1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
24 * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
25 * Copyright 2018 Joyent, Inc.
26 * Copyright 2021 Oxide Computer Company
27 * Copyright 2024 MNX Cloud, Inc.
28 */
29
30 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */
32
33 /*
34 * University Copyright- Copyright (c) 1982, 1986, 1988
35 * The Regents of the University of California
36 * All Rights Reserved
37 *
38 * University Acknowledgment- Portions of this document are derived from
39 * software developed by the University of California, Berkeley, and its
40 * contributors.
41 */
42
43 /*
44 * VM - physical page management.
45 */
46
47 #include <sys/types.h>
48 #include <sys/t_lock.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/time.h>
53 #include <sys/vnode.h>
54 #include <sys/vm.h>
55 #include <sys/vtrace.h>
56 #include <sys/swap.h>
57 #include <sys/cmn_err.h>
58 #include <sys/tuneable.h>
59 #include <sys/sysmacros.h>
60 #include <sys/cpuvar.h>
61 #include <sys/callb.h>
62 #include <sys/debug.h>
63 #include <sys/condvar_impl.h>
64 #include <sys/mem_config.h>
65 #include <sys/mem_cage.h>
66 #include <sys/kmem.h>
67 #include <sys/atomic.h>
68 #include <sys/strlog.h>
69 #include <sys/mman.h>
70 #include <sys/ontrap.h>
71 #include <sys/lgrp.h>
72 #include <sys/vfs.h>
73
74 #include <vm/hat.h>
75 #include <vm/anon.h>
76 #include <vm/page.h>
77 #include <vm/seg.h>
78 #include <vm/pvn.h>
79 #include <vm/seg_kmem.h>
80 #include <vm/vm_dep.h>
81 #include <sys/vm_usage.h>
82 #include <fs/fs_subr.h>
83 #include <sys/ddi.h>
84 #include <sys/modctl.h>
85
86 static pgcnt_t max_page_get; /* max page_get request size in pages */
87 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */
88 volatile uint64_t n_throttle = 0;
89
90 /*
91 * freemem_lock protects all freemem variables:
92 * availrmem. Also this lock protects the globals which track the
93 * availrmem changes for accurate kernel footprint calculation.
94 * See below for an explanation of these
95 * globals.
96 */
97 kmutex_t freemem_lock;
98 pgcnt_t availrmem;
99 pgcnt_t availrmem_initial;
100
101 /*
102 * These globals track availrmem changes to get a more accurate
103 * estimate of tke kernel size. Historically pp_kernel is used for
104 * kernel size and is based on availrmem. But availrmem is adjusted for
105 * locked pages in the system not just for kernel locked pages.
106 * These new counters will track the pages locked through segvn and
107 * by explicit user locking.
108 *
109 * pages_locked : How many pages are locked because of user specified
110 * locking through mlock or plock.
111 *
112 * pages_useclaim,pages_claimed : These two variables track the
113 * claim adjustments because of the protection changes on a segvn segment.
114 *
115 * All these globals are protected by the same lock which protects availrmem.
116 */
117 pgcnt_t pages_locked = 0;
118 pgcnt_t pages_useclaim = 0;
119 pgcnt_t pages_claimed = 0;
120
121
122 /*
123 * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
124 */
125 static kmutex_t new_freemem_lock;
126 static uint_t freemem_wait; /* someone waiting for freemem */
127 static kcondvar_t freemem_cv;
128
129 /*
130 * The logical page free list is maintained as two lists, the 'free'
131 * and the 'cache' lists.
132 * The free list contains those pages that should be reused first.
133 *
134 * The implementation of the lists is machine dependent.
135 * page_get_freelist(), page_get_cachelist(),
136 * page_list_sub(), and page_list_add()
137 * form the interface to the machine dependent implementation.
138 *
139 * Pages with p_free set are on the cache list.
140 * Pages with p_free and p_age set are on the free list,
141 *
142 * A page may be locked while on either list.
143 */
144
145 /*
146 * free list accounting stuff.
147 *
148 *
149 * Spread out the value for the number of pages on the
150 * page free and page cache lists. If there is just one
151 * value, then it must be under just one lock.
152 * The lock contention and cache traffic are a real bother.
153 *
154 * When we acquire and then drop a single pcf lock
155 * we can start in the middle of the array of pcf structures.
156 * If we acquire more than one pcf lock at a time, we need to
157 * start at the front to avoid deadlocking.
158 *
159 * pcf_count holds the number of pages in each pool.
160 *
161 * pcf_block is set when page_create_get_something() has asked the
162 * PSM page freelist and page cachelist routines without specifying
163 * a color and nothing came back. This is used to block anything
164 * else from moving pages from one list to the other while the
165 * lists are searched again. If a page is freeed while pcf_block is
166 * set, then pcf_reserve is incremented. pcgs_unblock() takes care
167 * of clearning pcf_block, doing the wakeups, etc.
168 */
169
170 #define MAX_PCF_FANOUT NCPU
171 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
172 static uint_t pcf_fanout_mask = 0;
173
174 struct pcf {
175 kmutex_t pcf_lock; /* protects the structure */
176 uint_t pcf_count; /* page count */
177 uint_t pcf_wait; /* number of waiters */
178 uint_t pcf_block; /* pcgs flag to page_free() */
179 uint_t pcf_reserve; /* pages freed after pcf_block set */
180 uint_t pcf_fill[10]; /* to line up on the caches */
181 };
182
183 /*
184 * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
185 * it will hash the cpu to). This is done to prevent a drain condition
186 * from happening. This drain condition will occur when pcf_count decrement
187 * occurs on cpu A and the increment of pcf_count always occurs on cpu B. An
188 * example of this shows up with device interrupts. The dma buffer is allocated
189 * by the cpu requesting the IO thus the pcf_count is decremented based on that.
190 * When the memory is returned by the interrupt thread, the pcf_count will be
191 * incremented based on the cpu servicing the interrupt.
192 */
193 static struct pcf pcf[MAX_PCF_FANOUT];
194 #define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
195 (randtick() >> 24)) & (pcf_fanout_mask))
196
197 static int pcf_decrement_bucket(pgcnt_t);
198 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
199
200 kmutex_t pcgs_lock; /* serializes page_create_get_ */
201 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */
202 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */
203 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */
204
205 #ifdef VM_STATS
206
207 /*
208 * No locks, but so what, they are only statistics.
209 */
210
211 static struct page_tcnt {
212 int pc_free_cache; /* free's into cache list */
213 int pc_free_dontneed; /* free's with dontneed */
214 int pc_free_pageout; /* free's from pageout */
215 int pc_free_free; /* free's into free list */
216 int pc_free_pages; /* free's into large page free list */
217 int pc_destroy_pages; /* large page destroy's */
218 int pc_get_cache; /* get's from cache list */
219 int pc_get_free; /* get's from free list */
220 int pc_reclaim; /* reclaim's */
221 int pc_abortfree; /* abort's of free pages */
222 int pc_find_hit; /* find's that find page */
223 int pc_find_miss; /* find's that don't find page */
224 int pc_destroy_free; /* # of free pages destroyed */
225 #define PC_HASH_CNT (4*PAGE_HASHAVELEN)
226 int pc_find_hashlen[PC_HASH_CNT+1];
227 int pc_addclaim_pages;
228 int pc_subclaim_pages;
229 int pc_free_replacement_page[2];
230 int pc_try_demote_pages[6];
231 int pc_demote_pages[2];
232 } pagecnt;
233
234 uint_t hashin_count;
235 uint_t hashin_not_held;
236 uint_t hashin_already;
237
238 uint_t hashout_count;
239 uint_t hashout_not_held;
240
241 uint_t page_create_count;
242 uint_t page_create_not_enough;
243 uint_t page_create_not_enough_again;
244 uint_t page_create_zero;
245 uint_t page_create_hashout;
246 uint_t page_create_page_lock_failed;
247 uint_t page_create_trylock_failed;
248 uint_t page_create_found_one;
249 uint_t page_create_hashin_failed;
250 uint_t page_create_dropped_phm;
251
252 uint_t page_create_new;
253 uint_t page_create_exists;
254 uint_t page_create_putbacks;
255 uint_t page_create_overshoot;
256
257 uint_t page_reclaim_zero;
258 uint_t page_reclaim_zero_locked;
259
260 uint_t page_rename_exists;
261 uint_t page_rename_count;
262
263 uint_t page_lookup_cnt[20];
264 uint_t page_lookup_nowait_cnt[10];
265 uint_t page_find_cnt;
266 uint_t page_exists_cnt;
267 uint_t page_exists_forreal_cnt;
268 uint_t page_lookup_dev_cnt;
269 uint_t get_cachelist_cnt;
270 uint_t page_create_cnt[10];
271 uint_t alloc_pages[9];
272 uint_t page_exphcontg[19];
273 uint_t page_create_large_cnt[10];
274
275 #endif
276
277 static inline page_t *
page_hash_search(ulong_t index,vnode_t * vnode,u_offset_t off)278 page_hash_search(ulong_t index, vnode_t *vnode, u_offset_t off)
279 {
280 uint_t mylen = 0;
281 page_t *page;
282
283 for (page = page_hash[index]; page; page = page->p_hash, mylen++)
284 if (page->p_vnode == vnode && page->p_offset == off)
285 break;
286
287 #ifdef VM_STATS
288 if (page != NULL)
289 pagecnt.pc_find_hit++;
290 else
291 pagecnt.pc_find_miss++;
292
293 pagecnt.pc_find_hashlen[MIN(mylen, PC_HASH_CNT)]++;
294 #endif
295
296 return (page);
297 }
298
299
300 #ifdef DEBUG
301 #define MEMSEG_SEARCH_STATS
302 #endif
303
304 #ifdef MEMSEG_SEARCH_STATS
305 struct memseg_stats {
306 uint_t nsearch;
307 uint_t nlastwon;
308 uint_t nhashwon;
309 uint_t nnotfound;
310 } memseg_stats;
311
312 #define MEMSEG_STAT_INCR(v) \
313 atomic_inc_32(&memseg_stats.v)
314 #else
315 #define MEMSEG_STAT_INCR(x)
316 #endif
317
318 struct memseg *memsegs; /* list of memory segments */
319
320 /*
321 * /etc/system tunable to control large page allocation hueristic.
322 *
323 * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
324 * for large page allocation requests. If a large page is not readily
325 * avaliable on the local freelists we will go through additional effort
326 * to create a large page, potentially moving smaller pages around to coalesce
327 * larger pages in the local lgroup.
328 * Default value of LPAP_DEFAULT will go to remote freelists if large pages
329 * are not readily available in the local lgroup.
330 */
331 enum lpap {
332 LPAP_DEFAULT, /* default large page allocation policy */
333 LPAP_LOCAL /* local large page allocation policy */
334 };
335
336 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
337
338 static void page_init_mem_config(void);
339 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
340 static void page_do_hashout(page_t *);
341 static void page_capture_init();
342 int page_capture_take_action(page_t *, uint_t, void *);
343
344 static void page_demote_vp_pages(page_t *);
345
346
347 void
pcf_init(void)348 pcf_init(void)
349 {
350 if (boot_ncpus != -1) {
351 pcf_fanout = boot_ncpus;
352 } else {
353 pcf_fanout = max_ncpus;
354 }
355 #ifdef sun4v
356 /*
357 * Force at least 4 buckets if possible for sun4v.
358 */
359 pcf_fanout = MAX(pcf_fanout, 4);
360 #endif /* sun4v */
361
362 /*
363 * Round up to the nearest power of 2.
364 */
365 pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
366 if (!ISP2(pcf_fanout)) {
367 pcf_fanout = 1 << highbit(pcf_fanout);
368
369 if (pcf_fanout > MAX_PCF_FANOUT) {
370 pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
371 }
372 }
373 pcf_fanout_mask = pcf_fanout - 1;
374 }
375
376 /*
377 * vm subsystem related initialization
378 */
379 void
vm_init(void)380 vm_init(void)
381 {
382 boolean_t callb_vm_cpr(void *, int);
383
384 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
385 page_init_mem_config();
386 page_retire_init();
387 vm_usage_init();
388 page_capture_init();
389 }
390
391 /*
392 * This function is called at startup and when memory is added or deleted.
393 */
394 void
init_pages_pp_maximum()395 init_pages_pp_maximum()
396 {
397 static pgcnt_t p_min;
398 static pgcnt_t pages_pp_maximum_startup;
399 static pgcnt_t avrmem_delta;
400 static int init_done;
401 static int user_set; /* true if set in /etc/system */
402
403 if (init_done == 0) {
404
405 /* If the user specified a value, save it */
406 if (pages_pp_maximum != 0) {
407 user_set = 1;
408 pages_pp_maximum_startup = pages_pp_maximum;
409 }
410
411 /*
412 * Setting of pages_pp_maximum is based first time
413 * on the value of availrmem just after the start-up
414 * allocations. To preserve this relationship at run
415 * time, use a delta from availrmem_initial.
416 */
417 ASSERT(availrmem_initial >= availrmem);
418 avrmem_delta = availrmem_initial - availrmem;
419
420 /* The allowable floor of pages_pp_maximum */
421 p_min = tune.t_minarmem + 100;
422
423 /* Make sure we don't come through here again. */
424 init_done = 1;
425 }
426 /*
427 * Determine pages_pp_maximum, the number of currently available
428 * pages (availrmem) that can't be `locked'. If not set by
429 * the user, we set it to 4% of the currently available memory
430 * plus 4MB.
431 * But we also insist that it be greater than tune.t_minarmem;
432 * otherwise a process could lock down a lot of memory, get swapped
433 * out, and never have enough to get swapped back in.
434 */
435 if (user_set)
436 pages_pp_maximum = pages_pp_maximum_startup;
437 else
438 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
439 + btop(4 * 1024 * 1024);
440
441 if (pages_pp_maximum <= p_min) {
442 pages_pp_maximum = p_min;
443 }
444 }
445
446 /*
447 * In the past, we limited the maximum pages that could be gotten to essentially
448 * 1/2 of the total pages on the system. However, this is too conservative for
449 * some cases. For example, if we want to host a large virtual machine which
450 * needs to use a significant portion of the system's memory. In practice,
451 * allowing more than 1/2 of the total pages is fine, but becomes problematic
452 * as we approach or exceed 75% of the pages on the system. Thus, we limit the
453 * maximum to 23/32 of the total pages, which is ~72%.
454 */
455 void
set_max_page_get(pgcnt_t target_total_pages)456 set_max_page_get(pgcnt_t target_total_pages)
457 {
458 max_page_get = (target_total_pages >> 5) * 23;
459 ASSERT3U(max_page_get, >, 0);
460 }
461
462 pgcnt_t
get_max_page_get()463 get_max_page_get()
464 {
465 return (max_page_get);
466 }
467
468 static pgcnt_t pending_delete;
469
470 /*ARGSUSED*/
471 static void
page_mem_config_post_add(void * arg,pgcnt_t delta_pages)472 page_mem_config_post_add(
473 void *arg,
474 pgcnt_t delta_pages)
475 {
476 set_max_page_get(total_pages - pending_delete);
477 init_pages_pp_maximum();
478 }
479
480 /*ARGSUSED*/
481 static int
page_mem_config_pre_del(void * arg,pgcnt_t delta_pages)482 page_mem_config_pre_del(
483 void *arg,
484 pgcnt_t delta_pages)
485 {
486 pgcnt_t nv;
487
488 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
489 set_max_page_get(total_pages - nv);
490 return (0);
491 }
492
493 /*ARGSUSED*/
494 static void
page_mem_config_post_del(void * arg,pgcnt_t delta_pages,int cancelled)495 page_mem_config_post_del(
496 void *arg,
497 pgcnt_t delta_pages,
498 int cancelled)
499 {
500 pgcnt_t nv;
501
502 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
503 set_max_page_get(total_pages - nv);
504 if (!cancelled)
505 init_pages_pp_maximum();
506 }
507
508 static kphysm_setup_vector_t page_mem_config_vec = {
509 KPHYSM_SETUP_VECTOR_VERSION,
510 page_mem_config_post_add,
511 page_mem_config_pre_del,
512 page_mem_config_post_del,
513 };
514
515 static void
page_init_mem_config(void)516 page_init_mem_config(void)
517 {
518 int ret;
519
520 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
521 ASSERT(ret == 0);
522 }
523
524 /*
525 * Evenly spread out the PCF counters for large free pages
526 */
527 static void
page_free_large_ctr(pgcnt_t npages)528 page_free_large_ctr(pgcnt_t npages)
529 {
530 static struct pcf *p = pcf;
531 pgcnt_t lump;
532
533 freemem += npages;
534
535 lump = roundup(npages, pcf_fanout) / pcf_fanout;
536
537 while (npages > 0) {
538
539 ASSERT(!p->pcf_block);
540
541 if (lump < npages) {
542 p->pcf_count += (uint_t)lump;
543 npages -= lump;
544 } else {
545 p->pcf_count += (uint_t)npages;
546 npages = 0;
547 }
548
549 ASSERT(!p->pcf_wait);
550
551 if (++p > &pcf[pcf_fanout - 1])
552 p = pcf;
553 }
554
555 ASSERT(npages == 0);
556 }
557
558 /*
559 * Add a physical chunk of memory to the system free lists during startup.
560 * Platform specific startup() allocates the memory for the page structs.
561 *
562 * num - number of page structures
563 * base - page number (pfn) to be associated with the first page.
564 *
565 * Since we are doing this during startup (ie. single threaded), we will
566 * use shortcut routines to avoid any locking overhead while putting all
567 * these pages on the freelists.
568 *
569 * NOTE: Any changes performed to page_free(), must also be performed to
570 * add_physmem() since this is how we initialize all page_t's at
571 * boot time.
572 */
573 void
add_physmem(page_t * pp,pgcnt_t num,pfn_t pnum)574 add_physmem(
575 page_t *pp,
576 pgcnt_t num,
577 pfn_t pnum)
578 {
579 page_t *root = NULL;
580 uint_t szc = page_num_pagesizes() - 1;
581 pgcnt_t large = page_get_pagecnt(szc);
582 pgcnt_t cnt = 0;
583
584 TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
585 "add_physmem:pp %p num %lu", pp, num);
586
587 /*
588 * Arbitrarily limit the max page_get request
589 * to 1/2 of the page structs we have.
590 */
591 total_pages += num;
592 set_max_page_get(total_pages);
593
594 PLCNT_MODIFY_MAX(pnum, (long)num);
595
596 /*
597 * The physical space for the pages array
598 * representing ram pages has already been
599 * allocated. Here we initialize each lock
600 * in the page structure, and put each on
601 * the free list
602 */
603 for (; num; pp++, pnum++, num--) {
604
605 /*
606 * this needs to fill in the page number
607 * and do any other arch specific initialization
608 */
609 add_physmem_cb(pp, pnum);
610
611 pp->p_lckcnt = 0;
612 pp->p_cowcnt = 0;
613 pp->p_slckcnt = 0;
614
615 /*
616 * Initialize the page lock as unlocked, since nobody
617 * can see or access this page yet.
618 */
619 pp->p_selock = 0;
620
621 /*
622 * Initialize IO lock
623 */
624 page_iolock_init(pp);
625
626 /*
627 * initialize other fields in the page_t
628 */
629 PP_SETFREE(pp);
630 page_clr_all_props(pp);
631 PP_SETAGED(pp);
632 pp->p_offset = (u_offset_t)-1;
633 pp->p_next = pp;
634 pp->p_prev = pp;
635
636 /*
637 * Simple case: System doesn't support large pages.
638 */
639 if (szc == 0) {
640 pp->p_szc = 0;
641 page_free_at_startup(pp);
642 continue;
643 }
644
645 /*
646 * Handle unaligned pages, we collect them up onto
647 * the root page until we have a full large page.
648 */
649 if (!IS_P2ALIGNED(pnum, large)) {
650
651 /*
652 * If not in a large page,
653 * just free as small page.
654 */
655 if (root == NULL) {
656 pp->p_szc = 0;
657 page_free_at_startup(pp);
658 continue;
659 }
660
661 /*
662 * Link a constituent page into the large page.
663 */
664 pp->p_szc = szc;
665 page_list_concat(&root, &pp);
666
667 /*
668 * When large page is fully formed, free it.
669 */
670 if (++cnt == large) {
671 page_free_large_ctr(cnt);
672 page_list_add_pages(root, PG_LIST_ISINIT);
673 root = NULL;
674 cnt = 0;
675 }
676 continue;
677 }
678
679 /*
680 * At this point we have a page number which
681 * is aligned. We assert that we aren't already
682 * in a different large page.
683 */
684 ASSERT(IS_P2ALIGNED(pnum, large));
685 ASSERT(root == NULL && cnt == 0);
686
687 /*
688 * If insufficient number of pages left to form
689 * a large page, just free the small page.
690 */
691 if (num < large) {
692 pp->p_szc = 0;
693 page_free_at_startup(pp);
694 continue;
695 }
696
697 /*
698 * Otherwise start a new large page.
699 */
700 pp->p_szc = szc;
701 cnt++;
702 root = pp;
703 }
704 ASSERT(root == NULL && cnt == 0);
705 }
706
707 /*
708 * Find a page representing the specified [vp, offset].
709 * If we find the page but it is intransit coming in,
710 * it will have an "exclusive" lock and we wait for
711 * the i/o to complete. A page found on the free list
712 * is always reclaimed and then locked. On success, the page
713 * is locked, its data is valid and it isn't on the free
714 * list, while a NULL is returned if the page doesn't exist.
715 */
716 page_t *
page_lookup(vnode_t * vp,u_offset_t off,se_t se)717 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
718 {
719 return (page_lookup_create(vp, off, se, NULL, NULL, 0));
720 }
721
722 /*
723 * Find a page representing the specified [vp, offset].
724 * We either return the one we found or, if passed in,
725 * create one with identity of [vp, offset] of the
726 * pre-allocated page. If we find existing page but it is
727 * intransit coming in, it will have an "exclusive" lock
728 * and we wait for the i/o to complete. A page found on
729 * the free list is always reclaimed and then locked.
730 * On success, the page is locked, its data is valid and
731 * it isn't on the free list, while a NULL is returned
732 * if the page doesn't exist and newpp is NULL;
733 */
734 page_t *
page_lookup_create(vnode_t * vp,u_offset_t off,se_t se,page_t * newpp,spgcnt_t * nrelocp,int flags)735 page_lookup_create(
736 vnode_t *vp,
737 u_offset_t off,
738 se_t se,
739 page_t *newpp,
740 spgcnt_t *nrelocp,
741 int flags)
742 {
743 page_t *pp;
744 kmutex_t *phm;
745 ulong_t index;
746 uint_t hash_locked;
747 uint_t es;
748
749 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
750 VM_STAT_ADD(page_lookup_cnt[0]);
751 ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
752
753 /*
754 * Acquire the appropriate page hash lock since
755 * we have to search the hash list. Pages that
756 * hash to this list can't change identity while
757 * this lock is held.
758 */
759 hash_locked = 0;
760 index = PAGE_HASH_FUNC(vp, off);
761 phm = NULL;
762 top:
763 pp = page_hash_search(index, vp, off);
764 if (pp != NULL) {
765 VM_STAT_ADD(page_lookup_cnt[1]);
766 es = (newpp != NULL) ? 1 : 0;
767 es |= flags;
768 if (!hash_locked) {
769 VM_STAT_ADD(page_lookup_cnt[2]);
770 if (!page_try_reclaim_lock(pp, se, es)) {
771 /*
772 * On a miss, acquire the phm. Then
773 * next time, page_lock() will be called,
774 * causing a wait if the page is busy.
775 * just looping with page_trylock() would
776 * get pretty boring.
777 */
778 VM_STAT_ADD(page_lookup_cnt[3]);
779 phm = PAGE_HASH_MUTEX(index);
780 mutex_enter(phm);
781 hash_locked = 1;
782 goto top;
783 }
784 } else {
785 VM_STAT_ADD(page_lookup_cnt[4]);
786 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
787 VM_STAT_ADD(page_lookup_cnt[5]);
788 goto top;
789 }
790 }
791
792 /*
793 * Since `pp' is locked it can not change identity now.
794 * Reconfirm we locked the correct page.
795 *
796 * Both the p_vnode and p_offset *must* be cast volatile
797 * to force a reload of their values: The page_hash_search
798 * function will have stuffed p_vnode and p_offset into
799 * registers before calling page_trylock(); another thread,
800 * actually holding the hash lock, could have changed the
801 * page's identity in memory, but our registers would not
802 * be changed, fooling the reconfirmation. If the hash
803 * lock was held during the search, the casting would
804 * not be needed.
805 */
806 VM_STAT_ADD(page_lookup_cnt[6]);
807 if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
808 ((volatile u_offset_t)(pp->p_offset) != off)) {
809 VM_STAT_ADD(page_lookup_cnt[7]);
810 if (hash_locked) {
811 panic("page_lookup_create: lost page %p",
812 (void *)pp);
813 /*NOTREACHED*/
814 }
815 page_unlock(pp);
816 phm = PAGE_HASH_MUTEX(index);
817 mutex_enter(phm);
818 hash_locked = 1;
819 goto top;
820 }
821
822 /*
823 * If page_trylock() was called, then pp may still be on
824 * the cachelist (can't be on the free list, it would not
825 * have been found in the search). If it is on the
826 * cachelist it must be pulled now. To pull the page from
827 * the cachelist, it must be exclusively locked.
828 *
829 * The other big difference between page_trylock() and
830 * page_lock(), is that page_lock() will pull the
831 * page from whatever free list (the cache list in this
832 * case) the page is on. If page_trylock() was used
833 * above, then we have to do the reclaim ourselves.
834 */
835 if ((!hash_locked) && (PP_ISFREE(pp))) {
836 ASSERT(PP_ISAGED(pp) == 0);
837 VM_STAT_ADD(page_lookup_cnt[8]);
838
839 /*
840 * page_relcaim will insure that we
841 * have this page exclusively
842 */
843
844 if (!page_reclaim(pp, NULL)) {
845 /*
846 * Page_reclaim dropped whatever lock
847 * we held.
848 */
849 VM_STAT_ADD(page_lookup_cnt[9]);
850 phm = PAGE_HASH_MUTEX(index);
851 mutex_enter(phm);
852 hash_locked = 1;
853 goto top;
854 } else if (se == SE_SHARED && newpp == NULL) {
855 VM_STAT_ADD(page_lookup_cnt[10]);
856 page_downgrade(pp);
857 }
858 }
859
860 if (hash_locked) {
861 mutex_exit(phm);
862 }
863
864 if (newpp != NULL && pp->p_szc < newpp->p_szc &&
865 PAGE_EXCL(pp) && nrelocp != NULL) {
866 ASSERT(nrelocp != NULL);
867 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
868 NULL);
869 if (*nrelocp > 0) {
870 VM_STAT_COND_ADD(*nrelocp == 1,
871 page_lookup_cnt[11]);
872 VM_STAT_COND_ADD(*nrelocp > 1,
873 page_lookup_cnt[12]);
874 pp = newpp;
875 se = SE_EXCL;
876 } else {
877 if (se == SE_SHARED) {
878 page_downgrade(pp);
879 }
880 VM_STAT_ADD(page_lookup_cnt[13]);
881 }
882 } else if (newpp != NULL && nrelocp != NULL) {
883 if (PAGE_EXCL(pp) && se == SE_SHARED) {
884 page_downgrade(pp);
885 }
886 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
887 page_lookup_cnt[14]);
888 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
889 page_lookup_cnt[15]);
890 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
891 page_lookup_cnt[16]);
892 } else if (newpp != NULL && PAGE_EXCL(pp)) {
893 se = SE_EXCL;
894 }
895 } else if (!hash_locked) {
896 VM_STAT_ADD(page_lookup_cnt[17]);
897 phm = PAGE_HASH_MUTEX(index);
898 mutex_enter(phm);
899 hash_locked = 1;
900 goto top;
901 } else if (newpp != NULL) {
902 /*
903 * If we have a preallocated page then
904 * insert it now and basically behave like
905 * page_create.
906 */
907 VM_STAT_ADD(page_lookup_cnt[18]);
908 /*
909 * Since we hold the page hash mutex and
910 * just searched for this page, page_hashin
911 * had better not fail. If it does, that
912 * means some thread did not follow the
913 * page hash mutex rules. Panic now and
914 * get it over with. As usual, go down
915 * holding all the locks.
916 */
917 ASSERT(MUTEX_HELD(phm));
918 if (!page_hashin(newpp, vp, off, phm)) {
919 ASSERT(MUTEX_HELD(phm));
920 panic("page_lookup_create: hashin failed %p %p %llx %p",
921 (void *)newpp, (void *)vp, off, (void *)phm);
922 /*NOTREACHED*/
923 }
924 ASSERT(MUTEX_HELD(phm));
925 mutex_exit(phm);
926 phm = NULL;
927 page_set_props(newpp, P_REF);
928 page_io_lock(newpp);
929 pp = newpp;
930 se = SE_EXCL;
931 } else {
932 VM_STAT_ADD(page_lookup_cnt[19]);
933 mutex_exit(phm);
934 }
935
936 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
937
938 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
939
940 return (pp);
941 }
942
943 /*
944 * Search the hash list for the page representing the
945 * specified [vp, offset] and return it locked. Skip
946 * free pages and pages that cannot be locked as requested.
947 * Used while attempting to kluster pages.
948 */
949 page_t *
page_lookup_nowait(vnode_t * vp,u_offset_t off,se_t se)950 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
951 {
952 page_t *pp;
953 kmutex_t *phm;
954 ulong_t index;
955 uint_t locked;
956
957 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
958 VM_STAT_ADD(page_lookup_nowait_cnt[0]);
959
960 index = PAGE_HASH_FUNC(vp, off);
961 pp = page_hash_search(index, vp, off);
962 locked = 0;
963 if (pp == NULL) {
964 top:
965 VM_STAT_ADD(page_lookup_nowait_cnt[1]);
966 locked = 1;
967 phm = PAGE_HASH_MUTEX(index);
968 mutex_enter(phm);
969 pp = page_hash_search(index, vp, off);
970 }
971
972 if (pp == NULL || PP_ISFREE(pp)) {
973 VM_STAT_ADD(page_lookup_nowait_cnt[2]);
974 pp = NULL;
975 } else {
976 if (!page_trylock(pp, se)) {
977 VM_STAT_ADD(page_lookup_nowait_cnt[3]);
978 pp = NULL;
979 } else {
980 VM_STAT_ADD(page_lookup_nowait_cnt[4]);
981 /*
982 * See the comment in page_lookup()
983 */
984 if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
985 ((u_offset_t)(pp->p_offset) != off)) {
986 VM_STAT_ADD(page_lookup_nowait_cnt[5]);
987 if (locked) {
988 panic("page_lookup_nowait %p",
989 (void *)pp);
990 /*NOTREACHED*/
991 }
992 page_unlock(pp);
993 goto top;
994 }
995 if (PP_ISFREE(pp)) {
996 VM_STAT_ADD(page_lookup_nowait_cnt[6]);
997 page_unlock(pp);
998 pp = NULL;
999 }
1000 }
1001 }
1002 if (locked) {
1003 VM_STAT_ADD(page_lookup_nowait_cnt[7]);
1004 mutex_exit(phm);
1005 }
1006
1007 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1008
1009 return (pp);
1010 }
1011
1012 /*
1013 * Search the hash list for a page with the specified [vp, off]
1014 * that is known to exist and is already locked. This routine
1015 * is typically used by segment SOFTUNLOCK routines.
