xref: /linux/arch/x86/events/core.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32 
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44 #include <asm/uprobes.h>
45 #include <asm/ibt.h>
46 
47 #include "perf_event.h"
48 
49 struct x86_pmu x86_pmu __read_mostly;
50 static struct pmu pmu;
51 
52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
53 	.enabled = 1,
54 	.pmu = &pmu,
55 };
56 
57 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
58 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
59 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
60 
61 /*
62  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
63  * from just a typename, as opposed to an actual function.
64  */
65 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
69 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
70 
71 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
72 
73 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
76 
77 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
80 
81 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
83 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
84 
85 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
86 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
88 
89 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
90 
91 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
92 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
93 
94 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
95 
96 DEFINE_STATIC_CALL_NULL(x86_pmu_late_setup, *x86_pmu.late_setup);
97 
98 /*
99  * This one is magic, it will get called even when PMU init fails (because
100  * there is no PMU), in which case it should simply return NULL.
101  */
102 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
103 
104 u64 __read_mostly hw_cache_event_ids
105 				[PERF_COUNT_HW_CACHE_MAX]
106 				[PERF_COUNT_HW_CACHE_OP_MAX]
107 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
108 u64 __read_mostly hw_cache_extra_regs
109 				[PERF_COUNT_HW_CACHE_MAX]
110 				[PERF_COUNT_HW_CACHE_OP_MAX]
111 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
112 
113 /*
114  * Propagate event elapsed time into the generic event.
115  * Can only be executed on the CPU where the event is active.
116  * Returns the delta events processed.
117  */
x86_perf_event_update(struct perf_event * event)118 u64 x86_perf_event_update(struct perf_event *event)
119 {
120 	struct hw_perf_event *hwc = &event->hw;
121 	int shift = 64 - x86_pmu.cntval_bits;
122 	u64 prev_raw_count, new_raw_count;
123 	u64 delta;
124 
125 	if (unlikely(!hwc->event_base))
126 		return 0;
127 
128 	/*
129 	 * Careful: an NMI might modify the previous event value.
130 	 *
131 	 * Our tactic to handle this is to first atomically read and
132 	 * exchange a new raw count - then add that new-prev delta
133 	 * count to the generic event atomically:
134 	 */
135 	prev_raw_count = local64_read(&hwc->prev_count);
136 	do {
137 		rdpmcl(hwc->event_base_rdpmc, new_raw_count);
138 	} while (!local64_try_cmpxchg(&hwc->prev_count,
139 				      &prev_raw_count, new_raw_count));
140 
141 	/*
142 	 * Now we have the new raw value and have updated the prev
143 	 * timestamp already. We can now calculate the elapsed delta
144 	 * (event-)time and add that to the generic event.
145 	 *
146 	 * Careful, not all hw sign-extends above the physical width
147 	 * of the count.
148 	 */
149 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
150 	delta >>= shift;
151 
152 	local64_add(delta, &event->count);
153 	local64_sub(delta, &hwc->period_left);
154 
155 	return new_raw_count;
156 }
157 
158 /*
159  * Find and validate any extra registers to set up.
160  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)161 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
162 {
163 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
164 	struct hw_perf_event_extra *reg;
165 	struct extra_reg *er;
166 
167 	reg = &event->hw.extra_reg;
168 
169 	if (!extra_regs)
170 		return 0;
171 
172 	for (er = extra_regs; er->msr; er++) {
173 		if (er->event != (config & er->config_mask))
174 			continue;
175 		if (event->attr.config1 & ~er->valid_mask)
176 			return -EINVAL;
177 		/* Check if the extra msrs can be safely accessed*/
178 		if (!er->extra_msr_access)
179 			return -ENXIO;
180 
181 		reg->idx = er->idx;
182 		reg->config = event->attr.config1;
183 		reg->reg = er->msr;
184 		break;
185 	}
186 	return 0;
187 }
188 
189 static atomic_t active_events;
190 static atomic_t pmc_refcount;
191 static DEFINE_MUTEX(pmc_reserve_mutex);
192 
193 #ifdef CONFIG_X86_LOCAL_APIC
194 
get_possible_counter_mask(void)195 static inline u64 get_possible_counter_mask(void)
196 {
197 	u64 cntr_mask = x86_pmu.cntr_mask64;
198 	int i;
199 
200 	if (!is_hybrid())
201 		return cntr_mask;
202 
203 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
204 		cntr_mask |= x86_pmu.hybrid_pmu[i].cntr_mask64;
205 
206 	return cntr_mask;
207 }
208 
reserve_pmc_hardware(void)209 static bool reserve_pmc_hardware(void)
210 {
211 	u64 cntr_mask = get_possible_counter_mask();
212 	int i, end;
213 
214 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
215 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
216 			goto perfctr_fail;
217 	}
218 
219 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
220 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
221 			goto eventsel_fail;
222 	}
223 
224 	return true;
225 
226 eventsel_fail:
227 	end = i;
228 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
229 		release_evntsel_nmi(x86_pmu_config_addr(i));
230 	i = X86_PMC_IDX_MAX;
231 
232 perfctr_fail:
233 	end = i;
234 	for_each_set_bit(i, (unsigned long *)&cntr_mask, end)
235 		release_perfctr_nmi(x86_pmu_event_addr(i));
236 
237 	return false;
238 }
239 
release_pmc_hardware(void)240 static void release_pmc_hardware(void)
241 {
242 	u64 cntr_mask = get_possible_counter_mask();
243 	int i;
244 
245 	for_each_set_bit(i, (unsigned long *)&cntr_mask, X86_PMC_IDX_MAX) {
246 		release_perfctr_nmi(x86_pmu_event_addr(i));
247 		release_evntsel_nmi(x86_pmu_config_addr(i));
248 	}
249 }
250 
251 #else
252 
reserve_pmc_hardware(void)253 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)254 static void release_pmc_hardware(void) {}
255 
256 #endif
257 
check_hw_exists(struct pmu * pmu,unsigned long * cntr_mask,unsigned long * fixed_cntr_mask)258 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
259 		     unsigned long *fixed_cntr_mask)
260 {
261 	u64 val, val_fail = -1, val_new= ~0;
262 	int i, reg, reg_fail = -1, ret = 0;
263 	int bios_fail = 0;
264 	int reg_safe = -1;
265 
266 	/*
267 	 * Check to see if the BIOS enabled any of the counters, if so
268 	 * complain and bail.
269 	 */
270 	for_each_set_bit(i, cntr_mask, X86_PMC_IDX_MAX) {
271 		reg = x86_pmu_config_addr(i);
272 		ret = rdmsrl_safe(reg, &val);
273 		if (ret)
274 			goto msr_fail;
275 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
276 			bios_fail = 1;
277 			val_fail = val;
278 			reg_fail = reg;
279 		} else {
280 			reg_safe = i;
281 		}
282 	}
283 
284 	if (*(u64 *)fixed_cntr_mask) {
285 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
286 		ret = rdmsrl_safe(reg, &val);
287 		if (ret)
288 			goto msr_fail;
289 		for_each_set_bit(i, fixed_cntr_mask, X86_PMC_IDX_MAX) {
290 			if (fixed_counter_disabled(i, pmu))
291 				continue;
292 			if (val & (0x03ULL << i*4)) {
293 				bios_fail = 1;
294 				val_fail = val;
295 				reg_fail = reg;
296 			}
297 		}
298 	}
299 
300 	/*
301 	 * If all the counters are enabled, the below test will always
302 	 * fail.  The tools will also become useless in this scenario.
303 	 * Just fail and disable the hardware counters.
304 	 */
305 
306 	if (reg_safe == -1) {
307 		reg = reg_safe;
308 		goto msr_fail;
309 	}
310 
311 	/*
312 	 * Read the current value, change it and read it back to see if it
313 	 * matches, this is needed to detect certain hardware emulators
314 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
315 	 */
316 	reg = x86_pmu_event_addr(reg_safe);
317 	if (rdmsrl_safe(reg, &val))
318 		goto msr_fail;
319 	val ^= 0xffffUL;
320 	ret = wrmsrl_safe(reg, val);
321 	ret |= rdmsrl_safe(reg, &val_new);
322 	if (ret || val != val_new)
323 		goto msr_fail;
324 
325 	/*
326 	 * We still allow the PMU driver to operate:
327 	 */
328 	if (bios_fail) {
329 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
330 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
331 			      reg_fail, val_fail);
332 	}
333 
334 	return true;
335 
336 msr_fail:
337 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
338 		pr_cont("PMU not available due to virtualization, using software events only.\n");
339 	} else {
340 		pr_cont("Broken PMU hardware detected, using software events only.\n");
341 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
342 		       reg, val_new);
343 	}
344 
345 	return false;
346 }
347 
hw_perf_event_destroy(struct perf_event * event)348 static void hw_perf_event_destroy(struct perf_event *event)
349 {
350 	x86_release_hardware();
351 	atomic_dec(&active_events);
352 }
353 
hw_perf_lbr_event_destroy(struct perf_event * event)354 void hw_perf_lbr_event_destroy(struct perf_event *event)
355 {
356 	hw_perf_event_destroy(event);
357 
358 	/* undo the lbr/bts event accounting */
359 	x86_del_exclusive(x86_lbr_exclusive_lbr);
360 }
361 
x86_pmu_initialized(void)362 static inline int x86_pmu_initialized(void)
363 {
364 	return x86_pmu.handle_irq != NULL;
365 }
366 
367 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)368 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
369 {
370 	struct perf_event_attr *attr = &event->attr;
371 	unsigned int cache_type, cache_op, cache_result;
372 	u64 config, val;
373 
374 	config = attr->config;
375 
376 	cache_type = (config >> 0) & 0xff;
377 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
378 		return -EINVAL;
379 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
380 
381 	cache_op = (config >>  8) & 0xff;
382 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
383 		return -EINVAL;
384 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
385 
386 	cache_result = (config >> 16) & 0xff;
387 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
388 		return -EINVAL;
389 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
390 
391 	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
392 	if (val == 0)
393 		return -ENOENT;
394 
395 	if (val == -1)
396 		return -EINVAL;
397 
398 	hwc->config |= val;
399 	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
400 	return x86_pmu_extra_regs(val, event);
401 }
402 
x86_reserve_hardware(void)403 int x86_reserve_hardware(void)
404 {
405 	int err = 0;
406 
407 	if (!atomic_inc_not_zero(&pmc_refcount)) {
408 		mutex_lock(&pmc_reserve_mutex);
409 		if (atomic_read(&pmc_refcount) == 0) {
410 			if (!reserve_pmc_hardware()) {
411 				err = -EBUSY;
412 			} else {
413 				reserve_ds_buffers();
414 				reserve_lbr_buffers();
415 			}
416 		}
417 		if (!err)
418 			atomic_inc(&pmc_refcount);
419 		mutex_unlock(&pmc_reserve_mutex);
420 	}
421 
422 	return err;
423 }
424 
x86_release_hardware(void)425 void x86_release_hardware(void)
426 {
427 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
428 		release_pmc_hardware();
429 		release_ds_buffers();
430 		release_lbr_buffers();
431 		mutex_unlock(&pmc_reserve_mutex);
432 	}
433 }
434 
435 /*
436  * Check if we can create event of a certain type (that no conflicting events
437  * are present).
438  */
x86_add_exclusive(unsigned int what)439 int x86_add_exclusive(unsigned int what)
440 {
441 	int i;
442 
443 	/*
444 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
445 	 * LBR and BTS are still mutually exclusive.
