1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 /**
7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
8 *
9 * Motivation:
10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11 * These expanded contexts enable a number of new abilities, especially
12 * "Execlists" (also implemented in this file).
13 *
14 * One of the main differences with the legacy HW contexts is that logical
15 * ring contexts incorporate many more things to the context's state, like
16 * PDPs or ringbuffer control registers:
17 *
18 * The reason why PDPs are included in the context is straightforward: as
19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21 * instead, the GPU will do it for you on the context switch.
22 *
23 * But, what about the ringbuffer control registers (head, tail, etc..)?
24 * shouldn't we just need a set of those per engine command streamer? This is
25 * where the name "Logical Rings" starts to make sense: by virtualizing the
26 * rings, the engine cs shifts to a new "ring buffer" with every context
27 * switch. When you want to submit a workload to the GPU you: A) choose your
28 * context, B) find its appropriate virtualized ring, C) write commands to it
29 * and then, finally, D) tell the GPU to switch to that context.
30 *
31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32 * to a contexts is via a context execution list, ergo "Execlists".
33 *
34 * LRC implementation:
35 * Regarding the creation of contexts, we have:
36 *
37 * - One global default context.
38 * - One local default context for each opened fd.
39 * - One local extra context for each context create ioctl call.
40 *
41 * Now that ringbuffers belong per-context (and not per-engine, like before)
42 * and that contexts are uniquely tied to a given engine (and not reusable,
43 * like before) we need:
44 *
45 * - One ringbuffer per-engine inside each context.
46 * - One backing object per-engine inside each context.
47 *
48 * The global default context starts its life with these new objects fully
49 * allocated and populated. The local default context for each opened fd is
50 * more complex, because we don't know at creation time which engine is going
51 * to use them. To handle this, we have implemented a deferred creation of LR
52 * contexts:
53 *
54 * The local context starts its life as a hollow or blank holder, that only
55 * gets populated for a given engine once we receive an execbuffer. If later
56 * on we receive another execbuffer ioctl for the same context but a different
57 * engine, we allocate/populate a new ringbuffer and context backing object and
58 * so on.
59 *
60 * Finally, regarding local contexts created using the ioctl call: as they are
61 * only allowed with the render ring, we can allocate & populate them right
62 * away (no need to defer anything, at least for now).
63 *
64 * Execlists implementation:
65 * Execlists are the new method by which, on gen8+ hardware, workloads are
66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67 * This method works as follows:
68 *
69 * When a request is committed, its commands (the BB start and any leading or
70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71 * for the appropriate context. The tail pointer in the hardware context is not
72 * updated at this time, but instead, kept by the driver in the ringbuffer
73 * structure. A structure representing this request is added to a request queue
74 * for the appropriate engine: this structure contains a copy of the context's
75 * tail after the request was written to the ring buffer and a pointer to the
76 * context itself.
77 *
78 * If the engine's request queue was empty before the request was added, the
79 * queue is processed immediately. Otherwise the queue will be processed during
80 * a context switch interrupt. In any case, elements on the queue will get sent
81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82 * globally unique 20-bits submission ID.
83 *
84 * When execution of a request completes, the GPU updates the context status
85 * buffer with a context complete event and generates a context switch interrupt.
86 * During the interrupt handling, the driver examines the events in the buffer:
87 * for each context complete event, if the announced ID matches that on the head
88 * of the request queue, then that request is retired and removed from the queue.
89 *
90 * After processing, if any requests were retired and the queue is not empty
91 * then a new execution list can be submitted. The two requests at the front of
92 * the queue are next to be submitted but since a context may not occur twice in
93 * an execution list, if subsequent requests have the same ID as the first then
94 * the two requests must be combined. This is done simply by discarding requests
95 * at the head of the queue until either only one requests is left (in which case
96 * we use a NULL second context) or the first two requests have unique IDs.
97 *
98 * By always executing the first two requests in the queue the driver ensures
99 * that the GPU is kept as busy as possible. In the case where a single context
100 * completes but a second context is still executing, the request for this second
101 * context will be at the head of the queue when we remove the first one. This
102 * request will then be resubmitted along with a new request for a different context,
103 * which will cause the hardware to continue executing the second request and queue
104 * the new request (the GPU detects the condition of a context getting preempted
105 * with the same context and optimizes the context switch flow by not doing
106 * preemption, but just sampling the new tail pointer).
107 *
108 */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111
112 #include "i915_drv.h"
113 #include "i915_reg.h"
114 #include "i915_trace.h"
115 #include "i915_vgpu.h"
116 #include "gen8_engine_cs.h"
117 #include "intel_breadcrumbs.h"
118 #include "intel_context.h"
119 #include "intel_engine_heartbeat.h"
120 #include "intel_engine_pm.h"
121 #include "intel_engine_regs.h"
122 #include "intel_engine_stats.h"
123 #include "intel_execlists_submission.h"
124 #include "intel_gt.h"
125 #include "intel_gt_irq.h"
126 #include "intel_gt_pm.h"
127 #include "intel_gt_regs.h"
128 #include "intel_gt_requests.h"
129 #include "intel_lrc.h"
130 #include "intel_lrc_reg.h"
131 #include "intel_mocs.h"
132 #include "intel_reset.h"
133 #include "intel_ring.h"
134 #include "intel_workarounds.h"
135 #include "shmem_utils.h"
136
137 #define RING_EXECLIST_QFULL (1 << 0x2)
138 #define RING_EXECLIST1_VALID (1 << 0x3)
139 #define RING_EXECLIST0_VALID (1 << 0x4)
140 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
141 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
142 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
143
144 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
145 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
146 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
147 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
148 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
149 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
150
151 #define GEN8_CTX_STATUS_COMPLETED_MASK \
152 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153
154 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
155 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
156 #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
157 #define GEN12_IDLE_CTX_ID 0x7FF
158 #define GEN12_CSB_CTX_VALID(csb_dw) \
159 (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160
161 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE BIT(1) /* upper csb dword */
162 #define XEHP_CSB_SW_CTX_ID_MASK GENMASK(31, 10)
163 #define XEHP_IDLE_CTX_ID 0xFFFF
164 #define XEHP_CSB_CTX_VALID(csb_dw) \
165 (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166
167 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
168 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
170 struct virtual_engine {
171 struct intel_engine_cs base;
172 struct intel_context context;
173 struct rcu_work rcu;
174
175 /*
176 * We allow only a single request through the virtual engine at a time
177 * (each request in the timeline waits for the completion fence of
178 * the previous before being submitted). By restricting ourselves to
179 * only submitting a single request, each request is placed on to a
180 * physical to maximise load spreading (by virtue of the late greedy
181 * scheduling -- each real engine takes the next available request
182 * upon idling).
183 */
184 struct i915_request *request;
185
186 /*
187 * We keep a rbtree of available virtual engines inside each physical
188 * engine, sorted by priority. Here we preallocate the nodes we need
189 * for the virtual engine, indexed by physical_engine->id.
190 */
191 struct ve_node {
192 struct rb_node rb;
193 int prio;
194 } nodes[I915_NUM_ENGINES];
195
196 /* And finally, which physical engines this virtual engine maps onto. */
197 unsigned int num_siblings;
198 struct intel_engine_cs *siblings[];
199 };
200
to_virtual_engine(struct intel_engine_cs * engine)201 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202 {
203 GEM_BUG_ON(!intel_engine_is_virtual(engine));
204 return container_of(engine, struct virtual_engine, base);
205 }
206
207 static struct intel_context *
208 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209 unsigned long flags);
210
211 static struct i915_request *
__active_request(const struct intel_timeline * const tl,struct i915_request * rq,int error)212 __active_request(const struct intel_timeline * const tl,
213 struct i915_request *rq,
214 int error)
215 {
216 struct i915_request *active = rq;
217
218 list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219 if (__i915_request_is_complete(rq))
220 break;
221
222 if (error) {
223 i915_request_set_error_once(rq, error);
224 __i915_request_skip(rq);
225 }
226 active = rq;
227 }
228
229 return active;
230 }
231
232 static struct i915_request *
active_request(const struct intel_timeline * const tl,struct i915_request * rq)233 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234 {
235 return __active_request(tl, rq, 0);
236 }
237
ring_set_paused(const struct intel_engine_cs * engine,int state)238 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239 {
240 /*
241 * We inspect HWS_PREEMPT with a semaphore inside
242 * engine->emit_fini_breadcrumb. If the dword is true,
243 * the ring is paused as the semaphore will busywait
244 * until the dword is false.
245 */
246 engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247 if (state)
248 wmb();
249 }
250
to_priolist(struct rb_node * rb)251 static struct i915_priolist *to_priolist(struct rb_node *rb)
252 {
253 return rb_entry(rb, struct i915_priolist, node);
254 }
255
rq_prio(const struct i915_request * rq)256 static int rq_prio(const struct i915_request *rq)
257 {
258 return READ_ONCE(rq->sched.attr.priority);
259 }
260
effective_prio(const struct i915_request * rq)261 static int effective_prio(const struct i915_request *rq)
262 {
263 int prio = rq_prio(rq);
264
265 /*
266 * If this request is special and must not be interrupted at any
267 * cost, so be it. Note we are only checking the most recent request
268 * in the context and so may be masking an earlier vip request. It
269 * is hoped that under the conditions where nopreempt is used, this
270 * will not matter (i.e. all requests to that context will be
271 * nopreempt for as long as desired).
272 */
273 if (i915_request_has_nopreempt(rq))
274 prio = I915_PRIORITY_UNPREEMPTABLE;
275
276 return prio;
277 }
278
queue_prio(const struct i915_sched_engine * sched_engine)279 static int queue_prio(const struct i915_sched_engine *sched_engine)
280 {
281 struct rb_node *rb;
282
283 rb = rb_first_cached(&sched_engine->queue);
284 if (!rb)
285 return INT_MIN;
286
287 return to_priolist(rb)->priority;
288 }
289
virtual_prio(const struct intel_engine_execlists * el)290 static int virtual_prio(const struct intel_engine_execlists *el)
291 {
292 struct rb_node *rb = rb_first_cached(&el->virtual);
293
294 return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295 }
296
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * rq)297 static bool need_preempt(const struct intel_engine_cs *engine,
298 const struct i915_request *rq)
299 {
300 int last_prio;
301
302 if (!intel_engine_has_semaphores(engine))
303 return false;
304
305 /*
306 * Check if the current priority hint merits a preemption attempt.
307 *
308 * We record the highest value priority we saw during rescheduling
309 * prior to this dequeue, therefore we know that if it is strictly
310 * less than the current tail of ESLP[0], we do not need to force
311 * a preempt-to-idle cycle.
312 *
313 * However, the priority hint is a mere hint that we may need to
314 * preempt. If that hint is stale or we may be trying to preempt
315 * ourselves, ignore the request.
316 *
317 * More naturally we would write
318 * prio >= max(0, last);
319 * except that we wish to prevent triggering preemption at the same
320 * priority level: the task that is running should remain running
321 * to preserve FIFO ordering of dependencies.
322 */
323 last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324 if (engine->sched_engine->queue_priority_hint <= last_prio)
325 return false;
326
327 /*
328 * Check against the first request in ELSP[1], it will, thanks to the
329 * power of PI, be the highest priority of that context.
330 */
331 if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332 rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333 return true;
334
335 /*
336 * If the inflight context did not trigger the preemption, then maybe
337 * it was the set of queued requests? Pick the highest priority in
338 * the queue (the first active priolist) and see if it deserves to be
339 * running instead of ELSP[0].
340 *
341 * The highest priority request in the queue can not be either
342 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343 * context, it's priority would not exceed ELSP[0] aka last_prio.
344 */
345 return max(virtual_prio(&engine->execlists),
346 queue_prio(engine->sched_engine)) > last_prio;
347 }
348
349 __maybe_unused static bool
assert_priority_queue(const struct i915_request * prev,const struct i915_request * next)350 assert_priority_queue(const struct i915_request *prev,
351 const struct i915_request *next)
352 {
353 /*
354 * Without preemption, the prev may refer to the still active element
355 * which we refuse to let go.
356 *
357 * Even with preemption, there are times when we think it is better not
358 * to preempt and leave an ostensibly lower priority request in flight.
359 */
360 if (i915_request_is_active(prev))
361 return true;
362
363 return rq_prio(prev) >= rq_prio(next);
364 }
365
366 static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs * engine)367 __unwind_incomplete_requests(struct intel_engine_cs *engine)
368 {
369 struct i915_request *rq, *rn, *active = NULL;
370 struct list_head *pl;
371 int prio = I915_PRIORITY_INVALID;
372
373 lockdep_assert_held(&engine->sched_engine->lock);
374
375 list_for_each_entry_safe_reverse(rq, rn,
376 &engine->sched_engine->requests,
377 sched.link) {
378 if (__i915_request_is_complete(rq)) {
379 list_del_init(&rq->sched.link);
380 continue;
381 }
382
383 __i915_request_unsubmit(rq);
384
385 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386 if (rq_prio(rq) != prio) {
387 prio = rq_prio(rq);
388 pl = i915_sched_lookup_priolist(engine->sched_engine,
389 prio);
390 }
391 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392
393 list_move(&rq->sched.link, pl);
394 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395
396 /* Check in case we rollback so far we wrap [size/2] */
397 if (intel_ring_direction(rq->ring,
398 rq->tail,
399 rq->ring->tail + 8) > 0)
400 rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401
402 active = rq;
403 }
404
405 return active;
406 }
407
408 struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)409 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
410 {
411 struct intel_engine_cs *engine =
412 container_of(execlists, typeof(*engine), execlists);
413
414 return __unwind_incomplete_requests(engine);
415 }
416
417 static void
execlists_context_status_change(struct i915_request * rq,unsigned long status)418 execlists_context_status_change(struct i915_request *rq, unsigned long status)
419 {
420 /*
421 * Only used when GVT-g is enabled now. When GVT-g is disabled,
422 * The compiler should eliminate this function as dead-code.
423 */
424 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
425 return;
426
427 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
428 status, rq);
429 }
430
reset_active(struct i915_request * rq,struct intel_engine_cs * engine)431 static void reset_active(struct i915_request *rq,
432 struct intel_engine_cs *engine)
433 {
434 struct intel_context * const ce = rq->context;
435 u32 head;
436
437 /*
438 * The executing context has been cancelled. We want to prevent
439 * further execution along this context and propagate the error on
440 * to anything depending on its results.
441 *
442 * In __i915_request_submit(), we apply the -EIO and remove the
443 * requests' payloads for any banned requests. But first, we must
444 * rewind the context back to the start of the incomplete request so
445 * that we do not jump back into the middle of the batch.
446 *
447 * We preserve the breadcrumbs and semaphores of the incomplete
448 * requests so that inter-timeline dependencies (i.e other timelines)
449 * remain correctly ordered. And we defer to __i915_request_submit()
450 * so that all asynchronous waits are correctly handled.
451 */
452 ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
453 rq->fence.context, rq->fence.seqno);
454
455 /* On resubmission of the active request, payload will be scrubbed */
456 if (__i915_request_is_complete(rq))
457 head = rq->tail;
458 else
459 head = __active_request(ce->timeline, rq, -EIO)->head;
460 head = intel_ring_wrap(ce->ring, head);
461
462 /* Scrub the context image to prevent replaying the previous batch */
463 lrc_init_regs(ce, engine, true);
464
465 /* We've switched away, so this should be a no-op, but intent matters */
466 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
467 }
468
bad_request(const struct i915_request * rq)469 static bool bad_request(const struct i915_request *rq)
470 {
471 return rq->fence.error && i915_request_started(rq);
472 }
473
474 static struct intel_engine_cs *
__execlists_schedule_in(struct i915_request * rq)475 __execlists_schedule_in(struct i915_request *rq)
476 {
477 struct intel_engine_cs * const engine = rq->engine;
478 struct intel_context * const ce = rq->context;
479
480 intel_context_get(ce);
481
482 if (unlikely(intel_context_is_closed(ce) &&
483 !intel_engine_has_heartbeat(engine)))
484 intel_context_set_exiting(ce);
485
486 if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
487 reset_active(rq, engine);
488
489 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
490 lrc_check_regs(ce, engine, "before");
491
492 if (ce->tag) {
493 /* Use a fixed tag for OA and friends */
494 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
495 ce->lrc.ccid = ce->tag;
496 } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
497 /* We don't need a strict matching tag, just different values */
498 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
499
500 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
501 clear_bit(tag - 1, &engine->context_tag);
502 ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
503
504 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
505
506 } else {
507 /* We don't need a strict matching tag, just different values */
508 unsigned int tag = __ffs(engine->context_tag);
509
510 GEM_BUG_ON(tag >= BITS_PER_LONG);
511 __clear_bit(tag, &engine->context_tag);
512 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
513
514 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
515 }
516
517 ce->lrc.ccid |= engine->execlists.ccid;
518
519 __intel_gt_pm_get(engine->gt);
520 if (engine->fw_domain && !engine->fw_active++)
521 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
522 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
523 intel_engine_context_in(engine);
524
525 CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
526
527 return engine;
528 }
529
execlists_schedule_in(struct i915_request * rq,int idx)530 static void execlists_schedule_in(struct i915_request *rq, int idx)
531 {
532 struct intel_context * const ce = rq->context;
533 struct intel_engine_cs *old;
534
535 GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
536 trace_i915_request_in(rq, idx);
537
538 old = ce->inflight;
539 if (!old)
540 old = __execlists_schedule_in(rq);
541 WRITE_ONCE(ce->inflight, ptr_inc(old));
542
543 GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
544 }
545
546 static void
resubmit_virtual_request(struct i915_request * rq,struct virtual_engine * ve)547 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
548 {
549 struct intel_engine_cs *engine = rq->engine;
550
551 spin_lock_irq(&engine->sched_engine->lock);
552
553 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
554 WRITE_ONCE(rq->engine, &ve->base);
555 ve->base.submit_request(rq);
556
557 spin_unlock_irq(&engine->sched_engine->lock);
558 }
559
kick_siblings(struct i915_request * rq,struct intel_context * ce)560 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
561 {
562 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
563 struct intel_engine_cs *engine = rq->engine;
564
565 /*
566 * After this point, the rq may be transferred to a new sibling, so
567 * before we clear ce->inflight make sure that the context has been
568 * removed from the b->signalers and furthermore we need to make sure
569 * that the concurrent iterator in signal_irq_work is no longer
570 * following ce->signal_link.
