1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright 2025 Oxide Computer Company
26 */
27
28 /*
29 * PCIe Initialization
30 * -------------------
31 *
32 * The PCIe subsystem is split about and initializes itself in a couple of
33 * different places. This is due to the platform-specific nature of initializing
34 * resources and the nature of the SPARC PROM and how that influenced the
35 * subsystem. Note that traditional PCI (mostly seen these days in Virtual
36 * Machines) follows most of the same basic path outlined here, but skips a
37 * large chunk of PCIe-specific initialization.
38 *
39 * First, there is an initial device discovery phase that is taken care of by
40 * the platform. This is where we discover the set of devices that are present
41 * at system power on. These devices may or may not be hot-pluggable. In
42 * particular, this happens in a platform-specific way right now. In general, we
43 * expect most discovery to be driven by scanning each bus, device, and
44 * function, and seeing what actually exists and responds to configuration space
45 * reads. This is driven via pci_boot.c on x86. This may be seeded by something
46 * like device tree, a PROM, supplemented with ACPI, or by knowledge that the
47 * underlying platform has.
48 *
49 * As a part of this discovery process, the full set of resources that exist in
50 * the system for PCIe are:
51 *
52 * o PCI buses
53 * o Prefetchable Memory
54 * o Non-prefetchable memory
55 * o I/O ports
56 *
57 * This process is driven by a platform's PCI platform Resource Discovery (PRD)
58 * module. The PRD definitions can be found in <sys/plat/pci_prd.h> and are used
59 * to discover these resources, which will be converted into the initial set of
60 * the standard properties in the system: 'regs', 'available', 'ranges', etc.
61 * Currently it is up to platform-specific code (which should ideally be
62 * consolidated at some point) to set up all these properties.
63 *
64 * As a part of the discovery process, the platform code will create a device
65 * node (dev_info_t) for each discovered function and will create a PCIe nexus
66 * for each overall root complex that exists in the system. Most root complexes
67 * will have multiple root ports, each of which is the foundation of an
68 * independent PCIe bus due to the point-to-point nature of PCIe. When a root
69 * complex is found, a nexus driver such as npe (Nexus for PCIe Express) is
70 * attached. In the case of a non-PCIe-capable system this is where the older
71 * pci nexus driver would be used instead.
72 *
73 * To track data about a given device on a bus, a 'pcie_bus_t' structure is
74 * created for and assigned to every PCIe-based dev_info_t. This can be used to
75 * find the root port and get basic information about the device, its faults,
76 * and related information. This contains pointers to the corresponding root
77 * port as well.
78 *
79 * A root complex has its pcie_bus_t initialized as part of the device discovery
80 * process. That is, because we're trying to bootstrap the actual tree and most
81 * platforms don't have a representation for this that's explicitly
82 * discoverable, this is created manually. See callers of pcie_rc_init_bus().
83 *
84 * For other devices, bridges, and switches, the process is split into two.
85 * There is an initial pcie_bus_t that is created which will exist before we go
86 * through the actual driver attachment process. For example, on x86 this is
87 * done as part of the device and function discovery. The second pass of
88 * initialization is done only after the nexus driver actually is attached and
89 * it goes through and finishes processing all of its children.
90 *
91 * Child Initialization
92 * --------------------
93 *
94 * Generally speaking, the platform will first enumerate all PCIe devices that
95 * are in the sytem before it actually creates a device tree. This is part of
96 * the bus/device/function scanning that is performed and from that dev_info_t
97 * nodes are created for each discovered device and are inserted into the
98 * broader device tree. Later in boot, the actual device tree is walked and the
99 * nodes go through the standard dev_info_t initialization process (DS_PROTO,
100 * DS_LINKED, DS_BOUND, etc.).
101 *
102 * PCIe-specific initialization can roughly be broken into the following pieces:
103 *
104 * 1. Platform initial discovery and resource assignment
105 * 2. The pcie_bus_t initialization
106 * 3. Nexus driver child initialization
107 * 4. Fabric initialization
108 * 5. Device driver-specific initialization
109 *
110 * The first part of this (1) and (2) are discussed in the previous section.
111 * Part (1) in particular is a combination of the PRD (platform resource
112 * discovery) and general device initialization. After this, because we have a
113 * device tree, most of the standard nexus initialization happens.
114 *
115 * (5) is somewhat simple, so let's get into it before we discuss (3) and (4).
116 * This is the last thing that is called and that happens after all of the
117 * others are done. This is the logic that occurs in a driver's attach(9E) entry
118 * point. This is always device-specific and generally speaking should not be
119 * manipulating standard PCIe registers directly on their own. For example, the
120 * MSI/MSI-X, AER, Serial Number, etc. capabilities will be automatically dealt
121 * with by the framework in (3) and (4) below. In many cases, particularly
122 * things that are part of (4), adjusting them in the individual driver is not
123 * safe.
124 *
125 * Finally, let's talk about (3) and (4) as these are related. The NDI provides
126 * for a standard hook for a nexus to initialize its children. In our platforms,
127 * there are basically two possible PCIe nexus drivers: there is the generic
128 * pcieb -- PCIe bridge -- driver which is used for standard root ports,
129 * switches, etc. Then there is the platform-specific primary nexus driver,
130 * which is being slowly consolidated into a single one where it makes sense. An
131 * example of this is npe.
132 *
133 * Each of these has a child initialization function which is called from their
134 * DDI_CTLOPS_INITCHILD operation on the bus_ctl function pointer. This goes
135 * through and initializes a large number of different pieces of PCIe-based
136 * settings through the common pcie_initchild() function. This takes care of
137 * things like:
138 *
139 * o Advanced Error Reporting
140 * o Alternative Routing
141 * o Capturing information around link speed, width, serial numbers, etc.
142 * o Setting common properties around aborts
143 *
144 * There are a few caveats with this that need to be kept in mind:
145 *
146 * o A dev_info_t indicates a specific function. This means that a
147 * multi-function device will not all be initialized at the same time and
148 * there is no guarantee that all children will be initialized before one of
149 * them is attached.
150 * o A child is only initialized if we have found a driver that matches an
151 * alias in the dev_info_t's compatible array property. While a lot of
152 * multi-function devices are often multiple instances of the same thing
153 * (e.g. a multi-port NIC with a function / NIC), this is not always the
154 * case and one cannot make any assumptions here.
155 *
156 * This in turn leads to the next form of initialization that takes place in the
157 * case of (4). This is where we take care of things that need to be consistent
158 * across either entire devices or more generally across an entire root port and
159 * all of its children. There are a few different examples of this:
160 *
161 * o Setting the maximum packet size
162 * o Determining the tag width
163 *
164 * Note that features which are only based on function 0, such as ASPM (Active
165 * State Power Management), hardware autonomous width disable, etc. ultimately
166 * do not go through this path today. There are some implications here in that
167 * today several of these things are captured on functions which may not have
168 * any control here. This is an area of needed improvement.
169 *
170 * The settings in (4) are initialized in a common way, via
171 * pcie_fabric_setup(). This is called into from two different parts of
172 * the stack:
173 *
174 * 1. When we attach a root port, which is driven by pcieb.
175 * 2. When we have a hotplug event that adds a device.
176 *
177 * In general here we are going to use the term 'fabric' to refer to everything
178 * that is downstream of a root port. This corresponds to what the PCIe
179 * specification calls a 'hierarchy domain'. Strictly speaking, this is fine
180 * until peer-to-peer requests begin to happen that cause you to need to forward
181 * things across root ports. At that point the scope of the fabric increases and
182 * these settings become more complicated. We currently optimize for the much
183 * more common case, which is that each root port is effectively independent
184 * from a PCIe transaction routing perspective.
185 *
186 * Put differently, we use the term 'fabric' to refer to a set of PCIe devices
187 * that can route transactions to one another, which is generally constrained to
188 * everything under a root port and that root ports are independent. If this
189 * constraint changes, then all one needs to do is replace the discussion of the
190 * root port below with the broader root complex and system.
191 *
192 * A challenge with these settings is that once they're set and devices are
193 * actively making requests, we cannot really change them without resetting the
194 * links and cancelling all outstanding transactions via device resets. Because
195 * this is not something that we want to do, we instead look at how and when we
196 * set this to constrain what's going on.
197 *
198 * Because of this we basically say that if a given fabric has more than one
199 * hot-plug capable device that's encountered, then we have to use safe defaults
200 * (which we can allow an operator to tune eventually via pcieadm). If we have a
201 * mix of non-hotpluggable slots with downstream endpoints present and
202 * hot-pluggable slots, then we're in this case. If we don't have hot-pluggable
203 * slots, then we can have an arbitrarily complex setup. Let's look at a few of
204 * these visually:
205 *
206 * In the following diagrams, RP stands for Root Port, EP stands for Endpoint.
207 * If something is hot-pluggable, then we label it with (HP).
208 *
209 * (1) RP --> EP
210 * (2) RP --> Switch --> EP
211 * +--> EP
212 * +--> EP
213 *
214 * (3) RP --> Switch --> EP
215 * +--> EP
216 * +--> Switch --> EP
217 * +--> EP
218 * +--> EP
219 *
220 *
221 * (4) RP (HP) --> EP
222 * (5) RP (HP) --> Switch --> EP
223 * +--> EP
224 * +--> EP
225 *
226 * (6) RP --> Switch (HP) --> EP
227 * (7) RP (HP) --> Switch (HP) --> EP
228 *
229 * If we look at all of these, these are all cases where it's safe for us to set
230 * things based on all devices. (1), (2), and (3) are straightforward because
231 * they have no hot-pluggable elements. This means that nothing should come/go
232 * on the system and we can set up fabric-wide properties as part of the root
233 * port.
234 *
235 * Case (4) is the most standard one that we encounter for hot-plug. Here you
236 * have a root port directly connected to an endpoint. The most common example
237 * would be an NVMe device plugged into a root port. Case (5) is interesting to
238 * highlight. While there is a switch and multiple endpoints there, they are
239 * showing up as a unit. This ends up being a weirder variant of (4), but it is
240 * safe for us to set advanced properties because we can figure out what the
241 * total set should be.
242 *
243 * Now, the more interesting bits here are (6) and (7). The reason that (6)
244 * works is that ultimately there is only a single down-stream port here that is
245 * hot-pluggable and all non-hotpluggable ports do not have a device present,
246 * which suggests that they will never have a device present. (7) also could be
247 * made to work by making the observation that if there's truly only one
248 * endpoint in a fabric, it doesn't matter how many switches there are that are
249 * hot-pluggable. This would only hold if we can assume for some reason that no
250 * other endpoints could be added.
251 *
252 * In turn, let's look at several cases that we believe aren't safe:
253 *
254 * (8) RP --> Switch --> EP
255 * +--> EP
256 * (HP) +--> EP
257 *
258 * (9) RP --> Switch (HP) +--> EP
259 * (HP) +--> EP
260 *
261 * (10) RP (HP) --> Switch (HP) +--> EP
262 * (HP) +--> EP
263 *
264 * All of these are situations where it's much more explicitly unsafe. Let's
265 * take (8). The problem here is that the devices on the non-hotpluggable
266 * downstream switches are always there and we should assume all device drivers
267 * will be active and performing I/O when the hot-pluggable slot changes. If the
268 * hot-pluggable slot has a lower max payload size, then we're mostly out of
269 * luck. The case of (9) is very similar to (8), just that we have more hot-plug
270 * capable slots.
271 *
272 * Finally (10) is a case of multiple instances of hotplug. (9) and (10) are the
273 * more general case of (6) and (7). While we can try to detect (6) and (7) more
274 * generally or try to make it safe, we're going to start with a simpler form of
275 * detection for this, which roughly follows the following rules:
276 *
277 * o If there are no hot-pluggable slots in an entire fabric, then we can set
278 * all fabric properties based on device capabilities.
279 * o If we encounter a hot-pluggable slot, we can only set fabric properties
280 * based on device capabilities if:
281 *
282 * 1. The hotpluggable slot is a root port.
283 * 2. There are no other hotpluggable devices downstream of it.
284 *
285 * Otherwise, if neither of the above is true, then we must use the basic PCIe
286 * defaults for various fabric-wide properties (discussed below). Even in these
287 * more complicated cases, device-specific properties such as the configuration
288 * of AERs, ASPM, etc. are still handled in the general pcie_init_bus() and
289 * related discussed earlier here.
290 *
291 * Because the only fabrics that we'll change are those that correspond to root
292 * ports, we will only call into the actual fabric feature setup when one of
293 * those changes. This has the side effect of simplifying locking. When we make
294 * changes here we need to be able to hold the entire device tree under the root
295 * port (including the root port and its parent). This is much harder to do
296 * safely when starting in the middle of the tree.
297 *
298 * Handling of Specific Properties
299 * -------------------------------
300 *
301 * This section goes into the rationale behind how we initialize and program
302 * various parts of the PCIe stack.
303 *
304 * 5-, 8-, 10- AND 14-BIT TAGS
305 *
306 * Tags are part of PCIe transactions and when combined with a device identifier
307 * are used to uniquely identify a transaction. In PCIe parlance, a Requester
308 * (someone who initiates a PCIe request) sets a unique tag in the request and
309 * the Completer (someone who processes and responds to a PCIe request) echoes
310 * the tag back. This means that a requester generally is responsible for
311 * ensuring that they don't reuse a tag between transactions.
312 *
313 * Thus the number of tags that a device has relates to the number of
314 * outstanding transactions that it can have, which are usually tied to the
315 * number of outstanding DMA transfers. The size of these transactions is also
316 * then scoped by the handling of the Maximum Packet Payload.
317 *
318 * In PCIe 1.0, devices default to a 5-bit tag. There was also an option to
319 * support an 8-bit tag. The 8-bit extended tag did not distinguish between a
320 * Requester or Completer. There was a bit to indicate device support of 8-bit
321 * tags in the Device Capabilities Register of the PCIe Capability and a
322 * separate bit to enable it in the Device Control Register of the PCIe
323 * Capability.
324 *
325 * In PCIe 4.0, support for a 10-bit tag was added. The specification broke
326 * apart the support bit into multiple pieces. In particular, in the Device
327 * Capabilities 2 register of the PCIe Capability there is a separate bit to
328 * indicate whether the device supports 10-bit completions and 10-bit requests.
329 * All PCIe 4.0 compliant devices are required to support 10-bit tags if they
330 * operate at 16.0 GT/s speed (a PCIe Gen 4 compliant device does not have to
331 * operate at Gen 4 speeds).
332 *
333 * This allows a device to support 10-bit completions but not 10-bit requests.
334 * A device that supports 10-bit requests is required to support 10-bit
335 * completions. There is no ability to enable or disable 10-bit completion
336 * support in the Device Capabilities 2 register. There is only a bit to enable
337 * 10-bit requests. This distinction makes our life easier as this means that as
338 * long as the entire fabric supports 10-bit completions, it doesn't matter if
339 * not all devices support 10-bit requests and we can enable them as required.
340 * More on this in a bit.
341 *
342 * In PCIe 6.0, another set of bits was added for 14-bit tags. These follow the
343 * same pattern as the 10-bit tags. The biggest difference is that the
344 * capabilities and control for these are found in the Device Capabilities 3
345 * and Device Control 3 register of the Device 3 Extended Capability. Similar to
346 * what we see with 10-bit tags, requesters are required to support the
347 * completer capability. The only control bit is for whether or not they enable
348 * a 14-bit requester.
349 *
350 * PCIe switches which sit between root ports and endpoints and show up to
351 * software as a set of bridges. Bridges generally don't have to know about tags
352 * as they are usually neither requesters or completers (unless directly talking
353 * to the bridge instance). That is they are generally required to forward
354 * packets without modifying them. This works until we deal with switch error
355 * handling. At that point, the switch may try to interpret the transaction and
356 * if it doesn't understand the tagging scheme in use, return the transaction to
357 * with the wrong tag and also an incorrectly diagnosed error (usually a
358 * malformed TLP).
359 *
360 * With all this, we construct a somewhat simple policy of how and when we
361 * enable extended tags:
362 *
363 * o If we have a complex hotplug-capable fabric (based on the discussion
364 * earlier in fabric-specific settings), then we cannot enable any of the
365 * 8-bit, 10-bit, and 14-bit tagging features. This is due to the issues
366 * with intermediate PCIe switches and related.
367 *
368 * o If every device supports 8-bit capable tags, then we will go through and
369 * enable those everywhere.
370 *
371 * o If every device supports 10-bit capable completions, then we will enable
372 * 10-bit requester on every device that supports it.
373 *
374 * o If every device supports 14-bit capable completions, then we will enable
375 * 14-bit requesters on every device that supports it.
376 *
377 * This is the simpler end of the policy and one that is relatively easy to
378 * implement. While we could attempt to relax the constraint that every device
379 * in the fabric implement these features by making assumptions about peer-to-
380 * peer requests (that is devices at the same layer in the tree won't talk to
381 * one another), that is a lot of complexity. For now, we leave such an
382 * implementation to those who need it in the future.
383 *
384 * MAX PAYLOAD SIZE
385 *
386 * When performing transactions on the PCIe bus, a given transaction has a
387 * maximum allowed size. This size is called the MPS or 'Maximum Payload Size'.
388 * A given device reports its maximum supported size in the Device Capabilities
389 * register of the PCIe Capability. It is then set in the Device Control
390 * register.
391 *
392 * One of the challenges with this value is that different functions of a device
393 * have independent values, but strictly speaking are required to actually have
394 * the same value programmed in all of them lest device behavior goes awry. When
395 * a device has the ARI (alternative routing ID) capability enabled, then only
396 * function 0 controls the actual payload size.
397 *
398 * The settings for this need to be consistent throughout the fabric. A
399 * Transmitter is not allowed to create a TLP that exceeds its maximum packet
400 * size and a Receiver is not allowed to receive a packet that exceeds its
401 * maximum packet size. In all of these cases, this would result in something
402 * like a malformed TLP error.
403 *
404 * Effectively, this means that everything on a given fabric must have the same
405 * value programmed in its Device Control register for this value. While in the
406 * case of tags, switches generally weren't completers or requesters, here every
407 * device along the path is subject to this. This makes the actual value that we
408 * set throughout the fabric even more important and the constraints of hotplug
409 * even worse to deal with.
410 *
411 * Because a hotplug device can be inserted with any packet size, if we hit
412 * anything other than the simple hotplug cases discussed in the fabric-specific
413 * settings section, then we must use the smallest size of 128 byte payloads.
414 * This is because a device could be plugged in that supports something smaller
415 * than we had otherwise set. If there are other active devices, those could not
416 * be changed without quiescing the entire fabric. As such our algorithm is as
417 * follows:
418 *
419 * 1. Scan the entire fabric, keeping track of the smallest seen MPS in the
420 * Device Capabilities Register.
421 * 2. If we have a complex fabric, program each Device Control register with
422 * a 128 byte maximum payload size, otherwise, program it with the
423 * discovered value.
424 *
425 *
426 * MAX READ REQUEST SIZE
427 *
428 * The maximum read request size (mrrs) is a much more confusing thing when
429 * compared to the maximum payload size counterpart. The maximum payload size
430 * (MPS) above is what restricts the actual size of a TLP. The mrrs value
431 * is used to control part of the behavior of Memory Read Request, which is not
432 * strictly speaking subject to the MPS. A PCIe device is allowed to respond to
433 * a Memory Read Request with less bytes than were actually requested in a
434 * single completion. In general, the default size that a root complex and its
435 * root port will reply to are based around the length of a cache line.