446 	 */
447 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
448 		goto out;
449 
450 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
451 		mutex_lock(&pmc_reserve_mutex);
452 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
453 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
454 				goto fail_unlock;
455 		}
456 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
457 		mutex_unlock(&pmc_reserve_mutex);
458 	}
459 
460 out:
461 	atomic_inc(&active_events);
462 	return 0;
463 
464 fail_unlock:
465 	mutex_unlock(&pmc_reserve_mutex);
466 	return -EBUSY;
467 }
468 
x86_del_exclusive(unsigned int what)469 void x86_del_exclusive(unsigned int what)
470 {
471 	atomic_dec(&active_events);
472 
473 	/*
474 	 * See the comment in x86_add_exclusive().
475 	 */
476 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
477 		return;
478 
479 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
480 }
481 
x86_setup_perfctr(struct perf_event * event)482 int x86_setup_perfctr(struct perf_event *event)
483 {
484 	struct perf_event_attr *attr = &event->attr;
485 	struct hw_perf_event *hwc = &event->hw;
486 	u64 config;
487 
488 	if (!is_sampling_event(event)) {
489 		hwc->sample_period = x86_pmu.max_period;
490 		hwc->last_period = hwc->sample_period;
491 		local64_set(&hwc->period_left, hwc->sample_period);
492 	}
493 
494 	if (attr->type == event->pmu->type)
495 		return x86_pmu_extra_regs(event->attr.config, event);
496 
497 	if (attr->type == PERF_TYPE_HW_CACHE)
498 		return set_ext_hw_attr(hwc, event);
499 
500 	if (attr->config >= x86_pmu.max_events)
501 		return -EINVAL;
502 
503 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
504 
505 	/*
506 	 * The generic map:
507 	 */
508 	config = x86_pmu.event_map(attr->config);
509 
510 	if (config == 0)
511 		return -ENOENT;
512 
513 	if (config == -1LL)
514 		return -EINVAL;
515 
516 	hwc->config |= config;
517 
518 	return 0;
519 }
520 
521 /*
522  * check that branch_sample_type is compatible with
523  * settings needed for precise_ip > 1 which implies
524  * using the LBR to capture ALL taken branches at the
525  * priv levels of the measurement
526  */
precise_br_compat(struct perf_event * event)527 static inline int precise_br_compat(struct perf_event *event)
528 {
529 	u64 m = event->attr.branch_sample_type;
530 	u64 b = 0;
531 
532 	/* must capture all branches */
533 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
534 		return 0;
535 
536 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
537 
538 	if (!event->attr.exclude_user)
539 		b |= PERF_SAMPLE_BRANCH_USER;
540 
541 	if (!event->attr.exclude_kernel)
542 		b |= PERF_SAMPLE_BRANCH_KERNEL;
543 
544 	/*
545 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
546 	 */
547 
548 	return m == b;
549 }
550 
x86_pmu_max_precise(void)551 int x86_pmu_max_precise(void)
552 {
553 	int precise = 0;
554 
555 	/* Support for constant skid */
556 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
557 		precise++;
558 
559 		/* Support for IP fixup */
560 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
561 			precise++;
562 
563 		if (x86_pmu.pebs_prec_dist)
564 			precise++;
565 	}
566 	return precise;
567 }
568 
x86_pmu_hw_config(struct perf_event * event)569 int x86_pmu_hw_config(struct perf_event *event)
570 {
571 	if (event->attr.precise_ip) {
572 		int precise = x86_pmu_max_precise();
573 
574 		if (event->attr.precise_ip > precise)
575 			return -EOPNOTSUPP;
576 
577 		/* There's no sense in having PEBS for non sampling events: */
578 		if (!is_sampling_event(event))
579 			return -EINVAL;
580 	}
581 	/*
582 	 * check that PEBS LBR correction does not conflict with
583 	 * whatever the user is asking with attr->branch_sample_type
584 	 */
585 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
586 		u64 *br_type = &event->attr.branch_sample_type;
587 
588 		if (has_branch_stack(event)) {
589 			if (!precise_br_compat(event))
590 				return -EOPNOTSUPP;
591 
592 			/* branch_sample_type is compatible */
593 
594 		} else {
595 			/*
596 			 * user did not specify  branch_sample_type
597 			 *
598 			 * For PEBS fixups, we capture all
599 			 * the branches at the priv level of the
600 			 * event.
601 			 */
602 			*br_type = PERF_SAMPLE_BRANCH_ANY;
603 
604 			if (!event->attr.exclude_user)
605 				*br_type |= PERF_SAMPLE_BRANCH_USER;
606 
607 			if (!event->attr.exclude_kernel)
608 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
609 		}
610 	}
611 
612 	if (branch_sample_call_stack(event))
613 		event->attach_state |= PERF_ATTACH_TASK_DATA;
614 
615 	/*
616 	 * Generate PMC IRQs:
617 	 * (keep 'enabled' bit clear for now)
618 	 */
619 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
620 
621 	/*
622 	 * Count user and OS events unless requested not to
623 	 */
624 	if (!event->attr.exclude_user)
625 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
626 	if (!event->attr.exclude_kernel)
627 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
628 
629 	if (event->attr.type == event->pmu->type)
630 		event->hw.config |= x86_pmu_get_event_config(event);
631 
632 	if (!event->attr.freq && x86_pmu.limit_period) {
633 		s64 left = event->attr.sample_period;
634 		x86_pmu.limit_period(event, &left);
635 		if (left > event->attr.sample_period)
636 			return -EINVAL;
637 	}
638 
639 	/* sample_regs_user never support XMM registers */
640 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
641 		return -EINVAL;
642 	/*
643 	 * Besides the general purpose registers, XMM registers may
644 	 * be collected in PEBS on some platforms, e.g. Icelake
645 	 */
646 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
647 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
648 			return -EINVAL;
649 
650 		if (!event->attr.precise_ip)
651 			return -EINVAL;
652 	}
653 
654 	return x86_setup_perfctr(event);
655 }
656 
657 /*
658  * Setup the hardware configuration for a given attr_type
659  */
__x86_pmu_event_init(struct perf_event * event)660 static int __x86_pmu_event_init(struct perf_event *event)
661 {
662 	int err;
663 
664 	if (!x86_pmu_initialized())
665 		return -ENODEV;
666 
667 	err = x86_reserve_hardware();
668 	if (err)
669 		return err;
670 
671 	atomic_inc(&active_events);
672 	event->destroy = hw_perf_event_destroy;
673 
674 	event->hw.idx = -1;
675 	event->hw.last_cpu = -1;
676 	event->hw.last_tag = ~0ULL;
677 
678 	/* mark unused */
679 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
680 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
681 
682 	return x86_pmu.hw_config(event);
683 }
684 
x86_pmu_disable_all(void)685 void x86_pmu_disable_all(void)
686 {
687 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
688 	int idx;
689 
690 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
691 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
692 		u64 val;
693 
694 		if (!test_bit(idx, cpuc->active_mask))
695 			continue;
696 		rdmsrl(x86_pmu_config_addr(idx), val);
697 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
698 			continue;
699 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
700 		wrmsrl(x86_pmu_config_addr(idx), val);
701 		if (is_counter_pair(hwc))
702 			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
703 	}
704 }
705 
perf_guest_get_msrs(int * nr,void * data)706 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
707 {
708 	return static_call(x86_pmu_guest_get_msrs)(nr, data);
709 }
710 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
711 
712 /*
713  * There may be PMI landing after enabled=0. The PMI hitting could be before or
714  * after disable_all.
715  *
716  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
717  * It will not be re-enabled in the NMI handler again, because enabled=0. After
718  * handling the NMI, disable_all will be called, which will not change the
719  * state either. If PMI hits after disable_all, the PMU is already disabled
720  * before entering NMI handler. The NMI handler will not change the state
721  * either.
722  *
723  * So either situation is harmless.
724  */
x86_pmu_disable(struct pmu * pmu)725 static void x86_pmu_disable(struct pmu *pmu)
726 {
727 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
728 
729 	if (!x86_pmu_initialized())
730 		return;
731 
732 	if (!cpuc->enabled)
733 		return;
734 
735 	cpuc->n_added = 0;
736 	cpuc->enabled = 0;
737 	barrier();
738 
739 	static_call(x86_pmu_disable_all)();
740 }
741 
x86_pmu_enable_all(int added)742 void x86_pmu_enable_all(int added)
743 {
744 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
745 	int idx;
746 
747 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
748 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
749 
750 		if (!test_bit(idx, cpuc->active_mask))
751 			continue;
752 
753 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
754 	}
755 }
756 
is_x86_event(struct perf_event * event)757 static inline int is_x86_event(struct perf_event *event)
758 {
759 	int i;
760 
761 	if (!is_hybrid())
762 		return event->pmu == &pmu;
763 
764 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
765 		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
766 			return true;
767 	}
768 
769 	return false;
770 }
771 
x86_get_pmu(unsigned int cpu)772 struct pmu *x86_get_pmu(unsigned int cpu)
773 {
774 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
775 
776 	/*
777 	 * All CPUs of the hybrid type have been offline.
778 	 * The x86_get_pmu() should not be invoked.
779 	 */
780 	if (WARN_ON_ONCE(!cpuc->pmu))
781 		return &pmu;
782 
783 	return cpuc->pmu;
784 }
785 /*
786  * Event scheduler state:
787  *
788  * Assign events iterating over all events and counters, beginning
789  * with events with least weights first. Keep the current iterator
790  * state in struct sched_state.
791  */
792 struct sched_state {
793 	int	weight;
794 	int	event;		/* event index */
795 	int	counter;	/* counter index */
796 	int	unassigned;	/* number of events to be assigned left */
797 	int	nr_gp;		/* number of GP counters used */
798 	u64	used;
799 };
800 
801 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
802 #define	SCHED_STATES_MAX	2
803 
804 struct perf_sched {
805 	int			max_weight;
806 	int			max_events;
807 	int			max_gp;
808 	int			saved_states;
809 	struct event_constraint	**constraints;
810 	struct sched_state	state;
811 	struct sched_state	saved[SCHED_STATES_MAX];
812 };
813 
814 /*
815  * Initialize iterator that runs through all events and counters.
816  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)817 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
818 			    int num, int wmin, int wmax, int gpmax)
819 {
820 	int idx;
821 
822 	memset(sched, 0, sizeof(*sched));
823 	sched->max_events	= num;
824 	sched->max_weight	= wmax;
825 	sched->max_gp		= gpmax;
826 	sched->constraints	= constraints;
827 
828 	for (idx = 0; idx < num; idx++) {
829 		if (constraints[idx]->weight == wmin)
830 			break;
831 	}
832 
833 	sched->state.event	= idx;		/* start with min weight */
834 	sched->state.weight	= wmin;
835 	sched->state.unassigned	= num;
836 }
837 
perf_sched_save_state(struct perf_sched * sched)838 static void perf_sched_save_state(struct perf_sched *sched)
839 {
840 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
841 		return;
842 
843 	sched->saved[sched->saved_states] = sched->state;
844 	sched->saved_states++;
845 }
846 
perf_sched_restore_state(struct perf_sched * sched)847 static bool perf_sched_restore_state(struct perf_sched *sched)
848 {
849 	if (!sched->saved_states)
850 		return false;
851 
852 	sched->saved_states--;
853 	sched->state = sched->saved[sched->saved_states];
854 
855 	/* this assignment didn't work out */
856 	/* XXX broken vs EVENT_PAIR */
857 	sched->state.used &= ~BIT_ULL(sched->state.counter);
858 
859 	/* try the next one */
860 	sched->state.counter++;
861 
862 	return true;
863 }
864 
865 /*
866  * Select a counter for the current event to schedule. Return true on
867  * success.
