1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
24 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
25 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
26 * LLNL-CODE-403049.
27 *
28 * ZFS volume emulation driver.
29 *
30 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
31 * Volumes are accessed through the symbolic links named:
32 *
33 * /dev/<pool_name>/<dataset_name>
34 *
35 * Volumes are persistent through reboot and module load. No user command
36 * needs to be run before opening and using a device.
37 *
38 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
39 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
40 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
41 * Copyright (c) 2024, Klara, Inc.
42 */
43
44 /*
45 * Note on locking of zvol state structures.
46 *
47 * These structures are used to maintain internal state used to emulate block
48 * devices on top of zvols. In particular, management of device minor number
49 * operations - create, remove, rename, and set_snapdev - involves access to
50 * these structures. The zvol_state_lock is primarily used to protect the
51 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
52 * of the zvol_state_t structures, as well as to make sure that when the
53 * time comes to remove the structure from the list, it is not in use, and
54 * therefore, it can be taken off zvol_state_list and freed.
55 *
56 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
57 * e.g. for the duration of receive and rollback operations. This lock can be
58 * held for significant periods of time. Given that it is undesirable to hold
59 * mutexes for long periods of time, the following lock ordering applies:
60 * - take zvol_state_lock if necessary, to protect zvol_state_list
61 * - take zv_suspend_lock if necessary, by the code path in question
62 * - take zv_state_lock to protect zvol_state_t
63 *
64 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
65 * single-threaded (to preserve order of minor operations), and are executed
66 * through the zvol_task_cb that dispatches the specific operations. Therefore,
67 * these operations are serialized per pool. Consequently, we can be certain
68 * that for a given zvol, there is only one operation at a time in progress.
69 * That is why one can be sure that first, zvol_state_t for a given zvol is
70 * allocated and placed on zvol_state_list, and then other minor operations
71 * for this zvol are going to proceed in the order of issue.
72 *
73 */
74
75 #include <sys/dataset_kstats.h>
76 #include <sys/dbuf.h>
77 #include <sys/dmu_traverse.h>
78 #include <sys/dsl_dataset.h>
79 #include <sys/dsl_prop.h>
80 #include <sys/dsl_dir.h>
81 #include <sys/zap.h>
82 #include <sys/zfeature.h>
83 #include <sys/zil_impl.h>
84 #include <sys/dmu_tx.h>
85 #include <sys/zio.h>
86 #include <sys/zfs_rlock.h>
87 #include <sys/spa_impl.h>
88 #include <sys/zvol.h>
89 #include <sys/zvol_impl.h>
90
91 unsigned int zvol_inhibit_dev = 0;
92 unsigned int zvol_prefetch_bytes = (128 * 1024);
93 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
94 unsigned int zvol_threads = 0;
95 unsigned int zvol_num_taskqs = 0;
96 unsigned int zvol_request_sync = 0;
97
98 struct hlist_head *zvol_htable;
99 static list_t zvol_state_list;
100 krwlock_t zvol_state_lock;
101 extern int zfs_bclone_wait_dirty;
102 zv_taskq_t zvol_taskqs;
103
104 typedef enum {
105 ZVOL_ASYNC_REMOVE_MINORS,
106 ZVOL_ASYNC_RENAME_MINORS,
107 ZVOL_ASYNC_SET_SNAPDEV,
108 ZVOL_ASYNC_SET_VOLMODE,
109 ZVOL_ASYNC_MAX
110 } zvol_async_op_t;
111
112 typedef struct {
113 zvol_async_op_t op;
114 char name1[MAXNAMELEN];
115 char name2[MAXNAMELEN];
116 uint64_t value;
117 } zvol_task_t;
118
119 zv_request_task_t *
zv_request_task_create(zv_request_t zvr)120 zv_request_task_create(zv_request_t zvr)
121 {
122 zv_request_task_t *task;
123 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
124 taskq_init_ent(&task->ent);
125 task->zvr = zvr;
126 return (task);
127 }
128
129 void
zv_request_task_free(zv_request_task_t * task)130 zv_request_task_free(zv_request_task_t *task)
131 {
132 kmem_free(task, sizeof (*task));
133 }
134
135 uint64_t
zvol_name_hash(const char * name)136 zvol_name_hash(const char *name)
137 {
138 uint64_t crc = -1ULL;
139 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
140 for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
141 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
142 return (crc);
143 }
144
145 /*
146 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
147 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
148 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
149 * before zv_state_lock. The mode argument indicates the mode (including none)
150 * for zv_suspend_lock to be taken.
151 */
152 zvol_state_t *
zvol_find_by_name_hash(const char * name,uint64_t hash,int mode)153 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
154 {
155 zvol_state_t *zv;
156 struct hlist_node *p = NULL;
157
158 rw_enter(&zvol_state_lock, RW_READER);
159 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
160 zv = hlist_entry(p, zvol_state_t, zv_hlink);
161 mutex_enter(&zv->zv_state_lock);
162 if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
163 /*
164 * this is the right zvol, take the locks in the
165 * right order
166 */
167 if (mode != RW_NONE &&
168 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
169 mutex_exit(&zv->zv_state_lock);
170 rw_enter(&zv->zv_suspend_lock, mode);
171 mutex_enter(&zv->zv_state_lock);
172 /*
173 * zvol cannot be renamed as we continue
174 * to hold zvol_state_lock
175 */
176 ASSERT(zv->zv_hash == hash &&
177 strcmp(zv->zv_name, name) == 0);
178 }
179 rw_exit(&zvol_state_lock);
180 return (zv);
181 }
182 mutex_exit(&zv->zv_state_lock);
183 }
184 rw_exit(&zvol_state_lock);
185
186 return (NULL);
187 }
188
189 /*
190 * Find a zvol_state_t given the name.
191 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
192 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
193 * before zv_state_lock. The mode argument indicates the mode (including none)
194 * for zv_suspend_lock to be taken.
195 */
196 static zvol_state_t *
zvol_find_by_name(const char * name,int mode)197 zvol_find_by_name(const char *name, int mode)
198 {
199 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
200 }
201
202 /*
203 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
204 */
205 void
zvol_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)206 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
207 {
208 zfs_creat_t *zct = arg;
209 nvlist_t *nvprops = zct->zct_props;
210 int error;
211 uint64_t volblocksize, volsize;
212
213 VERIFY(nvlist_lookup_uint64(nvprops,
214 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
215 if (nvlist_lookup_uint64(nvprops,
216 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
217 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
218
219 /*
220 * These properties must be removed from the list so the generic
221 * property setting step won't apply to them.
222 */
223 VERIFY(nvlist_remove_all(nvprops,
224 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
225 (void) nvlist_remove_all(nvprops,
226 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
227
228 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
229 DMU_OT_NONE, 0, tx);
230 ASSERT(error == 0);
231
232 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
233 DMU_OT_NONE, 0, tx);
234 ASSERT(error == 0);
235
236 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
237 ASSERT(error == 0);
238 }
239
240 /*
241 * ZFS_IOC_OBJSET_STATS entry point.
242 */
243 int
zvol_get_stats(objset_t * os,nvlist_t * nv)244 zvol_get_stats(objset_t *os, nvlist_t *nv)
245 {
246 int error;
247 dmu_object_info_t *doi;
248 uint64_t val;
249
250 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
251 if (error)
252 return (SET_ERROR(error));
253
254 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
255 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
256 error = dmu_object_info(os, ZVOL_OBJ, doi);
257
258 if (error == 0) {
259 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
260 doi->doi_data_block_size);
261 }
262
263 kmem_free(doi, sizeof (dmu_object_info_t));
264
265 return (SET_ERROR(error));
266 }
267
268 /*
269 * Sanity check volume size.
270 */
271 int
zvol_check_volsize(uint64_t volsize,uint64_t blocksize)272 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
273 {
274 if (volsize == 0)
275 return (SET_ERROR(EINVAL));
276
277 if (volsize % blocksize != 0)
278 return (SET_ERROR(EINVAL));
279
280 #ifdef _ILP32
281 if (volsize - 1 > SPEC_MAXOFFSET_T)
282 return (SET_ERROR(EOVERFLOW));
283 #endif
284 return (0);
285 }
286
287 /*
288 * Ensure the zap is flushed then inform the VFS of the capacity change.
289 */
290 static int
zvol_update_volsize(uint64_t volsize,objset_t * os)291 zvol_update_volsize(uint64_t volsize, objset_t *os)
292 {
293 dmu_tx_t *tx;
294 int error;
295 uint64_t txg;
296
297 tx = dmu_tx_create(os);
298 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
299 dmu_tx_mark_netfree(tx);
300 error = dmu_tx_assign(tx, DMU_TX_WAIT);
301 if (error) {
302 dmu_tx_abort(tx);
303 return (SET_ERROR(error));
304 }
305 txg = dmu_tx_get_txg(tx);
306
307 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
308 &volsize, tx);
309 dmu_tx_commit(tx);
310
311 txg_wait_synced(dmu_objset_pool(os), txg);
312
313 if (error == 0)
314 error = dmu_free_long_range(os,
315 ZVOL_OBJ, volsize, DMU_OBJECT_END);
316
317 return (error);
318 }
319
320 /*
321 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
322 * size will result in a udev "change" event being generated.
