xref: /linux/drivers/pci/pci.c (revision 42b16d3ac371a2fac9b6f08fd75f23f34ba3955a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/dma.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 #ifdef CONFIG_X86_32
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 #endif
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3hot_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 /*
67  * Following exit from Conventional Reset, devices must be ready within 1 sec
68  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
69  * Reset (PCIe r6.0 sec 5.8).
70  */
71 #define PCI_RESET_WAIT 1000 /* msec */
72 
73 /*
74  * Devices may extend the 1 sec period through Request Retry Status
75  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
76  * limit, but 60 sec ought to be enough for any device to become
77  * responsive.
78  */
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80 
pci_dev_d3_sleep(struct pci_dev * dev)81 static void pci_dev_d3_sleep(struct pci_dev *dev)
82 {
83 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 	unsigned int upper;
85 
86 	if (delay_ms) {
87 		/* Use a 20% upper bound, 1ms minimum */
88 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 		usleep_range(delay_ms * USEC_PER_MSEC,
90 			     (delay_ms + upper) * USEC_PER_MSEC);
91 	}
92 }
93 
pci_reset_supported(struct pci_dev * dev)94 bool pci_reset_supported(struct pci_dev *dev)
95 {
96 	return dev->reset_methods[0] != 0;
97 }
98 
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
101 #endif
102 
103 #define DEFAULT_CARDBUS_IO_SIZE		(256)
104 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108 
109 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
114 /*
115  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117  * pci=hpmemsize=nnM overrides both
118  */
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121 
122 #define DEFAULT_HOTPLUG_BUS_SIZE	1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124 
125 
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135 #else
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137 #endif
138 
139 /*
140  * The default CLS is used if arch didn't set CLS explicitly and not
141  * all pci devices agree on the same value.  Arch can override either
142  * the dfl or actual value as it sees fit.  Don't forget this is
143  * measured in 32-bit words, not bytes.
144  */
145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size __ro_after_init ;
147 
148 /*
149  * If we set up a device for bus mastering, we need to check the latency
150  * timer as certain BIOSes forget to set it properly.
151  */
152 unsigned int pcibios_max_latency = 255;
153 
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
156 
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
159 
160 /* If set, the PCI config space of each device is printed during boot. */
161 bool pci_early_dump;
162 
pci_ats_disabled(void)163 bool pci_ats_disabled(void)
164 {
165 	return pcie_ats_disabled;
166 }
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
168 
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
173 
pcie_port_pm_setup(char * str)174 static int __init pcie_port_pm_setup(char *str)
175 {
176 	if (!strcmp(str, "off"))
177 		pci_bridge_d3_disable = true;
178 	else if (!strcmp(str, "force"))
179 		pci_bridge_d3_force = true;
180 	return 1;
181 }
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
183 
184 /**
185  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186  * @bus: pointer to PCI bus structure to search
187  *
188  * Given a PCI bus, returns the highest PCI bus number present in the set
189  * including the given PCI bus and its list of child PCI buses.
190  */
pci_bus_max_busnr(struct pci_bus * bus)191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192 {
193 	struct pci_bus *tmp;
194 	unsigned char max, n;
195 
196 	max = bus->busn_res.end;
197 	list_for_each_entry(tmp, &bus->children, node) {
198 		n = pci_bus_max_busnr(tmp);
199 		if (n > max)
200 			max = n;
201 	}
202 	return max;
203 }
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205 
206 /**
207  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208  * @pdev: the PCI device
209  *
210  * Returns error bits set in PCI_STATUS and clears them.
211  */
pci_status_get_and_clear_errors(struct pci_dev * pdev)212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213 {
214 	u16 status;
215 	int ret;
216 
217 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 	if (ret != PCIBIOS_SUCCESSFUL)
219 		return -EIO;
220 
221 	status &= PCI_STATUS_ERROR_BITS;
222 	if (status)
223 		pci_write_config_word(pdev, PCI_STATUS, status);
224 
225 	return status;
226 }
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228 
229 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 					    bool write_combine)
232 {
233 	struct resource *res = &pdev->resource[bar];
234 	resource_size_t start = res->start;
235 	resource_size_t size = resource_size(res);
236 
237 	/*
238 	 * Make sure the BAR is actually a memory resource, not an IO resource
239 	 */
240 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 		return NULL;
243 	}
244 
245 	if (write_combine)
246 		return ioremap_wc(start, size);
247 
248 	return ioremap(start, size);
249 }
250 
pci_ioremap_bar(struct pci_dev * pdev,int bar)251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252 {
253 	return __pci_ioremap_resource(pdev, bar, false);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258 {
259 	return __pci_ioremap_resource(pdev, bar, true);
260 }
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262 #endif
263 
264 /**
265  * pci_dev_str_match_path - test if a path string matches a device
266  * @dev: the PCI device to test
267  * @path: string to match the device against
268  * @endptr: pointer to the string after the match
269  *
270  * Test if a string (typically from a kernel parameter) formatted as a
271  * path of device/function addresses matches a PCI device. The string must
272  * be of the form:
273  *
274  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275  *
276  * A path for a device can be obtained using 'lspci -t'.  Using a path
277  * is more robust against bus renumbering than using only a single bus,
278  * device and function address.
279  *
280  * Returns 1 if the string matches the device, 0 if it does not and
281  * a negative error code if it fails to parse the string.
282  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 				  const char **endptr)
285 {
286 	int ret;
287 	unsigned int seg, bus, slot, func;
288 	char *wpath, *p;
289 	char end;
290 
291 	*endptr = strchrnul(path, ';');
292 
293 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 	if (!wpath)
295 		return -ENOMEM;
296 
297 	while (1) {
298 		p = strrchr(wpath, '/');
299 		if (!p)
300 			break;
301 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 		if (ret != 2) {
303 			ret = -EINVAL;
304 			goto free_and_exit;
305 		}
306 
307 		if (dev->devfn != PCI_DEVFN(slot, func)) {
308 			ret = 0;
309 			goto free_and_exit;
310 		}
311 
312 		/*
313 		 * Note: we don't need to get a reference to the upstream
314 		 * bridge because we hold a reference to the top level
315 		 * device which should hold a reference to the bridge,
316 		 * and so on.
317 		 */
318 		dev = pci_upstream_bridge(dev);
319 		if (!dev) {
320 			ret = 0;
321 			goto free_and_exit;
322 		}
323 
324 		*p = 0;
325 	}
326 
327 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 		     &func, &end);
329 	if (ret != 4) {
330 		seg = 0;
331 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 		if (ret != 3) {
333 			ret = -EINVAL;
334 			goto free_and_exit;
335 		}
336 	}
337 
338 	ret = (seg == pci_domain_nr(dev->bus) &&
339 	       bus == dev->bus->number &&
340 	       dev->devfn == PCI_DEVFN(slot, func));
341 
342 free_and_exit:
343 	kfree(wpath);
344 	return ret;
345 }
346 
347 /**
348  * pci_dev_str_match - test if a string matches a device
349  * @dev: the PCI device to test
350  * @p: string to match the device against
351  * @endptr: pointer to the string after the match
352  *
353  * Test if a string (typically from a kernel parameter) matches a specified
354  * PCI device. The string may be of one of the following formats:
355  *
356  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358  *
359  * The first format specifies a PCI bus/device/function address which
360  * may change if new hardware is inserted, if motherboard firmware changes,
361  * or due to changes caused in kernel parameters. If the domain is
362  * left unspecified, it is taken to be 0.  In order to be robust against
363  * bus renumbering issues, a path of PCI device/function numbers may be used
364  * to address the specific device.  The path for a device can be determined
365  * through the use of 'lspci -t'.
366  *
367  * The second format matches devices using IDs in the configuration
368  * space which may match multiple devices in the system. A value of 0
369  * for any field will match all devices. (Note: this differs from
370  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371  * legacy reasons and convenience so users don't have to specify
372  * FFFFFFFFs on the command line.)
373  *
374  * Returns 1 if the string matches the device, 0 if it does not and
375  * a negative error code if the string cannot be parsed.
376  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 			     const char **endptr)
379 {
380 	int ret;
381 	int count;
382 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
383 
384 	if (strncmp(p, "pci:", 4) == 0) {
385 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 		p += 4;
387 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 			     &subsystem_vendor, &subsystem_device, &count);
389 		if (ret != 4) {
390 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 			if (ret != 2)
392 				return -EINVAL;
393 
394 			subsystem_vendor = 0;
395 			subsystem_device = 0;
396 		}
397 
398 		p += count;
399 
400 		if ((!vendor || vendor == dev->vendor) &&
401 		    (!device || device == dev->device) &&
402 		    (!subsystem_vendor ||
403 			    subsystem_vendor == dev->subsystem_vendor) &&
404 		    (!subsystem_device ||
405 			    subsystem_device == dev->subsystem_device))
406 			goto found;
407 	} else {
408 		/*
409 		 * PCI Bus, Device, Function IDs are specified
410 		 * (optionally, may include a path of devfns following it)
411 		 */
412 		ret = pci_dev_str_match_path(dev, p, &p);
413 		if (ret < 0)
414 			return ret;
415 		else if (ret)
416 			goto found;
417 	}
418 
419 	*endptr = p;
420 	return 0;
421 
422 found:
423 	*endptr = p;
424 	return 1;
425 }
426 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 				  u8 pos, int cap, int *ttl)
429 {
430 	u8 id;
431 	u16 ent;
432 
433 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
434 
435 	while ((*ttl)--) {
436 		if (pos < 0x40)
437 			break;
438 		pos &= ~3;
439 		pci_bus_read_config_word(bus, devfn, pos, &ent);
440 
441 		id = ent & 0xff;
442 		if (id == 0xff)
443 			break;
444 		if (id == cap)
445 			return pos;
446 		pos = (ent >> 8);
447 	}
448 	return 0;
449 }
450 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 			      u8 pos, int cap)
453 {
454 	int ttl = PCI_FIND_CAP_TTL;
455 
456 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457 }
458 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460 {
461 	return __pci_find_next_cap(dev->bus, dev->devfn,
462 				   pos + PCI_CAP_LIST_NEXT, cap);
463 }
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
465 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 				    unsigned int devfn, u8 hdr_type)
468 {
469 	u16 status;
470 
471 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 	if (!(status & PCI_STATUS_CAP_LIST))
473 		return 0;
474 
475 	switch (hdr_type) {
476 	case PCI_HEADER_TYPE_NORMAL:
477 	case PCI_HEADER_TYPE_BRIDGE:
478 		return PCI_CAPABILITY_LIST;
479 	case PCI_HEADER_TYPE_CARDBUS:
480 		return PCI_CB_CAPABILITY_LIST;
481 	}
482 
483 	return 0;
484 }
485 
486 /**
487  * pci_find_capability - query for devices' capabilities
488  * @dev: PCI device to query
489  * @cap: capability code
490  *
491  * Tell if a device supports a given PCI capability.
492  * Returns the address of the requested capability structure within the
493  * device's PCI configuration space or 0 in case the device does not
494  * support it.  Possible values for @cap include:
495  *
496  *  %PCI_CAP_ID_PM           Power Management
497  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
498  *  %PCI_CAP_ID_VPD          Vital Product Data
499  *  %PCI_CAP_ID_SLOTID       Slot Identification
500  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
501  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
502  *  %PCI_CAP_ID_PCIX         PCI-X
503  *  %PCI_CAP_ID_EXP          PCI Express
504  */
pci_find_capability(struct pci_dev * dev,int cap)505 u8 pci_find_capability(struct pci_dev *dev, int cap)
506 {
507 	u8 pos;
508 
509 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 	if (pos)
511 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512 
513 	return pos;
514 }
515 EXPORT_SYMBOL(pci_find_capability);
516 
517 /**
518  * pci_bus_find_capability - query for devices' capabilities
519  * @bus: the PCI bus to query
520  * @devfn: PCI device to query
521  * @cap: capability code
522  *
523  * Like pci_find_capability() but works for PCI devices that do not have a
524  * pci_dev structure set up yet.
525  *
526  * Returns the address of the requested capability structure within the
527  * device's PCI configuration space or 0 in case the device does not
528  * support it.
529  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531 {
532 	u8 hdr_type, pos;
533 
534 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535 
536 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 	if (pos)
538 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
539 
540 	return pos;
541 }
542 EXPORT_SYMBOL(pci_bus_find_capability);
543 
544 /**
545  * pci_find_next_ext_capability - Find an extended capability
546  * @dev: PCI device to query
547  * @start: address at which to start looking (0 to start at beginning of list)
548  * @cap: capability code
549  *
550  * Returns the address of the next matching extended capability structure
551  * within the device's PCI configuration space or 0 if the device does
552  * not support it.  Some capabilities can occur several times, e.g., the
553  * vendor-specific capability, and this provides a way to find them all.
554  */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556 {
557 	u32 header;
558 	int ttl;
559 	u16 pos = PCI_CFG_SPACE_SIZE;
560 
561 	/* minimum 8 bytes per capability */
562 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563 
564 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 		return 0;
566 
567 	if (start)
568 		pos = start;
569 
570 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 		return 0;
572 
573 	/*
574 	 * If we have no capabilities, this is indicated by cap ID,
575 	 * cap version and next pointer all being 0.
576 	 */
577 	if (header == 0)
578 		return 0;
579 
580 	while (ttl-- > 0) {
581 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 			return pos;
583 
584 		pos = PCI_EXT_CAP_NEXT(header);
585 		if (pos < PCI_CFG_SPACE_SIZE)
586 			break;
587 
588 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 			break;
590 	}
591 
592 	return 0;
593 }
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595 
596 /**
597  * pci_find_ext_capability - Find an extended capability
598  * @dev: PCI device to query
599  * @cap: capability code
600  *
601  * Returns the address of the requested extended capability structure
602  * within the device's PCI configuration space or 0 if the device does
603  * not support it.  Possible values for @cap include:
604  *
605  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
606  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
607  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
608  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
609  */
pci_find_ext_capability(struct pci_dev * dev,int cap)610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611 {
612 	return pci_find_next_ext_capability(dev, 0, cap);
613 }
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615 
616 /**
617  * pci_get_dsn - Read and return the 8-byte Device Serial Number
618  * @dev: PCI device to query
619  *
620  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621  * Number.
622  *
623  * Returns the DSN, or zero if the capability does not exist.
624  */
pci_get_dsn(struct pci_dev * dev)625 u64 pci_get_dsn(struct pci_dev *dev)
626 {
627 	u32 dword;
628 	u64 dsn;
629 	int pos;
630 
631 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 	if (!pos)
633 		return 0;
634 
635 	/*
636 	 * The Device Serial Number is two dwords offset 4 bytes from the
637 	 * capability position. The specification says that the first dword is
638 	 * the lower half, and the second dword is the upper half.
639 	 */
640 	pos += 4;
641 	pci_read_config_dword(dev, pos, &dword);
642 	dsn = (u64)dword;
643 	pci_read_config_dword(dev, pos + 4, &dword);
644 	dsn |= ((u64)dword) << 32;
645 
646 	return dsn;
647 }
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
649 
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651 {
652 	int rc, ttl = PCI_FIND_CAP_TTL;
653 	u8 cap, mask;
654 
655 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 		mask = HT_3BIT_CAP_MASK;
657 	else
658 		mask = HT_5BIT_CAP_MASK;
659 
660 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 				      PCI_CAP_ID_HT, &ttl);
662 	while (pos) {
663 		rc = pci_read_config_byte(dev, pos + 3, &cap);
664 		if (rc != PCIBIOS_SUCCESSFUL)
665 			return 0;
666 
667 		if ((cap & mask) == ht_cap)
668 			return pos;
669 
670 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 					      pos + PCI_CAP_LIST_NEXT,
672 					      PCI_CAP_ID_HT, &ttl);
673 	}
674 
675 	return 0;
676 }
677 
678 /**
679  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680  * @dev: PCI device to query
681  * @pos: Position from which to continue searching
682  * @ht_cap: HyperTransport capability code
683  *
684  * To be used in conjunction with pci_find_ht_capability() to search for
685  * all capabilities matching @ht_cap. @pos should always be a value returned
686  * from pci_find_ht_capability().
687  *
688  * NB. To be 100% safe against broken PCI devices, the caller should take
689  * steps to avoid an infinite loop.
690  */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692 {
693 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694 }
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696 
697 /**
698  * pci_find_ht_capability - query a device's HyperTransport capabilities
699  * @dev: PCI device to query
700  * @ht_cap: HyperTransport capability code
701  *
702  * Tell if a device supports a given HyperTransport capability.
703  * Returns an address within the device's PCI configuration space
704  * or 0 in case the device does not support the request capability.
705  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706  * which has a HyperTransport capability matching @ht_cap.
707  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709 {
710 	u8 pos;
711 
712 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 	if (pos)
714 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715 
716 	return pos;
717 }
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719 
720 /**
721  * pci_find_vsec_capability - Find a vendor-specific extended capability
722  * @dev: PCI device to query
723  * @vendor: Vendor ID for which capability is defined
724  * @cap: Vendor-specific capability ID
725  *
726  * If @dev has Vendor ID @vendor, search for a VSEC capability with
727  * VSEC ID @cap. If found, return the capability offset in
728  * config space; otherwise return 0.
729  */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731 {
732 	u16 vsec = 0;
733 	u32 header;
734 	int ret;
735 
736 	if (vendor != dev->vendor)
737 		return 0;
738 
739 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 						     PCI_EXT_CAP_ID_VNDR))) {
741 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 		if (ret != PCIBIOS_SUCCESSFUL)
743 			continue;
744 
745 		if (PCI_VNDR_HEADER_ID(header) == cap)
746 			return vsec;
747 	}
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752 
753 /**
754  * pci_find_dvsec_capability - Find DVSEC for vendor
755  * @dev: PCI device to query
756  * @vendor: Vendor ID to match for the DVSEC
757  * @dvsec: Designated Vendor-specific capability ID
758  *
759  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760  * offset in config space; otherwise return 0.
761  */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763 {
764 	int pos;
765 
766 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 	if (!pos)
768 		return 0;
769 
770 	while (pos) {
771 		u16 v, id;
772 
773 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 		if (vendor == v && dvsec == id)
776 			return pos;
777 
778 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 	}
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784 
785 /**
786  * pci_find_parent_resource - return resource region of parent bus of given
787  *			      region
788  * @dev: PCI device structure contains resources to be searched
789  * @res: child resource record for which parent is sought
790  *
791  * For given resource region of given device, return the resource region of
792  * parent bus the given region is contained in.
793  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 					  struct resource *res)
796 {
797 	const struct pci_bus *bus = dev->bus;
798 	struct resource *r;
799 
800 	pci_bus_for_each_resource(bus, r) {
801 		if (!r)
802 			continue;
803 		if (resource_contains(r, res)) {
804 
805 			/*
806 			 * If the window is prefetchable but the BAR is
807 			 * not, the allocator made a mistake.
808 			 */
809 			if (r->flags & IORESOURCE_PREFETCH &&
810 			    !(res->flags & IORESOURCE_PREFETCH))
811 				return NULL;
812 
813 			/*
814 			 * If we're below a transparent bridge, there may
815 			 * be both a positively-decoded aperture and a
816 			 * subtractively-decoded region that contain the BAR.
817 			 * We want the positively-decoded one, so this depends
818 			 * on pci_bus_for_each_resource() giving us those
819 			 * first.
820 			 */
821 			return r;
822 		}
823 	}
824 	return NULL;
825 }
826 EXPORT_SYMBOL(pci_find_parent_resource);
827 
828 /**
829  * pci_find_resource - Return matching PCI device resource
830  * @dev: PCI device to query
831  * @res: Resource to look for
832  *
833  * Goes over standard PCI resources (BARs) and checks if the given resource
834  * is partially or fully contained in any of them. In that case the
835  * matching resource is returned, %NULL otherwise.
836  */
pci_find_resource(struct pci_dev * dev,struct resource * res)837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838 {
839 	int i;
840 
841 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 		struct resource *r = &dev->resource[i];
843 
844 		if (r->start && resource_contains(r, res))
845 			return r;
846 	}
847 
848 	return NULL;
849 }
850 EXPORT_SYMBOL(pci_find_resource);
851 
852 /**
853  * pci_resource_name - Return the name of the PCI resource
854  * @dev: PCI device to query
855  * @i: index of the resource
856  *
857  * Return the standard PCI resource (BAR) name according to their index.
858  */
pci_resource_name(struct pci_dev * dev,unsigned int i)859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860 {
861 	static const char * const bar_name[] = {
862 		"BAR 0",
863 		"BAR 1",
864 		"BAR 2",
865 		"BAR 3",
866 		"BAR 4",
867 		"BAR 5",
868 		"ROM",
869 #ifdef CONFIG_PCI_IOV
870 		"VF BAR 0",
871 		"VF BAR 1",
872 		"VF BAR 2",
873 		"VF BAR 3",
874 		"VF BAR 4",
875 		"VF BAR 5",
876 #endif
877 		"bridge window",	/* "io" included in %pR */
878 		"bridge window",	/* "mem" included in %pR */
879 		"bridge window",	/* "mem pref" included in %pR */
880 	};
881 	static const char * const cardbus_name[] = {
882 		"BAR 1",
883 		"unknown",
884 		"unknown",
885 		"unknown",
886 		"unknown",
887 		"unknown",
888 #ifdef CONFIG_PCI_IOV
889 		"unknown",
890 		"unknown",
891 		"unknown",
892 		"unknown",
893 		"unknown",
894 		"unknown",
895 #endif
896 		"CardBus bridge window 0",	/* I/O */
897 		"CardBus bridge window 1",	/* I/O */
898 		"CardBus bridge window 0",	/* mem */
899 		"CardBus bridge window 1",	/* mem */
900 	};
901 
902 	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 	    i < ARRAY_SIZE(cardbus_name))
904 		return cardbus_name[i];
905 
906 	if (i < ARRAY_SIZE(bar_name))
907 		return bar_name[i];
908 
909 	return "unknown";
910 }
911 
912 /**
913  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914  * @dev: the PCI device to operate on
915  * @pos: config space offset of status word
916  * @mask: mask of bit(s) to care about in status word
917  *
918  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921 {
922 	int i;
923 
924 	/* Wait for Transaction Pending bit clean */
925 	for (i = 0; i < 4; i++) {
926 		u16 status;
927 		if (i)
928 			msleep((1 << (i - 1)) * 100);
929 
930 		pci_read_config_word(dev, pos, &status);
931 		if (!(status & mask))
932 			return 1;
933 	}
934 
935 	return 0;
936 }
937 
938 static int pci_acs_enable;
939 
940 /**
941  * pci_request_acs - ask for ACS to be enabled if supported
942  */
pci_request_acs(void)943 void pci_request_acs(void)
944 {
945 	pci_acs_enable = 1;
946 }
947 
948 static const char *disable_acs_redir_param;
949 static const char *config_acs_param;
950 
951 struct pci_acs {
952 	u16 cap;
953 	u16 ctrl;
954 	u16 fw_ctrl;
955 };
956 
__pci_config_acs(struct pci_dev * dev,struct pci_acs * caps,const char * p,u16 mask,u16 flags)957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 			     const char *p, u16 mask, u16 flags)
959 {
960 	char *delimit;
961 	int ret = 0;
962 
963 	if (!p)
964 		return;
965 
966 	while (*p) {
967 		if (!mask) {
968 			/* Check for ACS flags */
969 			delimit = strstr(p, "@");
970 			if (delimit) {
971 				int end;
972 				u32 shift = 0;
973 
974 				end = delimit - p - 1;
975 
976 				while (end > -1) {
977 					if (*(p + end) == '0') {
978 						mask |= 1 << shift;
979 						shift++;
980 						end--;
981 					} else if (*(p + end) == '1') {
982 						mask |= 1 << shift;
983 						flags |= 1 << shift;
984 						shift++;
985 						end--;
986 					} else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 						shift++;
988 						end--;
989 					} else {
990 						pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 						return;
992 					}
993 				}
994 				p = delimit + 1;
995 			} else {
996 				pci_err(dev, "ACS Flags missing\n");
997 				return;
998 			}
999 		}
1000 
1001 		if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 			    PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 			pci_err(dev, "Invalid ACS flags specified\n");
1004 			return;
1005 		}
1006 
1007 		ret = pci_dev_str_match(dev, p, &p);
1008 		if (ret < 0) {
1009 			pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 			break;
1011 		} else if (ret == 1) {
1012 			/* Found a match */
1013 			break;
1014 		}
1015 
1016 		if (*p != ';' && *p != ',') {
1017 			/* End of param or invalid format */
1018 			break;
1019 		}
1020 		p++;
1021 	}
1022 
1023 	if (ret != 1)
1024 		return;
1025 
1026 	if (!pci_dev_specific_disable_acs_redir(dev))
1027 		return;
1028 
1029 	pci_dbg(dev, "ACS mask  = %#06x\n", mask);
1030 	pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031 
1032 	/* If mask is 0 then we copy the bit from the firmware setting. */
1033 	caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 	caps->ctrl |= flags;
1035 
1036 	pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037 }
1038 
1039 /**
1040  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041  * @dev: the PCI device
1042  * @caps: default ACS controls
1043  */
pci_std_enable_acs(struct pci_dev * dev,struct pci_acs * caps)1044 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045 {
1046 	/* Source Validation */
1047 	caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048 
1049 	/* P2P Request Redirect */
1050 	caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051 
1052 	/* P2P Completion Redirect */
1053 	caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054 
1055 	/* Upstream Forwarding */
1056 	caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057 
1058 	/* Enable Translation Blocking for external devices and noats */
1059 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 		caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061 }
1062 
1063 /**
1064  * pci_enable_acs - enable ACS if hardware support it
1065  * @dev: the PCI device
1066  */
pci_enable_acs(struct pci_dev * dev)1067 static void pci_enable_acs(struct pci_dev *dev)
1068 {
1069 	struct pci_acs caps;
1070 	int pos;
1071 
1072 	pos = dev->acs_cap;
1073 	if (!pos)
1074 		return;
1075 
1076 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1077 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1078 	caps.fw_ctrl = caps.ctrl;
1079 
1080 	/* If an iommu is present we start with kernel default caps */
1081 	if (pci_acs_enable) {
1082 		if (pci_dev_specific_enable_acs(dev))
1083 			pci_std_enable_acs(dev, &caps);
1084 	}
1085 
1086 	/*
1087 	 * Always apply caps from the command line, even if there is no iommu.
