xref: /linux/drivers/gpu/drm/xe/xe_guc_pc.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_pc.h"
7 
8 #include <linux/delay.h>
9 
10 #include <drm/drm_managed.h>
11 #include <generated/xe_wa_oob.h>
12 
13 #include "abi/guc_actions_slpc_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_regs.h"
16 #include "xe_bo.h"
17 #include "xe_device.h"
18 #include "xe_force_wake.h"
19 #include "xe_gt.h"
20 #include "xe_gt_idle.h"
21 #include "xe_gt_printk.h"
22 #include "xe_gt_types.h"
23 #include "xe_guc.h"
24 #include "xe_guc_ct.h"
25 #include "xe_map.h"
26 #include "xe_mmio.h"
27 #include "xe_pcode.h"
28 #include "xe_pm.h"
29 #include "xe_sriov.h"
30 #include "xe_wa.h"
31 
32 #define MCHBAR_MIRROR_BASE_SNB	0x140000
33 
34 #define RP_STATE_CAP		XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998)
35 #define   RP0_MASK		REG_GENMASK(7, 0)
36 #define   RP1_MASK		REG_GENMASK(15, 8)
37 #define   RPN_MASK		REG_GENMASK(23, 16)
38 
39 #define FREQ_INFO_REC	XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0)
40 #define   RPE_MASK		REG_GENMASK(15, 8)
41 
42 #define GT_PERF_STATUS		XE_REG(0x1381b4)
43 #define   CAGF_MASK	REG_GENMASK(19, 11)
44 
45 #define GT_FREQUENCY_MULTIPLIER	50
46 #define GT_FREQUENCY_SCALER	3
47 
48 #define LNL_MERT_FREQ_CAP	800
49 #define BMG_MERT_FREQ_CAP	2133
50 
51 /**
52  * DOC: GuC Power Conservation (PC)
53  *
54  * GuC Power Conservation (PC) supports multiple features for the most
55  * efficient and performing use of the GT when GuC submission is enabled,
56  * including frequency management, Render-C states management, and various
57  * algorithms for power balancing.
58  *
59  * Single Loop Power Conservation (SLPC) is the name given to the suite of
60  * connected power conservation features in the GuC firmware. The firmware
61  * exposes a programming interface to the host for the control of SLPC.
62  *
63  * Frequency management:
64  * =====================
65  *
66  * Xe driver enables SLPC with all of its defaults features and frequency
67  * selection, which varies per platform.
68  *
69  * Render-C States:
70  * ================
71  *
72  * Render-C states is also a GuC PC feature that is now enabled in Xe for
73  * all platforms.
74  *
75  */
76 
pc_to_guc(struct xe_guc_pc * pc)77 static struct xe_guc *pc_to_guc(struct xe_guc_pc *pc)
78 {
79 	return container_of(pc, struct xe_guc, pc);
80 }
81 
pc_to_ct(struct xe_guc_pc * pc)82 static struct xe_guc_ct *pc_to_ct(struct xe_guc_pc *pc)
83 {
84 	return &pc_to_guc(pc)->ct;
85 }
86 
pc_to_gt(struct xe_guc_pc * pc)87 static struct xe_gt *pc_to_gt(struct xe_guc_pc *pc)
88 {
89 	return guc_to_gt(pc_to_guc(pc));
90 }
91 
pc_to_xe(struct xe_guc_pc * pc)92 static struct xe_device *pc_to_xe(struct xe_guc_pc *pc)
93 {
94 	return guc_to_xe(pc_to_guc(pc));
95 }
96 
pc_to_maps(struct xe_guc_pc * pc)97 static struct iosys_map *pc_to_maps(struct xe_guc_pc *pc)
98 {
99 	return &pc->bo->vmap;
100 }
101 
102 #define slpc_shared_data_read(pc_, field_) \
103 	xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
104 			struct slpc_shared_data, field_)
105 
106 #define slpc_shared_data_write(pc_, field_, val_) \
107 	xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
108 			struct slpc_shared_data, field_, val_)
109 
110 #define SLPC_EVENT(id, count) \
111 	(FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \
112 	 FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count))
113 
wait_for_pc_state(struct xe_guc_pc * pc,enum slpc_global_state state)114 static int wait_for_pc_state(struct xe_guc_pc *pc,
115 			     enum slpc_global_state state)
116 {
117 	int timeout_us = 5000; /* rought 5ms, but no need for precision */
118 	int slept, wait = 10;
119 
120 	xe_device_assert_mem_access(pc_to_xe(pc));
121 
122 	for (slept = 0; slept < timeout_us;) {
123 		if (slpc_shared_data_read(pc, header.global_state) == state)
124 			return 0;
125 
126 		usleep_range(wait, wait << 1);
127 		slept += wait;
128 		wait <<= 1;
129 		if (slept + wait > timeout_us)
130 			wait = timeout_us - slept;
131 	}
132 
133 	return -ETIMEDOUT;
134 }
135 
pc_action_reset(struct xe_guc_pc * pc)136 static int pc_action_reset(struct xe_guc_pc *pc)
137 {
138 	struct xe_guc_ct *ct = pc_to_ct(pc);
139 	u32 action[] = {
140 		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
141 		SLPC_EVENT(SLPC_EVENT_RESET, 2),
142 		xe_bo_ggtt_addr(pc->bo),
143 		0,
144 	};
145 	int ret;
146 
147 	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