1016 */
1017 page_t *
page_find(vnode_t * vp,u_offset_t off)1018 page_find(vnode_t *vp, u_offset_t off)
1019 {
1020 page_t *pp;
1021 kmutex_t *phm;
1022 ulong_t index;
1023
1024 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1025 VM_STAT_ADD(page_find_cnt);
1026
1027 index = PAGE_HASH_FUNC(vp, off);
1028 phm = PAGE_HASH_MUTEX(index);
1029
1030 mutex_enter(phm);
1031 pp = page_hash_search(index, vp, off);
1032 mutex_exit(phm);
1033
1034 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1035 return (pp);
1036 }
1037
1038 /*
1039 * Determine whether a page with the specified [vp, off]
1040 * currently exists in the system. Obviously this should
1041 * only be considered as a hint since nothing prevents the
1042 * page from disappearing or appearing immediately after
1043 * the return from this routine. Subsequently, we don't
1044 * even bother to lock the list.
1045 */
1046 page_t *
page_exists(vnode_t * vp,u_offset_t off)1047 page_exists(vnode_t *vp, u_offset_t off)
1048 {
1049 ulong_t index;
1050
1051 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1052 VM_STAT_ADD(page_exists_cnt);
1053
1054 index = PAGE_HASH_FUNC(vp, off);
1055
1056 return (page_hash_search(index, vp, off));
1057 }
1058
1059 /*
1060 * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1061 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array
1062 * with these pages locked SHARED. If necessary reclaim pages from
1063 * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1064 *
1065 * If we fail to lock pages still return 1 if pages exist and contiguous.
1066 * But in this case return value is just a hint. ppa array won't be filled.
1067 * Caller should initialize ppa[0] as NULL to distinguish return value.
1068 *
1069 * Returns 0 if pages don't exist or not physically contiguous.
1070 *
1071 * This routine doesn't work for anonymous(swapfs) pages.
1072 */
1073 int
page_exists_physcontig(vnode_t * vp,u_offset_t off,uint_t szc,page_t * ppa[])1074 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1075 {
1076 pgcnt_t pages;
1077 pfn_t pfn;
1078 page_t *rootpp;
1079 pgcnt_t i;
1080 pgcnt_t j;
1081 u_offset_t save_off = off;
1082 ulong_t index;
1083 kmutex_t *phm;
1084 page_t *pp;
1085 uint_t pszc;
1086 int loopcnt = 0;
1087
1088 ASSERT(szc != 0);
1089 ASSERT(vp != NULL);
1090 ASSERT(!IS_SWAPFSVP(vp));
1091 ASSERT(!VN_ISKAS(vp));
1092
1093 again:
1094 if (++loopcnt > 3) {
1095 VM_STAT_ADD(page_exphcontg[0]);
1096 return (0);
1097 }
1098
1099 index = PAGE_HASH_FUNC(vp, off);
1100 phm = PAGE_HASH_MUTEX(index);
1101
1102 mutex_enter(phm);
1103 pp = page_hash_search(index, vp, off);
1104 mutex_exit(phm);
1105
1106 VM_STAT_ADD(page_exphcontg[1]);
1107
1108 if (pp == NULL) {
1109 VM_STAT_ADD(page_exphcontg[2]);
1110 return (0);
1111 }
1112
1113 pages = page_get_pagecnt(szc);
1114 rootpp = pp;
1115 pfn = rootpp->p_pagenum;
1116
1117 if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1118 VM_STAT_ADD(page_exphcontg[3]);
1119 if (!page_trylock(pp, SE_SHARED)) {
1120 VM_STAT_ADD(page_exphcontg[4]);
1121 return (1);
1122 }
1123 /*
1124 * Also check whether p_pagenum was modified by DR.
1125 */
1126 if (pp->p_szc != pszc || pp->p_vnode != vp ||
1127 pp->p_offset != off || pp->p_pagenum != pfn) {
1128 VM_STAT_ADD(page_exphcontg[5]);
1129 page_unlock(pp);
1130 off = save_off;
1131 goto again;
1132 }
1133 /*
1134 * szc was non zero and vnode and offset matched after we
1135 * locked the page it means it can't become free on us.
1136 */
1137 ASSERT(!PP_ISFREE(pp));
1138 if (!IS_P2ALIGNED(pfn, pages)) {
1139 page_unlock(pp);
1140 return (0);
1141 }
1142 ppa[0] = pp;
1143 pp++;
1144 off += PAGESIZE;
1145 pfn++;
1146 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1147 if (!page_trylock(pp, SE_SHARED)) {
1148 VM_STAT_ADD(page_exphcontg[6]);
1149 pp--;
1150 while (i-- > 0) {
1151 page_unlock(pp);
1152 pp--;
1153 }
1154 ppa[0] = NULL;
1155 return (1);
1156 }
1157 if (pp->p_szc != pszc) {
1158 VM_STAT_ADD(page_exphcontg[7]);
1159 page_unlock(pp);
1160 pp--;
1161 while (i-- > 0) {
1162 page_unlock(pp);
1163 pp--;
1164 }
1165 ppa[0] = NULL;
1166 off = save_off;
1167 goto again;
1168 }
1169 /*
1170 * szc the same as for previous already locked pages
1171 * with right identity. Since this page had correct
1172 * szc after we locked it can't get freed or destroyed
1173 * and therefore must have the expected identity.
1174 */
1175 ASSERT(!PP_ISFREE(pp));
1176 if (pp->p_vnode != vp ||
1177 pp->p_offset != off) {
1178 panic("page_exists_physcontig: "
1179 "large page identity doesn't match");
1180 }
1181 ppa[i] = pp;
1182 ASSERT(pp->p_pagenum == pfn);
1183 }
1184 VM_STAT_ADD(page_exphcontg[8]);
1185 ppa[pages] = NULL;
1186 return (1);
1187 } else if (pszc >= szc) {
1188 VM_STAT_ADD(page_exphcontg[9]);
1189 if (!IS_P2ALIGNED(pfn, pages)) {
1190 return (0);
1191 }
1192 return (1);
1193 }
1194
1195 if (!IS_P2ALIGNED(pfn, pages)) {
1196 VM_STAT_ADD(page_exphcontg[10]);
1197 return (0);
1198 }
1199
1200 if (page_numtomemseg_nolock(pfn) !=
1201 page_numtomemseg_nolock(pfn + pages - 1)) {
1202 VM_STAT_ADD(page_exphcontg[11]);
1203 return (0);
1204 }
1205
1206 /*
1207 * We loop up 4 times across pages to promote page size.
1208 * We're extra cautious to promote page size atomically with respect
1209 * to everybody else. But we can probably optimize into 1 loop if
1210 * this becomes an issue.
1211 */
1212
1213 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1214 if (!page_trylock(pp, SE_EXCL)) {
1215 VM_STAT_ADD(page_exphcontg[12]);
1216 break;
1217 }
1218 /*
1219 * Check whether p_pagenum was modified by DR.
1220 */
1221 if (pp->p_pagenum != pfn) {
1222 page_unlock(pp);
1223 break;
1224 }
1225 if (pp->p_vnode != vp ||
1226 pp->p_offset != off) {
1227 VM_STAT_ADD(page_exphcontg[13]);
1228 page_unlock(pp);
1229 break;
1230 }
1231 if (pp->p_szc >= szc) {
1232 ASSERT(i == 0);
1233 page_unlock(pp);
1234 off = save_off;
1235 goto again;
1236 }
1237 }
1238
1239 if (i != pages) {
1240 VM_STAT_ADD(page_exphcontg[14]);
1241 --pp;
1242 while (i-- > 0) {
1243 page_unlock(pp);
1244 --pp;
1245 }
1246 return (0);
1247 }
1248
1249 pp = rootpp;
1250 for (i = 0; i < pages; i++, pp++) {
1251 if (PP_ISFREE(pp)) {
1252 VM_STAT_ADD(page_exphcontg[15]);
1253 ASSERT(!PP_ISAGED(pp));
1254 ASSERT(pp->p_szc == 0);
1255 if (!page_reclaim(pp, NULL)) {
1256 break;
1257 }
1258 } else {
1259 ASSERT(pp->p_szc < szc);
1260 VM_STAT_ADD(page_exphcontg[16]);
1261 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1262 }
1263 }
1264 if (i < pages) {
1265 VM_STAT_ADD(page_exphcontg[17]);
1266 /*
1267 * page_reclaim failed because we were out of memory.
1268 * drop the rest of the locks and return because this page
1269 * must be already reallocated anyway.
1270 */
1271 pp = rootpp;
1272 for (j = 0; j < pages; j++, pp++) {
1273 if (j != i) {
1274 page_unlock(pp);
1275 }
1276 }
1277 return (0);
1278 }
1279
1280 off = save_off;
1281 pp = rootpp;
1282 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1283 ASSERT(PAGE_EXCL(pp));
1284 ASSERT(!PP_ISFREE(pp));
1285 ASSERT(!hat_page_is_mapped(pp));
1286 ASSERT(pp->p_vnode == vp);
1287 ASSERT(pp->p_offset == off);
1288 pp->p_szc = szc;
1289 }
1290 pp = rootpp;
1291 for (i = 0; i < pages; i++, pp++) {
1292 if (ppa == NULL) {
1293 page_unlock(pp);
1294 } else {
1295 ppa[i] = pp;
1296 page_downgrade(ppa[i]);
1297 }
1298 }
1299 if (ppa != NULL) {
1300 ppa[pages] = NULL;
1301 }
1302 VM_STAT_ADD(page_exphcontg[18]);
1303 ASSERT(vp->v_pages != NULL);
1304 return (1);
1305 }
1306
1307 /*
1308 * Determine whether a page with the specified [vp, off]
1309 * currently exists in the system and if so return its
1310 * size code. Obviously this should only be considered as
1311 * a hint since nothing prevents the page from disappearing
1312 * or appearing immediately after the return from this routine.
1313 */
1314 int
page_exists_forreal(vnode_t * vp,u_offset_t off,uint_t * szc)1315 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1316 {
1317 page_t *pp;
1318 kmutex_t *phm;
1319 ulong_t index;
1320 int rc = 0;
1321
1322 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1323 ASSERT(szc != NULL);
1324 VM_STAT_ADD(page_exists_forreal_cnt);
1325
1326 index = PAGE_HASH_FUNC(vp, off);
1327 phm = PAGE_HASH_MUTEX(index);
1328
1329 mutex_enter(phm);
1330 pp = page_hash_search(index, vp, off);
1331 if (pp != NULL) {
1332 *szc = pp->p_szc;
1333 rc = 1;
1334 }
1335 mutex_exit(phm);
1336 return (rc);
1337 }
1338
1339 /* wakeup threads waiting for pages in page_create_get_something() */
1340 void
wakeup_pcgs(void)1341 wakeup_pcgs(void)
1342 {
1343 if (!CV_HAS_WAITERS(&pcgs_cv))
1344 return;
1345 cv_broadcast(&pcgs_cv);
1346 }
1347
1348 /*
1349 * 'freemem' is used all over the kernel as an indication of how many
1350 * pages are free (either on the cache list or on the free page list)
1351 * in the system. In very few places is a really accurate 'freemem'
1352 * needed. To avoid contention of the lock protecting a the
1353 * single freemem, it was spread out into NCPU buckets. Set_freemem
1354 * sets freemem to the total of all NCPU buckets. It is called from
1355 * clock() on each TICK.
1356 */
1357 void
set_freemem(void)1358 set_freemem(void)
1359 {
1360 struct pcf *p;
1361 ulong_t t;
1362 uint_t i;
1363
1364 t = 0;
1365 p = pcf;
1366 for (i = 0; i < pcf_fanout; i++) {
1367 t += p->pcf_count;
1368 p++;
1369 }
1370 freemem = t;
1371
1372 /*
1373 * Don't worry about grabbing mutex. It's not that
1374 * critical if we miss a tick or two. This is
1375 * where we wakeup possible delayers in
1376 * page_create_get_something().
1377 */
1378 wakeup_pcgs();
1379 }
1380
1381 ulong_t
get_freemem()1382 get_freemem()
1383 {
1384 struct pcf *p;
1385 ulong_t t;
1386 uint_t i;
1387
1388 t = 0;
1389 p = pcf;
1390 for (i = 0; i < pcf_fanout; i++) {
1391 t += p->pcf_count;
1392 p++;
1393 }
1394 /*
1395 * We just calculated it, might as well set it.
1396 */
1397 freemem = t;
1398 return (t);
1399 }
1400
1401 /*
1402 * Acquire all of the page cache & free (pcf) locks.
1403 */
1404 void
pcf_acquire_all()1405 pcf_acquire_all()
1406 {
1407 struct pcf *p;
1408 uint_t i;
1409
1410 p = pcf;
1411 for (i = 0; i < pcf_fanout; i++) {
1412 mutex_enter(&p->pcf_lock);
1413 p++;
1414 }
1415 }
1416
1417 /*
1418 * Release all the pcf_locks.
1419 */
1420 void
pcf_release_all()1421 pcf_release_all()
1422 {
1423 struct pcf *p;
1424 uint_t i;
1425
1426 p = pcf;
1427 for (i = 0; i < pcf_fanout; i++) {
1428 mutex_exit(&p->pcf_lock);
1429 p++;
1430 }
1431 }
1432
1433 /*
1434 * Inform the VM system that we need some pages freed up.
1435 * Calls must be symmetric, e.g.:
1436 *
1437 * page_needfree(100);
1438 * wait a bit;
1439 * page_needfree(-100);
1440 */
1441 void
page_needfree(spgcnt_t npages)1442 page_needfree(spgcnt_t npages)
1443 {
1444 mutex_enter(&new_freemem_lock);
1445 needfree += npages;
1446 mutex_exit(&new_freemem_lock);
1447 }
1448
1449 /*
1450 * Throttle for page_create(): try to prevent freemem from dropping
1451 * below throttlefree. We can't provide a 100% guarantee because
1452 * KM_NOSLEEP allocations, page_reclaim(), and various other things
1453 * nibble away at the freelist. However, we can block all PG_WAIT
1454 * allocations until memory becomes available. The motivation is
1455 * that several things can fall apart when there's no free memory:
1456 *
1457 * (1) If pageout() needs memory to push a page, the system deadlocks.
1458 *
1459 * (2) By (broken) specification, timeout(9F) can neither fail nor
1460 * block, so it has no choice but to panic the system if it
1461 * cannot allocate a callout structure.
1462 *
1463 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1464 * it panics if it cannot allocate a callback structure.
1465 *
1466 * (4) Untold numbers of third-party drivers have not yet been hardened
1467 * against KM_NOSLEEP and/or allocb() failures; they simply assume
1468 * success and panic the system with a data fault on failure.
1469 * (The long-term solution to this particular problem is to ship
1470 * hostile fault-injecting DEBUG kernels with the DDK.)
1471 *
1472 * It is theoretically impossible to guarantee success of non-blocking
1473 * allocations, but in practice, this throttle is very hard to break.
1474 */
1475 static int
page_create_throttle(pgcnt_t npages,int flags)1476 page_create_throttle(pgcnt_t npages, int flags)
1477 {
1478 ulong_t fm;
1479 uint_t i;
1480 pgcnt_t tf; /* effective value of throttlefree */
1481
1482 atomic_inc_64(&n_throttle);
1483
1484 /*
1485 * Normal priority allocations.
1486 */
1487 if ((flags & (PG_WAIT | PG_NORMALPRI)) == PG_NORMALPRI) {
1488 ASSERT(!(flags & (PG_PANIC | PG_PUSHPAGE)));
1489 return (freemem >= npages + throttlefree);
1490 }
1491
1492 /*
1493 * Never deny pages when:
1494 * - it's a thread that cannot block [NOMEMWAIT()]
1495 * - the allocation cannot block and must not fail
1496 * - the allocation cannot block and is pageout dispensated
1497 */
1498 if (NOMEMWAIT() ||
1499 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1500 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1501 return (1);
1502
1503 /*
1504 * If the allocation can't block, we look favorably upon it
1505 * unless we're below pageout_reserve. In that case we fail
1506 * the allocation because we want to make sure there are a few
1507 * pages available for pageout.
1508 */
1509 if ((flags & PG_WAIT) == 0)
1510 return (freemem >= npages + pageout_reserve);
1511
1512 /* Calculate the effective throttlefree value */
1513 tf = throttlefree -
1514 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1515
1516 WAKE_PAGEOUT_SCANNER(page__create__throttle);
1517
1518 for (;;) {
1519 fm = 0;
1520 pcf_acquire_all();
1521 mutex_enter(&new_freemem_lock);
1522 for (i = 0; i < pcf_fanout; i++) {
1523 fm += pcf[i].pcf_count;
1524 pcf[i].pcf_wait++;
1525 mutex_exit(&pcf[i].pcf_lock);
1526 }
1527 freemem = fm;
1528 if (freemem >= npages + tf) {
1529 mutex_exit(&new_freemem_lock);
1530 break;
1531 }
1532 needfree += npages;
1533 freemem_wait++;
1534 cv_wait(&freemem_cv, &new_freemem_lock);
1535 freemem_wait--;
1536 needfree -= npages;
1537 mutex_exit(&new_freemem_lock);
1538 }
1539 return (1);
1540 }
1541
1542 /*
1543 * page_create_wait() is called to either coalesce pages from the
1544 * different pcf buckets or to wait because there simply are not
1545 * enough pages to satisfy the caller's request.
1546 *
1547 * Sadly, this is called from platform/vm/vm_machdep.c
1548 */
1549 int
page_create_wait(pgcnt_t npages,uint_t flags)1550 page_create_wait(pgcnt_t npages, uint_t flags)
1551 {
1552 pgcnt_t total;
1553 uint_t i;
1554 struct pcf *p;
1555
1556 /*
1557 * Wait until there are enough free pages to satisfy our
1558 * entire request.
1559 * We set needfree += npages before prodding pageout, to make sure
1560 * it does real work when npages > lotsfree > freemem.
1561 */
1562 VM_STAT_ADD(page_create_not_enough);
1563
1564 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1565 checkagain:
1566 if ((flags & PG_NORELOC) &&
1567 kcage_freemem < kcage_throttlefree + npages)
1568 (void) kcage_create_throttle(npages, flags);
1569
1570 if (freemem < npages + throttlefree)
1571 if (!page_create_throttle(npages, flags))
1572 return (0);
1573
1574 if (pcf_decrement_bucket(npages) ||
1575 pcf_decrement_multiple(&total, npages, 0))
1576 return (1);
1577
1578 /*
1579 * All of the pcf locks are held, there are not enough pages
1580 * to satisfy the request (npages < total).
1581 * Be sure to acquire the new_freemem_lock before dropping
1582 * the pcf locks. This prevents dropping wakeups in page_free().
1583 * The order is always pcf_lock then new_freemem_lock.
1584 *
1585 * Since we hold all the pcf locks, it is a good time to set freemem.
1586 *
1587 * If the caller does not want to wait, return now.
1588 * Else turn the pageout daemon loose to find something
1589 * and wait till it does.
1590 *
1591 */
1592 freemem = total;
1593
1594 if ((flags & PG_WAIT) == 0) {
1595 pcf_release_all();
1596
1597 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1598 "page_create_nomem:npages %ld freemem %ld", npages, freemem);
1599 return (0);
1600 }
1601
1602 ASSERT(proc_pageout != NULL);
1603 WAKE_PAGEOUT_SCANNER(page__create__wait);
1604
1605 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1606 "page_create_sleep_start: freemem %ld needfree %ld",
1607 freemem, needfree);
1608
1609 /*
1610 * We are going to wait.
1611 * We currently hold all of the pcf_locks,
1612 * get the new_freemem_lock (it protects freemem_wait),
1613 * before dropping the pcf_locks.
1614 */
1615 mutex_enter(&new_freemem_lock);
1616
1617 p = pcf;
1618 for (i = 0; i < pcf_fanout; i++) {
1619 p->pcf_wait++;
1620 mutex_exit(&p->pcf_lock);
1621 p++;
1622 }
1623
1624 needfree += npages;
1625 freemem_wait++;
1626
1627 cv_wait(&freemem_cv, &new_freemem_lock);
1628
1629 freemem_wait--;
1630 needfree -= npages;
1631
1632 mutex_exit(&new_freemem_lock);
1633
1634 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1635 "page_create_sleep_end: freemem %ld needfree %ld",
1636 freemem, needfree);
1637
1638 VM_STAT_ADD(page_create_not_enough_again);
1639 goto checkagain;
1640 }
1641 /*
1642 * A routine to do the opposite of page_create_wait().
1643 */
1644 void
page_create_putback(spgcnt_t npages)1645 page_create_putback(spgcnt_t npages)
1646 {
1647 struct pcf *p;
1648 pgcnt_t lump;
1649 uint_t *which;
1650
1651 /*
1652 * When a contiguous lump is broken up, we have to
1653 * deal with lots of pages (min 64) so lets spread
1654 * the wealth around.
1655 */
1656 lump = roundup(npages, pcf_fanout) / pcf_fanout;
1657 freemem += npages;
1658
1659 for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1660 which = &p->pcf_count;
1661
1662 mutex_enter(&p->pcf_lock);
1663
1664 if (p->pcf_block) {
1665 which = &p->pcf_reserve;
1666 }
1667
1668 if (lump < npages) {
1669 *which += (uint_t)lump;
1670 npages -= lump;
1671 } else {
1672 *which += (uint_t)npages;
1673 npages = 0;
1674 }
1675
1676 if (p->pcf_wait) {
1677 mutex_enter(&new_freemem_lock);
1678 /*
1679 * Check to see if some other thread
1680 * is actually waiting. Another bucket
1681 * may have woken it up by now. If there
1682 * are no waiters, then set our pcf_wait
1683 * count to zero to avoid coming in here
1684 * next time.
1685 */
1686 if (freemem_wait) {
1687 if (npages > 1) {
1688 cv_broadcast(&freemem_cv);
1689 } else {
1690 cv_signal(&freemem_cv);
1691 }
1692 p->pcf_wait--;
1693 } else {
1694 p->pcf_wait = 0;
1695 }
1696 mutex_exit(&new_freemem_lock);
1697 }
1698 mutex_exit(&p->pcf_lock);
1699 }
1700 ASSERT(npages == 0);
1701 }
1702
1703 /*
1704 * A helper routine for page_create_get_something.
1705 * The indenting got to deep down there.
1706 * Unblock the pcf counters. Any pages freed after
1707 * pcf_block got set are moved to pcf_count and
1708 * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1709 */
1710 static void
pcgs_unblock(void)1711 pcgs_unblock(void)
1712 {
1713 int i;
1714 struct pcf *p;
1715
1716 /* Update freemem while we're here. */
1717 freemem = 0;
1718 p = pcf;
1719 for (i = 0; i < pcf_fanout; i++) {
1720 mutex_enter(&p->pcf_lock);
1721 ASSERT(p->pcf_count == 0);
1722 p->pcf_count = p->pcf_reserve;
1723 p->pcf_block = 0;
1724 freemem += p->pcf_count;
1725 if (p->pcf_wait) {
1726 mutex_enter(&new_freemem_lock);
1727 if (freemem_wait) {
1728 if (p->pcf_reserve > 1) {
1729 cv_broadcast(&freemem_cv);
1730 p->pcf_wait = 0;
1731 } else {
1732 cv_signal(&freemem_cv);
1733 p->pcf_wait--;
1734 }
1735 } else {
1736 p->pcf_wait = 0;
1737 }
1738 mutex_exit(&new_freemem_lock);
1739 }
1740 p->pcf_reserve = 0;
1741 mutex_exit(&p->pcf_lock);
1742 p++;
1743 }
1744 }
1745
1746 /*
1747 * Called from page_create_va() when both the cache and free lists
1748 * have been checked once.
1749 *
1750 * Either returns a page or panics since the accounting was done
1751 * way before we got here.
1752 *
1753 * We don't come here often, so leave the accounting on permanently.
1754 */
1755
1756 #define MAX_PCGS 100
1757
1758 #ifdef DEBUG
1759 #define PCGS_TRIES 100
1760 #else /* DEBUG */
1761 #define PCGS_TRIES 10
1762 #endif /* DEBUG */
1763
1764 #ifdef VM_STATS
1765 uint_t pcgs_counts[PCGS_TRIES];
1766 uint_t pcgs_too_many;
1767 uint_t pcgs_entered;
1768 uint_t pcgs_entered_noreloc;
1769 uint_t pcgs_locked;
1770 uint_t pcgs_cagelocked;
1771 #endif /* VM_STATS */
1772
1773 static page_t *
page_create_get_something(vnode_t * vp,u_offset_t off,struct seg * seg,caddr_t vaddr,uint_t flags)1774 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1775 caddr_t vaddr, uint_t flags)
1776 {
1777 uint_t count;
1778 page_t *pp;
1779 uint_t locked, i;
1780 struct pcf *p;
1781 lgrp_t *lgrp;
1782 int cagelocked = 0;
1783
1784 VM_STAT_ADD(pcgs_entered);
1785
1786 /*
1787 * Tap any reserve freelists: if we fail now, we'll die
1788 * since the page(s) we're looking for have already been
1789 * accounted for.
1790 */
1791 flags |= PG_PANIC;
1792
1793 if ((flags & PG_NORELOC) != 0) {
1794 VM_STAT_ADD(pcgs_entered_noreloc);
1795 /*
1796 * Requests for free pages from critical threads
1797 * such as pageout still won't throttle here, but
1798 * we must try again, to give the cageout thread
1799 * another chance to catch up. Since we already
1800 * accounted for the pages, we had better get them
1801 * this time.
1802 *
1803 * N.B. All non-critical threads acquire the pcgs_cagelock
1804 * to serialize access to the freelists. This implements a
1805 * turnstile-type synchornization to avoid starvation of
1806 * critical requests for PG_NORELOC memory by non-critical
1807 * threads: all non-critical threads must acquire a 'ticket'
1808 * before passing through, which entails making sure
1809 * kcage_freemem won't fall below minfree prior to grabbing
1810 * pages from the freelists.
1811 */
1812 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1813 mutex_enter(&pcgs_cagelock);
1814 cagelocked = 1;
1815 VM_STAT_ADD(pcgs_cagelocked);
1816 }
1817 }
1818
1819 /*
1820 * Time to get serious.
1821 * We failed to get a `correctly colored' page from both the
1822 * free and cache lists.
1823 * We escalate in stage.
1824 *
1825 * First try both lists without worring about color.
1826 *
1827 * Then, grab all page accounting locks (ie. pcf[]) and
1828 * steal any pages that they have and set the pcf_block flag to
1829 * stop deletions from the lists. This will help because
1830 * a page can get added to the free list while we are looking
1831 * at the cache list, then another page could be added to the cache
1832 * list allowing the page on the free list to be removed as we
1833 * move from looking at the cache list to the free list. This
1834 * could happen over and over. We would never find the page
1835 * we have accounted for.
1836 *
1837 * Noreloc pages are a subset of the global (relocatable) page pool.
1838 * They are not tracked separately in the pcf bins, so it is
1839 * impossible to know when doing pcf accounting if the available
1840 * page(s) are noreloc pages or not. When looking for a noreloc page
1841 * it is quite easy to end up here even if the global (relocatable)
1842 * page pool has plenty of free pages but the noreloc pool is empty.
1843 *
1844 * When the noreloc pool is empty (or low), additional noreloc pages
1845 * are created by converting pages from the global page pool. This
1846 * process will stall during pcf accounting if the pcf bins are
1847 * already locked. Such is the case when a noreloc allocation is
1848 * looping here in page_create_get_something waiting for more noreloc
1849 * pages to appear.
1850 *
1851 * Short of adding a new field to the pcf bins to accurately track
1852 * the number of free noreloc pages, we instead do not grab the
1853 * pcgs_lock, do not set the pcf blocks and do not timeout when
1854 * allocating a noreloc page. This allows noreloc allocations to
1855 * loop without blocking global page pool allocations.
1856 *
1857 * NOTE: the behaviour of page_create_get_something has not changed
1858 * for the case of global page pool allocations.
1859 */
1860
1861 flags &= ~PG_MATCH_COLOR;
1862 locked = 0;
1863 #if defined(__x86)
1864 flags = page_create_update_flags_x86(flags);
1865 #endif
1866
1867 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1868
1869 for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1870 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1871 flags, lgrp);
1872 if (pp == NULL) {
1873 pp = page_get_cachelist(vp, off, seg, vaddr,
1874 flags, lgrp);
1875 }
1876 if (pp == NULL) {
1877 /*
1878 * Serialize. Don't fight with other pcgs().
1879 */
1880 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1881 mutex_enter(&pcgs_lock);
1882 VM_STAT_ADD(pcgs_locked);
1883 locked = 1;
1884 p = pcf;
1885 for (i = 0; i < pcf_fanout; i++) {
1886 mutex_enter(&p->pcf_lock);
1887 ASSERT(p->pcf_block == 0);
1888 p->pcf_block = 1;
1889 p->pcf_reserve = p->pcf_count;
1890 p->pcf_count = 0;
1891 mutex_exit(&p->pcf_lock);
1892 p++;
1893 }
1894 freemem = 0;
1895 }
1896
1897 if (count) {
1898 /*
1899 * Since page_free() puts pages on
1900 * a list then accounts for it, we
1901 * just have to wait for page_free()
1902 * to unlock any page it was working
1903 * with. The page_lock()-page_reclaim()
1904 * path falls in the same boat.
1905 *
1906 * We don't need to check on the
1907 * PG_WAIT flag, we have already
1908 * accounted for the page we are
1909 * looking for in page_create_va().