436 *
437 * What this ultimately controls is the number of requests that the Requester
438 * has to make and trades off bandwidth, bus sharing, and related here. For
439 * example, if the maximum read request size is 4 KiB, then the requester would
440 * only issue a single read request asking for 4 KiB. It would still receive
441 * these as multiple packets in units of the MPS. If however, the maximum read
442 * request was only say 512 B, then it would need to make 8 separate requests,
443 * potentially increasing latency. On the other hand, if systems are relying on
444 * total requests for QoS, then it's important to set it to something that's
445 * closer to the actual MPS.
446 *
447 * Traditionally, the OS has not been the most straightforward about this. It's
448 * important to remember that setting this up is also somewhat in the realm of
449 * system firmware. Due to the PCI Firmware specification, the firmware may have
450 * set up a value for not just the MRRS but also the MPS. As such, our logic
451 * basically left the MRRS alone and used whatever the device had there as long
452 * as we weren't shrinking the device's MPS. If we were, then we'd set it to the
453 * MPS. If the device was a root port, then it was just left at a system wide
454 * and PCIe default of 512 bytes.
455 *
456 * If we survey firmware (which isn't easy due to its nature), we have seen most
457 * cases where the firmware just doesn't do anything and leaves it to the
458 * device's default, which is basically just the PCIe default, unless it has a
459 * specific knowledge of something like say wanting to do something for an NVMe
460 * device. The same is generally true of other systems, leaving it at its
461 * default unless otherwise set by a device driver.
462 *
463 * Because this value doesn't really have the same constraints as other fabric
464 * properties, this becomes much simpler and we instead opt to set it as part of
465 * the device node initialization. In addition, there are no real rules about
466 * different functions having different values here as it doesn't really impact
467 * the TLP processing the same way that the MPS does.
468 *
469 * While we should add a fuller way of setting this and allowing operator
470 * override of the MRRS based on things like device class, etc. that is driven
471 * by pcieadm, that is left to the future. For now we opt to that all devices
472 * are kept at their default (512 bytes or whatever firmware left behind) and we
473 * ensure that root ports always have the mrrs set to 512.
474 */
475
476 #include <sys/sysmacros.h>
477 #include <sys/types.h>
478 #include <sys/kmem.h>
479 #include <sys/modctl.h>
480 #include <sys/ddi.h>
481 #include <sys/sunddi.h>
482 #include <sys/sunndi.h>
483 #include <sys/fm/protocol.h>
484 #include <sys/fm/util.h>
485 #include <sys/promif.h>
486 #include <sys/disp.h>
487 #include <sys/stat.h>
488 #include <sys/file.h>
489 #include <sys/pci_cap.h>
490 #include <sys/pci_impl.h>
491 #include <sys/pcie_impl.h>
492 #include <sys/hotplug/pci/pcie_hp.h>
493 #include <sys/hotplug/pci/pciehpc.h>
494 #include <sys/hotplug/pci/pcishpc.h>
495 #include <sys/hotplug/pci/pcicfg.h>
496 #include <sys/pci_cfgacc.h>
497 #include <sys/sysevent.h>
498 #include <sys/sysevent/eventdefs.h>
499 #include <sys/sysevent/pcie.h>
500
501 /* Local functions prototypes */
502 static void pcie_init_pfd(dev_info_t *);
503 static void pcie_fini_pfd(dev_info_t *);
504
505 #ifdef DEBUG
506 uint_t pcie_debug_flags = 0;
507 static void pcie_print_bus(pcie_bus_t *bus_p);
508 void pcie_dbg(char *fmt, ...);
509 #endif /* DEBUG */
510
511 /* Variable to control default PCI-Express config settings */
512 ushort_t pcie_command_default =
513 PCI_COMM_SERR_ENABLE |
514 PCI_COMM_WAIT_CYC_ENAB |
515 PCI_COMM_PARITY_DETECT |
516 PCI_COMM_ME |
517 PCI_COMM_MAE |
518 PCI_COMM_IO;
519
520 /* xxx_fw are bits that are controlled by FW and should not be modified */
521 ushort_t pcie_command_default_fw =
522 PCI_COMM_SPEC_CYC |
523 PCI_COMM_MEMWR_INVAL |
524 PCI_COMM_PALETTE_SNOOP |
525 PCI_COMM_WAIT_CYC_ENAB |
526 0xF800; /* Reserved Bits */
527
528 ushort_t pcie_bdg_command_default_fw =
529 PCI_BCNF_BCNTRL_ISA_ENABLE |
530 PCI_BCNF_BCNTRL_VGA_ENABLE |
531 0xF000; /* Reserved Bits */
532
533 /* PCI-Express Base error defaults */
534 ushort_t pcie_base_err_default =
535 PCIE_DEVCTL_CE_REPORTING_EN |
536 PCIE_DEVCTL_NFE_REPORTING_EN |
537 PCIE_DEVCTL_FE_REPORTING_EN |
538 PCIE_DEVCTL_UR_REPORTING_EN;
539
540 /*
541 * This contains default values and masks that are used to manipulate the device
542 * control register and ensure that it is in a normal state. The mask controls
543 * things that are managed by pcie_fabric_setup(), firmware, or other sources
544 * and therefore should be preserved unless we're explicitly trying to change
545 * it.
546 */
547 uint16_t pcie_devctl_default = PCIE_DEVCTL_RO_EN | PCIE_DEVCTL_MAX_READ_REQ_512;
548 uint16_t pcie_devctl_default_mask = PCIE_DEVCTL_MAX_READ_REQ_MASK |
549 PCIE_DEVCTL_MAX_PAYLOAD_MASK | PCIE_DEVCTL_EXT_TAG_FIELD_EN;
550
551 /* PCI-Express AER Root Control Register */
552 #define PCIE_ROOT_SYS_ERR (PCIE_ROOTCTL_SYS_ERR_ON_CE_EN | \
553 PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN | \
554 PCIE_ROOTCTL_SYS_ERR_ON_FE_EN)
555
556 ushort_t pcie_root_ctrl_default =
557 PCIE_ROOTCTL_SYS_ERR_ON_CE_EN |
558 PCIE_ROOTCTL_SYS_ERR_ON_NFE_EN |
559 PCIE_ROOTCTL_SYS_ERR_ON_FE_EN;
560
561 /* PCI-Express Root Error Command Register */
562 ushort_t pcie_root_error_cmd_default =
563 PCIE_AER_RE_CMD_CE_REP_EN |
564 PCIE_AER_RE_CMD_NFE_REP_EN |
565 PCIE_AER_RE_CMD_FE_REP_EN;
566
567 /* ECRC settings in the PCIe AER Control Register */
568 uint32_t pcie_ecrc_value =
569 PCIE_AER_CTL_ECRC_GEN_ENA |
570 PCIE_AER_CTL_ECRC_CHECK_ENA;
571
572 /*
573 * If a particular platform wants to disable certain errors such as UR/MA,
574 * instead of using #defines have the platform's PCIe Root Complex driver set
575 * these masks using the pcie_get_XXX_mask and pcie_set_XXX_mask functions. For
576 * x86 the closest thing to a PCIe root complex driver is NPE. For SPARC the
577 * closest PCIe root complex driver is PX.
578 *
579 * pcie_serr_disable_flag : disable SERR only (in RCR and command reg) x86
580 * systems may want to disable SERR in general. For root ports, enabling SERR
581 * causes NMIs which are not handled and results in a watchdog timeout error.
582 */
583 uint32_t pcie_aer_uce_mask = 0; /* AER UE Mask */
584 uint32_t pcie_aer_ce_mask = 0; /* AER CE Mask */
585 uint32_t pcie_aer_suce_mask = 0; /* AER Secondary UE Mask */
586 uint32_t pcie_serr_disable_flag = 0; /* Disable SERR */
587
588 /* Default severities needed for eversholt. Error handling doesn't care */
589 uint32_t pcie_aer_uce_severity = PCIE_AER_UCE_MTLP | PCIE_AER_UCE_RO | \
590 PCIE_AER_UCE_FCP | PCIE_AER_UCE_SD | PCIE_AER_UCE_DLP | \
591 PCIE_AER_UCE_TRAINING;
592 uint32_t pcie_aer_suce_severity = PCIE_AER_SUCE_SERR_ASSERT | \
593 PCIE_AER_SUCE_UC_ADDR_ERR | PCIE_AER_SUCE_UC_ATTR_ERR | \
594 PCIE_AER_SUCE_USC_MSG_DATA_ERR;
595
596 int pcie_disable_ari = 0;
597
598 /*
599 * On some platforms, such as the AMD B450 chipset, we've seen an odd
600 * relationship between enabling link bandwidth notifications and AERs about
601 * ECRC errors. This provides a mechanism to disable it.
602 */
603 int pcie_disable_lbw = 0;
604
605 /*
606 * Amount of time to wait for an in-progress retraining. The default is to try
607 * 500 times in 10ms chunks, thus a total of 5s.
608 */
609 uint32_t pcie_link_retrain_count = 500;
610 uint32_t pcie_link_retrain_delay_ms = 10;
611
612 taskq_t *pcie_link_tq;
613 kmutex_t pcie_link_tq_mutex;
614
615 static int pcie_link_bw_intr(dev_info_t *);
616 static void pcie_capture_speeds(dev_info_t *);
617
618 dev_info_t *pcie_get_rc_dip(dev_info_t *dip);
619
620 /*
621 * modload support
622 */
623
624 static struct modlmisc modlmisc = {
625 &mod_miscops, /* Type of module */
626 "PCI Express Framework Module"
627 };
628
629 static struct modlinkage modlinkage = {
630 MODREV_1,
631 (void *)&modlmisc,
632 NULL
633 };
634
635 /*
636 * Global Variables needed for a non-atomic version of ddi_fm_ereport_post.
637 * Currently used to send the pci.fabric ereports whose payload depends on the
638 * type of PCI device it is being sent for.
639 */
640 char *pcie_nv_buf;
641 nv_alloc_t *pcie_nvap;
642 nvlist_t *pcie_nvl;
643
644 int
_init(void)645 _init(void)
646 {
647 int rval;
648
649 pcie_nv_buf = kmem_alloc(ERPT_DATA_SZ, KM_SLEEP);
650 pcie_nvap = fm_nva_xcreate(pcie_nv_buf, ERPT_DATA_SZ);
651 pcie_nvl = fm_nvlist_create(pcie_nvap);
652 mutex_init(&pcie_link_tq_mutex, NULL, MUTEX_DRIVER, NULL);
653
654 if ((rval = mod_install(&modlinkage)) != 0) {
655 mutex_destroy(&pcie_link_tq_mutex);
656 fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
657 fm_nva_xdestroy(pcie_nvap);
658 kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
659 }
660 return (rval);
661 }
662
663 int
_fini()664 _fini()
665 {
666 int rval;
667
668 if ((rval = mod_remove(&modlinkage)) == 0) {
669 if (pcie_link_tq != NULL) {
670 taskq_destroy(pcie_link_tq);
671 }
672 mutex_destroy(&pcie_link_tq_mutex);
673 fm_nvlist_destroy(pcie_nvl, FM_NVA_RETAIN);
674 fm_nva_xdestroy(pcie_nvap);
675 kmem_free(pcie_nv_buf, ERPT_DATA_SZ);
676 }
677 return (rval);
678 }
679
680 int
_info(struct modinfo * modinfop)681 _info(struct modinfo *modinfop)
682 {
683 return (mod_info(&modlinkage, modinfop));
684 }
685
686 /* ARGSUSED */
687 int
pcie_init(dev_info_t * dip,caddr_t arg)688 pcie_init(dev_info_t *dip, caddr_t arg)
689 {
690 int ret = DDI_SUCCESS;
691
692 /*
693 * Our _init function is too early to create a taskq. Create the pcie
694 * link management taskq here now instead.
695 */
696 mutex_enter(&pcie_link_tq_mutex);
697 if (pcie_link_tq == NULL) {
698 pcie_link_tq = taskq_create("pcie_link", 1, minclsyspri, 0, 0,
699 0);
700 }
701 mutex_exit(&pcie_link_tq_mutex);
702
703
704 /*
705 * Create a "devctl" minor node to support DEVCTL_DEVICE_*
706 * and DEVCTL_BUS_* ioctls to this bus.
707 */
708 if ((ret = ddi_create_minor_node(dip, "devctl", S_IFCHR,
709 PCI_MINOR_NUM(ddi_get_instance(dip), PCI_DEVCTL_MINOR),
710 DDI_NT_NEXUS, 0)) != DDI_SUCCESS) {
711 PCIE_DBG("Failed to create devctl minor node for %s%d\n",
712 ddi_driver_name(dip), ddi_get_instance(dip));
713
714 return (ret);
715 }
716
717 if ((ret = pcie_hp_init(dip, arg)) != DDI_SUCCESS) {
718 /*
719 * On some x86 platforms, we observed unexpected hotplug
720 * initialization failures in recent years. The known cause
721 * is a hardware issue: while the problem PCI bridges have
722 * the Hotplug Capable registers set, the machine actually
723 * does not implement the expected ACPI object.
724 *
725 * We don't want to stop PCI driver attach and system boot
726 * just because of this hotplug initialization failure.
727 * Continue with a debug message printed.
728 */
729 PCIE_DBG("%s%d: Failed setting hotplug framework\n",
730 ddi_driver_name(dip), ddi_get_instance(dip));
731
732 #if defined(__sparc)
733 ddi_remove_minor_node(dip, "devctl");
734
735 return (ret);
736 #endif /* defined(__sparc) */
737 }
738
739 return (DDI_SUCCESS);
740 }
741
742 /* ARGSUSED */
743 int
pcie_uninit(dev_info_t * dip)744 pcie_uninit(dev_info_t *dip)
745 {
746 int ret = DDI_SUCCESS;
747
748 if (pcie_ari_is_enabled(dip) == PCIE_ARI_FORW_ENABLED)
749 (void) pcie_ari_disable(dip);
750
751 if ((ret = pcie_hp_uninit(dip)) != DDI_SUCCESS) {
752 PCIE_DBG("Failed to uninitialize hotplug for %s%d\n",
753 ddi_driver_name(dip), ddi_get_instance(dip));
754
755 return (ret);
756 }
757
758 if (pcie_link_bw_supported(dip)) {
759 (void) pcie_link_bw_disable(dip);
760 }
761
762 ddi_remove_minor_node(dip, "devctl");
763
764 return (ret);
765 }
766
767 /*
768 * PCIe module interface for enabling hotplug interrupt.
769 *
770 * It should be called after pcie_init() is done and bus driver's
771 * interrupt handlers have being attached.
772 */
773 int
pcie_hpintr_enable(dev_info_t * dip)774 pcie_hpintr_enable(dev_info_t *dip)
775 {
776 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
777 pcie_hp_ctrl_t *ctrl_p = PCIE_GET_HP_CTRL(dip);
778
779 if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
780 (void) (ctrl_p->hc_ops.enable_hpc_intr)(ctrl_p);
781 } else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
782 (void) pcishpc_enable_irqs(ctrl_p);
783 }
784 return (DDI_SUCCESS);
785 }
786
787 /*
788 * PCIe module interface for disabling hotplug interrupt.
789 *
790 * It should be called before pcie_uninit() is called and bus driver's
791 * interrupt handlers is dettached.
792 */
793 int
pcie_hpintr_disable(dev_info_t * dip)794 pcie_hpintr_disable(dev_info_t *dip)
795 {
796 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
797 pcie_hp_ctrl_t *ctrl_p = PCIE_GET_HP_CTRL(dip);
798
799 if (PCIE_IS_PCIE_HOTPLUG_ENABLED(bus_p)) {
800 (void) (ctrl_p->hc_ops.disable_hpc_intr)(ctrl_p);
801 } else if (PCIE_IS_PCI_HOTPLUG_ENABLED(bus_p)) {
802 (void) pcishpc_disable_irqs(ctrl_p);
803 }
804 return (DDI_SUCCESS);
805 }
806
807 /* ARGSUSED */
808 int
pcie_intr(dev_info_t * dip)809 pcie_intr(dev_info_t *dip)
810 {
811 int hp, lbw;
812
813 hp = pcie_hp_intr(dip);
814 lbw = pcie_link_bw_intr(dip);
815
816 if (hp == DDI_INTR_CLAIMED || lbw == DDI_INTR_CLAIMED) {
817 return (DDI_INTR_CLAIMED);
818 }
819
820 return (DDI_INTR_UNCLAIMED);
821 }
822
823 /* ARGSUSED */
824 int
pcie_open(dev_info_t * dip,dev_t * devp,int flags,int otyp,cred_t * credp)825 pcie_open(dev_info_t *dip, dev_t *devp, int flags, int otyp, cred_t *credp)
826 {
827 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
828
829 /*
830 * Make sure the open is for the right file type.
831 */
832 if (otyp != OTYP_CHR)
833 return (EINVAL);
834
835 /*
836 * Handle the open by tracking the device state.
