xref: /freebsd/sys/dev/pci/pci.c (revision 7ffe1a1f6318bb0116900114950114e5f81418fd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6  * Copyright (c) 2000, BSDi
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_acpi.h"
33 #include "opt_iommu.h"
34 #include "opt_bus.h"
35 
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/endian.h>
39 #include <sys/eventhandler.h>
40 #include <sys/fcntl.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/linker.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/stdarg.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/taskqueue.h>
52 #include <sys/tree.h>
53 
54 #include <vm/vm.h>
55 #include <vm/pmap.h>
56 #include <vm/vm_extern.h>
57 
58 #include <sys/bus.h>
59 #include <machine/bus.h>
60 #include <sys/rman.h>
61 #include <machine/resource.h>
62 
63 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
64 #include <machine/intr_machdep.h>
65 #endif
66 
67 #include <sys/pciio.h>
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pci_private.h>
71 
72 #ifdef PCI_IOV
73 #include <sys/nv.h>
74 #include <dev/pci/pci_iov_private.h>
75 #endif
76 
77 #include <dev/usb/controller/xhcireg.h>
78 #include <dev/usb/controller/ehcireg.h>
79 #include <dev/usb/controller/ohcireg.h>
80 #include <dev/usb/controller/uhcireg.h>
81 
82 #include <dev/iommu/iommu.h>
83 
84 #include "pcib_if.h"
85 #include "pci_if.h"
86 
87 #define	PCIR_IS_BIOS(cfg, reg)						\
88 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
89 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
90 
91 static device_probe_t	pci_probe;
92 
93 static bus_reset_post_t pci_reset_post;
94 static bus_reset_prepare_t pci_reset_prepare;
95 static bus_reset_child_t pci_reset_child;
96 static bus_hint_device_unit_t pci_hint_device_unit;
97 static bus_remap_intr_t pci_remap_intr_method;
98 
99 static pci_get_id_t	pci_get_id_method;
100 
101 static int		pci_has_quirk(uint32_t devid, int quirk);
102 static pci_addr_t	pci_mapbase(uint64_t mapreg);
103 static const char	*pci_maptype(uint64_t mapreg);
104 static int		pci_maprange(uint64_t mapreg);
105 static pci_addr_t	pci_rombase(uint64_t mapreg);
106 static int		pci_romsize(uint64_t testval);
107 static void		pci_fixancient(pcicfgregs *cfg);
108 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
109 
110 static int		pci_porten(device_t dev);
111 static int		pci_memen(device_t dev);
112 static void		pci_assign_interrupt(device_t bus, device_t dev,
113 			    int force_route);
114 static int		pci_add_map(device_t bus, device_t dev, int reg,
115 			    struct resource_list *rl, int force, int prefetch);
116 static void		pci_load_vendor_data(void);
117 static int		pci_describe_parse_line(char **ptr, int *vendor,
118 			    int *device, char **desc);
119 static char		*pci_describe_device(device_t dev);
120 static int		pci_modevent(module_t mod, int what, void *arg);
121 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
122 			    pcicfgregs *cfg);
123 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
124 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
125 			    int reg, uint32_t *data);
126 #if 0
127 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
128 			    int reg, uint32_t data);
129 #endif
130 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
131 static void		pci_mask_msix(device_t dev, u_int index);
132 static void		pci_unmask_msix(device_t dev, u_int index);
133 static int		pci_msi_blacklisted(void);
134 static int		pci_msix_blacklisted(void);
135 static void		pci_resume_msi(device_t dev);
136 static void		pci_resume_msix(device_t dev);
137 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
138     int b, int s, int f, uint16_t vid, uint16_t did);
139 
140 static device_method_t pci_methods[] = {
141 	/* Device interface */
142 	DEVMETHOD(device_probe,		pci_probe),
143 	DEVMETHOD(device_attach,	pci_attach),
144 	DEVMETHOD(device_detach,	pci_detach),
145 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
146 	DEVMETHOD(device_suspend,	bus_generic_suspend),
147 	DEVMETHOD(device_resume,	pci_resume),
148 
149 	/* Bus interface */
150 	DEVMETHOD(bus_print_child,	pci_print_child),
151 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
152 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
153 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
154 	DEVMETHOD(bus_driver_added,	pci_driver_added),
155 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
156 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
157 	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
158 	DEVMETHOD(bus_reset_post,	pci_reset_post),
159 	DEVMETHOD(bus_reset_child,	pci_reset_child),
160 
161 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
162 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
163 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
164 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
165 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
166 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
167 	DEVMETHOD(bus_adjust_resource,	pci_adjust_resource),
168 	DEVMETHOD(bus_release_resource,	pci_release_resource),
169 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
170 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
171 	DEVMETHOD(bus_map_resource,	pci_map_resource),
172 	DEVMETHOD(bus_unmap_resource,	pci_unmap_resource),
173 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
174 	DEVMETHOD(bus_child_detached,	pci_child_detached),
175 	DEVMETHOD(bus_child_pnpinfo,	pci_child_pnpinfo_method),
176 	DEVMETHOD(bus_child_location,	pci_child_location_method),
177 	DEVMETHOD(bus_get_device_path,	pci_get_device_path_method),
178 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
179 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
180 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
181 	DEVMETHOD(bus_resume_child,	pci_resume_child),
182 	DEVMETHOD(bus_rescan,		pci_rescan_method),
183 
184 	/* PCI interface */
185 	DEVMETHOD(pci_read_config,	pci_read_config_method),
186 	DEVMETHOD(pci_write_config,	pci_write_config_method),
187 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
188 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
189 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
190 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
191 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
192 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
193 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
194 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
195 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
196 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
197 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
198 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
199 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
200 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
201 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
202 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
203 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
204 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
205 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
206 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
207 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
208 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
209 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
210 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
211 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
212 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
213 	DEVMETHOD(pci_get_id,		pci_get_id_method),
214 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
215 	DEVMETHOD(pci_child_added,	pci_child_added_method),
216 #ifdef PCI_IOV
217 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
218 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
219 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
220 #endif
221 
222 	DEVMETHOD_END
223 };
224 
225 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
226 
227 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS);
228 MODULE_VERSION(pci, 1);
229 
230 static char	*pci_vendordata;
231 static size_t	pci_vendordata_size;
232 
233 struct pci_quirk {
234 	uint32_t devid;	/* Vendor/device of the card */
235 	int	type;
236 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
237 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
238 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
239 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
240 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
241 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
242 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
243 	int	arg1;
244 	int	arg2;
245 };
246 
247 static const struct pci_quirk pci_quirks[] = {
248 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
249 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
250 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
251 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
252 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
253 
254 	/*
255 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
256 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
257 	 */
258 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
259 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
260 
261 	/*
262 	 * MSI doesn't work on earlier Intel chipsets including
263 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
264 	 */
265 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
266 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
267 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
268 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
269 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
270 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
271 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
272 
273 	/*
274 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
275 	 * bridge.
276 	 */
277 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
278 
279 	/*
280 	 * Some virtualization environments emulate an older chipset
281 	 * but support MSI just fine.  QEMU uses the Intel 82440.
282 	 */
283 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
284 
285 	/*
286 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
287 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
288 	 * It prevents us from attaching hpet(4) when the bit is unset.
289 	 * Note this quirk only affects SB600 revision A13 and earlier.
290 	 * For SB600 A21 and later, firmware must set the bit to hide it.
291 	 * For SB700 and later, it is unused and hardcoded to zero.
292 	 */
293 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
294 
295 	/*
296 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
297 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
298 	 * of the command register is set.
299 	 */
300 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
301 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
302 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
303 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
304 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
305 
306 	/*
307 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
308 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
309 	 */
310 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
311 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
312 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
313 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
314 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
315 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
316 
317 	/*
318 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
319 	 * expected place.
320 	 */
321 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
322 	{ 0 }
323 };
324 
325 /* map register information */
326 #define	PCI_MAPMEM	0x01	/* memory map */
327 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
328 #define	PCI_MAPPORT	0x04	/* port map */
329 
330 struct devlist pci_devq;
331 uint32_t pci_generation;
332 uint32_t pci_numdevs = 0;
333 static int pcie_chipset, pcix_chipset;
334 
335 /* sysctl vars */
336 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
337     "PCI bus tuning parameters");
338 
339 static int pci_enable_io_modes = 1;
340 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
341     &pci_enable_io_modes, 1,
342     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
343     " enable these bits correctly.  We'd like to do this all the time, but"
344     " there are some peripherals that this causes problems with.");
345 
346 static int pci_do_realloc_bars = 1;
347 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
348     &pci_do_realloc_bars, 0,
349     "Attempt to allocate a new range for any BARs whose original "
350     "firmware-assigned ranges fail to allocate during the initial device scan.");
351 
352 static int pci_do_power_nodriver = 0;
353 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
354     &pci_do_power_nodriver, 0,
355     "Place a function into D3 state when no driver attaches to it.  0 means"
356     " disable.  1 means conservatively place function into D3 state.  2 means"
357     " aggressively place function into D3 state.  3 means put absolutely"
358     " everything in D3 state.");
359 
360 int pci_do_power_resume = 1;
361 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
362     &pci_do_power_resume, 1,
363   "Transition from D3 -> D0 on resume.");
364 
365 int pci_do_power_suspend = 1;
366 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
367     &pci_do_power_suspend, 1,
368   "Transition from D0 -> D3 on suspend.");
369 
370 static int pci_do_msi = 1;
371 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
372     "Enable support for MSI interrupts");
373 
374 static int pci_do_msix = 1;
375 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
376     "Enable support for MSI-X interrupts");
377 
378 static int pci_msix_rewrite_table = 0;
379 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
380     &pci_msix_rewrite_table, 0,
381     "Rewrite entire MSI-X table when updating MSI-X entries");
382 
383 static int pci_honor_msi_blacklist = 1;
384 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
385     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
386 
387 #if defined(__i386__) || defined(__amd64__)
388 static int pci_usb_takeover = 1;
389 #else
390 static int pci_usb_takeover = 0;
391 #endif
392 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
393     &pci_usb_takeover, 1,
394     "Enable early takeover of USB controllers. Disable this if you depend on"
395     " BIOS emulation of USB devices, that is you use USB devices (like"
396     " keyboard or mouse) but do not load USB drivers");
397 
398 static int pci_clear_bars;
399 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
400     "Ignore firmware-assigned resources for BARs.");
401 
402 static int pci_clear_buses;
403 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
404     "Ignore firmware-assigned bus numbers.");
405 
406 static int pci_enable_ari = 1;
407 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
408     0, "Enable support for PCIe Alternative RID Interpretation");
409 
410 /*
411  * Some x86 firmware only enables PCIe hotplug if we claim to support aspm,
412  * however enabling it breaks some arm64 firmware as it powers off devices.
413  */
414 #if defined(__i386__) || defined(__amd64__)
415 int pci_enable_aspm = 1;
416 #else
417 int pci_enable_aspm = 0;
418 #endif
419 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
420     0, "Enable support for PCIe Active State Power Management");
421 
422 static int pci_clear_aer_on_attach = 0;
423 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
424     &pci_clear_aer_on_attach, 0,
425     "Clear port and device AER state on driver attach");
426 
427 static bool pci_enable_mps_tune = true;
428 SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN,
429     &pci_enable_mps_tune, 1,
430     "Enable tuning of MPS(maximum payload size)." );
431 
432 static bool pci_intx_reroute = true;
433 SYSCTL_BOOL(_hw_pci, OID_AUTO, intx_reroute, CTLFLAG_RWTUN,
434     &pci_intx_reroute, 0, "Re-route INTx interrupts when scanning devices");
435 
436 static int
pci_has_quirk(uint32_t devid,int quirk)437 pci_has_quirk(uint32_t devid, int quirk)
438 {
439 	const struct pci_quirk *q;
440 
441 	for (q = &pci_quirks[0]; q->devid; q++) {
442 		if (q->devid == devid && q->type == quirk)
443 			return (1);
444 	}
445 	return (0);
446 }
447 
448 /* Find a device_t by bus/slot/function in domain 0 */
449 
450 device_t
pci_find_bsf(uint8_t bus,uint8_t slot,uint8_t func)451 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
452 {
453 
454 	return (pci_find_dbsf(0, bus, slot, func));
455 }
456 
457 /* Find a device_t by domain/bus/slot/function */
458 
459 device_t
pci_find_dbsf(uint32_t domain,uint8_t bus,uint8_t slot,uint8_t func)460 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
461 {
462 	struct pci_devinfo *dinfo = NULL;
463 
464 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
465 		if ((dinfo->cfg.domain == domain) &&
466 		    (dinfo->cfg.bus == bus) &&
467 		    (dinfo->cfg.slot == slot) &&
468 		    (dinfo->cfg.func == func)) {
469 			break;
470 		}
471 	}
472 
473 	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
474 }
475 
476 /* Find a device_t by vendor/device ID */
477 
478 device_t
pci_find_device(uint16_t vendor,uint16_t device)479 pci_find_device(uint16_t vendor, uint16_t device)
480 {
481 	struct pci_devinfo *dinfo;
482 
483 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
484 		if ((dinfo->cfg.vendor == vendor) &&
485 		    (dinfo->cfg.device == device)) {
486 			return (dinfo->cfg.dev);
487 		}
488 	}
489 
490 	return (NULL);
491 }
492 
493 device_t
pci_find_class(uint8_t class,uint8_t subclass)494 pci_find_class(uint8_t class, uint8_t subclass)
495 {
496 	struct pci_devinfo *dinfo;
497 
498 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
499 		if (dinfo->cfg.baseclass == class &&
500 		    dinfo->cfg.subclass == subclass) {
501 			return (dinfo->cfg.dev);
502 		}
503 	}
504 
505 	return (NULL);
506 }
507 
508 device_t
pci_find_class_from(uint8_t class,uint8_t subclass,device_t from)509 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
510 {
511 	struct pci_devinfo *dinfo;
512 	bool found = false;
513 
514 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
515 		if (from != NULL && found == false) {
516 			if (from != dinfo->cfg.dev)
517 				continue;
518 			found = true;
519 			continue;
520 		}
521 		if (dinfo->cfg.baseclass == class &&
522 		    dinfo->cfg.subclass == subclass) {
523 			return (dinfo->cfg.dev);
524 		}
525 	}
526 
527 	return (NULL);
528 }
529 
530 device_t
pci_find_base_class_from(uint8_t class,device_t from)531 pci_find_base_class_from(uint8_t class, device_t from)
532 {
533 	struct pci_devinfo *dinfo;
534 	bool found = false;
535 
536 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
537 		if (from != NULL && found == false) {
538 			if (from != dinfo->cfg.dev)
539 				continue;
540 			found = true;
541 			continue;
542 		}
543 		if (dinfo->cfg.baseclass == class) {
544 			return (dinfo->cfg.dev);
545 		}
546 	}
547 
548 	return (NULL);
549 }
550 
551 static int
pci_printf(pcicfgregs * cfg,const char * fmt,...)552 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
553 {
554 	va_list ap;
555 	int retval;
556 
557 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
558 	    cfg->func);
559 	va_start(ap, fmt);
560 	retval += vprintf(fmt, ap);
561 	va_end(ap);
562 	return (retval);
563 }
564 
565 /* return base address of memory or port map */
566 
567 static pci_addr_t
pci_mapbase(uint64_t mapreg)568 pci_mapbase(uint64_t mapreg)
569 {
570 
571 	if (PCI_BAR_MEM(mapreg))
572 		return (mapreg & PCIM_BAR_MEM_BASE);
573 	else
574 		return (mapreg & PCIM_BAR_IO_BASE);
575 }
576 
577 /* return map type of memory or port map */
578 
579 static const char *
pci_maptype(uint64_t mapreg)580 pci_maptype(uint64_t mapreg)
581 {
582 
583 	if (PCI_BAR_IO(mapreg))
584 		return ("I/O Port");
585 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
586 		return ("Prefetchable Memory");
587 	return ("Memory");
588 }
589 
590 /* return log2 of map size decoded for memory or port map */
591 
592 int
pci_mapsize(uint64_t testval)593 pci_mapsize(uint64_t testval)
594 {
595 	int ln2size;
596 
597 	testval = pci_mapbase(testval);
598 	ln2size = 0;
599 	if (testval != 0) {
600 		while ((testval & 1) == 0)
601 		{
602 			ln2size++;
603 			testval >>= 1;
604 		}
605 	}
606 	return (ln2size);
607 }
608 
609 /* return base address of device ROM */
610 
611 static pci_addr_t
pci_rombase(uint64_t mapreg)612 pci_rombase(uint64_t mapreg)
613 {
614 
615 	return (mapreg & PCIM_BIOS_ADDR_MASK);
616 }
617 
618 /* return log2 of map size decided for device ROM */
619 
620 static int
pci_romsize(uint64_t testval)621 pci_romsize(uint64_t testval)
622 {
623 	int ln2size;
624 
625 	testval = pci_rombase(testval);
626 	ln2size = 0;
627 	if (testval != 0) {
628 		while ((testval & 1) == 0)
629 		{
630 			ln2size++;
631 			testval >>= 1;
632 		}
633 	}
634 	return (ln2size);
635 }
636 
637 /* return log2 of address range supported by map register */
638 
639 static int
pci_maprange(uint64_t mapreg)640 pci_maprange(uint64_t mapreg)
641 {
642 	int ln2range = 0;
643 
644 	if (PCI_BAR_IO(mapreg))
645 		ln2range = 32;
646 	else
647 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
648 		case PCIM_BAR_MEM_32:
649 			ln2range = 32;
650 			break;
651 		case PCIM_BAR_MEM_1MB:
652 			ln2range = 20;
653 			break;
654 		case PCIM_BAR_MEM_64:
655 			ln2range = 64;
656 			break;
657 		}
658 	return (ln2range);
659 }
660 
661 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
662 
663 static void
pci_fixancient(pcicfgregs * cfg)664 pci_fixancient(pcicfgregs *cfg)
665 {
666 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
667 		return;
668 
669 	/* PCI to PCI bridges use header type 1 */
670 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
671 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
672 }
673 
674 /* extract header type specific config data */
675 
676 static void
pci_hdrtypedata(device_t pcib,int b,int s,int f,pcicfgregs * cfg)677 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
678 {
679 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
680 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
681 	case PCIM_HDRTYPE_NORMAL:
682 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
683 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
684 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
685 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
686 		cfg->nummaps	    = PCI_MAXMAPS_0;
687 		break;
688 	case PCIM_HDRTYPE_BRIDGE:
689 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
690 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
691 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
692 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
693 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
694 		cfg->nummaps	    = PCI_MAXMAPS_1;
695 		break;
696 	case PCIM_HDRTYPE_CARDBUS:
697 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
698 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
699 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
700 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
701 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
702 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
703 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
704 		cfg->nummaps	    = PCI_MAXMAPS_2;
705 		break;
706 	}
707 #undef REG
708 }
709 
710 /* read configuration header into pcicfgregs structure */
711 struct pci_devinfo *
pci_read_device(device_t pcib,device_t bus,int d,int b,int s,int f)712 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
713 {
714 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
715 	uint16_t vid, did;
716 
717 	vid = REG(PCIR_VENDOR, 2);
718 	if (vid == PCIV_INVALID)
719 		return (NULL);
720 
721 	did = REG(PCIR_DEVICE, 2);
722 
723 	return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
724 }
725 
726 struct pci_devinfo *
pci_alloc_devinfo_method(device_t dev)727 pci_alloc_devinfo_method(device_t dev)
728 {
729 
730 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
731 	    M_WAITOK | M_ZERO));
732 }
733 
734 static struct pci_devinfo *
pci_fill_devinfo(device_t pcib,device_t bus,int d,int b,int s,int f,uint16_t vid,uint16_t did)735 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
736     uint16_t vid, uint16_t did)
737 {
738 	struct pci_devinfo *devlist_entry;
739 	pcicfgregs *cfg;
740 
741 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
742 
743 	cfg = &devlist_entry->cfg;
744 
745 	cfg->domain		= d;
746 	cfg->bus		= b;
747 	cfg->slot		= s;
748 	cfg->func		= f;
749 	cfg->vendor		= vid;
750 	cfg->device		= did;
751 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
752 	cfg->statreg		= REG(PCIR_STATUS, 2);
753 	cfg->baseclass		= REG(PCIR_CLASS, 1);
754 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
755 	cfg->progif		= REG(PCIR_PROGIF, 1);
756 	cfg->revid		= REG(PCIR_REVID, 1);
757 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
758 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
759 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
760 	cfg->intpin		= REG(PCIR_INTPIN, 1);
761 	cfg->intline		= REG(PCIR_INTLINE, 1);
762 
763 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
764 	cfg->hdrtype		&= ~PCIM_MFDEV;
765 	STAILQ_INIT(&cfg->maps);
766 
767 	cfg->iov		= NULL;
768 
769 	pci_fixancient(cfg);
770 	pci_hdrtypedata(pcib, b, s, f, cfg);
771 
772 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
773 		pci_read_cap(pcib, cfg);
774 
775 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
776 
777 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
778 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
779 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
780 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
781 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
782 
783 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
784 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
785 	devlist_entry->conf.pc_vendor = cfg->vendor;
786 	devlist_entry->conf.pc_device = cfg->device;
787 
788 	devlist_entry->conf.pc_class = cfg->baseclass;
789 	devlist_entry->conf.pc_subclass = cfg->subclass;
790 	devlist_entry->conf.pc_progif = cfg->progif;
791 	devlist_entry->conf.pc_revid = cfg->revid;
792 
793 	pci_numdevs++;
794 	pci_generation++;
795 
796 	return (devlist_entry);
797 }
798 #undef REG
799 
800 static void
pci_ea_fill_info(device_t pcib,pcicfgregs * cfg)801 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
802 {
803 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
804     cfg->ea.ea_location + (n), w)
805 	int num_ent;
806 	int ptr;
807 	int a, b;
808 	uint32_t val;
809 	int ent_size;
810 	uint32_t dw[4];
811 	uint64_t base, max_offset;
812 	struct pci_ea_entry *eae;
813 
814 	if (cfg->ea.ea_location == 0)
815 		return;
816 
817 	STAILQ_INIT(&cfg->ea.ea_entries);
818 
819 	/* Determine the number of entries */
820 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
821 	num_ent &= PCIM_EA_NUM_ENT_MASK;
822 
823 	/* Find the first entry to care of */
824 	ptr = PCIR_EA_FIRST_ENT;
825 
826 	/* Skip DWORD 2 for type 1 functions */
827 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
828 		ptr += 4;
829 
830 	for (a = 0; a < num_ent; a++) {
831 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
832 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
833 
834 		/* Read a number of dwords in the entry */
835 		val = REG(ptr, 4);
836 		ptr += 4;
837 		ent_size = (val & PCIM_EA_ES);
838 
839 		for (b = 0; b < ent_size; b++) {
840 			dw[b] = REG(ptr, 4);
841 			ptr += 4;
842 		}
843 
844 		eae->eae_flags = val;
845 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
846 
847 		base = dw[0] & PCIM_EA_FIELD_MASK;
848 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
849 		b = 2;
850 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
851 			base |= (uint64_t)dw[b] << 32UL;
852 			b++;
853 		}
854 		if (((dw[1] & PCIM_EA_IS_64) != 0)
855 		    && (b < ent_size)) {
856 			max_offset |= (uint64_t)dw[b] << 32UL;
857 			b++;
858 		}
859 
860 		eae->eae_base = base;
861 		eae->eae_max_offset = max_offset;
862 
863 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
864 
865 		if (bootverbose) {
866 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
867 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
868 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
869 		}
870 	}
871 }
872 #undef REG
873 
874 static void
pci_read_cap(device_t pcib,pcicfgregs * cfg)875 pci_read_cap(device_t pcib, pcicfgregs *cfg)
876 {
877 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
878 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
879 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
880 	uint64_t addr;
881 #endif
882 	uint32_t val;
883 	int	ptr, nextptr, ptrptr;
884 
885 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
886 	case PCIM_HDRTYPE_NORMAL:
887 	case PCIM_HDRTYPE_BRIDGE:
888 		ptrptr = PCIR_CAP_PTR;
889 		break;
890 	case PCIM_HDRTYPE_CARDBUS:
891 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
892 		break;
893 	default:
894 		return;		/* no extended capabilities support */
895 	}
896 	nextptr = REG(ptrptr, 1);	/* sanity check? */
897 
898 	/*
899 	 * Read capability entries.
900 	 */
901 	while (nextptr != 0) {
902 		/* Sanity check */
903 		if (nextptr > 255) {
904 			printf("illegal PCI extended capability offset %d\n",
905 			    nextptr);
906 			return;
907 		}
908 		/* Find the next entry */
909 		ptr = nextptr;
910 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
911 
912 		/* Process this entry */
913 		switch (REG(ptr + PCICAP_ID, 1)) {
914 		case PCIY_PMG:		/* PCI power management */
915 			cfg->pp.pp_location = ptr;
916 			cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
917 			break;
918 		case PCIY_HT:		/* HyperTransport */
919 			/* Determine HT-specific capability type. */
920 			val = REG(ptr + PCIR_HT_COMMAND, 2);
921 
922 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
923 				cfg->ht.ht_slave = ptr;
924 
925 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
926 			switch (val & PCIM_HTCMD_CAP_MASK) {
927 			case PCIM_HTCAP_MSI_MAPPING:
928 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
929 					/* Sanity check the mapping window. */
930 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
931 					    4);
932 					addr <<= 32;
933 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
934 					    4);
935 					if (addr != MSI_INTEL_ADDR_BASE)
936 						device_printf(pcib,
937 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
938 						    cfg->domain, cfg->bus,
939 						    cfg->slot, cfg->func,
940 						    (long long)addr);
941 				} else
942 					addr = MSI_INTEL_ADDR_BASE;
943 
944 				cfg->ht.ht_msimap = ptr;
945 				cfg->ht.ht_msictrl = val;
946 				cfg->ht.ht_msiaddr = addr;
947 				break;
948 			}
949 #endif
950 			break;
951 		case PCIY_MSI:		/* PCI MSI */
952 			cfg->msi.msi_location = ptr;
953 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
954 			break;
955 		case PCIY_MSIX:		/* PCI MSI-X */
956 			cfg->msix.msix_location = ptr;
957 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
958 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
959 			cfg->msix.msix_table_bar = PCIR_BAR(val &
960 			    PCIM_MSIX_BIR_MASK);
961 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
962 			val = REG(ptr + PCIR_MSIX_PBA, 4);
963 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
964 			    PCIM_MSIX_BIR_MASK);
965 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
966 			break;
967 		case PCIY_VPD:		/* PCI Vital Product Data */
968 			cfg->vpd.vpd_reg = ptr;
969 			break;
970 		case PCIY_SUBVENDOR:
971 			/* Should always be true. */
972 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
973 			    PCIM_HDRTYPE_BRIDGE) {
974 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
975 				cfg->subvendor = val & 0xffff;
976 				cfg->subdevice = val >> 16;
977 			}
978 			break;
979 		case PCIY_PCIX:		/* PCI-X */
980 			/*
981 			 * Assume we have a PCI-X chipset if we have
982 			 * at least one PCI-PCI bridge with a PCI-X
983 			 * capability.  Note that some systems with
984 			 * PCI-express or HT chipsets might match on
985 			 * this check as well.
986 			 */
987 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
988 			    PCIM_HDRTYPE_BRIDGE)
989 				pcix_chipset = 1;
990 			cfg->pcix.pcix_location = ptr;
991 			break;
992 		case PCIY_EXPRESS:	/* PCI-express */
993 			/*
994 			 * Assume we have a PCI-express chipset if we have
995 			 * at least one PCI-express device.
996 			 */
997 			pcie_chipset = 1;
998 			cfg->pcie.pcie_location = ptr;
999 			val = REG(ptr + PCIER_FLAGS, 2);
1000 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
1001 			break;
1002 		case PCIY_EA:		/* Enhanced Allocation */
1003 			cfg->ea.ea_location = ptr;
1004 			pci_ea_fill_info(pcib, cfg);
1005 			break;
1006 		default:
1007 			break;
1008 		}
1009 	}
1010 
1011 #if defined(__powerpc__)
1012 	/*
1013 	 * Enable the MSI mapping window for all HyperTransport
1014 	 * slaves.  PCI-PCI bridges have their windows enabled via
1015 	 * PCIB_MAP_MSI().
