xref: /freebsd/sys/dev/pci/pci.c (revision 4c0e53aced2251eb5ac7eca44e13a6b947be8582)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6  * Copyright (c) 2000, BSDi
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_acpi.h"
33 #include "opt_iommu.h"
34 #include "opt_bus.h"
35 
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/endian.h>
39 #include <sys/eventhandler.h>
40 #include <sys/fcntl.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/linker.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/stdarg.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/taskqueue.h>
52 #include <sys/tree.h>
53 
54 #include <vm/vm.h>
55 #include <vm/pmap.h>
56 #include <vm/vm_extern.h>
57 
58 #include <sys/bus.h>
59 #include <machine/bus.h>
60 #include <sys/rman.h>
61 #include <machine/resource.h>
62 
63 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
64 #include <machine/intr_machdep.h>
65 #endif
66 
67 #include <sys/pciio.h>
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pci_private.h>
71 
72 #ifdef PCI_IOV
73 #include <sys/nv.h>
74 #include <dev/pci/pci_iov_private.h>
75 #endif
76 
77 #include <dev/usb/controller/xhcireg.h>
78 #include <dev/usb/controller/ehcireg.h>
79 #include <dev/usb/controller/ohcireg.h>
80 #include <dev/usb/controller/uhcireg.h>
81 
82 #include <dev/iommu/iommu.h>
83 
84 #include "pcib_if.h"
85 #include "pci_if.h"
86 
87 #define	PCIR_IS_BIOS(cfg, reg)						\
88 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
89 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
90 
91 static device_probe_t	pci_probe;
92 
93 static bus_reset_post_t pci_reset_post;
94 static bus_reset_prepare_t pci_reset_prepare;
95 static bus_reset_child_t pci_reset_child;
96 static bus_hint_device_unit_t pci_hint_device_unit;
97 static bus_remap_intr_t pci_remap_intr_method;
98 
99 static pci_get_id_t	pci_get_id_method;
100 
101 static int		pci_has_quirk(uint32_t devid, int quirk);
102 static pci_addr_t	pci_mapbase(uint64_t mapreg);
103 static const char	*pci_maptype(uint64_t mapreg);
104 static int		pci_maprange(uint64_t mapreg);
105 static pci_addr_t	pci_rombase(uint64_t mapreg);
106 static int		pci_romsize(uint64_t testval);
107 static void		pci_fixancient(pcicfgregs *cfg);
108 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
109 
110 static int		pci_porten(device_t dev);
111 static int		pci_memen(device_t dev);
112 static void		pci_assign_interrupt(device_t bus, device_t dev,
113 			    int force_route);
114 static int		pci_add_map(device_t bus, device_t dev, int reg,
115 			    struct resource_list *rl, int force, int prefetch);
116 static void		pci_load_vendor_data(void);
117 static int		pci_describe_parse_line(char **ptr, int *vendor,
118 			    int *device, char **desc);
119 static char		*pci_describe_device(device_t dev);
120 static int		pci_modevent(module_t mod, int what, void *arg);
121 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
122 			    pcicfgregs *cfg);
123 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
124 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
125 			    int reg, uint32_t *data);
126 #if 0
127 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
128 			    int reg, uint32_t data);
129 #endif
130 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
131 static void		pci_mask_msix(device_t dev, u_int index);
132 static void		pci_unmask_msix(device_t dev, u_int index);
133 static int		pci_msi_blacklisted(void);
134 static int		pci_msix_blacklisted(void);
135 static void		pci_resume_msi(device_t dev);
136 static void		pci_resume_msix(device_t dev);
137 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
138     int b, int s, int f, uint16_t vid, uint16_t did);
139 
140 static device_method_t pci_methods[] = {
141 	/* Device interface */
142 	DEVMETHOD(device_probe,		pci_probe),
143 	DEVMETHOD(device_attach,	pci_attach),
144 	DEVMETHOD(device_detach,	pci_detach),
145 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
146 	DEVMETHOD(device_suspend,	bus_generic_suspend),
147 	DEVMETHOD(device_resume,	pci_resume),
148 
149 	/* Bus interface */
150 	DEVMETHOD(bus_print_child,	pci_print_child),
151 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
152 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
153 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
154 	DEVMETHOD(bus_driver_added,	pci_driver_added),
155 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
156 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
157 	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
158 	DEVMETHOD(bus_reset_post,	pci_reset_post),
159 	DEVMETHOD(bus_reset_child,	pci_reset_child),
160 
161 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
162 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
163 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
164 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
165 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
166 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
167 	DEVMETHOD(bus_adjust_resource,	pci_adjust_resource),
168 	DEVMETHOD(bus_release_resource,	pci_release_resource),
169 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
170 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
171 	DEVMETHOD(bus_map_resource,	pci_map_resource),
172 	DEVMETHOD(bus_unmap_resource,	pci_unmap_resource),
173 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
174 	DEVMETHOD(bus_child_detached,	pci_child_detached),
175 	DEVMETHOD(bus_child_pnpinfo,	pci_child_pnpinfo_method),
176 	DEVMETHOD(bus_child_location,	pci_child_location_method),
177 	DEVMETHOD(bus_get_device_path,	pci_get_device_path_method),
178 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
179 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
180 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
181 	DEVMETHOD(bus_resume_child,	pci_resume_child),
182 	DEVMETHOD(bus_rescan,		pci_rescan_method),
183 
184 	/* PCI interface */
185 	DEVMETHOD(pci_read_config,	pci_read_config_method),
186 	DEVMETHOD(pci_write_config,	pci_write_config_method),
187 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
188 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
189 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
190 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
191 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
192 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
193 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
194 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
195 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
196 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
197 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
198 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
199 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
200 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
201 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
202 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
203 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
204 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
205 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
206 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
207 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
208 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
209 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
210 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
211 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
212 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
213 	DEVMETHOD(pci_get_id,		pci_get_id_method),
214 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
215 	DEVMETHOD(pci_child_added,	pci_child_added_method),
216 #ifdef PCI_IOV
217 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
218 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
219 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
220 #endif
221 
222 	DEVMETHOD_END
223 };
224 
225 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
226 
227 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS);
228 MODULE_VERSION(pci, 1);
229 
230 static char	*pci_vendordata;
231 static size_t	pci_vendordata_size;
232 
233 struct pci_quirk {
234 	uint32_t devid;	/* Vendor/device of the card */
235 	int	type;
236 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
237 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
238 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
239 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
240 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
241 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
242 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
243 #define	PCI_QUIRK_DISABLE_FLR	8 /* Function-Level Reset (FLR) not working. */
244 	int	arg1;
245 	int	arg2;
246 };
247 
248 static const struct pci_quirk pci_quirks[] = {
249 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
250 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
251 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
252 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
253 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
254 
255 	/*
256 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
257 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
258 	 */
259 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
260 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
261 
262 	/*
263 	 * MSI doesn't work on earlier Intel chipsets including
264 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
265 	 */
266 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
267 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
268 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
269 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
270 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
271 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
272 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
273 
274 	/*
275 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
276 	 * bridge.
277 	 */
278 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
279 
280 	/*
281 	 * Some virtualization environments emulate an older chipset
282 	 * but support MSI just fine.  QEMU uses the Intel 82440.
283 	 */
284 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
285 
286 	/*
287 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
288 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
289 	 * It prevents us from attaching hpet(4) when the bit is unset.
290 	 * Note this quirk only affects SB600 revision A13 and earlier.
291 	 * For SB600 A21 and later, firmware must set the bit to hide it.
292 	 * For SB700 and later, it is unused and hardcoded to zero.
293 	 */
294 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
295 
296 	/*
297 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
298 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
299 	 * of the command register is set.
300 	 */
301 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
302 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
303 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
304 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
305 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
306 
307 	/*
308 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
309 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
310 	 */
311 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
312 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
313 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
314 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
315 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
316 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
317 
318 	/*
319 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
320 	 * expected place.
321 	 */
322 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
323 
324 	/*
325 	 * With some MediaTek mt76 WiFi FLR does not work despite advertised.
326 	 */
327 	{ 0x061614c3, PCI_QUIRK_DISABLE_FLR,	0,	0 }, /* mt76 7922 */
328 
329 	/* end of table */
330 	{ 0 }
331 };
332 
333 /* map register information */
334 #define	PCI_MAPMEM	0x01	/* memory map */
335 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
336 #define	PCI_MAPPORT	0x04	/* port map */
337 
338 struct devlist pci_devq;
339 uint32_t pci_generation;
340 uint32_t pci_numdevs = 0;
341 static int pcie_chipset, pcix_chipset;
342 
343 /* sysctl vars */
344 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
345     "PCI bus tuning parameters");
346 
347 static int pci_enable_io_modes = 1;
348 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
349     &pci_enable_io_modes, 1,
350     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
351     " enable these bits correctly.  We'd like to do this all the time, but"
352     " there are some peripherals that this causes problems with.");
353 
354 static int pci_do_realloc_bars = 1;
355 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
356     &pci_do_realloc_bars, 0,
357     "Attempt to allocate a new range for any BARs whose original "
358     "firmware-assigned ranges fail to allocate during the initial device scan.");
359 
360 static int pci_do_power_nodriver = 0;
361 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
362     &pci_do_power_nodriver, 0,
363     "Place a function into D3 state when no driver attaches to it.  0 means"
364     " disable.  1 means conservatively place function into D3 state.  2 means"
365     " aggressively place function into D3 state.  3 means put absolutely"
366     " everything in D3 state.");
367 
368 int pci_do_power_resume = 1;
369 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
370     &pci_do_power_resume, 1,
371   "Transition from D3 -> D0 on resume.");
372 
373 int pci_do_power_suspend = 1;
374 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
375     &pci_do_power_suspend, 1,
376   "Transition from D0 -> D3 on suspend.");
377 
378 static int pci_do_msi = 1;
379 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
380     "Enable support for MSI interrupts");
381 
382 static int pci_do_msix = 1;
383 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
384     "Enable support for MSI-X interrupts");
385 
386 static int pci_msix_rewrite_table = 0;
387 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
388     &pci_msix_rewrite_table, 0,
389     "Rewrite entire MSI-X table when updating MSI-X entries");
390 
391 static int pci_honor_msi_blacklist = 1;
392 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
393     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
394 
395 #if defined(__i386__) || defined(__amd64__)
396 static int pci_usb_takeover = 1;
397 #else
398 static int pci_usb_takeover = 0;
399 #endif
400 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
401     &pci_usb_takeover, 1,
402     "Enable early takeover of USB controllers. Disable this if you depend on"
403     " BIOS emulation of USB devices, that is you use USB devices (like"
404     " keyboard or mouse) but do not load USB drivers");
405 
406 static int pci_clear_bars;
407 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
408     "Ignore firmware-assigned resources for BARs.");
409 
410 static int pci_clear_buses;
411 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
412     "Ignore firmware-assigned bus numbers.");
413 
414 static int pci_enable_ari = 1;
415 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
416     0, "Enable support for PCIe Alternative RID Interpretation");
417 
418 /*
419  * Some x86 firmware only enables PCIe hotplug if we claim to support aspm,
420  * however enabling it breaks some arm64 firmware as it powers off devices.
421  */
422 #if defined(__i386__) || defined(__amd64__)
423 int pci_enable_aspm = 1;
424 #else
425 int pci_enable_aspm = 0;
426 #endif
427 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
428     0, "Enable support for PCIe Active State Power Management");
429 
430 static int pci_clear_aer_on_attach = 0;
431 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
432     &pci_clear_aer_on_attach, 0,
433     "Clear port and device AER state on driver attach");
434 
435 static bool pci_enable_mps_tune = true;
436 SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN,
437     &pci_enable_mps_tune, 1,
438     "Enable tuning of MPS(maximum payload size)." );
439 
440 static bool pci_intx_reroute = true;
441 SYSCTL_BOOL(_hw_pci, OID_AUTO, intx_reroute, CTLFLAG_RWTUN,
442     &pci_intx_reroute, 0, "Re-route INTx interrupts when scanning devices");
443 
444 static int
pci_has_quirk(uint32_t devid,int quirk)445 pci_has_quirk(uint32_t devid, int quirk)
446 {
447 	const struct pci_quirk *q;
448 
449 	for (q = &pci_quirks[0]; q->devid; q++) {
450 		if (q->devid == devid && q->type == quirk)
451 			return (1);
452 	}
453 	return (0);
454 }
455 
456 /* Find a device_t by bus/slot/function in domain 0 */
457 
458 device_t
pci_find_bsf(uint8_t bus,uint8_t slot,uint8_t func)459 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
460 {
461 
462 	return (pci_find_dbsf(0, bus, slot, func));
463 }
464 
465 /* Find a device_t by domain/bus/slot/function */
466 
467 device_t
pci_find_dbsf(uint32_t domain,uint8_t bus,uint8_t slot,uint8_t func)468 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
469 {
470 	struct pci_devinfo *dinfo = NULL;
471 
472 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
473 		if ((dinfo->cfg.domain == domain) &&
474 		    (dinfo->cfg.bus == bus) &&
475 		    (dinfo->cfg.slot == slot) &&
476 		    (dinfo->cfg.func == func)) {
477 			break;
478 		}
479 	}
480 
481 	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
482 }
483 
484 /* Find a device_t by vendor/device ID */
485 
486 device_t
pci_find_device(uint16_t vendor,uint16_t device)487 pci_find_device(uint16_t vendor, uint16_t device)
488 {
489 	struct pci_devinfo *dinfo;
490 
491 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
492 		if ((dinfo->cfg.vendor == vendor) &&
493 		    (dinfo->cfg.device == device)) {
494 			return (dinfo->cfg.dev);
495 		}
496 	}
497 
498 	return (NULL);
499 }
500 
501 device_t
pci_find_class(uint8_t class,uint8_t subclass)502 pci_find_class(uint8_t class, uint8_t subclass)
503 {
504 	struct pci_devinfo *dinfo;
505 
506 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
507 		if (dinfo->cfg.baseclass == class &&
508 		    dinfo->cfg.subclass == subclass) {
509 			return (dinfo->cfg.dev);
510 		}
511 	}
512 
513 	return (NULL);
514 }
515 
516 device_t
pci_find_class_from(uint8_t class,uint8_t subclass,device_t from)517 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
518 {
519 	struct pci_devinfo *dinfo;
520 	bool found = false;
521 
522 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
523 		if (from != NULL && found == false) {
524 			if (from != dinfo->cfg.dev)
525 				continue;
526 			found = true;
527 			continue;
528 		}
529 		if (dinfo->cfg.baseclass == class &&
530 		    dinfo->cfg.subclass == subclass) {
531 			return (dinfo->cfg.dev);
532 		}
533 	}
534 
535 	return (NULL);
536 }
537 
538 device_t
pci_find_base_class_from(uint8_t class,device_t from)539 pci_find_base_class_from(uint8_t class, device_t from)
540 {
541 	struct pci_devinfo *dinfo;
542 	bool found = false;
543 
544 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
545 		if (from != NULL && found == false) {
546 			if (from != dinfo->cfg.dev)
547 				continue;
548 			found = true;
549 			continue;
550 		}
551 		if (dinfo->cfg.baseclass == class) {
552 			return (dinfo->cfg.dev);
553 		}
554 	}
555 
556 	return (NULL);
557 }
558 
559 static int
pci_printf(pcicfgregs * cfg,const char * fmt,...)560 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
561 {
562 	va_list ap;
563 	int retval;
564 
565 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
566 	    cfg->func);
567 	va_start(ap, fmt);
568 	retval += vprintf(fmt, ap);
569 	va_end(ap);
570 	return (retval);
571 }
572 
573 /* return base address of memory or port map */
574 
575 static pci_addr_t
pci_mapbase(uint64_t mapreg)576 pci_mapbase(uint64_t mapreg)
577 {
578 
579 	if (PCI_BAR_MEM(mapreg))
580 		return (mapreg & PCIM_BAR_MEM_BASE);
581 	else
582 		return (mapreg & PCIM_BAR_IO_BASE);
583 }
584 
585 /* return map type of memory or port map */
586 
587 static const char *
pci_maptype(uint64_t mapreg)588 pci_maptype(uint64_t mapreg)
589 {
590 
591 	if (PCI_BAR_IO(mapreg))
592 		return ("I/O Port");
593 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
594 		return ("Prefetchable Memory");
595 	return ("Memory");
596 }
597 
598 /* return log2 of map size decoded for memory or port map */
599 
600 int
pci_mapsize(uint64_t testval)601 pci_mapsize(uint64_t testval)
602 {
603 	int ln2size;
604 
605 	testval = pci_mapbase(testval);
606 	ln2size = 0;
607 	if (testval != 0) {
608 		while ((testval & 1) == 0)
609 		{
610 			ln2size++;
611 			testval >>= 1;
612 		}
613 	}
614 	return (ln2size);
615 }
616 
617 /* return base address of device ROM */
618 
619 static pci_addr_t
pci_rombase(uint64_t mapreg)620 pci_rombase(uint64_t mapreg)
621 {
622 
623 	return (mapreg & PCIM_BIOS_ADDR_MASK);
624 }
625 
626 /* return log2 of map size decided for device ROM */
627 
628 static int
pci_romsize(uint64_t testval)629 pci_romsize(uint64_t testval)
630 {
631 	int ln2size;
632 
633 	testval = pci_rombase(testval);
634 	ln2size = 0;
635 	if (testval != 0) {
636 		while ((testval & 1) == 0)
637 		{
638 			ln2size++;
639 			testval >>= 1;
640 		}
641 	}
642 	return (ln2size);
643 }
644 
645 /* return log2 of address range supported by map register */
646 
647 static int
pci_maprange(uint64_t mapreg)648 pci_maprange(uint64_t mapreg)
649 {
650 	int ln2range = 0;
651 
652 	if (PCI_BAR_IO(mapreg))
653 		ln2range = 32;
654 	else
655 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
656 		case PCIM_BAR_MEM_32:
657 			ln2range = 32;
658 			break;
659 		case PCIM_BAR_MEM_1MB:
660 			ln2range = 20;
661 			break;
662 		case PCIM_BAR_MEM_64:
663 			ln2range = 64;
664 			break;
665 		}
666 	return (ln2range);
667 }
668 
669 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
670 
671 static void
pci_fixancient(pcicfgregs * cfg)672 pci_fixancient(pcicfgregs *cfg)
673 {
674 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
675 		return;
676 
677 	/* PCI to PCI bridges use header type 1 */
678 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
679 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
680 }
681 
682 /* extract header type specific config data */
683 
684 static void
pci_hdrtypedata(device_t pcib,int b,int s,int f,pcicfgregs * cfg)685 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
686 {
687 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
688 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
689 	case PCIM_HDRTYPE_NORMAL:
690 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
691 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
692 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
693 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
694 		cfg->nummaps	    = PCI_MAXMAPS_0;
695 		break;
696 	case PCIM_HDRTYPE_BRIDGE:
697 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
698 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
699 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
700 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
701 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
702 		cfg->nummaps	    = PCI_MAXMAPS_1;
703 		break;
704 	case PCIM_HDRTYPE_CARDBUS:
705 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
706 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
707 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
708 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
709 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
710 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
711 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
712 		cfg->nummaps	    = PCI_MAXMAPS_2;
713 		break;
714 	}
715 #undef REG
716 }
717 
718 /* read configuration header into pcicfgregs structure */
719 struct pci_devinfo *
pci_read_device(device_t pcib,device_t bus,int d,int b,int s,int f)720 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
721 {
722 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
723 	uint16_t vid, did;
724 
725 	vid = REG(PCIR_VENDOR, 2);
726 	if (vid == PCIV_INVALID)
727 		return (NULL);
728 
729 	did = REG(PCIR_DEVICE, 2);
730 
731 	return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
732 }
733 
734 struct pci_devinfo *
pci_alloc_devinfo_method(device_t dev)735 pci_alloc_devinfo_method(device_t dev)
736 {
737 
738 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
739 	    M_WAITOK | M_ZERO));
740 }
741 
742 static struct pci_devinfo *
pci_fill_devinfo(device_t pcib,device_t bus,int d,int b,int s,int f,uint16_t vid,uint16_t did)743 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
744     uint16_t vid, uint16_t did)
745 {
746 	struct pci_devinfo *devlist_entry;
747 	pcicfgregs *cfg;
748 
749 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
750 
751 	cfg = &devlist_entry->cfg;
752 
753 	cfg->domain		= d;
754 	cfg->bus		= b;
755 	cfg->slot		= s;
756 	cfg->func		= f;
757 	cfg->vendor		= vid;
758 	cfg->device		= did;
759 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
760 	cfg->statreg		= REG(PCIR_STATUS, 2);
761 	cfg->baseclass		= REG(PCIR_CLASS, 1);
762 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
763 	cfg->progif		= REG(PCIR_PROGIF, 1);
764 	cfg->revid		= REG(PCIR_REVID, 1);
765 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
766 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
767 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
768 	cfg->intpin		= REG(PCIR_INTPIN, 1);
769 	cfg->intline		= REG(PCIR_INTLINE, 1);
770 
771 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
772 	cfg->hdrtype		&= ~PCIM_MFDEV;
773 	STAILQ_INIT(&cfg->maps);
774 
775 	cfg->iov		= NULL;
776 
777 	pci_fixancient(cfg);
778 	pci_hdrtypedata(pcib, b, s, f, cfg);
779 
780 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
781 		pci_read_cap(pcib, cfg);
782 
783 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
784 
785 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
786 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
787 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
788 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
789 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
790 
791 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
792 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
793 	devlist_entry->conf.pc_vendor = cfg->vendor;
794 	devlist_entry->conf.pc_device = cfg->device;
795 
796 	devlist_entry->conf.pc_class = cfg->baseclass;
797 	devlist_entry->conf.pc_subclass = cfg->subclass;
798 	devlist_entry->conf.pc_progif = cfg->progif;
799 	devlist_entry->conf.pc_revid = cfg->revid;
800 
801 	pci_numdevs++;
802 	pci_generation++;
803 
804 	return (devlist_entry);
805 }
806 #undef REG
807 
808 static void
pci_ea_fill_info(device_t pcib,pcicfgregs * cfg)809 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
810 {
811 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
812     cfg->ea.ea_location + (n), w)
813 	int num_ent;
814 	int ptr;
815 	int a, b;
816 	uint32_t val;
817 	int ent_size;
818 	uint32_t dw[4];
819 	uint64_t base, max_offset;
820 	struct pci_ea_entry *eae;
821 
822 	if (cfg->ea.ea_location == 0)
823 		return;
824 
825 	STAILQ_INIT(&cfg->ea.ea_entries);
826 
827 	/* Determine the number of entries */
828 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
829 	num_ent &= PCIM_EA_NUM_ENT_MASK;
830 
831 	/* Find the first entry to care of */
832 	ptr = PCIR_EA_FIRST_ENT;
833 
834 	/* Skip DWORD 2 for type 1 functions */
835 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
836 		ptr += 4;
837 
838 	for (a = 0; a < num_ent; a++) {
839 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
840 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
841 
842 		/* Read a number of dwords in the entry */
843 		val = REG(ptr, 4);
844 		ptr += 4;
845 		ent_size = (val & PCIM_EA_ES);
846 
847 		for (b = 0; b < ent_size; b++) {
848 			dw[b] = REG(ptr, 4);
849 			ptr += 4;
850 		}
851 
852 		eae->eae_flags = val;
853 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
854 
855 		base = dw[0] & PCIM_EA_FIELD_MASK;
856 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
857 		b = 2;
858 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
859 			base |= (uint64_t)dw[b] << 32UL;
860 			b++;
861 		}
862 		if (((dw[1] & PCIM_EA_IS_64) != 0)
863 		    && (b < ent_size)) {
864 			max_offset |= (uint64_t)dw[b] << 32UL;
865 			b++;
866 		}
867 
868 		eae->eae_base = base;
869 		eae->eae_max_offset = max_offset;
870 
871 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
872 
873 		if (bootverbose) {
874 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
875 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
876 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
877 		}
878 	}
879 }
880 #undef REG
881 
882 static void
pci_read_cap(device_t pcib,pcicfgregs * cfg)883 pci_read_cap(device_t pcib, pcicfgregs *cfg)
884 {
885 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
886 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
887 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
888 	uint64_t addr;
889 #endif
890 	uint32_t val;
891 	int	ptr, nextptr, ptrptr;
892 
893 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
894 	case PCIM_HDRTYPE_NORMAL:
895 	case PCIM_HDRTYPE_BRIDGE:
896 		ptrptr = PCIR_CAP_PTR;
897 		break;
898 	case PCIM_HDRTYPE_CARDBUS:
899 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
900 		break;
901 	default:
902 		return;		/* no extended capabilities support */
903 	}
904 	nextptr = REG(ptrptr, 1);	/* sanity check? */
905 
906 	/*
907 	 * Read capability entries.
908 	 */
909 	while (nextptr != 0) {
910 		/* Sanity check */
911 		if (nextptr > 255) {
912 			printf("illegal PCI extended capability offset %d\n",
913 			    nextptr);
914 			return;
915 		}
916 		/* Find the next entry */
917 		ptr = nextptr;
918 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
919 
920 		/* Process this entry */
921 		switch (REG(ptr + PCICAP_ID, 1)) {
922 		case PCIY_PMG:		/* PCI power management */
923 			cfg->pp.pp_location = ptr;
924 			cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
925 			break;
926 		case PCIY_HT:		/* HyperTransport */
927 			/* Determine HT-specific capability type. */
928 			val = REG(ptr + PCIR_HT_COMMAND, 2);
929 
930 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
931 				cfg->ht.ht_slave = ptr;
932 
933 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
934 			switch (val & PCIM_HTCMD_CAP_MASK) {
935 			case PCIM_HTCAP_MSI_MAPPING:
936 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
937 					/* Sanity check the mapping window. */
938 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
939 					    4);
940 					addr <<= 32;
941 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
942 					    4);
943 					if (addr != MSI_INTEL_ADDR_BASE)
944 						device_printf(pcib,
945 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
946 						    cfg->domain, cfg->bus,
947 						    cfg->slot, cfg->func,
948 						    (long long)addr);
949 				} else
950 					addr = MSI_INTEL_ADDR_BASE;
951 
952 				cfg->ht.ht_msimap = ptr;
953 				cfg->ht.ht_msictrl = val;
954 				cfg->ht.ht_msiaddr = addr;
955 				break;
956 			}
957 #endif
958 			break;
959 		case PCIY_MSI:		/* PCI MSI */
960 			cfg->msi.msi_location = ptr;
961 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
962 			break;
963 		case PCIY_MSIX:		/* PCI MSI-X */
964 			cfg->msix.msix_location = ptr;
965 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
966 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
967 			cfg->msix.msix_table_bar = PCIR_BAR(val &
968 			    PCIM_MSIX_BIR_MASK);
969 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
970 			val = REG(ptr + PCIR_MSIX_PBA, 4);
971 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
972 			    PCIM_MSIX_BIR_MASK);
973 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
974 			break;
975 		case PCIY_VPD:		/* PCI Vital Product Data */
976 			cfg->vpd.vpd_reg = ptr;
977 			break;
978 		case PCIY_SUBVENDOR:
979 			/* Should always be true. */
980 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
981 			    PCIM_HDRTYPE_BRIDGE) {
982 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
983 				cfg->subvendor = val & 0xffff;
984 				cfg->subdevice = val >> 16;
985 			}
986 			break;
987 		case PCIY_PCIX:		/* PCI-X */
988 			/*
989 			 * Assume we have a PCI-X chipset if we have
990 			 * at least one PCI-PCI bridge with a PCI-X
991 			 * capability.  Note that some systems with
992 			 * PCI-express or HT chipsets might match on
993 			 * this check as well.
994 			 */
995 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
996 			    PCIM_HDRTYPE_BRIDGE)
997 				pcix_chipset = 1;
998 			cfg->pcix.pcix_location = ptr;
999 			break;
1000 		case PCIY_EXPRESS:	/* PCI-express */
1001 			/*
1002 			 * Assume we have a PCI-express chipset if we have
1003 			 * at least one PCI-express device.
