xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 04bf43505bae1bb20d315a44e977d97aed3e5733)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <sys/firmware.h>
51 #include <sys/sbuf.h>
52 #include <sys/smp.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/if_vlan_var.h>
61 #ifdef RSS
62 #include <net/rss_config.h>
63 #endif
64 #include <netinet/in.h>
65 #include <netinet/ip.h>
66 #ifdef KERN_TLS
67 #include <netinet/tcp_seq.h>
68 #endif
69 #if defined(__i386__) || defined(__amd64__)
70 #include <machine/md_var.h>
71 #include <machine/cputypes.h>
72 #include <vm/vm.h>
73 #include <vm/pmap.h>
74 #endif
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #include <ddb/db_lex.h>
78 #endif
79 
80 #include "common/common.h"
81 #include "common/t4_msg.h"
82 #include "common/t4_regs.h"
83 #include "common/t4_regs_values.h"
84 #include "cudbg/cudbg.h"
85 #include "t4_clip.h"
86 #include "t4_ioctl.h"
87 #include "t4_l2t.h"
88 #include "t4_mp_ring.h"
89 #include "t4_if.h"
90 #include "t4_smt.h"
91 
92 /* T4 bus driver interface */
93 static int t4_probe(device_t);
94 static int t4_attach(device_t);
95 static int t4_detach(device_t);
96 static int t4_child_location(device_t, device_t, struct sbuf *);
97 static int t4_ready(device_t);
98 static int t4_read_port_device(device_t, int, device_t *);
99 static int t4_suspend(device_t);
100 static int t4_resume(device_t);
101 static int t4_reset_prepare(device_t, device_t);
102 static int t4_reset_post(device_t, device_t);
103 static device_method_t t4_methods[] = {
104 	DEVMETHOD(device_probe,		t4_probe),
105 	DEVMETHOD(device_attach,	t4_attach),
106 	DEVMETHOD(device_detach,	t4_detach),
107 	DEVMETHOD(device_suspend,	t4_suspend),
108 	DEVMETHOD(device_resume,	t4_resume),
109 
110 	DEVMETHOD(bus_child_location,	t4_child_location),
111 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
112 	DEVMETHOD(bus_reset_post,	t4_reset_post),
113 
114 	DEVMETHOD(t4_is_main_ready,	t4_ready),
115 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
116 
117 	DEVMETHOD_END
118 };
119 static driver_t t4_driver = {
120 	"t4nex",
121 	t4_methods,
122 	sizeof(struct adapter)
123 };
124 
125 
126 /* T4 port (cxgbe) interface */
127 static int cxgbe_probe(device_t);
128 static int cxgbe_attach(device_t);
129 static int cxgbe_detach(device_t);
130 device_method_t cxgbe_methods[] = {
131 	DEVMETHOD(device_probe,		cxgbe_probe),
132 	DEVMETHOD(device_attach,	cxgbe_attach),
133 	DEVMETHOD(device_detach,	cxgbe_detach),
134 	{ 0, 0 }
135 };
136 static driver_t cxgbe_driver = {
137 	"cxgbe",
138 	cxgbe_methods,
139 	sizeof(struct port_info)
140 };
141 
142 /* T4 VI (vcxgbe) interface */
143 static int vcxgbe_probe(device_t);
144 static int vcxgbe_attach(device_t);
145 static int vcxgbe_detach(device_t);
146 static device_method_t vcxgbe_methods[] = {
147 	DEVMETHOD(device_probe,		vcxgbe_probe),
148 	DEVMETHOD(device_attach,	vcxgbe_attach),
149 	DEVMETHOD(device_detach,	vcxgbe_detach),
150 	{ 0, 0 }
151 };
152 static driver_t vcxgbe_driver = {
153 	"vcxgbe",
154 	vcxgbe_methods,
155 	sizeof(struct vi_info)
156 };
157 
158 static d_ioctl_t t4_ioctl;
159 
160 static struct cdevsw t4_cdevsw = {
161        .d_version = D_VERSION,
162        .d_ioctl = t4_ioctl,
163        .d_name = "t4nex",
164 };
165 
166 /* T5 bus driver interface */
167 static int t5_probe(device_t);
168 static device_method_t t5_methods[] = {
169 	DEVMETHOD(device_probe,		t5_probe),
170 	DEVMETHOD(device_attach,	t4_attach),
171 	DEVMETHOD(device_detach,	t4_detach),
172 	DEVMETHOD(device_suspend,	t4_suspend),
173 	DEVMETHOD(device_resume,	t4_resume),
174 
175 	DEVMETHOD(bus_child_location,	t4_child_location),
176 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
177 	DEVMETHOD(bus_reset_post,	t4_reset_post),
178 
179 	DEVMETHOD(t4_is_main_ready,	t4_ready),
180 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
181 
182 	DEVMETHOD_END
183 };
184 static driver_t t5_driver = {
185 	"t5nex",
186 	t5_methods,
187 	sizeof(struct adapter)
188 };
189 
190 
191 /* T5 port (cxl) interface */
192 static driver_t cxl_driver = {
193 	"cxl",
194 	cxgbe_methods,
195 	sizeof(struct port_info)
196 };
197 
198 /* T5 VI (vcxl) interface */
199 static driver_t vcxl_driver = {
200 	"vcxl",
201 	vcxgbe_methods,
202 	sizeof(struct vi_info)
203 };
204 
205 /* T6 bus driver interface */
206 static int t6_probe(device_t);
207 static device_method_t t6_methods[] = {
208 	DEVMETHOD(device_probe,		t6_probe),
209 	DEVMETHOD(device_attach,	t4_attach),
210 	DEVMETHOD(device_detach,	t4_detach),
211 	DEVMETHOD(device_suspend,	t4_suspend),
212 	DEVMETHOD(device_resume,	t4_resume),
213 
214 	DEVMETHOD(bus_child_location,	t4_child_location),
215 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
216 	DEVMETHOD(bus_reset_post,	t4_reset_post),
217 
218 	DEVMETHOD(t4_is_main_ready,	t4_ready),
219 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
220 
221 	DEVMETHOD_END
222 };
223 static driver_t t6_driver = {
224 	"t6nex",
225 	t6_methods,
226 	sizeof(struct adapter)
227 };
228 
229 
230 /* T6 port (cc) interface */
231 static driver_t cc_driver = {
232 	"cc",
233 	cxgbe_methods,
234 	sizeof(struct port_info)
235 };
236 
237 /* T6 VI (vcc) interface */
238 static driver_t vcc_driver = {
239 	"vcc",
240 	vcxgbe_methods,
241 	sizeof(struct vi_info)
242 };
243 
244 /* ifnet interface */
245 static void cxgbe_init(void *);
246 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
247 static int cxgbe_transmit(if_t, struct mbuf *);
248 static void cxgbe_qflush(if_t);
249 #if defined(KERN_TLS) || defined(RATELIMIT)
250 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
251     struct m_snd_tag **);
252 #endif
253 
254 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
255 
256 /*
257  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
258  * then ADAPTER_LOCK, then t4_uld_list_lock.
259  */
260 static struct sx t4_list_lock;
261 SLIST_HEAD(, adapter) t4_list;
262 #ifdef TCP_OFFLOAD
263 static struct sx t4_uld_list_lock;
264 struct uld_info *t4_uld_list[ULD_MAX + 1];
265 #endif
266 
267 /*
268  * Tunables.  See tweak_tunables() too.
269  *
270  * Each tunable is set to a default value here if it's known at compile-time.
271  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
272  * provide a reasonable default (upto n) when the driver is loaded.
273  *
274  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
275  * T5 are under hw.cxl.
276  */
277 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
278     "cxgbe(4) parameters");
279 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280     "cxgbe(4) T5+ parameters");
281 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) TOE parameters");
283 
284 /*
285  * Number of queues for tx and rx, NIC and offload.
286  */
287 #define NTXQ 16
288 int t4_ntxq = -NTXQ;
289 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
290     "Number of TX queues per port");
291 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
292 
293 #define NRXQ 8
294 int t4_nrxq = -NRXQ;
295 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
296     "Number of RX queues per port");
297 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
298 
299 #define NTXQ_VI 1
300 static int t4_ntxq_vi = -NTXQ_VI;
301 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
302     "Number of TX queues per VI");
303 
304 #define NRXQ_VI 1
305 static int t4_nrxq_vi = -NRXQ_VI;
306 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
307     "Number of RX queues per VI");
308 
309 static int t4_rsrv_noflowq = 0;
310 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
311     0, "Reserve TX queue 0 of each VI for non-flowid packets");
312 
313 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
314 #define NOFLDTXQ 8
315 static int t4_nofldtxq = -NOFLDTXQ;
316 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
317     "Number of offload TX queues per port");
318 
319 #define NOFLDTXQ_VI 1
320 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
321 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
322     "Number of offload TX queues per VI");
323 #endif
324 
325 #if defined(TCP_OFFLOAD)
326 #define NOFLDRXQ 2
327 static int t4_nofldrxq = -NOFLDRXQ;
328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
329     "Number of offload RX queues per port");
330 
331 #define NOFLDRXQ_VI 1
332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
334     "Number of offload RX queues per VI");
335 
336 #define TMR_IDX_OFLD 1
337 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
339     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
340 
341 #define PKTC_IDX_OFLD (-1)
342 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
344     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
345 
346 /* 0 means chip/fw default, non-zero number is value in microseconds */
347 static u_long t4_toe_keepalive_idle = 0;
348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
349     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
350 
351 /* 0 means chip/fw default, non-zero number is value in microseconds */
352 static u_long t4_toe_keepalive_interval = 0;
353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
354     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
355 
356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
357 static int t4_toe_keepalive_count = 0;
358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
359     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
360 
361 /* 0 means chip/fw default, non-zero number is value in microseconds */
362 static u_long t4_toe_rexmt_min = 0;
363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
364     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
365 
366 /* 0 means chip/fw default, non-zero number is value in microseconds */
367 static u_long t4_toe_rexmt_max = 0;
368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
369     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
370 
371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
372 static int t4_toe_rexmt_count = 0;
373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
375 
376 /* -1 means chip/fw default, other values are raw backoff values to use */
377 static int t4_toe_rexmt_backoff[16] = {
378 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
379 };
380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
381     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
382     "cxgbe(4) TOE retransmit backoff values");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[0], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[1], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[2], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[3], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[4], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[5], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[6], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[7], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[8], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[9], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[10], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[11], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[12], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[13], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[14], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[15], 0, "");
415 
416 int t4_ddp_rcvbuf_len = 256 * 1024;
417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
418     &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
419 
420 unsigned int t4_ddp_rcvbuf_cache = 4;
421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
422     &t4_ddp_rcvbuf_cache, 0,
423     "maximum number of free DDP RX buffers to cache per connection");
424 #endif
425 
426 #ifdef DEV_NETMAP
427 #define NN_MAIN_VI	(1 << 0)	/* Native netmap on the main VI */
428 #define NN_EXTRA_VI	(1 << 1)	/* Native netmap on the extra VI(s) */
429 static int t4_native_netmap = NN_EXTRA_VI;
430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
431     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
432 
433 #define NNMTXQ 8
434 static int t4_nnmtxq = -NNMTXQ;
435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
436     "Number of netmap TX queues");
437 
438 #define NNMRXQ 8
439 static int t4_nnmrxq = -NNMRXQ;
440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
441     "Number of netmap RX queues");
442 
443 #define NNMTXQ_VI 2
444 static int t4_nnmtxq_vi = -NNMTXQ_VI;
445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
446     "Number of netmap TX queues per VI");
447 
448 #define NNMRXQ_VI 2
449 static int t4_nnmrxq_vi = -NNMRXQ_VI;
450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
451     "Number of netmap RX queues per VI");
452 #endif
453 
454 /*
455  * Holdoff parameters for ports.
456  */
457 #define TMR_IDX 1
458 int t4_tmr_idx = TMR_IDX;
459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
460     0, "Holdoff timer index");
461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
462 
463 #define PKTC_IDX (-1)
464 int t4_pktc_idx = PKTC_IDX;
465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
466     0, "Holdoff packet counter index");
467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
468 
469 /*
470  * Size (# of entries) of each tx and rx queue.
471  */
472 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
474     "Number of descriptors in each TX queue");
475 
476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
478     "Number of descriptors in each RX queue");
479 
480 /*
481  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
482  */
483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
485     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
486 
487 /*
488  * Configuration file.  All the _CF names here are special.
489  */
490 #define DEFAULT_CF	"default"
491 #define BUILTIN_CF	"built-in"
492 #define FLASH_CF	"flash"
493 #define UWIRE_CF	"uwire"
494 #define FPGA_CF		"fpga"
495 static char t4_cfg_file[32] = DEFAULT_CF;
496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
497     sizeof(t4_cfg_file), "Firmware configuration file");
498 
499 /*
500  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
501  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
502  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
503  *            mark or when signalled to do so, 0 to never emit PAUSE.
504  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
505  *                 negotiated settings will override rx_pause/tx_pause.
506  *                 Otherwise rx_pause/tx_pause are applied forcibly.
507  */
508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
510     &t4_pause_settings, 0,
511     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
512 
513 /*
514  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
515  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
516  *  0 to disable FEC.
517  */
518 static int t4_fec = -1;
519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
520     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
521 
522 /*
523  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
524  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
525  * driver runs as if this is set to 0.
526  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
527  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
528  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
529  *    the firmware anyway (may result in l1cfg errors with old firmwares).
530  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
531  *    means set all FEC bits that are valid for the speed.
532  */
533 static int t4_force_fec = -1;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
535     "Controls the use of FORCE_FEC bit in L1 configuration.");
536 
537 /*
538  * Link autonegotiation.
539  * -1 to run with the firmware default.
540  *  0 to disable.
541  *  1 to enable.
542  */
543 static int t4_autoneg = -1;
544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
545     "Link autonegotiation");
546 
547 /*
548  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
549  * encouraged respectively).  '-n' is the same as 'n' except the firmware
550  * version used in the checks is read from the firmware bundled with the driver.
551  */
552 static int t4_fw_install = 1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
554     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
555 
556 /*
557  * ASIC features that will be used.  Disable the ones you don't want so that the
558  * chip resources aren't wasted on features that will not be used.
559  */
560 static int t4_nbmcaps_allowed = 0;
561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
562     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
563 
564 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
566     &t4_linkcaps_allowed, 0, "Default link capabilities");
567 
568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
569     FW_CAPS_CONFIG_SWITCH_EGRESS;
570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
571     &t4_switchcaps_allowed, 0, "Default switch capabilities");
572 
573 #ifdef RATELIMIT
574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
575 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
576 #else
577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
578 	FW_CAPS_CONFIG_NIC_HASHFILTER;
579 #endif
580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
581     &t4_niccaps_allowed, 0, "Default NIC capabilities");
582 
583 static int t4_toecaps_allowed = -1;
584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
585     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
586 
587 static int t4_rdmacaps_allowed = -1;
588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
589     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
590 
591 static int t4_cryptocaps_allowed = -1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
593     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
594 
595 static int t4_iscsicaps_allowed = -1;
596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
597     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
598 
599 static int t4_fcoecaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
601     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
602 
603 static int t5_write_combine = 0;
604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
605     0, "Use WC instead of UC for BAR2");
606 
607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
608 static int t4_doorbells_allowed = 0xf;
609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
610 	   &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
611 
612 static int t4_num_vis = 1;
613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
614     "Number of VIs per port");
615 
616 /*
617  * PCIe Relaxed Ordering.
618  * -1: driver should figure out a good value.
619  * 0: disable RO.
620  * 1: enable RO.
621  * 2: leave RO alone.
622  */
623 static int pcie_relaxed_ordering = -1;
624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
625     &pcie_relaxed_ordering, 0,
626     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
627 
628 static int t4_panic_on_fatal_err = 0;
629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
630     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
631 
632 static int t4_reset_on_fatal_err = 0;
633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
634     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
635 
636 static int t4_clock_gate_on_suspend = 0;
637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
638     &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
639 
640 static int t4_tx_vm_wr = 0;
641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
642     "Use VM work requests to transmit packets.");
643 
644 /*
645  * Set to non-zero to enable the attack filter.  A packet that matches any of
646  * these conditions will get dropped on ingress:
647  * 1) IP && source address == destination address.
648  * 2) TCP/IP && source address is not a unicast address.
649  * 3) TCP/IP && destination address is not a unicast address.
650  * 4) IP && source address is loopback (127.x.y.z).
651  * 5) IP && destination address is loopback (127.x.y.z).
652  * 6) IPv6 && source address == destination address.
653  * 7) IPv6 && source address is not a unicast address.
654  * 8) IPv6 && source address is loopback (::1/128).
655  * 9) IPv6 && destination address is loopback (::1/128).
656  * 10) IPv6 && source address is unspecified (::/128).
657  * 11) IPv6 && destination address is unspecified (::/128).
658  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
659  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
660  */
661 static int t4_attack_filter = 0;
662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
663     &t4_attack_filter, 0, "Drop suspicious traffic");
664 
665 static int t4_drop_ip_fragments = 0;
666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
667     &t4_drop_ip_fragments, 0, "Drop IP fragments");
668 
669 static int t4_drop_pkts_with_l2_errors = 1;
670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
671     &t4_drop_pkts_with_l2_errors, 0,
672     "Drop all frames with Layer 2 length or checksum errors");
673 
674 static int t4_drop_pkts_with_l3_errors = 0;
675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
676     &t4_drop_pkts_with_l3_errors, 0,
677     "Drop all frames with IP version, length, or checksum errors");
678 
679 static int t4_drop_pkts_with_l4_errors = 0;
680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
681     &t4_drop_pkts_with_l4_errors, 0,
682     "Drop all frames with Layer 4 length, checksum, or other errors");
683 
684 #ifdef TCP_OFFLOAD
685 /*
686  * TOE tunables.
687  */
688 static int t4_cop_managed_offloading = 0;
689 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
690     &t4_cop_managed_offloading, 0,
691     "COP (Connection Offload Policy) controls all TOE offload");
692 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
693 #endif
694 
695 #ifdef KERN_TLS
696 /*
697  * This enables KERN_TLS for all adapters if set.
698  */
699 static int t4_kern_tls = 0;
700 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
701     "Enable KERN_TLS mode for T6 adapters");
702 
703 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
704     "cxgbe(4) KERN_TLS parameters");
705 
706 static int t4_tls_inline_keys = 0;
707 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
708     &t4_tls_inline_keys, 0,
709     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
710     "in card memory.");
711 
712 static int t4_tls_combo_wrs = 0;
713 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
714     0, "Attempt to combine TCB field updates with TLS record work requests.");
715 #endif
716 
717 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
718 static int vi_mac_funcs[] = {
719 	FW_VI_FUNC_ETH,
720 	FW_VI_FUNC_OFLD,
721 	FW_VI_FUNC_IWARP,
722 	FW_VI_FUNC_OPENISCSI,
723 	FW_VI_FUNC_OPENFCOE,
724 	FW_VI_FUNC_FOISCSI,
725 	FW_VI_FUNC_FOFCOE,
726 };
727 
728 struct intrs_and_queues {
729 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
730 	uint16_t num_vis;	/* number of VIs for each port */
731 	uint16_t nirq;		/* Total # of vectors */
732 	uint16_t ntxq;		/* # of NIC txq's for each port */
733 	uint16_t nrxq;		/* # of NIC rxq's for each port */
734 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
735 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
736 	uint16_t nnmtxq;	/* # of netmap txq's */
737 	uint16_t nnmrxq;	/* # of netmap rxq's */
738 
739 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
740 	uint16_t ntxq_vi;	/* # of NIC txq's */
741 	uint16_t nrxq_vi;	/* # of NIC rxq's */
742 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
743 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
744 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
745 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
746 };
747 
748 static void setup_memwin(struct adapter *);
749 static void position_memwin(struct adapter *, int, uint32_t);
750 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
751 static int fwmtype_to_hwmtype(int);
752 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
753     uint32_t *);
754 static int fixup_devlog_params(struct adapter *);
755 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
756 static int contact_firmware(struct adapter *);
757 static int partition_resources(struct adapter *);
758 static int get_params__pre_init(struct adapter *);
759 static int set_params__pre_init(struct adapter *);
760 static int get_params__post_init(struct adapter *);
761 static int set_params__post_init(struct adapter *);
762 static void t4_set_desc(struct adapter *);
763 static bool fixed_ifmedia(struct port_info *);
764 static void build_medialist(struct port_info *);
765 static void init_link_config(struct port_info *);
766 static int fixup_link_config(struct port_info *);
767 static int apply_link_config(struct port_info *);
768 static int cxgbe_init_synchronized(struct vi_info *);
769 static int cxgbe_uninit_synchronized(struct vi_info *);
770 static int adapter_full_init(struct adapter *);
771 static void adapter_full_uninit(struct adapter *);
772 static int vi_full_init(struct vi_info *);
773 static void vi_full_uninit(struct vi_info *);
774 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
775 static void quiesce_txq(struct sge_txq *);
776 static void quiesce_wrq(struct sge_wrq *);
777 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
778 static void quiesce_vi(struct vi_info *);
779 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
780     driver_intr_t *, void *, char *);
781 static int t4_free_irq(struct adapter *, struct irq *);
782 static void t4_init_atid_table(struct adapter *);
783 static void t4_free_atid_table(struct adapter *);
784 static void stop_atid_allocator(struct adapter *);
785 static void restart_atid_allocator(struct adapter *);
786 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
787 static void vi_refresh_stats(struct vi_info *);
788 static void cxgbe_refresh_stats(struct vi_info *);
789 static void cxgbe_tick(void *);
790 static void vi_tick(void *);
791 static void cxgbe_sysctls(struct port_info *);
792 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
793 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
794 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
795 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
796 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
797 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
798 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
799 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
800 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
801 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
802 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
803 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
804 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
805 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
806 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
807 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
808 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
809 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
810 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
811 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
812 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
813 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
814 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
815 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
816 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
817 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
818 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
819 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
820 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
821 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
822 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
823 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
824 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
825 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
826 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
827 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
828 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
829 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
830 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
831 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
832 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
833 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
834 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
835 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
836 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
837 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
839 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
840 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
841 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
842 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
843 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
844 #ifdef TCP_OFFLOAD
845 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
846 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
847 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
848 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
849 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
850 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
851 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
852 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
853 #endif
854 static int get_sge_context(struct adapter *, struct t4_sge_context *);
855 static int load_fw(struct adapter *, struct t4_data *);
856 static int load_cfg(struct adapter *, struct t4_data *);
857 static int load_boot(struct adapter *, struct t4_bootrom *);
858 static int load_bootcfg(struct adapter *, struct t4_data *);
859 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
860 static void free_offload_policy(struct t4_offload_policy *);
861 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
862 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
863 static int read_i2c(struct adapter *, struct t4_i2c_data *);
864 static int clear_stats(struct adapter *, u_int);
865 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
866 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
867 static inline int stop_adapter(struct adapter *);
868 static inline void set_adapter_hwstatus(struct adapter *, const bool);
869 static int stop_lld(struct adapter *);
870 static inline int restart_adapter(struct adapter *);
871 static int restart_lld(struct adapter *);
872 #ifdef TCP_OFFLOAD
873 static int deactivate_all_uld(struct adapter *);
874 static void stop_all_uld(struct adapter *);
875 static void restart_all_uld(struct adapter *);
876 #endif
877 #ifdef KERN_TLS
878 static int ktls_capability(struct adapter *, bool);
879 #endif
880 static int mod_event(module_t, int, void *);
881 static int notify_siblings(device_t, int);
882 static uint64_t vi_get_counter(if_t, ift_counter);
883 static uint64_t cxgbe_get_counter(if_t, ift_counter);
884 static void enable_vxlan_rx(struct adapter *);
885 static void reset_adapter_task(void *, int);
886 static void fatal_error_task(void *, int);
887 static void dump_devlog(struct adapter *);
888 static void dump_cim_regs(struct adapter *);
889 static void dump_cimla(struct adapter *);
890 
891 struct {
892 	uint16_t device;
893 	char *desc;
894 } t4_pciids[] = {
895 	{0xa000, "Chelsio Terminator 4 FPGA"},
896 	{0x4400, "Chelsio T440-dbg"},
897 	{0x4401, "Chelsio T420-CR"},
898 	{0x4402, "Chelsio T422-CR"},
899 	{0x4403, "Chelsio T440-CR"},
900 	{0x4404, "Chelsio T420-BCH"},
901 	{0x4405, "Chelsio T440-BCH"},
902 	{0x4406, "Chelsio T440-CH"},
903 	{0x4407, "Chelsio T420-SO"},
904 	{0x4408, "Chelsio T420-CX"},
905 	{0x4409, "Chelsio T420-BT"},
906 	{0x440a, "Chelsio T404-BT"},
907 	{0x440e, "Chelsio T440-LP-CR"},
908 }, t5_pciids[] = {
909 	{0xb000, "Chelsio Terminator 5 FPGA"},
910 	{0x5400, "Chelsio T580-dbg"},
911 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
912 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
913 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
914 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
915 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
916 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
917 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
918 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
919 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
920 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
921 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
922 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
923 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
924 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
925 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
926 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
927 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
928 
929 	/* Custom */
930 	{0x5483, "Custom T540-CR"},
931 	{0x5484, "Custom T540-BT"},
932 }, t6_pciids[] = {
933 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
934 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
935 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
936 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
937 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
938 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
939 	{0x6405, "Chelsio T6225-SO-OCP3"},	/* 2 x 10/25G, nomem */
940 	{0x6406, "Chelsio T6225-OCP3"},		/* 2 x 10/25G */
941 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
942 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
943 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
944 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
945 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
946 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
947 	{0x6414, "Chelsio T62100-SO-OCP3"},	/* 2 x 40/50/100G, nomem */
948 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
949 
950 	/* Custom */
951 	{0x6480, "Custom T6225-CR"},
952 	{0x6481, "Custom T62100-CR"},
953 	{0x6482, "Custom T6225-CR"},
954 	{0x6483, "Custom T62100-CR"},
955 	{0x6484, "Custom T64100-CR"},
956 	{0x6485, "Custom T6240-SO"},
957 	{0x6486, "Custom T6225-SO-CR"},
958 	{0x6487, "Custom T6225-CR"},
959 };
960 
961 #ifdef TCP_OFFLOAD
962 /*
963  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
964  * be exactly the same for both rxq and ofld_rxq.
965  */
966 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
967 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
968 #endif
969 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
970 
971 static int
t4_probe(device_t dev)972 t4_probe(device_t dev)
973 {
974 	int i;
975 	uint16_t v = pci_get_vendor(dev);
976 	uint16_t d = pci_get_device(dev);
977 	uint8_t f = pci_get_function(dev);
978 
979 	if (v != PCI_VENDOR_ID_CHELSIO)
980 		return (ENXIO);
981 
982 	/* Attach only to PF0 of the FPGA */
983 	if (d == 0xa000 && f != 0)
984 		return (ENXIO);
985 
986 	for (i = 0; i < nitems(t4_pciids); i++) {
987 		if (d == t4_pciids[i].device) {
988 			device_set_desc(dev, t4_pciids[i].desc);
989 			return (BUS_PROBE_DEFAULT);
990 		}
991 	}
992 
993 	return (ENXIO);
994 }
995 
996 static int
t5_probe(device_t dev)997 t5_probe(device_t dev)
998 {
999 	int i;
1000 	uint16_t v = pci_get_vendor(dev);
1001 	uint16_t d = pci_get_device(dev);
1002 	uint8_t f = pci_get_function(dev);
1003 
1004 	if (v != PCI_VENDOR_ID_CHELSIO)
1005 		return (ENXIO);
1006 
1007 	/* Attach only to PF0 of the FPGA */
1008 	if (d == 0xb000 && f != 0)
1009 		return (ENXIO);
1010 
1011 	for (i = 0; i < nitems(t5_pciids); i++) {
1012 		if (d == t5_pciids[i].device) {
1013 			device_set_desc(dev, t5_pciids[i].desc);
1014 			return (BUS_PROBE_DEFAULT);
1015 		}
1016 	}
1017 
1018 	return (ENXIO);
1019 }
1020 
1021 static int
t6_probe(device_t dev)1022 t6_probe(device_t dev)
1023 {
1024 	int i;
1025 	uint16_t v = pci_get_vendor(dev);
1026 	uint16_t d = pci_get_device(dev);
1027 
1028 	if (v != PCI_VENDOR_ID_CHELSIO)
1029 		return (ENXIO);
1030 
1031 	for (i = 0; i < nitems(t6_pciids); i++) {
1032 		if (d == t6_pciids[i].device) {
1033 			device_set_desc(dev, t6_pciids[i].desc);
1034 			return (BUS_PROBE_DEFAULT);
1035 		}
1036 	}
1037 
1038 	return (ENXIO);
1039 }
1040 
1041 static void
t5_attribute_workaround(device_t dev)1042 t5_attribute_workaround(device_t dev)
1043 {
1044 	device_t root_port;
1045 	uint32_t v;
1046 
1047 	/*
1048 	 * The T5 chips do not properly echo the No Snoop and Relaxed
1049 	 * Ordering attributes when replying to a TLP from a Root
1050 	 * Port.  As a workaround, find the parent Root Port and
1051 	 * disable No Snoop and Relaxed Ordering.  Note that this
1052 	 * affects all devices under this root port.
1053 	 */
1054 	root_port = pci_find_pcie_root_port(dev);
1055 	if (root_port == NULL) {
1056 		device_printf(dev, "Unable to find parent root port\n");
1057 		return;
1058 	}
1059 
1060 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1061 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1062 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1063 	    0)
1064 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1065 		    device_get_nameunit(root_port));
1066 }
1067 
1068 static const struct devnames devnames[] = {
1069 	{
1070 		.nexus_name = "t4nex",
1071 		.ifnet_name = "cxgbe",
1072 		.vi_ifnet_name = "vcxgbe",
1073 		.pf03_drv_name = "t4iov",
1074 		.vf_nexus_name = "t4vf",
1075 		.vf_ifnet_name = "cxgbev"
1076 	}, {
1077 		.nexus_name = "t5nex",
1078 		.ifnet_name = "cxl",
1079 		.vi_ifnet_name = "vcxl",
1080 		.pf03_drv_name = "t5iov",
1081 		.vf_nexus_name = "t5vf",
1082 		.vf_ifnet_name = "cxlv"
1083 	}, {
1084 		.nexus_name = "t6nex",
1085 		.ifnet_name = "cc",
1086 		.vi_ifnet_name = "vcc",
1087 		.pf03_drv_name = "t6iov",
1088 		.vf_nexus_name = "t6vf",
1089 		.vf_ifnet_name = "ccv"
1090 	}
1091 };
1092 
1093 void
t4_init_devnames(struct adapter * sc)1094 t4_init_devnames(struct adapter *sc)
1095 {
1096 	int id;
1097 
1098 	id = chip_id(sc);
1099 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1100 		sc->names = &devnames[id - CHELSIO_T4];
1101 	else {
1102 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
1103 		sc->names = NULL;
1104 	}
1105 }
1106 
1107 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1108 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1109 {
1110 	const char *parent, *name;
1111 	long value;
1112 	int line, unit;
1113 
1114 	line = 0;
1115 	parent = device_get_nameunit(sc->dev);
1116 	name = sc->names->ifnet_name;
1117 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1118 		if (resource_long_value(name, unit, "port", &value) == 0 &&
1119 		    value == pi->port_id)
1120 			return (unit);
1121 	}
1122 	return (-1);
1123 }
1124 
1125 static void
t4_calibration(void * arg)1126 t4_calibration(void *arg)
1127 {
1128 	struct adapter *sc;
1129 	struct clock_sync *cur, *nex;
1130 	uint64_t hw;
1131 	sbintime_t sbt;
1132 	int next_up;
1133 
1134 	sc = (struct adapter *)arg;
1135 
1136 	KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1137 	hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1138 	sbt = sbinuptime();
1139 
1140 	cur = &sc->cal_info[sc->cal_current];
1141 	next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1142 	nex = &sc->cal_info[next_up];
1143 	if (__predict_false(sc->cal_count == 0)) {
1144 		/* First time in, just get the values in */
1145 		cur->hw_cur = hw;
1146 		cur->sbt_cur = sbt;
1147 		sc->cal_count++;
1148 		goto done;
1149 	}
1150 
1151 	if (cur->hw_cur == hw) {
1152 		/* The clock is not advancing? */
1153 		sc->cal_count = 0;
1154 		atomic_store_rel_int(&cur->gen, 0);
1155 		goto done;
1156 	}
1157 
1158 	seqc_write_begin(&nex->gen);
1159 	nex->hw_prev = cur->hw_cur;
1160 	nex->sbt_prev = cur->sbt_cur;
1161 	nex->hw_cur = hw;
1162 	nex->sbt_cur = sbt;
1163 	seqc_write_end(&nex->gen);
1164 	sc->cal_current = next_up;
1165 done:
1166 	callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1167 	    sc, C_DIRECT_EXEC);
1168 }
1169 
1170 static void
t4_calibration_start(struct adapter * sc)1171 t4_calibration_start(struct adapter *sc)
1172 {
1173 	/*
1174 	 * Here if we have not done a calibration
1175 	 * then do so otherwise start the appropriate
1176 	 * timer.
1177 	 */
1178 	int i;
1179 
1180 	for (i = 0; i < CNT_CAL_INFO; i++) {
1181 		sc->cal_info[i].gen = 0;
1182 	}
1183 	sc->cal_current = 0;
1184 	sc->cal_count = 0;
1185 	sc->cal_gen = 0;
1186 	t4_calibration(sc);
1187 }
1188 
1189 static int
t4_attach(device_t dev)1190 t4_attach(device_t dev)
1191 {
1192 	struct adapter *sc;
1193 	int rc = 0, i, j, rqidx, tqidx, nports;
1194 	struct make_dev_args mda;
1195 	struct intrs_and_queues iaq;
1196 	struct sge *s;
1197 	uint32_t *buf;
1198 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1199 	int ofld_tqidx;
1200 #endif
1201 #ifdef TCP_OFFLOAD
1202 	int ofld_rqidx;
1203 #endif
1204 #ifdef DEV_NETMAP
1205 	int nm_rqidx, nm_tqidx;
1206 #endif
1207 	int num_vis;
1208 
1209 	sc = device_get_softc(dev);
1210 	sc->dev = dev;
1211 	sysctl_ctx_init(&sc->ctx);
1212 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1213 
1214 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1215 		t5_attribute_workaround(dev);
1216 	pci_enable_busmaster(dev);
1217 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1218 		uint32_t v;
1219 
1220 		pci_set_max_read_req(dev, 4096);
1221 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1222 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1223 		if (pcie_relaxed_ordering == 0 &&
1224 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1225 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1226 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1227 		} else if (pcie_relaxed_ordering == 1 &&
1228 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1229 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1230 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1231 		}
1232 	}
1233 
1234 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1235 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1236 	sc->traceq = -1;
1237 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1238 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1239 	    device_get_nameunit(dev));
1240 
1241 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1242 	    device_get_nameunit(dev));
1243 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1244 	t4_add_adapter(sc);
1245 
1246 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1247 	TAILQ_INIT(&sc->sfl);
1248 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1249 
1250 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1251 
1252 	sc->policy = NULL;
1253 	rw_init(&sc->policy_lock, "connection offload policy");
1254 
1255 	callout_init(&sc->ktls_tick, 1);
1256 
1257 	callout_init(&sc->cal_callout, 1);
1258 
1259 	refcount_init(&sc->vxlan_refcount, 0);
1260 
1261 	TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1262 	TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1263 
1264 	sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1265 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1266 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1267 	sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1268 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1269 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1270 
1271 	rc = t4_map_bars_0_and_4(sc);
1272 	if (rc != 0)
1273 		goto done; /* error message displayed already */
1274 
1275 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1276 
1277 	/* Prepare the adapter for operation. */
1278 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1279 	rc = -t4_prep_adapter(sc, buf);
1280 	free(buf, M_CXGBE);
1281 	if (rc != 0) {
1282 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1283 		goto done;
1284 	}
1285 
1286 	/*
1287 	 * This is the real PF# to which we're attaching.  Works from within PCI
1288 	 * passthrough environments too, where pci_get_function() could return a
1289 	 * different PF# depending on the passthrough configuration.  We need to
1290 	 * use the real PF# in all our communication with the firmware.
1291 	 */
1292 	j = t4_read_reg(sc, A_PL_WHOAMI);
1293 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1294 	sc->mbox = sc->pf;
1295 
1296 	t4_init_devnames(sc);
1297 	if (sc->names == NULL) {
1298 		rc = ENOTSUP;
1299 		goto done; /* error message displayed already */
1300 	}
1301 
1302 	/*
1303 	 * Do this really early, with the memory windows set up even before the
1304 	 * character device.  The userland tool's register i/o and mem read
1305 	 * will work even in "recovery mode".
1306 	 */
1307 	setup_memwin(sc);
1308 	if (t4_init_devlog_params(sc, 0) == 0)
1309 		fixup_devlog_params(sc);
1310 	make_dev_args_init(&mda);
1311 	mda.mda_devsw = &t4_cdevsw;
1312 	mda.mda_uid = UID_ROOT;
1313 	mda.mda_gid = GID_WHEEL;
1314 	mda.mda_mode = 0600;
1315 	mda.mda_si_drv1 = sc;
1316 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1317 	if (rc != 0)
1318 		device_printf(dev, "failed to create nexus char device: %d.\n",
1319 		    rc);
1320 
1321 	/* Go no further if recovery mode has been requested. */
1322 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1323 		device_printf(dev, "recovery mode.\n");
1324 		goto done;
1325 	}
1326 
1327 #if defined(__i386__)
1328 	if ((cpu_feature & CPUID_CX8) == 0) {
1329 		device_printf(dev, "64 bit atomics not available.\n");
1330 		rc = ENOTSUP;
1331 		goto done;
1332 	}
1333 #endif
1334 
1335 	/* Contact the firmware and try to become the master driver. */
1336 	rc = contact_firmware(sc);
1337 	if (rc != 0)
1338 		goto done; /* error message displayed already */
1339 	MPASS(sc->flags & FW_OK);
1340 
1341 	rc = get_params__pre_init(sc);
1342 	if (rc != 0)
1343 		goto done; /* error message displayed already */
1344 
1345 	if (sc->flags & MASTER_PF) {
1346 		rc = partition_resources(sc);
1347 		if (rc != 0)
1348 			goto done; /* error message displayed already */
1349 	}
1350 
1351 	rc = get_params__post_init(sc);
1352 	if (rc != 0)
1353 		goto done; /* error message displayed already */
1354 
1355 	rc = set_params__post_init(sc);
1356 	if (rc != 0)
1357 		goto done; /* error message displayed already */
1358 
1359 	rc = t4_map_bar_2(sc);
1360 	if (rc != 0)
1361 		goto done; /* error message displayed already */
1362 
1363 	rc = t4_adj_doorbells(sc);
1364 	if (rc != 0)
1365 		goto done; /* error message displayed already */
1366 
1367 	rc = t4_create_dma_tag(sc);
1368 	if (rc != 0)
1369 		goto done; /* error message displayed already */
1370 
1371 	/*
1372 	 * First pass over all the ports - allocate VIs and initialize some
1373 	 * basic parameters like mac address, port type, etc.
1374 	 */
1375 	for_each_port(sc, i) {
1376 		struct port_info *pi;
1377 
1378 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1379 		sc->port[i] = pi;
1380 
1381 		/* These must be set before t4_port_init */
1382 		pi->adapter = sc;
1383 		pi->port_id = i;
1384 		/*
1385 		 * XXX: vi[0] is special so we can't delay this allocation until
1386 		 * pi->nvi's final value is known.
1387 		 */
1388 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1389 		    M_ZERO | M_WAITOK);
1390 
1391 		/*
1392 		 * Allocate the "main" VI and initialize parameters
1393 		 * like mac addr.
1394 		 */
1395 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1396 		if (rc != 0) {
1397 			device_printf(dev, "unable to initialize port %d: %d\n",
1398 			    i, rc);
1399 			free(pi->vi, M_CXGBE);
1400 			free(pi, M_CXGBE);
1401 			sc->port[i] = NULL;
1402 			goto done;
1403 		}
1404 
1405 		if (is_bt(pi->port_type))
1406 			setbit(&sc->bt_map, pi->tx_chan);
1407 		else
1408 			MPASS(!isset(&sc->bt_map, pi->tx_chan));
1409 
1410 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1411 		    device_get_nameunit(dev), i);
1412 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1413 		sc->chan_map[pi->tx_chan] = i;
1414 
1415 		/*
1416 		 * The MPS counter for FCS errors doesn't work correctly on the
1417 		 * T6 so we use the MAC counter here.  Which MAC is in use
1418 		 * depends on the link settings which will be known when the
1419 		 * link comes up.
1420 		 */
1421 		if (is_t6(sc))
1422 			pi->fcs_reg = -1;
1423 		else {
1424 			pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1425 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1426 		}
1427 		pi->fcs_base = 0;
1428 
1429 		/* All VIs on this port share this media. */
1430 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1431 		    cxgbe_media_status);
1432 
1433 		PORT_LOCK(pi);
1434 		init_link_config(pi);
1435 		fixup_link_config(pi);
1436 		build_medialist(pi);
1437 		if (fixed_ifmedia(pi))
1438 			pi->flags |= FIXED_IFMEDIA;
1439 		PORT_UNLOCK(pi);
1440 
1441 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1442 		    t4_ifnet_unit(sc, pi));
1443 		if (pi->dev == NULL) {
1444 			device_printf(dev,
1445 			    "failed to add device for port %d.\n", i);
1446 			rc = ENXIO;
1447 			goto done;
1448 		}
1449 		pi->vi[0].dev = pi->dev;
1450 		device_set_softc(pi->dev, pi);
1451 	}
1452 
1453 	/*
1454 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1455 	 */
1456 	nports = sc->params.nports;
1457 	rc = cfg_itype_and_nqueues(sc, &iaq);
1458 	if (rc != 0)
1459 		goto done; /* error message displayed already */
1460 
1461 	num_vis = iaq.num_vis;
1462 	sc->intr_type = iaq.intr_type;
1463 	sc->intr_count = iaq.nirq;
1464 
1465 	s = &sc->sge;
1466 	s->nrxq = nports * iaq.nrxq;
1467 	s->ntxq = nports * iaq.ntxq;
1468 	if (num_vis > 1) {
1469 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1470 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1471 	}
1472 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1473 	s->neq += nports;		/* ctrl queues: 1 per port */
1474 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1475 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1476 	if (is_offload(sc) || is_ethoffload(sc)) {
1477 		s->nofldtxq = nports * iaq.nofldtxq;
1478 		if (num_vis > 1)
1479 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1480 		s->neq += s->nofldtxq;
1481 
1482 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1483 		    M_CXGBE, M_ZERO | M_WAITOK);
1484 	}
1485 #endif
1486 #ifdef TCP_OFFLOAD
1487 	if (is_offload(sc)) {
1488 		s->nofldrxq = nports * iaq.nofldrxq;
1489 		if (num_vis > 1)
1490 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1491 		s->neq += s->nofldrxq;	/* free list */
1492 		s->niq += s->nofldrxq;
1493 
1494 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1495 		    M_CXGBE, M_ZERO | M_WAITOK);
1496 	}
1497 #endif
1498 #ifdef DEV_NETMAP
1499 	s->nnmrxq = 0;
1500 	s->nnmtxq = 0;
1501 	if (t4_native_netmap & NN_MAIN_VI) {
1502 		s->nnmrxq += nports * iaq.nnmrxq;
1503 		s->nnmtxq += nports * iaq.nnmtxq;
1504 	}
1505 	if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1506 		s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1507 		s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1508 	}
1509 	s->neq += s->nnmtxq + s->nnmrxq;
1510 	s->niq += s->nnmrxq;
1511 
1512 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1513 	    M_CXGBE, M_ZERO | M_WAITOK);
1514 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1515 	    M_CXGBE, M_ZERO | M_WAITOK);
1516 #endif
1517 	MPASS(s->niq <= s->iqmap_sz);
1518 	MPASS(s->neq <= s->eqmap_sz);
1519 
1520 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1521 	    M_ZERO | M_WAITOK);
1522 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1523 	    M_ZERO | M_WAITOK);
1524 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1525 	    M_ZERO | M_WAITOK);
1526 	s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1527 	    M_ZERO | M_WAITOK);
1528 	s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1529 	    M_ZERO | M_WAITOK);
1530 
1531 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1532 	    M_ZERO | M_WAITOK);
1533 
1534 	t4_init_l2t(sc, M_WAITOK);
1535 	t4_init_smt(sc, M_WAITOK);
1536 	t4_init_tx_sched(sc);
1537 	t4_init_atid_table(sc);
1538 #ifdef RATELIMIT
1539 	t4_init_etid_table(sc);
1540 #endif
1541 #ifdef INET6
1542 	t4_init_clip_table(sc);
1543 #endif
1544 	if (sc->vres.key.size != 0)
1545 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1546 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1547 
1548 	/*
1549 	 * Second pass over the ports.  This time we know the number of rx and
1550 	 * tx queues that each port should get.
1551 	 */
1552 	rqidx = tqidx = 0;
1553 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1554 	ofld_tqidx = 0;
1555 #endif
1556 #ifdef TCP_OFFLOAD
1557 	ofld_rqidx = 0;
1558 #endif
1559 #ifdef DEV_NETMAP
1560 	nm_rqidx = nm_tqidx = 0;
1561 #endif
1562 	for_each_port(sc, i) {
1563 		struct port_info *pi = sc->port[i];
1564 		struct vi_info *vi;
1565 
1566 		if (pi == NULL)
1567 			continue;
1568 
1569 		pi->nvi = num_vis;
1570 		for_each_vi(pi, j, vi) {
1571 			vi->pi = pi;
1572 			vi->adapter = sc;
1573 			vi->first_intr = -1;
1574 			vi->qsize_rxq = t4_qsize_rxq;
1575 			vi->qsize_txq = t4_qsize_txq;
1576 
1577 			vi->first_rxq = rqidx;
1578 			vi->first_txq = tqidx;
1579 			vi->tmr_idx = t4_tmr_idx;
1580 			vi->pktc_idx = t4_pktc_idx;
1581 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1582 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1583 
1584 			rqidx += vi->nrxq;
1585 			tqidx += vi->ntxq;
1586 
1587 			if (j == 0 && vi->ntxq > 1)
1588 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1589 			else
1590 				vi->rsrv_noflowq = 0;
1591 
1592 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1593 			vi->first_ofld_txq = ofld_tqidx;
1594 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1595 			ofld_tqidx += vi->nofldtxq;
1596 #endif
1597 #ifdef TCP_OFFLOAD
1598 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1599 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1600 			vi->first_ofld_rxq = ofld_rqidx;
1601 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1602 
1603 			ofld_rqidx += vi->nofldrxq;
1604 #endif
1605 #ifdef DEV_NETMAP
1606 			vi->first_nm_rxq = nm_rqidx;
1607 			vi->first_nm_txq = nm_tqidx;
1608 			if (j == 0) {
1609 				vi->nnmrxq = iaq.nnmrxq;
1610 				vi->nnmtxq = iaq.nnmtxq;
1611 			} else {
1612 				vi->nnmrxq = iaq.nnmrxq_vi;
1613 				vi->nnmtxq = iaq.nnmtxq_vi;
1614 			}
1615 			nm_rqidx += vi->nnmrxq;
1616 			nm_tqidx += vi->nnmtxq;
1617 #endif
1618 		}
1619 	}
1620 
1621 	rc = t4_setup_intr_handlers(sc);
1622 	if (rc != 0) {
1623 		device_printf(dev,
1624 		    "failed to setup interrupt handlers: %d\n", rc);
1625 		goto done;
1626 	}
1627 
1628 	bus_identify_children(dev);
1629 
1630 	/*
1631 	 * Ensure thread-safe mailbox access (in debug builds).
1632 	 *
1633 	 * So far this was the only thread accessing the mailbox but various
1634 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1635 	 * will access the mailbox from different threads.
