1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 * Copyright 2015 RackTop Systems.
27 */
28
29 /*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 * pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
60
61 #include <sys/vdev_impl.h>
62
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
65
66 /*
67 * Intermediate structures used to gather configuration information.
68 */
69 typedef struct config_entry {
70 uint64_t ce_txg;
71 nvlist_t *ce_config;
72 struct config_entry *ce_next;
73 } config_entry_t;
74
75 typedef struct vdev_entry {
76 uint64_t ve_guid;
77 config_entry_t *ve_configs;
78 struct vdev_entry *ve_next;
79 } vdev_entry_t;
80
81 typedef struct pool_entry {
82 uint64_t pe_guid;
83 vdev_entry_t *pe_vdevs;
84 struct pool_entry *pe_next;
85 } pool_entry_t;
86
87 typedef struct name_entry {
88 char *ne_name;
89 uint64_t ne_guid;
90 struct name_entry *ne_next;
91 } name_entry_t;
92
93 typedef struct pool_list {
94 pool_entry_t *pools;
95 name_entry_t *names;
96 } pool_list_t;
97
98 static char *
get_devid(const char * path)99 get_devid(const char *path)
100 {
101 int fd;
102 ddi_devid_t devid;
103 char *minor, *ret;
104
105 if ((fd = open(path, O_RDONLY)) < 0)
106 return (NULL);
107
108 minor = NULL;
109 ret = NULL;
110 if (devid_get(fd, &devid) == 0) {
111 if (devid_get_minor_name(fd, &minor) == 0)
112 ret = devid_str_encode(devid, minor);
113 if (minor != NULL)
114 devid_str_free(minor);
115 devid_free(devid);
116 }
117 (void) close(fd);
118
119 return (ret);
120 }
121
122
123 /*
124 * Go through and fix up any path and/or devid information for the given vdev
125 * configuration.
126 */
127 static int
fix_paths(nvlist_t * nv,name_entry_t * names)128 fix_paths(nvlist_t *nv, name_entry_t *names)
129 {
130 nvlist_t **child;
131 uint_t c, children;
132 uint64_t guid;
133 name_entry_t *ne, *best;
134 char *path, *devid;
135 int matched;
136
137 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
138 &child, &children) == 0) {
139 for (c = 0; c < children; c++)
140 if (fix_paths(child[c], names) != 0)
141 return (-1);
142 return (0);
143 }
144
145 /*
146 * This is a leaf (file or disk) vdev. In either case, go through
147 * the name list and see if we find a matching guid. If so, replace
148 * the path and see if we can calculate a new devid.
149 *
150 * There may be multiple names associated with a particular guid, in
151 * which case we have overlapping slices or multiple paths to the same
152 * disk. If this is the case, then we want to pick the path that is
153 * the most similar to the original, where "most similar" is the number
154 * of matching characters starting from the end of the path. This will
155 * preserve slice numbers even if the disks have been reorganized, and
156 * will also catch preferred disk names if multiple paths exist.
157 */
158 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
159 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
160 path = NULL;
161
162 matched = 0;
163 best = NULL;
164 for (ne = names; ne != NULL; ne = ne->ne_next) {
165 if (ne->ne_guid == guid) {
166 const char *src, *dst;
167 int count;
168
169 if (path == NULL) {
170 best = ne;
171 break;
172 }
173
174 src = ne->ne_name + strlen(ne->ne_name) - 1;
175 dst = path + strlen(path) - 1;
176 for (count = 0; src >= ne->ne_name && dst >= path;
177 src--, dst--, count++)
178 if (*src != *dst)
179 break;
180
181 /*
182 * At this point, 'count' is the number of characters
183 * matched from the end.
184 */
185 if (count > matched || best == NULL) {
186 best = ne;
187 matched = count;
188 }
189 }
190 }
191
192 if (best == NULL)
193 return (0);
194
195 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
196 return (-1);
197
198 if ((devid = get_devid(best->ne_name)) == NULL) {
199 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
200 } else {
201 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
202 devid_str_free(devid);
203 return (-1);
204 }
205 devid_str_free(devid);
206 }
207
208 return (0);
209 }
210
211 /*
212 * Add the given configuration to the list of known devices.
213 */
214 static int
add_config(libzfs_handle_t * hdl,pool_list_t * pl,const char * path,nvlist_t * config)215 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
216 nvlist_t *config)
217 {
218 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
219 pool_entry_t *pe;
220 vdev_entry_t *ve;
221 config_entry_t *ce;
222 name_entry_t *ne;
223
224 /*
225 * If this is a hot spare not currently in use or level 2 cache
226 * device, add it to the list of names to translate, but don't do
227 * anything else.
228 */
229 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
230 &state) == 0 &&
231 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
232 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
233 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
234 return (-1);
235
236 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
237 free(ne);
238 return (-1);
239 }
240 ne->ne_guid = vdev_guid;
241 ne->ne_next = pl->names;
242 pl->names = ne;
243 return (0);
244 }
245
246 /*
247 * If we have a valid config but cannot read any of these fields, then
248 * it means we have a half-initialized label. In vdev_label_init()
249 * we write a label with txg == 0 so that we can identify the device
250 * in case the user refers to the same disk later on. If we fail to
251 * create the pool, we'll be left with a label in this state
252 * which should not be considered part of a valid pool.
253 */
254 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
255 &pool_guid) != 0 ||
256 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
257 &vdev_guid) != 0 ||
258 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
259 &top_guid) != 0 ||
260 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
261 &txg) != 0 || txg == 0) {
262 nvlist_free(config);
263 return (0);
264 }
265
266 /*
267 * First, see if we know about this pool. If not, then add it to the
268 * list of known pools.
269 */
270 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
271 if (pe->pe_guid == pool_guid)
272 break;
273 }
274
275 if (pe == NULL) {
276 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
277 nvlist_free(config);
278 return (-1);
279 }
280 pe->pe_guid = pool_guid;
281 pe->pe_next = pl->pools;
282 pl->pools = pe;
283 }
284
285 /*
286 * Second, see if we know about this toplevel vdev. Add it if its
287 * missing.