837 */
838 if ((bus_p->bus_soft_state == PCI_SOFT_STATE_OPEN_EXCL) ||
839 ((flags & FEXCL) &&
840 (bus_p->bus_soft_state != PCI_SOFT_STATE_CLOSED))) {
841 return (EBUSY);
842 }
843
844 if (flags & FEXCL)
845 bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN_EXCL;
846 else
847 bus_p->bus_soft_state = PCI_SOFT_STATE_OPEN;
848
849 return (0);
850 }
851
852 /* ARGSUSED */
853 int
pcie_close(dev_info_t * dip,dev_t dev,int flags,int otyp,cred_t * credp)854 pcie_close(dev_info_t *dip, dev_t dev, int flags, int otyp, cred_t *credp)
855 {
856 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
857
858 if (otyp != OTYP_CHR)
859 return (EINVAL);
860
861 bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
862
863 return (0);
864 }
865
866 /* ARGSUSED */
867 int
pcie_ioctl(dev_info_t * dip,dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)868 pcie_ioctl(dev_info_t *dip, dev_t dev, int cmd, intptr_t arg, int mode,
869 cred_t *credp, int *rvalp)
870 {
871 struct devctl_iocdata *dcp;
872 uint_t bus_state;
873 int rv = DDI_SUCCESS;
874
875 /*
876 * We can use the generic implementation for devctl ioctl
877 */
878 switch (cmd) {
879 case DEVCTL_DEVICE_GETSTATE:
880 case DEVCTL_DEVICE_ONLINE:
881 case DEVCTL_DEVICE_OFFLINE:
882 case DEVCTL_BUS_GETSTATE:
883 return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0));
884 default:
885 break;
886 }
887
888 /*
889 * read devctl ioctl data
890 */
891 if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
892 return (EFAULT);
893
894 switch (cmd) {
895 case DEVCTL_BUS_QUIESCE:
896 if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
897 if (bus_state == BUS_QUIESCED)
898 break;
899 (void) ndi_set_bus_state(dip, BUS_QUIESCED);
900 break;
901 case DEVCTL_BUS_UNQUIESCE:
902 if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS)
903 if (bus_state == BUS_ACTIVE)
904 break;
905 (void) ndi_set_bus_state(dip, BUS_ACTIVE);
906 break;
907 case DEVCTL_BUS_RESET:
908 case DEVCTL_BUS_RESETALL:
909 case DEVCTL_DEVICE_RESET:
910 rv = ENOTSUP;
911 break;
912 default:
913 rv = ENOTTY;
914 }
915
916 ndi_dc_freehdl(dcp);
917 return (rv);
918 }
919
920 /* ARGSUSED */
921 int
pcie_prop_op(dev_t dev,dev_info_t * dip,ddi_prop_op_t prop_op,int flags,char * name,caddr_t valuep,int * lengthp)922 pcie_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
923 int flags, char *name, caddr_t valuep, int *lengthp)
924 {
925 if (dev == DDI_DEV_T_ANY)
926 goto skip;
927
928 if (PCIE_IS_HOTPLUG_CAPABLE(dip) &&
929 strcmp(name, "pci-occupant") == 0) {
930 int pci_dev = PCI_MINOR_NUM_TO_PCI_DEVNUM(getminor(dev));
931
932 pcie_hp_create_occupant_props(dip, dev, pci_dev);
933 }
934
935 skip:
936 return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
937 }
938
939 int
pcie_init_cfghdl(dev_info_t * cdip)940 pcie_init_cfghdl(dev_info_t *cdip)
941 {
942 pcie_bus_t *bus_p;
943 ddi_acc_handle_t eh = NULL;
944
945 bus_p = PCIE_DIP2BUS(cdip);
946 if (bus_p == NULL)
947 return (DDI_FAILURE);
948
949 /* Create an config access special to error handling */
950 if (pci_config_setup(cdip, &eh) != DDI_SUCCESS) {
951 cmn_err(CE_WARN, "Cannot setup config access"
952 " for BDF 0x%x\n", bus_p->bus_bdf);
953 return (DDI_FAILURE);
954 }
955
956 bus_p->bus_cfg_hdl = eh;
957 return (DDI_SUCCESS);
958 }
959
960 void
pcie_fini_cfghdl(dev_info_t * cdip)961 pcie_fini_cfghdl(dev_info_t *cdip)
962 {
963 pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip);
964
965 pci_config_teardown(&bus_p->bus_cfg_hdl);
966 }
967
968 void
pcie_determine_serial(dev_info_t * dip)969 pcie_determine_serial(dev_info_t *dip)
970 {
971 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
972 ddi_acc_handle_t h;
973 uint16_t cap;
974 uchar_t serial[8];
975 uint32_t low, high;
976
977 if (!PCIE_IS_PCIE(bus_p))
978 return;
979
980 h = bus_p->bus_cfg_hdl;
981
982 if ((PCI_CAP_LOCATE(h, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_SER), &cap)) ==
983 DDI_FAILURE)
984 return;
985
986 high = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_UPPER_DW);
987 low = PCI_XCAP_GET32(h, 0, cap, PCIE_SER_SID_LOWER_DW);
988
989 /*
990 * Here, we're trying to figure out if we had an invalid PCIe read. From
991 * looking at the contents of the value, it can be hard to tell the
992 * difference between a value that has all 1s correctly versus if we had
993 * an error. In this case, we only assume it's invalid if both register
994 * reads are invalid. We also only use 32-bit reads as we're not sure if
995 * all devices will support these as 64-bit reads, while we know that
996 * they'll support these as 32-bit reads.
997 */
998 if (high == PCI_EINVAL32 && low == PCI_EINVAL32)
999 return;
1000
1001 serial[0] = low & 0xff;
1002 serial[1] = (low >> 8) & 0xff;
1003 serial[2] = (low >> 16) & 0xff;
1004 serial[3] = (low >> 24) & 0xff;
1005 serial[4] = high & 0xff;
1006 serial[5] = (high >> 8) & 0xff;
1007 serial[6] = (high >> 16) & 0xff;
1008 serial[7] = (high >> 24) & 0xff;
1009
1010 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, "pcie-serial",
1011 serial, sizeof (serial));
1012 }
1013
1014 static void
pcie_determine_aspm(dev_info_t * dip)1015 pcie_determine_aspm(dev_info_t *dip)
1016 {
1017 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
1018 uint32_t linkcap;
1019 uint16_t linkctl;
1020
1021 if (!PCIE_IS_PCIE(bus_p))
1022 return;
1023
1024 linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1025 linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
1026
1027 switch (linkcap & PCIE_LINKCAP_ASPM_SUP_MASK) {
1028 case PCIE_LINKCAP_ASPM_SUP_L0S:
1029 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1030 "pcie-aspm-support", "l0s");
1031 break;
1032 case PCIE_LINKCAP_ASPM_SUP_L1:
1033 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1034 "pcie-aspm-support", "l1");
1035 break;
1036 case PCIE_LINKCAP_ASPM_SUP_L0S_L1:
1037 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1038 "pcie-aspm-support", "l0s,l1");
1039 break;
1040 default:
1041 return;
1042 }
1043
1044 switch (linkctl & PCIE_LINKCTL_ASPM_CTL_MASK) {
1045 case PCIE_LINKCTL_ASPM_CTL_DIS:
1046 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1047 "pcie-aspm-state", "disabled");
1048 break;
1049 case PCIE_LINKCTL_ASPM_CTL_L0S:
1050 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1051 "pcie-aspm-state", "l0s");
1052 break;
1053 case PCIE_LINKCTL_ASPM_CTL_L1:
1054 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1055 "pcie-aspm-state", "l1");
1056 break;
1057 case PCIE_LINKCTL_ASPM_CTL_L0S_L1:
1058 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1059 "pcie-aspm-state", "l0s,l1");
1060 break;
1061 }
1062 }
1063
1064 /*
1065 * PCI-Express child device initialization. Note, this only will be called on a
1066 * device or function if we actually attach a device driver to it.
1067 *
1068 * This function enables generic pci-express interrupts and error handling.
1069 * Note, tagging, the max packet size, and related are all set up before this
1070 * point and is performed in pcie_fabric_setup().
1071 *
1072 * @param pdip root dip (root nexus's dip)
1073 * @param cdip child's dip (device's dip)
1074 * @return DDI_SUCCESS or DDI_FAILURE
1075 */
1076 /* ARGSUSED */
1077 int
pcie_initchild(dev_info_t * cdip)1078 pcie_initchild(dev_info_t *cdip)
1079 {
1080 uint16_t tmp16, reg16;
1081 pcie_bus_t *bus_p;
1082
1083 bus_p = PCIE_DIP2BUS(cdip);
1084 if (bus_p == NULL) {
1085 PCIE_DBG("%s: BUS not found.\n",
1086 ddi_driver_name(cdip));
1087
1088 return (DDI_FAILURE);
1089 }
1090
1091 if (pcie_init_cfghdl(cdip) != DDI_SUCCESS)
1092 return (DDI_FAILURE);
1093
1094 /* Clear the device's status register */
1095 reg16 = PCIE_GET(16, bus_p, PCI_CONF_STAT);
1096 PCIE_PUT(16, bus_p, PCI_CONF_STAT, reg16);
1097
1098 /* Setup the device's command register */
1099 reg16 = PCIE_GET(16, bus_p, PCI_CONF_COMM);
1100 tmp16 = (reg16 & pcie_command_default_fw) | pcie_command_default;
1101
1102 if (pcie_serr_disable_flag && PCIE_IS_PCIE(bus_p))
1103 tmp16 &= ~PCI_COMM_SERR_ENABLE;
1104
1105 PCIE_PUT(16, bus_p, PCI_CONF_COMM, tmp16);
1106 PCIE_DBG_CFG(cdip, bus_p, "COMMAND", 16, PCI_CONF_COMM, reg16);
1107
1108 /*
1109 * If the device has a bus control register then program it
1110 * based on the settings in the command register.
1111 */
1112 if (PCIE_IS_BDG(bus_p)) {
1113 /* Clear the device's secondary status register */
1114 reg16 = PCIE_GET(16, bus_p, PCI_BCNF_SEC_STATUS);
1115 PCIE_PUT(16, bus_p, PCI_BCNF_SEC_STATUS, reg16);
1116
1117 /* Setup the device's secondary command register */
1118 reg16 = PCIE_GET(16, bus_p, PCI_BCNF_BCNTRL);
1119 tmp16 = (reg16 & pcie_bdg_command_default_fw);
1120
1121 tmp16 |= PCI_BCNF_BCNTRL_SERR_ENABLE;
1122 /*
1123 * Workaround for this Nvidia bridge. Don't enable the SERR
1124 * enable bit in the bridge control register as it could lead to
1125 * bogus NMIs.
1126 */
1127 if (bus_p->bus_dev_ven_id == 0x037010DE)
1128 tmp16 &= ~PCI_BCNF_BCNTRL_SERR_ENABLE;
1129
1130 if (pcie_command_default & PCI_COMM_PARITY_DETECT)
1131 tmp16 |= PCI_BCNF_BCNTRL_PARITY_ENABLE;
1132
1133 /*
1134 * Enable Master Abort Mode only if URs have not been masked.
1135 * For PCI and PCIe-PCI bridges, enabling this bit causes a
1136 * Master Aborts/UR to be forwarded as a UR/TA or SERR. If this
1137 * bit is masked, posted requests are dropped and non-posted
1138 * requests are returned with -1.
1139 */
1140 if (pcie_aer_uce_mask & PCIE_AER_UCE_UR)
1141 tmp16 &= ~PCI_BCNF_BCNTRL_MAST_AB_MODE;
1142 else
1143 tmp16 |= PCI_BCNF_BCNTRL_MAST_AB_MODE;
1144 PCIE_PUT(16, bus_p, PCI_BCNF_BCNTRL, tmp16);
1145 PCIE_DBG_CFG(cdip, bus_p, "SEC CMD", 16, PCI_BCNF_BCNTRL,
1146 reg16);
1147 }
1148
1149 if (PCIE_IS_PCIE(bus_p)) {
1150 /*
1151 * Get the device control register into an initial state that
1152 * makes sense. The maximum payload, tagging, and related will
1153 * be dealt with in pcie_fabric_setup().
1154 */
1155 reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
1156 tmp16 = (reg16 & pcie_devctl_default_mask) |
1157 (pcie_devctl_default & ~pcie_devctl_default_mask);
1158 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
1159 PCIE_DBG_CAP(cdip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
1160
1161 /* Enable PCIe errors */
1162 pcie_enable_errors(cdip);
1163
1164 pcie_determine_serial(cdip);
1165
1166 pcie_determine_aspm(cdip);
1167
1168 pcie_capture_speeds(cdip);
1169 }
1170
1171 bus_p->bus_ari = B_FALSE;
1172 if ((pcie_ari_is_enabled(ddi_get_parent(cdip))
1173 == PCIE_ARI_FORW_ENABLED) && (pcie_ari_device(cdip)
1174 == PCIE_ARI_DEVICE)) {
1175 bus_p->bus_ari = B_TRUE;
1176 }
1177
1178 return (DDI_SUCCESS);
1179 }
1180
1181 static void
pcie_init_pfd(dev_info_t * dip)1182 pcie_init_pfd(dev_info_t *dip)
1183 {
1184 pf_data_t *pfd_p = PCIE_ZALLOC(pf_data_t);
1185 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
1186
1187 PCIE_DIP2PFD(dip) = pfd_p;
1188
1189 pfd_p->pe_bus_p = bus_p;
1190 pfd_p->pe_severity_flags = 0;
1191 pfd_p->pe_severity_mask = 0;
1192 pfd_p->pe_orig_severity_flags = 0;
1193 pfd_p->pe_lock = B_FALSE;
1194 pfd_p->pe_valid = B_FALSE;
1195
1196 /* Allocate the root fault struct for both RC and RP */
1197 if (PCIE_IS_ROOT(bus_p)) {
1198 PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1199 PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1200 PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1201 }
1202
1203 PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1204 PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1205 PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1206
1207 if (PCIE_IS_BDG(bus_p))
1208 PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1209
1210 if (PCIE_IS_PCIE(bus_p)) {
1211 PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1212
1213 if (PCIE_IS_RP(bus_p))
1214 PCIE_RP_REG(pfd_p) =
1215 PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1216
1217 PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1218 PCIE_ADV_REG(pfd_p)->pcie_ue_tgt_bdf = PCIE_INVALID_BDF;
1219
1220 if (PCIE_IS_RP(bus_p)) {
1221 PCIE_ADV_RP_REG(pfd_p) =
1222 PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1223 PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id =
1224 PCIE_INVALID_BDF;
1225 PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id =
1226 PCIE_INVALID_BDF;
1227 } else if (PCIE_IS_PCIE_BDG(bus_p)) {
1228 PCIE_ADV_BDG_REG(pfd_p) =
1229 PCIE_ZALLOC(pf_pcie_adv_bdg_err_regs_t);
1230 PCIE_ADV_BDG_REG(pfd_p)->pcie_sue_tgt_bdf =
1231 PCIE_INVALID_BDF;
1232 }
1233
1234 if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1235 PCIX_BDG_ERR_REG(pfd_p) =
1236 PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1237
1238 if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1239 PCIX_BDG_ECC_REG(pfd_p, 0) =
1240 PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1241 PCIX_BDG_ECC_REG(pfd_p, 1) =
1242 PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1243 }
1244 }
1245
1246 PCIE_SLOT_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_slot_regs_t);
1247 PCIE_SLOT_REG(pfd_p)->pcie_slot_regs_valid = B_FALSE;
1248 PCIE_SLOT_REG(pfd_p)->pcie_slot_cap = 0;
1249 PCIE_SLOT_REG(pfd_p)->pcie_slot_control = 0;
1250 PCIE_SLOT_REG(pfd_p)->pcie_slot_status = 0;
1251
1252 } else if (PCIE_IS_PCIX(bus_p)) {
1253 if (PCIE_IS_BDG(bus_p)) {
1254 PCIX_BDG_ERR_REG(pfd_p) =
1255 PCIE_ZALLOC(pf_pcix_bdg_err_regs_t);
1256
1257 if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1258 PCIX_BDG_ECC_REG(pfd_p, 0) =
1259 PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1260 PCIX_BDG_ECC_REG(pfd_p, 1) =
1261 PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1262 }
1263 } else {
1264 PCIX_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcix_err_regs_t);
1265
1266 if (PCIX_ECC_VERSION_CHECK(bus_p))
1267 PCIX_ECC_REG(pfd_p) =
1268 PCIE_ZALLOC(pf_pcix_ecc_regs_t);
1269 }
1270 }
1271 }
1272
1273 static void
pcie_fini_pfd(dev_info_t * dip)1274 pcie_fini_pfd(dev_info_t *dip)
1275 {
1276 pf_data_t *pfd_p = PCIE_DIP2PFD(dip);
1277 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
1278
1279 if (PCIE_IS_PCIE(bus_p)) {
1280 if (PCIE_IS_PCIE_BDG(bus_p) && PCIE_IS_PCIX(bus_p)) {
1281 if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1282 kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1283 sizeof (pf_pcix_ecc_regs_t));
1284 kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1285 sizeof (pf_pcix_ecc_regs_t));
1286 }
1287
1288 kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1289 sizeof (pf_pcix_bdg_err_regs_t));
1290 }
1291
1292 if (PCIE_IS_RP(bus_p))
1293 kmem_free(PCIE_ADV_RP_REG(pfd_p),
1294 sizeof (pf_pcie_adv_rp_err_regs_t));
1295 else if (PCIE_IS_PCIE_BDG(bus_p))
1296 kmem_free(PCIE_ADV_BDG_REG(pfd_p),
1297 sizeof (pf_pcie_adv_bdg_err_regs_t));
1298
1299 kmem_free(PCIE_ADV_REG(pfd_p),
1300 sizeof (pf_pcie_adv_err_regs_t));
1301
1302 if (PCIE_IS_RP(bus_p))
1303 kmem_free(PCIE_RP_REG(pfd_p),
1304 sizeof (pf_pcie_rp_err_regs_t));
1305
1306 kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1307 } else if (PCIE_IS_PCIX(bus_p)) {
1308 if (PCIE_IS_BDG(bus_p)) {
1309 if (PCIX_ECC_VERSION_CHECK(bus_p)) {
1310 kmem_free(PCIX_BDG_ECC_REG(pfd_p, 0),
1311 sizeof (pf_pcix_ecc_regs_t));
1312 kmem_free(PCIX_BDG_ECC_REG(pfd_p, 1),
1313 sizeof (pf_pcix_ecc_regs_t));
1314 }
1315
1316 kmem_free(PCIX_BDG_ERR_REG(pfd_p),
1317 sizeof (pf_pcix_bdg_err_regs_t));
1318 } else {
1319 if (PCIX_ECC_VERSION_CHECK(bus_p))
1320 kmem_free(PCIX_ECC_REG(pfd_p),
1321 sizeof (pf_pcix_ecc_regs_t));
1322
1323 kmem_free(PCIX_ERR_REG(pfd_p),
1324 sizeof (pf_pcix_err_regs_t));
1325 }
1326 }
1327
1328 if (PCIE_IS_BDG(bus_p))
1329 kmem_free(PCI_BDG_ERR_REG(pfd_p),
1330 sizeof (pf_pci_bdg_err_regs_t));
1331
1332 kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1333 kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1334
1335 if (PCIE_IS_ROOT(bus_p)) {
1336 kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1337 kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1338 }
1339
1340 kmem_free(PCIE_DIP2PFD(dip), sizeof (pf_data_t));
1341
1342 PCIE_DIP2PFD(dip) = NULL;
1343 }
1344
1345
1346 /*
1347 * Special functions to allocate pf_data_t's for PCIe root complexes.
1348 * Note: Root Complex not Root Port
1349 */
1350 void
pcie_rc_init_pfd(dev_info_t * dip,pf_data_t * pfd_p)1351 pcie_rc_init_pfd(dev_info_t *dip, pf_data_t *pfd_p)
1352 {
1353 pfd_p->pe_bus_p = PCIE_DIP2DOWNBUS(dip);
1354 pfd_p->pe_severity_flags = 0;
1355 pfd_p->pe_severity_mask = 0;
1356 pfd_p->pe_orig_severity_flags = 0;
1357 pfd_p->pe_lock = B_FALSE;
1358 pfd_p->pe_valid = B_FALSE;
1359
1360 PCIE_ROOT_FAULT(pfd_p) = PCIE_ZALLOC(pf_root_fault_t);
1361 PCIE_ROOT_FAULT(pfd_p)->scan_bdf = PCIE_INVALID_BDF;
1362 PCIE_ROOT_EH_SRC(pfd_p) = PCIE_ZALLOC(pf_root_eh_src_t);
1363 PCI_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_err_regs_t);
1364 PFD_AFFECTED_DEV(pfd_p) = PCIE_ZALLOC(pf_affected_dev_t);
1365 PFD_AFFECTED_DEV(pfd_p)->pe_affected_bdf = PCIE_INVALID_BDF;
1366 PCI_BDG_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pci_bdg_err_regs_t);
1367 PCIE_ERR_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_err_regs_t);
1368 PCIE_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_rp_err_regs_t);
1369 PCIE_ADV_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_err_regs_t);
1370 PCIE_ADV_RP_REG(pfd_p) = PCIE_ZALLOC(pf_pcie_adv_rp_err_regs_t);
1371 PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ce_src_id = PCIE_INVALID_BDF;
1372 PCIE_ADV_RP_REG(pfd_p)->pcie_rp_ue_src_id = PCIE_INVALID_BDF;
1373
1374 PCIE_ADV_REG(pfd_p)->pcie_ue_sev = pcie_aer_uce_severity;
1375 }
1376
1377 void
pcie_rc_fini_pfd(pf_data_t * pfd_p)1378 pcie_rc_fini_pfd(pf_data_t *pfd_p)
1379 {
1380 kmem_free(PCIE_ADV_RP_REG(pfd_p), sizeof (pf_pcie_adv_rp_err_regs_t));
1381 kmem_free(PCIE_ADV_REG(pfd_p), sizeof (pf_pcie_adv_err_regs_t));
1382 kmem_free(PCIE_RP_REG(pfd_p), sizeof (pf_pcie_rp_err_regs_t));
1383 kmem_free(PCIE_ERR_REG(pfd_p), sizeof (pf_pcie_err_regs_t));
1384 kmem_free(PCI_BDG_ERR_REG(pfd_p), sizeof (pf_pci_bdg_err_regs_t));
1385 kmem_free(PFD_AFFECTED_DEV(pfd_p), sizeof (pf_affected_dev_t));
1386 kmem_free(PCI_ERR_REG(pfd_p), sizeof (pf_pci_err_regs_t));
1387 kmem_free(PCIE_ROOT_FAULT(pfd_p), sizeof (pf_root_fault_t));
1388 kmem_free(PCIE_ROOT_EH_SRC(pfd_p), sizeof (pf_root_eh_src_t));
1389 }
1390
1391 /*
1392 * init pcie_bus_t for root complex
1393 *
1394 * Only a few of the fields in bus_t is valid for root complex.