1910 *
1911 * We just wait a moment to let any
1912 * locked pages on the lists free up,
1913 * then continue around and try again.
1914 *
1915 * Will be awakened by set_freemem().
1916 */
1917 mutex_enter(&pcgs_wait_lock);
1918 cv_wait(&pcgs_cv, &pcgs_wait_lock);
1919 mutex_exit(&pcgs_wait_lock);
1920 }
1921 } else {
1922 #ifdef VM_STATS
1923 if (count >= PCGS_TRIES) {
1924 VM_STAT_ADD(pcgs_too_many);
1925 } else {
1926 VM_STAT_ADD(pcgs_counts[count]);
1927 }
1928 #endif
1929 if (locked) {
1930 pcgs_unblock();
1931 mutex_exit(&pcgs_lock);
1932 }
1933 if (cagelocked)
1934 mutex_exit(&pcgs_cagelock);
1935 return (pp);
1936 }
1937 }
1938 /*
1939 * we go down holding the pcf locks.
1940 */
1941 panic("no %spage found %d",
1942 ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1943 /*NOTREACHED*/
1944 }
1945
1946 /*
1947 * Create enough pages for "bytes" worth of data starting at
1948 * "off" in "vp".
1949 *
1950 * Where flag must be one of:
1951 *
1952 * PG_EXCL: Exclusive create (fail if any page already
1953 * exists in the page cache) which does not
1954 * wait for memory to become available.
1955 *
1956 * PG_WAIT: Non-exclusive create which can wait for
1957 * memory to become available.
1958 *
1959 * PG_PHYSCONTIG: Allocate physically contiguous pages.
1960 * (Not Supported)
1961 *
1962 * A doubly linked list of pages is returned to the caller. Each page
1963 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1964 * lock.
1965 *
1966 * Unable to change the parameters to page_create() in a minor release,
1967 * we renamed page_create() to page_create_va(), changed all known calls
1968 * from page_create() to page_create_va(), and created this wrapper.
1969 *
1970 * Upon a major release, we should break compatibility by deleting this
1971 * wrapper, and replacing all the strings "page_create_va", with "page_create".
1972 *
1973 * NOTE: There is a copy of this interface as page_create_io() in
1974 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1975 * there.
1976 */
1977 page_t *
page_create(vnode_t * vp,u_offset_t off,size_t bytes,uint_t flags)1978 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1979 {
1980 caddr_t random_vaddr;
1981 struct seg kseg;
1982
1983 #ifdef DEBUG
1984 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1985 (void *)caller());
1986 #endif
1987
1988 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1989 (uintptr_t)(off >> PAGESHIFT));
1990 kseg.s_as = &kas;
1991
1992 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1993 }
1994
1995 #ifdef DEBUG
1996 uint32_t pg_alloc_pgs_mtbf = 0;
1997 #endif
1998
1999 /*
2000 * Used for large page support. It will attempt to allocate
2001 * a large page(s) off the freelist.
2002 *
2003 * Returns non zero on failure.
2004 */
2005 int
page_alloc_pages(struct vnode * vp,struct seg * seg,caddr_t addr,page_t ** basepp,page_t * ppa[],uint_t szc,int anypgsz,int pgflags)2006 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
2007 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
2008 {
2009 pgcnt_t npgs, curnpgs, totpgs;
2010 size_t pgsz;
2011 page_t *pplist = NULL, *pp;
2012 int err = 0;
2013 lgrp_t *lgrp;
2014
2015 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
2016 ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2017
2018 /*
2019 * Check if system heavily prefers local large pages over remote
2020 * on systems with multiple lgroups.
2021 */
2022 if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2023 pgflags = PG_LOCAL;
2024 }
2025
2026 VM_STAT_ADD(alloc_pages[0]);
2027
2028 #ifdef DEBUG
2029 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2030 return (ENOMEM);
2031 }
2032 #endif
2033
2034 /*
2035 * One must be NULL but not both.
2036 * And one must be non NULL but not both.
2037 */
2038 ASSERT(basepp != NULL || ppa != NULL);
2039 ASSERT(basepp == NULL || ppa == NULL);
2040
2041 #if defined(__x86)
2042 while (page_chk_freelist(szc) == 0) {
2043 VM_STAT_ADD(alloc_pages[8]);
2044 if (anypgsz == 0 || --szc == 0)
2045 return (ENOMEM);
2046 }
2047 #endif
2048
2049 pgsz = page_get_pagesize(szc);
2050 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2051
2052 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2053
2054 (void) page_create_wait(npgs, PG_WAIT);
2055
2056 while (npgs && szc) {
2057 lgrp = lgrp_mem_choose(seg, addr, pgsz);
2058 if (pgflags == PG_LOCAL) {
2059 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2060 pgflags, lgrp);
2061 if (pp == NULL) {
2062 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2063 0, lgrp);
2064 }
2065 } else {
2066 pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2067 0, lgrp);
2068 }
2069 if (pp != NULL) {
2070 VM_STAT_ADD(alloc_pages[1]);
2071 page_list_concat(&pplist, &pp);
2072 ASSERT(npgs >= curnpgs);
2073 npgs -= curnpgs;
2074 } else if (anypgsz) {
2075 VM_STAT_ADD(alloc_pages[2]);
2076 szc--;
2077 pgsz = page_get_pagesize(szc);
2078 curnpgs = pgsz >> PAGESHIFT;
2079 } else {
2080 VM_STAT_ADD(alloc_pages[3]);
2081 ASSERT(npgs == totpgs);
2082 page_create_putback(npgs);
2083 return (ENOMEM);
2084 }
2085 }
2086 if (szc == 0) {
2087 VM_STAT_ADD(alloc_pages[4]);
2088 ASSERT(npgs != 0);
2089 page_create_putback(npgs);
2090 err = ENOMEM;
2091 } else if (basepp != NULL) {
2092 ASSERT(npgs == 0);
2093 ASSERT(ppa == NULL);
2094 *basepp = pplist;
2095 }
2096
2097 npgs = totpgs - npgs;
2098 pp = pplist;
2099
2100 /*
2101 * Clear the free and age bits. Also if we were passed in a ppa then
2102 * fill it in with all the constituent pages from the large page. But
2103 * if we failed to allocate all the pages just free what we got.
2104 */
2105 while (npgs != 0) {
2106 ASSERT(PP_ISFREE(pp));
2107 ASSERT(PP_ISAGED(pp));
2108 if (ppa != NULL || err != 0) {
2109 if (err == 0) {
2110 VM_STAT_ADD(alloc_pages[5]);
2111 PP_CLRFREE(pp);
2112 PP_CLRAGED(pp);
2113 page_sub(&pplist, pp);
2114 *ppa++ = pp;
2115 npgs--;
2116 } else {
2117 VM_STAT_ADD(alloc_pages[6]);
2118 ASSERT(pp->p_szc != 0);
2119 curnpgs = page_get_pagecnt(pp->p_szc);
2120 page_list_break(&pp, &pplist, curnpgs);
2121 page_list_add_pages(pp, 0);
2122 page_create_putback(curnpgs);
2123 ASSERT(npgs >= curnpgs);
2124 npgs -= curnpgs;
2125 }
2126 pp = pplist;
2127 } else {
2128 VM_STAT_ADD(alloc_pages[7]);
2129 PP_CLRFREE(pp);
2130 PP_CLRAGED(pp);
2131 pp = pp->p_next;
2132 npgs--;
2133 }
2134 }
2135 return (err);
2136 }
2137
2138 /*
2139 * Get a single large page off of the freelists, and set it up for use.
2140 * Number of bytes requested must be a supported page size.
2141 *
2142 * Note that this call may fail even if there is sufficient
2143 * memory available or PG_WAIT is set, so the caller must
2144 * be willing to fallback on page_create_va(), block and retry,
2145 * or fail the requester.
2146 */
2147 page_t *
page_create_va_large(vnode_t * vp,u_offset_t off,size_t bytes,uint_t flags,struct seg * seg,caddr_t vaddr,void * arg)2148 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2149 struct seg *seg, caddr_t vaddr, void *arg)
2150 {
2151 pgcnt_t npages;
2152 page_t *pp;
2153 page_t *rootpp;
2154 lgrp_t *lgrp;
2155 lgrp_id_t *lgrpid = (lgrp_id_t *)arg;
2156
2157 ASSERT(vp != NULL);
2158
2159 ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2160 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2161 /* but no others */
2162
2163 ASSERT((flags & PG_EXCL) == PG_EXCL);
2164
2165 npages = btop(bytes);
2166
2167 if (!kcage_on || panicstr) {
2168 /*
2169 * Cage is OFF, or we are single threaded in
2170 * panic, so make everything a RELOC request.
2171 */
2172 flags &= ~PG_NORELOC;
2173 }
2174
2175 /*
2176 * Make sure there's adequate physical memory available.
2177 * Note: PG_WAIT is ignored here.
2178 */
2179 if (freemem <= throttlefree + npages) {
2180 VM_STAT_ADD(page_create_large_cnt[1]);
2181 return (NULL);
2182 }
2183
2184 /*
2185 * If cage is on, dampen draw from cage when available
2186 * cage space is low.
2187 */
2188 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) &&
2189 kcage_freemem < kcage_throttlefree + npages) {
2190
2191 /*
2192 * The cage is on, the caller wants PG_NORELOC
2193 * pages and available cage memory is very low.
2194 * Call kcage_create_throttle() to attempt to
2195 * control demand on the cage.
2196 */
2197 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2198 VM_STAT_ADD(page_create_large_cnt[2]);
2199 return (NULL);
2200 }
2201 }
2202
2203 if (!pcf_decrement_bucket(npages) &&
2204 !pcf_decrement_multiple(NULL, npages, 1)) {
2205 VM_STAT_ADD(page_create_large_cnt[4]);
2206 return (NULL);
2207 }
2208
2209 /*
2210 * This is where this function behaves fundamentally differently
2211 * than page_create_va(); since we're intending to map the page
2212 * with a single TTE, we have to get it as a physically contiguous
2213 * hardware pagesize chunk. If we can't, we fail.
2214 */
2215 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2216 LGRP_EXISTS(lgrp_table[*lgrpid]))
2217 lgrp = lgrp_table[*lgrpid];
2218 else
2219 lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2220
2221 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2222 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2223 page_create_putback(npages);
2224 VM_STAT_ADD(page_create_large_cnt[5]);
2225 return (NULL);
2226 }
2227
2228 /*
2229 * if we got the page with the wrong mtype give it back this is a
2230 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2231 * inside "if" and the workaround becomes just a nop
2232 */
2233 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2234 page_list_add_pages(rootpp, 0);
2235 page_create_putback(npages);
2236 VM_STAT_ADD(page_create_large_cnt[6]);
2237 return (NULL);
2238 }
2239
2240 /*
2241 * If satisfying this request has left us with too little
2242 * memory, start the wheels turning to get some back. The
2243 * first clause of the test prevents waking up the pageout
2244 * daemon in situations where it would decide that there's
2245 * nothing to do.
2246 */
2247 if (nscan < desscan && freemem < minfree) {
2248 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2249 "pageout_cv_signal:freemem %ld", freemem);
2250 WAKE_PAGEOUT_SCANNER(va__large);
2251 }
2252
2253 pp = rootpp;
2254 while (npages--) {
2255 ASSERT(PAGE_EXCL(pp));
2256 ASSERT(pp->p_vnode == NULL);
2257 ASSERT(!hat_page_is_mapped(pp));
2258 PP_CLRFREE(pp);
2259 PP_CLRAGED(pp);
2260 if (!page_hashin(pp, vp, off, NULL))
2261 panic("page_create_large: hashin failed: page %p",
2262 (void *)pp);
2263 page_io_lock(pp);
2264 off += PAGESIZE;
2265 pp = pp->p_next;
2266 }
2267
2268 VM_STAT_ADD(page_create_large_cnt[0]);
2269 return (rootpp);
2270 }
2271
2272 page_t *
page_create_va(vnode_t * vp,u_offset_t off,size_t bytes,uint_t flags,struct seg * seg,caddr_t vaddr)2273 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2274 struct seg *seg, caddr_t vaddr)
2275 {
2276 page_t *plist = NULL;
2277 pgcnt_t npages;
2278 pgcnt_t found_on_free = 0;
2279 pgcnt_t pages_req;
2280 page_t *npp = NULL;
2281 struct pcf *p;
2282 lgrp_t *lgrp;
2283
2284 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2285 "page_create_start:vp %p off %llx bytes %lu flags %x",
2286 vp, off, bytes, flags);
2287
2288 ASSERT(bytes != 0 && vp != NULL);
2289
2290 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2291 panic("page_create: invalid flags");
2292 /*NOTREACHED*/
2293 }
2294 ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2295 PG_NORELOC | PG_PANIC | PG_PUSHPAGE | PG_NORMALPRI)) == 0);
2296 /* but no others */
2297
2298 pages_req = npages = btopr(bytes);
2299 /*
2300 * Try to see whether request is too large to *ever* be
2301 * satisfied, in order to prevent deadlock. We arbitrarily
2302 * decide to limit maximum size requests to max_page_get.
2303 */
2304 if (npages >= max_page_get) {
2305 if ((flags & PG_WAIT) == 0) {
2306 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2307 "page_create_toobig:vp %p off %llx npages "
2308 "%lu max_page_get %lu",
2309 vp, off, npages, max_page_get);
2310 return (NULL);
2311 } else {
2312 cmn_err(CE_WARN,
2313 "Request for too much kernel memory "
2314 "(%lu bytes), will hang forever", bytes);
2315 for (;;)
2316 delay(1000000000);
2317 }
2318 }
2319
2320 if (!kcage_on || panicstr) {
2321 /*
2322 * Cage is OFF, or we are single threaded in
2323 * panic, so make everything a RELOC request.
2324 */
2325 flags &= ~PG_NORELOC;
2326 }
2327
2328 if (freemem <= throttlefree + npages)
2329 if (!page_create_throttle(npages, flags))
2330 return (NULL);
2331
2332 /*
2333 * If cage is on, dampen draw from cage when available
2334 * cage space is low.
2335 */
2336 if ((flags & PG_NORELOC) &&
2337 kcage_freemem < kcage_throttlefree + npages) {
2338
2339 /*
2340 * The cage is on, the caller wants PG_NORELOC
2341 * pages and available cage memory is very low.
2342 * Call kcage_create_throttle() to attempt to
2343 * control demand on the cage.
2344 */
2345 if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2346 return (NULL);
2347 }
2348
2349 VM_STAT_ADD(page_create_cnt[0]);
2350
2351 if (!pcf_decrement_bucket(npages)) {
2352 /*
2353 * Have to look harder. If npages is greater than
2354 * one, then we might have to coalesce the counters.
2355 *
2356 * Go wait. We come back having accounted
2357 * for the memory.
2358 */
2359 VM_STAT_ADD(page_create_cnt[1]);
2360 if (!page_create_wait(npages, flags)) {
2361 VM_STAT_ADD(page_create_cnt[2]);
2362 return (NULL);
2363 }
2364 }
2365
2366 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2367 "page_create_success:vp %p off %llx", vp, off);
2368
2369 /*
2370 * If satisfying this request has left us with too little
2371 * memory, start the wheels turning to get some back. The
2372 * first clause of the test prevents waking up the pageout
2373 * daemon in situations where it would decide that there's
2374 * nothing to do.
2375 */
2376 if (nscan < desscan && freemem < minfree) {
2377 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2378 "pageout_cv_signal:freemem %ld", freemem);
2379 WAKE_PAGEOUT_SCANNER(va);
2380 }
2381
2382 /*
2383 * Loop around collecting the requested number of pages.
2384 * Most of the time, we have to `create' a new page. With
2385 * this in mind, pull the page off the free list before
2386 * getting the hash lock. This will minimize the hash
2387 * lock hold time, nesting, and the like. If it turns
2388 * out we don't need the page, we put it back at the end.
2389 */
2390 while (npages--) {
2391 page_t *pp;
2392 kmutex_t *phm = NULL;
2393 ulong_t index;
2394
2395 index = PAGE_HASH_FUNC(vp, off);
2396 top:
2397 ASSERT(phm == NULL);
2398 ASSERT(index == PAGE_HASH_FUNC(vp, off));
2399 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2400
2401 if (npp == NULL) {
2402 /*
2403 * Try to get a page from the freelist (ie,
2404 * a page with no [vp, off] tag). If that
2405 * fails, use the cachelist.
2406 *
2407 * During the first attempt at both the free
2408 * and cache lists we try for the correct color.
2409 */
2410 /*
2411 * XXXX-how do we deal with virtual indexed
2412 * caches and and colors?
2413 */
2414 VM_STAT_ADD(page_create_cnt[4]);
2415 /*
2416 * Get lgroup to allocate next page of shared memory
2417 * from and use it to specify where to allocate
2418 * the physical memory
2419 */
2420 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2421 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2422 flags | PG_MATCH_COLOR, lgrp);
2423 if (npp == NULL) {
2424 npp = page_get_cachelist(vp, off, seg,
2425 vaddr, flags | PG_MATCH_COLOR, lgrp);
2426 if (npp == NULL) {
2427 npp = page_create_get_something(vp,
2428 off, seg, vaddr,
2429 flags & ~PG_MATCH_COLOR);
2430 }
2431
2432 if (PP_ISAGED(npp) == 0) {
2433 /*
2434 * Since this page came from the
2435 * cachelist, we must destroy the
2436 * old vnode association.
2437 */
2438 page_hashout(npp, NULL);
2439 }
2440 }
2441 }
2442
2443 /*
2444 * We own this page!
2445 */
2446 ASSERT(PAGE_EXCL(npp));
2447 ASSERT(npp->p_vnode == NULL);
2448 ASSERT(!hat_page_is_mapped(npp));
2449 PP_CLRFREE(npp);
2450 PP_CLRAGED(npp);
2451
2452 /*
2453 * Here we have a page in our hot little mits and are
2454 * just waiting to stuff it on the appropriate lists.
2455 * Get the mutex and check to see if it really does
2456 * not exist.
2457 */
2458 phm = PAGE_HASH_MUTEX(index);
2459 mutex_enter(phm);
2460 pp = page_hash_search(index, vp, off);
2461 if (pp == NULL) {
2462 VM_STAT_ADD(page_create_new);
2463 pp = npp;
2464 npp = NULL;
2465 if (!page_hashin(pp, vp, off, phm)) {
2466 /*
2467 * Since we hold the page hash mutex and
2468 * just searched for this page, page_hashin
2469 * had better not fail. If it does, that
2470 * means somethread did not follow the
2471 * page hash mutex rules. Panic now and
2472 * get it over with. As usual, go down
2473 * holding all the locks.
2474 */
2475 ASSERT(MUTEX_HELD(phm));
2476 panic("page_create: "
2477 "hashin failed %p %p %llx %p",
2478 (void *)pp, (void *)vp, off, (void *)phm);
2479 /*NOTREACHED*/
2480 }
2481 ASSERT(MUTEX_HELD(phm));
2482 mutex_exit(phm);
2483 phm = NULL;
2484
2485 /*
2486 * Hat layer locking need not be done to set
2487 * the following bits since the page is not hashed
2488 * and was on the free list (i.e., had no mappings).
2489 *
2490 * Set the reference bit to protect
2491 * against immediate pageout
2492 *
2493 * XXXmh modify freelist code to set reference
2494 * bit so we don't have to do it here.
2495 */
2496 page_set_props(pp, P_REF);
2497 found_on_free++;
2498 } else {
2499 VM_STAT_ADD(page_create_exists);
2500 if (flags & PG_EXCL) {
2501 /*
2502 * Found an existing page, and the caller
2503 * wanted all new pages. Undo all of the work
2504 * we have done.
2505 */
2506 mutex_exit(phm);
2507 phm = NULL;
2508 while (plist != NULL) {
2509 pp = plist;
2510 page_sub(&plist, pp);
2511 page_io_unlock(pp);
2512 /* large pages should not end up here */
2513 ASSERT(pp->p_szc == 0);
2514 /*LINTED: constant in conditional ctx*/
2515 VN_DISPOSE(pp, B_INVAL, 0, kcred);
2516 }
2517 VM_STAT_ADD(page_create_found_one);
2518 goto fail;
2519 }
2520 ASSERT(flags & PG_WAIT);
2521 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2522 /*
2523 * Start all over again if we blocked trying
2524 * to lock the page.
2525 */
2526 mutex_exit(phm);
2527 VM_STAT_ADD(page_create_page_lock_failed);
2528 phm = NULL;
2529 goto top;
2530 }
2531 mutex_exit(phm);
2532 phm = NULL;
2533
2534 if (PP_ISFREE(pp)) {
2535 ASSERT(PP_ISAGED(pp) == 0);
2536 VM_STAT_ADD(pagecnt.pc_get_cache);
2537 page_list_sub(pp, PG_CACHE_LIST);
2538 PP_CLRFREE(pp);
2539 found_on_free++;
2540 }
2541 }
2542
2543 /*
2544 * Got a page! It is locked. Acquire the i/o
2545 * lock since we are going to use the p_next and
2546 * p_prev fields to link the requested pages together.
2547 */
2548 page_io_lock(pp);
2549 page_add(&plist, pp);
2550 plist = plist->p_next;
2551 off += PAGESIZE;
2552 vaddr += PAGESIZE;
2553 }
2554
2555 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2556 fail:
2557 if (npp != NULL) {
2558 /*
2559 * Did not need this page after all.
2560 * Put it back on the free list.
2561 */
2562 VM_STAT_ADD(page_create_putbacks);
2563 PP_SETFREE(npp);
2564 PP_SETAGED(npp);
2565 npp->p_offset = (u_offset_t)-1;
2566 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2567 page_unlock(npp);
2568
2569 }
2570
2571 ASSERT(pages_req >= found_on_free);
2572
2573 {
2574 uint_t overshoot = (uint_t)(pages_req - found_on_free);
2575
2576 if (overshoot) {
2577 VM_STAT_ADD(page_create_overshoot);
2578 p = &pcf[PCF_INDEX()];
2579 mutex_enter(&p->pcf_lock);
2580 if (p->pcf_block) {
2581 p->pcf_reserve += overshoot;
2582 } else {
2583 p->pcf_count += overshoot;
2584 if (p->pcf_wait) {
2585 mutex_enter(&new_freemem_lock);
2586 if (freemem_wait) {
2587 cv_signal(&freemem_cv);
2588 p->pcf_wait--;
2589 } else {
2590 p->pcf_wait = 0;
2591 }
2592 mutex_exit(&new_freemem_lock);
2593 }
2594 }
2595 mutex_exit(&p->pcf_lock);
2596 /* freemem is approximate, so this test OK */
2597 if (!p->pcf_block)
2598 freemem += overshoot;
2599 }
2600 }
2601
2602 return (plist);
2603 }
2604
2605 /*
2606 * One or more constituent pages of this large page has been marked
2607 * toxic. Simply demote the large page to PAGESIZE pages and let
2608 * page_free() handle it. This routine should only be called by
2609 * large page free routines (page_free_pages() and page_destroy_pages().
2610 * All pages are locked SE_EXCL and have already been marked free.
2611 */
2612 static void
page_free_toxic_pages(page_t * rootpp)2613 page_free_toxic_pages(page_t *rootpp)
2614 {
2615 page_t *tpp;
2616 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2617 uint_t szc = rootpp->p_szc;
2618
2619 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2620 ASSERT(tpp->p_szc == szc);
2621 ASSERT((PAGE_EXCL(tpp) &&
2622 !page_iolock_assert(tpp)) || panicstr);
2623 tpp->p_szc = 0;
2624 }
2625
2626 while (rootpp != NULL) {
2627 tpp = rootpp;
2628 page_sub(&rootpp, tpp);
2629 ASSERT(PP_ISFREE(tpp));
2630 PP_CLRFREE(tpp);
2631 page_free(tpp, 1);
2632 }
2633 }
2634
2635 /*
2636 * Put page on the "free" list.
2637 * The free list is really two lists maintained by
2638 * the PSM of whatever machine we happen to be on.
2639 */
2640 void
page_free(page_t * pp,int dontneed)2641 page_free(page_t *pp, int dontneed)
2642 {
2643 struct pcf *p;
2644 uint_t pcf_index;
2645
2646 ASSERT((PAGE_EXCL(pp) &&
2647 !page_iolock_assert(pp)) || panicstr);
2648
2649 if (PP_ISFREE(pp)) {
2650 panic("page_free: page %p is free", (void *)pp);
2651 }
2652
2653 if (pp->p_szc != 0) {
2654 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2655 PP_ISKAS(pp)) {
2656 panic("page_free: anon or kernel "
2657 "or no vnode large page %p", (void *)pp);
2658 }
2659 page_demote_vp_pages(pp);
2660 ASSERT(pp->p_szc == 0);
2661 }
2662
2663 /*
2664 * The page_struct_lock need not be acquired to examine these
2665 * fields since the page has an "exclusive" lock.
2666 */
2667 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2668 pp->p_slckcnt != 0) {
2669 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2670 "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2671 pp->p_cowcnt, pp->p_slckcnt);
2672 /*NOTREACHED*/
2673 }
2674
2675 ASSERT(!hat_page_getshare(pp));
2676
2677 PP_SETFREE(pp);
2678 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2679 !hat_ismod(pp));
2680 page_clr_all_props(pp);
2681 ASSERT(!hat_page_getshare(pp));
2682
2683 /*
2684 * Now we add the page to the head of the free list.
2685 * But if this page is associated with a paged vnode
2686 * then we adjust the head forward so that the page is
2687 * effectively at the end of the list.
2688 */
2689 if (pp->p_vnode == NULL) {
2690 /*
2691 * Page has no identity, put it on the free list.
2692 */
2693 PP_SETAGED(pp);
2694 pp->p_offset = (u_offset_t)-1;
2695 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2696 VM_STAT_ADD(pagecnt.pc_free_free);
2697 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2698 "page_free_free:pp %p", pp);
2699 } else {
2700 PP_CLRAGED(pp);
2701
2702 if (!dontneed) {
2703 /* move it to the tail of the list */
2704 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2705
2706 VM_STAT_ADD(pagecnt.pc_free_cache);
2707 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2708 "page_free_cache_tail:pp %p", pp);
2709 } else {
2710 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2711
2712 VM_STAT_ADD(pagecnt.pc_free_dontneed);
2713 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2714 "page_free_cache_head:pp %p", pp);
2715 }
2716 }
2717 page_unlock(pp);
2718
2719 /*
2720 * Now do the `freemem' accounting.
2721 */
2722 pcf_index = PCF_INDEX();
2723 p = &pcf[pcf_index];
2724
2725 mutex_enter(&p->pcf_lock);
2726 if (p->pcf_block) {
2727 p->pcf_reserve += 1;
2728 } else {
2729 p->pcf_count += 1;
2730 if (p->pcf_wait) {
2731 mutex_enter(&new_freemem_lock);
2732 /*
2733 * Check to see if some other thread
2734 * is actually waiting. Another bucket
2735 * may have woken it up by now. If there
2736 * are no waiters, then set our pcf_wait
2737 * count to zero to avoid coming in here
2738 * next time. Also, since only one page
2739 * was put on the free list, just wake
2740 * up one waiter.
2741 */
2742 if (freemem_wait) {
2743 cv_signal(&freemem_cv);
2744 p->pcf_wait--;
2745 } else {
2746 p->pcf_wait = 0;
2747 }
2748 mutex_exit(&new_freemem_lock);
2749 }
2750 }
2751 mutex_exit(&p->pcf_lock);
2752
2753 /* freemem is approximate, so this test OK */
2754 if (!p->pcf_block)
2755 freemem += 1;
2756 }
2757
2758 /*
2759 * Put page on the "free" list during intial startup.
2760 * This happens during initial single threaded execution.
2761 */
2762 void
page_free_at_startup(page_t * pp)2763 page_free_at_startup(page_t *pp)
2764 {
2765 struct pcf *p;
2766 uint_t pcf_index;
2767
2768 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2769 VM_STAT_ADD(pagecnt.pc_free_free);
2770
2771 /*
2772 * Now do the `freemem' accounting.
2773 */
2774 pcf_index = PCF_INDEX();
2775 p = &pcf[pcf_index];
2776
2777 ASSERT(p->pcf_block == 0);
2778 ASSERT(p->pcf_wait == 0);
2779 p->pcf_count += 1;
2780
2781 /* freemem is approximate, so this is OK */
2782 freemem += 1;
2783 }
2784
2785 void
page_free_pages(page_t * pp)2786 page_free_pages(page_t *pp)
2787 {
2788 page_t *tpp, *rootpp = NULL;
2789 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
2790 pgcnt_t i;
2791 uint_t szc = pp->p_szc;
2792
2793 VM_STAT_ADD(pagecnt.pc_free_pages);
2794 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2795 "page_free_free:pp %p", pp);
2796
2797 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2798 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2799 panic("page_free_pages: not root page %p", (void *)pp);
2800 /*NOTREACHED*/
2801 }
2802
2803 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2804 ASSERT((PAGE_EXCL(tpp) &&
2805 !page_iolock_assert(tpp)) || panicstr);
2806 if (PP_ISFREE(tpp)) {
2807 panic("page_free_pages: page %p is free", (void *)tpp);
2808 /*NOTREACHED*/
2809 }
2810 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2811 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2812 panic("page_free_pages %p", (void *)tpp);
2813 /*NOTREACHED*/
2814 }
2815
2816 ASSERT(!hat_page_getshare(tpp));
2817 ASSERT(tpp->p_vnode == NULL);
2818 ASSERT(tpp->p_szc == szc);
2819
2820 PP_SETFREE(tpp);
2821 page_clr_all_props(tpp);
2822 PP_SETAGED(tpp);
2823 tpp->p_offset = (u_offset_t)-1;
2824 ASSERT(tpp->p_next == tpp);
2825 ASSERT(tpp->p_prev == tpp);
2826 page_list_concat(&rootpp, &tpp);
2827 }
2828 ASSERT(rootpp == pp);
2829
2830 page_list_add_pages(rootpp, 0);
2831 page_create_putback(pgcnt);
2832 }
2833
2834 int free_pages = 1;
2835
2836 /*
2837 * This routine attempts to return pages to the cachelist via page_release().
2838 * It does not *have* to be successful in all cases, since the pageout scanner
2839 * will catch any pages it misses. It does need to be fast and not introduce
2840 * too much overhead.
2841 *
2842 * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2843 * don't lock and retry. This is ok, since the page scanner will eventually
2844 * find any page we miss in free_vp_pages().