1088 	 * Trust that the admin has a reason to change the ACS settings.
1089 	 */
1090 	__pci_config_acs(dev, &caps, disable_acs_redir_param,
1091 			 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1092 			 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1093 	__pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1094 
1095 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1096 }
1097 
1098 /**
1099  * pcie_read_tlp_log - read TLP Header Log
1100  * @dev: PCIe device
1101  * @where: PCI Config offset of TLP Header Log
1102  * @tlp_log: TLP Log structure to fill
1103  *
1104  * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1105  *
1106  * Return: 0 on success and filled TLP Log structure, <0 on error.
1107  */
pcie_read_tlp_log(struct pci_dev * dev,int where,struct pcie_tlp_log * tlp_log)1108 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1109 		      struct pcie_tlp_log *tlp_log)
1110 {
1111 	int i, ret;
1112 
1113 	memset(tlp_log, 0, sizeof(*tlp_log));
1114 
1115 	for (i = 0; i < 4; i++) {
1116 		ret = pci_read_config_dword(dev, where + i * 4,
1117 					    &tlp_log->dw[i]);
1118 		if (ret)
1119 			return pcibios_err_to_errno(ret);
1120 	}
1121 
1122 	return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1125 
1126 /**
1127  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1128  * @dev: PCI device to have its BARs restored
1129  *
1130  * Restore the BAR values for a given device, so as to make it
1131  * accessible by its driver.
1132  */
pci_restore_bars(struct pci_dev * dev)1133 static void pci_restore_bars(struct pci_dev *dev)
1134 {
1135 	int i;
1136 
1137 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1138 		pci_update_resource(dev, i);
1139 }
1140 
platform_pci_power_manageable(struct pci_dev * dev)1141 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1142 {
1143 	if (pci_use_mid_pm())
1144 		return true;
1145 
1146 	return acpi_pci_power_manageable(dev);
1147 }
1148 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1149 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1150 					       pci_power_t t)
1151 {
1152 	if (pci_use_mid_pm())
1153 		return mid_pci_set_power_state(dev, t);
1154 
1155 	return acpi_pci_set_power_state(dev, t);
1156 }
1157 
platform_pci_get_power_state(struct pci_dev * dev)1158 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1159 {
1160 	if (pci_use_mid_pm())
1161 		return mid_pci_get_power_state(dev);
1162 
1163 	return acpi_pci_get_power_state(dev);
1164 }
1165 
platform_pci_refresh_power_state(struct pci_dev * dev)1166 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1167 {
1168 	if (!pci_use_mid_pm())
1169 		acpi_pci_refresh_power_state(dev);
1170 }
1171 
platform_pci_choose_state(struct pci_dev * dev)1172 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1173 {
1174 	if (pci_use_mid_pm())
1175 		return PCI_POWER_ERROR;
1176 
1177 	return acpi_pci_choose_state(dev);
1178 }
1179 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1180 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1181 {
1182 	if (pci_use_mid_pm())
1183 		return PCI_POWER_ERROR;
1184 
1185 	return acpi_pci_wakeup(dev, enable);
1186 }
1187 
platform_pci_need_resume(struct pci_dev * dev)1188 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1189 {
1190 	if (pci_use_mid_pm())
1191 		return false;
1192 
1193 	return acpi_pci_need_resume(dev);
1194 }
1195 
platform_pci_bridge_d3(struct pci_dev * dev)1196 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1197 {
1198 	if (pci_use_mid_pm())
1199 		return false;
1200 
1201 	return acpi_pci_bridge_d3(dev);
1202 }
1203 
1204 /**
1205  * pci_update_current_state - Read power state of given device and cache it
1206  * @dev: PCI device to handle.
1207  * @state: State to cache in case the device doesn't have the PM capability
1208  *
1209  * The power state is read from the PMCSR register, which however is
1210  * inaccessible in D3cold.  The platform firmware is therefore queried first
1211  * to detect accessibility of the register.  In case the platform firmware
1212  * reports an incorrect state or the device isn't power manageable by the
1213  * platform at all, we try to detect D3cold by testing accessibility of the
1214  * vendor ID in config space.
1215  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1216 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1217 {
1218 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1219 		dev->current_state = PCI_D3cold;
1220 	} else if (dev->pm_cap) {
1221 		u16 pmcsr;
1222 
1223 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1224 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1225 			dev->current_state = PCI_D3cold;
1226 			return;
1227 		}
1228 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1229 	} else {
1230 		dev->current_state = state;
1231 	}
1232 }
1233 
1234 /**
1235  * pci_refresh_power_state - Refresh the given device's power state data
1236  * @dev: Target PCI device.
1237  *
1238  * Ask the platform to refresh the devices power state information and invoke
1239  * pci_update_current_state() to update its current PCI power state.
1240  */
pci_refresh_power_state(struct pci_dev * dev)1241 void pci_refresh_power_state(struct pci_dev *dev)
1242 {
1243 	platform_pci_refresh_power_state(dev);
1244 	pci_update_current_state(dev, dev->current_state);
1245 }
1246 
1247 /**
1248  * pci_platform_power_transition - Use platform to change device power state
1249  * @dev: PCI device to handle.
1250  * @state: State to put the device into.
1251  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1252 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1253 {
1254 	int error;
1255 
1256 	error = platform_pci_set_power_state(dev, state);
1257 	if (!error)
1258 		pci_update_current_state(dev, state);
1259 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1260 		dev->current_state = PCI_D0;
1261 
1262 	return error;
1263 }
1264 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1265 
pci_resume_one(struct pci_dev * pci_dev,void * ign)1266 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1267 {
1268 	pm_request_resume(&pci_dev->dev);
1269 	return 0;
1270 }
1271 
1272 /**
1273  * pci_resume_bus - Walk given bus and runtime resume devices on it
1274  * @bus: Top bus of the subtree to walk.
1275  */
pci_resume_bus(struct pci_bus * bus)1276 void pci_resume_bus(struct pci_bus *bus)
1277 {
1278 	if (bus)
1279 		pci_walk_bus(bus, pci_resume_one, NULL);
1280 }
1281 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1282 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1283 {
1284 	int delay = 1;
1285 	bool retrain = false;
1286 	struct pci_dev *root, *bridge;
1287 
1288 	root = pcie_find_root_port(dev);
1289 
1290 	if (pci_is_pcie(dev)) {
1291 		bridge = pci_upstream_bridge(dev);
1292 		if (bridge)
1293 			retrain = true;
1294 	}
1295 
1296 	/*
1297 	 * The caller has already waited long enough after a reset that the
1298 	 * device should respond to config requests, but it may respond
1299 	 * with Request Retry Status (RRS) if it needs more time to
1300 	 * initialize.
1301 	 *
1302 	 * If the device is below a Root Port with Configuration RRS
1303 	 * Software Visibility enabled, reading the Vendor ID returns a
1304 	 * special data value if the device responded with RRS.  Read the
1305 	 * Vendor ID until we get non-RRS status.
1306 	 *
1307 	 * If there's no Root Port or Configuration RRS Software Visibility
1308 	 * is not enabled, the device may still respond with RRS, but
1309 	 * hardware may retry the config request.  If no retries receive
1310 	 * Successful Completion, hardware generally synthesizes ~0
1311 	 * (PCI_ERROR_RESPONSE) data to complete the read.  Reading Vendor
1312 	 * ID for VFs and non-existent devices also returns ~0, so read the
1313 	 * Command register until it returns something other than ~0.
1314 	 */
1315 	for (;;) {
1316 		u32 id;
1317 
1318 		if (pci_dev_is_disconnected(dev)) {
1319 			pci_dbg(dev, "disconnected; not waiting\n");
1320 			return -ENOTTY;
1321 		}
1322 
1323 		if (root && root->config_rrs_sv) {
1324 			pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1325 			if (!pci_bus_rrs_vendor_id(id))
1326 				break;
1327 		} else {
1328 			pci_read_config_dword(dev, PCI_COMMAND, &id);
1329 			if (!PCI_POSSIBLE_ERROR(id))
1330 				break;
1331 		}
1332 
1333 		if (delay > timeout) {
1334 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1335 				 delay - 1, reset_type);
1336 			return -ENOTTY;
1337 		}
1338 
1339 		if (delay > PCI_RESET_WAIT) {
1340 			if (retrain) {
1341 				retrain = false;
1342 				if (pcie_failed_link_retrain(bridge) == 0) {
1343 					delay = 1;
1344 					continue;
1345 				}
1346 			}
1347 			pci_info(dev, "not ready %dms after %s; waiting\n",
1348 				 delay - 1, reset_type);
1349 		}
1350 
1351 		msleep(delay);
1352 		delay *= 2;
1353 	}
1354 
1355 	if (delay > PCI_RESET_WAIT)
1356 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1357 			 reset_type);
1358 	else
1359 		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1360 			reset_type);
1361 
1362 	return 0;
1363 }
1364 
1365 /**
1366  * pci_power_up - Put the given device into D0
1367  * @dev: PCI device to power up
1368  *
1369  * On success, return 0 or 1, depending on whether or not it is necessary to
1370  * restore the device's BARs subsequently (1 is returned in that case).
1371  *
1372  * On failure, return a negative error code.  Always return failure if @dev
1373  * lacks a Power Management Capability, even if the platform was able to
1374  * put the device in D0 via non-PCI means.
1375  */
pci_power_up(struct pci_dev * dev)1376 int pci_power_up(struct pci_dev *dev)
1377 {
1378 	bool need_restore;
1379 	pci_power_t state;
1380 	u16 pmcsr;
1381 
1382 	platform_pci_set_power_state(dev, PCI_D0);
1383 
1384 	if (!dev->pm_cap) {
1385 		state = platform_pci_get_power_state(dev);
1386 		if (state == PCI_UNKNOWN)
1387 			dev->current_state = PCI_D0;
1388 		else
1389 			dev->current_state = state;
1390 
1391 		return -EIO;
1392 	}
1393 
1394 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1395 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1396 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1397 			pci_power_name(dev->current_state));
1398 		dev->current_state = PCI_D3cold;
1399 		return -EIO;
1400 	}
1401 
1402 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1403 
1404 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1405 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1406 
1407 	if (state == PCI_D0)
1408 		goto end;
1409 
1410 	/*
1411 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1412 	 * PME_En, and sets PowerState to 0.
1413 	 */
1414 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1415 
1416 	/* Mandatory transition delays; see PCI PM 1.2. */
1417 	if (state == PCI_D3hot)
1418 		pci_dev_d3_sleep(dev);
1419 	else if (state == PCI_D2)
1420 		udelay(PCI_PM_D2_DELAY);
1421 
1422 end:
1423 	dev->current_state = PCI_D0;
1424 	if (need_restore)
1425 		return 1;
1426 
1427 	return 0;
1428 }
1429 
1430 /**
1431  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1432  * @dev: PCI device to power up
1433  * @locked: whether pci_bus_sem is held
1434  *
1435  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1436  * to confirm the state change, restore its BARs if they might be lost and
1437  * reconfigure ASPM in accordance with the new power state.
1438  *
1439  * If pci_restore_state() is going to be called right after a power state change
1440  * to D0, it is more efficient to use pci_power_up() directly instead of this
1441  * function.
1442  */
pci_set_full_power_state(struct pci_dev * dev,bool locked)1443 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1444 {
1445 	u16 pmcsr;
1446 	int ret;
1447 
1448 	ret = pci_power_up(dev);
1449 	if (ret < 0) {
1450 		if (dev->current_state == PCI_D0)
1451 			return 0;
1452 
1453 		return ret;
1454 	}
1455 
1456 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1457 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1458 	if (dev->current_state != PCI_D0) {
1459 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1460 				     pci_power_name(dev->current_state));
1461 	} else if (ret > 0) {
1462 		/*
1463 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1464 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1465 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1466 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1467 		 * For example, at least some versions of the 3c905B and the
1468 		 * 3c556B exhibit this behaviour.
1469 		 *
1470 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1471 		 * devices in a D3hot state at boot.  Consequently, we need to
1472 		 * restore at least the BARs so that the device will be
1473 		 * accessible to its driver.
1474 		 */
1475 		pci_restore_bars(dev);
1476 	}
1477 
1478 	if (dev->bus->self)
1479 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1480 
1481 	return 0;
1482 }
1483 
1484 /**
1485  * __pci_dev_set_current_state - Set current state of a PCI device
1486  * @dev: Device to handle
1487  * @data: pointer to state to be set
1488  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1489 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1490 {
1491 	pci_power_t state = *(pci_power_t *)data;
1492 
1493 	dev->current_state = state;
1494 	return 0;
1495 }
1496 
1497 /**
1498  * pci_bus_set_current_state - Walk given bus and set current state of devices
1499  * @bus: Top bus of the subtree to walk.
1500  * @state: state to be set
1501  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1502 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1503 {
1504 	if (bus)
1505 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1506 }
1507 
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state,bool locked)1508 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1509 {
1510 	if (!bus)
1511 		return;
1512 
1513 	if (locked)
1514 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1515 	else
1516 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1517 }
1518 
1519 /**
1520  * pci_set_low_power_state - Put a PCI device into a low-power state.
1521  * @dev: PCI device to handle.
1522  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1523  * @locked: whether pci_bus_sem is held
1524  *
1525  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1526  *
1527  * RETURN VALUE:
1528  * -EINVAL if the requested state is invalid.
1529  * -EIO if device does not support PCI PM or its PM capabilities register has a
1530  * wrong version, or device doesn't support the requested state.
1531  * 0 if device already is in the requested state.
1532  * 0 if device's power state has been successfully changed.
1533  */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1534 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1535 {
1536 	u16 pmcsr;
1537 
1538 	if (!dev->pm_cap)
1539 		return -EIO;
1540 
1541 	/*
1542 	 * Validate transition: We can enter D0 from any state, but if
1543 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1544 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1545 	 * we'd have to go from D3 to D0, then to D1.
1546 	 */
1547 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1548 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1549 			pci_power_name(dev->current_state),
1550 			pci_power_name(state));
1551 		return -EINVAL;
1552 	}
1553 
1554 	/* Check if this device supports the desired state */
1555 	if ((state == PCI_D1 && !dev->d1_support)
1556 	   || (state == PCI_D2 && !dev->d2_support))
1557 		return -EIO;
1558 
1559 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1560 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1561 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1562 			pci_power_name(dev->current_state),
1563 			pci_power_name(state));
1564 		dev->current_state = PCI_D3cold;
1565 		return -EIO;
1566 	}
1567 
1568 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1569 	pmcsr |= state;
1570 
1571 	/* Enter specified state */
1572 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1573 
1574 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1575 	if (state == PCI_D3hot)
1576 		pci_dev_d3_sleep(dev);
1577 	else if (state == PCI_D2)
1578 		udelay(PCI_PM_D2_DELAY);
1579 
1580 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1581 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1582 	if (dev->current_state != state)
1583 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1584 				     pci_power_name(dev->current_state),
1585 				     pci_power_name(state));
1586 
1587 	if (dev->bus->self)
1588 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1589 
1590 	return 0;
1591 }
1592 
__pci_set_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1593 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1594 {
1595 	int error;
1596 
1597 	/* Bound the state we're entering */
1598 	if (state > PCI_D3cold)
1599 		state = PCI_D3cold;
1600 	else if (state < PCI_D0)
1601 		state = PCI_D0;
1602 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1603 
1604 		/*
1605 		 * If the device or the parent bridge do not support PCI
1606 		 * PM, ignore the request if we're doing anything other
1607 		 * than putting it into D0 (which would only happen on
1608 		 * boot).
1609 		 */
1610 		return 0;
1611 
1612 	/* Check if we're already there */
1613 	if (dev->current_state == state)
1614 		return 0;
1615 
1616 	if (state == PCI_D0)
1617 		return pci_set_full_power_state(dev, locked);
1618 
1619 	/*
1620 	 * This device is quirked not to be put into D3, so don't put it in
1621 	 * D3
1622 	 */
1623 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1624 		return 0;
1625 
1626 	if (state == PCI_D3cold) {
1627 		/*
1628 		 * To put the device in D3cold, put it into D3hot in the native
1629 		 * way, then put it into D3cold using platform ops.
1630 		 */
1631 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1632 
1633 		if (pci_platform_power_transition(dev, PCI_D3cold))
1634 			return error;
1635 
1636 		/* Powering off a bridge may power off the whole hierarchy */
1637 		if (dev->current_state == PCI_D3cold)
1638 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1639 	} else {
1640 		error = pci_set_low_power_state(dev, state, locked);
1641 
1642 		if (pci_platform_power_transition(dev, state))
1643 			return error;
1644 	}
1645 
1646 	return 0;
1647 }
1648 
1649 /**
1650  * pci_set_power_state - Set the power state of a PCI device
1651  * @dev: PCI device to handle.
1652  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1653  *
1654  * Transition a device to a new power state, using the platform firmware and/or
1655  * the device's PCI PM registers.
1656  *
1657  * RETURN VALUE:
1658  * -EINVAL if the requested state is invalid.
1659  * -EIO if device does not support PCI PM or its PM capabilities register has a
1660  * wrong version, or device doesn't support the requested state.
1661  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1662  * 0 if device already is in the requested state.
1663  * 0 if the transition is to D3 but D3 is not supported.
1664  * 0 if device's power state has been successfully changed.
1665  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1666 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1667 {
1668 	return __pci_set_power_state(dev, state, false);
1669 }
1670 EXPORT_SYMBOL(pci_set_power_state);
1671 
pci_set_power_state_locked(struct pci_dev * dev,pci_power_t state)1672 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1673 {
1674 	lockdep_assert_held(&pci_bus_sem);
1675 
1676 	return __pci_set_power_state(dev, state, true);
1677 }
1678 EXPORT_SYMBOL(pci_set_power_state_locked);
1679 
1680 #define PCI_EXP_SAVE_REGS	7
1681 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1682 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1683 						       u16 cap, bool extended)
1684 {
1685 	struct pci_cap_saved_state *tmp;
1686 
1687 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1688 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1689 			return tmp;
1690 	}
1691 	return NULL;
1692 }
1693 
pci_find_saved_cap(struct pci_dev * dev,char cap)1694 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1695 {
1696 	return _pci_find_saved_cap(dev, cap, false);
1697 }
1698 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1699 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1700 {
1701 	return _pci_find_saved_cap(dev, cap, true);
1702 }
1703 
pci_save_pcie_state(struct pci_dev * dev)1704 static int pci_save_pcie_state(struct pci_dev *dev)
1705 {
1706 	int i = 0;
1707 	struct pci_cap_saved_state *save_state;
1708 	u16 *cap;
1709 
1710 	if (!pci_is_pcie(dev))
1711 		return 0;
1712 
1713 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1714 	if (!save_state) {
1715 		pci_err(dev, "buffer not found in %s\n", __func__);
1716 		return -ENOMEM;
1717 	}
1718 
1719 	cap = (u16 *)&save_state->cap.data[0];
1720 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1721 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1722 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1723 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1724 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1725 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1726 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1727 
1728 	pci_save_aspm_l1ss_state(dev);
1729 	pci_save_ltr_state(dev);
1730 
1731 	return 0;
1732 }
1733 
pci_restore_pcie_state(struct pci_dev * dev)1734 static void pci_restore_pcie_state(struct pci_dev *dev)
1735 {
1736 	int i = 0;
1737 	struct pci_cap_saved_state *save_state;
1738 	u16 *cap;
1739 
1740 	/*
1741 	 * Restore max latencies (in the LTR capability) before enabling
1742 	 * LTR itself in PCI_EXP_DEVCTL2.
1743 	 */
1744 	pci_restore_ltr_state(dev);
1745 	pci_restore_aspm_l1ss_state(dev);
1746 
1747 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1748 	if (!save_state)
1749 		return;
1750 
1751 	/*
1752 	 * Downstream ports reset the LTR enable bit when link goes down.
1753 	 * Check and re-configure the bit here before restoring device.
1754 	 * PCIe r5.0, sec 7.5.3.16.
1755 	 */
1756 	pci_bridge_reconfigure_ltr(dev);
1757 
1758 	cap = (u16 *)&save_state->cap.data[0];
1759 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1760 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1761 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1762 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1763 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1764 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1765 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1766 }
1767 
pci_save_pcix_state(struct pci_dev * dev)1768 static int pci_save_pcix_state(struct pci_dev *dev)
1769 {
1770 	int pos;
1771 	struct pci_cap_saved_state *save_state;
1772 
1773 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1774 	if (!pos)
1775 		return 0;
1776 
1777 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1778 	if (!save_state) {
1779 		pci_err(dev, "buffer not found in %s\n", __func__);
1780 		return -ENOMEM;
1781 	}
1782 
1783 	pci_read_config_word(dev, pos + PCI_X_CMD,
1784 			     (u16 *)save_state->cap.data);
1785 
1786 	return 0;
1787 }
1788 
pci_restore_pcix_state(struct pci_dev * dev)1789 static void pci_restore_pcix_state(struct pci_dev *dev)
1790 {
1791 	int i = 0, pos;
1792 	struct pci_cap_saved_state *save_state;
1793 	u16 *cap;
1794 
1795 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1796 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1797 	if (!save_state || !pos)
1798 		return;
1799 	cap = (u16 *)&save_state->cap.data[0];
1800 
1801 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1802 }
1803 
1804 /**
1805  * pci_save_state - save the PCI configuration space of a device before
1806  *		    suspending
1807  * @dev: PCI device that we're dealing with
1808  */
pci_save_state(struct pci_dev * dev)1809 int pci_save_state(struct pci_dev *dev)
1810 {
1811 	int i;
1812 	/* XXX: 100% dword access ok here? */
1813 	for (i = 0; i < 16; i++) {
1814 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1815 		pci_dbg(dev, "save config %#04x: %#010x\n",
1816 			i * 4, dev->saved_config_space[i]);
1817 	}
1818 	dev->state_saved = true;
1819 
1820 	i = pci_save_pcie_state(dev);
1821 	if (i != 0)
1822 		return i;
1823 
1824 	i = pci_save_pcix_state(dev);
1825 	if (i != 0)
1826 		return i;
1827 
1828 	pci_save_dpc_state(dev);
1829 	pci_save_aer_state(dev);
1830 	pci_save_ptm_state(dev);
1831 	return pci_save_vc_state(dev);
1832 }
1833 EXPORT_SYMBOL(pci_save_state);
1834 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1835 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1836 				     u32 saved_val, int retry, bool force)
1837 {
1838 	u32 val;
1839 
1840 	pci_read_config_dword(pdev, offset, &val);
1841 	if (!force && val == saved_val)
1842 		return;
1843 
1844 	for (;;) {
1845 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1846 			offset, val, saved_val);
1847 		pci_write_config_dword(pdev, offset, saved_val);
1848 		if (retry-- <= 0)
1849 			return;
1850 
1851 		pci_read_config_dword(pdev, offset, &val);
1852 		if (val == saved_val)
1853 			return;
1854 
1855 		mdelay(1);
1856 	}
1857 }
1858 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1859 static void pci_restore_config_space_range(struct pci_dev *pdev,
1860 					   int start, int end, int retry,
1861 					   bool force)
1862 {
1863 	int index;
1864 
1865 	for (index = end; index >= start; index--)
1866 		pci_restore_config_dword(pdev, 4 * index,
1867 					 pdev->saved_config_space[index],
1868 					 retry, force);
1869 }
1870 
pci_restore_config_space(struct pci_dev * pdev)1871 static void pci_restore_config_space(struct pci_dev *pdev)
1872 {
1873 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1874 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1875 		/* Restore BARs before the command register. */
1876 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1877 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1878 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1879 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1880 
1881 		/*
1882 		 * Force rewriting of prefetch registers to avoid S3 resume
1883 		 * issues on Intel PCI bridges that occur when these
1884 		 * registers are not explicitly written.
1885 		 */
1886 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1887 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1888 	} else {
1889 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1890 	}
1891 }
1892 
pci_restore_rebar_state(struct pci_dev * pdev)1893 static void pci_restore_rebar_state(struct pci_dev *pdev)
1894 {
1895 	unsigned int pos, nbars, i;
1896 	u32 ctrl;
1897 
1898 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1899 	if (!pos)
1900 		return;
1901 
1902 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1903 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1904 
1905 	for (i = 0; i < nbars; i++, pos += 8) {
1906 		struct resource *res;
1907 		int bar_idx, size;
1908 
1909 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1910 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1911 		res = pdev->resource + bar_idx;
1912 		size = pci_rebar_bytes_to_size(resource_size(res));
1913 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1914 		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1915 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1916 	}
1917 }
1918 
1919 /**
1920  * pci_restore_state - Restore the saved state of a PCI device
1921  * @dev: PCI device that we're dealing with
1922  */
pci_restore_state(struct pci_dev * dev)1923 void pci_restore_state(struct pci_dev *dev)
1924 {
1925 	if (!dev->state_saved)
1926 		return;
1927 
1928 	pci_restore_pcie_state(dev);
1929 	pci_restore_pasid_state(dev);
1930 	pci_restore_pri_state(dev);
1931 	pci_restore_ats_state(dev);
1932 	pci_restore_vc_state(dev);
1933 	pci_restore_rebar_state(dev);
1934 	pci_restore_dpc_state(dev);
1935 	pci_restore_ptm_state(dev);
1936 
1937 	pci_aer_clear_status(dev);
1938 	pci_restore_aer_state(dev);
1939 
1940 	pci_restore_config_space(dev);
1941 
1942 	pci_restore_pcix_state(dev);
1943 	pci_restore_msi_state(dev);
1944 
1945 	/* Restore ACS and IOV configuration state */
1946 	pci_enable_acs(dev);
1947 	pci_restore_iov_state(dev);
1948 
1949 	dev->state_saved = false;
1950 }
1951 EXPORT_SYMBOL(pci_restore_state);
1952 
1953 struct pci_saved_state {
1954 	u32 config_space[16];
1955 	struct pci_cap_saved_data cap[];
1956 };
1957 
1958 /**
1959  * pci_store_saved_state - Allocate and return an opaque struct containing
1960  *			   the device saved state.
