370 		return false;
9371 
9372 	if (d_inode(filter->path.dentry) != file_inode(file))
9373 		return false;
9374 
9375 	if (filter->offset > offset + size)
9376 		return false;
9377 
9378 	if (filter->offset + filter->size < offset)
9379 		return false;
9380 
9381 	return true;
9382 }
9383 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9384 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9385 					struct vm_area_struct *vma,
9386 					struct perf_addr_filter_range *fr)
9387 {
9388 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9389 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9390 	struct file *file = vma->vm_file;
9391 
9392 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9393 		return false;
9394 
9395 	if (filter->offset < off) {
9396 		fr->start = vma->vm_start;
9397 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9398 	} else {
9399 		fr->start = vma->vm_start + filter->offset - off;
9400 		fr->size = min(vma->vm_end - fr->start, filter->size);
9401 	}
9402 
9403 	return true;
9404 }
9405 
__perf_addr_filters_adjust(struct perf_event * event,void * data)9406 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9407 {
9408 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9409 	struct vm_area_struct *vma = data;
9410 	struct perf_addr_filter *filter;
9411 	unsigned int restart = 0, count = 0;
9412 	unsigned long flags;
9413 
9414 	if (!has_addr_filter(event))
9415 		return;
9416 
9417 	if (!vma->vm_file)
9418 		return;
9419 
9420 	raw_spin_lock_irqsave(&ifh->lock, flags);
9421 	list_for_each_entry(filter, &ifh->list, entry) {
9422 		if (perf_addr_filter_vma_adjust(filter, vma,
9423 						&event->addr_filter_ranges[count]))
9424 			restart++;
9425 
9426 		count++;
9427 	}
9428 
9429 	if (restart)
9430 		event->addr_filters_gen++;
9431 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9432 
9433 	if (restart)
9434 		perf_event_stop(event, 1);
9435 }
9436 
9437 /*
9438  * Adjust all task's events' filters to the new vma
9439  */
perf_addr_filters_adjust(struct vm_area_struct * vma)9440 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9441 {
9442 	struct perf_event_context *ctx;
9443 
9444 	/*
9445 	 * Data tracing isn't supported yet and as such there is no need
9446 	 * to keep track of anything that isn't related to executable code:
9447 	 */
9448 	if (!(vma->vm_flags & VM_EXEC))
9449 		return;
9450 
9451 	rcu_read_lock();
9452 	ctx = rcu_dereference(current->perf_event_ctxp);
9453 	if (ctx)
9454 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9455 	rcu_read_unlock();
9456 }
9457 
perf_event_mmap(struct vm_area_struct * vma)9458 void perf_event_mmap(struct vm_area_struct *vma)
9459 {
9460 	struct perf_mmap_event mmap_event;
9461 
9462 	if (!atomic_read(&nr_mmap_events))
9463 		return;
9464 
9465 	mmap_event = (struct perf_mmap_event){
9466 		.vma	= vma,
9467 		/* .file_name */
9468 		/* .file_size */
9469 		.event_id  = {
9470 			.header = {
9471 				.type = PERF_RECORD_MMAP,
9472 				.misc = PERF_RECORD_MISC_USER,
9473 				/* .size */
9474 			},
9475 			/* .pid */
9476 			/* .tid */
9477 			.start  = vma->vm_start,
9478 			.len    = vma->vm_end - vma->vm_start,
9479 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9480 		},
9481 		/* .maj (attr_mmap2 only) */
9482 		/* .min (attr_mmap2 only) */
9483 		/* .ino (attr_mmap2 only) */
9484 		/* .ino_generation (attr_mmap2 only) */
9485 		/* .prot (attr_mmap2 only) */
9486 		/* .flags (attr_mmap2 only) */
9487 	};
9488 
9489 	perf_addr_filters_adjust(vma);
9490 	perf_event_mmap_event(&mmap_event);
9491 }
9492 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9493 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9494 			  unsigned long size, u64 flags)
9495 {
9496 	struct perf_output_handle handle;
9497 	struct perf_sample_data sample;
9498 	struct perf_aux_event {
9499 		struct perf_event_header	header;
9500 		u64				offset;
9501 		u64				size;
9502 		u64				flags;
9503 	} rec = {
9504 		.header = {
9505 			.type = PERF_RECORD_AUX,
9506 			.misc = 0,
9507 			.size = sizeof(rec),
9508 		},
9509 		.offset		= head,
9510 		.size		= size,
9511 		.flags		= flags,
9512 	};
9513 	int ret;
9514 
9515 	perf_event_header__init_id(&rec.header, &sample, event);
9516 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9517 
9518 	if (ret)
9519 		return;
9520 
9521 	perf_output_put(&handle, rec);
9522 	perf_event__output_id_sample(event, &handle, &sample);
9523 
9524 	perf_output_end(&handle);
9525 }
9526 
9527 /*
9528  * Lost/dropped samples logging
9529  */
perf_log_lost_samples(struct perf_event * event,u64 lost)9530 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9531 {
9532 	struct perf_output_handle handle;
9533 	struct perf_sample_data sample;
9534 	int ret;
9535 
9536 	struct {
9537 		struct perf_event_header	header;
9538 		u64				lost;
9539 	} lost_samples_event = {
9540 		.header = {
9541 			.type = PERF_RECORD_LOST_SAMPLES,
9542 			.misc = 0,
9543 			.size = sizeof(lost_samples_event),
9544 		},
9545 		.lost		= lost,
9546 	};
9547 
9548 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9549 
9550 	ret = perf_output_begin(&handle, &sample, event,
9551 				lost_samples_event.header.size);
9552 	if (ret)
9553 		return;
9554 
9555 	perf_output_put(&handle, lost_samples_event);
9556 	perf_event__output_id_sample(event, &handle, &sample);
9557 	perf_output_end(&handle);
9558 }
9559 
9560 /*
9561  * context_switch tracking
9562  */
9563 
9564 struct perf_switch_event {
9565 	struct task_struct	*task;
9566 	struct task_struct	*next_prev;
9567 
9568 	struct {
9569 		struct perf_event_header	header;
9570 		u32				next_prev_pid;
9571 		u32				next_prev_tid;
9572 	} event_id;
9573 };
9574 
perf_event_switch_match(struct perf_event * event)9575 static int perf_event_switch_match(struct perf_event *event)
9576 {
9577 	return event->attr.context_switch;
9578 }
9579 
perf_event_switch_output(struct perf_event * event,void * data)9580 static void perf_event_switch_output(struct perf_event *event, void *data)
9581 {
9582 	struct perf_switch_event *se = data;
9583 	struct perf_output_handle handle;
9584 	struct perf_sample_data sample;
9585 	int ret;
9586 
9587 	if (!perf_event_switch_match(event))
9588 		return;
9589 
9590 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9591 	if (event->ctx->task) {
9592 		se->event_id.header.type = PERF_RECORD_SWITCH;
9593 		se->event_id.header.size = sizeof(se->event_id.header);
9594 	} else {
9595 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9596 		se->event_id.header.size = sizeof(se->event_id);
9597 		se->event_id.next_prev_pid =
9598 					perf_event_pid(event, se->next_prev);
9599 		se->event_id.next_prev_tid =
9600 					perf_event_tid(event, se->next_prev);
9601 	}
9602 
9603 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9604 
9605 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9606 	if (ret)
9607 		return;
9608 
9609 	if (event->ctx->task)
9610 		perf_output_put(&handle, se->event_id.header);
9611 	else
9612 		perf_output_put(&handle, se->event_id);
9613 
9614 	perf_event__output_id_sample(event, &handle, &sample);
9615 
9616 	perf_output_end(&handle);
9617 }
9618 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9619 static void perf_event_switch(struct task_struct *task,
9620 			      struct task_struct *next_prev, bool sched_in)
9621 {
9622 	struct perf_switch_event switch_event;
9623 
9624 	/* N.B. caller checks nr_switch_events != 0 */
9625 
9626 	switch_event = (struct perf_switch_event){
9627 		.task		= task,
9628 		.next_prev	= next_prev,
9629 		.event_id	= {
9630 			.header = {
9631 				/* .type */
9632 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9633 				/* .size */
9634 			},
9635 			/* .next_prev_pid */
9636 			/* .next_prev_tid */
9637 		},
9638 	};
9639 
9640 	if (!sched_in && task_is_runnable(task)) {
9641 		switch_event.event_id.header.misc |=
9642 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9643 	}
9644 
9645 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9646 }
9647 
9648 /*
9649  * IRQ throttle logging
9650  */
9651 
perf_log_throttle(struct perf_event * event,int enable)9652 static void perf_log_throttle(struct perf_event *event, int enable)
9653 {
9654 	struct perf_output_handle handle;
9655 	struct perf_sample_data sample;
9656 	int ret;
9657 
9658 	struct {
9659 		struct perf_event_header	header;
9660 		u64				time;
9661 		u64				id;
9662 		u64				stream_id;
9663 	} throttle_event = {
9664 		.header = {
9665 			.type = PERF_RECORD_THROTTLE,
9666 			.misc = 0,
9667 			.size = sizeof(throttle_event),
9668 		},
9669 		.time		= perf_event_clock(event),
9670 		.id		= primary_event_id(event),
9671 		.stream_id	= event->id,
9672 	};
9673 
9674 	if (enable)
9675 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9676 
9677 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9678 
9679 	ret = perf_output_begin(&handle, &sample, event,
9680 				throttle_event.header.size);
9681 	if (ret)
9682 		return;
9683 
9684 	perf_output_put(&handle, throttle_event);
9685 	perf_event__output_id_sample(event, &handle, &sample);
9686 	perf_output_end(&handle);
9687 }
9688 
9689 /*
9690  * ksymbol register/unregister tracking
9691  */
9692 
9693 struct perf_ksymbol_event {
9694 	const char	*name;
9695 	int		name_len;
9696 	struct {
9697 		struct perf_event_header        header;
9698 		u64				addr;
9699 		u32				len;
9700 		u16				ksym_type;
9701 		u16				flags;
9702 	} event_id;
9703 };
9704 
perf_event_ksymbol_match(struct perf_event * event)9705 static int perf_event_ksymbol_match(struct perf_event *event)
9706 {
9707 	return event->attr.ksymbol;
9708 }
9709 
perf_event_ksymbol_output(struct perf_event * event,void * data)9710 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9711 {
9712 	struct perf_ksymbol_event *ksymbol_event = data;
9713 	struct perf_output_handle handle;
9714 	struct perf_sample_data sample;
9715 	int ret;
9716 
9717 	if (!perf_event_ksymbol_match(event))
9718 		return;
9719 
9720 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9721 				   &sample, event);
9722 	ret = perf_output_begin(&handle, &sample, event,
9723 				ksymbol_event->event_id.header.size);
9724 	if (ret)
9725 		return;
9726 
9727 	perf_output_put(&handle, ksymbol_event->event_id);
9728 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9729 	perf_event__output_id_sample(event, &handle, &sample);
9730 
9731 	perf_output_end(&handle);
9732 }
9733 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9734 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9735 			const char *sym)
9736 {
9737 	struct perf_ksymbol_event ksymbol_event;
9738 	char name[KSYM_NAME_LEN];
9739 	u16 flags = 0;
9740 	int name_len;
9741 
9742 	if (!atomic_read(&nr_ksymbol_events))
9743 		return;
9744 
9745 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9746 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9747 		goto err;
9748 
9749 	strscpy(name, sym);
9750 	name_len = strlen(name) + 1;
9751 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9752 		name[name_len++] = '\0';
9753 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9754 
9755 	if (unregister)
9756 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9757 
9758 	ksymbol_event = (struct perf_ksymbol_event){
9759 		.name = name,
9760 		.name_len = name_len,
9761 		.event_id = {
9762 			.header = {
9763 				.type = PERF_RECORD_KSYMBOL,
9764 				.size = sizeof(ksymbol_event.event_id) +
9765 					name_len,
9766 			},
9767 			.addr = addr,
9768 			.len = len,
9769 			.ksym_type = ksym_type,
9770 			.flags = flags,
9771 		},
9772 	};
9773 
9774 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9775 	return;
9776 err:
9777 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9778 }
9779 
9780 /*
9781  * bpf program load/unload tracking
9782  */
9783 
9784 struct perf_bpf_event {
9785 	struct bpf_prog	*prog;
9786 	struct {
9787 		struct perf_event_header        header;
9788 		u16				type;
9789 		u16				flags;
9790 		u32				id;
9791 		u8				tag[BPF_TAG_SIZE];
9792 	} event_id;
9793 };
9794 
perf_event_bpf_match(struct perf_event * event)9795 static int perf_event_bpf_match(struct perf_event *event)
9796 {
9797 	return event->attr.bpf_event;
9798 }
9799 
perf_event_bpf_output(struct perf_event * event,void * data)9800 static void perf_event_bpf_output(struct perf_event *event, void *data)
9801 {
9802 	struct perf_bpf_event *bpf_event = data;
9803 	struct perf_output_handle handle;
9804 	struct perf_sample_data sample;
9805 	int ret;
9806 
9807 	if (!perf_event_bpf_match(event))
9808 		return;
9809 
9810 	perf_event_header__init_id(&bpf_event->event_id.header,
9811 				   &sample, event);
9812 	ret = perf_output_begin(&handle, &sample, event,
9813 				bpf_event->event_id.header.size);
9814 	if (ret)
9815 		return;
9816 
9817 	perf_output_put(&handle, bpf_event->event_id);
9818 	perf_event__output_id_sample(event, &handle, &sample);
9819 
9820 	perf_output_end(&handle);
9821 }
9822 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9823 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9824 					 enum perf_bpf_event_type type)
9825 {
9826 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9827 	int i;
9828 
9829 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9830 			   (u64)(unsigned long)prog->bpf_func,
9831 			   prog->jited_len, unregister,
9832 			   prog->aux->ksym.name);
9833 
9834 	for (i = 1; i < prog->aux->func_cnt; i++) {
9835 		struct bpf_prog *subprog = prog->aux->func[i];
9836 
9837 		perf_event_ksymbol(
9838 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9839 			(u64)(unsigned long)subprog->bpf_func,
9840 			subprog->jited_len, unregister,
9841 			subprog->aux->ksym.name);
9842 	}
9843 }
9844 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9845 void perf_event_bpf_event(struct bpf_prog *prog,
9846 			  enum perf_bpf_event_type type,
9847 			  u16 flags)
9848 {
9849 	struct perf_bpf_event bpf_event;
9850 
9851 	switch (type) {
9852 	case PERF_BPF_EVENT_PROG_LOAD:
9853 	case PERF_BPF_EVENT_PROG_UNLOAD:
9854 		if (atomic_read(&nr_ksymbol_events))
9855 			perf_event_bpf_emit_ksymbols(prog, type);
9856 		break;
9857 	default:
9858 		return;
9859 	}
9860 
9861 	if (!atomic_read(&nr_bpf_events))
9862 		return;
9863 
9864 	bpf_event = (struct perf_bpf_event){
9865 		.prog = prog,
9866 		.event_id = {
9867 			.header = {
9868 				.type = PERF_RECORD_BPF_EVENT,
9869 				.size = sizeof(bpf_event.event_id),
9870 			},
9871 			.type = type,
9872 			.flags = flags,
9873 			.id = prog->aux->id,
9874 		},
9875 	};
9876 
9877 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9878 
9879 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9880 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9881 }
9882 
9883 struct perf_text_poke_event {
9884 	const void		*old_bytes;
9885 	const void		*new_bytes;
9886 	size_t			pad;
9887 	u16			old_len;
9888 	u16			new_len;
9889 
9890 	struct {
9891 		struct perf_event_header	header;
9892 
9893 		u64				addr;
9894 	} event_id;
9895 };
9896 
perf_event_text_poke_match(struct perf_event * event)9897 static int perf_event_text_poke_match(struct perf_event *event)
9898 {
9899 	return event->attr.text_poke;
9900 }
9901 
perf_event_text_poke_output(struct perf_event * event,void * data)9902 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9903 {
9904 	struct perf_text_poke_event *text_poke_event = data;
9905 	struct perf_output_handle handle;
9906 	struct perf_sample_data sample;
9907 	u64 padding = 0;
9908 	int ret;
9909 
9910 	if (!perf_event_text_poke_match(event))
9911 		return;
9912 
9913 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9914 
9915 	ret = perf_output_begin(&handle, &sample, event,
9916 				text_poke_event->event_id.header.size);
9917 	if (ret)
9918 		return;
9919 
9920 	perf_output_put(&handle, text_poke_event->event_id);
9921 	perf_output_put(&handle, text_poke_event->old_len);
9922 	perf_output_put(&handle, text_poke_event->new_len);
9923 
9924 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9925 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9926 
9927 	if (text_poke_event->pad)
9928 		__output_copy(&handle, &padding, text_poke_event->pad);
9929 
9930 	perf_event__output_id_sample(event, &handle, &sample);
9931 
9932 	perf_output_end(&handle);
9933 }
9934 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9935 void perf_event_text_poke(const void *addr, const void *old_bytes,
9936 			  size_t old_len, const void *new_bytes, size_t new_len)
9937 {
9938 	struct perf_text_poke_event text_poke_event;
9939 	size_t tot, pad;
9940 
9941 	if (!atomic_read(&nr_text_poke_events))
9942 		return;
9943 
9944 	tot  = sizeof(text_poke_event.old_len) + old_len;
9945 	tot += sizeof(text_poke_event.new_len) + new_len;
9946 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9947 
9948 	text_poke_event = (struct perf_text_poke_event){
9949 		.old_bytes    = old_bytes,
9950 		.new_bytes    = new_bytes,
9951 		.pad          = pad,
9952 		.old_len      = old_len,
9953 		.new_len      = new_len,
9954 		.event_id  = {
9955 			.header = {
9956 				.type = PERF_RECORD_TEXT_POKE,
9957 				.misc = PERF_RECORD_MISC_KERNEL,
9958 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9959 			},
9960 			.addr = (unsigned long)addr,
9961 		},
9962 	};
9963 
9964 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9965 }
9966 
perf_event_itrace_started(struct perf_event * event)9967 void perf_event_itrace_started(struct perf_event *event)
9968 {
9969 	event->attach_state |= PERF_ATTACH_ITRACE;
9970 }
9971 
perf_log_itrace_start(struct perf_event * event)9972 static void perf_log_itrace_start(struct perf_event *event)
9973 {
9974 	struct perf_output_handle handle;
9975 	struct perf_sample_data sample;
9976 	struct perf_aux_event {
9977 		struct perf_event_header        header;
9978 		u32				pid;
9979 		u32				tid;
9980 	} rec;
9981 	int ret;
9982 
9983 	if (event->parent)
9984 		event = event->parent;
9985 
9986 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9987 	    event->attach_state & PERF_ATTACH_ITRACE)
9988 		return;
9989 
9990 	rec.header.type	= PERF_RECORD_ITRACE_START;
9991 	rec.header.misc	= 0;
9992 	rec.header.size	= sizeof(rec);
9993 	rec.pid	= perf_event_pid(event, current);
9994 	rec.tid	= perf_event_tid(event, current);
9995 
9996 	perf_event_header__init_id(&rec.header, &sample, event);
9997 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9998 
9999 	if (ret)
10000 		return;
10001 
10002 	perf_output_put(&handle, rec);
10003 	perf_event__output_id_sample(event, &handle, &sample);
10004 
10005 	perf_output_end(&handle);
10006 }
10007 
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)10008 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10009 {
10010 	struct perf_output_handle handle;
10011 	struct perf_sample_data sample;
10012 	struct perf_aux_event {
10013 		struct perf_event_header        header;
10014 		u64				hw_id;
10015 	} rec;
10016 	int ret;
10017 
10018 	if (event->parent)
10019 		event = event->parent;
10020 
10021 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10022 	rec.header.misc	= 0;
10023 	rec.header.size	= sizeof(rec);
10024 	rec.hw_id	= hw_id;
10025 
10026 	perf_event_header__init_id(&rec.header, &sample, event);
10027 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10028 
10029 	if (ret)
10030 		return;
10031 
10032 	perf_output_put(&handle, rec);
10033 	perf_event__output_id_sample(event, &handle, &sample);
10034 
10035 	perf_output_end(&handle);
10036 }
10037 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10038 
10039 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)10040 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10041 {
10042 	struct hw_perf_event *hwc = &event->hw;
10043 	int ret = 0;
10044 	u64 seq;
10045 
10046 	seq = __this_cpu_read(perf_throttled_seq);
10047 	if (seq != hwc->interrupts_seq) {
10048 		hwc->interrupts_seq = seq;
10049 		hwc->interrupts = 1;
10050 	} else {
10051 		hwc->interrupts++;
10052 		if (unlikely(throttle &&
10053 			     hwc->interrupts > max_samples_per_tick)) {
10054 			__this_cpu_inc(perf_throttled_count);
10055 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10056 			hwc->interrupts = MAX_INTERRUPTS;
10057 			perf_log_throttle(event, 0);
10058 			ret = 1;
10059 		}
10060 	}
10061 
10062 	if (event->attr.freq) {
10063 		u64 now = perf_clock();
10064 		s64 delta = now - hwc->freq_time_stamp;
10065 
10066 		hwc->freq_time_stamp = now;
10067 
10068 		if (delta > 0 && delta < 2*TICK_NSEC)
10069 			perf_adjust_period(event, delta, hwc->last_period, true);
10070 	}
10071 
10072 	return ret;
10073 }
10074 
perf_event_account_interrupt(struct perf_event * event)10075 int perf_event_account_interrupt(struct perf_event *event)
10076 {
10077 	return __perf_event_account_interrupt(event, 1);
10078 }
10079 
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)10080 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10081 {
10082 	/*
10083 	 * Due to interrupt latency (AKA "skid"), we may enter the
10084 	 * kernel before taking an overflow, even if the PMU is only
10085 	 * counting user events.