2845 */
2846 void
free_vp_pages(vnode_t * vp,u_offset_t off,size_t len)2847 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2848 {
2849 page_t *pp;
2850 u_offset_t eoff;
2851 extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2852
2853 eoff = off + len;
2854
2855 if (free_pages == 0)
2856 return;
2857 if (swap_in_range(vp, off, len))
2858 return;
2859
2860 for (; off < eoff; off += PAGESIZE) {
2861
2862 /*
2863 * find the page using a fast, but inexact search. It'll be OK
2864 * if a few pages slip through the cracks here.
2865 */
2866 pp = page_exists(vp, off);
2867
2868 /*
2869 * If we didn't find the page (it may not exist), the page
2870 * is free, looks still in use (shared), or we can't lock it,
2871 * just give up.
2872 */
2873 if (pp == NULL ||
2874 PP_ISFREE(pp) ||
2875 page_share_cnt(pp) > 0 ||
2876 !page_trylock(pp, SE_EXCL))
2877 continue;
2878
2879 /*
2880 * Once we have locked pp, verify that it's still the
2881 * correct page and not already free
2882 */
2883 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2884 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2885 page_unlock(pp);
2886 continue;
2887 }
2888
2889 /*
2890 * try to release the page...
2891 */
2892 (void) page_release(pp, 1);
2893 }
2894 }
2895
2896 /*
2897 * Reclaim the given page from the free list.
2898 * If pp is part of a large pages, only the given constituent page is reclaimed
2899 * and the large page it belonged to will be demoted. This can only happen
2900 * if the page is not on the cachelist.
2901 *
2902 * Returns 1 on success or 0 on failure.
2903 *
2904 * The page is unlocked if it can't be reclaimed (when freemem == 0).
2905 * If `lock' is non-null, it will be dropped and re-acquired if
2906 * the routine must wait while freemem is 0.
2907 *
2908 * As it turns out, boot_getpages() does this. It picks a page,
2909 * based on where OBP mapped in some address, gets its pfn, searches
2910 * the memsegs, locks the page, then pulls it off the free list!
2911 */
2912 int
page_reclaim(page_t * pp,kmutex_t * lock)2913 page_reclaim(page_t *pp, kmutex_t *lock)
2914 {
2915 struct pcf *p;
2916 struct cpu *cpup;
2917 int enough;
2918 uint_t i;
2919
2920 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2921 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2922
2923 /*
2924 * If `freemem' is 0, we cannot reclaim this page from the
2925 * freelist, so release every lock we might hold: the page,
2926 * and the `lock' before blocking.
2927 *
2928 * The only way `freemem' can become 0 while there are pages
2929 * marked free (have their p->p_free bit set) is when the
2930 * system is low on memory and doing a page_create(). In
2931 * order to guarantee that once page_create() starts acquiring
2932 * pages it will be able to get all that it needs since `freemem'
2933 * was decreased by the requested amount. So, we need to release
2934 * this page, and let page_create() have it.
2935 *
2936 * Since `freemem' being zero is not supposed to happen, just
2937 * use the usual hash stuff as a starting point. If that bucket
2938 * is empty, then assume the worst, and start at the beginning
2939 * of the pcf array. If we always start at the beginning
2940 * when acquiring more than one pcf lock, there won't be any
2941 * deadlock problems.
2942 */
2943
2944 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2945
2946 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2947 pcf_acquire_all();
2948 goto page_reclaim_nomem;
2949 }
2950
2951 enough = pcf_decrement_bucket(1);
2952
2953 if (!enough) {
2954 VM_STAT_ADD(page_reclaim_zero);
2955 /*
2956 * Check again. Its possible that some other thread
2957 * could have been right behind us, and added one
2958 * to a list somewhere. Acquire each of the pcf locks
2959 * until we find a page.
2960 */
2961 p = pcf;
2962 for (i = 0; i < pcf_fanout; i++) {
2963 mutex_enter(&p->pcf_lock);
2964 if (p->pcf_count >= 1) {
2965 p->pcf_count -= 1;
2966 /*
2967 * freemem is not protected by any lock. Thus,
2968 * we cannot have any assertion containing
2969 * freemem here.
2970 */
2971 freemem -= 1;
2972 enough = 1;
2973 break;
2974 }
2975 p++;
2976 }
2977
2978 if (!enough) {
2979 page_reclaim_nomem:
2980 /*
2981 * We really can't have page `pp'.
2982 * Time for the no-memory dance with
2983 * page_free(). This is just like
2984 * page_create_wait(). Plus the added
2985 * attraction of releasing whatever mutex
2986 * we held when we were called with in `lock'.
2987 * Page_unlock() will wakeup any thread
2988 * waiting around for this page.
2989 */
2990 if (lock) {
2991 VM_STAT_ADD(page_reclaim_zero_locked);
2992 mutex_exit(lock);
2993 }
2994 page_unlock(pp);
2995
2996 /*
2997 * get this before we drop all the pcf locks.
2998 */
2999 mutex_enter(&new_freemem_lock);
3000
3001 p = pcf;
3002 for (i = 0; i < pcf_fanout; i++) {
3003 p->pcf_wait++;
3004 mutex_exit(&p->pcf_lock);
3005 p++;
3006 }
3007
3008 freemem_wait++;
3009 cv_wait(&freemem_cv, &new_freemem_lock);
3010 freemem_wait--;
3011
3012 mutex_exit(&new_freemem_lock);
3013
3014 if (lock) {
3015 mutex_enter(lock);
3016 }
3017 return (0);
3018 }
3019
3020 /*
3021 * The pcf accounting has been done,
3022 * though none of the pcf_wait flags have been set,
3023 * drop the locks and continue on.
3024 */
3025 while (p >= pcf) {
3026 mutex_exit(&p->pcf_lock);
3027 p--;
3028 }
3029 }
3030
3031
3032 VM_STAT_ADD(pagecnt.pc_reclaim);
3033
3034 /*
3035 * page_list_sub will handle the case where pp is a large page.
3036 * It's possible that the page was promoted while on the freelist
3037 */
3038 if (PP_ISAGED(pp)) {
3039 page_list_sub(pp, PG_FREE_LIST);
3040 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3041 "page_reclaim_free:pp %p", pp);
3042 } else {
3043 page_list_sub(pp, PG_CACHE_LIST);
3044 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3045 "page_reclaim_cache:pp %p", pp);
3046 }
3047
3048 /*
3049 * clear the p_free & p_age bits since this page is no longer
3050 * on the free list. Notice that there was a brief time where
3051 * a page is marked as free, but is not on the list.
3052 *
3053 * Set the reference bit to protect against immediate pageout.
3054 */
3055 PP_CLRFREE(pp);
3056 PP_CLRAGED(pp);
3057 page_set_props(pp, P_REF);
3058
3059 CPU_STATS_ENTER_K();
3060 cpup = CPU; /* get cpup now that CPU cannot change */
3061 CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3062 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3063 CPU_STATS_EXIT_K();
3064 ASSERT(pp->p_szc == 0);
3065
3066 return (1);
3067 }
3068
3069 /*
3070 * Destroy identity of the page and put it back on
3071 * the page free list. Assumes that the caller has
3072 * acquired the "exclusive" lock on the page.
3073 */
3074 void
page_destroy(page_t * pp,int dontfree)3075 page_destroy(page_t *pp, int dontfree)
3076 {
3077 ASSERT((PAGE_EXCL(pp) &&
3078 !page_iolock_assert(pp)) || panicstr);
3079 ASSERT(pp->p_slckcnt == 0 || panicstr);
3080
3081 if (pp->p_szc != 0) {
3082 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3083 PP_ISKAS(pp)) {
3084 panic("page_destroy: anon or kernel or no vnode "
3085 "large page %p", (void *)pp);
3086 }
3087 page_demote_vp_pages(pp);
3088 ASSERT(pp->p_szc == 0);
3089 }
3090
3091 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3092
3093 /*
3094 * Unload translations, if any, then hash out the
3095 * page to erase its identity.
3096 */
3097 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3098 page_hashout(pp, NULL);
3099
3100 if (!dontfree) {
3101 /*
3102 * Acquire the "freemem_lock" for availrmem.
3103 * The page_struct_lock need not be acquired for lckcnt
3104 * and cowcnt since the page has an "exclusive" lock.
3105 * We are doing a modified version of page_pp_unlock here.
3106 */
3107 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3108 mutex_enter(&freemem_lock);
3109 if (pp->p_lckcnt != 0) {
3110 availrmem++;
3111 pages_locked--;
3112 pp->p_lckcnt = 0;
3113 }
3114 if (pp->p_cowcnt != 0) {
3115 availrmem += pp->p_cowcnt;
3116 pages_locked -= pp->p_cowcnt;
3117 pp->p_cowcnt = 0;
3118 }
3119 mutex_exit(&freemem_lock);
3120 }
3121 /*
3122 * Put the page on the "free" list.
3123 */
3124 page_free(pp, 0);
3125 }
3126 }
3127
3128 void
page_destroy_pages(page_t * pp)3129 page_destroy_pages(page_t *pp)
3130 {
3131
3132 page_t *tpp, *rootpp = NULL;
3133 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
3134 pgcnt_t i, pglcks = 0;
3135 uint_t szc = pp->p_szc;
3136
3137 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3138
3139 VM_STAT_ADD(pagecnt.pc_destroy_pages);
3140
3141 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3142
3143 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3144 panic("page_destroy_pages: not root page %p", (void *)pp);
3145 /*NOTREACHED*/
3146 }
3147
3148 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3149 ASSERT((PAGE_EXCL(tpp) &&
3150 !page_iolock_assert(tpp)) || panicstr);
3151 ASSERT(tpp->p_slckcnt == 0 || panicstr);
3152 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3153 page_hashout(tpp, NULL);
3154 ASSERT(tpp->p_offset == (u_offset_t)-1);
3155 if (tpp->p_lckcnt != 0) {
3156 pglcks++;
3157 tpp->p_lckcnt = 0;
3158 } else if (tpp->p_cowcnt != 0) {
3159 pglcks += tpp->p_cowcnt;
3160 tpp->p_cowcnt = 0;
3161 }
3162 ASSERT(!hat_page_getshare(tpp));
3163 ASSERT(tpp->p_vnode == NULL);
3164 ASSERT(tpp->p_szc == szc);
3165
3166 PP_SETFREE(tpp);
3167 page_clr_all_props(tpp);
3168 PP_SETAGED(tpp);
3169 ASSERT(tpp->p_next == tpp);
3170 ASSERT(tpp->p_prev == tpp);
3171 page_list_concat(&rootpp, &tpp);
3172 }
3173
3174 ASSERT(rootpp == pp);
3175 if (pglcks != 0) {
3176 mutex_enter(&freemem_lock);
3177 availrmem += pglcks;
3178 mutex_exit(&freemem_lock);
3179 }
3180
3181 page_list_add_pages(rootpp, 0);
3182 page_create_putback(pgcnt);
3183 }
3184
3185 /*
3186 * Similar to page_destroy(), but destroys pages which are
3187 * locked and known to be on the page free list. Since
3188 * the page is known to be free and locked, no one can access
3189 * it.
3190 *
3191 * Also, the number of free pages does not change.
3192 */
3193 void
page_destroy_free(page_t * pp)3194 page_destroy_free(page_t *pp)
3195 {
3196 ASSERT(PAGE_EXCL(pp));
3197 ASSERT(PP_ISFREE(pp));
3198 ASSERT(pp->p_vnode);
3199 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3200 ASSERT(!hat_page_is_mapped(pp));
3201 ASSERT(PP_ISAGED(pp) == 0);
3202 ASSERT(pp->p_szc == 0);
3203
3204 VM_STAT_ADD(pagecnt.pc_destroy_free);
3205 page_list_sub(pp, PG_CACHE_LIST);
3206
3207 page_hashout(pp, NULL);
3208 ASSERT(pp->p_vnode == NULL);
3209 ASSERT(pp->p_offset == (u_offset_t)-1);
3210 ASSERT(pp->p_hash == NULL);
3211
3212 PP_SETAGED(pp);
3213 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3214 page_unlock(pp);
3215
3216 mutex_enter(&new_freemem_lock);
3217 if (freemem_wait) {
3218 cv_signal(&freemem_cv);
3219 }
3220 mutex_exit(&new_freemem_lock);
3221 }
3222
3223 /*
3224 * Rename the page "opp" to have an identity specified
3225 * by [vp, off]. If a page already exists with this name
3226 * it is locked and destroyed. Note that the page's
3227 * translations are not unloaded during the rename.
3228 *
3229 * This routine is used by the anon layer to "steal" the
3230 * original page and is not unlike destroying a page and
3231 * creating a new page using the same page frame.
3232 *
3233 * XXX -- Could deadlock if caller 1 tries to rename A to B while
3234 * caller 2 tries to rename B to A.
3235 */
3236 void
page_rename(page_t * opp,vnode_t * vp,u_offset_t off)3237 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3238 {
3239 page_t *pp;
3240 int olckcnt = 0;
3241 int ocowcnt = 0;
3242 kmutex_t *phm;
3243 ulong_t index;
3244
3245 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3246 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3247 ASSERT(PP_ISFREE(opp) == 0);
3248
3249 VM_STAT_ADD(page_rename_count);
3250
3251 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3252 "page rename:pp %p vp %p off %llx", opp, vp, off);
3253
3254 /*
3255 * CacheFS may call page_rename for a large NFS page
3256 * when both CacheFS and NFS mount points are used
3257 * by applications. Demote this large page before
3258 * renaming it, to ensure that there are no "partial"
3259 * large pages left lying around.
3260 */
3261 if (opp->p_szc != 0) {
3262 vnode_t *ovp = opp->p_vnode;
3263 ASSERT(ovp != NULL);
3264 ASSERT(!IS_SWAPFSVP(ovp));
3265 ASSERT(!VN_ISKAS(ovp));
3266 page_demote_vp_pages(opp);
3267 ASSERT(opp->p_szc == 0);
3268 }
3269
3270 page_hashout(opp, NULL);
3271 PP_CLRAGED(opp);
3272
3273 /*
3274 * Acquire the appropriate page hash lock, since
3275 * we're going to rename the page.
3276 */
3277 index = PAGE_HASH_FUNC(vp, off);
3278 phm = PAGE_HASH_MUTEX(index);
3279 mutex_enter(phm);
3280 top:
3281 /*
3282 * Look for an existing page with this name and destroy it if found.
3283 * By holding the page hash lock all the way to the page_hashin()
3284 * call, we are assured that no page can be created with this
3285 * identity. In the case when the phm lock is dropped to undo any
3286 * hat layer mappings, the existing page is held with an "exclusive"
3287 * lock, again preventing another page from being created with
3288 * this identity.
3289 */
3290 pp = page_hash_search(index, vp, off);
3291 if (pp != NULL) {
3292 VM_STAT_ADD(page_rename_exists);
3293
3294 /*
3295 * As it turns out, this is one of only two places where
3296 * page_lock() needs to hold the passed in lock in the
3297 * successful case. In all of the others, the lock could
3298 * be dropped as soon as the attempt is made to lock
3299 * the page. It is tempting to add yet another arguement,
3300 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3301 */
3302 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3303 /*
3304 * Went to sleep because the page could not
3305 * be locked. We were woken up when the page
3306 * was unlocked, or when the page was destroyed.
3307 * In either case, `phm' was dropped while we
3308 * slept. Hence we should not just roar through
3309 * this loop.
3310 */
3311 goto top;
3312 }
3313
3314 /*
3315 * If an existing page is a large page, then demote
3316 * it to ensure that no "partial" large pages are
3317 * "created" after page_rename. An existing page
3318 * can be a CacheFS page, and can't belong to swapfs.
3319 */
3320 if (hat_page_is_mapped(pp)) {
3321 /*
3322 * Unload translations. Since we hold the
3323 * exclusive lock on this page, the page
3324 * can not be changed while we drop phm.
3325 * This is also not a lock protocol violation,
3326 * but rather the proper way to do things.
3327 */
3328 mutex_exit(phm);
3329 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3330 if (pp->p_szc != 0) {
3331 ASSERT(!IS_SWAPFSVP(vp));
3332 ASSERT(!VN_ISKAS(vp));
3333 page_demote_vp_pages(pp);
3334 ASSERT(pp->p_szc == 0);
3335 }
3336 mutex_enter(phm);
3337 } else if (pp->p_szc != 0) {
3338 ASSERT(!IS_SWAPFSVP(vp));
3339 ASSERT(!VN_ISKAS(vp));
3340 mutex_exit(phm);
3341 page_demote_vp_pages(pp);
3342 ASSERT(pp->p_szc == 0);
3343 mutex_enter(phm);
3344 }
3345 page_hashout(pp, phm);
3346 }
3347 /*
3348 * Hash in the page with the new identity.
3349 */
3350 if (!page_hashin(opp, vp, off, phm)) {
3351 /*
3352 * We were holding phm while we searched for [vp, off]
3353 * and only dropped phm if we found and locked a page.
3354 * If we can't create this page now, then some thing
3355 * is really broken.
3356 */
3357 panic("page_rename: Can't hash in page: %p", (void *)pp);
3358 /*NOTREACHED*/
3359 }
3360
3361 ASSERT(MUTEX_HELD(phm));
3362 mutex_exit(phm);
3363
3364 /*
3365 * Now that we have dropped phm, lets get around to finishing up
3366 * with pp.
3367 */
3368 if (pp != NULL) {
3369 ASSERT(!hat_page_is_mapped(pp));
3370 /* for now large pages should not end up here */
3371 ASSERT(pp->p_szc == 0);
3372 /*
3373 * Save the locks for transfer to the new page and then
3374 * clear them so page_free doesn't think they're important.
3375 * The page_struct_lock need not be acquired for lckcnt and
3376 * cowcnt since the page has an "exclusive" lock.
3377 */
3378 olckcnt = pp->p_lckcnt;
3379 ocowcnt = pp->p_cowcnt;
3380 pp->p_lckcnt = pp->p_cowcnt = 0;
3381
3382 /*
3383 * Put the page on the "free" list after we drop
3384 * the lock. The less work under the lock the better.
3385 */
3386 /*LINTED: constant in conditional context*/
3387 VN_DISPOSE(pp, B_FREE, 0, kcred);
3388 }
3389
3390 /*
3391 * Transfer the lock count from the old page (if any).
3392 * The page_struct_lock need not be acquired for lckcnt and
3393 * cowcnt since the page has an "exclusive" lock.
3394 */
3395 opp->p_lckcnt += olckcnt;
3396 opp->p_cowcnt += ocowcnt;
3397 }
3398
3399 /*
3400 * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3401 *
3402 * Pages are normally inserted at the start of a vnode's v_pages list.
3403 * If the vnode is VMODSORT and the page is modified, it goes at the end.
3404 * This can happen when a modified page is relocated for DR.
3405 *
3406 * Returns 1 on success and 0 on failure.
3407 */
3408 static int
page_do_hashin(page_t * pp,vnode_t * vp,u_offset_t offset)3409 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3410 {
3411 page_t **listp;
3412 page_t *tp;
3413 ulong_t index;
3414
3415 ASSERT(PAGE_EXCL(pp));
3416 ASSERT(vp != NULL);
3417 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3418
3419 /*
3420 * Be sure to set these up before the page is inserted on the hash
3421 * list. As soon as the page is placed on the list some other
3422 * thread might get confused and wonder how this page could
3423 * possibly hash to this list.
3424 */
3425 pp->p_vnode = vp;
3426 pp->p_offset = offset;
3427
3428 /*
3429 * record if this page is on a swap vnode
3430 */
3431 if ((vp->v_flag & VISSWAP) != 0)
3432 PP_SETSWAP(pp);
3433
3434 index = PAGE_HASH_FUNC(vp, offset);
3435 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3436 listp = &page_hash[index];
3437
3438 /*
3439 * If this page is already hashed in, fail this attempt to add it.
3440 */
3441 for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3442 if (tp->p_vnode == vp && tp->p_offset == offset) {
3443 pp->p_vnode = NULL;
3444 pp->p_offset = (u_offset_t)(-1);
3445 return (0);
3446 }
3447 }
3448 pp->p_hash = *listp;
3449 *listp = pp;
3450
3451 /*
3452 * Add the page to the vnode's list of pages
3453 */
3454 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3455 listp = &vp->v_pages->p_vpprev->p_vpnext;
3456 else
3457 listp = &vp->v_pages;
3458
3459 page_vpadd(listp, pp);
3460
3461 return (1);
3462 }
3463
3464 /*
3465 * Add page `pp' to both the hash and vp chains for [vp, offset].
3466 *
3467 * Returns 1 on success and 0 on failure.
3468 * If hold is passed in, it is not dropped.
3469 */
3470 int
page_hashin(page_t * pp,vnode_t * vp,u_offset_t offset,kmutex_t * hold)3471 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3472 {
3473 kmutex_t *phm = NULL;
3474 kmutex_t *vphm;
3475 int rc;
3476
3477 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3478 ASSERT(pp->p_fsdata == 0 || panicstr);
3479
3480 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3481 "page_hashin:pp %p vp %p offset %llx",
3482 pp, vp, offset);
3483
3484 VM_STAT_ADD(hashin_count);
3485
3486 if (hold != NULL)
3487 phm = hold;
3488 else {
3489 VM_STAT_ADD(hashin_not_held);
3490 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3491 mutex_enter(phm);
3492 }
3493
3494 vphm = page_vnode_mutex(vp);
3495 mutex_enter(vphm);
3496 rc = page_do_hashin(pp, vp, offset);
3497 mutex_exit(vphm);
3498 if (hold == NULL)
3499 mutex_exit(phm);
3500 if (rc == 0)
3501 VM_STAT_ADD(hashin_already);
3502 return (rc);
3503 }
3504
3505 /*
3506 * Remove page ``pp'' from the hash and vp chains and remove vp association.
3507 * All mutexes must be held
3508 */
3509 static void
page_do_hashout(page_t * pp)3510 page_do_hashout(page_t *pp)
3511 {
3512 page_t **hpp;
3513 page_t *hp;
3514 vnode_t *vp = pp->p_vnode;
3515
3516 ASSERT(vp != NULL);
3517 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3518
3519 /*
3520 * First, take pp off of its hash chain.
3521 */
3522 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3523
3524 for (;;) {
3525 hp = *hpp;
3526 if (hp == pp)
3527 break;
3528 if (hp == NULL) {
3529 panic("page_do_hashout");
3530 /*NOTREACHED*/
3531 }
3532 hpp = &hp->p_hash;
3533 }
3534 *hpp = pp->p_hash;
3535
3536 /*
3537 * Now remove it from its associated vnode.
3538 */
3539 if (vp->v_pages)
3540 page_vpsub(&vp->v_pages, pp);
3541
3542 pp->p_hash = NULL;
3543 page_clr_all_props(pp);
3544 PP_CLRSWAP(pp);
3545 pp->p_vnode = NULL;
3546 pp->p_offset = (u_offset_t)-1;
3547 pp->p_fsdata = 0;
3548 }
3549
3550 /*
3551 * Remove page ``pp'' from the hash and vp chains and remove vp association.
3552 *
3553 * When `phm' is non-NULL it contains the address of the mutex protecting the
3554 * hash list pp is on. It is not dropped.
3555 */
3556 void
page_hashout(page_t * pp,kmutex_t * phm)3557 page_hashout(page_t *pp, kmutex_t *phm)
3558 {
3559 vnode_t *vp;
3560 ulong_t index;
3561 kmutex_t *nphm;
3562 kmutex_t *vphm;
3563 kmutex_t *sep;
3564
3565 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3566 ASSERT(pp->p_vnode != NULL);
3567 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3568 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3569
3570 vp = pp->p_vnode;
3571
3572 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3573 "page_hashout:pp %p vp %p", pp, vp);
3574
3575 /*
3576 *
3577 */
3578 VM_STAT_ADD(hashout_count);
3579 index = PAGE_HASH_FUNC(vp, pp->p_offset);
3580 if (phm == NULL) {
3581 VM_STAT_ADD(hashout_not_held);
3582 nphm = PAGE_HASH_MUTEX(index);
3583 mutex_enter(nphm);
3584 }
3585 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3586
3587
3588 /*
3589 * grab page vnode mutex and remove it...
3590 */
3591 vphm = page_vnode_mutex(vp);
3592 mutex_enter(vphm);
3593
3594 page_do_hashout(pp);
3595
3596 mutex_exit(vphm);
3597 if (phm == NULL)
3598 mutex_exit(nphm);
3599
3600 /*
3601 * Wake up processes waiting for this page. The page's
3602 * identity has been changed, and is probably not the
3603 * desired page any longer.
3604 */
3605 sep = page_se_mutex(pp);
3606 mutex_enter(sep);
3607 pp->p_selock &= ~SE_EWANTED;
3608 if (CV_HAS_WAITERS(&pp->p_cv))
3609 cv_broadcast(&pp->p_cv);
3610 mutex_exit(sep);
3611 }
3612
3613 /*
3614 * Add the page to the front of a linked list of pages
3615 * using the p_next & p_prev pointers for the list.
3616 * The caller is responsible for protecting the list pointers.
3617 */
3618 void
page_add(page_t ** ppp,page_t * pp)3619 page_add(page_t **ppp, page_t *pp)
3620 {
3621 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3622
3623 page_add_common(ppp, pp);
3624 }
3625
3626
3627
3628 /*
3629 * Common code for page_add() and mach_page_add()
3630 */
3631 void
page_add_common(page_t ** ppp,page_t * pp)3632 page_add_common(page_t **ppp, page_t *pp)
3633 {
3634 if (*ppp == NULL) {
3635 pp->p_next = pp->p_prev = pp;
3636 } else {
3637 pp->p_next = *ppp;
3638 pp->p_prev = (*ppp)->p_prev;
3639 (*ppp)->p_prev = pp;
3640 pp->p_prev->p_next = pp;
3641 }
3642 *ppp = pp;
3643 }
3644
3645
3646 /*
3647 * Remove this page from a linked list of pages
3648 * using the p_next & p_prev pointers for the list.
3649 *
3650 * The caller is responsible for protecting the list pointers.
3651 */
3652 void
page_sub(page_t ** ppp,page_t * pp)3653 page_sub(page_t **ppp, page_t *pp)
3654 {
3655 ASSERT(pp != NULL && (PP_ISFREE(pp)) ? 1 :
3656 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3657
3658 if (*ppp == NULL || pp == NULL) {
3659 panic("page_sub: bad arg(s): pp %p, *ppp %p",
3660 (void *)pp, (void *)(*ppp));
3661 /*NOTREACHED*/
3662 }
3663
3664 page_sub_common(ppp, pp);
3665 }
3666
3667
3668 /*
3669 * Common code for page_sub() and mach_page_sub()
3670 */
3671 void
page_sub_common(page_t ** ppp,page_t * pp)3672 page_sub_common(page_t **ppp, page_t *pp)
3673 {
3674 if (*ppp == pp)
3675 *ppp = pp->p_next; /* go to next page */
3676
3677 if (*ppp == pp)
3678 *ppp = NULL; /* page list is gone */
3679 else {
3680 pp->p_prev->p_next = pp->p_next;
3681 pp->p_next->p_prev = pp->p_prev;
3682 }
3683 pp->p_prev = pp->p_next = pp; /* make pp a list of one */
3684 }
3685
3686
3687 /*
3688 * Break page list cppp into two lists with npages in the first list.
3689 * The tail is returned in nppp.
3690 */
3691 void
page_list_break(page_t ** oppp,page_t ** nppp,pgcnt_t npages)3692 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3693 {
3694 page_t *s1pp = *oppp;
3695 page_t *s2pp;
3696 page_t *e1pp, *e2pp;
3697 long n = 0;
3698
3699 if (s1pp == NULL) {
3700 *nppp = NULL;
3701 return;
3702 }
3703 if (npages == 0) {
3704 *nppp = s1pp;
3705 *oppp = NULL;
3706 return;
3707 }
3708 for (n = 0, s2pp = *oppp; n < npages; n++) {
3709 s2pp = s2pp->p_next;
3710 }
3711 /* Fix head and tail of new lists */
3712 e1pp = s2pp->p_prev;
3713 e2pp = s1pp->p_prev;
3714 s1pp->p_prev = e1pp;
3715 e1pp->p_next = s1pp;
3716 s2pp->p_prev = e2pp;
3717 e2pp->p_next = s2pp;
3718
3719 /* second list empty */
3720 if (s2pp == s1pp) {
3721 *oppp = s1pp;
3722 *nppp = NULL;
3723 } else {
3724 *oppp = s1pp;
3725 *nppp = s2pp;
3726 }
3727 }
3728
3729 /*
3730 * Concatenate page list nppp onto the end of list ppp.
3731 */
3732 void
page_list_concat(page_t ** ppp,page_t ** nppp)3733 page_list_concat(page_t **ppp, page_t **nppp)
3734 {
3735 page_t *s1pp, *s2pp, *e1pp, *e2pp;
3736
3737 if (*nppp == NULL) {
3738 return;
3739 }
3740 if (*ppp == NULL) {
3741 *ppp = *nppp;
3742 return;
3743 }
3744 s1pp = *ppp;
3745 e1pp = s1pp->p_prev;
3746 s2pp = *nppp;
3747 e2pp = s2pp->p_prev;
3748 s1pp->p_prev = e2pp;
3749 e2pp->p_next = s1pp;
3750 e1pp->p_next = s2pp;
3751 s2pp->p_prev = e1pp;
3752 }
3753
3754 /*
3755 * return the next page in the page list
3756 */
3757 page_t *
page_list_next(page_t * pp)3758 page_list_next(page_t *pp)
3759 {
3760 return (pp->p_next);
3761 }
3762
3763
3764 /*
3765 * Add the page to the front of the linked list of pages
3766 * using p_vpnext/p_vpprev pointers for the list.
3767 *
3768 * The caller is responsible for protecting the lists.
3769 */
3770 void
page_vpadd(page_t ** ppp,page_t * pp)3771 page_vpadd(page_t **ppp, page_t *pp)
3772 {
3773 if (*ppp == NULL) {
3774 pp->p_vpnext = pp->p_vpprev = pp;
3775 } else {
3776 pp->p_vpnext = *ppp;
3777 pp->p_vpprev = (*ppp)->p_vpprev;
3778 (*ppp)->p_vpprev = pp;
3779 pp->p_vpprev->p_vpnext = pp;
3780 }
3781 *ppp = pp;
3782 }
3783
3784 /*
3785 * Remove this page from the linked list of pages
3786 * using p_vpnext/p_vpprev pointers for the list.
3787 *
3788 * The caller is responsible for protecting the lists.
