1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * CMU-CH Interrupt Block
29 */
30
31 #include <sys/types.h>
32 #include <sys/kmem.h>
33 #include <sys/async.h>
34 #include <sys/systm.h>
35 #include <sys/spl.h>
36 #include <sys/sunddi.h>
37 #include <sys/machsystm.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/pcicmu/pcicmu.h>
40
41 static uint_t pcmu_ib_intr_reset(void *arg);
42
43 extern uint64_t xc_tick_jump_limit;
44
45 void
pcmu_ib_create(pcmu_t * pcmu_p)46 pcmu_ib_create(pcmu_t *pcmu_p)
47 {
48 pcmu_ib_t *pib_p;
49 uintptr_t a;
50 int i;
51
52 /*
53 * Allocate interrupt block state structure and link it to
54 * the pci state structure.
55 */
56 pib_p = kmem_zalloc(sizeof (pcmu_ib_t), KM_SLEEP);
57 pcmu_p->pcmu_ib_p = pib_p;
58 pib_p->pib_pcmu_p = pcmu_p;
59
60 a = pcmu_ib_setup(pib_p);
61
62 /*
63 * Determine virtual addresses of interrupt mapping, clear and diag
64 * registers that have common offsets.
65 */
66 pib_p->pib_intr_retry_timer_reg =
67 (uint64_t *)(a + PCMU_IB_INTR_RETRY_TIMER_OFFSET);
68 pib_p->pib_obio_intr_state_diag_reg =
69 (uint64_t *)(a + PCMU_IB_OBIO_INTR_STATE_DIAG_REG);
70
71 PCMU_DBG2(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip,
72 "pcmu_ib_create: obio_imr=%x, obio_cir=%x\n",
73 pib_p->pib_obio_intr_map_regs, pib_p->pib_obio_clear_intr_regs);
74 PCMU_DBG2(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip,
75 "pcmu_ib_create: retry_timer=%x, obio_diag=%x\n",
76 pib_p->pib_intr_retry_timer_reg,
77 pib_p->pib_obio_intr_state_diag_reg);
78
79 pib_p->pib_ino_lst = (pcmu_ib_ino_info_t *)NULL;
80 mutex_init(&pib_p->pib_intr_lock, NULL, MUTEX_DRIVER, NULL);
81 mutex_init(&pib_p->pib_ino_lst_mutex, NULL, MUTEX_DRIVER, NULL);
82
83 PCMU_DBG1(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip,
84 "pcmu_ib_create: numproxy=%x\n", pcmu_p->pcmu_numproxy);
85 for (i = 1; i <= pcmu_p->pcmu_numproxy; i++) {
86 set_intr_mapping_reg(pcmu_p->pcmu_id,
87 (uint64_t *)pib_p->pib_upa_imr[i - 1], i);
88 }
89
90 pcmu_ib_configure(pib_p);
91 bus_func_register(BF_TYPE_RESINTR, pcmu_ib_intr_reset, pib_p);
92 }
93
94 void
pcmu_ib_destroy(pcmu_t * pcmu_p)95 pcmu_ib_destroy(pcmu_t *pcmu_p)
96 {
97 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p;
98
99 PCMU_DBG0(PCMU_DBG_IB, pcmu_p->pcmu_dip, "pcmu_ib_destroy\n");
100 bus_func_unregister(BF_TYPE_RESINTR, pcmu_ib_intr_reset, pib_p);
101
102 intr_dist_rem_weighted(pcmu_ib_intr_dist_all, pib_p);
103 mutex_destroy(&pib_p->pib_ino_lst_mutex);
104 mutex_destroy(&pib_p->pib_intr_lock);
105
106 pcmu_ib_free_ino_all(pib_p);
107
108 kmem_free(pib_p, sizeof (pcmu_ib_t));
109 pcmu_p->pcmu_ib_p = NULL;
110 }
111
112 void
pcmu_ib_configure(pcmu_ib_t * pib_p)113 pcmu_ib_configure(pcmu_ib_t *pib_p)
114 {
115 *pib_p->pib_intr_retry_timer_reg = pcmu_intr_retry_intv;
116 }
117
118 /*
119 * can only used for CMU-CH internal interrupts ue, pbm
120 */
121 void
pcmu_ib_intr_enable(pcmu_t * pcmu_p,pcmu_ib_ino_t ino)122 pcmu_ib_intr_enable(pcmu_t *pcmu_p, pcmu_ib_ino_t ino)
123 {
124 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p;
125 pcmu_ib_mondo_t mondo = PCMU_IB_INO_TO_MONDO(pib_p, ino);
126 volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino);
127 uint_t cpu_id;
128
129 /*
130 * Determine the cpu for the interrupt.