323 */
324 int
zvol_set_volsize(const char * name,uint64_t volsize)325 zvol_set_volsize(const char *name, uint64_t volsize)
326 {
327 objset_t *os = NULL;
328 uint64_t readonly;
329 int error;
330 boolean_t owned = B_FALSE;
331
332 error = dsl_prop_get_integer(name,
333 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
334 if (error != 0)
335 return (SET_ERROR(error));
336 if (readonly)
337 return (SET_ERROR(EROFS));
338
339 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
340
341 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
342 RW_READ_HELD(&zv->zv_suspend_lock)));
343
344 if (zv == NULL || zv->zv_objset == NULL) {
345 if (zv != NULL)
346 rw_exit(&zv->zv_suspend_lock);
347 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
348 FTAG, &os)) != 0) {
349 if (zv != NULL)
350 mutex_exit(&zv->zv_state_lock);
351 return (SET_ERROR(error));
352 }
353 owned = B_TRUE;
354 if (zv != NULL)
355 zv->zv_objset = os;
356 } else {
357 os = zv->zv_objset;
358 }
359
360 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
361
362 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
363 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
364 goto out;
365
366 error = zvol_update_volsize(volsize, os);
367 if (error == 0 && zv != NULL) {
368 zv->zv_volsize = volsize;
369 zv->zv_changed = 1;
370 }
371 out:
372 kmem_free(doi, sizeof (dmu_object_info_t));
373
374 if (owned) {
375 dmu_objset_disown(os, B_TRUE, FTAG);
376 if (zv != NULL)
377 zv->zv_objset = NULL;
378 } else {
379 rw_exit(&zv->zv_suspend_lock);
380 }
381
382 if (zv != NULL)
383 mutex_exit(&zv->zv_state_lock);
384
385 if (error == 0 && zv != NULL)
386 zvol_os_update_volsize(zv, volsize);
387
388 return (SET_ERROR(error));
389 }
390
391 /*
392 * Update volthreading.
393 */
394 int
zvol_set_volthreading(const char * name,boolean_t value)395 zvol_set_volthreading(const char *name, boolean_t value)
396 {
397 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
398 if (zv == NULL)
399 return (ENOENT);
400 zv->zv_threading = value;
401 mutex_exit(&zv->zv_state_lock);
402 return (0);
403 }
404
405 /*
406 * Update zvol ro property.
407 */
408 int
zvol_set_ro(const char * name,boolean_t value)409 zvol_set_ro(const char *name, boolean_t value)
410 {
411 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
412 if (zv == NULL)
413 return (-1);
414 if (value) {
415 zvol_os_set_disk_ro(zv, 1);
416 zv->zv_flags |= ZVOL_RDONLY;
417 } else {
418 zvol_os_set_disk_ro(zv, 0);
419 zv->zv_flags &= ~ZVOL_RDONLY;
420 }
421 mutex_exit(&zv->zv_state_lock);
422 return (0);
423 }
424
425 /*
426 * Sanity check volume block size.
427 */
428 int
zvol_check_volblocksize(const char * name,uint64_t volblocksize)429 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
430 {
431 /* Record sizes above 128k need the feature to be enabled */
432 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
433 spa_t *spa;
434 int error;
435
436 if ((error = spa_open(name, &spa, FTAG)) != 0)
437 return (error);
438
439 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
440 spa_close(spa, FTAG);
441 return (SET_ERROR(ENOTSUP));
442 }
443
444 /*
445 * We don't allow setting the property above 1MB,
446 * unless the tunable has been changed.
447 */
448 if (volblocksize > zfs_max_recordsize)
449 return (SET_ERROR(EDOM));
450
451 spa_close(spa, FTAG);
452 }
453
454 if (volblocksize < SPA_MINBLOCKSIZE ||
455 volblocksize > SPA_MAXBLOCKSIZE ||
456 !ISP2(volblocksize))
457 return (SET_ERROR(EDOM));
458
459 return (0);
460 }
461
462 /*
463 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
464 * implement DKIOCFREE/free-long-range.
465 */
466 static int
zvol_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)467 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
468 {
469 zvol_state_t *zv = arg1;
470 lr_truncate_t *lr = arg2;
471 uint64_t offset, length;
472
473 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
474
475 if (byteswap)
476 byteswap_uint64_array(lr, sizeof (*lr));
477
478 offset = lr->lr_offset;
479 length = lr->lr_length;
480
481 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
482 dmu_tx_mark_netfree(tx);
483 int error = dmu_tx_assign(tx, DMU_TX_WAIT);
484 if (error != 0) {
485 dmu_tx_abort(tx);
486 } else {
487 (void) zil_replaying(zv->zv_zilog, tx);
488 dmu_tx_commit(tx);
489 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
490 length);
491 }
492
493 return (error);
494 }
495
496 /*
497 * Replay a TX_WRITE ZIL transaction that didn't get committed
498 * after a system failure
499 */
500 static int
zvol_replay_write(void * arg1,void * arg2,boolean_t byteswap)501 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
502 {
503 zvol_state_t *zv = arg1;
504 lr_write_t *lr = arg2;
505 objset_t *os = zv->zv_objset;
506 char *data = (char *)(lr + 1); /* data follows lr_write_t */
507 uint64_t offset, length;
508 dmu_tx_t *tx;
509 int error;
510
511 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
512
513 if (byteswap)
514 byteswap_uint64_array(lr, sizeof (*lr));
515
516 offset = lr->lr_offset;
517 length = lr->lr_length;
518
519 /* If it's a dmu_sync() block, write the whole block */
520 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
521 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
522 if (length < blocksize) {
523 offset -= offset % blocksize;
524 length = blocksize;
525 }
526 }
527
528 tx = dmu_tx_create(os);
529 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
530 error = dmu_tx_assign(tx, DMU_TX_WAIT);
531 if (error) {
532 dmu_tx_abort(tx);
533 } else {
534 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
535 (void) zil_replaying(zv->zv_zilog, tx);
536 dmu_tx_commit(tx);
537 }
538
539 return (error);
540 }
541
542 /*
543 * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
544 * after a system failure
545 */
546 static int
zvol_replay_clone_range(void * arg1,void * arg2,boolean_t byteswap)547 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
548 {
549 zvol_state_t *zv = arg1;
550 lr_clone_range_t *lr = arg2;
551 objset_t *os = zv->zv_objset;
552 dmu_tx_t *tx;
553 int error;
554 uint64_t blksz;
555 uint64_t off;
556 uint64_t len;
557
558 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
559 ASSERT3U(lr->lr_common.lrc_reclen, >=, offsetof(lr_clone_range_t,
560 lr_bps[lr->lr_nbps]));
561
562 if (byteswap)
563 byteswap_uint64_array(lr, sizeof (*lr));
564
565 ASSERT(spa_feature_is_enabled(dmu_objset_spa(os),
566 SPA_FEATURE_BLOCK_CLONING));
567
568 off = lr->lr_offset;
569 len = lr->lr_length;
570 blksz = lr->lr_blksz;
571
572 if ((off % blksz) != 0) {
573 return (SET_ERROR(EINVAL));
574 }
575
576 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
577 if (error != 0 || !zv->zv_dn)
578 return (error);
579 tx = dmu_tx_create(os);
580 dmu_tx_hold_clone_by_dnode(tx, zv->zv_dn, off, len, blksz);
581 error = dmu_tx_assign(tx, DMU_TX_WAIT);
582 if (error != 0) {
583 dmu_tx_abort(tx);
584 goto out;
585 }
586 error = dmu_brt_clone(zv->zv_objset, ZVOL_OBJ, off, len,
587 tx, lr->lr_bps, lr->lr_nbps);
588 if (error != 0) {
589 dmu_tx_commit(tx);
590 goto out;
591 }
592
593 /*
594 * zil_replaying() not only check if we are replaying ZIL, but also
595 * updates the ZIL header to record replay progress.