148 	if (ret)
149 		xe_gt_err(pc_to_gt(pc), "GuC PC reset failed: %pe\n",
150 			  ERR_PTR(ret));
151 
152 	return ret;
153 }
154 
pc_action_query_task_state(struct xe_guc_pc * pc)155 static int pc_action_query_task_state(struct xe_guc_pc *pc)
156 {
157 	struct xe_guc_ct *ct = pc_to_ct(pc);
158 	u32 action[] = {
159 		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
160 		SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
161 		xe_bo_ggtt_addr(pc->bo),
162 		0,
163 	};
164 	int ret;
165 
166 	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
167 		return -EAGAIN;
168 
169 	/* Blocking here to ensure the results are ready before reading them */
170 	ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action));
171 	if (ret)
172 		xe_gt_err(pc_to_gt(pc), "GuC PC query task state failed: %pe\n",
173 			  ERR_PTR(ret));
174 
175 	return ret;
176 }
177 
pc_action_set_param(struct xe_guc_pc * pc,u8 id,u32 value)178 static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value)
179 {
180 	struct xe_guc_ct *ct = pc_to_ct(pc);
181 	u32 action[] = {
182 		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
183 		SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
184 		id,
185 		value,
186 	};
187 	int ret;
188 
189 	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
190 		return -EAGAIN;
191 
192 	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
193 	if (ret)
194 		xe_gt_err(pc_to_gt(pc), "GuC PC set param[%u]=%u failed: %pe\n",
195 			  id, value, ERR_PTR(ret));
196 
197 	return ret;
198 }
199 
pc_action_unset_param(struct xe_guc_pc * pc,u8 id)200 static int pc_action_unset_param(struct xe_guc_pc *pc, u8 id)
201 {
202 	u32 action[] = {
203 		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
204 		SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1),
205 		id,
206 	};
207 	struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
208 	int ret;
209 
210 	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
211 		return -EAGAIN;
212 
213 	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
214 	if (ret)
215 		xe_gt_err(pc_to_gt(pc), "GuC PC unset param failed: %pe",
216 			  ERR_PTR(ret));
217 
218 	return ret;
219 }
220 
pc_action_setup_gucrc(struct xe_guc_pc * pc,u32 mode)221 static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode)
222 {
223 	struct xe_guc_ct *ct = pc_to_ct(pc);
224 	u32 action[] = {
225 		GUC_ACTION_HOST2GUC_SETUP_PC_GUCRC,
226 		mode,
227 	};
228 	int ret;
229 
230 	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
231 	if (ret)
232 		xe_gt_err(pc_to_gt(pc), "GuC RC enable mode=%u failed: %pe\n",
233 			  mode, ERR_PTR(ret));
234 	return ret;
235 }
236 
decode_freq(u32 raw)237 static u32 decode_freq(u32 raw)
238 {
239 	return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER,
240 				 GT_FREQUENCY_SCALER);
241 }
242 
encode_freq(u32 freq)243 static u32 encode_freq(u32 freq)
244 {
245 	return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER,
246 				 GT_FREQUENCY_MULTIPLIER);
247 }
248 
pc_get_min_freq(struct xe_guc_pc * pc)249 static u32 pc_get_min_freq(struct xe_guc_pc *pc)
250 {
251 	u32 freq;
252 
253 	freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
254 			 slpc_shared_data_read(pc, task_state_data.freq));
255 
256 	return decode_freq(freq);
257 }
258 
pc_set_manual_rp_ctrl(struct xe_guc_pc * pc,bool enable)259 static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable)
260 {
261 	struct xe_gt *gt = pc_to_gt(pc);
262 	u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE;
263 
264 	/* Allow/Disallow punit to process software freq requests */
265 	xe_mmio_write32(&gt->mmio, RP_CONTROL, state);
266 }
267 
pc_set_cur_freq(struct xe_guc_pc * pc,u32 freq)268 static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq)
269 {
270 	struct xe_gt *gt = pc_to_gt(pc);
271 	u32 rpnswreq;
272 
273 	pc_set_manual_rp_ctrl(pc, true);
274 
275 	/* Req freq is in units of 16.66 Mhz */
276 	rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq));
277 	xe_mmio_write32(&gt->mmio, RPNSWREQ, rpnswreq);
278 
279 	/* Sleep for a small time to allow pcode to respond */
280 	usleep_range(100, 300);
281 
282 	pc_set_manual_rp_ctrl(pc, false);
283 }
284 
pc_set_min_freq(struct xe_guc_pc * pc,u32 freq)285 static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
286 {
287 	/*
288 	 * Let's only check for the rpn-rp0 range. If max < min,
289 	 * min becomes a fixed request.