1395 * The fields that are bracketed are initialized in this routine:
1396 *
1397 * dev_info_t * <bus_dip>
1398 * dev_info_t * bus_rp_dip
1399 * ddi_acc_handle_t bus_cfg_hdl
1400 * uint_t <bus_fm_flags>
1401 * pcie_req_id_t bus_bdf
1402 * pcie_req_id_t bus_rp_bdf
1403 * uint32_t bus_dev_ven_id
1404 * uint8_t bus_rev_id
1405 * uint8_t <bus_hdr_type>
1406 * uint16_t <bus_dev_type>
1407 * uint8_t bus_bdg_secbus
1408 * uint16_t bus_pcie_off
1409 * uint16_t <bus_aer_off>
1410 * uint16_t bus_pcix_off
1411 * uint16_t bus_ecc_ver
1412 * pci_bus_range_t bus_bus_range
1413 * ppb_ranges_t * bus_addr_ranges
1414 * int bus_addr_entries
1415 * pci_regspec_t * bus_assigned_addr
1416 * int bus_assigned_entries
1417 * pf_data_t * bus_pfd
1418 * pcie_domain_t * <bus_dom>
1419 * int bus_mps
1420 * uint64_t bus_cfgacc_base
1421 * void * bus_plat_private
1422 */
1423 void
pcie_rc_init_bus(dev_info_t * dip)1424 pcie_rc_init_bus(dev_info_t *dip)
1425 {
1426 pcie_bus_t *bus_p;
1427
1428 bus_p = (pcie_bus_t *)kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1429 bus_p->bus_dip = dip;
1430 bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_RC_PSEUDO;
1431 bus_p->bus_hdr_type = PCI_HEADER_ONE;
1432
1433 /* Fake that there are AER logs */
1434 bus_p->bus_aer_off = (uint16_t)-1;
1435
1436 /* Needed only for handle lookup */
1437 atomic_or_uint(&bus_p->bus_fm_flags, PF_FM_READY);
1438
1439 ndi_set_bus_private(dip, B_FALSE, DEVI_PORT_TYPE_PCI, bus_p);
1440
1441 PCIE_BUS2DOM(bus_p) = PCIE_ZALLOC(pcie_domain_t);
1442 }
1443
1444 void
pcie_rc_fini_bus(dev_info_t * dip)1445 pcie_rc_fini_bus(dev_info_t *dip)
1446 {
1447 pcie_bus_t *bus_p = PCIE_DIP2DOWNBUS(dip);
1448 ndi_set_bus_private(dip, B_FALSE, 0, NULL);
1449 kmem_free(PCIE_BUS2DOM(bus_p), sizeof (pcie_domain_t));
1450 kmem_free(bus_p, sizeof (pcie_bus_t));
1451 }
1452
1453 static int
pcie_width_to_int(pcie_link_width_t width)1454 pcie_width_to_int(pcie_link_width_t width)
1455 {
1456 switch (width) {
1457 case PCIE_LINK_WIDTH_X1:
1458 return (1);
1459 case PCIE_LINK_WIDTH_X2:
1460 return (2);
1461 case PCIE_LINK_WIDTH_X4:
1462 return (4);
1463 case PCIE_LINK_WIDTH_X8:
1464 return (8);
1465 case PCIE_LINK_WIDTH_X12:
1466 return (12);
1467 case PCIE_LINK_WIDTH_X16:
1468 return (16);
1469 case PCIE_LINK_WIDTH_X32:
1470 return (32);
1471 default:
1472 return (0);
1473 }
1474 }
1475
1476 /*
1477 * Return the speed in Transfers / second. This is a signed quantity to match
1478 * the ndi/ddi property interfaces.
1479 */
1480 static int64_t
pcie_speed_to_int(pcie_link_speed_t speed)1481 pcie_speed_to_int(pcie_link_speed_t speed)
1482 {
1483 switch (speed) {
1484 case PCIE_LINK_SPEED_2_5:
1485 return (2500000000LL);
1486 case PCIE_LINK_SPEED_5:
1487 return (5000000000LL);
1488 case PCIE_LINK_SPEED_8:
1489 return (8000000000LL);
1490 case PCIE_LINK_SPEED_16:
1491 return (16000000000LL);
1492 case PCIE_LINK_SPEED_32:
1493 return (32000000000LL);
1494 case PCIE_LINK_SPEED_64:
1495 return (64000000000LL);
1496 default:
1497 return (0);
1498 }
1499 }
1500
1501 /*
1502 * Translate the recorded speed information into devinfo properties.
1503 */
1504 static void
pcie_speeds_to_devinfo(dev_info_t * dip,pcie_bus_t * bus_p)1505 pcie_speeds_to_devinfo(dev_info_t *dip, pcie_bus_t *bus_p)
1506 {
1507 if (bus_p->bus_max_width != PCIE_LINK_WIDTH_UNKNOWN) {
1508 (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1509 "pcie-link-maximum-width",
1510 pcie_width_to_int(bus_p->bus_max_width));
1511 }
1512
1513 if (bus_p->bus_cur_width != PCIE_LINK_WIDTH_UNKNOWN) {
1514 (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
1515 "pcie-link-current-width",
1516 pcie_width_to_int(bus_p->bus_cur_width));
1517 }
1518
1519 if (bus_p->bus_cur_speed != PCIE_LINK_SPEED_UNKNOWN) {
1520 (void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1521 "pcie-link-current-speed",
1522 pcie_speed_to_int(bus_p->bus_cur_speed));
1523 }
1524
1525 if (bus_p->bus_max_speed != PCIE_LINK_SPEED_UNKNOWN) {
1526 (void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1527 "pcie-link-maximum-speed",
1528 pcie_speed_to_int(bus_p->bus_max_speed));
1529 }
1530
1531 if (bus_p->bus_target_speed != PCIE_LINK_SPEED_UNKNOWN) {
1532 (void) ndi_prop_update_int64(DDI_DEV_T_NONE, dip,
1533 "pcie-link-target-speed",
1534 pcie_speed_to_int(bus_p->bus_target_speed));
1535 }
1536
1537 if ((bus_p->bus_speed_flags & PCIE_LINK_F_ADMIN_TARGET) != 0) {
1538 (void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
1539 "pcie-link-admin-target-speed");
1540 }
1541
1542 if (bus_p->bus_sup_speed != PCIE_LINK_SPEED_UNKNOWN) {
1543 int64_t speeds[PCIE_NSPEEDS];
1544 uint_t nspeeds = 0;
1545
1546 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_2_5) {
1547 speeds[nspeeds++] =
1548 pcie_speed_to_int(PCIE_LINK_SPEED_2_5);
1549 }
1550
1551 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_5) {
1552 speeds[nspeeds++] =
1553 pcie_speed_to_int(PCIE_LINK_SPEED_5);
1554 }
1555
1556 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_8) {
1557 speeds[nspeeds++] =
1558 pcie_speed_to_int(PCIE_LINK_SPEED_8);
1559 }
1560
1561 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_16) {
1562 speeds[nspeeds++] =
1563 pcie_speed_to_int(PCIE_LINK_SPEED_16);
1564 }
1565
1566 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_32) {
1567 speeds[nspeeds++] =
1568 pcie_speed_to_int(PCIE_LINK_SPEED_32);
1569 }
1570
1571 if (bus_p->bus_sup_speed & PCIE_LINK_SPEED_64) {
1572 speeds[nspeeds++] =
1573 pcie_speed_to_int(PCIE_LINK_SPEED_64);
1574 }
1575
1576 (void) ndi_prop_update_int64_array(DDI_DEV_T_NONE, dip,
1577 "pcie-link-supported-speeds", speeds, nspeeds);
1578 }
1579 }
1580
1581 /*
1582 * We need to capture the supported, maximum, and current device speed and
1583 * width. The way that this has been done has changed over time.
1584 *
1585 * Prior to PCIe Gen 3, there were only current and supported speed fields.
1586 * These were found in the link status and link capabilities registers of the
1587 * PCI express capability. With the change to PCIe Gen 3, the information in the
1588 * link capabilities changed to the maximum value. The supported speeds vector
1589 * was moved to the link capabilities 2 register.
1590 *
1591 * Now, a device may not implement some of these registers. To determine whether
1592 * or not it's here, we have to do the following. First, we need to check the
1593 * revision of the PCI express capability. The link capabilities 2 register did
1594 * not exist prior to version 2 of this capability. If a modern device does not
1595 * implement it, it is supposed to return zero for the register.
1596 *
1597 * Finally, we have to check whether or not the device supports the data link
1598 * layer link active reporting capability. If it doesn't, there's only so much
1599 * we can do here.
1600 */
1601 static void
pcie_capture_speeds(dev_info_t * dip)1602 pcie_capture_speeds(dev_info_t *dip)
1603 {
1604 uint16_t vers, status;
1605 uint32_t cap, cap2, ctl2;
1606 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
1607 dev_info_t *rcdip;
1608
1609 if (!PCIE_IS_PCIE(bus_p))
1610 return;
1611
1612 rcdip = pcie_get_rc_dip(dip);
1613 if (bus_p->bus_cfg_hdl == NULL) {
1614 vers = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1615 bus_p->bus_pcie_off + PCIE_PCIECAP);
1616 } else {
1617 vers = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
1618 }
1619 if (vers == PCI_EINVAL16)
1620 return;
1621 vers &= PCIE_PCIECAP_VER_MASK;
1622
1623 /*
1624 * Verify the capability's version.
1625 */
1626 switch (vers) {
1627 case PCIE_PCIECAP_VER_1_0:
1628 cap2 = 0;
1629 ctl2 = 0;
1630 break;
1631 case PCIE_PCIECAP_VER_2_0:
1632 if (bus_p->bus_cfg_hdl == NULL) {
1633 cap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1634 bus_p->bus_pcie_off + PCIE_LINKCAP2);
1635 ctl2 = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1636 bus_p->bus_pcie_off + PCIE_LINKCTL2);
1637 } else {
1638 cap2 = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP2);
1639 ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
1640 }
1641 if (cap2 == PCI_EINVAL32)
1642 cap2 = 0;
1643 if (ctl2 == PCI_EINVAL16)
1644 ctl2 = 0;
1645 break;
1646 default:
1647 /* Don't try and handle an unknown version */
1648 return;
1649 }
1650
1651 if (bus_p->bus_cfg_hdl == NULL) {
1652 status = pci_cfgacc_get16(rcdip, bus_p->bus_bdf,
1653 bus_p->bus_pcie_off + PCIE_LINKSTS);
1654 cap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
1655 bus_p->bus_pcie_off + PCIE_LINKCAP);
1656 } else {
1657 status = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
1658 cap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
1659 }
1660 if (status == PCI_EINVAL16 || cap == PCI_EINVAL32)
1661 return;
1662
1663 mutex_enter(&bus_p->bus_speed_mutex);
1664
1665 switch (status & PCIE_LINKSTS_SPEED_MASK) {
1666 case PCIE_LINKSTS_SPEED_2_5:
1667 bus_p->bus_cur_speed = PCIE_LINK_SPEED_2_5;
1668 break;
1669 case PCIE_LINKSTS_SPEED_5:
1670 bus_p->bus_cur_speed = PCIE_LINK_SPEED_5;
1671 break;
1672 case PCIE_LINKSTS_SPEED_8:
1673 bus_p->bus_cur_speed = PCIE_LINK_SPEED_8;
1674 break;
1675 case PCIE_LINKSTS_SPEED_16:
1676 bus_p->bus_cur_speed = PCIE_LINK_SPEED_16;
1677 break;
1678 case PCIE_LINKSTS_SPEED_32:
1679 bus_p->bus_cur_speed = PCIE_LINK_SPEED_32;
1680 break;
1681 case PCIE_LINKSTS_SPEED_64:
1682 bus_p->bus_cur_speed = PCIE_LINK_SPEED_64;
1683 break;
1684 default:
1685 bus_p->bus_cur_speed = PCIE_LINK_SPEED_UNKNOWN;
1686 break;
1687 }
1688
1689 switch (status & PCIE_LINKSTS_NEG_WIDTH_MASK) {
1690 case PCIE_LINKSTS_NEG_WIDTH_X1:
1691 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X1;
1692 break;
1693 case PCIE_LINKSTS_NEG_WIDTH_X2:
1694 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X2;
1695 break;
1696 case PCIE_LINKSTS_NEG_WIDTH_X4:
1697 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X4;
1698 break;
1699 case PCIE_LINKSTS_NEG_WIDTH_X8:
1700 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X8;
1701 break;
1702 case PCIE_LINKSTS_NEG_WIDTH_X12:
1703 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X12;
1704 break;
1705 case PCIE_LINKSTS_NEG_WIDTH_X16:
1706 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X16;
1707 break;
1708 case PCIE_LINKSTS_NEG_WIDTH_X32:
1709 bus_p->bus_cur_width = PCIE_LINK_WIDTH_X32;
1710 break;
1711 default:
1712 bus_p->bus_cur_width = PCIE_LINK_WIDTH_UNKNOWN;
1713 break;
1714 }
1715
1716 /*
1717 * If the link is not known to be up, denote that and invalidate the
1718 * current link speed and width. If we can't know that then there's not
1719 * a whole lot that we can do.
1720 */
1721 if ((cap & PCIE_LINKCAP_DLL_ACTIVE_REP_CAPABLE) != 0 &&
1722 (status & PCIE_LINKSTS_DLL_LINK_ACTIVE) == 0) {
1723 bus_p->bus_cur_width = PCIE_LINK_WIDTH_UNKNOWN;
1724 bus_p->bus_cur_speed = PCIE_LINK_SPEED_UNKNOWN;
1725 }
1726
1727 switch (cap & PCIE_LINKCAP_MAX_WIDTH_MASK) {
1728 case PCIE_LINKCAP_MAX_WIDTH_X1:
1729 bus_p->bus_max_width = PCIE_LINK_WIDTH_X1;
1730 break;
1731 case PCIE_LINKCAP_MAX_WIDTH_X2:
1732 bus_p->bus_max_width = PCIE_LINK_WIDTH_X2;
1733 break;
1734 case PCIE_LINKCAP_MAX_WIDTH_X4:
1735 bus_p->bus_max_width = PCIE_LINK_WIDTH_X4;
1736 break;
1737 case PCIE_LINKCAP_MAX_WIDTH_X8:
1738 bus_p->bus_max_width = PCIE_LINK_WIDTH_X8;
1739 break;
1740 case PCIE_LINKCAP_MAX_WIDTH_X12:
1741 bus_p->bus_max_width = PCIE_LINK_WIDTH_X12;
1742 break;
1743 case PCIE_LINKCAP_MAX_WIDTH_X16:
1744 bus_p->bus_max_width = PCIE_LINK_WIDTH_X16;
1745 break;
1746 case PCIE_LINKCAP_MAX_WIDTH_X32:
1747 bus_p->bus_max_width = PCIE_LINK_WIDTH_X32;
1748 break;
1749 default:
1750 bus_p->bus_max_width = PCIE_LINK_WIDTH_UNKNOWN;
1751 break;
1752 }
1753
1754 /*
1755 * If we have the Link Capabilities 2, then we can get the supported
1756 * speeds from it and treat the bits in Link Capabilities 1 as the
1757 * maximum. If we don't, then we need to follow the Implementation Note
1758 * in the standard under Link Capabilities 2. Effectively, this means
1759 * that if the value of 10b is set in Link Capabilities register, that
1760 * it supports both 2.5 and 5 GT/s speeds.
1761 */
1762 if (cap2 != 0) {
1763 if (cap2 & PCIE_LINKCAP2_SPEED_2_5)
1764 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_2_5;
1765 if (cap2 & PCIE_LINKCAP2_SPEED_5)
1766 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_5;
1767 if (cap2 & PCIE_LINKCAP2_SPEED_8)
1768 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_8;
1769 if (cap2 & PCIE_LINKCAP2_SPEED_16)
1770 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_16;
1771 if (cap2 & PCIE_LINKCAP2_SPEED_32)
1772 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_32;
1773 if (cap2 & PCIE_LINKCAP2_SPEED_64)
1774 bus_p->bus_sup_speed |= PCIE_LINK_SPEED_64;
1775
1776 switch (cap & PCIE_LINKCAP_MAX_SPEED_MASK) {
1777 case PCIE_LINKCAP_MAX_SPEED_2_5:
1778 bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1779 break;
1780 case PCIE_LINKCAP_MAX_SPEED_5:
1781 bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1782 break;
1783 case PCIE_LINKCAP_MAX_SPEED_8:
1784 bus_p->bus_max_speed = PCIE_LINK_SPEED_8;
1785 break;
1786 case PCIE_LINKCAP_MAX_SPEED_16:
1787 bus_p->bus_max_speed = PCIE_LINK_SPEED_16;
1788 break;
1789 case PCIE_LINKCAP_MAX_SPEED_32:
1790 bus_p->bus_max_speed = PCIE_LINK_SPEED_32;
1791 break;
1792 case PCIE_LINKCAP_MAX_SPEED_64:
1793 bus_p->bus_max_speed = PCIE_LINK_SPEED_64;
1794 break;
1795 default:
1796 bus_p->bus_max_speed = PCIE_LINK_SPEED_UNKNOWN;
1797 break;
1798 }
1799 } else {
1800 if (cap & PCIE_LINKCAP_MAX_SPEED_5) {
1801 bus_p->bus_max_speed = PCIE_LINK_SPEED_5;
1802 bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5 |
1803 PCIE_LINK_SPEED_5;
1804 } else if (cap & PCIE_LINKCAP_MAX_SPEED_2_5) {
1805 bus_p->bus_max_speed = PCIE_LINK_SPEED_2_5;
1806 bus_p->bus_sup_speed = PCIE_LINK_SPEED_2_5;
1807 }
1808 }
1809
1810 switch (ctl2 & PCIE_LINKCTL2_TARGET_SPEED_MASK) {
1811 case PCIE_LINKCTL2_TARGET_SPEED_2_5:
1812 bus_p->bus_target_speed = PCIE_LINK_SPEED_2_5;
1813 break;
1814 case PCIE_LINKCTL2_TARGET_SPEED_5:
1815 bus_p->bus_target_speed = PCIE_LINK_SPEED_5;
1816 break;
1817 case PCIE_LINKCTL2_TARGET_SPEED_8:
1818 bus_p->bus_target_speed = PCIE_LINK_SPEED_8;
1819 break;
1820 case PCIE_LINKCTL2_TARGET_SPEED_16:
1821 bus_p->bus_target_speed = PCIE_LINK_SPEED_16;
1822 break;
1823 case PCIE_LINKCTL2_TARGET_SPEED_32:
1824 bus_p->bus_target_speed = PCIE_LINK_SPEED_32;
1825 break;
1826 case PCIE_LINKCTL2_TARGET_SPEED_64:
1827 bus_p->bus_target_speed = PCIE_LINK_SPEED_64;
1828 break;
1829 default:
1830 bus_p->bus_target_speed = PCIE_LINK_SPEED_UNKNOWN;
1831 break;
1832 }
1833
1834 pcie_speeds_to_devinfo(dip, bus_p);
1835 mutex_exit(&bus_p->bus_speed_mutex);
1836 }
1837
1838 /*
1839 * partially init pcie_bus_t for device (dip,bdf) for accessing pci
1840 * config space
1841 *
1842 * This routine is invoked during boot, either after creating a devinfo node
1843 * (x86 case) or during px driver attach (sparc case); it is also invoked
1844 * in hotplug context after a devinfo node is created.