868  */
__perf_sched_find_counter(struct perf_sched * sched)869 static bool __perf_sched_find_counter(struct perf_sched *sched)
870 {
871 	struct event_constraint *c;
872 	int idx;
873 
874 	if (!sched->state.unassigned)
875 		return false;
876 
877 	if (sched->state.event >= sched->max_events)
878 		return false;
879 
880 	c = sched->constraints[sched->state.event];
881 	/* Prefer fixed purpose counters */
882 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
883 		idx = INTEL_PMC_IDX_FIXED;
884 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
885 			u64 mask = BIT_ULL(idx);
886 
887 			if (sched->state.used & mask)
888 				continue;
889 
890 			sched->state.used |= mask;
891 			goto done;
892 		}
893 	}
894 
895 	/* Grab the first unused counter starting with idx */
896 	idx = sched->state.counter;
897 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
898 		u64 mask = BIT_ULL(idx);
899 
900 		if (c->flags & PERF_X86_EVENT_PAIR)
901 			mask |= mask << 1;
902 
903 		if (sched->state.used & mask)
904 			continue;
905 
906 		if (sched->state.nr_gp++ >= sched->max_gp)
907 			return false;
908 
909 		sched->state.used |= mask;
910 		goto done;
911 	}
912 
913 	return false;
914 
915 done:
916 	sched->state.counter = idx;
917 
918 	if (c->overlap)
919 		perf_sched_save_state(sched);
920 
921 	return true;
922 }
923 
perf_sched_find_counter(struct perf_sched * sched)924 static bool perf_sched_find_counter(struct perf_sched *sched)
925 {
926 	while (!__perf_sched_find_counter(sched)) {
927 		if (!perf_sched_restore_state(sched))
928 			return false;
929 	}
930 
931 	return true;
932 }
933 
934 /*
935  * Go through all unassigned events and find the next one to schedule.
936  * Take events with the least weight first. Return true on success.
937  */
perf_sched_next_event(struct perf_sched * sched)938 static bool perf_sched_next_event(struct perf_sched *sched)
939 {
940 	struct event_constraint *c;
941 
942 	if (!sched->state.unassigned || !--sched->state.unassigned)
943 		return false;
944 
945 	do {
946 		/* next event */
947 		sched->state.event++;
948 		if (sched->state.event >= sched->max_events) {
949 			/* next weight */
950 			sched->state.event = 0;
951 			sched->state.weight++;
952 			if (sched->state.weight > sched->max_weight)
953 				return false;
954 		}
955 		c = sched->constraints[sched->state.event];
956 	} while (c->weight != sched->state.weight);
957 
958 	sched->state.counter = 0;	/* start with first counter */
959 
960 	return true;
961 }
962 
963 /*
964  * Assign a counter for each event.
965  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)966 int perf_assign_events(struct event_constraint **constraints, int n,
967 			int wmin, int wmax, int gpmax, int *assign)
968 {
969 	struct perf_sched sched;
970 
971 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
972 
973 	do {
974 		if (!perf_sched_find_counter(&sched))
975 			break;	/* failed */
976 		if (assign)
977 			assign[sched.state.event] = sched.state.counter;
978 	} while (perf_sched_next_event(&sched));
979 
980 	return sched.state.unassigned;
981 }
982 EXPORT_SYMBOL_GPL(perf_assign_events);
983 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)984 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
985 {
986 	struct event_constraint *c;
987 	struct perf_event *e;
988 	int n0, i, wmin, wmax, unsched = 0;
989 	struct hw_perf_event *hwc;
990 	u64 used_mask = 0;
991 
992 	/*
993 	 * Compute the number of events already present; see x86_pmu_add(),
994 	 * validate_group() and x86_pmu_commit_txn(). For the former two
995 	 * cpuc->n_events hasn't been updated yet, while for the latter
996 	 * cpuc->n_txn contains the number of events added in the current
997 	 * transaction.
998 	 */
999 	n0 = cpuc->n_events;
1000 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1001 		n0 -= cpuc->n_txn;
1002 
1003 	static_call_cond(x86_pmu_start_scheduling)(cpuc);
1004 
1005 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1006 		c = cpuc->event_constraint[i];
1007 
1008 		/*
1009 		 * Previously scheduled events should have a cached constraint,
1010 		 * while new events should not have one.
1011 		 */
1012 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1013 
1014 		/*
1015 		 * Request constraints for new events; or for those events that
1016 		 * have a dynamic constraint -- for those the constraint can
1017 		 * change due to external factors (sibling state, allow_tfa).
1018 		 */
1019 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1020 			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1021 			cpuc->event_constraint[i] = c;
1022 		}
1023 
1024 		wmin = min(wmin, c->weight);
1025 		wmax = max(wmax, c->weight);
1026 	}
1027 
1028 	/*
1029 	 * fastpath, try to reuse previous register
1030 	 */
1031 	for (i = 0; i < n; i++) {
1032 		u64 mask;
1033 
1034 		hwc = &cpuc->event_list[i]->hw;
1035 		c = cpuc->event_constraint[i];
1036 
1037 		/* never assigned */
1038 		if (hwc->idx == -1)
1039 			break;
1040 
1041 		/* constraint still honored */
1042 		if (!test_bit(hwc->idx, c->idxmsk))
1043 			break;
1044 
1045 		mask = BIT_ULL(hwc->idx);
1046 		if (is_counter_pair(hwc))
1047 			mask |= mask << 1;
1048 
1049 		/* not already used */
1050 		if (used_mask & mask)
1051 			break;
1052 
1053 		used_mask |= mask;
1054 
1055 		if (assign)
1056 			assign[i] = hwc->idx;
1057 	}
1058 
1059 	/* slow path */
1060 	if (i != n) {
1061 		int gpmax = x86_pmu_max_num_counters(cpuc->pmu);
1062 
1063 		/*
1064 		 * Do not allow scheduling of more than half the available
1065 		 * generic counters.
1066 		 *
1067 		 * This helps avoid counter starvation of sibling thread by
1068 		 * ensuring at most half the counters cannot be in exclusive
1069 		 * mode. There is no designated counters for the limits. Any
1070 		 * N/2 counters can be used. This helps with events with
1071 		 * specific counter constraints.
1072 		 */
1073 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1074 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1075 			gpmax /= 2;
1076 
1077 		/*
1078 		 * Reduce the amount of available counters to allow fitting
1079 		 * the extra Merge events needed by large increment events.
1080 		 */
1081 		if (x86_pmu.flags & PMU_FL_PAIR) {
1082 			gpmax -= cpuc->n_pair;
1083 			WARN_ON(gpmax <= 0);
1084 		}
1085 
1086 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1087 					     wmax, gpmax, assign);
1088 	}
1089 
1090 	/*
1091 	 * In case of success (unsched = 0), mark events as committed,
1092 	 * so we do not put_constraint() in case new events are added
1093 	 * and fail to be scheduled
1094 	 *
1095 	 * We invoke the lower level commit callback to lock the resource
1096 	 *
1097 	 * We do not need to do all of this in case we are called to
1098 	 * validate an event group (assign == NULL)
1099 	 */
1100 	if (!unsched && assign) {
1101 		for (i = 0; i < n; i++)
1102 			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1103 	} else {
1104 		for (i = n0; i < n; i++) {
1105 			e = cpuc->event_list[i];
1106 
1107 			/*
1108 			 * release events that failed scheduling
1109 			 */
1110 			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1111 
1112 			cpuc->event_constraint[i] = NULL;
1113 		}
1114 	}
1115 
1116 	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1117 
1118 	return unsched ? -EINVAL : 0;
1119 }
1120 
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1121 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1122 			       struct perf_event *event)
1123 {
1124 	if (is_metric_event(event)) {
1125 		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1126 			return -EINVAL;
1127 		cpuc->n_metric++;
1128 		cpuc->n_txn_metric++;
1129 	}
1130 
1131 	return 0;
1132 }
1133 
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1134 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1135 				struct perf_event *event)
1136 {
1137 	if (is_metric_event(event))
1138 		cpuc->n_metric--;
1139 }
1140 
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1141 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1142 			 int max_count, int n)
1143 {
1144 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1145 
1146 	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1147 		return -EINVAL;
1148 
1149 	if (n >= max_count + cpuc->n_metric)
1150 		return -EINVAL;
1151 
1152 	cpuc->event_list[n] = event;
1153 	if (is_counter_pair(&event->hw)) {
1154 		cpuc->n_pair++;
1155 		cpuc->n_txn_pair++;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 /*
1162  * dogrp: true if must collect siblings events (group)
1163  * returns total number of events and error code
1164  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1165 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1166 {
1167 	struct perf_event *event;
1168 	int n, max_count;
1169 
1170 	max_count = x86_pmu_num_counters(cpuc->pmu) + x86_pmu_num_counters_fixed(cpuc->pmu);
1171 
1172 	/* current number of events already accepted */
1173 	n = cpuc->n_events;
1174 	if (!cpuc->n_events)
1175 		cpuc->pebs_output = 0;
1176 
1177 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1178 		/*
1179 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1180 		 * away, the group was broken down and this singleton event
1181 		 * can't schedule any more.
1182 		 */
1183 		if (is_pebs_pt(leader) && !leader->aux_event)
1184 			return -EINVAL;
1185 
1186 		/*
1187 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1188 		 */
1189 		if (cpuc->pebs_output &&
1190 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1191 			return -EINVAL;
1192 
1193 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1194 	}
1195 
1196 	if (is_x86_event(leader)) {
1197 		if (collect_event(cpuc, leader, max_count, n))
1198 			return -EINVAL;
1199 		n++;
1200 	}
1201 
1202 	if (!dogrp)
1203 		return n;
1204 
1205 	for_each_sibling_event(event, leader) {
1206 		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1207 			continue;
1208 
1209 		if (collect_event(cpuc, event, max_count, n))
1210 			return -EINVAL;
1211 
1212 		n++;
1213 	}
1214 	return n;
1215 }
1216 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1217 static inline void x86_assign_hw_event(struct perf_event *event,
1218 				struct cpu_hw_events *cpuc, int i)
1219 {
1220 	struct hw_perf_event *hwc = &event->hw;
1221 	int idx;
1222 
1223 	idx = hwc->idx = cpuc->assign[i];
1224 	hwc->last_cpu = smp_processor_id();
1225 	hwc->last_tag = ++cpuc->tags[i];
1226 
1227 	static_call_cond(x86_pmu_assign)(event, idx);
1228 
1229 	switch (hwc->idx) {
1230 	case INTEL_PMC_IDX_FIXED_BTS:
1231 	case INTEL_PMC_IDX_FIXED_VLBR:
1232 		hwc->config_base = 0;
1233 		hwc->event_base	= 0;
1234 		break;
1235 
1236 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1237 		/* All the metric events are mapped onto the fixed counter 3. */
1238 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1239 		fallthrough;
1240 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1241 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1242 		hwc->event_base = x86_pmu_fixed_ctr_addr(idx - INTEL_PMC_IDX_FIXED);
1243 		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1244 					INTEL_PMC_FIXED_RDPMC_BASE;
1245 		break;
1246 
1247 	default:
1248 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1249 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1250 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1251 		break;
1252 	}
1253 }
1254 
1255 /**
1256  * x86_perf_rdpmc_index - Return PMC counter used for event
1257  * @event: the perf_event to which the PMC counter was assigned
1258  *
1259  * The counter assigned to this performance event may change if interrupts
1260  * are enabled. This counter should thus never be used while interrupts are
1261  * enabled. Before this function is used to obtain the assigned counter the
1262  * event should be checked for validity using, for example,
1263  * perf_event_read_local(), within the same interrupt disabled section in
1264  * which this counter is planned to be used.
1265  *
1266  * Return: The index of the performance monitoring counter assigned to
1267  * @perf_event.