571 */
572 if (!list_empty(&ce->signals))
573 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
574
575 /*
576 * This engine is now too busy to run this virtual request, so
577 * see if we can find an alternative engine for it to execute on.
578 * Once a request has become bonded to this engine, we treat it the
579 * same as other native request.
580 */
581 if (i915_request_in_priority_queue(rq) &&
582 rq->execution_mask != engine->mask)
583 resubmit_virtual_request(rq, ve);
584
585 if (READ_ONCE(ve->request))
586 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
587 }
588
__execlists_schedule_out(struct i915_request * const rq,struct intel_context * const ce)589 static void __execlists_schedule_out(struct i915_request * const rq,
590 struct intel_context * const ce)
591 {
592 struct intel_engine_cs * const engine = rq->engine;
593 unsigned int ccid;
594
595 /*
596 * NB process_csb() is not under the engine->sched_engine->lock and hence
597 * schedule_out can race with schedule_in meaning that we should
598 * refrain from doing non-trivial work here.
599 */
600
601 CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
602 GEM_BUG_ON(ce->inflight != engine);
603
604 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
605 lrc_check_regs(ce, engine, "after");
606
607 /*
608 * If we have just completed this context, the engine may now be
609 * idle and we want to re-enter powersaving.
610 */
611 if (intel_timeline_is_last(ce->timeline, rq) &&
612 __i915_request_is_complete(rq))
613 intel_engine_add_retire(engine, ce->timeline);
614
615 ccid = ce->lrc.ccid;
616 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
617 ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
618 ccid &= XEHP_MAX_CONTEXT_HW_ID;
619 } else {
620 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
621 ccid &= GEN12_MAX_CONTEXT_HW_ID;
622 }
623
624 if (ccid < BITS_PER_LONG) {
625 GEM_BUG_ON(ccid == 0);
626 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
627 __set_bit(ccid - 1, &engine->context_tag);
628 }
629 intel_engine_context_out(engine);
630 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
631 if (engine->fw_domain && !--engine->fw_active)
632 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
633 intel_gt_pm_put_async_untracked(engine->gt);
634
635 /*
636 * If this is part of a virtual engine, its next request may
637 * have been blocked waiting for access to the active context.
638 * We have to kick all the siblings again in case we need to
639 * switch (e.g. the next request is not runnable on this
640 * engine). Hopefully, we will already have submitted the next
641 * request before the tasklet runs and do not need to rebuild
642 * each virtual tree and kick everyone again.
643 */
644 if (ce->engine != engine)
645 kick_siblings(rq, ce);
646
647 WRITE_ONCE(ce->inflight, NULL);
648 intel_context_put(ce);
649 }
650
execlists_schedule_out(struct i915_request * rq)651 static inline void execlists_schedule_out(struct i915_request *rq)
652 {
653 struct intel_context * const ce = rq->context;
654
655 trace_i915_request_out(rq);
656
657 GEM_BUG_ON(!ce->inflight);
658 ce->inflight = ptr_dec(ce->inflight);
659 if (!__intel_context_inflight_count(ce->inflight))
660 __execlists_schedule_out(rq, ce);
661
662 i915_request_put(rq);
663 }
664
map_i915_prio_to_lrc_desc_prio(int prio)665 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
666 {
667 if (prio > I915_PRIORITY_NORMAL)
668 return GEN12_CTX_PRIORITY_HIGH;
669 else if (prio < I915_PRIORITY_NORMAL)
670 return GEN12_CTX_PRIORITY_LOW;
671 else
672 return GEN12_CTX_PRIORITY_NORMAL;
673 }
674
execlists_update_context(struct i915_request * rq)675 static u64 execlists_update_context(struct i915_request *rq)
676 {
677 struct intel_context *ce = rq->context;
678 u64 desc;
679 u32 tail, prev;
680
681 desc = ce->lrc.desc;
682 if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
683 desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
684
685 /*
686 * WaIdleLiteRestore:bdw,skl
687 *
688 * We should never submit the context with the same RING_TAIL twice
689 * just in case we submit an empty ring, which confuses the HW.
690 *
691 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
692 * the normal request to be able to always advance the RING_TAIL on
693 * subsequent resubmissions (for lite restore). Should that fail us,
694 * and we try and submit the same tail again, force the context
695 * reload.
696 *
697 * If we need to return to a preempted context, we need to skip the
698 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
699 * HW has a tendency to ignore us rewinding the TAIL to the end of
700 * an earlier request.
701 */
702 GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
703 prev = rq->ring->tail;
704 tail = intel_ring_set_tail(rq->ring, rq->tail);
705 if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
706 desc |= CTX_DESC_FORCE_RESTORE;
707 ce->lrc_reg_state[CTX_RING_TAIL] = tail;
708 rq->tail = rq->wa_tail;
709
710 /*
711 * Make sure the context image is complete before we submit it to HW.
712 *
713 * Ostensibly, writes (including the WCB) should be flushed prior to
714 * an uncached write such as our mmio register access, the empirical
715 * evidence (esp. on Braswell) suggests that the WC write into memory
716 * may not be visible to the HW prior to the completion of the UC
717 * register write and that we may begin execution from the context
718 * before its image is complete leading to invalid PD chasing.
719 */
720 wmb();
721
722 ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
723 return desc;
724 }
725
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)726 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
727 {
728 if (execlists->ctrl_reg) {
729 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
730 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
731 } else {
732 writel(upper_32_bits(desc), execlists->submit_reg);
733 writel(lower_32_bits(desc), execlists->submit_reg);
734 }
735 }
736
737 static __maybe_unused char *
dump_port(char * buf,int buflen,const char * prefix,struct i915_request * rq)738 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
739 {
740 if (!rq)
741 return "";
742
743 snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
744 prefix,
745 rq->context->lrc.ccid,
746 rq->fence.context, rq->fence.seqno,
747 __i915_request_is_complete(rq) ? "!" :
748 __i915_request_has_started(rq) ? "*" :
749 "",
750 rq_prio(rq));
751
752 return buf;
753 }
754
755 static __maybe_unused noinline void
trace_ports(const struct intel_engine_execlists * execlists,const char * msg,struct i915_request * const * ports)756 trace_ports(const struct intel_engine_execlists *execlists,
757 const char *msg,
758 struct i915_request * const *ports)
759 {
760 const struct intel_engine_cs *engine =
761 container_of(execlists, typeof(*engine), execlists);
762 char __maybe_unused p0[40], p1[40];
763
764 if (!ports[0])
765 return;
766
767 ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
768 dump_port(p0, sizeof(p0), "", ports[0]),
769 dump_port(p1, sizeof(p1), ", ", ports[1]));
770 }
771
772 static bool
reset_in_progress(const struct intel_engine_cs * engine)773 reset_in_progress(const struct intel_engine_cs *engine)
774 {
775 return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
776 }
777
778 static __maybe_unused noinline bool
assert_pending_valid(const struct intel_engine_execlists * execlists,const char * msg)779 assert_pending_valid(const struct intel_engine_execlists *execlists,
780 const char *msg)
781 {
782 struct intel_engine_cs *engine =
783 container_of(execlists, typeof(*engine), execlists);
784 struct i915_request * const *port, *rq, *prev = NULL;
785 struct intel_context *ce = NULL;
786 u32 ccid = -1;
787
788 trace_ports(execlists, msg, execlists->pending);
789
790 /* We may be messing around with the lists during reset, lalala */
791 if (reset_in_progress(engine))
792 return true;
793
794 if (!execlists->pending[0]) {
795 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
796 engine->name);
797 return false;
798 }
799
800 if (execlists->pending[execlists_num_ports(execlists)]) {
801 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
802 engine->name, execlists_num_ports(execlists));
803 return false;
804 }
805
806 for (port = execlists->pending; (rq = *port); port++) {
807 unsigned long flags;
808 bool ok = true;
809
810 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
811 GEM_BUG_ON(!i915_request_is_active(rq));
812
813 if (ce == rq->context) {
814 GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
815 engine->name,
816 ce->timeline->fence_context,
817 port - execlists->pending);
818 return false;
819 }
820 ce = rq->context;
821
822 if (ccid == ce->lrc.ccid) {
823 GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
824 engine->name,
825 ccid, ce->timeline->fence_context,
826 port - execlists->pending);
827 return false;
828 }
829 ccid = ce->lrc.ccid;
830
831 /*
832 * Sentinels are supposed to be the last request so they flush
833 * the current execution off the HW. Check that they are the only
834 * request in the pending submission.
835 *
836 * NB: Due to the async nature of preempt-to-busy and request
837 * cancellation we need to handle the case where request
838 * becomes a sentinel in parallel to CSB processing.
839 */
840 if (prev && i915_request_has_sentinel(prev) &&
841 !READ_ONCE(prev->fence.error)) {
842 GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
843 engine->name,
844 ce->timeline->fence_context,
845 port - execlists->pending);
846 return false;
847 }
848 prev = rq;
849
850 /*
851 * We want virtual requests to only be in the first slot so
852 * that they are never stuck behind a hog and can be immediately
853 * transferred onto the next idle engine.
854 */
855 if (rq->execution_mask != engine->mask &&
856 port != execlists->pending) {
857 GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
858 engine->name,
859 ce->timeline->fence_context,
860 port - execlists->pending);
861 return false;
862 }
863
864 /* Hold tightly onto the lock to prevent concurrent retires! */
865 if (!spin_trylock_irqsave(&rq->lock, flags))
866 continue;
867
868 if (__i915_request_is_complete(rq))
869 goto unlock;
870
871 if (i915_active_is_idle(&ce->active) &&
872 !intel_context_is_barrier(ce)) {
873 GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
874 engine->name,
875 ce->timeline->fence_context,
876 port - execlists->pending);
877 ok = false;
878 goto unlock;
879 }
880
881 if (!i915_vma_is_pinned(ce->state)) {
882 GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
883 engine->name,
884 ce->timeline->fence_context,
885 port - execlists->pending);
886 ok = false;
887 goto unlock;
888 }
889
890 if (!i915_vma_is_pinned(ce->ring->vma)) {
891 GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
892 engine->name,
893 ce->timeline->fence_context,
894 port - execlists->pending);
895 ok = false;
896 goto unlock;
897 }
898
899 unlock:
900 spin_unlock_irqrestore(&rq->lock, flags);
901 if (!ok)
902 return false;
903 }
904
905 return ce;
906 }
907
execlists_submit_ports(struct intel_engine_cs * engine)908 static void execlists_submit_ports(struct intel_engine_cs *engine)
909 {
910 struct intel_engine_execlists *execlists = &engine->execlists;
911 unsigned int n;
912
913 GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
914
915 /*
916 * We can skip acquiring intel_runtime_pm_get() here as it was taken
917 * on our behalf by the request (see i915_gem_mark_busy()) and it will
918 * not be relinquished until the device is idle (see
919 * i915_gem_idle_work_handler()). As a precaution, we make sure
920 * that all ELSP are drained i.e. we have processed the CSB,
921 * before allowing ourselves to idle and calling intel_runtime_pm_put().
922 */
923 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
924
925 /*
926 * ELSQ note: the submit queue is not cleared after being submitted
927 * to the HW so we need to make sure we always clean it up. This is
928 * currently ensured by the fact that we always write the same number
929 * of elsq entries, keep this in mind before changing the loop below.
930 */
931 for (n = execlists_num_ports(execlists); n--; ) {
932 struct i915_request *rq = execlists->pending[n];
933
934 write_desc(execlists,
935 rq ? execlists_update_context(rq) : 0,
936 n);
937 }
938
939 /* we need to manually load the submit queue */
940 if (execlists->ctrl_reg)
941 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
942 }
943
ctx_single_port_submission(const struct intel_context * ce)944 static bool ctx_single_port_submission(const struct intel_context *ce)
945 {
946 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
947 intel_context_force_single_submission(ce));
948 }
949
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)950 static bool can_merge_ctx(const struct intel_context *prev,
951 const struct intel_context *next)
952 {
953 if (prev != next)
954 return false;
955
956 if (ctx_single_port_submission(prev))
957 return false;
958
959 return true;
960 }
961
i915_request_flags(const struct i915_request * rq)962 static unsigned long i915_request_flags(const struct i915_request *rq)
963 {
964 return READ_ONCE(rq->fence.flags);
965 }
966
can_merge_rq(const struct i915_request * prev,const struct i915_request * next)967 static bool can_merge_rq(const struct i915_request *prev,
968 const struct i915_request *next)
969 {
970 GEM_BUG_ON(prev == next);
971 GEM_BUG_ON(!assert_priority_queue(prev, next));
972
973 /*
974 * We do not submit known completed requests. Therefore if the next
975 * request is already completed, we can pretend to merge it in
976 * with the previous context (and we will skip updating the ELSP
977 * and tracking). Thus hopefully keeping the ELSP full with active
978 * contexts, despite the best efforts of preempt-to-busy to confuse
979 * us.
980 */
981 if (__i915_request_is_complete(next))
982 return true;
983
984 if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
985 (BIT(I915_FENCE_FLAG_NOPREEMPT) |
986 BIT(I915_FENCE_FLAG_SENTINEL))))
987 return false;
988
989 if (!can_merge_ctx(prev->context, next->context))
990 return false;
991
992 GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
993 return true;
994 }
995
virtual_matches(const struct virtual_engine * ve,const struct i915_request * rq,const struct intel_engine_cs * engine)996 static bool virtual_matches(const struct virtual_engine *ve,
997 const struct i915_request *rq,
998 const struct intel_engine_cs *engine)
999 {
1000 const struct intel_engine_cs *inflight;
1001
1002 if (!rq)
1003 return false;
1004
1005 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1006 return false;
1007
1008 /*
1009 * We track when the HW has completed saving the context image
1010 * (i.e. when we have seen the final CS event switching out of
1011 * the context) and must not overwrite the context image before
1012 * then. This restricts us to only using the active engine
1013 * while the previous virtualized request is inflight (so
1014 * we reuse the register offsets). This is a very small
1015 * hystersis on the greedy seelction algorithm.
1016 */
1017 inflight = intel_context_inflight(&ve->context);
1018 if (inflight && inflight != engine)
1019 return false;
1020
1021 return true;
1022 }
1023
1024 static struct virtual_engine *
first_virtual_engine(struct intel_engine_cs * engine)1025 first_virtual_engine(struct intel_engine_cs *engine)
1026 {
1027 struct intel_engine_execlists *el = &engine->execlists;
1028 struct rb_node *rb = rb_first_cached(&el->virtual);
1029
1030 while (rb) {
1031 struct virtual_engine *ve =
1032 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1033 struct i915_request *rq = READ_ONCE(ve->request);
1034
1035 /* lazily cleanup after another engine handled rq */
1036 if (!rq || !virtual_matches(ve, rq, engine)) {
1037 rb_erase_cached(rb, &el->virtual);
1038 RB_CLEAR_NODE(rb);
1039 rb = rb_first_cached(&el->virtual);
1040 continue;
1041 }
1042
1043 return ve;
1044 }
1045
1046 return NULL;
1047 }
1048
virtual_xfer_context(struct virtual_engine * ve,struct intel_engine_cs * engine)1049 static void virtual_xfer_context(struct virtual_engine *ve,
1050 struct intel_engine_cs *engine)
1051 {
1052 unsigned int n;
1053
1054 if (likely(engine == ve->siblings[0]))
1055 return;
1056
1057 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1058 if (!intel_engine_has_relative_mmio(engine))
1059 lrc_update_offsets(&ve->context, engine);
1060
1061 /*
1062 * Move the bound engine to the top of the list for
1063 * future execution. We then kick this tasklet first
1064 * before checking others, so that we preferentially
1065 * reuse this set of bound registers.
1066 */
1067 for (n = 1; n < ve->num_siblings; n++) {
1068 if (ve->siblings[n] == engine) {
1069 swap(ve->siblings[n], ve->siblings[0]);
1070 break;
1071 }
1072 }
1073 }
1074
defer_request(struct i915_request * rq,struct list_head * const pl)1075 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1076 {
1077 LIST_HEAD(list);
1078
1079 /*
1080 * We want to move the interrupted request to the back of
1081 * the round-robin list (i.e. its priority level), but
1082 * in doing so, we must then move all requests that were in
1083 * flight and were waiting for the interrupted request to
1084 * be run after it again.