1636 	 */
1637 	sc->flags |= CHK_MBOX_ACCESS;
1638 
1639 	bus_attach_children(dev);
1640 	t4_calibration_start(sc);
1641 
1642 	device_printf(dev,
1643 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1644 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1645 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1646 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1647 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1648 
1649 	t4_set_desc(sc);
1650 
1651 	notify_siblings(dev, 0);
1652 
1653 done:
1654 	if (rc != 0 && sc->cdev) {
1655 		/* cdev was created and so cxgbetool works; recover that way. */
1656 		device_printf(dev,
1657 		    "error during attach, adapter is now in recovery mode.\n");
1658 		rc = 0;
1659 	}
1660 
1661 	if (rc != 0)
1662 		t4_detach_common(dev);
1663 	else
1664 		t4_sysctls(sc);
1665 
1666 	return (rc);
1667 }
1668 
1669 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1670 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1671 {
1672 	struct adapter *sc;
1673 	struct port_info *pi;
1674 	int i;
1675 
1676 	sc = device_get_softc(bus);
1677 	for_each_port(sc, i) {
1678 		pi = sc->port[i];
1679 		if (pi != NULL && pi->dev == dev) {
1680 			sbuf_printf(sb, "port=%d", pi->port_id);
1681 			break;
1682 		}
1683 	}
1684 	return (0);
1685 }
1686 
1687 static int
t4_ready(device_t dev)1688 t4_ready(device_t dev)
1689 {
1690 	struct adapter *sc;
1691 
1692 	sc = device_get_softc(dev);
1693 	if (sc->flags & FW_OK)
1694 		return (0);
1695 	return (ENXIO);
1696 }
1697 
1698 static int
t4_read_port_device(device_t dev,int port,device_t * child)1699 t4_read_port_device(device_t dev, int port, device_t *child)
1700 {
1701 	struct adapter *sc;
1702 	struct port_info *pi;
1703 
1704 	sc = device_get_softc(dev);
1705 	if (port < 0 || port >= MAX_NPORTS)
1706 		return (EINVAL);
1707 	pi = sc->port[port];
1708 	if (pi == NULL || pi->dev == NULL)
1709 		return (ENXIO);
1710 	*child = pi->dev;
1711 	return (0);
1712 }
1713 
1714 static int
notify_siblings(device_t dev,int detaching)1715 notify_siblings(device_t dev, int detaching)
1716 {
1717 	device_t sibling;
1718 	int error, i;
1719 
1720 	error = 0;
1721 	for (i = 0; i < PCI_FUNCMAX; i++) {
1722 		if (i == pci_get_function(dev))
1723 			continue;
1724 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1725 		    pci_get_slot(dev), i);
1726 		if (sibling == NULL || !device_is_attached(sibling))
1727 			continue;
1728 		if (detaching)
1729 			error = T4_DETACH_CHILD(sibling);
1730 		else
1731 			(void)T4_ATTACH_CHILD(sibling);
1732 		if (error)
1733 			break;
1734 	}
1735 	return (error);
1736 }
1737 
1738 /*
1739  * Idempotent
1740  */
1741 static int
t4_detach(device_t dev)1742 t4_detach(device_t dev)
1743 {
1744 	int rc;
1745 
1746 	rc = notify_siblings(dev, 1);
1747 	if (rc) {
1748 		device_printf(dev,
1749 		    "failed to detach sibling devices: %d\n", rc);
1750 		return (rc);
1751 	}
1752 
1753 	return (t4_detach_common(dev));
1754 }
1755 
1756 int
t4_detach_common(device_t dev)1757 t4_detach_common(device_t dev)
1758 {
1759 	struct adapter *sc;
1760 	struct port_info *pi;
1761 	int i, rc;
1762 
1763 	sc = device_get_softc(dev);
1764 
1765 #ifdef TCP_OFFLOAD
1766 	rc = deactivate_all_uld(sc);
1767 	if (rc) {
1768 		device_printf(dev,
1769 		    "failed to detach upper layer drivers: %d\n", rc);
1770 		return (rc);
1771 	}
1772 #endif
1773 
1774 	if (sc->cdev) {
1775 		destroy_dev(sc->cdev);
1776 		sc->cdev = NULL;
1777 	}
1778 
1779 	sx_xlock(&t4_list_lock);
1780 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1781 	sx_xunlock(&t4_list_lock);
1782 
1783 	sc->flags &= ~CHK_MBOX_ACCESS;
1784 	if (sc->flags & FULL_INIT_DONE) {
1785 		if (!(sc->flags & IS_VF))
1786 			t4_intr_disable(sc);
1787 	}
1788 
1789 	if (device_is_attached(dev)) {
1790 		rc = bus_detach_children(dev);
1791 		if (rc) {
1792 			device_printf(dev,
1793 			    "failed to detach child devices: %d\n", rc);
1794 			return (rc);
1795 		}
1796 	}
1797 
1798 	for (i = 0; i < sc->intr_count; i++)
1799 		t4_free_irq(sc, &sc->irq[i]);
1800 
1801 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1802 		t4_free_tx_sched(sc);
1803 
1804 	for (i = 0; i < MAX_NPORTS; i++) {
1805 		pi = sc->port[i];
1806 		if (pi) {
1807 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1808 
1809 			mtx_destroy(&pi->pi_lock);
1810 			free(pi->vi, M_CXGBE);
1811 			free(pi, M_CXGBE);
1812 		}
1813 	}
1814 	callout_stop(&sc->cal_callout);
1815 	callout_drain(&sc->cal_callout);
1816 	device_delete_children(dev);
1817 	sysctl_ctx_free(&sc->ctx);
1818 	adapter_full_uninit(sc);
1819 
1820 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1821 		t4_fw_bye(sc, sc->mbox);
1822 
1823 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1824 		pci_release_msi(dev);
1825 
1826 	if (sc->regs_res)
1827 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1828 		    sc->regs_res);
1829 
1830 	if (sc->udbs_res)
1831 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1832 		    sc->udbs_res);
1833 
1834 	if (sc->msix_res)
1835 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1836 		    sc->msix_res);
1837 
1838 	if (sc->l2t)
1839 		t4_free_l2t(sc);
1840 	if (sc->smt)
1841 		t4_free_smt(sc->smt);
1842 	t4_free_atid_table(sc);
1843 #ifdef RATELIMIT
1844 	t4_free_etid_table(sc);
1845 #endif
1846 	if (sc->key_map)
1847 		vmem_destroy(sc->key_map);
1848 #ifdef INET6
1849 	t4_destroy_clip_table(sc);
1850 #endif
1851 
1852 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1853 	free(sc->sge.ofld_txq, M_CXGBE);
1854 #endif
1855 #ifdef TCP_OFFLOAD
1856 	free(sc->sge.ofld_rxq, M_CXGBE);
1857 #endif
1858 #ifdef DEV_NETMAP
1859 	free(sc->sge.nm_rxq, M_CXGBE);
1860 	free(sc->sge.nm_txq, M_CXGBE);
1861 #endif
1862 	free(sc->irq, M_CXGBE);
1863 	free(sc->sge.rxq, M_CXGBE);
1864 	free(sc->sge.txq, M_CXGBE);
1865 	free(sc->sge.ctrlq, M_CXGBE);
1866 	free(sc->sge.iqmap, M_CXGBE);
1867 	free(sc->sge.eqmap, M_CXGBE);
1868 	free(sc->tids.ftid_tab, M_CXGBE);
1869 	free(sc->tids.hpftid_tab, M_CXGBE);
1870 	free_hftid_hash(&sc->tids);
1871 	free(sc->tids.tid_tab, M_CXGBE);
1872 	t4_destroy_dma_tag(sc);
1873 
1874 	callout_drain(&sc->ktls_tick);
1875 	callout_drain(&sc->sfl_callout);
1876 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1877 		mtx_destroy(&sc->tids.ftid_lock);
1878 		cv_destroy(&sc->tids.ftid_cv);
1879 	}
1880 	if (mtx_initialized(&sc->tids.atid_lock))
1881 		mtx_destroy(&sc->tids.atid_lock);
1882 	if (mtx_initialized(&sc->ifp_lock))
1883 		mtx_destroy(&sc->ifp_lock);
1884 
1885 	if (rw_initialized(&sc->policy_lock)) {
1886 		rw_destroy(&sc->policy_lock);
1887 #ifdef TCP_OFFLOAD
1888 		if (sc->policy != NULL)
1889 			free_offload_policy(sc->policy);
1890 #endif
1891 	}
1892 
1893 	for (i = 0; i < NUM_MEMWIN; i++) {
1894 		struct memwin *mw = &sc->memwin[i];
1895 
1896 		if (rw_initialized(&mw->mw_lock))
1897 			rw_destroy(&mw->mw_lock);
1898 	}
1899 
1900 	mtx_destroy(&sc->sfl_lock);
1901 	mtx_destroy(&sc->reg_lock);
1902 	mtx_destroy(&sc->sc_lock);
1903 
1904 	bzero(sc, sizeof(*sc));
1905 
1906 	return (0);
1907 }
1908 
1909 static inline int
stop_adapter(struct adapter * sc)1910 stop_adapter(struct adapter *sc)
1911 {
1912 	struct port_info *pi;
1913 	int i;
1914 
1915 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1916 		CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1917 			 __func__, curthread, sc->flags, sc->error_flags);
1918 		return (EALREADY);
1919 	}
1920 	CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1921 		 sc->flags, sc->error_flags);
1922 	t4_shutdown_adapter(sc);
1923 	for_each_port(sc, i) {
1924 		pi = sc->port[i];
1925 		if (pi == NULL)
1926 			continue;
1927 		PORT_LOCK(pi);
1928 		if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
1929 			/*
1930 			 * t4_shutdown_adapter has already shut down all the
1931 			 * PHYs but it also disables interrupts and DMA so there
1932 			 * won't be a link interrupt.  Update the state manually
1933 			 * if the link was up previously and inform the kernel.
1934 			 */
1935 			pi->link_cfg.link_ok = false;
1936 			t4_os_link_changed(pi);
1937 		}
1938 		PORT_UNLOCK(pi);
1939 	}
1940 
1941 	return (0);
1942 }
1943 
1944 static inline int
restart_adapter(struct adapter * sc)1945 restart_adapter(struct adapter *sc)
1946 {
1947 	uint32_t val;
1948 
1949 	if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
1950 		CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
1951 			 __func__, curthread, sc->flags, sc->error_flags);
1952 		return (EALREADY);
1953 	}
1954 	CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
1955 		 sc->flags, sc->error_flags);
1956 
1957 	MPASS(hw_off_limits(sc));
1958 	MPASS((sc->flags & FW_OK) == 0);
1959 	MPASS((sc->flags & MASTER_PF) == 0);
1960 	MPASS(sc->reset_thread == NULL);
1961 
1962 	/*
1963 	 * The adapter is supposed to be back on PCIE with its config space and
1964 	 * BARs restored to their state before reset.  Register access via
1965 	 * t4_read_reg BAR0 should just work.
1966 	 */
1967 	sc->reset_thread = curthread;
1968 	val = t4_read_reg(sc, A_PL_WHOAMI);
1969 	if (val == 0xffffffff || val == 0xeeeeeeee) {
1970 		CH_ERR(sc, "%s: device registers not readable.\n", __func__);
1971 		sc->reset_thread = NULL;
1972 		atomic_set_int(&sc->error_flags, ADAP_STOPPED);
1973 		return (ENXIO);
1974 	}
1975 	atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
1976 	atomic_add_int(&sc->incarnation, 1);
1977 	atomic_add_int(&sc->num_resets, 1);
1978 
1979 	return (0);
1980 }
1981 
1982 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)1983 set_adapter_hwstatus(struct adapter *sc, const bool usable)
1984 {
1985 	if (usable) {
1986 		/* Must be marked reusable by the designated thread. */
1987 		ASSERT_SYNCHRONIZED_OP(sc);
1988 		MPASS(sc->reset_thread == curthread);
1989 		mtx_lock(&sc->reg_lock);
1990 		atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
1991 		mtx_unlock(&sc->reg_lock);
1992 	} else {
1993 		/* Mark the adapter totally off limits. */
1994 		begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
1995 		mtx_lock(&sc->reg_lock);
1996 		atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
1997 		mtx_unlock(&sc->reg_lock);
1998 		sc->flags &= ~(FW_OK | MASTER_PF);
1999 		sc->reset_thread = NULL;
2000 		end_synchronized_op(sc, 0);
2001 	}
2002 }
2003 
2004 static int
stop_lld(struct adapter * sc)2005 stop_lld(struct adapter *sc)
2006 {
2007 	struct port_info *pi;
2008 	struct vi_info *vi;
2009 	if_t ifp;
2010 	struct sge_rxq *rxq;
2011 	struct sge_txq *txq;
2012 	struct sge_wrq *wrq;
2013 #ifdef TCP_OFFLOAD
2014 	struct sge_ofld_rxq *ofld_rxq;
2015 #endif
2016 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2017 	struct sge_ofld_txq *ofld_txq;
2018 #endif
2019 	int rc, i, j, k;
2020 
2021 	/*
2022 	 * XXX: Can there be a synch_op in progress that will hang because
2023 	 * hardware has been stopped?  We'll hang too and the solution will be
2024 	 * to use a version of begin_synch_op that wakes up existing synch_op
2025 	 * with errors.  Maybe stop_adapter should do this wakeup?
2026 	 *
2027 	 * I don't think any synch_op could get stranded waiting for DMA or
2028 	 * interrupt so I think we're okay here.  Remove this comment block
2029 	 * after testing.
2030 	 */
2031 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2032 	if (rc != 0)
2033 		return (ENXIO);
2034 
2035 	/* Quiesce all activity. */
2036 	for_each_port(sc, i) {
2037 		pi = sc->port[i];
2038 		if (pi == NULL)
2039 			continue;
2040 		pi->vxlan_tcam_entry = false;
2041 		for_each_vi(pi, j, vi) {
2042 			vi->xact_addr_filt = -1;
2043 			mtx_lock(&vi->tick_mtx);
2044 			vi->flags |= VI_SKIP_STATS;
2045 			mtx_unlock(&vi->tick_mtx);
2046 			if (!(vi->flags & VI_INIT_DONE))
2047 				continue;
2048 
2049 			ifp = vi->ifp;
2050 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2051 				mtx_lock(&vi->tick_mtx);
2052 				callout_stop(&vi->tick);
2053 				mtx_unlock(&vi->tick_mtx);
2054 				callout_drain(&vi->tick);
2055 			}
2056 
2057 			/*
2058 			 * Note that the HW is not available.
2059 			 */
2060 			for_each_txq(vi, k, txq) {
2061 				TXQ_LOCK(txq);
2062 				txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2063 				TXQ_UNLOCK(txq);
2064 			}
2065 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2066 			for_each_ofld_txq(vi, k, ofld_txq) {
2067 				TXQ_LOCK(&ofld_txq->wrq);
2068 				ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2069 				TXQ_UNLOCK(&ofld_txq->wrq);
2070 			}
2071 #endif
2072 			for_each_rxq(vi, k, rxq) {
2073 				rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2074 			}
2075 #if defined(TCP_OFFLOAD)
2076 			for_each_ofld_rxq(vi, k, ofld_rxq) {
2077 				ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2078 			}
2079 #endif
2080 
2081 			quiesce_vi(vi);
2082 		}
2083 
2084 		if (sc->flags & FULL_INIT_DONE) {
2085 			/* Control queue */
2086 			wrq = &sc->sge.ctrlq[i];
2087 			TXQ_LOCK(wrq);
2088 			wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2089 			TXQ_UNLOCK(wrq);
2090 			quiesce_wrq(wrq);
2091 		}
2092 
2093 		if (pi->flags & HAS_TRACEQ) {
2094 			pi->flags &= ~HAS_TRACEQ;
2095 			sc->traceq = -1;
2096 			sc->tracer_valid = 0;
2097 			sc->tracer_enabled = 0;
2098 		}
2099 	}
2100 	if (sc->flags & FULL_INIT_DONE) {
2101 		/* Firmware event queue */
2102 		sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2103 		quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2104 	}
2105 
2106 	/* Stop calibration */
2107 	callout_stop(&sc->cal_callout);
2108 	callout_drain(&sc->cal_callout);
2109 
2110 	if (t4_clock_gate_on_suspend) {
2111 		t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2112 		    F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2113 		    F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2114 	}
2115 
2116 	end_synchronized_op(sc, 0);
2117 
2118 	stop_atid_allocator(sc);
2119 	t4_stop_l2t(sc);
2120 
2121 	return (rc);
2122 }
2123 
2124 int
suspend_adapter(struct adapter * sc)2125 suspend_adapter(struct adapter *sc)
2126 {
2127 	stop_adapter(sc);
2128 	stop_lld(sc);
2129 #ifdef TCP_OFFLOAD
2130 	stop_all_uld(sc);
2131 #endif
2132 	set_adapter_hwstatus(sc, false);
2133 
2134 	return (0);
2135 }
2136 
2137 static int
t4_suspend(device_t dev)2138 t4_suspend(device_t dev)
2139 {
2140 	struct adapter *sc = device_get_softc(dev);
2141 	int rc;
2142 
2143 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2144 	rc = suspend_adapter(sc);
2145 	CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2146 
2147 	return (rc);
2148 }
2149 
2150 struct adapter_pre_reset_state {
2151 	u_int flags;
2152 	uint16_t nbmcaps;
2153 	uint16_t linkcaps;
2154 	uint16_t switchcaps;
2155 	uint16_t niccaps;
2156 	uint16_t toecaps;
2157 	uint16_t rdmacaps;
2158 	uint16_t cryptocaps;
2159 	uint16_t iscsicaps;
2160 	uint16_t fcoecaps;
2161 
2162 	u_int cfcsum;
2163 	char cfg_file[32];
2164 
2165 	struct adapter_params params;
2166 	struct t4_virt_res vres;
2167 	struct tid_info tids;
2168 	struct sge sge;
2169 
2170 	int rawf_base;
2171 	int nrawf;
2172 
2173 };
2174 
2175 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2176 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2177 {
2178 
2179 	ASSERT_SYNCHRONIZED_OP(sc);
2180 
2181 	o->flags = sc->flags;
2182 
2183 	o->nbmcaps =  sc->nbmcaps;
2184 	o->linkcaps = sc->linkcaps;
2185 	o->switchcaps = sc->switchcaps;
2186 	o->niccaps = sc->niccaps;
2187 	o->toecaps = sc->toecaps;
2188 	o->rdmacaps = sc->rdmacaps;
2189 	o->cryptocaps = sc->cryptocaps;
2190 	o->iscsicaps = sc->iscsicaps;
2191 	o->fcoecaps = sc->fcoecaps;
2192 
2193 	o->cfcsum = sc->cfcsum;
2194 	MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2195 	memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2196 
2197 	o->params = sc->params;
2198 	o->vres = sc->vres;
2199 	o->tids = sc->tids;
2200 	o->sge = sc->sge;
2201 
2202 	o->rawf_base = sc->rawf_base;
2203 	o->nrawf = sc->nrawf;
2204 }
2205 
2206 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2207 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2208 {
2209 	int rc = 0;
2210 
2211 	ASSERT_SYNCHRONIZED_OP(sc);
2212 
2213 	/* Capabilities */
2214 #define COMPARE_CAPS(c) do { \
2215 	if (o->c##caps != sc->c##caps) { \
2216 		CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2217 		    sc->c##caps); \
2218 		rc = EINVAL; \
2219 	} \
2220 } while (0)
2221 	COMPARE_CAPS(nbm);
2222 	COMPARE_CAPS(link);
2223 	COMPARE_CAPS(switch);
2224 	COMPARE_CAPS(nic);
2225 	COMPARE_CAPS(toe);
2226 	COMPARE_CAPS(rdma);
2227 	COMPARE_CAPS(crypto);
2228 	COMPARE_CAPS(iscsi);
2229 	COMPARE_CAPS(fcoe);
2230 #undef COMPARE_CAPS
2231 
2232 	/* Firmware config file */
2233 	if (o->cfcsum != sc->cfcsum) {
2234 		CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2235 		    o->cfcsum, sc->cfg_file, sc->cfcsum);
2236 		rc = EINVAL;
2237 	}
2238 
2239 #define COMPARE_PARAM(p, name) do { \
2240 	if (o->p != sc->p) { \
2241 		CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2242 		rc = EINVAL; \
2243 	} \
2244 } while (0)
2245 	COMPARE_PARAM(sge.iq_start, iq_start);
2246 	COMPARE_PARAM(sge.eq_start, eq_start);
2247 	COMPARE_PARAM(tids.ftid_base, ftid_base);
2248 	COMPARE_PARAM(tids.ftid_end, ftid_end);
2249 	COMPARE_PARAM(tids.nftids, nftids);
2250 	COMPARE_PARAM(vres.l2t.start, l2t_start);
2251 	COMPARE_PARAM(vres.l2t.size, l2t_size);
2252 	COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2253 	COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2254 	COMPARE_PARAM(tids.tid_base, tid_base);
2255 	COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2256 	COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2257 	COMPARE_PARAM(tids.nhpftids, nhpftids);
2258 	COMPARE_PARAM(rawf_base, rawf_base);
2259 	COMPARE_PARAM(nrawf, nrawf);
2260 	COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2261 	COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2262 	COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2263 	COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2264 	COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2265 	COMPARE_PARAM(tids.ntids, ntids);
2266 	COMPARE_PARAM(tids.etid_base, etid_base);
2267 	COMPARE_PARAM(tids.etid_end, etid_end);
2268 	COMPARE_PARAM(tids.netids, netids);
2269 	COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2270 	COMPARE_PARAM(params.ethoffload, ethoffload);
2271 	COMPARE_PARAM(tids.natids, natids);
2272 	COMPARE_PARAM(tids.stid_base, stid_base);
2273 	COMPARE_PARAM(vres.ddp.start, ddp_start);
2274 	COMPARE_PARAM(vres.ddp.size, ddp_size);
2275 	COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2276 	COMPARE_PARAM(vres.stag.start, stag_start);
2277 	COMPARE_PARAM(vres.stag.size, stag_size);
2278 	COMPARE_PARAM(vres.rq.start, rq_start);
2279 	COMPARE_PARAM(vres.rq.size, rq_size);
2280 	COMPARE_PARAM(vres.pbl.start, pbl_start);
2281 	COMPARE_PARAM(vres.pbl.size, pbl_size);
2282 	COMPARE_PARAM(vres.qp.start, qp_start);
2283 	COMPARE_PARAM(vres.qp.size, qp_size);
2284 	COMPARE_PARAM(vres.cq.start, cq_start);
2285 	COMPARE_PARAM(vres.cq.size, cq_size);
2286 	COMPARE_PARAM(vres.ocq.start, ocq_start);
2287 	COMPARE_PARAM(vres.ocq.size, ocq_size);
2288 	COMPARE_PARAM(vres.srq.start, srq_start);
2289 	COMPARE_PARAM(vres.srq.size, srq_size);
2290 	COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2291 	COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2292 	COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2293 	COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2294 	COMPARE_PARAM(vres.key.start, key_start);
2295 	COMPARE_PARAM(vres.key.size, key_size);
2296 #undef COMPARE_PARAM
2297 
2298 	return (rc);
2299 }
2300 
2301 static int
restart_lld(struct adapter * sc)2302 restart_lld(struct adapter *sc)
2303 {
2304 	struct adapter_pre_reset_state *old_state = NULL;
2305 	struct port_info *pi;
2306 	struct vi_info *vi;
2307 	if_t ifp;
2308 	struct sge_txq *txq;
2309 	int rc, i, j, k;
2310 
2311 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2312 	if (rc != 0)
2313 		return (ENXIO);
2314 
2315 	/* Restore memory window. */
2316 	setup_memwin(sc);
2317 
2318 	/* Go no further if recovery mode has been requested. */
2319 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2320 		CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2321 		rc = 0;
2322 		set_adapter_hwstatus(sc, true);
2323 		goto done;
2324 	}
2325 
2326 	old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2327 	save_caps_and_params(sc, old_state);
2328 
2329 	/* Reestablish contact with firmware and become the primary PF. */
2330 	rc = contact_firmware(sc);
2331 	if (rc != 0)
2332 		goto done; /* error message displayed already */
2333 	MPASS(sc->flags & FW_OK);
2334 
2335 	if (sc->flags & MASTER_PF) {
2336 		rc = partition_resources(sc);
2337 		if (rc != 0)
2338 			goto done; /* error message displayed already */
2339 	}
2340 
2341 	rc = get_params__post_init(sc);
2342 	if (rc != 0)
2343 		goto done; /* error message displayed already */
2344 
2345 	rc = set_params__post_init(sc);
2346 	if (rc != 0)
2347 		goto done; /* error message displayed already */
2348 
2349 	rc = compare_caps_and_params(sc, old_state);
2350 	if (rc != 0)
2351 		goto done; /* error message displayed already */
2352 
2353 	for_each_port(sc, i) {
2354 		pi = sc->port[i];
2355 		MPASS(pi != NULL);
2356 		MPASS(pi->vi != NULL);
2357 		MPASS(pi->vi[0].dev == pi->dev);
2358 
2359 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2360 		if (rc != 0) {
2361 			CH_ERR(sc,
2362 			    "failed to re-initialize port %d: %d\n", i, rc);
2363 			goto done;
2364 		}
2365 		MPASS(sc->chan_map[pi->tx_chan] == i);
2366 
2367 		PORT_LOCK(pi);
2368 		fixup_link_config(pi);
2369 		build_medialist(pi);
2370 		PORT_UNLOCK(pi);
2371 		for_each_vi(pi, j, vi) {
2372 			if (IS_MAIN_VI(vi))
2373 				continue;
2374 			rc = alloc_extra_vi(sc, pi, vi);
2375 			if (rc != 0) {
2376 				CH_ERR(vi,
2377 				    "failed to re-allocate extra VI: %d\n", rc);
2378 				goto done;
2379 			}
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * Interrupts and queues are about to be enabled and other threads will
2385 	 * want to access the hardware too.  It is safe to do so.  Note that
2386 	 * this thread is still in the middle of a synchronized_op.
2387 	 */
2388 	set_adapter_hwstatus(sc, true);
2389 
2390 	if (sc->flags & FULL_INIT_DONE) {
2391 		rc = adapter_full_init(sc);
2392 		if (rc != 0) {
2393 			CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2394 			goto done;
2395 		}
2396 
2397 		if (sc->vxlan_refcount > 0)
2398 			enable_vxlan_rx(sc);
2399 
2400 		for_each_port(sc, i) {
2401 			pi = sc->port[i];
2402 			for_each_vi(pi, j, vi) {
2403 				mtx_lock(&vi->tick_mtx);
2404 				vi->flags &= ~VI_SKIP_STATS;
2405 				mtx_unlock(&vi->tick_mtx);
2406 				if (!(vi->flags & VI_INIT_DONE))
2407 					continue;
2408 				rc = vi_full_init(vi);
2409 				if (rc != 0) {
2410 					CH_ERR(vi, "failed to re-initialize "
2411 					    "interface: %d\n", rc);
2412 					goto done;
2413 				}
2414 				if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2415 					sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2416 					t4_write_reg(sc, is_t4(sc) ?
2417 					    A_MPS_TRC_RSS_CONTROL :
2418 					    A_MPS_T5_TRC_RSS_CONTROL,
2419 					    V_RSSCONTROL(pi->tx_chan) |
2420 					    V_QUEUENUMBER(sc->traceq));
2421 					pi->flags |= HAS_TRACEQ;
2422 				}
2423 
2424 				ifp = vi->ifp;
2425 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2426 					continue;
2427 				/*
2428 				 * Note that we do not setup multicast addresses
2429 				 * in the first pass.  This ensures that the
2430 				 * unicast DMACs for all VIs on all ports get an
2431 				 * MPS TCAM entry.
2432 				 */
2433 				rc = update_mac_settings(ifp, XGMAC_ALL &
2434 				    ~XGMAC_MCADDRS);
2435 				if (rc != 0) {
2436 					CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2437 					goto done;
2438 				}
2439 				rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2440 				    true);
2441 				if (rc != 0) {
2442 					CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2443 					goto done;
2444 				}
2445 				for_each_txq(vi, k, txq) {
2446 					TXQ_LOCK(txq);
2447 					txq->eq.flags |= EQ_ENABLED;
2448 					TXQ_UNLOCK(txq);
2449 				}
2450 				mtx_lock(&vi->tick_mtx);
2451 				callout_schedule(&vi->tick, hz);
2452 				mtx_unlock(&vi->tick_mtx);
2453 			}
2454 			PORT_LOCK(pi);
2455 			if (pi->up_vis > 0) {
2456 				t4_update_port_info(pi);
2457 				fixup_link_config(pi);
2458 				build_medialist(pi);
2459 				apply_link_config(pi);
2460 				if (pi->link_cfg.link_ok)
2461 					t4_os_link_changed(pi);
2462 			}
2463 			PORT_UNLOCK(pi);
2464 		}
2465 
2466 		/* Now reprogram the L2 multicast addresses. */
2467 		for_each_port(sc, i) {
2468 			pi = sc->port[i];
2469 			for_each_vi(pi, j, vi) {
2470 				if (!(vi->flags & VI_INIT_DONE))
2471 					continue;
2472 				ifp = vi->ifp;
2473 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2474 					continue;
2475 				rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2476 				if (rc != 0) {
2477 					CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2478 					rc = 0;	/* carry on */
2479 				}
2480 			}
2481 		}
2482 	}
2483 
2484 	/* Reset all calibration */
2485 	t4_calibration_start(sc);
2486 done:
2487 	end_synchronized_op(sc, 0);
2488 	free(old_state, M_CXGBE);
2489 
2490 	restart_atid_allocator(sc);
2491 	t4_restart_l2t(sc);
2492 
2493 	return (rc);
2494 }
2495 
2496 int
resume_adapter(struct adapter * sc)2497 resume_adapter(struct adapter *sc)
2498 {
2499 	restart_adapter(sc);
2500 	restart_lld(sc);
2501 #ifdef TCP_OFFLOAD
2502 	restart_all_uld(sc);
2503 #endif
2504 	return (0);
2505 }
2506 
2507 static int
t4_resume(device_t dev)2508 t4_resume(device_t dev)
2509 {
2510 	struct adapter *sc = device_get_softc(dev);
2511 	int rc;
2512 
2513 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2514 	rc = resume_adapter(sc);
2515 	CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2516 
2517 	return (rc);
2518 }
2519 
2520 static int
t4_reset_prepare(device_t dev,device_t child)2521 t4_reset_prepare(device_t dev, device_t child)
2522 {
2523 	struct adapter *sc = device_get_softc(dev);
2524 
2525 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2526 	return (0);
2527 }
2528 
2529 static int
t4_reset_post(device_t dev,device_t child)2530 t4_reset_post(device_t dev, device_t child)
2531 {
2532 	struct adapter *sc = device_get_softc(dev);
2533 
2534 	CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2535 	return (0);
2536 }
2537 
2538 static int
reset_adapter_with_pci_bus_reset(struct adapter * sc)2539 reset_adapter_with_pci_bus_reset(struct adapter *sc)
2540 {
2541 	int rc;
2542 
2543 	mtx_lock(&Giant);
2544 	rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2545 	mtx_unlock(&Giant);
2546 	return (rc);
2547 }
2548 
2549 static int
reset_adapter_with_pl_rst(struct adapter * sc)2550 reset_adapter_with_pl_rst(struct adapter *sc)
2551 {
2552 	suspend_adapter(sc);
2553 
2554 	/* This is a t4_write_reg without the hw_off_limits check. */
2555 	MPASS(sc->error_flags & HW_OFF_LIMITS);
2556 	bus_space_write_4(sc->bt, sc->bh, A_PL_RST,
2557 			  F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2558 	pause("pl_rst", 1 * hz);		/* Wait 1s for reset */
2559 
2560 	resume_adapter(sc);
2561 
2562 	return (0);
2563 }
2564 
2565 static inline int
reset_adapter(struct adapter * sc)2566 reset_adapter(struct adapter *sc)
2567 {
2568 	if (vm_guest == 0)
2569 		return (reset_adapter_with_pci_bus_reset(sc));
2570 	else
2571 		return (reset_adapter_with_pl_rst(sc));
2572 }
2573 
2574 static void
reset_adapter_task(void * arg,int pending)2575 reset_adapter_task(void *arg, int pending)
2576 {
2577 	struct adapter *sc = arg;
2578 	const int flags = sc->flags;
2579 	const int eflags = sc->error_flags;
2580 	int rc;
2581 
2582 	if (pending > 1)
2583 		CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2584 	rc = reset_adapter(sc);
2585 	if (rc != 0) {
2586 		CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2587 		       "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2588 		       rc, flags, sc->flags, eflags, sc->error_flags);
2589 	}
2590 }
2591 
2592 static int
cxgbe_probe(device_t dev)2593 cxgbe_probe(device_t dev)
2594 {
2595 	struct port_info *pi = device_get_softc(dev);
2596 
2597 	device_set_descf(dev, "port %d", pi->port_id);
2598 
2599 	return (BUS_PROBE_DEFAULT);
2600 }
2601 
2602 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2603     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2604     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2605     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2606 #define T4_CAP_ENABLE (T4_CAP)
2607 
2608 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2609 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2610 {
2611 	if_t ifp;
2612 	struct sbuf *sb;
2613 	struct sysctl_ctx_list *ctx = &vi->ctx;
2614 	struct sysctl_oid_list *children;
2615 	struct pfil_head_args pa;
2616 	struct adapter *sc = vi->adapter;
2617 
2618 	sysctl_ctx_init(ctx);
2619 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2620 	vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2621 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2622 	vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2623 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2624 #ifdef DEV_NETMAP
2625 	vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2626 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2627 	vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2628 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2629 #endif
2630 #ifdef TCP_OFFLOAD
2631 	vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2632 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2633 #endif
2634 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2635 	vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2636 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2637 #endif
2638 
2639 	vi->xact_addr_filt = -1;
2640 	mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2641 	callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2642 	if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2643 		vi->flags |= TX_USES_VM_WR;
2644 
2645 	/* Allocate an ifnet and set it up */
2646 	ifp = if_alloc_dev(IFT_ETHER, dev);
2647 	vi->ifp = ifp;
2648 	if_setsoftc(ifp, vi);
2649 
2650 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2651 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2652 
2653 	if_setinitfn(ifp, cxgbe_init);
2654 	if_setioctlfn(ifp, cxgbe_ioctl);
2655 	if_settransmitfn(ifp, cxgbe_transmit);
2656 	if_setqflushfn(ifp, cxgbe_qflush);
2657 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2658 		if_setgetcounterfn(ifp, vi_get_counter);
2659 	else
2660 		if_setgetcounterfn(ifp, cxgbe_get_counter);
2661 #if defined(KERN_TLS) || defined(RATELIMIT)
2662 	if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2663 #endif
2664 #ifdef RATELIMIT
2665 	if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2666 #endif
2667 
2668 	if_setcapabilities(ifp, T4_CAP);
2669 	if_setcapenable(ifp, T4_CAP_ENABLE);
2670 	if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2671 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2672 	if (chip_id(sc) >= CHELSIO_T6) {
2673 		if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2674 		if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2675 		if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2676 		    CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2677 		    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2678 	}
2679 
2680 #ifdef TCP_OFFLOAD
2681 	if (vi->nofldrxq != 0)
2682 		if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2683 #endif
2684 #ifdef RATELIMIT
2685 	if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2686 		if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2687 		if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2688 	}
2689 #endif
2690 
2691 	if_sethwtsomax(ifp, IP_MAXPACKET);
2692 	if (vi->flags & TX_USES_VM_WR)
2693 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2694 	else
2695 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2696 #ifdef RATELIMIT
2697 	if (is_ethoffload(sc) && vi->nofldtxq != 0)
2698 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2699 #endif
2700 	if_sethwtsomaxsegsize(ifp, 65536);
2701 #ifdef KERN_TLS
2702 	if (is_ktls(sc)) {
2703 		if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2704 		if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2705 			if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2706 	}
2707 #endif
2708 
2709 	ether_ifattach(ifp, vi->hw_addr);
2710 #ifdef DEV_NETMAP
2711 	if (vi->nnmrxq != 0)
2712 		cxgbe_nm_attach(vi);
2713 #endif
2714 	sb = sbuf_new_auto();
2715 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2716 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2717 	switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2718 	case IFCAP_TOE:
2719 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2720 		break;
2721 	case IFCAP_TOE | IFCAP_TXRTLMT:
2722 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2723 		break;
2724 	case IFCAP_TXRTLMT:
2725 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2726 		break;
2727 	}
2728 #endif
2729 #ifdef TCP_OFFLOAD
2730 	if (if_getcapabilities(ifp) & IFCAP_TOE)
2731 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2732 #endif
2733 #ifdef DEV_NETMAP
2734 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2735 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2736 		    vi->nnmtxq, vi->nnmrxq);
2737 #endif
2738 	sbuf_finish(sb);
2739 	device_printf(dev, "%s\n", sbuf_data(sb));
2740 	sbuf_delete(sb);
2741 
2742 	vi_sysctls(vi);
2743 
2744 	pa.pa_version = PFIL_VERSION;
2745 	pa.pa_flags = PFIL_IN;
2746 	pa.pa_type = PFIL_TYPE_ETHERNET;
2747 	pa.pa_headname = if_name(ifp);
2748 	vi->pfil = pfil_head_register(&pa);
2749 }
2750 
2751 static int
cxgbe_attach(device_t dev)2752 cxgbe_attach(device_t dev)
2753 {
2754 	struct port_info *pi = device_get_softc(dev);
2755 	struct adapter *sc = pi->adapter;
2756 	struct vi_info *vi;
2757 	int i;
2758 
2759 	sysctl_ctx_init(&pi->ctx);
2760 
2761 	cxgbe_vi_attach(dev, &pi->vi[0]);
2762 
2763 	for_each_vi(pi, i, vi) {
2764 		if (i == 0)
2765 			continue;
2766 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2767 		if (vi->dev == NULL) {
2768 			device_printf(dev, "failed to add VI %d\n", i);
2769 			continue;
2770 		}
2771 		device_set_softc(vi->dev, vi);
2772 	}
2773 
2774 	cxgbe_sysctls(pi);
2775 
2776 	bus_attach_children(dev);
2777 
2778 	return (0);
2779 }
2780 
2781 static void
cxgbe_vi_detach(struct vi_info * vi)2782 cxgbe_vi_detach(struct vi_info *vi)
2783 {
2784 	if_t ifp = vi->ifp;
2785 
2786 	if (vi->pfil != NULL) {
2787 		pfil_head_unregister(vi->pfil);
2788 		vi->pfil = NULL;
2789 	}
2790 
2791 	ether_ifdetach(ifp);
2792 
2793 	/* Let detach proceed even if these fail. */
2794 #ifdef DEV_NETMAP
2795 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2796 		cxgbe_nm_detach(vi);
2797 #endif
2798 	cxgbe_uninit_synchronized(vi);
2799 	callout_drain(&vi->tick);
2800 	mtx_destroy(&vi->tick_mtx);
2801 	sysctl_ctx_free(&vi->ctx);
2802 	vi_full_uninit(vi);
2803 
2804 	if_free(vi->ifp);
2805 	vi->ifp = NULL;
2806 }
2807 
2808 static int
cxgbe_detach(device_t dev)2809 cxgbe_detach(device_t dev)
2810 {
2811 	struct port_info *pi = device_get_softc(dev);
2812 	struct adapter *sc = pi->adapter;
2813 	int rc;
2814 
2815 	/* Detach the extra VIs first. */
2816 	rc = bus_generic_detach(dev);
2817 	if (rc)
2818 		return (rc);
2819 
2820 	sysctl_ctx_free(&pi->ctx);
2821 	begin_vi_detach(sc, &pi->vi[0]);
2822 	if (pi->flags & HAS_TRACEQ) {
2823 		sc->traceq = -1;	/* cloner should not create ifnet */
2824 		t4_tracer_port_detach(sc);
2825 	}
2826 	cxgbe_vi_detach(&pi->vi[0]);
2827 	ifmedia_removeall(&pi->media);
2828 	end_vi_detach(sc, &pi->vi[0]);
2829 
2830 	return (0);
2831 }
2832 
2833 static void
cxgbe_init(void * arg)2834 cxgbe_init(void *arg)
2835 {
2836 	struct vi_info *vi = arg;
2837 	struct adapter *sc = vi->adapter;
2838 
2839 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2840 		return;
2841 	cxgbe_init_synchronized(vi);
2842 	end_synchronized_op(sc, 0);
2843 }
2844 
2845 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)2846 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2847 {
2848 	int rc = 0, mtu, flags;
2849 	struct vi_info *vi = if_getsoftc(ifp);
2850 	struct port_info *pi = vi->pi;
2851 	struct adapter *sc = pi->adapter;
2852 	struct ifreq *ifr = (struct ifreq *)data;
2853 	uint32_t mask;
2854 
2855 	switch (cmd) {
2856 	case SIOCSIFMTU:
2857 		mtu = ifr->ifr_mtu;
2858 		if (mtu < ETHERMIN || mtu > MAX_MTU)
2859 			return (EINVAL);
2860 
2861 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2862 		if (rc)
2863 			return (rc);
2864 		if_setmtu(ifp, mtu);
2865 		if (vi->flags & VI_INIT_DONE) {
2866 			t4_update_fl_bufsize(ifp);
2867 			if (!hw_off_limits(sc) &&
2868 			    if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2869 				rc = update_mac_settings(ifp, XGMAC_MTU);
2870 		}
2871 		end_synchronized_op(sc, 0);
2872 		break;
2873 
2874 	case SIOCSIFFLAGS:
2875 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2876 		if (rc)
2877 			return (rc);
2878 
2879 		if (hw_off_limits(sc)) {
2880 			rc = ENXIO;
2881 			goto fail;
2882 		}
2883 
2884 		if (if_getflags(ifp) & IFF_UP) {
2885 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2886 				flags = vi->if_flags;
2887 				if ((if_getflags(ifp) ^ flags) &
2888 				    (IFF_PROMISC | IFF_ALLMULTI)) {
2889 					rc = update_mac_settings(ifp,
2890 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
2891 				}
2892 			} else {
2893 				rc = cxgbe_init_synchronized(vi);
2894 			}
2895 			vi->if_flags = if_getflags(ifp);
2896 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2897 			rc = cxgbe_uninit_synchronized(vi);
2898 		}
2899 		end_synchronized_op(sc, 0);
2900 		break;
2901 
2902 	case SIOCADDMULTI:
2903 	case SIOCDELMULTI:
2904 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2905 		if (rc)
2906 			return (rc);
2907 		if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2908 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2909 		end_synchronized_op(sc, 0);
2910 		break;
2911 
2912 	case SIOCSIFCAP:
2913 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2914 		if (rc)
2915 			return (rc);
2916 
2917 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2918 		if (mask & IFCAP_TXCSUM) {
2919 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2920 			if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2921 
2922 			if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2923 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2924 				mask &= ~IFCAP_TSO4;
2925 				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2926 				if_printf(ifp,
2927 				    "tso4 disabled due to -txcsum.\n");
2928 			}
2929 		}
2930 		if (mask & IFCAP_TXCSUM_IPV6) {
2931 			if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2932 			if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2933 
2934 			if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2935 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2936 				mask &= ~IFCAP_TSO6;
2937 				if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2938 				if_printf(ifp,
2939 				    "tso6 disabled due to -txcsum6.\n");
2940 			}
2941 		}
2942 		if (mask & IFCAP_RXCSUM)
2943 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2944 		if (mask & IFCAP_RXCSUM_IPV6)
2945 			if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2946 
2947 		/*
2948 		 * Note that we leave CSUM_TSO alone (it is always set).  The
2949 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2950 		 * sending a TSO request our way, so it's sufficient to toggle
2951 		 * IFCAP_TSOx only.
2952 		 */
2953 		if (mask & IFCAP_TSO4) {
2954 			if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2955 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2956 				if_printf(ifp, "enable txcsum first.\n");
2957 				rc = EAGAIN;
2958 				goto fail;
2959 			}
2960 			if_togglecapenable(ifp, IFCAP_TSO4);
2961 		}
2962 		if (mask & IFCAP_TSO6) {
2963 			if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2964 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2965 				if_printf(ifp, "enable txcsum6 first.\n");
2966 				rc = EAGAIN;
2967 				goto fail;
2968 			}
2969 			if_togglecapenable(ifp, IFCAP_TSO6);
2970 		}
2971 		if (mask & IFCAP_LRO) {
2972 #if defined(INET) || defined(INET6)
2973 			int i;
2974 			struct sge_rxq *rxq;
2975 
2976 			if_togglecapenable(ifp, IFCAP_LRO);
2977 			for_each_rxq(vi, i, rxq) {
2978 				if (if_getcapenable(ifp) & IFCAP_LRO)
2979 					rxq->iq.flags |= IQ_LRO_ENABLED;
2980 				else
2981 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
2982 			}
2983 #endif
2984 		}
2985 #ifdef TCP_OFFLOAD
2986 		if (mask & IFCAP_TOE) {
2987 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2988 
2989 			rc = toe_capability(vi, enable);
2990 			if (rc != 0)
2991 				goto fail;
2992 
2993 			if_togglecapenable(ifp, mask);
2994 		}
2995 #endif
2996 		if (mask & IFCAP_VLAN_HWTAGGING) {
2997 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2998 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2999 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
3000 		}
3001 		if (mask & IFCAP_VLAN_MTU) {
3002 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3003 
3004 			/* Need to find out how to disable auto-mtu-inflation */
3005 		}
3006 		if (mask & IFCAP_VLAN_HWTSO)
3007 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3008 		if (mask & IFCAP_VLAN_HWCSUM)
3009 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3010 #ifdef RATELIMIT
3011 		if (mask & IFCAP_TXRTLMT)
3012 			if_togglecapenable(ifp, IFCAP_TXRTLMT);
3013 #endif
3014 		if (mask & IFCAP_HWRXTSTMP) {
3015 			int i;
3016 			struct sge_rxq *rxq;
3017 
3018 			if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3019 			for_each_rxq(vi, i, rxq) {
3020 				if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3021 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
3022 				else
3023 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3024 			}
3025 		}
3026 		if (mask & IFCAP_MEXTPG)
3027 			if_togglecapenable(ifp, IFCAP_MEXTPG);
3028 
3029 #ifdef KERN_TLS
3030 		if (mask & IFCAP_TXTLS) {
3031 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3032 
3033 			rc = ktls_capability(sc, enable);
3034 			if (rc != 0)
3035 				goto fail;
3036 
3037 			if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3038 		}
3039 #endif
3040 		if (mask & IFCAP_VXLAN_HWCSUM) {
3041 			if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3042 			if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3043 			    CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3044 			    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3045 		}
3046 		if (mask & IFCAP_VXLAN_HWTSO) {
3047 			if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3048 			if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3049 			    CSUM_INNER_IP_TSO);
3050 		}
3051 
3052 #ifdef VLAN_CAPABILITIES
3053 		VLAN_CAPABILITIES(ifp);
3054 #endif
3055 fail:
3056 		end_synchronized_op(sc, 0);
3057 		break;
3058 
3059 	case SIOCSIFMEDIA:
3060 	case SIOCGIFMEDIA:
3061 	case SIOCGIFXMEDIA:
3062 		rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3063 		break;
3064 
3065 	case SIOCGI2C: {
3066 		struct ifi2creq i2c;
3067 
3068 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3069 		if (rc != 0)
3070 			break;
3071 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3072 			rc = EPERM;
3073 			break;
3074 		}
3075 		if (i2c.len > sizeof(i2c.data)) {
3076 			rc = EINVAL;
3077 			break;
3078 		}
3079 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3080 		if (rc)
3081 			return (rc);
3082 		if (hw_off_limits(sc))
3083 			rc = ENXIO;
3084 		else
3085 			rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3086 			    i2c.offset, i2c.len, &i2c.data[0]);
3087 		end_synchronized_op(sc, 0);
3088 		if (rc == 0)
3089 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3090 		break;
3091 	}
3092 
3093 	default:
3094 		rc = ether_ioctl(ifp, cmd, data);
3095 	}
3096 
3097 	return (rc);
3098 }
3099 
3100 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3101 cxgbe_transmit(if_t ifp, struct mbuf *m)
3102 {
3103 	struct vi_info *vi = if_getsoftc(ifp);
3104 	struct port_info *pi = vi->pi;
3105 	struct adapter *sc;
3106 	struct sge_txq *txq;
3107 	void *items[1];
3108 	int rc;
3109 
3110 	M_ASSERTPKTHDR(m);
3111 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
3112 #if defined(KERN_TLS) || defined(RATELIMIT)
3113 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3114 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3115 #endif
3116 
3117 	if (__predict_false(pi->link_cfg.link_ok == false)) {
3118 		m_freem(m);
3119 		return (ENETDOWN);
3120 	}
3121 
3122 	rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3123 	if (__predict_false(rc != 0)) {
3124 		if (__predict_true(rc == EINPROGRESS)) {
3125 			/* queued by parse_pkt */
3126 			MPASS(m != NULL);
3127 			return (0);
3128 		}
3129 
3130 		MPASS(m == NULL);			/* was freed already */
3131 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
3132 		return (rc);
3133 	}
3134 
3135 	/* Select a txq. */
3136 	sc = vi->adapter;
3137 	txq = &sc->sge.txq[vi->first_txq];
3138 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3139 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3140 		    vi->rsrv_noflowq);
3141 
3142 	items[0] = m;
3143 	rc = mp_ring_enqueue(txq->r, items, 1, 256);
3144 	if (__predict_false(rc != 0))
3145 		m_freem(m);
3146 
3147 	return (rc);
3148 }
3149 
3150 static void
cxgbe_qflush(if_t ifp)3151 cxgbe_qflush(if_t ifp)
3152 {
3153 	struct vi_info *vi = if_getsoftc(ifp);
3154 	struct sge_txq *txq;
3155 	int i;
3156 
3157 	/* queues do not exist if !VI_INIT_DONE. */
3158 	if (vi->flags & VI_INIT_DONE) {
3159 		for_each_txq(vi, i, txq) {
3160 			TXQ_LOCK(txq);
3161 			txq->eq.flags |= EQ_QFLUSH;
3162 			TXQ_UNLOCK(txq);
3163 			while (!mp_ring_is_idle(txq->r)) {
3164 				mp_ring_check_drainage(txq->r, 4096);
3165 				pause("qflush", 1);
3166 			}
3167 			TXQ_LOCK(txq);
3168 			txq->eq.flags &= ~EQ_QFLUSH;
3169 			TXQ_UNLOCK(txq);
3170 		}
3171 	}
3172 	if_qflush(ifp);
3173 }
3174 
3175 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3176 vi_get_counter(if_t ifp, ift_counter c)
3177 {
3178 	struct vi_info *vi = if_getsoftc(ifp);
3179 	struct fw_vi_stats_vf *s = &vi->stats;
3180 
3181 	mtx_lock(&vi->tick_mtx);
3182 	vi_refresh_stats(vi);
3183 	mtx_unlock(&vi->tick_mtx);
3184 
3185 	switch (c) {
3186 	case IFCOUNTER_IPACKETS:
3187 		return (s->rx_bcast_frames + s->rx_mcast_frames +
3188 		    s->rx_ucast_frames);
3189 	case IFCOUNTER_IERRORS:
3190 		return (s->rx_err_frames);
3191 	case IFCOUNTER_OPACKETS:
3192 		return (s->tx_bcast_frames + s->tx_mcast_frames +
3193 		    s->tx_ucast_frames + s->tx_offload_frames);
3194 	case IFCOUNTER_OERRORS:
3195 		return (s->tx_drop_frames);
3196 	case IFCOUNTER_IBYTES:
3197 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3198 		    s->rx_ucast_bytes);
3199 	case IFCOUNTER_OBYTES:
3200 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3201 		    s->tx_ucast_bytes + s->tx_offload_bytes);
3202 	case IFCOUNTER_IMCASTS:
3203 		return (s->rx_mcast_frames);
3204 	case IFCOUNTER_OMCASTS:
3205 		return (s->tx_mcast_frames);
3206 	case IFCOUNTER_OQDROPS: {
3207 		uint64_t drops;
3208 
3209 		drops = 0;
3210 		if (vi->flags & VI_INIT_DONE) {
3211 			int i;
3212 			struct sge_txq *txq;
3213 
3214 			for_each_txq(vi, i, txq)
3215 				drops += counter_u64_fetch(txq->r->dropped);
3216 		}
3217 
3218 		return (drops);
3219 
3220 	}
3221 
3222 	default:
3223 		return (if_get_counter_default(ifp, c));
3224 	}
3225 }
3226 
3227 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3228 cxgbe_get_counter(if_t ifp, ift_counter c)
3229 {
3230 	struct vi_info *vi = if_getsoftc(ifp);
3231 	struct port_info *pi = vi->pi;
3232 	struct port_stats *s = &pi->stats;
3233 
3234 	mtx_lock(&vi->tick_mtx);
3235 	cxgbe_refresh_stats(vi);
3236 	mtx_unlock(&vi->tick_mtx);
3237 
3238 	switch (c) {
3239 	case IFCOUNTER_IPACKETS:
3240 		return (s->rx_frames);
3241 
3242 	case IFCOUNTER_IERRORS:
3243 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3244 		    s->rx_fcs_err + s->rx_len_err);
3245 
3246 	case IFCOUNTER_OPACKETS:
3247 		return (s->tx_frames);
3248 
3249 	case IFCOUNTER_OERRORS:
3250 		return (s->tx_error_frames);
3251 
3252 	case IFCOUNTER_IBYTES:
3253 		return (s->rx_octets);
3254 
3255 	case IFCOUNTER_OBYTES:
3256 		return (s->tx_octets);
3257 
3258 	case IFCOUNTER_IMCASTS:
3259 		return (s->rx_mcast_frames);
3260 
3261 	case IFCOUNTER_OMCASTS:
3262 		return (s->tx_mcast_frames);
3263 
3264 	case IFCOUNTER_IQDROPS:
3265 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3266 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3267 		    s->rx_trunc3 + pi->tnl_cong_drops);
3268 
3269 	case IFCOUNTER_OQDROPS: {
3270 		uint64_t drops;
3271 
3272 		drops = s->tx_drop;
3273 		if (vi->flags & VI_INIT_DONE) {
3274 			int i;
3275 			struct sge_txq *txq;
3276 
3277 			for_each_txq(vi, i, txq)
3278 				drops += counter_u64_fetch(txq->r->dropped);
3279 		}
3280 
3281 		return (drops);
3282 
3283 	}
3284 
3285 	default:
3286 		return (if_get_counter_default(ifp, c));
3287 	}
3288 }
3289 
3290 #if defined(KERN_TLS) || defined(RATELIMIT)
3291 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3292 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3293     struct m_snd_tag **pt)
3294 {
3295 	int error;
3296 
3297 	switch (params->hdr.type) {
3298 #ifdef RATELIMIT
3299 	case IF_SND_TAG_TYPE_RATE_LIMIT:
3300 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
3301 		break;
3302 #endif
3303 #ifdef KERN_TLS
3304 	case IF_SND_TAG_TYPE_TLS:
3305 	{
3306 		struct vi_info *vi = if_getsoftc(ifp);
3307 
3308 		if (is_t6(vi->pi->adapter))
3309 			error = t6_tls_tag_alloc(ifp, params, pt);
3310 		else
3311 			error = EOPNOTSUPP;
3312 		break;
3313 	}
3314 #endif
3315 	default:
3316 		error = EOPNOTSUPP;
3317 	}
3318 	return (error);
3319 }
3320 #endif
3321 
3322 /*
3323  * The kernel picks a media from the list we had provided but we still validate
3324  * the requeste.