131 */
132 mutex_enter(&pib_p->pib_intr_lock);
133 cpu_id = intr_dist_cpuid();
134 cpu_id = u2u_translate_tgtid(pcmu_p, cpu_id, imr_p);
135 PCMU_DBG2(PCMU_DBG_IB, pcmu_p->pcmu_dip,
136 "pcmu_ib_intr_enable: ino=%x cpu_id=%x\n", ino, cpu_id);
137
138 *imr_p = ib_get_map_reg(mondo, cpu_id);
139 PCMU_IB_INO_INTR_CLEAR(ib_clear_intr_reg_addr(pib_p, ino));
140 mutex_exit(&pib_p->pib_intr_lock);
141 }
142
143 /*
144 * Disable the interrupt via its interrupt mapping register.
145 * Can only be used for internal interrupts: ue, pbm.
146 * If called under interrupt context, wait should be set to 0
147 */
148 void
pcmu_ib_intr_disable(pcmu_ib_t * pib_p,pcmu_ib_ino_t ino,int wait)149 pcmu_ib_intr_disable(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino, int wait)
150 {
151 volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino);
152 volatile uint64_t *state_reg_p = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino);
153 hrtime_t start_time;
154 hrtime_t prev, curr, interval, jump;
155 hrtime_t intr_timeout;
156
157 /* disable the interrupt */
158 mutex_enter(&pib_p->pib_intr_lock);
159 PCMU_IB_INO_INTR_OFF(imr_p);
160 *imr_p; /* flush previous write */
161 mutex_exit(&pib_p->pib_intr_lock);
162
163 if (!wait)
164 goto wait_done;
165
166 intr_timeout = pcmu_intrpend_timeout;
167 jump = TICK_TO_NSEC(xc_tick_jump_limit);
168 start_time = curr = gethrtime();
169 /* busy wait if there is interrupt being processed */
170 while (PCMU_IB_INO_INTR_PENDING(state_reg_p, ino) && !panicstr) {
171 /*
172 * If we have a really large jump in hrtime, it is most
173 * probably because we entered the debugger (or OBP,
174 * in general). So, we adjust the timeout accordingly
175 * to prevent declaring an interrupt timeout. The
176 * master-interrupt mechanism in OBP should deliver
177 * the interrupts properly.
178 */
179 prev = curr;
180 curr = gethrtime();
181 interval = curr - prev;
182 if (interval > jump)
183 intr_timeout += interval;
184 if (curr - start_time > intr_timeout) {
185 pcmu_pbm_t *pcbm_p = pib_p->pib_pcmu_p->pcmu_pcbm_p;
186 cmn_err(CE_WARN,
187 "%s:%s: pcmu_ib_intr_disable timeout %x",
188 pcbm_p->pcbm_nameinst_str,
189 pcbm_p->pcbm_nameaddr_str, ino);
190 break;
191 }
192 }
193 wait_done:
194 PCMU_IB_INO_INTR_PEND(ib_clear_intr_reg_addr(pib_p, ino));
195 u2u_ittrans_cleanup((u2u_ittrans_data_t *)
196 (PCMU_IB2CB(pib_p)->pcb_ittrans_cookie), imr_p);
197 }
198
199 /* can only used for CMU-CH internal interrupts ue, pbm */
200 void
pcmu_ib_nintr_clear(pcmu_ib_t * pib_p,pcmu_ib_ino_t ino)201 pcmu_ib_nintr_clear(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino)
202 {
203 uint64_t *clr_reg = ib_clear_intr_reg_addr(pib_p, ino);
204 PCMU_IB_INO_INTR_CLEAR(clr_reg);
205 }
206
207 /*
208 * distribute PBM and UPA interrupts. ino is set to 0 by caller if we
209 * are dealing with UPA interrupts (without inos).