10086 	 */
10087 	if (event->attr.exclude_kernel && !user_mode(regs))
10088 		return false;
10089 
10090 	return true;
10091 }
10092 
10093 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10094 static int bpf_overflow_handler(struct perf_event *event,
10095 				struct perf_sample_data *data,
10096 				struct pt_regs *regs)
10097 {
10098 	struct bpf_perf_event_data_kern ctx = {
10099 		.data = data,
10100 		.event = event,
10101 	};
10102 	struct bpf_prog *prog;
10103 	int ret = 0;
10104 
10105 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10106 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10107 		goto out;
10108 	rcu_read_lock();
10109 	prog = READ_ONCE(event->prog);
10110 	if (prog) {
10111 		perf_prepare_sample(data, event, regs);
10112 		ret = bpf_prog_run(prog, &ctx);
10113 	}
10114 	rcu_read_unlock();
10115 out:
10116 	__this_cpu_dec(bpf_prog_active);
10117 
10118 	return ret;
10119 }
10120 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10121 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10122 					     struct bpf_prog *prog,
10123 					     u64 bpf_cookie)
10124 {
10125 	if (event->overflow_handler_context)
10126 		/* hw breakpoint or kernel counter */
10127 		return -EINVAL;
10128 
10129 	if (event->prog)
10130 		return -EEXIST;
10131 
10132 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10133 		return -EINVAL;
10134 
10135 	if (event->attr.precise_ip &&
10136 	    prog->call_get_stack &&
10137 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10138 	     event->attr.exclude_callchain_kernel ||
10139 	     event->attr.exclude_callchain_user)) {
10140 		/*
10141 		 * On perf_event with precise_ip, calling bpf_get_stack()
10142 		 * may trigger unwinder warnings and occasional crashes.
10143 		 * bpf_get_[stack|stackid] works around this issue by using
10144 		 * callchain attached to perf_sample_data. If the
10145 		 * perf_event does not full (kernel and user) callchain
10146 		 * attached to perf_sample_data, do not allow attaching BPF
10147 		 * program that calls bpf_get_[stack|stackid].
10148 		 */
10149 		return -EPROTO;
10150 	}
10151 
10152 	event->prog = prog;
10153 	event->bpf_cookie = bpf_cookie;
10154 	return 0;
10155 }
10156 
perf_event_free_bpf_handler(struct perf_event * event)10157 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10158 {
10159 	struct bpf_prog *prog = event->prog;
10160 
10161 	if (!prog)
10162 		return;
10163 
10164 	event->prog = NULL;
10165 	bpf_prog_put(prog);
10166 }
10167 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10168 static inline int bpf_overflow_handler(struct perf_event *event,
10169 				       struct perf_sample_data *data,
10170 				       struct pt_regs *regs)
10171 {
10172 	return 1;
10173 }
10174 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10175 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10176 					     struct bpf_prog *prog,
10177 					     u64 bpf_cookie)
10178 {
10179 	return -EOPNOTSUPP;
10180 }
10181 
perf_event_free_bpf_handler(struct perf_event * event)10182 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10183 {
10184 }
10185 #endif
10186 
10187 /*
10188  * Generic event overflow handling, sampling.
10189  */
10190 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)10191 static int __perf_event_overflow(struct perf_event *event,
10192 				 int throttle, struct perf_sample_data *data,
10193 				 struct pt_regs *regs)
10194 {
10195 	int events = atomic_read(&event->event_limit);
10196 	int ret = 0;
10197 
10198 	/*
10199 	 * Non-sampling counters might still use the PMI to fold short
10200 	 * hardware counters, ignore those.
10201 	 */
10202 	if (unlikely(!is_sampling_event(event)))
10203 		return 0;
10204 
10205 	ret = __perf_event_account_interrupt(event, throttle);
10206 
10207 	if (event->attr.aux_pause)
10208 		perf_event_aux_pause(event->aux_event, true);
10209 
10210 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10211 	    !bpf_overflow_handler(event, data, regs))
10212 		goto out;
10213 
10214 	/*
10215 	 * XXX event_limit might not quite work as expected on inherited
10216 	 * events
10217 	 */
10218 
10219 	event->pending_kill = POLL_IN;
10220 	if (events && atomic_dec_and_test(&event->event_limit)) {
10221 		ret = 1;
10222 		event->pending_kill = POLL_HUP;
10223 		perf_event_disable_inatomic(event);
10224 	}
10225 
10226 	if (event->attr.sigtrap) {
10227 		/*
10228 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10229 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10230 		 * it is the first event, on the other hand, we should also not
10231 		 * trigger the WARN or override the data address.
10232 		 */
10233 		bool valid_sample = sample_is_allowed(event, regs);
10234 		unsigned int pending_id = 1;
10235 		enum task_work_notify_mode notify_mode;
10236 
10237 		if (regs)
10238 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10239 
10240 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10241 
10242 		if (!event->pending_work &&
10243 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10244 			event->pending_work = pending_id;
10245 			local_inc(&event->ctx->nr_no_switch_fast);
10246 
10247 			event->pending_addr = 0;
10248 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10249 				event->pending_addr = data->addr;
10250 
10251 		} else if (event->attr.exclude_kernel && valid_sample) {
10252 			/*
10253 			 * Should not be able to return to user space without
10254 			 * consuming pending_work; with exceptions:
10255 			 *
10256 			 *  1. Where !exclude_kernel, events can overflow again
10257 			 *     in the kernel without returning to user space.
10258 			 *
10259 			 *  2. Events that can overflow again before the IRQ-
10260 			 *     work without user space progress (e.g. hrtimer).
10261 			 *     To approximate progress (with false negatives),
10262 			 *     check 32-bit hash of the current IP.
10263 			 */
10264 			WARN_ON_ONCE(event->pending_work != pending_id);
10265 		}
10266 	}
10267 
10268 	READ_ONCE(event->overflow_handler)(event, data, regs);
10269 
10270 	if (*perf_event_fasync(event) && event->pending_kill) {
10271 		event->pending_wakeup = 1;
10272 		irq_work_queue(&event->pending_irq);
10273 	}
10274 out:
10275 	if (event->attr.aux_resume)
10276 		perf_event_aux_pause(event->aux_event, false);
10277 
10278 	return ret;
10279 }
10280 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10281 int perf_event_overflow(struct perf_event *event,
10282 			struct perf_sample_data *data,
10283 			struct pt_regs *regs)
10284 {
10285 	return __perf_event_overflow(event, 1, data, regs);
10286 }
10287 
10288 /*
10289  * Generic software event infrastructure
10290  */
10291 
10292 struct swevent_htable {
10293 	struct swevent_hlist		*swevent_hlist;
10294 	struct mutex			hlist_mutex;
10295 	int				hlist_refcount;
10296 };
10297 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10298 
10299 /*
10300  * We directly increment event->count and keep a second value in
10301  * event->hw.period_left to count intervals. This period event
10302  * is kept in the range [-sample_period, 0] so that we can use the
10303  * sign as trigger.
10304  */
10305 
perf_swevent_set_period(struct perf_event * event)10306 u64 perf_swevent_set_period(struct perf_event *event)
10307 {
10308 	struct hw_perf_event *hwc = &event->hw;
10309 	u64 period = hwc->last_period;
10310 	u64 nr, offset;
10311 	s64 old, val;
10312 
10313 	hwc->last_period = hwc->sample_period;
10314 
10315 	old = local64_read(&hwc->period_left);
10316 	do {
10317 		val = old;
10318 		if (val < 0)
10319 			return 0;
10320 
10321 		nr = div64_u64(period + val, period);
10322 		offset = nr * period;
10323 		val -= offset;
10324 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10325 
10326 	return nr;
10327 }
10328 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10329 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10330 				    struct perf_sample_data *data,
10331 				    struct pt_regs *regs)
10332 {
10333 	struct hw_perf_event *hwc = &event->hw;
10334 	int throttle = 0;
10335 
10336 	if (!overflow)
10337 		overflow = perf_swevent_set_period(event);
10338 
10339 	if (hwc->interrupts == MAX_INTERRUPTS)
10340 		return;
10341 
10342 	for (; overflow; overflow--) {
10343 		if (__perf_event_overflow(event, throttle,
10344 					    data, regs)) {
10345 			/*
10346 			 * We inhibit the overflow from happening when
10347 			 * hwc->interrupts == MAX_INTERRUPTS.
10348 			 */
10349 			break;
10350 		}
10351 		throttle = 1;
10352 	}
10353 }
10354 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10355 static void perf_swevent_event(struct perf_event *event, u64 nr,
10356 			       struct perf_sample_data *data,
10357 			       struct pt_regs *regs)
10358 {
10359 	struct hw_perf_event *hwc = &event->hw;
10360 
10361 	local64_add(nr, &event->count);
10362 
10363 	if (!regs)
10364 		return;
10365 
10366 	if (!is_sampling_event(event))
10367 		return;
10368 
10369 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10370 		data->period = nr;
10371 		return perf_swevent_overflow(event, 1, data, regs);
10372 	} else
10373 		data->period = event->hw.last_period;
10374 
10375 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10376 		return perf_swevent_overflow(event, 1, data, regs);
10377 
10378 	if (local64_add_negative(nr, &hwc->period_left))
10379 		return;
10380 
10381 	perf_swevent_overflow(event, 0, data, regs);
10382 }
10383 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10384 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10385 {
10386 	if (event->hw.state & PERF_HES_STOPPED)
10387 		return 1;
10388 
10389 	if (regs) {
10390 		if (event->attr.exclude_user && user_mode(regs))
10391 			return 1;
10392 
10393 		if (event->attr.exclude_kernel && !user_mode(regs))
10394 			return 1;
10395 	}
10396 
10397 	return 0;
10398 }
10399 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10400 static int perf_swevent_match(struct perf_event *event,
10401 				enum perf_type_id type,
10402 				u32 event_id,
10403 				struct perf_sample_data *data,
10404 				struct pt_regs *regs)
10405 {
10406 	if (event->attr.type != type)
10407 		return 0;
10408 
10409 	if (event->attr.config != event_id)
10410 		return 0;
10411 
10412 	if (perf_exclude_event(event, regs))
10413 		return 0;
10414 
10415 	return 1;
10416 }
10417 
swevent_hash(u64 type,u32 event_id)10418 static inline u64 swevent_hash(u64 type, u32 event_id)
10419 {
10420 	u64 val = event_id | (type << 32);
10421 
10422 	return hash_64(val, SWEVENT_HLIST_BITS);
10423 }
10424 
10425 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10426 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10427 {
10428 	u64 hash = swevent_hash(type, event_id);
10429 
10430 	return &hlist->heads[hash];
10431 }
10432 
10433 /* For the read side: events when they trigger */
10434 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10435 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10436 {
10437 	struct swevent_hlist *hlist;
10438 
10439 	hlist = rcu_dereference(swhash->swevent_hlist);
10440 	if (!hlist)
10441 		return NULL;
10442 
10443 	return __find_swevent_head(hlist, type, event_id);
10444 }
10445 
10446 /* For the event head insertion and removal in the hlist */
10447 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10448 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10449 {
10450 	struct swevent_hlist *hlist;
10451 	u32 event_id = event->attr.config;
10452 	u64 type = event->attr.type;
10453 
10454 	/*
10455 	 * Event scheduling is always serialized against hlist allocation
10456 	 * and release. Which makes the protected version suitable here.
10457 	 * The context lock guarantees that.
10458 	 */
10459 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10460 					  lockdep_is_held(&event->ctx->lock));
10461 	if (!hlist)
10462 		return NULL;
10463 
10464 	return __find_swevent_head(hlist, type, event_id);
10465 }
10466 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10467 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10468 				    u64 nr,
10469 				    struct perf_sample_data *data,
10470 				    struct pt_regs *regs)
10471 {
10472 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10473 	struct perf_event *event;
10474 	struct hlist_head *head;
10475 
10476 	rcu_read_lock();
10477 	head = find_swevent_head_rcu(swhash, type, event_id);
10478 	if (!head)
10479 		goto end;
10480 
10481 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10482 		if (perf_swevent_match(event, type, event_id, data, regs))
10483 			perf_swevent_event(event, nr, data, regs);
10484 	}
10485 end:
10486 	rcu_read_unlock();
10487 }
10488 
10489 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10490 
perf_swevent_get_recursion_context(void)10491 int perf_swevent_get_recursion_context(void)
10492 {
10493 	return get_recursion_context(current->perf_recursion);
10494 }
10495 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10496 
perf_swevent_put_recursion_context(int rctx)10497 void perf_swevent_put_recursion_context(int rctx)
10498 {
10499 	put_recursion_context(current->perf_recursion, rctx);
10500 }
10501 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10502 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10503 {
10504 	struct perf_sample_data data;
10505 
10506 	if (WARN_ON_ONCE(!regs))
10507 		return;
10508 
10509 	perf_sample_data_init(&data, addr, 0);
10510 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10511 }
10512 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10513 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10514 {
10515 	int rctx;
10516 
10517 	preempt_disable_notrace();
10518 	rctx = perf_swevent_get_recursion_context();
10519 	if (unlikely(rctx < 0))
10520 		goto fail;
10521 
10522 	___perf_sw_event(event_id, nr, regs, addr);
10523 
10524 	perf_swevent_put_recursion_context(rctx);
10525 fail:
10526 	preempt_enable_notrace();
10527 }
10528 
perf_swevent_read(struct perf_event * event)10529 static void perf_swevent_read(struct perf_event *event)
10530 {
10531 }
10532 
perf_swevent_add(struct perf_event * event,int flags)10533 static int perf_swevent_add(struct perf_event *event, int flags)
10534 {
10535 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10536 	struct hw_perf_event *hwc = &event->hw;
10537 	struct hlist_head *head;
10538 
10539 	if (is_sampling_event(event)) {
10540 		hwc->last_period = hwc->sample_period;
10541 		perf_swevent_set_period(event);
10542 	}
10543 
10544 	hwc->state = !(flags & PERF_EF_START);
10545 
10546 	head = find_swevent_head(swhash, event);
10547 	if (WARN_ON_ONCE(!head))
10548 		return -EINVAL;
10549 
10550 	hlist_add_head_rcu(&event->hlist_entry, head);
10551 	perf_event_update_userpage(event);
10552 
10553 	return 0;
10554 }
10555 
perf_swevent_del(struct perf_event * event,int flags)10556 static void perf_swevent_del(struct perf_event *event, int flags)
10557 {
10558 	hlist_del_rcu(&event->hlist_entry);
10559 }
10560 
perf_swevent_start(struct perf_event * event,int flags)10561 static void perf_swevent_start(struct perf_event *event, int flags)
10562 {
10563 	event->hw.state = 0;
10564 }
10565 
perf_swevent_stop(struct perf_event * event,int flags)10566 static void perf_swevent_stop(struct perf_event *event, int flags)
10567 {
10568 	event->hw.state = PERF_HES_STOPPED;
10569 }
10570 
10571 /* Deref the hlist from the update side */
10572 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10573 swevent_hlist_deref(struct swevent_htable *swhash)
10574 {
10575 	return rcu_dereference_protected(swhash->swevent_hlist,
10576 					 lockdep_is_held(&swhash->hlist_mutex));
10577 }
10578 
swevent_hlist_release(struct swevent_htable * swhash)10579 static void swevent_hlist_release(struct swevent_htable *swhash)
10580 {
10581 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10582 
10583 	if (!hlist)
10584 		return;
10585 
10586 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10587 	kfree_rcu(hlist, rcu_head);
10588 }
10589 
swevent_hlist_put_cpu(int cpu)10590 static void swevent_hlist_put_cpu(int cpu)
10591 {
10592 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10593 
10594 	mutex_lock(&swhash->hlist_mutex);
10595 
10596 	if (!--swhash->hlist_refcount)
10597 		swevent_hlist_release(swhash);
10598 
10599 	mutex_unlock(&swhash->hlist_mutex);
10600 }
10601 
swevent_hlist_put(void)10602 static void swevent_hlist_put(void)
10603 {
10604 	int cpu;
10605 
10606 	for_each_possible_cpu(cpu)
10607 		swevent_hlist_put_cpu(cpu);
10608 }
10609 
swevent_hlist_get_cpu(int cpu)10610 static int swevent_hlist_get_cpu(int cpu)
10611 {
10612 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10613 	int err = 0;
10614 
10615 	mutex_lock(&swhash->hlist_mutex);
10616 	if (!swevent_hlist_deref(swhash) &&
10617 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10618 		struct swevent_hlist *hlist;
10619 
10620 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10621 		if (!hlist) {
10622 			err = -ENOMEM;
10623 			goto exit;
10624 		}
10625 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10626 	}
10627 	swhash->hlist_refcount++;
10628 exit:
10629 	mutex_unlock(&swhash->hlist_mutex);
10630 
10631 	return err;
10632 }
10633 
swevent_hlist_get(void)10634 static int swevent_hlist_get(void)
10635 {
10636 	int err, cpu, failed_cpu;
10637 
10638 	mutex_lock(&pmus_lock);
10639 	for_each_possible_cpu(cpu) {
10640 		err = swevent_hlist_get_cpu(cpu);
10641 		if (err) {
10642 			failed_cpu = cpu;
10643 			goto fail;
10644 		}
10645 	}
10646 	mutex_unlock(&pmus_lock);
10647 	return 0;
10648 fail:
10649 	for_each_possible_cpu(cpu) {
10650 		if (cpu == failed_cpu)
10651 			break;
10652 		swevent_hlist_put_cpu(cpu);
10653 	}
10654 	mutex_unlock(&pmus_lock);
10655 	return err;
10656 }
10657 
10658 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10659 
sw_perf_event_destroy(struct perf_event * event)10660 static void sw_perf_event_destroy(struct perf_event *event)
10661 {
10662 	u64 event_id = event->attr.config;
10663 
10664 	WARN_ON(event->parent);
10665 
10666 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10667 	swevent_hlist_put();
10668 }
10669 
10670 static struct pmu perf_cpu_clock; /* fwd declaration */
10671 static struct pmu perf_task_clock;
10672 
perf_swevent_init(struct perf_event * event)10673 static int perf_swevent_init(struct perf_event *event)
10674 {
10675 	u64 event_id = event->attr.config;
10676 
10677 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10678 		return -ENOENT;
10679 
10680 	/*
10681 	 * no branch sampling for software events
10682 	 */
10683 	if (has_branch_stack(event))
10684 		return -EOPNOTSUPP;
10685 
10686 	switch (event_id) {
10687 	case PERF_COUNT_SW_CPU_CLOCK:
10688 		event->attr.type = perf_cpu_clock.type;
10689 		return -ENOENT;
10690 	case PERF_COUNT_SW_TASK_CLOCK:
10691 		event->attr.type = perf_task_clock.type;
10692 		return -ENOENT;
10693 
10694 	default:
10695 		break;
10696 	}
10697 
10698 	if (event_id >= PERF_COUNT_SW_MAX)
10699 		return -ENOENT;
10700 
10701 	if (!event->parent) {
10702 		int err;
10703 
10704 		err = swevent_hlist_get();
10705 		if (err)
10706 			return err;
10707 
10708 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10709 		event->destroy = sw_perf_event_destroy;
10710 	}
10711 
10712 	return 0;
10713 }
10714 
10715 static struct pmu perf_swevent = {
10716 	.task_ctx_nr	= perf_sw_context,
10717 
10718 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10719 
10720 	.event_init	= perf_swevent_init,
10721 	.add		= perf_swevent_add,
10722 	.del		= perf_swevent_del,
10723 	.start		= perf_swevent_start,
10724 	.stop		= perf_swevent_stop,
10725 	.read		= perf_swevent_read,
10726 };
10727 
10728 #ifdef CONFIG_EVENT_TRACING
10729 
tp_perf_event_destroy(struct perf_event * event)10730 static void tp_perf_event_destroy(struct perf_event *event)
10731 {
10732 	perf_trace_destroy(event);
10733 }
10734 
perf_tp_event_init(struct perf_event * event)10735 static int perf_tp_event_init(struct perf_event *event)
10736 {
10737 	int err;
10738 
10739 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10740 		return -ENOENT;
10741 
10742 	/*
10743 	 * no branch sampling for tracepoint events
10744 	 */
10745 	if (has_branch_stack(event))
10746 		return -EOPNOTSUPP;
10747 
10748 	err = perf_trace_init(event);
10749 	if (err)
10750 		return err;
10751 
10752 	event->destroy = tp_perf_event_destroy;
10753 
10754 	return 0;
10755 }
10756 
10757 static struct pmu perf_tracepoint = {
10758 	.task_ctx_nr	= perf_sw_context,
10759 
10760 	.event_init	= perf_tp_event_init,
10761 	.add		= perf_trace_add,
10762 	.del		= perf_trace_del,
10763 	.start		= perf_swevent_start,
10764 	.stop		= perf_swevent_stop,
10765 	.read		= perf_swevent_read,
10766 };
10767 
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10768 static int perf_tp_filter_match(struct perf_event *event,
10769 				struct perf_raw_record *raw)
10770 {
10771 	void *record = raw->frag.data;
10772 
10773 	/* only top level events have filters set */
10774 	if (event->parent)
10775 		event = event->parent;
10776 
10777 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10778 		return 1;
10779 	return 0;
10780 }
10781 
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10782 static int perf_tp_event_match(struct perf_event *event,
10783 				struct perf_raw_record *raw,
10784 				struct pt_regs *regs)
10785 {
10786 	if (event->hw.state & PERF_HES_STOPPED)
10787 		return 0;
10788 	/*
10789 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10790 	 */
10791 	if (event->attr.exclude_kernel && !user_mode(regs))
10792 		return 0;
10793 
10794 	if (!perf_tp_filter_match(event, raw))
10795 		return 0;
10796 
10797 	return 1;
10798 }
10799 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10800 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10801 			       struct trace_event_call *call, u64 count,
10802 			       struct pt_regs *regs, struct hlist_head *head,
10803 			       struct task_struct *task)
10804 {
10805 	if (bpf_prog_array_valid(call)) {
10806 		*(struct pt_regs **)raw_data = regs;
10807 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10808 			perf_swevent_put_recursion_context(rctx);
10809 			return;
10810 		}
10811 	}
10812 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10813 		      rctx, task);
10814 }
10815 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10816 
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10817 static void __perf_tp_event_target_task(u64 count, void *record,
10818 					struct pt_regs *regs,
10819 					struct perf_sample_data *data,
10820 					struct perf_raw_record *raw,
10821 					struct perf_event *event)
10822 {
10823 	struct trace_entry *entry = record;
10824 
10825 	if (event->attr.config != entry->type)
10826 		return;
10827 	/* Cannot deliver synchronous signal to other task. */
10828 	if (event->attr.sigtrap)
10829 		return;
10830 	if (perf_tp_event_match(event, raw, regs)) {
10831 		perf_sample_data_init(data, 0, 0);
10832 		perf_sample_save_raw_data(data, event, raw);
10833 		perf_swevent_event(event, count, data, regs);
10834 	}
10835 }
10836 
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10837 static void perf_tp_event_target_task(u64 count, void *record,
10838 				      struct pt_regs *regs,
10839 				      struct perf_sample_data *data,
10840 				      struct perf_raw_record *raw,
10841 				      struct perf_event_context *ctx)
10842 {
10843 	unsigned int cpu = smp_processor_id();
10844 	struct pmu *pmu = &perf_tracepoint;
10845 	struct perf_event *event, *sibling;
10846 
10847 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10848 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10849 		for_each_sibling_event(sibling, event)
10850 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10851 	}
10852 
10853 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10854 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10855 		for_each_sibling_event(sibling, event)
10856 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10857 	}
10858 }
10859 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10860 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10861 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10862 		   struct task_struct *task)
10863 {
10864 	struct perf_sample_data data;
10865 	struct perf_event *event;
10866 
10867 	struct perf_raw_record raw = {
10868 		.frag = {
10869 			.size = entry_size,
10870 			.data = record,
10871 		},
10872 	};
10873 
10874 	perf_trace_buf_update(record, event_type);
10875 
10876 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10877 		if (perf_tp_event_match(event, &raw, regs)) {
10878 			/*
10879 			 * Here use the same on-stack perf_sample_data,
10880 			 * some members in data are event-specific and
10881 			 * need to be re-computed for different sweveents.