1268  */
x86_perf_rdpmc_index(struct perf_event * event)1269 int x86_perf_rdpmc_index(struct perf_event *event)
1270 {
1271 	lockdep_assert_irqs_disabled();
1272 
1273 	return event->hw.event_base_rdpmc;
1274 }
1275 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1276 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1277 					struct cpu_hw_events *cpuc,
1278 					int i)
1279 {
1280 	return hwc->idx == cpuc->assign[i] &&
1281 		hwc->last_cpu == smp_processor_id() &&
1282 		hwc->last_tag == cpuc->tags[i];
1283 }
1284 
1285 static void x86_pmu_start(struct perf_event *event, int flags);
1286 
x86_pmu_enable(struct pmu * pmu)1287 static void x86_pmu_enable(struct pmu *pmu)
1288 {
1289 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1290 	struct perf_event *event;
1291 	struct hw_perf_event *hwc;
1292 	int i, added = cpuc->n_added;
1293 
1294 	if (!x86_pmu_initialized())
1295 		return;
1296 
1297 	if (cpuc->enabled)
1298 		return;
1299 
1300 	if (cpuc->n_added) {
1301 		int n_running = cpuc->n_events - cpuc->n_added;
1302 
1303 		/*
1304 		 * The late setup (after counters are scheduled)
1305 		 * is required for some cases, e.g., PEBS counters
1306 		 * snapshotting. Because an accurate counter index
1307 		 * is needed.
1308 		 */
1309 		static_call_cond(x86_pmu_late_setup)();
1310 
1311 		/*
1312 		 * apply assignment obtained either from
1313 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1314 		 *
1315 		 * step1: save events moving to new counters
1316 		 */
1317 		for (i = 0; i < n_running; i++) {
1318 			event = cpuc->event_list[i];
1319 			hwc = &event->hw;
1320 
1321 			/*
1322 			 * we can avoid reprogramming counter if:
1323 			 * - assigned same counter as last time
1324 			 * - running on same CPU as last time
1325 			 * - no other event has used the counter since
1326 			 */
1327 			if (hwc->idx == -1 ||
1328 			    match_prev_assignment(hwc, cpuc, i))
1329 				continue;
1330 
1331 			/*
1332 			 * Ensure we don't accidentally enable a stopped
1333 			 * counter simply because we rescheduled.
1334 			 */
1335 			if (hwc->state & PERF_HES_STOPPED)
1336 				hwc->state |= PERF_HES_ARCH;
1337 
1338 			x86_pmu_stop(event, PERF_EF_UPDATE);
1339 		}
1340 
1341 		/*
1342 		 * step2: reprogram moved events into new counters
1343 		 */
1344 		for (i = 0; i < cpuc->n_events; i++) {
1345 			event = cpuc->event_list[i];
1346 			hwc = &event->hw;
1347 
1348 			if (!match_prev_assignment(hwc, cpuc, i))
1349 				x86_assign_hw_event(event, cpuc, i);
1350 			else if (i < n_running)
1351 				continue;
1352 
1353 			if (hwc->state & PERF_HES_ARCH)
1354 				continue;
1355 
1356 			/*
1357 			 * if cpuc->enabled = 0, then no wrmsr as
1358 			 * per x86_pmu_enable_event()
1359 			 */
1360 			x86_pmu_start(event, PERF_EF_RELOAD);
1361 		}
1362 		cpuc->n_added = 0;
1363 		perf_events_lapic_init();
1364 	}
1365 
1366 	cpuc->enabled = 1;
1367 	barrier();
1368 
1369 	static_call(x86_pmu_enable_all)(added);
1370 }
1371 
1372 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1373 
1374 /*
1375  * Set the next IRQ period, based on the hwc->period_left value.
1376  * To be called with the event disabled in hw:
1377  */
x86_perf_event_set_period(struct perf_event * event)1378 int x86_perf_event_set_period(struct perf_event *event)
1379 {
1380 	struct hw_perf_event *hwc = &event->hw;
1381 	s64 left = local64_read(&hwc->period_left);
1382 	s64 period = hwc->sample_period;
1383 	int ret = 0, idx = hwc->idx;
1384 
1385 	if (unlikely(!hwc->event_base))
1386 		return 0;
1387 
1388 	/*
1389 	 * If we are way outside a reasonable range then just skip forward:
1390 	 */
1391 	if (unlikely(left <= -period)) {
1392 		left = period;
1393 		local64_set(&hwc->period_left, left);
1394 		hwc->last_period = period;
1395 		ret = 1;
1396 	}
1397 
1398 	if (unlikely(left <= 0)) {
1399 		left += period;
1400 		local64_set(&hwc->period_left, left);
1401 		hwc->last_period = period;
1402 		ret = 1;
1403 	}
1404 	/*
1405 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1406 	 */
1407 	if (unlikely(left < 2))
1408 		left = 2;
1409 
1410 	if (left > x86_pmu.max_period)
1411 		left = x86_pmu.max_period;
1412 
1413 	static_call_cond(x86_pmu_limit_period)(event, &left);
1414 
1415 	this_cpu_write(pmc_prev_left[idx], left);
1416 
1417 	/*
1418 	 * The hw event starts counting from this event offset,
1419 	 * mark it to be able to extra future deltas:
1420 	 */
1421 	local64_set(&hwc->prev_count, (u64)-left);
1422 
1423 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1424 
1425 	/*
1426 	 * Sign extend the Merge event counter's upper 16 bits since
1427 	 * we currently declare a 48-bit counter width
1428 	 */
1429 	if (is_counter_pair(hwc))
1430 		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1431 
1432 	perf_event_update_userpage(event);
1433 
1434 	return ret;
1435 }
1436 
x86_pmu_enable_event(struct perf_event * event)1437 void x86_pmu_enable_event(struct perf_event *event)
1438 {
1439 	if (__this_cpu_read(cpu_hw_events.enabled))
1440 		__x86_pmu_enable_event(&event->hw,
1441 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1442 }
1443 
1444 /*
1445  * Add a single event to the PMU.
1446  *
1447  * The event is added to the group of enabled events
1448  * but only if it can be scheduled with existing events.
1449  */
x86_pmu_add(struct perf_event * event,int flags)1450 static int x86_pmu_add(struct perf_event *event, int flags)
1451 {
1452 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1453 	struct hw_perf_event *hwc;
1454 	int assign[X86_PMC_IDX_MAX];
1455 	int n, n0, ret;
1456 
1457 	hwc = &event->hw;
1458 
1459 	n0 = cpuc->n_events;
1460 	ret = n = collect_events(cpuc, event, false);
1461 	if (ret < 0)
1462 		goto out;
1463 
1464 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1465 	if (!(flags & PERF_EF_START))
1466 		hwc->state |= PERF_HES_ARCH;
1467 
1468 	/*
1469 	 * If group events scheduling transaction was started,
1470 	 * skip the schedulability test here, it will be performed
1471 	 * at commit time (->commit_txn) as a whole.
1472 	 *
1473 	 * If commit fails, we'll call ->del() on all events
1474 	 * for which ->add() was called.
1475 	 */
1476 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1477 		goto done_collect;
1478 
1479 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1480 	if (ret)
1481 		goto out;
1482 	/*
1483 	 * copy new assignment, now we know it is possible
1484 	 * will be used by hw_perf_enable()
1485 	 */
1486 	memcpy(cpuc->assign, assign, n*sizeof(int));
1487 
1488 done_collect:
1489 	/*
1490 	 * Commit the collect_events() state. See x86_pmu_del() and
1491 	 * x86_pmu_*_txn().
1492 	 */
1493 	cpuc->n_events = n;
1494 	cpuc->n_added += n - n0;
1495 	cpuc->n_txn += n - n0;
1496 
1497 	/*
1498 	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1499 	 * so we enable LBRs before an event needs them etc..
1500 	 */
1501 	static_call_cond(x86_pmu_add)(event);
1502 
1503 	ret = 0;
1504 out:
1505 	return ret;
1506 }
1507 
x86_pmu_start(struct perf_event * event,int flags)1508 static void x86_pmu_start(struct perf_event *event, int flags)
1509 {
1510 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1511 	int idx = event->hw.idx;
1512 
1513 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1514 		return;
1515 
1516 	if (WARN_ON_ONCE(idx == -1))
1517 		return;
1518 
1519 	if (flags & PERF_EF_RELOAD) {
1520 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1521 		static_call(x86_pmu_set_period)(event);
1522 	}
1523 
1524 	event->hw.state = 0;
1525 
1526 	cpuc->events[idx] = event;
1527 	__set_bit(idx, cpuc->active_mask);
1528 	static_call(x86_pmu_enable)(event);
1529 	perf_event_update_userpage(event);
1530 }
1531 
perf_event_print_debug(void)1532 void perf_event_print_debug(void)
1533 {
1534 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1535 	unsigned long *cntr_mask, *fixed_cntr_mask;
1536 	struct event_constraint *pebs_constraints;
1537 	struct cpu_hw_events *cpuc;
1538 	u64 pebs, debugctl;
1539 	int cpu, idx;
1540 
1541 	guard(irqsave)();
1542 
1543 	cpu = smp_processor_id();
1544 	cpuc = &per_cpu(cpu_hw_events, cpu);
1545 	cntr_mask = hybrid(cpuc->pmu, cntr_mask);
1546 	fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
1547 	pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1548 
1549 	if (!*(u64 *)cntr_mask)
1550 		return;
1551 
1552 	if (x86_pmu.version >= 2) {
1553 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1554 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1555 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1556 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1557 
1558 		pr_info("\n");
1559 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1560 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1561 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1562 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1563 		if (pebs_constraints) {
1564 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1565 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1566 		}
1567 		if (x86_pmu.lbr_nr) {
1568 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1569 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1570 		}
1571 	}
1572 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1573 
1574 	for_each_set_bit(idx, cntr_mask, X86_PMC_IDX_MAX) {
1575 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1576 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1577 
1578 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1579 
1580 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1581 			cpu, idx, pmc_ctrl);
1582 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1583 			cpu, idx, pmc_count);
1584 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1585 			cpu, idx, prev_left);
1586 	}
1587 	for_each_set_bit(idx, fixed_cntr_mask, X86_PMC_IDX_MAX) {
1588 		if (fixed_counter_disabled(idx, cpuc->pmu))
1589 			continue;
1590 		rdmsrl(x86_pmu_fixed_ctr_addr(idx), pmc_count);
1591 
1592 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1593 			cpu, idx, pmc_count);
1594 	}
1595 }
1596 
x86_pmu_stop(struct perf_event * event,int flags)1597 void x86_pmu_stop(struct perf_event *event, int flags)
1598 {
1599 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1600 	struct hw_perf_event *hwc = &event->hw;
1601 
1602 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1603 		static_call(x86_pmu_disable)(event);
1604 		__clear_bit(hwc->idx, cpuc->active_mask);
1605 		cpuc->events[hwc->idx] = NULL;
1606 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1607 		hwc->state |= PERF_HES_STOPPED;
1608 	}
1609 
1610 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1611 		/*
1612 		 * Drain the remaining delta count out of a event
1613 		 * that we are disabling:
1614 		 */
1615 		static_call(x86_pmu_update)(event);
1616 		hwc->state |= PERF_HES_UPTODATE;
1617 	}
1618 }
1619 
x86_pmu_del(struct perf_event * event,int flags)1620 static void x86_pmu_del(struct perf_event *event, int flags)
1621 {
1622 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1623 	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1624 	int i;
1625 
1626 	/*
1627 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1628 	 * The events never got scheduled and ->cancel_txn will truncate
1629 	 * the event_list.
1630 	 *
1631 	 * XXX assumes any ->del() called during a TXN will only be on
1632 	 * an event added during that same TXN.
1633 	 */
1634 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1635 		goto do_del;
1636 
1637 	__set_bit(event->hw.idx, cpuc->dirty);
1638 
1639 	/*
1640 	 * Not a TXN, therefore cleanup properly.