3325  */
3326 int
cxgbe_media_change(if_t ifp)3327 cxgbe_media_change(if_t ifp)
3328 {
3329 	struct vi_info *vi = if_getsoftc(ifp);
3330 	struct port_info *pi = vi->pi;
3331 	struct ifmedia *ifm = &pi->media;
3332 	struct link_config *lc = &pi->link_cfg;
3333 	struct adapter *sc = pi->adapter;
3334 	int rc;
3335 
3336 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3337 	if (rc != 0)
3338 		return (rc);
3339 	PORT_LOCK(pi);
3340 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3341 		/* ifconfig .. media autoselect */
3342 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3343 			rc = ENOTSUP; /* AN not supported by transceiver */
3344 			goto done;
3345 		}
3346 		lc->requested_aneg = AUTONEG_ENABLE;
3347 		lc->requested_speed = 0;
3348 		lc->requested_fc |= PAUSE_AUTONEG;
3349 	} else {
3350 		lc->requested_aneg = AUTONEG_DISABLE;
3351 		lc->requested_speed =
3352 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
3353 		lc->requested_fc = 0;
3354 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3355 			lc->requested_fc |= PAUSE_RX;
3356 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3357 			lc->requested_fc |= PAUSE_TX;
3358 	}
3359 	if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3360 		fixup_link_config(pi);
3361 		rc = apply_link_config(pi);
3362 	}
3363 done:
3364 	PORT_UNLOCK(pi);
3365 	end_synchronized_op(sc, 0);
3366 	return (rc);
3367 }
3368 
3369 /*
3370  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3371  * given speed.
3372  */
3373 static int
port_mword(struct port_info * pi,uint32_t speed)3374 port_mword(struct port_info *pi, uint32_t speed)
3375 {
3376 
3377 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
3378 	MPASS(powerof2(speed));
3379 
3380 	switch(pi->port_type) {
3381 	case FW_PORT_TYPE_BT_SGMII:
3382 	case FW_PORT_TYPE_BT_XFI:
3383 	case FW_PORT_TYPE_BT_XAUI:
3384 		/* BaseT */
3385 		switch (speed) {
3386 		case FW_PORT_CAP32_SPEED_100M:
3387 			return (IFM_100_T);
3388 		case FW_PORT_CAP32_SPEED_1G:
3389 			return (IFM_1000_T);
3390 		case FW_PORT_CAP32_SPEED_10G:
3391 			return (IFM_10G_T);
3392 		}
3393 		break;
3394 	case FW_PORT_TYPE_KX4:
3395 		if (speed == FW_PORT_CAP32_SPEED_10G)
3396 			return (IFM_10G_KX4);
3397 		break;
3398 	case FW_PORT_TYPE_CX4:
3399 		if (speed == FW_PORT_CAP32_SPEED_10G)
3400 			return (IFM_10G_CX4);
3401 		break;
3402 	case FW_PORT_TYPE_KX:
3403 		if (speed == FW_PORT_CAP32_SPEED_1G)
3404 			return (IFM_1000_KX);
3405 		break;
3406 	case FW_PORT_TYPE_KR:
3407 	case FW_PORT_TYPE_BP_AP:
3408 	case FW_PORT_TYPE_BP4_AP:
3409 	case FW_PORT_TYPE_BP40_BA:
3410 	case FW_PORT_TYPE_KR4_100G:
3411 	case FW_PORT_TYPE_KR_SFP28:
3412 	case FW_PORT_TYPE_KR_XLAUI:
3413 		switch (speed) {
3414 		case FW_PORT_CAP32_SPEED_1G:
3415 			return (IFM_1000_KX);
3416 		case FW_PORT_CAP32_SPEED_10G:
3417 			return (IFM_10G_KR);
3418 		case FW_PORT_CAP32_SPEED_25G:
3419 			return (IFM_25G_KR);
3420 		case FW_PORT_CAP32_SPEED_40G:
3421 			return (IFM_40G_KR4);
3422 		case FW_PORT_CAP32_SPEED_50G:
3423 			return (IFM_50G_KR2);
3424 		case FW_PORT_CAP32_SPEED_100G:
3425 			return (IFM_100G_KR4);
3426 		}
3427 		break;
3428 	case FW_PORT_TYPE_FIBER_XFI:
3429 	case FW_PORT_TYPE_FIBER_XAUI:
3430 	case FW_PORT_TYPE_SFP:
3431 	case FW_PORT_TYPE_QSFP_10G:
3432 	case FW_PORT_TYPE_QSA:
3433 	case FW_PORT_TYPE_QSFP:
3434 	case FW_PORT_TYPE_CR4_QSFP:
3435 	case FW_PORT_TYPE_CR_QSFP:
3436 	case FW_PORT_TYPE_CR2_QSFP:
3437 	case FW_PORT_TYPE_SFP28:
3438 		/* Pluggable transceiver */
3439 		switch (pi->mod_type) {
3440 		case FW_PORT_MOD_TYPE_LR:
3441 			switch (speed) {
3442 			case FW_PORT_CAP32_SPEED_1G:
3443 				return (IFM_1000_LX);
3444 			case FW_PORT_CAP32_SPEED_10G:
3445 				return (IFM_10G_LR);
3446 			case FW_PORT_CAP32_SPEED_25G:
3447 				return (IFM_25G_LR);
3448 			case FW_PORT_CAP32_SPEED_40G:
3449 				return (IFM_40G_LR4);
3450 			case FW_PORT_CAP32_SPEED_50G:
3451 				return (IFM_50G_LR2);
3452 			case FW_PORT_CAP32_SPEED_100G:
3453 				return (IFM_100G_LR4);
3454 			}
3455 			break;
3456 		case FW_PORT_MOD_TYPE_SR:
3457 			switch (speed) {
3458 			case FW_PORT_CAP32_SPEED_1G:
3459 				return (IFM_1000_SX);
3460 			case FW_PORT_CAP32_SPEED_10G:
3461 				return (IFM_10G_SR);
3462 			case FW_PORT_CAP32_SPEED_25G:
3463 				return (IFM_25G_SR);
3464 			case FW_PORT_CAP32_SPEED_40G:
3465 				return (IFM_40G_SR4);
3466 			case FW_PORT_CAP32_SPEED_50G:
3467 				return (IFM_50G_SR2);
3468 			case FW_PORT_CAP32_SPEED_100G:
3469 				return (IFM_100G_SR4);
3470 			}
3471 			break;
3472 		case FW_PORT_MOD_TYPE_ER:
3473 			if (speed == FW_PORT_CAP32_SPEED_10G)
3474 				return (IFM_10G_ER);
3475 			break;
3476 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3477 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3478 			switch (speed) {
3479 			case FW_PORT_CAP32_SPEED_1G:
3480 				return (IFM_1000_CX);
3481 			case FW_PORT_CAP32_SPEED_10G:
3482 				return (IFM_10G_TWINAX);
3483 			case FW_PORT_CAP32_SPEED_25G:
3484 				return (IFM_25G_CR);
3485 			case FW_PORT_CAP32_SPEED_40G:
3486 				return (IFM_40G_CR4);
3487 			case FW_PORT_CAP32_SPEED_50G:
3488 				return (IFM_50G_CR2);
3489 			case FW_PORT_CAP32_SPEED_100G:
3490 				return (IFM_100G_CR4);
3491 			}
3492 			break;
3493 		case FW_PORT_MOD_TYPE_LRM:
3494 			if (speed == FW_PORT_CAP32_SPEED_10G)
3495 				return (IFM_10G_LRM);
3496 			break;
3497 		case FW_PORT_MOD_TYPE_NA:
3498 			MPASS(0);	/* Not pluggable? */
3499 			/* fall throough */
3500 		case FW_PORT_MOD_TYPE_ERROR:
3501 		case FW_PORT_MOD_TYPE_UNKNOWN:
3502 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3503 			break;
3504 		case FW_PORT_MOD_TYPE_NONE:
3505 			return (IFM_NONE);
3506 		}
3507 		break;
3508 	case FW_PORT_TYPE_NONE:
3509 		return (IFM_NONE);
3510 	}
3511 
3512 	return (IFM_UNKNOWN);
3513 }
3514 
3515 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3516 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3517 {
3518 	struct vi_info *vi = if_getsoftc(ifp);
3519 	struct port_info *pi = vi->pi;
3520 	struct adapter *sc = pi->adapter;
3521 	struct link_config *lc = &pi->link_cfg;
3522 
3523 	if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3524 		return;
3525 	PORT_LOCK(pi);
3526 
3527 	if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3528 		/*
3529 		 * If all the interfaces are administratively down the firmware
3530 		 * does not report transceiver changes.  Refresh port info here
3531 		 * so that ifconfig displays accurate ifmedia at all times.
3532 		 * This is the only reason we have a synchronized op in this
3533 		 * function.  Just PORT_LOCK would have been enough otherwise.
3534 		 */
3535 		t4_update_port_info(pi);
3536 		build_medialist(pi);
3537 	}
3538 
3539 	/* ifm_status */
3540 	ifmr->ifm_status = IFM_AVALID;
3541 	if (lc->link_ok == false)
3542 		goto done;
3543 	ifmr->ifm_status |= IFM_ACTIVE;
3544 
3545 	/* ifm_active */
3546 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3547 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3548 	if (lc->fc & PAUSE_RX)
3549 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3550 	if (lc->fc & PAUSE_TX)
3551 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3552 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3553 done:
3554 	PORT_UNLOCK(pi);
3555 	end_synchronized_op(sc, 0);
3556 }
3557 
3558 static int
vcxgbe_probe(device_t dev)3559 vcxgbe_probe(device_t dev)
3560 {
3561 	struct vi_info *vi = device_get_softc(dev);
3562 
3563 	device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3564 	    vi - vi->pi->vi);
3565 
3566 	return (BUS_PROBE_DEFAULT);
3567 }
3568 
3569 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3570 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3571 {
3572 	int func, index, rc;
3573 	uint32_t param, val;
3574 
3575 	ASSERT_SYNCHRONIZED_OP(sc);
3576 
3577 	index = vi - pi->vi;
3578 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
3579 	KASSERT(index < nitems(vi_mac_funcs),
3580 	    ("%s: VI %s doesn't have a MAC func", __func__,
3581 	    device_get_nameunit(vi->dev)));
3582 	func = vi_mac_funcs[index];
3583 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3584 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3585 	if (rc < 0) {
3586 		CH_ERR(vi, "failed to allocate virtual interface %d"
3587 		    "for port %d: %d\n", index, pi->port_id, -rc);
3588 		return (-rc);
3589 	}
3590 	vi->viid = rc;
3591 
3592 	if (vi->rss_size == 1) {
3593 		/*
3594 		 * This VI didn't get a slice of the RSS table.  Reduce the
3595 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3596 		 * configuration file (nvi, rssnvi for this PF) if this is a
3597 		 * problem.
3598 		 */
3599 		device_printf(vi->dev, "RSS table not available.\n");
3600 		vi->rss_base = 0xffff;
3601 
3602 		return (0);
3603 	}
3604 
3605 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3606 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3607 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
3608 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3609 	if (rc)
3610 		vi->rss_base = 0xffff;
3611 	else {
3612 		MPASS((val >> 16) == vi->rss_size);
3613 		vi->rss_base = val & 0xffff;
3614 	}
3615 
3616 	return (0);
3617 }
3618 
3619 static int
vcxgbe_attach(device_t dev)3620 vcxgbe_attach(device_t dev)
3621 {
3622 	struct vi_info *vi;
3623 	struct port_info *pi;
3624 	struct adapter *sc;
3625 	int rc;
3626 
3627 	vi = device_get_softc(dev);
3628 	pi = vi->pi;
3629 	sc = pi->adapter;
3630 
3631 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3632 	if (rc)
3633 		return (rc);
3634 	rc = alloc_extra_vi(sc, pi, vi);
3635 	end_synchronized_op(sc, 0);
3636 	if (rc)
3637 		return (rc);
3638 
3639 	cxgbe_vi_attach(dev, vi);
3640 
3641 	return (0);
3642 }
3643 
3644 static int
vcxgbe_detach(device_t dev)3645 vcxgbe_detach(device_t dev)
3646 {
3647 	struct vi_info *vi;
3648 	struct adapter *sc;
3649 
3650 	vi = device_get_softc(dev);
3651 	sc = vi->adapter;
3652 
3653 	begin_vi_detach(sc, vi);
3654 	cxgbe_vi_detach(vi);
3655 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3656 	end_vi_detach(sc, vi);
3657 
3658 	return (0);
3659 }
3660 
3661 static struct callout fatal_callout;
3662 static struct taskqueue *reset_tq;
3663 
3664 static void
delayed_panic(void * arg)3665 delayed_panic(void *arg)
3666 {
3667 	struct adapter *sc = arg;
3668 
3669 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3670 }
3671 
3672 static void
fatal_error_task(void * arg,int pending)3673 fatal_error_task(void *arg, int pending)
3674 {
3675 	struct adapter *sc = arg;
3676 	int rc;
3677 
3678 	if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3679 		dump_cim_regs(sc);
3680 		dump_cimla(sc);
3681 		dump_devlog(sc);
3682 	}
3683 
3684 	if (t4_reset_on_fatal_err) {
3685 		CH_ALERT(sc, "resetting adapter after fatal error.\n");
3686 		rc = reset_adapter(sc);
3687 		if (rc == 0 && t4_panic_on_fatal_err) {
3688 			CH_ALERT(sc, "reset was successful, "
3689 			    "system will NOT panic.\n");
3690 			return;
3691 		}
3692 	}
3693 
3694 	if (t4_panic_on_fatal_err) {
3695 		CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3696 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3697 	}
3698 }
3699 
3700 void
t4_fatal_err(struct adapter * sc,bool fw_error)3701 t4_fatal_err(struct adapter *sc, bool fw_error)
3702 {
3703 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3704 
3705 	stop_adapter(sc);
3706 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3707 		return;
3708 	if (fw_error) {
3709 		/*
3710 		 * We are here because of a firmware error/timeout and not
3711 		 * because of a hardware interrupt.  It is possible (although
3712 		 * not very likely) that an error interrupt was also raised but
3713 		 * this thread ran first and inhibited t4_intr_err.  We walk the
3714 		 * main INT_CAUSE registers here to make sure we haven't missed
3715 		 * anything interesting.
3716 		 */
3717 		t4_slow_intr_handler(sc, verbose);
3718 		atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3719 	}
3720 	t4_report_fw_error(sc);
3721 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3722 	    device_get_nameunit(sc->dev), fw_error);
3723 	taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3724 }
3725 
3726 void
t4_add_adapter(struct adapter * sc)3727 t4_add_adapter(struct adapter *sc)
3728 {
3729 	sx_xlock(&t4_list_lock);
3730 	SLIST_INSERT_HEAD(&t4_list, sc, link);
3731 	sx_xunlock(&t4_list_lock);
3732 }
3733 
3734 int
t4_map_bars_0_and_4(struct adapter * sc)3735 t4_map_bars_0_and_4(struct adapter *sc)
3736 {
3737 	sc->regs_rid = PCIR_BAR(0);
3738 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3739 	    &sc->regs_rid, RF_ACTIVE);
3740 	if (sc->regs_res == NULL) {
3741 		device_printf(sc->dev, "cannot map registers.\n");
3742 		return (ENXIO);
3743 	}
3744 	sc->bt = rman_get_bustag(sc->regs_res);
3745 	sc->bh = rman_get_bushandle(sc->regs_res);
3746 	sc->mmio_len = rman_get_size(sc->regs_res);
3747 	setbit(&sc->doorbells, DOORBELL_KDB);
3748 
3749 	sc->msix_rid = PCIR_BAR(4);
3750 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3751 	    &sc->msix_rid, RF_ACTIVE);
3752 	if (sc->msix_res == NULL) {
3753 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3754 		return (ENXIO);
3755 	}
3756 
3757 	return (0);
3758 }
3759 
3760 int
t4_map_bar_2(struct adapter * sc)3761 t4_map_bar_2(struct adapter *sc)
3762 {
3763 
3764 	/*
3765 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
3766 	 * to map it if RDMA is disabled.
3767 	 */
3768 	if (is_t4(sc) && sc->rdmacaps == 0)
3769 		return (0);
3770 
3771 	sc->udbs_rid = PCIR_BAR(2);
3772 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3773 	    &sc->udbs_rid, RF_ACTIVE);
3774 	if (sc->udbs_res == NULL) {
3775 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
3776 		return (ENXIO);
3777 	}
3778 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
3779 
3780 	if (chip_id(sc) >= CHELSIO_T5) {
3781 		setbit(&sc->doorbells, DOORBELL_UDB);
3782 #if defined(__i386__) || defined(__amd64__)
3783 		if (t5_write_combine) {
3784 			int rc, mode;
3785 
3786 			/*
3787 			 * Enable write combining on BAR2.  This is the
3788 			 * userspace doorbell BAR and is split into 128B
3789 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
3790 			 * with an egress queue.  The first 64B has the doorbell
3791 			 * and the second 64B can be used to submit a tx work
3792 			 * request with an implicit doorbell.
3793 			 */
3794 
3795 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3796 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3797 			if (rc == 0) {
3798 				clrbit(&sc->doorbells, DOORBELL_UDB);
3799 				setbit(&sc->doorbells, DOORBELL_WCWR);
3800 				setbit(&sc->doorbells, DOORBELL_UDBWC);
3801 			} else {
3802 				device_printf(sc->dev,
3803 				    "couldn't enable write combining: %d\n",
3804 				    rc);
3805 			}
3806 
3807 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3808 			t4_write_reg(sc, A_SGE_STAT_CFG,
3809 			    V_STATSOURCE_T5(7) | mode);
3810 		}
3811 #endif
3812 	}
3813 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3814 
3815 	return (0);
3816 }
3817 
3818 int
t4_adj_doorbells(struct adapter * sc)3819 t4_adj_doorbells(struct adapter *sc)
3820 {
3821 	if ((sc->doorbells & t4_doorbells_allowed) != 0) {
3822 		sc->doorbells &= t4_doorbells_allowed;
3823 		return (0);
3824 	}
3825 	CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
3826 	       sc->doorbells, t4_doorbells_allowed);
3827 	return (EINVAL);
3828 }
3829 
3830 struct memwin_init {
3831 	uint32_t base;
3832 	uint32_t aperture;
3833 };
3834 
3835 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3836 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3837 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3838 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3839 };
3840 
3841 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3842 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3843 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3844 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3845 };
3846 
3847 static void
setup_memwin(struct adapter * sc)3848 setup_memwin(struct adapter *sc)
3849 {
3850 	const struct memwin_init *mw_init;
3851 	struct memwin *mw;
3852 	int i;
3853 	uint32_t bar0;
3854 
3855 	if (is_t4(sc)) {
3856 		/*
3857 		 * Read low 32b of bar0 indirectly via the hardware backdoor
3858 		 * mechanism.  Works from within PCI passthrough environments
3859 		 * too, where rman_get_start() can return a different value.  We
3860 		 * need to program the T4 memory window decoders with the actual
3861 		 * addresses that will be coming across the PCIe link.
3862 		 */
3863 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3864 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3865 
3866 		mw_init = &t4_memwin[0];
3867 	} else {
3868 		/* T5+ use the relative offset inside the PCIe BAR */
3869 		bar0 = 0;
3870 
3871 		mw_init = &t5_memwin[0];
3872 	}
3873 
3874 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3875 		if (!rw_initialized(&mw->mw_lock)) {
3876 			rw_init(&mw->mw_lock, "memory window access");
3877 			mw->mw_base = mw_init->base;
3878 			mw->mw_aperture = mw_init->aperture;
3879 			mw->mw_curpos = 0;
3880 		}
3881 		t4_write_reg(sc,
3882 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3883 		    (mw->mw_base + bar0) | V_BIR(0) |
3884 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
3885 		rw_wlock(&mw->mw_lock);
3886 		position_memwin(sc, i, mw->mw_curpos);
3887 		rw_wunlock(&mw->mw_lock);
3888 	}
3889 
3890 	/* flush */
3891 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3892 }
3893 
3894 /*
3895  * Positions the memory window at the given address in the card's address space.
3896  * There are some alignment requirements and the actual position may be at an
3897  * address prior to the requested address.  mw->mw_curpos always has the actual
3898  * position of the window.
3899  */
3900 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)3901 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3902 {
3903 	struct memwin *mw;
3904 	uint32_t pf;
3905 	uint32_t reg;
3906 
3907 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3908 	mw = &sc->memwin[idx];
3909 	rw_assert(&mw->mw_lock, RA_WLOCKED);
3910 
3911 	if (is_t4(sc)) {
3912 		pf = 0;
3913 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
3914 	} else {
3915 		pf = V_PFNUM(sc->pf);
3916 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
3917 	}
3918 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3919 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
3920 	t4_read_reg(sc, reg);	/* flush */
3921 }
3922 
3923 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)3924 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3925     int len, int rw)
3926 {
3927 	struct memwin *mw;
3928 	uint32_t mw_end, v;
3929 
3930 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3931 
3932 	/* Memory can only be accessed in naturally aligned 4 byte units */
3933 	if (addr & 3 || len & 3 || len <= 0)
3934 		return (EINVAL);
3935 
3936 	mw = &sc->memwin[idx];
3937 	while (len > 0) {
3938 		rw_rlock(&mw->mw_lock);
3939 		mw_end = mw->mw_curpos + mw->mw_aperture;
3940 		if (addr >= mw_end || addr < mw->mw_curpos) {
3941 			/* Will need to reposition the window */
3942 			if (!rw_try_upgrade(&mw->mw_lock)) {
3943 				rw_runlock(&mw->mw_lock);
3944 				rw_wlock(&mw->mw_lock);
3945 			}
3946 			rw_assert(&mw->mw_lock, RA_WLOCKED);
3947 			position_memwin(sc, idx, addr);
3948 			rw_downgrade(&mw->mw_lock);
3949 			mw_end = mw->mw_curpos + mw->mw_aperture;
3950 		}
3951 		rw_assert(&mw->mw_lock, RA_RLOCKED);
3952 		while (addr < mw_end && len > 0) {
3953 			if (rw == 0) {
3954 				v = t4_read_reg(sc, mw->mw_base + addr -
3955 				    mw->mw_curpos);
3956 				*val++ = le32toh(v);
3957 			} else {
3958 				v = *val++;
3959 				t4_write_reg(sc, mw->mw_base + addr -
3960 				    mw->mw_curpos, htole32(v));
3961 			}
3962 			addr += 4;
3963 			len -= 4;
3964 		}
3965 		rw_runlock(&mw->mw_lock);
3966 	}
3967 
3968 	return (0);
3969 }
3970 
3971 CTASSERT(M_TID_COOKIE == M_COOKIE);
3972 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3973 
3974 static void
t4_init_atid_table(struct adapter * sc)3975 t4_init_atid_table(struct adapter *sc)
3976 {
3977 	struct tid_info *t;
3978 	int i;
3979 
3980 	t = &sc->tids;
3981 	if (t->natids == 0)
3982 		return;
3983 
3984 	MPASS(t->atid_tab == NULL);
3985 
3986 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3987 	    M_ZERO | M_WAITOK);
3988 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3989 	t->afree = t->atid_tab;
3990 	t->atids_in_use = 0;
3991 	t->atid_alloc_stopped = false;
3992 	for (i = 1; i < t->natids; i++)
3993 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3994 	t->atid_tab[t->natids - 1].next = NULL;
3995 }
3996 
3997 static void
t4_free_atid_table(struct adapter * sc)3998 t4_free_atid_table(struct adapter *sc)
3999 {
4000 	struct tid_info *t;
4001 
4002 	t = &sc->tids;
4003 
4004 	KASSERT(t->atids_in_use == 0,
4005 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
4006 
4007 	if (mtx_initialized(&t->atid_lock))
4008 		mtx_destroy(&t->atid_lock);
4009 	free(t->atid_tab, M_CXGBE);
4010 	t->atid_tab = NULL;
4011 }
4012 
4013 static void
stop_atid_allocator(struct adapter * sc)4014 stop_atid_allocator(struct adapter *sc)
4015 {
4016 	struct tid_info *t = &sc->tids;
4017 
4018 	if (t->natids == 0)
4019 		return;
4020 	mtx_lock(&t->atid_lock);
4021 	t->atid_alloc_stopped = true;
4022 	mtx_unlock(&t->atid_lock);
4023 }
4024 
4025 static void
restart_atid_allocator(struct adapter * sc)4026 restart_atid_allocator(struct adapter *sc)
4027 {
4028 	struct tid_info *t = &sc->tids;
4029 
4030 	if (t->natids == 0)
4031 		return;
4032 	mtx_lock(&t->atid_lock);
4033 	KASSERT(t->atids_in_use == 0,
4034 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
4035 	t->atid_alloc_stopped = false;
4036 	mtx_unlock(&t->atid_lock);
4037 }
4038 
4039 int
alloc_atid(struct adapter * sc,void * ctx)4040 alloc_atid(struct adapter *sc, void *ctx)
4041 {
4042 	struct tid_info *t = &sc->tids;
4043 	int atid = -1;
4044 
4045 	mtx_lock(&t->atid_lock);
4046 	if (t->afree && !t->atid_alloc_stopped) {
4047 		union aopen_entry *p = t->afree;
4048 
4049 		atid = p - t->atid_tab;
4050 		MPASS(atid <= M_TID_TID);
4051 		t->afree = p->next;
4052 		p->data = ctx;
4053 		t->atids_in_use++;
4054 	}
4055 	mtx_unlock(&t->atid_lock);
4056 	return (atid);
4057 }
4058 
4059 void *
lookup_atid(struct adapter * sc,int atid)4060 lookup_atid(struct adapter *sc, int atid)
4061 {
4062 	struct tid_info *t = &sc->tids;
4063 
4064 	return (t->atid_tab[atid].data);
4065 }
4066 
4067 void
free_atid(struct adapter * sc,int atid)4068 free_atid(struct adapter *sc, int atid)
4069 {
4070 	struct tid_info *t = &sc->tids;
4071 	union aopen_entry *p = &t->atid_tab[atid];
4072 
4073 	mtx_lock(&t->atid_lock);
4074 	p->next = t->afree;
4075 	t->afree = p;
4076 	t->atids_in_use--;
4077 	mtx_unlock(&t->atid_lock);
4078 }
4079 
4080 static void
queue_tid_release(struct adapter * sc,int tid)4081 queue_tid_release(struct adapter *sc, int tid)
4082 {
4083 
4084 	CXGBE_UNIMPLEMENTED("deferred tid release");
4085 }
4086 
4087 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4088 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4089 {
4090 	struct wrqe *wr;
4091 	struct cpl_tid_release *req;
4092 
4093 	wr = alloc_wrqe(sizeof(*req), ctrlq);
4094 	if (wr == NULL) {
4095 		queue_tid_release(sc, tid);	/* defer */
4096 		return;
4097 	}
4098 	req = wrtod(wr);
4099 
4100 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4101 
4102 	t4_wrq_tx(sc, wr);
4103 }
4104 
4105 static int
t4_range_cmp(const void * a,const void * b)4106 t4_range_cmp(const void *a, const void *b)
4107 {
4108 	return ((const struct t4_range *)a)->start -
4109 	       ((const struct t4_range *)b)->start;
4110 }
4111 
4112 /*
4113  * Verify that the memory range specified by the addr/len pair is valid within
4114  * the card's address space.
4115  */
4116 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4117 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4118 {
4119 	struct t4_range mem_ranges[4], *r, *next;
4120 	uint32_t em, addr_len;
4121 	int i, n, remaining;
4122 
4123 	/* Memory can only be accessed in naturally aligned 4 byte units */
4124 	if (addr & 3 || len & 3 || len == 0)
4125 		return (EINVAL);
4126 
4127 	/* Enabled memories */
4128 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4129 
4130 	r = &mem_ranges[0];
4131 	n = 0;
4132 	bzero(r, sizeof(mem_ranges));
4133 	if (em & F_EDRAM0_ENABLE) {
4134 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4135 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
4136 		if (r->size > 0) {
4137 			r->start = G_EDRAM0_BASE(addr_len) << 20;
4138 			if (addr >= r->start &&
4139 			    addr + len <= r->start + r->size)
4140 				return (0);
4141 			r++;
4142 			n++;
4143 		}
4144 	}
4145 	if (em & F_EDRAM1_ENABLE) {
4146 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4147 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
4148 		if (r->size > 0) {
4149 			r->start = G_EDRAM1_BASE(addr_len) << 20;
4150 			if (addr >= r->start &&
4151 			    addr + len <= r->start + r->size)
4152 				return (0);
4153 			r++;
4154 			n++;
4155 		}
4156 	}
4157 	if (em & F_EXT_MEM_ENABLE) {
4158 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4159 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4160 		if (r->size > 0) {
4161 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
4162 			if (addr >= r->start &&
4163 			    addr + len <= r->start + r->size)
4164 				return (0);
4165 			r++;
4166 			n++;
4167 		}
4168 	}
4169 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4170 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4171 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4172 		if (r->size > 0) {
4173 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4174 			if (addr >= r->start &&
4175 			    addr + len <= r->start + r->size)
4176 				return (0);
4177 			r++;
4178 			n++;
4179 		}
4180 	}
4181 	MPASS(n <= nitems(mem_ranges));
4182 
4183 	if (n > 1) {
4184 		/* Sort and merge the ranges. */
4185 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4186 
4187 		/* Start from index 0 and examine the next n - 1 entries. */
4188 		r = &mem_ranges[0];
4189 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
4190 
4191 			MPASS(r->size > 0);	/* r is a valid entry. */
4192 			next = r + 1;
4193 			MPASS(next->size > 0);	/* and so is the next one. */
4194 
4195 			while (r->start + r->size >= next->start) {
4196 				/* Merge the next one into the current entry. */
4197 				r->size = max(r->start + r->size,
4198 				    next->start + next->size) - r->start;
4199 				n--;	/* One fewer entry in total. */
4200 				if (--remaining == 0)
4201 					goto done;	/* short circuit */
4202 				next++;
4203 			}
4204 			if (next != r + 1) {
4205 				/*
4206 				 * Some entries were merged into r and next
4207 				 * points to the first valid entry that couldn't
4208 				 * be merged.
4209 				 */
4210 				MPASS(next->size > 0);	/* must be valid */
4211 				memcpy(r + 1, next, remaining * sizeof(*r));
4212 #ifdef INVARIANTS
4213 				/*
4214 				 * This so that the foo->size assertion in the
4215 				 * next iteration of the loop do the right
4216 				 * thing for entries that were pulled up and are
4217 				 * no longer valid.
4218 				 */
4219 				MPASS(n < nitems(mem_ranges));
4220 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4221 				    sizeof(struct t4_range));
4222 #endif
4223 			}
4224 		}
4225 done:
4226 		/* Done merging the ranges. */
4227 		MPASS(n > 0);
4228 		r = &mem_ranges[0];
4229 		for (i = 0; i < n; i++, r++) {
4230 			if (addr >= r->start &&
4231 			    addr + len <= r->start + r->size)
4232 				return (0);
4233 		}
4234 	}
4235 
4236 	return (EFAULT);
4237 }
4238 
4239 static int
fwmtype_to_hwmtype(int mtype)4240 fwmtype_to_hwmtype(int mtype)
4241 {
4242 
4243 	switch (mtype) {
4244 	case FW_MEMTYPE_EDC0:
4245 		return (MEM_EDC0);
4246 	case FW_MEMTYPE_EDC1:
4247 		return (MEM_EDC1);
4248 	case FW_MEMTYPE_EXTMEM:
4249 		return (MEM_MC0);
4250 	case FW_MEMTYPE_EXTMEM1:
4251 		return (MEM_MC1);
4252 	default:
4253 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4254 	}
4255 }
4256 
4257 /*
4258  * Verify that the memory range specified by the memtype/offset/len pair is
4259  * valid and lies entirely within the memtype specified.  The global address of
4260  * the start of the range is returned in addr.
4261  */
4262 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4263 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4264     uint32_t *addr)
4265 {
4266 	uint32_t em, addr_len, maddr;
4267 
4268 	/* Memory can only be accessed in naturally aligned 4 byte units */
4269 	if (off & 3 || len & 3 || len == 0)
4270 		return (EINVAL);
4271 
4272 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4273 	switch (fwmtype_to_hwmtype(mtype)) {
4274 	case MEM_EDC0:
4275 		if (!(em & F_EDRAM0_ENABLE))
4276 			return (EINVAL);
4277 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4278 		maddr = G_EDRAM0_BASE(addr_len) << 20;
4279 		break;
4280 	case MEM_EDC1:
4281 		if (!(em & F_EDRAM1_ENABLE))
4282 			return (EINVAL);
4283 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4284 		maddr = G_EDRAM1_BASE(addr_len) << 20;
4285 		break;
4286 	case MEM_MC:
4287 		if (!(em & F_EXT_MEM_ENABLE))
4288 			return (EINVAL);
4289 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4290 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
4291 		break;
4292 	case MEM_MC1:
4293 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4294 			return (EINVAL);
4295 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4296 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4297 		break;
4298 	default:
4299 		return (EINVAL);
4300 	}
4301 
4302 	*addr = maddr + off;	/* global address */
4303 	return (validate_mem_range(sc, *addr, len));
4304 }
4305 
4306 static int
fixup_devlog_params(struct adapter * sc)4307 fixup_devlog_params(struct adapter *sc)
4308 {
4309 	struct devlog_params *dparams = &sc->params.devlog;
4310 	int rc;
4311 
4312 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4313 	    dparams->size, &dparams->addr);
4314 
4315 	return (rc);
4316 }
4317 
4318 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4319 update_nirq(struct intrs_and_queues *iaq, int nports)
4320 {
4321 
4322 	iaq->nirq = T4_EXTRA_INTR;
4323 	iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4324 	iaq->nirq += nports * iaq->nofldrxq;
4325 	iaq->nirq += nports * (iaq->num_vis - 1) *
4326 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4327 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4328 }
4329 
4330 /*
4331  * Adjust requirements to fit the number of interrupts available.
4332  */
4333 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4334 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4335     int navail)
4336 {
4337 	int old_nirq;
4338 	const int nports = sc->params.nports;
4339 
4340 	MPASS(nports > 0);
4341 	MPASS(navail > 0);
4342 
4343 	bzero(iaq, sizeof(*iaq));
4344 	iaq->intr_type = itype;
4345 	iaq->num_vis = t4_num_vis;
4346 	iaq->ntxq = t4_ntxq;
4347 	iaq->ntxq_vi = t4_ntxq_vi;
4348 	iaq->nrxq = t4_nrxq;
4349 	iaq->nrxq_vi = t4_nrxq_vi;
4350 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4351 	if (is_offload(sc) || is_ethoffload(sc)) {
4352 		iaq->nofldtxq = t4_nofldtxq;
4353 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
4354 	}
4355 #endif
4356 #ifdef TCP_OFFLOAD
4357 	if (is_offload(sc)) {
4358 		iaq->nofldrxq = t4_nofldrxq;
4359 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
4360 	}
4361 #endif
4362 #ifdef DEV_NETMAP
4363 	if (t4_native_netmap & NN_MAIN_VI) {
4364 		iaq->nnmtxq = t4_nnmtxq;
4365 		iaq->nnmrxq = t4_nnmrxq;
4366 	}
4367 	if (t4_native_netmap & NN_EXTRA_VI) {
4368 		iaq->nnmtxq_vi = t4_nnmtxq_vi;
4369 		iaq->nnmrxq_vi = t4_nnmrxq_vi;
4370 	}
4371 #endif
4372 
4373 	update_nirq(iaq, nports);
4374 	if (iaq->nirq <= navail &&
4375 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4376 		/*
4377 		 * This is the normal case -- there are enough interrupts for
4378 		 * everything.
4379 		 */
4380 		goto done;
4381 	}
4382 
4383 	/*
4384 	 * If extra VIs have been configured try reducing their count and see if
4385 	 * that works.
4386 	 */
4387 	while (iaq->num_vis > 1) {
4388 		iaq->num_vis--;
4389 		update_nirq(iaq, nports);
4390 		if (iaq->nirq <= navail &&
4391 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4392 			device_printf(sc->dev, "virtual interfaces per port "
4393 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4394 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4395 			    "itype %d, navail %u, nirq %d.\n",
4396 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4397 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4398 			    itype, navail, iaq->nirq);
4399 			goto done;
4400 		}
4401 	}
4402 
4403 	/*
4404 	 * Extra VIs will not be created.  Log a message if they were requested.
4405 	 */
4406 	MPASS(iaq->num_vis == 1);
4407 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
4408 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4409 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4410 	if (iaq->num_vis != t4_num_vis) {
4411 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
4412 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4413 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4414 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4415 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4416 	}
4417 
4418 	/*
4419 	 * Keep reducing the number of NIC rx queues to the next lower power of
4420 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4421 	 * if that works.
4422 	 */
4423 	do {
4424 		if (iaq->nrxq > 1) {
4425 			iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4426 			if (iaq->nnmrxq > iaq->nrxq)
4427 				iaq->nnmrxq = iaq->nrxq;
4428 		}
4429 		if (iaq->nofldrxq > 1)
4430 			iaq->nofldrxq >>= 1;
4431 
4432 		old_nirq = iaq->nirq;
4433 		update_nirq(iaq, nports);
4434 		if (iaq->nirq <= navail &&
4435 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4436 			device_printf(sc->dev, "running with reduced number of "
4437 			    "rx queues because of shortage of interrupts.  "
4438 			    "nrxq=%u, nofldrxq=%u.  "
4439 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4440 			    iaq->nofldrxq, itype, navail, iaq->nirq);
4441 			goto done;
4442 		}
4443 	} while (old_nirq != iaq->nirq);
4444 
4445 	/* One interrupt for everything.  Ugh. */
4446 	device_printf(sc->dev, "running with minimal number of queues.  "
4447 	    "itype %d, navail %u.\n", itype, navail);
4448 	iaq->nirq = 1;
4449 	iaq->nrxq = 1;
4450 	iaq->ntxq = 1;
4451 	if (iaq->nofldrxq > 0) {
4452 		iaq->nofldrxq = 1;
4453 		iaq->nofldtxq = 1;
4454 	}
4455 	iaq->nnmtxq = 0;
4456 	iaq->nnmrxq = 0;
4457 done:
4458 	MPASS(iaq->num_vis > 0);
4459 	if (iaq->num_vis > 1) {
4460 		MPASS(iaq->nrxq_vi > 0);
4461 		MPASS(iaq->ntxq_vi > 0);
4462 	}
4463 	MPASS(iaq->nirq > 0);
4464 	MPASS(iaq->nrxq > 0);
4465 	MPASS(iaq->ntxq > 0);
4466 	if (itype == INTR_MSI) {
4467 		MPASS(powerof2(iaq->nirq));
4468 	}
4469 }
4470 
4471 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4472 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4473 {
4474 	int rc, itype, navail, nalloc;
4475 
4476 	for (itype = INTR_MSIX; itype; itype >>= 1) {
4477 
4478 		if ((itype & t4_intr_types) == 0)
4479 			continue;	/* not allowed */
4480 
4481 		if (itype == INTR_MSIX)
4482 			navail = pci_msix_count(sc->dev);
4483 		else if (itype == INTR_MSI)
4484 			navail = pci_msi_count(sc->dev);
4485 		else
4486 			navail = 1;
4487 restart:
4488 		if (navail == 0)
4489 			continue;
4490 
4491 		calculate_iaq(sc, iaq, itype, navail);
4492 		nalloc = iaq->nirq;
4493 		rc = 0;
4494 		if (itype == INTR_MSIX)
4495 			rc = pci_alloc_msix(sc->dev, &nalloc);
4496 		else if (itype == INTR_MSI)
4497 			rc = pci_alloc_msi(sc->dev, &nalloc);
4498 
4499 		if (rc == 0 && nalloc > 0) {
4500 			if (nalloc == iaq->nirq)
4501 				return (0);
4502 
4503 			/*
4504 			 * Didn't get the number requested.  Use whatever number
4505 			 * the kernel is willing to allocate.
4506 			 */
4507 			device_printf(sc->dev, "fewer vectors than requested, "
4508 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4509 			    itype, iaq->nirq, nalloc);
4510 			pci_release_msi(sc->dev);
4511 			navail = nalloc;
4512 			goto restart;
4513 		}
4514 
4515 		device_printf(sc->dev,
4516 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4517 		    itype, rc, iaq->nirq, nalloc);
4518 	}
4519 
4520 	device_printf(sc->dev,
4521 	    "failed to find a usable interrupt type.  "
4522 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4523 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4524 
4525 	return (ENXIO);
4526 }
4527 
4528 #define FW_VERSION(chip) ( \
4529     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4530     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4531     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4532     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4533 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4534 
4535 /* Just enough of fw_hdr to cover all version info. */
4536 struct fw_h {
4537 	__u8	ver;
4538 	__u8	chip;
4539 	__be16	len512;
4540 	__be32	fw_ver;
4541 	__be32	tp_microcode_ver;
4542 	__u8	intfver_nic;
4543 	__u8	intfver_vnic;
4544 	__u8	intfver_ofld;
4545 	__u8	intfver_ri;
4546 	__u8	intfver_iscsipdu;
4547 	__u8	intfver_iscsi;
4548 	__u8	intfver_fcoepdu;
4549 	__u8	intfver_fcoe;
4550 };
4551 /* Spot check a couple of fields. */
4552 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4553 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4554 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4555 
4556 struct fw_info {
4557 	uint8_t chip;
4558 	char *kld_name;
4559 	char *fw_mod_name;
4560 	struct fw_h fw_h;
4561 } fw_info[] = {
4562 	{
4563 		.chip = CHELSIO_T4,
4564 		.kld_name = "t4fw_cfg",
4565 		.fw_mod_name = "t4fw",
4566 		.fw_h = {
4567 			.chip = FW_HDR_CHIP_T4,
4568 			.fw_ver = htobe32(FW_VERSION(T4)),
4569 			.intfver_nic = FW_INTFVER(T4, NIC),
4570 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4571 			.intfver_ofld = FW_INTFVER(T4, OFLD),
4572 			.intfver_ri = FW_INTFVER(T4, RI),
4573 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4574 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4575 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4576 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4577 		},
4578 	}, {
4579 		.chip = CHELSIO_T5,
4580 		.kld_name = "t5fw_cfg",
4581 		.fw_mod_name = "t5fw",
4582 		.fw_h = {
4583 			.chip = FW_HDR_CHIP_T5,
4584 			.fw_ver = htobe32(FW_VERSION(T5)),
4585 			.intfver_nic = FW_INTFVER(T5, NIC),
4586 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4587 			.intfver_ofld = FW_INTFVER(T5, OFLD),
4588 			.intfver_ri = FW_INTFVER(T5, RI),
4589 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4590 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4591 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4592 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4593 		},
4594 	}, {
4595 		.chip = CHELSIO_T6,
4596 		.kld_name = "t6fw_cfg",
4597 		.fw_mod_name = "t6fw",
4598 		.fw_h = {
4599 			.chip = FW_HDR_CHIP_T6,
4600 			.fw_ver = htobe32(FW_VERSION(T6)),
4601 			.intfver_nic = FW_INTFVER(T6, NIC),
4602 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4603 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4604 			.intfver_ri = FW_INTFVER(T6, RI),
4605 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4606 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4607 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4608 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4609 		},
4610 	}
4611 };
4612 
4613 static struct fw_info *
find_fw_info(int chip)4614 find_fw_info(int chip)
4615 {
4616 	int i;
4617 
4618 	for (i = 0; i < nitems(fw_info); i++) {
4619 		if (fw_info[i].chip == chip)
4620 			return (&fw_info[i]);
4621 	}
4622 	return (NULL);
4623 }
4624 
4625 /*
4626  * Is the given firmware API compatible with the one the driver was compiled
4627  * with?
4628  */
4629 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4630 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4631 {
4632 
4633 	/* short circuit if it's the exact same firmware version */
4634 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4635 		return (1);
4636 
4637 	/*
4638 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
4639 	 * features that are supported in the driver.
4640 	 */
4641 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4642 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4643 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4644 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4645 		return (1);
4646 #undef SAME_INTF
4647 
4648 	return (0);
4649 }
4650 
4651 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4652 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4653     const struct firmware **fw)
4654 {
4655 	struct fw_info *fw_info;
4656 
4657 	*dcfg = NULL;
4658 	if (fw != NULL)
4659 		*fw = NULL;
4660 
4661 	fw_info = find_fw_info(chip_id(sc));
4662 	if (fw_info == NULL) {
4663 		device_printf(sc->dev,
4664 		    "unable to look up firmware information for chip %d.\n",
4665 		    chip_id(sc));
4666 		return (EINVAL);
4667 	}
4668 
4669 	*dcfg = firmware_get(fw_info->kld_name);
4670 	if (*dcfg != NULL) {
4671 		if (fw != NULL)
4672 			*fw = firmware_get(fw_info->fw_mod_name);
4673 		return (0);
4674 	}
4675 
4676 	return (ENOENT);
4677 }
4678 
4679 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4680 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4681     const struct firmware *fw)
4682 {
4683 
4684 	if (fw != NULL)
4685 		firmware_put(fw, FIRMWARE_UNLOAD);
4686 	if (dcfg != NULL)
4687 		firmware_put(dcfg, FIRMWARE_UNLOAD);
4688 }
4689 
4690 /*
4691  * Return values:
4692  * 0 means no firmware install attempted.
4693  * ERESTART means a firmware install was attempted and was successful.
4694  * +ve errno means a firmware install was attempted but failed.
4695  */
4696 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4697 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4698     const struct fw_h *drv_fw, const char *reason, int *already)
4699 {
4700 	const struct firmware *cfg, *fw;
4701 	const uint32_t c = be32toh(card_fw->fw_ver);
4702 	uint32_t d, k;
4703 	int rc, fw_install;
4704 	struct fw_h bundled_fw;
4705 	bool load_attempted;
4706 
4707 	cfg = fw = NULL;
4708 	load_attempted = false;
4709 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4710 
4711 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4712 	if (t4_fw_install < 0) {
4713 		rc = load_fw_module(sc, &cfg, &fw);
4714 		if (rc != 0 || fw == NULL) {
4715 			device_printf(sc->dev,
4716 			    "failed to load firmware module: %d. cfg %p, fw %p;"
4717 			    " will use compiled-in firmware version for"
4718 			    "hw.cxgbe.fw_install checks.\n",
4719 			    rc, cfg, fw);
4720 		} else {
4721 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4722 		}
4723 		load_attempted = true;
4724 	}
4725 	d = be32toh(bundled_fw.fw_ver);
4726 
4727 	if (reason != NULL)
4728 		goto install;
4729 
4730 	if ((sc->flags & FW_OK) == 0) {
4731 
4732 		if (c == 0xffffffff) {
4733 			reason = "missing";
4734 			goto install;
4735 		}
4736 
4737 		rc = 0;
4738 		goto done;
4739 	}
4740 
4741 	if (!fw_compatible(card_fw, &bundled_fw)) {
4742 		reason = "incompatible or unusable";
4743 		goto install;
4744 	}
4745 
4746 	if (d > c) {
4747 		reason = "older than the version bundled with this driver";
4748 		goto install;
4749 	}
4750 
4751 	if (fw_install == 2 && d != c) {
4752 		reason = "different than the version bundled with this driver";
4753 		goto install;
4754 	}
4755 
4756 	/* No reason to do anything to the firmware already on the card. */
4757 	rc = 0;
4758 	goto done;
4759 
4760 install:
4761 	rc = 0;
4762 	if ((*already)++)
4763 		goto done;
4764 
4765 	if (fw_install == 0) {
4766 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4767 		    "but the driver is prohibited from installing a firmware "
4768 		    "on the card.\n",
4769 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4770 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4771 
4772 		goto done;
4773 	}
4774 
4775 	/*
4776 	 * We'll attempt to install a firmware.  Load the module first (if it
4777 	 * hasn't been loaded already).