1845 *
1846 * The fields that are bracketed are initialized if flag PCIE_BUS_INITIAL
1847 * is set:
1848 *
1849 * dev_info_t * <bus_dip>
1850 * dev_info_t * <bus_rp_dip>
1851 * ddi_acc_handle_t bus_cfg_hdl
1852 * uint_t bus_fm_flags
1853 * pcie_req_id_t <bus_bdf>
1854 * pcie_req_id_t <bus_rp_bdf>
1855 * uint32_t <bus_dev_ven_id>
1856 * uint8_t <bus_rev_id>
1857 * uint8_t <bus_hdr_type>
1858 * uint16_t <bus_dev_type>
1859 * uint8_t <bus_bdg_secbus
1860 * uint16_t <bus_pcie_off>
1861 * uint16_t <bus_aer_off>
1862 * uint16_t <bus_pcix_off>
1863 * uint16_t <bus_ecc_ver>
1864 * pci_bus_range_t bus_bus_range
1865 * ppb_ranges_t * bus_addr_ranges
1866 * int bus_addr_entries
1867 * pci_regspec_t * bus_assigned_addr
1868 * int bus_assigned_entries
1869 * pf_data_t * bus_pfd
1870 * pcie_domain_t * bus_dom
1871 * int bus_mps
1872 * uint64_t bus_cfgacc_base
1873 * void * bus_plat_private
1874 *
1875 * The fields that are bracketed are initialized if flag PCIE_BUS_FINAL
1876 * is set:
1877 *
1878 * dev_info_t * bus_dip
1879 * dev_info_t * bus_rp_dip
1880 * ddi_acc_handle_t bus_cfg_hdl
1881 * uint_t bus_fm_flags
1882 * pcie_req_id_t bus_bdf
1883 * pcie_req_id_t bus_rp_bdf
1884 * uint32_t bus_dev_ven_id
1885 * uint8_t bus_rev_id
1886 * uint8_t bus_hdr_type
1887 * uint16_t bus_dev_type
1888 * uint8_t <bus_bdg_secbus>
1889 * uint16_t bus_pcie_off
1890 * uint16_t bus_aer_off
1891 * uint16_t bus_pcix_off
1892 * uint16_t bus_ecc_ver
1893 * pci_bus_range_t <bus_bus_range>
1894 * ppb_ranges_t * <bus_addr_ranges>
1895 * int <bus_addr_entries>
1896 * pci_regspec_t * <bus_assigned_addr>
1897 * int <bus_assigned_entries>
1898 * pf_data_t * <bus_pfd>
1899 * pcie_domain_t * bus_dom
1900 * int bus_mps
1901 * uint64_t bus_cfgacc_base
1902 * void * <bus_plat_private>
1903 */
1904
1905 pcie_bus_t *
pcie_init_bus(dev_info_t * dip,pcie_req_id_t bdf,uint8_t flags)1906 pcie_init_bus(dev_info_t *dip, pcie_req_id_t bdf, uint8_t flags)
1907 {
1908 uint16_t status, base, baseptr, num_cap;
1909 uint32_t capid;
1910 int range_size;
1911 pcie_bus_t *bus_p = NULL;
1912 dev_info_t *rcdip;
1913 dev_info_t *pdip;
1914 const char *errstr = NULL;
1915
1916 if (!(flags & PCIE_BUS_INITIAL))
1917 goto initial_done;
1918
1919 bus_p = kmem_zalloc(sizeof (pcie_bus_t), KM_SLEEP);
1920
1921 bus_p->bus_dip = dip;
1922 bus_p->bus_bdf = bdf;
1923
1924 rcdip = pcie_get_rc_dip(dip);
1925 ASSERT(rcdip != NULL);
1926
1927 /* Save the Vendor ID, Device ID and revision ID */
1928 bus_p->bus_dev_ven_id = pci_cfgacc_get32(rcdip, bdf, PCI_CONF_VENID);
1929 bus_p->bus_rev_id = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_REVID);
1930 /* Save the Header Type */
1931 bus_p->bus_hdr_type = pci_cfgacc_get8(rcdip, bdf, PCI_CONF_HEADER);
1932 bus_p->bus_hdr_type &= PCI_HEADER_TYPE_M;
1933
1934 /*
1935 * Figure out the device type and all the relavant capability offsets
1936 */
1937 /* set default value */
1938 bus_p->bus_dev_type = PCIE_PCIECAP_DEV_TYPE_PCI_PSEUDO;
1939
1940 status = pci_cfgacc_get16(rcdip, bdf, PCI_CONF_STAT);
1941 if (status == PCI_CAP_EINVAL16 || !(status & PCI_STAT_CAP))
1942 goto caps_done; /* capability not supported */
1943
1944 /* Relevant conventional capabilities first */
1945
1946 /* Conventional caps: PCI_CAP_ID_PCI_E, PCI_CAP_ID_PCIX */
1947 num_cap = 2;
1948
1949 switch (bus_p->bus_hdr_type) {
1950 case PCI_HEADER_ZERO:
1951 baseptr = PCI_CONF_CAP_PTR;
1952 break;
1953 case PCI_HEADER_PPB:
1954 baseptr = PCI_BCNF_CAP_PTR;
1955 break;
1956 case PCI_HEADER_CARDBUS:
1957 baseptr = PCI_CBUS_CAP_PTR;
1958 break;
1959 default:
1960 cmn_err(CE_WARN, "%s: unexpected pci header type:%x",
1961 __func__, bus_p->bus_hdr_type);
1962 goto caps_done;
1963 }
1964
1965 base = baseptr;
1966 for (base = pci_cfgacc_get8(rcdip, bdf, base); base && num_cap;
1967 base = pci_cfgacc_get8(rcdip, bdf, base + PCI_CAP_NEXT_PTR)) {
1968 capid = pci_cfgacc_get8(rcdip, bdf, base);
1969 uint16_t pcap;
1970
1971 switch (capid) {
1972 case PCI_CAP_ID_PCI_E:
1973 bus_p->bus_pcie_off = base;
1974 pcap = pci_cfgacc_get16(rcdip, bdf, base +
1975 PCIE_PCIECAP);
1976 bus_p->bus_dev_type = pcap & PCIE_PCIECAP_DEV_TYPE_MASK;
1977 bus_p->bus_pcie_vers = pcap & PCIE_PCIECAP_VER_MASK;
1978
1979 /* Check and save PCIe hotplug capability information */
1980 if ((PCIE_IS_RP(bus_p) || PCIE_IS_SWD(bus_p)) &&
1981 (pci_cfgacc_get16(rcdip, bdf, base + PCIE_PCIECAP)
1982 & PCIE_PCIECAP_SLOT_IMPL) &&
1983 (pci_cfgacc_get32(rcdip, bdf, base + PCIE_SLOTCAP)
1984 & PCIE_SLOTCAP_HP_CAPABLE))
1985 bus_p->bus_hp_sup_modes |= PCIE_NATIVE_HP_MODE;
1986
1987 num_cap--;
1988 break;
1989 case PCI_CAP_ID_PCIX:
1990 bus_p->bus_pcix_off = base;
1991 if (PCIE_IS_BDG(bus_p))
1992 bus_p->bus_ecc_ver =
1993 pci_cfgacc_get16(rcdip, bdf, base +
1994 PCI_PCIX_SEC_STATUS) & PCI_PCIX_VER_MASK;
1995 else
1996 bus_p->bus_ecc_ver =
1997 pci_cfgacc_get16(rcdip, bdf, base +
1998 PCI_PCIX_COMMAND) & PCI_PCIX_VER_MASK;
1999 num_cap--;
2000 break;
2001 default:
2002 break;
2003 }
2004 }
2005
2006 /* Check and save PCI hotplug (SHPC) capability information */
2007 if (PCIE_IS_BDG(bus_p)) {
2008 base = baseptr;
2009 for (base = pci_cfgacc_get8(rcdip, bdf, base);
2010 base; base = pci_cfgacc_get8(rcdip, bdf,
2011 base + PCI_CAP_NEXT_PTR)) {
2012 capid = pci_cfgacc_get8(rcdip, bdf, base);
2013 if (capid == PCI_CAP_ID_PCI_HOTPLUG) {
2014 bus_p->bus_pci_hp_off = base;
2015 bus_p->bus_hp_sup_modes |= PCIE_PCI_HP_MODE;
2016 break;
2017 }
2018 }
2019 }
2020
2021 /* Then, relevant extended capabilities */
2022
2023 if (!PCIE_IS_PCIE(bus_p))
2024 goto caps_done;
2025
2026 /* Extended caps: PCIE_EXT_CAP_ID_AER */
2027 for (base = PCIE_EXT_CAP; base; base = (capid >>
2028 PCIE_EXT_CAP_NEXT_PTR_SHIFT) & PCIE_EXT_CAP_NEXT_PTR_MASK) {
2029 capid = pci_cfgacc_get32(rcdip, bdf, base);
2030 if (capid == PCI_CAP_EINVAL32)
2031 break;
2032 switch ((capid >> PCIE_EXT_CAP_ID_SHIFT) &
2033 PCIE_EXT_CAP_ID_MASK) {
2034 case PCIE_EXT_CAP_ID_AER:
2035 bus_p->bus_aer_off = base;
2036 break;
2037 case PCIE_EXT_CAP_ID_DEV3:
2038 bus_p->bus_dev3_off = base;
2039 break;
2040 }
2041 }
2042
2043 caps_done:
2044 /* save RP dip and RP bdf */
2045 if (PCIE_IS_RP(bus_p)) {
2046 bus_p->bus_rp_dip = dip;
2047 bus_p->bus_rp_bdf = bus_p->bus_bdf;
2048
2049 bus_p->bus_fab = PCIE_ZALLOC(pcie_fabric_data_t);
2050 } else {
2051 for (pdip = ddi_get_parent(dip); pdip;
2052 pdip = ddi_get_parent(pdip)) {
2053 pcie_bus_t *parent_bus_p = PCIE_DIP2BUS(pdip);
2054
2055 /*
2056 * If RP dip and RP bdf in parent's bus_t have
2057 * been initialized, simply use these instead of
2058 * continuing up to the RC.
2059 */
2060 if (parent_bus_p->bus_rp_dip != NULL) {
2061 bus_p->bus_rp_dip = parent_bus_p->bus_rp_dip;
2062 bus_p->bus_rp_bdf = parent_bus_p->bus_rp_bdf;
2063 break;
2064 }
2065
2066 /*
2067 * When debugging be aware that some NVIDIA x86
2068 * architectures have 2 nodes for each RP, One at Bus
2069 * 0x0 and one at Bus 0x80. The requester is from Bus
2070 * 0x80
2071 */
2072 if (PCIE_IS_ROOT(parent_bus_p)) {
2073 bus_p->bus_rp_dip = pdip;
2074 bus_p->bus_rp_bdf = parent_bus_p->bus_bdf;
2075 break;
2076 }
2077 }
2078 }
2079
2080 bus_p->bus_soft_state = PCI_SOFT_STATE_CLOSED;
2081 (void) atomic_swap_uint(&bus_p->bus_fm_flags, 0);
2082
2083 ndi_set_bus_private(dip, B_TRUE, DEVI_PORT_TYPE_PCI, (void *)bus_p);
2084
2085 if (PCIE_IS_HOTPLUG_CAPABLE(dip))
2086 (void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
2087 "hotplug-capable");
2088
2089 initial_done:
2090 if (!(flags & PCIE_BUS_FINAL))
2091 goto final_done;
2092
2093 /* already initialized? */
2094 bus_p = PCIE_DIP2BUS(dip);
2095
2096 /* Save the Range information if device is a switch/bridge */
2097 if (PCIE_IS_BDG(bus_p)) {
2098 /* get "bus_range" property */
2099 range_size = sizeof (pci_bus_range_t);
2100 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2101 "bus-range", (caddr_t)&bus_p->bus_bus_range, &range_size)
2102 != DDI_PROP_SUCCESS) {
2103 errstr = "Cannot find \"bus-range\" property";
2104 cmn_err(CE_WARN,
2105 "PCIE init err info failed BDF 0x%x:%s\n",
2106 bus_p->bus_bdf, errstr);
2107 }
2108
2109 /* get secondary bus number */
2110 rcdip = pcie_get_rc_dip(dip);
2111 ASSERT(rcdip != NULL);
2112
2113 bus_p->bus_bdg_secbus = pci_cfgacc_get8(rcdip,
2114 bus_p->bus_bdf, PCI_BCNF_SECBUS);
2115
2116 /* Get "ranges" property */
2117 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2118 "ranges", (caddr_t)&bus_p->bus_addr_ranges,
2119 &bus_p->bus_addr_entries) != DDI_PROP_SUCCESS)
2120 bus_p->bus_addr_entries = 0;
2121 bus_p->bus_addr_entries /= sizeof (ppb_ranges_t);
2122 }
2123
2124 /* save "assigned-addresses" property array, ignore failues */
2125 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2126 "assigned-addresses", (caddr_t)&bus_p->bus_assigned_addr,
2127 &bus_p->bus_assigned_entries) == DDI_PROP_SUCCESS)
2128 bus_p->bus_assigned_entries /= sizeof (pci_regspec_t);
2129 else
2130 bus_p->bus_assigned_entries = 0;
2131
2132 pcie_init_pfd(dip);
2133
2134 pcie_init_plat(dip);
2135
2136 pcie_capture_speeds(dip);
2137
2138 final_done:
2139
2140 PCIE_DBG("Add %s(dip 0x%p, bdf 0x%x, secbus 0x%x)\n",
2141 ddi_driver_name(dip), (void *)dip, bus_p->bus_bdf,
2142 bus_p->bus_bdg_secbus);
2143 #ifdef DEBUG
2144 if (bus_p != NULL) {
2145 pcie_print_bus(bus_p);
2146 }
2147 #endif
2148
2149 return (bus_p);
2150 }
2151
2152 /*
2153 * Invoked before destroying devinfo node, mostly during hotplug
2154 * operation to free pcie_bus_t data structure
2155 */
2156 /* ARGSUSED */
2157 void
pcie_fini_bus(dev_info_t * dip,uint8_t flags)2158 pcie_fini_bus(dev_info_t *dip, uint8_t flags)
2159 {
2160 pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2161 ASSERT(bus_p);
2162
2163 if (flags & PCIE_BUS_INITIAL) {
2164 pcie_fini_plat(dip);
2165 pcie_fini_pfd(dip);
2166
2167 if (PCIE_IS_RP(bus_p)) {
2168 kmem_free(bus_p->bus_fab, sizeof (pcie_fabric_data_t));
2169 bus_p->bus_fab = NULL;
2170 }
2171
2172 kmem_free(bus_p->bus_assigned_addr,
2173 (sizeof (pci_regspec_t) * bus_p->bus_assigned_entries));
2174 kmem_free(bus_p->bus_addr_ranges,
2175 (sizeof (ppb_ranges_t) * bus_p->bus_addr_entries));
2176 /* zero out the fields that have been destroyed */
2177 bus_p->bus_assigned_addr = NULL;
2178 bus_p->bus_addr_ranges = NULL;
2179 bus_p->bus_assigned_entries = 0;
2180 bus_p->bus_addr_entries = 0;
2181 }
2182
2183 if (flags & PCIE_BUS_FINAL) {
2184 if (PCIE_IS_HOTPLUG_CAPABLE(dip)) {
2185 (void) ndi_prop_remove(DDI_DEV_T_NONE, dip,
2186 "hotplug-capable");
2187 }
2188
2189 ndi_set_bus_private(dip, B_TRUE, 0, NULL);
2190 kmem_free(bus_p, sizeof (pcie_bus_t));
2191 }
2192 }
2193
2194 int
pcie_postattach_child(dev_info_t * cdip)2195 pcie_postattach_child(dev_info_t *cdip)
2196 {
2197 pcie_bus_t *bus_p = PCIE_DIP2BUS(cdip);
2198
2199 if (!bus_p)
2200 return (DDI_FAILURE);
2201
2202 return (pcie_enable_ce(cdip));
2203 }
2204
2205 /*
2206 * PCI-Express child device de-initialization.
2207 * This function disables generic pci-express interrupts and error
2208 * handling.