1016 	 */
1017 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
1018 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
1019 		device_printf(pcib,
1020 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
1021 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
1022 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1023 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
1024 		     2);
1025 	}
1026 #endif
1027 /* REG and WREG use carry through to next functions */
1028 }
1029 
1030 /*
1031  * PCI Vital Product Data
1032  */
1033 
1034 #define	PCI_VPD_TIMEOUT		1000000
1035 
1036 static int
pci_read_vpd_reg(device_t pcib,pcicfgregs * cfg,int reg,uint32_t * data)1037 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1038 {
1039 	int count = PCI_VPD_TIMEOUT;
1040 
1041 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1042 
1043 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1044 
1045 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1046 		if (--count < 0)
1047 			return (ENXIO);
1048 		DELAY(1);	/* limit looping */
1049 	}
1050 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1051 
1052 	return (0);
1053 }
1054 
1055 #if 0
1056 static int
1057 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1058 {
1059 	int count = PCI_VPD_TIMEOUT;
1060 
1061 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1062 
1063 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1064 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1065 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1066 		if (--count < 0)
1067 			return (ENXIO);
1068 		DELAY(1);	/* limit looping */
1069 	}
1070 
1071 	return (0);
1072 }
1073 #endif
1074 
1075 #undef PCI_VPD_TIMEOUT
1076 
1077 struct vpd_readstate {
1078 	device_t	pcib;
1079 	pcicfgregs	*cfg;
1080 	uint32_t	val;
1081 	int		bytesinval;
1082 	int		off;
1083 	uint8_t		cksum;
1084 };
1085 
1086 /* return 0 and one byte in *data if no read error, -1 else */
1087 static int
vpd_nextbyte(struct vpd_readstate * vrs,uint8_t * data)1088 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1089 {
1090 	uint32_t reg;
1091 	uint8_t byte;
1092 
1093 	if (vrs->bytesinval == 0) {
1094 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1095 			return (-1);
1096 		vrs->val = le32toh(reg);
1097 		vrs->off += 4;
1098 		byte = vrs->val & 0xff;
1099 		vrs->bytesinval = 3;
1100 	} else {
1101 		vrs->val = vrs->val >> 8;
1102 		byte = vrs->val & 0xff;
1103 		vrs->bytesinval--;
1104 	}
1105 
1106 	vrs->cksum += byte;
1107 	*data = byte;
1108 	return (0);
1109 }
1110 
1111 /* return 0 on match, -1 and "unget" byte on no match */
1112 static int
vpd_expectbyte(struct vpd_readstate * vrs,uint8_t expected)1113 vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected)
1114 {
1115 	uint8_t data;
1116 
1117 	if (vpd_nextbyte(vrs, &data) != 0)
1118 		return (-1);
1119 
1120 	if (data == expected)
1121 		return (0);
1122 
1123 	vrs->cksum -= data;
1124 	vrs->val = (vrs->val << 8) + data;
1125 	vrs->bytesinval++;
1126 	return (-1);
1127 }
1128 
1129 /* return size if tag matches, -1 on no match, -2 on read error */
1130 static int
vpd_read_tag_size(struct vpd_readstate * vrs,uint8_t vpd_tag)1131 vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag)
1132 {
1133 	uint8_t byte1, byte2;
1134 
1135 	if (vpd_expectbyte(vrs, vpd_tag) != 0)
1136 		return (-1);
1137 
1138 	if ((vpd_tag & 0x80) == 0)
1139 		return (vpd_tag & 0x07);
1140 
1141 	if (vpd_nextbyte(vrs, &byte1) != 0)
1142 		return (-2);
1143 	if (vpd_nextbyte(vrs, &byte2) != 0)
1144 		return (-2);
1145 
1146 	return ((byte2 << 8) + byte1);
1147 }
1148 
1149 /* (re)allocate buffer in multiples of 8 elements */
1150 static void*
alloc_buffer(void * buffer,size_t element_size,int needed)1151 alloc_buffer(void* buffer, size_t element_size, int needed)
1152 {
1153 	int alloc, new_alloc;
1154 
1155 	alloc = roundup2(needed, 8);
1156 	new_alloc = roundup2(needed + 1, 8);
1157 	if (alloc != new_alloc) {
1158 		buffer = reallocf(buffer,
1159 		    new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO);
1160 	}
1161 
1162 	return (buffer);
1163 }
1164 
1165 /* read VPD keyword and return element size, return -1 on read error */
1166 static int
vpd_read_elem_head(struct vpd_readstate * vrs,char keyword[2])1167 vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2])
1168 {
1169 	uint8_t data;
1170 
1171 	if (vpd_nextbyte(vrs, &keyword[0]) != 0)
1172 		return (-1);
1173 	if (vpd_nextbyte(vrs, &keyword[1]) != 0)
1174 		return (-1);
1175 	if (vpd_nextbyte(vrs, &data) != 0)
1176 		return (-1);
1177 
1178 	return (data);
1179 }
1180 
1181 /* read VPD data element of given size into allocated buffer */
1182 static char *
vpd_read_value(struct vpd_readstate * vrs,int size)1183 vpd_read_value(struct vpd_readstate *vrs, int size)
1184 {
1185 	int i;
1186 	char char1;
1187 	char *value;
1188 
1189 	value = malloc(size + 1, M_DEVBUF, M_WAITOK);
1190 	for (i = 0; i < size; i++) {
1191 		if (vpd_nextbyte(vrs, &char1) != 0) {
1192 			free(value, M_DEVBUF);
1193 			return (NULL);
1194 		}
1195 		value[i] = char1;
1196 	}
1197 	value[size] = '\0';
1198 
1199 	return (value);
1200 }
1201 
1202 /* read VPD into *keyword and *value, return length of data element */
1203 static int
vpd_read_elem_data(struct vpd_readstate * vrs,char keyword[2],char ** value,int maxlen)1204 vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen)
1205 {
1206 	int len;
1207 
1208 	len = vpd_read_elem_head(vrs, keyword);
1209 	if (len < 0 || len > maxlen)
1210 		return (-1);
1211 	*value = vpd_read_value(vrs, len);
1212 
1213 	return (len);
1214 }
1215 
1216 /* subtract all data following first byte from checksum of RV element */
1217 static void
vpd_fixup_cksum(struct vpd_readstate * vrs,char * rvstring,int len)1218 vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len)
1219 {
1220 	int i;
1221 	uint8_t fixup;
1222 
1223 	fixup = 0;
1224 	for (i = 1; i < len; i++)
1225 		fixup += rvstring[i];
1226 	vrs->cksum -= fixup;
1227 }
1228 
1229 /* fetch one read-only element and return size of heading + data */
1230 static int
next_vpd_ro_elem(struct vpd_readstate * vrs,int maxsize)1231 next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize)
1232 {
1233 	struct pcicfg_vpd *vpd;
1234 	pcicfgregs *cfg;
1235 	struct vpd_readonly *vpd_ros;
1236 	int len;
1237 
1238 	cfg = vrs->cfg;
1239 	vpd = &cfg->vpd;
1240 
1241 	if (maxsize < 3)
1242 		return (-1);
1243 	vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt);
1244 	vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt];
1245 	maxsize -= 3;
1246 	len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize);
1247 	if (vpd_ros->value == NULL)
1248 		return (-1);
1249 	vpd_ros->len = len;
1250 	if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') {
1251 		vpd_fixup_cksum(vrs, vpd_ros->value, len);
1252 		if (vrs->cksum != 0) {
1253 			pci_printf(cfg,
1254 			    "invalid VPD checksum %#hhx\n", vrs->cksum);
1255 			return (-1);
1256 		}
1257 	}
1258 	vpd->vpd_rocnt++;
1259 
1260 	return (len + 3);
1261 }
1262 
1263 /* fetch one writable element and return size of heading + data */
1264 static int
next_vpd_rw_elem(struct vpd_readstate * vrs,int maxsize)1265 next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize)
1266 {
1267 	struct pcicfg_vpd *vpd;
1268 	pcicfgregs *cfg;
1269 	struct vpd_write *vpd_w;
1270 	int len;
1271 
1272 	cfg = vrs->cfg;
1273 	vpd = &cfg->vpd;
1274 
1275 	if (maxsize < 3)
1276 		return (-1);
1277 	vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt);
1278 	if (vpd->vpd_w == NULL) {
1279 		pci_printf(cfg, "out of memory");
1280 		return (-1);
1281 	}
1282 	vpd_w = &vpd->vpd_w[vpd->vpd_wcnt];
1283 	maxsize -= 3;
1284 	vpd_w->start = vrs->off + 3 - vrs->bytesinval;
1285 	len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize);
1286 	if (vpd_w->value == NULL)
1287 		return (-1);
1288 	vpd_w->len = len;
1289 	vpd->vpd_wcnt++;
1290 
1291 	return (len + 3);
1292 }
1293 
1294 /* free all memory allocated for VPD data */
1295 static void
vpd_free(struct pcicfg_vpd * vpd)1296 vpd_free(struct pcicfg_vpd *vpd)
1297 {
1298 	int i;
1299 
1300 	free(vpd->vpd_ident, M_DEVBUF);
1301 	for (i = 0; i < vpd->vpd_rocnt; i++)
1302 		free(vpd->vpd_ros[i].value, M_DEVBUF);
1303 	free(vpd->vpd_ros, M_DEVBUF);
1304 	vpd->vpd_rocnt = 0;
1305 	for (i = 0; i < vpd->vpd_wcnt; i++)
1306 		free(vpd->vpd_w[i].value, M_DEVBUF);
1307 	free(vpd->vpd_w, M_DEVBUF);
1308 	vpd->vpd_wcnt = 0;
1309 }
1310 
1311 #define VPD_TAG_END	((0x0f << 3) | 0)	/* small tag, len == 0 */
1312 #define VPD_TAG_IDENT	(0x02 | 0x80)		/* large tag */
1313 #define VPD_TAG_RO	(0x10 | 0x80)		/* large tag */
1314 #define VPD_TAG_RW	(0x11 | 0x80)		/* large tag */
1315 
1316 static int
pci_parse_vpd(device_t pcib,pcicfgregs * cfg)1317 pci_parse_vpd(device_t pcib, pcicfgregs *cfg)
1318 {
1319 	struct vpd_readstate vrs;
1320 	int cksumvalid;
1321 	int size, elem_size;
1322 
1323 	/* init vpd reader */
1324 	vrs.bytesinval = 0;
1325 	vrs.off = 0;
1326 	vrs.pcib = pcib;
1327 	vrs.cfg = cfg;
1328 	vrs.cksum = 0;
1329 
1330 	/* read VPD ident element - mandatory */
1331 	size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT);
1332 	if (size <= 0) {
1333 		pci_printf(cfg, "no VPD ident found\n");
1334 		return (0);
1335 	}
1336 	cfg->vpd.vpd_ident = vpd_read_value(&vrs, size);
1337 	if (cfg->vpd.vpd_ident == NULL) {
1338 		pci_printf(cfg, "error accessing VPD ident data\n");
1339 		return (0);
1340 	}
1341 
1342 	/* read VPD RO elements - mandatory */
1343 	size = vpd_read_tag_size(&vrs, VPD_TAG_RO);
1344 	if (size <= 0) {
1345 		pci_printf(cfg, "no read-only VPD data found\n");
1346 		return (0);
1347 	}
1348 	while (size > 0) {
1349 		elem_size = next_vpd_ro_elem(&vrs, size);
1350 		if (elem_size < 0) {
1351 			pci_printf(cfg, "error accessing read-only VPD data\n");
1352 			return (-1);
1353 		}
1354 		size -= elem_size;
1355 	}
1356 	cksumvalid = (vrs.cksum == 0);
1357 	if (!cksumvalid)
1358 		return (-1);
1359 
1360 	/* read VPD RW elements - optional */
1361 	size = vpd_read_tag_size(&vrs, VPD_TAG_RW);
1362 	if (size == -2)
1363 		return (-1);
1364 	while (size > 0) {
1365 		elem_size = next_vpd_rw_elem(&vrs, size);
1366 		if (elem_size < 0) {
1367 			pci_printf(cfg, "error accessing writeable VPD data\n");
1368 			return (-1);
1369 		}
1370 		size -= elem_size;
1371 	}
1372 
1373 	/* read empty END tag - mandatory */
1374 	size = vpd_read_tag_size(&vrs, VPD_TAG_END);
1375 	if (size != 0) {
1376 		pci_printf(cfg, "No valid VPD end tag found\n");
1377 	}
1378 	return (0);
1379 }
1380 
1381 static void
pci_read_vpd(device_t pcib,pcicfgregs * cfg)1382 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1383 {
1384 	int status;
1385 
1386 	status = pci_parse_vpd(pcib, cfg);
1387 	if (status < 0)
1388 		vpd_free(&cfg->vpd);
1389 	cfg->vpd.vpd_cached = 1;
1390 #undef REG
1391 #undef WREG
1392 }
1393 
1394 int
pci_get_vpd_ident_method(device_t dev,device_t child,const char ** identptr)1395 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1396 {
1397 	struct pci_devinfo *dinfo = device_get_ivars(child);
1398 	pcicfgregs *cfg = &dinfo->cfg;
1399 
1400 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1401 		pci_read_vpd(device_get_parent(dev), cfg);
1402 
1403 	*identptr = cfg->vpd.vpd_ident;
1404 
1405 	if (*identptr == NULL)
1406 		return (ENXIO);
1407 
1408 	return (0);
1409 }
1410 
1411 int
pci_get_vpd_readonly_method(device_t dev,device_t child,const char * kw,const char ** vptr)1412 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1413 	const char **vptr)
1414 {
1415 	struct pci_devinfo *dinfo = device_get_ivars(child);
1416 	pcicfgregs *cfg = &dinfo->cfg;
1417 	int i;
1418 
1419 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1420 		pci_read_vpd(device_get_parent(dev), cfg);
1421 
1422 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1423 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1424 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1425 			*vptr = cfg->vpd.vpd_ros[i].value;
1426 			return (0);
1427 		}
1428 
1429 	*vptr = NULL;
1430 	return (ENXIO);
1431 }
1432 
1433 struct pcicfg_vpd *
pci_fetch_vpd_list(device_t dev)1434 pci_fetch_vpd_list(device_t dev)
1435 {
1436 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1437 	pcicfgregs *cfg = &dinfo->cfg;
1438 
1439 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1440 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1441 	return (&cfg->vpd);
1442 }
1443 
1444 /*
1445  * Find the requested HyperTransport capability and return the offset
1446  * in configuration space via the pointer provided.  The function
1447  * returns 0 on success and an error code otherwise.
1448  */
1449 int
pci_find_htcap_method(device_t dev,device_t child,int capability,int * capreg)1450 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1451 {
1452 	int ptr, error;
1453 	uint16_t val;
1454 
1455 	error = pci_find_cap(child, PCIY_HT, &ptr);
1456 	if (error)
1457 		return (error);
1458 
1459 	/*
1460 	 * Traverse the capabilities list checking each HT capability
1461 	 * to see if it matches the requested HT capability.
1462 	 */
1463 	for (;;) {
1464 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1465 		if (capability == PCIM_HTCAP_SLAVE ||
1466 		    capability == PCIM_HTCAP_HOST)
1467 			val &= 0xe000;
1468 		else
1469 			val &= PCIM_HTCMD_CAP_MASK;
1470 		if (val == capability) {
1471 			if (capreg != NULL)
1472 				*capreg = ptr;
1473 			return (0);
1474 		}
1475 
1476 		/* Skip to the next HT capability. */
1477 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1478 			break;
1479 	}
1480 
1481 	return (ENOENT);
1482 }
1483 
1484 /*
1485  * Find the next requested HyperTransport capability after start and return
1486  * the offset in configuration space via the pointer provided.  The function
1487  * returns 0 on success and an error code otherwise.
1488  */
1489 int
pci_find_next_htcap_method(device_t dev,device_t child,int capability,int start,int * capreg)1490 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1491     int start, int *capreg)
1492 {
1493 	int ptr;
1494 	uint16_t val;
1495 
1496 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1497 	    ("start capability is not HyperTransport capability"));
1498 	ptr = start;
1499 
1500 	/*
1501 	 * Traverse the capabilities list checking each HT capability
1502 	 * to see if it matches the requested HT capability.
1503 	 */
1504 	for (;;) {
1505 		/* Skip to the next HT capability. */
1506 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1507 			break;
1508 
1509 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1510 		if (capability == PCIM_HTCAP_SLAVE ||
1511 		    capability == PCIM_HTCAP_HOST)
1512 			val &= 0xe000;
1513 		else
1514 			val &= PCIM_HTCMD_CAP_MASK;
1515 		if (val == capability) {
1516 			if (capreg != NULL)
1517 				*capreg = ptr;
1518 			return (0);
1519 		}
1520 	}
1521 
1522 	return (ENOENT);
1523 }
1524 
1525 /*
1526  * Find the requested capability and return the offset in
1527  * configuration space via the pointer provided.  The function returns
1528  * 0 on success and an error code otherwise.
1529  */
1530 int
pci_find_cap_method(device_t dev,device_t child,int capability,int * capreg)1531 pci_find_cap_method(device_t dev, device_t child, int capability,
1532     int *capreg)
1533 {
1534 	struct pci_devinfo *dinfo = device_get_ivars(child);
1535 	pcicfgregs *cfg = &dinfo->cfg;
1536 	uint32_t status;
1537 	uint8_t ptr;
1538 	int cnt;
1539 
1540 	/*
1541 	 * Check the CAP_LIST bit of the PCI status register first.
1542 	 */
1543 	status = pci_read_config(child, PCIR_STATUS, 2);
1544 	if (!(status & PCIM_STATUS_CAPPRESENT))
1545 		return (ENXIO);
1546 
1547 	/*
1548 	 * Determine the start pointer of the capabilities list.
1549 	 */
1550 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1551 	case PCIM_HDRTYPE_NORMAL:
1552 	case PCIM_HDRTYPE_BRIDGE:
1553 		ptr = PCIR_CAP_PTR;
1554 		break;
1555 	case PCIM_HDRTYPE_CARDBUS:
1556 		ptr = PCIR_CAP_PTR_2;
1557 		break;
1558 	default:
1559 		/* XXX: panic? */
1560 		return (ENXIO);		/* no extended capabilities support */
1561 	}
1562 	ptr = pci_read_config(child, ptr, 1);
1563 
1564 	/*
1565 	 * Traverse the capabilities list.  Limit by total theoretical
1566 	 * maximum number of caps: capability needs at least id and
1567 	 * next registers, and any type X header cannot contain caps.
1568 	 */
1569 	for (cnt = 0; ptr != 0 && cnt < (PCIE_REGMAX - 0x40) / 2; cnt++) {
1570 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1571 			if (capreg != NULL)
1572 				*capreg = ptr;
1573 			return (0);
1574 		}
1575 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1576 	}
1577 
1578 	return (ENOENT);
1579 }
1580 
1581 /*
1582  * Find the next requested capability after start and return the offset in
1583  * configuration space via the pointer provided.  The function returns
1584  * 0 on success and an error code otherwise.
1585  */
1586 int
pci_find_next_cap_method(device_t dev,device_t child,int capability,int start,int * capreg)1587 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1588     int start, int *capreg)
1589 {
1590 	uint8_t ptr;
1591 
1592 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1593 	    ("start capability is not expected capability"));
1594 
1595 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1596 	while (ptr != 0) {
1597 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1598 			if (capreg != NULL)
1599 				*capreg = ptr;
1600 			return (0);
1601 		}
1602 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1603 	}
1604 
1605 	return (ENOENT);
1606 }
1607 
1608 /*
1609  * Find the requested extended capability and return the offset in
1610  * configuration space via the pointer provided.  The function returns
1611  * 0 on success and an error code otherwise.
1612  */
1613 int
pci_find_extcap_method(device_t dev,device_t child,int capability,int * capreg)1614 pci_find_extcap_method(device_t dev, device_t child, int capability,
1615     int *capreg)
1616 {
1617 	struct pci_devinfo *dinfo = device_get_ivars(child);
1618 	pcicfgregs *cfg = &dinfo->cfg;
1619 	uint32_t ecap;
1620 	uint16_t ptr;
1621 
1622 	/* Only supported for PCI-express devices. */
1623 	if (cfg->pcie.pcie_location == 0)
1624 		return (ENXIO);
1625 
1626 	ptr = PCIR_EXTCAP;
1627 	ecap = pci_read_config(child, ptr, 4);
1628 	if (ecap == 0xffffffff || ecap == 0)
1629 		return (ENOENT);
1630 	for (;;) {
1631 		if (PCI_EXTCAP_ID(ecap) == capability) {
1632 			if (capreg != NULL)
1633 				*capreg = ptr;
1634 			return (0);
1635 		}
1636 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1637 		if (ptr == 0)
1638 			break;
1639 		ecap = pci_read_config(child, ptr, 4);
1640 	}
1641 
1642 	return (ENOENT);
1643 }
1644 
1645 /*
1646  * Find the next requested extended capability after start and return the
1647  * offset in configuration space via the pointer provided.  The function
1648  * returns 0 on success and an error code otherwise.
1649  */
1650 int
pci_find_next_extcap_method(device_t dev,device_t child,int capability,int start,int * capreg)1651 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1652     int start, int *capreg)
1653 {
1654 	struct pci_devinfo *dinfo = device_get_ivars(child);
1655 	pcicfgregs *cfg = &dinfo->cfg;
1656 	uint32_t ecap;
1657 	uint16_t ptr;
1658 
1659 	/* Only supported for PCI-express devices. */
1660 	if (cfg->pcie.pcie_location == 0)
1661 		return (ENXIO);
1662 
1663 	ecap = pci_read_config(child, start, 4);
1664 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1665 	    ("start extended capability is not expected capability"));
1666 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1667 	while (ptr != 0) {
1668 		ecap = pci_read_config(child, ptr, 4);
1669 		if (PCI_EXTCAP_ID(ecap) == capability) {
1670 			if (capreg != NULL)
1671 				*capreg = ptr;
1672 			return (0);
1673 		}
1674 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1675 	}
1676 
1677 	return (ENOENT);
1678 }
1679 
1680 /*
1681  * Support for MSI-X message interrupts.
1682  */
1683 static void
pci_write_msix_entry(device_t dev,u_int index,uint64_t address,uint32_t data)1684 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1685 {
1686 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1687 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1688 	uint32_t offset;
1689 
1690 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1691 	offset = msix->msix_table_offset + index * 16;
1692 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1693 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1694 	bus_write_4(msix->msix_table_res, offset + 8, data);
1695 }
1696 
1697 void
pci_enable_msix_method(device_t dev,device_t child,u_int index,uint64_t address,uint32_t data)1698 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1699     uint64_t address, uint32_t data)
1700 {
1701 
1702 	if (pci_msix_rewrite_table) {
1703 		struct pci_devinfo *dinfo = device_get_ivars(child);
1704 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1705 
1706 		/*
1707 		 * Some VM hosts require MSIX to be disabled in the
1708 		 * control register before updating the MSIX table
1709 		 * entries are allowed. It is not enough to only
1710 		 * disable MSIX while updating a single entry. MSIX
1711 		 * must be disabled while updating all entries in the
1712 		 * table.
1713 		 */
1714 		pci_write_config(child,
1715 		    msix->msix_location + PCIR_MSIX_CTRL,
1716 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1717 		pci_resume_msix(child);
1718 	} else
1719 		pci_write_msix_entry(child, index, address, data);
1720 
1721 	/* Enable MSI -> HT mapping. */
1722 	pci_ht_map_msi(child, address);
1723 }
1724 
1725 void
pci_mask_msix(device_t dev,u_int index)1726 pci_mask_msix(device_t dev, u_int index)
1727 {
1728 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1729 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1730 	uint32_t offset, val;
1731 
1732 	KASSERT(PCI_MSIX_MSGNUM(msix->msix_ctrl) > index, ("bogus index"));
1733 	offset = msix->msix_table_offset + index * 16 + 12;
1734 	val = bus_read_4(msix->msix_table_res, offset);
1735 	val |= PCIM_MSIX_VCTRL_MASK;
1736 
1737 	/*
1738 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1739 	 * register, so always write the new value.
1740 	 */
1741 	bus_write_4(msix->msix_table_res, offset, val);
1742 }
1743 
1744 void
pci_unmask_msix(device_t dev,u_int index)1745 pci_unmask_msix(device_t dev, u_int index)
1746 {
1747 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1748 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1749 	uint32_t offset, val;
1750 
1751 	KASSERT(PCI_MSIX_MSGNUM(msix->msix_ctrl) > index, ("bogus index"));
1752 	offset = msix->msix_table_offset + index * 16 + 12;
1753 	val = bus_read_4(msix->msix_table_res, offset);
1754 	val &= ~PCIM_MSIX_VCTRL_MASK;
1755 
1756 	/*
1757 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1758 	 * register, so always write the new value.
1759 	 */
1760 	bus_write_4(msix->msix_table_res, offset, val);
1761 }
1762 
1763 int
pci_pending_msix(device_t dev,u_int index)1764 pci_pending_msix(device_t dev, u_int index)
1765 {
1766 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1767 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1768 	uint32_t offset, bit;
1769 
1770 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1771 	offset = msix->msix_pba_offset + (index / 32) * 4;
1772 	bit = 1 << index % 32;
1773 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1774 }
1775 
1776 /*
1777  * Restore MSI-X registers and table during resume.  If MSI-X is
1778  * enabled then walk the virtual table to restore the actual MSI-X
1779  * table.
1780  */
1781 static void
pci_resume_msix(device_t dev)1782 pci_resume_msix(device_t dev)
1783 {
1784 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1785 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1786 	struct msix_table_entry *mte;
1787 	struct msix_vector *mv;
1788 	u_int i, msgnum;
1789 
1790 	if (msix->msix_alloc > 0) {
1791 		msgnum = PCI_MSIX_MSGNUM(msix->msix_ctrl);
1792 
1793 		/* First, mask all vectors. */
1794 		for (i = 0; i < msgnum; i++)
1795 			pci_mask_msix(dev, i);
1796 
1797 		/* Second, program any messages with at least one handler. */
1798 		for (i = 0; i < msix->msix_table_len; i++) {
1799 			mte = &msix->msix_table[i];
1800 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1801 				continue;
1802 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1803 			pci_write_msix_entry(dev, i, mv->mv_address,
1804 			    mv->mv_data);
1805 			pci_unmask_msix(dev, i);
1806 		}
1807 	}
1808 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1809 	    msix->msix_ctrl, 2);
1810 }
1811 
1812 /*
1813  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1814  * returned in *count.  After this function returns, each message will be
1815  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1816  */
1817 int
pci_alloc_msix_method(device_t dev,device_t child,int * count)1818 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1819 {
1820 	struct pci_devinfo *dinfo = device_get_ivars(child);
1821 	pcicfgregs *cfg = &dinfo->cfg;
1822 	struct resource_list_entry *rle;
1823 	u_int actual, i, max;
1824 	int error, irq;
1825 	uint16_t ctrl, msgnum;
1826 
1827 	/* Don't let count == 0 get us into trouble. */
1828 	if (*count < 1)
1829 		return (EINVAL);
1830 
1831 	/* If rid 0 is allocated, then fail. */
1832 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1833 	if (rle != NULL && rle->res != NULL)
1834 		return (ENXIO);
1835 
1836 	/* Already have allocated messages? */
1837 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1838 		return (ENXIO);
1839 
1840 	/* If MSI-X is blacklisted for this system, fail. */
1841 	if (pci_msix_blacklisted())
1842 		return (ENXIO);
1843 
1844 	/* MSI-X capability present? */
1845 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1846 		return (ENODEV);
1847 
1848 	/* Make sure the appropriate BARs are mapped. */
1849 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1850 	    cfg->msix.msix_table_bar);
1851 	if (rle == NULL || rle->res == NULL ||
1852 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1853 		return (ENXIO);
1854 	cfg->msix.msix_table_res = rle->res;
1855 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1856 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1857 		    cfg->msix.msix_pba_bar);
1858 		if (rle == NULL || rle->res == NULL ||
1859 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1860 			return (ENXIO);
1861 	}
1862 	cfg->msix.msix_pba_res = rle->res;
1863 
1864 	ctrl = pci_read_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1865 	    2);
1866 	msgnum = PCI_MSIX_MSGNUM(ctrl);
1867 	if (bootverbose)
1868 		device_printf(child,
1869 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1870 		    *count, msgnum);
1871 	max = min(*count, msgnum);
1872 	for (i = 0; i < max; i++) {
1873 		/* Allocate a message. */
1874 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1875 		if (error) {
1876 			if (i == 0)
1877 				return (error);
1878 			break;
1879 		}
1880 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1881 		    irq, 1);
1882 	}
1883 	actual = i;
1884 
1885 	if (bootverbose) {
1886 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1887 		if (actual == 1)
1888 			device_printf(child, "using IRQ %ju for MSI-X\n",
1889 			    rle->start);
1890 		else {
1891 			bool run;
1892 
1893 			/*
1894 			 * Be fancy and try to print contiguous runs of
1895 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1896 			 * 'run' is true if we are in a range.