288 */
289 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
290 if (ve->ve_guid == top_guid)
291 break;
292 }
293
294 if (ve == NULL) {
295 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
296 nvlist_free(config);
297 return (-1);
298 }
299 ve->ve_guid = top_guid;
300 ve->ve_next = pe->pe_vdevs;
301 pe->pe_vdevs = ve;
302 }
303
304 /*
305 * Third, see if we have a config with a matching transaction group. If
306 * so, then we do nothing. Otherwise, add it to the list of known
307 * configs.
308 */
309 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
310 if (ce->ce_txg == txg)
311 break;
312 }
313
314 if (ce == NULL) {
315 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
316 nvlist_free(config);
317 return (-1);
318 }
319 ce->ce_txg = txg;
320 ce->ce_config = config;
321 ce->ce_next = ve->ve_configs;
322 ve->ve_configs = ce;
323 } else {
324 nvlist_free(config);
325 }
326
327 /*
328 * At this point we've successfully added our config to the list of
329 * known configs. The last thing to do is add the vdev guid -> path
330 * mappings so that we can fix up the configuration as necessary before
331 * doing the import.
332 */
333 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
334 return (-1);
335
336 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
337 free(ne);
338 return (-1);
339 }
340
341 ne->ne_guid = vdev_guid;
342 ne->ne_next = pl->names;
343 pl->names = ne;
344
345 return (0);
346 }
347
348 /*
349 * Returns true if the named pool matches the given GUID.
350 */
351 static int
pool_active(libzfs_handle_t * hdl,const char * name,uint64_t guid,boolean_t * isactive)352 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
353 boolean_t *isactive)
354 {
355 zpool_handle_t *zhp;
356 uint64_t theguid;
357
358 if (zpool_open_silent(hdl, name, &zhp) != 0)
359 return (-1);
360
361 if (zhp == NULL) {
362 *isactive = B_FALSE;
363 return (0);
364 }
365
366 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
367 &theguid) == 0);
368
369 zpool_close(zhp);
370
371 *isactive = (theguid == guid);
372 return (0);
373 }
374
375 static nvlist_t *
refresh_config(libzfs_handle_t * hdl,nvlist_t * config)376 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
377 {
378 nvlist_t *nvl;
379 zfs_cmd_t zc = { 0 };
380 int err;
381
382 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
383 return (NULL);
384
385 if (zcmd_alloc_dst_nvlist(hdl, &zc,
386 zc.zc_nvlist_conf_size * 2) != 0) {
387 zcmd_free_nvlists(&zc);
388 return (NULL);
389 }
390
391 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
392 &zc)) != 0 && errno == ENOMEM) {
393 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
394 zcmd_free_nvlists(&zc);
395 return (NULL);
396 }
397 }
398
399 if (err) {
400 zcmd_free_nvlists(&zc);
401 return (NULL);
402 }
403
404 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
405 zcmd_free_nvlists(&zc);
406 return (NULL);
407 }
408
409 zcmd_free_nvlists(&zc);
410 return (nvl);
411 }
412
413 /*
414 * Determine if the vdev id is a hole in the namespace.
415 */
416 boolean_t
vdev_is_hole(uint64_t * hole_array,uint_t holes,uint_t id)417 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
418 {
419 for (int c = 0; c < holes; c++) {
420
421 /* Top-level is a hole */
422 if (hole_array[c] == id)
423 return (B_TRUE);
424 }
425 return (B_FALSE);
426 }
427
428 /*
429 * Convert our list of pools into the definitive set of configurations. We
430 * start by picking the best config for each toplevel vdev. Once that's done,
431 * we assemble the toplevel vdevs into a full config for the pool. We make a
432 * pass to fix up any incorrect paths, and then add it to the main list to
433 * return to the user.
434 */
435 static nvlist_t *
get_configs(libzfs_handle_t * hdl,pool_list_t * pl,boolean_t active_ok)436 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
437 {
438 pool_entry_t *pe;
439 vdev_entry_t *ve;
440 config_entry_t *ce;
441 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
442 nvlist_t **spares, **l2cache;
443 uint_t i, nspares, nl2cache;
444 boolean_t config_seen;
445 uint64_t best_txg;
446 char *name, *hostname;
447 uint64_t guid;
448 uint_t children = 0;
449 nvlist_t **child = NULL;
450 uint_t holes;
451 uint64_t *hole_array, max_id;
452 uint_t c;
453 boolean_t isactive;
454 uint64_t hostid;
455 nvlist_t *nvl;
456 boolean_t found_one = B_FALSE;
457 boolean_t valid_top_config = B_FALSE;
458
459 if (nvlist_alloc(&ret, 0, 0) != 0)
460 goto nomem;
461
462 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
463 uint64_t id, max_txg = 0;
464
465 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
466 goto nomem;
467 config_seen = B_FALSE;
468
469 /*
470 * Iterate over all toplevel vdevs. Grab the pool configuration
471 * from the first one we find, and then go through the rest and
472 * add them as necessary to the 'vdevs' member of the config.
473 */
474 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
475
476 /*
477 * Determine the best configuration for this vdev by
478 * selecting the config with the latest transaction
479 * group.
480 */
481 best_txg = 0;
482 for (ce = ve->ve_configs; ce != NULL;
483 ce = ce->ce_next) {
484
485 if (ce->ce_txg > best_txg) {
486 tmp = ce->ce_config;
487 best_txg = ce->ce_txg;
488 }
489 }
490
491 /*
492 * We rely on the fact that the max txg for the
493 * pool will contain the most up-to-date information
494 * about the valid top-levels in the vdev namespace.