3789 */
3790 void
page_vpsub(page_t ** ppp,page_t * pp)3791 page_vpsub(page_t **ppp, page_t *pp)
3792 {
3793 if (*ppp == NULL || pp == NULL) {
3794 panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3795 (void *)pp, (void *)(*ppp));
3796 /*NOTREACHED*/
3797 }
3798
3799 if (*ppp == pp)
3800 *ppp = pp->p_vpnext; /* go to next page */
3801
3802 if (*ppp == pp)
3803 *ppp = NULL; /* page list is gone */
3804 else {
3805 pp->p_vpprev->p_vpnext = pp->p_vpnext;
3806 pp->p_vpnext->p_vpprev = pp->p_vpprev;
3807 }
3808 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */
3809 }
3810
3811 /*
3812 * Lock a physical page into memory "long term". Used to support "lock
3813 * in memory" functions. Accepts the page to be locked, and a cow variable
3814 * to indicate whether a the lock will travel to the new page during
3815 * a potential copy-on-write.
3816 */
3817 int
page_pp_lock(page_t * pp,int cow,int kernel)3818 page_pp_lock(
3819 page_t *pp, /* page to be locked */
3820 int cow, /* cow lock */
3821 int kernel) /* must succeed -- ignore checking */
3822 {
3823 int r = 0; /* result -- assume failure */
3824
3825 ASSERT(PAGE_LOCKED(pp));
3826
3827 page_struct_lock(pp);
3828 /*
3829 * Acquire the "freemem_lock" for availrmem.
3830 */
3831 if (cow) {
3832 mutex_enter(&freemem_lock);
3833 if ((availrmem > pages_pp_maximum) &&
3834 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3835 availrmem--;
3836 pages_locked++;
3837 mutex_exit(&freemem_lock);
3838 r = 1;
3839 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3840 cmn_err(CE_WARN,
3841 "COW lock limit reached on pfn 0x%lx",
3842 page_pptonum(pp));
3843 }
3844 } else
3845 mutex_exit(&freemem_lock);
3846 } else {
3847 if (pp->p_lckcnt) {
3848 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3849 r = 1;
3850 if (++pp->p_lckcnt ==
3851 (ushort_t)PAGE_LOCK_MAXIMUM) {
3852 cmn_err(CE_WARN, "Page lock limit "
3853 "reached on pfn 0x%lx",
3854 page_pptonum(pp));
3855 }
3856 }
3857 } else {
3858 if (kernel) {
3859 /* availrmem accounting done by caller */
3860 ++pp->p_lckcnt;
3861 r = 1;
3862 } else {
3863 mutex_enter(&freemem_lock);
3864 if (availrmem > pages_pp_maximum) {
3865 availrmem--;
3866 pages_locked++;
3867 ++pp->p_lckcnt;
3868 r = 1;
3869 }
3870 mutex_exit(&freemem_lock);
3871 }
3872 }
3873 }
3874 page_struct_unlock(pp);
3875 return (r);
3876 }
3877
3878 /*
3879 * Decommit a lock on a physical page frame. Account for cow locks if
3880 * appropriate.
3881 */
3882 void
page_pp_unlock(page_t * pp,int cow,int kernel)3883 page_pp_unlock(
3884 page_t *pp, /* page to be unlocked */
3885 int cow, /* expect cow lock */
3886 int kernel) /* this was a kernel lock */
3887 {
3888 ASSERT(PAGE_LOCKED(pp));
3889
3890 page_struct_lock(pp);
3891 /*
3892 * Acquire the "freemem_lock" for availrmem.
3893 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3894 * could be called to unlock even if nothing is locked. This could
3895 * happen if locked file pages were truncated (removing the lock)
3896 * and the file was grown again and new pages faulted in; the new
3897 * pages are unlocked but the segment still thinks they're locked.
3898 */
3899 if (cow) {
3900 if (pp->p_cowcnt) {
3901 mutex_enter(&freemem_lock);
3902 pp->p_cowcnt--;
3903 availrmem++;
3904 pages_locked--;
3905 mutex_exit(&freemem_lock);
3906 }
3907 } else {
3908 if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3909 if (!kernel) {
3910 mutex_enter(&freemem_lock);
3911 availrmem++;
3912 pages_locked--;
3913 mutex_exit(&freemem_lock);
3914 }
3915 }
3916 }
3917 page_struct_unlock(pp);
3918 }
3919
3920 /*
3921 * This routine reserves availrmem for npages.
3922 * It returns 1 on success or 0 on failure.
3923 *
3924 * flags: KM_NOSLEEP or KM_SLEEP
3925 * cb_wait: called to induce delay when KM_SLEEP reservation requires kmem
3926 * reaping to potentially succeed. If the callback returns 0, the
3927 * reservation attempts will cease to repeat and page_xresv() may
3928 * report a failure. If cb_wait is NULL, the traditional delay(hz/2)
3929 * behavior will be used while waiting for a reap.
3930 */
3931 int
page_xresv(pgcnt_t npages,uint_t flags,int (* cb_wait)(void))3932 page_xresv(pgcnt_t npages, uint_t flags, int (*cb_wait)(void))
3933 {
3934 mutex_enter(&freemem_lock);
3935 if (availrmem >= tune.t_minarmem + npages) {
3936 availrmem -= npages;
3937 mutex_exit(&freemem_lock);
3938 return (1);
3939 } else if ((flags & KM_NOSLEEP) != 0) {
3940 mutex_exit(&freemem_lock);
3941 return (0);
3942 }
3943 mutex_exit(&freemem_lock);
3944
3945 /*
3946 * We signal memory pressure to the system by elevating 'needfree'.
3947 * Processes such as kmem reaping, pageout, and ZFS ARC shrinking can
3948 * then respond to said pressure by freeing pages.
3949 */
3950 page_needfree(npages);
3951 int nobail = 1;
3952 do {
3953 kmem_reap();
3954 if (cb_wait == NULL) {
3955 delay(hz >> 2);
3956 } else {
3957 nobail = cb_wait();
3958 }
3959
3960 mutex_enter(&freemem_lock);
3961 if (availrmem >= tune.t_minarmem + npages) {
3962 availrmem -= npages;
3963 mutex_exit(&freemem_lock);
3964 page_needfree(-(spgcnt_t)npages);
3965 return (1);
3966 }
3967 mutex_exit(&freemem_lock);
3968 } while (nobail != 0);
3969 page_needfree(-(spgcnt_t)npages);
3970
3971 return (0);
3972 }
3973
3974 /*
3975 * This routine reserves availrmem for npages;
3976 * flags: KM_NOSLEEP or KM_SLEEP
3977 * returns 1 on success or 0 on failure
3978 */
3979 int
page_resv(pgcnt_t npages,uint_t flags)3980 page_resv(pgcnt_t npages, uint_t flags)
3981 {
3982 return (page_xresv(npages, flags, NULL));
3983 }
3984
3985 /*
3986 * This routine unreserves availrmem for npages;
3987 */
3988 void
page_unresv(pgcnt_t npages)3989 page_unresv(pgcnt_t npages)
3990 {
3991 mutex_enter(&freemem_lock);
3992 availrmem += npages;
3993 mutex_exit(&freemem_lock);
3994 }
3995
3996 /*
3997 * See Statement at the beginning of segvn_lockop() regarding
3998 * the way we handle cowcnts and lckcnts.
3999 *
4000 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4001 * that breaks COW has PROT_WRITE.
4002 *
4003 * Note that, we may also break COW in case we are softlocking
4004 * on read access during physio;
4005 * in this softlock case, the vpage may not have PROT_WRITE.
4006 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4007 * if the vpage doesn't have PROT_WRITE.
4008 *
4009 * This routine is never called if we are stealing a page
4010 * in anon_private.
4011 *
4012 * The caller subtracted from availrmem for read only mapping.
4013 * if lckcnt is 1 increment availrmem.
4014 */
4015 void
page_pp_useclaim(page_t * opp,page_t * npp,uint_t write_perm)4016 page_pp_useclaim(
4017 page_t *opp, /* original page frame losing lock */
4018 page_t *npp, /* new page frame gaining lock */
4019 uint_t write_perm) /* set if vpage has PROT_WRITE */
4020 {
4021 int payback = 0;
4022 int nidx, oidx;
4023
4024 ASSERT(PAGE_LOCKED(opp));
4025 ASSERT(PAGE_LOCKED(npp));
4026
4027 /*
4028 * Since we have two pages we probably have two locks. We need to take
4029 * them in a defined order to avoid deadlocks. It's also possible they
4030 * both hash to the same lock in which case this is a non-issue.
4031 */
4032 nidx = PAGE_LLOCK_HASH(PP_PAGEROOT(npp));
4033 oidx = PAGE_LLOCK_HASH(PP_PAGEROOT(opp));
4034 if (nidx < oidx) {
4035 page_struct_lock(npp);
4036 page_struct_lock(opp);
4037 } else if (oidx < nidx) {
4038 page_struct_lock(opp);
4039 page_struct_lock(npp);
4040 } else { /* The pages hash to the same lock */
4041 page_struct_lock(npp);
4042 }
4043
4044 ASSERT(npp->p_cowcnt == 0);
4045 ASSERT(npp->p_lckcnt == 0);
4046
4047 /* Don't use claim if nothing is locked (see page_pp_unlock above) */
4048 if ((write_perm && opp->p_cowcnt != 0) ||
4049 (!write_perm && opp->p_lckcnt != 0)) {
4050
4051 if (write_perm) {
4052 npp->p_cowcnt++;
4053 ASSERT(opp->p_cowcnt != 0);
4054 opp->p_cowcnt--;
4055 } else {
4056
4057 ASSERT(opp->p_lckcnt != 0);
4058
4059 /*
4060 * We didn't need availrmem decremented if p_lckcnt on
4061 * original page is 1. Here, we are unlocking
4062 * read-only copy belonging to original page and
4063 * are locking a copy belonging to new page.
4064 */
4065 if (opp->p_lckcnt == 1)
4066 payback = 1;
4067
4068 npp->p_lckcnt++;
4069 opp->p_lckcnt--;
4070 }
4071 }
4072 if (payback) {
4073 mutex_enter(&freemem_lock);
4074 availrmem++;
4075 pages_useclaim--;
4076 mutex_exit(&freemem_lock);
4077 }
4078
4079 if (nidx < oidx) {
4080 page_struct_unlock(opp);
4081 page_struct_unlock(npp);
4082 } else if (oidx < nidx) {
4083 page_struct_unlock(npp);
4084 page_struct_unlock(opp);
4085 } else { /* The pages hash to the same lock */
4086 page_struct_unlock(npp);
4087 }
4088 }
4089
4090 /*
4091 * Simple claim adjust functions -- used to support changes in
4092 * claims due to changes in access permissions. Used by segvn_setprot().
4093 */
4094 int
page_addclaim(page_t * pp)4095 page_addclaim(page_t *pp)
4096 {
4097 int r = 0; /* result */
4098
4099 ASSERT(PAGE_LOCKED(pp));
4100
4101 page_struct_lock(pp);
4102 ASSERT(pp->p_lckcnt != 0);
4103
4104 if (pp->p_lckcnt == 1) {
4105 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4106 --pp->p_lckcnt;
4107 r = 1;
4108 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4109 cmn_err(CE_WARN,
4110 "COW lock limit reached on pfn 0x%lx",
4111 page_pptonum(pp));
4112 }
4113 }
4114 } else {
4115 mutex_enter(&freemem_lock);
4116 if ((availrmem > pages_pp_maximum) &&
4117 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4118 --availrmem;
4119 ++pages_claimed;
4120 mutex_exit(&freemem_lock);
4121 --pp->p_lckcnt;
4122 r = 1;
4123 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4124 cmn_err(CE_WARN,
4125 "COW lock limit reached on pfn 0x%lx",
4126 page_pptonum(pp));
4127 }
4128 } else
4129 mutex_exit(&freemem_lock);
4130 }
4131 page_struct_unlock(pp);
4132 return (r);
4133 }
4134
4135 int
page_subclaim(page_t * pp)4136 page_subclaim(page_t *pp)
4137 {
4138 int r = 0;
4139
4140 ASSERT(PAGE_LOCKED(pp));
4141
4142 page_struct_lock(pp);
4143 ASSERT(pp->p_cowcnt != 0);
4144
4145 if (pp->p_lckcnt) {
4146 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4147 r = 1;
4148 /*
4149 * for availrmem
4150 */
4151 mutex_enter(&freemem_lock);
4152 availrmem++;
4153 pages_claimed--;
4154 mutex_exit(&freemem_lock);
4155
4156 pp->p_cowcnt--;
4157
4158 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4159 cmn_err(CE_WARN,
4160 "Page lock limit reached on pfn 0x%lx",
4161 page_pptonum(pp));
4162 }
4163 }
4164 } else {
4165 r = 1;
4166 pp->p_cowcnt--;
4167 pp->p_lckcnt++;
4168 }
4169 page_struct_unlock(pp);
4170 return (r);
4171 }
4172
4173 /*
4174 * Variant of page_addclaim(), where ppa[] contains the pages of a single large
4175 * page.
4176 */
4177 int
page_addclaim_pages(page_t ** ppa)4178 page_addclaim_pages(page_t **ppa)
4179 {
4180 pgcnt_t lckpgs = 0, pg_idx;
4181
4182 VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4183
4184 /*
4185 * Only need to take the page struct lock on the large page root.
4186 */
4187 page_struct_lock(ppa[0]);
4188 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4189
4190 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4191 ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4192 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4193 page_struct_unlock(ppa[0]);
4194 return (0);
4195 }
4196 if (ppa[pg_idx]->p_lckcnt > 1)
4197 lckpgs++;
4198 }
4199
4200 if (lckpgs != 0) {
4201 mutex_enter(&freemem_lock);
4202 if (availrmem >= pages_pp_maximum + lckpgs) {
4203 availrmem -= lckpgs;
4204 pages_claimed += lckpgs;
4205 } else {
4206 mutex_exit(&freemem_lock);
4207 page_struct_unlock(ppa[0]);
4208 return (0);
4209 }
4210 mutex_exit(&freemem_lock);
4211 }
4212
4213 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4214 ppa[pg_idx]->p_lckcnt--;
4215 ppa[pg_idx]->p_cowcnt++;
4216 }
4217 page_struct_unlock(ppa[0]);
4218 return (1);
4219 }
4220
4221 /*
4222 * Variant of page_subclaim(), where ppa[] contains the pages of a single large
4223 * page.
4224 */
4225 int
page_subclaim_pages(page_t ** ppa)4226 page_subclaim_pages(page_t **ppa)
4227 {
4228 pgcnt_t ulckpgs = 0, pg_idx;
4229
4230 VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4231
4232 /*
4233 * Only need to take the page struct lock on the large page root.
4234 */
4235 page_struct_lock(ppa[0]);
4236 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4237
4238 ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4239 ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4240 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4241 page_struct_unlock(ppa[0]);
4242 return (0);
4243 }
4244 if (ppa[pg_idx]->p_lckcnt != 0)
4245 ulckpgs++;
4246 }
4247
4248 if (ulckpgs != 0) {
4249 mutex_enter(&freemem_lock);
4250 availrmem += ulckpgs;
4251 pages_claimed -= ulckpgs;
4252 mutex_exit(&freemem_lock);
4253 }
4254
4255 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4256 ppa[pg_idx]->p_cowcnt--;
4257 ppa[pg_idx]->p_lckcnt++;
4258
4259 }
4260 page_struct_unlock(ppa[0]);
4261 return (1);
4262 }
4263
4264 page_t *
page_numtopp(pfn_t pfnum,se_t se)4265 page_numtopp(pfn_t pfnum, se_t se)
4266 {
4267 page_t *pp;
4268
4269 retry:
4270 pp = page_numtopp_nolock(pfnum);
4271 if (pp == NULL) {
4272 return ((page_t *)NULL);
4273 }
4274
4275 /*
4276 * Acquire the appropriate lock on the page.
4277 */
4278 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4279 if (page_pptonum(pp) != pfnum)
4280 goto retry;
4281 continue;
4282 }
4283
4284 if (page_pptonum(pp) != pfnum) {
4285 page_unlock(pp);
4286 goto retry;
4287 }
4288
4289 return (pp);
4290 }
4291
4292 page_t *
page_numtopp_noreclaim(pfn_t pfnum,se_t se)4293 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4294 {
4295 page_t *pp;
4296
4297 retry:
4298 pp = page_numtopp_nolock(pfnum);
4299 if (pp == NULL) {
4300 return ((page_t *)NULL);
4301 }
4302
4303 /*
4304 * Acquire the appropriate lock on the page.
4305 */
4306 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4307 if (page_pptonum(pp) != pfnum)
4308 goto retry;
4309 continue;
4310 }
4311
4312 if (page_pptonum(pp) != pfnum) {
4313 page_unlock(pp);
4314 goto retry;
4315 }
4316
4317 return (pp);
4318 }
4319
4320 /*
4321 * This routine is like page_numtopp, but will only return page structs
4322 * for pages which are ok for loading into hardware using the page struct.
4323 */
4324 page_t *
page_numtopp_nowait(pfn_t pfnum,se_t se)4325 page_numtopp_nowait(pfn_t pfnum, se_t se)
4326 {
4327 page_t *pp;
4328
4329 retry:
4330 pp = page_numtopp_nolock(pfnum);
4331 if (pp == NULL) {
4332 return ((page_t *)NULL);
4333 }
4334
4335 /*
4336 * Try to acquire the appropriate lock on the page.
4337 */
4338 if (PP_ISFREE(pp))
4339 pp = NULL;
4340 else {
4341 if (!page_trylock(pp, se))
4342 pp = NULL;
4343 else {
4344 if (page_pptonum(pp) != pfnum) {
4345 page_unlock(pp);
4346 goto retry;
4347 }
4348 if (PP_ISFREE(pp)) {
4349 page_unlock(pp);
4350 pp = NULL;
4351 }
4352 }
4353 }
4354 return (pp);
4355 }
4356
4357 /*
4358 * Returns a count of dirty pages that are in the process
4359 * of being written out. If 'cleanit' is set, try to push the page.
4360 */
4361 pgcnt_t
page_busy(int cleanit)4362 page_busy(int cleanit)
4363 {
4364 page_t *page0 = page_first();
4365 page_t *pp = page0;
4366 pgcnt_t nppbusy = 0;
4367 u_offset_t off;
4368
4369 do {
4370 vnode_t *vp = pp->p_vnode;
4371 /*
4372 * A page is a candidate for syncing if it is:
4373 *
4374 * (a) On neither the freelist nor the cachelist
4375 * (b) Hashed onto a vnode
4376 * (c) Not a kernel page
4377 * (d) Dirty
4378 * (e) Not part of a swapfile
4379 * (f) a page which belongs to a real vnode; eg has a non-null
4380 * v_vfsp pointer.
4381 * (g) Backed by a filesystem which doesn't have a
4382 * stubbed-out sync operation
4383 */
4384 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4385 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4386 vfs_can_sync(vp->v_vfsp)) {
4387 nppbusy++;
4388
4389 if (!cleanit)
4390 continue;
4391 if (!page_trylock(pp, SE_EXCL))
4392 continue;
4393
4394 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4395 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4396 !(hat_pagesync(pp,
4397 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4398 page_unlock(pp);
4399 continue;
4400 }
4401 off = pp->p_offset;
4402 VN_HOLD(vp);
4403 page_unlock(pp);
4404 (void) VOP_PUTPAGE(vp, off, PAGESIZE,
4405 B_ASYNC | B_FREE, kcred, NULL);
4406 VN_RELE(vp);
4407 }
4408 } while ((pp = page_next(pp)) != page0);
4409
4410 return (nppbusy);
4411 }
4412
4413 void page_invalidate_pages(void);
4414
4415 /*
4416 * callback handler to vm sub-system
4417 *
4418 * callers make sure no recursive entries to this func.
4419 */
4420 /*ARGSUSED*/
4421 boolean_t
callb_vm_cpr(void * arg,int code)4422 callb_vm_cpr(void *arg, int code)
4423 {
4424 if (code == CB_CODE_CPR_CHKPT)
4425 page_invalidate_pages();
4426 return (B_TRUE);
4427 }
4428
4429 /*
4430 * Invalidate all pages of the system.
4431 * It shouldn't be called until all user page activities are all stopped.
4432 */
4433 void
page_invalidate_pages()4434 page_invalidate_pages()
4435 {
4436 page_t *pp;
4437 page_t *page0;
4438 pgcnt_t nbusypages;
4439 int retry = 0;
4440 const int MAXRETRIES = 4;
4441 top:
4442 /*
4443 * Flush dirty pages and destroy the clean ones.
4444 */
4445 nbusypages = 0;
4446
4447 pp = page0 = page_first();
4448 do {
4449 struct vnode *vp;
4450 u_offset_t offset;
4451 int mod;
4452
4453 /*
4454 * skip the page if it has no vnode or the page associated
4455 * with the kernel vnode or prom allocated kernel mem.
4456 */
4457 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4458 continue;
4459
4460 /*
4461 * skip the page which is already free invalidated.
4462 */
4463 if (PP_ISFREE(pp) && PP_ISAGED(pp))
4464 continue;
4465
4466 /*
4467 * skip pages that are already locked or can't be "exclusively"
4468 * locked or are already free. After we lock the page, check
4469 * the free and age bits again to be sure it's not destroyed
4470 * yet.
4471 * To achieve max. parallelization, we use page_trylock instead
4472 * of page_lock so that we don't get block on individual pages
4473 * while we have thousands of other pages to process.
4474 */
4475 if (!page_trylock(pp, SE_EXCL)) {
4476 nbusypages++;
4477 continue;
4478 } else if (PP_ISFREE(pp)) {
4479 if (!PP_ISAGED(pp)) {
4480 page_destroy_free(pp);
4481 } else {
4482 page_unlock(pp);
4483 }
4484 continue;
4485 }
4486 /*
4487 * Is this page involved in some I/O? shared?
4488 *
4489 * The page_struct_lock need not be acquired to
4490 * examine these fields since the page has an
4491 * "exclusive" lock.
4492 */
4493 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4494 page_unlock(pp);
4495 continue;
4496 }
4497
4498 if (vp->v_type == VCHR) {
4499 panic("vp->v_type == VCHR");
4500 /*NOTREACHED*/
4501 }
4502
4503 if (!page_try_demote_pages(pp)) {
4504 page_unlock(pp);
4505 continue;
4506 }
4507
4508 /*
4509 * Check the modified bit. Leave the bits alone in hardware
4510 * (they will be modified if we do the putpage).
4511 */
4512 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4513 & P_MOD);
4514 if (mod) {
4515 offset = pp->p_offset;
4516 /*
4517 * Hold the vnode before releasing the page lock
4518 * to prevent it from being freed and re-used by
4519 * some other thread.
4520 */
4521 VN_HOLD(vp);
4522 page_unlock(pp);
4523 /*
4524 * No error return is checked here. Callers such as
4525 * cpr deals with the dirty pages at the dump time
4526 * if this putpage fails.
4527 */
4528 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4529 kcred, NULL);
4530 VN_RELE(vp);
4531 } else {
4532 /*LINTED: constant in conditional context*/
4533 VN_DISPOSE(pp, B_INVAL, 0, kcred);
4534 }
4535 } while ((pp = page_next(pp)) != page0);
4536 if (nbusypages && retry++ < MAXRETRIES) {
4537 delay(1);
4538 goto top;
4539 }
4540 }
4541
4542 /*
4543 * Replace the page "old" with the page "new" on the page hash and vnode lists
4544 *
4545 * the replacement must be done in place, ie the equivalent sequence:
4546 *
4547 * vp = old->p_vnode;
4548 * off = old->p_offset;
4549 * page_do_hashout(old)
4550 * page_do_hashin(new, vp, off)
4551 *
4552 * doesn't work, since
4553 * 1) if old is the only page on the vnode, the v_pages list has a window
4554 * where it looks empty. This will break file system assumptions.
4555 * and
4556 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4557 */
4558 static void
page_do_relocate_hash(page_t * new,page_t * old)4559 page_do_relocate_hash(page_t *new, page_t *old)
4560 {
4561 page_t **hash_list;
4562 vnode_t *vp = old->p_vnode;
4563 kmutex_t *sep;
4564
4565 ASSERT(PAGE_EXCL(old));
4566 ASSERT(PAGE_EXCL(new));
4567 ASSERT(vp != NULL);
4568 ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4569 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4570
4571 /*
4572 * First find old page on the page hash list
4573 */
4574 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4575
4576 for (;;) {
4577 if (*hash_list == old)
4578 break;
4579 if (*hash_list == NULL) {
4580 panic("page_do_hashout");
4581 /*NOTREACHED*/
4582 }
4583 hash_list = &(*hash_list)->p_hash;
4584 }
4585
4586 /*
4587 * update new and replace old with new on the page hash list
4588 */
4589 new->p_vnode = old->p_vnode;
4590 new->p_offset = old->p_offset;
4591 new->p_hash = old->p_hash;
4592 *hash_list = new;
4593
4594 if ((new->p_vnode->v_flag & VISSWAP) != 0)
4595 PP_SETSWAP(new);
4596
4597 /*
4598 * replace old with new on the vnode's page list
4599 */
4600 if (old->p_vpnext == old) {
4601 new->p_vpnext = new;
4602 new->p_vpprev = new;
4603 } else {
4604 new->p_vpnext = old->p_vpnext;
4605 new->p_vpprev = old->p_vpprev;
4606 new->p_vpnext->p_vpprev = new;
4607 new->p_vpprev->p_vpnext = new;
4608 }
4609 if (vp->v_pages == old)
4610 vp->v_pages = new;
4611
4612 /*
4613 * clear out the old page
4614 */
4615 old->p_hash = NULL;
4616 old->p_vpnext = NULL;
4617 old->p_vpprev = NULL;
4618 old->p_vnode = NULL;
4619 PP_CLRSWAP(old);
4620 old->p_offset = (u_offset_t)-1;
4621 page_clr_all_props(old);
4622
4623 /*
4624 * Wake up processes waiting for this page. The page's
4625 * identity has been changed, and is probably not the
4626 * desired page any longer.
4627 */
4628 sep = page_se_mutex(old);
4629 mutex_enter(sep);
4630 old->p_selock &= ~SE_EWANTED;
4631 if (CV_HAS_WAITERS(&old->p_cv))
4632 cv_broadcast(&old->p_cv);
4633 mutex_exit(sep);
4634 }
4635
4636 /*
4637 * This function moves the identity of page "pp_old" to page "pp_new".
4638 * Both pages must be locked on entry. "pp_new" is free, has no identity,
4639 * and need not be hashed out from anywhere.
4640 */
4641 void
page_relocate_hash(page_t * pp_new,page_t * pp_old)4642 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4643 {
4644 vnode_t *vp = pp_old->p_vnode;
4645 u_offset_t off = pp_old->p_offset;
4646 kmutex_t *phm, *vphm;
4647
4648 /*
4649 * Rehash two pages
4650 */
4651 ASSERT(PAGE_EXCL(pp_old));
4652 ASSERT(PAGE_EXCL(pp_new));
4653 ASSERT(vp != NULL);
4654 ASSERT(pp_new->p_vnode == NULL);
4655
4656 /*
4657 * hashout then hashin while holding the mutexes
4658 */
4659 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4660 mutex_enter(phm);
4661 vphm = page_vnode_mutex(vp);
4662 mutex_enter(vphm);
4663
4664 page_do_relocate_hash(pp_new, pp_old);
4665
4666 /* The following comment preserved from page_flip(). */
4667 pp_new->p_fsdata = pp_old->p_fsdata;
4668 pp_old->p_fsdata = 0;
4669 mutex_exit(vphm);
4670 mutex_exit(phm);
4671
4672 /*
4673 * The page_struct_lock need not be acquired for lckcnt and
4674 * cowcnt since the page has an "exclusive" lock.
4675 */
4676 ASSERT(pp_new->p_lckcnt == 0);
4677 ASSERT(pp_new->p_cowcnt == 0);
4678 pp_new->p_lckcnt = pp_old->p_lckcnt;
4679 pp_new->p_cowcnt = pp_old->p_cowcnt;
4680 pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4681
4682 }
4683
4684 /*
4685 * Helper routine used to lock all remaining members of a
4686 * large page. The caller is responsible for passing in a locked
4687 * pp. If pp is a large page, then it succeeds in locking all the
4688 * remaining constituent pages or it returns with only the
4689 * original page locked.
4690 *
4691 * Returns 1 on success, 0 on failure.
4692 *
4693 * If success is returned this routine guarantees p_szc for all constituent
4694 * pages of a large page pp belongs to can't change. To achieve this we
4695 * recheck szc of pp after locking all constituent pages and retry if szc
4696 * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4697 * lock on one of constituent pages it can't be running after all constituent
4698 * pages are locked. hat_page_demote() with a lock on a constituent page
4699 * outside of this large page (i.e. pp belonged to a larger large page) is
4700 * already done with all constituent pages of pp since the root's p_szc is
4701 * changed last. Therefore no need to synchronize with hat_page_demote() that
4702 * locked a constituent page outside of pp's current large page.
4703 */
4704 #ifdef DEBUG
4705 uint32_t gpg_trylock_mtbf = 0;
4706 #endif
4707
4708 int
group_page_trylock(page_t * pp,se_t se)4709 group_page_trylock(page_t *pp, se_t se)
4710 {
4711 page_t *tpp;
4712 pgcnt_t npgs, i, j;
4713 uint_t pszc = pp->p_szc;
4714
4715 #ifdef DEBUG
4716 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4717 return (0);
4718 }
4719 #endif
4720
4721 if (pp != PP_GROUPLEADER(pp, pszc)) {
4722 return (0);
4723 }
4724
4725 retry:
4726 ASSERT(PAGE_LOCKED_SE(pp, se));
4727 ASSERT(!PP_ISFREE(pp));
4728 if (pszc == 0) {
4729 return (1);
4730 }
4731 npgs = page_get_pagecnt(pszc);
4732 tpp = pp + 1;
4733 for (i = 1; i < npgs; i++, tpp++) {
4734 if (!page_trylock(tpp, se)) {
4735 tpp = pp + 1;
4736 for (j = 1; j < i; j++, tpp++) {
4737 page_unlock(tpp);
4738 }
4739 return (0);
4740 }
4741 }
4742 if (pp->p_szc != pszc) {
4743 ASSERT(pp->p_szc < pszc);
4744 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4745 !IS_SWAPFSVP(pp->p_vnode));
4746 tpp = pp + 1;
4747 for (i = 1; i < npgs; i++, tpp++) {
4748 page_unlock(tpp);
4749 }
4750 pszc = pp->p_szc;
4751 goto retry;
4752 }
4753 return (1);
4754 }
4755
4756 void
group_page_unlock(page_t * pp)4757 group_page_unlock(page_t *pp)
4758 {
4759 page_t *tpp;
4760 pgcnt_t npgs, i;
4761
4762 ASSERT(PAGE_LOCKED(pp));
4763 ASSERT(!PP_ISFREE(pp));
4764 ASSERT(pp == PP_PAGEROOT(pp));
4765 npgs = page_get_pagecnt(pp->p_szc);
4766 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4767 page_unlock(tpp);
4768 }
4769 }
4770
4771 /*
4772 * returns
4773 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages
4774 * ERANGE : this is not a base page
4775 * EBUSY : failure to get locks on the page/pages
4776 * ENOMEM : failure to obtain replacement pages
4777 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel
4778 * EIO : An error occurred while trying to copy the page data
4779 *
4780 * Return with all constituent members of target and replacement
4781 * SE_EXCL locked. It is the callers responsibility to drop the
4782 * locks.