1897 			 */
1898 			device_printf(child, "using IRQs %ju", rle->start);
1899 			irq = rle->start;
1900 			run = false;
1901 			for (i = 1; i < actual; i++) {
1902 				rle = resource_list_find(&dinfo->resources,
1903 				    SYS_RES_IRQ, i + 1);
1904 
1905 				/* Still in a run? */
1906 				if (rle->start == irq + 1) {
1907 					run = true;
1908 					irq++;
1909 					continue;
1910 				}
1911 
1912 				/* Finish previous range. */
1913 				if (run) {
1914 					printf("-%d", irq);
1915 					run = false;
1916 				}
1917 
1918 				/* Start new range. */
1919 				printf(",%ju", rle->start);
1920 				irq = rle->start;
1921 			}
1922 
1923 			/* Unfinished range? */
1924 			if (run)
1925 				printf("-%d", irq);
1926 			printf(" for MSI-X\n");
1927 		}
1928 	}
1929 
1930 	/*
1931 	 * Mask all vectors. Note that the message index assertion in
1932 	 * pci_mask_msix requires msix_ctrl to be set.
1933 	 */
1934 	cfg->msix.msix_ctrl = ctrl;
1935 	for (i = 0; i < msgnum; i++)
1936 		pci_mask_msix(child, i);
1937 
1938 	/* Allocate and initialize vector data and virtual table. */
1939 	cfg->msix.msix_vectors = mallocarray(actual, sizeof(struct msix_vector),
1940 	    M_DEVBUF, M_WAITOK | M_ZERO);
1941 	cfg->msix.msix_table = mallocarray(actual,
1942 	    sizeof(struct msix_table_entry), M_DEVBUF, M_WAITOK | M_ZERO);
1943 	for (i = 0; i < actual; i++) {
1944 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1945 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1946 		cfg->msix.msix_table[i].mte_vector = i + 1;
1947 	}
1948 
1949 	/* Update control register to enable MSI-X. */
1950 	ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1951 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1952 	    ctrl, 2);
1953 	cfg->msix.msix_ctrl = ctrl;
1954 
1955 	/* Update counts of alloc'd messages. */
1956 	cfg->msix.msix_alloc = actual;
1957 	cfg->msix.msix_table_len = actual;
1958 	*count = actual;
1959 	return (0);
1960 }
1961 
1962 /*
1963  * By default, pci_alloc_msix() will assign the allocated IRQ
1964  * resources consecutively to the first N messages in the MSI-X table.
1965  * However, device drivers may want to use different layouts if they
1966  * either receive fewer messages than they asked for, or they wish to
1967  * populate the MSI-X table sparsely.  This method allows the driver
1968  * to specify what layout it wants.  It must be called after a
1969  * successful pci_alloc_msix() but before any of the associated
1970  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1971  *
1972  * The 'vectors' array contains 'count' message vectors.  The array
1973  * maps directly to the MSI-X table in that index 0 in the array
1974  * specifies the vector for the first message in the MSI-X table, etc.
1975  * The vector value in each array index can either be 0 to indicate
1976  * that no vector should be assigned to a message slot, or it can be a
1977  * number from 1 to N (where N is the count returned from a
1978  * succcessful call to pci_alloc_msix()) to indicate which message
1979  * vector (IRQ) to be used for the corresponding message.
1980  *
1981  * On successful return, each message with a non-zero vector will have
1982  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1983  * 1.  Additionally, if any of the IRQs allocated via the previous
1984  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1985  * will be freed back to the system automatically.
1986  *
1987  * For example, suppose a driver has a MSI-X table with 6 messages and
1988  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1989  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1990  * C.  After the call to pci_alloc_msix(), the device will be setup to
1991  * have an MSI-X table of ABC--- (where - means no vector assigned).
1992  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1993  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1994  * be freed back to the system.  This device will also have valid
1995  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1996  *
1997  * In any case, the SYS_RES_IRQ rid X will always map to the message
1998  * at MSI-X table index X - 1 and will only be valid if a vector is
1999  * assigned to that table entry.
2000  */
2001 int
pci_remap_msix_method(device_t dev,device_t child,int count,const u_int * vectors)2002 pci_remap_msix_method(device_t dev, device_t child, int count,
2003     const u_int *vectors)
2004 {
2005 	struct pci_devinfo *dinfo = device_get_ivars(child);
2006 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2007 	struct resource_list_entry *rle;
2008 	u_int i, irq, j;
2009 	bool *used;
2010 
2011 	/*
2012 	 * Have to have at least one message in the table but the
2013 	 * table can't be bigger than the actual MSI-X table in the
2014 	 * device.
2015 	 */
2016 	if (count < 1 || count > PCI_MSIX_MSGNUM(msix->msix_ctrl))
2017 		return (EINVAL);
2018 
2019 	/* Sanity check the vectors. */
2020 	for (i = 0; i < count; i++)
2021 		if (vectors[i] > msix->msix_alloc)
2022 			return (EINVAL);
2023 
2024 	/*
2025 	 * Make sure there aren't any holes in the vectors to be used.
2026 	 * It's a big pain to support it, and it doesn't really make
2027 	 * sense anyway.  Also, at least one vector must be used.
2028 	 */
2029 	used = mallocarray(msix->msix_alloc, sizeof(*used), M_DEVBUF, M_WAITOK |
2030 	    M_ZERO);
2031 	for (i = 0; i < count; i++)
2032 		if (vectors[i] != 0)
2033 			used[vectors[i] - 1] = true;
2034 	for (i = 0; i < msix->msix_alloc - 1; i++)
2035 		if (!used[i] && used[i + 1]) {
2036 			free(used, M_DEVBUF);
2037 			return (EINVAL);
2038 		}
2039 	if (!used[0]) {
2040 		free(used, M_DEVBUF);
2041 		return (EINVAL);
2042 	}
2043 
2044 	/* Make sure none of the resources are allocated. */
2045 	for (i = 0; i < msix->msix_table_len; i++) {
2046 		if (msix->msix_table[i].mte_vector == 0)
2047 			continue;
2048 		if (msix->msix_table[i].mte_handlers > 0) {
2049 			free(used, M_DEVBUF);
2050 			return (EBUSY);
2051 		}
2052 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2053 		KASSERT(rle != NULL, ("missing resource"));
2054 		if (rle->res != NULL) {
2055 			free(used, M_DEVBUF);
2056 			return (EBUSY);
2057 		}
2058 	}
2059 
2060 	/* Free the existing resource list entries. */
2061 	for (i = 0; i < msix->msix_table_len; i++) {
2062 		if (msix->msix_table[i].mte_vector == 0)
2063 			continue;
2064 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2065 	}
2066 
2067 	/*
2068 	 * Build the new virtual table keeping track of which vectors are
2069 	 * used.
2070 	 */
2071 	free(msix->msix_table, M_DEVBUF);
2072 	msix->msix_table = mallocarray(count, sizeof(struct msix_table_entry),
2073 	    M_DEVBUF, M_WAITOK | M_ZERO);
2074 	for (i = 0; i < count; i++)
2075 		msix->msix_table[i].mte_vector = vectors[i];
2076 	msix->msix_table_len = count;
2077 
2078 	/* Free any unused IRQs and resize the vectors array if necessary. */
2079 	j = msix->msix_alloc - 1;
2080 	if (!used[j]) {
2081 		struct msix_vector *vec;
2082 
2083 		while (!used[j]) {
2084 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2085 			    msix->msix_vectors[j].mv_irq);
2086 			j--;
2087 		}
2088 		vec = mallocarray(j + 1, sizeof(struct msix_vector), M_DEVBUF,
2089 		    M_WAITOK);
2090 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2091 		    (j + 1));
2092 		free(msix->msix_vectors, M_DEVBUF);
2093 		msix->msix_vectors = vec;
2094 		msix->msix_alloc = j + 1;
2095 	}
2096 	free(used, M_DEVBUF);
2097 
2098 	/* Map the IRQs onto the rids. */
2099 	for (i = 0; i < count; i++) {
2100 		if (vectors[i] == 0)
2101 			continue;
2102 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2103 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2104 		    irq, 1);
2105 	}
2106 
2107 	if (bootverbose) {
2108 		device_printf(child, "Remapped MSI-X IRQs as: ");
2109 		for (i = 0; i < count; i++) {
2110 			if (i != 0)
2111 				printf(", ");
2112 			if (vectors[i] == 0)
2113 				printf("---");
2114 			else
2115 				printf("%d",
2116 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2117 		}
2118 		printf("\n");
2119 	}
2120 
2121 	return (0);
2122 }
2123 
2124 static int
pci_release_msix(device_t dev,device_t child)2125 pci_release_msix(device_t dev, device_t child)
2126 {
2127 	struct pci_devinfo *dinfo = device_get_ivars(child);
2128 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2129 	struct resource_list_entry *rle;
2130 	u_int i;
2131 
2132 	/* Do we have any messages to release? */
2133 	if (msix->msix_alloc == 0)
2134 		return (ENODEV);
2135 
2136 	/* Make sure none of the resources are allocated. */
2137 	for (i = 0; i < msix->msix_table_len; i++) {
2138 		if (msix->msix_table[i].mte_vector == 0)
2139 			continue;
2140 		if (msix->msix_table[i].mte_handlers > 0)
2141 			return (EBUSY);
2142 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2143 		KASSERT(rle != NULL, ("missing resource"));
2144 		if (rle->res != NULL)
2145 			return (EBUSY);
2146 	}
2147 
2148 	/* Update control register to disable MSI-X. */
2149 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2150 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2151 	    msix->msix_ctrl, 2);
2152 
2153 	/* Free the resource list entries. */
2154 	for (i = 0; i < msix->msix_table_len; i++) {
2155 		if (msix->msix_table[i].mte_vector == 0)
2156 			continue;
2157 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2158 	}
2159 	free(msix->msix_table, M_DEVBUF);
2160 	msix->msix_table_len = 0;
2161 
2162 	/* Release the IRQs. */
2163 	for (i = 0; i < msix->msix_alloc; i++)
2164 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2165 		    msix->msix_vectors[i].mv_irq);
2166 	free(msix->msix_vectors, M_DEVBUF);
2167 	msix->msix_alloc = 0;
2168 	return (0);
2169 }
2170 
2171 /*
2172  * Return the max supported MSI-X messages this device supports.
2173  * Basically, assuming the MD code can alloc messages, this function
2174  * should return the maximum value that pci_alloc_msix() can return.
2175  * Thus, it is subject to the tunables, etc.
2176  */
2177 int
pci_msix_count_method(device_t dev,device_t child)2178 pci_msix_count_method(device_t dev, device_t child)
2179 {
2180 	struct pci_devinfo *dinfo = device_get_ivars(child);
2181 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2182 	uint16_t ctrl;
2183 
2184 	if (pci_do_msix && msix->msix_location != 0) {
2185 		ctrl = pci_read_config(child, msix->msix_location +
2186 		    PCIR_MSI_CTRL, 2);
2187 		return (PCI_MSIX_MSGNUM(ctrl));
2188 	}
2189 	return (0);
2190 }
2191 
2192 int
pci_msix_pba_bar_method(device_t dev,device_t child)2193 pci_msix_pba_bar_method(device_t dev, device_t child)
2194 {
2195 	struct pci_devinfo *dinfo = device_get_ivars(child);
2196 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2197 
2198 	if (pci_do_msix && msix->msix_location != 0)
2199 		return (msix->msix_pba_bar);
2200 	return (-1);
2201 }
2202 
2203 int
pci_msix_table_bar_method(device_t dev,device_t child)2204 pci_msix_table_bar_method(device_t dev, device_t child)
2205 {
2206 	struct pci_devinfo *dinfo = device_get_ivars(child);
2207 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2208 
2209 	if (pci_do_msix && msix->msix_location != 0)
2210 		return (msix->msix_table_bar);
2211 	return (-1);
2212 }
2213 
2214 /*
2215  * HyperTransport MSI mapping control
2216  */
2217 void
pci_ht_map_msi(device_t dev,uint64_t addr)2218 pci_ht_map_msi(device_t dev, uint64_t addr)
2219 {
2220 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2221 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2222 
2223 	if (!ht->ht_msimap)
2224 		return;
2225 
2226 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2227 	    ht->ht_msiaddr >> 20 == addr >> 20) {
2228 		/* Enable MSI -> HT mapping. */
2229 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2230 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2231 		    ht->ht_msictrl, 2);
2232 	}
2233 
2234 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2235 		/* Disable MSI -> HT mapping. */
2236 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2237 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2238 		    ht->ht_msictrl, 2);
2239 	}
2240 }
2241 
2242 int
pci_get_relaxed_ordering_enabled(device_t dev)2243 pci_get_relaxed_ordering_enabled(device_t dev)
2244 {
2245 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2246 	int cap;
2247 	uint16_t val;
2248 
2249 	cap = dinfo->cfg.pcie.pcie_location;
2250 	if (cap == 0)
2251 		return (0);
2252 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2253 	val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
2254 	return (val != 0);
2255 }
2256 
2257 int
pci_get_max_payload(device_t dev)2258 pci_get_max_payload(device_t dev)
2259 {
2260 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2261 	int cap;
2262 	uint16_t val;
2263 
2264 	cap = dinfo->cfg.pcie.pcie_location;
2265 	if (cap == 0)
2266 		return (0);
2267 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2268 	val &= PCIEM_CTL_MAX_PAYLOAD;
2269 	val >>= 5;
2270 	return (1 << (val + 7));
2271 }
2272 
2273 int
pci_get_max_read_req(device_t dev)2274 pci_get_max_read_req(device_t dev)
2275 {
2276 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2277 	int cap;
2278 	uint16_t val;
2279 
2280 	cap = dinfo->cfg.pcie.pcie_location;
2281 	if (cap == 0)
2282 		return (0);
2283 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2284 	val &= PCIEM_CTL_MAX_READ_REQUEST;
2285 	val >>= 12;
2286 	return (1 << (val + 7));
2287 }
2288 
2289 int
pci_set_max_read_req(device_t dev,int size)2290 pci_set_max_read_req(device_t dev, int size)
2291 {
2292 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2293 	int cap;
2294 	uint16_t val;
2295 
2296 	cap = dinfo->cfg.pcie.pcie_location;
2297 	if (cap == 0)
2298 		return (0);
2299 	if (size < 128)
2300 		size = 128;
2301 	if (size > 4096)
2302 		size = 4096;
2303 	size = (1 << (fls(size) - 1));
2304 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2305 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2306 	val |= (fls(size) - 8) << 12;
2307 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2308 	return (size);
2309 }
2310 
2311 uint32_t
pcie_read_config(device_t dev,int reg,int width)2312 pcie_read_config(device_t dev, int reg, int width)
2313 {
2314 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2315 	int cap;
2316 
2317 	cap = dinfo->cfg.pcie.pcie_location;
2318 	if (cap == 0) {
2319 		if (width == 2)
2320 			return (0xffff);
2321 		return (0xffffffff);
2322 	}
2323 
2324 	return (pci_read_config(dev, cap + reg, width));
2325 }
2326 
2327 void
pcie_write_config(device_t dev,int reg,uint32_t value,int width)2328 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2329 {
2330 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2331 	int cap;
2332 
2333 	cap = dinfo->cfg.pcie.pcie_location;
2334 	if (cap == 0)
2335 		return;
2336 	pci_write_config(dev, cap + reg, value, width);
2337 }
2338 
2339 /*
2340  * Adjusts a PCI-e capability register by clearing the bits in mask
2341  * and setting the bits in (value & mask).  Bits not set in mask are
2342  * not adjusted.
2343  *
2344  * Returns the old value on success or all ones on failure.
2345  */
2346 uint32_t
pcie_adjust_config(device_t dev,int reg,uint32_t mask,uint32_t value,int width)2347 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2348     int width)
2349 {
2350 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2351 	uint32_t old, new;
2352 	int cap;
2353 
2354 	cap = dinfo->cfg.pcie.pcie_location;
2355 	if (cap == 0) {
2356 		if (width == 2)
2357 			return (0xffff);
2358 		return (0xffffffff);
2359 	}
2360 
2361 	old = pci_read_config(dev, cap + reg, width);
2362 	new = old & ~mask;
2363 	new |= (value & mask);
2364 	pci_write_config(dev, cap + reg, new, width);
2365 	return (old);
2366 }
2367 
2368 /*
2369  * Support for MSI message signalled interrupts.
2370  */
2371 void
pci_enable_msi_method(device_t dev,device_t child,uint64_t address,uint16_t data)2372 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2373     uint16_t data)
2374 {
2375 	struct pci_devinfo *dinfo = device_get_ivars(child);
2376 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2377 
2378 	/* Write data and address values. */
2379 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2380 	    address & 0xffffffff, 4);
2381 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2382 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2383 		    address >> 32, 4);
2384 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2385 		    data, 2);
2386 	} else
2387 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2388 		    2);
2389 
2390 	/* Enable MSI in the control register. */
2391 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2392 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2393 	    msi->msi_ctrl, 2);
2394 
2395 	/* Enable MSI -> HT mapping. */
2396 	pci_ht_map_msi(child, address);
2397 }
2398 
2399 void
pci_disable_msi_method(device_t dev,device_t child)2400 pci_disable_msi_method(device_t dev, device_t child)
2401 {
2402 	struct pci_devinfo *dinfo = device_get_ivars(child);
2403 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2404 
2405 	/* Disable MSI -> HT mapping. */
2406 	pci_ht_map_msi(child, 0);
2407 
2408 	/* Disable MSI in the control register. */
2409 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2410 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2411 	    msi->msi_ctrl, 2);
2412 }
2413 
2414 /*
2415  * Restore MSI registers during resume.  If MSI is enabled then
2416  * restore the data and address registers in addition to the control
2417  * register.
2418  */
2419 static void
pci_resume_msi(device_t dev)2420 pci_resume_msi(device_t dev)
2421 {
2422 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2423 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2424 	uint64_t address;
2425 	uint16_t data;
2426 
2427 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2428 		address = msi->msi_addr;
2429 		data = msi->msi_data;
2430 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2431 		    address & 0xffffffff, 4);
2432 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2433 			pci_write_config(dev, msi->msi_location +
2434 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2435 			pci_write_config(dev, msi->msi_location +
2436 			    PCIR_MSI_DATA_64BIT, data, 2);
2437 		} else
2438 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2439 			    data, 2);
2440 	}
2441 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2442 	    2);
2443 }
2444 
2445 static int
pci_remap_intr_method(device_t bus,device_t dev,u_int irq)2446 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2447 {
2448 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2449 	pcicfgregs *cfg = &dinfo->cfg;
2450 	struct resource_list_entry *rle;
2451 	struct msix_table_entry *mte;
2452 	struct msix_vector *mv;
2453 	uint64_t addr;
2454 	uint32_t data;
2455 	u_int i, j;
2456 	int error;
2457 
2458 	/*
2459 	 * Handle MSI first.  We try to find this IRQ among our list
2460 	 * of MSI IRQs.  If we find it, we request updated address and
2461 	 * data registers and apply the results.
2462 	 */
2463 	if (cfg->msi.msi_alloc > 0) {
2464 		/* If we don't have any active handlers, nothing to do. */
2465 		if (cfg->msi.msi_handlers == 0)
2466 			return (0);
2467 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2468 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2469 			    i + 1);
2470 			if (rle->start == irq) {
2471 				error = PCIB_MAP_MSI(device_get_parent(bus),
2472 				    dev, irq, &addr, &data);
2473 				if (error)
2474 					return (error);
2475 				pci_disable_msi(dev);
2476 				dinfo->cfg.msi.msi_addr = addr;
2477 				dinfo->cfg.msi.msi_data = data;
2478 				pci_enable_msi(dev, addr, data);
2479 				return (0);
2480 			}
2481 		}
2482 		return (ENOENT);
2483 	}
2484 
2485 	/*
2486 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2487 	 * we request the updated mapping info.  If that works, we go
2488 	 * through all the slots that use this IRQ and update them.
2489 	 */
2490 	if (cfg->msix.msix_alloc > 0) {
2491 		bool found = false;
2492 
2493 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2494 			mv = &cfg->msix.msix_vectors[i];
2495 			if (mv->mv_irq == irq) {
2496 				error = PCIB_MAP_MSI(device_get_parent(bus),
2497 				    dev, irq, &addr, &data);
2498 				if (error)
2499 					return (error);
2500 				mv->mv_address = addr;
2501 				mv->mv_data = data;
2502 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2503 					mte = &cfg->msix.msix_table[j];
2504 					if (mte->mte_vector != i + 1)
2505 						continue;
2506 					if (mte->mte_handlers == 0)
2507 						continue;
2508 					pci_mask_msix(dev, j);
2509 					pci_enable_msix(dev, j, addr, data);
2510 					pci_unmask_msix(dev, j);
2511 				}
2512 				found = true;
2513 			}
2514 		}
2515 		return (found ? 0 : ENOENT);
2516 	}
2517 
2518 	return (ENOENT);
2519 }
2520 
2521 /*
2522  * Returns true if the specified device is blacklisted because MSI
2523  * doesn't work.
2524  */
2525 int
pci_msi_device_blacklisted(device_t dev)2526 pci_msi_device_blacklisted(device_t dev)
2527 {
2528 
2529 	if (!pci_honor_msi_blacklist)
2530 		return (0);
2531 
2532 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2533 }
2534 
2535 /*
2536  * Determine if MSI is blacklisted globally on this system.  Currently,
2537  * we just check for blacklisted chipsets as represented by the
2538  * host-PCI bridge at device 0:0:0.  In the future, it may become
2539  * necessary to check other system attributes, such as the kenv values
2540  * that give the motherboard manufacturer and model number.
2541  */
2542 static int
pci_msi_blacklisted(void)2543 pci_msi_blacklisted(void)
2544 {
2545 	device_t dev;
2546 
2547 	if (!pci_honor_msi_blacklist)
2548 		return (0);
2549 
2550 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2551 	if (!(pcie_chipset || pcix_chipset)) {
2552 		if (vm_guest != VM_GUEST_NO) {
2553 			/*
2554 			 * Whitelist older chipsets in virtual
2555 			 * machines known to support MSI.
2556 			 */
2557 			dev = pci_find_bsf(0, 0, 0);
2558 			if (dev != NULL)
2559 				return (!pci_has_quirk(pci_get_devid(dev),
2560 					PCI_QUIRK_ENABLE_MSI_VM));
2561 		}
2562 		return (1);
2563 	}
2564 
2565 	dev = pci_find_bsf(0, 0, 0);
2566 	if (dev != NULL)
2567 		return (pci_msi_device_blacklisted(dev));
2568 	return (0);
2569 }
2570 
2571 /*
2572  * Returns true if the specified device is blacklisted because MSI-X
2573  * doesn't work.  Note that this assumes that if MSI doesn't work,
2574  * MSI-X doesn't either.
2575  */
2576 int
pci_msix_device_blacklisted(device_t dev)2577 pci_msix_device_blacklisted(device_t dev)
2578 {
2579 
2580 	if (!pci_honor_msi_blacklist)
2581 		return (0);
2582 
2583 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2584 		return (1);
2585 
2586 	return (pci_msi_device_blacklisted(dev));
2587 }
2588 
2589 /*
2590  * Determine if MSI-X is blacklisted globally on this system.  If MSI
2591  * is blacklisted, assume that MSI-X is as well.  Check for additional
2592  * chipsets where MSI works but MSI-X does not.
2593  */
2594 static int
pci_msix_blacklisted(void)2595 pci_msix_blacklisted(void)
2596 {
2597 	device_t dev;
2598 
2599 	if (!pci_honor_msi_blacklist)
2600 		return (0);
2601 
2602 	dev = pci_find_bsf(0, 0, 0);
2603 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2604 	    PCI_QUIRK_DISABLE_MSIX))
2605 		return (1);
2606 
2607 	return (pci_msi_blacklisted());
2608 }
2609 
2610 /*
2611  * Attempt to allocate *count MSI messages.  The actual number allocated is
2612  * returned in *count.  After this function returns, each message will be
2613  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2614  */
2615 int
pci_alloc_msi_method(device_t dev,device_t child,int * count)2616 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2617 {
2618 	struct pci_devinfo *dinfo = device_get_ivars(child);
2619 	pcicfgregs *cfg = &dinfo->cfg;
2620 	struct resource_list_entry *rle;
2621 	u_int actual, i;
2622 	int error, irqs[32];
2623 	uint16_t ctrl, msgnum;
2624 
2625 	/* Don't let count == 0 get us into trouble. */
2626 	if (*count < 1)
2627 		return (EINVAL);
2628 
2629 	/* If rid 0 is allocated, then fail. */
2630 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2631 	if (rle != NULL && rle->res != NULL)
2632 		return (ENXIO);
2633 
2634 	/* Already have allocated messages? */
2635 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2636 		return (ENXIO);
2637 
2638 	/* If MSI is blacklisted for this system, fail. */
2639 	if (pci_msi_blacklisted())
2640 		return (ENXIO);
2641 
2642 	/* MSI capability present? */
2643 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2644 		return (ENODEV);
2645 
2646 	ctrl = pci_read_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, 2);
2647 	msgnum = PCI_MSI_MSGNUM(ctrl);
2648 	if (bootverbose)
2649 		device_printf(child,
2650 		    "attempting to allocate %d MSI vectors (%u supported)\n",
2651 		    *count, msgnum);
2652 
2653 	/* Don't ask for more than the device supports. */
2654 	actual = min(*count, msgnum);
2655 
2656 	/* Don't ask for more than 32 messages. */
2657 	actual = min(actual, 32);
2658 
2659 	/* MSI requires power of 2 number of messages. */
2660 	if (!powerof2(actual))
2661 		return (EINVAL);
2662 
2663 	for (;;) {
2664 		/* Try to allocate N messages. */
2665 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2666 		    actual, irqs);
2667 		if (error == 0)
2668 			break;
2669 		if (actual == 1)
2670 			return (error);
2671 
2672 		/* Try N / 2. */
2673 		actual >>= 1;
2674 	}
2675 
2676 	/*
2677 	 * We now have N actual messages mapped onto SYS_RES_IRQ
2678 	 * resources in the irqs[] array, so add new resources
2679 	 * starting at rid 1.
2680 	 */
2681 	for (i = 0; i < actual; i++)
2682 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2683 		    irqs[i], irqs[i], 1);
2684 
2685 	if (bootverbose) {
2686 		if (actual == 1)
2687 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2688 		else {
2689 			bool run;
2690 
2691 			/*
2692 			 * Be fancy and try to print contiguous runs
2693 			 * of IRQ values as ranges.  'run' is true if
2694 			 * we are in a range.