495 */
496 if (best_txg > max_txg) {
497 (void) nvlist_remove(config,
498 ZPOOL_CONFIG_VDEV_CHILDREN,
499 DATA_TYPE_UINT64);
500 (void) nvlist_remove(config,
501 ZPOOL_CONFIG_HOLE_ARRAY,
502 DATA_TYPE_UINT64_ARRAY);
503
504 max_txg = best_txg;
505 hole_array = NULL;
506 holes = 0;
507 max_id = 0;
508 valid_top_config = B_FALSE;
509
510 if (nvlist_lookup_uint64(tmp,
511 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
512 verify(nvlist_add_uint64(config,
513 ZPOOL_CONFIG_VDEV_CHILDREN,
514 max_id) == 0);
515 valid_top_config = B_TRUE;
516 }
517
518 if (nvlist_lookup_uint64_array(tmp,
519 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
520 &holes) == 0) {
521 verify(nvlist_add_uint64_array(config,
522 ZPOOL_CONFIG_HOLE_ARRAY,
523 hole_array, holes) == 0);
524 }
525 }
526
527 if (!config_seen) {
528 /*
529 * Copy the relevant pieces of data to the pool
530 * configuration:
531 *
532 * version
533 * pool guid
534 * name
535 * comment (if available)
536 * pool state
537 * hostid (if available)
538 * hostname (if available)
539 */
540 uint64_t state, version;
541 char *comment = NULL;
542
543 version = fnvlist_lookup_uint64(tmp,
544 ZPOOL_CONFIG_VERSION);
545 fnvlist_add_uint64(config,
546 ZPOOL_CONFIG_VERSION, version);
547 guid = fnvlist_lookup_uint64(tmp,
548 ZPOOL_CONFIG_POOL_GUID);
549 fnvlist_add_uint64(config,
550 ZPOOL_CONFIG_POOL_GUID, guid);
551 name = fnvlist_lookup_string(tmp,
552 ZPOOL_CONFIG_POOL_NAME);
553 fnvlist_add_string(config,
554 ZPOOL_CONFIG_POOL_NAME, name);
555
556 if (nvlist_lookup_string(tmp,
557 ZPOOL_CONFIG_COMMENT, &comment) == 0)
558 fnvlist_add_string(config,
559 ZPOOL_CONFIG_COMMENT, comment);
560
561 state = fnvlist_lookup_uint64(tmp,
562 ZPOOL_CONFIG_POOL_STATE);
563 fnvlist_add_uint64(config,
564 ZPOOL_CONFIG_POOL_STATE, state);
565
566 hostid = 0;
567 if (nvlist_lookup_uint64(tmp,
568 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
569 fnvlist_add_uint64(config,
570 ZPOOL_CONFIG_HOSTID, hostid);
571 hostname = fnvlist_lookup_string(tmp,
572 ZPOOL_CONFIG_HOSTNAME);
573 fnvlist_add_string(config,
574 ZPOOL_CONFIG_HOSTNAME, hostname);
575 }
576
577 config_seen = B_TRUE;
578 }
579
580 /*
581 * Add this top-level vdev to the child array.
582 */
583 verify(nvlist_lookup_nvlist(tmp,
584 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
585 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
586 &id) == 0);
587
588 if (id >= children) {
589 nvlist_t **newchild;
590
591 newchild = zfs_alloc(hdl, (id + 1) *
592 sizeof (nvlist_t *));
593 if (newchild == NULL)
594 goto nomem;
595
596 for (c = 0; c < children; c++)
597 newchild[c] = child[c];
598
599 free(child);
600 child = newchild;
601 children = id + 1;
602 }
603 if (nvlist_dup(nvtop, &child[id], 0) != 0)
604 goto nomem;
605
606 }
607
608 /*
609 * If we have information about all the top-levels then
610 * clean up the nvlist which we've constructed. This
611 * means removing any extraneous devices that are
612 * beyond the valid range or adding devices to the end
613 * of our array which appear to be missing.
614 */
615 if (valid_top_config) {
616 if (max_id < children) {
617 for (c = max_id; c < children; c++)
618 nvlist_free(child[c]);
619 children = max_id;
620 } else if (max_id > children) {
621 nvlist_t **newchild;
622
623 newchild = zfs_alloc(hdl, (max_id) *
624 sizeof (nvlist_t *));
625 if (newchild == NULL)
626 goto nomem;
627
628 for (c = 0; c < children; c++)
629 newchild[c] = child[c];
630
631 free(child);
632 child = newchild;
633 children = max_id;
634 }
635 }
636
637 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
638 &guid) == 0);
639
640 /*
641 * The vdev namespace may contain holes as a result of
642 * device removal. We must add them back into the vdev
643 * tree before we process any missing devices.
644 */
645 if (holes > 0) {
646 ASSERT(valid_top_config);
647
648 for (c = 0; c < children; c++) {
649 nvlist_t *holey;
650
651 if (child[c] != NULL ||
652 !vdev_is_hole(hole_array, holes, c))
653 continue;
654
655 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
656 0) != 0)
657 goto nomem;
658
659 /*
660 * Holes in the namespace are treated as
661 * "hole" top-level vdevs and have a
662 * special flag set on them.
663 */
664 if (nvlist_add_string(holey,
665 ZPOOL_CONFIG_TYPE,
666 VDEV_TYPE_HOLE) != 0 ||
667 nvlist_add_uint64(holey,
668 ZPOOL_CONFIG_ID, c) != 0 ||
669 nvlist_add_uint64(holey,
670 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
671 nvlist_free(holey);
672 goto nomem;
673 }
674 child[c] = holey;
675 }
676 }
677
678 /*
679 * Look for any missing top-level vdevs. If this is the case,
680 * create a faked up 'missing' vdev as a placeholder. We cannot
681 * simply compress the child array, because the kernel performs
682 * certain checks to make sure the vdev IDs match their location
683 * in the configuration.