1961  * @dev: PCI device that we're dealing with
1962  *
1963  * Return NULL if no state or error.
1964  */
pci_store_saved_state(struct pci_dev * dev)1965 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1966 {
1967 	struct pci_saved_state *state;
1968 	struct pci_cap_saved_state *tmp;
1969 	struct pci_cap_saved_data *cap;
1970 	size_t size;
1971 
1972 	if (!dev->state_saved)
1973 		return NULL;
1974 
1975 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1976 
1977 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1978 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1979 
1980 	state = kzalloc(size, GFP_KERNEL);
1981 	if (!state)
1982 		return NULL;
1983 
1984 	memcpy(state->config_space, dev->saved_config_space,
1985 	       sizeof(state->config_space));
1986 
1987 	cap = state->cap;
1988 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1989 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1990 		memcpy(cap, &tmp->cap, len);
1991 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1992 	}
1993 	/* Empty cap_save terminates list */
1994 
1995 	return state;
1996 }
1997 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1998 
1999 /**
2000  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2001  * @dev: PCI device that we're dealing with
2002  * @state: Saved state returned from pci_store_saved_state()
2003  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)2004 int pci_load_saved_state(struct pci_dev *dev,
2005 			 struct pci_saved_state *state)
2006 {
2007 	struct pci_cap_saved_data *cap;
2008 
2009 	dev->state_saved = false;
2010 
2011 	if (!state)
2012 		return 0;
2013 
2014 	memcpy(dev->saved_config_space, state->config_space,
2015 	       sizeof(state->config_space));
2016 
2017 	cap = state->cap;
2018 	while (cap->size) {
2019 		struct pci_cap_saved_state *tmp;
2020 
2021 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2022 		if (!tmp || tmp->cap.size != cap->size)
2023 			return -EINVAL;
2024 
2025 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2026 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2027 		       sizeof(struct pci_cap_saved_data) + cap->size);
2028 	}
2029 
2030 	dev->state_saved = true;
2031 	return 0;
2032 }
2033 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2034 
2035 /**
2036  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2037  *				   and free the memory allocated for it.
2038  * @dev: PCI device that we're dealing with
2039  * @state: Pointer to saved state returned from pci_store_saved_state()
2040  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)2041 int pci_load_and_free_saved_state(struct pci_dev *dev,
2042 				  struct pci_saved_state **state)
2043 {
2044 	int ret = pci_load_saved_state(dev, *state);
2045 	kfree(*state);
2046 	*state = NULL;
2047 	return ret;
2048 }
2049 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2050 
pcibios_enable_device(struct pci_dev * dev,int bars)2051 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2052 {
2053 	return pci_enable_resources(dev, bars);
2054 }
2055 
do_pci_enable_device(struct pci_dev * dev,int bars)2056 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2057 {
2058 	int err;
2059 	struct pci_dev *bridge;
2060 	u16 cmd;
2061 	u8 pin;
2062 
2063 	err = pci_set_power_state(dev, PCI_D0);
2064 	if (err < 0 && err != -EIO)
2065 		return err;
2066 
2067 	bridge = pci_upstream_bridge(dev);
2068 	if (bridge)
2069 		pcie_aspm_powersave_config_link(bridge);
2070 
2071 	err = pcibios_enable_device(dev, bars);
2072 	if (err < 0)
2073 		return err;
2074 	pci_fixup_device(pci_fixup_enable, dev);
2075 
2076 	if (dev->msi_enabled || dev->msix_enabled)
2077 		return 0;
2078 
2079 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2080 	if (pin) {
2081 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2082 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2083 			pci_write_config_word(dev, PCI_COMMAND,
2084 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 /**
2091  * pci_reenable_device - Resume abandoned device
2092  * @dev: PCI device to be resumed
2093  *
2094  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2095  * to be called by normal code, write proper resume handler and use it instead.
2096  */
pci_reenable_device(struct pci_dev * dev)2097 int pci_reenable_device(struct pci_dev *dev)
2098 {
2099 	if (pci_is_enabled(dev))
2100 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2101 	return 0;
2102 }
2103 EXPORT_SYMBOL(pci_reenable_device);
2104 
pci_enable_bridge(struct pci_dev * dev)2105 static void pci_enable_bridge(struct pci_dev *dev)
2106 {
2107 	struct pci_dev *bridge;
2108 	int retval;
2109 
2110 	bridge = pci_upstream_bridge(dev);
2111 	if (bridge)
2112 		pci_enable_bridge(bridge);
2113 
2114 	if (pci_is_enabled(dev)) {
2115 		if (!dev->is_busmaster)
2116 			pci_set_master(dev);
2117 		return;
2118 	}
2119 
2120 	retval = pci_enable_device(dev);
2121 	if (retval)
2122 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2123 			retval);
2124 	pci_set_master(dev);
2125 }
2126 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2127 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2128 {
2129 	struct pci_dev *bridge;
2130 	int err;
2131 	int i, bars = 0;
2132 
2133 	/*
2134 	 * Power state could be unknown at this point, either due to a fresh
2135 	 * boot or a device removal call.  So get the current power state
2136 	 * so that things like MSI message writing will behave as expected
2137 	 * (e.g. if the device really is in D0 at enable time).
2138 	 */
2139 	pci_update_current_state(dev, dev->current_state);
2140 
2141 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2142 		return 0;		/* already enabled */
2143 
2144 	bridge = pci_upstream_bridge(dev);
2145 	if (bridge)
2146 		pci_enable_bridge(bridge);
2147 
2148 	/* only skip sriov related */
2149 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2150 		if (dev->resource[i].flags & flags)
2151 			bars |= (1 << i);
2152 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2153 		if (dev->resource[i].flags & flags)
2154 			bars |= (1 << i);
2155 
2156 	err = do_pci_enable_device(dev, bars);
2157 	if (err < 0)
2158 		atomic_dec(&dev->enable_cnt);
2159 	return err;
2160 }
2161 
2162 /**
2163  * pci_enable_device_mem - Initialize a device for use with Memory space
2164  * @dev: PCI device to be initialized
2165  *
2166  * Initialize device before it's used by a driver. Ask low-level code
2167  * to enable Memory resources. Wake up the device if it was suspended.
2168  * Beware, this function can fail.
2169  */
pci_enable_device_mem(struct pci_dev * dev)2170 int pci_enable_device_mem(struct pci_dev *dev)
2171 {
2172 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2173 }
2174 EXPORT_SYMBOL(pci_enable_device_mem);
2175 
2176 /**
2177  * pci_enable_device - Initialize device before it's used by a driver.
2178  * @dev: PCI device to be initialized
2179  *
2180  * Initialize device before it's used by a driver. Ask low-level code
2181  * to enable I/O and memory. Wake up the device if it was suspended.
2182  * Beware, this function can fail.
2183  *
2184  * Note we don't actually enable the device many times if we call
2185  * this function repeatedly (we just increment the count).
2186  */
pci_enable_device(struct pci_dev * dev)2187 int pci_enable_device(struct pci_dev *dev)
2188 {
2189 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2190 }
2191 EXPORT_SYMBOL(pci_enable_device);
2192 
2193 /*
2194  * pcibios_device_add - provide arch specific hooks when adding device dev
2195  * @dev: the PCI device being added
2196  *
2197  * Permits the platform to provide architecture specific functionality when
2198  * devices are added. This is the default implementation. Architecture
2199  * implementations can override this.
2200  */
pcibios_device_add(struct pci_dev * dev)2201 int __weak pcibios_device_add(struct pci_dev *dev)
2202 {
2203 	return 0;
2204 }
2205 
2206 /**
2207  * pcibios_release_device - provide arch specific hooks when releasing
2208  *			    device dev
2209  * @dev: the PCI device being released
2210  *
2211  * Permits the platform to provide architecture specific functionality when
2212  * devices are released. This is the default implementation. Architecture
2213  * implementations can override this.
2214  */
pcibios_release_device(struct pci_dev * dev)2215 void __weak pcibios_release_device(struct pci_dev *dev) {}
2216 
2217 /**
2218  * pcibios_disable_device - disable arch specific PCI resources for device dev
2219  * @dev: the PCI device to disable
2220  *
2221  * Disables architecture specific PCI resources for the device. This
2222  * is the default implementation. Architecture implementations can
2223  * override this.
2224  */
pcibios_disable_device(struct pci_dev * dev)2225 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2226 
do_pci_disable_device(struct pci_dev * dev)2227 static void do_pci_disable_device(struct pci_dev *dev)
2228 {
2229 	u16 pci_command;
2230 
2231 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2232 	if (pci_command & PCI_COMMAND_MASTER) {
2233 		pci_command &= ~PCI_COMMAND_MASTER;
2234 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2235 	}
2236 
2237 	pcibios_disable_device(dev);
2238 }
2239 
2240 /**
2241  * pci_disable_enabled_device - Disable device without updating enable_cnt
2242  * @dev: PCI device to disable
2243  *
2244  * NOTE: This function is a backend of PCI power management routines and is
2245  * not supposed to be called drivers.
2246  */
pci_disable_enabled_device(struct pci_dev * dev)2247 void pci_disable_enabled_device(struct pci_dev *dev)
2248 {
2249 	if (pci_is_enabled(dev))
2250 		do_pci_disable_device(dev);
2251 }
2252 
2253 /**
2254  * pci_disable_device - Disable PCI device after use
2255  * @dev: PCI device to be disabled
2256  *
2257  * Signal to the system that the PCI device is not in use by the system
2258  * anymore.  This only involves disabling PCI bus-mastering, if active.
2259  *
2260  * Note we don't actually disable the device until all callers of
2261  * pci_enable_device() have called pci_disable_device().
2262  */
pci_disable_device(struct pci_dev * dev)2263 void pci_disable_device(struct pci_dev *dev)
2264 {
2265 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2266 		      "disabling already-disabled device");
2267 
2268 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2269 		return;
2270 
2271 	do_pci_disable_device(dev);
2272 
2273 	dev->is_busmaster = 0;
2274 }
2275 EXPORT_SYMBOL(pci_disable_device);
2276 
2277 /**
2278  * pcibios_set_pcie_reset_state - set reset state for device dev
2279  * @dev: the PCIe device reset
2280  * @state: Reset state to enter into
2281  *
2282  * Set the PCIe reset state for the device. This is the default
2283  * implementation. Architecture implementations can override this.
2284  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2285 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2286 					enum pcie_reset_state state)
2287 {
2288 	return -EINVAL;
2289 }
2290 
2291 /**
2292  * pci_set_pcie_reset_state - set reset state for device dev
2293  * @dev: the PCIe device reset
2294  * @state: Reset state to enter into
2295  *
2296  * Sets the PCI reset state for the device.
2297  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2298 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2299 {
2300 	return pcibios_set_pcie_reset_state(dev, state);
2301 }
2302 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2303 
2304 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2305 void pcie_clear_device_status(struct pci_dev *dev)
2306 {
2307 	u16 sta;
2308 
2309 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2310 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2311 }
2312 #endif
2313 
2314 /**
2315  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2316  * @dev: PCIe root port or event collector.
2317  */
pcie_clear_root_pme_status(struct pci_dev * dev)2318 void pcie_clear_root_pme_status(struct pci_dev *dev)
2319 {
2320 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2321 }
2322 
2323 /**
2324  * pci_check_pme_status - Check if given device has generated PME.
2325  * @dev: Device to check.
2326  *
2327  * Check the PME status of the device and if set, clear it and clear PME enable
2328  * (if set).  Return 'true' if PME status and PME enable were both set or
2329  * 'false' otherwise.
2330  */
pci_check_pme_status(struct pci_dev * dev)2331 bool pci_check_pme_status(struct pci_dev *dev)
2332 {
2333 	int pmcsr_pos;
2334 	u16 pmcsr;
2335 	bool ret = false;
2336 
2337 	if (!dev->pm_cap)
2338 		return false;
2339 
2340 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2341 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2342 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2343 		return false;
2344 
2345 	/* Clear PME status. */
2346 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2347 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2348 		/* Disable PME to avoid interrupt flood. */
2349 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2350 		ret = true;
2351 	}
2352 
2353 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2354 
2355 	return ret;
2356 }
2357 
2358 /**
2359  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2360  * @dev: Device to handle.
2361  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2362  *
2363  * Check if @dev has generated PME and queue a resume request for it in that
2364  * case.
2365  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2366 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2367 {
2368 	if (pme_poll_reset && dev->pme_poll)
2369 		dev->pme_poll = false;
2370 
2371 	if (pci_check_pme_status(dev)) {
2372 		pci_wakeup_event(dev);
2373 		pm_request_resume(&dev->dev);
2374 	}
2375 	return 0;
2376 }
2377 
2378 /**
2379  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2380  * @bus: Top bus of the subtree to walk.
2381  */
pci_pme_wakeup_bus(struct pci_bus * bus)2382 void pci_pme_wakeup_bus(struct pci_bus *bus)
2383 {
2384 	if (bus)
2385 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2386 }
2387 
2388 
2389 /**
2390  * pci_pme_capable - check the capability of PCI device to generate PME#
2391  * @dev: PCI device to handle.
2392  * @state: PCI state from which device will issue PME#.
2393  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2394 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2395 {
2396 	if (!dev->pm_cap)
2397 		return false;
2398 
2399 	return !!(dev->pme_support & (1 << state));
2400 }
2401 EXPORT_SYMBOL(pci_pme_capable);
2402 
pci_pme_list_scan(struct work_struct * work)2403 static void pci_pme_list_scan(struct work_struct *work)
2404 {
2405 	struct pci_pme_device *pme_dev, *n;
2406 
2407 	mutex_lock(&pci_pme_list_mutex);
2408 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2409 		struct pci_dev *pdev = pme_dev->dev;
2410 
2411 		if (pdev->pme_poll) {
2412 			struct pci_dev *bridge = pdev->bus->self;
2413 			struct device *dev = &pdev->dev;
2414 			struct device *bdev = bridge ? &bridge->dev : NULL;
2415 			int bref = 0;
2416 
2417 			/*
2418 			 * If we have a bridge, it should be in an active/D0
2419 			 * state or the configuration space of subordinate
2420 			 * devices may not be accessible or stable over the
2421 			 * course of the call.
2422 			 */
2423 			if (bdev) {
2424 				bref = pm_runtime_get_if_active(bdev);
2425 				if (!bref)
2426 					continue;
2427 
2428 				if (bridge->current_state != PCI_D0)
2429 					goto put_bridge;
2430 			}
2431 
2432 			/*
2433 			 * The device itself should be suspended but config
2434 			 * space must be accessible, therefore it cannot be in
2435 			 * D3cold.
2436 			 */
2437 			if (pm_runtime_suspended(dev) &&
2438 			    pdev->current_state != PCI_D3cold)
2439 				pci_pme_wakeup(pdev, NULL);
2440 
2441 put_bridge:
2442 			if (bref > 0)
2443 				pm_runtime_put(bdev);
2444 		} else {
2445 			list_del(&pme_dev->list);
2446 			kfree(pme_dev);
2447 		}
2448 	}
2449 	if (!list_empty(&pci_pme_list))
2450 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2451 				   msecs_to_jiffies(PME_TIMEOUT));
2452 	mutex_unlock(&pci_pme_list_mutex);
2453 }
2454 
__pci_pme_active(struct pci_dev * dev,bool enable)2455 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2456 {
2457 	u16 pmcsr;
2458 
2459 	if (!dev->pme_support)
2460 		return;
2461 
2462 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2463 	/* Clear PME_Status by writing 1 to it and enable PME# */
2464 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2465 	if (!enable)
2466 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2467 
2468 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2469 }
2470 
2471 /**
2472  * pci_pme_restore - Restore PME configuration after config space restore.
2473  * @dev: PCI device to update.
2474  */
pci_pme_restore(struct pci_dev * dev)2475 void pci_pme_restore(struct pci_dev *dev)
2476 {
2477 	u16 pmcsr;
2478 
2479 	if (!dev->pme_support)
2480 		return;
2481 
2482 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2483 	if (dev->wakeup_prepared) {
2484 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2485 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2486 	} else {
2487 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2488 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2489 	}
2490 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2491 }
2492 
2493 /**
2494  * pci_pme_active - enable or disable PCI device's PME# function
2495  * @dev: PCI device to handle.
2496  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2497  *
2498  * The caller must verify that the device is capable of generating PME# before
2499  * calling this function with @enable equal to 'true'.
2500  */
pci_pme_active(struct pci_dev * dev,bool enable)2501 void pci_pme_active(struct pci_dev *dev, bool enable)
2502 {
2503 	__pci_pme_active(dev, enable);
2504 
2505 	/*
2506 	 * PCI (as opposed to PCIe) PME requires that the device have
2507 	 * its PME# line hooked up correctly. Not all hardware vendors
2508 	 * do this, so the PME never gets delivered and the device
2509 	 * remains asleep. The easiest way around this is to
2510 	 * periodically walk the list of suspended devices and check
2511 	 * whether any have their PME flag set. The assumption is that
2512 	 * we'll wake up often enough anyway that this won't be a huge
2513 	 * hit, and the power savings from the devices will still be a
2514 	 * win.
2515 	 *
2516 	 * Although PCIe uses in-band PME message instead of PME# line
2517 	 * to report PME, PME does not work for some PCIe devices in
2518 	 * reality.  For example, there are devices that set their PME
2519 	 * status bits, but don't really bother to send a PME message;
2520 	 * there are PCI Express Root Ports that don't bother to
2521 	 * trigger interrupts when they receive PME messages from the
2522 	 * devices below.  So PME poll is used for PCIe devices too.
2523 	 */
2524 
2525 	if (dev->pme_poll) {
2526 		struct pci_pme_device *pme_dev;
2527 		if (enable) {
2528 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2529 					  GFP_KERNEL);
2530 			if (!pme_dev) {
2531 				pci_warn(dev, "can't enable PME#\n");
2532 				return;
2533 			}
2534 			pme_dev->dev = dev;
2535 			mutex_lock(&pci_pme_list_mutex);
2536 			list_add(&pme_dev->list, &pci_pme_list);
2537 			if (list_is_singular(&pci_pme_list))
2538 				queue_delayed_work(system_freezable_wq,
2539 						   &pci_pme_work,
2540 						   msecs_to_jiffies(PME_TIMEOUT));
2541 			mutex_unlock(&pci_pme_list_mutex);
2542 		} else {
2543 			mutex_lock(&pci_pme_list_mutex);
2544 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2545 				if (pme_dev->dev == dev) {
2546 					list_del(&pme_dev->list);
2547 					kfree(pme_dev);
2548 					break;
2549 				}
2550 			}
2551 			mutex_unlock(&pci_pme_list_mutex);
2552 		}
2553 	}
2554 
2555 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2556 }
2557 EXPORT_SYMBOL(pci_pme_active);
2558 
2559 /**
2560  * __pci_enable_wake - enable PCI device as wakeup event source
2561  * @dev: PCI device affected
2562  * @state: PCI state from which device will issue wakeup events
2563  * @enable: True to enable event generation; false to disable
2564  *
2565  * This enables the device as a wakeup event source, or disables it.
2566  * When such events involves platform-specific hooks, those hooks are
2567  * called automatically by this routine.
2568  *
2569  * Devices with legacy power management (no standard PCI PM capabilities)
2570  * always require such platform hooks.
2571  *
2572  * RETURN VALUE:
2573  * 0 is returned on success
2574  * -EINVAL is returned if device is not supposed to wake up the system
2575  * Error code depending on the platform is returned if both the platform and
2576  * the native mechanism fail to enable the generation of wake-up events
2577  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2578 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2579 {
2580 	int ret = 0;
2581 
2582 	/*
2583 	 * Bridges that are not power-manageable directly only signal
2584 	 * wakeup on behalf of subordinate devices which is set up
2585 	 * elsewhere, so skip them. However, bridges that are
2586 	 * power-manageable may signal wakeup for themselves (for example,
2587 	 * on a hotplug event) and they need to be covered here.
2588 	 */
2589 	if (!pci_power_manageable(dev))
2590 		return 0;
2591 
2592 	/* Don't do the same thing twice in a row for one device. */
2593 	if (!!enable == !!dev->wakeup_prepared)
2594 		return 0;
2595 
2596 	/*
2597 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2598 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2599 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2600 	 */
2601 
2602 	if (enable) {
2603 		int error;
2604 
2605 		/*
2606 		 * Enable PME signaling if the device can signal PME from
2607 		 * D3cold regardless of whether or not it can signal PME from
2608 		 * the current target state, because that will allow it to
2609 		 * signal PME when the hierarchy above it goes into D3cold and
2610 		 * the device itself ends up in D3cold as a result of that.
2611 		 */
2612 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2613 			pci_pme_active(dev, true);
2614 		else
2615 			ret = 1;
2616 		error = platform_pci_set_wakeup(dev, true);
2617 		if (ret)
2618 			ret = error;
2619 		if (!ret)
2620 			dev->wakeup_prepared = true;
2621 	} else {
2622 		platform_pci_set_wakeup(dev, false);
2623 		pci_pme_active(dev, false);
2624 		dev->wakeup_prepared = false;
2625 	}
2626 
2627 	return ret;
2628 }
2629 
2630 /**
2631  * pci_enable_wake - change wakeup settings for a PCI device
2632  * @pci_dev: Target device
2633  * @state: PCI state from which device will issue wakeup events
2634  * @enable: Whether or not to enable event generation
2635  *
2636  * If @enable is set, check device_may_wakeup() for the device before calling
2637  * __pci_enable_wake() for it.
2638  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2639 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2640 {
2641 	if (enable && !device_may_wakeup(&pci_dev->dev))
2642 		return -EINVAL;
2643 
2644 	return __pci_enable_wake(pci_dev, state, enable);
2645 }
2646 EXPORT_SYMBOL(pci_enable_wake);
2647 
2648 /**
2649  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2650  * @dev: PCI device to prepare
2651  * @enable: True to enable wake-up event generation; false to disable
2652  *
2653  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2654  * and this function allows them to set that up cleanly - pci_enable_wake()
2655  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2656  * ordering constraints.
2657  *
2658  * This function only returns error code if the device is not allowed to wake
2659  * up the system from sleep or it is not capable of generating PME# from both
2660  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2661  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2662 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2663 {
2664 	return pci_pme_capable(dev, PCI_D3cold) ?
2665 			pci_enable_wake(dev, PCI_D3cold, enable) :
2666 			pci_enable_wake(dev, PCI_D3hot, enable);
2667 }
2668 EXPORT_SYMBOL(pci_wake_from_d3);
2669 
2670 /**
2671  * pci_target_state - find an appropriate low power state for a given PCI dev
2672  * @dev: PCI device
2673  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2674  *
2675  * Use underlying platform code to find a supported low power state for @dev.
2676  * If the platform can't manage @dev, return the deepest state from which it
2677  * can generate wake events, based on any available PME info.
2678  */
pci_target_state(struct pci_dev * dev,bool wakeup)2679 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2680 {
2681 	if (platform_pci_power_manageable(dev)) {
2682 		/*
2683 		 * Call the platform to find the target state for the device.
2684 		 */
2685 		pci_power_t state = platform_pci_choose_state(dev);
2686 
2687 		switch (state) {
2688 		case PCI_POWER_ERROR:
2689 		case PCI_UNKNOWN:
2690 			return PCI_D3hot;
2691 
2692 		case PCI_D1:
2693 		case PCI_D2:
2694 			if (pci_no_d1d2(dev))
2695 				return PCI_D3hot;
2696 		}
2697 
2698 		return state;
2699 	}
2700 
2701 	/*
2702 	 * If the device is in D3cold even though it's not power-manageable by
2703 	 * the platform, it may have been powered down by non-standard means.
2704 	 * Best to let it slumber.
2705 	 */
2706 	if (dev->current_state == PCI_D3cold)
2707 		return PCI_D3cold;
2708 	else if (!dev->pm_cap)
2709 		return PCI_D0;
2710 
2711 	if (wakeup && dev->pme_support) {
2712 		pci_power_t state = PCI_D3hot;
2713 
2714 		/*
2715 		 * Find the deepest state from which the device can generate
2716 		 * PME#.
2717 		 */
2718 		while (state && !(dev->pme_support & (1 << state)))
2719 			state--;
2720 
2721 		if (state)
2722 			return state;
2723 		else if (dev->pme_support & 1)
2724 			return PCI_D0;
2725 	}
2726 
2727 	return PCI_D3hot;
2728 }
2729 
2730 /**
2731  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2732  *			  into a sleep state
2733  * @dev: Device to handle.
2734  *
2735  * Choose the power state appropriate for the device depending on whether
2736  * it can wake up the system and/or is power manageable by the platform
2737  * (PCI_D3hot is the default) and put the device into that state.