2695 			 */
2696 			device_printf(child, "using IRQs %d", irqs[0]);
2697 			run = false;
2698 			for (i = 1; i < actual; i++) {
2699 				/* Still in a run? */
2700 				if (irqs[i] == irqs[i - 1] + 1) {
2701 					run = true;
2702 					continue;
2703 				}
2704 
2705 				/* Finish previous range. */
2706 				if (run) {
2707 					printf("-%d", irqs[i - 1]);
2708 					run = false;
2709 				}
2710 
2711 				/* Start new range. */
2712 				printf(",%d", irqs[i]);
2713 			}
2714 
2715 			/* Unfinished range? */
2716 			if (run)
2717 				printf("-%d", irqs[actual - 1]);
2718 			printf(" for MSI\n");
2719 		}
2720 	}
2721 
2722 	/* Update control register with actual count. */
2723 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2724 	ctrl |= (ffs(actual) - 1) << 4;
2725 	cfg->msi.msi_ctrl = ctrl;
2726 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2727 
2728 	/* Update counts of alloc'd messages. */
2729 	cfg->msi.msi_alloc = actual;
2730 	cfg->msi.msi_handlers = 0;
2731 	*count = actual;
2732 	return (0);
2733 }
2734 
2735 /* Release the MSI messages associated with this device. */
2736 int
pci_release_msi_method(device_t dev,device_t child)2737 pci_release_msi_method(device_t dev, device_t child)
2738 {
2739 	struct pci_devinfo *dinfo = device_get_ivars(child);
2740 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2741 	struct resource_list_entry *rle;
2742 	u_int i, irqs[32];
2743 	int error;
2744 
2745 	/* Try MSI-X first. */
2746 	error = pci_release_msix(dev, child);
2747 	if (error != ENODEV)
2748 		return (error);
2749 
2750 	/* Do we have any messages to release? */
2751 	if (msi->msi_alloc == 0)
2752 		return (ENODEV);
2753 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2754 
2755 	/* Make sure none of the resources are allocated. */
2756 	if (msi->msi_handlers > 0)
2757 		return (EBUSY);
2758 	for (i = 0; i < msi->msi_alloc; i++) {
2759 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2760 		KASSERT(rle != NULL, ("missing MSI resource"));
2761 		if (rle->res != NULL)
2762 			return (EBUSY);
2763 		irqs[i] = rle->start;
2764 	}
2765 
2766 	/* Update control register with 0 count. */
2767 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2768 	    ("%s: MSI still enabled", __func__));
2769 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2770 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2771 	    msi->msi_ctrl, 2);
2772 
2773 	/* Release the messages. */
2774 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2775 	for (i = 0; i < msi->msi_alloc; i++)
2776 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2777 
2778 	/* Update alloc count. */
2779 	msi->msi_alloc = 0;
2780 	msi->msi_addr = 0;
2781 	msi->msi_data = 0;
2782 	return (0);
2783 }
2784 
2785 /*
2786  * Return the max supported MSI messages this device supports.
2787  * Basically, assuming the MD code can alloc messages, this function
2788  * should return the maximum value that pci_alloc_msi() can return.
2789  * Thus, it is subject to the tunables, etc.
2790  */
2791 int
pci_msi_count_method(device_t dev,device_t child)2792 pci_msi_count_method(device_t dev, device_t child)
2793 {
2794 	struct pci_devinfo *dinfo = device_get_ivars(child);
2795 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2796 	uint16_t ctrl;
2797 
2798 	if (pci_do_msi && msi->msi_location != 0) {
2799 		ctrl = pci_read_config(child, msi->msi_location + PCIR_MSI_CTRL,
2800 		    2);
2801 		return (PCI_MSI_MSGNUM(ctrl));
2802 	}
2803 	return (0);
2804 }
2805 
2806 /* free pcicfgregs structure and all depending data structures */
2807 
2808 int
pci_freecfg(struct pci_devinfo * dinfo)2809 pci_freecfg(struct pci_devinfo *dinfo)
2810 {
2811 	struct devlist *devlist_head;
2812 	struct pci_map *pm, *next;
2813 
2814 	devlist_head = &pci_devq;
2815 
2816 	if (dinfo->cfg.vpd.vpd_reg)
2817 		vpd_free(&dinfo->cfg.vpd);
2818 
2819 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2820 		free(pm, M_DEVBUF);
2821 	}
2822 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2823 	free(dinfo, M_DEVBUF);
2824 
2825 	/* increment the generation count */
2826 	pci_generation++;
2827 
2828 	/* we're losing one device */
2829 	pci_numdevs--;
2830 	return (0);
2831 }
2832 
2833 /*
2834  * PCI power manangement
2835  */
2836 int
pci_set_powerstate_method(device_t dev,device_t child,int state)2837 pci_set_powerstate_method(device_t dev, device_t child, int state)
2838 {
2839 	struct pci_devinfo *dinfo = device_get_ivars(child);
2840 	pcicfgregs *cfg = &dinfo->cfg;
2841 	uint16_t status;
2842 	int oldstate, highest, delay;
2843 
2844 	if (cfg->pp.pp_location == 0)
2845 		return (EOPNOTSUPP);
2846 
2847 	/*
2848 	 * Optimize a no state change request away.  While it would be OK to
2849 	 * write to the hardware in theory, some devices have shown odd
2850 	 * behavior when going from D3 -> D3.
2851 	 */
2852 	oldstate = pci_get_powerstate(child);
2853 	if (oldstate == state)
2854 		return (0);
2855 
2856 	/*
2857 	 * The PCI power management specification states that after a state
2858 	 * transition between PCI power states, system software must
2859 	 * guarantee a minimal delay before the function accesses the device.
2860 	 * Compute the worst case delay that we need to guarantee before we
2861 	 * access the device.  Many devices will be responsive much more
2862 	 * quickly than this delay, but there are some that don't respond
2863 	 * instantly to state changes.  Transitions to/from D3 state require
2864 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2865 	 * is done below with DELAY rather than a sleeper function because
2866 	 * this function can be called from contexts where we cannot sleep.
2867 	 */
2868 	highest = (oldstate > state) ? oldstate : state;
2869 	if (highest == PCI_POWERSTATE_D3)
2870 	    delay = 10000;
2871 	else if (highest == PCI_POWERSTATE_D2)
2872 	    delay = 200;
2873 	else
2874 	    delay = 0;
2875 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_location +
2876 	    PCIR_POWER_STATUS, 2) & ~PCIM_PSTAT_DMASK;
2877 	switch (state) {
2878 	case PCI_POWERSTATE_D0:
2879 		status |= PCIM_PSTAT_D0;
2880 		break;
2881 	case PCI_POWERSTATE_D1:
2882 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2883 			return (EOPNOTSUPP);
2884 		status |= PCIM_PSTAT_D1;
2885 		break;
2886 	case PCI_POWERSTATE_D2:
2887 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2888 			return (EOPNOTSUPP);
2889 		status |= PCIM_PSTAT_D2;
2890 		break;
2891 	case PCI_POWERSTATE_D3:
2892 		status |= PCIM_PSTAT_D3;
2893 		break;
2894 	default:
2895 		return (EINVAL);
2896 	}
2897 
2898 	if (bootverbose)
2899 		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2900 		    state);
2901 
2902 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_location + PCIR_POWER_STATUS,
2903 	    status, 2);
2904 	if (delay)
2905 		DELAY(delay);
2906 	return (0);
2907 }
2908 
2909 int
pci_get_powerstate_method(device_t dev,device_t child)2910 pci_get_powerstate_method(device_t dev, device_t child)
2911 {
2912 	struct pci_devinfo *dinfo = device_get_ivars(child);
2913 	pcicfgregs *cfg = &dinfo->cfg;
2914 	uint16_t status;
2915 	int result;
2916 
2917 	if (cfg->pp.pp_location != 0) {
2918 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_location +
2919 		    PCIR_POWER_STATUS, 2);
2920 		switch (status & PCIM_PSTAT_DMASK) {
2921 		case PCIM_PSTAT_D0:
2922 			result = PCI_POWERSTATE_D0;
2923 			break;
2924 		case PCIM_PSTAT_D1:
2925 			result = PCI_POWERSTATE_D1;
2926 			break;
2927 		case PCIM_PSTAT_D2:
2928 			result = PCI_POWERSTATE_D2;
2929 			break;
2930 		case PCIM_PSTAT_D3:
2931 			result = PCI_POWERSTATE_D3;
2932 			break;
2933 		default:
2934 			result = PCI_POWERSTATE_UNKNOWN;
2935 			break;
2936 		}
2937 	} else {
2938 		/* No support, device is always at D0 */
2939 		result = PCI_POWERSTATE_D0;
2940 	}
2941 	return (result);
2942 }
2943 
2944 /* Clear any active PME# and disable PME# generation. */
2945 void
pci_clear_pme(device_t dev)2946 pci_clear_pme(device_t dev)
2947 {
2948 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2949 	pcicfgregs *cfg = &dinfo->cfg;
2950 	uint16_t status;
2951 
2952 	if (cfg->pp.pp_location != 0) {
2953 		status = pci_read_config(dev, dinfo->cfg.pp.pp_location +
2954 		    PCIR_POWER_STATUS, 2);
2955 		status &= ~PCIM_PSTAT_PMEENABLE;
2956 		status |= PCIM_PSTAT_PME;
2957 		pci_write_config(dev, dinfo->cfg.pp.pp_location +
2958 		    PCIR_POWER_STATUS, status, 2);
2959 	}
2960 }
2961 
2962 /* Clear any active PME# and enable PME# generation. */
2963 void
pci_enable_pme(device_t dev)2964 pci_enable_pme(device_t dev)
2965 {
2966 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2967 	pcicfgregs *cfg = &dinfo->cfg;
2968 	uint16_t status;
2969 
2970 	if (cfg->pp.pp_location != 0) {
2971 		status = pci_read_config(dev, dinfo->cfg.pp.pp_location +
2972 		    PCIR_POWER_STATUS, 2);
2973 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2974 		pci_write_config(dev, dinfo->cfg.pp.pp_location +
2975 		    PCIR_POWER_STATUS, status, 2);
2976 	}
2977 }
2978 
2979 bool
pci_has_pm(device_t dev)2980 pci_has_pm(device_t dev)
2981 {
2982 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2983 	pcicfgregs *cfg = &dinfo->cfg;
2984 
2985 	return (cfg->pp.pp_location != 0);
2986 }
2987 
2988 /*
2989  * Some convenience functions for PCI device drivers.
2990  */
2991 
2992 static __inline void
pci_set_command_bit(device_t dev,device_t child,uint16_t bit)2993 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2994 {
2995 	uint16_t	command;
2996 
2997 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2998 	command |= bit;
2999 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
3000 }
3001 
3002 static __inline void
pci_clear_command_bit(device_t dev,device_t child,uint16_t bit)3003 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
3004 {
3005 	uint16_t	command;
3006 
3007 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
3008 	command &= ~bit;
3009 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
3010 }
3011 
3012 int
pci_enable_busmaster_method(device_t dev,device_t child)3013 pci_enable_busmaster_method(device_t dev, device_t child)
3014 {
3015 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
3016 	return (0);
3017 }
3018 
3019 int
pci_disable_busmaster_method(device_t dev,device_t child)3020 pci_disable_busmaster_method(device_t dev, device_t child)
3021 {
3022 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
3023 	return (0);
3024 }
3025 
3026 int
pci_enable_io_method(device_t dev,device_t child,int space)3027 pci_enable_io_method(device_t dev, device_t child, int space)
3028 {
3029 	uint16_t bit;
3030 
3031 	switch(space) {
3032 	case SYS_RES_IOPORT:
3033 		bit = PCIM_CMD_PORTEN;
3034 		break;
3035 	case SYS_RES_MEMORY:
3036 		bit = PCIM_CMD_MEMEN;
3037 		break;
3038 	default:
3039 		return (EINVAL);
3040 	}
3041 	pci_set_command_bit(dev, child, bit);
3042 	return (0);
3043 }
3044 
3045 int
pci_disable_io_method(device_t dev,device_t child,int space)3046 pci_disable_io_method(device_t dev, device_t child, int space)
3047 {
3048 	uint16_t bit;
3049 
3050 	switch(space) {
3051 	case SYS_RES_IOPORT:
3052 		bit = PCIM_CMD_PORTEN;
3053 		break;
3054 	case SYS_RES_MEMORY:
3055 		bit = PCIM_CMD_MEMEN;
3056 		break;
3057 	default:
3058 		return (EINVAL);
3059 	}
3060 	pci_clear_command_bit(dev, child, bit);
3061 	return (0);
3062 }
3063 
3064 /*
3065  * New style pci driver.  Parent device is either a pci-host-bridge or a
3066  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
3067  */
3068 
3069 void
pci_print_verbose(struct pci_devinfo * dinfo)3070 pci_print_verbose(struct pci_devinfo *dinfo)
3071 {
3072 
3073 	if (bootverbose) {
3074 		pcicfgregs *cfg = &dinfo->cfg;
3075 
3076 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
3077 		    cfg->vendor, cfg->device, cfg->revid);
3078 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
3079 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
3080 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
3081 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
3082 		    cfg->mfdev);
3083 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
3084 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
3085 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
3086 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
3087 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
3088 		if (cfg->intpin > 0)
3089 			printf("\tintpin=%c, irq=%d\n",
3090 			    cfg->intpin +'a' -1, cfg->intline);
3091 		if (cfg->pp.pp_location) {
3092 			uint16_t status;
3093 
3094 			status = pci_read_config(cfg->dev, cfg->pp.pp_location +
3095 			    PCIR_POWER_STATUS, 2);
3096 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
3097 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
3098 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
3099 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
3100 			    status & PCIM_PSTAT_DMASK);
3101 		}
3102 		if (cfg->msi.msi_location) {
3103 			uint16_t ctrl, msgnum;
3104 
3105 			ctrl = cfg->msi.msi_ctrl;
3106 			msgnum = PCI_MSI_MSGNUM(ctrl);
3107 			printf("\tMSI supports %d message%s%s%s\n",
3108 			    msgnum, (msgnum == 1) ? "" : "s",
3109 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
3110 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
3111 		}
3112 		if (cfg->msix.msix_location) {
3113 			uint16_t msgnum;
3114 
3115 			msgnum = PCI_MSIX_MSGNUM(cfg->msix.msix_ctrl);
3116 			printf("\tMSI-X supports %d message%s ",
3117 			    msgnum, (msgnum == 1) ? "" : "s");
3118 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
3119 				printf("in map 0x%x\n",
3120 				    cfg->msix.msix_table_bar);
3121 			else
3122 				printf("in maps 0x%x and 0x%x\n",
3123 				    cfg->msix.msix_table_bar,
3124 				    cfg->msix.msix_pba_bar);
3125 		}
3126 	}
3127 }
3128 
3129 static int
pci_porten(device_t dev)3130 pci_porten(device_t dev)
3131 {
3132 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3133 }
3134 
3135 static int
pci_memen(device_t dev)3136 pci_memen(device_t dev)
3137 {
3138 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3139 }
3140 
3141 void
pci_read_bar(device_t dev,int reg,pci_addr_t * mapp,pci_addr_t * testvalp,int * bar64)3142 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3143     int *bar64)
3144 {
3145 	struct pci_devinfo *dinfo;
3146 	pci_addr_t map, testval;
3147 	int ln2range;
3148 	uint16_t cmd;
3149 
3150 	/*
3151 	 * The device ROM BAR is special.  It is always a 32-bit
3152 	 * memory BAR.  Bit 0 is special and should not be set when
3153 	 * sizing the BAR.
3154 	 */
3155 	dinfo = device_get_ivars(dev);
3156 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3157 		map = pci_read_config(dev, reg, 4);
3158 		pci_write_config(dev, reg, 0xfffffffe, 4);
3159 		testval = pci_read_config(dev, reg, 4);
3160 		pci_write_config(dev, reg, map, 4);
3161 		*mapp = map;
3162 		*testvalp = testval;
3163 		if (bar64 != NULL)
3164 			*bar64 = 0;
3165 		return;
3166 	}
3167 
3168 	map = pci_read_config(dev, reg, 4);
3169 	ln2range = pci_maprange(map);
3170 	if (ln2range == 64)
3171 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3172 
3173 	/*
3174 	 * Disable decoding via the command register before
3175 	 * determining the BAR's length since we will be placing it in
3176 	 * a weird state.
3177 	 */
3178 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3179 	pci_write_config(dev, PCIR_COMMAND,
3180 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3181 
3182 	/*
3183 	 * Determine the BAR's length by writing all 1's.  The bottom
3184 	 * log_2(size) bits of the BAR will stick as 0 when we read
3185 	 * the value back.
3186 	 *
3187 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3188 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3189 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3190 	 *
3191 	 * Writes to both registers must be performed before attempting to
3192 	 * read back the size value.
3193 	 */
3194 	testval = 0;
3195 	pci_write_config(dev, reg, 0xffffffff, 4);
3196 	if (ln2range == 64) {
3197 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3198 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3199 	}
3200 	testval |= pci_read_config(dev, reg, 4);
3201 
3202 	/*
3203 	 * Restore the original value of the BAR.  We may have reprogrammed
3204 	 * the BAR of the low-level console device and when booting verbose,
3205 	 * we need the console device addressable.
3206 	 */
3207 	pci_write_config(dev, reg, map, 4);
3208 	if (ln2range == 64)
3209 		pci_write_config(dev, reg + 4, map >> 32, 4);
3210 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3211 
3212 	*mapp = map;
3213 	*testvalp = testval;
3214 	if (bar64 != NULL)
3215 		*bar64 = (ln2range == 64);
3216 }
3217 
3218 static void
pci_write_bar(device_t dev,struct pci_map * pm,pci_addr_t base)3219 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3220 {
3221 	struct pci_devinfo *dinfo;
3222 	int ln2range;
3223 
3224 	/* The device ROM BAR is always a 32-bit memory BAR. */
3225 	dinfo = device_get_ivars(dev);
3226 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3227 		ln2range = 32;
3228 	else
3229 		ln2range = pci_maprange(pm->pm_value);
3230 	pci_write_config(dev, pm->pm_reg, base, 4);
3231 	if (ln2range == 64)
3232 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3233 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3234 	if (ln2range == 64)
3235 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3236 		    pm->pm_reg + 4, 4) << 32;
3237 }
3238 
3239 struct pci_map *
pci_find_bar(device_t dev,int reg)3240 pci_find_bar(device_t dev, int reg)
3241 {
3242 	struct pci_devinfo *dinfo;
3243 	struct pci_map *pm;
3244 
3245 	dinfo = device_get_ivars(dev);
3246 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3247 		if (pm->pm_reg == reg)
3248 			return (pm);
3249 	}
3250 	return (NULL);
3251 }
3252 
3253 struct pci_map *
pci_first_bar(device_t dev)3254 pci_first_bar(device_t dev)
3255 {
3256 	struct pci_devinfo *dinfo;
3257 
3258 	dinfo = device_get_ivars(dev);
3259 	return (STAILQ_FIRST(&dinfo->cfg.maps));
3260 }
3261 
3262 struct pci_map *
pci_next_bar(struct pci_map * pm)3263 pci_next_bar(struct pci_map *pm)
3264 {
3265 	return (STAILQ_NEXT(pm, pm_link));
3266 }
3267 
3268 int
pci_bar_enabled(device_t dev,struct pci_map * pm)3269 pci_bar_enabled(device_t dev, struct pci_map *pm)
3270 {
3271 	struct pci_devinfo *dinfo;
3272 	uint16_t cmd;
3273 
3274 	dinfo = device_get_ivars(dev);
3275 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3276 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3277 		return (0);
3278 #ifdef PCI_IOV
3279 	if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
3280 		struct pcicfg_iov *iov;
3281 
3282 		iov = dinfo->cfg.iov;
3283 		cmd = pci_read_config(iov->iov_pf,
3284 		    iov->iov_pos + PCIR_SRIOV_CTL, 2);
3285 		return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
3286 	}
3287 #endif
3288 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3289 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3290 		return ((cmd & PCIM_CMD_MEMEN) != 0);
3291 	else
3292 		return ((cmd & PCIM_CMD_PORTEN) != 0);
3293 }
3294 
3295 struct pci_map *
pci_add_bar(device_t dev,int reg,pci_addr_t value,pci_addr_t size)3296 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3297 {
3298 	struct pci_devinfo *dinfo;
3299 	struct pci_map *pm, *prev;
3300 
3301 	dinfo = device_get_ivars(dev);
3302 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3303 	pm->pm_reg = reg;
3304 	pm->pm_value = value;
3305 	pm->pm_size = size;
3306 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3307 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3308 		    reg));
3309 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3310 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3311 			break;
3312 	}
3313 	if (prev != NULL)
3314 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3315 	else
3316 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3317 	return (pm);
3318 }
3319 
3320 static void
pci_restore_bars(device_t dev)3321 pci_restore_bars(device_t dev)
3322 {
3323 	struct pci_devinfo *dinfo;
3324 	struct pci_map *pm;
3325 	int ln2range;
3326 
3327 	dinfo = device_get_ivars(dev);
3328 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3329 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3330 			ln2range = 32;
3331 		else
3332 			ln2range = pci_maprange(pm->pm_value);
3333 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3334 		if (ln2range == 64)
3335 			pci_write_config(dev, pm->pm_reg + 4,
3336 			    pm->pm_value >> 32, 4);
3337 	}
3338 }
3339 
3340 /*
3341  * Add a resource based on a pci map register. Return 1 if the map
3342  * register is a 32bit map register or 2 if it is a 64bit register.
3343  */
3344 static int
pci_add_map(device_t bus,device_t dev,int reg,struct resource_list * rl,int force,int prefetch)3345 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3346     int force, int prefetch)
3347 {
3348 	struct pci_map *pm;
3349 	pci_addr_t base, map, testval;
3350 	pci_addr_t start, end, count;
3351 	int barlen, basezero, flags, maprange, mapsize, type;
3352 	uint16_t cmd;
3353 	struct resource *res;
3354 
3355 	/*
3356 	 * The BAR may already exist if the device is a CardBus card
3357 	 * whose CIS is stored in this BAR.
3358 	 */
3359 	pm = pci_find_bar(dev, reg);
3360 	if (pm != NULL) {
3361 		maprange = pci_maprange(pm->pm_value);
3362 		barlen = maprange == 64 ? 2 : 1;
3363 		return (barlen);
3364 	}
3365 
3366 	pci_read_bar(dev, reg, &map, &testval, NULL);
3367 	if (PCI_BAR_MEM(map)) {
3368 		type = SYS_RES_MEMORY;
3369 		if (map & PCIM_BAR_MEM_PREFETCH)
3370 			prefetch = 1;
3371 	} else
3372 		type = SYS_RES_IOPORT;
3373 	mapsize = pci_mapsize(testval);
3374 	base = pci_mapbase(map);
3375 #ifdef __PCI_BAR_ZERO_VALID
3376 	basezero = 0;
3377 #else
3378 	basezero = base == 0;
3379 #endif
3380 	maprange = pci_maprange(map);
3381 	barlen = maprange == 64 ? 2 : 1;
3382 
3383 	/*
3384 	 * For I/O registers, if bottom bit is set, and the next bit up
3385 	 * isn't clear, we know we have a BAR that doesn't conform to the
3386 	 * spec, so ignore it.  Also, sanity check the size of the data
3387 	 * areas to the type of memory involved.  Memory must be at least
3388 	 * 16 bytes in size, while I/O ranges must be at least 4.
3389 	 */
3390 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3391 		return (barlen);
3392 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3393 	    (type == SYS_RES_IOPORT && mapsize < 2))
3394 		return (barlen);
3395 
3396 	/* Save a record of this BAR. */
3397 	pm = pci_add_bar(dev, reg, map, mapsize);
3398 	if (bootverbose) {
3399 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3400 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3401 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3402 			printf(", port disabled\n");
3403 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3404 			printf(", memory disabled\n");
3405 		else
3406 			printf(", enabled\n");
3407 	}
3408 
3409 	/*
3410 	 * If base is 0, then we have problems if this architecture does
3411 	 * not allow that.  It is best to ignore such entries for the
3412 	 * moment.  These will be allocated later if the driver specifically
3413 	 * requests them.  However, some removable buses look better when
3414 	 * all resources are allocated, so allow '0' to be overridden.
3415 	 *
3416 	 * Similarly treat maps whose values is the same as the test value
3417 	 * read back.  These maps have had all f's written to them by the
3418 	 * BIOS in an attempt to disable the resources.
3419 	 */
3420 	if (!force && (basezero || map == testval))
3421 		return (barlen);
3422 	if ((u_long)base != base) {
3423 		device_printf(bus,
3424 		    "pci%d:%d:%d:%d bar %#x too many address bits",
3425 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3426 		    pci_get_function(dev), reg);
3427 		return (barlen);
3428 	}
3429 
3430 	/*
3431 	 * This code theoretically does the right thing, but has
3432 	 * undesirable side effects in some cases where peripherals
3433 	 * respond oddly to having these bits enabled.  Let the user
3434 	 * be able to turn them off (since pci_enable_io_modes is 1 by
3435 	 * default).
3436 	 */
3437 	if (pci_enable_io_modes) {
3438 		/* Turn on resources that have been left off by a lazy BIOS */
3439 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3440 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3441 			cmd |= PCIM_CMD_PORTEN;
3442 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3443 		}
3444 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3445 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3446 			cmd |= PCIM_CMD_MEMEN;
3447 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3448 		}
3449 	} else {
3450 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3451 			return (barlen);
3452 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3453 			return (barlen);
3454 	}
3455 
3456 	count = (pci_addr_t)1 << mapsize;
3457 	flags = RF_ALIGNMENT_LOG2(mapsize);
3458 	if (prefetch)
3459 		flags |= RF_PREFETCHABLE;
3460 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3461 		start = 0;	/* Let the parent decide. */
3462 		end = ~0;
3463 	} else {
3464 		start = base;
3465 		end = base + count - 1;
3466 	}
3467 	resource_list_add(rl, type, reg, start, end, count);
3468 
3469 	/*
3470 	 * Try to allocate the resource for this BAR from our parent
3471 	 * so that this resource range is already reserved.  The
3472 	 * driver for this device will later inherit this resource in
3473 	 * pci_alloc_resource().
3474 	 */
3475 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3476 	    flags);
3477 	if ((pci_do_realloc_bars
3478 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3479 	    && res == NULL && (start != 0 || end != ~0)) {
3480 		/*
3481 		 * If the allocation fails, try to allocate a resource for
3482 		 * this BAR using any available range.  The firmware felt
3483 		 * it was important enough to assign a resource, so don't
3484 		 * disable decoding if we can help it.
3485 		 */
3486 		resource_list_delete(rl, type, reg);
3487 		resource_list_add(rl, type, reg, 0, ~0, count);
3488 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3489 		    count, flags);
3490 	}
3491 	if (res == NULL) {
3492 		/*
3493 		 * If the allocation fails, delete the resource list entry
3494 		 * and disable decoding for this device.
3495 		 *
3496 		 * If the driver requests this resource in the future,
3497 		 * pci_reserve_map() will try to allocate a fresh
3498 		 * resource range.
3499 		 */
3500 		resource_list_delete(rl, type, reg);
3501 		pci_disable_io(dev, type);
3502 		if (bootverbose)
3503 			device_printf(bus,
3504 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3505 			    pci_get_domain(dev), pci_get_bus(dev),
3506 			    pci_get_slot(dev), pci_get_function(dev), reg);
3507 	} else {
3508 		start = rman_get_start(res);
3509 		pci_write_bar(dev, pm, start);
3510 	}
3511 	return (barlen);
3512 }
3513 
3514 /*
3515  * For ATA devices we need to decide early what addressing mode to use.
3516  * Legacy demands that the primary and secondary ATA ports sits on the
3517  * same addresses that old ISA hardware did. This dictates that we use
3518  * those addresses and ignore the BAR's if we cannot set PCI native
3519  * addressing mode.