10882 			 * Re-initialize data->sample_flags safely to avoid
10883 			 * the problem that next event skips preparing data
10884 			 * because data->sample_flags is set.
10885 			 */
10886 			perf_sample_data_init(&data, 0, 0);
10887 			perf_sample_save_raw_data(&data, event, &raw);
10888 			perf_swevent_event(event, count, &data, regs);
10889 		}
10890 	}
10891 
10892 	/*
10893 	 * If we got specified a target task, also iterate its context and
10894 	 * deliver this event there too.
10895 	 */
10896 	if (task && task != current) {
10897 		struct perf_event_context *ctx;
10898 
10899 		rcu_read_lock();
10900 		ctx = rcu_dereference(task->perf_event_ctxp);
10901 		if (!ctx)
10902 			goto unlock;
10903 
10904 		raw_spin_lock(&ctx->lock);
10905 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10906 		raw_spin_unlock(&ctx->lock);
10907 unlock:
10908 		rcu_read_unlock();
10909 	}
10910 
10911 	perf_swevent_put_recursion_context(rctx);
10912 }
10913 EXPORT_SYMBOL_GPL(perf_tp_event);
10914 
10915 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10916 /*
10917  * Flags in config, used by dynamic PMU kprobe and uprobe
10918  * The flags should match following PMU_FORMAT_ATTR().
10919  *
10920  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10921  *                               if not set, create kprobe/uprobe
10922  *
10923  * The following values specify a reference counter (or semaphore in the
10924  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10925  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10926  *
10927  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10928  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10929  */
10930 enum perf_probe_config {
10931 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10932 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10933 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10934 };
10935 
10936 PMU_FORMAT_ATTR(retprobe, "config:0");
10937 #endif
10938 
10939 #ifdef CONFIG_KPROBE_EVENTS
10940 static struct attribute *kprobe_attrs[] = {
10941 	&format_attr_retprobe.attr,
10942 	NULL,
10943 };
10944 
10945 static struct attribute_group kprobe_format_group = {
10946 	.name = "format",
10947 	.attrs = kprobe_attrs,
10948 };
10949 
10950 static const struct attribute_group *kprobe_attr_groups[] = {
10951 	&kprobe_format_group,
10952 	NULL,
10953 };
10954 
10955 static int perf_kprobe_event_init(struct perf_event *event);
10956 static struct pmu perf_kprobe = {
10957 	.task_ctx_nr	= perf_sw_context,
10958 	.event_init	= perf_kprobe_event_init,
10959 	.add		= perf_trace_add,
10960 	.del		= perf_trace_del,
10961 	.start		= perf_swevent_start,
10962 	.stop		= perf_swevent_stop,
10963 	.read		= perf_swevent_read,
10964 	.attr_groups	= kprobe_attr_groups,
10965 };
10966 
perf_kprobe_event_init(struct perf_event * event)10967 static int perf_kprobe_event_init(struct perf_event *event)
10968 {
10969 	int err;
10970 	bool is_retprobe;
10971 
10972 	if (event->attr.type != perf_kprobe.type)
10973 		return -ENOENT;
10974 
10975 	if (!perfmon_capable())
10976 		return -EACCES;
10977 
10978 	/*
10979 	 * no branch sampling for probe events
10980 	 */
10981 	if (has_branch_stack(event))
10982 		return -EOPNOTSUPP;
10983 
10984 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10985 	err = perf_kprobe_init(event, is_retprobe);
10986 	if (err)
10987 		return err;
10988 
10989 	event->destroy = perf_kprobe_destroy;
10990 
10991 	return 0;
10992 }
10993 #endif /* CONFIG_KPROBE_EVENTS */
10994 
10995 #ifdef CONFIG_UPROBE_EVENTS
10996 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10997 
10998 static struct attribute *uprobe_attrs[] = {
10999 	&format_attr_retprobe.attr,
11000 	&format_attr_ref_ctr_offset.attr,
11001 	NULL,
11002 };
11003 
11004 static struct attribute_group uprobe_format_group = {
11005 	.name = "format",
11006 	.attrs = uprobe_attrs,
11007 };
11008 
11009 static const struct attribute_group *uprobe_attr_groups[] = {
11010 	&uprobe_format_group,
11011 	NULL,
11012 };
11013 
11014 static int perf_uprobe_event_init(struct perf_event *event);
11015 static struct pmu perf_uprobe = {
11016 	.task_ctx_nr	= perf_sw_context,
11017 	.event_init	= perf_uprobe_event_init,
11018 	.add		= perf_trace_add,
11019 	.del		= perf_trace_del,
11020 	.start		= perf_swevent_start,
11021 	.stop		= perf_swevent_stop,
11022 	.read		= perf_swevent_read,
11023 	.attr_groups	= uprobe_attr_groups,
11024 };
11025 
perf_uprobe_event_init(struct perf_event * event)11026 static int perf_uprobe_event_init(struct perf_event *event)
11027 {
11028 	int err;
11029 	unsigned long ref_ctr_offset;
11030 	bool is_retprobe;
11031 
11032 	if (event->attr.type != perf_uprobe.type)
11033 		return -ENOENT;
11034 
11035 	if (!perfmon_capable())
11036 		return -EACCES;
11037 
11038 	/*
11039 	 * no branch sampling for probe events
11040 	 */
11041 	if (has_branch_stack(event))
11042 		return -EOPNOTSUPP;
11043 
11044 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11045 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11046 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11047 	if (err)
11048 		return err;
11049 
11050 	event->destroy = perf_uprobe_destroy;
11051 
11052 	return 0;
11053 }
11054 #endif /* CONFIG_UPROBE_EVENTS */
11055 
perf_tp_register(void)11056 static inline void perf_tp_register(void)
11057 {
11058 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11059 #ifdef CONFIG_KPROBE_EVENTS
11060 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11061 #endif
11062 #ifdef CONFIG_UPROBE_EVENTS
11063 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11064 #endif
11065 }
11066 
perf_event_free_filter(struct perf_event * event)11067 static void perf_event_free_filter(struct perf_event *event)
11068 {
11069 	ftrace_profile_free_filter(event);
11070 }
11071 
11072 /*
11073  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11074  * with perf_event_open()
11075  */
perf_event_is_tracing(struct perf_event * event)11076 static inline bool perf_event_is_tracing(struct perf_event *event)
11077 {
11078 	if (event->pmu == &perf_tracepoint)
11079 		return true;
11080 #ifdef CONFIG_KPROBE_EVENTS
11081 	if (event->pmu == &perf_kprobe)
11082 		return true;
11083 #endif
11084 #ifdef CONFIG_UPROBE_EVENTS
11085 	if (event->pmu == &perf_uprobe)
11086 		return true;
11087 #endif
11088 	return false;
11089 }
11090 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11091 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
11092 			    u64 bpf_cookie)
11093 {
11094 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11095 
11096 	if (!perf_event_is_tracing(event))
11097 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11098 
11099 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11100 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11101 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11102 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11103 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11104 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11105 		return -EINVAL;
11106 
11107 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11108 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11109 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11110 		return -EINVAL;
11111 
11112 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11113 		/* only uprobe programs are allowed to be sleepable */
11114 		return -EINVAL;
11115 
11116 	/* Kprobe override only works for kprobes, not uprobes. */
11117 	if (prog->kprobe_override && !is_kprobe)
11118 		return -EINVAL;
11119 
11120 	if (is_tracepoint || is_syscall_tp) {
11121 		int off = trace_event_get_offsets(event->tp_event);
11122 
11123 		if (prog->aux->max_ctx_offset > off)
11124 			return -EACCES;
11125 	}
11126 
11127 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11128 }
11129 
perf_event_free_bpf_prog(struct perf_event * event)11130 void perf_event_free_bpf_prog(struct perf_event *event)
11131 {
11132 	if (!event->prog)
11133 		return;
11134 
11135 	if (!perf_event_is_tracing(event)) {
11136 		perf_event_free_bpf_handler(event);
11137 		return;
11138 	}
11139 	perf_event_detach_bpf_prog(event);
11140 }
11141 
11142 #else
11143 
perf_tp_register(void)11144 static inline void perf_tp_register(void)
11145 {
11146 }
11147 
perf_event_free_filter(struct perf_event * event)11148 static void perf_event_free_filter(struct perf_event *event)
11149 {
11150 }
11151 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11152 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
11153 			    u64 bpf_cookie)
11154 {
11155 	return -ENOENT;
11156 }
11157 
perf_event_free_bpf_prog(struct perf_event * event)11158 void perf_event_free_bpf_prog(struct perf_event *event)
11159 {
11160 }
11161 #endif /* CONFIG_EVENT_TRACING */
11162 
11163 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)11164 void perf_bp_event(struct perf_event *bp, void *data)
11165 {
11166 	struct perf_sample_data sample;
11167 	struct pt_regs *regs = data;
11168 
11169 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11170 
11171 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11172 		perf_swevent_event(bp, 1, &sample, regs);
11173 }
11174 #endif
11175 
11176 /*
11177  * Allocate a new address filter
11178  */
11179 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)11180 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11181 {
11182 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11183 	struct perf_addr_filter *filter;
11184 
11185 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11186 	if (!filter)
11187 		return NULL;
11188 
11189 	INIT_LIST_HEAD(&filter->entry);
11190 	list_add_tail(&filter->entry, filters);
11191 
11192 	return filter;
11193 }
11194 
free_filters_list(struct list_head * filters)11195 static void free_filters_list(struct list_head *filters)
11196 {
11197 	struct perf_addr_filter *filter, *iter;
11198 
11199 	list_for_each_entry_safe(filter, iter, filters, entry) {
11200 		path_put(&filter->path);
11201 		list_del(&filter->entry);
11202 		kfree(filter);
11203 	}
11204 }
11205 
11206 /*
11207  * Free existing address filters and optionally install new ones
11208  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)11209 static void perf_addr_filters_splice(struct perf_event *event,
11210 				     struct list_head *head)
11211 {
11212 	unsigned long flags;
11213 	LIST_HEAD(list);
11214 
11215 	if (!has_addr_filter(event))
11216 		return;
11217 
11218 	/* don't bother with children, they don't have their own filters */
11219 	if (event->parent)
11220 		return;
11221 
11222 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11223 
11224 	list_splice_init(&event->addr_filters.list, &list);
11225 	if (head)
11226 		list_splice(head, &event->addr_filters.list);
11227 
11228 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11229 
11230 	free_filters_list(&list);
11231 }
11232 
perf_free_addr_filters(struct perf_event * event)11233 static void perf_free_addr_filters(struct perf_event *event)
11234 {
11235 	/*
11236 	 * Used during free paths, there is no concurrency.
11237 	 */
11238 	if (list_empty(&event->addr_filters.list))
11239 		return;
11240 
11241 	perf_addr_filters_splice(event, NULL);
11242 }
11243 
11244 /*
11245  * Scan through mm's vmas and see if one of them matches the
11246  * @filter; if so, adjust filter's address range.
11247  * Called with mm::mmap_lock down for reading.
11248  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)11249 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11250 				   struct mm_struct *mm,
11251 				   struct perf_addr_filter_range *fr)
11252 {
11253 	struct vm_area_struct *vma;
11254 	VMA_ITERATOR(vmi, mm, 0);
11255 
11256 	for_each_vma(vmi, vma) {
11257 		if (!vma->vm_file)
11258 			continue;
11259 
11260 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11261 			return;
11262 	}
11263 }
11264 
11265 /*
11266  * Update event's address range filters based on the
11267  * task's existing mappings, if any.
11268  */
perf_event_addr_filters_apply(struct perf_event * event)11269 static void perf_event_addr_filters_apply(struct perf_event *event)
11270 {
11271 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11272 	struct task_struct *task = READ_ONCE(event->ctx->task);
11273 	struct perf_addr_filter *filter;
11274 	struct mm_struct *mm = NULL;
11275 	unsigned int count = 0;
11276 	unsigned long flags;
11277 
11278 	/*
11279 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11280 	 * will stop on the parent's child_mutex that our caller is also holding
11281 	 */
11282 	if (task == TASK_TOMBSTONE)
11283 		return;
11284 
11285 	if (ifh->nr_file_filters) {
11286 		mm = get_task_mm(task);
11287 		if (!mm)
11288 			goto restart;
11289 
11290 		mmap_read_lock(mm);
11291 	}
11292 
11293 	raw_spin_lock_irqsave(&ifh->lock, flags);
11294 	list_for_each_entry(filter, &ifh->list, entry) {
11295 		if (filter->path.dentry) {
11296 			/*
11297 			 * Adjust base offset if the filter is associated to a
11298 			 * binary that needs to be mapped:
11299 			 */
11300 			event->addr_filter_ranges[count].start = 0;
11301 			event->addr_filter_ranges[count].size = 0;
11302 
11303 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11304 		} else {
11305 			event->addr_filter_ranges[count].start = filter->offset;
11306 			event->addr_filter_ranges[count].size  = filter->size;
11307 		}
11308 
11309 		count++;
11310 	}
11311 
11312 	event->addr_filters_gen++;
11313 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11314 
11315 	if (ifh->nr_file_filters) {
11316 		mmap_read_unlock(mm);
11317 
11318 		mmput(mm);
11319 	}
11320 
11321 restart:
11322 	perf_event_stop(event, 1);
11323 }
11324 
11325 /*
11326  * Address range filtering: limiting the data to certain
11327  * instruction address ranges. Filters are ioctl()ed to us from
11328  * userspace as ascii strings.
11329  *
11330  * Filter string format:
11331  *
11332  * ACTION RANGE_SPEC
11333  * where ACTION is one of the
11334  *  * "filter": limit the trace to this region
11335  *  * "start": start tracing from this address
11336  *  * "stop": stop tracing at this address/region;
11337  * RANGE_SPEC is
11338  *  * for kernel addresses: <start address>[/<size>]
11339  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11340  *
11341  * if <size> is not specified or is zero, the range is treated as a single
11342  * address; not valid for ACTION=="filter".