290 	 */
291 	if (freq < pc->rpn_freq || freq > pc->rp0_freq)
292 		return -EINVAL;
293 
294 	/*
295 	 * GuC policy is to elevate minimum frequency to the efficient levels
296 	 * Our goal is to have the admin choices respected.
297 	 */
298 	pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
299 			    freq < pc->rpe_freq);
300 
301 	return pc_action_set_param(pc,
302 				   SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
303 				   freq);
304 }
305 
pc_get_max_freq(struct xe_guc_pc * pc)306 static int pc_get_max_freq(struct xe_guc_pc *pc)
307 {
308 	u32 freq;
309 
310 	freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
311 			 slpc_shared_data_read(pc, task_state_data.freq));
312 
313 	return decode_freq(freq);
314 }
315 
pc_set_max_freq(struct xe_guc_pc * pc,u32 freq)316 static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
317 {
318 	/*
319 	 * Let's only check for the rpn-rp0 range. If max < min,
320 	 * min becomes a fixed request.
321 	 * Also, overclocking is not supported.
322 	 */
323 	if (freq < pc->rpn_freq || freq > pc->rp0_freq)
324 		return -EINVAL;
325 
326 	return pc_action_set_param(pc,
327 				   SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
328 				   freq);
329 }
330 
mtl_update_rpe_value(struct xe_guc_pc * pc)331 static void mtl_update_rpe_value(struct xe_guc_pc *pc)
332 {
333 	struct xe_gt *gt = pc_to_gt(pc);
334 	u32 reg;
335 
336 	if (xe_gt_is_media_type(gt))
337 		reg = xe_mmio_read32(&gt->mmio, MTL_MPE_FREQUENCY);
338 	else
339 		reg = xe_mmio_read32(&gt->mmio, MTL_GT_RPE_FREQUENCY);
340 
341 	pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg));
342 }
343 
tgl_update_rpe_value(struct xe_guc_pc * pc)344 static void tgl_update_rpe_value(struct xe_guc_pc *pc)
345 {
346 	struct xe_gt *gt = pc_to_gt(pc);
347 	struct xe_device *xe = gt_to_xe(gt);
348 	u32 reg;
349 
350 	/*
351 	 * For PVC we still need to use fused RP1 as the approximation for RPe
352 	 * For other platforms than PVC we get the resolved RPe directly from
353 	 * PCODE at a different register
354 	 */
355 	if (xe->info.platform == XE_PVC)
356 		reg = xe_mmio_read32(&gt->mmio, PVC_RP_STATE_CAP);
357 	else
358 		reg = xe_mmio_read32(&gt->mmio, FREQ_INFO_REC);
359 
360 	pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
361 }
362 
pc_update_rp_values(struct xe_guc_pc * pc)363 static void pc_update_rp_values(struct xe_guc_pc *pc)
364 {
365 	struct xe_gt *gt = pc_to_gt(pc);
366 	struct xe_device *xe = gt_to_xe(gt);
367 
368 	if (GRAPHICS_VERx100(xe) >= 1270)
369 		mtl_update_rpe_value(pc);
370 	else
371 		tgl_update_rpe_value(pc);
372 
373 	/*
374 	 * RPe is decided at runtime by PCODE. In the rare case where that's
375 	 * smaller than the fused min, we will trust the PCODE and use that
376 	 * as our minimum one.
377 	 */
378 	pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq);
379 }
380 
381 /**
382  * xe_guc_pc_get_act_freq - Get Actual running frequency
383  * @pc: The GuC PC
384  *
385  * Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6).
386  */
xe_guc_pc_get_act_freq(struct xe_guc_pc * pc)387 u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc)
388 {
389 	struct xe_gt *gt = pc_to_gt(pc);
390 	struct xe_device *xe = gt_to_xe(gt);
391 	u32 freq;
392 
393 	/* When in RC6, actual frequency reported will be 0. */
394 	if (GRAPHICS_VERx100(xe) >= 1270) {
395 		freq = xe_mmio_read32(&gt->mmio, MTL_MIRROR_TARGET_WP1);
396 		freq = REG_FIELD_GET(MTL_CAGF_MASK, freq);
397 	} else {
398 		freq = xe_mmio_read32(&gt->mmio, GT_PERF_STATUS);
399 		freq = REG_FIELD_GET(CAGF_MASK, freq);
400 	}
401 
402 	freq = decode_freq(freq);
403 
404 	return freq;
405 }
406 
407 /**
408  * xe_guc_pc_get_cur_freq - Get Current requested frequency
409  * @pc: The GuC PC
410  * @freq: A pointer to a u32 where the freq value will be returned
411  *
412  * Returns: 0 on success,
413  *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
414  */
xe_guc_pc_get_cur_freq(struct xe_guc_pc * pc,u32 * freq)415 int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq)
416 {
417 	struct xe_gt *gt = pc_to_gt(pc);
418 	unsigned int fw_ref;
419 
420 	/*
421 	 * GuC SLPC plays with cur freq request when GuCRC is enabled
422 	 * Block RC6 for a more reliable read.