210 */
211 void
pcmu_ib_intr_dist_nintr(pcmu_ib_t * pib_p,pcmu_ib_ino_t ino,volatile uint64_t * imr_p)212 pcmu_ib_intr_dist_nintr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino,
213 volatile uint64_t *imr_p)
214 {
215 volatile uint64_t imr = *imr_p;
216 uint32_t cpu_id;
217
218 if (!PCMU_IB_INO_INTR_ISON(imr))
219 return;
220
221 cpu_id = intr_dist_cpuid();
222
223 if (ino) {
224 cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p);
225 }
226
227 if (ib_map_reg_get_cpu(*imr_p) == cpu_id) {
228 return;
229 }
230 *imr_p = ib_get_map_reg(PCMU_IB_IMR2MONDO(imr), cpu_id);
231 imr = *imr_p; /* flush previous write */
232 }
233
234 static void
pcmu_ib_intr_dist(pcmu_ib_t * pib_p,pcmu_ib_ino_info_t * ino_p)235 pcmu_ib_intr_dist(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p)
236 {
237 uint32_t cpu_id = ino_p->pino_cpuid;
238 pcmu_ib_ino_t ino = ino_p->pino_ino;
239 volatile uint64_t imr, *imr_p, *state_reg;
240 hrtime_t start_time;
241 hrtime_t prev, curr, interval, jump;
242 hrtime_t intr_timeout;
243
244 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
245 imr_p = ib_intr_map_reg_addr(pib_p, ino);
246 state_reg = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino);
247
248 /* disable interrupt, this could disrupt devices sharing our slot */
249 PCMU_IB_INO_INTR_OFF(imr_p);
250 imr = *imr_p; /* flush previous write */
251
252 /* busy wait if there is interrupt being processed */
253 intr_timeout = pcmu_intrpend_timeout;
254 jump = TICK_TO_NSEC(xc_tick_jump_limit);
255 start_time = curr = gethrtime();
256 while (PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
257 /*
258 * If we have a really large jump in hrtime, it is most
259 * probably because we entered the debugger (or OBP,
260 * in general). So, we adjust the timeout accordingly
261 * to prevent declaring an interrupt timeout. The
262 * master-interrupt mechanism in OBP should deliver
263 * the interrupts properly.
264 */
265 prev = curr;
266 curr = gethrtime();
267 interval = curr - prev;
268 if (interval > jump)
269 intr_timeout += interval;
270 if (curr - start_time > intr_timeout) {
271 pcmu_pbm_t *pcbm_p = pib_p->pib_pcmu_p->pcmu_pcbm_p;
272 cmn_err(CE_WARN,
273 "%s:%s: pcmu_ib_intr_dist(%p,%x) timeout",
274 pcbm_p->pcbm_nameinst_str,
275 pcbm_p->pcbm_nameaddr_str,
276 (void *)imr_p, PCMU_IB_INO_TO_MONDO(pib_p, ino));
277 break;
278 }
279 }
280 cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p);
281 *imr_p = ib_get_map_reg(PCMU_IB_IMR2MONDO(imr), cpu_id);
282 imr = *imr_p; /* flush previous write */
283 }
284
285 /*
286 * Redistribute interrupts of the specified weight. The first call has a weight
287 * of weight_max, which can be used to trigger initialization for
288 * redistribution. The inos with weight [weight_max, inf.) should be processed
289 * on the "weight == weight_max" call. This first call is followed by calls
290 * of decreasing weights, inos of that weight should be processed. The final
291 * call specifies a weight of zero, this can be used to trigger processing of
292 * stragglers.