2738  */
pci_prepare_to_sleep(struct pci_dev * dev)2739 int pci_prepare_to_sleep(struct pci_dev *dev)
2740 {
2741 	bool wakeup = device_may_wakeup(&dev->dev);
2742 	pci_power_t target_state = pci_target_state(dev, wakeup);
2743 	int error;
2744 
2745 	if (target_state == PCI_POWER_ERROR)
2746 		return -EIO;
2747 
2748 	pci_enable_wake(dev, target_state, wakeup);
2749 
2750 	error = pci_set_power_state(dev, target_state);
2751 
2752 	if (error)
2753 		pci_enable_wake(dev, target_state, false);
2754 
2755 	return error;
2756 }
2757 EXPORT_SYMBOL(pci_prepare_to_sleep);
2758 
2759 /**
2760  * pci_back_from_sleep - turn PCI device on during system-wide transition
2761  *			 into working state
2762  * @dev: Device to handle.
2763  *
2764  * Disable device's system wake-up capability and put it into D0.
2765  */
pci_back_from_sleep(struct pci_dev * dev)2766 int pci_back_from_sleep(struct pci_dev *dev)
2767 {
2768 	int ret = pci_set_power_state(dev, PCI_D0);
2769 
2770 	if (ret)
2771 		return ret;
2772 
2773 	pci_enable_wake(dev, PCI_D0, false);
2774 	return 0;
2775 }
2776 EXPORT_SYMBOL(pci_back_from_sleep);
2777 
2778 /**
2779  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2780  * @dev: PCI device being suspended.
2781  *
2782  * Prepare @dev to generate wake-up events at run time and put it into a low
2783  * power state.
2784  */
pci_finish_runtime_suspend(struct pci_dev * dev)2785 int pci_finish_runtime_suspend(struct pci_dev *dev)
2786 {
2787 	pci_power_t target_state;
2788 	int error;
2789 
2790 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2791 	if (target_state == PCI_POWER_ERROR)
2792 		return -EIO;
2793 
2794 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2795 
2796 	error = pci_set_power_state(dev, target_state);
2797 
2798 	if (error)
2799 		pci_enable_wake(dev, target_state, false);
2800 
2801 	return error;
2802 }
2803 
2804 /**
2805  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2806  * @dev: Device to check.
2807  *
2808  * Return true if the device itself is capable of generating wake-up events
2809  * (through the platform or using the native PCIe PME) or if the device supports
2810  * PME and one of its upstream bridges can generate wake-up events.
2811  */
pci_dev_run_wake(struct pci_dev * dev)2812 bool pci_dev_run_wake(struct pci_dev *dev)
2813 {
2814 	struct pci_bus *bus = dev->bus;
2815 
2816 	if (!dev->pme_support)
2817 		return false;
2818 
2819 	/* PME-capable in principle, but not from the target power state */
2820 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2821 		return false;
2822 
2823 	if (device_can_wakeup(&dev->dev))
2824 		return true;
2825 
2826 	while (bus->parent) {
2827 		struct pci_dev *bridge = bus->self;
2828 
2829 		if (device_can_wakeup(&bridge->dev))
2830 			return true;
2831 
2832 		bus = bus->parent;
2833 	}
2834 
2835 	/* We have reached the root bus. */
2836 	if (bus->bridge)
2837 		return device_can_wakeup(bus->bridge);
2838 
2839 	return false;
2840 }
2841 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2842 
2843 /**
2844  * pci_dev_need_resume - Check if it is necessary to resume the device.
2845  * @pci_dev: Device to check.
2846  *
2847  * Return 'true' if the device is not runtime-suspended or it has to be
2848  * reconfigured due to wakeup settings difference between system and runtime
2849  * suspend, or the current power state of it is not suitable for the upcoming
2850  * (system-wide) transition.
2851  */
pci_dev_need_resume(struct pci_dev * pci_dev)2852 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2853 {
2854 	struct device *dev = &pci_dev->dev;
2855 	pci_power_t target_state;
2856 
2857 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2858 		return true;
2859 
2860 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2861 
2862 	/*
2863 	 * If the earlier platform check has not triggered, D3cold is just power
2864 	 * removal on top of D3hot, so no need to resume the device in that
2865 	 * case.
2866 	 */
2867 	return target_state != pci_dev->current_state &&
2868 		target_state != PCI_D3cold &&
2869 		pci_dev->current_state != PCI_D3hot;
2870 }
2871 
2872 /**
2873  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2874  * @pci_dev: Device to check.
2875  *
2876  * If the device is suspended and it is not configured for system wakeup,
2877  * disable PME for it to prevent it from waking up the system unnecessarily.
2878  *
2879  * Note that if the device's power state is D3cold and the platform check in
2880  * pci_dev_need_resume() has not triggered, the device's configuration need not
2881  * be changed.
2882  */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2883 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2884 {
2885 	struct device *dev = &pci_dev->dev;
2886 
2887 	spin_lock_irq(&dev->power.lock);
2888 
2889 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2890 	    pci_dev->current_state < PCI_D3cold)
2891 		__pci_pme_active(pci_dev, false);
2892 
2893 	spin_unlock_irq(&dev->power.lock);
2894 }
2895 
2896 /**
2897  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2898  * @pci_dev: Device to handle.
2899  *
2900  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2901  * it might have been disabled during the prepare phase of system suspend if
2902  * the device was not configured for system wakeup.
2903  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2904 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2905 {
2906 	struct device *dev = &pci_dev->dev;
2907 
2908 	if (!pci_dev_run_wake(pci_dev))
2909 		return;
2910 
2911 	spin_lock_irq(&dev->power.lock);
2912 
2913 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2914 		__pci_pme_active(pci_dev, true);
2915 
2916 	spin_unlock_irq(&dev->power.lock);
2917 }
2918 
2919 /**
2920  * pci_choose_state - Choose the power state of a PCI device.
2921  * @dev: Target PCI device.
2922  * @state: Target state for the whole system.
2923  *
2924  * Returns PCI power state suitable for @dev and @state.
2925  */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2926 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2927 {
2928 	if (state.event == PM_EVENT_ON)
2929 		return PCI_D0;
2930 
2931 	return pci_target_state(dev, false);
2932 }
2933 EXPORT_SYMBOL(pci_choose_state);
2934 
pci_config_pm_runtime_get(struct pci_dev * pdev)2935 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2936 {
2937 	struct device *dev = &pdev->dev;
2938 	struct device *parent = dev->parent;
2939 
2940 	if (parent)
2941 		pm_runtime_get_sync(parent);
2942 	pm_runtime_get_noresume(dev);
2943 	/*
2944 	 * pdev->current_state is set to PCI_D3cold during suspending,
2945 	 * so wait until suspending completes
2946 	 */
2947 	pm_runtime_barrier(dev);
2948 	/*
2949 	 * Only need to resume devices in D3cold, because config
2950 	 * registers are still accessible for devices suspended but
2951 	 * not in D3cold.
2952 	 */
2953 	if (pdev->current_state == PCI_D3cold)
2954 		pm_runtime_resume(dev);
2955 }
2956 
pci_config_pm_runtime_put(struct pci_dev * pdev)2957 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2958 {
2959 	struct device *dev = &pdev->dev;
2960 	struct device *parent = dev->parent;
2961 
2962 	pm_runtime_put(dev);
2963 	if (parent)
2964 		pm_runtime_put_sync(parent);
2965 }
2966 
2967 static const struct dmi_system_id bridge_d3_blacklist[] = {
2968 #ifdef CONFIG_X86
2969 	{
2970 		/*
2971 		 * Gigabyte X299 root port is not marked as hotplug capable
2972 		 * which allows Linux to power manage it.  However, this
2973 		 * confuses the BIOS SMI handler so don't power manage root
2974 		 * ports on that system.
2975 		 */
2976 		.ident = "X299 DESIGNARE EX-CF",
2977 		.matches = {
2978 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2979 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2980 		},
2981 	},
2982 	{
2983 		/*
2984 		 * Downstream device is not accessible after putting a root port
2985 		 * into D3cold and back into D0 on Elo Continental Z2 board
2986 		 */
2987 		.ident = "Elo Continental Z2",
2988 		.matches = {
2989 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2990 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2991 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2992 		},
2993 	},
2994 	{
2995 		/*
2996 		 * Changing power state of root port dGPU is connected fails
2997 		 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
2998 		 */
2999 		.ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3000 		.matches = {
3001 			DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3002 			DMI_MATCH(DMI_BOARD_NAME, "1972"),
3003 			DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3004 		},
3005 	},
3006 #endif
3007 	{ }
3008 };
3009 
3010 /**
3011  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3012  * @bridge: Bridge to check
3013  *
3014  * This function checks if it is possible to move the bridge to D3.
3015  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3016  */
pci_bridge_d3_possible(struct pci_dev * bridge)3017 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3018 {
3019 	if (!pci_is_pcie(bridge))
3020 		return false;
3021 
3022 	switch (pci_pcie_type(bridge)) {
3023 	case PCI_EXP_TYPE_ROOT_PORT:
3024 	case PCI_EXP_TYPE_UPSTREAM:
3025 	case PCI_EXP_TYPE_DOWNSTREAM:
3026 		if (pci_bridge_d3_disable)
3027 			return false;
3028 
3029 		/*
3030 		 * Hotplug ports handled by firmware in System Management Mode
3031 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3032 		 */
3033 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3034 			return false;
3035 
3036 		if (pci_bridge_d3_force)
3037 			return true;
3038 
3039 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3040 		if (bridge->is_thunderbolt)
3041 			return true;
3042 
3043 		/* Platform might know better if the bridge supports D3 */
3044 		if (platform_pci_bridge_d3(bridge))
3045 			return true;
3046 
3047 		/*
3048 		 * Hotplug ports handled natively by the OS were not validated
3049 		 * by vendors for runtime D3 at least until 2018 because there
3050 		 * was no OS support.
3051 		 */
3052 		if (bridge->is_hotplug_bridge)
3053 			return false;
3054 
3055 		if (dmi_check_system(bridge_d3_blacklist))
3056 			return false;
3057 
3058 		/*
3059 		 * It should be safe to put PCIe ports from 2015 or newer
3060 		 * to D3.
3061 		 */
3062 		if (dmi_get_bios_year() >= 2015)
3063 			return true;
3064 		break;
3065 	}
3066 
3067 	return false;
3068 }
3069 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3070 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3071 {
3072 	bool *d3cold_ok = data;
3073 
3074 	if (/* The device needs to be allowed to go D3cold ... */
3075 	    dev->no_d3cold || !dev->d3cold_allowed ||
3076 
3077 	    /* ... and if it is wakeup capable to do so from D3cold. */
3078 	    (device_may_wakeup(&dev->dev) &&
3079 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3080 
3081 	    /* If it is a bridge it must be allowed to go to D3. */
3082 	    !pci_power_manageable(dev))
3083 
3084 		*d3cold_ok = false;
3085 
3086 	return !*d3cold_ok;
3087 }
3088 
3089 /*
3090  * pci_bridge_d3_update - Update bridge D3 capabilities
3091  * @dev: PCI device which is changed
3092  *
3093  * Update upstream bridge PM capabilities accordingly depending on if the
3094  * device PM configuration was changed or the device is being removed.  The
3095  * change is also propagated upstream.
3096  */
pci_bridge_d3_update(struct pci_dev * dev)3097 void pci_bridge_d3_update(struct pci_dev *dev)
3098 {
3099 	bool remove = !device_is_registered(&dev->dev);
3100 	struct pci_dev *bridge;
3101 	bool d3cold_ok = true;
3102 
3103 	bridge = pci_upstream_bridge(dev);
3104 	if (!bridge || !pci_bridge_d3_possible(bridge))
3105 		return;
3106 
3107 	/*
3108 	 * If D3 is currently allowed for the bridge, removing one of its
3109 	 * children won't change that.
3110 	 */
3111 	if (remove && bridge->bridge_d3)
3112 		return;
3113 
3114 	/*
3115 	 * If D3 is currently allowed for the bridge and a child is added or
3116 	 * changed, disallowance of D3 can only be caused by that child, so
3117 	 * we only need to check that single device, not any of its siblings.
3118 	 *
3119 	 * If D3 is currently not allowed for the bridge, checking the device
3120 	 * first may allow us to skip checking its siblings.
3121 	 */
3122 	if (!remove)
3123 		pci_dev_check_d3cold(dev, &d3cold_ok);
3124 
3125 	/*
3126 	 * If D3 is currently not allowed for the bridge, this may be caused
3127 	 * either by the device being changed/removed or any of its siblings,
3128 	 * so we need to go through all children to find out if one of them
3129 	 * continues to block D3.
3130 	 */
3131 	if (d3cold_ok && !bridge->bridge_d3)
3132 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3133 			     &d3cold_ok);
3134 
3135 	if (bridge->bridge_d3 != d3cold_ok) {
3136 		bridge->bridge_d3 = d3cold_ok;
3137 		/* Propagate change to upstream bridges */
3138 		pci_bridge_d3_update(bridge);
3139 	}
3140 }
3141 
3142 /**
3143  * pci_d3cold_enable - Enable D3cold for device
3144  * @dev: PCI device to handle
3145  *
3146  * This function can be used in drivers to enable D3cold from the device
3147  * they handle.  It also updates upstream PCI bridge PM capabilities
3148  * accordingly.
3149  */
pci_d3cold_enable(struct pci_dev * dev)3150 void pci_d3cold_enable(struct pci_dev *dev)
3151 {
3152 	if (dev->no_d3cold) {
3153 		dev->no_d3cold = false;
3154 		pci_bridge_d3_update(dev);
3155 	}
3156 }
3157 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3158 
3159 /**
3160  * pci_d3cold_disable - Disable D3cold for device
3161  * @dev: PCI device to handle
3162  *
3163  * This function can be used in drivers to disable D3cold from the device
3164  * they handle.  It also updates upstream PCI bridge PM capabilities
3165  * accordingly.
3166  */
pci_d3cold_disable(struct pci_dev * dev)3167 void pci_d3cold_disable(struct pci_dev *dev)
3168 {
3169 	if (!dev->no_d3cold) {
3170 		dev->no_d3cold = true;
3171 		pci_bridge_d3_update(dev);
3172 	}
3173 }
3174 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3175 
3176 /**
3177  * pci_pm_init - Initialize PM functions of given PCI device
3178  * @dev: PCI device to handle.
3179  */
pci_pm_init(struct pci_dev * dev)3180 void pci_pm_init(struct pci_dev *dev)
3181 {
3182 	int pm;
3183 	u16 status;
3184 	u16 pmc;
3185 
3186 	pm_runtime_forbid(&dev->dev);
3187 	pm_runtime_set_active(&dev->dev);
3188 	pm_runtime_enable(&dev->dev);
3189 	device_enable_async_suspend(&dev->dev);
3190 	dev->wakeup_prepared = false;
3191 
3192 	dev->pm_cap = 0;
3193 	dev->pme_support = 0;
3194 
3195 	/* find PCI PM capability in list */
3196 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3197 	if (!pm)
3198 		return;
3199 	/* Check device's ability to generate PME# */
3200 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3201 
3202 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3203 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3204 			pmc & PCI_PM_CAP_VER_MASK);
3205 		return;
3206 	}
3207 
3208 	dev->pm_cap = pm;
3209 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3210 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3211 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3212 	dev->d3cold_allowed = true;
3213 
3214 	dev->d1_support = false;
3215 	dev->d2_support = false;
3216 	if (!pci_no_d1d2(dev)) {
3217 		if (pmc & PCI_PM_CAP_D1)
3218 			dev->d1_support = true;
3219 		if (pmc & PCI_PM_CAP_D2)
3220 			dev->d2_support = true;
3221 
3222 		if (dev->d1_support || dev->d2_support)
3223 			pci_info(dev, "supports%s%s\n",
3224 				   dev->d1_support ? " D1" : "",
3225 				   dev->d2_support ? " D2" : "");
3226 	}
3227 
3228 	pmc &= PCI_PM_CAP_PME_MASK;
3229 	if (pmc) {
3230 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3231 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3232 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3233 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3234 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3235 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3236 		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3237 		dev->pme_poll = true;
3238 		/*
3239 		 * Make device's PM flags reflect the wake-up capability, but
3240 		 * let the user space enable it to wake up the system as needed.
3241 		 */
3242 		device_set_wakeup_capable(&dev->dev, true);
3243 		/* Disable the PME# generation functionality */
3244 		pci_pme_active(dev, false);
3245 	}
3246 
3247 	pci_read_config_word(dev, PCI_STATUS, &status);
3248 	if (status & PCI_STATUS_IMM_READY)
3249 		dev->imm_ready = 1;
3250 }
3251 
pci_ea_flags(struct pci_dev * dev,u8 prop)3252 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3253 {
3254 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3255 
3256 	switch (prop) {
3257 	case PCI_EA_P_MEM:
3258 	case PCI_EA_P_VF_MEM:
3259 		flags |= IORESOURCE_MEM;
3260 		break;
3261 	case PCI_EA_P_MEM_PREFETCH:
3262 	case PCI_EA_P_VF_MEM_PREFETCH:
3263 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3264 		break;
3265 	case PCI_EA_P_IO:
3266 		flags |= IORESOURCE_IO;
3267 		break;
3268 	default:
3269 		return 0;
3270 	}
3271 
3272 	return flags;
3273 }
3274 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3275 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3276 					    u8 prop)
3277 {
3278 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3279 		return &dev->resource[bei];
3280 #ifdef CONFIG_PCI_IOV
3281 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3282 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3283 		return &dev->resource[PCI_IOV_RESOURCES +
3284 				      bei - PCI_EA_BEI_VF_BAR0];
3285 #endif
3286 	else if (bei == PCI_EA_BEI_ROM)
3287 		return &dev->resource[PCI_ROM_RESOURCE];
3288 	else
3289 		return NULL;
3290 }
3291 
3292 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3293 static int pci_ea_read(struct pci_dev *dev, int offset)
3294 {
3295 	struct resource *res;
3296 	const char *res_name;
3297 	int ent_size, ent_offset = offset;
3298 	resource_size_t start, end;
3299 	unsigned long flags;
3300 	u32 dw0, bei, base, max_offset;
3301 	u8 prop;
3302 	bool support_64 = (sizeof(resource_size_t) >= 8);
3303 
3304 	pci_read_config_dword(dev, ent_offset, &dw0);
3305 	ent_offset += 4;
3306 
3307 	/* Entry size field indicates DWORDs after 1st */
3308 	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3309 
3310 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3311 		goto out;
3312 
3313 	bei = FIELD_GET(PCI_EA_BEI, dw0);
3314 	prop = FIELD_GET(PCI_EA_PP, dw0);
3315 
3316 	/*
3317 	 * If the Property is in the reserved range, try the Secondary
3318 	 * Property instead.
3319 	 */
3320 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3321 		prop = FIELD_GET(PCI_EA_SP, dw0);
3322 	if (prop > PCI_EA_P_BRIDGE_IO)
3323 		goto out;
3324 
3325 	res = pci_ea_get_resource(dev, bei, prop);
3326 	res_name = pci_resource_name(dev, bei);
3327 	if (!res) {
3328 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3329 		goto out;
3330 	}
3331 
3332 	flags = pci_ea_flags(dev, prop);
3333 	if (!flags) {
3334 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3335 		goto out;
3336 	}
3337 
3338 	/* Read Base */
3339 	pci_read_config_dword(dev, ent_offset, &base);
3340 	start = (base & PCI_EA_FIELD_MASK);
3341 	ent_offset += 4;
3342 
3343 	/* Read MaxOffset */
3344 	pci_read_config_dword(dev, ent_offset, &max_offset);
3345 	ent_offset += 4;
3346 
3347 	/* Read Base MSBs (if 64-bit entry) */
3348 	if (base & PCI_EA_IS_64) {
3349 		u32 base_upper;
3350 
3351 		pci_read_config_dword(dev, ent_offset, &base_upper);
3352 		ent_offset += 4;
3353 
3354 		flags |= IORESOURCE_MEM_64;
3355 
3356 		/* entry starts above 32-bit boundary, can't use */
3357 		if (!support_64 && base_upper)
3358 			goto out;
3359 
3360 		if (support_64)
3361 			start |= ((u64)base_upper << 32);
3362 	}
3363 
3364 	end = start + (max_offset | 0x03);
3365 
3366 	/* Read MaxOffset MSBs (if 64-bit entry) */
3367 	if (max_offset & PCI_EA_IS_64) {
3368 		u32 max_offset_upper;
3369 
3370 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3371 		ent_offset += 4;
3372 
3373 		flags |= IORESOURCE_MEM_64;
3374 
3375 		/* entry too big, can't use */
3376 		if (!support_64 && max_offset_upper)
3377 			goto out;
3378 
3379 		if (support_64)
3380 			end += ((u64)max_offset_upper << 32);
3381 	}
3382 
3383 	if (end < start) {
3384 		pci_err(dev, "EA Entry crosses address boundary\n");
3385 		goto out;
3386 	}
3387 
3388 	if (ent_size != ent_offset - offset) {
3389 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3390 			ent_size, ent_offset - offset);
3391 		goto out;
3392 	}
3393 
3394 	res->name = pci_name(dev);
3395 	res->start = start;
3396 	res->end = end;
3397 	res->flags = flags;
3398 
3399 	if (bei <= PCI_EA_BEI_BAR5)
3400 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3401 			 res_name, res, prop);
3402 	else if (bei == PCI_EA_BEI_ROM)
3403 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3404 			 res_name, res, prop);
3405 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3406 		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407 			 res_name, res, prop);
3408 	else
3409 		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3410 			   bei, res, prop);
3411 
3412 out:
3413 	return offset + ent_size;
3414 }
3415 
3416 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3417 void pci_ea_init(struct pci_dev *dev)
3418 {
3419 	int ea;
3420 	u8 num_ent;
3421 	int offset;
3422 	int i;
3423 
3424 	/* find PCI EA capability in list */
3425 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3426 	if (!ea)
3427 		return;
3428 
3429 	/* determine the number of entries */
3430 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3431 					&num_ent);
3432 	num_ent &= PCI_EA_NUM_ENT_MASK;
3433 
3434 	offset = ea + PCI_EA_FIRST_ENT;
3435 
3436 	/* Skip DWORD 2 for type 1 functions */
3437 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3438 		offset += 4;
3439 
3440 	/* parse each EA entry */
3441 	for (i = 0; i < num_ent; ++i)
3442 		offset = pci_ea_read(dev, offset);
3443 }
3444 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3445 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3446 	struct pci_cap_saved_state *new_cap)
3447 {
3448 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3449 }
3450 
3451 /**
3452  * _pci_add_cap_save_buffer - allocate buffer for saving given
3453  *			      capability registers
3454  * @dev: the PCI device
3455  * @cap: the capability to allocate the buffer for
3456  * @extended: Standard or Extended capability ID
3457  * @size: requested size of the buffer
3458  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3459 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3460 				    bool extended, unsigned int size)
3461 {
3462 	int pos;
3463 	struct pci_cap_saved_state *save_state;
3464 
3465 	if (extended)
3466 		pos = pci_find_ext_capability(dev, cap);
3467 	else
3468 		pos = pci_find_capability(dev, cap);
3469 
3470 	if (!pos)
3471 		return 0;
3472 
3473 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3474 	if (!save_state)
3475 		return -ENOMEM;
3476 
3477 	save_state->cap.cap_nr = cap;
3478 	save_state->cap.cap_extended = extended;
3479 	save_state->cap.size = size;
3480 	pci_add_saved_cap(dev, save_state);
3481 
3482 	return 0;
3483 }
3484 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3485 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3486 {
3487 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3488 }
3489 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3490 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3491 {
3492 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3493 }
3494 
3495 /**
3496  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3497  * @dev: the PCI device
3498  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3499 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3500 {
3501 	int error;
3502 
3503 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3504 					PCI_EXP_SAVE_REGS * sizeof(u16));
3505 	if (error)
3506 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3507 
3508 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3509 	if (error)
3510 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3511 
3512 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3513 					    2 * sizeof(u16));
3514 	if (error)
3515 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3516 
3517 	pci_allocate_vc_save_buffers(dev);
3518 }
3519 
pci_free_cap_save_buffers(struct pci_dev * dev)3520 void pci_free_cap_save_buffers(struct pci_dev *dev)
3521 {
3522 	struct pci_cap_saved_state *tmp;
3523 	struct hlist_node *n;
3524 
3525 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3526 		kfree(tmp);
3527 }
3528 
3529 /**
3530  * pci_configure_ari - enable or disable ARI forwarding
3531  * @dev: the PCI device
3532  *
3533  * If @dev and its upstream bridge both support ARI, enable ARI in the
3534  * bridge.  Otherwise, disable ARI in the bridge.
3535  */
pci_configure_ari(struct pci_dev * dev)3536 void pci_configure_ari(struct pci_dev *dev)
3537 {
3538 	u32 cap;
3539 	struct pci_dev *bridge;
3540 
3541 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3542 		return;
3543 
3544 	bridge = dev->bus->self;
3545 	if (!bridge)
3546 		return;
3547 
3548 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3549 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3550 		return;
3551 
3552 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3553 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3554 					 PCI_EXP_DEVCTL2_ARI);
3555 		bridge->ari_enabled = 1;
3556 	} else {
3557 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3558 					   PCI_EXP_DEVCTL2_ARI);
3559 		bridge->ari_enabled = 0;
3560 	}
3561 }
3562 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3563 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3564 {
3565 	int pos;
3566 	u16 cap, ctrl;
3567 
3568 	pos = pdev->acs_cap;
3569 	if (!pos)
3570 		return false;
3571 
3572 	/*
3573 	 * Except for egress control, capabilities are either required
3574 	 * or only required if controllable.  Features missing from the
3575 	 * capability field can therefore be assumed as hard-wired enabled.