1004 			 */
1005 			pcie_chipset = 1;
1006 			cfg->pcie.pcie_location = ptr;
1007 			val = REG(ptr + PCIER_FLAGS, 2);
1008 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
1009 			break;
1010 		case PCIY_EA:		/* Enhanced Allocation */
1011 			cfg->ea.ea_location = ptr;
1012 			pci_ea_fill_info(pcib, cfg);
1013 			break;
1014 		default:
1015 			break;
1016 		}
1017 	}
1018 
1019 #if defined(__powerpc__)
1020 	/*
1021 	 * Enable the MSI mapping window for all HyperTransport
1022 	 * slaves.  PCI-PCI bridges have their windows enabled via
1023 	 * PCIB_MAP_MSI().
1024 	 */
1025 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
1026 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
1027 		device_printf(pcib,
1028 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
1029 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
1030 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1031 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
1032 		     2);
1033 	}
1034 #endif
1035 /* REG and WREG use carry through to next functions */
1036 }
1037 
1038 /*
1039  * PCI Vital Product Data
1040  */
1041 
1042 #define	PCI_VPD_TIMEOUT		1000000
1043 
1044 static int
pci_read_vpd_reg(device_t pcib,pcicfgregs * cfg,int reg,uint32_t * data)1045 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1046 {
1047 	int count = PCI_VPD_TIMEOUT;
1048 
1049 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1050 
1051 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1052 
1053 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1054 		if (--count < 0)
1055 			return (ENXIO);
1056 		DELAY(1);	/* limit looping */
1057 	}
1058 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1059 
1060 	return (0);
1061 }
1062 
1063 #if 0
1064 static int
1065 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1066 {
1067 	int count = PCI_VPD_TIMEOUT;
1068 
1069 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1070 
1071 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1072 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1073 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1074 		if (--count < 0)
1075 			return (ENXIO);
1076 		DELAY(1);	/* limit looping */
1077 	}
1078 
1079 	return (0);
1080 }
1081 #endif
1082 
1083 #undef PCI_VPD_TIMEOUT
1084 
1085 struct vpd_readstate {
1086 	device_t	pcib;
1087 	pcicfgregs	*cfg;
1088 	uint32_t	val;
1089 	int		bytesinval;
1090 	int		off;
1091 	uint8_t		cksum;
1092 };
1093 
1094 /* return 0 and one byte in *data if no read error, -1 else */
1095 static int
vpd_nextbyte(struct vpd_readstate * vrs,uint8_t * data)1096 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1097 {
1098 	uint32_t reg;
1099 	uint8_t byte;
1100 
1101 	if (vrs->bytesinval == 0) {
1102 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1103 			return (-1);
1104 		vrs->val = le32toh(reg);
1105 		vrs->off += 4;
1106 		byte = vrs->val & 0xff;
1107 		vrs->bytesinval = 3;
1108 	} else {
1109 		vrs->val = vrs->val >> 8;
1110 		byte = vrs->val & 0xff;
1111 		vrs->bytesinval--;
1112 	}
1113 
1114 	vrs->cksum += byte;
1115 	*data = byte;
1116 	return (0);
1117 }
1118 
1119 /* return 0 on match, -1 and "unget" byte on no match */
1120 static int
vpd_expectbyte(struct vpd_readstate * vrs,uint8_t expected)1121 vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected)
1122 {
1123 	uint8_t data;
1124 
1125 	if (vpd_nextbyte(vrs, &data) != 0)
1126 		return (-1);
1127 
1128 	if (data == expected)
1129 		return (0);
1130 
1131 	vrs->cksum -= data;
1132 	vrs->val = (vrs->val << 8) + data;
1133 	vrs->bytesinval++;
1134 	return (-1);
1135 }
1136 
1137 /* return size if tag matches, -1 on no match, -2 on read error */
1138 static int
vpd_read_tag_size(struct vpd_readstate * vrs,uint8_t vpd_tag)1139 vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag)
1140 {
1141 	uint8_t byte1, byte2;
1142 
1143 	if (vpd_expectbyte(vrs, vpd_tag) != 0)
1144 		return (-1);
1145 
1146 	if ((vpd_tag & 0x80) == 0)
1147 		return (vpd_tag & 0x07);
1148 
1149 	if (vpd_nextbyte(vrs, &byte1) != 0)
1150 		return (-2);
1151 	if (vpd_nextbyte(vrs, &byte2) != 0)
1152 		return (-2);
1153 
1154 	return ((byte2 << 8) + byte1);
1155 }
1156 
1157 /* (re)allocate buffer in multiples of 8 elements */
1158 static void*
alloc_buffer(void * buffer,size_t element_size,int needed)1159 alloc_buffer(void* buffer, size_t element_size, int needed)
1160 {
1161 	int alloc, new_alloc;
1162 
1163 	alloc = roundup2(needed, 8);
1164 	new_alloc = roundup2(needed + 1, 8);
1165 	if (alloc != new_alloc) {
1166 		buffer = reallocf(buffer,
1167 		    new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO);
1168 	}
1169 
1170 	return (buffer);
1171 }
1172 
1173 /* read VPD keyword and return element size, return -1 on read error */
1174 static int
vpd_read_elem_head(struct vpd_readstate * vrs,char keyword[2])1175 vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2])
1176 {
1177 	uint8_t data;
1178 
1179 	if (vpd_nextbyte(vrs, &keyword[0]) != 0)
1180 		return (-1);
1181 	if (vpd_nextbyte(vrs, &keyword[1]) != 0)
1182 		return (-1);
1183 	if (vpd_nextbyte(vrs, &data) != 0)
1184 		return (-1);
1185 
1186 	return (data);
1187 }
1188 
1189 /* read VPD data element of given size into allocated buffer */
1190 static char *
vpd_read_value(struct vpd_readstate * vrs,int size)1191 vpd_read_value(struct vpd_readstate *vrs, int size)
1192 {
1193 	int i;
1194 	char char1;
1195 	char *value;
1196 
1197 	value = malloc(size + 1, M_DEVBUF, M_WAITOK);
1198 	for (i = 0; i < size; i++) {
1199 		if (vpd_nextbyte(vrs, &char1) != 0) {
1200 			free(value, M_DEVBUF);
1201 			return (NULL);
1202 		}
1203 		value[i] = char1;
1204 	}
1205 	value[size] = '\0';
1206 
1207 	return (value);
1208 }
1209 
1210 /* read VPD into *keyword and *value, return length of data element */
1211 static int
vpd_read_elem_data(struct vpd_readstate * vrs,char keyword[2],char ** value,int maxlen)1212 vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen)
1213 {
1214 	int len;
1215 
1216 	len = vpd_read_elem_head(vrs, keyword);
1217 	if (len < 0 || len > maxlen)
1218 		return (-1);
1219 	*value = vpd_read_value(vrs, len);
1220 
1221 	return (len);
1222 }
1223 
1224 /* subtract all data following first byte from checksum of RV element */
1225 static void
vpd_fixup_cksum(struct vpd_readstate * vrs,char * rvstring,int len)1226 vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len)
1227 {
1228 	int i;
1229 	uint8_t fixup;
1230 
1231 	fixup = 0;
1232 	for (i = 1; i < len; i++)
1233 		fixup += rvstring[i];
1234 	vrs->cksum -= fixup;
1235 }
1236 
1237 /* fetch one read-only element and return size of heading + data */
1238 static int
next_vpd_ro_elem(struct vpd_readstate * vrs,int maxsize)1239 next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize)
1240 {
1241 	struct pcicfg_vpd *vpd;
1242 	pcicfgregs *cfg;
1243 	struct vpd_readonly *vpd_ros;
1244 	int len;
1245 
1246 	cfg = vrs->cfg;
1247 	vpd = &cfg->vpd;
1248 
1249 	if (maxsize < 3)
1250 		return (-1);
1251 	vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt);
1252 	vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt];
1253 	maxsize -= 3;
1254 	len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize);
1255 	if (vpd_ros->value == NULL)
1256 		return (-1);
1257 	vpd_ros->len = len;
1258 	if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') {
1259 		vpd_fixup_cksum(vrs, vpd_ros->value, len);
1260 		if (vrs->cksum != 0) {
1261 			pci_printf(cfg,
1262 			    "invalid VPD checksum %#hhx\n", vrs->cksum);
1263 			return (-1);
1264 		}
1265 	}
1266 	vpd->vpd_rocnt++;
1267 
1268 	return (len + 3);
1269 }
1270 
1271 /* fetch one writable element and return size of heading + data */
1272 static int
next_vpd_rw_elem(struct vpd_readstate * vrs,int maxsize)1273 next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize)
1274 {
1275 	struct pcicfg_vpd *vpd;
1276 	pcicfgregs *cfg;
1277 	struct vpd_write *vpd_w;
1278 	int len;
1279 
1280 	cfg = vrs->cfg;
1281 	vpd = &cfg->vpd;
1282 
1283 	if (maxsize < 3)
1284 		return (-1);
1285 	vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt);
1286 	if (vpd->vpd_w == NULL) {
1287 		pci_printf(cfg, "out of memory");
1288 		return (-1);
1289 	}
1290 	vpd_w = &vpd->vpd_w[vpd->vpd_wcnt];
1291 	maxsize -= 3;
1292 	vpd_w->start = vrs->off + 3 - vrs->bytesinval;
1293 	len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize);
1294 	if (vpd_w->value == NULL)
1295 		return (-1);
1296 	vpd_w->len = len;
1297 	vpd->vpd_wcnt++;
1298 
1299 	return (len + 3);
1300 }
1301 
1302 /* free all memory allocated for VPD data */
1303 static void
vpd_free(struct pcicfg_vpd * vpd)1304 vpd_free(struct pcicfg_vpd *vpd)
1305 {
1306 	int i;
1307 
1308 	free(vpd->vpd_ident, M_DEVBUF);
1309 	for (i = 0; i < vpd->vpd_rocnt; i++)
1310 		free(vpd->vpd_ros[i].value, M_DEVBUF);
1311 	free(vpd->vpd_ros, M_DEVBUF);
1312 	vpd->vpd_rocnt = 0;
1313 	for (i = 0; i < vpd->vpd_wcnt; i++)
1314 		free(vpd->vpd_w[i].value, M_DEVBUF);
1315 	free(vpd->vpd_w, M_DEVBUF);
1316 	vpd->vpd_wcnt = 0;
1317 }
1318 
1319 #define VPD_TAG_END	((0x0f << 3) | 0)	/* small tag, len == 0 */
1320 #define VPD_TAG_IDENT	(0x02 | 0x80)		/* large tag */
1321 #define VPD_TAG_RO	(0x10 | 0x80)		/* large tag */
1322 #define VPD_TAG_RW	(0x11 | 0x80)		/* large tag */
1323 
1324 static int
pci_parse_vpd(device_t pcib,pcicfgregs * cfg)1325 pci_parse_vpd(device_t pcib, pcicfgregs *cfg)
1326 {
1327 	struct vpd_readstate vrs;
1328 	int cksumvalid;
1329 	int size, elem_size;
1330 
1331 	/* init vpd reader */
1332 	vrs.bytesinval = 0;
1333 	vrs.off = 0;
1334 	vrs.pcib = pcib;
1335 	vrs.cfg = cfg;
1336 	vrs.cksum = 0;
1337 
1338 	/* read VPD ident element - mandatory */
1339 	size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT);
1340 	if (size <= 0) {
1341 		pci_printf(cfg, "no VPD ident found\n");
1342 		return (0);
1343 	}
1344 	cfg->vpd.vpd_ident = vpd_read_value(&vrs, size);
1345 	if (cfg->vpd.vpd_ident == NULL) {
1346 		pci_printf(cfg, "error accessing VPD ident data\n");
1347 		return (0);
1348 	}
1349 
1350 	/* read VPD RO elements - mandatory */
1351 	size = vpd_read_tag_size(&vrs, VPD_TAG_RO);
1352 	if (size <= 0) {
1353 		pci_printf(cfg, "no read-only VPD data found\n");
1354 		return (0);
1355 	}
1356 	while (size > 0) {
1357 		elem_size = next_vpd_ro_elem(&vrs, size);
1358 		if (elem_size < 0) {
1359 			pci_printf(cfg, "error accessing read-only VPD data\n");
1360 			return (-1);
1361 		}
1362 		size -= elem_size;
1363 	}
1364 	cksumvalid = (vrs.cksum == 0);
1365 	if (!cksumvalid)
1366 		return (-1);
1367 
1368 	/* read VPD RW elements - optional */
1369 	size = vpd_read_tag_size(&vrs, VPD_TAG_RW);
1370 	if (size == -2)
1371 		return (-1);
1372 	while (size > 0) {
1373 		elem_size = next_vpd_rw_elem(&vrs, size);
1374 		if (elem_size < 0) {
1375 			pci_printf(cfg, "error accessing writeable VPD data\n");
1376 			return (-1);
1377 		}
1378 		size -= elem_size;
1379 	}
1380 
1381 	/* read empty END tag - mandatory */
1382 	size = vpd_read_tag_size(&vrs, VPD_TAG_END);
1383 	if (size != 0) {
1384 		pci_printf(cfg, "No valid VPD end tag found\n");
1385 	}
1386 	return (0);
1387 }
1388 
1389 static void
pci_read_vpd(device_t pcib,pcicfgregs * cfg)1390 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1391 {
1392 	int status;
1393 
1394 	status = pci_parse_vpd(pcib, cfg);
1395 	if (status < 0)
1396 		vpd_free(&cfg->vpd);
1397 	cfg->vpd.vpd_cached = 1;
1398 #undef REG
1399 #undef WREG
1400 }
1401 
1402 int
pci_get_vpd_ident_method(device_t dev,device_t child,const char ** identptr)1403 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1404 {
1405 	struct pci_devinfo *dinfo = device_get_ivars(child);
1406 	pcicfgregs *cfg = &dinfo->cfg;
1407 
1408 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1409 		pci_read_vpd(device_get_parent(dev), cfg);
1410 
1411 	*identptr = cfg->vpd.vpd_ident;
1412 
1413 	if (*identptr == NULL)
1414 		return (ENXIO);
1415 
1416 	return (0);
1417 }
1418 
1419 int
pci_get_vpd_readonly_method(device_t dev,device_t child,const char * kw,const char ** vptr)1420 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1421 	const char **vptr)
1422 {
1423 	struct pci_devinfo *dinfo = device_get_ivars(child);
1424 	pcicfgregs *cfg = &dinfo->cfg;
1425 	int i;
1426 
1427 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1428 		pci_read_vpd(device_get_parent(dev), cfg);
1429 
1430 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1431 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1432 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1433 			*vptr = cfg->vpd.vpd_ros[i].value;
1434 			return (0);
1435 		}
1436 
1437 	*vptr = NULL;
1438 	return (ENXIO);
1439 }
1440 
1441 struct pcicfg_vpd *
pci_fetch_vpd_list(device_t dev)1442 pci_fetch_vpd_list(device_t dev)
1443 {
1444 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1445 	pcicfgregs *cfg = &dinfo->cfg;
1446 
1447 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1448 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1449 	return (&cfg->vpd);
1450 }
1451 
1452 /*
1453  * Find the requested HyperTransport capability and return the offset
1454  * in configuration space via the pointer provided.  The function
1455  * returns 0 on success and an error code otherwise.
1456  */
1457 int
pci_find_htcap_method(device_t dev,device_t child,int capability,int * capreg)1458 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1459 {
1460 	int ptr, error;
1461 	uint16_t val;
1462 
1463 	error = pci_find_cap(child, PCIY_HT, &ptr);
1464 	if (error)
1465 		return (error);
1466 
1467 	/*
1468 	 * Traverse the capabilities list checking each HT capability
1469 	 * to see if it matches the requested HT capability.
1470 	 */
1471 	for (;;) {
1472 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1473 		if (capability == PCIM_HTCAP_SLAVE ||
1474 		    capability == PCIM_HTCAP_HOST)
1475 			val &= 0xe000;
1476 		else
1477 			val &= PCIM_HTCMD_CAP_MASK;
1478 		if (val == capability) {
1479 			if (capreg != NULL)
1480 				*capreg = ptr;
1481 			return (0);
1482 		}
1483 
1484 		/* Skip to the next HT capability. */
1485 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1486 			break;
1487 	}
1488 
1489 	return (ENOENT);
1490 }
1491 
1492 /*
1493  * Find the next requested HyperTransport capability after start and return
1494  * the offset in configuration space via the pointer provided.  The function
1495  * returns 0 on success and an error code otherwise.
1496  */
1497 int
pci_find_next_htcap_method(device_t dev,device_t child,int capability,int start,int * capreg)1498 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1499     int start, int *capreg)
1500 {
1501 	int ptr;
1502 	uint16_t val;
1503 
1504 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1505 	    ("start capability is not HyperTransport capability"));
1506 	ptr = start;
1507 
1508 	/*
1509 	 * Traverse the capabilities list checking each HT capability
1510 	 * to see if it matches the requested HT capability.
1511 	 */
1512 	for (;;) {
1513 		/* Skip to the next HT capability. */
1514 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1515 			break;
1516 
1517 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1518 		if (capability == PCIM_HTCAP_SLAVE ||
1519 		    capability == PCIM_HTCAP_HOST)
1520 			val &= 0xe000;
1521 		else
1522 			val &= PCIM_HTCMD_CAP_MASK;
1523 		if (val == capability) {
1524 			if (capreg != NULL)
1525 				*capreg = ptr;
1526 			return (0);
1527 		}
1528 	}
1529 
1530 	return (ENOENT);
1531 }
1532 
1533 /*
1534  * Find the requested capability and return the offset in
1535  * configuration space via the pointer provided.  The function returns
1536  * 0 on success and an error code otherwise.
1537  */
1538 int
pci_find_cap_method(device_t dev,device_t child,int capability,int * capreg)1539 pci_find_cap_method(device_t dev, device_t child, int capability,
1540     int *capreg)
1541 {
1542 	struct pci_devinfo *dinfo = device_get_ivars(child);
1543 	pcicfgregs *cfg = &dinfo->cfg;
1544 	uint32_t status;
1545 	uint8_t ptr;
1546 	int cnt;
1547 
1548 	/*
1549 	 * Check the CAP_LIST bit of the PCI status register first.
1550 	 */
1551 	status = pci_read_config(child, PCIR_STATUS, 2);
1552 	if (!(status & PCIM_STATUS_CAPPRESENT))
1553 		return (ENXIO);
1554 
1555 	/*
1556 	 * Determine the start pointer of the capabilities list.
1557 	 */
1558 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1559 	case PCIM_HDRTYPE_NORMAL:
1560 	case PCIM_HDRTYPE_BRIDGE:
1561 		ptr = PCIR_CAP_PTR;
1562 		break;
1563 	case PCIM_HDRTYPE_CARDBUS:
1564 		ptr = PCIR_CAP_PTR_2;
1565 		break;
1566 	default:
1567 		/* XXX: panic? */
1568 		return (ENXIO);		/* no extended capabilities support */
1569 	}
1570 	ptr = pci_read_config(child, ptr, 1);
1571 
1572 	/*
1573 	 * Traverse the capabilities list.  Limit by total theoretical
1574 	 * maximum number of caps: capability needs at least id and
1575 	 * next registers, and any type X header cannot contain caps.
1576 	 */
1577 	for (cnt = 0; ptr != 0 && cnt < (PCIE_REGMAX - 0x40) / 2; cnt++) {
1578 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1579 			if (capreg != NULL)
1580 				*capreg = ptr;
1581 			return (0);
1582 		}
1583 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1584 	}
1585 
1586 	return (ENOENT);
1587 }
1588 
1589 /*
1590  * Find the next requested capability after start and return the offset in
1591  * configuration space via the pointer provided.  The function returns
1592  * 0 on success and an error code otherwise.
1593  */
1594 int
pci_find_next_cap_method(device_t dev,device_t child,int capability,int start,int * capreg)1595 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1596     int start, int *capreg)
1597 {
1598 	uint8_t ptr;
1599 
1600 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1601 	    ("start capability is not expected capability"));
1602 
1603 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1604 	while (ptr != 0) {
1605 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1606 			if (capreg != NULL)
1607 				*capreg = ptr;
1608 			return (0);
1609 		}
1610 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1611 	}
1612 
1613 	return (ENOENT);
1614 }
1615 
1616 /*
1617  * Find the requested extended capability and return the offset in
1618  * configuration space via the pointer provided.  The function returns
1619  * 0 on success and an error code otherwise.
1620  */
1621 int
pci_find_extcap_method(device_t dev,device_t child,int capability,int * capreg)1622 pci_find_extcap_method(device_t dev, device_t child, int capability,
1623     int *capreg)
1624 {
1625 	struct pci_devinfo *dinfo = device_get_ivars(child);
1626 	pcicfgregs *cfg = &dinfo->cfg;
1627 	uint32_t ecap;
1628 	uint16_t ptr;
1629 
1630 	/* Only supported for PCI-express devices. */
1631 	if (cfg->pcie.pcie_location == 0)
1632 		return (ENXIO);
1633 
1634 	ptr = PCIR_EXTCAP;
1635 	ecap = pci_read_config(child, ptr, 4);
1636 	if (ecap == 0xffffffff || ecap == 0)
1637 		return (ENOENT);
1638 	for (;;) {
1639 		if (PCI_EXTCAP_ID(ecap) == capability) {
1640 			if (capreg != NULL)
1641 				*capreg = ptr;
1642 			return (0);
1643 		}
1644 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1645 		if (ptr == 0)
1646 			break;
1647 		ecap = pci_read_config(child, ptr, 4);
1648 	}
1649 
1650 	return (ENOENT);
1651 }
1652 
1653 /*
1654  * Find the next requested extended capability after start and return the
1655  * offset in configuration space via the pointer provided.  The function
1656  * returns 0 on success and an error code otherwise.
1657  */
1658 int
pci_find_next_extcap_method(device_t dev,device_t child,int capability,int start,int * capreg)1659 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1660     int start, int *capreg)
1661 {
1662 	struct pci_devinfo *dinfo = device_get_ivars(child);
1663 	pcicfgregs *cfg = &dinfo->cfg;
1664 	uint32_t ecap;
1665 	uint16_t ptr;
1666 
1667 	/* Only supported for PCI-express devices. */
1668 	if (cfg->pcie.pcie_location == 0)
1669 		return (ENXIO);
1670 
1671 	ecap = pci_read_config(child, start, 4);
1672 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1673 	    ("start extended capability is not expected capability"));
1674 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1675 	while (ptr != 0) {
1676 		ecap = pci_read_config(child, ptr, 4);
1677 		if (PCI_EXTCAP_ID(ecap) == capability) {
1678 			if (capreg != NULL)
1679 				*capreg = ptr;
1680 			return (0);
1681 		}
1682 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1683 	}
1684 
1685 	return (ENOENT);
1686 }
1687 
1688 /*
1689  * Support for MSI-X message interrupts.
1690  */
1691 static void
pci_write_msix_entry(device_t dev,u_int index,uint64_t address,uint32_t data)1692 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1693 {
1694 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1695 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1696 	uint32_t offset;
1697 
1698 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1699 	offset = msix->msix_table_offset + index * 16;
1700 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1701 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1702 	bus_write_4(msix->msix_table_res, offset + 8, data);
1703 }
1704 
1705 void
pci_enable_msix_method(device_t dev,device_t child,u_int index,uint64_t address,uint32_t data)1706 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1707     uint64_t address, uint32_t data)
1708 {
1709 
1710 	if (pci_msix_rewrite_table) {
1711 		struct pci_devinfo *dinfo = device_get_ivars(child);
1712 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1713 
1714 		/*
1715 		 * Some VM hosts require MSIX to be disabled in the
1716 		 * control register before updating the MSIX table
1717 		 * entries are allowed. It is not enough to only
1718 		 * disable MSIX while updating a single entry. MSIX
1719 		 * must be disabled while updating all entries in the
1720 		 * table.
1721 		 */
1722 		pci_write_config(child,
1723 		    msix->msix_location + PCIR_MSIX_CTRL,
1724 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1725 		pci_resume_msix(child);
1726 	} else
1727 		pci_write_msix_entry(child, index, address, data);
1728 
1729 	/* Enable MSI -> HT mapping. */
1730 	pci_ht_map_msi(child, address);
1731 }
1732 
1733 void
pci_mask_msix(device_t dev,u_int index)1734 pci_mask_msix(device_t dev, u_int index)
1735 {
1736 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1737 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1738 	uint32_t offset, val;
1739 
1740 	KASSERT(PCI_MSIX_MSGNUM(msix->msix_ctrl) > index, ("bogus index"));
1741 	offset = msix->msix_table_offset + index * 16 + 12;
1742 	val = bus_read_4(msix->msix_table_res, offset);
1743 	val |= PCIM_MSIX_VCTRL_MASK;
1744 
1745 	/*
1746 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1747 	 * register, so always write the new value.
1748 	 */
1749 	bus_write_4(msix->msix_table_res, offset, val);
1750 }
1751 
1752 void
pci_unmask_msix(device_t dev,u_int index)1753 pci_unmask_msix(device_t dev, u_int index)
1754 {
1755 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1756 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1757 	uint32_t offset, val;
1758 
1759 	KASSERT(PCI_MSIX_MSGNUM(msix->msix_ctrl) > index, ("bogus index"));
1760 	offset = msix->msix_table_offset + index * 16 + 12;
1761 	val = bus_read_4(msix->msix_table_res, offset);
1762 	val &= ~PCIM_MSIX_VCTRL_MASK;
1763 
1764 	/*
1765 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1766 	 * register, so always write the new value.
1767 	 */
1768 	bus_write_4(msix->msix_table_res, offset, val);
1769 }
1770 
1771 int
pci_pending_msix(device_t dev,u_int index)1772 pci_pending_msix(device_t dev, u_int index)
1773 {
1774 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1775 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1776 	uint32_t offset, bit;
1777 
1778 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1779 	offset = msix->msix_pba_offset + (index / 32) * 4;
1780 	bit = 1 << index % 32;
1781 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1782 }
1783 
1784 /*
1785  * Restore MSI-X registers and table during resume.  If MSI-X is
1786  * enabled then walk the virtual table to restore the actual MSI-X
1787  * table.
1788  */
1789 static void
pci_resume_msix(device_t dev)1790 pci_resume_msix(device_t dev)
1791 {
1792 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1793 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1794 	struct msix_table_entry *mte;
1795 	struct msix_vector *mv;
1796 	u_int i, msgnum;
1797 
1798 	if (msix->msix_alloc > 0) {
1799 		msgnum = PCI_MSIX_MSGNUM(msix->msix_ctrl);
1800 
1801 		/* First, mask all vectors. */
1802 		for (i = 0; i < msgnum; i++)
1803 			pci_mask_msix(dev, i);
1804 
1805 		/* Second, program any messages with at least one handler. */
1806 		for (i = 0; i < msix->msix_table_len; i++) {
1807 			mte = &msix->msix_table[i];
1808 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1809 				continue;
1810 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1811 			pci_write_msix_entry(dev, i, mv->mv_address,
1812 			    mv->mv_data);
1813 			pci_unmask_msix(dev, i);
1814 		}
1815 	}
1816 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1817 	    msix->msix_ctrl, 2);
1818 }
1819 
1820 /*
1821  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1822  * returned in *count.  After this function returns, each message will be
1823  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1824  */
1825 int
pci_alloc_msix_method(device_t dev,device_t child,int * count)1826 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1827 {
1828 	struct pci_devinfo *dinfo = device_get_ivars(child);
1829 	pcicfgregs *cfg = &dinfo->cfg;
1830 	struct resource_list_entry *rle;
1831 	u_int actual, i, max;
1832 	int error, irq;
1833 	uint16_t ctrl, msgnum;
1834 
1835 	/* Don't let count == 0 get us into trouble. */
1836 	if (*count < 1)
1837 		return (EINVAL);
1838 
1839 	/* If rid 0 is allocated, then fail. */
1840 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1841 	if (rle != NULL && rle->res != NULL)
1842 		return (ENXIO);
1843 
1844 	/* Already have allocated messages? */
1845 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1846 		return (ENXIO);
1847 
1848 	/* If MSI-X is blacklisted for this system, fail. */
1849 	if (pci_msix_blacklisted())
1850 		return (ENXIO);
1851 
1852 	/* MSI-X capability present? */
1853 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1854 		return (ENODEV);
1855 
1856 	/* Make sure the appropriate BARs are mapped. */
1857 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1858 	    cfg->msix.msix_table_bar);
1859 	if (rle == NULL || rle->res == NULL ||
1860 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1861 		return (ENXIO);
1862 	cfg->msix.msix_table_res = rle->res;
1863 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1864 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1865 		    cfg->msix.msix_pba_bar);
1866 		if (rle == NULL || rle->res == NULL ||
1867 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1868 			return (ENXIO);
1869 	}
1870 	cfg->msix.msix_pba_res = rle->res;
1871 
1872 	ctrl = pci_read_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1873 	    2);
1874 	msgnum = PCI_MSIX_MSGNUM(ctrl);
1875 	if (bootverbose)
1876 		device_printf(child,
1877 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1878 		    *count, msgnum);
1879 	max = min(*count, msgnum);
1880 	for (i = 0; i < max; i++) {
1881 		/* Allocate a message. */
1882 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1883 		if (error) {
1884 			if (i == 0)
1885 				return (error);
1886 			break;
1887 		}
1888 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1889 		    irq, 1);
1890 	}
1891 	actual = i;
1892 
1893 	if (bootverbose) {
1894 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1895 		if (actual == 1)
1896 			device_printf(child, "using IRQ %ju for MSI-X\n",
1897 			    rle->start);
1898 		else {
1899 			bool run;
1900 
1901 			/*
1902 			 * Be fancy and try to print contiguous runs of
1903 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1904 			 * 'run' is true if we are in a range.