4778 	 */
4779 	if (!load_attempted) {
4780 		rc = load_fw_module(sc, &cfg, &fw);
4781 		if (rc != 0 || fw == NULL) {
4782 			device_printf(sc->dev,
4783 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
4784 			    rc, cfg, fw);
4785 			/* carry on */
4786 		}
4787 	}
4788 	if (fw == NULL) {
4789 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4790 		    "but the driver cannot take corrective action because it "
4791 		    "is unable to load the firmware module.\n",
4792 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4793 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4794 		rc = sc->flags & FW_OK ? 0 : ENOENT;
4795 		goto done;
4796 	}
4797 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4798 	if (k != d) {
4799 		MPASS(t4_fw_install > 0);
4800 		device_printf(sc->dev,
4801 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4802 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
4803 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4804 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4805 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4806 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4807 		rc = sc->flags & FW_OK ? 0 : EINVAL;
4808 		goto done;
4809 	}
4810 
4811 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4812 	    "installing firmware %u.%u.%u.%u on card.\n",
4813 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4814 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4815 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4816 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4817 
4818 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4819 	if (rc != 0) {
4820 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4821 	} else {
4822 		/* Installed successfully, update the cached header too. */
4823 		rc = ERESTART;
4824 		memcpy(card_fw, fw->data, sizeof(*card_fw));
4825 	}
4826 done:
4827 	unload_fw_module(sc, cfg, fw);
4828 
4829 	return (rc);
4830 }
4831 
4832 /*
4833  * Establish contact with the firmware and attempt to become the master driver.
4834  *
4835  * A firmware will be installed to the card if needed (if the driver is allowed
4836  * to do so).
4837  */
4838 static int
contact_firmware(struct adapter * sc)4839 contact_firmware(struct adapter *sc)
4840 {
4841 	int rc, already = 0;
4842 	enum dev_state state;
4843 	struct fw_info *fw_info;
4844 	struct fw_hdr *card_fw;		/* fw on the card */
4845 	const struct fw_h *drv_fw;
4846 
4847 	fw_info = find_fw_info(chip_id(sc));
4848 	if (fw_info == NULL) {
4849 		device_printf(sc->dev,
4850 		    "unable to look up firmware information for chip %d.\n",
4851 		    chip_id(sc));
4852 		return (EINVAL);
4853 	}
4854 	drv_fw = &fw_info->fw_h;
4855 
4856 	/* Read the header of the firmware on the card */
4857 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4858 restart:
4859 	rc = -t4_get_fw_hdr(sc, card_fw);
4860 	if (rc != 0) {
4861 		device_printf(sc->dev,
4862 		    "unable to read firmware header from card's flash: %d\n",
4863 		    rc);
4864 		goto done;
4865 	}
4866 
4867 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4868 	    &already);
4869 	if (rc == ERESTART)
4870 		goto restart;
4871 	if (rc != 0)
4872 		goto done;
4873 
4874 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4875 	if (rc < 0 || state == DEV_STATE_ERR) {
4876 		rc = -rc;
4877 		device_printf(sc->dev,
4878 		    "failed to connect to the firmware: %d, %d.  "
4879 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4880 #if 0
4881 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4882 		    "not responding properly to HELLO", &already) == ERESTART)
4883 			goto restart;
4884 #endif
4885 		goto done;
4886 	}
4887 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4888 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
4889 
4890 	if (rc == sc->pf) {
4891 		sc->flags |= MASTER_PF;
4892 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4893 		    NULL, &already);
4894 		if (rc == ERESTART)
4895 			rc = 0;
4896 		else if (rc != 0)
4897 			goto done;
4898 	} else if (state == DEV_STATE_UNINIT) {
4899 		/*
4900 		 * We didn't get to be the master so we definitely won't be
4901 		 * configuring the chip.  It's a bug if someone else hasn't
4902 		 * configured it already.
4903 		 */
4904 		device_printf(sc->dev, "couldn't be master(%d), "
4905 		    "device not already initialized either(%d).  "
4906 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4907 		rc = EPROTO;
4908 		goto done;
4909 	} else {
4910 		/*
4911 		 * Some other PF is the master and has configured the chip.
4912 		 * This is allowed but untested.
4913 		 */
4914 		device_printf(sc->dev, "PF%d is master, device state %d.  "
4915 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4916 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4917 		sc->cfcsum = 0;
4918 		rc = 0;
4919 	}
4920 done:
4921 	if (rc != 0 && sc->flags & FW_OK) {
4922 		t4_fw_bye(sc, sc->mbox);
4923 		sc->flags &= ~FW_OK;
4924 	}
4925 	free(card_fw, M_CXGBE);
4926 	return (rc);
4927 }
4928 
4929 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff)4930 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4931     uint32_t mtype, uint32_t moff)
4932 {
4933 	struct fw_info *fw_info;
4934 	const struct firmware *dcfg, *rcfg = NULL;
4935 	const uint32_t *cfdata;
4936 	uint32_t cflen, addr;
4937 	int rc;
4938 
4939 	load_fw_module(sc, &dcfg, NULL);
4940 
4941 	/* Card specific interpretation of "default". */
4942 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4943 		if (pci_get_device(sc->dev) == 0x440a)
4944 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4945 		if (is_fpga(sc))
4946 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4947 	}
4948 
4949 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4950 		if (dcfg == NULL) {
4951 			device_printf(sc->dev,
4952 			    "KLD with default config is not available.\n");
4953 			rc = ENOENT;
4954 			goto done;
4955 		}
4956 		cfdata = dcfg->data;
4957 		cflen = dcfg->datasize & ~3;
4958 	} else {
4959 		char s[32];
4960 
4961 		fw_info = find_fw_info(chip_id(sc));
4962 		if (fw_info == NULL) {
4963 			device_printf(sc->dev,
4964 			    "unable to look up firmware information for chip %d.\n",
4965 			    chip_id(sc));
4966 			rc = EINVAL;
4967 			goto done;
4968 		}
4969 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4970 
4971 		rcfg = firmware_get(s);
4972 		if (rcfg == NULL) {
4973 			device_printf(sc->dev,
4974 			    "unable to load module \"%s\" for configuration "
4975 			    "profile \"%s\".\n", s, cfg_file);
4976 			rc = ENOENT;
4977 			goto done;
4978 		}
4979 		cfdata = rcfg->data;
4980 		cflen = rcfg->datasize & ~3;
4981 	}
4982 
4983 	if (cflen > FLASH_CFG_MAX_SIZE) {
4984 		device_printf(sc->dev,
4985 		    "config file too long (%d, max allowed is %d).\n",
4986 		    cflen, FLASH_CFG_MAX_SIZE);
4987 		rc = EINVAL;
4988 		goto done;
4989 	}
4990 
4991 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4992 	if (rc != 0) {
4993 		device_printf(sc->dev,
4994 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4995 		    __func__, mtype, moff, cflen, rc);
4996 		rc = EINVAL;
4997 		goto done;
4998 	}
4999 	write_via_memwin(sc, 2, addr, cfdata, cflen);
5000 done:
5001 	if (rcfg != NULL)
5002 		firmware_put(rcfg, FIRMWARE_UNLOAD);
5003 	unload_fw_module(sc, dcfg, NULL);
5004 	return (rc);
5005 }
5006 
5007 struct caps_allowed {
5008 	uint16_t nbmcaps;
5009 	uint16_t linkcaps;
5010 	uint16_t switchcaps;
5011 	uint16_t niccaps;
5012 	uint16_t toecaps;
5013 	uint16_t rdmacaps;
5014 	uint16_t cryptocaps;
5015 	uint16_t iscsicaps;
5016 	uint16_t fcoecaps;
5017 };
5018 
5019 #define FW_PARAM_DEV(param) \
5020 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5021 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5022 #define FW_PARAM_PFVF(param) \
5023 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5024 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5025 
5026 /*
5027  * Provide a configuration profile to the firmware and have it initialize the
5028  * chip accordingly.  This may involve uploading a configuration file to the
5029  * card.
5030  */
5031 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5032 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5033     const struct caps_allowed *caps_allowed)
5034 {
5035 	int rc;
5036 	struct fw_caps_config_cmd caps;
5037 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
5038 
5039 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5040 	if (rc != 0) {
5041 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5042 		return (rc);
5043 	}
5044 
5045 	bzero(&caps, sizeof(caps));
5046 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5047 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5048 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5049 		mtype = 0;
5050 		moff = 0;
5051 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5052 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5053 		mtype = FW_MEMTYPE_FLASH;
5054 		moff = t4_flash_cfg_addr(sc);
5055 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5056 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5057 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5058 		    FW_LEN16(caps));
5059 	} else {
5060 		/*
5061 		 * Ask the firmware where it wants us to upload the config file.
5062 		 */
5063 		param = FW_PARAM_DEV(CF);
5064 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5065 		if (rc != 0) {
5066 			/* No support for config file?  Shouldn't happen. */
5067 			device_printf(sc->dev,
5068 			    "failed to query config file location: %d.\n", rc);
5069 			goto done;
5070 		}
5071 		mtype = G_FW_PARAMS_PARAM_Y(val);
5072 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5073 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5074 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5075 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5076 		    FW_LEN16(caps));
5077 
5078 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
5079 		if (rc != 0) {
5080 			device_printf(sc->dev,
5081 			    "failed to upload config file to card: %d.\n", rc);
5082 			goto done;
5083 		}
5084 	}
5085 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5086 	if (rc != 0) {
5087 		device_printf(sc->dev, "failed to pre-process config file: %d "
5088 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5089 		goto done;
5090 	}
5091 
5092 	finicsum = be32toh(caps.finicsum);
5093 	cfcsum = be32toh(caps.cfcsum);	/* actual */
5094 	if (finicsum != cfcsum) {
5095 		device_printf(sc->dev,
5096 		    "WARNING: config file checksum mismatch: %08x %08x\n",
5097 		    finicsum, cfcsum);
5098 	}
5099 	sc->cfcsum = cfcsum;
5100 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5101 
5102 	/*
5103 	 * Let the firmware know what features will (not) be used so it can tune
5104 	 * things accordingly.
5105 	 */
5106 #define LIMIT_CAPS(x) do { \
5107 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
5108 } while (0)
5109 	LIMIT_CAPS(nbm);
5110 	LIMIT_CAPS(link);
5111 	LIMIT_CAPS(switch);
5112 	LIMIT_CAPS(nic);
5113 	LIMIT_CAPS(toe);
5114 	LIMIT_CAPS(rdma);
5115 	LIMIT_CAPS(crypto);
5116 	LIMIT_CAPS(iscsi);
5117 	LIMIT_CAPS(fcoe);
5118 #undef LIMIT_CAPS
5119 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5120 		/*
5121 		 * TOE and hashfilters are mutually exclusive.  It is a config
5122 		 * file or firmware bug if both are reported as available.  Try
5123 		 * to cope with the situation in non-debug builds by disabling
5124 		 * TOE.
5125 		 */
5126 		MPASS(caps.toecaps == 0);
5127 
5128 		caps.toecaps = 0;
5129 		caps.rdmacaps = 0;
5130 		caps.iscsicaps = 0;
5131 	}
5132 
5133 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5134 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5135 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5136 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5137 	if (rc != 0) {
5138 		device_printf(sc->dev,
5139 		    "failed to process config file: %d.\n", rc);
5140 		goto done;
5141 	}
5142 
5143 	t4_tweak_chip_settings(sc);
5144 	set_params__pre_init(sc);
5145 
5146 	/* get basic stuff going */
5147 	rc = -t4_fw_initialize(sc, sc->mbox);
5148 	if (rc != 0) {
5149 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5150 		goto done;
5151 	}
5152 done:
5153 	return (rc);
5154 }
5155 
5156 /*
5157  * Partition chip resources for use between various PFs, VFs, etc.
5158  */
5159 static int
partition_resources(struct adapter * sc)5160 partition_resources(struct adapter *sc)
5161 {
5162 	char cfg_file[sizeof(t4_cfg_file)];
5163 	struct caps_allowed caps_allowed;
5164 	int rc;
5165 	bool fallback;
5166 
5167 	/* Only the master driver gets to configure the chip resources. */
5168 	MPASS(sc->flags & MASTER_PF);
5169 
5170 #define COPY_CAPS(x) do { \
5171 	caps_allowed.x##caps = t4_##x##caps_allowed; \
5172 } while (0)
5173 	bzero(&caps_allowed, sizeof(caps_allowed));
5174 	COPY_CAPS(nbm);
5175 	COPY_CAPS(link);
5176 	COPY_CAPS(switch);
5177 	COPY_CAPS(nic);
5178 	COPY_CAPS(toe);
5179 	COPY_CAPS(rdma);
5180 	COPY_CAPS(crypto);
5181 	COPY_CAPS(iscsi);
5182 	COPY_CAPS(fcoe);
5183 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5184 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5185 retry:
5186 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5187 	if (rc != 0 && fallback) {
5188 		dump_devlog(sc);
5189 		device_printf(sc->dev,
5190 		    "failed (%d) to configure card with \"%s\" profile, "
5191 		    "will fall back to a basic configuration and retry.\n",
5192 		    rc, cfg_file);
5193 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5194 		bzero(&caps_allowed, sizeof(caps_allowed));
5195 		COPY_CAPS(switch);
5196 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5197 		fallback = false;
5198 		goto retry;
5199 	}
5200 #undef COPY_CAPS
5201 	return (rc);
5202 }
5203 
5204 /*
5205  * Retrieve parameters that are needed (or nice to have) very early.
5206  */
5207 static int
get_params__pre_init(struct adapter * sc)5208 get_params__pre_init(struct adapter *sc)
5209 {
5210 	int rc;
5211 	uint32_t param[2], val[2];
5212 
5213 	t4_get_version_info(sc);
5214 
5215 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5216 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5217 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5218 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5219 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5220 
5221 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5222 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5223 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5224 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5225 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5226 
5227 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5228 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5229 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5230 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5231 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5232 
5233 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5234 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5235 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5236 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5237 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5238 
5239 	param[0] = FW_PARAM_DEV(PORTVEC);
5240 	param[1] = FW_PARAM_DEV(CCLK);
5241 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5242 	if (rc != 0) {
5243 		device_printf(sc->dev,
5244 		    "failed to query parameters (pre_init): %d.\n", rc);
5245 		return (rc);
5246 	}
5247 
5248 	sc->params.portvec = val[0];
5249 	sc->params.nports = bitcount32(val[0]);
5250 	sc->params.vpd.cclk = val[1];
5251 
5252 	/* Read device log parameters. */
5253 	rc = -t4_init_devlog_params(sc, 1);
5254 	if (rc == 0)
5255 		fixup_devlog_params(sc);
5256 	else {
5257 		device_printf(sc->dev,
5258 		    "failed to get devlog parameters: %d.\n", rc);
5259 		rc = 0;	/* devlog isn't critical for device operation */
5260 	}
5261 
5262 	return (rc);
5263 }
5264 
5265 /*
5266  * Any params that need to be set before FW_INITIALIZE.
5267  */
5268 static int
set_params__pre_init(struct adapter * sc)5269 set_params__pre_init(struct adapter *sc)
5270 {
5271 	int rc = 0;
5272 	uint32_t param, val;
5273 
5274 	if (chip_id(sc) >= CHELSIO_T6) {
5275 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5276 		val = 1;
5277 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5278 		/* firmwares < 1.20.1.0 do not have this param. */
5279 		if (rc == FW_EINVAL &&
5280 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5281 			rc = 0;
5282 		}
5283 		if (rc != 0) {
5284 			device_printf(sc->dev,
5285 			    "failed to enable high priority filters :%d.\n",
5286 			    rc);
5287 		}
5288 
5289 		param = FW_PARAM_DEV(PPOD_EDRAM);
5290 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5291 		if (rc == 0 && val == 1) {
5292 			rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param,
5293 			    &val);
5294 			if (rc != 0) {
5295 				device_printf(sc->dev,
5296 				    "failed to set PPOD_EDRAM: %d.\n", rc);
5297 			}
5298 		}
5299 	}
5300 
5301 	/* Enable opaque VIIDs with firmwares that support it. */
5302 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5303 	val = 1;
5304 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5305 	if (rc == 0 && val == 1)
5306 		sc->params.viid_smt_extn_support = true;
5307 	else
5308 		sc->params.viid_smt_extn_support = false;
5309 
5310 	return (rc);
5311 }
5312 
5313 /*
5314  * Retrieve various parameters that are of interest to the driver.  The device
5315  * has been initialized by the firmware at this point.
5316  */
5317 static int
get_params__post_init(struct adapter * sc)5318 get_params__post_init(struct adapter *sc)
5319 {
5320 	int rc;
5321 	uint32_t param[7], val[7];
5322 	struct fw_caps_config_cmd caps;
5323 
5324 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
5325 	param[1] = FW_PARAM_PFVF(EQ_START);
5326 	param[2] = FW_PARAM_PFVF(FILTER_START);
5327 	param[3] = FW_PARAM_PFVF(FILTER_END);
5328 	param[4] = FW_PARAM_PFVF(L2T_START);
5329 	param[5] = FW_PARAM_PFVF(L2T_END);
5330 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5331 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5332 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5333 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5334 	if (rc != 0) {
5335 		device_printf(sc->dev,
5336 		    "failed to query parameters (post_init): %d.\n", rc);
5337 		return (rc);
5338 	}
5339 
5340 	sc->sge.iq_start = val[0];
5341 	sc->sge.eq_start = val[1];
5342 	if ((int)val[3] > (int)val[2]) {
5343 		sc->tids.ftid_base = val[2];
5344 		sc->tids.ftid_end = val[3];
5345 		sc->tids.nftids = val[3] - val[2] + 1;
5346 	}
5347 	sc->vres.l2t.start = val[4];
5348 	sc->vres.l2t.size = val[5] - val[4] + 1;
5349 	/* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5350 	if (sc->vres.l2t.size > 0)
5351 		MPASS(fls(val[5]) <= S_SYNC_WR);
5352 	sc->params.core_vdd = val[6];
5353 
5354 	param[0] = FW_PARAM_PFVF(IQFLINT_END);
5355 	param[1] = FW_PARAM_PFVF(EQ_END);
5356 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5357 	if (rc != 0) {
5358 		device_printf(sc->dev,
5359 		    "failed to query parameters (post_init2): %d.\n", rc);
5360 		return (rc);
5361 	}
5362 	MPASS((int)val[0] >= sc->sge.iq_start);
5363 	sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5364 	MPASS((int)val[1] >= sc->sge.eq_start);
5365 	sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5366 
5367 	if (chip_id(sc) >= CHELSIO_T6) {
5368 
5369 		sc->tids.tid_base = t4_read_reg(sc,
5370 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
5371 
5372 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
5373 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
5374 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5375 		if (rc != 0) {
5376 			device_printf(sc->dev,
5377 			   "failed to query hpfilter parameters: %d.\n", rc);
5378 			return (rc);
5379 		}
5380 		if ((int)val[1] > (int)val[0]) {
5381 			sc->tids.hpftid_base = val[0];
5382 			sc->tids.hpftid_end = val[1];
5383 			sc->tids.nhpftids = val[1] - val[0] + 1;
5384 
5385 			/*
5386 			 * These should go off if the layout changes and the
5387 			 * driver needs to catch up.
5388 			 */
5389 			MPASS(sc->tids.hpftid_base == 0);
5390 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5391 		}
5392 
5393 		param[0] = FW_PARAM_PFVF(RAWF_START);
5394 		param[1] = FW_PARAM_PFVF(RAWF_END);
5395 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5396 		if (rc != 0) {
5397 			device_printf(sc->dev,
5398 			   "failed to query rawf parameters: %d.\n", rc);
5399 			return (rc);
5400 		}
5401 		if ((int)val[1] > (int)val[0]) {
5402 			sc->rawf_base = val[0];
5403 			sc->nrawf = val[1] - val[0] + 1;
5404 		}
5405 	}
5406 
5407 	/*
5408 	 * The parameters that follow may not be available on all firmwares.  We
5409 	 * query them individually rather than in a compound query because old
5410 	 * firmwares fail the entire query if an unknown parameter is queried.
5411 	 */
5412 
5413 	/*
5414 	 * MPS buffer group configuration.
5415 	 */
5416 	param[0] = FW_PARAM_DEV(MPSBGMAP);
5417 	val[0] = 0;
5418 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5419 	if (rc == 0)
5420 		sc->params.mps_bg_map = val[0];
5421 	else
5422 		sc->params.mps_bg_map = UINT32_MAX;	/* Not a legal value. */
5423 
5424 	param[0] = FW_PARAM_DEV(TPCHMAP);
5425 	val[0] = 0;
5426 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5427 	if (rc == 0)
5428 		sc->params.tp_ch_map = val[0];
5429 	else
5430 		sc->params.tp_ch_map = UINT32_MAX;	/* Not a legal value. */
5431 
5432 	/*
5433 	 * Determine whether the firmware supports the filter2 work request.
5434 	 */
5435 	param[0] = FW_PARAM_DEV(FILTER2_WR);
5436 	val[0] = 0;
5437 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5438 	if (rc == 0)
5439 		sc->params.filter2_wr_support = val[0] != 0;
5440 	else
5441 		sc->params.filter2_wr_support = 0;
5442 
5443 	/*
5444 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5445 	 */
5446 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5447 	val[0] = 0;
5448 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5449 	if (rc == 0)
5450 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5451 	else
5452 		sc->params.ulptx_memwrite_dsgl = false;
5453 
5454 	/* FW_RI_FR_NSMR_TPTE_WR support */
5455 	param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5456 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5457 	if (rc == 0)
5458 		sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5459 	else
5460 		sc->params.fr_nsmr_tpte_wr_support = false;
5461 
5462 	/* Support for 512 SGL entries per FR MR. */
5463 	param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5464 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5465 	if (rc == 0)
5466 		sc->params.dev_512sgl_mr = val[0] != 0;
5467 	else
5468 		sc->params.dev_512sgl_mr = false;
5469 
5470 	param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5471 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5472 	if (rc == 0)
5473 		sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5474 	else
5475 		sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5476 
5477 	param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5478 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5479 	if (rc == 0) {
5480 		MPASS(val[0] > 0 && val[0] < 256);	/* nsched_cls is 8b */
5481 		sc->params.nsched_cls = val[0];
5482 	} else
5483 		sc->params.nsched_cls = sc->chip_params->nsched_cls;
5484 
5485 	/* get capabilites */
5486 	bzero(&caps, sizeof(caps));
5487 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5488 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5489 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5490 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5491 	if (rc != 0) {
5492 		device_printf(sc->dev,
5493 		    "failed to get card capabilities: %d.\n", rc);
5494 		return (rc);
5495 	}
5496 
5497 #define READ_CAPS(x) do { \
5498 	sc->x = htobe16(caps.x); \
5499 } while (0)
5500 	READ_CAPS(nbmcaps);
5501 	READ_CAPS(linkcaps);
5502 	READ_CAPS(switchcaps);
5503 	READ_CAPS(niccaps);
5504 	READ_CAPS(toecaps);
5505 	READ_CAPS(rdmacaps);
5506 	READ_CAPS(cryptocaps);
5507 	READ_CAPS(iscsicaps);
5508 	READ_CAPS(fcoecaps);
5509 
5510 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5511 		MPASS(chip_id(sc) > CHELSIO_T4);
5512 		MPASS(sc->toecaps == 0);
5513 		sc->toecaps = 0;
5514 
5515 		param[0] = FW_PARAM_DEV(NTID);
5516 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5517 		if (rc != 0) {
5518 			device_printf(sc->dev,
5519 			    "failed to query HASHFILTER parameters: %d.\n", rc);
5520 			return (rc);
5521 		}
5522 		sc->tids.ntids = val[0];
5523 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5524 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5525 			sc->tids.ntids -= sc->tids.nhpftids;
5526 		}
5527 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5528 		sc->params.hash_filter = 1;
5529 	}
5530 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5531 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5532 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5533 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5534 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5535 		if (rc != 0) {
5536 			device_printf(sc->dev,
5537 			    "failed to query NIC parameters: %d.\n", rc);
5538 			return (rc);
5539 		}
5540 		if ((int)val[1] > (int)val[0]) {
5541 			sc->tids.etid_base = val[0];
5542 			sc->tids.etid_end = val[1];
5543 			sc->tids.netids = val[1] - val[0] + 1;
5544 			sc->params.eo_wr_cred = val[2];
5545 			sc->params.ethoffload = 1;
5546 		}
5547 	}
5548 	if (sc->toecaps) {
5549 		/* query offload-related parameters */
5550 		param[0] = FW_PARAM_DEV(NTID);
5551 		param[1] = FW_PARAM_PFVF(SERVER_START);
5552 		param[2] = FW_PARAM_PFVF(SERVER_END);
5553 		param[3] = FW_PARAM_PFVF(TDDP_START);
5554 		param[4] = FW_PARAM_PFVF(TDDP_END);
5555 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5556 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5557 		if (rc != 0) {
5558 			device_printf(sc->dev,
5559 			    "failed to query TOE parameters: %d.\n", rc);
5560 			return (rc);
5561 		}
5562 		sc->tids.ntids = val[0];
5563 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5564 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5565 			sc->tids.ntids -= sc->tids.nhpftids;
5566 		}
5567 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5568 		if ((int)val[2] > (int)val[1]) {
5569 			sc->tids.stid_base = val[1];
5570 			sc->tids.nstids = val[2] - val[1] + 1;
5571 		}
5572 		sc->vres.ddp.start = val[3];
5573 		sc->vres.ddp.size = val[4] - val[3] + 1;
5574 		sc->params.ofldq_wr_cred = val[5];
5575 		sc->params.offload = 1;
5576 	} else {
5577 		/*
5578 		 * The firmware attempts memfree TOE configuration for -SO cards
5579 		 * and will report toecaps=0 if it runs out of resources (this
5580 		 * depends on the config file).  It may not report 0 for other
5581 		 * capabilities dependent on the TOE in this case.  Set them to
5582 		 * 0 here so that the driver doesn't bother tracking resources
5583 		 * that will never be used.
5584 		 */
5585 		sc->iscsicaps = 0;
5586 		sc->rdmacaps = 0;
5587 	}
5588 	if (sc->rdmacaps) {
5589 		param[0] = FW_PARAM_PFVF(STAG_START);
5590 		param[1] = FW_PARAM_PFVF(STAG_END);
5591 		param[2] = FW_PARAM_PFVF(RQ_START);
5592 		param[3] = FW_PARAM_PFVF(RQ_END);
5593 		param[4] = FW_PARAM_PFVF(PBL_START);
5594 		param[5] = FW_PARAM_PFVF(PBL_END);
5595 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5596 		if (rc != 0) {
5597 			device_printf(sc->dev,
5598 			    "failed to query RDMA parameters(1): %d.\n", rc);
5599 			return (rc);
5600 		}
5601 		sc->vres.stag.start = val[0];
5602 		sc->vres.stag.size = val[1] - val[0] + 1;
5603 		sc->vres.rq.start = val[2];
5604 		sc->vres.rq.size = val[3] - val[2] + 1;
5605 		sc->vres.pbl.start = val[4];
5606 		sc->vres.pbl.size = val[5] - val[4] + 1;
5607 
5608 		param[0] = FW_PARAM_PFVF(SQRQ_START);
5609 		param[1] = FW_PARAM_PFVF(SQRQ_END);
5610 		param[2] = FW_PARAM_PFVF(CQ_START);
5611 		param[3] = FW_PARAM_PFVF(CQ_END);
5612 		param[4] = FW_PARAM_PFVF(OCQ_START);
5613 		param[5] = FW_PARAM_PFVF(OCQ_END);
5614 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5615 		if (rc != 0) {
5616 			device_printf(sc->dev,
5617 			    "failed to query RDMA parameters(2): %d.\n", rc);
5618 			return (rc);
5619 		}
5620 		sc->vres.qp.start = val[0];
5621 		sc->vres.qp.size = val[1] - val[0] + 1;
5622 		sc->vres.cq.start = val[2];
5623 		sc->vres.cq.size = val[3] - val[2] + 1;
5624 		sc->vres.ocq.start = val[4];
5625 		sc->vres.ocq.size = val[5] - val[4] + 1;
5626 
5627 		param[0] = FW_PARAM_PFVF(SRQ_START);
5628 		param[1] = FW_PARAM_PFVF(SRQ_END);
5629 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5630 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5631 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5632 		if (rc != 0) {
5633 			device_printf(sc->dev,
5634 			    "failed to query RDMA parameters(3): %d.\n", rc);
5635 			return (rc);
5636 		}
5637 		sc->vres.srq.start = val[0];
5638 		sc->vres.srq.size = val[1] - val[0] + 1;
5639 		sc->params.max_ordird_qp = val[2];
5640 		sc->params.max_ird_adapter = val[3];
5641 	}
5642 	if (sc->iscsicaps) {
5643 		param[0] = FW_PARAM_PFVF(ISCSI_START);
5644 		param[1] = FW_PARAM_PFVF(ISCSI_END);
5645 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5646 		if (rc != 0) {
5647 			device_printf(sc->dev,
5648 			    "failed to query iSCSI parameters: %d.\n", rc);
5649 			return (rc);
5650 		}
5651 		sc->vres.iscsi.start = val[0];
5652 		sc->vres.iscsi.size = val[1] - val[0] + 1;
5653 	}
5654 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5655 		param[0] = FW_PARAM_PFVF(TLS_START);
5656 		param[1] = FW_PARAM_PFVF(TLS_END);
5657 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5658 		if (rc != 0) {
5659 			device_printf(sc->dev,
5660 			    "failed to query TLS parameters: %d.\n", rc);
5661 			return (rc);
5662 		}
5663 		sc->vres.key.start = val[0];
5664 		sc->vres.key.size = val[1] - val[0] + 1;
5665 	}
5666 
5667 	/*
5668 	 * We've got the params we wanted to query directly from the firmware.
5669 	 * Grab some others via other means.
5670 	 */
5671 	t4_init_sge_params(sc);
5672 	t4_init_tp_params(sc);
5673 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5674 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5675 
5676 	rc = t4_verify_chip_settings(sc);
5677 	if (rc != 0)
5678 		return (rc);
5679 	t4_init_rx_buf_info(sc);
5680 
5681 	return (rc);
5682 }
5683 
5684 #ifdef KERN_TLS
5685 static void
ktls_tick(void * arg)5686 ktls_tick(void *arg)
5687 {
5688 	struct adapter *sc;
5689 	uint32_t tstamp;
5690 
5691 	sc = arg;
5692 	tstamp = tcp_ts_getticks();
5693 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5694 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5695 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5696 }
5697 
5698 static int
t6_config_kern_tls(struct adapter * sc,bool enable)5699 t6_config_kern_tls(struct adapter *sc, bool enable)
5700 {
5701 	int rc;
5702 	uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5703 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5704 	    V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5705 	    V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5706 
5707 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5708 	if (rc != 0) {
5709 		CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5710 		    enable ?  "enable" : "disable", rc);
5711 		return (rc);
5712 	}
5713 
5714 	if (enable) {
5715 		sc->flags |= KERN_TLS_ON;
5716 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5717 		    C_HARDCLOCK);
5718 	} else {
5719 		sc->flags &= ~KERN_TLS_ON;
5720 		callout_stop(&sc->ktls_tick);
5721 	}
5722 
5723 	return (rc);
5724 }
5725 #endif
5726 
5727 static int
set_params__post_init(struct adapter * sc)5728 set_params__post_init(struct adapter *sc)
5729 {
5730 	uint32_t mask, param, val;
5731 #ifdef TCP_OFFLOAD
5732 	int i, v, shift;
5733 #endif
5734 
5735 	/* ask for encapsulated CPLs */
5736 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5737 	val = 1;
5738 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5739 
5740 	/* Enable 32b port caps if the firmware supports it. */
5741 	param = FW_PARAM_PFVF(PORT_CAPS32);
5742 	val = 1;
5743 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5744 		sc->params.port_caps32 = 1;
5745 
5746 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
5747 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5748 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5749 	    V_MASKFILTER(val - 1));
5750 
5751 	mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5752 	    F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5753 	    F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5754 	    F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5755 	val = 0;
5756 	if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5757 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5758 		    F_ATTACKFILTERENABLE);
5759 		val |= F_DROPERRORATTACK;
5760 	}
5761 	if (t4_drop_ip_fragments != 0) {
5762 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5763 		    F_FRAGMENTDROP);
5764 		val |= F_DROPERRORFRAG;
5765 	}
5766 	if (t4_drop_pkts_with_l2_errors != 0)
5767 		val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5768 	if (t4_drop_pkts_with_l3_errors != 0) {
5769 		val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5770 		    F_DROPERRORCSUMIP;
5771 	}
5772 	if (t4_drop_pkts_with_l4_errors != 0) {
5773 		val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5774 		    F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5775 	}
5776 	t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5777 
5778 #ifdef TCP_OFFLOAD
5779 	/*
5780 	 * Override the TOE timers with user provided tunables.  This is not the
5781 	 * recommended way to change the timers (the firmware config file is) so
5782 	 * these tunables are not documented.
5783 	 *
5784 	 * All the timer tunables are in microseconds.
5785 	 */
5786 	if (t4_toe_keepalive_idle != 0) {
5787 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5788 		v &= M_KEEPALIVEIDLE;
5789 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5790 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5791 	}
5792 	if (t4_toe_keepalive_interval != 0) {
5793 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5794 		v &= M_KEEPALIVEINTVL;
5795 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5796 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5797 	}
5798 	if (t4_toe_keepalive_count != 0) {
5799 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5800 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5801 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5802 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5803 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5804 	}
5805 	if (t4_toe_rexmt_min != 0) {
5806 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5807 		v &= M_RXTMIN;
5808 		t4_set_reg_field(sc, A_TP_RXT_MIN,
5809 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5810 	}
5811 	if (t4_toe_rexmt_max != 0) {
5812 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5813 		v &= M_RXTMAX;
5814 		t4_set_reg_field(sc, A_TP_RXT_MAX,
5815 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5816 	}
5817 	if (t4_toe_rexmt_count != 0) {
5818 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5819 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5820 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5821 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5822 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5823 	}
5824 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5825 		if (t4_toe_rexmt_backoff[i] != -1) {
5826 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5827 			shift = (i & 3) << 3;
5828 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5829 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
5830 		}
5831 	}
5832 #endif
5833 
5834 	/*
5835 	 * Limit TOE connections to 2 reassembly "islands".  This is
5836 	 * required to permit migrating TOE connections to either
5837 	 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5838 	 */
5839 	t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5840 	    V_PASSMODE(2));
5841 
5842 #ifdef KERN_TLS
5843 	if (is_ktls(sc)) {
5844 		sc->tlst.inline_keys = t4_tls_inline_keys;
5845 		sc->tlst.combo_wrs = t4_tls_combo_wrs;
5846 		if (t4_kern_tls != 0 && is_t6(sc))
5847 			t6_config_kern_tls(sc, true);
5848 	}
5849 #endif
5850 	return (0);
5851 }
5852 
5853 #undef FW_PARAM_PFVF
5854 #undef FW_PARAM_DEV
5855 
5856 static void
t4_set_desc(struct adapter * sc)5857 t4_set_desc(struct adapter *sc)
5858 {
5859 	struct adapter_params *p = &sc->params;
5860 
5861 	device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5862 }
5863 
5864 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)5865 ifmedia_add4(struct ifmedia *ifm, int m)
5866 {
5867 
5868 	ifmedia_add(ifm, m, 0, NULL);
5869 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5870 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5871 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5872 }
5873 
5874 /*
5875  * This is the selected media, which is not quite the same as the active media.
5876  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5877  * and active are not the same, and "media: Ethernet selected" otherwise.
5878  */
5879 static void
set_current_media(struct port_info * pi)5880 set_current_media(struct port_info *pi)
5881 {
5882 	struct link_config *lc;
5883 	struct ifmedia *ifm;
5884 	int mword;
5885 	u_int speed;
5886 
5887 	PORT_LOCK_ASSERT_OWNED(pi);
5888 
5889 	/* Leave current media alone if it's already set to IFM_NONE. */
5890 	ifm = &pi->media;
5891 	if (ifm->ifm_cur != NULL &&
5892 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5893 		return;
5894 
5895 	lc = &pi->link_cfg;
5896 	if (lc->requested_aneg != AUTONEG_DISABLE &&
5897 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
5898 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5899 		return;
5900 	}
5901 	mword = IFM_ETHER | IFM_FDX;
5902 	if (lc->requested_fc & PAUSE_TX)
5903 		mword |= IFM_ETH_TXPAUSE;
5904 	if (lc->requested_fc & PAUSE_RX)
5905 		mword |= IFM_ETH_RXPAUSE;
5906 	if (lc->requested_speed == 0)
5907 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
5908 	else
5909 		speed = lc->requested_speed;
5910 	mword |= port_mword(pi, speed_to_fwcap(speed));
5911 	ifmedia_set(ifm, mword);
5912 }
5913 
5914 /*
5915  * Returns true if the ifmedia list for the port cannot change.
5916  */
5917 static bool
fixed_ifmedia(struct port_info * pi)5918 fixed_ifmedia(struct port_info *pi)
5919 {
5920 
5921 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5922 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
5923 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5924 	    pi->port_type == FW_PORT_TYPE_KX4 ||
5925 	    pi->port_type == FW_PORT_TYPE_KX ||
5926 	    pi->port_type == FW_PORT_TYPE_KR ||
5927 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
5928 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
5929 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
5930 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
5931 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5932 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5933 }
5934 
5935 static void
build_medialist(struct port_info * pi)5936 build_medialist(struct port_info *pi)
5937 {
5938 	uint32_t ss, speed;
5939 	int unknown, mword, bit;
5940 	struct link_config *lc;
5941 	struct ifmedia *ifm;
5942 
5943 	PORT_LOCK_ASSERT_OWNED(pi);
5944 
5945 	if (pi->flags & FIXED_IFMEDIA)
5946 		return;
5947 
5948 	/*
5949 	 * Rebuild the ifmedia list.
5950 	 */
5951 	ifm = &pi->media;
5952 	ifmedia_removeall(ifm);
5953 	lc = &pi->link_cfg;
5954 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5955 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
5956 		MPASS(ss != 0);
5957 no_media:
5958 		MPASS(LIST_EMPTY(&ifm->ifm_list));
5959 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5960 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5961 		return;
5962 	}
5963 
5964 	unknown = 0;
5965 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5966 		speed = 1 << bit;
5967 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
5968 		if (ss & speed) {
5969 			mword = port_mword(pi, speed);
5970 			if (mword == IFM_NONE) {
5971 				goto no_media;
5972 			} else if (mword == IFM_UNKNOWN)
5973 				unknown++;
5974 			else
5975 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5976 		}
5977 	}
5978 	if (unknown > 0) /* Add one unknown for all unknown media types. */
5979 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5980 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
5981 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5982 
5983 	set_current_media(pi);
5984 }
5985 
5986 /*
5987  * Initialize the requested fields in the link config based on driver tunables.
5988  */
5989 static void
init_link_config(struct port_info * pi)5990 init_link_config(struct port_info *pi)
5991 {
5992 	struct link_config *lc = &pi->link_cfg;
5993 
5994 	PORT_LOCK_ASSERT_OWNED(pi);
5995 
5996 	lc->requested_caps = 0;
5997 	lc->requested_speed = 0;
5998 
5999 	if (t4_autoneg == 0)
6000 		lc->requested_aneg = AUTONEG_DISABLE;
6001 	else if (t4_autoneg == 1)
6002 		lc->requested_aneg = AUTONEG_ENABLE;
6003 	else
6004 		lc->requested_aneg = AUTONEG_AUTO;
6005 
6006 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6007 	    PAUSE_AUTONEG);
6008 
6009 	if (t4_fec & FEC_AUTO)
6010 		lc->requested_fec = FEC_AUTO;
6011 	else if (t4_fec == 0)
6012 		lc->requested_fec = FEC_NONE;
6013 	else {
6014 		/* -1 is handled by the FEC_AUTO block above and not here. */
6015 		lc->requested_fec = t4_fec &
6016 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6017 		if (lc->requested_fec == 0)
6018 			lc->requested_fec = FEC_AUTO;
6019 	}
6020 	if (t4_force_fec < 0)
6021 		lc->force_fec = -1;
6022 	else if (t4_force_fec > 0)
6023 		lc->force_fec = 1;
6024 	else
6025 		lc->force_fec = 0;
6026 }
6027 
6028 /*
6029  * Makes sure that all requested settings comply with what's supported by the
6030  * port.  Returns the number of settings that were invalid and had to be fixed.
6031  */
6032 static int
fixup_link_config(struct port_info * pi)6033 fixup_link_config(struct port_info *pi)
6034 {
6035 	int n = 0;
6036 	struct link_config *lc = &pi->link_cfg;
6037 	uint32_t fwspeed;
6038 
6039 	PORT_LOCK_ASSERT_OWNED(pi);
6040 
6041 	/* Speed (when not autonegotiating) */
6042 	if (lc->requested_speed != 0) {
6043 		fwspeed = speed_to_fwcap(lc->requested_speed);
6044 		if ((fwspeed & lc->pcaps) == 0) {
6045 			n++;
6046 			lc->requested_speed = 0;
6047 		}
6048 	}
6049 
6050 	/* Link autonegotiation */
6051 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6052 	    lc->requested_aneg == AUTONEG_DISABLE ||
6053 	    lc->requested_aneg == AUTONEG_AUTO);
6054 	if (lc->requested_aneg == AUTONEG_ENABLE &&
6055 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6056 		n++;
6057 		lc->requested_aneg = AUTONEG_AUTO;
6058 	}
6059 
6060 	/* Flow control */
6061 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6062 	if (lc->requested_fc & PAUSE_TX &&
6063 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6064 		n++;
6065 		lc->requested_fc &= ~PAUSE_TX;
6066 	}
6067 	if (lc->requested_fc & PAUSE_RX &&
6068 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6069 		n++;
6070 		lc->requested_fc &= ~PAUSE_RX;
6071 	}
6072 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6073 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6074 		n++;
6075 		lc->requested_fc |= PAUSE_AUTONEG;
6076 	}
6077 
6078 	/* FEC */
6079 	if ((lc->requested_fec & FEC_RS &&
6080 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6081 	    (lc->requested_fec & FEC_BASER_RS &&
6082 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6083 		n++;
6084 		lc->requested_fec = FEC_AUTO;
6085 	}
6086 
6087 	return (n);
6088 }
6089 
6090 /*
6091  * Apply the requested L1 settings, which are expected to be valid, to the
6092  * hardware.
6093  */
6094 static int
apply_link_config(struct port_info * pi)6095 apply_link_config(struct port_info *pi)
6096 {
6097 	struct adapter *sc = pi->adapter;
6098 	struct link_config *lc = &pi->link_cfg;
6099 	int rc;
6100 
6101 #ifdef INVARIANTS
6102 	ASSERT_SYNCHRONIZED_OP(sc);
6103 	PORT_LOCK_ASSERT_OWNED(pi);
6104 
6105 	if (lc->requested_aneg == AUTONEG_ENABLE)
6106 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6107 	if (!(lc->requested_fc & PAUSE_AUTONEG))
6108 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6109 	if (lc->requested_fc & PAUSE_TX)
6110 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6111 	if (lc->requested_fc & PAUSE_RX)
6112 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6113 	if (lc->requested_fec & FEC_RS)
6114 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6115 	if (lc->requested_fec & FEC_BASER_RS)
6116 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6117 #endif
6118 	if (!(sc->flags & IS_VF)) {
6119 		rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6120 		if (rc != 0) {
6121 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6122 			return (rc);
6123 		}
6124 	}
6125 
6126 	/*
6127 	 * An L1_CFG will almost always result in a link-change event if the
6128 	 * link is up, and the driver will refresh the actual fec/fc/etc. when
6129 	 * the notification is processed.  If the link is down then the actual
6130 	 * settings are meaningless.
6131 	 *
6132 	 * This takes care of the case where a change in the L1 settings may not
6133 	 * result in a notification.
6134 	 */
6135 	if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6136 		lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6137 
6138 	return (0);
6139 }
6140 
6141 #define FW_MAC_EXACT_CHUNK	7
6142 struct mcaddr_ctx {
6143 	if_t ifp;
6144 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6145 	uint64_t hash;
6146 	int i;
6147 	int del;
6148 	int rc;
6149 };
6150 
6151 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6152 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6153 {
6154 	struct mcaddr_ctx *ctx = arg;
6155 	struct vi_info *vi = if_getsoftc(ctx->ifp);
6156 	struct port_info *pi = vi->pi;
6157 	struct adapter *sc = pi->adapter;
6158 
6159 	if (ctx->rc < 0)
6160 		return (0);
6161 
6162 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
6163 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6164 	ctx->i++;
6165 
6166 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
6167 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6168 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6169 		if (ctx->rc < 0) {
6170 			int j;
6171 
6172 			for (j = 0; j < ctx->i; j++) {
6173 				if_printf(ctx->ifp,
6174 				    "failed to add mc address"
6175 				    " %02x:%02x:%02x:"
6176 				    "%02x:%02x:%02x rc=%d\n",
6177 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6178 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6179 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6180 				    -ctx->rc);
6181 			}
6182 			return (0);
6183 		}
6184 		ctx->del = 0;
6185 		ctx->i = 0;
6186 	}
6187 
6188 	return (1);
6189 }
6190 
6191 /*
6192  * Program the port's XGMAC based on parameters in ifnet.  The caller also
6193  * indicates which parameters should be programmed (the rest are left alone).
6194  */
6195 int
update_mac_settings(if_t ifp,int flags)6196 update_mac_settings(if_t ifp, int flags)
6197 {
6198 	int rc = 0;
6199 	struct vi_info *vi = if_getsoftc(ifp);
6200 	struct port_info *pi = vi->pi;
6201 	struct adapter *sc = pi->adapter;
6202 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6203 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6204 
6205 	ASSERT_SYNCHRONIZED_OP(sc);
6206 	KASSERT(flags, ("%s: not told what to update.", __func__));
6207 
6208 	if (flags & XGMAC_MTU)
6209 		mtu = if_getmtu(ifp);
6210 
6211 	if (flags & XGMAC_PROMISC)
6212 		promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6213 
6214 	if (flags & XGMAC_ALLMULTI)
6215 		allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6216 
6217 	if (flags & XGMAC_VLANEX)
6218 		vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6219 
6220 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6221 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6222 		    allmulti, 1, vlanex, false);
6223 		if (rc) {
6224 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6225 			    rc);
6226 			return (rc);
6227 		}
6228 	}
6229 
6230 	if (flags & XGMAC_UCADDR) {
6231 		uint8_t ucaddr[ETHER_ADDR_LEN];
6232 
6233 		bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6234 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6235 		    ucaddr, true, &vi->smt_idx);
6236 		if (rc < 0) {
6237 			rc = -rc;
6238 			if_printf(ifp, "change_mac failed: %d\n", rc);
6239 			return (rc);
6240 		} else {
6241 			vi->xact_addr_filt = rc;
6242 			rc = 0;
6243 		}
6244 	}
6245 
6246 	if (flags & XGMAC_MCADDRS) {
6247 		struct epoch_tracker et;
6248 		struct mcaddr_ctx ctx;
6249 		int j;
6250 
6251 		ctx.ifp = ifp;
6252 		ctx.hash = 0;
6253 		ctx.i = 0;
6254 		ctx.del = 1;
6255 		ctx.rc = 0;
6256 		/*
6257 		 * Unlike other drivers, we accumulate list of pointers into
6258 		 * interface address lists and we need to keep it safe even
6259 		 * after if_foreach_llmaddr() returns, thus we must enter the
6260 		 * network epoch.
6261 		 */
6262 		NET_EPOCH_ENTER(et);
6263 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
6264 		if (ctx.rc < 0) {
6265 			NET_EPOCH_EXIT(et);
6266 			rc = -ctx.rc;
6267 			return (rc);
6268 		}
6269 		if (ctx.i > 0) {
6270 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6271 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6272 			NET_EPOCH_EXIT(et);
6273 			if (rc < 0) {
6274 				rc = -rc;
6275 				for (j = 0; j < ctx.i; j++) {
6276 					if_printf(ifp,
6277 					    "failed to add mcast address"
6278 					    " %02x:%02x:%02x:"
6279 					    "%02x:%02x:%02x rc=%d\n",
6280 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6281 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6282 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6283 					    rc);
6284 				}
6285 				return (rc);
6286 			}
6287 			ctx.del = 0;
6288 		} else
6289 			NET_EPOCH_EXIT(et);
6290 
6291 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6292 		if (rc != 0)
6293 			if_printf(ifp, "failed to set mcast address hash: %d\n",
6294 			    rc);
6295 		if (ctx.del == 0) {
6296 			/* We clobbered the VXLAN entry if there was one. */
6297 			pi->vxlan_tcam_entry = false;
6298 		}
6299 	}
6300 
6301 	if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6302 	    pi->vxlan_tcam_entry == false) {
6303 		rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6304 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6305 		    true);
6306 		if (rc < 0) {
6307 			rc = -rc;
6308 			if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6309 			    rc);
6310 		} else {
6311 			MPASS(rc == sc->rawf_base + pi->port_id);
6312 			rc = 0;
6313 			pi->vxlan_tcam_entry = true;
6314 		}
6315 	}
6316 
6317 	return (rc);
6318 }
6319 
6320 /*
6321  * {begin|end}_synchronized_op must be called from the same thread.