3576 	 */
3577 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3578 	acs_flags &= (cap | PCI_ACS_EC);
3579 
3580 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3581 	return (ctrl & acs_flags) == acs_flags;
3582 }
3583 
3584 /**
3585  * pci_acs_enabled - test ACS against required flags for a given device
3586  * @pdev: device to test
3587  * @acs_flags: required PCI ACS flags
3588  *
3589  * Return true if the device supports the provided flags.  Automatically
3590  * filters out flags that are not implemented on multifunction devices.
3591  *
3592  * Note that this interface checks the effective ACS capabilities of the
3593  * device rather than the actual capabilities.  For instance, most single
3594  * function endpoints are not required to support ACS because they have no
3595  * opportunity for peer-to-peer access.  We therefore return 'true'
3596  * regardless of whether the device exposes an ACS capability.  This makes
3597  * it much easier for callers of this function to ignore the actual type
3598  * or topology of the device when testing ACS support.
3599  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3600 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3601 {
3602 	int ret;
3603 
3604 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3605 	if (ret >= 0)
3606 		return ret > 0;
3607 
3608 	/*
3609 	 * Conventional PCI and PCI-X devices never support ACS, either
3610 	 * effectively or actually.  The shared bus topology implies that
3611 	 * any device on the bus can receive or snoop DMA.
3612 	 */
3613 	if (!pci_is_pcie(pdev))
3614 		return false;
3615 
3616 	switch (pci_pcie_type(pdev)) {
3617 	/*
3618 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3619 	 * but since their primary interface is PCI/X, we conservatively
3620 	 * handle them as we would a non-PCIe device.
3621 	 */
3622 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3623 	/*
3624 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3625 	 * applicable... must never implement an ACS Extended Capability...".
3626 	 * This seems arbitrary, but we take a conservative interpretation
3627 	 * of this statement.
3628 	 */
3629 	case PCI_EXP_TYPE_PCI_BRIDGE:
3630 	case PCI_EXP_TYPE_RC_EC:
3631 		return false;
3632 	/*
3633 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3634 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3635 	 * regardless of whether they are single- or multi-function devices.
3636 	 */
3637 	case PCI_EXP_TYPE_DOWNSTREAM:
3638 	case PCI_EXP_TYPE_ROOT_PORT:
3639 		return pci_acs_flags_enabled(pdev, acs_flags);
3640 	/*
3641 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3642 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3643 	 * capabilities, but only when they are part of a multifunction
3644 	 * device.  The footnote for section 6.12 indicates the specific
3645 	 * PCIe types included here.
3646 	 */
3647 	case PCI_EXP_TYPE_ENDPOINT:
3648 	case PCI_EXP_TYPE_UPSTREAM:
3649 	case PCI_EXP_TYPE_LEG_END:
3650 	case PCI_EXP_TYPE_RC_END:
3651 		if (!pdev->multifunction)
3652 			break;
3653 
3654 		return pci_acs_flags_enabled(pdev, acs_flags);
3655 	}
3656 
3657 	/*
3658 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3659 	 * to single function devices with the exception of downstream ports.
3660 	 */
3661 	return true;
3662 }
3663 
3664 /**
3665  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3666  * @start: starting downstream device
3667  * @end: ending upstream device or NULL to search to the root bus
3668  * @acs_flags: required flags
3669  *
3670  * Walk up a device tree from start to end testing PCI ACS support.  If
3671  * any step along the way does not support the required flags, return false.
3672  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3673 bool pci_acs_path_enabled(struct pci_dev *start,
3674 			  struct pci_dev *end, u16 acs_flags)
3675 {
3676 	struct pci_dev *pdev, *parent = start;
3677 
3678 	do {
3679 		pdev = parent;
3680 
3681 		if (!pci_acs_enabled(pdev, acs_flags))
3682 			return false;
3683 
3684 		if (pci_is_root_bus(pdev->bus))
3685 			return (end == NULL);
3686 
3687 		parent = pdev->bus->self;
3688 	} while (pdev != end);
3689 
3690 	return true;
3691 }
3692 
3693 /**
3694  * pci_acs_init - Initialize ACS if hardware supports it
3695  * @dev: the PCI device
3696  */
pci_acs_init(struct pci_dev * dev)3697 void pci_acs_init(struct pci_dev *dev)
3698 {
3699 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3700 
3701 	/*
3702 	 * Attempt to enable ACS regardless of capability because some Root
3703 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3704 	 * the standard ACS capability but still support ACS via those
3705 	 * quirks.
3706 	 */
3707 	pci_enable_acs(dev);
3708 }
3709 
3710 /**
3711  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3712  * @pdev: PCI device
3713  * @bar: BAR to find
3714  *
3715  * Helper to find the position of the ctrl register for a BAR.
3716  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3717  * Returns -ENOENT if no ctrl register for the BAR could be found.
3718  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3719 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3720 {
3721 	unsigned int pos, nbars, i;
3722 	u32 ctrl;
3723 
3724 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3725 	if (!pos)
3726 		return -ENOTSUPP;
3727 
3728 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3729 	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3730 
3731 	for (i = 0; i < nbars; i++, pos += 8) {
3732 		int bar_idx;
3733 
3734 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735 		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3736 		if (bar_idx == bar)
3737 			return pos;
3738 	}
3739 
3740 	return -ENOENT;
3741 }
3742 
3743 /**
3744  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3745  * @pdev: PCI device
3746  * @bar: BAR to query
3747  *
3748  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3749  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3750  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3751 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3752 {
3753 	int pos;
3754 	u32 cap;
3755 
3756 	pos = pci_rebar_find_pos(pdev, bar);
3757 	if (pos < 0)
3758 		return 0;
3759 
3760 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3761 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3762 
3763 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3764 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3765 	    bar == 0 && cap == 0x700)
3766 		return 0x3f00;
3767 
3768 	return cap;
3769 }
3770 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3771 
3772 /**
3773  * pci_rebar_get_current_size - get the current size of a BAR
3774  * @pdev: PCI device
3775  * @bar: BAR to set size to
3776  *
3777  * Read the size of a BAR from the resizable BAR config.
3778  * Returns size if found or negative error code.
3779  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3780 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3781 {
3782 	int pos;
3783 	u32 ctrl;
3784 
3785 	pos = pci_rebar_find_pos(pdev, bar);
3786 	if (pos < 0)
3787 		return pos;
3788 
3789 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3790 	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3791 }
3792 
3793 /**
3794  * pci_rebar_set_size - set a new size for a BAR
3795  * @pdev: PCI device
3796  * @bar: BAR to set size to
3797  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3798  *
3799  * Set the new size of a BAR as defined in the spec.
3800  * Returns zero if resizing was successful, error code otherwise.
3801  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3802 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3803 {
3804 	int pos;
3805 	u32 ctrl;
3806 
3807 	pos = pci_rebar_find_pos(pdev, bar);
3808 	if (pos < 0)
3809 		return pos;
3810 
3811 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3812 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3813 	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3814 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3815 	return 0;
3816 }
3817 
3818 /**
3819  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3820  * @dev: the PCI device
3821  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3822  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3823  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3824  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3825  *
3826  * Return 0 if all upstream bridges support AtomicOp routing, egress
3827  * blocking is disabled on all upstream ports, and the root port supports
3828  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3829  * AtomicOp completion), or negative otherwise.
3830  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3831 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3832 {
3833 	struct pci_bus *bus = dev->bus;
3834 	struct pci_dev *bridge;
3835 	u32 cap, ctl2;
3836 
3837 	/*
3838 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3839 	 * in Device Control 2 is reserved in VFs and the PF value applies
3840 	 * to all associated VFs.
3841 	 */
3842 	if (dev->is_virtfn)
3843 		return -EINVAL;
3844 
3845 	if (!pci_is_pcie(dev))
3846 		return -EINVAL;
3847 
3848 	/*
3849 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3850 	 * AtomicOp requesters.  For now, we only support endpoints as
3851 	 * requesters and root ports as completers.  No endpoints as
3852 	 * completers, and no peer-to-peer.
3853 	 */
3854 
3855 	switch (pci_pcie_type(dev)) {
3856 	case PCI_EXP_TYPE_ENDPOINT:
3857 	case PCI_EXP_TYPE_LEG_END:
3858 	case PCI_EXP_TYPE_RC_END:
3859 		break;
3860 	default:
3861 		return -EINVAL;
3862 	}
3863 
3864 	while (bus->parent) {
3865 		bridge = bus->self;
3866 
3867 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3868 
3869 		switch (pci_pcie_type(bridge)) {
3870 		/* Ensure switch ports support AtomicOp routing */
3871 		case PCI_EXP_TYPE_UPSTREAM:
3872 		case PCI_EXP_TYPE_DOWNSTREAM:
3873 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3874 				return -EINVAL;
3875 			break;
3876 
3877 		/* Ensure root port supports all the sizes we care about */
3878 		case PCI_EXP_TYPE_ROOT_PORT:
3879 			if ((cap & cap_mask) != cap_mask)
3880 				return -EINVAL;
3881 			break;
3882 		}
3883 
3884 		/* Ensure upstream ports don't block AtomicOps on egress */
3885 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3886 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3887 						   &ctl2);
3888 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3889 				return -EINVAL;
3890 		}
3891 
3892 		bus = bus->parent;
3893 	}
3894 
3895 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3896 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3897 	return 0;
3898 }
3899 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3900 
3901 /**
3902  * pci_release_region - Release a PCI bar
3903  * @pdev: PCI device whose resources were previously reserved by
3904  *	  pci_request_region()
3905  * @bar: BAR to release
3906  *
3907  * Releases the PCI I/O and memory resources previously reserved by a
3908  * successful call to pci_request_region().  Call this function only
3909  * after all use of the PCI regions has ceased.
3910  */
pci_release_region(struct pci_dev * pdev,int bar)3911 void pci_release_region(struct pci_dev *pdev, int bar)
3912 {
3913 	/*
3914 	 * This is done for backwards compatibility, because the old PCI devres
3915 	 * API had a mode in which the function became managed if it had been
3916 	 * enabled with pcim_enable_device() instead of pci_enable_device().
3917 	 */
3918 	if (pci_is_managed(pdev)) {
3919 		pcim_release_region(pdev, bar);
3920 		return;
3921 	}
3922 
3923 	if (pci_resource_len(pdev, bar) == 0)
3924 		return;
3925 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3926 		release_region(pci_resource_start(pdev, bar),
3927 				pci_resource_len(pdev, bar));
3928 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3929 		release_mem_region(pci_resource_start(pdev, bar),
3930 				pci_resource_len(pdev, bar));
3931 }
3932 EXPORT_SYMBOL(pci_release_region);
3933 
3934 /**
3935  * __pci_request_region - Reserved PCI I/O and memory resource
3936  * @pdev: PCI device whose resources are to be reserved
3937  * @bar: BAR to be reserved
3938  * @res_name: Name to be associated with resource.
3939  * @exclusive: whether the region access is exclusive or not
3940  *
3941  * Returns: 0 on success, negative error code on failure.
3942  *
3943  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3944  * being reserved by owner @res_name.  Do not access any
3945  * address inside the PCI regions unless this call returns
3946  * successfully.
3947  *
3948  * If @exclusive is set, then the region is marked so that userspace
3949  * is explicitly not allowed to map the resource via /dev/mem or
3950  * sysfs MMIO access.
3951  *
3952  * Returns 0 on success, or %EBUSY on error.  A warning
3953  * message is also printed on failure.
3954  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3955 static int __pci_request_region(struct pci_dev *pdev, int bar,
3956 				const char *res_name, int exclusive)
3957 {
3958 	if (pci_is_managed(pdev)) {
3959 		if (exclusive == IORESOURCE_EXCLUSIVE)
3960 			return pcim_request_region_exclusive(pdev, bar, res_name);
3961 
3962 		return pcim_request_region(pdev, bar, res_name);
3963 	}
3964 
3965 	if (pci_resource_len(pdev, bar) == 0)
3966 		return 0;
3967 
3968 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3969 		if (!request_region(pci_resource_start(pdev, bar),
3970 			    pci_resource_len(pdev, bar), res_name))
3971 			goto err_out;
3972 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3973 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3974 					pci_resource_len(pdev, bar), res_name,
3975 					exclusive))
3976 			goto err_out;
3977 	}
3978 
3979 	return 0;
3980 
3981 err_out:
3982 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3983 		 &pdev->resource[bar]);
3984 	return -EBUSY;
3985 }
3986 
3987 /**
3988  * pci_request_region - Reserve PCI I/O and memory resource
3989  * @pdev: PCI device whose resources are to be reserved
3990  * @bar: BAR to be reserved
3991  * @res_name: Name to be associated with resource
3992  *
3993  * Returns: 0 on success, negative error code on failure.
3994  *
3995  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3996  * being reserved by owner @res_name.  Do not access any
3997  * address inside the PCI regions unless this call returns
3998  * successfully.
3999  *
4000  * Returns 0 on success, or %EBUSY on error.  A warning
4001  * message is also printed on failure.
4002  *
4003  * NOTE:
4004  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4005  * when pcim_enable_device() has been called in advance. This hybrid feature is
4006  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4007  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)4008 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4009 {
4010 	return __pci_request_region(pdev, bar, res_name, 0);
4011 }
4012 EXPORT_SYMBOL(pci_request_region);
4013 
4014 /**
4015  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4016  * @pdev: PCI device whose resources were previously reserved
4017  * @bars: Bitmask of BARs to be released
4018  *
4019  * Release selected PCI I/O and memory resources previously reserved.
4020  * Call this function only after all use of the PCI regions has ceased.
4021  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4022 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4023 {
4024 	int i;
4025 
4026 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4027 		if (bars & (1 << i))
4028 			pci_release_region(pdev, i);
4029 }
4030 EXPORT_SYMBOL(pci_release_selected_regions);
4031 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)4032 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4033 					  const char *res_name, int excl)
4034 {
4035 	int i;
4036 
4037 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4038 		if (bars & (1 << i))
4039 			if (__pci_request_region(pdev, i, res_name, excl))
4040 				goto err_out;
4041 	return 0;
4042 
4043 err_out:
4044 	while (--i >= 0)
4045 		if (bars & (1 << i))
4046 			pci_release_region(pdev, i);
4047 
4048 	return -EBUSY;
4049 }
4050 
4051 
4052 /**
4053  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4054  * @pdev: PCI device whose resources are to be reserved
4055  * @bars: Bitmask of BARs to be requested
4056  * @res_name: Name to be associated with resource
4057  *
4058  * Returns: 0 on success, negative error code on failure.
4059  *
4060  * NOTE:
4061  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4062  * when pcim_enable_device() has been called in advance. This hybrid feature is
4063  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4064  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4065 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4066 				 const char *res_name)
4067 {
4068 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4069 }
4070 EXPORT_SYMBOL(pci_request_selected_regions);
4071 
4072 /**
4073  * pci_request_selected_regions_exclusive - Request regions exclusively
4074  * @pdev: PCI device to request regions from
4075  * @bars: bit mask of BARs to request
4076  * @res_name: name to be associated with the requests
4077  *
4078  * Returns: 0 on success, negative error code on failure.
4079  *
4080  * NOTE:
4081  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4082  * when pcim_enable_device() has been called in advance. This hybrid feature is
4083  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4084  */
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4085 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4086 					   const char *res_name)
4087 {
4088 	return __pci_request_selected_regions(pdev, bars, res_name,
4089 			IORESOURCE_EXCLUSIVE);
4090 }
4091 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4092 
4093 /**
4094  * pci_release_regions - Release reserved PCI I/O and memory resources
4095  * @pdev: PCI device whose resources were previously reserved by
4096  *	  pci_request_regions()
4097  *
4098  * Releases all PCI I/O and memory resources previously reserved by a
4099  * successful call to pci_request_regions().  Call this function only
4100  * after all use of the PCI regions has ceased.
4101  */
pci_release_regions(struct pci_dev * pdev)4102 void pci_release_regions(struct pci_dev *pdev)
4103 {
4104 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4105 }
4106 EXPORT_SYMBOL(pci_release_regions);
4107 
4108 /**
4109  * pci_request_regions - Reserve PCI I/O and memory resources
4110  * @pdev: PCI device whose resources are to be reserved
4111  * @res_name: Name to be associated with resource.
4112  *
4113  * Mark all PCI regions associated with PCI device @pdev as
4114  * being reserved by owner @res_name.  Do not access any
4115  * address inside the PCI regions unless this call returns
4116  * successfully.
4117  *
4118  * Returns 0 on success, or %EBUSY on error.  A warning
4119  * message is also printed on failure.
4120  *
4121  * NOTE:
4122  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4123  * when pcim_enable_device() has been called in advance. This hybrid feature is
4124  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4125  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4126 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4127 {
4128 	return pci_request_selected_regions(pdev,
4129 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4130 }
4131 EXPORT_SYMBOL(pci_request_regions);
4132 
4133 /**
4134  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4135  * @pdev: PCI device whose resources are to be reserved
4136  * @res_name: Name to be associated with resource.
4137  *
4138  * Returns: 0 on success, negative error code on failure.
4139  *
4140  * Mark all PCI regions associated with PCI device @pdev as being reserved
4141  * by owner @res_name.  Do not access any address inside the PCI regions
4142  * unless this call returns successfully.
4143  *
4144  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4145  * and the sysfs MMIO access will not be allowed.
4146  *
4147  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4148  * printed on failure.
4149  *
4150  * NOTE:
4151  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4152  * when pcim_enable_device() has been called in advance. This hybrid feature is
4153  * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4154  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4155 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4156 {
4157 	return pci_request_selected_regions_exclusive(pdev,
4158 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4159 }
4160 EXPORT_SYMBOL(pci_request_regions_exclusive);
4161 
4162 /*
4163  * Record the PCI IO range (expressed as CPU physical address + size).
4164  * Return a negative value if an error has occurred, zero otherwise
4165  */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4166 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4167 			resource_size_t	size)
4168 {
4169 	int ret = 0;
4170 #ifdef PCI_IOBASE
4171 	struct logic_pio_hwaddr *range;
4172 
4173 	if (!size || addr + size < addr)
4174 		return -EINVAL;
4175 
4176 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4177 	if (!range)
4178 		return -ENOMEM;
4179 
4180 	range->fwnode = fwnode;
4181 	range->size = size;
4182 	range->hw_start = addr;
4183 	range->flags = LOGIC_PIO_CPU_MMIO;
4184 
4185 	ret = logic_pio_register_range(range);
4186 	if (ret)
4187 		kfree(range);
4188 
4189 	/* Ignore duplicates due to deferred probing */
4190 	if (ret == -EEXIST)
4191 		ret = 0;
4192 #endif
4193 
4194 	return ret;
4195 }
4196 
pci_pio_to_address(unsigned long pio)4197 phys_addr_t pci_pio_to_address(unsigned long pio)
4198 {
4199 #ifdef PCI_IOBASE
4200 	if (pio < MMIO_UPPER_LIMIT)
4201 		return logic_pio_to_hwaddr(pio);
4202 #endif
4203 
4204 	return (phys_addr_t) OF_BAD_ADDR;
4205 }
4206 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4207 
pci_address_to_pio(phys_addr_t address)4208 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4209 {
4210 #ifdef PCI_IOBASE
4211 	return logic_pio_trans_cpuaddr(address);
4212 #else
4213 	if (address > IO_SPACE_LIMIT)
4214 		return (unsigned long)-1;
4215 
4216 	return (unsigned long) address;
4217 #endif
4218 }
4219 
4220 /**
4221  * pci_remap_iospace - Remap the memory mapped I/O space
4222  * @res: Resource describing the I/O space
4223  * @phys_addr: physical address of range to be mapped
4224  *
4225  * Remap the memory mapped I/O space described by the @res and the CPU
4226  * physical address @phys_addr into virtual address space.  Only
4227  * architectures that have memory mapped IO functions defined (and the
4228  * PCI_IOBASE value defined) should call this function.
4229  */
4230 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4231 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4232 {
4233 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4234 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4235 
4236 	if (!(res->flags & IORESOURCE_IO))
4237 		return -EINVAL;
4238 
4239 	if (res->end > IO_SPACE_LIMIT)
4240 		return -EINVAL;
4241 
4242 	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4243 			       pgprot_device(PAGE_KERNEL));
4244 #else
4245 	/*
4246 	 * This architecture does not have memory mapped I/O space,
4247 	 * so this function should never be called
4248 	 */
4249 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4250 	return -ENODEV;
4251 #endif
4252 }
4253 EXPORT_SYMBOL(pci_remap_iospace);
4254 #endif
4255 
4256 /**
4257  * pci_unmap_iospace - Unmap the memory mapped I/O space
4258  * @res: resource to be unmapped
4259  *
4260  * Unmap the CPU virtual address @res from virtual address space.  Only
4261  * architectures that have memory mapped IO functions defined (and the
4262  * PCI_IOBASE value defined) should call this function.
4263  */
pci_unmap_iospace(struct resource * res)4264 void pci_unmap_iospace(struct resource *res)
4265 {
4266 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4267 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4268 
4269 	vunmap_range(vaddr, vaddr + resource_size(res));
4270 #endif
4271 }
4272 EXPORT_SYMBOL(pci_unmap_iospace);
4273 
__pci_set_master(struct pci_dev * dev,bool enable)4274 static void __pci_set_master(struct pci_dev *dev, bool enable)
4275 {
4276 	u16 old_cmd, cmd;
4277 
4278 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4279 	if (enable)
4280 		cmd = old_cmd | PCI_COMMAND_MASTER;
4281 	else
4282 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4283 	if (cmd != old_cmd) {
4284 		pci_dbg(dev, "%s bus mastering\n",
4285 			enable ? "enabling" : "disabling");
4286 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4287 	}
4288 	dev->is_busmaster = enable;
4289 }
4290 
4291 /**
4292  * pcibios_setup - process "pci=" kernel boot arguments
4293  * @str: string used to pass in "pci=" kernel boot arguments
4294  *
4295  * Process kernel boot arguments.  This is the default implementation.
4296  * Architecture specific implementations can override this as necessary.
4297  */
pcibios_setup(char * str)4298 char * __weak __init pcibios_setup(char *str)
4299 {
4300 	return str;
4301 }
4302 
4303 /**
4304  * pcibios_set_master - enable PCI bus-mastering for device dev
4305  * @dev: the PCI device to enable
4306  *
4307  * Enables PCI bus-mastering for the device.  This is the default
4308  * implementation.  Architecture specific implementations can override
4309  * this if necessary.
4310  */
pcibios_set_master(struct pci_dev * dev)4311 void __weak pcibios_set_master(struct pci_dev *dev)
4312 {
4313 	u8 lat;
4314 
4315 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4316 	if (pci_is_pcie(dev))
4317 		return;
4318 
4319 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4320 	if (lat < 16)
4321 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4322 	else if (lat > pcibios_max_latency)
4323 		lat = pcibios_max_latency;
4324 	else
4325 		return;
4326 
4327 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4328 }
4329 
4330 /**
4331  * pci_set_master - enables bus-mastering for device dev
4332  * @dev: the PCI device to enable
4333  *
4334  * Enables bus-mastering on the device and calls pcibios_set_master()
4335  * to do the needed arch specific settings.
4336  */
pci_set_master(struct pci_dev * dev)4337 void pci_set_master(struct pci_dev *dev)
4338 {
4339 	__pci_set_master(dev, true);
4340 	pcibios_set_master(dev);
4341 }
4342 EXPORT_SYMBOL(pci_set_master);
4343 
4344 /**
4345  * pci_clear_master - disables bus-mastering for device dev
4346  * @dev: the PCI device to disable
4347  */
pci_clear_master(struct pci_dev * dev)4348 void pci_clear_master(struct pci_dev *dev)
4349 {
4350 	__pci_set_master(dev, false);
4351 }
4352 EXPORT_SYMBOL(pci_clear_master);
4353 
4354 /**
4355  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4356  * @dev: the PCI device for which MWI is to be enabled
4357  *
4358  * Helper function for pci_set_mwi.
4359  * Originally copied from drivers/net/acenic.c.
4360  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4361  *
4362  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4363  */
pci_set_cacheline_size(struct pci_dev * dev)4364 int pci_set_cacheline_size(struct pci_dev *dev)
4365 {
4366 	u8 cacheline_size;
4367 
4368 	if (!pci_cache_line_size)
4369 		return -EINVAL;
4370 
4371 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4372 	   equal to or multiple of the right value. */
4373 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4374 	if (cacheline_size >= pci_cache_line_size &&
4375 	    (cacheline_size % pci_cache_line_size) == 0)
4376 		return 0;
4377 
4378 	/* Write the correct value. */
4379 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4380 	/* Read it back. */
4381 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4382 	if (cacheline_size == pci_cache_line_size)
4383 		return 0;
4384 
4385 	pci_dbg(dev, "cache line size of %d is not supported\n",
4386 		   pci_cache_line_size << 2);
4387 
4388 	return -EINVAL;
4389 }
4390 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4391 
4392 /**
4393  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4394  * @dev: the PCI device for which MWI is enabled
4395  *
4396  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4397  *
4398  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4399  */
pci_set_mwi(struct pci_dev * dev)4400 int pci_set_mwi(struct pci_dev *dev)
4401 {
4402 #ifdef PCI_DISABLE_MWI
4403 	return 0;
4404 #else
4405 	int rc;
4406 	u16 cmd;
4407 
4408 	rc = pci_set_cacheline_size(dev);
4409 	if (rc)
4410 		return rc;
4411 
4412 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4413 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4414 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4415 		cmd |= PCI_COMMAND_INVALIDATE;
4416 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4417 	}
4418 	return 0;
4419 #endif
4420 }
4421 EXPORT_SYMBOL(pci_set_mwi);
4422 
4423 /**
4424  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4425  * @dev: the PCI device for which MWI is enabled
4426  *
4427  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4428  * Callers are not required to check the return value.