1641 	 */
1642 	x86_pmu_stop(event, PERF_EF_UPDATE);
1643 
1644 	for (i = 0; i < cpuc->n_events; i++) {
1645 		if (event == cpuc->event_list[i])
1646 			break;
1647 	}
1648 
1649 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1650 		return;
1651 
1652 	/* If we have a newly added event; make sure to decrease n_added. */
1653 	if (i >= cpuc->n_events - cpuc->n_added)
1654 		--cpuc->n_added;
1655 
1656 	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1657 
1658 	/* Delete the array entry. */
1659 	while (++i < cpuc->n_events) {
1660 		cpuc->event_list[i-1] = cpuc->event_list[i];
1661 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1662 		cpuc->assign[i-1] = cpuc->assign[i];
1663 	}
1664 	cpuc->event_constraint[i-1] = NULL;
1665 	--cpuc->n_events;
1666 	if (intel_cap.perf_metrics)
1667 		del_nr_metric_event(cpuc, event);
1668 
1669 	perf_event_update_userpage(event);
1670 
1671 do_del:
1672 
1673 	/*
1674 	 * This is after x86_pmu_stop(); so we disable LBRs after any
1675 	 * event can need them etc..
1676 	 */
1677 	static_call_cond(x86_pmu_del)(event);
1678 }
1679 
x86_pmu_handle_irq(struct pt_regs * regs)1680 int x86_pmu_handle_irq(struct pt_regs *regs)
1681 {
1682 	struct perf_sample_data data;
1683 	struct cpu_hw_events *cpuc;
1684 	struct perf_event *event;
1685 	int idx, handled = 0;
1686 	u64 val;
1687 
1688 	cpuc = this_cpu_ptr(&cpu_hw_events);
1689 
1690 	/*
1691 	 * Some chipsets need to unmask the LVTPC in a particular spot
1692 	 * inside the nmi handler.  As a result, the unmasking was pushed
1693 	 * into all the nmi handlers.
1694 	 *
1695 	 * This generic handler doesn't seem to have any issues where the
1696 	 * unmasking occurs so it was left at the top.
1697 	 */
1698 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1699 
1700 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1701 		if (!test_bit(idx, cpuc->active_mask))
1702 			continue;
1703 
1704 		event = cpuc->events[idx];
1705 
1706 		val = static_call(x86_pmu_update)(event);
1707 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1708 			continue;
1709 
1710 		/*
1711 		 * event overflow
1712 		 */
1713 		handled++;
1714 
1715 		if (!static_call(x86_pmu_set_period)(event))
1716 			continue;
1717 
1718 		perf_sample_data_init(&data, 0, event->hw.last_period);
1719 
1720 		perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1721 
1722 		if (perf_event_overflow(event, &data, regs))
1723 			x86_pmu_stop(event, 0);
1724 	}
1725 
1726 	if (handled)
1727 		inc_irq_stat(apic_perf_irqs);
1728 
1729 	return handled;
1730 }
1731 
perf_events_lapic_init(void)1732 void perf_events_lapic_init(void)
1733 {
1734 	if (!x86_pmu.apic || !x86_pmu_initialized())
1735 		return;
1736 
1737 	/*
1738 	 * Always use NMI for PMU
1739 	 */
1740 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1741 }
1742 
1743 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1744 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1745 {
1746 	u64 start_clock;
1747 	u64 finish_clock;
1748 	int ret;
1749 
1750 	/*
1751 	 * All PMUs/events that share this PMI handler should make sure to
1752 	 * increment active_events for their events.
1753 	 */
1754 	if (!atomic_read(&active_events))
1755 		return NMI_DONE;
1756 
1757 	start_clock = sched_clock();
1758 	ret = static_call(x86_pmu_handle_irq)(regs);
1759 	finish_clock = sched_clock();
1760 
1761 	perf_sample_event_took(finish_clock - start_clock);
1762 
1763 	return ret;
1764 }
1765 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1766 
1767 struct event_constraint emptyconstraint;
1768 struct event_constraint unconstrained;
1769 
x86_pmu_prepare_cpu(unsigned int cpu)1770 static int x86_pmu_prepare_cpu(unsigned int cpu)
1771 {
1772 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1773 	int i;
1774 
1775 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1776 		cpuc->kfree_on_online[i] = NULL;
1777 	if (x86_pmu.cpu_prepare)
1778 		return x86_pmu.cpu_prepare(cpu);
1779 	return 0;
1780 }
1781 
x86_pmu_dead_cpu(unsigned int cpu)1782 static int x86_pmu_dead_cpu(unsigned int cpu)
1783 {
1784 	if (x86_pmu.cpu_dead)
1785 		x86_pmu.cpu_dead(cpu);
1786 	return 0;
1787 }
1788 
x86_pmu_online_cpu(unsigned int cpu)1789 static int x86_pmu_online_cpu(unsigned int cpu)
1790 {
1791 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1792 	int i;
1793 
1794 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1795 		kfree(cpuc->kfree_on_online[i]);
1796 		cpuc->kfree_on_online[i] = NULL;
1797 	}
1798 	return 0;
1799 }
1800 
x86_pmu_starting_cpu(unsigned int cpu)1801 static int x86_pmu_starting_cpu(unsigned int cpu)
1802 {
1803 	if (x86_pmu.cpu_starting)
1804 		x86_pmu.cpu_starting(cpu);
1805 	return 0;
1806 }
1807 
x86_pmu_dying_cpu(unsigned int cpu)1808 static int x86_pmu_dying_cpu(unsigned int cpu)
1809 {
1810 	if (x86_pmu.cpu_dying)
1811 		x86_pmu.cpu_dying(cpu);
1812 	return 0;
1813 }
1814 
pmu_check_apic(void)1815 static void __init pmu_check_apic(void)
1816 {
1817 	if (boot_cpu_has(X86_FEATURE_APIC))
1818 		return;
1819 
1820 	x86_pmu.apic = 0;
1821 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1822 	pr_info("no hardware sampling interrupt available.\n");
1823 
1824 	/*
1825 	 * If we have a PMU initialized but no APIC
1826 	 * interrupts, we cannot sample hardware
1827 	 * events (user-space has to fall back and
1828 	 * sample via a hrtimer based software event):
1829 	 */
1830 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1831 
1832 }
1833 
1834 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1835 	.name = "format",
1836 	.attrs = NULL,
1837 };
1838 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1839 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1840 {
1841 	struct perf_pmu_events_attr *pmu_attr =
1842 		container_of(attr, struct perf_pmu_events_attr, attr);
1843 	u64 config = 0;
1844 
1845 	if (pmu_attr->id < x86_pmu.max_events)
1846 		config = x86_pmu.event_map(pmu_attr->id);
1847 
1848 	/* string trumps id */
1849 	if (pmu_attr->event_str)
1850 		return sprintf(page, "%s\n", pmu_attr->event_str);
1851 
1852 	return x86_pmu.events_sysfs_show(page, config);
1853 }
1854 EXPORT_SYMBOL_GPL(events_sysfs_show);
1855 
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1856 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1857 			  char *page)
1858 {
1859 	struct perf_pmu_events_ht_attr *pmu_attr =
1860 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1861 
1862 	/*
1863 	 * Report conditional events depending on Hyper-Threading.
1864 	 *
1865 	 * This is overly conservative as usually the HT special
1866 	 * handling is not needed if the other CPU thread is idle.
1867 	 *
1868 	 * Note this does not (and cannot) handle the case when thread
1869 	 * siblings are invisible, for example with virtualization
1870 	 * if they are owned by some other guest.  The user tool
1871 	 * has to re-read when a thread sibling gets onlined later.
1872 	 */
1873 	return sprintf(page, "%s",
1874 			topology_max_smt_threads() > 1 ?
1875 			pmu_attr->event_str_ht :
1876 			pmu_attr->event_str_noht);
1877 }
1878 
events_hybrid_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1879 ssize_t events_hybrid_sysfs_show(struct device *dev,
1880 				 struct device_attribute *attr,
1881 				 char *page)
1882 {
1883 	struct perf_pmu_events_hybrid_attr *pmu_attr =
1884 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1885 	struct x86_hybrid_pmu *pmu;
1886 	const char *str, *next_str;
1887 	int i;
1888 
1889 	if (hweight64(pmu_attr->pmu_type) == 1)
1890 		return sprintf(page, "%s", pmu_attr->event_str);
1891 
1892 	/*
1893 	 * Hybrid PMUs may support the same event name, but with different
1894 	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1895 	 * different event encoding from a Core PMU.
1896 	 *
1897 	 * The event_str includes all event encodings. Each event encoding
1898 	 * is divided by ";". The order of the event encodings must follow
1899 	 * the order of the hybrid PMU index.
1900 	 */
1901 	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1902 
1903 	str = pmu_attr->event_str;
1904 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1905 		if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1906 			continue;
1907 		if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1908 			next_str = strchr(str, ';');
1909 			if (next_str)
1910 				return snprintf(page, next_str - str + 1, "%s", str);
1911 			else
1912 				return sprintf(page, "%s", str);
1913 		}
1914 		str = strchr(str, ';');
1915 		str++;
1916 	}
1917 
1918 	return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1921 
1922 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1923 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1924 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1925 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1926 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1927 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1928 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1929 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1930 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1931 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1932 
1933 static struct attribute *empty_attrs;
1934 
1935 static struct attribute *events_attr[] = {
1936 	EVENT_PTR(CPU_CYCLES),
1937 	EVENT_PTR(INSTRUCTIONS),
1938 	EVENT_PTR(CACHE_REFERENCES),
1939 	EVENT_PTR(CACHE_MISSES),
1940 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1941 	EVENT_PTR(BRANCH_MISSES),
1942 	EVENT_PTR(BUS_CYCLES),
1943 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1944 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1945 	EVENT_PTR(REF_CPU_CYCLES),
1946 	NULL,
1947 };
1948 
1949 /*
1950  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1951  * out of events_attr attributes.
1952  */
1953 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1954 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1955 {
1956 	struct perf_pmu_events_attr *pmu_attr;
1957 
1958 	if (idx >= x86_pmu.max_events)
1959 		return 0;
1960 
1961 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1962 	/* str trumps id */
1963 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1964 }
1965 
1966 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1967 	.name = "events",
1968 	.attrs = events_attr,
1969 	.is_visible = is_visible,
1970 };
1971 
x86_event_sysfs_show(char * page,u64 config,u64 event)1972 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1973 {
1974 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1975 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1976 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1977 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1978 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1979 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1980 	ssize_t ret;
1981 
1982 	/*
1983 	* We have whole page size to spend and just little data
1984 	* to write, so we can safely use sprintf.