293 */
294 void
pcmu_ib_intr_dist_all(void * arg,int32_t weight_max,int32_t weight)295 pcmu_ib_intr_dist_all(void *arg, int32_t weight_max, int32_t weight)
296 {
297 pcmu_ib_t *pib_p = (pcmu_ib_t *)arg;
298 pcmu_ib_ino_info_t *ino_p;
299 ih_t *ih_lst;
300 int32_t dweight;
301 int i;
302
303 mutex_enter(&pib_p->pib_ino_lst_mutex);
304
305 /* Perform special processing for first call of a redistribution. */
306 if (weight == weight_max) {
307 for (ino_p = pib_p->pib_ino_lst; ino_p;
308 ino_p = ino_p->pino_next) {
309
310 /*
311 * Clear pino_established of each ino on first call.
312 * The pino_established field may be used by a pci
313 * nexus driver's pcmu_intr_dist_cpuid implementation
314 * when detection of established pci slot-cpu binding
315 * for multi function pci cards.
316 */
317 ino_p->pino_established = 0;
318
319 /*
320 * recompute the pino_intr_weight based on the device
321 * weight of all devinfo nodes sharing the ino (this
322 * will allow us to pick up new weights established by
323 * i_ddi_set_intr_weight()).
324 */
325 ino_p->pino_intr_weight = 0;
326 for (i = 0, ih_lst = ino_p->pino_ih_head;
327 i < ino_p->pino_ih_size;
328 i++, ih_lst = ih_lst->ih_next) {
329 dweight = i_ddi_get_intr_weight(ih_lst->ih_dip);
330 if (dweight > 0)
331 ino_p->pino_intr_weight += dweight;
332 }
333 }
334 }
335
336 for (ino_p = pib_p->pib_ino_lst; ino_p; ino_p = ino_p->pino_next) {
337 /*
338 * Get the weight of the ino and determine if we are going to
339 * process call. We wait until an pcmu_ib_intr_dist_all call of
340 * the proper weight occurs to support redistribution of all
341 * heavy weighted interrupts first (across all nexus driver
342 * instances). This is done to ensure optimal
343 * INTR_WEIGHTED_DIST behavior.
344 */
345 if ((weight == ino_p->pino_intr_weight) ||
346 ((weight >= weight_max) &&
347 (ino_p->pino_intr_weight >= weight_max))) {
348 /* select cpuid to target and mark ino established */
349 ino_p->pino_cpuid = pcmu_intr_dist_cpuid(pib_p, ino_p);
350 ino_p->pino_established = 1;
351
352 /* Add device weight of ino devinfos to targeted cpu. */
353 for (i = 0, ih_lst = ino_p->pino_ih_head;
354 i < ino_p->pino_ih_size;
355 i++, ih_lst = ih_lst->ih_next) {
356 dweight = i_ddi_get_intr_weight(ih_lst->ih_dip);
357 intr_dist_cpuid_add_device_weight(
358 ino_p->pino_cpuid, ih_lst->ih_dip, dweight);
359 }
360
361 /* program the hardware */
362 pcmu_ib_intr_dist(pib_p, ino_p);
363 }
364 }
365 mutex_exit(&pib_p->pib_ino_lst_mutex);
366 }
367
368 /*
369 * Reset interrupts to IDLE. This function is called during
370 * panic handling after redistributing interrupts; it's needed to
371 * support dumping to network devices after 'sync' from OBP.
372 *
373 * N.B. This routine runs in a context where all other threads
374 * are permanently suspended.
375 */
376 static uint_t
pcmu_ib_intr_reset(void * arg)377 pcmu_ib_intr_reset(void *arg)
378 {
379 pcmu_ib_t *pib_p = (pcmu_ib_t *)arg;
380 pcmu_ib_ino_t ino;
381 uint64_t *clr_reg;
382
383 /*
384 * Note that we only actually care about interrupts that are
385 * potentially from network devices.