4783 */
4784 int
do_page_relocate(page_t ** target,page_t ** replacement,int grouplock,spgcnt_t * nrelocp,lgrp_t * lgrp)4785 do_page_relocate(
4786 page_t **target,
4787 page_t **replacement,
4788 int grouplock,
4789 spgcnt_t *nrelocp,
4790 lgrp_t *lgrp)
4791 {
4792 page_t *first_repl;
4793 page_t *repl;
4794 page_t *targ;
4795 page_t *pl = NULL;
4796 uint_t ppattr;
4797 pfn_t pfn, repl_pfn = 0;
4798 uint_t szc;
4799 spgcnt_t npgs, i;
4800 int repl_contig = 0;
4801 uint_t flags = 0;
4802 spgcnt_t dofree = 0;
4803
4804 *nrelocp = 0;
4805
4806 #if defined(__sparc)
4807 /*
4808 * We need to wait till OBP has completed
4809 * its boot-time handoff of its resources to the kernel
4810 * before we allow page relocation
4811 */
4812 if (page_relocate_ready == 0) {
4813 return (EAGAIN);
4814 }
4815 #endif
4816
4817 /*
4818 * If this is not a base page,
4819 * just return with 0x0 pages relocated.
4820 */
4821 targ = *target;
4822 ASSERT(PAGE_EXCL(targ));
4823 ASSERT(!PP_ISFREE(targ));
4824 szc = targ->p_szc;
4825 ASSERT(szc < mmu_page_sizes);
4826 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4827 pfn = targ->p_pagenum;
4828 if (pfn != PFN_BASE(pfn, szc)) {
4829 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4830 return (ERANGE);
4831 }
4832
4833 if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4834 repl_pfn = repl->p_pagenum;
4835 if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4836 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4837 return (ERANGE);
4838 }
4839 repl_contig = 1;
4840 }
4841
4842 /*
4843 * We must lock all members of this large page or we cannot
4844 * relocate any part of it.
4845 */
4846 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4847 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4848 return (EBUSY);
4849 }
4850
4851 /*
4852 * reread szc it could have been decreased before
4853 * group_page_trylock() was done.
4854 */
4855 szc = targ->p_szc;
4856 ASSERT(szc < mmu_page_sizes);
4857 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4858 ASSERT(pfn == PFN_BASE(pfn, szc));
4859
4860 npgs = page_get_pagecnt(targ->p_szc);
4861
4862 if (repl == NULL) {
4863 dofree = npgs; /* Size of target page in MMU pages */
4864 if (!page_create_wait(dofree, 0)) {
4865 if (grouplock != 0) {
4866 group_page_unlock(targ);
4867 }
4868 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4869 return (ENOMEM);
4870 }
4871
4872 /*
4873 * seg kmem pages require that the target and replacement
4874 * page be the same pagesize.
4875 */
4876 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4877 repl = page_get_replacement_page(targ, lgrp, flags);
4878 if (repl == NULL) {
4879 if (grouplock != 0) {
4880 group_page_unlock(targ);
4881 }
4882 page_create_putback(dofree);
4883 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4884 return (ENOMEM);
4885 }
4886 }
4887 #ifdef DEBUG
4888 else {
4889 ASSERT(PAGE_LOCKED(repl));
4890 }
4891 #endif /* DEBUG */
4892
4893 #if defined(__sparc)
4894 /*
4895 * Let hat_page_relocate() complete the relocation if it's kernel page
4896 */
4897 if (VN_ISKAS(targ->p_vnode)) {
4898 *replacement = repl;
4899 if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4900 if (grouplock != 0) {
4901 group_page_unlock(targ);
4902 }
4903 if (dofree) {
4904 *replacement = NULL;
4905 page_free_replacement_page(repl);
4906 page_create_putback(dofree);
4907 }
4908 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4909 return (EAGAIN);
4910 }
4911 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4912 return (0);
4913 }
4914 #endif
4915
4916 first_repl = repl;
4917
4918 for (i = 0; i < npgs; i++) {
4919 ASSERT(PAGE_EXCL(targ));
4920 ASSERT(targ->p_slckcnt == 0);
4921 ASSERT(repl->p_slckcnt == 0);
4922
4923 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4924
4925 ASSERT(hat_page_getshare(targ) == 0);
4926 ASSERT(!PP_ISFREE(targ));
4927 ASSERT(targ->p_pagenum == (pfn + i));
4928 ASSERT(repl_contig == 0 ||
4929 repl->p_pagenum == (repl_pfn + i));
4930
4931 /*
4932 * Copy the page contents and attributes then
4933 * relocate the page in the page hash.
4934 */
4935 if (ppcopy(targ, repl) == 0) {
4936 targ = *target;
4937 repl = first_repl;
4938 VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4939 if (grouplock != 0) {
4940 group_page_unlock(targ);
4941 }
4942 if (dofree) {
4943 *replacement = NULL;
4944 page_free_replacement_page(repl);
4945 page_create_putback(dofree);
4946 }
4947 return (EIO);
4948 }
4949
4950 targ++;
4951 if (repl_contig != 0) {
4952 repl++;
4953 } else {
4954 repl = repl->p_next;
4955 }
4956 }
4957
4958 repl = first_repl;
4959 targ = *target;
4960
4961 for (i = 0; i < npgs; i++) {
4962 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4963 page_clr_all_props(repl);
4964 page_set_props(repl, ppattr);
4965 page_relocate_hash(repl, targ);
4966
4967 ASSERT(hat_page_getshare(targ) == 0);
4968 ASSERT(hat_page_getshare(repl) == 0);
4969 /*
4970 * Now clear the props on targ, after the
4971 * page_relocate_hash(), they no longer
4972 * have any meaning.
4973 */
4974 page_clr_all_props(targ);
4975 ASSERT(targ->p_next == targ);
4976 ASSERT(targ->p_prev == targ);
4977 page_list_concat(&pl, &targ);
4978
4979 targ++;
4980 if (repl_contig != 0) {
4981 repl++;
4982 } else {
4983 repl = repl->p_next;
4984 }
4985 }
4986 /* assert that we have come full circle with repl */
4987 ASSERT(repl_contig == 1 || first_repl == repl);
4988
4989 *target = pl;
4990 if (*replacement == NULL) {
4991 ASSERT(first_repl == repl);
4992 *replacement = repl;
4993 }
4994 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4995 *nrelocp = npgs;
4996 return (0);
4997 }
4998 /*
4999 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
5000 */
5001 int
page_relocate(page_t ** target,page_t ** replacement,int grouplock,int freetarget,spgcnt_t * nrelocp,lgrp_t * lgrp)5002 page_relocate(
5003 page_t **target,
5004 page_t **replacement,
5005 int grouplock,
5006 int freetarget,
5007 spgcnt_t *nrelocp,
5008 lgrp_t *lgrp)
5009 {
5010 spgcnt_t ret;
5011
5012 /* do_page_relocate returns 0 on success or errno value */
5013 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5014
5015 if (ret != 0 || freetarget == 0) {
5016 return (ret);
5017 }
5018 if (*nrelocp == 1) {
5019 ASSERT(*target != NULL);
5020 page_free(*target, 1);
5021 } else {
5022 page_t *tpp = *target;
5023 uint_t szc = tpp->p_szc;
5024 pgcnt_t npgs = page_get_pagecnt(szc);
5025 ASSERT(npgs > 1);
5026 ASSERT(szc != 0);
5027 do {
5028 ASSERT(PAGE_EXCL(tpp));
5029 ASSERT(!hat_page_is_mapped(tpp));
5030 ASSERT(tpp->p_szc == szc);
5031 PP_SETFREE(tpp);
5032 PP_SETAGED(tpp);
5033 npgs--;
5034 } while ((tpp = tpp->p_next) != *target);
5035 ASSERT(npgs == 0);
5036 page_list_add_pages(*target, 0);
5037 npgs = page_get_pagecnt(szc);
5038 page_create_putback(npgs);
5039 }
5040 return (ret);
5041 }
5042
5043 /*
5044 * it is up to the caller to deal with pcf accounting.
5045 */
5046 void
page_free_replacement_page(page_t * pplist)5047 page_free_replacement_page(page_t *pplist)
5048 {
5049 page_t *pp;
5050
5051 while (pplist != NULL) {
5052 /*
5053 * pp_targ is a linked list.
5054 */
5055 pp = pplist;
5056 if (pp->p_szc == 0) {
5057 page_sub(&pplist, pp);
5058 page_clr_all_props(pp);
5059 PP_SETFREE(pp);
5060 PP_SETAGED(pp);
5061 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5062 page_unlock(pp);
5063 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5064 } else {
5065 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5066 page_t *tpp;
5067 page_list_break(&pp, &pplist, curnpgs);
5068 tpp = pp;
5069 do {
5070 ASSERT(PAGE_EXCL(tpp));
5071 ASSERT(!hat_page_is_mapped(tpp));
5072 page_clr_all_props(tpp);
5073 PP_SETFREE(tpp);
5074 PP_SETAGED(tpp);
5075 } while ((tpp = tpp->p_next) != pp);
5076 page_list_add_pages(pp, 0);
5077 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5078 }
5079 }
5080 }
5081
5082 /*
5083 * Relocate target to non-relocatable replacement page.
5084 */
5085 int
page_relocate_cage(page_t ** target,page_t ** replacement)5086 page_relocate_cage(page_t **target, page_t **replacement)
5087 {
5088 page_t *tpp, *rpp;
5089 spgcnt_t pgcnt, npgs;
5090 int result;
5091
5092 tpp = *target;
5093
5094 ASSERT(PAGE_EXCL(tpp));
5095 ASSERT(tpp->p_szc == 0);
5096
5097 pgcnt = btop(page_get_pagesize(tpp->p_szc));
5098
5099 do {
5100 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5101 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5102 if (rpp == NULL) {
5103 page_create_putback(pgcnt);
5104 kcage_cageout_wakeup();
5105 }
5106 } while (rpp == NULL);
5107
5108 ASSERT(PP_ISNORELOC(rpp));
5109
5110 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5111
5112 if (result == 0) {
5113 *replacement = rpp;
5114 if (pgcnt != npgs)
5115 panic("page_relocate_cage: partial relocation");
5116 }
5117
5118 return (result);
5119 }
5120
5121 /*
5122 * Release the page lock on a page, place on cachelist
5123 * tail if no longer mapped. Caller can let us know if
5124 * the page is known to be clean.
5125 */
5126 int
page_release(page_t * pp,int checkmod)5127 page_release(page_t *pp, int checkmod)
5128 {
5129 int status;
5130
5131 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5132 (pp->p_vnode != NULL));
5133
5134 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5135 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5136 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5137 !hat_page_is_mapped(pp)) {
5138
5139 /*
5140 * If page is modified, unlock it
5141 *
5142 * (p_nrm & P_MOD) bit has the latest stuff because:
5143 * (1) We found that this page doesn't have any mappings
5144 * _after_ holding SE_EXCL and
5145 * (2) We didn't drop SE_EXCL lock after the check in (1)
5146 */
5147 if (checkmod && hat_ismod(pp)) {
5148 page_unlock(pp);
5149 status = PGREL_MOD;
5150 } else {
5151 /*LINTED: constant in conditional context*/
5152 VN_DISPOSE(pp, B_FREE, 0, kcred);
5153 status = PGREL_CLEAN;
5154 }
5155 } else {
5156 page_unlock(pp);
5157 status = PGREL_NOTREL;
5158 }
5159 return (status);
5160 }
5161
5162 /*
5163 * Given a constituent page, try to demote the large page on the freelist.
5164 *
5165 * Returns nonzero if the page could be demoted successfully. Returns with
5166 * the constituent page still locked.
5167 */
5168 int
page_try_demote_free_pages(page_t * pp)5169 page_try_demote_free_pages(page_t *pp)
5170 {
5171 page_t *rootpp = pp;
5172 pfn_t pfn = page_pptonum(pp);
5173 spgcnt_t npgs;
5174 uint_t szc = pp->p_szc;
5175
5176 ASSERT(PP_ISFREE(pp));
5177 ASSERT(PAGE_EXCL(pp));
5178
5179 /*
5180 * Adjust rootpp and lock it, if `pp' is not the base
5181 * constituent page.
5182 */
5183 npgs = page_get_pagecnt(pp->p_szc);
5184 if (npgs == 1) {
5185 return (0);
5186 }
5187
5188 if (!IS_P2ALIGNED(pfn, npgs)) {
5189 pfn = P2ALIGN(pfn, npgs);
5190 rootpp = page_numtopp_nolock(pfn);
5191 }
5192
5193 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5194 return (0);
5195 }
5196
5197 if (rootpp->p_szc != szc) {
5198 if (pp != rootpp)
5199 page_unlock(rootpp);
5200 return (0);
5201 }
5202
5203 page_demote_free_pages(rootpp);
5204
5205 if (pp != rootpp)
5206 page_unlock(rootpp);
5207
5208 ASSERT(PP_ISFREE(pp));
5209 ASSERT(PAGE_EXCL(pp));
5210 return (1);
5211 }
5212
5213 /*
5214 * Given a constituent page, try to demote the large page.
5215 *
5216 * Returns nonzero if the page could be demoted successfully. Returns with
5217 * the constituent page still locked.
5218 */
5219 int
page_try_demote_pages(page_t * pp)5220 page_try_demote_pages(page_t *pp)
5221 {
5222 page_t *tpp, *rootpp = pp;
5223 pfn_t pfn = page_pptonum(pp);
5224 spgcnt_t i, npgs;
5225 uint_t szc = pp->p_szc;
5226 vnode_t *vp = pp->p_vnode;
5227
5228 ASSERT(PAGE_EXCL(pp));
5229
5230 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5231
5232 if (pp->p_szc == 0) {
5233 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5234 return (1);
5235 }
5236
5237 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5238 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5239 page_demote_vp_pages(pp);
5240 ASSERT(pp->p_szc == 0);
5241 return (1);
5242 }
5243
5244 /*
5245 * Adjust rootpp if passed in is not the base
5246 * constituent page.
5247 */
5248 npgs = page_get_pagecnt(pp->p_szc);
5249 ASSERT(npgs > 1);
5250 if (!IS_P2ALIGNED(pfn, npgs)) {
5251 pfn = P2ALIGN(pfn, npgs);
5252 rootpp = page_numtopp_nolock(pfn);
5253 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5254 ASSERT(rootpp->p_vnode != NULL);
5255 ASSERT(rootpp->p_szc == szc);
5256 }
5257
5258 /*
5259 * We can't demote kernel pages since we can't hat_unload()
5260 * the mappings.
5261 */
5262 if (VN_ISKAS(rootpp->p_vnode))
5263 return (0);
5264
5265 /*
5266 * Attempt to lock all constituent pages except the page passed
5267 * in since it's already locked.
5268 */
5269 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5270 ASSERT(!PP_ISFREE(tpp));
5271 ASSERT(tpp->p_vnode != NULL);
5272
5273 if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5274 break;
5275 ASSERT(tpp->p_szc == rootpp->p_szc);
5276 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5277 }
5278
5279 /*
5280 * If we failed to lock them all then unlock what we have
5281 * locked so far and bail.
5282 */
5283 if (i < npgs) {
5284 tpp = rootpp;
5285 while (i-- > 0) {
5286 if (tpp != pp)
5287 page_unlock(tpp);
5288 tpp++;
5289 }
5290 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5291 return (0);
5292 }
5293
5294 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5295 ASSERT(PAGE_EXCL(tpp));
5296 ASSERT(tpp->p_slckcnt == 0);
5297 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5298 tpp->p_szc = 0;
5299 }
5300
5301 /*
5302 * Unlock all pages except the page passed in.
5303 */
5304 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5305 ASSERT(!hat_page_is_mapped(tpp));
5306 if (tpp != pp)
5307 page_unlock(tpp);
5308 }
5309
5310 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5311 return (1);
5312 }
5313
5314 /*
5315 * Called by page_free() and page_destroy() to demote the page size code
5316 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5317 * p_szc on free list, neither can we just clear p_szc of a single page_t
5318 * within a large page since it will break other code that relies on p_szc
5319 * being the same for all page_t's of a large page). Anonymous pages should
5320 * never end up here because anon_map_getpages() cannot deal with p_szc
5321 * changes after a single constituent page is locked. While anonymous or
5322 * kernel large pages are demoted or freed the entire large page at a time
5323 * with all constituent pages locked EXCL for the file system pages we
5324 * have to be able to demote a large page (i.e. decrease all constituent pages
5325 * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5326 * we can easily deal with anonymous page demotion the entire large page at a
5327 * time is that those operation originate at address space level and concern
5328 * the entire large page region with actual demotion only done when pages are
5329 * not shared with any other processes (therefore we can always get EXCL lock
5330 * on all anonymous constituent pages after clearing segment page
5331 * cache). However file system pages can be truncated or invalidated at a
5332 * PAGESIZE level from the file system side and end up in page_free() or
5333 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5334 * and therefore pageout should be able to demote a large page by EXCL locking
5335 * any constituent page that is not under SOFTLOCK). In those cases we cannot
5336 * rely on being able to lock EXCL all constituent pages.
5337 *
5338 * To prevent szc changes on file system pages one has to lock all constituent
5339 * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5340 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5341 * prevent szc changes is hat layer that uses its own page level mlist
5342 * locks. hat assumes that szc doesn't change after mlist lock for a page is
5343 * taken. Therefore we need to change szc under hat level locks if we only
5344 * have an EXCL lock on a single constituent page and hat still references any
5345 * of constituent pages. (Note we can't "ignore" hat layer by simply
5346 * hat_pageunload() all constituent pages without having EXCL locks on all of
5347 * constituent pages). We use hat_page_demote() call to safely demote szc of
5348 * all constituent pages under hat locks when we only have an EXCL lock on one
5349 * of constituent pages.
5350 *
5351 * This routine calls page_szc_lock() before calling hat_page_demote() to
5352 * allow segvn in one special case not to lock all constituent pages SHARED
5353 * before calling hat_memload_array() that relies on p_szc not changing even
5354 * before hat level mlist lock is taken. In that case segvn uses
5355 * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5356 *
5357 * Anonymous or kernel page demotion still has to lock all pages exclusively
5358 * and do hat_pageunload() on all constituent pages before demoting the page
5359 * therefore there's no need for anonymous or kernel page demotion to use
5360 * hat_page_demote() mechanism.
5361 *
5362 * hat_page_demote() removes all large mappings that map pp and then decreases
5363 * p_szc starting from the last constituent page of the large page. By working
5364 * from the tail of a large page in pfn decreasing order allows one looking at
5365 * the root page to know that hat_page_demote() is done for root's szc area.
5366 * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5367 * pages within szc 1 area to prevent szc changes because hat_page_demote()
5368 * that started on this page when it had szc > 1 is done for this szc 1 area.
5369 *
5370 * We are guaranteed that all constituent pages of pp's large page belong to
5371 * the same vnode with the consecutive offsets increasing in the direction of
5372 * the pfn i.e. the identity of constituent pages can't change until their
5373 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5374 * large mappings to pp even though we don't lock any constituent page except
5375 * pp (i.e. we won't unload e.g. kernel locked page).
5376 */
5377 static void
page_demote_vp_pages(page_t * pp)5378 page_demote_vp_pages(page_t *pp)
5379 {
5380 kmutex_t *mtx;
5381
5382 ASSERT(PAGE_EXCL(pp));
5383 ASSERT(!PP_ISFREE(pp));
5384 ASSERT(pp->p_vnode != NULL);
5385 ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5386 ASSERT(!PP_ISKAS(pp));
5387
5388 VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5389
5390 mtx = page_szc_lock(pp);
5391 if (mtx != NULL) {
5392 hat_page_demote(pp);
5393 mutex_exit(mtx);
5394 }
5395 ASSERT(pp->p_szc == 0);
5396 }
5397
5398 /*
5399 * Mark any existing pages for migration in the given range
5400 */
5401 void
page_mark_migrate(struct seg * seg,caddr_t addr,size_t len,struct anon_map * amp,ulong_t anon_index,vnode_t * vp,u_offset_t vnoff,int rflag)5402 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5403 struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5404 u_offset_t vnoff, int rflag)
5405 {
5406 struct anon *ap;
5407 vnode_t *curvp;
5408 lgrp_t *from;
5409 pgcnt_t nlocked;
5410 u_offset_t off;
5411 pfn_t pfn;
5412 size_t pgsz;
5413 size_t segpgsz;
5414 pgcnt_t pages;
5415 uint_t pszc;
5416 page_t *pp0, *pp;
5417 caddr_t va;
5418 ulong_t an_idx;
5419 anon_sync_obj_t cookie;
5420
5421 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5422
5423 /*
5424 * Don't do anything if don't need to do lgroup optimizations
5425 * on this system
5426 */
5427 if (!lgrp_optimizations())
5428 return;
5429
5430 /*
5431 * Align address and length to (potentially large) page boundary
5432 */
5433 segpgsz = page_get_pagesize(seg->s_szc);
5434 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5435 if (rflag)
5436 len = P2ROUNDUP(len, segpgsz);
5437
5438 /*
5439 * Do one (large) page at a time
5440 */
5441 va = addr;
5442 while (va < addr + len) {
5443 /*
5444 * Lookup (root) page for vnode and offset corresponding to
5445 * this virtual address
5446 * Try anonmap first since there may be copy-on-write
5447 * pages, but initialize vnode pointer and offset using
5448 * vnode arguments just in case there isn't an amp.
5449 */
5450 curvp = vp;
5451 off = vnoff + va - seg->s_base;
5452 if (amp) {
5453 ANON_LOCK_ENTER(&->a_rwlock, RW_READER);
5454 an_idx = anon_index + seg_page(seg, va);
5455 anon_array_enter(amp, an_idx, &cookie);
5456 ap = anon_get_ptr(amp->ahp, an_idx);
5457 if (ap)
5458 swap_xlate(ap, &curvp, &off);
5459 anon_array_exit(&cookie);
5460 ANON_LOCK_EXIT(&->a_rwlock);
5461 }
5462
5463 pp = NULL;
5464 if (curvp)
5465 pp = page_lookup(curvp, off, SE_SHARED);
5466
5467 /*
5468 * If there isn't a page at this virtual address,
5469 * skip to next page
5470 */
5471 if (pp == NULL) {
5472 va += PAGESIZE;
5473 continue;
5474 }
5475
5476 /*
5477 * Figure out which lgroup this page is in for kstats
5478 */
5479 pfn = page_pptonum(pp);
5480 from = lgrp_pfn_to_lgrp(pfn);
5481
5482 /*
5483 * Get page size, and round up and skip to next page boundary
5484 * if unaligned address
5485 */
5486 pszc = pp->p_szc;
5487 pgsz = page_get_pagesize(pszc);
5488 pages = btop(pgsz);
5489 if (!IS_P2ALIGNED(va, pgsz) ||
5490 !IS_P2ALIGNED(pfn, pages) ||
5491 pgsz > segpgsz) {
5492 pgsz = MIN(pgsz, segpgsz);
5493 page_unlock(pp);
5494 pages = btop(P2END((uintptr_t)va, pgsz) -
5495 (uintptr_t)va);
5496 va = (caddr_t)P2END((uintptr_t)va, pgsz);
5497 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, pages);
5498 continue;
5499 }
5500
5501 /*
5502 * Upgrade to exclusive lock on page
5503 */
5504 if (!page_tryupgrade(pp)) {
5505 page_unlock(pp);
5506 va += pgsz;
5507 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5508 btop(pgsz));
5509 continue;
5510 }
5511
5512 pp0 = pp++;
5513 nlocked = 1;
5514
5515 /*
5516 * Lock constituent pages if this is large page
5517 */
5518 if (pages > 1) {
5519 /*
5520 * Lock all constituents except root page, since it
5521 * should be locked already.
5522 */
5523 for (; nlocked < pages; nlocked++) {
5524 if (!page_trylock(pp, SE_EXCL)) {
5525 break;
5526 }
5527 if (PP_ISFREE(pp) ||
5528 pp->p_szc != pszc) {
5529 /*
5530 * hat_page_demote() raced in with us.
5531 */
5532 ASSERT(!IS_SWAPFSVP(curvp));
5533 page_unlock(pp);
5534 break;
5535 }
5536 pp++;
5537 }
5538 }
5539
5540 /*
5541 * If all constituent pages couldn't be locked,
5542 * unlock pages locked so far and skip to next page.
5543 */
5544 if (nlocked < pages) {
5545 while (pp0 < pp) {
5546 page_unlock(pp0++);
5547 }
5548 va += pgsz;
5549 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5550 btop(pgsz));
5551 continue;
5552 }
5553
5554 /*
5555 * hat_page_demote() can no longer happen
5556 * since last cons page had the right p_szc after
5557 * all cons pages were locked. all cons pages
5558 * should now have the same p_szc.
5559 */
5560
5561 /*
5562 * All constituent pages locked successfully, so mark
5563 * large page for migration and unload the mappings of
5564 * constituent pages, so a fault will occur on any part of the
5565 * large page
5566 */
5567 PP_SETMIGRATE(pp0);
5568 while (pp0 < pp) {
5569 (void) hat_pageunload(pp0, HAT_FORCE_PGUNLOAD);
5570 ASSERT(hat_page_getshare(pp0) == 0);
5571 page_unlock(pp0++);
5572 }
5573 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5574
5575 va += pgsz;
5576 }
5577 }
5578
5579 /*
5580 * Migrate any pages that have been marked for migration in the given range
5581 */
5582 void
page_migrate(struct seg * seg,caddr_t addr,page_t ** ppa,pgcnt_t npages)5583 page_migrate(
5584 struct seg *seg,
5585 caddr_t addr,
5586 page_t **ppa,
5587 pgcnt_t npages)
5588 {
5589 lgrp_t *from;
5590 lgrp_t *to;
5591 page_t *newpp;
5592 page_t *pp;
5593 pfn_t pfn;
5594 size_t pgsz;
5595 spgcnt_t page_cnt;
5596 spgcnt_t i;
5597 uint_t pszc;
5598
5599 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as));
5600
5601 while (npages > 0) {
5602 pp = *ppa;
5603 pszc = pp->p_szc;
5604 pgsz = page_get_pagesize(pszc);
5605 page_cnt = btop(pgsz);
5606
5607 /*
5608 * Check to see whether this page is marked for migration
5609 *
5610 * Assume that root page of large page is marked for
5611 * migration and none of the other constituent pages
5612 * are marked. This really simplifies clearing the
5613 * migrate bit by not having to clear it from each
5614 * constituent page.
5615 *
5616 * note we don't want to relocate an entire large page if
5617 * someone is only using one subpage.
5618 */
5619 if (npages < page_cnt)
5620 break;
5621
5622 /*
5623 * Is it marked for migration?
5624 */
5625 if (!PP_ISMIGRATE(pp))
5626 goto next;
5627
5628 /*
5629 * Determine lgroups that page is being migrated between
5630 */
5631 pfn = page_pptonum(pp);
5632 if (!IS_P2ALIGNED(pfn, page_cnt)) {
5633 break;
5634 }
5635 from = lgrp_pfn_to_lgrp(pfn);
5636 to = lgrp_mem_choose(seg, addr, pgsz);
5637
5638 /*
5639 * Need to get exclusive lock's to migrate
5640 */
5641 for (i = 0; i < page_cnt; i++) {
5642 ASSERT(PAGE_LOCKED(ppa[i]));
5643 if (page_pptonum(ppa[i]) != pfn + i ||
5644 ppa[i]->p_szc != pszc) {
5645 break;
5646 }
5647 if (!page_tryupgrade(ppa[i])) {
5648 lgrp_stat_add(from->lgrp_id,
5649 LGRP_PM_FAIL_LOCK_PGS,
5650 page_cnt);
5651 break;
5652 }
5653
5654 /*
5655 * Check to see whether we are trying to migrate
5656 * page to lgroup where it is allocated already.
5657 * If so, clear the migrate bit and skip to next
5658 * page.
5659 */
5660 if (i == 0 && to == from) {
5661 PP_CLRMIGRATE(ppa[0]);
5662 page_downgrade(ppa[0]);
5663 goto next;
5664 }
5665 }
5666
5667 /*
5668 * If all constituent pages couldn't be locked,
5669 * unlock pages locked so far and skip to next page.
5670 */
5671 if (i != page_cnt) {
5672 while (--i != -1) {
5673 page_downgrade(ppa[i]);
5674 }
5675 goto next;
5676 }
5677
5678 (void) page_create_wait(page_cnt, PG_WAIT);
5679 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5680 if (newpp == NULL) {
5681 page_create_putback(page_cnt);
5682 for (i = 0; i < page_cnt; i++) {
5683 page_downgrade(ppa[i]);
5684 }
5685 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5686 page_cnt);
5687 goto next;
5688 }
5689 ASSERT(newpp->p_szc == pszc);
5690 /*
5691 * Clear migrate bit and relocate page
5692 */
5693 PP_CLRMIGRATE(pp);
5694 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5695 panic("page_migrate: page_relocate failed");
5696 }
5697 ASSERT(page_cnt * PAGESIZE == pgsz);
5698
5699 /*
5700 * Keep stats for number of pages migrated from and to
5701 * each lgroup
5702 */
5703 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5704 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5705 /*
5706 * update the page_t array we were passed in and
5707 * unlink constituent pages of a large page.