423 	 */
424 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
425 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) {
426 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
427 		return -ETIMEDOUT;
428 	}
429 
430 	*freq = xe_mmio_read32(&gt->mmio, RPNSWREQ);
431 
432 	*freq = REG_FIELD_GET(REQ_RATIO_MASK, *freq);
433 	*freq = decode_freq(*freq);
434 
435 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
436 	return 0;
437 }
438 
439 /**
440  * xe_guc_pc_get_rp0_freq - Get the RP0 freq
441  * @pc: The GuC PC
442  *
443  * Returns: RP0 freq.
444  */
xe_guc_pc_get_rp0_freq(struct xe_guc_pc * pc)445 u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc)
446 {
447 	return pc->rp0_freq;
448 }
449 
450 /**
451  * xe_guc_pc_get_rpe_freq - Get the RPe freq
452  * @pc: The GuC PC
453  *
454  * Returns: RPe freq.
455  */
xe_guc_pc_get_rpe_freq(struct xe_guc_pc * pc)456 u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc)
457 {
458 	pc_update_rp_values(pc);
459 
460 	return pc->rpe_freq;
461 }
462 
463 /**
464  * xe_guc_pc_get_rpn_freq - Get the RPn freq
465  * @pc: The GuC PC
466  *
467  * Returns: RPn freq.
468  */
xe_guc_pc_get_rpn_freq(struct xe_guc_pc * pc)469 u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc)
470 {
471 	return pc->rpn_freq;
472 }
473 
474 /**
475  * xe_guc_pc_get_min_freq - Get the min operational frequency
476  * @pc: The GuC PC
477  * @freq: A pointer to a u32 where the freq value will be returned
478  *
479  * Returns: 0 on success,
480  *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
481  */
xe_guc_pc_get_min_freq(struct xe_guc_pc * pc,u32 * freq)482 int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq)
483 {
484 	struct xe_gt *gt = pc_to_gt(pc);
485 	unsigned int fw_ref;
486 	int ret;
487 
488 	mutex_lock(&pc->freq_lock);
489 	if (!pc->freq_ready) {
490 		/* Might be in the middle of a gt reset */
491 		ret = -EAGAIN;
492 		goto out;
493 	}
494 
495 	/*
496 	 * GuC SLPC plays with min freq request when GuCRC is enabled
497 	 * Block RC6 for a more reliable read.
498 	 */
499 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
500 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) {
501 		ret = -ETIMEDOUT;
502 		goto fw;
503 	}
504 
505 	ret = pc_action_query_task_state(pc);
506 	if (ret)
507 		goto fw;
508 
509 	*freq = pc_get_min_freq(pc);
510 
511 fw:
512 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
513 out:
514 	mutex_unlock(&pc->freq_lock);
515 	return ret;
516 }
517 
518 /**
519  * xe_guc_pc_set_min_freq - Set the minimal operational frequency
520  * @pc: The GuC PC
521  * @freq: The selected minimal frequency
522  *
523  * Returns: 0 on success,
524  *         -EAGAIN if GuC PC not ready (likely in middle of a reset),
525  *         -EINVAL if value out of bounds.
526  */
xe_guc_pc_set_min_freq(struct xe_guc_pc * pc,u32 freq)527 int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
528 {
529 	int ret;
530 
531 	mutex_lock(&pc->freq_lock);
532 	if (!pc->freq_ready) {
533 		/* Might be in the middle of a gt reset */
534 		ret = -EAGAIN;
535 		goto out;
536 	}
537 
538 	ret = pc_set_min_freq(pc, freq);
539 	if (ret)
540 		goto out;
541 
542 	pc->user_requested_min = freq;
543 
544 out:
545 	mutex_unlock(&pc->freq_lock);
546 	return ret;
547 }
548 
549 /**
550  * xe_guc_pc_get_max_freq - Get Maximum operational frequency
551  * @pc: The GuC PC
552  * @freq: A pointer to a u32 where the freq value will be returned
553  *
554  * Returns: 0 on success,
555  *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
556  */
xe_guc_pc_get_max_freq(struct xe_guc_pc * pc,u32 * freq)557 int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq)
558 {
559 	int ret;
560 
561 	mutex_lock(&pc->freq_lock);
562 	if (!pc->freq_ready) {
563 		/* Might be in the middle of a gt reset */
564 		ret = -EAGAIN;
565 		goto out;
566 	}
567 
568 	ret = pc_action_query_task_state(pc);
569 	if (ret)
570 		goto out;
571 
572 	*freq = pc_get_max_freq(pc);
573 
574 out:
575 	mutex_unlock(&pc->freq_lock);
576 	return ret;
577 }
578 
579 /**
580  * xe_guc_pc_set_max_freq - Set the maximum operational frequency
581  * @pc: The GuC PC
582  * @freq: The selected maximum frequency value
583  *
584  * Returns: 0 on success,
585  *         -EAGAIN if GuC PC not ready (likely in middle of a reset),
586  *         -EINVAL if value out of bounds.