386 */
387 for (ino = 0; ino <= pib_p->pib_max_ino; ino++) {
388 clr_reg = ib_clear_intr_reg_addr(pib_p, ino);
389 PCMU_IB_INO_INTR_CLEAR(clr_reg);
390 }
391 return (BF_NONE);
392 }
393
394 void
pcmu_ib_suspend(pcmu_ib_t * pib_p)395 pcmu_ib_suspend(pcmu_ib_t *pib_p)
396 {
397 pcmu_ib_ino_info_t *ip;
398
399 /* save ino_lst interrupts' mapping registers content */
400 mutex_enter(&pib_p->pib_ino_lst_mutex);
401 for (ip = pib_p->pib_ino_lst; ip; ip = ip->pino_next) {
402 ip->pino_map_reg_save = *ip->pino_map_reg;
403 }
404 mutex_exit(&pib_p->pib_ino_lst_mutex);
405 }
406
407 void
pcmu_ib_resume(pcmu_ib_t * pib_p)408 pcmu_ib_resume(pcmu_ib_t *pib_p)
409 {
410 pcmu_ib_ino_info_t *ip;
411
412 /* restore ino_lst interrupts' mapping registers content */
413 mutex_enter(&pib_p->pib_ino_lst_mutex);
414 for (ip = pib_p->pib_ino_lst; ip; ip = ip->pino_next) {
415 PCMU_IB_INO_INTR_CLEAR(ip->pino_clr_reg); /* set intr to idle */
416 *ip->pino_map_reg = ip->pino_map_reg_save; /* restore IMR */
417 }
418 mutex_exit(&pib_p->pib_ino_lst_mutex);
419 }
420
421 /*
422 * locate ino_info structure on pib_p->pib_ino_lst according to ino#
423 * returns NULL if not found.
424 */
425 pcmu_ib_ino_info_t *
pcmu_ib_locate_ino(pcmu_ib_t * pib_p,pcmu_ib_ino_t ino_num)426 pcmu_ib_locate_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino_num)
427 {
428 pcmu_ib_ino_info_t *ino_p = pib_p->pib_ino_lst;
429 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
430
431 for (; ino_p && ino_p->pino_ino != ino_num; ino_p = ino_p->pino_next)
432 ;
433 return (ino_p);
434 }
435
436 #define PCMU_IB_INO_TO_SLOT(ino) \
437 (PCMU_IB_IS_OBIO_INO(ino) ? 0xff : ((ino) & 0x1f) >> 2)
438
439 pcmu_ib_ino_info_t *
pcmu_ib_new_ino(pcmu_ib_t * pib_p,pcmu_ib_ino_t ino_num,ih_t * ih_p)440 pcmu_ib_new_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino_num, ih_t *ih_p)
441 {
442 pcmu_ib_ino_info_t *ino_p = kmem_alloc(sizeof (pcmu_ib_ino_info_t),
443 KM_SLEEP);
444 ino_p->pino_ino = ino_num;
445 ino_p->pino_slot_no = PCMU_IB_INO_TO_SLOT(ino_num);
446 ino_p->pino_ib_p = pib_p;
447 ino_p->pino_clr_reg = ib_clear_intr_reg_addr(pib_p, ino_num);
448 ino_p->pino_map_reg = ib_intr_map_reg_addr(pib_p, ino_num);
449 ino_p->pino_unclaimed = 0;
450
451 /*
452 * cannot disable interrupt since we might share slot
453 * PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg);
454 */
455
456 ih_p->ih_next = ih_p;
457 ino_p->pino_ih_head = ih_p;
458 ino_p->pino_ih_tail = ih_p;
459 ino_p->pino_ih_start = ih_p;
460 ino_p->pino_ih_size = 1;
461
462 ino_p->pino_next = pib_p->pib_ino_lst;
463 pib_p->pib_ino_lst = ino_p;
464 return (ino_p);
465 }
466
467 /* the ino_p is retrieved by previous call to pcmu_ib_locate_ino() */
468 void
pcmu_ib_delete_ino(pcmu_ib_t * pib_p,pcmu_ib_ino_info_t * ino_p)469 pcmu_ib_delete_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p)
470 {
471 pcmu_ib_ino_info_t *list = pib_p->pib_ino_lst;
472 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
473 if (list == ino_p) {
474 pib_p->pib_ino_lst = list->pino_next;
475 } else {
476 for (; list->pino_next != ino_p; list = list->pino_next)
477 ;
478 list->pino_next = ino_p->pino_next;
479 }
480 }
481
482 /* free all ino when we are detaching */
483 void
pcmu_ib_free_ino_all(pcmu_ib_t * pib_p)484 pcmu_ib_free_ino_all(pcmu_ib_t *pib_p)