1905 			 */
1906 			device_printf(child, "using IRQs %ju", rle->start);
1907 			irq = rle->start;
1908 			run = false;
1909 			for (i = 1; i < actual; i++) {
1910 				rle = resource_list_find(&dinfo->resources,
1911 				    SYS_RES_IRQ, i + 1);
1912 
1913 				/* Still in a run? */
1914 				if (rle->start == irq + 1) {
1915 					run = true;
1916 					irq++;
1917 					continue;
1918 				}
1919 
1920 				/* Finish previous range. */
1921 				if (run) {
1922 					printf("-%d", irq);
1923 					run = false;
1924 				}
1925 
1926 				/* Start new range. */
1927 				printf(",%ju", rle->start);
1928 				irq = rle->start;
1929 			}
1930 
1931 			/* Unfinished range? */
1932 			if (run)
1933 				printf("-%d", irq);
1934 			printf(" for MSI-X\n");
1935 		}
1936 	}
1937 
1938 	/*
1939 	 * Mask all vectors. Note that the message index assertion in
1940 	 * pci_mask_msix requires msix_ctrl to be set.
1941 	 */
1942 	cfg->msix.msix_ctrl = ctrl;
1943 	for (i = 0; i < msgnum; i++)
1944 		pci_mask_msix(child, i);
1945 
1946 	/* Allocate and initialize vector data and virtual table. */
1947 	cfg->msix.msix_vectors = mallocarray(actual, sizeof(struct msix_vector),
1948 	    M_DEVBUF, M_WAITOK | M_ZERO);
1949 	cfg->msix.msix_table = mallocarray(actual,
1950 	    sizeof(struct msix_table_entry), M_DEVBUF, M_WAITOK | M_ZERO);
1951 	for (i = 0; i < actual; i++) {
1952 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1953 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1954 		cfg->msix.msix_table[i].mte_vector = i + 1;
1955 	}
1956 
1957 	/* Update control register to enable MSI-X. */
1958 	ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1959 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1960 	    ctrl, 2);
1961 	cfg->msix.msix_ctrl = ctrl;
1962 
1963 	/* Update counts of alloc'd messages. */
1964 	cfg->msix.msix_alloc = actual;
1965 	cfg->msix.msix_table_len = actual;
1966 	*count = actual;
1967 	return (0);
1968 }
1969 
1970 /*
1971  * By default, pci_alloc_msix() will assign the allocated IRQ
1972  * resources consecutively to the first N messages in the MSI-X table.
1973  * However, device drivers may want to use different layouts if they
1974  * either receive fewer messages than they asked for, or they wish to
1975  * populate the MSI-X table sparsely.  This method allows the driver
1976  * to specify what layout it wants.  It must be called after a
1977  * successful pci_alloc_msix() but before any of the associated
1978  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1979  *
1980  * The 'vectors' array contains 'count' message vectors.  The array
1981  * maps directly to the MSI-X table in that index 0 in the array
1982  * specifies the vector for the first message in the MSI-X table, etc.
1983  * The vector value in each array index can either be 0 to indicate
1984  * that no vector should be assigned to a message slot, or it can be a
1985  * number from 1 to N (where N is the count returned from a
1986  * succcessful call to pci_alloc_msix()) to indicate which message
1987  * vector (IRQ) to be used for the corresponding message.
1988  *
1989  * On successful return, each message with a non-zero vector will have
1990  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1991  * 1.  Additionally, if any of the IRQs allocated via the previous
1992  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1993  * will be freed back to the system automatically.
1994  *
1995  * For example, suppose a driver has a MSI-X table with 6 messages and
1996  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1997  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1998  * C.  After the call to pci_alloc_msix(), the device will be setup to
1999  * have an MSI-X table of ABC--- (where - means no vector assigned).
2000  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
2001  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
2002  * be freed back to the system.  This device will also have valid
2003  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
2004  *
2005  * In any case, the SYS_RES_IRQ rid X will always map to the message
2006  * at MSI-X table index X - 1 and will only be valid if a vector is
2007  * assigned to that table entry.
2008  */
2009 int
pci_remap_msix_method(device_t dev,device_t child,int count,const u_int * vectors)2010 pci_remap_msix_method(device_t dev, device_t child, int count,
2011     const u_int *vectors)
2012 {
2013 	struct pci_devinfo *dinfo = device_get_ivars(child);
2014 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2015 	struct resource_list_entry *rle;
2016 	u_int i, irq, j;
2017 	bool *used;
2018 
2019 	/*
2020 	 * Have to have at least one message in the table but the
2021 	 * table can't be bigger than the actual MSI-X table in the
2022 	 * device.
2023 	 */
2024 	if (count < 1 || count > PCI_MSIX_MSGNUM(msix->msix_ctrl))
2025 		return (EINVAL);
2026 
2027 	/* Sanity check the vectors. */
2028 	for (i = 0; i < count; i++)
2029 		if (vectors[i] > msix->msix_alloc)
2030 			return (EINVAL);
2031 
2032 	/*
2033 	 * Make sure there aren't any holes in the vectors to be used.
2034 	 * It's a big pain to support it, and it doesn't really make
2035 	 * sense anyway.  Also, at least one vector must be used.
2036 	 */
2037 	used = mallocarray(msix->msix_alloc, sizeof(*used), M_DEVBUF, M_WAITOK |
2038 	    M_ZERO);
2039 	for (i = 0; i < count; i++)
2040 		if (vectors[i] != 0)
2041 			used[vectors[i] - 1] = true;
2042 	for (i = 0; i < msix->msix_alloc - 1; i++)
2043 		if (!used[i] && used[i + 1]) {
2044 			free(used, M_DEVBUF);
2045 			return (EINVAL);
2046 		}
2047 	if (!used[0]) {
2048 		free(used, M_DEVBUF);
2049 		return (EINVAL);
2050 	}
2051 
2052 	/* Make sure none of the resources are allocated. */
2053 	for (i = 0; i < msix->msix_table_len; i++) {
2054 		if (msix->msix_table[i].mte_vector == 0)
2055 			continue;
2056 		if (msix->msix_table[i].mte_handlers > 0) {
2057 			free(used, M_DEVBUF);
2058 			return (EBUSY);
2059 		}
2060 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2061 		KASSERT(rle != NULL, ("missing resource"));
2062 		if (rle->res != NULL) {
2063 			free(used, M_DEVBUF);
2064 			return (EBUSY);
2065 		}
2066 	}
2067 
2068 	/* Free the existing resource list entries. */
2069 	for (i = 0; i < msix->msix_table_len; i++) {
2070 		if (msix->msix_table[i].mte_vector == 0)
2071 			continue;
2072 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2073 	}
2074 
2075 	/*
2076 	 * Build the new virtual table keeping track of which vectors are
2077 	 * used.
2078 	 */
2079 	free(msix->msix_table, M_DEVBUF);
2080 	msix->msix_table = mallocarray(count, sizeof(struct msix_table_entry),
2081 	    M_DEVBUF, M_WAITOK | M_ZERO);
2082 	for (i = 0; i < count; i++)
2083 		msix->msix_table[i].mte_vector = vectors[i];
2084 	msix->msix_table_len = count;
2085 
2086 	/* Free any unused IRQs and resize the vectors array if necessary. */
2087 	j = msix->msix_alloc - 1;
2088 	if (!used[j]) {
2089 		struct msix_vector *vec;
2090 
2091 		while (!used[j]) {
2092 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2093 			    msix->msix_vectors[j].mv_irq);
2094 			j--;
2095 		}
2096 		vec = mallocarray(j + 1, sizeof(struct msix_vector), M_DEVBUF,
2097 		    M_WAITOK);
2098 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2099 		    (j + 1));
2100 		free(msix->msix_vectors, M_DEVBUF);
2101 		msix->msix_vectors = vec;
2102 		msix->msix_alloc = j + 1;
2103 	}
2104 	free(used, M_DEVBUF);
2105 
2106 	/* Map the IRQs onto the rids. */
2107 	for (i = 0; i < count; i++) {
2108 		if (vectors[i] == 0)
2109 			continue;
2110 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2111 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2112 		    irq, 1);
2113 	}
2114 
2115 	if (bootverbose) {
2116 		device_printf(child, "Remapped MSI-X IRQs as: ");
2117 		for (i = 0; i < count; i++) {
2118 			if (i != 0)
2119 				printf(", ");
2120 			if (vectors[i] == 0)
2121 				printf("---");
2122 			else
2123 				printf("%d",
2124 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2125 		}
2126 		printf("\n");
2127 	}
2128 
2129 	return (0);
2130 }
2131 
2132 static int
pci_release_msix(device_t dev,device_t child)2133 pci_release_msix(device_t dev, device_t child)
2134 {
2135 	struct pci_devinfo *dinfo = device_get_ivars(child);
2136 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2137 	struct resource_list_entry *rle;
2138 	u_int i;
2139 
2140 	/* Do we have any messages to release? */
2141 	if (msix->msix_alloc == 0)
2142 		return (ENODEV);
2143 
2144 	/* Make sure none of the resources are allocated. */
2145 	for (i = 0; i < msix->msix_table_len; i++) {
2146 		if (msix->msix_table[i].mte_vector == 0)
2147 			continue;
2148 		if (msix->msix_table[i].mte_handlers > 0)
2149 			return (EBUSY);
2150 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2151 		KASSERT(rle != NULL, ("missing resource"));
2152 		if (rle->res != NULL)
2153 			return (EBUSY);
2154 	}
2155 
2156 	/* Update control register to disable MSI-X. */
2157 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2158 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2159 	    msix->msix_ctrl, 2);
2160 
2161 	/* Free the resource list entries. */
2162 	for (i = 0; i < msix->msix_table_len; i++) {
2163 		if (msix->msix_table[i].mte_vector == 0)
2164 			continue;
2165 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2166 	}
2167 	free(msix->msix_table, M_DEVBUF);
2168 	msix->msix_table_len = 0;
2169 
2170 	/* Release the IRQs. */
2171 	for (i = 0; i < msix->msix_alloc; i++)
2172 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2173 		    msix->msix_vectors[i].mv_irq);
2174 	free(msix->msix_vectors, M_DEVBUF);
2175 	msix->msix_alloc = 0;
2176 	return (0);
2177 }
2178 
2179 /*
2180  * Return the max supported MSI-X messages this device supports.
2181  * Basically, assuming the MD code can alloc messages, this function
2182  * should return the maximum value that pci_alloc_msix() can return.
2183  * Thus, it is subject to the tunables, etc.
2184  */
2185 int
pci_msix_count_method(device_t dev,device_t child)2186 pci_msix_count_method(device_t dev, device_t child)
2187 {
2188 	struct pci_devinfo *dinfo = device_get_ivars(child);
2189 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2190 	uint16_t ctrl;
2191 
2192 	if (pci_do_msix && msix->msix_location != 0) {
2193 		ctrl = pci_read_config(child, msix->msix_location +
2194 		    PCIR_MSI_CTRL, 2);
2195 		return (PCI_MSIX_MSGNUM(ctrl));
2196 	}
2197 	return (0);
2198 }
2199 
2200 int
pci_msix_pba_bar_method(device_t dev,device_t child)2201 pci_msix_pba_bar_method(device_t dev, device_t child)
2202 {
2203 	struct pci_devinfo *dinfo = device_get_ivars(child);
2204 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2205 
2206 	if (pci_do_msix && msix->msix_location != 0)
2207 		return (msix->msix_pba_bar);
2208 	return (-1);
2209 }
2210 
2211 int
pci_msix_table_bar_method(device_t dev,device_t child)2212 pci_msix_table_bar_method(device_t dev, device_t child)
2213 {
2214 	struct pci_devinfo *dinfo = device_get_ivars(child);
2215 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2216 
2217 	if (pci_do_msix && msix->msix_location != 0)
2218 		return (msix->msix_table_bar);
2219 	return (-1);
2220 }
2221 
2222 /*
2223  * HyperTransport MSI mapping control
2224  */
2225 void
pci_ht_map_msi(device_t dev,uint64_t addr)2226 pci_ht_map_msi(device_t dev, uint64_t addr)
2227 {
2228 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2229 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2230 
2231 	if (!ht->ht_msimap)
2232 		return;
2233 
2234 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2235 	    ht->ht_msiaddr >> 20 == addr >> 20) {
2236 		/* Enable MSI -> HT mapping. */
2237 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2238 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2239 		    ht->ht_msictrl, 2);
2240 	}
2241 
2242 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2243 		/* Disable MSI -> HT mapping. */
2244 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2245 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2246 		    ht->ht_msictrl, 2);
2247 	}
2248 }
2249 
2250 int
pci_get_relaxed_ordering_enabled(device_t dev)2251 pci_get_relaxed_ordering_enabled(device_t dev)
2252 {
2253 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2254 	int cap;
2255 	uint16_t val;
2256 
2257 	cap = dinfo->cfg.pcie.pcie_location;
2258 	if (cap == 0)
2259 		return (0);
2260 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2261 	val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
2262 	return (val != 0);
2263 }
2264 
2265 int
pci_get_max_payload(device_t dev)2266 pci_get_max_payload(device_t dev)
2267 {
2268 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2269 	int cap;
2270 	uint16_t val;
2271 
2272 	cap = dinfo->cfg.pcie.pcie_location;
2273 	if (cap == 0)
2274 		return (0);
2275 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2276 	val &= PCIEM_CTL_MAX_PAYLOAD;
2277 	val >>= 5;
2278 	return (1 << (val + 7));
2279 }
2280 
2281 int
pci_get_max_read_req(device_t dev)2282 pci_get_max_read_req(device_t dev)
2283 {
2284 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2285 	int cap;
2286 	uint16_t val;
2287 
2288 	cap = dinfo->cfg.pcie.pcie_location;
2289 	if (cap == 0)
2290 		return (0);
2291 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2292 	val &= PCIEM_CTL_MAX_READ_REQUEST;
2293 	val >>= 12;
2294 	return (1 << (val + 7));
2295 }
2296 
2297 int
pci_set_max_read_req(device_t dev,int size)2298 pci_set_max_read_req(device_t dev, int size)
2299 {
2300 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2301 	int cap;
2302 	uint16_t val;
2303 
2304 	cap = dinfo->cfg.pcie.pcie_location;
2305 	if (cap == 0)
2306 		return (0);
2307 	if (size < 128)
2308 		size = 128;
2309 	if (size > 4096)
2310 		size = 4096;
2311 	size = (1 << (fls(size) - 1));
2312 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2313 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2314 	val |= (fls(size) - 8) << 12;
2315 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2316 	return (size);
2317 }
2318 
2319 uint32_t
pcie_read_config(device_t dev,int reg,int width)2320 pcie_read_config(device_t dev, int reg, int width)
2321 {
2322 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2323 	int cap;
2324 
2325 	cap = dinfo->cfg.pcie.pcie_location;
2326 	if (cap == 0) {
2327 		if (width == 2)
2328 			return (0xffff);
2329 		return (0xffffffff);
2330 	}
2331 
2332 	return (pci_read_config(dev, cap + reg, width));
2333 }
2334 
2335 void
pcie_write_config(device_t dev,int reg,uint32_t value,int width)2336 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2337 {
2338 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2339 	int cap;
2340 
2341 	cap = dinfo->cfg.pcie.pcie_location;
2342 	if (cap == 0)
2343 		return;
2344 	pci_write_config(dev, cap + reg, value, width);
2345 }
2346 
2347 /*
2348  * Adjusts a PCI-e capability register by clearing the bits in mask
2349  * and setting the bits in (value & mask).  Bits not set in mask are
2350  * not adjusted.
2351  *
2352  * Returns the old value on success or all ones on failure.
2353  */
2354 uint32_t
pcie_adjust_config(device_t dev,int reg,uint32_t mask,uint32_t value,int width)2355 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2356     int width)
2357 {
2358 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2359 	uint32_t old, new;
2360 	int cap;
2361 
2362 	cap = dinfo->cfg.pcie.pcie_location;
2363 	if (cap == 0) {
2364 		if (width == 2)
2365 			return (0xffff);
2366 		return (0xffffffff);
2367 	}
2368 
2369 	old = pci_read_config(dev, cap + reg, width);
2370 	new = old & ~mask;
2371 	new |= (value & mask);
2372 	pci_write_config(dev, cap + reg, new, width);
2373 	return (old);
2374 }
2375 
2376 /*
2377  * Support for MSI message signalled interrupts.
2378  */
2379 void
pci_enable_msi_method(device_t dev,device_t child,uint64_t address,uint16_t data)2380 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2381     uint16_t data)
2382 {
2383 	struct pci_devinfo *dinfo = device_get_ivars(child);
2384 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2385 
2386 	/* Write data and address values. */
2387 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2388 	    address & 0xffffffff, 4);
2389 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2390 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2391 		    address >> 32, 4);
2392 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2393 		    data, 2);
2394 	} else
2395 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2396 		    2);
2397 
2398 	/* Enable MSI in the control register. */
2399 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2400 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2401 	    msi->msi_ctrl, 2);
2402 
2403 	/* Enable MSI -> HT mapping. */
2404 	pci_ht_map_msi(child, address);
2405 }
2406 
2407 void
pci_disable_msi_method(device_t dev,device_t child)2408 pci_disable_msi_method(device_t dev, device_t child)
2409 {
2410 	struct pci_devinfo *dinfo = device_get_ivars(child);
2411 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2412 
2413 	/* Disable MSI -> HT mapping. */
2414 	pci_ht_map_msi(child, 0);
2415 
2416 	/* Disable MSI in the control register. */
2417 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2418 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2419 	    msi->msi_ctrl, 2);
2420 }
2421 
2422 /*
2423  * Restore MSI registers during resume.  If MSI is enabled then
2424  * restore the data and address registers in addition to the control
2425  * register.
2426  */
2427 static void
pci_resume_msi(device_t dev)2428 pci_resume_msi(device_t dev)
2429 {
2430 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2431 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2432 	uint64_t address;
2433 	uint16_t data;
2434 
2435 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2436 		address = msi->msi_addr;
2437 		data = msi->msi_data;
2438 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2439 		    address & 0xffffffff, 4);
2440 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2441 			pci_write_config(dev, msi->msi_location +
2442 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2443 			pci_write_config(dev, msi->msi_location +
2444 			    PCIR_MSI_DATA_64BIT, data, 2);
2445 		} else
2446 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2447 			    data, 2);
2448 	}
2449 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2450 	    2);
2451 }
2452 
2453 static int
pci_remap_intr_method(device_t bus,device_t dev,u_int irq)2454 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2455 {
2456 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2457 	pcicfgregs *cfg = &dinfo->cfg;
2458 	struct resource_list_entry *rle;
2459 	struct msix_table_entry *mte;
2460 	struct msix_vector *mv;
2461 	uint64_t addr;
2462 	uint32_t data;
2463 	u_int i, j;
2464 	int error;
2465 
2466 	/*
2467 	 * Handle MSI first.  We try to find this IRQ among our list
2468 	 * of MSI IRQs.  If we find it, we request updated address and
2469 	 * data registers and apply the results.
2470 	 */
2471 	if (cfg->msi.msi_alloc > 0) {
2472 		/* If we don't have any active handlers, nothing to do. */
2473 		if (cfg->msi.msi_handlers == 0)
2474 			return (0);
2475 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2476 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2477 			    i + 1);
2478 			if (rle->start == irq) {
2479 				error = PCIB_MAP_MSI(device_get_parent(bus),
2480 				    dev, irq, &addr, &data);
2481 				if (error)
2482 					return (error);
2483 				pci_disable_msi(dev);
2484 				dinfo->cfg.msi.msi_addr = addr;
2485 				dinfo->cfg.msi.msi_data = data;
2486 				pci_enable_msi(dev, addr, data);
2487 				return (0);
2488 			}
2489 		}
2490 		return (ENOENT);
2491 	}
2492 
2493 	/*
2494 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2495 	 * we request the updated mapping info.  If that works, we go
2496 	 * through all the slots that use this IRQ and update them.
2497 	 */
2498 	if (cfg->msix.msix_alloc > 0) {
2499 		bool found = false;
2500 
2501 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2502 			mv = &cfg->msix.msix_vectors[i];
2503 			if (mv->mv_irq == irq) {
2504 				error = PCIB_MAP_MSI(device_get_parent(bus),
2505 				    dev, irq, &addr, &data);
2506 				if (error)
2507 					return (error);
2508 				mv->mv_address = addr;
2509 				mv->mv_data = data;
2510 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2511 					mte = &cfg->msix.msix_table[j];
2512 					if (mte->mte_vector != i + 1)
2513 						continue;
2514 					if (mte->mte_handlers == 0)
2515 						continue;
2516 					pci_mask_msix(dev, j);
2517 					pci_enable_msix(dev, j, addr, data);
2518 					pci_unmask_msix(dev, j);
2519 				}
2520 				found = true;
2521 			}
2522 		}
2523 		return (found ? 0 : ENOENT);
2524 	}
2525 
2526 	return (ENOENT);
2527 }
2528 
2529 /*
2530  * Returns true if the specified device is blacklisted because MSI
2531  * doesn't work.
2532  */
2533 int
pci_msi_device_blacklisted(device_t dev)2534 pci_msi_device_blacklisted(device_t dev)
2535 {
2536 
2537 	if (!pci_honor_msi_blacklist)
2538 		return (0);
2539 
2540 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2541 }
2542 
2543 /*
2544  * Determine if MSI is blacklisted globally on this system.  Currently,
2545  * we just check for blacklisted chipsets as represented by the
2546  * host-PCI bridge at device 0:0:0.  In the future, it may become
2547  * necessary to check other system attributes, such as the kenv values
2548  * that give the motherboard manufacturer and model number.
2549  */
2550 static int
pci_msi_blacklisted(void)2551 pci_msi_blacklisted(void)
2552 {
2553 	device_t dev;
2554 
2555 	if (!pci_honor_msi_blacklist)
2556 		return (0);
2557 
2558 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2559 	if (!(pcie_chipset || pcix_chipset)) {
2560 		if (vm_guest != VM_GUEST_NO) {
2561 			/*
2562 			 * Whitelist older chipsets in virtual
2563 			 * machines known to support MSI.
2564 			 */
2565 			dev = pci_find_bsf(0, 0, 0);
2566 			if (dev != NULL)
2567 				return (!pci_has_quirk(pci_get_devid(dev),
2568 					PCI_QUIRK_ENABLE_MSI_VM));
2569 		}
2570 		return (1);
2571 	}
2572 
2573 	dev = pci_find_bsf(0, 0, 0);
2574 	if (dev != NULL)
2575 		return (pci_msi_device_blacklisted(dev));
2576 	return (0);
2577 }
2578 
2579 /*
2580  * Returns true if the specified device is blacklisted because MSI-X
2581  * doesn't work.  Note that this assumes that if MSI doesn't work,
2582  * MSI-X doesn't either.
2583  */
2584 int
pci_msix_device_blacklisted(device_t dev)2585 pci_msix_device_blacklisted(device_t dev)
2586 {
2587 
2588 	if (!pci_honor_msi_blacklist)
2589 		return (0);
2590 
2591 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2592 		return (1);
2593 
2594 	return (pci_msi_device_blacklisted(dev));
2595 }
2596 
2597 /*
2598  * Determine if MSI-X is blacklisted globally on this system.  If MSI
2599  * is blacklisted, assume that MSI-X is as well.  Check for additional
2600  * chipsets where MSI works but MSI-X does not.
2601  */
2602 static int
pci_msix_blacklisted(void)2603 pci_msix_blacklisted(void)
2604 {
2605 	device_t dev;
2606 
2607 	if (!pci_honor_msi_blacklist)
2608 		return (0);
2609 
2610 	dev = pci_find_bsf(0, 0, 0);
2611 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2612 	    PCI_QUIRK_DISABLE_MSIX))
2613 		return (1);
2614 
2615 	return (pci_msi_blacklisted());
2616 }
2617 
2618 /*
2619  * Attempt to allocate *count MSI messages.  The actual number allocated is
2620  * returned in *count.  After this function returns, each message will be
2621  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2622  */
2623 int
pci_alloc_msi_method(device_t dev,device_t child,int * count)2624 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2625 {
2626 	struct pci_devinfo *dinfo = device_get_ivars(child);
2627 	pcicfgregs *cfg = &dinfo->cfg;
2628 	struct resource_list_entry *rle;
2629 	u_int actual, i;
2630 	int error, irqs[32];
2631 	uint16_t ctrl, msgnum;
2632 
2633 	/* Don't let count == 0 get us into trouble. */
2634 	if (*count < 1)
2635 		return (EINVAL);
2636 
2637 	/* If rid 0 is allocated, then fail. */
2638 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2639 	if (rle != NULL && rle->res != NULL)
2640 		return (ENXIO);
2641 
2642 	/* Already have allocated messages? */
2643 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2644 		return (ENXIO);
2645 
2646 	/* If MSI is blacklisted for this system, fail. */
2647 	if (pci_msi_blacklisted())
2648 		return (ENXIO);
2649 
2650 	/* MSI capability present? */
2651 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2652 		return (ENODEV);
2653 
2654 	ctrl = pci_read_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, 2);
2655 	msgnum = PCI_MSI_MSGNUM(ctrl);
2656 	if (bootverbose)
2657 		device_printf(child,
2658 		    "attempting to allocate %d MSI vectors (%u supported)\n",
2659 		    *count, msgnum);
2660 
2661 	/* Don't ask for more than the device supports. */
2662 	actual = min(*count, msgnum);
2663 
2664 	/* Don't ask for more than 32 messages. */
2665 	actual = min(actual, 32);
2666 
2667 	/* MSI requires power of 2 number of messages. */
2668 	if (!powerof2(actual))
2669 		return (EINVAL);
2670 
2671 	for (;;) {
2672 		/* Try to allocate N messages. */
2673 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2674 		    actual, irqs);
2675 		if (error == 0)
2676 			break;
2677 		if (actual == 1)
2678 			return (error);
2679 
2680 		/* Try N / 2. */
2681 		actual >>= 1;
2682 	}
2683 
2684 	/*
2685 	 * We now have N actual messages mapped onto SYS_RES_IRQ
2686 	 * resources in the irqs[] array, so add new resources
2687 	 * starting at rid 1.
2688 	 */
2689 	for (i = 0; i < actual; i++)
2690 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2691 		    irqs[i], irqs[i], 1);
2692 
2693 	if (bootverbose) {
2694 		if (actual == 1)
2695 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2696 		else {
2697 			bool run;
2698 
2699 			/*
2700 			 * Be fancy and try to print contiguous runs
2701 			 * of IRQ values as ranges.  'run' is true if
2702 			 * we are in a range.