596 */
597 VERIFY(zil_replaying(zv->zv_zilog, tx));
598 dmu_tx_commit(tx);
599
600 out:
601 dnode_rele(zv->zv_dn, zv);
602 zv->zv_dn = NULL;
603 return (error);
604 }
605
606 int
zvol_clone_range(zvol_state_t * zv_src,uint64_t inoff,zvol_state_t * zv_dst,uint64_t outoff,uint64_t len)607 zvol_clone_range(zvol_state_t *zv_src, uint64_t inoff, zvol_state_t *zv_dst,
608 uint64_t outoff, uint64_t len)
609 {
610 zilog_t *zilog_dst;
611 zfs_locked_range_t *inlr, *outlr;
612 objset_t *inos, *outos;
613 dmu_tx_t *tx;
614 blkptr_t *bps;
615 size_t maxblocks;
616 int error = EINVAL;
617
618 rw_enter(&zv_dst->zv_suspend_lock, RW_READER);
619 if (zv_dst->zv_zilog == NULL) {
620 rw_exit(&zv_dst->zv_suspend_lock);
621 rw_enter(&zv_dst->zv_suspend_lock, RW_WRITER);
622 if (zv_dst->zv_zilog == NULL) {
623 zv_dst->zv_zilog = zil_open(zv_dst->zv_objset,
624 zvol_get_data, &zv_dst->zv_kstat.dk_zil_sums);
625 zv_dst->zv_flags |= ZVOL_WRITTEN_TO;
626 VERIFY0((zv_dst->zv_zilog->zl_header->zh_flags &
627 ZIL_REPLAY_NEEDED));
628 }
629 rw_downgrade(&zv_dst->zv_suspend_lock);
630 }
631 if (zv_src != zv_dst)
632 rw_enter(&zv_src->zv_suspend_lock, RW_READER);
633
634 inos = zv_src->zv_objset;
635 outos = zv_dst->zv_objset;
636
637 /*
638 * Sanity checks
639 */
640 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
641 SPA_FEATURE_BLOCK_CLONING)) {
642 error = EOPNOTSUPP;
643 goto out;
644 }
645 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
646 error = EXDEV;
647 goto out;
648 }
649 if (inos->os_encrypted != outos->os_encrypted) {
650 error = EXDEV;
651 goto out;
652 }
653 if (zv_src->zv_volblocksize != zv_dst->zv_volblocksize) {
654 error = EINVAL;
655 goto out;
656 }
657 if (inoff >= zv_src->zv_volsize || outoff >= zv_dst->zv_volsize) {
658 error = 0;
659 goto out;
660 }
661
662 /*
663 * Do not read beyond boundary
664 */
665 if (len > zv_src->zv_volsize - inoff)
666 len = zv_src->zv_volsize - inoff;
667 if (len > zv_dst->zv_volsize - outoff)
668 len = zv_dst->zv_volsize - outoff;
669 if (len == 0) {
670 error = 0;
671 goto out;
672 }
673
674 /*
675 * No overlapping if we are cloning within the same file
676 */
677 if (zv_src == zv_dst) {
678 if (inoff < outoff + len && outoff < inoff + len) {
679 error = EINVAL;
680 goto out;
681 }
682 }
683
684 /*
685 * Offsets and length must be at block boundaries
686 */
687 if ((inoff % zv_src->zv_volblocksize) != 0 ||
688 (outoff % zv_dst->zv_volblocksize) != 0) {
689 error = EINVAL;
690 goto out;
691 }
692
693 /*
694 * Length must be multiple of block size
695 */
696 if ((len % zv_src->zv_volblocksize) != 0) {
697 error = EINVAL;
698 goto out;
699 }
700
701 zilog_dst = zv_dst->zv_zilog;
702 maxblocks = zil_max_log_data(zilog_dst, sizeof (lr_clone_range_t)) /
703 sizeof (bps[0]);
704 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
705 /*
706 * Maintain predictable lock order.
707 */
708 if (zv_src < zv_dst || (zv_src == zv_dst && inoff < outoff)) {
709 inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
710 RL_READER);
711 outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
712 RL_WRITER);
713 } else {
714 outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len,
715 RL_WRITER);
716 inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len,
717 RL_READER);
718 }
719
720 while (len > 0) {
721 uint64_t size, last_synced_txg;
722 size_t nbps = maxblocks;
723 size = MIN(zv_src->zv_volblocksize * maxblocks, len);
724 last_synced_txg = spa_last_synced_txg(
725 dmu_objset_spa(zv_src->zv_objset));
726 error = dmu_read_l0_bps(zv_src->zv_objset, ZVOL_OBJ, inoff,
727 size, bps, &nbps);
728 if (error != 0) {
729 /*
730 * If we are trying to clone a block that was created
731 * in the current transaction group, the error will be
732 * EAGAIN here. Based on zfs_bclone_wait_dirty either
733 * return a shortened range to the caller so it can
734 * fallback, or wait for the next TXG and check again.
735 */
736 if (error == EAGAIN && zfs_bclone_wait_dirty) {
737 txg_wait_synced(dmu_objset_pool
738 (zv_src->zv_objset), last_synced_txg + 1);
739 continue;
740 }
741 break;
742 }
743
744 tx = dmu_tx_create(zv_dst->zv_objset);
745 dmu_tx_hold_clone_by_dnode(tx, zv_dst->zv_dn, outoff, size,
746 zv_src->zv_volblocksize);
747 error = dmu_tx_assign(tx, DMU_TX_WAIT);
748 if (error != 0) {
749 dmu_tx_abort(tx);
750 break;
751 }
752 error = dmu_brt_clone(zv_dst->zv_objset, ZVOL_OBJ, outoff, size,
753 tx, bps, nbps);
754 if (error != 0) {
755 dmu_tx_commit(tx);
756 break;
757 }
758 zvol_log_clone_range(zilog_dst, tx, TX_CLONE_RANGE, outoff,
759 size, zv_src->zv_volblocksize, bps, nbps);
760 dmu_tx_commit(tx);
761 inoff += size;
762 outoff += size;
763 len -= size;
764 }
765 vmem_free(bps, sizeof (bps[0]) * maxblocks);
766 zfs_rangelock_exit(outlr);
767 zfs_rangelock_exit(inlr);
768 if (error == 0 && zv_dst->zv_objset->os_sync == ZFS_SYNC_ALWAYS) {
769 zil_commit(zilog_dst, ZVOL_OBJ);
770 }
771 out:
772 if (zv_src != zv_dst)
773 rw_exit(&zv_src->zv_suspend_lock);
774 rw_exit(&zv_dst->zv_suspend_lock);
775 return (SET_ERROR(error));
776 }
777
778 /*
779 * Handles TX_CLONE_RANGE transactions.
780 */
781 void
zvol_log_clone_range(zilog_t * zilog,dmu_tx_t * tx,int txtype,uint64_t off,uint64_t len,uint64_t blksz,const blkptr_t * bps,size_t nbps)782 zvol_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, uint64_t off,
783 uint64_t len, uint64_t blksz, const blkptr_t *bps, size_t nbps)
784 {
785 itx_t *itx;
786 lr_clone_range_t *lr;
787 uint64_t partlen, max_log_data;
788 size_t partnbps;
789
790 if (zil_replaying(zilog, tx))
791 return;
792
793 max_log_data = zil_max_log_data(zilog, sizeof (lr_clone_range_t));
794
795 while (nbps > 0) {
796 partnbps = MIN(nbps, max_log_data / sizeof (bps[0]));
797 partlen = partnbps * blksz;
798 ASSERT3U(partlen, <, len + blksz);
799 partlen = MIN(partlen, len);
800
801 itx = zil_itx_create(txtype,
802 sizeof (*lr) + sizeof (bps[0]) * partnbps);
803 lr = (lr_clone_range_t *)&itx->itx_lr;
804 lr->lr_foid = ZVOL_OBJ;
805 lr->lr_offset = off;
806 lr->lr_length = partlen;
807 lr->lr_blksz = blksz;
808 lr->lr_nbps = partnbps;
809 memcpy(lr->lr_bps, bps, sizeof (bps[0]) * partnbps);
810
811 zil_itx_assign(zilog, itx, tx);
812
813 bps += partnbps;
814 ASSERT3U(nbps, >=, partnbps);
815 nbps -= partnbps;
816 off += partlen;
817 ASSERT3U(len, >=, partlen);
818 len -= partlen;
819 }
820 }
821
822 static int
zvol_replay_err(void * arg1,void * arg2,boolean_t byteswap)823 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
824 {
825 (void) arg1, (void) arg2, (void) byteswap;
826 return (SET_ERROR(ENOTSUP));
827 }
828
829 /*
830 * Callback vectors for replaying records.