2209 */
2210 void
pcie_uninitchild(dev_info_t * cdip)2211 pcie_uninitchild(dev_info_t *cdip)
2212 {
2213 pcie_disable_errors(cdip);
2214 pcie_fini_cfghdl(cdip);
2215 pcie_fini_dom(cdip);
2216 }
2217
2218 /*
2219 * find the root complex dip
2220 */
2221 dev_info_t *
pcie_get_rc_dip(dev_info_t * dip)2222 pcie_get_rc_dip(dev_info_t *dip)
2223 {
2224 dev_info_t *rcdip;
2225 pcie_bus_t *rc_bus_p;
2226
2227 for (rcdip = ddi_get_parent(dip); rcdip;
2228 rcdip = ddi_get_parent(rcdip)) {
2229 rc_bus_p = PCIE_DIP2BUS(rcdip);
2230 if (rc_bus_p && PCIE_IS_RC(rc_bus_p))
2231 break;
2232 }
2233
2234 return (rcdip);
2235 }
2236
2237 boolean_t
pcie_is_pci_device(dev_info_t * dip)2238 pcie_is_pci_device(dev_info_t *dip)
2239 {
2240 dev_info_t *pdip;
2241 char *device_type;
2242
2243 pdip = ddi_get_parent(dip);
2244 if (pdip == NULL)
2245 return (B_FALSE);
2246
2247 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
2248 "device_type", &device_type) != DDI_PROP_SUCCESS)
2249 return (B_FALSE);
2250
2251 if (strcmp(device_type, "pciex") != 0 &&
2252 strcmp(device_type, "pci") != 0) {
2253 ddi_prop_free(device_type);
2254 return (B_FALSE);
2255 }
2256
2257 ddi_prop_free(device_type);
2258 return (B_TRUE);
2259 }
2260
2261 typedef struct {
2262 boolean_t init;
2263 uint8_t flags;
2264 } pcie_bus_arg_t;
2265
2266 /*ARGSUSED*/
2267 static int
pcie_fab_do_init_fini(dev_info_t * dip,void * arg)2268 pcie_fab_do_init_fini(dev_info_t *dip, void *arg)
2269 {
2270 pcie_req_id_t bdf;
2271 pcie_bus_arg_t *bus_arg = (pcie_bus_arg_t *)arg;
2272
2273 if (!pcie_is_pci_device(dip))
2274 goto out;
2275
2276 if (bus_arg->init) {
2277 if (pcie_get_bdf_from_dip(dip, &bdf) != DDI_SUCCESS)
2278 goto out;
2279
2280 (void) pcie_init_bus(dip, bdf, bus_arg->flags);
2281 } else {
2282 (void) pcie_fini_bus(dip, bus_arg->flags);
2283 }
2284
2285 return (DDI_WALK_CONTINUE);
2286
2287 out:
2288 return (DDI_WALK_PRUNECHILD);
2289 }
2290
2291 void
pcie_fab_init_bus(dev_info_t * rcdip,uint8_t flags)2292 pcie_fab_init_bus(dev_info_t *rcdip, uint8_t flags)
2293 {
2294 dev_info_t *dip = ddi_get_child(rcdip);
2295 pcie_bus_arg_t arg;
2296
2297 arg.init = B_TRUE;
2298 arg.flags = flags;
2299
2300 ndi_devi_enter(rcdip);
2301 ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2302 ndi_devi_exit(rcdip);
2303 }
2304
2305 void
pcie_fab_fini_bus(dev_info_t * rcdip,uint8_t flags)2306 pcie_fab_fini_bus(dev_info_t *rcdip, uint8_t flags)
2307 {
2308 dev_info_t *dip = ddi_get_child(rcdip);
2309 pcie_bus_arg_t arg;
2310
2311 arg.init = B_FALSE;
2312 arg.flags = flags;
2313
2314 ndi_devi_enter(rcdip);
2315 ddi_walk_devs(dip, pcie_fab_do_init_fini, &arg);
2316 ndi_devi_exit(rcdip);
2317 }
2318
2319 void
pcie_enable_errors(dev_info_t * dip)2320 pcie_enable_errors(dev_info_t *dip)
2321 {
2322 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2323 uint16_t reg16, tmp16;
2324 uint32_t reg32, tmp32;
2325
2326 ASSERT(bus_p);
2327
2328 /*
2329 * Clear any pending errors
2330 */
2331 pcie_clear_errors(dip);
2332
2333 if (!PCIE_IS_PCIE(bus_p))
2334 return;
2335
2336 /*
2337 * Enable Baseline Error Handling but leave CE reporting off (poweron
2338 * default).
2339 */
2340 if ((reg16 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL)) !=
2341 PCI_CAP_EINVAL16) {
2342 tmp16 = (reg16 & pcie_devctl_default_mask) |
2343 (pcie_devctl_default & ~pcie_devctl_default_mask) |
2344 (pcie_base_err_default & ~PCIE_DEVCTL_CE_REPORTING_EN);
2345
2346 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, tmp16);
2347 PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, reg16);
2348 }
2349
2350 /* Enable Root Port Baseline Error Receiving */
2351 if (PCIE_IS_ROOT(bus_p) &&
2352 (reg16 = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL)) !=
2353 PCI_CAP_EINVAL16) {
2354
2355 tmp16 = pcie_serr_disable_flag ?
2356 (pcie_root_ctrl_default & ~PCIE_ROOT_SYS_ERR) :
2357 pcie_root_ctrl_default;
2358 PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, tmp16);
2359 PCIE_DBG_CAP(dip, bus_p, "ROOT DEVCTL", 16, PCIE_ROOTCTL,
2360 reg16);
2361 }
2362
2363 /*
2364 * Enable PCI-Express Advanced Error Handling if Exists
2365 */
2366 if (!PCIE_HAS_AER(bus_p))
2367 return;
2368
2369 /* Set Uncorrectable Severity */
2370 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_SERV)) !=
2371 PCI_CAP_EINVAL32) {
2372 tmp32 = pcie_aer_uce_severity;
2373
2374 PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_SERV, tmp32);
2375 PCIE_DBG_AER(dip, bus_p, "AER UCE SEV", 32, PCIE_AER_UCE_SERV,
2376 reg32);
2377 }
2378
2379 /* Enable Uncorrectable errors */
2380 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_UCE_MASK)) !=
2381 PCI_CAP_EINVAL32) {
2382 tmp32 = pcie_aer_uce_mask;
2383
2384 PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, tmp32);
2385 PCIE_DBG_AER(dip, bus_p, "AER UCE MASK", 32, PCIE_AER_UCE_MASK,
2386 reg32);
2387 }
2388
2389 /* Enable ECRC generation and checking */
2390 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2391 PCI_CAP_EINVAL32) {
2392 tmp32 = reg32 | pcie_ecrc_value;
2393 PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, tmp32);
2394 PCIE_DBG_AER(dip, bus_p, "AER CTL", 32, PCIE_AER_CTL, reg32);
2395 }
2396
2397 /* Enable Secondary Uncorrectable errors if this is a bridge */
2398 if (!PCIE_IS_PCIE_BDG(bus_p))
2399 goto root;
2400
2401 /* Set Uncorrectable Severity */
2402 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_SERV)) !=
2403 PCI_CAP_EINVAL32) {
2404 tmp32 = pcie_aer_suce_severity;
2405
2406 PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_SERV, tmp32);
2407 PCIE_DBG_AER(dip, bus_p, "AER SUCE SEV", 32, PCIE_AER_SUCE_SERV,
2408 reg32);
2409 }
2410
2411 if ((reg32 = PCIE_AER_GET(32, bus_p, PCIE_AER_SUCE_MASK)) !=
2412 PCI_CAP_EINVAL32) {
2413 PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, pcie_aer_suce_mask);
2414 PCIE_DBG_AER(dip, bus_p, "AER SUCE MASK", 32,
2415 PCIE_AER_SUCE_MASK, reg32);
2416 }
2417
2418 root:
2419 /*
2420 * Enable Root Control this is a Root device
2421 */
2422 if (!PCIE_IS_ROOT(bus_p))
2423 return;
2424
2425 if ((reg16 = PCIE_AER_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2426 PCI_CAP_EINVAL16) {
2427 PCIE_AER_PUT(16, bus_p, PCIE_AER_RE_CMD,
2428 pcie_root_error_cmd_default);
2429 PCIE_DBG_AER(dip, bus_p, "AER Root Err Cmd", 16,
2430 PCIE_AER_RE_CMD, reg16);
2431 }
2432 }
2433
2434 /*
2435 * This function is used for enabling CE reporting and setting the AER CE mask.
2436 * When called from outside the pcie module it should always be preceded by
2437 * a call to pcie_enable_errors.
2438 */
2439 int
pcie_enable_ce(dev_info_t * dip)2440 pcie_enable_ce(dev_info_t *dip)
2441 {
2442 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2443 uint16_t device_sts, device_ctl;
2444 uint32_t tmp_pcie_aer_ce_mask;
2445
2446 if (!PCIE_IS_PCIE(bus_p))
2447 return (DDI_SUCCESS);
2448
2449 /*
2450 * The "pcie_ce_mask" property is used to control both the CE reporting
2451 * enable field in the device control register and the AER CE mask. We
2452 * leave CE reporting disabled if pcie_ce_mask is set to -1.
2453 */
2454
2455 tmp_pcie_aer_ce_mask = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2456 DDI_PROP_DONTPASS, "pcie_ce_mask", pcie_aer_ce_mask);
2457
2458 if (tmp_pcie_aer_ce_mask == (uint32_t)-1) {
2459 /*
2460 * Nothing to do since CE reporting has already been disabled.
2461 */
2462 return (DDI_SUCCESS);
2463 }
2464
2465 if (PCIE_HAS_AER(bus_p)) {
2466 /* Enable AER CE */
2467 PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, tmp_pcie_aer_ce_mask);
2468 PCIE_DBG_AER(dip, bus_p, "AER CE MASK", 32, PCIE_AER_CE_MASK,
2469 0);
2470
2471 /* Clear any pending AER CE errors */
2472 PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_STS, -1);
2473 }
2474
2475 /* clear any pending CE errors */
2476 if ((device_sts = PCIE_CAP_GET(16, bus_p, PCIE_DEVSTS)) !=
2477 PCI_CAP_EINVAL16)
2478 PCIE_CAP_PUT(16, bus_p, PCIE_DEVSTS,
2479 device_sts & (~PCIE_DEVSTS_CE_DETECTED));
2480
2481 /* Enable CE reporting */
2482 device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2483 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL,
2484 (device_ctl & (~PCIE_DEVCTL_ERR_MASK)) | pcie_base_err_default);
2485 PCIE_DBG_CAP(dip, bus_p, "DEVCTL", 16, PCIE_DEVCTL, device_ctl);
2486
2487 return (DDI_SUCCESS);
2488 }
2489
2490 /* ARGSUSED */
2491 void
pcie_disable_errors(dev_info_t * dip)2492 pcie_disable_errors(dev_info_t *dip)
2493 {
2494 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2495 uint16_t device_ctl;
2496 uint32_t aer_reg;
2497
2498 if (!PCIE_IS_PCIE(bus_p))
2499 return;
2500
2501 /*
2502 * Disable PCI-Express Baseline Error Handling
2503 */
2504 device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL);
2505 device_ctl &= ~PCIE_DEVCTL_ERR_MASK;
2506 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL, device_ctl);
2507
2508 /*
2509 * Disable PCI-Express Advanced Error Handling if Exists
2510 */
2511 if (!PCIE_HAS_AER(bus_p))
2512 goto root;
2513
2514 /* Disable Uncorrectable errors */
2515 PCIE_AER_PUT(32, bus_p, PCIE_AER_UCE_MASK, PCIE_AER_UCE_BITS);
2516
2517 /* Disable Correctable errors */
2518 PCIE_AER_PUT(32, bus_p, PCIE_AER_CE_MASK, PCIE_AER_CE_BITS);
2519
2520 /* Disable ECRC generation and checking */
2521 if ((aer_reg = PCIE_AER_GET(32, bus_p, PCIE_AER_CTL)) !=
2522 PCI_CAP_EINVAL32) {
2523 aer_reg &= ~(PCIE_AER_CTL_ECRC_GEN_ENA |
2524 PCIE_AER_CTL_ECRC_CHECK_ENA);
2525
2526 PCIE_AER_PUT(32, bus_p, PCIE_AER_CTL, aer_reg);
2527 }
2528 /*
2529 * Disable Secondary Uncorrectable errors if this is a bridge
2530 */
2531 if (!PCIE_IS_PCIE_BDG(bus_p))
2532 goto root;
2533
2534 PCIE_AER_PUT(32, bus_p, PCIE_AER_SUCE_MASK, PCIE_AER_SUCE_BITS);
2535
2536 root:
2537 /*
2538 * disable Root Control this is a Root device
2539 */
2540 if (!PCIE_IS_ROOT(bus_p))
2541 return;
2542
2543 if (!pcie_serr_disable_flag) {
2544 device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_ROOTCTL);
2545 device_ctl &= ~PCIE_ROOT_SYS_ERR;
2546 PCIE_CAP_PUT(16, bus_p, PCIE_ROOTCTL, device_ctl);
2547 }
2548
2549 if (!PCIE_HAS_AER(bus_p))
2550 return;
2551
2552 if ((device_ctl = PCIE_CAP_GET(16, bus_p, PCIE_AER_RE_CMD)) !=
2553 PCI_CAP_EINVAL16) {
2554 device_ctl &= ~pcie_root_error_cmd_default;
2555 PCIE_CAP_PUT(16, bus_p, PCIE_AER_RE_CMD, device_ctl);
2556 }
2557 }
2558
2559 /*
2560 * Extract bdf from "reg" property.
2561 */
2562 int
pcie_get_bdf_from_dip(dev_info_t * dip,pcie_req_id_t * bdf)2563 pcie_get_bdf_from_dip(dev_info_t *dip, pcie_req_id_t *bdf)
2564 {
2565 pci_regspec_t *regspec;
2566 int reglen;
2567
2568 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2569 "reg", (int **)®spec, (uint_t *)®len) != DDI_SUCCESS)
2570 return (DDI_FAILURE);
2571
2572 if (reglen < (sizeof (pci_regspec_t) / sizeof (int))) {
2573 ddi_prop_free(regspec);
2574 return (DDI_FAILURE);
2575 }
2576
2577 /* Get phys_hi from first element. All have same bdf. */
2578 *bdf = (regspec->pci_phys_hi & (PCI_REG_BDFR_M ^ PCI_REG_REG_M)) >> 8;
2579
2580 ddi_prop_free(regspec);
2581 return (DDI_SUCCESS);
2582 }
2583
2584 dev_info_t *
pcie_get_my_childs_dip(dev_info_t * dip,dev_info_t * rdip)2585 pcie_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip)
2586 {
2587 dev_info_t *cdip = rdip;
2588
2589 for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip))
2590 ;
2591
2592 return (cdip);
2593 }
2594
2595 uint32_t
pcie_get_bdf_for_dma_xfer(dev_info_t * dip,dev_info_t * rdip)2596 pcie_get_bdf_for_dma_xfer(dev_info_t *dip, dev_info_t *rdip)
2597 {
2598 dev_info_t *cdip;
2599
2600 /*
2601 * As part of the probing, the PCI fcode interpreter may setup a DMA
2602 * request if a given card has a fcode on it using dip and rdip of the
2603 * hotplug connector i.e, dip and rdip of px/pcieb driver. In this
2604 * case, return a invalid value for the bdf since we cannot get to the
2605 * bdf value of the actual device which will be initiating this DMA.
2606 */
2607 if (rdip == dip)
2608 return (PCIE_INVALID_BDF);
2609
2610 cdip = pcie_get_my_childs_dip(dip, rdip);
2611
2612 /*
2613 * For a given rdip, return the bdf value of dip's (px or pcieb)
2614 * immediate child or secondary bus-id if dip is a PCIe2PCI bridge.
2615 *
2616 * XXX - For now, return a invalid bdf value for all PCI and PCI-X
2617 * devices since this needs more work.
2618 */
2619 return (PCI_GET_PCIE2PCI_SECBUS(cdip) ?
2620 PCIE_INVALID_BDF : PCI_GET_BDF(cdip));
2621 }
2622
2623 uint32_t
pcie_get_aer_uce_mask()2624 pcie_get_aer_uce_mask()
2625 {
2626 return (pcie_aer_uce_mask);
2627 }
2628 uint32_t
pcie_get_aer_ce_mask()2629 pcie_get_aer_ce_mask()
2630 {
2631 return (pcie_aer_ce_mask);
2632 }
2633 uint32_t
pcie_get_aer_suce_mask()2634 pcie_get_aer_suce_mask()
2635 {
2636 return (pcie_aer_suce_mask);
2637 }
2638 uint32_t
pcie_get_serr_mask()2639 pcie_get_serr_mask()
2640 {
2641 return (pcie_serr_disable_flag);
2642 }
2643
2644 void
pcie_set_aer_uce_mask(uint32_t mask)2645 pcie_set_aer_uce_mask(uint32_t mask)
2646 {
2647 pcie_aer_uce_mask = mask;
2648 if (mask & PCIE_AER_UCE_UR)
2649 pcie_base_err_default &= ~PCIE_DEVCTL_UR_REPORTING_EN;
2650 else
2651 pcie_base_err_default |= PCIE_DEVCTL_UR_REPORTING_EN;
2652
2653 if (mask & PCIE_AER_UCE_ECRC)
2654 pcie_ecrc_value = 0;
2655 }
2656
2657 void
pcie_set_aer_ce_mask(uint32_t mask)2658 pcie_set_aer_ce_mask(uint32_t mask)
2659 {
2660 pcie_aer_ce_mask = mask;
2661 }
2662 void
pcie_set_aer_suce_mask(uint32_t mask)2663 pcie_set_aer_suce_mask(uint32_t mask)
2664 {
2665 pcie_aer_suce_mask = mask;
2666 }
2667 void
pcie_set_serr_mask(uint32_t mask)2668 pcie_set_serr_mask(uint32_t mask)
2669 {
2670 pcie_serr_disable_flag = mask;
2671 }
2672
2673 /*
2674 * Is the rdip a child of dip. Used for checking certain CTLOPS from bubbling
2675 * up erronously. Ex. ISA ctlops to a PCI-PCI Bridge.
2676 */
2677 boolean_t
pcie_is_child(dev_info_t * dip,dev_info_t * rdip)2678 pcie_is_child(dev_info_t *dip, dev_info_t *rdip)
2679 {
2680 dev_info_t *cdip = ddi_get_child(dip);
2681 for (; cdip; cdip = ddi_get_next_sibling(cdip))
2682 if (cdip == rdip)
2683 break;
2684 return (cdip != NULL);
2685 }
2686
2687 boolean_t
pcie_is_link_disabled(dev_info_t * dip)2688 pcie_is_link_disabled(dev_info_t *dip)
2689 {
2690 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2691
2692 if (PCIE_IS_PCIE(bus_p)) {
2693 if (PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL) &
2694 PCIE_LINKCTL_LINK_DISABLE)
2695 return (B_TRUE);
2696 }
2697 return (B_FALSE);
2698 }
2699
2700 /*
2701 * Determines if there are any root ports attached to a root complex.
2702 *
2703 * dip - dip of root complex
2704 *
2705 * Returns - DDI_SUCCESS if there is at least one root port otherwise
2706 * DDI_FAILURE.
2707 */
2708 int
pcie_root_port(dev_info_t * dip)2709 pcie_root_port(dev_info_t *dip)
2710 {
2711 int port_type;
2712 uint16_t cap_ptr;
2713 ddi_acc_handle_t config_handle;
2714 dev_info_t *cdip = ddi_get_child(dip);
2715
2716 /*
2717 * Determine if any of the children of the passed in dip
2718 * are root ports.
2719 */
2720 for (; cdip; cdip = ddi_get_next_sibling(cdip)) {
2721
2722 if (pci_config_setup(cdip, &config_handle) != DDI_SUCCESS)
2723 continue;
2724
2725 if ((PCI_CAP_LOCATE(config_handle, PCI_CAP_ID_PCI_E,
2726 &cap_ptr)) == DDI_FAILURE) {
2727 pci_config_teardown(&config_handle);
2728 continue;
2729 }
2730
2731 port_type = PCI_CAP_GET16(config_handle, 0, cap_ptr,
2732 PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK;
2733
2734 pci_config_teardown(&config_handle);
2735
2736 if (port_type == PCIE_PCIECAP_DEV_TYPE_ROOT)
2737 return (DDI_SUCCESS);
2738 }
2739
2740 /* No root ports were found */
2741
2742 return (DDI_FAILURE);
2743 }
2744
2745 /*
2746 * Function that determines if a device a PCIe device.
2747 *
2748 * dip - dip of device.
2749 *
2750 * returns - DDI_SUCCESS if device is a PCIe device, otherwise DDI_FAILURE.
2751 */
2752 int
pcie_dev(dev_info_t * dip)2753 pcie_dev(dev_info_t *dip)
2754 {
2755 /* get parent device's device_type property */
2756 char *device_type;
2757 int rc = DDI_FAILURE;
2758 dev_info_t *pdip = ddi_get_parent(dip);
2759
2760 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip,
2761 DDI_PROP_DONTPASS, "device_type", &device_type)
2762 != DDI_PROP_SUCCESS) {
2763 return (DDI_FAILURE);
2764 }
2765
2766 if (strcmp(device_type, "pciex") == 0)
2767 rc = DDI_SUCCESS;
2768 else
2769 rc = DDI_FAILURE;
2770
2771 ddi_prop_free(device_type);
2772 return (rc);
2773 }
2774
2775 void
pcie_set_rber_fatal(dev_info_t * dip,boolean_t val)2776 pcie_set_rber_fatal(dev_info_t *dip, boolean_t val)
2777 {
2778 pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2779 bus_p->bus_pfd->pe_rber_fatal = val;
2780 }
2781
2782 /*
2783 * Return parent Root Port's pe_rber_fatal value.
