xref: /freebsd/sys/dev/sound/pci/csa.c (revision a17a41ffde0d1c579dcd7cef7900c3b44be0ec81)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1999 Seigo Tanimura
5  * All rights reserved.
6  *
7  * Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
8  * cwcealdr1.zip, the sample sources by Crystal Semiconductor.
9  * Copyright (c) 1996-1998 Crystal Semiconductor Corp.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <machine/resource.h>
40 #include <machine/bus.h>
41 #include <sys/rman.h>
42 
43 #ifdef HAVE_KERNEL_OPTION_HEADERS
44 #include "opt_snd.h"
45 #endif
46 
47 #include <dev/sound/pcm/sound.h>
48 #include <dev/sound/pci/csareg.h>
49 #include <dev/sound/pci/csavar.h>
50 
51 #include <dev/pci/pcireg.h>
52 #include <dev/pci/pcivar.h>
53 
54 #include <dev/sound/pci/cs461x_dsp.h>
55 
56 /* This is the pci device id. */
57 #define CS4610_PCI_ID 0x60011013
58 #define CS4614_PCI_ID 0x60031013
59 #define CS4615_PCI_ID 0x60041013
60 
61 /* Here is the parameter structure per a device. */
62 struct csa_softc {
63 	device_t dev; /* device */
64 	csa_res res; /* resources */
65 
66 	device_t pcm; /* pcm device */
67 	driver_intr_t* pcmintr; /* pcm intr */
68 	void *pcmintr_arg; /* pcm intr arg */
69 	device_t midi; /* midi device */
70 	driver_intr_t* midiintr; /* midi intr */
71 	void *midiintr_arg; /* midi intr arg */
72 	void *ih; /* cookie */
73 
74 	struct csa_card *card;
75 	struct csa_bridgeinfo binfo; /* The state of this bridge. */
76 };
77 
78 typedef struct csa_softc *sc_p;
79 
80 static int csa_probe(device_t dev);
81 static int csa_attach(device_t dev);
82 static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
83 					      rman_res_t start, rman_res_t end,
84 					      rman_res_t count, u_int flags);
85 static int csa_release_resource(device_t bus, device_t child, struct resource *r);
86 static int csa_setup_intr(device_t bus, device_t child,
87 			  struct resource *irq, int flags,
88 			  driver_filter_t *filter,
89 			  driver_intr_t *intr,  void *arg, void **cookiep);
90 static int csa_teardown_intr(device_t bus, device_t child,
91 			     struct resource *irq, void *cookie);
92 static driver_intr_t csa_intr;
93 static int csa_initialize(sc_p scp);
94 static int csa_downloadimage(csa_res *resp);
95 static int csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len);
96 
97 static void
amp_none(void)98 amp_none(void)
99 {
100 }
101 
102 static void
amp_voyetra(void)103 amp_voyetra(void)
104 {
105 }
106 
107 static int
clkrun_hack(int run)108 clkrun_hack(int run)
109 {
110 #ifdef __i386__
111 	device_t		child;
112 	int			port;
113 	u_int16_t		control;
114 	bus_space_tag_t		btag;
115 
116 	child = pci_find_device(0x8086, 0x7113);
117 	if (child == NULL)
118 		return (ENXIO);
119 
120 	port = (pci_read_config(child, 0x41, 1) << 8) + 0x10;
121 	/* XXX */
122 	btag = X86_BUS_SPACE_IO;
123 
124 	control = bus_space_read_2(btag, 0x0, port);
125 	control &= ~0x2000;
126 	control |= run? 0 : 0x2000;
127 	bus_space_write_2(btag, 0x0, port, control);
128 #endif
129 	return (0);
130 }
131 
132 static struct csa_card cards_4610[] = {
133 	{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
134 };
135 
136 static struct csa_card cards_4614[] = {
137 	{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
138 	{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
139 	{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
140 	{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
141 	{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
142 	{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
143 	{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
144 	{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
145 	{0x153b, 0x1136, "Terratec SiXPack 5.1+", NULL, NULL, NULL, 0},
146 	{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