831 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
832 */
833 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
834 zvol_replay_err, /* no such transaction type */
835 zvol_replay_err, /* TX_CREATE */
836 zvol_replay_err, /* TX_MKDIR */
837 zvol_replay_err, /* TX_MKXATTR */
838 zvol_replay_err, /* TX_SYMLINK */
839 zvol_replay_err, /* TX_REMOVE */
840 zvol_replay_err, /* TX_RMDIR */
841 zvol_replay_err, /* TX_LINK */
842 zvol_replay_err, /* TX_RENAME */
843 zvol_replay_write, /* TX_WRITE */
844 zvol_replay_truncate, /* TX_TRUNCATE */
845 zvol_replay_err, /* TX_SETATTR */
846 zvol_replay_err, /* TX_ACL_V0 */
847 zvol_replay_err, /* TX_ACL */
848 zvol_replay_err, /* TX_CREATE_ACL */
849 zvol_replay_err, /* TX_CREATE_ATTR */
850 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
851 zvol_replay_err, /* TX_MKDIR_ACL */
852 zvol_replay_err, /* TX_MKDIR_ATTR */
853 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
854 zvol_replay_err, /* TX_WRITE2 */
855 zvol_replay_err, /* TX_SETSAXATTR */
856 zvol_replay_err, /* TX_RENAME_EXCHANGE */
857 zvol_replay_err, /* TX_RENAME_WHITEOUT */
858 zvol_replay_clone_range, /* TX_CLONE_RANGE */
859 };
860
861 /*
862 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
863 *
864 * We store data in the log buffers if it's small enough.
865 * Otherwise we will later flush the data out via dmu_sync().
866 */
867 static const ssize_t zvol_immediate_write_sz = 32768;
868
869 void
zvol_log_write(zvol_state_t * zv,dmu_tx_t * tx,uint64_t offset,uint64_t size,boolean_t commit)870 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
871 uint64_t size, boolean_t commit)
872 {
873 uint32_t blocksize = zv->zv_volblocksize;
874 zilog_t *zilog = zv->zv_zilog;
875 itx_wr_state_t write_state;
876 uint64_t log_size = 0;
877
878 if (zil_replaying(zilog, tx))
879 return;
880
881 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
882 write_state = WR_INDIRECT;
883 else if (!spa_has_slogs(zilog->zl_spa) &&
884 size >= blocksize && blocksize > zvol_immediate_write_sz)
885 write_state = WR_INDIRECT;
886 else if (commit)
887 write_state = WR_COPIED;
888 else
889 write_state = WR_NEED_COPY;
890
891 while (size) {
892 itx_t *itx;
893 lr_write_t *lr;
894 itx_wr_state_t wr_state = write_state;
895 ssize_t len = size;
896
897 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
898 wr_state = WR_NEED_COPY;
899 else if (wr_state == WR_INDIRECT)
900 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
901
902 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
903 (wr_state == WR_COPIED ? len : 0));
904 lr = (lr_write_t *)&itx->itx_lr;
905 if (wr_state == WR_COPIED &&
906 dmu_read_by_dnode(zv->zv_dn, offset, len, lr + 1,
907 DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING) != 0) {
908 zil_itx_destroy(itx);
909 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
910 lr = (lr_write_t *)&itx->itx_lr;
911 wr_state = WR_NEED_COPY;
912 }
913
914 log_size += itx->itx_size;
915 if (wr_state == WR_NEED_COPY)
916 log_size += len;
917
918 itx->itx_wr_state = wr_state;
919 lr->lr_foid = ZVOL_OBJ;
920 lr->lr_offset = offset;
921 lr->lr_length = len;
922 lr->lr_blkoff = 0;
923 BP_ZERO(&lr->lr_blkptr);
924
925 itx->itx_private = zv;
926
927 (void) zil_itx_assign(zilog, itx, tx);
928
929 offset += len;
930 size -= len;
931 }
932
933 dsl_pool_wrlog_count(zilog->zl_dmu_pool, log_size, tx->tx_txg);
934 }
935
936 /*
937 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
938 */
939 void
zvol_log_truncate(zvol_state_t * zv,dmu_tx_t * tx,uint64_t off,uint64_t len)940 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
941 {
942 itx_t *itx;
943 lr_truncate_t *lr;
944 zilog_t *zilog = zv->zv_zilog;
945
946 if (zil_replaying(zilog, tx))
947 return;
948
949 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
950 lr = (lr_truncate_t *)&itx->itx_lr;
951 lr->lr_foid = ZVOL_OBJ;
952 lr->lr_offset = off;
953 lr->lr_length = len;
954
955 zil_itx_assign(zilog, itx, tx);
956 }
957
958
959 static void
zvol_get_done(zgd_t * zgd,int error)960 zvol_get_done(zgd_t *zgd, int error)
961 {
962 (void) error;
963 if (zgd->zgd_db)
964 dmu_buf_rele(zgd->zgd_db, zgd);
965
966 zfs_rangelock_exit(zgd->zgd_lr);
967
968 kmem_free(zgd, sizeof (zgd_t));
969 }
970
971 /*
972 * Get data to generate a TX_WRITE intent log record.
973 */
974 int
zvol_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)975 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
976 struct lwb *lwb, zio_t *zio)
977 {
978 zvol_state_t *zv = arg;
979 uint64_t offset = lr->lr_offset;
980 uint64_t size = lr->lr_length;
981 dmu_buf_t *db;
982 zgd_t *zgd;
983 int error;
984
985 ASSERT3P(lwb, !=, NULL);
986 ASSERT3U(size, !=, 0);
987
988 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
989 zgd->zgd_lwb = lwb;
990
991 /*
992 * Write records come in two flavors: immediate and indirect.
993 * For small writes it's cheaper to store the data with the
994 * log record (immediate); for large writes it's cheaper to
995 * sync the data and get a pointer to it (indirect) so that
996 * we don't have to write the data twice.
997 */
998 if (buf != NULL) { /* immediate write */
999 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
1000 size, RL_READER);
1001 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
1002 DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
1003 } else { /* indirect write */
1004 ASSERT3P(zio, !=, NULL);
1005 /*
1006 * Have to lock the whole block to ensure when it's written out
1007 * and its checksum is being calculated that no one can change
1008 * the data. Contrarily to zfs_get_data we need not re-check
1009 * blocksize after we get the lock because it cannot be changed.
1010 */
1011 size = zv->zv_volblocksize;
1012 offset = P2ALIGN_TYPED(offset, size, uint64_t);
1013 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
1014 size, RL_READER);
1015 error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
1016 &db);
1017 if (error == 0) {
1018 blkptr_t *bp = &lr->lr_blkptr;
1019
1020 zgd->zgd_db = db;
1021 zgd->zgd_bp = bp;
1022
1023 ASSERT(db != NULL);
1024 ASSERT(db->db_offset == offset);
1025 ASSERT(db->db_size == size);
1026
1027 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1028 zvol_get_done, zgd);
1029
1030 if (error == 0)
1031 return (0);
1032 }
1033 }
1034
1035 zvol_get_done(zgd, error);
1036
1037 return (SET_ERROR(error));
1038 }
1039
1040 /*
1041 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1042 */
1043
1044 void
zvol_insert(zvol_state_t * zv)1045 zvol_insert(zvol_state_t *zv)
1046 {
1047 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1048 list_insert_head(&zvol_state_list, zv);
1049 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1050 }
1051
1052 /*
1053 * Simply remove the zvol from to list of zvols.
1054 */
1055 static void
zvol_remove(zvol_state_t * zv)1056 zvol_remove(zvol_state_t *zv)
1057 {
1058 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1059 list_remove(&zvol_state_list, zv);
1060 hlist_del(&zv->zv_hlink);
1061 }
1062
1063 /*
1064 * Setup zv after we just own the zv->objset
1065 */
1066 static int
zvol_setup_zv(zvol_state_t * zv)1067 zvol_setup_zv(zvol_state_t *zv)
1068 {
1069 uint64_t volsize;
1070 int error;
1071 uint64_t ro;
1072 objset_t *os = zv->zv_objset;
1073
1074 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1075 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1076
1077 zv->zv_zilog = NULL;
1078 zv->zv_flags &= ~ZVOL_WRITTEN_TO;
1079
1080 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1081 if (error)
1082 return (SET_ERROR(error));
1083
1084 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1085 if (error)
1086 return (SET_ERROR(error));
1087
1088 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
1089 if (error)
1090 return (SET_ERROR(error));
1091
1092 zvol_os_set_capacity(zv, volsize >> 9);
1093 zv->zv_volsize = volsize;
1094
1095 if (ro || dmu_objset_is_snapshot(os) ||
1096 !spa_writeable(dmu_objset_spa(os))) {
1097 zvol_os_set_disk_ro(zv, 1);
1098 zv->zv_flags |= ZVOL_RDONLY;
1099 } else {
1100 zvol_os_set_disk_ro(zv, 0);
1101 zv->zv_flags &= ~ZVOL_RDONLY;
1102 }
1103 return (0);
1104 }
1105
1106 /*
1107 * Shutdown every zv_objset related stuff except zv_objset itself.
1108 * The is the reverse of zvol_setup_zv.