684 */
685 for (c = 0; c < children; c++) {
686 if (child[c] == NULL) {
687 nvlist_t *missing;
688 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
689 0) != 0)
690 goto nomem;
691 if (nvlist_add_string(missing,
692 ZPOOL_CONFIG_TYPE,
693 VDEV_TYPE_MISSING) != 0 ||
694 nvlist_add_uint64(missing,
695 ZPOOL_CONFIG_ID, c) != 0 ||
696 nvlist_add_uint64(missing,
697 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
698 nvlist_free(missing);
699 goto nomem;
700 }
701 child[c] = missing;
702 }
703 }
704
705 /*
706 * Put all of this pool's top-level vdevs into a root vdev.
707 */
708 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
709 goto nomem;
710 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
711 VDEV_TYPE_ROOT) != 0 ||
712 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
713 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
714 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
715 child, children) != 0) {
716 nvlist_free(nvroot);
717 goto nomem;
718 }
719
720 for (c = 0; c < children; c++)
721 nvlist_free(child[c]);
722 free(child);
723 children = 0;
724 child = NULL;
725
726 /*
727 * Go through and fix up any paths and/or devids based on our
728 * known list of vdev GUID -> path mappings.
729 */
730 if (fix_paths(nvroot, pl->names) != 0) {
731 nvlist_free(nvroot);
732 goto nomem;
733 }
734
735 /*
736 * Add the root vdev to this pool's configuration.
737 */
738 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
739 nvroot) != 0) {
740 nvlist_free(nvroot);
741 goto nomem;
742 }
743 nvlist_free(nvroot);
744
745 /*
746 * zdb uses this path to report on active pools that were
747 * imported or created using -R.
748 */
749 if (active_ok)
750 goto add_pool;
751
752 /*
753 * Determine if this pool is currently active, in which case we
754 * can't actually import it.
755 */
756 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
757 &name) == 0);
758 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
759 &guid) == 0);
760
761 if (pool_active(hdl, name, guid, &isactive) != 0)
762 goto error;
763
764 if (isactive) {
765 nvlist_free(config);
766 config = NULL;
767 continue;
768 }
769
770 if ((nvl = refresh_config(hdl, config)) == NULL) {
771 nvlist_free(config);
772 config = NULL;
773 continue;
774 }
775
776 nvlist_free(config);
777 config = nvl;
778
779 /*
780 * Go through and update the paths for spares, now that we have
781 * them.
782 */
783 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
784 &nvroot) == 0);
785 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
786 &spares, &nspares) == 0) {
787 for (i = 0; i < nspares; i++) {
788 if (fix_paths(spares[i], pl->names) != 0)
789 goto nomem;
790 }
791 }
792
793 /*
794 * Update the paths for l2cache devices.
795 */
796 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
797 &l2cache, &nl2cache) == 0) {
798 for (i = 0; i < nl2cache; i++) {
799 if (fix_paths(l2cache[i], pl->names) != 0)
800 goto nomem;
801 }
802 }
803
804 /*
805 * Restore the original information read from the actual label.
806 */
807 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
808 DATA_TYPE_UINT64);
809 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
810 DATA_TYPE_STRING);
811 if (hostid != 0) {
812 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
813 hostid) == 0);
814 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
815 hostname) == 0);
816 }
817
818 add_pool:
819 /*
820 * Add this pool to the list of configs.
821 */
822 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
823 &name) == 0);
824 if (nvlist_add_nvlist(ret, name, config) != 0)
825 goto nomem;
826
827 found_one = B_TRUE;
828 nvlist_free(config);
829 config = NULL;
830 }
831
832 if (!found_one) {
833 nvlist_free(ret);
834 ret = NULL;
835 }
836
837 return (ret);
838
839 nomem:
840 (void) no_memory(hdl);
841 error:
842 nvlist_free(config);
843 nvlist_free(ret);
844 for (c = 0; c < children; c++)
845 nvlist_free(child[c]);
846 free(child);
847
848 return (NULL);
849 }
850
851 /*
852 * Return the offset of the given label.
853 */
854 static uint64_t
label_offset(uint64_t size,int l)855 label_offset(uint64_t size, int l)
856 {
857 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
858 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
859 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
860 }
861
862 /*
863 * Given a file descriptor, read the label information and return an nvlist
864 * describing the configuration, if there is one.
865 */
866 int
zpool_read_label(int fd,nvlist_t ** config)867 zpool_read_label(int fd, nvlist_t **config)
868 {
869 struct stat64 statbuf;
870 int l;
871 vdev_label_t *label;
872 uint64_t state, txg, size;
873
874 *config = NULL;
875
876 if (fstat64(fd, &statbuf) == -1)
877 return (0);
878 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
879
880 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
881 return (-1);
882
883 for (l = 0; l < VDEV_LABELS; l++) {
884 if (pread64(fd, label, sizeof (vdev_label_t),
885 label_offset(size, l)) != sizeof (vdev_label_t))
886 continue;
887
888 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
889 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
890 continue;
891
892 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
893 &state) != 0 || state > POOL_STATE_L2CACHE) {
894 nvlist_free(*config);
895 continue;
896 }
897
898 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
899 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
900 &txg) != 0 || txg == 0)) {
901 nvlist_free(*config);
902 continue;
903 }
904
905 free(label);
906 return (0);
907 }
908
909 free(label);
910 *config = NULL;
911 return (0);
912 }
913
914 typedef struct rdsk_node {
915 char *rn_name;
916 int rn_dfd;
917 libzfs_handle_t *rn_hdl;
918 nvlist_t *rn_config;
919 avl_tree_t *rn_avl;