147 };
148 
149 static struct csa_card cards_4615[] = {
150 	{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
151 };
152 
153 static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
154 
155 struct card_type {
156 	u_int32_t devid;
157 	char *name;
158 	struct csa_card *cards;
159 };
160 
161 static struct card_type cards[] = {
162 	{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
163 	{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
164 	{CS4615_PCI_ID, "CS4615", cards_4615},
165 	{0, NULL, NULL},
166 };
167 
168 static struct card_type *
csa_findcard(device_t dev)169 csa_findcard(device_t dev)
170 {
171 	int i;
172 
173 	i = 0;
174 	while (cards[i].devid != 0) {
175 		if (pci_get_devid(dev) == cards[i].devid)
176 			return &cards[i];
177 		i++;
178 	}
179 	return NULL;
180 }
181 
182 struct csa_card *
csa_findsubcard(device_t dev)183 csa_findsubcard(device_t dev)
184 {
185 	int i;
186 	struct card_type *card;
187 	struct csa_card *subcard;
188 
189 	card = csa_findcard(dev);
190 	if (card == NULL)
191 		return &nocard;
192 	subcard = card->cards;
193 	i = 0;
194 	while (subcard[i].subvendor != 0) {
195 		if (pci_get_subvendor(dev) == subcard[i].subvendor
196 		    && pci_get_subdevice(dev) == subcard[i].subdevice) {
197 			return &subcard[i];
198 		}
199 		i++;
200 	}
201 	return &subcard[i];
202 }
203 
204 static int
csa_probe(device_t dev)205 csa_probe(device_t dev)
206 {
207 	struct card_type *card;
208 
209 	card = csa_findcard(dev);
210 	if (card) {
211 		device_set_desc(dev, card->name);
212 		return BUS_PROBE_DEFAULT;
213 	}
214 	return ENXIO;
215 }
216 
217 static int
csa_attach(device_t dev)218 csa_attach(device_t dev)
219 {
220 	sc_p scp;
221 	csa_res *resp;
222 	struct sndcard_func *func;
223 	int error = ENXIO;
224 
225 	scp = device_get_softc(dev);
226 
227 	/* Fill in the softc. */
228 	bzero(scp, sizeof(*scp));
229 	scp->dev = dev;
230 
231 	pci_enable_busmaster(dev);
232 
233 	/* Allocate the resources. */
234 	resp = &scp->res;
235 	scp->card = csa_findsubcard(dev);
236 	scp->binfo.card = scp->card;
237 	printf("csa: card is %s\n", scp->card->name);
238 	resp->io_rid = PCIR_BAR(0);
239 	resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
240 		&resp->io_rid, RF_ACTIVE);
241 	if (resp->io == NULL)
242 		return (ENXIO);
243 	resp->mem_rid = PCIR_BAR(1);
244 	resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
245 		&resp->mem_rid, RF_ACTIVE);
246 	if (resp->mem == NULL)
247 		goto err_io;
248 	resp->irq_rid = 0;
249 	resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
250 		&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
251 	if (resp->irq == NULL)
252 		goto err_mem;
253 
254 	/* Enable interrupt. */
255 	if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
256 		goto err_intr;
257 #if 0
258 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
259 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
260 #endif
261 
262 	/* Initialize the chip. */
263 	if (csa_initialize(scp))
264 		goto err_teardown;
265 
266 	/* Reset the Processor. */
267 	csa_resetdsp(resp);
268 
269 	/* Download the Processor Image to the processor. */
270 	if (csa_downloadimage(resp))
271 		goto err_teardown;
272 
273 	/* Attach the children. */
274 
275 	/* PCM Audio */
276 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_WAITOK | M_ZERO);
277 	func->varinfo = &scp->binfo;
278 	func->func = SCF_PCM;
279 	scp->pcm = device_add_child(dev, "pcm", DEVICE_UNIT_ANY);
280 	device_set_ivars(scp->pcm, func);
281 
282 	/* Midi Interface */
283 	func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_WAITOK | M_ZERO);
284 	func->varinfo = &scp->binfo;
285 	func->func = SCF_MIDI;
286 	scp->midi = device_add_child(dev, "midi", DEVICE_UNIT_ANY);
287 	device_set_ivars(scp->midi, func);
288 
289 	bus_generic_attach(dev);
290 