1109 */
1110 static void
zvol_shutdown_zv(zvol_state_t * zv)1111 zvol_shutdown_zv(zvol_state_t *zv)
1112 {
1113 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1114 RW_LOCK_HELD(&zv->zv_suspend_lock));
1115
1116 if (zv->zv_flags & ZVOL_WRITTEN_TO) {
1117 ASSERT(zv->zv_zilog != NULL);
1118 zil_close(zv->zv_zilog);
1119 }
1120
1121 zv->zv_zilog = NULL;
1122
1123 dnode_rele(zv->zv_dn, zv);
1124 zv->zv_dn = NULL;
1125
1126 /*
1127 * Evict cached data. We must write out any dirty data before
1128 * disowning the dataset.
1129 */
1130 if (zv->zv_flags & ZVOL_WRITTEN_TO)
1131 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1132 (void) dmu_objset_evict_dbufs(zv->zv_objset);
1133 }
1134
1135 /*
1136 * return the proper tag for rollback and recv
1137 */
1138 void *
zvol_tag(zvol_state_t * zv)1139 zvol_tag(zvol_state_t *zv)
1140 {
1141 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1142 return (zv->zv_open_count > 0 ? zv : NULL);
1143 }
1144
1145 /*
1146 * Suspend the zvol for recv and rollback.
1147 */
1148 zvol_state_t *
zvol_suspend(const char * name)1149 zvol_suspend(const char *name)
1150 {
1151 zvol_state_t *zv;
1152
1153 zv = zvol_find_by_name(name, RW_WRITER);
1154
1155 if (zv == NULL)
1156 return (NULL);
1157
1158 /* block all I/O, release in zvol_resume. */
1159 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1160 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1161
1162 atomic_inc(&zv->zv_suspend_ref);
1163
1164 if (zv->zv_open_count > 0)
1165 zvol_shutdown_zv(zv);
1166
1167 /*
1168 * do not hold zv_state_lock across suspend/resume to
1169 * avoid locking up zvol lookups
1170 */
1171 mutex_exit(&zv->zv_state_lock);
1172
1173 /* zv_suspend_lock is released in zvol_resume() */
1174 return (zv);
1175 }
1176
1177 int
zvol_resume(zvol_state_t * zv)1178 zvol_resume(zvol_state_t *zv)
1179 {
1180 int error = 0;
1181
1182 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1183
1184 mutex_enter(&zv->zv_state_lock);
1185
1186 if (zv->zv_open_count > 0) {
1187 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1188 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1189 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1190 dmu_objset_rele(zv->zv_objset, zv);
1191
1192 error = zvol_setup_zv(zv);
1193 }
1194
1195 mutex_exit(&zv->zv_state_lock);
1196
1197 rw_exit(&zv->zv_suspend_lock);
1198 /*
1199 * We need this because we don't hold zvol_state_lock while releasing
1200 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1201 * zv_suspend_lock to determine it is safe to free because rwlock is
1202 * not inherent atomic.
1203 */
1204 atomic_dec(&zv->zv_suspend_ref);
1205
1206 if (zv->zv_flags & ZVOL_REMOVING)
1207 cv_broadcast(&zv->zv_removing_cv);
1208
1209 return (SET_ERROR(error));
1210 }
1211
1212 int
zvol_first_open(zvol_state_t * zv,boolean_t readonly)1213 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1214 {
1215 objset_t *os;
1216 int error;
1217
1218 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1219 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1220 ASSERT(mutex_owned(&spa_namespace_lock));
1221
1222 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1223 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1224 if (error)
1225 return (SET_ERROR(error));
1226
1227 zv->zv_objset = os;
1228
1229 error = zvol_setup_zv(zv);
1230 if (error) {
1231 dmu_objset_disown(os, 1, zv);
1232 zv->zv_objset = NULL;
1233 }
1234
1235 return (error);
1236 }
1237
1238 void
zvol_last_close(zvol_state_t * zv)1239 zvol_last_close(zvol_state_t *zv)
1240 {
1241 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1242 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1243
1244 if (zv->zv_flags & ZVOL_REMOVING)
1245 cv_broadcast(&zv->zv_removing_cv);
1246
1247 zvol_shutdown_zv(zv);
1248
1249 dmu_objset_disown(zv->zv_objset, 1, zv);
1250 zv->zv_objset = NULL;
1251 }
1252
1253 typedef struct minors_job {
1254 list_t *list;
1255 list_node_t link;
1256 /* input */
1257 char *name;
1258 /* output */
1259 int error;
1260 } minors_job_t;
1261
1262 /*
1263 * Prefetch zvol dnodes for the minors_job
1264 */
1265 static void
zvol_prefetch_minors_impl(void * arg)1266 zvol_prefetch_minors_impl(void *arg)
1267 {
1268 minors_job_t *job = arg;
1269 char *dsname = job->name;
1270 objset_t *os = NULL;
1271
1272 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1273 FTAG, &os);
1274 if (job->error == 0) {
1275 dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1276 dmu_objset_disown(os, B_TRUE, FTAG);
1277 }
1278 }
1279
1280 /*
1281 * Mask errors to continue dmu_objset_find() traversal
1282 */
1283 static int
zvol_create_snap_minor_cb(const char * dsname,void * arg)1284 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1285 {
1286 minors_job_t *j = arg;
1287 list_t *minors_list = j->list;
1288 const char *name = j->name;
1289
1290 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1291
1292 /* skip the designated dataset */
1293 if (name && strcmp(dsname, name) == 0)
1294 return (0);
1295
1296 /* at this point, the dsname should name a snapshot */
1297 if (strchr(dsname, '@') == 0) {
1298 dprintf("zvol_create_snap_minor_cb(): "
1299 "%s is not a snapshot name\n", dsname);
1300 } else {
1301 minors_job_t *job;
1302 char *n = kmem_strdup(dsname);
1303 if (n == NULL)
1304 return (0);
1305
1306 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1307 job->name = n;
1308 job->list = minors_list;
1309 job->error = 0;
1310 list_insert_tail(minors_list, job);
1311 /* don't care if dispatch fails, because job->error is 0 */
1312 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1313 TQ_SLEEP);
1314 }
1315
1316 return (0);
1317 }
1318
1319 /*
1320 * If spa_keystore_load_wkey() is called for an encrypted zvol,
1321 * we need to look for any clones also using the key. This function
1322 * is "best effort" - so we just skip over it if there are failures.
1323 */
1324 static void
zvol_add_clones(const char * dsname,list_t * minors_list)1325 zvol_add_clones(const char *dsname, list_t *minors_list)
1326 {
1327 /* Also check if it has clones */
1328 dsl_dir_t *dd = NULL;
1329 dsl_pool_t *dp = NULL;
1330
1331 if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1332 return;
1333
1334 if (!spa_feature_is_enabled(dp->dp_spa,
1335 SPA_FEATURE_ENCRYPTION))
1336 goto out;
1337
1338 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1339 goto out;
1340
1341 if (dsl_dir_phys(dd)->dd_clones == 0)
1342 goto out;
1343
1344 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1345 zap_attribute_t *za = zap_attribute_alloc();
1346 objset_t *mos = dd->dd_pool->dp_meta_objset;
1347
1348 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1349 zap_cursor_retrieve(zc, za) == 0;
1350 zap_cursor_advance(zc)) {
1351 dsl_dataset_t *clone;
1352 minors_job_t *job;
1353
1354 if (dsl_dataset_hold_obj(dd->dd_pool,
1355 za->za_first_integer, FTAG, &clone) == 0) {
1356
1357 char name[ZFS_MAX_DATASET_NAME_LEN];
1358 dsl_dataset_name(clone, name);
1359
1360 char *n = kmem_strdup(name);
1361 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1362 job->name = n;
1363 job->list = minors_list;
1364 job->error = 0;
1365 list_insert_tail(minors_list, job);
1366
1367 dsl_dataset_rele(clone, FTAG);
1368 }
1369 }
1370 zap_cursor_fini(zc);
1371 zap_attribute_free(za);
1372 kmem_free(zc, sizeof (zap_cursor_t));
1373
1374 out:
1375 if (dd != NULL)
1376 dsl_dir_rele(dd, FTAG);
1377 dsl_pool_rele(dp, FTAG);
1378 }
1379
1380 /*
1381 * Mask errors to continue dmu_objset_find() traversal
1382 */
1383 static int
zvol_create_minors_cb(const char * dsname,void * arg)1384 zvol_create_minors_cb(const char *dsname, void *arg)
1385 {
1386 uint64_t snapdev;
1387 int error;
1388 list_t *minors_list = arg;
1389
1390 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1391
1392 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1393 if (error)
1394 return (0);
1395
1396 /*
1397 * Given the name and the 'snapdev' property, create device minor nodes
1398 * with the linkages to zvols/snapshots as needed.