11343  */
11344 enum {
11345 	IF_ACT_NONE = -1,
11346 	IF_ACT_FILTER,
11347 	IF_ACT_START,
11348 	IF_ACT_STOP,
11349 	IF_SRC_FILE,
11350 	IF_SRC_KERNEL,
11351 	IF_SRC_FILEADDR,
11352 	IF_SRC_KERNELADDR,
11353 };
11354 
11355 enum {
11356 	IF_STATE_ACTION = 0,
11357 	IF_STATE_SOURCE,
11358 	IF_STATE_END,
11359 };
11360 
11361 static const match_table_t if_tokens = {
11362 	{ IF_ACT_FILTER,	"filter" },
11363 	{ IF_ACT_START,		"start" },
11364 	{ IF_ACT_STOP,		"stop" },
11365 	{ IF_SRC_FILE,		"%u/%u@%s" },
11366 	{ IF_SRC_KERNEL,	"%u/%u" },
11367 	{ IF_SRC_FILEADDR,	"%u@%s" },
11368 	{ IF_SRC_KERNELADDR,	"%u" },
11369 	{ IF_ACT_NONE,		NULL },
11370 };
11371 
11372 /*
11373  * Address filter string parser
11374  */
11375 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11376 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11377 			     struct list_head *filters)
11378 {
11379 	struct perf_addr_filter *filter = NULL;
11380 	char *start, *orig, *filename = NULL;
11381 	substring_t args[MAX_OPT_ARGS];
11382 	int state = IF_STATE_ACTION, token;
11383 	unsigned int kernel = 0;
11384 	int ret = -EINVAL;
11385 
11386 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11387 	if (!fstr)
11388 		return -ENOMEM;
11389 
11390 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11391 		static const enum perf_addr_filter_action_t actions[] = {
11392 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11393 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11394 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11395 		};
11396 		ret = -EINVAL;
11397 
11398 		if (!*start)
11399 			continue;
11400 
11401 		/* filter definition begins */
11402 		if (state == IF_STATE_ACTION) {
11403 			filter = perf_addr_filter_new(event, filters);
11404 			if (!filter)
11405 				goto fail;
11406 		}
11407 
11408 		token = match_token(start, if_tokens, args);
11409 		switch (token) {
11410 		case IF_ACT_FILTER:
11411 		case IF_ACT_START:
11412 		case IF_ACT_STOP:
11413 			if (state != IF_STATE_ACTION)
11414 				goto fail;
11415 
11416 			filter->action = actions[token];
11417 			state = IF_STATE_SOURCE;
11418 			break;
11419 
11420 		case IF_SRC_KERNELADDR:
11421 		case IF_SRC_KERNEL:
11422 			kernel = 1;
11423 			fallthrough;
11424 
11425 		case IF_SRC_FILEADDR:
11426 		case IF_SRC_FILE:
11427 			if (state != IF_STATE_SOURCE)
11428 				goto fail;
11429 
11430 			*args[0].to = 0;
11431 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11432 			if (ret)
11433 				goto fail;
11434 
11435 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11436 				*args[1].to = 0;
11437 				ret = kstrtoul(args[1].from, 0, &filter->size);
11438 				if (ret)
11439 					goto fail;
11440 			}
11441 
11442 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11443 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11444 
11445 				kfree(filename);
11446 				filename = match_strdup(&args[fpos]);
11447 				if (!filename) {
11448 					ret = -ENOMEM;
11449 					goto fail;
11450 				}
11451 			}
11452 
11453 			state = IF_STATE_END;
11454 			break;
11455 
11456 		default:
11457 			goto fail;
11458 		}
11459 
11460 		/*
11461 		 * Filter definition is fully parsed, validate and install it.
11462 		 * Make sure that it doesn't contradict itself or the event's
11463 		 * attribute.
11464 		 */
11465 		if (state == IF_STATE_END) {
11466 			ret = -EINVAL;
11467 
11468 			/*
11469 			 * ACTION "filter" must have a non-zero length region
11470 			 * specified.
11471 			 */
11472 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11473 			    !filter->size)
11474 				goto fail;
11475 
11476 			if (!kernel) {
11477 				if (!filename)
11478 					goto fail;
11479 
11480 				/*
11481 				 * For now, we only support file-based filters
11482 				 * in per-task events; doing so for CPU-wide
11483 				 * events requires additional context switching
11484 				 * trickery, since same object code will be
11485 				 * mapped at different virtual addresses in
11486 				 * different processes.
11487 				 */
11488 				ret = -EOPNOTSUPP;
11489 				if (!event->ctx->task)
11490 					goto fail;
11491 
11492 				/* look up the path and grab its inode */
11493 				ret = kern_path(filename, LOOKUP_FOLLOW,
11494 						&filter->path);
11495 				if (ret)
11496 					goto fail;
11497 
11498 				ret = -EINVAL;
11499 				if (!filter->path.dentry ||
11500 				    !S_ISREG(d_inode(filter->path.dentry)
11501 					     ->i_mode))
11502 					goto fail;
11503 
11504 				event->addr_filters.nr_file_filters++;
11505 			}
11506 
11507 			/* ready to consume more filters */
11508 			kfree(filename);
11509 			filename = NULL;
11510 			state = IF_STATE_ACTION;
11511 			filter = NULL;
11512 			kernel = 0;
11513 		}
11514 	}
11515 
11516 	if (state != IF_STATE_ACTION)
11517 		goto fail;
11518 
11519 	kfree(filename);
11520 	kfree(orig);
11521 
11522 	return 0;
11523 
11524 fail:
11525 	kfree(filename);
11526 	free_filters_list(filters);
11527 	kfree(orig);
11528 
11529 	return ret;
11530 }
11531 
11532 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11533 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11534 {
11535 	LIST_HEAD(filters);
11536 	int ret;
11537 
11538 	/*
11539 	 * Since this is called in perf_ioctl() path, we're already holding
11540 	 * ctx::mutex.
11541 	 */
11542 	lockdep_assert_held(&event->ctx->mutex);
11543 
11544 	if (WARN_ON_ONCE(event->parent))
11545 		return -EINVAL;
11546 
11547 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11548 	if (ret)
11549 		goto fail_clear_files;
11550 
11551 	ret = event->pmu->addr_filters_validate(&filters);
11552 	if (ret)
11553 		goto fail_free_filters;
11554 
11555 	/* remove existing filters, if any */
11556 	perf_addr_filters_splice(event, &filters);
11557 
11558 	/* install new filters */
11559 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11560 
11561 	return ret;
11562 
11563 fail_free_filters:
11564 	free_filters_list(&filters);
11565 
11566 fail_clear_files:
11567 	event->addr_filters.nr_file_filters = 0;
11568 
11569 	return ret;
11570 }
11571 
perf_event_set_filter(struct perf_event * event,void __user * arg)11572 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11573 {
11574 	int ret = -EINVAL;
11575 	char *filter_str;
11576 
11577 	filter_str = strndup_user(arg, PAGE_SIZE);
11578 	if (IS_ERR(filter_str))
11579 		return PTR_ERR(filter_str);
11580 
11581 #ifdef CONFIG_EVENT_TRACING
11582 	if (perf_event_is_tracing(event)) {
11583 		struct perf_event_context *ctx = event->ctx;
11584 
11585 		/*
11586 		 * Beware, here be dragons!!
11587 		 *
11588 		 * the tracepoint muck will deadlock against ctx->mutex, but
11589 		 * the tracepoint stuff does not actually need it. So
11590 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11591 		 * already have a reference on ctx.
11592 		 *
11593 		 * This can result in event getting moved to a different ctx,
11594 		 * but that does not affect the tracepoint state.
11595 		 */
11596 		mutex_unlock(&ctx->mutex);
11597 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11598 		mutex_lock(&ctx->mutex);
11599 	} else
11600 #endif
11601 	if (has_addr_filter(event))
11602 		ret = perf_event_set_addr_filter(event, filter_str);
11603 
11604 	kfree(filter_str);
11605 	return ret;
11606 }
11607 
11608 /*
11609  * hrtimer based swevent callback
11610  */
11611 
perf_swevent_hrtimer(struct hrtimer * hrtimer)11612 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11613 {
11614 	enum hrtimer_restart ret = HRTIMER_RESTART;
11615 	struct perf_sample_data data;
11616 	struct pt_regs *regs;
11617 	struct perf_event *event;
11618 	u64 period;
11619 
11620 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11621 
11622 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11623 		return HRTIMER_NORESTART;
11624 
11625 	event->pmu->read(event);
11626 
11627 	perf_sample_data_init(&data, 0, event->hw.last_period);
11628 	regs = get_irq_regs();
11629 
11630 	if (regs && !perf_exclude_event(event, regs)) {
11631 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11632 			if (__perf_event_overflow(event, 1, &data, regs))
11633 				ret = HRTIMER_NORESTART;
11634 	}
11635 
11636 	period = max_t(u64, 10000, event->hw.sample_period);
11637 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11638 
11639 	return ret;
11640 }
11641 
perf_swevent_start_hrtimer(struct perf_event * event)11642 static void perf_swevent_start_hrtimer(struct perf_event *event)
11643 {
11644 	struct hw_perf_event *hwc = &event->hw;
11645 	s64 period;
11646 
11647 	if (!is_sampling_event(event))
11648 		return;
11649 
11650 	period = local64_read(&hwc->period_left);
11651 	if (period) {
11652 		if (period < 0)
11653 			period = 10000;
11654 
11655 		local64_set(&hwc->period_left, 0);
11656 	} else {
11657 		period = max_t(u64, 10000, hwc->sample_period);
11658 	}
11659 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11660 		      HRTIMER_MODE_REL_PINNED_HARD);
11661 }
11662 
perf_swevent_cancel_hrtimer(struct perf_event * event)11663 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11664 {
11665 	struct hw_perf_event *hwc = &event->hw;
11666 
11667 	if (is_sampling_event(event)) {
11668 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11669 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11670 
11671 		hrtimer_cancel(&hwc->hrtimer);
11672 	}
11673 }
11674 
perf_swevent_init_hrtimer(struct perf_event * event)11675 static void perf_swevent_init_hrtimer(struct perf_event *event)
11676 {
11677 	struct hw_perf_event *hwc = &event->hw;
11678 
11679 	if (!is_sampling_event(event))
11680 		return;
11681 
11682 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11683 
11684 	/*
11685 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11686 	 * mapping and avoid the whole period adjust feedback stuff.
11687 	 */
11688 	if (event->attr.freq) {
11689 		long freq = event->attr.sample_freq;
11690 
11691 		event->attr.sample_period = NSEC_PER_SEC / freq;
11692 		hwc->sample_period = event->attr.sample_period;
11693 		local64_set(&hwc->period_left, hwc->sample_period);
11694 		hwc->last_period = hwc->sample_period;
11695 		event->attr.freq = 0;
11696 	}
11697 }
11698 
11699 /*
11700  * Software event: cpu wall time clock
11701  */
11702 
cpu_clock_event_update(struct perf_event * event)11703 static void cpu_clock_event_update(struct perf_event *event)
11704 {
11705 	s64 prev;
11706 	u64 now;
11707 
11708 	now = local_clock();
11709 	prev = local64_xchg(&event->hw.prev_count, now);
11710 	local64_add(now - prev, &event->count);
11711 }
11712 
cpu_clock_event_start(struct perf_event * event,int flags)11713 static void cpu_clock_event_start(struct perf_event *event, int flags)
11714 {
11715 	local64_set(&event->hw.prev_count, local_clock());
11716 	perf_swevent_start_hrtimer(event);
11717 }
11718 
cpu_clock_event_stop(struct perf_event * event,int flags)11719 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11720 {
11721 	perf_swevent_cancel_hrtimer(event);
11722 	cpu_clock_event_update(event);
11723 }
11724 
cpu_clock_event_add(struct perf_event * event,int flags)11725 static int cpu_clock_event_add(struct perf_event *event, int flags)
11726 {
11727 	if (flags & PERF_EF_START)
11728 		cpu_clock_event_start(event, flags);
11729 	perf_event_update_userpage(event);
11730 
11731 	return 0;
11732 }
11733 
cpu_clock_event_del(struct perf_event * event,int flags)11734 static void cpu_clock_event_del(struct perf_event *event, int flags)
11735 {
11736 	cpu_clock_event_stop(event, flags);
11737 }
11738 
cpu_clock_event_read(struct perf_event * event)11739 static void cpu_clock_event_read(struct perf_event *event)
11740 {
11741 	cpu_clock_event_update(event);
11742 }
11743 
cpu_clock_event_init(struct perf_event * event)11744 static int cpu_clock_event_init(struct perf_event *event)
11745 {
11746 	if (event->attr.type != perf_cpu_clock.type)
11747 		return -ENOENT;
11748 
11749 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11750 		return -ENOENT;
11751 
11752 	/*
11753 	 * no branch sampling for software events
11754 	 */
11755 	if (has_branch_stack(event))
11756 		return -EOPNOTSUPP;
11757 
11758 	perf_swevent_init_hrtimer(event);
11759 
11760 	return 0;
11761 }
11762 
11763 static struct pmu perf_cpu_clock = {
11764 	.task_ctx_nr	= perf_sw_context,
11765 
11766 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11767 	.dev		= PMU_NULL_DEV,
11768 
11769 	.event_init	= cpu_clock_event_init,
11770 	.add		= cpu_clock_event_add,
11771 	.del		= cpu_clock_event_del,
11772 	.start		= cpu_clock_event_start,
11773 	.stop		= cpu_clock_event_stop,
11774 	.read		= cpu_clock_event_read,
11775 };
11776 
11777 /*
11778  * Software event: task time clock
11779  */
11780 
task_clock_event_update(struct perf_event * event,u64 now)11781 static void task_clock_event_update(struct perf_event *event, u64 now)
11782 {
11783 	u64 prev;
11784 	s64 delta;
11785 
11786 	prev = local64_xchg(&event->hw.prev_count, now);
11787 	delta = now - prev;
11788 	local64_add(delta, &event->count);
11789 }
11790 
task_clock_event_start(struct perf_event * event,int flags)11791 static void task_clock_event_start(struct perf_event *event, int flags)
11792 {
11793 	local64_set(&event->hw.prev_count, event->ctx->time);
11794 	perf_swevent_start_hrtimer(event);
11795 }
11796 
task_clock_event_stop(struct perf_event * event,int flags)11797 static void task_clock_event_stop(struct perf_event *event, int flags)
11798 {
11799 	perf_swevent_cancel_hrtimer(event);
11800 	task_clock_event_update(event, event->ctx->time);
11801 }
11802 
task_clock_event_add(struct perf_event * event,int flags)11803 static int task_clock_event_add(struct perf_event *event, int flags)
11804 {
11805 	if (flags & PERF_EF_START)
11806 		task_clock_event_start(event, flags);
11807 	perf_event_update_userpage(event);
11808 
11809 	return 0;
11810 }
11811 
task_clock_event_del(struct perf_event * event,int flags)11812 static void task_clock_event_del(struct perf_event *event, int flags)
11813 {
11814 	task_clock_event_stop(event, PERF_EF_UPDATE);
11815 }
11816 
task_clock_event_read(struct perf_event * event)11817 static void task_clock_event_read(struct perf_event *event)
11818 {
11819 	u64 now = perf_clock();
11820 	u64 delta = now - event->ctx->timestamp;
11821 	u64 time = event->ctx->time + delta;
11822 
11823 	task_clock_event_update(event, time);
11824 }
11825 
task_clock_event_init(struct perf_event * event)11826 static int task_clock_event_init(struct perf_event *event)
11827 {
11828 	if (event->attr.type != perf_task_clock.type)
11829 		return -ENOENT;
11830 
11831 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11832 		return -ENOENT;
11833 
11834 	/*
11835 	 * no branch sampling for software events
11836 	 */
11837 	if (has_branch_stack(event))
11838 		return -EOPNOTSUPP;
11839 
11840 	perf_swevent_init_hrtimer(event);
11841 
11842 	return 0;
11843 }
11844 
11845 static struct pmu perf_task_clock = {
11846 	.task_ctx_nr	= perf_sw_context,
11847 
11848 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11849 	.dev		= PMU_NULL_DEV,
11850 
11851 	.event_init	= task_clock_event_init,
11852 	.add		= task_clock_event_add,
11853 	.del		= task_clock_event_del,
11854 	.start		= task_clock_event_start,
11855 	.stop		= task_clock_event_stop,
11856 	.read		= task_clock_event_read,
11857 };
11858 
perf_pmu_nop_void(struct pmu * pmu)11859 static void perf_pmu_nop_void(struct pmu *pmu)
11860 {
11861 }
11862 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11863 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11864 {
11865 }
11866 
perf_pmu_nop_int(struct pmu * pmu)11867 static int perf_pmu_nop_int(struct pmu *pmu)
11868 {
11869 	return 0;
11870 }
11871 
perf_event_nop_int(struct perf_event * event,u64 value)11872 static int perf_event_nop_int(struct perf_event *event, u64 value)
11873 {
11874 	return 0;
11875 }
11876 
11877 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11878 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11879 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11880 {
11881 	__this_cpu_write(nop_txn_flags, flags);
11882 
11883 	if (flags & ~PERF_PMU_TXN_ADD)
11884 		return;
11885 
11886 	perf_pmu_disable(pmu);
11887 }
11888 
perf_pmu_commit_txn(struct pmu * pmu)11889 static int perf_pmu_commit_txn(struct pmu *pmu)
11890 {
11891 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11892 
11893 	__this_cpu_write(nop_txn_flags, 0);
11894 
11895 	if (flags & ~PERF_PMU_TXN_ADD)
11896 		return 0;
11897 
11898 	perf_pmu_enable(pmu);
11899 	return 0;
11900 }
11901 
perf_pmu_cancel_txn(struct pmu * pmu)11902 static void perf_pmu_cancel_txn(struct pmu *pmu)
11903 {
11904 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11905 
11906 	__this_cpu_write(nop_txn_flags, 0);
11907 
11908 	if (flags & ~PERF_PMU_TXN_ADD)
11909 		return;
11910 
11911 	perf_pmu_enable(pmu);
11912 }
11913 
perf_event_idx_default(struct perf_event * event)11914 static int perf_event_idx_default(struct perf_event *event)
11915 {
11916 	return 0;
11917 }
11918 
11919 /*
11920  * Let userspace know that this PMU supports address range filtering:
11921  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11922 static ssize_t nr_addr_filters_show(struct device *dev,
11923 				    struct device_attribute *attr,
11924 				    char *page)
11925 {
11926 	struct pmu *pmu = dev_get_drvdata(dev);
11927 
11928 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
11929 }
11930 DEVICE_ATTR_RO(nr_addr_filters);
11931 
11932 static struct idr pmu_idr;
11933 
11934 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11935 type_show(struct device *dev, struct device_attribute *attr, char *page)
11936 {
11937 	struct pmu *pmu = dev_get_drvdata(dev);
11938 
11939 	return sysfs_emit(page, "%d\n", pmu->type);
11940 }
11941 static DEVICE_ATTR_RO(type);
11942 
11943 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11944 perf_event_mux_interval_ms_show(struct device *dev,
11945 				struct device_attribute *attr,
11946 				char *page)
11947 {
11948 	struct pmu *pmu = dev_get_drvdata(dev);
11949 
11950 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
11951 }
11952 
11953 static DEFINE_MUTEX(mux_interval_mutex);
11954 
11955 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11956 perf_event_mux_interval_ms_store(struct device *dev,
11957 				 struct device_attribute *attr,
11958 				 const char *buf, size_t count)
11959 {
11960 	struct pmu *pmu = dev_get_drvdata(dev);
11961 	int timer, cpu, ret;
11962 
11963 	ret = kstrtoint(buf, 0, &timer);
11964 	if (ret)
11965 		return ret;
11966 
11967 	if (timer < 1)
11968 		return -EINVAL;
11969 
11970 	/* same value, noting to do */
11971 	if (timer == pmu->hrtimer_interval_ms)
11972 		return count;
11973 
11974 	mutex_lock(&mux_interval_mutex);
11975 	pmu->hrtimer_interval_ms = timer;
11976 
11977 	/* update all cpuctx for this PMU */
11978 	cpus_read_lock();
11979 	for_each_online_cpu(cpu) {
11980 		struct perf_cpu_pmu_context *cpc;
11981 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11982 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11983 
11984 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11985 	}
11986 	cpus_read_unlock();
11987 	mutex_unlock(&mux_interval_mutex);
11988 
11989 	return count;
11990 }
11991 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11992 
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)11993 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11994 {
11995 	switch (scope) {
11996 	case PERF_PMU_SCOPE_CORE:
11997 		return topology_sibling_cpumask(cpu);
11998 	case PERF_PMU_SCOPE_DIE:
11999 		return topology_die_cpumask(cpu);
12000 	case PERF_PMU_SCOPE_CLUSTER:
12001 		return topology_cluster_cpumask(cpu);
12002 	case PERF_PMU_SCOPE_PKG:
12003 		return topology_core_cpumask(cpu);
12004 	case PERF_PMU_SCOPE_SYS_WIDE:
12005 		return cpu_online_mask;
12006 	}
12007 
12008 	return NULL;
12009 }
12010 
perf_scope_cpumask(unsigned int scope)12011 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12012 {
12013 	switch (scope) {
12014 	case PERF_PMU_SCOPE_CORE:
12015 		return perf_online_core_mask;
12016 	case PERF_PMU_SCOPE_DIE:
12017 		return perf_online_die_mask;
12018 	case PERF_PMU_SCOPE_CLUSTER:
12019 		return perf_online_cluster_mask;
12020 	case PERF_PMU_SCOPE_PKG:
12021 		return perf_online_pkg_mask;
12022 	case PERF_PMU_SCOPE_SYS_WIDE:
12023 		return perf_online_sys_mask;
12024 	}
12025 
12026 	return NULL;
12027 }
12028 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)12029 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12030 			    char *buf)
12031 {
12032 	struct pmu *pmu = dev_get_drvdata(dev);
12033 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12034 
12035 	if (mask)
12036 		return cpumap_print_to_pagebuf(true, buf, mask);
12037 	return 0;
12038 }
12039 
12040 static DEVICE_ATTR_RO(cpumask);
12041 
12042 static struct attribute *pmu_dev_attrs[] = {
12043 	&dev_attr_type.attr,
12044 	&dev_attr_perf_event_mux_interval_ms.attr,
12045 	&dev_attr_nr_addr_filters.attr,
12046 	&dev_attr_cpumask.attr,
12047 	NULL,
12048 };
12049 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)12050 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12051 {
12052 	struct device *dev = kobj_to_dev(kobj);
12053 	struct pmu *pmu = dev_get_drvdata(dev);
12054 
12055 	if (n == 2 && !pmu->nr_addr_filters)
12056 		return 0;
12057 
12058 	/* cpumask */
12059 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12060 		return 0;
12061 
12062 	return a->mode;
12063 }
12064 
12065 static struct attribute_group pmu_dev_attr_group = {
12066 	.is_visible = pmu_dev_is_visible,
12067 	.attrs = pmu_dev_attrs,
12068 };
12069 
12070 static const struct attribute_group *pmu_dev_groups[] = {
12071 	&pmu_dev_attr_group,
12072 	NULL,
12073 };
12074 
12075 static int pmu_bus_running;
12076 static struct bus_type pmu_bus = {
12077 	.name		= "event_source",
12078 	.dev_groups	= pmu_dev_groups,
12079 };
12080 
pmu_dev_release(struct device * dev)12081 static void pmu_dev_release(struct device *dev)
12082 {
12083 	kfree(dev);
12084 }
12085 
pmu_dev_alloc(struct pmu * pmu)12086 static int pmu_dev_alloc(struct pmu *pmu)
12087 {
12088 	int ret = -ENOMEM;
12089 
12090 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12091 	if (!pmu->dev)
12092 		goto out;
12093 
12094 	pmu->dev->groups = pmu->attr_groups;
12095 	device_initialize(pmu->dev);
12096 
12097 	dev_set_drvdata(pmu->dev, pmu);
12098 	pmu->dev->bus = &pmu_bus;
12099 	pmu->dev->parent = pmu->parent;
12100 	pmu->dev->release = pmu_dev_release;
12101 
12102 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12103 	if (ret)
12104 		goto free_dev;
12105 
12106 	ret = device_add(pmu->dev);
12107 	if (ret)
12108 		goto free_dev;
12109 
12110 	if (pmu->attr_update) {
12111 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12112 		if (ret)
12113 			goto del_dev;
12114 	}
12115 
12116 out:
12117 	return ret;
12118 
12119 del_dev:
12120 	device_del(pmu->dev);
12121 
12122 free_dev:
12123 	put_device(pmu->dev);
12124 	pmu->dev = NULL;
12125 	goto out;
12126 }
12127 
12128 static struct lock_class_key cpuctx_mutex;
12129 static struct lock_class_key cpuctx_lock;
12130 
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)12131 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12132 {
12133 	void *tmp, *val = idr_find(idr, id);
12134 
12135 	if (val != old)
12136 		return false;
12137 
12138 	tmp = idr_replace(idr, new, id);
12139 	if (IS_ERR(tmp))
12140 		return false;
12141 
12142 	WARN_ON_ONCE(tmp != val);
12143 	return true;
12144 }
12145 
perf_pmu_free(struct pmu * pmu)12146 static void perf_pmu_free(struct pmu *pmu)
12147 {
12148 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12149 		if (pmu->nr_addr_filters)
12150 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12151 		device_del(pmu->dev);
12152 		put_device(pmu->dev);
12153 	}
12154 
12155 	if (pmu->cpu_pmu_context) {
12156 		int cpu;
12157 
12158 		for_each_possible_cpu(cpu) {
12159 			struct perf_cpu_pmu_context *cpc;
12160 
12161 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12162 			if (!cpc)
12163 				continue;
12164 			if (cpc->epc.embedded) {
12165 				/* refcount managed */
12166 				put_pmu_ctx(&cpc->epc);
12167 				continue;
12168 			}
12169 			kfree(cpc);
12170 		}
12171 		free_percpu(pmu->cpu_pmu_context);
12172 	}
12173 }
12174 
DEFINE_FREE(pmu_unregister,struct pmu *,if (_T)perf_pmu_free (_T))12175 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12176 
12177 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12178 {
12179 	int cpu, max = PERF_TYPE_MAX;
12180 
12181 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12182 	guard(mutex)(&pmus_lock);
12183 
12184 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12185 		return -EINVAL;
12186 
12187 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12188 		      "Can not register a pmu with an invalid scope.\n"))
12189 		return -EINVAL;
12190 
12191 	pmu->name = name;
12192 
12193 	if (type >= 0)
12194 		max = type;
12195 
12196 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12197 	if (pmu_type.id < 0)
12198 		return pmu_type.id;
12199 
12200 	WARN_ON(type >= 0 && pmu_type.id != type);
12201 
12202 	pmu->type = pmu_type.id;
12203 	atomic_set(&pmu->exclusive_cnt, 0);
12204 
12205 	if (pmu_bus_running && !pmu->dev) {
12206 		int ret = pmu_dev_alloc(pmu);
12207 		if (ret)
12208 			return ret;
12209 	}
12210 
12211 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12212 	if (!pmu->cpu_pmu_context)
12213 		return -ENOMEM;
12214 
12215 	for_each_possible_cpu(cpu) {
12216 		struct perf_cpu_pmu_context *cpc =
12217 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12218 				     GFP_KERNEL | __GFP_ZERO,
12219 				     cpu_to_node(cpu));
12220 
12221 		if (!cpc)
12222 			return -ENOMEM;
12223 
12224 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12225 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12226 		__perf_mux_hrtimer_init(cpc, cpu);
12227 	}
12228 
12229 	if (!pmu->start_txn) {
12230 		if (pmu->pmu_enable) {
12231 			/*
12232 			 * If we have pmu_enable/pmu_disable calls, install
12233 			 * transaction stubs that use that to try and batch
12234 			 * hardware accesses.