291 	return (0);
292 
293 err_teardown:
294 	bus_teardown_intr(dev, resp->irq, scp->ih);
295 err_intr:
296 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
297 err_mem:
298 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
299 err_io:
300 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
301 	return (error);
302 }
303 
304 static void
csa_child_deleted(device_t dev,device_t child)305 csa_child_deleted(device_t dev, device_t child)
306 {
307 	free(device_get_ivars(child), M_DEVBUF);
308 }
309 
310 static int
csa_detach(device_t dev)311 csa_detach(device_t dev)
312 {
313 	csa_res *resp;
314 	sc_p scp;
315 	int err;
316 
317 	scp = device_get_softc(dev);
318 	resp = &scp->res;
319 
320 	if (scp->midi != NULL) {
321 		err = device_delete_child(dev, scp->midi);
322 		if (err != 0)
323 			return err;
324 		scp->midi = NULL;
325 	}
326 
327 	if (scp->pcm != NULL) {
328 		err = device_delete_child(dev, scp->pcm);
329 		if (err != 0)
330 			return err;
331 		scp->pcm = NULL;
332 	}
333 
334 	bus_teardown_intr(dev, resp->irq, scp->ih);
335 	bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
336 	bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
337 	bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
338 
339 	return bus_generic_detach(dev);
340 }
341 
342 static int
csa_resume(device_t dev)343 csa_resume(device_t dev)
344 {
345 	csa_res *resp;
346 	sc_p scp;
347 
348 	scp = device_get_softc(dev);
349 	resp = &scp->res;
350 
351 	/* Initialize the chip. */
352 	if (csa_initialize(scp))
353 		return (ENXIO);
354 
355 	/* Reset the Processor. */
356 	csa_resetdsp(resp);
357 
358 	/* Download the Processor Image to the processor. */
359 	if (csa_downloadimage(resp))
360 		return (ENXIO);
361 
362 	return (bus_generic_resume(dev));
363 }
364 
365 static struct resource *
csa_alloc_resource(device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)366 csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
367 		   rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
368 {
369 	sc_p scp;
370 	csa_res *resp;
371 	struct resource *res;
372 
373 	scp = device_get_softc(bus);
374 	resp = &scp->res;
375 	switch (type) {
376 	case SYS_RES_IRQ:
377 		if (*rid != 0)
378 			return (NULL);
379 		res = resp->irq;
380 		break;
381 	case SYS_RES_MEMORY:
382 		switch (*rid) {
383 		case PCIR_BAR(0):
384 			res = resp->io;
385 			break;
386 		case PCIR_BAR(1):
387 			res = resp->mem;
388 			break;
389 		default:
390 			return (NULL);
391 		}
392 		break;
393 	default:
394 		return (NULL);
395 	}
396 
397 	return res;
398 }
399 
400 static int
csa_release_resource(device_t bus,device_t child,struct resource * r)401 csa_release_resource(device_t bus, device_t child, struct resource *r)
402 {
403 	return (0);
404 }
405 
406 /*
407  * The following three functions deal with interrupt handling.
408  * An interrupt is primarily handled by the bridge driver.
409  * The bridge driver then determines the child devices to pass
410  * the interrupt. Certain information of the device can be read
411  * only once(eg the value of HISR). The bridge driver is responsible
412  * to pass such the information to the children.
413  */
414 
415 static int
csa_setup_intr(device_t bus,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)416 csa_setup_intr(device_t bus, device_t child,
417 	       struct resource *irq, int flags,
418 	       driver_filter_t *filter,
419 	       driver_intr_t *intr, void *arg, void **cookiep)
420 {
421 	sc_p scp;
422 	csa_res *resp;
423 	struct sndcard_func *func;
424 
425 	if (filter != NULL) {
426 		printf("ata-csa.c: we cannot use a filter here\n");
427 		return (EINVAL);
428 	}
429 	scp = device_get_softc(bus);
430 	resp = &scp->res;
431 
432 	/*
433 	 * Look at the function code of the child to determine
434 	 * the appropriate handler for it.