1985 	*/
1986 	ret = sprintf(page, "event=0x%02llx", event);
1987 
1988 	if (umask)
1989 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1990 
1991 	if (edge)
1992 		ret += sprintf(page + ret, ",edge");
1993 
1994 	if (pc)
1995 		ret += sprintf(page + ret, ",pc");
1996 
1997 	if (any)
1998 		ret += sprintf(page + ret, ",any");
1999 
2000 	if (inv)
2001 		ret += sprintf(page + ret, ",inv");
2002 
2003 	if (cmask)
2004 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
2005 
2006 	ret += sprintf(page + ret, "\n");
2007 
2008 	return ret;
2009 }
2010 
2011 static struct attribute_group x86_pmu_attr_group;
2012 static struct attribute_group x86_pmu_caps_group;
2013 
x86_pmu_static_call_update(void)2014 static void x86_pmu_static_call_update(void)
2015 {
2016 	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2017 	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2018 	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2019 	static_call_update(x86_pmu_enable, x86_pmu.enable);
2020 	static_call_update(x86_pmu_disable, x86_pmu.disable);
2021 
2022 	static_call_update(x86_pmu_assign, x86_pmu.assign);
2023 
2024 	static_call_update(x86_pmu_add, x86_pmu.add);
2025 	static_call_update(x86_pmu_del, x86_pmu.del);
2026 	static_call_update(x86_pmu_read, x86_pmu.read);
2027 
2028 	static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2029 	static_call_update(x86_pmu_update, x86_pmu.update);
2030 	static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2031 
2032 	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2033 	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2034 	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2035 
2036 	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2037 	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2038 	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2039 
2040 	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2041 
2042 	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2043 	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2044 
2045 	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2046 	static_call_update(x86_pmu_filter, x86_pmu.filter);
2047 
2048 	static_call_update(x86_pmu_late_setup, x86_pmu.late_setup);
2049 }
2050 
_x86_pmu_read(struct perf_event * event)2051 static void _x86_pmu_read(struct perf_event *event)
2052 {
2053 	static_call(x86_pmu_update)(event);
2054 }
2055 
x86_pmu_show_pmu_cap(struct pmu * pmu)2056 void x86_pmu_show_pmu_cap(struct pmu *pmu)
2057 {
2058 	pr_info("... version:                %d\n",     x86_pmu.version);
2059 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2060 	pr_info("... generic registers:      %d\n",     x86_pmu_num_counters(pmu));
2061 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2062 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2063 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu_num_counters_fixed(pmu));
2064 	pr_info("... event mask:             %016Lx\n", hybrid(pmu, intel_ctrl));
2065 }
2066 
init_hw_perf_events(void)2067 static int __init init_hw_perf_events(void)
2068 {
2069 	struct x86_pmu_quirk *quirk;
2070 	int err;
2071 
2072 	pr_info("Performance Events: ");
2073 
2074 	switch (boot_cpu_data.x86_vendor) {
2075 	case X86_VENDOR_INTEL:
2076 		err = intel_pmu_init();
2077 		break;
2078 	case X86_VENDOR_AMD:
2079 		err = amd_pmu_init();
2080 		break;
2081 	case X86_VENDOR_HYGON:
2082 		err = amd_pmu_init();
2083 		x86_pmu.name = "HYGON";
2084 		break;
2085 	case X86_VENDOR_ZHAOXIN:
2086 	case X86_VENDOR_CENTAUR:
2087 		err = zhaoxin_pmu_init();
2088 		break;
2089 	default:
2090 		err = -ENOTSUPP;
2091 	}
2092 	if (err != 0) {
2093 		pr_cont("no PMU driver, software events only.\n");
2094 		err = 0;
2095 		goto out_bad_pmu;
2096 	}
2097 
2098 	pmu_check_apic();
2099 
2100 	/* sanity check that the hardware exists or is emulated */
2101 	if (!check_hw_exists(&pmu, x86_pmu.cntr_mask, x86_pmu.fixed_cntr_mask))
2102 		goto out_bad_pmu;
2103 
2104 	pr_cont("%s PMU driver.\n", x86_pmu.name);
2105 
2106 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2107 
2108 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2109 		quirk->func();
2110 
2111 	if (!x86_pmu.intel_ctrl)
2112 		x86_pmu.intel_ctrl = x86_pmu.cntr_mask64;
2113 
2114 	if (!x86_pmu.config_mask)
2115 		x86_pmu.config_mask = X86_RAW_EVENT_MASK;
2116 
2117 	perf_events_lapic_init();
2118 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2119 
2120 	unconstrained = (struct event_constraint)
2121 		__EVENT_CONSTRAINT(0, x86_pmu.cntr_mask64,
2122 				   0, x86_pmu_num_counters(NULL), 0, 0);
2123 
2124 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2125 
2126 	if (!x86_pmu.events_sysfs_show)
2127 		x86_pmu_events_group.attrs = &empty_attrs;
2128 
2129 	pmu.attr_update = x86_pmu.attr_update;
2130 
2131 	if (!is_hybrid())
2132 		x86_pmu_show_pmu_cap(NULL);
2133 
2134 	if (!x86_pmu.read)
2135 		x86_pmu.read = _x86_pmu_read;
2136 
2137 	if (!x86_pmu.guest_get_msrs)
2138 		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2139 
2140 	if (!x86_pmu.set_period)
2141 		x86_pmu.set_period = x86_perf_event_set_period;
2142 
2143 	if (!x86_pmu.update)
2144 		x86_pmu.update = x86_perf_event_update;
2145 
2146 	x86_pmu_static_call_update();
2147 
2148 	/*
2149 	 * Install callbacks. Core will call them for each online
2150 	 * cpu.
2151 	 */
2152 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2153 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2154 	if (err)
2155 		return err;
2156 
2157 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2158 				"perf/x86:starting", x86_pmu_starting_cpu,
2159 				x86_pmu_dying_cpu);
2160 	if (err)
2161 		goto out;
2162 
2163 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2164 				x86_pmu_online_cpu, NULL);
2165 	if (err)
2166 		goto out1;
2167 
2168 	if (!is_hybrid()) {
2169 		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2170 		if (err)
2171 			goto out2;
2172 	} else {
2173 		struct x86_hybrid_pmu *hybrid_pmu;
2174 		int i, j;
2175 
2176 		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2177 			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2178 
2179 			hybrid_pmu->pmu = pmu;
2180 			hybrid_pmu->pmu.type = -1;
2181 			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2182 			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2183 
2184 			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2185 						(hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2186 			if (err)
2187 				break;
2188 		}
2189 
2190 		if (i < x86_pmu.num_hybrid_pmus) {
2191 			for (j = 0; j < i; j++)
2192 				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2193 			pr_warn("Failed to register hybrid PMUs\n");
2194 			kfree(x86_pmu.hybrid_pmu);
2195 			x86_pmu.hybrid_pmu = NULL;
2196 			x86_pmu.num_hybrid_pmus = 0;
2197 			goto out2;
2198 		}
2199 	}
2200 
2201 	return 0;
2202 
2203 out2:
2204 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2205 out1:
2206 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2207 out:
2208 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2209 out_bad_pmu:
2210 	memset(&x86_pmu, 0, sizeof(x86_pmu));
2211 	return err;
2212 }
2213 early_initcall(init_hw_perf_events);
2214 
x86_pmu_read(struct perf_event * event)2215 static void x86_pmu_read(struct perf_event *event)
2216 {
2217 	static_call(x86_pmu_read)(event);
2218 }
2219 
2220 /*
2221  * Start group events scheduling transaction
2222  * Set the flag to make pmu::enable() not perform the
2223  * schedulability test, it will be performed at commit time
2224  *
2225  * We only support PERF_PMU_TXN_ADD transactions. Save the
2226  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2227  * transactions.
2228  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2229 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2230 {
2231 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2232 
2233 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2234 
2235 	cpuc->txn_flags = txn_flags;
2236 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2237 		return;
2238 
2239 	perf_pmu_disable(pmu);
2240 	__this_cpu_write(cpu_hw_events.n_txn, 0);
2241 	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2242 	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2243 }
2244 
2245 /*
2246  * Stop group events scheduling transaction
2247  * Clear the flag and pmu::enable() will perform the
2248  * schedulability test.
2249  */
x86_pmu_cancel_txn(struct pmu * pmu)2250 static void x86_pmu_cancel_txn(struct pmu *pmu)
2251 {
2252 	unsigned int txn_flags;
2253 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2254 
2255 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2256 
2257 	txn_flags = cpuc->txn_flags;
2258 	cpuc->txn_flags = 0;
2259 	if (txn_flags & ~PERF_PMU_TXN_ADD)
2260 		return;
2261 
2262 	/*
2263 	 * Truncate collected array by the number of events added in this
2264 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2265 	 */
2266 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2267 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2268 	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2269 	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2270 	perf_pmu_enable(pmu);
2271 }
2272 
2273 /*
2274  * Commit group events scheduling transaction
2275  * Perform the group schedulability test as a whole
2276  * Return 0 if success
2277  *
2278  * Does not cancel the transaction on failure; expects the caller to do this.
2279  */
x86_pmu_commit_txn(struct pmu * pmu)2280 static int x86_pmu_commit_txn(struct pmu *pmu)
2281 {
2282 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2283 	int assign[X86_PMC_IDX_MAX];
2284 	int n, ret;
2285 
2286 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2287 
2288 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2289 		cpuc->txn_flags = 0;
2290 		return 0;
2291 	}
2292 
2293 	n = cpuc->n_events;
2294 
2295 	if (!x86_pmu_initialized())
2296 		return -EAGAIN;
2297 
2298 	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2299 	if (ret)
2300 		return ret;
2301 
2302 	/*
2303 	 * copy new assignment, now we know it is possible
2304 	 * will be used by hw_perf_enable()
2305 	 */
2306 	memcpy(cpuc->assign, assign, n*sizeof(int));
2307 
2308 	cpuc->txn_flags = 0;
2309 	perf_pmu_enable(pmu);
2310 	return 0;
2311 }
2312 /*
2313  * a fake_cpuc is used to validate event groups. Due to
2314  * the extra reg logic, we need to also allocate a fake
2315  * per_core and per_cpu structure. Otherwise, group events
2316  * using extra reg may conflict without the kernel being
2317  * able to catch this when the last event gets added to
2318  * the group.
2319  */
free_fake_cpuc(struct cpu_hw_events * cpuc)2320 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2321 {
2322 	intel_cpuc_finish(cpuc);
2323 	kfree(cpuc);
2324 }
2325 
allocate_fake_cpuc(struct pmu * event_pmu)2326 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2327 {
2328 	struct cpu_hw_events *cpuc;
2329 	int cpu;
2330 
2331 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2332 	if (!cpuc)
2333 		return ERR_PTR(-ENOMEM);
2334 	cpuc->is_fake = 1;
2335 
2336 	if (is_hybrid()) {
2337 		struct x86_hybrid_pmu *h_pmu;
2338 
2339 		h_pmu = hybrid_pmu(event_pmu);
2340 		if (cpumask_empty(&h_pmu->supported_cpus))
2341 			goto error;
2342 		cpu = cpumask_first(&h_pmu->supported_cpus);
2343 	} else
2344 		cpu = raw_smp_processor_id();
2345 	cpuc->pmu = event_pmu;
2346 
2347 	if (intel_cpuc_prepare(cpuc, cpu))
2348 		goto error;
2349 
2350 	return cpuc;
2351 error:
2352 	free_fake_cpuc(cpuc);
2353 	return ERR_PTR(-ENOMEM);
2354 }
2355 
2356 /*
2357  * validate that we can schedule this event
2358  */
validate_event(struct perf_event * event)2359 static int validate_event(struct perf_event *event)
2360 {
2361 	struct cpu_hw_events *fake_cpuc;
2362 	struct event_constraint *c;
2363 	int ret = 0;
2364 
2365 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2366 	if (IS_ERR(fake_cpuc))
2367 		return PTR_ERR(fake_cpuc);
2368 
2369 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2370 
2371 	if (!c || !c->weight)
2372 		ret = -EINVAL;
2373 
2374 	if (x86_pmu.put_event_constraints)
2375 		x86_pmu.put_event_constraints(fake_cpuc, event);
2376 
2377 	free_fake_cpuc(fake_cpuc);
2378 
2379 	return ret;
2380 }
2381 
2382 /*
2383  * validate a single event group
2384  *
2385  * validation include:
2386  *	- check events are compatible which each other
2387  *	- events do not compete for the same counter
2388  *	- number of events <= number of counters
2389  *
2390  * validation ensures the group can be loaded onto the
2391  * PMU if it was the only group available.