1085 */
1086 do {
1087 struct i915_dependency *p;
1088
1089 GEM_BUG_ON(i915_request_is_active(rq));
1090 list_move_tail(&rq->sched.link, pl);
1091
1092 for_each_waiter(p, rq) {
1093 struct i915_request *w =
1094 container_of(p->waiter, typeof(*w), sched);
1095
1096 if (p->flags & I915_DEPENDENCY_WEAK)
1097 continue;
1098
1099 /* Leave semaphores spinning on the other engines */
1100 if (w->engine != rq->engine)
1101 continue;
1102
1103 /* No waiter should start before its signaler */
1104 GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1105 __i915_request_has_started(w) &&
1106 !__i915_request_is_complete(rq));
1107
1108 if (!i915_request_is_ready(w))
1109 continue;
1110
1111 if (rq_prio(w) < rq_prio(rq))
1112 continue;
1113
1114 GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1115 GEM_BUG_ON(i915_request_is_active(w));
1116 list_move_tail(&w->sched.link, &list);
1117 }
1118
1119 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1120 } while (rq);
1121 }
1122
defer_active(struct intel_engine_cs * engine)1123 static void defer_active(struct intel_engine_cs *engine)
1124 {
1125 struct i915_request *rq;
1126
1127 rq = __unwind_incomplete_requests(engine);
1128 if (!rq)
1129 return;
1130
1131 defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1132 rq_prio(rq)));
1133 }
1134
1135 static bool
timeslice_yield(const struct intel_engine_execlists * el,const struct i915_request * rq)1136 timeslice_yield(const struct intel_engine_execlists *el,
1137 const struct i915_request *rq)
1138 {
1139 /*
1140 * Once bitten, forever smitten!
1141 *
1142 * If the active context ever busy-waited on a semaphore,
1143 * it will be treated as a hog until the end of its timeslice (i.e.
1144 * until it is scheduled out and replaced by a new submission,
1145 * possibly even its own lite-restore). The HW only sends an interrupt
1146 * on the first miss, and we do know if that semaphore has been
1147 * signaled, or even if it is now stuck on another semaphore. Play
1148 * safe, yield if it might be stuck -- it will be given a fresh
1149 * timeslice in the near future.
1150 */
1151 return rq->context->lrc.ccid == READ_ONCE(el->yield);
1152 }
1153
needs_timeslice(const struct intel_engine_cs * engine,const struct i915_request * rq)1154 static bool needs_timeslice(const struct intel_engine_cs *engine,
1155 const struct i915_request *rq)
1156 {
1157 if (!intel_engine_has_timeslices(engine))
1158 return false;
1159
1160 /* If not currently active, or about to switch, wait for next event */
1161 if (!rq || __i915_request_is_complete(rq))
1162 return false;
1163
1164 /* We do not need to start the timeslice until after the ACK */
1165 if (READ_ONCE(engine->execlists.pending[0]))
1166 return false;
1167
1168 /* If ELSP[1] is occupied, always check to see if worth slicing */
1169 if (!list_is_last_rcu(&rq->sched.link,
1170 &engine->sched_engine->requests)) {
1171 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1172 return true;
1173 }
1174
1175 /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1176 if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1177 ENGINE_TRACE(engine, "timeslice required for queue\n");
1178 return true;
1179 }
1180
1181 if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1182 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1183 return true;
1184 }
1185
1186 return false;
1187 }
1188
1189 static bool
timeslice_expired(struct intel_engine_cs * engine,const struct i915_request * rq)1190 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1191 {
1192 const struct intel_engine_execlists *el = &engine->execlists;
1193
1194 if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1195 return false;
1196
1197 if (!needs_timeslice(engine, rq))
1198 return false;
1199
1200 return timer_expired(&el->timer) || timeslice_yield(el, rq);
1201 }
1202
timeslice(const struct intel_engine_cs * engine)1203 static unsigned long timeslice(const struct intel_engine_cs *engine)
1204 {
1205 return READ_ONCE(engine->props.timeslice_duration_ms);
1206 }
1207
start_timeslice(struct intel_engine_cs * engine)1208 static void start_timeslice(struct intel_engine_cs *engine)
1209 {
1210 struct intel_engine_execlists *el = &engine->execlists;
1211 unsigned long duration;
1212
1213 /* Disable the timer if there is nothing to switch to */
1214 duration = 0;
1215 if (needs_timeslice(engine, *el->active)) {
1216 /* Avoid continually prolonging an active timeslice */
1217 if (timer_active(&el->timer)) {
1218 /*
1219 * If we just submitted a new ELSP after an old
1220 * context, that context may have already consumed
1221 * its timeslice, so recheck.
1222 */
1223 if (!timer_pending(&el->timer))
1224 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1225 return;
1226 }
1227
1228 duration = timeslice(engine);
1229 }
1230
1231 set_timer_ms(&el->timer, duration);
1232 }
1233
record_preemption(struct intel_engine_execlists * execlists)1234 static void record_preemption(struct intel_engine_execlists *execlists)
1235 {
1236 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1237 }
1238
active_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1239 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1240 const struct i915_request *rq)
1241 {
1242 if (!rq)
1243 return 0;
1244
1245 /* Only allow ourselves to force reset the currently active context */
1246 engine->execlists.preempt_target = rq;
1247
1248 /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1249 if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1250 return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1251
1252 return READ_ONCE(engine->props.preempt_timeout_ms);
1253 }
1254
set_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1255 static void set_preempt_timeout(struct intel_engine_cs *engine,
1256 const struct i915_request *rq)
1257 {
1258 if (!intel_engine_has_preempt_reset(engine))
1259 return;
1260
1261 set_timer_ms(&engine->execlists.preempt,
1262 active_preempt_timeout(engine, rq));
1263 }
1264
completed(const struct i915_request * rq)1265 static bool completed(const struct i915_request *rq)
1266 {
1267 if (i915_request_has_sentinel(rq))
1268 return false;
1269
1270 return __i915_request_is_complete(rq);
1271 }
1272
execlists_dequeue(struct intel_engine_cs * engine)1273 static void execlists_dequeue(struct intel_engine_cs *engine)
1274 {
1275 struct intel_engine_execlists * const execlists = &engine->execlists;
1276 struct i915_sched_engine * const sched_engine = engine->sched_engine;
1277 struct i915_request **port = execlists->pending;
1278 struct i915_request ** const last_port = port + execlists->port_mask;
1279 struct i915_request *last, * const *active;
1280 struct virtual_engine *ve;
1281 struct rb_node *rb;
1282 bool submit = false;
1283
1284 /*
1285 * Hardware submission is through 2 ports. Conceptually each port
1286 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1287 * static for a context, and unique to each, so we only execute
1288 * requests belonging to a single context from each ring. RING_HEAD
1289 * is maintained by the CS in the context image, it marks the place
1290 * where it got up to last time, and through RING_TAIL we tell the CS
1291 * where we want to execute up to this time.
1292 *
1293 * In this list the requests are in order of execution. Consecutive
1294 * requests from the same context are adjacent in the ringbuffer. We
1295 * can combine these requests into a single RING_TAIL update:
1296 *
1297 * RING_HEAD...req1...req2
1298 * ^- RING_TAIL
1299 * since to execute req2 the CS must first execute req1.
1300 *
1301 * Our goal then is to point each port to the end of a consecutive
1302 * sequence of requests as being the most optimal (fewest wake ups
1303 * and context switches) submission.
1304 */
1305
1306 spin_lock(&sched_engine->lock);
1307
1308 /*
1309 * If the queue is higher priority than the last
1310 * request in the currently active context, submit afresh.
1311 * We will resubmit again afterwards in case we need to split
1312 * the active context to interject the preemption request,
1313 * i.e. we will retrigger preemption following the ack in case
1314 * of trouble.
1315 *
1316 */
1317 active = execlists->active;
1318 while ((last = *active) && completed(last))
1319 active++;
1320
1321 if (last) {
1322 if (need_preempt(engine, last)) {
1323 ENGINE_TRACE(engine,
1324 "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1325 last->fence.context,
1326 last->fence.seqno,
1327 last->sched.attr.priority,
1328 sched_engine->queue_priority_hint);
1329 record_preemption(execlists);
1330
1331 /*
1332 * Don't let the RING_HEAD advance past the breadcrumb
1333 * as we unwind (and until we resubmit) so that we do
1334 * not accidentally tell it to go backwards.
1335 */
1336 ring_set_paused(engine, 1);
1337
1338 /*
1339 * Note that we have not stopped the GPU at this point,
1340 * so we are unwinding the incomplete requests as they
1341 * remain inflight and so by the time we do complete
1342 * the preemption, some of the unwound requests may
1343 * complete!
1344 */
1345 __unwind_incomplete_requests(engine);
1346
1347 last = NULL;
1348 } else if (timeslice_expired(engine, last)) {
1349 ENGINE_TRACE(engine,
1350 "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1351 str_yes_no(timer_expired(&execlists->timer)),
1352 last->fence.context, last->fence.seqno,
1353 rq_prio(last),
1354 sched_engine->queue_priority_hint,
1355 str_yes_no(timeslice_yield(execlists, last)));
1356
1357 /*
1358 * Consume this timeslice; ensure we start a new one.
1359 *
1360 * The timeslice expired, and we will unwind the
1361 * running contexts and recompute the next ELSP.
1362 * If that submit will be the same pair of contexts
1363 * (due to dependency ordering), we will skip the
1364 * submission. If we don't cancel the timer now,
1365 * we will see that the timer has expired and
1366 * reschedule the tasklet; continually until the
1367 * next context switch or other preemption event.
1368 *
1369 * Since we have decided to reschedule based on
1370 * consumption of this timeslice, if we submit the
1371 * same context again, grant it a full timeslice.
1372 */
1373 cancel_timer(&execlists->timer);
1374 ring_set_paused(engine, 1);
1375 defer_active(engine);
1376
1377 /*
1378 * Unlike for preemption, if we rewind and continue
1379 * executing the same context as previously active,
1380 * the order of execution will remain the same and
1381 * the tail will only advance. We do not need to
1382 * force a full context restore, as a lite-restore
1383 * is sufficient to resample the monotonic TAIL.
1384 *
1385 * If we switch to any other context, similarly we
1386 * will not rewind TAIL of current context, and
1387 * normal save/restore will preserve state and allow
1388 * us to later continue executing the same request.
1389 */
1390 last = NULL;
1391 } else {
1392 /*
1393 * Otherwise if we already have a request pending
1394 * for execution after the current one, we can
1395 * just wait until the next CS event before
1396 * queuing more. In either case we will force a
1397 * lite-restore preemption event, but if we wait
1398 * we hopefully coalesce several updates into a single
1399 * submission.
1400 */
1401 if (active[1]) {
1402 /*
1403 * Even if ELSP[1] is occupied and not worthy
1404 * of timeslices, our queue might be.
1405 */
1406 spin_unlock(&sched_engine->lock);
1407 return;
1408 }
1409 }
1410 }
1411
1412 /* XXX virtual is always taking precedence */
1413 while ((ve = first_virtual_engine(engine))) {
1414 struct i915_request *rq;
1415
1416 spin_lock(&ve->base.sched_engine->lock);
1417
1418 rq = ve->request;
1419 if (unlikely(!virtual_matches(ve, rq, engine)))
1420 goto unlock; /* lost the race to a sibling */
1421
1422 GEM_BUG_ON(rq->engine != &ve->base);
1423 GEM_BUG_ON(rq->context != &ve->context);
1424
1425 if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1426 spin_unlock(&ve->base.sched_engine->lock);
1427 break;
1428 }
1429
1430 if (last && !can_merge_rq(last, rq)) {
1431 spin_unlock(&ve->base.sched_engine->lock);
1432 spin_unlock(&engine->sched_engine->lock);
1433 return; /* leave this for another sibling */
1434 }
1435
1436 ENGINE_TRACE(engine,
1437 "virtual rq=%llx:%lld%s, new engine? %s\n",
1438 rq->fence.context,
1439 rq->fence.seqno,
1440 __i915_request_is_complete(rq) ? "!" :
1441 __i915_request_has_started(rq) ? "*" :
1442 "",
1443 str_yes_no(engine != ve->siblings[0]));
1444
1445 WRITE_ONCE(ve->request, NULL);
1446 WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1447
1448 rb = &ve->nodes[engine->id].rb;
1449 rb_erase_cached(rb, &execlists->virtual);
1450 RB_CLEAR_NODE(rb);
1451
1452 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1453 WRITE_ONCE(rq->engine, engine);
1454
1455 if (__i915_request_submit(rq)) {
1456 /*
1457 * Only after we confirm that we will submit
1458 * this request (i.e. it has not already
1459 * completed), do we want to update the context.
1460 *
1461 * This serves two purposes. It avoids
1462 * unnecessary work if we are resubmitting an
1463 * already completed request after timeslicing.
1464 * But more importantly, it prevents us altering
1465 * ve->siblings[] on an idle context, where
1466 * we may be using ve->siblings[] in
1467 * virtual_context_enter / virtual_context_exit.
1468 */
1469 virtual_xfer_context(ve, engine);
1470 GEM_BUG_ON(ve->siblings[0] != engine);
1471
1472 submit = true;
1473 last = rq;
1474 }
1475
1476 i915_request_put(rq);
1477 unlock:
1478 spin_unlock(&ve->base.sched_engine->lock);
1479
1480 /*
1481 * Hmm, we have a bunch of virtual engine requests,
1482 * but the first one was already completed (thanks
1483 * preempt-to-busy!). Keep looking at the veng queue
1484 * until we have no more relevant requests (i.e.
1485 * the normal submit queue has higher priority).
1486 */
1487 if (submit)
1488 break;
1489 }
1490
1491 while ((rb = rb_first_cached(&sched_engine->queue))) {
1492 struct i915_priolist *p = to_priolist(rb);
1493 struct i915_request *rq, *rn;
1494
1495 priolist_for_each_request_consume(rq, rn, p) {
1496 bool merge = true;
1497
1498 /*
1499 * Can we combine this request with the current port?
1500 * It has to be the same context/ringbuffer and not
1501 * have any exceptions (e.g. GVT saying never to
1502 * combine contexts).
1503 *
1504 * If we can combine the requests, we can execute both
1505 * by updating the RING_TAIL to point to the end of the
1506 * second request, and so we never need to tell the
1507 * hardware about the first.
1508 */
1509 if (last && !can_merge_rq(last, rq)) {
1510 /*
1511 * If we are on the second port and cannot
1512 * combine this request with the last, then we
1513 * are done.
1514 */
1515 if (port == last_port)
1516 goto done;
1517
1518 /*
1519 * We must not populate both ELSP[] with the
1520 * same LRCA, i.e. we must submit 2 different
1521 * contexts if we submit 2 ELSP.
1522 */
1523 if (last->context == rq->context)
1524 goto done;
1525
1526 if (i915_request_has_sentinel(last))
1527 goto done;
1528
1529 /*
1530 * We avoid submitting virtual requests into
1531 * the secondary ports so that we can migrate
1532 * the request immediately to another engine
1533 * rather than wait for the primary request.
1534 */
1535 if (rq->execution_mask != engine->mask)
1536 goto done;
1537
1538 /*
1539 * If GVT overrides us we only ever submit
1540 * port[0], leaving port[1] empty. Note that we
1541 * also have to be careful that we don't queue
1542 * the same context (even though a different
1543 * request) to the second port.
1544 */
1545 if (ctx_single_port_submission(last->context) ||
1546 ctx_single_port_submission(rq->context))
1547 goto done;
1548
1549 merge = false;
1550 }
1551
1552 if (__i915_request_submit(rq)) {
1553 if (!merge) {
1554 *port++ = i915_request_get(last);
1555 last = NULL;
1556 }
1557
1558 GEM_BUG_ON(last &&
1559 !can_merge_ctx(last->context,
1560 rq->context));
1561 GEM_BUG_ON(last &&
1562 i915_seqno_passed(last->fence.seqno,
1563 rq->fence.seqno));
1564
1565 submit = true;
1566 last = rq;
1567 }
1568 }
1569
1570 rb_erase_cached(&p->node, &sched_engine->queue);
1571 i915_priolist_free(p);
1572 }
1573 done:
1574 *port++ = i915_request_get(last);
1575
1576 /*
1577 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1578 *
1579 * We choose the priority hint such that if we add a request of greater
1580 * priority than this, we kick the submission tasklet to decide on
1581 * the right order of submitting the requests to hardware. We must
1582 * also be prepared to reorder requests as they are in-flight on the
1583 * HW. We derive the priority hint then as the first "hole" in
1584 * the HW submission ports and if there are no available slots,
1585 * the priority of the lowest executing request, i.e. last.
1586 *
1587 * When we do receive a higher priority request ready to run from the
1588 * user, see queue_request(), the priority hint is bumped to that
1589 * request triggering preemption on the next dequeue (or subsequent
1590 * interrupt for secondary ports).
1591 */
1592 sched_engine->queue_priority_hint = queue_prio(sched_engine);
1593 i915_sched_engine_reset_on_empty(sched_engine);
1594 spin_unlock(&sched_engine->lock);
1595
1596 /*
1597 * We can skip poking the HW if we ended up with exactly the same set
1598 * of requests as currently running, e.g. trying to timeslice a pair
1599 * of ordered contexts.