435 	 */
436 	func = device_get_ivars(child);
437 	if (func == NULL || irq != resp->irq)
438 		return (EINVAL);
439 
440 	switch (func->func) {
441 	case SCF_PCM:
442 		scp->pcmintr = intr;
443 		scp->pcmintr_arg = arg;
444 		break;
445 
446 	case SCF_MIDI:
447 		scp->midiintr = intr;
448 		scp->midiintr_arg = arg;
449 		break;
450 
451 	default:
452 		return (EINVAL);
453 	}
454 	*cookiep = scp;
455 	if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
456 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
457 
458 	return (0);
459 }
460 
461 static int
csa_teardown_intr(device_t bus,device_t child,struct resource * irq,void * cookie)462 csa_teardown_intr(device_t bus, device_t child,
463 		  struct resource *irq, void *cookie)
464 {
465 	sc_p scp;
466 	csa_res *resp;
467 	struct sndcard_func *func;
468 
469 	scp = device_get_softc(bus);
470 	resp = &scp->res;
471 
472 	/*
473 	 * Look at the function code of the child to determine
474 	 * the appropriate handler for it.
475 	 */
476 	func = device_get_ivars(child);
477 	if (func == NULL || irq != resp->irq || cookie != scp)
478 		return (EINVAL);
479 
480 	switch (func->func) {
481 	case SCF_PCM:
482 		scp->pcmintr = NULL;
483 		scp->pcmintr_arg = NULL;
484 		break;
485 
486 	case SCF_MIDI:
487 		scp->midiintr = NULL;
488 		scp->midiintr_arg = NULL;
489 		break;
490 
491 	default:
492 		return (EINVAL);
493 	}
494 
495 	return (0);
496 }
497 
498 /* The interrupt handler */
499 static void
csa_intr(void * arg)500 csa_intr(void *arg)
501 {
502 	sc_p scp = arg;
503 	csa_res *resp;
504 	u_int32_t hisr;
505 
506 	resp = &scp->res;
507 
508 	/* Is this interrupt for us? */
509 	hisr = csa_readio(resp, BA0_HISR);
510 	if ((hisr & 0x7fffffff) == 0) {
511 		/* Throw an eoi. */
512 		csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
513 		return;
514 	}
515 
516 	/*
517 	 * Pass the value of HISR via struct csa_bridgeinfo.
518 	 * The children get access through their ivars.
519 	 */
520 	scp->binfo.hisr = hisr;
521 
522 	/* Invoke the handlers of the children. */
523 	if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
524 		scp->pcmintr(scp->pcmintr_arg);
525 		hisr &= ~(HISR_VC0 | HISR_VC1);
526 	}
527 	if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
528 		scp->midiintr(scp->midiintr_arg);
529 		hisr &= ~HISR_MIDI;
530 	}
531 
532 	/* Throw an eoi. */
533 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
534 }
535 
536 static int
csa_initialize(sc_p scp)537 csa_initialize(sc_p scp)
538 {
539 	int i;
540 	u_int32_t acsts, acisv;
541 	csa_res *resp;
542 
543 	resp = &scp->res;
544 
545 	/*
546 	 * First, blast the clock control register to zero so that the PLL starts
547 	 * out in a known state, and blast the master serial port control register
548 	 * to zero so that the serial ports also start out in a known state.
549 	 */
550 	csa_writeio(resp, BA0_CLKCR1, 0);
551 	csa_writeio(resp, BA0_SERMC1, 0);
552 
553 	/*
554 	 * If we are in AC97 mode, then we must set the part to a host controlled
555 	 * AC-link.  Otherwise, we won't be able to bring up the link.
556 	 */
557 #if 1
558 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
559 #else
560 	csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
561 #endif /* 1 */
562 
563 	/*
564 	 * Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
565 	 * spec) and then drive it high.  This is done for non AC97 modes since
566 	 * there might be logic external to the CS461x that uses the ARST# line
567 	 * for a reset.
568 	 */
569 	csa_writeio(resp, BA0_ACCTL, 1);
570 	DELAY(50);
571 	csa_writeio(resp, BA0_ACCTL, 0);
572 	DELAY(50);
573 	csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
574 
575 	/*
576 	 * The first thing we do here is to enable sync generation.  As soon
577 	 * as we start receiving bit clock, we'll start producing the SYNC
578 	 * signal.