6322  */
6323 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6324 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6325     char *wmesg)
6326 {
6327 	int rc;
6328 
6329 #ifdef WITNESS
6330 	/* the caller thinks it's ok to sleep, but is it really? */
6331 	if (flags & SLEEP_OK)
6332 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
6333 #endif
6334 	ADAPTER_LOCK(sc);
6335 	for (;;) {
6336 
6337 		if (vi && IS_DETACHING(vi)) {
6338 			rc = ENXIO;
6339 			goto done;
6340 		}
6341 
6342 		if (!IS_BUSY(sc)) {
6343 			rc = 0;
6344 			break;
6345 		}
6346 
6347 		if (!(flags & SLEEP_OK)) {
6348 			rc = EBUSY;
6349 			goto done;
6350 		}
6351 
6352 		if (mtx_sleep(&sc->flags, &sc->sc_lock,
6353 		    flags & INTR_OK ? PCATCH : 0, wmesg, 0)) {
6354 			rc = EINTR;
6355 			goto done;
6356 		}
6357 	}
6358 
6359 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6360 	SET_BUSY(sc);
6361 #ifdef INVARIANTS
6362 	sc->last_op = wmesg;
6363 	sc->last_op_thr = curthread;
6364 	sc->last_op_flags = flags;
6365 #endif
6366 
6367 done:
6368 	if (!(flags & HOLD_LOCK) || rc)
6369 		ADAPTER_UNLOCK(sc);
6370 
6371 	return (rc);
6372 }
6373 
6374 /*
6375  * Tell if_ioctl and if_init that the VI is going away.  This is
6376  * special variant of begin_synchronized_op and must be paired with a
6377  * call to end_vi_detach.
6378  */
6379 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6380 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6381 {
6382 	ADAPTER_LOCK(sc);
6383 	SET_DETACHING(vi);
6384 	wakeup(&sc->flags);
6385 	while (IS_BUSY(sc))
6386 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6387 	SET_BUSY(sc);
6388 #ifdef INVARIANTS
6389 	sc->last_op = "t4detach";
6390 	sc->last_op_thr = curthread;
6391 	sc->last_op_flags = 0;
6392 #endif
6393 	ADAPTER_UNLOCK(sc);
6394 }
6395 
6396 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6397 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6398 {
6399 	ADAPTER_LOCK(sc);
6400 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6401 	CLR_BUSY(sc);
6402 	CLR_DETACHING(vi);
6403 	wakeup(&sc->flags);
6404 	ADAPTER_UNLOCK(sc);
6405 }
6406 
6407 /*
6408  * {begin|end}_synchronized_op must be called from the same thread.
6409  */
6410 void
end_synchronized_op(struct adapter * sc,int flags)6411 end_synchronized_op(struct adapter *sc, int flags)
6412 {
6413 
6414 	if (flags & LOCK_HELD)
6415 		ADAPTER_LOCK_ASSERT_OWNED(sc);
6416 	else
6417 		ADAPTER_LOCK(sc);
6418 
6419 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6420 	CLR_BUSY(sc);
6421 	wakeup(&sc->flags);
6422 	ADAPTER_UNLOCK(sc);
6423 }
6424 
6425 static int
cxgbe_init_synchronized(struct vi_info * vi)6426 cxgbe_init_synchronized(struct vi_info *vi)
6427 {
6428 	struct port_info *pi = vi->pi;
6429 	struct adapter *sc = pi->adapter;
6430 	if_t ifp = vi->ifp;
6431 	int rc = 0, i;
6432 	struct sge_txq *txq;
6433 
6434 	ASSERT_SYNCHRONIZED_OP(sc);
6435 
6436 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6437 		return (0);	/* already running */
6438 
6439 	if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6440 		return (rc);	/* error message displayed already */
6441 
6442 	if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6443 		return (rc); /* error message displayed already */
6444 
6445 	rc = update_mac_settings(ifp, XGMAC_ALL);
6446 	if (rc)
6447 		goto done;	/* error message displayed already */
6448 
6449 	PORT_LOCK(pi);
6450 	if (pi->up_vis == 0) {
6451 		t4_update_port_info(pi);
6452 		fixup_link_config(pi);
6453 		build_medialist(pi);
6454 		apply_link_config(pi);
6455 	}
6456 
6457 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6458 	if (rc != 0) {
6459 		if_printf(ifp, "enable_vi failed: %d\n", rc);
6460 		PORT_UNLOCK(pi);
6461 		goto done;
6462 	}
6463 
6464 	/*
6465 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6466 	 * if this changes.
6467 	 */
6468 
6469 	for_each_txq(vi, i, txq) {
6470 		TXQ_LOCK(txq);
6471 		txq->eq.flags |= EQ_ENABLED;
6472 		TXQ_UNLOCK(txq);
6473 	}
6474 
6475 	/*
6476 	 * The first iq of the first port to come up is used for tracing.
6477 	 */
6478 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6479 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6480 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6481 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6482 		    V_QUEUENUMBER(sc->traceq));
6483 		pi->flags |= HAS_TRACEQ;
6484 	}
6485 
6486 	/* all ok */
6487 	pi->up_vis++;
6488 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6489 	if (pi->link_cfg.link_ok)
6490 		t4_os_link_changed(pi);
6491 	PORT_UNLOCK(pi);
6492 
6493 	mtx_lock(&vi->tick_mtx);
6494 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6495 		callout_reset(&vi->tick, hz, vi_tick, vi);
6496 	else
6497 		callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6498 	mtx_unlock(&vi->tick_mtx);
6499 done:
6500 	if (rc != 0)
6501 		cxgbe_uninit_synchronized(vi);
6502 
6503 	return (rc);
6504 }
6505 
6506 /*
6507  * Idempotent.
6508  */
6509 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6510 cxgbe_uninit_synchronized(struct vi_info *vi)
6511 {
6512 	struct port_info *pi = vi->pi;
6513 	struct adapter *sc = pi->adapter;
6514 	if_t ifp = vi->ifp;
6515 	int rc, i;
6516 	struct sge_txq *txq;
6517 
6518 	ASSERT_SYNCHRONIZED_OP(sc);
6519 
6520 	if (!(vi->flags & VI_INIT_DONE)) {
6521 		if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6522 			KASSERT(0, ("uninited VI is running"));
6523 			if_printf(ifp, "uninited VI with running ifnet.  "
6524 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
6525 			    "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6526 			    if_getdrvflags(ifp));
6527 		}
6528 		return (0);
6529 	}
6530 
6531 	/*
6532 	 * Disable the VI so that all its data in either direction is discarded
6533 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6534 	 * tick) intact as the TP can deliver negative advice or data that it's
6535 	 * holding in its RAM (for an offloaded connection) even after the VI is
6536 	 * disabled.
6537 	 */
6538 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6539 	if (rc) {
6540 		if_printf(ifp, "disable_vi failed: %d\n", rc);
6541 		return (rc);
6542 	}
6543 
6544 	for_each_txq(vi, i, txq) {
6545 		TXQ_LOCK(txq);
6546 		txq->eq.flags &= ~EQ_ENABLED;
6547 		TXQ_UNLOCK(txq);
6548 	}
6549 
6550 	mtx_lock(&vi->tick_mtx);
6551 	callout_stop(&vi->tick);
6552 	mtx_unlock(&vi->tick_mtx);
6553 
6554 	PORT_LOCK(pi);
6555 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6556 		PORT_UNLOCK(pi);
6557 		return (0);
6558 	}
6559 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6560 	pi->up_vis--;
6561 	if (pi->up_vis > 0) {
6562 		PORT_UNLOCK(pi);
6563 		return (0);
6564 	}
6565 
6566 	pi->link_cfg.link_ok = false;
6567 	pi->link_cfg.speed = 0;
6568 	pi->link_cfg.link_down_rc = 255;
6569 	t4_os_link_changed(pi);
6570 	PORT_UNLOCK(pi);
6571 
6572 	return (0);
6573 }
6574 
6575 /*
6576  * It is ok for this function to fail midway and return right away.  t4_detach
6577  * will walk the entire sc->irq list and clean up whatever is valid.
6578  */
6579 int
t4_setup_intr_handlers(struct adapter * sc)6580 t4_setup_intr_handlers(struct adapter *sc)
6581 {
6582 	int rc, rid, p, q, v;
6583 	char s[8];
6584 	struct irq *irq;
6585 	struct port_info *pi;
6586 	struct vi_info *vi;
6587 	struct sge *sge = &sc->sge;
6588 	struct sge_rxq *rxq;
6589 #ifdef TCP_OFFLOAD
6590 	struct sge_ofld_rxq *ofld_rxq;
6591 #endif
6592 #ifdef DEV_NETMAP
6593 	struct sge_nm_rxq *nm_rxq;
6594 #endif
6595 #ifdef RSS
6596 	int nbuckets = rss_getnumbuckets();
6597 #endif
6598 
6599 	/*
6600 	 * Setup interrupts.
6601 	 */
6602 	irq = &sc->irq[0];
6603 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
6604 	if (forwarding_intr_to_fwq(sc))
6605 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6606 
6607 	/* Multiple interrupts. */
6608 	if (sc->flags & IS_VF)
6609 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6610 		    ("%s: too few intr.", __func__));
6611 	else
6612 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6613 		    ("%s: too few intr.", __func__));
6614 
6615 	/* The first one is always error intr on PFs */
6616 	if (!(sc->flags & IS_VF)) {
6617 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6618 		if (rc != 0)
6619 			return (rc);
6620 		irq++;
6621 		rid++;
6622 	}
6623 
6624 	/* The second one is always the firmware event queue (first on VFs) */
6625 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6626 	if (rc != 0)
6627 		return (rc);
6628 	irq++;
6629 	rid++;
6630 
6631 	for_each_port(sc, p) {
6632 		pi = sc->port[p];
6633 		for_each_vi(pi, v, vi) {
6634 			vi->first_intr = rid - 1;
6635 
6636 			if (vi->nnmrxq > 0) {
6637 				int n = max(vi->nrxq, vi->nnmrxq);
6638 
6639 				rxq = &sge->rxq[vi->first_rxq];
6640 #ifdef DEV_NETMAP
6641 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6642 #endif
6643 				for (q = 0; q < n; q++) {
6644 					snprintf(s, sizeof(s), "%x%c%x", p,
6645 					    'a' + v, q);
6646 					if (q < vi->nrxq)
6647 						irq->rxq = rxq++;
6648 #ifdef DEV_NETMAP
6649 					if (q < vi->nnmrxq)
6650 						irq->nm_rxq = nm_rxq++;
6651 
6652 					if (irq->nm_rxq != NULL &&
6653 					    irq->rxq == NULL) {
6654 						/* Netmap rx only */
6655 						rc = t4_alloc_irq(sc, irq, rid,
6656 						    t4_nm_intr, irq->nm_rxq, s);
6657 					}
6658 					if (irq->nm_rxq != NULL &&
6659 					    irq->rxq != NULL) {
6660 						/* NIC and Netmap rx */
6661 						rc = t4_alloc_irq(sc, irq, rid,
6662 						    t4_vi_intr, irq, s);
6663 					}
6664 #endif
6665 					if (irq->rxq != NULL &&
6666 					    irq->nm_rxq == NULL) {
6667 						/* NIC rx only */
6668 						rc = t4_alloc_irq(sc, irq, rid,
6669 						    t4_intr, irq->rxq, s);
6670 					}
6671 					if (rc != 0)
6672 						return (rc);
6673 #ifdef RSS
6674 					if (q < vi->nrxq) {
6675 						bus_bind_intr(sc->dev, irq->res,
6676 						    rss_getcpu(q % nbuckets));
6677 					}
6678 #endif
6679 					irq++;
6680 					rid++;
6681 					vi->nintr++;
6682 				}
6683 			} else {
6684 				for_each_rxq(vi, q, rxq) {
6685 					snprintf(s, sizeof(s), "%x%c%x", p,
6686 					    'a' + v, q);
6687 					rc = t4_alloc_irq(sc, irq, rid,
6688 					    t4_intr, rxq, s);
6689 					if (rc != 0)
6690 						return (rc);
6691 #ifdef RSS
6692 					bus_bind_intr(sc->dev, irq->res,
6693 					    rss_getcpu(q % nbuckets));
6694 #endif
6695 					irq++;
6696 					rid++;
6697 					vi->nintr++;
6698 				}
6699 			}
6700 #ifdef TCP_OFFLOAD
6701 			for_each_ofld_rxq(vi, q, ofld_rxq) {
6702 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6703 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6704 				    ofld_rxq, s);
6705 				if (rc != 0)
6706 					return (rc);
6707 				irq++;
6708 				rid++;
6709 				vi->nintr++;
6710 			}
6711 #endif
6712 		}
6713 	}
6714 	MPASS(irq == &sc->irq[sc->intr_count]);
6715 
6716 	return (0);
6717 }
6718 
6719 static void
write_global_rss_key(struct adapter * sc)6720 write_global_rss_key(struct adapter *sc)
6721 {
6722 #ifdef RSS
6723 	int i;
6724 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6725 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6726 
6727 	CTASSERT(RSS_KEYSIZE == 40);
6728 
6729 	rss_getkey((void *)&raw_rss_key[0]);
6730 	for (i = 0; i < nitems(rss_key); i++) {
6731 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6732 	}
6733 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
6734 #endif
6735 }
6736 
6737 /*
6738  * Idempotent.
6739  */
6740 static int
adapter_full_init(struct adapter * sc)6741 adapter_full_init(struct adapter *sc)
6742 {
6743 	int rc, i;
6744 
6745 	ASSERT_SYNCHRONIZED_OP(sc);
6746 
6747 	/*
6748 	 * queues that belong to the adapter (not any particular port).
6749 	 */
6750 	rc = t4_setup_adapter_queues(sc);
6751 	if (rc != 0)
6752 		return (rc);
6753 
6754 	MPASS(sc->params.nports <= nitems(sc->tq));
6755 	for (i = 0; i < sc->params.nports; i++) {
6756 		if (sc->tq[i] != NULL)
6757 			continue;
6758 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6759 		    taskqueue_thread_enqueue, &sc->tq[i]);
6760 		if (sc->tq[i] == NULL) {
6761 			CH_ERR(sc, "failed to allocate task queue %d\n", i);
6762 			return (ENOMEM);
6763 		}
6764 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6765 		    device_get_nameunit(sc->dev), i);
6766 	}
6767 
6768 	if (!(sc->flags & IS_VF)) {
6769 		write_global_rss_key(sc);
6770 		t4_intr_enable(sc);
6771 	}
6772 	return (0);
6773 }
6774 
6775 int
adapter_init(struct adapter * sc)6776 adapter_init(struct adapter *sc)
6777 {
6778 	int rc;
6779 
6780 	ASSERT_SYNCHRONIZED_OP(sc);
6781 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6782 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6783 	    ("%s: FULL_INIT_DONE already", __func__));
6784 
6785 	rc = adapter_full_init(sc);
6786 	if (rc != 0)
6787 		adapter_full_uninit(sc);
6788 	else
6789 		sc->flags |= FULL_INIT_DONE;
6790 
6791 	return (rc);
6792 }
6793 
6794 /*
6795  * Idempotent.
6796  */
6797 static void
adapter_full_uninit(struct adapter * sc)6798 adapter_full_uninit(struct adapter *sc)
6799 {
6800 	int i;
6801 
6802 	t4_teardown_adapter_queues(sc);
6803 
6804 	for (i = 0; i < nitems(sc->tq); i++) {
6805 		if (sc->tq[i] == NULL)
6806 			continue;
6807 		taskqueue_free(sc->tq[i]);
6808 		sc->tq[i] = NULL;
6809 	}
6810 
6811 	sc->flags &= ~FULL_INIT_DONE;
6812 }
6813 
6814 #ifdef RSS
6815 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6816     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6817     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6818     RSS_HASHTYPE_RSS_UDP_IPV6)
6819 
6820 /* Translates kernel hash types to hardware. */
6821 static int
hashconfig_to_hashen(int hashconfig)6822 hashconfig_to_hashen(int hashconfig)
6823 {
6824 	int hashen = 0;
6825 
6826 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6827 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6828 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6829 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6830 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6831 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6832 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6833 	}
6834 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6835 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6836 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6837 	}
6838 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6839 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6840 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6841 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6842 
6843 	return (hashen);
6844 }
6845 
6846 /* Translates hardware hash types to kernel. */
6847 static int
hashen_to_hashconfig(int hashen)6848 hashen_to_hashconfig(int hashen)
6849 {
6850 	int hashconfig = 0;
6851 
6852 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6853 		/*
6854 		 * If UDP hashing was enabled it must have been enabled for
6855 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6856 		 * enabling any 4-tuple hash is nonsense configuration.
6857 		 */
6858 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6859 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6860 
6861 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6862 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6863 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6864 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6865 	}
6866 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6867 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6868 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6869 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6870 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6871 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6872 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6873 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6874 
6875 	return (hashconfig);
6876 }
6877 #endif
6878 
6879 /*
6880  * Idempotent.
6881  */
6882 static int
vi_full_init(struct vi_info * vi)6883 vi_full_init(struct vi_info *vi)
6884 {
6885 	struct adapter *sc = vi->adapter;
6886 	struct sge_rxq *rxq;
6887 	int rc, i, j;
6888 #ifdef RSS
6889 	int nbuckets = rss_getnumbuckets();
6890 	int hashconfig = rss_gethashconfig();
6891 	int extra;
6892 #endif
6893 
6894 	ASSERT_SYNCHRONIZED_OP(sc);
6895 
6896 	/*
6897 	 * Allocate tx/rx/fl queues for this VI.
6898 	 */
6899 	rc = t4_setup_vi_queues(vi);
6900 	if (rc != 0)
6901 		return (rc);
6902 
6903 	/*
6904 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6905 	 */
6906 	if (vi->nrxq > vi->rss_size) {
6907 		CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6908 		    "some queues will never receive traffic.\n", vi->nrxq,
6909 		    vi->rss_size);
6910 	} else if (vi->rss_size % vi->nrxq) {
6911 		CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6912 		    "expect uneven traffic distribution.\n", vi->nrxq,
6913 		    vi->rss_size);
6914 	}
6915 #ifdef RSS
6916 	if (vi->nrxq != nbuckets) {
6917 		CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6918 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
6919 	}
6920 #endif
6921 	if (vi->rss == NULL)
6922 		vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6923 		    M_ZERO | M_WAITOK);
6924 	for (i = 0; i < vi->rss_size;) {
6925 #ifdef RSS
6926 		j = rss_get_indirection_to_bucket(i);
6927 		j %= vi->nrxq;
6928 		rxq = &sc->sge.rxq[vi->first_rxq + j];
6929 		vi->rss[i++] = rxq->iq.abs_id;
6930 #else
6931 		for_each_rxq(vi, j, rxq) {
6932 			vi->rss[i++] = rxq->iq.abs_id;
6933 			if (i == vi->rss_size)
6934 				break;
6935 		}
6936 #endif
6937 	}
6938 
6939 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6940 	    vi->rss, vi->rss_size);
6941 	if (rc != 0) {
6942 		CH_ERR(vi, "rss_config failed: %d\n", rc);
6943 		return (rc);
6944 	}
6945 
6946 #ifdef RSS
6947 	vi->hashen = hashconfig_to_hashen(hashconfig);
6948 
6949 	/*
6950 	 * We may have had to enable some hashes even though the global config
6951 	 * wants them disabled.  This is a potential problem that must be
6952 	 * reported to the user.
6953 	 */
6954 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6955 
6956 	/*
6957 	 * If we consider only the supported hash types, then the enabled hashes
6958 	 * are a superset of the requested hashes.  In other words, there cannot
6959 	 * be any supported hash that was requested but not enabled, but there
6960 	 * can be hashes that were not requested but had to be enabled.
6961 	 */
6962 	extra &= SUPPORTED_RSS_HASHTYPES;
6963 	MPASS((extra & hashconfig) == 0);
6964 
6965 	if (extra) {
6966 		CH_ALERT(vi,
6967 		    "global RSS config (0x%x) cannot be accommodated.\n",
6968 		    hashconfig);
6969 	}
6970 	if (extra & RSS_HASHTYPE_RSS_IPV4)
6971 		CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6972 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6973 		CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6974 	if (extra & RSS_HASHTYPE_RSS_IPV6)
6975 		CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6976 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6977 		CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6978 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6979 		CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6980 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6981 		CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6982 #else
6983 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6984 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6985 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6986 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6987 #endif
6988 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6989 	    0, 0);
6990 	if (rc != 0) {
6991 		CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6992 		return (rc);
6993 	}
6994 
6995 	return (0);
6996 }
6997 
6998 int
vi_init(struct vi_info * vi)6999 vi_init(struct vi_info *vi)
7000 {
7001 	int rc;
7002 
7003 	ASSERT_SYNCHRONIZED_OP(vi->adapter);
7004 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
7005 	    ("%s: VI_INIT_DONE already", __func__));
7006 
7007 	rc = vi_full_init(vi);
7008 	if (rc != 0)
7009 		vi_full_uninit(vi);
7010 	else
7011 		vi->flags |= VI_INIT_DONE;
7012 
7013 	return (rc);
7014 }
7015 
7016 /*
7017  * Idempotent.
7018  */
7019 static void
vi_full_uninit(struct vi_info * vi)7020 vi_full_uninit(struct vi_info *vi)
7021 {
7022 
7023 	if (vi->flags & VI_INIT_DONE) {
7024 		quiesce_vi(vi);
7025 		free(vi->rss, M_CXGBE);
7026 		free(vi->nm_rss, M_CXGBE);
7027 	}
7028 
7029 	t4_teardown_vi_queues(vi);
7030 	vi->flags &= ~VI_INIT_DONE;
7031 }
7032 
7033 static void
quiesce_txq(struct sge_txq * txq)7034 quiesce_txq(struct sge_txq *txq)
7035 {
7036 	struct sge_eq *eq = &txq->eq;
7037 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7038 
7039 	MPASS(eq->flags & EQ_SW_ALLOCATED);
7040 	MPASS(!(eq->flags & EQ_ENABLED));
7041 
7042 	/* Wait for the mp_ring to empty. */
7043 	while (!mp_ring_is_idle(txq->r)) {
7044 		mp_ring_check_drainage(txq->r, 4096);
7045 		pause("rquiesce", 1);
7046 	}
7047 	MPASS(txq->txp.npkt == 0);
7048 
7049 	if (eq->flags & EQ_HW_ALLOCATED) {
7050 		/*
7051 		 * Hardware is alive and working normally.  Wait for it to
7052 		 * finish and then wait for the driver to catch up and reclaim
7053 		 * all descriptors.
7054 		 */
7055 		while (spg->cidx != htobe16(eq->pidx))
7056 			pause("equiesce", 1);
7057 		while (eq->cidx != eq->pidx)
7058 			pause("dquiesce", 1);
7059 	} else {
7060 		/*
7061 		 * Hardware is unavailable.  Discard all pending tx and reclaim
7062 		 * descriptors directly.
7063 		 */
7064 		TXQ_LOCK(txq);
7065 		while (eq->cidx != eq->pidx) {
7066 			struct mbuf *m, *nextpkt;
7067 			struct tx_sdesc *txsd;
7068 
7069 			txsd = &txq->sdesc[eq->cidx];
7070 			for (m = txsd->m; m != NULL; m = nextpkt) {
7071 				nextpkt = m->m_nextpkt;
7072 				m->m_nextpkt = NULL;
7073 				m_freem(m);
7074 			}
7075 			IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7076 		}
7077 		spg->pidx = spg->cidx = htobe16(eq->cidx);
7078 		TXQ_UNLOCK(txq);
7079 	}
7080 }
7081 
7082 static void
quiesce_wrq(struct sge_wrq * wrq)7083 quiesce_wrq(struct sge_wrq *wrq)
7084 {
7085 	struct wrqe *wr;
7086 
7087 	TXQ_LOCK(wrq);
7088 	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7089 		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7090 #ifdef INVARIANTS
7091 		wrq->nwr_pending--;
7092 		wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7093 #endif
7094 		free(wr, M_CXGBE);
7095 	}
7096 	MPASS(wrq->nwr_pending == 0);
7097 	MPASS(wrq->ndesc_needed == 0);
7098 	wrq->nwr_pending = 0;
7099 	wrq->ndesc_needed = 0;
7100 	TXQ_UNLOCK(wrq);
7101 }
7102 
7103 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7104 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7105 {
7106 	/* Synchronize with the interrupt handler */
7107 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7108 		pause("iqfree", 1);
7109 
7110 	if (fl != NULL) {
7111 		MPASS(iq->flags & IQ_HAS_FL);
7112 
7113 		mtx_lock(&sc->sfl_lock);
7114 		FL_LOCK(fl);
7115 		fl->flags |= FL_DOOMED;
7116 		FL_UNLOCK(fl);
7117 		callout_stop(&sc->sfl_callout);
7118 		mtx_unlock(&sc->sfl_lock);
7119 
7120 		KASSERT((fl->flags & FL_STARVING) == 0,
7121 		    ("%s: still starving", __func__));
7122 
7123 		/* Release all buffers if hardware is no longer available. */
7124 		if (!(iq->flags & IQ_HW_ALLOCATED))
7125 			free_fl_buffers(sc, fl);
7126 	}
7127 }
7128 
7129 /*
7130  * Wait for all activity on all the queues of the VI to complete.  It is assumed
7131  * that no new work is being enqueued by the hardware or the driver.  That part
7132  * should be arranged before calling this function.
7133  */
7134 static void
quiesce_vi(struct vi_info * vi)7135 quiesce_vi(struct vi_info *vi)
7136 {
7137 	int i;
7138 	struct adapter *sc = vi->adapter;
7139 	struct sge_rxq *rxq;
7140 	struct sge_txq *txq;
7141 #ifdef TCP_OFFLOAD
7142 	struct sge_ofld_rxq *ofld_rxq;
7143 #endif
7144 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7145 	struct sge_ofld_txq *ofld_txq;
7146 #endif
7147 
7148 	if (!(vi->flags & VI_INIT_DONE))
7149 		return;
7150 
7151 	for_each_txq(vi, i, txq) {
7152 		quiesce_txq(txq);
7153 	}
7154 
7155 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7156 	for_each_ofld_txq(vi, i, ofld_txq) {
7157 		quiesce_wrq(&ofld_txq->wrq);
7158 	}
7159 #endif
7160 
7161 	for_each_rxq(vi, i, rxq) {
7162 		quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7163 	}
7164 
7165 #ifdef TCP_OFFLOAD
7166 	for_each_ofld_rxq(vi, i, ofld_rxq) {
7167 		quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7168 	}
7169 #endif
7170 }
7171 
7172 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7173 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7174     driver_intr_t *handler, void *arg, char *name)
7175 {
7176 	int rc;
7177 
7178 	irq->rid = rid;
7179 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7180 	    RF_SHAREABLE | RF_ACTIVE);
7181 	if (irq->res == NULL) {
7182 		device_printf(sc->dev,
7183 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7184 		return (ENOMEM);
7185 	}
7186 
7187 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7188 	    NULL, handler, arg, &irq->tag);
7189 	if (rc != 0) {
7190 		device_printf(sc->dev,
7191 		    "failed to setup interrupt for rid %d, name %s: %d\n",
7192 		    rid, name, rc);
7193 	} else if (name)
7194 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7195 
7196 	return (rc);
7197 }
7198 
7199 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7200 t4_free_irq(struct adapter *sc, struct irq *irq)
7201 {
7202 	if (irq->tag)
7203 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
7204 	if (irq->res)
7205 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7206 
7207 	bzero(irq, sizeof(*irq));
7208 
7209 	return (0);
7210 }
7211 
7212 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7213 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7214 {
7215 
7216 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
7217 	t4_get_regs(sc, buf, regs->len);
7218 }
7219 
7220 #define	A_PL_INDIR_CMD	0x1f8
7221 
7222 #define	S_PL_AUTOINC	31
7223 #define	M_PL_AUTOINC	0x1U
7224 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
7225 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7226 
7227 #define	S_PL_VFID	20
7228 #define	M_PL_VFID	0xffU
7229 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
7230 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
7231 
7232 #define	S_PL_ADDR	0
7233 #define	M_PL_ADDR	0xfffffU
7234 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
7235 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
7236 
7237 #define	A_PL_INDIR_DATA	0x1fc
7238 
7239 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7240 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7241 {
7242 	u32 stats[2];
7243 
7244 	if (sc->flags & IS_VF) {
7245 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7246 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7247 	} else {
7248 		mtx_assert(&sc->reg_lock, MA_OWNED);
7249 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7250 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7251 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7252 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7253 	}
7254 	return (((uint64_t)stats[1]) << 32 | stats[0]);
7255 }
7256 
7257 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7258 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7259 {
7260 
7261 #define GET_STAT(name) \
7262 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7263 
7264 	if (!(sc->flags & IS_VF))
7265 		mtx_lock(&sc->reg_lock);
7266 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
7267 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
7268 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
7269 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7270 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7271 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7272 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7273 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7274 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7275 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7276 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7277 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7278 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7279 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7280 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7281 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7282 	if (!(sc->flags & IS_VF))
7283 		mtx_unlock(&sc->reg_lock);
7284 
7285 #undef GET_STAT
7286 }
7287 
7288 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7289 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7290 {
7291 	int reg;
7292 
7293 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7294 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7295 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7296 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7297 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7298 }
7299 
7300 static void
vi_refresh_stats(struct vi_info * vi)7301 vi_refresh_stats(struct vi_info *vi)
7302 {
7303 	struct timeval tv;
7304 	const struct timeval interval = {0, 250000};	/* 250ms */
7305 
7306 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7307 
7308 	if (vi->flags & VI_SKIP_STATS)
7309 		return;
7310 
7311 	getmicrotime(&tv);
7312 	timevalsub(&tv, &interval);
7313 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7314 		return;
7315 
7316 	t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7317 	getmicrotime(&vi->last_refreshed);
7318 }
7319 
7320 static void
cxgbe_refresh_stats(struct vi_info * vi)7321 cxgbe_refresh_stats(struct vi_info *vi)
7322 {
7323 	u_int i, v, tnl_cong_drops, chan_map;
7324 	struct timeval tv;
7325 	const struct timeval interval = {0, 250000};	/* 250ms */
7326 	struct port_info *pi;
7327 	struct adapter *sc;
7328 
7329 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7330 
7331 	if (vi->flags & VI_SKIP_STATS)
7332 		return;
7333 
7334 	getmicrotime(&tv);
7335 	timevalsub(&tv, &interval);
7336 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7337 		return;
7338 
7339 	pi = vi->pi;
7340 	sc = vi->adapter;
7341 	tnl_cong_drops = 0;
7342 	t4_get_port_stats(sc, pi->port_id, &pi->stats);
7343 	chan_map = pi->rx_e_chan_map;
7344 	while (chan_map) {
7345 		i = ffs(chan_map) - 1;
7346 		mtx_lock(&sc->reg_lock);
7347 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7348 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
7349 		mtx_unlock(&sc->reg_lock);
7350 		tnl_cong_drops += v;
7351 		chan_map &= ~(1 << i);
7352 	}
7353 	pi->tnl_cong_drops = tnl_cong_drops;
7354 	getmicrotime(&vi->last_refreshed);
7355 }
7356 
7357 static void
cxgbe_tick(void * arg)7358 cxgbe_tick(void *arg)
7359 {
7360 	struct vi_info *vi = arg;
7361 
7362 	MPASS(IS_MAIN_VI(vi));
7363 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7364 
7365 	cxgbe_refresh_stats(vi);
7366 	callout_schedule(&vi->tick, hz);
7367 }
7368 
7369 static void
vi_tick(void * arg)7370 vi_tick(void *arg)
7371 {
7372 	struct vi_info *vi = arg;
7373 
7374 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7375 
7376 	vi_refresh_stats(vi);
7377 	callout_schedule(&vi->tick, hz);
7378 }
7379 
7380 /*
7381  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7382  */
7383 static char *caps_decoder[] = {
7384 	"\20\001IPMI\002NCSI",				/* 0: NBM */
7385 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
7386 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
7387 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
7388 	    "\006HASHFILTER\007ETHOFLD",
7389 	"\20\001TOE",					/* 4: TOE */
7390 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
7391 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
7392 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7393 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7394 	    "\007T10DIF"
7395 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7396 	"\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"	/* 7: Crypto */
7397 	    "\004TLS_HW",
7398 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
7399 		    "\004PO_INITIATOR\005PO_TARGET",
7400 };
7401 
7402 void
t4_sysctls(struct adapter * sc)7403 t4_sysctls(struct adapter *sc)
7404 {
7405 	struct sysctl_ctx_list *ctx = &sc->ctx;
7406 	struct sysctl_oid *oid;
7407 	struct sysctl_oid_list *children, *c0;
7408 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7409 
7410 	/*
7411 	 * dev.t4nex.X.
7412 	 */
7413 	oid = device_get_sysctl_tree(sc->dev);
7414 	c0 = children = SYSCTL_CHILDREN(oid);
7415 
7416 	sc->sc_do_rxcopy = 1;
7417 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7418 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7419 
7420 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7421 	    sc->params.nports, "# of ports");
7422 
7423 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7424 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7425 	    (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7426 	    "available doorbells");
7427 
7428 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7429 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
7430 
7431 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7432 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7433 	    sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7434 	    sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7435 
7436 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7437 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7438 	    sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7439 	    sysctl_int_array, "A", "interrupt holdoff packet counter values");
7440 
7441 	t4_sge_sysctls(sc, ctx, children);
7442 
7443 	sc->lro_timeout = 100;
7444 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7445 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7446 
7447 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7448 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
7449 
7450 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7451 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7452 
7453 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7454 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7455 
7456 	if (sc->flags & IS_VF)
7457 		return;
7458 
7459 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7460 	    NULL, chip_rev(sc), "chip hardware revision");
7461 
7462 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7463 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7464 
7465 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7466 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7467 
7468 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7469 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7470 
7471 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7472 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7473 
7474 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7475 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7476 
7477 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7478 	    sc->er_version, 0, "expansion ROM version");
7479 
7480 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7481 	    sc->bs_version, 0, "bootstrap firmware version");
7482 
7483 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7484 	    NULL, sc->params.scfg_vers, "serial config version");
7485 
7486 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7487 	    NULL, sc->params.vpd_vers, "VPD version");
7488 
7489 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7490 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7491 
7492 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7493 	    sc->cfcsum, "config file checksum");
7494 
7495 #define SYSCTL_CAP(name, n, text) \
7496 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7497 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7498 	    (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7499 	    "available " text " capabilities")
7500 
7501 	SYSCTL_CAP(nbmcaps, 0, "NBM");
7502 	SYSCTL_CAP(linkcaps, 1, "link");
7503 	SYSCTL_CAP(switchcaps, 2, "switch");
7504 	SYSCTL_CAP(niccaps, 3, "NIC");
7505 	SYSCTL_CAP(toecaps, 4, "TCP offload");
7506 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
7507 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7508 	SYSCTL_CAP(cryptocaps, 7, "crypto");
7509 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
7510 #undef SYSCTL_CAP
7511 
7512 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7513 	    NULL, sc->tids.nftids, "number of filters");
7514 
7515 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7516 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7517 	    sysctl_temperature, "I", "chip temperature (in Celsius)");
7518 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7519 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7520 	    sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7521 
7522 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7523 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7524 	    sysctl_loadavg, "A",
7525 	    "microprocessor load averages (debug firmwares only)");
7526 
7527 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7528 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7529 	    "I", "core Vdd (in mV)");
7530 
7531 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7532 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7533 	    sysctl_cpus, "A", "local CPUs");
7534 
7535 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7536 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7537 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
7538 
7539 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7540 	    &sc->swintr, 0, "software triggered interrupts");
7541 
7542 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7543 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7544 	    "1 = reset adapter, 0 = zero reset counter");
7545 
7546 	/*
7547 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7548 	 */
7549 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7550 	    CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7551 	    "logs and miscellaneous information");
7552 	children = SYSCTL_CHILDREN(oid);
7553 
7554 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7555 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7556 	    sysctl_cctrl, "A", "congestion control");
7557 
7558 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7559 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7560 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7561 
7562 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7563 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7564 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7565 
7566 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7567 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7568 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7569 
7570 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7571 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7572 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7573 
7574 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7575 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7576 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7577 
7578 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7579 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7580 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7581 
7582 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7583 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7584 	    sysctl_cim_la, "A", "CIM logic analyzer");
7585 
7586 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7587 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7588 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7589 
7590 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7591 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7592 	    0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7593 
7594 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7595 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7596 	    1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7597 
7598 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7599 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7600 	    2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7601 
7602 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7603 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7604 	    3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7605 
7606 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7607 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7608 	    4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7609 
7610 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7611 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7612 	    5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7613 
7614 	if (chip_id(sc) > CHELSIO_T4) {
7615 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7616 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7617 		    6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7618 		    "CIM OBQ 6 (SGE0-RX)");
7619 
7620 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7621 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7622 		    7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7623 		    "CIM OBQ 7 (SGE1-RX)");
7624 	}
7625 
7626 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7627 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7628 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7629 
7630 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7631 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7632 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
7633 
7634 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7635 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7636 	    sysctl_cpl_stats, "A", "CPL statistics");
7637 
7638 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7639 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7640 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7641 
7642 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7643 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7644 	    sysctl_tid_stats, "A", "tid stats");
7645 
7646 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7647 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7648 	    sysctl_devlog, "A", "firmware's device log");
7649 
7650 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7651 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7652 	    sysctl_fcoe_stats, "A", "FCoE statistics");
7653 
7654 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7655 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7656 	    sysctl_hw_sched, "A", "hardware scheduler ");
7657 
7658 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7659 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7660 	    sysctl_l2t, "A", "hardware L2 table");
7661 
7662 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7663 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7664 	    sysctl_smt, "A", "hardware source MAC table");
7665 
7666 #ifdef INET6
7667 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7668 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7669 	    sysctl_clip, "A", "active CLIP table entries");
7670 #endif
7671 
7672 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7673 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7674 	    sysctl_lb_stats, "A", "loopback statistics");
7675 
7676 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7677 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7678 	    sysctl_meminfo, "A", "memory regions");
7679 
7680 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7681 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7682 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7683 	    "A", "MPS TCAM entries");
7684 
7685 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7686 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7687 	    sysctl_path_mtus, "A", "path MTUs");
7688 
7689 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7690 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7691 	    sysctl_pm_stats, "A", "PM statistics");
7692 
7693 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7694 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7695 	    sysctl_rdma_stats, "A", "RDMA statistics");
7696 
7697 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7698 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7699 	    sysctl_tcp_stats, "A", "TCP statistics");
7700 
7701 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7702 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7703 	    sysctl_tids, "A", "TID information");
7704 
7705 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7706 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7707 	    sysctl_tp_err_stats, "A", "TP error statistics");
7708 
7709 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7710 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7711 	    sysctl_tnl_stats, "A", "TP tunnel statistics");
7712 
7713 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7714 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7715 	    sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7716 
7717 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7718 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7719 	    sysctl_tp_la, "A", "TP logic analyzer");
7720 
7721 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7722 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7723 	    sysctl_tx_rate, "A", "Tx rate");
7724 
7725 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7726 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7727 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7728 
7729 	if (chip_id(sc) >= CHELSIO_T5) {
7730 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7731 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7732 		    sysctl_wcwr_stats, "A", "write combined work requests");
7733 	}
7734 
7735 #ifdef KERN_TLS
7736 	if (is_ktls(sc)) {
7737 		/*
7738 		 * dev.t4nex.0.tls.
7739 		 */
7740 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7741 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7742 		children = SYSCTL_CHILDREN(oid);
7743 
7744 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7745 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7746 		    "keys in work requests (1) or attempt to store TLS keys "
7747 		    "in card memory.");
7748 
7749 		if (is_t6(sc))
7750 			SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7751 			    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7752 			    "combine TCB field updates with TLS record work "
7753 			    "requests.");
7754 	}
7755 #endif
7756 
7757 #ifdef TCP_OFFLOAD
7758 	if (is_offload(sc)) {
7759 		int i;
7760 		char s[4];
7761 
7762 		/*
7763 		 * dev.t4nex.X.toe.
7764 		 */
7765 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7766 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7767 		children = SYSCTL_CHILDREN(oid);
7768 
7769 		sc->tt.cong_algorithm = -1;
7770 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7771 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7772 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7773 		    "3 = highspeed)");
7774 
7775 		sc->tt.sndbuf = -1;
7776 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7777 		    &sc->tt.sndbuf, 0, "hardware send buffer");
7778 
7779 		sc->tt.ddp = 0;
7780 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7781 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7782 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7783 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7784 
7785 		sc->tt.rx_coalesce = -1;
7786 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7787 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7788 
7789 		sc->tt.tls = 1;
7790 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7791 		    CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7792 		    "Inline TLS allowed");
7793 
7794 		sc->tt.tx_align = -1;
7795 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7796 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7797 
7798 		sc->tt.tx_zcopy = 0;
7799 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7800 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7801 		    "Enable zero-copy aio_write(2)");
7802 
7803 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7804 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7805 		    "cop_managed_offloading", CTLFLAG_RW,
7806 		    &sc->tt.cop_managed_offloading, 0,
7807 		    "COP (Connection Offload Policy) controls all TOE offload");
7808 
7809 		sc->tt.autorcvbuf_inc = 16 * 1024;
7810 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7811 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7812 		    "autorcvbuf increment");
7813 
7814 		sc->tt.update_hc_on_pmtu_change = 1;
7815 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7816 		    "update_hc_on_pmtu_change", CTLFLAG_RW,
7817 		    &sc->tt.update_hc_on_pmtu_change, 0,
7818 		    "Update hostcache entry if the PMTU changes");
7819 
7820 		sc->tt.iso = 1;
7821 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7822 		    &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7823 
7824 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7825 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7826 		    sysctl_tp_tick, "A", "TP timer tick (us)");
7827 
7828 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7829 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7830 		    sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7831 
7832 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7833 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7834 		    sysctl_tp_tick, "A", "DACK tick (us)");
7835 
7836 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7837 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7838 		    sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7839 
7840 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7841 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7842 		    A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7843 		    "Minimum retransmit interval (us)");
7844 
7845 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7846 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7847 		    A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7848 		    "Maximum retransmit interval (us)");
7849 
7850 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7851 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7852 		    A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7853 		    "Persist timer min (us)");
7854 
7855 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7856 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7857 		    A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7858 		    "Persist timer max (us)");
7859 
7860 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7861 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7862 		    A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7863 		    "Keepalive idle timer (us)");
7864 
7865 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7866 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7867 		    A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7868 		    "Keepalive interval timer (us)");
7869 
7870 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7871 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7872 		    A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7873 
7874 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7875 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7876 		    A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7877 		    "FINWAIT2 timer (us)");
7878 
7879 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7880 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7881 		    S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7882 		    "Number of SYN retransmissions before abort");
7883 
7884 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7885 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7886 		    S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7887 		    "Number of retransmissions before abort");
7888 
7889 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7890 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7891 		    S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7892 		    "Number of keepalive probes before abort");
7893 
7894 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7895 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7896 		    "TOE retransmit backoffs");
7897 		children = SYSCTL_CHILDREN(oid);
7898 		for (i = 0; i < 16; i++) {
7899 			snprintf(s, sizeof(s), "%u", i);
7900 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7901 			    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7902 			    i, sysctl_tp_backoff, "IU",
7903 			    "TOE retransmit backoff");
7904 		}
7905 	}
7906 #endif
7907 }
7908 
7909 void
vi_sysctls(struct vi_info * vi)7910 vi_sysctls(struct vi_info *vi)
7911 {
7912 	struct sysctl_ctx_list *ctx = &vi->ctx;
7913 	struct sysctl_oid *oid;
7914 	struct sysctl_oid_list *children;
7915 
7916 	/*
7917 	 * dev.v?(cxgbe|cxl).X.
7918 	 */
7919 	oid = device_get_sysctl_tree(vi->dev);
7920 	children = SYSCTL_CHILDREN(oid);
7921 
7922 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7923 	    vi->viid, "VI identifer");
7924 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7925 	    &vi->nrxq, 0, "# of rx queues");
7926 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7927 	    &vi->ntxq, 0, "# of tx queues");
7928 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7929 	    &vi->first_rxq, 0, "index of first rx queue");
7930 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7931 	    &vi->first_txq, 0, "index of first tx queue");
7932 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7933 	    vi->rss_base, "start of RSS indirection table");
7934 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7935 	    vi->rss_size, "size of RSS indirection table");
7936 
7937 	if (IS_MAIN_VI(vi)) {
7938 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7939 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7940 		    sysctl_noflowq, "IU",
7941 		    "Reserve queue 0 for non-flowid packets");
7942 	}
7943 
7944 	if (vi->adapter->flags & IS_VF) {
7945 		MPASS(vi->flags & TX_USES_VM_WR);
7946 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7947 		    NULL, 1, "use VM work requests for transmit");
7948 	} else {
7949 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7950 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7951 		    sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7952 	}
7953 
7954 #ifdef TCP_OFFLOAD
7955 	if (vi->nofldrxq != 0) {
7956 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7957 		    &vi->nofldrxq, 0,
7958 		    "# of rx queues for offloaded TCP connections");
7959 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7960 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7961 		    "index of first TOE rx queue");
7962 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7963 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7964 		    sysctl_holdoff_tmr_idx_ofld, "I",
7965 		    "holdoff timer index for TOE queues");
7966 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7967 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7968 		    sysctl_holdoff_pktc_idx_ofld, "I",
7969 		    "holdoff packet counter index for TOE queues");
7970 	}
7971 #endif
7972 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7973 	if (vi->nofldtxq != 0) {
7974 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7975 		    &vi->nofldtxq, 0,
7976 		    "# of tx queues for TOE/ETHOFLD");
7977 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7978 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
7979 		    "index of first TOE/ETHOFLD tx queue");
7980 	}
7981 #endif
7982 #ifdef DEV_NETMAP
7983 	if (vi->nnmrxq != 0) {
7984 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7985 		    &vi->nnmrxq, 0, "# of netmap rx queues");
7986 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7987 		    &vi->nnmtxq, 0, "# of netmap tx queues");
7988 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7989 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
7990 		    "index of first netmap rx queue");
7991 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7992 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
7993 		    "index of first netmap tx queue");
7994 	}
7995 #endif
7996 
7997 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7998 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7999 	    sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8000 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8001 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8002 	    sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8003 
8004 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8005 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8006 	    sysctl_qsize_rxq, "I", "rx queue size");
8007 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8008 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8009 	    sysctl_qsize_txq, "I", "tx queue size");
8010 }
8011 
8012 static void
cxgbe_sysctls(struct port_info * pi)8013 cxgbe_sysctls(struct port_info *pi)
8014 {
8015 	struct sysctl_ctx_list *ctx = &pi->ctx;
8016 	struct sysctl_oid *oid;
8017 	struct sysctl_oid_list *children, *children2;
8018 	struct adapter *sc = pi->adapter;
8019 	int i;
8020 	char name[16];
8021 	static char *tc_flags = {"\20\1USER"};
8022 
8023 	/*
8024 	 * dev.cxgbe.X.
8025 	 */
8026 	oid = device_get_sysctl_tree(pi->dev);
8027 	children = SYSCTL_CHILDREN(oid);
8028 
8029 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8030 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8031 	    sysctl_linkdnrc, "A", "reason why link is down");
8032 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8033 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8034 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8035 		    sysctl_btphy, "I", "PHY temperature (in Celsius)");
8036 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8037 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8038 		    sysctl_btphy, "I", "PHY firmware version");
8039 	}
8040 
8041 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8042 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8043 	    sysctl_pause_settings, "A",
8044 	    "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8045 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8046 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8047 	    "FEC in use on the link");
8048 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8049 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8050 	    sysctl_requested_fec, "A",
8051 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8052 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8053 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8054 	    "FEC recommended by the cable/transceiver");
8055 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8056 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8057 	    sysctl_autoneg, "I",
8058 	    "autonegotiation (-1 = not supported)");
8059 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8060 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8061 	    sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8062 
8063 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8064 	    &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8065 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8066 	    &pi->link_cfg.pcaps, 0, "port capabilities");
8067 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8068 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
8069 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8070 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8071 
8072 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8073 	    port_top_speed(pi), "max speed (in Gbps)");
8074 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8075 	    pi->mps_bg_map, "MPS buffer group map");
8076 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8077 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8078 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8079 	    pi->tx_chan, "TP tx c-channel");
8080 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8081 	    pi->rx_chan, "TP rx c-channel");
8082 
8083 	if (sc->flags & IS_VF)
8084 		return;
8085 
8086 	/*
8087 	 * dev.(cxgbe|cxl).X.tc.
8088 	 */
8089 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8090 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8091 	    "Tx scheduler traffic classes (cl_rl)");
8092 	children2 = SYSCTL_CHILDREN(oid);
8093 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8094 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8095 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
8096 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8097 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8098 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
8099 	for (i = 0; i < sc->params.nsched_cls; i++) {
8100 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8101 
8102 		snprintf(name, sizeof(name), "%d", i);
8103 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8104 		    SYSCTL_CHILDREN(oid), OID_AUTO, name,
8105 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8106 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8107 		    CTLFLAG_RD, &tc->state, 0, "current state");
8108 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8109 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8110 		    (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8111 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8112 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8113 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8114 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8115 		    (pi->port_id << 16) | i, sysctl_tc_params, "A",
8116 		    "traffic class parameters");
8117 	}
8118 
8119 	/*
8120 	 * dev.cxgbe.X.stats.