1600 */
1601 if (submit &&
1602 memcmp(active,
1603 execlists->pending,
1604 (port - execlists->pending) * sizeof(*port))) {
1605 *port = NULL;
1606 while (port-- != execlists->pending)
1607 execlists_schedule_in(*port, port - execlists->pending);
1608
1609 WRITE_ONCE(execlists->yield, -1);
1610 set_preempt_timeout(engine, *active);
1611 execlists_submit_ports(engine);
1612 } else {
1613 ring_set_paused(engine, 0);
1614 while (port-- != execlists->pending)
1615 i915_request_put(*port);
1616 *execlists->pending = NULL;
1617 }
1618 }
1619
execlists_dequeue_irq(struct intel_engine_cs * engine)1620 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1621 {
1622 local_irq_disable(); /* Suspend interrupts across request submission */
1623 execlists_dequeue(engine);
1624 local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1625 }
1626
clear_ports(struct i915_request ** ports,int count)1627 static void clear_ports(struct i915_request **ports, int count)
1628 {
1629 memset_p((void **)ports, NULL, count);
1630 }
1631
1632 static void
copy_ports(struct i915_request ** dst,struct i915_request ** src,int count)1633 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1634 {
1635 /* A memcpy_p() would be very useful here! */
1636 while (count--)
1637 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1638 }
1639
1640 static struct i915_request **
cancel_port_requests(struct intel_engine_execlists * const execlists,struct i915_request ** inactive)1641 cancel_port_requests(struct intel_engine_execlists * const execlists,
1642 struct i915_request **inactive)
1643 {
1644 struct i915_request * const *port;
1645
1646 for (port = execlists->pending; *port; port++)
1647 *inactive++ = *port;
1648 clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1649
1650 /* Mark the end of active before we overwrite *active */
1651 for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1652 *inactive++ = *port;
1653 clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1654
1655 smp_wmb(); /* complete the seqlock for execlists_active() */
1656 WRITE_ONCE(execlists->active, execlists->inflight);
1657
1658 /* Having cancelled all outstanding process_csb(), stop their timers */
1659 GEM_BUG_ON(execlists->pending[0]);
1660 cancel_timer(&execlists->timer);
1661 cancel_timer(&execlists->preempt);
1662
1663 return inactive;
1664 }
1665
1666 /*
1667 * Starting with Gen12, the status has a new format:
1668 *
1669 * bit 0: switched to new queue
1670 * bit 1: reserved
1671 * bit 2: semaphore wait mode (poll or signal), only valid when
1672 * switch detail is set to "wait on semaphore"
1673 * bits 3-5: engine class
1674 * bits 6-11: engine instance
1675 * bits 12-14: reserved
1676 * bits 15-25: sw context id of the lrc the GT switched to
1677 * bits 26-31: sw counter of the lrc the GT switched to
1678 * bits 32-35: context switch detail
1679 * - 0: ctx complete
1680 * - 1: wait on sync flip
1681 * - 2: wait on vblank
1682 * - 3: wait on scanline
1683 * - 4: wait on semaphore
1684 * - 5: context preempted (not on SEMAPHORE_WAIT or
1685 * WAIT_FOR_EVENT)
1686 * bit 36: reserved
1687 * bits 37-43: wait detail (for switch detail 1 to 4)
1688 * bits 44-46: reserved
1689 * bits 47-57: sw context id of the lrc the GT switched away from
1690 * bits 58-63: sw counter of the lrc the GT switched away from
1691 *
1692 * Xe_HP csb shuffles things around compared to TGL:
1693 *
1694 * bits 0-3: context switch detail (same possible values as TGL)
1695 * bits 4-9: engine instance
1696 * bits 10-25: sw context id of the lrc the GT switched to
1697 * bits 26-31: sw counter of the lrc the GT switched to
1698 * bit 32: semaphore wait mode (poll or signal), Only valid when
1699 * switch detail is set to "wait on semaphore"
1700 * bit 33: switched to new queue
1701 * bits 34-41: wait detail (for switch detail 1 to 4)
1702 * bits 42-57: sw context id of the lrc the GT switched away from
1703 * bits 58-63: sw counter of the lrc the GT switched away from
1704 */
1705 static inline bool
__gen12_csb_parse(bool ctx_to_valid,bool ctx_away_valid,bool new_queue,u8 switch_detail)1706 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1707 u8 switch_detail)
1708 {
1709 /*
1710 * The context switch detail is not guaranteed to be 5 when a preemption
1711 * occurs, so we can't just check for that. The check below works for
1712 * all the cases we care about, including preemptions of WAIT
1713 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1714 * would require some extra handling, but we don't support that.
1715 */
1716 if (!ctx_away_valid || new_queue) {
1717 GEM_BUG_ON(!ctx_to_valid);
1718 return true;
1719 }
1720
1721 /*
1722 * switch detail = 5 is covered by the case above and we do not expect a
1723 * context switch on an unsuccessful wait instruction since we always
1724 * use polling mode.
1725 */
1726 GEM_BUG_ON(switch_detail);
1727 return false;
1728 }
1729
xehp_csb_parse(const u64 csb)1730 static bool xehp_csb_parse(const u64 csb)
1731 {
1732 return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1733 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1734 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1735 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1736 }
1737
gen12_csb_parse(const u64 csb)1738 static bool gen12_csb_parse(const u64 csb)
1739 {
1740 return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1741 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1742 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1743 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1744 }
1745
gen8_csb_parse(const u64 csb)1746 static bool gen8_csb_parse(const u64 csb)
1747 {
1748 return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1749 }
1750
1751 static noinline u64
wa_csb_read(const struct intel_engine_cs * engine,u64 * const csb)1752 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1753 {
1754 u64 entry;
1755
1756 /*
1757 * Reading from the HWSP has one particular advantage: we can detect
1758 * a stale entry. Since the write into HWSP is broken, we have no reason
1759 * to trust the HW at all, the mmio entry may equally be unordered, so
1760 * we prefer the path that is self-checking and as a last resort,
1761 * return the mmio value.
1762 *
1763 * tgl,dg1:HSDES#22011327657
1764 */
1765 preempt_disable();
1766 if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1767 int idx = csb - engine->execlists.csb_status;
1768 int status;
1769
1770 status = GEN8_EXECLISTS_STATUS_BUF;
1771 if (idx >= 6) {
1772 status = GEN11_EXECLISTS_STATUS_BUF2;
1773 idx -= 6;
1774 }
1775 status += sizeof(u64) * idx;
1776
1777 entry = intel_uncore_read64(engine->uncore,
1778 _MMIO(engine->mmio_base + status));
1779 }
1780 preempt_enable();
1781
1782 return entry;
1783 }
1784
csb_read(const struct intel_engine_cs * engine,u64 * const csb)1785 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1786 {
1787 u64 entry = READ_ONCE(*csb);
1788
1789 /*
1790 * Unfortunately, the GPU does not always serialise its write
1791 * of the CSB entries before its write of the CSB pointer, at least
1792 * from the perspective of the CPU, using what is known as a Global
1793 * Observation Point. We may read a new CSB tail pointer, but then
1794 * read the stale CSB entries, causing us to misinterpret the
1795 * context-switch events, and eventually declare the GPU hung.
1796 *
1797 * icl:HSDES#1806554093
1798 * tgl:HSDES#22011248461
1799 */
1800 if (unlikely(entry == -1))
1801 entry = wa_csb_read(engine, csb);
1802
1803 /* Consume this entry so that we can spot its future reuse. */
1804 WRITE_ONCE(*csb, -1);
1805
1806 /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1807 return entry;
1808 }
1809
new_timeslice(struct intel_engine_execlists * el)1810 static void new_timeslice(struct intel_engine_execlists *el)
1811 {
1812 /* By cancelling, we will start afresh in start_timeslice() */
1813 cancel_timer(&el->timer);
1814 }
1815
1816 static struct i915_request **
process_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)1817 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1818 {
1819 struct intel_engine_execlists * const execlists = &engine->execlists;
1820 u64 * const buf = execlists->csb_status;
1821 const u8 num_entries = execlists->csb_size;
1822 struct i915_request **prev;
1823 u8 head, tail;
1824
1825 /*
1826 * As we modify our execlists state tracking we require exclusive
1827 * access. Either we are inside the tasklet, or the tasklet is disabled
1828 * and we assume that is only inside the reset paths and so serialised.
1829 */
1830 GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1831 !reset_in_progress(engine));
1832
1833 /*
1834 * Note that csb_write, csb_status may be either in HWSP or mmio.
1835 * When reading from the csb_write mmio register, we have to be
1836 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1837 * the low 4bits. As it happens we know the next 4bits are always
1838 * zero and so we can simply masked off the low u8 of the register
1839 * and treat it identically to reading from the HWSP (without having
1840 * to use explicit shifting and masking, and probably bifurcating
1841 * the code to handle the legacy mmio read).
1842 */
1843 head = execlists->csb_head;
1844 tail = READ_ONCE(*execlists->csb_write);
1845 if (unlikely(head == tail))
1846 return inactive;
1847
1848 /*
1849 * We will consume all events from HW, or at least pretend to.
1850 *
1851 * The sequence of events from the HW is deterministic, and derived
1852 * from our writes to the ELSP, with a smidgen of variability for
1853 * the arrival of the asynchronous requests wrt to the inflight
1854 * execution. If the HW sends an event that does not correspond with
1855 * the one we are expecting, we have to abandon all hope as we lose
1856 * all tracking of what the engine is actually executing. We will
1857 * only detect we are out of sequence with the HW when we get an
1858 * 'impossible' event because we have already drained our own
1859 * preemption/promotion queue. If this occurs, we know that we likely
1860 * lost track of execution earlier and must unwind and restart, the
1861 * simplest way is by stop processing the event queue and force the
1862 * engine to reset.
1863 */
1864 execlists->csb_head = tail;
1865 ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1866
1867 /*
1868 * Hopefully paired with a wmb() in HW!
1869 *
1870 * We must complete the read of the write pointer before any reads
1871 * from the CSB, so that we do not see stale values. Without an rmb
1872 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1873 * we perform the READ_ONCE(*csb_write).
1874 */
1875 rmb();
1876
1877 /* Remember who was last running under the timer */
1878 prev = inactive;
1879 *prev = NULL;
1880
1881 do {
1882 bool promote;
1883 u64 csb;
1884
1885 if (++head == num_entries)
1886 head = 0;
1887
1888 /*
1889 * We are flying near dragons again.
1890 *
1891 * We hold a reference to the request in execlist_port[]
1892 * but no more than that. We are operating in softirq
1893 * context and so cannot hold any mutex or sleep. That
1894 * prevents us stopping the requests we are processing
1895 * in port[] from being retired simultaneously (the
1896 * breadcrumb will be complete before we see the
1897 * context-switch). As we only hold the reference to the
1898 * request, any pointer chasing underneath the request
1899 * is subject to a potential use-after-free. Thus we
1900 * store all of the bookkeeping within port[] as
1901 * required, and avoid using unguarded pointers beneath
1902 * request itself. The same applies to the atomic
1903 * status notifier.
1904 */
1905
1906 csb = csb_read(engine, buf + head);
1907 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1908 head, upper_32_bits(csb), lower_32_bits(csb));
1909
1910 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
1911 promote = xehp_csb_parse(csb);
1912 else if (GRAPHICS_VER(engine->i915) >= 12)
1913 promote = gen12_csb_parse(csb);
1914 else
1915 promote = gen8_csb_parse(csb);
1916 if (promote) {
1917 struct i915_request * const *old = execlists->active;
1918
1919 if (GEM_WARN_ON(!*execlists->pending)) {
1920 execlists->error_interrupt |= ERROR_CSB;
1921 break;
1922 }
1923
1924 ring_set_paused(engine, 0);
1925
1926 /* Point active to the new ELSP; prevent overwriting */
1927 WRITE_ONCE(execlists->active, execlists->pending);
1928 smp_wmb(); /* notify execlists_active() */
1929
1930 /* cancel old inflight, prepare for switch */
1931 trace_ports(execlists, "preempted", old);
1932 while (*old)
1933 *inactive++ = *old++;
1934
1935 /* switch pending to inflight */
1936 GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1937 copy_ports(execlists->inflight,
1938 execlists->pending,
1939 execlists_num_ports(execlists));
1940 smp_wmb(); /* complete the seqlock */
1941 WRITE_ONCE(execlists->active, execlists->inflight);
1942
1943 /* XXX Magic delay for tgl */
1944 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1945
1946 WRITE_ONCE(execlists->pending[0], NULL);
1947 } else {
1948 if (GEM_WARN_ON(!*execlists->active)) {
1949 execlists->error_interrupt |= ERROR_CSB;
1950 break;
1951 }
1952
1953 /* port0 completed, advanced to port1 */
1954 trace_ports(execlists, "completed", execlists->active);
1955
1956 /*
1957 * We rely on the hardware being strongly
1958 * ordered, that the breadcrumb write is
1959 * coherent (visible from the CPU) before the
1960 * user interrupt is processed. One might assume
1961 * that the breadcrumb write being before the
1962 * user interrupt and the CS event for the context
1963 * switch would therefore be before the CS event
1964 * itself...
1965 */
1966 if (GEM_SHOW_DEBUG() &&
1967 !__i915_request_is_complete(*execlists->active)) {
1968 struct i915_request *rq = *execlists->active;
1969 const u32 *regs __maybe_unused =
1970 rq->context->lrc_reg_state;
1971
1972 ENGINE_TRACE(engine,
1973 "context completed before request!\n");
1974 ENGINE_TRACE(engine,
1975 "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1976 ENGINE_READ(engine, RING_START),
1977 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1978 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1979 ENGINE_READ(engine, RING_CTL),
1980 ENGINE_READ(engine, RING_MI_MODE));
1981 ENGINE_TRACE(engine,
1982 "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1983 i915_ggtt_offset(rq->ring->vma),
1984 rq->head, rq->tail,
1985 rq->fence.context,
1986 lower_32_bits(rq->fence.seqno),
1987 hwsp_seqno(rq));
1988 ENGINE_TRACE(engine,
1989 "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1990 regs[CTX_RING_START],
1991 regs[CTX_RING_HEAD],
1992 regs[CTX_RING_TAIL]);
1993 }
1994
1995 *inactive++ = *execlists->active++;
1996
1997 GEM_BUG_ON(execlists->active - execlists->inflight >
1998 execlists_num_ports(execlists));
1999 }
2000 } while (head != tail);
2001
2002 /*
2003 * Gen11 has proven to fail wrt global observation point between
2004 * entry and tail update, failing on the ordering and thus
2005 * we see an old entry in the context status buffer.
2006 *
2007 * Forcibly evict out entries for the next gpu csb update,
2008 * to increase the odds that we get a fresh entries with non
2009 * working hardware. The cost for doing so comes out mostly with
2010 * the wash as hardware, working or not, will need to do the
2011 * invalidation before.
2012 */
2013 drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2014
2015 /*
2016 * We assume that any event reflects a change in context flow
2017 * and merits a fresh timeslice. We reinstall the timer after
2018 * inspecting the queue to see if we need to resumbit.
2019 */
2020 if (*prev != *execlists->active) { /* elide lite-restores */
2021 struct intel_context *prev_ce = NULL, *active_ce = NULL;
2022
2023 /*
2024 * Note the inherent discrepancy between the HW runtime,
2025 * recorded as part of the context switch, and the CPU
2026 * adjustment for active contexts. We have to hope that
2027 * the delay in processing the CS event is very small
2028 * and consistent. It works to our advantage to have
2029 * the CPU adjustment _undershoot_ (i.e. start later than)
2030 * the CS timestamp so we never overreport the runtime
2031 * and correct overselves later when updating from HW.
2032 */
2033 if (*prev)
2034 prev_ce = (*prev)->context;
2035 if (*execlists->active)
2036 active_ce = (*execlists->active)->context;
2037 if (prev_ce != active_ce) {
2038 if (prev_ce)
2039 lrc_runtime_stop(prev_ce);
2040 if (active_ce)
2041 lrc_runtime_start(active_ce);
2042 }
2043 new_timeslice(execlists);
2044 }
2045
2046 return inactive;
2047 }
2048
post_process_csb(struct i915_request ** port,struct i915_request ** last)2049 static void post_process_csb(struct i915_request **port,
2050 struct i915_request **last)
2051 {
2052 while (port != last)
2053 execlists_schedule_out(*port++);
2054 }
2055
__execlists_hold(struct i915_request * rq)2056 static void __execlists_hold(struct i915_request *rq)
2057 {
2058 LIST_HEAD(list);
2059
2060 do {
2061 struct i915_dependency *p;
2062
2063 if (i915_request_is_active(rq))
2064 __i915_request_unsubmit(rq);
2065
2066 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2067 list_move_tail(&rq->sched.link,
2068 &rq->engine->sched_engine->hold);
2069 i915_request_set_hold(rq);
2070 RQ_TRACE(rq, "on hold\n");
2071
2072 for_each_waiter(p, rq) {
2073 struct i915_request *w =
2074 container_of(p->waiter, typeof(*w), sched);
2075
2076 if (p->flags & I915_DEPENDENCY_WEAK)
2077 continue;
2078
2079 /* Leave semaphores spinning on the other engines */
2080 if (w->engine != rq->engine)
2081 continue;
2082
2083 if (!i915_request_is_ready(w))
2084 continue;
2085
2086 if (__i915_request_is_complete(w))
2087 continue;
2088
2089 if (i915_request_on_hold(w))
2090 continue;
2091
2092 list_move_tail(&w->sched.link, &list);
2093 }
2094
2095 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2096 } while (rq);
2097 }
2098
execlists_hold(struct intel_engine_cs * engine,struct i915_request * rq)2099 static bool execlists_hold(struct intel_engine_cs *engine,
2100 struct i915_request *rq)
2101 {
2102 if (i915_request_on_hold(rq))
2103 return false;
2104
2105 spin_lock_irq(&engine->sched_engine->lock);
2106
2107 if (__i915_request_is_complete(rq)) { /* too late! */
2108 rq = NULL;
2109 goto unlock;
2110 }
2111
2112 /*
2113 * Transfer this request onto the hold queue to prevent it
2114 * being resumbitted to HW (and potentially completed) before we have
2115 * released it. Since we may have already submitted following
2116 * requests, we need to remove those as well.