920 avl_node_t rn_node;
921 boolean_t rn_nozpool;
922 } rdsk_node_t;
923
924 static int
slice_cache_compare(const void * arg1,const void * arg2)925 slice_cache_compare(const void *arg1, const void *arg2)
926 {
927 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
928 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
929 char *nm1slice, *nm2slice;
930 int rv;
931
932 /*
933 * slices zero and two are the most likely to provide results,
934 * so put those first
935 */
936 nm1slice = strstr(nm1, "s0");
937 nm2slice = strstr(nm2, "s0");
938 if (nm1slice && !nm2slice) {
939 return (-1);
940 }
941 if (!nm1slice && nm2slice) {
942 return (1);
943 }
944 nm1slice = strstr(nm1, "s2");
945 nm2slice = strstr(nm2, "s2");
946 if (nm1slice && !nm2slice) {
947 return (-1);
948 }
949 if (!nm1slice && nm2slice) {
950 return (1);
951 }
952
953 rv = strcmp(nm1, nm2);
954 if (rv == 0)
955 return (0);
956 return (rv > 0 ? 1 : -1);
957 }
958
959 static void
check_one_slice(avl_tree_t * r,char * diskname,uint_t partno,diskaddr_t size,uint_t blksz)960 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
961 diskaddr_t size, uint_t blksz)
962 {
963 rdsk_node_t tmpnode;
964 rdsk_node_t *node;
965 char sname[MAXNAMELEN];
966
967 tmpnode.rn_name = &sname[0];
968 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
969 diskname, partno);
970 /*
971 * protect against division by zero for disk labels that
972 * contain a bogus sector size
973 */
974 if (blksz == 0)
975 blksz = DEV_BSIZE;
976 /* too small to contain a zpool? */
977 if ((size < (SPA_MINDEVSIZE / blksz)) &&
978 (node = avl_find(r, &tmpnode, NULL)))
979 node->rn_nozpool = B_TRUE;
980 }
981
982 static void
nozpool_all_slices(avl_tree_t * r,const char * sname)983 nozpool_all_slices(avl_tree_t *r, const char *sname)
984 {
985 char diskname[MAXNAMELEN];
986 char *ptr;
987 int i;
988
989 (void) strncpy(diskname, sname, MAXNAMELEN);
990 if (((ptr = strrchr(diskname, 's')) == NULL) &&
991 ((ptr = strrchr(diskname, 'p')) == NULL))
992 return;
993 ptr[0] = 's';
994 ptr[1] = '\0';
995 for (i = 0; i < NDKMAP; i++)
996 check_one_slice(r, diskname, i, 0, 1);
997 ptr[0] = 'p';
998 for (i = 0; i <= FD_NUMPART; i++)
999 check_one_slice(r, diskname, i, 0, 1);
1000 }
1001
1002 static void
check_slices(avl_tree_t * r,int fd,const char * sname)1003 check_slices(avl_tree_t *r, int fd, const char *sname)
1004 {
1005 struct extvtoc vtoc;
1006 struct dk_gpt *gpt;
1007 char diskname[MAXNAMELEN];
1008 char *ptr;
1009 int i;
1010
1011 (void) strncpy(diskname, sname, MAXNAMELEN);
1012 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1013 return;
1014 ptr[1] = '\0';
1015
1016 if (read_extvtoc(fd, &vtoc) >= 0) {
1017 for (i = 0; i < NDKMAP; i++)
1018 check_one_slice(r, diskname, i,
1019 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1020 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1021 /*
1022 * on x86 we'll still have leftover links that point
1023 * to slices s[9-15], so use NDKMAP instead
1024 */
1025 for (i = 0; i < NDKMAP; i++)
1026 check_one_slice(r, diskname, i,
1027 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1028 /* nodes p[1-4] are never used with EFI labels */
1029 ptr[0] = 'p';
1030 for (i = 1; i <= FD_NUMPART; i++)
1031 check_one_slice(r, diskname, i, 0, 1);
1032 efi_free(gpt);
1033 }
1034 }
1035
1036 static void
zpool_open_func(void * arg)1037 zpool_open_func(void *arg)
1038 {
1039 rdsk_node_t *rn = arg;
1040 struct stat64 statbuf;
1041 nvlist_t *config;
1042 int fd;
1043
1044 if (rn->rn_nozpool)
1045 return;
1046 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1047 /* symlink to a device that's no longer there */
1048 if (errno == ENOENT)
1049 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1050 return;
1051 }
1052 /*
1053 * Ignore failed stats. We only want regular
1054 * files, character devs and block devs.
1055 */
1056 if (fstat64(fd, &statbuf) != 0 ||
1057 (!S_ISREG(statbuf.st_mode) &&
1058 !S_ISCHR(statbuf.st_mode) &&
1059 !S_ISBLK(statbuf.st_mode))) {
1060 (void) close(fd);
1061 return;
1062 }
1063 /* this file is too small to hold a zpool */
1064 if (S_ISREG(statbuf.st_mode) &&
1065 statbuf.st_size < SPA_MINDEVSIZE) {
1066 (void) close(fd);
1067 return;
1068 } else if (!S_ISREG(statbuf.st_mode)) {
1069 /*
1070 * Try to read the disk label first so we don't have to
1071 * open a bunch of minor nodes that can't have a zpool.
1072 */
1073 check_slices(rn->rn_avl, fd, rn->rn_name);
1074 }
1075
1076 if ((zpool_read_label(fd, &config)) != 0) {
1077 (void) close(fd);
1078 (void) no_memory(rn->rn_hdl);
1079 return;
1080 }
1081 (void) close(fd);
1082
1083 rn->rn_config = config;
1084 }
1085
1086 /*
1087 * Given a file descriptor, clear (zero) the label information. This function
1088 * is currently only used in the appliance stack as part of the ZFS sysevent
1089 * module.
1090 */
1091 int
zpool_clear_label(int fd)1092 zpool_clear_label(int fd)
1093 {
1094 struct stat64 statbuf;
1095 int l;
1096 vdev_label_t *label;
1097 uint64_t size;
1098
1099 if (fstat64(fd, &statbuf) == -1)
1100 return (0);
1101 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1102
1103 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1104 return (-1);
1105
1106 for (l = 0; l < VDEV_LABELS; l++) {
1107 if (pwrite64(fd, label, sizeof (vdev_label_t),
1108 label_offset(size, l)) != sizeof (vdev_label_t)) {
1109 free(label);
1110 return (-1);
1111 }
1112 }
1113
1114 free(label);
1115 return (0);
1116 }
1117
1118 /*
1119 * Given a list of directories to search, find all pools stored on disk. This
1120 * includes partial pools which are not available to import. If no args are
1121 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1122 * poolname or guid (but not both) are provided by the caller when trying
1123 * to import a specific pool.