8121 	 */
8122 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8123 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8124 	children = SYSCTL_CHILDREN(oid);
8125 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8126 	    &pi->tx_parse_error, 0,
8127 	    "# of tx packets with invalid length or # of segments");
8128 
8129 #define T4_REGSTAT(name, stat, desc) \
8130     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8131 	CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8132 	t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8133         sysctl_handle_t4_reg64, "QU", desc)
8134 
8135 /* We get these from port_stats and they may be stale by up to 1s */
8136 #define T4_PORTSTAT(name, desc) \
8137 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8138 	    &pi->stats.name, desc)
8139 
8140 	T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8141 	T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8142 	T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8143 	T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8144 	T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8145 	T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8146 	T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8147 	T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8148 	T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8149 	T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8150 	T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8151 	T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8152 	T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8153 	T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8154 	T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8155 	T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8156 	T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8157 	T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8158 	T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8159 	T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8160 	T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8161 	T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8162 	T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8163 
8164 	T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8165 	T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8166 	T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8167 	T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8168 	T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8169 	T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8170 	T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8171 	if (is_t6(sc)) {
8172 		T4_PORTSTAT(rx_fcs_err,
8173 		    "# of frames received with bad FCS since last link up");
8174 	} else {
8175 		T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8176 		    "# of frames received with bad FCS");
8177 	}
8178 	T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8179 	T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8180 	T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8181 	T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8182 	T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8183 	T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8184 	T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8185 	T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8186 	T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8187 	T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8188 	T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8189 	T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8190 	T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8191 	T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8192 	T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8193 	T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8194 	T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8195 	T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8196 	T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8197 
8198 	T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8199 	T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8200 	T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8201 	T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8202 	T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8203 	T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8204 	T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8205 	T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8206 
8207 #undef T4_REGSTAT
8208 #undef T4_PORTSTAT
8209 }
8210 
8211 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8212 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8213 {
8214 	int rc, *i, space = 0;
8215 	struct sbuf sb;
8216 
8217 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
8218 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8219 		if (space)
8220 			sbuf_printf(&sb, " ");
8221 		sbuf_printf(&sb, "%d", *i);
8222 		space = 1;
8223 	}
8224 	rc = sbuf_finish(&sb);
8225 	sbuf_delete(&sb);
8226 	return (rc);
8227 }
8228 
8229 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8230 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8231 {
8232 	int rc;
8233 	struct sbuf *sb;
8234 
8235 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8236 	if (sb == NULL)
8237 		return (ENOMEM);
8238 
8239 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8240 	rc = sbuf_finish(sb);
8241 	sbuf_delete(sb);
8242 
8243 	return (rc);
8244 }
8245 
8246 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8247 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8248 {
8249 	int rc;
8250 	struct sbuf *sb;
8251 
8252 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8253 	if (sb == NULL)
8254 		return (ENOMEM);
8255 
8256 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8257 	rc = sbuf_finish(sb);
8258 	sbuf_delete(sb);
8259 
8260 	return (rc);
8261 }
8262 
8263 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8264 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8265 {
8266 	struct port_info *pi = arg1;
8267 	int op = arg2;
8268 	struct adapter *sc = pi->adapter;
8269 	u_int v;
8270 	int rc;
8271 
8272 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8273 	if (rc)
8274 		return (rc);
8275 	if (hw_off_limits(sc))
8276 		rc = ENXIO;
8277 	else {
8278 		/* XXX: magic numbers */
8279 		rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8280 		    op ? 0x20 : 0xc820, &v);
8281 	}
8282 	end_synchronized_op(sc, 0);
8283 	if (rc)
8284 		return (rc);
8285 	if (op == 0)
8286 		v /= 256;
8287 
8288 	rc = sysctl_handle_int(oidp, &v, 0, req);
8289 	return (rc);
8290 }
8291 
8292 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8293 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8294 {
8295 	struct vi_info *vi = arg1;
8296 	int rc, val;
8297 
8298 	val = vi->rsrv_noflowq;
8299 	rc = sysctl_handle_int(oidp, &val, 0, req);
8300 	if (rc != 0 || req->newptr == NULL)
8301 		return (rc);
8302 
8303 	if ((val >= 1) && (vi->ntxq > 1))
8304 		vi->rsrv_noflowq = 1;
8305 	else
8306 		vi->rsrv_noflowq = 0;
8307 
8308 	return (rc);
8309 }
8310 
8311 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8312 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8313 {
8314 	struct vi_info *vi = arg1;
8315 	struct adapter *sc = vi->adapter;
8316 	int rc, val, i;
8317 
8318 	MPASS(!(sc->flags & IS_VF));
8319 
8320 	val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8321 	rc = sysctl_handle_int(oidp, &val, 0, req);
8322 	if (rc != 0 || req->newptr == NULL)
8323 		return (rc);
8324 
8325 	if (val != 0 && val != 1)
8326 		return (EINVAL);
8327 
8328 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8329 	    "t4txvm");
8330 	if (rc)
8331 		return (rc);
8332 	if (hw_off_limits(sc))
8333 		rc = ENXIO;
8334 	else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8335 		/*
8336 		 * We don't want parse_pkt to run with one setting (VF or PF)
8337 		 * and then eth_tx to see a different setting but still use
8338 		 * stale information calculated by parse_pkt.
8339 		 */
8340 		rc = EBUSY;
8341 	} else {
8342 		struct port_info *pi = vi->pi;
8343 		struct sge_txq *txq;
8344 		uint32_t ctrl0;
8345 		uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8346 
8347 		if (val) {
8348 			vi->flags |= TX_USES_VM_WR;
8349 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8350 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8351 			    V_TXPKT_INTF(pi->tx_chan));
8352 			if (!(sc->flags & IS_VF))
8353 				npkt--;
8354 		} else {
8355 			vi->flags &= ~TX_USES_VM_WR;
8356 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8357 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8358 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8359 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8360 		}
8361 		for_each_txq(vi, i, txq) {
8362 			txq->cpl_ctrl0 = ctrl0;
8363 			txq->txp.max_npkt = npkt;
8364 		}
8365 	}
8366 	end_synchronized_op(sc, LOCK_HELD);
8367 	return (rc);
8368 }
8369 
8370 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8371 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8372 {
8373 	struct vi_info *vi = arg1;
8374 	struct adapter *sc = vi->adapter;
8375 	int idx, rc, i;
8376 	struct sge_rxq *rxq;
8377 	uint8_t v;
8378 
8379 	idx = vi->tmr_idx;
8380 
8381 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8382 	if (rc != 0 || req->newptr == NULL)
8383 		return (rc);
8384 
8385 	if (idx < 0 || idx >= SGE_NTIMERS)
8386 		return (EINVAL);
8387 
8388 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8389 	    "t4tmr");
8390 	if (rc)
8391 		return (rc);
8392 
8393 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8394 	for_each_rxq(vi, i, rxq) {
8395 #ifdef atomic_store_rel_8
8396 		atomic_store_rel_8(&rxq->iq.intr_params, v);
8397 #else
8398 		rxq->iq.intr_params = v;
8399 #endif
8400 	}
8401 	vi->tmr_idx = idx;
8402 
8403 	end_synchronized_op(sc, LOCK_HELD);
8404 	return (0);
8405 }
8406 
8407 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8408 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8409 {
8410 	struct vi_info *vi = arg1;
8411 	struct adapter *sc = vi->adapter;
8412 	int idx, rc;
8413 
8414 	idx = vi->pktc_idx;
8415 
8416 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8417 	if (rc != 0 || req->newptr == NULL)
8418 		return (rc);
8419 
8420 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8421 		return (EINVAL);
8422 
8423 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8424 	    "t4pktc");
8425 	if (rc)
8426 		return (rc);
8427 
8428 	if (vi->flags & VI_INIT_DONE)
8429 		rc = EBUSY; /* cannot be changed once the queues are created */
8430 	else
8431 		vi->pktc_idx = idx;
8432 
8433 	end_synchronized_op(sc, LOCK_HELD);
8434 	return (rc);
8435 }
8436 
8437 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8438 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8439 {
8440 	struct vi_info *vi = arg1;
8441 	struct adapter *sc = vi->adapter;
8442 	int qsize, rc;
8443 
8444 	qsize = vi->qsize_rxq;
8445 
8446 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8447 	if (rc != 0 || req->newptr == NULL)
8448 		return (rc);
8449 
8450 	if (qsize < 128 || (qsize & 7))
8451 		return (EINVAL);
8452 
8453 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8454 	    "t4rxqs");
8455 	if (rc)
8456 		return (rc);
8457 
8458 	if (vi->flags & VI_INIT_DONE)
8459 		rc = EBUSY; /* cannot be changed once the queues are created */
8460 	else
8461 		vi->qsize_rxq = qsize;
8462 
8463 	end_synchronized_op(sc, LOCK_HELD);
8464 	return (rc);
8465 }
8466 
8467 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8468 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8469 {
8470 	struct vi_info *vi = arg1;
8471 	struct adapter *sc = vi->adapter;
8472 	int qsize, rc;
8473 
8474 	qsize = vi->qsize_txq;
8475 
8476 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8477 	if (rc != 0 || req->newptr == NULL)
8478 		return (rc);
8479 
8480 	if (qsize < 128 || qsize > 65536)
8481 		return (EINVAL);
8482 
8483 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8484 	    "t4txqs");
8485 	if (rc)
8486 		return (rc);
8487 
8488 	if (vi->flags & VI_INIT_DONE)
8489 		rc = EBUSY; /* cannot be changed once the queues are created */
8490 	else
8491 		vi->qsize_txq = qsize;
8492 
8493 	end_synchronized_op(sc, LOCK_HELD);
8494 	return (rc);
8495 }
8496 
8497 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8498 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8499 {
8500 	struct port_info *pi = arg1;
8501 	struct adapter *sc = pi->adapter;
8502 	struct link_config *lc = &pi->link_cfg;
8503 	int rc;
8504 
8505 	if (req->newptr == NULL) {
8506 		struct sbuf *sb;
8507 		static char *bits = "\20\1RX\2TX\3AUTO";
8508 
8509 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8510 		if (sb == NULL)
8511 			return (ENOMEM);
8512 
8513 		if (lc->link_ok) {
8514 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8515 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
8516 		} else {
8517 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8518 			    PAUSE_RX | PAUSE_AUTONEG), bits);
8519 		}
8520 		rc = sbuf_finish(sb);
8521 		sbuf_delete(sb);
8522 	} else {
8523 		char s[2];
8524 		int n;
8525 
8526 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8527 		    PAUSE_AUTONEG));
8528 		s[1] = 0;
8529 
8530 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8531 		if (rc != 0)
8532 			return(rc);
8533 
8534 		if (s[1] != 0)
8535 			return (EINVAL);
8536 		if (s[0] < '0' || s[0] > '9')
8537 			return (EINVAL);	/* not a number */
8538 		n = s[0] - '0';
8539 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8540 			return (EINVAL);	/* some other bit is set too */
8541 
8542 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8543 		    "t4PAUSE");
8544 		if (rc)
8545 			return (rc);
8546 		if (!hw_off_limits(sc)) {
8547 			PORT_LOCK(pi);
8548 			lc->requested_fc = n;
8549 			fixup_link_config(pi);
8550 			if (pi->up_vis > 0)
8551 				rc = apply_link_config(pi);
8552 			set_current_media(pi);
8553 			PORT_UNLOCK(pi);
8554 		}
8555 		end_synchronized_op(sc, 0);
8556 	}
8557 
8558 	return (rc);
8559 }
8560 
8561 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8562 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8563 {
8564 	struct port_info *pi = arg1;
8565 	struct link_config *lc = &pi->link_cfg;
8566 	int rc;
8567 	struct sbuf *sb;
8568 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8569 
8570 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8571 	if (sb == NULL)
8572 		return (ENOMEM);
8573 	if (lc->link_ok)
8574 		sbuf_printf(sb, "%b", lc->fec, bits);
8575 	else
8576 		sbuf_printf(sb, "no link");
8577 	rc = sbuf_finish(sb);
8578 	sbuf_delete(sb);
8579 
8580 	return (rc);
8581 }
8582 
8583 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8584 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8585 {
8586 	struct port_info *pi = arg1;
8587 	struct adapter *sc = pi->adapter;
8588 	struct link_config *lc = &pi->link_cfg;
8589 	int rc;
8590 	int8_t old;
8591 
8592 	if (req->newptr == NULL) {
8593 		struct sbuf *sb;
8594 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8595 		    "\5RSVD3\6auto\7module";
8596 
8597 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8598 		if (sb == NULL)
8599 			return (ENOMEM);
8600 
8601 		sbuf_printf(sb, "%b", lc->requested_fec, bits);
8602 		rc = sbuf_finish(sb);
8603 		sbuf_delete(sb);
8604 	} else {
8605 		char s[8];
8606 		int n;
8607 
8608 		snprintf(s, sizeof(s), "%d",
8609 		    lc->requested_fec == FEC_AUTO ? -1 :
8610 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8611 
8612 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8613 		if (rc != 0)
8614 			return(rc);
8615 
8616 		n = strtol(&s[0], NULL, 0);
8617 		if (n < 0 || n & FEC_AUTO)
8618 			n = FEC_AUTO;
8619 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8620 			return (EINVAL);/* some other bit is set too */
8621 
8622 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8623 		    "t4reqf");
8624 		if (rc)
8625 			return (rc);
8626 		PORT_LOCK(pi);
8627 		old = lc->requested_fec;
8628 		if (n == FEC_AUTO)
8629 			lc->requested_fec = FEC_AUTO;
8630 		else if (n == 0 || n == FEC_NONE)
8631 			lc->requested_fec = FEC_NONE;
8632 		else {
8633 			if ((lc->pcaps |
8634 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8635 			    lc->pcaps) {
8636 				rc = ENOTSUP;
8637 				goto done;
8638 			}
8639 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8640 			    FEC_MODULE);
8641 		}
8642 		if (!hw_off_limits(sc)) {
8643 			fixup_link_config(pi);
8644 			if (pi->up_vis > 0) {
8645 				rc = apply_link_config(pi);
8646 				if (rc != 0) {
8647 					lc->requested_fec = old;
8648 					if (rc == FW_EPROTO)
8649 						rc = ENOTSUP;
8650 				}
8651 			}
8652 		}
8653 done:
8654 		PORT_UNLOCK(pi);
8655 		end_synchronized_op(sc, 0);
8656 	}
8657 
8658 	return (rc);
8659 }
8660 
8661 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)8662 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8663 {
8664 	struct port_info *pi = arg1;
8665 	struct adapter *sc = pi->adapter;
8666 	struct link_config *lc = &pi->link_cfg;
8667 	int rc;
8668 	int8_t fec;
8669 	struct sbuf *sb;
8670 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8671 
8672 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8673 	if (sb == NULL)
8674 		return (ENOMEM);
8675 
8676 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8677 		rc = EBUSY;
8678 		goto done;
8679 	}
8680 	if (hw_off_limits(sc)) {
8681 		rc = ENXIO;
8682 		goto done;
8683 	}
8684 	PORT_LOCK(pi);
8685 	if (pi->up_vis == 0) {
8686 		/*
8687 		 * If all the interfaces are administratively down the firmware
8688 		 * does not report transceiver changes.  Refresh port info here.
8689 		 * This is the only reason we have a synchronized op in this
8690 		 * function.  Just PORT_LOCK would have been enough otherwise.
8691 		 */
8692 		t4_update_port_info(pi);
8693 	}
8694 
8695 	fec = lc->fec_hint;
8696 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8697 	    !fec_supported(lc->pcaps)) {
8698 		PORT_UNLOCK(pi);
8699 		sbuf_printf(sb, "n/a");
8700 	} else {
8701 		if (fec == 0)
8702 			fec = FEC_NONE;
8703 		PORT_UNLOCK(pi);
8704 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8705 	}
8706 	rc = sbuf_finish(sb);
8707 done:
8708 	sbuf_delete(sb);
8709 	end_synchronized_op(sc, 0);
8710 
8711 	return (rc);
8712 }
8713 
8714 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)8715 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8716 {
8717 	struct port_info *pi = arg1;
8718 	struct adapter *sc = pi->adapter;
8719 	struct link_config *lc = &pi->link_cfg;
8720 	int rc, val;
8721 
8722 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
8723 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8724 	else
8725 		val = -1;
8726 	rc = sysctl_handle_int(oidp, &val, 0, req);
8727 	if (rc != 0 || req->newptr == NULL)
8728 		return (rc);
8729 	if (val == 0)
8730 		val = AUTONEG_DISABLE;
8731 	else if (val == 1)
8732 		val = AUTONEG_ENABLE;
8733 	else
8734 		val = AUTONEG_AUTO;
8735 
8736 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8737 	    "t4aneg");
8738 	if (rc)
8739 		return (rc);
8740 	PORT_LOCK(pi);
8741 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8742 		rc = ENOTSUP;
8743 		goto done;
8744 	}
8745 	lc->requested_aneg = val;
8746 	if (!hw_off_limits(sc)) {
8747 		fixup_link_config(pi);
8748 		if (pi->up_vis > 0)
8749 			rc = apply_link_config(pi);
8750 		set_current_media(pi);
8751 	}
8752 done:
8753 	PORT_UNLOCK(pi);
8754 	end_synchronized_op(sc, 0);
8755 	return (rc);
8756 }
8757 
8758 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)8759 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8760 {
8761 	struct port_info *pi = arg1;
8762 	struct adapter *sc = pi->adapter;
8763 	struct link_config *lc = &pi->link_cfg;
8764 	int rc, val;
8765 
8766 	val = lc->force_fec;
8767 	MPASS(val >= -1 && val <= 1);
8768 	rc = sysctl_handle_int(oidp, &val, 0, req);
8769 	if (rc != 0 || req->newptr == NULL)
8770 		return (rc);
8771 	if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8772 		return (ENOTSUP);
8773 	if (val < -1 || val > 1)
8774 		return (EINVAL);
8775 
8776 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8777 	if (rc)
8778 		return (rc);
8779 	PORT_LOCK(pi);
8780 	lc->force_fec = val;
8781 	if (!hw_off_limits(sc)) {
8782 		fixup_link_config(pi);
8783 		if (pi->up_vis > 0)
8784 			rc = apply_link_config(pi);
8785 	}
8786 	PORT_UNLOCK(pi);
8787 	end_synchronized_op(sc, 0);
8788 	return (rc);
8789 }
8790 
8791 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)8792 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8793 {
8794 	struct adapter *sc = arg1;
8795 	int rc, reg = arg2;
8796 	uint64_t val;
8797 
8798 	mtx_lock(&sc->reg_lock);
8799 	if (hw_off_limits(sc))
8800 		rc = ENXIO;
8801 	else {
8802 		rc = 0;
8803 		val = t4_read_reg64(sc, reg);
8804 	}
8805 	mtx_unlock(&sc->reg_lock);
8806 	if (rc == 0)
8807 		rc = sysctl_handle_64(oidp, &val, 0, req);
8808 	return (rc);
8809 }
8810 
8811 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)8812 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8813 {
8814 	struct adapter *sc = arg1;
8815 	int rc, t;
8816 	uint32_t param, val;
8817 
8818 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8819 	if (rc)
8820 		return (rc);
8821 	if (hw_off_limits(sc))
8822 		rc = ENXIO;
8823 	else {
8824 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8825 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8826 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8827 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8828 	}
8829 	end_synchronized_op(sc, 0);
8830 	if (rc)
8831 		return (rc);
8832 
8833 	/* unknown is returned as 0 but we display -1 in that case */
8834 	t = val == 0 ? -1 : val;
8835 
8836 	rc = sysctl_handle_int(oidp, &t, 0, req);
8837 	return (rc);
8838 }
8839 
8840 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)8841 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8842 {
8843 	struct adapter *sc = arg1;
8844 	int rc;
8845 	uint32_t param, val;
8846 
8847 	if (sc->params.core_vdd == 0) {
8848 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8849 		    "t4vdd");
8850 		if (rc)
8851 			return (rc);
8852 		if (hw_off_limits(sc))
8853 			rc = ENXIO;
8854 		else {
8855 			param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8856 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8857 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8858 			rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8859 			    &param, &val);
8860 		}
8861 		end_synchronized_op(sc, 0);
8862 		if (rc)
8863 			return (rc);
8864 		sc->params.core_vdd = val;
8865 	}
8866 
8867 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8868 }
8869 
8870 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)8871 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8872 {
8873 	struct adapter *sc = arg1;
8874 	int rc, v;
8875 	uint32_t param, val;
8876 
8877 	v = sc->sensor_resets;
8878 	rc = sysctl_handle_int(oidp, &v, 0, req);
8879 	if (rc != 0 || req->newptr == NULL || v <= 0)
8880 		return (rc);
8881 
8882 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8883 	    chip_id(sc) < CHELSIO_T5)
8884 		return (ENOTSUP);
8885 
8886 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8887 	if (rc)
8888 		return (rc);
8889 	if (hw_off_limits(sc))
8890 		rc = ENXIO;
8891 	else {
8892 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8893 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8894 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8895 		val = 1;
8896 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8897 	}
8898 	end_synchronized_op(sc, 0);
8899 	if (rc == 0)
8900 		sc->sensor_resets++;
8901 	return (rc);
8902 }
8903 
8904 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)8905 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8906 {
8907 	struct adapter *sc = arg1;
8908 	struct sbuf *sb;
8909 	int rc;
8910 	uint32_t param, val;
8911 
8912 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8913 	if (rc)
8914 		return (rc);
8915 	if (hw_off_limits(sc))
8916 		rc = ENXIO;
8917 	else {
8918 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8919 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8920 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8921 	}
8922 	end_synchronized_op(sc, 0);
8923 	if (rc)
8924 		return (rc);
8925 
8926 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8927 	if (sb == NULL)
8928 		return (ENOMEM);
8929 
8930 	if (val == 0xffffffff) {
8931 		/* Only debug and custom firmwares report load averages. */
8932 		sbuf_printf(sb, "not available");
8933 	} else {
8934 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8935 		    (val >> 16) & 0xff);
8936 	}
8937 	rc = sbuf_finish(sb);
8938 	sbuf_delete(sb);
8939 
8940 	return (rc);
8941 }
8942 
8943 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)8944 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8945 {
8946 	struct adapter *sc = arg1;
8947 	struct sbuf *sb;
8948 	int rc, i;
8949 	uint16_t incr[NMTUS][NCCTRL_WIN];
8950 	static const char *dec_fac[] = {
8951 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8952 		"0.9375"
8953 	};
8954 
8955 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8956 	if (sb == NULL)
8957 		return (ENOMEM);
8958 
8959 	rc = 0;
8960 	mtx_lock(&sc->reg_lock);
8961 	if (hw_off_limits(sc))
8962 		rc = ENXIO;
8963 	else
8964 		t4_read_cong_tbl(sc, incr);
8965 	mtx_unlock(&sc->reg_lock);
8966 	if (rc)
8967 		goto done;
8968 
8969 	for (i = 0; i < NCCTRL_WIN; ++i) {
8970 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8971 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8972 		    incr[5][i], incr[6][i], incr[7][i]);
8973 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8974 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8975 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8976 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8977 	}
8978 
8979 	rc = sbuf_finish(sb);
8980 done:
8981 	sbuf_delete(sb);
8982 	return (rc);
8983 }
8984 
8985 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8986 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
8987 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
8988 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
8989 };
8990 
8991 static int
sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)8992 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8993 {
8994 	struct adapter *sc = arg1;
8995 	struct sbuf *sb;
8996 	int rc, i, n, qid = arg2;
8997 	uint32_t *buf, *p;
8998 	char *qtype;
8999 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
9000 
9001 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
9002 	    ("%s: bad qid %d\n", __func__, qid));
9003 
9004 	if (qid < CIM_NUM_IBQ) {
9005 		/* inbound queue */
9006 		qtype = "IBQ";
9007 		n = 4 * CIM_IBQ_SIZE;
9008 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9009 		mtx_lock(&sc->reg_lock);
9010 		if (hw_off_limits(sc))
9011 			rc = -ENXIO;
9012 		else
9013 			rc = t4_read_cim_ibq(sc, qid, buf, n);
9014 		mtx_unlock(&sc->reg_lock);
9015 	} else {
9016 		/* outbound queue */
9017 		qtype = "OBQ";
9018 		qid -= CIM_NUM_IBQ;
9019 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
9020 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9021 		mtx_lock(&sc->reg_lock);
9022 		if (hw_off_limits(sc))
9023 			rc = -ENXIO;
9024 		else
9025 			rc = t4_read_cim_obq(sc, qid, buf, n);
9026 		mtx_unlock(&sc->reg_lock);
9027 	}
9028 
9029 	if (rc < 0) {
9030 		rc = -rc;
9031 		goto done;
9032 	}
9033 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
9034 
9035 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9036 	if (sb == NULL) {
9037 		rc = ENOMEM;
9038 		goto done;
9039 	}
9040 
9041 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
9042 	for (i = 0, p = buf; i < n; i += 16, p += 4)
9043 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9044 		    p[2], p[3]);
9045 
9046 	rc = sbuf_finish(sb);
9047 	sbuf_delete(sb);
9048 done:
9049 	free(buf, M_CXGBE);
9050 	return (rc);
9051 }
9052 
9053 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9054 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9055 {
9056 	uint32_t *p;
9057 
9058 	sbuf_printf(sb, "Status   Data      PC%s",
9059 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9060 	    "     LS0Stat  LS0Addr             LS0Data");
9061 
9062 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9063 		if (cfg & F_UPDBGLACAPTPCONLY) {
9064 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
9065 			    p[6], p[7]);
9066 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
9067 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9068 			    p[4] & 0xff, p[5] >> 8);
9069 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
9070 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9071 			    p[1] & 0xf, p[2] >> 4);
9072 		} else {
9073 			sbuf_printf(sb,
9074 			    "\n  %02x   %x%07x %x%07x %08x %08x "
9075 			    "%08x%08x%08x%08x",
9076 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9077 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9078 			    p[6], p[7]);
9079 		}
9080 	}
9081 }
9082 
9083 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9084 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9085 {
9086 	uint32_t *p;
9087 
9088 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
9089 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9090 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
9091 
9092 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9093 		if (cfg & F_UPDBGLACAPTPCONLY) {
9094 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
9095 			    p[3] & 0xff, p[2], p[1], p[0]);
9096 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
9097 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9098 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9099 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
9100 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9101 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9102 			    p[6] >> 16);
9103 		} else {
9104 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
9105 			    "%08x %08x %08x %08x %08x %08x",
9106 			    (p[9] >> 16) & 0xff,
9107 			    p[9] & 0xffff, p[8] >> 16,
9108 			    p[8] & 0xffff, p[7] >> 16,
9109 			    p[7] & 0xffff, p[6] >> 16,
9110 			    p[2], p[1], p[0], p[5], p[4], p[3]);
9111 		}
9112 	}
9113 }
9114 
9115 static int
sbuf_cim_la(struct adapter * sc,struct sbuf * sb,int flags)9116 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9117 {
9118 	uint32_t cfg, *buf;
9119 	int rc;
9120 
9121 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9122 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9123 	    M_ZERO | flags);
9124 	if (buf == NULL)
9125 		return (ENOMEM);
9126 
9127 	mtx_lock(&sc->reg_lock);
9128 	if (hw_off_limits(sc))
9129 		rc = ENXIO;
9130 	else {
9131 		rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9132 		if (rc == 0)
9133 			rc = -t4_cim_read_la(sc, buf, NULL);
9134 	}
9135 	mtx_unlock(&sc->reg_lock);
9136 	if (rc == 0) {
9137 		if (chip_id(sc) < CHELSIO_T6)
9138 			sbuf_cim_la4(sc, sb, buf, cfg);
9139 		else
9140 			sbuf_cim_la6(sc, sb, buf, cfg);
9141 	}
9142 	free(buf, M_CXGBE);
9143 	return (rc);
9144 }
9145 
9146 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9147 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9148 {
9149 	struct adapter *sc = arg1;
9150 	struct sbuf *sb;
9151 	int rc;
9152 
9153 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9154 	if (sb == NULL)
9155 		return (ENOMEM);
9156 
9157 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
9158 	if (rc == 0)
9159 		rc = sbuf_finish(sb);
9160 	sbuf_delete(sb);
9161 	return (rc);
9162 }
9163 
9164 static void
dump_cim_regs(struct adapter * sc)9165 dump_cim_regs(struct adapter *sc)
9166 {
9167 	log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9168 	    device_get_nameunit(sc->dev),
9169 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9170 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9171 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9172 	    t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9173 	    t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9174 	log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9175 	    device_get_nameunit(sc->dev),
9176 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9177 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9178 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9179 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9180 	    t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9181 }
9182 
9183 static void
dump_cimla(struct adapter * sc)9184 dump_cimla(struct adapter *sc)
9185 {
9186 	struct sbuf sb;
9187 	int rc;
9188 
9189 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9190 		log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9191 		    device_get_nameunit(sc->dev));
9192 		return;
9193 	}
9194 	rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9195 	if (rc == 0) {
9196 		rc = sbuf_finish(&sb);
9197 		if (rc == 0) {
9198 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9199 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9200 		}
9201 	}
9202 	sbuf_delete(&sb);
9203 }
9204 
9205 void
t4_os_cim_err(struct adapter * sc)9206 t4_os_cim_err(struct adapter *sc)
9207 {
9208 	atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9209 }
9210 
9211 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9212 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9213 {
9214 	struct adapter *sc = arg1;
9215 	u_int i;
9216 	struct sbuf *sb;
9217 	uint32_t *buf, *p;
9218 	int rc;
9219 
9220 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9221 	if (sb == NULL)
9222 		return (ENOMEM);
9223 
9224 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9225 	    M_ZERO | M_WAITOK);
9226 
9227 	rc = 0;
9228 	mtx_lock(&sc->reg_lock);
9229 	if (hw_off_limits(sc))
9230 		rc = ENXIO;
9231 	else
9232 		t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9233 	mtx_unlock(&sc->reg_lock);
9234 	if (rc)
9235 		goto done;
9236 
9237 	p = buf;
9238 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9239 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9240 		    p[1], p[0]);
9241 	}
9242 
9243 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9244 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9245 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9246 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9247 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9248 		    (p[1] >> 2) | ((p[2] & 3) << 30),
9249 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9250 		    p[0] & 1);
9251 	}
9252 	rc = sbuf_finish(sb);
9253 done:
9254 	sbuf_delete(sb);
9255 	free(buf, M_CXGBE);
9256 	return (rc);
9257 }
9258 
9259 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9260 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9261 {
9262 	struct adapter *sc = arg1;
9263 	u_int i;
9264 	struct sbuf *sb;
9265 	uint32_t *buf, *p;
9266 	int rc;
9267 
9268 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9269 	if (sb == NULL)
9270 		return (ENOMEM);
9271 
9272 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9273 	    M_ZERO | M_WAITOK);
9274 
9275 	rc = 0;
9276 	mtx_lock(&sc->reg_lock);
9277 	if (hw_off_limits(sc))
9278 		rc = ENXIO;
9279 	else
9280 		t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9281 	mtx_unlock(&sc->reg_lock);
9282 	if (rc)
9283 		goto done;
9284 
9285 	p = buf;
9286 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9287 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9288 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9289 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9290 		    p[4], p[3], p[2], p[1], p[0]);
9291 	}
9292 
9293 	sbuf_printf(sb, "\n\nCntl ID               Data");
9294 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9295 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9296 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9297 	}
9298 
9299 	rc = sbuf_finish(sb);
9300 done:
9301 	sbuf_delete(sb);
9302 	free(buf, M_CXGBE);
9303 	return (rc);
9304 }
9305 
9306 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9307 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9308 {
9309 	struct adapter *sc = arg1;
9310 	struct sbuf *sb;
9311 	int rc, i;
9312 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9313 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9314 	uint16_t thres[CIM_NUM_IBQ];
9315 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9316 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9317 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9318 
9319 	cim_num_obq = sc->chip_params->cim_num_obq;
9320 	if (is_t4(sc)) {
9321 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9322 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
9323 	} else {
9324 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9325 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9326 	}
9327 	nq = CIM_NUM_IBQ + cim_num_obq;
9328 
9329 	mtx_lock(&sc->reg_lock);
9330 	if (hw_off_limits(sc))
9331 		rc = ENXIO;
9332 	else {
9333 		rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9334 		if (rc == 0) {
9335 			rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9336 			    obq_wr);
9337 			if (rc == 0)
9338 				t4_read_cimq_cfg(sc, base, size, thres);
9339 		}
9340 	}
9341 	mtx_unlock(&sc->reg_lock);
9342 	if (rc)
9343 		return (rc);
9344 
9345 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9346 	if (sb == NULL)
9347 		return (ENOMEM);
9348 
9349 	sbuf_printf(sb,
9350 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9351 
9352 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9353 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9354 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9355 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9356 		    G_QUEREMFLITS(p[2]) * 16);
9357 	for ( ; i < nq; i++, p += 4, wr += 2)
9358 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9359 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9360 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9361 		    G_QUEREMFLITS(p[2]) * 16);
9362 
9363 	rc = sbuf_finish(sb);
9364 	sbuf_delete(sb);
9365 
9366 	return (rc);
9367 }
9368 
9369 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9370 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9371 {
9372 	struct adapter *sc = arg1;
9373 	struct sbuf *sb;
9374 	int rc;
9375 	struct tp_cpl_stats stats;
9376 
9377 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9378 	if (sb == NULL)
9379 		return (ENOMEM);
9380 
9381 	rc = 0;
9382 	mtx_lock(&sc->reg_lock);
9383 	if (hw_off_limits(sc))
9384 		rc = ENXIO;
9385 	else
9386 		t4_tp_get_cpl_stats(sc, &stats, 0);
9387 	mtx_unlock(&sc->reg_lock);
9388 	if (rc)
9389 		goto done;
9390 
9391 	if (sc->chip_params->nchan > 2) {
9392 		sbuf_printf(sb, "                 channel 0  channel 1"
9393 		    "  channel 2  channel 3");
9394 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9395 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9396 		sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9397 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9398 	} else {
9399 		sbuf_printf(sb, "                 channel 0  channel 1");
9400 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9401 		    stats.req[0], stats.req[1]);
9402 		sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9403 		    stats.rsp[0], stats.rsp[1]);
9404 	}
9405 
9406 	rc = sbuf_finish(sb);
9407 done:
9408 	sbuf_delete(sb);
9409 	return (rc);
9410 }
9411 
9412 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9413 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9414 {
9415 	struct adapter *sc = arg1;
9416 	struct sbuf *sb;
9417 	int rc;
9418 	struct tp_usm_stats stats;
9419 
9420 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9421 	if (sb == NULL)
9422 		return (ENOMEM);
9423 
9424 	rc = 0;
9425 	mtx_lock(&sc->reg_lock);
9426 	if (hw_off_limits(sc))
9427 		rc = ENXIO;
9428 	else
9429 		t4_get_usm_stats(sc, &stats, 1);
9430 	mtx_unlock(&sc->reg_lock);
9431 	if (rc == 0) {
9432 		sbuf_printf(sb, "Frames: %u\n", stats.frames);
9433 		sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9434 		sbuf_printf(sb, "Drops:  %u", stats.drops);
9435 		rc = sbuf_finish(sb);
9436 	}
9437 	sbuf_delete(sb);
9438 
9439 	return (rc);
9440 }
9441 
9442 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)9443 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9444 {
9445 	struct adapter *sc = arg1;
9446 	struct sbuf *sb;
9447 	int rc;
9448 	struct tp_tid_stats stats;
9449 
9450 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9451 	if (sb == NULL)
9452 		return (ENOMEM);
9453 
9454 	rc = 0;
9455 	mtx_lock(&sc->reg_lock);
9456 	if (hw_off_limits(sc))
9457 		rc = ENXIO;
9458 	else
9459 		t4_tp_get_tid_stats(sc, &stats, 1);
9460 	mtx_unlock(&sc->reg_lock);
9461 	if (rc == 0) {
9462 		sbuf_printf(sb, "Delete:     %u\n", stats.del);
9463 		sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9464 		sbuf_printf(sb, "Active:     %u\n", stats.act);
9465 		sbuf_printf(sb, "Passive:    %u", stats.pas);
9466 		rc = sbuf_finish(sb);
9467 	}
9468 	sbuf_delete(sb);
9469 
9470 	return (rc);
9471 }
9472 
9473 static const char * const devlog_level_strings[] = {
9474 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
9475 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
9476 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
9477 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
9478 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
9479 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
9480 };
9481 
9482 static const char * const devlog_facility_strings[] = {
9483 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
9484 	[FW_DEVLOG_FACILITY_CF]		= "CF",
9485 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
9486 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
9487 	[FW_DEVLOG_FACILITY_RES]	= "RES",
9488 	[FW_DEVLOG_FACILITY_HW]		= "HW",
9489 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
9490 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
9491 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
9492 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
9493 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
9494 	[FW_DEVLOG_FACILITY_VI]		= "VI",
9495 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
9496 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
9497 	[FW_DEVLOG_FACILITY_TM]		= "TM",
9498 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
9499 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
9500 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
9501 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
9502 	[FW_DEVLOG_FACILITY_RI]		= "RI",
9503 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
9504 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
9505 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
9506 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
9507 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
9508 };
9509 
9510 static int
sbuf_devlog(struct adapter * sc,struct sbuf * sb,int flags)9511 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9512 {
9513 	int i, j, rc, nentries, first = 0;
9514 	struct devlog_params *dparams = &sc->params.devlog;
9515 	struct fw_devlog_e *buf, *e;
9516 	uint64_t ftstamp = UINT64_MAX;
9517 
9518 	if (dparams->addr == 0)
9519 		return (ENXIO);
9520 
9521 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9522 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9523 	if (buf == NULL)
9524 		return (ENOMEM);
9525 
9526 	mtx_lock(&sc->reg_lock);
9527 	if (hw_off_limits(sc))
9528 		rc = ENXIO;
9529 	else
9530 		rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9531 		    dparams->size);
9532 	mtx_unlock(&sc->reg_lock);
9533 	if (rc != 0)
9534 		goto done;
9535 
9536 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9537 	for (i = 0; i < nentries; i++) {
9538 		e = &buf[i];
9539 
9540 		if (e->timestamp == 0)
9541 			break;	/* end */
9542 
9543 		e->timestamp = be64toh(e->timestamp);
9544 		e->seqno = be32toh(e->seqno);
9545 		for (j = 0; j < 8; j++)
9546 			e->params[j] = be32toh(e->params[j]);
9547 
9548 		if (e->timestamp < ftstamp) {
9549 			ftstamp = e->timestamp;
9550 			first = i;
9551 		}
9552 	}
9553 
9554 	if (buf[first].timestamp == 0)
9555 		goto done;	/* nothing in the log */
9556 
9557 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9558 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
9559 
9560 	i = first;
9561 	do {
9562 		e = &buf[i];
9563 		if (e->timestamp == 0)
9564 			break;	/* end */
9565 
9566 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9567 		    e->seqno, e->timestamp,
9568 		    (e->level < nitems(devlog_level_strings) ?
9569 			devlog_level_strings[e->level] : "UNKNOWN"),
9570 		    (e->facility < nitems(devlog_facility_strings) ?