485 {
486 pcmu_ib_ino_info_t *tmp = pib_p->pib_ino_lst;
487 pcmu_ib_ino_info_t *next = NULL;
488 while (tmp) {
489 next = tmp->pino_next;
490 kmem_free(tmp, sizeof (pcmu_ib_ino_info_t));
491 tmp = next;
492 }
493 }
494
495 void
pcmu_ib_ino_add_intr(pcmu_t * pcmu_p,pcmu_ib_ino_info_t * ino_p,ih_t * ih_p)496 pcmu_ib_ino_add_intr(pcmu_t *pcmu_p, pcmu_ib_ino_info_t *ino_p, ih_t *ih_p)
497 {
498 pcmu_ib_ino_t ino = ino_p->pino_ino;
499 pcmu_ib_t *pib_p = ino_p->pino_ib_p;
500 volatile uint64_t *state_reg = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino);
501 hrtime_t start_time;
502 hrtime_t prev, curr, interval, jump;
503 hrtime_t intr_timeout;
504
505 ASSERT(pib_p == pcmu_p->pcmu_ib_p);
506 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
507
508 /* disable interrupt, this could disrupt devices sharing our slot */
509 PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg);
510 *ino_p->pino_map_reg;
511
512 /* do NOT modify the link list until after the busy wait */
513
514 /*
515 * busy wait if there is interrupt being processed.
516 * either the pending state will be cleared by the interrupt wrapper
517 * or the interrupt will be marked as blocked indicating that it was
518 * jabbering.
519 */
520 intr_timeout = pcmu_intrpend_timeout;
521 jump = TICK_TO_NSEC(xc_tick_jump_limit);
522 start_time = curr = gethrtime();
523 while ((ino_p->pino_unclaimed <= pcmu_unclaimed_intr_max) &&
524 PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
525 /*
526 * If we have a really large jump in hrtime, it is most
527 * probably because we entered the debugger (or OBP,
528 * in general). So, we adjust the timeout accordingly
529 * to prevent declaring an interrupt timeout. The
530 * master-interrupt mechanism in OBP should deliver
531 * the interrupts properly.
532 */
533 prev = curr;
534 curr = gethrtime();
535 interval = curr - prev;
536 if (interval > jump)
537 intr_timeout += interval;
538 if (curr - start_time > intr_timeout) {
539 pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
540 cmn_err(CE_WARN,
541 "%s:%s: pcmu_ib_ino_add_intr %x timeout",
542 pcbm_p->pcbm_nameinst_str,
543 pcbm_p->pcbm_nameaddr_str, ino);
544 break;
545 }
546 }
547
548 /* link up pcmu_ispec_t portion of the ppd */
549 ih_p->ih_next = ino_p->pino_ih_head;
550 ino_p->pino_ih_tail->ih_next = ih_p;
551 ino_p->pino_ih_tail = ih_p;
552
553 ino_p->pino_ih_start = ino_p->pino_ih_head;
554 ino_p->pino_ih_size++;
555
556 /*
557 * if the interrupt was previously blocked (left in pending state)
558 * because of jabber we need to clear the pending state in case the
559 * jabber has gone away.
560 */
561 if (ino_p->pino_unclaimed > pcmu_unclaimed_intr_max) {
562 cmn_err(CE_WARN,
563 "%s%d: pcmu_ib_ino_add_intr: ino 0x%x has been unblocked",
564 ddi_driver_name(pcmu_p->pcmu_dip),
565 ddi_get_instance(pcmu_p->pcmu_dip),
566 ino_p->pino_ino);
567 ino_p->pino_unclaimed = 0;
568 PCMU_IB_INO_INTR_CLEAR(ino_p->pino_clr_reg);
569 }
570
571 /* re-enable interrupt */
572 PCMU_IB_INO_INTR_ON(ino_p->pino_map_reg);
573 *ino_p->pino_map_reg;
574 }
575
576 /*
577 * removes pcmu_ispec_t from the ino's link list.
578 * uses hardware mutex to lock out interrupt threads.
579 * Side effects: interrupt belongs to that ino is turned off on return.