3520  */
3521 static void
pci_ata_maps(device_t bus,device_t dev,struct resource_list * rl,int force,uint32_t prefetchmask)3522 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3523     uint32_t prefetchmask)
3524 {
3525 	int rid, type, progif;
3526 #if 0
3527 	/* if this device supports PCI native addressing use it */
3528 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3529 	if ((progif & 0x8a) == 0x8a) {
3530 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3531 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3532 			printf("Trying ATA native PCI addressing mode\n");
3533 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3534 		}
3535 	}
3536 #endif
3537 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3538 	type = SYS_RES_IOPORT;
3539 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3540 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3541 		    prefetchmask & (1 << 0));
3542 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3543 		    prefetchmask & (1 << 1));
3544 	} else {
3545 		rid = PCIR_BAR(0);
3546 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3547 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3548 		    0x1f7, 8, 0);
3549 		rid = PCIR_BAR(1);
3550 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3551 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3552 		    0x3f6, 1, 0);
3553 	}
3554 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3555 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3556 		    prefetchmask & (1 << 2));
3557 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3558 		    prefetchmask & (1 << 3));
3559 	} else {
3560 		rid = PCIR_BAR(2);
3561 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3562 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3563 		    0x177, 8, 0);
3564 		rid = PCIR_BAR(3);
3565 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3566 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3567 		    0x376, 1, 0);
3568 	}
3569 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3570 	    prefetchmask & (1 << 4));
3571 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3572 	    prefetchmask & (1 << 5));
3573 }
3574 
3575 static void
pci_assign_interrupt(device_t bus,device_t dev,int force_route)3576 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3577 {
3578 	struct pci_devinfo *dinfo = device_get_ivars(dev);
3579 	pcicfgregs *cfg = &dinfo->cfg;
3580 	char tunable_name[64];
3581 	int irq;
3582 
3583 	/* Has to have an intpin to have an interrupt. */
3584 	if (cfg->intpin == 0)
3585 		return;
3586 
3587 	/* Let the user override the IRQ with a tunable. */
3588 	irq = PCI_INVALID_IRQ;
3589 	snprintf(tunable_name, sizeof(tunable_name),
3590 	    "hw.pci%d.%d.%d.INT%c.irq",
3591 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3592 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3593 		irq = PCI_INVALID_IRQ;
3594 
3595 	/*
3596 	 * If we didn't get an IRQ via the tunable, then we either use the
3597 	 * IRQ value in the intline register or we ask the bus to route an
3598 	 * interrupt for us.  If force_route is true, then we only use the
3599 	 * value in the intline register if the bus was unable to assign an
3600 	 * IRQ.
3601 	 */
3602 	if (!PCI_INTERRUPT_VALID(irq)) {
3603 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3604 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3605 		if (!PCI_INTERRUPT_VALID(irq))
3606 			irq = cfg->intline;
3607 	}
3608 
3609 	/* If after all that we don't have an IRQ, just bail. */
3610 	if (!PCI_INTERRUPT_VALID(irq))
3611 		return;
3612 
3613 	/* Update the config register if it changed. */
3614 	if (irq != cfg->intline) {
3615 		cfg->intline = irq;
3616 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3617 	}
3618 
3619 	/* Add this IRQ as rid 0 interrupt resource. */
3620 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3621 }
3622 
3623 /* Perform early OHCI takeover from SMM. */
3624 static void
ohci_early_takeover(device_t self)3625 ohci_early_takeover(device_t self)
3626 {
3627 	struct resource *res;
3628 	uint32_t ctl;
3629 	int rid;
3630 	int i;
3631 
3632 	rid = PCIR_BAR(0);
3633 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3634 	if (res == NULL)
3635 		return;
3636 
3637 	ctl = bus_read_4(res, OHCI_CONTROL);
3638 	if (ctl & OHCI_IR) {
3639 		if (bootverbose)
3640 			printf("ohci early: "
3641 			    "SMM active, request owner change\n");
3642 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3643 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3644 			DELAY(1000);
3645 			ctl = bus_read_4(res, OHCI_CONTROL);
3646 		}
3647 		if (ctl & OHCI_IR) {
3648 			if (bootverbose)
3649 				printf("ohci early: "
3650 				    "SMM does not respond, resetting\n");
3651 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3652 		}
3653 		/* Disable interrupts */
3654 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3655 	}
3656 
3657 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3658 }
3659 
3660 /* Perform early UHCI takeover from SMM. */
3661 static void
uhci_early_takeover(device_t self)3662 uhci_early_takeover(device_t self)
3663 {
3664 	struct resource *res;
3665 	int rid;
3666 
3667 	/*
3668 	 * Set the PIRQD enable bit and switch off all the others. We don't
3669 	 * want legacy support to interfere with us XXX Does this also mean
3670 	 * that the BIOS won't touch the keyboard anymore if it is connected
3671 	 * to the ports of the root hub?
3672 	 */
3673 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3674 
3675 	/* Disable interrupts */
3676 	rid = PCI_UHCI_BASE_REG;
3677 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3678 	if (res != NULL) {
3679 		bus_write_2(res, UHCI_INTR, 0);
3680 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3681 	}
3682 }
3683 
3684 /* Perform early EHCI takeover from SMM. */
3685 static void
ehci_early_takeover(device_t self)3686 ehci_early_takeover(device_t self)
3687 {
3688 	struct resource *res;
3689 	uint32_t cparams;
3690 	uint32_t eec;
3691 	uint8_t eecp;
3692 	uint8_t bios_sem;
3693 	uint8_t offs;
3694 	int rid;
3695 	int i;
3696 
3697 	rid = PCIR_BAR(0);
3698 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3699 	if (res == NULL)
3700 		return;
3701 
3702 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3703 
3704 	/* Synchronise with the BIOS if it owns the controller. */
3705 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3706 	    eecp = EHCI_EECP_NEXT(eec)) {
3707 		eec = pci_read_config(self, eecp, 4);
3708 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3709 			continue;
3710 		}
3711 		bios_sem = pci_read_config(self, eecp +
3712 		    EHCI_LEGSUP_BIOS_SEM, 1);
3713 		if (bios_sem == 0) {
3714 			continue;
3715 		}
3716 		if (bootverbose)
3717 			printf("ehci early: "
3718 			    "SMM active, request owner change\n");
3719 
3720 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3721 
3722 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3723 			DELAY(1000);
3724 			bios_sem = pci_read_config(self, eecp +
3725 			    EHCI_LEGSUP_BIOS_SEM, 1);
3726 		}
3727 
3728 		if (bios_sem != 0) {
3729 			if (bootverbose)
3730 				printf("ehci early: "
3731 				    "SMM does not respond\n");
3732 		}
3733 		/* Disable interrupts */
3734 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3735 		bus_write_4(res, offs + EHCI_USBINTR, 0);
3736 	}
3737 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3738 }
3739 
3740 /* Perform early XHCI takeover from SMM. */
3741 static void
xhci_early_takeover(device_t self)3742 xhci_early_takeover(device_t self)
3743 {
3744 	struct resource *res;
3745 	uint32_t cparams;
3746 	uint32_t eec;
3747 	uint8_t eecp;
3748 	uint8_t bios_sem;
3749 	uint8_t offs;
3750 	int rid;
3751 	int i;
3752 
3753 	rid = PCIR_BAR(0);
3754 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3755 	if (res == NULL)
3756 		return;
3757 
3758 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3759 
3760 	eec = -1;
3761 
3762 	/* Synchronise with the BIOS if it owns the controller. */
3763 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3764 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3765 		eec = bus_read_4(res, eecp);
3766 
3767 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3768 			continue;
3769 
3770 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3771 		if (bios_sem == 0)
3772 			continue;
3773 
3774 		if (bootverbose)
3775 			printf("xhci early: "
3776 			    "SMM active, request owner change\n");
3777 
3778 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3779 
3780 		/* wait a maximum of 5 second */
3781 
3782 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3783 			DELAY(1000);
3784 			bios_sem = bus_read_1(res, eecp +
3785 			    XHCI_XECP_BIOS_SEM);
3786 		}
3787 
3788 		if (bios_sem != 0) {
3789 			if (bootverbose)
3790 				printf("xhci early: "
3791 				    "SMM does not respond\n");
3792 		}
3793 
3794 		/* Disable interrupts */
3795 		offs = bus_read_1(res, XHCI_CAPLENGTH);
3796 		bus_write_4(res, offs + XHCI_USBCMD, 0);
3797 		bus_read_4(res, offs + XHCI_USBSTS);
3798 	}
3799 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3800 }
3801 
3802 static void
pci_reserve_secbus(device_t bus,device_t dev,pcicfgregs * cfg,struct resource_list * rl)3803 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3804     struct resource_list *rl)
3805 {
3806 	struct resource *res;
3807 	char *cp;
3808 	rman_res_t start, end, count;
3809 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3810 
3811 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3812 	case PCIM_HDRTYPE_BRIDGE:
3813 		sec_reg = PCIR_SECBUS_1;
3814 		sub_reg = PCIR_SUBBUS_1;
3815 		break;
3816 	case PCIM_HDRTYPE_CARDBUS:
3817 		sec_reg = PCIR_SECBUS_2;
3818 		sub_reg = PCIR_SUBBUS_2;
3819 		break;
3820 	default:
3821 		return;
3822 	}
3823 
3824 	/*
3825 	 * If the existing bus range is valid, attempt to reserve it
3826 	 * from our parent.  If this fails for any reason, clear the
3827 	 * secbus and subbus registers.
3828 	 *
3829 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3830 	 * This would at least preserve the existing sec_bus if it is
3831 	 * valid.
3832 	 */
3833 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3834 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3835 
3836 	/* Quirk handling. */
3837 	switch (pci_get_devid(dev)) {
3838 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3839 		sup_bus = pci_read_config(dev, 0x41, 1);
3840 		if (sup_bus != 0xff) {
3841 			sec_bus = sup_bus + 1;
3842 			sub_bus = sup_bus + 1;
3843 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3844 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3845 		}
3846 		break;
3847 
3848 	case 0x00dd10de:
3849 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3850 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3851 			break;
3852 		if (strncmp(cp, "Compal", 6) != 0) {
3853 			freeenv(cp);
3854 			break;
3855 		}
3856 		freeenv(cp);
3857 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3858 			break;
3859 		if (strncmp(cp, "08A0", 4) != 0) {
3860 			freeenv(cp);
3861 			break;
3862 		}
3863 		freeenv(cp);
3864 		if (sub_bus < 0xa) {
3865 			sub_bus = 0xa;
3866 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3867 		}
3868 		break;
3869 	}
3870 
3871 	if (bootverbose)
3872 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3873 	if (sec_bus > 0 && sub_bus >= sec_bus) {
3874 		start = sec_bus;
3875 		end = sub_bus;
3876 		count = end - start + 1;
3877 
3878 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3879 
3880 		/*
3881 		 * If requested, clear secondary bus registers in
3882 		 * bridge devices to force a complete renumbering
3883 		 * rather than reserving the existing range.  However,
3884 		 * preserve the existing size.
3885 		 */
3886 		if (pci_clear_buses)
3887 			goto clear;
3888 
3889 		rid = 0;
3890 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3891 		    start, end, count, 0);
3892 		if (res != NULL)
3893 			return;
3894 
3895 		if (bootverbose)
3896 			device_printf(bus,
3897 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3898 			    pci_get_domain(dev), pci_get_bus(dev),
3899 			    pci_get_slot(dev), pci_get_function(dev));
3900 	}
3901 
3902 clear:
3903 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3904 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3905 }
3906 
3907 static struct resource *
pci_alloc_secbus(device_t dev,device_t child,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3908 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3909     rman_res_t end, rman_res_t count, u_int flags)
3910 {
3911 	struct pci_devinfo *dinfo;
3912 	pcicfgregs *cfg;
3913 	struct resource_list *rl;
3914 	struct resource *res;
3915 	int sec_reg, sub_reg;
3916 
3917 	dinfo = device_get_ivars(child);
3918 	cfg = &dinfo->cfg;
3919 	rl = &dinfo->resources;
3920 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3921 	case PCIM_HDRTYPE_BRIDGE:
3922 		sec_reg = PCIR_SECBUS_1;
3923 		sub_reg = PCIR_SUBBUS_1;
3924 		break;
3925 	case PCIM_HDRTYPE_CARDBUS:
3926 		sec_reg = PCIR_SECBUS_2;
3927 		sub_reg = PCIR_SUBBUS_2;
3928 		break;
3929 	default:
3930 		return (NULL);
3931 	}
3932 
3933 	if (*rid != 0)
3934 		return (NULL);
3935 
3936 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3937 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3938 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3939 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3940 		    start, end, count, flags & ~RF_ACTIVE);
3941 		if (res == NULL) {
3942 			resource_list_delete(rl, PCI_RES_BUS, *rid);
3943 			device_printf(child, "allocating %ju bus%s failed\n",
3944 			    count, count == 1 ? "" : "es");
3945 			return (NULL);
3946 		}
3947 		if (bootverbose)
3948 			device_printf(child,
3949 			    "Lazy allocation of %ju bus%s at %ju\n", count,
3950 			    count == 1 ? "" : "es", rman_get_start(res));
3951 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3952 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3953 	}
3954 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3955 	    end, count, flags));
3956 }
3957 
3958 static int
pci_ea_bei_to_rid(device_t dev,int bei)3959 pci_ea_bei_to_rid(device_t dev, int bei)
3960 {
3961 #ifdef PCI_IOV
3962 	struct pci_devinfo *dinfo;
3963 	int iov_pos;
3964 	struct pcicfg_iov *iov;
3965 
3966 	dinfo = device_get_ivars(dev);
3967 	iov = dinfo->cfg.iov;
3968 	if (iov != NULL)
3969 		iov_pos = iov->iov_pos;
3970 	else
3971 		iov_pos = 0;
3972 #endif
3973 
3974 	/* Check if matches BAR */
3975 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3976 	    (bei <= PCIM_EA_BEI_BAR_5))
3977 		return (PCIR_BAR(bei));
3978 
3979 	/* Check ROM */
3980 	if (bei == PCIM_EA_BEI_ROM)
3981 		return (PCIR_BIOS);
3982 
3983 #ifdef PCI_IOV
3984 	/* Check if matches VF_BAR */
3985 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3986 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3987 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3988 		    iov_pos);
3989 #endif
3990 
3991 	return (-1);
3992 }
3993 
3994 int
pci_ea_is_enabled(device_t dev,int rid)3995 pci_ea_is_enabled(device_t dev, int rid)
3996 {
3997 	struct pci_ea_entry *ea;
3998 	struct pci_devinfo *dinfo;
3999 
4000 	dinfo = device_get_ivars(dev);
4001 
4002 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
4003 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
4004 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
4005 	}
4006 
4007 	return (0);
4008 }
4009 
4010 void
pci_add_resources_ea(device_t bus,device_t dev,int alloc_iov)4011 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
4012 {
4013 	struct pci_ea_entry *ea;
4014 	struct pci_devinfo *dinfo;
4015 	pci_addr_t start, end, count;
4016 	struct resource_list *rl;
4017 	int type, flags, rid;
4018 	struct resource *res;
4019 	uint32_t tmp;
4020 #ifdef PCI_IOV
4021 	struct pcicfg_iov *iov;
4022 #endif
4023 
4024 	dinfo = device_get_ivars(dev);
4025 	rl = &dinfo->resources;
4026 	flags = 0;
4027 
4028 #ifdef PCI_IOV
4029 	iov = dinfo->cfg.iov;
4030 #endif
4031 
4032 	if (dinfo->cfg.ea.ea_location == 0)
4033 		return;
4034 
4035 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
4036 		/*
4037 		 * TODO: Ignore EA-BAR if is not enabled.
4038 		 *   Currently the EA implementation supports
4039 		 *   only situation, where EA structure contains
4040 		 *   predefined entries. In case they are not enabled
4041 		 *   leave them unallocated and proceed with
4042 		 *   a legacy-BAR mechanism.
4043 		 */
4044 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
4045 			continue;
4046 
4047 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
4048 		case PCIM_EA_P_MEM_PREFETCH:
4049 		case PCIM_EA_P_VF_MEM_PREFETCH:
4050 			flags = RF_PREFETCHABLE;
4051 			/* FALLTHROUGH */
4052 		case PCIM_EA_P_VF_MEM:
4053 		case PCIM_EA_P_MEM:
4054 			type = SYS_RES_MEMORY;
4055 			break;
4056 		case PCIM_EA_P_IO:
4057 			type = SYS_RES_IOPORT;
4058 			break;
4059 		default:
4060 			continue;
4061 		}
4062 
4063 		if (alloc_iov != 0) {
4064 #ifdef PCI_IOV
4065 			/* Allocating IOV, confirm BEI matches */
4066 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
4067 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
4068 				continue;
4069 #else
4070 			continue;
4071 #endif
4072 		} else {
4073 			/* Allocating BAR, confirm BEI matches */
4074 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
4075 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
4076 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
4077 				continue;
4078 		}
4079 
4080 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
4081 		if (rid < 0)
4082 			continue;
4083 
4084 		/* Skip resources already allocated by EA */
4085 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
4086 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
4087 			continue;
4088 
4089 		start = ea->eae_base;
4090 		count = ea->eae_max_offset + 1;
4091 #ifdef PCI_IOV
4092 		if (iov != NULL)
4093 			count = count * iov->iov_num_vfs;
4094 #endif
4095 		end = start + count - 1;
4096 		if (count == 0)
4097 			continue;
4098 
4099 		resource_list_add(rl, type, rid, start, end, count);
4100 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
4101 		    flags);
4102 		if (res == NULL) {
4103 			resource_list_delete(rl, type, rid);
4104 
4105 			/*
4106 			 * Failed to allocate using EA, disable entry.
4107 			 * Another attempt to allocation will be performed
4108 			 * further, but this time using legacy BAR registers
4109 			 */
4110 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
4111 			tmp &= ~PCIM_EA_ENABLE;
4112 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
4113 
4114 			/*
4115 			 * Disabling entry might fail in case it is hardwired.
4116 			 * Read flags again to match current status.
4117 			 */
4118 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
4119 
4120 			continue;
4121 		}
4122 
4123 		/* As per specification, fill BAR with zeros */
4124 		pci_write_config(dev, rid, 0, 4);
4125 	}
4126 }
4127 
4128 void
pci_add_resources(device_t bus,device_t dev,int force,uint32_t prefetchmask)4129 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
4130 {
4131 	struct pci_devinfo *dinfo;
4132 	pcicfgregs *cfg;
4133 	struct resource_list *rl;
4134 	const struct pci_quirk *q;
4135 	uint32_t devid;
4136 	int i;
4137 
4138 	dinfo = device_get_ivars(dev);
4139 	cfg = &dinfo->cfg;
4140 	rl = &dinfo->resources;
4141 	devid = (cfg->device << 16) | cfg->vendor;
4142 
4143 	/* Allocate resources using Enhanced Allocation */
4144 	pci_add_resources_ea(bus, dev, 0);
4145 
4146 	/* ATA devices needs special map treatment */
4147 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
4148 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4149 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4150 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4151 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
4152 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
4153 	else
4154 		for (i = 0; i < cfg->nummaps;) {
4155 			/* Skip resources already managed by EA */
4156 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4157 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4158 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4159 				i++;
4160 				continue;
4161 			}
4162 
4163 			/*
4164 			 * Skip quirked resources.
4165 			 */
4166 			for (q = &pci_quirks[0]; q->devid != 0; q++)
4167 				if (q->devid == devid &&
4168 				    q->type == PCI_QUIRK_UNMAP_REG &&
4169 				    q->arg1 == PCIR_BAR(i))
4170 					break;
4171 			if (q->devid != 0) {
4172 				i++;
4173 				continue;
4174 			}
4175 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4176 			    prefetchmask & (1 << i));
4177 		}
4178 
4179 	/*
4180 	 * Add additional, quirked resources.
4181 	 */
4182 	for (q = &pci_quirks[0]; q->devid != 0; q++)
4183 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4184 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4185 
4186 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline) &&
4187 	    pci_intx_reroute) {
4188 		/*
4189 		 * Try to re-route interrupts. Sometimes the BIOS or
4190 		 * firmware may leave bogus values in these registers.
4191 		 * If the re-route fails, then just stick with what we
4192 		 * have.
4193 		 */
4194 		pci_assign_interrupt(bus, dev, 1);
4195 	}
4196 
4197 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4198 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4199 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4200 			xhci_early_takeover(dev);
4201 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4202 			ehci_early_takeover(dev);
4203 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4204 			ohci_early_takeover(dev);
4205 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4206 			uhci_early_takeover(dev);
4207 	}
4208 
4209 	/*
4210 	 * Reserve resources for secondary bus ranges behind bridge
4211 	 * devices.
4212 	 */
4213 	pci_reserve_secbus(bus, dev, cfg, rl);
4214 }
4215 
4216 static struct pci_devinfo *
pci_identify_function(device_t pcib,device_t dev,int domain,int busno,int slot,int func)4217 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4218     int slot, int func)
4219 {
4220 	struct pci_devinfo *dinfo;
4221 
4222 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4223 	if (dinfo != NULL)
4224 		pci_add_child(dev, dinfo);
4225 
4226 	return (dinfo);
4227 }
4228 
4229 void
pci_add_children(device_t dev,int domain,int busno)4230 pci_add_children(device_t dev, int domain, int busno)
4231 {
4232 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4233 	device_t pcib = device_get_parent(dev);
4234 	struct pci_devinfo *dinfo;
4235 	int maxslots;
4236 	int s, f, pcifunchigh;
4237 	uint8_t hdrtype;
4238 	int first_func;
4239 
4240 	/*
4241 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4242 	 * enable ARI.  We must enable ARI before detecting the rest of the
4243 	 * functions on this bus as ARI changes the set of slots and functions
4244 	 * that are legal on this bus.
4245 	 */
4246 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4247 	if (dinfo != NULL && pci_enable_ari)
4248 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4249 
4250 	/*
4251 	 * Start looking for new devices on slot 0 at function 1 because we
4252 	 * just identified the device at slot 0, function 0.
4253 	 */
4254 	first_func = 1;
4255 
4256 	maxslots = PCIB_MAXSLOTS(pcib);
4257 	for (s = 0; s <= maxslots; s++, first_func = 0) {
4258 		pcifunchigh = 0;
4259 		f = 0;
4260 		DELAY(1);
4261 
4262 		/* If function 0 is not present, skip to the next slot. */
4263 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4264 			continue;
4265 		hdrtype = REG(PCIR_HDRTYPE, 1);
4266 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4267 			continue;
4268 		if (hdrtype & PCIM_MFDEV)
4269 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4270 		for (f = first_func; f <= pcifunchigh; f++)
4271 			pci_identify_function(pcib, dev, domain, busno, s, f);
4272 	}
4273 #undef REG
4274 }
4275 
4276 int
pci_rescan_method(device_t dev)4277 pci_rescan_method(device_t dev)
4278 {
4279 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4280 	device_t pcib = device_get_parent(dev);
4281 	device_t child, *devlist, *unchanged;
4282 	int devcount, error, i, j, maxslots, oldcount;
4283 	int busno, domain, s, f, pcifunchigh;
4284 	uint8_t hdrtype;
4285 
4286 	/* No need to check for ARI on a rescan. */
4287 	error = device_get_children(dev, &devlist, &devcount);
4288 	if (error)
4289 		return (error);
4290 	if (devcount != 0) {
4291 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4292 		    M_NOWAIT | M_ZERO);
4293 		if (unchanged == NULL) {
4294 			free(devlist, M_TEMP);
4295 			return (ENOMEM);
4296 		}
4297 	} else
4298 		unchanged = NULL;
4299 
4300 	domain = pcib_get_domain(dev);
4301 	busno = pcib_get_bus(dev);
4302 	maxslots = PCIB_MAXSLOTS(pcib);
4303 	for (s = 0; s <= maxslots; s++) {
4304 		/* If function 0 is not present, skip to the next slot. */
4305 		f = 0;
4306 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4307 			continue;
4308 		pcifunchigh = 0;
4309 		hdrtype = REG(PCIR_HDRTYPE, 1);
4310 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4311 			continue;
4312 		if (hdrtype & PCIM_MFDEV)
4313 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4314 		for (f = 0; f <= pcifunchigh; f++) {
4315 			if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4316 				continue;
4317 
4318 			/*
4319 			 * Found a valid function.  Check if a
4320 			 * device_t for this device already exists.
4321 			 */
4322 			for (i = 0; i < devcount; i++) {
4323 				child = devlist[i];
4324 				if (child == NULL)
4325 					continue;
4326 				if (pci_get_slot(child) == s &&
4327 				    pci_get_function(child) == f) {
4328 					unchanged[i] = child;
4329 					goto next_func;
4330 				}
4331 			}
4332 
4333 			pci_identify_function(pcib, dev, domain, busno, s, f);
4334 		next_func:;
4335 		}
4336 	}
4337 
4338 	/* Remove devices that are no longer present. */
4339 	for (i = 0; i < devcount; i++) {
4340 		if (unchanged[i] != NULL)
4341 			continue;
4342 		device_delete_child(dev, devlist[i]);
4343 	}
4344 
4345 	free(devlist, M_TEMP);
4346 	oldcount = devcount;
4347 
4348 	/* Try to attach the devices just added. */
4349 	error = device_get_children(dev, &devlist, &devcount);
4350 	if (error) {
4351 		free(unchanged, M_TEMP);
4352 		return (error);
4353 	}
4354 
4355 	for (i = 0; i < devcount; i++) {
4356 		for (j = 0; j < oldcount; j++) {
4357 			if (devlist[i] == unchanged[j])
4358 				goto next_device;
4359 		}
4360 
4361 		device_probe_and_attach(devlist[i]);
4362 	next_device:;
4363 	}
4364 
4365 	free(unchanged, M_TEMP);
4366 	free(devlist, M_TEMP);
4367 	return (0);
4368 #undef REG
4369 }
4370 
4371 #ifdef PCI_IOV
4372 device_t
pci_add_iov_child(device_t bus,device_t pf,uint16_t rid,uint16_t vid,uint16_t did)4373 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4374     uint16_t did)
4375 {
4376 	struct pci_devinfo *vf_dinfo;
4377 	device_t pcib;
4378 	int busno, slot, func;
4379 
4380 	pcib = device_get_parent(bus);
4381 
4382 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4383 
4384 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4385 	    slot, func, vid, did);
4386 
4387 	vf_dinfo->cfg.flags |= PCICFG_VF;
4388 	pci_add_child(bus, vf_dinfo);
4389 
4390 	return (vf_dinfo->cfg.dev);
4391 }
4392 
4393 device_t
pci_create_iov_child_method(device_t bus,device_t pf,uint16_t rid,uint16_t vid,uint16_t did)4394 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4395     uint16_t vid, uint16_t did)
4396 {
4397 
4398 	return (pci_add_iov_child(bus, pf, rid, vid, did));
4399 }
4400 #endif
4401 
4402 /*
4403  * For PCIe device set Max_Payload_Size to match PCIe root's.
4404  */
4405 static void
pcie_setup_mps(device_t dev)4406 pcie_setup_mps(device_t dev)
4407 {
4408 	struct pci_devinfo *dinfo = device_get_ivars(dev);
4409 	device_t root;
4410 	uint16_t rmps, mmps, mps;
4411 
4412 	if (dinfo->cfg.pcie.pcie_location == 0)
4413 		return;
4414 	root = pci_find_pcie_root_port(dev);
4415 	if (root == NULL)
4416 		return;
4417 	/* Check whether the MPS is already configured. */
4418 	rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
4419 	    PCIEM_CTL_MAX_PAYLOAD;
4420 	mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
4421 	    PCIEM_CTL_MAX_PAYLOAD;
4422 	if (mps == rmps)
4423 		return;
4424 	/* Check whether the device is capable of the root's MPS. */
4425 	mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
4426 	    PCIEM_CAP_MAX_PAYLOAD) << 5;
4427 	if (rmps > mmps) {
4428 		/*
4429 		 * The device is unable to handle root's MPS.  Limit root.