12235 			 */
12236 			pmu->start_txn  = perf_pmu_start_txn;
12237 			pmu->commit_txn = perf_pmu_commit_txn;
12238 			pmu->cancel_txn = perf_pmu_cancel_txn;
12239 		} else {
12240 			pmu->start_txn  = perf_pmu_nop_txn;
12241 			pmu->commit_txn = perf_pmu_nop_int;
12242 			pmu->cancel_txn = perf_pmu_nop_void;
12243 		}
12244 	}
12245 
12246 	if (!pmu->pmu_enable) {
12247 		pmu->pmu_enable  = perf_pmu_nop_void;
12248 		pmu->pmu_disable = perf_pmu_nop_void;
12249 	}
12250 
12251 	if (!pmu->check_period)
12252 		pmu->check_period = perf_event_nop_int;
12253 
12254 	if (!pmu->event_idx)
12255 		pmu->event_idx = perf_event_idx_default;
12256 
12257 	/*
12258 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12259 	 */
12260 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12261 		return -EINVAL;
12262 	list_add_rcu(&pmu->entry, &pmus);
12263 
12264 	take_idr_id(pmu_type);
12265 	_pmu = no_free_ptr(pmu); // let it rip
12266 	return 0;
12267 }
12268 EXPORT_SYMBOL_GPL(perf_pmu_register);
12269 
perf_pmu_unregister(struct pmu * pmu)12270 void perf_pmu_unregister(struct pmu *pmu)
12271 {
12272 	scoped_guard (mutex, &pmus_lock) {
12273 		list_del_rcu(&pmu->entry);
12274 		idr_remove(&pmu_idr, pmu->type);
12275 	}
12276 
12277 	/*
12278 	 * We dereference the pmu list under both SRCU and regular RCU, so
12279 	 * synchronize against both of those.
12280 	 */
12281 	synchronize_srcu(&pmus_srcu);
12282 	synchronize_rcu();
12283 
12284 	perf_pmu_free(pmu);
12285 }
12286 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12287 
has_extended_regs(struct perf_event * event)12288 static inline bool has_extended_regs(struct perf_event *event)
12289 {
12290 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12291 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12292 }
12293 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)12294 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12295 {
12296 	struct perf_event_context *ctx = NULL;
12297 	int ret;
12298 
12299 	if (!try_module_get(pmu->module))
12300 		return -ENODEV;
12301 
12302 	/*
12303 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12304 	 * for example, validate if the group fits on the PMU. Therefore,
12305 	 * if this is a sibling event, acquire the ctx->mutex to protect
12306 	 * the sibling_list.
12307 	 */
12308 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12309 		/*
12310 		 * This ctx->mutex can nest when we're called through
12311 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12312 		 */
12313 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12314 						 SINGLE_DEPTH_NESTING);
12315 		BUG_ON(!ctx);
12316 	}
12317 
12318 	event->pmu = pmu;
12319 	ret = pmu->event_init(event);
12320 
12321 	if (ctx)
12322 		perf_event_ctx_unlock(event->group_leader, ctx);
12323 
12324 	if (ret)
12325 		goto err_pmu;
12326 
12327 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12328 	    has_extended_regs(event)) {
12329 		ret = -EOPNOTSUPP;
12330 		goto err_destroy;
12331 	}
12332 
12333 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12334 	    event_has_any_exclude_flag(event)) {
12335 		ret = -EINVAL;
12336 		goto err_destroy;
12337 	}
12338 
12339 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12340 		const struct cpumask *cpumask;
12341 		struct cpumask *pmu_cpumask;
12342 		int cpu;
12343 
12344 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12345 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12346 
12347 		ret = -ENODEV;
12348 		if (!pmu_cpumask || !cpumask)
12349 			goto err_destroy;
12350 
12351 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12352 		if (cpu >= nr_cpu_ids)
12353 			goto err_destroy;
12354 
12355 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12356 	}
12357 
12358 	return 0;
12359 
12360 err_destroy:
12361 	if (event->destroy) {
12362 		event->destroy(event);
12363 		event->destroy = NULL;
12364 	}
12365 
12366 err_pmu:
12367 	event->pmu = NULL;
12368 	module_put(pmu->module);
12369 	return ret;
12370 }
12371 
perf_init_event(struct perf_event * event)12372 static struct pmu *perf_init_event(struct perf_event *event)
12373 {
12374 	bool extended_type = false;
12375 	struct pmu *pmu;
12376 	int type, ret;
12377 
12378 	guard(srcu)(&pmus_srcu);
12379 
12380 	/*
12381 	 * Save original type before calling pmu->event_init() since certain
12382 	 * pmus overwrites event->attr.type to forward event to another pmu.
12383 	 */
12384 	event->orig_type = event->attr.type;
12385 
12386 	/* Try parent's PMU first: */
12387 	if (event->parent && event->parent->pmu) {
12388 		pmu = event->parent->pmu;
12389 		ret = perf_try_init_event(pmu, event);
12390 		if (!ret)
12391 			return pmu;
12392 	}
12393 
12394 	/*
12395 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12396 	 * are often aliases for PERF_TYPE_RAW.
12397 	 */
12398 	type = event->attr.type;
12399 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12400 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12401 		if (!type) {
12402 			type = PERF_TYPE_RAW;
12403 		} else {
12404 			extended_type = true;
12405 			event->attr.config &= PERF_HW_EVENT_MASK;
12406 		}
12407 	}
12408 
12409 again:
12410 	scoped_guard (rcu)
12411 		pmu = idr_find(&pmu_idr, type);
12412 	if (pmu) {
12413 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12414 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12415 			return ERR_PTR(-ENOENT);
12416 
12417 		ret = perf_try_init_event(pmu, event);
12418 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12419 			type = event->attr.type;
12420 			goto again;
12421 		}
12422 
12423 		if (ret)
12424 			return ERR_PTR(ret);
12425 
12426 		return pmu;
12427 	}
12428 
12429 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12430 		ret = perf_try_init_event(pmu, event);
12431 		if (!ret)
12432 			return pmu;
12433 
12434 		if (ret != -ENOENT)
12435 			return ERR_PTR(ret);
12436 	}
12437 
12438 	return ERR_PTR(-ENOENT);
12439 }
12440 
attach_sb_event(struct perf_event * event)12441 static void attach_sb_event(struct perf_event *event)
12442 {
12443 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12444 
12445 	raw_spin_lock(&pel->lock);
12446 	list_add_rcu(&event->sb_list, &pel->list);
12447 	raw_spin_unlock(&pel->lock);
12448 }
12449 
12450 /*
12451  * We keep a list of all !task (and therefore per-cpu) events
12452  * that need to receive side-band records.
12453  *
12454  * This avoids having to scan all the various PMU per-cpu contexts
12455  * looking for them.
12456  */
account_pmu_sb_event(struct perf_event * event)12457 static void account_pmu_sb_event(struct perf_event *event)
12458 {
12459 	if (is_sb_event(event))
12460 		attach_sb_event(event);
12461 }
12462 
12463 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12464 static void account_freq_event_nohz(void)
12465 {
12466 #ifdef CONFIG_NO_HZ_FULL
12467 	/* Lock so we don't race with concurrent unaccount */
12468 	spin_lock(&nr_freq_lock);
12469 	if (atomic_inc_return(&nr_freq_events) == 1)
12470 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12471 	spin_unlock(&nr_freq_lock);
12472 #endif
12473 }
12474 
account_freq_event(void)12475 static void account_freq_event(void)
12476 {
12477 	if (tick_nohz_full_enabled())
12478 		account_freq_event_nohz();
12479 	else
12480 		atomic_inc(&nr_freq_events);
12481 }
12482 
12483 
account_event(struct perf_event * event)12484 static void account_event(struct perf_event *event)
12485 {
12486 	bool inc = false;
12487 
12488 	if (event->parent)
12489 		return;
12490 
12491 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12492 		inc = true;
12493 	if (event->attr.mmap || event->attr.mmap_data)
12494 		atomic_inc(&nr_mmap_events);
12495 	if (event->attr.build_id)
12496 		atomic_inc(&nr_build_id_events);
12497 	if (event->attr.comm)
12498 		atomic_inc(&nr_comm_events);
12499 	if (event->attr.namespaces)
12500 		atomic_inc(&nr_namespaces_events);
12501 	if (event->attr.cgroup)
12502 		atomic_inc(&nr_cgroup_events);
12503 	if (event->attr.task)
12504 		atomic_inc(&nr_task_events);
12505 	if (event->attr.freq)
12506 		account_freq_event();
12507 	if (event->attr.context_switch) {
12508 		atomic_inc(&nr_switch_events);
12509 		inc = true;
12510 	}
12511 	if (has_branch_stack(event))
12512 		inc = true;
12513 	if (is_cgroup_event(event))
12514 		inc = true;
12515 	if (event->attr.ksymbol)
12516 		atomic_inc(&nr_ksymbol_events);
12517 	if (event->attr.bpf_event)
12518 		atomic_inc(&nr_bpf_events);
12519 	if (event->attr.text_poke)
12520 		atomic_inc(&nr_text_poke_events);
12521 
12522 	if (inc) {
12523 		/*
12524 		 * We need the mutex here because static_branch_enable()
12525 		 * must complete *before* the perf_sched_count increment
12526 		 * becomes visible.
12527 		 */
12528 		if (atomic_inc_not_zero(&perf_sched_count))
12529 			goto enabled;
12530 
12531 		mutex_lock(&perf_sched_mutex);
12532 		if (!atomic_read(&perf_sched_count)) {
12533 			static_branch_enable(&perf_sched_events);
12534 			/*
12535 			 * Guarantee that all CPUs observe they key change and
12536 			 * call the perf scheduling hooks before proceeding to
12537 			 * install events that need them.
12538 			 */
12539 			synchronize_rcu();
12540 		}
12541 		/*
12542 		 * Now that we have waited for the sync_sched(), allow further
12543 		 * increments to by-pass the mutex.
12544 		 */
12545 		atomic_inc(&perf_sched_count);
12546 		mutex_unlock(&perf_sched_mutex);
12547 	}
12548 enabled:
12549 
12550 	account_pmu_sb_event(event);
12551 }
12552 
12553 /*
12554  * Allocate and initialize an event structure
12555  */
12556 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12557 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12558 		 struct task_struct *task,
12559 		 struct perf_event *group_leader,
12560 		 struct perf_event *parent_event,
12561 		 perf_overflow_handler_t overflow_handler,
12562 		 void *context, int cgroup_fd)
12563 {
12564 	struct pmu *pmu;
12565 	struct hw_perf_event *hwc;
12566 	long err = -EINVAL;
12567 	int node;
12568 
12569 	if ((unsigned)cpu >= nr_cpu_ids) {
12570 		if (!task || cpu != -1)
12571 			return ERR_PTR(-EINVAL);
12572 	}
12573 	if (attr->sigtrap && !task) {
12574 		/* Requires a task: avoid signalling random tasks. */
12575 		return ERR_PTR(-EINVAL);
12576 	}
12577 
12578 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12579 	struct perf_event *event __free(__free_event) =
12580 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12581 	if (!event)
12582 		return ERR_PTR(-ENOMEM);
12583 
12584 	/*
12585 	 * Single events are their own group leaders, with an
12586 	 * empty sibling list:
12587 	 */
12588 	if (!group_leader)
12589 		group_leader = event;
12590 
12591 	mutex_init(&event->child_mutex);
12592 	INIT_LIST_HEAD(&event->child_list);
12593 
12594 	INIT_LIST_HEAD(&event->event_entry);
12595 	INIT_LIST_HEAD(&event->sibling_list);
12596 	INIT_LIST_HEAD(&event->active_list);
12597 	init_event_group(event);
12598 	INIT_LIST_HEAD(&event->rb_entry);
12599 	INIT_LIST_HEAD(&event->active_entry);
12600 	INIT_LIST_HEAD(&event->addr_filters.list);
12601 	INIT_HLIST_NODE(&event->hlist_entry);
12602 
12603 
12604 	init_waitqueue_head(&event->waitq);
12605 	init_irq_work(&event->pending_irq, perf_pending_irq);
12606 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12607 	init_task_work(&event->pending_task, perf_pending_task);
12608 	rcuwait_init(&event->pending_work_wait);
12609 
12610 	mutex_init(&event->mmap_mutex);
12611 	raw_spin_lock_init(&event->addr_filters.lock);
12612 
12613 	atomic_long_set(&event->refcount, 1);
12614 	event->cpu		= cpu;
12615 	event->attr		= *attr;
12616 	event->group_leader	= group_leader;
12617 	event->pmu		= NULL;
12618 	event->oncpu		= -1;
12619 
12620 	event->parent		= parent_event;
12621 
12622 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12623 	event->id		= atomic64_inc_return(&perf_event_id);
12624 
12625 	event->state		= PERF_EVENT_STATE_INACTIVE;
12626 
12627 	if (parent_event)
12628 		event->event_caps = parent_event->event_caps;
12629 
12630 	if (task) {
12631 		event->attach_state = PERF_ATTACH_TASK;
12632 		/*
12633 		 * XXX pmu::event_init needs to know what task to account to
12634 		 * and we cannot use the ctx information because we need the
12635 		 * pmu before we get a ctx.
12636 		 */
12637 		event->hw.target = get_task_struct(task);
12638 	}
12639 
12640 	event->clock = &local_clock;
12641 	if (parent_event)
12642 		event->clock = parent_event->clock;
12643 
12644 	if (!overflow_handler && parent_event) {
12645 		overflow_handler = parent_event->overflow_handler;
12646 		context = parent_event->overflow_handler_context;
12647 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12648 		if (parent_event->prog) {
12649 			struct bpf_prog *prog = parent_event->prog;
12650 
12651 			bpf_prog_inc(prog);
12652 			event->prog = prog;
12653 		}
12654 #endif
12655 	}
12656 
12657 	if (overflow_handler) {
12658 		event->overflow_handler	= overflow_handler;
12659 		event->overflow_handler_context = context;
12660 	} else if (is_write_backward(event)){
12661 		event->overflow_handler = perf_event_output_backward;
12662 		event->overflow_handler_context = NULL;
12663 	} else {
12664 		event->overflow_handler = perf_event_output_forward;
12665 		event->overflow_handler_context = NULL;
12666 	}
12667 
12668 	perf_event__state_init(event);
12669 
12670 	pmu = NULL;
12671 
12672 	hwc = &event->hw;
12673 	hwc->sample_period = attr->sample_period;
12674 	if (attr->freq && attr->sample_freq)
12675 		hwc->sample_period = 1;
12676 	hwc->last_period = hwc->sample_period;
12677 
12678 	local64_set(&hwc->period_left, hwc->sample_period);
12679 
12680 	/*
12681 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12682 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12683 	 * collect per-thread samples.