4429  *
4430  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4431  */
pci_try_set_mwi(struct pci_dev * dev)4432 int pci_try_set_mwi(struct pci_dev *dev)
4433 {
4434 #ifdef PCI_DISABLE_MWI
4435 	return 0;
4436 #else
4437 	return pci_set_mwi(dev);
4438 #endif
4439 }
4440 EXPORT_SYMBOL(pci_try_set_mwi);
4441 
4442 /**
4443  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4444  * @dev: the PCI device to disable
4445  *
4446  * Disables PCI Memory-Write-Invalidate transaction on the device
4447  */
pci_clear_mwi(struct pci_dev * dev)4448 void pci_clear_mwi(struct pci_dev *dev)
4449 {
4450 #ifndef PCI_DISABLE_MWI
4451 	u16 cmd;
4452 
4453 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4454 	if (cmd & PCI_COMMAND_INVALIDATE) {
4455 		cmd &= ~PCI_COMMAND_INVALIDATE;
4456 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4457 	}
4458 #endif
4459 }
4460 EXPORT_SYMBOL(pci_clear_mwi);
4461 
4462 /**
4463  * pci_disable_parity - disable parity checking for device
4464  * @dev: the PCI device to operate on
4465  *
4466  * Disable parity checking for device @dev
4467  */
pci_disable_parity(struct pci_dev * dev)4468 void pci_disable_parity(struct pci_dev *dev)
4469 {
4470 	u16 cmd;
4471 
4472 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4473 	if (cmd & PCI_COMMAND_PARITY) {
4474 		cmd &= ~PCI_COMMAND_PARITY;
4475 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4476 	}
4477 }
4478 
4479 /**
4480  * pci_intx - enables/disables PCI INTx for device dev
4481  * @pdev: the PCI device to operate on
4482  * @enable: boolean: whether to enable or disable PCI INTx
4483  *
4484  * Enables/disables PCI INTx for device @pdev
4485  *
4486  * NOTE:
4487  * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4488  * when pcim_enable_device() has been called in advance. This hybrid feature is
4489  * DEPRECATED! If you want managed cleanup, use pcim_intx() instead.
4490  */
pci_intx(struct pci_dev * pdev,int enable)4491 void pci_intx(struct pci_dev *pdev, int enable)
4492 {
4493 	u16 pci_command, new;
4494 
4495 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4496 
4497 	if (enable)
4498 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4499 	else
4500 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4501 
4502 	if (new != pci_command) {
4503 		/* Preserve the "hybrid" behavior for backwards compatibility */
4504 		if (pci_is_managed(pdev)) {
4505 			WARN_ON_ONCE(pcim_intx(pdev, enable) != 0);
4506 			return;
4507 		}
4508 
4509 		pci_write_config_word(pdev, PCI_COMMAND, new);
4510 	}
4511 }
4512 EXPORT_SYMBOL_GPL(pci_intx);
4513 
4514 /**
4515  * pci_wait_for_pending_transaction - wait for pending transaction
4516  * @dev: the PCI device to operate on
4517  *
4518  * Return 0 if transaction is pending 1 otherwise.
4519  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4520 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4521 {
4522 	if (!pci_is_pcie(dev))
4523 		return 1;
4524 
4525 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4526 				    PCI_EXP_DEVSTA_TRPND);
4527 }
4528 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4529 
4530 /**
4531  * pcie_flr - initiate a PCIe function level reset
4532  * @dev: device to reset
4533  *
4534  * Initiate a function level reset unconditionally on @dev without
4535  * checking any flags and DEVCAP
4536  */
pcie_flr(struct pci_dev * dev)4537 int pcie_flr(struct pci_dev *dev)
4538 {
4539 	if (!pci_wait_for_pending_transaction(dev))
4540 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4541 
4542 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4543 
4544 	if (dev->imm_ready)
4545 		return 0;
4546 
4547 	/*
4548 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4549 	 * 100ms, but may silently discard requests while the FLR is in
4550 	 * progress.  Wait 100ms before trying to access the device.
4551 	 */
4552 	msleep(100);
4553 
4554 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4555 }
4556 EXPORT_SYMBOL_GPL(pcie_flr);
4557 
4558 /**
4559  * pcie_reset_flr - initiate a PCIe function level reset
4560  * @dev: device to reset
4561  * @probe: if true, return 0 if device can be reset this way
4562  *
4563  * Initiate a function level reset on @dev.
4564  */
pcie_reset_flr(struct pci_dev * dev,bool probe)4565 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4566 {
4567 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4568 		return -ENOTTY;
4569 
4570 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4571 		return -ENOTTY;
4572 
4573 	if (probe)
4574 		return 0;
4575 
4576 	return pcie_flr(dev);
4577 }
4578 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4579 
pci_af_flr(struct pci_dev * dev,bool probe)4580 static int pci_af_flr(struct pci_dev *dev, bool probe)
4581 {
4582 	int pos;
4583 	u8 cap;
4584 
4585 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4586 	if (!pos)
4587 		return -ENOTTY;
4588 
4589 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4590 		return -ENOTTY;
4591 
4592 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4593 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4594 		return -ENOTTY;
4595 
4596 	if (probe)
4597 		return 0;
4598 
4599 	/*
4600 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4601 	 * is used, so we use the control offset rather than status and shift
4602 	 * the test bit to match.
4603 	 */
4604 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4605 				 PCI_AF_STATUS_TP << 8))
4606 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4607 
4608 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4609 
4610 	if (dev->imm_ready)
4611 		return 0;
4612 
4613 	/*
4614 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4615 	 * updated 27 July 2006; a device must complete an FLR within
4616 	 * 100ms, but may silently discard requests while the FLR is in
4617 	 * progress.  Wait 100ms before trying to access the device.
4618 	 */
4619 	msleep(100);
4620 
4621 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4622 }
4623 
4624 /**
4625  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4626  * @dev: Device to reset.
4627  * @probe: if true, return 0 if the device can be reset this way.
4628  *
4629  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4630  * unset, it will be reinitialized internally when going from PCI_D3hot to
4631  * PCI_D0.  If that's the case and the device is not in a low-power state
4632  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4633  *
4634  * NOTE: This causes the caller to sleep for twice the device power transition
4635  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4636  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4637  * Moreover, only devices in D0 can be reset by this function.
4638  */
pci_pm_reset(struct pci_dev * dev,bool probe)4639 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4640 {
4641 	u16 csr;
4642 
4643 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4644 		return -ENOTTY;
4645 
4646 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4647 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4648 		return -ENOTTY;
4649 
4650 	if (probe)
4651 		return 0;
4652 
4653 	if (dev->current_state != PCI_D0)
4654 		return -EINVAL;
4655 
4656 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4657 	csr |= PCI_D3hot;
4658 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4659 	pci_dev_d3_sleep(dev);
4660 
4661 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4662 	csr |= PCI_D0;
4663 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4664 	pci_dev_d3_sleep(dev);
4665 
4666 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4667 }
4668 
4669 /**
4670  * pcie_wait_for_link_status - Wait for link status change
4671  * @pdev: Device whose link to wait for.
4672  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4673  * @active: Waiting for active or inactive?
4674  *
4675  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4676  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4677  */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4678 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4679 				     bool use_lt, bool active)
4680 {
4681 	u16 lnksta_mask, lnksta_match;
4682 	unsigned long end_jiffies;
4683 	u16 lnksta;
4684 
4685 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4686 	lnksta_match = active ? lnksta_mask : 0;
4687 
4688 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4689 	do {
4690 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4691 		if ((lnksta & lnksta_mask) == lnksta_match)
4692 			return 0;
4693 		msleep(1);
4694 	} while (time_before(jiffies, end_jiffies));
4695 
4696 	return -ETIMEDOUT;
4697 }
4698 
4699 /**
4700  * pcie_retrain_link - Request a link retrain and wait for it to complete
4701  * @pdev: Device whose link to retrain.
4702  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4703  *
4704  * Retrain completion status is retrieved from the Link Status Register
4705  * according to @use_lt.  It is not verified whether the use of the DLLLA
4706  * bit is valid.
4707  *
4708  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4709  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4710  */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4711 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4712 {
4713 	int rc;
4714 
4715 	/*
4716 	 * Ensure the updated LNKCTL parameters are used during link
4717 	 * training by checking that there is no ongoing link training that
4718 	 * may have started before link parameters were changed, so as to
4719 	 * avoid LTSSM race as recommended in Implementation Note at the end
4720 	 * of PCIe r6.1 sec 7.5.3.7.
4721 	 */
4722 	rc = pcie_wait_for_link_status(pdev, true, false);
4723 	if (rc)
4724 		return rc;
4725 
4726 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4727 	if (pdev->clear_retrain_link) {
4728 		/*
4729 		 * Due to an erratum in some devices the Retrain Link bit
4730 		 * needs to be cleared again manually to allow the link
4731 		 * training to succeed.
4732 		 */
4733 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4734 	}
4735 
4736 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4737 
4738 	/*
4739 	 * Clear LBMS after a manual retrain so that the bit can be used
4740 	 * to track link speed or width changes made by hardware itself
4741 	 * in attempt to correct unreliable link operation.
4742 	 */
4743 	pcie_capability_write_word(pdev, PCI_EXP_LNKSTA, PCI_EXP_LNKSTA_LBMS);
4744 	return rc;
4745 }
4746 
4747 /**
4748  * pcie_wait_for_link_delay - Wait until link is active or inactive
4749  * @pdev: Bridge device
4750  * @active: waiting for active or inactive?
4751  * @delay: Delay to wait after link has become active (in ms)
4752  *
4753  * Use this to wait till link becomes active or inactive.
4754  */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4755 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4756 				     int delay)
4757 {
4758 	int rc;
4759 
4760 	/*
4761 	 * Some controllers might not implement link active reporting. In this
4762 	 * case, we wait for 1000 ms + any delay requested by the caller.
4763 	 */
4764 	if (!pdev->link_active_reporting) {
4765 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4766 		return true;
4767 	}
4768 
4769 	/*
4770 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4771 	 * after which we should expect an link active if the reset was
4772 	 * successful. If so, software must wait a minimum 100ms before sending
4773 	 * configuration requests to devices downstream this port.
4774 	 *
4775 	 * If the link fails to activate, either the device was physically
4776 	 * removed or the link is permanently failed.
4777 	 */
4778 	if (active)
4779 		msleep(20);
4780 	rc = pcie_wait_for_link_status(pdev, false, active);
4781 	if (active) {
4782 		if (rc)
4783 			rc = pcie_failed_link_retrain(pdev);
4784 		if (rc)
4785 			return false;
4786 
4787 		msleep(delay);
4788 		return true;
4789 	}
4790 
4791 	if (rc)
4792 		return false;
4793 
4794 	return true;
4795 }
4796 
4797 /**
4798  * pcie_wait_for_link - Wait until link is active or inactive
4799  * @pdev: Bridge device
4800  * @active: waiting for active or inactive?
4801  *
4802  * Use this to wait till link becomes active or inactive.
4803  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4804 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4805 {
4806 	return pcie_wait_for_link_delay(pdev, active, 100);
4807 }
4808 
4809 /*
4810  * Find maximum D3cold delay required by all the devices on the bus.  The
4811  * spec says 100 ms, but firmware can lower it and we allow drivers to
4812  * increase it as well.
4813  *
4814  * Called with @pci_bus_sem locked for reading.
4815  */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4816 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4817 {
4818 	const struct pci_dev *pdev;
4819 	int min_delay = 100;
4820 	int max_delay = 0;
4821 
4822 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4823 		if (pdev->d3cold_delay < min_delay)
4824 			min_delay = pdev->d3cold_delay;
4825 		if (pdev->d3cold_delay > max_delay)
4826 			max_delay = pdev->d3cold_delay;
4827 	}
4828 
4829 	return max(min_delay, max_delay);
4830 }
4831 
4832 /**
4833  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4834  * @dev: PCI bridge
4835  * @reset_type: reset type in human-readable form
4836  *
4837  * Handle necessary delays before access to the devices on the secondary
4838  * side of the bridge are permitted after D3cold to D0 transition
4839  * or Conventional Reset.
4840  *
4841  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4842  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4843  * 4.3.2.
4844  *
4845  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4846  * failed to become accessible.
4847  */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)4848 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4849 {
4850 	struct pci_dev *child __free(pci_dev_put) = NULL;
4851 	int delay;
4852 
4853 	if (pci_dev_is_disconnected(dev))
4854 		return 0;
4855 
4856 	if (!pci_is_bridge(dev))
4857 		return 0;
4858 
4859 	down_read(&pci_bus_sem);
4860 
4861 	/*
4862 	 * We only deal with devices that are present currently on the bus.
4863 	 * For any hot-added devices the access delay is handled in pciehp
4864 	 * board_added(). In case of ACPI hotplug the firmware is expected
4865 	 * to configure the devices before OS is notified.
4866 	 */
4867 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4868 		up_read(&pci_bus_sem);
4869 		return 0;
4870 	}
4871 
4872 	/* Take d3cold_delay requirements into account */
4873 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4874 	if (!delay) {
4875 		up_read(&pci_bus_sem);
4876 		return 0;
4877 	}
4878 
4879 	child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4880 					     struct pci_dev, bus_list));
4881 	up_read(&pci_bus_sem);
4882 
4883 	/*
4884 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4885 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4886 	 */
4887 	if (!pci_is_pcie(dev)) {
4888 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4889 		msleep(1000 + delay);
4890 		return 0;
4891 	}
4892 
4893 	/*
4894 	 * For PCIe downstream and root ports that do not support speeds
4895 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4896 	 * speeds (gen3) we need to wait first for the data link layer to
4897 	 * become active.
4898 	 *
4899 	 * However, 100 ms is the minimum and the PCIe spec says the
4900 	 * software must allow at least 1s before it can determine that the
4901 	 * device that did not respond is a broken device. Also device can
4902 	 * take longer than that to respond if it indicates so through Request
4903 	 * Retry Status completions.
4904 	 *
4905 	 * Therefore we wait for 100 ms and check for the device presence
4906 	 * until the timeout expires.
4907 	 */
4908 	if (!pcie_downstream_port(dev))
4909 		return 0;
4910 
4911 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4912 		u16 status;
4913 
4914 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4915 		msleep(delay);
4916 
4917 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4918 			return 0;
4919 
4920 		/*
4921 		 * If the port supports active link reporting we now check
4922 		 * whether the link is active and if not bail out early with
4923 		 * the assumption that the device is not present anymore.
4924 		 */
4925 		if (!dev->link_active_reporting)
4926 			return -ENOTTY;
4927 
4928 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4929 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4930 			return -ENOTTY;
4931 
4932 		return pci_dev_wait(child, reset_type,
4933 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4934 	}
4935 
4936 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4937 		delay);
4938 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4939 		/* Did not train, no need to wait any further */
4940 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4941 		return -ENOTTY;
4942 	}
4943 
4944 	return pci_dev_wait(child, reset_type,
4945 			    PCIE_RESET_READY_POLL_MS - delay);
4946 }
4947 
pci_reset_secondary_bus(struct pci_dev * dev)4948 void pci_reset_secondary_bus(struct pci_dev *dev)
4949 {
4950 	u16 ctrl;
4951 
4952 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4953 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4954 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4955 
4956 	/*
4957 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4958 	 * this to 2ms to ensure that we meet the minimum requirement.
4959 	 */
4960 	msleep(2);
4961 
4962 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4963 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4964 }
4965 
pcibios_reset_secondary_bus(struct pci_dev * dev)4966 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4967 {
4968 	pci_reset_secondary_bus(dev);
4969 }
4970 
4971 /**
4972  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4973  * @dev: Bridge device
4974  *
4975  * Use the bridge control register to assert reset on the secondary bus.
4976  * Devices on the secondary bus are left in power-on state.
4977  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4978 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4979 {
4980 	if (!dev->block_cfg_access)
4981 		pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4982 			      __builtin_return_address(0));
4983 	pcibios_reset_secondary_bus(dev);
4984 
4985 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4986 }
4987 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4988 
pci_parent_bus_reset(struct pci_dev * dev,bool probe)4989 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4990 {
4991 	struct pci_dev *pdev;
4992 
4993 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4994 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4995 		return -ENOTTY;
4996 
4997 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4998 		if (pdev != dev)
4999 			return -ENOTTY;
5000 
5001 	if (probe)
5002 		return 0;
5003 
5004 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5005 }
5006 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5007 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5008 {
5009 	int rc = -ENOTTY;
5010 
5011 	if (!hotplug || !try_module_get(hotplug->owner))
5012 		return rc;
5013 
5014 	if (hotplug->ops->reset_slot)
5015 		rc = hotplug->ops->reset_slot(hotplug, probe);
5016 
5017 	module_put(hotplug->owner);
5018 
5019 	return rc;
5020 }
5021 
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5022 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5023 {
5024 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5025 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5026 		return -ENOTTY;
5027 
5028 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5029 }
5030 
cxl_port_dvsec(struct pci_dev * dev)5031 static u16 cxl_port_dvsec(struct pci_dev *dev)
5032 {
5033 	return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5034 					 PCI_DVSEC_CXL_PORT);
5035 }
5036 
cxl_sbr_masked(struct pci_dev * dev)5037 static bool cxl_sbr_masked(struct pci_dev *dev)
5038 {
5039 	u16 dvsec, reg;
5040 	int rc;
5041 
5042 	dvsec = cxl_port_dvsec(dev);
5043 	if (!dvsec)
5044 		return false;
5045 
5046 	rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5047 	if (rc || PCI_POSSIBLE_ERROR(reg))
5048 		return false;
5049 
5050 	/*
5051 	 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5052 	 * bit in Bridge Control has no effect.  When 1, the Port generates
5053 	 * hot reset when the SBR bit is set to 1.
5054 	 */
5055 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5056 		return false;
5057 
5058 	return true;
5059 }
5060 
pci_reset_bus_function(struct pci_dev * dev,bool probe)5061 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5062 {
5063 	struct pci_dev *bridge = pci_upstream_bridge(dev);
5064 	int rc;
5065 
5066 	/*
5067 	 * If "dev" is below a CXL port that has SBR control masked, SBR
5068 	 * won't do anything, so return error.
5069 	 */
5070 	if (bridge && cxl_sbr_masked(bridge)) {
5071 		if (probe)
5072 			return 0;
5073 
5074 		return -ENOTTY;
5075 	}
5076 
5077 	rc = pci_dev_reset_slot_function(dev, probe);
5078 	if (rc != -ENOTTY)
5079 		return rc;
5080 	return pci_parent_bus_reset(dev, probe);
5081 }
5082 
cxl_reset_bus_function(struct pci_dev * dev,bool probe)5083 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5084 {
5085 	struct pci_dev *bridge;
5086 	u16 dvsec, reg, val;
5087 	int rc;
5088 
5089 	bridge = pci_upstream_bridge(dev);
5090 	if (!bridge)
5091 		return -ENOTTY;
5092 
5093 	dvsec = cxl_port_dvsec(bridge);
5094 	if (!dvsec)
5095 		return -ENOTTY;
5096 
5097 	if (probe)
5098 		return 0;
5099 
5100 	rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5101 	if (rc)
5102 		return -ENOTTY;
5103 
5104 	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5105 		val = reg;
5106 	} else {
5107 		val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5108 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5109 				      val);
5110 	}
5111 
5112 	rc = pci_reset_bus_function(dev, probe);
5113 
5114 	if (reg != val)
5115 		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5116 				      reg);
5117 
5118 	return rc;
5119 }
5120 
pci_dev_lock(struct pci_dev * dev)5121 void pci_dev_lock(struct pci_dev *dev)
5122 {
5123 	/* block PM suspend, driver probe, etc. */
5124 	device_lock(&dev->dev);
5125 	pci_cfg_access_lock(dev);
5126 }
5127 EXPORT_SYMBOL_GPL(pci_dev_lock);
5128 
5129 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5130 int pci_dev_trylock(struct pci_dev *dev)
5131 {
5132 	if (device_trylock(&dev->dev)) {
5133 		if (pci_cfg_access_trylock(dev))
5134 			return 1;
5135 		device_unlock(&dev->dev);
5136 	}
5137 
5138 	return 0;
5139 }
5140 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5141 
pci_dev_unlock(struct pci_dev * dev)5142 void pci_dev_unlock(struct pci_dev *dev)
5143 {
5144 	pci_cfg_access_unlock(dev);
5145 	device_unlock(&dev->dev);
5146 }
5147 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5148 
pci_dev_save_and_disable(struct pci_dev * dev)5149 static void pci_dev_save_and_disable(struct pci_dev *dev)
5150 {
5151 	const struct pci_error_handlers *err_handler =
5152 			dev->driver ? dev->driver->err_handler : NULL;
5153 
5154 	/*
5155 	 * dev->driver->err_handler->reset_prepare() is protected against
5156 	 * races with ->remove() by the device lock, which must be held by
5157 	 * the caller.
5158 	 */
5159 	if (err_handler && err_handler->reset_prepare)
5160 		err_handler->reset_prepare(dev);
5161 
5162 	/*
5163 	 * Wake-up device prior to save.  PM registers default to D0 after
5164 	 * reset and a simple register restore doesn't reliably return
5165 	 * to a non-D0 state anyway.
5166 	 */
5167 	pci_set_power_state(dev, PCI_D0);
5168 
5169 	pci_save_state(dev);
5170 	/*
5171 	 * Disable the device by clearing the Command register, except for
5172 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5173 	 * BARs, but also prevents the device from being Bus Master, preventing
5174 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5175 	 * compliant devices, INTx-disable prevents legacy interrupts.
5176 	 */
5177 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5178 }
5179 
pci_dev_restore(struct pci_dev * dev)5180 static void pci_dev_restore(struct pci_dev *dev)
5181 {
5182 	const struct pci_error_handlers *err_handler =
5183 			dev->driver ? dev->driver->err_handler : NULL;
5184 
5185 	pci_restore_state(dev);
5186 
5187 	/*
5188 	 * dev->driver->err_handler->reset_done() is protected against
5189 	 * races with ->remove() by the device lock, which must be held by
5190 	 * the caller.
5191 	 */
5192 	if (err_handler && err_handler->reset_done)
5193 		err_handler->reset_done(dev);
5194 }
5195 
5196 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5197 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5198 	{ },
5199 	{ pci_dev_specific_reset, .name = "device_specific" },
5200 	{ pci_dev_acpi_reset, .name = "acpi" },
5201 	{ pcie_reset_flr, .name = "flr" },
5202 	{ pci_af_flr, .name = "af_flr" },
5203 	{ pci_pm_reset, .name = "pm" },
5204 	{ pci_reset_bus_function, .name = "bus" },
5205 	{ cxl_reset_bus_function, .name = "cxl_bus" },
5206 };
5207 
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5208 static ssize_t reset_method_show(struct device *dev,
5209 				 struct device_attribute *attr, char *buf)
5210 {
5211 	struct pci_dev *pdev = to_pci_dev(dev);
5212 	ssize_t len = 0;
5213 	int i, m;
5214 
5215 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5216 		m = pdev->reset_methods[i];
5217 		if (!m)
5218 			break;
5219 
5220 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5221 				     pci_reset_fn_methods[m].name);
5222 	}
5223 
5224 	if (len)
5225 		len += sysfs_emit_at(buf, len, "\n");
5226 
5227 	return len;
5228 }
5229 
reset_method_lookup(const char * name)5230 static int reset_method_lookup(const char *name)
5231 {
5232 	int m;
5233 
5234 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5235 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5236 			return m;
5237 	}
5238 
5239 	return 0;	/* not found */
5240 }
5241 
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5242 static ssize_t reset_method_store(struct device *dev,
5243 				  struct device_attribute *attr,
5244 				  const char *buf, size_t count)
5245 {
5246 	struct pci_dev *pdev = to_pci_dev(dev);
5247 	char *options, *name;
5248 	int m, n;
5249 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5250 
5251 	if (sysfs_streq(buf, "")) {
5252 		pdev->reset_methods[0] = 0;
5253 		pci_warn(pdev, "All device reset methods disabled by user");
5254 		return count;
5255 	}
5256 
5257 	if (sysfs_streq(buf, "default")) {
5258 		pci_init_reset_methods(pdev);
5259 		return count;
5260 	}
5261 
5262 	options = kstrndup(buf, count, GFP_KERNEL);
5263 	if (!options)
5264 		return -ENOMEM;
5265 
5266 	n = 0;
5267 	while ((name = strsep(&options, " ")) != NULL) {
5268 		if (sysfs_streq(name, ""))
5269 			continue;
5270 
5271 		name = strim(name);
5272 
5273 		m = reset_method_lookup(name);
5274 		if (!m) {
5275 			pci_err(pdev, "Invalid reset method '%s'", name);
5276 			goto error;
5277 		}
5278 
5279 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5280 			pci_err(pdev, "Unsupported reset method '%s'", name);
5281 			goto error;
5282 		}
5283 
5284 		if (n == PCI_NUM_RESET_METHODS - 1) {
5285 			pci_err(pdev, "Too many reset methods\n");
5286 			goto error;
5287 		}
5288 
5289 		reset_methods[n++] = m;
5290 	}
5291 
5292 	reset_methods[n] = 0;
5293 
5294 	/* Warn if dev-specific supported but not highest priority */
5295 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5296 	    reset_methods[0] != 1)
5297 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5298 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5299 	kfree(options);
5300 	return count;
5301 
5302 error:
5303 	/* Leave previous methods unchanged */
5304 	kfree(options);
5305 	return -EINVAL;
5306 }
5307 static DEVICE_ATTR_RW(reset_method);
5308 
5309 static struct attribute *pci_dev_reset_method_attrs[] = {
5310 	&dev_attr_reset_method.attr,
5311 	NULL,
5312 };
5313 
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5314 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5315 						    struct attribute *a, int n)
5316 {
5317 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5318 
5319 	if (!pci_reset_supported(pdev))
5320 		return 0;
5321 
5322 	return a->mode;
5323 }
5324 
5325 const struct attribute_group pci_dev_reset_method_attr_group = {
5326 	.attrs = pci_dev_reset_method_attrs,
5327 	.is_visible = pci_dev_reset_method_attr_is_visible,
5328 };
5329 
5330 /**
5331  * __pci_reset_function_locked - reset a PCI device function while holding
5332  * the @dev mutex lock.