9571 			devlog_facility_strings[e->facility] : "UNKNOWN"));
9572 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9573 		    e->params[2], e->params[3], e->params[4],
9574 		    e->params[5], e->params[6], e->params[7]);
9575 
9576 		if (++i == nentries)
9577 			i = 0;
9578 	} while (i != first);
9579 done:
9580 	free(buf, M_CXGBE);
9581 	return (rc);
9582 }
9583 
9584 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)9585 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9586 {
9587 	struct adapter *sc = arg1;
9588 	int rc;
9589 	struct sbuf *sb;
9590 
9591 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9592 	if (sb == NULL)
9593 		return (ENOMEM);
9594 
9595 	rc = sbuf_devlog(sc, sb, M_WAITOK);
9596 	if (rc == 0)
9597 		rc = sbuf_finish(sb);
9598 	sbuf_delete(sb);
9599 	return (rc);
9600 }
9601 
9602 static void
dump_devlog(struct adapter * sc)9603 dump_devlog(struct adapter *sc)
9604 {
9605 	int rc;
9606 	struct sbuf sb;
9607 
9608 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9609 		log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9610 		    device_get_nameunit(sc->dev));
9611 		return;
9612 	}
9613 	rc = sbuf_devlog(sc, &sb, M_WAITOK);
9614 	if (rc == 0) {
9615 		rc = sbuf_finish(&sb);
9616 		if (rc == 0) {
9617 			log(LOG_DEBUG, "%s: device log follows.\n%s",
9618 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9619 		}
9620 	}
9621 	sbuf_delete(&sb);
9622 }
9623 
9624 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)9625 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9626 {
9627 	struct adapter *sc = arg1;
9628 	struct sbuf *sb;
9629 	int rc;
9630 	struct tp_fcoe_stats stats[MAX_NCHAN];
9631 	int i, nchan = sc->chip_params->nchan;
9632 
9633 	rc = 0;
9634 	mtx_lock(&sc->reg_lock);
9635 	if (hw_off_limits(sc))
9636 		rc = ENXIO;
9637 	else {
9638 		for (i = 0; i < nchan; i++)
9639 			t4_get_fcoe_stats(sc, i, &stats[i], 1);
9640 	}
9641 	mtx_unlock(&sc->reg_lock);
9642 	if (rc != 0)
9643 		return (rc);
9644 
9645 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9646 	if (sb == NULL)
9647 		return (ENOMEM);
9648 
9649 	if (nchan > 2) {
9650 		sbuf_printf(sb, "                   channel 0        channel 1"
9651 		    "        channel 2        channel 3");
9652 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9653 		    stats[0].octets_ddp, stats[1].octets_ddp,
9654 		    stats[2].octets_ddp, stats[3].octets_ddp);
9655 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9656 		    stats[0].frames_ddp, stats[1].frames_ddp,
9657 		    stats[2].frames_ddp, stats[3].frames_ddp);
9658 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9659 		    stats[0].frames_drop, stats[1].frames_drop,
9660 		    stats[2].frames_drop, stats[3].frames_drop);
9661 	} else {
9662 		sbuf_printf(sb, "                   channel 0        channel 1");
9663 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9664 		    stats[0].octets_ddp, stats[1].octets_ddp);
9665 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9666 		    stats[0].frames_ddp, stats[1].frames_ddp);
9667 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
9668 		    stats[0].frames_drop, stats[1].frames_drop);
9669 	}
9670 
9671 	rc = sbuf_finish(sb);
9672 	sbuf_delete(sb);
9673 
9674 	return (rc);
9675 }
9676 
9677 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)9678 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9679 {
9680 	struct adapter *sc = arg1;
9681 	struct sbuf *sb;
9682 	int rc, i;
9683 	unsigned int map, kbps, ipg, mode;
9684 	unsigned int pace_tab[NTX_SCHED];
9685 
9686 	sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9687 	if (sb == NULL)
9688 		return (ENOMEM);
9689 
9690 	mtx_lock(&sc->reg_lock);
9691 	if (hw_off_limits(sc)) {
9692 		mtx_unlock(&sc->reg_lock);
9693 		rc = ENXIO;
9694 		goto done;
9695 	}
9696 
9697 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9698 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9699 	t4_read_pace_tbl(sc, pace_tab);
9700 	mtx_unlock(&sc->reg_lock);
9701 
9702 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9703 	    "Class IPG (0.1 ns)   Flow IPG (us)");
9704 
9705 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9706 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9707 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9708 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
9709 		if (kbps)
9710 			sbuf_printf(sb, "%9u     ", kbps);
9711 		else
9712 			sbuf_printf(sb, " disabled     ");
9713 
9714 		if (ipg)
9715 			sbuf_printf(sb, "%13u        ", ipg);
9716 		else
9717 			sbuf_printf(sb, "     disabled        ");
9718 
9719 		if (pace_tab[i])
9720 			sbuf_printf(sb, "%10u", pace_tab[i]);
9721 		else
9722 			sbuf_printf(sb, "  disabled");
9723 	}
9724 	rc = sbuf_finish(sb);
9725 done:
9726 	sbuf_delete(sb);
9727 	return (rc);
9728 }
9729 
9730 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)9731 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9732 {
9733 	struct adapter *sc = arg1;
9734 	struct sbuf *sb;
9735 	int rc, i, j;
9736 	uint64_t *p0, *p1;
9737 	struct lb_port_stats s[2];
9738 	static const char *stat_name[] = {
9739 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9740 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9741 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
9742 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9743 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9744 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9745 		"BG2FramesTrunc:", "BG3FramesTrunc:"
9746 	};
9747 
9748 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9749 	if (sb == NULL)
9750 		return (ENOMEM);
9751 
9752 	memset(s, 0, sizeof(s));
9753 
9754 	rc = 0;
9755 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
9756 		mtx_lock(&sc->reg_lock);
9757 		if (hw_off_limits(sc))
9758 			rc = ENXIO;
9759 		else {
9760 			t4_get_lb_stats(sc, i, &s[0]);
9761 			t4_get_lb_stats(sc, i + 1, &s[1]);
9762 		}
9763 		mtx_unlock(&sc->reg_lock);
9764 		if (rc != 0)
9765 			break;
9766 
9767 		p0 = &s[0].octets;
9768 		p1 = &s[1].octets;
9769 		sbuf_printf(sb, "%s                       Loopback %u"
9770 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9771 
9772 		for (j = 0; j < nitems(stat_name); j++)
9773 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9774 				   *p0++, *p1++);
9775 	}
9776 
9777 	if (rc == 0)
9778 		rc = sbuf_finish(sb);
9779 	sbuf_delete(sb);
9780 
9781 	return (rc);
9782 }
9783 
9784 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)9785 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9786 {
9787 	int rc = 0;
9788 	struct port_info *pi = arg1;
9789 	struct link_config *lc = &pi->link_cfg;
9790 	struct sbuf *sb;
9791 
9792 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9793 	if (sb == NULL)
9794 		return (ENOMEM);
9795 
9796 	if (lc->link_ok || lc->link_down_rc == 255)
9797 		sbuf_printf(sb, "n/a");
9798 	else
9799 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9800 
9801 	rc = sbuf_finish(sb);
9802 	sbuf_delete(sb);
9803 
9804 	return (rc);
9805 }
9806 
9807 struct mem_desc {
9808 	u_int base;
9809 	u_int limit;
9810 	u_int idx;
9811 };
9812 
9813 static int
mem_desc_cmp(const void * a,const void * b)9814 mem_desc_cmp(const void *a, const void *b)
9815 {
9816 	const u_int v1 = ((const struct mem_desc *)a)->base;
9817 	const u_int v2 = ((const struct mem_desc *)b)->base;
9818 
9819 	if (v1 < v2)
9820 		return (-1);
9821 	else if (v1 > v2)
9822 		return (1);
9823 
9824 	return (0);
9825 }
9826 
9827 static void
mem_region_show(struct sbuf * sb,const char * name,unsigned int from,unsigned int to)9828 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9829     unsigned int to)
9830 {
9831 	unsigned int size;
9832 
9833 	if (from == to)
9834 		return;
9835 
9836 	size = to - from + 1;
9837 	if (size == 0)
9838 		return;
9839 
9840 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9841 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9842 }
9843 
9844 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)9845 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9846 {
9847 	struct adapter *sc = arg1;
9848 	struct sbuf *sb;
9849 	int rc, i, n;
9850 	uint32_t lo, hi, used, free, alloc;
9851 	static const char *memory[] = {
9852 		"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9853 	};
9854 	static const char *region[] = {
9855 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9856 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9857 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9858 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9859 		"RQUDP region:", "PBL region:", "TXPBL region:",
9860 		"TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9861 		"ULPTX state:", "On-chip queues:",
9862 	};
9863 	struct mem_desc avail[4];
9864 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
9865 	struct mem_desc *md = mem;
9866 
9867 	rc = sysctl_wire_old_buffer(req, 0);
9868 	if (rc != 0)
9869 		return (rc);
9870 
9871 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9872 	if (sb == NULL)
9873 		return (ENOMEM);
9874 
9875 	for (i = 0; i < nitems(mem); i++) {
9876 		mem[i].limit = 0;
9877 		mem[i].idx = i;
9878 	}
9879 
9880 	mtx_lock(&sc->reg_lock);
9881 	if (hw_off_limits(sc)) {
9882 		rc = ENXIO;
9883 		goto done;
9884 	}
9885 
9886 	/* Find and sort the populated memory ranges */
9887 	i = 0;
9888 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9889 	if (lo & F_EDRAM0_ENABLE) {
9890 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9891 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
9892 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9893 		avail[i].idx = 0;
9894 		i++;
9895 	}
9896 	if (lo & F_EDRAM1_ENABLE) {
9897 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9898 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
9899 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9900 		avail[i].idx = 1;
9901 		i++;
9902 	}
9903 	if (lo & F_EXT_MEM_ENABLE) {
9904 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9905 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9906 		avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9907 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
9908 		i++;
9909 	}
9910 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9911 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9912 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9913 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9914 		avail[i].idx = 4;
9915 		i++;
9916 	}
9917 	if (is_t6(sc) && lo & F_HMA_MUX) {
9918 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9919 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9920 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9921 		avail[i].idx = 5;
9922 		i++;
9923 	}
9924 	MPASS(i <= nitems(avail));
9925 	if (!i)                                    /* no memory available */
9926 		goto done;
9927 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9928 
9929 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9930 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9931 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9932 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9933 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9934 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9935 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9936 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9937 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9938 
9939 	/* the next few have explicit upper bounds */
9940 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9941 	md->limit = md->base - 1 +
9942 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9943 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9944 	md++;
9945 
9946 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9947 	md->limit = md->base - 1 +
9948 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9949 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9950 	md++;
9951 
9952 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9953 		if (chip_id(sc) <= CHELSIO_T5)
9954 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9955 		else
9956 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9957 		md->limit = 0;
9958 	} else {
9959 		md->base = 0;
9960 		md->idx = nitems(region);  /* hide it */
9961 	}
9962 	md++;
9963 
9964 #define ulp_region(reg) \
9965 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9966 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9967 
9968 	ulp_region(RX_ISCSI);
9969 	ulp_region(RX_TDDP);
9970 	ulp_region(TX_TPT);
9971 	ulp_region(RX_STAG);
9972 	ulp_region(RX_RQ);
9973 	ulp_region(RX_RQUDP);
9974 	ulp_region(RX_PBL);
9975 	ulp_region(TX_PBL);
9976 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9977 		ulp_region(RX_TLS_KEY);
9978 	}
9979 #undef ulp_region
9980 
9981 	md->base = 0;
9982 	if (is_t4(sc))
9983 		md->idx = nitems(region);
9984 	else {
9985 		uint32_t size = 0;
9986 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9987 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9988 
9989 		if (is_t5(sc)) {
9990 			if (sge_ctrl & F_VFIFO_ENABLE)
9991 				size = fifo_size << 2;
9992 		} else
9993 			size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9994 
9995 		if (size) {
9996 			md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9997 			md->limit = md->base + size - 1;
9998 		} else
9999 			md->idx = nitems(region);
10000 	}
10001 	md++;
10002 
10003 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10004 	md->limit = 0;
10005 	md++;
10006 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10007 	md->limit = 0;
10008 	md++;
10009 
10010 	md->base = sc->vres.ocq.start;
10011 	if (sc->vres.ocq.size)
10012 		md->limit = md->base + sc->vres.ocq.size - 1;
10013 	else
10014 		md->idx = nitems(region);  /* hide it */
10015 	md++;
10016 
10017 	/* add any address-space holes, there can be up to 3 */
10018 	for (n = 0; n < i - 1; n++)
10019 		if (avail[n].limit < avail[n + 1].base)
10020 			(md++)->base = avail[n].limit;
10021 	if (avail[n].limit)
10022 		(md++)->base = avail[n].limit;
10023 
10024 	n = md - mem;
10025 	MPASS(n <= nitems(mem));
10026 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10027 
10028 	for (lo = 0; lo < i; lo++)
10029 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10030 				avail[lo].limit - 1);
10031 
10032 	sbuf_printf(sb, "\n");
10033 	for (i = 0; i < n; i++) {
10034 		if (mem[i].idx >= nitems(region))
10035 			continue;                        /* skip holes */
10036 		if (!mem[i].limit)
10037 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10038 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
10039 				mem[i].limit);
10040 	}
10041 
10042 	sbuf_printf(sb, "\n");
10043 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10044 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10045 	mem_region_show(sb, "uP RAM:", lo, hi);
10046 
10047 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10048 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10049 	mem_region_show(sb, "uP Extmem2:", lo, hi);
10050 
10051 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10052 	for (i = 0, free = 0; i < 2; i++)
10053 		free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10054 	sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10055 		   G_PMRXMAXPAGE(lo), free,
10056 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10057 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
10058 
10059 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10060 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10061 	for (i = 0, free = 0; i < 4; i++)
10062 		free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10063 	sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10064 		   G_PMTXMAXPAGE(lo), free,
10065 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10066 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10067 	sbuf_printf(sb, "%u p-structs (%u free)\n",
10068 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10069 		   G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10070 
10071 	for (i = 0; i < 4; i++) {
10072 		if (chip_id(sc) > CHELSIO_T5)
10073 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10074 		else
10075 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10076 		if (is_t5(sc)) {
10077 			used = G_T5_USED(lo);
10078 			alloc = G_T5_ALLOC(lo);
10079 		} else {
10080 			used = G_USED(lo);
10081 			alloc = G_ALLOC(lo);
10082 		}
10083 		/* For T6 these are MAC buffer groups */
10084 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10085 		    i, used, alloc);
10086 	}
10087 	for (i = 0; i < sc->chip_params->nchan; i++) {
10088 		if (chip_id(sc) > CHELSIO_T5)
10089 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10090 		else
10091 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10092 		if (is_t5(sc)) {
10093 			used = G_T5_USED(lo);
10094 			alloc = G_T5_ALLOC(lo);
10095 		} else {
10096 			used = G_USED(lo);
10097 			alloc = G_ALLOC(lo);
10098 		}
10099 		/* For T6 these are MAC buffer groups */
10100 		sbuf_printf(sb,
10101 		    "\nLoopback %d using %u pages out of %u allocated",
10102 		    i, used, alloc);
10103 	}
10104 done:
10105 	mtx_unlock(&sc->reg_lock);
10106 	if (rc == 0)
10107 		rc = sbuf_finish(sb);
10108 	sbuf_delete(sb);
10109 	return (rc);
10110 }
10111 
10112 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10113 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10114 {
10115 	*mask = x | y;
10116 	y = htobe64(y);
10117 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10118 }
10119 
10120 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10121 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10122 {
10123 	struct adapter *sc = arg1;
10124 	struct sbuf *sb;
10125 	int rc, i;
10126 
10127 	MPASS(chip_id(sc) <= CHELSIO_T5);
10128 
10129 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10130 	if (sb == NULL)
10131 		return (ENOMEM);
10132 
10133 	sbuf_printf(sb,
10134 	    "Idx  Ethernet address     Mask     Vld Ports PF"
10135 	    "  VF              Replication             P0 P1 P2 P3  ML");
10136 	rc = 0;
10137 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10138 		uint64_t tcamx, tcamy, mask;
10139 		uint32_t cls_lo, cls_hi;
10140 		uint8_t addr[ETHER_ADDR_LEN];
10141 
10142 		mtx_lock(&sc->reg_lock);
10143 		if (hw_off_limits(sc))
10144 			rc = ENXIO;
10145 		else {
10146 			tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10147 			tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10148 		}
10149 		mtx_unlock(&sc->reg_lock);
10150 		if (rc != 0)
10151 			break;
10152 		if (tcamx & tcamy)
10153 			continue;
10154 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10155 		mtx_lock(&sc->reg_lock);
10156 		if (hw_off_limits(sc))
10157 			rc = ENXIO;
10158 		else {
10159 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10160 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10161 		}
10162 		mtx_unlock(&sc->reg_lock);
10163 		if (rc != 0)
10164 			break;
10165 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10166 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
10167 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
10168 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10169 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
10170 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10171 
10172 		if (cls_lo & F_REPLICATE) {
10173 			struct fw_ldst_cmd ldst_cmd;
10174 
10175 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10176 			ldst_cmd.op_to_addrspace =
10177 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10178 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10179 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10180 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10181 			ldst_cmd.u.mps.rplc.fid_idx =
10182 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10183 				V_FW_LDST_CMD_IDX(i));
10184 
10185 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10186 			    "t4mps");
10187 			if (rc)
10188 				break;
10189 			if (hw_off_limits(sc))
10190 				rc = ENXIO;
10191 			else
10192 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10193 				    sizeof(ldst_cmd), &ldst_cmd);
10194 			end_synchronized_op(sc, 0);
10195 			if (rc != 0)
10196 				break;
10197 			else {
10198 				sbuf_printf(sb, " %08x %08x %08x %08x",
10199 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10200 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10201 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10202 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10203 			}
10204 		} else
10205 			sbuf_printf(sb, "%36s", "");
10206 
10207 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10208 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10209 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10210 	}
10211 
10212 	if (rc)
10213 		(void) sbuf_finish(sb);
10214 	else
10215 		rc = sbuf_finish(sb);
10216 	sbuf_delete(sb);
10217 
10218 	return (rc);
10219 }
10220 
10221 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10222 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10223 {
10224 	struct adapter *sc = arg1;
10225 	struct sbuf *sb;
10226 	int rc, i;
10227 
10228 	MPASS(chip_id(sc) > CHELSIO_T5);
10229 
10230 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10231 	if (sb == NULL)
10232 		return (ENOMEM);
10233 
10234 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10235 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10236 	    "                           Replication"
10237 	    "                                    P0 P1 P2 P3  ML\n");
10238 
10239 	rc = 0;
10240 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10241 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10242 		uint16_t ivlan;
10243 		uint64_t tcamx, tcamy, val, mask;
10244 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10245 		uint8_t addr[ETHER_ADDR_LEN];
10246 
10247 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10248 		if (i < 256)
10249 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10250 		else
10251 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10252 		mtx_lock(&sc->reg_lock);
10253 		if (hw_off_limits(sc))
10254 			rc = ENXIO;
10255 		else {
10256 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10257 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10258 			tcamy = G_DMACH(val) << 32;
10259 			tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10260 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10261 		}
10262 		mtx_unlock(&sc->reg_lock);
10263 		if (rc != 0)
10264 			break;
10265 
10266 		lookup_type = G_DATALKPTYPE(data2);
10267 		port_num = G_DATAPORTNUM(data2);
10268 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10269 			/* Inner header VNI */
10270 			vniy = ((data2 & F_DATAVIDH2) << 23) |
10271 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10272 			dip_hit = data2 & F_DATADIPHIT;
10273 			vlan_vld = 0;
10274 		} else {
10275 			vniy = 0;
10276 			dip_hit = 0;
10277 			vlan_vld = data2 & F_DATAVIDH2;
10278 			ivlan = G_VIDL(val);
10279 		}
10280 
10281 		ctl |= V_CTLXYBITSEL(1);
10282 		mtx_lock(&sc->reg_lock);
10283 		if (hw_off_limits(sc))
10284 			rc = ENXIO;
10285 		else {
10286 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10287 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10288 			tcamx = G_DMACH(val) << 32;
10289 			tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10290 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10291 		}
10292 		mtx_unlock(&sc->reg_lock);
10293 		if (rc != 0)
10294 			break;
10295 
10296 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10297 			/* Inner header VNI mask */
10298 			vnix = ((data2 & F_DATAVIDH2) << 23) |
10299 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10300 		} else
10301 			vnix = 0;
10302 
10303 		if (tcamx & tcamy)
10304 			continue;
10305 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10306 
10307 		mtx_lock(&sc->reg_lock);
10308 		if (hw_off_limits(sc))
10309 			rc = ENXIO;
10310 		else {
10311 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10312 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10313 		}
10314 		mtx_unlock(&sc->reg_lock);
10315 		if (rc != 0)
10316 			break;
10317 
10318 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10319 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10320 			    "%012jx %06x %06x    -    -   %3c"
10321 			    "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10322 			    addr[1], addr[2], addr[3], addr[4], addr[5],
10323 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10324 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10325 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10326 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10327 		} else {
10328 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10329 			    "%012jx    -       -   ", i, addr[0], addr[1],
10330 			    addr[2], addr[3], addr[4], addr[5],
10331 			    (uintmax_t)mask);
10332 
10333 			if (vlan_vld)
10334 				sbuf_printf(sb, "%4u   Y     ", ivlan);
10335 			else
10336 				sbuf_printf(sb, "  -    N     ");
10337 
10338 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10339 			    lookup_type ? 'I' : 'O', port_num,
10340 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10341 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10342 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10343 		}
10344 
10345 
10346 		if (cls_lo & F_T6_REPLICATE) {
10347 			struct fw_ldst_cmd ldst_cmd;
10348 
10349 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10350 			ldst_cmd.op_to_addrspace =
10351 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10352 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10353 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10354 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10355 			ldst_cmd.u.mps.rplc.fid_idx =
10356 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10357 				V_FW_LDST_CMD_IDX(i));
10358 
10359 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10360 			    "t6mps");
10361 			if (rc)
10362 				break;
10363 			if (hw_off_limits(sc))
10364 				rc = ENXIO;
10365 			else
10366 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10367 				    sizeof(ldst_cmd), &ldst_cmd);
10368 			end_synchronized_op(sc, 0);
10369 			if (rc != 0)
10370 				break;
10371 			else {
10372 				sbuf_printf(sb, " %08x %08x %08x %08x"
10373 				    " %08x %08x %08x %08x",
10374 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10375 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10376 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10377 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10378 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10379 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10380 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10381 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10382 			}
10383 		} else
10384 			sbuf_printf(sb, "%72s", "");
10385 
10386 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10387 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10388 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10389 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10390 	}
10391 
10392 	if (rc)
10393 		(void) sbuf_finish(sb);
10394 	else
10395 		rc = sbuf_finish(sb);
10396 	sbuf_delete(sb);
10397 
10398 	return (rc);
10399 }
10400 
10401 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)10402 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10403 {
10404 	struct adapter *sc = arg1;
10405 	struct sbuf *sb;
10406 	int rc;
10407 	uint16_t mtus[NMTUS];
10408 
10409 	rc = 0;
10410 	mtx_lock(&sc->reg_lock);
10411 	if (hw_off_limits(sc))
10412 		rc = ENXIO;
10413 	else
10414 		t4_read_mtu_tbl(sc, mtus, NULL);
10415 	mtx_unlock(&sc->reg_lock);
10416 	if (rc != 0)
10417 		return (rc);
10418 
10419 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10420 	if (sb == NULL)
10421 		return (ENOMEM);
10422 
10423 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10424 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10425 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10426 	    mtus[14], mtus[15]);
10427 
10428 	rc = sbuf_finish(sb);
10429 	sbuf_delete(sb);
10430 
10431 	return (rc);
10432 }
10433 
10434 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)10435 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10436 {
10437 	struct adapter *sc = arg1;
10438 	struct sbuf *sb;
10439 	int rc, i;
10440 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10441 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10442 	static const char *tx_stats[MAX_PM_NSTATS] = {
10443 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10444 		"Tx FIFO wait", NULL, "Tx latency"
10445 	};
10446 	static const char *rx_stats[MAX_PM_NSTATS] = {
10447 		"Read:", "Write bypass:", "Write mem:", "Flush:",
10448 		"Rx FIFO wait", NULL, "Rx latency"
10449 	};
10450 
10451 	rc = 0;
10452 	mtx_lock(&sc->reg_lock);
10453 	if (hw_off_limits(sc))
10454 		rc = ENXIO;
10455 	else {
10456 		t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10457 		t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10458 	}
10459 	mtx_unlock(&sc->reg_lock);
10460 	if (rc != 0)
10461 		return (rc);
10462 
10463 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10464 	if (sb == NULL)
10465 		return (ENOMEM);
10466 
10467 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10468 	for (i = 0; i < 4; i++) {
10469 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10470 		    tx_cyc[i]);
10471 	}
10472 
10473 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10474 	for (i = 0; i < 4; i++) {
10475 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10476 		    rx_cyc[i]);
10477 	}
10478 
10479 	if (chip_id(sc) > CHELSIO_T5) {
10480 		sbuf_printf(sb,
10481 		    "\n              Total wait      Total occupancy");
10482 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10483 		    tx_cyc[i]);
10484 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10485 		    rx_cyc[i]);
10486 
10487 		i += 2;
10488 		MPASS(i < nitems(tx_stats));
10489 
10490 		sbuf_printf(sb,
10491 		    "\n                   Reads           Total wait");
10492 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10493 		    tx_cyc[i]);
10494 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10495 		    rx_cyc[i]);
10496 	}
10497 
10498 	rc = sbuf_finish(sb);
10499 	sbuf_delete(sb);
10500 
10501 	return (rc);
10502 }
10503 
10504 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)10505 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10506 {
10507 	struct adapter *sc = arg1;
10508 	struct sbuf *sb;
10509 	int rc;
10510 	struct tp_rdma_stats stats;
10511 
10512 	rc = 0;
10513 	mtx_lock(&sc->reg_lock);
10514 	if (hw_off_limits(sc))
10515 		rc = ENXIO;
10516 	else
10517 		t4_tp_get_rdma_stats(sc, &stats, 0);
10518 	mtx_unlock(&sc->reg_lock);
10519 	if (rc != 0)
10520 		return (rc);
10521 
10522 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10523 	if (sb == NULL)
10524 		return (ENOMEM);
10525 
10526 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10527 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10528 
10529 	rc = sbuf_finish(sb);
10530 	sbuf_delete(sb);
10531 
10532 	return (rc);
10533 }
10534 
10535 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)10536 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10537 {
10538 	struct adapter *sc = arg1;
10539 	struct sbuf *sb;
10540 	int rc;
10541 	struct tp_tcp_stats v4, v6;
10542 
10543 	rc = 0;
10544 	mtx_lock(&sc->reg_lock);
10545 	if (hw_off_limits(sc))
10546 		rc = ENXIO;
10547 	else
10548 		t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10549 	mtx_unlock(&sc->reg_lock);
10550 	if (rc != 0)
10551 		return (rc);
10552 
10553 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10554 	if (sb == NULL)
10555 		return (ENOMEM);
10556 
10557 	sbuf_printf(sb,
10558 	    "                                IP                 IPv6\n");
10559 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10560 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
10561 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10562 	    v4.tcp_in_segs, v6.tcp_in_segs);
10563 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10564 	    v4.tcp_out_segs, v6.tcp_out_segs);
10565 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10566 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10567 
10568 	rc = sbuf_finish(sb);
10569 	sbuf_delete(sb);
10570 
10571 	return (rc);
10572 }
10573 
10574 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)10575 sysctl_tids(SYSCTL_HANDLER_ARGS)
10576 {
10577 	struct adapter *sc = arg1;
10578 	struct sbuf *sb;
10579 	int rc;
10580 	uint32_t x, y;
10581 	struct tid_info *t = &sc->tids;
10582 
10583 	rc = 0;
10584 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10585 	if (sb == NULL)
10586 		return (ENOMEM);
10587 
10588 	if (t->natids) {
10589 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10590 		    t->atids_in_use);
10591 	}
10592 
10593 	if (t->nhpftids) {
10594 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10595 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10596 	}
10597 
10598 	if (t->ntids) {
10599 		bool hashen = false;
10600 
10601 		mtx_lock(&sc->reg_lock);
10602 		if (hw_off_limits(sc))
10603 			rc = ENXIO;
10604 		else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10605 			hashen = true;
10606 			if (chip_id(sc) <= CHELSIO_T5) {
10607 				x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10608 				y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10609 			} else {
10610 				x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10611 				y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10612 			}
10613 		}
10614 		mtx_unlock(&sc->reg_lock);
10615 		if (rc != 0)
10616 			goto done;
10617 
10618 		sbuf_printf(sb, "TID range: ");
10619 		if (hashen) {
10620 			if (x)
10621 				sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10622 			sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10623 		} else {
10624 			sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10625 			    t->ntids - 1);
10626 		}
10627 		sbuf_printf(sb, ", in use: %u\n",
10628 		    atomic_load_acq_int(&t->tids_in_use));
10629 	}
10630 
10631 	if (t->nstids) {
10632 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10633 		    t->stid_base + t->nstids - 1, t->stids_in_use);
10634 	}
10635 
10636 	if (t->nftids) {
10637 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10638 		    t->ftid_end, t->ftids_in_use);
10639 	}
10640 
10641 	if (t->netids) {
10642 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10643 		    t->etid_base + t->netids - 1, t->etids_in_use);
10644 	}
10645 
10646 	mtx_lock(&sc->reg_lock);
10647 	if (hw_off_limits(sc))
10648 		rc = ENXIO;
10649 	else {
10650 		x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10651 		y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10652 	}
10653 	mtx_unlock(&sc->reg_lock);
10654 	if (rc != 0)
10655 		goto done;
10656 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10657 done:
10658 	if (rc == 0)
10659 		rc = sbuf_finish(sb);
10660 	else
10661 		(void)sbuf_finish(sb);
10662 	sbuf_delete(sb);
10663 
10664 	return (rc);
10665 }
10666 
10667 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)10668 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10669 {
10670 	struct adapter *sc = arg1;
10671 	struct sbuf *sb;
10672 	int rc;
10673 	struct tp_err_stats stats;
10674 
10675 	rc = 0;
10676 	mtx_lock(&sc->reg_lock);
10677 	if (hw_off_limits(sc))
10678 		rc = ENXIO;
10679 	else
10680 		t4_tp_get_err_stats(sc, &stats, 0);
10681 	mtx_unlock(&sc->reg_lock);
10682 	if (rc != 0)
10683 		return (rc);
10684 
10685 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10686 	if (sb == NULL)
10687 		return (ENOMEM);
10688 
10689 	if (sc->chip_params->nchan > 2) {
10690 		sbuf_printf(sb, "                 channel 0  channel 1"
10691 		    "  channel 2  channel 3\n");
10692 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10693 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
10694 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
10695 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10696 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10697 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10698 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10699 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10700 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10701 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10702 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10703 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10704 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10705 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10706 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10707 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10708 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10709 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10710 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10711 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10712 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10713 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10714 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10715 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10716 	} else {
10717 		sbuf_printf(sb, "                 channel 0  channel 1\n");
10718 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10719 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
10720 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10721 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10722 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10723 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10724 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10725 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10726 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10727 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10728 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10729 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10730 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10731 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10732 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10733 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10734 	}
10735 
10736 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10737 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
10738 
10739 	rc = sbuf_finish(sb);
10740 	sbuf_delete(sb);
10741 
10742 	return (rc);
10743 }
10744 
10745 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)10746 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10747 {
10748 	struct adapter *sc = arg1;
10749 	struct sbuf *sb;
10750 	int rc;
10751 	struct tp_tnl_stats stats;
10752 
10753 	rc = 0;
10754 	mtx_lock(&sc->reg_lock);
10755 	if (hw_off_limits(sc))
10756 		rc = ENXIO;
10757 	else
10758 		t4_tp_get_tnl_stats(sc, &stats, 1);
10759 	mtx_unlock(&sc->reg_lock);
10760 	if (rc != 0)
10761 		return (rc);
10762 
10763 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10764 	if (sb == NULL)
10765 		return (ENOMEM);
10766 
10767 	if (sc->chip_params->nchan > 2) {
10768 		sbuf_printf(sb, "           channel 0  channel 1"
10769 		    "  channel 2  channel 3\n");
10770 		sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10771 		    stats.out_pkt[0], stats.out_pkt[1],
10772 		    stats.out_pkt[2], stats.out_pkt[3]);
10773 		sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10774 		    stats.in_pkt[0], stats.in_pkt[1],
10775 		    stats.in_pkt[2], stats.in_pkt[3]);
10776 	} else {
10777 		sbuf_printf(sb, "           channel 0  channel 1\n");
10778 		sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10779 		    stats.out_pkt[0], stats.out_pkt[1]);
10780 		sbuf_printf(sb, "InPkts:   %10u %10u",
10781 		    stats.in_pkt[0], stats.in_pkt[1]);
10782 	}
10783 
10784 	rc = sbuf_finish(sb);
10785 	sbuf_delete(sb);
10786 
10787 	return (rc);
10788 }
10789 
10790 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)10791 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10792 {
10793 	struct adapter *sc = arg1;
10794 	struct tp_params *tpp = &sc->params.tp;
10795 	u_int mask;
10796 	int rc;
10797 
10798 	mask = tpp->la_mask >> 16;
10799 	rc = sysctl_handle_int(oidp, &mask, 0, req);
10800 	if (rc != 0 || req->newptr == NULL)
10801 		return (rc);
10802 	if (mask > 0xffff)
10803 		return (EINVAL);
10804 	mtx_lock(&sc->reg_lock);
10805 	if (hw_off_limits(sc))
10806 		rc = ENXIO;
10807 	else {
10808 		tpp->la_mask = mask << 16;
10809 		t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10810 		    tpp->la_mask);
10811 	}
10812 	mtx_unlock(&sc->reg_lock);
10813 
10814 	return (rc);
10815 }
10816 
10817 struct field_desc {
10818 	const char *name;
10819 	u_int start;
10820 	u_int width;
10821 };
10822 
10823 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)10824 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10825 {
10826 	char buf[32];
10827 	int line_size = 0;
10828 
10829 	while (f->name) {
10830 		uint64_t mask = (1ULL << f->width) - 1;
10831 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10832 		    ((uintmax_t)v >> f->start) & mask);
10833 
10834 		if (line_size + len >= 79) {
10835 			line_size = 8;
10836 			sbuf_printf(sb, "\n        ");
10837 		}
10838 		sbuf_printf(sb, "%s ", buf);
10839 		line_size += len + 1;
10840 		f++;
10841 	}
10842 	sbuf_printf(sb, "\n");
10843 }
10844 
10845 static const struct field_desc tp_la0[] = {
10846 	{ "RcfOpCodeOut", 60, 4 },
10847 	{ "State", 56, 4 },
10848 	{ "WcfState", 52, 4 },
10849 	{ "RcfOpcSrcOut", 50, 2 },
10850 	{ "CRxError", 49, 1 },
10851 	{ "ERxError", 48, 1 },
10852 	{ "SanityFailed", 47, 1 },
10853 	{ "SpuriousMsg", 46, 1 },
10854 	{ "FlushInputMsg", 45, 1 },
10855 	{ "FlushInputCpl", 44, 1 },
10856 	{ "RssUpBit", 43, 1 },
10857 	{ "RssFilterHit", 42, 1 },
10858 	{ "Tid", 32, 10 },
10859 	{ "InitTcb", 31, 1 },
10860 	{ "LineNumber", 24, 7 },
10861 	{ "Emsg", 23, 1 },
10862 	{ "EdataOut", 22, 1 },
10863 	{ "Cmsg", 21, 1 },
10864 	{ "CdataOut", 20, 1 },
10865 	{ "EreadPdu", 19, 1 },
10866 	{ "CreadPdu", 18, 1 },
10867 	{ "TunnelPkt", 17, 1 },
10868 	{ "RcfPeerFin", 16, 1 },
10869 	{ "RcfReasonOut", 12, 4 },
10870 	{ "TxCchannel", 10, 2 },
10871 	{ "RcfTxChannel", 8, 2 },
10872 	{ "RxEchannel", 6, 2 },
10873 	{ "RcfRxChannel", 5, 1 },
10874 	{ "RcfDataOutSrdy", 4, 1 },
10875 	{ "RxDvld", 3, 1 },
10876 	{ "RxOoDvld", 2, 1 },
10877 	{ "RxCongestion", 1, 1 },
10878 	{ "TxCongestion", 0, 1 },
10879 	{ NULL }
10880 };
10881 
10882 static const struct field_desc tp_la1[] = {
10883 	{ "CplCmdIn", 56, 8 },
10884 	{ "CplCmdOut", 48, 8 },
10885 	{ "ESynOut", 47, 1 },
10886 	{ "EAckOut", 46, 1 },
10887 	{ "EFinOut", 45, 1 },
10888 	{ "ERstOut", 44, 1 },
10889 	{ "SynIn", 43, 1 },
10890 	{ "AckIn", 42, 1 },
10891 	{ "FinIn", 41, 1 },
10892 	{ "RstIn", 40, 1 },
10893 	{ "DataIn", 39, 1 },
10894 	{ "DataInVld", 38, 1 },
10895 	{ "PadIn", 37, 1 },
10896 	{ "RxBufEmpty", 36, 1 },
10897 	{ "RxDdp", 35, 1 },
10898 	{ "RxFbCongestion", 34, 1 },
10899 	{ "TxFbCongestion", 33, 1 },
10900 	{ "TxPktSumSrdy", 32, 1 },
10901 	{ "RcfUlpType", 28, 4 },
10902 	{ "Eread", 27, 1 },
10903 	{ "Ebypass", 26, 1 },
10904 	{ "Esave", 25, 1 },
10905 	{ "Static0", 24, 1 },
10906 	{ "Cread", 23, 1 },
10907 	{ "Cbypass", 22, 1 },
10908 	{ "Csave", 21, 1 },
10909 	{ "CPktOut", 20, 1 },
10910 	{ "RxPagePoolFull", 18, 2 },
10911 	{ "RxLpbkPkt", 17, 1 },
10912 	{ "TxLpbkPkt", 16, 1 },
10913 	{ "RxVfValid", 15, 1 },
10914 	{ "SynLearned", 14, 1 },
10915 	{ "SetDelEntry", 13, 1 },
10916 	{ "SetInvEntry", 12, 1 },
10917 	{ "CpcmdDvld", 11, 1 },
10918 	{ "CpcmdSave", 10, 1 },
10919 	{ "RxPstructsFull", 8, 2 },
10920 	{ "EpcmdDvld", 7, 1 },
10921 	{ "EpcmdFlush", 6, 1 },
10922 	{ "EpcmdTrimPrefix", 5, 1 },
10923 	{ "EpcmdTrimPostfix", 4, 1 },
10924 	{ "ERssIp4Pkt", 3, 1 },
10925 	{ "ERssIp6Pkt", 2, 1 },
10926 	{ "ERssTcpUdpPkt", 1, 1 },
10927 	{ "ERssFceFipPkt", 0, 1 },
10928 	{ NULL }
10929 };
10930 
10931 static const struct field_desc tp_la2[] = {
10932 	{ "CplCmdIn", 56, 8 },
10933 	{ "MpsVfVld", 55, 1 },
10934 	{ "MpsPf", 52, 3 },
10935 	{ "MpsVf", 44, 8 },
10936 	{ "SynIn", 43, 1 },
10937 	{ "AckIn", 42, 1 },
10938 	{ "FinIn", 41, 1 },
10939 	{ "RstIn", 40, 1 },
10940 	{ "DataIn", 39, 1 },
10941 	{ "DataInVld", 38, 1 },
10942 	{ "PadIn", 37, 1 },
10943 	{ "RxBufEmpty", 36, 1 },
10944 	{ "RxDdp", 35, 1 },
10945 	{ "RxFbCongestion", 34, 1 },
10946 	{ "TxFbCongestion", 33, 1 },
10947 	{ "TxPktSumSrdy", 32, 1 },
10948 	{ "RcfUlpType", 28, 4 },
10949 	{ "Eread", 27, 1 },
10950 	{ "Ebypass", 26, 1 },
10951 	{ "Esave", 25, 1 },
10952 	{ "Static0", 24, 1 },
10953 	{ "Cread", 23, 1 },
10954 	{ "Cbypass", 22, 1 },
10955 	{ "Csave", 21, 1 },
10956 	{ "CPktOut", 20, 1 },
10957 	{ "RxPagePoolFull", 18, 2 },
10958 	{ "RxLpbkPkt", 17, 1 },
10959 	{ "TxLpbkPkt", 16, 1 },
10960 	{ "RxVfValid", 15, 1 },
10961 	{ "SynLearned", 14, 1 },
10962 	{ "SetDelEntry", 13, 1 },
10963 	{ "SetInvEntry", 12, 1 },
10964 	{ "CpcmdDvld", 11, 1 },
10965 	{ "CpcmdSave", 10, 1 },
10966 	{ "RxPstructsFull", 8, 2 },
10967 	{ "EpcmdDvld", 7, 1 },
10968 	{ "EpcmdFlush", 6, 1 },
10969 	{ "EpcmdTrimPrefix", 5, 1 },
10970 	{ "EpcmdTrimPostfix", 4, 1 },
10971 	{ "ERssIp4Pkt", 3, 1 },
10972 	{ "ERssIp6Pkt", 2, 1 },
10973 	{ "ERssTcpUdpPkt", 1, 1 },
10974 	{ "ERssFceFipPkt", 0, 1 },
10975 	{ NULL }
10976 };
10977 
10978 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)10979 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10980 {
10981 
10982 	field_desc_show(sb, *p, tp_la0);
10983 }
10984 
10985 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)10986 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10987 {
10988 
10989 	if (idx)
10990 		sbuf_printf(sb, "\n");
10991 	field_desc_show(sb, p[0], tp_la0);
10992 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10993 		field_desc_show(sb, p[1], tp_la0);
10994 }
10995 
10996 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)10997 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10998 {
10999 
11000 	if (idx)
11001 		sbuf_printf(sb, "\n");
11002 	field_desc_show(sb, p[0], tp_la0);
11003 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11004 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11005 }
11006 
11007 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11008 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11009 {
11010 	struct adapter *sc = arg1;
11011 	struct sbuf *sb;
11012 	uint64_t *buf, *p;
11013 	int rc;
11014 	u_int i, inc;
11015 	void (*show_func)(struct sbuf *, uint64_t *, int);
11016 
11017 	rc = 0;
11018 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11019 	if (sb == NULL)
11020 		return (ENOMEM);
11021 
11022 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11023 
11024 	mtx_lock(&sc->reg_lock);
11025 	if (hw_off_limits(sc))
11026 		rc = ENXIO;
11027 	else {
11028 		t4_tp_read_la(sc, buf, NULL);
11029 		switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11030 		case 2:
11031 			inc = 2;
11032 			show_func = tp_la_show2;
11033 			break;
11034 		case 3:
11035 			inc = 2;
11036 			show_func = tp_la_show3;
11037 			break;
11038 		default:
11039 			inc = 1;
11040 			show_func = tp_la_show;
11041 		}
11042 	}
11043 	mtx_unlock(&sc->reg_lock);
11044 	if (rc != 0)
11045 		goto done;
11046 
11047 	p = buf;
11048 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11049 		(*show_func)(sb, p, i);
11050 	rc = sbuf_finish(sb);
11051 done:
11052 	sbuf_delete(sb);
11053 	free(buf, M_CXGBE);
11054 	return (rc);
11055 }
11056 
11057 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)11058 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11059 {
11060 	struct adapter *sc = arg1;
11061 	struct sbuf *sb;
11062 	int rc;
11063 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11064 
11065 	rc = 0;
11066 	mtx_lock(&sc->reg_lock);
11067 	if (hw_off_limits(sc))
11068 		rc = ENXIO;
11069 	else
11070 		t4_get_chan_txrate(sc, nrate, orate);
11071 	mtx_unlock(&sc->reg_lock);
11072 	if (rc != 0)
11073 		return (rc);
11074 
11075 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11076 	if (sb == NULL)
11077 		return (ENOMEM);
11078 
11079 	if (sc->chip_params->nchan > 2) {
11080 		sbuf_printf(sb, "              channel 0   channel 1"
11081 		    "   channel 2   channel 3\n");
11082 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
11083 		    nrate[0], nrate[1], nrate[2], nrate[3]);
11084 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
11085 		    orate[0], orate[1], orate[2], orate[3]);
11086 	} else {
11087 		sbuf_printf(sb, "              channel 0   channel 1\n");
11088 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
11089 		    nrate[0], nrate[1]);
11090 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
11091 		    orate[0], orate[1]);
11092 	}
11093 
11094 	rc = sbuf_finish(sb);
11095 	sbuf_delete(sb);
11096 
11097 	return (rc);
11098 }
11099 
11100 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)11101 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11102 {
11103 	struct adapter *sc = arg1;
11104 	struct sbuf *sb;
11105 	uint32_t *buf, *p;
11106 	int rc, i;
11107 
11108 	rc = 0;
11109 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11110 	if (sb == NULL)
11111 		return (ENOMEM);
11112 
11113 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11114 	    M_ZERO | M_WAITOK);
11115 
11116 	mtx_lock(&sc->reg_lock);
11117 	if (hw_off_limits(sc))
11118 		rc = ENXIO;
11119 	else
11120 		t4_ulprx_read_la(sc, buf);
11121 	mtx_unlock(&sc->reg_lock);
11122 	if (rc != 0)
11123 		goto done;
11124 
11125 	p = buf;
11126 	sbuf_printf(sb, "      Pcmd        Type   Message"
11127 	    "                Data");
11128 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11129 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
11130 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11131 	}
11132 	rc = sbuf_finish(sb);
11133 done:
11134 	sbuf_delete(sb);
11135 	free(buf, M_CXGBE);
11136 	return (rc);
11137 }
11138 
11139 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)11140 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11141 {
11142 	struct adapter *sc = arg1;
11143 	struct sbuf *sb;
11144 	int rc;
11145 	uint32_t cfg, s1, s2;
11146 
11147 	MPASS(chip_id(sc) >= CHELSIO_T5);
11148 
11149 	rc = 0;
11150 	mtx_lock(&sc->reg_lock);
11151 	if (hw_off_limits(sc))
11152 		rc = ENXIO;
11153 	else {
11154 		cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11155 		s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11156 		s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11157 	}
11158 	mtx_unlock(&sc->reg_lock);
11159 	if (rc != 0)
11160 		return (rc);
11161 
11162 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11163 	if (sb == NULL)
11164 		return (ENOMEM);
11165 
11166 	if (G_STATSOURCE_T5(cfg) == 7) {
11167 		int mode;
11168 
11169 		mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11170 		if (mode == 0)
11171 			sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11172 		else if (mode == 1)
11173 			sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11174 		else
11175 			sbuf_printf(sb, "unknown mode %d", mode);
11176 	}
11177 	rc = sbuf_finish(sb);
11178 	sbuf_delete(sb);
11179 
11180 	return (rc);
11181 }
11182 
11183 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)11184 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11185 {
11186 	struct adapter *sc = arg1;
11187 	enum cpu_sets op = arg2;
11188 	cpuset_t cpuset;
11189 	struct sbuf *sb;
11190 	int i, rc;
11191 
11192 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11193 
11194 	CPU_ZERO(&cpuset);
11195 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11196 	if (rc != 0)
11197 		return (rc);
11198 
11199 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11200 	if (sb == NULL)
11201 		return (ENOMEM);
11202 
11203 	CPU_FOREACH(i)
11204 		sbuf_printf(sb, "%d ", i);
11205 	rc = sbuf_finish(sb);
11206 	sbuf_delete(sb);
11207 
11208 	return (rc);
11209 }
11210 
11211 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)11212 sysctl_reset(SYSCTL_HANDLER_ARGS)
11213 {
11214 	struct adapter *sc = arg1;
11215 	u_int val;
11216 	int rc;
11217 
11218 	val = atomic_load_int(&sc->num_resets);
11219 	rc = sysctl_handle_int(oidp, &val, 0, req);
11220 	if (rc != 0 || req->newptr == NULL)
11221 		return (rc);
11222 
11223 	if (val == 0) {
11224 		/* Zero out the counter that tracks reset. */
11225 		atomic_store_int(&sc->num_resets, 0);
11226 		return (0);
11227 	}
11228 
11229 	if (val != 1)
11230 		return (EINVAL);	/* 0 or 1 are the only legal values */
11231 
11232 	if (hw_off_limits(sc))		/* harmless race */
11233 		return (EALREADY);
11234 
11235 	taskqueue_enqueue(reset_tq, &sc->reset_task);
11236 	return (0);
11237 }
11238 
11239 #ifdef TCP_OFFLOAD
11240 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)11241 sysctl_tls(SYSCTL_HANDLER_ARGS)
11242 {
11243 	struct adapter *sc = arg1;
11244 	int i, j, v, rc;
11245 	struct vi_info *vi;
11246 
11247 	v = sc->tt.tls;
11248 	rc = sysctl_handle_int(oidp, &v, 0, req);
11249 	if (rc != 0 || req->newptr == NULL)
11250 		return (rc);
11251 
11252 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11253 		return (ENOTSUP);
11254 
11255 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11256 	if (rc)
11257 		return (rc);
11258 	if (hw_off_limits(sc))
11259 		rc = ENXIO;
11260 	else {
11261 		sc->tt.tls = !!v;
11262 		for_each_port(sc, i) {
11263 			for_each_vi(sc->port[i], j, vi) {
11264 				if (vi->flags & VI_INIT_DONE)
11265 					t4_update_fl_bufsize(vi->ifp);
11266 			}
11267 		}
11268 	}
11269 	end_synchronized_op(sc, 0);
11270 
11271 	return (rc);
11272 
11273 }
11274 
11275 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)11276 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11277 {
11278 	u_int rem = val % factor;
11279 
11280 	if (rem == 0)
11281 		snprintf(buf, len, "%u", val / factor);
11282 	else {
11283 		while (rem % 10 == 0)
11284 			rem /= 10;
11285 		snprintf(buf, len, "%u.%u", val / factor, rem);
11286 	}
11287 }
11288 
11289 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)11290 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11291 {
11292 	struct adapter *sc = arg1;
11293 	char buf[16];
11294 	u_int res, re;
11295 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11296 
11297 	mtx_lock(&sc->reg_lock);
11298 	if (hw_off_limits(sc))
11299 		res = (u_int)-1;
11300 	else
11301 		res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11302 	mtx_unlock(&sc->reg_lock);
11303 	if (res == (u_int)-1)
11304 		return (ENXIO);
11305 
11306 	switch (arg2) {
11307 	case 0:
11308 		/* timer_tick */
11309 		re = G_TIMERRESOLUTION(res);
11310 		break;
11311 	case 1:
11312 		/* TCP timestamp tick */
11313 		re = G_TIMESTAMPRESOLUTION(res);
11314 		break;
11315 	case 2:
11316 		/* DACK tick */
11317 		re = G_DELAYEDACKRESOLUTION(res);
11318 		break;
11319 	default:
11320 		return (EDOOFUS);
11321 	}
11322 
11323 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11324 
11325 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11326 }
11327 
11328 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)11329 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11330 {
11331 	struct adapter *sc = arg1;
11332 	int rc;
11333 	u_int dack_tmr, dack_re, v;
11334 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11335 
11336 	mtx_lock(&sc->reg_lock);
11337 	if (hw_off_limits(sc))
11338 		rc = ENXIO;
11339 	else {
11340 		rc = 0;
11341 		dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11342 		    A_TP_TIMER_RESOLUTION));
11343 		dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11344 	}
11345 	mtx_unlock(&sc->reg_lock);
11346 	if (rc != 0)
11347 		return (rc);
11348 
11349 	v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11350 
11351 	return (sysctl_handle_int(oidp, &v, 0, req));
11352 }
11353 
11354 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)11355 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11356 {
11357 	struct adapter *sc = arg1;
11358 	int rc, reg = arg2;
11359 	u_int tre;
11360 	u_long tp_tick_us, v;
11361 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11362 
11363 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11364 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11365 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11366 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11367 
11368 	mtx_lock(&sc->reg_lock);
11369 	if (hw_off_limits(sc))
11370 		rc = ENXIO;
11371 	else {
11372 		rc = 0;
11373 		tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11374 		tp_tick_us = (cclk_ps << tre) / 1000000;
11375 		if (reg == A_TP_INIT_SRTT)
11376 			v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11377 		else
11378 			v = tp_tick_us * t4_read_reg(sc, reg);
11379 	}
11380 	mtx_unlock(&sc->reg_lock);
11381 	if (rc != 0)
11382 		return (rc);
11383 	else
11384 		return (sysctl_handle_long(oidp, &v, 0, req));
11385 }
11386 
11387 /*
11388  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11389  * passed to this function.
11390  */
11391 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)11392 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11393 {
11394 	struct adapter *sc = arg1;
11395 	int rc, idx = arg2;
11396 	u_int v;
11397 
11398 	MPASS(idx >= 0 && idx <= 24);
11399 
11400 	mtx_lock(&sc->reg_lock);
11401 	if (hw_off_limits(sc))
11402 		rc = ENXIO;
11403 	else {
11404 		rc = 0;
11405 		v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11406 	}
11407 	mtx_unlock(&sc->reg_lock);
11408 	if (rc != 0)
11409 		return (rc);
11410 	else
11411 		return (sysctl_handle_int(oidp, &v, 0, req));
11412 }
11413 
11414 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)11415 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11416 {
11417 	struct adapter *sc = arg1;
11418 	int rc, idx = arg2;
11419 	u_int shift, v, r;
11420 
11421 	MPASS(idx >= 0 && idx < 16);
11422 
11423 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11424 	shift = (idx & 3) << 3;
11425 	mtx_lock(&sc->reg_lock);
11426 	if (hw_off_limits(sc))
11427 		rc = ENXIO;
11428 	else {
11429 		rc = 0;
11430 		v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11431 	}
11432 	mtx_unlock(&sc->reg_lock);
11433 	if (rc != 0)
11434 		return (rc);
11435 	else
11436 		return (sysctl_handle_int(oidp, &v, 0, req));
11437 }
11438 
11439 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)11440 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11441 {
11442 	struct vi_info *vi = arg1;
11443 	struct adapter *sc = vi->adapter;
11444 	int idx, rc, i;
11445 	struct sge_ofld_rxq *ofld_rxq;
11446 	uint8_t v;
11447 
11448 	idx = vi->ofld_tmr_idx;
11449 
11450 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11451 	if (rc != 0 || req->newptr == NULL)
11452 		return (rc);
11453 
11454 	if (idx < 0 || idx >= SGE_NTIMERS)
11455 		return (EINVAL);
11456 
11457 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11458 	    "t4otmr");
11459 	if (rc)
11460 		return (rc);
11461 
11462 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11463 	for_each_ofld_rxq(vi, i, ofld_rxq) {
11464 #ifdef atomic_store_rel_8
11465 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11466 #else
11467 		ofld_rxq->iq.intr_params = v;
11468 #endif
11469 	}
11470 	vi->ofld_tmr_idx = idx;
11471 
11472 	end_synchronized_op(sc, LOCK_HELD);
11473 	return (0);
11474 }
11475 
11476 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)11477 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11478 {
11479 	struct vi_info *vi = arg1;
11480 	struct adapter *sc = vi->adapter;
11481 	int idx, rc;
11482 
11483 	idx = vi->ofld_pktc_idx;
11484 
11485 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11486 	if (rc != 0 || req->newptr == NULL)
11487 		return (rc);
11488 
11489 	if (idx < -1 || idx >= SGE_NCOUNTERS)
11490 		return (EINVAL);
11491 
11492 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11493 	    "t4opktc");
11494 	if (rc)
11495 		return (rc);
11496 
11497 	if (vi->flags & VI_INIT_DONE)
11498 		rc = EBUSY; /* cannot be changed once the queues are created */
11499 	else
11500 		vi->ofld_pktc_idx = idx;
11501 
11502 	end_synchronized_op(sc, LOCK_HELD);
11503 	return (rc);
11504 }
11505 #endif
11506 
11507 static int
get_sge_context(struct adapter * sc,struct t4_sge_context * cntxt)11508 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11509 {
11510 	int rc;
11511 
11512 	if (cntxt->cid > M_CTXTQID)
11513 		return (EINVAL);
11514 
11515 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11516 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11517 		return (EINVAL);
11518 
11519 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11520 	if (rc)
11521 		return (rc);
11522 
11523 	if (hw_off_limits(sc)) {
11524 		rc = ENXIO;
11525 		goto done;
11526 	}
11527 
11528 	if (sc->flags & FW_OK) {
11529 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11530 		    &cntxt->data[0]);
11531 		if (rc == 0)
11532 			goto done;
11533 	}
11534 
11535 	/*
11536 	 * Read via firmware failed or wasn't even attempted.  Read directly via
11537 	 * the backdoor.
11538 	 */
11539 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11540 done:
11541 	end_synchronized_op(sc, 0);
11542 	return (rc);
11543 }
11544 
11545 static int
load_fw(struct adapter * sc,struct t4_data * fw)11546 load_fw(struct adapter *sc, struct t4_data *fw)
11547 {
11548 	int rc;
11549 	uint8_t *fw_data;
11550 
11551 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11552 	if (rc)
11553 		return (rc);
11554 
11555 	if (hw_off_limits(sc)) {
11556 		rc = ENXIO;
11557 		goto done;
11558 	}
11559 
11560 	/*
11561 	 * The firmware, with the sole exception of the memory parity error
11562 	 * handler, runs from memory and not flash.  It is almost always safe to
11563 	 * install a new firmware on a running system.  Just set bit 1 in
11564 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11565 	 */
11566 	if (sc->flags & FULL_INIT_DONE &&
11567 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11568 		rc = EBUSY;
11569 		goto done;
11570 	}
11571 
11572 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11573 
11574 	rc = copyin(fw->data, fw_data, fw->len);
11575 	if (rc == 0)
11576 		rc = -t4_load_fw(sc, fw_data, fw->len);
11577 
11578 	free(fw_data, M_CXGBE);
11579 done:
11580 	end_synchronized_op(sc, 0);
11581 	return (rc);
11582 }
11583 
11584 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)11585 load_cfg(struct adapter *sc, struct t4_data *cfg)
11586 {
11587 	int rc;
11588 	uint8_t *cfg_data = NULL;
11589 
11590 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11591 	if (rc)
11592 		return (rc);
11593 
11594 	if (hw_off_limits(sc)) {
11595 		rc = ENXIO;
11596 		goto done;
11597 	}
11598 
11599 	if (cfg->len == 0) {
11600 		/* clear */
11601 		rc = -t4_load_cfg(sc, NULL, 0);
11602 		goto done;
11603 	}
11604 
11605 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11606 
11607 	rc = copyin(cfg->data, cfg_data, cfg->len);
11608 	if (rc == 0)
11609 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11610 
11611 	free(cfg_data, M_CXGBE);
11612 done:
11613 	end_synchronized_op(sc, 0);
11614 	return (rc);
11615 }
11616 
11617 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)11618 load_boot(struct adapter *sc, struct t4_bootrom *br)
11619 {
11620 	int rc;
11621 	uint8_t *br_data = NULL;
11622 	u_int offset;
11623 
11624 	if (br->len > 1024 * 1024)
11625 		return (EFBIG);
11626 
11627 	if (br->pf_offset == 0) {
11628 		/* pfidx */
11629 		if (br->pfidx_addr > 7)
11630 			return (EINVAL);
11631 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11632 		    A_PCIE_PF_EXPROM_OFST)));
11633 	} else if (br->pf_offset == 1) {
11634 		/* offset */
11635 		offset = G_OFFSET(br->pfidx_addr);
11636 	} else {
11637 		return (EINVAL);
11638 	}
11639 
11640 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11641 	if (rc)
11642 		return (rc);
11643 
11644 	if (hw_off_limits(sc)) {
11645 		rc = ENXIO;
11646 		goto done;
11647 	}
11648 
11649 	if (br->len == 0) {
11650 		/* clear */
11651 		rc = -t4_load_boot(sc, NULL, offset, 0);
11652 		goto done;
11653 	}
11654 
11655 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11656 
11657 	rc = copyin(br->data, br_data, br->len);
11658 	if (rc == 0)
11659 		rc = -t4_load_boot(sc, br_data, offset, br->len);
11660 
11661 	free(br_data, M_CXGBE);
11662 done:
11663 	end_synchronized_op(sc, 0);
11664 	return (rc);
11665 }
11666 
11667 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)11668 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11669 {
11670 	int rc;
11671 	uint8_t *bc_data = NULL;
11672 
11673 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11674 	if (rc)
11675 		return (rc);
11676 
11677 	if (hw_off_limits(sc)) {
11678 		rc = ENXIO;
11679 		goto done;
11680 	}
11681 
11682 	if (bc->len == 0) {
11683 		/* clear */
11684 		rc = -t4_load_bootcfg(sc, NULL, 0);
11685 		goto done;
11686 	}
11687 
11688 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11689 
11690 	rc = copyin(bc->data, bc_data, bc->len);
11691 	if (rc == 0)
11692 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11693 
11694 	free(bc_data, M_CXGBE);
11695 done:
11696 	end_synchronized_op(sc, 0);
11697 	return (rc);
11698 }
11699 
11700 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)11701 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11702 {
11703 	int rc;
11704 	struct cudbg_init *cudbg;
11705 	void *handle, *buf;
11706 
11707 	/* buf is large, don't block if no memory is available */
11708 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11709 	if (buf == NULL)
11710 		return (ENOMEM);
11711 
11712 	handle = cudbg_alloc_handle();
11713 	if (handle == NULL) {
11714 		rc = ENOMEM;
11715 		goto done;
11716 	}
11717 
11718 	cudbg = cudbg_get_init(handle);
11719 	cudbg->adap = sc;
11720 	cudbg->print = (cudbg_print_cb)printf;
11721 
11722 #ifndef notyet
11723 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11724 	    __func__, dump->wr_flash, dump->len, dump->data);
11725 #endif
11726 
11727 	if (dump->wr_flash)
11728 		cudbg->use_flash = 1;
11729 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11730 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11731 
11732 	rc = cudbg_collect(handle, buf, &dump->len);
11733 	if (rc != 0)
11734 		goto done;
11735 
11736 	rc = copyout(buf, dump->data, dump->len);
11737 done:
11738 	cudbg_free_handle(handle);
11739 	free(buf, M_CXGBE);
11740 	return (rc);
11741 }
11742 
11743 static void
free_offload_policy(struct t4_offload_policy * op)11744 free_offload_policy(struct t4_offload_policy *op)
11745 {
11746 	struct offload_rule *r;
11747 	int i;
11748 
11749 	if (op == NULL)
11750 		return;
11751 
11752 	r = &op->rule[0];
11753 	for (i = 0; i < op->nrules; i++, r++) {
11754 		free(r->bpf_prog.bf_insns, M_CXGBE);
11755 	}
11756 	free(op->rule, M_CXGBE);
11757 	free(op, M_CXGBE);
11758 }
11759 
11760 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)11761 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11762 {
11763 	int i, rc, len;
11764 	struct t4_offload_policy *op, *old;
11765 	struct bpf_program *bf;
11766 	const struct offload_settings *s;
11767 	struct offload_rule *r;
11768 	void *u;
11769 
11770 	if (!is_offload(sc))
11771 		return (ENODEV);
11772 
11773 	if (uop->nrules == 0) {
11774 		/* Delete installed policies. */
11775 		op = NULL;
11776 		goto set_policy;
11777 	} else if (uop->nrules > 256) { /* arbitrary */
11778 		return (E2BIG);
11779 	}
11780 
11781 	/* Copy userspace offload policy to kernel */
11782 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11783 	op->nrules = uop->nrules;
11784 	len = op->nrules * sizeof(struct offload_rule);
11785 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11786 	rc = copyin(uop->rule, op->rule, len);
11787 	if (rc) {
11788 		free(op->rule, M_CXGBE);
11789 		free(op, M_CXGBE);
11790 		return (rc);
11791 	}
11792 
11793 	r = &op->rule[0];
11794 	for (i = 0; i < op->nrules; i++, r++) {
11795 
11796 		/* Validate open_type */
11797 		if (r->open_type != OPEN_TYPE_LISTEN &&
11798 		    r->open_type != OPEN_TYPE_ACTIVE &&
11799 		    r->open_type != OPEN_TYPE_PASSIVE &&
11800 		    r->open_type != OPEN_TYPE_DONTCARE) {
11801 error:
11802 			/*
11803 			 * Rules 0 to i have malloc'd filters that need to be
11804 			 * freed.  Rules i+1 to nrules have userspace pointers
11805 			 * and should be left alone.