587  */
xe_guc_pc_set_max_freq(struct xe_guc_pc * pc,u32 freq)588 int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
589 {
590 	int ret;
591 
592 	mutex_lock(&pc->freq_lock);
593 	if (!pc->freq_ready) {
594 		/* Might be in the middle of a gt reset */
595 		ret = -EAGAIN;
596 		goto out;
597 	}
598 
599 	ret = pc_set_max_freq(pc, freq);
600 	if (ret)
601 		goto out;
602 
603 	pc->user_requested_max = freq;
604 
605 out:
606 	mutex_unlock(&pc->freq_lock);
607 	return ret;
608 }
609 
610 /**
611  * xe_guc_pc_c_status - get the current GT C state
612  * @pc: XE_GuC_PC instance
613  */
xe_guc_pc_c_status(struct xe_guc_pc * pc)614 enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc)
615 {
616 	struct xe_gt *gt = pc_to_gt(pc);
617 	u32 reg, gt_c_state;
618 
619 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
620 		reg = xe_mmio_read32(&gt->mmio, MTL_MIRROR_TARGET_WP1);
621 		gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg);
622 	} else {
623 		reg = xe_mmio_read32(&gt->mmio, GT_CORE_STATUS);
624 		gt_c_state = REG_FIELD_GET(RCN_MASK, reg);
625 	}
626 
627 	switch (gt_c_state) {
628 	case GT_C6:
629 		return GT_IDLE_C6;
630 	case GT_C0:
631 		return GT_IDLE_C0;
632 	default:
633 		return GT_IDLE_UNKNOWN;
634 	}
635 }
636 
637 /**
638  * xe_guc_pc_rc6_residency - rc6 residency counter
639  * @pc: Xe_GuC_PC instance
640  */
xe_guc_pc_rc6_residency(struct xe_guc_pc * pc)641 u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc)
642 {
643 	struct xe_gt *gt = pc_to_gt(pc);
644 	u32 reg;
645 
646 	reg = xe_mmio_read32(&gt->mmio, GT_GFX_RC6);
647 
648 	return reg;
649 }
650 
651 /**
652  * xe_guc_pc_mc6_residency - mc6 residency counter
653  * @pc: Xe_GuC_PC instance
654  */
xe_guc_pc_mc6_residency(struct xe_guc_pc * pc)655 u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc)
656 {
657 	struct xe_gt *gt = pc_to_gt(pc);
658 	u64 reg;
659 
660 	reg = xe_mmio_read32(&gt->mmio, MTL_MEDIA_MC6);
661 
662 	return reg;
663 }
664 
mtl_init_fused_rp_values(struct xe_guc_pc * pc)665 static void mtl_init_fused_rp_values(struct xe_guc_pc *pc)
666 {
667 	struct xe_gt *gt = pc_to_gt(pc);
668 	u32 reg;
669 
670 	xe_device_assert_mem_access(pc_to_xe(pc));
671 
672 	if (xe_gt_is_media_type(gt))
673 		reg = xe_mmio_read32(&gt->mmio, MTL_MEDIAP_STATE_CAP);
674 	else
675 		reg = xe_mmio_read32(&gt->mmio, MTL_RP_STATE_CAP);
676 
677 	pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg));
678 
679 	pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg));
680 }
681 
tgl_init_fused_rp_values(struct xe_guc_pc * pc)682 static void tgl_init_fused_rp_values(struct xe_guc_pc *pc)
683 {
684 	struct xe_gt *gt = pc_to_gt(pc);
685 	struct xe_device *xe = gt_to_xe(gt);
686 	u32 reg;
687 
688 	xe_device_assert_mem_access(pc_to_xe(pc));
689 
690 	if (xe->info.platform == XE_PVC)
691 		reg = xe_mmio_read32(&gt->mmio, PVC_RP_STATE_CAP);
692 	else
693 		reg = xe_mmio_read32(&gt->mmio, RP_STATE_CAP);
694 	pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
695 	pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
696 }
697 
pc_init_fused_rp_values(struct xe_guc_pc * pc)698 static void pc_init_fused_rp_values(struct xe_guc_pc *pc)
699 {