5333  * @dev: PCI device to reset
5334  *
5335  * Some devices allow an individual function to be reset without affecting
5336  * other functions in the same device.  The PCI device must be responsive
5337  * to PCI config space in order to use this function.
5338  *
5339  * The device function is presumed to be unused and the caller is holding
5340  * the device mutex lock when this function is called.
5341  *
5342  * Resetting the device will make the contents of PCI configuration space
5343  * random, so any caller of this must be prepared to reinitialise the
5344  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5345  * etc.
5346  *
5347  * Returns 0 if the device function was successfully reset or negative if the
5348  * device doesn't support resetting a single function.
5349  */
__pci_reset_function_locked(struct pci_dev * dev)5350 int __pci_reset_function_locked(struct pci_dev *dev)
5351 {
5352 	int i, m, rc;
5353 
5354 	might_sleep();
5355 
5356 	/*
5357 	 * A reset method returns -ENOTTY if it doesn't support this device and
5358 	 * we should try the next method.
5359 	 *
5360 	 * If it returns 0 (success), we're finished.  If it returns any other
5361 	 * error, we're also finished: this indicates that further reset
5362 	 * mechanisms might be broken on the device.
5363 	 */
5364 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5365 		m = dev->reset_methods[i];
5366 		if (!m)
5367 			return -ENOTTY;
5368 
5369 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5370 		if (!rc)
5371 			return 0;
5372 		if (rc != -ENOTTY)
5373 			return rc;
5374 	}
5375 
5376 	return -ENOTTY;
5377 }
5378 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5379 
5380 /**
5381  * pci_init_reset_methods - check whether device can be safely reset
5382  * and store supported reset mechanisms.
5383  * @dev: PCI device to check for reset mechanisms
5384  *
5385  * Some devices allow an individual function to be reset without affecting
5386  * other functions in the same device.  The PCI device must be in D0-D3hot
5387  * state.
5388  *
5389  * Stores reset mechanisms supported by device in reset_methods byte array
5390  * which is a member of struct pci_dev.
5391  */
pci_init_reset_methods(struct pci_dev * dev)5392 void pci_init_reset_methods(struct pci_dev *dev)
5393 {
5394 	int m, i, rc;
5395 
5396 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5397 
5398 	might_sleep();
5399 
5400 	i = 0;
5401 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5402 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5403 		if (!rc)
5404 			dev->reset_methods[i++] = m;
5405 		else if (rc != -ENOTTY)
5406 			break;
5407 	}
5408 
5409 	dev->reset_methods[i] = 0;
5410 }
5411 
5412 /**
5413  * pci_reset_function - quiesce and reset a PCI device function
5414  * @dev: PCI device to reset
5415  *
5416  * Some devices allow an individual function to be reset without affecting
5417  * other functions in the same device.  The PCI device must be responsive
5418  * to PCI config space in order to use this function.
5419  *
5420  * This function does not just reset the PCI portion of a device, but
5421  * clears all the state associated with the device.  This function differs
5422  * from __pci_reset_function_locked() in that it saves and restores device state
5423  * over the reset and takes the PCI device lock.
5424  *
5425  * Returns 0 if the device function was successfully reset or negative if the
5426  * device doesn't support resetting a single function.
5427  */
pci_reset_function(struct pci_dev * dev)5428 int pci_reset_function(struct pci_dev *dev)
5429 {
5430 	struct pci_dev *bridge;
5431 	int rc;
5432 
5433 	if (!pci_reset_supported(dev))
5434 		return -ENOTTY;
5435 
5436 	/*
5437 	 * If there's no upstream bridge, no locking is needed since there is
5438 	 * no upstream bridge configuration to hold consistent.
5439 	 */
5440 	bridge = pci_upstream_bridge(dev);
5441 	if (bridge)
5442 		pci_dev_lock(bridge);
5443 
5444 	pci_dev_lock(dev);
5445 	pci_dev_save_and_disable(dev);
5446 
5447 	rc = __pci_reset_function_locked(dev);
5448 
5449 	pci_dev_restore(dev);
5450 	pci_dev_unlock(dev);
5451 
5452 	if (bridge)
5453 		pci_dev_unlock(bridge);
5454 
5455 	return rc;
5456 }
5457 EXPORT_SYMBOL_GPL(pci_reset_function);
5458 
5459 /**
5460  * pci_reset_function_locked - quiesce and reset a PCI device function
5461  * @dev: PCI device to reset
5462  *
5463  * Some devices allow an individual function to be reset without affecting
5464  * other functions in the same device.  The PCI device must be responsive
5465  * to PCI config space in order to use this function.
5466  *
5467  * This function does not just reset the PCI portion of a device, but
5468  * clears all the state associated with the device.  This function differs
5469  * from __pci_reset_function_locked() in that it saves and restores device state
5470  * over the reset.  It also differs from pci_reset_function() in that it
5471  * requires the PCI device lock to be held.
5472  *
5473  * Returns 0 if the device function was successfully reset or negative if the
5474  * device doesn't support resetting a single function.
5475  */
pci_reset_function_locked(struct pci_dev * dev)5476 int pci_reset_function_locked(struct pci_dev *dev)
5477 {
5478 	int rc;
5479 
5480 	if (!pci_reset_supported(dev))
5481 		return -ENOTTY;
5482 
5483 	pci_dev_save_and_disable(dev);
5484 
5485 	rc = __pci_reset_function_locked(dev);
5486 
5487 	pci_dev_restore(dev);
5488 
5489 	return rc;
5490 }
5491 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5492 
5493 /**
5494  * pci_try_reset_function - quiesce and reset a PCI device function
5495  * @dev: PCI device to reset
5496  *
5497  * Same as above, except return -EAGAIN if unable to lock device.
5498  */
pci_try_reset_function(struct pci_dev * dev)5499 int pci_try_reset_function(struct pci_dev *dev)
5500 {
5501 	int rc;
5502 
5503 	if (!pci_reset_supported(dev))
5504 		return -ENOTTY;
5505 
5506 	if (!pci_dev_trylock(dev))
5507 		return -EAGAIN;
5508 
5509 	pci_dev_save_and_disable(dev);
5510 	rc = __pci_reset_function_locked(dev);
5511 	pci_dev_restore(dev);
5512 	pci_dev_unlock(dev);
5513 
5514 	return rc;
5515 }
5516 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5517 
5518 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5519 static bool pci_bus_resettable(struct pci_bus *bus)
5520 {
5521 	struct pci_dev *dev;
5522 
5523 
5524 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5525 		return false;
5526 
5527 	list_for_each_entry(dev, &bus->devices, bus_list) {
5528 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5529 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5530 			return false;
5531 	}
5532 
5533 	return true;
5534 }
5535 
5536 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5537 static void pci_bus_lock(struct pci_bus *bus)
5538 {
5539 	struct pci_dev *dev;
5540 
5541 	pci_dev_lock(bus->self);
5542 	list_for_each_entry(dev, &bus->devices, bus_list) {
5543 		if (dev->subordinate)
5544 			pci_bus_lock(dev->subordinate);
5545 		else
5546 			pci_dev_lock(dev);
5547 	}
5548 }
5549 
5550 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5551 static void pci_bus_unlock(struct pci_bus *bus)
5552 {
5553 	struct pci_dev *dev;
5554 
5555 	list_for_each_entry(dev, &bus->devices, bus_list) {
5556 		if (dev->subordinate)
5557 			pci_bus_unlock(dev->subordinate);
5558 		else
5559 			pci_dev_unlock(dev);
5560 	}
5561 	pci_dev_unlock(bus->self);
5562 }
5563 
5564 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5565 static int pci_bus_trylock(struct pci_bus *bus)
5566 {
5567 	struct pci_dev *dev;
5568 
5569 	if (!pci_dev_trylock(bus->self))
5570 		return 0;
5571 
5572 	list_for_each_entry(dev, &bus->devices, bus_list) {
5573 		if (dev->subordinate) {
5574 			if (!pci_bus_trylock(dev->subordinate))
5575 				goto unlock;
5576 		} else if (!pci_dev_trylock(dev))
5577 			goto unlock;
5578 	}
5579 	return 1;
5580 
5581 unlock:
5582 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5583 		if (dev->subordinate)
5584 			pci_bus_unlock(dev->subordinate);
5585 		else
5586 			pci_dev_unlock(dev);
5587 	}
5588 	pci_dev_unlock(bus->self);
5589 	return 0;
5590 }
5591 
5592 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5593 static bool pci_slot_resettable(struct pci_slot *slot)
5594 {
5595 	struct pci_dev *dev;
5596 
5597 	if (slot->bus->self &&
5598 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5599 		return false;
5600 
5601 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5602 		if (!dev->slot || dev->slot != slot)
5603 			continue;
5604 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5605 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5606 			return false;
5607 	}
5608 
5609 	return true;
5610 }
5611 
5612 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5613 static void pci_slot_lock(struct pci_slot *slot)
5614 {
5615 	struct pci_dev *dev;
5616 
5617 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5618 		if (!dev->slot || dev->slot != slot)
5619 			continue;
5620 		if (dev->subordinate)
5621 			pci_bus_lock(dev->subordinate);
5622 		else
5623 			pci_dev_lock(dev);
5624 	}
5625 }
5626 
5627 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5628 static void pci_slot_unlock(struct pci_slot *slot)
5629 {
5630 	struct pci_dev *dev;
5631 
5632 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5633 		if (!dev->slot || dev->slot != slot)
5634 			continue;
5635 		if (dev->subordinate)
5636 			pci_bus_unlock(dev->subordinate);
5637 		pci_dev_unlock(dev);
5638 	}
5639 }
5640 
5641 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5642 static int pci_slot_trylock(struct pci_slot *slot)
5643 {
5644 	struct pci_dev *dev;
5645 
5646 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5647 		if (!dev->slot || dev->slot != slot)
5648 			continue;
5649 		if (dev->subordinate) {
5650 			if (!pci_bus_trylock(dev->subordinate)) {
5651 				pci_dev_unlock(dev);
5652 				goto unlock;
5653 			}
5654 		} else if (!pci_dev_trylock(dev))
5655 			goto unlock;
5656 	}
5657 	return 1;
5658 
5659 unlock:
5660 	list_for_each_entry_continue_reverse(dev,
5661 					     &slot->bus->devices, bus_list) {
5662 		if (!dev->slot || dev->slot != slot)
5663 			continue;
5664 		if (dev->subordinate)
5665 			pci_bus_unlock(dev->subordinate);
5666 		else
5667 			pci_dev_unlock(dev);
5668 	}
5669 	return 0;
5670 }
5671 
5672 /*
5673  * Save and disable devices from the top of the tree down while holding
5674  * the @dev mutex lock for the entire tree.
5675  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5676 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5677 {
5678 	struct pci_dev *dev;
5679 
5680 	list_for_each_entry(dev, &bus->devices, bus_list) {
5681 		pci_dev_save_and_disable(dev);
5682 		if (dev->subordinate)
5683 			pci_bus_save_and_disable_locked(dev->subordinate);
5684 	}
5685 }
5686 
5687 /*
5688  * Restore devices from top of the tree down while holding @dev mutex lock
5689  * for the entire tree.  Parent bridges need to be restored before we can
5690  * get to subordinate devices.
5691  */
pci_bus_restore_locked(struct pci_bus * bus)5692 static void pci_bus_restore_locked(struct pci_bus *bus)
5693 {
5694 	struct pci_dev *dev;
5695 
5696 	list_for_each_entry(dev, &bus->devices, bus_list) {
5697 		pci_dev_restore(dev);
5698 		if (dev->subordinate) {
5699 			pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5700 			pci_bus_restore_locked(dev->subordinate);
5701 		}
5702 	}
5703 }
5704 
5705 /*
5706  * Save and disable devices from the top of the tree down while holding
5707  * the @dev mutex lock for the entire tree.
5708  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5709 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5710 {
5711 	struct pci_dev *dev;
5712 
5713 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5714 		if (!dev->slot || dev->slot != slot)
5715 			continue;
5716 		pci_dev_save_and_disable(dev);
5717 		if (dev->subordinate)
5718 			pci_bus_save_and_disable_locked(dev->subordinate);
5719 	}
5720 }
5721 
5722 /*
5723  * Restore devices from top of the tree down while holding @dev mutex lock
5724  * for the entire tree.  Parent bridges need to be restored before we can
5725  * get to subordinate devices.
5726  */
pci_slot_restore_locked(struct pci_slot * slot)5727 static void pci_slot_restore_locked(struct pci_slot *slot)
5728 {
5729 	struct pci_dev *dev;
5730 
5731 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5732 		if (!dev->slot || dev->slot != slot)
5733 			continue;
5734 		pci_dev_restore(dev);
5735 		if (dev->subordinate) {
5736 			pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5737 			pci_bus_restore_locked(dev->subordinate);
5738 		}
5739 	}
5740 }
5741 
pci_slot_reset(struct pci_slot * slot,bool probe)5742 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5743 {
5744 	int rc;
5745 
5746 	if (!slot || !pci_slot_resettable(slot))
5747 		return -ENOTTY;
5748 
5749 	if (!probe)
5750 		pci_slot_lock(slot);
5751 
5752 	might_sleep();
5753 
5754 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5755 
5756 	if (!probe)
5757 		pci_slot_unlock(slot);
5758 
5759 	return rc;
5760 }
5761 
5762 /**
5763  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5764  * @slot: PCI slot to probe
5765  *
5766  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5767  */
pci_probe_reset_slot(struct pci_slot * slot)5768 int pci_probe_reset_slot(struct pci_slot *slot)
5769 {
5770 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5771 }
5772 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5773 
5774 /**
5775  * __pci_reset_slot - Try to reset a PCI slot
5776  * @slot: PCI slot to reset
5777  *
5778  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5779  * independent of other slots.  For instance, some slots may support slot power
5780  * control.  In the case of a 1:1 bus to slot architecture, this function may
5781  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5782  * Generally a slot reset should be attempted before a bus reset.  All of the
5783  * function of the slot and any subordinate buses behind the slot are reset
5784  * through this function.  PCI config space of all devices in the slot and
5785  * behind the slot is saved before and restored after reset.
5786  *
5787  * Same as above except return -EAGAIN if the slot cannot be locked
5788  */
__pci_reset_slot(struct pci_slot * slot)5789 static int __pci_reset_slot(struct pci_slot *slot)
5790 {
5791 	int rc;
5792 
5793 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5794 	if (rc)
5795 		return rc;
5796 
5797 	if (pci_slot_trylock(slot)) {
5798 		pci_slot_save_and_disable_locked(slot);
5799 		might_sleep();
5800 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5801 		pci_slot_restore_locked(slot);
5802 		pci_slot_unlock(slot);
5803 	} else
5804 		rc = -EAGAIN;
5805 
5806 	return rc;
5807 }
5808 
pci_bus_reset(struct pci_bus * bus,bool probe)5809 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5810 {
5811 	int ret;
5812 
5813 	if (!bus->self || !pci_bus_resettable(bus))
5814 		return -ENOTTY;
5815 
5816 	if (probe)
5817 		return 0;
5818 
5819 	pci_bus_lock(bus);
5820 
5821 	might_sleep();
5822 
5823 	ret = pci_bridge_secondary_bus_reset(bus->self);
5824 
5825 	pci_bus_unlock(bus);
5826 
5827 	return ret;
5828 }
5829 
5830 /**
5831  * pci_bus_error_reset - reset the bridge's subordinate bus
5832  * @bridge: The parent device that connects to the bus to reset
5833  *
5834  * This function will first try to reset the slots on this bus if the method is
5835  * available. If slot reset fails or is not available, this will fall back to a
5836  * secondary bus reset.
5837  */
pci_bus_error_reset(struct pci_dev * bridge)5838 int pci_bus_error_reset(struct pci_dev *bridge)
5839 {
5840 	struct pci_bus *bus = bridge->subordinate;
5841 	struct pci_slot *slot;
5842 
5843 	if (!bus)
5844 		return -ENOTTY;
5845 
5846 	mutex_lock(&pci_slot_mutex);
5847 	if (list_empty(&bus->slots))
5848 		goto bus_reset;
5849 
5850 	list_for_each_entry(slot, &bus->slots, list)
5851 		if (pci_probe_reset_slot(slot))
5852 			goto bus_reset;
5853 
5854 	list_for_each_entry(slot, &bus->slots, list)
5855 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5856 			goto bus_reset;
5857 
5858 	mutex_unlock(&pci_slot_mutex);
5859 	return 0;
5860 bus_reset:
5861 	mutex_unlock(&pci_slot_mutex);
5862 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5863 }
5864 
5865 /**
5866  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5867  * @bus: PCI bus to probe
5868  *
5869  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5870  */
pci_probe_reset_bus(struct pci_bus * bus)5871 int pci_probe_reset_bus(struct pci_bus *bus)
5872 {
5873 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5874 }
5875 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5876 
5877 /**
5878  * __pci_reset_bus - Try to reset a PCI bus
5879  * @bus: top level PCI bus to reset
5880  *
5881  * Same as above except return -EAGAIN if the bus cannot be locked
5882  */
__pci_reset_bus(struct pci_bus * bus)5883 static int __pci_reset_bus(struct pci_bus *bus)
5884 {
5885 	int rc;
5886 
5887 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5888 	if (rc)
5889 		return rc;
5890 
5891 	if (pci_bus_trylock(bus)) {
5892 		pci_bus_save_and_disable_locked(bus);
5893 		might_sleep();
5894 		rc = pci_bridge_secondary_bus_reset(bus->self);
5895 		pci_bus_restore_locked(bus);
5896 		pci_bus_unlock(bus);
5897 	} else
5898 		rc = -EAGAIN;
5899 
5900 	return rc;
5901 }
5902 
5903 /**
5904  * pci_reset_bus - Try to reset a PCI bus
5905  * @pdev: top level PCI device to reset via slot/bus
5906  *
5907  * Same as above except return -EAGAIN if the bus cannot be locked
5908  */
pci_reset_bus(struct pci_dev * pdev)5909 int pci_reset_bus(struct pci_dev *pdev)
5910 {
5911 	return (!pci_probe_reset_slot(pdev->slot)) ?
5912 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5913 }
5914 EXPORT_SYMBOL_GPL(pci_reset_bus);
5915 
5916 /**
5917  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5918  * @dev: PCI device to query
5919  *
5920  * Returns mmrbc: maximum designed memory read count in bytes or
5921  * appropriate error value.
5922  */
pcix_get_max_mmrbc(struct pci_dev * dev)5923 int pcix_get_max_mmrbc(struct pci_dev *dev)
5924 {
5925 	int cap;
5926 	u32 stat;
5927 
5928 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5929 	if (!cap)
5930 		return -EINVAL;
5931 
5932 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5933 		return -EINVAL;
5934 
5935 	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5936 }
5937 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5938 
5939 /**
5940  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5941  * @dev: PCI device to query
5942  *
5943  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5944  * value.
5945  */
pcix_get_mmrbc(struct pci_dev * dev)5946 int pcix_get_mmrbc(struct pci_dev *dev)
5947 {
5948 	int cap;
5949 	u16 cmd;
5950 
5951 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5952 	if (!cap)
5953 		return -EINVAL;
5954 
5955 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5956 		return -EINVAL;
5957 
5958 	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5959 }
5960 EXPORT_SYMBOL(pcix_get_mmrbc);
5961 
5962 /**
5963  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5964  * @dev: PCI device to query
5965  * @mmrbc: maximum memory read count in bytes
5966  *    valid values are 512, 1024, 2048, 4096
5967  *
5968  * If possible sets maximum memory read byte count, some bridges have errata
5969  * that prevent this.
5970  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5971 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5972 {
5973 	int cap;
5974 	u32 stat, v, o;
5975 	u16 cmd;
5976 
5977 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5978 		return -EINVAL;
5979 
5980 	v = ffs(mmrbc) - 10;
5981 
5982 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5983 	if (!cap)
5984 		return -EINVAL;
5985 
5986 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5987 		return -EINVAL;
5988 
5989 	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5990 		return -E2BIG;
5991 
5992 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5993 		return -EINVAL;
5994 
5995 	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5996 	if (o != v) {
5997 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5998 			return -EIO;
5999 
6000 		cmd &= ~PCI_X_CMD_MAX_READ;
6001 		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6002 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6003 			return -EIO;
6004 	}
6005 	return 0;
6006 }
6007 EXPORT_SYMBOL(pcix_set_mmrbc);
6008 
6009 /**
6010  * pcie_get_readrq - get PCI Express read request size
6011  * @dev: PCI device to query
6012  *
6013  * Returns maximum memory read request in bytes or appropriate error value.
6014  */
pcie_get_readrq(struct pci_dev * dev)6015 int pcie_get_readrq(struct pci_dev *dev)
6016 {
6017 	u16 ctl;
6018 
6019 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6020 
6021 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6022 }
6023 EXPORT_SYMBOL(pcie_get_readrq);
6024 
6025 /**
6026  * pcie_set_readrq - set PCI Express maximum memory read request
6027  * @dev: PCI device to query
6028  * @rq: maximum memory read count in bytes
6029  *    valid values are 128, 256, 512, 1024, 2048, 4096
6030  *
6031  * If possible sets maximum memory read request in bytes
6032  */
pcie_set_readrq(struct pci_dev * dev,int rq)6033 int pcie_set_readrq(struct pci_dev *dev, int rq)
6034 {
6035 	u16 v;
6036 	int ret;
6037 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6038 
6039 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6040 		return -EINVAL;
6041 
6042 	/*
6043 	 * If using the "performance" PCIe config, we clamp the read rq
6044 	 * size to the max packet size to keep the host bridge from
6045 	 * generating requests larger than we can cope with.
6046 	 */
6047 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6048 		int mps = pcie_get_mps(dev);
6049 
6050 		if (mps < rq)
6051 			rq = mps;
6052 	}
6053 
6054 	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6055 
6056 	if (bridge->no_inc_mrrs) {
6057 		int max_mrrs = pcie_get_readrq(dev);
6058 
6059 		if (rq > max_mrrs) {
6060 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6061 			return -EINVAL;
6062 		}
6063 	}
6064 
6065 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6066 						  PCI_EXP_DEVCTL_READRQ, v);
6067 
6068 	return pcibios_err_to_errno(ret);
6069 }
6070 EXPORT_SYMBOL(pcie_set_readrq);
6071 
6072 /**
6073  * pcie_get_mps - get PCI Express maximum payload size
6074  * @dev: PCI device to query
6075  *
6076  * Returns maximum payload size in bytes
6077  */
pcie_get_mps(struct pci_dev * dev)6078 int pcie_get_mps(struct pci_dev *dev)
6079 {
6080 	u16 ctl;
6081 
6082 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6083 
6084 	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6085 }
6086 EXPORT_SYMBOL(pcie_get_mps);
6087 
6088 /**
6089  * pcie_set_mps - set PCI Express maximum payload size
6090  * @dev: PCI device to query
6091  * @mps: maximum payload size in bytes
6092  *    valid values are 128, 256, 512, 1024, 2048, 4096
6093  *
6094  * If possible sets maximum payload size
6095  */
pcie_set_mps(struct pci_dev * dev,int mps)6096 int pcie_set_mps(struct pci_dev *dev, int mps)
6097 {
6098 	u16 v;
6099 	int ret;
6100 
6101 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6102 		return -EINVAL;
6103 
6104 	v = ffs(mps) - 8;
6105 	if (v > dev->pcie_mpss)
6106 		return -EINVAL;
6107 	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6108 
6109 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6110 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6111 
6112 	return pcibios_err_to_errno(ret);
6113 }
6114 EXPORT_SYMBOL(pcie_set_mps);
6115 
to_pcie_link_speed(u16 lnksta)6116 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6117 {
6118 	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6119 }
6120 
pcie_link_speed_mbps(struct pci_dev * pdev)6121 int pcie_link_speed_mbps(struct pci_dev *pdev)
6122 {
6123 	u16 lnksta;
6124 	int err;
6125 
6126 	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6127 	if (err)
6128 		return err;
6129 
6130 	return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6131 }
6132 EXPORT_SYMBOL(pcie_link_speed_mbps);
6133 
6134 /**
6135  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6136  *			      device and its bandwidth limitation
6137  * @dev: PCI device to query
6138  * @limiting_dev: storage for device causing the bandwidth limitation
6139  * @speed: storage for speed of limiting device
6140  * @width: storage for width of limiting device
6141  *
6142  * Walk up the PCI device chain and find the point where the minimum
6143  * bandwidth is available.  Return the bandwidth available there and (if
6144  * limiting_dev, speed, and width pointers are supplied) information about
6145  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6146  * raw bandwidth.