1124 */
1125 static nvlist_t *
zpool_find_import_impl(libzfs_handle_t * hdl,importargs_t * iarg)1126 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1127 {
1128 int i, dirs = iarg->paths;
1129 struct dirent64 *dp;
1130 char path[MAXPATHLEN];
1131 char *end, **dir = iarg->path;
1132 size_t pathleft;
1133 nvlist_t *ret = NULL;
1134 static char *default_dir = "/dev/dsk";
1135 pool_list_t pools = { 0 };
1136 pool_entry_t *pe, *penext;
1137 vdev_entry_t *ve, *venext;
1138 config_entry_t *ce, *cenext;
1139 name_entry_t *ne, *nenext;
1140 avl_tree_t slice_cache;
1141 rdsk_node_t *slice;
1142 void *cookie;
1143
1144 if (dirs == 0) {
1145 dirs = 1;
1146 dir = &default_dir;
1147 }
1148
1149 /*
1150 * Go through and read the label configuration information from every
1151 * possible device, organizing the information according to pool GUID
1152 * and toplevel GUID.
1153 */
1154 for (i = 0; i < dirs; i++) {
1155 tpool_t *t;
1156 char *rdsk;
1157 int dfd;
1158 boolean_t config_failed = B_FALSE;
1159 DIR *dirp;
1160
1161 /* use realpath to normalize the path */
1162 if (realpath(dir[i], path) == 0) {
1163 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1164 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1165 goto error;
1166 }
1167 end = &path[strlen(path)];
1168 *end++ = '/';
1169 *end = 0;
1170 pathleft = &path[sizeof (path)] - end;
1171
1172 /*
1173 * Using raw devices instead of block devices when we're
1174 * reading the labels skips a bunch of slow operations during
1175 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1176 */
1177 if (strcmp(path, "/dev/dsk/") == 0)
1178 rdsk = "/dev/rdsk/";
1179 else
1180 rdsk = path;
1181
1182 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1183 (dirp = fdopendir(dfd)) == NULL) {
1184 if (dfd >= 0)
1185 (void) close(dfd);
1186 zfs_error_aux(hdl, strerror(errno));
1187 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1188 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1189 rdsk);
1190 goto error;
1191 }
1192
1193 avl_create(&slice_cache, slice_cache_compare,
1194 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1195 /*
1196 * This is not MT-safe, but we have no MT consumers of libzfs
1197 */
1198 while ((dp = readdir64(dirp)) != NULL) {
1199 const char *name = dp->d_name;
1200 if (name[0] == '.' &&
1201 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1202 continue;
1203
1204 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1205 slice->rn_name = zfs_strdup(hdl, name);
1206 slice->rn_avl = &slice_cache;
1207 slice->rn_dfd = dfd;
1208 slice->rn_hdl = hdl;
1209 slice->rn_nozpool = B_FALSE;
1210 avl_add(&slice_cache, slice);
1211 }
1212 /*
1213 * create a thread pool to do all of this in parallel;
1214 * rn_nozpool is not protected, so this is racy in that
1215 * multiple tasks could decide that the same slice can
1216 * not hold a zpool, which is benign. Also choose
1217 * double the number of processors; we hold a lot of
1218 * locks in the kernel, so going beyond this doesn't
1219 * buy us much.
1220 */
1221 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1222 0, NULL);
1223 for (slice = avl_first(&slice_cache); slice;
1224 (slice = avl_walk(&slice_cache, slice,
1225 AVL_AFTER)))
1226 (void) tpool_dispatch(t, zpool_open_func, slice);
1227 tpool_wait(t);
1228 tpool_destroy(t);
1229
1230 cookie = NULL;
1231 while ((slice = avl_destroy_nodes(&slice_cache,
1232 &cookie)) != NULL) {
1233 if (slice->rn_config != NULL && !config_failed) {
1234 nvlist_t *config = slice->rn_config;
1235 boolean_t matched = B_TRUE;
1236
1237 if (iarg->poolname != NULL) {
1238 char *pname;
1239
1240 matched = nvlist_lookup_string(config,
1241 ZPOOL_CONFIG_POOL_NAME,
1242 &pname) == 0 &&
1243 strcmp(iarg->poolname, pname) == 0;
1244 } else if (iarg->guid != 0) {
1245 uint64_t this_guid;
1246
1247 matched = nvlist_lookup_uint64(config,
1248 ZPOOL_CONFIG_POOL_GUID,
1249 &this_guid) == 0 &&
1250 iarg->guid == this_guid;
1251 }
1252 if (!matched) {
1253 nvlist_free(config);
1254 } else {
1255 /*
1256 * use the non-raw path for the config
1257 */
1258 (void) strlcpy(end, slice->rn_name,
1259 pathleft);
1260 if (add_config(hdl, &pools, path,
1261 config) != 0)
1262 config_failed = B_TRUE;
1263 }
1264 }
1265 free(slice->rn_name);
1266 free(slice);
1267 }
1268 avl_destroy(&slice_cache);
1269
1270 (void) closedir(dirp);
1271
1272 if (config_failed)
1273 goto error;
1274 }
1275
1276 ret = get_configs(hdl, &pools, iarg->can_be_active);
1277
1278 error:
1279 for (pe = pools.pools; pe != NULL; pe = penext) {
1280 penext = pe->pe_next;
1281 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1282 venext = ve->ve_next;
1283 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1284 cenext = ce->ce_next;
1285 if (ce->ce_config)
1286 nvlist_free(ce->ce_config);
1287 free(ce);
1288 }
1289 free(ve);
1290 }
1291 free(pe);
1292 }
1293
1294 for (ne = pools.names; ne != NULL; ne = nenext) {
1295 nenext = ne->ne_next;
1296 free(ne->ne_name);
1297 free(ne);
1298 }
1299
1300 return (ret);
1301 }
1302
1303 nvlist_t *
zpool_find_import(libzfs_handle_t * hdl,int argc,char ** argv)1304 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1305 {
1306 importargs_t iarg = { 0 };
1307
1308 iarg.paths = argc;
1309 iarg.path = argv;
1310
1311 return (zpool_find_import_impl(hdl, &iarg));
1312 }
1313
1314 /*
1315 * Given a cache file, return the contents as a list of importable pools.