700 	struct xe_gt *gt = pc_to_gt(pc);
701 	struct xe_device *xe = gt_to_xe(gt);
702 
703 	if (GRAPHICS_VERx100(xe) >= 1270)
704 		mtl_init_fused_rp_values(pc);
705 	else
706 		tgl_init_fused_rp_values(pc);
707 }
708 
pc_max_freq_cap(struct xe_guc_pc * pc)709 static u32 pc_max_freq_cap(struct xe_guc_pc *pc)
710 {
711 	struct xe_gt *gt = pc_to_gt(pc);
712 
713 	if (XE_WA(gt, 22019338487)) {
714 		if (xe_gt_is_media_type(gt))
715 			return min(LNL_MERT_FREQ_CAP, pc->rp0_freq);
716 		else
717 			return min(BMG_MERT_FREQ_CAP, pc->rp0_freq);
718 	} else {
719 		return pc->rp0_freq;
720 	}
721 }
722 
723 /**
724  * xe_guc_pc_raise_unslice - Initialize RPx values and request a higher GT
725  * frequency to allow faster GuC load times
726  * @pc: Xe_GuC_PC instance
727  */
xe_guc_pc_raise_unslice(struct xe_guc_pc * pc)728 void xe_guc_pc_raise_unslice(struct xe_guc_pc *pc)
729 {
730 	struct xe_gt *gt = pc_to_gt(pc);
731 
732 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
733 	pc_set_cur_freq(pc, pc_max_freq_cap(pc));
734 }
735 
736 /**
737  * xe_guc_pc_init_early - Initialize RPx values
738  * @pc: Xe_GuC_PC instance
739  */
xe_guc_pc_init_early(struct xe_guc_pc * pc)740 void xe_guc_pc_init_early(struct xe_guc_pc *pc)
741 {
742 	struct xe_gt *gt = pc_to_gt(pc);
743 
744 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
745 	pc_init_fused_rp_values(pc);
746 }
747 
pc_adjust_freq_bounds(struct xe_guc_pc * pc)748 static int pc_adjust_freq_bounds(struct xe_guc_pc *pc)
749 {
750 	int ret;
751 
752 	lockdep_assert_held(&pc->freq_lock);
753 
754 	ret = pc_action_query_task_state(pc);
755 	if (ret)
756 		goto out;
757 
758 	/*
759 	 * GuC defaults to some RPmax that is not actually achievable without
760 	 * overclocking. Let's adjust it to the Hardware RP0, which is the
761 	 * regular maximum
762 	 */
763 	if (pc_get_max_freq(pc) > pc->rp0_freq) {
764 		ret = pc_set_max_freq(pc, pc->rp0_freq);
765 		if (ret)
766 			goto out;
767 	}
768 
769 	/*
770 	 * Same thing happens for Server platforms where min is listed as
771 	 * RPMax
772 	 */
773 	if (pc_get_min_freq(pc) > pc->rp0_freq)
774 		ret = pc_set_min_freq(pc, pc->rp0_freq);
775 
776 out:
777 	return ret;
778 }
779 
pc_adjust_requested_freq(struct xe_guc_pc * pc)780 static int pc_adjust_requested_freq(struct xe_guc_pc *pc)
781 {
782 	int ret = 0;
783 
784 	lockdep_assert_held(&pc->freq_lock);
785 
786 	if (pc->user_requested_min != 0) {
787 		ret = pc_set_min_freq(pc, pc->user_requested_min);
788 		if (ret)
789 			return ret;
790 	}
791 
792 	if (pc->user_requested_max != 0) {
793 		ret = pc_set_max_freq(pc, pc->user_requested_max);
794 		if (ret)
795 			return ret;
796 	}
797 
798 	return ret;
799 }
800 
pc_set_mert_freq_cap(struct xe_guc_pc * pc)801 static int pc_set_mert_freq_cap(struct xe_guc_pc *pc)
802 {
803 	int ret = 0;
804 
805 	if (XE_WA(pc_to_gt(pc), 22019338487)) {
806 		/*
807 		 * Get updated min/max and stash them.
808 		 */
809 		ret = xe_guc_pc_get_min_freq(pc, &pc->stashed_min_freq);
810 		if (!ret)
811 			ret = xe_guc_pc_get_max_freq(pc, &pc->stashed_max_freq);
812 		if (ret)
813 			return ret;
814 
815 		/*
816 		 * Ensure min and max are bound by MERT_FREQ_CAP until driver loads.