2784 */
2785 boolean_t
pcie_get_rber_fatal(dev_info_t * dip)2786 pcie_get_rber_fatal(dev_info_t *dip)
2787 {
2788 pcie_bus_t *bus_p = PCIE_DIP2UPBUS(dip);
2789 pcie_bus_t *rp_bus_p = PCIE_DIP2UPBUS(bus_p->bus_rp_dip);
2790 return (rp_bus_p->bus_pfd->pe_rber_fatal);
2791 }
2792
2793 int
pcie_ari_supported(dev_info_t * dip)2794 pcie_ari_supported(dev_info_t *dip)
2795 {
2796 uint32_t devcap2;
2797 uint16_t pciecap;
2798 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2799 uint8_t dev_type;
2800
2801 PCIE_DBG("pcie_ari_supported: dip=%p\n", dip);
2802
2803 if (bus_p == NULL)
2804 return (PCIE_ARI_FORW_NOT_SUPPORTED);
2805
2806 dev_type = bus_p->bus_dev_type;
2807
2808 if ((dev_type != PCIE_PCIECAP_DEV_TYPE_DOWN) &&
2809 (dev_type != PCIE_PCIECAP_DEV_TYPE_ROOT))
2810 return (PCIE_ARI_FORW_NOT_SUPPORTED);
2811
2812 if (pcie_disable_ari) {
2813 PCIE_DBG("pcie_ari_supported: dip=%p: ARI Disabled\n", dip);
2814 return (PCIE_ARI_FORW_NOT_SUPPORTED);
2815 }
2816
2817 pciecap = PCIE_CAP_GET(16, bus_p, PCIE_PCIECAP);
2818
2819 if ((pciecap & PCIE_PCIECAP_VER_MASK) < PCIE_PCIECAP_VER_2_0) {
2820 PCIE_DBG("pcie_ari_supported: dip=%p: Not 2.0\n", dip);
2821 return (PCIE_ARI_FORW_NOT_SUPPORTED);
2822 }
2823
2824 devcap2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCAP2);
2825
2826 PCIE_DBG("pcie_ari_supported: dip=%p: DevCap2=0x%x\n",
2827 dip, devcap2);
2828
2829 if (devcap2 & PCIE_DEVCAP2_ARI_FORWARD) {
2830 PCIE_DBG("pcie_ari_supported: "
2831 "dip=%p: ARI Forwarding is supported\n", dip);
2832 return (PCIE_ARI_FORW_SUPPORTED);
2833 }
2834 return (PCIE_ARI_FORW_NOT_SUPPORTED);
2835 }
2836
2837 int
pcie_ari_enable(dev_info_t * dip)2838 pcie_ari_enable(dev_info_t *dip)
2839 {
2840 uint16_t devctl2;
2841 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2842
2843 PCIE_DBG("pcie_ari_enable: dip=%p\n", dip);
2844
2845 if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2846 return (DDI_FAILURE);
2847
2848 devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2849 devctl2 |= PCIE_DEVCTL2_ARI_FORWARD_EN;
2850 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2851
2852 PCIE_DBG("pcie_ari_enable: dip=%p: writing 0x%x to DevCtl2\n",
2853 dip, devctl2);
2854
2855 return (DDI_SUCCESS);
2856 }
2857
2858 int
pcie_ari_disable(dev_info_t * dip)2859 pcie_ari_disable(dev_info_t *dip)
2860 {
2861 uint16_t devctl2;
2862 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2863
2864 PCIE_DBG("pcie_ari_disable: dip=%p\n", dip);
2865
2866 if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2867 return (DDI_FAILURE);
2868
2869 devctl2 = PCIE_CAP_GET(16, bus_p, PCIE_DEVCTL2);
2870 devctl2 &= ~PCIE_DEVCTL2_ARI_FORWARD_EN;
2871 PCIE_CAP_PUT(16, bus_p, PCIE_DEVCTL2, devctl2);
2872
2873 PCIE_DBG("pcie_ari_disable: dip=%p: writing 0x%x to DevCtl2\n",
2874 dip, devctl2);
2875
2876 return (DDI_SUCCESS);
2877 }
2878
2879 int
pcie_ari_is_enabled(dev_info_t * dip)2880 pcie_ari_is_enabled(dev_info_t *dip)
2881 {
2882 uint16_t devctl2;
2883 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
2884
2885 PCIE_DBG("pcie_ari_is_enabled: dip=%p\n", dip);
2886
2887 if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
2888 return (PCIE_ARI_FORW_DISABLED);
2889
2890 devctl2 = PCIE_CAP_GET(32, bus_p, PCIE_DEVCTL2);
2891
2892 PCIE_DBG("pcie_ari_is_enabled: dip=%p: DevCtl2=0x%x\n",
2893 dip, devctl2);
2894
2895 if (devctl2 & PCIE_DEVCTL2_ARI_FORWARD_EN) {
2896 PCIE_DBG("pcie_ari_is_enabled: "
2897 "dip=%p: ARI Forwarding is enabled\n", dip);
2898 return (PCIE_ARI_FORW_ENABLED);
2899 }
2900
2901 return (PCIE_ARI_FORW_DISABLED);
2902 }
2903
2904 int
pcie_ari_device(dev_info_t * dip)2905 pcie_ari_device(dev_info_t *dip)
2906 {
2907 ddi_acc_handle_t handle;
2908 uint16_t cap_ptr;
2909
2910 PCIE_DBG("pcie_ari_device: dip=%p\n", dip);
2911
2912 /*
2913 * XXX - This function may be called before the bus_p structure
2914 * has been populated. This code can be changed to remove
2915 * pci_config_setup()/pci_config_teardown() when the RFE
2916 * to populate the bus_p structures early in boot is putback.
2917 */
2918
2919 /* First make sure it is a PCIe device */
2920
2921 if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2922 return (PCIE_NOT_ARI_DEVICE);
2923
2924 if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr))
2925 != DDI_SUCCESS) {
2926 pci_config_teardown(&handle);
2927 return (PCIE_NOT_ARI_DEVICE);
2928 }
2929
2930 /* Locate the ARI Capability */
2931
2932 if ((PCI_CAP_LOCATE(handle, PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI),
2933 &cap_ptr)) == DDI_FAILURE) {
2934 pci_config_teardown(&handle);
2935 return (PCIE_NOT_ARI_DEVICE);
2936 }
2937
2938 /* ARI Capability was found so it must be a ARI device */
2939 PCIE_DBG("pcie_ari_device: ARI Device dip=%p\n", dip);
2940
2941 pci_config_teardown(&handle);
2942 return (PCIE_ARI_DEVICE);
2943 }
2944
2945 int
pcie_ari_get_next_function(dev_info_t * dip,int * func)2946 pcie_ari_get_next_function(dev_info_t *dip, int *func)
2947 {
2948 uint32_t val;
2949 uint16_t cap_ptr, next_function;
2950 ddi_acc_handle_t handle;
2951
2952 /*
2953 * XXX - This function may be called before the bus_p structure
2954 * has been populated. This code can be changed to remove
2955 * pci_config_setup()/pci_config_teardown() when the RFE
2956 * to populate the bus_p structures early in boot is putback.
2957 */
2958
2959 if (pci_config_setup(dip, &handle) != DDI_SUCCESS)
2960 return (DDI_FAILURE);
2961
2962 if ((PCI_CAP_LOCATE(handle,
2963 PCI_CAP_XCFG_SPC(PCIE_EXT_CAP_ID_ARI), &cap_ptr)) == DDI_FAILURE) {
2964 pci_config_teardown(&handle);
2965 return (DDI_FAILURE);
2966 }
2967
2968 val = PCI_CAP_GET32(handle, 0, cap_ptr, PCIE_ARI_CAP);
2969
2970 next_function = (val >> PCIE_ARI_CAP_NEXT_FUNC_SHIFT) &
2971 PCIE_ARI_CAP_NEXT_FUNC_MASK;
2972
2973 pci_config_teardown(&handle);
2974
2975 *func = next_function;
2976
2977 return (DDI_SUCCESS);
2978 }
2979
2980 dev_info_t *
pcie_func_to_dip(dev_info_t * dip,pcie_req_id_t function)2981 pcie_func_to_dip(dev_info_t *dip, pcie_req_id_t function)
2982 {
2983 pcie_req_id_t child_bdf;
2984 dev_info_t *cdip;
2985
2986 for (cdip = ddi_get_child(dip); cdip;
2987 cdip = ddi_get_next_sibling(cdip)) {
2988
2989 if (pcie_get_bdf_from_dip(cdip, &child_bdf) == DDI_FAILURE)
2990 return (NULL);
2991
2992 if ((child_bdf & PCIE_REQ_ID_ARI_FUNC_MASK) == function)
2993 return (cdip);
2994 }
2995 return (NULL);
2996 }
2997
2998 #ifdef DEBUG
2999
3000 static void
pcie_print_bus(pcie_bus_t * bus_p)3001 pcie_print_bus(pcie_bus_t *bus_p)
3002 {
3003 pcie_dbg("\tbus_dip = 0x%p\n", bus_p->bus_dip);
3004 pcie_dbg("\tbus_fm_flags = 0x%x\n", bus_p->bus_fm_flags);
3005
3006 pcie_dbg("\tbus_bdf = 0x%x\n", bus_p->bus_bdf);
3007 pcie_dbg("\tbus_dev_ven_id = 0x%x\n", bus_p->bus_dev_ven_id);
3008 pcie_dbg("\tbus_rev_id = 0x%x\n", bus_p->bus_rev_id);
3009 pcie_dbg("\tbus_hdr_type = 0x%x\n", bus_p->bus_hdr_type);
3010 pcie_dbg("\tbus_dev_type = 0x%x\n", bus_p->bus_dev_type);
3011 pcie_dbg("\tbus_bdg_secbus = 0x%x\n", bus_p->bus_bdg_secbus);
3012 pcie_dbg("\tbus_pcie_off = 0x%x\n", bus_p->bus_pcie_off);
3013 pcie_dbg("\tbus_aer_off = 0x%x\n", bus_p->bus_aer_off);
3014 pcie_dbg("\tbus_pcix_off = 0x%x\n", bus_p->bus_pcix_off);
3015 pcie_dbg("\tbus_ecc_ver = 0x%x\n", bus_p->bus_ecc_ver);
3016 }
3017
3018 /*
3019 * For debugging purposes set pcie_dbg_print != 0 to see printf messages
3020 * during interrupt.
3021 *
3022 * When a proper solution is in place this code will disappear.
3023 * Potential solutions are:
3024 * o circular buffers
3025 * o taskq to print at lower pil
3026 */
3027 int pcie_dbg_print = 0;
3028 void
pcie_dbg(char * fmt,...)3029 pcie_dbg(char *fmt, ...)
3030 {
3031 va_list ap;
3032
3033 if (!pcie_debug_flags) {
3034 return;
3035 }
3036 va_start(ap, fmt);
3037 if (servicing_interrupt()) {
3038 if (pcie_dbg_print) {
3039 prom_vprintf(fmt, ap);
3040 }
3041 } else {
3042 prom_vprintf(fmt, ap);
3043 }
3044 va_end(ap);
3045 }
3046 #endif /* DEBUG */
3047
3048 boolean_t
pcie_link_bw_supported(dev_info_t * dip)3049 pcie_link_bw_supported(dev_info_t *dip)
3050 {
3051 uint32_t linkcap;
3052 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3053
3054 if (!PCIE_IS_PCIE(bus_p)) {
3055 return (B_FALSE);
3056 }
3057
3058 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3059 return (B_FALSE);
3060 }
3061
3062 linkcap = PCIE_CAP_GET(32, bus_p, PCIE_LINKCAP);
3063 return ((linkcap & PCIE_LINKCAP_LINK_BW_NOTIFY_CAP) != 0);
3064 }
3065
3066 int
pcie_link_bw_enable(dev_info_t * dip)3067 pcie_link_bw_enable(dev_info_t *dip)
3068 {
3069 uint16_t linkctl;
3070 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3071
3072 if (pcie_disable_lbw != 0) {
3073 return (DDI_FAILURE);
3074 }
3075
3076 if (!pcie_link_bw_supported(dip)) {
3077 return (DDI_FAILURE);
3078 }
3079
3080 mutex_init(&bus_p->bus_lbw_mutex, NULL, MUTEX_DRIVER, NULL);
3081 cv_init(&bus_p->bus_lbw_cv, NULL, CV_DRIVER, NULL);
3082 linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3083 linkctl |= PCIE_LINKCTL_LINK_BW_INTR_EN;
3084 linkctl |= PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3085 PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3086
3087 bus_p->bus_lbw_pbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3088 bus_p->bus_lbw_cbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3089 bus_p->bus_lbw_state |= PCIE_LBW_S_ENABLED;
3090
3091 return (DDI_SUCCESS);
3092 }
3093
3094 int
pcie_link_bw_disable(dev_info_t * dip)3095 pcie_link_bw_disable(dev_info_t *dip)
3096 {
3097 uint16_t linkctl;
3098 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3099
3100 if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3101 return (DDI_FAILURE);
3102 }
3103
3104 mutex_enter(&bus_p->bus_lbw_mutex);
3105 while ((bus_p->bus_lbw_state &
3106 (PCIE_LBW_S_DISPATCHED | PCIE_LBW_S_RUNNING)) != 0) {
3107 cv_wait(&bus_p->bus_lbw_cv, &bus_p->bus_lbw_mutex);
3108 }
3109 mutex_exit(&bus_p->bus_lbw_mutex);
3110
3111 linkctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3112 linkctl &= ~PCIE_LINKCTL_LINK_BW_INTR_EN;
3113 linkctl &= ~PCIE_LINKCTL_LINK_AUTO_BW_INTR_EN;
3114 PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, linkctl);
3115
3116 bus_p->bus_lbw_state &= ~PCIE_LBW_S_ENABLED;
3117 kmem_free(bus_p->bus_lbw_pbuf, MAXPATHLEN);
3118 kmem_free(bus_p->bus_lbw_cbuf, MAXPATHLEN);
3119 bus_p->bus_lbw_pbuf = NULL;
3120 bus_p->bus_lbw_cbuf = NULL;
3121
3122 mutex_destroy(&bus_p->bus_lbw_mutex);
3123 cv_destroy(&bus_p->bus_lbw_cv);
3124
3125 return (DDI_SUCCESS);
3126 }
3127
3128 void
pcie_link_bw_taskq(void * arg)3129 pcie_link_bw_taskq(void *arg)
3130 {
3131 dev_info_t *dip = arg;
3132 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3133 dev_info_t *cdip;
3134 boolean_t again;
3135 sysevent_t *se;
3136 sysevent_value_t se_val;
3137 sysevent_id_t eid;
3138 sysevent_attr_list_t *ev_attr_list;
3139
3140 top:
3141 ndi_devi_enter(dip);
3142 se = NULL;
3143 ev_attr_list = NULL;
3144 mutex_enter(&bus_p->bus_lbw_mutex);
3145 bus_p->bus_lbw_state &= ~PCIE_LBW_S_DISPATCHED;
3146 bus_p->bus_lbw_state |= PCIE_LBW_S_RUNNING;
3147 mutex_exit(&bus_p->bus_lbw_mutex);
3148
3149 /*
3150 * Update our own speeds as we've likely changed something.
3151 */
3152 pcie_capture_speeds(dip);
3153
3154 /*
3155 * Walk our children. We only care about updating this on function 0
3156 * because the PCIe specification requires that these all be the same
3157 * otherwise.
3158 */
3159 for (cdip = ddi_get_child(dip); cdip != NULL;
3160 cdip = ddi_get_next_sibling(cdip)) {
3161 pcie_bus_t *cbus_p = PCIE_DIP2BUS(cdip);
3162
3163 if (cbus_p == NULL) {
3164 continue;
3165 }
3166
3167 if ((cbus_p->bus_bdf & PCIE_REQ_ID_FUNC_MASK) != 0) {
3168 continue;
3169 }
3170
3171 /*
3172 * It's possible that this can fire while a child is otherwise
3173 * only partially constructed. Therefore, if we don't have the
3174 * config handle, don't bother updating the child.
3175 */
3176 if (cbus_p->bus_cfg_hdl == NULL) {
3177 continue;
3178 }
3179
3180 pcie_capture_speeds(cdip);
3181 break;
3182 }
3183
3184 se = sysevent_alloc(EC_PCIE, ESC_PCIE_LINK_STATE,
3185 ILLUMOS_KERN_PUB "pcie", SE_SLEEP);
3186
3187 (void) ddi_pathname(dip, bus_p->bus_lbw_pbuf);
3188 se_val.value_type = SE_DATA_TYPE_STRING;
3189 se_val.value.sv_string = bus_p->bus_lbw_pbuf;
3190 if (sysevent_add_attr(&ev_attr_list, PCIE_EV_DETECTOR_PATH, &se_val,
3191 SE_SLEEP) != 0) {
3192 ndi_devi_exit(dip);
3193 goto err;
3194 }
3195
3196 if (cdip != NULL) {
3197 (void) ddi_pathname(cdip, bus_p->bus_lbw_cbuf);
3198
3199 se_val.value_type = SE_DATA_TYPE_STRING;
3200 se_val.value.sv_string = bus_p->bus_lbw_cbuf;
3201
3202 /*
3203 * If this fails, that's OK. We'd rather get the event off and
3204 * there's a chance that there may not be anything there for us.
3205 */
3206 (void) sysevent_add_attr(&ev_attr_list, PCIE_EV_CHILD_PATH,
3207 &se_val, SE_SLEEP);
3208 }
3209
3210 ndi_devi_exit(dip);
3211
3212 /*
3213 * Before we generate and send down a sysevent, we need to tell the
3214 * system that parts of the devinfo cache need to be invalidated. While
3215 * the function below takes several args, it ignores them all. Because
3216 * this is a global invalidation, we don't bother trying to do much more
3217 * than requesting a global invalidation, lest we accidentally kick off
3218 * several in a row.
3219 */
3220 ddi_prop_cache_invalidate(DDI_DEV_T_NONE, NULL, NULL, 0);
3221
3222 if (sysevent_attach_attributes(se, ev_attr_list) != 0) {
3223 goto err;
3224 }
3225 ev_attr_list = NULL;
3226
3227 if (log_sysevent(se, SE_SLEEP, &eid) != 0) {
3228 goto err;
3229 }
3230
3231 err:
3232 sysevent_free_attr(ev_attr_list);
3233 sysevent_free(se);
3234
3235 mutex_enter(&bus_p->bus_lbw_mutex);
3236 bus_p->bus_lbw_state &= ~PCIE_LBW_S_RUNNING;
3237 cv_broadcast(&bus_p->bus_lbw_cv);
3238 again = (bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) != 0;
3239 mutex_exit(&bus_p->bus_lbw_mutex);
3240
3241 if (again) {
3242 goto top;
3243 }
3244 }
3245
3246 int
pcie_link_bw_intr(dev_info_t * dip)3247 pcie_link_bw_intr(dev_info_t *dip)
3248 {
3249 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3250 uint16_t linksts;
3251 uint16_t flags = PCIE_LINKSTS_LINK_BW_MGMT | PCIE_LINKSTS_AUTO_BW;
3252 hrtime_t now;
3253
3254 if ((bus_p->bus_lbw_state & PCIE_LBW_S_ENABLED) == 0) {
3255 return (DDI_INTR_UNCLAIMED);
3256 }
3257
3258 linksts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3259 if ((linksts & flags) == 0) {
3260 return (DDI_INTR_UNCLAIMED);
3261 }
3262
3263 now = gethrtime();
3264
3265 /*
3266 * Check if we've already dispatched this event. If we have already
3267 * dispatched it, then there's nothing else to do, we coalesce multiple
3268 * events.