2703 			 */
2704 			device_printf(child, "using IRQs %d", irqs[0]);
2705 			run = false;
2706 			for (i = 1; i < actual; i++) {
2707 				/* Still in a run? */
2708 				if (irqs[i] == irqs[i - 1] + 1) {
2709 					run = true;
2710 					continue;
2711 				}
2712 
2713 				/* Finish previous range. */
2714 				if (run) {
2715 					printf("-%d", irqs[i - 1]);
2716 					run = false;
2717 				}
2718 
2719 				/* Start new range. */
2720 				printf(",%d", irqs[i]);
2721 			}
2722 
2723 			/* Unfinished range? */
2724 			if (run)
2725 				printf("-%d", irqs[actual - 1]);
2726 			printf(" for MSI\n");
2727 		}
2728 	}
2729 
2730 	/* Update control register with actual count. */
2731 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2732 	ctrl |= (ffs(actual) - 1) << 4;
2733 	cfg->msi.msi_ctrl = ctrl;
2734 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2735 
2736 	/* Update counts of alloc'd messages. */
2737 	cfg->msi.msi_alloc = actual;
2738 	cfg->msi.msi_handlers = 0;
2739 	*count = actual;
2740 	return (0);
2741 }
2742 
2743 /* Release the MSI messages associated with this device. */
2744 int
pci_release_msi_method(device_t dev,device_t child)2745 pci_release_msi_method(device_t dev, device_t child)
2746 {
2747 	struct pci_devinfo *dinfo = device_get_ivars(child);
2748 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2749 	struct resource_list_entry *rle;
2750 	u_int i, irqs[32];
2751 	int error;
2752 
2753 	/* Try MSI-X first. */
2754 	error = pci_release_msix(dev, child);
2755 	if (error != ENODEV)
2756 		return (error);
2757 
2758 	/* Do we have any messages to release? */
2759 	if (msi->msi_alloc == 0)
2760 		return (ENODEV);
2761 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2762 
2763 	/* Make sure none of the resources are allocated. */
2764 	if (msi->msi_handlers > 0)
2765 		return (EBUSY);
2766 	for (i = 0; i < msi->msi_alloc; i++) {
2767 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2768 		KASSERT(rle != NULL, ("missing MSI resource"));
2769 		if (rle->res != NULL)
2770 			return (EBUSY);
2771 		irqs[i] = rle->start;
2772 	}
2773 
2774 	/* Update control register with 0 count. */
2775 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2776 	    ("%s: MSI still enabled", __func__));
2777 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2778 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2779 	    msi->msi_ctrl, 2);
2780 
2781 	/* Release the messages. */
2782 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2783 	for (i = 0; i < msi->msi_alloc; i++)
2784 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2785 
2786 	/* Update alloc count. */
2787 	msi->msi_alloc = 0;
2788 	msi->msi_addr = 0;
2789 	msi->msi_data = 0;
2790 	return (0);
2791 }
2792 
2793 /*
2794  * Return the max supported MSI messages this device supports.
2795  * Basically, assuming the MD code can alloc messages, this function
2796  * should return the maximum value that pci_alloc_msi() can return.
2797  * Thus, it is subject to the tunables, etc.
2798  */
2799 int
pci_msi_count_method(device_t dev,device_t child)2800 pci_msi_count_method(device_t dev, device_t child)
2801 {
2802 	struct pci_devinfo *dinfo = device_get_ivars(child);
2803 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2804 	uint16_t ctrl;
2805 
2806 	if (pci_do_msi && msi->msi_location != 0) {
2807 		ctrl = pci_read_config(child, msi->msi_location + PCIR_MSI_CTRL,
2808 		    2);
2809 		return (PCI_MSI_MSGNUM(ctrl));
2810 	}
2811 	return (0);
2812 }
2813 
2814 /* free pcicfgregs structure and all depending data structures */
2815 
2816 int
pci_freecfg(struct pci_devinfo * dinfo)2817 pci_freecfg(struct pci_devinfo *dinfo)
2818 {
2819 	struct devlist *devlist_head;
2820 	struct pci_map *pm, *next;
2821 
2822 	devlist_head = &pci_devq;
2823 
2824 	if (dinfo->cfg.vpd.vpd_reg)
2825 		vpd_free(&dinfo->cfg.vpd);
2826 
2827 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2828 		free(pm, M_DEVBUF);
2829 	}
2830 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2831 	free(dinfo, M_DEVBUF);
2832 
2833 	/* increment the generation count */
2834 	pci_generation++;
2835 
2836 	/* we're losing one device */
2837 	pci_numdevs--;
2838 	return (0);
2839 }
2840 
2841 /*
2842  * PCI power manangement
2843  */
2844 int
pci_set_powerstate_method(device_t dev,device_t child,int state)2845 pci_set_powerstate_method(device_t dev, device_t child, int state)
2846 {
2847 	struct pci_devinfo *dinfo = device_get_ivars(child);
2848 	pcicfgregs *cfg = &dinfo->cfg;
2849 	uint16_t status;
2850 	int oldstate, highest, delay;
2851 
2852 	if (cfg->pp.pp_location == 0)
2853 		return (EOPNOTSUPP);
2854 
2855 	/*
2856 	 * Optimize a no state change request away.  While it would be OK to
2857 	 * write to the hardware in theory, some devices have shown odd
2858 	 * behavior when going from D3 -> D3.
2859 	 */
2860 	oldstate = pci_get_powerstate(child);
2861 	if (oldstate == state)
2862 		return (0);
2863 
2864 	/*
2865 	 * The PCI power management specification states that after a state
2866 	 * transition between PCI power states, system software must
2867 	 * guarantee a minimal delay before the function accesses the device.
2868 	 * Compute the worst case delay that we need to guarantee before we
2869 	 * access the device.  Many devices will be responsive much more
2870 	 * quickly than this delay, but there are some that don't respond
2871 	 * instantly to state changes.  Transitions to/from D3 state require
2872 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2873 	 * is done below with DELAY rather than a sleeper function because
2874 	 * this function can be called from contexts where we cannot sleep.
2875 	 */
2876 	highest = (oldstate > state) ? oldstate : state;
2877 	if (highest == PCI_POWERSTATE_D3)
2878 	    delay = 10000;
2879 	else if (highest == PCI_POWERSTATE_D2)
2880 	    delay = 200;
2881 	else
2882 	    delay = 0;
2883 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_location +
2884 	    PCIR_POWER_STATUS, 2) & ~PCIM_PSTAT_DMASK;
2885 	switch (state) {
2886 	case PCI_POWERSTATE_D0:
2887 		status |= PCIM_PSTAT_D0;
2888 		break;
2889 	case PCI_POWERSTATE_D1:
2890 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2891 			return (EOPNOTSUPP);
2892 		status |= PCIM_PSTAT_D1;
2893 		break;
2894 	case PCI_POWERSTATE_D2:
2895 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2896 			return (EOPNOTSUPP);
2897 		status |= PCIM_PSTAT_D2;
2898 		break;
2899 	case PCI_POWERSTATE_D3:
2900 		status |= PCIM_PSTAT_D3;
2901 		break;
2902 	default:
2903 		return (EINVAL);
2904 	}
2905 
2906 	if (bootverbose)
2907 		pci_printf(cfg, "Transition from %s to %s\n",
2908 		    pci_powerstate_to_str(oldstate),
2909 		    pci_powerstate_to_str(state));
2910 
2911 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_location + PCIR_POWER_STATUS,
2912 	    status, 2);
2913 	if (delay)
2914 		DELAY(delay);
2915 	return (0);
2916 }
2917 
2918 int
pci_get_powerstate_method(device_t dev,device_t child)2919 pci_get_powerstate_method(device_t dev, device_t child)
2920 {
2921 	struct pci_devinfo *dinfo = device_get_ivars(child);
2922 	pcicfgregs *cfg = &dinfo->cfg;
2923 	uint16_t status;
2924 	int result;
2925 
2926 	if (cfg->pp.pp_location != 0) {
2927 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_location +
2928 		    PCIR_POWER_STATUS, 2);
2929 		switch (status & PCIM_PSTAT_DMASK) {
2930 		case PCIM_PSTAT_D0:
2931 			result = PCI_POWERSTATE_D0;
2932 			break;
2933 		case PCIM_PSTAT_D1:
2934 			result = PCI_POWERSTATE_D1;
2935 			break;
2936 		case PCIM_PSTAT_D2:
2937 			result = PCI_POWERSTATE_D2;
2938 			break;
2939 		case PCIM_PSTAT_D3:
2940 			result = PCI_POWERSTATE_D3;
2941 			break;
2942 		default:
2943 			result = PCI_POWERSTATE_UNKNOWN;
2944 			break;
2945 		}
2946 	} else {
2947 		/* No support, device is always at D0 */
2948 		result = PCI_POWERSTATE_D0;
2949 	}
2950 	return (result);
2951 }
2952 
2953 /* Clear any active PME# and disable PME# generation. */
2954 void
pci_clear_pme(device_t dev)2955 pci_clear_pme(device_t dev)
2956 {
2957 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2958 	pcicfgregs *cfg = &dinfo->cfg;
2959 	uint16_t status;
2960 
2961 	if (cfg->pp.pp_location != 0) {
2962 		status = pci_read_config(dev, dinfo->cfg.pp.pp_location +
2963 		    PCIR_POWER_STATUS, 2);
2964 		status &= ~PCIM_PSTAT_PMEENABLE;
2965 		status |= PCIM_PSTAT_PME;
2966 		pci_write_config(dev, dinfo->cfg.pp.pp_location +
2967 		    PCIR_POWER_STATUS, status, 2);
2968 	}
2969 }
2970 
2971 /* Clear any active PME# and enable PME# generation. */
2972 void
pci_enable_pme(device_t dev)2973 pci_enable_pme(device_t dev)
2974 {
2975 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2976 	pcicfgregs *cfg = &dinfo->cfg;
2977 	uint16_t status;
2978 
2979 	if (cfg->pp.pp_location != 0) {
2980 		status = pci_read_config(dev, dinfo->cfg.pp.pp_location +
2981 		    PCIR_POWER_STATUS, 2);
2982 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2983 		pci_write_config(dev, dinfo->cfg.pp.pp_location +
2984 		    PCIR_POWER_STATUS, status, 2);
2985 	}
2986 }
2987 
2988 bool
pci_has_pm(device_t dev)2989 pci_has_pm(device_t dev)
2990 {
2991 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2992 	pcicfgregs *cfg = &dinfo->cfg;
2993 
2994 	return (cfg->pp.pp_location != 0);
2995 }
2996 
2997 /*
2998  * Some convenience functions for PCI device drivers.
2999  */
3000 
3001 static __inline void
pci_set_command_bit(device_t dev,device_t child,uint16_t bit)3002 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
3003 {
3004 	uint16_t	command;
3005 
3006 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
3007 	command |= bit;
3008 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
3009 }
3010 
3011 static __inline void
pci_clear_command_bit(device_t dev,device_t child,uint16_t bit)3012 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
3013 {
3014 	uint16_t	command;
3015 
3016 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
3017 	command &= ~bit;
3018 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
3019 }
3020 
3021 int
pci_enable_busmaster_method(device_t dev,device_t child)3022 pci_enable_busmaster_method(device_t dev, device_t child)
3023 {
3024 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
3025 	return (0);
3026 }
3027 
3028 int
pci_disable_busmaster_method(device_t dev,device_t child)3029 pci_disable_busmaster_method(device_t dev, device_t child)
3030 {
3031 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
3032 	return (0);
3033 }
3034 
3035 int
pci_enable_io_method(device_t dev,device_t child,int space)3036 pci_enable_io_method(device_t dev, device_t child, int space)
3037 {
3038 	uint16_t bit;
3039 
3040 	switch(space) {
3041 	case SYS_RES_IOPORT:
3042 		bit = PCIM_CMD_PORTEN;
3043 		break;
3044 	case SYS_RES_MEMORY:
3045 		bit = PCIM_CMD_MEMEN;
3046 		break;
3047 	default:
3048 		return (EINVAL);
3049 	}
3050 	pci_set_command_bit(dev, child, bit);
3051 	return (0);
3052 }
3053 
3054 int
pci_disable_io_method(device_t dev,device_t child,int space)3055 pci_disable_io_method(device_t dev, device_t child, int space)
3056 {
3057 	uint16_t bit;
3058 
3059 	switch(space) {
3060 	case SYS_RES_IOPORT:
3061 		bit = PCIM_CMD_PORTEN;
3062 		break;
3063 	case SYS_RES_MEMORY:
3064 		bit = PCIM_CMD_MEMEN;
3065 		break;
3066 	default:
3067 		return (EINVAL);
3068 	}
3069 	pci_clear_command_bit(dev, child, bit);
3070 	return (0);
3071 }
3072 
3073 /*
3074  * New style pci driver.  Parent device is either a pci-host-bridge or a
3075  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
3076  */
3077 
3078 void
pci_print_verbose(struct pci_devinfo * dinfo)3079 pci_print_verbose(struct pci_devinfo *dinfo)
3080 {
3081 
3082 	if (bootverbose) {
3083 		pcicfgregs *cfg = &dinfo->cfg;
3084 
3085 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
3086 		    cfg->vendor, cfg->device, cfg->revid);
3087 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
3088 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
3089 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
3090 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
3091 		    cfg->mfdev);
3092 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
3093 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
3094 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
3095 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
3096 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
3097 		if (cfg->intpin > 0)
3098 			printf("\tintpin=%c, irq=%d\n",
3099 			    cfg->intpin +'a' -1, cfg->intline);
3100 		if (cfg->pp.pp_location) {
3101 			uint16_t status;
3102 
3103 			status = pci_read_config(cfg->dev, cfg->pp.pp_location +
3104 			    PCIR_POWER_STATUS, 2);
3105 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
3106 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
3107 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
3108 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
3109 			    status & PCIM_PSTAT_DMASK);
3110 		}
3111 		if (cfg->msi.msi_location) {
3112 			uint16_t ctrl, msgnum;
3113 
3114 			ctrl = cfg->msi.msi_ctrl;
3115 			msgnum = PCI_MSI_MSGNUM(ctrl);
3116 			printf("\tMSI supports %d message%s%s%s\n",
3117 			    msgnum, (msgnum == 1) ? "" : "s",
3118 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
3119 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
3120 		}
3121 		if (cfg->msix.msix_location) {
3122 			uint16_t msgnum;
3123 
3124 			msgnum = PCI_MSIX_MSGNUM(cfg->msix.msix_ctrl);
3125 			printf("\tMSI-X supports %d message%s ",
3126 			    msgnum, (msgnum == 1) ? "" : "s");
3127 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
3128 				printf("in map 0x%x\n",
3129 				    cfg->msix.msix_table_bar);
3130 			else
3131 				printf("in maps 0x%x and 0x%x\n",
3132 				    cfg->msix.msix_table_bar,
3133 				    cfg->msix.msix_pba_bar);
3134 		}
3135 	}
3136 }
3137 
3138 static int
pci_porten(device_t dev)3139 pci_porten(device_t dev)
3140 {
3141 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3142 }
3143 
3144 static int
pci_memen(device_t dev)3145 pci_memen(device_t dev)
3146 {
3147 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3148 }
3149 
3150 void
pci_read_bar(device_t dev,int reg,pci_addr_t * mapp,pci_addr_t * testvalp,int * bar64)3151 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3152     int *bar64)
3153 {
3154 	struct pci_devinfo *dinfo;
3155 	pci_addr_t map, testval;
3156 	int ln2range;
3157 	uint16_t cmd;
3158 
3159 	/*
3160 	 * The device ROM BAR is special.  It is always a 32-bit
3161 	 * memory BAR.  Bit 0 is special and should not be set when
3162 	 * sizing the BAR.
3163 	 */
3164 	dinfo = device_get_ivars(dev);
3165 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3166 		map = pci_read_config(dev, reg, 4);
3167 		pci_write_config(dev, reg, 0xfffffffe, 4);
3168 		testval = pci_read_config(dev, reg, 4);
3169 		pci_write_config(dev, reg, map, 4);
3170 		*mapp = map;
3171 		*testvalp = testval;
3172 		if (bar64 != NULL)
3173 			*bar64 = 0;
3174 		return;
3175 	}
3176 
3177 	map = pci_read_config(dev, reg, 4);
3178 	ln2range = pci_maprange(map);
3179 	if (ln2range == 64)
3180 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3181 
3182 	/*
3183 	 * Disable decoding via the command register before
3184 	 * determining the BAR's length since we will be placing it in
3185 	 * a weird state.
3186 	 */
3187 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3188 	pci_write_config(dev, PCIR_COMMAND,
3189 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3190 
3191 	/*
3192 	 * Determine the BAR's length by writing all 1's.  The bottom
3193 	 * log_2(size) bits of the BAR will stick as 0 when we read
3194 	 * the value back.
3195 	 *
3196 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3197 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3198 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3199 	 *
3200 	 * Writes to both registers must be performed before attempting to
3201 	 * read back the size value.
3202 	 */
3203 	testval = 0;
3204 	pci_write_config(dev, reg, 0xffffffff, 4);
3205 	if (ln2range == 64) {
3206 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3207 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3208 	}
3209 	testval |= pci_read_config(dev, reg, 4);
3210 
3211 	/*
3212 	 * Restore the original value of the BAR.  We may have reprogrammed
3213 	 * the BAR of the low-level console device and when booting verbose,
3214 	 * we need the console device addressable.
3215 	 */
3216 	pci_write_config(dev, reg, map, 4);
3217 	if (ln2range == 64)
3218 		pci_write_config(dev, reg + 4, map >> 32, 4);
3219 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3220 
3221 	*mapp = map;
3222 	*testvalp = testval;
3223 	if (bar64 != NULL)
3224 		*bar64 = (ln2range == 64);
3225 }
3226 
3227 static void
pci_write_bar(device_t dev,struct pci_map * pm,pci_addr_t base)3228 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3229 {
3230 	struct pci_devinfo *dinfo;
3231 	int ln2range;
3232 
3233 	/* The device ROM BAR is always a 32-bit memory BAR. */
3234 	dinfo = device_get_ivars(dev);
3235 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3236 		ln2range = 32;
3237 	else
3238 		ln2range = pci_maprange(pm->pm_value);
3239 	pci_write_config(dev, pm->pm_reg, base, 4);
3240 	if (ln2range == 64)
3241 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3242 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3243 	if (ln2range == 64)
3244 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3245 		    pm->pm_reg + 4, 4) << 32;
3246 }
3247 
3248 struct pci_map *
pci_find_bar(device_t dev,int reg)3249 pci_find_bar(device_t dev, int reg)
3250 {
3251 	struct pci_devinfo *dinfo;
3252 	struct pci_map *pm;
3253 
3254 	dinfo = device_get_ivars(dev);
3255 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3256 		if (pm->pm_reg == reg)
3257 			return (pm);
3258 	}
3259 	return (NULL);
3260 }
3261 
3262 struct pci_map *
pci_first_bar(device_t dev)3263 pci_first_bar(device_t dev)
3264 {
3265 	struct pci_devinfo *dinfo;
3266 
3267 	dinfo = device_get_ivars(dev);
3268 	return (STAILQ_FIRST(&dinfo->cfg.maps));
3269 }
3270 
3271 struct pci_map *
pci_next_bar(struct pci_map * pm)3272 pci_next_bar(struct pci_map *pm)
3273 {
3274 	return (STAILQ_NEXT(pm, pm_link));
3275 }
3276 
3277 int
pci_bar_enabled(device_t dev,struct pci_map * pm)3278 pci_bar_enabled(device_t dev, struct pci_map *pm)
3279 {
3280 	struct pci_devinfo *dinfo;
3281 	uint16_t cmd;
3282 
3283 	dinfo = device_get_ivars(dev);
3284 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3285 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3286 		return (0);
3287 #ifdef PCI_IOV
3288 	if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
3289 		struct pcicfg_iov *iov;
3290 
3291 		iov = dinfo->cfg.iov;
3292 		cmd = pci_read_config(iov->iov_pf,
3293 		    iov->iov_pos + PCIR_SRIOV_CTL, 2);
3294 		return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
3295 	}
3296 #endif
3297 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3298 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3299 		return ((cmd & PCIM_CMD_MEMEN) != 0);
3300 	else
3301 		return ((cmd & PCIM_CMD_PORTEN) != 0);
3302 }
3303 
3304 struct pci_map *
pci_add_bar(device_t dev,int reg,pci_addr_t value,pci_addr_t size)3305 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3306 {
3307 	struct pci_devinfo *dinfo;
3308 	struct pci_map *pm, *prev;
3309 
3310 	dinfo = device_get_ivars(dev);
3311 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3312 	pm->pm_reg = reg;
3313 	pm->pm_value = value;
3314 	pm->pm_size = size;
3315 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3316 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3317 		    reg));
3318 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3319 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3320 			break;
3321 	}
3322 	if (prev != NULL)
3323 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3324 	else
3325 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3326 	return (pm);
3327 }
3328 
3329 static void
pci_restore_bars(device_t dev)3330 pci_restore_bars(device_t dev)
3331 {
3332 	struct pci_devinfo *dinfo;
3333 	struct pci_map *pm;
3334 	int ln2range;
3335 
3336 	dinfo = device_get_ivars(dev);
3337 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3338 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3339 			ln2range = 32;
3340 		else
3341 			ln2range = pci_maprange(pm->pm_value);
3342 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3343 		if (ln2range == 64)
3344 			pci_write_config(dev, pm->pm_reg + 4,
3345 			    pm->pm_value >> 32, 4);
3346 	}
3347 }
3348 
3349 /*
3350  * Add a resource based on a pci map register. Return 1 if the map
3351  * register is a 32bit map register or 2 if it is a 64bit register.
3352  */
3353 static int
pci_add_map(device_t bus,device_t dev,int reg,struct resource_list * rl,int force,int prefetch)3354 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3355     int force, int prefetch)
3356 {
3357 	struct pci_map *pm;
3358 	pci_addr_t base, map, testval;
3359 	pci_addr_t start, end, count;
3360 	int barlen, basezero, flags, maprange, mapsize, type;
3361 	uint16_t cmd;
3362 	struct resource *res;
3363 
3364 	/*
3365 	 * The BAR may already exist if the device is a CardBus card
3366 	 * whose CIS is stored in this BAR.
3367 	 */
3368 	pm = pci_find_bar(dev, reg);
3369 	if (pm != NULL) {
3370 		maprange = pci_maprange(pm->pm_value);
3371 		barlen = maprange == 64 ? 2 : 1;
3372 		return (barlen);
3373 	}
3374 
3375 	pci_read_bar(dev, reg, &map, &testval, NULL);
3376 	if (PCI_BAR_MEM(map)) {
3377 		type = SYS_RES_MEMORY;
3378 		if (map & PCIM_BAR_MEM_PREFETCH)
3379 			prefetch = 1;
3380 	} else
3381 		type = SYS_RES_IOPORT;
3382 	mapsize = pci_mapsize(testval);
3383 	base = pci_mapbase(map);
3384 #ifdef __PCI_BAR_ZERO_VALID
3385 	basezero = 0;
3386 #else
3387 	basezero = base == 0;
3388 #endif
3389 	maprange = pci_maprange(map);
3390 	barlen = maprange == 64 ? 2 : 1;
3391 
3392 	/*
3393 	 * For I/O registers, if bottom bit is set, and the next bit up
3394 	 * isn't clear, we know we have a BAR that doesn't conform to the
3395 	 * spec, so ignore it.  Also, sanity check the size of the data
3396 	 * areas to the type of memory involved.  Memory must be at least
3397 	 * 16 bytes in size, while I/O ranges must be at least 4.
3398 	 */
3399 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3400 		return (barlen);
3401 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3402 	    (type == SYS_RES_IOPORT && mapsize < 2))
3403 		return (barlen);
3404 
3405 	/* Save a record of this BAR. */
3406 	pm = pci_add_bar(dev, reg, map, mapsize);
3407 	if (bootverbose) {
3408 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3409 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3410 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3411 			printf(", port disabled\n");
3412 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3413 			printf(", memory disabled\n");
3414 		else
3415 			printf(", enabled\n");
3416 	}
3417 
3418 	/*
3419 	 * If base is 0, then we have problems if this architecture does
3420 	 * not allow that.  It is best to ignore such entries for the
3421 	 * moment.  These will be allocated later if the driver specifically
3422 	 * requests them.  However, some removable buses look better when
3423 	 * all resources are allocated, so allow '0' to be overridden.
3424 	 *
3425 	 * Similarly treat maps whose values is the same as the test value
3426 	 * read back.  These maps have had all f's written to them by the
3427 	 * BIOS in an attempt to disable the resources.
3428 	 */
3429 	if (!force && (basezero || map == testval))
3430 		return (barlen);
3431 	if ((u_long)base != base) {
3432 		device_printf(bus,
3433 		    "pci%d:%d:%d:%d bar %#x too many address bits",
3434 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3435 		    pci_get_function(dev), reg);
3436 		return (barlen);
3437 	}
3438 
3439 	/*
3440 	 * This code theoretically does the right thing, but has
3441 	 * undesirable side effects in some cases where peripherals
3442 	 * respond oddly to having these bits enabled.  Let the user
3443 	 * be able to turn them off (since pci_enable_io_modes is 1 by
3444 	 * default).
3445 	 */
3446 	if (pci_enable_io_modes) {
3447 		/* Turn on resources that have been left off by a lazy BIOS */
3448 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3449 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3450 			cmd |= PCIM_CMD_PORTEN;
3451 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3452 		}
3453 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3454 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3455 			cmd |= PCIM_CMD_MEMEN;
3456 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3457 		}
3458 	} else {
3459 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3460 			return (barlen);
3461 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3462 			return (barlen);
3463 	}
3464 
3465 	count = (pci_addr_t)1 << mapsize;
3466 	flags = RF_ALIGNMENT_LOG2(mapsize);
3467 	if (prefetch)
3468 		flags |= RF_PREFETCHABLE;
3469 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3470 		start = 0;	/* Let the parent decide. */
3471 		end = ~0;
3472 	} else {
3473 		start = base;
3474 		end = base + count - 1;
3475 	}
3476 	resource_list_add(rl, type, reg, start, end, count);
3477 
3478 	/*
3479 	 * Try to allocate the resource for this BAR from our parent
3480 	 * so that this resource range is already reserved.  The
3481 	 * driver for this device will later inherit this resource in
3482 	 * pci_alloc_resource().
3483 	 */
3484 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3485 	    flags);
3486 	if ((pci_do_realloc_bars
3487 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3488 	    && res == NULL && (start != 0 || end != ~0)) {
3489 		/*
3490 		 * If the allocation fails, try to allocate a resource for
3491 		 * this BAR using any available range.  The firmware felt
3492 		 * it was important enough to assign a resource, so don't
3493 		 * disable decoding if we can help it.
3494 		 */
3495 		resource_list_delete(rl, type, reg);
3496 		resource_list_add(rl, type, reg, 0, ~0, count);
3497 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3498 		    count, flags);
3499 	}
3500 	if (res == NULL) {
3501 		/*
3502 		 * If the allocation fails, delete the resource list entry
3503 		 * and disable decoding for this device.
3504 		 *
3505 		 * If the driver requests this resource in the future,
3506 		 * pci_reserve_map() will try to allocate a fresh
3507 		 * resource range.
3508 		 */
3509 		resource_list_delete(rl, type, reg);
3510 		pci_disable_io(dev, type);
3511 		if (bootverbose)
3512 			device_printf(bus,
3513 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3514 			    pci_get_domain(dev), pci_get_bus(dev),
3515 			    pci_get_slot(dev), pci_get_function(dev), reg);
3516 	} else {
3517 		start = rman_get_start(res);
3518 		pci_write_bar(dev, pm, start);
3519 	}
3520 	return (barlen);
3521 }
3522 
3523 /*
3524  * For ATA devices we need to decide early what addressing mode to use.