817 		 */
818 		mutex_lock(&pc->freq_lock);
819 		ret = pc_set_min_freq(pc, min(pc->rpe_freq, pc_max_freq_cap(pc)));
820 		if (!ret)
821 			ret = pc_set_max_freq(pc, min(pc->rp0_freq, pc_max_freq_cap(pc)));
822 		mutex_unlock(&pc->freq_lock);
823 	}
824 
825 	return ret;
826 }
827 
828 /**
829  * xe_guc_pc_restore_stashed_freq - Set min/max back to stashed values
830  * @pc: The GuC PC
831  *
832  * Returns: 0 on success,
833  *          error code on failure
834  */
xe_guc_pc_restore_stashed_freq(struct xe_guc_pc * pc)835 int xe_guc_pc_restore_stashed_freq(struct xe_guc_pc *pc)
836 {
837 	int ret = 0;
838 
839 	if (IS_SRIOV_VF(pc_to_xe(pc)) || pc_to_xe(pc)->info.skip_guc_pc)
840 		return 0;
841 
842 	mutex_lock(&pc->freq_lock);
843 	ret = pc_set_max_freq(pc, pc->stashed_max_freq);
844 	if (!ret)
845 		ret = pc_set_min_freq(pc, pc->stashed_min_freq);
846 	mutex_unlock(&pc->freq_lock);
847 
848 	return ret;
849 }
850 
851 /**
852  * xe_guc_pc_gucrc_disable - Disable GuC RC
853  * @pc: Xe_GuC_PC instance
854  *
855  * Disables GuC RC by taking control of RC6 back from GuC.
856  *
857  * Return: 0 on success, negative error code on error.
858  */
xe_guc_pc_gucrc_disable(struct xe_guc_pc * pc)859 int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc)
860 {
861 	struct xe_device *xe = pc_to_xe(pc);
862 	struct xe_gt *gt = pc_to_gt(pc);
863 	unsigned int fw_ref;
864 	int ret = 0;
865 
866 	if (xe->info.skip_guc_pc)
867 		return 0;
868 
869 	ret = pc_action_setup_gucrc(pc, GUCRC_HOST_CONTROL);
870 	if (ret)
871 		return ret;
872 
873 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
874 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) {
875 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
876 		return -ETIMEDOUT;
877 	}
878 
879 	xe_gt_idle_disable_c6(gt);
880 
881 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
882 
883 	return 0;
884 }
885 
886 /**
887  * xe_guc_pc_override_gucrc_mode - override GUCRC mode
888  * @pc: Xe_GuC_PC instance
889  * @mode: new value of the mode.
890  *
891  * Return: 0 on success, negative error code on error
892  */
xe_guc_pc_override_gucrc_mode(struct xe_guc_pc * pc,enum slpc_gucrc_mode mode)893 int xe_guc_pc_override_gucrc_mode(struct xe_guc_pc *pc, enum slpc_gucrc_mode mode)
894 {
895 	int ret;
896 
897 	xe_pm_runtime_get(pc_to_xe(pc));
898 	ret = pc_action_set_param(pc, SLPC_PARAM_PWRGATE_RC_MODE, mode);
899 	xe_pm_runtime_put(pc_to_xe(pc));
900 
901 	return ret;
902 }
903 
904 /**
905  * xe_guc_pc_unset_gucrc_mode - unset GUCRC mode override
906  * @pc: Xe_GuC_PC instance
907  *
908  * Return: 0 on success, negative error code on error
909  */
xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc * pc)910 int xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc *pc)
911 {
912 	int ret;
913 
914 	xe_pm_runtime_get(pc_to_xe(pc));
915 	ret = pc_action_unset_param(pc, SLPC_PARAM_PWRGATE_RC_MODE);
916 	xe_pm_runtime_put(pc_to_xe(pc));
917 
918 	return ret;
919 }
920 
pc_init_pcode_freq(struct xe_guc_pc * pc)921 static void pc_init_pcode_freq(struct xe_guc_pc *pc)
922 {
923 	u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER);
924 	u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER);
925 
926 	XE_WARN_ON(xe_pcode_init_min_freq_table(gt_to_tile(pc_to_gt(pc)), min, max));
927 }
928 
pc_init_freqs(struct xe_guc_pc * pc)929 static int pc_init_freqs(struct xe_guc_pc *pc)
930 {
931 	int ret;
932 
933 	mutex_lock(&pc->freq_lock);
934 
935 	ret = pc_adjust_freq_bounds(pc);
936 	if (ret)
937 		goto out;
938 
939 	ret = pc_adjust_requested_freq(pc);
940 	if (ret)
941 		goto out;
942 
943 	pc_update_rp_values(pc);
944 
945 	pc_init_pcode_freq(pc);
946 
947 	/*
948 	 * The frequencies are really ready for use only after the user
949 	 * requested ones got restored.