580 * if we are sharing PCI slot with other inos, the caller needs
581 * to turn it back on.
582 */
583 int
pcmu_ib_ino_rem_intr(pcmu_t * pcmu_p,pcmu_ib_ino_info_t * ino_p,ih_t * ih_p)584 pcmu_ib_ino_rem_intr(pcmu_t *pcmu_p, pcmu_ib_ino_info_t *ino_p, ih_t *ih_p)
585 {
586 int i;
587 pcmu_ib_ino_t ino = ino_p->pino_ino;
588 ih_t *ih_lst = ino_p->pino_ih_head;
589 volatile uint64_t *state_reg =
590 PCMU_IB_INO_INTR_STATE_REG(ino_p->pino_ib_p, ino);
591 hrtime_t start_time;
592 hrtime_t prev, curr, interval, jump;
593 hrtime_t intr_timeout;
594
595 ASSERT(MUTEX_HELD(&ino_p->pino_ib_p->pib_ino_lst_mutex));
596 /* disable interrupt, this could disrupt devices sharing our slot */
597 PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg);
598 *ino_p->pino_map_reg;
599
600 /* do NOT modify the link list until after the busy wait */
601
602 /*
603 * busy wait if there is interrupt being processed.
604 * either the pending state will be cleared by the interrupt wrapper
605 * or the interrupt will be marked as blocked indicating that it was
606 * jabbering.
607 */
608 intr_timeout = pcmu_intrpend_timeout;
609 jump = TICK_TO_NSEC(xc_tick_jump_limit);
610 start_time = curr = gethrtime();
611 while ((ino_p->pino_unclaimed <= pcmu_unclaimed_intr_max) &&
612 PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
613 /*
614 * If we have a really large jump in hrtime, it is most
615 * probably because we entered the debugger (or OBP,
616 * in general). So, we adjust the timeout accordingly
617 * to prevent declaring an interrupt timeout. The
618 * master-interrupt mechanism in OBP should deliver
619 * the interrupts properly.
620 */
621 prev = curr;
622 curr = gethrtime();
623 interval = curr - prev;
624 if (interval > jump)
625 intr_timeout += interval;
626 if (curr - start_time > intr_timeout) {
627 pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
628 cmn_err(CE_WARN,
629 "%s:%s: pcmu_ib_ino_rem_intr %x timeout",
630 pcbm_p->pcbm_nameinst_str,
631 pcbm_p->pcbm_nameaddr_str, ino);
632 PCMU_IB_INO_INTR_ON(ino_p->pino_map_reg);
633 *ino_p->pino_map_reg;
634 return (DDI_FAILURE);
635 }
636 }
637
638 if (ino_p->pino_ih_size == 1) {
639 if (ih_lst != ih_p)
640 goto not_found;
641 /* no need to set head/tail as ino_p will be freed */
642 goto reset;
643 }
644
645 /*
646 * if the interrupt was previously blocked (left in pending state)
647 * because of jabber we need to clear the pending state in case the
648 * jabber has gone away.