5708 */
5709 for (i = 0; i < page_cnt; ++i, ++pp) {
5710 ASSERT(PAGE_EXCL(newpp));
5711 ASSERT(newpp->p_szc == pszc);
5712 ppa[i] = newpp;
5713 pp = newpp;
5714 page_sub(&newpp, pp);
5715 page_downgrade(pp);
5716 }
5717 ASSERT(newpp == NULL);
5718 next:
5719 addr += pgsz;
5720 ppa += page_cnt;
5721 npages -= page_cnt;
5722 }
5723 }
5724
5725 uint_t page_reclaim_maxcnt = 60; /* max total iterations */
5726 uint_t page_reclaim_nofree_maxcnt = 3; /* max iterations without progress */
5727 /*
5728 * Reclaim/reserve availrmem for npages.
5729 * If there is not enough memory start reaping seg, kmem caches.
5730 * Start pageout scanner (via page_needfree()).
5731 * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5732 * Note: There is no guarantee that any availrmem will be freed as
5733 * this memory typically is locked (kernel heap) or reserved for swap.
5734 * Also due to memory fragmentation kmem allocator may not be able
5735 * to free any memory (single user allocated buffer will prevent
5736 * freeing slab or a page).
5737 */
5738 int
page_reclaim_mem(pgcnt_t npages,pgcnt_t epages,int adjust)5739 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5740 {
5741 int i = 0;
5742 int i_nofree = 0;
5743 int ret = 0;
5744 pgcnt_t deficit;
5745 pgcnt_t old_availrmem = 0;
5746
5747 mutex_enter(&freemem_lock);
5748 while (availrmem < tune.t_minarmem + npages + epages &&
5749 i++ < page_reclaim_maxcnt) {
5750 /* ensure we made some progress in the last few iterations */
5751 if (old_availrmem < availrmem) {
5752 old_availrmem = availrmem;
5753 i_nofree = 0;
5754 } else if (i_nofree++ >= page_reclaim_nofree_maxcnt) {
5755 break;
5756 }
5757
5758 deficit = tune.t_minarmem + npages + epages - availrmem;
5759 mutex_exit(&freemem_lock);
5760 page_needfree(deficit);
5761 kmem_reap();
5762 delay(hz);
5763 page_needfree(-(spgcnt_t)deficit);
5764 mutex_enter(&freemem_lock);
5765 }
5766
5767 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5768 availrmem -= npages;
5769 ret = 1;
5770 }
5771
5772 mutex_exit(&freemem_lock);
5773
5774 return (ret);
5775 }
5776
5777 /*
5778 * Search the memory segments to locate the desired page. Within a
5779 * segment, pages increase linearly with one page structure per
5780 * physical page frame (size PAGESIZE). The search begins
5781 * with the segment that was accessed last, to take advantage of locality.
5782 * If the hint misses, we start from the beginning of the sorted memseg list
5783 */
5784
5785
5786 /*
5787 * Some data structures for pfn to pp lookup.
5788 */
5789 ulong_t mhash_per_slot;
5790 struct memseg *memseg_hash[N_MEM_SLOTS];
5791
5792 page_t *
page_numtopp_nolock(pfn_t pfnum)5793 page_numtopp_nolock(pfn_t pfnum)
5794 {
5795 struct memseg *seg;
5796 page_t *pp;
5797 vm_cpu_data_t *vc;
5798
5799 /*
5800 * We need to disable kernel preemption while referencing the
5801 * cpu_vm_data field in order to prevent us from being switched to
5802 * another cpu and trying to reference it after it has been freed.
5803 * This will keep us on cpu and prevent it from being removed while
5804 * we are still on it.
5805 *
5806 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5807 * which is being resued by DR who will flush those references
5808 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5809 */
5810 kpreempt_disable();
5811 vc = CPU->cpu_vm_data;
5812 ASSERT(vc != NULL);
5813
5814 MEMSEG_STAT_INCR(nsearch);
5815
5816 /* Try last winner first */
5817 if (((seg = vc->vc_pnum_memseg) != NULL) &&
5818 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5819 MEMSEG_STAT_INCR(nlastwon);
5820 pp = seg->pages + (pfnum - seg->pages_base);
5821 if (pp->p_pagenum == pfnum) {
5822 kpreempt_enable();
5823 return ((page_t *)pp);
5824 }
5825 }
5826
5827 /* Else Try hash */
5828 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5829 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5830 MEMSEG_STAT_INCR(nhashwon);
5831 vc->vc_pnum_memseg = seg;
5832 pp = seg->pages + (pfnum - seg->pages_base);
5833 if (pp->p_pagenum == pfnum) {
5834 kpreempt_enable();
5835 return ((page_t *)pp);
5836 }
5837 }
5838
5839 /* Else Brute force */
5840 for (seg = memsegs; seg != NULL; seg = seg->next) {
5841 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5842 vc->vc_pnum_memseg = seg;
5843 pp = seg->pages + (pfnum - seg->pages_base);
5844 if (pp->p_pagenum == pfnum) {
5845 kpreempt_enable();
5846 return ((page_t *)pp);
5847 }
5848 }
5849 }
5850 vc->vc_pnum_memseg = NULL;
5851 kpreempt_enable();
5852 MEMSEG_STAT_INCR(nnotfound);
5853 return ((page_t *)NULL);
5854
5855 }
5856
5857 struct memseg *
page_numtomemseg_nolock(pfn_t pfnum)5858 page_numtomemseg_nolock(pfn_t pfnum)
5859 {
5860 struct memseg *seg;
5861 page_t *pp;
5862
5863 /*
5864 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5865 * which is being resued by DR who will flush those references
5866 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5867 */
5868 kpreempt_disable();
5869 /* Try hash */
5870 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5871 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5872 pp = seg->pages + (pfnum - seg->pages_base);
5873 if (pp->p_pagenum == pfnum) {
5874 kpreempt_enable();
5875 return (seg);
5876 }
5877 }
5878
5879 /* Else Brute force */
5880 for (seg = memsegs; seg != NULL; seg = seg->next) {
5881 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5882 pp = seg->pages + (pfnum - seg->pages_base);
5883 if (pp->p_pagenum == pfnum) {
5884 kpreempt_enable();
5885 return (seg);
5886 }
5887 }
5888 }
5889 kpreempt_enable();
5890 return ((struct memseg *)NULL);
5891 }
5892
5893 /*
5894 * Given a page and a count return the page struct that is
5895 * n structs away from the current one in the global page
5896 * list.
5897 *
5898 * This function wraps to the first page upon
5899 * reaching the end of the memseg list.
5900 */
5901 page_t *
page_nextn(page_t * pp,ulong_t n)5902 page_nextn(page_t *pp, ulong_t n)
5903 {
5904 struct memseg *seg;
5905 page_t *ppn;
5906 vm_cpu_data_t *vc;
5907
5908 /*
5909 * We need to disable kernel preemption while referencing the
5910 * cpu_vm_data field in order to prevent us from being switched to
5911 * another cpu and trying to reference it after it has been freed.
5912 * This will keep us on cpu and prevent it from being removed while
5913 * we are still on it.
5914 *
5915 * We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
5916 * which is being resued by DR who will flush those references
5917 * before modifying the reused memseg. See memseg_cpu_vm_flush().
5918 */
5919 kpreempt_disable();
5920 vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5921
5922 ASSERT(vc != NULL);
5923
5924 if (((seg = vc->vc_pnext_memseg) == NULL) ||
5925 (seg->pages_base == seg->pages_end) ||
5926 !(pp >= seg->pages && pp < seg->epages)) {
5927
5928 for (seg = memsegs; seg; seg = seg->next) {
5929 if (pp >= seg->pages && pp < seg->epages)
5930 break;
5931 }
5932
5933 if (seg == NULL) {
5934 /* Memory delete got in, return something valid. */
5935 /* TODO: fix me. */
5936 seg = memsegs;
5937 pp = seg->pages;
5938 }
5939 }
5940
5941 /* check for wraparound - possible if n is large */
5942 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5943 n -= seg->epages - pp;
5944 seg = seg->next;
5945 if (seg == NULL)
5946 seg = memsegs;
5947 pp = seg->pages;
5948 }
5949 vc->vc_pnext_memseg = seg;
5950 kpreempt_enable();
5951 return (ppn);
5952 }
5953
5954 /*
5955 * Initialize for a loop using page_next_scan_large().
5956 */
5957 page_t *
page_next_scan_init(void ** cookie)5958 page_next_scan_init(void **cookie)
5959 {
5960 ASSERT(cookie != NULL);
5961 *cookie = (void *)memsegs;
5962 return ((page_t *)memsegs->pages);
5963 }
5964
5965 /*
5966 * Return the next page in a scan of page_t's, assuming we want
5967 * to skip over sub-pages within larger page sizes.
5968 *
5969 * The cookie is used to keep track of the current memseg.
5970 */
5971 page_t *
page_next_scan_large(page_t * pp,ulong_t * n,void ** cookie)5972 page_next_scan_large(
5973 page_t *pp,
5974 ulong_t *n,
5975 void **cookie)
5976 {
5977 struct memseg *seg = (struct memseg *)*cookie;
5978 page_t *new_pp;
5979 ulong_t cnt;
5980 pfn_t pfn;
5981
5982
5983 /*
5984 * get the count of page_t's to skip based on the page size
5985 */
5986 ASSERT(pp != NULL);
5987 if (pp->p_szc == 0) {
5988 cnt = 1;
5989 } else {
5990 pfn = page_pptonum(pp);
5991 cnt = page_get_pagecnt(pp->p_szc);
5992 cnt -= pfn & (cnt - 1);
5993 }
5994 *n += cnt;
5995 new_pp = pp + cnt;
5996
5997 /*
5998 * Catch if we went past the end of the current memory segment. If so,
5999 * just move to the next segment with pages.
6000 */
6001 if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
6002 do {
6003 seg = seg->next;
6004 if (seg == NULL)
6005 seg = memsegs;
6006 } while (seg->pages_base == seg->pages_end);
6007 new_pp = seg->pages;
6008 *cookie = (void *)seg;
6009 }
6010
6011 return (new_pp);
6012 }
6013
6014
6015 /*
6016 * Returns next page in list. Note: this function wraps
6017 * to the first page in the list upon reaching the end
6018 * of the list. Callers should be aware of this fact.
6019 */
6020
6021 /* We should change this be a #define */
6022
6023 page_t *
page_next(page_t * pp)6024 page_next(page_t *pp)
6025 {
6026 return (page_nextn(pp, 1));
6027 }
6028
6029 page_t *
page_first()6030 page_first()
6031 {
6032 return ((page_t *)memsegs->pages);
6033 }
6034
6035
6036 /*
6037 * This routine is called at boot with the initial memory configuration
6038 * and when memory is added or removed.
6039 */
6040 void
build_pfn_hash()6041 build_pfn_hash()
6042 {
6043 pfn_t cur;
6044 pgcnt_t index;
6045 struct memseg *pseg;
6046 int i;
6047
6048 /*
6049 * Clear memseg_hash array.
6050 * Since memory add/delete is designed to operate concurrently
6051 * with normal operation, the hash rebuild must be able to run
6052 * concurrently with page_numtopp_nolock(). To support this
6053 * functionality, assignments to memseg_hash array members must
6054 * be done atomically.
6055 *
6056 * NOTE: bzero() does not currently guarantee this for kernel
6057 * threads, and cannot be used here.
6058 */
6059 for (i = 0; i < N_MEM_SLOTS; i++)
6060 memseg_hash[i] = NULL;
6061
6062 hat_kpm_mseghash_clear(N_MEM_SLOTS);
6063
6064 /*
6065 * Physmax is the last valid pfn.
6066 */
6067 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6068 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6069 index = MEMSEG_PFN_HASH(pseg->pages_base);
6070 cur = pseg->pages_base;
6071 do {
6072 if (index >= N_MEM_SLOTS)
6073 index = MEMSEG_PFN_HASH(cur);
6074
6075 if (memseg_hash[index] == NULL ||
6076 memseg_hash[index]->pages_base > pseg->pages_base) {
6077 memseg_hash[index] = pseg;
6078 hat_kpm_mseghash_update(index, pseg);
6079 }
6080 cur += mhash_per_slot;
6081 index++;
6082 } while (cur < pseg->pages_end);
6083 }
6084 }
6085
6086 /*
6087 * Return the pagenum for the pp
6088 */
6089 pfn_t
page_pptonum(page_t * pp)6090 page_pptonum(page_t *pp)
6091 {
6092 return (pp->p_pagenum);
6093 }
6094
6095 /*
6096 * interface to the referenced and modified etc bits
6097 * in the PSM part of the page struct
6098 * when no locking is desired.
6099 */
6100 void
page_set_props(page_t * pp,uint_t flags)6101 page_set_props(page_t *pp, uint_t flags)
6102 {
6103 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6104 pp->p_nrm |= (uchar_t)flags;
6105 }
6106
6107 void
page_clr_all_props(page_t * pp)6108 page_clr_all_props(page_t *pp)
6109 {
6110 pp->p_nrm = 0;
6111 }
6112
6113 /*
6114 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6115 */
6116 int
page_clear_lck_cow(page_t * pp,int adjust)6117 page_clear_lck_cow(page_t *pp, int adjust)
6118 {
6119 int f_amount;
6120
6121 ASSERT(PAGE_EXCL(pp));
6122
6123 /*
6124 * The page_struct_lock need not be acquired here since
6125 * we require the caller hold the page exclusively locked.
6126 */
6127 f_amount = 0;
6128 if (pp->p_lckcnt) {
6129 f_amount = 1;
6130 pp->p_lckcnt = 0;
6131 }
6132 if (pp->p_cowcnt) {
6133 f_amount += pp->p_cowcnt;
6134 pp->p_cowcnt = 0;
6135 }
6136
6137 if (adjust && f_amount) {
6138 mutex_enter(&freemem_lock);
6139 availrmem += f_amount;
6140 mutex_exit(&freemem_lock);
6141 }
6142
6143 return (f_amount);
6144 }
6145
6146 /*
6147 * The following functions is called from free_vp_pages()
6148 * for an inexact estimate of a newly free'd page...
6149 */
6150 ulong_t
page_share_cnt(page_t * pp)6151 page_share_cnt(page_t *pp)
6152 {
6153 return (hat_page_getshare(pp));
6154 }
6155
6156 int
page_isshared(page_t * pp)6157 page_isshared(page_t *pp)
6158 {
6159 return (hat_page_checkshare(pp, 1));
6160 }
6161
6162 int
page_isfree(page_t * pp)6163 page_isfree(page_t *pp)
6164 {
6165 return (PP_ISFREE(pp));
6166 }
6167
6168 int
page_isref(page_t * pp)6169 page_isref(page_t *pp)
6170 {
6171 return (hat_page_getattr(pp, P_REF));
6172 }
6173
6174 int
page_ismod(page_t * pp)6175 page_ismod(page_t *pp)
6176 {
6177 return (hat_page_getattr(pp, P_MOD));
6178 }
6179
6180 /*
6181 * The following code all currently relates to the page capture logic:
6182 *
6183 * This logic is used for cases where there is a desire to claim a certain
6184 * physical page in the system for the caller. As it may not be possible
6185 * to capture the page immediately, the p_toxic bits are used in the page
6186 * structure to indicate that someone wants to capture this page. When the
6187 * page gets unlocked, the toxic flag will be noted and an attempt to capture
6188 * the page will be made. If it is successful, the original callers callback
6189 * will be called with the page to do with it what they please.
6190 *
6191 * There is also an async thread which wakes up to attempt to capture
6192 * pages occasionally which have the capture bit set. All of the pages which
6193 * need to be captured asynchronously have been inserted into the
6194 * page_capture_hash and thus this thread walks that hash list. Items in the
6195 * hash have an expiration time so this thread handles that as well by removing
6196 * the item from the hash if it has expired.
6197 *
6198 * Some important things to note are:
6199 * - if the PR_CAPTURE bit is set on a page, then the page is in the
6200 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed
6201 * to set and clear this bit, and while the lock is held is the only time
6202 * you can add or remove an entry from the hash.
6203 * - the PR_CAPTURE bit can only be set and cleared while holding the
6204 * page_capture_hash_head.pchh_mutex
6205 * - the t_flag field of the thread struct is used with the T_CAPTURING
6206 * flag to prevent recursion while dealing with large pages.
6207 * - pages which need to be retired never expire on the page_capture_hash.
6208 */
6209
6210 static void page_capture_thread(void);
6211 static kthread_t *pc_thread_id;
6212 kcondvar_t pc_cv;
6213 static kmutex_t pc_thread_mutex;
6214 static clock_t pc_thread_shortwait;
6215 static clock_t pc_thread_longwait;
6216 static int pc_thread_retry;
6217
6218 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6219
6220 /* Note that this is a circular linked list */
6221 typedef struct page_capture_hash_bucket {
6222 page_t *pp;
6223 uchar_t szc;
6224 uchar_t pri;
6225 uint_t flags;
6226 clock_t expires; /* lbolt at which this request expires. */
6227 void *datap; /* Cached data passed in for callback */
6228 struct page_capture_hash_bucket *next;
6229 struct page_capture_hash_bucket *prev;
6230 } page_capture_hash_bucket_t;
6231
6232 #define PC_PRI_HI 0 /* capture now */
6233 #define PC_PRI_LO 1 /* capture later */
6234 #define PC_NUM_PRI 2
6235
6236 #define PAGE_CAPTURE_PRIO(pp) (PP_ISRAF(pp) ? PC_PRI_LO : PC_PRI_HI)
6237
6238
6239 /*
6240 * Each hash bucket will have it's own mutex and two lists which are:
6241 * active (0): represents requests which have not been processed by
6242 * the page_capture async thread yet.
6243 * walked (1): represents requests which have been processed by the
6244 * page_capture async thread within it's given walk of this bucket.
6245 *
6246 * These are all needed so that we can synchronize all async page_capture
6247 * events. When the async thread moves to a new bucket, it will append the
6248 * walked list to the active list and walk each item one at a time, moving it
6249 * from the active list to the walked list. Thus if there is an async request
6250 * outstanding for a given page, it will always be in one of the two lists.
6251 * New requests will always be added to the active list.
6252 * If we were not able to capture a page before the request expired, we'd free
6253 * up the request structure which would indicate to page_capture that there is
6254 * no longer a need for the given page, and clear the PR_CAPTURE flag if
6255 * possible.
6256 */
6257 typedef struct page_capture_hash_head {
6258 kmutex_t pchh_mutex;
6259 uint_t num_pages[PC_NUM_PRI];
6260 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6261 } page_capture_hash_head_t;
6262
6263 #ifdef DEBUG
6264 #define NUM_PAGE_CAPTURE_BUCKETS 4
6265 #else
6266 #define NUM_PAGE_CAPTURE_BUCKETS 64
6267 #endif
6268
6269 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6270
6271 /* for now use a very simple hash based upon the size of a page struct */
6272 #define PAGE_CAPTURE_HASH(pp) \
6273 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6274
6275 extern pgcnt_t swapfs_minfree;
6276
6277 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6278
6279 /*
6280 * a callback function is required for page capture requests.
6281 */
6282 void
page_capture_register_callback(uint_t index,clock_t duration,int (* cb_func)(page_t *,void *,uint_t))6283 page_capture_register_callback(uint_t index, clock_t duration,
6284 int (*cb_func)(page_t *, void *, uint_t))
6285 {
6286 ASSERT(pc_cb[index].cb_active == 0);
6287 ASSERT(cb_func != NULL);
6288 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6289 pc_cb[index].duration = duration;
6290 pc_cb[index].cb_func = cb_func;
6291 pc_cb[index].cb_active = 1;
6292 rw_exit(&pc_cb[index].cb_rwlock);
6293 }
6294
6295 void
page_capture_unregister_callback(uint_t index)6296 page_capture_unregister_callback(uint_t index)
6297 {
6298 int i, j;
6299 struct page_capture_hash_bucket *bp1;
6300 struct page_capture_hash_bucket *bp2;
6301 struct page_capture_hash_bucket *head = NULL;
6302 uint_t flags = (1 << index);
6303
6304 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6305 ASSERT(pc_cb[index].cb_active == 1);
6306 pc_cb[index].duration = 0; /* Paranoia */
6307 pc_cb[index].cb_func = NULL; /* Paranoia */
6308 pc_cb[index].cb_active = 0;
6309 rw_exit(&pc_cb[index].cb_rwlock);
6310
6311 /*
6312 * Just move all the entries to a private list which we can walk
6313 * through without the need to hold any locks.
6314 * No more requests can get added to the hash lists for this consumer
6315 * as the cb_active field for the callback has been cleared.
6316 */
6317 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6318 mutex_enter(&page_capture_hash[i].pchh_mutex);
6319 for (j = 0; j < 2; j++) {
6320 bp1 = page_capture_hash[i].lists[j].next;
6321 /* walk through all but first (sentinel) element */
6322 while (bp1 != &page_capture_hash[i].lists[j]) {
6323 bp2 = bp1;
6324 if (bp2->flags & flags) {
6325 bp1 = bp2->next;
6326 bp1->prev = bp2->prev;
6327 bp2->prev->next = bp1;
6328 bp2->next = head;
6329 head = bp2;
6330 /*
6331 * Clear the PR_CAPTURE bit as we
6332 * hold appropriate locks here.
6333 */
6334 page_clrtoxic(head->pp, PR_CAPTURE);
6335 page_capture_hash[i].
6336 num_pages[bp2->pri]--;
6337 continue;
6338 }
6339 bp1 = bp1->next;
6340 }
6341 }
6342 mutex_exit(&page_capture_hash[i].pchh_mutex);
6343 }
6344
6345 while (head != NULL) {
6346 bp1 = head;
6347 head = head->next;
6348 kmem_free(bp1, sizeof (*bp1));
6349 }
6350 }
6351
6352
6353 /*
6354 * Find pp in the active list and move it to the walked list if it
6355 * exists.
6356 * Note that most often pp should be at the front of the active list
6357 * as it is currently used and thus there is no other sort of optimization
6358 * being done here as this is a linked list data structure.
6359 * Returns 1 on successful move or 0 if page could not be found.
6360 */
6361 static int
page_capture_move_to_walked(page_t * pp)6362 page_capture_move_to_walked(page_t *pp)
6363 {
6364 page_capture_hash_bucket_t *bp;
6365 int index;
6366
6367 index = PAGE_CAPTURE_HASH(pp);
6368
6369 mutex_enter(&page_capture_hash[index].pchh_mutex);
6370 bp = page_capture_hash[index].lists[0].next;
6371 while (bp != &page_capture_hash[index].lists[0]) {
6372 if (bp->pp == pp) {
6373 /* Remove from old list */
6374 bp->next->prev = bp->prev;
6375 bp->prev->next = bp->next;
6376
6377 /* Add to new list */
6378 bp->next = page_capture_hash[index].lists[1].next;
6379 bp->prev = &page_capture_hash[index].lists[1];
6380 page_capture_hash[index].lists[1].next = bp;
6381 bp->next->prev = bp;
6382
6383 /*
6384 * There is a small probability of page on a free
6385 * list being retired while being allocated
6386 * and before P_RAF is set on it. The page may
6387 * end up marked as high priority request instead
6388 * of low priority request.
6389 * If P_RAF page is not marked as low priority request
6390 * change it to low priority request.
6391 */
6392 page_capture_hash[index].num_pages[bp->pri]--;
6393 bp->pri = PAGE_CAPTURE_PRIO(pp);
6394 page_capture_hash[index].num_pages[bp->pri]++;
6395 mutex_exit(&page_capture_hash[index].pchh_mutex);
6396 return (1);
6397 }
6398 bp = bp->next;
6399 }
6400 mutex_exit(&page_capture_hash[index].pchh_mutex);
6401 return (0);
6402 }
6403
6404 /*
6405 * Add a new entry to the page capture hash. The only case where a new
6406 * entry is not added is when the page capture consumer is no longer registered.
6407 * In this case, we'll silently not add the page to the hash. We know that
6408 * page retire will always be registered for the case where we are currently
6409 * unretiring a page and thus there are no conflicts.
6410 */
6411 static void
page_capture_add_hash(page_t * pp,uint_t szc,uint_t flags,void * datap)6412 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6413 {
6414 page_capture_hash_bucket_t *bp1;
6415 page_capture_hash_bucket_t *bp2;
6416 int index;
6417 int cb_index;
6418 int i;
6419 uchar_t pri;
6420 #ifdef DEBUG
6421 page_capture_hash_bucket_t *tp1;
6422 int l;
6423 #endif
6424
6425 ASSERT(!(flags & CAPTURE_ASYNC));
6426
6427 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6428
6429 bp1->pp = pp;
6430 bp1->szc = szc;
6431 bp1->flags = flags;
6432 bp1->datap = datap;
6433
6434 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6435 if ((flags >> cb_index) & 1) {
6436 break;
6437 }
6438 }
6439
6440 ASSERT(cb_index != PC_NUM_CALLBACKS);
6441
6442 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6443 if (pc_cb[cb_index].cb_active) {
6444 if (pc_cb[cb_index].duration == -1) {
6445 bp1->expires = (clock_t)-1;
6446 } else {
6447 bp1->expires = ddi_get_lbolt() +
6448 pc_cb[cb_index].duration;
6449 }
6450 } else {
6451 /* There's no callback registered so don't add to the hash */
6452 rw_exit(&pc_cb[cb_index].cb_rwlock);
6453 kmem_free(bp1, sizeof (*bp1));
6454 return;
6455 }
6456
6457 index = PAGE_CAPTURE_HASH(pp);
6458
6459 /*
6460 * Only allow capture flag to be modified under this mutex.
6461 * Prevents multiple entries for same page getting added.
6462 */
6463 mutex_enter(&page_capture_hash[index].pchh_mutex);
6464
6465 /*
6466 * if not already on the hash, set capture bit and add to the hash
6467 */
6468 if (!(pp->p_toxic & PR_CAPTURE)) {
6469 #ifdef DEBUG
6470 /* Check for duplicate entries */
6471 for (l = 0; l < 2; l++) {
6472 tp1 = page_capture_hash[index].lists[l].next;
6473 while (tp1 != &page_capture_hash[index].lists[l]) {
6474 if (tp1->pp == pp) {
6475 panic("page pp 0x%p already on hash "
6476 "at 0x%p\n",
6477 (void *)pp, (void *)tp1);
6478 }
6479 tp1 = tp1->next;
6480 }
6481 }
6482
6483 #endif
6484 page_settoxic(pp, PR_CAPTURE);
6485 pri = PAGE_CAPTURE_PRIO(pp);
6486 bp1->pri = pri;
6487 bp1->next = page_capture_hash[index].lists[0].next;
6488 bp1->prev = &page_capture_hash[index].lists[0];
6489 bp1->next->prev = bp1;
6490 page_capture_hash[index].lists[0].next = bp1;
6491 page_capture_hash[index].num_pages[pri]++;
6492 if (flags & CAPTURE_RETIRE) {
6493 page_retire_incr_pend_count(datap);
6494 }
6495 mutex_exit(&page_capture_hash[index].pchh_mutex);
6496 rw_exit(&pc_cb[cb_index].cb_rwlock);
6497 cv_signal(&pc_cv);
6498 return;
6499 }
6500
6501 /*
6502 * A page retire request will replace any other request.
6503 * A second physmem request which is for a different process than
6504 * the currently registered one will be dropped as there is
6505 * no way to hold the private data for both calls.
6506 * In the future, once there are more callers, this will have to
6507 * be worked out better as there needs to be private storage for
6508 * at least each type of caller (maybe have datap be an array of
6509 * *void's so that we can index based upon callers index).
6510 */
6511
6512 /* walk hash list to update expire time */
6513 for (i = 0; i < 2; i++) {
6514 bp2 = page_capture_hash[index].lists[i].next;
6515 while (bp2 != &page_capture_hash[index].lists[i]) {
6516 if (bp2->pp == pp) {
6517 if (flags & CAPTURE_RETIRE) {
6518 if (!(bp2->flags & CAPTURE_RETIRE)) {
6519 page_retire_incr_pend_count(
6520 datap);
6521 bp2->flags = flags;
6522 bp2->expires = bp1->expires;
6523 bp2->datap = datap;
6524 }
6525 } else {
6526 ASSERT(flags & CAPTURE_PHYSMEM);
6527 if (!(bp2->flags & CAPTURE_RETIRE) &&
6528 (datap == bp2->datap)) {
6529 bp2->expires = bp1->expires;
6530 }
6531 }
6532 mutex_exit(&page_capture_hash[index].
6533 pchh_mutex);
6534 rw_exit(&pc_cb[cb_index].cb_rwlock);
6535 kmem_free(bp1, sizeof (*bp1));
6536 return;
6537 }
6538 bp2 = bp2->next;
6539 }
6540 }
6541
6542 /*
6543 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6544 * and thus it either has to be set or not set and can't change
6545 * while holding the mutex above.
6546 */
6547 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6548 (void *)pp);
6549 }
6550
6551 /*
6552 * We have a page in our hands, lets try and make it ours by turning
6553 * it into a clean page like it had just come off the freelists.
6554 *
6555 * Returns 0 on success, with the page still EXCL locked.
6556 * On failure, the page will be unlocked, and returns EAGAIN
6557 */
6558 static int
page_capture_clean_page(page_t * pp)6559 page_capture_clean_page(page_t *pp)
6560 {
6561 page_t *newpp;
6562 int skip_unlock = 0;
6563 spgcnt_t count;
6564 page_t *tpp;
6565 int ret = 0;
6566 int extra;
6567
6568 ASSERT(PAGE_EXCL(pp));
6569 ASSERT(!PP_RETIRED(pp));
6570 ASSERT(curthread->t_flag & T_CAPTURING);
6571
6572 if (PP_ISFREE(pp)) {
6573 if (!page_reclaim(pp, NULL)) {
6574 skip_unlock = 1;
6575 ret = EAGAIN;
6576 goto cleanup;
6577 }
6578 ASSERT(pp->p_szc == 0);
6579 if (pp->p_vnode != NULL) {
6580 /*
6581 * Since this page came from the
6582 * cachelist, we must destroy the
6583 * old vnode association.
6584 */
6585 page_hashout(pp, NULL);
6586 }
6587 goto cleanup;
6588 }
6589
6590 /*
6591 * If we know page_relocate will fail, skip it
6592 * It could still fail due to a UE on another page but we
6593 * can't do anything about that.
6594 */
6595 if (pp->p_toxic & PR_UE) {
6596 goto skip_relocate;
6597 }
6598
6599 /*
6600 * It's possible that pages can not have a vnode as fsflush comes
6601 * through and cleans up these pages. It's ugly but that's how it is.