4430 		 * XXX: We should traverse through all the tree, applying
4431 		 * it to all the devices.
4432 		 */
4433 		pcie_adjust_config(root, PCIER_DEVICE_CTL,
4434 		    PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
4435 	} else {
4436 		pcie_adjust_config(dev, PCIER_DEVICE_CTL,
4437 		    PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
4438 	}
4439 }
4440 
4441 static void
pci_add_child_clear_aer(device_t dev,struct pci_devinfo * dinfo)4442 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4443 {
4444 	int aer;
4445 	uint32_t r;
4446 	uint16_t r2;
4447 
4448 	if (dinfo->cfg.pcie.pcie_location != 0 &&
4449 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4450 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4451 		    PCIER_ROOT_CTL, 2);
4452 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4453 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4454 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4455 		    PCIER_ROOT_CTL, r2, 2);
4456 	}
4457 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4458 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4459 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4460 		if (r != 0 && bootverbose) {
4461 			pci_printf(&dinfo->cfg,
4462 			    "clearing AER UC 0x%08x -> 0x%08x\n",
4463 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4464 			    4));
4465 		}
4466 
4467 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4468 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4469 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4470 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4471 		    PCIM_AER_UC_POISONED_TLP |
4472 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4473 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4474 		    PCIM_AER_UC_COMPLETER_ABORT |
4475 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4476 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4477 		    PCIM_AER_UC_MALFORMED_TLP |
4478 		    PCIM_AER_UC_ECRC_ERROR |
4479 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4480 		    PCIM_AER_UC_ACS_VIOLATION |
4481 		    PCIM_AER_UC_INTERNAL_ERROR |
4482 		    PCIM_AER_UC_MC_BLOCKED_TLP |
4483 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4484 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4485 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4486 
4487 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4488 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4489 		if (r != 0 && bootverbose) {
4490 			pci_printf(&dinfo->cfg,
4491 			    "clearing AER COR 0x%08x -> 0x%08x\n",
4492 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4493 			    4));
4494 		}
4495 
4496 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4497 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4498 		    PCIM_AER_COR_BAD_TLP |
4499 		    PCIM_AER_COR_BAD_DLLP |
4500 		    PCIM_AER_COR_REPLAY_ROLLOVER |
4501 		    PCIM_AER_COR_REPLAY_TIMEOUT |
4502 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4503 		    PCIM_AER_COR_INTERNAL_ERROR |
4504 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4505 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4506 
4507 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4508 		    PCIER_DEVICE_CTL, 2);
4509 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4510 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4511 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4512 		    PCIER_DEVICE_CTL, r, 2);
4513 	}
4514 }
4515 
4516 void
pci_add_child(device_t bus,struct pci_devinfo * dinfo)4517 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4518 {
4519 	device_t dev;
4520 
4521 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, DEVICE_UNIT_ANY);
4522 	device_set_ivars(dev, dinfo);
4523 	resource_list_init(&dinfo->resources);
4524 	pci_cfg_save(dev, dinfo, 0);
4525 	pci_cfg_restore(dev, dinfo);
4526 	pci_clear_pme(dev);
4527 	pci_print_verbose(dinfo);
4528 	pci_add_resources(bus, dev, 0, 0);
4529 	if (pci_enable_mps_tune)
4530 		pcie_setup_mps(dev);
4531 	pci_child_added(dinfo->cfg.dev);
4532 
4533 	if (pci_clear_aer_on_attach)
4534 		pci_add_child_clear_aer(dev, dinfo);
4535 
4536 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4537 }
4538 
4539 void
pci_child_added_method(device_t dev,device_t child)4540 pci_child_added_method(device_t dev, device_t child)
4541 {
4542 
4543 }
4544 
4545 static int
pci_probe(device_t dev)4546 pci_probe(device_t dev)
4547 {
4548 
4549 	device_set_desc(dev, "PCI bus");
4550 
4551 	/* Allow other subclasses to override this driver. */
4552 	return (BUS_PROBE_GENERIC);
4553 }
4554 
4555 int
pci_attach_common(device_t dev)4556 pci_attach_common(device_t dev)
4557 {
4558 	struct pci_softc *sc;
4559 	int busno, domain;
4560 	int rid;
4561 
4562 	sc = device_get_softc(dev);
4563 	domain = pcib_get_domain(dev);
4564 	busno = pcib_get_bus(dev);
4565 	rid = 0;
4566 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4567 	    1, 0);
4568 	if (sc->sc_bus == NULL) {
4569 		device_printf(dev, "failed to allocate bus number\n");
4570 		return (ENXIO);
4571 	}
4572 	if (bootverbose)
4573 		device_printf(dev, "domain=%d, physical bus=%d\n",
4574 		    domain, busno);
4575 	sc->sc_dma_tag = bus_get_dma_tag(dev);
4576 	return (0);
4577 }
4578 
4579 int
pci_attach(device_t dev)4580 pci_attach(device_t dev)
4581 {
4582 	int busno, domain, error;
4583 
4584 	error = pci_attach_common(dev);
4585 	if (error)
4586 		return (error);
4587 
4588 	/*
4589 	 * Since there can be multiple independently numbered PCI
4590 	 * buses on systems with multiple PCI domains, we can't use
4591 	 * the unit number to decide which bus we are probing. We ask
4592 	 * the parent pcib what our domain and bus numbers are.
4593 	 */
4594 	domain = pcib_get_domain(dev);
4595 	busno = pcib_get_bus(dev);
4596 	pci_add_children(dev, domain, busno);
4597 	bus_attach_children(dev);
4598 	return (0);
4599 }
4600 
4601 int
pci_detach(device_t dev)4602 pci_detach(device_t dev)
4603 {
4604 	struct pci_softc *sc;
4605 	int error;
4606 
4607 	error = bus_generic_detach(dev);
4608 	if (error)
4609 		return (error);
4610 	sc = device_get_softc(dev);
4611 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4612 	return (error);
4613 }
4614 
4615 static void
pci_hint_device_unit(device_t dev,device_t child,const char * name,int * unitp)4616 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4617 {
4618 	int line, unit;
4619 	const char *at;
4620 	char me1[24], me2[32];
4621 	uint8_t b, s, f;
4622 	uint32_t d;
4623 	device_location_cache_t *cache;
4624 
4625 	d = pci_get_domain(child);
4626 	b = pci_get_bus(child);
4627 	s = pci_get_slot(child);
4628 	f = pci_get_function(child);
4629 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4630 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4631 	line = 0;
4632 	cache = dev_wired_cache_init();
4633 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4634 		resource_string_value(name, unit, "at", &at);
4635 		if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) {
4636 			*unitp = unit;
4637 			break;
4638 		}
4639 		if (dev_wired_cache_match(cache, child, at)) {
4640 			*unitp = unit;
4641 			break;
4642 		}
4643 	}
4644 	dev_wired_cache_fini(cache);
4645 }
4646 
4647 static void
pci_set_power_child(device_t dev,device_t child,int state)4648 pci_set_power_child(device_t dev, device_t child, int state)
4649 {
4650 	device_t pcib;
4651 	int dstate;
4652 
4653 	/*
4654 	 * Set the device to the given state.  If the firmware suggests
4655 	 * a different power state, use it instead.  If power management
4656 	 * is not present, the firmware is responsible for managing
4657 	 * device power.  Skip children who aren't attached since they
4658 	 * are handled separately.
4659 	 */
4660 	pcib = device_get_parent(dev);
4661 	dstate = state;
4662 	if (device_is_attached(child) &&
4663 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4664 		pci_set_powerstate(child, dstate);
4665 }
4666 
4667 int
pci_suspend_child(device_t dev,device_t child)4668 pci_suspend_child(device_t dev, device_t child)
4669 {
4670 	struct pci_devinfo *dinfo;
4671 	struct resource_list_entry *rle;
4672 	int error;
4673 
4674 	dinfo = device_get_ivars(child);
4675 
4676 	/*
4677 	 * Save the PCI configuration space for the child and set the
4678 	 * device in the appropriate power state for this sleep state.
4679 	 */
4680 	pci_cfg_save(child, dinfo, 0);
4681 
4682 	/* Suspend devices before potentially powering them down. */
4683 	error = bus_generic_suspend_child(dev, child);
4684 
4685 	if (error)
4686 		return (error);
4687 
4688 	if (pci_do_power_suspend) {
4689 		/*
4690 		 * Make sure this device's interrupt handler is not invoked
4691 		 * in the case the device uses a shared interrupt that can
4692 		 * be raised by some other device.
4693 		 * This is applicable only to regular (legacy) PCI interrupts
4694 		 * as MSI/MSI-X interrupts are never shared.
4695 		 */
4696 		rle = resource_list_find(&dinfo->resources,
4697 		    SYS_RES_IRQ, 0);
4698 		if (rle != NULL && rle->res != NULL)
4699 			(void)bus_suspend_intr(child, rle->res);
4700 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4701 	}
4702 
4703 	return (0);
4704 }
4705 
4706 int
pci_resume_child(device_t dev,device_t child)4707 pci_resume_child(device_t dev, device_t child)
4708 {
4709 	struct pci_devinfo *dinfo;
4710 	struct resource_list_entry *rle;
4711 
4712 	if (pci_do_power_resume)
4713 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4714 
4715 	dinfo = device_get_ivars(child);
4716 	pci_cfg_restore(child, dinfo);
4717 	pci_clear_pme(child);
4718 	if (!device_is_attached(child))
4719 		pci_cfg_save(child, dinfo, 1);
4720 
4721 	bus_generic_resume_child(dev, child);
4722 
4723 	/*
4724 	 * Allow interrupts only after fully resuming the driver and hardware.
4725 	 */
4726 	if (pci_do_power_suspend) {
4727 		/* See pci_suspend_child for details. */
4728 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4729 		if (rle != NULL && rle->res != NULL)
4730 			(void)bus_resume_intr(child, rle->res);
4731 	}
4732 
4733 	return (0);
4734 }
4735 
4736 int
pci_resume(device_t dev)4737 pci_resume(device_t dev)
4738 {
4739 	device_t child, *devlist;
4740 	int error, i, numdevs;
4741 
4742 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4743 		return (error);
4744 
4745 	/*
4746 	 * Resume critical devices first, then everything else later.
4747 	 */
4748 	for (i = 0; i < numdevs; i++) {
4749 		child = devlist[i];
4750 		switch (pci_get_class(child)) {
4751 		case PCIC_DISPLAY:
4752 		case PCIC_MEMORY:
4753 		case PCIC_BRIDGE:
4754 		case PCIC_BASEPERIPH:
4755 			BUS_RESUME_CHILD(dev, child);
4756 			break;
4757 		}
4758 	}
4759 	for (i = 0; i < numdevs; i++) {
4760 		child = devlist[i];
4761 		switch (pci_get_class(child)) {
4762 		case PCIC_DISPLAY:
4763 		case PCIC_MEMORY:
4764 		case PCIC_BRIDGE:
4765 		case PCIC_BASEPERIPH:
4766 			break;
4767 		default:
4768 			BUS_RESUME_CHILD(dev, child);
4769 		}
4770 	}
4771 	free(devlist, M_TEMP);
4772 	return (0);
4773 }
4774 
4775 static void
pci_load_vendor_data(void)4776 pci_load_vendor_data(void)
4777 {
4778 	caddr_t data;
4779 	void *ptr;
4780 	size_t sz;
4781 
4782 	data = preload_search_by_type("pci_vendor_data");
4783 	if (data != NULL) {
4784 		ptr = preload_fetch_addr(data);
4785 		sz = preload_fetch_size(data);
4786 		if (ptr != NULL && sz != 0) {
4787 			pci_vendordata = ptr;
4788 			pci_vendordata_size = sz;
4789 			/* terminate the database */
4790 			pci_vendordata[pci_vendordata_size] = '\n';
4791 		}
4792 	}
4793 }
4794 
4795 void
pci_driver_added(device_t dev,driver_t * driver)4796 pci_driver_added(device_t dev, driver_t *driver)
4797 {
4798 	int numdevs;
4799 	device_t *devlist;
4800 	device_t child;
4801 	struct pci_devinfo *dinfo;
4802 	int i;
4803 
4804 	if (bootverbose)
4805 		device_printf(dev, "driver added\n");
4806 	DEVICE_IDENTIFY(driver, dev);
4807 	if (device_get_children(dev, &devlist, &numdevs) != 0)
4808 		return;
4809 	for (i = 0; i < numdevs; i++) {
4810 		child = devlist[i];
4811 		if (device_get_state(child) != DS_NOTPRESENT)
4812 			continue;
4813 		dinfo = device_get_ivars(child);
4814 		pci_print_verbose(dinfo);
4815 		if (bootverbose)
4816 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4817 		pci_cfg_restore(child, dinfo);
4818 		if (device_probe_and_attach(child) != 0)
4819 			pci_child_detached(dev, child);
4820 	}
4821 	free(devlist, M_TEMP);
4822 }
4823 
4824 int
pci_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)4825 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4826     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4827 {
4828 	struct pci_devinfo *dinfo;
4829 	struct msix_table_entry *mte;
4830 	struct msix_vector *mv;
4831 	uint64_t addr;
4832 	uint32_t data;
4833 	void *cookie;
4834 	int error, rid;
4835 
4836 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4837 	    arg, &cookie);
4838 	if (error)
4839 		return (error);
4840 
4841 	/* If this is not a direct child, just bail out. */
4842 	if (device_get_parent(child) != dev) {
4843 		*cookiep = cookie;
4844 		return(0);
4845 	}
4846 
4847 	rid = rman_get_rid(irq);
4848 	if (rid == 0) {
4849 		/* Make sure that INTx is enabled */
4850 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4851 	} else {
4852 		/*
4853 		 * Check to see if the interrupt is MSI or MSI-X.
4854 		 * Ask our parent to map the MSI and give
4855 		 * us the address and data register values.
4856 		 * If we fail for some reason, teardown the
4857 		 * interrupt handler.
4858 		 */
4859 		dinfo = device_get_ivars(child);
4860 		if (dinfo->cfg.msi.msi_alloc > 0) {
4861 			if (dinfo->cfg.msi.msi_addr == 0) {
4862 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4863 			    ("MSI has handlers, but vectors not mapped"));
4864 				error = PCIB_MAP_MSI(device_get_parent(dev),
4865 				    child, rman_get_start(irq), &addr, &data);
4866 				if (error)
4867 					goto bad;
4868 				dinfo->cfg.msi.msi_addr = addr;
4869 				dinfo->cfg.msi.msi_data = data;
4870 			}
4871 			if (dinfo->cfg.msi.msi_handlers == 0)
4872 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4873 				    dinfo->cfg.msi.msi_data);
4874 			dinfo->cfg.msi.msi_handlers++;
4875 		} else {
4876 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4877 			    ("No MSI or MSI-X interrupts allocated"));
4878 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4879 			    ("MSI-X index too high"));
4880 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4881 			KASSERT(mte->mte_vector != 0, ("no message vector"));
4882 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4883 			KASSERT(mv->mv_irq == rman_get_start(irq),
4884 			    ("IRQ mismatch"));
4885 			if (mv->mv_address == 0) {
4886 				KASSERT(mte->mte_handlers == 0,
4887 		    ("MSI-X table entry has handlers, but vector not mapped"));
4888 				error = PCIB_MAP_MSI(device_get_parent(dev),
4889 				    child, rman_get_start(irq), &addr, &data);
4890 				if (error)
4891 					goto bad;
4892 				mv->mv_address = addr;
4893 				mv->mv_data = data;
4894 			}
4895 
4896 			/*
4897 			 * The MSIX table entry must be made valid by
4898 			 * incrementing the mte_handlers before
4899 			 * calling pci_enable_msix() and
4900 			 * pci_resume_msix(). Else the MSIX rewrite
4901 			 * table quirk will not work as expected.
4902 			 */
4903 			mte->mte_handlers++;
4904 			if (mte->mte_handlers == 1) {
4905 				pci_enable_msix(child, rid - 1, mv->mv_address,
4906 				    mv->mv_data);
4907 				pci_unmask_msix(child, rid - 1);
4908 			}
4909 		}
4910 
4911 		/*
4912 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4913 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4914 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4915 		 */
4916 		if (!pci_has_quirk(pci_get_devid(child),
4917 		    PCI_QUIRK_MSI_INTX_BUG))
4918 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4919 		else
4920 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4921 	bad:
4922 		if (error) {
4923 			(void)bus_generic_teardown_intr(dev, child, irq,
4924 			    cookie);
4925 			return (error);
4926 		}
4927 	}
4928 	*cookiep = cookie;
4929 	return (0);
4930 }
4931 
4932 int
pci_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)4933 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4934     void *cookie)
4935 {
4936 	struct msix_table_entry *mte;
4937 	struct resource_list_entry *rle;
4938 	struct pci_devinfo *dinfo;
4939 	int error, rid;
4940 
4941 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4942 		return (EINVAL);
4943 
4944 	/* If this isn't a direct child, just bail out */
4945 	if (device_get_parent(child) != dev)
4946 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4947 
4948 	rid = rman_get_rid(irq);
4949 	if (rid == 0) {
4950 		/* Mask INTx */
4951 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4952 	} else {
4953 		/*
4954 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4955 		 * decrement the appropriate handlers count and mask the
4956 		 * MSI-X message, or disable MSI messages if the count
4957 		 * drops to 0.
4958 		 */
4959 		dinfo = device_get_ivars(child);
4960 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4961 		if (rle->res != irq)
4962 			return (EINVAL);
4963 		if (dinfo->cfg.msi.msi_alloc > 0) {
4964 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4965 			    ("MSI-X index too high"));
4966 			if (dinfo->cfg.msi.msi_handlers == 0)
4967 				return (EINVAL);
4968 			dinfo->cfg.msi.msi_handlers--;
4969 			if (dinfo->cfg.msi.msi_handlers == 0)
4970 				pci_disable_msi(child);
4971 		} else {
4972 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4973 			    ("No MSI or MSI-X interrupts allocated"));
4974 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4975 			    ("MSI-X index too high"));
4976 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4977 			if (mte->mte_handlers == 0)
4978 				return (EINVAL);
4979 			mte->mte_handlers--;
4980 			if (mte->mte_handlers == 0)
4981 				pci_mask_msix(child, rid - 1);
4982 		}
4983 	}
4984 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4985 	if (rid > 0)
4986 		KASSERT(error == 0,
4987 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4988 	return (error);
4989 }
4990 
4991 int
pci_print_child(device_t dev,device_t child)4992 pci_print_child(device_t dev, device_t child)
4993 {
4994 	struct pci_devinfo *dinfo;
4995 	struct resource_list *rl;
4996 	int retval = 0;
4997 
4998 	dinfo = device_get_ivars(child);
4999 	rl = &dinfo->resources;
5000 
5001 	retval += bus_print_child_header(dev, child);
5002 
5003 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
5004 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
5005 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
5006 	if (device_get_flags(dev))
5007 		retval += printf(" flags %#x", device_get_flags(dev));
5008 
5009 	retval += printf(" at device %d.%d", pci_get_slot(child),
5010 	    pci_get_function(child));
5011 
5012 	retval += bus_print_child_domain(dev, child);
5013 	retval += bus_print_child_footer(dev, child);
5014 
5015 	return (retval);
5016 }
5017 
5018 static const struct
5019 {
5020 	int		class;
5021 	int		subclass;
5022 	int		report; /* 0 = bootverbose, 1 = always */
5023 	const char	*desc;
5024 } pci_nomatch_tab[] = {
5025 	{PCIC_OLD,		-1,			1, "old"},
5026 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
5027 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
5028 	{PCIC_STORAGE,		-1,			1, "mass storage"},
5029 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
5030 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
5031 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
5032 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
5033 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
5034 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
5035 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
5036 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
5037 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
5038 	{PCIC_NETWORK,		-1,			1, "network"},
5039 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
5040 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
5041 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
5042 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
5043 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
5044 	{PCIC_DISPLAY,		-1,			1, "display"},
5045 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
5046 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
5047 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
5048 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
5049 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
5050 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
5051 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
5052 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
5053 	{PCIC_MEMORY,		-1,			1, "memory"},
5054 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
5055 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
5056 	{PCIC_BRIDGE,		-1,			1, "bridge"},
5057 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
5058 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
5059 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
5060 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
5061 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
5062 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
5063 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
5064 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
5065 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
5066 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
5067 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
5068 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
5069 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
5070 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
5071 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
5072 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
5073 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
5074 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
5075 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
5076 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
5077 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
5078 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
5079 	{PCIC_INPUTDEV,		-1,			1, "input device"},
5080 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
5081 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
5082 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
5083 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
5084 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
5085 	{PCIC_DOCKING,		-1,			1, "docking station"},
5086 	{PCIC_PROCESSOR,	-1,			1, "processor"},
5087 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
5088 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
5089 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
5090 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
5091 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
5092 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
5093 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
5094 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
5095 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
5096 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
5097 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
5098 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
5099 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
5100 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
5101 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
5102 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
5103 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
5104 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
5105 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
5106 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
5107 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
5108 	{PCIC_DASP,		-1,			0, "dasp"},
5109 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
5110 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
5111 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
5112 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
5113 	{PCIC_INSTRUMENT,	-1,			0, "non-essential instrumentation"},
5114 	{0, 0, 0,		NULL}
5115 };
5116 
5117 void
pci_probe_nomatch(device_t dev,device_t child)5118 pci_probe_nomatch(device_t dev, device_t child)
5119 {
5120 	int i, report;
5121 	const char *cp, *scp;
5122 	char *device;
5123 
5124 	/*
5125 	 * Look for a listing for this device in a loaded device database.
5126 	 */
5127 	report = 1;
5128 	if ((device = pci_describe_device(child)) != NULL) {
5129 		device_printf(dev, "<%s>", device);
5130 		free(device, M_DEVBUF);
5131 	} else {
5132 		/*
5133 		 * Scan the class/subclass descriptions for a general
5134 		 * description.
5135 		 */
5136 		cp = "unknown";
5137 		scp = NULL;
5138 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
5139 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
5140 				if (pci_nomatch_tab[i].subclass == -1) {
5141 					cp = pci_nomatch_tab[i].desc;
5142 					report = pci_nomatch_tab[i].report;
5143 				} else if (pci_nomatch_tab[i].subclass ==
5144 				    pci_get_subclass(child)) {
5145 					scp = pci_nomatch_tab[i].desc;
5146 					report = pci_nomatch_tab[i].report;
5147 				}
5148 			}
5149 		}
5150 		if (report || bootverbose) {
5151 			device_printf(dev, "<%s%s%s>",
5152 			    cp ? cp : "",
5153 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
5154 			    scp ? scp : "");
5155 		}
5156 	}
5157 	if (report || bootverbose) {
5158 		printf(" at device %d.%d (no driver attached)\n",
5159 		    pci_get_slot(child), pci_get_function(child));
5160 	}
5161 	pci_cfg_save(child, device_get_ivars(child), 1);
5162 }
5163 
5164 void
pci_child_detached(device_t dev,device_t child)5165 pci_child_detached(device_t dev, device_t child)
5166 {
5167 	struct pci_devinfo *dinfo;
5168 	struct resource_list *rl;
5169 
5170 	dinfo = device_get_ivars(child);
5171 	rl = &dinfo->resources;
5172 
5173 	/*
5174 	 * Have to deallocate IRQs before releasing any MSI messages and
5175 	 * have to release MSI messages before deallocating any memory
5176 	 * BARs.
5177 	 */
5178 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
5179 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
5180 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
5181 		if (dinfo->cfg.msi.msi_alloc != 0)
5182 			pci_printf(&dinfo->cfg, "Device leaked %d MSI "
5183 			    "vectors\n", dinfo->cfg.msi.msi_alloc);
5184 		else
5185 			pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
5186 			    "vectors\n", dinfo->cfg.msix.msix_alloc);
5187 		(void)pci_release_msi(child);
5188 	}
5189 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
5190 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
5191 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
5192 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
5193 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5194 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5195 
5196 	pci_cfg_save(child, dinfo, 1);
5197 }
5198 
5199 /*
5200  * Parse the PCI device database, if loaded, and return a pointer to a
5201  * description of the device.
5202  *
5203  * The database is flat text formatted as follows:
5204  *
5205  * Any line not in a valid format is ignored.
5206  * Lines are terminated with newline '\n' characters.
5207  *
5208  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5209  * the vendor name.
5210  *
5211  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5212  * - devices cannot be listed without a corresponding VENDOR line.
5213  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5214  * another TAB, then the device name.
5215  */
5216 
5217 /*
5218  * Assuming (ptr) points to the beginning of a line in the database,
5219  * return the vendor or device and description of the next entry.
5220  * The value of (vendor) or (device) inappropriate for the entry type
5221  * is set to -1.  Returns nonzero at the end of the database.
5222  *
5223  * Note that this is slightly unrobust in the face of corrupt data;
5224  * we attempt to safeguard against this by spamming the end of the
5225  * database with a newline when we initialise.
5226  */
5227 static int
pci_describe_parse_line(char ** ptr,int * vendor,int * device,char ** desc)5228 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5229 {
5230 	char	*cp = *ptr;
5231 	int	left;
5232 
5233 	*device = -1;
5234 	*vendor = -1;
5235 	**desc = '\0';
5236 	for (;;) {
5237 		left = pci_vendordata_size - (cp - pci_vendordata);
5238 		if (left <= 0) {
5239 			*ptr = cp;
5240 			return(1);
5241 		}
5242 
5243 		/* vendor entry? */
5244 		if (*cp != '\t' &&
5245 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5246 			break;
5247 		/* device entry? */
5248 		if (*cp == '\t' &&
5249 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5250 			break;
5251 
5252 		/* skip to next line */
5253 		while (*cp != '\n' && left > 0) {
5254 			cp++;
5255 			left--;
5256 		}
5257 		if (*cp == '\n') {
5258 			cp++;
5259 			left--;
5260 		}
5261 	}
5262 	/* skip to next line */
5263 	while (*cp != '\n' && left > 0) {
5264 		cp++;
5265 		left--;
5266 	}
5267 	if (*cp == '\n' && left > 0)
5268 		cp++;
5269 	*ptr = cp;
5270 	return(0);
5271 }
5272 
5273 static char *
pci_describe_device(device_t dev)5274 pci_describe_device(device_t dev)
5275 {
5276 	int	vendor, device;
5277 	char	*desc, *vp, *dp, *line;
5278 
5279 	desc = vp = dp = NULL;
5280 
5281 	/*
5282 	 * If we have no vendor data, we can't do anything.
5283 	 */
5284 	if (pci_vendordata == NULL)
5285 		goto out;
5286 
5287 	/*
5288 	 * Scan the vendor data looking for this device
5289 	 */
5290 	line = pci_vendordata;
5291 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5292 		goto out;
5293 	for (;;) {
5294 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5295 			goto out;
5296 		if (vendor == pci_get_vendor(dev))
5297 			break;
5298 	}
5299 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5300 		goto out;
5301 	for (;;) {
5302 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5303 			*dp = 0;
5304 			break;
5305 		}
5306 		if (vendor != -1) {
5307 			*dp = 0;
5308 			break;
5309 		}
5310 		if (device == pci_get_device(dev))
5311 			break;
5312 	}
5313 	if (dp[0] == '\0')
5314 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5315 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5316 	    NULL)
5317 		sprintf(desc, "%s, %s", vp, dp);
5318 out:
5319 	if (vp != NULL)
5320 		free(vp, M_DEVBUF);
5321 	if (dp != NULL)
5322 		free(dp, M_DEVBUF);
5323 	return(desc);
5324 }
5325 
5326 int
pci_read_ivar(device_t dev,device_t child,int which,uintptr_t * result)5327 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5328 {
5329 	struct pci_devinfo *dinfo;
5330 	pcicfgregs *cfg;
5331 
5332 	dinfo = device_get_ivars(child);
5333 	cfg = &dinfo->cfg;
5334 
5335 	switch (which) {
5336 	case PCI_IVAR_ETHADDR:
5337 		/*
5338 		 * The generic accessor doesn't deal with failure, so
5339 		 * we set the return value, then return an error.