1399 * If the name represents a zvol, create a minor node for the zvol, then
1400 * check if its snapshots are 'visible', and if so, iterate over the
1401 * snapshots and create device minor nodes for those.
1402 */
1403 if (strchr(dsname, '@') == 0) {
1404 minors_job_t *job;
1405 char *n = kmem_strdup(dsname);
1406 if (n == NULL)
1407 return (0);
1408
1409 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1410 job->name = n;
1411 job->list = minors_list;
1412 job->error = 0;
1413 list_insert_tail(minors_list, job);
1414 /* don't care if dispatch fails, because job->error is 0 */
1415 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1416 TQ_SLEEP);
1417
1418 zvol_add_clones(dsname, minors_list);
1419
1420 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1421 /*
1422 * traverse snapshots only, do not traverse children,
1423 * and skip the 'dsname'
1424 */
1425 (void) dmu_objset_find(dsname,
1426 zvol_create_snap_minor_cb, (void *)job,
1427 DS_FIND_SNAPSHOTS);
1428 }
1429 } else {
1430 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1431 dsname);
1432 }
1433
1434 return (0);
1435 }
1436
1437 /*
1438 * Create minors for the specified dataset, including children and snapshots.
1439 * Pay attention to the 'snapdev' property and iterate over the snapshots
1440 * only if they are 'visible'. This approach allows one to assure that the
1441 * snapshot metadata is read from disk only if it is needed.
1442 *
1443 * The name can represent a dataset to be recursively scanned for zvols and
1444 * their snapshots, or a single zvol snapshot. If the name represents a
1445 * dataset, the scan is performed in two nested stages:
1446 * - scan the dataset for zvols, and
1447 * - for each zvol, create a minor node, then check if the zvol's snapshots
1448 * are 'visible', and only then iterate over the snapshots if needed
1449 *
1450 * If the name represents a snapshot, a check is performed if the snapshot is
1451 * 'visible' (which also verifies that the parent is a zvol), and if so,
1452 * a minor node for that snapshot is created.
1453 */
1454 void
zvol_create_minors_recursive(const char * name)1455 zvol_create_minors_recursive(const char *name)
1456 {
1457 list_t minors_list;
1458 minors_job_t *job;
1459
1460 if (zvol_inhibit_dev)
1461 return;
1462
1463 /*
1464 * This is the list for prefetch jobs. Whenever we found a match
1465 * during dmu_objset_find, we insert a minors_job to the list and do
1466 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1467 * any lock because all list operation is done on the current thread.
1468 *
1469 * We will use this list to do zvol_os_create_minor after prefetch
1470 * so we don't have to traverse using dmu_objset_find again.
1471 */
1472 list_create(&minors_list, sizeof (minors_job_t),
1473 offsetof(minors_job_t, link));
1474
1475
1476 if (strchr(name, '@') != NULL) {
1477 uint64_t snapdev;
1478
1479 int error = dsl_prop_get_integer(name, "snapdev",
1480 &snapdev, NULL);
1481
1482 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1483 (void) zvol_os_create_minor(name);
1484 } else {
1485 fstrans_cookie_t cookie = spl_fstrans_mark();
1486 (void) dmu_objset_find(name, zvol_create_minors_cb,
1487 &minors_list, DS_FIND_CHILDREN);
1488 spl_fstrans_unmark(cookie);
1489 }
1490
1491 taskq_wait_outstanding(system_taskq, 0);
1492
1493 /*
1494 * Prefetch is completed, we can do zvol_os_create_minor
1495 * sequentially.
1496 */
1497 while ((job = list_remove_head(&minors_list)) != NULL) {
1498 if (!job->error)
1499 (void) zvol_os_create_minor(job->name);
1500 kmem_strfree(job->name);
1501 kmem_free(job, sizeof (minors_job_t));
1502 }
1503
1504 list_destroy(&minors_list);
1505 }
1506
1507 void
zvol_create_minor(const char * name)1508 zvol_create_minor(const char *name)
1509 {
1510 /*
1511 * Note: the dsl_pool_config_lock must not be held.
1512 * Minor node creation needs to obtain the zvol_state_lock.
1513 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1514 * config lock. Therefore, we can't have the config lock now if
1515 * we are going to wait for the zvol_state_lock, because it
1516 * would be a lock order inversion which could lead to deadlock.
1517 */
1518
1519 if (zvol_inhibit_dev)
1520 return;
1521
1522 if (strchr(name, '@') != NULL) {
1523 uint64_t snapdev;
1524
1525 int error = dsl_prop_get_integer(name,
1526 "snapdev", &snapdev, NULL);
1527
1528 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1529 (void) zvol_os_create_minor(name);
1530 } else {
1531 (void) zvol_os_create_minor(name);
1532 }
1533 }
1534
1535 /*
1536 * Remove minors for specified dataset including children and snapshots.
1537 */
1538
1539 /*
1540 * Remove the minor for a given zvol. This will do it all:
1541 * - flag the zvol for removal, so new requests are rejected
1542 * - wait until outstanding requests are completed
1543 * - remove it from lists
1544 * - free it
1545 * It's also usable as a taskq task, and smells nice too.
1546 */
1547 static void
zvol_remove_minor_task(void * arg)1548 zvol_remove_minor_task(void *arg)
1549 {
1550 zvol_state_t *zv = (zvol_state_t *)arg;
1551
1552 ASSERT(!RW_LOCK_HELD(&zvol_state_lock));
1553 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1554
1555 mutex_enter(&zv->zv_state_lock);
1556 while (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) {
1557 zv->zv_flags |= ZVOL_REMOVING;
1558 cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock);
1559 }
1560 mutex_exit(&zv->zv_state_lock);
1561
1562 rw_enter(&zvol_state_lock, RW_WRITER);
1563 mutex_enter(&zv->zv_state_lock);
1564
1565 zvol_remove(zv);
1566 zvol_os_clear_private(zv);
1567
1568 mutex_exit(&zv->zv_state_lock);
1569 rw_exit(&zvol_state_lock);
1570
1571 zvol_os_free(zv);
1572 }
1573
1574 static void
zvol_free_task(void * arg)1575 zvol_free_task(void *arg)
1576 {
1577 zvol_os_free(arg);
1578 }
1579
1580 void
zvol_remove_minors_impl(const char * name)1581 zvol_remove_minors_impl(const char *name)
1582 {
1583 zvol_state_t *zv, *zv_next;
1584 int namelen = ((name) ? strlen(name) : 0);
1585 taskqid_t t;
1586 list_t delay_list, free_list;
1587
1588 if (zvol_inhibit_dev)
1589 return;
1590
1591 list_create(&delay_list, sizeof (zvol_state_t),
1592 offsetof(zvol_state_t, zv_next));
1593 list_create(&free_list, sizeof (zvol_state_t),
1594 offsetof(zvol_state_t, zv_next));
1595
1596 rw_enter(&zvol_state_lock, RW_WRITER);
1597
1598 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1599 zv_next = list_next(&zvol_state_list, zv);
1600
1601 mutex_enter(&zv->zv_state_lock);
1602 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1603 (strncmp(zv->zv_name, name, namelen) == 0 &&
1604 (zv->zv_name[namelen] == '/' ||
1605 zv->zv_name[namelen] == '@'))) {
1606 /*
1607 * By holding zv_state_lock here, we guarantee that no
1608 * one is currently using this zv
1609 */
1610
1611 /*
1612 * If in use, try to throw everyone off and try again
1613 * later.
1614 */
1615 if (zv->zv_open_count > 0 ||
1616 atomic_read(&zv->zv_suspend_ref)) {
1617 zv->zv_flags |= ZVOL_REMOVING;
1618 t = taskq_dispatch(
1619 zv->zv_objset->os_spa->spa_zvol_taskq,
1620 zvol_remove_minor_task, zv, TQ_SLEEP);
1621 if (t == TASKQID_INVALID) {
1622 /*
1623 * Couldn't create the task, so we'll
1624 * do it in place once the loop is
1625 * finished.
1626 */
1627 list_insert_head(&delay_list, zv);
1628 }
1629 mutex_exit(&zv->zv_state_lock);
1630 continue;
1631 }
1632
1633 zvol_remove(zv);
1634
1635 /*
1636 * Cleared while holding zvol_state_lock as a writer
1637 * which will prevent zvol_open() from opening it.