579 	 */
580 	csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
581 
582 	/*
583 	 * Now wait for a short while to allow the AC97 part to start
584 	 * generating bit clock (so we don't try to start the PLL without an
585 	 * input clock).
586 	 */
587 	DELAY(50000);
588 
589 	/*
590 	 * Set the serial port timing configuration, so that
591 	 * the clock control circuit gets its clock from the correct place.
592 	 */
593 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
594 	DELAY(700000);
595 
596 	/*
597 	 * Write the selected clock control setup to the hardware.  Do not turn on
598 	 * SWCE yet (if requested), so that the devices clocked by the output of
599 	 * PLL are not clocked until the PLL is stable.
600 	 */
601 	csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
602 	csa_writeio(resp, BA0_PLLM, 0x3a);
603 	csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
604 
605 	/*
606 	 * Power up the PLL.
607 	 */
608 	csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
609 
610 	/*
611 	 * Wait until the PLL has stabilized.
612 	 */
613 	DELAY(5000);
614 
615 	/*
616 	 * Turn on clocking of the core so that we can setup the serial ports.
617 	 */
618 	csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
619 
620 	/*
621 	 * Fill the serial port FIFOs with silence.
622 	 */
623 	csa_clearserialfifos(resp);
624 
625 	/*
626 	 * Set the serial port FIFO pointer to the first sample in the FIFO.
627 	 */
628 #ifdef notdef
629 	csa_writeio(resp, BA0_SERBSP, 0);
630 #endif /* notdef */
631 
632 	/*
633 	 *  Write the serial port configuration to the part.  The master
634 	 *  enable bit is not set until all other values have been written.
635 	 */
636 	csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
637 	csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
638 	csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
639 
640 	/*
641 	 * Wait for the codec ready signal from the AC97 codec.
642 	 */
643 	acsts = 0;
644 	for (i = 0 ; i < 1000 ; i++) {
645 		/*
646 		 * First, lets wait a short while to let things settle out a bit,
647 		 * and to prevent retrying the read too quickly.
648 		 */
649 		DELAY(125);
650 
651 		/*
652 		 * Read the AC97 status register to see if we've seen a CODEC READY
653 		 * signal from the AC97 codec.
654 		 */
655 		acsts = csa_readio(resp, BA0_ACSTS);
656 		if ((acsts & ACSTS_CRDY) != 0)
657 			break;
658 	}
659 
660 	/*
661 	 * Make sure we sampled CODEC READY.
662 	 */
663 	if ((acsts & ACSTS_CRDY) == 0)
664 		return (ENXIO);
665 
666 	/*
667 	 * Assert the vaid frame signal so that we can start sending commands
668 	 * to the AC97 codec.
669 	 */
670 	csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
671 
672 	/*
673 	 * Wait until we've sampled input slots 3 and 4 as valid, meaning that
674 	 * the codec is pumping ADC data across the AC-link.
675 	 */
676 	acisv = 0;
677 	for (i = 0 ; i < 2000 ; i++) {
678 		/*
679 		 * First, lets wait a short while to let things settle out a bit,
680 		 * and to prevent retrying the read too quickly.
681 		 */
682 #ifdef notdef
683 		DELAY(10000000L); /* clw */
684 #else
685 		DELAY(1000);
686 #endif /* notdef */
687 		/*
688 		 * Read the input slot valid register and see if input slots 3 and
689 		 * 4 are valid yet.
690 		 */
691 		acisv = csa_readio(resp, BA0_ACISV);
692 		if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
693 			break;
694 	}
695 	/*
696 	 * Make sure we sampled valid input slots 3 and 4.  If not, then return
697 	 * an error.
698 	 */
699 	if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
700 		return (ENXIO);
701 
702 	/*
703 	 * Now, assert valid frame and the slot 3 and 4 valid bits.  This will
704 	 * commense the transfer of digital audio data to the AC97 codec.