2117 */
2118 GEM_BUG_ON(i915_request_on_hold(rq));
2119 GEM_BUG_ON(rq->engine != engine);
2120 __execlists_hold(rq);
2121 GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2122
2123 unlock:
2124 spin_unlock_irq(&engine->sched_engine->lock);
2125 return rq;
2126 }
2127
hold_request(const struct i915_request * rq)2128 static bool hold_request(const struct i915_request *rq)
2129 {
2130 struct i915_dependency *p;
2131 bool result = false;
2132
2133 /*
2134 * If one of our ancestors is on hold, we must also be on hold,
2135 * otherwise we will bypass it and execute before it.
2136 */
2137 rcu_read_lock();
2138 for_each_signaler(p, rq) {
2139 const struct i915_request *s =
2140 container_of(p->signaler, typeof(*s), sched);
2141
2142 if (s->engine != rq->engine)
2143 continue;
2144
2145 result = i915_request_on_hold(s);
2146 if (result)
2147 break;
2148 }
2149 rcu_read_unlock();
2150
2151 return result;
2152 }
2153
__execlists_unhold(struct i915_request * rq)2154 static void __execlists_unhold(struct i915_request *rq)
2155 {
2156 LIST_HEAD(list);
2157
2158 do {
2159 struct i915_dependency *p;
2160
2161 RQ_TRACE(rq, "hold release\n");
2162
2163 GEM_BUG_ON(!i915_request_on_hold(rq));
2164 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2165
2166 i915_request_clear_hold(rq);
2167 list_move_tail(&rq->sched.link,
2168 i915_sched_lookup_priolist(rq->engine->sched_engine,
2169 rq_prio(rq)));
2170 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2171
2172 /* Also release any children on this engine that are ready */
2173 for_each_waiter(p, rq) {
2174 struct i915_request *w =
2175 container_of(p->waiter, typeof(*w), sched);
2176
2177 if (p->flags & I915_DEPENDENCY_WEAK)
2178 continue;
2179
2180 if (w->engine != rq->engine)
2181 continue;
2182
2183 if (!i915_request_on_hold(w))
2184 continue;
2185
2186 /* Check that no other parents are also on hold */
2187 if (hold_request(w))
2188 continue;
2189
2190 list_move_tail(&w->sched.link, &list);
2191 }
2192
2193 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2194 } while (rq);
2195 }
2196
execlists_unhold(struct intel_engine_cs * engine,struct i915_request * rq)2197 static void execlists_unhold(struct intel_engine_cs *engine,
2198 struct i915_request *rq)
2199 {
2200 spin_lock_irq(&engine->sched_engine->lock);
2201
2202 /*
2203 * Move this request back to the priority queue, and all of its
2204 * children and grandchildren that were suspended along with it.
2205 */
2206 __execlists_unhold(rq);
2207
2208 if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2209 engine->sched_engine->queue_priority_hint = rq_prio(rq);
2210 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2211 }
2212
2213 spin_unlock_irq(&engine->sched_engine->lock);
2214 }
2215
2216 struct execlists_capture {
2217 struct work_struct work;
2218 struct i915_request *rq;
2219 struct i915_gpu_coredump *error;
2220 };
2221
execlists_capture_work(struct work_struct * work)2222 static void execlists_capture_work(struct work_struct *work)
2223 {
2224 struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2225 const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2226 __GFP_NOWARN;
2227 struct intel_engine_cs *engine = cap->rq->engine;
2228 struct intel_gt_coredump *gt = cap->error->gt;
2229 struct intel_engine_capture_vma *vma;
2230
2231 /* Compress all the objects attached to the request, slow! */
2232 vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2233 if (vma) {
2234 struct i915_vma_compress *compress =
2235 i915_vma_capture_prepare(gt);
2236
2237 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2238 i915_vma_capture_finish(gt, compress);
2239 }
2240
2241 gt->simulated = gt->engine->simulated;
2242 cap->error->simulated = gt->simulated;
2243
2244 /* Publish the error state, and announce it to the world */
2245 i915_error_state_store(cap->error);
2246 i915_gpu_coredump_put(cap->error);
2247
2248 /* Return this request and all that depend upon it for signaling */
2249 execlists_unhold(engine, cap->rq);
2250 i915_request_put(cap->rq);
2251
2252 kfree(cap);
2253 }
2254
capture_regs(struct intel_engine_cs * engine)2255 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2256 {
2257 const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2258 struct execlists_capture *cap;
2259
2260 cap = kmalloc(sizeof(*cap), gfp);
2261 if (!cap)
2262 return NULL;
2263
2264 cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2265 if (!cap->error)
2266 goto err_cap;
2267
2268 cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2269 if (!cap->error->gt)
2270 goto err_gpu;
2271
2272 cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2273 if (!cap->error->gt->engine)
2274 goto err_gt;
2275
2276 cap->error->gt->engine->hung = true;
2277
2278 return cap;
2279
2280 err_gt:
2281 kfree(cap->error->gt);
2282 err_gpu:
2283 kfree(cap->error);
2284 err_cap:
2285 kfree(cap);
2286 return NULL;
2287 }
2288
2289 static struct i915_request *
active_context(struct intel_engine_cs * engine,u32 ccid)2290 active_context(struct intel_engine_cs *engine, u32 ccid)
2291 {
2292 const struct intel_engine_execlists * const el = &engine->execlists;
2293 struct i915_request * const *port, *rq;
2294
2295 /*
2296 * Use the most recent result from process_csb(), but just in case
2297 * we trigger an error (via interrupt) before the first CS event has
2298 * been written, peek at the next submission.
2299 */
2300
2301 for (port = el->active; (rq = *port); port++) {
2302 if (rq->context->lrc.ccid == ccid) {
2303 ENGINE_TRACE(engine,
2304 "ccid:%x found at active:%zd\n",
2305 ccid, port - el->active);
2306 return rq;
2307 }
2308 }
2309
2310 for (port = el->pending; (rq = *port); port++) {
2311 if (rq->context->lrc.ccid == ccid) {
2312 ENGINE_TRACE(engine,
2313 "ccid:%x found at pending:%zd\n",
2314 ccid, port - el->pending);
2315 return rq;
2316 }
2317 }
2318
2319 ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2320 return NULL;
2321 }
2322
active_ccid(struct intel_engine_cs * engine)2323 static u32 active_ccid(struct intel_engine_cs *engine)
2324 {
2325 return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2326 }
2327
execlists_capture(struct intel_engine_cs * engine)2328 static void execlists_capture(struct intel_engine_cs *engine)
2329 {
2330 struct drm_i915_private *i915 = engine->i915;
2331 struct execlists_capture *cap;
2332
2333 if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2334 return;
2335
2336 /*
2337 * We need to _quickly_ capture the engine state before we reset.
2338 * We are inside an atomic section (softirq) here and we are delaying
2339 * the forced preemption event.
2340 */
2341 cap = capture_regs(engine);
2342 if (!cap)
2343 return;
2344
2345 spin_lock_irq(&engine->sched_engine->lock);
2346 cap->rq = active_context(engine, active_ccid(engine));
2347 if (cap->rq) {
2348 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2349 cap->rq = i915_request_get_rcu(cap->rq);
2350 }
2351 spin_unlock_irq(&engine->sched_engine->lock);
2352 if (!cap->rq)
2353 goto err_free;
2354
2355 /*
2356 * Remove the request from the execlists queue, and take ownership
2357 * of the request. We pass it to our worker who will _slowly_ compress
2358 * all the pages the _user_ requested for debugging their batch, after
2359 * which we return it to the queue for signaling.
2360 *
2361 * By removing them from the execlists queue, we also remove the
2362 * requests from being processed by __unwind_incomplete_requests()
2363 * during the intel_engine_reset(), and so they will *not* be replayed
2364 * afterwards.
2365 *
2366 * Note that because we have not yet reset the engine at this point,
2367 * it is possible for the request that we have identified as being
2368 * guilty, did in fact complete and we will then hit an arbitration
2369 * point allowing the outstanding preemption to succeed. The likelihood
2370 * of that is very low (as capturing of the engine registers should be
2371 * fast enough to run inside an irq-off atomic section!), so we will
2372 * simply hold that request accountable for being non-preemptible
2373 * long enough to force the reset.
2374 */
2375 if (!execlists_hold(engine, cap->rq))
2376 goto err_rq;
2377
2378 INIT_WORK(&cap->work, execlists_capture_work);
2379 queue_work(i915->unordered_wq, &cap->work);
2380 return;
2381
2382 err_rq:
2383 i915_request_put(cap->rq);
2384 err_free:
2385 i915_gpu_coredump_put(cap->error);
2386 kfree(cap);
2387 }
2388
execlists_reset(struct intel_engine_cs * engine,const char * msg)2389 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2390 {
2391 const unsigned int bit = I915_RESET_ENGINE + engine->id;
2392 unsigned long *lock = &engine->gt->reset.flags;
2393
2394 if (!intel_has_reset_engine(engine->gt))
2395 return;
2396
2397 if (test_and_set_bit(bit, lock))
2398 return;
2399
2400 ENGINE_TRACE(engine, "reset for %s\n", msg);
2401
2402 /* Mark this tasklet as disabled to avoid waiting for it to complete */
2403 tasklet_disable_nosync(&engine->sched_engine->tasklet);
2404
2405 ring_set_paused(engine, 1); /* Freeze the current request in place */
2406 execlists_capture(engine);
2407 intel_engine_reset(engine, msg);
2408
2409 tasklet_enable(&engine->sched_engine->tasklet);
2410 clear_and_wake_up_bit(bit, lock);
2411 }
2412
preempt_timeout(const struct intel_engine_cs * const engine)2413 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2414 {
2415 const struct timer_list *t = &engine->execlists.preempt;
2416
2417 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2418 return false;
2419
2420 if (!timer_expired(t))
2421 return false;
2422
2423 return engine->execlists.pending[0];
2424 }
2425
2426 /*
2427 * Check the unread Context Status Buffers and manage the submission of new
2428 * contexts to the ELSP accordingly.
2429 */
execlists_submission_tasklet(struct tasklet_struct * t)2430 static void execlists_submission_tasklet(struct tasklet_struct *t)
2431 {
2432 struct i915_sched_engine *sched_engine =
2433 from_tasklet(sched_engine, t, tasklet);
2434 struct intel_engine_cs * const engine = sched_engine->private_data;
2435 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2436 struct i915_request **inactive;
2437
2438 rcu_read_lock();
2439 inactive = process_csb(engine, post);
2440 GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2441
2442 if (unlikely(preempt_timeout(engine))) {
2443 const struct i915_request *rq = *engine->execlists.active;
2444
2445 /*
2446 * If after the preempt-timeout expired, we are still on the
2447 * same active request/context as before we initiated the
2448 * preemption, reset the engine.
2449 *
2450 * However, if we have processed a CS event to switch contexts,
2451 * but not yet processed the CS event for the pending
2452 * preemption, reset the timer allowing the new context to
2453 * gracefully exit.
2454 */
2455 cancel_timer(&engine->execlists.preempt);
2456 if (rq == engine->execlists.preempt_target)
2457 engine->execlists.error_interrupt |= ERROR_PREEMPT;
2458 else
2459 set_timer_ms(&engine->execlists.preempt,
2460 active_preempt_timeout(engine, rq));
2461 }
2462
2463 if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2464 const char *msg;
2465
2466 /* Generate the error message in priority wrt to the user! */
2467 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2468 msg = "CS error"; /* thrown by a user payload */
2469 else if (engine->execlists.error_interrupt & ERROR_CSB)
2470 msg = "invalid CSB event";
2471 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2472 msg = "preemption time out";
2473 else
2474 msg = "internal error";
2475
2476 engine->execlists.error_interrupt = 0;
2477 execlists_reset(engine, msg);
2478 }
2479
2480 if (!engine->execlists.pending[0]) {
2481 execlists_dequeue_irq(engine);
2482 start_timeslice(engine);
2483 }
2484
2485 post_process_csb(post, inactive);
2486 rcu_read_unlock();
2487 }
2488
execlists_irq_handler(struct intel_engine_cs * engine,u16 iir)2489 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2490 {
2491 bool tasklet = false;
2492
2493 if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2494 u32 eir;
2495
2496 /* Upper 16b are the enabling mask, rsvd for internal errors */
2497 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2498 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2499
2500 /* Disable the error interrupt until after the reset */
2501 if (likely(eir)) {
2502 ENGINE_WRITE(engine, RING_EMR, ~0u);
2503 ENGINE_WRITE(engine, RING_EIR, eir);
2504 WRITE_ONCE(engine->execlists.error_interrupt, eir);
2505 tasklet = true;
2506 }
2507 }
2508
2509 if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2510 WRITE_ONCE(engine->execlists.yield,
2511 ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2512 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2513 engine->execlists.yield);
2514 if (del_timer(&engine->execlists.timer))
2515 tasklet = true;
2516 }
2517
2518 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2519 tasklet = true;
2520
2521 if (iir & GT_RENDER_USER_INTERRUPT)
2522 intel_engine_signal_breadcrumbs(engine);
2523
2524 if (tasklet)
2525 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2526 }
2527
__execlists_kick(struct intel_engine_execlists * execlists)2528 static void __execlists_kick(struct intel_engine_execlists *execlists)
2529 {
2530 struct intel_engine_cs *engine =
2531 container_of(execlists, typeof(*engine), execlists);
2532
2533 /* Kick the tasklet for some interrupt coalescing and reset handling */
2534 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2535 }
2536
2537 #define execlists_kick(t, member) \
2538 __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2539
execlists_timeslice(struct timer_list * timer)2540 static void execlists_timeslice(struct timer_list *timer)
2541 {
2542 execlists_kick(timer, timer);
2543 }
2544
execlists_preempt(struct timer_list * timer)2545 static void execlists_preempt(struct timer_list *timer)
2546 {
2547 execlists_kick(timer, preempt);
2548 }
2549
queue_request(struct intel_engine_cs * engine,struct i915_request * rq)2550 static void queue_request(struct intel_engine_cs *engine,
2551 struct i915_request *rq)
2552 {
2553 GEM_BUG_ON(!list_empty(&rq->sched.link));
2554 list_add_tail(&rq->sched.link,
2555 i915_sched_lookup_priolist(engine->sched_engine,
2556 rq_prio(rq)));
2557 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2558 }
2559
submit_queue(struct intel_engine_cs * engine,const struct i915_request * rq)2560 static bool submit_queue(struct intel_engine_cs *engine,
2561 const struct i915_request *rq)
2562 {
2563 struct i915_sched_engine *sched_engine = engine->sched_engine;
2564
2565 if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2566 return false;
2567
2568 sched_engine->queue_priority_hint = rq_prio(rq);
2569 return true;
2570 }
2571
ancestor_on_hold(const struct intel_engine_cs * engine,const struct i915_request * rq)2572 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2573 const struct i915_request *rq)
2574 {
2575 GEM_BUG_ON(i915_request_on_hold(rq));
2576 return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2577 }
2578
execlists_submit_request(struct i915_request * request)2579 static void execlists_submit_request(struct i915_request *request)
2580 {
2581 struct intel_engine_cs *engine = request->engine;
2582 unsigned long flags;
2583
2584 /* Will be called from irq-context when using foreign fences. */
2585 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2586
2587 if (unlikely(ancestor_on_hold(engine, request))) {
2588 RQ_TRACE(request, "ancestor on hold\n");
2589 list_add_tail(&request->sched.link,
2590 &engine->sched_engine->hold);
2591 i915_request_set_hold(request);
2592 } else {
2593 queue_request(engine, request);
2594
2595 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2596 GEM_BUG_ON(list_empty(&request->sched.link));
2597
2598 if (submit_queue(engine, request))
2599 __execlists_kick(&engine->execlists);
2600 }
2601
2602 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2603 }
2604
2605 static int
__execlists_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2606 __execlists_context_pre_pin(struct intel_context *ce,
2607 struct intel_engine_cs *engine,
2608 struct i915_gem_ww_ctx *ww, void **vaddr)
2609 {
2610 int err;
2611
2612 err = lrc_pre_pin(ce, engine, ww, vaddr);
2613 if (err)
2614 return err;
2615
2616 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2617 lrc_init_state(ce, engine, *vaddr);
2618
2619 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2620 }
2621
2622 return 0;
2623 }
2624
execlists_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2625 static int execlists_context_pre_pin(struct intel_context *ce,
2626 struct i915_gem_ww_ctx *ww,
2627 void **vaddr)
2628 {
2629 return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2630 }
2631
execlists_context_pin(struct intel_context * ce,void * vaddr)2632 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2633 {
2634 return lrc_pin(ce, ce->engine, vaddr);
2635 }
2636
execlists_context_alloc(struct intel_context * ce)2637 static int execlists_context_alloc(struct intel_context *ce)
2638 {
2639 return lrc_alloc(ce, ce->engine);
2640 }
2641
execlists_context_cancel_request(struct intel_context * ce,struct i915_request * rq)2642 static void execlists_context_cancel_request(struct intel_context *ce,
2643 struct i915_request *rq)
2644 {
2645 struct intel_engine_cs *engine = NULL;
2646
2647 i915_request_active_engine(rq, &engine);
2648
2649 if (engine && intel_engine_pulse(engine))
2650 intel_gt_handle_error(engine->gt, engine->mask, 0,
2651 "request cancellation by %s",
2652 current->comm);
2653 }
2654
2655 static struct intel_context *
execlists_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)2656 execlists_create_parallel(struct intel_engine_cs **engines,
2657 unsigned int num_siblings,
2658 unsigned int width)
2659 {
2660 struct intel_context *parent = NULL, *ce, *err;
2661 int i;
2662
2663 GEM_BUG_ON(num_siblings != 1);
2664
2665 for (i = 0; i < width; ++i) {
2666 ce = intel_context_create(engines[i]);
2667 if (IS_ERR(ce)) {
2668 err = ce;
2669 goto unwind;
2670 }
2671
2672 if (i == 0)
2673 parent = ce;
2674 else
2675 intel_context_bind_parent_child(parent, ce);
2676 }
2677
2678 parent->parallel.fence_context = dma_fence_context_alloc(1);
2679
2680 intel_context_set_nopreempt(parent);
2681 for_each_child(parent, ce)
2682 intel_context_set_nopreempt(ce);
2683
2684 return parent;
2685
2686 unwind:
2687 if (parent)
2688 intel_context_put(parent);
2689 return err;
2690 }
2691
2692 static const struct intel_context_ops execlists_context_ops = {
2693 .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2694
2695 .alloc = execlists_context_alloc,
2696
2697 .cancel_request = execlists_context_cancel_request,
2698
2699 .pre_pin = execlists_context_pre_pin,
2700 .pin = execlists_context_pin,
2701 .unpin = lrc_unpin,
2702 .post_unpin = lrc_post_unpin,
2703
2704 .enter = intel_context_enter_engine,
2705 .exit = intel_context_exit_engine,
2706
2707 .reset = lrc_reset,
2708 .destroy = lrc_destroy,
2709
2710 .create_parallel = execlists_create_parallel,
2711 .create_virtual = execlists_create_virtual,
2712 };
2713
emit_pdps(struct i915_request * rq)2714 static int emit_pdps(struct i915_request *rq)
2715 {
2716 const struct intel_engine_cs * const engine = rq->engine;
2717 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2718 int err, i;
2719 u32 *cs;
2720
2721 GEM_BUG_ON(intel_vgpu_active(rq->i915));
2722
2723 /*
2724 * Beware ye of the dragons, this sequence is magic!