3269 */
3270 mutex_enter(&bus_p->bus_lbw_mutex);
3271 bus_p->bus_lbw_nevents++;
3272 bus_p->bus_lbw_last_ts = now;
3273 if ((bus_p->bus_lbw_state & PCIE_LBW_S_DISPATCHED) == 0) {
3274 if ((bus_p->bus_lbw_state & PCIE_LBW_S_RUNNING) == 0) {
3275 taskq_dispatch_ent(pcie_link_tq, pcie_link_bw_taskq,
3276 dip, 0, &bus_p->bus_lbw_ent);
3277 }
3278
3279 bus_p->bus_lbw_state |= PCIE_LBW_S_DISPATCHED;
3280 }
3281 mutex_exit(&bus_p->bus_lbw_mutex);
3282
3283 PCIE_CAP_PUT(16, bus_p, PCIE_LINKSTS, flags);
3284 return (DDI_INTR_CLAIMED);
3285 }
3286
3287 int
pcie_link_set_target(dev_info_t * dip,pcie_link_speed_t speed)3288 pcie_link_set_target(dev_info_t *dip, pcie_link_speed_t speed)
3289 {
3290 uint16_t ctl2, rval;
3291 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3292
3293 if (!PCIE_IS_PCIE(bus_p)) {
3294 return (ENOTSUP);
3295 }
3296
3297 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3298 return (ENOTSUP);
3299 }
3300
3301 if (bus_p->bus_pcie_vers < 2) {
3302 return (ENOTSUP);
3303 }
3304
3305 switch (speed) {
3306 case PCIE_LINK_SPEED_2_5:
3307 rval = PCIE_LINKCTL2_TARGET_SPEED_2_5;
3308 break;
3309 case PCIE_LINK_SPEED_5:
3310 rval = PCIE_LINKCTL2_TARGET_SPEED_5;
3311 break;
3312 case PCIE_LINK_SPEED_8:
3313 rval = PCIE_LINKCTL2_TARGET_SPEED_8;
3314 break;
3315 case PCIE_LINK_SPEED_16:
3316 rval = PCIE_LINKCTL2_TARGET_SPEED_16;
3317 break;
3318 case PCIE_LINK_SPEED_32:
3319 rval = PCIE_LINKCTL2_TARGET_SPEED_32;
3320 break;
3321 case PCIE_LINK_SPEED_64:
3322 rval = PCIE_LINKCTL2_TARGET_SPEED_64;
3323 break;
3324 default:
3325 return (EINVAL);
3326 }
3327
3328 mutex_enter(&bus_p->bus_speed_mutex);
3329 if ((bus_p->bus_sup_speed & speed) == 0) {
3330 mutex_exit(&bus_p->bus_speed_mutex);
3331 return (ENOTSUP);
3332 }
3333
3334 bus_p->bus_target_speed = speed;
3335 bus_p->bus_speed_flags |= PCIE_LINK_F_ADMIN_TARGET;
3336
3337 ctl2 = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL2);
3338 ctl2 &= ~PCIE_LINKCTL2_TARGET_SPEED_MASK;
3339 ctl2 |= rval;
3340 PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL2, ctl2);
3341 mutex_exit(&bus_p->bus_speed_mutex);
3342
3343 /*
3344 * Make sure our updates have been reflected in devinfo.
3345 */
3346 pcie_capture_speeds(dip);
3347
3348 return (0);
3349 }
3350
3351 int
pcie_link_retrain(dev_info_t * dip)3352 pcie_link_retrain(dev_info_t *dip)
3353 {
3354 uint16_t ctl;
3355 pcie_bus_t *bus_p = PCIE_DIP2BUS(dip);
3356
3357 if (!PCIE_IS_PCIE(bus_p)) {
3358 return (ENOTSUP);
3359 }
3360
3361 if (!PCIE_IS_RP(bus_p) && !PCIE_IS_SWD(bus_p)) {
3362 return (ENOTSUP);
3363 }
3364
3365 /*
3366 * The PCIe specification suggests that we make sure that the link isn't
3367 * in training before issuing this command in case there was a state
3368 * machine transition prior to when we got here. We wait and then go
3369 * ahead and issue the command anyways.
3370 */
3371 for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3372 uint16_t sts;
3373
3374 sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3375 if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3376 break;
3377 delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3378 }
3379
3380 ctl = PCIE_CAP_GET(16, bus_p, PCIE_LINKCTL);
3381 ctl |= PCIE_LINKCTL_RETRAIN_LINK;
3382 PCIE_CAP_PUT(16, bus_p, PCIE_LINKCTL, ctl);
3383
3384 /*
3385 * Wait again to see if it clears before returning to the user.
3386 */
3387 for (uint32_t i = 0; i < pcie_link_retrain_count; i++) {
3388 uint16_t sts;
3389
3390 sts = PCIE_CAP_GET(16, bus_p, PCIE_LINKSTS);
3391 if ((sts & PCIE_LINKSTS_LINK_TRAINING) == 0)
3392 break;
3393 delay(drv_usectohz(pcie_link_retrain_delay_ms * 1000));
3394 }
3395
3396 return (0);
3397 }
3398
3399 /*
3400 * Here we're going through and grabbing information about a given PCIe device.
3401 * Our situation is a little bit complicated at this point. This gets invoked
3402 * both during early initialization and during hotplug events. We cannot rely on
3403 * the device node having been fully set up, that is, while the pcie_bus_t
3404 * normally contains a ddi_acc_handle_t for configuration space, that may not be
3405 * valid yet as this can occur before child initialization or we may be dealing
3406 * with a function that will never have a handle.
3407 *
3408 * However, we should always have a fully furnished pcie_bus_t, which means that
3409 * we can get its bdf and use that to access the devices configuration space.
3410 */
3411 static int
pcie_fabric_feature_scan(dev_info_t * dip,void * arg)3412 pcie_fabric_feature_scan(dev_info_t *dip, void *arg)
3413 {
3414 pcie_bus_t *bus_p;
3415 uint32_t devcap;
3416 uint16_t mps;
3417 dev_info_t *rcdip;
3418 pcie_fabric_data_t *fab = arg;
3419
3420 /*
3421 * Skip over non-PCIe devices. If we encounter something here, we don't
3422 * bother going through any of its children because we don't have reason
3423 * to believe that a PCIe device that this will impact will exist below
3424 * this. While it is possible that there's a PCIe fabric downstream an
3425 * intermediate old PCI/PCI-X bus, at that point, we'll still trigger
3426 * our complex fabric detection and use the minimums.
3427 *
3428 * The reason this doesn't trigger an immediate flagging as a complex
3429 * case like the one below is because we could be scanning a device that
3430 * is a nexus driver and has children already (albeit that would be
3431 * somewhat surprising as we don't anticipate being called at this
3432 * point).
3433 */
3434 if (pcie_dev(dip) != DDI_SUCCESS) {
3435 return (DDI_WALK_PRUNECHILD);
3436 }
3437
3438 /*
3439 * If we fail to find a pcie_bus_t for some reason, that's somewhat
3440 * surprising. We log this fact and set the complex flag and indicate it
3441 * was because of this case. This immediately transitions us to a
3442 * "complex" case which means use the minimal, safe, settings.
3443 */
3444 bus_p = PCIE_DIP2BUS(dip);
3445 if (bus_p == NULL) {
3446 dev_err(dip, CE_WARN, "failed to find associated pcie_bus_t "
3447 "during fabric scan");
3448 fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3449 return (DDI_WALK_TERMINATE);
3450 }
3451
3452 /*
3453 * In a similar case, there is hardware out there which is a PCIe
3454 * device, but does not advertise a PCIe capability. An example of this
3455 * is the IDT Tsi382A which can hide its PCIe capability. If this is
3456 * the case, we immediately terminate scanning and flag this as a
3457 * 'complex' case which causes us to use guaranteed safe settings.
3458 */
3459 if (bus_p->bus_pcie_off == 0) {
3460 dev_err(dip, CE_WARN, "encountered PCIe device without PCIe "
3461 "capability");
3462 fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3463 return (DDI_WALK_TERMINATE);
3464 }
3465
3466 rcdip = pcie_get_rc_dip(dip);
3467
3468 /*
3469 * First, start by determining what the device's tagging and max packet
3470 * size is. All PCIe devices will always have the 8-bit tag information
3471 * as this has existed since PCIe 1.0. 10-bit tagging requires a V2
3472 * PCIe capability. 14-bit requires the DEV3 cap. If we are missing a
3473 * version or capability, then we always treat that as lacking the bits
3474 * in the fabric.
3475 */
3476 ASSERT3U(bus_p->bus_pcie_off, !=, 0);
3477 devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3478 PCIE_DEVCAP);
3479 mps = devcap & PCIE_DEVCAP_MAX_PAYLOAD_MASK;
3480 if (mps < fab->pfd_mps_found) {
3481 fab->pfd_mps_found = mps;
3482 }
3483
3484 if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) == 0) {
3485 fab->pfd_tag_found &= ~PCIE_TAG_8B;
3486 }
3487
3488 if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0) {
3489 uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3490 bus_p->bus_pcie_off + PCIE_DEVCAP2);
3491 if ((devcap2 & PCIE_DEVCAP2_10B_TAG_COMP_SUP) == 0) {
3492 fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3493 }
3494 } else {
3495 fab->pfd_tag_found &= ~PCIE_TAG_10B_COMP;
3496 }
3497
3498 if (bus_p->bus_dev3_off != 0) {
3499 uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3500 bus_p->bus_dev3_off + PCIE_DEVCAP3);
3501 if ((devcap3 & PCIE_DEVCAP3_14B_TAG_COMP_SUP) == 0) {
3502 fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3503 }
3504 } else {
3505 fab->pfd_tag_found &= ~PCIE_TAG_14B_COMP;
3506 }
3507
3508 /*
3509 * Now that we have captured device information, we must go and ask
3510 * questions of the topology here. The big theory statement enumerates
3511 * several types of cases. The big question we need to answer is have we
3512 * encountered a hotpluggable bridge that means we need to mark this as
3513 * complex.
3514 *
3515 * The big theory statement notes several different kinds of hotplug
3516 * topologies that exist that we can theoretically support. Right now we
3517 * opt to keep our lives simple and focus solely on (4) and (5). These
3518 * can both be summarized by a single, fairly straightforward rule:
3519 *
3520 * The only allowed hotpluggable entity is a root port.
3521 *
3522 * The reason that this can work and detect cases like (6), (7), and our
3523 * other invalid ones is that the hotplug code will scan and find all
3524 * children before we are called into here.
3525 */
3526 if (bus_p->bus_hp_sup_modes != 0) {
3527 /*
3528 * We opt to terminate in this case because there's no value in
3529 * scanning the rest of the tree at this point.
3530 */
3531 if (!PCIE_IS_RP(bus_p)) {
3532 fab->pfd_flags |= PCIE_FABRIC_F_COMPLEX;
3533 return (DDI_WALK_TERMINATE);
3534 }
3535
3536 fab->pfd_flags |= PCIE_FABRIC_F_RP_HP;
3537 }
3538
3539 /*
3540 * As our walk starts at a root port, we need to make sure that we don't
3541 * pick up any of its siblings and their children as those would be
3542 * different PCIe fabric domains for us to scan. In many hardware
3543 * platforms multiple root ports are all at the same level in the tree.
3544 */
3545 if (bus_p->bus_rp_dip == dip) {
3546 return (DDI_WALK_PRUNESIB);
3547 }
3548
3549 return (DDI_WALK_CONTINUE);
3550 }
3551
3552 static int
pcie_fabric_feature_set(dev_info_t * dip,void * arg)3553 pcie_fabric_feature_set(dev_info_t *dip, void *arg)
3554 {
3555 pcie_bus_t *bus_p;
3556 dev_info_t *rcdip;
3557 pcie_fabric_data_t *fab = arg;
3558 uint32_t devcap, devctl;
3559
3560 if (pcie_dev(dip) != DDI_SUCCESS) {
3561 return (DDI_WALK_PRUNECHILD);
3562 }
3563
3564 /*
3565 * The missing bus_t sent us into the complex case previously. We still
3566 * need to make sure all devices have values we expect here and thus
3567 * don't terminate like the above. The same is true for the case where
3568 * there is no PCIe capability.
3569 */
3570 bus_p = PCIE_DIP2BUS(dip);
3571 if (bus_p == NULL || bus_p->bus_pcie_off == 0) {
3572 return (DDI_WALK_CONTINUE);
3573 }
3574 rcdip = pcie_get_rc_dip(dip);
3575
3576 devcap = pci_cfgacc_get32(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3577 PCIE_DEVCAP);
3578 devctl = pci_cfgacc_get16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3579 PCIE_DEVCTL);
3580
3581 if ((devcap & PCIE_DEVCAP_EXT_TAG_8BIT) != 0 &&
3582 (fab->pfd_tag_act & PCIE_TAG_8B) != 0) {
3583 devctl |= PCIE_DEVCTL_EXT_TAG_FIELD_EN;
3584 }
3585
3586 devctl &= ~PCIE_DEVCTL_MAX_PAYLOAD_MASK;
3587 ASSERT0(fab->pfd_mps_act & ~PCIE_DEVCAP_MAX_PAYLOAD_MASK);
3588 devctl |= fab->pfd_mps_act << PCIE_DEVCTL_MAX_PAYLOAD_SHIFT;
3589
3590 pci_cfgacc_put16(rcdip, bus_p->bus_bdf, bus_p->bus_pcie_off +
3591 PCIE_DEVCTL, devctl);
3592
3593 if (bus_p->bus_pcie_vers == PCIE_PCIECAP_VER_2_0 &&
3594 (fab->pfd_tag_act & PCIE_TAG_10B_COMP) != 0) {
3595 uint32_t devcap2 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3596 bus_p->bus_pcie_off + PCIE_DEVCAP2);
3597
3598 if ((devcap2 & PCIE_DEVCAP2_10B_TAG_REQ_SUP) == 0) {
3599 uint16_t devctl2 = pci_cfgacc_get16(rcdip,
3600 bus_p->bus_bdf, bus_p->bus_pcie_off + PCIE_DEVCTL2);
3601 devctl2 |= PCIE_DEVCTL2_10B_TAG_REQ_EN;
3602 pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3603 bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl2);
3604 }
3605 }
3606
3607 if (bus_p->bus_dev3_off != 0 &&
3608 (fab->pfd_tag_act & PCIE_TAG_14B_COMP) != 0) {
3609 uint32_t devcap3 = pci_cfgacc_get32(rcdip, bus_p->bus_bdf,
3610 bus_p->bus_dev3_off + PCIE_DEVCAP3);
3611
3612 if ((devcap3 & PCIE_DEVCAP3_14B_TAG_REQ_SUP) == 0) {
3613 uint16_t devctl3 = pci_cfgacc_get16(rcdip,
3614 bus_p->bus_bdf, bus_p->bus_dev3_off + PCIE_DEVCTL3);
3615 devctl3 |= PCIE_DEVCTL3_14B_TAG_REQ_EN;
3616 pci_cfgacc_put16(rcdip, bus_p->bus_bdf,
3617 bus_p->bus_pcie_off + PCIE_DEVCTL2, devctl3);
3618 }
3619 }
3620
3621 /*
3622 * As our walk starts at a root port, we need to make sure that we don't
3623 * pick up any of its siblings and their children as those would be
3624 * different PCIe fabric domains for us to scan. In many hardware
3625 * platforms multiple root ports are all at the same level in the tree.
3626 */
3627 if (bus_p->bus_rp_dip == dip) {
3628 return (DDI_WALK_PRUNESIB);
3629 }
3630
3631 return (DDI_WALK_CONTINUE);
3632 }
3633
3634 /*
3635 * This is used to scan and determine the total set of PCIe fabric settings that
3636 * we should have in the system for everything downstream of this specified root
3637 * port. Note, it is only really safe to call this while working from the
3638 * perspective of a root port as we will be walking down the entire device tree.
3639 *
3640 * However, our callers, particularly hoptlug, don't have all the information
3641 * we'd like. In particular, we need to check that:
3642 *
3643 * o This is actually a PCIe device.
3644 * o That this is a root port (see the big theory statement to understand this
3645 * constraint).
3646 */
3647 void
pcie_fabric_setup(dev_info_t * dip)3648 pcie_fabric_setup(dev_info_t *dip)
3649 {
3650 pcie_bus_t *bus_p;
3651 pcie_fabric_data_t *fab;
3652 dev_info_t *pdip;
3653
3654 bus_p = PCIE_DIP2BUS(dip);
3655 if (bus_p == NULL || !PCIE_IS_RP(bus_p)) {
3656 return;
3657 }
3658
3659 VERIFY3P(bus_p->bus_fab, !=, NULL);
3660 fab = bus_p->bus_fab;
3661
3662 /*
3663 * For us to call ddi_walk_devs(), our parent needs to be held.
3664 * ddi_walk_devs() will take care of grabbing our dip as part of its
3665 * walk before we iterate over our children.
3666 *
3667 * A reasonable question to ask here is why is it safe to ask for our
3668 * parent? In this case, because we have entered here through some
3669 * thread that's operating on us whether as part of attach or a hotplug
3670 * event, our dip somewhat by definition has to be valid. If we were
3671 * looking at our dip's children and then asking them for a parent, then
3672 * that would be a race condition.
3673 */
3674 pdip = ddi_get_parent(dip);
3675 VERIFY3P(pdip, !=, NULL);
3676 ndi_devi_enter(pdip);
3677 fab->pfd_flags |= PCIE_FABRIC_F_SCANNING;
3678
3679 /*
3680 * Reinitialize the tracking structure to basically set the maximum
3681 * caps. These will be chipped away during the scan.
3682 */
3683 fab->pfd_mps_found = PCIE_DEVCAP_MAX_PAYLOAD_4096;
3684 fab->pfd_tag_found = PCIE_TAG_ALL;
3685 fab->pfd_flags &= ~PCIE_FABRIC_F_COMPLEX;
3686
3687 ddi_walk_devs(dip, pcie_fabric_feature_scan, fab);
3688
3689 if ((fab->pfd_flags & PCIE_FABRIC_F_COMPLEX) != 0) {
3690 fab->pfd_tag_act = PCIE_TAG_5B;
3691 fab->pfd_mps_act = PCIE_DEVCAP_MAX_PAYLOAD_128;
3692 } else {
3693 fab->pfd_tag_act = fab->pfd_tag_found;
3694 fab->pfd_mps_act = fab->pfd_mps_found;
3695 }
3696
3697 ddi_walk_devs(dip, pcie_fabric_feature_set, fab);
3698
3699 fab->pfd_flags &= ~PCIE_FABRIC_F_SCANNING;
3700 ndi_devi_exit(pdip);
3701 }
3702