1316 * poolname or guid (but not both) are provided by the caller when trying
1317 * to import a specific pool.
1318 */
1319 nvlist_t *
zpool_find_import_cached(libzfs_handle_t * hdl,const char * cachefile,char * poolname,uint64_t guid)1320 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1321 char *poolname, uint64_t guid)
1322 {
1323 char *buf;
1324 int fd;
1325 struct stat64 statbuf;
1326 nvlist_t *raw, *src, *dst;
1327 nvlist_t *pools;
1328 nvpair_t *elem;
1329 char *name;
1330 uint64_t this_guid;
1331 boolean_t active;
1332
1333 verify(poolname == NULL || guid == 0);
1334
1335 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1336 zfs_error_aux(hdl, "%s", strerror(errno));
1337 (void) zfs_error(hdl, EZFS_BADCACHE,
1338 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1339 return (NULL);
1340 }
1341
1342 if (fstat64(fd, &statbuf) != 0) {
1343 zfs_error_aux(hdl, "%s", strerror(errno));
1344 (void) close(fd);
1345 (void) zfs_error(hdl, EZFS_BADCACHE,
1346 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1347 return (NULL);
1348 }
1349
1350 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1351 (void) close(fd);
1352 return (NULL);
1353 }
1354
1355 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1356 (void) close(fd);
1357 free(buf);
1358 (void) zfs_error(hdl, EZFS_BADCACHE,
1359 dgettext(TEXT_DOMAIN,
1360 "failed to read cache file contents"));
1361 return (NULL);
1362 }
1363
1364 (void) close(fd);
1365
1366 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1367 free(buf);
1368 (void) zfs_error(hdl, EZFS_BADCACHE,
1369 dgettext(TEXT_DOMAIN,
1370 "invalid or corrupt cache file contents"));
1371 return (NULL);
1372 }
1373
1374 free(buf);
1375
1376 /*
1377 * Go through and get the current state of the pools and refresh their
1378 * state.
1379 */
1380 if (nvlist_alloc(&pools, 0, 0) != 0) {
1381 (void) no_memory(hdl);
1382 nvlist_free(raw);
1383 return (NULL);
1384 }
1385
1386 elem = NULL;
1387 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1388 src = fnvpair_value_nvlist(elem);
1389
1390 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1391 if (poolname != NULL && strcmp(poolname, name) != 0)
1392 continue;
1393
1394 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1395 if (guid != 0 && guid != this_guid)
1396 continue;
1397
1398 if (pool_active(hdl, name, this_guid, &active) != 0) {
1399 nvlist_free(raw);
1400 nvlist_free(pools);
1401 return (NULL);
1402 }
1403
1404 if (active)
1405 continue;
1406
1407 if ((dst = refresh_config(hdl, src)) == NULL) {
1408 nvlist_free(raw);
1409 nvlist_free(pools);
1410 return (NULL);
1411 }
1412
1413 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1414 (void) no_memory(hdl);
1415 nvlist_free(dst);
1416 nvlist_free(raw);
1417 nvlist_free(pools);
1418 return (NULL);
1419 }
1420 nvlist_free(dst);
1421 }
1422
1423 nvlist_free(raw);
1424 return (pools);
1425 }
1426
1427 static int
name_or_guid_exists(zpool_handle_t * zhp,void * data)1428 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1429 {
1430 importargs_t *import = data;
1431 int found = 0;
1432
1433 if (import->poolname != NULL) {
1434 char *pool_name;
1435
1436 verify(nvlist_lookup_string(zhp->zpool_config,
1437 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1438 if (strcmp(pool_name, import->poolname) == 0)
1439 found = 1;
1440 } else {
1441 uint64_t pool_guid;
1442
1443 verify(nvlist_lookup_uint64(zhp->zpool_config,
1444 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1445 if (pool_guid == import->guid)
1446 found = 1;
1447 }
1448
1449 zpool_close(zhp);
1450 return (found);
1451 }
1452
1453 nvlist_t *
zpool_search_import(libzfs_handle_t * hdl,importargs_t * import)1454 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1455 {
1456 verify(import->poolname == NULL || import->guid == 0);
1457
1458 if (import->unique)
1459 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1460
1461 if (import->cachefile != NULL)
1462 return (zpool_find_import_cached(hdl, import->cachefile,
1463 import->poolname, import->guid));
1464
1465 return (zpool_find_import_impl(hdl, import));
1466 }
1467
1468 boolean_t
find_guid(nvlist_t * nv,uint64_t guid)1469 find_guid(nvlist_t *nv, uint64_t guid)
1470 {
1471 uint64_t tmp;
1472 nvlist_t **child;
1473 uint_t c, children;
1474
1475 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1476 if (tmp == guid)
1477 return (B_TRUE);
1478
1479 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1480 &child, &children) == 0) {
1481 for (c = 0; c < children; c++)
1482 if (find_guid(child[c], guid))
1483 return (B_TRUE);
1484 }
1485
1486 return (B_FALSE);
1487 }
1488
1489 typedef struct aux_cbdata {
1490 const char *cb_type;
1491 uint64_t cb_guid;
1492 zpool_handle_t *cb_zhp;
1493 } aux_cbdata_t;
1494
1495 static int
find_aux(zpool_handle_t * zhp,void * data)1496 find_aux(zpool_handle_t *zhp, void *data)
1497 {
1498 aux_cbdata_t *cbp = data;
1499 nvlist_t **list;
1500 uint_t i, count;
1501 uint64_t guid;
1502 nvlist_t *nvroot;
1503
1504 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1505 &nvroot) == 0);
1506
1507 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1508 &list, &count) == 0) {
1509 for (i = 0; i < count; i++) {
1510 verify(nvlist_lookup_uint64(list[i],
1511 ZPOOL_CONFIG_GUID, &guid) == 0);
1512 if (guid == cbp->cb_guid) {
1513 cbp->cb_zhp = zhp;
1514 return (1);
1515 }
1516 }
1517 }
1518
1519 zpool_close(zhp);
1520 return (0);
1521 }
1522
1523 /*
1524 * Determines if the pool is in use. If so, it returns true and the state of
1525 * the pool as well as the name of the pool. Both strings are allocated and
1526 * must be freed by the caller.