2725 *
2726 * Small changes to this sequence can cause anything from
2727 * GPU hangs to forcewake errors and machine lockups!
2728 */
2729
2730 cs = intel_ring_begin(rq, 2);
2731 if (IS_ERR(cs))
2732 return PTR_ERR(cs);
2733
2734 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2735 *cs++ = MI_NOOP;
2736 intel_ring_advance(rq, cs);
2737
2738 /* Flush any residual operations from the context load */
2739 err = engine->emit_flush(rq, EMIT_FLUSH);
2740 if (err)
2741 return err;
2742
2743 /* Magic required to prevent forcewake errors! */
2744 err = engine->emit_flush(rq, EMIT_INVALIDATE);
2745 if (err)
2746 return err;
2747
2748 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2749 if (IS_ERR(cs))
2750 return PTR_ERR(cs);
2751
2752 /* Ensure the LRI have landed before we invalidate & continue */
2753 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2754 for (i = GEN8_3LVL_PDPES; i--; ) {
2755 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2756 u32 base = engine->mmio_base;
2757
2758 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2759 *cs++ = upper_32_bits(pd_daddr);
2760 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2761 *cs++ = lower_32_bits(pd_daddr);
2762 }
2763 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2764 intel_ring_advance(rq, cs);
2765
2766 intel_ring_advance(rq, cs);
2767
2768 return 0;
2769 }
2770
execlists_request_alloc(struct i915_request * request)2771 static int execlists_request_alloc(struct i915_request *request)
2772 {
2773 int ret;
2774
2775 GEM_BUG_ON(!intel_context_is_pinned(request->context));
2776
2777 /*
2778 * Flush enough space to reduce the likelihood of waiting after
2779 * we start building the request - in which case we will just
2780 * have to repeat work.
2781 */
2782 request->reserved_space += EXECLISTS_REQUEST_SIZE;
2783
2784 /*
2785 * Note that after this point, we have committed to using
2786 * this request as it is being used to both track the
2787 * state of engine initialisation and liveness of the
2788 * golden renderstate above. Think twice before you try
2789 * to cancel/unwind this request now.
2790 */
2791
2792 if (!i915_vm_is_4lvl(request->context->vm)) {
2793 ret = emit_pdps(request);
2794 if (ret)
2795 return ret;
2796 }
2797
2798 /* Unconditionally invalidate GPU caches and TLBs. */
2799 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2800 if (ret)
2801 return ret;
2802
2803 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2804 return 0;
2805 }
2806
reset_csb_pointers(struct intel_engine_cs * engine)2807 static void reset_csb_pointers(struct intel_engine_cs *engine)
2808 {
2809 struct intel_engine_execlists * const execlists = &engine->execlists;
2810 const unsigned int reset_value = execlists->csb_size - 1;
2811
2812 ring_set_paused(engine, 0);
2813
2814 /*
2815 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2816 * Bludgeon them with a mmio update to be sure.
2817 */
2818 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2819 0xffff << 16 | reset_value << 8 | reset_value);
2820 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2821
2822 /*
2823 * After a reset, the HW starts writing into CSB entry [0]. We
2824 * therefore have to set our HEAD pointer back one entry so that
2825 * the *first* entry we check is entry 0. To complicate this further,
2826 * as we don't wait for the first interrupt after reset, we have to
2827 * fake the HW write to point back to the last entry so that our
2828 * inline comparison of our cached head position against the last HW
2829 * write works even before the first interrupt.
2830 */
2831 execlists->csb_head = reset_value;
2832 WRITE_ONCE(*execlists->csb_write, reset_value);
2833 wmb(); /* Make sure this is visible to HW (paranoia?) */
2834
2835 /* Check that the GPU does indeed update the CSB entries! */
2836 memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2837 drm_clflush_virt_range(execlists->csb_status,
2838 execlists->csb_size *
2839 sizeof(execlists->csb_status));
2840
2841 /* Once more for luck and our trusty paranoia */
2842 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2843 0xffff << 16 | reset_value << 8 | reset_value);
2844 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2845
2846 GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2847 }
2848
sanitize_hwsp(struct intel_engine_cs * engine)2849 static void sanitize_hwsp(struct intel_engine_cs *engine)
2850 {
2851 struct intel_timeline *tl;
2852
2853 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2854 intel_timeline_reset_seqno(tl);
2855 }
2856
execlists_sanitize(struct intel_engine_cs * engine)2857 static void execlists_sanitize(struct intel_engine_cs *engine)
2858 {
2859 GEM_BUG_ON(execlists_active(&engine->execlists));
2860
2861 /*
2862 * Poison residual state on resume, in case the suspend didn't!
2863 *
2864 * We have to assume that across suspend/resume (or other loss
2865 * of control) that the contents of our pinned buffers has been
2866 * lost, replaced by garbage. Since this doesn't always happen,
2867 * let's poison such state so that we more quickly spot when
2868 * we falsely assume it has been preserved.
2869 */
2870 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2871 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2872
2873 reset_csb_pointers(engine);
2874
2875 /*
2876 * The kernel_context HWSP is stored in the status_page. As above,
2877 * that may be lost on resume/initialisation, and so we need to
2878 * reset the value in the HWSP.
2879 */
2880 sanitize_hwsp(engine);
2881
2882 /* And scrub the dirty cachelines for the HWSP */
2883 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2884
2885 intel_engine_reset_pinned_contexts(engine);
2886 }
2887
enable_error_interrupt(struct intel_engine_cs * engine)2888 static void enable_error_interrupt(struct intel_engine_cs *engine)
2889 {
2890 u32 status;
2891
2892 engine->execlists.error_interrupt = 0;
2893 ENGINE_WRITE(engine, RING_EMR, ~0u);
2894 ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2895
2896 status = ENGINE_READ(engine, RING_ESR);
2897 if (unlikely(status)) {
2898 drm_err(&engine->i915->drm,
2899 "engine '%s' resumed still in error: %08x\n",
2900 engine->name, status);
2901 intel_gt_reset_engine(engine);
2902 }
2903
2904 /*
2905 * On current gen8+, we have 2 signals to play with
2906 *
2907 * - I915_ERROR_INSTUCTION (bit 0)
2908 *
2909 * Generate an error if the command parser encounters an invalid
2910 * instruction
2911 *
2912 * This is a fatal error.
2913 *
2914 * - CP_PRIV (bit 2)
2915 *
2916 * Generate an error on privilege violation (where the CP replaces
2917 * the instruction with a no-op). This also fires for writes into
2918 * read-only scratch pages.
2919 *
2920 * This is a non-fatal error, parsing continues.
2921 *
2922 * * there are a few others defined for odd HW that we do not use
2923 *
2924 * Since CP_PRIV fires for cases where we have chosen to ignore the
2925 * error (as the HW is validating and suppressing the mistakes), we
2926 * only unmask the instruction error bit.
2927 */
2928 ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2929 }
2930
enable_execlists(struct intel_engine_cs * engine)2931 static void enable_execlists(struct intel_engine_cs *engine)
2932 {
2933 u32 mode;
2934
2935 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2936
2937 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2938
2939 if (GRAPHICS_VER(engine->i915) >= 11)
2940 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2941 else
2942 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2943 ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2944
2945 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2946
2947 ENGINE_WRITE_FW(engine,
2948 RING_HWS_PGA,
2949 i915_ggtt_offset(engine->status_page.vma));
2950 ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2951
2952 enable_error_interrupt(engine);
2953 }
2954
execlists_resume(struct intel_engine_cs * engine)2955 static int execlists_resume(struct intel_engine_cs *engine)
2956 {
2957 intel_mocs_init_engine(engine);
2958 intel_breadcrumbs_reset(engine->breadcrumbs);
2959
2960 enable_execlists(engine);
2961
2962 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2963 xehp_enable_ccs_engines(engine);
2964
2965 return 0;
2966 }
2967
execlists_reset_prepare(struct intel_engine_cs * engine)2968 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2969 {
2970 ENGINE_TRACE(engine, "depth<-%d\n",
2971 atomic_read(&engine->sched_engine->tasklet.count));
2972
2973 /*
2974 * Prevent request submission to the hardware until we have
2975 * completed the reset in i915_gem_reset_finish(). If a request
2976 * is completed by one engine, it may then queue a request
2977 * to a second via its execlists->tasklet *just* as we are
2978 * calling engine->resume() and also writing the ELSP.
2979 * Turning off the execlists->tasklet until the reset is over
2980 * prevents the race.
2981 */
2982 __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2983 GEM_BUG_ON(!reset_in_progress(engine));
2984
2985 /*
2986 * We stop engines, otherwise we might get failed reset and a
2987 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2988 * from system hang if batchbuffer is progressing when
2989 * the reset is issued, regardless of READY_TO_RESET ack.
2990 * Thus assume it is best to stop engines on all gens
2991 * where we have a gpu reset.
2992 *
2993 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2994 *
2995 * FIXME: Wa for more modern gens needs to be validated
2996 */
2997 ring_set_paused(engine, 1);
2998 intel_engine_stop_cs(engine);
2999
3000 /*
3001 * Wa_22011802037: In addition to stopping the cs, we need
3002 * to wait for any pending mi force wakeups
3003 */
3004 if (intel_engine_reset_needs_wa_22011802037(engine->gt))
3005 intel_engine_wait_for_pending_mi_fw(engine);
3006
3007 engine->execlists.reset_ccid = active_ccid(engine);
3008 }
3009
3010 static struct i915_request **
reset_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)3011 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3012 {
3013 struct intel_engine_execlists * const execlists = &engine->execlists;
3014
3015 drm_clflush_virt_range(execlists->csb_write,
3016 sizeof(execlists->csb_write[0]));
3017
3018 inactive = process_csb(engine, inactive); /* drain preemption events */
3019
3020 /* Following the reset, we need to reload the CSB read/write pointers */
3021 reset_csb_pointers(engine);
3022
3023 return inactive;
3024 }
3025
3026 static void
execlists_reset_active(struct intel_engine_cs * engine,bool stalled)3027 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3028 {
3029 struct intel_context *ce;
3030 struct i915_request *rq;
3031 u32 head;
3032
3033 /*
3034 * Save the currently executing context, even if we completed
3035 * its request, it was still running at the time of the
3036 * reset and will have been clobbered.
3037 */
3038 rq = active_context(engine, engine->execlists.reset_ccid);
3039 if (!rq)
3040 return;
3041
3042 ce = rq->context;
3043 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3044
3045 if (__i915_request_is_complete(rq)) {
3046 /* Idle context; tidy up the ring so we can restart afresh */
3047 head = intel_ring_wrap(ce->ring, rq->tail);
3048 goto out_replay;
3049 }
3050
3051 /* We still have requests in-flight; the engine should be active */
3052 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3053
3054 /* Context has requests still in-flight; it should not be idle! */
3055 GEM_BUG_ON(i915_active_is_idle(&ce->active));
3056
3057 rq = active_request(ce->timeline, rq);
3058 head = intel_ring_wrap(ce->ring, rq->head);
3059 GEM_BUG_ON(head == ce->ring->tail);
3060
3061 /*
3062 * If this request hasn't started yet, e.g. it is waiting on a
3063 * semaphore, we need to avoid skipping the request or else we
3064 * break the signaling chain. However, if the context is corrupt
3065 * the request will not restart and we will be stuck with a wedged
3066 * device. It is quite often the case that if we issue a reset
3067 * while the GPU is loading the context image, that the context
3068 * image becomes corrupt.
3069 *
3070 * Otherwise, if we have not started yet, the request should replay
3071 * perfectly and we do not need to flag the result as being erroneous.
3072 */
3073 if (!__i915_request_has_started(rq))
3074 goto out_replay;
3075
3076 /*
3077 * If the request was innocent, we leave the request in the ELSP
3078 * and will try to replay it on restarting. The context image may
3079 * have been corrupted by the reset, in which case we may have
3080 * to service a new GPU hang, but more likely we can continue on
3081 * without impact.
3082 *
3083 * If the request was guilty, we presume the context is corrupt
3084 * and have to at least restore the RING register in the context
3085 * image back to the expected values to skip over the guilty request.
3086 */
3087 __i915_request_reset(rq, stalled);
3088
3089 /*
3090 * We want a simple context + ring to execute the breadcrumb update.
3091 * We cannot rely on the context being intact across the GPU hang,
3092 * so clear it and rebuild just what we need for the breadcrumb.
3093 * All pending requests for this context will be zapped, and any
3094 * future request will be after userspace has had the opportunity
3095 * to recreate its own state.
3096 */
3097 out_replay:
3098 ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3099 head, ce->ring->tail);
3100 lrc_reset_regs(ce, engine);
3101 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3102 }
3103
execlists_reset_csb(struct intel_engine_cs * engine,bool stalled)3104 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3105 {
3106 struct intel_engine_execlists * const execlists = &engine->execlists;
3107 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3108 struct i915_request **inactive;
3109
3110 rcu_read_lock();
3111 inactive = reset_csb(engine, post);
3112
3113 execlists_reset_active(engine, true);
3114
3115 inactive = cancel_port_requests(execlists, inactive);
3116 post_process_csb(post, inactive);
3117 rcu_read_unlock();
3118 }
3119
execlists_reset_rewind(struct intel_engine_cs * engine,bool stalled)3120 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3121 {
3122 unsigned long flags;
3123
3124 ENGINE_TRACE(engine, "\n");
3125
3126 /* Process the csb, find the guilty context and throw away */
3127 execlists_reset_csb(engine, stalled);
3128
3129 /* Push back any incomplete requests for replay after the reset. */
3130 rcu_read_lock();
3131 spin_lock_irqsave(&engine->sched_engine->lock, flags);
3132 __unwind_incomplete_requests(engine);
3133 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3134 rcu_read_unlock();
3135 }
3136
nop_submission_tasklet(struct tasklet_struct * t)3137 static void nop_submission_tasklet(struct tasklet_struct *t)
3138 {
3139 struct i915_sched_engine *sched_engine =
3140 from_tasklet(sched_engine, t, tasklet);
3141 struct intel_engine_cs * const engine = sched_engine->private_data;
3142
3143 /* The driver is wedged; don't process any more events. */
3144 WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3145 }
3146
execlists_reset_cancel(struct intel_engine_cs * engine)3147 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3148 {
3149 struct intel_engine_execlists * const execlists = &engine->execlists;
3150 struct i915_sched_engine * const sched_engine = engine->sched_engine;
3151 struct i915_request *rq, *rn;
3152 struct rb_node *rb;
3153 unsigned long flags;
3154
3155 ENGINE_TRACE(engine, "\n");
3156
3157 /*
3158 * Before we call engine->cancel_requests(), we should have exclusive
3159 * access to the submission state. This is arranged for us by the
3160 * caller disabling the interrupt generation, the tasklet and other
3161 * threads that may then access the same state, giving us a free hand
3162 * to reset state. However, we still need to let lockdep be aware that
3163 * we know this state may be accessed in hardirq context, so we
3164 * disable the irq around this manipulation and we want to keep
3165 * the spinlock focused on its duties and not accidentally conflate
3166 * coverage to the submission's irq state. (Similarly, although we
3167 * shouldn't need to disable irq around the manipulation of the
3168 * submission's irq state, we also wish to remind ourselves that
3169 * it is irq state.)