2392  */
validate_group(struct perf_event * event)2393 static int validate_group(struct perf_event *event)
2394 {
2395 	struct perf_event *leader = event->group_leader;
2396 	struct cpu_hw_events *fake_cpuc;
2397 	int ret = -EINVAL, n;
2398 
2399 	/*
2400 	 * Reject events from different hybrid PMUs.
2401 	 */
2402 	if (is_hybrid()) {
2403 		struct perf_event *sibling;
2404 		struct pmu *pmu = NULL;
2405 
2406 		if (is_x86_event(leader))
2407 			pmu = leader->pmu;
2408 
2409 		for_each_sibling_event(sibling, leader) {
2410 			if (!is_x86_event(sibling))
2411 				continue;
2412 			if (!pmu)
2413 				pmu = sibling->pmu;
2414 			else if (pmu != sibling->pmu)
2415 				return ret;
2416 		}
2417 	}
2418 
2419 	fake_cpuc = allocate_fake_cpuc(event->pmu);
2420 	if (IS_ERR(fake_cpuc))
2421 		return PTR_ERR(fake_cpuc);
2422 	/*
2423 	 * the event is not yet connected with its
2424 	 * siblings therefore we must first collect
2425 	 * existing siblings, then add the new event
2426 	 * before we can simulate the scheduling
2427 	 */
2428 	n = collect_events(fake_cpuc, leader, true);
2429 	if (n < 0)
2430 		goto out;
2431 
2432 	fake_cpuc->n_events = n;
2433 	n = collect_events(fake_cpuc, event, false);
2434 	if (n < 0)
2435 		goto out;
2436 
2437 	fake_cpuc->n_events = 0;
2438 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2439 
2440 out:
2441 	free_fake_cpuc(fake_cpuc);
2442 	return ret;
2443 }
2444 
x86_pmu_event_init(struct perf_event * event)2445 static int x86_pmu_event_init(struct perf_event *event)
2446 {
2447 	struct x86_hybrid_pmu *pmu = NULL;
2448 	int err;
2449 
2450 	if ((event->attr.type != event->pmu->type) &&
2451 	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2452 	    (event->attr.type != PERF_TYPE_HW_CACHE))
2453 		return -ENOENT;
2454 
2455 	if (is_hybrid() && (event->cpu != -1)) {
2456 		pmu = hybrid_pmu(event->pmu);
2457 		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2458 			return -ENOENT;
2459 	}
2460 
2461 	err = __x86_pmu_event_init(event);
2462 	if (!err) {
2463 		if (event->group_leader != event)
2464 			err = validate_group(event);
2465 		else
2466 			err = validate_event(event);
2467 	}
2468 	if (err) {
2469 		if (event->destroy)
2470 			event->destroy(event);
2471 		event->destroy = NULL;
2472 	}
2473 
2474 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2475 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2476 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2477 
2478 	return err;
2479 }
2480 
perf_clear_dirty_counters(void)2481 void perf_clear_dirty_counters(void)
2482 {
2483 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2484 	int i;
2485 
2486 	 /* Don't need to clear the assigned counter. */
2487 	for (i = 0; i < cpuc->n_events; i++)
2488 		__clear_bit(cpuc->assign[i], cpuc->dirty);
2489 
2490 	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2491 		return;
2492 
2493 	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2494 		if (i >= INTEL_PMC_IDX_FIXED) {
2495 			/* Metrics and fake events don't have corresponding HW counters. */
2496 			if (!test_bit(i - INTEL_PMC_IDX_FIXED, hybrid(cpuc->pmu, fixed_cntr_mask)))
2497 				continue;
2498 
2499 			wrmsrl(x86_pmu_fixed_ctr_addr(i - INTEL_PMC_IDX_FIXED), 0);
2500 		} else {
2501 			wrmsrl(x86_pmu_event_addr(i), 0);
2502 		}
2503 	}
2504 
2505 	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2506 }
2507 
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2508 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2509 {
2510 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2511 		return;
2512 
2513 	/*
2514 	 * This function relies on not being called concurrently in two
2515 	 * tasks in the same mm.  Otherwise one task could observe
2516 	 * perf_rdpmc_allowed > 1 and return all the way back to
2517 	 * userspace with CR4.PCE clear while another task is still
2518 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2519 	 *
2520 	 * For now, this can't happen because all callers hold mmap_lock
2521 	 * for write.  If this changes, we'll need a different solution.
2522 	 */
2523 	mmap_assert_write_locked(mm);
2524 
2525 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2526 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2527 }
2528 
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2529 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2530 {
2531 	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2532 		return;
2533 
2534 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2535 		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2536 }
2537 
x86_pmu_event_idx(struct perf_event * event)2538 static int x86_pmu_event_idx(struct perf_event *event)
2539 {
2540 	struct hw_perf_event *hwc = &event->hw;
2541 
2542 	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2543 		return 0;
2544 
2545 	if (is_metric_idx(hwc->idx))
2546 		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2547 	else
2548 		return hwc->event_base_rdpmc + 1;
2549 }
2550 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2551 static ssize_t get_attr_rdpmc(struct device *cdev,
2552 			      struct device_attribute *attr,
2553 			      char *buf)
2554 {
2555 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2556 }
2557 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2558 static ssize_t set_attr_rdpmc(struct device *cdev,
2559 			      struct device_attribute *attr,
2560 			      const char *buf, size_t count)
2561 {
2562 	static DEFINE_MUTEX(rdpmc_mutex);
2563 	unsigned long val;
2564 	ssize_t ret;
2565 
2566 	ret = kstrtoul(buf, 0, &val);
2567 	if (ret)
2568 		return ret;
2569 
2570 	if (val > 2)
2571 		return -EINVAL;
2572 
2573 	if (x86_pmu.attr_rdpmc_broken)
2574 		return -ENOTSUPP;
2575 
2576 	guard(mutex)(&rdpmc_mutex);
2577 
2578 	if (val != x86_pmu.attr_rdpmc) {
2579 		/*
2580 		 * Changing into or out of never available or always available,
2581 		 * aka perf-event-bypassing mode. This path is extremely slow,
2582 		 * but only root can trigger it, so it's okay.
2583 		 */
2584 		if (val == 0)
2585 			static_branch_inc(&rdpmc_never_available_key);
2586 		else if (x86_pmu.attr_rdpmc == 0)
2587 			static_branch_dec(&rdpmc_never_available_key);
2588 
2589 		if (val == 2)
2590 			static_branch_inc(&rdpmc_always_available_key);
2591 		else if (x86_pmu.attr_rdpmc == 2)
2592 			static_branch_dec(&rdpmc_always_available_key);
2593 
2594 		on_each_cpu(cr4_update_pce, NULL, 1);
2595 		x86_pmu.attr_rdpmc = val;
2596 	}
2597 
2598 	return count;
2599 }
2600 
2601 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2602 
2603 static struct attribute *x86_pmu_attrs[] = {
2604 	&dev_attr_rdpmc.attr,
2605 	NULL,
2606 };
2607 
2608 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2609 	.attrs = x86_pmu_attrs,
2610 };
2611 
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2612 static ssize_t max_precise_show(struct device *cdev,
2613 				  struct device_attribute *attr,
2614 				  char *buf)
2615 {
2616 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2617 }
2618 
2619 static DEVICE_ATTR_RO(max_precise);
2620 
2621 static struct attribute *x86_pmu_caps_attrs[] = {
2622 	&dev_attr_max_precise.attr,
2623 	NULL
2624 };
2625 
2626 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2627 	.name = "caps",
2628 	.attrs = x86_pmu_caps_attrs,
2629 };
2630 
2631 static const struct attribute_group *x86_pmu_attr_groups[] = {
2632 	&x86_pmu_attr_group,
2633 	&x86_pmu_format_group,
2634 	&x86_pmu_events_group,
2635 	&x86_pmu_caps_group,
2636 	NULL,
2637 };
2638 
x86_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)2639 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
2640 			       struct task_struct *task, bool sched_in)
2641 {
2642 	static_call_cond(x86_pmu_sched_task)(pmu_ctx, task, sched_in);
2643 }
2644 
perf_check_microcode(void)2645 void perf_check_microcode(void)
2646 {
2647 	if (x86_pmu.check_microcode)
2648 		x86_pmu.check_microcode();
2649 }
2650 
x86_pmu_check_period(struct perf_event * event,u64 value)2651 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2652 {
2653 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2654 		return -EINVAL;
2655 
2656 	if (value && x86_pmu.limit_period) {
2657 		s64 left = value;
2658 		x86_pmu.limit_period(event, &left);
2659 		if (left > value)
2660 			return -EINVAL;
2661 	}
2662 
2663 	return 0;
2664 }
2665 
x86_pmu_aux_output_match(struct perf_event * event)2666 static int x86_pmu_aux_output_match(struct perf_event *event)
2667 {
2668 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2669 		return 0;
2670 
2671 	if (x86_pmu.aux_output_match)
2672 		return x86_pmu.aux_output_match(event);
2673 
2674 	return 0;
2675 }
2676 
x86_pmu_filter(struct pmu * pmu,int cpu)2677 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2678 {
2679 	bool ret = false;
2680 
2681 	static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2682 
2683 	return ret;
2684 }
2685 
2686 static struct pmu pmu = {
2687 	.pmu_enable		= x86_pmu_enable,
2688 	.pmu_disable		= x86_pmu_disable,
2689 
2690 	.attr_groups		= x86_pmu_attr_groups,
2691 
2692 	.event_init		= x86_pmu_event_init,
2693 
2694 	.event_mapped		= x86_pmu_event_mapped,
2695 	.event_unmapped		= x86_pmu_event_unmapped,
2696 
2697 	.add			= x86_pmu_add,
2698 	.del			= x86_pmu_del,
2699 	.start			= x86_pmu_start,
2700 	.stop			= x86_pmu_stop,
2701 	.read			= x86_pmu_read,
2702 
2703 	.start_txn		= x86_pmu_start_txn,
2704 	.cancel_txn		= x86_pmu_cancel_txn,
2705 	.commit_txn		= x86_pmu_commit_txn,
2706 
2707 	.event_idx		= x86_pmu_event_idx,
2708 	.sched_task		= x86_pmu_sched_task,
2709 	.check_period		= x86_pmu_check_period,
2710 
2711 	.aux_output_match	= x86_pmu_aux_output_match,
2712 
2713 	.filter			= x86_pmu_filter,
2714 };
2715 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2716 void arch_perf_update_userpage(struct perf_event *event,
2717 			       struct perf_event_mmap_page *userpg, u64 now)
2718 {
2719 	struct cyc2ns_data data;
2720 	u64 offset;
2721 
2722 	userpg->cap_user_time = 0;
2723 	userpg->cap_user_time_zero = 0;
2724 	userpg->cap_user_rdpmc =
2725 		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2726 	userpg->pmc_width = x86_pmu.cntval_bits;
2727 
2728 	if (!using_native_sched_clock() || !sched_clock_stable())
2729 		return;
2730 
2731 	cyc2ns_read_begin(&data);
2732 
2733 	offset = data.cyc2ns_offset + __sched_clock_offset;
2734 
2735 	/*
2736 	 * Internal timekeeping for enabled/running/stopped times
2737 	 * is always in the local_clock domain.
2738 	 */
2739 	userpg->cap_user_time = 1;
2740 	userpg->time_mult = data.cyc2ns_mul;
2741 	userpg->time_shift = data.cyc2ns_shift;
2742 	userpg->time_offset = offset - now;
2743 
2744 	/*
2745 	 * cap_user_time_zero doesn't make sense when we're using a different
2746 	 * time base for the records.
2747 	 */
2748 	if (!event->attr.use_clockid) {
2749 		userpg->cap_user_time_zero = 1;
2750 		userpg->time_zero = offset;
2751 	}
2752 
2753 	cyc2ns_read_end();
2754 }
2755 
2756 /*
2757  * Determine whether the regs were taken from an irq/exception handler rather
2758  * than from perf_arch_fetch_caller_regs().