3525  * Legacy demands that the primary and secondary ATA ports sits on the
3526  * same addresses that old ISA hardware did. This dictates that we use
3527  * those addresses and ignore the BAR's if we cannot set PCI native
3528  * addressing mode.
3529  */
3530 static void
pci_ata_maps(device_t bus,device_t dev,struct resource_list * rl,int force,uint32_t prefetchmask)3531 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3532     uint32_t prefetchmask)
3533 {
3534 	int rid, type, progif;
3535 #if 0
3536 	/* if this device supports PCI native addressing use it */
3537 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3538 	if ((progif & 0x8a) == 0x8a) {
3539 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3540 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3541 			printf("Trying ATA native PCI addressing mode\n");
3542 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3543 		}
3544 	}
3545 #endif
3546 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3547 	type = SYS_RES_IOPORT;
3548 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3549 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3550 		    prefetchmask & (1 << 0));
3551 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3552 		    prefetchmask & (1 << 1));
3553 	} else {
3554 		rid = PCIR_BAR(0);
3555 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3556 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3557 		    0x1f7, 8, 0);
3558 		rid = PCIR_BAR(1);
3559 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3560 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3561 		    0x3f6, 1, 0);
3562 	}
3563 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3564 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3565 		    prefetchmask & (1 << 2));
3566 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3567 		    prefetchmask & (1 << 3));
3568 	} else {
3569 		rid = PCIR_BAR(2);
3570 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3571 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3572 		    0x177, 8, 0);
3573 		rid = PCIR_BAR(3);
3574 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3575 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3576 		    0x376, 1, 0);
3577 	}
3578 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3579 	    prefetchmask & (1 << 4));
3580 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3581 	    prefetchmask & (1 << 5));
3582 }
3583 
3584 static void
pci_assign_interrupt(device_t bus,device_t dev,int force_route)3585 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3586 {
3587 	struct pci_devinfo *dinfo = device_get_ivars(dev);
3588 	pcicfgregs *cfg = &dinfo->cfg;
3589 	char tunable_name[64];
3590 	int irq;
3591 
3592 	/* Has to have an intpin to have an interrupt. */
3593 	if (cfg->intpin == 0)
3594 		return;
3595 
3596 	/* Let the user override the IRQ with a tunable. */
3597 	irq = PCI_INVALID_IRQ;
3598 	snprintf(tunable_name, sizeof(tunable_name),
3599 	    "hw.pci%d.%d.%d.INT%c.irq",
3600 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3601 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3602 		irq = PCI_INVALID_IRQ;
3603 
3604 	/*
3605 	 * If we didn't get an IRQ via the tunable, then we either use the
3606 	 * IRQ value in the intline register or we ask the bus to route an
3607 	 * interrupt for us.  If force_route is true, then we only use the
3608 	 * value in the intline register if the bus was unable to assign an
3609 	 * IRQ.
3610 	 */
3611 	if (!PCI_INTERRUPT_VALID(irq)) {
3612 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3613 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3614 		if (!PCI_INTERRUPT_VALID(irq))
3615 			irq = cfg->intline;
3616 	}
3617 
3618 	/* If after all that we don't have an IRQ, just bail. */
3619 	if (!PCI_INTERRUPT_VALID(irq))
3620 		return;
3621 
3622 	/* Update the config register if it changed. */
3623 	if (irq != cfg->intline) {
3624 		cfg->intline = irq;
3625 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3626 	}
3627 
3628 	/* Add this IRQ as rid 0 interrupt resource. */
3629 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3630 }
3631 
3632 /* Perform early OHCI takeover from SMM. */
3633 static void
ohci_early_takeover(device_t self)3634 ohci_early_takeover(device_t self)
3635 {
3636 	struct resource *res;
3637 	uint32_t ctl;
3638 	int rid;
3639 	int i;
3640 
3641 	rid = PCIR_BAR(0);
3642 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3643 	if (res == NULL)
3644 		return;
3645 
3646 	ctl = bus_read_4(res, OHCI_CONTROL);
3647 	if (ctl & OHCI_IR) {
3648 		if (bootverbose)
3649 			printf("ohci early: "
3650 			    "SMM active, request owner change\n");
3651 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3652 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3653 			DELAY(1000);
3654 			ctl = bus_read_4(res, OHCI_CONTROL);
3655 		}
3656 		if (ctl & OHCI_IR) {
3657 			if (bootverbose)
3658 				printf("ohci early: "
3659 				    "SMM does not respond, resetting\n");
3660 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3661 		}
3662 		/* Disable interrupts */
3663 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3664 	}
3665 
3666 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3667 }
3668 
3669 /* Perform early UHCI takeover from SMM. */
3670 static void
uhci_early_takeover(device_t self)3671 uhci_early_takeover(device_t self)
3672 {
3673 	struct resource *res;
3674 	int rid;
3675 
3676 	/*
3677 	 * Set the PIRQD enable bit and switch off all the others. We don't
3678 	 * want legacy support to interfere with us XXX Does this also mean
3679 	 * that the BIOS won't touch the keyboard anymore if it is connected
3680 	 * to the ports of the root hub?
3681 	 */
3682 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3683 
3684 	/* Disable interrupts */
3685 	rid = PCI_UHCI_BASE_REG;
3686 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3687 	if (res != NULL) {
3688 		bus_write_2(res, UHCI_INTR, 0);
3689 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3690 	}
3691 }
3692 
3693 /* Perform early EHCI takeover from SMM. */
3694 static void
ehci_early_takeover(device_t self)3695 ehci_early_takeover(device_t self)
3696 {
3697 	struct resource *res;
3698 	uint32_t cparams;
3699 	uint32_t eec;
3700 	uint8_t eecp;
3701 	uint8_t bios_sem;
3702 	uint8_t offs;
3703 	int rid;
3704 	int i;
3705 
3706 	rid = PCIR_BAR(0);
3707 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3708 	if (res == NULL)
3709 		return;
3710 
3711 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3712 
3713 	/* Synchronise with the BIOS if it owns the controller. */
3714 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3715 	    eecp = EHCI_EECP_NEXT(eec)) {
3716 		eec = pci_read_config(self, eecp, 4);
3717 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3718 			continue;
3719 		}
3720 		bios_sem = pci_read_config(self, eecp +
3721 		    EHCI_LEGSUP_BIOS_SEM, 1);
3722 		if (bios_sem == 0) {
3723 			continue;
3724 		}
3725 		if (bootverbose)
3726 			printf("ehci early: "
3727 			    "SMM active, request owner change\n");
3728 
3729 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3730 
3731 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3732 			DELAY(1000);
3733 			bios_sem = pci_read_config(self, eecp +
3734 			    EHCI_LEGSUP_BIOS_SEM, 1);
3735 		}
3736 
3737 		if (bios_sem != 0) {
3738 			if (bootverbose)
3739 				printf("ehci early: "
3740 				    "SMM does not respond\n");
3741 		}
3742 		/* Disable interrupts */
3743 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3744 		bus_write_4(res, offs + EHCI_USBINTR, 0);
3745 	}
3746 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3747 }
3748 
3749 /* Perform early XHCI takeover from SMM. */
3750 static void
xhci_early_takeover(device_t self)3751 xhci_early_takeover(device_t self)
3752 {
3753 	struct resource *res;
3754 	uint32_t cparams;
3755 	uint32_t eec;
3756 	uint8_t eecp;
3757 	uint8_t bios_sem;
3758 	uint8_t offs;
3759 	int rid;
3760 	int i;
3761 
3762 	rid = PCIR_BAR(0);
3763 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3764 	if (res == NULL)
3765 		return;
3766 
3767 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3768 
3769 	eec = -1;
3770 
3771 	/* Synchronise with the BIOS if it owns the controller. */
3772 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3773 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3774 		eec = bus_read_4(res, eecp);
3775 
3776 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3777 			continue;
3778 
3779 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3780 		if (bios_sem == 0)
3781 			continue;
3782 
3783 		if (bootverbose)
3784 			printf("xhci early: "
3785 			    "SMM active, request owner change\n");
3786 
3787 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3788 
3789 		/* wait a maximum of 5 second */
3790 
3791 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3792 			DELAY(1000);
3793 			bios_sem = bus_read_1(res, eecp +
3794 			    XHCI_XECP_BIOS_SEM);
3795 		}
3796 
3797 		if (bios_sem != 0) {
3798 			if (bootverbose)
3799 				printf("xhci early: "
3800 				    "SMM does not respond\n");
3801 		}
3802 
3803 		/* Disable interrupts */
3804 		offs = bus_read_1(res, XHCI_CAPLENGTH);
3805 		bus_write_4(res, offs + XHCI_USBCMD, 0);
3806 		bus_read_4(res, offs + XHCI_USBSTS);
3807 	}
3808 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3809 }
3810 
3811 static void
pci_reserve_secbus(device_t bus,device_t dev,pcicfgregs * cfg,struct resource_list * rl)3812 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3813     struct resource_list *rl)
3814 {
3815 	struct resource *res;
3816 	char *cp;
3817 	rman_res_t start, end, count;
3818 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3819 
3820 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3821 	case PCIM_HDRTYPE_BRIDGE:
3822 		sec_reg = PCIR_SECBUS_1;
3823 		sub_reg = PCIR_SUBBUS_1;
3824 		break;
3825 	case PCIM_HDRTYPE_CARDBUS:
3826 		sec_reg = PCIR_SECBUS_2;
3827 		sub_reg = PCIR_SUBBUS_2;
3828 		break;
3829 	default:
3830 		return;
3831 	}
3832 
3833 	/*
3834 	 * If the existing bus range is valid, attempt to reserve it
3835 	 * from our parent.  If this fails for any reason, clear the
3836 	 * secbus and subbus registers.
3837 	 *
3838 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3839 	 * This would at least preserve the existing sec_bus if it is
3840 	 * valid.
3841 	 */
3842 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3843 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3844 
3845 	/* Quirk handling. */
3846 	switch (pci_get_devid(dev)) {
3847 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3848 		sup_bus = pci_read_config(dev, 0x41, 1);
3849 		if (sup_bus != 0xff) {
3850 			sec_bus = sup_bus + 1;
3851 			sub_bus = sup_bus + 1;
3852 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3853 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3854 		}
3855 		break;
3856 
3857 	case 0x00dd10de:
3858 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3859 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3860 			break;
3861 		if (strncmp(cp, "Compal", 6) != 0) {
3862 			freeenv(cp);
3863 			break;
3864 		}
3865 		freeenv(cp);
3866 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3867 			break;
3868 		if (strncmp(cp, "08A0", 4) != 0) {
3869 			freeenv(cp);
3870 			break;
3871 		}
3872 		freeenv(cp);
3873 		if (sub_bus < 0xa) {
3874 			sub_bus = 0xa;
3875 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3876 		}
3877 		break;
3878 	}
3879 
3880 	if (bootverbose)
3881 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3882 	if (sec_bus > 0 && sub_bus >= sec_bus) {
3883 		start = sec_bus;
3884 		end = sub_bus;
3885 		count = end - start + 1;
3886 
3887 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3888 
3889 		/*
3890 		 * If requested, clear secondary bus registers in
3891 		 * bridge devices to force a complete renumbering
3892 		 * rather than reserving the existing range.  However,
3893 		 * preserve the existing size.
3894 		 */
3895 		if (pci_clear_buses)
3896 			goto clear;
3897 
3898 		rid = 0;
3899 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3900 		    start, end, count, 0);
3901 		if (res != NULL)
3902 			return;
3903 
3904 		if (bootverbose)
3905 			device_printf(bus,
3906 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3907 			    pci_get_domain(dev), pci_get_bus(dev),
3908 			    pci_get_slot(dev), pci_get_function(dev));
3909 	}
3910 
3911 clear:
3912 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3913 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3914 }
3915 
3916 static struct resource *
pci_alloc_secbus(device_t dev,device_t child,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3917 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3918     rman_res_t end, rman_res_t count, u_int flags)
3919 {
3920 	struct pci_devinfo *dinfo;
3921 	pcicfgregs *cfg;
3922 	struct resource_list *rl;
3923 	struct resource *res;
3924 	int sec_reg, sub_reg;
3925 
3926 	dinfo = device_get_ivars(child);
3927 	cfg = &dinfo->cfg;
3928 	rl = &dinfo->resources;
3929 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3930 	case PCIM_HDRTYPE_BRIDGE:
3931 		sec_reg = PCIR_SECBUS_1;
3932 		sub_reg = PCIR_SUBBUS_1;
3933 		break;
3934 	case PCIM_HDRTYPE_CARDBUS:
3935 		sec_reg = PCIR_SECBUS_2;
3936 		sub_reg = PCIR_SUBBUS_2;
3937 		break;
3938 	default:
3939 		return (NULL);
3940 	}
3941 
3942 	if (*rid != 0)
3943 		return (NULL);
3944 
3945 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3946 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3947 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3948 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3949 		    start, end, count, flags & ~RF_ACTIVE);
3950 		if (res == NULL) {
3951 			resource_list_delete(rl, PCI_RES_BUS, *rid);
3952 			device_printf(child, "allocating %ju bus%s failed\n",
3953 			    count, count == 1 ? "" : "es");
3954 			return (NULL);
3955 		}
3956 		if (bootverbose)
3957 			device_printf(child,
3958 			    "Lazy allocation of %ju bus%s at %ju\n", count,
3959 			    count == 1 ? "" : "es", rman_get_start(res));
3960 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3961 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3962 	}
3963 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3964 	    end, count, flags));
3965 }
3966 
3967 static int
pci_ea_bei_to_rid(device_t dev,int bei)3968 pci_ea_bei_to_rid(device_t dev, int bei)
3969 {
3970 #ifdef PCI_IOV
3971 	struct pci_devinfo *dinfo;
3972 	int iov_pos;
3973 	struct pcicfg_iov *iov;
3974 
3975 	dinfo = device_get_ivars(dev);
3976 	iov = dinfo->cfg.iov;
3977 	if (iov != NULL)
3978 		iov_pos = iov->iov_pos;
3979 	else
3980 		iov_pos = 0;
3981 #endif
3982 
3983 	/* Check if matches BAR */
3984 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3985 	    (bei <= PCIM_EA_BEI_BAR_5))
3986 		return (PCIR_BAR(bei));
3987 
3988 	/* Check ROM */
3989 	if (bei == PCIM_EA_BEI_ROM)
3990 		return (PCIR_BIOS);
3991 
3992 #ifdef PCI_IOV
3993 	/* Check if matches VF_BAR */
3994 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3995 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3996 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3997 		    iov_pos);
3998 #endif
3999 
4000 	return (-1);
4001 }
4002 
4003 int
pci_ea_is_enabled(device_t dev,int rid)4004 pci_ea_is_enabled(device_t dev, int rid)
4005 {
4006 	struct pci_ea_entry *ea;
4007 	struct pci_devinfo *dinfo;
4008 
4009 	dinfo = device_get_ivars(dev);
4010 
4011 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
4012 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
4013 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
4014 	}
4015 
4016 	return (0);
4017 }
4018 
4019 void
pci_add_resources_ea(device_t bus,device_t dev,int alloc_iov)4020 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
4021 {
4022 	struct pci_ea_entry *ea;
4023 	struct pci_devinfo *dinfo;
4024 	pci_addr_t start, end, count;
4025 	struct resource_list *rl;
4026 	int type, flags, rid;
4027 	struct resource *res;
4028 	uint32_t tmp;
4029 #ifdef PCI_IOV
4030 	struct pcicfg_iov *iov;
4031 #endif
4032 
4033 	dinfo = device_get_ivars(dev);
4034 	rl = &dinfo->resources;
4035 	flags = 0;
4036 
4037 #ifdef PCI_IOV
4038 	iov = dinfo->cfg.iov;
4039 #endif
4040 
4041 	if (dinfo->cfg.ea.ea_location == 0)
4042 		return;
4043 
4044 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
4045 		/*
4046 		 * TODO: Ignore EA-BAR if is not enabled.
4047 		 *   Currently the EA implementation supports
4048 		 *   only situation, where EA structure contains
4049 		 *   predefined entries. In case they are not enabled
4050 		 *   leave them unallocated and proceed with
4051 		 *   a legacy-BAR mechanism.
4052 		 */
4053 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
4054 			continue;
4055 
4056 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
4057 		case PCIM_EA_P_MEM_PREFETCH:
4058 		case PCIM_EA_P_VF_MEM_PREFETCH:
4059 			flags = RF_PREFETCHABLE;
4060 			/* FALLTHROUGH */
4061 		case PCIM_EA_P_VF_MEM:
4062 		case PCIM_EA_P_MEM:
4063 			type = SYS_RES_MEMORY;
4064 			break;
4065 		case PCIM_EA_P_IO:
4066 			type = SYS_RES_IOPORT;
4067 			break;
4068 		default:
4069 			continue;
4070 		}
4071 
4072 		if (alloc_iov != 0) {
4073 #ifdef PCI_IOV
4074 			/* Allocating IOV, confirm BEI matches */
4075 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
4076 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
4077 				continue;
4078 #else
4079 			continue;
4080 #endif
4081 		} else {
4082 			/* Allocating BAR, confirm BEI matches */
4083 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
4084 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
4085 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
4086 				continue;
4087 		}
4088 
4089 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
4090 		if (rid < 0)
4091 			continue;
4092 
4093 		/* Skip resources already allocated by EA */
4094 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
4095 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
4096 			continue;
4097 
4098 		start = ea->eae_base;
4099 		count = ea->eae_max_offset + 1;
4100 #ifdef PCI_IOV
4101 		if (iov != NULL)
4102 			count = count * iov->iov_num_vfs;
4103 #endif
4104 		end = start + count - 1;
4105 		if (count == 0)
4106 			continue;
4107 
4108 		resource_list_add(rl, type, rid, start, end, count);
4109 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
4110 		    flags);
4111 		if (res == NULL) {
4112 			resource_list_delete(rl, type, rid);
4113 
4114 			/*
4115 			 * Failed to allocate using EA, disable entry.
4116 			 * Another attempt to allocation will be performed
4117 			 * further, but this time using legacy BAR registers
4118 			 */
4119 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
4120 			tmp &= ~PCIM_EA_ENABLE;
4121 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
4122 
4123 			/*
4124 			 * Disabling entry might fail in case it is hardwired.
4125 			 * Read flags again to match current status.
4126 			 */
4127 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
4128 
4129 			continue;
4130 		}
4131 
4132 		/* As per specification, fill BAR with zeros */
4133 		pci_write_config(dev, rid, 0, 4);
4134 	}
4135 }
4136 
4137 void
pci_add_resources(device_t bus,device_t dev,int force,uint32_t prefetchmask)4138 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
4139 {
4140 	struct pci_devinfo *dinfo;
4141 	pcicfgregs *cfg;
4142 	struct resource_list *rl;
4143 	const struct pci_quirk *q;
4144 	uint32_t devid;
4145 	int i;
4146 
4147 	dinfo = device_get_ivars(dev);
4148 	cfg = &dinfo->cfg;
4149 	rl = &dinfo->resources;
4150 	devid = (cfg->device << 16) | cfg->vendor;
4151 
4152 	/* Allocate resources using Enhanced Allocation */
4153 	pci_add_resources_ea(bus, dev, 0);
4154 
4155 	/* ATA devices needs special map treatment */
4156 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
4157 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4158 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4159 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4160 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
4161 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
4162 	else
4163 		for (i = 0; i < cfg->nummaps;) {
4164 			/* Skip resources already managed by EA */
4165 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4166 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4167 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4168 				i++;
4169 				continue;
4170 			}
4171 
4172 			/*
4173 			 * Skip quirked resources.
4174 			 */
4175 			for (q = &pci_quirks[0]; q->devid != 0; q++)
4176 				if (q->devid == devid &&
4177 				    q->type == PCI_QUIRK_UNMAP_REG &&
4178 				    q->arg1 == PCIR_BAR(i))
4179 					break;
4180 			if (q->devid != 0) {
4181 				i++;
4182 				continue;
4183 			}
4184 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4185 			    prefetchmask & (1 << i));
4186 		}
4187 
4188 	/*
4189 	 * Add additional, quirked resources.
4190 	 */
4191 	for (q = &pci_quirks[0]; q->devid != 0; q++)
4192 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4193 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4194 
4195 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline) &&
4196 	    pci_intx_reroute) {
4197 		/*
4198 		 * Try to re-route interrupts. Sometimes the BIOS or
4199 		 * firmware may leave bogus values in these registers.
4200 		 * If the re-route fails, then just stick with what we
4201 		 * have.
4202 		 */
4203 		pci_assign_interrupt(bus, dev, 1);
4204 	}
4205 
4206 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4207 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4208 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4209 			xhci_early_takeover(dev);
4210 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4211 			ehci_early_takeover(dev);
4212 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4213 			ohci_early_takeover(dev);
4214 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4215 			uhci_early_takeover(dev);
4216 	}
4217 
4218 	/*
4219 	 * Reserve resources for secondary bus ranges behind bridge
4220 	 * devices.
4221 	 */
4222 	pci_reserve_secbus(bus, dev, cfg, rl);
4223 }
4224 
4225 static struct pci_devinfo *
pci_identify_function(device_t pcib,device_t dev,int domain,int busno,int slot,int func)4226 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4227     int slot, int func)
4228 {
4229 	struct pci_devinfo *dinfo;
4230 
4231 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4232 	if (dinfo != NULL)
4233 		pci_add_child(dev, dinfo);
4234 
4235 	return (dinfo);
4236 }
4237 
4238 void
pci_add_children(device_t dev,int domain,int busno)4239 pci_add_children(device_t dev, int domain, int busno)
4240 {
4241 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4242 	device_t pcib = device_get_parent(dev);
4243 	struct pci_devinfo *dinfo;
4244 	int maxslots;
4245 	int s, f, pcifunchigh;
4246 	uint8_t hdrtype;
4247 	int first_func;
4248 
4249 	/*
4250 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4251 	 * enable ARI.  We must enable ARI before detecting the rest of the
4252 	 * functions on this bus as ARI changes the set of slots and functions
4253 	 * that are legal on this bus.
4254 	 */
4255 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4256 	if (dinfo != NULL && pci_enable_ari)
4257 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4258 
4259 	/*
4260 	 * Start looking for new devices on slot 0 at function 1 because we
4261 	 * just identified the device at slot 0, function 0.
4262 	 */
4263 	first_func = 1;
4264 
4265 	maxslots = PCIB_MAXSLOTS(pcib);
4266 	for (s = 0; s <= maxslots; s++, first_func = 0) {
4267 		pcifunchigh = 0;
4268 		f = 0;
4269 		DELAY(1);
4270 
4271 		/* If function 0 is not present, skip to the next slot. */
4272 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4273 			continue;
4274 		hdrtype = REG(PCIR_HDRTYPE, 1);
4275 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4276 			continue;
4277 		if (hdrtype & PCIM_MFDEV)
4278 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4279 		for (f = first_func; f <= pcifunchigh; f++)
4280 			pci_identify_function(pcib, dev, domain, busno, s, f);
4281 	}
4282 #undef REG
4283 }
4284 
4285 int
pci_rescan_method(device_t dev)4286 pci_rescan_method(device_t dev)
4287 {
4288 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4289 	device_t pcib = device_get_parent(dev);
4290 	device_t child, *devlist, *unchanged;
4291 	int devcount, error, i, j, maxslots, oldcount;
4292 	int busno, domain, s, f, pcifunchigh;
4293 	uint8_t hdrtype;
4294 
4295 	/* No need to check for ARI on a rescan. */
4296 	error = device_get_children(dev, &devlist, &devcount);
4297 	if (error)
4298 		return (error);
4299 	if (devcount != 0) {
4300 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4301 		    M_NOWAIT | M_ZERO);
4302 		if (unchanged == NULL) {
4303 			free(devlist, M_TEMP);
4304 			return (ENOMEM);
4305 		}
4306 	} else
4307 		unchanged = NULL;
4308 
4309 	domain = pcib_get_domain(dev);
4310 	busno = pcib_get_bus(dev);
4311 	maxslots = PCIB_MAXSLOTS(pcib);
4312 	for (s = 0; s <= maxslots; s++) {
4313 		/* If function 0 is not present, skip to the next slot. */
4314 		f = 0;
4315 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4316 			continue;
4317 		pcifunchigh = 0;
4318 		hdrtype = REG(PCIR_HDRTYPE, 1);
4319 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4320 			continue;
4321 		if (hdrtype & PCIM_MFDEV)
4322 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4323 		for (f = 0; f <= pcifunchigh; f++) {
4324 			if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4325 				continue;
4326 
4327 			/*
4328 			 * Found a valid function.  Check if a
4329 			 * device_t for this device already exists.
4330 			 */
4331 			for (i = 0; i < devcount; i++) {
4332 				child = devlist[i];
4333 				if (child == NULL)
4334 					continue;
4335 				if (pci_get_slot(child) == s &&
4336 				    pci_get_function(child) == f) {
4337 					unchanged[i] = child;
4338 					goto next_func;
4339 				}
4340 			}
4341 
4342 			pci_identify_function(pcib, dev, domain, busno, s, f);
4343 		next_func:;
4344 		}
4345 	}
4346 
4347 	/* Remove devices that are no longer present. */
4348 	for (i = 0; i < devcount; i++) {
4349 		if (unchanged[i] != NULL)
4350 			continue;
4351 		device_delete_child(dev, devlist[i]);
4352 	}
4353 
4354 	free(devlist, M_TEMP);
4355 	oldcount = devcount;
4356 
4357 	/* Try to attach the devices just added. */
4358 	error = device_get_children(dev, &devlist, &devcount);
4359 	if (error) {
4360 		free(unchanged, M_TEMP);
4361 		return (error);
4362 	}
4363 
4364 	for (i = 0; i < devcount; i++) {
4365 		for (j = 0; j < oldcount; j++) {
4366 			if (devlist[i] == unchanged[j])
4367 				goto next_device;
4368 		}
4369 
4370 		device_probe_and_attach(devlist[i]);
4371 	next_device:;
4372 	}
4373 
4374 	free(unchanged, M_TEMP);
4375 	free(devlist, M_TEMP);
4376 	return (0);
4377 #undef REG
4378 }
4379 
4380 #ifdef PCI_IOV
4381 device_t
pci_add_iov_child(device_t bus,device_t pf,uint16_t rid,uint16_t vid,uint16_t did)4382 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4383     uint16_t did)
4384 {
4385 	struct pci_devinfo *vf_dinfo;
4386 	device_t pcib;
4387 	int busno, slot, func;
4388 
4389 	pcib = device_get_parent(bus);
4390 
4391 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4392 
4393 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4394 	    slot, func, vid, did);
4395 
4396 	vf_dinfo->cfg.flags |= PCICFG_VF;
4397 	pci_add_child(bus, vf_dinfo);
4398 
4399 	return (vf_dinfo->cfg.dev);
4400 }
4401 
4402 device_t
pci_create_iov_child_method(device_t bus,device_t pf,uint16_t rid,uint16_t vid,uint16_t did)4403 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4404     uint16_t vid, uint16_t did)
4405 {
4406 
4407 	return (pci_add_iov_child(bus, pf, rid, vid, did));
4408 }
4409 #endif
4410 
4411 /*
4412  * For PCIe device set Max_Payload_Size to match PCIe root's.
4413  */
4414 static void
pcie_setup_mps(device_t dev)4415 pcie_setup_mps(device_t dev)
4416 {
4417 	struct pci_devinfo *dinfo = device_get_ivars(dev);
4418 	device_t root;
4419 	uint16_t rmps, mmps, mps;
4420 
4421 	if (dinfo->cfg.pcie.pcie_location == 0)
4422 		return;
4423 	root = pci_find_pcie_root_port(dev);
4424 	if (root == NULL)
4425 		return;
4426 	/* Check whether the MPS is already configured. */
4427 	rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
4428 	    PCIEM_CTL_MAX_PAYLOAD;
4429 	mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
4430 	    PCIEM_CTL_MAX_PAYLOAD;
4431 	if (mps == rmps)
4432 		return;
4433 	/* Check whether the device is capable of the root's MPS. */
4434 	mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
4435 	    PCIEM_CAP_MAX_PAYLOAD) << 5;
4436 	if (rmps > mmps) {
4437 		/*
4438 		 * The device is unable to handle root's MPS.  Limit root.