705 	 */
706 	csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
707 
708 	/*
709 	 * Power down the DAC and ADC.  We will power them up (if) when we need
710 	 * them.
711 	 */
712 #ifdef notdef
713 	csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
714 #endif /* notdef */
715 
716 	/*
717 	 * Turn off the Processor by turning off the software clock enable flag in
718 	 * the clock control register.
719 	 */
720 #ifdef notdef
721 	clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
722 	csa_writeio(resp, BA0_CLKCR1, clkcr1);
723 #endif /* notdef */
724 
725 	/*
726 	 * Enable interrupts on the part.
727 	 */
728 #if 0
729 	csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
730 #endif /* notdef */
731 
732 	return (0);
733 }
734 
735 void
csa_clearserialfifos(csa_res * resp)736 csa_clearserialfifos(csa_res *resp)
737 {
738 	int i, j, pwr;
739 	u_int8_t clkcr1, serbst;
740 
741 	/*
742 	 * See if the devices are powered down.  If so, we must power them up first
743 	 * or they will not respond.
744 	 */
745 	pwr = 1;
746 	clkcr1 = csa_readio(resp, BA0_CLKCR1);
747 	if ((clkcr1 & CLKCR1_SWCE) == 0) {
748 		csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
749 		pwr = 0;
750 	}
751 
752 	/*
753 	 * We want to clear out the serial port FIFOs so we don't end up playing
754 	 * whatever random garbage happens to be in them.  We fill the sample FIFOs
755 	 * with zero (silence).
756 	 */
757 	csa_writeio(resp, BA0_SERBWP, 0);
758 
759 	/* Fill all 256 sample FIFO locations. */
760 	serbst = 0;
761 	for (i = 0 ; i < 256 ; i++) {
762 		/* Make sure the previous FIFO write operation has completed. */
763 		for (j = 0 ; j < 5 ; j++) {
764 			DELAY(100);
765 			serbst = csa_readio(resp, BA0_SERBST);
766 			if ((serbst & SERBST_WBSY) == 0)
767 				break;
768 		}
769 		if ((serbst & SERBST_WBSY) != 0) {
770 			if (!pwr)
771 				csa_writeio(resp, BA0_CLKCR1, clkcr1);
772 		}
773 		/* Write the serial port FIFO index. */
774 		csa_writeio(resp, BA0_SERBAD, i);
775 		/* Tell the serial port to load the new value into the FIFO location. */
776 		csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
777 	}
778 	/*
779 	 *  Now, if we powered up the devices, then power them back down again.
780 	 *  This is kinda ugly, but should never happen.
781 	 */
782 	if (!pwr)
783 		csa_writeio(resp, BA0_CLKCR1, clkcr1);
784 }
785 
786 void
csa_resetdsp(csa_res * resp)787 csa_resetdsp(csa_res *resp)
788 {
789 	int i;
790 
791 	/*
792 	 * Write the reset bit of the SP control register.
793 	 */
794 	csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
795 
796 	/*
797 	 * Write the control register.
798 	 */
799 	csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
800 
801 	/*
802 	 * Clear the trap registers.
803 	 */
804 	for (i = 0 ; i < 8 ; i++) {
805 		csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
806 		csa_writemem(resp, BA1_TWPR, 0xffff);
807 	}
808 	csa_writemem(resp, BA1_DREG, 0);
809 
810 	/*
811 	 * Set the frame timer to reflect the number of cycles per frame.
812 	 */
813 	csa_writemem(resp, BA1_FRMT, 0xadf);
814 }
815 
816 static int
csa_downloadimage(csa_res * resp)817 csa_downloadimage(csa_res *resp)
818 {
819 	int ret;
820 	u_long ul, offset;
821 
822 	for (ul = 0, offset = 0 ; ul < INKY_MEMORY_COUNT ; ul++) {
823 	        /*
824 	         * DMA this block from host memory to the appropriate
825 	         * memory on the CSDevice.