12684 	 * See perf_output_read().
12685 	 */
12686 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12687 		return ERR_PTR(-EINVAL);
12688 
12689 	if (!has_branch_stack(event))
12690 		event->attr.branch_sample_type = 0;
12691 
12692 	pmu = perf_init_event(event);
12693 	if (IS_ERR(pmu))
12694 		return (void*)pmu;
12695 
12696 	/*
12697 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
12698 	 * The attach should be right after the perf_init_event().
12699 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
12700 	 * perf_ctx_data because of the other errors between them.
12701 	 */
12702 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
12703 		err = attach_perf_ctx_data(event);
12704 		if (err)
12705 			return ERR_PTR(err);
12706 	}
12707 
12708 	/*
12709 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12710 	 * events (they don't make sense as the cgroup will be different
12711 	 * on other CPUs in the uncore mask).
12712 	 */
12713 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
12714 		return ERR_PTR(-EINVAL);
12715 
12716 	if (event->attr.aux_output &&
12717 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12718 	     event->attr.aux_pause || event->attr.aux_resume))
12719 		return ERR_PTR(-EOPNOTSUPP);
12720 
12721 	if (event->attr.aux_pause && event->attr.aux_resume)
12722 		return ERR_PTR(-EINVAL);
12723 
12724 	if (event->attr.aux_start_paused) {
12725 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
12726 			return ERR_PTR(-EOPNOTSUPP);
12727 		event->hw.aux_paused = 1;
12728 	}
12729 
12730 	if (cgroup_fd != -1) {
12731 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12732 		if (err)
12733 			return ERR_PTR(err);
12734 	}
12735 
12736 	err = exclusive_event_init(event);
12737 	if (err)
12738 		return ERR_PTR(err);
12739 
12740 	if (has_addr_filter(event)) {
12741 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12742 						    sizeof(struct perf_addr_filter_range),
12743 						    GFP_KERNEL);
12744 		if (!event->addr_filter_ranges)
12745 			return ERR_PTR(-ENOMEM);
12746 
12747 		/*
12748 		 * Clone the parent's vma offsets: they are valid until exec()
12749 		 * even if the mm is not shared with the parent.
12750 		 */
12751 		if (event->parent) {
12752 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12753 
12754 			raw_spin_lock_irq(&ifh->lock);
12755 			memcpy(event->addr_filter_ranges,
12756 			       event->parent->addr_filter_ranges,
12757 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12758 			raw_spin_unlock_irq(&ifh->lock);
12759 		}
12760 
12761 		/* force hw sync on the address filters */
12762 		event->addr_filters_gen = 1;
12763 	}
12764 
12765 	if (!event->parent) {
12766 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12767 			err = get_callchain_buffers(attr->sample_max_stack);
12768 			if (err)
12769 				return ERR_PTR(err);
12770 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
12771 		}
12772 	}
12773 
12774 	err = security_perf_event_alloc(event);
12775 	if (err)
12776 		return ERR_PTR(err);
12777 
12778 	/* symmetric to unaccount_event() in _free_event() */
12779 	account_event(event);
12780 
12781 	return_ptr(event);
12782 }
12783 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12784 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12785 			  struct perf_event_attr *attr)
12786 {
12787 	u32 size;
12788 	int ret;
12789 
12790 	/* Zero the full structure, so that a short copy will be nice. */
12791 	memset(attr, 0, sizeof(*attr));
12792 
12793 	ret = get_user(size, &uattr->size);
12794 	if (ret)
12795 		return ret;
12796 
12797 	/* ABI compatibility quirk: */
12798 	if (!size)
12799 		size = PERF_ATTR_SIZE_VER0;
12800 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12801 		goto err_size;
12802 
12803 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12804 	if (ret) {
12805 		if (ret == -E2BIG)
12806 			goto err_size;
12807 		return ret;
12808 	}
12809 
12810 	attr->size = size;
12811 
12812 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12813 		return -EINVAL;
12814 
12815 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12816 		return -EINVAL;
12817 
12818 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12819 		return -EINVAL;
12820 
12821 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12822 		u64 mask = attr->branch_sample_type;
12823 
12824 		/* only using defined bits */
12825 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12826 			return -EINVAL;
12827 
12828 		/* at least one branch bit must be set */
12829 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12830 			return -EINVAL;
12831 
12832 		/* propagate priv level, when not set for branch */
12833 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12834 
12835 			/* exclude_kernel checked on syscall entry */
12836 			if (!attr->exclude_kernel)
12837 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12838 
12839 			if (!attr->exclude_user)
12840 				mask |= PERF_SAMPLE_BRANCH_USER;
12841 
12842 			if (!attr->exclude_hv)
12843 				mask |= PERF_SAMPLE_BRANCH_HV;
12844 			/*
12845 			 * adjust user setting (for HW filter setup)
12846 			 */
12847 			attr->branch_sample_type = mask;
12848 		}
12849 		/* privileged levels capture (kernel, hv): check permissions */
12850 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12851 			ret = perf_allow_kernel();
12852 			if (ret)
12853 				return ret;
12854 		}
12855 	}
12856 
12857 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12858 		ret = perf_reg_validate(attr->sample_regs_user);
12859 		if (ret)
12860 			return ret;
12861 	}
12862 
12863 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12864 		if (!arch_perf_have_user_stack_dump())
12865 			return -ENOSYS;
12866 
12867 		/*
12868 		 * We have __u32 type for the size, but so far
12869 		 * we can only use __u16 as maximum due to the
12870 		 * __u16 sample size limit.
12871 		 */
12872 		if (attr->sample_stack_user >= USHRT_MAX)
12873 			return -EINVAL;
12874 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12875 			return -EINVAL;
12876 	}
12877 
12878 	if (!attr->sample_max_stack)
12879 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12880 
12881 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12882 		ret = perf_reg_validate(attr->sample_regs_intr);
12883 
12884 #ifndef CONFIG_CGROUP_PERF
12885 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12886 		return -EINVAL;
12887 #endif
12888 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12889 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12890 		return -EINVAL;
12891 
12892 	if (!attr->inherit && attr->inherit_thread)
12893 		return -EINVAL;
12894 
12895 	if (attr->remove_on_exec && attr->enable_on_exec)
12896 		return -EINVAL;
12897 
12898 	if (attr->sigtrap && !attr->remove_on_exec)
12899 		return -EINVAL;
12900 
12901 out:
12902 	return ret;
12903 
12904 err_size:
12905 	put_user(sizeof(*attr), &uattr->size);
12906 	ret = -E2BIG;
12907 	goto out;
12908 }
12909 
mutex_lock_double(struct mutex * a,struct mutex * b)12910 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12911 {
12912 	if (b < a)
12913 		swap(a, b);
12914 
12915 	mutex_lock(a);
12916 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12917 }
12918 
12919 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12920 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12921 {
12922 	struct perf_buffer *rb = NULL;
12923 	int ret = -EINVAL;
12924 
12925 	if (!output_event) {
12926 		mutex_lock(&event->mmap_mutex);
12927 		goto set;
12928 	}
12929 
12930 	/* don't allow circular references */
12931 	if (event == output_event)
12932 		goto out;
12933 
12934 	/*
12935 	 * Don't allow cross-cpu buffers
12936 	 */
12937 	if (output_event->cpu != event->cpu)
12938 		goto out;
12939 
12940 	/*
12941 	 * If its not a per-cpu rb, it must be the same task.
12942 	 */
12943 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12944 		goto out;
12945 
12946 	/*
12947 	 * Mixing clocks in the same buffer is trouble you don't need.
12948 	 */
12949 	if (output_event->clock != event->clock)
12950 		goto out;
12951 
12952 	/*
12953 	 * Either writing ring buffer from beginning or from end.
12954 	 * Mixing is not allowed.
12955 	 */
12956 	if (is_write_backward(output_event) != is_write_backward(event))
12957 		goto out;
12958 
12959 	/*
12960 	 * If both events generate aux data, they must be on the same PMU
12961 	 */
12962 	if (has_aux(event) && has_aux(output_event) &&
12963 	    event->pmu != output_event->pmu)
12964 		goto out;
12965 
12966 	/*
12967 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12968 	 * output_event is already on rb->event_list, and the list iteration
12969 	 * restarts after every removal, it is guaranteed this new event is
12970 	 * observed *OR* if output_event is already removed, it's guaranteed we
12971 	 * observe !rb->mmap_count.
12972 	 */
12973 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12974 set:
12975 	/* Can't redirect output if we've got an active mmap() */
12976 	if (atomic_read(&event->mmap_count))
12977 		goto unlock;
12978 
12979 	if (output_event) {
12980 		/* get the rb we want to redirect to */
12981 		rb = ring_buffer_get(output_event);
12982 		if (!rb)
12983 			goto unlock;
12984 
12985 		/* did we race against perf_mmap_close() */
12986 		if (!atomic_read(&rb->mmap_count)) {
12987 			ring_buffer_put(rb);
12988 			goto unlock;
12989 		}
12990 	}
12991 
12992 	ring_buffer_attach(event, rb);
12993 
12994 	ret = 0;
12995 unlock:
12996 	mutex_unlock(&event->mmap_mutex);
12997 	if (output_event)
12998 		mutex_unlock(&output_event->mmap_mutex);
12999 
13000 out:
13001 	return ret;
13002 }
13003 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)13004 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13005 {
13006 	bool nmi_safe = false;
13007 
13008 	switch (clk_id) {
13009 	case CLOCK_MONOTONIC:
13010 		event->clock = &ktime_get_mono_fast_ns;
13011 		nmi_safe = true;
13012 		break;
13013 
13014 	case CLOCK_MONOTONIC_RAW:
13015 		event->clock = &ktime_get_raw_fast_ns;
13016 		nmi_safe = true;
13017 		break;
13018 
13019 	case CLOCK_REALTIME:
13020 		event->clock = &ktime_get_real_ns;
13021 		break;
13022 
13023 	case CLOCK_BOOTTIME:
13024 		event->clock = &ktime_get_boottime_ns;
13025 		break;
13026 
13027 	case CLOCK_TAI:
13028 		event->clock = &ktime_get_clocktai_ns;
13029 		break;
13030 
13031 	default:
13032 		return -EINVAL;
13033 	}
13034 
13035 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13036 		return -EINVAL;
13037 
13038 	return 0;
13039 }
13040 
13041 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)13042 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13043 {
13044 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13045 	bool is_capable = perfmon_capable();
13046 
13047 	if (attr->sigtrap) {
13048 		/*
13049 		 * perf_event_attr::sigtrap sends signals to the other task.
13050 		 * Require the current task to also have CAP_KILL.
13051 		 */
13052 		rcu_read_lock();
13053 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13054 		rcu_read_unlock();
13055 
13056 		/*
13057 		 * If the required capabilities aren't available, checks for
13058 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13059 		 * can effectively change the target task.
13060 		 */
13061 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13062 	}
13063 
13064 	/*
13065 	 * Preserve ptrace permission check for backwards compatibility. The
13066 	 * ptrace check also includes checks that the current task and other
13067 	 * task have matching uids, and is therefore not done here explicitly.
13068 	 */
13069 	return is_capable || ptrace_may_access(task, ptrace_mode);
13070 }
13071 
13072 /**
13073  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13074  *
13075  * @attr_uptr:	event_id type attributes for monitoring/sampling
13076  * @pid:		target pid
13077  * @cpu:		target cpu
13078  * @group_fd:		group leader event fd
13079  * @flags:		perf event open flags
13080  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)13081 SYSCALL_DEFINE5(perf_event_open,
13082 		struct perf_event_attr __user *, attr_uptr,
13083 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13084 {
13085 	struct perf_event *group_leader = NULL, *output_event = NULL;
13086 	struct perf_event_pmu_context *pmu_ctx;
13087 	struct perf_event *event, *sibling;
13088 	struct perf_event_attr attr;
13089 	struct perf_event_context *ctx;
13090 	struct file *event_file = NULL;
13091 	struct task_struct *task = NULL;
13092 	struct pmu *pmu;
13093 	int event_fd;
13094 	int move_group = 0;
13095 	int err;
13096 	int f_flags = O_RDWR;
13097 	int cgroup_fd = -1;
13098 
13099 	/* for future expandability... */
13100 	if (flags & ~PERF_FLAG_ALL)
13101 		return -EINVAL;
13102 
13103 	err = perf_copy_attr(attr_uptr, &attr);
13104 	if (err)
13105 		return err;
13106 
13107 	/* Do we allow access to perf_event_open(2) ? */
13108 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13109 	if (err)
13110 		return err;
13111 
13112 	if (!attr.exclude_kernel) {
13113 		err = perf_allow_kernel();
13114 		if (err)
13115 			return err;
13116 	}
13117 
13118 	if (attr.namespaces) {
13119 		if (!perfmon_capable())
13120 			return -EACCES;
13121 	}
13122 
13123 	if (attr.freq) {
13124 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13125 			return -EINVAL;
13126 	} else {
13127 		if (attr.sample_period & (1ULL << 63))
13128 			return -EINVAL;
13129 	}
13130 
13131 	/* Only privileged users can get physical addresses */
13132 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13133 		err = perf_allow_kernel();
13134 		if (err)
13135 			return err;
13136 	}
13137 
13138 	/* REGS_INTR can leak data, lockdown must prevent this */
13139 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13140 		err = security_locked_down(LOCKDOWN_PERF);
13141 		if (err)
13142 			return err;
13143 	}
13144 
13145 	/*
13146 	 * In cgroup mode, the pid argument is used to pass the fd
13147 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13148 	 * designates the cpu on which to monitor threads from that
13149 	 * cgroup.
13150 	 */
13151 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13152 		return -EINVAL;
13153 
13154 	if (flags & PERF_FLAG_FD_CLOEXEC)
13155 		f_flags |= O_CLOEXEC;
13156 
13157 	event_fd = get_unused_fd_flags(f_flags);
13158 	if (event_fd < 0)
13159 		return event_fd;
13160 
13161 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13162 	if (group_fd != -1) {
13163 		if (!is_perf_file(group)) {
13164 			err = -EBADF;
13165 			goto err_fd;
13166 		}
13167 		group_leader = fd_file(group)->private_data;
13168 		if (flags & PERF_FLAG_FD_OUTPUT)
13169 			output_event = group_leader;
13170 		if (flags & PERF_FLAG_FD_NO_GROUP)
13171 			group_leader = NULL;
13172 	}
13173 
13174 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13175 		task = find_lively_task_by_vpid(pid);
13176 		if (IS_ERR(task)) {
13177 			err = PTR_ERR(task);
13178 			goto err_fd;
13179 		}
13180 	}
13181 
13182 	if (task && group_leader &&
13183 	    group_leader->attr.inherit != attr.inherit) {
13184 		err = -EINVAL;
13185 		goto err_task;
13186 	}
13187 
13188 	if (flags & PERF_FLAG_PID_CGROUP)
13189 		cgroup_fd = pid;
13190 
13191 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13192 				 NULL, NULL, cgroup_fd);
13193 	if (IS_ERR(event)) {
13194 		err = PTR_ERR(event);
13195 		goto err_task;
13196 	}
13197 
13198 	if (is_sampling_event(event)) {
13199 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13200 			err = -EOPNOTSUPP;
13201 			goto err_alloc;
13202 		}
13203 	}
13204 
13205 	/*
13206 	 * Special case software events and allow them to be part of
13207 	 * any hardware group.
13208 	 */
13209 	pmu = event->pmu;
13210 
13211 	if (attr.use_clockid) {
13212 		err = perf_event_set_clock(event, attr.clockid);
13213 		if (err)
13214 			goto err_alloc;
13215 	}
13216 
13217 	if (pmu->task_ctx_nr == perf_sw_context)
13218 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13219 
13220 	if (task) {
13221 		err = down_read_interruptible(&task->signal->exec_update_lock);
13222 		if (err)
13223 			goto err_alloc;
13224 
13225 		/*
13226 		 * We must hold exec_update_lock across this and any potential
13227 		 * perf_install_in_context() call for this new event to
13228 		 * serialize against exec() altering our credentials (and the
13229 		 * perf_event_exit_task() that could imply).
13230 		 */
13231 		err = -EACCES;
13232 		if (!perf_check_permission(&attr, task))
13233 			goto err_cred;
13234 	}
13235 
13236 	/*
13237 	 * Get the target context (task or percpu):
13238 	 */
13239 	ctx = find_get_context(task, event);
13240 	if (IS_ERR(ctx)) {
13241 		err = PTR_ERR(ctx);
13242 		goto err_cred;
13243 	}
13244 
13245 	mutex_lock(&ctx->mutex);
13246 
13247 	if (ctx->task == TASK_TOMBSTONE) {
13248 		err = -ESRCH;
13249 		goto err_locked;
13250 	}
13251 
13252 	if (!task) {
13253 		/*
13254 		 * Check if the @cpu we're creating an event for is online.
13255 		 *
13256 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13257 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13258 		 */
13259 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13260 
13261 		if (!cpuctx->online) {
13262 			err = -ENODEV;
13263 			goto err_locked;
13264 		}
13265 	}
13266 
13267 	if (group_leader) {
13268 		err = -EINVAL;
13269 
13270 		/*
13271 		 * Do not allow a recursive hierarchy (this new sibling
13272 		 * becoming part of another group-sibling):
13273 		 */
13274 		if (group_leader->group_leader != group_leader)
13275 			goto err_locked;
13276 
13277 		/* All events in a group should have the same clock */
13278 		if (group_leader->clock != event->clock)
13279 			goto err_locked;
13280 
13281 		/*
13282 		 * Make sure we're both events for the same CPU;
13283 		 * grouping events for different CPUs is broken; since
13284 		 * you can never concurrently schedule them anyhow.
13285 		 */
13286 		if (group_leader->cpu != event->cpu)
13287 			goto err_locked;
13288 
13289 		/*
13290 		 * Make sure we're both on the same context; either task or cpu.
13291 		 */
13292 		if (group_leader->ctx != ctx)
13293 			goto err_locked;
13294 
13295 		/*
13296 		 * Only a group leader can be exclusive or pinned
13297 		 */
13298 		if (attr.exclusive || attr.pinned)
13299 			goto err_locked;
13300 
13301 		if (is_software_event(event) &&
13302 		    !in_software_context(group_leader)) {
13303 			/*
13304 			 * If the event is a sw event, but the group_leader
13305 			 * is on hw context.
13306 			 *
13307 			 * Allow the addition of software events to hw
13308 			 * groups, this is safe because software events
13309 			 * never fail to schedule.
13310 			 *
13311 			 * Note the comment that goes with struct
13312 			 * perf_event_pmu_context.
13313 			 */
13314 			pmu = group_leader->pmu_ctx->pmu;
13315 		} else if (!is_software_event(event)) {
13316 			if (is_software_event(group_leader) &&
13317 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13318 				/*
13319 				 * In case the group is a pure software group, and we
13320 				 * try to add a hardware event, move the whole group to
13321 				 * the hardware context.
13322 				 */
13323 				move_group = 1;
13324 			}
13325 
13326 			/* Don't allow group of multiple hw events from different pmus */
13327 			if (!in_software_context(group_leader) &&
13328 			    group_leader->pmu_ctx->pmu != pmu)
13329 				goto err_locked;
13330 		}
13331 	}
13332 
13333 	/*
13334 	 * Now that we're certain of the pmu; find the pmu_ctx.
13335 	 */
13336 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13337 	if (IS_ERR(pmu_ctx)) {
13338 		err = PTR_ERR(pmu_ctx);
13339 		goto err_locked;
13340 	}
13341 	event->pmu_ctx = pmu_ctx;
13342 
13343 	if (output_event) {
13344 		err = perf_event_set_output(event, output_event);
13345 		if (err)
13346 			goto err_context;
13347 	}
13348 
13349 	if (!perf_event_validate_size(event)) {
13350 		err = -E2BIG;
13351 		goto err_context;
13352 	}
13353 
13354 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13355 		err = -EINVAL;
13356 		goto err_context;
13357 	}
13358 
13359 	/*
13360 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13361 	 * because we need to serialize with concurrent event creation.