4439 		 * XXX: We should traverse through all the tree, applying
4440 		 * it to all the devices.
4441 		 */
4442 		pcie_adjust_config(root, PCIER_DEVICE_CTL,
4443 		    PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
4444 	} else {
4445 		pcie_adjust_config(dev, PCIER_DEVICE_CTL,
4446 		    PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
4447 	}
4448 }
4449 
4450 static void
pci_add_child_clear_aer(device_t dev,struct pci_devinfo * dinfo)4451 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4452 {
4453 	int aer;
4454 	uint32_t r;
4455 	uint16_t r2;
4456 
4457 	if (dinfo->cfg.pcie.pcie_location != 0 &&
4458 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4459 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4460 		    PCIER_ROOT_CTL, 2);
4461 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4462 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4463 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4464 		    PCIER_ROOT_CTL, r2, 2);
4465 	}
4466 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4467 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4468 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4469 		if (r != 0 && bootverbose) {
4470 			pci_printf(&dinfo->cfg,
4471 			    "clearing AER UC 0x%08x -> 0x%08x\n",
4472 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4473 			    4));
4474 		}
4475 
4476 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4477 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4478 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4479 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4480 		    PCIM_AER_UC_POISONED_TLP |
4481 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4482 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4483 		    PCIM_AER_UC_COMPLETER_ABORT |
4484 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4485 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4486 		    PCIM_AER_UC_MALFORMED_TLP |
4487 		    PCIM_AER_UC_ECRC_ERROR |
4488 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4489 		    PCIM_AER_UC_ACS_VIOLATION |
4490 		    PCIM_AER_UC_INTERNAL_ERROR |
4491 		    PCIM_AER_UC_MC_BLOCKED_TLP |
4492 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4493 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4494 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4495 
4496 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4497 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4498 		if (r != 0 && bootverbose) {
4499 			pci_printf(&dinfo->cfg,
4500 			    "clearing AER COR 0x%08x -> 0x%08x\n",
4501 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4502 			    4));
4503 		}
4504 
4505 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4506 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4507 		    PCIM_AER_COR_BAD_TLP |
4508 		    PCIM_AER_COR_BAD_DLLP |
4509 		    PCIM_AER_COR_REPLAY_ROLLOVER |
4510 		    PCIM_AER_COR_REPLAY_TIMEOUT |
4511 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4512 		    PCIM_AER_COR_INTERNAL_ERROR |
4513 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4514 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4515 
4516 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4517 		    PCIER_DEVICE_CTL, 2);
4518 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4519 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4520 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4521 		    PCIER_DEVICE_CTL, r, 2);
4522 	}
4523 }
4524 
4525 void
pci_add_child(device_t bus,struct pci_devinfo * dinfo)4526 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4527 {
4528 	device_t dev;
4529 
4530 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, DEVICE_UNIT_ANY);
4531 	device_set_ivars(dev, dinfo);
4532 	resource_list_init(&dinfo->resources);
4533 	pci_cfg_save(dev, dinfo, 0);
4534 	pci_cfg_restore(dev, dinfo);
4535 	pci_clear_pme(dev);
4536 	pci_print_verbose(dinfo);
4537 	pci_add_resources(bus, dev, 0, 0);
4538 	if (pci_enable_mps_tune)
4539 		pcie_setup_mps(dev);
4540 	pci_child_added(dinfo->cfg.dev);
4541 
4542 	if (pci_clear_aer_on_attach)
4543 		pci_add_child_clear_aer(dev, dinfo);
4544 
4545 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4546 }
4547 
4548 void
pci_child_added_method(device_t dev,device_t child)4549 pci_child_added_method(device_t dev, device_t child)
4550 {
4551 
4552 }
4553 
4554 static int
pci_probe(device_t dev)4555 pci_probe(device_t dev)
4556 {
4557 
4558 	device_set_desc(dev, "PCI bus");
4559 
4560 	/* Allow other subclasses to override this driver. */
4561 	return (BUS_PROBE_GENERIC);
4562 }
4563 
4564 int
pci_attach_common(device_t dev)4565 pci_attach_common(device_t dev)
4566 {
4567 	struct pci_softc *sc;
4568 	int busno, domain;
4569 	int rid;
4570 
4571 	sc = device_get_softc(dev);
4572 	domain = pcib_get_domain(dev);
4573 	busno = pcib_get_bus(dev);
4574 	rid = 0;
4575 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4576 	    1, 0);
4577 	if (sc->sc_bus == NULL) {
4578 		device_printf(dev, "failed to allocate bus number\n");
4579 		return (ENXIO);
4580 	}
4581 	if (bootverbose)
4582 		device_printf(dev, "domain=%d, physical bus=%d\n",
4583 		    domain, busno);
4584 	sc->sc_dma_tag = bus_get_dma_tag(dev);
4585 	return (0);
4586 }
4587 
4588 int
pci_attach(device_t dev)4589 pci_attach(device_t dev)
4590 {
4591 	int busno, domain, error;
4592 
4593 	error = pci_attach_common(dev);
4594 	if (error)
4595 		return (error);
4596 
4597 	/*
4598 	 * Since there can be multiple independently numbered PCI
4599 	 * buses on systems with multiple PCI domains, we can't use
4600 	 * the unit number to decide which bus we are probing. We ask
4601 	 * the parent pcib what our domain and bus numbers are.
4602 	 */
4603 	domain = pcib_get_domain(dev);
4604 	busno = pcib_get_bus(dev);
4605 	pci_add_children(dev, domain, busno);
4606 	bus_attach_children(dev);
4607 	return (0);
4608 }
4609 
4610 int
pci_detach(device_t dev)4611 pci_detach(device_t dev)
4612 {
4613 	struct pci_softc *sc;
4614 	int error;
4615 
4616 	error = bus_generic_detach(dev);
4617 	if (error)
4618 		return (error);
4619 	sc = device_get_softc(dev);
4620 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4621 	return (error);
4622 }
4623 
4624 static void
pci_hint_device_unit(device_t dev,device_t child,const char * name,int * unitp)4625 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4626 {
4627 	int line, unit;
4628 	const char *at;
4629 	char me1[24], me2[32];
4630 	uint8_t b, s, f;
4631 	uint32_t d;
4632 	device_location_cache_t *cache;
4633 
4634 	d = pci_get_domain(child);
4635 	b = pci_get_bus(child);
4636 	s = pci_get_slot(child);
4637 	f = pci_get_function(child);
4638 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4639 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4640 	line = 0;
4641 	cache = dev_wired_cache_init();
4642 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4643 		resource_string_value(name, unit, "at", &at);
4644 		if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) {
4645 			*unitp = unit;
4646 			break;
4647 		}
4648 		if (dev_wired_cache_match(cache, child, at)) {
4649 			*unitp = unit;
4650 			break;
4651 		}
4652 	}
4653 	dev_wired_cache_fini(cache);
4654 }
4655 
4656 static void
pci_set_power_child(device_t dev,device_t child,int state)4657 pci_set_power_child(device_t dev, device_t child, int state)
4658 {
4659 	device_t pcib;
4660 	int dstate;
4661 
4662 	/*
4663 	 * Set the device to the given state.  If the firmware suggests
4664 	 * a different power state, use it instead.  If power management
4665 	 * is not present, the firmware is responsible for managing
4666 	 * device power.  Skip children who aren't attached since they
4667 	 * are handled separately.
4668 	 */
4669 	pcib = device_get_parent(dev);
4670 	dstate = state;
4671 	if (device_is_attached(child) &&
4672 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4673 		pci_set_powerstate(child, dstate);
4674 }
4675 
4676 int
pci_suspend_child(device_t dev,device_t child)4677 pci_suspend_child(device_t dev, device_t child)
4678 {
4679 	struct pci_devinfo *dinfo;
4680 	struct resource_list_entry *rle;
4681 	int error;
4682 
4683 	dinfo = device_get_ivars(child);
4684 
4685 	/*
4686 	 * Save the PCI configuration space for the child and set the
4687 	 * device in the appropriate power state for this sleep state.
4688 	 */
4689 	pci_cfg_save(child, dinfo, 0);
4690 
4691 	/* Suspend devices before potentially powering them down. */
4692 	error = bus_generic_suspend_child(dev, child);
4693 
4694 	if (error)
4695 		return (error);
4696 
4697 	if (pci_do_power_suspend) {
4698 		/*
4699 		 * Make sure this device's interrupt handler is not invoked
4700 		 * in the case the device uses a shared interrupt that can
4701 		 * be raised by some other device.
4702 		 * This is applicable only to regular (legacy) PCI interrupts
4703 		 * as MSI/MSI-X interrupts are never shared.
4704 		 */
4705 		rle = resource_list_find(&dinfo->resources,
4706 		    SYS_RES_IRQ, 0);
4707 		if (rle != NULL && rle->res != NULL)
4708 			(void)bus_suspend_intr(child, rle->res);
4709 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4710 	}
4711 
4712 	return (0);
4713 }
4714 
4715 int
pci_resume_child(device_t dev,device_t child)4716 pci_resume_child(device_t dev, device_t child)
4717 {
4718 	struct pci_devinfo *dinfo;
4719 	struct resource_list_entry *rle;
4720 
4721 	if (pci_do_power_resume)
4722 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4723 
4724 	dinfo = device_get_ivars(child);
4725 	pci_cfg_restore(child, dinfo);
4726 	pci_clear_pme(child);
4727 	if (!device_is_attached(child))
4728 		pci_cfg_save(child, dinfo, 1);
4729 
4730 	bus_generic_resume_child(dev, child);
4731 
4732 	/*
4733 	 * Allow interrupts only after fully resuming the driver and hardware.
4734 	 */
4735 	if (pci_do_power_suspend) {
4736 		/* See pci_suspend_child for details. */
4737 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4738 		if (rle != NULL && rle->res != NULL)
4739 			(void)bus_resume_intr(child, rle->res);
4740 	}
4741 
4742 	return (0);
4743 }
4744 
4745 int
pci_resume(device_t dev)4746 pci_resume(device_t dev)
4747 {
4748 	device_t child, *devlist;
4749 	int error, i, numdevs;
4750 
4751 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4752 		return (error);
4753 
4754 	/*
4755 	 * Resume critical devices first, then everything else later.
4756 	 */
4757 	for (i = 0; i < numdevs; i++) {
4758 		child = devlist[i];
4759 		switch (pci_get_class(child)) {
4760 		case PCIC_DISPLAY:
4761 		case PCIC_MEMORY:
4762 		case PCIC_BRIDGE:
4763 		case PCIC_BASEPERIPH:
4764 			BUS_RESUME_CHILD(dev, child);
4765 			break;
4766 		}
4767 	}
4768 	for (i = 0; i < numdevs; i++) {
4769 		child = devlist[i];
4770 		switch (pci_get_class(child)) {
4771 		case PCIC_DISPLAY:
4772 		case PCIC_MEMORY:
4773 		case PCIC_BRIDGE:
4774 		case PCIC_BASEPERIPH:
4775 			break;
4776 		default:
4777 			BUS_RESUME_CHILD(dev, child);
4778 		}
4779 	}
4780 	free(devlist, M_TEMP);
4781 	return (0);
4782 }
4783 
4784 static void
pci_load_vendor_data(void)4785 pci_load_vendor_data(void)
4786 {
4787 	caddr_t data;
4788 	void *ptr;
4789 	size_t sz;
4790 
4791 	data = preload_search_by_type("pci_vendor_data");
4792 	if (data != NULL) {
4793 		ptr = preload_fetch_addr(data);
4794 		sz = preload_fetch_size(data);
4795 		if (ptr != NULL && sz != 0) {
4796 			pci_vendordata = ptr;
4797 			pci_vendordata_size = sz;
4798 			/* terminate the database */
4799 			pci_vendordata[pci_vendordata_size] = '\n';
4800 		}
4801 	}
4802 }
4803 
4804 void
pci_driver_added(device_t dev,driver_t * driver)4805 pci_driver_added(device_t dev, driver_t *driver)
4806 {
4807 	int numdevs;
4808 	device_t *devlist;
4809 	device_t child;
4810 	struct pci_devinfo *dinfo;
4811 	int i;
4812 
4813 	if (bootverbose)
4814 		device_printf(dev, "driver added\n");
4815 	DEVICE_IDENTIFY(driver, dev);
4816 	if (device_get_children(dev, &devlist, &numdevs) != 0)
4817 		return;
4818 	for (i = 0; i < numdevs; i++) {
4819 		child = devlist[i];
4820 		if (device_get_state(child) != DS_NOTPRESENT)
4821 			continue;
4822 		dinfo = device_get_ivars(child);
4823 		pci_print_verbose(dinfo);
4824 		if (bootverbose)
4825 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4826 		pci_cfg_restore(child, dinfo);
4827 		if (device_probe_and_attach(child) != 0)
4828 			pci_child_detached(dev, child);
4829 	}
4830 	free(devlist, M_TEMP);
4831 }
4832 
4833 int
pci_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)4834 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4835     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4836 {
4837 	struct pci_devinfo *dinfo;
4838 	struct msix_table_entry *mte;
4839 	struct msix_vector *mv;
4840 	uint64_t addr;
4841 	uint32_t data;
4842 	void *cookie;
4843 	int error, rid;
4844 
4845 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4846 	    arg, &cookie);
4847 	if (error)
4848 		return (error);
4849 
4850 	/* If this is not a direct child, just bail out. */
4851 	if (device_get_parent(child) != dev) {
4852 		*cookiep = cookie;
4853 		return(0);
4854 	}
4855 
4856 	rid = rman_get_rid(irq);
4857 	if (rid == 0) {
4858 		/* Make sure that INTx is enabled */
4859 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4860 	} else {
4861 		/*
4862 		 * Check to see if the interrupt is MSI or MSI-X.
4863 		 * Ask our parent to map the MSI and give
4864 		 * us the address and data register values.
4865 		 * If we fail for some reason, teardown the
4866 		 * interrupt handler.
4867 		 */
4868 		dinfo = device_get_ivars(child);
4869 		if (dinfo->cfg.msi.msi_alloc > 0) {
4870 			if (dinfo->cfg.msi.msi_addr == 0) {
4871 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4872 			    ("MSI has handlers, but vectors not mapped"));
4873 				error = PCIB_MAP_MSI(device_get_parent(dev),
4874 				    child, rman_get_start(irq), &addr, &data);
4875 				if (error)
4876 					goto bad;
4877 				dinfo->cfg.msi.msi_addr = addr;
4878 				dinfo->cfg.msi.msi_data = data;
4879 			}
4880 			if (dinfo->cfg.msi.msi_handlers == 0)
4881 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4882 				    dinfo->cfg.msi.msi_data);
4883 			dinfo->cfg.msi.msi_handlers++;
4884 		} else {
4885 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4886 			    ("No MSI or MSI-X interrupts allocated"));
4887 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4888 			    ("MSI-X index too high"));
4889 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4890 			KASSERT(mte->mte_vector != 0, ("no message vector"));
4891 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4892 			KASSERT(mv->mv_irq == rman_get_start(irq),
4893 			    ("IRQ mismatch"));
4894 			if (mv->mv_address == 0) {
4895 				KASSERT(mte->mte_handlers == 0,
4896 		    ("MSI-X table entry has handlers, but vector not mapped"));
4897 				error = PCIB_MAP_MSI(device_get_parent(dev),
4898 				    child, rman_get_start(irq), &addr, &data);
4899 				if (error)
4900 					goto bad;
4901 				mv->mv_address = addr;
4902 				mv->mv_data = data;
4903 			}
4904 
4905 			/*
4906 			 * The MSIX table entry must be made valid by
4907 			 * incrementing the mte_handlers before
4908 			 * calling pci_enable_msix() and
4909 			 * pci_resume_msix(). Else the MSIX rewrite
4910 			 * table quirk will not work as expected.
4911 			 */
4912 			mte->mte_handlers++;
4913 			if (mte->mte_handlers == 1) {
4914 				pci_enable_msix(child, rid - 1, mv->mv_address,
4915 				    mv->mv_data);
4916 				pci_unmask_msix(child, rid - 1);
4917 			}
4918 		}
4919 
4920 		/*
4921 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4922 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4923 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4924 		 */
4925 		if (!pci_has_quirk(pci_get_devid(child),
4926 		    PCI_QUIRK_MSI_INTX_BUG))
4927 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4928 		else
4929 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4930 	bad:
4931 		if (error) {
4932 			(void)bus_generic_teardown_intr(dev, child, irq,
4933 			    cookie);
4934 			return (error);
4935 		}
4936 	}
4937 	*cookiep = cookie;
4938 	return (0);
4939 }
4940 
4941 int
pci_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)4942 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4943     void *cookie)
4944 {
4945 	struct msix_table_entry *mte;
4946 	struct resource_list_entry *rle;
4947 	struct pci_devinfo *dinfo;
4948 	int error, rid;
4949 
4950 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4951 		return (EINVAL);
4952 
4953 	/* If this isn't a direct child, just bail out */
4954 	if (device_get_parent(child) != dev)
4955 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4956 
4957 	rid = rman_get_rid(irq);
4958 	if (rid == 0) {
4959 		/* Mask INTx */
4960 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4961 	} else {
4962 		/*
4963 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4964 		 * decrement the appropriate handlers count and mask the
4965 		 * MSI-X message, or disable MSI messages if the count
4966 		 * drops to 0.
4967 		 */
4968 		dinfo = device_get_ivars(child);
4969 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4970 		if (rle->res != irq)
4971 			return (EINVAL);
4972 		if (dinfo->cfg.msi.msi_alloc > 0) {
4973 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4974 			    ("MSI-X index too high"));
4975 			if (dinfo->cfg.msi.msi_handlers == 0)
4976 				return (EINVAL);
4977 			dinfo->cfg.msi.msi_handlers--;
4978 			if (dinfo->cfg.msi.msi_handlers == 0)
4979 				pci_disable_msi(child);
4980 		} else {
4981 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4982 			    ("No MSI or MSI-X interrupts allocated"));
4983 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4984 			    ("MSI-X index too high"));
4985 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4986 			if (mte->mte_handlers == 0)
4987 				return (EINVAL);
4988 			mte->mte_handlers--;
4989 			if (mte->mte_handlers == 0)
4990 				pci_mask_msix(child, rid - 1);
4991 		}
4992 	}
4993 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4994 	if (rid > 0)
4995 		KASSERT(error == 0,
4996 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4997 	return (error);
4998 }
4999 
5000 int
pci_print_child(device_t dev,device_t child)5001 pci_print_child(device_t dev, device_t child)
5002 {
5003 	struct pci_devinfo *dinfo;
5004 	struct resource_list *rl;
5005 	int retval = 0;
5006 
5007 	dinfo = device_get_ivars(child);
5008 	rl = &dinfo->resources;
5009 
5010 	retval += bus_print_child_header(dev, child);
5011 
5012 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
5013 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
5014 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
5015 	if (device_get_flags(dev))
5016 		retval += printf(" flags %#x", device_get_flags(dev));
5017 
5018 	retval += printf(" at device %d.%d", pci_get_slot(child),
5019 	    pci_get_function(child));
5020 
5021 	retval += bus_print_child_domain(dev, child);
5022 	retval += bus_print_child_footer(dev, child);
5023 
5024 	return (retval);
5025 }
5026 
5027 static const struct
5028 {
5029 	int		class;
5030 	int		subclass;
5031 	int		report; /* 0 = bootverbose, 1 = always */
5032 	const char	*desc;
5033 } pci_nomatch_tab[] = {
5034 	{PCIC_OLD,		-1,			1, "old"},
5035 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
5036 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
5037 	{PCIC_STORAGE,		-1,			1, "mass storage"},
5038 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
5039 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
5040 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
5041 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
5042 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
5043 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
5044 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
5045 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
5046 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
5047 	{PCIC_NETWORK,		-1,			1, "network"},
5048 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
5049 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
5050 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
5051 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
5052 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
5053 	{PCIC_DISPLAY,		-1,			1, "display"},
5054 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
5055 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
5056 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
5057 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
5058 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
5059 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
5060 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
5061 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
5062 	{PCIC_MEMORY,		-1,			1, "memory"},
5063 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
5064 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
5065 	{PCIC_BRIDGE,		-1,			1, "bridge"},
5066 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
5067 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
5068 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
5069 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
5070 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
5071 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
5072 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
5073 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
5074 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
5075 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
5076 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
5077 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
5078 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
5079 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
5080 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
5081 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
5082 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
5083 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
5084 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
5085 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
5086 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
5087 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
5088 	{PCIC_INPUTDEV,		-1,			1, "input device"},
5089 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
5090 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
5091 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
5092 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
5093 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
5094 	{PCIC_DOCKING,		-1,			1, "docking station"},
5095 	{PCIC_PROCESSOR,	-1,			1, "processor"},
5096 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
5097 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
5098 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
5099 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
5100 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
5101 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
5102 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
5103 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
5104 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
5105 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
5106 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
5107 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
5108 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
5109 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
5110 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
5111 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
5112 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
5113 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
5114 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
5115 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
5116 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
5117 	{PCIC_DASP,		-1,			0, "dasp"},
5118 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
5119 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
5120 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
5121 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
5122 	{PCIC_INSTRUMENT,	-1,			0, "non-essential instrumentation"},
5123 	{0, 0, 0,		NULL}
5124 };
5125 
5126 void
pci_probe_nomatch(device_t dev,device_t child)5127 pci_probe_nomatch(device_t dev, device_t child)
5128 {
5129 	int i, report;
5130 	const char *cp, *scp;
5131 	char *device;
5132 
5133 	/*
5134 	 * Look for a listing for this device in a loaded device database.
5135 	 */
5136 	report = 1;
5137 	if ((device = pci_describe_device(child)) != NULL) {
5138 		device_printf(dev, "<%s>", device);
5139 		free(device, M_DEVBUF);
5140 	} else {
5141 		/*
5142 		 * Scan the class/subclass descriptions for a general
5143 		 * description.
5144 		 */
5145 		cp = "unknown";
5146 		scp = NULL;
5147 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
5148 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
5149 				if (pci_nomatch_tab[i].subclass == -1) {
5150 					cp = pci_nomatch_tab[i].desc;
5151 					report = pci_nomatch_tab[i].report;
5152 				} else if (pci_nomatch_tab[i].subclass ==
5153 				    pci_get_subclass(child)) {
5154 					scp = pci_nomatch_tab[i].desc;
5155 					report = pci_nomatch_tab[i].report;
5156 				}
5157 			}
5158 		}
5159 		if (report || bootverbose) {
5160 			device_printf(dev, "<%s%s%s>",
5161 			    cp ? cp : "",
5162 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
5163 			    scp ? scp : "");
5164 		}
5165 	}
5166 	if (report || bootverbose) {
5167 		printf(" at device %d.%d (no driver attached)\n",
5168 		    pci_get_slot(child), pci_get_function(child));
5169 	}
5170 	pci_cfg_save(child, device_get_ivars(child), 1);
5171 }
5172 
5173 void
pci_child_detached(device_t dev,device_t child)5174 pci_child_detached(device_t dev, device_t child)
5175 {
5176 	struct pci_devinfo *dinfo;
5177 	struct resource_list *rl;
5178 
5179 	dinfo = device_get_ivars(child);
5180 	rl = &dinfo->resources;
5181 
5182 	/*
5183 	 * Have to deallocate IRQs before releasing any MSI messages and
5184 	 * have to release MSI messages before deallocating any memory
5185 	 * BARs.
5186 	 */
5187 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
5188 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
5189 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
5190 		if (dinfo->cfg.msi.msi_alloc != 0)
5191 			pci_printf(&dinfo->cfg, "Device leaked %d MSI "
5192 			    "vectors\n", dinfo->cfg.msi.msi_alloc);
5193 		else
5194 			pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
5195 			    "vectors\n", dinfo->cfg.msix.msix_alloc);
5196 		(void)pci_release_msi(child);
5197 	}
5198 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
5199 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
5200 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
5201 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
5202 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5203 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5204 
5205 	pci_cfg_save(child, dinfo, 1);
5206 }
5207 
5208 /*
5209  * Parse the PCI device database, if loaded, and return a pointer to a
5210  * description of the device.
5211  *
5212  * The database is flat text formatted as follows:
5213  *
5214  * Any line not in a valid format is ignored.
5215  * Lines are terminated with newline '\n' characters.
5216  *
5217  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5218  * the vendor name.
5219  *
5220  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5221  * - devices cannot be listed without a corresponding VENDOR line.
5222  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5223  * another TAB, then the device name.
5224  */
5225 
5226 /*
5227  * Assuming (ptr) points to the beginning of a line in the database,
5228  * return the vendor or device and description of the next entry.
5229  * The value of (vendor) or (device) inappropriate for the entry type
5230  * is set to -1.  Returns nonzero at the end of the database.
5231  *
5232  * Note that this is slightly unrobust in the face of corrupt data;
5233  * we attempt to safeguard against this by spamming the end of the
5234  * database with a newline when we initialise.
5235  */
5236 static int
pci_describe_parse_line(char ** ptr,int * vendor,int * device,char ** desc)5237 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5238 {
5239 	char	*cp = *ptr;
5240 	int	left;
5241 
5242 	*device = -1;
5243 	*vendor = -1;
5244 	**desc = '\0';
5245 	for (;;) {
5246 		left = pci_vendordata_size - (cp - pci_vendordata);
5247 		if (left <= 0) {
5248 			*ptr = cp;
5249 			return(1);
5250 		}
5251 
5252 		/* vendor entry? */
5253 		if (*cp != '\t' &&
5254 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5255 			break;
5256 		/* device entry? */
5257 		if (*cp == '\t' &&
5258 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5259 			break;
5260 
5261 		/* skip to next line */
5262 		while (*cp != '\n' && left > 0) {
5263 			cp++;
5264 			left--;
5265 		}
5266 		if (*cp == '\n') {
5267 			cp++;
5268 			left--;
5269 		}
5270 	}
5271 	/* skip to next line */
5272 	while (*cp != '\n' && left > 0) {
5273 		cp++;
5274 		left--;
5275 	}
5276 	if (*cp == '\n' && left > 0)
5277 		cp++;
5278 	*ptr = cp;
5279 	return(0);
5280 }
5281 
5282 static char *
pci_describe_device(device_t dev)5283 pci_describe_device(device_t dev)
5284 {
5285 	int	vendor, device;
5286 	char	*desc, *vp, *dp, *line;
5287 
5288 	desc = vp = dp = NULL;
5289 
5290 	/*
5291 	 * If we have no vendor data, we can't do anything.
5292 	 */
5293 	if (pci_vendordata == NULL)
5294 		goto out;
5295 
5296 	/*
5297 	 * Scan the vendor data looking for this device
5298 	 */
5299 	line = pci_vendordata;
5300 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5301 		goto out;
5302 	for (;;) {
5303 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5304 			goto out;
5305 		if (vendor == pci_get_vendor(dev))
5306 			break;
5307 	}
5308 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5309 		goto out;
5310 	for (;;) {
5311 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5312 			*dp = 0;
5313 			break;
5314 		}
5315 		if (vendor != -1) {
5316 			*dp = 0;
5317 			break;
5318 		}
5319 		if (device == pci_get_device(dev))
5320 			break;
5321 	}
5322 	if (dp[0] == '\0')
5323 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5324 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5325 	    NULL)
5326 		sprintf(desc, "%s, %s", vp, dp);
5327 out:
5328 	if (vp != NULL)
5329 		free(vp, M_DEVBUF);
5330 	if (dp != NULL)
5331 		free(dp, M_DEVBUF);
5332 	return(desc);
5333 }
5334 
5335 int
pci_read_ivar(device_t dev,device_t child,int which,uintptr_t * result)5336 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5337 {
5338 	struct pci_devinfo *dinfo;
5339 	pcicfgregs *cfg;
5340 
5341 	dinfo = device_get_ivars(child);
5342 	cfg = &dinfo->cfg;
5343 
5344 	switch (which) {
5345 	case PCI_IVAR_ETHADDR:
5346 		/*
5347 		 * The generic accessor doesn't deal with failure, so
5348 		 * we set the return value, then return an error.