6147  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6148 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6149 			     enum pci_bus_speed *speed,
6150 			     enum pcie_link_width *width)
6151 {
6152 	u16 lnksta;
6153 	enum pci_bus_speed next_speed;
6154 	enum pcie_link_width next_width;
6155 	u32 bw, next_bw;
6156 
6157 	if (speed)
6158 		*speed = PCI_SPEED_UNKNOWN;
6159 	if (width)
6160 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6161 
6162 	bw = 0;
6163 
6164 	while (dev) {
6165 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6166 
6167 		next_speed = to_pcie_link_speed(lnksta);
6168 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6169 
6170 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6171 
6172 		/* Check if current device limits the total bandwidth */
6173 		if (!bw || next_bw <= bw) {
6174 			bw = next_bw;
6175 
6176 			if (limiting_dev)
6177 				*limiting_dev = dev;
6178 			if (speed)
6179 				*speed = next_speed;
6180 			if (width)
6181 				*width = next_width;
6182 		}
6183 
6184 		dev = pci_upstream_bridge(dev);
6185 	}
6186 
6187 	return bw;
6188 }
6189 EXPORT_SYMBOL(pcie_bandwidth_available);
6190 
6191 /**
6192  * pcie_get_speed_cap - query for the PCI device's link speed capability
6193  * @dev: PCI device to query
6194  *
6195  * Query the PCI device speed capability.  Return the maximum link speed
6196  * supported by the device.
6197  */
pcie_get_speed_cap(struct pci_dev * dev)6198 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6199 {
6200 	u32 lnkcap2, lnkcap;
6201 
6202 	/*
6203 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6204 	 * implementation note there recommends using the Supported Link
6205 	 * Speeds Vector in Link Capabilities 2 when supported.
6206 	 *
6207 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6208 	 * should use the Supported Link Speeds field in Link Capabilities,
6209 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6210 	 */
6211 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6212 
6213 	/* PCIe r3.0-compliant */
6214 	if (lnkcap2)
6215 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6216 
6217 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6218 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6219 		return PCIE_SPEED_5_0GT;
6220 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6221 		return PCIE_SPEED_2_5GT;
6222 
6223 	return PCI_SPEED_UNKNOWN;
6224 }
6225 EXPORT_SYMBOL(pcie_get_speed_cap);
6226 
6227 /**
6228  * pcie_get_width_cap - query for the PCI device's link width capability
6229  * @dev: PCI device to query
6230  *
6231  * Query the PCI device width capability.  Return the maximum link width
6232  * supported by the device.
6233  */
pcie_get_width_cap(struct pci_dev * dev)6234 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6235 {
6236 	u32 lnkcap;
6237 
6238 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6239 	if (lnkcap)
6240 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6241 
6242 	return PCIE_LNK_WIDTH_UNKNOWN;
6243 }
6244 EXPORT_SYMBOL(pcie_get_width_cap);
6245 
6246 /**
6247  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6248  * @dev: PCI device
6249  * @speed: storage for link speed
6250  * @width: storage for link width
6251  *
6252  * Calculate a PCI device's link bandwidth by querying for its link speed
6253  * and width, multiplying them, and applying encoding overhead.  The result
6254  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6255  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6256 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6257 				  enum pci_bus_speed *speed,
6258 				  enum pcie_link_width *width)
6259 {
6260 	*speed = pcie_get_speed_cap(dev);
6261 	*width = pcie_get_width_cap(dev);
6262 
6263 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6264 		return 0;
6265 
6266 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6267 }
6268 
6269 /**
6270  * __pcie_print_link_status - Report the PCI device's link speed and width
6271  * @dev: PCI device to query
6272  * @verbose: Print info even when enough bandwidth is available
6273  *
6274  * If the available bandwidth at the device is less than the device is
6275  * capable of, report the device's maximum possible bandwidth and the
6276  * upstream link that limits its performance.  If @verbose, always print
6277  * the available bandwidth, even if the device isn't constrained.
6278  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6279 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6280 {
6281 	enum pcie_link_width width, width_cap;
6282 	enum pci_bus_speed speed, speed_cap;
6283 	struct pci_dev *limiting_dev = NULL;
6284 	u32 bw_avail, bw_cap;
6285 
6286 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6287 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6288 
6289 	if (bw_avail >= bw_cap && verbose)
6290 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6291 			 bw_cap / 1000, bw_cap % 1000,
6292 			 pci_speed_string(speed_cap), width_cap);
6293 	else if (bw_avail < bw_cap)
6294 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6295 			 bw_avail / 1000, bw_avail % 1000,
6296 			 pci_speed_string(speed), width,
6297 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6298 			 bw_cap / 1000, bw_cap % 1000,
6299 			 pci_speed_string(speed_cap), width_cap);
6300 }
6301 
6302 /**
6303  * pcie_print_link_status - Report the PCI device's link speed and width
6304  * @dev: PCI device to query
6305  *
6306  * Report the available bandwidth at the device.
6307  */
pcie_print_link_status(struct pci_dev * dev)6308 void pcie_print_link_status(struct pci_dev *dev)
6309 {
6310 	__pcie_print_link_status(dev, true);
6311 }
6312 EXPORT_SYMBOL(pcie_print_link_status);
6313 
6314 /**
6315  * pci_select_bars - Make BAR mask from the type of resource
6316  * @dev: the PCI device for which BAR mask is made
6317  * @flags: resource type mask to be selected
6318  *
6319  * This helper routine makes bar mask from the type of resource.
6320  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6321 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6322 {
6323 	int i, bars = 0;
6324 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6325 		if (pci_resource_flags(dev, i) & flags)
6326 			bars |= (1 << i);
6327 	return bars;
6328 }
6329 EXPORT_SYMBOL(pci_select_bars);
6330 
6331 /* Some architectures require additional programming to enable VGA */
6332 static arch_set_vga_state_t arch_set_vga_state;
6333 
pci_register_set_vga_state(arch_set_vga_state_t func)6334 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6335 {
6336 	arch_set_vga_state = func;	/* NULL disables */
6337 }
6338 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6339 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6340 				  unsigned int command_bits, u32 flags)
6341 {
6342 	if (arch_set_vga_state)
6343 		return arch_set_vga_state(dev, decode, command_bits,
6344 						flags);
6345 	return 0;
6346 }
6347 
6348 /**
6349  * pci_set_vga_state - set VGA decode state on device and parents if requested
6350  * @dev: the PCI device
6351  * @decode: true = enable decoding, false = disable decoding
6352  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6353  * @flags: traverse ancestors and change bridges
6354  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6355  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6356 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6357 		      unsigned int command_bits, u32 flags)
6358 {
6359 	struct pci_bus *bus;
6360 	struct pci_dev *bridge;
6361 	u16 cmd;
6362 	int rc;
6363 
6364 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6365 
6366 	/* ARCH specific VGA enables */
6367 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6368 	if (rc)
6369 		return rc;
6370 
6371 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6372 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6373 		if (decode)
6374 			cmd |= command_bits;
6375 		else
6376 			cmd &= ~command_bits;
6377 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6378 	}
6379 
6380 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6381 		return 0;
6382 
6383 	bus = dev->bus;
6384 	while (bus) {
6385 		bridge = bus->self;
6386 		if (bridge) {
6387 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6388 					     &cmd);
6389 			if (decode)
6390 				cmd |= PCI_BRIDGE_CTL_VGA;
6391 			else
6392 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6393 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6394 					      cmd);
6395 		}
6396 		bus = bus->parent;
6397 	}
6398 	return 0;
6399 }
6400 
6401 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6402 bool pci_pr3_present(struct pci_dev *pdev)
6403 {
6404 	struct acpi_device *adev;
6405 
6406 	if (acpi_disabled)
6407 		return false;
6408 
6409 	adev = ACPI_COMPANION(&pdev->dev);
6410 	if (!adev)
6411 		return false;
6412 
6413 	return adev->power.flags.power_resources &&
6414 		acpi_has_method(adev->handle, "_PR3");
6415 }
6416 EXPORT_SYMBOL_GPL(pci_pr3_present);
6417 #endif
6418 
6419 /**
6420  * pci_add_dma_alias - Add a DMA devfn alias for a device
6421  * @dev: the PCI device for which alias is added
6422  * @devfn_from: alias slot and function
6423  * @nr_devfns: number of subsequent devfns to alias
6424  *
6425  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6426  * which is used to program permissible bus-devfn source addresses for DMA
6427  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6428  * and are useful for devices generating DMA requests beyond or different
6429  * from their logical bus-devfn.  Examples include device quirks where the
6430  * device simply uses the wrong devfn, as well as non-transparent bridges
6431  * where the alias may be a proxy for devices in another domain.
6432  *
6433  * IOMMU group creation is performed during device discovery or addition,
6434  * prior to any potential DMA mapping and therefore prior to driver probing
6435  * (especially for userspace assigned devices where IOMMU group definition
6436  * cannot be left as a userspace activity).  DMA aliases should therefore
6437  * be configured via quirks, such as the PCI fixup header quirk.
6438  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6439 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6440 		       unsigned int nr_devfns)
6441 {
6442 	int devfn_to;
6443 
6444 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6445 	devfn_to = devfn_from + nr_devfns - 1;
6446 
6447 	if (!dev->dma_alias_mask)
6448 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6449 	if (!dev->dma_alias_mask) {
6450 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6451 		return;
6452 	}
6453 
6454 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6455 
6456 	if (nr_devfns == 1)
6457 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6458 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6459 	else if (nr_devfns > 1)
6460 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6461 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6462 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6463 }
6464 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6465 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6466 {
6467 	return (dev1->dma_alias_mask &&
6468 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6469 	       (dev2->dma_alias_mask &&
6470 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6471 	       pci_real_dma_dev(dev1) == dev2 ||
6472 	       pci_real_dma_dev(dev2) == dev1;
6473 }
6474 
pci_device_is_present(struct pci_dev * pdev)6475 bool pci_device_is_present(struct pci_dev *pdev)
6476 {
6477 	u32 v;
6478 
6479 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6480 	pdev = pci_physfn(pdev);
6481 	if (pci_dev_is_disconnected(pdev))
6482 		return false;
6483 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6484 }
6485 EXPORT_SYMBOL_GPL(pci_device_is_present);
6486 
pci_ignore_hotplug(struct pci_dev * dev)6487 void pci_ignore_hotplug(struct pci_dev *dev)
6488 {
6489 	struct pci_dev *bridge = dev->bus->self;
6490 
6491 	dev->ignore_hotplug = 1;
6492 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6493 	if (bridge)
6494 		bridge->ignore_hotplug = 1;
6495 }
6496 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6497 
6498 /**
6499  * pci_real_dma_dev - Get PCI DMA device for PCI device
6500  * @dev: the PCI device that may have a PCI DMA alias
6501  *
6502  * Permits the platform to provide architecture-specific functionality to
6503  * devices needing to alias DMA to another PCI device on another PCI bus. If
6504  * the PCI device is on the same bus, it is recommended to use
6505  * pci_add_dma_alias(). This is the default implementation. Architecture
6506  * implementations can override this.
6507  */
pci_real_dma_dev(struct pci_dev * dev)6508 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6509 {
6510 	return dev;
6511 }
6512 
pcibios_default_alignment(void)6513 resource_size_t __weak pcibios_default_alignment(void)
6514 {
6515 	return 0;
6516 }
6517 
6518 /*
6519  * Arches that don't want to expose struct resource to userland as-is in
6520  * sysfs and /proc can implement their own pci_resource_to_user().
6521  */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6522 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6523 				 const struct resource *rsrc,
6524 				 resource_size_t *start, resource_size_t *end)
6525 {
6526 	*start = rsrc->start;
6527 	*end = rsrc->end;
6528 }
6529 
6530 static char *resource_alignment_param;
6531 static DEFINE_SPINLOCK(resource_alignment_lock);
6532 
6533 /**
6534  * pci_specified_resource_alignment - get resource alignment specified by user.
6535  * @dev: the PCI device to get
6536  * @resize: whether or not to change resources' size when reassigning alignment
6537  *
6538  * RETURNS: Resource alignment if it is specified.
6539  *          Zero if it is not specified.
6540  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6541 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6542 							bool *resize)
6543 {
6544 	int align_order, count;
6545 	resource_size_t align = pcibios_default_alignment();
6546 	const char *p;
6547 	int ret;
6548 
6549 	spin_lock(&resource_alignment_lock);
6550 	p = resource_alignment_param;
6551 	if (!p || !*p)
6552 		goto out;
6553 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6554 		align = 0;
6555 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6556 		goto out;
6557 	}
6558 
6559 	while (*p) {
6560 		count = 0;
6561 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6562 		    p[count] == '@') {
6563 			p += count + 1;
6564 			if (align_order > 63) {
6565 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6566 				       align_order);
6567 				align_order = PAGE_SHIFT;
6568 			}
6569 		} else {
6570 			align_order = PAGE_SHIFT;
6571 		}
6572 
6573 		ret = pci_dev_str_match(dev, p, &p);
6574 		if (ret == 1) {
6575 			*resize = true;
6576 			align = 1ULL << align_order;
6577 			break;
6578 		} else if (ret < 0) {
6579 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6580 			       p);
6581 			break;
6582 		}
6583 
6584 		if (*p != ';' && *p != ',') {
6585 			/* End of param or invalid format */
6586 			break;
6587 		}
6588 		p++;
6589 	}
6590 out:
6591 	spin_unlock(&resource_alignment_lock);
6592 	return align;
6593 }
6594 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6595 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6596 					   resource_size_t align, bool resize)
6597 {
6598 	struct resource *r = &dev->resource[bar];
6599 	const char *r_name = pci_resource_name(dev, bar);
6600 	resource_size_t size;
6601 
6602 	if (!(r->flags & IORESOURCE_MEM))
6603 		return;
6604 
6605 	if (r->flags & IORESOURCE_PCI_FIXED) {
6606 		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6607 			 r_name, r, (unsigned long long)align);
6608 		return;
6609 	}
6610 
6611 	size = resource_size(r);
6612 	if (size >= align)
6613 		return;
6614 
6615 	/*
6616 	 * Increase the alignment of the resource.  There are two ways we
6617 	 * can do this:
6618 	 *
6619 	 * 1) Increase the size of the resource.  BARs are aligned on their
6620 	 *    size, so when we reallocate space for this resource, we'll
6621 	 *    allocate it with the larger alignment.  This also prevents
6622 	 *    assignment of any other BARs inside the alignment region, so
6623 	 *    if we're requesting page alignment, this means no other BARs
6624 	 *    will share the page.
6625 	 *
6626 	 *    The disadvantage is that this makes the resource larger than
6627 	 *    the hardware BAR, which may break drivers that compute things
6628 	 *    based on the resource size, e.g., to find registers at a
6629 	 *    fixed offset before the end of the BAR.
6630 	 *
6631 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6632 	 *    set r->start to the desired alignment.  By itself this
6633 	 *    doesn't prevent other BARs being put inside the alignment
6634 	 *    region, but if we realign *every* resource of every device in
6635 	 *    the system, none of them will share an alignment region.
6636 	 *
6637 	 * When the user has requested alignment for only some devices via
6638 	 * the "pci=resource_alignment" argument, "resize" is true and we
6639 	 * use the first method.  Otherwise we assume we're aligning all
6640 	 * devices and we use the second.
6641 	 */
6642 
6643 	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6644 		 r_name, r, (unsigned long long)align);
6645 
6646 	if (resize) {
6647 		r->start = 0;
6648 		r->end = align - 1;
6649 	} else {
6650 		r->flags &= ~IORESOURCE_SIZEALIGN;
6651 		r->flags |= IORESOURCE_STARTALIGN;
6652 		r->start = align;
6653 		r->end = r->start + size - 1;
6654 	}
6655 	r->flags |= IORESOURCE_UNSET;
6656 }
6657 
6658 /*
6659  * This function disables memory decoding and releases memory resources
6660  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6661  * It also rounds up size to specified alignment.
6662  * Later on, the kernel will assign page-aligned memory resource back
6663  * to the device.
6664  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6665 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6666 {
6667 	int i;
6668 	struct resource *r;
6669 	resource_size_t align;
6670 	u16 command;
6671 	bool resize = false;
6672 
6673 	/*
6674 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6675 	 * 3.4.1.11.  Their resources are allocated from the space
6676 	 * described by the VF BARx register in the PF's SR-IOV capability.
6677 	 * We can't influence their alignment here.
6678 	 */
6679 	if (dev->is_virtfn)
6680 		return;
6681 
6682 	/* check if specified PCI is target device to reassign */
6683 	align = pci_specified_resource_alignment(dev, &resize);
6684 	if (!align)
6685 		return;
6686 
6687 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6688 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6689 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6690 		return;
6691 	}
6692 
6693 	pci_read_config_word(dev, PCI_COMMAND, &command);
6694 	command &= ~PCI_COMMAND_MEMORY;
6695 	pci_write_config_word(dev, PCI_COMMAND, command);
6696 
6697 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6698 		pci_request_resource_alignment(dev, i, align, resize);
6699 
6700 	/*
6701 	 * Need to disable bridge's resource window,
6702 	 * to enable the kernel to reassign new resource
6703 	 * window later on.
6704 	 */
6705 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6706 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6707 			r = &dev->resource[i];
6708 			if (!(r->flags & IORESOURCE_MEM))
6709 				continue;
6710 			r->flags |= IORESOURCE_UNSET;
6711 			r->end = resource_size(r) - 1;
6712 			r->start = 0;
6713 		}
6714 		pci_disable_bridge_window(dev);
6715 	}
6716 }
6717 
resource_alignment_show(const struct bus_type * bus,char * buf)6718 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6719 {
6720 	size_t count = 0;
6721 
6722 	spin_lock(&resource_alignment_lock);
6723 	if (resource_alignment_param)
6724 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6725 	spin_unlock(&resource_alignment_lock);
6726 
6727 	return count;
6728 }
6729 
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6730 static ssize_t resource_alignment_store(const struct bus_type *bus,
6731 					const char *buf, size_t count)
6732 {
6733 	char *param, *old, *end;
6734 
6735 	if (count >= (PAGE_SIZE - 1))
6736 		return -EINVAL;
6737 
6738 	param = kstrndup(buf, count, GFP_KERNEL);
6739 	if (!param)
6740 		return -ENOMEM;
6741 
6742 	end = strchr(param, '\n');
6743 	if (end)
6744 		*end = '\0';
6745 
6746 	spin_lock(&resource_alignment_lock);
6747 	old = resource_alignment_param;
6748 	if (strlen(param)) {
6749 		resource_alignment_param = param;
6750 	} else {
6751 		kfree(param);
6752 		resource_alignment_param = NULL;
6753 	}
6754 	spin_unlock(&resource_alignment_lock);
6755 
6756 	kfree(old);
6757 
6758 	return count;
6759 }
6760 
6761 static BUS_ATTR_RW(resource_alignment);
6762 
pci_resource_alignment_sysfs_init(void)6763 static int __init pci_resource_alignment_sysfs_init(void)
6764 {
6765 	return bus_create_file(&pci_bus_type,
6766 					&bus_attr_resource_alignment);
6767 }
6768 late_initcall(pci_resource_alignment_sysfs_init);
6769 
pci_no_domains(void)6770 static void pci_no_domains(void)
6771 {
6772 #ifdef CONFIG_PCI_DOMAINS
6773 	pci_domains_supported = 0;
6774 #endif
6775 }
6776 
6777 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6778 static DEFINE_IDA(pci_domain_nr_static_ida);
6779 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6780 
of_pci_reserve_static_domain_nr(void)6781 static void of_pci_reserve_static_domain_nr(void)
6782 {
6783 	struct device_node *np;
6784 	int domain_nr;
6785 
6786 	for_each_node_by_type(np, "pci") {
6787 		domain_nr = of_get_pci_domain_nr(np);
6788 		if (domain_nr < 0)
6789 			continue;
6790 		/*
6791 		 * Permanently allocate domain_nr in dynamic_ida
6792 		 * to prevent it from dynamic allocation.
6793 		 */
6794 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6795 				domain_nr, domain_nr, GFP_KERNEL);
6796 	}
6797 }
6798 
of_pci_bus_find_domain_nr(struct device * parent)6799 static int of_pci_bus_find_domain_nr(struct device *parent)
6800 {
6801 	static bool static_domains_reserved = false;
6802 	int domain_nr;
6803 
6804 	/* On the first call scan device tree for static allocations. */
6805 	if (!static_domains_reserved) {
6806 		of_pci_reserve_static_domain_nr();
6807 		static_domains_reserved = true;
6808 	}
6809 
6810 	if (parent) {
6811 		/*
6812 		 * If domain is in DT, allocate it in static IDA.  This
6813 		 * prevents duplicate static allocations in case of errors
6814 		 * in DT.
6815 		 */
6816 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6817 		if (domain_nr >= 0)
6818 			return ida_alloc_range(&pci_domain_nr_static_ida,
6819 					       domain_nr, domain_nr,
6820 					       GFP_KERNEL);
6821 	}
6822 
6823 	/*
6824 	 * If domain was not specified in DT, choose a free ID from dynamic
6825 	 * allocations. All domain numbers from DT are permanently in
6826 	 * dynamic allocations to prevent assigning them to other DT nodes
6827 	 * without static domain.
6828 	 */
6829 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6830 }
6831 
of_pci_bus_release_domain_nr(struct device * parent,int domain_nr)6832 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6833 {
6834 	if (domain_nr < 0)
6835 		return;
6836 
6837 	/* Release domain from IDA where it was allocated. */
6838 	if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6839 		ida_free(&pci_domain_nr_static_ida, domain_nr);
6840 	else
6841 		ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6842 }
6843 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6844 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6845 {
6846 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6847 			       acpi_pci_bus_find_domain_nr(bus);
6848 }
6849 
pci_bus_release_domain_nr(struct device * parent,int domain_nr)6850 void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6851 {
6852 	if (!acpi_disabled)
6853 		return;
6854 	of_pci_bus_release_domain_nr(parent, domain_nr);
6855 }
6856 #endif
6857 
6858 /**
6859  * pci_ext_cfg_avail - can we access extended PCI config space?
6860  *
6861  * Returns 1 if we can access PCI extended config space (offsets
6862  * greater than 0xff). This is the default implementation. Architecture
6863  * implementations can override this.
6864  */
pci_ext_cfg_avail(void)6865 int __weak pci_ext_cfg_avail(void)
6866 {
6867 	return 1;
6868 }
6869 
pci_fixup_cardbus(struct pci_bus * bus)6870 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6871 {
6872 }
6873 EXPORT_SYMBOL(pci_fixup_cardbus);
6874 
pci_setup(char * str)6875 static int __init pci_setup(char *str)
6876 {
6877 	while (str) {
6878 		char *k = strchr(str, ',');
6879 		if (k)
6880 			*k++ = 0;
6881 		if (*str && (str = pcibios_setup(str)) && *str) {
6882 			if (!strcmp(str, "nomsi")) {
6883 				pci_no_msi();
6884 			} else if (!strncmp(str, "noats", 5)) {
6885 				pr_info("PCIe: ATS is disabled\n");
6886 				pcie_ats_disabled = true;
6887 			} else if (!strcmp(str, "noaer")) {
6888 				pci_no_aer();
6889 			} else if (!strcmp(str, "earlydump")) {
6890 				pci_early_dump = true;
6891 			} else if (!strncmp(str, "realloc=", 8)) {
6892 				pci_realloc_get_opt(str + 8);
6893 			} else if (!strncmp(str, "realloc", 7)) {
6894 				pci_realloc_get_opt("on");
6895 			} else if (!strcmp(str, "nodomains")) {
6896 				pci_no_domains();
6897 			} else if (!strncmp(str, "noari", 5)) {
6898 				pcie_ari_disabled = true;
6899 			} else if (!strncmp(str, "cbiosize=", 9)) {
6900 				pci_cardbus_io_size = memparse(str + 9, &str);
6901 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6902 				pci_cardbus_mem_size = memparse(str + 10, &str);
6903 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6904 				resource_alignment_param = str + 19;
6905 			} else if (!strncmp(str, "ecrc=", 5)) {
6906 				pcie_ecrc_get_policy(str + 5);
6907 			} else if (!strncmp(str, "hpiosize=", 9)) {
6908 				pci_hotplug_io_size = memparse(str + 9, &str);
6909 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6910 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6911 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6912 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6913 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6914 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6915 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6916 			} else if (!strncmp(str, "hpbussize=", 10)) {
6917 				pci_hotplug_bus_size =
6918 					simple_strtoul(str + 10, &str, 0);
6919 				if (pci_hotplug_bus_size > 0xff)
6920 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6921 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6922 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6923 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6924 				pcie_bus_config = PCIE_BUS_SAFE;
6925 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6926 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6927 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6928 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6929 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6930 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6931 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6932 				disable_acs_redir_param = str + 18;
6933 			} else if (!strncmp(str, "config_acs=", 11)) {
6934 				config_acs_param = str + 11;
6935 			} else {
6936 				pr_err("PCI: Unknown option `%s'\n", str);
6937 			}
6938 		}
6939 		str = k;
6940 	}
6941 	return 0;
6942 }
6943 early_param("pci", pci_setup);
6944 
6945 /*
6946  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6947  * in pci_setup(), above, to point to data in the __initdata section which
6948  * will be freed after the init sequence is complete. We can't allocate memory
6949  * in pci_setup() because some architectures do not have any memory allocation
6950  * service available during an early_param() call. So we allocate memory and
6951  * copy the variable here before the init section is freed.
6952  *
6953  */
pci_realloc_setup_params(void)6954 static int __init pci_realloc_setup_params(void)
6955 {
6956 	resource_alignment_param = kstrdup(resource_alignment_param,
6957 					   GFP_KERNEL);
6958 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6959 	config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6960 
6961 	return 0;
6962 }
6963 pure_initcall(pci_realloc_setup_params);
6964