826 	         */
827 		ret = csa_transferimage(resp,
828 		    cs461x_firmware.BA1Array + offset,
829 		    cs461x_firmware.MemoryStat[ul].ulDestAddr,
830 		    cs461x_firmware.MemoryStat[ul].ulSourceSize);
831 		if (ret)
832 			return (ret);
833 		offset += cs461x_firmware.MemoryStat[ul].ulSourceSize >> 2;
834 	}
835 	return (0);
836 }
837 
838 static int
csa_transferimage(csa_res * resp,u_int32_t * src,u_long dest,u_long len)839 csa_transferimage(csa_res *resp, u_int32_t *src, u_long dest, u_long len)
840 {
841 	u_long ul;
842 
843 	/*
844 	 * We do not allow DMAs from host memory to host memory (although the DMA
845 	 * can do it) and we do not allow DMAs which are not a multiple of 4 bytes
846 	 * in size (because that DMA can not do that).  Return an error if either
847 	 * of these conditions exist.
848 	 */
849 	if ((len & 0x3) != 0)
850 		return (EINVAL);
851 
852 	/* Check the destination address that it is a multiple of 4 */
853 	if ((dest & 0x3) != 0)
854 		return (EINVAL);
855 
856 	/* Write the buffer out. */
857 	for (ul = 0 ; ul < len ; ul += 4)
858 		csa_writemem(resp, dest + ul, src[ul >> 2]);
859 	return (0);
860 }
861 
862 int
csa_readcodec(csa_res * resp,u_long offset,u_int32_t * data)863 csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
864 {
865 	int i;
866 	u_int32_t acctl, acsts;
867 
868 	/*
869 	 * Make sure that there is not data sitting around from a previous
870 	 * uncompleted access. ACSDA = Status Data Register = 47Ch
871 	 */
872 	csa_readio(resp, BA0_ACSDA);
873 
874 	/*
875 	 * Setup the AC97 control registers on the CS461x to send the
876 	 * appropriate command to the AC97 to perform the read.
877 	 * ACCAD = Command Address Register = 46Ch
878 	 * ACCDA = Command Data Register = 470h
879 	 * ACCTL = Control Register = 460h
880 	 * set DCV - will clear when process completed
881 	 * set CRW - Read command
882 	 * set VFRM - valid frame enabled
883 	 * set ESYN - ASYNC generation enabled
884 	 * set RSTN - ARST# inactive, AC97 codec not reset
885 	 */
886 
887 	/*
888 	 * Get the actual AC97 register from the offset
889 	 */
890 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
891 	csa_writeio(resp, BA0_ACCDA, 0);
892 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
893 
894 	/*
895 	 * Wait for the read to occur.
896 	 */
897 	acctl = 0;
898 	for (i = 0 ; i < 10 ; i++) {
899 		/*
900 		 * First, we want to wait for a short time.
901 		 */
902 		DELAY(25);
903 
904 		/*
905 		 * Now, check to see if the read has completed.
906 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
907 		 */
908 		acctl = csa_readio(resp, BA0_ACCTL);
909 		if ((acctl & ACCTL_DCV) == 0)
910 			break;
911 	}
912 
913 	/*
914 	 * Make sure the read completed.
915 	 */
916 	if ((acctl & ACCTL_DCV) != 0)
917 		return (EAGAIN);
918 
919 	/*
920 	 * Wait for the valid status bit to go active.
921 	 */
922 	acsts = 0;
923 	for (i = 0 ; i < 10 ; i++) {
924 		/*
925 		 * Read the AC97 status register.
926 		 * ACSTS = Status Register = 464h
927 		 */
928 		acsts = csa_readio(resp, BA0_ACSTS);
929 		/*
930 		 * See if we have valid status.
931 		 * VSTS - Valid Status
932 		 */
933 		if ((acsts & ACSTS_VSTS) != 0)
934 			break;
935 		/*
936 		 * Wait for a short while.
937 		 */
938 		 DELAY(25);
939 	}
940 
941 	/*
942 	 * Make sure we got valid status.
943 	 */
944 	if ((acsts & ACSTS_VSTS) == 0)
945 		return (EAGAIN);
946 
947 	/*
948 	 * Read the data returned from the AC97 register.