5349 		 */
5350 		*((uint8_t **) result) = NULL;
5351 		return (EINVAL);
5352 	case PCI_IVAR_SUBVENDOR:
5353 		*result = cfg->subvendor;
5354 		break;
5355 	case PCI_IVAR_SUBDEVICE:
5356 		*result = cfg->subdevice;
5357 		break;
5358 	case PCI_IVAR_VENDOR:
5359 		*result = cfg->vendor;
5360 		break;
5361 	case PCI_IVAR_DEVICE:
5362 		*result = cfg->device;
5363 		break;
5364 	case PCI_IVAR_DEVID:
5365 		*result = (cfg->device << 16) | cfg->vendor;
5366 		break;
5367 	case PCI_IVAR_CLASS:
5368 		*result = cfg->baseclass;
5369 		break;
5370 	case PCI_IVAR_SUBCLASS:
5371 		*result = cfg->subclass;
5372 		break;
5373 	case PCI_IVAR_PROGIF:
5374 		*result = cfg->progif;
5375 		break;
5376 	case PCI_IVAR_REVID:
5377 		*result = cfg->revid;
5378 		break;
5379 	case PCI_IVAR_INTPIN:
5380 		*result = cfg->intpin;
5381 		break;
5382 	case PCI_IVAR_IRQ:
5383 		*result = cfg->intline;
5384 		break;
5385 	case PCI_IVAR_DOMAIN:
5386 		*result = cfg->domain;
5387 		break;
5388 	case PCI_IVAR_BUS:
5389 		*result = cfg->bus;
5390 		break;
5391 	case PCI_IVAR_SLOT:
5392 		*result = cfg->slot;
5393 		break;
5394 	case PCI_IVAR_FUNCTION:
5395 		*result = cfg->func;
5396 		break;
5397 	case PCI_IVAR_CMDREG:
5398 		*result = cfg->cmdreg;
5399 		break;
5400 	case PCI_IVAR_CACHELNSZ:
5401 		*result = cfg->cachelnsz;
5402 		break;
5403 	case PCI_IVAR_MINGNT:
5404 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5405 			*result = -1;
5406 			return (EINVAL);
5407 		}
5408 		*result = cfg->mingnt;
5409 		break;
5410 	case PCI_IVAR_MAXLAT:
5411 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5412 			*result = -1;
5413 			return (EINVAL);
5414 		}
5415 		*result = cfg->maxlat;
5416 		break;
5417 	case PCI_IVAR_LATTIMER:
5418 		*result = cfg->lattimer;
5419 		break;
5420 	default:
5421 		return (ENOENT);
5422 	}
5423 	return (0);
5424 }
5425 
5426 int
pci_write_ivar(device_t dev,device_t child,int which,uintptr_t value)5427 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5428 {
5429 	struct pci_devinfo *dinfo;
5430 
5431 	dinfo = device_get_ivars(child);
5432 
5433 	switch (which) {
5434 	case PCI_IVAR_INTPIN:
5435 		dinfo->cfg.intpin = value;
5436 		return (0);
5437 	case PCI_IVAR_ETHADDR:
5438 	case PCI_IVAR_SUBVENDOR:
5439 	case PCI_IVAR_SUBDEVICE:
5440 	case PCI_IVAR_VENDOR:
5441 	case PCI_IVAR_DEVICE:
5442 	case PCI_IVAR_DEVID:
5443 	case PCI_IVAR_CLASS:
5444 	case PCI_IVAR_SUBCLASS:
5445 	case PCI_IVAR_PROGIF:
5446 	case PCI_IVAR_REVID:
5447 	case PCI_IVAR_IRQ:
5448 	case PCI_IVAR_DOMAIN:
5449 	case PCI_IVAR_BUS:
5450 	case PCI_IVAR_SLOT:
5451 	case PCI_IVAR_FUNCTION:
5452 		return (EINVAL);	/* disallow for now */
5453 
5454 	default:
5455 		return (ENOENT);
5456 	}
5457 }
5458 
5459 #include "opt_ddb.h"
5460 #ifdef DDB
5461 #include <ddb/ddb.h>
5462 #include <sys/cons.h>
5463 
5464 /*
5465  * List resources based on pci map registers, used for within ddb
5466  */
5467 
DB_SHOW_COMMAND_FLAGS(pciregs,db_pci_dump,DB_CMD_MEMSAFE)5468 DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE)
5469 {
5470 	struct pci_devinfo *dinfo;
5471 	struct devlist *devlist_head;
5472 	struct pci_conf *p;
5473 	const char *name;
5474 	int i, error, none_count;
5475 
5476 	none_count = 0;
5477 	/* get the head of the device queue */
5478 	devlist_head = &pci_devq;
5479 
5480 	/*
5481 	 * Go through the list of devices and print out devices
5482 	 */
5483 	for (error = 0, i = 0,
5484 	     dinfo = STAILQ_FIRST(devlist_head);
5485 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5486 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5487 		/* Populate pd_name and pd_unit */
5488 		name = NULL;
5489 		if (dinfo->cfg.dev)
5490 			name = device_get_name(dinfo->cfg.dev);
5491 
5492 		p = &dinfo->conf;
5493 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5494 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5495 			(name && *name) ? name : "none",
5496 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5497 			none_count++,
5498 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5499 			p->pc_sel.pc_func, (p->pc_class << 16) |
5500 			(p->pc_subclass << 8) | p->pc_progif,
5501 			(p->pc_subdevice << 16) | p->pc_subvendor,
5502 			(p->pc_device << 16) | p->pc_vendor,
5503 			p->pc_revid, p->pc_hdr);
5504 	}
5505 }
5506 #endif /* DDB */
5507 
5508 struct resource *
pci_reserve_map(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int num,u_int flags)5509 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5510     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5511     u_int flags)
5512 {
5513 	struct pci_devinfo *dinfo = device_get_ivars(child);
5514 	struct resource_list *rl = &dinfo->resources;
5515 	struct resource *res;
5516 	struct pci_map *pm;
5517 	uint16_t cmd;
5518 	pci_addr_t map, testval;
5519 	int mapsize;
5520 
5521 	res = NULL;
5522 
5523 	/* If rid is managed by EA, ignore it */
5524 	if (pci_ea_is_enabled(child, *rid))
5525 		goto out;
5526 
5527 	pm = pci_find_bar(child, *rid);
5528 	if (pm != NULL) {
5529 		/* This is a BAR that we failed to allocate earlier. */
5530 		mapsize = pm->pm_size;
5531 		map = pm->pm_value;
5532 	} else {
5533 		/*
5534 		 * Weed out the bogons, and figure out how large the
5535 		 * BAR/map is.  BARs that read back 0 here are bogus
5536 		 * and unimplemented.  Note: atapci in legacy mode are
5537 		 * special and handled elsewhere in the code.  If you
5538 		 * have a atapci device in legacy mode and it fails
5539 		 * here, that other code is broken.
5540 		 */
5541 		pci_read_bar(child, *rid, &map, &testval, NULL);
5542 
5543 		/*
5544 		 * Determine the size of the BAR and ignore BARs with a size
5545 		 * of 0.  Device ROM BARs use a different mask value.
5546 		 */
5547 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5548 			mapsize = pci_romsize(testval);
5549 		else
5550 			mapsize = pci_mapsize(testval);
5551 		if (mapsize == 0)
5552 			goto out;
5553 		pm = pci_add_bar(child, *rid, map, mapsize);
5554 	}
5555 
5556 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5557 		if (type != SYS_RES_MEMORY) {
5558 			if (bootverbose)
5559 				device_printf(dev,
5560 				    "child %s requested type %d for rid %#x,"
5561 				    " but the BAR says it is an memio\n",
5562 				    device_get_nameunit(child), type, *rid);
5563 			goto out;
5564 		}
5565 	} else {
5566 		if (type != SYS_RES_IOPORT) {
5567 			if (bootverbose)
5568 				device_printf(dev,
5569 				    "child %s requested type %d for rid %#x,"
5570 				    " but the BAR says it is an ioport\n",
5571 				    device_get_nameunit(child), type, *rid);
5572 			goto out;
5573 		}
5574 	}
5575 
5576 	/*
5577 	 * For real BARs, we need to override the size that
5578 	 * the driver requests, because that's what the BAR
5579 	 * actually uses and we would otherwise have a
5580 	 * situation where we might allocate the excess to
5581 	 * another driver, which won't work.
5582 	 */
5583 	count = ((pci_addr_t)1 << mapsize) * num;
5584 	if (RF_ALIGNMENT(flags) < mapsize)
5585 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5586 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5587 		flags |= RF_PREFETCHABLE;
5588 
5589 	/*
5590 	 * Allocate enough resource, and then write back the
5591 	 * appropriate BAR for that resource.
5592 	 */
5593 	resource_list_add(rl, type, *rid, start, end, count);
5594 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5595 	    count, flags & ~RF_ACTIVE);
5596 	if (res == NULL) {
5597 		resource_list_delete(rl, type, *rid);
5598 		device_printf(child,
5599 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5600 		    count, *rid, type, start, end);
5601 		goto out;
5602 	}
5603 	if (bootverbose)
5604 		device_printf(child,
5605 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5606 		    count, *rid, type, rman_get_start(res));
5607 
5608 	/* Disable decoding via the CMD register before updating the BAR */
5609 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5610 	pci_write_config(child, PCIR_COMMAND,
5611 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5612 
5613 	map = rman_get_start(res);
5614 	pci_write_bar(child, pm, map);
5615 
5616 	/* Restore the original value of the CMD register */
5617 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5618 out:
5619 	return (res);
5620 }
5621 
5622 struct resource *
pci_alloc_multi_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_long num,u_int flags)5623 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5624     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5625     u_int flags)
5626 {
5627 	struct pci_devinfo *dinfo;
5628 	struct resource_list *rl;
5629 	struct resource_list_entry *rle;
5630 	struct resource *res;
5631 	pcicfgregs *cfg;
5632 
5633 	/*
5634 	 * Perform lazy resource allocation
5635 	 */
5636 	dinfo = device_get_ivars(child);
5637 	rl = &dinfo->resources;
5638 	cfg = &dinfo->cfg;
5639 	switch (type) {
5640 	case PCI_RES_BUS:
5641 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5642 		    flags));
5643 	case SYS_RES_IRQ:
5644 		/*
5645 		 * Can't alloc legacy interrupt once MSI messages have
5646 		 * been allocated.
5647 		 */
5648 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5649 		    cfg->msix.msix_alloc > 0))
5650 			return (NULL);
5651 
5652 		/*
5653 		 * If the child device doesn't have an interrupt
5654 		 * routed and is deserving of an interrupt, try to
5655 		 * assign it one.
5656 		 */
5657 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5658 		    (cfg->intpin != 0))
5659 			pci_assign_interrupt(dev, child, 0);
5660 		break;
5661 	case SYS_RES_IOPORT:
5662 	case SYS_RES_MEMORY:
5663 		/*
5664 		 * PCI-PCI bridge I/O window resources are not BARs.
5665 		 * For those allocations just pass the request up the
5666 		 * tree.
5667 		 */
5668 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5669 			switch (*rid) {
5670 			case PCIR_IOBASEL_1:
5671 			case PCIR_MEMBASE_1:
5672 			case PCIR_PMBASEL_1:
5673 				/*
5674 				 * XXX: Should we bother creating a resource
5675 				 * list entry?
5676 				 */
5677 				return (bus_generic_alloc_resource(dev, child,
5678 				    type, rid, start, end, count, flags));
5679 			}
5680 		}
5681 		/* Reserve resources for this BAR if needed. */
5682 		rle = resource_list_find(rl, type, *rid);
5683 		if (rle == NULL) {
5684 			res = pci_reserve_map(dev, child, type, rid, start, end,
5685 			    count, num, flags);
5686 			if (res == NULL)
5687 				return (NULL);
5688 		}
5689 	}
5690 	return (resource_list_alloc(rl, dev, child, type, rid,
5691 	    start, end, count, flags));
5692 }
5693 
5694 struct resource *
pci_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)5695 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5696     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5697 {
5698 #ifdef PCI_IOV
5699 	struct pci_devinfo *dinfo;
5700 #endif
5701 
5702 	if (device_get_parent(child) != dev)
5703 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5704 		    type, rid, start, end, count, flags));
5705 
5706 #ifdef PCI_IOV
5707 	dinfo = device_get_ivars(child);
5708 	if (dinfo->cfg.flags & PCICFG_VF) {
5709 		switch (type) {
5710 		/* VFs can't have I/O BARs. */
5711 		case SYS_RES_IOPORT:
5712 			return (NULL);
5713 		case SYS_RES_MEMORY:
5714 			return (pci_vf_alloc_mem_resource(dev, child, rid,
5715 			    start, end, count, flags));
5716 		}
5717 
5718 		/* Fall through for other types of resource allocations. */
5719 	}
5720 #endif
5721 
5722 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5723 	    count, 1, flags));
5724 }
5725 
5726 int
pci_release_resource(device_t dev,device_t child,struct resource * r)5727 pci_release_resource(device_t dev, device_t child, struct resource *r)
5728 {
5729 	struct pci_devinfo *dinfo;
5730 	struct resource_list *rl;
5731 	pcicfgregs *cfg __unused;
5732 
5733 	if (device_get_parent(child) != dev)
5734 		return (bus_generic_release_resource(dev, child, r));
5735 
5736 	dinfo = device_get_ivars(child);
5737 	cfg = &dinfo->cfg;
5738 
5739 #ifdef PCI_IOV
5740 	if (cfg->flags & PCICFG_VF) {
5741 		switch (rman_get_type(r)) {
5742 		/* VFs can't have I/O BARs. */
5743 		case SYS_RES_IOPORT:
5744 			return (EDOOFUS);
5745 		case SYS_RES_MEMORY:
5746 			return (pci_vf_release_mem_resource(dev, child, r));
5747 		}
5748 
5749 		/* Fall through for other types of resource allocations. */
5750 	}
5751 #endif
5752 
5753 	/*
5754 	 * PCI-PCI bridge I/O window resources are not BARs.  For
5755 	 * those allocations just pass the request up the tree.
5756 	 */
5757 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5758 	    (rman_get_type(r) == SYS_RES_IOPORT ||
5759 	    rman_get_type(r) == SYS_RES_MEMORY)) {
5760 		switch (rman_get_rid(r)) {
5761 		case PCIR_IOBASEL_1:
5762 		case PCIR_MEMBASE_1:
5763 		case PCIR_PMBASEL_1:
5764 			return (bus_generic_release_resource(dev, child, r));
5765 		}
5766 	}
5767 
5768 	rl = &dinfo->resources;
5769 	return (resource_list_release(rl, dev, child, r));
5770 }
5771 
5772 int
pci_activate_resource(device_t dev,device_t child,struct resource * r)5773 pci_activate_resource(device_t dev, device_t child, struct resource *r)
5774 {
5775 	struct pci_devinfo *dinfo;
5776 	int error, rid, type;
5777 
5778 	if (device_get_parent(child) != dev)
5779 		return (bus_generic_activate_resource(dev, child, r));
5780 
5781 	dinfo = device_get_ivars(child);
5782 #ifdef PCI_IOV
5783 	if (dinfo->cfg.flags & PCICFG_VF) {
5784 		switch (rman_get_type(r)) {
5785 		/* VFs can't have I/O BARs. */
5786 		case SYS_RES_IOPORT:
5787 			error = EINVAL;
5788 			break;
5789 		case SYS_RES_MEMORY:
5790 			error = pci_vf_activate_mem_resource(dev, child, r);
5791 			break;
5792 		default:
5793 			error = bus_generic_activate_resource(dev, child, r);
5794 			break;
5795 		}
5796 	} else
5797 #endif
5798 		error = bus_generic_activate_resource(dev, child, r);
5799 	if (error)
5800 		return (error);
5801 
5802 	rid = rman_get_rid(r);
5803 	type = rman_get_type(r);
5804 
5805 	/* Device ROMs need their decoding explicitly enabled. */
5806 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5807 		pci_write_bar(child, pci_find_bar(child, rid),
5808 		    rman_get_start(r) | PCIM_BIOS_ENABLE);
5809 
5810 	/* Enable decoding in the command register when activating BARs. */
5811 	switch (type) {
5812 	case SYS_RES_IOPORT:
5813 	case SYS_RES_MEMORY:
5814 		error = PCI_ENABLE_IO(dev, child, type);
5815 		break;
5816 	}
5817 	return (error);
5818 }
5819 
5820 int
pci_deactivate_resource(device_t dev,device_t child,struct resource * r)5821 pci_deactivate_resource(device_t dev, device_t child, struct resource *r)
5822 {
5823 	struct pci_devinfo *dinfo;
5824 	int error, rid, type;
5825 
5826 	if (device_get_parent(child) != dev)
5827 		return (bus_generic_deactivate_resource(dev, child, r));
5828 
5829 	dinfo = device_get_ivars(child);
5830 #ifdef PCI_IOV
5831 	if (dinfo->cfg.flags & PCICFG_VF) {
5832 		switch (rman_get_type(r)) {
5833 		/* VFs can't have I/O BARs. */
5834 		case SYS_RES_IOPORT:
5835 			error = EINVAL;
5836 			break;
5837 		case SYS_RES_MEMORY:
5838 			error = pci_vf_deactivate_mem_resource(dev, child, r);
5839 			break;
5840 		default:
5841 			error = bus_generic_deactivate_resource(dev, child, r);
5842 			break;
5843 		}
5844 	} else
5845 #endif
5846 		error = bus_generic_deactivate_resource(dev, child, r);
5847 	if (error)
5848 		return (error);
5849 
5850 	/* Disable decoding for device ROMs. */
5851 	rid = rman_get_rid(r);
5852 	type = rman_get_type(r);
5853 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5854 		pci_write_bar(child, pci_find_bar(child, rid),
5855 		    rman_get_start(r));
5856 	return (0);
5857 }
5858 
5859 int
pci_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)5860 pci_adjust_resource(device_t dev, device_t child, struct resource *r,
5861     rman_res_t start, rman_res_t end)
5862 {
5863 #ifdef PCI_IOV
5864 	struct pci_devinfo *dinfo;
5865 
5866 	if (device_get_parent(child) != dev)
5867 		return (bus_generic_adjust_resource(dev, child, r, start,
5868 		    end));
5869 
5870 	dinfo = device_get_ivars(child);
5871 	if (dinfo->cfg.flags & PCICFG_VF) {
5872 		switch (rman_get_type(r)) {
5873 		/* VFs can't have I/O BARs. */
5874 		case SYS_RES_IOPORT:
5875 			return (EINVAL);
5876 		case SYS_RES_MEMORY:
5877 			return (pci_vf_adjust_mem_resource(dev, child, r,
5878 			    start, end));
5879 		}
5880 
5881 		/* Fall through for other types of resource allocations. */
5882 	}
5883 #endif
5884 
5885 	return (bus_generic_adjust_resource(dev, child, r, start, end));
5886 }
5887 
5888 int
pci_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * argsp,struct resource_map * map)5889 pci_map_resource(device_t dev, device_t child, struct resource *r,
5890     struct resource_map_request *argsp, struct resource_map *map)
5891 {
5892 #ifdef PCI_IOV
5893 	struct pci_devinfo *dinfo;
5894 
5895 	if (device_get_parent(child) != dev)
5896 		return (bus_generic_map_resource(dev, child, r, argsp,
5897 		    map));
5898 
5899 	dinfo = device_get_ivars(child);
5900 	if (dinfo->cfg.flags & PCICFG_VF) {
5901 		switch (rman_get_type(r)) {
5902 		/* VFs can't have I/O BARs. */
5903 		case SYS_RES_IOPORT:
5904 			return (EINVAL);
5905 		case SYS_RES_MEMORY:
5906 			return (pci_vf_map_mem_resource(dev, child, r, argsp,
5907 			    map));
5908 		}
5909 
5910 		/* Fall through for other types of resource allocations. */
5911 	}
5912 #endif
5913 
5914 	return (bus_generic_map_resource(dev, child, r, argsp, map));
5915 }
5916 
5917 int
pci_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)5918 pci_unmap_resource(device_t dev, device_t child, struct resource *r,
5919     struct resource_map *map)
5920 {
5921 #ifdef PCI_IOV
5922 	struct pci_devinfo *dinfo;
5923 
5924 	if (device_get_parent(child) != dev)
5925 		return (bus_generic_unmap_resource(dev, child, r, map));
5926 
5927 	dinfo = device_get_ivars(child);
5928 	if (dinfo->cfg.flags & PCICFG_VF) {
5929 		switch (rman_get_type(r)) {
5930 		/* VFs can't have I/O BARs. */
5931 		case SYS_RES_IOPORT:
5932 			return (EINVAL);
5933 		case SYS_RES_MEMORY:
5934 			return (pci_vf_unmap_mem_resource(dev, child, r, map));
5935 		}
5936 
5937 		/* Fall through for other types of resource allocations. */
5938 	}
5939 #endif
5940 
5941 	return (bus_generic_unmap_resource(dev, child, r, map));
5942 }
5943 
5944 void
pci_child_deleted(device_t dev,device_t child)5945 pci_child_deleted(device_t dev, device_t child)
5946 {
5947 	struct resource_list_entry *rle;
5948 	struct resource_list *rl;
5949 	struct pci_devinfo *dinfo;
5950 
5951 	dinfo = device_get_ivars(child);
5952 	rl = &dinfo->resources;
5953 
5954 	EVENTHANDLER_INVOKE(pci_delete_device, child);
5955 
5956 	/* Turn off access to resources we're about to free */
5957 	if (bus_child_present(child) != 0) {
5958 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5959 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5960 
5961 		pci_disable_busmaster(child);
5962 	}
5963 
5964 	/* Free all allocated resources */
5965 	STAILQ_FOREACH(rle, rl, link) {
5966 		if (rle->res) {
5967 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5968 			    resource_list_busy(rl, rle->type, rle->rid)) {
5969 				pci_printf(&dinfo->cfg,
5970 				    "Resource still owned, oops. "
5971 				    "(type=%d, rid=%d, addr=%lx)\n",
5972 				    rle->type, rle->rid,
5973 				    rman_get_start(rle->res));
5974 				bus_release_resource(child, rle->type, rle->rid,
5975 				    rle->res);
5976 			}
5977 			resource_list_unreserve(rl, dev, child, rle->type,
5978 			    rle->rid);
5979 		}
5980 	}
5981 	resource_list_free(rl);
5982 
5983 	pci_freecfg(dinfo);
5984 }
5985 
5986 void
pci_delete_resource(device_t dev,device_t child,int type,int rid)5987 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5988 {
5989 	struct pci_devinfo *dinfo;
5990 	struct resource_list *rl;
5991 	struct resource_list_entry *rle;
5992 
5993 	if (device_get_parent(child) != dev)
5994 		return;
5995 
5996 	dinfo = device_get_ivars(child);
5997 	rl = &dinfo->resources;
5998 	rle = resource_list_find(rl, type, rid);
5999 	if (rle == NULL)
6000 		return;
6001 
6002 	if (rle->res) {
6003 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
6004 		    resource_list_busy(rl, type, rid)) {
6005 			device_printf(dev, "delete_resource: "
6006 			    "Resource still owned by child, oops. "
6007 			    "(type=%d, rid=%d, addr=%jx)\n",
6008 			    type, rid, rman_get_start(rle->res));
6009 			return;
6010 		}
6011 		resource_list_unreserve(rl, dev, child, type, rid);
6012 	}
6013 	resource_list_delete(rl, type, rid);
6014 }
6015 
6016 struct resource_list *
pci_get_resource_list(device_t dev,device_t child)6017 pci_get_resource_list (device_t dev, device_t child)
6018 {
6019 	struct pci_devinfo *dinfo = device_get_ivars(child);
6020 
6021 	return (&dinfo->resources);
6022 }
6023 
6024 #ifdef IOMMU
6025 bus_dma_tag_t
pci_get_dma_tag(device_t bus,device_t dev)6026 pci_get_dma_tag(device_t bus, device_t dev)
6027 {
6028 	bus_dma_tag_t tag;
6029 	struct pci_softc *sc;
6030 
6031 	if (device_get_parent(dev) == bus) {
6032 		/* try iommu and return if it works */
6033 		tag = iommu_get_dma_tag(bus, dev);
6034 	} else
6035 		tag = NULL;
6036 	if (tag == NULL) {
6037 		sc = device_get_softc(bus);
6038 		tag = sc->sc_dma_tag;
6039 	}
6040 	return (tag);
6041 }
6042 #else
6043 bus_dma_tag_t
pci_get_dma_tag(device_t bus,device_t dev)6044 pci_get_dma_tag(device_t bus, device_t dev)
6045 {
6046 	struct pci_softc *sc = device_get_softc(bus);
6047 
6048 	return (sc->sc_dma_tag);
6049 }
6050 #endif
6051 
6052 uint32_t
pci_read_config_method(device_t dev,device_t child,int reg,int width)6053 pci_read_config_method(device_t dev, device_t child, int reg, int width)
6054 {
6055 	struct pci_devinfo *dinfo = device_get_ivars(child);
6056 	pcicfgregs *cfg = &dinfo->cfg;
6057 
6058 #ifdef PCI_IOV
6059 	/*
6060 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
6061 	 * emulate them here.
6062 	 */
6063 	if (cfg->flags & PCICFG_VF) {
6064 		if (reg == PCIR_VENDOR) {
6065 			switch (width) {
6066 			case 4:
6067 				return (cfg->device << 16 | cfg->vendor);
6068 			case 2:
6069 				return (cfg->vendor);
6070 			case 1:
6071 				return (cfg->vendor & 0xff);
6072 			default:
6073 				return (0xffffffff);
6074 			}
6075 		} else if (reg == PCIR_DEVICE) {
6076 			switch (width) {
6077 			/* Note that an unaligned 4-byte read is an error. */
6078 			case 2:
6079 				return (cfg->device);
6080 			case 1:
6081 				return (cfg->device & 0xff);
6082 			default:
6083 				return (0xffffffff);
6084 			}
6085 		}
6086 	}
6087 #endif
6088 
6089 	return (PCIB_READ_CONFIG(device_get_parent(dev),
6090 	    cfg->bus, cfg->slot, cfg->func, reg, width));
6091 }
6092 
6093 void
pci_write_config_method(device_t dev,device_t child,int reg,uint32_t val,int width)6094 pci_write_config_method(device_t dev, device_t child, int reg,
6095     uint32_t val, int width)
6096 {
6097 	struct pci_devinfo *dinfo = device_get_ivars(child);
6098 	pcicfgregs *cfg = &dinfo->cfg;
6099 
6100 	PCIB_WRITE_CONFIG(device_get_parent(dev),
6101 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
6102 }
6103 
6104 int
pci_child_location_method(device_t dev,device_t child,struct sbuf * sb)6105 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
6106 {
6107 
6108 	sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
6109 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
6110 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
6111 	return (0);
6112 }
6113 
6114 int
pci_child_pnpinfo_method(device_t dev,device_t child,struct sbuf * sb)6115 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
6116 {
6117 	struct pci_devinfo *dinfo;
6118 	pcicfgregs *cfg;
6119 
6120 	dinfo = device_get_ivars(child);
6121 	cfg = &dinfo->cfg;
6122 	sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
6123 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
6124 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
6125 	    cfg->progif);
6126 	return (0);
6127 }
6128 
6129 int
pci_get_device_path_method(device_t bus,device_t child,const char * locator,struct sbuf * sb)6130 pci_get_device_path_method(device_t bus, device_t child, const char *locator,
6131     struct sbuf *sb)
6132 {
6133 	device_t parent = device_get_parent(bus);
6134 	int rv;
6135 
6136 	if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
6137 		rv = bus_generic_get_device_path(parent, bus, locator, sb);
6138 		if (rv == 0) {
6139 			sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child),
6140 			    pci_get_function(child));
6141 		}
6142 		return (0);
6143 	}
6144 	return (bus_generic_get_device_path(bus, child, locator, sb));
6145 }
6146 
6147 int
pci_assign_interrupt_method(device_t dev,device_t child)6148 pci_assign_interrupt_method(device_t dev, device_t child)
6149 {
6150 	struct pci_devinfo *dinfo = device_get_ivars(child);
6151 	pcicfgregs *cfg = &dinfo->cfg;
6152 
6153 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
6154 	    cfg->intpin));
6155 }
6156 
6157 static void
pci_lookup(void * arg,const char * name,device_t * dev)6158 pci_lookup(void *arg, const char *name, device_t *dev)
6159 {
6160 	long val;
6161 	char *end;
6162 	int domain, bus, slot, func;
6163 
6164 	if (*dev != NULL)
6165 		return;
6166 
6167 	/*
6168 	 * Accept pciconf-style selectors of either pciD:B:S:F or
6169 	 * pciB:S:F.  In the latter case, the domain is assumed to
6170 	 * be zero.