3170 */
3171 execlists_reset_csb(engine, true);
3172
3173 rcu_read_lock();
3174 spin_lock_irqsave(&engine->sched_engine->lock, flags);
3175
3176 /* Mark all executing requests as skipped. */
3177 list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3178 i915_request_put(i915_request_mark_eio(rq));
3179 intel_engine_signal_breadcrumbs(engine);
3180
3181 /* Flush the queued requests to the timeline list (for retiring). */
3182 while ((rb = rb_first_cached(&sched_engine->queue))) {
3183 struct i915_priolist *p = to_priolist(rb);
3184
3185 priolist_for_each_request_consume(rq, rn, p) {
3186 if (i915_request_mark_eio(rq)) {
3187 __i915_request_submit(rq);
3188 i915_request_put(rq);
3189 }
3190 }
3191
3192 rb_erase_cached(&p->node, &sched_engine->queue);
3193 i915_priolist_free(p);
3194 }
3195
3196 /* On-hold requests will be flushed to timeline upon their release */
3197 list_for_each_entry(rq, &sched_engine->hold, sched.link)
3198 i915_request_put(i915_request_mark_eio(rq));
3199
3200 /* Cancel all attached virtual engines */
3201 while ((rb = rb_first_cached(&execlists->virtual))) {
3202 struct virtual_engine *ve =
3203 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3204
3205 rb_erase_cached(rb, &execlists->virtual);
3206 RB_CLEAR_NODE(rb);
3207
3208 spin_lock(&ve->base.sched_engine->lock);
3209 rq = fetch_and_zero(&ve->request);
3210 if (rq) {
3211 if (i915_request_mark_eio(rq)) {
3212 rq->engine = engine;
3213 __i915_request_submit(rq);
3214 i915_request_put(rq);
3215 }
3216 i915_request_put(rq);
3217
3218 ve->base.sched_engine->queue_priority_hint = INT_MIN;
3219 }
3220 spin_unlock(&ve->base.sched_engine->lock);
3221 }
3222
3223 /* Remaining _unready_ requests will be nop'ed when submitted */
3224
3225 sched_engine->queue_priority_hint = INT_MIN;
3226 sched_engine->queue = RB_ROOT_CACHED;
3227
3228 GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3229 engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3230
3231 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3232 rcu_read_unlock();
3233 }
3234
execlists_reset_finish(struct intel_engine_cs * engine)3235 static void execlists_reset_finish(struct intel_engine_cs *engine)
3236 {
3237 struct intel_engine_execlists * const execlists = &engine->execlists;
3238
3239 /*
3240 * After a GPU reset, we may have requests to replay. Do so now while
3241 * we still have the forcewake to be sure that the GPU is not allowed
3242 * to sleep before we restart and reload a context.
3243 *
3244 * If the GPU reset fails, the engine may still be alive with requests
3245 * inflight. We expect those to complete, or for the device to be
3246 * reset as the next level of recovery, and as a final resort we
3247 * will declare the device wedged.
3248 */
3249 GEM_BUG_ON(!reset_in_progress(engine));
3250
3251 /* And kick in case we missed a new request submission. */
3252 if (__tasklet_enable(&engine->sched_engine->tasklet))
3253 __execlists_kick(execlists);
3254
3255 ENGINE_TRACE(engine, "depth->%d\n",
3256 atomic_read(&engine->sched_engine->tasklet.count));
3257 }
3258
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)3259 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3260 {
3261 ENGINE_WRITE(engine, RING_IMR,
3262 ~(engine->irq_enable_mask | engine->irq_keep_mask));
3263 ENGINE_POSTING_READ(engine, RING_IMR);
3264 }
3265
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)3266 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3267 {
3268 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3269 }
3270
execlists_park(struct intel_engine_cs * engine)3271 static void execlists_park(struct intel_engine_cs *engine)
3272 {
3273 cancel_timer(&engine->execlists.timer);
3274 cancel_timer(&engine->execlists.preempt);
3275
3276 /* Reset upon idling, or we may delay the busy wakeup. */
3277 WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3278 }
3279
add_to_engine(struct i915_request * rq)3280 static void add_to_engine(struct i915_request *rq)
3281 {
3282 lockdep_assert_held(&rq->engine->sched_engine->lock);
3283 list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3284 }
3285
remove_from_engine(struct i915_request * rq)3286 static void remove_from_engine(struct i915_request *rq)
3287 {
3288 struct intel_engine_cs *engine, *locked;
3289
3290 /*
3291 * Virtual engines complicate acquiring the engine timeline lock,
3292 * as their rq->engine pointer is not stable until under that
3293 * engine lock. The simple ploy we use is to take the lock then
3294 * check that the rq still belongs to the newly locked engine.
3295 */
3296 locked = READ_ONCE(rq->engine);
3297 spin_lock_irq(&locked->sched_engine->lock);
3298 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3299 spin_unlock(&locked->sched_engine->lock);
3300 spin_lock(&engine->sched_engine->lock);
3301 locked = engine;
3302 }
3303 list_del_init(&rq->sched.link);
3304
3305 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3306 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3307
3308 /* Prevent further __await_execution() registering a cb, then flush */
3309 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3310
3311 spin_unlock_irq(&locked->sched_engine->lock);
3312
3313 i915_request_notify_execute_cb_imm(rq);
3314 }
3315
can_preempt(struct intel_engine_cs * engine)3316 static bool can_preempt(struct intel_engine_cs *engine)
3317 {
3318 return GRAPHICS_VER(engine->i915) > 8;
3319 }
3320
kick_execlists(const struct i915_request * rq,int prio)3321 static void kick_execlists(const struct i915_request *rq, int prio)
3322 {
3323 struct intel_engine_cs *engine = rq->engine;
3324 struct i915_sched_engine *sched_engine = engine->sched_engine;
3325 const struct i915_request *inflight;
3326
3327 /*
3328 * We only need to kick the tasklet once for the high priority
3329 * new context we add into the queue.
3330 */
3331 if (prio <= sched_engine->queue_priority_hint)
3332 return;
3333
3334 rcu_read_lock();
3335
3336 /* Nothing currently active? We're overdue for a submission! */
3337 inflight = execlists_active(&engine->execlists);
3338 if (!inflight)
3339 goto unlock;
3340
3341 /*
3342 * If we are already the currently executing context, don't
3343 * bother evaluating if we should preempt ourselves.
3344 */
3345 if (inflight->context == rq->context)
3346 goto unlock;
3347
3348 ENGINE_TRACE(engine,
3349 "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3350 prio,
3351 rq->fence.context, rq->fence.seqno,
3352 inflight->fence.context, inflight->fence.seqno,
3353 inflight->sched.attr.priority);
3354
3355 sched_engine->queue_priority_hint = prio;
3356
3357 /*
3358 * Allow preemption of low -> normal -> high, but we do
3359 * not allow low priority tasks to preempt other low priority
3360 * tasks under the impression that latency for low priority
3361 * tasks does not matter (as much as background throughput),
3362 * so kiss.
3363 */
3364 if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3365 tasklet_hi_schedule(&sched_engine->tasklet);
3366
3367 unlock:
3368 rcu_read_unlock();
3369 }
3370
execlists_set_default_submission(struct intel_engine_cs * engine)3371 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3372 {
3373 engine->submit_request = execlists_submit_request;
3374 engine->sched_engine->schedule = i915_schedule;
3375 engine->sched_engine->kick_backend = kick_execlists;
3376 engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3377 }
3378
execlists_shutdown(struct intel_engine_cs * engine)3379 static void execlists_shutdown(struct intel_engine_cs *engine)
3380 {
3381 /* Synchronise with residual timers and any softirq they raise */
3382 del_timer_sync(&engine->execlists.timer);
3383 del_timer_sync(&engine->execlists.preempt);
3384 tasklet_kill(&engine->sched_engine->tasklet);
3385 }
3386
execlists_release(struct intel_engine_cs * engine)3387 static void execlists_release(struct intel_engine_cs *engine)
3388 {
3389 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3390
3391 execlists_shutdown(engine);
3392
3393 intel_engine_cleanup_common(engine);
3394 lrc_fini_wa_ctx(engine);
3395 }
3396
__execlists_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)3397 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3398 ktime_t *now)
3399 {
3400 struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3401 ktime_t total = stats->total;
3402
3403 /*
3404 * If the engine is executing something at the moment
3405 * add it to the total.
3406 */
3407 *now = ktime_get();
3408 if (READ_ONCE(stats->active))
3409 total = ktime_add(total, ktime_sub(*now, stats->start));
3410
3411 return total;
3412 }
3413
execlists_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)3414 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3415 ktime_t *now)
3416 {
3417 struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3418 unsigned int seq;
3419 ktime_t total;
3420
3421 do {
3422 seq = read_seqcount_begin(&stats->lock);
3423 total = __execlists_engine_busyness(engine, now);
3424 } while (read_seqcount_retry(&stats->lock, seq));
3425
3426 return total;
3427 }
3428
3429 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)3430 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3431 {
3432 /* Default vfuncs which can be overridden by each engine. */
3433
3434 engine->resume = execlists_resume;
3435
3436 engine->cops = &execlists_context_ops;
3437 engine->request_alloc = execlists_request_alloc;
3438 engine->add_active_request = add_to_engine;
3439 engine->remove_active_request = remove_from_engine;
3440
3441 engine->reset.prepare = execlists_reset_prepare;
3442 engine->reset.rewind = execlists_reset_rewind;
3443 engine->reset.cancel = execlists_reset_cancel;
3444 engine->reset.finish = execlists_reset_finish;
3445
3446 engine->park = execlists_park;
3447 engine->unpark = NULL;
3448
3449 engine->emit_flush = gen8_emit_flush_xcs;
3450 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3451 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3452 if (GRAPHICS_VER(engine->i915) >= 12) {
3453 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3454 engine->emit_flush = gen12_emit_flush_xcs;
3455 }
3456 engine->set_default_submission = execlists_set_default_submission;
3457
3458 if (GRAPHICS_VER(engine->i915) < 11) {
3459 engine->irq_enable = gen8_logical_ring_enable_irq;
3460 engine->irq_disable = gen8_logical_ring_disable_irq;
3461 } else {
3462 /*
3463 * TODO: On Gen11 interrupt masks need to be clear
3464 * to allow C6 entry. Keep interrupts enabled at
3465 * and take the hit of generating extra interrupts
3466 * until a more refined solution exists.
3467 */
3468 }
3469 intel_engine_set_irq_handler(engine, execlists_irq_handler);
3470
3471 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3472 if (!intel_vgpu_active(engine->i915)) {
3473 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3474 if (can_preempt(engine)) {
3475 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3476 if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3477 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3478 }
3479 }
3480
3481 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
3482 if (intel_engine_has_preemption(engine))
3483 engine->emit_bb_start = xehp_emit_bb_start;
3484 else
3485 engine->emit_bb_start = xehp_emit_bb_start_noarb;
3486 } else {
3487 if (intel_engine_has_preemption(engine))
3488 engine->emit_bb_start = gen8_emit_bb_start;
3489 else
3490 engine->emit_bb_start = gen8_emit_bb_start_noarb;
3491 }
3492
3493 engine->busyness = execlists_engine_busyness;
3494 }
3495
logical_ring_default_irqs(struct intel_engine_cs * engine)3496 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3497 {
3498 unsigned int shift = 0;
3499
3500 if (GRAPHICS_VER(engine->i915) < 11) {
3501 const u8 irq_shifts[] = {
3502 [RCS0] = GEN8_RCS_IRQ_SHIFT,
3503 [BCS0] = GEN8_BCS_IRQ_SHIFT,
3504 [VCS0] = GEN8_VCS0_IRQ_SHIFT,
3505 [VCS1] = GEN8_VCS1_IRQ_SHIFT,
3506 [VECS0] = GEN8_VECS_IRQ_SHIFT,
3507 };
3508
3509 shift = irq_shifts[engine->id];
3510 }
3511
3512 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3513 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3514 engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3515 engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3516 }
3517
rcs_submission_override(struct intel_engine_cs * engine)3518 static void rcs_submission_override(struct intel_engine_cs *engine)
3519 {
3520 switch (GRAPHICS_VER(engine->i915)) {
3521 case 12:
3522 engine->emit_flush = gen12_emit_flush_rcs;
3523 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3524 break;
3525 case 11:
3526 engine->emit_flush = gen11_emit_flush_rcs;
3527 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3528 break;
3529 default:
3530 engine->emit_flush = gen8_emit_flush_rcs;
3531 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3532 break;
3533 }
3534 }
3535
intel_execlists_submission_setup(struct intel_engine_cs * engine)3536 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3537 {
3538 struct intel_engine_execlists * const execlists = &engine->execlists;
3539 struct drm_i915_private *i915 = engine->i915;
3540 struct intel_uncore *uncore = engine->uncore;
3541 u32 base = engine->mmio_base;
3542
3543 tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3544 timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3545 timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3546
3547 logical_ring_default_vfuncs(engine);
3548 logical_ring_default_irqs(engine);
3549
3550 seqcount_init(&engine->stats.execlists.lock);
3551
3552 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3553 rcs_submission_override(engine);
3554
3555 lrc_init_wa_ctx(engine);
3556
3557 if (HAS_LOGICAL_RING_ELSQ(i915)) {
3558 execlists->submit_reg = intel_uncore_regs(uncore) +
3559 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3560 execlists->ctrl_reg = intel_uncore_regs(uncore) +
3561 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3562
3563 engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3564 RING_EXECLIST_CONTROL(engine->mmio_base),
3565 FW_REG_WRITE);
3566 } else {
3567 execlists->submit_reg = intel_uncore_regs(uncore) +
3568 i915_mmio_reg_offset(RING_ELSP(base));
3569 }
3570
3571 execlists->csb_status =
3572 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3573
3574 execlists->csb_write =
3575 &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3576
3577 if (GRAPHICS_VER(i915) < 11)
3578 execlists->csb_size = GEN8_CSB_ENTRIES;
3579 else
3580 execlists->csb_size = GEN11_CSB_ENTRIES;
3581
3582 engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3583 if (GRAPHICS_VER(engine->i915) >= 11 &&
3584 GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 55)) {
3585 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3586 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3587 }
3588
3589 /* Finally, take ownership and responsibility for cleanup! */
3590 engine->sanitize = execlists_sanitize;
3591 engine->release = execlists_release;
3592
3593 return 0;
3594 }
3595
virtual_queue(struct virtual_engine * ve)3596 static struct list_head *virtual_queue(struct virtual_engine *ve)
3597 {
3598 return &ve->base.sched_engine->default_priolist.requests;
3599 }
3600
rcu_virtual_context_destroy(struct work_struct * wrk)3601 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3602 {
3603 struct virtual_engine *ve =
3604 container_of(wrk, typeof(*ve), rcu.work);
3605 unsigned int n;
3606
3607 GEM_BUG_ON(ve->context.inflight);
3608
3609 /* Preempt-to-busy may leave a stale request behind. */
3610 if (unlikely(ve->request)) {
3611 struct i915_request *old;
3612
3613 spin_lock_irq(&ve->base.sched_engine->lock);
3614
3615 old = fetch_and_zero(&ve->request);
3616 if (old) {
3617 GEM_BUG_ON(!__i915_request_is_complete(old));
3618 __i915_request_submit(old);
3619 i915_request_put(old);
3620 }
3621
3622 spin_unlock_irq(&ve->base.sched_engine->lock);
3623 }
3624
3625 /*
3626 * Flush the tasklet in case it is still running on another core.
3627 *
3628 * This needs to be done before we remove ourselves from the siblings'
3629 * rbtrees as in the case it is running in parallel, it may reinsert
3630 * the rb_node into a sibling.