649 */
650 if (ino_p->pino_unclaimed > pcmu_unclaimed_intr_max) {
651 cmn_err(CE_WARN,
652 "%s%d: pcmu_ib_ino_rem_intr: ino 0x%x has been unblocked",
653 ddi_driver_name(pcmu_p->pcmu_dip),
654 ddi_get_instance(pcmu_p->pcmu_dip),
655 ino_p->pino_ino);
656 ino_p->pino_unclaimed = 0;
657 PCMU_IB_INO_INTR_CLEAR(ino_p->pino_clr_reg);
658 }
659
660 /* search the link list for ih_p */
661 for (i = 0; (i < ino_p->pino_ih_size) && (ih_lst->ih_next != ih_p);
662 i++, ih_lst = ih_lst->ih_next)
663 ;
664 if (ih_lst->ih_next != ih_p) {
665 goto not_found;
666 }
667
668 /* remove ih_p from the link list and maintain the head/tail */
669 ih_lst->ih_next = ih_p->ih_next;
670 if (ino_p->pino_ih_head == ih_p) {
671 ino_p->pino_ih_head = ih_p->ih_next;
672 }
673 if (ino_p->pino_ih_tail == ih_p) {
674 ino_p->pino_ih_tail = ih_lst;
675 }
676 ino_p->pino_ih_start = ino_p->pino_ih_head;
677 reset:
678 if (ih_p->ih_config_handle) {
679 pci_config_teardown(&ih_p->ih_config_handle);
680 }
681 kmem_free(ih_p, sizeof (ih_t));
682 ino_p->pino_ih_size--;
683
684 return (DDI_SUCCESS);
685 not_found:
686 PCMU_DBG2(PCMU_DBG_R_INTX, ino_p->pino_ib_p->pib_pcmu_p->pcmu_dip,
687 "ino_p=%x does not have ih_p=%x\n", ino_p, ih_p);
688 return (DDI_SUCCESS);
689 }
690
691 ih_t *
pcmu_ib_ino_locate_intr(pcmu_ib_ino_info_t * ino_p,dev_info_t * rdip,uint32_t inum)692 pcmu_ib_ino_locate_intr(pcmu_ib_ino_info_t *ino_p,
693 dev_info_t *rdip, uint32_t inum)
694 {
695 ih_t *ih_lst = ino_p->pino_ih_head;
696 int i;
697 for (i = 0; i < ino_p->pino_ih_size; i++, ih_lst = ih_lst->ih_next) {
698 if (ih_lst->ih_dip == rdip && ih_lst->ih_inum == inum) {
699 return (ih_lst);
700 }
701 }
702 return ((ih_t *)NULL);
703 }
704
705 ih_t *
pcmu_ib_alloc_ih(dev_info_t * rdip,uint32_t inum,uint_t (* int_handler)(caddr_t int_handler_arg1,caddr_t int_handler_arg2),caddr_t int_handler_arg1,caddr_t int_handler_arg2)706 pcmu_ib_alloc_ih(dev_info_t *rdip, uint32_t inum,
707 uint_t (*int_handler)(caddr_t int_handler_arg1, caddr_t int_handler_arg2),
708 caddr_t int_handler_arg1,
709 caddr_t int_handler_arg2)
710 {
711 ih_t *ih_p;
712
713 ih_p = kmem_alloc(sizeof (ih_t), KM_SLEEP);
714 ih_p->ih_dip = rdip;
715 ih_p->ih_inum = inum;
716 ih_p->ih_intr_state = PCMU_INTR_STATE_DISABLE;
717 ih_p->ih_handler = int_handler;
718 ih_p->ih_handler_arg1 = int_handler_arg1;
719 ih_p->ih_handler_arg2 = int_handler_arg2;
720 ih_p->ih_config_handle = NULL;
721 return (ih_p);
722 }
723
724 int
pcmu_ib_update_intr_state(pcmu_t * pcmu_p,dev_info_t * rdip,ddi_intr_handle_impl_t * hdlp,uint_t new_intr_state)725 pcmu_ib_update_intr_state(pcmu_t *pcmu_p, dev_info_t *rdip,
726 ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state)
727 {
728 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p;
729 pcmu_ib_ino_info_t *ino_p;
730 pcmu_ib_mondo_t mondo;
731 ih_t *ih_p;
732 int ret = DDI_FAILURE;
733
734 mutex_enter(&pib_p->pib_ino_lst_mutex);
735
736 if ((mondo = PCMU_IB_INO_TO_MONDO(pcmu_p->pcmu_ib_p,
737 PCMU_IB_MONDO_TO_INO((int32_t)hdlp->ih_vector))) == 0) {
738 mutex_exit(&pib_p->pib_ino_lst_mutex);
739 return (ret);
740 }
741
742 if (ino_p = pcmu_ib_locate_ino(pib_p, PCMU_IB_MONDO_TO_INO(mondo))) {
743 if (ih_p = pcmu_ib_ino_locate_intr(ino_p,
744 rdip, hdlp->ih_inum)) {
745 ih_p->ih_intr_state = new_intr_state;
746 ret = DDI_SUCCESS;
747 }
748 }
749 mutex_exit(&pib_p->pib_ino_lst_mutex);
750 return (ret);
751 }
752