2759  */
perf_hw_regs(struct pt_regs * regs)2760 static bool perf_hw_regs(struct pt_regs *regs)
2761 {
2762 	return regs->flags & X86_EFLAGS_FIXED;
2763 }
2764 
2765 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2766 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2767 {
2768 	struct unwind_state state;
2769 	unsigned long addr;
2770 
2771 	if (perf_guest_state()) {
2772 		/* TODO: We don't support guest os callchain now */
2773 		return;
2774 	}
2775 
2776 	if (perf_callchain_store(entry, regs->ip))
2777 		return;
2778 
2779 	if (perf_hw_regs(regs))
2780 		unwind_start(&state, current, regs, NULL);
2781 	else
2782 		unwind_start(&state, current, NULL, (void *)regs->sp);
2783 
2784 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2785 		addr = unwind_get_return_address(&state);
2786 		if (!addr || perf_callchain_store(entry, addr))
2787 			return;
2788 	}
2789 }
2790 
2791 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2792 valid_user_frame(const void __user *fp, unsigned long size)
2793 {
2794 	return __access_ok(fp, size);
2795 }
2796 
get_segment_base(unsigned int segment)2797 static unsigned long get_segment_base(unsigned int segment)
2798 {
2799 	struct desc_struct *desc;
2800 	unsigned int idx = segment >> 3;
2801 
2802 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2803 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2804 		struct ldt_struct *ldt;
2805 
2806 		/* IRQs are off, so this synchronizes with smp_store_release */
2807 		ldt = READ_ONCE(current->active_mm->context.ldt);
2808 		if (!ldt || idx >= ldt->nr_entries)
2809 			return 0;
2810 
2811 		desc = &ldt->entries[idx];
2812 #else
2813 		return 0;
2814 #endif
2815 	} else {
2816 		if (idx >= GDT_ENTRIES)
2817 			return 0;
2818 
2819 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2820 	}
2821 
2822 	return get_desc_base(desc);
2823 }
2824 
2825 #ifdef CONFIG_UPROBES
2826 /*
2827  * Heuristic-based check if uprobe is installed at the function entry.
2828  *
2829  * Under assumption of user code being compiled with frame pointers,
2830  * `push %rbp/%ebp` is a good indicator that we indeed are.
2831  *
2832  * Similarly, `endbr64` (assuming 64-bit mode) is also a common pattern.
2833  * If we get this wrong, captured stack trace might have one extra bogus
2834  * entry, but the rest of stack trace will still be meaningful.
2835  */
is_uprobe_at_func_entry(struct pt_regs * regs)2836 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2837 {
2838 	struct arch_uprobe *auprobe;
2839 
2840 	if (!current->utask)
2841 		return false;
2842 
2843 	auprobe = current->utask->auprobe;
2844 	if (!auprobe)
2845 		return false;
2846 
2847 	/* push %rbp/%ebp */
2848 	if (auprobe->insn[0] == 0x55)
2849 		return true;
2850 
2851 	/* endbr64 (64-bit only) */
2852 	if (user_64bit_mode(regs) && is_endbr((u32 *)auprobe->insn))
2853 		return true;
2854 
2855 	return false;
2856 }
2857 
2858 #else
is_uprobe_at_func_entry(struct pt_regs * regs)2859 static bool is_uprobe_at_func_entry(struct pt_regs *regs)
2860 {
2861 	return false;
2862 }
2863 #endif /* CONFIG_UPROBES */
2864 
2865 #ifdef CONFIG_IA32_EMULATION
2866 
2867 #include <linux/compat.h>
2868 
2869 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2870 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2871 {
2872 	/* 32-bit process in 64-bit kernel. */
2873 	unsigned long ss_base, cs_base;
2874 	struct stack_frame_ia32 frame;
2875 	const struct stack_frame_ia32 __user *fp;
2876 	u32 ret_addr;
2877 
2878 	if (user_64bit_mode(regs))
2879 		return 0;
2880 
2881 	cs_base = get_segment_base(regs->cs);
2882 	ss_base = get_segment_base(regs->ss);
2883 
2884 	fp = compat_ptr(ss_base + regs->bp);
2885 	pagefault_disable();
2886 
2887 	/* see perf_callchain_user() below for why we do this */
2888 	if (is_uprobe_at_func_entry(regs) &&
2889 	    !get_user(ret_addr, (const u32 __user *)regs->sp))
2890 		perf_callchain_store(entry, ret_addr);
2891 
2892 	while (entry->nr < entry->max_stack) {
2893 		if (!valid_user_frame(fp, sizeof(frame)))
2894 			break;
2895 
2896 		if (__get_user(frame.next_frame, &fp->next_frame))
2897 			break;
2898 		if (__get_user(frame.return_address, &fp->return_address))
2899 			break;
2900 
2901 		perf_callchain_store(entry, cs_base + frame.return_address);
2902 		fp = compat_ptr(ss_base + frame.next_frame);
2903 	}
2904 	pagefault_enable();
2905 	return 1;
2906 }
2907 #else
2908 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2909 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2910 {
2911     return 0;
2912 }
2913 #endif
2914 
2915 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2916 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2917 {
2918 	struct stack_frame frame;
2919 	const struct stack_frame __user *fp;
2920 	unsigned long ret_addr;
2921 
2922 	if (perf_guest_state()) {
2923 		/* TODO: We don't support guest os callchain now */
2924 		return;
2925 	}
2926 
2927 	/*
2928 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2929 	 */
2930 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2931 		return;
2932 
2933 	fp = (void __user *)regs->bp;
2934 
2935 	perf_callchain_store(entry, regs->ip);
2936 
2937 	if (!nmi_uaccess_okay())
2938 		return;
2939 
2940 	if (perf_callchain_user32(regs, entry))
2941 		return;
2942 
2943 	pagefault_disable();
2944 
2945 	/*
2946 	 * If we are called from uprobe handler, and we are indeed at the very
2947 	 * entry to user function (which is normally a `push %rbp` instruction,
2948 	 * under assumption of application being compiled with frame pointers),
2949 	 * we should read return address from *regs->sp before proceeding
2950 	 * to follow frame pointers, otherwise we'll skip immediate caller
2951 	 * as %rbp is not yet setup.
2952 	 */
2953 	if (is_uprobe_at_func_entry(regs) &&
2954 	    !get_user(ret_addr, (const unsigned long __user *)regs->sp))
2955 		perf_callchain_store(entry, ret_addr);
2956 
2957 	while (entry->nr < entry->max_stack) {
2958 		if (!valid_user_frame(fp, sizeof(frame)))
2959 			break;
2960 
2961 		if (__get_user(frame.next_frame, &fp->next_frame))
2962 			break;
2963 		if (__get_user(frame.return_address, &fp->return_address))
2964 			break;
2965 
2966 		perf_callchain_store(entry, frame.return_address);
2967 		fp = (void __user *)frame.next_frame;
2968 	}
2969 	pagefault_enable();
2970 }
2971 
2972 /*
2973  * Deal with code segment offsets for the various execution modes:
2974  *
2975  *   VM86 - the good olde 16 bit days, where the linear address is
2976  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2977  *
2978  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2979  *          to figure out what the 32bit base address is.
2980  *
2981  *    X32 - has TIF_X32 set, but is running in x86_64
2982  *
2983  * X86_64 - CS,DS,SS,ES are all zero based.
2984  */
code_segment_base(struct pt_regs * regs)2985 static unsigned long code_segment_base(struct pt_regs *regs)
2986 {
2987 	/*
2988 	 * For IA32 we look at the GDT/LDT segment base to convert the
2989 	 * effective IP to a linear address.
2990 	 */
2991 
2992 #ifdef CONFIG_X86_32
2993 	/*
2994 	 * If we are in VM86 mode, add the segment offset to convert to a
2995 	 * linear address.
2996 	 */
2997 	if (regs->flags & X86_VM_MASK)
2998 		return 0x10 * regs->cs;
2999 
3000 	if (user_mode(regs) && regs->cs != __USER_CS)
3001 		return get_segment_base(regs->cs);
3002 #else
3003 	if (user_mode(regs) && !user_64bit_mode(regs) &&
3004 	    regs->cs != __USER32_CS)
3005 		return get_segment_base(regs->cs);
3006 #endif
3007 	return 0;
3008 }
3009 
perf_arch_instruction_pointer(struct pt_regs * regs)3010 unsigned long perf_arch_instruction_pointer(struct pt_regs *regs)
3011 {
3012 	return regs->ip + code_segment_base(regs);
3013 }
3014 
common_misc_flags(struct pt_regs * regs)3015 static unsigned long common_misc_flags(struct pt_regs *regs)
3016 {
3017 	if (regs->flags & PERF_EFLAGS_EXACT)
3018 		return PERF_RECORD_MISC_EXACT_IP;
3019 
3020 	return 0;
3021 }
3022 
guest_misc_flags(struct pt_regs * regs)3023 static unsigned long guest_misc_flags(struct pt_regs *regs)
3024 {
3025 	unsigned long guest_state = perf_guest_state();
3026 
3027 	if (!(guest_state & PERF_GUEST_ACTIVE))
3028 		return 0;
3029 
3030 	if (guest_state & PERF_GUEST_USER)
3031 		return PERF_RECORD_MISC_GUEST_USER;
3032 	else
3033 		return PERF_RECORD_MISC_GUEST_KERNEL;
3034 
3035 }
3036 
host_misc_flags(struct pt_regs * regs)3037 static unsigned long host_misc_flags(struct pt_regs *regs)
3038 {
3039 	if (user_mode(regs))
3040 		return PERF_RECORD_MISC_USER;
3041 	else
3042 		return PERF_RECORD_MISC_KERNEL;
3043 }
3044 
perf_arch_guest_misc_flags(struct pt_regs * regs)3045 unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
3046 {
3047 	unsigned long flags = common_misc_flags(regs);
3048 
3049 	flags |= guest_misc_flags(regs);
3050 
3051 	return flags;
3052 }
3053 
perf_arch_misc_flags(struct pt_regs * regs)3054 unsigned long perf_arch_misc_flags(struct pt_regs *regs)
3055 {
3056 	unsigned long flags = common_misc_flags(regs);
3057 
3058 	flags |= host_misc_flags(regs);
3059 
3060 	return flags;
3061 }
3062 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)3063 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3064 {
3065 	/* This API doesn't currently support enumerating hybrid PMUs. */
3066 	if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
3067 	    !x86_pmu_initialized()) {
3068 		memset(cap, 0, sizeof(*cap));
3069 		return;
3070 	}
3071 
3072 	/*
3073 	 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
3074 	 * all E-cores are disabled via BIOS.  When E-cores are disabled, the
3075 	 * base PMU holds the correct number of counters for P-cores.
3076 	 */
3077 	cap->version		= x86_pmu.version;
3078 	cap->num_counters_gp	= x86_pmu_num_counters(NULL);
3079 	cap->num_counters_fixed	= x86_pmu_num_counters_fixed(NULL);
3080 	cap->bit_width_gp	= x86_pmu.cntval_bits;
3081 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
3082 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
3083 	cap->events_mask_len	= x86_pmu.events_mask_len;
3084 	cap->pebs_ept		= x86_pmu.pebs_ept;
3085 }
3086 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3087 
perf_get_hw_event_config(int hw_event)3088 u64 perf_get_hw_event_config(int hw_event)
3089 {
3090 	int max = x86_pmu.max_events;
3091 
3092 	if (hw_event < max)
3093 		return x86_pmu.event_map(array_index_nospec(hw_event, max));
3094 
3095 	return 0;
3096 }
3097 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3098