3631 */
3632 tasklet_kill(&ve->base.sched_engine->tasklet);
3633
3634 /* Decouple ourselves from the siblings, no more access allowed. */
3635 for (n = 0; n < ve->num_siblings; n++) {
3636 struct intel_engine_cs *sibling = ve->siblings[n];
3637 struct rb_node *node = &ve->nodes[sibling->id].rb;
3638
3639 if (RB_EMPTY_NODE(node))
3640 continue;
3641
3642 spin_lock_irq(&sibling->sched_engine->lock);
3643
3644 /* Detachment is lazily performed in the sched_engine->tasklet */
3645 if (!RB_EMPTY_NODE(node))
3646 rb_erase_cached(node, &sibling->execlists.virtual);
3647
3648 spin_unlock_irq(&sibling->sched_engine->lock);
3649 }
3650 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3651 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3652
3653 lrc_fini(&ve->context);
3654 intel_context_fini(&ve->context);
3655
3656 if (ve->base.breadcrumbs)
3657 intel_breadcrumbs_put(ve->base.breadcrumbs);
3658 if (ve->base.sched_engine)
3659 i915_sched_engine_put(ve->base.sched_engine);
3660 intel_engine_free_request_pool(&ve->base);
3661
3662 kfree(ve);
3663 }
3664
virtual_context_destroy(struct kref * kref)3665 static void virtual_context_destroy(struct kref *kref)
3666 {
3667 struct virtual_engine *ve =
3668 container_of(kref, typeof(*ve), context.ref);
3669
3670 GEM_BUG_ON(!list_empty(&ve->context.signals));
3671
3672 /*
3673 * When destroying the virtual engine, we have to be aware that
3674 * it may still be in use from an hardirq/softirq context causing
3675 * the resubmission of a completed request (background completion
3676 * due to preempt-to-busy). Before we can free the engine, we need
3677 * to flush the submission code and tasklets that are still potentially
3678 * accessing the engine. Flushing the tasklets requires process context,
3679 * and since we can guard the resubmit onto the engine with an RCU read
3680 * lock, we can delegate the free of the engine to an RCU worker.
3681 */
3682 INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3683 queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu);
3684 }
3685
virtual_engine_initial_hint(struct virtual_engine * ve)3686 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3687 {
3688 int swp;
3689
3690 /*
3691 * Pick a random sibling on starting to help spread the load around.
3692 *
3693 * New contexts are typically created with exactly the same order
3694 * of siblings, and often started in batches. Due to the way we iterate
3695 * the array of sibling when submitting requests, sibling[0] is
3696 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3697 * randomised across the system, we also help spread the load by the
3698 * first engine we inspect being different each time.
3699 *
3700 * NB This does not force us to execute on this engine, it will just
3701 * typically be the first we inspect for submission.
3702 */
3703 swp = get_random_u32_below(ve->num_siblings);
3704 if (swp)
3705 swap(ve->siblings[swp], ve->siblings[0]);
3706 }
3707
virtual_context_alloc(struct intel_context * ce)3708 static int virtual_context_alloc(struct intel_context *ce)
3709 {
3710 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3711
3712 return lrc_alloc(ce, ve->siblings[0]);
3713 }
3714
virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3715 static int virtual_context_pre_pin(struct intel_context *ce,
3716 struct i915_gem_ww_ctx *ww,
3717 void **vaddr)
3718 {
3719 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3720
3721 /* Note: we must use a real engine class for setting up reg state */
3722 return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3723 }
3724
virtual_context_pin(struct intel_context * ce,void * vaddr)3725 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3726 {
3727 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3728
3729 return lrc_pin(ce, ve->siblings[0], vaddr);
3730 }
3731
virtual_context_enter(struct intel_context * ce)3732 static void virtual_context_enter(struct intel_context *ce)
3733 {
3734 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3735 unsigned int n;
3736
3737 for (n = 0; n < ve->num_siblings; n++)
3738 intel_engine_pm_get(ve->siblings[n]);
3739
3740 intel_timeline_enter(ce->timeline);
3741 }
3742
virtual_context_exit(struct intel_context * ce)3743 static void virtual_context_exit(struct intel_context *ce)
3744 {
3745 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3746 unsigned int n;
3747
3748 intel_timeline_exit(ce->timeline);
3749
3750 for (n = 0; n < ve->num_siblings; n++)
3751 intel_engine_pm_put(ve->siblings[n]);
3752 }
3753
3754 static struct intel_engine_cs *
virtual_get_sibling(struct intel_engine_cs * engine,unsigned int sibling)3755 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3756 {
3757 struct virtual_engine *ve = to_virtual_engine(engine);
3758
3759 if (sibling >= ve->num_siblings)
3760 return NULL;
3761
3762 return ve->siblings[sibling];
3763 }
3764
3765 static const struct intel_context_ops virtual_context_ops = {
3766 .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3767
3768 .alloc = virtual_context_alloc,
3769
3770 .cancel_request = execlists_context_cancel_request,
3771
3772 .pre_pin = virtual_context_pre_pin,
3773 .pin = virtual_context_pin,
3774 .unpin = lrc_unpin,
3775 .post_unpin = lrc_post_unpin,
3776
3777 .enter = virtual_context_enter,
3778 .exit = virtual_context_exit,
3779
3780 .destroy = virtual_context_destroy,
3781
3782 .get_sibling = virtual_get_sibling,
3783 };
3784
virtual_submission_mask(struct virtual_engine * ve)3785 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3786 {
3787 struct i915_request *rq;
3788 intel_engine_mask_t mask;
3789
3790 rq = READ_ONCE(ve->request);
3791 if (!rq)
3792 return 0;
3793
3794 /* The rq is ready for submission; rq->execution_mask is now stable. */
3795 mask = rq->execution_mask;
3796 if (unlikely(!mask)) {
3797 /* Invalid selection, submit to a random engine in error */
3798 i915_request_set_error_once(rq, -ENODEV);
3799 mask = ve->siblings[0]->mask;
3800 }
3801
3802 ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3803 rq->fence.context, rq->fence.seqno,
3804 mask, ve->base.sched_engine->queue_priority_hint);
3805
3806 return mask;
3807 }
3808
virtual_submission_tasklet(struct tasklet_struct * t)3809 static void virtual_submission_tasklet(struct tasklet_struct *t)
3810 {
3811 struct i915_sched_engine *sched_engine =
3812 from_tasklet(sched_engine, t, tasklet);
3813 struct virtual_engine * const ve =
3814 (struct virtual_engine *)sched_engine->private_data;
3815 const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3816 intel_engine_mask_t mask;
3817 unsigned int n;
3818
3819 rcu_read_lock();
3820 mask = virtual_submission_mask(ve);
3821 rcu_read_unlock();
3822 if (unlikely(!mask))
3823 return;
3824
3825 for (n = 0; n < ve->num_siblings; n++) {
3826 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3827 struct ve_node * const node = &ve->nodes[sibling->id];
3828 struct rb_node **parent, *rb;
3829 bool first;
3830
3831 if (!READ_ONCE(ve->request))
3832 break; /* already handled by a sibling's tasklet */
3833
3834 spin_lock_irq(&sibling->sched_engine->lock);
3835
3836 if (unlikely(!(mask & sibling->mask))) {
3837 if (!RB_EMPTY_NODE(&node->rb)) {
3838 rb_erase_cached(&node->rb,
3839 &sibling->execlists.virtual);
3840 RB_CLEAR_NODE(&node->rb);
3841 }
3842
3843 goto unlock_engine;
3844 }
3845
3846 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3847 /*
3848 * Cheat and avoid rebalancing the tree if we can
3849 * reuse this node in situ.
3850 */
3851 first = rb_first_cached(&sibling->execlists.virtual) ==
3852 &node->rb;
3853 if (prio == node->prio || (prio > node->prio && first))
3854 goto submit_engine;
3855
3856 rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3857 }
3858
3859 rb = NULL;
3860 first = true;
3861 parent = &sibling->execlists.virtual.rb_root.rb_node;
3862 while (*parent) {
3863 struct ve_node *other;
3864
3865 rb = *parent;
3866 other = rb_entry(rb, typeof(*other), rb);
3867 if (prio > other->prio) {
3868 parent = &rb->rb_left;
3869 } else {
3870 parent = &rb->rb_right;
3871 first = false;
3872 }
3873 }
3874
3875 rb_link_node(&node->rb, rb, parent);
3876 rb_insert_color_cached(&node->rb,
3877 &sibling->execlists.virtual,
3878 first);
3879
3880 submit_engine:
3881 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3882 node->prio = prio;
3883 if (first && prio > sibling->sched_engine->queue_priority_hint)
3884 tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3885
3886 unlock_engine:
3887 spin_unlock_irq(&sibling->sched_engine->lock);
3888
3889 if (intel_context_inflight(&ve->context))
3890 break;
3891 }
3892 }
3893
virtual_submit_request(struct i915_request * rq)3894 static void virtual_submit_request(struct i915_request *rq)
3895 {
3896 struct virtual_engine *ve = to_virtual_engine(rq->engine);
3897 unsigned long flags;
3898
3899 ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3900 rq->fence.context,
3901 rq->fence.seqno);
3902
3903 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3904
3905 spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3906
3907 /* By the time we resubmit a request, it may be completed */
3908 if (__i915_request_is_complete(rq)) {
3909 __i915_request_submit(rq);
3910 goto unlock;
3911 }
3912
3913 if (ve->request) { /* background completion from preempt-to-busy */
3914 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3915 __i915_request_submit(ve->request);
3916 i915_request_put(ve->request);
3917 }
3918
3919 ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3920 ve->request = i915_request_get(rq);
3921
3922 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3923 list_move_tail(&rq->sched.link, virtual_queue(ve));
3924
3925 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3926
3927 unlock:
3928 spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3929 }
3930
3931 static struct intel_context *
execlists_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)3932 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3933 unsigned long flags)
3934 {
3935 struct drm_i915_private *i915 = siblings[0]->i915;
3936 struct virtual_engine *ve;
3937 unsigned int n;
3938 int err;
3939
3940 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3941 if (!ve)
3942 return ERR_PTR(-ENOMEM);
3943
3944 ve->base.i915 = i915;
3945 ve->base.gt = siblings[0]->gt;
3946 ve->base.uncore = siblings[0]->uncore;
3947 ve->base.id = -1;
3948
3949 ve->base.class = OTHER_CLASS;
3950 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3951 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3952 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3953
3954 /*
3955 * The decision on whether to submit a request using semaphores
3956 * depends on the saturated state of the engine. We only compute
3957 * this during HW submission of the request, and we need for this
3958 * state to be globally applied to all requests being submitted
3959 * to this engine. Virtual engines encompass more than one physical
3960 * engine and so we cannot accurately tell in advance if one of those
3961 * engines is already saturated and so cannot afford to use a semaphore
3962 * and be pessimized in priority for doing so -- if we are the only
3963 * context using semaphores after all other clients have stopped, we
3964 * will be starved on the saturated system. Such a global switch for
3965 * semaphores is less than ideal, but alas is the current compromise.
3966 */
3967 ve->base.saturated = ALL_ENGINES;
3968
3969 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3970
3971 intel_engine_init_execlists(&ve->base);
3972
3973 ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3974 if (!ve->base.sched_engine) {
3975 err = -ENOMEM;
3976 goto err_put;
3977 }
3978 ve->base.sched_engine->private_data = &ve->base;
3979
3980 ve->base.cops = &virtual_context_ops;
3981 ve->base.request_alloc = execlists_request_alloc;
3982
3983 ve->base.sched_engine->schedule = i915_schedule;
3984 ve->base.sched_engine->kick_backend = kick_execlists;
3985 ve->base.submit_request = virtual_submit_request;
3986
3987 INIT_LIST_HEAD(virtual_queue(ve));
3988 tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3989
3990 intel_context_init(&ve->context, &ve->base);
3991
3992 ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3993 if (!ve->base.breadcrumbs) {
3994 err = -ENOMEM;
3995 goto err_put;
3996 }
3997
3998 for (n = 0; n < count; n++) {
3999 struct intel_engine_cs *sibling = siblings[n];
4000
4001 GEM_BUG_ON(!is_power_of_2(sibling->mask));
4002 if (sibling->mask & ve->base.mask) {
4003 drm_dbg(&i915->drm,
4004 "duplicate %s entry in load balancer\n",
4005 sibling->name);
4006 err = -EINVAL;
4007 goto err_put;
4008 }
4009
4010 /*
4011 * The virtual engine implementation is tightly coupled to
4012 * the execlists backend -- we push out request directly
4013 * into a tree inside each physical engine. We could support
4014 * layering if we handle cloning of the requests and
4015 * submitting a copy into each backend.
4016 */
4017 if (sibling->sched_engine->tasklet.callback !=
4018 execlists_submission_tasklet) {
4019 err = -ENODEV;
4020 goto err_put;
4021 }
4022
4023 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4024 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4025
4026 ve->siblings[ve->num_siblings++] = sibling;
4027 ve->base.mask |= sibling->mask;
4028 ve->base.logical_mask |= sibling->logical_mask;
4029
4030 /*
4031 * All physical engines must be compatible for their emission
4032 * functions (as we build the instructions during request
4033 * construction and do not alter them before submission
4034 * on the physical engine). We use the engine class as a guide
4035 * here, although that could be refined.
4036 */
4037 if (ve->base.class != OTHER_CLASS) {
4038 if (ve->base.class != sibling->class) {
4039 drm_dbg(&i915->drm,
4040 "invalid mixing of engine class, sibling %d, already %d\n",
4041 sibling->class, ve->base.class);
4042 err = -EINVAL;
4043 goto err_put;
4044 }
4045 continue;
4046 }
4047
4048 ve->base.class = sibling->class;
4049 ve->base.uabi_class = sibling->uabi_class;
4050 snprintf(ve->base.name, sizeof(ve->base.name),
4051 "v%dx%d", ve->base.class, count);
4052 ve->base.context_size = sibling->context_size;
4053
4054 ve->base.add_active_request = sibling->add_active_request;
4055 ve->base.remove_active_request = sibling->remove_active_request;
4056 ve->base.emit_bb_start = sibling->emit_bb_start;
4057 ve->base.emit_flush = sibling->emit_flush;
4058 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4059 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4060 ve->base.emit_fini_breadcrumb_dw =
4061 sibling->emit_fini_breadcrumb_dw;
4062
4063 ve->base.flags = sibling->flags;
4064 }
4065
4066 ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4067
4068 virtual_engine_initial_hint(ve);
4069 return &ve->context;
4070
4071 err_put:
4072 intel_context_put(&ve->context);
4073 return ERR_PTR(err);
4074 }
4075
intel_execlists_show_requests(struct intel_engine_cs * engine,struct drm_printer * m,void (* show_request)(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent),unsigned int max)4076 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4077 struct drm_printer *m,
4078 void (*show_request)(struct drm_printer *m,
4079 const struct i915_request *rq,
4080 const char *prefix,
4081 int indent),
4082 unsigned int max)
4083 {
4084 const struct intel_engine_execlists *execlists = &engine->execlists;
4085 struct i915_sched_engine *sched_engine = engine->sched_engine;
4086 struct i915_request *rq, *last;
4087 unsigned long flags;
4088 unsigned int count;
4089 struct rb_node *rb;
4090
4091 spin_lock_irqsave(&sched_engine->lock, flags);
4092
4093 last = NULL;
4094 count = 0;
4095 list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4096 if (count++ < max - 1)
4097 show_request(m, rq, "\t\t", 0);
4098 else
4099 last = rq;
4100 }
4101 if (last) {
4102 if (count > max) {
4103 drm_printf(m,
4104 "\t\t...skipping %d executing requests...\n",
4105 count - max);
4106 }
4107 show_request(m, last, "\t\t", 0);
4108 }
4109
4110 if (sched_engine->queue_priority_hint != INT_MIN)
4111 drm_printf(m, "\t\tQueue priority hint: %d\n",
4112 READ_ONCE(sched_engine->queue_priority_hint));
4113
4114 last = NULL;
4115 count = 0;
4116 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4117 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4118
4119 priolist_for_each_request(rq, p) {
4120 if (count++ < max - 1)
4121 show_request(m, rq, "\t\t", 0);
4122 else
4123 last = rq;
4124 }
4125 }
4126 if (last) {
4127 if (count > max) {
4128 drm_printf(m,
4129 "\t\t...skipping %d queued requests...\n",
4130 count - max);
4131 }
4132 show_request(m, last, "\t\t", 0);
4133 }
4134
4135 last = NULL;
4136 count = 0;
4137 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4138 struct virtual_engine *ve =
4139 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4140 struct i915_request *rq = READ_ONCE(ve->request);
4141
4142 if (rq) {
4143 if (count++ < max - 1)
4144 show_request(m, rq, "\t\t", 0);
4145 else
4146 last = rq;
4147 }
4148 }
4149 if (last) {
4150 if (count > max) {
4151 drm_printf(m,
4152 "\t\t...skipping %d virtual requests...\n",
4153 count - max);
4154 }
4155 show_request(m, last, "\t\t", 0);
4156 }
4157
4158 spin_unlock_irqrestore(&sched_engine->lock, flags);
4159 }
4160
intel_execlists_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)4161 void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4162 struct i915_request *hung_rq,
4163 struct drm_printer *m)
4164 {
4165 unsigned long flags;
4166
4167 spin_lock_irqsave(&engine->sched_engine->lock, flags);
4168
4169 intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4170
4171 drm_printf(m, "\tOn hold?: %zu\n",
4172 list_count_nodes(&engine->sched_engine->hold));
4173
4174 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4175 }
4176
4177 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4178 #include "selftest_execlists.c"
4179 #endif
4180