5340 		 */
5341 		*((uint8_t **) result) = NULL;
5342 		return (EINVAL);
5343 	case PCI_IVAR_SUBVENDOR:
5344 		*result = cfg->subvendor;
5345 		break;
5346 	case PCI_IVAR_SUBDEVICE:
5347 		*result = cfg->subdevice;
5348 		break;
5349 	case PCI_IVAR_VENDOR:
5350 		*result = cfg->vendor;
5351 		break;
5352 	case PCI_IVAR_DEVICE:
5353 		*result = cfg->device;
5354 		break;
5355 	case PCI_IVAR_DEVID:
5356 		*result = (cfg->device << 16) | cfg->vendor;
5357 		break;
5358 	case PCI_IVAR_CLASS:
5359 		*result = cfg->baseclass;
5360 		break;
5361 	case PCI_IVAR_SUBCLASS:
5362 		*result = cfg->subclass;
5363 		break;
5364 	case PCI_IVAR_PROGIF:
5365 		*result = cfg->progif;
5366 		break;
5367 	case PCI_IVAR_REVID:
5368 		*result = cfg->revid;
5369 		break;
5370 	case PCI_IVAR_INTPIN:
5371 		*result = cfg->intpin;
5372 		break;
5373 	case PCI_IVAR_IRQ:
5374 		*result = cfg->intline;
5375 		break;
5376 	case PCI_IVAR_DOMAIN:
5377 		*result = cfg->domain;
5378 		break;
5379 	case PCI_IVAR_BUS:
5380 		*result = cfg->bus;
5381 		break;
5382 	case PCI_IVAR_SLOT:
5383 		*result = cfg->slot;
5384 		break;
5385 	case PCI_IVAR_FUNCTION:
5386 		*result = cfg->func;
5387 		break;
5388 	case PCI_IVAR_CMDREG:
5389 		*result = cfg->cmdreg;
5390 		break;
5391 	case PCI_IVAR_CACHELNSZ:
5392 		*result = cfg->cachelnsz;
5393 		break;
5394 	case PCI_IVAR_MINGNT:
5395 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5396 			*result = -1;
5397 			return (EINVAL);
5398 		}
5399 		*result = cfg->mingnt;
5400 		break;
5401 	case PCI_IVAR_MAXLAT:
5402 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5403 			*result = -1;
5404 			return (EINVAL);
5405 		}
5406 		*result = cfg->maxlat;
5407 		break;
5408 	case PCI_IVAR_LATTIMER:
5409 		*result = cfg->lattimer;
5410 		break;
5411 	default:
5412 		return (ENOENT);
5413 	}
5414 	return (0);
5415 }
5416 
5417 int
pci_write_ivar(device_t dev,device_t child,int which,uintptr_t value)5418 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5419 {
5420 	struct pci_devinfo *dinfo;
5421 
5422 	dinfo = device_get_ivars(child);
5423 
5424 	switch (which) {
5425 	case PCI_IVAR_INTPIN:
5426 		dinfo->cfg.intpin = value;
5427 		return (0);
5428 	case PCI_IVAR_ETHADDR:
5429 	case PCI_IVAR_SUBVENDOR:
5430 	case PCI_IVAR_SUBDEVICE:
5431 	case PCI_IVAR_VENDOR:
5432 	case PCI_IVAR_DEVICE:
5433 	case PCI_IVAR_DEVID:
5434 	case PCI_IVAR_CLASS:
5435 	case PCI_IVAR_SUBCLASS:
5436 	case PCI_IVAR_PROGIF:
5437 	case PCI_IVAR_REVID:
5438 	case PCI_IVAR_IRQ:
5439 	case PCI_IVAR_DOMAIN:
5440 	case PCI_IVAR_BUS:
5441 	case PCI_IVAR_SLOT:
5442 	case PCI_IVAR_FUNCTION:
5443 		return (EINVAL);	/* disallow for now */
5444 
5445 	default:
5446 		return (ENOENT);
5447 	}
5448 }
5449 
5450 #include "opt_ddb.h"
5451 #ifdef DDB
5452 #include <ddb/ddb.h>
5453 #include <sys/cons.h>
5454 
5455 /*
5456  * List resources based on pci map registers, used for within ddb
5457  */
5458 
DB_SHOW_COMMAND_FLAGS(pciregs,db_pci_dump,DB_CMD_MEMSAFE)5459 DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE)
5460 {
5461 	struct pci_devinfo *dinfo;
5462 	struct devlist *devlist_head;
5463 	struct pci_conf *p;
5464 	const char *name;
5465 	int i, error, none_count;
5466 
5467 	none_count = 0;
5468 	/* get the head of the device queue */
5469 	devlist_head = &pci_devq;
5470 
5471 	/*
5472 	 * Go through the list of devices and print out devices
5473 	 */
5474 	for (error = 0, i = 0,
5475 	     dinfo = STAILQ_FIRST(devlist_head);
5476 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5477 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5478 		/* Populate pd_name and pd_unit */
5479 		name = NULL;
5480 		if (dinfo->cfg.dev)
5481 			name = device_get_name(dinfo->cfg.dev);
5482 
5483 		p = &dinfo->conf;
5484 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5485 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5486 			(name && *name) ? name : "none",
5487 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5488 			none_count++,
5489 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5490 			p->pc_sel.pc_func, (p->pc_class << 16) |
5491 			(p->pc_subclass << 8) | p->pc_progif,
5492 			(p->pc_subdevice << 16) | p->pc_subvendor,
5493 			(p->pc_device << 16) | p->pc_vendor,
5494 			p->pc_revid, p->pc_hdr);
5495 	}
5496 }
5497 #endif /* DDB */
5498 
5499 struct resource *
pci_reserve_map(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int num,u_int flags)5500 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5501     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5502     u_int flags)
5503 {
5504 	struct pci_devinfo *dinfo = device_get_ivars(child);
5505 	struct resource_list *rl = &dinfo->resources;
5506 	struct resource *res;
5507 	struct pci_map *pm;
5508 	uint16_t cmd;
5509 	pci_addr_t map, testval;
5510 	int mapsize;
5511 
5512 	res = NULL;
5513 
5514 	/* If rid is managed by EA, ignore it */
5515 	if (pci_ea_is_enabled(child, *rid))
5516 		goto out;
5517 
5518 	pm = pci_find_bar(child, *rid);
5519 	if (pm != NULL) {
5520 		/* This is a BAR that we failed to allocate earlier. */
5521 		mapsize = pm->pm_size;
5522 		map = pm->pm_value;
5523 	} else {
5524 		/*
5525 		 * Weed out the bogons, and figure out how large the
5526 		 * BAR/map is.  BARs that read back 0 here are bogus
5527 		 * and unimplemented.  Note: atapci in legacy mode are
5528 		 * special and handled elsewhere in the code.  If you
5529 		 * have a atapci device in legacy mode and it fails
5530 		 * here, that other code is broken.
5531 		 */
5532 		pci_read_bar(child, *rid, &map, &testval, NULL);
5533 
5534 		/*
5535 		 * Determine the size of the BAR and ignore BARs with a size
5536 		 * of 0.  Device ROM BARs use a different mask value.
5537 		 */
5538 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5539 			mapsize = pci_romsize(testval);
5540 		else
5541 			mapsize = pci_mapsize(testval);
5542 		if (mapsize == 0)
5543 			goto out;
5544 		pm = pci_add_bar(child, *rid, map, mapsize);
5545 	}
5546 
5547 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5548 		if (type != SYS_RES_MEMORY) {
5549 			if (bootverbose)
5550 				device_printf(dev,
5551 				    "child %s requested type %d for rid %#x,"
5552 				    " but the BAR says it is an memio\n",
5553 				    device_get_nameunit(child), type, *rid);
5554 			goto out;
5555 		}
5556 	} else {
5557 		if (type != SYS_RES_IOPORT) {
5558 			if (bootverbose)
5559 				device_printf(dev,
5560 				    "child %s requested type %d for rid %#x,"
5561 				    " but the BAR says it is an ioport\n",
5562 				    device_get_nameunit(child), type, *rid);
5563 			goto out;
5564 		}
5565 	}
5566 
5567 	/*
5568 	 * For real BARs, we need to override the size that
5569 	 * the driver requests, because that's what the BAR
5570 	 * actually uses and we would otherwise have a
5571 	 * situation where we might allocate the excess to
5572 	 * another driver, which won't work.
5573 	 */
5574 	count = ((pci_addr_t)1 << mapsize) * num;
5575 	if (RF_ALIGNMENT(flags) < mapsize)
5576 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5577 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5578 		flags |= RF_PREFETCHABLE;
5579 
5580 	/*
5581 	 * Allocate enough resource, and then write back the
5582 	 * appropriate BAR for that resource.
5583 	 */
5584 	resource_list_add(rl, type, *rid, start, end, count);
5585 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5586 	    count, flags & ~RF_ACTIVE);
5587 	if (res == NULL) {
5588 		resource_list_delete(rl, type, *rid);
5589 		device_printf(child,
5590 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5591 		    count, *rid, type, start, end);
5592 		goto out;
5593 	}
5594 	if (bootverbose)
5595 		device_printf(child,
5596 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5597 		    count, *rid, type, rman_get_start(res));
5598 
5599 	/* Disable decoding via the CMD register before updating the BAR */
5600 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5601 	pci_write_config(child, PCIR_COMMAND,
5602 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5603 
5604 	map = rman_get_start(res);
5605 	pci_write_bar(child, pm, map);
5606 
5607 	/* Restore the original value of the CMD register */
5608 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5609 out:
5610 	return (res);
5611 }
5612 
5613 struct resource *
pci_alloc_multi_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_long num,u_int flags)5614 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5615     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5616     u_int flags)
5617 {
5618 	struct pci_devinfo *dinfo;
5619 	struct resource_list *rl;
5620 	struct resource_list_entry *rle;
5621 	struct resource *res;
5622 	pcicfgregs *cfg;
5623 
5624 	/*
5625 	 * Perform lazy resource allocation
5626 	 */
5627 	dinfo = device_get_ivars(child);
5628 	rl = &dinfo->resources;
5629 	cfg = &dinfo->cfg;
5630 	switch (type) {
5631 	case PCI_RES_BUS:
5632 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5633 		    flags));
5634 	case SYS_RES_IRQ:
5635 		/*
5636 		 * Can't alloc legacy interrupt once MSI messages have
5637 		 * been allocated.
5638 		 */
5639 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5640 		    cfg->msix.msix_alloc > 0))
5641 			return (NULL);
5642 
5643 		/*
5644 		 * If the child device doesn't have an interrupt
5645 		 * routed and is deserving of an interrupt, try to
5646 		 * assign it one.
5647 		 */
5648 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5649 		    (cfg->intpin != 0))
5650 			pci_assign_interrupt(dev, child, 0);
5651 		break;
5652 	case SYS_RES_IOPORT:
5653 	case SYS_RES_MEMORY:
5654 		/*
5655 		 * PCI-PCI bridge I/O window resources are not BARs.
5656 		 * For those allocations just pass the request up the
5657 		 * tree.
5658 		 */
5659 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5660 			switch (*rid) {
5661 			case PCIR_IOBASEL_1:
5662 			case PCIR_MEMBASE_1:
5663 			case PCIR_PMBASEL_1:
5664 				/*
5665 				 * XXX: Should we bother creating a resource
5666 				 * list entry?
5667 				 */
5668 				return (bus_generic_alloc_resource(dev, child,
5669 				    type, rid, start, end, count, flags));
5670 			}
5671 		}
5672 		/* Reserve resources for this BAR if needed. */
5673 		rle = resource_list_find(rl, type, *rid);
5674 		if (rle == NULL) {
5675 			res = pci_reserve_map(dev, child, type, rid, start, end,
5676 			    count, num, flags);
5677 			if (res == NULL)
5678 				return (NULL);
5679 		}
5680 	}
5681 	return (resource_list_alloc(rl, dev, child, type, rid,
5682 	    start, end, count, flags));
5683 }
5684 
5685 struct resource *
pci_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)5686 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5687     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5688 {
5689 #ifdef PCI_IOV
5690 	struct pci_devinfo *dinfo;
5691 #endif
5692 
5693 	if (device_get_parent(child) != dev)
5694 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5695 		    type, rid, start, end, count, flags));
5696 
5697 #ifdef PCI_IOV
5698 	dinfo = device_get_ivars(child);
5699 	if (dinfo->cfg.flags & PCICFG_VF) {
5700 		switch (type) {
5701 		/* VFs can't have I/O BARs. */
5702 		case SYS_RES_IOPORT:
5703 			return (NULL);
5704 		case SYS_RES_MEMORY:
5705 			return (pci_vf_alloc_mem_resource(dev, child, rid,
5706 			    start, end, count, flags));
5707 		}
5708 
5709 		/* Fall through for other types of resource allocations. */
5710 	}
5711 #endif
5712 
5713 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5714 	    count, 1, flags));
5715 }
5716 
5717 int
pci_release_resource(device_t dev,device_t child,struct resource * r)5718 pci_release_resource(device_t dev, device_t child, struct resource *r)
5719 {
5720 	struct pci_devinfo *dinfo;
5721 	struct resource_list *rl;
5722 	pcicfgregs *cfg __unused;
5723 
5724 	if (device_get_parent(child) != dev)
5725 		return (bus_generic_release_resource(dev, child, r));
5726 
5727 	dinfo = device_get_ivars(child);
5728 	cfg = &dinfo->cfg;
5729 
5730 #ifdef PCI_IOV
5731 	if (cfg->flags & PCICFG_VF) {
5732 		switch (rman_get_type(r)) {
5733 		/* VFs can't have I/O BARs. */
5734 		case SYS_RES_IOPORT:
5735 			return (EDOOFUS);
5736 		case SYS_RES_MEMORY:
5737 			return (pci_vf_release_mem_resource(dev, child, r));
5738 		}
5739 
5740 		/* Fall through for other types of resource allocations. */
5741 	}
5742 #endif
5743 
5744 	/*
5745 	 * PCI-PCI bridge I/O window resources are not BARs.  For
5746 	 * those allocations just pass the request up the tree.
5747 	 */
5748 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5749 	    (rman_get_type(r) == SYS_RES_IOPORT ||
5750 	    rman_get_type(r) == SYS_RES_MEMORY)) {
5751 		switch (rman_get_rid(r)) {
5752 		case PCIR_IOBASEL_1:
5753 		case PCIR_MEMBASE_1:
5754 		case PCIR_PMBASEL_1:
5755 			return (bus_generic_release_resource(dev, child, r));
5756 		}
5757 	}
5758 
5759 	rl = &dinfo->resources;
5760 	return (resource_list_release(rl, dev, child, r));
5761 }
5762 
5763 int
pci_activate_resource(device_t dev,device_t child,struct resource * r)5764 pci_activate_resource(device_t dev, device_t child, struct resource *r)
5765 {
5766 	struct pci_devinfo *dinfo;
5767 	int error, rid, type;
5768 
5769 	if (device_get_parent(child) != dev)
5770 		return (bus_generic_activate_resource(dev, child, r));
5771 
5772 	dinfo = device_get_ivars(child);
5773 #ifdef PCI_IOV
5774 	if (dinfo->cfg.flags & PCICFG_VF) {
5775 		switch (rman_get_type(r)) {
5776 		/* VFs can't have I/O BARs. */
5777 		case SYS_RES_IOPORT:
5778 			error = EINVAL;
5779 			break;
5780 		case SYS_RES_MEMORY:
5781 			error = pci_vf_activate_mem_resource(dev, child, r);
5782 			break;
5783 		default:
5784 			error = bus_generic_activate_resource(dev, child, r);
5785 			break;
5786 		}
5787 	} else
5788 #endif
5789 		error = bus_generic_activate_resource(dev, child, r);
5790 	if (error)
5791 		return (error);
5792 
5793 	rid = rman_get_rid(r);
5794 	type = rman_get_type(r);
5795 
5796 	/* Device ROMs need their decoding explicitly enabled. */
5797 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5798 		pci_write_bar(child, pci_find_bar(child, rid),
5799 		    rman_get_start(r) | PCIM_BIOS_ENABLE);
5800 
5801 	/* Enable decoding in the command register when activating BARs. */
5802 	switch (type) {
5803 	case SYS_RES_IOPORT:
5804 	case SYS_RES_MEMORY:
5805 		error = PCI_ENABLE_IO(dev, child, type);
5806 		break;
5807 	}
5808 	return (error);
5809 }
5810 
5811 int
pci_deactivate_resource(device_t dev,device_t child,struct resource * r)5812 pci_deactivate_resource(device_t dev, device_t child, struct resource *r)
5813 {
5814 	struct pci_devinfo *dinfo;
5815 	int error, rid, type;
5816 
5817 	if (device_get_parent(child) != dev)
5818 		return (bus_generic_deactivate_resource(dev, child, r));
5819 
5820 	dinfo = device_get_ivars(child);
5821 #ifdef PCI_IOV
5822 	if (dinfo->cfg.flags & PCICFG_VF) {
5823 		switch (rman_get_type(r)) {
5824 		/* VFs can't have I/O BARs. */
5825 		case SYS_RES_IOPORT:
5826 			error = EINVAL;
5827 			break;
5828 		case SYS_RES_MEMORY:
5829 			error = pci_vf_deactivate_mem_resource(dev, child, r);
5830 			break;
5831 		default:
5832 			error = bus_generic_deactivate_resource(dev, child, r);
5833 			break;
5834 		}
5835 	} else
5836 #endif
5837 		error = bus_generic_deactivate_resource(dev, child, r);
5838 	if (error)
5839 		return (error);
5840 
5841 	/* Disable decoding for device ROMs. */
5842 	rid = rman_get_rid(r);
5843 	type = rman_get_type(r);
5844 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5845 		pci_write_bar(child, pci_find_bar(child, rid),
5846 		    rman_get_start(r));
5847 	return (0);
5848 }
5849 
5850 int
pci_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)5851 pci_adjust_resource(device_t dev, device_t child, struct resource *r,
5852     rman_res_t start, rman_res_t end)
5853 {
5854 #ifdef PCI_IOV
5855 	struct pci_devinfo *dinfo;
5856 
5857 	if (device_get_parent(child) != dev)
5858 		return (bus_generic_adjust_resource(dev, child, r, start,
5859 		    end));
5860 
5861 	dinfo = device_get_ivars(child);
5862 	if (dinfo->cfg.flags & PCICFG_VF) {
5863 		switch (rman_get_type(r)) {
5864 		/* VFs can't have I/O BARs. */
5865 		case SYS_RES_IOPORT:
5866 			return (EINVAL);
5867 		case SYS_RES_MEMORY:
5868 			return (pci_vf_adjust_mem_resource(dev, child, r,
5869 			    start, end));
5870 		}
5871 
5872 		/* Fall through for other types of resource allocations. */
5873 	}
5874 #endif
5875 
5876 	return (bus_generic_adjust_resource(dev, child, r, start, end));
5877 }
5878 
5879 int
pci_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * argsp,struct resource_map * map)5880 pci_map_resource(device_t dev, device_t child, struct resource *r,
5881     struct resource_map_request *argsp, struct resource_map *map)
5882 {
5883 #ifdef PCI_IOV
5884 	struct pci_devinfo *dinfo;
5885 
5886 	if (device_get_parent(child) != dev)
5887 		return (bus_generic_map_resource(dev, child, r, argsp,
5888 		    map));
5889 
5890 	dinfo = device_get_ivars(child);
5891 	if (dinfo->cfg.flags & PCICFG_VF) {
5892 		switch (rman_get_type(r)) {
5893 		/* VFs can't have I/O BARs. */
5894 		case SYS_RES_IOPORT:
5895 			return (EINVAL);
5896 		case SYS_RES_MEMORY:
5897 			return (pci_vf_map_mem_resource(dev, child, r, argsp,
5898 			    map));
5899 		}
5900 
5901 		/* Fall through for other types of resource allocations. */
5902 	}
5903 #endif
5904 
5905 	return (bus_generic_map_resource(dev, child, r, argsp, map));
5906 }
5907 
5908 int
pci_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)5909 pci_unmap_resource(device_t dev, device_t child, struct resource *r,
5910     struct resource_map *map)
5911 {
5912 #ifdef PCI_IOV
5913 	struct pci_devinfo *dinfo;
5914 
5915 	if (device_get_parent(child) != dev)
5916 		return (bus_generic_unmap_resource(dev, child, r, map));
5917 
5918 	dinfo = device_get_ivars(child);
5919 	if (dinfo->cfg.flags & PCICFG_VF) {
5920 		switch (rman_get_type(r)) {
5921 		/* VFs can't have I/O BARs. */
5922 		case SYS_RES_IOPORT:
5923 			return (EINVAL);
5924 		case SYS_RES_MEMORY:
5925 			return (pci_vf_unmap_mem_resource(dev, child, r, map));
5926 		}
5927 
5928 		/* Fall through for other types of resource allocations. */
5929 	}
5930 #endif
5931 
5932 	return (bus_generic_unmap_resource(dev, child, r, map));
5933 }
5934 
5935 void
pci_child_deleted(device_t dev,device_t child)5936 pci_child_deleted(device_t dev, device_t child)
5937 {
5938 	struct resource_list_entry *rle;
5939 	struct resource_list *rl;
5940 	struct pci_devinfo *dinfo;
5941 
5942 	dinfo = device_get_ivars(child);
5943 	rl = &dinfo->resources;
5944 
5945 	EVENTHANDLER_INVOKE(pci_delete_device, child);
5946 
5947 	/* Turn off access to resources we're about to free */
5948 	if (bus_child_present(child) != 0) {
5949 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5950 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5951 
5952 		pci_disable_busmaster(child);
5953 	}
5954 
5955 	/* Free all allocated resources */
5956 	STAILQ_FOREACH(rle, rl, link) {
5957 		if (rle->res) {
5958 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5959 			    resource_list_busy(rl, rle->type, rle->rid)) {
5960 				pci_printf(&dinfo->cfg,
5961 				    "Resource still owned, oops. "
5962 				    "(type=%d, rid=%d, addr=%lx)\n",
5963 				    rle->type, rle->rid,
5964 				    rman_get_start(rle->res));
5965 				bus_release_resource(child, rle->type, rle->rid,
5966 				    rle->res);
5967 			}
5968 			resource_list_unreserve(rl, dev, child, rle->type,
5969 			    rle->rid);
5970 		}
5971 	}
5972 	resource_list_free(rl);
5973 
5974 	pci_freecfg(dinfo);
5975 }
5976 
5977 void
pci_delete_resource(device_t dev,device_t child,int type,int rid)5978 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5979 {
5980 	struct pci_devinfo *dinfo;
5981 	struct resource_list *rl;
5982 	struct resource_list_entry *rle;
5983 
5984 	if (device_get_parent(child) != dev)
5985 		return;
5986 
5987 	dinfo = device_get_ivars(child);
5988 	rl = &dinfo->resources;
5989 	rle = resource_list_find(rl, type, rid);
5990 	if (rle == NULL)
5991 		return;
5992 
5993 	if (rle->res) {
5994 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5995 		    resource_list_busy(rl, type, rid)) {
5996 			device_printf(dev, "delete_resource: "
5997 			    "Resource still owned by child, oops. "
5998 			    "(type=%d, rid=%d, addr=%jx)\n",
5999 			    type, rid, rman_get_start(rle->res));
6000 			return;
6001 		}
6002 		resource_list_unreserve(rl, dev, child, type, rid);
6003 	}
6004 	resource_list_delete(rl, type, rid);
6005 }
6006 
6007 struct resource_list *
pci_get_resource_list(device_t dev,device_t child)6008 pci_get_resource_list (device_t dev, device_t child)
6009 {
6010 	struct pci_devinfo *dinfo = device_get_ivars(child);
6011 
6012 	return (&dinfo->resources);
6013 }
6014 
6015 #ifdef IOMMU
6016 bus_dma_tag_t
pci_get_dma_tag(device_t bus,device_t dev)6017 pci_get_dma_tag(device_t bus, device_t dev)
6018 {
6019 	bus_dma_tag_t tag;
6020 	struct pci_softc *sc;
6021 
6022 	if (device_get_parent(dev) == bus) {
6023 		/* try iommu and return if it works */
6024 		tag = iommu_get_dma_tag(bus, dev);
6025 	} else
6026 		tag = NULL;
6027 	if (tag == NULL) {
6028 		sc = device_get_softc(bus);
6029 		tag = sc->sc_dma_tag;
6030 	}
6031 	return (tag);
6032 }
6033 #else
6034 bus_dma_tag_t
pci_get_dma_tag(device_t bus,device_t dev)6035 pci_get_dma_tag(device_t bus, device_t dev)
6036 {
6037 	struct pci_softc *sc = device_get_softc(bus);
6038 
6039 	return (sc->sc_dma_tag);
6040 }
6041 #endif
6042 
6043 uint32_t
pci_read_config_method(device_t dev,device_t child,int reg,int width)6044 pci_read_config_method(device_t dev, device_t child, int reg, int width)
6045 {
6046 	struct pci_devinfo *dinfo = device_get_ivars(child);
6047 	pcicfgregs *cfg = &dinfo->cfg;
6048 
6049 #ifdef PCI_IOV
6050 	/*
6051 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
6052 	 * emulate them here.
6053 	 */
6054 	if (cfg->flags & PCICFG_VF) {
6055 		if (reg == PCIR_VENDOR) {
6056 			switch (width) {
6057 			case 4:
6058 				return (cfg->device << 16 | cfg->vendor);
6059 			case 2:
6060 				return (cfg->vendor);
6061 			case 1:
6062 				return (cfg->vendor & 0xff);
6063 			default:
6064 				return (0xffffffff);
6065 			}
6066 		} else if (reg == PCIR_DEVICE) {
6067 			switch (width) {
6068 			/* Note that an unaligned 4-byte read is an error. */
6069 			case 2:
6070 				return (cfg->device);
6071 			case 1:
6072 				return (cfg->device & 0xff);
6073 			default:
6074 				return (0xffffffff);
6075 			}
6076 		}
6077 	}
6078 #endif
6079 
6080 	return (PCIB_READ_CONFIG(device_get_parent(dev),
6081 	    cfg->bus, cfg->slot, cfg->func, reg, width));
6082 }
6083 
6084 void
pci_write_config_method(device_t dev,device_t child,int reg,uint32_t val,int width)6085 pci_write_config_method(device_t dev, device_t child, int reg,
6086     uint32_t val, int width)
6087 {
6088 	struct pci_devinfo *dinfo = device_get_ivars(child);
6089 	pcicfgregs *cfg = &dinfo->cfg;
6090 
6091 	PCIB_WRITE_CONFIG(device_get_parent(dev),
6092 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
6093 }
6094 
6095 int
pci_child_location_method(device_t dev,device_t child,struct sbuf * sb)6096 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
6097 {
6098 
6099 	sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
6100 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
6101 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
6102 	return (0);
6103 }
6104 
6105 int
pci_child_pnpinfo_method(device_t dev,device_t child,struct sbuf * sb)6106 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
6107 {
6108 	struct pci_devinfo *dinfo;
6109 	pcicfgregs *cfg;
6110 
6111 	dinfo = device_get_ivars(child);
6112 	cfg = &dinfo->cfg;
6113 	sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
6114 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
6115 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
6116 	    cfg->progif);
6117 	return (0);
6118 }
6119 
6120 int
pci_get_device_path_method(device_t bus,device_t child,const char * locator,struct sbuf * sb)6121 pci_get_device_path_method(device_t bus, device_t child, const char *locator,
6122     struct sbuf *sb)
6123 {
6124 	device_t parent = device_get_parent(bus);
6125 	int rv;
6126 
6127 	if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
6128 		rv = bus_generic_get_device_path(parent, bus, locator, sb);
6129 		if (rv == 0) {
6130 			sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child),
6131 			    pci_get_function(child));
6132 		}
6133 		return (0);
6134 	}
6135 	return (bus_generic_get_device_path(bus, child, locator, sb));
6136 }
6137 
6138 int
pci_assign_interrupt_method(device_t dev,device_t child)6139 pci_assign_interrupt_method(device_t dev, device_t child)
6140 {
6141 	struct pci_devinfo *dinfo = device_get_ivars(child);
6142 	pcicfgregs *cfg = &dinfo->cfg;
6143 
6144 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
6145 	    cfg->intpin));
6146 }
6147 
6148 static void
pci_lookup(void * arg,const char * name,device_t * dev)6149 pci_lookup(void *arg, const char *name, device_t *dev)
6150 {
6151 	long val;
6152 	char *end;
6153 	int domain, bus, slot, func;
6154 
6155 	if (*dev != NULL)
6156 		return;
6157 
6158 	/*
6159 	 * Accept pciconf-style selectors of either pciD:B:S:F or
6160 	 * pciB:S:F.  In the latter case, the domain is assumed to
6161 	 * be zero.