6171 	 */
6172 	if (strncmp(name, "pci", 3) != 0)
6173 		return;
6174 	val = strtol(name + 3, &end, 10);
6175 	if (val < 0 || val > INT_MAX || *end != ':')
6176 		return;
6177 	domain = val;
6178 	val = strtol(end + 1, &end, 10);
6179 	if (val < 0 || val > INT_MAX || *end != ':')
6180 		return;
6181 	bus = val;
6182 	val = strtol(end + 1, &end, 10);
6183 	if (val < 0 || val > INT_MAX)
6184 		return;
6185 	slot = val;
6186 	if (*end == ':') {
6187 		val = strtol(end + 1, &end, 10);
6188 		if (val < 0 || val > INT_MAX || *end != '\0')
6189 			return;
6190 		func = val;
6191 	} else if (*end == '\0') {
6192 		func = slot;
6193 		slot = bus;
6194 		bus = domain;
6195 		domain = 0;
6196 	} else
6197 		return;
6198 
6199 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
6200 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
6201 		return;
6202 
6203 	*dev = pci_find_dbsf(domain, bus, slot, func);
6204 }
6205 
6206 static int
pci_modevent(module_t mod,int what,void * arg)6207 pci_modevent(module_t mod, int what, void *arg)
6208 {
6209 	static struct cdev *pci_cdev;
6210 	static eventhandler_tag tag;
6211 
6212 	switch (what) {
6213 	case MOD_LOAD:
6214 		STAILQ_INIT(&pci_devq);
6215 		pci_generation = 0;
6216 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
6217 		    "pci");
6218 		pci_load_vendor_data();
6219 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
6220 		    1000);
6221 		break;
6222 
6223 	case MOD_UNLOAD:
6224 		if (tag != NULL)
6225 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
6226 		destroy_dev(pci_cdev);
6227 		break;
6228 	}
6229 
6230 	return (0);
6231 }
6232 
6233 static void
pci_cfg_restore_pcie(device_t dev,struct pci_devinfo * dinfo)6234 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
6235 {
6236 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
6237 	struct pcicfg_pcie *cfg;
6238 	int version, pos;
6239 
6240 	cfg = &dinfo->cfg.pcie;
6241 	pos = cfg->pcie_location;
6242 
6243 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6244 
6245 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
6246 
6247 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6248 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6249 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6250 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
6251 
6252 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6253 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6254 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6255 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
6256 
6257 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6258 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6259 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
6260 
6261 	if (version > 1) {
6262 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
6263 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
6264 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
6265 	}
6266 #undef WREG
6267 }
6268 
6269 static void
pci_cfg_restore_pcix(device_t dev,struct pci_devinfo * dinfo)6270 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
6271 {
6272 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
6273 	    dinfo->cfg.pcix.pcix_command,  2);
6274 }
6275 
6276 void
pci_cfg_restore(device_t dev,struct pci_devinfo * dinfo)6277 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
6278 {
6279 
6280 	/*
6281 	 * Restore the device to full power mode.  We must do this
6282 	 * before we restore the registers because moving from D3 to
6283 	 * D0 will cause the chip's BARs and some other registers to
6284 	 * be reset to some unknown power on reset values.  Cut down
6285 	 * the noise on boot by doing nothing if we are already in
6286 	 * state D0.
6287 	 */
6288 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
6289 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6290 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
6291 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
6292 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
6293 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
6294 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
6295 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
6296 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6297 	case PCIM_HDRTYPE_NORMAL:
6298 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
6299 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
6300 		break;
6301 	case PCIM_HDRTYPE_BRIDGE:
6302 		pci_write_config(dev, PCIR_SECLAT_1,
6303 		    dinfo->cfg.bridge.br_seclat, 1);
6304 		pci_write_config(dev, PCIR_SUBBUS_1,
6305 		    dinfo->cfg.bridge.br_subbus, 1);
6306 		pci_write_config(dev, PCIR_SECBUS_1,
6307 		    dinfo->cfg.bridge.br_secbus, 1);
6308 		pci_write_config(dev, PCIR_PRIBUS_1,
6309 		    dinfo->cfg.bridge.br_pribus, 1);
6310 		pci_write_config(dev, PCIR_BRIDGECTL_1,
6311 		    dinfo->cfg.bridge.br_control, 2);
6312 		break;
6313 	case PCIM_HDRTYPE_CARDBUS:
6314 		pci_write_config(dev, PCIR_SECLAT_2,
6315 		    dinfo->cfg.bridge.br_seclat, 1);
6316 		pci_write_config(dev, PCIR_SUBBUS_2,
6317 		    dinfo->cfg.bridge.br_subbus, 1);
6318 		pci_write_config(dev, PCIR_SECBUS_2,
6319 		    dinfo->cfg.bridge.br_secbus, 1);
6320 		pci_write_config(dev, PCIR_PRIBUS_2,
6321 		    dinfo->cfg.bridge.br_pribus, 1);
6322 		pci_write_config(dev, PCIR_BRIDGECTL_2,
6323 		    dinfo->cfg.bridge.br_control, 2);
6324 		break;
6325 	}
6326 	pci_restore_bars(dev);
6327 
6328 	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
6329 		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
6330 
6331 	/*
6332 	 * Restore extended capabilities for PCI-Express and PCI-X
6333 	 */
6334 	if (dinfo->cfg.pcie.pcie_location != 0)
6335 		pci_cfg_restore_pcie(dev, dinfo);
6336 	if (dinfo->cfg.pcix.pcix_location != 0)
6337 		pci_cfg_restore_pcix(dev, dinfo);
6338 
6339 	/* Restore MSI and MSI-X configurations if they are present. */
6340 	if (dinfo->cfg.msi.msi_location != 0)
6341 		pci_resume_msi(dev);
6342 	if (dinfo->cfg.msix.msix_location != 0)
6343 		pci_resume_msix(dev);
6344 
6345 #ifdef PCI_IOV
6346 	if (dinfo->cfg.iov != NULL)
6347 		pci_iov_cfg_restore(dev, dinfo);
6348 #endif
6349 }
6350 
6351 static void
pci_cfg_save_pcie(device_t dev,struct pci_devinfo * dinfo)6352 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6353 {
6354 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
6355 	struct pcicfg_pcie *cfg;
6356 	int version, pos;
6357 
6358 	cfg = &dinfo->cfg.pcie;
6359 	pos = cfg->pcie_location;
6360 
6361 	cfg->pcie_flags = RREG(PCIER_FLAGS);
6362 
6363 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6364 
6365 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6366 
6367 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6368 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6369 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6370 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6371 
6372 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6373 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6374 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6375 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6376 
6377 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6378 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6379 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6380 
6381 	if (version > 1) {
6382 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6383 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6384 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6385 	}
6386 #undef RREG
6387 }
6388 
6389 static void
pci_cfg_save_pcix(device_t dev,struct pci_devinfo * dinfo)6390 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6391 {
6392 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6393 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6394 }
6395 
6396 void
pci_cfg_save(device_t dev,struct pci_devinfo * dinfo,int setstate)6397 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6398 {
6399 	uint32_t cls;
6400 	int ps;
6401 
6402 	/*
6403 	 * Some drivers apparently write to these registers w/o updating our
6404 	 * cached copy.  No harm happens if we update the copy, so do so here
6405 	 * so we can restore them.  The COMMAND register is modified by the
6406 	 * bus w/o updating the cache.  This should represent the normally
6407 	 * writable portion of the 'defined' part of type 0/1/2 headers.
6408 	 */
6409 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6410 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6411 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6412 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6413 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6414 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6415 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6416 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6417 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6418 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6419 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6420 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6421 	case PCIM_HDRTYPE_NORMAL:
6422 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6423 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6424 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6425 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6426 		break;
6427 	case PCIM_HDRTYPE_BRIDGE:
6428 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6429 		    PCIR_SECLAT_1, 1);
6430 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6431 		    PCIR_SUBBUS_1, 1);
6432 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6433 		    PCIR_SECBUS_1, 1);
6434 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6435 		    PCIR_PRIBUS_1, 1);
6436 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6437 		    PCIR_BRIDGECTL_1, 2);
6438 		break;
6439 	case PCIM_HDRTYPE_CARDBUS:
6440 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6441 		    PCIR_SECLAT_2, 1);
6442 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6443 		    PCIR_SUBBUS_2, 1);
6444 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6445 		    PCIR_SECBUS_2, 1);
6446 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6447 		    PCIR_PRIBUS_2, 1);
6448 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6449 		    PCIR_BRIDGECTL_2, 2);
6450 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6451 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6452 		break;
6453 	}
6454 
6455 	if (dinfo->cfg.pcie.pcie_location != 0)
6456 		pci_cfg_save_pcie(dev, dinfo);
6457 
6458 	if (dinfo->cfg.pcix.pcix_location != 0)
6459 		pci_cfg_save_pcix(dev, dinfo);
6460 
6461 #ifdef PCI_IOV
6462 	if (dinfo->cfg.iov != NULL)
6463 		pci_iov_cfg_save(dev, dinfo);
6464 #endif
6465 
6466 	/*
6467 	 * don't set the state for display devices, base peripherals and
6468 	 * memory devices since bad things happen when they are powered down.
6469 	 * We should (a) have drivers that can easily detach and (b) use
6470 	 * generic drivers for these devices so that some device actually
6471 	 * attaches.  We need to make sure that when we implement (a) we don't
6472 	 * power the device down on a reattach.
6473 	 */
6474 	cls = pci_get_class(dev);
6475 	if (!setstate)
6476 		return;
6477 	switch (pci_do_power_nodriver)
6478 	{
6479 		case 0:		/* NO powerdown at all */
6480 			return;
6481 		case 1:		/* Conservative about what to power down */
6482 			if (cls == PCIC_STORAGE)
6483 				return;
6484 			/*FALLTHROUGH*/
6485 		case 2:		/* Aggressive about what to power down */
6486 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6487 			    cls == PCIC_BASEPERIPH)
6488 				return;
6489 			/*FALLTHROUGH*/
6490 		case 3:		/* Power down everything */
6491 			break;
6492 	}
6493 	/*
6494 	 * PCI spec says we can only go into D3 state from D0 state.
6495 	 * Transition from D[12] into D0 before going to D3 state.
6496 	 */
6497 	ps = pci_get_powerstate(dev);
6498 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6499 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6500 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6501 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6502 }
6503 
6504 /* Wrapper APIs suitable for device driver use. */
6505 void
pci_save_state(device_t dev)6506 pci_save_state(device_t dev)
6507 {
6508 	struct pci_devinfo *dinfo;
6509 
6510 	dinfo = device_get_ivars(dev);
6511 	pci_cfg_save(dev, dinfo, 0);
6512 }
6513 
6514 void
pci_restore_state(device_t dev)6515 pci_restore_state(device_t dev)
6516 {
6517 	struct pci_devinfo *dinfo;
6518 
6519 	dinfo = device_get_ivars(dev);
6520 	pci_cfg_restore(dev, dinfo);
6521 }
6522 
6523 static int
pci_get_id_method(device_t dev,device_t child,enum pci_id_type type,uintptr_t * id)6524 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6525     uintptr_t *id)
6526 {
6527 
6528 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6529 }
6530 
6531 /* Find the upstream port of a given PCI device in a root complex. */
6532 device_t
pci_find_pcie_root_port(device_t dev)6533 pci_find_pcie_root_port(device_t dev)
6534 {
6535 	struct pci_devinfo *dinfo;
6536 	devclass_t pci_class;
6537 	device_t pcib, bus;
6538 
6539 	pci_class = devclass_find("pci");
6540 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6541 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6542 
6543 	/*
6544 	 * Walk the bridge hierarchy until we find a PCI-e root
6545 	 * port or a non-PCI device.
6546 	 */
6547 	for (;;) {
6548 		bus = device_get_parent(dev);
6549 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6550 		    device_get_nameunit(dev)));
6551 
6552 		pcib = device_get_parent(bus);
6553 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6554 		    device_get_nameunit(bus)));
6555 
6556 		/*
6557 		 * pcib's parent must be a PCI bus for this to be a
6558 		 * PCI-PCI bridge.
6559 		 */
6560 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6561 			return (NULL);
6562 
6563 		dinfo = device_get_ivars(pcib);
6564 		if (dinfo->cfg.pcie.pcie_location != 0 &&
6565 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6566 			return (pcib);
6567 
6568 		dev = pcib;
6569 	}
6570 }
6571 
6572 /*
6573  * Wait for pending transactions to complete on a PCI-express function.
6574  *
6575  * The maximum delay is specified in milliseconds in max_delay.  Note
6576  * that this function may sleep.
6577  *
6578  * Returns true if the function is idle and false if the timeout is
6579  * exceeded.  If dev is not a PCI-express function, this returns true.
6580  */
6581 bool
pcie_wait_for_pending_transactions(device_t dev,u_int max_delay)6582 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6583 {
6584 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6585 	uint16_t sta;
6586 	int cap;
6587 
6588 	cap = dinfo->cfg.pcie.pcie_location;
6589 	if (cap == 0)
6590 		return (true);
6591 
6592 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6593 	while (sta & PCIEM_STA_TRANSACTION_PND) {
6594 		if (max_delay == 0)
6595 			return (false);
6596 
6597 		/* Poll once every 100 milliseconds up to the timeout. */
6598 		if (max_delay > 100) {
6599 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6600 			max_delay -= 100;
6601 		} else {
6602 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6603 			    C_HARDCLOCK);
6604 			max_delay = 0;
6605 		}
6606 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6607 	}
6608 
6609 	return (true);
6610 }
6611 
6612 /*
6613  * Determine the maximum Completion Timeout in microseconds.
6614  *
6615  * For non-PCI-express functions this returns 0.
6616  */
6617 int
pcie_get_max_completion_timeout(device_t dev)6618 pcie_get_max_completion_timeout(device_t dev)
6619 {
6620 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6621 	int cap;
6622 
6623 	cap = dinfo->cfg.pcie.pcie_location;
6624 	if (cap == 0)
6625 		return (0);
6626 
6627 	/*
6628 	 * Functions using the 1.x spec use the default timeout range of
6629 	 * 50 microseconds to 50 milliseconds.  Functions that do not
6630 	 * support programmable timeouts also use this range.
6631 	 */
6632 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6633 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6634 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6635 		return (50 * 1000);
6636 
6637 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6638 	    PCIEM_CTL2_COMP_TIMO_VAL) {
6639 	case PCIEM_CTL2_COMP_TIMO_100US:
6640 		return (100);
6641 	case PCIEM_CTL2_COMP_TIMO_10MS:
6642 		return (10 * 1000);
6643 	case PCIEM_CTL2_COMP_TIMO_55MS:
6644 		return (55 * 1000);
6645 	case PCIEM_CTL2_COMP_TIMO_210MS:
6646 		return (210 * 1000);
6647 	case PCIEM_CTL2_COMP_TIMO_900MS:
6648 		return (900 * 1000);
6649 	case PCIEM_CTL2_COMP_TIMO_3500MS:
6650 		return (3500 * 1000);
6651 	case PCIEM_CTL2_COMP_TIMO_13S:
6652 		return (13 * 1000 * 1000);
6653 	case PCIEM_CTL2_COMP_TIMO_64S:
6654 		return (64 * 1000 * 1000);
6655 	default:
6656 		return (50 * 1000);
6657 	}
6658 }
6659 
6660 void
pcie_apei_error(device_t dev,int sev,uint8_t * aerp)6661 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6662 {
6663 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6664 	const char *s;
6665 	int aer;
6666 	uint32_t r, r1;
6667 	uint16_t rs;
6668 
6669 	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6670 		s = "Correctable";
6671 	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6672 		s = "Uncorrectable (Non-Fatal)";
6673 	else
6674 		s = "Uncorrectable (Fatal)";
6675 	device_printf(dev, "%s PCIe error reported by APEI\n", s);
6676 	if (aerp) {
6677 		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6678 			r = le32dec(aerp + PCIR_AER_COR_STATUS);
6679 			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6680 		} else {
6681 			r = le32dec(aerp + PCIR_AER_UC_STATUS);
6682 			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6683 		}
6684 		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6685 		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6686 			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6687 			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6688 			printf(" severity 0x%08x first %d\n",
6689 			    r, rs & 0x1f);
6690 		} else
6691 			printf("\n");
6692 	}
6693 
6694 	/* As kind of recovery just report and clear the error statuses. */
6695 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6696 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6697 		if (r != 0) {
6698 			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6699 			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6700 		}
6701 
6702 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6703 		if (r != 0) {
6704 			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6705 			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6706 		}
6707 	}
6708 	if (dinfo->cfg.pcie.pcie_location != 0) {
6709 		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6710 		    PCIER_DEVICE_STA, 2);
6711 		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6712 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6713 		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6714 			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6715 			    PCIER_DEVICE_STA, rs, 2);
6716 			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6717 		}
6718 	}
6719 }
6720 
6721 /*
6722  * Perform a Function Level Reset (FLR) on a device.
6723  *
6724  * This function first waits for any pending transactions to complete
6725  * within the timeout specified by max_delay.  If transactions are
6726  * still pending, the function will return false without attempting a
6727  * reset.
6728  *
6729  * If dev is not a PCI-express function or does not support FLR, this
6730  * function returns false.
6731  *
6732  * Note that no registers are saved or restored.  The caller is
6733  * responsible for saving and restoring any registers including
6734  * PCI-standard registers via pci_save_state() and
6735  * pci_restore_state().
6736  */
6737 bool
pcie_flr(device_t dev,u_int max_delay,bool force)6738 pcie_flr(device_t dev, u_int max_delay, bool force)
6739 {
6740 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6741 	uint16_t cmd, ctl;
6742 	int compl_delay;
6743 	int cap;
6744 
6745 	cap = dinfo->cfg.pcie.pcie_location;
6746 	if (cap == 0)
6747 		return (false);
6748 
6749 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6750 		return (false);
6751 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_FLR))
6752 		return (false);
6753 
6754 	/*
6755 	 * Disable busmastering to prevent generation of new
6756 	 * transactions while waiting for the device to go idle.  If
6757 	 * the idle timeout fails, the command register is restored
6758 	 * which will re-enable busmastering.
6759 	 */
6760 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6761 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6762 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6763 		if (!force) {
6764 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6765 			return (false);
6766 		}
6767 		pci_printf(&dinfo->cfg,
6768 		    "Resetting with transactions pending after %d ms\n",
6769 		    max_delay);
6770 
6771 		/*
6772 		 * Extend the post-FLR delay to cover the maximum
6773 		 * Completion Timeout delay of anything in flight
6774 		 * during the FLR delay.  Enforce a minimum delay of
6775 		 * at least 10ms.
6776 		 */
6777 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6778 		if (compl_delay < 10)
6779 			compl_delay = 10;
6780 	} else
6781 		compl_delay = 0;
6782 
6783 	/* Initiate the reset. */
6784 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6785 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6786 	    PCIEM_CTL_INITIATE_FLR, 2);
6787 
6788 	/* Wait for 100ms. */
6789 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6790 
6791 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6792 	    PCIEM_STA_TRANSACTION_PND)
6793 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6794 	return (true);
6795 }
6796 
6797 /*
6798  * Attempt a power-management reset by cycling the device in/out of D3
6799  * state.  PCI spec says we can only go into D3 state from D0 state.
6800  * Transition from D[12] into D0 before going to D3 state.
6801  */
6802 int
pci_power_reset(device_t dev)6803 pci_power_reset(device_t dev)
6804 {
6805 	int ps;
6806 
6807 	ps = pci_get_powerstate(dev);
6808 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6809 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6810 	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6811 	pci_set_powerstate(dev, ps);
6812 	return (0);
6813 }
6814 
6815 /*
6816  * Try link drop and retrain of the downstream port of upstream
6817  * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6818  * cause Conventional Hot reset of the device in the slot.
6819  * Alternative, for PCIe, could be the secondary bus reset initiatied
6820  * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6821  */
6822 int
pcie_link_reset(device_t port,int pcie_location)6823 pcie_link_reset(device_t port, int pcie_location)
6824 {
6825 	uint16_t v;
6826 
6827 	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6828 	v |= PCIEM_LINK_CTL_LINK_DIS;
6829 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6830 	pause_sbt("pcier1", mstosbt(20), 0, 0);
6831 	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6832 	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6833 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6834 	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6835 	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6836 	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6837 }
6838 
6839 static int
pci_reset_post(device_t dev,device_t child)6840 pci_reset_post(device_t dev, device_t child)
6841 {
6842 
6843 	if (dev == device_get_parent(child))
6844 		pci_restore_state(child);
6845 	return (0);
6846 }
6847 
6848 static int
pci_reset_prepare(device_t dev,device_t child)6849 pci_reset_prepare(device_t dev, device_t child)
6850 {
6851 
6852 	if (dev == device_get_parent(child))
6853 		pci_save_state(child);
6854 	return (0);
6855 }
6856 
6857 static int
pci_reset_child(device_t dev,device_t child,int flags)6858 pci_reset_child(device_t dev, device_t child, int flags)
6859 {
6860 	int error;
6861 
6862 	if (dev == NULL || device_get_parent(child) != dev)
6863 		return (0);
6864 	if ((flags & DEVF_RESET_DETACH) != 0) {
6865 		error = device_get_state(child) == DS_ATTACHED ?
6866 		    device_detach(child) : 0;
6867 	} else {
6868 		error = BUS_SUSPEND_CHILD(dev, child);
6869 	}
6870 	if (error == 0) {
6871 		if (!pcie_flr(child, 1000, false)) {
6872 			error = BUS_RESET_PREPARE(dev, child);
6873 			if (error == 0)
6874 				pci_power_reset(child);
6875 			BUS_RESET_POST(dev, child);
6876 		}
6877 		if ((flags & DEVF_RESET_DETACH) != 0)
6878 			device_probe_and_attach(child);
6879 		else
6880 			BUS_RESUME_CHILD(dev, child);
6881 	}
6882 	return (error);
6883 }
6884 
6885 const struct pci_device_table *
pci_match_device(device_t child,const struct pci_device_table * id,size_t nelt)6886 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6887 {
6888 	bool match;
6889 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6890 
6891 	vendor = pci_get_vendor(child);
6892 	device = pci_get_device(child);
6893 	subvendor = pci_get_subvendor(child);
6894 	subdevice = pci_get_subdevice(child);
6895 	class = pci_get_class(child);
6896 	subclass = pci_get_subclass(child);
6897 	revid = pci_get_revid(child);
6898 	while (nelt-- > 0) {
6899 		match = true;
6900 		if (id->match_flag_vendor)
6901 			match &= vendor == id->vendor;
6902 		if (id->match_flag_device)
6903 			match &= device == id->device;
6904 		if (id->match_flag_subvendor)
6905 			match &= subvendor == id->subvendor;
6906 		if (id->match_flag_subdevice)
6907 			match &= subdevice == id->subdevice;
6908 		if (id->match_flag_class)
6909 			match &= class == id->class_id;
6910 		if (id->match_flag_subclass)
6911 			match &= subclass == id->subclass;
6912 		if (id->match_flag_revid)
6913 			match &= revid == id->revid;
6914 		if (match)
6915 			return (id);
6916 		id++;
6917 	}
6918 	return (NULL);
6919 }
6920 
6921 static void
pci_print_faulted_dev_name(const struct pci_devinfo * dinfo)6922 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6923 {
6924 	const char *dev_name;
6925 	device_t dev;
6926 
6927 	dev = dinfo->cfg.dev;
6928 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6929 	    dinfo->cfg.slot, dinfo->cfg.func);
6930 	dev_name = device_get_name(dev);
6931 	if (dev_name != NULL)
6932 		printf(" (%s%d)", dev_name, device_get_unit(dev));
6933 }
6934 
6935 void
pci_print_faulted_dev(void)6936 pci_print_faulted_dev(void)
6937 {
6938 	struct pci_devinfo *dinfo;
6939 	device_t dev;
6940 	int aer, i;
6941 	uint32_t r1, r2;
6942 	uint16_t status;
6943 
6944 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6945 		dev = dinfo->cfg.dev;
6946 		status = pci_read_config(dev, PCIR_STATUS, 2);
6947 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6948 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6949 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6950 		if (status != 0) {
6951 			pci_print_faulted_dev_name(dinfo);
6952 			printf(" error 0x%04x\n", status);
6953 		}
6954 		if (dinfo->cfg.pcie.pcie_location != 0) {
6955 			status = pci_read_config(dev,
6956 			    dinfo->cfg.pcie.pcie_location +
6957 			    PCIER_DEVICE_STA, 2);
6958 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6959 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6960 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6961 				pci_print_faulted_dev_name(dinfo);
6962 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6963 				    pci_read_config(dev,
6964 				    dinfo->cfg.pcie.pcie_location +
6965 				    PCIER_DEVICE_CTL, 2),
6966 				    status);
6967 			}
6968 		}
6969 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6970 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6971 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6972 			if (r1 != 0 || r2 != 0) {
6973 				pci_print_faulted_dev_name(dinfo);
6974 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6975 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6976 				    r1, pci_read_config(dev, aer +
6977 				    PCIR_AER_UC_MASK, 4),
6978 				    pci_read_config(dev, aer +
6979 				    PCIR_AER_UC_SEVERITY, 4),
6980 				    r2, pci_read_config(dev, aer +
6981 				    PCIR_AER_COR_MASK, 4),
6982 				    pci_read_config(dev, aer +
6983 				    PCIR_AER_CAP_CONTROL, 4));
6984 				for (i = 0; i < 4; i++) {
6985 					r1 = pci_read_config(dev, aer +
6986 					    PCIR_AER_HEADER_LOG + i * 4, 4);
6987 					printf("    HL%d: 0x%08x\n", i, r1);
6988 				}
6989 			}
6990 		}
6991 	}
6992 }
6993 
6994 #ifdef DDB
DB_SHOW_COMMAND_FLAGS(pcierr,pci_print_faulted_dev_db,DB_CMD_MEMSAFE)6995 DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE)
6996 {
6997 
6998 	pci_print_faulted_dev();
6999 }
7000 
7001 static void
db_clear_pcie_errors(const struct pci_devinfo * dinfo)7002 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
7003 {
7004 	device_t dev;
7005 	int aer;
7006 	uint32_t r;
7007 
7008 	dev = dinfo->cfg.dev;
7009 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
7010 	    PCIER_DEVICE_STA, 2);
7011 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
7012 	    PCIER_DEVICE_STA, r, 2);
7013 
7014 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
7015 		return;
7016 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
7017 	if (r != 0)
7018 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
7019 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
7020 	if (r != 0)
7021 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
7022 }
7023 
DB_COMMAND_FLAGS(pci_clearerr,db_pci_clearerr,DB_CMD_MEMSAFE)7024 DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE)
7025 {
7026 	struct pci_devinfo *dinfo;
7027 	device_t dev;
7028 	uint16_t status, status1;
7029 
7030 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
7031 		dev = dinfo->cfg.dev;
7032 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
7033 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
7034 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
7035 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
7036 		if (status1 != 0) {
7037 			status &= ~status1;
7038 			pci_write_config(dev, PCIR_STATUS, status, 2);
7039 		}
7040 		if (dinfo->cfg.pcie.pcie_location != 0)
7041 			db_clear_pcie_errors(dinfo);
7042 	}
7043 }
7044 #endif
7045