13362 	 */
13363 	if (!exclusive_event_installable(event, ctx)) {
13364 		err = -EBUSY;
13365 		goto err_context;
13366 	}
13367 
13368 	WARN_ON_ONCE(ctx->parent_ctx);
13369 
13370 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13371 	if (IS_ERR(event_file)) {
13372 		err = PTR_ERR(event_file);
13373 		event_file = NULL;
13374 		goto err_context;
13375 	}
13376 
13377 	/*
13378 	 * This is the point on no return; we cannot fail hereafter. This is
13379 	 * where we start modifying current state.
13380 	 */
13381 
13382 	if (move_group) {
13383 		perf_remove_from_context(group_leader, 0);
13384 		put_pmu_ctx(group_leader->pmu_ctx);
13385 
13386 		for_each_sibling_event(sibling, group_leader) {
13387 			perf_remove_from_context(sibling, 0);
13388 			put_pmu_ctx(sibling->pmu_ctx);
13389 		}
13390 
13391 		/*
13392 		 * Install the group siblings before the group leader.
13393 		 *
13394 		 * Because a group leader will try and install the entire group
13395 		 * (through the sibling list, which is still in-tact), we can
13396 		 * end up with siblings installed in the wrong context.
13397 		 *
13398 		 * By installing siblings first we NO-OP because they're not
13399 		 * reachable through the group lists.
13400 		 */
13401 		for_each_sibling_event(sibling, group_leader) {
13402 			sibling->pmu_ctx = pmu_ctx;
13403 			get_pmu_ctx(pmu_ctx);
13404 			perf_event__state_init(sibling);
13405 			perf_install_in_context(ctx, sibling, sibling->cpu);
13406 		}
13407 
13408 		/*
13409 		 * Removing from the context ends up with disabled
13410 		 * event. What we want here is event in the initial
13411 		 * startup state, ready to be add into new context.
13412 		 */
13413 		group_leader->pmu_ctx = pmu_ctx;
13414 		get_pmu_ctx(pmu_ctx);
13415 		perf_event__state_init(group_leader);
13416 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13417 	}
13418 
13419 	/*
13420 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13421 	 * that we're serialized against further additions and before
13422 	 * perf_install_in_context() which is the point the event is active and
13423 	 * can use these values.
13424 	 */
13425 	perf_event__header_size(event);
13426 	perf_event__id_header_size(event);
13427 
13428 	event->owner = current;
13429 
13430 	perf_install_in_context(ctx, event, event->cpu);
13431 	perf_unpin_context(ctx);
13432 
13433 	mutex_unlock(&ctx->mutex);
13434 
13435 	if (task) {
13436 		up_read(&task->signal->exec_update_lock);
13437 		put_task_struct(task);
13438 	}
13439 
13440 	mutex_lock(&current->perf_event_mutex);
13441 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13442 	mutex_unlock(&current->perf_event_mutex);
13443 
13444 	/*
13445 	 * File reference in group guarantees that group_leader has been
13446 	 * kept alive until we place the new event on the sibling_list.
13447 	 * This ensures destruction of the group leader will find
13448 	 * the pointer to itself in perf_group_detach().
13449 	 */
13450 	fd_install(event_fd, event_file);
13451 	return event_fd;
13452 
13453 err_context:
13454 	put_pmu_ctx(event->pmu_ctx);
13455 	event->pmu_ctx = NULL; /* _free_event() */
13456 err_locked:
13457 	mutex_unlock(&ctx->mutex);
13458 	perf_unpin_context(ctx);
13459 	put_ctx(ctx);
13460 err_cred:
13461 	if (task)
13462 		up_read(&task->signal->exec_update_lock);
13463 err_alloc:
13464 	free_event(event);
13465 err_task:
13466 	if (task)
13467 		put_task_struct(task);
13468 err_fd:
13469 	put_unused_fd(event_fd);
13470 	return err;
13471 }
13472 
13473 /**
13474  * perf_event_create_kernel_counter
13475  *
13476  * @attr: attributes of the counter to create
13477  * @cpu: cpu in which the counter is bound
13478  * @task: task to profile (NULL for percpu)
13479  * @overflow_handler: callback to trigger when we hit the event
13480  * @context: context data could be used in overflow_handler callback
13481  */
13482 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13483 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13484 				 struct task_struct *task,
13485 				 perf_overflow_handler_t overflow_handler,
13486 				 void *context)
13487 {
13488 	struct perf_event_pmu_context *pmu_ctx;
13489 	struct perf_event_context *ctx;
13490 	struct perf_event *event;
13491 	struct pmu *pmu;
13492 	int err;
13493 
13494 	/*
13495 	 * Grouping is not supported for kernel events, neither is 'AUX',
13496 	 * make sure the caller's intentions are adjusted.
13497 	 */
13498 	if (attr->aux_output || attr->aux_action)
13499 		return ERR_PTR(-EINVAL);
13500 
13501 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13502 				 overflow_handler, context, -1);
13503 	if (IS_ERR(event)) {
13504 		err = PTR_ERR(event);
13505 		goto err;
13506 	}
13507 
13508 	/* Mark owner so we could distinguish it from user events. */
13509 	event->owner = TASK_TOMBSTONE;
13510 	pmu = event->pmu;
13511 
13512 	if (pmu->task_ctx_nr == perf_sw_context)
13513 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13514 
13515 	/*
13516 	 * Get the target context (task or percpu):
13517 	 */
13518 	ctx = find_get_context(task, event);
13519 	if (IS_ERR(ctx)) {
13520 		err = PTR_ERR(ctx);
13521 		goto err_alloc;
13522 	}
13523 
13524 	WARN_ON_ONCE(ctx->parent_ctx);
13525 	mutex_lock(&ctx->mutex);
13526 	if (ctx->task == TASK_TOMBSTONE) {
13527 		err = -ESRCH;
13528 		goto err_unlock;
13529 	}
13530 
13531 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13532 	if (IS_ERR(pmu_ctx)) {
13533 		err = PTR_ERR(pmu_ctx);
13534 		goto err_unlock;
13535 	}
13536 	event->pmu_ctx = pmu_ctx;
13537 
13538 	if (!task) {
13539 		/*
13540 		 * Check if the @cpu we're creating an event for is online.
13541 		 *
13542 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13543 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13544 		 */
13545 		struct perf_cpu_context *cpuctx =
13546 			container_of(ctx, struct perf_cpu_context, ctx);
13547 		if (!cpuctx->online) {
13548 			err = -ENODEV;
13549 			goto err_pmu_ctx;
13550 		}
13551 	}
13552 
13553 	if (!exclusive_event_installable(event, ctx)) {
13554 		err = -EBUSY;
13555 		goto err_pmu_ctx;
13556 	}
13557 
13558 	perf_install_in_context(ctx, event, event->cpu);
13559 	perf_unpin_context(ctx);
13560 	mutex_unlock(&ctx->mutex);
13561 
13562 	return event;
13563 
13564 err_pmu_ctx:
13565 	put_pmu_ctx(pmu_ctx);
13566 	event->pmu_ctx = NULL; /* _free_event() */
13567 err_unlock:
13568 	mutex_unlock(&ctx->mutex);
13569 	perf_unpin_context(ctx);
13570 	put_ctx(ctx);
13571 err_alloc:
13572 	free_event(event);
13573 err:
13574 	return ERR_PTR(err);
13575 }
13576 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13577 
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13578 static void __perf_pmu_remove(struct perf_event_context *ctx,
13579 			      int cpu, struct pmu *pmu,
13580 			      struct perf_event_groups *groups,
13581 			      struct list_head *events)
13582 {
13583 	struct perf_event *event, *sibling;
13584 
13585 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13586 		perf_remove_from_context(event, 0);
13587 		put_pmu_ctx(event->pmu_ctx);
13588 		list_add(&event->migrate_entry, events);
13589 
13590 		for_each_sibling_event(sibling, event) {
13591 			perf_remove_from_context(sibling, 0);
13592 			put_pmu_ctx(sibling->pmu_ctx);
13593 			list_add(&sibling->migrate_entry, events);
13594 		}
13595 	}
13596 }
13597 
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13598 static void __perf_pmu_install_event(struct pmu *pmu,
13599 				     struct perf_event_context *ctx,
13600 				     int cpu, struct perf_event *event)
13601 {
13602 	struct perf_event_pmu_context *epc;
13603 	struct perf_event_context *old_ctx = event->ctx;
13604 
13605 	get_ctx(ctx); /* normally find_get_context() */
13606 
13607 	event->cpu = cpu;
13608 	epc = find_get_pmu_context(pmu, ctx, event);
13609 	event->pmu_ctx = epc;
13610 
13611 	if (event->state >= PERF_EVENT_STATE_OFF)
13612 		event->state = PERF_EVENT_STATE_INACTIVE;
13613 	perf_install_in_context(ctx, event, cpu);
13614 
13615 	/*
13616 	 * Now that event->ctx is updated and visible, put the old ctx.
13617 	 */
13618 	put_ctx(old_ctx);
13619 }
13620 
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13621 static void __perf_pmu_install(struct perf_event_context *ctx,
13622 			       int cpu, struct pmu *pmu, struct list_head *events)
13623 {
13624 	struct perf_event *event, *tmp;
13625 
13626 	/*
13627 	 * Re-instate events in 2 passes.
13628 	 *
13629 	 * Skip over group leaders and only install siblings on this first
13630 	 * pass, siblings will not get enabled without a leader, however a
13631 	 * leader will enable its siblings, even if those are still on the old
13632 	 * context.
13633 	 */
13634 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13635 		if (event->group_leader == event)
13636 			continue;
13637 
13638 		list_del(&event->migrate_entry);
13639 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13640 	}
13641 
13642 	/*
13643 	 * Once all the siblings are setup properly, install the group leaders
13644 	 * to make it go.
13645 	 */
13646 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13647 		list_del(&event->migrate_entry);
13648 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13649 	}
13650 }
13651 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13652 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13653 {
13654 	struct perf_event_context *src_ctx, *dst_ctx;
13655 	LIST_HEAD(events);
13656 
13657 	/*
13658 	 * Since per-cpu context is persistent, no need to grab an extra
13659 	 * reference.
13660 	 */
13661 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13662 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13663 
13664 	/*
13665 	 * See perf_event_ctx_lock() for comments on the details
13666 	 * of swizzling perf_event::ctx.
13667 	 */
13668 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13669 
13670 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13671 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13672 
13673 	if (!list_empty(&events)) {
13674 		/*
13675 		 * Wait for the events to quiesce before re-instating them.
13676 		 */
13677 		synchronize_rcu();
13678 
13679 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13680 	}
13681 
13682 	mutex_unlock(&dst_ctx->mutex);
13683 	mutex_unlock(&src_ctx->mutex);
13684 }
13685 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13686 
sync_child_event(struct perf_event * child_event)13687 static void sync_child_event(struct perf_event *child_event)
13688 {
13689 	struct perf_event *parent_event = child_event->parent;
13690 	u64 child_val;
13691 
13692 	if (child_event->attr.inherit_stat) {
13693 		struct task_struct *task = child_event->ctx->task;
13694 
13695 		if (task && task != TASK_TOMBSTONE)
13696 			perf_event_read_event(child_event, task);
13697 	}
13698 
13699 	child_val = perf_event_count(child_event, false);
13700 
13701 	/*
13702 	 * Add back the child's count to the parent's count:
13703 	 */
13704 	atomic64_add(child_val, &parent_event->child_count);
13705 	atomic64_add(child_event->total_time_enabled,
13706 		     &parent_event->child_total_time_enabled);
13707 	atomic64_add(child_event->total_time_running,
13708 		     &parent_event->child_total_time_running);
13709 }
13710 
13711 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13712 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13713 {
13714 	struct perf_event *parent_event = event->parent;
13715 	unsigned long detach_flags = 0;
13716 
13717 	if (parent_event) {
13718 		/*
13719 		 * Do not destroy the 'original' grouping; because of the
13720 		 * context switch optimization the original events could've
13721 		 * ended up in a random child task.
13722 		 *
13723 		 * If we were to destroy the original group, all group related
13724 		 * operations would cease to function properly after this
13725 		 * random child dies.
13726 		 *
13727 		 * Do destroy all inherited groups, we don't care about those
13728 		 * and being thorough is better.
13729 		 */
13730 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13731 		mutex_lock(&parent_event->child_mutex);
13732 	}
13733 
13734 	perf_remove_from_context(event, detach_flags);
13735 
13736 	raw_spin_lock_irq(&ctx->lock);
13737 	if (event->state > PERF_EVENT_STATE_EXIT)
13738 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13739 	raw_spin_unlock_irq(&ctx->lock);
13740 
13741 	/*
13742 	 * Child events can be freed.
13743 	 */
13744 	if (parent_event) {
13745 		mutex_unlock(&parent_event->child_mutex);
13746 		/*
13747 		 * Kick perf_poll() for is_event_hup();
13748 		 */
13749 		perf_event_wakeup(parent_event);
13750 		free_event(event);
13751 		put_event(parent_event);
13752 		return;
13753 	}
13754 
13755 	/*
13756 	 * Parent events are governed by their filedesc, retain them.
13757 	 */
13758 	perf_event_wakeup(event);
13759 }
13760 
perf_event_exit_task_context(struct task_struct * child)13761 static void perf_event_exit_task_context(struct task_struct *child)
13762 {
13763 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13764 	struct perf_event *child_event, *next;
13765 
13766 	WARN_ON_ONCE(child != current);
13767 
13768 	child_ctx = perf_pin_task_context(child);
13769 	if (!child_ctx)
13770 		return;
13771 
13772 	/*
13773 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13774 	 * ctx::mutex over the entire thing. This serializes against almost
13775 	 * everything that wants to access the ctx.
13776 	 *
13777 	 * The exception is sys_perf_event_open() /
13778 	 * perf_event_create_kernel_count() which does find_get_context()
13779 	 * without ctx::mutex (it cannot because of the move_group double mutex
13780 	 * lock thing). See the comments in perf_install_in_context().
13781 	 */
13782 	mutex_lock(&child_ctx->mutex);
13783 
13784 	/*
13785 	 * In a single ctx::lock section, de-schedule the events and detach the
13786 	 * context from the task such that we cannot ever get it scheduled back
13787 	 * in.
13788 	 */
13789 	raw_spin_lock_irq(&child_ctx->lock);
13790 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13791 
13792 	/*
13793 	 * Now that the context is inactive, destroy the task <-> ctx relation
13794 	 * and mark the context dead.
13795 	 */
13796 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13797 	put_ctx(child_ctx); /* cannot be last */
13798 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13799 	put_task_struct(current); /* cannot be last */
13800 
13801 	clone_ctx = unclone_ctx(child_ctx);
13802 	raw_spin_unlock_irq(&child_ctx->lock);
13803 
13804 	if (clone_ctx)
13805 		put_ctx(clone_ctx);
13806 
13807 	/*
13808 	 * Report the task dead after unscheduling the events so that we
13809 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13810 	 * get a few PERF_RECORD_READ events.
13811 	 */
13812 	perf_event_task(child, child_ctx, 0);
13813 
13814 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13815 		perf_event_exit_event(child_event, child_ctx);
13816 
13817 	mutex_unlock(&child_ctx->mutex);
13818 
13819 	put_ctx(child_ctx);
13820 }
13821 
13822 /*
13823  * When a child task exits, feed back event values to parent events.
13824  *
13825  * Can be called with exec_update_lock held when called from
13826  * setup_new_exec().
13827  */
perf_event_exit_task(struct task_struct * child)13828 void perf_event_exit_task(struct task_struct *child)
13829 {
13830 	struct perf_event *event, *tmp;
13831 
13832 	mutex_lock(&child->perf_event_mutex);
13833 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13834 				 owner_entry) {
13835 		list_del_init(&event->owner_entry);
13836 
13837 		/*
13838 		 * Ensure the list deletion is visible before we clear
13839 		 * the owner, closes a race against perf_release() where
13840 		 * we need to serialize on the owner->perf_event_mutex.
13841 		 */
13842 		smp_store_release(&event->owner, NULL);
13843 	}
13844 	mutex_unlock(&child->perf_event_mutex);
13845 
13846 	perf_event_exit_task_context(child);
13847 
13848 	/*
13849 	 * The perf_event_exit_task_context calls perf_event_task
13850 	 * with child's task_ctx, which generates EXIT events for
13851 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13852 	 * At this point we need to send EXIT events to cpu contexts.
13853 	 */
13854 	perf_event_task(child, NULL, 0);
13855 
13856 	/*
13857 	 * Detach the perf_ctx_data for the system-wide event.
13858 	 */
13859 	guard(percpu_read)(&global_ctx_data_rwsem);
13860 	detach_task_ctx_data(child);
13861 }
13862 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13863 static void perf_free_event(struct perf_event *event,
13864 			    struct perf_event_context *ctx)
13865 {
13866 	struct perf_event *parent = event->parent;
13867 
13868 	if (WARN_ON_ONCE(!parent))
13869 		return;
13870 
13871 	mutex_lock(&parent->child_mutex);
13872 	list_del_init(&event->child_list);
13873 	mutex_unlock(&parent->child_mutex);
13874 
13875 	put_event(parent);
13876 
13877 	raw_spin_lock_irq(&ctx->lock);
13878 	perf_group_detach(event);
13879 	list_del_event(event, ctx);
13880 	raw_spin_unlock_irq(&ctx->lock);
13881 	free_event(event);
13882 }
13883 
13884 /*
13885  * Free a context as created by inheritance by perf_event_init_task() below,
13886  * used by fork() in case of fail.
13887  *
13888  * Even though the task has never lived, the context and events have been
13889  * exposed through the child_list, so we must take care tearing it all down.
13890  */
perf_event_free_task(struct task_struct * task)13891 void perf_event_free_task(struct task_struct *task)
13892 {
13893 	struct perf_event_context *ctx;
13894 	struct perf_event *event, *tmp;
13895 
13896 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13897 	if (!ctx)
13898 		return;
13899 
13900 	mutex_lock(&ctx->mutex);
13901 	raw_spin_lock_irq(&ctx->lock);
13902 	/*
13903 	 * Destroy the task <-> ctx relation and mark the context dead.
13904 	 *
13905 	 * This is important because even though the task hasn't been
13906 	 * exposed yet the context has been (through child_list).
13907 	 */
13908 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13909 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13910 	put_task_struct(task); /* cannot be last */
13911 	raw_spin_unlock_irq(&ctx->lock);
13912 
13913 
13914 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13915 		perf_free_event(event, ctx);
13916 
13917 	mutex_unlock(&ctx->mutex);
13918 
13919 	/*
13920 	 * perf_event_release_kernel() could've stolen some of our
13921 	 * child events and still have them on its free_list. In that
13922 	 * case we must wait for these events to have been freed (in
13923 	 * particular all their references to this task must've been
13924 	 * dropped).
13925 	 *
13926 	 * Without this copy_process() will unconditionally free this
13927 	 * task (irrespective of its reference count) and
13928 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13929 	 * use-after-free.
13930 	 *
13931 	 * Wait for all events to drop their context reference.
13932 	 */
13933 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13934 	put_ctx(ctx); /* must be last */
13935 }
13936 
perf_event_delayed_put(struct task_struct * task)13937 void perf_event_delayed_put(struct task_struct *task)
13938 {
13939 	WARN_ON_ONCE(task->perf_event_ctxp);
13940 }
13941 
perf_event_get(unsigned int fd)13942 struct file *perf_event_get(unsigned int fd)
13943 {
13944 	struct file *file = fget(fd);
13945 	if (!file)
13946 		return ERR_PTR(-EBADF);
13947 
13948 	if (file->f_op != &perf_fops) {
13949 		fput(file);
13950 		return ERR_PTR(-EBADF);
13951 	}
13952 
13953 	return file;
13954 }
13955 
perf_get_event(struct file * file)13956 const struct perf_event *perf_get_event(struct file *file)
13957 {
13958 	if (file->f_op != &perf_fops)
13959 		return ERR_PTR(-EINVAL);
13960 
13961 	return file->private_data;
13962 }
13963 
perf_event_attrs(struct perf_event * event)13964 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13965 {
13966 	if (!event)
13967 		return ERR_PTR(-EINVAL);
13968 
13969 	return &event->attr;
13970 }
13971 
perf_allow_kernel(void)13972 int perf_allow_kernel(void)
13973 {
13974 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13975 		return -EACCES;
13976 
13977 	return security_perf_event_open(PERF_SECURITY_KERNEL);
13978 }
13979 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13980 
13981 /*
13982  * Inherit an event from parent task to child task.