1638 */
1639 zvol_os_clear_private(zv);
1640
1641 /* Drop zv_state_lock before zvol_free() */
1642 mutex_exit(&zv->zv_state_lock);
1643
1644 /* Try parallel zv_free, if failed do it in place */
1645 t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1646 TQ_SLEEP);
1647 if (t == TASKQID_INVALID)
1648 list_insert_head(&free_list, zv);
1649 } else {
1650 mutex_exit(&zv->zv_state_lock);
1651 }
1652 }
1653 rw_exit(&zvol_state_lock);
1654
1655 /* Wait for zvols that we couldn't create a remove task for */
1656 while ((zv = list_remove_head(&delay_list)) != NULL)
1657 zvol_remove_minor_task(zv);
1658
1659 /* Free any that we couldn't free in parallel earlier */
1660 while ((zv = list_remove_head(&free_list)) != NULL)
1661 zvol_os_free(zv);
1662 }
1663
1664 /* Remove minor for this specific volume only */
1665 static void
zvol_remove_minor_impl(const char * name)1666 zvol_remove_minor_impl(const char *name)
1667 {
1668 zvol_state_t *zv = NULL, *zv_next;
1669
1670 if (zvol_inhibit_dev)
1671 return;
1672
1673 rw_enter(&zvol_state_lock, RW_WRITER);
1674
1675 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1676 zv_next = list_next(&zvol_state_list, zv);
1677
1678 mutex_enter(&zv->zv_state_lock);
1679 if (strcmp(zv->zv_name, name) == 0)
1680 /* Found, leave the the loop with zv_lock held */
1681 break;
1682 mutex_exit(&zv->zv_state_lock);
1683 }
1684
1685 if (zv == NULL) {
1686 rw_exit(&zvol_state_lock);
1687 return;
1688 }
1689
1690 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1691
1692 if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) {
1693 /*
1694 * In use, so try to throw everyone off, then wait
1695 * until finished.
1696 */
1697 zv->zv_flags |= ZVOL_REMOVING;
1698 mutex_exit(&zv->zv_state_lock);
1699 rw_exit(&zvol_state_lock);
1700 zvol_remove_minor_task(zv);
1701 return;
1702 }
1703
1704 zvol_remove(zv);
1705 zvol_os_clear_private(zv);
1706
1707 mutex_exit(&zv->zv_state_lock);
1708 rw_exit(&zvol_state_lock);
1709
1710 zvol_os_free(zv);
1711 }
1712
1713 /*
1714 * Rename minors for specified dataset including children and snapshots.
1715 */
1716 static void
zvol_rename_minors_impl(const char * oldname,const char * newname)1717 zvol_rename_minors_impl(const char *oldname, const char *newname)
1718 {
1719 zvol_state_t *zv, *zv_next;
1720 int oldnamelen;
1721
1722 if (zvol_inhibit_dev)
1723 return;
1724
1725 oldnamelen = strlen(oldname);
1726
1727 rw_enter(&zvol_state_lock, RW_READER);
1728
1729 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1730 zv_next = list_next(&zvol_state_list, zv);
1731
1732 mutex_enter(&zv->zv_state_lock);
1733
1734 if (strcmp(zv->zv_name, oldname) == 0) {
1735 zvol_os_rename_minor(zv, newname);
1736 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1737 (zv->zv_name[oldnamelen] == '/' ||
1738 zv->zv_name[oldnamelen] == '@')) {
1739 char *name = kmem_asprintf("%s%c%s", newname,
1740 zv->zv_name[oldnamelen],
1741 zv->zv_name + oldnamelen + 1);
1742 zvol_os_rename_minor(zv, name);
1743 kmem_strfree(name);
1744 }
1745
1746 mutex_exit(&zv->zv_state_lock);
1747 }
1748
1749 rw_exit(&zvol_state_lock);
1750 }
1751
1752 typedef struct zvol_snapdev_cb_arg {
1753 uint64_t snapdev;
1754 } zvol_snapdev_cb_arg_t;
1755
1756 static int
zvol_set_snapdev_cb(const char * dsname,void * param)1757 zvol_set_snapdev_cb(const char *dsname, void *param)
1758 {
1759 zvol_snapdev_cb_arg_t *arg = param;
1760
1761 if (strchr(dsname, '@') == NULL)
1762 return (0);
1763
1764 switch (arg->snapdev) {
1765 case ZFS_SNAPDEV_VISIBLE:
1766 (void) zvol_os_create_minor(dsname);
1767 break;
1768 case ZFS_SNAPDEV_HIDDEN:
1769 (void) zvol_remove_minor_impl(dsname);
1770 break;
1771 }
1772
1773 return (0);
1774 }
1775
1776 static void
zvol_set_snapdev_impl(char * name,uint64_t snapdev)1777 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1778 {
1779 zvol_snapdev_cb_arg_t arg = {snapdev};
1780 fstrans_cookie_t cookie = spl_fstrans_mark();
1781 /*
1782 * The zvol_set_snapdev_sync() sets snapdev appropriately
1783 * in the dataset hierarchy. Here, we only scan snapshots.
1784 */
1785 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1786 spl_fstrans_unmark(cookie);
1787 }
1788
1789 static void
zvol_set_volmode_impl(char * name,uint64_t volmode)1790 zvol_set_volmode_impl(char *name, uint64_t volmode)
1791 {
1792 fstrans_cookie_t cookie;
1793 uint64_t old_volmode;
1794 zvol_state_t *zv;
1795
1796 if (strchr(name, '@') != NULL)
1797 return;
1798
1799 /*
1800 * It's unfortunate we need to remove minors before we create new ones:
1801 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1802 * could be different when we set, for instance, volmode from "geom"
1803 * to "dev" (or vice versa).
1804 */
1805 zv = zvol_find_by_name(name, RW_NONE);
1806 if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1807 return;
1808 if (zv != NULL) {
1809 old_volmode = zv->zv_volmode;
1810 mutex_exit(&zv->zv_state_lock);
1811 if (old_volmode == volmode)
1812 return;
1813 zvol_wait_close(zv);
1814 }
1815 cookie = spl_fstrans_mark();
1816 switch (volmode) {
1817 case ZFS_VOLMODE_NONE:
1818 (void) zvol_remove_minor_impl(name);
1819 break;
1820 case ZFS_VOLMODE_GEOM:
1821 case ZFS_VOLMODE_DEV:
1822 (void) zvol_remove_minor_impl(name);
1823 (void) zvol_os_create_minor(name);
1824 break;
1825 case ZFS_VOLMODE_DEFAULT:
1826 (void) zvol_remove_minor_impl(name);
1827 if (zvol_volmode == ZFS_VOLMODE_NONE)
1828 break;
1829 else /* if zvol_volmode is invalid defaults to "geom" */
1830 (void) zvol_os_create_minor(name);
1831 break;
1832 }
1833 spl_fstrans_unmark(cookie);
1834 }
1835
1836 static zvol_task_t *
zvol_task_alloc(zvol_async_op_t op,const char * name1,const char * name2,uint64_t value)1837 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1838 uint64_t value)
1839 {
1840 zvol_task_t *task;
1841
1842 /* Never allow tasks on hidden names. */
1843 if (name1[0] == '$')
1844 return (NULL);
1845
1846 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1847 task->op = op;
1848 task->value = value;
1849
1850 strlcpy(task->name1, name1, sizeof (task->name1));
1851 if (name2 != NULL)
1852 strlcpy(task->name2, name2, sizeof (task->name2));
1853
1854 return (task);
1855 }
1856
1857 static void
zvol_task_free(zvol_task_t * task)1858 zvol_task_free(zvol_task_t *task)
1859 {
1860 kmem_free(task, sizeof (zvol_task_t));
1861 }
1862
1863 /*
1864 * The worker thread function performed asynchronously.
1865 */
1866 static void
zvol_task_cb(void * arg)1867 zvol_task_cb(void *arg)
1868 {
1869 zvol_task_t *task = arg;
1870
1871 switch (task->op) {
1872 case ZVOL_ASYNC_REMOVE_MINORS:
1873 zvol_remove_minors_impl(task->name1);
1874 break;
1875 case ZVOL_ASYNC_RENAME_MINORS:
1876 zvol_rename_minors_impl(task->name1, task->name2);
1877 break;
1878 case ZVOL_ASYNC_SET_SNAPDEV:
1879 zvol_set_snapdev_impl(task->name1, task->value);
1880 break;
1881 case ZVOL_ASYNC_SET_VOLMODE:
1882 zvol_set_volmode_impl(task->name1, task->value);
1883 break;
1884 default:
1885 VERIFY(0);
1886 break;
1887 }
1888
1889 zvol_task_free(task);
1890 }
1891
1892 typedef struct zvol_set_prop_int_arg {
1893 const char *zsda_name;
1894 uint64_t zsda_value;
1895 zprop_source_t zsda_source;
1896 zfs_prop_t zsda_prop;
1897 } zvol_set_prop_int_arg_t;
1898
1899 /*
1900 * Sanity check the dataset for safe use by the sync task. No additional
1901 * conditions are imposed.