6602 */
6603 if (pp->p_vnode == NULL) {
6604 goto skip_relocate;
6605 }
6606
6607 /*
6608 * Page was not free, so lets try to relocate it.
6609 * page_relocate only works with root pages, so if this is not a root
6610 * page, we need to demote it to try and relocate it.
6611 * Unfortunately this is the best we can do right now.
6612 */
6613 newpp = NULL;
6614 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6615 if (page_try_demote_pages(pp) == 0) {
6616 ret = EAGAIN;
6617 goto cleanup;
6618 }
6619 }
6620 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6621 if (ret == 0) {
6622 page_t *npp;
6623 /* unlock the new page(s) */
6624 while (count-- > 0) {
6625 ASSERT(newpp != NULL);
6626 npp = newpp;
6627 page_sub(&newpp, npp);
6628 page_unlock(npp);
6629 }
6630 ASSERT(newpp == NULL);
6631 /*
6632 * Check to see if the page we have is too large.
6633 * If so, demote it freeing up the extra pages.
6634 */
6635 if (pp->p_szc > 0) {
6636 /* For now demote extra pages to szc == 0 */
6637 extra = page_get_pagecnt(pp->p_szc) - 1;
6638 while (extra > 0) {
6639 tpp = pp->p_next;
6640 page_sub(&pp, tpp);
6641 tpp->p_szc = 0;
6642 page_free(tpp, 1);
6643 extra--;
6644 }
6645 /* Make sure to set our page to szc 0 as well */
6646 ASSERT(pp->p_next == pp && pp->p_prev == pp);
6647 pp->p_szc = 0;
6648 }
6649 goto cleanup;
6650 } else if (ret == EIO) {
6651 ret = EAGAIN;
6652 goto cleanup;
6653 } else {
6654 /*
6655 * Need to reset return type as we failed to relocate the page
6656 * but that does not mean that some of the next steps will not
6657 * work.
6658 */
6659 ret = 0;
6660 }
6661
6662 skip_relocate:
6663
6664 if (pp->p_szc > 0) {
6665 if (page_try_demote_pages(pp) == 0) {
6666 ret = EAGAIN;
6667 goto cleanup;
6668 }
6669 }
6670
6671 ASSERT(pp->p_szc == 0);
6672
6673 if (hat_ismod(pp)) {
6674 ret = EAGAIN;
6675 goto cleanup;
6676 }
6677 if (PP_ISKAS(pp)) {
6678 ret = EAGAIN;
6679 goto cleanup;
6680 }
6681 if (pp->p_lckcnt || pp->p_cowcnt) {
6682 ret = EAGAIN;
6683 goto cleanup;
6684 }
6685
6686 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6687 ASSERT(!hat_page_is_mapped(pp));
6688
6689 if (hat_ismod(pp)) {
6690 /*
6691 * This is a semi-odd case as the page is now modified but not
6692 * mapped as we just unloaded the mappings above.
6693 */
6694 ret = EAGAIN;
6695 goto cleanup;
6696 }
6697 if (pp->p_vnode != NULL) {
6698 page_hashout(pp, NULL);
6699 }
6700
6701 /*
6702 * At this point, the page should be in a clean state and
6703 * we can do whatever we want with it.
6704 */
6705
6706 cleanup:
6707 if (ret != 0) {
6708 if (!skip_unlock) {
6709 page_unlock(pp);
6710 }
6711 } else {
6712 ASSERT(pp->p_szc == 0);
6713 ASSERT(PAGE_EXCL(pp));
6714
6715 pp->p_next = pp;
6716 pp->p_prev = pp;
6717 }
6718 return (ret);
6719 }
6720
6721 /*
6722 * Various callers of page_trycapture() can have different restrictions upon
6723 * what memory they have access to.
6724 * Returns 0 on success, with the following error codes on failure:
6725 * EPERM - The requested page is long term locked, and thus repeated
6726 * requests to capture this page will likely fail.
6727 * ENOMEM - There was not enough free memory in the system to safely
6728 * map the requested page.
6729 * ENOENT - The requested page was inside the kernel cage, and the
6730 * PHYSMEM_CAGE flag was not set.
6731 */
6732 int
page_capture_pre_checks(page_t * pp,uint_t flags)6733 page_capture_pre_checks(page_t *pp, uint_t flags)
6734 {
6735 ASSERT(pp != NULL);
6736
6737 #if defined(__sparc)
6738 if (pp->p_vnode == &promvp) {
6739 return (EPERM);
6740 }
6741
6742 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6743 (flags & CAPTURE_PHYSMEM)) {
6744 return (ENOENT);
6745 }
6746
6747 if (PP_ISNORELOCKERNEL(pp)) {
6748 return (EPERM);
6749 }
6750 #else
6751 if (PP_ISKAS(pp)) {
6752 return (EPERM);
6753 }
6754 #endif /* __sparc */
6755
6756 /* only physmem currently has the restrictions checked below */
6757 if (!(flags & CAPTURE_PHYSMEM)) {
6758 return (0);
6759 }
6760
6761 if (availrmem < swapfs_minfree) {
6762 /*
6763 * We won't try to capture this page as we are
6764 * running low on memory.
6765 */
6766 return (ENOMEM);
6767 }
6768 return (0);
6769 }
6770
6771 /*
6772 * Once we have a page in our mits, go ahead and complete the capture
6773 * operation.
6774 * Returns 1 on failure where page is no longer needed
6775 * Returns 0 on success
6776 * Returns -1 if there was a transient failure.
6777 * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6778 */
6779 int
page_capture_take_action(page_t * pp,uint_t flags,void * datap)6780 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6781 {
6782 int cb_index;
6783 int ret = 0;
6784 page_capture_hash_bucket_t *bp1;
6785 page_capture_hash_bucket_t *bp2;
6786 int index;
6787 int found = 0;
6788 int i;
6789
6790 ASSERT(PAGE_EXCL(pp));
6791 ASSERT(curthread->t_flag & T_CAPTURING);
6792
6793 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6794 if ((flags >> cb_index) & 1) {
6795 break;
6796 }
6797 }
6798 ASSERT(cb_index < PC_NUM_CALLBACKS);
6799
6800 /*
6801 * Remove the entry from the page_capture hash, but don't free it yet
6802 * as we may need to put it back.
6803 * Since we own the page at this point in time, we should find it
6804 * in the hash if this is an ASYNC call. If we don't it's likely
6805 * that the page_capture_async() thread decided that this request
6806 * had expired, in which case we just continue on.
6807 */
6808 if (flags & CAPTURE_ASYNC) {
6809
6810 index = PAGE_CAPTURE_HASH(pp);
6811
6812 mutex_enter(&page_capture_hash[index].pchh_mutex);
6813 for (i = 0; i < 2 && !found; i++) {
6814 bp1 = page_capture_hash[index].lists[i].next;
6815 while (bp1 != &page_capture_hash[index].lists[i]) {
6816 if (bp1->pp == pp) {
6817 bp1->next->prev = bp1->prev;
6818 bp1->prev->next = bp1->next;
6819 page_capture_hash[index].
6820 num_pages[bp1->pri]--;
6821 page_clrtoxic(pp, PR_CAPTURE);
6822 found = 1;
6823 break;
6824 }
6825 bp1 = bp1->next;
6826 }
6827 }
6828 mutex_exit(&page_capture_hash[index].pchh_mutex);
6829 }
6830
6831 /* Synchronize with the unregister func. */
6832 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6833 if (!pc_cb[cb_index].cb_active) {
6834 page_free(pp, 1);
6835 rw_exit(&pc_cb[cb_index].cb_rwlock);
6836 if (found) {
6837 kmem_free(bp1, sizeof (*bp1));
6838 }
6839 return (1);
6840 }
6841
6842 /*
6843 * We need to remove the entry from the page capture hash and turn off
6844 * the PR_CAPTURE bit before calling the callback. We'll need to cache
6845 * the entry here, and then based upon the return value, cleanup
6846 * appropriately or re-add it to the hash, making sure that someone else
6847 * hasn't already done so.
6848 * It should be rare for the callback to fail and thus it's ok for
6849 * the failure path to be a bit complicated as the success path is
6850 * cleaner and the locking rules are easier to follow.
6851 */
6852
6853 ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6854
6855 rw_exit(&pc_cb[cb_index].cb_rwlock);
6856
6857 /*
6858 * If this was an ASYNC request, we need to cleanup the hash if the
6859 * callback was successful or if the request was no longer valid.
6860 * For non-ASYNC requests, we return failure to map and the caller
6861 * will take care of adding the request to the hash.
6862 * Note also that the callback itself is responsible for the page
6863 * at this point in time in terms of locking ... The most common
6864 * case for the failure path should just be a page_free.
6865 */
6866 if (ret >= 0) {
6867 if (found) {
6868 if (bp1->flags & CAPTURE_RETIRE) {
6869 page_retire_decr_pend_count(datap);
6870 }
6871 kmem_free(bp1, sizeof (*bp1));
6872 }
6873 return (ret);
6874 }
6875 if (!found) {
6876 return (ret);
6877 }
6878
6879 ASSERT(flags & CAPTURE_ASYNC);
6880
6881 /*
6882 * Check for expiration time first as we can just free it up if it's
6883 * expired.
6884 */
6885 if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
6886 kmem_free(bp1, sizeof (*bp1));
6887 return (ret);
6888 }
6889
6890 /*
6891 * The callback failed and there used to be an entry in the hash for
6892 * this page, so we need to add it back to the hash.
6893 */
6894 mutex_enter(&page_capture_hash[index].pchh_mutex);
6895 if (!(pp->p_toxic & PR_CAPTURE)) {
6896 /* just add bp1 back to head of walked list */
6897 page_settoxic(pp, PR_CAPTURE);
6898 bp1->next = page_capture_hash[index].lists[1].next;
6899 bp1->prev = &page_capture_hash[index].lists[1];
6900 bp1->next->prev = bp1;
6901 bp1->pri = PAGE_CAPTURE_PRIO(pp);
6902 page_capture_hash[index].lists[1].next = bp1;
6903 page_capture_hash[index].num_pages[bp1->pri]++;
6904 mutex_exit(&page_capture_hash[index].pchh_mutex);
6905 return (ret);
6906 }
6907
6908 /*
6909 * Otherwise there was a new capture request added to list
6910 * Need to make sure that our original data is represented if
6911 * appropriate.
6912 */
6913 for (i = 0; i < 2; i++) {
6914 bp2 = page_capture_hash[index].lists[i].next;
6915 while (bp2 != &page_capture_hash[index].lists[i]) {
6916 if (bp2->pp == pp) {
6917 if (bp1->flags & CAPTURE_RETIRE) {
6918 if (!(bp2->flags & CAPTURE_RETIRE)) {
6919 bp2->szc = bp1->szc;
6920 bp2->flags = bp1->flags;
6921 bp2->expires = bp1->expires;
6922 bp2->datap = bp1->datap;
6923 }
6924 } else {
6925 ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6926 if (!(bp2->flags & CAPTURE_RETIRE)) {
6927 bp2->szc = bp1->szc;
6928 bp2->flags = bp1->flags;
6929 bp2->expires = bp1->expires;
6930 bp2->datap = bp1->datap;
6931 }
6932 }
6933 page_capture_hash[index].num_pages[bp2->pri]--;
6934 bp2->pri = PAGE_CAPTURE_PRIO(pp);
6935 page_capture_hash[index].num_pages[bp2->pri]++;
6936 mutex_exit(&page_capture_hash[index].
6937 pchh_mutex);
6938 kmem_free(bp1, sizeof (*bp1));
6939 return (ret);
6940 }
6941 bp2 = bp2->next;
6942 }
6943 }
6944 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6945 /*NOTREACHED*/
6946 }
6947
6948 /*
6949 * Try to capture the given page for the caller specified in the flags
6950 * parameter. The page will either be captured and handed over to the
6951 * appropriate callback, or will be queued up in the page capture hash
6952 * to be captured asynchronously.
6953 * If the current request is due to an async capture, the page must be
6954 * exclusively locked before calling this function.
6955 * Currently szc must be 0 but in the future this should be expandable to
6956 * other page sizes.
6957 * Returns 0 on success, with the following error codes on failure:
6958 * EPERM - The requested page is long term locked, and thus repeated
6959 * requests to capture this page will likely fail.
6960 * ENOMEM - There was not enough free memory in the system to safely
6961 * map the requested page.
6962 * ENOENT - The requested page was inside the kernel cage, and the
6963 * CAPTURE_GET_CAGE flag was not set.
6964 * EAGAIN - The requested page could not be capturead at this point in
6965 * time but future requests will likely work.
6966 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6967 * was not set.
6968 */
6969 int
page_itrycapture(page_t * pp,uint_t szc,uint_t flags,void * datap)6970 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6971 {
6972 int ret;
6973 int cb_index;
6974
6975 if (flags & CAPTURE_ASYNC) {
6976 ASSERT(PAGE_EXCL(pp));
6977 goto async;
6978 }
6979
6980 /* Make sure there's enough availrmem ... */
6981 ret = page_capture_pre_checks(pp, flags);
6982 if (ret != 0) {
6983 return (ret);
6984 }
6985
6986 if (!page_trylock(pp, SE_EXCL)) {
6987 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6988 if ((flags >> cb_index) & 1) {
6989 break;
6990 }
6991 }
6992 ASSERT(cb_index < PC_NUM_CALLBACKS);
6993 ret = EAGAIN;
6994 /* Special case for retired pages */
6995 if (PP_RETIRED(pp)) {
6996 if (flags & CAPTURE_GET_RETIRED) {
6997 if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6998 /*
6999 * Need to set capture bit and add to
7000 * hash so that the page will be
7001 * retired when freed.
7002 */
7003 page_capture_add_hash(pp, szc,
7004 CAPTURE_RETIRE, NULL);
7005 ret = 0;
7006 goto own_page;
7007 }
7008 } else {
7009 return (EBUSY);
7010 }
7011 }
7012 page_capture_add_hash(pp, szc, flags, datap);
7013 return (ret);
7014 }
7015
7016 async:
7017 ASSERT(PAGE_EXCL(pp));
7018
7019 /* Need to check for physmem async requests that availrmem is sane */
7020 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7021 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7022 (availrmem < swapfs_minfree)) {
7023 page_unlock(pp);
7024 return (ENOMEM);
7025 }
7026
7027 ret = page_capture_clean_page(pp);
7028
7029 if (ret != 0) {
7030 /* We failed to get the page, so lets add it to the hash */
7031 if (!(flags & CAPTURE_ASYNC)) {
7032 page_capture_add_hash(pp, szc, flags, datap);
7033 }
7034 return (ret);
7035 }
7036
7037 own_page:
7038 ASSERT(PAGE_EXCL(pp));
7039 ASSERT(pp->p_szc == 0);
7040
7041 /* Call the callback */
7042 ret = page_capture_take_action(pp, flags, datap);
7043
7044 if (ret == 0) {
7045 return (0);
7046 }
7047
7048 /*
7049 * Note that in the failure cases from page_capture_take_action, the
7050 * EXCL lock will have already been dropped.
7051 */
7052 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7053 page_capture_add_hash(pp, szc, flags, datap);
7054 }
7055 return (EAGAIN);
7056 }
7057
7058 int
page_trycapture(page_t * pp,uint_t szc,uint_t flags,void * datap)7059 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7060 {
7061 int ret;
7062
7063 curthread->t_flag |= T_CAPTURING;
7064 ret = page_itrycapture(pp, szc, flags, datap);
7065 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7066 return (ret);
7067 }
7068
7069 /*
7070 * When unlocking a page which has the PR_CAPTURE bit set, this routine
7071 * gets called to try and capture the page.
7072 */
7073 void
page_unlock_capture(page_t * pp)7074 page_unlock_capture(page_t *pp)
7075 {
7076 page_capture_hash_bucket_t *bp;
7077 int index;
7078 int i;
7079 uint_t szc;
7080 uint_t flags = 0;
7081 void *datap;
7082 kmutex_t *mp;
7083 extern vnode_t retired_pages;
7084
7085 /*
7086 * We need to protect against a possible deadlock here where we own
7087 * the vnode page hash mutex and want to acquire it again as there
7088 * are locations in the code, where we unlock a page while holding
7089 * the mutex which can lead to the page being captured and eventually
7090 * end up here. As we may be hashing out the old page and hashing into
7091 * the retire vnode, we need to make sure we don't own them.
7092 * Other callbacks who do hash operations also need to make sure that
7093 * before they hashin to a vnode that they do not currently own the
7094 * vphm mutex otherwise there will be a panic.
7095 */
7096 if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7097 page_unlock_nocapture(pp);
7098 return;
7099 }
7100 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7101 page_unlock_nocapture(pp);
7102 return;
7103 }
7104
7105 index = PAGE_CAPTURE_HASH(pp);
7106
7107 mp = &page_capture_hash[index].pchh_mutex;
7108 mutex_enter(mp);
7109 for (i = 0; i < 2; i++) {
7110 bp = page_capture_hash[index].lists[i].next;
7111 while (bp != &page_capture_hash[index].lists[i]) {
7112 if (bp->pp == pp) {
7113 szc = bp->szc;
7114 flags = bp->flags | CAPTURE_ASYNC;
7115 datap = bp->datap;
7116 mutex_exit(mp);
7117 (void) page_trycapture(pp, szc, flags, datap);
7118 return;
7119 }
7120 bp = bp->next;
7121 }
7122 }
7123
7124 /* Failed to find page in hash so clear flags and unlock it. */
7125 page_clrtoxic(pp, PR_CAPTURE);
7126 page_unlock(pp);
7127
7128 mutex_exit(mp);
7129 }
7130
7131 void
page_capture_init()7132 page_capture_init()
7133 {
7134 int i;
7135 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7136 page_capture_hash[i].lists[0].next =
7137 &page_capture_hash[i].lists[0];
7138 page_capture_hash[i].lists[0].prev =
7139 &page_capture_hash[i].lists[0];
7140 page_capture_hash[i].lists[1].next =
7141 &page_capture_hash[i].lists[1];
7142 page_capture_hash[i].lists[1].prev =
7143 &page_capture_hash[i].lists[1];
7144 }
7145
7146 pc_thread_shortwait = 23 * hz;
7147 pc_thread_longwait = 1201 * hz;
7148 pc_thread_retry = 3;
7149 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7150 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7151 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7152 TS_RUN, minclsyspri);
7153 }
7154
7155 /*
7156 * It is necessary to scrub any failing pages prior to reboot in order to
7157 * prevent a latent error trap from occurring on the next boot.
7158 */
7159 void
page_retire_mdboot()7160 page_retire_mdboot()
7161 {
7162 page_t *pp;
7163 int i, j;
7164 page_capture_hash_bucket_t *bp;
7165 uchar_t pri;
7166
7167 /* walk lists looking for pages to scrub */
7168 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7169 for (pri = 0; pri < PC_NUM_PRI; pri++) {
7170 if (page_capture_hash[i].num_pages[pri] != 0) {
7171 break;
7172 }
7173 }
7174 if (pri == PC_NUM_PRI)
7175 continue;
7176
7177 mutex_enter(&page_capture_hash[i].pchh_mutex);
7178
7179 for (j = 0; j < 2; j++) {
7180 bp = page_capture_hash[i].lists[j].next;
7181 while (bp != &page_capture_hash[i].lists[j]) {
7182 pp = bp->pp;
7183 if (PP_TOXIC(pp)) {
7184 if (page_trylock(pp, SE_EXCL)) {
7185 PP_CLRFREE(pp);
7186 pagescrub(pp, 0, PAGESIZE);
7187 page_unlock(pp);
7188 }
7189 }
7190 bp = bp->next;
7191 }
7192 }
7193 mutex_exit(&page_capture_hash[i].pchh_mutex);
7194 }
7195 }
7196
7197 /*
7198 * Walk the page_capture_hash trying to capture pages and also cleanup old
7199 * entries which have expired.
7200 */
7201 void
page_capture_async()7202 page_capture_async()
7203 {
7204 page_t *pp;
7205 int i;
7206 int ret;
7207 page_capture_hash_bucket_t *bp1, *bp2;
7208 uint_t szc;
7209 uint_t flags;
7210 void *datap;
7211 uchar_t pri;
7212
7213 /* If there are outstanding pages to be captured, get to work */
7214 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7215 for (pri = 0; pri < PC_NUM_PRI; pri++) {
7216 if (page_capture_hash[i].num_pages[pri] != 0)
7217 break;
7218 }
7219 if (pri == PC_NUM_PRI)
7220 continue;
7221
7222 /* Append list 1 to list 0 and then walk through list 0 */
7223 mutex_enter(&page_capture_hash[i].pchh_mutex);
7224 bp1 = &page_capture_hash[i].lists[1];
7225 bp2 = bp1->next;
7226 if (bp1 != bp2) {
7227 bp1->prev->next = page_capture_hash[i].lists[0].next;
7228 bp2->prev = &page_capture_hash[i].lists[0];
7229 page_capture_hash[i].lists[0].next->prev = bp1->prev;
7230 page_capture_hash[i].lists[0].next = bp2;
7231 bp1->next = bp1;
7232 bp1->prev = bp1;
7233 }
7234
7235 /* list[1] will be empty now */
7236
7237 bp1 = page_capture_hash[i].lists[0].next;
7238 while (bp1 != &page_capture_hash[i].lists[0]) {
7239 /* Check expiration time */
7240 if ((ddi_get_lbolt() > bp1->expires &&
7241 bp1->expires != -1) ||
7242 page_deleted(bp1->pp)) {
7243 page_capture_hash[i].lists[0].next = bp1->next;
7244 bp1->next->prev =
7245 &page_capture_hash[i].lists[0];
7246 page_capture_hash[i].num_pages[bp1->pri]--;
7247
7248 /*
7249 * We can safely remove the PR_CAPTURE bit
7250 * without holding the EXCL lock on the page
7251 * as the PR_CAPTURE bit requres that the
7252 * page_capture_hash[].pchh_mutex be held
7253 * to modify it.
7254 */
7255 page_clrtoxic(bp1->pp, PR_CAPTURE);
7256 mutex_exit(&page_capture_hash[i].pchh_mutex);
7257 kmem_free(bp1, sizeof (*bp1));
7258 mutex_enter(&page_capture_hash[i].pchh_mutex);
7259 bp1 = page_capture_hash[i].lists[0].next;
7260 continue;
7261 }
7262 pp = bp1->pp;
7263 szc = bp1->szc;
7264 flags = bp1->flags;
7265 datap = bp1->datap;
7266 mutex_exit(&page_capture_hash[i].pchh_mutex);
7267 if (page_trylock(pp, SE_EXCL)) {
7268 ret = page_trycapture(pp, szc,
7269 flags | CAPTURE_ASYNC, datap);
7270 } else {
7271 ret = 1; /* move to walked hash */
7272 }
7273
7274 if (ret != 0) {
7275 /* Move to walked hash */
7276 (void) page_capture_move_to_walked(pp);
7277 }
7278 mutex_enter(&page_capture_hash[i].pchh_mutex);
7279 bp1 = page_capture_hash[i].lists[0].next;
7280 }
7281
7282 mutex_exit(&page_capture_hash[i].pchh_mutex);
7283 }
7284 }
7285
7286 /*
7287 * This function is called by the page_capture_thread, and is needed in
7288 * in order to initiate aio cleanup, so that pages used in aio
7289 * will be unlocked and subsequently retired by page_capture_thread.
7290 */
7291 static int
do_aio_cleanup(void)7292 do_aio_cleanup(void)
7293 {
7294 proc_t *procp;
7295 int (*aio_cleanup_dr_delete_memory)(proc_t *);
7296 int cleaned = 0;
7297
7298 if (modload("sys", "kaio") == -1) {
7299 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7300 return (0);
7301 }
7302 /*
7303 * We use the aio_cleanup_dr_delete_memory function to
7304 * initiate the actual clean up; this function will wake
7305 * up the per-process aio_cleanup_thread.
7306 */
7307 aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7308 modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7309 if (aio_cleanup_dr_delete_memory == NULL) {
7310 cmn_err(CE_WARN,
7311 "aio_cleanup_dr_delete_memory not found in kaio");
7312 return (0);
7313 }
7314 mutex_enter(&pidlock);
7315 for (procp = practive; (procp != NULL); procp = procp->p_next) {
7316 mutex_enter(&procp->p_lock);
7317 if (procp->p_aio != NULL) {
7318 /* cleanup proc's outstanding kaio */
7319 cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7320 }
7321 mutex_exit(&procp->p_lock);
7322 }
7323 mutex_exit(&pidlock);
7324 return (cleaned);
7325 }
7326
7327 /*
7328 * helper function for page_capture_thread
7329 */
7330 static void
page_capture_handle_outstanding(void)7331 page_capture_handle_outstanding(void)
7332 {
7333 int ntry;
7334
7335 /* Reap pages before attempting capture pages */
7336 kmem_reap();
7337
7338 if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7339 hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7340 /*
7341 * Note: Purging only for platforms that support
7342 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7343 * platforms ISM pages SE_SHARED locked until destroyed.
7344 */
7345
7346 /* disable and purge seg_pcache */
7347 (void) seg_p_disable();
7348 for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7349 if (!page_retire_pend_count())
7350 break;
7351 if (do_aio_cleanup()) {
7352 /*
7353 * allow the apps cleanup threads
7354 * to run
7355 */
7356 delay(pc_thread_shortwait);
7357 }
7358 page_capture_async();
7359 }
7360 /* reenable seg_pcache */
7361 seg_p_enable();
7362
7363 /* completed what can be done. break out */
7364 return;
7365 }
7366
7367 /*
7368 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7369 * and then attempt to capture.
7370 */
7371 seg_preap();
7372 page_capture_async();
7373 }
7374
7375 /*
7376 * The page_capture_thread loops forever, looking to see if there are
7377 * pages still waiting to be captured.
7378 */
7379 static void
page_capture_thread(void)7380 page_capture_thread(void)
7381 {
7382 callb_cpr_t c;
7383 int i;
7384 int high_pri_pages;
7385 int low_pri_pages;
7386 clock_t timeout;
7387
7388 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7389
7390 mutex_enter(&pc_thread_mutex);
7391 for (;;) {
7392 high_pri_pages = 0;
7393 low_pri_pages = 0;
7394 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7395 high_pri_pages +=
7396 page_capture_hash[i].num_pages[PC_PRI_HI];
7397 low_pri_pages +=
7398 page_capture_hash[i].num_pages[PC_PRI_LO];
7399 }
7400
7401 timeout = pc_thread_longwait;
7402 if (high_pri_pages != 0) {
7403 timeout = pc_thread_shortwait;
7404 page_capture_handle_outstanding();
7405 } else if (low_pri_pages != 0) {
7406 page_capture_async();
7407 }
7408 CALLB_CPR_SAFE_BEGIN(&c);
7409 (void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
7410 timeout, TR_CLOCK_TICK);
7411 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7412 }
7413 /*NOTREACHED*/
7414 }
7415 /*
7416 * Attempt to locate a bucket that has enough pages to satisfy the request.
7417 * The initial check is done without the lock to avoid unneeded contention.
7418 * The function returns 1 if enough pages were found, else 0 if it could not
7419 * find enough pages in a bucket.
7420 */
7421 static int
pcf_decrement_bucket(pgcnt_t npages)7422 pcf_decrement_bucket(pgcnt_t npages)
7423 {
7424 struct pcf *p;
7425 struct pcf *q;
7426 int i;
7427
7428 p = &pcf[PCF_INDEX()];
7429 q = &pcf[pcf_fanout];
7430 for (i = 0; i < pcf_fanout; i++) {
7431 if (p->pcf_count > npages) {
7432 /*
7433 * a good one to try.
7434 */
7435 mutex_enter(&p->pcf_lock);
7436 if (p->pcf_count > npages) {
7437 p->pcf_count -= (uint_t)npages;
7438 /*
7439 * freemem is not protected by any lock.
7440 * Thus, we cannot have any assertion
7441 * containing freemem here.
7442 */
7443 freemem -= npages;
7444 mutex_exit(&p->pcf_lock);
7445 return (1);
7446 }
7447 mutex_exit(&p->pcf_lock);
7448 }
7449 p++;
7450 if (p >= q) {
7451 p = pcf;
7452 }
7453 }
7454 return (0);
7455 }
7456
7457 /*
7458 * Arguments:
7459 * pcftotal_ret: If the value is not NULL and we have walked all the
7460 * buckets but did not find enough pages then it will
7461 * be set to the total number of pages in all the pcf
7462 * buckets.
7463 * npages: Is the number of pages we have been requested to
7464 * find.
7465 * unlock: If set to 0 we will leave the buckets locked if the
7466 * requested number of pages are not found.
7467 *
7468 * Go and try to satisfy the page request from any number of buckets.
7469 * This can be a very expensive operation as we have to lock the buckets
7470 * we are checking (and keep them locked), starting at bucket 0.
7471 *
7472 * The function returns 1 if enough pages were found, else 0 if it could not
7473 * find enough pages in the buckets.
7474 *
7475 */
7476 static int
pcf_decrement_multiple(pgcnt_t * pcftotal_ret,pgcnt_t npages,int unlock)7477 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7478 {
7479 struct pcf *p;
7480 pgcnt_t pcftotal;
7481 int i;
7482
7483 p = pcf;
7484 /* try to collect pages from several pcf bins */
7485 for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7486 mutex_enter(&p->pcf_lock);
7487 pcftotal += p->pcf_count;
7488 if (pcftotal >= npages) {
7489 /*
7490 * Wow! There are enough pages laying around
7491 * to satisfy the request. Do the accounting,
7492 * drop the locks we acquired, and go back.
7493 *
7494 * freemem is not protected by any lock. So,
7495 * we cannot have any assertion containing
7496 * freemem.
7497 */
7498 freemem -= npages;
7499 while (p >= pcf) {
7500 if (p->pcf_count <= npages) {
7501 npages -= p->pcf_count;
7502 p->pcf_count = 0;
7503 } else {
7504 p->pcf_count -= (uint_t)npages;
7505 npages = 0;
7506 }
7507 mutex_exit(&p->pcf_lock);
7508 p--;
7509 }
7510 ASSERT(npages == 0);
7511 return (1);
7512 }
7513 p++;
7514 }
7515 if (unlock) {
7516 /* failed to collect pages - release the locks */
7517 while (--p >= pcf) {
7518 mutex_exit(&p->pcf_lock);
7519 }
7520 }
7521 if (pcftotal_ret != NULL)
7522 *pcftotal_ret = pcftotal;
7523 return (0);
7524 }
7525