13983  *
13984  * Returns:
13985  *  - valid pointer on success
13986  *  - NULL for orphaned events
13987  *  - IS_ERR() on error
13988  */
13989 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13990 inherit_event(struct perf_event *parent_event,
13991 	      struct task_struct *parent,
13992 	      struct perf_event_context *parent_ctx,
13993 	      struct task_struct *child,
13994 	      struct perf_event *group_leader,
13995 	      struct perf_event_context *child_ctx)
13996 {
13997 	enum perf_event_state parent_state = parent_event->state;
13998 	struct perf_event_pmu_context *pmu_ctx;
13999 	struct perf_event *child_event;
14000 	unsigned long flags;
14001 
14002 	/*
14003 	 * Instead of creating recursive hierarchies of events,
14004 	 * we link inherited events back to the original parent,
14005 	 * which has a filp for sure, which we use as the reference
14006 	 * count:
14007 	 */
14008 	if (parent_event->parent)
14009 		parent_event = parent_event->parent;
14010 
14011 	child_event = perf_event_alloc(&parent_event->attr,
14012 					   parent_event->cpu,
14013 					   child,
14014 					   group_leader, parent_event,
14015 					   NULL, NULL, -1);
14016 	if (IS_ERR(child_event))
14017 		return child_event;
14018 
14019 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14020 	if (IS_ERR(pmu_ctx)) {
14021 		free_event(child_event);
14022 		return ERR_CAST(pmu_ctx);
14023 	}
14024 	child_event->pmu_ctx = pmu_ctx;
14025 
14026 	/*
14027 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14028 	 * must be under the same lock in order to serialize against
14029 	 * perf_event_release_kernel(), such that either we must observe
14030 	 * is_orphaned_event() or they will observe us on the child_list.
14031 	 */
14032 	mutex_lock(&parent_event->child_mutex);
14033 	if (is_orphaned_event(parent_event) ||
14034 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14035 		mutex_unlock(&parent_event->child_mutex);
14036 		free_event(child_event);
14037 		return NULL;
14038 	}
14039 
14040 	get_ctx(child_ctx);
14041 
14042 	/*
14043 	 * Make the child state follow the state of the parent event,
14044 	 * not its attr.disabled bit.  We hold the parent's mutex,
14045 	 * so we won't race with perf_event_{en, dis}able_family.
14046 	 */
14047 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14048 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14049 	else
14050 		child_event->state = PERF_EVENT_STATE_OFF;
14051 
14052 	if (parent_event->attr.freq) {
14053 		u64 sample_period = parent_event->hw.sample_period;
14054 		struct hw_perf_event *hwc = &child_event->hw;
14055 
14056 		hwc->sample_period = sample_period;
14057 		hwc->last_period   = sample_period;
14058 
14059 		local64_set(&hwc->period_left, sample_period);
14060 	}
14061 
14062 	child_event->ctx = child_ctx;
14063 	child_event->overflow_handler = parent_event->overflow_handler;
14064 	child_event->overflow_handler_context
14065 		= parent_event->overflow_handler_context;
14066 
14067 	/*
14068 	 * Precalculate sample_data sizes
14069 	 */
14070 	perf_event__header_size(child_event);
14071 	perf_event__id_header_size(child_event);
14072 
14073 	/*
14074 	 * Link it up in the child's context:
14075 	 */
14076 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14077 	add_event_to_ctx(child_event, child_ctx);
14078 	child_event->attach_state |= PERF_ATTACH_CHILD;
14079 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14080 
14081 	/*
14082 	 * Link this into the parent event's child list
14083 	 */
14084 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14085 	mutex_unlock(&parent_event->child_mutex);
14086 
14087 	return child_event;
14088 }
14089 
14090 /*
14091  * Inherits an event group.
14092  *
14093  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14094  * This matches with perf_event_release_kernel() removing all child events.
14095  *
14096  * Returns:
14097  *  - 0 on success
14098  *  - <0 on error
14099  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)14100 static int inherit_group(struct perf_event *parent_event,
14101 	      struct task_struct *parent,
14102 	      struct perf_event_context *parent_ctx,
14103 	      struct task_struct *child,
14104 	      struct perf_event_context *child_ctx)
14105 {
14106 	struct perf_event *leader;
14107 	struct perf_event *sub;
14108 	struct perf_event *child_ctr;
14109 
14110 	leader = inherit_event(parent_event, parent, parent_ctx,
14111 				 child, NULL, child_ctx);
14112 	if (IS_ERR(leader))
14113 		return PTR_ERR(leader);
14114 	/*
14115 	 * @leader can be NULL here because of is_orphaned_event(). In this
14116 	 * case inherit_event() will create individual events, similar to what
14117 	 * perf_group_detach() would do anyway.
14118 	 */
14119 	for_each_sibling_event(sub, parent_event) {
14120 		child_ctr = inherit_event(sub, parent, parent_ctx,
14121 					    child, leader, child_ctx);
14122 		if (IS_ERR(child_ctr))
14123 			return PTR_ERR(child_ctr);
14124 
14125 		if (sub->aux_event == parent_event && child_ctr &&
14126 		    !perf_get_aux_event(child_ctr, leader))
14127 			return -EINVAL;
14128 	}
14129 	if (leader)
14130 		leader->group_generation = parent_event->group_generation;
14131 	return 0;
14132 }
14133 
14134 /*
14135  * Creates the child task context and tries to inherit the event-group.
14136  *
14137  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14138  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14139  * consistent with perf_event_release_kernel() removing all child events.
14140  *
14141  * Returns:
14142  *  - 0 on success
14143  *  - <0 on error
14144  */
14145 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)14146 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14147 		   struct perf_event_context *parent_ctx,
14148 		   struct task_struct *child,
14149 		   u64 clone_flags, int *inherited_all)
14150 {
14151 	struct perf_event_context *child_ctx;
14152 	int ret;
14153 
14154 	if (!event->attr.inherit ||
14155 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14156 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14157 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14158 		*inherited_all = 0;
14159 		return 0;
14160 	}
14161 
14162 	child_ctx = child->perf_event_ctxp;
14163 	if (!child_ctx) {
14164 		/*
14165 		 * This is executed from the parent task context, so
14166 		 * inherit events that have been marked for cloning.
14167 		 * First allocate and initialize a context for the
14168 		 * child.
14169 		 */
14170 		child_ctx = alloc_perf_context(child);
14171 		if (!child_ctx)
14172 			return -ENOMEM;
14173 
14174 		child->perf_event_ctxp = child_ctx;
14175 	}
14176 
14177 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14178 	if (ret)
14179 		*inherited_all = 0;
14180 
14181 	return ret;
14182 }
14183 
14184 /*
14185  * Initialize the perf_event context in task_struct
14186  */
perf_event_init_context(struct task_struct * child,u64 clone_flags)14187 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14188 {
14189 	struct perf_event_context *child_ctx, *parent_ctx;
14190 	struct perf_event_context *cloned_ctx;
14191 	struct perf_event *event;
14192 	struct task_struct *parent = current;
14193 	int inherited_all = 1;
14194 	unsigned long flags;
14195 	int ret = 0;
14196 
14197 	if (likely(!parent->perf_event_ctxp))
14198 		return 0;
14199 
14200 	/*
14201 	 * If the parent's context is a clone, pin it so it won't get
14202 	 * swapped under us.
14203 	 */
14204 	parent_ctx = perf_pin_task_context(parent);
14205 	if (!parent_ctx)
14206 		return 0;
14207 
14208 	/*
14209 	 * No need to check if parent_ctx != NULL here; since we saw
14210 	 * it non-NULL earlier, the only reason for it to become NULL
14211 	 * is if we exit, and since we're currently in the middle of
14212 	 * a fork we can't be exiting at the same time.
14213 	 */
14214 
14215 	/*
14216 	 * Lock the parent list. No need to lock the child - not PID
14217 	 * hashed yet and not running, so nobody can access it.
14218 	 */
14219 	mutex_lock(&parent_ctx->mutex);
14220 
14221 	/*
14222 	 * We dont have to disable NMIs - we are only looking at
14223 	 * the list, not manipulating it:
14224 	 */
14225 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14226 		ret = inherit_task_group(event, parent, parent_ctx,
14227 					 child, clone_flags, &inherited_all);
14228 		if (ret)
14229 			goto out_unlock;
14230 	}
14231 
14232 	/*
14233 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14234 	 * to allocations, but we need to prevent rotation because
14235 	 * rotate_ctx() will change the list from interrupt context.
14236 	 */
14237 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14238 	parent_ctx->rotate_disable = 1;
14239 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14240 
14241 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14242 		ret = inherit_task_group(event, parent, parent_ctx,
14243 					 child, clone_flags, &inherited_all);
14244 		if (ret)
14245 			goto out_unlock;
14246 	}
14247 
14248 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14249 	parent_ctx->rotate_disable = 0;
14250 
14251 	child_ctx = child->perf_event_ctxp;
14252 
14253 	if (child_ctx && inherited_all) {
14254 		/*
14255 		 * Mark the child context as a clone of the parent
14256 		 * context, or of whatever the parent is a clone of.
14257 		 *
14258 		 * Note that if the parent is a clone, the holding of
14259 		 * parent_ctx->lock avoids it from being uncloned.
14260 		 */
14261 		cloned_ctx = parent_ctx->parent_ctx;
14262 		if (cloned_ctx) {
14263 			child_ctx->parent_ctx = cloned_ctx;
14264 			child_ctx->parent_gen = parent_ctx->parent_gen;
14265 		} else {
14266 			child_ctx->parent_ctx = parent_ctx;
14267 			child_ctx->parent_gen = parent_ctx->generation;
14268 		}
14269 		get_ctx(child_ctx->parent_ctx);
14270 	}
14271 
14272 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14273 out_unlock:
14274 	mutex_unlock(&parent_ctx->mutex);
14275 
14276 	perf_unpin_context(parent_ctx);
14277 	put_ctx(parent_ctx);
14278 
14279 	return ret;
14280 }
14281 
14282 /*
14283  * Initialize the perf_event context in task_struct
14284  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)14285 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14286 {
14287 	int ret;
14288 
14289 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14290 	child->perf_event_ctxp = NULL;
14291 	mutex_init(&child->perf_event_mutex);
14292 	INIT_LIST_HEAD(&child->perf_event_list);
14293 	child->perf_ctx_data = NULL;
14294 
14295 	ret = perf_event_init_context(child, clone_flags);
14296 	if (ret) {
14297 		perf_event_free_task(child);
14298 		return ret;
14299 	}
14300 
14301 	return 0;
14302 }
14303 
perf_event_init_all_cpus(void)14304 static void __init perf_event_init_all_cpus(void)
14305 {
14306 	struct swevent_htable *swhash;
14307 	struct perf_cpu_context *cpuctx;
14308 	int cpu;
14309 
14310 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14311 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14312 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14313 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14314 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14315 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14316 
14317 
14318 	for_each_possible_cpu(cpu) {
14319 		swhash = &per_cpu(swevent_htable, cpu);
14320 		mutex_init(&swhash->hlist_mutex);
14321 
14322 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14323 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14324 
14325 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14326 
14327 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14328 		__perf_event_init_context(&cpuctx->ctx);
14329 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14330 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14331 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14332 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14333 		cpuctx->heap = cpuctx->heap_default;
14334 	}
14335 }
14336 
perf_swevent_init_cpu(unsigned int cpu)14337 static void perf_swevent_init_cpu(unsigned int cpu)
14338 {
14339 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14340 
14341 	mutex_lock(&swhash->hlist_mutex);
14342 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14343 		struct swevent_hlist *hlist;
14344 
14345 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14346 		WARN_ON(!hlist);
14347 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14348 	}
14349 	mutex_unlock(&swhash->hlist_mutex);
14350 }
14351 
14352 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14353 static void __perf_event_exit_context(void *__info)
14354 {
14355 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14356 	struct perf_event_context *ctx = __info;
14357 	struct perf_event *event;
14358 
14359 	raw_spin_lock(&ctx->lock);
14360 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14361 	list_for_each_entry(event, &ctx->event_list, event_entry)
14362 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14363 	raw_spin_unlock(&ctx->lock);
14364 }
14365 
perf_event_clear_cpumask(unsigned int cpu)14366 static void perf_event_clear_cpumask(unsigned int cpu)
14367 {
14368 	int target[PERF_PMU_MAX_SCOPE];
14369 	unsigned int scope;
14370 	struct pmu *pmu;
14371 
14372 	cpumask_clear_cpu(cpu, perf_online_mask);
14373 
14374 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14375 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14376 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14377 
14378 		target[scope] = -1;
14379 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14380 			continue;
14381 
14382 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14383 			continue;
14384 		target[scope] = cpumask_any_but(cpumask, cpu);
14385 		if (target[scope] < nr_cpu_ids)
14386 			cpumask_set_cpu(target[scope], pmu_cpumask);
14387 	}
14388 
14389 	/* migrate */
14390 	list_for_each_entry(pmu, &pmus, entry) {
14391 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14392 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14393 			continue;
14394 
14395 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14396 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14397 	}
14398 }
14399 
perf_event_exit_cpu_context(int cpu)14400 static void perf_event_exit_cpu_context(int cpu)
14401 {
14402 	struct perf_cpu_context *cpuctx;
14403 	struct perf_event_context *ctx;
14404 
14405 	// XXX simplify cpuctx->online
14406 	mutex_lock(&pmus_lock);
14407 	/*
14408 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14409 	 * Must be invoked before the __perf_event_exit_context.
14410 	 */
14411 	perf_event_clear_cpumask(cpu);
14412 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14413 	ctx = &cpuctx->ctx;
14414 
14415 	mutex_lock(&ctx->mutex);
14416 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14417 	cpuctx->online = 0;
14418 	mutex_unlock(&ctx->mutex);
14419 	mutex_unlock(&pmus_lock);
14420 }
14421 #else
14422 
perf_event_exit_cpu_context(int cpu)14423 static void perf_event_exit_cpu_context(int cpu) { }
14424 
14425 #endif
14426 
perf_event_setup_cpumask(unsigned int cpu)14427 static void perf_event_setup_cpumask(unsigned int cpu)
14428 {
14429 	struct cpumask *pmu_cpumask;
14430 	unsigned int scope;
14431 
14432 	/*
14433 	 * Early boot stage, the cpumask hasn't been set yet.
14434 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14435 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14436 	 */
14437 	if (cpumask_empty(perf_online_mask)) {
14438 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14439 			pmu_cpumask = perf_scope_cpumask(scope);
14440 			if (WARN_ON_ONCE(!pmu_cpumask))
14441 				continue;
14442 			cpumask_set_cpu(cpu, pmu_cpumask);
14443 		}
14444 		goto end;
14445 	}
14446 
14447 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14448 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14449 
14450 		pmu_cpumask = perf_scope_cpumask(scope);
14451 
14452 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14453 			continue;
14454 
14455 		if (!cpumask_empty(cpumask) &&
14456 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14457 			cpumask_set_cpu(cpu, pmu_cpumask);
14458 	}
14459 end:
14460 	cpumask_set_cpu(cpu, perf_online_mask);
14461 }
14462 
perf_event_init_cpu(unsigned int cpu)14463 int perf_event_init_cpu(unsigned int cpu)
14464 {
14465 	struct perf_cpu_context *cpuctx;
14466 	struct perf_event_context *ctx;
14467 
14468 	perf_swevent_init_cpu(cpu);
14469 
14470 	mutex_lock(&pmus_lock);
14471 	perf_event_setup_cpumask(cpu);
14472 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14473 	ctx = &cpuctx->ctx;
14474 
14475 	mutex_lock(&ctx->mutex);
14476 	cpuctx->online = 1;
14477 	mutex_unlock(&ctx->mutex);
14478 	mutex_unlock(&pmus_lock);
14479 
14480 	return 0;
14481 }
14482 
perf_event_exit_cpu(unsigned int cpu)14483 int perf_event_exit_cpu(unsigned int cpu)
14484 {
14485 	perf_event_exit_cpu_context(cpu);
14486 	return 0;
14487 }
14488 
14489 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14490 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14491 {
14492 	int cpu;
14493 
14494 	for_each_online_cpu(cpu)
14495 		perf_event_exit_cpu(cpu);
14496 
14497 	return NOTIFY_OK;
14498 }
14499 
14500 /*
14501  * Run the perf reboot notifier at the very last possible moment so that
14502  * the generic watchdog code runs as long as possible.
14503  */
14504 static struct notifier_block perf_reboot_notifier = {
14505 	.notifier_call = perf_reboot,
14506 	.priority = INT_MIN,
14507 };
14508 
perf_event_init(void)14509 void __init perf_event_init(void)
14510 {
14511 	int ret;
14512 
14513 	idr_init(&pmu_idr);
14514 
14515 	perf_event_init_all_cpus();
14516 	init_srcu_struct(&pmus_srcu);
14517 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14518 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14519 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14520 	perf_tp_register();
14521 	perf_event_init_cpu(smp_processor_id());
14522 	register_reboot_notifier(&perf_reboot_notifier);
14523 
14524 	ret = init_hw_breakpoint();
14525 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14526 
14527 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14528 
14529 	/*
14530 	 * Build time assertion that we keep the data_head at the intended
14531 	 * location.  IOW, validation we got the __reserved[] size right.
14532 	 */
14533 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14534 		     != 1024);
14535 }
14536 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14537 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14538 			      char *page)
14539 {
14540 	struct perf_pmu_events_attr *pmu_attr =
14541 		container_of(attr, struct perf_pmu_events_attr, attr);
14542 
14543 	if (pmu_attr->event_str)
14544 		return sprintf(page, "%s\n", pmu_attr->event_str);
14545 
14546 	return 0;
14547 }
14548 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14549 
perf_event_sysfs_init(void)14550 static int __init perf_event_sysfs_init(void)
14551 {
14552 	struct pmu *pmu;
14553 	int ret;
14554 
14555 	mutex_lock(&pmus_lock);
14556 
14557 	ret = bus_register(&pmu_bus);
14558 	if (ret)
14559 		goto unlock;
14560 
14561 	list_for_each_entry(pmu, &pmus, entry) {
14562 		if (pmu->dev)
14563 			continue;
14564 
14565 		ret = pmu_dev_alloc(pmu);
14566 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14567 	}
14568 	pmu_bus_running = 1;
14569 	ret = 0;
14570 
14571 unlock:
14572 	mutex_unlock(&pmus_lock);
14573 
14574 	return ret;
14575 }
14576 device_initcall(perf_event_sysfs_init);
14577 
14578 #ifdef CONFIG_CGROUP_PERF
14579 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14580 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14581 {
14582 	struct perf_cgroup *jc;
14583 
14584 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14585 	if (!jc)
14586 		return ERR_PTR(-ENOMEM);
14587 
14588 	jc->info = alloc_percpu(struct perf_cgroup_info);
14589 	if (!jc->info) {
14590 		kfree(jc);
14591 		return ERR_PTR(-ENOMEM);
14592 	}
14593 
14594 	return &jc->css;
14595 }
14596 
perf_cgroup_css_free(struct cgroup_subsys_state * css)14597 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14598 {
14599 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14600 
14601 	free_percpu(jc->info);
14602 	kfree(jc);
14603 }
14604 
perf_cgroup_css_online(struct cgroup_subsys_state * css)14605 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14606 {
14607 	perf_event_cgroup(css->cgroup);
14608 	return 0;
14609 }
14610 
__perf_cgroup_move(void * info)14611 static int __perf_cgroup_move(void *info)
14612 {
14613 	struct task_struct *task = info;
14614 
14615 	preempt_disable();
14616 	perf_cgroup_switch(task);
14617 	preempt_enable();
14618 
14619 	return 0;
14620 }
14621 
perf_cgroup_attach(struct cgroup_taskset * tset)14622 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14623 {
14624 	struct task_struct *task;
14625 	struct cgroup_subsys_state *css;
14626 
14627 	cgroup_taskset_for_each(task, css, tset)
14628 		task_function_call(task, __perf_cgroup_move, task);
14629 }
14630 
14631 struct cgroup_subsys perf_event_cgrp_subsys = {
14632 	.css_alloc	= perf_cgroup_css_alloc,
14633 	.css_free	= perf_cgroup_css_free,
14634 	.css_online	= perf_cgroup_css_online,
14635 	.attach		= perf_cgroup_attach,
14636 	/*
14637 	 * Implicitly enable on dfl hierarchy so that perf events can
14638 	 * always be filtered by cgroup2 path as long as perf_event
14639 	 * controller is not mounted on a legacy hierarchy.
14640 	 */
14641 	.implicit_on_dfl = true,
14642 	.threaded	= true,
14643 };
14644 #endif /* CONFIG_CGROUP_PERF */
14645 
14646 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14647