6162 	 */
6163 	if (strncmp(name, "pci", 3) != 0)
6164 		return;
6165 	val = strtol(name + 3, &end, 10);
6166 	if (val < 0 || val > INT_MAX || *end != ':')
6167 		return;
6168 	domain = val;
6169 	val = strtol(end + 1, &end, 10);
6170 	if (val < 0 || val > INT_MAX || *end != ':')
6171 		return;
6172 	bus = val;
6173 	val = strtol(end + 1, &end, 10);
6174 	if (val < 0 || val > INT_MAX)
6175 		return;
6176 	slot = val;
6177 	if (*end == ':') {
6178 		val = strtol(end + 1, &end, 10);
6179 		if (val < 0 || val > INT_MAX || *end != '\0')
6180 			return;
6181 		func = val;
6182 	} else if (*end == '\0') {
6183 		func = slot;
6184 		slot = bus;
6185 		bus = domain;
6186 		domain = 0;
6187 	} else
6188 		return;
6189 
6190 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
6191 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
6192 		return;
6193 
6194 	*dev = pci_find_dbsf(domain, bus, slot, func);
6195 }
6196 
6197 static int
pci_modevent(module_t mod,int what,void * arg)6198 pci_modevent(module_t mod, int what, void *arg)
6199 {
6200 	static struct cdev *pci_cdev;
6201 	static eventhandler_tag tag;
6202 
6203 	switch (what) {
6204 	case MOD_LOAD:
6205 		STAILQ_INIT(&pci_devq);
6206 		pci_generation = 0;
6207 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
6208 		    "pci");
6209 		pci_load_vendor_data();
6210 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
6211 		    1000);
6212 		break;
6213 
6214 	case MOD_UNLOAD:
6215 		if (tag != NULL)
6216 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
6217 		destroy_dev(pci_cdev);
6218 		break;
6219 	}
6220 
6221 	return (0);
6222 }
6223 
6224 static void
pci_cfg_restore_pcie(device_t dev,struct pci_devinfo * dinfo)6225 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
6226 {
6227 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
6228 	struct pcicfg_pcie *cfg;
6229 	int version, pos;
6230 
6231 	cfg = &dinfo->cfg.pcie;
6232 	pos = cfg->pcie_location;
6233 
6234 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6235 
6236 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
6237 
6238 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6239 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6240 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6241 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
6242 
6243 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6244 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6245 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6246 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
6247 
6248 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6249 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6250 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
6251 
6252 	if (version > 1) {
6253 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
6254 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
6255 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
6256 	}
6257 #undef WREG
6258 }
6259 
6260 static void
pci_cfg_restore_pcix(device_t dev,struct pci_devinfo * dinfo)6261 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
6262 {
6263 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
6264 	    dinfo->cfg.pcix.pcix_command,  2);
6265 }
6266 
6267 void
pci_cfg_restore(device_t dev,struct pci_devinfo * dinfo)6268 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
6269 {
6270 
6271 	/*
6272 	 * Restore the device to full power mode.  We must do this
6273 	 * before we restore the registers because moving from D3 to
6274 	 * D0 will cause the chip's BARs and some other registers to
6275 	 * be reset to some unknown power on reset values.  Cut down
6276 	 * the noise on boot by doing nothing if we are already in
6277 	 * state D0.
6278 	 */
6279 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
6280 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6281 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
6282 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
6283 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
6284 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
6285 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
6286 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
6287 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6288 	case PCIM_HDRTYPE_NORMAL:
6289 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
6290 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
6291 		break;
6292 	case PCIM_HDRTYPE_BRIDGE:
6293 		pci_write_config(dev, PCIR_SECLAT_1,
6294 		    dinfo->cfg.bridge.br_seclat, 1);
6295 		pci_write_config(dev, PCIR_SUBBUS_1,
6296 		    dinfo->cfg.bridge.br_subbus, 1);
6297 		pci_write_config(dev, PCIR_SECBUS_1,
6298 		    dinfo->cfg.bridge.br_secbus, 1);
6299 		pci_write_config(dev, PCIR_PRIBUS_1,
6300 		    dinfo->cfg.bridge.br_pribus, 1);
6301 		pci_write_config(dev, PCIR_BRIDGECTL_1,
6302 		    dinfo->cfg.bridge.br_control, 2);
6303 		break;
6304 	case PCIM_HDRTYPE_CARDBUS:
6305 		pci_write_config(dev, PCIR_SECLAT_2,
6306 		    dinfo->cfg.bridge.br_seclat, 1);
6307 		pci_write_config(dev, PCIR_SUBBUS_2,
6308 		    dinfo->cfg.bridge.br_subbus, 1);
6309 		pci_write_config(dev, PCIR_SECBUS_2,
6310 		    dinfo->cfg.bridge.br_secbus, 1);
6311 		pci_write_config(dev, PCIR_PRIBUS_2,
6312 		    dinfo->cfg.bridge.br_pribus, 1);
6313 		pci_write_config(dev, PCIR_BRIDGECTL_2,
6314 		    dinfo->cfg.bridge.br_control, 2);
6315 		break;
6316 	}
6317 	pci_restore_bars(dev);
6318 
6319 	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
6320 		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
6321 
6322 	/*
6323 	 * Restore extended capabilities for PCI-Express and PCI-X
6324 	 */
6325 	if (dinfo->cfg.pcie.pcie_location != 0)
6326 		pci_cfg_restore_pcie(dev, dinfo);
6327 	if (dinfo->cfg.pcix.pcix_location != 0)
6328 		pci_cfg_restore_pcix(dev, dinfo);
6329 
6330 	/* Restore MSI and MSI-X configurations if they are present. */
6331 	if (dinfo->cfg.msi.msi_location != 0)
6332 		pci_resume_msi(dev);
6333 	if (dinfo->cfg.msix.msix_location != 0)
6334 		pci_resume_msix(dev);
6335 
6336 #ifdef PCI_IOV
6337 	if (dinfo->cfg.iov != NULL)
6338 		pci_iov_cfg_restore(dev, dinfo);
6339 #endif
6340 }
6341 
6342 static void
pci_cfg_save_pcie(device_t dev,struct pci_devinfo * dinfo)6343 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6344 {
6345 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
6346 	struct pcicfg_pcie *cfg;
6347 	int version, pos;
6348 
6349 	cfg = &dinfo->cfg.pcie;
6350 	pos = cfg->pcie_location;
6351 
6352 	cfg->pcie_flags = RREG(PCIER_FLAGS);
6353 
6354 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6355 
6356 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6357 
6358 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6359 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6360 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6361 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6362 
6363 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6364 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6365 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6366 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6367 
6368 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6369 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6370 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6371 
6372 	if (version > 1) {
6373 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6374 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6375 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6376 	}
6377 #undef RREG
6378 }
6379 
6380 static void
pci_cfg_save_pcix(device_t dev,struct pci_devinfo * dinfo)6381 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6382 {
6383 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6384 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6385 }
6386 
6387 void
pci_cfg_save(device_t dev,struct pci_devinfo * dinfo,int setstate)6388 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6389 {
6390 	uint32_t cls;
6391 	int ps;
6392 
6393 	/*
6394 	 * Some drivers apparently write to these registers w/o updating our
6395 	 * cached copy.  No harm happens if we update the copy, so do so here
6396 	 * so we can restore them.  The COMMAND register is modified by the
6397 	 * bus w/o updating the cache.  This should represent the normally
6398 	 * writable portion of the 'defined' part of type 0/1/2 headers.
6399 	 */
6400 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6401 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6402 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6403 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6404 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6405 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6406 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6407 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6408 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6409 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6410 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6411 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6412 	case PCIM_HDRTYPE_NORMAL:
6413 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6414 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6415 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6416 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6417 		break;
6418 	case PCIM_HDRTYPE_BRIDGE:
6419 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6420 		    PCIR_SECLAT_1, 1);
6421 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6422 		    PCIR_SUBBUS_1, 1);
6423 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6424 		    PCIR_SECBUS_1, 1);
6425 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6426 		    PCIR_PRIBUS_1, 1);
6427 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6428 		    PCIR_BRIDGECTL_1, 2);
6429 		break;
6430 	case PCIM_HDRTYPE_CARDBUS:
6431 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6432 		    PCIR_SECLAT_2, 1);
6433 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6434 		    PCIR_SUBBUS_2, 1);
6435 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6436 		    PCIR_SECBUS_2, 1);
6437 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6438 		    PCIR_PRIBUS_2, 1);
6439 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6440 		    PCIR_BRIDGECTL_2, 2);
6441 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6442 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6443 		break;
6444 	}
6445 
6446 	if (dinfo->cfg.pcie.pcie_location != 0)
6447 		pci_cfg_save_pcie(dev, dinfo);
6448 
6449 	if (dinfo->cfg.pcix.pcix_location != 0)
6450 		pci_cfg_save_pcix(dev, dinfo);
6451 
6452 #ifdef PCI_IOV
6453 	if (dinfo->cfg.iov != NULL)
6454 		pci_iov_cfg_save(dev, dinfo);
6455 #endif
6456 
6457 	/*
6458 	 * don't set the state for display devices, base peripherals and
6459 	 * memory devices since bad things happen when they are powered down.
6460 	 * We should (a) have drivers that can easily detach and (b) use
6461 	 * generic drivers for these devices so that some device actually
6462 	 * attaches.  We need to make sure that when we implement (a) we don't
6463 	 * power the device down on a reattach.
6464 	 */
6465 	cls = pci_get_class(dev);
6466 	if (!setstate)
6467 		return;
6468 	switch (pci_do_power_nodriver)
6469 	{
6470 		case 0:		/* NO powerdown at all */
6471 			return;
6472 		case 1:		/* Conservative about what to power down */
6473 			if (cls == PCIC_STORAGE)
6474 				return;
6475 			/*FALLTHROUGH*/
6476 		case 2:		/* Aggressive about what to power down */
6477 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6478 			    cls == PCIC_BASEPERIPH)
6479 				return;
6480 			/*FALLTHROUGH*/
6481 		case 3:		/* Power down everything */
6482 			break;
6483 	}
6484 	/*
6485 	 * PCI spec says we can only go into D3 state from D0 state.
6486 	 * Transition from D[12] into D0 before going to D3 state.
6487 	 */
6488 	ps = pci_get_powerstate(dev);
6489 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6490 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6491 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6492 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6493 }
6494 
6495 /* Wrapper APIs suitable for device driver use. */
6496 void
pci_save_state(device_t dev)6497 pci_save_state(device_t dev)
6498 {
6499 	struct pci_devinfo *dinfo;
6500 
6501 	dinfo = device_get_ivars(dev);
6502 	pci_cfg_save(dev, dinfo, 0);
6503 }
6504 
6505 void
pci_restore_state(device_t dev)6506 pci_restore_state(device_t dev)
6507 {
6508 	struct pci_devinfo *dinfo;
6509 
6510 	dinfo = device_get_ivars(dev);
6511 	pci_cfg_restore(dev, dinfo);
6512 }
6513 
6514 static int
pci_get_id_method(device_t dev,device_t child,enum pci_id_type type,uintptr_t * id)6515 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6516     uintptr_t *id)
6517 {
6518 
6519 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6520 }
6521 
6522 /* Find the upstream port of a given PCI device in a root complex. */
6523 device_t
pci_find_pcie_root_port(device_t dev)6524 pci_find_pcie_root_port(device_t dev)
6525 {
6526 	struct pci_devinfo *dinfo;
6527 	devclass_t pci_class;
6528 	device_t pcib, bus;
6529 
6530 	pci_class = devclass_find("pci");
6531 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6532 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6533 
6534 	/*
6535 	 * Walk the bridge hierarchy until we find a PCI-e root
6536 	 * port or a non-PCI device.
6537 	 */
6538 	for (;;) {
6539 		bus = device_get_parent(dev);
6540 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6541 		    device_get_nameunit(dev)));
6542 
6543 		pcib = device_get_parent(bus);
6544 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6545 		    device_get_nameunit(bus)));
6546 
6547 		/*
6548 		 * pcib's parent must be a PCI bus for this to be a
6549 		 * PCI-PCI bridge.
6550 		 */
6551 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6552 			return (NULL);
6553 
6554 		dinfo = device_get_ivars(pcib);
6555 		if (dinfo->cfg.pcie.pcie_location != 0 &&
6556 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6557 			return (pcib);
6558 
6559 		dev = pcib;
6560 	}
6561 }
6562 
6563 /*
6564  * Wait for pending transactions to complete on a PCI-express function.
6565  *
6566  * The maximum delay is specified in milliseconds in max_delay.  Note
6567  * that this function may sleep.
6568  *
6569  * Returns true if the function is idle and false if the timeout is
6570  * exceeded.  If dev is not a PCI-express function, this returns true.
6571  */
6572 bool
pcie_wait_for_pending_transactions(device_t dev,u_int max_delay)6573 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6574 {
6575 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6576 	uint16_t sta;
6577 	int cap;
6578 
6579 	cap = dinfo->cfg.pcie.pcie_location;
6580 	if (cap == 0)
6581 		return (true);
6582 
6583 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6584 	while (sta & PCIEM_STA_TRANSACTION_PND) {
6585 		if (max_delay == 0)
6586 			return (false);
6587 
6588 		/* Poll once every 100 milliseconds up to the timeout. */
6589 		if (max_delay > 100) {
6590 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6591 			max_delay -= 100;
6592 		} else {
6593 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6594 			    C_HARDCLOCK);
6595 			max_delay = 0;
6596 		}
6597 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6598 	}
6599 
6600 	return (true);
6601 }
6602 
6603 /*
6604  * Determine the maximum Completion Timeout in microseconds.
6605  *
6606  * For non-PCI-express functions this returns 0.
6607  */
6608 int
pcie_get_max_completion_timeout(device_t dev)6609 pcie_get_max_completion_timeout(device_t dev)
6610 {
6611 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6612 	int cap;
6613 
6614 	cap = dinfo->cfg.pcie.pcie_location;
6615 	if (cap == 0)
6616 		return (0);
6617 
6618 	/*
6619 	 * Functions using the 1.x spec use the default timeout range of
6620 	 * 50 microseconds to 50 milliseconds.  Functions that do not
6621 	 * support programmable timeouts also use this range.
6622 	 */
6623 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6624 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6625 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6626 		return (50 * 1000);
6627 
6628 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6629 	    PCIEM_CTL2_COMP_TIMO_VAL) {
6630 	case PCIEM_CTL2_COMP_TIMO_100US:
6631 		return (100);
6632 	case PCIEM_CTL2_COMP_TIMO_10MS:
6633 		return (10 * 1000);
6634 	case PCIEM_CTL2_COMP_TIMO_55MS:
6635 		return (55 * 1000);
6636 	case PCIEM_CTL2_COMP_TIMO_210MS:
6637 		return (210 * 1000);
6638 	case PCIEM_CTL2_COMP_TIMO_900MS:
6639 		return (900 * 1000);
6640 	case PCIEM_CTL2_COMP_TIMO_3500MS:
6641 		return (3500 * 1000);
6642 	case PCIEM_CTL2_COMP_TIMO_13S:
6643 		return (13 * 1000 * 1000);
6644 	case PCIEM_CTL2_COMP_TIMO_64S:
6645 		return (64 * 1000 * 1000);
6646 	default:
6647 		return (50 * 1000);
6648 	}
6649 }
6650 
6651 void
pcie_apei_error(device_t dev,int sev,uint8_t * aerp)6652 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6653 {
6654 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6655 	const char *s;
6656 	int aer;
6657 	uint32_t r, r1;
6658 	uint16_t rs;
6659 
6660 	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6661 		s = "Correctable";
6662 	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6663 		s = "Uncorrectable (Non-Fatal)";
6664 	else
6665 		s = "Uncorrectable (Fatal)";
6666 	device_printf(dev, "%s PCIe error reported by APEI\n", s);
6667 	if (aerp) {
6668 		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6669 			r = le32dec(aerp + PCIR_AER_COR_STATUS);
6670 			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6671 		} else {
6672 			r = le32dec(aerp + PCIR_AER_UC_STATUS);
6673 			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6674 		}
6675 		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6676 		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6677 			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6678 			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6679 			printf(" severity 0x%08x first %d\n",
6680 			    r, rs & 0x1f);
6681 		} else
6682 			printf("\n");
6683 	}
6684 
6685 	/* As kind of recovery just report and clear the error statuses. */
6686 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6687 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6688 		if (r != 0) {
6689 			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6690 			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6691 		}
6692 
6693 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6694 		if (r != 0) {
6695 			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6696 			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6697 		}
6698 	}
6699 	if (dinfo->cfg.pcie.pcie_location != 0) {
6700 		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6701 		    PCIER_DEVICE_STA, 2);
6702 		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6703 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6704 		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6705 			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6706 			    PCIER_DEVICE_STA, rs, 2);
6707 			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6708 		}
6709 	}
6710 }
6711 
6712 /*
6713  * Perform a Function Level Reset (FLR) on a device.
6714  *
6715  * This function first waits for any pending transactions to complete
6716  * within the timeout specified by max_delay.  If transactions are
6717  * still pending, the function will return false without attempting a
6718  * reset.
6719  *
6720  * If dev is not a PCI-express function or does not support FLR, this
6721  * function returns false.
6722  *
6723  * Note that no registers are saved or restored.  The caller is
6724  * responsible for saving and restoring any registers including
6725  * PCI-standard registers via pci_save_state() and
6726  * pci_restore_state().
6727  */
6728 bool
pcie_flr(device_t dev,u_int max_delay,bool force)6729 pcie_flr(device_t dev, u_int max_delay, bool force)
6730 {
6731 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6732 	uint16_t cmd, ctl;
6733 	int compl_delay;
6734 	int cap;
6735 
6736 	cap = dinfo->cfg.pcie.pcie_location;
6737 	if (cap == 0)
6738 		return (false);
6739 
6740 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6741 		return (false);
6742 
6743 	/*
6744 	 * Disable busmastering to prevent generation of new
6745 	 * transactions while waiting for the device to go idle.  If
6746 	 * the idle timeout fails, the command register is restored
6747 	 * which will re-enable busmastering.
6748 	 */
6749 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6750 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6751 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6752 		if (!force) {
6753 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6754 			return (false);
6755 		}
6756 		pci_printf(&dinfo->cfg,
6757 		    "Resetting with transactions pending after %d ms\n",
6758 		    max_delay);
6759 
6760 		/*
6761 		 * Extend the post-FLR delay to cover the maximum
6762 		 * Completion Timeout delay of anything in flight
6763 		 * during the FLR delay.  Enforce a minimum delay of
6764 		 * at least 10ms.
6765 		 */
6766 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6767 		if (compl_delay < 10)
6768 			compl_delay = 10;
6769 	} else
6770 		compl_delay = 0;
6771 
6772 	/* Initiate the reset. */
6773 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6774 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6775 	    PCIEM_CTL_INITIATE_FLR, 2);
6776 
6777 	/* Wait for 100ms. */
6778 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6779 
6780 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6781 	    PCIEM_STA_TRANSACTION_PND)
6782 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6783 	return (true);
6784 }
6785 
6786 /*
6787  * Attempt a power-management reset by cycling the device in/out of D3
6788  * state.  PCI spec says we can only go into D3 state from D0 state.
6789  * Transition from D[12] into D0 before going to D3 state.
6790  */
6791 int
pci_power_reset(device_t dev)6792 pci_power_reset(device_t dev)
6793 {
6794 	int ps;
6795 
6796 	ps = pci_get_powerstate(dev);
6797 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6798 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6799 	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6800 	pci_set_powerstate(dev, ps);
6801 	return (0);
6802 }
6803 
6804 /*
6805  * Try link drop and retrain of the downstream port of upstream
6806  * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6807  * cause Conventional Hot reset of the device in the slot.
6808  * Alternative, for PCIe, could be the secondary bus reset initiatied
6809  * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6810  */
6811 int
pcie_link_reset(device_t port,int pcie_location)6812 pcie_link_reset(device_t port, int pcie_location)
6813 {
6814 	uint16_t v;
6815 
6816 	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6817 	v |= PCIEM_LINK_CTL_LINK_DIS;
6818 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6819 	pause_sbt("pcier1", mstosbt(20), 0, 0);
6820 	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6821 	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6822 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6823 	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6824 	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6825 	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6826 }
6827 
6828 static int
pci_reset_post(device_t dev,device_t child)6829 pci_reset_post(device_t dev, device_t child)
6830 {
6831 
6832 	if (dev == device_get_parent(child))
6833 		pci_restore_state(child);
6834 	return (0);
6835 }
6836 
6837 static int
pci_reset_prepare(device_t dev,device_t child)6838 pci_reset_prepare(device_t dev, device_t child)
6839 {
6840 
6841 	if (dev == device_get_parent(child))
6842 		pci_save_state(child);
6843 	return (0);
6844 }
6845 
6846 static int
pci_reset_child(device_t dev,device_t child,int flags)6847 pci_reset_child(device_t dev, device_t child, int flags)
6848 {
6849 	int error;
6850 
6851 	if (dev == NULL || device_get_parent(child) != dev)
6852 		return (0);
6853 	if ((flags & DEVF_RESET_DETACH) != 0) {
6854 		error = device_get_state(child) == DS_ATTACHED ?
6855 		    device_detach(child) : 0;
6856 	} else {
6857 		error = BUS_SUSPEND_CHILD(dev, child);
6858 	}
6859 	if (error == 0) {
6860 		if (!pcie_flr(child, 1000, false)) {
6861 			error = BUS_RESET_PREPARE(dev, child);
6862 			if (error == 0)
6863 				pci_power_reset(child);
6864 			BUS_RESET_POST(dev, child);
6865 		}
6866 		if ((flags & DEVF_RESET_DETACH) != 0)
6867 			device_probe_and_attach(child);
6868 		else
6869 			BUS_RESUME_CHILD(dev, child);
6870 	}
6871 	return (error);
6872 }
6873 
6874 const struct pci_device_table *
pci_match_device(device_t child,const struct pci_device_table * id,size_t nelt)6875 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6876 {
6877 	bool match;
6878 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6879 
6880 	vendor = pci_get_vendor(child);
6881 	device = pci_get_device(child);
6882 	subvendor = pci_get_subvendor(child);
6883 	subdevice = pci_get_subdevice(child);
6884 	class = pci_get_class(child);
6885 	subclass = pci_get_subclass(child);
6886 	revid = pci_get_revid(child);
6887 	while (nelt-- > 0) {
6888 		match = true;
6889 		if (id->match_flag_vendor)
6890 			match &= vendor == id->vendor;
6891 		if (id->match_flag_device)
6892 			match &= device == id->device;
6893 		if (id->match_flag_subvendor)
6894 			match &= subvendor == id->subvendor;
6895 		if (id->match_flag_subdevice)
6896 			match &= subdevice == id->subdevice;
6897 		if (id->match_flag_class)
6898 			match &= class == id->class_id;
6899 		if (id->match_flag_subclass)
6900 			match &= subclass == id->subclass;
6901 		if (id->match_flag_revid)
6902 			match &= revid == id->revid;
6903 		if (match)
6904 			return (id);
6905 		id++;
6906 	}
6907 	return (NULL);
6908 }
6909 
6910 static void
pci_print_faulted_dev_name(const struct pci_devinfo * dinfo)6911 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6912 {
6913 	const char *dev_name;
6914 	device_t dev;
6915 
6916 	dev = dinfo->cfg.dev;
6917 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6918 	    dinfo->cfg.slot, dinfo->cfg.func);
6919 	dev_name = device_get_name(dev);
6920 	if (dev_name != NULL)
6921 		printf(" (%s%d)", dev_name, device_get_unit(dev));
6922 }
6923 
6924 void
pci_print_faulted_dev(void)6925 pci_print_faulted_dev(void)
6926 {
6927 	struct pci_devinfo *dinfo;
6928 	device_t dev;
6929 	int aer, i;
6930 	uint32_t r1, r2;
6931 	uint16_t status;
6932 
6933 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6934 		dev = dinfo->cfg.dev;
6935 		status = pci_read_config(dev, PCIR_STATUS, 2);
6936 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6937 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6938 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6939 		if (status != 0) {
6940 			pci_print_faulted_dev_name(dinfo);
6941 			printf(" error 0x%04x\n", status);
6942 		}
6943 		if (dinfo->cfg.pcie.pcie_location != 0) {
6944 			status = pci_read_config(dev,
6945 			    dinfo->cfg.pcie.pcie_location +
6946 			    PCIER_DEVICE_STA, 2);
6947 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6948 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6949 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6950 				pci_print_faulted_dev_name(dinfo);
6951 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6952 				    pci_read_config(dev,
6953 				    dinfo->cfg.pcie.pcie_location +
6954 				    PCIER_DEVICE_CTL, 2),
6955 				    status);
6956 			}
6957 		}
6958 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6959 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6960 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6961 			if (r1 != 0 || r2 != 0) {
6962 				pci_print_faulted_dev_name(dinfo);
6963 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6964 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6965 				    r1, pci_read_config(dev, aer +
6966 				    PCIR_AER_UC_MASK, 4),
6967 				    pci_read_config(dev, aer +
6968 				    PCIR_AER_UC_SEVERITY, 4),
6969 				    r2, pci_read_config(dev, aer +
6970 				    PCIR_AER_COR_MASK, 4),
6971 				    pci_read_config(dev, aer +
6972 				    PCIR_AER_CAP_CONTROL, 4));
6973 				for (i = 0; i < 4; i++) {
6974 					r1 = pci_read_config(dev, aer +
6975 					    PCIR_AER_HEADER_LOG + i * 4, 4);
6976 					printf("    HL%d: 0x%08x\n", i, r1);
6977 				}
6978 			}
6979 		}
6980 	}
6981 }
6982 
6983 #ifdef DDB
DB_SHOW_COMMAND_FLAGS(pcierr,pci_print_faulted_dev_db,DB_CMD_MEMSAFE)6984 DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE)
6985 {
6986 
6987 	pci_print_faulted_dev();
6988 }
6989 
6990 static void
db_clear_pcie_errors(const struct pci_devinfo * dinfo)6991 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6992 {
6993 	device_t dev;
6994 	int aer;
6995 	uint32_t r;
6996 
6997 	dev = dinfo->cfg.dev;
6998 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6999 	    PCIER_DEVICE_STA, 2);
7000 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
7001 	    PCIER_DEVICE_STA, r, 2);
7002 
7003 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
7004 		return;
7005 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
7006 	if (r != 0)
7007 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
7008 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
7009 	if (r != 0)
7010 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
7011 }
7012 
DB_COMMAND_FLAGS(pci_clearerr,db_pci_clearerr,DB_CMD_MEMSAFE)7013 DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE)
7014 {
7015 	struct pci_devinfo *dinfo;
7016 	device_t dev;
7017 	uint16_t status, status1;
7018 
7019 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
7020 		dev = dinfo->cfg.dev;
7021 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
7022 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
7023 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
7024 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
7025 		if (status1 != 0) {
7026 			status &= ~status1;
7027 			pci_write_config(dev, PCIR_STATUS, status, 2);
7028 		}
7029 		if (dinfo->cfg.pcie.pcie_location != 0)
7030 			db_clear_pcie_errors(dinfo);
7031 	}
7032 }
7033 #endif
7034