949 	 * ACSDA = Status Data Register = 474h
950 	 */
951 	*data = csa_readio(resp, BA0_ACSDA);
952 
953 	return (0);
954 }
955 
956 int
csa_writecodec(csa_res * resp,u_long offset,u_int32_t data)957 csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
958 {
959 	int i;
960 	u_int32_t acctl;
961 
962 	/*
963 	 * Setup the AC97 control registers on the CS461x to send the
964 	 * appropriate command to the AC97 to perform the write.
965 	 * ACCAD = Command Address Register = 46Ch
966 	 * ACCDA = Command Data Register = 470h
967 	 * ACCTL = Control Register = 460h
968 	 * set DCV - will clear when process completed
969 	 * set VFRM - valid frame enabled
970 	 * set ESYN - ASYNC generation enabled
971 	 * set RSTN - ARST# inactive, AC97 codec not reset
972 	 */
973 
974 	/*
975 	 * Get the actual AC97 register from the offset
976 	 */
977 	csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
978 	csa_writeio(resp, BA0_ACCDA, data);
979 	csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
980 
981 	/*
982 	 * Wait for the write to occur.
983 	 */
984 	acctl = 0;
985 	for (i = 0 ; i < 10 ; i++) {
986 		/*
987 		 * First, we want to wait for a short time.
988 		 */
989 		DELAY(25);
990 
991 		/*
992 		 * Now, check to see if the read has completed.
993 		 * ACCTL = 460h, DCV should be reset by now and 460h = 17h
994 		 */
995 		acctl = csa_readio(resp, BA0_ACCTL);
996 		if ((acctl & ACCTL_DCV) == 0)
997 			break;
998 	}
999 
1000 	/*
1001 	 * Make sure the write completed.
1002 	 */
1003 	if ((acctl & ACCTL_DCV) != 0)
1004 		return (EAGAIN);
1005 
1006 	return (0);
1007 }
1008 
1009 u_int32_t
csa_readio(csa_res * resp,u_long offset)1010 csa_readio(csa_res *resp, u_long offset)
1011 {
1012 	u_int32_t ul;
1013 
1014 	if (offset < BA0_AC97_RESET)
1015 		return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
1016 	else {
1017 		if (csa_readcodec(resp, offset, &ul))
1018 			ul = 0;
1019 		return (ul);
1020 	}
1021 }
1022 
1023 void
csa_writeio(csa_res * resp,u_long offset,u_int32_t data)1024 csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
1025 {
1026 	if (offset < BA0_AC97_RESET)
1027 		bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
1028 	else
1029 		csa_writecodec(resp, offset, data);
1030 }
1031 
1032 u_int32_t
csa_readmem(csa_res * resp,u_long offset)1033 csa_readmem(csa_res *resp, u_long offset)
1034 {
1035 	return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
1036 }
1037 
1038 void
csa_writemem(csa_res * resp,u_long offset,u_int32_t data)1039 csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
1040 {
1041 	bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
1042 }
1043 
1044 static device_method_t csa_methods[] = {
1045 	/* Device interface */
1046 	DEVMETHOD(device_probe,		csa_probe),
1047 	DEVMETHOD(device_attach,	csa_attach),
1048 	DEVMETHOD(device_detach,	csa_detach),
1049 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1050 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1051 	DEVMETHOD(device_resume,	csa_resume),
1052 
1053 	/* Bus interface */
1054 	DEVMETHOD(bus_child_deleted,	csa_child_deleted),
1055 	DEVMETHOD(bus_alloc_resource,	csa_alloc_resource),
1056 	DEVMETHOD(bus_release_resource,	csa_release_resource),
1057 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
1058 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
1059 	DEVMETHOD(bus_setup_intr,	csa_setup_intr),
1060 	DEVMETHOD(bus_teardown_intr,	csa_teardown_intr),
1061 
1062 	DEVMETHOD_END
1063 };
1064 
1065 static driver_t csa_driver = {
1066 	"csa",
1067 	csa_methods,
1068 	sizeof(struct csa_softc),
1069 };
1070 
1071 /*
1072  * csa can be attached to a pci bus.
1073  */
1074 DRIVER_MODULE(snd_csa, pci, csa_driver, 0, 0);
1075 MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1076 MODULE_VERSION(snd_csa, 1);
1077