11806 			 */
11807 			op->nrules = i;
11808 			free_offload_policy(op);
11809 			return (rc);
11810 		}
11811 
11812 		/* Validate settings */
11813 		s = &r->settings;
11814 		if ((s->offload != 0 && s->offload != 1) ||
11815 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11816 		    s->sched_class < -1 ||
11817 		    s->sched_class >= sc->params.nsched_cls) {
11818 			rc = EINVAL;
11819 			goto error;
11820 		}
11821 
11822 		bf = &r->bpf_prog;
11823 		u = bf->bf_insns;	/* userspace ptr */
11824 		bf->bf_insns = NULL;
11825 		if (bf->bf_len == 0) {
11826 			/* legal, matches everything */
11827 			continue;
11828 		}
11829 		len = bf->bf_len * sizeof(*bf->bf_insns);
11830 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11831 		rc = copyin(u, bf->bf_insns, len);
11832 		if (rc != 0)
11833 			goto error;
11834 
11835 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11836 			rc = EINVAL;
11837 			goto error;
11838 		}
11839 	}
11840 set_policy:
11841 	rw_wlock(&sc->policy_lock);
11842 	old = sc->policy;
11843 	sc->policy = op;
11844 	rw_wunlock(&sc->policy_lock);
11845 	free_offload_policy(old);
11846 
11847 	return (0);
11848 }
11849 
11850 #define MAX_READ_BUF_SIZE (128 * 1024)
11851 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)11852 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11853 {
11854 	uint32_t addr, remaining, n;
11855 	uint32_t *buf;
11856 	int rc;
11857 	uint8_t *dst;
11858 
11859 	mtx_lock(&sc->reg_lock);
11860 	if (hw_off_limits(sc))
11861 		rc = ENXIO;
11862 	else
11863 		rc = validate_mem_range(sc, mr->addr, mr->len);
11864 	mtx_unlock(&sc->reg_lock);
11865 	if (rc != 0)
11866 		return (rc);
11867 
11868 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11869 	addr = mr->addr;
11870 	remaining = mr->len;
11871 	dst = (void *)mr->data;
11872 
11873 	while (remaining) {
11874 		n = min(remaining, MAX_READ_BUF_SIZE);
11875 		mtx_lock(&sc->reg_lock);
11876 		if (hw_off_limits(sc))
11877 			rc = ENXIO;
11878 		else
11879 			read_via_memwin(sc, 2, addr, buf, n);
11880 		mtx_unlock(&sc->reg_lock);
11881 		if (rc != 0)
11882 			break;
11883 
11884 		rc = copyout(buf, dst, n);
11885 		if (rc != 0)
11886 			break;
11887 
11888 		dst += n;
11889 		remaining -= n;
11890 		addr += n;
11891 	}
11892 
11893 	free(buf, M_CXGBE);
11894 	return (rc);
11895 }
11896 #undef MAX_READ_BUF_SIZE
11897 
11898 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)11899 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11900 {
11901 	int rc;
11902 
11903 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11904 		return (EINVAL);
11905 
11906 	if (i2cd->len > sizeof(i2cd->data))
11907 		return (EFBIG);
11908 
11909 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11910 	if (rc)
11911 		return (rc);
11912 	if (hw_off_limits(sc))
11913 		rc = ENXIO;
11914 	else
11915 		rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11916 		    i2cd->offset, i2cd->len, &i2cd->data[0]);
11917 	end_synchronized_op(sc, 0);
11918 
11919 	return (rc);
11920 }
11921 
11922 static int
clear_stats(struct adapter * sc,u_int port_id)11923 clear_stats(struct adapter *sc, u_int port_id)
11924 {
11925 	int i, v, chan_map;
11926 	struct port_info *pi;
11927 	struct vi_info *vi;
11928 	struct sge_rxq *rxq;
11929 	struct sge_txq *txq;
11930 	struct sge_wrq *wrq;
11931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11932 	struct sge_ofld_txq *ofld_txq;
11933 #endif
11934 #ifdef TCP_OFFLOAD
11935 	struct sge_ofld_rxq *ofld_rxq;
11936 #endif
11937 
11938 	if (port_id >= sc->params.nports)
11939 		return (EINVAL);
11940 	pi = sc->port[port_id];
11941 	if (pi == NULL)
11942 		return (EIO);
11943 
11944 	mtx_lock(&sc->reg_lock);
11945 	if (!hw_off_limits(sc)) {
11946 		/* MAC stats */
11947 		t4_clr_port_stats(sc, pi->tx_chan);
11948 		if (is_t6(sc)) {
11949 			if (pi->fcs_reg != -1)
11950 				pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11951 			else
11952 				pi->stats.rx_fcs_err = 0;
11953 		}
11954 		for_each_vi(pi, v, vi) {
11955 			if (vi->flags & VI_INIT_DONE)
11956 				t4_clr_vi_stats(sc, vi->vin);
11957 		}
11958 		chan_map = pi->rx_e_chan_map;
11959 		v = 0;	/* reuse */
11960 		while (chan_map) {
11961 			i = ffs(chan_map) - 1;
11962 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11963 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11964 			chan_map &= ~(1 << i);
11965 		}
11966 	}
11967 	mtx_unlock(&sc->reg_lock);
11968 	pi->tx_parse_error = 0;
11969 	pi->tnl_cong_drops = 0;
11970 
11971 	/*
11972 	 * Since this command accepts a port, clear stats for
11973 	 * all VIs on this port.
11974 	 */
11975 	for_each_vi(pi, v, vi) {
11976 		if (vi->flags & VI_INIT_DONE) {
11977 
11978 			for_each_rxq(vi, i, rxq) {
11979 #if defined(INET) || defined(INET6)
11980 				rxq->lro.lro_queued = 0;
11981 				rxq->lro.lro_flushed = 0;
11982 #endif
11983 				rxq->rxcsum = 0;
11984 				rxq->vlan_extraction = 0;
11985 				rxq->vxlan_rxcsum = 0;
11986 
11987 				rxq->fl.cl_allocated = 0;
11988 				rxq->fl.cl_recycled = 0;
11989 				rxq->fl.cl_fast_recycled = 0;
11990 			}
11991 
11992 			for_each_txq(vi, i, txq) {
11993 				txq->txcsum = 0;
11994 				txq->tso_wrs = 0;
11995 				txq->vlan_insertion = 0;
11996 				txq->imm_wrs = 0;
11997 				txq->sgl_wrs = 0;
11998 				txq->txpkt_wrs = 0;
11999 				txq->txpkts0_wrs = 0;
12000 				txq->txpkts1_wrs = 0;
12001 				txq->txpkts0_pkts = 0;
12002 				txq->txpkts1_pkts = 0;
12003 				txq->txpkts_flush = 0;
12004 				txq->raw_wrs = 0;
12005 				txq->vxlan_tso_wrs = 0;
12006 				txq->vxlan_txcsum = 0;
12007 				txq->kern_tls_records = 0;
12008 				txq->kern_tls_short = 0;
12009 				txq->kern_tls_partial = 0;
12010 				txq->kern_tls_full = 0;
12011 				txq->kern_tls_octets = 0;
12012 				txq->kern_tls_waste = 0;
12013 				txq->kern_tls_options = 0;
12014 				txq->kern_tls_header = 0;
12015 				txq->kern_tls_fin = 0;
12016 				txq->kern_tls_fin_short = 0;
12017 				txq->kern_tls_cbc = 0;
12018 				txq->kern_tls_gcm = 0;
12019 				mp_ring_reset_stats(txq->r);
12020 			}
12021 
12022 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12023 			for_each_ofld_txq(vi, i, ofld_txq) {
12024 				ofld_txq->wrq.tx_wrs_direct = 0;
12025 				ofld_txq->wrq.tx_wrs_copied = 0;
12026 				counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12027 				counter_u64_zero(ofld_txq->tx_iscsi_octets);
12028 				counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12029 				counter_u64_zero(ofld_txq->tx_aio_jobs);
12030 				counter_u64_zero(ofld_txq->tx_aio_octets);
12031 				counter_u64_zero(ofld_txq->tx_toe_tls_records);
12032 				counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12033 			}
12034 #endif
12035 #ifdef TCP_OFFLOAD
12036 			for_each_ofld_rxq(vi, i, ofld_rxq) {
12037 				ofld_rxq->fl.cl_allocated = 0;
12038 				ofld_rxq->fl.cl_recycled = 0;
12039 				ofld_rxq->fl.cl_fast_recycled = 0;
12040 				counter_u64_zero(
12041 				    ofld_rxq->rx_iscsi_ddp_setup_ok);
12042 				counter_u64_zero(
12043 				    ofld_rxq->rx_iscsi_ddp_setup_error);
12044 				ofld_rxq->rx_iscsi_ddp_pdus = 0;
12045 				ofld_rxq->rx_iscsi_ddp_octets = 0;
12046 				ofld_rxq->rx_iscsi_fl_pdus = 0;
12047 				ofld_rxq->rx_iscsi_fl_octets = 0;
12048 				ofld_rxq->rx_aio_ddp_jobs = 0;
12049 				ofld_rxq->rx_aio_ddp_octets = 0;
12050 				ofld_rxq->rx_toe_tls_records = 0;
12051 				ofld_rxq->rx_toe_tls_octets = 0;
12052 				ofld_rxq->rx_toe_ddp_octets = 0;
12053 				counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12054 				counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12055 				counter_u64_zero(ofld_rxq->ddp_buffer_free);
12056 			}
12057 #endif
12058 
12059 			if (IS_MAIN_VI(vi)) {
12060 				wrq = &sc->sge.ctrlq[pi->port_id];
12061 				wrq->tx_wrs_direct = 0;
12062 				wrq->tx_wrs_copied = 0;
12063 			}
12064 		}
12065 	}
12066 
12067 	return (0);
12068 }
12069 
12070 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12071 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12072 {
12073 #ifdef INET6
12074 	struct in6_addr in6;
12075 
12076 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12077 	if (t4_get_clip_entry(sc, &in6, true) != NULL)
12078 		return (0);
12079 	else
12080 		return (EIO);
12081 #else
12082 	return (ENOTSUP);
12083 #endif
12084 }
12085 
12086 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12087 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12088 {
12089 #ifdef INET6
12090 	struct in6_addr in6;
12091 
12092 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12093 	return (t4_release_clip_addr(sc, &in6));
12094 #else
12095 	return (ENOTSUP);
12096 #endif
12097 }
12098 
12099 int
t4_os_find_pci_capability(struct adapter * sc,int cap)12100 t4_os_find_pci_capability(struct adapter *sc, int cap)
12101 {
12102 	int i;
12103 
12104 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12105 }
12106 
12107 void
t4_os_portmod_changed(struct port_info * pi)12108 t4_os_portmod_changed(struct port_info *pi)
12109 {
12110 	struct adapter *sc = pi->adapter;
12111 	struct vi_info *vi;
12112 	if_t ifp;
12113 	static const char *mod_str[] = {
12114 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12115 	};
12116 
12117 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12118 	    ("%s: port_type %u", __func__, pi->port_type));
12119 
12120 	vi = &pi->vi[0];
12121 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12122 		PORT_LOCK(pi);
12123 		build_medialist(pi);
12124 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12125 			fixup_link_config(pi);
12126 			apply_link_config(pi);
12127 		}
12128 		PORT_UNLOCK(pi);
12129 		end_synchronized_op(sc, LOCK_HELD);
12130 	}
12131 
12132 	ifp = vi->ifp;
12133 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12134 		if_printf(ifp, "transceiver unplugged.\n");
12135 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12136 		if_printf(ifp, "unknown transceiver inserted.\n");
12137 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12138 		if_printf(ifp, "unsupported transceiver inserted.\n");
12139 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12140 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12141 		    port_top_speed(pi), mod_str[pi->mod_type]);
12142 	} else {
12143 		if_printf(ifp, "transceiver (type %d) inserted.\n",
12144 		    pi->mod_type);
12145 	}
12146 }
12147 
12148 void
t4_os_link_changed(struct port_info * pi)12149 t4_os_link_changed(struct port_info *pi)
12150 {
12151 	struct vi_info *vi;
12152 	if_t ifp;
12153 	struct link_config *lc = &pi->link_cfg;
12154 	struct adapter *sc = pi->adapter;
12155 	int v;
12156 
12157 	PORT_LOCK_ASSERT_OWNED(pi);
12158 
12159 	if (is_t6(sc)) {
12160 		if (lc->link_ok) {
12161 			if (lc->speed > 25000 ||
12162 			    (lc->speed == 25000 && lc->fec == FEC_RS)) {
12163 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12164 				    A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12165 			} else {
12166 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12167 				    A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12168 			}
12169 			pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12170 			pi->stats.rx_fcs_err = 0;
12171 		} else {
12172 			pi->fcs_reg = -1;
12173 		}
12174 	} else {
12175 		MPASS(pi->fcs_reg != -1);
12176 		MPASS(pi->fcs_base == 0);
12177 	}
12178 
12179 	for_each_vi(pi, v, vi) {
12180 		ifp = vi->ifp;
12181 		if (ifp == NULL || IS_DETACHING(vi))
12182 			continue;
12183 
12184 		if (lc->link_ok) {
12185 			if_setbaudrate(ifp, IF_Mbps(lc->speed));
12186 			if_link_state_change(ifp, LINK_STATE_UP);
12187 		} else {
12188 			if_link_state_change(ifp, LINK_STATE_DOWN);
12189 		}
12190 	}
12191 }
12192 
12193 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)12194 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12195 {
12196 	struct adapter *sc;
12197 
12198 	sx_slock(&t4_list_lock);
12199 	SLIST_FOREACH(sc, &t4_list, link) {
12200 		/*
12201 		 * func should not make any assumptions about what state sc is
12202 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
12203 		 */
12204 		func(sc, arg);
12205 	}
12206 	sx_sunlock(&t4_list_lock);
12207 }
12208 
12209 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)12210 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12211     struct thread *td)
12212 {
12213 	int rc;
12214 	struct adapter *sc = dev->si_drv1;
12215 
12216 	rc = priv_check(td, PRIV_DRIVER);
12217 	if (rc != 0)
12218 		return (rc);
12219 
12220 	switch (cmd) {
12221 	case CHELSIO_T4_GETREG: {
12222 		struct t4_reg *edata = (struct t4_reg *)data;
12223 
12224 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12225 			return (EFAULT);
12226 
12227 		mtx_lock(&sc->reg_lock);
12228 		if (hw_off_limits(sc))
12229 			rc = ENXIO;
12230 		else if (edata->size == 4)
12231 			edata->val = t4_read_reg(sc, edata->addr);
12232 		else if (edata->size == 8)
12233 			edata->val = t4_read_reg64(sc, edata->addr);
12234 		else
12235 			rc = EINVAL;
12236 		mtx_unlock(&sc->reg_lock);
12237 
12238 		break;
12239 	}
12240 	case CHELSIO_T4_SETREG: {
12241 		struct t4_reg *edata = (struct t4_reg *)data;
12242 
12243 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12244 			return (EFAULT);
12245 
12246 		mtx_lock(&sc->reg_lock);
12247 		if (hw_off_limits(sc))
12248 			rc = ENXIO;
12249 		else if (edata->size == 4) {
12250 			if (edata->val & 0xffffffff00000000)
12251 				rc = EINVAL;
12252 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12253 		} else if (edata->size == 8)
12254 			t4_write_reg64(sc, edata->addr, edata->val);
12255 		else
12256 			rc = EINVAL;
12257 		mtx_unlock(&sc->reg_lock);
12258 
12259 		break;
12260 	}
12261 	case CHELSIO_T4_REGDUMP: {
12262 		struct t4_regdump *regs = (struct t4_regdump *)data;
12263 		int reglen = t4_get_regs_len(sc);
12264 		uint8_t *buf;
12265 
12266 		if (regs->len < reglen) {
12267 			regs->len = reglen; /* hint to the caller */
12268 			return (ENOBUFS);
12269 		}
12270 
12271 		regs->len = reglen;
12272 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12273 		mtx_lock(&sc->reg_lock);
12274 		if (hw_off_limits(sc))
12275 			rc = ENXIO;
12276 		else
12277 			get_regs(sc, regs, buf);
12278 		mtx_unlock(&sc->reg_lock);
12279 		if (rc == 0)
12280 			rc = copyout(buf, regs->data, reglen);
12281 		free(buf, M_CXGBE);
12282 		break;
12283 	}
12284 	case CHELSIO_T4_GET_FILTER_MODE:
12285 		rc = get_filter_mode(sc, (uint32_t *)data);
12286 		break;
12287 	case CHELSIO_T4_SET_FILTER_MODE:
12288 		rc = set_filter_mode(sc, *(uint32_t *)data);
12289 		break;
12290 	case CHELSIO_T4_SET_FILTER_MASK:
12291 		rc = set_filter_mask(sc, *(uint32_t *)data);
12292 		break;
12293 	case CHELSIO_T4_GET_FILTER:
12294 		rc = get_filter(sc, (struct t4_filter *)data);
12295 		break;
12296 	case CHELSIO_T4_SET_FILTER:
12297 		rc = set_filter(sc, (struct t4_filter *)data);
12298 		break;
12299 	case CHELSIO_T4_DEL_FILTER:
12300 		rc = del_filter(sc, (struct t4_filter *)data);
12301 		break;
12302 	case CHELSIO_T4_GET_SGE_CONTEXT:
12303 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
12304 		break;
12305 	case CHELSIO_T4_LOAD_FW:
12306 		rc = load_fw(sc, (struct t4_data *)data);
12307 		break;
12308 	case CHELSIO_T4_GET_MEM:
12309 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12310 		break;
12311 	case CHELSIO_T4_GET_I2C:
12312 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
12313 		break;
12314 	case CHELSIO_T4_CLEAR_STATS:
12315 		rc = clear_stats(sc, *(uint32_t *)data);
12316 		break;
12317 	case CHELSIO_T4_SCHED_CLASS:
12318 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12319 		break;
12320 	case CHELSIO_T4_SCHED_QUEUE:
12321 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12322 		break;
12323 	case CHELSIO_T4_GET_TRACER:
12324 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12325 		break;
12326 	case CHELSIO_T4_SET_TRACER:
12327 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12328 		break;
12329 	case CHELSIO_T4_LOAD_CFG:
12330 		rc = load_cfg(sc, (struct t4_data *)data);
12331 		break;
12332 	case CHELSIO_T4_LOAD_BOOT:
12333 		rc = load_boot(sc, (struct t4_bootrom *)data);
12334 		break;
12335 	case CHELSIO_T4_LOAD_BOOTCFG:
12336 		rc = load_bootcfg(sc, (struct t4_data *)data);
12337 		break;
12338 	case CHELSIO_T4_CUDBG_DUMP:
12339 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12340 		break;
12341 	case CHELSIO_T4_SET_OFLD_POLICY:
12342 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12343 		break;
12344 	case CHELSIO_T4_HOLD_CLIP_ADDR:
12345 		rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12346 		break;
12347 	case CHELSIO_T4_RELEASE_CLIP_ADDR:
12348 		rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12349 		break;
12350 	default:
12351 		rc = ENOTTY;
12352 	}
12353 
12354 	return (rc);
12355 }
12356 
12357 #ifdef TCP_OFFLOAD
12358 int
toe_capability(struct vi_info * vi,bool enable)12359 toe_capability(struct vi_info *vi, bool enable)
12360 {
12361 	int rc;
12362 	struct port_info *pi = vi->pi;
12363 	struct adapter *sc = pi->adapter;
12364 
12365 	ASSERT_SYNCHRONIZED_OP(sc);
12366 
12367 	if (!is_offload(sc))
12368 		return (ENODEV);
12369 	if (hw_off_limits(sc))
12370 		return (ENXIO);
12371 
12372 	if (enable) {
12373 #ifdef KERN_TLS
12374 		if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12375 			int i, j, n;
12376 			struct port_info *p;
12377 			struct vi_info *v;
12378 
12379 			/*
12380 			 * Reconfigure hardware for TOE if TXTLS is not enabled
12381 			 * on any ifnet.
12382 			 */
12383 			n = 0;
12384 			for_each_port(sc, i) {
12385 				p = sc->port[i];
12386 				for_each_vi(p, j, v) {
12387 					if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12388 						CH_WARN(sc,
12389 						    "%s has NIC TLS enabled.\n",
12390 						    device_get_nameunit(v->dev));
12391 						n++;
12392 					}
12393 				}
12394 			}
12395 			if (n > 0) {
12396 				CH_WARN(sc, "Disable NIC TLS on all interfaces "
12397 				    "associated with this adapter before "
12398 				    "trying to enable TOE.\n");
12399 				return (EAGAIN);
12400 			}
12401 			rc = t6_config_kern_tls(sc, false);
12402 			if (rc)
12403 				return (rc);
12404 		}
12405 #endif
12406 		if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12407 			/* TOE is already enabled. */
12408 			return (0);
12409 		}
12410 
12411 		/*
12412 		 * We need the port's queues around so that we're able to send
12413 		 * and receive CPLs to/from the TOE even if the ifnet for this
12414 		 * port has never been UP'd administratively.
12415 		 */
12416 		if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12417 			return (rc);
12418 		if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12419 		    ((rc = vi_init(&pi->vi[0])) != 0))
12420 			return (rc);
12421 
12422 		if (isset(&sc->offload_map, pi->port_id)) {
12423 			/* TOE is enabled on another VI of this port. */
12424 			MPASS(pi->uld_vis > 0);
12425 			pi->uld_vis++;
12426 			return (0);
12427 		}
12428 
12429 		if (!uld_active(sc, ULD_TOM)) {
12430 			rc = t4_activate_uld(sc, ULD_TOM);
12431 			if (rc == EAGAIN) {
12432 				log(LOG_WARNING,
12433 				    "You must kldload t4_tom.ko before trying "
12434 				    "to enable TOE on a cxgbe interface.\n");
12435 			}
12436 			if (rc != 0)
12437 				return (rc);
12438 			KASSERT(sc->tom_softc != NULL,
12439 			    ("%s: TOM activated but softc NULL", __func__));
12440 			KASSERT(uld_active(sc, ULD_TOM),
12441 			    ("%s: TOM activated but flag not set", __func__));
12442 		}
12443 
12444 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
12445 		if (!uld_active(sc, ULD_IWARP))
12446 			(void) t4_activate_uld(sc, ULD_IWARP);
12447 		if (!uld_active(sc, ULD_ISCSI))
12448 			(void) t4_activate_uld(sc, ULD_ISCSI);
12449 
12450 		if (pi->uld_vis++ == 0)
12451 			setbit(&sc->offload_map, pi->port_id);
12452 	} else {
12453 		if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
12454 			/* TOE is already disabled. */
12455 			return (0);
12456 		}
12457 		MPASS(isset(&sc->offload_map, pi->port_id));
12458 		MPASS(pi->uld_vis > 0);
12459 		if (--pi->uld_vis == 0)
12460 			clrbit(&sc->offload_map, pi->port_id);
12461 	}
12462 
12463 	return (0);
12464 }
12465 
12466 /*
12467  * Add an upper layer driver to the global list.
12468  */
12469 int
t4_register_uld(struct uld_info * ui,int id)12470 t4_register_uld(struct uld_info *ui, int id)
12471 {
12472 	int rc;
12473 
12474 	if (id < 0 || id > ULD_MAX)
12475 		return (EINVAL);
12476 	sx_xlock(&t4_uld_list_lock);
12477 	if (t4_uld_list[id] != NULL)
12478 		rc = EEXIST;
12479 	else {
12480 		t4_uld_list[id] = ui;
12481 		rc = 0;
12482 	}
12483 	sx_xunlock(&t4_uld_list_lock);
12484 	return (rc);
12485 }
12486 
12487 int
t4_unregister_uld(struct uld_info * ui,int id)12488 t4_unregister_uld(struct uld_info *ui, int id)
12489 {
12490 
12491 	if (id < 0 || id > ULD_MAX)
12492 		return (EINVAL);
12493 	sx_xlock(&t4_uld_list_lock);
12494 	MPASS(t4_uld_list[id] == ui);
12495 	t4_uld_list[id] = NULL;
12496 	sx_xunlock(&t4_uld_list_lock);
12497 	return (0);
12498 }
12499 
12500 int
t4_activate_uld(struct adapter * sc,int id)12501 t4_activate_uld(struct adapter *sc, int id)
12502 {
12503 	int rc;
12504 
12505 	ASSERT_SYNCHRONIZED_OP(sc);
12506 
12507 	if (id < 0 || id > ULD_MAX)
12508 		return (EINVAL);
12509 
12510 	/* Adapter needs to be initialized before any ULD can be activated. */
12511 	if (!(sc->flags & FULL_INIT_DONE)) {
12512 		rc = adapter_init(sc);
12513 		if (rc != 0)
12514 			return (rc);
12515 	}
12516 
12517 	sx_slock(&t4_uld_list_lock);
12518 	if (t4_uld_list[id] == NULL)
12519 		rc = EAGAIN;	/* load the KLD with this ULD and try again. */
12520 	else {
12521 		rc = t4_uld_list[id]->uld_activate(sc);
12522 		if (rc == 0)
12523 			setbit(&sc->active_ulds, id);
12524 	}
12525 	sx_sunlock(&t4_uld_list_lock);
12526 
12527 	return (rc);
12528 }
12529 
12530 int
t4_deactivate_uld(struct adapter * sc,int id)12531 t4_deactivate_uld(struct adapter *sc, int id)
12532 {
12533 	int rc;
12534 
12535 	ASSERT_SYNCHRONIZED_OP(sc);
12536 
12537 	if (id < 0 || id > ULD_MAX)
12538 		return (EINVAL);
12539 
12540 	sx_slock(&t4_uld_list_lock);
12541 	if (t4_uld_list[id] == NULL)
12542 		rc = ENXIO;
12543 	else {
12544 		rc = t4_uld_list[id]->uld_deactivate(sc);
12545 		if (rc == 0)
12546 			clrbit(&sc->active_ulds, id);
12547 	}
12548 	sx_sunlock(&t4_uld_list_lock);
12549 
12550 	return (rc);
12551 }
12552 
12553 static int
deactivate_all_uld(struct adapter * sc)12554 deactivate_all_uld(struct adapter *sc)
12555 {
12556 	int i, rc;
12557 
12558 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12559 	if (rc != 0)
12560 		return (ENXIO);
12561 	sx_slock(&t4_uld_list_lock);
12562 	for (i = 0; i <= ULD_MAX; i++) {
12563 		if (t4_uld_list[i] == NULL || !uld_active(sc, i))
12564 			continue;
12565 		rc = t4_uld_list[i]->uld_deactivate(sc);
12566 		if (rc != 0)
12567 			break;
12568 		clrbit(&sc->active_ulds, i);
12569 	}
12570 	sx_sunlock(&t4_uld_list_lock);
12571 	end_synchronized_op(sc, 0);
12572 
12573 	return (rc);
12574 }
12575 
12576 static void
stop_all_uld(struct adapter * sc)12577 stop_all_uld(struct adapter *sc)
12578 {
12579 	int i;
12580 
12581 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
12582 		return;
12583 	sx_slock(&t4_uld_list_lock);
12584 	for (i = 0; i <= ULD_MAX; i++) {
12585 		if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12586 		    t4_uld_list[i]->uld_stop == NULL)
12587 			continue;
12588 		(void) t4_uld_list[i]->uld_stop(sc);
12589 	}
12590 	sx_sunlock(&t4_uld_list_lock);
12591 	end_synchronized_op(sc, 0);
12592 }
12593 
12594 static void
restart_all_uld(struct adapter * sc)12595 restart_all_uld(struct adapter *sc)
12596 {
12597 	int i;
12598 
12599 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
12600 		return;
12601 	sx_slock(&t4_uld_list_lock);
12602 	for (i = 0; i <= ULD_MAX; i++) {
12603 		if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
12604 		    t4_uld_list[i]->uld_restart == NULL)
12605 			continue;
12606 		(void) t4_uld_list[i]->uld_restart(sc);
12607 	}
12608 	sx_sunlock(&t4_uld_list_lock);
12609 	end_synchronized_op(sc, 0);
12610 }
12611 
12612 int
uld_active(struct adapter * sc,int id)12613 uld_active(struct adapter *sc, int id)
12614 {
12615 
12616 	MPASS(id >= 0 && id <= ULD_MAX);
12617 
12618 	return (isset(&sc->active_ulds, id));
12619 }
12620 #endif
12621 
12622 #ifdef KERN_TLS
12623 static int
ktls_capability(struct adapter * sc,bool enable)12624 ktls_capability(struct adapter *sc, bool enable)
12625 {
12626 	ASSERT_SYNCHRONIZED_OP(sc);
12627 
12628 	if (!is_ktls(sc))
12629 		return (ENODEV);
12630 	if (!is_t6(sc))
12631 		return (0);
12632 	if (hw_off_limits(sc))
12633 		return (ENXIO);
12634 
12635 	if (enable) {
12636 		if (sc->flags & KERN_TLS_ON)
12637 			return (0);	/* already on */
12638 		if (sc->offload_map != 0) {
12639 			CH_WARN(sc,
12640 			    "Disable TOE on all interfaces associated with "
12641 			    "this adapter before trying to enable NIC TLS.\n");
12642 			return (EAGAIN);
12643 		}
12644 		return (t6_config_kern_tls(sc, true));
12645 	} else {
12646 		/*
12647 		 * Nothing to do for disable.  If TOE is enabled sometime later
12648 		 * then toe_capability will reconfigure the hardware.
12649 		 */
12650 		return (0);
12651 	}
12652 }
12653 #endif
12654 
12655 /*
12656  * t  = ptr to tunable.
12657  * nc = number of CPUs.
12658  * c  = compiled in default for that tunable.
12659  */
12660 static void
calculate_nqueues(int * t,int nc,const int c)12661 calculate_nqueues(int *t, int nc, const int c)
12662 {
12663 	int nq;
12664 
12665 	if (*t > 0)
12666 		return;
12667 	nq = *t < 0 ? -*t : c;
12668 	*t = min(nc, nq);
12669 }
12670 
12671 /*
12672  * Come up with reasonable defaults for some of the tunables, provided they're
12673  * not set by the user (in which case we'll use the values as is).
12674  */
12675 static void
tweak_tunables(void)12676 tweak_tunables(void)
12677 {
12678 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
12679 
12680 	if (t4_ntxq < 1) {
12681 #ifdef RSS
12682 		t4_ntxq = rss_getnumbuckets();
12683 #else
12684 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
12685 #endif
12686 	}
12687 
12688 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12689 
12690 	if (t4_nrxq < 1) {
12691 #ifdef RSS
12692 		t4_nrxq = rss_getnumbuckets();
12693 #else
12694 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
12695 #endif
12696 	}
12697 
12698 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12699 
12700 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12701 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12702 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12703 #endif
12704 #ifdef TCP_OFFLOAD
12705 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12706 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12707 #endif
12708 
12709 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12710 	if (t4_toecaps_allowed == -1)
12711 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12712 #else
12713 	if (t4_toecaps_allowed == -1)
12714 		t4_toecaps_allowed = 0;
12715 #endif
12716 
12717 #ifdef TCP_OFFLOAD
12718 	if (t4_rdmacaps_allowed == -1) {
12719 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12720 		    FW_CAPS_CONFIG_RDMA_RDMAC;
12721 	}
12722 
12723 	if (t4_iscsicaps_allowed == -1) {
12724 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12725 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12726 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
12727 	}
12728 
12729 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12730 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
12731 
12732 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12733 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12734 #else
12735 	if (t4_rdmacaps_allowed == -1)
12736 		t4_rdmacaps_allowed = 0;
12737 
12738 	if (t4_iscsicaps_allowed == -1)
12739 		t4_iscsicaps_allowed = 0;
12740 #endif
12741 
12742 #ifdef DEV_NETMAP
12743 	calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12744 	calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12745 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12746 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12747 #endif
12748 
12749 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12750 		t4_tmr_idx = TMR_IDX;
12751 
12752 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12753 		t4_pktc_idx = PKTC_IDX;
12754 
12755 	if (t4_qsize_txq < 128)
12756 		t4_qsize_txq = 128;
12757 
12758 	if (t4_qsize_rxq < 128)
12759 		t4_qsize_rxq = 128;
12760 	while (t4_qsize_rxq & 7)
12761 		t4_qsize_rxq++;
12762 
12763 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12764 
12765 	/*
12766 	 * Number of VIs to create per-port.  The first VI is the "main" regular
12767 	 * VI for the port.  The rest are additional virtual interfaces on the
12768 	 * same physical port.  Note that the main VI does not have native
12769 	 * netmap support but the extra VIs do.
12770 	 *
12771 	 * Limit the number of VIs per port to the number of available
12772 	 * MAC addresses per port.
12773 	 */
12774 	if (t4_num_vis < 1)
12775 		t4_num_vis = 1;
12776 	if (t4_num_vis > nitems(vi_mac_funcs)) {
12777 		t4_num_vis = nitems(vi_mac_funcs);
12778 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12779 	}
12780 
12781 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12782 		pcie_relaxed_ordering = 1;
12783 #if defined(__i386__) || defined(__amd64__)
12784 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
12785 			pcie_relaxed_ordering = 0;
12786 #endif
12787 	}
12788 }
12789 
12790 #ifdef DDB
12791 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)12792 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
12793 {
12794 	uint32_t base, j, off, pf, reg, save, win_pos;
12795 
12796 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12797 	save = t4_read_reg(sc, reg);
12798 	base = sc->memwin[2].mw_base;
12799 
12800 	if (is_t4(sc)) {
12801 		pf = 0;
12802 		win_pos = addr & ~0xf;	/* start must be 16B aligned */
12803 	} else {
12804 		pf = V_PFNUM(sc->pf);
12805 		win_pos = addr & ~0x7f;	/* start must be 128B aligned */
12806 	}
12807 	off = addr - win_pos;
12808 	t4_write_reg(sc, reg, win_pos | pf);
12809 	t4_read_reg(sc, reg);
12810 
12811 	while (len > 0 && !db_pager_quit) {
12812 		uint32_t buf[8];
12813 		for (j = 0; j < 8; j++, off += 4)
12814 			buf[j] = htonl(t4_read_reg(sc, base + off));
12815 
12816 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12817 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12818 		    buf[7]);
12819 		if (len <= sizeof(buf))
12820 			len = 0;
12821 		else
12822 			len -= sizeof(buf);
12823 	}
12824 
12825 	t4_write_reg(sc, reg, save);
12826 	t4_read_reg(sc, reg);
12827 }
12828 
12829 static void
t4_dump_tcb(struct adapter * sc,int tid)12830 t4_dump_tcb(struct adapter *sc, int tid)
12831 {
12832 	uint32_t tcb_addr;
12833 
12834 	/* Dump TCB for the tid */
12835 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12836 	tcb_addr += tid * TCB_SIZE;
12837 	t4_dump_mem(sc, tcb_addr, TCB_SIZE);
12838 }
12839 
12840 static void
t4_dump_devlog(struct adapter * sc)12841 t4_dump_devlog(struct adapter *sc)
12842 {
12843 	struct devlog_params *dparams = &sc->params.devlog;
12844 	struct fw_devlog_e e;
12845 	int i, first, j, m, nentries, rc;
12846 	uint64_t ftstamp = UINT64_MAX;
12847 
12848 	if (dparams->start == 0) {
12849 		db_printf("devlog params not valid\n");
12850 		return;
12851 	}
12852 
12853 	nentries = dparams->size / sizeof(struct fw_devlog_e);
12854 	m = fwmtype_to_hwmtype(dparams->memtype);
12855 
12856 	/* Find the first entry. */
12857 	first = -1;
12858 	for (i = 0; i < nentries && !db_pager_quit; i++) {
12859 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12860 		    sizeof(e), (void *)&e);
12861 		if (rc != 0)
12862 			break;
12863 
12864 		if (e.timestamp == 0)
12865 			break;
12866 
12867 		e.timestamp = be64toh(e.timestamp);
12868 		if (e.timestamp < ftstamp) {
12869 			ftstamp = e.timestamp;
12870 			first = i;
12871 		}
12872 	}
12873 
12874 	if (first == -1)
12875 		return;
12876 
12877 	i = first;
12878 	do {
12879 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12880 		    sizeof(e), (void *)&e);
12881 		if (rc != 0)
12882 			return;
12883 
12884 		if (e.timestamp == 0)
12885 			return;
12886 
12887 		e.timestamp = be64toh(e.timestamp);
12888 		e.seqno = be32toh(e.seqno);
12889 		for (j = 0; j < 8; j++)
12890 			e.params[j] = be32toh(e.params[j]);
12891 
12892 		db_printf("%10d  %15ju  %8s  %8s  ",
12893 		    e.seqno, e.timestamp,
12894 		    (e.level < nitems(devlog_level_strings) ?
12895 			devlog_level_strings[e.level] : "UNKNOWN"),
12896 		    (e.facility < nitems(devlog_facility_strings) ?
12897 			devlog_facility_strings[e.facility] : "UNKNOWN"));
12898 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12899 		    e.params[3], e.params[4], e.params[5], e.params[6],
12900 		    e.params[7]);
12901 
12902 		if (++i == nentries)
12903 			i = 0;
12904 	} while (i != first && !db_pager_quit);
12905 }
12906 
12907 static DB_DEFINE_TABLE(show, t4, show_t4);
12908 
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)12909 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12910 {
12911 	device_t dev;
12912 	int t;
12913 	bool valid;
12914 
12915 	valid = false;
12916 	t = db_read_token();
12917 	if (t == tIDENT) {
12918 		dev = device_lookup_by_name(db_tok_string);
12919 		valid = true;
12920 	}
12921 	db_skip_to_eol();
12922 	if (!valid) {
12923 		db_printf("usage: show t4 devlog <nexus>\n");
12924 		return;
12925 	}
12926 
12927 	if (dev == NULL) {
12928 		db_printf("device not found\n");
12929 		return;
12930 	}
12931 
12932 	t4_dump_devlog(device_get_softc(dev));
12933 }
12934 
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)12935 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12936 {
12937 	device_t dev;
12938 	int radix, tid, t;
12939 	bool valid;
12940 
12941 	valid = false;
12942 	radix = db_radix;
12943 	db_radix = 10;
12944 	t = db_read_token();
12945 	if (t == tIDENT) {
12946 		dev = device_lookup_by_name(db_tok_string);
12947 		t = db_read_token();
12948 		if (t == tNUMBER) {
12949 			tid = db_tok_number;
12950 			valid = true;
12951 		}
12952 	}
12953 	db_radix = radix;
12954 	db_skip_to_eol();
12955 	if (!valid) {
12956 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
12957 		return;
12958 	}
12959 
12960 	if (dev == NULL) {
12961 		db_printf("device not found\n");
12962 		return;
12963 	}
12964 	if (tid < 0) {
12965 		db_printf("invalid tid\n");
12966 		return;
12967 	}
12968 
12969 	t4_dump_tcb(device_get_softc(dev), tid);
12970 }
12971 
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)12972 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
12973 {
12974 	device_t dev;
12975 	int radix, t;
12976 	bool valid;
12977 
12978 	valid = false;
12979 	radix = db_radix;
12980 	db_radix = 10;
12981 	t = db_read_token();
12982 	if (t == tIDENT) {
12983 		dev = device_lookup_by_name(db_tok_string);
12984 		t = db_read_token();
12985 		if (t == tNUMBER) {
12986 			addr = db_tok_number;
12987 			t = db_read_token();
12988 			if (t == tNUMBER) {
12989 				count = db_tok_number;
12990 				valid = true;
12991 			}
12992 		}
12993 	}
12994 	db_radix = radix;
12995 	db_skip_to_eol();
12996 	if (!valid) {
12997 		db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
12998 		return;
12999 	}
13000 
13001 	if (dev == NULL) {
13002 		db_printf("device not found\n");
13003 		return;
13004 	}
13005 	if (addr < 0) {
13006 		db_printf("invalid address\n");
13007 		return;
13008 	}
13009 	if (count <= 0) {
13010 		db_printf("invalid length\n");
13011 		return;
13012 	}
13013 
13014 	t4_dump_mem(device_get_softc(dev), addr, count);
13015 }
13016 #endif
13017 
13018 static eventhandler_tag vxlan_start_evtag;
13019 static eventhandler_tag vxlan_stop_evtag;
13020 
13021 struct vxlan_evargs {
13022 	if_t ifp;
13023 	uint16_t port;
13024 };
13025 
13026 static void
enable_vxlan_rx(struct adapter * sc)13027 enable_vxlan_rx(struct adapter *sc)
13028 {
13029 	int i, rc;
13030 	struct port_info *pi;
13031 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13032 
13033 	ASSERT_SYNCHRONIZED_OP(sc);
13034 
13035 	t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13036 	    F_VXLAN_EN);
13037 	for_each_port(sc, i) {
13038 		pi = sc->port[i];
13039 		if (pi->vxlan_tcam_entry == true)
13040 			continue;
13041 		rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13042 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13043 		    true);
13044 		if (rc < 0) {
13045 			rc = -rc;
13046 			CH_ERR(&pi->vi[0],
13047 			    "failed to add VXLAN TCAM entry: %d.\n", rc);
13048 		} else {
13049 			MPASS(rc == sc->rawf_base + pi->port_id);
13050 			pi->vxlan_tcam_entry = true;
13051 		}
13052 	}
13053 }
13054 
13055 static void
t4_vxlan_start(struct adapter * sc,void * arg)13056 t4_vxlan_start(struct adapter *sc, void *arg)
13057 {
13058 	struct vxlan_evargs *v = arg;
13059 
13060 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13061 		return;
13062 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13063 		return;
13064 
13065 	if (sc->vxlan_refcount == 0) {
13066 		sc->vxlan_port = v->port;
13067 		sc->vxlan_refcount = 1;
13068 		if (!hw_off_limits(sc))
13069 			enable_vxlan_rx(sc);
13070 	} else if (sc->vxlan_port == v->port) {
13071 		sc->vxlan_refcount++;
13072 	} else {
13073 		CH_ERR(sc, "VXLAN already configured on port  %d; "
13074 		    "ignoring attempt to configure it on port %d\n",
13075 		    sc->vxlan_port, v->port);
13076 	}
13077 	end_synchronized_op(sc, 0);
13078 }
13079 
13080 static void
t4_vxlan_stop(struct adapter * sc,void * arg)13081 t4_vxlan_stop(struct adapter *sc, void *arg)
13082 {
13083 	struct vxlan_evargs *v = arg;
13084 
13085 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13086 		return;
13087 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13088 		return;
13089 
13090 	/*
13091 	 * VXLANs may have been configured before the driver was loaded so we
13092 	 * may see more stops than starts.  This is not handled cleanly but at
13093 	 * least we keep the refcount sane.
13094 	 */
13095 	if (sc->vxlan_port != v->port)
13096 		goto done;
13097 	if (sc->vxlan_refcount == 0) {
13098 		CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13099 		    "ignoring attempt to stop it again.\n", sc->vxlan_port);
13100 	} else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13101 		t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13102 done:
13103 	end_synchronized_op(sc, 0);
13104 }
13105 
13106 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13107 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13108     sa_family_t family, u_int port)
13109 {
13110 	struct vxlan_evargs v;
13111 
13112 	MPASS(family == AF_INET || family == AF_INET6);
13113 	v.ifp = ifp;
13114 	v.port = port;
13115 
13116 	t4_iterate(t4_vxlan_start, &v);
13117 }
13118 
13119 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13120 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13121     u_int port)
13122 {
13123 	struct vxlan_evargs v;
13124 
13125 	MPASS(family == AF_INET || family == AF_INET6);
13126 	v.ifp = ifp;
13127 	v.port = port;
13128 
13129 	t4_iterate(t4_vxlan_stop, &v);
13130 }
13131 
13132 
13133 static struct sx mlu;	/* mod load unload */
13134 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13135 
13136 static int
mod_event(module_t mod,int cmd,void * arg)13137 mod_event(module_t mod, int cmd, void *arg)
13138 {
13139 	int rc = 0;
13140 	static int loaded = 0;
13141 
13142 	switch (cmd) {
13143 	case MOD_LOAD:
13144 		sx_xlock(&mlu);
13145 		if (loaded++ == 0) {
13146 			t4_sge_modload();
13147 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13148 			    t4_filter_rpl, CPL_COOKIE_FILTER);
13149 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13150 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
13151 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13152 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13153 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13154 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13155 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13156 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13157 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13158 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13159 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13160 			    do_smt_write_rpl);
13161 			sx_init(&t4_list_lock, "T4/T5 adapters");
13162 			SLIST_INIT(&t4_list);
13163 			callout_init(&fatal_callout, 1);
13164 #ifdef TCP_OFFLOAD
13165 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13166 #endif
13167 #ifdef INET6
13168 			t4_clip_modload();
13169 #endif
13170 #ifdef KERN_TLS
13171 			t6_ktls_modload();
13172 #endif
13173 			t4_tracer_modload();
13174 			tweak_tunables();
13175 			vxlan_start_evtag =
13176 			    EVENTHANDLER_REGISTER(vxlan_start,
13177 				t4_vxlan_start_handler, NULL,
13178 				EVENTHANDLER_PRI_ANY);
13179 			vxlan_stop_evtag =
13180 			    EVENTHANDLER_REGISTER(vxlan_stop,
13181 				t4_vxlan_stop_handler, NULL,
13182 				EVENTHANDLER_PRI_ANY);
13183 			reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13184 			    taskqueue_thread_enqueue, &reset_tq);
13185 			taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13186 			    "t4_rst_thr");
13187 		}
13188 		sx_xunlock(&mlu);
13189 		break;
13190 
13191 	case MOD_UNLOAD:
13192 		sx_xlock(&mlu);
13193 		if (--loaded == 0) {
13194 #ifdef TCP_OFFLOAD
13195 			int i;
13196 #endif
13197 			int tries;
13198 
13199 			taskqueue_free(reset_tq);
13200 
13201 			tries = 0;
13202 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13203 				uprintf("%ju clusters with custom free routine "
13204 				    "still is use.\n", t4_sge_extfree_refs());
13205 				pause("t4unload", 2 * hz);
13206 			}
13207 
13208 			sx_slock(&t4_list_lock);
13209 			if (!SLIST_EMPTY(&t4_list)) {
13210 				rc = EBUSY;
13211 				sx_sunlock(&t4_list_lock);
13212 				goto done_unload;
13213 			}
13214 #ifdef TCP_OFFLOAD
13215 			sx_slock(&t4_uld_list_lock);
13216 			for (i = 0; i <= ULD_MAX; i++) {
13217 				if (t4_uld_list[i] != NULL) {
13218 					rc = EBUSY;
13219 					sx_sunlock(&t4_uld_list_lock);
13220 					sx_sunlock(&t4_list_lock);
13221 					goto done_unload;
13222 				}
13223 			}
13224 			sx_sunlock(&t4_uld_list_lock);
13225 #endif
13226 			sx_sunlock(&t4_list_lock);
13227 
13228 			if (t4_sge_extfree_refs() == 0) {
13229 				EVENTHANDLER_DEREGISTER(vxlan_start,
13230 				    vxlan_start_evtag);
13231 				EVENTHANDLER_DEREGISTER(vxlan_stop,
13232 				    vxlan_stop_evtag);
13233 				t4_tracer_modunload();
13234 #ifdef KERN_TLS
13235 				t6_ktls_modunload();
13236 #endif
13237 #ifdef INET6
13238 				t4_clip_modunload();
13239 #endif
13240 #ifdef TCP_OFFLOAD
13241 				sx_destroy(&t4_uld_list_lock);
13242 #endif
13243 				sx_destroy(&t4_list_lock);
13244 				t4_sge_modunload();
13245 				loaded = 0;
13246 			} else {
13247 				rc = EBUSY;
13248 				loaded++;	/* undo earlier decrement */
13249 			}
13250 		}
13251 done_unload:
13252 		sx_xunlock(&mlu);
13253 		break;
13254 	}
13255 
13256 	return (rc);
13257 }
13258 
13259 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13260 MODULE_VERSION(t4nex, 1);
13261 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13262 #ifdef DEV_NETMAP
13263 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13264 #endif /* DEV_NETMAP */
13265 
13266 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13267 MODULE_VERSION(t5nex, 1);
13268 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13269 #ifdef DEV_NETMAP
13270 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13271 #endif /* DEV_NETMAP */
13272 
13273 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13274 MODULE_VERSION(t6nex, 1);
13275 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13276 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13277 #ifdef DEV_NETMAP
13278 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13279 #endif /* DEV_NETMAP */
13280 
13281 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13282 MODULE_VERSION(cxgbe, 1);
13283 
13284 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13285 MODULE_VERSION(cxl, 1);
13286 
13287 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13288 MODULE_VERSION(cc, 1);
13289 
13290 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13291 MODULE_VERSION(vcxgbe, 1);
13292 
13293 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13294 MODULE_VERSION(vcxl, 1);
13295 
13296 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13297 MODULE_VERSION(vcc, 1);
13298