1527 */
1528 int
zpool_in_use(libzfs_handle_t * hdl,int fd,pool_state_t * state,char ** namestr,boolean_t * inuse)1529 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1530 boolean_t *inuse)
1531 {
1532 nvlist_t *config;
1533 char *name;
1534 boolean_t ret;
1535 uint64_t guid, vdev_guid;
1536 zpool_handle_t *zhp;
1537 nvlist_t *pool_config;
1538 uint64_t stateval, isspare;
1539 aux_cbdata_t cb = { 0 };
1540 boolean_t isactive;
1541
1542 *inuse = B_FALSE;
1543
1544 if (zpool_read_label(fd, &config) != 0) {
1545 (void) no_memory(hdl);
1546 return (-1);
1547 }
1548
1549 if (config == NULL)
1550 return (0);
1551
1552 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1553 &stateval) == 0);
1554 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1555 &vdev_guid) == 0);
1556
1557 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1558 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1559 &name) == 0);
1560 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1561 &guid) == 0);
1562 }
1563
1564 switch (stateval) {
1565 case POOL_STATE_EXPORTED:
1566 /*
1567 * A pool with an exported state may in fact be imported
1568 * read-only, so check the in-core state to see if it's
1569 * active and imported read-only. If it is, set
1570 * its state to active.
1571 */
1572 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1573 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1574 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1575 stateval = POOL_STATE_ACTIVE;
1576
1577 /*
1578 * All we needed the zpool handle for is the
1579 * readonly prop check.
1580 */
1581 zpool_close(zhp);
1582 }
1583
1584 ret = B_TRUE;
1585 break;
1586
1587 case POOL_STATE_ACTIVE:
1588 /*
1589 * For an active pool, we have to determine if it's really part
1590 * of a currently active pool (in which case the pool will exist
1591 * and the guid will be the same), or whether it's part of an
1592 * active pool that was disconnected without being explicitly
1593 * exported.
1594 */
1595 if (pool_active(hdl, name, guid, &isactive) != 0) {
1596 nvlist_free(config);
1597 return (-1);
1598 }
1599
1600 if (isactive) {
1601 /*
1602 * Because the device may have been removed while
1603 * offlined, we only report it as active if the vdev is
1604 * still present in the config. Otherwise, pretend like
1605 * it's not in use.
1606 */
1607 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1608 (pool_config = zpool_get_config(zhp, NULL))
1609 != NULL) {
1610 nvlist_t *nvroot;
1611
1612 verify(nvlist_lookup_nvlist(pool_config,
1613 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1614 ret = find_guid(nvroot, vdev_guid);
1615 } else {
1616 ret = B_FALSE;
1617 }
1618
1619 /*
1620 * If this is an active spare within another pool, we
1621 * treat it like an unused hot spare. This allows the
1622 * user to create a pool with a hot spare that currently
1623 * in use within another pool. Since we return B_TRUE,
1624 * libdiskmgt will continue to prevent generic consumers
1625 * from using the device.
1626 */
1627 if (ret && nvlist_lookup_uint64(config,
1628 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1629 stateval = POOL_STATE_SPARE;
1630
1631 if (zhp != NULL)
1632 zpool_close(zhp);
1633 } else {
1634 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1635 ret = B_TRUE;
1636 }
1637 break;
1638
1639 case POOL_STATE_SPARE:
1640 /*
1641 * For a hot spare, it can be either definitively in use, or
1642 * potentially active. To determine if it's in use, we iterate
1643 * over all pools in the system and search for one with a spare
1644 * with a matching guid.
1645 *
1646 * Due to the shared nature of spares, we don't actually report
1647 * the potentially active case as in use. This means the user
1648 * can freely create pools on the hot spares of exported pools,
1649 * but to do otherwise makes the resulting code complicated, and
1650 * we end up having to deal with this case anyway.
1651 */
1652 cb.cb_zhp = NULL;
1653 cb.cb_guid = vdev_guid;
1654 cb.cb_type = ZPOOL_CONFIG_SPARES;
1655 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1656 name = (char *)zpool_get_name(cb.cb_zhp);
1657 ret = B_TRUE;
1658 } else {
1659 ret = B_FALSE;
1660 }
1661 break;
1662
1663 case POOL_STATE_L2CACHE:
1664
1665 /*
1666 * Check if any pool is currently using this l2cache device.
1667 */
1668 cb.cb_zhp = NULL;
1669 cb.cb_guid = vdev_guid;
1670 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1671 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1672 name = (char *)zpool_get_name(cb.cb_zhp);
1673 ret = B_TRUE;
1674 } else {
1675 ret = B_FALSE;
1676 }
1677 break;
1678
1679 default:
1680 ret = B_FALSE;
1681 }
1682
1683
1684 if (ret) {
1685 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1686 if (cb.cb_zhp)
1687 zpool_close(cb.cb_zhp);
1688 nvlist_free(config);
1689 return (-1);
1690 }
1691 *state = (pool_state_t)stateval;
1692 }
1693
1694 if (cb.cb_zhp)
1695 zpool_close(cb.cb_zhp);
1696
1697 nvlist_free(config);
1698 *inuse = ret;
1699 return (0);
1700 }
1701