950 	 */
951 	pc->freq_ready = true;
952 
953 out:
954 	mutex_unlock(&pc->freq_lock);
955 	return ret;
956 }
957 
958 /**
959  * xe_guc_pc_start - Start GuC's Power Conservation component
960  * @pc: Xe_GuC_PC instance
961  */
xe_guc_pc_start(struct xe_guc_pc * pc)962 int xe_guc_pc_start(struct xe_guc_pc *pc)
963 {
964 	struct xe_device *xe = pc_to_xe(pc);
965 	struct xe_gt *gt = pc_to_gt(pc);
966 	u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
967 	unsigned int fw_ref;
968 	int ret;
969 
970 	xe_gt_assert(gt, xe_device_uc_enabled(xe));
971 
972 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
973 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL)) {
974 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
975 		return -ETIMEDOUT;
976 	}
977 
978 	if (xe->info.skip_guc_pc) {
979 		if (xe->info.platform != XE_PVC)
980 			xe_gt_idle_enable_c6(gt);
981 
982 		/* Request max possible since dynamic freq mgmt is not enabled */
983 		pc_set_cur_freq(pc, UINT_MAX);
984 
985 		ret = 0;
986 		goto out;
987 	}
988 
989 	memset(pc->bo->vmap.vaddr, 0, size);
990 	slpc_shared_data_write(pc, header.size, size);
991 
992 	ret = pc_action_reset(pc);
993 	if (ret)
994 		goto out;
995 
996 	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) {
997 		xe_gt_err(gt, "GuC PC Start failed\n");
998 		ret = -EIO;
999 		goto out;
1000 	}
1001 
1002 	ret = pc_init_freqs(pc);
1003 	if (ret)
1004 		goto out;
1005 
1006 	ret = pc_set_mert_freq_cap(pc);
1007 	if (ret)
1008 		goto out;
1009 
1010 	if (xe->info.platform == XE_PVC) {
1011 		xe_guc_pc_gucrc_disable(pc);
1012 		ret = 0;
1013 		goto out;
1014 	}
1015 
1016 	ret = pc_action_setup_gucrc(pc, GUCRC_FIRMWARE_CONTROL);
1017 
1018 out:
1019 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
1020 	return ret;
1021 }
1022 
1023 /**
1024  * xe_guc_pc_stop - Stop GuC's Power Conservation component
1025  * @pc: Xe_GuC_PC instance
1026  */
xe_guc_pc_stop(struct xe_guc_pc * pc)1027 int xe_guc_pc_stop(struct xe_guc_pc *pc)
1028 {
1029 	struct xe_device *xe = pc_to_xe(pc);
1030 
1031 	if (xe->info.skip_guc_pc) {
1032 		xe_gt_idle_disable_c6(pc_to_gt(pc));
1033 		return 0;
1034 	}
1035 
1036 	mutex_lock(&pc->freq_lock);
1037 	pc->freq_ready = false;
1038 	mutex_unlock(&pc->freq_lock);
1039 
1040 	return 0;
1041 }
1042 
1043 /**
1044  * xe_guc_pc_fini_hw - Finalize GuC's Power Conservation component
1045  * @arg: opaque pointer that should point to Xe_GuC_PC instance
1046  */
xe_guc_pc_fini_hw(void * arg)1047 static void xe_guc_pc_fini_hw(void *arg)
1048 {
1049 	struct xe_guc_pc *pc = arg;
1050 	struct xe_device *xe = pc_to_xe(pc);
1051 	unsigned int fw_ref;
1052 
1053 	if (xe_device_wedged(xe))
1054 		return;
1055 
1056 	fw_ref = xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
1057 	xe_guc_pc_gucrc_disable(pc);
1058 	XE_WARN_ON(xe_guc_pc_stop(pc));
1059 
1060 	/* Bind requested freq to mert_freq_cap before unload */
1061 	pc_set_cur_freq(pc, min(pc_max_freq_cap(pc), pc->rpe_freq));
1062 
1063 	xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), fw_ref);
1064 }
1065 
1066 /**
1067  * xe_guc_pc_init - Initialize GuC's Power Conservation component
1068  * @pc: Xe_GuC_PC instance
1069  */
xe_guc_pc_init(struct xe_guc_pc * pc)1070 int xe_guc_pc_init(struct xe_guc_pc *pc)
1071 {
1072 	struct xe_gt *gt = pc_to_gt(pc);
1073 	struct xe_tile *tile = gt_to_tile(gt);
1074 	struct xe_device *xe = gt_to_xe(gt);
1075 	struct xe_bo *bo;
1076 	u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
1077 	int err;
1078 
1079 	if (xe->info.skip_guc_pc)
1080 		return 0;
1081 
1082 	err = drmm_mutex_init(&xe->drm, &pc->freq_lock);
1083 	if (err)
1084 		return err;
1085 
1086 	bo = xe_managed_bo_create_pin_map(xe, tile, size,
1087 					  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
1088 					  XE_BO_FLAG_GGTT |
1089 					  XE_BO_FLAG_GGTT_INVALIDATE);
1090 	if (IS_ERR(bo))
1091 		return PTR_ERR(bo);
1092 
1093 	pc->bo = bo;
1094 
1095 	return devm_add_action_or_reset(xe->drm.dev, xe_guc_pc_fini_hw, pc);
1096 }
1097