1902 */
1903 static int
zvol_set_common_check(void * arg,dmu_tx_t * tx)1904 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1905 {
1906 zvol_set_prop_int_arg_t *zsda = arg;
1907 dsl_pool_t *dp = dmu_tx_pool(tx);
1908 dsl_dir_t *dd;
1909 int error;
1910
1911 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1912 if (error != 0)
1913 return (error);
1914
1915 dsl_dir_rele(dd, FTAG);
1916
1917 return (error);
1918 }
1919
1920 static int
zvol_set_common_sync_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1921 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1922 {
1923 zvol_set_prop_int_arg_t *zsda = arg;
1924 char dsname[ZFS_MAX_DATASET_NAME_LEN];
1925 zvol_task_t *task;
1926 uint64_t prop;
1927
1928 const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1929 dsl_dataset_name(ds, dsname);
1930
1931 if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1932 return (0);
1933
1934 switch (zsda->zsda_prop) {
1935 case ZFS_PROP_VOLMODE:
1936 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname,
1937 NULL, prop);
1938 break;
1939 case ZFS_PROP_SNAPDEV:
1940 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
1941 NULL, prop);
1942 break;
1943 default:
1944 task = NULL;
1945 break;
1946 }
1947
1948 if (task == NULL)
1949 return (0);
1950
1951 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1952 task, TQ_SLEEP);
1953 return (0);
1954 }
1955
1956 /*
1957 * Traverse all child datasets and apply the property appropriately.
1958 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1959 * dataset and read the effective "property" on every child in the callback
1960 * function: this is because the value is not guaranteed to be the same in the
1961 * whole dataset hierarchy.
1962 */
1963 static void
zvol_set_common_sync(void * arg,dmu_tx_t * tx)1964 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
1965 {
1966 zvol_set_prop_int_arg_t *zsda = arg;
1967 dsl_pool_t *dp = dmu_tx_pool(tx);
1968 dsl_dir_t *dd;
1969 dsl_dataset_t *ds;
1970 int error;
1971
1972 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1973
1974 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1975 if (error == 0) {
1976 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
1977 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1978 &zsda->zsda_value, tx);
1979 dsl_dataset_rele(ds, FTAG);
1980 }
1981
1982 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
1983 zsda, DS_FIND_CHILDREN);
1984
1985 dsl_dir_rele(dd, FTAG);
1986 }
1987
1988 int
zvol_set_common(const char * ddname,zfs_prop_t prop,zprop_source_t source,uint64_t val)1989 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
1990 uint64_t val)
1991 {
1992 zvol_set_prop_int_arg_t zsda;
1993
1994 zsda.zsda_name = ddname;
1995 zsda.zsda_source = source;
1996 zsda.zsda_value = val;
1997 zsda.zsda_prop = prop;
1998
1999 return (dsl_sync_task(ddname, zvol_set_common_check,
2000 zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2001 }
2002
2003 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)2004 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
2005 {
2006 zvol_task_t *task;
2007 taskqid_t id;
2008
2009 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
2010 if (task == NULL)
2011 return;
2012
2013 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2014 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2015 taskq_wait_id(spa->spa_zvol_taskq, id);
2016 }
2017
2018 void
zvol_rename_minors(spa_t * spa,const char * name1,const char * name2,boolean_t async)2019 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
2020 boolean_t async)
2021 {
2022 zvol_task_t *task;
2023 taskqid_t id;
2024
2025 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
2026 if (task == NULL)
2027 return;
2028
2029 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2030 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2031 taskq_wait_id(spa->spa_zvol_taskq, id);
2032 }
2033
2034 boolean_t
zvol_is_zvol(const char * name)2035 zvol_is_zvol(const char *name)
2036 {
2037
2038 return (zvol_os_is_zvol(name));
2039 }
2040
2041 int
zvol_init_impl(void)2042 zvol_init_impl(void)
2043 {
2044 int i;
2045
2046 /*
2047 * zvol_threads is the module param the user passes in.
2048 *
2049 * zvol_actual_threads is what we use internally, since the user can
2050 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
2051 */
2052 static unsigned int zvol_actual_threads;
2053
2054 if (zvol_threads == 0) {
2055 /*
2056 * See dde9380a1 for why 32 was chosen here. This should
2057 * probably be refined to be some multiple of the number
2058 * of CPUs.
2059 */
2060 zvol_actual_threads = MAX(max_ncpus, 32);
2061 } else {
2062 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
2063 }
2064
2065 /*
2066 * Use at least 32 zvol_threads but for many core system,
2067 * prefer 6 threads per taskq, but no more taskqs
2068 * than threads in them on large systems.
2069 *
2070 * taskq total
2071 * cpus taskqs threads threads
2072 * ------- ------- ------- -------
2073 * 1 1 32 32
2074 * 2 1 32 32
2075 * 4 1 32 32
2076 * 8 2 16 32
2077 * 16 3 11 33
2078 * 32 5 7 35
2079 * 64 8 8 64
2080 * 128 11 12 132
2081 * 256 16 16 256
2082 */
2083 zv_taskq_t *ztqs = &zvol_taskqs;
2084 int num_tqs = MIN(max_ncpus, zvol_num_taskqs);
2085 if (num_tqs == 0) {
2086 num_tqs = 1 + max_ncpus / 6;
2087 while (num_tqs * num_tqs > zvol_actual_threads)
2088 num_tqs--;
2089 }
2090
2091 int per_tq_thread = zvol_actual_threads / num_tqs;
2092 if (per_tq_thread * num_tqs < zvol_actual_threads)
2093 per_tq_thread++;
2094
2095 ztqs->tqs_cnt = num_tqs;
2096 ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
2097
2098 for (uint_t i = 0; i < num_tqs; i++) {
2099 char name[32];
2100 (void) snprintf(name, sizeof (name), "%s_tq-%u",
2101 ZVOL_DRIVER, i);
2102 ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
2103 maxclsyspri, per_tq_thread, INT_MAX,
2104 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
2105 if (ztqs->tqs_taskq[i] == NULL) {
2106 for (int j = i - 1; j >= 0; j--)
2107 taskq_destroy(ztqs->tqs_taskq[j]);
2108 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
2109 sizeof (taskq_t *));
2110 ztqs->tqs_taskq = NULL;
2111 return (SET_ERROR(ENOMEM));
2112 }
2113 }
2114
2115 list_create(&zvol_state_list, sizeof (zvol_state_t),
2116 offsetof(zvol_state_t, zv_next));
2117 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2118
2119 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2120 KM_SLEEP);
2121 for (i = 0; i < ZVOL_HT_SIZE; i++)
2122 INIT_HLIST_HEAD(&zvol_htable[i]);
2123
2124 return (0);
2125 }
2126
2127 void
zvol_fini_impl(void)2128 zvol_fini_impl(void)
2129 {
2130 zv_taskq_t *ztqs = &zvol_taskqs;
2131
2132 zvol_remove_minors_impl(NULL);
2133
2134 /*
2135 * The call to "zvol_remove_minors_impl" may dispatch entries to
2136 * the system_taskq, but it doesn't wait for those entries to
2137 * complete before it returns. Thus, we must wait for all of the
2138 * removals to finish, before we can continue.
2139 */
2140 taskq_wait_outstanding(system_taskq, 0);
2141
2142 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2143 list_destroy(&zvol_state_list);
2144 rw_destroy(&zvol_state_lock);
2145
2146 if (ztqs->tqs_taskq == NULL) {
2147 ASSERT3U(ztqs->tqs_cnt, ==, 0);
2148 } else {
2149 for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
2150 ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
2151 taskq_destroy(ztqs->tqs_taskq[i]);
2152 }
2153 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
2154 sizeof (taskq_t *));
2155 ztqs->tqs_taskq = NULL;
2156 }
2157 }
2158
2159 ZFS_MODULE_PARAM(zfs_vol, zvol_, inhibit_dev, UINT, ZMOD_RW,
2160 "Do not create zvol device nodes");
2161 ZFS_MODULE_PARAM(zfs_vol, zvol_, prefetch_bytes, UINT, ZMOD_RW,
2162 "Prefetch N bytes at zvol start+end");
2163 ZFS_MODULE_PARAM(zfs_vol, zvol_vol, mode, UINT, ZMOD_RW,
2164 "Default volmode property value");
2165 ZFS_MODULE_PARAM(zfs_vol, zvol_, threads, UINT, ZMOD_RW,
2166 "Number of threads for I/O requests. Set to 0 to use all active CPUs");
2167 ZFS_MODULE_PARAM(zfs_vol, zvol_, num_taskqs, UINT, ZMOD_RW,
2168 "Number of zvol taskqs");
2169 ZFS_MODULE_PARAM(zfs_vol, zvol_, request_sync, UINT, ZMOD_RW,
2170 "Synchronously handle bio requests");
2171